]>
Commit | Line | Data |
---|---|---|
28d81abb | 1 | /* Expands front end tree to back end RTL for GNU C-Compiler |
5b4ddd85 | 2 | Copyright (C) 1987, 88, 89, 92-5, 1996 Free Software Foundation, Inc. |
28d81abb RK |
3 | |
4 | This file is part of GNU CC. | |
5 | ||
6 | GNU CC is free software; you can redistribute it and/or modify | |
7 | it under the terms of the GNU General Public License as published by | |
8 | the Free Software Foundation; either version 2, or (at your option) | |
9 | any later version. | |
10 | ||
11 | GNU CC is distributed in the hope that it will be useful, | |
12 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
14 | GNU General Public License for more details. | |
15 | ||
16 | You should have received a copy of the GNU General Public License | |
17 | along with GNU CC; see the file COPYING. If not, write to | |
e9fa0c7c RK |
18 | the Free Software Foundation, 59 Temple Place - Suite 330, |
19 | Boston, MA 02111-1307, USA. */ | |
28d81abb RK |
20 | |
21 | ||
22 | /* This file handles the generation of rtl code from tree structure | |
23 | above the level of expressions, using subroutines in exp*.c and emit-rtl.c. | |
24 | It also creates the rtl expressions for parameters and auto variables | |
25 | and has full responsibility for allocating stack slots. | |
26 | ||
27 | The functions whose names start with `expand_' are called by the | |
28 | parser to generate RTL instructions for various kinds of constructs. | |
29 | ||
30 | Some control and binding constructs require calling several such | |
31 | functions at different times. For example, a simple if-then | |
32 | is expanded by calling `expand_start_cond' (with the condition-expression | |
33 | as argument) before parsing the then-clause and calling `expand_end_cond' | |
34 | after parsing the then-clause. */ | |
35 | ||
36 | #include "config.h" | |
37 | ||
38 | #include <stdio.h> | |
39 | #include <ctype.h> | |
40 | ||
41 | #include "rtl.h" | |
42 | #include "tree.h" | |
43 | #include "flags.h" | |
44 | #include "function.h" | |
45 | #include "insn-flags.h" | |
46 | #include "insn-config.h" | |
47 | #include "insn-codes.h" | |
48 | #include "expr.h" | |
49 | #include "hard-reg-set.h" | |
50 | #include "obstack.h" | |
51 | #include "loop.h" | |
52 | #include "recog.h" | |
ca695ac9 JB |
53 | #include "machmode.h" |
54 | ||
55 | #include "bytecode.h" | |
56 | #include "bc-typecd.h" | |
57 | #include "bc-opcode.h" | |
58 | #include "bc-optab.h" | |
59 | #include "bc-emit.h" | |
28d81abb RK |
60 | |
61 | #define obstack_chunk_alloc xmalloc | |
62 | #define obstack_chunk_free free | |
63 | struct obstack stmt_obstack; | |
64 | ||
28d81abb RK |
65 | /* Filename and line number of last line-number note, |
66 | whether we actually emitted it or not. */ | |
67 | char *emit_filename; | |
68 | int emit_lineno; | |
69 | ||
70 | /* Nonzero if within a ({...}) grouping, in which case we must | |
71 | always compute a value for each expr-stmt in case it is the last one. */ | |
72 | ||
73 | int expr_stmts_for_value; | |
74 | ||
75 | /* Each time we expand an expression-statement, | |
76 | record the expr's type and its RTL value here. */ | |
77 | ||
78 | static tree last_expr_type; | |
79 | static rtx last_expr_value; | |
80 | ||
7629c936 RS |
81 | /* Each time we expand the end of a binding contour (in `expand_end_bindings') |
82 | and we emit a new NOTE_INSN_BLOCK_END note, we save a pointer to it here. | |
83 | This is used by the `remember_end_note' function to record the endpoint | |
84 | of each generated block in its associated BLOCK node. */ | |
85 | ||
86 | static rtx last_block_end_note; | |
87 | ||
28d81abb RK |
88 | /* Number of binding contours started so far in this function. */ |
89 | ||
90 | int block_start_count; | |
91 | ||
92 | /* Nonzero if function being compiled needs to | |
93 | return the address of where it has put a structure value. */ | |
94 | ||
95 | extern int current_function_returns_pcc_struct; | |
96 | ||
97 | /* Label that will go on parm cleanup code, if any. | |
98 | Jumping to this label runs cleanup code for parameters, if | |
99 | such code must be run. Following this code is the logical return label. */ | |
100 | ||
101 | extern rtx cleanup_label; | |
102 | ||
103 | /* Label that will go on function epilogue. | |
104 | Jumping to this label serves as a "return" instruction | |
105 | on machines which require execution of the epilogue on all returns. */ | |
106 | ||
107 | extern rtx return_label; | |
108 | ||
28d81abb RK |
109 | /* Offset to end of allocated area of stack frame. |
110 | If stack grows down, this is the address of the last stack slot allocated. | |
111 | If stack grows up, this is the address for the next slot. */ | |
112 | extern int frame_offset; | |
113 | ||
114 | /* Label to jump back to for tail recursion, or 0 if we have | |
115 | not yet needed one for this function. */ | |
116 | extern rtx tail_recursion_label; | |
117 | ||
118 | /* Place after which to insert the tail_recursion_label if we need one. */ | |
119 | extern rtx tail_recursion_reentry; | |
120 | ||
121 | /* Location at which to save the argument pointer if it will need to be | |
122 | referenced. There are two cases where this is done: if nonlocal gotos | |
123 | exist, or if vars whose is an offset from the argument pointer will be | |
124 | needed by inner routines. */ | |
125 | ||
126 | extern rtx arg_pointer_save_area; | |
127 | ||
128 | /* Chain of all RTL_EXPRs that have insns in them. */ | |
129 | extern tree rtl_expr_chain; | |
130 | ||
131 | #if 0 /* Turned off because 0 seems to work just as well. */ | |
132 | /* Cleanup lists are required for binding levels regardless of whether | |
133 | that binding level has cleanups or not. This node serves as the | |
134 | cleanup list whenever an empty list is required. */ | |
135 | static tree empty_cleanup_list; | |
136 | #endif | |
61d6b1cc MS |
137 | |
138 | extern void (*interim_eh_hook) PROTO((tree)); | |
28d81abb RK |
139 | \f |
140 | /* Functions and data structures for expanding case statements. */ | |
141 | ||
142 | /* Case label structure, used to hold info on labels within case | |
143 | statements. We handle "range" labels; for a single-value label | |
144 | as in C, the high and low limits are the same. | |
145 | ||
5720c7e7 RK |
146 | An AVL tree of case nodes is initially created, and later transformed |
147 | to a list linked via the RIGHT fields in the nodes. Nodes with | |
148 | higher case values are later in the list. | |
28d81abb RK |
149 | |
150 | Switch statements can be output in one of two forms. A branch table | |
151 | is used if there are more than a few labels and the labels are dense | |
152 | within the range between the smallest and largest case value. If a | |
153 | branch table is used, no further manipulations are done with the case | |
154 | node chain. | |
155 | ||
156 | The alternative to the use of a branch table is to generate a series | |
157 | of compare and jump insns. When that is done, we use the LEFT, RIGHT, | |
158 | and PARENT fields to hold a binary tree. Initially the tree is | |
de14fd73 RK |
159 | totally unbalanced, with everything on the right. We balance the tree |
160 | with nodes on the left having lower case values than the parent | |
28d81abb RK |
161 | and nodes on the right having higher values. We then output the tree |
162 | in order. */ | |
163 | ||
164 | struct case_node | |
165 | { | |
166 | struct case_node *left; /* Left son in binary tree */ | |
167 | struct case_node *right; /* Right son in binary tree; also node chain */ | |
168 | struct case_node *parent; /* Parent of node in binary tree */ | |
169 | tree low; /* Lowest index value for this label */ | |
170 | tree high; /* Highest index value for this label */ | |
171 | tree code_label; /* Label to jump to when node matches */ | |
57641239 | 172 | int balance; |
28d81abb RK |
173 | }; |
174 | ||
175 | typedef struct case_node case_node; | |
176 | typedef struct case_node *case_node_ptr; | |
177 | ||
178 | /* These are used by estimate_case_costs and balance_case_nodes. */ | |
179 | ||
180 | /* This must be a signed type, and non-ANSI compilers lack signed char. */ | |
181 | static short *cost_table; | |
182 | static int use_cost_table; | |
28d81abb RK |
183 | \f |
184 | /* Stack of control and binding constructs we are currently inside. | |
185 | ||
186 | These constructs begin when you call `expand_start_WHATEVER' | |
187 | and end when you call `expand_end_WHATEVER'. This stack records | |
188 | info about how the construct began that tells the end-function | |
189 | what to do. It also may provide information about the construct | |
190 | to alter the behavior of other constructs within the body. | |
191 | For example, they may affect the behavior of C `break' and `continue'. | |
192 | ||
193 | Each construct gets one `struct nesting' object. | |
194 | All of these objects are chained through the `all' field. | |
195 | `nesting_stack' points to the first object (innermost construct). | |
196 | The position of an entry on `nesting_stack' is in its `depth' field. | |
197 | ||
198 | Each type of construct has its own individual stack. | |
199 | For example, loops have `loop_stack'. Each object points to the | |
200 | next object of the same type through the `next' field. | |
201 | ||
202 | Some constructs are visible to `break' exit-statements and others | |
203 | are not. Which constructs are visible depends on the language. | |
204 | Therefore, the data structure allows each construct to be visible | |
205 | or not, according to the args given when the construct is started. | |
206 | The construct is visible if the `exit_label' field is non-null. | |
207 | In that case, the value should be a CODE_LABEL rtx. */ | |
208 | ||
209 | struct nesting | |
210 | { | |
211 | struct nesting *all; | |
212 | struct nesting *next; | |
213 | int depth; | |
214 | rtx exit_label; | |
215 | union | |
216 | { | |
217 | /* For conds (if-then and if-then-else statements). */ | |
218 | struct | |
219 | { | |
220 | /* Label for the end of the if construct. | |
221 | There is none if EXITFLAG was not set | |
222 | and no `else' has been seen yet. */ | |
223 | rtx endif_label; | |
224 | /* Label for the end of this alternative. | |
0f41302f | 225 | This may be the end of the if or the next else/elseif. */ |
28d81abb RK |
226 | rtx next_label; |
227 | } cond; | |
228 | /* For loops. */ | |
229 | struct | |
230 | { | |
231 | /* Label at the top of the loop; place to loop back to. */ | |
232 | rtx start_label; | |
233 | /* Label at the end of the whole construct. */ | |
234 | rtx end_label; | |
8afad312 JW |
235 | /* Label before a jump that branches to the end of the whole |
236 | construct. This is where destructors go if any. */ | |
237 | rtx alt_end_label; | |
28d81abb RK |
238 | /* Label for `continue' statement to jump to; |
239 | this is in front of the stepper of the loop. */ | |
240 | rtx continue_label; | |
241 | } loop; | |
242 | /* For variable binding contours. */ | |
243 | struct | |
244 | { | |
245 | /* Sequence number of this binding contour within the function, | |
246 | in order of entry. */ | |
247 | int block_start_count; | |
ca695ac9 | 248 | /* Nonzero => value to restore stack to on exit. Complemented by |
0f41302f | 249 | bc_stack_level (see below) when generating bytecodes. */ |
28d81abb RK |
250 | rtx stack_level; |
251 | /* The NOTE that starts this contour. | |
252 | Used by expand_goto to check whether the destination | |
253 | is within each contour or not. */ | |
254 | rtx first_insn; | |
255 | /* Innermost containing binding contour that has a stack level. */ | |
256 | struct nesting *innermost_stack_block; | |
257 | /* List of cleanups to be run on exit from this contour. | |
258 | This is a list of expressions to be evaluated. | |
259 | The TREE_PURPOSE of each link is the ..._DECL node | |
260 | which the cleanup pertains to. */ | |
261 | tree cleanups; | |
262 | /* List of cleanup-lists of blocks containing this block, | |
263 | as they were at the locus where this block appears. | |
264 | There is an element for each containing block, | |
265 | ordered innermost containing block first. | |
266 | The tail of this list can be 0 (was empty_cleanup_list), | |
267 | if all remaining elements would be empty lists. | |
268 | The element's TREE_VALUE is the cleanup-list of that block, | |
269 | which may be null. */ | |
270 | tree outer_cleanups; | |
271 | /* Chain of labels defined inside this binding contour. | |
272 | For contours that have stack levels or cleanups. */ | |
273 | struct label_chain *label_chain; | |
274 | /* Number of function calls seen, as of start of this block. */ | |
275 | int function_call_count; | |
ca695ac9 JB |
276 | /* Bytecode specific: stack level to restore stack to on exit. */ |
277 | int bc_stack_level; | |
28d81abb RK |
278 | } block; |
279 | /* For switch (C) or case (Pascal) statements, | |
280 | and also for dummies (see `expand_start_case_dummy'). */ | |
281 | struct | |
282 | { | |
283 | /* The insn after which the case dispatch should finally | |
284 | be emitted. Zero for a dummy. */ | |
285 | rtx start; | |
ca695ac9 JB |
286 | /* For bytecodes, the case table is in-lined right in the code. |
287 | A label is needed for skipping over this block. It is only | |
0f41302f | 288 | used when generating bytecodes. */ |
ca695ac9 | 289 | rtx skip_label; |
57641239 RK |
290 | /* A list of case labels; it is first built as an AVL tree. |
291 | During expand_end_case, this is converted to a list, and may be | |
292 | rearranged into a nearly balanced binary tree. */ | |
28d81abb RK |
293 | struct case_node *case_list; |
294 | /* Label to jump to if no case matches. */ | |
295 | tree default_label; | |
296 | /* The expression to be dispatched on. */ | |
297 | tree index_expr; | |
298 | /* Type that INDEX_EXPR should be converted to. */ | |
299 | tree nominal_type; | |
300 | /* Number of range exprs in case statement. */ | |
301 | int num_ranges; | |
302 | /* Name of this kind of statement, for warnings. */ | |
303 | char *printname; | |
304 | /* Nonzero if a case label has been seen in this case stmt. */ | |
305 | char seenlabel; | |
306 | } case_stmt; | |
28d81abb RK |
307 | } data; |
308 | }; | |
309 | ||
310 | /* Chain of all pending binding contours. */ | |
311 | struct nesting *block_stack; | |
312 | ||
6ed1d6c5 RS |
313 | /* If any new stacks are added here, add them to POPSTACKS too. */ |
314 | ||
28d81abb RK |
315 | /* Chain of all pending binding contours that restore stack levels |
316 | or have cleanups. */ | |
317 | struct nesting *stack_block_stack; | |
318 | ||
319 | /* Chain of all pending conditional statements. */ | |
320 | struct nesting *cond_stack; | |
321 | ||
322 | /* Chain of all pending loops. */ | |
323 | struct nesting *loop_stack; | |
324 | ||
325 | /* Chain of all pending case or switch statements. */ | |
326 | struct nesting *case_stack; | |
327 | ||
28d81abb RK |
328 | /* Separate chain including all of the above, |
329 | chained through the `all' field. */ | |
330 | struct nesting *nesting_stack; | |
331 | ||
332 | /* Number of entries on nesting_stack now. */ | |
333 | int nesting_depth; | |
334 | ||
335 | /* Allocate and return a new `struct nesting'. */ | |
336 | ||
337 | #define ALLOC_NESTING() \ | |
338 | (struct nesting *) obstack_alloc (&stmt_obstack, sizeof (struct nesting)) | |
339 | ||
6ed1d6c5 RS |
340 | /* Pop the nesting stack element by element until we pop off |
341 | the element which is at the top of STACK. | |
342 | Update all the other stacks, popping off elements from them | |
343 | as we pop them from nesting_stack. */ | |
28d81abb RK |
344 | |
345 | #define POPSTACK(STACK) \ | |
6ed1d6c5 RS |
346 | do { struct nesting *target = STACK; \ |
347 | struct nesting *this; \ | |
348 | do { this = nesting_stack; \ | |
349 | if (loop_stack == this) \ | |
350 | loop_stack = loop_stack->next; \ | |
351 | if (cond_stack == this) \ | |
352 | cond_stack = cond_stack->next; \ | |
353 | if (block_stack == this) \ | |
354 | block_stack = block_stack->next; \ | |
355 | if (stack_block_stack == this) \ | |
356 | stack_block_stack = stack_block_stack->next; \ | |
357 | if (case_stack == this) \ | |
358 | case_stack = case_stack->next; \ | |
6ed1d6c5 | 359 | nesting_depth = nesting_stack->depth - 1; \ |
28d81abb | 360 | nesting_stack = this->all; \ |
28d81abb | 361 | obstack_free (&stmt_obstack, this); } \ |
6ed1d6c5 | 362 | while (this != target); } while (0) |
28d81abb RK |
363 | \f |
364 | /* In some cases it is impossible to generate code for a forward goto | |
365 | until the label definition is seen. This happens when it may be necessary | |
366 | for the goto to reset the stack pointer: we don't yet know how to do that. | |
367 | So expand_goto puts an entry on this fixup list. | |
368 | Each time a binding contour that resets the stack is exited, | |
369 | we check each fixup. | |
370 | If the target label has now been defined, we can insert the proper code. */ | |
371 | ||
372 | struct goto_fixup | |
373 | { | |
374 | /* Points to following fixup. */ | |
375 | struct goto_fixup *next; | |
376 | /* Points to the insn before the jump insn. | |
377 | If more code must be inserted, it goes after this insn. */ | |
378 | rtx before_jump; | |
379 | /* The LABEL_DECL that this jump is jumping to, or 0 | |
380 | for break, continue or return. */ | |
381 | tree target; | |
7629c936 RS |
382 | /* The BLOCK for the place where this goto was found. */ |
383 | tree context; | |
28d81abb RK |
384 | /* The CODE_LABEL rtx that this is jumping to. */ |
385 | rtx target_rtl; | |
386 | /* Number of binding contours started in current function | |
387 | before the label reference. */ | |
388 | int block_start_count; | |
389 | /* The outermost stack level that should be restored for this jump. | |
390 | Each time a binding contour that resets the stack is exited, | |
391 | if the target label is *not* yet defined, this slot is updated. */ | |
392 | rtx stack_level; | |
393 | /* List of lists of cleanup expressions to be run by this goto. | |
394 | There is one element for each block that this goto is within. | |
395 | The tail of this list can be 0 (was empty_cleanup_list), | |
396 | if all remaining elements would be empty. | |
397 | The TREE_VALUE contains the cleanup list of that block as of the | |
398 | time this goto was seen. | |
399 | The TREE_ADDRESSABLE flag is 1 for a block that has been exited. */ | |
400 | tree cleanup_list_list; | |
ca695ac9 JB |
401 | |
402 | /* Bytecode specific members follow */ | |
403 | ||
404 | /* The label that this jump is jumping to, or 0 for break, continue | |
405 | or return. */ | |
406 | struct bc_label *bc_target; | |
407 | ||
408 | /* The label we use for the fixup patch */ | |
409 | struct bc_label *label; | |
410 | ||
411 | /* True (non-0) if fixup has been handled */ | |
412 | int bc_handled:1; | |
413 | ||
414 | /* Like stack_level above, except refers to the interpreter stack */ | |
415 | int bc_stack_level; | |
28d81abb RK |
416 | }; |
417 | ||
418 | static struct goto_fixup *goto_fixup_chain; | |
419 | ||
420 | /* Within any binding contour that must restore a stack level, | |
421 | all labels are recorded with a chain of these structures. */ | |
422 | ||
423 | struct label_chain | |
424 | { | |
425 | /* Points to following fixup. */ | |
426 | struct label_chain *next; | |
427 | tree label; | |
428 | }; | |
cfc3d13f RK |
429 | static void expand_goto_internal PROTO((tree, rtx, rtx)); |
430 | static void bc_expand_goto_internal PROTO((enum bytecode_opcode, | |
431 | struct bc_label *, tree)); | |
432 | static int expand_fixup PROTO((tree, rtx, rtx)); | |
433 | static void bc_expand_fixup PROTO((enum bytecode_opcode, | |
434 | struct bc_label *, int)); | |
435 | static void fixup_gotos PROTO((struct nesting *, rtx, tree, | |
436 | rtx, int)); | |
437 | static void bc_fixup_gotos PROTO((struct nesting *, int, tree, | |
438 | rtx, int)); | |
cfc3d13f RK |
439 | static void bc_expand_start_cond PROTO((tree, int)); |
440 | static void bc_expand_end_cond PROTO((void)); | |
441 | static void bc_expand_start_else PROTO((void)); | |
442 | static void bc_expand_end_loop PROTO((void)); | |
443 | static void bc_expand_end_bindings PROTO((tree, int, int)); | |
444 | static void bc_expand_decl PROTO((tree, tree)); | |
445 | static void bc_expand_variable_local_init PROTO((tree)); | |
446 | static void bc_expand_decl_init PROTO((tree)); | |
447 | static void expand_null_return_1 PROTO((rtx, int)); | |
8d800403 | 448 | static void expand_value_return PROTO((rtx)); |
cfc3d13f | 449 | static int tail_recursion_args PROTO((tree, tree)); |
50d1b7a1 | 450 | static void expand_cleanups PROTO((tree, tree, int, int)); |
cfc3d13f RK |
451 | static void bc_expand_start_case PROTO((struct nesting *, tree, |
452 | tree, char *)); | |
453 | static int bc_pushcase PROTO((tree, tree)); | |
454 | static void bc_check_for_full_enumeration_handling PROTO((tree)); | |
455 | static void bc_expand_end_case PROTO((tree)); | |
456 | static void do_jump_if_equal PROTO((rtx, rtx, rtx, int)); | |
457 | static int estimate_case_costs PROTO((case_node_ptr)); | |
458 | static void group_case_nodes PROTO((case_node_ptr)); | |
459 | static void balance_case_nodes PROTO((case_node_ptr *, | |
460 | case_node_ptr)); | |
461 | static int node_has_low_bound PROTO((case_node_ptr, tree)); | |
462 | static int node_has_high_bound PROTO((case_node_ptr, tree)); | |
463 | static int node_is_bounded PROTO((case_node_ptr, tree)); | |
464 | static void emit_jump_if_reachable PROTO((rtx)); | |
465 | static void emit_case_nodes PROTO((rtx, case_node_ptr, rtx, tree)); | |
57641239 RK |
466 | static int add_case_node PROTO((tree, tree, tree, tree *)); |
467 | static struct case_node *case_tree2list PROTO((case_node *, case_node *)); | |
cfc3d13f | 468 | |
cfc3d13f RK |
469 | extern rtx bc_allocate_local (); |
470 | extern rtx bc_allocate_variable_array (); | |
28d81abb RK |
471 | \f |
472 | void | |
473 | init_stmt () | |
474 | { | |
475 | gcc_obstack_init (&stmt_obstack); | |
476 | #if 0 | |
477 | empty_cleanup_list = build_tree_list (NULL_TREE, NULL_TREE); | |
478 | #endif | |
479 | } | |
480 | ||
481 | void | |
482 | init_stmt_for_function () | |
483 | { | |
484 | /* We are not currently within any block, conditional, loop or case. */ | |
485 | block_stack = 0; | |
0b931590 | 486 | stack_block_stack = 0; |
28d81abb RK |
487 | loop_stack = 0; |
488 | case_stack = 0; | |
489 | cond_stack = 0; | |
490 | nesting_stack = 0; | |
491 | nesting_depth = 0; | |
492 | ||
493 | block_start_count = 0; | |
494 | ||
495 | /* No gotos have been expanded yet. */ | |
496 | goto_fixup_chain = 0; | |
497 | ||
498 | /* We are not processing a ({...}) grouping. */ | |
499 | expr_stmts_for_value = 0; | |
500 | last_expr_type = 0; | |
501 | } | |
502 | ||
503 | void | |
504 | save_stmt_status (p) | |
505 | struct function *p; | |
506 | { | |
507 | p->block_stack = block_stack; | |
508 | p->stack_block_stack = stack_block_stack; | |
509 | p->cond_stack = cond_stack; | |
510 | p->loop_stack = loop_stack; | |
511 | p->case_stack = case_stack; | |
512 | p->nesting_stack = nesting_stack; | |
513 | p->nesting_depth = nesting_depth; | |
514 | p->block_start_count = block_start_count; | |
515 | p->last_expr_type = last_expr_type; | |
516 | p->last_expr_value = last_expr_value; | |
517 | p->expr_stmts_for_value = expr_stmts_for_value; | |
518 | p->emit_filename = emit_filename; | |
519 | p->emit_lineno = emit_lineno; | |
520 | p->goto_fixup_chain = goto_fixup_chain; | |
521 | } | |
522 | ||
523 | void | |
524 | restore_stmt_status (p) | |
525 | struct function *p; | |
526 | { | |
527 | block_stack = p->block_stack; | |
528 | stack_block_stack = p->stack_block_stack; | |
529 | cond_stack = p->cond_stack; | |
530 | loop_stack = p->loop_stack; | |
531 | case_stack = p->case_stack; | |
532 | nesting_stack = p->nesting_stack; | |
533 | nesting_depth = p->nesting_depth; | |
534 | block_start_count = p->block_start_count; | |
535 | last_expr_type = p->last_expr_type; | |
536 | last_expr_value = p->last_expr_value; | |
537 | expr_stmts_for_value = p->expr_stmts_for_value; | |
538 | emit_filename = p->emit_filename; | |
539 | emit_lineno = p->emit_lineno; | |
540 | goto_fixup_chain = p->goto_fixup_chain; | |
541 | } | |
542 | \f | |
543 | /* Emit a no-op instruction. */ | |
544 | ||
545 | void | |
546 | emit_nop () | |
547 | { | |
ca695ac9 JB |
548 | rtx last_insn; |
549 | ||
550 | if (!output_bytecode) | |
551 | { | |
552 | last_insn = get_last_insn (); | |
553 | if (!optimize | |
554 | && (GET_CODE (last_insn) == CODE_LABEL | |
dfda5a87 RK |
555 | || (GET_CODE (last_insn) == NOTE |
556 | && prev_real_insn (last_insn) == 0))) | |
ca695ac9 JB |
557 | emit_insn (gen_nop ()); |
558 | } | |
28d81abb RK |
559 | } |
560 | \f | |
561 | /* Return the rtx-label that corresponds to a LABEL_DECL, | |
562 | creating it if necessary. */ | |
563 | ||
564 | rtx | |
565 | label_rtx (label) | |
566 | tree label; | |
567 | { | |
568 | if (TREE_CODE (label) != LABEL_DECL) | |
569 | abort (); | |
570 | ||
571 | if (DECL_RTL (label)) | |
572 | return DECL_RTL (label); | |
573 | ||
574 | return DECL_RTL (label) = gen_label_rtx (); | |
575 | } | |
576 | ||
577 | /* Add an unconditional jump to LABEL as the next sequential instruction. */ | |
578 | ||
579 | void | |
580 | emit_jump (label) | |
581 | rtx label; | |
582 | { | |
583 | do_pending_stack_adjust (); | |
584 | emit_jump_insn (gen_jump (label)); | |
585 | emit_barrier (); | |
586 | } | |
587 | ||
588 | /* Emit code to jump to the address | |
589 | specified by the pointer expression EXP. */ | |
590 | ||
591 | void | |
592 | expand_computed_goto (exp) | |
593 | tree exp; | |
594 | { | |
ca695ac9 JB |
595 | if (output_bytecode) |
596 | { | |
597 | bc_expand_expr (exp); | |
598 | bc_emit_instruction (jumpP); | |
599 | } | |
600 | else | |
601 | { | |
602 | rtx x = expand_expr (exp, NULL_RTX, VOIDmode, 0); | |
ed9a9db1 RK |
603 | |
604 | #ifdef POINTERS_EXTEND_UNSIGNED | |
605 | x = convert_memory_address (Pmode, x); | |
606 | #endif | |
ffa1a1ce RK |
607 | |
608 | emit_queue (); | |
609 | do_pending_stack_adjust (); | |
ca695ac9 JB |
610 | emit_indirect_jump (x); |
611 | } | |
28d81abb RK |
612 | } |
613 | \f | |
614 | /* Handle goto statements and the labels that they can go to. */ | |
615 | ||
616 | /* Specify the location in the RTL code of a label LABEL, | |
617 | which is a LABEL_DECL tree node. | |
618 | ||
619 | This is used for the kind of label that the user can jump to with a | |
620 | goto statement, and for alternatives of a switch or case statement. | |
621 | RTL labels generated for loops and conditionals don't go through here; | |
622 | they are generated directly at the RTL level, by other functions below. | |
623 | ||
624 | Note that this has nothing to do with defining label *names*. | |
625 | Languages vary in how they do that and what that even means. */ | |
626 | ||
627 | void | |
628 | expand_label (label) | |
629 | tree label; | |
630 | { | |
631 | struct label_chain *p; | |
632 | ||
ca695ac9 JB |
633 | if (output_bytecode) |
634 | { | |
635 | if (! DECL_RTL (label)) | |
636 | DECL_RTL (label) = bc_gen_rtx ((char *) 0, 0, bc_get_bytecode_label ()); | |
c53e9440 | 637 | if (! bc_emit_bytecode_labeldef (BYTECODE_BC_LABEL (DECL_RTL (label)))) |
ca695ac9 JB |
638 | error ("multiply defined label"); |
639 | return; | |
640 | } | |
641 | ||
28d81abb RK |
642 | do_pending_stack_adjust (); |
643 | emit_label (label_rtx (label)); | |
644 | if (DECL_NAME (label)) | |
645 | LABEL_NAME (DECL_RTL (label)) = IDENTIFIER_POINTER (DECL_NAME (label)); | |
646 | ||
647 | if (stack_block_stack != 0) | |
648 | { | |
649 | p = (struct label_chain *) oballoc (sizeof (struct label_chain)); | |
650 | p->next = stack_block_stack->data.block.label_chain; | |
651 | stack_block_stack->data.block.label_chain = p; | |
652 | p->label = label; | |
653 | } | |
654 | } | |
655 | ||
656 | /* Declare that LABEL (a LABEL_DECL) may be used for nonlocal gotos | |
657 | from nested functions. */ | |
658 | ||
659 | void | |
660 | declare_nonlocal_label (label) | |
661 | tree label; | |
662 | { | |
663 | nonlocal_labels = tree_cons (NULL_TREE, label, nonlocal_labels); | |
664 | LABEL_PRESERVE_P (label_rtx (label)) = 1; | |
665 | if (nonlocal_goto_handler_slot == 0) | |
666 | { | |
667 | nonlocal_goto_handler_slot | |
668 | = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0); | |
59257ff7 RK |
669 | emit_stack_save (SAVE_NONLOCAL, |
670 | &nonlocal_goto_stack_level, | |
671 | PREV_INSN (tail_recursion_reentry)); | |
28d81abb RK |
672 | } |
673 | } | |
674 | ||
675 | /* Generate RTL code for a `goto' statement with target label LABEL. | |
676 | LABEL should be a LABEL_DECL tree node that was or will later be | |
677 | defined with `expand_label'. */ | |
678 | ||
679 | void | |
680 | expand_goto (label) | |
681 | tree label; | |
682 | { | |
ca695ac9 JB |
683 | tree context; |
684 | ||
685 | if (output_bytecode) | |
686 | { | |
687 | expand_goto_internal (label, label_rtx (label), NULL_RTX); | |
688 | return; | |
689 | } | |
690 | ||
28d81abb | 691 | /* Check for a nonlocal goto to a containing function. */ |
ca695ac9 | 692 | context = decl_function_context (label); |
28d81abb RK |
693 | if (context != 0 && context != current_function_decl) |
694 | { | |
695 | struct function *p = find_function_data (context); | |
dd132134 | 696 | rtx label_ref = gen_rtx (LABEL_REF, Pmode, label_rtx (label)); |
28d81abb | 697 | rtx temp; |
dd132134 | 698 | |
28d81abb | 699 | p->has_nonlocal_label = 1; |
c1255328 | 700 | current_function_has_nonlocal_goto = 1; |
dd132134 | 701 | LABEL_REF_NONLOCAL_P (label_ref) = 1; |
59257ff7 RK |
702 | |
703 | /* Copy the rtl for the slots so that they won't be shared in | |
704 | case the virtual stack vars register gets instantiated differently | |
705 | in the parent than in the child. */ | |
706 | ||
28d81abb RK |
707 | #if HAVE_nonlocal_goto |
708 | if (HAVE_nonlocal_goto) | |
709 | emit_insn (gen_nonlocal_goto (lookup_static_chain (label), | |
59257ff7 RK |
710 | copy_rtx (p->nonlocal_goto_handler_slot), |
711 | copy_rtx (p->nonlocal_goto_stack_level), | |
dd132134 | 712 | label_ref)); |
28d81abb RK |
713 | else |
714 | #endif | |
715 | { | |
59257ff7 RK |
716 | rtx addr; |
717 | ||
28d81abb RK |
718 | /* Restore frame pointer for containing function. |
719 | This sets the actual hard register used for the frame pointer | |
720 | to the location of the function's incoming static chain info. | |
