]>
Commit | Line | Data |
---|---|---|
28d81abb | 1 | /* Expands front end tree to back end RTL for GNU C-Compiler |
e3da71ef | 2 | Copyright (C) 1987, 88, 89, 92, 93, 94, 1995 Free Software Foundation, Inc. |
28d81abb RK |
3 | |
4 | This file is part of GNU CC. | |
5 | ||
6 | GNU CC is free software; you can redistribute it and/or modify | |
7 | it under the terms of the GNU General Public License as published by | |
8 | the Free Software Foundation; either version 2, or (at your option) | |
9 | any later version. | |
10 | ||
11 | GNU CC is distributed in the hope that it will be useful, | |
12 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
14 | GNU General Public License for more details. | |
15 | ||
16 | You should have received a copy of the GNU General Public License | |
17 | along with GNU CC; see the file COPYING. If not, write to | |
e9fa0c7c RK |
18 | the Free Software Foundation, 59 Temple Place - Suite 330, |
19 | Boston, MA 02111-1307, USA. */ | |
28d81abb RK |
20 | |
21 | ||
22 | /* This file handles the generation of rtl code from tree structure | |
23 | above the level of expressions, using subroutines in exp*.c and emit-rtl.c. | |
24 | It also creates the rtl expressions for parameters and auto variables | |
25 | and has full responsibility for allocating stack slots. | |
26 | ||
27 | The functions whose names start with `expand_' are called by the | |
28 | parser to generate RTL instructions for various kinds of constructs. | |
29 | ||
30 | Some control and binding constructs require calling several such | |
31 | functions at different times. For example, a simple if-then | |
32 | is expanded by calling `expand_start_cond' (with the condition-expression | |
33 | as argument) before parsing the then-clause and calling `expand_end_cond' | |
34 | after parsing the then-clause. */ | |
35 | ||
36 | #include "config.h" | |
37 | ||
38 | #include <stdio.h> | |
39 | #include <ctype.h> | |
40 | ||
41 | #include "rtl.h" | |
42 | #include "tree.h" | |
43 | #include "flags.h" | |
44 | #include "function.h" | |
45 | #include "insn-flags.h" | |
46 | #include "insn-config.h" | |
47 | #include "insn-codes.h" | |
48 | #include "expr.h" | |
49 | #include "hard-reg-set.h" | |
50 | #include "obstack.h" | |
51 | #include "loop.h" | |
52 | #include "recog.h" | |
ca695ac9 JB |
53 | #include "machmode.h" |
54 | ||
55 | #include "bytecode.h" | |
56 | #include "bc-typecd.h" | |
57 | #include "bc-opcode.h" | |
58 | #include "bc-optab.h" | |
59 | #include "bc-emit.h" | |
28d81abb RK |
60 | |
61 | #define obstack_chunk_alloc xmalloc | |
62 | #define obstack_chunk_free free | |
63 | struct obstack stmt_obstack; | |
64 | ||
28d81abb RK |
65 | /* Filename and line number of last line-number note, |
66 | whether we actually emitted it or not. */ | |
67 | char *emit_filename; | |
68 | int emit_lineno; | |
69 | ||
70 | /* Nonzero if within a ({...}) grouping, in which case we must | |
71 | always compute a value for each expr-stmt in case it is the last one. */ | |
72 | ||
73 | int expr_stmts_for_value; | |
74 | ||
75 | /* Each time we expand an expression-statement, | |
76 | record the expr's type and its RTL value here. */ | |
77 | ||
78 | static tree last_expr_type; | |
79 | static rtx last_expr_value; | |
80 | ||
7629c936 RS |
81 | /* Each time we expand the end of a binding contour (in `expand_end_bindings') |
82 | and we emit a new NOTE_INSN_BLOCK_END note, we save a pointer to it here. | |
83 | This is used by the `remember_end_note' function to record the endpoint | |
84 | of each generated block in its associated BLOCK node. */ | |
85 | ||
86 | static rtx last_block_end_note; | |
87 | ||
28d81abb RK |
88 | /* Number of binding contours started so far in this function. */ |
89 | ||
90 | int block_start_count; | |
91 | ||
92 | /* Nonzero if function being compiled needs to | |
93 | return the address of where it has put a structure value. */ | |
94 | ||
95 | extern int current_function_returns_pcc_struct; | |
96 | ||
97 | /* Label that will go on parm cleanup code, if any. | |
98 | Jumping to this label runs cleanup code for parameters, if | |
99 | such code must be run. Following this code is the logical return label. */ | |
100 | ||
101 | extern rtx cleanup_label; | |
102 | ||
103 | /* Label that will go on function epilogue. | |
104 | Jumping to this label serves as a "return" instruction | |
105 | on machines which require execution of the epilogue on all returns. */ | |
106 | ||
107 | extern rtx return_label; | |
108 | ||
109 | /* List (chain of EXPR_LISTs) of pseudo-regs of SAVE_EXPRs. | |
110 | So we can mark them all live at the end of the function, if nonopt. */ | |
111 | extern rtx save_expr_regs; | |
112 | ||
113 | /* Offset to end of allocated area of stack frame. | |
114 | If stack grows down, this is the address of the last stack slot allocated. | |
115 | If stack grows up, this is the address for the next slot. */ | |
116 | extern int frame_offset; | |
117 | ||
118 | /* Label to jump back to for tail recursion, or 0 if we have | |
119 | not yet needed one for this function. */ | |
120 | extern rtx tail_recursion_label; | |
121 | ||
122 | /* Place after which to insert the tail_recursion_label if we need one. */ | |
123 | extern rtx tail_recursion_reentry; | |
124 | ||
125 | /* Location at which to save the argument pointer if it will need to be | |
126 | referenced. There are two cases where this is done: if nonlocal gotos | |
127 | exist, or if vars whose is an offset from the argument pointer will be | |
128 | needed by inner routines. */ | |
129 | ||
130 | extern rtx arg_pointer_save_area; | |
131 | ||
132 | /* Chain of all RTL_EXPRs that have insns in them. */ | |
133 | extern tree rtl_expr_chain; | |
134 | ||
135 | #if 0 /* Turned off because 0 seems to work just as well. */ | |
136 | /* Cleanup lists are required for binding levels regardless of whether | |
137 | that binding level has cleanups or not. This node serves as the | |
138 | cleanup list whenever an empty list is required. */ | |
139 | static tree empty_cleanup_list; | |
140 | #endif | |
61d6b1cc MS |
141 | |
142 | extern void (*interim_eh_hook) PROTO((tree)); | |
28d81abb RK |
143 | \f |
144 | /* Functions and data structures for expanding case statements. */ | |
145 | ||
146 | /* Case label structure, used to hold info on labels within case | |
147 | statements. We handle "range" labels; for a single-value label | |
148 | as in C, the high and low limits are the same. | |
149 | ||
150 | A chain of case nodes is initially maintained via the RIGHT fields | |
151 | in the nodes. Nodes with higher case values are later in the list. | |
152 | ||
153 | Switch statements can be output in one of two forms. A branch table | |
154 | is used if there are more than a few labels and the labels are dense | |
155 | within the range between the smallest and largest case value. If a | |
156 | branch table is used, no further manipulations are done with the case | |
157 | node chain. | |
158 | ||
159 | The alternative to the use of a branch table is to generate a series | |
160 | of compare and jump insns. When that is done, we use the LEFT, RIGHT, | |
161 | and PARENT fields to hold a binary tree. Initially the tree is | |
de14fd73 RK |
162 | totally unbalanced, with everything on the right. We balance the tree |
163 | with nodes on the left having lower case values than the parent | |
28d81abb RK |
164 | and nodes on the right having higher values. We then output the tree |
165 | in order. */ | |
166 | ||
167 | struct case_node | |
168 | { | |
169 | struct case_node *left; /* Left son in binary tree */ | |
170 | struct case_node *right; /* Right son in binary tree; also node chain */ | |
171 | struct case_node *parent; /* Parent of node in binary tree */ | |
172 | tree low; /* Lowest index value for this label */ | |
173 | tree high; /* Highest index value for this label */ | |
174 | tree code_label; /* Label to jump to when node matches */ | |
175 | }; | |
176 | ||
177 | typedef struct case_node case_node; | |
178 | typedef struct case_node *case_node_ptr; | |
179 | ||
180 | /* These are used by estimate_case_costs and balance_case_nodes. */ | |
181 | ||
182 | /* This must be a signed type, and non-ANSI compilers lack signed char. */ | |
183 | static short *cost_table; | |
184 | static int use_cost_table; | |
28d81abb RK |
185 | \f |
186 | /* Stack of control and binding constructs we are currently inside. | |
187 | ||
188 | These constructs begin when you call `expand_start_WHATEVER' | |
189 | and end when you call `expand_end_WHATEVER'. This stack records | |
190 | info about how the construct began that tells the end-function | |
191 | what to do. It also may provide information about the construct | |
192 | to alter the behavior of other constructs within the body. | |
193 | For example, they may affect the behavior of C `break' and `continue'. | |
194 | ||
195 | Each construct gets one `struct nesting' object. | |
