]> gcc.gnu.org Git - gcc.git/blame - gcc/stmt.c
Initial revision
[gcc.git] / gcc / stmt.c
CommitLineData
28d81abb
RK
1/* Expands front end tree to back end RTL for GNU C-Compiler
2 Copyright (C) 1987, 1988, 1989, 1992 Free Software Foundation, Inc.
3
4This file is part of GNU CC.
5
6GNU CC is free software; you can redistribute it and/or modify
7it under the terms of the GNU General Public License as published by
8the Free Software Foundation; either version 2, or (at your option)
9any later version.
10
11GNU CC is distributed in the hope that it will be useful,
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14GNU General Public License for more details.
15
16You should have received a copy of the GNU General Public License
17along with GNU CC; see the file COPYING. If not, write to
18the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20
21/* This file handles the generation of rtl code from tree structure
22 above the level of expressions, using subroutines in exp*.c and emit-rtl.c.
23 It also creates the rtl expressions for parameters and auto variables
24 and has full responsibility for allocating stack slots.
25
26 The functions whose names start with `expand_' are called by the
27 parser to generate RTL instructions for various kinds of constructs.
28
29 Some control and binding constructs require calling several such
30 functions at different times. For example, a simple if-then
31 is expanded by calling `expand_start_cond' (with the condition-expression
32 as argument) before parsing the then-clause and calling `expand_end_cond'
33 after parsing the then-clause. */
34
35#include "config.h"
36
37#include <stdio.h>
38#include <ctype.h>
39
40#include "rtl.h"
41#include "tree.h"
42#include "flags.h"
43#include "function.h"
44#include "insn-flags.h"
45#include "insn-config.h"
46#include "insn-codes.h"
47#include "expr.h"
48#include "hard-reg-set.h"
49#include "obstack.h"
50#include "loop.h"
51#include "recog.h"
52
53#define obstack_chunk_alloc xmalloc
54#define obstack_chunk_free free
55struct obstack stmt_obstack;
56
57extern int xmalloc ();
58extern void free ();
59
60/* Filename and line number of last line-number note,
61 whether we actually emitted it or not. */
62char *emit_filename;
63int emit_lineno;
64
65/* Nonzero if within a ({...}) grouping, in which case we must
66 always compute a value for each expr-stmt in case it is the last one. */
67
68int expr_stmts_for_value;
69
70/* Each time we expand an expression-statement,
71 record the expr's type and its RTL value here. */
72
73static tree last_expr_type;
74static rtx last_expr_value;
75
76/* Number of binding contours started so far in this function. */
77
78int block_start_count;
79
80/* Nonzero if function being compiled needs to
81 return the address of where it has put a structure value. */
82
83extern int current_function_returns_pcc_struct;
84
85/* Label that will go on parm cleanup code, if any.
86 Jumping to this label runs cleanup code for parameters, if
87 such code must be run. Following this code is the logical return label. */
88
89extern rtx cleanup_label;
90
91/* Label that will go on function epilogue.
92 Jumping to this label serves as a "return" instruction
93 on machines which require execution of the epilogue on all returns. */
94
95extern rtx return_label;
96
97/* List (chain of EXPR_LISTs) of pseudo-regs of SAVE_EXPRs.
98 So we can mark them all live at the end of the function, if nonopt. */
99extern rtx save_expr_regs;
100
101/* Offset to end of allocated area of stack frame.
102 If stack grows down, this is the address of the last stack slot allocated.
103 If stack grows up, this is the address for the next slot. */
104extern int frame_offset;
105
106/* Label to jump back to for tail recursion, or 0 if we have
107 not yet needed one for this function. */
108extern rtx tail_recursion_label;
109
110/* Place after which to insert the tail_recursion_label if we need one. */
111extern rtx tail_recursion_reentry;
112
113/* Location at which to save the argument pointer if it will need to be
114 referenced. There are two cases where this is done: if nonlocal gotos
115 exist, or if vars whose is an offset from the argument pointer will be
116 needed by inner routines. */
117
118extern rtx arg_pointer_save_area;
119
120/* Chain of all RTL_EXPRs that have insns in them. */
121extern tree rtl_expr_chain;
122
123#if 0 /* Turned off because 0 seems to work just as well. */
124/* Cleanup lists are required for binding levels regardless of whether
125 that binding level has cleanups or not. This node serves as the
126 cleanup list whenever an empty list is required. */
127static tree empty_cleanup_list;
128#endif
129\f
130/* Functions and data structures for expanding case statements. */
131
132/* Case label structure, used to hold info on labels within case
133 statements. We handle "range" labels; for a single-value label
134 as in C, the high and low limits are the same.
135
136 A chain of case nodes is initially maintained via the RIGHT fields
137 in the nodes. Nodes with higher case values are later in the list.
138
139 Switch statements can be output in one of two forms. A branch table
140 is used if there are more than a few labels and the labels are dense
141 within the range between the smallest and largest case value. If a
142 branch table is used, no further manipulations are done with the case
143 node chain.
144
145 The alternative to the use of a branch table is to generate a series
146 of compare and jump insns. When that is done, we use the LEFT, RIGHT,
147 and PARENT fields to hold a binary tree. Initially the tree is
de14fd73
RK
148 totally unbalanced, with everything on the right. We balance the tree
149 with nodes on the left having lower case values than the parent
28d81abb
RK
150 and nodes on the right having higher values. We then output the tree
151 in order. */
152
153struct case_node
154{
155 struct case_node *left; /* Left son in binary tree */
156 struct case_node *right; /* Right son in binary tree; also node chain */
157 struct case_node *parent; /* Parent of node in binary tree */
158 tree low; /* Lowest index value for this label */
159 tree high; /* Highest index value for this label */
160 tree code_label; /* Label to jump to when node matches */
161};
162
163typedef struct case_node case_node;
164typedef struct case_node *case_node_ptr;
165
166/* These are used by estimate_case_costs and balance_case_nodes. */
167
168/* This must be a signed type, and non-ANSI compilers lack signed char. */
169static short *cost_table;
170static int use_cost_table;
171
172static int estimate_case_costs ();
173static void balance_case_nodes ();
174static void emit_case_nodes ();
175static void group_case_nodes ();
176static void emit_jump_if_reachable ();
177
178static int warn_if_unused_value ();
179static void expand_goto_internal ();
180static int expand_fixup ();
181void fixup_gotos ();
182void free_temp_slots ();
183static void expand_cleanups ();
184static void fixup_cleanups ();
185static void expand_null_return_1 ();
186static int tail_recursion_args ();
187static void do_jump_if_equal ();
188\f
189/* Stack of control and binding constructs we are currently inside.
190
191 These constructs begin when you call `expand_start_WHATEVER'
192 and end when you call `expand_end_WHATEVER'. This stack records
193 info about how the construct began that tells the end-function
194 what to do. It also may provide information about the construct
195 to alter the behavior of other constructs within the body.
196 For example, they may affect the behavior of C `break' and `continue'.
197
198 Each construct gets one `struct nesting' object.
199 All of these objects are chained through the `all' field.
200 `nesting_stack' points to the first object (innermost construct).
201 The position of an entry on `nesting_stack' is in its `depth' field.
202
203 Each type of construct has its own individual stack.
204 For example, loops have `loop_stack'. Each object points to the
205 next object of the same type through the `next' field.
206
207 Some constructs are visible to `break' exit-statements and others
208 are not. Which constructs are visible depends on the language.
209 Therefore, the data structure allows each construct to be visible
210 or not, according to the args given when the construct is started.
211 The construct is visible if the `exit_label' field is non-null.
212 In that case, the value should be a CODE_LABEL rtx. */
213
214struct nesting
215{
216 struct nesting *all;
217 struct nesting *next;
218 int depth;
219 rtx exit_label;
220 union
221 {
222 /* For conds (if-then and if-then-else statements). */
223 struct
224 {
225 /* Label for the end of the if construct.
226 There is none if EXITFLAG was not set
227 and no `else' has been seen yet. */
228 rtx endif_label;
229 /* Label for the end of this alternative.
230 This may be the end of the if or the next else/elseif. */
231 rtx next_label;
232 } cond;
233 /* For loops. */
234 struct
235 {
236 /* Label at the top of the loop; place to loop back to. */
237 rtx start_label;
238 /* Label at the end of the whole construct. */
239 rtx end_label;
240 /* Label for `continue' statement to jump to;
241 this is in front of the stepper of the loop. */
242 rtx continue_label;
243 } loop;
244 /* For variable binding contours. */
245 struct
246 {
247 /* Sequence number of this binding contour within the function,
248 in order of entry. */
249 int block_start_count;
250 /* Nonzero => value to restore stack to on exit. */
251 rtx stack_level;
252 /* The NOTE that starts this contour.
253 Used by expand_goto to check whether the destination
254 is within each contour or not. */
255 rtx first_insn;
256 /* Innermost containing binding contour that has a stack level. */
257 struct nesting *innermost_stack_block;
258 /* List of cleanups to be run on exit from this contour.
259 This is a list of expressions to be evaluated.
260 The TREE_PURPOSE of each link is the ..._DECL node
261 which the cleanup pertains to. */
262 tree cleanups;
263 /* List of cleanup-lists of blocks containing this block,
264 as they were at the locus where this block appears.
265 There is an element for each containing block,
266 ordered innermost containing block first.
267 The tail of this list can be 0 (was empty_cleanup_list),
268 if all remaining elements would be empty lists.
269 The element's TREE_VALUE is the cleanup-list of that block,
270 which may be null. */
271 tree outer_cleanups;
272 /* Chain of labels defined inside this binding contour.
273 For contours that have stack levels or cleanups. */
274 struct label_chain *label_chain;
275 /* Number of function calls seen, as of start of this block. */
276 int function_call_count;
277 } block;
278 /* For switch (C) or case (Pascal) statements,
279 and also for dummies (see `expand_start_case_dummy'). */
280 struct
281 {
282 /* The insn after which the case dispatch should finally
283 be emitted. Zero for a dummy. */
284 rtx start;
285 /* A list of case labels, kept in ascending order by value
286 as the list is built.
287 During expand_end_case, this list may be rearranged into a
288 nearly balanced binary tree. */
289 struct case_node *case_list;
290 /* Label to jump to if no case matches. */
291 tree default_label;
292 /* The expression to be dispatched on. */
293 tree index_expr;
294 /* Type that INDEX_EXPR should be converted to. */
295 tree nominal_type;
296 /* Number of range exprs in case statement. */
297 int num_ranges;
298 /* Name of this kind of statement, for warnings. */
299 char *printname;
300 /* Nonzero if a case label has been seen in this case stmt. */
301 char seenlabel;
302 } case_stmt;
303 /* For exception contours. */
304 struct
305 {
306 /* List of exceptions raised. This is a TREE_LIST
307 of whatever you want. */
308 tree raised;
309 /* List of exceptions caught. This is also a TREE_LIST
310 of whatever you want. As a special case, it has the
311 value `void_type_node' if it handles default exceptions. */
312 tree handled;
313
314 /* First insn of TRY block, in case resumptive model is needed. */
315 rtx first_insn;
316 /* Label for the catch clauses. */
317 rtx except_label;
318 /* Label for unhandled exceptions. */
319 rtx unhandled_label;
320 /* Label at the end of whole construct. */
321 rtx after_label;
322 /* Label which "escapes" the exception construct.
323 Like EXIT_LABEL for BREAK construct, but for exceptions. */
324 rtx escape_label;
325 } except_stmt;
326 } data;
327};
328
329/* Chain of all pending binding contours. */
330struct nesting *block_stack;
331
332/* Chain of all pending binding contours that restore stack levels
333 or have cleanups. */
334struct nesting *stack_block_stack;
335
336/* Chain of all pending conditional statements. */
337struct nesting *cond_stack;
338
339/* Chain of all pending loops. */
340struct nesting *loop_stack;
341
342/* Chain of all pending case or switch statements. */
343struct nesting *case_stack;
344
345/* Chain of all pending exception contours. */
346struct nesting *except_stack;
347
348/* Separate chain including all of the above,
349 chained through the `all' field. */
350struct nesting *nesting_stack;
351
352/* Number of entries on nesting_stack now. */
353int nesting_depth;
354
355/* Allocate and return a new `struct nesting'. */
356
357#define ALLOC_NESTING() \
358 (struct nesting *) obstack_alloc (&stmt_obstack, sizeof (struct nesting))
359
360/* Pop one of the sub-stacks, such as `loop_stack' or `cond_stack';
361 and pop off `nesting_stack' down to the same level. */
362
363#define POPSTACK(STACK) \
364do { int initial_depth = nesting_stack->depth; \
365 do { struct nesting *this = STACK; \
366 STACK = this->next; \
367 nesting_stack = this->all; \
368 nesting_depth = this->depth; \
369 obstack_free (&stmt_obstack, this); } \
370 while (nesting_depth > initial_depth); } while (0)
371\f
372/* In some cases it is impossible to generate code for a forward goto
373 until the label definition is seen. This happens when it may be necessary
374 for the goto to reset the stack pointer: we don't yet know how to do that.
375 So expand_goto puts an entry on this fixup list.
376 Each time a binding contour that resets the stack is exited,
377 we check each fixup.
378 If the target label has now been defined, we can insert the proper code. */
379
380struct goto_fixup
381{
382 /* Points to following fixup. */
383 struct goto_fixup *next;
384 /* Points to the insn before the jump insn.
385 If more code must be inserted, it goes after this insn. */
386 rtx before_jump;
387 /* The LABEL_DECL that this jump is jumping to, or 0
388 for break, continue or return. */
389 tree target;
390 /* The CODE_LABEL rtx that this is jumping to. */
391 rtx target_rtl;
392 /* Number of binding contours started in current function
393 before the label reference. */
394 int block_start_count;
395 /* The outermost stack level that should be restored for this jump.
396 Each time a binding contour that resets the stack is exited,
397 if the target label is *not* yet defined, this slot is updated. */
398 rtx stack_level;
399 /* List of lists of cleanup expressions to be run by this goto.
400 There is one element for each block that this goto is within.
401 The tail of this list can be 0 (was empty_cleanup_list),
402 if all remaining elements would be empty.
403 The TREE_VALUE contains the cleanup list of that block as of the
404 time this goto was seen.
405 The TREE_ADDRESSABLE flag is 1 for a block that has been exited. */
406 tree cleanup_list_list;
407};
408
409static struct goto_fixup *goto_fixup_chain;
410
411/* Within any binding contour that must restore a stack level,
412 all labels are recorded with a chain of these structures. */
413
414struct label_chain
415{
416 /* Points to following fixup. */
417 struct label_chain *next;
418 tree label;
419};
420\f
421void
422init_stmt ()
423{
424 gcc_obstack_init (&stmt_obstack);
425#if 0
426 empty_cleanup_list = build_tree_list (NULL_TREE, NULL_TREE);
427#endif
428}
429
430void
431init_stmt_for_function ()
432{
433 /* We are not currently within any block, conditional, loop or case. */
434 block_stack = 0;
435 loop_stack = 0;
436 case_stack = 0;
437 cond_stack = 0;
438 nesting_stack = 0;
439 nesting_depth = 0;
440
441 block_start_count = 0;
442
443 /* No gotos have been expanded yet. */
444 goto_fixup_chain = 0;
445
446 /* We are not processing a ({...}) grouping. */
447 expr_stmts_for_value = 0;
448 last_expr_type = 0;
449}
450
451void
452save_stmt_status (p)
453 struct function *p;
454{
455 p->block_stack = block_stack;
456 p->stack_block_stack = stack_block_stack;
457 p->cond_stack = cond_stack;
458 p->loop_stack = loop_stack;
459 p->case_stack = case_stack;
460 p->nesting_stack = nesting_stack;
461 p->nesting_depth = nesting_depth;
462 p->block_start_count = block_start_count;
463 p->last_expr_type = last_expr_type;
464 p->last_expr_value = last_expr_value;
465 p->expr_stmts_for_value = expr_stmts_for_value;
466 p->emit_filename = emit_filename;
467 p->emit_lineno = emit_lineno;
468 p->goto_fixup_chain = goto_fixup_chain;
469}
470
471void
472restore_stmt_status (p)
473 struct function *p;
474{
475 block_stack = p->block_stack;
476 stack_block_stack = p->stack_block_stack;
477 cond_stack = p->cond_stack;
478 loop_stack = p->loop_stack;
479 case_stack = p->case_stack;
480 nesting_stack = p->nesting_stack;
481 nesting_depth = p->nesting_depth;
482 block_start_count = p->block_start_count;
483 last_expr_type = p->last_expr_type;
484 last_expr_value = p->last_expr_value;
485 expr_stmts_for_value = p->expr_stmts_for_value;
486 emit_filename = p->emit_filename;
487 emit_lineno = p->emit_lineno;
488 goto_fixup_chain = p->goto_fixup_chain;
489}
490\f
491/* Emit a no-op instruction. */
492
493void
494emit_nop ()
495{
496 rtx last_insn = get_last_insn ();
497 if (!optimize
498 && (GET_CODE (last_insn) == CODE_LABEL
499 || prev_real_insn (last_insn) == 0))
500 emit_insn (gen_nop ());
501}
502\f
503/* Return the rtx-label that corresponds to a LABEL_DECL,
504 creating it if necessary. */
505
506rtx
507label_rtx (label)
508 tree label;
509{
510 if (TREE_CODE (label) != LABEL_DECL)
511 abort ();
512
513 if (DECL_RTL (label))
514 return DECL_RTL (label);
515
516 return DECL_RTL (label) = gen_label_rtx ();
517}
518
519/* Add an unconditional jump to LABEL as the next sequential instruction. */
520
521void
522emit_jump (label)
523 rtx label;
524{
525 do_pending_stack_adjust ();
526 emit_jump_insn (gen_jump (label));
527 emit_barrier ();
528}
529
530/* Emit code to jump to the address
531 specified by the pointer expression EXP. */
532
533void
534expand_computed_goto (exp)
535 tree exp;
536{
537 rtx x = expand_expr (exp, 0, VOIDmode, 0);
de14fd73 538 emit_queue ();
28d81abb
RK
539 emit_indirect_jump (x);
540 emit_barrier ();
541}
542\f
543/* Handle goto statements and the labels that they can go to. */
544
545/* Specify the location in the RTL code of a label LABEL,
546 which is a LABEL_DECL tree node.
547
548 This is used for the kind of label that the user can jump to with a
549 goto statement, and for alternatives of a switch or case statement.
550 RTL labels generated for loops and conditionals don't go through here;
551 they are generated directly at the RTL level, by other functions below.
552
553 Note that this has nothing to do with defining label *names*.
554 Languages vary in how they do that and what that even means. */
555
556void
557expand_label (label)
558 tree label;
559{
560 struct label_chain *p;
561
562 do_pending_stack_adjust ();
563 emit_label (label_rtx (label));
564 if (DECL_NAME (label))
565 LABEL_NAME (DECL_RTL (label)) = IDENTIFIER_POINTER (DECL_NAME (label));
566
567 if (stack_block_stack != 0)
568 {
569 p = (struct label_chain *) oballoc (sizeof (struct label_chain));
570 p->next = stack_block_stack->data.block.label_chain;
571 stack_block_stack->data.block.label_chain = p;
572 p->label = label;
573 }
574}
575
576/* Declare that LABEL (a LABEL_DECL) may be used for nonlocal gotos
577 from nested functions. */
578
579void
580declare_nonlocal_label (label)
581 tree label;
582{
583 nonlocal_labels = tree_cons (NULL_TREE, label, nonlocal_labels);
584 LABEL_PRESERVE_P (label_rtx (label)) = 1;
585 if (nonlocal_goto_handler_slot == 0)
586 {
587 nonlocal_goto_handler_slot
588 = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
589 nonlocal_goto_stack_level
590 = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
591 emit_insn_before (gen_move_insn (nonlocal_goto_stack_level,
592 stack_pointer_rtx),
593 tail_recursion_reentry);
594 }
595}
596
597/* Generate RTL code for a `goto' statement with target label LABEL.
598 LABEL should be a LABEL_DECL tree node that was or will later be
599 defined with `expand_label'. */
600
601void
602expand_goto (label)
603 tree label;
604{
605 /* Check for a nonlocal goto to a containing function. */
606 tree context = decl_function_context (label);
607 if (context != 0 && context != current_function_decl)
608 {
609 struct function *p = find_function_data (context);
610 rtx temp;
611 p->has_nonlocal_label = 1;
612#if HAVE_nonlocal_goto
613 if (HAVE_nonlocal_goto)
614 emit_insn (gen_nonlocal_goto (lookup_static_chain (label),
615 p->nonlocal_goto_handler_slot,
616 p->nonlocal_goto_stack_level,
617 gen_rtx (LABEL_REF, Pmode,
618 label_rtx (label))));
619 else
620#endif
621 {
622 /* Restore frame pointer for containing function.
623 This sets the actual hard register used for the frame pointer
624 to the location of the function's incoming static chain info.