721 | The non-local goto handler will then adjust it to contain the | |
722 | proper value and reload the argument pointer, if needed. */ | |
a35ad168 | 723 | emit_move_insn (hard_frame_pointer_rtx, lookup_static_chain (label)); |
59257ff7 RK |
724 | |
725 | /* We have now loaded the frame pointer hardware register with | |
726 | the address of that corresponds to the start of the virtual | |
727 | stack vars. So replace virtual_stack_vars_rtx in all | |
728 | addresses we use with stack_pointer_rtx. */ | |
729 | ||
28d81abb RK |
730 | /* Get addr of containing function's current nonlocal goto handler, |
731 | which will do any cleanups and then jump to the label. */ | |
59257ff7 RK |
732 | addr = copy_rtx (p->nonlocal_goto_handler_slot); |
733 | temp = copy_to_reg (replace_rtx (addr, virtual_stack_vars_rtx, | |
a35ad168 | 734 | hard_frame_pointer_rtx)); |
59257ff7 | 735 | |
28d81abb | 736 | /* Restore the stack pointer. Note this uses fp just restored. */ |
59257ff7 RK |
737 | addr = p->nonlocal_goto_stack_level; |
738 | if (addr) | |
5e116627 | 739 | addr = replace_rtx (copy_rtx (addr), |
a35ad168 DE |
740 | virtual_stack_vars_rtx, |
741 | hard_frame_pointer_rtx); | |
59257ff7 | 742 | |
37366632 | 743 | emit_stack_restore (SAVE_NONLOCAL, addr, NULL_RTX); |
59257ff7 | 744 | |
28d81abb | 745 | /* Put in the static chain register the nonlocal label address. */ |
dd132134 | 746 | emit_move_insn (static_chain_rtx, label_ref); |
a35ad168 | 747 | /* USE of hard_frame_pointer_rtx added for consistency; not clear if |
28d81abb | 748 | really needed. */ |
a35ad168 | 749 | emit_insn (gen_rtx (USE, VOIDmode, hard_frame_pointer_rtx)); |
28d81abb RK |
750 | emit_insn (gen_rtx (USE, VOIDmode, stack_pointer_rtx)); |
751 | emit_insn (gen_rtx (USE, VOIDmode, static_chain_rtx)); | |
752 | emit_indirect_jump (temp); | |
753 | } | |
754 | } | |
755 | else | |
37366632 | 756 | expand_goto_internal (label, label_rtx (label), NULL_RTX); |
28d81abb RK |
757 | } |
758 | ||
759 | /* Generate RTL code for a `goto' statement with target label BODY. | |
760 | LABEL should be a LABEL_REF. | |
761 | LAST_INSN, if non-0, is the rtx we should consider as the last | |
762 | insn emitted (for the purposes of cleaning up a return). */ | |
763 | ||
764 | static void | |
765 | expand_goto_internal (body, label, last_insn) | |
766 | tree body; | |
767 | rtx label; | |
768 | rtx last_insn; | |
769 | { | |
770 | struct nesting *block; | |
771 | rtx stack_level = 0; | |
772 | ||
ca695ac9 JB |
773 | /* NOTICE! If a bytecode instruction other than `jump' is needed, |
774 | then the caller has to call bc_expand_goto_internal() | |
775 | directly. This is rather an exceptional case, and there aren't | |
0f41302f | 776 | that many places where this is necessary. */ |
ca695ac9 JB |
777 | if (output_bytecode) |
778 | { | |
779 | expand_goto_internal (body, label, last_insn); | |
780 | return; | |
781 | } | |
782 | ||
28d81abb RK |
783 | if (GET_CODE (label) != CODE_LABEL) |
784 | abort (); | |
785 | ||
786 | /* If label has already been defined, we can tell now | |
787 | whether and how we must alter the stack level. */ | |
788 | ||
789 | if (PREV_INSN (label) != 0) | |
790 | { | |
791 | /* Find the innermost pending block that contains the label. | |
792 | (Check containment by comparing insn-uids.) | |
793 | Then restore the outermost stack level within that block, | |
794 | and do cleanups of all blocks contained in it. */ | |
795 | for (block = block_stack; block; block = block->next) | |
796 | { | |
797 | if (INSN_UID (block->data.block.first_insn) < INSN_UID (label)) | |
798 | break; | |
799 | if (block->data.block.stack_level != 0) | |
800 | stack_level = block->data.block.stack_level; | |
801 | /* Execute the cleanups for blocks we are exiting. */ | |
802 | if (block->data.block.cleanups != 0) | |
803 | { | |
50d1b7a1 | 804 | expand_cleanups (block->data.block.cleanups, NULL_TREE, 1, 1); |
28d81abb RK |
805 | do_pending_stack_adjust (); |
806 | } | |
807 | } | |
808 | ||
809 | if (stack_level) | |
810 | { | |
0f41302f MS |
811 | /* Ensure stack adjust isn't done by emit_jump, as this |
812 | would clobber the stack pointer. This one should be | |
813 | deleted as dead by flow. */ | |
28d81abb RK |
814 | clear_pending_stack_adjust (); |
815 | do_pending_stack_adjust (); | |
37366632 | 816 | emit_stack_restore (SAVE_BLOCK, stack_level, NULL_RTX); |
28d81abb RK |
817 | } |
818 | ||
819 | if (body != 0 && DECL_TOO_LATE (body)) | |
820 | error ("jump to `%s' invalidly jumps into binding contour", | |
821 | IDENTIFIER_POINTER (DECL_NAME (body))); | |
822 | } | |
823 | /* Label not yet defined: may need to put this goto | |
824 | on the fixup list. */ | |
825 | else if (! expand_fixup (body, label, last_insn)) | |
826 | { | |
827 | /* No fixup needed. Record that the label is the target | |
828 | of at least one goto that has no fixup. */ | |
829 | if (body != 0) | |
830 | TREE_ADDRESSABLE (body) = 1; | |
831 | } | |
832 | ||
833 | emit_jump (label); | |
834 | } | |
835 | \f | |
ca695ac9 | 836 | /* Generate a jump with OPCODE to the given bytecode LABEL which is |
0f41302f | 837 | found within BODY. */ |
cfc3d13f | 838 | |
ca695ac9 JB |
839 | static void |
840 | bc_expand_goto_internal (opcode, label, body) | |
841 | enum bytecode_opcode opcode; | |
842 | struct bc_label *label; | |
843 | tree body; | |
844 | { | |
845 | struct nesting *block; | |
846 | int stack_level = -1; | |
847 | ||
848 | /* If the label is defined, adjust the stack as necessary. | |
849 | If it's not defined, we have to push the reference on the | |
0f41302f | 850 | fixup list. */ |
ca695ac9 JB |
851 | |
852 | if (label->defined) | |
853 | { | |
854 | ||
855 | /* Find the innermost pending block that contains the label. | |
856 | (Check containment by comparing bytecode uids.) Then restore the | |
857 | outermost stack level within that block. */ | |
858 | ||
859 | for (block = block_stack; block; block = block->next) | |
860 | { | |
c53e9440 | 861 | if (BYTECODE_BC_LABEL (block->data.block.first_insn)->uid < label->uid) |
ca695ac9 JB |
862 | break; |
863 | if (block->data.block.bc_stack_level) | |
864 | stack_level = block->data.block.bc_stack_level; | |
865 | ||
866 | /* Execute the cleanups for blocks we are exiting. */ | |
867 | if (block->data.block.cleanups != 0) | |
868 | { | |
50d1b7a1 | 869 | expand_cleanups (block->data.block.cleanups, NULL_TREE, 1, 1); |
ca695ac9 JB |
870 | do_pending_stack_adjust (); |
871 | } | |
872 | } | |
873 | ||
874 | /* Restore the stack level. If we need to adjust the stack, we | |
875 | must do so after the jump, since the jump may depend on | |
876 | what's on the stack. Thus, any stack-modifying conditional | |
877 | jumps (these are the only ones that rely on what's on the | |
0f41302f | 878 | stack) go into the fixup list. */ |
ca695ac9 JB |
879 | |
880 | if (stack_level >= 0 | |
881 | && stack_depth != stack_level | |
882 | && opcode != jump) | |
883 | ||
884 | bc_expand_fixup (opcode, label, stack_level); | |
885 | else | |
886 | { | |
887 | if (stack_level >= 0) | |
888 | bc_adjust_stack (stack_depth - stack_level); | |
889 | ||
890 | if (body && DECL_BIT_FIELD (body)) | |
891 | error ("jump to `%s' invalidly jumps into binding contour", | |
892 | IDENTIFIER_POINTER (DECL_NAME (body))); | |
893 | ||
894 | /* Emit immediate jump */ | |
895 | bc_emit_bytecode (opcode); | |
896 | bc_emit_bytecode_labelref (label); | |
897 | ||
898 | #ifdef DEBUG_PRINT_CODE | |
899 | fputc ('\n', stderr); | |
900 | #endif | |
901 | } | |
902 | } | |
903 | else | |
904 | /* Put goto in the fixup list */ | |
905 | bc_expand_fixup (opcode, label, stack_level); | |
906 | } | |
907 | \f | |
28d81abb RK |
908 | /* Generate if necessary a fixup for a goto |
909 | whose target label in tree structure (if any) is TREE_LABEL | |
910 | and whose target in rtl is RTL_LABEL. | |
911 | ||
912 | If LAST_INSN is nonzero, we pretend that the jump appears | |
913 | after insn LAST_INSN instead of at the current point in the insn stream. | |
914 | ||
023b57e6 RS |
915 | The fixup will be used later to insert insns just before the goto. |
916 | Those insns will restore the stack level as appropriate for the | |
917 | target label, and will (in the case of C++) also invoke any object | |
918 | destructors which have to be invoked when we exit the scopes which | |
919 | are exited by the goto. | |
28d81abb RK |
920 | |
921 | Value is nonzero if a fixup is made. */ | |
922 | ||
923 | static int | |
924 | expand_fixup (tree_label, rtl_label, last_insn) | |
925 | tree tree_label; | |
926 | rtx rtl_label; | |
927 | rtx last_insn; | |
928 | { | |
929 | struct nesting *block, *end_block; | |
930 | ||
931 | /* See if we can recognize which block the label will be output in. | |
932 | This is possible in some very common cases. | |
933 | If we succeed, set END_BLOCK to that block. | |
934 | Otherwise, set it to 0. */ | |
935 | ||
936 | if (cond_stack | |
937 | && (rtl_label == cond_stack->data.cond.endif_label | |
938 | || rtl_label == cond_stack->data.cond.next_label)) | |
939 | end_block = cond_stack; | |
940 | /* If we are in a loop, recognize certain labels which | |
941 | are likely targets. This reduces the number of fixups | |
942 | we need to create. */ | |
943 | else if (loop_stack | |
944 | && (rtl_label == loop_stack->data.loop.start_label | |
945 | || rtl_label == loop_stack->data.loop.end_label | |
946 | || rtl_label == loop_stack->data.loop.continue_label)) | |
947 | end_block = loop_stack; | |
948 | else | |
949 | end_block = 0; | |
950 | ||
951 | /* Now set END_BLOCK to the binding level to which we will return. */ | |
952 | ||
953 | if (end_block) | |
954 | { | |
955 | struct nesting *next_block = end_block->all; | |
956 | block = block_stack; | |
957 | ||
958 | /* First see if the END_BLOCK is inside the innermost binding level. | |
959 | If so, then no cleanups or stack levels are relevant. */ | |
960 | while (next_block && next_block != block) | |
961 | next_block = next_block->all; | |
962 | ||
963 | if (next_block) | |
964 | return 0; | |
965 | ||
966 | /* Otherwise, set END_BLOCK to the innermost binding level | |
967 | which is outside the relevant control-structure nesting. */ | |
968 | next_block = block_stack->next; | |
969 | for (block = block_stack; block != end_block; block = block->all) | |
970 | if (block == next_block) | |
971 | next_block = next_block->next; | |
972 | end_block = next_block; | |
973 | } | |
974 | ||
975 | /* Does any containing block have a stack level or cleanups? | |
976 | If not, no fixup is needed, and that is the normal case | |
977 | (the only case, for standard C). */ | |
978 | for (block = block_stack; block != end_block; block = block->next) | |
979 | if (block->data.block.stack_level != 0 | |
980 | || block->data.block.cleanups != 0) | |
981 | break; | |
982 | ||
983 | if (block != end_block) | |
984 | { | |
985 | /* Ok, a fixup is needed. Add a fixup to the list of such. */ | |
986 | struct goto_fixup *fixup | |
987 | = (struct goto_fixup *) oballoc (sizeof (struct goto_fixup)); | |
988 | /* In case an old stack level is restored, make sure that comes | |
989 | after any pending stack adjust. */ | |
990 | /* ?? If the fixup isn't to come at the present position, | |
991 | doing the stack adjust here isn't useful. Doing it with our | |
992 | settings at that location isn't useful either. Let's hope | |
993 | someone does it! */ | |
994 | if (last_insn == 0) | |
995 | do_pending_stack_adjust (); | |
28d81abb RK |
996 | fixup->target = tree_label; |
997 | fixup->target_rtl = rtl_label; | |
023b57e6 RS |
998 | |
999 | /* Create a BLOCK node and a corresponding matched set of | |
1000 | NOTE_INSN_BEGIN_BLOCK and NOTE_INSN_END_BLOCK notes at | |
1001 | this point. The notes will encapsulate any and all fixup | |
1002 | code which we might later insert at this point in the insn | |
1003 | stream. Also, the BLOCK node will be the parent (i.e. the | |
1004 | `SUPERBLOCK') of any other BLOCK nodes which we might create | |
1005 | later on when we are expanding the fixup code. */ | |
1006 | ||
1007 | { | |
1008 | register rtx original_before_jump | |
1009 | = last_insn ? last_insn : get_last_insn (); | |
1010 | ||
1011 | start_sequence (); | |
1012 | pushlevel (0); | |
1013 | fixup->before_jump = emit_note (NULL_PTR, NOTE_INSN_BLOCK_BEG); | |
1014 | last_block_end_note = emit_note (NULL_PTR, NOTE_INSN_BLOCK_END); | |
1015 | fixup->context = poplevel (1, 0, 0); /* Create the BLOCK node now! */ | |
1016 | end_sequence (); | |
1017 | emit_insns_after (fixup->before_jump, original_before_jump); | |
1018 | } | |
1019 | ||
28d81abb RK |
1020 | fixup->block_start_count = block_start_count; |
1021 | fixup->stack_level = 0; | |
1022 | fixup->cleanup_list_list | |
1023 | = (((block->data.block.outer_cleanups | |
1024 | #if 0 | |
1025 | && block->data.block.outer_cleanups != empty_cleanup_list | |
1026 | #endif | |
1027 | ) | |
1028 | || block->data.block.cleanups) | |
37366632 | 1029 | ? tree_cons (NULL_TREE, block->data.block.cleanups, |
28d81abb RK |
1030 | block->data.block.outer_cleanups) |
1031 | : 0); | |
1032 | fixup->next = goto_fixup_chain; | |
1033 | goto_fixup_chain = fixup; | |
1034 | } | |
1035 | ||
1036 | return block != 0; | |
1037 | } | |
1038 | ||
ca695ac9 JB |
1039 | |
1040 | /* Generate bytecode jump with OPCODE to a fixup routine that links to LABEL. | |
1041 | Make the fixup restore the stack level to STACK_LEVEL. */ | |
1042 | ||
1043 | static void | |
1044 | bc_expand_fixup (opcode, label, stack_level) | |
1045 | enum bytecode_opcode opcode; | |
1046 | struct bc_label *label; | |
1047 | int stack_level; | |
1048 | { | |
1049 | struct goto_fixup *fixup | |
1050 | = (struct goto_fixup *) oballoc (sizeof (struct goto_fixup)); | |
1051 | ||
1052 | fixup->label = bc_get_bytecode_label (); | |
1053 | fixup->bc_target = label; | |
1054 | fixup->bc_stack_level = stack_level; | |
1055 | fixup->bc_handled = FALSE; | |
1056 | ||
1057 | fixup->next = goto_fixup_chain; | |
1058 | goto_fixup_chain = fixup; | |
1059 | ||
1060 | /* Insert a jump to the fixup code */ | |
1061 | bc_emit_bytecode (opcode); | |
1062 | bc_emit_bytecode_labelref (fixup->label); | |
1063 | ||
1064 | #ifdef DEBUG_PRINT_CODE | |
1065 | fputc ('\n', stderr); | |
1066 | #endif | |
1067 | } | |
cfc3d13f RK |
1068 | \f |
1069 | /* Expand any needed fixups in the outputmost binding level of the | |
1070 | function. FIRST_INSN is the first insn in the function. */ | |
ca695ac9 | 1071 | |
cfc3d13f RK |
1072 | void |
1073 | expand_fixups (first_insn) | |
1074 | rtx first_insn; | |
1075 | { | |
1076 | fixup_gotos (NULL_PTR, NULL_RTX, NULL_TREE, first_insn, 0); | |
1077 | } | |
ca695ac9 | 1078 | |
28d81abb RK |
1079 | /* When exiting a binding contour, process all pending gotos requiring fixups. |
1080 | THISBLOCK is the structure that describes the block being exited. | |
1081 | STACK_LEVEL is the rtx for the stack level to restore exiting this contour. | |
1082 | CLEANUP_LIST is a list of expressions to evaluate on exiting this contour. | |
1083 | FIRST_INSN is the insn that began this contour. | |
1084 | ||
1085 | Gotos that jump out of this contour must restore the | |
1086 | stack level and do the cleanups before actually jumping. | |
1087 | ||
1088 | DONT_JUMP_IN nonzero means report error there is a jump into this | |
1089 | contour from before the beginning of the contour. | |
1090 | This is also done if STACK_LEVEL is nonzero. */ | |
1091 | ||
704f4dca | 1092 | static void |
28d81abb RK |
1093 | fixup_gotos (thisblock, stack_level, cleanup_list, first_insn, dont_jump_in) |
1094 | struct nesting *thisblock; | |
1095 | rtx stack_level; | |
1096 | tree cleanup_list; | |
1097 | rtx first_insn; | |
1098 | int dont_jump_in; | |
1099 | { | |
1100 | register struct goto_fixup *f, *prev; | |
1101 | ||
ca695ac9 JB |
1102 | if (output_bytecode) |
1103 | { | |
704f4dca RK |
1104 | /* ??? The second arg is the bc stack level, which is not the same |
1105 | as STACK_LEVEL. I have no idea what should go here, so I'll | |
1106 | just pass 0. */ | |
1107 | bc_fixup_gotos (thisblock, 0, cleanup_list, first_insn, dont_jump_in); | |
ca695ac9 JB |
1108 | return; |
1109 | } | |
1110 | ||
28d81abb RK |
1111 | /* F is the fixup we are considering; PREV is the previous one. */ |
1112 | /* We run this loop in two passes so that cleanups of exited blocks | |
1113 | are run first, and blocks that are exited are marked so | |
1114 | afterwards. */ | |
1115 | ||
1116 | for (prev = 0, f = goto_fixup_chain; f; prev = f, f = f->next) | |
1117 | { | |
1118 | /* Test for a fixup that is inactive because it is already handled. */ | |
1119 | if (f->before_jump == 0) | |
1120 | { | |
1121 | /* Delete inactive fixup from the chain, if that is easy to do. */ | |
1122 | if (prev != 0) | |
1123 | prev->next = f->next; | |
1124 | } | |
1125 | /* Has this fixup's target label been defined? | |
1126 | If so, we can finalize it. */ | |
1127 | else if (PREV_INSN (f->target_rtl) != 0) | |
1128 | { | |
7629c936 | 1129 | register rtx cleanup_insns; |
7629c936 | 1130 | |
28d81abb RK |
1131 | /* Get the first non-label after the label |
1132 | this goto jumps to. If that's before this scope begins, | |
1133 | we don't have a jump into the scope. */ | |
1134 | rtx after_label = f->target_rtl; | |
1135 | while (after_label != 0 && GET_CODE (after_label) == CODE_LABEL) | |
1136 | after_label = NEXT_INSN (after_label); | |
1137 | ||
1138 | /* If this fixup jumped into this contour from before the beginning | |
1139 | of this contour, report an error. */ | |
1140 | /* ??? Bug: this does not detect jumping in through intermediate | |
1141 | blocks that have stack levels or cleanups. | |
1142 | It detects only a problem with the innermost block | |
1143 | around the label. */ | |
1144 | if (f->target != 0 | |
1145 | && (dont_jump_in || stack_level || cleanup_list) | |
1146 | /* If AFTER_LABEL is 0, it means the jump goes to the end | |
1147 | of the rtl, which means it jumps into this scope. */ | |
1148 | && (after_label == 0 | |
1149 | || INSN_UID (first_insn) < INSN_UID (after_label)) | |
1150 | && INSN_UID (first_insn) > INSN_UID (f->before_jump) | |
33bc3ff5 | 1151 | && ! DECL_ERROR_ISSUED (f->target)) |
28d81abb RK |
1152 | { |
1153 | error_with_decl (f->target, | |
1154 | "label `%s' used before containing binding contour"); | |
1155 | /* Prevent multiple errors for one label. */ | |
33bc3ff5 | 1156 | DECL_ERROR_ISSUED (f->target) = 1; |
28d81abb RK |
1157 | } |
1158 | ||
7629c936 RS |
1159 | /* We will expand the cleanups into a sequence of their own and |
1160 | then later on we will attach this new sequence to the insn | |
1161 | stream just ahead of the actual jump insn. */ | |
1162 | ||
1163 | start_sequence (); | |
1164 | ||
023b57e6 RS |
1165 | /* Temporarily restore the lexical context where we will |
1166 | logically be inserting the fixup code. We do this for the | |
1167 | sake of getting the debugging information right. */ | |
1168 | ||
7629c936 | 1169 | pushlevel (0); |
023b57e6 | 1170 | set_block (f->context); |
7629c936 RS |
1171 | |
1172 | /* Expand the cleanups for blocks this jump exits. */ | |
28d81abb RK |
1173 | if (f->cleanup_list_list) |
1174 | { | |
1175 | tree lists; | |
1176 | for (lists = f->cleanup_list_list; lists; lists = TREE_CHAIN (lists)) | |
1177 | /* Marked elements correspond to blocks that have been closed. | |
1178 | Do their cleanups. */ | |
1179 | if (TREE_ADDRESSABLE (lists) | |
1180 | && TREE_VALUE (lists) != 0) | |
7629c936 | 1181 | { |
50d1b7a1 | 1182 | expand_cleanups (TREE_VALUE (lists), NULL_TREE, 1, 1); |
7629c936 RS |
1183 | /* Pop any pushes done in the cleanups, |
1184 | in case function is about to return. */ | |
1185 | do_pending_stack_adjust (); | |
1186 | } | |
28d81abb RK |
1187 | } |
1188 | ||
1189 | /* Restore stack level for the biggest contour that this | |
1190 | jump jumps out of. */ | |
1191 | if (f->stack_level) | |
59257ff7 | 1192 | emit_stack_restore (SAVE_BLOCK, f->stack_level, f->before_jump); |
7629c936 RS |
1193 | |
1194 | /* Finish up the sequence containing the insns which implement the | |
1195 | necessary cleanups, and then attach that whole sequence to the | |
1196 | insn stream just ahead of the actual jump insn. Attaching it | |
1197 | at that point insures that any cleanups which are in fact | |
1198 | implicit C++ object destructions (which must be executed upon | |
1199 | leaving the block) appear (to the debugger) to be taking place | |
1200 | in an area of the generated code where the object(s) being | |
1201 | destructed are still "in scope". */ | |
1202 | ||
1203 | cleanup_insns = get_insns (); | |
023b57e6 | 1204 | poplevel (1, 0, 0); |
7629c936 RS |
1205 | |
1206 | end_sequence (); | |
1207 | emit_insns_after (cleanup_insns, f->before_jump); | |
1208 | ||
7629c936 | 1209 | |
28d81abb RK |
1210 | f->before_jump = 0; |
1211 | } | |
1212 | } | |
1213 | ||
6bc2f582 RK |
1214 | /* For any still-undefined labels, do the cleanups for this block now. |
1215 | We must do this now since items in the cleanup list may go out | |
0f41302f | 1216 | of scope when the block ends. */ |
28d81abb RK |
1217 | for (prev = 0, f = goto_fixup_chain; f; prev = f, f = f->next) |
1218 | if (f->before_jump != 0 | |
1219 | && PREV_INSN (f->target_rtl) == 0 | |
1220 | /* Label has still not appeared. If we are exiting a block with | |
1221 | a stack level to restore, that started before the fixup, | |
1222 | mark this stack level as needing restoration | |
6bc2f582 | 1223 | when the fixup is later finalized. */ |
28d81abb | 1224 | && thisblock != 0 |
6bc2f582 RK |
1225 | /* Note: if THISBLOCK == 0 and we have a label that hasn't appeared, it |
1226 | means the label is undefined. That's erroneous, but possible. */ | |
28d81abb RK |
1227 | && (thisblock->data.block.block_start_count |
1228 | <= f->block_start_count)) | |
1229 | { | |
1230 | tree lists = f->cleanup_list_list; | |
6bc2f582 RK |
1231 | rtx cleanup_insns; |
1232 | ||
28d81abb RK |
1233 | for (; lists; lists = TREE_CHAIN (lists)) |
1234 | /* If the following elt. corresponds to our containing block | |
1235 | then the elt. must be for this block. */ | |
1236 | if (TREE_CHAIN (lists) == thisblock->data.block.outer_cleanups) | |
6bc2f582 RK |
1237 | { |
1238 | start_sequence (); | |
1239 | pushlevel (0); | |
1240 | set_block (f->context); | |
1241 | expand_cleanups (TREE_VALUE (lists), NULL_TREE, 1, 1); | |
f0959e58 | 1242 | do_pending_stack_adjust (); |
6bc2f582 RK |
1243 | cleanup_insns = get_insns (); |
1244 | poplevel (1, 0, 0); | |
1245 | end_sequence (); | |
1246 | f->before_jump | |
1247 | = emit_insns_after (cleanup_insns, f->before_jump); | |
1248 | ||
e07ed33f | 1249 | f->cleanup_list_list = TREE_CHAIN (lists); |
6bc2f582 | 1250 | } |
28d81abb RK |
1251 | |
1252 | if (stack_level) | |
1253 | f->stack_level = stack_level; | |
1254 | } | |
1255 | } | |
ca695ac9 JB |
1256 | |
1257 | ||
1258 | /* When exiting a binding contour, process all pending gotos requiring fixups. | |
1259 | Note: STACK_DEPTH is not altered. | |
1260 | ||
704f4dca RK |
1261 | The arguments are currently not used in the bytecode compiler, but we may |
1262 | need them one day for languages other than C. | |
ca695ac9 JB |
1263 | |
1264 | THISBLOCK is the structure that describes the block being exited. | |
1265 | STACK_LEVEL is the rtx for the stack level to restore exiting this contour. | |
1266 | CLEANUP_LIST is a list of expressions to evaluate on exiting this contour. | |
1267 | FIRST_INSN is the insn that began this contour. | |
1268 | ||
1269 | Gotos that jump out of this contour must restore the | |
1270 | stack level and do the cleanups before actually jumping. | |
1271 | ||
1272 | DONT_JUMP_IN nonzero means report error there is a jump into this | |
1273 | contour from before the beginning of the contour. | |
1274 | This is also done if STACK_LEVEL is nonzero. */ | |
1275 | ||
1276 | static void | |
1277 | bc_fixup_gotos (thisblock, stack_level, cleanup_list, first_insn, dont_jump_in) | |
1278 | struct nesting *thisblock; | |
1279 | int stack_level; | |
1280 | tree cleanup_list; | |
1281 | rtx first_insn; | |
1282 | int dont_jump_in; | |
1283 | { | |
1284 | register struct goto_fixup *f, *prev; | |
1285 | int saved_stack_depth; | |
1286 | ||
1287 | /* F is the fixup we are considering; PREV is the previous one. */ | |
1288 | ||
1289 | for (prev = 0, f = goto_fixup_chain; f; prev = f, f = f->next) | |
1290 | { | |
1291 | /* Test for a fixup that is inactive because it is already handled. */ | |
1292 | if (f->before_jump == 0) | |
1293 | { | |
1294 | /* Delete inactive fixup from the chain, if that is easy to do. */ | |
1295 | if (prev) | |
1296 | prev->next = f->next; | |
1297 | } | |
1298 | ||
1299 | /* Emit code to restore the stack and continue */ | |
1300 | bc_emit_bytecode_labeldef (f->label); | |
1301 | ||
1302 | /* Save stack_depth across call, since bc_adjust_stack () will alter | |
0f41302f | 1303 | the perceived stack depth via the instructions generated. */ |
ca695ac9 JB |
1304 | |
1305 | if (f->bc_stack_level >= 0) | |
1306 | { | |
1307 | saved_stack_depth = stack_depth; | |
1308 | bc_adjust_stack (stack_depth - f->bc_stack_level); | |
1309 | stack_depth = saved_stack_depth; | |
1310 | } | |
1311 | ||
1312 | bc_emit_bytecode (jump); | |
1313 | bc_emit_bytecode_labelref (f->bc_target); | |
1314 | ||
1315 | #ifdef DEBUG_PRINT_CODE | |
1316 | fputc ('\n', stderr); | |
1317 | #endif | |
1318 | } | |
1319 | ||
1320 | goto_fixup_chain = NULL; | |
1321 | } | |
28d81abb RK |
1322 | \f |
1323 | /* Generate RTL for an asm statement (explicit assembler code). | |
1324 | BODY is a STRING_CST node containing the assembler code text, | |
1325 | or an ADDR_EXPR containing a STRING_CST. */ | |
1326 | ||
1327 | void | |
1328 | expand_asm (body) | |
1329 | tree body; | |
1330 | { | |
ca695ac9 JB |
1331 | if (output_bytecode) |
1332 | { | |
e3da71ef | 1333 | error ("`asm' is invalid when generating bytecode"); |
ca695ac9 JB |
1334 | return; |
1335 | } | |
1336 | ||
28d81abb RK |
1337 | if (TREE_CODE (body) == ADDR_EXPR) |
1338 | body = TREE_OPERAND (body, 0); | |
1339 | ||
1340 | emit_insn (gen_rtx (ASM_INPUT, VOIDmode, | |
1341 | TREE_STRING_POINTER (body))); | |
1342 | last_expr_type = 0; | |
1343 | } | |
1344 | ||
1345 | /* Generate RTL for an asm statement with arguments. | |
1346 | STRING is the instruction template. | |
1347 | OUTPUTS is a list of output arguments (lvalues); INPUTS a list of inputs. | |
1348 | Each output or input has an expression in the TREE_VALUE and | |
1349 | a constraint-string in the TREE_PURPOSE. | |
1350 | CLOBBERS is a list of STRING_CST nodes each naming a hard register | |
1351 | that is clobbered by this insn. | |
1352 | ||
1353 | Not all kinds of lvalue that may appear in OUTPUTS can be stored directly. | |
1354 | Some elements of OUTPUTS may be replaced with trees representing temporary | |
1355 | values. The caller should copy those temporary values to the originally | |
1356 | specified lvalues. | |
1357 | ||
1358 | VOL nonzero means the insn is volatile; don't optimize it. */ | |
1359 | ||
1360 | void | |
1361 | expand_asm_operands (string, outputs, inputs, clobbers, vol, filename, line) | |
1362 | tree string, outputs, inputs, clobbers; | |
1363 | int vol; | |
1364 | char *filename; | |
1365 | int line; | |
1366 | { | |
1367 | rtvec argvec, constraints; | |
1368 | rtx body; | |
1369 | int ninputs = list_length (inputs); | |
1370 | int noutputs = list_length (outputs); | |
b4ccaa16 | 1371 | int nclobbers; |
28d81abb RK |
1372 | tree tail; |
1373 | register int i; | |
1374 | /* Vector of RTX's of evaluated output operands. */ | |
1375 | rtx *output_rtx = (rtx *) alloca (noutputs * sizeof (rtx)); | |
1376 | /* The insn we have emitted. */ | |
1377 | rtx insn; | |
1378 | ||
ca695ac9 JB |
1379 | if (output_bytecode) |
1380 | { | |
e3da71ef | 1381 | error ("`asm' is invalid when generating bytecode"); |
ca695ac9 JB |
1382 | return; |
1383 | } | |
1384 | ||
b4ccaa16 RS |
1385 | /* Count the number of meaningful clobbered registers, ignoring what |
1386 | we would ignore later. */ | |
1387 | nclobbers = 0; | |
1388 | for (tail = clobbers; tail; tail = TREE_CHAIN (tail)) | |
1389 | { | |
1390 | char *regname = TREE_STRING_POINTER (TREE_VALUE (tail)); | |
c09e6498 RS |
1391 | i = decode_reg_name (regname); |
1392 | if (i >= 0 || i == -4) | |
b4ccaa16 | 1393 | ++nclobbers; |
7859e3ac DE |
1394 | else if (i == -2) |
1395 | error ("unknown register name `%s' in `asm'", regname); | |
b4ccaa16 RS |
1396 | } |
1397 | ||
28d81abb RK |
1398 | last_expr_type = 0; |
1399 | ||
1400 | for (i = 0, tail = outputs; tail; tail = TREE_CHAIN (tail), i++) | |
1401 | { | |
1402 | tree val = TREE_VALUE (tail); | |
b50a024d | 1403 | tree type = TREE_TYPE (val); |
28d81abb RK |
1404 | tree val1; |
1405 | int j; | |
d09a75ae RK |
1406 | int found_equal = 0; |
1407 | int allows_reg = 0; | |
28d81abb RK |
1408 | |
1409 | /* If there's an erroneous arg, emit no insn. */ | |
1410 | if (TREE_TYPE (val) == error_mark_node) | |
1411 | return; | |
1412 | ||
d09a75ae RK |
1413 | /* Make sure constraint has `=' and does not have `+'. Also, see |
1414 | if it allows any register. Be liberal on the latter test, since | |
1415 | the worst that happens if we get it wrong is we issue an error | |
1416 | message. */ | |
28d81abb | 1417 | |
d09a75ae RK |
1418 | for (j = 0; j < TREE_STRING_LENGTH (TREE_PURPOSE (tail)) - 1; j++) |
1419 | switch (TREE_STRING_POINTER (TREE_PURPOSE (tail))[j]) | |
1420 | { | |
1421 | case '+': | |
1422 | error ("output operand constraint contains `+'"); | |
1423 | return; | |
1424 | ||
1425 | case '=': | |
28d81abb | 1426 | found_equal = 1; |
d09a75ae RK |
1427 | break; |
1428 | ||
1429 | case '?': case '!': case '*': case '%': case '&': | |
d09a75ae RK |
1430 | case 'V': case 'm': case 'o': case '<': case '>': |
1431 | case 'E': case 'F': case 'G': case 'H': case 'X': | |
1432 | case 's': case 'i': case 'n': | |
1433 | case 'I': case 'J': case 'K': case 'L': case 'M': | |
1434 | case 'N': case 'O': case 'P': case ',': | |
1435 | #ifdef EXTRA_CONSTRAINT | |
1436 | case 'Q': case 'R': case 'S': case 'T': case 'U': | |
1437 | #endif | |
1438 | break; | |
1439 | ||
1440 | case 'p': case 'g': case 'r': | |
7b7a33b3 JW |
1441 | /* Whether or not a numeric constraint allows a register is |
1442 | decided by the matching constraint, and so there is no need | |
1443 | to do anything special with them. We must handle them in | |
1444 | the default case, so that we don't unnecessarily force | |