196 | All of these objects are chained through the `all' field. | |
197 | `nesting_stack' points to the first object (innermost construct). | |
198 | The position of an entry on `nesting_stack' is in its `depth' field. | |
199 | ||
200 | Each type of construct has its own individual stack. | |
201 | For example, loops have `loop_stack'. Each object points to the | |
202 | next object of the same type through the `next' field. | |
203 | ||
204 | Some constructs are visible to `break' exit-statements and others | |
205 | are not. Which constructs are visible depends on the language. | |
206 | Therefore, the data structure allows each construct to be visible | |
207 | or not, according to the args given when the construct is started. | |
208 | The construct is visible if the `exit_label' field is non-null. | |
209 | In that case, the value should be a CODE_LABEL rtx. */ | |
210 | ||
211 | struct nesting | |
212 | { | |
213 | struct nesting *all; | |
214 | struct nesting *next; | |
215 | int depth; | |
216 | rtx exit_label; | |
217 | union | |
218 | { | |
219 | /* For conds (if-then and if-then-else statements). */ | |
220 | struct | |
221 | { | |
222 | /* Label for the end of the if construct. | |
223 | There is none if EXITFLAG was not set | |
224 | and no `else' has been seen yet. */ | |
225 | rtx endif_label; | |
226 | /* Label for the end of this alternative. | |
227 | This may be the end of the if or the next else/elseif. */ | |
228 | rtx next_label; | |
229 | } cond; | |
230 | /* For loops. */ | |
231 | struct | |
232 | { | |
233 | /* Label at the top of the loop; place to loop back to. */ | |
234 | rtx start_label; | |
235 | /* Label at the end of the whole construct. */ | |
236 | rtx end_label; | |
8afad312 JW |
237 | /* Label before a jump that branches to the end of the whole |
238 | construct. This is where destructors go if any. */ | |
239 | rtx alt_end_label; | |
28d81abb RK |
240 | /* Label for `continue' statement to jump to; |
241 | this is in front of the stepper of the loop. */ | |
242 | rtx continue_label; | |
243 | } loop; | |
244 | /* For variable binding contours. */ | |
245 | struct | |
246 | { | |
247 | /* Sequence number of this binding contour within the function, | |
248 | in order of entry. */ | |
249 | int block_start_count; | |
ca695ac9 JB |
250 | /* Nonzero => value to restore stack to on exit. Complemented by |
251 | bc_stack_level (see below) when generating bytecodes. */ | |
28d81abb RK |
252 | rtx stack_level; |
253 | /* The NOTE that starts this contour. | |
254 | Used by expand_goto to check whether the destination | |
255 | is within each contour or not. */ | |
256 | rtx first_insn; | |
257 | /* Innermost containing binding contour that has a stack level. */ | |
258 | struct nesting *innermost_stack_block; | |
259 | /* List of cleanups to be run on exit from this contour. | |
260 | This is a list of expressions to be evaluated. | |
261 | The TREE_PURPOSE of each link is the ..._DECL node | |
262 | which the cleanup pertains to. */ | |
263 | tree cleanups; | |
264 | /* List of cleanup-lists of blocks containing this block, | |
265 | as they were at the locus where this block appears. | |
266 | There is an element for each containing block, | |
267 | ordered innermost containing block first. | |
268 | The tail of this list can be 0 (was empty_cleanup_list), | |
269 | if all remaining elements would be empty lists. | |
270 | The element's TREE_VALUE is the cleanup-list of that block, | |
271 | which may be null. */ | |
272 | tree outer_cleanups; | |
273 | /* Chain of labels defined inside this binding contour. | |
274 | For contours that have stack levels or cleanups. */ | |
275 | struct label_chain *label_chain; | |
276 | /* Number of function calls seen, as of start of this block. */ | |
277 | int function_call_count; | |
ca695ac9 JB |
278 | /* Bytecode specific: stack level to restore stack to on exit. */ |
279 | int bc_stack_level; | |
28d81abb RK |
280 | } block; |
281 | /* For switch (C) or case (Pascal) statements, | |
282 | and also for dummies (see `expand_start_case_dummy'). */ | |
283 | struct | |
284 | { | |
285 | /* The insn after which the case dispatch should finally | |
286 | be emitted. Zero for a dummy. */ | |
287 | rtx start; | |
ca695ac9 JB |
288 | /* For bytecodes, the case table is in-lined right in the code. |
289 | A label is needed for skipping over this block. It is only | |
290 | used when generating bytecodes. */ | |
291 | rtx skip_label; | |
28d81abb RK |
292 | /* A list of case labels, kept in ascending order by value |
293 | as the list is built. | |
294 | During expand_end_case, this list may be rearranged into a | |
295 | nearly balanced binary tree. */ | |
296 | struct case_node *case_list; | |
297 | /* Label to jump to if no case matches. */ | |
298 | tree default_label; | |
299 | /* The expression to be dispatched on. */ | |
300 | tree index_expr; | |
301 | /* Type that INDEX_EXPR should be converted to. */ | |
302 | tree nominal_type; | |
303 | /* Number of range exprs in case statement. */ | |
304 | int num_ranges; | |
305 | /* Name of this kind of statement, for warnings. */ | |
306 | char *printname; | |
307 | /* Nonzero if a case label has been seen in this case stmt. */ | |
308 | char seenlabel; | |
309 | } case_stmt; | |
28d81abb RK |
310 | } data; |
311 | }; | |
312 | ||
313 | /* Chain of all pending binding contours. */ | |
314 | struct nesting *block_stack; | |
315 | ||
6ed1d6c5 RS |
316 | /* If any new stacks are added here, add them to POPSTACKS too. */ |
317 | ||
28d81abb RK |
318 | /* Chain of all pending binding contours that restore stack levels |
319 | or have cleanups. */ | |
320 | struct nesting *stack_block_stack; | |
321 | ||
322 | /* Chain of all pending conditional statements. */ | |
323 | struct nesting *cond_stack; | |
324 | ||
325 | /* Chain of all pending loops. */ | |
326 | struct nesting *loop_stack; | |
327 | ||
328 | /* Chain of all pending case or switch statements. */ | |
329 | struct nesting *case_stack; | |
330 | ||
28d81abb RK |
331 | /* Separate chain including all of the above, |
332 | chained through the `all' field. */ | |
333 | struct nesting *nesting_stack; | |
334 | ||
335 | /* Number of entries on nesting_stack now. */ | |
336 | int nesting_depth; | |
337 | ||
338 | /* Allocate and return a new `struct nesting'. */ | |
339 | ||
340 | #define ALLOC_NESTING() \ | |
341 | (struct nesting *) obstack_alloc (&stmt_obstack, sizeof (struct nesting)) | |
342 | ||
6ed1d6c5 RS |
343 | /* Pop the nesting stack element by element until we pop off |
344 | the element which is at the top of STACK. | |
345 | Update all the other stacks, popping off elements from them | |
346 | as we pop them from nesting_stack. */ | |
28d81abb RK |
347 | |
348 | #define POPSTACK(STACK) \ | |
6ed1d6c5 RS |
349 | do { struct nesting *target = STACK; \ |
350 | struct nesting *this; \ | |
351 | do { this = nesting_stack; \ | |
352 | if (loop_stack == this) \ | |
353 | loop_stack = loop_stack->next; \ | |
354 | if (cond_stack == this) \ | |
355 | cond_stack = cond_stack->next; \ | |
356 | if (block_stack == this) \ | |
357 | block_stack = block_stack->next; \ | |
358 | if (stack_block_stack == this) \ | |
359 | stack_block_stack = stack_block_stack->next; \ | |
360 | if (case_stack == this) \ | |
361 | case_stack = case_stack->next; \ | |
6ed1d6c5 | 362 | nesting_depth = nesting_stack->depth - 1; \ |
28d81abb | 363 | nesting_stack = this->all; \ |
28d81abb | 364 | obstack_free (&stmt_obstack, this); } \ |
6ed1d6c5 | 365 | while (this != target); } while (0) |
28d81abb RK |
366 | \f |
367 | /* In some cases it is impossible to generate code for a forward goto | |
368 | until the label definition is seen. This happens when it may be necessary | |
369 | for the goto to reset the stack pointer: we don't yet know how to do that. | |
370 | So expand_goto puts an entry on this fixup list. | |
371 | Each time a binding contour that resets the stack is exited, | |
372 | we check each fixup. | |
373 | If the target label has now been defined, we can insert the proper code. */ | |
374 | ||
375 | struct goto_fixup | |
376 | { | |
377 | /* Points to following fixup. */ | |
378 | struct goto_fixup *next; | |
379 | /* Points to the insn before the jump insn. | |
380 | If more code must be inserted, it goes after this insn. */ | |
381 | rtx before_jump; | |
382 | /* The LABEL_DECL that this jump is jumping to, or 0 | |
383 | for break, continue or return. */ | |
384 | tree target; | |
7629c936 RS |
385 | /* The BLOCK for the place where this goto was found. */ |
386 | tree context; | |
28d81abb RK |
387 | /* The CODE_LABEL rtx that this is jumping to. */ |
388 | rtx target_rtl; | |
389 | /* Number of binding contours started in current function | |
390 | before the label reference. */ | |
391 | int block_start_count; | |
392 | /* The outermost stack level that should be restored for this jump. | |
393 | Each time a binding contour that resets the stack is exited, | |