625 The non-local goto handler will then adjust it to contain the
626 proper value and reload the argument pointer, if needed. */
627 emit_move_insn (frame_pointer_rtx, lookup_static_chain (label));
628 /* Get addr of containing function's current nonlocal goto handler,
629 which will do any cleanups and then jump to the label. */
630 temp = copy_to_reg (p->nonlocal_goto_handler_slot);
631 /* Restore the stack pointer. Note this uses fp just restored. */
632 emit_move_insn (stack_pointer_rtx, p->nonlocal_goto_stack_level);
633 /* Put in the static chain register the nonlocal label address. */
634 emit_move_insn (static_chain_rtx,
635 gen_rtx (LABEL_REF, Pmode, label_rtx (label)));
636 /* USE of frame_pointer_rtx added for consistency; not clear if
637 really needed. */
638 emit_insn (gen_rtx (USE, VOIDmode, frame_pointer_rtx));
639 emit_insn (gen_rtx (USE, VOIDmode, stack_pointer_rtx));
640 emit_insn (gen_rtx (USE, VOIDmode, static_chain_rtx));
641 emit_indirect_jump (temp);
642 }
643 }
644 else
645 expand_goto_internal (label, label_rtx (label), 0);
646}
647
648/* Generate RTL code for a `goto' statement with target label BODY.
649 LABEL should be a LABEL_REF.
650 LAST_INSN, if non-0, is the rtx we should consider as the last
651 insn emitted (for the purposes of cleaning up a return). */
652
653static void
654expand_goto_internal (body, label, last_insn)
655 tree body;
656 rtx label;
657 rtx last_insn;
658{
659 struct nesting *block;
660 rtx stack_level = 0;
661
662 if (GET_CODE (label) != CODE_LABEL)
663 abort ();
664
665 /* If label has already been defined, we can tell now
666 whether and how we must alter the stack level. */
667
668 if (PREV_INSN (label) != 0)
669 {
670 /* Find the innermost pending block that contains the label.
671 (Check containment by comparing insn-uids.)
672 Then restore the outermost stack level within that block,
673 and do cleanups of all blocks contained in it. */
674 for (block = block_stack; block; block = block->next)
675 {
676 if (INSN_UID (block->data.block.first_insn) < INSN_UID (label))
677 break;
678 if (block->data.block.stack_level != 0)
679 stack_level = block->data.block.stack_level;
680 /* Execute the cleanups for blocks we are exiting. */
681 if (block->data.block.cleanups != 0)
682 {
683 expand_cleanups (block->data.block.cleanups, 0);
684 do_pending_stack_adjust ();
685 }
686 }
687
688 if (stack_level)
689 {
690 /* Ensure stack adjust isn't done by emit_jump, as this would clobber
691 the stack pointer. This one should be deleted as dead by flow. */
692 clear_pending_stack_adjust ();
693 do_pending_stack_adjust ();
694 emit_move_insn (stack_pointer_rtx, stack_level);
695 }
696
697 if (body != 0 && DECL_TOO_LATE (body))
698 error ("jump to `%s' invalidly jumps into binding contour",
699 IDENTIFIER_POINTER (DECL_NAME (body)));
700 }
701 /* Label not yet defined: may need to put this goto
702 on the fixup list. */
703 else if (! expand_fixup (body, label, last_insn))
704 {
705 /* No fixup needed. Record that the label is the target
706 of at least one goto that has no fixup. */
707 if (body != 0)
708 TREE_ADDRESSABLE (body) = 1;
709 }
710
711 emit_jump (label);
712}
713\f
714/* Generate if necessary a fixup for a goto
715 whose target label in tree structure (if any) is TREE_LABEL
716 and whose target in rtl is RTL_LABEL.
717
718 If LAST_INSN is nonzero, we pretend that the jump appears
719 after insn LAST_INSN instead of at the current point in the insn stream.
720
721 The fixup will be used later to insert insns at this point
722 to restore the stack level as appropriate for the target label.
723
724 Value is nonzero if a fixup is made. */
725
726static int
727expand_fixup (tree_label, rtl_label, last_insn)
728 tree tree_label;
729 rtx rtl_label;
730 rtx last_insn;
731{
732 struct nesting *block, *end_block;
733
734 /* See if we can recognize which block the label will be output in.
735 This is possible in some very common cases.
736 If we succeed, set END_BLOCK to that block.
737 Otherwise, set it to 0. */
738
739 if (cond_stack
740 && (rtl_label == cond_stack->data.cond.endif_label
741 || rtl_label == cond_stack->data.cond.next_label))
742 end_block = cond_stack;
743 /* If we are in a loop, recognize certain labels which
744 are likely targets. This reduces the number of fixups
745 we need to create. */
746 else if (loop_stack
747 && (rtl_label == loop_stack->data.loop.start_label
748 || rtl_label == loop_stack->data.loop.end_label
749 || rtl_label == loop_stack->data.loop.continue_label))
750 end_block = loop_stack;
751 else
752 end_block = 0;
753
754 /* Now set END_BLOCK to the binding level to which we will return. */
755
756 if (end_block)
757 {
758 struct nesting *next_block = end_block->all;
759 block = block_stack;
760
761 /* First see if the END_BLOCK is inside the innermost binding level.
762 If so, then no cleanups or stack levels are relevant. */
763 while (next_block && next_block != block)
764 next_block = next_block->all;
765
766 if (next_block)
767 return 0;
768
769 /* Otherwise, set END_BLOCK to the innermost binding level
770 which is outside the relevant control-structure nesting. */
771 next_block = block_stack->next;
772 for (block = block_stack; block != end_block; block = block->all)
773 if (block == next_block)
774 next_block = next_block->next;
775 end_block = next_block;
776 }
777
778 /* Does any containing block have a stack level or cleanups?
779 If not, no fixup is needed, and that is the normal case
780 (the only case, for standard C). */
781 for (block = block_stack; block != end_block; block = block->next)
782 if (block->data.block.stack_level != 0
783 || block->data.block.cleanups != 0)
784 break;
785
786 if (block != end_block)
787 {
788 /* Ok, a fixup is needed. Add a fixup to the list of such. */
789 struct goto_fixup *fixup
790 = (struct goto_fixup *) oballoc (sizeof (struct goto_fixup));
791 /* In case an old stack level is restored, make sure that comes
792 after any pending stack adjust. */
793 /* ?? If the fixup isn't to come at the present position,
794 doing the stack adjust here isn't useful. Doing it with our
795 settings at that location isn't useful either. Let's hope
796 someone does it! */
797 if (last_insn == 0)
798 do_pending_stack_adjust ();
799 fixup->before_jump = last_insn ? last_insn : get_last_insn ();
800 fixup->target = tree_label;
801 fixup->target_rtl = rtl_label;
802 fixup->block_start_count = block_start_count;
803 fixup->stack_level = 0;
804 fixup->cleanup_list_list
805 = (((block->data.block.outer_cleanups
806#if 0
807 && block->data.block.outer_cleanups != empty_cleanup_list
808#endif
809 )
810 || block->data.block.cleanups)
811 ? tree_cons (0, block->data.block.cleanups,
812 block->data.block.outer_cleanups)
813 : 0);
814 fixup->next = goto_fixup_chain;
815 goto_fixup_chain = fixup;
816 }
817
818 return block != 0;
819}
820
821/* When exiting a binding contour, process all pending gotos requiring fixups.
822 THISBLOCK is the structure that describes the block being exited.
823 STACK_LEVEL is the rtx for the stack level to restore exiting this contour.
824 CLEANUP_LIST is a list of expressions to evaluate on exiting this contour.
825 FIRST_INSN is the insn that began this contour.
826
827 Gotos that jump out of this contour must restore the
828 stack level and do the cleanups before actually jumping.
829
830 DONT_JUMP_IN nonzero means report error there is a jump into this
831 contour from before the beginning of the contour.
832 This is also done if STACK_LEVEL is nonzero. */
833
834void
835fixup_gotos (thisblock, stack_level, cleanup_list, first_insn, dont_jump_in)
836 struct nesting *thisblock;
837 rtx stack_level;
838 tree cleanup_list;
839 rtx first_insn;
840 int dont_jump_in;
841{
842 register struct goto_fixup *f, *prev;
843
844 /* F is the fixup we are considering; PREV is the previous one. */
845 /* We run this loop in two passes so that cleanups of exited blocks
846 are run first, and blocks that are exited are marked so
847 afterwards. */
848
849 for (prev = 0, f = goto_fixup_chain; f; prev = f, f = f->next)
850 {
851 /* Test for a fixup that is inactive because it is already handled. */
852 if (f->before_jump == 0)
853 {
854 /* Delete inactive fixup from the chain, if that is easy to do. */
855 if (prev != 0)
856 prev->next = f->next;
857 }
858 /* Has this fixup's target label been defined?
859 If so, we can finalize it. */
860 else if (PREV_INSN (f->target_rtl) != 0)
861 {
862 /* Get the first non-label after the label
863 this goto jumps to. If that's before this scope begins,
864 we don't have a jump into the scope. */
865 rtx after_label = f->target_rtl;
866 while (after_label != 0 && GET_CODE (after_label) == CODE_LABEL)
867 after_label = NEXT_INSN (after_label);
868
869 /* If this fixup jumped into this contour from before the beginning
870 of this contour, report an error. */
871 /* ??? Bug: this does not detect jumping in through intermediate
872 blocks that have stack levels or cleanups.
873 It detects only a problem with the innermost block
874 around the label. */
875 if (f->target != 0
876 && (dont_jump_in || stack_level || cleanup_list)
877 /* If AFTER_LABEL is 0, it means the jump goes to the end
878 of the rtl, which means it jumps into this scope. */
879 && (after_label == 0
880 || INSN_UID (first_insn) < INSN_UID (after_label))
881 && INSN_UID (first_insn) > INSN_UID (f->before_jump)
882 && ! TREE_REGDECL (f->target))
883 {
884 error_with_decl (f->target,
885 "label `%s' used before containing binding contour");
886 /* Prevent multiple errors for one label. */
887 TREE_REGDECL (f->target) = 1;
888 }
889
890 /* Execute cleanups for blocks this jump exits. */
891 if (f->cleanup_list_list)
892 {
893 tree lists;
894 for (lists = f->cleanup_list_list; lists; lists = TREE_CHAIN (lists))
895 /* Marked elements correspond to blocks that have been closed.
896 Do their cleanups. */
897 if (TREE_ADDRESSABLE (lists)
898 && TREE_VALUE (lists) != 0)
899 fixup_cleanups (TREE_VALUE (lists), &f->before_jump);
900 }
901
902 /* Restore stack level for the biggest contour that this
903 jump jumps out of. */
904 if (f->stack_level)
905 emit_insn_after (gen_move_insn (stack_pointer_rtx, f->stack_level),
906 f->before_jump);
907 f->before_jump = 0;
908 }
909 }
910
911 /* Mark the cleanups of exited blocks so that they are executed
912 by the code above. */
913 for (prev = 0, f = goto_fixup_chain; f; prev = f, f = f->next)
914 if (f->before_jump != 0
915 && PREV_INSN (f->target_rtl) == 0
916 /* Label has still not appeared. If we are exiting a block with
917 a stack level to restore, that started before the fixup,
918 mark this stack level as needing restoration
919 when the fixup is later finalized.
920 Also mark the cleanup_list_list element for F
921 that corresponds to this block, so that ultimately
922 this block's cleanups will be executed by the code above. */
923 && thisblock != 0
924 /* Note: if THISBLOCK == 0 and we have a label that hasn't appeared,
925 it means the label is undefined. That's erroneous, but possible. */
926 && (thisblock->data.block.block_start_count
927 <= f->block_start_count))
928 {
929 tree lists = f->cleanup_list_list;
930 for (; lists; lists = TREE_CHAIN (lists))
931 /* If the following elt. corresponds to our containing block
932 then the elt. must be for this block. */
933 if (TREE_CHAIN (lists) == thisblock->data.block.outer_cleanups)
934 TREE_ADDRESSABLE (lists) = 1;
935
936 if (stack_level)
937 f->stack_level = stack_level;
938 }
939}
940\f
941/* Generate RTL for an asm statement (explicit assembler code).
942 BODY is a STRING_CST node containing the assembler code text,
943 or an ADDR_EXPR containing a STRING_CST. */
944
945void
946expand_asm (body)
947 tree body;
948{
949 if (TREE_CODE (body) == ADDR_EXPR)
950 body = TREE_OPERAND (body, 0);
951
952 emit_insn (gen_rtx (ASM_INPUT, VOIDmode,
953 TREE_STRING_POINTER (body)));
954 last_expr_type = 0;
955}
956
957/* Generate RTL for an asm statement with arguments.
958 STRING is the instruction template.
959 OUTPUTS is a list of output arguments (lvalues); INPUTS a list of inputs.
960 Each output or input has an expression in the TREE_VALUE and
961 a constraint-string in the TREE_PURPOSE.
962 CLOBBERS is a list of STRING_CST nodes each naming a hard register
963 that is clobbered by this insn.
964
965 Not all kinds of lvalue that may appear in OUTPUTS can be stored directly.
966 Some elements of OUTPUTS may be replaced with trees representing temporary
967 values. The caller should copy those temporary values to the originally
968 specified lvalues.
969
970 VOL nonzero means the insn is volatile; don't optimize it. */
971
972void
973expand_asm_operands (string, outputs, inputs, clobbers, vol, filename, line)
974 tree string, outputs, inputs, clobbers;
975 int vol;
976 char *filename;
977 int line;
978{
979 rtvec argvec, constraints;
980 rtx body;
981 int ninputs = list_length (inputs);
982 int noutputs = list_length (outputs);
983 int nclobbers = list_length (clobbers);
984 tree tail;
985 register int i;
986 /* Vector of RTX's of evaluated output operands. */
987 rtx *output_rtx = (rtx *) alloca (noutputs * sizeof (rtx));
988 /* The insn we have emitted. */
989 rtx insn;
990
991 last_expr_type = 0;
992
993 for (i = 0, tail = outputs; tail; tail = TREE_CHAIN (tail), i++)
994 {
995 tree val = TREE_VALUE (tail);
996 tree val1;
997 int j;
998 int found_equal;
999
1000 /* If there's an erroneous arg, emit no insn. */
1001 if (TREE_TYPE (val) == error_mark_node)
1002 return;
1003
1004 /* Make sure constraint has `=' and does not have `+'. */
1005
1006 found_equal = 0;
1007 for (j = 0; j < TREE_STRING_LENGTH (TREE_PURPOSE (tail)); j++)
1008 {
1009 if (TREE_STRING_POINTER (TREE_PURPOSE (tail))[j] == '+')
1010 {
1011 error ("output operand constraint contains `+'");
1012 return;
1013 }
1014 if (TREE_STRING_POINTER (TREE_PURPOSE (tail))[j] == '=')
1015 found_equal = 1;
1016 }
1017 if (! found_equal)
1018 {
1019 error ("output operand constraint lacks `='");
1020 return;
1021 }
1022
1023 /* If an output operand is not a variable or indirect ref,
1024 or a part of one,
1025 create a SAVE_EXPR which is a pseudo-reg
1026 to act as an intermediate temporary.
1027 Make the asm insn write into that, then copy it to
1028 the real output operand. */
1029
1030 while (TREE_CODE (val) == COMPONENT_REF
1031 || TREE_CODE (val) == ARRAY_REF)
1032 val = TREE_OPERAND (val, 0);
1033
1034 if (TREE_CODE (val) != VAR_DECL
1035 && TREE_CODE (val) != PARM_DECL
1036 && TREE_CODE (val) != INDIRECT_REF)
1037 TREE_VALUE (tail) = save_expr (TREE_VALUE (tail));
1038
1039 output_rtx[i] = expand_expr (TREE_VALUE (tail), 0, VOIDmode, 0);
1040 }
1041
1042 if (ninputs + noutputs > MAX_RECOG_OPERANDS)
1043 {
1044 error ("more than %d operands in `asm'", MAX_RECOG_OPERANDS);
1045 return;
1046 }
1047
1048 /* Make vectors for the expression-rtx and constraint strings. */
1049
1050 argvec = rtvec_alloc (ninputs);
1051 constraints = rtvec_alloc (ninputs);
1052
1053 body = gen_rtx (ASM_OPERANDS, VOIDmode,
1054 TREE_STRING_POINTER (string), "", 0, argvec, constraints,
1055 filename, line);
1056 MEM_VOLATILE_P (body) = vol;
1057
1058 /* Eval the inputs and put them into ARGVEC.
1059 Put their constraints into ASM_INPUTs and store in CONSTRAINTS. */
1060
1061 i = 0;
1062 for (tail = inputs; tail; tail = TREE_CHAIN (tail))
1063 {
1064 int j;
1065
1066 /* If there's an erroneous arg, emit no insn,
1067 because the ASM_INPUT would get VOIDmode
1068 and that could cause a crash in reload. */
1069 if (TREE_TYPE (TREE_VALUE (tail)) == error_mark_node)
1070 return;
1071 if (TREE_PURPOSE (tail) == NULL_TREE)
1072 {
1073 error ("hard register `%s' listed as input operand to `asm'",
1074 TREE_STRING_POINTER (TREE_VALUE (tail)) );
1075 return;
1076 }
1077
1078 /* Make sure constraint has neither `=' nor `+'. */
1079
1080 for (j = 0; j < TREE_STRING_LENGTH (TREE_PURPOSE (tail)); j++)
1081 if (TREE_STRING_POINTER (TREE_PURPOSE (tail))[j] == '='
1082 || TREE_STRING_POINTER (TREE_PURPOSE (tail))[j] == '+')
1083 {
1084 error ("input operand constraint contains `%c'",
1085 TREE_STRING_POINTER (TREE_PURPOSE (tail))[j]);
1086 return;
1087 }
1088
1089 XVECEXP (body, 3, i) /* argvec */
1090 = expand_expr (TREE_VALUE (tail), 0, VOIDmode, 0);
1091 XVECEXP (body, 4, i) /* constraints */
1092 = gen_rtx (ASM_INPUT, TYPE_MODE (TREE_TYPE (TREE_VALUE (tail))),
1093 TREE_STRING_POINTER (TREE_PURPOSE (tail)));
1094 i++;
1095 }
1096
1097 /* Protect all the operands from the queue,
1098 now that they have all been evaluated. */
1099
1100 for (i = 0; i < ninputs; i++)
1101 XVECEXP (body, 3, i) = protect_from_queue (XVECEXP (body, 3, i), 0);
1102
1103 for (i = 0; i < noutputs; i++)
1104 output_rtx[i] = protect_from_queue (output_rtx[i], 1);
1105
1106 /* Now, for each output, construct an rtx
1107 (set OUTPUT (asm_operands INSN OUTPUTNUMBER OUTPUTCONSTRAINT
1108 ARGVEC CONSTRAINTS))
1109 If there is more than one, put them inside a PARALLEL. */
1110
1111 if (noutputs == 1 && nclobbers == 0)
1112 {
1113 XSTR (body, 1) = TREE_STRING_POINTER (TREE_PURPOSE (outputs));
1114 insn = emit_insn (gen_rtx (SET, VOIDmode, output_rtx[0], body));
1115 }
1116 else if (noutputs == 0 && nclobbers == 0)
1117 {
1118 /* No output operands: put in a raw ASM_OPERANDS rtx. */
1119 insn = emit_insn (body);
1120 }
1121 else
1122 {
1123 rtx obody = body;
1124 int num = noutputs;
1125 if (num == 0) num = 1;
1126 body = gen_rtx (PARALLEL, VOIDmode, rtvec_alloc (num + nclobbers));
1127
1128 /* For each output operand, store a SET. */
1129
1130 for (i = 0, tail = outputs; tail; tail = TREE_CHAIN (tail), i++)
1131 {
1132 XVECEXP (body, 0, i)
1133 = gen_rtx (SET, VOIDmode,
1134 output_rtx[i],
1135 gen_rtx (ASM_OPERANDS, VOIDmode,
1136 TREE_STRING_POINTER (string),
1137 TREE_STRING_POINTER (TREE_PURPOSE (tail)),
1138 i, argvec, constraints,
1139 filename, line));
1140 MEM_VOLATILE_P (SET_SRC (XVECEXP (body, 0, i))) = vol;
1141 }
1142
1143 /* If there are no outputs (but there are some clobbers)
1144 store the bare ASM_OPERANDS into the PARALLEL. */
1145
1146 if (i == 0)
1147 XVECEXP (body, 0, i++) = obody;
1148
1149 /* Store (clobber REG) for each clobbered register specified. */
1150
1151 for (tail = clobbers; tail; tail = TREE_CHAIN (tail), i++)
1152 {
1153 int j;
1154 char *regname = TREE_STRING_POINTER (TREE_VALUE (tail));
1155
1156 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
1157 if (!strcmp (regname, reg_names[j]))
1158 break;
1159
1160 if (j == FIRST_PSEUDO_REGISTER)
1161 {
1162 error ("unknown register name `%s' in `asm'", regname);
1163 return;
1164 }
1165
1166 /* Use QImode since that's guaranteed to clobber just one reg. */
1167 XVECEXP (body, 0, i)
1168 = gen_rtx (CLOBBER, VOIDmode, gen_rtx (REG, QImode, j));
1169 }
1170
1171 insn = emit_insn (body);
1172 }
1173
1174 free_temp_slots ();
1175}
1176\f
1177/* Generate RTL to evaluate the expression EXP
1178 and remember it in case this is the VALUE in a ({... VALUE; }) constr. */
1179
1180void
1181expand_expr_stmt (exp)
1182 tree exp;
1183{
1184 /* If -W, warn about statements with no side effects,
1185 except for an explicit cast to void (e.g. for assert()), and
1186 except inside a ({...}) where they may be useful. */
1187 if (expr_stmts_for_value == 0 && exp != error_mark_node)
1188 {
1189 if (! TREE_SIDE_EFFECTS (exp) && (extra_warnings || warn_unused)
1190 && !(TREE_CODE (exp) == CONVERT_EXPR
1191 && TREE_TYPE (exp) == void_type_node))
1192 warning_with_file_and_line (emit_filename, emit_lineno,
1193 "statement with no effect");
1194 else if (warn_unused)
1195 warn_if_unused_value (exp);
1196 }
1197 last_expr_type = TREE_TYPE (exp);
1198 if (! flag_syntax_only)
1199 last_expr_value = expand_expr (exp, expr_stmts_for_value ? 0 : const0_rtx,
1200 VOIDmode, 0);
1201
1202 /* If all we do is reference a volatile value in memory,
1203 copy it to a register to be sure it is actually touched. */
1204 if (last_expr_value != 0 && GET_CODE (last_expr_value) == MEM
1205 && TREE_THIS_VOLATILE (exp))
1206 {
1207 if (TYPE_MODE (TREE_TYPE (exp)) != BLKmode)
1208 copy_to_reg (last_expr_value);
1209 else
1210 /* This case needs to be written. */
1211 abort ();
1212 }
1213
1214 /* If this expression is part of a ({...}) and is in memory, we may have
1215 to preserve temporaries. */
1216 preserve_temp_slots (last_expr_value);
1217
1218 /* Free any temporaries used to evaluate this expression. Any temporary
1219 used as a result of this expression will already have been preserved
1220 above. */
1221 free_temp_slots ();
1222
1223 emit_queue ();
1224}
1225
1226/* Warn if EXP contains any computations whose results are not used.