1445 | operands to memory. */ | |
1446 | case '0': case '1': case '2': case '3': case '4': | |
d09a75ae RK |
1447 | default: |
1448 | allows_reg = 1; | |
1449 | break; | |
1450 | } | |
1451 | ||
28d81abb RK |
1452 | if (! found_equal) |
1453 | { | |
1454 | error ("output operand constraint lacks `='"); | |
1455 | return; | |
1456 | } | |
1457 | ||
d09a75ae RK |
1458 | /* If an output operand is not a decl or indirect ref and our constraint |
1459 | allows a register, make a temporary to act as an intermediate. | |
1460 | Make the asm insn write into that, then our caller will copy it to | |
1461 | the real output operand. Likewise for promoted variables. */ | |
28d81abb | 1462 | |
b50a024d RK |
1463 | if (TREE_CODE (val) == INDIRECT_REF |
1464 | || (TREE_CODE_CLASS (TREE_CODE (val)) == 'd' | |
1465 | && ! (GET_CODE (DECL_RTL (val)) == REG | |
d09a75ae RK |
1466 | && GET_MODE (DECL_RTL (val)) != TYPE_MODE (type))) |
1467 | || ! allows_reg) | |
1468 | { | |
1469 | if (! allows_reg) | |
1470 | mark_addressable (TREE_VALUE (tail)); | |
1471 | ||
1472 | output_rtx[i] | |
1473 | = expand_expr (TREE_VALUE (tail), NULL_RTX, VOIDmode, 0); | |
1474 | ||
1475 | if (! allows_reg && GET_CODE (output_rtx[i]) != MEM) | |
1476 | error ("output number %d not directly addressable", i); | |
1477 | } | |
b50a024d | 1478 | else |
e619bb8d | 1479 | { |
6e81958a | 1480 | output_rtx[i] = assign_temp (type, 0, 0, 0); |
b50a024d RK |
1481 | TREE_VALUE (tail) = make_tree (type, output_rtx[i]); |
1482 | } | |
28d81abb RK |
1483 | } |
1484 | ||
1485 | if (ninputs + noutputs > MAX_RECOG_OPERANDS) | |
1486 | { | |
1487 | error ("more than %d operands in `asm'", MAX_RECOG_OPERANDS); | |
1488 | return; | |
1489 | } | |
1490 | ||
1491 | /* Make vectors for the expression-rtx and constraint strings. */ | |
1492 | ||
1493 | argvec = rtvec_alloc (ninputs); | |
1494 | constraints = rtvec_alloc (ninputs); | |
1495 | ||
1496 | body = gen_rtx (ASM_OPERANDS, VOIDmode, | |
1497 | TREE_STRING_POINTER (string), "", 0, argvec, constraints, | |
1498 | filename, line); | |
1499 | MEM_VOLATILE_P (body) = vol; | |
1500 | ||
1501 | /* Eval the inputs and put them into ARGVEC. | |
1502 | Put their constraints into ASM_INPUTs and store in CONSTRAINTS. */ | |
1503 | ||
1504 | i = 0; | |
1505 | for (tail = inputs; tail; tail = TREE_CHAIN (tail)) | |
1506 | { | |
1507 | int j; | |
65fed0cb | 1508 | int allows_reg = 0; |
28d81abb RK |
1509 | |
1510 | /* If there's an erroneous arg, emit no insn, | |
1511 | because the ASM_INPUT would get VOIDmode | |
1512 | and that could cause a crash in reload. */ | |
1513 | if (TREE_TYPE (TREE_VALUE (tail)) == error_mark_node) | |
1514 | return; | |
1515 | if (TREE_PURPOSE (tail) == NULL_TREE) | |
1516 | { | |
1517 | error ("hard register `%s' listed as input operand to `asm'", | |
1518 | TREE_STRING_POINTER (TREE_VALUE (tail)) ); | |
1519 | return; | |
1520 | } | |
1521 | ||
1522 | /* Make sure constraint has neither `=' nor `+'. */ | |
1523 | ||
65fed0cb RK |
1524 | for (j = 0; j < TREE_STRING_LENGTH (TREE_PURPOSE (tail)) - 1; j++) |
1525 | switch (TREE_STRING_POINTER (TREE_PURPOSE (tail))[j]) | |
28d81abb | 1526 | { |
65fed0cb | 1527 | case '+': case '=': |
28d81abb RK |
1528 | error ("input operand constraint contains `%c'", |
1529 | TREE_STRING_POINTER (TREE_PURPOSE (tail))[j]); | |
1530 | return; | |
65fed0cb RK |
1531 | |
1532 | case '?': case '!': case '*': case '%': case '&': | |
65fed0cb RK |
1533 | case 'V': case 'm': case 'o': case '<': case '>': |
1534 | case 'E': case 'F': case 'G': case 'H': case 'X': | |
1535 | case 's': case 'i': case 'n': | |
1536 | case 'I': case 'J': case 'K': case 'L': case 'M': | |
1537 | case 'N': case 'O': case 'P': case ',': | |
1538 | #ifdef EXTRA_CONSTRAINT | |
1539 | case 'Q': case 'R': case 'S': case 'T': case 'U': | |
1540 | #endif | |
1541 | break; | |
1542 | ||
1543 | case 'p': case 'g': case 'r': | |
7b7a33b3 JW |
1544 | /* Whether or not a numeric constraint allows a register is |
1545 | decided by the matching constraint, and so there is no need | |
1546 | to do anything special with them. We must handle them in | |
1547 | the default case, so that we don't unnecessarily force | |
1548 | operands to memory. */ | |
1549 | case '0': case '1': case '2': case '3': case '4': | |
65fed0cb RK |
1550 | default: |
1551 | allows_reg = 1; | |
1552 | break; | |
28d81abb RK |
1553 | } |
1554 | ||
65fed0cb RK |
1555 | if (! allows_reg) |
1556 | mark_addressable (TREE_VALUE (tail)); | |
1557 | ||
28d81abb | 1558 | XVECEXP (body, 3, i) /* argvec */ |
37366632 | 1559 | = expand_expr (TREE_VALUE (tail), NULL_RTX, VOIDmode, 0); |
76ebc969 RK |
1560 | if (CONSTANT_P (XVECEXP (body, 3, i)) |
1561 | && ! general_operand (XVECEXP (body, 3, i), | |
1562 | TYPE_MODE (TREE_TYPE (TREE_VALUE (tail))))) | |
65fed0cb RK |
1563 | { |
1564 | if (allows_reg) | |
1565 | XVECEXP (body, 3, i) | |
1566 | = force_reg (TYPE_MODE (TREE_TYPE (TREE_VALUE (tail))), | |
1567 | XVECEXP (body, 3, i)); | |
1568 | else | |
1569 | XVECEXP (body, 3, i) | |
1570 | = force_const_mem (TYPE_MODE (TREE_TYPE (TREE_VALUE (tail))), | |
1571 | XVECEXP (body, 3, i)); | |
1572 | } | |
1573 | ||
1574 | if (! allows_reg | |
1575 | && (GET_CODE (XVECEXP (body, 3, i)) == REG | |
1576 | || GET_CODE (XVECEXP (body, 3, i)) == SUBREG | |
1577 | || GET_CODE (XVECEXP (body, 3, i)) == CONCAT)) | |
1578 | { | |
1579 | tree type = TREE_TYPE (TREE_VALUE (tail)); | |
6e81958a | 1580 | rtx memloc = assign_temp (type, 1, 1, 1); |
65fed0cb | 1581 | |
65fed0cb RK |
1582 | emit_move_insn (memloc, XVECEXP (body, 3, i)); |
1583 | XVECEXP (body, 3, i) = memloc; | |
1584 | } | |
1585 | ||
28d81abb RK |
1586 | XVECEXP (body, 4, i) /* constraints */ |
1587 | = gen_rtx (ASM_INPUT, TYPE_MODE (TREE_TYPE (TREE_VALUE (tail))), | |
1588 | TREE_STRING_POINTER (TREE_PURPOSE (tail))); | |
1589 | i++; | |
1590 | } | |
1591 | ||
1592 | /* Protect all the operands from the queue, | |
1593 | now that they have all been evaluated. */ | |
1594 | ||
1595 | for (i = 0; i < ninputs; i++) | |
1596 | XVECEXP (body, 3, i) = protect_from_queue (XVECEXP (body, 3, i), 0); | |
1597 | ||
1598 | for (i = 0; i < noutputs; i++) | |
1599 | output_rtx[i] = protect_from_queue (output_rtx[i], 1); | |
1600 | ||
1601 | /* Now, for each output, construct an rtx | |
1602 | (set OUTPUT (asm_operands INSN OUTPUTNUMBER OUTPUTCONSTRAINT | |
1603 | ARGVEC CONSTRAINTS)) | |
1604 | If there is more than one, put them inside a PARALLEL. */ | |
1605 | ||
1606 | if (noutputs == 1 && nclobbers == 0) | |
1607 | { | |
1608 | XSTR (body, 1) = TREE_STRING_POINTER (TREE_PURPOSE (outputs)); | |
1609 | insn = emit_insn (gen_rtx (SET, VOIDmode, output_rtx[0], body)); | |
1610 | } | |
1611 | else if (noutputs == 0 && nclobbers == 0) | |
1612 | { | |
1613 | /* No output operands: put in a raw ASM_OPERANDS rtx. */ | |
1614 | insn = emit_insn (body); | |
1615 | } | |
1616 | else | |
1617 | { | |
1618 | rtx obody = body; | |
1619 | int num = noutputs; | |
1620 | if (num == 0) num = 1; | |
1621 | body = gen_rtx (PARALLEL, VOIDmode, rtvec_alloc (num + nclobbers)); | |
1622 | ||
1623 | /* For each output operand, store a SET. */ | |
1624 | ||
1625 | for (i = 0, tail = outputs; tail; tail = TREE_CHAIN (tail), i++) | |
1626 | { | |
1627 | XVECEXP (body, 0, i) | |
1628 | = gen_rtx (SET, VOIDmode, | |
1629 | output_rtx[i], | |
1630 | gen_rtx (ASM_OPERANDS, VOIDmode, | |
1631 | TREE_STRING_POINTER (string), | |
1632 | TREE_STRING_POINTER (TREE_PURPOSE (tail)), | |
1633 | i, argvec, constraints, | |
1634 | filename, line)); | |
1635 | MEM_VOLATILE_P (SET_SRC (XVECEXP (body, 0, i))) = vol; | |
1636 | } | |
1637 | ||
1638 | /* If there are no outputs (but there are some clobbers) | |
1639 | store the bare ASM_OPERANDS into the PARALLEL. */ | |
1640 | ||
1641 | if (i == 0) | |
1642 | XVECEXP (body, 0, i++) = obody; | |
1643 | ||
1644 | /* Store (clobber REG) for each clobbered register specified. */ | |
1645 | ||
b4ccaa16 | 1646 | for (tail = clobbers; tail; tail = TREE_CHAIN (tail)) |
28d81abb | 1647 | { |
28d81abb | 1648 | char *regname = TREE_STRING_POINTER (TREE_VALUE (tail)); |
b4ac57ab | 1649 | int j = decode_reg_name (regname); |
28d81abb | 1650 | |
b4ac57ab | 1651 | if (j < 0) |
28d81abb | 1652 | { |
c09e6498 | 1653 | if (j == -3) /* `cc', which is not a register */ |
dcfedcd0 RK |
1654 | continue; |
1655 | ||
c09e6498 RS |
1656 | if (j == -4) /* `memory', don't cache memory across asm */ |
1657 | { | |
bffc6177 RS |
1658 | XVECEXP (body, 0, i++) |
1659 | = gen_rtx (CLOBBER, VOIDmode, | |
058f58ed | 1660 | gen_rtx (MEM, BLKmode, |
bffc6177 | 1661 | gen_rtx (SCRATCH, VOIDmode, 0))); |
c09e6498 RS |
1662 | continue; |
1663 | } | |
1664 | ||
7859e3ac | 1665 | /* Ignore unknown register, error already signalled. */ |
cc1f5387 | 1666 | continue; |
28d81abb RK |
1667 | } |
1668 | ||
1669 | /* Use QImode since that's guaranteed to clobber just one reg. */ | |
b4ccaa16 | 1670 | XVECEXP (body, 0, i++) |
28d81abb RK |
1671 | = gen_rtx (CLOBBER, VOIDmode, gen_rtx (REG, QImode, j)); |
1672 | } | |
1673 | ||
1674 | insn = emit_insn (body); | |
1675 | } | |
1676 | ||
1677 | free_temp_slots (); | |
1678 | } | |
1679 | \f | |
1680 | /* Generate RTL to evaluate the expression EXP | |
1681 | and remember it in case this is the VALUE in a ({... VALUE; }) constr. */ | |
1682 | ||
1683 | void | |
1684 | expand_expr_stmt (exp) | |
1685 | tree exp; | |
1686 | { | |
ca695ac9 JB |
1687 | if (output_bytecode) |
1688 | { | |
1689 | int org_stack_depth = stack_depth; | |
1690 | ||
1691 | bc_expand_expr (exp); | |
1692 | ||
1693 | /* Restore stack depth */ | |
1694 | if (stack_depth < org_stack_depth) | |
1695 | abort (); | |
1696 | ||
1697 | bc_emit_instruction (drop); | |
1698 | ||
1699 | last_expr_type = TREE_TYPE (exp); | |
1700 | return; | |
1701 | } | |
1702 | ||
28d81abb RK |
1703 | /* If -W, warn about statements with no side effects, |
1704 | except for an explicit cast to void (e.g. for assert()), and | |
1705 | except inside a ({...}) where they may be useful. */ | |
1706 | if (expr_stmts_for_value == 0 && exp != error_mark_node) | |
1707 | { | |
1708 | if (! TREE_SIDE_EFFECTS (exp) && (extra_warnings || warn_unused) | |
1709 | && !(TREE_CODE (exp) == CONVERT_EXPR | |
1710 | && TREE_TYPE (exp) == void_type_node)) | |
1711 | warning_with_file_and_line (emit_filename, emit_lineno, | |
1712 | "statement with no effect"); | |
1713 | else if (warn_unused) | |
1714 | warn_if_unused_value (exp); | |
1715 | } | |
b6ec8c5f RK |
1716 | |
1717 | /* If EXP is of function type and we are expanding statements for | |
1718 | value, convert it to pointer-to-function. */ | |
1719 | if (expr_stmts_for_value && TREE_CODE (TREE_TYPE (exp)) == FUNCTION_TYPE) | |
1720 | exp = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (exp)), exp); | |
1721 | ||
28d81abb RK |
1722 | last_expr_type = TREE_TYPE (exp); |
1723 | if (! flag_syntax_only) | |
37366632 RK |
1724 | last_expr_value = expand_expr (exp, |
1725 | (expr_stmts_for_value | |
1726 | ? NULL_RTX : const0_rtx), | |
28d81abb RK |
1727 | VOIDmode, 0); |
1728 | ||
1729 | /* If all we do is reference a volatile value in memory, | |
1730 | copy it to a register to be sure it is actually touched. */ | |
1731 | if (last_expr_value != 0 && GET_CODE (last_expr_value) == MEM | |
1732 | && TREE_THIS_VOLATILE (exp)) | |
1733 | { | |
6a5bbbe6 RS |
1734 | if (TYPE_MODE (TREE_TYPE (exp)) == VOIDmode) |
1735 | ; | |
1736 | else if (TYPE_MODE (TREE_TYPE (exp)) != BLKmode) | |
28d81abb RK |
1737 | copy_to_reg (last_expr_value); |
1738 | else | |
ddbe9812 RS |
1739 | { |
1740 | rtx lab = gen_label_rtx (); | |
1741 | ||
1742 | /* Compare the value with itself to reference it. */ | |
1743 | emit_cmp_insn (last_expr_value, last_expr_value, EQ, | |
1744 | expand_expr (TYPE_SIZE (last_expr_type), | |
37366632 | 1745 | NULL_RTX, VOIDmode, 0), |
ddbe9812 RS |
1746 | BLKmode, 0, |
1747 | TYPE_ALIGN (last_expr_type) / BITS_PER_UNIT); | |
1748 | emit_jump_insn ((*bcc_gen_fctn[(int) EQ]) (lab)); | |
1749 | emit_label (lab); | |
1750 | } | |
28d81abb RK |
1751 | } |
1752 | ||
1753 | /* If this expression is part of a ({...}) and is in memory, we may have | |
1754 | to preserve temporaries. */ | |
1755 | preserve_temp_slots (last_expr_value); | |
1756 | ||
1757 | /* Free any temporaries used to evaluate this expression. Any temporary | |
1758 | used as a result of this expression will already have been preserved | |
1759 | above. */ | |
1760 | free_temp_slots (); | |
1761 | ||
1762 | emit_queue (); | |
1763 | } | |
1764 | ||
1765 | /* Warn if EXP contains any computations whose results are not used. | |
1766 | Return 1 if a warning is printed; 0 otherwise. */ | |
1767 | ||
150a992a | 1768 | int |
28d81abb RK |
1769 | warn_if_unused_value (exp) |
1770 | tree exp; | |
1771 | { | |
1772 | if (TREE_USED (exp)) | |
1773 | return 0; | |
1774 | ||
1775 | switch (TREE_CODE (exp)) | |
1776 | { | |
1777 | case PREINCREMENT_EXPR: | |
1778 | case POSTINCREMENT_EXPR: | |
1779 | case PREDECREMENT_EXPR: | |
1780 | case POSTDECREMENT_EXPR: | |
1781 | case MODIFY_EXPR: | |
1782 | case INIT_EXPR: | |
1783 | case TARGET_EXPR: | |
1784 | case CALL_EXPR: | |
1785 | case METHOD_CALL_EXPR: | |
1786 | case RTL_EXPR: | |
28d81abb RK |
1787 | case WITH_CLEANUP_EXPR: |
1788 | case EXIT_EXPR: | |
1789 | /* We don't warn about COND_EXPR because it may be a useful | |
1790 | construct if either arm contains a side effect. */ | |
1791 | case COND_EXPR: | |
1792 | return 0; | |
1793 | ||
1794 | case BIND_EXPR: | |
1795 | /* For a binding, warn if no side effect within it. */ | |
1796 | return warn_if_unused_value (TREE_OPERAND (exp, 1)); | |
1797 | ||
de73f171 RK |
1798 | case SAVE_EXPR: |
1799 | return warn_if_unused_value (TREE_OPERAND (exp, 1)); | |
1800 | ||
28d81abb RK |
1801 | case TRUTH_ORIF_EXPR: |
1802 | case TRUTH_ANDIF_EXPR: | |
1803 | /* In && or ||, warn if 2nd operand has no side effect. */ | |
1804 | return warn_if_unused_value (TREE_OPERAND (exp, 1)); | |
1805 | ||
1806 | case COMPOUND_EXPR: | |
a646a211 JM |
1807 | if (TREE_NO_UNUSED_WARNING (exp)) |
1808 | return 0; | |
28d81abb RK |
1809 | if (warn_if_unused_value (TREE_OPERAND (exp, 0))) |
1810 | return 1; | |
4d23e509 RS |
1811 | /* Let people do `(foo (), 0)' without a warning. */ |
1812 | if (TREE_CONSTANT (TREE_OPERAND (exp, 1))) | |
1813 | return 0; | |
28d81abb RK |
1814 | return warn_if_unused_value (TREE_OPERAND (exp, 1)); |
1815 | ||
1816 | case NOP_EXPR: | |
1817 | case CONVERT_EXPR: | |
b4ac57ab | 1818 | case NON_LVALUE_EXPR: |
28d81abb RK |
1819 | /* Don't warn about values cast to void. */ |
1820 | if (TREE_TYPE (exp) == void_type_node) | |
1821 | return 0; | |
1822 | /* Don't warn about conversions not explicit in the user's program. */ | |
1823 | if (TREE_NO_UNUSED_WARNING (exp)) | |
1824 | return 0; | |
1825 | /* Assignment to a cast usually results in a cast of a modify. | |
55cd1c09 JW |
1826 | Don't complain about that. There can be an arbitrary number of |
1827 | casts before the modify, so we must loop until we find the first | |
1828 | non-cast expression and then test to see if that is a modify. */ | |
1829 | { | |
1830 | tree tem = TREE_OPERAND (exp, 0); | |
1831 | ||
1832 | while (TREE_CODE (tem) == CONVERT_EXPR || TREE_CODE (tem) == NOP_EXPR) | |
1833 | tem = TREE_OPERAND (tem, 0); | |
1834 | ||
de73f171 RK |
1835 | if (TREE_CODE (tem) == MODIFY_EXPR || TREE_CODE (tem) == INIT_EXPR |
1836 | || TREE_CODE (tem) == CALL_EXPR) | |
55cd1c09 JW |
1837 | return 0; |
1838 | } | |
d1e1adfb | 1839 | goto warn; |
28d81abb | 1840 | |
d1e1adfb JM |
1841 | case INDIRECT_REF: |
1842 | /* Don't warn about automatic dereferencing of references, since | |
1843 | the user cannot control it. */ | |
1844 | if (TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 0))) == REFERENCE_TYPE) | |
1845 | return warn_if_unused_value (TREE_OPERAND (exp, 0)); | |
0f41302f | 1846 | /* ... fall through ... */ |
d1e1adfb | 1847 | |
28d81abb | 1848 | default: |
ddbe9812 RS |
1849 | /* Referencing a volatile value is a side effect, so don't warn. */ |
1850 | if ((TREE_CODE_CLASS (TREE_CODE (exp)) == 'd' | |
1851 | || TREE_CODE_CLASS (TREE_CODE (exp)) == 'r') | |
1852 | && TREE_THIS_VOLATILE (exp)) | |
1853 | return 0; | |
d1e1adfb | 1854 | warn: |
28d81abb RK |
1855 | warning_with_file_and_line (emit_filename, emit_lineno, |
1856 | "value computed is not used"); | |
1857 | return 1; | |
1858 | } | |
1859 | } | |
1860 | ||
1861 | /* Clear out the memory of the last expression evaluated. */ | |
1862 | ||
1863 | void | |
1864 | clear_last_expr () | |
1865 | { | |
1866 | last_expr_type = 0; | |
1867 | } | |
1868 | ||
1869 | /* Begin a statement which will return a value. | |
1870 | Return the RTL_EXPR for this statement expr. | |
1871 | The caller must save that value and pass it to expand_end_stmt_expr. */ | |
1872 | ||
1873 | tree | |
1874 | expand_start_stmt_expr () | |
1875 | { | |
ca695ac9 JB |
1876 | int momentary; |
1877 | tree t; | |
1878 | ||
1879 | /* When generating bytecode just note down the stack depth */ | |
1880 | if (output_bytecode) | |
1881 | return (build_int_2 (stack_depth, 0)); | |
1882 | ||
28d81abb RK |
1883 | /* Make the RTL_EXPR node temporary, not momentary, |
1884 | so that rtl_expr_chain doesn't become garbage. */ | |
ca695ac9 JB |
1885 | momentary = suspend_momentary (); |
1886 | t = make_node (RTL_EXPR); | |
28d81abb | 1887 | resume_momentary (momentary); |
33c6ab80 | 1888 | do_pending_stack_adjust (); |
e922dbad | 1889 | start_sequence_for_rtl_expr (t); |
28d81abb RK |
1890 | NO_DEFER_POP; |
1891 | expr_stmts_for_value++; | |
1892 | return t; | |
1893 | } | |
1894 | ||
1895 | /* Restore the previous state at the end of a statement that returns a value. | |
1896 | Returns a tree node representing the statement's value and the | |
1897 | insns to compute the value. | |
1898 | ||
1899 | The nodes of that expression have been freed by now, so we cannot use them. | |
1900 | But we don't want to do that anyway; the expression has already been | |
1901 | evaluated and now we just want to use the value. So generate a RTL_EXPR | |
1902 | with the proper type and RTL value. | |
1903 | ||
1904 | If the last substatement was not an expression, | |
1905 | return something with type `void'. */ | |
1906 | ||
1907 | tree | |
1908 | expand_end_stmt_expr (t) | |
1909 | tree t; | |
1910 | { | |
ca695ac9 JB |
1911 | if (output_bytecode) |
1912 | { | |
1913 | int i; | |
1914 | tree t; | |
1915 | ||
1916 | ||
1917 | /* At this point, all expressions have been evaluated in order. | |
1918 | However, all expression values have been popped when evaluated, | |
1919 | which means we have to recover the last expression value. This is | |
1920 | the last value removed by means of a `drop' instruction. Instead | |
1921 | of adding code to inhibit dropping the last expression value, it | |
1922 | is here recovered by undoing the `drop'. Since `drop' is | |
1923 | equivalent to `adjustackSI [1]', it can be undone with `adjstackSI | |
0f41302f | 1924 | [-1]'. */ |
ca695ac9 JB |
1925 | |
1926 | bc_adjust_stack (-1); | |
1927 | ||
1928 | if (!last_expr_type) | |
1929 | last_expr_type = void_type_node; | |
1930 | ||
1931 | t = make_node (RTL_EXPR); | |
1932 | TREE_TYPE (t) = last_expr_type; | |
1933 | RTL_EXPR_RTL (t) = NULL; | |
1934 | RTL_EXPR_SEQUENCE (t) = NULL; | |
1935 | ||
1936 | /* Don't consider deleting this expr or containing exprs at tree level. */ | |
1937 | TREE_THIS_VOLATILE (t) = 1; | |
1938 | ||
1939 | last_expr_type = 0; | |
1940 | return t; | |
1941 | } | |
1942 | ||
28d81abb RK |
1943 | OK_DEFER_POP; |
1944 | ||
1945 | if (last_expr_type == 0) | |
1946 | { | |
1947 | last_expr_type = void_type_node; | |
1948 | last_expr_value = const0_rtx; | |
1949 | } | |
1950 | else if (last_expr_value == 0) | |
1951 | /* There are some cases where this can happen, such as when the | |
1952 | statement is void type. */ | |
1953 | last_expr_value = const0_rtx; | |
1954 | else if (GET_CODE (last_expr_value) != REG && ! CONSTANT_P (last_expr_value)) | |
1955 | /* Remove any possible QUEUED. */ | |
1956 | last_expr_value = protect_from_queue (last_expr_value, 0); | |
1957 | ||
1958 | emit_queue (); | |
1959 | ||
1960 | TREE_TYPE (t) = last_expr_type; | |
1961 | RTL_EXPR_RTL (t) = last_expr_value; | |
1962 | RTL_EXPR_SEQUENCE (t) = get_insns (); | |
1963 | ||
1964 | rtl_expr_chain = tree_cons (NULL_TREE, t, rtl_expr_chain); | |
1965 | ||
1966 | end_sequence (); | |
1967 | ||
1968 | /* Don't consider deleting this expr or containing exprs at tree level. */ | |
1969 | TREE_SIDE_EFFECTS (t) = 1; | |
1970 | /* Propagate volatility of the actual RTL expr. */ | |
1971 | TREE_THIS_VOLATILE (t) = volatile_refs_p (last_expr_value); | |
1972 | ||
1973 | last_expr_type = 0; | |
1974 | expr_stmts_for_value--; | |
1975 | ||
1976 | return t; | |
1977 | } | |
1978 | \f | |
28d81abb RK |
1979 | /* Generate RTL for the start of an if-then. COND is the expression |
1980 | whose truth should be tested. | |
1981 | ||
1982 | If EXITFLAG is nonzero, this conditional is visible to | |
1983 | `exit_something'. */ | |
1984 | ||
1985 | void | |
1986 | expand_start_cond (cond, exitflag) | |
1987 | tree cond; | |
1988 | int exitflag; | |
1989 | { | |
1990 | struct nesting *thiscond = ALLOC_NESTING (); | |
1991 | ||
1992 | /* Make an entry on cond_stack for the cond we are entering. */ | |
1993 | ||
1994 | thiscond->next = cond_stack; | |
1995 | thiscond->all = nesting_stack; | |
1996 | thiscond->depth = ++nesting_depth; | |
1997 | thiscond->data.cond.next_label = gen_label_rtx (); | |
1998 | /* Before we encounter an `else', we don't need a separate exit label | |
1999 | unless there are supposed to be exit statements | |
2000 | to exit this conditional. */ | |
2001 | thiscond->exit_label = exitflag ? gen_label_rtx () : 0; | |
2002 | thiscond->data.cond.endif_label = thiscond->exit_label; | |
2003 | cond_stack = thiscond; | |
2004 | nesting_stack = thiscond; | |
2005 | ||
ca695ac9 JB |
2006 | if (output_bytecode) |
2007 | bc_expand_start_cond (cond, exitflag); | |
2008 | else | |
2009 | do_jump (cond, thiscond->data.cond.next_label, NULL_RTX); | |
28d81abb RK |
2010 | } |
2011 | ||
2012 | /* Generate RTL between then-clause and the elseif-clause | |
2013 | of an if-then-elseif-.... */ | |
2014 | ||
2015 | void | |
2016 | expand_start_elseif (cond) | |
2017 | tree cond; | |
2018 | { | |
2019 | if (cond_stack->data.cond.endif_label == 0) | |
2020 | cond_stack->data.cond.endif_label = gen_label_rtx (); | |
2021 | emit_jump (cond_stack->data.cond.endif_label); | |
2022 | emit_label (cond_stack->data.cond.next_label); | |
2023 | cond_stack->data.cond.next_label = gen_label_rtx (); | |
37366632 | 2024 | do_jump (cond, cond_stack->data.cond.next_label, NULL_RTX); |
28d81abb RK |
2025 | } |
2026 | ||
2027 | /* Generate RTL between the then-clause and the else-clause | |
2028 | of an if-then-else. */ | |
2029 | ||
2030 | void | |
2031 | expand_start_else () | |
2032 | { | |
2033 | if (cond_stack->data.cond.endif_label == 0) | |
2034 | cond_stack->data.cond.endif_label = gen_label_rtx (); | |
ca695ac9 JB |
2035 | |
2036 | if (output_bytecode) | |
2037 | { | |
2038 | bc_expand_start_else (); | |
2039 | return; | |
2040 | } | |
2041 | ||
28d81abb RK |
2042 | emit_jump (cond_stack->data.cond.endif_label); |
2043 | emit_label (cond_stack->data.cond.next_label); | |
0f41302f | 2044 | cond_stack->data.cond.next_label = 0; /* No more _else or _elseif calls. */ |
28d81abb RK |
2045 | } |
2046 | ||
d947ba59 RK |
2047 | /* After calling expand_start_else, turn this "else" into an "else if" |
2048 | by providing another condition. */ | |
2049 | ||
2050 | void | |
2051 | expand_elseif (cond) | |
2052 | tree cond; | |
2053 | { | |
2054 | cond_stack->data.cond.next_label = gen_label_rtx (); | |
2055 | do_jump (cond, cond_stack->data.cond.next_label, NULL_RTX); | |
2056 | } | |
2057 | ||
28d81abb RK |
2058 | /* Generate RTL for the end of an if-then. |
2059 | Pop the record for it off of cond_stack. */ | |
2060 | ||
2061 | void | |
2062 | expand_end_cond () | |
2063 | { | |
2064 | struct nesting *thiscond = cond_stack; | |
2065 | ||
ca695ac9 JB |
2066 | if (output_bytecode) |
2067 | bc_expand_end_cond (); | |
2068 | else | |
2069 | { | |
2070 | do_pending_stack_adjust (); | |
2071 | if (thiscond->data.cond.next_label) | |
2072 | emit_label (thiscond->data.cond.next_label); | |
2073 | if (thiscond->data.cond.endif_label) | |
2074 | emit_label (thiscond->data.cond.endif_label); | |
2075 | } | |
28d81abb RK |
2076 | |
2077 | POPSTACK (cond_stack); | |
2078 | last_expr_type = 0; | |
2079 | } | |
ca695ac9 JB |
2080 | |
2081 | ||
2082 | /* Generate code for the start of an if-then. COND is the expression | |
2083 | whose truth is to be tested; if EXITFLAG is nonzero this conditional | |
2084 | is to be visible to exit_something. It is assumed that the caller | |
0f41302f | 2085 | has pushed the previous context on the cond stack. */ |
704f4dca RK |
2086 | |
2087 | static void | |
ca695ac9 JB |
2088 | bc_expand_start_cond (cond, exitflag) |
2089 | tree cond; | |
2090 | int exitflag; | |
2091 | { | |
2092 | struct nesting *thiscond = cond_stack; | |
2093 | ||
2094 | thiscond->data.case_stmt.nominal_type = cond; | |
8e2b13c3 RK |
2095 | if (! exitflag) |
2096 | thiscond->exit_label = gen_label_rtx (); | |
ca695ac9 | 2097 | bc_expand_expr (cond); |
c3a2235b | 2098 | bc_emit_bytecode (xjumpifnot); |
c53e9440 | 2099 | bc_emit_bytecode_labelref (BYTECODE_BC_LABEL (thiscond->exit_label)); |
ca695ac9 JB |
2100 | |
2101 | #ifdef DEBUG_PRINT_CODE | |
2102 | fputc ('\n', stderr); | |
2103 | #endif | |
2104 | } | |
2105 | ||
2106 | /* Generate the label for the end of an if with | |
2107 | no else- clause. */ | |
704f4dca RK |
2108 | |
2109 | static void | |
ca695ac9 JB |
2110 | bc_expand_end_cond () |
2111 | { | |
2112 | struct nesting *thiscond = cond_stack; | |
2113 | ||
c53e9440 | 2114 | bc_emit_bytecode_labeldef (BYTECODE_BC_LABEL (thiscond->exit_label)); |
ca695ac9 JB |
2115 | } |
2116 | ||
2117 | /* Generate code for the start of the else- clause of | |
2118 | an if-then-else. */ | |
704f4dca RK |
2119 | |
2120 | static void | |
ca695ac9 JB |
2121 | bc_expand_start_else () |
2122 | { | |
2123 | struct nesting *thiscond = cond_stack; | |
2124 | ||
2125 | thiscond->data.cond.endif_label = thiscond->exit_label; | |
2126 | thiscond->exit_label = gen_label_rtx (); | |
2127 | bc_emit_bytecode (jump); | |
c53e9440 | 2128 | bc_emit_bytecode_labelref (BYTECODE_BC_LABEL (thiscond->exit_label)); |
ca695ac9 JB |
2129 | |
2130 | #ifdef DEBUG_PRINT_CODE | |
2131 | fputc ('\n', stderr); | |
2132 | #endif | |
2133 | ||
c53e9440 | 2134 | bc_emit_bytecode_labeldef (BYTECODE_BC_LABEL (thiscond->data.cond.endif_label)); |
ca695ac9 | 2135 | } |
28d81abb RK |
2136 | \f |
2137 | /* Generate RTL for the start of a loop. EXIT_FLAG is nonzero if this | |
2138 | loop should be exited by `exit_something'. This is a loop for which | |
2139 | `expand_continue' will jump to the top of the loop. | |
2140 | ||
2141 | Make an entry on loop_stack to record the labels associated with | |
2142 | this loop. */ | |
2143 | ||
2144 | struct nesting * | |
2145 | expand_start_loop (exit_flag) | |
2146 | int exit_flag; | |
2147 | { | |
2148 | register struct nesting *thisloop = ALLOC_NESTING (); | |
2149 | ||
2150 | /* Make an entry on loop_stack for the loop we are entering. */ | |
2151 | ||
2152 | thisloop->next = loop_stack; | |
2153 | thisloop->all = nesting_stack; | |
2154 | thisloop->depth = ++nesting_depth; | |
2155 | thisloop->data.loop.start_label = gen_label_rtx (); | |
2156 | thisloop->data.loop.end_label = gen_label_rtx (); | |
8afad312 | 2157 | thisloop->data.loop.alt_end_label = 0; |
28d81abb RK |
2158 | thisloop->data.loop.continue_label = thisloop->data.loop.start_label; |
2159 | thisloop->exit_label = exit_flag ? thisloop->data.loop.end_label : 0; | |
2160 | loop_stack = thisloop; | |
2161 | nesting_stack = thisloop; | |
2162 | ||
ca695ac9 JB |
2163 | if (output_bytecode) |
2164 | { | |
c53e9440 | 2165 | bc_emit_bytecode_labeldef (BYTECODE_BC_LABEL (thisloop->data.loop.start_label)); |
ca695ac9 JB |
2166 | return thisloop; |
2167 | } | |
2168 | ||
28d81abb RK |
2169 | do_pending_stack_adjust (); |
2170 | emit_queue (); | |
37366632 | 2171 | emit_note (NULL_PTR, NOTE_INSN_LOOP_BEG); |
28d81abb RK |
2172 | emit_label (thisloop->data.loop.start_label); |
2173 | ||
2174 | return thisloop; | |
2175 | } | |
2176 | ||
2177 | /* Like expand_start_loop but for a loop where the continuation point | |
2178 | (for expand_continue_loop) will be specified explicitly. */ | |
2179 | ||
2180 | struct nesting * | |
2181 | expand_start_loop_continue_elsewhere (exit_flag) | |
2182 | int exit_flag; | |
2183 | { | |
2184 | struct nesting *thisloop = expand_start_loop (exit_flag); | |
2185 | loop_stack->data.loop.continue_label = gen_label_rtx (); | |
2186 | return thisloop; | |
2187 | } | |
2188 | ||
2189 | /* Specify the continuation point for a loop started with | |
2190 | expand_start_loop_continue_elsewhere. | |
2191 | Use this at the point in the code to which a continue statement | |
2192 | should jump. */ | |
2193 | ||
2194 | void | |
2195 | expand_loop_continue_here () | |
2196 | { | |
ca695ac9 JB |
2197 | if (output_bytecode) |
2198 | { | |
c53e9440 | 2199 | bc_emit_bytecode_labeldef (BYTECODE_BC_LABEL (loop_stack->data.loop.continue_label)); |
ca695ac9 JB |
2200 | return; |
2201 | } | |
28d81abb | 2202 | do_pending_stack_adjust (); |
37366632 | 2203 | emit_note (NULL_PTR, NOTE_INSN_LOOP_CONT); |
28d81abb RK |
2204 | emit_label (loop_stack->data.loop.continue_label); |
2205 | } | |
2206 | ||
ca695ac9 | 2207 | /* End a loop. */ |
704f4dca | 2208 | |
ca695ac9 JB |
2209 | static void |
2210 | bc_expand_end_loop () | |
2211 | { | |
2212 | struct nesting *thisloop = loop_stack; | |
2213 | ||
2214 | bc_emit_bytecode (jump); | |
c53e9440 | 2215 | bc_emit_bytecode_labelref (BYTECODE_BC_LABEL (thisloop->data.loop.start_label)); |
ca695ac9 JB |
2216 | |
2217 | #ifdef DEBUG_PRINT_CODE | |
2218 | fputc ('\n', stderr); | |
2219 | #endif | |
2220 | ||
c53e9440 | 2221 | bc_emit_bytecode_labeldef (BYTECODE_BC_LABEL (thisloop->exit_label)); |
ca695ac9 JB |
2222 | POPSTACK (loop_stack); |
2223 | last_expr_type = 0; | |
2224 | } | |
2225 | ||
2226 | ||
28d81abb RK |
2227 | /* Finish a loop. Generate a jump back to the top and the loop-exit label. |
2228 | Pop the block off of loop_stack. */ | |
2229 | ||
2230 | void | |
2231 | expand_end_loop () | |
2232 | { | |
ca695ac9 JB |
2233 | register rtx insn; |
2234 | register rtx start_label; | |