394 | if the target label is *not* yet defined, this slot is updated. */ | |
395 | rtx stack_level; | |
396 | /* List of lists of cleanup expressions to be run by this goto. | |
397 | There is one element for each block that this goto is within. | |
398 | The tail of this list can be 0 (was empty_cleanup_list), | |
399 | if all remaining elements would be empty. | |
400 | The TREE_VALUE contains the cleanup list of that block as of the | |
401 | time this goto was seen. | |
402 | The TREE_ADDRESSABLE flag is 1 for a block that has been exited. */ | |
403 | tree cleanup_list_list; | |
ca695ac9 JB |
404 | |
405 | /* Bytecode specific members follow */ | |
406 | ||
407 | /* The label that this jump is jumping to, or 0 for break, continue | |
408 | or return. */ | |
409 | struct bc_label *bc_target; | |
410 | ||
411 | /* The label we use for the fixup patch */ | |
412 | struct bc_label *label; | |
413 | ||
414 | /* True (non-0) if fixup has been handled */ | |
415 | int bc_handled:1; | |
416 | ||
417 | /* Like stack_level above, except refers to the interpreter stack */ | |
418 | int bc_stack_level; | |
28d81abb RK |
419 | }; |
420 | ||
421 | static struct goto_fixup *goto_fixup_chain; | |
422 | ||
423 | /* Within any binding contour that must restore a stack level, | |
424 | all labels are recorded with a chain of these structures. */ | |
425 | ||
426 | struct label_chain | |
427 | { | |
428 | /* Points to following fixup. */ | |
429 | struct label_chain *next; | |
430 | tree label; | |
431 | }; | |
cfc3d13f RK |
432 | static void expand_goto_internal PROTO((tree, rtx, rtx)); |
433 | static void bc_expand_goto_internal PROTO((enum bytecode_opcode, | |
434 | struct bc_label *, tree)); | |
435 | static int expand_fixup PROTO((tree, rtx, rtx)); | |
436 | static void bc_expand_fixup PROTO((enum bytecode_opcode, | |
437 | struct bc_label *, int)); | |
438 | static void fixup_gotos PROTO((struct nesting *, rtx, tree, | |
439 | rtx, int)); | |
440 | static void bc_fixup_gotos PROTO((struct nesting *, int, tree, | |
441 | rtx, int)); | |
cfc3d13f RK |
442 | static void bc_expand_start_cond PROTO((tree, int)); |
443 | static void bc_expand_end_cond PROTO((void)); | |
444 | static void bc_expand_start_else PROTO((void)); | |
445 | static void bc_expand_end_loop PROTO((void)); | |
446 | static void bc_expand_end_bindings PROTO((tree, int, int)); | |
447 | static void bc_expand_decl PROTO((tree, tree)); | |
448 | static void bc_expand_variable_local_init PROTO((tree)); | |
449 | static void bc_expand_decl_init PROTO((tree)); | |
450 | static void expand_null_return_1 PROTO((rtx, int)); | |
8d800403 | 451 | static void expand_value_return PROTO((rtx)); |
cfc3d13f | 452 | static int tail_recursion_args PROTO((tree, tree)); |
50d1b7a1 | 453 | static void expand_cleanups PROTO((tree, tree, int, int)); |
cfc3d13f RK |
454 | static void bc_expand_start_case PROTO((struct nesting *, tree, |
455 | tree, char *)); | |
456 | static int bc_pushcase PROTO((tree, tree)); | |
457 | static void bc_check_for_full_enumeration_handling PROTO((tree)); | |
458 | static void bc_expand_end_case PROTO((tree)); | |
459 | static void do_jump_if_equal PROTO((rtx, rtx, rtx, int)); | |
460 | static int estimate_case_costs PROTO((case_node_ptr)); | |
461 | static void group_case_nodes PROTO((case_node_ptr)); | |
462 | static void balance_case_nodes PROTO((case_node_ptr *, | |
463 | case_node_ptr)); | |
464 | static int node_has_low_bound PROTO((case_node_ptr, tree)); | |
465 | static int node_has_high_bound PROTO((case_node_ptr, tree)); | |
466 | static int node_is_bounded PROTO((case_node_ptr, tree)); | |
467 | static void emit_jump_if_reachable PROTO((rtx)); | |
468 | static void emit_case_nodes PROTO((rtx, case_node_ptr, rtx, tree)); | |
469 | ||
470 | int bc_expand_exit_loop_if_false (); | |
471 | void bc_expand_start_cond (); | |
472 | void bc_expand_end_cond (); | |
473 | void bc_expand_start_else (); | |
474 | void bc_expand_end_bindings (); | |
475 | void bc_expand_start_case (); | |
476 | void bc_check_for_full_enumeration_handling (); | |
477 | void bc_expand_end_case (); | |
478 | void bc_expand_decl (); | |
479 | ||
480 | extern rtx bc_allocate_local (); | |
481 | extern rtx bc_allocate_variable_array (); | |
28d81abb RK |
482 | \f |
483 | void | |
484 | init_stmt () | |
485 | { | |
486 | gcc_obstack_init (&stmt_obstack); | |
487 | #if 0 | |
488 | empty_cleanup_list = build_tree_list (NULL_TREE, NULL_TREE); | |
489 | #endif | |
490 | } | |
491 | ||
492 | void | |
493 | init_stmt_for_function () | |
494 | { | |
495 | /* We are not currently within any block, conditional, loop or case. */ | |
496 | block_stack = 0; | |
0b931590 | 497 | stack_block_stack = 0; |
28d81abb RK |
498 | loop_stack = 0; |
499 | case_stack = 0; | |
500 | cond_stack = 0; | |
501 | nesting_stack = 0; | |
502 | nesting_depth = 0; | |
503 | ||
504 | block_start_count = 0; | |
505 | ||
506 | /* No gotos have been expanded yet. */ | |
507 | goto_fixup_chain = 0; | |
508 | ||
509 | /* We are not processing a ({...}) grouping. */ | |
510 | expr_stmts_for_value = 0; | |
511 | last_expr_type = 0; | |
512 | } | |
513 | ||
514 | void | |
515 | save_stmt_status (p) | |
516 | struct function *p; | |
517 | { | |
518 | p->block_stack = block_stack; | |
519 | p->stack_block_stack = stack_block_stack; | |
520 | p->cond_stack = cond_stack; | |
521 | p->loop_stack = loop_stack; | |
522 | p->case_stack = case_stack; | |
523 | p->nesting_stack = nesting_stack; | |
524 | p->nesting_depth = nesting_depth; | |
525 | p->block_start_count = block_start_count; | |
526 | p->last_expr_type = last_expr_type; | |
527 | p->last_expr_value = last_expr_value; | |
528 | p->expr_stmts_for_value = expr_stmts_for_value; | |
529 | p->emit_filename = emit_filename; | |
530 | p->emit_lineno = emit_lineno; | |
531 | p->goto_fixup_chain = goto_fixup_chain; | |
532 | } | |
533 | ||
534 | void | |
535 | restore_stmt_status (p) | |
536 | struct function *p; | |
537 | { | |
538 | block_stack = p->block_stack; | |
539 | stack_block_stack = p->stack_block_stack; | |
540 | cond_stack = p->cond_stack; | |
541 | loop_stack = p->loop_stack; | |
542 | case_stack = p->case_stack; | |
543 | nesting_stack = p->nesting_stack; | |
544 | nesting_depth = p->nesting_depth; | |
545 | block_start_count = p->block_start_count; | |
546 | last_expr_type = p->last_expr_type; | |
547 | last_expr_value = p->last_expr_value; | |
548 | expr_stmts_for_value = p->expr_stmts_for_value; | |
549 | emit_filename = p->emit_filename; | |
550 | emit_lineno = p->emit_lineno; | |
551 | goto_fixup_chain = p->goto_fixup_chain; | |
552 | } | |
553 | \f | |
554 | /* Emit a no-op instruction. */ | |
555 | ||
556 | void | |
557 | emit_nop () | |
558 | { | |
ca695ac9 JB |
559 | rtx last_insn; |
560 | ||
561 | if (!output_bytecode) | |
562 | { | |
563 | last_insn = get_last_insn (); | |
564 | if (!optimize | |
565 | && (GET_CODE (last_insn) == CODE_LABEL | |
566 | || prev_real_insn (last_insn) == 0)) | |
567 | emit_insn (gen_nop ()); | |
568 | } | |
28d81abb RK |
569 | } |
570 | \f | |
571 | /* Return the rtx-label that corresponds to a LABEL_DECL, | |
572 | creating it if necessary. */ | |
573 | ||
574 | rtx | |
575 | label_rtx (label) | |
576 | tree label; | |
577 | { | |
578 | if (TREE_CODE (label) != LABEL_DECL) | |
579 | abort (); | |
580 | ||
581 | if (DECL_RTL (label)) | |
582 | return DECL_RTL (label); | |
583 | ||
584 | return DECL_RTL (label) = gen_label_rtx (); | |
585 | } | |
586 | ||
587 | /* Add an unconditional jump to LABEL as the next sequential instruction. */ | |
588 | ||
589 | void | |
590 | emit_jump (label) | |
591 | rtx label; | |
592 | { | |
593 | do_pending_stack_adjust (); | |
594 | emit_jump_insn (gen_jump (label)); | |
595 | emit_barrier (); | |
596 | } | |
597 | ||
598 | /* Emit code to jump to the address | |
599 | specified by the pointer expression EXP. */ | |
600 | ||
601 | void | |
602 | expand_computed_goto (exp) | |
603 | tree exp; | |
604 | { | |
ca695ac9 JB |
605 | if (output_bytecode) |
606 | { | |
607 | bc_expand_expr (exp); | |
608 | bc_emit_instruction (jumpP); | |
609 | } | |
610 | else | |
611 | { | |
612 | rtx x = expand_expr (exp, NULL_RTX, VOIDmode, 0); | |
ed9a9db1 RK |
613 | |
614 | #ifdef POINTERS_EXTEND_UNSIGNED | |
615 | x = convert_memory_address (Pmode, x); | |
616 | #endif | |
ffa1a1ce RK |
617 | |
618 | emit_queue (); | |
619 | do_pending_stack_adjust (); | |
ca695ac9 JB |
620 | emit_indirect_jump (x); |
621 | } | |
28d81abb RK |
622 | } |
623 | \f | |
624 | /* Handle goto statements and the labels that they can go to. */ | |
625 | ||
626 | /* Specify the location in the RTL code of a label LABEL, | |
627 | which is a LABEL_DECL tree node. | |
628 | ||
629 | This is used for the kind of label that the user can jump to with a | |
630 | goto statement, and for alternatives of a switch or case statement. | |
631 | RTL labels generated for loops and conditionals don't go through here; | |