1227 Return 1 if a warning is printed; 0 otherwise. */
1228
1229static int
1230warn_if_unused_value (exp)
1231 tree exp;
1232{
1233 if (TREE_USED (exp))
1234 return 0;
1235
1236 switch (TREE_CODE (exp))
1237 {
1238 case PREINCREMENT_EXPR:
1239 case POSTINCREMENT_EXPR:
1240 case PREDECREMENT_EXPR:
1241 case POSTDECREMENT_EXPR:
1242 case MODIFY_EXPR:
1243 case INIT_EXPR:
1244 case TARGET_EXPR:
1245 case CALL_EXPR:
1246 case METHOD_CALL_EXPR:
1247 case RTL_EXPR:
1248 case WRAPPER_EXPR:
1249 case ANTI_WRAPPER_EXPR:
1250 case WITH_CLEANUP_EXPR:
1251 case EXIT_EXPR:
1252 /* We don't warn about COND_EXPR because it may be a useful
1253 construct if either arm contains a side effect. */
1254 case COND_EXPR:
1255 return 0;
1256
1257 case BIND_EXPR:
1258 /* For a binding, warn if no side effect within it. */
1259 return warn_if_unused_value (TREE_OPERAND (exp, 1));
1260
1261 case TRUTH_ORIF_EXPR:
1262 case TRUTH_ANDIF_EXPR:
1263 /* In && or ||, warn if 2nd operand has no side effect. */
1264 return warn_if_unused_value (TREE_OPERAND (exp, 1));
1265
1266 case COMPOUND_EXPR:
1267 if (warn_if_unused_value (TREE_OPERAND (exp, 0)))
1268 return 1;
1269 return warn_if_unused_value (TREE_OPERAND (exp, 1));
1270
1271 case NOP_EXPR:
1272 case CONVERT_EXPR:
1273 /* Don't warn about values cast to void. */
1274 if (TREE_TYPE (exp) == void_type_node)
1275 return 0;
1276 /* Don't warn about conversions not explicit in the user's program. */
1277 if (TREE_NO_UNUSED_WARNING (exp))
1278 return 0;
1279 /* Assignment to a cast usually results in a cast of a modify.
1280 Don't complain about that. */
1281 if (TREE_CODE (TREE_OPERAND (exp, 0)) == MODIFY_EXPR)
1282 return 0;
1283 /* Sometimes it results in a cast of a cast of a modify.
1284 Don't complain about that. */
1285 if ((TREE_CODE (TREE_OPERAND (exp, 0)) == CONVERT_EXPR
1286 || TREE_CODE (TREE_OPERAND (exp, 0)) == NOP_EXPR)
1287 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)) == MODIFY_EXPR)
1288 return 0;
1289
1290 default:
1291 warning_with_file_and_line (emit_filename, emit_lineno,
1292 "value computed is not used");
1293 return 1;
1294 }
1295}
1296
1297/* Clear out the memory of the last expression evaluated. */
1298
1299void
1300clear_last_expr ()
1301{
1302 last_expr_type = 0;
1303}
1304
1305/* Begin a statement which will return a value.
1306 Return the RTL_EXPR for this statement expr.
1307 The caller must save that value and pass it to expand_end_stmt_expr. */
1308
1309tree
1310expand_start_stmt_expr ()
1311{
1312 /* Make the RTL_EXPR node temporary, not momentary,
1313 so that rtl_expr_chain doesn't become garbage. */
1314 int momentary = suspend_momentary ();
1315 tree t = make_node (RTL_EXPR);
1316 resume_momentary (momentary);
1317 start_sequence ();
1318 NO_DEFER_POP;
1319 expr_stmts_for_value++;
1320 return t;
1321}
1322
1323/* Restore the previous state at the end of a statement that returns a value.
1324 Returns a tree node representing the statement's value and the
1325 insns to compute the value.
1326
1327 The nodes of that expression have been freed by now, so we cannot use them.
1328 But we don't want to do that anyway; the expression has already been
1329 evaluated and now we just want to use the value. So generate a RTL_EXPR
1330 with the proper type and RTL value.
1331
1332 If the last substatement was not an expression,
1333 return something with type `void'. */
1334
1335tree
1336expand_end_stmt_expr (t)
1337 tree t;
1338{
1339 OK_DEFER_POP;
1340
1341 if (last_expr_type == 0)
1342 {
1343 last_expr_type = void_type_node;
1344 last_expr_value = const0_rtx;
1345 }
1346 else if (last_expr_value == 0)
1347 /* There are some cases where this can happen, such as when the
1348 statement is void type. */
1349 last_expr_value = const0_rtx;
1350 else if (GET_CODE (last_expr_value) != REG && ! CONSTANT_P (last_expr_value))
1351 /* Remove any possible QUEUED. */
1352 last_expr_value = protect_from_queue (last_expr_value, 0);
1353
1354 emit_queue ();
1355
1356 TREE_TYPE (t) = last_expr_type;
1357 RTL_EXPR_RTL (t) = last_expr_value;
1358 RTL_EXPR_SEQUENCE (t) = get_insns ();
1359
1360 rtl_expr_chain = tree_cons (NULL_TREE, t, rtl_expr_chain);
1361
1362 end_sequence ();
1363
1364 /* Don't consider deleting this expr or containing exprs at tree level. */
1365 TREE_SIDE_EFFECTS (t) = 1;
1366 /* Propagate volatility of the actual RTL expr. */
1367 TREE_THIS_VOLATILE (t) = volatile_refs_p (last_expr_value);
1368
1369 last_expr_type = 0;
1370 expr_stmts_for_value--;
1371
1372 return t;
1373}
1374\f
1375/* The exception handling nesting looks like this:
1376
1377 <-- Level N-1
1378 { <-- exception handler block
1379 <-- Level N
1380 <-- in an exception handler
1381 { <-- try block
1382 : <-- in a TRY block
1383 : <-- in an exception handler
1384 :
1385 }
1386
1387 { <-- except block
1388 : <-- in an except block
1389 : <-- in an exception handler
1390 :
1391 }
1392
1393 }
1394
1395/* Return nonzero iff in a try block at level LEVEL. */
1396
1397int
1398in_try_block (level)
1399 int level;
1400{
1401 struct nesting *n = except_stack;
1402 while (1)
1403 {
1404 while (n && n->data.except_stmt.after_label != 0)
1405 n = n->next;
1406 if (n == 0)
1407 return 0;
1408 if (level == 0)
1409 return n != 0;
1410 level--;
1411 n = n->next;
1412 }
1413}
1414
1415/* Return nonzero iff in an except block at level LEVEL. */
1416
1417int
1418in_except_block (level)
1419 int level;
1420{
1421 struct nesting *n = except_stack;
1422 while (1)
1423 {
1424 while (n && n->data.except_stmt.after_label == 0)
1425 n = n->next;
1426 if (n == 0)
1427 return 0;
1428 if (level == 0)
1429 return n != 0;
1430 level--;
1431 n = n->next;
1432 }
1433}
1434
1435/* Return nonzero iff in an exception handler at level LEVEL. */
1436
1437int
1438in_exception_handler (level)
1439 int level;
1440{
1441 struct nesting *n = except_stack;
1442 while (n && level--)
1443 n = n->next;
1444 return n != 0;
1445}
1446
1447/* Record the fact that the current exception nesting raises
1448 exception EX. If not in an exception handler, return 0. */
1449int
1450expand_raise (ex)
1451 tree ex;
1452{
1453 tree *raises_ptr;
1454
1455 if (except_stack == 0)
1456 return 0;
1457 raises_ptr = &except_stack->data.except_stmt.raised;
1458 if (! value_member (ex, *raises_ptr))
1459 *raises_ptr = tree_cons (NULL_TREE, ex, *raises_ptr);
1460 return 1;
1461}
1462
1463/* Generate RTL for the start of a try block.
1464
1465 TRY_CLAUSE is the condition to test to enter the try block. */
1466
1467void
1468expand_start_try (try_clause, exitflag, escapeflag)
1469 tree try_clause;
1470 int exitflag;
1471 int escapeflag;
1472{
1473 struct nesting *thishandler = ALLOC_NESTING ();
1474
1475 /* Make an entry on cond_stack for the cond we are entering. */
1476
1477 thishandler->next = except_stack;
1478 thishandler->all = nesting_stack;
1479 thishandler->depth = ++nesting_depth;
1480 thishandler->data.except_stmt.raised = 0;
1481 thishandler->data.except_stmt.handled = 0;
1482 thishandler->data.except_stmt.first_insn = get_insns ();
1483 thishandler->data.except_stmt.except_label = gen_label_rtx ();
1484 thishandler->data.except_stmt.unhandled_label = 0;
1485 thishandler->data.except_stmt.after_label = 0;
1486 thishandler->data.except_stmt.escape_label
1487 = escapeflag ? thishandler->data.except_stmt.except_label : 0;
1488 thishandler->exit_label = exitflag ? gen_label_rtx () : 0;
1489 except_stack = thishandler;
1490 nesting_stack = thishandler;
1491
1492 do_jump (try_clause, thishandler->data.except_stmt.except_label, NULL);
1493}
1494
1495/* End of a TRY block. Nothing to do for now. */
1496
1497void
1498expand_end_try ()
1499{
1500 except_stack->data.except_stmt.after_label = gen_label_rtx ();
1501 expand_goto_internal (NULL, except_stack->data.except_stmt.after_label, 0);
1502}
1503
1504/* Start an `except' nesting contour.
1505 EXITFLAG says whether this contour should be able to `exit' something.
1506 ESCAPEFLAG says whether this contour should be escapable. */
1507
1508void
1509expand_start_except (exitflag, escapeflag)
1510 int exitflag;
1511 int escapeflag;
1512{
1513 if (exitflag)
1514 {
1515 struct nesting *n;
1516 /* An `exit' from catch clauses goes out to next exit level,
1517 if there is one. Otherwise, it just goes to the end
1518 of the construct. */
1519 for (n = except_stack->next; n; n = n->next)
1520 if (n->exit_label != 0)
1521 {
1522 except_stack->exit_label = n->exit_label;
1523 break;
1524 }
1525 if (n == 0)
1526 except_stack->exit_label = except_stack->data.except_stmt.after_label;
1527 }
1528 if (escapeflag)
1529 {
1530 struct nesting *n;
1531 /* An `escape' from catch clauses goes out to next escape level,
1532 if there is one. Otherwise, it just goes to the end
1533 of the construct. */
1534 for (n = except_stack->next; n; n = n->next)
1535 if (n->data.except_stmt.escape_label != 0)
1536 {
1537 except_stack->data.except_stmt.escape_label
1538 = n->data.except_stmt.escape_label;
1539 break;
1540 }
1541 if (n == 0)
1542 except_stack->data.except_stmt.escape_label
1543 = except_stack->data.except_stmt.after_label;
1544 }
1545 do_pending_stack_adjust ();
1546 emit_label (except_stack->data.except_stmt.except_label);
1547}
1548
1549/* Generate code to `escape' from an exception contour. This
1550 is like `exiting', but does not conflict with constructs which
1551 use `exit_label'.
1552
1553 Return nonzero if this contour is escapable, otherwise
1554 return zero, and language-specific code will emit the
1555 appropriate error message. */
1556int
1557expand_escape_except ()
1558{
1559 struct nesting *n;
1560 last_expr_type = 0;
1561 for (n = except_stack; n; n = n->next)
1562 if (n->data.except_stmt.escape_label != 0)
1563 {
1564 expand_goto_internal (0, n->data.except_stmt.escape_label, 0);
1565 return 1;
1566 }
1567
1568 return 0;
1569}
1570
1571/* Finish processing and `except' contour.
1572 Culls out all exceptions which might be raise but not
1573 handled, and returns the list to the caller.
1574 Language-specific code is responsible for dealing with these
1575 exceptions. */
1576
1577tree
1578expand_end_except ()
1579{
1580 struct nesting *n;
1581 tree raised = NULL_TREE;
1582
1583 do_pending_stack_adjust ();
1584 emit_label (except_stack->data.except_stmt.after_label);
1585
1586 n = except_stack->next;
1587 if (n)
1588 {
1589 /* Propagate exceptions raised but not handled to next
1590 highest level. */
1591 tree handled = except_stack->data.except_stmt.raised;
1592 if (handled != void_type_node)
1593 {
1594 tree prev = NULL_TREE;
1595 raised = except_stack->data.except_stmt.raised;
1596 while (handled)
1597 {
1598 tree this_raise;
1599 for (this_raise = raised, prev = 0; this_raise;
1600 this_raise = TREE_CHAIN (this_raise))
1601 {
1602 if (value_member (TREE_VALUE (this_raise), handled))
1603 {
1604 if (prev)
1605 TREE_CHAIN (prev) = TREE_CHAIN (this_raise);
1606 else
1607 {
1608 raised = TREE_CHAIN (raised);
1609 if (raised == NULL_TREE)
1610 goto nada;
1611 }
1612 }
1613 else
1614 prev = this_raise;
1615 }
1616 handled = TREE_CHAIN (handled);
1617 }
1618 if (prev == NULL_TREE)
1619 prev = raised;
1620 if (prev)
1621 TREE_CHAIN (prev) = n->data.except_stmt.raised;
1622 nada:
1623 n->data.except_stmt.raised = raised;
1624 }
1625 }
1626
1627 POPSTACK (except_stack);
1628 last_expr_type = 0;
1629 return raised;
1630}
1631
1632/* Record that exception EX is caught by this exception handler.
1633 Return nonzero if in exception handling construct, otherwise return 0. */
1634int
1635expand_catch (ex)
1636 tree ex;
1637{
1638 tree *raises_ptr;
1639
1640 if (except_stack == 0)
1641 return 0;
1642 raises_ptr = &except_stack->data.except_stmt.handled;
1643 if (*raises_ptr != void_type_node
1644 && ex != NULL_TREE
1645 && ! value_member (ex, *raises_ptr))
1646 *raises_ptr = tree_cons (NULL_TREE, ex, *raises_ptr);
1647 return 1;
1648}
1649
1650/* Record that this exception handler catches all exceptions.
1651 Return nonzero if in exception handling construct, otherwise return 0. */
1652
1653int
1654expand_catch_default ()
1655{
1656 if (except_stack == 0)
1657 return 0;
1658 except_stack->data.except_stmt.handled = void_type_node;
1659 return 1;
1660}
1661
1662int
1663expand_end_catch ()
1664{
1665 if (except_stack == 0 || except_stack->data.except_stmt.after_label == 0)
1666 return 0;
1667 expand_goto_internal (0, except_stack->data.except_stmt.after_label, 0);
1668 return 1;
1669}
1670\f
1671/* Generate RTL for the start of an if-then. COND is the expression
1672 whose truth should be tested.
1673
1674 If EXITFLAG is nonzero, this conditional is visible to
1675 `exit_something'. */
1676
1677void
1678expand_start_cond (cond, exitflag)
1679 tree cond;
1680 int exitflag;
1681{
1682 struct nesting *thiscond = ALLOC_NESTING ();
1683
1684 /* Make an entry on cond_stack for the cond we are entering. */
1685
1686 thiscond->next = cond_stack;
1687 thiscond->all = nesting_stack;
1688 thiscond->depth = ++nesting_depth;
1689 thiscond->data.cond.next_label = gen_label_rtx ();
1690 /* Before we encounter an `else', we don't need a separate exit label
1691 unless there are supposed to be exit statements
1692 to exit this conditional. */
1693 thiscond->exit_label = exitflag ? gen_label_rtx () : 0;
1694 thiscond->data.cond.endif_label = thiscond->exit_label;
1695 cond_stack = thiscond;
1696 nesting_stack = thiscond;
1697
1698 do_jump (cond, thiscond->data.cond.next_label, NULL);
1699}
1700
1701/* Generate RTL between then-clause and the elseif-clause
1702 of an if-then-elseif-.... */
1703
1704void
1705expand_start_elseif (cond)
1706 tree cond;
1707{
1708 if (cond_stack->data.cond.endif_label == 0)
1709 cond_stack->data.cond.endif_label = gen_label_rtx ();
1710 emit_jump (cond_stack->data.cond.endif_label);
1711 emit_label (cond_stack->data.cond.next_label);
1712 cond_stack->data.cond.next_label = gen_label_rtx ();
1713 do_jump (cond, cond_stack->data.cond.next_label, NULL);
1714}
1715
1716/* Generate RTL between the then-clause and the else-clause
1717 of an if-then-else. */
1718
1719void
1720expand_start_else ()
1721{
1722 if (cond_stack->data.cond.endif_label == 0)
1723 cond_stack->data.cond.endif_label = gen_label_rtx ();
1724 emit_jump (cond_stack->data.cond.endif_label);
1725 emit_label (cond_stack->data.cond.next_label);
1726 cond_stack->data.cond.next_label = 0; /* No more _else or _elseif calls. */
1727}
1728
1729/* Generate RTL for the end of an if-then.
1730 Pop the record for it off of cond_stack. */
1731
1732void
1733expand_end_cond ()
1734{
1735 struct nesting *thiscond = cond_stack;
1736
1737 do_pending_stack_adjust ();
1738 if (thiscond->data.cond.next_label)
1739 emit_label (thiscond->data.cond.next_label);
1740 if (thiscond->data.cond.endif_label)
1741 emit_label (thiscond->data.cond.endif_label);
1742
1743 POPSTACK (cond_stack);
1744 last_expr_type = 0;
1745}
1746\f
1747/* Generate RTL for the start of a loop. EXIT_FLAG is nonzero if this
1748 loop should be exited by `exit_something'. This is a loop for which
1749 `expand_continue' will jump to the top of the loop.
1750
1751 Make an entry on loop_stack to record the labels associated with
1752 this loop. */
1753
1754struct nesting *
1755expand_start_loop (exit_flag)
1756 int exit_flag;
1757{
1758 register struct nesting *thisloop = ALLOC_NESTING ();
1759
1760 /* Make an entry on loop_stack for the loop we are entering. */
1761
1762 thisloop->next = loop_stack;
1763 thisloop->all = nesting_stack;
1764 thisloop->depth = ++nesting_depth;
1765 thisloop->data.loop.start_label = gen_label_rtx ();
1766 thisloop->data.loop.end_label = gen_label_rtx ();
1767 thisloop->data.loop.continue_label = thisloop->data.loop.start_label;
1768 thisloop->exit_label = exit_flag ? thisloop->data.loop.end_label : 0;
1769 loop_stack = thisloop;
1770 nesting_stack = thisloop;
1771
1772 do_pending_stack_adjust ();
1773 emit_queue ();
1774 emit_note (0, NOTE_INSN_LOOP_BEG);
1775 emit_label (thisloop->data.loop.start_label);
1776
1777 return thisloop;
1778}
1779
1780/* Like expand_start_loop but for a loop where the continuation point
1781 (for expand_continue_loop) will be specified explicitly. */
1782
1783struct nesting *
1784expand_start_loop_continue_elsewhere (exit_flag)
1785 int exit_flag;
1786{
1787 struct nesting *thisloop = expand_start_loop (exit_flag);
1788 loop_stack->data.loop.continue_label = gen_label_rtx ();
1789 return thisloop;
1790}
1791
1792/* Specify the continuation point for a loop started with
1793 expand_start_loop_continue_elsewhere.
1794 Use this at the point in the code to which a continue statement
1795 should jump. */
1796
1797void
1798expand_loop_continue_here ()
1799{
1800 do_pending_stack_adjust ();
1801 emit_note (0, NOTE_INSN_LOOP_CONT);
1802 emit_label (loop_stack->data.loop.continue_label);
1803}
1804
1805/* Finish a loop. Generate a jump back to the top and the loop-exit label.