28d81abb RK |
2235 | rtx last_test_insn = 0; |
2236 | int num_insns = 0; | |
ca695ac9 JB |
2237 | |
2238 | if (output_bytecode) | |
2239 | { | |
2240 | bc_expand_end_loop (); | |
2241 | return; | |
2242 | } | |
2243 | ||
2244 | insn = get_last_insn (); | |
2245 | start_label = loop_stack->data.loop.start_label; | |
28d81abb RK |
2246 | |
2247 | /* Mark the continue-point at the top of the loop if none elsewhere. */ | |
2248 | if (start_label == loop_stack->data.loop.continue_label) | |
2249 | emit_note_before (NOTE_INSN_LOOP_CONT, start_label); | |
2250 | ||
2251 | do_pending_stack_adjust (); | |
2252 | ||
2253 | /* If optimizing, perhaps reorder the loop. If the loop | |
2254 | starts with a conditional exit, roll that to the end | |
2255 | where it will optimize together with the jump back. | |
2256 | ||
2257 | We look for the last conditional branch to the exit that we encounter | |
2258 | before hitting 30 insns or a CALL_INSN. If we see an unconditional | |
2259 | branch to the exit first, use it. | |
2260 | ||
2261 | We must also stop at NOTE_INSN_BLOCK_BEG and NOTE_INSN_BLOCK_END notes | |
2262 | because moving them is not valid. */ | |
2263 | ||
2264 | if (optimize | |
2265 | && | |
2266 | ! (GET_CODE (insn) == JUMP_INSN | |
2267 | && GET_CODE (PATTERN (insn)) == SET | |
2268 | && SET_DEST (PATTERN (insn)) == pc_rtx | |
2269 | && GET_CODE (SET_SRC (PATTERN (insn))) == IF_THEN_ELSE)) | |
2270 | { | |
2271 | /* Scan insns from the top of the loop looking for a qualified | |
2272 | conditional exit. */ | |
2273 | for (insn = NEXT_INSN (loop_stack->data.loop.start_label); insn; | |
2274 | insn = NEXT_INSN (insn)) | |
2275 | { | |
2276 | if (GET_CODE (insn) == CALL_INSN || GET_CODE (insn) == CODE_LABEL) | |
2277 | break; | |
2278 | ||
2279 | if (GET_CODE (insn) == NOTE | |
2280 | && (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG | |
2281 | || NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)) | |
2282 | break; | |
2283 | ||
2284 | if (GET_CODE (insn) == JUMP_INSN || GET_CODE (insn) == INSN) | |
2285 | num_insns++; | |
2286 | ||
2287 | if (last_test_insn && num_insns > 30) | |
2288 | break; | |
2289 | ||
2290 | if (GET_CODE (insn) == JUMP_INSN && GET_CODE (PATTERN (insn)) == SET | |
2291 | && SET_DEST (PATTERN (insn)) == pc_rtx | |
2292 | && GET_CODE (SET_SRC (PATTERN (insn))) == IF_THEN_ELSE | |
2293 | && ((GET_CODE (XEXP (SET_SRC (PATTERN (insn)), 1)) == LABEL_REF | |
8afad312 JW |
2294 | && ((XEXP (XEXP (SET_SRC (PATTERN (insn)), 1), 0) |
2295 | == loop_stack->data.loop.end_label) | |
2296 | || (XEXP (XEXP (SET_SRC (PATTERN (insn)), 1), 0) | |
2297 | == loop_stack->data.loop.alt_end_label))) | |
28d81abb | 2298 | || (GET_CODE (XEXP (SET_SRC (PATTERN (insn)), 2)) == LABEL_REF |
8afad312 JW |
2299 | && ((XEXP (XEXP (SET_SRC (PATTERN (insn)), 2), 0) |
2300 | == loop_stack->data.loop.end_label) | |
2301 | || (XEXP (XEXP (SET_SRC (PATTERN (insn)), 2), 0) | |
2302 | == loop_stack->data.loop.alt_end_label))))) | |
28d81abb RK |
2303 | last_test_insn = insn; |
2304 | ||
2305 | if (last_test_insn == 0 && GET_CODE (insn) == JUMP_INSN | |
2306 | && GET_CODE (PATTERN (insn)) == SET | |
2307 | && SET_DEST (PATTERN (insn)) == pc_rtx | |
2308 | && GET_CODE (SET_SRC (PATTERN (insn))) == LABEL_REF | |
8afad312 JW |
2309 | && ((XEXP (SET_SRC (PATTERN (insn)), 0) |
2310 | == loop_stack->data.loop.end_label) | |
2311 | || (XEXP (SET_SRC (PATTERN (insn)), 0) | |
2312 | == loop_stack->data.loop.alt_end_label))) | |
28d81abb RK |
2313 | /* Include BARRIER. */ |
2314 | last_test_insn = NEXT_INSN (insn); | |
2315 | } | |
2316 | ||
2317 | if (last_test_insn != 0 && last_test_insn != get_last_insn ()) | |
2318 | { | |
2319 | /* We found one. Move everything from there up | |
2320 | to the end of the loop, and add a jump into the loop | |
2321 | to jump to there. */ | |
2322 | register rtx newstart_label = gen_label_rtx (); | |
2323 | register rtx start_move = start_label; | |
2324 | ||
b4ac57ab | 2325 | /* If the start label is preceded by a NOTE_INSN_LOOP_CONT note, |
28d81abb RK |
2326 | then we want to move this note also. */ |
2327 | if (GET_CODE (PREV_INSN (start_move)) == NOTE | |
2328 | && (NOTE_LINE_NUMBER (PREV_INSN (start_move)) | |
2329 | == NOTE_INSN_LOOP_CONT)) | |
2330 | start_move = PREV_INSN (start_move); | |
2331 | ||
2332 | emit_label_after (newstart_label, PREV_INSN (start_move)); | |
2333 | reorder_insns (start_move, last_test_insn, get_last_insn ()); | |
2334 | emit_jump_insn_after (gen_jump (start_label), | |
2335 | PREV_INSN (newstart_label)); | |
2336 | emit_barrier_after (PREV_INSN (newstart_label)); | |
2337 | start_label = newstart_label; | |
2338 | } | |
2339 | } | |
2340 | ||
2341 | emit_jump (start_label); | |
37366632 | 2342 | emit_note (NULL_PTR, NOTE_INSN_LOOP_END); |
28d81abb RK |
2343 | emit_label (loop_stack->data.loop.end_label); |
2344 | ||
2345 | POPSTACK (loop_stack); | |
2346 | ||
2347 | last_expr_type = 0; | |
2348 | } | |
2349 | ||
2350 | /* Generate a jump to the current loop's continue-point. | |
2351 | This is usually the top of the loop, but may be specified | |
2352 | explicitly elsewhere. If not currently inside a loop, | |
2353 | return 0 and do nothing; caller will print an error message. */ | |
2354 | ||
2355 | int | |
2356 | expand_continue_loop (whichloop) | |
2357 | struct nesting *whichloop; | |
2358 | { | |
2359 | last_expr_type = 0; | |
2360 | if (whichloop == 0) | |
2361 | whichloop = loop_stack; | |
2362 | if (whichloop == 0) | |
2363 | return 0; | |
37366632 RK |
2364 | expand_goto_internal (NULL_TREE, whichloop->data.loop.continue_label, |
2365 | NULL_RTX); | |
28d81abb RK |
2366 | return 1; |
2367 | } | |
2368 | ||
2369 | /* Generate a jump to exit the current loop. If not currently inside a loop, | |
2370 | return 0 and do nothing; caller will print an error message. */ | |
2371 | ||
2372 | int | |
2373 | expand_exit_loop (whichloop) | |
2374 | struct nesting *whichloop; | |
2375 | { | |
2376 | last_expr_type = 0; | |
2377 | if (whichloop == 0) | |
2378 | whichloop = loop_stack; | |
2379 | if (whichloop == 0) | |
2380 | return 0; | |
37366632 | 2381 | expand_goto_internal (NULL_TREE, whichloop->data.loop.end_label, NULL_RTX); |
28d81abb RK |
2382 | return 1; |
2383 | } | |
2384 | ||
2385 | /* Generate a conditional jump to exit the current loop if COND | |
2386 | evaluates to zero. If not currently inside a loop, | |
2387 | return 0 and do nothing; caller will print an error message. */ | |
2388 | ||
2389 | int | |
2390 | expand_exit_loop_if_false (whichloop, cond) | |
2391 | struct nesting *whichloop; | |
2392 | tree cond; | |
2393 | { | |
2394 | last_expr_type = 0; | |
2395 | if (whichloop == 0) | |
2396 | whichloop = loop_stack; | |
2397 | if (whichloop == 0) | |
2398 | return 0; | |
ca695ac9 JB |
2399 | if (output_bytecode) |
2400 | { | |
2401 | bc_expand_expr (cond); | |
c3a2235b RS |
2402 | bc_expand_goto_internal (xjumpifnot, |
2403 | BYTECODE_BC_LABEL (whichloop->exit_label), | |
704f4dca | 2404 | NULL_TREE); |
ca695ac9 JB |
2405 | } |
2406 | else | |
d902c7ea JW |
2407 | { |
2408 | /* In order to handle fixups, we actually create a conditional jump | |
2409 | around a unconditional branch to exit the loop. If fixups are | |
2410 | necessary, they go before the unconditional branch. */ | |
2411 | ||
2412 | rtx label = gen_label_rtx (); | |
8afad312 JW |
2413 | rtx last_insn; |
2414 | ||
d902c7ea | 2415 | do_jump (cond, NULL_RTX, label); |
8afad312 JW |
2416 | last_insn = get_last_insn (); |
2417 | if (GET_CODE (last_insn) == CODE_LABEL) | |
2418 | whichloop->data.loop.alt_end_label = last_insn; | |
d902c7ea JW |
2419 | expand_goto_internal (NULL_TREE, whichloop->data.loop.end_label, |
2420 | NULL_RTX); | |
2421 | emit_label (label); | |
2422 | } | |
ca695ac9 | 2423 | |
28d81abb RK |
2424 | return 1; |
2425 | } | |
2426 | ||
2427 | /* Return non-zero if we should preserve sub-expressions as separate | |
2428 | pseudos. We never do so if we aren't optimizing. We always do so | |
2429 | if -fexpensive-optimizations. | |
2430 | ||
2431 | Otherwise, we only do so if we are in the "early" part of a loop. I.e., | |
2432 | the loop may still be a small one. */ | |
2433 | ||
2434 | int | |
2435 | preserve_subexpressions_p () | |
2436 | { | |
2437 | rtx insn; | |
2438 | ||
2439 | if (flag_expensive_optimizations) | |
2440 | return 1; | |
2441 | ||
2442 | if (optimize == 0 || loop_stack == 0) | |
2443 | return 0; | |
2444 | ||
2445 | insn = get_last_insn_anywhere (); | |
2446 | ||
2447 | return (insn | |
2448 | && (INSN_UID (insn) - INSN_UID (loop_stack->data.loop.start_label) | |
2449 | < n_non_fixed_regs * 3)); | |
2450 | ||
2451 | } | |
2452 | ||
2453 | /* Generate a jump to exit the current loop, conditional, binding contour | |
2454 | or case statement. Not all such constructs are visible to this function, | |
2455 | only those started with EXIT_FLAG nonzero. Individual languages use | |
2456 | the EXIT_FLAG parameter to control which kinds of constructs you can | |
2457 | exit this way. | |
2458 | ||
2459 | If not currently inside anything that can be exited, | |
2460 | return 0 and do nothing; caller will print an error message. */ | |
2461 | ||
2462 | int | |
2463 | expand_exit_something () | |
2464 | { | |
2465 | struct nesting *n; | |
2466 | last_expr_type = 0; | |
2467 | for (n = nesting_stack; n; n = n->all) | |
2468 | if (n->exit_label != 0) | |
2469 | { | |
37366632 | 2470 | expand_goto_internal (NULL_TREE, n->exit_label, NULL_RTX); |
28d81abb RK |
2471 | return 1; |
2472 | } | |
2473 | ||
2474 | return 0; | |
2475 | } | |
2476 | \f | |
2477 | /* Generate RTL to return from the current function, with no value. | |
2478 | (That is, we do not do anything about returning any value.) */ | |
2479 | ||
2480 | void | |
2481 | expand_null_return () | |
2482 | { | |
2483 | struct nesting *block = block_stack; | |
2484 | rtx last_insn = 0; | |
2485 | ||
ca695ac9 JB |
2486 | if (output_bytecode) |
2487 | { | |
2488 | bc_emit_instruction (ret); | |
2489 | return; | |
2490 | } | |
2491 | ||
28d81abb RK |
2492 | /* Does any pending block have cleanups? */ |
2493 | ||
2494 | while (block && block->data.block.cleanups == 0) | |
2495 | block = block->next; | |
2496 | ||
2497 | /* If yes, use a goto to return, since that runs cleanups. */ | |
2498 | ||
2499 | expand_null_return_1 (last_insn, block != 0); | |
2500 | } | |
2501 | ||
2502 | /* Generate RTL to return from the current function, with value VAL. */ | |
2503 | ||
8d800403 | 2504 | static void |
28d81abb RK |
2505 | expand_value_return (val) |
2506 | rtx val; | |
2507 | { | |
2508 | struct nesting *block = block_stack; | |
2509 | rtx last_insn = get_last_insn (); | |
2510 | rtx return_reg = DECL_RTL (DECL_RESULT (current_function_decl)); | |
2511 | ||
2512 | /* Copy the value to the return location | |
2513 | unless it's already there. */ | |
2514 | ||
2515 | if (return_reg != val) | |
77636079 RS |
2516 | { |
2517 | #ifdef PROMOTE_FUNCTION_RETURN | |
77636079 RS |
2518 | tree type = TREE_TYPE (DECL_RESULT (current_function_decl)); |
2519 | int unsignedp = TREE_UNSIGNED (type); | |
28612f9e RK |
2520 | enum machine_mode mode |
2521 | = promote_mode (type, DECL_MODE (DECL_RESULT (current_function_decl)), | |
2522 | &unsignedp, 1); | |
77636079 RS |
2523 | |
2524 | if (GET_MODE (val) != VOIDmode && GET_MODE (val) != mode) | |
3af6dfd8 | 2525 | convert_move (return_reg, val, unsignedp); |
77636079 RS |
2526 | else |
2527 | #endif | |
2528 | emit_move_insn (return_reg, val); | |
2529 | } | |
28d81abb RK |
2530 | if (GET_CODE (return_reg) == REG |
2531 | && REGNO (return_reg) < FIRST_PSEUDO_REGISTER) | |
2532 | emit_insn (gen_rtx (USE, VOIDmode, return_reg)); | |
e5eeae65 JW |
2533 | /* Handle calls that return values in multiple non-contiguous locations. |
2534 | The Irix 6 ABI has examples of this. */ | |
2535 | else if (GET_CODE (return_reg) == PARALLEL) | |
2536 | { | |
2537 | int i; | |
2538 | ||
2539 | for (i = 0; i < XVECLEN (return_reg, 0); i++) | |
2540 | { | |
2541 | rtx x = XEXP (XVECEXP (return_reg, 0, i), 0); | |
2542 | ||
2543 | if (GET_CODE (x) == REG | |
2544 | && REGNO (x) < FIRST_PSEUDO_REGISTER) | |
2545 | emit_insn (gen_rtx (USE, VOIDmode, x)); | |
2546 | } | |
2547 | } | |
28d81abb RK |
2548 | |
2549 | /* Does any pending block have cleanups? */ | |
2550 | ||
2551 | while (block && block->data.block.cleanups == 0) | |
2552 | block = block->next; | |
2553 | ||
2554 | /* If yes, use a goto to return, since that runs cleanups. | |
2555 | Use LAST_INSN to put cleanups *before* the move insn emitted above. */ | |
2556 | ||
2557 | expand_null_return_1 (last_insn, block != 0); | |
2558 | } | |
2559 | ||
2560 | /* Output a return with no value. If LAST_INSN is nonzero, | |
2561 | pretend that the return takes place after LAST_INSN. | |
2562 | If USE_GOTO is nonzero then don't use a return instruction; | |
2563 | go to the return label instead. This causes any cleanups | |
2564 | of pending blocks to be executed normally. */ | |
2565 | ||
2566 | static void | |
2567 | expand_null_return_1 (last_insn, use_goto) | |
2568 | rtx last_insn; | |
2569 | int use_goto; | |
2570 | { | |
2571 | rtx end_label = cleanup_label ? cleanup_label : return_label; | |
2572 | ||
2573 | clear_pending_stack_adjust (); | |
2574 | do_pending_stack_adjust (); | |
2575 | last_expr_type = 0; | |
2576 | ||
2577 | /* PCC-struct return always uses an epilogue. */ | |
2578 | if (current_function_returns_pcc_struct || use_goto) | |
2579 | { | |
2580 | if (end_label == 0) | |
2581 | end_label = return_label = gen_label_rtx (); | |
37366632 | 2582 | expand_goto_internal (NULL_TREE, end_label, last_insn); |
28d81abb RK |
2583 | return; |
2584 | } | |
2585 | ||
2586 | /* Otherwise output a simple return-insn if one is available, | |
2587 | unless it won't do the job. */ | |
2588 | #ifdef HAVE_return | |
2589 | if (HAVE_return && use_goto == 0 && cleanup_label == 0) | |
2590 | { | |
2591 | emit_jump_insn (gen_return ()); | |
2592 | emit_barrier (); | |
2593 | return; | |
2594 | } | |
2595 | #endif | |
2596 | ||
2597 | /* Otherwise jump to the epilogue. */ | |
37366632 | 2598 | expand_goto_internal (NULL_TREE, end_label, last_insn); |
28d81abb RK |
2599 | } |
2600 | \f | |
2601 | /* Generate RTL to evaluate the expression RETVAL and return it | |
2602 | from the current function. */ | |
2603 | ||
2604 | void | |
2605 | expand_return (retval) | |
2606 | tree retval; | |
2607 | { | |
2608 | /* If there are any cleanups to be performed, then they will | |
2609 | be inserted following LAST_INSN. It is desirable | |
2610 | that the last_insn, for such purposes, should be the | |
2611 | last insn before computing the return value. Otherwise, cleanups | |
2612 | which call functions can clobber the return value. */ | |
2613 | /* ??? rms: I think that is erroneous, because in C++ it would | |
2614 | run destructors on variables that might be used in the subsequent | |
2615 | computation of the return value. */ | |
2616 | rtx last_insn = 0; | |
2617 | register rtx val = 0; | |
2618 | register rtx op0; | |
2619 | tree retval_rhs; | |
2620 | int cleanups; | |
2621 | struct nesting *block; | |
2622 | ||
ca695ac9 | 2623 | /* Bytecode returns are quite simple, just leave the result on the |
0f41302f | 2624 | arithmetic stack. */ |
ca695ac9 JB |
2625 | if (output_bytecode) |
2626 | { | |
2627 | bc_expand_expr (retval); | |
2628 | bc_emit_instruction (ret); | |
2629 | return; | |
2630 | } | |
2631 | ||
28d81abb RK |
2632 | /* If function wants no value, give it none. */ |
2633 | if (TREE_CODE (TREE_TYPE (TREE_TYPE (current_function_decl))) == VOID_TYPE) | |
2634 | { | |
37366632 | 2635 | expand_expr (retval, NULL_RTX, VOIDmode, 0); |
7e70e7c5 | 2636 | emit_queue (); |
28d81abb RK |
2637 | expand_null_return (); |
2638 | return; | |
2639 | } | |
2640 | ||
2641 | /* Are any cleanups needed? E.g. C++ destructors to be run? */ | |
7a9a00be MS |
2642 | /* This is not sufficient. We also need to watch for cleanups of the |
2643 | expression we are about to expand. Unfortunately, we cannot know | |
2644 | if it has cleanups until we expand it, and we want to change how we | |
2645 | expand it depending upon if we need cleanups. We can't win. */ | |
2646 | #if 0 | |
28d81abb | 2647 | cleanups = any_pending_cleanups (1); |
7a9a00be MS |
2648 | #else |
2649 | cleanups = 1; | |
2650 | #endif | |
28d81abb RK |
2651 | |
2652 | if (TREE_CODE (retval) == RESULT_DECL) | |
2653 | retval_rhs = retval; | |
2654 | else if ((TREE_CODE (retval) == MODIFY_EXPR || TREE_CODE (retval) == INIT_EXPR) | |
2655 | && TREE_CODE (TREE_OPERAND (retval, 0)) == RESULT_DECL) | |
2656 | retval_rhs = TREE_OPERAND (retval, 1); | |
2657 | else if (TREE_TYPE (retval) == void_type_node) | |
2658 | /* Recognize tail-recursive call to void function. */ | |
2659 | retval_rhs = retval; | |
2660 | else | |
2661 | retval_rhs = NULL_TREE; | |
2662 | ||
2663 | /* Only use `last_insn' if there are cleanups which must be run. */ | |
2664 | if (cleanups || cleanup_label != 0) | |
2665 | last_insn = get_last_insn (); | |
2666 | ||
2667 | /* Distribute return down conditional expr if either of the sides | |
2668 | may involve tail recursion (see test below). This enhances the number | |
2669 | of tail recursions we see. Don't do this always since it can produce | |
2670 | sub-optimal code in some cases and we distribute assignments into | |
2671 | conditional expressions when it would help. */ | |
2672 | ||
2673 | if (optimize && retval_rhs != 0 | |
2674 | && frame_offset == 0 | |
2675 | && TREE_CODE (retval_rhs) == COND_EXPR | |
2676 | && (TREE_CODE (TREE_OPERAND (retval_rhs, 1)) == CALL_EXPR | |
2677 | || TREE_CODE (TREE_OPERAND (retval_rhs, 2)) == CALL_EXPR)) | |
2678 | { | |
2679 | rtx label = gen_label_rtx (); | |
a0a34f94 RK |
2680 | tree expr; |
2681 | ||
37366632 | 2682 | do_jump (TREE_OPERAND (retval_rhs, 0), label, NULL_RTX); |
a0a34f94 RK |
2683 | expr = build (MODIFY_EXPR, TREE_TYPE (current_function_decl), |
2684 | DECL_RESULT (current_function_decl), | |
2685 | TREE_OPERAND (retval_rhs, 1)); | |
2686 | TREE_SIDE_EFFECTS (expr) = 1; | |
2687 | expand_return (expr); | |
28d81abb | 2688 | emit_label (label); |
a0a34f94 RK |
2689 | |
2690 | expr = build (MODIFY_EXPR, TREE_TYPE (current_function_decl), | |
2691 | DECL_RESULT (current_function_decl), | |
2692 | TREE_OPERAND (retval_rhs, 2)); | |
2693 | TREE_SIDE_EFFECTS (expr) = 1; | |
2694 | expand_return (expr); | |
28d81abb RK |
2695 | return; |
2696 | } | |
2697 | ||
2698 | /* For tail-recursive call to current function, | |
2699 | just jump back to the beginning. | |
2700 | It's unsafe if any auto variable in this function | |
2701 | has its address taken; for simplicity, | |
2702 | require stack frame to be empty. */ | |
2703 | if (optimize && retval_rhs != 0 | |
2704 | && frame_offset == 0 | |
2705 | && TREE_CODE (retval_rhs) == CALL_EXPR | |
2706 | && TREE_CODE (TREE_OPERAND (retval_rhs, 0)) == ADDR_EXPR | |
2707 | && TREE_OPERAND (TREE_OPERAND (retval_rhs, 0), 0) == current_function_decl | |
2708 | /* Finish checking validity, and if valid emit code | |
2709 | to set the argument variables for the new call. */ | |
2710 | && tail_recursion_args (TREE_OPERAND (retval_rhs, 1), | |
2711 | DECL_ARGUMENTS (current_function_decl))) | |
2712 | { | |
2713 | if (tail_recursion_label == 0) | |
2714 | { | |
2715 | tail_recursion_label = gen_label_rtx (); | |
2716 | emit_label_after (tail_recursion_label, | |
2717 | tail_recursion_reentry); | |
2718 | } | |
a3229491 | 2719 | emit_queue (); |
37366632 | 2720 | expand_goto_internal (NULL_TREE, tail_recursion_label, last_insn); |
28d81abb RK |
2721 | emit_barrier (); |
2722 | return; | |
2723 | } | |
2724 | #ifdef HAVE_return | |
2725 | /* This optimization is safe if there are local cleanups | |
2726 | because expand_null_return takes care of them. | |
2727 | ??? I think it should also be safe when there is a cleanup label, | |
2728 | because expand_null_return takes care of them, too. | |
2729 | Any reason why not? */ | |
2730 | if (HAVE_return && cleanup_label == 0 | |
5eb94e4e RK |
2731 | && ! current_function_returns_pcc_struct |
2732 | && BRANCH_COST <= 1) | |
28d81abb RK |
2733 | { |
2734 | /* If this is return x == y; then generate | |
2735 | if (x == y) return 1; else return 0; | |
5eb94e4e RK |
2736 | if we can do it with explicit return insns and |
2737 | branches are cheap. */ | |
28d81abb RK |
2738 | if (retval_rhs) |
2739 | switch (TREE_CODE (retval_rhs)) | |
2740 | { | |
2741 | case EQ_EXPR: | |
2742 | case NE_EXPR: | |
2743 | case GT_EXPR: | |
2744 | case GE_EXPR: | |
2745 | case LT_EXPR: | |
2746 | case LE_EXPR: | |
2747 | case TRUTH_ANDIF_EXPR: | |
2748 | case TRUTH_ORIF_EXPR: | |
2749 | case TRUTH_AND_EXPR: | |
2750 | case TRUTH_OR_EXPR: | |
2751 | case TRUTH_NOT_EXPR: | |
94ed3915 | 2752 | case TRUTH_XOR_EXPR: |
28d81abb RK |
2753 | op0 = gen_label_rtx (); |
2754 | jumpifnot (retval_rhs, op0); | |
2755 | expand_value_return (const1_rtx); | |
2756 | emit_label (op0); | |
2757 | expand_value_return (const0_rtx); | |
2758 | return; | |
2759 | } | |
2760 | } | |
2761 | #endif /* HAVE_return */ | |
2762 | ||
4c485b63 JL |
2763 | /* If the result is an aggregate that is being returned in one (or more) |
2764 | registers, load the registers here. The compiler currently can't handle | |
2765 | copying a BLKmode value into registers. We could put this code in a | |
2766 | more general area (for use by everyone instead of just function | |
2767 | call/return), but until this feature is generally usable it is kept here | |
3ffeb8f1 JW |
2768 | (and in expand_call). The value must go into a pseudo in case there |
2769 | are cleanups that will clobber the real return register. */ | |
4c485b63 JL |
2770 | |
2771 | if (retval_rhs != 0 | |
2772 | && TYPE_MODE (TREE_TYPE (retval_rhs)) == BLKmode | |
2773 | && GET_CODE (DECL_RTL (DECL_RESULT (current_function_decl))) == REG) | |
2774 | { | |
a7f875d7 | 2775 | int i, bitpos, xbitpos; |
4c485b63 JL |
2776 | int big_endian_correction = 0; |
2777 | int bytes = int_size_in_bytes (TREE_TYPE (retval_rhs)); | |
2778 | int n_regs = (bytes + UNITS_PER_WORD - 1) / UNITS_PER_WORD; | |
a7f875d7 | 2779 | int bitsize = MIN (TYPE_ALIGN (TREE_TYPE (retval_rhs)),BITS_PER_WORD); |
4c485b63 | 2780 | rtx *result_pseudos = (rtx *) alloca (sizeof (rtx) * n_regs); |
a7f875d7 | 2781 | rtx result_reg, src, dst; |
4c485b63 | 2782 | rtx result_val = expand_expr (retval_rhs, NULL_RTX, VOIDmode, 0); |
af55da56 | 2783 | enum machine_mode tmpmode, result_reg_mode; |
4c485b63 | 2784 | |
a7f875d7 RK |
2785 | /* Structures whose size is not a multiple of a word are aligned |
2786 | to the least significant byte (to the right). On a BYTES_BIG_ENDIAN | |
2787 | machine, this means we must skip the empty high order bytes when | |
2788 | calculating the bit offset. */ | |
2789 | if (BYTES_BIG_ENDIAN && bytes % UNITS_PER_WORD) | |
2790 | big_endian_correction = (BITS_PER_WORD - ((bytes % UNITS_PER_WORD) | |
2791 | * BITS_PER_UNIT)); | |
2792 | ||
2793 | /* Copy the structure BITSIZE bits at a time. */ | |
2794 | for (bitpos = 0, xbitpos = big_endian_correction; | |
2795 | bitpos < bytes * BITS_PER_UNIT; | |
2796 | bitpos += bitsize, xbitpos += bitsize) | |
4c485b63 | 2797 | { |
a7f875d7 | 2798 | /* We need a new destination pseudo each time xbitpos is |
abc95ed3 | 2799 | on a word boundary and when xbitpos == big_endian_correction |
a7f875d7 RK |
2800 | (the first time through). */ |
2801 | if (xbitpos % BITS_PER_WORD == 0 | |
2802 | || xbitpos == big_endian_correction) | |
4c485b63 | 2803 | { |
a7f875d7 RK |
2804 | /* Generate an appropriate register. */ |
2805 | dst = gen_reg_rtx (word_mode); | |
2806 | result_pseudos[xbitpos / BITS_PER_WORD] = dst; | |
2807 | ||
2808 | /* Clobber the destination before we move anything into it. */ | |
2809 | emit_insn (gen_rtx (CLOBBER, VOIDmode, dst)); | |
4c485b63 | 2810 | } |
a7f875d7 RK |
2811 | |
2812 | /* We need a new source operand each time bitpos is on a word | |
2813 | boundary. */ | |
2814 | if (bitpos % BITS_PER_WORD == 0) | |
2815 | src = operand_subword_force (result_val, | |
2816 | bitpos / BITS_PER_WORD, | |
2817 | BLKmode); | |
2818 | ||
2819 | /* Use bitpos for the source extraction (left justified) and | |
2820 | xbitpos for the destination store (right justified). */ | |
2821 | store_bit_field (dst, bitsize, xbitpos % BITS_PER_WORD, word_mode, | |
2822 | extract_bit_field (src, bitsize, | |
2823 | bitpos % BITS_PER_WORD, 1, | |
2824 | NULL_RTX, word_mode, | |
2825 | word_mode, | |
2826 | bitsize / BITS_PER_UNIT, | |
2827 | BITS_PER_WORD), | |
2828 | bitsize / BITS_PER_UNIT, BITS_PER_WORD); | |
4c485b63 JL |
2829 | } |
2830 | ||
4c485b63 JL |
2831 | /* Find the smallest integer mode large enough to hold the |
2832 | entire structure and use that mode instead of BLKmode | |
2833 | on the USE insn for the return register. */ | |
2834 | bytes = int_size_in_bytes (TREE_TYPE (retval_rhs)); | |
2835 | for (tmpmode = GET_CLASS_NARROWEST_MODE (MODE_INT); | |
2836 | tmpmode != MAX_MACHINE_MODE; | |
2837 | tmpmode = GET_MODE_WIDER_MODE (tmpmode)) | |
3ffeb8f1 JW |
2838 | { |
2839 | /* Have we found a large enough mode? */ | |
2840 | if (GET_MODE_SIZE (tmpmode) >= bytes) | |
2841 | break; | |
2842 | } | |
4c485b63 JL |
2843 | |
2844 | /* No suitable mode found. */ | |
2845 | if (tmpmode == MAX_MACHINE_MODE) | |
3ffeb8f1 | 2846 | abort (); |
4c485b63 | 2847 | |
3ffeb8f1 JW |
2848 | PUT_MODE (DECL_RTL (DECL_RESULT (current_function_decl)), tmpmode); |
2849 | ||
af55da56 JW |
2850 | if (GET_MODE_SIZE (tmpmode) < GET_MODE_SIZE (word_mode)) |
2851 | result_reg_mode = word_mode; | |
2852 | else | |
2853 | result_reg_mode = tmpmode; | |
2854 | result_reg = gen_reg_rtx (result_reg_mode); | |
2855 | ||
3ffeb8f1 JW |
2856 | /* Now that the value is in pseudos, copy it to the result reg(s). */ |
2857 | emit_queue (); | |
2858 | free_temp_slots (); | |
2859 | for (i = 0; i < n_regs; i++) | |
af55da56 | 2860 | emit_move_insn (operand_subword (result_reg, i, 0, result_reg_mode), |
3ffeb8f1 | 2861 | result_pseudos[i]); |
4c485b63 | 2862 | |
af55da56 JW |
2863 | if (tmpmode != result_reg_mode) |
2864 | result_reg = gen_lowpart (tmpmode, result_reg); | |
2865 | ||
4c485b63 JL |
2866 | expand_value_return (result_reg); |
2867 | } | |
2868 | else if (cleanups | |
28d81abb RK |
2869 | && retval_rhs != 0 |
2870 | && TREE_TYPE (retval_rhs) != void_type_node | |
2871 | && GET_CODE (DECL_RTL (DECL_RESULT (current_function_decl))) == REG) | |
2872 | { | |
2873 | /* Calculate the return value into a pseudo reg. */ | |
37366632 | 2874 | val = expand_expr (retval_rhs, NULL_RTX, VOIDmode, 0); |
28d81abb RK |
2875 | emit_queue (); |
2876 | /* All temporaries have now been used. */ | |
2877 | free_temp_slots (); | |
2878 | /* Return the calculated value, doing cleanups first. */ | |
2879 | expand_value_return (val); | |
2880 | } | |
2881 | else | |
2882 | { | |
2883 | /* No cleanups or no hard reg used; | |
2884 | calculate value into hard return reg. */ | |
cba389cd | 2885 | expand_expr (retval, const0_rtx, VOIDmode, 0); |
28d81abb RK |
2886 | emit_queue (); |
2887 | free_temp_slots (); | |
2888 | expand_value_return (DECL_RTL (DECL_RESULT (current_function_decl))); | |
2889 | } | |
2890 | } | |
2891 | ||
2892 | /* Return 1 if the end of the generated RTX is not a barrier. | |
2893 | This means code already compiled can drop through. */ | |
2894 | ||
2895 | int | |
2896 | drop_through_at_end_p () | |
2897 | { | |
2898 | rtx insn = get_last_insn (); | |
2899 | while (insn && GET_CODE (insn) == NOTE) | |
2900 | insn = PREV_INSN (insn); | |
2901 | return insn && GET_CODE (insn) != BARRIER; | |
2902 | } | |
2903 | \f | |
2904 | /* Emit code to alter this function's formal parms for a tail-recursive call. | |
2905 | ACTUALS is a list of actual parameter expressions (chain of TREE_LISTs). | |
2906 | FORMALS is the chain of decls of formals. | |
2907 | Return 1 if this can be done; | |
2908 | otherwise return 0 and do not emit any code. */ | |
2909 | ||
2910 | static int | |
2911 | tail_recursion_args (actuals, formals) | |
2912 | tree actuals, formals; | |
2913 | { | |
2914 | register tree a = actuals, f = formals; | |
2915 | register int i; | |
2916 | register rtx *argvec; | |
2917 | ||
2918 | /* Check that number and types of actuals are compatible | |
2919 | with the formals. This is not always true in valid C code. | |
2920 | Also check that no formal needs to be addressable | |
2921 | and that all formals are scalars. */ | |
2922 | ||
2923 | /* Also count the args. */ | |
2924 | ||
2925 | for (a = actuals, f = formals, i = 0; a && f; a = TREE_CHAIN (a), f = TREE_CHAIN (f), i++) | |
2926 | { | |
5c7fe359 RK |
2927 | if (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_VALUE (a))) |
2928 | != TYPE_MAIN_VARIANT (TREE_TYPE (f))) | |
28d81abb RK |
2929 | return 0; |
2930 | if (GET_CODE (DECL_RTL (f)) != REG || DECL_MODE (f) == BLKmode) | |
2931 | return 0; | |
2932 | } | |
2933 | if (a != 0 || f != 0) | |
2934 | return 0; | |
2935 | ||
2936 | /* Compute all the actuals. */ | |
2937 | ||
2938 | argvec = (rtx *) alloca (i * sizeof (rtx)); | |
2939 | ||
2940 | for (a = actuals, i = 0; a; a = TREE_CHAIN (a), i++) | |
37366632 | 2941 | argvec[i] = expand_expr (TREE_VALUE (a), NULL_RTX, VOIDmode, 0); |
28d81abb RK |
2942 | |
2943 | /* Find which actual values refer to current values of previous formals. | |
2944 | Copy each of them now, before any formal is changed. */ | |
2945 | ||
2946 | for (a = actuals, i = 0; a; a = TREE_CHAIN (a), i++) | |
2947 | { | |
2948 | int copy = 0; | |
2949 | register int j; | |
2950 | for (f = formals, j = 0; j < i; f = TREE_CHAIN (f), j++) | |
2951 | if (reg_mentioned_p (DECL_RTL (f), argvec[i])) | |
2952 | { copy = 1; break; } | |
2953 | if (copy) | |
2954 | argvec[i] = copy_to_reg (argvec[i]); | |
2955 | } | |
2956 | ||
2957 | /* Store the values of the actuals into the formals. */ | |
2958 | ||
2959 | for (f = formals, a = actuals, i = 0; f; | |
2960 | f = TREE_CHAIN (f), a = TREE_CHAIN (a), i++) | |
2961 | { | |
98f3b471 | 2962 | if (GET_MODE (DECL_RTL (f)) == GET_MODE (argvec[i])) |
28d81abb RK |
2963 | emit_move_insn (DECL_RTL (f), argvec[i]); |
2964 | else | |
2965 | convert_move (DECL_RTL (f), argvec[i], | |
2966 | TREE_UNSIGNED (TREE_TYPE (TREE_VALUE (a)))); | |
2967 | } | |
2968 | ||
2969 | free_temp_slots (); | |
2970 | return 1; | |
2971 | } | |
2972 | \f | |
2973 | /* Generate the RTL code for entering a binding contour. | |
2974 | The variables are declared one by one, by calls to `expand_decl'. | |
2975 | ||