632 | they are generated directly at the RTL level, by other functions below. | |
633 | ||
634 | Note that this has nothing to do with defining label *names*. | |
635 | Languages vary in how they do that and what that even means. */ | |
636 | ||
637 | void | |
638 | expand_label (label) | |
639 | tree label; | |
640 | { | |
641 | struct label_chain *p; | |
642 | ||
ca695ac9 JB |
643 | if (output_bytecode) |
644 | { | |
645 | if (! DECL_RTL (label)) | |
646 | DECL_RTL (label) = bc_gen_rtx ((char *) 0, 0, bc_get_bytecode_label ()); | |
c53e9440 | 647 | if (! bc_emit_bytecode_labeldef (BYTECODE_BC_LABEL (DECL_RTL (label)))) |
ca695ac9 JB |
648 | error ("multiply defined label"); |
649 | return; | |
650 | } | |
651 | ||
28d81abb RK |
652 | do_pending_stack_adjust (); |
653 | emit_label (label_rtx (label)); | |
654 | if (DECL_NAME (label)) | |
655 | LABEL_NAME (DECL_RTL (label)) = IDENTIFIER_POINTER (DECL_NAME (label)); | |
656 | ||
657 | if (stack_block_stack != 0) | |
658 | { | |
659 | p = (struct label_chain *) oballoc (sizeof (struct label_chain)); | |
660 | p->next = stack_block_stack->data.block.label_chain; | |
661 | stack_block_stack->data.block.label_chain = p; | |
662 | p->label = label; | |
663 | } | |
664 | } | |
665 | ||
666 | /* Declare that LABEL (a LABEL_DECL) may be used for nonlocal gotos | |
667 | from nested functions. */ | |
668 | ||
669 | void | |
670 | declare_nonlocal_label (label) | |
671 | tree label; | |
672 | { | |
673 | nonlocal_labels = tree_cons (NULL_TREE, label, nonlocal_labels); | |
674 | LABEL_PRESERVE_P (label_rtx (label)) = 1; | |
675 | if (nonlocal_goto_handler_slot == 0) | |
676 | { | |
677 | nonlocal_goto_handler_slot | |
678 | = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0); | |
59257ff7 RK |
679 | emit_stack_save (SAVE_NONLOCAL, |
680 | &nonlocal_goto_stack_level, | |
681 | PREV_INSN (tail_recursion_reentry)); | |
28d81abb RK |
682 | } |
683 | } | |
684 | ||
685 | /* Generate RTL code for a `goto' statement with target label LABEL. | |
686 | LABEL should be a LABEL_DECL tree node that was or will later be | |
687 | defined with `expand_label'. */ | |
688 | ||
689 | void | |
690 | expand_goto (label) | |
691 | tree label; | |
692 | { | |
ca695ac9 JB |
693 | tree context; |
694 | ||
695 | if (output_bytecode) | |
696 | { | |
697 | expand_goto_internal (label, label_rtx (label), NULL_RTX); | |
698 | return; | |
699 | } | |
700 | ||
28d81abb | 701 | /* Check for a nonlocal goto to a containing function. */ |
ca695ac9 | 702 | context = decl_function_context (label); |
28d81abb RK |
703 | if (context != 0 && context != current_function_decl) |
704 | { | |
705 | struct function *p = find_function_data (context); | |
dd132134 | 706 | rtx label_ref = gen_rtx (LABEL_REF, Pmode, label_rtx (label)); |
28d81abb | 707 | rtx temp; |
dd132134 | 708 | |
28d81abb | 709 | p->has_nonlocal_label = 1; |
c1255328 | 710 | current_function_has_nonlocal_goto = 1; |
dd132134 | 711 | LABEL_REF_NONLOCAL_P (label_ref) = 1; |
59257ff7 RK |
712 | |
713 | /* Copy the rtl for the slots so that they won't be shared in | |
714 | case the virtual stack vars register gets instantiated differently | |
715 | in the parent than in the child. */ | |
716 | ||
28d81abb RK |
717 | #if HAVE_nonlocal_goto |
718 | if (HAVE_nonlocal_goto) | |
719 | emit_insn (gen_nonlocal_goto (lookup_static_chain (label), | |
59257ff7 RK |
720 | copy_rtx (p->nonlocal_goto_handler_slot), |
721 | copy_rtx (p->nonlocal_goto_stack_level), | |
dd132134 | 722 | label_ref)); |
28d81abb RK |
723 | else |
724 | #endif | |
725 | { | |
59257ff7 RK |
726 | rtx addr; |
727 | ||
28d81abb RK |
728 | /* Restore frame pointer for containing function. |
729 | This sets the actual hard register used for the frame pointer | |
730 | to the location of the function's incoming static chain info. | |
731 | The non-local goto handler will then adjust it to contain the | |
732 | proper value and reload the argument pointer, if needed. */ | |
a35ad168 | 733 | emit_move_insn (hard_frame_pointer_rtx, lookup_static_chain (label)); |
59257ff7 RK |
734 | |
735 | /* We have now loaded the frame pointer hardware register with | |
736 | the address of that corresponds to the start of the virtual | |
737 | stack vars. So replace virtual_stack_vars_rtx in all | |
738 | addresses we use with stack_pointer_rtx. */ | |
739 | ||
28d81abb RK |
740 | /* Get addr of containing function's current nonlocal goto handler, |
741 | which will do any cleanups and then jump to the label. */ | |
59257ff7 RK |
742 | addr = copy_rtx (p->nonlocal_goto_handler_slot); |
743 | temp = copy_to_reg (replace_rtx (addr, virtual_stack_vars_rtx, | |
a35ad168 | 744 | hard_frame_pointer_rtx)); |
59257ff7 | 745 | |
28d81abb | 746 | /* Restore the stack pointer. Note this uses fp just restored. */ |
59257ff7 RK |
747 | addr = p->nonlocal_goto_stack_level; |
748 | if (addr) | |
5e116627 | 749 | addr = replace_rtx (copy_rtx (addr), |
a35ad168 DE |
750 | virtual_stack_vars_rtx, |
751 | hard_frame_pointer_rtx); | |
59257ff7 | 752 | |
37366632 | 753 | emit_stack_restore (SAVE_NONLOCAL, addr, NULL_RTX); |
59257ff7 | 754 | |
28d81abb | 755 | /* Put in the static chain register the nonlocal label address. */ |
dd132134 | 756 | emit_move_insn (static_chain_rtx, label_ref); |
a35ad168 | 757 | /* USE of hard_frame_pointer_rtx added for consistency; not clear if |
28d81abb | 758 | really needed. */ |
a35ad168 | 759 | emit_insn (gen_rtx (USE, VOIDmode, hard_frame_pointer_rtx)); |
28d81abb RK |
760 | emit_insn (gen_rtx (USE, VOIDmode, stack_pointer_rtx)); |
761 | emit_insn (gen_rtx (USE, VOIDmode, static_chain_rtx)); | |
762 | emit_indirect_jump (temp); | |
763 | } | |
764 | } | |
765 | else | |
37366632 | 766 | expand_goto_internal (label, label_rtx (label), NULL_RTX); |
28d81abb RK |
767 | } |
768 | ||
769 | /* Generate RTL code for a `goto' statement with target label BODY. | |
770 | LABEL should be a LABEL_REF. | |
771 | LAST_INSN, if non-0, is the rtx we should consider as the last | |
772 | insn emitted (for the purposes of cleaning up a return). */ | |
773 | ||
774 | static void | |
775 | expand_goto_internal (body, label, last_insn) | |
776 | tree body; | |
777 | rtx label; | |
778 | rtx last_insn; | |
779 | { | |
780 | struct nesting *block; | |
781 | rtx stack_level = 0; | |
782 | ||
ca695ac9 JB |
783 | /* NOTICE! If a bytecode instruction other than `jump' is needed, |
784 | then the caller has to call bc_expand_goto_internal() | |
785 | directly. This is rather an exceptional case, and there aren't | |
786 | that many places where this is necessary. */ | |
787 | if (output_bytecode) | |
788 | { | |
789 | expand_goto_internal (body, label, last_insn); | |
790 | return; | |
791 | } | |
792 | ||
28d81abb RK |
793 | if (GET_CODE (label) != CODE_LABEL) |
794 | abort (); | |
795 | ||
796 | /* If label has already been defined, we can tell now | |
797 | whether and how we must alter the stack level. */ | |
798 | ||
799 | if (PREV_INSN (label) != 0) | |
800 | { | |
801 | /* Find the innermost pending block that contains the label. | |
802 | (Check containment by comparing insn-uids.) | |
803 | Then restore the outermost stack level within that block, | |
804 | and do cleanups of all blocks contained in it. */ | |
805 | for (block = block_stack; block; block = block->next) | |
806 | { | |
807 | if (INSN_UID (block->data.block.first_insn) < INSN_UID (label)) | |
808 | break; | |
809 | if (block->data.block.stack_level != 0) | |
810 | stack_level = block->data.block.stack_level; | |
811 | /* Execute the cleanups for blocks we are exiting. */ | |
812 | if (block->data.block.cleanups != 0) | |
813 | { | |
50d1b7a1 | 814 | expand_cleanups (block->data.block.cleanups, NULL_TREE, 1, 1); |
28d81abb RK |
815 | do_pending_stack_adjust (); |
816 | } | |
817 | } | |
818 | ||
819 | if (stack_level) | |
820 | { | |
821 | /* Ensure stack adjust isn't done by emit_jump, as this would clobber | |
822 | the stack pointer. This one should be deleted as dead by flow. */ | |
823 | clear_pending_stack_adjust (); | |
824 | do_pending_stack_adjust (); | |
37366632 | 825 | emit_stack_restore (SAVE_BLOCK, stack_level, NULL_RTX); |
28d81abb RK |
826 | } |
827 | ||
828 | if (body != 0 && DECL_TOO_LATE (body)) | |
829 | error ("jump to `%s' invalidly jumps into binding contour", | |
830 | IDENTIFIER_POINTER (DECL_NAME (body))); | |
831 | } | |
832 | /* Label not yet defined: may need to put this goto | |
833 | on the fixup list. */ | |
834 | else if (! expand_fixup (body, label, last_insn)) | |
835 | { | |
836 | /* No fixup needed. Record that the label is the target | |
837 | of at least one goto that has no fixup. */ | |
838 | if (body != 0) | |
839 | TREE_ADDRESSABLE (body) = 1; | |
840 | } | |
841 | ||
842 | emit_jump (label); | |
843 | } | |
844 | \f | |
ca695ac9 JB |
845 | /* Generate a jump with OPCODE to the given bytecode LABEL which is |
846 | found within BODY. */ | |
cfc3d13f | 847 | |
