]> gcc.gnu.org Git - gcc.git/blame - gcc/stmt.c
(push_init_level): For braces around scalar, just warn.
[gcc.git] / gcc / stmt.c
CommitLineData
28d81abb
RK
1/* Expands front end tree to back end RTL for GNU C-Compiler
2 Copyright (C) 1987, 1988, 1989, 1992 Free Software Foundation, Inc.
3
4This file is part of GNU CC.
5
6GNU CC is free software; you can redistribute it and/or modify
7it under the terms of the GNU General Public License as published by
8the Free Software Foundation; either version 2, or (at your option)
9any later version.
10
11GNU CC is distributed in the hope that it will be useful,
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14GNU General Public License for more details.
15
16You should have received a copy of the GNU General Public License
17along with GNU CC; see the file COPYING. If not, write to
18the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20
21/* This file handles the generation of rtl code from tree structure
22 above the level of expressions, using subroutines in exp*.c and emit-rtl.c.
23 It also creates the rtl expressions for parameters and auto variables
24 and has full responsibility for allocating stack slots.
25
26 The functions whose names start with `expand_' are called by the
27 parser to generate RTL instructions for various kinds of constructs.
28
29 Some control and binding constructs require calling several such
30 functions at different times. For example, a simple if-then
31 is expanded by calling `expand_start_cond' (with the condition-expression
32 as argument) before parsing the then-clause and calling `expand_end_cond'
33 after parsing the then-clause. */
34
35#include "config.h"
36
37#include <stdio.h>
38#include <ctype.h>
39
40#include "rtl.h"
41#include "tree.h"
42#include "flags.h"
43#include "function.h"
44#include "insn-flags.h"
45#include "insn-config.h"
46#include "insn-codes.h"
47#include "expr.h"
48#include "hard-reg-set.h"
49#include "obstack.h"
50#include "loop.h"
51#include "recog.h"
52
53#define obstack_chunk_alloc xmalloc
54#define obstack_chunk_free free
55struct obstack stmt_obstack;
56
28d81abb
RK
57/* Filename and line number of last line-number note,
58 whether we actually emitted it or not. */
59char *emit_filename;
60int emit_lineno;
61
62/* Nonzero if within a ({...}) grouping, in which case we must
63 always compute a value for each expr-stmt in case it is the last one. */
64
65int expr_stmts_for_value;
66
67/* Each time we expand an expression-statement,
68 record the expr's type and its RTL value here. */
69
70static tree last_expr_type;
71static rtx last_expr_value;
72
7629c936
RS
73/* Each time we expand the end of a binding contour (in `expand_end_bindings')
74 and we emit a new NOTE_INSN_BLOCK_END note, we save a pointer to it here.
75 This is used by the `remember_end_note' function to record the endpoint
76 of each generated block in its associated BLOCK node. */
77
78static rtx last_block_end_note;
79
28d81abb
RK
80/* Number of binding contours started so far in this function. */
81
82int block_start_count;
83
84/* Nonzero if function being compiled needs to
85 return the address of where it has put a structure value. */
86
87extern int current_function_returns_pcc_struct;
88
89/* Label that will go on parm cleanup code, if any.
90 Jumping to this label runs cleanup code for parameters, if
91 such code must be run. Following this code is the logical return label. */
92
93extern rtx cleanup_label;
94
95/* Label that will go on function epilogue.
96 Jumping to this label serves as a "return" instruction
97 on machines which require execution of the epilogue on all returns. */
98
99extern rtx return_label;
100
101/* List (chain of EXPR_LISTs) of pseudo-regs of SAVE_EXPRs.
102 So we can mark them all live at the end of the function, if nonopt. */
103extern rtx save_expr_regs;
104
105/* Offset to end of allocated area of stack frame.
106 If stack grows down, this is the address of the last stack slot allocated.
107 If stack grows up, this is the address for the next slot. */
108extern int frame_offset;
109
110/* Label to jump back to for tail recursion, or 0 if we have
111 not yet needed one for this function. */
112extern rtx tail_recursion_label;
113
114/* Place after which to insert the tail_recursion_label if we need one. */
115extern rtx tail_recursion_reentry;
116
117/* Location at which to save the argument pointer if it will need to be
118 referenced. There are two cases where this is done: if nonlocal gotos
119 exist, or if vars whose is an offset from the argument pointer will be
120 needed by inner routines. */
121
122extern rtx arg_pointer_save_area;
123
124/* Chain of all RTL_EXPRs that have insns in them. */
125extern tree rtl_expr_chain;
126
127#if 0 /* Turned off because 0 seems to work just as well. */
128/* Cleanup lists are required for binding levels regardless of whether
129 that binding level has cleanups or not. This node serves as the
130 cleanup list whenever an empty list is required. */
131static tree empty_cleanup_list;
132#endif
133\f
134/* Functions and data structures for expanding case statements. */
135
136/* Case label structure, used to hold info on labels within case
137 statements. We handle "range" labels; for a single-value label
138 as in C, the high and low limits are the same.
139
140 A chain of case nodes is initially maintained via the RIGHT fields
141 in the nodes. Nodes with higher case values are later in the list.
142
143 Switch statements can be output in one of two forms. A branch table
144 is used if there are more than a few labels and the labels are dense
145 within the range between the smallest and largest case value. If a
146 branch table is used, no further manipulations are done with the case
147 node chain.
148
149 The alternative to the use of a branch table is to generate a series
150 of compare and jump insns. When that is done, we use the LEFT, RIGHT,
151 and PARENT fields to hold a binary tree. Initially the tree is
de14fd73
RK
152 totally unbalanced, with everything on the right. We balance the tree
153 with nodes on the left having lower case values than the parent
28d81abb
RK
154 and nodes on the right having higher values. We then output the tree
155 in order. */
156
157struct case_node
158{
159 struct case_node *left; /* Left son in binary tree */
160 struct case_node *right; /* Right son in binary tree; also node chain */
161 struct case_node *parent; /* Parent of node in binary tree */
162 tree low; /* Lowest index value for this label */
163 tree high; /* Highest index value for this label */
164 tree code_label; /* Label to jump to when node matches */
165};
166
167typedef struct case_node case_node;
168typedef struct case_node *case_node_ptr;
169
170/* These are used by estimate_case_costs and balance_case_nodes. */
171
172/* This must be a signed type, and non-ANSI compilers lack signed char. */
173static short *cost_table;
174static int use_cost_table;
175
176static int estimate_case_costs ();
177static void balance_case_nodes ();
178static void emit_case_nodes ();
179static void group_case_nodes ();
180static void emit_jump_if_reachable ();
181
182static int warn_if_unused_value ();
183static void expand_goto_internal ();
184static int expand_fixup ();
185void fixup_gotos ();
186void free_temp_slots ();
187static void expand_cleanups ();
28d81abb
RK
188static void expand_null_return_1 ();
189static int tail_recursion_args ();
190static void do_jump_if_equal ();
191\f
192/* Stack of control and binding constructs we are currently inside.
193
194 These constructs begin when you call `expand_start_WHATEVER'
195 and end when you call `expand_end_WHATEVER'. This stack records
196 info about how the construct began that tells the end-function
197 what to do. It also may provide information about the construct
198 to alter the behavior of other constructs within the body.
199 For example, they may affect the behavior of C `break' and `continue'.
200
201 Each construct gets one `struct nesting' object.
202 All of these objects are chained through the `all' field.
203 `nesting_stack' points to the first object (innermost construct).
204 The position of an entry on `nesting_stack' is in its `depth' field.
205
206 Each type of construct has its own individual stack.
207 For example, loops have `loop_stack'. Each object points to the
208 next object of the same type through the `next' field.
209
210 Some constructs are visible to `break' exit-statements and others
211 are not. Which constructs are visible depends on the language.
212 Therefore, the data structure allows each construct to be visible
213 or not, according to the args given when the construct is started.
214 The construct is visible if the `exit_label' field is non-null.
215 In that case, the value should be a CODE_LABEL rtx. */
216
217struct nesting
218{
219 struct nesting *all;
220 struct nesting *next;
221 int depth;
222 rtx exit_label;
223 union
224 {
225 /* For conds (if-then and if-then-else statements). */
226 struct
227 {
228 /* Label for the end of the if construct.
229 There is none if EXITFLAG was not set
230 and no `else' has been seen yet. */
231 rtx endif_label;
232 /* Label for the end of this alternative.
233 This may be the end of the if or the next else/elseif. */
234 rtx next_label;
235 } cond;
236 /* For loops. */
237 struct
238 {
239 /* Label at the top of the loop; place to loop back to. */
240 rtx start_label;
241 /* Label at the end of the whole construct. */
242 rtx end_label;
243 /* Label for `continue' statement to jump to;
244 this is in front of the stepper of the loop. */
245 rtx continue_label;
246 } loop;
247 /* For variable binding contours. */
248 struct
249 {
250 /* Sequence number of this binding contour within the function,
251 in order of entry. */
252 int block_start_count;
253 /* Nonzero => value to restore stack to on exit. */
254 rtx stack_level;
255 /* The NOTE that starts this contour.
256 Used by expand_goto to check whether the destination
257 is within each contour or not. */
258 rtx first_insn;
259 /* Innermost containing binding contour that has a stack level. */
260 struct nesting *innermost_stack_block;
261 /* List of cleanups to be run on exit from this contour.
262 This is a list of expressions to be evaluated.
263 The TREE_PURPOSE of each link is the ..._DECL node
264 which the cleanup pertains to. */
265 tree cleanups;
266 /* List of cleanup-lists of blocks containing this block,
267 as they were at the locus where this block appears.
268 There is an element for each containing block,
269 ordered innermost containing block first.
270 The tail of this list can be 0 (was empty_cleanup_list),
271 if all remaining elements would be empty lists.
272 The element's TREE_VALUE is the cleanup-list of that block,
273 which may be null. */
274 tree outer_cleanups;
275 /* Chain of labels defined inside this binding contour.
276 For contours that have stack levels or cleanups. */
277 struct label_chain *label_chain;
278 /* Number of function calls seen, as of start of this block. */
279 int function_call_count;
280 } block;
281 /* For switch (C) or case (Pascal) statements,
282 and also for dummies (see `expand_start_case_dummy'). */
283 struct
284 {
285 /* The insn after which the case dispatch should finally
286 be emitted. Zero for a dummy. */
287 rtx start;
288 /* A list of case labels, kept in ascending order by value
289 as the list is built.
290 During expand_end_case, this list may be rearranged into a
291 nearly balanced binary tree. */
292 struct case_node *case_list;
293 /* Label to jump to if no case matches. */
294 tree default_label;
295 /* The expression to be dispatched on. */
296 tree index_expr;
297 /* Type that INDEX_EXPR should be converted to. */
298 tree nominal_type;
299 /* Number of range exprs in case statement. */
300 int num_ranges;
301 /* Name of this kind of statement, for warnings. */
302 char *printname;
303 /* Nonzero if a case label has been seen in this case stmt. */
304 char seenlabel;
305 } case_stmt;
306 /* For exception contours. */
307 struct
308 {
309 /* List of exceptions raised. This is a TREE_LIST
310 of whatever you want. */
311 tree raised;
312 /* List of exceptions caught. This is also a TREE_LIST
313 of whatever you want. As a special case, it has the
314 value `void_type_node' if it handles default exceptions. */
315 tree handled;
316
317 /* First insn of TRY block, in case resumptive model is needed. */
318 rtx first_insn;
319 /* Label for the catch clauses. */
320 rtx except_label;
321 /* Label for unhandled exceptions. */
322 rtx unhandled_label;
323 /* Label at the end of whole construct. */
324 rtx after_label;
325 /* Label which "escapes" the exception construct.
326 Like EXIT_LABEL for BREAK construct, but for exceptions. */
327 rtx escape_label;
328 } except_stmt;
329 } data;
330};
331
332/* Chain of all pending binding contours. */
333struct nesting *block_stack;
334
6ed1d6c5
RS
335/* If any new stacks are added here, add them to POPSTACKS too. */
336
28d81abb
RK
337/* Chain of all pending binding contours that restore stack levels
338 or have cleanups. */
339struct nesting *stack_block_stack;
340
341/* Chain of all pending conditional statements. */
342struct nesting *cond_stack;
343
344/* Chain of all pending loops. */
345struct nesting *loop_stack;
346
347/* Chain of all pending case or switch statements. */
348struct nesting *case_stack;
349
350/* Chain of all pending exception contours. */
351struct nesting *except_stack;
352
353/* Separate chain including all of the above,
354 chained through the `all' field. */
355struct nesting *nesting_stack;
356
357/* Number of entries on nesting_stack now. */
358int nesting_depth;
359
360/* Allocate and return a new `struct nesting'. */
361
362#define ALLOC_NESTING() \
363 (struct nesting *) obstack_alloc (&stmt_obstack, sizeof (struct nesting))
364
6ed1d6c5
RS
365/* Pop the nesting stack element by element until we pop off
366 the element which is at the top of STACK.
367 Update all the other stacks, popping off elements from them
368 as we pop them from nesting_stack. */
28d81abb
RK
369
370#define POPSTACK(STACK) \
6ed1d6c5
RS
371do { struct nesting *target = STACK; \
372 struct nesting *this; \
373 do { this = nesting_stack; \
374 if (loop_stack == this) \
375 loop_stack = loop_stack->next; \
376 if (cond_stack == this) \
377 cond_stack = cond_stack->next; \
378 if (block_stack == this) \
379 block_stack = block_stack->next; \
380 if (stack_block_stack == this) \
381 stack_block_stack = stack_block_stack->next; \
382 if (case_stack == this) \
383 case_stack = case_stack->next; \
384 if (except_stack == this) \
385 except_stack = except_stack->next; \
386 nesting_depth = nesting_stack->depth - 1; \
28d81abb 387 nesting_stack = this->all; \
28d81abb 388 obstack_free (&stmt_obstack, this); } \
6ed1d6c5 389 while (this != target); } while (0)
28d81abb
RK
390\f
391/* In some cases it is impossible to generate code for a forward goto
392 until the label definition is seen. This happens when it may be necessary
393 for the goto to reset the stack pointer: we don't yet know how to do that.
394 So expand_goto puts an entry on this fixup list.
395 Each time a binding contour that resets the stack is exited,
396 we check each fixup.
397 If the target label has now been defined, we can insert the proper code. */
398
399struct goto_fixup
400{
401 /* Points to following fixup. */
402 struct goto_fixup *next;
403 /* Points to the insn before the jump insn.
404 If more code must be inserted, it goes after this insn. */
405 rtx before_jump;
406 /* The LABEL_DECL that this jump is jumping to, or 0
407 for break, continue or return. */
408 tree target;
7629c936
RS
409 /* The BLOCK for the place where this goto was found. */
410 tree context;
28d81abb
RK
411 /* The CODE_LABEL rtx that this is jumping to. */
412 rtx target_rtl;
413 /* Number of binding contours started in current function
414 before the label reference. */
415 int block_start_count;
416 /* The outermost stack level that should be restored for this jump.
417 Each time a binding contour that resets the stack is exited,
418 if the target label is *not* yet defined, this slot is updated. */
419 rtx stack_level;
420 /* List of lists of cleanup expressions to be run by this goto.
421 There is one element for each block that this goto is within.
422 The tail of this list can be 0 (was empty_cleanup_list),
423 if all remaining elements would be empty.
424 The TREE_VALUE contains the cleanup list of that block as of the
425 time this goto was seen.
426 The TREE_ADDRESSABLE flag is 1 for a block that has been exited. */
427 tree cleanup_list_list;
428};
429
430static struct goto_fixup *goto_fixup_chain;
431
432/* Within any binding contour that must restore a stack level,
433 all labels are recorded with a chain of these structures. */
434
435struct label_chain
436{
437 /* Points to following fixup. */
438 struct label_chain *next;
439 tree label;
440};
441\f
442void
443init_stmt ()
444{
445 gcc_obstack_init (&stmt_obstack);
446#if 0
447 empty_cleanup_list = build_tree_list (NULL_TREE, NULL_TREE);
448#endif
449}
450
451void
452init_stmt_for_function ()
453{
454 /* We are not currently within any block, conditional, loop or case. */
455 block_stack = 0;
456 loop_stack = 0;
457 case_stack = 0;
458 cond_stack = 0;
459 nesting_stack = 0;
460 nesting_depth = 0;
461
462 block_start_count = 0;
463
464 /* No gotos have been expanded yet. */
465 goto_fixup_chain = 0;
466
467 /* We are not processing a ({...}) grouping. */
468 expr_stmts_for_value = 0;
469 last_expr_type = 0;
470}
471
472void
473save_stmt_status (p)
474 struct function *p;
475{
476 p->block_stack = block_stack;
477 p->stack_block_stack = stack_block_stack;
478 p->cond_stack = cond_stack;
479 p->loop_stack = loop_stack;
480 p->case_stack = case_stack;
481 p->nesting_stack = nesting_stack;
482 p->nesting_depth = nesting_depth;
483 p->block_start_count = block_start_count;
484 p->last_expr_type = last_expr_type;
485 p->last_expr_value = last_expr_value;
486 p->expr_stmts_for_value = expr_stmts_for_value;
487 p->emit_filename = emit_filename;
488 p->emit_lineno = emit_lineno;
489 p->goto_fixup_chain = goto_fixup_chain;
490}
491
492void
493restore_stmt_status (p)
494 struct function *p;
495{
496 block_stack = p->block_stack;
497 stack_block_stack = p->stack_block_stack;
498 cond_stack = p->cond_stack;
499 loop_stack = p->loop_stack;
500 case_stack = p->case_stack;
501 nesting_stack = p->nesting_stack;
502 nesting_depth = p->nesting_depth;
503 block_start_count = p->block_start_count;
504 last_expr_type = p->last_expr_type;
505 last_expr_value = p->last_expr_value;
506 expr_stmts_for_value = p->expr_stmts_for_value;
507 emit_filename = p->emit_filename;
508 emit_lineno = p->emit_lineno;
509 goto_fixup_chain = p->goto_fixup_chain;
510}
511\f
512/* Emit a no-op instruction. */
513
514void
515emit_nop ()
516{
517 rtx last_insn = get_last_insn ();
518 if (!optimize
519 && (GET_CODE (last_insn) == CODE_LABEL
520 || prev_real_insn (last_insn) == 0))
521 emit_insn (gen_nop ());
522}
523\f
524/* Return the rtx-label that corresponds to a LABEL_DECL,
525 creating it if necessary. */
526
527rtx
528label_rtx (label)
529 tree label;
530{
531 if (TREE_CODE (label) != LABEL_DECL)
532 abort ();
533
534 if (DECL_RTL (label))
535 return DECL_RTL (label);
536
537 return DECL_RTL (label) = gen_label_rtx ();
538}
539
540/* Add an unconditional jump to LABEL as the next sequential instruction. */
541
542void
543emit_jump (label)
544 rtx label;
545{
546 do_pending_stack_adjust ();
547 emit_jump_insn (gen_jump (label));
548 emit_barrier ();
549}
550
551/* Emit code to jump to the address
552 specified by the pointer expression EXP. */
553
554void
555expand_computed_goto (exp)
556 tree exp;
557{
37366632 558 rtx x = expand_expr (exp, NULL_RTX, VOIDmode, 0);
de14fd73 559 emit_queue ();
28d81abb 560 emit_indirect_jump (x);
28d81abb
RK
561}
562\f
563/* Handle goto statements and the labels that they can go to. */
564
565/* Specify the location in the RTL code of a label LABEL,
566 which is a LABEL_DECL tree node.
567
568 This is used for the kind of label that the user can jump to with a
569 goto statement, and for alternatives of a switch or case statement.
570 RTL labels generated for loops and conditionals don't go through here;
571 they are generated directly at the RTL level, by other functions below.
572
573 Note that this has nothing to do with defining label *names*.
574 Languages vary in how they do that and what that even means. */
575
576void
577expand_label (label)
578 tree label;
579{
580 struct label_chain *p;
581
582 do_pending_stack_adjust ();
583 emit_label (label_rtx (label));
584 if (DECL_NAME (label))
585 LABEL_NAME (DECL_RTL (label)) = IDENTIFIER_POINTER (DECL_NAME (label));
586
587 if (stack_block_stack != 0)
588 {
589 p = (struct label_chain *) oballoc (sizeof (struct label_chain));
590 p->next = stack_block_stack->data.block.label_chain;
591 stack_block_stack->data.block.label_chain = p;
592 p->label = label;
593 }
594}
595
596/* Declare that LABEL (a LABEL_DECL) may be used for nonlocal gotos
597 from nested functions. */
598
599void
600declare_nonlocal_label (label)
601 tree label;
602{
603 nonlocal_labels = tree_cons (NULL_TREE, label, nonlocal_labels);
604 LABEL_PRESERVE_P (label_rtx (label)) = 1;
605 if (nonlocal_goto_handler_slot == 0)
606 {
607 nonlocal_goto_handler_slot
608 = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
59257ff7
RK
609 emit_stack_save (SAVE_NONLOCAL,
610 &nonlocal_goto_stack_level,
611 PREV_INSN (tail_recursion_reentry));
28d81abb
RK
612 }
613}
614
615/* Generate RTL code for a `goto' statement with target label LABEL.
616 LABEL should be a LABEL_DECL tree node that was or will later be
617 defined with `expand_label'. */
618
619void
620expand_goto (label)
621 tree label;
622{
623 /* Check for a nonlocal goto to a containing function. */
624 tree context = decl_function_context (label);
625 if (context != 0 && context != current_function_decl)
626 {
627 struct function *p = find_function_data (context);
dd132134 628 rtx label_ref = gen_rtx (LABEL_REF, Pmode, label_rtx (label));
28d81abb 629 rtx temp;
dd132134 630
28d81abb 631 p->has_nonlocal_label = 1;
dd132134 632 LABEL_REF_NONLOCAL_P (label_ref) = 1;
59257ff7
RK
633
634 /* Copy the rtl for the slots so that they won't be shared in
635 case the virtual stack vars register gets instantiated differently
636 in the parent than in the child. */
637
28d81abb
RK
638#if HAVE_nonlocal_goto
639 if (HAVE_nonlocal_goto)
640 emit_insn (gen_nonlocal_goto (lookup_static_chain (label),
59257ff7
RK
641 copy_rtx (p->nonlocal_goto_handler_slot),
642 copy_rtx (p->nonlocal_goto_stack_level),
dd132134 643 label_ref));
28d81abb
RK
644 else
645#endif
646 {
59257ff7
RK
647 rtx addr;
648
28d81abb
RK
649 /* Restore frame pointer for containing function.
650 This sets the actual hard register used for the frame pointer
651 to the location of the function's incoming static chain info.