1806 Pop the block off of loop_stack. */
1807
1808void
1809expand_end_loop ()
1810{
1811 register rtx insn = get_last_insn ();
1812 register rtx start_label = loop_stack->data.loop.start_label;
1813 rtx last_test_insn = 0;
1814 int num_insns = 0;
1815
1816 /* Mark the continue-point at the top of the loop if none elsewhere. */
1817 if (start_label == loop_stack->data.loop.continue_label)
1818 emit_note_before (NOTE_INSN_LOOP_CONT, start_label);
1819
1820 do_pending_stack_adjust ();
1821
1822 /* If optimizing, perhaps reorder the loop. If the loop
1823 starts with a conditional exit, roll that to the end
1824 where it will optimize together with the jump back.
1825
1826 We look for the last conditional branch to the exit that we encounter
1827 before hitting 30 insns or a CALL_INSN. If we see an unconditional
1828 branch to the exit first, use it.
1829
1830 We must also stop at NOTE_INSN_BLOCK_BEG and NOTE_INSN_BLOCK_END notes
1831 because moving them is not valid. */
1832
1833 if (optimize
1834 &&
1835 ! (GET_CODE (insn) == JUMP_INSN
1836 && GET_CODE (PATTERN (insn)) == SET
1837 && SET_DEST (PATTERN (insn)) == pc_rtx
1838 && GET_CODE (SET_SRC (PATTERN (insn))) == IF_THEN_ELSE))
1839 {
1840 /* Scan insns from the top of the loop looking for a qualified
1841 conditional exit. */
1842 for (insn = NEXT_INSN (loop_stack->data.loop.start_label); insn;
1843 insn = NEXT_INSN (insn))
1844 {
1845 if (GET_CODE (insn) == CALL_INSN || GET_CODE (insn) == CODE_LABEL)
1846 break;
1847
1848 if (GET_CODE (insn) == NOTE
1849 && (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG
1850 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END))
1851 break;
1852
1853 if (GET_CODE (insn) == JUMP_INSN || GET_CODE (insn) == INSN)
1854 num_insns++;
1855
1856 if (last_test_insn && num_insns > 30)
1857 break;
1858
1859 if (GET_CODE (insn) == JUMP_INSN && GET_CODE (PATTERN (insn)) == SET
1860 && SET_DEST (PATTERN (insn)) == pc_rtx
1861 && GET_CODE (SET_SRC (PATTERN (insn))) == IF_THEN_ELSE
1862 && ((GET_CODE (XEXP (SET_SRC (PATTERN (insn)), 1)) == LABEL_REF
1863 && (XEXP (XEXP (SET_SRC (PATTERN (insn)), 1), 0)
1864 == loop_stack->data.loop.end_label))
1865 || (GET_CODE (XEXP (SET_SRC (PATTERN (insn)), 2)) == LABEL_REF
1866 && (XEXP (XEXP (SET_SRC (PATTERN (insn)), 2), 0)
1867 == loop_stack->data.loop.end_label))))
1868 last_test_insn = insn;
1869
1870 if (last_test_insn == 0 && GET_CODE (insn) == JUMP_INSN
1871 && GET_CODE (PATTERN (insn)) == SET
1872 && SET_DEST (PATTERN (insn)) == pc_rtx
1873 && GET_CODE (SET_SRC (PATTERN (insn))) == LABEL_REF
1874 && (XEXP (SET_SRC (PATTERN (insn)), 0)
1875 == loop_stack->data.loop.end_label))
1876 /* Include BARRIER. */
1877 last_test_insn = NEXT_INSN (insn);
1878 }
1879
1880 if (last_test_insn != 0 && last_test_insn != get_last_insn ())
1881 {
1882 /* We found one. Move everything from there up
1883 to the end of the loop, and add a jump into the loop
1884 to jump to there. */
1885 register rtx newstart_label = gen_label_rtx ();
1886 register rtx start_move = start_label;
1887
1888 /* If the start label is preceeded by a NOTE_INSN_LOOP_CONT note,
1889 then we want to move this note also. */
1890 if (GET_CODE (PREV_INSN (start_move)) == NOTE
1891 && (NOTE_LINE_NUMBER (PREV_INSN (start_move))
1892 == NOTE_INSN_LOOP_CONT))
1893 start_move = PREV_INSN (start_move);
1894
1895 emit_label_after (newstart_label, PREV_INSN (start_move));
1896 reorder_insns (start_move, last_test_insn, get_last_insn ());
1897 emit_jump_insn_after (gen_jump (start_label),
1898 PREV_INSN (newstart_label));
1899 emit_barrier_after (PREV_INSN (newstart_label));
1900 start_label = newstart_label;
1901 }
1902 }
1903
1904 emit_jump (start_label);
1905 emit_note (0, NOTE_INSN_LOOP_END);
1906 emit_label (loop_stack->data.loop.end_label);
1907
1908 POPSTACK (loop_stack);
1909
1910 last_expr_type = 0;
1911}
1912
1913/* Generate a jump to the current loop's continue-point.
1914 This is usually the top of the loop, but may be specified
1915 explicitly elsewhere. If not currently inside a loop,
1916 return 0 and do nothing; caller will print an error message. */
1917
1918int
1919expand_continue_loop (whichloop)
1920 struct nesting *whichloop;
1921{
1922 last_expr_type = 0;
1923 if (whichloop == 0)
1924 whichloop = loop_stack;
1925 if (whichloop == 0)
1926 return 0;
1927 expand_goto_internal (0, whichloop->data.loop.continue_label, 0);
1928 return 1;
1929}
1930
1931/* Generate a jump to exit the current loop. If not currently inside a loop,
1932 return 0 and do nothing; caller will print an error message. */
1933
1934int
1935expand_exit_loop (whichloop)
1936 struct nesting *whichloop;
1937{
1938 last_expr_type = 0;
1939 if (whichloop == 0)
1940 whichloop = loop_stack;
1941 if (whichloop == 0)
1942 return 0;
1943 expand_goto_internal (0, whichloop->data.loop.end_label, 0);
1944 return 1;
1945}
1946
1947/* Generate a conditional jump to exit the current loop if COND
1948 evaluates to zero. If not currently inside a loop,
1949 return 0 and do nothing; caller will print an error message. */
1950
1951int
1952expand_exit_loop_if_false (whichloop, cond)
1953 struct nesting *whichloop;
1954 tree cond;
1955{
1956 last_expr_type = 0;
1957 if (whichloop == 0)
1958 whichloop = loop_stack;
1959 if (whichloop == 0)
1960 return 0;
1961 do_jump (cond, whichloop->data.loop.end_label, NULL);
1962 return 1;
1963}
1964
1965/* Return non-zero if we should preserve sub-expressions as separate
1966 pseudos. We never do so if we aren't optimizing. We always do so
1967 if -fexpensive-optimizations.
1968
1969 Otherwise, we only do so if we are in the "early" part of a loop. I.e.,
1970 the loop may still be a small one. */
1971
1972int
1973preserve_subexpressions_p ()
1974{
1975 rtx insn;
1976
1977 if (flag_expensive_optimizations)
1978 return 1;
1979
1980 if (optimize == 0 || loop_stack == 0)
1981 return 0;
1982
1983 insn = get_last_insn_anywhere ();
1984
1985 return (insn
1986 && (INSN_UID (insn) - INSN_UID (loop_stack->data.loop.start_label)
1987 < n_non_fixed_regs * 3));
1988
1989}
1990
1991/* Generate a jump to exit the current loop, conditional, binding contour
1992 or case statement. Not all such constructs are visible to this function,
1993 only those started with EXIT_FLAG nonzero. Individual languages use
1994 the EXIT_FLAG parameter to control which kinds of constructs you can
1995 exit this way.
1996
1997 If not currently inside anything that can be exited,
1998 return 0 and do nothing; caller will print an error message. */
1999
2000int
2001expand_exit_something ()
2002{
2003 struct nesting *n;
2004 last_expr_type = 0;
2005 for (n = nesting_stack; n; n = n->all)
2006 if (n->exit_label != 0)
2007 {
2008 expand_goto_internal (0, n->exit_label, 0);
2009 return 1;
2010 }
2011
2012 return 0;
2013}
2014\f
2015/* Generate RTL to return from the current function, with no value.
2016 (That is, we do not do anything about returning any value.) */
2017
2018void
2019expand_null_return ()
2020{
2021 struct nesting *block = block_stack;
2022 rtx last_insn = 0;
2023
2024 /* Does any pending block have cleanups? */
2025
2026 while (block && block->data.block.cleanups == 0)
2027 block = block->next;
2028
2029 /* If yes, use a goto to return, since that runs cleanups. */
2030
2031 expand_null_return_1 (last_insn, block != 0);
2032}
2033
2034/* Generate RTL to return from the current function, with value VAL. */
2035
2036void
2037expand_value_return (val)
2038 rtx val;
2039{
2040 struct nesting *block = block_stack;
2041 rtx last_insn = get_last_insn ();
2042 rtx return_reg = DECL_RTL (DECL_RESULT (current_function_decl));
2043
2044 /* Copy the value to the return location
2045 unless it's already there. */
2046
2047 if (return_reg != val)
2048 emit_move_insn (return_reg, val);
2049 if (GET_CODE (return_reg) == REG
2050 && REGNO (return_reg) < FIRST_PSEUDO_REGISTER)
2051 emit_insn (gen_rtx (USE, VOIDmode, return_reg));
2052
2053 /* Does any pending block have cleanups? */
2054
2055 while (block && block->data.block.cleanups == 0)
2056 block = block->next;
2057
2058 /* If yes, use a goto to return, since that runs cleanups.
2059 Use LAST_INSN to put cleanups *before* the move insn emitted above. */
2060
2061 expand_null_return_1 (last_insn, block != 0);
2062}
2063
2064/* Output a return with no value. If LAST_INSN is nonzero,
2065 pretend that the return takes place after LAST_INSN.
2066 If USE_GOTO is nonzero then don't use a return instruction;
2067 go to the return label instead. This causes any cleanups
2068 of pending blocks to be executed normally. */
2069
2070static void
2071expand_null_return_1 (last_insn, use_goto)
2072 rtx last_insn;
2073 int use_goto;
2074{
2075 rtx end_label = cleanup_label ? cleanup_label : return_label;
2076
2077 clear_pending_stack_adjust ();
2078 do_pending_stack_adjust ();
2079 last_expr_type = 0;
2080
2081 /* PCC-struct return always uses an epilogue. */
2082 if (current_function_returns_pcc_struct || use_goto)
2083 {
2084 if (end_label == 0)
2085 end_label = return_label = gen_label_rtx ();
2086 expand_goto_internal (0, end_label, last_insn);
2087 return;
2088 }
2089
2090 /* Otherwise output a simple return-insn if one is available,
2091 unless it won't do the job. */
2092#ifdef HAVE_return
2093 if (HAVE_return && use_goto == 0 && cleanup_label == 0)
2094 {
2095 emit_jump_insn (gen_return ());
2096 emit_barrier ();
2097 return;
2098 }
2099#endif
2100
2101 /* Otherwise jump to the epilogue. */
2102 expand_goto_internal (0, end_label, last_insn);
2103}
2104\f
2105/* Generate RTL to evaluate the expression RETVAL and return it
2106 from the current function. */
2107
2108void
2109expand_return (retval)
2110 tree retval;
2111{
2112 /* If there are any cleanups to be performed, then they will
2113 be inserted following LAST_INSN. It is desirable
2114 that the last_insn, for such purposes, should be the
2115 last insn before computing the return value. Otherwise, cleanups
2116 which call functions can clobber the return value. */
2117 /* ??? rms: I think that is erroneous, because in C++ it would
2118 run destructors on variables that might be used in the subsequent
2119 computation of the return value. */
2120 rtx last_insn = 0;
2121 register rtx val = 0;
2122 register rtx op0;
2123 tree retval_rhs;
2124 int cleanups;
2125 struct nesting *block;
2126
2127 /* If function wants no value, give it none. */
2128 if (TREE_CODE (TREE_TYPE (TREE_TYPE (current_function_decl))) == VOID_TYPE)
2129 {
2130 expand_expr (retval, 0, VOIDmode, 0);
2131 expand_null_return ();
2132 return;
2133 }
2134
2135 /* Are any cleanups needed? E.g. C++ destructors to be run? */
2136 cleanups = any_pending_cleanups (1);
2137
2138 if (TREE_CODE (retval) == RESULT_DECL)
2139 retval_rhs = retval;
2140 else if ((TREE_CODE (retval) == MODIFY_EXPR || TREE_CODE (retval) == INIT_EXPR)
2141 && TREE_CODE (TREE_OPERAND (retval, 0)) == RESULT_DECL)
2142 retval_rhs = TREE_OPERAND (retval, 1);
2143 else if (TREE_TYPE (retval) == void_type_node)
2144 /* Recognize tail-recursive call to void function. */
2145 retval_rhs = retval;
2146 else
2147 retval_rhs = NULL_TREE;
2148
2149 /* Only use `last_insn' if there are cleanups which must be run. */
2150 if (cleanups || cleanup_label != 0)
2151 last_insn = get_last_insn ();
2152
2153 /* Distribute return down conditional expr if either of the sides
2154 may involve tail recursion (see test below). This enhances the number
2155 of tail recursions we see. Don't do this always since it can produce
2156 sub-optimal code in some cases and we distribute assignments into
2157 conditional expressions when it would help. */
2158
2159 if (optimize && retval_rhs != 0
2160 && frame_offset == 0
2161 && TREE_CODE (retval_rhs) == COND_EXPR
2162 && (TREE_CODE (TREE_OPERAND (retval_rhs, 1)) == CALL_EXPR
2163 || TREE_CODE (TREE_OPERAND (retval_rhs, 2)) == CALL_EXPR))
2164 {
2165 rtx label = gen_label_rtx ();
2166 do_jump (TREE_OPERAND (retval_rhs, 0), label, 0);
2167 expand_return (build (MODIFY_EXPR, TREE_TYPE (current_function_decl),
2168 DECL_RESULT (current_function_decl),
2169 TREE_OPERAND (retval_rhs, 1)));
2170 emit_label (label);
2171 expand_return (build (MODIFY_EXPR, TREE_TYPE (current_function_decl),
2172 DECL_RESULT (current_function_decl),
2173 TREE_OPERAND (retval_rhs, 2)));
2174 return;
2175 }
2176
2177 /* For tail-recursive call to current function,
2178 just jump back to the beginning.
2179 It's unsafe if any auto variable in this function
2180 has its address taken; for simplicity,
2181 require stack frame to be empty. */
2182 if (optimize && retval_rhs != 0
2183 && frame_offset == 0
2184 && TREE_CODE (retval_rhs) == CALL_EXPR
2185 && TREE_CODE (TREE_OPERAND (retval_rhs, 0)) == ADDR_EXPR
2186 && TREE_OPERAND (TREE_OPERAND (retval_rhs, 0), 0) == current_function_decl
2187 /* Finish checking validity, and if valid emit code
2188 to set the argument variables for the new call. */
2189 && tail_recursion_args (TREE_OPERAND (retval_rhs, 1),
2190 DECL_ARGUMENTS (current_function_decl)))
2191 {
2192 if (tail_recursion_label == 0)
2193 {
2194 tail_recursion_label = gen_label_rtx ();
2195 emit_label_after (tail_recursion_label,
2196 tail_recursion_reentry);
2197 }
2198 expand_goto_internal (0, tail_recursion_label, last_insn);
2199 emit_barrier ();
2200 return;
2201 }
2202#ifdef HAVE_return
2203 /* This optimization is safe if there are local cleanups
2204 because expand_null_return takes care of them.
2205 ??? I think it should also be safe when there is a cleanup label,
2206 because expand_null_return takes care of them, too.
2207 Any reason why not? */
2208 if (HAVE_return && cleanup_label == 0
2209 && ! current_function_returns_pcc_struct)
2210 {
2211 /* If this is return x == y; then generate
2212 if (x == y) return 1; else return 0;
2213 if we can do it with explicit return insns. */
2214 if (retval_rhs)
2215 switch (TREE_CODE (retval_rhs))
2216 {
2217 case EQ_EXPR:
2218 case NE_EXPR:
2219 case GT_EXPR:
2220 case GE_EXPR:
2221 case LT_EXPR:
2222 case LE_EXPR:
2223 case TRUTH_ANDIF_EXPR:
2224 case TRUTH_ORIF_EXPR:
2225 case TRUTH_AND_EXPR:
2226 case TRUTH_OR_EXPR:
2227 case TRUTH_NOT_EXPR:
2228 op0 = gen_label_rtx ();
2229 jumpifnot (retval_rhs, op0);
2230 expand_value_return (const1_rtx);
2231 emit_label (op0);
2232 expand_value_return (const0_rtx);
2233 return;
2234 }
2235 }
2236#endif /* HAVE_return */
2237
2238 if (cleanups
2239 && retval_rhs != 0
2240 && TREE_TYPE (retval_rhs) != void_type_node
2241 && GET_CODE (DECL_RTL (DECL_RESULT (current_function_decl))) == REG)
2242 {
2243 /* Calculate the return value into a pseudo reg. */
2244 val = expand_expr (retval_rhs, 0, VOIDmode, 0);
2245 emit_queue ();
2246 /* All temporaries have now been used. */
2247 free_temp_slots ();
2248 /* Return the calculated value, doing cleanups first. */
2249 expand_value_return (val);
2250 }
2251 else
2252 {
2253 /* No cleanups or no hard reg used;
2254 calculate value into hard return reg. */
2255 expand_expr (retval, 0, VOIDmode, 0);
2256 emit_queue ();
2257 free_temp_slots ();
2258 expand_value_return (DECL_RTL (DECL_RESULT (current_function_decl)));
2259 }
2260}
2261
2262/* Return 1 if the end of the generated RTX is not a barrier.
2263 This means code already compiled can drop through. */
2264
2265int
2266drop_through_at_end_p ()
2267{
2268 rtx insn = get_last_insn ();
2269 while (insn && GET_CODE (insn) == NOTE)
2270 insn = PREV_INSN (insn);
2271 return insn && GET_CODE (insn) != BARRIER;
2272}
2273\f
2274/* Emit code to alter this function's formal parms for a tail-recursive call.
2275 ACTUALS is a list of actual parameter expressions (chain of TREE_LISTs).
2276 FORMALS is the chain of decls of formals.
2277 Return 1 if this can be done;
2278 otherwise return 0 and do not emit any code. */
2279
2280static int
2281tail_recursion_args (actuals, formals)
2282 tree actuals, formals;
2283{
2284 register tree a = actuals, f = formals;
2285 register int i;
2286 register rtx *argvec;
2287
2288 /* Check that number and types of actuals are compatible
2289 with the formals. This is not always true in valid C code.
2290 Also check that no formal needs to be addressable
2291 and that all formals are scalars. */
2292
2293 /* Also count the args. */
2294
2295 for (a = actuals, f = formals, i = 0; a && f; a = TREE_CHAIN (a), f = TREE_CHAIN (f), i++)
2296 {
2297 if (TREE_TYPE (TREE_VALUE (a)) != TREE_TYPE (f))
2298 return 0;
2299 if (GET_CODE (DECL_RTL (f)) != REG || DECL_MODE (f) == BLKmode)
2300 return 0;
2301 }
2302 if (a != 0 || f != 0)
2303 return 0;
2304
2305 /* Compute all the actuals. */
2306
2307 argvec = (rtx *) alloca (i * sizeof (rtx));
2308
2309 for (a = actuals, i = 0; a; a = TREE_CHAIN (a), i++)
2310 argvec[i] = expand_expr (TREE_VALUE (a), 0, VOIDmode, 0);
2311
2312 /* Find which actual values refer to current values of previous formals.
2313 Copy each of them now, before any formal is changed. */
2314
2315 for (a = actuals, i = 0; a; a = TREE_CHAIN (a), i++)
2316 {
2317 int copy = 0;
2318 register int j;
2319 for (f = formals, j = 0; j < i; f = TREE_CHAIN (f), j++)
2320 if (reg_mentioned_p (DECL_RTL (f), argvec[i]))
2321 { copy = 1; break; }
2322 if (copy)
2323 argvec[i] = copy_to_reg (argvec[i]);
2324 }
2325
2326 /* Store the values of the actuals into the formals. */
2327
2328 for (f = formals, a = actuals, i = 0; f;
2329 f = TREE_CHAIN (f), a = TREE_CHAIN (a), i++)
2330 {
2331 if (DECL_MODE (f) == GET_MODE (argvec[i]))
2332 emit_move_insn (DECL_RTL (f), argvec[i]);
2333 else
2334 convert_move (DECL_RTL (f), argvec[i],
2335 TREE_UNSIGNED (TREE_TYPE (TREE_VALUE (a))));
2336 }
2337
2338 free_temp_slots ();
2339 return 1;
2340}
2341\f
2342/* Generate the RTL code for entering a binding contour.