ca695ac9 JB |
848 | static void |
849 | bc_expand_goto_internal (opcode, label, body) | |
850 | enum bytecode_opcode opcode; | |
851 | struct bc_label *label; | |
852 | tree body; | |
853 | { | |
854 | struct nesting *block; | |
855 | int stack_level = -1; | |
856 | ||
857 | /* If the label is defined, adjust the stack as necessary. | |
858 | If it's not defined, we have to push the reference on the | |
859 | fixup list. */ | |
860 | ||
861 | if (label->defined) | |
862 | { | |
863 | ||
864 | /* Find the innermost pending block that contains the label. | |
865 | (Check containment by comparing bytecode uids.) Then restore the | |
866 | outermost stack level within that block. */ | |
867 | ||
868 | for (block = block_stack; block; block = block->next) | |
869 | { | |
c53e9440 | 870 | if (BYTECODE_BC_LABEL (block->data.block.first_insn)->uid < label->uid) |
ca695ac9 JB |
871 | break; |
872 | if (block->data.block.bc_stack_level) | |
873 | stack_level = block->data.block.bc_stack_level; | |
874 | ||
875 | /* Execute the cleanups for blocks we are exiting. */ | |
876 | if (block->data.block.cleanups != 0) | |
877 | { | |
50d1b7a1 | 878 | expand_cleanups (block->data.block.cleanups, NULL_TREE, 1, 1); |
ca695ac9 JB |
879 | do_pending_stack_adjust (); |
880 | } | |
881 | } | |
882 | ||
883 | /* Restore the stack level. If we need to adjust the stack, we | |
884 | must do so after the jump, since the jump may depend on | |
885 | what's on the stack. Thus, any stack-modifying conditional | |
886 | jumps (these are the only ones that rely on what's on the | |
887 | stack) go into the fixup list. */ | |
888 | ||
889 | if (stack_level >= 0 | |
890 | && stack_depth != stack_level | |
891 | && opcode != jump) | |
892 | ||
893 | bc_expand_fixup (opcode, label, stack_level); | |
894 | else | |
895 | { | |
896 | if (stack_level >= 0) | |
897 | bc_adjust_stack (stack_depth - stack_level); | |
898 | ||
899 | if (body && DECL_BIT_FIELD (body)) | |
900 | error ("jump to `%s' invalidly jumps into binding contour", | |
901 | IDENTIFIER_POINTER (DECL_NAME (body))); | |
902 | ||
903 | /* Emit immediate jump */ | |
904 | bc_emit_bytecode (opcode); | |
905 | bc_emit_bytecode_labelref (label); | |
906 | ||
907 | #ifdef DEBUG_PRINT_CODE | |
908 | fputc ('\n', stderr); | |
909 | #endif | |
910 | } | |
911 | } | |
912 | else | |
913 | /* Put goto in the fixup list */ | |
914 | bc_expand_fixup (opcode, label, stack_level); | |
915 | } | |
916 | \f | |
28d81abb RK |
917 | /* Generate if necessary a fixup for a goto |
918 | whose target label in tree structure (if any) is TREE_LABEL | |
919 | and whose target in rtl is RTL_LABEL. | |
920 | ||
921 | If LAST_INSN is nonzero, we pretend that the jump appears | |
922 | after insn LAST_INSN instead of at the current point in the insn stream. | |
923 | ||
023b57e6 RS |
924 | The fixup will be used later to insert insns just before the goto. |
925 | Those insns will restore the stack level as appropriate for the | |
926 | target label, and will (in the case of C++) also invoke any object | |
927 | destructors which have to be invoked when we exit the scopes which | |
928 | are exited by the goto. | |
28d81abb RK |
929 | |
930 | Value is nonzero if a fixup is made. */ | |
931 | ||
932 | static int | |
933 | expand_fixup (tree_label, rtl_label, last_insn) | |
934 | tree tree_label; | |
935 | rtx rtl_label; | |
936 | rtx last_insn; | |
937 | { | |
938 | struct nesting *block, *end_block; | |
939 | ||
940 | /* See if we can recognize which block the label will be output in. | |
941 | This is possible in some very common cases. | |
942 | If we succeed, set END_BLOCK to that block. | |
943 | Otherwise, set it to 0. */ | |
944 | ||
945 | if (cond_stack | |
946 | && (rtl_label == cond_stack->data.cond.endif_label | |
947 | || rtl_label == cond_stack->data.cond.next_label)) | |
948 | end_block = cond_stack; | |
949 | /* If we are in a loop, recognize certain labels which | |
950 | are likely targets. This reduces the number of fixups | |
951 | we need to create. */ | |
952 | else if (loop_stack | |
953 | && (rtl_label == loop_stack->data.loop.start_label | |
954 | || rtl_label == loop_stack->data.loop.end_label | |
955 | || rtl_label == loop_stack->data.loop.continue_label)) | |
956 | end_block = loop_stack; | |
957 | else | |
958 | end_block = 0; | |
959 | ||
960 | /* Now set END_BLOCK to the binding level to which we will return. */ | |
961 | ||
962 | if (end_block) | |
963 | { | |
964 | struct nesting *next_block = end_block->all; | |
965 | block = block_stack; | |
966 | ||
967 | /* First see if the END_BLOCK is inside the innermost binding level. | |
968 | If so, then no cleanups or stack levels are relevant. */ | |
969 | while (next_block && next_block != block) | |
970 | next_block = next_block->all; | |
971 | ||
972 | if (next_block) | |
973 | return 0; | |
974 | ||
975 | /* Otherwise, set END_BLOCK to the innermost binding level | |
976 | which is outside the relevant control-structure nesting. */ | |
977 | next_block = block_stack->next; | |
978 | for (block = block_stack; block != end_block; block = block->all) | |
979 | if (block == next_block) | |
980 | next_block = next_block->next; | |
981 | end_block = next_block; | |
982 | } | |
983 | ||
984 | /* Does any containing block have a stack level or cleanups? | |
985 | If not, no fixup is needed, and that is the normal case | |
986 | (the only case, for standard C). */ | |
987 | for (block = block_stack; block != end_block; block = block->next) | |
988 | if (block->data.block.stack_level != 0 | |
989 | || block->data.block.cleanups != 0) | |
990 | break; | |
991 | ||
992 | if (block != end_block) | |
993 | { | |
994 | /* Ok, a fixup is needed. Add a fixup to the list of such. */ | |
995 | struct goto_fixup *fixup | |
996 | = (struct goto_fixup *) oballoc (sizeof (struct goto_fixup)); | |
997 | /* In case an old stack level is restored, make sure that comes | |
998 | after any pending stack adjust. */ | |
999 | /* ?? If the fixup isn't to come at the present position, | |
1000 | doing the stack adjust here isn't useful. Doing it with our | |
1001 | settings at that location isn't useful either. Let's hope | |
1002 | someone does it! */ | |
1003 | if (last_insn == 0) | |
1004 | do_pending_stack_adjust (); | |
28d81abb RK |
1005 | fixup->target = tree_label; |
1006 | fixup->target_rtl = rtl_label; | |
023b57e6 RS |
1007 | |
1008 | /* Create a BLOCK node and a corresponding matched set of | |
1009 | NOTE_INSN_BEGIN_BLOCK and NOTE_INSN_END_BLOCK notes at | |
1010 | this point. The notes will encapsulate any and all fixup | |
1011 | code which we might later insert at this point in the insn | |
1012 | stream. Also, the BLOCK node will be the parent (i.e. the | |
1013 | `SUPERBLOCK') of any other BLOCK nodes which we might create | |
1014 | later on when we are expanding the fixup code. */ | |
1015 | ||
1016 | { | |
1017 | register rtx original_before_jump | |
1018 | = last_insn ? last_insn : get_last_insn (); | |
1019 | ||
1020 | start_sequence (); | |
1021 | pushlevel (0); | |
1022 | fixup->before_jump = emit_note (NULL_PTR, NOTE_INSN_BLOCK_BEG); | |
1023 | last_block_end_note = emit_note (NULL_PTR, NOTE_INSN_BLOCK_END); | |
1024 | fixup->context = poplevel (1, 0, 0); /* Create the BLOCK node now! */ | |
1025 | end_sequence (); | |
1026 | emit_insns_after (fixup->before_jump, original_before_jump); | |
1027 | } | |
1028 | ||
28d81abb RK |
1029 | fixup->block_start_count = block_start_count; |
1030 | fixup->stack_level = 0; | |
1031 | fixup->cleanup_list_list | |
1032 | = (((block->data.block.outer_cleanups | |
1033 | #if 0 | |
1034 | && block->data.block.outer_cleanups != empty_cleanup_list | |
1035 | #endif | |
1036 | ) | |
1037 | || block->data.block.cleanups) | |
37366632 | 1038 | ? tree_cons (NULL_TREE, block->data.block.cleanups, |
28d81abb RK |
1039 | block->data.block.outer_cleanups) |
1040 | : 0); | |
1041 | fixup->next = goto_fixup_chain; | |
1042 | goto_fixup_chain = fixup; | |
1043 | } | |
1044 | ||
1045 | return block != 0; | |
1046 | } | |
1047 | ||
ca695ac9 JB |
1048 | |
1049 | /* Generate bytecode jump with OPCODE to a fixup routine that links to LABEL. | |
1050 | Make the fixup restore the stack level to STACK_LEVEL. */ | |
1051 | ||
1052 | static void | |
1053 | bc_expand_fixup (opcode, label, stack_level) | |
1054 | enum bytecode_opcode opcode; | |
1055 | struct bc_label *label; | |
1056 | int stack_level; | |
1057 | { | |
1058 | struct goto_fixup *fixup | |
1059 | = (struct goto_fixup *) oballoc (sizeof (struct goto_fixup)); | |
1060 | ||
1061 | fixup->label = bc_get_bytecode_label (); | |
1062 | fixup->bc_target = label; | |
1063 | fixup->bc_stack_level = stack_level; | |
1064 | fixup->bc_handled = FALSE; | |
1065 | ||
1066 | fixup->next = goto_fixup_chain; | |
1067 | goto_fixup_chain = fixup; | |
1068 | ||
1069 | /* Insert a jump to the fixup code */ | |
1070 | bc_emit_bytecode (opcode); | |