652 The non-local goto handler will then adjust it to contain the
653 proper value and reload the argument pointer, if needed. */
654 emit_move_insn (frame_pointer_rtx, lookup_static_chain (label));
59257ff7
RK
655
656 /* We have now loaded the frame pointer hardware register with
657 the address of that corresponds to the start of the virtual
658 stack vars. So replace virtual_stack_vars_rtx in all
659 addresses we use with stack_pointer_rtx. */
660
28d81abb
RK
661 /* Get addr of containing function's current nonlocal goto handler,
662 which will do any cleanups and then jump to the label. */
59257ff7
RK
663 addr = copy_rtx (p->nonlocal_goto_handler_slot);
664 temp = copy_to_reg (replace_rtx (addr, virtual_stack_vars_rtx,
665 frame_pointer_rtx));
666
28d81abb 667 /* Restore the stack pointer. Note this uses fp just restored. */
59257ff7
RK
668 addr = p->nonlocal_goto_stack_level;
669 if (addr)
5e116627
MM
670 addr = replace_rtx (copy_rtx (addr),
671 virtual_stack_vars_rtx, frame_pointer_rtx);
59257ff7 672
37366632 673 emit_stack_restore (SAVE_NONLOCAL, addr, NULL_RTX);
59257ff7 674
28d81abb 675 /* Put in the static chain register the nonlocal label address. */
dd132134 676 emit_move_insn (static_chain_rtx, label_ref);
28d81abb
RK
677 /* USE of frame_pointer_rtx added for consistency; not clear if
678 really needed. */
679 emit_insn (gen_rtx (USE, VOIDmode, frame_pointer_rtx));
680 emit_insn (gen_rtx (USE, VOIDmode, stack_pointer_rtx));
681 emit_insn (gen_rtx (USE, VOIDmode, static_chain_rtx));
682 emit_indirect_jump (temp);
683 }
684 }
685 else
37366632 686 expand_goto_internal (label, label_rtx (label), NULL_RTX);
28d81abb
RK
687}
688
689/* Generate RTL code for a `goto' statement with target label BODY.
690 LABEL should be a LABEL_REF.
691 LAST_INSN, if non-0, is the rtx we should consider as the last
692 insn emitted (for the purposes of cleaning up a return). */
693
694static void
695expand_goto_internal (body, label, last_insn)
696 tree body;
697 rtx label;
698 rtx last_insn;
699{
700 struct nesting *block;
701 rtx stack_level = 0;
702
703 if (GET_CODE (label) != CODE_LABEL)
704 abort ();
705
706 /* If label has already been defined, we can tell now
707 whether and how we must alter the stack level. */
708
709 if (PREV_INSN (label) != 0)
710 {
711 /* Find the innermost pending block that contains the label.
712 (Check containment by comparing insn-uids.)
713 Then restore the outermost stack level within that block,
714 and do cleanups of all blocks contained in it. */
715 for (block = block_stack; block; block = block->next)
716 {
717 if (INSN_UID (block->data.block.first_insn) < INSN_UID (label))
718 break;
719 if (block->data.block.stack_level != 0)
720 stack_level = block->data.block.stack_level;
721 /* Execute the cleanups for blocks we are exiting. */
722 if (block->data.block.cleanups != 0)
723 {
37366632 724 expand_cleanups (block->data.block.cleanups, NULL_TREE);
28d81abb
RK
725 do_pending_stack_adjust ();
726 }
727 }
728
729 if (stack_level)
730 {
731 /* Ensure stack adjust isn't done by emit_jump, as this would clobber
732 the stack pointer. This one should be deleted as dead by flow. */
733 clear_pending_stack_adjust ();
734 do_pending_stack_adjust ();
37366632 735 emit_stack_restore (SAVE_BLOCK, stack_level, NULL_RTX);
28d81abb
RK
736 }
737
738 if (body != 0 && DECL_TOO_LATE (body))
739 error ("jump to `%s' invalidly jumps into binding contour",
740 IDENTIFIER_POINTER (DECL_NAME (body)));
741 }
742 /* Label not yet defined: may need to put this goto
743 on the fixup list. */
744 else if (! expand_fixup (body, label, last_insn))
745 {
746 /* No fixup needed. Record that the label is the target
747 of at least one goto that has no fixup. */
748 if (body != 0)
749 TREE_ADDRESSABLE (body) = 1;
750 }
751
752 emit_jump (label);
753}
754\f
755/* Generate if necessary a fixup for a goto
756 whose target label in tree structure (if any) is TREE_LABEL
757 and whose target in rtl is RTL_LABEL.
758
759 If LAST_INSN is nonzero, we pretend that the jump appears
760 after insn LAST_INSN instead of at the current point in the insn stream.
761
023b57e6
RS
762 The fixup will be used later to insert insns just before the goto.
763 Those insns will restore the stack level as appropriate for the
764 target label, and will (in the case of C++) also invoke any object
765 destructors which have to be invoked when we exit the scopes which
766 are exited by the goto.
28d81abb
RK
767
768 Value is nonzero if a fixup is made. */
769
770static int
771expand_fixup (tree_label, rtl_label, last_insn)
772 tree tree_label;
773 rtx rtl_label;
774 rtx last_insn;
775{
776 struct nesting *block, *end_block;
777
778 /* See if we can recognize which block the label will be output in.
779 This is possible in some very common cases.
780 If we succeed, set END_BLOCK to that block.
781 Otherwise, set it to 0. */
782
783 if (cond_stack
784 && (rtl_label == cond_stack->data.cond.endif_label
785 || rtl_label == cond_stack->data.cond.next_label))
786 end_block = cond_stack;
787 /* If we are in a loop, recognize certain labels which
788 are likely targets. This reduces the number of fixups
789 we need to create. */
790 else if (loop_stack
791 && (rtl_label == loop_stack->data.loop.start_label
792 || rtl_label == loop_stack->data.loop.end_label
793 || rtl_label == loop_stack->data.loop.continue_label))
794 end_block = loop_stack;
795 else
796 end_block = 0;
797
798 /* Now set END_BLOCK to the binding level to which we will return. */
799
800 if (end_block)
801 {
802 struct nesting *next_block = end_block->all;
803 block = block_stack;
804
805 /* First see if the END_BLOCK is inside the innermost binding level.
806 If so, then no cleanups or stack levels are relevant. */
807 while (next_block && next_block != block)
808 next_block = next_block->all;
809
810 if (next_block)
811 return 0;
812
813 /* Otherwise, set END_BLOCK to the innermost binding level
814 which is outside the relevant control-structure nesting. */
815 next_block = block_stack->next;
816 for (block = block_stack; block != end_block; block = block->all)
817 if (block == next_block)
818 next_block = next_block->next;
819 end_block = next_block;
820 }
821
822 /* Does any containing block have a stack level or cleanups?
823 If not, no fixup is needed, and that is the normal case
824 (the only case, for standard C). */
825 for (block = block_stack; block != end_block; block = block->next)
826 if (block->data.block.stack_level != 0
827 || block->data.block.cleanups != 0)
828 break;
829
830 if (block != end_block)
831 {
832 /* Ok, a fixup is needed. Add a fixup to the list of such. */
833 struct goto_fixup *fixup
834 = (struct goto_fixup *) oballoc (sizeof (struct goto_fixup));
835 /* In case an old stack level is restored, make sure that comes
836 after any pending stack adjust. */
837 /* ?? If the fixup isn't to come at the present position,
838 doing the stack adjust here isn't useful. Doing it with our
839 settings at that location isn't useful either. Let's hope
840 someone does it! */
841 if (last_insn == 0)
842 do_pending_stack_adjust ();
28d81abb
RK
843 fixup->target = tree_label;
844 fixup->target_rtl = rtl_label;
023b57e6
RS
845
846 /* Create a BLOCK node and a corresponding matched set of
847 NOTE_INSN_BEGIN_BLOCK and NOTE_INSN_END_BLOCK notes at
848 this point. The notes will encapsulate any and all fixup
849 code which we might later insert at this point in the insn
850 stream. Also, the BLOCK node will be the parent (i.e. the
851 `SUPERBLOCK') of any other BLOCK nodes which we might create
852 later on when we are expanding the fixup code. */
853
854 {
855 register rtx original_before_jump
856 = last_insn ? last_insn : get_last_insn ();
857
858 start_sequence ();
859 pushlevel (0);
860 fixup->before_jump = emit_note (NULL_PTR, NOTE_INSN_BLOCK_BEG);
861 last_block_end_note = emit_note (NULL_PTR, NOTE_INSN_BLOCK_END);
862 fixup->context = poplevel (1, 0, 0); /* Create the BLOCK node now! */
863 end_sequence ();
864 emit_insns_after (fixup->before_jump, original_before_jump);
865 }
866
28d81abb
RK
867 fixup->block_start_count = block_start_count;
868 fixup->stack_level = 0;
869 fixup->cleanup_list_list
870 = (((block->data.block.outer_cleanups
871#if 0
872 && block->data.block.outer_cleanups != empty_cleanup_list
873#endif
874 )
875 || block->data.block.cleanups)
37366632 876 ? tree_cons (NULL_TREE, block->data.block.cleanups,
28d81abb
RK
877 block->data.block.outer_cleanups)
878 : 0);
879 fixup->next = goto_fixup_chain;
880 goto_fixup_chain = fixup;
881 }
882
883 return block != 0;
884}
885
886/* When exiting a binding contour, process all pending gotos requiring fixups.
887 THISBLOCK is the structure that describes the block being exited.
888 STACK_LEVEL is the rtx for the stack level to restore exiting this contour.
889 CLEANUP_LIST is a list of expressions to evaluate on exiting this contour.
890 FIRST_INSN is the insn that began this contour.
891
892 Gotos that jump out of this contour must restore the
893 stack level and do the cleanups before actually jumping.
894
895 DONT_JUMP_IN nonzero means report error there is a jump into this
896 contour from before the beginning of the contour.
897 This is also done if STACK_LEVEL is nonzero. */
898
899void
900fixup_gotos (thisblock, stack_level, cleanup_list, first_insn, dont_jump_in)
901 struct nesting *thisblock;
902 rtx stack_level;
903 tree cleanup_list;
904 rtx first_insn;
905 int dont_jump_in;
906{
907 register struct goto_fixup *f, *prev;
908
909 /* F is the fixup we are considering; PREV is the previous one. */
910 /* We run this loop in two passes so that cleanups of exited blocks
911 are run first, and blocks that are exited are marked so
912 afterwards. */
913
914 for (prev = 0, f = goto_fixup_chain; f; prev = f, f = f->next)
915 {
916 /* Test for a fixup that is inactive because it is already handled. */
917 if (f->before_jump == 0)
918 {
919 /* Delete inactive fixup from the chain, if that is easy to do. */
920 if (prev != 0)
921 prev->next = f->next;
922 }
923 /* Has this fixup's target label been defined?
924 If so, we can finalize it. */
925 else if (PREV_INSN (f->target_rtl) != 0)
926 {
7629c936 927 register rtx cleanup_insns;
7629c936 928
28d81abb
RK
929 /* Get the first non-label after the label
930 this goto jumps to. If that's before this scope begins,
931 we don't have a jump into the scope. */
932 rtx after_label = f->target_rtl;
933 while (after_label != 0 && GET_CODE (after_label) == CODE_LABEL)
934 after_label = NEXT_INSN (after_label);
935
936 /* If this fixup jumped into this contour from before the beginning
937 of this contour, report an error. */
938 /* ??? Bug: this does not detect jumping in through intermediate
939 blocks that have stack levels or cleanups.
940 It detects only a problem with the innermost block
941 around the label. */
942 if (f->target != 0
943 && (dont_jump_in || stack_level || cleanup_list)
944 /* If AFTER_LABEL is 0, it means the jump goes to the end
945 of the rtl, which means it jumps into this scope. */
946 && (after_label == 0
947 || INSN_UID (first_insn) < INSN_UID (after_label))
948 && INSN_UID (first_insn) > INSN_UID (f->before_jump)
44fe2e80 949 && ! DECL_REGISTER (f->target))
28d81abb
RK
950 {
951 error_with_decl (f->target,
952 "label `%s' used before containing binding contour");
953 /* Prevent multiple errors for one label. */
44fe2e80 954 DECL_REGISTER (f->target) = 1;
28d81abb
RK
955 }
956
7629c936
RS
957 /* We will expand the cleanups into a sequence of their own and
958 then later on we will attach this new sequence to the insn
959 stream just ahead of the actual jump insn. */
960
961 start_sequence ();
962
023b57e6
RS
963 /* Temporarily restore the lexical context where we will
964 logically be inserting the fixup code. We do this for the
965 sake of getting the debugging information right. */
966
7629c936 967 pushlevel (0);
023b57e6 968 set_block (f->context);
7629c936
RS
969
970 /* Expand the cleanups for blocks this jump exits. */
28d81abb
RK
971 if (f->cleanup_list_list)
972 {
973 tree lists;
974 for (lists = f->cleanup_list_list; lists; lists = TREE_CHAIN (lists))
975 /* Marked elements correspond to blocks that have been closed.
976 Do their cleanups. */
977 if (TREE_ADDRESSABLE (lists)
978 && TREE_VALUE (lists) != 0)
7629c936
RS
979 {
980 expand_cleanups (TREE_VALUE (lists), 0);
981 /* Pop any pushes done in the cleanups,
982 in case function is about to return. */
983 do_pending_stack_adjust ();
984 }
28d81abb
RK
985 }
986
987 /* Restore stack level for the biggest contour that this
988 jump jumps out of. */
989 if (f->stack_level)
59257ff7 990 emit_stack_restore (SAVE_BLOCK, f->stack_level, f->before_jump);
7629c936
RS
991
992 /* Finish up the sequence containing the insns which implement the
993 necessary cleanups, and then attach that whole sequence to the
994 insn stream just ahead of the actual jump insn. Attaching it
995 at that point insures that any cleanups which are in fact
996 implicit C++ object destructions (which must be executed upon
997 leaving the block) appear (to the debugger) to be taking place
998 in an area of the generated code where the object(s) being
999 destructed are still "in scope". */
1000
1001 cleanup_insns = get_insns ();
023b57e6 1002 poplevel (1, 0, 0);
7629c936
RS
1003
1004 end_sequence ();
1005 emit_insns_after (cleanup_insns, f->before_jump);
1006
7629c936 1007
28d81abb
RK
1008 f->before_jump = 0;
1009 }
1010 }
1011
1012 /* Mark the cleanups of exited blocks so that they are executed
1013 by the code above. */
1014 for (prev = 0, f = goto_fixup_chain; f; prev = f, f = f->next)
1015 if (f->before_jump != 0
1016 && PREV_INSN (f->target_rtl) == 0
1017 /* Label has still not appeared. If we are exiting a block with
1018 a stack level to restore, that started before the fixup,
1019 mark this stack level as needing restoration
1020 when the fixup is later finalized.
1021 Also mark the cleanup_list_list element for F
1022 that corresponds to this block, so that ultimately
1023 this block's cleanups will be executed by the code above. */
1024 && thisblock != 0
1025 /* Note: if THISBLOCK == 0 and we have a label that hasn't appeared,
1026 it means the label is undefined. That's erroneous, but possible. */
1027 && (thisblock->data.block.block_start_count
1028 <= f->block_start_count))
1029 {
1030 tree lists = f->cleanup_list_list;
1031 for (; lists; lists = TREE_CHAIN (lists))
1032 /* If the following elt. corresponds to our containing block
1033 then the elt. must be for this block. */
1034 if (TREE_CHAIN (lists) == thisblock->data.block.outer_cleanups)
1035 TREE_ADDRESSABLE (lists) = 1;
1036
1037 if (stack_level)
1038 f->stack_level = stack_level;
1039 }
1040}
1041\f
1042/* Generate RTL for an asm statement (explicit assembler code).
1043 BODY is a STRING_CST node containing the assembler code text,
1044 or an ADDR_EXPR containing a STRING_CST. */
1045
1046void
1047expand_asm (body)
1048 tree body;
1049{
1050 if (TREE_CODE (body) == ADDR_EXPR)
1051 body = TREE_OPERAND (body, 0);
1052
1053 emit_insn (gen_rtx (ASM_INPUT, VOIDmode,
1054 TREE_STRING_POINTER (body)));
1055 last_expr_type = 0;
1056}
1057
1058/* Generate RTL for an asm statement with arguments.
1059 STRING is the instruction template.
1060 OUTPUTS is a list of output arguments (lvalues); INPUTS a list of inputs.
1061 Each output or input has an expression in the TREE_VALUE and
1062 a constraint-string in the TREE_PURPOSE.
1063 CLOBBERS is a list of STRING_CST nodes each naming a hard register
1064 that is clobbered by this insn.
1065
1066 Not all kinds of lvalue that may appear in OUTPUTS can be stored directly.
1067 Some elements of OUTPUTS may be replaced with trees representing temporary
1068 values. The caller should copy those temporary values to the originally
1069 specified lvalues.
1070
1071 VOL nonzero means the insn is volatile; don't optimize it. */
1072
1073void
1074expand_asm_operands (string, outputs, inputs, clobbers, vol, filename, line)
1075 tree string, outputs, inputs, clobbers;
1076 int vol;
1077 char *filename;
1078 int line;
1079{
1080 rtvec argvec, constraints;
1081 rtx body;
1082 int ninputs = list_length (inputs);
1083 int noutputs = list_length (outputs);
b4ccaa16 1084 int nclobbers;
28d81abb
RK
1085 tree tail;
1086 register int i;
1087 /* Vector of RTX's of evaluated output operands. */
1088 rtx *output_rtx = (rtx *) alloca (noutputs * sizeof (rtx));
1089 /* The insn we have emitted. */
1090 rtx insn;
1091
b4ccaa16
RS
1092 /* Count the number of meaningful clobbered registers, ignoring what
1093 we would ignore later. */
1094 nclobbers = 0;
1095 for (tail = clobbers; tail; tail = TREE_CHAIN (tail))
1096 {
1097 char *regname = TREE_STRING_POINTER (TREE_VALUE (tail));
c09e6498
RS
1098 i = decode_reg_name (regname);
1099 if (i >= 0 || i == -4)
b4ccaa16
RS
1100 ++nclobbers;
1101 }
1102
28d81abb
RK
1103 last_expr_type = 0;
1104
1105 for (i = 0, tail = outputs; tail; tail = TREE_CHAIN (tail), i++)
1106 {
1107 tree val = TREE_VALUE (tail);
1108 tree val1;
1109 int j;
1110 int found_equal;
1111
1112 /* If there's an erroneous arg, emit no insn. */
1113 if (TREE_TYPE (val) == error_mark_node)
1114 return;
1115
1116 /* Make sure constraint has `=' and does not have `+'. */
1117
1118 found_equal = 0;
1119 for (j = 0; j < TREE_STRING_LENGTH (TREE_PURPOSE (tail)); j++)
1120 {
1121 if (TREE_STRING_POINTER (TREE_PURPOSE (tail))[j] == '+')
1122 {
1123 error ("output operand constraint contains `+'");
1124 return;
1125 }
1126 if (TREE_STRING_POINTER (TREE_PURPOSE (tail))[j] == '=')
1127 found_equal = 1;
1128 }
1129 if (! found_equal)
1130 {
1131 error ("output operand constraint lacks `='");
1132 return;
1133 }
1134
1135 /* If an output operand is not a variable or indirect ref,
1136 or a part of one,
1137 create a SAVE_EXPR which is a pseudo-reg
1138 to act as an intermediate temporary.
1139 Make the asm insn write into that, then copy it to
1140 the real output operand. */
1141
1142 while (TREE_CODE (val) == COMPONENT_REF
1143 || TREE_CODE (val) == ARRAY_REF)
1144 val = TREE_OPERAND (val, 0);
1145
1146 if (TREE_CODE (val) != VAR_DECL
1147 && TREE_CODE (val) != PARM_DECL
1148 && TREE_CODE (val) != INDIRECT_REF)
e619bb8d
RS
1149 {
1150 TREE_VALUE (tail) = save_expr (TREE_VALUE (tail));
1151 /* If it's a constant, print error now so don't crash later. */
1152 if (TREE_CODE (TREE_VALUE (tail)) != SAVE_EXPR)
1153 {
1154 error ("invalid output in `asm'");
1155 return;
1156 }
1157 }
28d81abb 1158
37366632 1159 output_rtx[i] = expand_expr (TREE_VALUE (tail), NULL_RTX, VOIDmode, 0);
28d81abb
RK
1160 }
1161
1162 if (ninputs + noutputs > MAX_RECOG_OPERANDS)
1163 {
1164 error ("more than %d operands in `asm'", MAX_RECOG_OPERANDS);
1165 return;
1166 }
1167
1168 /* Make vectors for the expression-rtx and constraint strings. */
1169
1170 argvec = rtvec_alloc (ninputs);
1171 constraints = rtvec_alloc (ninputs);
1172
1173 body = gen_rtx (ASM_OPERANDS, VOIDmode,
1174 TREE_STRING_POINTER (string), "", 0, argvec, constraints,
1175 filename, line);
1176 MEM_VOLATILE_P (body) = vol;
1177
1178 /* Eval the inputs and put them into ARGVEC.