2343 The variables are declared one by one, by calls to `expand_decl'.
2344
2345 EXIT_FLAG is nonzero if this construct should be visible to
2346 `exit_something'. */
2347
2348void
2349expand_start_bindings (exit_flag)
2350 int exit_flag;
2351{
2352 struct nesting *thisblock = ALLOC_NESTING ();
2353
2354 rtx note = emit_note (0, NOTE_INSN_BLOCK_BEG);
2355
2356 /* Make an entry on block_stack for the block we are entering. */
2357
2358 thisblock->next = block_stack;
2359 thisblock->all = nesting_stack;
2360 thisblock->depth = ++nesting_depth;
2361 thisblock->data.block.stack_level = 0;
2362 thisblock->data.block.cleanups = 0;
2363 thisblock->data.block.function_call_count = 0;
2364#if 0
2365 if (block_stack)
2366 {
2367 if (block_stack->data.block.cleanups == NULL_TREE
2368 && (block_stack->data.block.outer_cleanups == NULL_TREE
2369 || block_stack->data.block.outer_cleanups == empty_cleanup_list))
2370 thisblock->data.block.outer_cleanups = empty_cleanup_list;
2371 else
2372 thisblock->data.block.outer_cleanups
2373 = tree_cons (NULL_TREE, block_stack->data.block.cleanups,
2374 block_stack->data.block.outer_cleanups);
2375 }
2376 else
2377 thisblock->data.block.outer_cleanups = 0;
2378#endif
2379#if 1
2380 if (block_stack
2381 && !(block_stack->data.block.cleanups == NULL_TREE
2382 && block_stack->data.block.outer_cleanups == NULL_TREE))
2383 thisblock->data.block.outer_cleanups
2384 = tree_cons (NULL_TREE, block_stack->data.block.cleanups,
2385 block_stack->data.block.outer_cleanups);
2386 else
2387 thisblock->data.block.outer_cleanups = 0;
2388#endif
2389 thisblock->data.block.label_chain = 0;
2390 thisblock->data.block.innermost_stack_block = stack_block_stack;
2391 thisblock->data.block.first_insn = note;
2392 thisblock->data.block.block_start_count = ++block_start_count;
2393 thisblock->exit_label = exit_flag ? gen_label_rtx () : 0;
2394 block_stack = thisblock;
2395 nesting_stack = thisblock;
2396
2397 /* Make a new level for allocating stack slots. */
2398 push_temp_slots ();
2399}
2400
2401/* Generate RTL code to terminate a binding contour.
2402 VARS is the chain of VAR_DECL nodes
2403 for the variables bound in this contour.
2404 MARK_ENDS is nonzero if we should put a note at the beginning
2405 and end of this binding contour.
2406
2407 DONT_JUMP_IN is nonzero if it is not valid to jump into this contour.
2408 (That is true automatically if the contour has a saved stack level.) */
2409
2410void
2411expand_end_bindings (vars, mark_ends, dont_jump_in)
2412 tree vars;
2413 int mark_ends;
2414 int dont_jump_in;
2415{
2416 register struct nesting *thisblock = block_stack;
2417 register tree decl;
2418
2419 if (warn_unused)
2420 for (decl = vars; decl; decl = TREE_CHAIN (decl))
2421 if (! TREE_USED (decl) && TREE_CODE (decl) == VAR_DECL)
2422 warning_with_decl (decl, "unused variable `%s'");
2423
2424 /* Mark the beginning and end of the scope if requested. */
2425
2426 if (mark_ends)
2427 emit_note (0, NOTE_INSN_BLOCK_END);
2428 else
2429 /* Get rid of the beginning-mark if we don't make an end-mark. */
2430 NOTE_LINE_NUMBER (thisblock->data.block.first_insn) = NOTE_INSN_DELETED;
2431
2432 if (thisblock->exit_label)
2433 {
2434 do_pending_stack_adjust ();
2435 emit_label (thisblock->exit_label);
2436 }
2437
2438 /* If necessary, make a handler for nonlocal gotos taking
2439 place in the function calls in this block. */
2440 if (function_call_count != thisblock->data.block.function_call_count
2441 && nonlocal_labels
2442 /* Make handler for outermost block
2443 if there were any nonlocal gotos to this function. */
2444 && (thisblock->next == 0 ? current_function_has_nonlocal_label
2445 /* Make handler for inner block if it has something
2446 special to do when you jump out of it. */
2447 : (thisblock->data.block.cleanups != 0
2448 || thisblock->data.block.stack_level != 0)))
2449 {
2450 tree link;
2451 rtx afterward = gen_label_rtx ();
2452 rtx handler_label = gen_label_rtx ();
2453 rtx save_receiver = gen_reg_rtx (Pmode);
2454
2455 /* Don't let jump_optimize delete the handler. */
2456 LABEL_PRESERVE_P (handler_label) = 1;
2457
2458 /* Record the handler address in the stack slot for that purpose,
2459 during this block, saving and restoring the outer value. */
2460 if (thisblock->next != 0)
2461 {
2462 emit_move_insn (nonlocal_goto_handler_slot, save_receiver);
2463 emit_insn_before (gen_move_insn (save_receiver,
2464 nonlocal_goto_handler_slot),
2465 thisblock->data.block.first_insn);
2466 }
2467 emit_insn_before (gen_move_insn (nonlocal_goto_handler_slot,
2468 gen_rtx (LABEL_REF, Pmode,
2469 handler_label)),
2470 thisblock->data.block.first_insn);
2471
2472 /* Jump around the handler; it runs only when specially invoked. */
2473 emit_jump (afterward);
2474 emit_label (handler_label);
2475
2476#ifdef HAVE_nonlocal_goto
2477 if (! HAVE_nonlocal_goto)
2478#endif
2479 /* First adjust our frame pointer to its actual value. It was
2480 previously set to the start of the virtual area corresponding to
2481 the stacked variables when we branched here and now needs to be
2482 adjusted to the actual hardware fp value.
2483
2484 Assignments are to virtual registers are converted by
2485 instantiate_virtual_regs into the corresponding assignment
2486 to the underlying register (fp in this case) that makes
2487 the original assignment true.
2488 So the following insn will actually be
2489 decrementing fp by STARTING_FRAME_OFFSET. */
2490 emit_move_insn (virtual_stack_vars_rtx, frame_pointer_rtx);
2491
2492#if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
2493 if (fixed_regs[ARG_POINTER_REGNUM])
2494 {
2495 /* Now restore our arg pointer from the address at which it was saved
2496 in our stack frame.
2497 If there hasn't be space allocated for it yet, make some now. */
2498 if (arg_pointer_save_area == 0)
2499 arg_pointer_save_area
2500 = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
2501 emit_move_insn (virtual_incoming_args_rtx, arg_pointer_save_area);
2502 }
2503#endif
2504
2505 /* The handler expects the desired label address in the static chain
2506 register. It tests the address and does an appropriate jump
2507 to whatever label is desired. */
2508 for (link = nonlocal_labels; link; link = TREE_CHAIN (link))
2509 /* Skip any labels we shouldn't be able to jump to from here. */
2510 if (! DECL_TOO_LATE (TREE_VALUE (link)))
2511 {
2512 rtx not_this = gen_label_rtx ();
2513 rtx this = gen_label_rtx ();
2514 do_jump_if_equal (static_chain_rtx,
2515 gen_rtx (LABEL_REF, Pmode, DECL_RTL (TREE_VALUE (link))),
2516 this, 0);
2517 emit_jump (not_this);
2518 emit_label (this);
2519 expand_goto (TREE_VALUE (link));
2520 emit_label (not_this);
2521 }
2522 /* If label is not recognized, abort. */
2523 emit_library_call (gen_rtx (SYMBOL_REF, Pmode, "abort"), 0,
2524 VOIDmode, 0);
2525 emit_label (afterward);
2526 }
2527
2528 /* Don't allow jumping into a block that has cleanups or a stack level. */
2529 if (dont_jump_in
2530 || thisblock->data.block.stack_level != 0
2531 || thisblock->data.block.cleanups != 0)
2532 {
2533 struct label_chain *chain;
2534
2535 /* Any labels in this block are no longer valid to go to.
2536 Mark them to cause an error message. */
2537 for (chain = thisblock->data.block.label_chain; chain; chain = chain->next)
2538 {
2539 DECL_TOO_LATE (chain->label) = 1;
2540 /* If any goto without a fixup came to this label,
2541 that must be an error, because gotos without fixups
2542 come from outside all saved stack-levels and all cleanups. */
2543 if (TREE_ADDRESSABLE (chain->label))
2544 error_with_decl (chain->label,
2545 "label `%s' used before containing binding contour");
2546 }
2547 }
2548
2549 /* Restore stack level in effect before the block
2550 (only if variable-size objects allocated). */
2551 /* Perform any cleanups associated with the block. */
2552
2553 if (thisblock->data.block.stack_level != 0
2554 || thisblock->data.block.cleanups != 0)
2555 {
2556 /* Don't let cleanups affect ({...}) constructs. */
2557 int old_expr_stmts_for_value = expr_stmts_for_value;
2558 rtx old_last_expr_value = last_expr_value;
2559 tree old_last_expr_type = last_expr_type;
2560 expr_stmts_for_value = 0;
2561
2562 /* Do the cleanups. */
2563 expand_cleanups (thisblock->data.block.cleanups, 0);
2564 do_pending_stack_adjust ();
2565
2566 expr_stmts_for_value = old_expr_stmts_for_value;
2567 last_expr_value = old_last_expr_value;
2568 last_expr_type = old_last_expr_type;
2569
2570 /* Restore the stack level. */
2571
2572 if (thisblock->data.block.stack_level != 0)
2573 {
2574 emit_move_insn (stack_pointer_rtx,
2575 thisblock->data.block.stack_level);
2576 if (nonlocal_goto_stack_level != 0)
2577 emit_move_insn (nonlocal_goto_stack_level, stack_pointer_rtx);
2578 }
2579
2580 /* Any gotos out of this block must also do these things.
2581 Also report any gotos with fixups that came to labels in this level. */
2582 fixup_gotos (thisblock,
2583 thisblock->data.block.stack_level,
2584 thisblock->data.block.cleanups,
2585 thisblock->data.block.first_insn,
2586 dont_jump_in);
2587 }
2588
2589 /* If doing stupid register allocation, make sure lives of all
2590 register variables declared here extend thru end of scope. */
2591
2592 if (obey_regdecls)
2593 for (decl = vars; decl; decl = TREE_CHAIN (decl))
2594 {
2595 rtx rtl = DECL_RTL (decl);
2596 if (TREE_CODE (decl) == VAR_DECL && rtl != 0)
2597 use_variable (rtl);
2598 }
2599
2600 /* Restore block_stack level for containing block. */
2601
2602 stack_block_stack = thisblock->data.block.innermost_stack_block;
2603 POPSTACK (block_stack);
2604
2605 /* Pop the stack slot nesting and free any slots at this level. */
2606 pop_temp_slots ();
2607}
2608\f
2609/* Generate RTL for the automatic variable declaration DECL.
2610 (Other kinds of declarations are simply ignored if seen here.)
2611 CLEANUP is an expression to be executed at exit from this binding contour;
2612 for example, in C++, it might call the destructor for this variable.
2613
2614 If CLEANUP contains any SAVE_EXPRs, then you must preevaluate them
2615 either before or after calling `expand_decl' but before compiling
2616 any subsequent expressions. This is because CLEANUP may be expanded
2617 more than once, on different branches of execution.
2618 For the same reason, CLEANUP may not contain a CALL_EXPR
2619 except as its topmost node--else `preexpand_calls' would get confused.
2620
2621 If CLEANUP is nonzero and DECL is zero, we record a cleanup
2622 that is not associated with any particular variable.
2623
2624 There is no special support here for C++ constructors.
2625 They should be handled by the proper code in DECL_INITIAL. */
2626
2627void
2628expand_decl (decl)
2629 register tree decl;
2630{
2631 struct nesting *thisblock = block_stack;
2632 tree type = TREE_TYPE (decl);
2633
2634 /* Only automatic variables need any expansion done.
2635 Static and external variables, and external functions,
2636 will be handled by `assemble_variable' (called from finish_decl).
2637 TYPE_DECL and CONST_DECL require nothing.
2638 PARM_DECLs are handled in `assign_parms'. */
2639
2640 if (TREE_CODE (decl) != VAR_DECL)
2641 return;
2642 if (TREE_STATIC (decl) || TREE_EXTERNAL (decl))
2643 return;
2644
2645 /* Create the RTL representation for the variable. */
2646
2647 if (type == error_mark_node)
2648 DECL_RTL (decl) = gen_rtx (MEM, BLKmode, const0_rtx);
2649 else if (DECL_SIZE (decl) == 0)
2650 /* Variable with incomplete type. */
2651 {
2652 if (DECL_INITIAL (decl) == 0)
2653 /* Error message was already done; now avoid a crash. */
2654 DECL_RTL (decl) = assign_stack_temp (DECL_MODE (decl), 0, 1);
2655 else
2656 /* An initializer is going to decide the size of this array.
2657 Until we know the size, represent its address with a reg. */
2658 DECL_RTL (decl) = gen_rtx (MEM, BLKmode, gen_reg_rtx (Pmode));
2659 }
2660 else if (DECL_MODE (decl) != BLKmode
2661 /* If -ffloat-store, don't put explicit float vars
2662 into regs. */
2663 && !(flag_float_store
2664 && TREE_CODE (type) == REAL_TYPE)
2665 && ! TREE_THIS_VOLATILE (decl)
2666 && ! TREE_ADDRESSABLE (decl)
2667 && (TREE_REGDECL (decl) || ! obey_regdecls))
2668 {
2669 /* Automatic variable that can go in a register. */
2670 DECL_RTL (decl) = gen_reg_rtx (DECL_MODE (decl));
2671 if (TREE_CODE (type) == POINTER_TYPE)
2672 mark_reg_pointer (DECL_RTL (decl));
2673 REG_USERVAR_P (DECL_RTL (decl)) = 1;
2674 }
2675 else if (TREE_CODE (DECL_SIZE (decl)) == INTEGER_CST)
2676 {
2677 /* Variable of fixed size that goes on the stack. */
2678 rtx oldaddr = 0;
2679 rtx addr;
2680
2681 /* If we previously made RTL for this decl, it must be an array
2682 whose size was determined by the initializer.
2683 The old address was a register; set that register now
2684 to the proper address. */
2685 if (DECL_RTL (decl) != 0)
2686 {
2687 if (GET_CODE (DECL_RTL (decl)) != MEM
2688 || GET_CODE (XEXP (DECL_RTL (decl), 0)) != REG)
2689 abort ();
2690 oldaddr = XEXP (DECL_RTL (decl), 0);
2691 }
2692
2693 DECL_RTL (decl)
2694 = assign_stack_temp (DECL_MODE (decl),
2695 ((TREE_INT_CST_LOW (DECL_SIZE (decl))
2696 + BITS_PER_UNIT - 1)
2697 / BITS_PER_UNIT),
2698 1);
2699
2700 /* Set alignment we actually gave this decl. */
2701 DECL_ALIGN (decl) = (DECL_MODE (decl) == BLKmode ? BIGGEST_ALIGNMENT
2702 : GET_MODE_BITSIZE (DECL_MODE (decl)));
2703
2704 if (oldaddr)
2705 {
2706 addr = force_operand (XEXP (DECL_RTL (decl), 0), oldaddr);
2707 if (addr != oldaddr)
2708 emit_move_insn (oldaddr, addr);
2709 }
2710
2711 /* If this is a memory ref that contains aggregate components,
2712 mark it as such for cse and loop optimize. */
2713 MEM_IN_STRUCT_P (DECL_RTL (decl))
2714 = (TREE_CODE (TREE_TYPE (decl)) == ARRAY_TYPE
2715 || TREE_CODE (TREE_TYPE (decl)) == RECORD_TYPE
2716 || TREE_CODE (TREE_TYPE (decl)) == UNION_TYPE);
2717#if 0
2718 /* If this is in memory because of -ffloat-store,
2719 set the volatile bit, to prevent optimizations from
2720 undoing the effects. */
2721 if (flag_float_store && TREE_CODE (type) == REAL_TYPE)
2722 MEM_VOLATILE_P (DECL_RTL (decl)) = 1;
2723#endif
2724 }
2725 else
2726 /* Dynamic-size object: must push space on the stack. */
2727 {
2728 rtx address, size;
2729
2730 /* Record the stack pointer on entry to block, if have
2731 not already done so. */
2732 if (thisblock->data.block.stack_level == 0)
2733 {
2734 do_pending_stack_adjust ();
2735 thisblock->data.block.stack_level
2736 = copy_to_reg (stack_pointer_rtx);
2737 stack_block_stack = thisblock;
2738 }
2739
2740 /* Compute the variable's size, in bytes. */
2741 size = expand_expr (size_binop (CEIL_DIV_EXPR,
2742 DECL_SIZE (decl),
2743 size_int (BITS_PER_UNIT)),
2744 0, VOIDmode, 0);
2745 free_temp_slots ();
2746
2747 /* Allocate space on the stack for the variable. */
2748 address = allocate_dynamic_stack_space (size, 0);
2749
2750 if (nonlocal_goto_stack_level != 0)
2751 emit_move_insn (nonlocal_goto_stack_level, stack_pointer_rtx);
2752
2753 /* Reference the variable indirect through that rtx. */
2754 DECL_RTL (decl) = gen_rtx (MEM, DECL_MODE (decl), address);
2755
2756 /* Indicate the alignment we actually gave this variable. */
2757#ifdef STACK_BOUNDARY
2758 DECL_ALIGN (decl) = STACK_BOUNDARY;
2759#else
2760 DECL_ALIGN (decl) = BIGGEST_ALIGNMENT;
2761#endif
2762 }
2763
2764 if (TREE_THIS_VOLATILE (decl))
2765 MEM_VOLATILE_P (DECL_RTL (decl)) = 1;
2766 if (TREE_READONLY (decl))
2767 RTX_UNCHANGING_P (DECL_RTL (decl)) = 1;
2768
2769 /* If doing stupid register allocation, make sure life of any
2770 register variable starts here, at the start of its scope. */
2771
2772 if (obey_regdecls)
2773 use_variable (DECL_RTL (decl));
2774}
2775\f
2776/* Emit code to perform the initialization of a declaration DECL. */
2777
2778void
2779expand_decl_init (decl)
2780 tree decl;
2781{
2782 if (TREE_STATIC (decl))
2783 return;
2784
2785 /* Compute and store the initial value now. */
2786
2787 if (DECL_INITIAL (decl) == error_mark_node)
2788 {
2789 enum tree_code code = TREE_CODE (TREE_TYPE (decl));
2790 if (code == INTEGER_TYPE || code == REAL_TYPE || code == ENUMERAL_TYPE
2791 || code == POINTER_TYPE)
2792 expand_assignment (decl, convert (TREE_TYPE (decl), integer_zero_node),
2793 0, 0);
2794 emit_queue ();
2795 }
2796 else if (DECL_INITIAL (decl) && TREE_CODE (DECL_INITIAL (decl)) != TREE_LIST)
2797 {
2798 emit_line_note (DECL_SOURCE_FILE (decl), DECL_SOURCE_LINE (decl));
2799 expand_assignment (decl, DECL_INITIAL (decl), 0, 0);
2800 emit_queue ();
2801 }
2802
2803 /* Free any temporaries we made while initializing the decl. */
2804 free_temp_slots ();
2805}
2806
2807/* CLEANUP is an expression to be executed at exit from this binding contour;
2808 for example, in C++, it might call the destructor for this variable.
2809
2810 If CLEANUP contains any SAVE_EXPRs, then you must preevaluate them
2811 either before or after calling `expand_decl' but before compiling
2812 any subsequent expressions. This is because CLEANUP may be expanded
2813 more than once, on different branches of execution.
2814 For the same reason, CLEANUP may not contain a CALL_EXPR
2815 except as its topmost node--else `preexpand_calls' would get confused.
2816
2817 If CLEANUP is nonzero and DECL is zero, we record a cleanup
2818 that is not associated with any particular variable. */
2819
2820int
2821expand_decl_cleanup (decl, cleanup)
2822 tree decl, cleanup;
2823{
2824 struct nesting *thisblock = block_stack;
2825
2826 /* Error if we are not in any block. */
2827 if (thisblock == 0)
2828 return 0;
2829
2830 /* Record the cleanup if there is one. */
2831
2832 if (cleanup != 0)
2833 {
2834 thisblock->data.block.cleanups
2835 = temp_tree_cons (decl, cleanup, thisblock->data.block.cleanups);
2836 /* If this block has a cleanup, it belongs in stack_block_stack. */
2837 stack_block_stack = thisblock;
2838 }
2839 return 1;
2840}
2841\f
2842/* DECL is an anonymous union. CLEANUP is a cleanup for DECL.