1071 | bc_emit_bytecode_labelref (fixup->label); | |
1072 | ||
1073 | #ifdef DEBUG_PRINT_CODE | |
1074 | fputc ('\n', stderr); | |
1075 | #endif | |
1076 | } | |
cfc3d13f RK |
1077 | \f |
1078 | /* Expand any needed fixups in the outputmost binding level of the | |
1079 | function. FIRST_INSN is the first insn in the function. */ | |
ca695ac9 | 1080 | |
cfc3d13f RK |
1081 | void |
1082 | expand_fixups (first_insn) | |
1083 | rtx first_insn; | |
1084 | { | |
1085 | fixup_gotos (NULL_PTR, NULL_RTX, NULL_TREE, first_insn, 0); | |
1086 | } | |
ca695ac9 | 1087 | |
28d81abb RK |
1088 | /* When exiting a binding contour, process all pending gotos requiring fixups. |
1089 | THISBLOCK is the structure that describes the block being exited. | |
1090 | STACK_LEVEL is the rtx for the stack level to restore exiting this contour. | |
1091 | CLEANUP_LIST is a list of expressions to evaluate on exiting this contour. | |
1092 | FIRST_INSN is the insn that began this contour. | |
1093 | ||
1094 | Gotos that jump out of this contour must restore the | |
1095 | stack level and do the cleanups before actually jumping. | |
1096 | ||
1097 | DONT_JUMP_IN nonzero means report error there is a jump into this | |
1098 | contour from before the beginning of the contour. | |
1099 | This is also done if STACK_LEVEL is nonzero. */ | |
1100 | ||
704f4dca | 1101 | static void |
28d81abb RK |
1102 | fixup_gotos (thisblock, stack_level, cleanup_list, first_insn, dont_jump_in) |
1103 | struct nesting *thisblock; | |
1104 | rtx stack_level; | |
1105 | tree cleanup_list; | |
1106 | rtx first_insn; | |
1107 | int dont_jump_in; | |
1108 | { | |
1109 | register struct goto_fixup *f, *prev; | |
1110 | ||
ca695ac9 JB |
1111 | if (output_bytecode) |
1112 | { | |
704f4dca RK |
1113 | /* ??? The second arg is the bc stack level, which is not the same |
1114 | as STACK_LEVEL. I have no idea what should go here, so I'll | |
1115 | just pass 0. */ | |
1116 | bc_fixup_gotos (thisblock, 0, cleanup_list, first_insn, dont_jump_in); | |
ca695ac9 JB |
1117 | return; |
1118 | } | |
1119 | ||
28d81abb RK |
1120 | /* F is the fixup we are considering; PREV is the previous one. */ |
1121 | /* We run this loop in two passes so that cleanups of exited blocks | |
1122 | are run first, and blocks that are exited are marked so | |
1123 | afterwards. */ | |
1124 | ||
1125 | for (prev = 0, f = goto_fixup_chain; f; prev = f, f = f->next) | |
1126 | { | |
1127 | /* Test for a fixup that is inactive because it is already handled. */ | |
1128 | if (f->before_jump == 0) | |
1129 | { | |
1130 | /* Delete inactive fixup from the chain, if that is easy to do. */ | |
1131 | if (prev != 0) | |
1132 | prev->next = f->next; | |
1133 | } | |
1134 | /* Has this fixup's target label been defined? | |
1135 | If so, we can finalize it. */ | |
1136 | else if (PREV_INSN (f->target_rtl) != 0) | |
1137 | { | |
7629c936 | 1138 | register rtx cleanup_insns; |
7629c936 | 1139 | |
28d81abb RK |
1140 | /* Get the first non-label after the label |
1141 | this goto jumps to. If that's before this scope begins, | |
1142 | we don't have a jump into the scope. */ | |
1143 | rtx after_label = f->target_rtl; | |
1144 | while (after_label != 0 && GET_CODE (after_label) == CODE_LABEL) | |
1145 | after_label = NEXT_INSN (after_label); | |
1146 | ||
1147 | /* If this fixup jumped into this contour from before the beginning | |
1148 | of this contour, report an error. */ | |
1149 | /* ??? Bug: this does not detect jumping in through intermediate | |
1150 | blocks that have stack levels or cleanups. | |
1151 | It detects only a problem with the innermost block | |
1152 | around the label. */ | |
1153 | if (f->target != 0 | |
1154 | && (dont_jump_in || stack_level || cleanup_list) | |
1155 | /* If AFTER_LABEL is 0, it means the jump goes to the end | |
1156 | of the rtl, which means it jumps into this scope. */ | |
1157 | && (after_label == 0 | |
1158 | || INSN_UID (first_insn) < INSN_UID (after_label)) | |
1159 | && INSN_UID (first_insn) > INSN_UID (f->before_jump) | |
44fe2e80 | 1160 | && ! DECL_REGISTER (f->target)) |
28d81abb RK |
1161 | { |
1162 | error_with_decl (f->target, | |
1163 | "label `%s' used before containing binding contour"); | |
1164 | /* Prevent multiple errors for one label. */ | |
44fe2e80 | 1165 | DECL_REGISTER (f->target) = 1; |
28d81abb RK |
1166 | } |
1167 | ||
7629c936 RS |
1168 | /* We will expand the cleanups into a sequence of their own and |
1169 | then later on we will attach this new sequence to the insn | |
1170 | stream just ahead of the actual jump insn. */ | |
1171 | ||
1172 | start_sequence (); | |
1173 | ||
023b57e6 RS |
1174 | /* Temporarily restore the lexical context where we will |
1175 | logically be inserting the fixup code. We do this for the | |
1176 | sake of getting the debugging information right. */ | |
1177 | ||
7629c936 | 1178 | pushlevel (0); |
023b57e6 | 1179 | set_block (f->context); |
7629c936 RS |
1180 | |
1181 | /* Expand the cleanups for blocks this jump exits. */ | |
28d81abb RK |
1182 | if (f->cleanup_list_list) |
1183 | { | |
1184 | tree lists; | |
1185 | for (lists = f->cleanup_list_list; lists; lists = TREE_CHAIN (lists)) | |
1186 | /* Marked elements correspond to blocks that have been closed. | |
1187 | Do their cleanups. */ | |
1188 | if (TREE_ADDRESSABLE (lists) | |
1189 | && TREE_VALUE (lists) != 0) | |
7629c936 | 1190 | { |
50d1b7a1 | 1191 | expand_cleanups (TREE_VALUE (lists), NULL_TREE, 1, 1); |
7629c936 RS |
1192 | /* Pop any pushes done in the cleanups, |
1193 | in case function is about to return. */ | |
1194 | do_pending_stack_adjust (); | |
1195 | } | |
28d81abb RK |
1196 | } |
1197 | ||
1198 | /* Restore stack level for the biggest contour that this | |
1199 | jump jumps out of. */ | |
1200 | if (f->stack_level) | |
59257ff7 | 1201 | emit_stack_restore (SAVE_BLOCK, f->stack_level, f->before_jump); |
7629c936 RS |
1202 | |
1203 | /* Finish up the sequence containing the insns which implement the | |
1204 | necessary cleanups, and then attach that whole sequence to the | |
1205 | insn stream just ahead of the actual jump insn. Attaching it | |
1206 | at that point insures that any cleanups which are in fact | |
1207 | implicit C++ object destructions (which must be executed upon | |
1208 | leaving the block) appear (to the debugger) to be taking place | |
1209 | in an area of the generated code where the object(s) being | |
1210 | destructed are still "in scope". */ | |
1211 | ||
1212 | cleanup_insns = get_insns (); | |
023b57e6 | 1213 | poplevel (1, 0, 0); |
7629c936 RS |
1214 | |
1215 | end_sequence (); | |
1216 | emit_insns_after (cleanup_insns, f->before_jump); | |
1217 | ||
7629c936 | 1218 | |
28d81abb RK |
1219 | f->before_jump = 0; |
1220 | } | |
1221 | } | |
1222 | ||
6bc2f582 RK |
1223 | /* For any still-undefined labels, do the cleanups for this block now. |
1224 | We must do this now since items in the cleanup list may go out | |
1225 | of scope when the block ends. */ | |
28d81abb RK |
1226 | for (prev = 0, f = goto_fixup_chain; f; prev = f, f = f->next) |
1227 | if (f->before_jump != 0 | |
1228 | && PREV_INSN (f->target_rtl) == 0 | |
1229 | /* Label has still not appeared. If we are exiting a block with | |
1230 | a stack level to restore, that started before the fixup, | |
1231 | mark this stack level as needing restoration | |
6bc2f582 | 1232 | when the fixup is later finalized. */ |
28d81abb | 1233 | && thisblock != 0 |
6bc2f582 RK |
1234 | /* Note: if THISBLOCK == 0 and we have a label that hasn't appeared, it |
1235 | means the label is undefined. That's erroneous, but possible. */ | |
28d81abb RK |
1236 | && (thisblock->data.block.block_start_count |
1237 | <= f->block_start_count)) | |
1238 | { | |
1239 | tree lists = f->cleanup_list_list; | |
6bc2f582 RK |
1240 | rtx cleanup_insns; |
1241 | ||
28d81abb RK |
1242 | for (; lists; lists = TREE_CHAIN (lists)) |
1243 | /* If the following elt. corresponds to our containing block | |
1244 | then the elt. must be for this block. */ | |
1245 | if (TREE_CHAIN (lists) == thisblock->data.block.outer_cleanups) | |
6bc2f582 RK |
1246 | { |
1247 | start_sequence (); | |
1248 | pushlevel (0); | |
1249 | set_block (f->context); | |
1250 | expand_cleanups (TREE_VALUE (lists), NULL_TREE, 1, 1); | |
f0959e58 | 1251 | do_pending_stack_adjust (); |
6bc2f582 RK |
1252 | cleanup_insns = get_insns (); |
1253 | poplevel (1, 0, 0); | |
1254 | end_sequence (); | |
1255 | f->before_jump | |
1256 | = emit_insns_after (cleanup_insns, f->before_jump); | |
1257 | ||
1258 | TREE_VALUE (lists) = 0; | |
1259 | } | |
28d81abb RK |
1260 | |
1261 | if (stack_level) | |
1262 | f->stack_level = stack_level; | |
1263 | } | |
1264 | } | |
ca695ac9 JB |
1265 | |
1266 | ||
1267 | /* When exiting a binding contour, process all pending gotos requiring fixups. | |
1268 | Note: STACK_DEPTH is not altered. | |
1269 | ||
704f4dca RK |
1270 | The arguments are currently not used in the bytecode compiler, but we may |