1179 Put their constraints into ASM_INPUTs and store in CONSTRAINTS. */
1180
1181 i = 0;
1182 for (tail = inputs; tail; tail = TREE_CHAIN (tail))
1183 {
1184 int j;
1185
1186 /* If there's an erroneous arg, emit no insn,
1187 because the ASM_INPUT would get VOIDmode
1188 and that could cause a crash in reload. */
1189 if (TREE_TYPE (TREE_VALUE (tail)) == error_mark_node)
1190 return;
1191 if (TREE_PURPOSE (tail) == NULL_TREE)
1192 {
1193 error ("hard register `%s' listed as input operand to `asm'",
1194 TREE_STRING_POINTER (TREE_VALUE (tail)) );
1195 return;
1196 }
1197
1198 /* Make sure constraint has neither `=' nor `+'. */
1199
1200 for (j = 0; j < TREE_STRING_LENGTH (TREE_PURPOSE (tail)); j++)
1201 if (TREE_STRING_POINTER (TREE_PURPOSE (tail))[j] == '='
1202 || TREE_STRING_POINTER (TREE_PURPOSE (tail))[j] == '+')
1203 {
1204 error ("input operand constraint contains `%c'",
1205 TREE_STRING_POINTER (TREE_PURPOSE (tail))[j]);
1206 return;
1207 }
1208
1209 XVECEXP (body, 3, i) /* argvec */
37366632 1210 = expand_expr (TREE_VALUE (tail), NULL_RTX, VOIDmode, 0);
28d81abb
RK
1211 XVECEXP (body, 4, i) /* constraints */
1212 = gen_rtx (ASM_INPUT, TYPE_MODE (TREE_TYPE (TREE_VALUE (tail))),
1213 TREE_STRING_POINTER (TREE_PURPOSE (tail)));
1214 i++;
1215 }
1216
1217 /* Protect all the operands from the queue,
1218 now that they have all been evaluated. */
1219
1220 for (i = 0; i < ninputs; i++)
1221 XVECEXP (body, 3, i) = protect_from_queue (XVECEXP (body, 3, i), 0);
1222
1223 for (i = 0; i < noutputs; i++)
1224 output_rtx[i] = protect_from_queue (output_rtx[i], 1);
1225
1226 /* Now, for each output, construct an rtx
1227 (set OUTPUT (asm_operands INSN OUTPUTNUMBER OUTPUTCONSTRAINT
1228 ARGVEC CONSTRAINTS))
1229 If there is more than one, put them inside a PARALLEL. */
1230
1231 if (noutputs == 1 && nclobbers == 0)
1232 {
1233 XSTR (body, 1) = TREE_STRING_POINTER (TREE_PURPOSE (outputs));
1234 insn = emit_insn (gen_rtx (SET, VOIDmode, output_rtx[0], body));
1235 }
1236 else if (noutputs == 0 && nclobbers == 0)
1237 {
1238 /* No output operands: put in a raw ASM_OPERANDS rtx. */
1239 insn = emit_insn (body);
1240 }
1241 else
1242 {
1243 rtx obody = body;
1244 int num = noutputs;
1245 if (num == 0) num = 1;
1246 body = gen_rtx (PARALLEL, VOIDmode, rtvec_alloc (num + nclobbers));
1247
1248 /* For each output operand, store a SET. */
1249
1250 for (i = 0, tail = outputs; tail; tail = TREE_CHAIN (tail), i++)
1251 {
1252 XVECEXP (body, 0, i)
1253 = gen_rtx (SET, VOIDmode,
1254 output_rtx[i],
1255 gen_rtx (ASM_OPERANDS, VOIDmode,
1256 TREE_STRING_POINTER (string),
1257 TREE_STRING_POINTER (TREE_PURPOSE (tail)),
1258 i, argvec, constraints,
1259 filename, line));
1260 MEM_VOLATILE_P (SET_SRC (XVECEXP (body, 0, i))) = vol;
1261 }
1262
1263 /* If there are no outputs (but there are some clobbers)
1264 store the bare ASM_OPERANDS into the PARALLEL. */
1265
1266 if (i == 0)
1267 XVECEXP (body, 0, i++) = obody;
1268
1269 /* Store (clobber REG) for each clobbered register specified. */
1270
b4ccaa16 1271 for (tail = clobbers; tail; tail = TREE_CHAIN (tail))
28d81abb 1272 {
28d81abb 1273 char *regname = TREE_STRING_POINTER (TREE_VALUE (tail));
b4ac57ab 1274 int j = decode_reg_name (regname);
28d81abb 1275
b4ac57ab 1276 if (j < 0)
28d81abb 1277 {
c09e6498 1278 if (j == -3) /* `cc', which is not a register */
dcfedcd0
RK
1279 continue;
1280
c09e6498
RS
1281 if (j == -4) /* `memory', don't cache memory across asm */
1282 {
bffc6177
RS
1283 XVECEXP (body, 0, i++)
1284 = gen_rtx (CLOBBER, VOIDmode,
1285 gen_rtx (MEM, QImode,
1286 gen_rtx (SCRATCH, VOIDmode, 0)));
c09e6498
RS
1287 continue;
1288 }
1289
28d81abb
RK
1290 error ("unknown register name `%s' in `asm'", regname);
1291 return;
1292 }
1293
1294 /* Use QImode since that's guaranteed to clobber just one reg. */
b4ccaa16 1295 XVECEXP (body, 0, i++)
28d81abb
RK
1296 = gen_rtx (CLOBBER, VOIDmode, gen_rtx (REG, QImode, j));
1297 }
1298
1299 insn = emit_insn (body);
1300 }
1301
1302 free_temp_slots ();
1303}
1304\f
1305/* Generate RTL to evaluate the expression EXP
1306 and remember it in case this is the VALUE in a ({... VALUE; }) constr. */
1307
1308void
1309expand_expr_stmt (exp)
1310 tree exp;
1311{
1312 /* If -W, warn about statements with no side effects,
1313 except for an explicit cast to void (e.g. for assert()), and
1314 except inside a ({...}) where they may be useful. */
1315 if (expr_stmts_for_value == 0 && exp != error_mark_node)
1316 {
1317 if (! TREE_SIDE_EFFECTS (exp) && (extra_warnings || warn_unused)
1318 && !(TREE_CODE (exp) == CONVERT_EXPR
1319 && TREE_TYPE (exp) == void_type_node))
1320 warning_with_file_and_line (emit_filename, emit_lineno,
1321 "statement with no effect");
1322 else if (warn_unused)
1323 warn_if_unused_value (exp);
1324 }
1325 last_expr_type = TREE_TYPE (exp);
1326 if (! flag_syntax_only)
37366632
RK
1327 last_expr_value = expand_expr (exp,
1328 (expr_stmts_for_value
1329 ? NULL_RTX : const0_rtx),
28d81abb
RK
1330 VOIDmode, 0);
1331
1332 /* If all we do is reference a volatile value in memory,
1333 copy it to a register to be sure it is actually touched. */
1334 if (last_expr_value != 0 && GET_CODE (last_expr_value) == MEM
1335 && TREE_THIS_VOLATILE (exp))
1336 {
6a5bbbe6
RS
1337 if (TYPE_MODE (TREE_TYPE (exp)) == VOIDmode)
1338 ;
1339 else if (TYPE_MODE (TREE_TYPE (exp)) != BLKmode)
28d81abb
RK
1340 copy_to_reg (last_expr_value);
1341 else
ddbe9812
RS
1342 {
1343 rtx lab = gen_label_rtx ();
1344
1345 /* Compare the value with itself to reference it. */
1346 emit_cmp_insn (last_expr_value, last_expr_value, EQ,
1347 expand_expr (TYPE_SIZE (last_expr_type),
37366632 1348 NULL_RTX, VOIDmode, 0),
ddbe9812
RS
1349 BLKmode, 0,
1350 TYPE_ALIGN (last_expr_type) / BITS_PER_UNIT);
1351 emit_jump_insn ((*bcc_gen_fctn[(int) EQ]) (lab));
1352 emit_label (lab);
1353 }
28d81abb
RK
1354 }
1355
1356 /* If this expression is part of a ({...}) and is in memory, we may have
1357 to preserve temporaries. */
1358 preserve_temp_slots (last_expr_value);
1359
1360 /* Free any temporaries used to evaluate this expression. Any temporary
1361 used as a result of this expression will already have been preserved
1362 above. */
1363 free_temp_slots ();
1364
1365 emit_queue ();
1366}
1367
1368/* Warn if EXP contains any computations whose results are not used.
1369 Return 1 if a warning is printed; 0 otherwise. */
1370
1371static int
1372warn_if_unused_value (exp)
1373 tree exp;
1374{
1375 if (TREE_USED (exp))
1376 return 0;
1377
1378 switch (TREE_CODE (exp))
1379 {
1380 case PREINCREMENT_EXPR:
1381 case POSTINCREMENT_EXPR:
1382 case PREDECREMENT_EXPR:
1383 case POSTDECREMENT_EXPR:
1384 case MODIFY_EXPR:
1385 case INIT_EXPR:
1386 case TARGET_EXPR:
1387 case CALL_EXPR:
1388 case METHOD_CALL_EXPR:
1389 case RTL_EXPR:
28d81abb
RK
1390 case WITH_CLEANUP_EXPR:
1391 case EXIT_EXPR:
1392 /* We don't warn about COND_EXPR because it may be a useful
1393 construct if either arm contains a side effect. */
1394 case COND_EXPR:
1395 return 0;
1396
1397 case BIND_EXPR:
1398 /* For a binding, warn if no side effect within it. */
1399 return warn_if_unused_value (TREE_OPERAND (exp, 1));
1400
1401 case TRUTH_ORIF_EXPR:
1402 case TRUTH_ANDIF_EXPR:
1403 /* In && or ||, warn if 2nd operand has no side effect. */
1404 return warn_if_unused_value (TREE_OPERAND (exp, 1));
1405
1406 case COMPOUND_EXPR:
1407 if (warn_if_unused_value (TREE_OPERAND (exp, 0)))
1408 return 1;
4d23e509
RS
1409 /* Let people do `(foo (), 0)' without a warning. */
1410 if (TREE_CONSTANT (TREE_OPERAND (exp, 1)))
1411 return 0;
28d81abb
RK
1412 return warn_if_unused_value (TREE_OPERAND (exp, 1));
1413
1414 case NOP_EXPR:
1415 case CONVERT_EXPR:
b4ac57ab 1416 case NON_LVALUE_EXPR:
28d81abb
RK
1417 /* Don't warn about values cast to void. */
1418 if (TREE_TYPE (exp) == void_type_node)
1419 return 0;
1420 /* Don't warn about conversions not explicit in the user's program. */
1421 if (TREE_NO_UNUSED_WARNING (exp))
1422 return 0;
1423 /* Assignment to a cast usually results in a cast of a modify.
1424 Don't complain about that. */
1425 if (TREE_CODE (TREE_OPERAND (exp, 0)) == MODIFY_EXPR)
1426 return 0;
1427 /* Sometimes it results in a cast of a cast of a modify.
1428 Don't complain about that. */
1429 if ((TREE_CODE (TREE_OPERAND (exp, 0)) == CONVERT_EXPR
1430 || TREE_CODE (TREE_OPERAND (exp, 0)) == NOP_EXPR)
1431 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)) == MODIFY_EXPR)
1432 return 0;
1433
1434 default:
ddbe9812
RS
1435 /* Referencing a volatile value is a side effect, so don't warn. */
1436 if ((TREE_CODE_CLASS (TREE_CODE (exp)) == 'd'
1437 || TREE_CODE_CLASS (TREE_CODE (exp)) == 'r')
1438 && TREE_THIS_VOLATILE (exp))
1439 return 0;
28d81abb
RK
1440 warning_with_file_and_line (emit_filename, emit_lineno,
1441 "value computed is not used");
1442 return 1;
1443 }
1444}
1445
1446/* Clear out the memory of the last expression evaluated. */
1447
1448void
1449clear_last_expr ()
1450{
1451 last_expr_type = 0;
1452}
1453
1454/* Begin a statement which will return a value.
1455 Return the RTL_EXPR for this statement expr.
1456 The caller must save that value and pass it to expand_end_stmt_expr. */
1457
1458tree
1459expand_start_stmt_expr ()
1460{
1461 /* Make the RTL_EXPR node temporary, not momentary,
1462 so that rtl_expr_chain doesn't become garbage. */
1463 int momentary = suspend_momentary ();
1464 tree t = make_node (RTL_EXPR);
1465 resume_momentary (momentary);
1466 start_sequence ();
1467 NO_DEFER_POP;
1468 expr_stmts_for_value++;
1469 return t;
1470}
1471
1472/* Restore the previous state at the end of a statement that returns a value.
1473 Returns a tree node representing the statement's value and the
1474 insns to compute the value.
1475
1476 The nodes of that expression have been freed by now, so we cannot use them.
1477 But we don't want to do that anyway; the expression has already been
1478 evaluated and now we just want to use the value. So generate a RTL_EXPR
1479 with the proper type and RTL value.
1480
1481 If the last substatement was not an expression,
1482 return something with type `void'. */
1483
1484tree
1485expand_end_stmt_expr (t)
1486 tree t;
1487{
1488 OK_DEFER_POP;
1489
1490 if (last_expr_type == 0)
1491 {
1492 last_expr_type = void_type_node;
1493 last_expr_value = const0_rtx;
1494 }
1495 else if (last_expr_value == 0)
1496 /* There are some cases where this can happen, such as when the
1497 statement is void type. */
1498 last_expr_value = const0_rtx;
1499 else if (GET_CODE (last_expr_value) != REG && ! CONSTANT_P (last_expr_value))
1500 /* Remove any possible QUEUED. */
1501 last_expr_value = protect_from_queue (last_expr_value, 0);
1502
1503 emit_queue ();
1504
1505 TREE_TYPE (t) = last_expr_type;
1506 RTL_EXPR_RTL (t) = last_expr_value;
1507 RTL_EXPR_SEQUENCE (t) = get_insns ();
1508
1509 rtl_expr_chain = tree_cons (NULL_TREE, t, rtl_expr_chain);
1510
1511 end_sequence ();
1512
1513 /* Don't consider deleting this expr or containing exprs at tree level. */
1514 TREE_SIDE_EFFECTS (t) = 1;
1515 /* Propagate volatility of the actual RTL expr. */
1516 TREE_THIS_VOLATILE (t) = volatile_refs_p (last_expr_value);
1517
1518 last_expr_type = 0;
1519 expr_stmts_for_value--;
1520
1521 return t;
1522}
1523\f
1524/* The exception handling nesting looks like this:
1525
1526 <-- Level N-1
1527 { <-- exception handler block
1528 <-- Level N
1529 <-- in an exception handler
1530 { <-- try block
1531 : <-- in a TRY block
1532 : <-- in an exception handler
1533 :
1534 }
1535
1536 { <-- except block
1537 : <-- in an except block
1538 : <-- in an exception handler
1539 :
1540 }
1541
1542 }
a124fd5e 1543*/
28d81abb
RK
1544
1545/* Return nonzero iff in a try block at level LEVEL. */
1546
1547int
1548in_try_block (level)
1549 int level;
1550{
1551 struct nesting *n = except_stack;
1552 while (1)
1553 {
1554 while (n && n->data.except_stmt.after_label != 0)
1555 n = n->next;
1556 if (n == 0)
1557 return 0;
1558 if (level == 0)
1559 return n != 0;
1560 level--;
1561 n = n->next;
1562 }
1563}
1564
1565/* Return nonzero iff in an except block at level LEVEL. */
1566
1567int
1568in_except_block (level)
1569 int level;
1570{
1571 struct nesting *n = except_stack;
1572 while (1)
1573 {
1574 while (n && n->data.except_stmt.after_label == 0)
1575 n = n->next;
1576 if (n == 0)
1577 return 0;
1578 if (level == 0)
1579 return n != 0;
1580 level--;
1581 n = n->next;
1582 }
1583}
1584
1585/* Return nonzero iff in an exception handler at level LEVEL. */
1586
1587int
1588in_exception_handler (level)
1589 int level;
1590{
1591 struct nesting *n = except_stack;
1592 while (n && level--)
1593 n = n->next;
1594 return n != 0;
1595}
1596
1597/* Record the fact that the current exception nesting raises
1598 exception EX. If not in an exception handler, return 0. */
1599int
1600expand_raise (ex)
1601 tree ex;
1602{
1603 tree *raises_ptr;
1604
1605 if (except_stack == 0)
1606 return 0;
1607 raises_ptr = &except_stack->data.except_stmt.raised;
1608 if (! value_member (ex, *raises_ptr))
1609 *raises_ptr = tree_cons (NULL_TREE, ex, *raises_ptr);
1610 return 1;
1611}
1612
1613/* Generate RTL for the start of a try block.
1614
1615 TRY_CLAUSE is the condition to test to enter the try block. */
1616
1617void
1618expand_start_try (try_clause, exitflag, escapeflag)
1619 tree try_clause;
1620 int exitflag;
1621 int escapeflag;
1622{
1623 struct nesting *thishandler = ALLOC_NESTING ();
1624
1625 /* Make an entry on cond_stack for the cond we are entering. */
1626
1627 thishandler->next = except_stack;
1628 thishandler->all = nesting_stack;
1629 thishandler->depth = ++nesting_depth;
1630 thishandler->data.except_stmt.raised = 0;
1631 thishandler->data.except_stmt.handled = 0;
1632 thishandler->data.except_stmt.first_insn = get_insns ();
1633 thishandler->data.except_stmt.except_label = gen_label_rtx ();
1634 thishandler->data.except_stmt.unhandled_label = 0;
1635 thishandler->data.except_stmt.after_label = 0;
1636 thishandler->data.except_stmt.escape_label
1637 = escapeflag ? thishandler->data.except_stmt.except_label : 0;
1638 thishandler->exit_label = exitflag ? gen_label_rtx () : 0;
1639 except_stack = thishandler;
1640 nesting_stack = thishandler;
1641
37366632 1642 do_jump (try_clause, thishandler->data.except_stmt.except_label, NULL_RTX);
28d81abb
RK
1643}
1644
1645/* End of a TRY block. Nothing to do for now. */
1646
1647void
1648expand_end_try ()
1649{
1650 except_stack->data.except_stmt.after_label = gen_label_rtx ();
37366632
RK
1651 expand_goto_internal (NULL_TREE, except_stack->data.except_stmt.after_label,
1652 NULL_RTX);
28d81abb
RK
1653}
1654
1655/* Start an `except' nesting contour.
1656 EXITFLAG says whether this contour should be able to `exit' something.
1657 ESCAPEFLAG says whether this contour should be escapable. */
1658
1659void
1660expand_start_except (exitflag, escapeflag)
1661 int exitflag;
1662 int escapeflag;
1663{
1664 if (exitflag)
1665 {
1666 struct nesting *n;
1667 /* An `exit' from catch clauses goes out to next exit level,
1668 if there is one. Otherwise, it just goes to the end
1669 of the construct. */
1670 for (n = except_stack->next; n; n = n->next)
1671 if (n->exit_label != 0)
1672 {
1673 except_stack->exit_label = n->exit_label;
1674 break;
1675 }
1676 if (n == 0)
1677 except_stack->exit_label = except_stack->data.except_stmt.after_label;
1678 }
1679 if (escapeflag)
1680 {
1681 struct nesting *n;
1682 /* An `escape' from catch clauses goes out to next escape level,
1683 if there is one. Otherwise, it just goes to the end
1684 of the construct. */
1685 for (n = except_stack->next; n; n = n->next)
1686 if (n->data.except_stmt.escape_label != 0)
1687 {
1688 except_stack->data.except_stmt.escape_label
1689 = n->data.except_stmt.escape_label;
1690 break;
1691 }
1692 if (n == 0)
1693 except_stack->data.except_stmt.escape_label
1694 = except_stack->data.except_stmt.after_label;
1695 }
1696 do_pending_stack_adjust ();
1697 emit_label (except_stack->data.except_stmt.except_label);
1698}
1699
1700/* Generate code to `escape' from an exception contour. This
1701 is like `exiting', but does not conflict with constructs which
1702 use `exit_label'.
1703
1704 Return nonzero if this contour is escapable, otherwise
1705 return zero, and language-specific code will emit the
1706 appropriate error message. */
1707int
1708expand_escape_except ()
1709{
1710 struct nesting *n;
1711 last_expr_type = 0;
1712 for (n = except_stack; n; n = n->next)
1713 if (n->data.except_stmt.escape_label != 0)
1714 {
37366632
RK
1715 expand_goto_internal (NULL_TREE,
1716 n->data.except_stmt.escape_label, NULL_RTX);
28d81abb
RK
1717 return 1;
1718 }
1719
1720 return 0;
1721}
1722
1723/* Finish processing and `except' contour.
1724 Culls out all exceptions which might be raise but not
1725 handled, and returns the list to the caller.
1726 Language-specific code is responsible for dealing with these
1727 exceptions. */
1728
1729tree
1730expand_end_except ()
1731{
1732 struct nesting *n;
1733 tree raised = NULL_TREE;
1734
1735 do_pending_stack_adjust ();
1736 emit_label (except_stack->data.except_stmt.after_label);
1737
1738 n = except_stack->next;
1739 if (n)
1740 {
1741 /* Propagate exceptions raised but not handled to next
1742 highest level. */
1743 tree handled = except_stack->data.except_stmt.raised;
1744 if (handled != void_type_node)
1745 {
1746 tree prev = NULL_TREE;
1747 raised = except_stack->data.except_stmt.raised;
1748 while (handled)
1749 {
1750 tree this_raise;
1751 for (this_raise = raised, prev = 0; this_raise;
1752 this_raise = TREE_CHAIN (this_raise))
1753 {
1754 if (value_member (TREE_VALUE (this_raise), handled))
1755 {
1756 if (prev)
1757 TREE_CHAIN (prev) = TREE_CHAIN (this_raise);
1758 else
1759 {
1760 raised = TREE_CHAIN (raised);
1761 if (raised == NULL_TREE)
1762 goto nada;
1763 }
1764 }
1765 else
1766 prev = this_raise;
1767 }
1768 handled = TREE_CHAIN (handled);
1769 }
1770 if (prev == NULL_TREE)
1771 prev = raised;
1772 if (prev)
1773 TREE_CHAIN (prev) = n->data.except_stmt.raised;
1774 nada:
1775 n->data.except_stmt.raised = raised;
1776 }
1777 }
1778
1779 POPSTACK (except_stack);
1780 last_expr_type = 0;
1781 return raised;
1782}
1783
1784/* Record that exception EX is caught by this exception handler.
1785 Return nonzero if in exception handling construct, otherwise return 0. */
1786int
1787expand_catch (ex)
1788 tree ex;
1789{
1790 tree *raises_ptr;
1791
1792 if (except_stack == 0)
1793 return 0;
1794 raises_ptr = &except_stack->data.except_stmt.handled;
1795 if (*raises_ptr != void_type_node
1796 && ex != NULL_TREE
1797 && ! value_member (ex, *raises_ptr))
1798 *raises_ptr = tree_cons (NULL_TREE, ex, *raises_ptr);
1799 return 1;
1800}
1801
1802/* Record that this exception handler catches all exceptions.
1803 Return nonzero if in exception handling construct, otherwise return 0. */
1804
1805int
1806expand_catch_default ()
1807{
1808 if (except_stack == 0)
1809 return 0;
1810 except_stack->data.except_stmt.handled = void_type_node;
1811 return 1;
1812}
1813
1814int
1815expand_end_catch ()
1816{
1817 if (except_stack == 0 || except_stack->data.except_stmt.after_label == 0)
1818 return 0;
37366632
RK
1819 expand_goto_internal (NULL_TREE, except_stack->data.except_stmt.after_label,
1820 NULL_RTX);
28d81abb
RK
1821 return 1;
1822}
1823\f
1824/* Generate RTL for the start of an if-then. COND is the expression
1825 whose truth should be tested.
1826
1827 If EXITFLAG is nonzero, this conditional is visible to
1828 `exit_something'. */
1829
1830void
1831expand_start_cond (cond, exitflag)
1832 tree cond;
1833 int exitflag;
1834{
1835 struct nesting *thiscond = ALLOC_NESTING ();
1836
1837 /* Make an entry on cond_stack for the cond we are entering. */
1838
1839 thiscond->next = cond_stack;
1840 thiscond->all = nesting_stack;
1841 thiscond->depth = ++nesting_depth;
1842 thiscond->data.cond.next_label = gen_label_rtx ();
1843 /* Before we encounter an `else', we don't need a separate exit label
1844 unless there are supposed to be exit statements
1845 to exit this conditional. */
1846 thiscond->exit_label = exitflag ? gen_label_rtx () : 0;
1847 thiscond->data.cond.endif_label = thiscond->exit_label;
1848 cond_stack = thiscond;
1849 nesting_stack = thiscond;
1850
37366632 1851 do_jump (cond, thiscond->data.cond.next_label, NULL_RTX);
28d81abb
RK
1852}
1853
1854/* Generate RTL between then-clause and the elseif-clause
1855 of an if-then-elseif-.... */
1856
1857void
1858expand_start_elseif (cond)
1859 tree cond;
1860{
1861 if (cond_stack->data.cond.endif_label == 0)
1862 cond_stack->data.cond.endif_label = gen_label_rtx ();
1863 emit_jump (cond_stack->data.cond.endif_label);
1864 emit_label (cond_stack->data.cond.next_label);
1865 cond_stack->data.cond.next_label = gen_label_rtx ();
37366632 1866 do_jump (cond, cond_stack->data.cond.next_label, NULL_RTX);
28d81abb
RK
1867}
1868
1869/* Generate RTL between the then-clause and the else-clause
1870 of an if-then-else. */
1871
1872void
1873expand_start_else ()
1874{
1875 if (cond_stack->data.cond.endif_label == 0)
1876 cond_stack->data.cond.endif_label = gen_label_rtx ();
1877 emit_jump (cond_stack->data.cond.endif_label);
1878 emit_label (cond_stack->data.cond.next_label);
1879 cond_stack->data.cond.next_label = 0; /* No more _else or _elseif calls. */
1880}
1881
1882/* Generate RTL for the end of an if-then.