2976 | EXIT_FLAG is nonzero if this construct should be visible to | |
2977 | `exit_something'. */ | |
2978 | ||
2979 | void | |
2980 | expand_start_bindings (exit_flag) | |
2981 | int exit_flag; | |
2982 | { | |
2983 | struct nesting *thisblock = ALLOC_NESTING (); | |
0575fe3c | 2984 | rtx note = output_bytecode ? 0 : emit_note (NULL_PTR, NOTE_INSN_BLOCK_BEG); |
28d81abb RK |
2985 | |
2986 | /* Make an entry on block_stack for the block we are entering. */ | |
2987 | ||
2988 | thisblock->next = block_stack; | |
2989 | thisblock->all = nesting_stack; | |
2990 | thisblock->depth = ++nesting_depth; | |
2991 | thisblock->data.block.stack_level = 0; | |
2992 | thisblock->data.block.cleanups = 0; | |
2993 | thisblock->data.block.function_call_count = 0; | |
2994 | #if 0 | |
2995 | if (block_stack) | |
2996 | { | |
2997 | if (block_stack->data.block.cleanups == NULL_TREE | |
2998 | && (block_stack->data.block.outer_cleanups == NULL_TREE | |
2999 | || block_stack->data.block.outer_cleanups == empty_cleanup_list)) | |
3000 | thisblock->data.block.outer_cleanups = empty_cleanup_list; | |
3001 | else | |
3002 | thisblock->data.block.outer_cleanups | |
3003 | = tree_cons (NULL_TREE, block_stack->data.block.cleanups, | |
3004 | block_stack->data.block.outer_cleanups); | |
3005 | } | |
3006 | else | |
3007 | thisblock->data.block.outer_cleanups = 0; | |
3008 | #endif | |
3009 | #if 1 | |
3010 | if (block_stack | |
3011 | && !(block_stack->data.block.cleanups == NULL_TREE | |
3012 | && block_stack->data.block.outer_cleanups == NULL_TREE)) | |
3013 | thisblock->data.block.outer_cleanups | |
3014 | = tree_cons (NULL_TREE, block_stack->data.block.cleanups, | |
3015 | block_stack->data.block.outer_cleanups); | |
3016 | else | |
3017 | thisblock->data.block.outer_cleanups = 0; | |
3018 | #endif | |
3019 | thisblock->data.block.label_chain = 0; | |
3020 | thisblock->data.block.innermost_stack_block = stack_block_stack; | |
3021 | thisblock->data.block.first_insn = note; | |
3022 | thisblock->data.block.block_start_count = ++block_start_count; | |
3023 | thisblock->exit_label = exit_flag ? gen_label_rtx () : 0; | |
3024 | block_stack = thisblock; | |
3025 | nesting_stack = thisblock; | |
3026 | ||
ca695ac9 JB |
3027 | if (!output_bytecode) |
3028 | { | |
3029 | /* Make a new level for allocating stack slots. */ | |
3030 | push_temp_slots (); | |
3031 | } | |
28d81abb RK |
3032 | } |
3033 | ||
7629c936 RS |
3034 | /* Given a pointer to a BLOCK node, save a pointer to the most recently |
3035 | generated NOTE_INSN_BLOCK_END in the BLOCK_END_NOTE field of the given | |
3036 | BLOCK node. */ | |
3037 | ||
3038 | void | |
3039 | remember_end_note (block) | |
3040 | register tree block; | |
3041 | { | |
3042 | BLOCK_END_NOTE (block) = last_block_end_note; | |
3043 | last_block_end_note = NULL_RTX; | |
3044 | } | |
3045 | ||
28d81abb RK |
3046 | /* Generate RTL code to terminate a binding contour. |
3047 | VARS is the chain of VAR_DECL nodes | |
3048 | for the variables bound in this contour. | |
3049 | MARK_ENDS is nonzero if we should put a note at the beginning | |
3050 | and end of this binding contour. | |
3051 | ||
3052 | DONT_JUMP_IN is nonzero if it is not valid to jump into this contour. | |
3053 | (That is true automatically if the contour has a saved stack level.) */ | |
3054 | ||
3055 | void | |
3056 | expand_end_bindings (vars, mark_ends, dont_jump_in) | |
3057 | tree vars; | |
3058 | int mark_ends; | |
3059 | int dont_jump_in; | |
3060 | { | |
3061 | register struct nesting *thisblock = block_stack; | |
3062 | register tree decl; | |
3063 | ||
ca695ac9 JB |
3064 | if (output_bytecode) |
3065 | { | |
3066 | bc_expand_end_bindings (vars, mark_ends, dont_jump_in); | |
3067 | return; | |
3068 | } | |
3069 | ||
28d81abb RK |
3070 | if (warn_unused) |
3071 | for (decl = vars; decl; decl = TREE_CHAIN (decl)) | |
7e70e7c5 RS |
3072 | if (! TREE_USED (decl) && TREE_CODE (decl) == VAR_DECL |
3073 | && ! DECL_IN_SYSTEM_HEADER (decl)) | |
28d81abb RK |
3074 | warning_with_decl (decl, "unused variable `%s'"); |
3075 | ||
28d81abb RK |
3076 | if (thisblock->exit_label) |
3077 | { | |
3078 | do_pending_stack_adjust (); | |
3079 | emit_label (thisblock->exit_label); | |
3080 | } | |
3081 | ||
3082 | /* If necessary, make a handler for nonlocal gotos taking | |
3083 | place in the function calls in this block. */ | |
3084 | if (function_call_count != thisblock->data.block.function_call_count | |
3085 | && nonlocal_labels | |
3086 | /* Make handler for outermost block | |
3087 | if there were any nonlocal gotos to this function. */ | |
3088 | && (thisblock->next == 0 ? current_function_has_nonlocal_label | |
3089 | /* Make handler for inner block if it has something | |
3090 | special to do when you jump out of it. */ | |
3091 | : (thisblock->data.block.cleanups != 0 | |
3092 | || thisblock->data.block.stack_level != 0))) | |
3093 | { | |
3094 | tree link; | |
3095 | rtx afterward = gen_label_rtx (); | |
3096 | rtx handler_label = gen_label_rtx (); | |
3097 | rtx save_receiver = gen_reg_rtx (Pmode); | |
ba83886f | 3098 | rtx insns; |
28d81abb RK |
3099 | |
3100 | /* Don't let jump_optimize delete the handler. */ | |
3101 | LABEL_PRESERVE_P (handler_label) = 1; | |
3102 | ||
3103 | /* Record the handler address in the stack slot for that purpose, | |
3104 | during this block, saving and restoring the outer value. */ | |
3105 | if (thisblock->next != 0) | |
3106 | { | |
3107 | emit_move_insn (nonlocal_goto_handler_slot, save_receiver); | |
ba83886f RS |
3108 | |
3109 | start_sequence (); | |
3110 | emit_move_insn (save_receiver, nonlocal_goto_handler_slot); | |
3111 | insns = get_insns (); | |
3112 | end_sequence (); | |
3113 | emit_insns_before (insns, thisblock->data.block.first_insn); | |
28d81abb | 3114 | } |
ba83886f RS |
3115 | |
3116 | start_sequence (); | |
3117 | emit_move_insn (nonlocal_goto_handler_slot, | |
3118 | gen_rtx (LABEL_REF, Pmode, handler_label)); | |
3119 | insns = get_insns (); | |
3120 | end_sequence (); | |
3121 | emit_insns_before (insns, thisblock->data.block.first_insn); | |
28d81abb RK |
3122 | |
3123 | /* Jump around the handler; it runs only when specially invoked. */ | |
3124 | emit_jump (afterward); | |
3125 | emit_label (handler_label); | |
3126 | ||
3127 | #ifdef HAVE_nonlocal_goto | |
3128 | if (! HAVE_nonlocal_goto) | |
3129 | #endif | |
3130 | /* First adjust our frame pointer to its actual value. It was | |
3131 | previously set to the start of the virtual area corresponding to | |
3132 | the stacked variables when we branched here and now needs to be | |
3133 | adjusted to the actual hardware fp value. | |
3134 | ||
3135 | Assignments are to virtual registers are converted by | |
3136 | instantiate_virtual_regs into the corresponding assignment | |
3137 | to the underlying register (fp in this case) that makes | |
3138 | the original assignment true. | |
3139 | So the following insn will actually be | |
3140 | decrementing fp by STARTING_FRAME_OFFSET. */ | |
705e524e | 3141 | emit_move_insn (virtual_stack_vars_rtx, hard_frame_pointer_rtx); |
28d81abb | 3142 | |
a35ad168 | 3143 | #if ARG_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM |
28d81abb RK |
3144 | if (fixed_regs[ARG_POINTER_REGNUM]) |
3145 | { | |
42495ca0 RK |
3146 | #ifdef ELIMINABLE_REGS |
3147 | /* If the argument pointer can be eliminated in favor of the | |
3148 | frame pointer, we don't need to restore it. We assume here | |
3149 | that if such an elimination is present, it can always be used. | |
3150 | This is the case on all known machines; if we don't make this | |
3151 | assumption, we do unnecessary saving on many machines. */ | |
3152 | static struct elims {int from, to;} elim_regs[] = ELIMINABLE_REGS; | |
3153 | int i; | |
3154 | ||
3155 | for (i = 0; i < sizeof elim_regs / sizeof elim_regs[0]; i++) | |
3156 | if (elim_regs[i].from == ARG_POINTER_REGNUM | |
a35ad168 | 3157 | && elim_regs[i].to == HARD_FRAME_POINTER_REGNUM) |
42495ca0 RK |
3158 | break; |
3159 | ||
3160 | if (i == sizeof elim_regs / sizeof elim_regs [0]) | |
3161 | #endif | |
3162 | { | |
3163 | /* Now restore our arg pointer from the address at which it | |
3164 | was saved in our stack frame. | |
3165 | If there hasn't be space allocated for it yet, make | |
3166 | some now. */ | |
3167 | if (arg_pointer_save_area == 0) | |
3168 | arg_pointer_save_area | |
3169 | = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0); | |
3170 | emit_move_insn (virtual_incoming_args_rtx, | |
3171 | /* We need a pseudo here, or else | |
3172 | instantiate_virtual_regs_1 complains. */ | |
3173 | copy_to_reg (arg_pointer_save_area)); | |
3174 | } | |
28d81abb RK |
3175 | } |
3176 | #endif | |
3177 | ||
3178 | /* The handler expects the desired label address in the static chain | |
3179 | register. It tests the address and does an appropriate jump | |
3180 | to whatever label is desired. */ | |
3181 | for (link = nonlocal_labels; link; link = TREE_CHAIN (link)) | |
3182 | /* Skip any labels we shouldn't be able to jump to from here. */ | |
3183 | if (! DECL_TOO_LATE (TREE_VALUE (link))) | |
3184 | { | |
3185 | rtx not_this = gen_label_rtx (); | |
3186 | rtx this = gen_label_rtx (); | |
3187 | do_jump_if_equal (static_chain_rtx, | |
3188 | gen_rtx (LABEL_REF, Pmode, DECL_RTL (TREE_VALUE (link))), | |
3189 | this, 0); | |
3190 | emit_jump (not_this); | |
3191 | emit_label (this); | |
3192 | expand_goto (TREE_VALUE (link)); | |
3193 | emit_label (not_this); | |
3194 | } | |
3195 | /* If label is not recognized, abort. */ | |
3196 | emit_library_call (gen_rtx (SYMBOL_REF, Pmode, "abort"), 0, | |
3197 | VOIDmode, 0); | |
a3fd7507 | 3198 | emit_barrier (); |
28d81abb RK |
3199 | emit_label (afterward); |
3200 | } | |
3201 | ||
3202 | /* Don't allow jumping into a block that has cleanups or a stack level. */ | |
3203 | if (dont_jump_in | |
3204 | || thisblock->data.block.stack_level != 0 | |
3205 | || thisblock->data.block.cleanups != 0) | |
3206 | { | |
3207 | struct label_chain *chain; | |
3208 | ||
3209 | /* Any labels in this block are no longer valid to go to. | |
3210 | Mark them to cause an error message. */ | |
3211 | for (chain = thisblock->data.block.label_chain; chain; chain = chain->next) | |
3212 | { | |
3213 | DECL_TOO_LATE (chain->label) = 1; | |
3214 | /* If any goto without a fixup came to this label, | |
3215 | that must be an error, because gotos without fixups | |
3216 | come from outside all saved stack-levels and all cleanups. */ | |
3217 | if (TREE_ADDRESSABLE (chain->label)) | |
3218 | error_with_decl (chain->label, | |
3219 | "label `%s' used before containing binding contour"); | |
3220 | } | |
3221 | } | |
3222 | ||
3223 | /* Restore stack level in effect before the block | |
3224 | (only if variable-size objects allocated). */ | |
3225 | /* Perform any cleanups associated with the block. */ | |
3226 | ||
3227 | if (thisblock->data.block.stack_level != 0 | |
3228 | || thisblock->data.block.cleanups != 0) | |
3229 | { | |
413ec213 | 3230 | /* Only clean up here if this point can actually be reached. */ |
50d1b7a1 | 3231 | int reachable = GET_CODE (get_last_insn ()) != BARRIER; |
28d81abb | 3232 | |
50d1b7a1 MS |
3233 | /* Don't let cleanups affect ({...}) constructs. */ |
3234 | int old_expr_stmts_for_value = expr_stmts_for_value; | |
3235 | rtx old_last_expr_value = last_expr_value; | |
3236 | tree old_last_expr_type = last_expr_type; | |
3237 | expr_stmts_for_value = 0; | |
28d81abb | 3238 | |
50d1b7a1 MS |
3239 | /* Do the cleanups. */ |
3240 | expand_cleanups (thisblock->data.block.cleanups, NULL_TREE, 0, reachable); | |
3241 | if (reachable) | |
3242 | do_pending_stack_adjust (); | |
28d81abb | 3243 | |
50d1b7a1 MS |
3244 | expr_stmts_for_value = old_expr_stmts_for_value; |
3245 | last_expr_value = old_last_expr_value; | |
3246 | last_expr_type = old_last_expr_type; | |
3247 | ||
3248 | /* Restore the stack level. */ | |
3249 | ||
3250 | if (reachable && thisblock->data.block.stack_level != 0) | |
3251 | { | |
3252 | emit_stack_restore (thisblock->next ? SAVE_BLOCK : SAVE_FUNCTION, | |
3253 | thisblock->data.block.stack_level, NULL_RTX); | |
3254 | if (nonlocal_goto_handler_slot != 0) | |
3255 | emit_stack_save (SAVE_NONLOCAL, &nonlocal_goto_stack_level, | |
3256 | NULL_RTX); | |
28d81abb RK |
3257 | } |
3258 | ||
3259 | /* Any gotos out of this block must also do these things. | |
59257ff7 RK |
3260 | Also report any gotos with fixups that came to labels in this |
3261 | level. */ | |
28d81abb RK |
3262 | fixup_gotos (thisblock, |
3263 | thisblock->data.block.stack_level, | |
3264 | thisblock->data.block.cleanups, | |
3265 | thisblock->data.block.first_insn, | |
3266 | dont_jump_in); | |
3267 | } | |
3268 | ||
c7d2d61d RS |
3269 | /* Mark the beginning and end of the scope if requested. |
3270 | We do this now, after running cleanups on the variables | |
3271 | just going out of scope, so they are in scope for their cleanups. */ | |
3272 | ||
3273 | if (mark_ends) | |
7629c936 | 3274 | last_block_end_note = emit_note (NULL_PTR, NOTE_INSN_BLOCK_END); |
c7d2d61d RS |
3275 | else |
3276 | /* Get rid of the beginning-mark if we don't make an end-mark. */ | |
3277 | NOTE_LINE_NUMBER (thisblock->data.block.first_insn) = NOTE_INSN_DELETED; | |
3278 | ||
28d81abb RK |
3279 | /* If doing stupid register allocation, make sure lives of all |
3280 | register variables declared here extend thru end of scope. */ | |
3281 | ||
3282 | if (obey_regdecls) | |
3283 | for (decl = vars; decl; decl = TREE_CHAIN (decl)) | |
3284 | { | |
3285 | rtx rtl = DECL_RTL (decl); | |
3286 | if (TREE_CODE (decl) == VAR_DECL && rtl != 0) | |
3287 | use_variable (rtl); | |
3288 | } | |
3289 | ||
3290 | /* Restore block_stack level for containing block. */ | |
3291 | ||
3292 | stack_block_stack = thisblock->data.block.innermost_stack_block; | |
3293 | POPSTACK (block_stack); | |
3294 | ||
3295 | /* Pop the stack slot nesting and free any slots at this level. */ | |
3296 | pop_temp_slots (); | |
3297 | } | |
ca695ac9 JB |
3298 | |
3299 | ||
3300 | /* End a binding contour. | |
3301 | VARS is the chain of VAR_DECL nodes for the variables bound | |
3302 | in this contour. MARK_ENDS is nonzer if we should put a note | |
3303 | at the beginning and end of this binding contour. | |
3304 | DONT_JUMP_IN is nonzero if it is not valid to jump into this | |
3305 | contour. */ | |
3306 | ||
704f4dca | 3307 | static void |
ca695ac9 JB |
3308 | bc_expand_end_bindings (vars, mark_ends, dont_jump_in) |
3309 | tree vars; | |
3310 | int mark_ends; | |
3311 | int dont_jump_in; | |
3312 | { | |
3313 | struct nesting *thisbind = nesting_stack; | |
3314 | tree decl; | |
3315 | ||
3316 | if (warn_unused) | |
3317 | for (decl = vars; decl; decl = TREE_CHAIN (decl)) | |
3318 | if (! TREE_USED (TREE_VALUE (decl)) && TREE_CODE (TREE_VALUE (decl)) == VAR_DECL) | |
3319 | warning_with_decl (decl, "unused variable `%s'"); | |
3320 | ||
8e2b13c3 RK |
3321 | if (thisbind->exit_label) |
3322 | bc_emit_bytecode_labeldef (BYTECODE_BC_LABEL (thisbind->exit_label)); | |
ca695ac9 JB |
3323 | |
3324 | /* Pop block/bindings off stack */ | |
ca695ac9 JB |
3325 | POPSTACK (block_stack); |
3326 | } | |
28d81abb RK |
3327 | \f |
3328 | /* Generate RTL for the automatic variable declaration DECL. | |
ec5cd386 | 3329 | (Other kinds of declarations are simply ignored if seen here.) */ |
28d81abb RK |
3330 | |
3331 | void | |
3332 | expand_decl (decl) | |
3333 | register tree decl; | |
3334 | { | |
3335 | struct nesting *thisblock = block_stack; | |
ca695ac9 JB |
3336 | tree type; |
3337 | ||
3338 | if (output_bytecode) | |
3339 | { | |
3340 | bc_expand_decl (decl, 0); | |
3341 | return; | |
3342 | } | |
3343 | ||
3344 | type = TREE_TYPE (decl); | |
28d81abb RK |
3345 | |
3346 | /* Only automatic variables need any expansion done. | |
3347 | Static and external variables, and external functions, | |
3348 | will be handled by `assemble_variable' (called from finish_decl). | |
3349 | TYPE_DECL and CONST_DECL require nothing. | |
3350 | PARM_DECLs are handled in `assign_parms'. */ | |
3351 | ||
3352 | if (TREE_CODE (decl) != VAR_DECL) | |
3353 | return; | |
44fe2e80 | 3354 | if (TREE_STATIC (decl) || DECL_EXTERNAL (decl)) |
28d81abb RK |
3355 | return; |
3356 | ||
3357 | /* Create the RTL representation for the variable. */ | |
3358 | ||
3359 | if (type == error_mark_node) | |
3360 | DECL_RTL (decl) = gen_rtx (MEM, BLKmode, const0_rtx); | |
3361 | else if (DECL_SIZE (decl) == 0) | |
3362 | /* Variable with incomplete type. */ | |
3363 | { | |
3364 | if (DECL_INITIAL (decl) == 0) | |
3365 | /* Error message was already done; now avoid a crash. */ | |
3366 | DECL_RTL (decl) = assign_stack_temp (DECL_MODE (decl), 0, 1); | |
3367 | else | |
3368 | /* An initializer is going to decide the size of this array. | |
3369 | Until we know the size, represent its address with a reg. */ | |
3370 | DECL_RTL (decl) = gen_rtx (MEM, BLKmode, gen_reg_rtx (Pmode)); | |
3668e76e | 3371 | MEM_IN_STRUCT_P (DECL_RTL (decl)) = AGGREGATE_TYPE_P (type); |
28d81abb RK |
3372 | } |
3373 | else if (DECL_MODE (decl) != BLKmode | |
3374 | /* If -ffloat-store, don't put explicit float vars | |
3375 | into regs. */ | |
3376 | && !(flag_float_store | |
3377 | && TREE_CODE (type) == REAL_TYPE) | |
3378 | && ! TREE_THIS_VOLATILE (decl) | |
3379 | && ! TREE_ADDRESSABLE (decl) | |
44fe2e80 | 3380 | && (DECL_REGISTER (decl) || ! obey_regdecls)) |
28d81abb RK |
3381 | { |
3382 | /* Automatic variable that can go in a register. */ | |
98f3b471 | 3383 | int unsignedp = TREE_UNSIGNED (type); |
28612f9e RK |
3384 | enum machine_mode reg_mode |
3385 | = promote_mode (type, DECL_MODE (decl), &unsignedp, 0); | |
98f3b471 | 3386 | |
5998c7dc RS |
3387 | if (TREE_CODE (type) == COMPLEX_TYPE) |
3388 | { | |
3389 | rtx realpart, imagpart; | |
3390 | enum machine_mode partmode = TYPE_MODE (TREE_TYPE (type)); | |
3391 | ||
3392 | /* For a complex type variable, make a CONCAT of two pseudos | |
3393 | so that the real and imaginary parts | |
3394 | can be allocated separately. */ | |
3395 | realpart = gen_reg_rtx (partmode); | |
3396 | REG_USERVAR_P (realpart) = 1; | |
3397 | imagpart = gen_reg_rtx (partmode); | |
3398 | REG_USERVAR_P (imagpart) = 1; | |
3399 | DECL_RTL (decl) = gen_rtx (CONCAT, reg_mode, realpart, imagpart); | |
3400 | } | |
3401 | else | |
3402 | { | |
3403 | DECL_RTL (decl) = gen_reg_rtx (reg_mode); | |
3404 | if (TREE_CODE (type) == POINTER_TYPE) | |
d902f80a RK |
3405 | mark_reg_pointer (DECL_RTL (decl), |
3406 | (TYPE_ALIGN (TREE_TYPE (TREE_TYPE (decl))) | |
3407 | / BITS_PER_UNIT)); | |
5998c7dc RS |
3408 | REG_USERVAR_P (DECL_RTL (decl)) = 1; |
3409 | } | |
28d81abb RK |
3410 | } |
3411 | else if (TREE_CODE (DECL_SIZE (decl)) == INTEGER_CST) | |
3412 | { | |
3413 | /* Variable of fixed size that goes on the stack. */ | |
3414 | rtx oldaddr = 0; | |
3415 | rtx addr; | |
3416 | ||
3417 | /* If we previously made RTL for this decl, it must be an array | |
3418 | whose size was determined by the initializer. | |
3419 | The old address was a register; set that register now | |
3420 | to the proper address. */ | |
3421 | if (DECL_RTL (decl) != 0) | |
3422 | { | |
3423 | if (GET_CODE (DECL_RTL (decl)) != MEM | |
3424 | || GET_CODE (XEXP (DECL_RTL (decl), 0)) != REG) | |
3425 | abort (); | |
3426 | oldaddr = XEXP (DECL_RTL (decl), 0); | |
3427 | } | |
3428 | ||
3429 | DECL_RTL (decl) | |
3430 | = assign_stack_temp (DECL_MODE (decl), | |
3431 | ((TREE_INT_CST_LOW (DECL_SIZE (decl)) | |
3432 | + BITS_PER_UNIT - 1) | |
3433 | / BITS_PER_UNIT), | |
3434 | 1); | |
3668e76e | 3435 | MEM_IN_STRUCT_P (DECL_RTL (decl)) = AGGREGATE_TYPE_P (TREE_TYPE (decl)); |
28d81abb RK |
3436 | |
3437 | /* Set alignment we actually gave this decl. */ | |
3438 | DECL_ALIGN (decl) = (DECL_MODE (decl) == BLKmode ? BIGGEST_ALIGNMENT | |
3439 | : GET_MODE_BITSIZE (DECL_MODE (decl))); | |
3440 | ||
3441 | if (oldaddr) | |
3442 | { | |
3443 | addr = force_operand (XEXP (DECL_RTL (decl), 0), oldaddr); | |
3444 | if (addr != oldaddr) | |
3445 | emit_move_insn (oldaddr, addr); | |
3446 | } | |
3447 | ||
3448 | /* If this is a memory ref that contains aggregate components, | |
3449 | mark it as such for cse and loop optimize. */ | |
05e3bdb9 | 3450 | MEM_IN_STRUCT_P (DECL_RTL (decl)) = AGGREGATE_TYPE_P (TREE_TYPE (decl)); |
28d81abb RK |
3451 | #if 0 |
3452 | /* If this is in memory because of -ffloat-store, | |
3453 | set the volatile bit, to prevent optimizations from | |
3454 | undoing the effects. */ | |
3455 | if (flag_float_store && TREE_CODE (type) == REAL_TYPE) | |
3456 | MEM_VOLATILE_P (DECL_RTL (decl)) = 1; | |
3457 | #endif | |
3458 | } | |
3459 | else | |
3460 | /* Dynamic-size object: must push space on the stack. */ | |
3461 | { | |
3462 | rtx address, size; | |
3463 | ||
3464 | /* Record the stack pointer on entry to block, if have | |
3465 | not already done so. */ | |
3466 | if (thisblock->data.block.stack_level == 0) | |
3467 | { | |
3468 | do_pending_stack_adjust (); | |
59257ff7 RK |
3469 | emit_stack_save (thisblock->next ? SAVE_BLOCK : SAVE_FUNCTION, |
3470 | &thisblock->data.block.stack_level, | |
3471 | thisblock->data.block.first_insn); | |
28d81abb RK |
3472 | stack_block_stack = thisblock; |
3473 | } | |
3474 | ||
3475 | /* Compute the variable's size, in bytes. */ | |
3476 | size = expand_expr (size_binop (CEIL_DIV_EXPR, | |
3477 | DECL_SIZE (decl), | |
3478 | size_int (BITS_PER_UNIT)), | |
37366632 | 3479 | NULL_RTX, VOIDmode, 0); |
28d81abb RK |
3480 | free_temp_slots (); |
3481 | ||
ff91ad08 RK |
3482 | /* Allocate space on the stack for the variable. Note that |
3483 | DECL_ALIGN says how the variable is to be aligned and we | |
3484 | cannot use it to conclude anything about the alignment of | |
3485 | the size. */ | |
37366632 | 3486 | address = allocate_dynamic_stack_space (size, NULL_RTX, |
ff91ad08 | 3487 | TYPE_ALIGN (TREE_TYPE (decl))); |
28d81abb | 3488 | |
28d81abb RK |
3489 | /* Reference the variable indirect through that rtx. */ |
3490 | DECL_RTL (decl) = gen_rtx (MEM, DECL_MODE (decl), address); | |
3491 | ||
2207e295 RS |
3492 | /* If this is a memory ref that contains aggregate components, |
3493 | mark it as such for cse and loop optimize. */ | |
05e3bdb9 | 3494 | MEM_IN_STRUCT_P (DECL_RTL (decl)) = AGGREGATE_TYPE_P (TREE_TYPE (decl)); |
2207e295 | 3495 | |
28d81abb RK |
3496 | /* Indicate the alignment we actually gave this variable. */ |
3497 | #ifdef STACK_BOUNDARY | |
3498 | DECL_ALIGN (decl) = STACK_BOUNDARY; | |
3499 | #else | |
3500 | DECL_ALIGN (decl) = BIGGEST_ALIGNMENT; | |
3501 | #endif | |
3502 | } | |
3503 | ||
3504 | if (TREE_THIS_VOLATILE (decl)) | |
3505 | MEM_VOLATILE_P (DECL_RTL (decl)) = 1; | |
b4bf13a8 RS |
3506 | #if 0 /* A variable is not necessarily unchanging |
3507 | just because it is const. RTX_UNCHANGING_P | |
3508 | means no change in the function, | |
3509 | not merely no change in the variable's scope. | |
3510 | It is correct to set RTX_UNCHANGING_P if the variable's scope | |
3511 | is the whole function. There's no convenient way to test that. */ | |
28d81abb RK |
3512 | if (TREE_READONLY (decl)) |
3513 | RTX_UNCHANGING_P (DECL_RTL (decl)) = 1; | |
b4bf13a8 | 3514 | #endif |
28d81abb RK |
3515 | |
3516 | /* If doing stupid register allocation, make sure life of any | |
3517 | register variable starts here, at the start of its scope. */ | |
3518 | ||
3519 | if (obey_regdecls) | |
3520 | use_variable (DECL_RTL (decl)); | |
3521 | } | |
ca695ac9 JB |
3522 | |
3523 | ||
3524 | /* Generate code for the automatic variable declaration DECL. For | |
3525 | most variables this just means we give it a stack offset. The | |
3526 | compiler sometimes emits cleanups without variables and we will | |
3527 | have to deal with those too. */ | |
3528 | ||
704f4dca | 3529 | static void |
ca695ac9 JB |
3530 | bc_expand_decl (decl, cleanup) |
3531 | tree decl; | |
3532 | tree cleanup; | |
3533 | { | |
3534 | tree type; | |
3535 | ||
3536 | if (!decl) | |
3537 | { | |
3538 | /* A cleanup with no variable. */ | |
3539 | if (!cleanup) | |
3540 | abort (); | |
3541 | ||
3542 | return; | |
3543 | } | |
3544 | ||
3545 | /* Only auto variables need any work. */ | |
3546 | if (TREE_CODE (decl) != VAR_DECL || TREE_STATIC (decl) || DECL_EXTERNAL (decl)) | |
3547 | return; | |
3548 | ||
3549 | type = TREE_TYPE (decl); | |
3550 | ||
3551 | if (type == error_mark_node) | |
3552 | DECL_RTL (decl) = bc_gen_rtx ((char *) 0, 0, (struct bc_label *) 0); | |
3553 | ||
3554 | else if (DECL_SIZE (decl) == 0) | |
3555 | ||
3556 | /* Variable with incomplete type. The stack offset herein will be | |
3557 | fixed later in expand_decl_init (). */ | |
3558 | DECL_RTL (decl) = bc_gen_rtx ((char *) 0, 0, (struct bc_label *) 0); | |
3559 | ||
3560 | else if (TREE_CONSTANT (DECL_SIZE (decl))) | |
3561 | { | |
3562 | DECL_RTL (decl) = bc_allocate_local (TREE_INT_CST_LOW (DECL_SIZE (decl)) / BITS_PER_UNIT, | |
3563 | DECL_ALIGN (decl)); | |
3564 | } | |
3565 | else | |
3566 | DECL_RTL (decl) = bc_allocate_variable_array (DECL_SIZE (decl)); | |
3567 | } | |
28d81abb RK |
3568 | \f |
3569 | /* Emit code to perform the initialization of a declaration DECL. */ | |
3570 | ||
3571 | void | |
3572 | expand_decl_init (decl) | |
3573 | tree decl; | |
3574 | { | |
b4ac57ab RS |
3575 | int was_used = TREE_USED (decl); |
3576 | ||
704f4dca RK |
3577 | if (output_bytecode) |
3578 | { | |
3579 | bc_expand_decl_init (decl); | |
3580 | return; | |
3581 | } | |
3582 | ||
3564e40e RK |
3583 | /* If this is a CONST_DECL, we don't have to generate any code, but |
3584 | if DECL_INITIAL is a constant, call expand_expr to force TREE_CST_RTL | |
3585 | to be set while in the obstack containing the constant. If we don't | |
3586 | do this, we can lose if we have functions nested three deep and the middle | |
3587 | function makes a CONST_DECL whose DECL_INITIAL is a STRING_CST while | |
3588 | the innermost function is the first to expand that STRING_CST. */ | |
3589 | if (TREE_CODE (decl) == CONST_DECL) | |
3590 | { | |
3591 | if (DECL_INITIAL (decl) && TREE_CONSTANT (DECL_INITIAL (decl))) | |
3592 | expand_expr (DECL_INITIAL (decl), NULL_RTX, VOIDmode, | |
3593 | EXPAND_INITIALIZER); | |
3594 | return; | |
3595 | } | |
3596 | ||
28d81abb RK |
3597 | if (TREE_STATIC (decl)) |
3598 | return; | |
3599 | ||
3600 | /* Compute and store the initial value now. */ | |
3601 | ||
3602 | if (DECL_INITIAL (decl) == error_mark_node) | |
3603 | { | |
3604 | enum tree_code code = TREE_CODE (TREE_TYPE (decl)); | |
3605 | if (code == INTEGER_TYPE || code == REAL_TYPE || code == ENUMERAL_TYPE | |
3606 | || code == POINTER_TYPE) | |
3607 | expand_assignment (decl, convert (TREE_TYPE (decl), integer_zero_node), | |
3608 | 0, 0); | |
3609 | emit_queue (); | |
3610 | } | |
3611 | else if (DECL_INITIAL (decl) && TREE_CODE (DECL_INITIAL (decl)) != TREE_LIST) | |
3612 | { | |
3613 | emit_line_note (DECL_SOURCE_FILE (decl), DECL_SOURCE_LINE (decl)); | |
3614 | expand_assignment (decl, DECL_INITIAL (decl), 0, 0); | |
3615 | emit_queue (); | |
3616 | } | |
3617 | ||
b4ac57ab RS |
3618 | /* Don't let the initialization count as "using" the variable. */ |
3619 | TREE_USED (decl) = was_used; | |
3620 | ||
28d81abb | 3621 | /* Free any temporaries we made while initializing the decl. */ |
ae8c59c0 | 3622 | preserve_temp_slots (NULL_RTX); |
28d81abb RK |
3623 | free_temp_slots (); |
3624 | } | |
3625 | ||
ca695ac9 JB |
3626 | /* Expand initialization for variable-sized types. Allocate array |
3627 | using newlocalSI and set local variable, which is a pointer to the | |
0f41302f | 3628 | storage. */ |
ca695ac9 | 3629 | |
704f4dca | 3630 | static void |
ca695ac9 JB |
3631 | bc_expand_variable_local_init (decl) |
3632 | tree decl; | |
3633 | { | |
3634 | /* Evaluate size expression and coerce to SI */ | |
3635 | bc_expand_expr (DECL_SIZE (decl)); | |
3636 | ||
3637 | /* Type sizes are always (?) of TREE_CODE INTEGER_CST, so | |
3638 | no coercion is necessary (?) */ | |
3639 | ||
3640 | /* emit_typecode_conversion (preferred_typecode (TYPE_MODE (DECL_SIZE (decl)), | |
3641 | TREE_UNSIGNED (DECL_SIZE (decl))), SIcode); */ | |
3642 | ||
3643 | /* Emit code to allocate array */ | |
3644 | bc_emit_instruction (newlocalSI); | |
3645 | ||
3646 | /* Store array pointer in local variable. This is the only instance | |
3647 | where we actually want the address of the pointer to the | |
3648 | variable-size block, rather than the pointer itself. We avoid | |
3649 | using expand_address() since that would cause the pointer to be | |
3650 | pushed rather than its address. Hence the hard-coded reference; | |
3651 | notice also that the variable is always local (no global | |
0f41302f | 3652 | variable-size type variables). */ |
ca695ac9 JB |
3653 | |
3654 | bc_load_localaddr (DECL_RTL (decl)); | |
3655 | bc_emit_instruction (storeP); | |
3656 | } | |
3657 | ||
3658 | ||
3659 | /* Emit code to initialize a declaration. */ | |
704f4dca RK |
3660 | |
3661 | static void | |
ca695ac9 JB |
3662 | bc_expand_decl_init (decl) |
3663 | tree decl; | |
3664 | { | |
3665 | int org_stack_depth; | |
3666 | ||
3667 | /* Statical initializers are handled elsewhere */ | |
3668 | ||
3669 | if (TREE_STATIC (decl)) | |
3670 | return; | |
3671 | ||
3672 | /* Memory original stack depth */ | |
3673 | org_stack_depth = stack_depth; | |
3674 | ||
3675 | /* If the type is variable-size, we first create its space (we ASSUME | |
3676 | it CAN'T be static). We do this regardless of whether there's an | |
0f41302f | 3677 | initializer assignment or not. */ |
ca695ac9 JB |
3678 | |
3679 | if (TREE_CODE (DECL_SIZE (decl)) != INTEGER_CST) | |
3680 | bc_expand_variable_local_init (decl); | |
3681 | ||
3682 | /* Expand initializer assignment */ | |
3683 | if (DECL_INITIAL (decl) == error_mark_node) | |
3684 | { | |
3685 | enum tree_code code = TREE_CODE (TREE_TYPE (decl)); | |
3686 | ||
3687 | if (code == INTEGER_TYPE || code == REAL_TYPE || code == ENUMERAL_TYPE | |
3688 | || code == POINTER_TYPE) | |
3689 | ||
e81d77b5 | 3690 | expand_assignment (TREE_TYPE (decl), decl, 0, 0); |
ca695ac9 JB |
3691 | } |
3692 | else if (DECL_INITIAL (decl)) | |
e81d77b5 | 3693 | expand_assignment (TREE_TYPE (decl), decl, 0, 0); |
ca695ac9 JB |
3694 | |
3695 | /* Restore stack depth */ | |
3696 | if (org_stack_depth > stack_depth) | |
3697 | abort (); | |
3698 | ||
3699 | bc_adjust_stack (stack_depth - org_stack_depth); | |
3700 | } | |
3701 | ||
3702 | ||
28d81abb RK |
3703 | /* CLEANUP is an expression to be executed at exit from this binding contour; |
3704 | for example, in C++, it might call the destructor for this variable. | |