1271 | need them one day for languages other than C. | |
ca695ac9 JB |
1272 | |
1273 | THISBLOCK is the structure that describes the block being exited. | |
1274 | STACK_LEVEL is the rtx for the stack level to restore exiting this contour. | |
1275 | CLEANUP_LIST is a list of expressions to evaluate on exiting this contour. | |
1276 | FIRST_INSN is the insn that began this contour. | |
1277 | ||
1278 | Gotos that jump out of this contour must restore the | |
1279 | stack level and do the cleanups before actually jumping. | |
1280 | ||
1281 | DONT_JUMP_IN nonzero means report error there is a jump into this | |
1282 | contour from before the beginning of the contour. | |
1283 | This is also done if STACK_LEVEL is nonzero. */ | |
1284 | ||
1285 | static void | |
1286 | bc_fixup_gotos (thisblock, stack_level, cleanup_list, first_insn, dont_jump_in) | |
1287 | struct nesting *thisblock; | |
1288 | int stack_level; | |
1289 | tree cleanup_list; | |
1290 | rtx first_insn; | |
1291 | int dont_jump_in; | |
1292 | { | |
1293 | register struct goto_fixup *f, *prev; | |
1294 | int saved_stack_depth; | |
1295 | ||
1296 | /* F is the fixup we are considering; PREV is the previous one. */ | |
1297 | ||
1298 | for (prev = 0, f = goto_fixup_chain; f; prev = f, f = f->next) | |
1299 | { | |
1300 | /* Test for a fixup that is inactive because it is already handled. */ | |
1301 | if (f->before_jump == 0) | |
1302 | { | |
1303 | /* Delete inactive fixup from the chain, if that is easy to do. */ | |
1304 | if (prev) | |
1305 | prev->next = f->next; | |
1306 | } | |
1307 | ||
1308 | /* Emit code to restore the stack and continue */ | |
1309 | bc_emit_bytecode_labeldef (f->label); | |
1310 | ||
1311 | /* Save stack_depth across call, since bc_adjust_stack () will alter | |
1312 | the perceived stack depth via the instructions generated. */ | |
1313 | ||
1314 | if (f->bc_stack_level >= 0) | |
1315 | { | |
1316 | saved_stack_depth = stack_depth; | |
1317 | bc_adjust_stack (stack_depth - f->bc_stack_level); | |
1318 | stack_depth = saved_stack_depth; | |
1319 | } | |
1320 | ||
1321 | bc_emit_bytecode (jump); | |
1322 | bc_emit_bytecode_labelref (f->bc_target); | |
1323 | ||
1324 | #ifdef DEBUG_PRINT_CODE | |
1325 | fputc ('\n', stderr); | |
1326 | #endif | |
1327 | } | |
1328 | ||
1329 | goto_fixup_chain = NULL; | |
1330 | } | |
28d81abb RK |
1331 | \f |
1332 | /* Generate RTL for an asm statement (explicit assembler code). | |
1333 | BODY is a STRING_CST node containing the assembler code text, | |
1334 | or an ADDR_EXPR containing a STRING_CST. */ | |
1335 | ||
1336 | void | |
1337 | expand_asm (body) | |
1338 | tree body; | |
1339 | { | |
ca695ac9 JB |
1340 | if (output_bytecode) |
1341 | { | |
e3da71ef | 1342 | error ("`asm' is invalid when generating bytecode"); |
ca695ac9 JB |
1343 | return; |
1344 | } | |
1345 | ||
28d81abb RK |
1346 | if (TREE_CODE (body) == ADDR_EXPR) |
1347 | body = TREE_OPERAND (body, 0); | |
1348 | ||
1349 | emit_insn (gen_rtx (ASM_INPUT, VOIDmode, | |
1350 | TREE_STRING_POINTER (body))); | |
1351 | last_expr_type = 0; | |
1352 | } | |
1353 | ||
1354 | /* Generate RTL for an asm statement with arguments. | |
1355 | STRING is the instruction template. | |
1356 | OUTPUTS is a list of output arguments (lvalues); INPUTS a list of inputs. | |
1357 | Each output or input has an expression in the TREE_VALUE and | |
1358 | a constraint-string in the TREE_PURPOSE. | |
1359 | CLOBBERS is a list of STRING_CST nodes each naming a hard register | |
1360 | that is clobbered by this insn. | |
1361 | ||
1362 | Not all kinds of lvalue that may appear in OUTPUTS can be stored directly. | |
1363 | Some elements of OUTPUTS may be replaced with trees representing temporary | |
1364 | values. The caller should copy those temporary values to the originally | |
1365 | specified lvalues. | |
1366 | ||
1367 | VOL nonzero means the insn is volatile; don't optimize it. */ | |
1368 | ||
1369 | void | |
1370 | expand_asm_operands (string, outputs, inputs, clobbers, vol, filename, line) | |
1371 | tree string, outputs, inputs, clobbers; | |
1372 | int vol; | |
1373 | char *filename; | |
1374 | int line; | |
1375 | { | |
1376 | rtvec argvec, constraints; | |
1377 | rtx body; | |
1378 | int ninputs = list_length (inputs); | |
1379 | int noutputs = list_length (outputs); | |
b4ccaa16 | 1380 | int nclobbers; |
28d81abb RK |
1381 | tree tail; |
1382 | register int i; | |
1383 | /* Vector of RTX's of evaluated output operands. */ | |
1384 | rtx *output_rtx = (rtx *) alloca (noutputs * sizeof (rtx)); | |
1385 | /* The insn we have emitted. */ | |
1386 | rtx insn; | |
1387 | ||
ca695ac9 JB |
1388 | if (output_bytecode) |
1389 | { | |
e3da71ef | 1390 | error ("`asm' is invalid when generating bytecode"); |
ca695ac9 JB |
1391 | return; |
1392 | } | |
1393 | ||
b4ccaa16 RS |
1394 | /* Count the number of meaningful clobbered registers, ignoring what |
1395 | we would ignore later. */ | |
1396 | nclobbers = 0; | |
1397 | for (tail = clobbers; tail; tail = TREE_CHAIN (tail)) | |
1398 | { | |
1399 | char *regname = TREE_STRING_POINTER (TREE_VALUE (tail)); | |
c09e6498 RS |
1400 | i = decode_reg_name (regname); |
1401 | if (i >= 0 || i == -4) | |
b4ccaa16 | 1402 | ++nclobbers; |
7859e3ac DE |
1403 | else if (i == -2) |
1404 | error ("unknown register name `%s' in `asm'", regname); | |
b4ccaa16 RS |
1405 | } |
1406 | ||
28d81abb RK |
1407 | last_expr_type = 0; |
1408 | ||
1409 | for (i = 0, tail = outputs; tail; tail = TREE_CHAIN (tail), i++) | |
1410 | { | |
1411 | tree val = TREE_VALUE (tail); | |
b50a024d | 1412 | tree type = TREE_TYPE (val); |
28d81abb RK |
1413 | tree val1; |
1414 | int j; | |
d09a75ae RK |
1415 | int found_equal = 0; |
1416 | int allows_reg = 0; | |
28d81abb RK |
1417 | |
1418 | /* If there's an erroneous arg, emit no insn. */ | |
1419 | if (TREE_TYPE (val) == error_mark_node) | |
1420 | return; | |
1421 | ||
d09a75ae RK |
1422 | /* Make sure constraint has `=' and does not have `+'. Also, see |
1423 | if it allows any register. Be liberal on the latter test, since | |
1424 | the worst that happens if we get it wrong is we issue an error | |
1425 | message. */ | |
28d81abb | 1426 | |
d09a75ae RK |
1427 | for (j = 0; j < TREE_STRING_LENGTH (TREE_PURPOSE (tail)) - 1; j++) |
1428 | switch (TREE_STRING_POINTER (TREE_PURPOSE (tail))[j]) | |
1429 | { | |
1430 | case '+': | |
1431 | error ("output operand constraint contains `+'"); | |
1432 | return; | |
1433 | ||
1434 | case '=': | |
28d81abb | 1435 | found_equal = 1; |
d09a75ae RK |
1436 | break; |
1437 | ||
1438 | case '?': case '!': case '*': case '%': case '&': | |
1439 | case '0': case '1': case '2': case '3': case '4': | |
1440 | case 'V': case 'm': case 'o': case '<': case '>': | |
1441 | case 'E': case 'F': case 'G': case 'H': case 'X': | |
1442 | case 's': case 'i': case 'n': | |
1443 | case 'I': case 'J': case 'K': case 'L': case 'M': | |
1444 | case 'N': case 'O': case 'P': case ',': | |
1445 | #ifdef EXTRA_CONSTRAINT | |
1446 | case 'Q': case 'R': case 'S': case 'T': case 'U': | |
1447 | #endif | |
1448 | break; | |
1449 | ||
1450 | case 'p': case 'g': case 'r': | |
1451 | default: | |
1452 | allows_reg = 1; | |
1453 | break; | |
1454 | } | |
1455 | ||
28d81abb RK |
1456 | if (! found_equal) |
1457 | { | |
1458 | error ("output operand constraint lacks `='"); | |
1459 | return; | |
1460 | } | |
1461 | ||
d09a75ae RK |
1462 | /* If an output operand is not a decl or indirect ref and our constraint |
1463 | allows a register, make a temporary to act as an intermediate. | |
1464 | Make the asm insn write into that, then our caller will copy it to | |
1465 | the real output operand. Likewise for promoted variables. */ | |
28d81abb | 1466 | |
b50a024d RK |
1467 | if (TREE_CODE (val) == INDIRECT_REF |
1468 | || (TREE_CODE_CLASS (TREE_CODE (val)) == 'd' | |
1469 | && ! (GET_CODE (DECL_RTL (val)) == REG | |
d09a75ae RK |
1470 | && GET_MODE (DECL_RTL (val)) != TYPE_MODE (type))) |
1471 | || ! allows_reg) | |
1472 | { | |
1473 | if (! allows_reg) | |
1474 | mark_addressable (TREE_VALUE (tail)); | |
1475 | ||
1476 | output_rtx[i] | |
1477 | = expand_expr (TREE_VALUE (tail), NULL_RTX, VOIDmode, 0); | |
1478 | ||
1479 | if (! allows_reg && GET_CODE (output_rtx[i]) != MEM) | |
1480 | error ("output number %d not directly addressable", i); | |
1481 | } | |
b50a024d | 1482 | else |
e619bb8d | 1483 | { |
b50a024d | 1484 | if (TYPE_MODE (type) == BLKmode) |
e619bb8d | 1485 | { |
b50a024d RK |
1486 | output_rtx[i] = assign_stack_temp (BLKmode, |
1487 | int_size_in_bytes (type), 0); | |
1488 | MEM_IN_STRUCT_P (output_rtx[i]) = AGGREGATE_TYPE_P (type); | |
e619bb8d | 1489 | } |
b50a024d RK |
1490 | else |
1491 | output_rtx[i] = gen_reg_rtx (TYPE_MODE (type)); | |
28d81abb | 1492 | |
b50a024d RK |
1493 | TREE_VALUE (tail) = make_tree (type, output_rtx[i]); |
1494 | } | |
28d81abb RK |
1495 | } |
1496 | ||
1497 | if (ninputs + noutputs > MAX_RECOG_OPERANDS) | |
1498 | { | |