1883 Pop the record for it off of cond_stack. */
1884
1885void
1886expand_end_cond ()
1887{
1888 struct nesting *thiscond = cond_stack;
1889
1890 do_pending_stack_adjust ();
1891 if (thiscond->data.cond.next_label)
1892 emit_label (thiscond->data.cond.next_label);
1893 if (thiscond->data.cond.endif_label)
1894 emit_label (thiscond->data.cond.endif_label);
1895
1896 POPSTACK (cond_stack);
1897 last_expr_type = 0;
1898}
1899\f
1900/* Generate RTL for the start of a loop. EXIT_FLAG is nonzero if this
1901 loop should be exited by `exit_something'. This is a loop for which
1902 `expand_continue' will jump to the top of the loop.
1903
1904 Make an entry on loop_stack to record the labels associated with
1905 this loop. */
1906
1907struct nesting *
1908expand_start_loop (exit_flag)
1909 int exit_flag;
1910{
1911 register struct nesting *thisloop = ALLOC_NESTING ();
1912
1913 /* Make an entry on loop_stack for the loop we are entering. */
1914
1915 thisloop->next = loop_stack;
1916 thisloop->all = nesting_stack;
1917 thisloop->depth = ++nesting_depth;
1918 thisloop->data.loop.start_label = gen_label_rtx ();
1919 thisloop->data.loop.end_label = gen_label_rtx ();
1920 thisloop->data.loop.continue_label = thisloop->data.loop.start_label;
1921 thisloop->exit_label = exit_flag ? thisloop->data.loop.end_label : 0;
1922 loop_stack = thisloop;
1923 nesting_stack = thisloop;
1924
1925 do_pending_stack_adjust ();
1926 emit_queue ();
37366632 1927 emit_note (NULL_PTR, NOTE_INSN_LOOP_BEG);
28d81abb
RK
1928 emit_label (thisloop->data.loop.start_label);
1929
1930 return thisloop;
1931}
1932
1933/* Like expand_start_loop but for a loop where the continuation point
1934 (for expand_continue_loop) will be specified explicitly. */
1935
1936struct nesting *
1937expand_start_loop_continue_elsewhere (exit_flag)
1938 int exit_flag;
1939{
1940 struct nesting *thisloop = expand_start_loop (exit_flag);
1941 loop_stack->data.loop.continue_label = gen_label_rtx ();
1942 return thisloop;
1943}
1944
1945/* Specify the continuation point for a loop started with
1946 expand_start_loop_continue_elsewhere.
1947 Use this at the point in the code to which a continue statement
1948 should jump. */
1949
1950void
1951expand_loop_continue_here ()
1952{
1953 do_pending_stack_adjust ();
37366632 1954 emit_note (NULL_PTR, NOTE_INSN_LOOP_CONT);
28d81abb
RK
1955 emit_label (loop_stack->data.loop.continue_label);
1956}
1957
1958/* Finish a loop. Generate a jump back to the top and the loop-exit label.
1959 Pop the block off of loop_stack. */
1960
1961void
1962expand_end_loop ()
1963{
1964 register rtx insn = get_last_insn ();
1965 register rtx start_label = loop_stack->data.loop.start_label;
1966 rtx last_test_insn = 0;
1967 int num_insns = 0;
1968
1969 /* Mark the continue-point at the top of the loop if none elsewhere. */
1970 if (start_label == loop_stack->data.loop.continue_label)
1971 emit_note_before (NOTE_INSN_LOOP_CONT, start_label);
1972
1973 do_pending_stack_adjust ();
1974
1975 /* If optimizing, perhaps reorder the loop. If the loop
1976 starts with a conditional exit, roll that to the end
1977 where it will optimize together with the jump back.
1978
1979 We look for the last conditional branch to the exit that we encounter
1980 before hitting 30 insns or a CALL_INSN. If we see an unconditional
1981 branch to the exit first, use it.
1982
1983 We must also stop at NOTE_INSN_BLOCK_BEG and NOTE_INSN_BLOCK_END notes
1984 because moving them is not valid. */
1985
1986 if (optimize
1987 &&
1988 ! (GET_CODE (insn) == JUMP_INSN
1989 && GET_CODE (PATTERN (insn)) == SET
1990 && SET_DEST (PATTERN (insn)) == pc_rtx
1991 && GET_CODE (SET_SRC (PATTERN (insn))) == IF_THEN_ELSE))
1992 {
1993 /* Scan insns from the top of the loop looking for a qualified
1994 conditional exit. */
1995 for (insn = NEXT_INSN (loop_stack->data.loop.start_label); insn;
1996 insn = NEXT_INSN (insn))
1997 {
1998 if (GET_CODE (insn) == CALL_INSN || GET_CODE (insn) == CODE_LABEL)
1999 break;
2000
2001 if (GET_CODE (insn) == NOTE
2002 && (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG
2003 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END))
2004 break;
2005
2006 if (GET_CODE (insn) == JUMP_INSN || GET_CODE (insn) == INSN)
2007 num_insns++;
2008
2009 if (last_test_insn && num_insns > 30)
2010 break;
2011
2012 if (GET_CODE (insn) == JUMP_INSN && GET_CODE (PATTERN (insn)) == SET
2013 && SET_DEST (PATTERN (insn)) == pc_rtx
2014 && GET_CODE (SET_SRC (PATTERN (insn))) == IF_THEN_ELSE
2015 && ((GET_CODE (XEXP (SET_SRC (PATTERN (insn)), 1)) == LABEL_REF
2016 && (XEXP (XEXP (SET_SRC (PATTERN (insn)), 1), 0)
2017 == loop_stack->data.loop.end_label))
2018 || (GET_CODE (XEXP (SET_SRC (PATTERN (insn)), 2)) == LABEL_REF
2019 && (XEXP (XEXP (SET_SRC (PATTERN (insn)), 2), 0)
2020 == loop_stack->data.loop.end_label))))
2021 last_test_insn = insn;
2022
2023 if (last_test_insn == 0 && GET_CODE (insn) == JUMP_INSN
2024 && GET_CODE (PATTERN (insn)) == SET
2025 && SET_DEST (PATTERN (insn)) == pc_rtx
2026 && GET_CODE (SET_SRC (PATTERN (insn))) == LABEL_REF
2027 && (XEXP (SET_SRC (PATTERN (insn)), 0)
2028 == loop_stack->data.loop.end_label))
2029 /* Include BARRIER. */
2030 last_test_insn = NEXT_INSN (insn);
2031 }
2032
2033 if (last_test_insn != 0 && last_test_insn != get_last_insn ())
2034 {
2035 /* We found one. Move everything from there up
2036 to the end of the loop, and add a jump into the loop
2037 to jump to there. */
2038 register rtx newstart_label = gen_label_rtx ();
2039 register rtx start_move = start_label;
2040
b4ac57ab 2041 /* If the start label is preceded by a NOTE_INSN_LOOP_CONT note,
28d81abb
RK
2042 then we want to move this note also. */
2043 if (GET_CODE (PREV_INSN (start_move)) == NOTE
2044 && (NOTE_LINE_NUMBER (PREV_INSN (start_move))
2045 == NOTE_INSN_LOOP_CONT))
2046 start_move = PREV_INSN (start_move);
2047
2048 emit_label_after (newstart_label, PREV_INSN (start_move));
2049 reorder_insns (start_move, last_test_insn, get_last_insn ());
2050 emit_jump_insn_after (gen_jump (start_label),
2051 PREV_INSN (newstart_label));
2052 emit_barrier_after (PREV_INSN (newstart_label));
2053 start_label = newstart_label;
2054 }
2055 }
2056
2057 emit_jump (start_label);
37366632 2058 emit_note (NULL_PTR, NOTE_INSN_LOOP_END);
28d81abb
RK
2059 emit_label (loop_stack->data.loop.end_label);
2060
2061 POPSTACK (loop_stack);
2062
2063 last_expr_type = 0;
2064}
2065
2066/* Generate a jump to the current loop's continue-point.
2067 This is usually the top of the loop, but may be specified
2068 explicitly elsewhere. If not currently inside a loop,
2069 return 0 and do nothing; caller will print an error message. */
2070
2071int
2072expand_continue_loop (whichloop)
2073 struct nesting *whichloop;
2074{
2075 last_expr_type = 0;
2076 if (whichloop == 0)
2077 whichloop = loop_stack;
2078 if (whichloop == 0)
2079 return 0;
37366632
RK
2080 expand_goto_internal (NULL_TREE, whichloop->data.loop.continue_label,
2081 NULL_RTX);
28d81abb
RK
2082 return 1;
2083}
2084
2085/* Generate a jump to exit the current loop. If not currently inside a loop,
2086 return 0 and do nothing; caller will print an error message. */
2087
2088int
2089expand_exit_loop (whichloop)
2090 struct nesting *whichloop;
2091{
2092 last_expr_type = 0;
2093 if (whichloop == 0)
2094 whichloop = loop_stack;
2095 if (whichloop == 0)
2096 return 0;
37366632 2097 expand_goto_internal (NULL_TREE, whichloop->data.loop.end_label, NULL_RTX);
28d81abb
RK
2098 return 1;
2099}
2100
2101/* Generate a conditional jump to exit the current loop if COND
2102 evaluates to zero. If not currently inside a loop,
2103 return 0 and do nothing; caller will print an error message. */
2104
2105int
2106expand_exit_loop_if_false (whichloop, cond)
2107 struct nesting *whichloop;
2108 tree cond;
2109{
2110 last_expr_type = 0;
2111 if (whichloop == 0)
2112 whichloop = loop_stack;
2113 if (whichloop == 0)
2114 return 0;
37366632 2115 do_jump (cond, whichloop->data.loop.end_label, NULL_RTX);
28d81abb
RK
2116 return 1;
2117}
2118
2119/* Return non-zero if we should preserve sub-expressions as separate
2120 pseudos. We never do so if we aren't optimizing. We always do so
2121 if -fexpensive-optimizations.
2122
2123 Otherwise, we only do so if we are in the "early" part of a loop. I.e.,
2124 the loop may still be a small one. */
2125
2126int
2127preserve_subexpressions_p ()
2128{
2129 rtx insn;
2130
2131 if (flag_expensive_optimizations)
2132 return 1;
2133
2134 if (optimize == 0 || loop_stack == 0)
2135 return 0;
2136
2137 insn = get_last_insn_anywhere ();
2138
2139 return (insn
2140 && (INSN_UID (insn) - INSN_UID (loop_stack->data.loop.start_label)
2141 < n_non_fixed_regs * 3));
2142
2143}
2144
2145/* Generate a jump to exit the current loop, conditional, binding contour
2146 or case statement. Not all such constructs are visible to this function,
2147 only those started with EXIT_FLAG nonzero. Individual languages use
2148 the EXIT_FLAG parameter to control which kinds of constructs you can
2149 exit this way.
2150
2151 If not currently inside anything that can be exited,
2152 return 0 and do nothing; caller will print an error message. */
2153
2154int
2155expand_exit_something ()
2156{
2157 struct nesting *n;
2158 last_expr_type = 0;
2159 for (n = nesting_stack; n; n = n->all)
2160 if (n->exit_label != 0)
2161 {
37366632 2162 expand_goto_internal (NULL_TREE, n->exit_label, NULL_RTX);
28d81abb
RK
2163 return 1;
2164 }
2165
2166 return 0;
2167}
2168\f
2169/* Generate RTL to return from the current function, with no value.
2170 (That is, we do not do anything about returning any value.) */
2171
2172void
2173expand_null_return ()
2174{
2175 struct nesting *block = block_stack;
2176 rtx last_insn = 0;
2177
2178 /* Does any pending block have cleanups? */
2179
2180 while (block && block->data.block.cleanups == 0)
2181 block = block->next;
2182
2183 /* If yes, use a goto to return, since that runs cleanups. */
2184
2185 expand_null_return_1 (last_insn, block != 0);
2186}
2187
2188/* Generate RTL to return from the current function, with value VAL. */
2189
2190void
2191expand_value_return (val)
2192 rtx val;
2193{
2194 struct nesting *block = block_stack;
2195 rtx last_insn = get_last_insn ();
2196 rtx return_reg = DECL_RTL (DECL_RESULT (current_function_decl));
2197
2198 /* Copy the value to the return location
2199 unless it's already there. */
2200
2201 if (return_reg != val)
77636079
RS
2202 {
2203#ifdef PROMOTE_FUNCTION_RETURN
2204 enum machine_mode mode = DECL_MODE (DECL_RESULT (current_function_decl));
2205 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
2206 int unsignedp = TREE_UNSIGNED (type);
2207
2208 if (TREE_CODE (type) == INTEGER_TYPE || TREE_CODE (type) == ENUMERAL_TYPE
2209 || TREE_CODE (type) == BOOLEAN_TYPE || TREE_CODE (type) == CHAR_TYPE
2210 || TREE_CODE (type) == REAL_TYPE || TREE_CODE (type) == POINTER_TYPE
2211 || TREE_CODE (type) == OFFSET_TYPE)
2212 {
2213 PROMOTE_MODE (mode, unsignedp, type);
2214 }
2215
2216 if (GET_MODE (val) != VOIDmode && GET_MODE (val) != mode)
3af6dfd8 2217 convert_move (return_reg, val, unsignedp);
77636079
RS
2218 else
2219#endif
2220 emit_move_insn (return_reg, val);
2221 }
28d81abb
RK
2222 if (GET_CODE (return_reg) == REG
2223 && REGNO (return_reg) < FIRST_PSEUDO_REGISTER)
2224 emit_insn (gen_rtx (USE, VOIDmode, return_reg));
2225
2226 /* Does any pending block have cleanups? */
2227
2228 while (block && block->data.block.cleanups == 0)
2229 block = block->next;
2230
2231 /* If yes, use a goto to return, since that runs cleanups.
2232 Use LAST_INSN to put cleanups *before* the move insn emitted above. */
2233
2234 expand_null_return_1 (last_insn, block != 0);
2235}
2236
2237/* Output a return with no value. If LAST_INSN is nonzero,
2238 pretend that the return takes place after LAST_INSN.
2239 If USE_GOTO is nonzero then don't use a return instruction;
2240 go to the return label instead. This causes any cleanups
2241 of pending blocks to be executed normally. */
2242
2243static void
2244expand_null_return_1 (last_insn, use_goto)
2245 rtx last_insn;
2246 int use_goto;
2247{
2248 rtx end_label = cleanup_label ? cleanup_label : return_label;
2249
2250 clear_pending_stack_adjust ();
2251 do_pending_stack_adjust ();
2252 last_expr_type = 0;
2253
2254 /* PCC-struct return always uses an epilogue. */
2255 if (current_function_returns_pcc_struct || use_goto)
2256 {
2257 if (end_label == 0)
2258 end_label = return_label = gen_label_rtx ();
37366632 2259 expand_goto_internal (NULL_TREE, end_label, last_insn);
28d81abb
RK
2260 return;
2261 }
2262
2263 /* Otherwise output a simple return-insn if one is available,
2264 unless it won't do the job. */
2265#ifdef HAVE_return
2266 if (HAVE_return && use_goto == 0 && cleanup_label == 0)
2267 {
2268 emit_jump_insn (gen_return ());
2269 emit_barrier ();
2270 return;
2271 }
2272#endif
2273
2274 /* Otherwise jump to the epilogue. */
37366632 2275 expand_goto_internal (NULL_TREE, end_label, last_insn);
28d81abb
RK
2276}
2277\f
2278/* Generate RTL to evaluate the expression RETVAL and return it
2279 from the current function. */
2280
2281void
2282expand_return (retval)
2283 tree retval;
2284{
2285 /* If there are any cleanups to be performed, then they will
2286 be inserted following LAST_INSN. It is desirable
2287 that the last_insn, for such purposes, should be the
2288 last insn before computing the return value. Otherwise, cleanups
2289 which call functions can clobber the return value. */
2290 /* ??? rms: I think that is erroneous, because in C++ it would
2291 run destructors on variables that might be used in the subsequent
2292 computation of the return value. */
2293 rtx last_insn = 0;
2294 register rtx val = 0;
2295 register rtx op0;
2296 tree retval_rhs;
2297 int cleanups;
2298 struct nesting *block;
2299
2300 /* If function wants no value, give it none. */
2301 if (TREE_CODE (TREE_TYPE (TREE_TYPE (current_function_decl))) == VOID_TYPE)
2302 {
37366632 2303 expand_expr (retval, NULL_RTX, VOIDmode, 0);
7e70e7c5 2304 emit_queue ();
28d81abb
RK
2305 expand_null_return ();
2306 return;
2307 }
2308
2309 /* Are any cleanups needed? E.g. C++ destructors to be run? */
2310 cleanups = any_pending_cleanups (1);
2311
2312 if (TREE_CODE (retval) == RESULT_DECL)
2313 retval_rhs = retval;
2314 else if ((TREE_CODE (retval) == MODIFY_EXPR || TREE_CODE (retval) == INIT_EXPR)
2315 && TREE_CODE (TREE_OPERAND (retval, 0)) == RESULT_DECL)
2316 retval_rhs = TREE_OPERAND (retval, 1);
2317 else if (TREE_TYPE (retval) == void_type_node)
2318 /* Recognize tail-recursive call to void function. */
2319 retval_rhs = retval;
2320 else
2321 retval_rhs = NULL_TREE;
2322
2323 /* Only use `last_insn' if there are cleanups which must be run. */
2324 if (cleanups || cleanup_label != 0)
2325 last_insn = get_last_insn ();
2326
2327 /* Distribute return down conditional expr if either of the sides
2328 may involve tail recursion (see test below). This enhances the number
2329 of tail recursions we see. Don't do this always since it can produce
2330 sub-optimal code in some cases and we distribute assignments into
2331 conditional expressions when it would help. */
2332
2333 if (optimize && retval_rhs != 0
2334 && frame_offset == 0
2335 && TREE_CODE (retval_rhs) == COND_EXPR
2336 && (TREE_CODE (TREE_OPERAND (retval_rhs, 1)) == CALL_EXPR
2337 || TREE_CODE (TREE_OPERAND (retval_rhs, 2)) == CALL_EXPR))
2338 {
2339 rtx label = gen_label_rtx ();
a0a34f94
RK
2340 tree expr;
2341
37366632 2342 do_jump (TREE_OPERAND (retval_rhs, 0), label, NULL_RTX);
a0a34f94
RK
2343 expr = build (MODIFY_EXPR, TREE_TYPE (current_function_decl),
2344 DECL_RESULT (current_function_decl),
2345 TREE_OPERAND (retval_rhs, 1));
2346 TREE_SIDE_EFFECTS (expr) = 1;
2347 expand_return (expr);
28d81abb 2348 emit_label (label);
a0a34f94
RK
2349
2350 expr = build (MODIFY_EXPR, TREE_TYPE (current_function_decl),
2351 DECL_RESULT (current_function_decl),
2352 TREE_OPERAND (retval_rhs, 2));
2353 TREE_SIDE_EFFECTS (expr) = 1;
2354 expand_return (expr);
28d81abb
RK
2355 return;
2356 }
2357
2358 /* For tail-recursive call to current function,
2359 just jump back to the beginning.
2360 It's unsafe if any auto variable in this function
2361 has its address taken; for simplicity,
2362 require stack frame to be empty. */
2363 if (optimize && retval_rhs != 0
2364 && frame_offset == 0
2365 && TREE_CODE (retval_rhs) == CALL_EXPR
2366 && TREE_CODE (TREE_OPERAND (retval_rhs, 0)) == ADDR_EXPR
2367 && TREE_OPERAND (TREE_OPERAND (retval_rhs, 0), 0) == current_function_decl
2368 /* Finish checking validity, and if valid emit code
2369 to set the argument variables for the new call. */
2370 && tail_recursion_args (TREE_OPERAND (retval_rhs, 1),
2371 DECL_ARGUMENTS (current_function_decl)))
2372 {
2373 if (tail_recursion_label == 0)
2374 {
2375 tail_recursion_label = gen_label_rtx ();
2376 emit_label_after (tail_recursion_label,
2377 tail_recursion_reentry);
2378 }
a3229491 2379 emit_queue ();
37366632 2380 expand_goto_internal (NULL_TREE, tail_recursion_label, last_insn);
28d81abb
RK
2381 emit_barrier ();
2382 return;
2383 }
2384#ifdef HAVE_return
2385 /* This optimization is safe if there are local cleanups
2386 because expand_null_return takes care of them.
2387 ??? I think it should also be safe when there is a cleanup label,
2388 because expand_null_return takes care of them, too.
2389 Any reason why not? */
2390 if (HAVE_return && cleanup_label == 0
2391 && ! current_function_returns_pcc_struct)
2392 {
2393 /* If this is return x == y; then generate
2394 if (x == y) return 1; else return 0;
2395 if we can do it with explicit return insns. */
2396 if (retval_rhs)
2397 switch (TREE_CODE (retval_rhs))
2398 {
2399 case EQ_EXPR:
2400 case NE_EXPR:
2401 case GT_EXPR:
2402 case GE_EXPR:
2403 case LT_EXPR:
2404 case LE_EXPR:
2405 case TRUTH_ANDIF_EXPR:
2406 case TRUTH_ORIF_EXPR:
2407 case TRUTH_AND_EXPR:
2408 case TRUTH_OR_EXPR:
2409 case TRUTH_NOT_EXPR:
94ed3915 2410 case TRUTH_XOR_EXPR:
28d81abb
RK
2411 op0 = gen_label_rtx ();
2412 jumpifnot (retval_rhs, op0);
2413 expand_value_return (const1_rtx);
2414 emit_label (op0);
2415 expand_value_return (const0_rtx);
2416 return;
2417 }
2418 }
2419#endif /* HAVE_return */
2420
2421 if (cleanups
2422 && retval_rhs != 0
2423 && TREE_TYPE (retval_rhs) != void_type_node
2424 && GET_CODE (DECL_RTL (DECL_RESULT (current_function_decl))) == REG)
2425 {
2426 /* Calculate the return value into a pseudo reg. */
37366632 2427 val = expand_expr (retval_rhs, NULL_RTX, VOIDmode, 0);
28d81abb
RK
2428 emit_queue ();
2429 /* All temporaries have now been used. */
2430 free_temp_slots ();
2431 /* Return the calculated value, doing cleanups first. */
2432 expand_value_return (val);
2433 }
2434 else
2435 {
2436 /* No cleanups or no hard reg used;
2437 calculate value into hard return reg. */
cba389cd 2438 expand_expr (retval, const0_rtx, VOIDmode, 0);
28d81abb
RK
2439 emit_queue ();
2440 free_temp_slots ();
2441 expand_value_return (DECL_RTL (DECL_RESULT (current_function_decl)));
2442 }
2443}
2444
2445/* Return 1 if the end of the generated RTX is not a barrier.
2446 This means code already compiled can drop through. */
2447
2448int
2449drop_through_at_end_p ()
2450{
2451 rtx insn = get_last_insn ();
2452 while (insn && GET_CODE (insn) == NOTE)
2453 insn = PREV_INSN (insn);
2454 return insn && GET_CODE (insn) != BARRIER;
2455}
2456\f
2457/* Emit code to alter this function's formal parms for a tail-recursive call.
2458 ACTUALS is a list of actual parameter expressions (chain of TREE_LISTs).
2459 FORMALS is the chain of decls of formals.
2460 Return 1 if this can be done;
2461 otherwise return 0 and do not emit any code. */
2462
2463static int
2464tail_recursion_args (actuals, formals)
2465 tree actuals, formals;
2466{
2467 register tree a = actuals, f = formals;
2468 register int i;
2469 register rtx *argvec;
2470
2471 /* Check that number and types of actuals are compatible
2472 with the formals. This is not always true in valid C code.