3705 | ||
4847c938 MS |
3706 | We wrap CLEANUP in an UNSAVE_EXPR node, so that we can expand the |
3707 | CLEANUP multiple times, and have the correct semantics. This | |
3708 | happens in exception handling, and for non-local gotos. | |
28d81abb RK |
3709 | |
3710 | If CLEANUP is nonzero and DECL is zero, we record a cleanup | |
3711 | that is not associated with any particular variable. */ | |
3712 | ||
3713 | int | |
3714 | expand_decl_cleanup (decl, cleanup) | |
3715 | tree decl, cleanup; | |
3716 | { | |
3717 | struct nesting *thisblock = block_stack; | |
3718 | ||
3719 | /* Error if we are not in any block. */ | |
3720 | if (thisblock == 0) | |
3721 | return 0; | |
3722 | ||
3723 | /* Record the cleanup if there is one. */ | |
3724 | ||
3725 | if (cleanup != 0) | |
3726 | { | |
4847c938 MS |
3727 | cleanup = unsave_expr (cleanup); |
3728 | ||
28d81abb RK |
3729 | thisblock->data.block.cleanups |
3730 | = temp_tree_cons (decl, cleanup, thisblock->data.block.cleanups); | |
3731 | /* If this block has a cleanup, it belongs in stack_block_stack. */ | |
3732 | stack_block_stack = thisblock; | |
61d6b1cc | 3733 | (*interim_eh_hook) (NULL_TREE); |
28d81abb RK |
3734 | } |
3735 | return 1; | |
3736 | } | |
3737 | \f | |
3738 | /* DECL is an anonymous union. CLEANUP is a cleanup for DECL. | |
3739 | DECL_ELTS is the list of elements that belong to DECL's type. | |
3740 | In each, the TREE_VALUE is a VAR_DECL, and the TREE_PURPOSE a cleanup. */ | |
3741 | ||
3742 | void | |
3743 | expand_anon_union_decl (decl, cleanup, decl_elts) | |
3744 | tree decl, cleanup, decl_elts; | |
3745 | { | |
3746 | struct nesting *thisblock = block_stack; | |
3747 | rtx x; | |
3748 | ||
ec5cd386 RK |
3749 | expand_decl (decl); |
3750 | expand_decl_cleanup (decl, cleanup); | |
28d81abb RK |
3751 | x = DECL_RTL (decl); |
3752 | ||
3753 | while (decl_elts) | |
3754 | { | |
3755 | tree decl_elt = TREE_VALUE (decl_elts); | |
3756 | tree cleanup_elt = TREE_PURPOSE (decl_elts); | |
3757 | enum machine_mode mode = TYPE_MODE (TREE_TYPE (decl_elt)); | |
3758 | ||
7b9032dd JM |
3759 | /* Propagate the union's alignment to the elements. */ |
3760 | DECL_ALIGN (decl_elt) = DECL_ALIGN (decl); | |
3761 | ||
3762 | /* If the element has BLKmode and the union doesn't, the union is | |
3763 | aligned such that the element doesn't need to have BLKmode, so | |
3764 | change the element's mode to the appropriate one for its size. */ | |
3765 | if (mode == BLKmode && DECL_MODE (decl) != BLKmode) | |
3766 | DECL_MODE (decl_elt) = mode | |
3767 | = mode_for_size (TREE_INT_CST_LOW (DECL_SIZE (decl_elt)), | |
3768 | MODE_INT, 1); | |
3769 | ||
28d81abb RK |
3770 | /* (SUBREG (MEM ...)) at RTL generation time is invalid, so we |
3771 | instead create a new MEM rtx with the proper mode. */ | |
3772 | if (GET_CODE (x) == MEM) | |
3773 | { | |
3774 | if (mode == GET_MODE (x)) | |
3775 | DECL_RTL (decl_elt) = x; | |
3776 | else | |
3777 | { | |
3778 | DECL_RTL (decl_elt) = gen_rtx (MEM, mode, copy_rtx (XEXP (x, 0))); | |
3779 | MEM_IN_STRUCT_P (DECL_RTL (decl_elt)) = MEM_IN_STRUCT_P (x); | |
3780 | RTX_UNCHANGING_P (DECL_RTL (decl_elt)) = RTX_UNCHANGING_P (x); | |
3781 | } | |
3782 | } | |
3783 | else if (GET_CODE (x) == REG) | |
3784 | { | |
3785 | if (mode == GET_MODE (x)) | |
3786 | DECL_RTL (decl_elt) = x; | |
3787 | else | |
3788 | DECL_RTL (decl_elt) = gen_rtx (SUBREG, mode, x, 0); | |
3789 | } | |
3790 | else | |
3791 | abort (); | |
3792 | ||
3793 | /* Record the cleanup if there is one. */ | |
3794 | ||
3795 | if (cleanup != 0) | |
3796 | thisblock->data.block.cleanups | |
3797 | = temp_tree_cons (decl_elt, cleanup_elt, | |
3798 | thisblock->data.block.cleanups); | |
3799 | ||
3800 | decl_elts = TREE_CHAIN (decl_elts); | |
3801 | } | |
3802 | } | |
3803 | \f | |
3804 | /* Expand a list of cleanups LIST. | |
3805 | Elements may be expressions or may be nested lists. | |
3806 | ||
3807 | If DONT_DO is nonnull, then any list-element | |
3808 | whose TREE_PURPOSE matches DONT_DO is omitted. | |
3809 | This is sometimes used to avoid a cleanup associated with | |
4e44807b MS |
3810 | a value that is being returned out of the scope. |
3811 | ||
3812 | If IN_FIXUP is non-zero, we are generating this cleanup for a fixup | |
50d1b7a1 MS |
3813 | goto and handle protection regions specially in that case. |
3814 | ||
3815 | If REACHABLE, we emit code, otherwise just inform the exception handling | |
3816 | code about this finalization. */ | |
28d81abb RK |
3817 | |
3818 | static void | |
50d1b7a1 | 3819 | expand_cleanups (list, dont_do, in_fixup, reachable) |
28d81abb RK |
3820 | tree list; |
3821 | tree dont_do; | |
4e44807b | 3822 | int in_fixup; |
50d1b7a1 | 3823 | int reachable; |
28d81abb RK |
3824 | { |
3825 | tree tail; | |
3826 | for (tail = list; tail; tail = TREE_CHAIN (tail)) | |
3827 | if (dont_do == 0 || TREE_PURPOSE (tail) != dont_do) | |
3828 | { | |
3829 | if (TREE_CODE (TREE_VALUE (tail)) == TREE_LIST) | |
50d1b7a1 | 3830 | expand_cleanups (TREE_VALUE (tail), dont_do, in_fixup, reachable); |
28d81abb RK |
3831 | else |
3832 | { | |
4e44807b MS |
3833 | if (! in_fixup) |
3834 | (*interim_eh_hook) (TREE_VALUE (tail)); | |
61d6b1cc | 3835 | |
50d1b7a1 MS |
3836 | if (reachable) |
3837 | { | |
3838 | /* Cleanups may be run multiple times. For example, | |
3839 | when exiting a binding contour, we expand the | |
3840 | cleanups associated with that contour. When a goto | |
3841 | within that binding contour has a target outside that | |
3842 | contour, it will expand all cleanups from its scope to | |
3843 | the target. Though the cleanups are expanded multiple | |
3844 | times, the control paths are non-overlapping so the | |
3845 | cleanups will not be executed twice. */ | |
3846 | expand_expr (TREE_VALUE (tail), const0_rtx, VOIDmode, 0); | |
3847 | free_temp_slots (); | |
3848 | } | |
28d81abb RK |
3849 | } |
3850 | } | |
3851 | } | |
3852 | ||
28d81abb RK |
3853 | /* Move all cleanups from the current block_stack |
3854 | to the containing block_stack, where they are assumed to | |
3855 | have been created. If anything can cause a temporary to | |
3856 | be created, but not expanded for more than one level of | |
3857 | block_stacks, then this code will have to change. */ | |
3858 | ||
3859 | void | |
3860 | move_cleanups_up () | |
3861 | { | |
3862 | struct nesting *block = block_stack; | |
3863 | struct nesting *outer = block->next; | |
3864 | ||
3865 | outer->data.block.cleanups | |
3866 | = chainon (block->data.block.cleanups, | |
3867 | outer->data.block.cleanups); | |
3868 | block->data.block.cleanups = 0; | |
3869 | } | |
3870 | ||
3871 | tree | |
3872 | last_cleanup_this_contour () | |
3873 | { | |
3874 | if (block_stack == 0) | |
3875 | return 0; | |
3876 | ||
3877 | return block_stack->data.block.cleanups; | |
3878 | } | |
3879 | ||
3880 | /* Return 1 if there are any pending cleanups at this point. | |
3881 | If THIS_CONTOUR is nonzero, check the current contour as well. | |
3882 | Otherwise, look only at the contours that enclose this one. */ | |
3883 | ||
3884 | int | |
3885 | any_pending_cleanups (this_contour) | |
3886 | int this_contour; | |
3887 | { | |
3888 | struct nesting *block; | |
3889 | ||
3890 | if (block_stack == 0) | |
3891 | return 0; | |
3892 | ||
3893 | if (this_contour && block_stack->data.block.cleanups != NULL) | |
3894 | return 1; | |
3895 | if (block_stack->data.block.cleanups == 0 | |
3896 | && (block_stack->data.block.outer_cleanups == 0 | |
3897 | #if 0 | |
3898 | || block_stack->data.block.outer_cleanups == empty_cleanup_list | |
3899 | #endif | |
3900 | )) | |
3901 | return 0; | |
3902 | ||
3903 | for (block = block_stack->next; block; block = block->next) | |
3904 | if (block->data.block.cleanups != 0) | |
3905 | return 1; | |
3906 | ||
3907 | return 0; | |
3908 | } | |
3909 | \f | |
3910 | /* Enter a case (Pascal) or switch (C) statement. | |
3911 | Push a block onto case_stack and nesting_stack | |
3912 | to accumulate the case-labels that are seen | |
3913 | and to record the labels generated for the statement. | |
3914 | ||
3915 | EXIT_FLAG is nonzero if `exit_something' should exit this case stmt. | |
3916 | Otherwise, this construct is transparent for `exit_something'. | |
3917 | ||
3918 | EXPR is the index-expression to be dispatched on. | |
3919 | TYPE is its nominal type. We could simply convert EXPR to this type, | |
3920 | but instead we take short cuts. */ | |
3921 | ||
3922 | void | |
3923 | expand_start_case (exit_flag, expr, type, printname) | |
3924 | int exit_flag; | |
3925 | tree expr; | |
3926 | tree type; | |
3927 | char *printname; | |
3928 | { | |
3929 | register struct nesting *thiscase = ALLOC_NESTING (); | |
3930 | ||
3931 | /* Make an entry on case_stack for the case we are entering. */ | |
3932 | ||
3933 | thiscase->next = case_stack; | |
3934 | thiscase->all = nesting_stack; | |
3935 | thiscase->depth = ++nesting_depth; | |
3936 | thiscase->exit_label = exit_flag ? gen_label_rtx () : 0; | |
3937 | thiscase->data.case_stmt.case_list = 0; | |
3938 | thiscase->data.case_stmt.index_expr = expr; | |
3939 | thiscase->data.case_stmt.nominal_type = type; | |
3940 | thiscase->data.case_stmt.default_label = 0; | |
3941 | thiscase->data.case_stmt.num_ranges = 0; | |
3942 | thiscase->data.case_stmt.printname = printname; | |
3943 | thiscase->data.case_stmt.seenlabel = 0; | |
3944 | case_stack = thiscase; | |
3945 | nesting_stack = thiscase; | |
3946 | ||
ca695ac9 JB |
3947 | if (output_bytecode) |
3948 | { | |
3949 | bc_expand_start_case (thiscase, expr, type, printname); | |
3950 | return; | |
3951 | } | |
3952 | ||
28d81abb RK |
3953 | do_pending_stack_adjust (); |
3954 | ||
3955 | /* Make sure case_stmt.start points to something that won't | |
3956 | need any transformation before expand_end_case. */ | |
3957 | if (GET_CODE (get_last_insn ()) != NOTE) | |
37366632 | 3958 | emit_note (NULL_PTR, NOTE_INSN_DELETED); |
28d81abb RK |
3959 | |
3960 | thiscase->data.case_stmt.start = get_last_insn (); | |
3961 | } | |
3962 | ||
ca695ac9 JB |
3963 | |
3964 | /* Enter a case statement. It is assumed that the caller has pushed | |
0f41302f | 3965 | the current context onto the case stack. */ |
704f4dca RK |
3966 | |
3967 | static void | |
ca695ac9 JB |
3968 | bc_expand_start_case (thiscase, expr, type, printname) |
3969 | struct nesting *thiscase; | |
3970 | tree expr; | |
3971 | tree type; | |
3972 | char *printname; | |
3973 | { | |
3974 | bc_expand_expr (expr); | |
3975 | bc_expand_conversion (TREE_TYPE (expr), type); | |
3976 | ||
3977 | /* For cases, the skip is a place we jump to that's emitted after | |
3978 | the size of the jump table is known. */ | |
3979 | ||
3980 | thiscase->data.case_stmt.skip_label = gen_label_rtx (); | |
3981 | bc_emit_bytecode (jump); | |
c53e9440 | 3982 | bc_emit_bytecode_labelref (BYTECODE_BC_LABEL (thiscase->data.case_stmt.skip_label)); |
ca695ac9 JB |
3983 | |
3984 | #ifdef DEBUG_PRINT_CODE | |
3985 | fputc ('\n', stderr); | |
3986 | #endif | |
3987 | } | |
3988 | ||
3989 | ||
28d81abb RK |
3990 | /* Start a "dummy case statement" within which case labels are invalid |
3991 | and are not connected to any larger real case statement. | |
3992 | This can be used if you don't want to let a case statement jump | |
3993 | into the middle of certain kinds of constructs. */ | |
3994 | ||
3995 | void | |
3996 | expand_start_case_dummy () | |
3997 | { | |
3998 | register struct nesting *thiscase = ALLOC_NESTING (); | |
3999 | ||
4000 | /* Make an entry on case_stack for the dummy. */ | |
4001 | ||
4002 | thiscase->next = case_stack; | |
4003 | thiscase->all = nesting_stack; | |
4004 | thiscase->depth = ++nesting_depth; | |
4005 | thiscase->exit_label = 0; | |
4006 | thiscase->data.case_stmt.case_list = 0; | |
4007 | thiscase->data.case_stmt.start = 0; | |
4008 | thiscase->data.case_stmt.nominal_type = 0; | |
4009 | thiscase->data.case_stmt.default_label = 0; | |
4010 | thiscase->data.case_stmt.num_ranges = 0; | |
4011 | case_stack = thiscase; | |
4012 | nesting_stack = thiscase; | |
4013 | } | |
4014 | ||
4015 | /* End a dummy case statement. */ | |
4016 | ||
4017 | void | |
4018 | expand_end_case_dummy () | |
4019 | { | |
4020 | POPSTACK (case_stack); | |
4021 | } | |
4022 | ||
4023 | /* Return the data type of the index-expression | |
4024 | of the innermost case statement, or null if none. */ | |
4025 | ||
4026 | tree | |
4027 | case_index_expr_type () | |
4028 | { | |
4029 | if (case_stack) | |
4030 | return TREE_TYPE (case_stack->data.case_stmt.index_expr); | |
4031 | return 0; | |
4032 | } | |
4033 | \f | |
4034 | /* Accumulate one case or default label inside a case or switch statement. | |
4035 | VALUE is the value of the case (a null pointer, for a default label). | |
f52fba84 PE |
4036 | The function CONVERTER, when applied to arguments T and V, |
4037 | converts the value V to the type T. | |
28d81abb RK |
4038 | |
4039 | If not currently inside a case or switch statement, return 1 and do | |
4040 | nothing. The caller will print a language-specific error message. | |
4041 | If VALUE is a duplicate or overlaps, return 2 and do nothing | |
4042 | except store the (first) duplicate node in *DUPLICATE. | |
4043 | If VALUE is out of range, return 3 and do nothing. | |
4044 | If we are jumping into the scope of a cleaup or var-sized array, return 5. | |
4045 | Return 0 on success. | |
4046 | ||
4047 | Extended to handle range statements. */ | |
4048 | ||
4049 | int | |
f52fba84 | 4050 | pushcase (value, converter, label, duplicate) |
28d81abb | 4051 | register tree value; |
f52fba84 | 4052 | tree (*converter) PROTO((tree, tree)); |
28d81abb RK |
4053 | register tree label; |
4054 | tree *duplicate; | |
4055 | { | |
4056 | register struct case_node **l; | |
4057 | register struct case_node *n; | |
4058 | tree index_type; | |
4059 | tree nominal_type; | |
4060 | ||
ca695ac9 JB |
4061 | if (output_bytecode) |
4062 | return bc_pushcase (value, label); | |
4063 | ||
28d81abb RK |
4064 | /* Fail if not inside a real case statement. */ |
4065 | if (! (case_stack && case_stack->data.case_stmt.start)) | |
4066 | return 1; | |
4067 | ||
4068 | if (stack_block_stack | |
4069 | && stack_block_stack->depth > case_stack->depth) | |
4070 | return 5; | |
4071 | ||
4072 | index_type = TREE_TYPE (case_stack->data.case_stmt.index_expr); | |
4073 | nominal_type = case_stack->data.case_stmt.nominal_type; | |
4074 | ||
4075 | /* If the index is erroneous, avoid more problems: pretend to succeed. */ | |
4076 | if (index_type == error_mark_node) | |
4077 | return 0; | |
4078 | ||
4079 | /* Convert VALUE to the type in which the comparisons are nominally done. */ | |
4080 | if (value != 0) | |
f52fba84 | 4081 | value = (*converter) (nominal_type, value); |
28d81abb RK |
4082 | |
4083 | /* If this is the first label, warn if any insns have been emitted. */ | |
4084 | if (case_stack->data.case_stmt.seenlabel == 0) | |
4085 | { | |
4086 | rtx insn; | |
4087 | for (insn = case_stack->data.case_stmt.start; | |
4088 | insn; | |
4089 | insn = NEXT_INSN (insn)) | |
4090 | { | |
4091 | if (GET_CODE (insn) == CODE_LABEL) | |
4092 | break; | |
4093 | if (GET_CODE (insn) != NOTE | |
4094 | && (GET_CODE (insn) != INSN || GET_CODE (PATTERN (insn)) != USE)) | |
4095 | { | |
4096 | warning ("unreachable code at beginning of %s", | |
4097 | case_stack->data.case_stmt.printname); | |
4098 | break; | |
4099 | } | |
4100 | } | |
4101 | } | |
4102 | case_stack->data.case_stmt.seenlabel = 1; | |
4103 | ||
4104 | /* Fail if this value is out of range for the actual type of the index | |
4105 | (which may be narrower than NOMINAL_TYPE). */ | |
4106 | if (value != 0 && ! int_fits_type_p (value, index_type)) | |
4107 | return 3; | |
4108 | ||
4109 | /* Fail if this is a duplicate or overlaps another entry. */ | |
4110 | if (value == 0) | |
4111 | { | |
4112 | if (case_stack->data.case_stmt.default_label != 0) | |
4113 | { | |
4114 | *duplicate = case_stack->data.case_stmt.default_label; | |
4115 | return 2; | |
4116 | } | |
4117 | case_stack->data.case_stmt.default_label = label; | |
4118 | } | |
4119 | else | |
57641239 | 4120 | return add_case_node (value, value, label, duplicate); |
28d81abb RK |
4121 | |
4122 | expand_label (label); | |
4123 | return 0; | |
4124 | } | |
4125 | ||
4126 | /* Like pushcase but this case applies to all values | |
4127 | between VALUE1 and VALUE2 (inclusive). | |
4128 | The return value is the same as that of pushcase | |
4129 | but there is one additional error code: | |
4130 | 4 means the specified range was empty. */ | |
4131 | ||
4132 | int | |
f52fba84 | 4133 | pushcase_range (value1, value2, converter, label, duplicate) |
28d81abb | 4134 | register tree value1, value2; |
f52fba84 | 4135 | tree (*converter) PROTO((tree, tree)); |
28d81abb RK |
4136 | register tree label; |
4137 | tree *duplicate; | |
4138 | { | |
4139 | register struct case_node **l; | |
4140 | register struct case_node *n; | |
4141 | tree index_type; | |
4142 | tree nominal_type; | |
4143 | ||
4144 | /* Fail if not inside a real case statement. */ | |
4145 | if (! (case_stack && case_stack->data.case_stmt.start)) | |
4146 | return 1; | |
4147 | ||
4148 | if (stack_block_stack | |
4149 | && stack_block_stack->depth > case_stack->depth) | |
4150 | return 5; | |
4151 | ||
4152 | index_type = TREE_TYPE (case_stack->data.case_stmt.index_expr); | |
4153 | nominal_type = case_stack->data.case_stmt.nominal_type; | |
4154 | ||
4155 | /* If the index is erroneous, avoid more problems: pretend to succeed. */ | |
4156 | if (index_type == error_mark_node) | |
4157 | return 0; | |
4158 | ||
4159 | /* If this is the first label, warn if any insns have been emitted. */ | |
4160 | if (case_stack->data.case_stmt.seenlabel == 0) | |
4161 | { | |
4162 | rtx insn; | |
4163 | for (insn = case_stack->data.case_stmt.start; | |
4164 | insn; | |
4165 | insn = NEXT_INSN (insn)) | |
4166 | { | |
4167 | if (GET_CODE (insn) == CODE_LABEL) | |
4168 | break; | |
4169 | if (GET_CODE (insn) != NOTE | |
4170 | && (GET_CODE (insn) != INSN || GET_CODE (PATTERN (insn)) != USE)) | |
4171 | { | |
4172 | warning ("unreachable code at beginning of %s", | |
4173 | case_stack->data.case_stmt.printname); | |
4174 | break; | |
4175 | } | |
4176 | } | |
4177 | } | |
4178 | case_stack->data.case_stmt.seenlabel = 1; | |
4179 | ||
4180 | /* Convert VALUEs to type in which the comparisons are nominally done. */ | |
0f41302f | 4181 | if (value1 == 0) /* Negative infinity. */ |
28d81abb | 4182 | value1 = TYPE_MIN_VALUE(index_type); |
f52fba84 | 4183 | value1 = (*converter) (nominal_type, value1); |
28d81abb | 4184 | |
0f41302f | 4185 | if (value2 == 0) /* Positive infinity. */ |
28d81abb | 4186 | value2 = TYPE_MAX_VALUE(index_type); |
f52fba84 | 4187 | value2 = (*converter) (nominal_type, value2); |
28d81abb RK |
4188 | |
4189 | /* Fail if these values are out of range. */ | |
4190 | if (! int_fits_type_p (value1, index_type)) | |
4191 | return 3; | |
4192 | ||
4193 | if (! int_fits_type_p (value2, index_type)) | |
4194 | return 3; | |
4195 | ||
4196 | /* Fail if the range is empty. */ | |
4197 | if (tree_int_cst_lt (value2, value1)) | |
4198 | return 4; | |
4199 | ||
57641239 RK |
4200 | return add_case_node (value1, value2, label, duplicate); |
4201 | } | |
4202 | ||
4203 | /* Do the actual insertion of a case label for pushcase and pushcase_range | |
4204 | into case_stack->data.case_stmt.case_list. Use an AVL tree to avoid | |
4205 | slowdown for large switch statements. */ | |
4206 | ||
4207 | static int | |
4208 | add_case_node (low, high, label, duplicate) | |
4209 | tree low, high; | |
4210 | tree label; | |
4211 | tree *duplicate; | |
4212 | { | |
4213 | struct case_node *p, **q, *r; | |
4214 | ||
4215 | q = &case_stack->data.case_stmt.case_list; | |
4216 | p = *q; | |
4217 | ||
4218 | while (r = *q) | |
28d81abb | 4219 | { |
57641239 RK |
4220 | p = r; |
4221 | ||
4222 | /* Keep going past elements distinctly greater than HIGH. */ | |
4223 | if (tree_int_cst_lt (high, p->low)) | |
4224 | q = &p->left; | |
4225 | ||
4226 | /* or distinctly less than LOW. */ | |
4227 | else if (tree_int_cst_lt (p->high, low)) | |
4228 | q = &p->right; | |
4229 | ||
4230 | else | |
28d81abb | 4231 | { |
57641239 RK |
4232 | /* We have an overlap; this is an error. */ |
4233 | *duplicate = p->code_label; | |
28d81abb RK |
4234 | return 2; |
4235 | } | |
4236 | } | |
4237 | ||
4238 | /* Add this label to the chain, and succeed. | |
57641239 | 4239 | Copy LOW, HIGH so they are on temporary rather than momentary |
28d81abb RK |
4240 | obstack and will thus survive till the end of the case statement. */ |
4241 | ||
57641239 RK |
4242 | r = (struct case_node *) oballoc (sizeof (struct case_node)); |
4243 | r->low = copy_node (low); | |
28d81abb | 4244 | |
57641239 RK |
4245 | /* If the bounds are equal, turn this into the one-value case. */ |
4246 | ||
4247 | if (tree_int_cst_equal (low, high)) | |
4248 | r->high = r->low; | |
4249 | else | |
4250 | { | |
4251 | r->high = copy_node (high); | |
4252 | case_stack->data.case_stmt.num_ranges++; | |
4253 | } | |
4254 | ||
4255 | r->code_label = label; | |
28d81abb RK |
4256 | expand_label (label); |
4257 | ||
57641239 RK |
4258 | *q = r; |
4259 | r->parent = p; | |
4260 | r->left = 0; | |
4261 | r->right = 0; | |
4262 | r->balance = 0; | |
4263 | ||
4264 | while (p) | |
4265 | { | |
4266 | struct case_node *s; | |
4267 | ||
4268 | if (r == p->left) | |
4269 | { | |
4270 | int b; | |
4271 | ||
4272 | if (! (b = p->balance)) | |
4273 | /* Growth propagation from left side. */ | |
4274 | p->balance = -1; | |
4275 | else if (b < 0) | |
4276 | { | |
4277 | if (r->balance < 0) | |
4278 | { | |
4279 | /* R-Rotation */ | |
4280 | if (p->left = s = r->right) | |
4281 | s->parent = p; | |
4282 | ||
4283 | r->right = p; | |
4284 | p->balance = 0; | |
4285 | r->balance = 0; | |
4286 | s = p->parent; | |
4287 | p->parent = r; | |
4288 | ||
4289 | if (r->parent = s) | |
4290 | { | |
4291 | if (s->left == p) | |
4292 | s->left = r; | |
4293 | else | |
4294 | s->right = r; | |
4295 | } | |
4296 | else | |
4297 | case_stack->data.case_stmt.case_list = r; | |
4298 | } | |
4299 | else | |
4300 | /* r->balance == +1 */ | |
4301 | { | |
5720c7e7 RK |
4302 | /* LR-Rotation */ |
4303 | ||
57641239 RK |
4304 | int b2; |
4305 | struct case_node *t = r->right; | |
4306 | ||
4307 | if (p->left = s = t->right) | |
4308 | s->parent = p; | |
4309 | ||
4310 | t->right = p; | |
4311 | if (r->right = s = t->left) | |
4312 | s->parent = r; | |
4313 | ||
4314 | t->left = r; | |
4315 | b = t->balance; | |
4316 | b2 = b < 0; | |
4317 | p->balance = b2; | |
4318 | b2 = -b2 - b; | |
4319 | r->balance = b2; | |
4320 | t->balance = 0; | |
4321 | s = p->parent; | |
4322 | p->parent = t; | |
4323 | r->parent = t; | |
4324 | ||
4325 | if (t->parent = s) | |
4326 | { | |
4327 | if (s->left == p) | |
4328 | s->left = t; | |
4329 | else | |
4330 | s->right = t; | |
4331 | } | |
4332 | else | |
4333 | case_stack->data.case_stmt.case_list = t; | |
4334 | } | |
4335 | break; | |
4336 | } | |
4337 | ||
4338 | else | |
4339 | { | |
4340 | /* p->balance == +1; growth of left side balances the node. */ | |
4341 | p->balance = 0; | |
4342 | break; | |
4343 | } | |
4344 | } | |
4345 | else | |
4346 | /* r == p->right */ | |
4347 | { | |
4348 | int b; | |
4349 | ||
4350 | if (! (b = p->balance)) | |
4351 | /* Growth propagation from right side. */ | |
4352 | p->balance++; | |
4353 | else if (b > 0) | |
4354 | { | |
4355 | if (r->balance > 0) | |
4356 | { | |
4357 | /* L-Rotation */ | |
4358 | ||
4359 | if (p->right = s = r->left) | |
4360 | s->parent = p; | |
4361 | ||
4362 | r->left = p; | |
4363 | p->balance = 0; | |
4364 | r->balance = 0; | |
4365 | s = p->parent; | |
4366 | p->parent = r; | |
4367 | if (r->parent = s) | |
4368 | { | |
4369 | if (s->left == p) | |
4370 | s->left = r; | |
4371 | else | |
4372 | s->right = r; | |
4373 | } | |
4374 | ||
4375 | else | |
4376 | case_stack->data.case_stmt.case_list = r; | |
4377 | } | |
4378 | ||
4379 | else | |
4380 | /* r->balance == -1 */ | |
4381 | { | |
4382 | /* RL-Rotation */ | |
4383 | int b2; | |
4384 | struct case_node *t = r->left; | |
4385 | ||
4386 | if (p->right = s = t->left) | |
4387 | s->parent = p; | |
4388 | ||
4389 | t->left = p; | |
4390 | ||
4391 | if (r->left = s = t->right) | |
4392 | s->parent = r; | |
4393 | ||
4394 | t->right = r; | |
4395 | b = t->balance; | |
4396 | b2 = b < 0; | |
4397 | r->balance = b2; | |
4398 | b2 = -b2 - b; | |
4399 | p->balance = b2; | |
4400 | t->balance = 0; | |
4401 | s = p->parent; | |
4402 | p->parent = t; | |
4403 | r->parent = t; | |
4404 | ||
4405 | if (t->parent = s) | |
4406 | { | |
4407 | if (s->left == p) | |
4408 | s->left = t; | |
4409 | else | |
4410 | s->right = t; | |
4411 | } | |
4412 | ||
4413 | else | |
4414 | case_stack->data.case_stmt.case_list = t; | |
4415 | } | |
4416 | break; | |
4417 | } | |
4418 | else | |
4419 | { | |
4420 | /* p->balance == -1; growth of right side balances the node. */ | |
4421 | p->balance = 0; | |
4422 | break; | |
4423 | } | |
4424 | } | |
4425 | ||
4426 | r = p; | |
4427 | p = p->parent; | |
4428 | } | |
28d81abb RK |
4429 | |
4430 | return 0; | |
4431 | } | |
ca695ac9 | 4432 | |
ca695ac9 JB |
4433 | /* Accumulate one case or default label; VALUE is the value of the |
4434 | case, or nil for a default label. If not currently inside a case, | |
4435 | return 1 and do nothing. If VALUE is a duplicate or overlaps, return | |
4436 | 2 and do nothing. If VALUE is out of range, return 3 and do nothing. | |
4437 | Return 0 on success. This function is a leftover from the earlier | |
4438 | bytecode compiler, which was based on gcc 1.37. It should be | |
0f41302f | 4439 | merged into pushcase. */ |
ca695ac9 | 4440 | |
704f4dca | 4441 | static int |
ca695ac9 JB |
4442 | bc_pushcase (value, label) |
4443 | tree value; | |
4444 | tree label; | |
4445 | { | |
4446 | struct nesting *thiscase = case_stack; | |
4447 | struct case_node *case_label, *new_label; | |
4448 | ||
4449 | if (! thiscase) | |
4450 | return 1; | |
4451 | ||
4452 | /* Fail if duplicate, overlap, or out of type range. */ | |
4453 | if (value) | |
4454 | { | |
4455 | value = convert (thiscase->data.case_stmt.nominal_type, value); | |
4456 | if (! int_fits_type_p (value, thiscase->data.case_stmt.nominal_type)) | |
4457 | return 3; | |
4458 | ||
4459 | for (case_label = thiscase->data.case_stmt.case_list; | |
4460 | case_label->left; case_label = case_label->left) | |
4461 | if (! tree_int_cst_lt (case_label->left->high, value)) | |
4462 | break; | |
4463 | ||
4464 | if (case_label != thiscase->data.case_stmt.case_list | |
4465 | && ! tree_int_cst_lt (case_label->high, value) | |
abf7b40a | 4466 | || (case_label->left && ! tree_int_cst_lt (value, case_label->left->low))) |
ca695ac9 JB |
4467 | return 2; |
4468 | ||
4469 | new_label = (struct case_node *) oballoc (sizeof (struct case_node)); | |
4470 | new_label->low = new_label->high = copy_node (value); | |
4471 | new_label->code_label = label; | |
4472 | new_label->left = case_label->left; | |
4473 | ||
4474 | case_label->left = new_label; | |
4475 | thiscase->data.case_stmt.num_ranges++; | |
4476 | } | |
4477 | else | |
4478 | { | |
4479 | if (thiscase->data.case_stmt.default_label) | |
4480 | return 2; | |
4481 | thiscase->data.case_stmt.default_label = label; | |
4482 | } | |
4483 | ||
4484 | expand_label (label); | |
4485 | return 0; | |
4486 | } | |
28d81abb | 4487 | \f |
94d6511c PB |
4488 | /* Returns the number of possible values of TYPE. |
4489 | Returns -1 if the number is unknown or variable. | |
4490 | Returns -2 if the number does not fit in a HOST_WIDE_INT. | |
4491 | Sets *SPARENESS to 2 if TYPE is an ENUMERAL_TYPE whose values | |
4492 | do not increase monotonically (there may be duplicates); | |
4493 | to 1 if the values increase monotonically, but not always by 1; | |
4494 | otherwise sets it to 0. */ | |
4495 | ||
4496 | HOST_WIDE_INT | |
4497 | all_cases_count (type, spareness) | |
4498 | tree type; | |
4499 | int *spareness; | |
4500 | { | |
4501 | HOST_WIDE_INT count, count_high = 0; | |
4502 | *spareness = 0; | |
4503 | ||
4504 | switch (TREE_CODE (type)) | |
4505 | { | |
4506 | tree t; | |
4507 | case BOOLEAN_TYPE: | |
4508 | count = 2; | |
4509 | break; | |
4510 | case CHAR_TYPE: | |
4511 | count = 1 << BITS_PER_UNIT; | |
4512 | break; | |
4513 | default: | |
4514 | case INTEGER_TYPE: | |
4515 | if (TREE_CODE (TYPE_MIN_VALUE (type)) != INTEGER_CST | |
c02aebe2 | 4516 | || TREE_CODE (TYPE_MAX_VALUE (type)) != INTEGER_CST) |
94d6511c PB |
4517 | return -1; |
4518 | else | |
4519 | { | |
4520 | /* count | |
4521 | = TREE_INT_CST_LOW (TYPE_MAX_VALUE (type)) | |
4522 | - TREE_INT_CST_LOW (TYPE_MIN_VALUE (type)) + 1 | |
0f41302f | 4523 | but with overflow checking. */ |
94d6511c PB |
4524 | tree mint = TYPE_MIN_VALUE (type); |
4525 | tree maxt = TYPE_MAX_VALUE (type); | |
4526 | HOST_WIDE_INT lo, hi; | |
4527 | neg_double(TREE_INT_CST_LOW (mint), TREE_INT_CST_HIGH (mint), | |
4528 | &lo, &hi); | |
4529 | add_double(TREE_INT_CST_LOW (maxt), TREE_INT_CST_HIGH (maxt), | |
4530 | lo, hi, &lo, &hi); | |
4531 | add_double (lo, hi, 1, 0, &lo, &hi); | |
4532 | if (hi != 0 || lo < 0) | |
4533 | return -2; | |
4534 | count = lo; | |
4535 | } | |
4536 | break; | |
4537 | case ENUMERAL_TYPE: | |
4538 | count = 0; | |
4539 | for (t = TYPE_VALUES (type); t != NULL_TREE; t = TREE_CHAIN (t)) | |
4540 | { | |
4541 | if (TREE_CODE (TYPE_MIN_VALUE (type)) != INTEGER_CST | |
4542 | || TREE_CODE (TREE_VALUE (t)) != INTEGER_CST | |
4543 | || TREE_INT_CST_LOW (TYPE_MIN_VALUE (type)) + count | |
4544 | != TREE_INT_CST_LOW (TREE_VALUE (t))) | |
4545 | *spareness = 1; | |
4546 | count++; | |
4547 | } | |
4548 | if (*spareness == 1) | |
4549 | { | |
4550 | tree prev = TREE_VALUE (TYPE_VALUES (type)); | |
4551 | for (t = TYPE_VALUES (type); t = TREE_CHAIN (t), t != NULL_TREE; ) | |
4552 | { | |
4553 | if (! tree_int_cst_lt (prev, TREE_VALUE (t))) | |
4554 | { | |
4555 | *spareness = 2; | |
4556 | break; | |
4557 | } | |
4558 | prev = TREE_VALUE (t); | |
4559 | } | |
4560 | ||
4561 | } | |
4562 | } | |
4563 | return count; | |
4564 | } | |
4565 | ||
4566 | ||
4567 | #define BITARRAY_TEST(ARRAY, INDEX) \ | |
0f41302f MS |
4568 | ((ARRAY)[(unsigned) (INDEX) / HOST_BITS_PER_CHAR]\ |
4569 | & (1 << ((unsigned) (INDEX) % HOST_BITS_PER_CHAR))) | |
94d6511c | 4570 | #define BITARRAY_SET(ARRAY, INDEX) \ |
0f41302f MS |
4571 | ((ARRAY)[(unsigned) (INDEX) / HOST_BITS_PER_CHAR]\ |