2843 DECL_ELTS is the list of elements that belong to DECL's type.
2844 In each, the TREE_VALUE is a VAR_DECL, and the TREE_PURPOSE a cleanup. */
2845
2846void
2847expand_anon_union_decl (decl, cleanup, decl_elts)
2848 tree decl, cleanup, decl_elts;
2849{
2850 struct nesting *thisblock = block_stack;
2851 rtx x;
2852
2853 expand_decl (decl, cleanup);
2854 x = DECL_RTL (decl);
2855
2856 while (decl_elts)
2857 {
2858 tree decl_elt = TREE_VALUE (decl_elts);
2859 tree cleanup_elt = TREE_PURPOSE (decl_elts);
2860 enum machine_mode mode = TYPE_MODE (TREE_TYPE (decl_elt));
2861
2862 /* (SUBREG (MEM ...)) at RTL generation time is invalid, so we
2863 instead create a new MEM rtx with the proper mode. */
2864 if (GET_CODE (x) == MEM)
2865 {
2866 if (mode == GET_MODE (x))
2867 DECL_RTL (decl_elt) = x;
2868 else
2869 {
2870 DECL_RTL (decl_elt) = gen_rtx (MEM, mode, copy_rtx (XEXP (x, 0)));
2871 MEM_IN_STRUCT_P (DECL_RTL (decl_elt)) = MEM_IN_STRUCT_P (x);
2872 RTX_UNCHANGING_P (DECL_RTL (decl_elt)) = RTX_UNCHANGING_P (x);
2873 }
2874 }
2875 else if (GET_CODE (x) == REG)
2876 {
2877 if (mode == GET_MODE (x))
2878 DECL_RTL (decl_elt) = x;
2879 else
2880 DECL_RTL (decl_elt) = gen_rtx (SUBREG, mode, x, 0);
2881 }
2882 else
2883 abort ();
2884
2885 /* Record the cleanup if there is one. */
2886
2887 if (cleanup != 0)
2888 thisblock->data.block.cleanups
2889 = temp_tree_cons (decl_elt, cleanup_elt,
2890 thisblock->data.block.cleanups);
2891
2892 decl_elts = TREE_CHAIN (decl_elts);
2893 }
2894}
2895\f
2896/* Expand a list of cleanups LIST.
2897 Elements may be expressions or may be nested lists.
2898
2899 If DONT_DO is nonnull, then any list-element
2900 whose TREE_PURPOSE matches DONT_DO is omitted.
2901 This is sometimes used to avoid a cleanup associated with
2902 a value that is being returned out of the scope. */
2903
2904static void
2905expand_cleanups (list, dont_do)
2906 tree list;
2907 tree dont_do;
2908{
2909 tree tail;
2910 for (tail = list; tail; tail = TREE_CHAIN (tail))
2911 if (dont_do == 0 || TREE_PURPOSE (tail) != dont_do)
2912 {
2913 if (TREE_CODE (TREE_VALUE (tail)) == TREE_LIST)
2914 expand_cleanups (TREE_VALUE (tail), dont_do);
2915 else
2916 {
2917 /* Cleanups may be run multiple times. For example,
2918 when exiting a binding contour, we expand the
2919 cleanups associated with that contour. When a goto
2920 within that binding contour has a target outside that
2921 contour, it will expand all cleanups from its scope to
2922 the target. Though the cleanups are expanded multiple
2923 times, the control paths are non-overlapping so the
2924 cleanups will not be executed twice. */
2925 expand_expr (TREE_VALUE (tail), const0_rtx, VOIDmode, 0);
2926 free_temp_slots ();
2927 }
2928 }
2929}
2930
2931/* Expand a list of cleanups for a goto fixup.
2932 The expansion is put into the insn chain after the insn *BEFORE_JUMP
2933 and *BEFORE_JUMP is set to the insn that now comes before the jump. */
2934
2935static void
2936fixup_cleanups (list, before_jump)
2937 tree list;
2938 rtx *before_jump;
2939{
2940 rtx beyond_jump = get_last_insn ();
2941 rtx new_before_jump;
2942
2943 expand_cleanups (list, 0);
2944 /* Pop any pushes done in the cleanups,
2945 in case function is about to return. */
2946 do_pending_stack_adjust ();
2947
2948 new_before_jump = get_last_insn ();
2949
2950 if (beyond_jump != new_before_jump)
2951 {
2952 /* If cleanups expand to nothing, don't reorder. */
2953 reorder_insns (NEXT_INSN (beyond_jump), new_before_jump, *before_jump);
2954 *before_jump = new_before_jump;
2955 }
2956}
2957
2958/* Move all cleanups from the current block_stack
2959 to the containing block_stack, where they are assumed to
2960 have been created. If anything can cause a temporary to
2961 be created, but not expanded for more than one level of
2962 block_stacks, then this code will have to change. */
2963
2964void
2965move_cleanups_up ()
2966{
2967 struct nesting *block = block_stack;
2968 struct nesting *outer = block->next;
2969
2970 outer->data.block.cleanups
2971 = chainon (block->data.block.cleanups,
2972 outer->data.block.cleanups);
2973 block->data.block.cleanups = 0;
2974}
2975
2976tree
2977last_cleanup_this_contour ()
2978{
2979 if (block_stack == 0)
2980 return 0;
2981
2982 return block_stack->data.block.cleanups;
2983}
2984
2985/* Return 1 if there are any pending cleanups at this point.
2986 If THIS_CONTOUR is nonzero, check the current contour as well.
2987 Otherwise, look only at the contours that enclose this one. */
2988
2989int
2990any_pending_cleanups (this_contour)
2991 int this_contour;
2992{
2993 struct nesting *block;
2994
2995 if (block_stack == 0)
2996 return 0;
2997
2998 if (this_contour && block_stack->data.block.cleanups != NULL)
2999 return 1;
3000 if (block_stack->data.block.cleanups == 0
3001 && (block_stack->data.block.outer_cleanups == 0
3002#if 0
3003 || block_stack->data.block.outer_cleanups == empty_cleanup_list
3004#endif
3005 ))
3006 return 0;
3007
3008 for (block = block_stack->next; block; block = block->next)
3009 if (block->data.block.cleanups != 0)
3010 return 1;
3011
3012 return 0;
3013}
3014\f
3015/* Enter a case (Pascal) or switch (C) statement.
3016 Push a block onto case_stack and nesting_stack
3017 to accumulate the case-labels that are seen
3018 and to record the labels generated for the statement.
3019
3020 EXIT_FLAG is nonzero if `exit_something' should exit this case stmt.
3021 Otherwise, this construct is transparent for `exit_something'.
3022
3023 EXPR is the index-expression to be dispatched on.
3024 TYPE is its nominal type. We could simply convert EXPR to this type,
3025 but instead we take short cuts. */
3026
3027void
3028expand_start_case (exit_flag, expr, type, printname)
3029 int exit_flag;
3030 tree expr;
3031 tree type;
3032 char *printname;
3033{
3034 register struct nesting *thiscase = ALLOC_NESTING ();
3035
3036 /* Make an entry on case_stack for the case we are entering. */
3037
3038 thiscase->next = case_stack;
3039 thiscase->all = nesting_stack;
3040 thiscase->depth = ++nesting_depth;
3041 thiscase->exit_label = exit_flag ? gen_label_rtx () : 0;
3042 thiscase->data.case_stmt.case_list = 0;
3043 thiscase->data.case_stmt.index_expr = expr;
3044 thiscase->data.case_stmt.nominal_type = type;
3045 thiscase->data.case_stmt.default_label = 0;
3046 thiscase->data.case_stmt.num_ranges = 0;
3047 thiscase->data.case_stmt.printname = printname;
3048 thiscase->data.case_stmt.seenlabel = 0;
3049 case_stack = thiscase;
3050 nesting_stack = thiscase;
3051
3052 do_pending_stack_adjust ();
3053
3054 /* Make sure case_stmt.start points to something that won't
3055 need any transformation before expand_end_case. */
3056 if (GET_CODE (get_last_insn ()) != NOTE)
3057 emit_note (0, NOTE_INSN_DELETED);
3058
3059 thiscase->data.case_stmt.start = get_last_insn ();
3060}
3061
3062/* Start a "dummy case statement" within which case labels are invalid
3063 and are not connected to any larger real case statement.
3064 This can be used if you don't want to let a case statement jump
3065 into the middle of certain kinds of constructs. */
3066
3067void
3068expand_start_case_dummy ()
3069{
3070 register struct nesting *thiscase = ALLOC_NESTING ();
3071
3072 /* Make an entry on case_stack for the dummy. */
3073
3074 thiscase->next = case_stack;
3075 thiscase->all = nesting_stack;
3076 thiscase->depth = ++nesting_depth;
3077 thiscase->exit_label = 0;
3078 thiscase->data.case_stmt.case_list = 0;
3079 thiscase->data.case_stmt.start = 0;
3080 thiscase->data.case_stmt.nominal_type = 0;
3081 thiscase->data.case_stmt.default_label = 0;
3082 thiscase->data.case_stmt.num_ranges = 0;
3083 case_stack = thiscase;
3084 nesting_stack = thiscase;
3085}
3086
3087/* End a dummy case statement. */
3088
3089void
3090expand_end_case_dummy ()
3091{
3092 POPSTACK (case_stack);
3093}
3094
3095/* Return the data type of the index-expression
3096 of the innermost case statement, or null if none. */
3097
3098tree
3099case_index_expr_type ()
3100{
3101 if (case_stack)
3102 return TREE_TYPE (case_stack->data.case_stmt.index_expr);
3103 return 0;
3104}
3105\f
3106/* Accumulate one case or default label inside a case or switch statement.
3107 VALUE is the value of the case (a null pointer, for a default label).
3108
3109 If not currently inside a case or switch statement, return 1 and do
3110 nothing. The caller will print a language-specific error message.
3111 If VALUE is a duplicate or overlaps, return 2 and do nothing
3112 except store the (first) duplicate node in *DUPLICATE.
3113 If VALUE is out of range, return 3 and do nothing.
3114 If we are jumping into the scope of a cleaup or var-sized array, return 5.
3115 Return 0 on success.
3116
3117 Extended to handle range statements. */
3118
3119int
3120pushcase (value, label, duplicate)
3121 register tree value;
3122 register tree label;
3123 tree *duplicate;
3124{
3125 register struct case_node **l;
3126 register struct case_node *n;
3127 tree index_type;
3128 tree nominal_type;
3129
3130 /* Fail if not inside a real case statement. */
3131 if (! (case_stack && case_stack->data.case_stmt.start))
3132 return 1;
3133
3134 if (stack_block_stack
3135 && stack_block_stack->depth > case_stack->depth)
3136 return 5;
3137
3138 index_type = TREE_TYPE (case_stack->data.case_stmt.index_expr);
3139 nominal_type = case_stack->data.case_stmt.nominal_type;
3140
3141 /* If the index is erroneous, avoid more problems: pretend to succeed. */
3142 if (index_type == error_mark_node)
3143 return 0;
3144
3145 /* Convert VALUE to the type in which the comparisons are nominally done. */
3146 if (value != 0)
3147 value = convert (nominal_type, value);
3148
3149 /* If this is the first label, warn if any insns have been emitted. */
3150 if (case_stack->data.case_stmt.seenlabel == 0)
3151 {
3152 rtx insn;
3153 for (insn = case_stack->data.case_stmt.start;
3154 insn;
3155 insn = NEXT_INSN (insn))
3156 {
3157 if (GET_CODE (insn) == CODE_LABEL)
3158 break;
3159 if (GET_CODE (insn) != NOTE
3160 && (GET_CODE (insn) != INSN || GET_CODE (PATTERN (insn)) != USE))
3161 {
3162 warning ("unreachable code at beginning of %s",
3163 case_stack->data.case_stmt.printname);
3164 break;
3165 }
3166 }
3167 }
3168 case_stack->data.case_stmt.seenlabel = 1;
3169
3170 /* Fail if this value is out of range for the actual type of the index
3171 (which may be narrower than NOMINAL_TYPE). */
3172 if (value != 0 && ! int_fits_type_p (value, index_type))
3173 return 3;
3174
3175 /* Fail if this is a duplicate or overlaps another entry. */
3176 if (value == 0)
3177 {
3178 if (case_stack->data.case_stmt.default_label != 0)
3179 {
3180 *duplicate = case_stack->data.case_stmt.default_label;
3181 return 2;
3182 }
3183 case_stack->data.case_stmt.default_label = label;
3184 }
3185 else
3186 {
3187 /* Find the elt in the chain before which to insert the new value,
3188 to keep the chain sorted in increasing order.
3189 But report an error if this element is a duplicate. */
3190 for (l = &case_stack->data.case_stmt.case_list;
3191 /* Keep going past elements distinctly less than VALUE. */
3192 *l != 0 && tree_int_cst_lt ((*l)->high, value);
3193 l = &(*l)->right)
3194 ;
3195 if (*l)
3196 {
3197 /* Element we will insert before must be distinctly greater;
3198 overlap means error. */
3199 if (! tree_int_cst_lt (value, (*l)->low))
3200 {
3201 *duplicate = (*l)->code_label;
3202 return 2;
3203 }
3204 }
3205
3206 /* Add this label to the chain, and succeed.
3207 Copy VALUE so it is on temporary rather than momentary
3208 obstack and will thus survive till the end of the case statement. */
3209 n = (struct case_node *) oballoc (sizeof (struct case_node));
3210 n->left = 0;
3211 n->right = *l;
3212 n->high = n->low = copy_node (value);
3213 n->code_label = label;
3214 *l = n;
3215 }
3216
3217 expand_label (label);
3218 return 0;
3219}
3220
3221/* Like pushcase but this case applies to all values
3222 between VALUE1 and VALUE2 (inclusive).
3223 The return value is the same as that of pushcase
3224 but there is one additional error code:
3225 4 means the specified range was empty. */
3226
3227int
3228pushcase_range (value1, value2, label, duplicate)
3229 register tree value1, value2;
3230 register tree label;
3231 tree *duplicate;
3232{
3233 register struct case_node **l;
3234 register struct case_node *n;
3235 tree index_type;
3236 tree nominal_type;
3237
3238 /* Fail if not inside a real case statement. */
3239 if (! (case_stack && case_stack->data.case_stmt.start))
3240 return 1;
3241
3242 if (stack_block_stack
3243 && stack_block_stack->depth > case_stack->depth)
3244 return 5;
3245
3246 index_type = TREE_TYPE (case_stack->data.case_stmt.index_expr);
3247 nominal_type = case_stack->data.case_stmt.nominal_type;
3248
3249 /* If the index is erroneous, avoid more problems: pretend to succeed. */
3250 if (index_type == error_mark_node)
3251 return 0;
3252
3253 /* If this is the first label, warn if any insns have been emitted. */
3254 if (case_stack->data.case_stmt.seenlabel == 0)
3255 {
3256 rtx insn;
3257 for (insn = case_stack->data.case_stmt.start;
3258 insn;
3259 insn = NEXT_INSN (insn))
3260 {
3261 if (GET_CODE (insn) == CODE_LABEL)
3262 break;
3263 if (GET_CODE (insn) != NOTE
3264 && (GET_CODE (insn) != INSN || GET_CODE (PATTERN (insn)) != USE))
3265 {
3266 warning ("unreachable code at beginning of %s",
3267 case_stack->data.case_stmt.printname);
3268 break;
3269 }
3270 }
3271 }
3272 case_stack->data.case_stmt.seenlabel = 1;
3273
3274 /* Convert VALUEs to type in which the comparisons are nominally done. */
3275 if (value1 == 0) /* Negative infinity. */
3276 value1 = TYPE_MIN_VALUE(index_type);
3277 value1 = convert (nominal_type, value1);
3278
3279 if (value2 == 0) /* Positive infinity. */
3280 value2 = TYPE_MAX_VALUE(index_type);
3281 value2 = convert (nominal_type, value2);
3282
3283 /* Fail if these values are out of range. */
3284 if (! int_fits_type_p (value1, index_type))
3285 return 3;
3286
3287 if (! int_fits_type_p (value2, index_type))
3288 return 3;
3289
3290 /* Fail if the range is empty. */
3291 if (tree_int_cst_lt (value2, value1))
3292 return 4;
3293
3294 /* If the bounds are equal, turn this into the one-value case. */
3295 if (tree_int_cst_equal (value1, value2))
3296 return pushcase (value1, label, duplicate);
3297
3298 /* Find the elt in the chain before which to insert the new value,
3299 to keep the chain sorted in increasing order.
3300 But report an error if this element is a duplicate. */
3301 for (l = &case_stack->data.case_stmt.case_list;
3302 /* Keep going past elements distinctly less than this range. */
3303 *l != 0 && tree_int_cst_lt ((*l)->high, value1);
3304 l = &(*l)->right)
3305 ;
3306 if (*l)
3307 {
3308 /* Element we will insert before must be distinctly greater;
3309 overlap means error. */
3310 if (! tree_int_cst_lt (value2, (*l)->low))
3311 {
3312 *duplicate = (*l)->code_label;
3313 return 2;
3314 }
3315 }
3316
3317 /* Add this label to the chain, and succeed.
3318 Copy VALUE1, VALUE2 so they are on temporary rather than momentary
3319 obstack and will thus survive till the end of the case statement. */
3320
3321 n = (struct case_node *) oballoc (sizeof (struct case_node));
3322 n->left = 0;
3323 n->right = *l;
3324 n->low = copy_node (value1);
3325 n->high = copy_node (value2);
3326 n->code_label = label;
3327 *l = n;
3328
3329 expand_label (label);
3330
3331 case_stack->data.case_stmt.num_ranges++;
3332
3333 return 0;
3334}
3335\f
3336/* Called when the index of a switch statement is an enumerated type
3337 and there is no default label.
3338
3339 Checks that all enumeration literals are covered by the case
3340 expressions of a switch. Also, warn if there are any extra
3341 switch cases that are *not* elements of the enumerated type.
3342
3343 If all enumeration literals were covered by the case expressions,
3344 turn one of the expressions into the default expression since it should
3345 not be possible to fall through such a switch. */
3346
3347void
3348check_for_full_enumeration_handling (type)
3349 tree type;
3350{
3351 register struct case_node *n;
3352 register struct case_node **l;
3353 register tree chain;
3354 int all_values = 1;
3355
3356 /* The time complexity of this loop is currently O(N * M), with
3357 N being the number of enumerals in the enumerated type, and
3358 M being the number of case expressions in the switch. */
3359
3360 for (chain = TYPE_VALUES (type);
3361 chain;
3362 chain = TREE_CHAIN (chain))
3363 {
3364 /* Find a match between enumeral and case expression, if possible.
3365 Quit looking when we've gone too far (since case expressions
3366 are kept sorted in ascending order). Warn about enumerals not
3367 handled in the switch statement case expression list. */
3368
3369 for (n = case_stack->data.case_stmt.case_list;
3370 n && tree_int_cst_lt (n->high, TREE_VALUE (chain));
3371 n = n->right)
3372 ;
3373
3374 if (!(n && tree_int_cst_equal (n->low, TREE_VALUE (chain))))
3375 {
3376 if (warn_switch)
3377 warning ("enumerated value `%s' not handled in switch",
3378 IDENTIFIER_POINTER (TREE_PURPOSE (chain)));
3379 all_values = 0;
3380 }
3381 }
3382
3383 /* Now we go the other way around; we warn if there are case
3384 expressions that don't correspond to enumerals. This can
3385 occur since C and C++ don't enforce type-checking of
3386 assignments to enumeration variables. */
3387
3388 if (warn_switch)
3389 for (n = case_stack->data.case_stmt.case_list; n; n = n->right)
3390 {
3391 for (chain = TYPE_VALUES (type);
3392 chain && !tree_int_cst_equal (n->low, TREE_VALUE (chain));
3393 chain = TREE_CHAIN (chain))
3394 ;
3395
3396 if (!chain)
3397 warning ("case value `%d' not in enumerated type `%s'",
3398 TREE_INT_CST_LOW (n->low),
3399 IDENTIFIER_POINTER ((TREE_CODE (TYPE_NAME (type))
3400 == IDENTIFIER_NODE)
3401 ? TYPE_NAME (type)
3402 : DECL_NAME (TYPE_NAME (type))));
3403 }
3404
3405 /* If all values were found as case labels, make one of them the default
3406 label. Thus, this switch will never fall through. We arbitrarily pick
3407 the last one to make the default since this is likely the most
3408 efficient choice. */
3409
3410 if (all_values)
3411 {
3412 for (l = &case_stack->data.case_stmt.case_list;
3413 (*l)->right != 0;
3414 l = &(*l)->right)
3415 ;
3416
3417 case_stack->data.case_stmt.default_label = (*l)->code_label;
3418 *l = 0;
3419 }
3420}
3421\f
3422/* Terminate a case (Pascal) or switch (C) statement
3423 in which CASE_INDEX is the expression to be tested.
3424 Generate the code to test it and jump to the right place. */
3425
3426void
3427expand_end_case (orig_index)
3428 tree orig_index;
3429{
3430 tree minval, maxval, range;
3431 rtx default_label = 0;
3432 register struct case_node *n;
3433 int count;
3434 rtx index;
3435 rtx table_label = gen_label_rtx ();
3436 int ncases;
3437 rtx *labelvec;
3438 register int i;
3439 rtx before_case;
3440 register struct nesting *thiscase = case_stack;
3441 tree index_expr = thiscase->data.case_stmt.index_expr;
3442 int unsignedp = TREE_UNSIGNED (TREE_TYPE (index_expr));
3443
3444 do_pending_stack_adjust ();
3445
3446 /* An ERROR_MARK occurs for various reasons including invalid data type. */
3447 if (TREE_TYPE (index_expr) != error_mark_node)
3448 {
3449 /* If switch expression was an enumerated type, check that all
3450 enumeration literals are covered by the cases.