2473 Also check that no formal needs to be addressable
2474 and that all formals are scalars. */
2475
2476 /* Also count the args. */
2477
2478 for (a = actuals, f = formals, i = 0; a && f; a = TREE_CHAIN (a), f = TREE_CHAIN (f), i++)
2479 {
2480 if (TREE_TYPE (TREE_VALUE (a)) != TREE_TYPE (f))
2481 return 0;
2482 if (GET_CODE (DECL_RTL (f)) != REG || DECL_MODE (f) == BLKmode)
2483 return 0;
2484 }
2485 if (a != 0 || f != 0)
2486 return 0;
2487
2488 /* Compute all the actuals. */
2489
2490 argvec = (rtx *) alloca (i * sizeof (rtx));
2491
2492 for (a = actuals, i = 0; a; a = TREE_CHAIN (a), i++)
37366632 2493 argvec[i] = expand_expr (TREE_VALUE (a), NULL_RTX, VOIDmode, 0);
28d81abb
RK
2494
2495 /* Find which actual values refer to current values of previous formals.
2496 Copy each of them now, before any formal is changed. */
2497
2498 for (a = actuals, i = 0; a; a = TREE_CHAIN (a), i++)
2499 {
2500 int copy = 0;
2501 register int j;
2502 for (f = formals, j = 0; j < i; f = TREE_CHAIN (f), j++)
2503 if (reg_mentioned_p (DECL_RTL (f), argvec[i]))
2504 { copy = 1; break; }
2505 if (copy)
2506 argvec[i] = copy_to_reg (argvec[i]);
2507 }
2508
2509 /* Store the values of the actuals into the formals. */
2510
2511 for (f = formals, a = actuals, i = 0; f;
2512 f = TREE_CHAIN (f), a = TREE_CHAIN (a), i++)
2513 {
98f3b471 2514 if (GET_MODE (DECL_RTL (f)) == GET_MODE (argvec[i]))
28d81abb
RK
2515 emit_move_insn (DECL_RTL (f), argvec[i]);
2516 else
2517 convert_move (DECL_RTL (f), argvec[i],
2518 TREE_UNSIGNED (TREE_TYPE (TREE_VALUE (a))));
2519 }
2520
2521 free_temp_slots ();
2522 return 1;
2523}
2524\f
2525/* Generate the RTL code for entering a binding contour.
2526 The variables are declared one by one, by calls to `expand_decl'.
2527
2528 EXIT_FLAG is nonzero if this construct should be visible to
2529 `exit_something'. */
2530
2531void
2532expand_start_bindings (exit_flag)
2533 int exit_flag;
2534{
2535 struct nesting *thisblock = ALLOC_NESTING ();
2536
37366632 2537 rtx note = emit_note (NULL_PTR, NOTE_INSN_BLOCK_BEG);
28d81abb
RK
2538
2539 /* Make an entry on block_stack for the block we are entering. */
2540
2541 thisblock->next = block_stack;
2542 thisblock->all = nesting_stack;
2543 thisblock->depth = ++nesting_depth;
2544 thisblock->data.block.stack_level = 0;
2545 thisblock->data.block.cleanups = 0;
2546 thisblock->data.block.function_call_count = 0;
2547#if 0
2548 if (block_stack)
2549 {
2550 if (block_stack->data.block.cleanups == NULL_TREE
2551 && (block_stack->data.block.outer_cleanups == NULL_TREE
2552 || block_stack->data.block.outer_cleanups == empty_cleanup_list))
2553 thisblock->data.block.outer_cleanups = empty_cleanup_list;
2554 else
2555 thisblock->data.block.outer_cleanups
2556 = tree_cons (NULL_TREE, block_stack->data.block.cleanups,
2557 block_stack->data.block.outer_cleanups);
2558 }
2559 else
2560 thisblock->data.block.outer_cleanups = 0;
2561#endif
2562#if 1
2563 if (block_stack
2564 && !(block_stack->data.block.cleanups == NULL_TREE
2565 && block_stack->data.block.outer_cleanups == NULL_TREE))
2566 thisblock->data.block.outer_cleanups
2567 = tree_cons (NULL_TREE, block_stack->data.block.cleanups,
2568 block_stack->data.block.outer_cleanups);
2569 else
2570 thisblock->data.block.outer_cleanups = 0;
2571#endif
2572 thisblock->data.block.label_chain = 0;
2573 thisblock->data.block.innermost_stack_block = stack_block_stack;
2574 thisblock->data.block.first_insn = note;
2575 thisblock->data.block.block_start_count = ++block_start_count;
2576 thisblock->exit_label = exit_flag ? gen_label_rtx () : 0;
2577 block_stack = thisblock;
2578 nesting_stack = thisblock;
2579
2580 /* Make a new level for allocating stack slots. */
2581 push_temp_slots ();
2582}
2583
7629c936
RS
2584/* Given a pointer to a BLOCK node, save a pointer to the most recently
2585 generated NOTE_INSN_BLOCK_END in the BLOCK_END_NOTE field of the given
2586 BLOCK node. */
2587
2588void
2589remember_end_note (block)
2590 register tree block;
2591{
2592 BLOCK_END_NOTE (block) = last_block_end_note;
2593 last_block_end_note = NULL_RTX;
2594}
2595
28d81abb
RK
2596/* Generate RTL code to terminate a binding contour.
2597 VARS is the chain of VAR_DECL nodes
2598 for the variables bound in this contour.
2599 MARK_ENDS is nonzero if we should put a note at the beginning
2600 and end of this binding contour.
2601
2602 DONT_JUMP_IN is nonzero if it is not valid to jump into this contour.
2603 (That is true automatically if the contour has a saved stack level.) */
2604
2605void
2606expand_end_bindings (vars, mark_ends, dont_jump_in)
2607 tree vars;
2608 int mark_ends;
2609 int dont_jump_in;
2610{
2611 register struct nesting *thisblock = block_stack;
2612 register tree decl;
2613
2614 if (warn_unused)
2615 for (decl = vars; decl; decl = TREE_CHAIN (decl))
7e70e7c5
RS
2616 if (! TREE_USED (decl) && TREE_CODE (decl) == VAR_DECL
2617 && ! DECL_IN_SYSTEM_HEADER (decl))
28d81abb
RK
2618 warning_with_decl (decl, "unused variable `%s'");
2619
28d81abb
RK
2620 if (thisblock->exit_label)
2621 {
2622 do_pending_stack_adjust ();
2623 emit_label (thisblock->exit_label);
2624 }
2625
2626 /* If necessary, make a handler for nonlocal gotos taking
2627 place in the function calls in this block. */
2628 if (function_call_count != thisblock->data.block.function_call_count
2629 && nonlocal_labels
2630 /* Make handler for outermost block
2631 if there were any nonlocal gotos to this function. */
2632 && (thisblock->next == 0 ? current_function_has_nonlocal_label
2633 /* Make handler for inner block if it has something
2634 special to do when you jump out of it. */
2635 : (thisblock->data.block.cleanups != 0
2636 || thisblock->data.block.stack_level != 0)))
2637 {
2638 tree link;
2639 rtx afterward = gen_label_rtx ();
2640 rtx handler_label = gen_label_rtx ();
2641 rtx save_receiver = gen_reg_rtx (Pmode);
2642
2643 /* Don't let jump_optimize delete the handler. */
2644 LABEL_PRESERVE_P (handler_label) = 1;
2645
2646 /* Record the handler address in the stack slot for that purpose,
2647 during this block, saving and restoring the outer value. */
2648 if (thisblock->next != 0)
2649 {
2650 emit_move_insn (nonlocal_goto_handler_slot, save_receiver);
2651 emit_insn_before (gen_move_insn (save_receiver,
2652 nonlocal_goto_handler_slot),
2653 thisblock->data.block.first_insn);
2654 }
2655 emit_insn_before (gen_move_insn (nonlocal_goto_handler_slot,
2656 gen_rtx (LABEL_REF, Pmode,
2657 handler_label)),
2658 thisblock->data.block.first_insn);
2659
2660 /* Jump around the handler; it runs only when specially invoked. */
2661 emit_jump (afterward);
2662 emit_label (handler_label);
2663
2664#ifdef HAVE_nonlocal_goto
2665 if (! HAVE_nonlocal_goto)
2666#endif
2667 /* First adjust our frame pointer to its actual value. It was
2668 previously set to the start of the virtual area corresponding to
2669 the stacked variables when we branched here and now needs to be
2670 adjusted to the actual hardware fp value.
2671
2672 Assignments are to virtual registers are converted by
2673 instantiate_virtual_regs into the corresponding assignment
2674 to the underlying register (fp in this case) that makes
2675 the original assignment true.
2676 So the following insn will actually be
2677 decrementing fp by STARTING_FRAME_OFFSET. */
2678 emit_move_insn (virtual_stack_vars_rtx, frame_pointer_rtx);
2679
2680#if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
2681 if (fixed_regs[ARG_POINTER_REGNUM])
2682 {
42495ca0
RK
2683#ifdef ELIMINABLE_REGS
2684 /* If the argument pointer can be eliminated in favor of the
2685 frame pointer, we don't need to restore it. We assume here
2686 that if such an elimination is present, it can always be used.
2687 This is the case on all known machines; if we don't make this
2688 assumption, we do unnecessary saving on many machines. */
2689 static struct elims {int from, to;} elim_regs[] = ELIMINABLE_REGS;
2690 int i;
2691
2692 for (i = 0; i < sizeof elim_regs / sizeof elim_regs[0]; i++)
2693 if (elim_regs[i].from == ARG_POINTER_REGNUM
2694 && elim_regs[i].to == FRAME_POINTER_REGNUM)
2695 break;
2696
2697 if (i == sizeof elim_regs / sizeof elim_regs [0])
2698#endif
2699 {
2700 /* Now restore our arg pointer from the address at which it
2701 was saved in our stack frame.
2702 If there hasn't be space allocated for it yet, make
2703 some now. */
2704 if (arg_pointer_save_area == 0)
2705 arg_pointer_save_area
2706 = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
2707 emit_move_insn (virtual_incoming_args_rtx,
2708 /* We need a pseudo here, or else
2709 instantiate_virtual_regs_1 complains. */
2710 copy_to_reg (arg_pointer_save_area));
2711 }
28d81abb
RK
2712 }
2713#endif
2714
2715 /* The handler expects the desired label address in the static chain
2716 register. It tests the address and does an appropriate jump
2717 to whatever label is desired. */
2718 for (link = nonlocal_labels; link; link = TREE_CHAIN (link))
2719 /* Skip any labels we shouldn't be able to jump to from here. */
2720 if (! DECL_TOO_LATE (TREE_VALUE (link)))
2721 {
2722 rtx not_this = gen_label_rtx ();
2723 rtx this = gen_label_rtx ();
2724 do_jump_if_equal (static_chain_rtx,
2725 gen_rtx (LABEL_REF, Pmode, DECL_RTL (TREE_VALUE (link))),
2726 this, 0);
2727 emit_jump (not_this);
2728 emit_label (this);
2729 expand_goto (TREE_VALUE (link));
2730 emit_label (not_this);
2731 }
2732 /* If label is not recognized, abort. */
2733 emit_library_call (gen_rtx (SYMBOL_REF, Pmode, "abort"), 0,
2734 VOIDmode, 0);
2735 emit_label (afterward);
2736 }
2737
2738 /* Don't allow jumping into a block that has cleanups or a stack level. */
2739 if (dont_jump_in
2740 || thisblock->data.block.stack_level != 0
2741 || thisblock->data.block.cleanups != 0)
2742 {
2743 struct label_chain *chain;
2744
2745 /* Any labels in this block are no longer valid to go to.
2746 Mark them to cause an error message. */
2747 for (chain = thisblock->data.block.label_chain; chain; chain = chain->next)
2748 {
2749 DECL_TOO_LATE (chain->label) = 1;
2750 /* If any goto without a fixup came to this label,
2751 that must be an error, because gotos without fixups
2752 come from outside all saved stack-levels and all cleanups. */
2753 if (TREE_ADDRESSABLE (chain->label))
2754 error_with_decl (chain->label,
2755 "label `%s' used before containing binding contour");
2756 }
2757 }
2758
2759 /* Restore stack level in effect before the block
2760 (only if variable-size objects allocated). */
2761 /* Perform any cleanups associated with the block. */
2762
2763 if (thisblock->data.block.stack_level != 0
2764 || thisblock->data.block.cleanups != 0)
2765 {
2766 /* Don't let cleanups affect ({...}) constructs. */
2767 int old_expr_stmts_for_value = expr_stmts_for_value;
2768 rtx old_last_expr_value = last_expr_value;
2769 tree old_last_expr_type = last_expr_type;
2770 expr_stmts_for_value = 0;
2771
2772 /* Do the cleanups. */
37366632 2773 expand_cleanups (thisblock->data.block.cleanups, NULL_TREE);
28d81abb
RK
2774 do_pending_stack_adjust ();
2775
2776 expr_stmts_for_value = old_expr_stmts_for_value;
2777 last_expr_value = old_last_expr_value;
2778 last_expr_type = old_last_expr_type;
2779
2780 /* Restore the stack level. */
2781
2782 if (thisblock->data.block.stack_level != 0)
2783 {
59257ff7 2784 emit_stack_restore (thisblock->next ? SAVE_BLOCK : SAVE_FUNCTION,
37366632 2785 thisblock->data.block.stack_level, NULL_RTX);
59257ff7 2786 if (nonlocal_goto_handler_slot != 0)
37366632
RK
2787 emit_stack_save (SAVE_NONLOCAL, &nonlocal_goto_stack_level,
2788 NULL_RTX);
28d81abb
RK
2789 }
2790
2791 /* Any gotos out of this block must also do these things.
59257ff7
RK
2792 Also report any gotos with fixups that came to labels in this
2793 level. */
28d81abb
RK
2794 fixup_gotos (thisblock,
2795 thisblock->data.block.stack_level,
2796 thisblock->data.block.cleanups,
2797 thisblock->data.block.first_insn,
2798 dont_jump_in);
2799 }
2800
c7d2d61d
RS
2801 /* Mark the beginning and end of the scope if requested.
2802 We do this now, after running cleanups on the variables
2803 just going out of scope, so they are in scope for their cleanups. */
2804
2805 if (mark_ends)
7629c936 2806 last_block_end_note = emit_note (NULL_PTR, NOTE_INSN_BLOCK_END);
c7d2d61d
RS
2807 else
2808 /* Get rid of the beginning-mark if we don't make an end-mark. */
2809 NOTE_LINE_NUMBER (thisblock->data.block.first_insn) = NOTE_INSN_DELETED;
2810
28d81abb
RK
2811 /* If doing stupid register allocation, make sure lives of all
2812 register variables declared here extend thru end of scope. */
2813
2814 if (obey_regdecls)
2815 for (decl = vars; decl; decl = TREE_CHAIN (decl))
2816 {
2817 rtx rtl = DECL_RTL (decl);
2818 if (TREE_CODE (decl) == VAR_DECL && rtl != 0)
2819 use_variable (rtl);
2820 }
2821
2822 /* Restore block_stack level for containing block. */
2823
2824 stack_block_stack = thisblock->data.block.innermost_stack_block;
2825 POPSTACK (block_stack);
2826
2827 /* Pop the stack slot nesting and free any slots at this level. */
2828 pop_temp_slots ();
2829}
2830\f
2831/* Generate RTL for the automatic variable declaration DECL.
2832 (Other kinds of declarations are simply ignored if seen here.)
2833 CLEANUP is an expression to be executed at exit from this binding contour;
2834 for example, in C++, it might call the destructor for this variable.
2835
2836 If CLEANUP contains any SAVE_EXPRs, then you must preevaluate them
2837 either before or after calling `expand_decl' but before compiling
2838 any subsequent expressions. This is because CLEANUP may be expanded
2839 more than once, on different branches of execution.
2840 For the same reason, CLEANUP may not contain a CALL_EXPR
2841 except as its topmost node--else `preexpand_calls' would get confused.
2842
2843 If CLEANUP is nonzero and DECL is zero, we record a cleanup
2844 that is not associated with any particular variable.
2845
2846 There is no special support here for C++ constructors.
2847 They should be handled by the proper code in DECL_INITIAL. */
2848
2849void
2850expand_decl (decl)
2851 register tree decl;
2852{
2853 struct nesting *thisblock = block_stack;
2854 tree type = TREE_TYPE (decl);
2855
2856 /* Only automatic variables need any expansion done.
2857 Static and external variables, and external functions,
2858 will be handled by `assemble_variable' (called from finish_decl).
2859 TYPE_DECL and CONST_DECL require nothing.
2860 PARM_DECLs are handled in `assign_parms'. */
2861
2862 if (TREE_CODE (decl) != VAR_DECL)
2863 return;
44fe2e80 2864 if (TREE_STATIC (decl) || DECL_EXTERNAL (decl))
28d81abb
RK
2865 return;
2866
2867 /* Create the RTL representation for the variable. */
2868
2869 if (type == error_mark_node)
2870 DECL_RTL (decl) = gen_rtx (MEM, BLKmode, const0_rtx);
2871 else if (DECL_SIZE (decl) == 0)
2872 /* Variable with incomplete type. */
2873 {
2874 if (DECL_INITIAL (decl) == 0)
2875 /* Error message was already done; now avoid a crash. */
2876 DECL_RTL (decl) = assign_stack_temp (DECL_MODE (decl), 0, 1);
2877 else
2878 /* An initializer is going to decide the size of this array.
2879 Until we know the size, represent its address with a reg. */
2880 DECL_RTL (decl) = gen_rtx (MEM, BLKmode, gen_reg_rtx (Pmode));
2881 }
2882 else if (DECL_MODE (decl) != BLKmode
2883 /* If -ffloat-store, don't put explicit float vars
2884 into regs. */
2885 && !(flag_float_store
2886 && TREE_CODE (type) == REAL_TYPE)
2887 && ! TREE_THIS_VOLATILE (decl)
2888 && ! TREE_ADDRESSABLE (decl)
44fe2e80 2889 && (DECL_REGISTER (decl) || ! obey_regdecls))
28d81abb
RK
2890 {
2891 /* Automatic variable that can go in a register. */
98f3b471
RK
2892 enum machine_mode reg_mode = DECL_MODE (decl);
2893 int unsignedp = TREE_UNSIGNED (type);
2894
2895 if (TREE_CODE (type) == INTEGER_TYPE || TREE_CODE (type) == ENUMERAL_TYPE
2896 || TREE_CODE (type) == BOOLEAN_TYPE || TREE_CODE (type) == CHAR_TYPE
2897 || TREE_CODE (type) == REAL_TYPE || TREE_CODE (type) == POINTER_TYPE
2898 || TREE_CODE (type) == OFFSET_TYPE)
2899 {
2900 PROMOTE_MODE (reg_mode, unsignedp, type);
2901 }
2902
5998c7dc
RS
2903 if (TREE_CODE (type) == COMPLEX_TYPE)
2904 {
2905 rtx realpart, imagpart;
2906 enum machine_mode partmode = TYPE_MODE (TREE_TYPE (type));
2907
2908 /* For a complex type variable, make a CONCAT of two pseudos
2909 so that the real and imaginary parts
2910 can be allocated separately. */
2911 realpart = gen_reg_rtx (partmode);
2912 REG_USERVAR_P (realpart) = 1;
2913 imagpart = gen_reg_rtx (partmode);
2914 REG_USERVAR_P (imagpart) = 1;
2915 DECL_RTL (decl) = gen_rtx (CONCAT, reg_mode, realpart, imagpart);
2916 }
2917 else
2918 {
2919 DECL_RTL (decl) = gen_reg_rtx (reg_mode);
2920 if (TREE_CODE (type) == POINTER_TYPE)
2921 mark_reg_pointer (DECL_RTL (decl));
2922 REG_USERVAR_P (DECL_RTL (decl)) = 1;
2923 }
28d81abb
RK
2924 }
2925 else if (TREE_CODE (DECL_SIZE (decl)) == INTEGER_CST)
2926 {
2927 /* Variable of fixed size that goes on the stack. */
2928 rtx oldaddr = 0;
2929 rtx addr;
2930
2931 /* If we previously made RTL for this decl, it must be an array
2932 whose size was determined by the initializer.
2933 The old address was a register; set that register now
2934 to the proper address. */
2935 if (DECL_RTL (decl) != 0)
2936 {
2937 if (GET_CODE (DECL_RTL (decl)) != MEM
2938 || GET_CODE (XEXP (DECL_RTL (decl), 0)) != REG)
2939 abort ();
2940 oldaddr = XEXP (DECL_RTL (decl), 0);
2941 }
2942
2943 DECL_RTL (decl)
2944 = assign_stack_temp (DECL_MODE (decl),
2945 ((TREE_INT_CST_LOW (DECL_SIZE (decl))
2946 + BITS_PER_UNIT - 1)
2947 / BITS_PER_UNIT),
2948 1);
2949
2950 /* Set alignment we actually gave this decl. */
2951 DECL_ALIGN (decl) = (DECL_MODE (decl) == BLKmode ? BIGGEST_ALIGNMENT
2952 : GET_MODE_BITSIZE (DECL_MODE (decl)));
2953
2954 if (oldaddr)
2955 {
2956 addr = force_operand (XEXP (DECL_RTL (decl), 0), oldaddr);
2957 if (addr != oldaddr)
2958 emit_move_insn (oldaddr, addr);
2959 }
2960
2961 /* If this is a memory ref that contains aggregate components,
2962 mark it as such for cse and loop optimize. */
2963 MEM_IN_STRUCT_P (DECL_RTL (decl))
2964 = (TREE_CODE (TREE_TYPE (decl)) == ARRAY_TYPE
2965 || TREE_CODE (TREE_TYPE (decl)) == RECORD_TYPE
c1b98a95
RK
2966 || TREE_CODE (TREE_TYPE (decl)) == UNION_TYPE
2967 || TREE_CODE (TREE_TYPE (decl)) == QUAL_UNION_TYPE);
28d81abb
RK
2968#if 0
2969 /* If this is in memory because of -ffloat-store,
2970 set the volatile bit, to prevent optimizations from
2971 undoing the effects. */
2972 if (flag_float_store && TREE_CODE (type) == REAL_TYPE)
2973 MEM_VOLATILE_P (DECL_RTL (decl)) = 1;
2974#endif
2975 }
2976 else
2977 /* Dynamic-size object: must push space on the stack. */
2978 {
2979 rtx address, size;
2980
2981 /* Record the stack pointer on entry to block, if have
2982 not already done so. */
2983 if (thisblock->data.block.stack_level == 0)
2984 {
2985 do_pending_stack_adjust ();
59257ff7
RK
2986 emit_stack_save (thisblock->next ? SAVE_BLOCK : SAVE_FUNCTION,
2987 &thisblock->data.block.stack_level,
2988 thisblock->data.block.first_insn);
28d81abb
RK
2989 stack_block_stack = thisblock;
2990 }
2991
2992 /* Compute the variable's size, in bytes. */
2993 size = expand_expr (size_binop (CEIL_DIV_EXPR,
2994 DECL_SIZE (decl),
2995 size_int (BITS_PER_UNIT)),
37366632 2996 NULL_RTX, VOIDmode, 0);
28d81abb
RK
2997 free_temp_slots ();
2998
59257ff7
RK
2999 /* This is equivalent to calling alloca. */
3000 current_function_calls_alloca = 1;
3001
28d81abb 3002 /* Allocate space on the stack for the variable. */
37366632
RK
3003 address = allocate_dynamic_stack_space (size, NULL_RTX,
3004 DECL_ALIGN (decl));
28d81abb 3005
59257ff7 3006 if (nonlocal_goto_handler_slot != 0)
37366632 3007 emit_stack_save (SAVE_NONLOCAL, &nonlocal_goto_stack_level, NULL_RTX);
28d81abb
RK
3008
3009 /* Reference the variable indirect through that rtx. */
3010 DECL_RTL (decl) = gen_rtx (MEM, DECL_MODE (decl), address);
3011
2207e295
RS
3012 /* If this is a memory ref that contains aggregate components,
3013 mark it as such for cse and loop optimize. */
3014 MEM_IN_STRUCT_P (DECL_RTL (decl))
3015 = (TREE_CODE (TREE_TYPE (decl)) == ARRAY_TYPE
3016 || TREE_CODE (TREE_TYPE (decl)) == RECORD_TYPE
c1b98a95
RK
3017 || TREE_CODE (TREE_TYPE (decl)) == UNION_TYPE
3018 || TREE_CODE (TREE_TYPE (decl)) == QUAL_UNION_TYPE);
2207e295 3019
28d81abb
RK
3020 /* Indicate the alignment we actually gave this variable. */
3021#ifdef STACK_BOUNDARY
3022 DECL_ALIGN (decl) = STACK_BOUNDARY;
3023#else
3024 DECL_ALIGN (decl) = BIGGEST_ALIGNMENT;
3025#endif
3026 }
3027
3028 if (TREE_THIS_VOLATILE (decl))
3029 MEM_VOLATILE_P (DECL_RTL (decl)) = 1;
b4bf13a8
RS
3030#if 0 /* A variable is not necessarily unchanging
3031 just because it is const. RTX_UNCHANGING_P
3032 means no change in the function,
3033 not merely no change in the variable's scope.