4572 | |= 1 << ((unsigned) (INDEX) % HOST_BITS_PER_CHAR)) | |
94d6511c PB |
4573 | |
4574 | /* Set the elements of the bitstring CASES_SEEN (which has length COUNT), | |
4575 | with the case values we have seen, assuming the case expression | |
4576 | has the given TYPE. | |
4577 | SPARSENESS is as determined by all_cases_count. | |
4578 | ||
9faa82d8 | 4579 | The time needed is proportional to COUNT, unless |
94d6511c PB |
4580 | SPARSENESS is 2, in which case quadratic time is needed. */ |
4581 | ||
4582 | void | |
4583 | mark_seen_cases (type, cases_seen, count, sparseness) | |
4584 | tree type; | |
4585 | unsigned char *cases_seen; | |
4586 | long count; | |
4587 | int sparseness; | |
4588 | { | |
4589 | long i; | |
4590 | ||
4591 | tree next_node_to_try = NULL_TREE; | |
4592 | long next_node_offset = 0; | |
4593 | ||
5720c7e7 | 4594 | register struct case_node *n, *root = case_stack->data.case_stmt.case_list; |
94d6511c PB |
4595 | tree val = make_node (INTEGER_CST); |
4596 | TREE_TYPE (val) = type; | |
5720c7e7 RK |
4597 | if (! root) |
4598 | ; /* Do nothing */ | |
4599 | else if (sparseness == 2) | |
94d6511c | 4600 | { |
5720c7e7 RK |
4601 | tree t; |
4602 | HOST_WIDE_INT xlo; | |
4603 | ||
4604 | /* This less efficient loop is only needed to handle | |
4605 | duplicate case values (multiple enum constants | |
4606 | with the same value). */ | |
4607 | TREE_TYPE (val) = TREE_TYPE (root->low); | |
4608 | for (t = TYPE_VALUES (type), xlo = 0; t != NULL_TREE; | |
4609 | t = TREE_CHAIN (t), xlo++) | |
94d6511c | 4610 | { |
5720c7e7 RK |
4611 | TREE_INT_CST_LOW (val) = TREE_INT_CST_LOW (TREE_VALUE (t)); |
4612 | TREE_INT_CST_HIGH (val) = TREE_INT_CST_HIGH (TREE_VALUE (t)); | |
4613 | n = root; | |
4614 | do | |
94d6511c | 4615 | { |
5720c7e7 RK |
4616 | /* Keep going past elements distinctly greater than VAL. */ |
4617 | if (tree_int_cst_lt (val, n->low)) | |
4618 | n = n->left; | |
4619 | ||
4620 | /* or distinctly less than VAL. */ | |
4621 | else if (tree_int_cst_lt (n->high, val)) | |
4622 | n = n->right; | |
4623 | ||
4624 | else | |
94d6511c | 4625 | { |
5720c7e7 RK |
4626 | /* We have found a matching range. */ |
4627 | BITARRAY_SET (cases_seen, xlo); | |
4628 | break; | |
94d6511c PB |
4629 | } |
4630 | } | |
5720c7e7 RK |
4631 | while (n); |
4632 | } | |
4633 | } | |
4634 | else | |
4635 | { | |
4636 | if (root->left) | |
4637 | case_stack->data.case_stmt.case_list = root = case_tree2list (root, 0); | |
4638 | for (n = root; n; n = n->right) | |
4639 | { | |
4640 | TREE_INT_CST_LOW (val) = TREE_INT_CST_LOW (n->low); | |
4641 | TREE_INT_CST_HIGH (val) = TREE_INT_CST_HIGH (n->low); | |
4642 | while ( ! tree_int_cst_lt (n->high, val)) | |
94d6511c | 4643 | { |
5720c7e7 RK |
4644 | /* Calculate (into xlo) the "offset" of the integer (val). |
4645 | The element with lowest value has offset 0, the next smallest | |
4646 | element has offset 1, etc. */ | |
4647 | ||
4648 | HOST_WIDE_INT xlo, xhi; | |
4649 | tree t; | |
94d6511c PB |
4650 | if (sparseness && TYPE_VALUES (type) != NULL_TREE) |
4651 | { | |
4652 | /* The TYPE_VALUES will be in increasing order, so | |
4653 | starting searching where we last ended. */ | |
4654 | t = next_node_to_try; | |
4655 | xlo = next_node_offset; | |
4656 | xhi = 0; | |
4657 | for (;;) | |
4658 | { | |
4659 | if (t == NULL_TREE) | |
4660 | { | |
4661 | t = TYPE_VALUES (type); | |
4662 | xlo = 0; | |
4663 | } | |
4664 | if (tree_int_cst_equal (val, TREE_VALUE (t))) | |
4665 | { | |
4666 | next_node_to_try = TREE_CHAIN (t); | |
4667 | next_node_offset = xlo + 1; | |
4668 | break; | |
4669 | } | |
4670 | xlo++; | |
4671 | t = TREE_CHAIN (t); | |
4672 | if (t == next_node_to_try) | |
5720c7e7 RK |
4673 | { |
4674 | xlo = -1; | |
4675 | break; | |
4676 | } | |
94d6511c PB |
4677 | } |
4678 | } | |
4679 | else | |
4680 | { | |
4681 | t = TYPE_MIN_VALUE (type); | |
4682 | if (t) | |
4683 | neg_double (TREE_INT_CST_LOW (t), TREE_INT_CST_HIGH (t), | |
4684 | &xlo, &xhi); | |
4685 | else | |
4686 | xlo = xhi = 0; | |
4687 | add_double (xlo, xhi, | |
4688 | TREE_INT_CST_LOW (val), TREE_INT_CST_HIGH (val), | |
4689 | &xlo, &xhi); | |
4690 | } | |
4691 | ||
9dd53f1e | 4692 | if (xhi == 0 && xlo >= 0 && xlo < count) |
94d6511c | 4693 | BITARRAY_SET (cases_seen, xlo); |
5720c7e7 RK |
4694 | add_double (TREE_INT_CST_LOW (val), TREE_INT_CST_HIGH (val), |
4695 | 1, 0, | |
4696 | &TREE_INT_CST_LOW (val), &TREE_INT_CST_HIGH (val)); | |
94d6511c | 4697 | } |
94d6511c PB |
4698 | } |
4699 | } | |
4700 | } | |
4701 | ||
28d81abb RK |
4702 | /* Called when the index of a switch statement is an enumerated type |
4703 | and there is no default label. | |
4704 | ||
4705 | Checks that all enumeration literals are covered by the case | |
4706 | expressions of a switch. Also, warn if there are any extra | |
4707 | switch cases that are *not* elements of the enumerated type. | |
4708 | ||
4709 | If all enumeration literals were covered by the case expressions, | |
4710 | turn one of the expressions into the default expression since it should | |
4711 | not be possible to fall through such a switch. */ | |
4712 | ||
4713 | void | |
4714 | check_for_full_enumeration_handling (type) | |
4715 | tree type; | |
4716 | { | |
4717 | register struct case_node *n; | |
4718 | register struct case_node **l; | |
4719 | register tree chain; | |
4720 | int all_values = 1; | |
4721 | ||
0f41302f | 4722 | /* True iff the selector type is a numbered set mode. */ |
94d6511c PB |
4723 | int sparseness = 0; |
4724 | ||
0f41302f | 4725 | /* The number of possible selector values. */ |
94d6511c PB |
4726 | HOST_WIDE_INT size; |
4727 | ||
4728 | /* For each possible selector value. a one iff it has been matched | |
0f41302f | 4729 | by a case value alternative. */ |
94d6511c PB |
4730 | unsigned char *cases_seen; |
4731 | ||
0f41302f | 4732 | /* The allocated size of cases_seen, in chars. */ |
94d6511c PB |
4733 | long bytes_needed; |
4734 | tree t; | |
4735 | ||
ca695ac9 JB |
4736 | if (output_bytecode) |
4737 | { | |
4738 | bc_check_for_full_enumeration_handling (type); | |
4739 | return; | |
4740 | } | |
4741 | ||
94d6511c PB |
4742 | if (! warn_switch) |
4743 | return; | |
4744 | ||
4745 | size = all_cases_count (type, &sparseness); | |
4746 | bytes_needed = (size + HOST_BITS_PER_CHAR) / HOST_BITS_PER_CHAR; | |
28d81abb | 4747 | |
94d6511c | 4748 | if (size > 0 && size < 600000 |
0f41302f | 4749 | /* We deliberately use malloc here - not xmalloc. */ |
ad03007a | 4750 | && (cases_seen = (unsigned char *) malloc (bytes_needed)) != NULL) |
28d81abb | 4751 | { |
94d6511c PB |
4752 | long i; |
4753 | tree v = TYPE_VALUES (type); | |
4754 | bzero (cases_seen, bytes_needed); | |
28d81abb | 4755 | |
94d6511c PB |
4756 | /* The time complexity of this code is normally O(N), where |
4757 | N being the number of members in the enumerated type. | |
4758 | However, if type is a ENUMERAL_TYPE whose values do not | |
0f41302f | 4759 | increase monotonically, O(N*log(N)) time may be needed. */ |
94d6511c PB |
4760 | |
4761 | mark_seen_cases (type, cases_seen, size, sparseness); | |
4762 | ||
4763 | for (i = 0; v != NULL_TREE && i < size; i++, v = TREE_CHAIN (v)) | |
28d81abb | 4764 | { |
94d6511c | 4765 | if (BITARRAY_TEST(cases_seen, i) == 0) |
1ddde1cd | 4766 | warning ("enumeration value `%s' not handled in switch", |
94d6511c | 4767 | IDENTIFIER_POINTER (TREE_PURPOSE (v))); |
28d81abb | 4768 | } |
94d6511c PB |
4769 | |
4770 | free (cases_seen); | |
28d81abb RK |
4771 | } |
4772 | ||
4773 | /* Now we go the other way around; we warn if there are case | |
ac2a9454 | 4774 | expressions that don't correspond to enumerators. This can |
28d81abb | 4775 | occur since C and C++ don't enforce type-checking of |
0f41302f | 4776 | assignments to enumeration variables. */ |
28d81abb | 4777 | |
5720c7e7 RK |
4778 | if (case_stack->data.case_stmt.case_list |
4779 | && case_stack->data.case_stmt.case_list->left) | |
4780 | case_stack->data.case_stmt.case_list | |
4781 | = case_tree2list (case_stack->data.case_stmt.case_list, 0); | |
28d81abb RK |
4782 | if (warn_switch) |
4783 | for (n = case_stack->data.case_stmt.case_list; n; n = n->right) | |
4784 | { | |
4785 | for (chain = TYPE_VALUES (type); | |
4786 | chain && !tree_int_cst_equal (n->low, TREE_VALUE (chain)); | |
4787 | chain = TREE_CHAIN (chain)) | |
4788 | ; | |
4789 | ||
4790 | if (!chain) | |
3b24f55b RS |
4791 | { |
4792 | if (TYPE_NAME (type) == 0) | |
4793 | warning ("case value `%d' not in enumerated type", | |
4794 | TREE_INT_CST_LOW (n->low)); | |
4795 | else | |
4796 | warning ("case value `%d' not in enumerated type `%s'", | |
4797 | TREE_INT_CST_LOW (n->low), | |
4798 | IDENTIFIER_POINTER ((TREE_CODE (TYPE_NAME (type)) | |
4799 | == IDENTIFIER_NODE) | |
4800 | ? TYPE_NAME (type) | |
4801 | : DECL_NAME (TYPE_NAME (type)))); | |
4802 | } | |
1ddde1cd RS |
4803 | if (!tree_int_cst_equal (n->low, n->high)) |
4804 | { | |
4805 | for (chain = TYPE_VALUES (type); | |
4806 | chain && !tree_int_cst_equal (n->high, TREE_VALUE (chain)); | |
4807 | chain = TREE_CHAIN (chain)) | |
4808 | ; | |
4809 | ||
4810 | if (!chain) | |
3b24f55b RS |
4811 | { |
4812 | if (TYPE_NAME (type) == 0) | |
4813 | warning ("case value `%d' not in enumerated type", | |
4814 | TREE_INT_CST_LOW (n->high)); | |
4815 | else | |
4816 | warning ("case value `%d' not in enumerated type `%s'", | |
4817 | TREE_INT_CST_LOW (n->high), | |
4818 | IDENTIFIER_POINTER ((TREE_CODE (TYPE_NAME (type)) | |
4819 | == IDENTIFIER_NODE) | |
4820 | ? TYPE_NAME (type) | |
4821 | : DECL_NAME (TYPE_NAME (type)))); | |
4822 | } | |
1ddde1cd | 4823 | } |
28d81abb RK |
4824 | } |
4825 | ||
ae8cb346 RS |
4826 | #if 0 |
4827 | /* ??? This optimization is disabled because it causes valid programs to | |
4828 | fail. ANSI C does not guarantee that an expression with enum type | |
9faa82d8 | 4829 | will have a value that is the same as one of the enumeration literals. */ |
ae8cb346 | 4830 | |
28d81abb RK |
4831 | /* If all values were found as case labels, make one of them the default |
4832 | label. Thus, this switch will never fall through. We arbitrarily pick | |
4833 | the last one to make the default since this is likely the most | |
4834 | efficient choice. */ | |
4835 | ||
4836 | if (all_values) | |
4837 | { | |
4838 | for (l = &case_stack->data.case_stmt.case_list; | |
4839 | (*l)->right != 0; | |
4840 | l = &(*l)->right) | |
4841 | ; | |
4842 | ||
4843 | case_stack->data.case_stmt.default_label = (*l)->code_label; | |
4844 | *l = 0; | |
4845 | } | |
ae8cb346 | 4846 | #endif /* 0 */ |
28d81abb | 4847 | } |
ca695ac9 JB |
4848 | |
4849 | ||
4850 | /* Check that all enumeration literals are covered by the case | |
4851 | expressions of a switch. Also warn if there are any cases | |
4852 | that are not elements of the enumerated type. */ | |
704f4dca RK |
4853 | |
4854 | static void | |
ca695ac9 JB |
4855 | bc_check_for_full_enumeration_handling (type) |
4856 | tree type; | |
4857 | { | |
4858 | struct nesting *thiscase = case_stack; | |
4859 | struct case_node *c; | |
4860 | tree e; | |
4861 | ||
4862 | /* Check for enums not handled. */ | |
4863 | for (e = TYPE_VALUES (type); e; e = TREE_CHAIN (e)) | |
4864 | { | |
4865 | for (c = thiscase->data.case_stmt.case_list->left; | |
4866 | c && tree_int_cst_lt (c->high, TREE_VALUE (e)); | |
4867 | c = c->left) | |
4868 | ; | |
4869 | if (! (c && tree_int_cst_equal (c->low, TREE_VALUE (e)))) | |
4870 | warning ("enumerated value `%s' not handled in switch", | |
4871 | IDENTIFIER_POINTER (TREE_PURPOSE (e))); | |
4872 | } | |
4873 | ||
4874 | /* Check for cases not in the enumeration. */ | |
4875 | for (c = thiscase->data.case_stmt.case_list->left; c; c = c->left) | |
4876 | { | |
4877 | for (e = TYPE_VALUES (type); | |
4878 | e && !tree_int_cst_equal (c->low, TREE_VALUE (e)); | |
4879 | e = TREE_CHAIN (e)) | |
4880 | ; | |
4881 | if (! e) | |
4882 | warning ("case value `%d' not in enumerated type `%s'", | |
4883 | TREE_INT_CST_LOW (c->low), | |
4884 | IDENTIFIER_POINTER (TREE_CODE (TYPE_NAME (type)) == IDENTIFIER_NODE | |
4885 | ? TYPE_NAME (type) | |
4886 | : DECL_NAME (TYPE_NAME (type)))); | |
4887 | } | |
4888 | } | |
28d81abb RK |
4889 | \f |
4890 | /* Terminate a case (Pascal) or switch (C) statement | |
9ab0ddd7 | 4891 | in which ORIG_INDEX is the expression to be tested. |
28d81abb RK |
4892 | Generate the code to test it and jump to the right place. */ |
4893 | ||
4894 | void | |
4895 | expand_end_case (orig_index) | |
4896 | tree orig_index; | |
4897 | { | |
3474db0e | 4898 | tree minval, maxval, range, orig_minval; |
28d81abb RK |
4899 | rtx default_label = 0; |
4900 | register struct case_node *n; | |
4901 | int count; | |
4902 | rtx index; | |
ca695ac9 | 4903 | rtx table_label; |
28d81abb RK |
4904 | int ncases; |
4905 | rtx *labelvec; | |
4906 | register int i; | |
4907 | rtx before_case; | |
4908 | register struct nesting *thiscase = case_stack; | |
1b0cb6fc | 4909 | tree index_expr, index_type; |
ca695ac9 JB |
4910 | int unsignedp; |
4911 | ||
4912 | if (output_bytecode) | |
4913 | { | |
4914 | bc_expand_end_case (orig_index); | |
4915 | return; | |
4916 | } | |
4917 | ||
4918 | table_label = gen_label_rtx (); | |
4919 | index_expr = thiscase->data.case_stmt.index_expr; | |
1b0cb6fc RK |
4920 | index_type = TREE_TYPE (index_expr); |
4921 | unsignedp = TREE_UNSIGNED (index_type); | |
28d81abb RK |
4922 | |
4923 | do_pending_stack_adjust (); | |
4924 | ||
4925 | /* An ERROR_MARK occurs for various reasons including invalid data type. */ | |
1b0cb6fc | 4926 | if (index_type != error_mark_node) |
28d81abb RK |
4927 | { |
4928 | /* If switch expression was an enumerated type, check that all | |
4929 | enumeration literals are covered by the cases. | |
4930 | No sense trying this if there's a default case, however. */ | |
4931 | ||
4932 | if (!thiscase->data.case_stmt.default_label | |
4933 | && TREE_CODE (TREE_TYPE (orig_index)) == ENUMERAL_TYPE | |
4934 | && TREE_CODE (index_expr) != INTEGER_CST) | |
4935 | check_for_full_enumeration_handling (TREE_TYPE (orig_index)); | |
4936 | ||
4937 | /* If this is the first label, warn if any insns have been emitted. */ | |
4938 | if (thiscase->data.case_stmt.seenlabel == 0) | |
4939 | { | |
4940 | rtx insn; | |
4941 | for (insn = get_last_insn (); | |
4942 | insn != case_stack->data.case_stmt.start; | |
4943 | insn = PREV_INSN (insn)) | |
4944 | if (GET_CODE (insn) != NOTE | |
4945 | && (GET_CODE (insn) != INSN || GET_CODE (PATTERN (insn))!= USE)) | |
4946 | { | |
4947 | warning ("unreachable code at beginning of %s", | |
4948 | case_stack->data.case_stmt.printname); | |
4949 | break; | |
4950 | } | |
4951 | } | |
4952 | ||
4953 | /* If we don't have a default-label, create one here, | |
4954 | after the body of the switch. */ | |
4955 | if (thiscase->data.case_stmt.default_label == 0) | |
4956 | { | |
4957 | thiscase->data.case_stmt.default_label | |
4958 | = build_decl (LABEL_DECL, NULL_TREE, NULL_TREE); | |
4959 | expand_label (thiscase->data.case_stmt.default_label); | |
4960 | } | |
4961 | default_label = label_rtx (thiscase->data.case_stmt.default_label); | |
4962 | ||
4963 | before_case = get_last_insn (); | |
4964 | ||
5720c7e7 RK |
4965 | if (thiscase->data.case_stmt.case_list |
4966 | && thiscase->data.case_stmt.case_list->left) | |
b059139c RK |
4967 | thiscase->data.case_stmt.case_list |
4968 | = case_tree2list(thiscase->data.case_stmt.case_list, 0); | |
4969 | ||
28d81abb RK |
4970 | /* Simplify the case-list before we count it. */ |
4971 | group_case_nodes (thiscase->data.case_stmt.case_list); | |
4972 | ||
4973 | /* Get upper and lower bounds of case values. | |
4974 | Also convert all the case values to the index expr's data type. */ | |
4975 | ||
4976 | count = 0; | |
4977 | for (n = thiscase->data.case_stmt.case_list; n; n = n->right) | |
4978 | { | |
4979 | /* Check low and high label values are integers. */ | |
4980 | if (TREE_CODE (n->low) != INTEGER_CST) | |
4981 | abort (); | |
4982 | if (TREE_CODE (n->high) != INTEGER_CST) | |
4983 | abort (); | |
4984 | ||
1b0cb6fc RK |
4985 | n->low = convert (index_type, n->low); |
4986 | n->high = convert (index_type, n->high); | |
28d81abb RK |
4987 | |
4988 | /* Count the elements and track the largest and smallest | |
4989 | of them (treating them as signed even if they are not). */ | |
4990 | if (count++ == 0) | |
4991 | { | |
4992 | minval = n->low; | |
4993 | maxval = n->high; | |
4994 | } | |
4995 | else | |
4996 | { | |
4997 | if (INT_CST_LT (n->low, minval)) | |
4998 | minval = n->low; | |
4999 | if (INT_CST_LT (maxval, n->high)) | |
5000 | maxval = n->high; | |
5001 | } | |
5002 | /* A range counts double, since it requires two compares. */ | |
5003 | if (! tree_int_cst_equal (n->low, n->high)) | |
5004 | count++; | |
5005 | } | |
5006 | ||
3474db0e RS |
5007 | orig_minval = minval; |
5008 | ||
28d81abb RK |
5009 | /* Compute span of values. */ |
5010 | if (count != 0) | |
1b0cb6fc | 5011 | range = fold (build (MINUS_EXPR, index_type, maxval, minval)); |
28d81abb | 5012 | |
1b0cb6fc | 5013 | if (count == 0) |
28d81abb RK |
5014 | { |
5015 | expand_expr (index_expr, const0_rtx, VOIDmode, 0); | |
5016 | emit_queue (); | |
5017 | emit_jump (default_label); | |
5018 | } | |
3474db0e | 5019 | |
28d81abb RK |
5020 | /* If range of values is much bigger than number of values, |
5021 | make a sequence of conditional branches instead of a dispatch. | |
5022 | If the switch-index is a constant, do it this way | |
5023 | because we can optimize it. */ | |
4f73c5dd TW |
5024 | |
5025 | #ifndef CASE_VALUES_THRESHOLD | |
28d81abb | 5026 | #ifdef HAVE_casesi |
4f73c5dd | 5027 | #define CASE_VALUES_THRESHOLD (HAVE_casesi ? 4 : 5) |
28d81abb | 5028 | #else |
4f73c5dd TW |
5029 | /* If machine does not have a case insn that compares the |
5030 | bounds, this means extra overhead for dispatch tables | |
5031 | which raises the threshold for using them. */ | |
5032 | #define CASE_VALUES_THRESHOLD 5 | |
5033 | #endif /* HAVE_casesi */ | |
5034 | #endif /* CASE_VALUES_THRESHOLD */ | |
5035 | ||
5036 | else if (TREE_INT_CST_HIGH (range) != 0 | |
5037 | || count < CASE_VALUES_THRESHOLD | |
37366632 RK |
5038 | || ((unsigned HOST_WIDE_INT) (TREE_INT_CST_LOW (range)) |
5039 | > 10 * count) | |
3f6fe18e RK |
5040 | #ifndef ASM_OUTPUT_ADDR_DIFF_ELT |
5041 | || flag_pic | |
5042 | #endif | |
28d81abb | 5043 | || TREE_CODE (index_expr) == INTEGER_CST |
b4ac57ab | 5044 | /* These will reduce to a constant. */ |
28d81abb | 5045 | || (TREE_CODE (index_expr) == CALL_EXPR |
de14fd73 | 5046 | && TREE_CODE (TREE_OPERAND (index_expr, 0)) == ADDR_EXPR |
28d81abb | 5047 | && TREE_CODE (TREE_OPERAND (TREE_OPERAND (index_expr, 0), 0)) == FUNCTION_DECL |
b4ac57ab RS |
5048 | && DECL_FUNCTION_CODE (TREE_OPERAND (TREE_OPERAND (index_expr, 0), 0)) == BUILT_IN_CLASSIFY_TYPE) |
5049 | || (TREE_CODE (index_expr) == COMPOUND_EXPR | |
5050 | && TREE_CODE (TREE_OPERAND (index_expr, 1)) == INTEGER_CST)) | |
28d81abb | 5051 | { |
37366632 | 5052 | index = expand_expr (index_expr, NULL_RTX, VOIDmode, 0); |
28d81abb RK |
5053 | |
5054 | /* If the index is a short or char that we do not have | |
5055 | an insn to handle comparisons directly, convert it to | |
5056 | a full integer now, rather than letting each comparison | |
5057 | generate the conversion. */ | |
5058 | ||
5059 | if (GET_MODE_CLASS (GET_MODE (index)) == MODE_INT | |
5060 | && (cmp_optab->handlers[(int) GET_MODE(index)].insn_code | |
5061 | == CODE_FOR_nothing)) | |
5062 | { | |
5063 | enum machine_mode wider_mode; | |
5064 | for (wider_mode = GET_MODE (index); wider_mode != VOIDmode; | |
5065 | wider_mode = GET_MODE_WIDER_MODE (wider_mode)) | |
5066 | if (cmp_optab->handlers[(int) wider_mode].insn_code | |
5067 | != CODE_FOR_nothing) | |
5068 | { | |
5069 | index = convert_to_mode (wider_mode, index, unsignedp); | |
5070 | break; | |
5071 | } | |
5072 | } | |
5073 | ||
5074 | emit_queue (); | |
5075 | do_pending_stack_adjust (); | |
5076 | ||
5077 | index = protect_from_queue (index, 0); | |
5078 | if (GET_CODE (index) == MEM) | |
5079 | index = copy_to_reg (index); | |
5080 | if (GET_CODE (index) == CONST_INT | |
5081 | || TREE_CODE (index_expr) == INTEGER_CST) | |
5082 | { | |
5083 | /* Make a tree node with the proper constant value | |
5084 | if we don't already have one. */ | |
5085 | if (TREE_CODE (index_expr) != INTEGER_CST) | |
5086 | { | |
5087 | index_expr | |
5088 | = build_int_2 (INTVAL (index), | |
e9a042b6 | 5089 | unsignedp || INTVAL (index) >= 0 ? 0 : -1); |
1b0cb6fc | 5090 | index_expr = convert (index_type, index_expr); |
28d81abb RK |
5091 | } |
5092 | ||
5093 | /* For constant index expressions we need only | |
5094 | issue a unconditional branch to the appropriate | |
5095 | target code. The job of removing any unreachable | |
5096 | code is left to the optimisation phase if the | |
5097 | "-O" option is specified. */ | |
1b0cb6fc RK |
5098 | for (n = thiscase->data.case_stmt.case_list; n; n = n->right) |
5099 | if (! tree_int_cst_lt (index_expr, n->low) | |
5100 | && ! tree_int_cst_lt (n->high, index_expr)) | |
5101 | break; | |
5102 | ||
28d81abb RK |
5103 | if (n) |
5104 | emit_jump (label_rtx (n->code_label)); | |
5105 | else | |
5106 | emit_jump (default_label); | |
5107 | } | |
5108 | else | |
5109 | { | |
5110 | /* If the index expression is not constant we generate | |
5111 | a binary decision tree to select the appropriate | |
5112 | target code. This is done as follows: | |
5113 | ||
5114 | The list of cases is rearranged into a binary tree, | |
5115 | nearly optimal assuming equal probability for each case. | |
5116 | ||
5117 | The tree is transformed into RTL, eliminating | |
5118 | redundant test conditions at the same time. | |
5119 | ||
5120 | If program flow could reach the end of the | |
5121 | decision tree an unconditional jump to the | |
5122 | default code is emitted. */ | |
5123 | ||
5124 | use_cost_table | |
5125 | = (TREE_CODE (TREE_TYPE (orig_index)) != ENUMERAL_TYPE | |
28d81abb | 5126 | && estimate_case_costs (thiscase->data.case_stmt.case_list)); |
37366632 RK |
5127 | balance_case_nodes (&thiscase->data.case_stmt.case_list, |
5128 | NULL_PTR); | |
28d81abb | 5129 | emit_case_nodes (index, thiscase->data.case_stmt.case_list, |
1b0cb6fc | 5130 | default_label, index_type); |
28d81abb RK |
5131 | emit_jump_if_reachable (default_label); |
5132 | } | |
5133 | } | |
5134 | else | |
5135 | { | |
5136 | int win = 0; | |
5137 | #ifdef HAVE_casesi | |
5138 | if (HAVE_casesi) | |
5139 | { | |
c4fcf531 | 5140 | enum machine_mode index_mode = SImode; |
5130a5cc | 5141 | int index_bits = GET_MODE_BITSIZE (index_mode); |
086f237d JW |
5142 | rtx op1, op2; |
5143 | enum machine_mode op_mode; | |
c4fcf531 | 5144 | |
28d81abb | 5145 | /* Convert the index to SImode. */ |
1b0cb6fc | 5146 | if (GET_MODE_BITSIZE (TYPE_MODE (index_type)) |
c4fcf531 | 5147 | > GET_MODE_BITSIZE (index_mode)) |
28d81abb | 5148 | { |
1b0cb6fc | 5149 | enum machine_mode omode = TYPE_MODE (index_type); |
37366632 | 5150 | rtx rangertx = expand_expr (range, NULL_RTX, VOIDmode, 0); |
af2682ef RS |
5151 | |
5152 | /* We must handle the endpoints in the original mode. */ | |
1b0cb6fc | 5153 | index_expr = build (MINUS_EXPR, index_type, |
28d81abb RK |
5154 | index_expr, minval); |
5155 | minval = integer_zero_node; | |
37366632 | 5156 | index = expand_expr (index_expr, NULL_RTX, VOIDmode, 0); |
3474db0e | 5157 | emit_cmp_insn (rangertx, index, LTU, NULL_RTX, omode, 1, 0); |
af2682ef RS |
5158 | emit_jump_insn (gen_bltu (default_label)); |
5159 | /* Now we can safely truncate. */ | |
5160 | index = convert_to_mode (index_mode, index, 0); | |
5161 | } | |
5162 | else | |
5163 | { | |
1b0cb6fc | 5164 | if (TYPE_MODE (index_type) != index_mode) |
d3b35d75 RK |
5165 | { |
5166 | index_expr = convert (type_for_size (index_bits, 0), | |
5167 | index_expr); | |
5168 | index_type = TREE_TYPE (index_expr); | |
5169 | } | |
5170 | ||
37366632 | 5171 | index = expand_expr (index_expr, NULL_RTX, VOIDmode, 0); |
28d81abb | 5172 | } |
28d81abb RK |
5173 | emit_queue (); |
5174 | index = protect_from_queue (index, 0); | |
5175 | do_pending_stack_adjust (); | |
5176 | ||
086f237d JW |
5177 | op_mode = insn_operand_mode[(int)CODE_FOR_casesi][0]; |
5178 | if (! (*insn_operand_predicate[(int)CODE_FOR_casesi][0]) | |
5179 | (index, op_mode)) | |
5180 | index = copy_to_mode_reg (op_mode, index); | |
5181 | ||
5182 | op1 = expand_expr (minval, NULL_RTX, VOIDmode, 0); | |
5183 | ||
5184 | op_mode = insn_operand_mode[(int)CODE_FOR_casesi][1]; | |
5185 | if (! (*insn_operand_predicate[(int)CODE_FOR_casesi][1]) | |
5186 | (op1, op_mode)) | |
5187 | op1 = copy_to_mode_reg (op_mode, op1); | |
5188 | ||
5189 | op2 = expand_expr (range, NULL_RTX, VOIDmode, 0); | |
5190 | ||
5191 | op_mode = insn_operand_mode[(int)CODE_FOR_casesi][2]; | |
5192 | if (! (*insn_operand_predicate[(int)CODE_FOR_casesi][2]) | |
5193 | (op2, op_mode)) | |
5194 | op2 = copy_to_mode_reg (op_mode, op2); | |
5195 | ||
5196 | emit_jump_insn (gen_casesi (index, op1, op2, | |
28d81abb RK |
5197 | table_label, default_label)); |
5198 | win = 1; | |
5199 | } | |
5200 | #endif | |
5201 | #ifdef HAVE_tablejump | |
5202 | if (! win && HAVE_tablejump) | |
5203 | { | |
5204 | index_expr = convert (thiscase->data.case_stmt.nominal_type, | |
1b0cb6fc | 5205 | fold (build (MINUS_EXPR, index_type, |
b4ac57ab | 5206 | index_expr, minval))); |
d3b35d75 | 5207 | index_type = TREE_TYPE (index_expr); |
37366632 | 5208 | index = expand_expr (index_expr, NULL_RTX, VOIDmode, 0); |
28d81abb | 5209 | emit_queue (); |
af2682ef | 5210 | index = protect_from_queue (index, 0); |
28d81abb RK |
5211 | do_pending_stack_adjust (); |
5212 | ||
1b0cb6fc | 5213 | do_tablejump (index, TYPE_MODE (index_type), |
37366632 | 5214 | expand_expr (range, NULL_RTX, VOIDmode, 0), |
28d81abb RK |
5215 | table_label, default_label); |
5216 | win = 1; | |
5217 | } | |
5218 | #endif | |
5219 | if (! win) | |
5220 | abort (); | |
5221 | ||
5222 | /* Get table of labels to jump to, in order of case index. */ | |
5223 | ||
5224 | ncases = TREE_INT_CST_LOW (range) + 1; | |
5225 | labelvec = (rtx *) alloca (ncases * sizeof (rtx)); | |
4c9a05bc | 5226 | bzero ((char *) labelvec, ncases * sizeof (rtx)); |
28d81abb RK |
5227 | |
5228 | for (n = thiscase->data.case_stmt.case_list; n; n = n->right) | |
5229 | { | |
37366632 | 5230 | register HOST_WIDE_INT i |
3474db0e | 5231 | = TREE_INT_CST_LOW (n->low) - TREE_INT_CST_LOW (orig_minval); |
28d81abb RK |
5232 | |
5233 | while (1) | |
5234 | { | |
5235 | labelvec[i] | |
5236 | = gen_rtx (LABEL_REF, Pmode, label_rtx (n->code_label)); | |
3474db0e | 5237 | if (i + TREE_INT_CST_LOW (orig_minval) |
28d81abb RK |
5238 | == TREE_INT_CST_LOW (n->high)) |
5239 | break; | |
5240 | i++; | |
5241 | } | |
5242 | } | |
5243 | ||
5244 | /* Fill in the gaps with the default. */ | |
5245 | for (i = 0; i < ncases; i++) | |
5246 | if (labelvec[i] == 0) | |
5247 | labelvec[i] = gen_rtx (LABEL_REF, Pmode, default_label); | |
5248 | ||
5249 | /* Output the table */ | |
5250 | emit_label (table_label); | |
5251 | ||
5252 | /* This would be a lot nicer if CASE_VECTOR_PC_RELATIVE | |
858a47b1 | 5253 | were an expression, instead of an #ifdef/#ifndef. */ |
28d81abb RK |
5254 | if ( |
5255 | #ifdef CASE_VECTOR_PC_RELATIVE | |
5256 | 1 || | |
5257 | #endif | |
5258 | flag_pic) | |
5259 | emit_jump_insn (gen_rtx (ADDR_DIFF_VEC, CASE_VECTOR_MODE, | |
5260 | gen_rtx (LABEL_REF, Pmode, table_label), | |
5261 | gen_rtvec_v (ncases, labelvec))); | |
5262 | else | |
5263 | emit_jump_insn (gen_rtx (ADDR_VEC, CASE_VECTOR_MODE, | |
5264 | gen_rtvec_v (ncases, labelvec))); | |
5265 | ||
5266 | /* If the case insn drops through the table, | |
5267 | after the table we must jump to the default-label. | |
5268 | Otherwise record no drop-through after the table. */ | |
5269 | #ifdef CASE_DROPS_THROUGH | |
5270 | emit_jump (default_label); | |
5271 | #else | |
5272 | emit_barrier (); | |
5273 | #endif | |
5274 | } | |
5275 | ||
915f619f JW |
5276 | before_case = squeeze_notes (NEXT_INSN (before_case), get_last_insn ()); |
5277 | reorder_insns (before_case, get_last_insn (), | |
28d81abb RK |
5278 | thiscase->data.case_stmt.start); |
5279 | } | |
1b0cb6fc | 5280 | |
28d81abb RK |
5281 | if (thiscase->exit_label) |
5282 | emit_label (thiscase->exit_label); | |
5283 | ||
5284 | POPSTACK (case_stack); | |
5285 | ||
5286 | free_temp_slots (); | |
5287 | } | |
5288 | ||
57641239 RK |
5289 | /* Convert the tree NODE into a list linked by the right field, with the left |
5290 | field zeroed. RIGHT is used for recursion; it is a list to be placed | |
5291 | rightmost in the resulting list. */ | |
5292 | ||
5293 | static struct case_node * | |
5294 | case_tree2list (node, right) | |
5295 | struct case_node *node, *right; | |
5296 | { | |
5297 | struct case_node *left; | |
5298 | ||
5299 | if (node->right) | |
5300 | right = case_tree2list (node->right, right); | |
5301 | ||
5302 | node->right = right; | |
5303 | if (left = node->left) | |
5304 | { | |
5305 | node->left = 0; | |
5306 | return case_tree2list (left, node); | |
5307 | } | |
5308 | ||
5309 | return node; | |
5310 | } | |
ca695ac9 JB |
5311 | |
5312 | /* Terminate a case statement. EXPR is the original index | |
5313 | expression. */ | |
704f4dca RK |
5314 | |
5315 | static void | |
ca695ac9 JB |
5316 | bc_expand_end_case (expr) |
5317 | tree expr; | |
5318 | { | |
5319 | struct nesting *thiscase = case_stack; | |
5320 | enum bytecode_opcode opcode; | |
5321 | struct bc_label *jump_label; | |
5322 | struct case_node *c; | |
5323 | ||
5324 | bc_emit_bytecode (jump); | |
c53e9440 | 5325 | bc_emit_bytecode_labelref (BYTECODE_BC_LABEL (thiscase->exit_label)); |
ca695ac9 JB |
5326 | |
5327 | #ifdef DEBUG_PRINT_CODE | |
5328 | fputc ('\n', stderr); | |
5329 | #endif | |
5330 | ||
5331 | /* Now that the size of the jump table is known, emit the actual | |
5332 | indexed jump instruction. */ | |
c53e9440 | 5333 | bc_emit_bytecode_labeldef (BYTECODE_BC_LABEL (thiscase->data.case_stmt.skip_label)); |
ca695ac9 JB |
5334 | |
5335 | opcode = TYPE_MODE (thiscase->data.case_stmt.nominal_type) == SImode | |
5336 | ? TREE_UNSIGNED (thiscase->data.case_stmt.nominal_type) ? caseSU : caseSI | |
5337 | : TREE_UNSIGNED (thiscase->data.case_stmt.nominal_type) ? caseDU : caseDI; | |
5338 | ||
5339 | bc_emit_bytecode (opcode); | |
5340 | ||
5341 | /* Now emit the case instructions literal arguments, in order. | |
5342 | In addition to the value on the stack, it uses: | |
5343 | 1. The address of the jump table. | |
5344 | 2. The size of the jump table. | |