3451 No sense trying this if there's a default case, however. */
3452
3453 if (!thiscase->data.case_stmt.default_label
3454 && TREE_CODE (TREE_TYPE (orig_index)) == ENUMERAL_TYPE
3455 && TREE_CODE (index_expr) != INTEGER_CST)
3456 check_for_full_enumeration_handling (TREE_TYPE (orig_index));
3457
3458 /* If this is the first label, warn if any insns have been emitted. */
3459 if (thiscase->data.case_stmt.seenlabel == 0)
3460 {
3461 rtx insn;
3462 for (insn = get_last_insn ();
3463 insn != case_stack->data.case_stmt.start;
3464 insn = PREV_INSN (insn))
3465 if (GET_CODE (insn) != NOTE
3466 && (GET_CODE (insn) != INSN || GET_CODE (PATTERN (insn))!= USE))
3467 {
3468 warning ("unreachable code at beginning of %s",
3469 case_stack->data.case_stmt.printname);
3470 break;
3471 }
3472 }
3473
3474 /* If we don't have a default-label, create one here,
3475 after the body of the switch. */
3476 if (thiscase->data.case_stmt.default_label == 0)
3477 {
3478 thiscase->data.case_stmt.default_label
3479 = build_decl (LABEL_DECL, NULL_TREE, NULL_TREE);
3480 expand_label (thiscase->data.case_stmt.default_label);
3481 }
3482 default_label = label_rtx (thiscase->data.case_stmt.default_label);
3483
3484 before_case = get_last_insn ();
3485
3486 /* Simplify the case-list before we count it. */
3487 group_case_nodes (thiscase->data.case_stmt.case_list);
3488
3489 /* Get upper and lower bounds of case values.
3490 Also convert all the case values to the index expr's data type. */
3491
3492 count = 0;
3493 for (n = thiscase->data.case_stmt.case_list; n; n = n->right)
3494 {
3495 /* Check low and high label values are integers. */
3496 if (TREE_CODE (n->low) != INTEGER_CST)
3497 abort ();
3498 if (TREE_CODE (n->high) != INTEGER_CST)
3499 abort ();
3500
3501 n->low = convert (TREE_TYPE (index_expr), n->low);
3502 n->high = convert (TREE_TYPE (index_expr), n->high);
3503
3504 /* Count the elements and track the largest and smallest
3505 of them (treating them as signed even if they are not). */
3506 if (count++ == 0)
3507 {
3508 minval = n->low;
3509 maxval = n->high;
3510 }
3511 else
3512 {
3513 if (INT_CST_LT (n->low, minval))
3514 minval = n->low;
3515 if (INT_CST_LT (maxval, n->high))
3516 maxval = n->high;
3517 }
3518 /* A range counts double, since it requires two compares. */
3519 if (! tree_int_cst_equal (n->low, n->high))
3520 count++;
3521 }
3522
3523 /* Compute span of values. */
3524 if (count != 0)
3525 range = fold (build (MINUS_EXPR, TREE_TYPE (index_expr),
3526 maxval, minval));
3527
3528 if (count == 0 || TREE_CODE (TREE_TYPE (index_expr)) == ERROR_MARK)
3529 {
3530 expand_expr (index_expr, const0_rtx, VOIDmode, 0);
3531 emit_queue ();
3532 emit_jump (default_label);
3533 }
3534 /* If range of values is much bigger than number of values,
3535 make a sequence of conditional branches instead of a dispatch.
3536 If the switch-index is a constant, do it this way
3537 because we can optimize it. */
3538 else if (TREE_INT_CST_HIGH (range) != 0
3539#ifdef HAVE_casesi
3540 || (HAVE_casesi ? count < 4 : count < 5)
3541#else
3542 /* If machine does not have a case insn that compares the
3543 bounds, this means extra overhead for dispatch tables
3544 which raises the threshold for using them. */
3545 || count < 5
3546#endif
3547 || (unsigned) (TREE_INT_CST_LOW (range)) > 10 * count
3548 || TREE_CODE (index_expr) == INTEGER_CST
3549 /* This will reduce to a constant. */
3550 || (TREE_CODE (index_expr) == CALL_EXPR
de14fd73 3551 && TREE_CODE (TREE_OPERAND (index_expr, 0)) == ADDR_EXPR
28d81abb
RK
3552 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (index_expr, 0), 0)) == FUNCTION_DECL
3553 && DECL_FUNCTION_CODE (TREE_OPERAND (TREE_OPERAND (index_expr, 0), 0)) == BUILT_IN_CLASSIFY_TYPE))
3554 {
3555 index = expand_expr (index_expr, 0, VOIDmode, 0);
3556
3557 /* If the index is a short or char that we do not have
3558 an insn to handle comparisons directly, convert it to
3559 a full integer now, rather than letting each comparison
3560 generate the conversion. */
3561
3562 if (GET_MODE_CLASS (GET_MODE (index)) == MODE_INT
3563 && (cmp_optab->handlers[(int) GET_MODE(index)].insn_code
3564 == CODE_FOR_nothing))
3565 {
3566 enum machine_mode wider_mode;
3567 for (wider_mode = GET_MODE (index); wider_mode != VOIDmode;
3568 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
3569 if (cmp_optab->handlers[(int) wider_mode].insn_code
3570 != CODE_FOR_nothing)
3571 {
3572 index = convert_to_mode (wider_mode, index, unsignedp);
3573 break;
3574 }
3575 }
3576
3577 emit_queue ();
3578 do_pending_stack_adjust ();
3579
3580 index = protect_from_queue (index, 0);
3581 if (GET_CODE (index) == MEM)
3582 index = copy_to_reg (index);
3583 if (GET_CODE (index) == CONST_INT
3584 || TREE_CODE (index_expr) == INTEGER_CST)
3585 {
3586 /* Make a tree node with the proper constant value
3587 if we don't already have one. */
3588 if (TREE_CODE (index_expr) != INTEGER_CST)
3589 {
3590 index_expr
3591 = build_int_2 (INTVAL (index),
3592 !unsignedp && INTVAL (index) >= 0 ? 0 : -1);
3593 index_expr = convert (TREE_TYPE (index_expr), index_expr);
3594 }
3595
3596 /* For constant index expressions we need only
3597 issue a unconditional branch to the appropriate
3598 target code. The job of removing any unreachable
3599 code is left to the optimisation phase if the
3600 "-O" option is specified. */
3601 for (n = thiscase->data.case_stmt.case_list;
3602 n;
3603 n = n->right)
3604 {
3605 if (! tree_int_cst_lt (index_expr, n->low)
3606 && ! tree_int_cst_lt (n->high, index_expr))
3607 break;
3608 }
3609 if (n)
3610 emit_jump (label_rtx (n->code_label));
3611 else
3612 emit_jump (default_label);
3613 }
3614 else
3615 {
3616 /* If the index expression is not constant we generate
3617 a binary decision tree to select the appropriate
3618 target code. This is done as follows:
3619
3620 The list of cases is rearranged into a binary tree,
3621 nearly optimal assuming equal probability for each case.
3622
3623 The tree is transformed into RTL, eliminating
3624 redundant test conditions at the same time.
3625
3626 If program flow could reach the end of the
3627 decision tree an unconditional jump to the
3628 default code is emitted. */
3629
3630 use_cost_table
3631 = (TREE_CODE (TREE_TYPE (orig_index)) != ENUMERAL_TYPE
3632 && default_label != 0
3633 && estimate_case_costs (thiscase->data.case_stmt.case_list));
3634 balance_case_nodes (&thiscase->data.case_stmt.case_list, 0);
3635 emit_case_nodes (index, thiscase->data.case_stmt.case_list,
3636 default_label, TREE_TYPE (index_expr));
3637 emit_jump_if_reachable (default_label);
3638 }
3639 }
3640 else
3641 {
3642 int win = 0;
3643#ifdef HAVE_casesi
3644 if (HAVE_casesi)
3645 {
3646 /* Convert the index to SImode. */
3647 if (TYPE_MODE (TREE_TYPE (index_expr)) == DImode)
3648 {
3649 index_expr = build (MINUS_EXPR, TREE_TYPE (index_expr),
3650 index_expr, minval);
3651 minval = integer_zero_node;
3652 }
3653 if (TYPE_MODE (TREE_TYPE (index_expr)) != SImode)
3654 index_expr = convert (type_for_size (GET_MODE_BITSIZE (SImode), 0),
3655 index_expr);
3656 index = expand_expr (index_expr, 0, VOIDmode, 0);
3657 emit_queue ();
3658 index = protect_from_queue (index, 0);
3659 do_pending_stack_adjust ();
3660
3661 emit_jump_insn (gen_casesi (index, expand_expr (minval, 0, VOIDmode, 0),
3662 expand_expr (range, 0, VOIDmode, 0),
3663 table_label, default_label));
3664 win = 1;
3665 }
3666#endif
3667#ifdef HAVE_tablejump
3668 if (! win && HAVE_tablejump)
3669 {
3670 index_expr = convert (thiscase->data.case_stmt.nominal_type,
3671 build (MINUS_EXPR, TREE_TYPE (index_expr),
3672 index_expr, minval));
3673 index = expand_expr (index_expr, 0, VOIDmode, 0);
3674 emit_queue ();
3675 index = protect_from_queue (index, 0);
3676 do_pending_stack_adjust ();
3677
3678 do_tablejump (index,
3679 gen_rtx (CONST_INT, VOIDmode,
3680 TREE_INT_CST_LOW (range)),
3681 table_label, default_label);
3682 win = 1;
3683 }
3684#endif
3685 if (! win)
3686 abort ();
3687
3688 /* Get table of labels to jump to, in order of case index. */
3689
3690 ncases = TREE_INT_CST_LOW (range) + 1;
3691 labelvec = (rtx *) alloca (ncases * sizeof (rtx));
3692 bzero (labelvec, ncases * sizeof (rtx));
3693
3694 for (n = thiscase->data.case_stmt.case_list; n; n = n->right)
3695 {
3696 register int i
3697 = TREE_INT_CST_LOW (n->low) - TREE_INT_CST_LOW (minval);
3698
3699 while (1)
3700 {
3701 labelvec[i]
3702 = gen_rtx (LABEL_REF, Pmode, label_rtx (n->code_label));
3703 if (i + TREE_INT_CST_LOW (minval)
3704 == TREE_INT_CST_LOW (n->high))
3705 break;
3706 i++;
3707 }
3708 }
3709
3710 /* Fill in the gaps with the default. */
3711 for (i = 0; i < ncases; i++)
3712 if (labelvec[i] == 0)
3713 labelvec[i] = gen_rtx (LABEL_REF, Pmode, default_label);
3714
3715 /* Output the table */
3716 emit_label (table_label);
3717
3718 /* This would be a lot nicer if CASE_VECTOR_PC_RELATIVE
3719 were an expression, instead of a an #ifdef/#ifndef. */
3720 if (
3721#ifdef CASE_VECTOR_PC_RELATIVE
3722 1 ||
3723#endif
3724 flag_pic)
3725 emit_jump_insn (gen_rtx (ADDR_DIFF_VEC, CASE_VECTOR_MODE,
3726 gen_rtx (LABEL_REF, Pmode, table_label),
3727 gen_rtvec_v (ncases, labelvec)));
3728 else
3729 emit_jump_insn (gen_rtx (ADDR_VEC, CASE_VECTOR_MODE,
3730 gen_rtvec_v (ncases, labelvec)));
3731
3732 /* If the case insn drops through the table,
3733 after the table we must jump to the default-label.
3734 Otherwise record no drop-through after the table. */
3735#ifdef CASE_DROPS_THROUGH
3736 emit_jump (default_label);
3737#else
3738 emit_barrier ();
3739#endif
3740 }
3741
3742 reorder_insns (NEXT_INSN (before_case), get_last_insn (),
3743 thiscase->data.case_stmt.start);
3744 }
3745 if (thiscase->exit_label)
3746 emit_label (thiscase->exit_label);
3747
3748 POPSTACK (case_stack);
3749
3750 free_temp_slots ();
3751}
3752
3753/* Generate code to jump to LABEL if OP1 and OP2 are equal. */
3754
3755static void
3756do_jump_if_equal (op1, op2, label, unsignedp)
3757 rtx op1, op2, label;
3758 int unsignedp;
3759{
3760 if (GET_CODE (op1) == CONST_INT
3761 && GET_CODE (op2) == CONST_INT)
3762 {
3763 if (INTVAL (op1) == INTVAL (op2))
3764 emit_jump (label);
3765 }
3766 else
3767 {
3768 enum machine_mode mode = GET_MODE (op1);
3769 if (mode == VOIDmode)
3770 mode = GET_MODE (op2);
3771 emit_cmp_insn (op1, op2, EQ, 0, mode, unsignedp, 0);
3772 emit_jump_insn (gen_beq (label));
3773 }
3774}
3775\f
3776/* Not all case values are encountered equally. This function
3777 uses a heuristic to weight case labels, in cases where that
3778 looks like a reasonable thing to do.
3779
3780 Right now, all we try to guess is text, and we establish the
3781 following weights:
3782
3783 chars above space: 16
3784 digits: 16
3785 default: 12
3786 space, punct: 8
3787 tab: 4
3788 newline: 2
3789 other "\" chars: 1
3790 remaining chars: 0
3791
3792 If we find any cases in the switch that are not either -1 or in the range
3793 of valid ASCII characters, or are control characters other than those
3794 commonly used with "\", don't treat this switch scanning text.
3795
3796 Return 1 if these nodes are suitable for cost estimation, otherwise
3797 return 0. */
3798
3799static int
3800estimate_case_costs (node)
3801 case_node_ptr node;
3802{
3803 tree min_ascii = build_int_2 (-1, -1);
3804 tree max_ascii = convert (TREE_TYPE (node->high), build_int_2 (127, 0));
3805 case_node_ptr n;
3806 int i;
3807
3808 /* If we haven't already made the cost table, make it now. Note that the
3809 lower bound of the table is -1, not zero. */
3810
3811 if (cost_table == NULL)
3812 {
3813 cost_table = ((short *) xmalloc (129 * sizeof (short))) + 1;
3814 bzero (cost_table - 1, 129 * sizeof (short));
3815
3816 for (i = 0; i < 128; i++)
3817 {
3818 if (isalnum (i))
3819 cost_table[i] = 16;
3820 else if (ispunct (i))
3821 cost_table[i] = 8;
3822 else if (iscntrl (i))
3823 cost_table[i] = -1;
3824 }
3825
3826 cost_table[' '] = 8;
3827 cost_table['\t'] = 4;
3828 cost_table['\0'] = 4;
3829 cost_table['\n'] = 2;
3830 cost_table['\f'] = 1;
3831 cost_table['\v'] = 1;
3832 cost_table['\b'] = 1;
3833 }
3834
3835 /* See if all the case expressions look like text. It is text if the
3836 constant is >= -1 and the highest constant is <= 127. Do all comparisons
3837 as signed arithmetic since we don't want to ever access cost_table with a
3838 value less than -1. Also check that none of the constants in a range
3839 are strange control characters. */
3840
3841 for (n = node; n; n = n->right)
3842 {
3843 if ((INT_CST_LT (n->low, min_ascii)) || INT_CST_LT (max_ascii, n->high))
3844 return 0;
3845
3846 for (i = TREE_INT_CST_LOW (n->low); i <= TREE_INT_CST_LOW (n->high); i++)
3847 if (cost_table[i] < 0)
3848 return 0;
3849 }
3850
3851 /* All interesting values are within the range of interesting
3852 ASCII characters. */
3853 return 1;
3854}
3855
3856/* Scan an ordered list of case nodes
3857 combining those with consecutive values or ranges.
3858
3859 Eg. three separate entries 1: 2: 3: become one entry 1..3: */
3860
3861static void
3862group_case_nodes (head)
3863 case_node_ptr head;
3864{
3865 case_node_ptr node = head;
3866
3867 while (node)
3868 {
3869 rtx lb = next_real_insn (label_rtx (node->code_label));
3870 case_node_ptr np = node;
3871
3872 /* Try to group the successors of NODE with NODE. */
3873 while (((np = np->right) != 0)
3874 /* Do they jump to the same place? */
3875 && next_real_insn (label_rtx (np->code_label)) == lb
3876 /* Are their ranges consecutive? */
3877 && tree_int_cst_equal (np->low,
3878 fold (build (PLUS_EXPR,
3879 TREE_TYPE (node->high),
3880 node->high,
3881 integer_one_node)))
3882 /* An overflow is not consecutive. */
3883 && tree_int_cst_lt (node->high,
3884 fold (build (PLUS_EXPR,
3885 TREE_TYPE (node->high),
3886 node->high,
3887 integer_one_node))))
3888 {
3889 node->high = np->high;
3890 }
3891 /* NP is the first node after NODE which can't be grouped with it.
3892 Delete the nodes in between, and move on to that node. */
3893 node->right = np;
3894 node = np;
3895 }
3896}
3897
3898/* Take an ordered list of case nodes
3899 and transform them into a near optimal binary tree,
3900 on the assumtion that any target code selection value is as
3901 likely as any other.
3902
3903 The transformation is performed by splitting the ordered
3904 list into two equal sections plus a pivot. The parts are
3905 then attached to the pivot as left and right branches. Each
3906 branch is is then transformed recursively. */
3907
3908static void
3909balance_case_nodes (head, parent)
3910 case_node_ptr *head;
3911 case_node_ptr parent;
3912{
3913 register case_node_ptr np;
3914
3915 np = *head;
3916 if (np)
3917 {
3918 int cost = 0;
3919 int i = 0;
3920 int ranges = 0;
3921 register case_node_ptr *npp;
3922 case_node_ptr left;
3923
3924 /* Count the number of entries on branch. Also count the ranges. */
3925
3926 while (np)
3927 {
3928 if (!tree_int_cst_equal (np->low, np->high))
3929 {
3930 ranges++;
3931 if (use_cost_table)
3932 cost += cost_table[TREE_INT_CST_LOW (np->high)];
3933 }
3934
3935 if (use_cost_table)
3936 cost += cost_table[TREE_INT_CST_LOW (np->low)];
3937
3938 i++;
3939 np = np->right;
3940 }
3941
3942 if (i > 2)
3943 {
3944 /* Split this list if it is long enough for that to help. */
3945 npp = head;
3946 left = *npp;
3947 if (use_cost_table)
3948 {
3949 /* Find the place in the list that bisects the list's total cost,
3950 Here I gets half the total cost. */
3951 int n_moved = 0;
3952 i = (cost + 1) / 2;
3953 while (1)
3954 {
3955 /* Skip nodes while their cost does not reach that amount. */
3956 if (!tree_int_cst_equal ((*npp)->low, (*npp)->high))
3957 i -= cost_table[TREE_INT_CST_LOW ((*npp)->high)];
3958 i -= cost_table[TREE_INT_CST_LOW ((*npp)->low)];
3959 if (i <= 0)
3960 break;
3961 npp = &(*npp)->right;
3962 n_moved += 1;
3963 }
3964 if (n_moved == 0)
3965 {
3966 /* Leave this branch lopsided, but optimize left-hand
3967 side and fill in `parent' fields for right-hand side. */
3968 np = *head;
3969 np->parent = parent;
3970 balance_case_nodes (&np->left, np);
3971 for (; np->right; np = np->right)
3972 np->right->parent = np;
3973 return;
3974 }
3975 }
3976 /* If there are just three nodes, split at the middle one. */
3977 else if (i == 3)
3978 npp = &(*npp)->right;
3979 else
3980 {
3981 /* Find the place in the list that bisects the list's total cost,
3982 where ranges count as 2.
3983 Here I gets half the total cost. */
3984 i = (i + ranges + 1) / 2;
3985 while (1)
3986 {
3987 /* Skip nodes while their cost does not reach that amount. */
3988 if (!tree_int_cst_equal ((*npp)->low, (*npp)->high))
3989 i--;
3990 i--;
3991 if (i <= 0)
3992 break;
3993 npp = &(*npp)->right;
3994 }
3995 }
3996 *head = np = *npp;
3997 *npp = 0;
3998 np->parent = parent;
3999 np->left = left;
4000
4001 /* Optimize each of the two split parts. */
4002 balance_case_nodes (&np->left, np);
4003 balance_case_nodes (&np->right, np);
4004 }
4005 else
4006 {
4007 /* Else leave this branch as one level,
4008 but fill in `parent' fields. */
4009 np = *head;
4010 np->parent = parent;
4011 for (; np->right; np = np->right)
4012 np->right->parent = np;
4013 }
4014 }
4015}
4016\f
4017/* Search the parent sections of the case node tree
4018 to see if a test for the lower bound of NODE would be redundant.
4019 INDEX_TYPE is the type of the index expression.
4020
4021 The instructions to generate the case decision tree are
4022 output in the same order as nodes are processed so it is
4023 known that if a parent node checks the range of the current
4024 node minus one that the current node is bounded at its lower
4025 span. Thus the test would be redundant. */
4026
4027static int
4028node_has_low_bound (node, index_type)
4029 case_node_ptr node;
4030 tree index_type;
4031{
4032 tree low_minus_one;
4033 case_node_ptr pnode;
4034
4035 /* If the lower bound of this node is the lowest value in the index type,
4036 we need not test it. */
4037
4038 if (tree_int_cst_equal (node->low, TYPE_MIN_VALUE (index_type)))
4039 return 1;
4040
4041 /* If this node has a left branch, the value at the left must be less
4042 than that at this node, so it cannot be bounded at the bottom and
4043 we need not bother testing any further. */
4044
4045 if (node->left)
4046 return 0;
4047
4048 low_minus_one = fold (build (MINUS_EXPR, TREE_TYPE (node->low),
4049 node->low, integer_one_node));
4050
4051 /* If the subtraction above overflowed, we can't verify anything.