3034 It is correct to set RTX_UNCHANGING_P if the variable's scope
3035 is the whole function. There's no convenient way to test that. */
28d81abb
RK
3036 if (TREE_READONLY (decl))
3037 RTX_UNCHANGING_P (DECL_RTL (decl)) = 1;
b4bf13a8 3038#endif
28d81abb
RK
3039
3040 /* If doing stupid register allocation, make sure life of any
3041 register variable starts here, at the start of its scope. */
3042
3043 if (obey_regdecls)
3044 use_variable (DECL_RTL (decl));
3045}
3046\f
3047/* Emit code to perform the initialization of a declaration DECL. */
3048
3049void
3050expand_decl_init (decl)
3051 tree decl;
3052{
b4ac57ab
RS
3053 int was_used = TREE_USED (decl);
3054
28d81abb
RK
3055 if (TREE_STATIC (decl))
3056 return;
3057
3058 /* Compute and store the initial value now. */
3059
3060 if (DECL_INITIAL (decl) == error_mark_node)
3061 {
3062 enum tree_code code = TREE_CODE (TREE_TYPE (decl));
3063 if (code == INTEGER_TYPE || code == REAL_TYPE || code == ENUMERAL_TYPE
3064 || code == POINTER_TYPE)
3065 expand_assignment (decl, convert (TREE_TYPE (decl), integer_zero_node),
3066 0, 0);
3067 emit_queue ();
3068 }
3069 else if (DECL_INITIAL (decl) && TREE_CODE (DECL_INITIAL (decl)) != TREE_LIST)
3070 {
3071 emit_line_note (DECL_SOURCE_FILE (decl), DECL_SOURCE_LINE (decl));
3072 expand_assignment (decl, DECL_INITIAL (decl), 0, 0);
3073 emit_queue ();
3074 }
3075
b4ac57ab
RS
3076 /* Don't let the initialization count as "using" the variable. */
3077 TREE_USED (decl) = was_used;
3078
28d81abb
RK
3079 /* Free any temporaries we made while initializing the decl. */
3080 free_temp_slots ();
3081}
3082
3083/* CLEANUP is an expression to be executed at exit from this binding contour;
3084 for example, in C++, it might call the destructor for this variable.
3085
3086 If CLEANUP contains any SAVE_EXPRs, then you must preevaluate them
3087 either before or after calling `expand_decl' but before compiling
3088 any subsequent expressions. This is because CLEANUP may be expanded
3089 more than once, on different branches of execution.
3090 For the same reason, CLEANUP may not contain a CALL_EXPR
3091 except as its topmost node--else `preexpand_calls' would get confused.
3092
3093 If CLEANUP is nonzero and DECL is zero, we record a cleanup
3094 that is not associated with any particular variable. */
3095
3096int
3097expand_decl_cleanup (decl, cleanup)
3098 tree decl, cleanup;
3099{
3100 struct nesting *thisblock = block_stack;
3101
3102 /* Error if we are not in any block. */
3103 if (thisblock == 0)
3104 return 0;
3105
3106 /* Record the cleanup if there is one. */
3107
3108 if (cleanup != 0)
3109 {
3110 thisblock->data.block.cleanups
3111 = temp_tree_cons (decl, cleanup, thisblock->data.block.cleanups);
3112 /* If this block has a cleanup, it belongs in stack_block_stack. */
3113 stack_block_stack = thisblock;
3114 }
3115 return 1;
3116}
3117\f
3118/* DECL is an anonymous union. CLEANUP is a cleanup for DECL.
3119 DECL_ELTS is the list of elements that belong to DECL's type.
3120 In each, the TREE_VALUE is a VAR_DECL, and the TREE_PURPOSE a cleanup. */
3121
3122void
3123expand_anon_union_decl (decl, cleanup, decl_elts)
3124 tree decl, cleanup, decl_elts;
3125{
3126 struct nesting *thisblock = block_stack;
3127 rtx x;
3128
3129 expand_decl (decl, cleanup);
3130 x = DECL_RTL (decl);
3131
3132 while (decl_elts)
3133 {
3134 tree decl_elt = TREE_VALUE (decl_elts);
3135 tree cleanup_elt = TREE_PURPOSE (decl_elts);
3136 enum machine_mode mode = TYPE_MODE (TREE_TYPE (decl_elt));
3137
3138 /* (SUBREG (MEM ...)) at RTL generation time is invalid, so we
3139 instead create a new MEM rtx with the proper mode. */
3140 if (GET_CODE (x) == MEM)
3141 {
3142 if (mode == GET_MODE (x))
3143 DECL_RTL (decl_elt) = x;
3144 else
3145 {
3146 DECL_RTL (decl_elt) = gen_rtx (MEM, mode, copy_rtx (XEXP (x, 0)));
3147 MEM_IN_STRUCT_P (DECL_RTL (decl_elt)) = MEM_IN_STRUCT_P (x);
3148 RTX_UNCHANGING_P (DECL_RTL (decl_elt)) = RTX_UNCHANGING_P (x);
3149 }
3150 }
3151 else if (GET_CODE (x) == REG)
3152 {
3153 if (mode == GET_MODE (x))
3154 DECL_RTL (decl_elt) = x;
3155 else
3156 DECL_RTL (decl_elt) = gen_rtx (SUBREG, mode, x, 0);
3157 }
3158 else
3159 abort ();
3160
3161 /* Record the cleanup if there is one. */
3162
3163 if (cleanup != 0)
3164 thisblock->data.block.cleanups
3165 = temp_tree_cons (decl_elt, cleanup_elt,
3166 thisblock->data.block.cleanups);
3167
3168 decl_elts = TREE_CHAIN (decl_elts);
3169 }
3170}
3171\f
3172/* Expand a list of cleanups LIST.
3173 Elements may be expressions or may be nested lists.
3174
3175 If DONT_DO is nonnull, then any list-element
3176 whose TREE_PURPOSE matches DONT_DO is omitted.
3177 This is sometimes used to avoid a cleanup associated with
3178 a value that is being returned out of the scope. */
3179
3180static void
3181expand_cleanups (list, dont_do)
3182 tree list;
3183 tree dont_do;
3184{
3185 tree tail;
3186 for (tail = list; tail; tail = TREE_CHAIN (tail))
3187 if (dont_do == 0 || TREE_PURPOSE (tail) != dont_do)
3188 {
3189 if (TREE_CODE (TREE_VALUE (tail)) == TREE_LIST)
3190 expand_cleanups (TREE_VALUE (tail), dont_do);
3191 else
3192 {
3193 /* Cleanups may be run multiple times. For example,
3194 when exiting a binding contour, we expand the
3195 cleanups associated with that contour. When a goto
3196 within that binding contour has a target outside that
3197 contour, it will expand all cleanups from its scope to
3198 the target. Though the cleanups are expanded multiple
3199 times, the control paths are non-overlapping so the
3200 cleanups will not be executed twice. */
3201 expand_expr (TREE_VALUE (tail), const0_rtx, VOIDmode, 0);
3202 free_temp_slots ();
3203 }
3204 }
3205}
3206
28d81abb
RK
3207/* Move all cleanups from the current block_stack
3208 to the containing block_stack, where they are assumed to
3209 have been created. If anything can cause a temporary to
3210 be created, but not expanded for more than one level of
3211 block_stacks, then this code will have to change. */
3212
3213void
3214move_cleanups_up ()
3215{
3216 struct nesting *block = block_stack;
3217 struct nesting *outer = block->next;
3218
3219 outer->data.block.cleanups
3220 = chainon (block->data.block.cleanups,
3221 outer->data.block.cleanups);
3222 block->data.block.cleanups = 0;
3223}
3224
3225tree
3226last_cleanup_this_contour ()
3227{
3228 if (block_stack == 0)
3229 return 0;
3230
3231 return block_stack->data.block.cleanups;
3232}
3233
3234/* Return 1 if there are any pending cleanups at this point.
3235 If THIS_CONTOUR is nonzero, check the current contour as well.
3236 Otherwise, look only at the contours that enclose this one. */
3237
3238int
3239any_pending_cleanups (this_contour)
3240 int this_contour;
3241{
3242 struct nesting *block;
3243
3244 if (block_stack == 0)
3245 return 0;
3246
3247 if (this_contour && block_stack->data.block.cleanups != NULL)
3248 return 1;
3249 if (block_stack->data.block.cleanups == 0
3250 && (block_stack->data.block.outer_cleanups == 0
3251#if 0
3252 || block_stack->data.block.outer_cleanups == empty_cleanup_list
3253#endif
3254 ))
3255 return 0;
3256
3257 for (block = block_stack->next; block; block = block->next)
3258 if (block->data.block.cleanups != 0)
3259 return 1;
3260
3261 return 0;
3262}
3263\f
3264/* Enter a case (Pascal) or switch (C) statement.
3265 Push a block onto case_stack and nesting_stack
3266 to accumulate the case-labels that are seen
3267 and to record the labels generated for the statement.
3268
3269 EXIT_FLAG is nonzero if `exit_something' should exit this case stmt.
3270 Otherwise, this construct is transparent for `exit_something'.
3271
3272 EXPR is the index-expression to be dispatched on.
3273 TYPE is its nominal type. We could simply convert EXPR to this type,
3274 but instead we take short cuts. */
3275
3276void
3277expand_start_case (exit_flag, expr, type, printname)
3278 int exit_flag;
3279 tree expr;
3280 tree type;
3281 char *printname;
3282{
3283 register struct nesting *thiscase = ALLOC_NESTING ();
3284
3285 /* Make an entry on case_stack for the case we are entering. */
3286
3287 thiscase->next = case_stack;
3288 thiscase->all = nesting_stack;
3289 thiscase->depth = ++nesting_depth;
3290 thiscase->exit_label = exit_flag ? gen_label_rtx () : 0;
3291 thiscase->data.case_stmt.case_list = 0;
3292 thiscase->data.case_stmt.index_expr = expr;
3293 thiscase->data.case_stmt.nominal_type = type;
3294 thiscase->data.case_stmt.default_label = 0;
3295 thiscase->data.case_stmt.num_ranges = 0;
3296 thiscase->data.case_stmt.printname = printname;
3297 thiscase->data.case_stmt.seenlabel = 0;
3298 case_stack = thiscase;
3299 nesting_stack = thiscase;
3300
3301 do_pending_stack_adjust ();
3302
3303 /* Make sure case_stmt.start points to something that won't
3304 need any transformation before expand_end_case. */
3305 if (GET_CODE (get_last_insn ()) != NOTE)
37366632 3306 emit_note (NULL_PTR, NOTE_INSN_DELETED);
28d81abb
RK
3307
3308 thiscase->data.case_stmt.start = get_last_insn ();
3309}
3310
3311/* Start a "dummy case statement" within which case labels are invalid
3312 and are not connected to any larger real case statement.
3313 This can be used if you don't want to let a case statement jump
3314 into the middle of certain kinds of constructs. */
3315
3316void
3317expand_start_case_dummy ()
3318{
3319 register struct nesting *thiscase = ALLOC_NESTING ();
3320
3321 /* Make an entry on case_stack for the dummy. */
3322
3323 thiscase->next = case_stack;
3324 thiscase->all = nesting_stack;
3325 thiscase->depth = ++nesting_depth;
3326 thiscase->exit_label = 0;
3327 thiscase->data.case_stmt.case_list = 0;
3328 thiscase->data.case_stmt.start = 0;
3329 thiscase->data.case_stmt.nominal_type = 0;
3330 thiscase->data.case_stmt.default_label = 0;
3331 thiscase->data.case_stmt.num_ranges = 0;
3332 case_stack = thiscase;
3333 nesting_stack = thiscase;
3334}
3335
3336/* End a dummy case statement. */
3337
3338void
3339expand_end_case_dummy ()
3340{
3341 POPSTACK (case_stack);
3342}
3343
3344/* Return the data type of the index-expression
3345 of the innermost case statement, or null if none. */
3346
3347tree
3348case_index_expr_type ()
3349{
3350 if (case_stack)
3351 return TREE_TYPE (case_stack->data.case_stmt.index_expr);
3352 return 0;
3353}
3354\f
3355/* Accumulate one case or default label inside a case or switch statement.
3356 VALUE is the value of the case (a null pointer, for a default label).
f52fba84
PE
3357 The function CONVERTER, when applied to arguments T and V,
3358 converts the value V to the type T.
28d81abb
RK
3359
3360 If not currently inside a case or switch statement, return 1 and do
3361 nothing. The caller will print a language-specific error message.
3362 If VALUE is a duplicate or overlaps, return 2 and do nothing
3363 except store the (first) duplicate node in *DUPLICATE.
3364 If VALUE is out of range, return 3 and do nothing.
3365 If we are jumping into the scope of a cleaup or var-sized array, return 5.
3366 Return 0 on success.
3367
3368 Extended to handle range statements. */
3369
3370int
f52fba84 3371pushcase (value, converter, label, duplicate)
28d81abb 3372 register tree value;
f52fba84 3373 tree (*converter) PROTO((tree, tree));
28d81abb
RK
3374 register tree label;
3375 tree *duplicate;
3376{
3377 register struct case_node **l;
3378 register struct case_node *n;
3379 tree index_type;
3380 tree nominal_type;
3381
3382 /* Fail if not inside a real case statement. */
3383 if (! (case_stack && case_stack->data.case_stmt.start))
3384 return 1;
3385
3386 if (stack_block_stack
3387 && stack_block_stack->depth > case_stack->depth)
3388 return 5;
3389
3390 index_type = TREE_TYPE (case_stack->data.case_stmt.index_expr);
3391 nominal_type = case_stack->data.case_stmt.nominal_type;
3392
3393 /* If the index is erroneous, avoid more problems: pretend to succeed. */
3394 if (index_type == error_mark_node)
3395 return 0;
3396
3397 /* Convert VALUE to the type in which the comparisons are nominally done. */
3398 if (value != 0)
f52fba84 3399 value = (*converter) (nominal_type, value);
28d81abb
RK
3400
3401 /* If this is the first label, warn if any insns have been emitted. */
3402 if (case_stack->data.case_stmt.seenlabel == 0)
3403 {
3404 rtx insn;
3405 for (insn = case_stack->data.case_stmt.start;
3406 insn;
3407 insn = NEXT_INSN (insn))
3408 {
3409 if (GET_CODE (insn) == CODE_LABEL)
3410 break;
3411 if (GET_CODE (insn) != NOTE
3412 && (GET_CODE (insn) != INSN || GET_CODE (PATTERN (insn)) != USE))
3413 {
3414 warning ("unreachable code at beginning of %s",
3415 case_stack->data.case_stmt.printname);
3416 break;
3417 }
3418 }
3419 }
3420 case_stack->data.case_stmt.seenlabel = 1;
3421
3422 /* Fail if this value is out of range for the actual type of the index
3423 (which may be narrower than NOMINAL_TYPE). */
3424 if (value != 0 && ! int_fits_type_p (value, index_type))
3425 return 3;
3426
3427 /* Fail if this is a duplicate or overlaps another entry. */
3428 if (value == 0)
3429 {
3430 if (case_stack->data.case_stmt.default_label != 0)
3431 {
3432 *duplicate = case_stack->data.case_stmt.default_label;
3433 return 2;
3434 }
3435 case_stack->data.case_stmt.default_label = label;
3436 }
3437 else
3438 {
3439 /* Find the elt in the chain before which to insert the new value,
3440 to keep the chain sorted in increasing order.
3441 But report an error if this element is a duplicate. */
3442 for (l = &case_stack->data.case_stmt.case_list;
3443 /* Keep going past elements distinctly less than VALUE. */
3444 *l != 0 && tree_int_cst_lt ((*l)->high, value);
3445 l = &(*l)->right)
3446 ;
3447 if (*l)
3448 {
3449 /* Element we will insert before must be distinctly greater;
3450 overlap means error. */
3451 if (! tree_int_cst_lt (value, (*l)->low))
3452 {
3453 *duplicate = (*l)->code_label;
3454 return 2;
3455 }
3456 }
3457
3458 /* Add this label to the chain, and succeed.
3459 Copy VALUE so it is on temporary rather than momentary
3460 obstack and will thus survive till the end of the case statement. */
3461 n = (struct case_node *) oballoc (sizeof (struct case_node));
3462 n->left = 0;
3463 n->right = *l;
3464 n->high = n->low = copy_node (value);
3465 n->code_label = label;
3466 *l = n;
3467 }
3468
3469 expand_label (label);
3470 return 0;
3471}
3472
3473/* Like pushcase but this case applies to all values
3474 between VALUE1 and VALUE2 (inclusive).
3475 The return value is the same as that of pushcase
3476 but there is one additional error code:
3477 4 means the specified range was empty. */
3478
3479int
f52fba84 3480pushcase_range (value1, value2, converter, label, duplicate)
28d81abb 3481 register tree value1, value2;
f52fba84 3482 tree (*converter) PROTO((tree, tree));
28d81abb
RK
3483 register tree label;
3484 tree *duplicate;
3485{
3486 register struct case_node **l;
3487 register struct case_node *n;
3488 tree index_type;
3489 tree nominal_type;
3490
3491 /* Fail if not inside a real case statement. */
3492 if (! (case_stack && case_stack->data.case_stmt.start))
3493 return 1;
3494
3495 if (stack_block_stack
3496 && stack_block_stack->depth > case_stack->depth)
3497 return 5;
3498
3499 index_type = TREE_TYPE (case_stack->data.case_stmt.index_expr);
3500 nominal_type = case_stack->data.case_stmt.nominal_type;
3501
3502 /* If the index is erroneous, avoid more problems: pretend to succeed. */
3503 if (index_type == error_mark_node)
3504 return 0;
3505
3506 /* If this is the first label, warn if any insns have been emitted. */
3507 if (case_stack->data.case_stmt.seenlabel == 0)
3508 {
3509 rtx insn;
3510 for (insn = case_stack->data.case_stmt.start;
3511 insn;
3512 insn = NEXT_INSN (insn))
3513 {
3514 if (GET_CODE (insn) == CODE_LABEL)
3515 break;
3516 if (GET_CODE (insn) != NOTE
3517 && (GET_CODE (insn) != INSN || GET_CODE (PATTERN (insn)) != USE))
3518 {
3519 warning ("unreachable code at beginning of %s",
3520 case_stack->data.case_stmt.printname);
3521 break;
3522 }
3523 }
3524 }
3525 case_stack->data.case_stmt.seenlabel = 1;
3526
3527 /* Convert VALUEs to type in which the comparisons are nominally done. */
3528 if (value1 == 0) /* Negative infinity. */
3529 value1 = TYPE_MIN_VALUE(index_type);
f52fba84 3530 value1 = (*converter) (nominal_type, value1);
28d81abb
RK
3531
3532 if (value2 == 0) /* Positive infinity. */
3533 value2 = TYPE_MAX_VALUE(index_type);
f52fba84 3534 value2 = (*converter) (nominal_type, value2);
28d81abb
RK
3535
3536 /* Fail if these values are out of range. */
3537 if (! int_fits_type_p (value1, index_type))
3538 return 3;
3539
3540 if (! int_fits_type_p (value2, index_type))
3541 return 3;
3542
3543 /* Fail if the range is empty. */
3544 if (tree_int_cst_lt (value2, value1))
3545 return 4;
3546
3547 /* If the bounds are equal, turn this into the one-value case. */
3548 if (tree_int_cst_equal (value1, value2))
f52fba84 3549 return pushcase (value1, converter, label, duplicate);
28d81abb
RK
3550
3551 /* Find the elt in the chain before which to insert the new value,
3552 to keep the chain sorted in increasing order.
3553 But report an error if this element is a duplicate. */
3554 for (l = &case_stack->data.case_stmt.case_list;
3555 /* Keep going past elements distinctly less than this range. */
3556 *l != 0 && tree_int_cst_lt ((*l)->high, value1);
3557 l = &(*l)->right)
3558 ;
3559 if (*l)
3560 {
3561 /* Element we will insert before must be distinctly greater;
3562 overlap means error. */
3563 if (! tree_int_cst_lt (value2, (*l)->low))
3564 {
3565 *duplicate = (*l)->code_label;
3566 return 2;
3567 }
3568 }
3569
3570 /* Add this label to the chain, and succeed.
3571 Copy VALUE1, VALUE2 so they are on temporary rather than momentary
3572 obstack and will thus survive till the end of the case statement. */
3573
3574 n = (struct case_node *) oballoc (sizeof (struct case_node));
3575 n->left = 0;
3576 n->right = *l;
3577 n->low = copy_node (value1);
3578 n->high = copy_node (value2);
3579 n->code_label = label;
3580 *l = n;
3581
3582 expand_label (label);
3583
3584 case_stack->data.case_stmt.num_ranges++;
3585
3586 return 0;
3587}
3588\f
3589/* Called when the index of a switch statement is an enumerated type
3590 and there is no default label.
3591
3592 Checks that all enumeration literals are covered by the case
3593 expressions of a switch. Also, warn if there are any extra
3594 switch cases that are *not* elements of the enumerated type.