5345 | 3. The default label. */ | |
5346 | ||
5347 | jump_label = bc_get_bytecode_label (); | |
5348 | bc_emit_bytecode_labelref (jump_label); | |
5349 | bc_emit_bytecode_const ((char *) &thiscase->data.case_stmt.num_ranges, | |
5350 | sizeof thiscase->data.case_stmt.num_ranges); | |
5351 | ||
5352 | if (thiscase->data.case_stmt.default_label) | |
c53e9440 | 5353 | bc_emit_bytecode_labelref (BYTECODE_BC_LABEL (DECL_RTL (thiscase->data.case_stmt.default_label))); |
ca695ac9 | 5354 | else |
c53e9440 | 5355 | bc_emit_bytecode_labelref (BYTECODE_BC_LABEL (thiscase->exit_label)); |
ca695ac9 JB |
5356 | |
5357 | /* Output the jump table. */ | |
5358 | ||
5359 | bc_align_bytecode (3 /* PTR_ALIGN */); | |
5360 | bc_emit_bytecode_labeldef (jump_label); | |
5361 | ||
5362 | if (TYPE_MODE (thiscase->data.case_stmt.nominal_type) == SImode) | |
5363 | for (c = thiscase->data.case_stmt.case_list->left; c; c = c->left) | |
5364 | { | |
5365 | opcode = TREE_INT_CST_LOW (c->low); | |
5366 | bc_emit_bytecode_const ((char *) &opcode, sizeof opcode); | |
5367 | ||
5368 | opcode = TREE_INT_CST_LOW (c->high); | |
5369 | bc_emit_bytecode_const ((char *) &opcode, sizeof opcode); | |
5370 | ||
c53e9440 | 5371 | bc_emit_bytecode_labelref (BYTECODE_BC_LABEL (DECL_RTL (c->code_label))); |
ca695ac9 JB |
5372 | } |
5373 | else | |
5374 | if (TYPE_MODE (thiscase->data.case_stmt.nominal_type) == DImode) | |
5375 | for (c = thiscase->data.case_stmt.case_list->left; c; c = c->left) | |
5376 | { | |
5377 | bc_emit_bytecode_DI_const (c->low); | |
5378 | bc_emit_bytecode_DI_const (c->high); | |
5379 | ||
c53e9440 | 5380 | bc_emit_bytecode_labelref (BYTECODE_BC_LABEL (DECL_RTL (c->code_label))); |
ca695ac9 JB |
5381 | } |
5382 | else | |
5383 | /* Bad mode */ | |
5384 | abort (); | |
5385 | ||
5386 | ||
c53e9440 | 5387 | bc_emit_bytecode_labeldef (BYTECODE_BC_LABEL (thiscase->exit_label)); |
ca695ac9 JB |
5388 | |
5389 | /* Possibly issue enumeration warnings. */ | |
5390 | ||
5391 | if (!thiscase->data.case_stmt.default_label | |
5392 | && TREE_CODE (TREE_TYPE (expr)) == ENUMERAL_TYPE | |
5393 | && TREE_CODE (expr) != INTEGER_CST | |
5394 | && warn_switch) | |
5395 | check_for_full_enumeration_handling (TREE_TYPE (expr)); | |
5396 | ||
5397 | ||
5398 | #ifdef DEBUG_PRINT_CODE | |
5399 | fputc ('\n', stderr); | |
5400 | #endif | |
5401 | ||
5402 | POPSTACK (case_stack); | |
5403 | } | |
5404 | ||
5405 | ||
0f41302f | 5406 | /* Return unique bytecode ID. */ |
704f4dca | 5407 | |
ca695ac9 JB |
5408 | int |
5409 | bc_new_uid () | |
5410 | { | |
5411 | static int bc_uid = 0; | |
5412 | ||
5413 | return (++bc_uid); | |
5414 | } | |
5415 | ||
28d81abb RK |
5416 | /* Generate code to jump to LABEL if OP1 and OP2 are equal. */ |
5417 | ||
5418 | static void | |
5419 | do_jump_if_equal (op1, op2, label, unsignedp) | |
5420 | rtx op1, op2, label; | |
5421 | int unsignedp; | |
5422 | { | |
5423 | if (GET_CODE (op1) == CONST_INT | |
5424 | && GET_CODE (op2) == CONST_INT) | |
5425 | { | |
5426 | if (INTVAL (op1) == INTVAL (op2)) | |
5427 | emit_jump (label); | |
5428 | } | |
5429 | else | |
5430 | { | |
5431 | enum machine_mode mode = GET_MODE (op1); | |
5432 | if (mode == VOIDmode) | |
5433 | mode = GET_MODE (op2); | |
37366632 | 5434 | emit_cmp_insn (op1, op2, EQ, NULL_RTX, mode, unsignedp, 0); |
28d81abb RK |
5435 | emit_jump_insn (gen_beq (label)); |
5436 | } | |
5437 | } | |
5438 | \f | |
5439 | /* Not all case values are encountered equally. This function | |
5440 | uses a heuristic to weight case labels, in cases where that | |
5441 | looks like a reasonable thing to do. | |
5442 | ||
5443 | Right now, all we try to guess is text, and we establish the | |
5444 | following weights: | |
5445 | ||
5446 | chars above space: 16 | |
5447 | digits: 16 | |
5448 | default: 12 | |
5449 | space, punct: 8 | |
5450 | tab: 4 | |
5451 | newline: 2 | |
5452 | other "\" chars: 1 | |
5453 | remaining chars: 0 | |
5454 | ||
5455 | If we find any cases in the switch that are not either -1 or in the range | |
5456 | of valid ASCII characters, or are control characters other than those | |
5457 | commonly used with "\", don't treat this switch scanning text. | |
5458 | ||
5459 | Return 1 if these nodes are suitable for cost estimation, otherwise | |
5460 | return 0. */ | |
5461 | ||
5462 | static int | |
5463 | estimate_case_costs (node) | |
5464 | case_node_ptr node; | |
5465 | { | |
5466 | tree min_ascii = build_int_2 (-1, -1); | |
5467 | tree max_ascii = convert (TREE_TYPE (node->high), build_int_2 (127, 0)); | |
5468 | case_node_ptr n; | |
5469 | int i; | |
5470 | ||
5471 | /* If we haven't already made the cost table, make it now. Note that the | |
5472 | lower bound of the table is -1, not zero. */ | |
5473 | ||
5474 | if (cost_table == NULL) | |
5475 | { | |
5476 | cost_table = ((short *) xmalloc (129 * sizeof (short))) + 1; | |
4c9a05bc | 5477 | bzero ((char *) (cost_table - 1), 129 * sizeof (short)); |
28d81abb RK |
5478 | |
5479 | for (i = 0; i < 128; i++) | |
5480 | { | |
5481 | if (isalnum (i)) | |
5482 | cost_table[i] = 16; | |
5483 | else if (ispunct (i)) | |
5484 | cost_table[i] = 8; | |
5485 | else if (iscntrl (i)) | |
5486 | cost_table[i] = -1; | |
5487 | } | |
5488 | ||
5489 | cost_table[' '] = 8; | |
5490 | cost_table['\t'] = 4; | |
5491 | cost_table['\0'] = 4; | |
5492 | cost_table['\n'] = 2; | |
5493 | cost_table['\f'] = 1; | |
5494 | cost_table['\v'] = 1; | |
5495 | cost_table['\b'] = 1; | |
5496 | } | |
5497 | ||
5498 | /* See if all the case expressions look like text. It is text if the | |
5499 | constant is >= -1 and the highest constant is <= 127. Do all comparisons | |
5500 | as signed arithmetic since we don't want to ever access cost_table with a | |
5501 | value less than -1. Also check that none of the constants in a range | |
5502 | are strange control characters. */ | |
5503 | ||
5504 | for (n = node; n; n = n->right) | |
5505 | { | |
5506 | if ((INT_CST_LT (n->low, min_ascii)) || INT_CST_LT (max_ascii, n->high)) | |
5507 | return 0; | |
5508 | ||
5509 | for (i = TREE_INT_CST_LOW (n->low); i <= TREE_INT_CST_LOW (n->high); i++) | |
5510 | if (cost_table[i] < 0) | |
5511 | return 0; | |
5512 | } | |
5513 | ||
5514 | /* All interesting values are within the range of interesting | |
5515 | ASCII characters. */ | |
5516 | return 1; | |
5517 | } | |
5518 | ||
5519 | /* Scan an ordered list of case nodes | |
5520 | combining those with consecutive values or ranges. | |
5521 | ||
5522 | Eg. three separate entries 1: 2: 3: become one entry 1..3: */ | |
5523 | ||
5524 | static void | |
5525 | group_case_nodes (head) | |
5526 | case_node_ptr head; | |
5527 | { | |
5528 | case_node_ptr node = head; | |
5529 | ||
5530 | while (node) | |
5531 | { | |
5532 | rtx lb = next_real_insn (label_rtx (node->code_label)); | |
5533 | case_node_ptr np = node; | |
5534 | ||
5535 | /* Try to group the successors of NODE with NODE. */ | |
5536 | while (((np = np->right) != 0) | |
5537 | /* Do they jump to the same place? */ | |
5538 | && next_real_insn (label_rtx (np->code_label)) == lb | |
5539 | /* Are their ranges consecutive? */ | |
5540 | && tree_int_cst_equal (np->low, | |
5541 | fold (build (PLUS_EXPR, | |
5542 | TREE_TYPE (node->high), | |
5543 | node->high, | |
5544 | integer_one_node))) | |
5545 | /* An overflow is not consecutive. */ | |
5546 | && tree_int_cst_lt (node->high, | |
5547 | fold (build (PLUS_EXPR, | |
5548 | TREE_TYPE (node->high), | |
5549 | node->high, | |
5550 | integer_one_node)))) | |
5551 | { | |
5552 | node->high = np->high; | |
5553 | } | |
5554 | /* NP is the first node after NODE which can't be grouped with it. | |
5555 | Delete the nodes in between, and move on to that node. */ | |
5556 | node->right = np; | |
5557 | node = np; | |
5558 | } | |
5559 | } | |
5560 | ||
5561 | /* Take an ordered list of case nodes | |
5562 | and transform them into a near optimal binary tree, | |
6dc42e49 | 5563 | on the assumption that any target code selection value is as |
28d81abb RK |
5564 | likely as any other. |
5565 | ||
5566 | The transformation is performed by splitting the ordered | |
5567 | list into two equal sections plus a pivot. The parts are | |
5568 | then attached to the pivot as left and right branches. Each | |
5569 | branch is is then transformed recursively. */ | |
5570 | ||
5571 | static void | |
5572 | balance_case_nodes (head, parent) | |
5573 | case_node_ptr *head; | |
5574 | case_node_ptr parent; | |
5575 | { | |
5576 | register case_node_ptr np; | |
5577 | ||
5578 | np = *head; | |
5579 | if (np) | |
5580 | { | |
5581 | int cost = 0; | |
5582 | int i = 0; | |
5583 | int ranges = 0; | |
5584 | register case_node_ptr *npp; | |
5585 | case_node_ptr left; | |
5586 | ||
5587 | /* Count the number of entries on branch. Also count the ranges. */ | |
5588 | ||
5589 | while (np) | |
5590 | { | |
5591 | if (!tree_int_cst_equal (np->low, np->high)) | |
5592 | { | |
5593 | ranges++; | |
5594 | if (use_cost_table) | |
5595 | cost += cost_table[TREE_INT_CST_LOW (np->high)]; | |
5596 | } | |
5597 | ||
5598 | if (use_cost_table) | |
5599 | cost += cost_table[TREE_INT_CST_LOW (np->low)]; | |
5600 | ||
5601 | i++; | |
5602 | np = np->right; | |
5603 | } | |
5604 | ||
5605 | if (i > 2) | |
5606 | { | |
5607 | /* Split this list if it is long enough for that to help. */ | |
5608 | npp = head; | |
5609 | left = *npp; | |
5610 | if (use_cost_table) | |
5611 | { | |
5612 | /* Find the place in the list that bisects the list's total cost, | |
5613 | Here I gets half the total cost. */ | |
5614 | int n_moved = 0; | |
5615 | i = (cost + 1) / 2; | |
5616 | while (1) | |
5617 | { | |
5618 | /* Skip nodes while their cost does not reach that amount. */ | |
5619 | if (!tree_int_cst_equal ((*npp)->low, (*npp)->high)) | |
5620 | i -= cost_table[TREE_INT_CST_LOW ((*npp)->high)]; | |
5621 | i -= cost_table[TREE_INT_CST_LOW ((*npp)->low)]; | |
5622 | if (i <= 0) | |
5623 | break; | |
5624 | npp = &(*npp)->right; | |
5625 | n_moved += 1; | |
5626 | } | |
5627 | if (n_moved == 0) | |
5628 | { | |
5629 | /* Leave this branch lopsided, but optimize left-hand | |
5630 | side and fill in `parent' fields for right-hand side. */ | |
5631 | np = *head; | |
5632 | np->parent = parent; | |
5633 | balance_case_nodes (&np->left, np); | |
5634 | for (; np->right; np = np->right) | |
5635 | np->right->parent = np; | |
5636 | return; | |
5637 | } | |
5638 | } | |
5639 | /* If there are just three nodes, split at the middle one. */ | |
5640 | else if (i == 3) | |
5641 | npp = &(*npp)->right; | |
5642 | else | |
5643 | { | |
5644 | /* Find the place in the list that bisects the list's total cost, | |
5645 | where ranges count as 2. | |
5646 | Here I gets half the total cost. */ | |
5647 | i = (i + ranges + 1) / 2; | |
5648 | while (1) | |
5649 | { | |
5650 | /* Skip nodes while their cost does not reach that amount. */ | |
5651 | if (!tree_int_cst_equal ((*npp)->low, (*npp)->high)) | |
5652 | i--; | |
5653 | i--; | |
5654 | if (i <= 0) | |
5655 | break; | |
5656 | npp = &(*npp)->right; | |
5657 | } | |
5658 | } | |
5659 | *head = np = *npp; | |
5660 | *npp = 0; | |
5661 | np->parent = parent; | |
5662 | np->left = left; | |
5663 | ||
5664 | /* Optimize each of the two split parts. */ | |
5665 | balance_case_nodes (&np->left, np); | |
5666 | balance_case_nodes (&np->right, np); | |
5667 | } | |
5668 | else | |
5669 | { | |
5670 | /* Else leave this branch as one level, | |
5671 | but fill in `parent' fields. */ | |
5672 | np = *head; | |
5673 | np->parent = parent; | |
5674 | for (; np->right; np = np->right) | |
5675 | np->right->parent = np; | |
5676 | } | |
5677 | } | |
5678 | } | |
5679 | \f | |
5680 | /* Search the parent sections of the case node tree | |
5681 | to see if a test for the lower bound of NODE would be redundant. | |
5682 | INDEX_TYPE is the type of the index expression. | |
5683 | ||
5684 | The instructions to generate the case decision tree are | |
5685 | output in the same order as nodes are processed so it is | |
5686 | known that if a parent node checks the range of the current | |
5687 | node minus one that the current node is bounded at its lower | |
5688 | span. Thus the test would be redundant. */ | |
5689 | ||
5690 | static int | |
5691 | node_has_low_bound (node, index_type) | |
5692 | case_node_ptr node; | |
5693 | tree index_type; | |
5694 | { | |
5695 | tree low_minus_one; | |
5696 | case_node_ptr pnode; | |
5697 | ||
5698 | /* If the lower bound of this node is the lowest value in the index type, | |
5699 | we need not test it. */ | |
5700 | ||
5701 | if (tree_int_cst_equal (node->low, TYPE_MIN_VALUE (index_type))) | |
5702 | return 1; | |
5703 | ||
5704 | /* If this node has a left branch, the value at the left must be less | |
5705 | than that at this node, so it cannot be bounded at the bottom and | |
5706 | we need not bother testing any further. */ | |
5707 | ||
5708 | if (node->left) | |
5709 | return 0; | |
5710 | ||
5711 | low_minus_one = fold (build (MINUS_EXPR, TREE_TYPE (node->low), | |
5712 | node->low, integer_one_node)); | |
5713 | ||
5714 | /* If the subtraction above overflowed, we can't verify anything. | |
5715 | Otherwise, look for a parent that tests our value - 1. */ | |
5716 | ||
5717 | if (! tree_int_cst_lt (low_minus_one, node->low)) | |
5718 | return 0; | |
5719 | ||
5720 | for (pnode = node->parent; pnode; pnode = pnode->parent) | |
5721 | if (tree_int_cst_equal (low_minus_one, pnode->high)) | |
5722 | return 1; | |
5723 | ||
5724 | return 0; | |
5725 | } | |
5726 | ||
5727 | /* Search the parent sections of the case node tree | |
5728 | to see if a test for the upper bound of NODE would be redundant. | |
5729 | INDEX_TYPE is the type of the index expression. | |
5730 | ||
5731 | The instructions to generate the case decision tree are | |
5732 | output in the same order as nodes are processed so it is | |
5733 | known that if a parent node checks the range of the current | |
5734 | node plus one that the current node is bounded at its upper | |
5735 | span. Thus the test would be redundant. */ | |
5736 | ||
5737 | static int | |
5738 | node_has_high_bound (node, index_type) | |
5739 | case_node_ptr node; | |
5740 | tree index_type; | |
5741 | { | |
5742 | tree high_plus_one; | |
5743 | case_node_ptr pnode; | |
5744 | ||
5745 | /* If the upper bound of this node is the highest value in the type | |
5746 | of the index expression, we need not test against it. */ | |
5747 | ||
5748 | if (tree_int_cst_equal (node->high, TYPE_MAX_VALUE (index_type))) | |
5749 | return 1; | |
5750 | ||
5751 | /* If this node has a right branch, the value at the right must be greater | |
5752 | than that at this node, so it cannot be bounded at the top and | |
5753 | we need not bother testing any further. */ | |
5754 | ||
5755 | if (node->right) | |
5756 | return 0; | |
5757 | ||
5758 | high_plus_one = fold (build (PLUS_EXPR, TREE_TYPE (node->high), | |
5759 | node->high, integer_one_node)); | |
5760 | ||
5761 | /* If the addition above overflowed, we can't verify anything. | |
5762 | Otherwise, look for a parent that tests our value + 1. */ | |
5763 | ||
5764 | if (! tree_int_cst_lt (node->high, high_plus_one)) | |
5765 | return 0; | |
5766 | ||
5767 | for (pnode = node->parent; pnode; pnode = pnode->parent) | |
5768 | if (tree_int_cst_equal (high_plus_one, pnode->low)) | |
5769 | return 1; | |
5770 | ||
5771 | return 0; | |
5772 | } | |
5773 | ||
5774 | /* Search the parent sections of the | |
5775 | case node tree to see if both tests for the upper and lower | |
5776 | bounds of NODE would be redundant. */ | |
5777 | ||
5778 | static int | |
5779 | node_is_bounded (node, index_type) | |
5780 | case_node_ptr node; | |
5781 | tree index_type; | |
5782 | { | |
5783 | return (node_has_low_bound (node, index_type) | |
5784 | && node_has_high_bound (node, index_type)); | |
5785 | } | |
5786 | ||
5787 | /* Emit an unconditional jump to LABEL unless it would be dead code. */ | |
5788 | ||
5789 | static void | |
5790 | emit_jump_if_reachable (label) | |
5791 | rtx label; | |
5792 | { | |
5793 | if (GET_CODE (get_last_insn ()) != BARRIER) | |
5794 | emit_jump (label); | |
5795 | } | |
5796 | \f | |
5797 | /* Emit step-by-step code to select a case for the value of INDEX. | |
5798 | The thus generated decision tree follows the form of the | |
5799 | case-node binary tree NODE, whose nodes represent test conditions. | |
5800 | INDEX_TYPE is the type of the index of the switch. | |
5801 | ||
5802 | Care is taken to prune redundant tests from the decision tree | |
5803 | by detecting any boundary conditions already checked by | |
5804 | emitted rtx. (See node_has_high_bound, node_has_low_bound | |
5805 | and node_is_bounded, above.) | |
5806 | ||
5807 | Where the test conditions can be shown to be redundant we emit | |
5808 | an unconditional jump to the target code. As a further | |
5809 | optimization, the subordinates of a tree node are examined to | |
5810 | check for bounded nodes. In this case conditional and/or | |
5811 | unconditional jumps as a result of the boundary check for the | |
5812 | current node are arranged to target the subordinates associated | |
5813 | code for out of bound conditions on the current node node. | |
5814 | ||
f72aed24 | 5815 | We can assume that when control reaches the code generated here, |
28d81abb RK |
5816 | the index value has already been compared with the parents |
5817 | of this node, and determined to be on the same side of each parent | |
5818 | as this node is. Thus, if this node tests for the value 51, | |
5819 | and a parent tested for 52, we don't need to consider | |
5820 | the possibility of a value greater than 51. If another parent | |
5821 | tests for the value 50, then this node need not test anything. */ | |
5822 | ||
5823 | static void | |
5824 | emit_case_nodes (index, node, default_label, index_type) | |
5825 | rtx index; | |
5826 | case_node_ptr node; | |
5827 | rtx default_label; | |
5828 | tree index_type; | |
5829 | { | |
5830 | /* If INDEX has an unsigned type, we must make unsigned branches. */ | |
5831 | int unsignedp = TREE_UNSIGNED (index_type); | |
5832 | typedef rtx rtx_function (); | |
5833 | rtx_function *gen_bgt_pat = unsignedp ? gen_bgtu : gen_bgt; | |
5834 | rtx_function *gen_bge_pat = unsignedp ? gen_bgeu : gen_bge; | |
5835 | rtx_function *gen_blt_pat = unsignedp ? gen_bltu : gen_blt; | |
5836 | rtx_function *gen_ble_pat = unsignedp ? gen_bleu : gen_ble; | |
5837 | enum machine_mode mode = GET_MODE (index); | |
5838 | ||
5839 | /* See if our parents have already tested everything for us. | |
5840 | If they have, emit an unconditional jump for this node. */ | |
5841 | if (node_is_bounded (node, index_type)) | |
5842 | emit_jump (label_rtx (node->code_label)); | |
5843 | ||
5844 | else if (tree_int_cst_equal (node->low, node->high)) | |
5845 | { | |
5846 | /* Node is single valued. First see if the index expression matches | |
0f41302f | 5847 | this node and then check our children, if any. */ |
28d81abb | 5848 | |
37366632 | 5849 | do_jump_if_equal (index, expand_expr (node->low, NULL_RTX, VOIDmode, 0), |
28d81abb RK |
5850 | label_rtx (node->code_label), unsignedp); |
5851 | ||
5852 | if (node->right != 0 && node->left != 0) | |
5853 | { | |
5854 | /* This node has children on both sides. | |
5855 | Dispatch to one side or the other | |
5856 | by comparing the index value with this node's value. | |
5857 | If one subtree is bounded, check that one first, | |
5858 | so we can avoid real branches in the tree. */ | |
5859 | ||
5860 | if (node_is_bounded (node->right, index_type)) | |
5861 | { | |
37366632 RK |
5862 | emit_cmp_insn (index, expand_expr (node->high, NULL_RTX, |
5863 | VOIDmode, 0), | |
5864 | GT, NULL_RTX, mode, unsignedp, 0); | |
28d81abb RK |
5865 | |
5866 | emit_jump_insn ((*gen_bgt_pat) (label_rtx (node->right->code_label))); | |
5867 | emit_case_nodes (index, node->left, default_label, index_type); | |
5868 | } | |
5869 | ||
5870 | else if (node_is_bounded (node->left, index_type)) | |
5871 | { | |
37366632 | 5872 | emit_cmp_insn (index, expand_expr (node->high, NULL_RTX, |
28d81abb | 5873 | VOIDmode, 0), |
37366632 | 5874 | LT, NULL_RTX, mode, unsignedp, 0); |
28d81abb RK |
5875 | emit_jump_insn ((*gen_blt_pat) (label_rtx (node->left->code_label))); |
5876 | emit_case_nodes (index, node->right, default_label, index_type); | |
5877 | } | |
5878 | ||
5879 | else | |
5880 | { | |
5881 | /* Neither node is bounded. First distinguish the two sides; | |
5882 | then emit the code for one side at a time. */ | |
5883 | ||
5884 | tree test_label | |
5885 | = build_decl (LABEL_DECL, NULL_TREE, NULL_TREE); | |
5886 | ||
5887 | /* See if the value is on the right. */ | |
37366632 | 5888 | emit_cmp_insn (index, expand_expr (node->high, NULL_RTX, |
28d81abb | 5889 | VOIDmode, 0), |
37366632 | 5890 | GT, NULL_RTX, mode, unsignedp, 0); |
28d81abb RK |
5891 | emit_jump_insn ((*gen_bgt_pat) (label_rtx (test_label))); |
5892 | ||
5893 | /* Value must be on the left. | |
5894 | Handle the left-hand subtree. */ | |
5895 | emit_case_nodes (index, node->left, default_label, index_type); | |
5896 | /* If left-hand subtree does nothing, | |
5897 | go to default. */ | |
5898 | emit_jump_if_reachable (default_label); | |
5899 | ||
5900 | /* Code branches here for the right-hand subtree. */ | |
5901 | expand_label (test_label); | |
5902 | emit_case_nodes (index, node->right, default_label, index_type); | |
5903 | } | |
5904 | } | |
5905 | ||
5906 | else if (node->right != 0 && node->left == 0) | |
5907 | { | |
5908 | /* Here we have a right child but no left so we issue conditional | |
5909 | branch to default and process the right child. | |
5910 | ||
5911 | Omit the conditional branch to default if we it avoid only one | |
5912 | right child; it costs too much space to save so little time. */ | |
5913 | ||
de14fd73 | 5914 | if (node->right->right || node->right->left |
28d81abb RK |
5915 | || !tree_int_cst_equal (node->right->low, node->right->high)) |
5916 | { | |
5917 | if (!node_has_low_bound (node, index_type)) | |
5918 | { | |
37366632 RK |
5919 | emit_cmp_insn (index, expand_expr (node->high, NULL_RTX, |
5920 | VOIDmode, 0), | |
5921 | LT, NULL_RTX, mode, unsignedp, 0); | |
28d81abb RK |
5922 | emit_jump_insn ((*gen_blt_pat) (default_label)); |
5923 | } | |
5924 | ||
5925 | emit_case_nodes (index, node->right, default_label, index_type); | |
5926 | } | |
5927 | else | |
5928 | /* We cannot process node->right normally | |
5929 | since we haven't ruled out the numbers less than | |
5930 | this node's value. So handle node->right explicitly. */ | |
5931 | do_jump_if_equal (index, | |
37366632 RK |
5932 | expand_expr (node->right->low, NULL_RTX, |
5933 | VOIDmode, 0), | |
28d81abb RK |
5934 | label_rtx (node->right->code_label), unsignedp); |
5935 | } | |
5936 | ||
5937 | else if (node->right == 0 && node->left != 0) | |
5938 | { | |
5939 | /* Just one subtree, on the left. */ | |
5940 | ||
de14fd73 RK |
5941 | #if 0 /* The following code and comment were formerly part |
5942 | of the condition here, but they didn't work | |
5943 | and I don't understand what the idea was. -- rms. */ | |
5944 | /* If our "most probable entry" is less probable | |
28d81abb RK |
5945 | than the default label, emit a jump to |
5946 | the default label using condition codes | |
5947 | already lying around. With no right branch, | |
5948 | a branch-greater-than will get us to the default | |
5949 | label correctly. */ | |
de14fd73 RK |
5950 | if (use_cost_table |
5951 | && cost_table[TREE_INT_CST_LOW (node->high)] < 12) | |
5952 | ; | |
5953 | #endif /* 0 */ | |
5954 | if (node->left->left || node->left->right | |
28d81abb RK |
5955 | || !tree_int_cst_equal (node->left->low, node->left->high)) |
5956 | { | |
5957 | if (!node_has_high_bound (node, index_type)) | |
5958 | { | |
37366632 RK |
5959 | emit_cmp_insn (index, expand_expr (node->high, NULL_RTX, |
5960 | VOIDmode, 0), | |
5961 | GT, NULL_RTX, mode, unsignedp, 0); | |
28d81abb RK |
5962 | emit_jump_insn ((*gen_bgt_pat) (default_label)); |
5963 | } | |
5964 | ||
5965 | emit_case_nodes (index, node->left, default_label, index_type); | |
5966 | } | |
5967 | else | |
5968 | /* We cannot process node->left normally | |
5969 | since we haven't ruled out the numbers less than | |
5970 | this node's value. So handle node->left explicitly. */ | |
5971 | do_jump_if_equal (index, | |
37366632 RK |
5972 | expand_expr (node->left->low, NULL_RTX, |
5973 | VOIDmode, 0), | |
28d81abb RK |
5974 | label_rtx (node->left->code_label), unsignedp); |
5975 | } | |
5976 | } | |
5977 | else | |
5978 | { | |
5979 | /* Node is a range. These cases are very similar to those for a single | |
5980 | value, except that we do not start by testing whether this node | |
5981 | is the one to branch to. */ | |
5982 | ||
5983 | if (node->right != 0 && node->left != 0) | |
5984 | { | |
5985 | /* Node has subtrees on both sides. | |
5986 | If the right-hand subtree is bounded, | |
5987 | test for it first, since we can go straight there. | |
5988 | Otherwise, we need to make a branch in the control structure, | |
5989 | then handle the two subtrees. */ | |
5990 | tree test_label = 0; | |
5991 | ||
37366632 RK |
5992 | emit_cmp_insn (index, expand_expr (node->high, NULL_RTX, |
5993 | VOIDmode, 0), | |
5994 | GT, NULL_RTX, mode, unsignedp, 0); | |
28d81abb RK |
5995 | |
5996 | if (node_is_bounded (node->right, index_type)) | |
5997 | /* Right hand node is fully bounded so we can eliminate any | |
5998 | testing and branch directly to the target code. */ | |
5999 | emit_jump_insn ((*gen_bgt_pat) (label_rtx (node->right->code_label))); | |
6000 | else | |
6001 | { | |
6002 | /* Right hand node requires testing. | |
6003 | Branch to a label where we will handle it later. */ | |
6004 | ||
6005 | test_label = build_decl (LABEL_DECL, NULL_TREE, NULL_TREE); | |
6006 | emit_jump_insn ((*gen_bgt_pat) (label_rtx (test_label))); | |
6007 | } | |
6008 | ||
6009 | /* Value belongs to this node or to the left-hand subtree. */ | |
6010 | ||
37366632 RK |
6011 | emit_cmp_insn (index, expand_expr (node->low, NULL_RTX, VOIDmode, 0), |
6012 | GE, NULL_RTX, mode, unsignedp, 0); | |
28d81abb RK |
6013 | emit_jump_insn ((*gen_bge_pat) (label_rtx (node->code_label))); |
6014 | ||
6015 | /* Handle the left-hand subtree. */ | |
6016 | emit_case_nodes (index, node->left, default_label, index_type); | |
6017 | ||
6018 | /* If right node had to be handled later, do that now. */ | |
6019 | ||
6020 | if (test_label) | |
6021 | { | |
6022 | /* If the left-hand subtree fell through, | |
6023 | don't let it fall into the right-hand subtree. */ | |
6024 | emit_jump_if_reachable (default_label); | |
6025 | ||
6026 | expand_label (test_label); | |
6027 | emit_case_nodes (index, node->right, default_label, index_type); | |
6028 | } | |
6029 | } | |
6030 | ||
6031 | else if (node->right != 0 && node->left == 0) | |
6032 | { | |
6033 | /* Deal with values to the left of this node, | |
6034 | if they are possible. */ | |
6035 | if (!node_has_low_bound (node, index_type)) | |
6036 | { | |
37366632 RK |
6037 | emit_cmp_insn (index, expand_expr (node->low, NULL_RTX, |
6038 | VOIDmode, 0), | |
6039 | LT, NULL_RTX, mode, unsignedp, 0); | |
28d81abb RK |
6040 | emit_jump_insn ((*gen_blt_pat) (default_label)); |
6041 | } | |
6042 | ||
6043 | /* Value belongs to this node or to the right-hand subtree. */ | |
6044 | ||
37366632 RK |
6045 | emit_cmp_insn (index, expand_expr (node->high, NULL_RTX, |
6046 | VOIDmode, 0), | |
6047 | LE, NULL_RTX, mode, unsignedp, 0); | |
28d81abb RK |
6048 | emit_jump_insn ((*gen_ble_pat) (label_rtx (node->code_label))); |
6049 | ||
6050 | emit_case_nodes (index, node->right, default_label, index_type); | |
6051 | } | |
6052 | ||
6053 | else if (node->right == 0 && node->left != 0) | |
6054 | { | |
6055 | /* Deal with values to the right of this node, | |
6056 | if they are possible. */ | |
6057 | if (!node_has_high_bound (node, index_type)) | |
6058 | { | |
37366632 RK |
6059 | emit_cmp_insn (index, expand_expr (node->high, NULL_RTX, |
6060 | VOIDmode, 0), | |
6061 | GT, NULL_RTX, mode, unsignedp, 0); | |
28d81abb RK |
6062 | emit_jump_insn ((*gen_bgt_pat) (default_label)); |
6063 | } | |
6064 | ||
6065 | /* Value belongs to this node or to the left-hand subtree. */ | |
6066 | ||
37366632 RK |
6067 | emit_cmp_insn (index, expand_expr (node->low, NULL_RTX, VOIDmode, 0), |
6068 | GE, NULL_RTX, mode, unsignedp, 0); | |
28d81abb RK |
6069 | emit_jump_insn ((*gen_bge_pat) (label_rtx (node->code_label))); |
6070 | ||
6071 | emit_case_nodes (index, node->left, default_label, index_type); | |
6072 | } | |
6073 | ||
6074 | else | |
6075 | { | |
6076 | /* Node has no children so we check low and high bounds to remove | |
6077 | redundant tests. Only one of the bounds can exist, | |
6078 | since otherwise this node is bounded--a case tested already. */ | |
6079 | ||
6080 | if (!node_has_high_bound (node, index_type)) | |
6081 | { | |
37366632 RK |
6082 | emit_cmp_insn (index, expand_expr (node->high, NULL_RTX, |
6083 | VOIDmode, 0), | |
6084 | GT, NULL_RTX, mode, unsignedp, 0); | |
28d81abb RK |
6085 | emit_jump_insn ((*gen_bgt_pat) (default_label)); |
6086 | } | |
6087 | ||
6088 | if (!node_has_low_bound (node, index_type)) | |
6089 | { | |
37366632 RK |
6090 | emit_cmp_insn (index, expand_expr (node->low, NULL_RTX, |
6091 | VOIDmode, 0), | |
6092 | LT, NULL_RTX, mode, unsignedp, 0); | |
28d81abb RK |
6093 | emit_jump_insn ((*gen_blt_pat) (default_label)); |
6094 | } | |
6095 | ||
6096 | emit_jump (label_rtx (node->code_label)); | |
6097 | } | |
6098 | } | |
6099 | } | |
6100 | \f | |
6101 | /* These routines are used by the loop unrolling code. They copy BLOCK trees | |
6102 | so that the debugging info will be correct for the unrolled loop. */ | |
6103 | ||
94dc8b56 | 6104 | /* Indexed by block number, contains a pointer to the N'th block node. */ |
28d81abb | 6105 | |
94dc8b56 | 6106 | static tree *block_vector; |
28d81abb RK |
6107 | |
6108 | void | |
94dc8b56 | 6109 | find_loop_tree_blocks () |
28d81abb | 6110 | { |
94dc8b56 | 6111 | tree block = DECL_INITIAL (current_function_decl); |
28d81abb | 6112 | |
94dc8b56 | 6113 | block_vector = identify_blocks (block, get_insns ()); |
28d81abb RK |
6114 | } |
6115 | ||
28d81abb | 6116 | void |
94dc8b56 | 6117 | unroll_block_trees () |
28d81abb | 6118 | { |
94dc8b56 | 6119 | tree block = DECL_INITIAL (current_function_decl); |
28d81abb | 6120 | |
94dc8b56 | 6121 | reorder_blocks (block_vector, block, get_insns ()); |
28d81abb | 6122 | } |
94dc8b56 | 6123 |