4052 Otherwise, look for a parent that tests our value - 1. */
4053
4054 if (! tree_int_cst_lt (low_minus_one, node->low))
4055 return 0;
4056
4057 for (pnode = node->parent; pnode; pnode = pnode->parent)
4058 if (tree_int_cst_equal (low_minus_one, pnode->high))
4059 return 1;
4060
4061 return 0;
4062}
4063
4064/* Search the parent sections of the case node tree
4065 to see if a test for the upper bound of NODE would be redundant.
4066 INDEX_TYPE is the type of the index expression.
4067
4068 The instructions to generate the case decision tree are
4069 output in the same order as nodes are processed so it is
4070 known that if a parent node checks the range of the current
4071 node plus one that the current node is bounded at its upper
4072 span. Thus the test would be redundant. */
4073
4074static int
4075node_has_high_bound (node, index_type)
4076 case_node_ptr node;
4077 tree index_type;
4078{
4079 tree high_plus_one;
4080 case_node_ptr pnode;
4081
4082 /* If the upper bound of this node is the highest value in the type
4083 of the index expression, we need not test against it. */
4084
4085 if (tree_int_cst_equal (node->high, TYPE_MAX_VALUE (index_type)))
4086 return 1;
4087
4088 /* If this node has a right branch, the value at the right must be greater
4089 than that at this node, so it cannot be bounded at the top and
4090 we need not bother testing any further. */
4091
4092 if (node->right)
4093 return 0;
4094
4095 high_plus_one = fold (build (PLUS_EXPR, TREE_TYPE (node->high),
4096 node->high, integer_one_node));
4097
4098 /* If the addition above overflowed, we can't verify anything.
4099 Otherwise, look for a parent that tests our value + 1. */
4100
4101 if (! tree_int_cst_lt (node->high, high_plus_one))
4102 return 0;
4103
4104 for (pnode = node->parent; pnode; pnode = pnode->parent)
4105 if (tree_int_cst_equal (high_plus_one, pnode->low))
4106 return 1;
4107
4108 return 0;
4109}
4110
4111/* Search the parent sections of the
4112 case node tree to see if both tests for the upper and lower
4113 bounds of NODE would be redundant. */
4114
4115static int
4116node_is_bounded (node, index_type)
4117 case_node_ptr node;
4118 tree index_type;
4119{
4120 return (node_has_low_bound (node, index_type)
4121 && node_has_high_bound (node, index_type));
4122}
4123
4124/* Emit an unconditional jump to LABEL unless it would be dead code. */
4125
4126static void
4127emit_jump_if_reachable (label)
4128 rtx label;
4129{
4130 if (GET_CODE (get_last_insn ()) != BARRIER)
4131 emit_jump (label);
4132}
4133\f
4134/* Emit step-by-step code to select a case for the value of INDEX.
4135 The thus generated decision tree follows the form of the
4136 case-node binary tree NODE, whose nodes represent test conditions.
4137 INDEX_TYPE is the type of the index of the switch.
4138
4139 Care is taken to prune redundant tests from the decision tree
4140 by detecting any boundary conditions already checked by
4141 emitted rtx. (See node_has_high_bound, node_has_low_bound
4142 and node_is_bounded, above.)
4143
4144 Where the test conditions can be shown to be redundant we emit
4145 an unconditional jump to the target code. As a further
4146 optimization, the subordinates of a tree node are examined to
4147 check for bounded nodes. In this case conditional and/or
4148 unconditional jumps as a result of the boundary check for the
4149 current node are arranged to target the subordinates associated
4150 code for out of bound conditions on the current node node.
4151
4152 We can asume that when control reaches the code generated here,
4153 the index value has already been compared with the parents
4154 of this node, and determined to be on the same side of each parent
4155 as this node is. Thus, if this node tests for the value 51,
4156 and a parent tested for 52, we don't need to consider
4157 the possibility of a value greater than 51. If another parent
4158 tests for the value 50, then this node need not test anything. */
4159
4160static void
4161emit_case_nodes (index, node, default_label, index_type)
4162 rtx index;
4163 case_node_ptr node;
4164 rtx default_label;
4165 tree index_type;
4166{
4167 /* If INDEX has an unsigned type, we must make unsigned branches. */
4168 int unsignedp = TREE_UNSIGNED (index_type);
4169 typedef rtx rtx_function ();
4170 rtx_function *gen_bgt_pat = unsignedp ? gen_bgtu : gen_bgt;
4171 rtx_function *gen_bge_pat = unsignedp ? gen_bgeu : gen_bge;
4172 rtx_function *gen_blt_pat = unsignedp ? gen_bltu : gen_blt;
4173 rtx_function *gen_ble_pat = unsignedp ? gen_bleu : gen_ble;
4174 enum machine_mode mode = GET_MODE (index);
4175
4176 /* See if our parents have already tested everything for us.
4177 If they have, emit an unconditional jump for this node. */
4178 if (node_is_bounded (node, index_type))
4179 emit_jump (label_rtx (node->code_label));
4180
4181 else if (tree_int_cst_equal (node->low, node->high))
4182 {
4183 /* Node is single valued. First see if the index expression matches
4184 this node and then check our children, if any. */
4185
4186 do_jump_if_equal (index, expand_expr (node->low, 0, VOIDmode, 0),
4187 label_rtx (node->code_label), unsignedp);
4188
4189 if (node->right != 0 && node->left != 0)
4190 {
4191 /* This node has children on both sides.
4192 Dispatch to one side or the other
4193 by comparing the index value with this node's value.
4194 If one subtree is bounded, check that one first,
4195 so we can avoid real branches in the tree. */
4196
4197 if (node_is_bounded (node->right, index_type))
4198 {
4199 emit_cmp_insn (index, expand_expr (node->high, 0, VOIDmode, 0),
4200 GT, 0, mode, unsignedp, 0);
4201
4202 emit_jump_insn ((*gen_bgt_pat) (label_rtx (node->right->code_label)));
4203 emit_case_nodes (index, node->left, default_label, index_type);
4204 }
4205
4206 else if (node_is_bounded (node->left, index_type))
4207 {
4208 emit_cmp_insn (index, expand_expr (node->high, 0,
4209 VOIDmode, 0),
4210 LT, 0, mode, unsignedp, 0);
4211 emit_jump_insn ((*gen_blt_pat) (label_rtx (node->left->code_label)));
4212 emit_case_nodes (index, node->right, default_label, index_type);
4213 }
4214
4215 else
4216 {
4217 /* Neither node is bounded. First distinguish the two sides;
4218 then emit the code for one side at a time. */
4219
4220 tree test_label
4221 = build_decl (LABEL_DECL, NULL_TREE, NULL_TREE);
4222
4223 /* See if the value is on the right. */
4224 emit_cmp_insn (index, expand_expr (node->high, 0,
4225 VOIDmode, 0),
4226 GT, 0, mode, unsignedp, 0);
4227 emit_jump_insn ((*gen_bgt_pat) (label_rtx (test_label)));
4228
4229 /* Value must be on the left.
4230 Handle the left-hand subtree. */
4231 emit_case_nodes (index, node->left, default_label, index_type);
4232 /* If left-hand subtree does nothing,
4233 go to default. */
4234 emit_jump_if_reachable (default_label);
4235
4236 /* Code branches here for the right-hand subtree. */
4237 expand_label (test_label);
4238 emit_case_nodes (index, node->right, default_label, index_type);
4239 }
4240 }
4241
4242 else if (node->right != 0 && node->left == 0)
4243 {
4244 /* Here we have a right child but no left so we issue conditional
4245 branch to default and process the right child.
4246
4247 Omit the conditional branch to default if we it avoid only one
4248 right child; it costs too much space to save so little time. */
4249
de14fd73 4250 if (node->right->right || node->right->left
28d81abb
RK
4251 || !tree_int_cst_equal (node->right->low, node->right->high))
4252 {
4253 if (!node_has_low_bound (node, index_type))
4254 {
4255 emit_cmp_insn (index, expand_expr (node->high, 0, VOIDmode, 0),
4256 LT, 0, mode, unsignedp, 0);
4257 emit_jump_insn ((*gen_blt_pat) (default_label));
4258 }
4259
4260 emit_case_nodes (index, node->right, default_label, index_type);
4261 }
4262 else
4263 /* We cannot process node->right normally
4264 since we haven't ruled out the numbers less than
4265 this node's value. So handle node->right explicitly. */
4266 do_jump_if_equal (index,
4267 expand_expr (node->right->low, 0, VOIDmode, 0),
4268 label_rtx (node->right->code_label), unsignedp);
4269 }
4270
4271 else if (node->right == 0 && node->left != 0)
4272 {
4273 /* Just one subtree, on the left. */
4274
de14fd73
RK
4275#if 0 /* The following code and comment were formerly part
4276 of the condition here, but they didn't work
4277 and I don't understand what the idea was. -- rms. */
4278 /* If our "most probable entry" is less probable
28d81abb
RK
4279 than the default label, emit a jump to
4280 the default label using condition codes
4281 already lying around. With no right branch,
4282 a branch-greater-than will get us to the default
4283 label correctly. */
de14fd73
RK
4284 if (use_cost_table
4285 && cost_table[TREE_INT_CST_LOW (node->high)] < 12)
4286 ;
4287#endif /* 0 */
4288 if (node->left->left || node->left->right
28d81abb
RK
4289 || !tree_int_cst_equal (node->left->low, node->left->high))
4290 {
4291 if (!node_has_high_bound (node, index_type))
4292 {
4293 emit_cmp_insn (index, expand_expr (node->high, 0, VOIDmode, 0),
4294 GT, 0, mode, unsignedp, 0);
4295 emit_jump_insn ((*gen_bgt_pat) (default_label));
4296 }
4297
4298 emit_case_nodes (index, node->left, default_label, index_type);
4299 }
4300 else
4301 /* We cannot process node->left normally
4302 since we haven't ruled out the numbers less than
4303 this node's value. So handle node->left explicitly. */
4304 do_jump_if_equal (index,
4305 expand_expr (node->left->low, 0, VOIDmode, 0),
4306 label_rtx (node->left->code_label), unsignedp);
4307 }
4308 }
4309 else
4310 {
4311 /* Node is a range. These cases are very similar to those for a single
4312 value, except that we do not start by testing whether this node
4313 is the one to branch to. */
4314
4315 if (node->right != 0 && node->left != 0)
4316 {
4317 /* Node has subtrees on both sides.
4318 If the right-hand subtree is bounded,
4319 test for it first, since we can go straight there.
4320 Otherwise, we need to make a branch in the control structure,
4321 then handle the two subtrees. */
4322 tree test_label = 0;
4323
4324 emit_cmp_insn (index, expand_expr (node->high, 0, VOIDmode, 0),
4325 GT, 0, mode, unsignedp, 0);
4326
4327 if (node_is_bounded (node->right, index_type))
4328 /* Right hand node is fully bounded so we can eliminate any
4329 testing and branch directly to the target code. */
4330 emit_jump_insn ((*gen_bgt_pat) (label_rtx (node->right->code_label)));
4331 else
4332 {
4333 /* Right hand node requires testing.
4334 Branch to a label where we will handle it later. */
4335
4336 test_label = build_decl (LABEL_DECL, NULL_TREE, NULL_TREE);
4337 emit_jump_insn ((*gen_bgt_pat) (label_rtx (test_label)));
4338 }
4339
4340 /* Value belongs to this node or to the left-hand subtree. */
4341
4342 emit_cmp_insn (index, expand_expr (node->low, 0, VOIDmode, 0),
4343 GE, 0, mode, unsignedp, 0);
4344 emit_jump_insn ((*gen_bge_pat) (label_rtx (node->code_label)));
4345
4346 /* Handle the left-hand subtree. */
4347 emit_case_nodes (index, node->left, default_label, index_type);
4348
4349 /* If right node had to be handled later, do that now. */
4350
4351 if (test_label)
4352 {
4353 /* If the left-hand subtree fell through,
4354 don't let it fall into the right-hand subtree. */
4355 emit_jump_if_reachable (default_label);
4356
4357 expand_label (test_label);
4358 emit_case_nodes (index, node->right, default_label, index_type);
4359 }
4360 }
4361
4362 else if (node->right != 0 && node->left == 0)
4363 {
4364 /* Deal with values to the left of this node,
4365 if they are possible. */
4366 if (!node_has_low_bound (node, index_type))
4367 {
4368 emit_cmp_insn (index, expand_expr (node->low, 0, VOIDmode, 0),
4369 LT, 0, mode, unsignedp, 0);
4370 emit_jump_insn ((*gen_blt_pat) (default_label));
4371 }
4372
4373 /* Value belongs to this node or to the right-hand subtree. */
4374
4375 emit_cmp_insn (index, expand_expr (node->high, 0, VOIDmode, 0),
4376 LE, 0, mode, unsignedp, 0);
4377 emit_jump_insn ((*gen_ble_pat) (label_rtx (node->code_label)));
4378
4379 emit_case_nodes (index, node->right, default_label, index_type);
4380 }
4381
4382 else if (node->right == 0 && node->left != 0)
4383 {
4384 /* Deal with values to the right of this node,
4385 if they are possible. */
4386 if (!node_has_high_bound (node, index_type))
4387 {
4388 emit_cmp_insn (index, expand_expr (node->high, 0, VOIDmode, 0),
4389 GT, 0, mode, unsignedp, 0);
4390 emit_jump_insn ((*gen_bgt_pat) (default_label));
4391 }
4392
4393 /* Value belongs to this node or to the left-hand subtree. */
4394
4395 emit_cmp_insn (index, expand_expr (node->low, 0, VOIDmode, 0),
4396 GE, 0, mode, unsignedp, 0);
4397 emit_jump_insn ((*gen_bge_pat) (label_rtx (node->code_label)));
4398
4399 emit_case_nodes (index, node->left, default_label, index_type);
4400 }
4401
4402 else
4403 {
4404 /* Node has no children so we check low and high bounds to remove
4405 redundant tests. Only one of the bounds can exist,
4406 since otherwise this node is bounded--a case tested already. */
4407
4408 if (!node_has_high_bound (node, index_type))
4409 {
4410 emit_cmp_insn (index, expand_expr (node->high, 0, VOIDmode, 0),
4411 GT, 0, mode, unsignedp, 0);
4412 emit_jump_insn ((*gen_bgt_pat) (default_label));
4413 }
4414
4415 if (!node_has_low_bound (node, index_type))
4416 {
4417 emit_cmp_insn (index, expand_expr (node->low, 0, VOIDmode, 0),
4418 LT, 0, mode, unsignedp, 0);
4419 emit_jump_insn ((*gen_blt_pat) (default_label));
4420 }
4421
4422 emit_jump (label_rtx (node->code_label));
4423 }
4424 }
4425}
4426\f
4427/* These routines are used by the loop unrolling code. They copy BLOCK trees
4428 so that the debugging info will be correct for the unrolled loop. */
4429
4430/* Indexed by loop number, contains pointer to the first block in the loop,
4431 or zero if none. Only valid if doing loop unrolling and outputting debugger
4432 info. */
4433
4434tree *loop_number_first_block;
4435
4436/* Indexed by loop number, contains pointer to the last block in the loop,
4437 only valid if loop_number_first_block is nonzero. */
4438
4439tree *loop_number_last_block;
4440
4441/* Indexed by loop number, contains nesting level of first block in the
4442 loop, if any. Only valid if doing loop unrolling and outputting debugger
4443 info. */
4444
4445int *loop_number_block_level;
4446
4447/* Scan the function looking for loops, and walk the BLOCK tree at the
4448 same time. Record the first and last BLOCK tree corresponding to each
4449 loop. This function is similar to find_and_verify_loops in loop.c. */
4450
4451void
4452find_loop_tree_blocks (f)
4453 rtx f;
4454{
4455 rtx insn;
4456 int current_loop = -1;
4457 int next_loop = -1;
4458 int loop;
4459 int block_level, tree_level;
4460 tree tree_block, parent_tree_block;
4461
4462 tree_block = DECL_INITIAL (current_function_decl);
4463 parent_tree_block = 0;
4464 block_level = 0;
4465 tree_level = -1;
4466
4467 /* Find boundaries of loops, and save the first and last BLOCK tree
4468 corresponding to each loop. */
4469
4470 for (insn = f; insn; insn = NEXT_INSN (insn))
4471 {
4472 if (GET_CODE (insn) == NOTE)
4473 switch (NOTE_LINE_NUMBER (insn))
4474 {
4475 case NOTE_INSN_LOOP_BEG:
4476 loop_number_block_level[++next_loop] = block_level;
4477 loop_number_first_block[next_loop] = 0;
4478 current_loop = next_loop;
4479 break;
4480
4481 case NOTE_INSN_LOOP_END:
4482 if (current_loop == -1)
4483 abort ();
4484
4485 current_loop = loop_outer_loop[current_loop];
4486 break;
4487
4488 case NOTE_INSN_BLOCK_BEG:
4489 if (tree_level < block_level)
4490 {
4491 /* We have seen two NOTE_INSN_BLOCK_BEG notes in a row, so
4492 we must now visit the subtree of the current block. */
4493 parent_tree_block = tree_block;
4494 tree_block = BLOCK_SUBBLOCKS (tree_block);
4495 tree_level++;
4496 }
4497 else if (tree_level > block_level)
4498 abort ();
4499
4500 /* Save this block tree here for all nested loops for which
4501 this is the topmost block. */
4502 for (loop = current_loop;
4503 loop != -1 && block_level == loop_number_block_level[loop];
4504 loop = loop_outer_loop[loop])
4505 {
4506 if (loop_number_first_block[loop] == 0)
4507 loop_number_first_block[loop] = tree_block;
4508 loop_number_last_block[loop] = tree_block;
4509 }
4510
4511 block_level++;
4512 break;
4513
4514 case NOTE_INSN_BLOCK_END:
4515 block_level--;
4516 if (tree_level > block_level)
4517 {
4518 /* We have seen two NOTE_INSN_BLOCK_END notes in a row, so
4519 we must now visit the parent of the current tree. */
4520 if (tree_block != 0 || parent_tree_block == 0)
4521 abort ();
4522 tree_block = parent_tree_block;
4523 parent_tree_block = BLOCK_SUPERCONTEXT (parent_tree_block);
4524 tree_level--;
4525 }
4526 tree_block = BLOCK_CHAIN (tree_block);
4527 break;
4528 }
4529 }
4530}
4531
4532/* This routine will make COPIES-1 copies of all BLOCK trees that correspond
4533 to BLOCK_BEG notes inside the loop LOOP_NUMBER.
4534
4535 Note that we only copy the topmost level of tree nodes; they will share
4536 pointers to the same subblocks. */
4537
4538void
4539unroll_block_trees (loop_number, copies)
4540 int loop_number;
4541 int copies;
4542{
4543 int i;
4544
4545 /* First check whether there are any blocks that need to be copied. */
4546 if (loop_number_first_block[loop_number])
4547 {
4548 tree first_block = loop_number_first_block[loop_number];
4549 tree last_block = loop_number_last_block[loop_number];
4550 tree last_block_created = 0;
4551
4552 for (i = 0; i < copies - 1; i++)
4553 {
4554 tree block = first_block;
4555 tree insert_after = last_block;
4556 tree copied_block;
4557
4558 /* Copy every block between first_block and last_block inclusive,
4559 inserting the new blocks after last_block. */
4560 do
4561 {
4562 tree new_block = make_node (BLOCK);
4563 BLOCK_VARS (new_block) = BLOCK_VARS (block);
4564 BLOCK_TYPE_TAGS (new_block) = BLOCK_TYPE_TAGS (block);
4565 BLOCK_SUBBLOCKS (new_block) = BLOCK_SUBBLOCKS (block);
4566 BLOCK_SUPERCONTEXT (new_block) = BLOCK_SUPERCONTEXT (block);
4567 TREE_USED (new_block) = TREE_USED (block);
4568
4569 /* Insert the new block after the insertion point, and move
4570 the insertion point to the new block. This ensures that
4571 the copies are inserted in the right order. */
4572 BLOCK_CHAIN (new_block) = BLOCK_CHAIN (insert_after);
4573 BLOCK_CHAIN (insert_after) = new_block;
4574 insert_after = new_block;
4575
4576 copied_block = block;
4577 block = BLOCK_CHAIN (block);
4578 }
4579 while (copied_block != last_block);
4580
4581 /* Remember the last block created, so that we can update the
4582 info in the tables. */
4583 if (last_block_created == 0)
4584 last_block_created = insert_after;
4585 }
4586
4587 /* For all nested loops for which LAST_BLOCK was originally the last
4588 block, update the tables to indicate that LAST_BLOCK_CREATED is
4589 now the last block in the loop. */
4590 for (i = loop_number; last_block == loop_number_last_block[i];
4591 i = loop_outer_loop[i])
4592 loop_number_last_block[i] = last_block_created;
4593 }
4594}
This page took 0.441712 seconds and 5 git commands to generate.