3595
3596 If all enumeration literals were covered by the case expressions,
3597 turn one of the expressions into the default expression since it should
3598 not be possible to fall through such a switch. */
3599
3600void
3601check_for_full_enumeration_handling (type)
3602 tree type;
3603{
3604 register struct case_node *n;
3605 register struct case_node **l;
3606 register tree chain;
3607 int all_values = 1;
3608
3609 /* The time complexity of this loop is currently O(N * M), with
ac2a9454 3610 N being the number of members in the enumerated type, and
28d81abb
RK
3611 M being the number of case expressions in the switch. */
3612
3613 for (chain = TYPE_VALUES (type);
3614 chain;
3615 chain = TREE_CHAIN (chain))
3616 {
3617 /* Find a match between enumeral and case expression, if possible.
3618 Quit looking when we've gone too far (since case expressions
ac2a9454 3619 are kept sorted in ascending order). Warn about enumerators not
28d81abb
RK
3620 handled in the switch statement case expression list. */
3621
3622 for (n = case_stack->data.case_stmt.case_list;
3623 n && tree_int_cst_lt (n->high, TREE_VALUE (chain));
3624 n = n->right)
3625 ;
3626
1ddde1cd 3627 if (!n || tree_int_cst_lt (TREE_VALUE (chain), n->low))
28d81abb
RK
3628 {
3629 if (warn_switch)
1ddde1cd 3630 warning ("enumeration value `%s' not handled in switch",
28d81abb
RK
3631 IDENTIFIER_POINTER (TREE_PURPOSE (chain)));
3632 all_values = 0;
3633 }
3634 }
3635
3636 /* Now we go the other way around; we warn if there are case
ac2a9454 3637 expressions that don't correspond to enumerators. This can
28d81abb
RK
3638 occur since C and C++ don't enforce type-checking of
3639 assignments to enumeration variables. */
3640
3641 if (warn_switch)
3642 for (n = case_stack->data.case_stmt.case_list; n; n = n->right)
3643 {
3644 for (chain = TYPE_VALUES (type);
3645 chain && !tree_int_cst_equal (n->low, TREE_VALUE (chain));
3646 chain = TREE_CHAIN (chain))
3647 ;
3648
3649 if (!chain)
3b24f55b
RS
3650 {
3651 if (TYPE_NAME (type) == 0)
3652 warning ("case value `%d' not in enumerated type",
3653 TREE_INT_CST_LOW (n->low));
3654 else
3655 warning ("case value `%d' not in enumerated type `%s'",
3656 TREE_INT_CST_LOW (n->low),
3657 IDENTIFIER_POINTER ((TREE_CODE (TYPE_NAME (type))
3658 == IDENTIFIER_NODE)
3659 ? TYPE_NAME (type)
3660 : DECL_NAME (TYPE_NAME (type))));
3661 }
1ddde1cd
RS
3662 if (!tree_int_cst_equal (n->low, n->high))
3663 {
3664 for (chain = TYPE_VALUES (type);
3665 chain && !tree_int_cst_equal (n->high, TREE_VALUE (chain));
3666 chain = TREE_CHAIN (chain))
3667 ;
3668
3669 if (!chain)
3b24f55b
RS
3670 {
3671 if (TYPE_NAME (type) == 0)
3672 warning ("case value `%d' not in enumerated type",
3673 TREE_INT_CST_LOW (n->high));
3674 else
3675 warning ("case value `%d' not in enumerated type `%s'",
3676 TREE_INT_CST_LOW (n->high),
3677 IDENTIFIER_POINTER ((TREE_CODE (TYPE_NAME (type))
3678 == IDENTIFIER_NODE)
3679 ? TYPE_NAME (type)
3680 : DECL_NAME (TYPE_NAME (type))));
3681 }
1ddde1cd 3682 }
28d81abb
RK
3683 }
3684
ae8cb346
RS
3685#if 0
3686 /* ??? This optimization is disabled because it causes valid programs to
3687 fail. ANSI C does not guarantee that an expression with enum type
3688 will have a value that is the same as one of the enumation literals. */
3689
28d81abb
RK
3690 /* If all values were found as case labels, make one of them the default
3691 label. Thus, this switch will never fall through. We arbitrarily pick
3692 the last one to make the default since this is likely the most
3693 efficient choice. */
3694
3695 if (all_values)
3696 {
3697 for (l = &case_stack->data.case_stmt.case_list;
3698 (*l)->right != 0;
3699 l = &(*l)->right)
3700 ;
3701
3702 case_stack->data.case_stmt.default_label = (*l)->code_label;
3703 *l = 0;
3704 }
ae8cb346 3705#endif /* 0 */
28d81abb
RK
3706}
3707\f
3708/* Terminate a case (Pascal) or switch (C) statement
9ab0ddd7 3709 in which ORIG_INDEX is the expression to be tested.
28d81abb
RK
3710 Generate the code to test it and jump to the right place. */
3711
3712void
3713expand_end_case (orig_index)
3714 tree orig_index;
3715{
3474db0e 3716 tree minval, maxval, range, orig_minval;
28d81abb
RK
3717 rtx default_label = 0;
3718 register struct case_node *n;
3719 int count;
3720 rtx index;
3721 rtx table_label = gen_label_rtx ();
3722 int ncases;
3723 rtx *labelvec;
3724 register int i;
3725 rtx before_case;
3726 register struct nesting *thiscase = case_stack;
3727 tree index_expr = thiscase->data.case_stmt.index_expr;
3728 int unsignedp = TREE_UNSIGNED (TREE_TYPE (index_expr));
3729
3730 do_pending_stack_adjust ();
3731
3732 /* An ERROR_MARK occurs for various reasons including invalid data type. */
3733 if (TREE_TYPE (index_expr) != error_mark_node)
3734 {
3735 /* If switch expression was an enumerated type, check that all
3736 enumeration literals are covered by the cases.
3737 No sense trying this if there's a default case, however. */
3738
3739 if (!thiscase->data.case_stmt.default_label
3740 && TREE_CODE (TREE_TYPE (orig_index)) == ENUMERAL_TYPE
3741 && TREE_CODE (index_expr) != INTEGER_CST)
3742 check_for_full_enumeration_handling (TREE_TYPE (orig_index));
3743
3744 /* If this is the first label, warn if any insns have been emitted. */
3745 if (thiscase->data.case_stmt.seenlabel == 0)
3746 {
3747 rtx insn;
3748 for (insn = get_last_insn ();
3749 insn != case_stack->data.case_stmt.start;
3750 insn = PREV_INSN (insn))
3751 if (GET_CODE (insn) != NOTE
3752 && (GET_CODE (insn) != INSN || GET_CODE (PATTERN (insn))!= USE))
3753 {
3754 warning ("unreachable code at beginning of %s",
3755 case_stack->data.case_stmt.printname);
3756 break;
3757 }
3758 }
3759
3760 /* If we don't have a default-label, create one here,
3761 after the body of the switch. */
3762 if (thiscase->data.case_stmt.default_label == 0)
3763 {
3764 thiscase->data.case_stmt.default_label
3765 = build_decl (LABEL_DECL, NULL_TREE, NULL_TREE);
3766 expand_label (thiscase->data.case_stmt.default_label);
3767 }
3768 default_label = label_rtx (thiscase->data.case_stmt.default_label);
3769
3770 before_case = get_last_insn ();
3771
3772 /* Simplify the case-list before we count it. */
3773 group_case_nodes (thiscase->data.case_stmt.case_list);
3774
3775 /* Get upper and lower bounds of case values.
3776 Also convert all the case values to the index expr's data type. */
3777
3778 count = 0;
3779 for (n = thiscase->data.case_stmt.case_list; n; n = n->right)
3780 {
3781 /* Check low and high label values are integers. */
3782 if (TREE_CODE (n->low) != INTEGER_CST)
3783 abort ();
3784 if (TREE_CODE (n->high) != INTEGER_CST)
3785 abort ();
3786
3787 n->low = convert (TREE_TYPE (index_expr), n->low);
3788 n->high = convert (TREE_TYPE (index_expr), n->high);
3789
3790 /* Count the elements and track the largest and smallest
3791 of them (treating them as signed even if they are not). */
3792 if (count++ == 0)
3793 {
3794 minval = n->low;
3795 maxval = n->high;
3796 }
3797 else
3798 {
3799 if (INT_CST_LT (n->low, minval))
3800 minval = n->low;
3801 if (INT_CST_LT (maxval, n->high))
3802 maxval = n->high;
3803 }
3804 /* A range counts double, since it requires two compares. */
3805 if (! tree_int_cst_equal (n->low, n->high))
3806 count++;
3807 }
3808
3474db0e
RS
3809 orig_minval = minval;
3810
28d81abb
RK
3811 /* Compute span of values. */
3812 if (count != 0)
3813 range = fold (build (MINUS_EXPR, TREE_TYPE (index_expr),
3814 maxval, minval));
3815
3816 if (count == 0 || TREE_CODE (TREE_TYPE (index_expr)) == ERROR_MARK)
3817 {
3818 expand_expr (index_expr, const0_rtx, VOIDmode, 0);
3819 emit_queue ();
3820 emit_jump (default_label);
3821 }
3474db0e 3822
28d81abb
RK
3823 /* If range of values is much bigger than number of values,
3824 make a sequence of conditional branches instead of a dispatch.
3825 If the switch-index is a constant, do it this way
3826 because we can optimize it. */
4f73c5dd
TW
3827
3828#ifndef CASE_VALUES_THRESHOLD
28d81abb 3829#ifdef HAVE_casesi
4f73c5dd 3830#define CASE_VALUES_THRESHOLD (HAVE_casesi ? 4 : 5)
28d81abb 3831#else
4f73c5dd
TW
3832 /* If machine does not have a case insn that compares the
3833 bounds, this means extra overhead for dispatch tables
3834 which raises the threshold for using them. */
3835#define CASE_VALUES_THRESHOLD 5
3836#endif /* HAVE_casesi */
3837#endif /* CASE_VALUES_THRESHOLD */
3838
3839 else if (TREE_INT_CST_HIGH (range) != 0
3840 || count < CASE_VALUES_THRESHOLD
37366632
RK
3841 || ((unsigned HOST_WIDE_INT) (TREE_INT_CST_LOW (range))
3842 > 10 * count)
28d81abb 3843 || TREE_CODE (index_expr) == INTEGER_CST
b4ac57ab 3844 /* These will reduce to a constant. */
28d81abb 3845 || (TREE_CODE (index_expr) == CALL_EXPR
de14fd73 3846 && TREE_CODE (TREE_OPERAND (index_expr, 0)) == ADDR_EXPR
28d81abb 3847 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (index_expr, 0), 0)) == FUNCTION_DECL
b4ac57ab
RS
3848 && DECL_FUNCTION_CODE (TREE_OPERAND (TREE_OPERAND (index_expr, 0), 0)) == BUILT_IN_CLASSIFY_TYPE)
3849 || (TREE_CODE (index_expr) == COMPOUND_EXPR
3850 && TREE_CODE (TREE_OPERAND (index_expr, 1)) == INTEGER_CST))
28d81abb 3851 {
37366632 3852 index = expand_expr (index_expr, NULL_RTX, VOIDmode, 0);
28d81abb
RK
3853
3854 /* If the index is a short or char that we do not have
3855 an insn to handle comparisons directly, convert it to
3856 a full integer now, rather than letting each comparison
3857 generate the conversion. */
3858
3859 if (GET_MODE_CLASS (GET_MODE (index)) == MODE_INT
3860 && (cmp_optab->handlers[(int) GET_MODE(index)].insn_code
3861 == CODE_FOR_nothing))
3862 {
3863 enum machine_mode wider_mode;
3864 for (wider_mode = GET_MODE (index); wider_mode != VOIDmode;
3865 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
3866 if (cmp_optab->handlers[(int) wider_mode].insn_code
3867 != CODE_FOR_nothing)
3868 {
3869 index = convert_to_mode (wider_mode, index, unsignedp);
3870 break;
3871 }
3872 }
3873
3874 emit_queue ();
3875 do_pending_stack_adjust ();
3876
3877 index = protect_from_queue (index, 0);
3878 if (GET_CODE (index) == MEM)
3879 index = copy_to_reg (index);
3880 if (GET_CODE (index) == CONST_INT
3881 || TREE_CODE (index_expr) == INTEGER_CST)
3882 {
3883 /* Make a tree node with the proper constant value
3884 if we don't already have one. */
3885 if (TREE_CODE (index_expr) != INTEGER_CST)
3886 {
3887 index_expr
3888 = build_int_2 (INTVAL (index),
3889 !unsignedp && INTVAL (index) >= 0 ? 0 : -1);
3890 index_expr = convert (TREE_TYPE (index_expr), index_expr);
3891 }
3892
3893 /* For constant index expressions we need only
3894 issue a unconditional branch to the appropriate
3895 target code. The job of removing any unreachable
3896 code is left to the optimisation phase if the
3897 "-O" option is specified. */
3898 for (n = thiscase->data.case_stmt.case_list;
3899 n;
3900 n = n->right)
3901 {
3902 if (! tree_int_cst_lt (index_expr, n->low)
3903 && ! tree_int_cst_lt (n->high, index_expr))
3904 break;
3905 }
3906 if (n)
3907 emit_jump (label_rtx (n->code_label));
3908 else
3909 emit_jump (default_label);
3910 }
3911 else
3912 {
3913 /* If the index expression is not constant we generate
3914 a binary decision tree to select the appropriate
3915 target code. This is done as follows:
3916
3917 The list of cases is rearranged into a binary tree,
3918 nearly optimal assuming equal probability for each case.
3919
3920 The tree is transformed into RTL, eliminating
3921 redundant test conditions at the same time.
3922
3923 If program flow could reach the end of the
3924 decision tree an unconditional jump to the
3925 default code is emitted. */
3926
3927 use_cost_table
3928 = (TREE_CODE (TREE_TYPE (orig_index)) != ENUMERAL_TYPE
28d81abb 3929 && estimate_case_costs (thiscase->data.case_stmt.case_list));
37366632
RK
3930 balance_case_nodes (&thiscase->data.case_stmt.case_list,
3931 NULL_PTR);
28d81abb
RK
3932 emit_case_nodes (index, thiscase->data.case_stmt.case_list,
3933 default_label, TREE_TYPE (index_expr));
3934 emit_jump_if_reachable (default_label);
3935 }
3936 }
3937 else
3938 {
3939 int win = 0;
3940#ifdef HAVE_casesi
3941 if (HAVE_casesi)
3942 {
c4fcf531 3943 enum machine_mode index_mode = SImode;
5130a5cc 3944 int index_bits = GET_MODE_BITSIZE (index_mode);
c4fcf531 3945
28d81abb 3946 /* Convert the index to SImode. */
c4fcf531
RS
3947 if (GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (index_expr)))
3948 > GET_MODE_BITSIZE (index_mode))
28d81abb 3949 {
af2682ef 3950 enum machine_mode omode = TYPE_MODE (TREE_TYPE (index_expr));
37366632 3951 rtx rangertx = expand_expr (range, NULL_RTX, VOIDmode, 0);
af2682ef
RS
3952
3953 /* We must handle the endpoints in the original mode. */
28d81abb
RK
3954 index_expr = build (MINUS_EXPR, TREE_TYPE (index_expr),
3955 index_expr, minval);
3956 minval = integer_zero_node;
37366632 3957 index = expand_expr (index_expr, NULL_RTX, VOIDmode, 0);
3474db0e 3958 emit_cmp_insn (rangertx, index, LTU, NULL_RTX, omode, 1, 0);
af2682ef
RS
3959 emit_jump_insn (gen_bltu (default_label));
3960 /* Now we can safely truncate. */
3961 index = convert_to_mode (index_mode, index, 0);
3962 }
3963 else
3964 {
3965 if (TYPE_MODE (TREE_TYPE (index_expr)) != index_mode)
3966 index_expr = convert (type_for_size (index_bits, 0),
3967 index_expr);
37366632 3968 index = expand_expr (index_expr, NULL_RTX, VOIDmode, 0);
28d81abb 3969 }
28d81abb
RK
3970 emit_queue ();
3971 index = protect_from_queue (index, 0);
3972 do_pending_stack_adjust ();
3973
37366632
RK
3974 emit_jump_insn (gen_casesi (index, expand_expr (minval, NULL_RTX,
3975 VOIDmode, 0),
3976 expand_expr (range, NULL_RTX,
3977 VOIDmode, 0),
28d81abb
RK
3978 table_label, default_label));
3979 win = 1;
3980 }
3981#endif
3982#ifdef HAVE_tablejump
3983 if (! win && HAVE_tablejump)
3984 {
3985 index_expr = convert (thiscase->data.case_stmt.nominal_type,
b4ac57ab
RS
3986 fold (build (MINUS_EXPR,
3987 TREE_TYPE (index_expr),
3988 index_expr, minval)));
37366632 3989 index = expand_expr (index_expr, NULL_RTX, VOIDmode, 0);
28d81abb 3990 emit_queue ();
af2682ef 3991 index = protect_from_queue (index, 0);
28d81abb
RK
3992 do_pending_stack_adjust ();
3993
af2682ef 3994 do_tablejump (index, TYPE_MODE (TREE_TYPE (index_expr)),
37366632 3995 expand_expr (range, NULL_RTX, VOIDmode, 0),
28d81abb
RK
3996 table_label, default_label);
3997 win = 1;
3998 }
3999#endif
4000 if (! win)
4001 abort ();
4002
4003 /* Get table of labels to jump to, in order of case index. */
4004
4005 ncases = TREE_INT_CST_LOW (range) + 1;
4006 labelvec = (rtx *) alloca (ncases * sizeof (rtx));
4007 bzero (labelvec, ncases * sizeof (rtx));
4008
4009 for (n = thiscase->data.case_stmt.case_list; n; n = n->right)
4010 {
37366632 4011 register HOST_WIDE_INT i
3474db0e 4012 = TREE_INT_CST_LOW (n->low) - TREE_INT_CST_LOW (orig_minval);
28d81abb
RK
4013
4014 while (1)
4015 {
4016 labelvec[i]
4017 = gen_rtx (LABEL_REF, Pmode, label_rtx (n->code_label));
3474db0e 4018 if (i + TREE_INT_CST_LOW (orig_minval)
28d81abb
RK
4019 == TREE_INT_CST_LOW (n->high))
4020 break;
4021 i++;
4022 }
4023 }
4024
4025 /* Fill in the gaps with the default. */
4026 for (i = 0; i < ncases; i++)
4027 if (labelvec[i] == 0)
4028 labelvec[i] = gen_rtx (LABEL_REF, Pmode, default_label);
4029
4030 /* Output the table */
4031 emit_label (table_label);
4032
4033 /* This would be a lot nicer if CASE_VECTOR_PC_RELATIVE
858a47b1 4034 were an expression, instead of an #ifdef/#ifndef. */
28d81abb
RK
4035 if (
4036#ifdef CASE_VECTOR_PC_RELATIVE
4037 1 ||
4038#endif
4039 flag_pic)
4040 emit_jump_insn (gen_rtx (ADDR_DIFF_VEC, CASE_VECTOR_MODE,
4041 gen_rtx (LABEL_REF, Pmode, table_label),
4042 gen_rtvec_v (ncases, labelvec)));
4043 else
4044 emit_jump_insn (gen_rtx (ADDR_VEC, CASE_VECTOR_MODE,
4045 gen_rtvec_v (ncases, labelvec)));
4046
4047 /* If the case insn drops through the table,
4048 after the table we must jump to the default-label.
4049 Otherwise record no drop-through after the table. */
4050#ifdef CASE_DROPS_THROUGH
4051 emit_jump (default_label);
4052#else
4053 emit_barrier ();
4054#endif
4055 }
4056
915f619f
JW
4057 before_case = squeeze_notes (NEXT_INSN (before_case), get_last_insn ());
4058 reorder_insns (before_case, get_last_insn (),
28d81abb
RK
4059 thiscase->data.case_stmt.start);
4060 }
4061 if (thiscase->exit_label)
4062 emit_label (thiscase->exit_label);
4063
4064 POPSTACK (case_stack);
4065
4066 free_temp_slots ();
4067}
4068
4069/* Generate code to jump to LABEL if OP1 and OP2 are equal. */
4070
4071static void
4072do_jump_if_equal (op1, op2, label, unsignedp)
4073 rtx op1, op2, label;
4074 int unsignedp;
4075{
4076 if (GET_CODE (op1) == CONST_INT
4077 && GET_CODE (op2) == CONST_INT)
4078 {
4079 if (INTVAL (op1) == INTVAL (op2))
4080 emit_jump (label);
4081 }
4082 else
4083 {
4084 enum machine_mode mode = GET_MODE (op1);
4085 if (mode == VOIDmode)
4086 mode = GET_MODE (op2);
37366632 4087 emit_cmp_insn (op1, op2, EQ, NULL_RTX, mode, unsignedp, 0);
28d81abb
RK
4088 emit_jump_insn (gen_beq (label));
4089 }
4090}
4091\f
4092/* Not all case values are encountered equally. This function
4093 uses a heuristic to weight case labels, in cases where that
4094 looks like a reasonable thing to do.
4095
4096 Right now, all we try to guess is text, and we establish the
4097 following weights:
4098
4099 chars above space: 16
4100 digits: 16
4101 default: 12
4102 space, punct: 8
4103 tab: 4
4104 newline: 2
4105 other "\" chars: 1
4106 remaining chars: 0
4107
4108 If we find any cases in the switch that are not either -1 or in the range
4109 of valid ASCII characters, or are control characters other than those
4110 commonly used with "\", don't treat this switch scanning text.
4111
4112 Return 1 if these nodes are suitable for cost estimation, otherwise
4113 return 0. */
4114
4115static int
4116estimate_case_costs (node)
4117 case_node_ptr node;
4118{
4119 tree min_ascii = build_int_2 (-1, -1);
4120 tree max_ascii = convert (TREE_TYPE (node->high), build_int_2 (127, 0));
4121 case_node_ptr n;
4122 int i;
4123
4124 /* If we haven't already made the cost table, make it now. Note that the
4125 lower bound of the table is -1, not zero. */
4126
4127 if (cost_table == NULL)
4128 {
4129 cost_table = ((short *) xmalloc (129 * sizeof (short))) + 1;
4130 bzero (cost_table - 1, 129 * sizeof (short));
4131
4132 for (i = 0; i < 128; i++)
4133 {
4134 if (isalnum (i))
4135 cost_table[i] = 16;
4136 else if (ispunct (i))
4137 cost_table[i] = 8;
4138 else if (iscntrl (i))
4139 cost_table[i] = -1;
4140 }
4141
4142 cost_table[' '] = 8;
4143 cost_table['\t'] = 4;
4144 cost_table['\0'] = 4;
4145 cost_table['\n'] = 2;
4146 cost_table['\f'] = 1;
4147 cost_table['\v'] = 1;
4148 cost_table['\b'] = 1;
4149 }
4150
4151 /* See if all the case expressions look like text. It is text if the
4152 constant is >= -1 and the highest constant is <= 127. Do all comparisons
4153 as signed arithmetic since we don't want to ever access cost_table with a
4154 value less than -1. Also check that none of the constants in a range
4155 are strange control characters. */
4156
4157 for (n = node; n; n = n->right)
4158 {
4159 if ((INT_CST_LT (n->low, min_ascii)) || INT_CST_LT (max_ascii, n->high))
4160 return 0;
4161
4162 for (i = TREE_INT_CST_LOW (n->low); i <= TREE_INT_CST_LOW (n->high); i++)
4163 if (cost_table[i] < 0)
4164 return 0;
4165 }
4166
4167 /* All interesting values are within the range of interesting
4168 ASCII characters. */
4169 return 1;
4170}
4171
4172/* Scan an ordered list of case nodes
4173 combining those with consecutive values or ranges.
4174
4175 Eg. three separate entries 1: 2: 3: become one entry 1..3: */
4176
4177static void
4178group_case_nodes (head)
4179 case_node_ptr head;
4180{
4181 case_node_ptr node = head;
4182
4183 while (node)
4184 {
4185 rtx lb = next_real_insn (label_rtx (node->code_label));
4186 case_node_ptr np = node;
4187
4188 /* Try to group the successors of NODE with NODE. */
4189 while (((np = np->right) != 0)
4190 /* Do they jump to the same place? */
4191 && next_real_insn (label_rtx (np->code_label)) == lb
4192 /* Are their ranges consecutive? */
4193 && tree_int_cst_equal (np->low,
4194 fold (build (PLUS_EXPR,
4195 TREE_TYPE (node->high),
4196 node->high,
4197 integer_one_node)))
4198 /* An overflow is not consecutive. */
4199 && tree_int_cst_lt (node->high,
4200 fold (build (PLUS_EXPR,
4201 TREE_TYPE (node->high),
4202 node->high,
4203 integer_one_node))))
4204 {
4205 node->high = np->high;
4206 }
4207 /* NP is the first node after NODE which can't be grouped with it.
4208 Delete the nodes in between, and move on to that node. */
4209 node->right = np;
4210 node = np;
4211 }
4212}
4213
4214/* Take an ordered list of case nodes
4215 and transform them into a near optimal binary tree,
6dc42e49 4216 on the assumption that any target code selection value is as
28d81abb
RK
4217 likely as any other.
4218
4219 The transformation is performed by splitting the ordered
4220 list into two equal sections plus a pivot. The parts are
4221 then attached to the pivot as left and right branches. Each
4222 branch is is then transformed recursively. */
4223
4224static void
4225balance_case_nodes (head, parent)
4226 case_node_ptr *head;
4227 case_node_ptr parent;
4228{
4229 register case_node_ptr np;
4230
4231 np = *head;
4232 if (np)
4233 {
4234 int cost = 0;
4235 int i = 0;
4236 int ranges = 0;
4237 register case_node_ptr *npp;
4238 case_node_ptr left;
4239
4240 /* Count the number of entries on branch. Also count the ranges. */
4241
4242 while (np)
4243 {
4244 if (!tree_int_cst_equal (np->low, np->high))
4245 {
4246 ranges++;
4247 if (use_cost_table)
4248 cost += cost_table[TREE_INT_CST_LOW (np->high)];
4249 }
4250
4251 if (use_cost_table)
4252 cost += cost_table[TREE_INT_CST_LOW (np->low)];
4253
4254 i++;
4255 np = np->right;
4256 }
4257
4258 if (i > 2)
4259 {
4260 /* Split this list if it is long enough for that to help. */
4261 npp = head;
4262 left = *npp;
4263 if (use_cost_table)
4264 {
4265 /* Find the place in the list that bisects the list's total cost,
4266 Here I gets half the total cost. */
4267 int n_moved = 0;
4268 i = (cost + 1) / 2;
4269 while (1)
4270 {
4271 /* Skip nodes while their cost does not reach that amount. */
4272 if (!tree_int_cst_equal ((*npp)->low, (*npp)->high))
4273 i -= cost_table[TREE_INT_CST_LOW ((*npp)->high)];
4274 i -= cost_table[TREE_INT_CST_LOW ((*npp)->low)];
4275 if (i <= 0)
4276 break;
4277 npp = &(*npp)->right;
4278 n_moved += 1;
4279 }
4280 if (n_moved == 0)
4281 {
4282 /* Leave this branch lopsided, but optimize left-hand
4283 side and fill in `parent' fields for right-hand side. */
4284 np = *head;
4285 np->parent = parent;
4286 balance_case_nodes (&np->left, np);
4287 for (; np->right; np = np->right)
4288 np->right->parent = np;
4289 return;
4290 }
4291 }
4292 /* If there are just three nodes, split at the middle one. */
4293 else if (i == 3)
4294 npp = &(*npp)->right;
4295 else
4296 {
4297 /* Find the place in the list that bisects the list's total cost,
4298 where ranges count as 2.
4299 Here I gets half the total cost. */
4300 i = (i + ranges + 1) / 2;
4301 while (1)
4302 {
4303 /* Skip nodes while their cost does not reach that amount. */
4304 if (!tree_int_cst_equal ((*npp)->low, (*npp)->high))
4305 i--;
4306 i--;
4307 if (i <= 0)
4308 break;
4309 npp = &(*npp)->right;
4310 }
4311 }
4312 *head = np = *npp;
4313 *npp = 0;
4314 np->parent = parent;
4315 np->left = left;
4316
4317 /* Optimize each of the two split parts. */
4318 balance_case_nodes (&np->left, np);
4319 balance_case_nodes (&np->right, np);
4320 }
4321 else
4322 {
4323 /* Else leave this branch as one level,
4324 but fill in `parent' fields. */
4325 np = *head;
4326 np->parent = parent;
4327 for (; np->right; np = np->right)
4328 np->right->parent = np;
4329 }
4330 }
4331}
4332\f
4333/* Search the parent sections of the case node tree
4334 to see if a test for the lower bound of NODE would be redundant.
4335 INDEX_TYPE is the type of the index expression.
4336
4337 The instructions to generate the case decision tree are
4338 output in the same order as nodes are processed so it is
4339 known that if a parent node checks the range of the current
4340 node minus one that the current node is bounded at its lower
4341 span. Thus the test would be redundant. */
4342
4343static int
4344node_has_low_bound (node, index_type)
4345 case_node_ptr node;
4346 tree index_type;
4347{
4348 tree low_minus_one;
4349 case_node_ptr pnode;
4350
4351 /* If the lower bound of this node is the lowest value in the index type,
4352 we need not test it. */
4353
4354 if (tree_int_cst_equal (node->low, TYPE_MIN_VALUE (index_type)))
4355 return 1;
4356
4357 /* If this node has a left branch, the value at the left must be less
4358 than that at this node, so it cannot be bounded at the bottom and
4359 we need not bother testing any further. */
4360
4361 if (node->left)
4362 return 0;
4363
4364 low_minus_one = fold (build (MINUS_EXPR, TREE_TYPE (node->low),
4365 node->low, integer_one_node));
4366
4367 /* If the subtraction above overflowed, we can't verify anything.
4368 Otherwise, look for a parent that tests our value - 1. */
4369
4370 if (! tree_int_cst_lt (low_minus_one, node->low))
4371 return 0;
4372
4373 for (pnode = node->parent; pnode; pnode = pnode->parent)
4374 if (tree_int_cst_equal (low_minus_one, pnode->high))
4375 return 1;
4376
4377 return 0;
4378}
4379
4380/* Search the parent sections of the case node tree
4381 to see if a test for the upper bound of NODE would be redundant.
4382 INDEX_TYPE is the type of the index expression.
4383
4384 The instructions to generate the case decision tree are
4385 output in the same order as nodes are processed so it is
4386 known that if a parent node checks the range of the current
4387 node plus one that the current node is bounded at its upper
4388 span. Thus the test would be redundant. */
4389
4390static int
4391node_has_high_bound (node, index_type)
4392 case_node_ptr node;
4393 tree index_type;
4394{
4395 tree high_plus_one;
4396 case_node_ptr pnode;
4397
4398 /* If the upper bound of this node is the highest value in the type
4399 of the index expression, we need not test against it. */
4400
4401 if (tree_int_cst_equal (node->high, TYPE_MAX_VALUE (index_type)))
4402 return 1;
4403
4404 /* If this node has a right branch, the value at the right must be greater
4405 than that at this node, so it cannot be bounded at the top and
4406 we need not bother testing any further. */
4407
4408 if (node->right)
4409 return 0;
4410
4411 high_plus_one = fold (build (PLUS_EXPR, TREE_TYPE (node->high),
4412 node->high, integer_one_node));
4413
4414 /* If the addition above overflowed, we can't verify anything.
4415 Otherwise, look for a parent that tests our value + 1. */
4416
4417 if (! tree_int_cst_lt (node->high, high_plus_one))
4418 return 0;
4419
4420 for (pnode = node->parent; pnode; pnode = pnode->parent)
4421 if (tree_int_cst_equal (high_plus_one, pnode->low))
4422 return 1;
4423
4424 return 0;
4425}
4426
4427/* Search the parent sections of the
4428 case node tree to see if both tests for the upper and lower
4429 bounds of NODE would be redundant. */
4430
4431static int
4432node_is_bounded (node, index_type)
4433 case_node_ptr node;
4434 tree index_type;
4435{
4436 return (node_has_low_bound (node, index_type)
4437 && node_has_high_bound (node, index_type));
4438}
4439
4440/* Emit an unconditional jump to LABEL unless it would be dead code. */
4441
4442static void
4443emit_jump_if_reachable (label)
4444 rtx label;
4445{
4446 if (GET_CODE (get_last_insn ()) != BARRIER)
4447 emit_jump (label);
4448}
4449\f
4450/* Emit step-by-step code to select a case for the value of INDEX.
4451 The thus generated decision tree follows the form of the
4452 case-node binary tree NODE, whose nodes represent test conditions.
4453 INDEX_TYPE is the type of the index of the switch.
4454
4455 Care is taken to prune redundant tests from the decision tree
4456 by detecting any boundary conditions already checked by
4457 emitted rtx. (See node_has_high_bound, node_has_low_bound
4458 and node_is_bounded, above.)
4459
4460 Where the test conditions can be shown to be redundant we emit
4461 an unconditional jump to the target code. As a further
4462 optimization, the subordinates of a tree node are examined to
4463 check for bounded nodes. In this case conditional and/or
4464 unconditional jumps as a result of the boundary check for the
4465 current node are arranged to target the subordinates associated
4466 code for out of bound conditions on the current node node.
4467
f72aed24 4468 We can assume that when control reaches the code generated here,
28d81abb
RK
4469 the index value has already been compared with the parents
4470 of this node, and determined to be on the same side of each parent
4471 as this node is. Thus, if this node tests for the value 51,
4472 and a parent tested for 52, we don't need to consider
4473 the possibility of a value greater than 51. If another parent
4474 tests for the value 50, then this node need not test anything. */
4475
4476static void
4477emit_case_nodes (index, node, default_label, index_type)
4478 rtx index;
4479 case_node_ptr node;
4480 rtx default_label;
4481 tree index_type;
4482{
4483 /* If INDEX has an unsigned type, we must make unsigned branches. */
4484 int unsignedp = TREE_UNSIGNED (index_type);
4485 typedef rtx rtx_function ();
4486 rtx_function *gen_bgt_pat = unsignedp ? gen_bgtu : gen_bgt;
4487 rtx_function *gen_bge_pat = unsignedp ? gen_bgeu : gen_bge;
4488 rtx_function *gen_blt_pat = unsignedp ? gen_bltu : gen_blt;
4489 rtx_function *gen_ble_pat = unsignedp ? gen_bleu : gen_ble;
4490 enum machine_mode mode = GET_MODE (index);
4491
4492 /* See if our parents have already tested everything for us.
4493 If they have, emit an unconditional jump for this node. */
4494 if (node_is_bounded (node, index_type))
4495 emit_jump (label_rtx (node->code_label));
4496
4497 else if (tree_int_cst_equal (node->low, node->high))
4498 {
4499 /* Node is single valued. First see if the index expression matches
4500 this node and then check our children, if any. */
4501
37366632 4502 do_jump_if_equal (index, expand_expr (node->low, NULL_RTX, VOIDmode, 0),
28d81abb
RK
4503 label_rtx (node->code_label), unsignedp);
4504
4505 if (node->right != 0 && node->left != 0)
4506 {
4507 /* This node has children on both sides.
4508 Dispatch to one side or the other
4509 by comparing the index value with this node's value.
4510 If one subtree is bounded, check that one first,
4511 so we can avoid real branches in the tree. */
4512
4513 if (node_is_bounded (node->right, index_type))
4514 {
37366632
RK
4515 emit_cmp_insn (index, expand_expr (node->high, NULL_RTX,
4516 VOIDmode, 0),
4517 GT, NULL_RTX, mode, unsignedp, 0);
28d81abb
RK
4518
4519 emit_jump_insn ((*gen_bgt_pat) (label_rtx (node->right->code_label)));
4520 emit_case_nodes (index, node->left, default_label, index_type);
4521 }
4522
4523 else if (node_is_bounded (node->left, index_type))
4524 {
37366632 4525 emit_cmp_insn (index, expand_expr (node->high, NULL_RTX,
28d81abb 4526 VOIDmode, 0),
37366632 4527 LT, NULL_RTX, mode, unsignedp, 0);
28d81abb
RK
4528 emit_jump_insn ((*gen_blt_pat) (label_rtx (node->left->code_label)));
4529 emit_case_nodes (index, node->right, default_label, index_type);
4530 }
4531
4532 else
4533 {
4534 /* Neither node is bounded. First distinguish the two sides;
4535 then emit the code for one side at a time. */
4536
4537 tree test_label
4538 = build_decl (LABEL_DECL, NULL_TREE, NULL_TREE);
4539
4540 /* See if the value is on the right. */
37366632 4541 emit_cmp_insn (index, expand_expr (node->high, NULL_RTX,
28d81abb 4542 VOIDmode, 0),
37366632 4543 GT, NULL_RTX, mode, unsignedp, 0);
28d81abb
RK
4544 emit_jump_insn ((*gen_bgt_pat) (label_rtx (test_label)));
4545
4546 /* Value must be on the left.
4547 Handle the left-hand subtree. */
4548 emit_case_nodes (index, node->left, default_label, index_type);
4549 /* If left-hand subtree does nothing,
4550 go to default. */
4551 emit_jump_if_reachable (default_label);
4552
4553 /* Code branches here for the right-hand subtree. */
4554 expand_label (test_label);
4555 emit_case_nodes (index, node->right, default_label, index_type);
4556 }
4557 }
4558
4559 else if (node->right != 0 && node->left == 0)
4560 {
4561 /* Here we have a right child but no left so we issue conditional
4562 branch to default and process the right child.
4563
4564 Omit the conditional branch to default if we it avoid only one
4565 right child; it costs too much space to save so little time. */
4566
de14fd73 4567 if (node->right->right || node->right->left
28d81abb
RK
4568 || !tree_int_cst_equal (node->right->low, node->right->high))
4569 {
4570 if (!node_has_low_bound (node, index_type))
4571 {
37366632
RK
4572 emit_cmp_insn (index, expand_expr (node->high, NULL_RTX,
4573 VOIDmode, 0),
4574 LT, NULL_RTX, mode, unsignedp, 0);
28d81abb
RK
4575 emit_jump_insn ((*gen_blt_pat) (default_label));
4576 }
4577
4578 emit_case_nodes (index, node->right, default_label, index_type);
4579 }
4580 else
4581 /* We cannot process node->right normally
4582 since we haven't ruled out the numbers less than
4583 this node's value. So handle node->right explicitly. */
4584 do_jump_if_equal (index,
37366632
RK
4585 expand_expr (node->right->low, NULL_RTX,
4586 VOIDmode, 0),
28d81abb
RK
4587 label_rtx (node->right->code_label), unsignedp);
4588 }
4589
4590 else if (node->right == 0 && node->left != 0)
4591 {
4592 /* Just one subtree, on the left. */
4593
de14fd73
RK
4594#if 0 /* The following code and comment were formerly part
4595 of the condition here, but they didn't work
4596 and I don't understand what the idea was. -- rms. */
4597 /* If our "most probable entry" is less probable
28d81abb
RK
4598 than the default label, emit a jump to
4599 the default label using condition codes
4600 already lying around. With no right branch,
4601 a branch-greater-than will get us to the default
4602 label correctly. */
de14fd73
RK
4603 if (use_cost_table
4604 && cost_table[TREE_INT_CST_LOW (node->high)] < 12)
4605 ;
4606#endif /* 0 */
4607 if (node->left->left || node->left->right
28d81abb
RK
4608 || !tree_int_cst_equal (node->left->low, node->left->high))
4609 {
4610 if (!node_has_high_bound (node, index_type))
4611 {
37366632
RK
4612 emit_cmp_insn (index, expand_expr (node->high, NULL_RTX,
4613 VOIDmode, 0),
4614 GT, NULL_RTX, mode, unsignedp, 0);
28d81abb
RK
4615 emit_jump_insn ((*gen_bgt_pat) (default_label));
4616 }
4617
4618 emit_case_nodes (index, node->left, default_label, index_type);
4619 }
4620 else
4621 /* We cannot process node->left normally
4622 since we haven't ruled out the numbers less than
4623 this node's value. So handle node->left explicitly. */
4624 do_jump_if_equal (index,
37366632
RK
4625 expand_expr (node->left->low, NULL_RTX,
4626 VOIDmode, 0),
28d81abb
RK
4627 label_rtx (node->left->code_label), unsignedp);
4628 }
4629 }
4630 else
4631 {
4632 /* Node is a range. These cases are very similar to those for a single
4633 value, except that we do not start by testing whether this node
4634 is the one to branch to. */
4635
4636 if (node->right != 0 && node->left != 0)
4637 {
4638 /* Node has subtrees on both sides.
4639 If the right-hand subtree is bounded,
4640 test for it first, since we can go straight there.
4641 Otherwise, we need to make a branch in the control structure,
4642 then handle the two subtrees. */
4643 tree test_label = 0;
4644
37366632
RK
4645 emit_cmp_insn (index, expand_expr (node->high, NULL_RTX,
4646 VOIDmode, 0),
4647 GT, NULL_RTX, mode, unsignedp, 0);
28d81abb
RK
4648
4649 if (node_is_bounded (node->right, index_type))
4650 /* Right hand node is fully bounded so we can eliminate any
4651 testing and branch directly to the target code. */
4652 emit_jump_insn ((*gen_bgt_pat) (label_rtx (node->right->code_label)));
4653 else
4654 {
4655 /* Right hand node requires testing.
4656 Branch to a label where we will handle it later. */
4657
4658 test_label = build_decl (LABEL_DECL, NULL_TREE, NULL_TREE);
4659 emit_jump_insn ((*gen_bgt_pat) (label_rtx (test_label)));
4660 }
4661
4662 /* Value belongs to this node or to the left-hand subtree. */
4663
37366632
RK
4664 emit_cmp_insn (index, expand_expr (node->low, NULL_RTX, VOIDmode, 0),
4665 GE, NULL_RTX, mode, unsignedp, 0);
28d81abb
RK
4666 emit_jump_insn ((*gen_bge_pat) (label_rtx (node->code_label)));
4667
4668 /* Handle the left-hand subtree. */
4669 emit_case_nodes (index, node->left, default_label, index_type);
4670
4671 /* If right node had to be handled later, do that now. */
4672
4673 if (test_label)
4674 {
4675 /* If the left-hand subtree fell through,
4676 don't let it fall into the right-hand subtree. */
4677 emit_jump_if_reachable (default_label);
4678
4679 expand_label (test_label);
4680 emit_case_nodes (index, node->right, default_label, index_type);
4681 }
4682 }
4683
4684 else if (node->right != 0 && node->left == 0)
4685 {
4686 /* Deal with values to the left of this node,
4687 if they are possible. */
4688 if (!node_has_low_bound (node, index_type))
4689 {
37366632
RK
4690 emit_cmp_insn (index, expand_expr (node->low, NULL_RTX,
4691 VOIDmode, 0),
4692 LT, NULL_RTX, mode, unsignedp, 0);
28d81abb
RK
4693 emit_jump_insn ((*gen_blt_pat) (default_label));
4694 }
4695
4696 /* Value belongs to this node or to the right-hand subtree. */
4697
37366632
RK
4698 emit_cmp_insn (index, expand_expr (node->high, NULL_RTX,
4699 VOIDmode, 0),
4700 LE, NULL_RTX, mode, unsignedp, 0);
28d81abb
RK
4701 emit_jump_insn ((*gen_ble_pat) (label_rtx (node->code_label)));
4702
4703 emit_case_nodes (index, node->right, default_label, index_type);
4704 }
4705
4706 else if (node->right == 0 && node->left != 0)
4707 {
4708 /* Deal with values to the right of this node,
4709 if they are possible. */
4710 if (!node_has_high_bound (node, index_type))
4711 {
37366632
RK
4712 emit_cmp_insn (index, expand_expr (node->high, NULL_RTX,
4713 VOIDmode, 0),
4714 GT, NULL_RTX, mode, unsignedp, 0);
28d81abb
RK
4715 emit_jump_insn ((*gen_bgt_pat) (default_label));
4716 }
4717
4718 /* Value belongs to this node or to the left-hand subtree. */
4719
37366632
RK
4720 emit_cmp_insn (index, expand_expr (node->low, NULL_RTX, VOIDmode, 0),
4721 GE, NULL_RTX, mode, unsignedp, 0);
28d81abb
RK
4722 emit_jump_insn ((*gen_bge_pat) (label_rtx (node->code_label)));
4723
4724 emit_case_nodes (index, node->left, default_label, index_type);
4725 }
4726
4727 else
4728 {
4729 /* Node has no children so we check low and high bounds to remove
4730 redundant tests. Only one of the bounds can exist,
4731 since otherwise this node is bounded--a case tested already. */
4732
4733 if (!node_has_high_bound (node, index_type))
4734 {
37366632
RK
4735 emit_cmp_insn (index, expand_expr (node->high, NULL_RTX,
4736 VOIDmode, 0),
4737 GT, NULL_RTX, mode, unsignedp, 0);
28d81abb
RK
4738 emit_jump_insn ((*gen_bgt_pat) (default_label));
4739 }
4740
4741 if (!node_has_low_bound (node, index_type))
4742 {
37366632
RK
4743 emit_cmp_insn (index, expand_expr (node->low, NULL_RTX,
4744 VOIDmode, 0),
4745 LT, NULL_RTX, mode, unsignedp, 0);
28d81abb
RK
4746 emit_jump_insn ((*gen_blt_pat) (default_label));
4747 }
4748
4749 emit_jump (label_rtx (node->code_label));
4750 }
4751 }
4752}
4753\f
4754/* These routines are used by the loop unrolling code. They copy BLOCK trees
4755 so that the debugging info will be correct for the unrolled loop. */
4756
94dc8b56 4757/* Indexed by block number, contains a pointer to the N'th block node. */
28d81abb 4758
94dc8b56 4759static tree *block_vector;
28d81abb
RK
4760
4761void
94dc8b56 4762find_loop_tree_blocks ()
28d81abb 4763{
94dc8b56 4764 tree block = DECL_INITIAL (current_function_decl);
28d81abb 4765
94dc8b56
JW
4766 /* There first block is for the function body, and does not have
4767 corresponding block notes. Don't include it in the block vector. */
4768 block = BLOCK_SUBBLOCKS (block);
28d81abb 4769
94dc8b56 4770 block_vector = identify_blocks (block, get_insns ());
28d81abb
RK
4771}
4772
28d81abb 4773void
94dc8b56 4774unroll_block_trees ()
28d81abb 4775{
94dc8b56 4776 tree block = DECL_INITIAL (current_function_decl);
28d81abb 4777
94dc8b56 4778 reorder_blocks (block_vector, block, get_insns ());
28d81abb 4779}
94dc8b56 4780
This page took 0.678907 seconds and 5 git commands to generate.