1499 | error ("more than %d operands in `asm'", MAX_RECOG_OPERANDS); | |
1500 | return; | |
1501 | } | |
1502 | ||
1503 | /* Make vectors for the expression-rtx and constraint strings. */ | |
1504 | ||
1505 | argvec = rtvec_alloc (ninputs); | |
1506 | constraints = rtvec_alloc (ninputs); | |
1507 | ||
1508 | body = gen_rtx (ASM_OPERANDS, VOIDmode, | |
1509 | TREE_STRING_POINTER (string), "", 0, argvec, constraints, | |
1510 | filename, line); | |
1511 | MEM_VOLATILE_P (body) = vol; | |
1512 | ||
1513 | /* Eval the inputs and put them into ARGVEC. | |
1514 | Put their constraints into ASM_INPUTs and store in CONSTRAINTS. */ | |
1515 | ||
1516 | i = 0; | |
1517 | for (tail = inputs; tail; tail = TREE_CHAIN (tail)) | |
1518 | { | |
1519 | int j; | |
1520 | ||
1521 | /* If there's an erroneous arg, emit no insn, | |
1522 | because the ASM_INPUT would get VOIDmode | |
1523 | and that could cause a crash in reload. */ | |
1524 | if (TREE_TYPE (TREE_VALUE (tail)) == error_mark_node) | |
1525 | return; | |
1526 | if (TREE_PURPOSE (tail) == NULL_TREE) | |
1527 | { | |
1528 | error ("hard register `%s' listed as input operand to `asm'", | |
1529 | TREE_STRING_POINTER (TREE_VALUE (tail)) ); | |
1530 | return; | |
1531 | } | |
1532 | ||
1533 | /* Make sure constraint has neither `=' nor `+'. */ | |
1534 | ||
1535 | for (j = 0; j < TREE_STRING_LENGTH (TREE_PURPOSE (tail)); j++) | |
1536 | if (TREE_STRING_POINTER (TREE_PURPOSE (tail))[j] == '=' | |
1537 | || TREE_STRING_POINTER (TREE_PURPOSE (tail))[j] == '+') | |
1538 | { | |
1539 | error ("input operand constraint contains `%c'", | |
1540 | TREE_STRING_POINTER (TREE_PURPOSE (tail))[j]); | |
1541 | return; | |
1542 | } | |
1543 | ||
1544 | XVECEXP (body, 3, i) /* argvec */ | |
37366632 | 1545 | = expand_expr (TREE_VALUE (tail), NULL_RTX, VOIDmode, 0); |
76ebc969 RK |
1546 | if (CONSTANT_P (XVECEXP (body, 3, i)) |
1547 | && ! general_operand (XVECEXP (body, 3, i), | |
1548 | TYPE_MODE (TREE_TYPE (TREE_VALUE (tail))))) | |
1549 | XVECEXP (body, 3, i) | |
1550 | = force_reg (TYPE_MODE (TREE_TYPE (TREE_VALUE (tail))), | |
1551 | XVECEXP (body, 3, i)); | |
28d81abb RK |
1552 | XVECEXP (body, 4, i) /* constraints */ |
1553 | = gen_rtx (ASM_INPUT, TYPE_MODE (TREE_TYPE (TREE_VALUE (tail))), | |
1554 | TREE_STRING_POINTER (TREE_PURPOSE (tail))); | |
1555 | i++; | |
1556 | } | |
1557 | ||
1558 | /* Protect all the operands from the queue, | |
1559 | now that they have all been evaluated. */ | |
1560 | ||
1561 | for (i = 0; i < ninputs; i++) | |
1562 | XVECEXP (body, 3, i) = protect_from_queue (XVECEXP (body, 3, i), 0); | |
1563 | ||
1564 | for (i = 0; i < noutputs; i++) | |
1565 | output_rtx[i] = protect_from_queue (output_rtx[i], 1); | |
1566 | ||
1567 | /* Now, for each output, construct an rtx | |
1568 | (set OUTPUT (asm_operands INSN OUTPUTNUMBER OUTPUTCONSTRAINT | |
1569 | ARGVEC CONSTRAINTS)) | |
1570 | If there is more than one, put them inside a PARALLEL. */ | |
1571 | ||
1572 | if (noutputs == 1 && nclobbers == 0) | |
1573 | { | |
1574 | XSTR (body, 1) = TREE_STRING_POINTER (TREE_PURPOSE (outputs)); | |
1575 | insn = emit_insn (gen_rtx (SET, VOIDmode, output_rtx[0], body)); | |
1576 | } | |
1577 | else if (noutputs == 0 && nclobbers == 0) | |
1578 | { | |
1579 | /* No output operands: put in a raw ASM_OPERANDS rtx. */ | |
1580 | insn = emit_insn (body); | |
1581 | } | |
1582 | else | |
1583 | { | |
1584 | rtx obody = body; | |
1585 | int num = noutputs; | |
1586 | if (num == 0) num = 1; | |
1587 | body = gen_rtx (PARALLEL, VOIDmode, rtvec_alloc (num + nclobbers)); | |
1588 | ||
1589 | /* For each output operand, store a SET. */ | |
1590 | ||
1591 | for (i = 0, tail = outputs; tail; tail = TREE_CHAIN (tail), i++) | |
1592 | { | |
1593 | XVECEXP (body, 0, i) | |
1594 | = gen_rtx (SET, VOIDmode, | |
1595 | output_rtx[i], | |
1596 | gen_rtx (ASM_OPERANDS, VOIDmode, | |
1597 | TREE_STRING_POINTER (string), | |
1598 | TREE_STRING_POINTER (TREE_PURPOSE (tail)), | |
1599 | i, argvec, constraints, | |
1600 | filename, line)); | |
1601 | MEM_VOLATILE_P (SET_SRC (XVECEXP (body, 0, i))) = vol; | |
1602 | } | |
1603 | ||
1604 | /* If there are no outputs (but there are some clobbers) | |
1605 | store the bare ASM_OPERANDS into the PARALLEL. */ | |
1606 | ||
1607 | if (i == 0) | |
1608 | XVECEXP (body, 0, i++) = obody; | |
1609 | ||
1610 | /* Store (clobber REG) for each clobbered register specified. */ | |
1611 | ||
b4ccaa16 | 1612 | for (tail = clobbers; tail; tail = TREE_CHAIN (tail)) |
28d81abb | 1613 | { |
28d81abb | 1614 | char *regname = TREE_STRING_POINTER (TREE_VALUE (tail)); |
b4ac57ab | 1615 | int j = decode_reg_name (regname); |
28d81abb | 1616 | |
b4ac57ab | 1617 | if (j < 0) |
28d81abb | 1618 | { |
c09e6498 | 1619 | if (j == -3) /* `cc', which is not a register */ |
dcfedcd0 RK |
1620 | continue; |
1621 | ||
c09e6498 RS |
1622 | if (j == -4) /* `memory', don't cache memory across asm */ |
1623 | { | |
bffc6177 RS |
1624 | XVECEXP (body, 0, i++) |
1625 | = gen_rtx (CLOBBER, VOIDmode, | |
058f58ed | 1626 | gen_rtx (MEM, BLKmode, |
bffc6177 | 1627 | gen_rtx (SCRATCH, VOIDmode, 0))); |
c09e6498 RS |
1628 | continue; |
1629 | } | |
1630 | ||
7859e3ac | 1631 | /* Ignore unknown register, error already signalled. */ |
cc1f5387 | 1632 | continue; |
28d81abb RK |
1633 | } |
1634 | ||
1635 | /* Use QImode since that's guaranteed to clobber just one reg. */ | |
b4ccaa16 | 1636 | XVECEXP (body, 0, i++) |
28d81abb RK |
1637 | = gen_rtx (CLOBBER, VOIDmode, gen_rtx (REG, QImode, j)); |
1638 | } | |
1639 | ||
1640 | insn = emit_insn (body); | |
1641 | } | |
1642 | ||
1643 | free_temp_slots (); | |
1644 | } | |
1645 | \f | |
1646 | /* Generate RTL to evaluate the expression EXP | |
1647 | and remember it in case this is the VALUE in a ({... VALUE; }) constr. */ | |
1648 | ||
1649 | void | |
1650 | expand_expr_stmt (exp) | |
1651 | tree exp; | |
1652 | { | |
ca695ac9 JB |
1653 | if (output_bytecode) |
1654 | { | |
1655 | int org_stack_depth = stack_depth; | |
1656 | ||
1657 | bc_expand_expr (exp); | |
1658 | ||
1659 | /* Restore stack depth */ | |
1660 | if (stack_depth < org_stack_depth) | |
1661 | abort (); | |
1662 | ||
1663 | bc_emit_instruction (drop); | |
1664 | ||
1665 | last_expr_type = TREE_TYPE (exp); | |
1666 | return; | |
1667 | } | |
1668 | ||
28d81abb RK |
1669 | /* If -W, warn about statements with no side effects, |
1670 | except for an explicit cast to void (e.g. for assert()), and | |
1671 | except inside a ({...}) where they may be useful. */ | |
1672 | if (expr_stmts_for_value == 0 && exp != error_mark_node) | |
1673 | { | |
1674 | if (! TREE_SIDE_EFFECTS (exp) && (extra_warnings || warn_unused) | |
1675 | && !(TREE_CODE (exp) == CONVERT_EXPR | |
1676 | && TREE_TYPE (exp) == void_type_node)) | |
1677 | warning_with_file_and_line (emit_filename, emit_lineno, | |
1678 | "statement with no effect"); | |
1679 | else if (warn_unused) | |
1680 | warn_if_unused_value (exp); | |
1681 | } | |
b6ec8c5f RK |
1682 | |
1683 | /* If EXP is of function type and we are expanding statements for | |
1684 | value, convert it to pointer-to-function. */ | |
1685 | if (expr_stmts_for_value && TREE_CODE (TREE_TYPE (exp)) == FUNCTION_TYPE) | |
1686 | exp = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (exp)), exp); | |
1687 | ||
28d81abb RK |
1688 | last_expr_type = TREE_TYPE (exp); |
1689 | if (! flag_syntax_only) | |
37366632 RK |
1690 | last_expr_value = expand_expr (exp, |
1691 | (expr_stmts_for_value | |
1692 | ? NULL_RTX : const0_rtx), | |
28d81abb RK |
1693 | VOIDmode, 0); |
1694 | ||
1695 | /* If all we do is reference a volatile value in memory, | |
1696 | copy it to a register to be sure it is actually touched. */ | |
1697 | if (last_expr_value != 0 && GET_CODE (last_expr_value) == MEM | |
1698 | && TREE_THIS_VOLATILE (exp)) | |
1699 | { | |
6a5bbbe6 RS |
1700 | if (TYPE_MODE (TREE_TYPE (exp)) == VOIDmode) |
1701 | ; | |
1702 | else if (TYPE_MODE (TREE_TYPE (exp)) != BLKmode) | |
28d81abb RK |
1703 | copy_to_reg (last_expr_value); |
1704 | else | |
ddbe9812 RS |
1705 | { |
1706 | rtx lab = gen_label_rtx (); | |
1707 | ||
1708 | /* Compare the value with itself to reference it. */ | |
1709 | emit_cmp_insn (last_expr_value, last_expr_value, EQ, | |
1710 | expand_expr (TYPE_SIZE (last_expr_type), | |
37366632 | 1711 | NULL_RTX, VOIDmode, 0), |
ddbe9812 RS |
1712 | BLKmode, 0, |
1713 | TYPE_ALIGN (last_expr_type) / BITS_PER_UNIT); | |
1714 | emit_jump_insn ((*bcc_gen_fctn[(int) EQ]) (lab)); | |
1715 | emit_label (lab); | |
1716 | } | |
28d81abb RK |
1717 | } |
1718 | ||
1719 | /* If this expression is part of a ({...}) and is in memory, we may have | |
1720 | to preserve temporaries. */ | |
1721 | preserve_temp_slots (last_expr_value); | |
1722 | ||
1723 | /* Free any temporaries used to evaluate this expression. Any temporary | |
1724 | used as a result of this expression will already have been preserved | |
1725 | above. */ | |
1726 | free_temp_slots (); | |
1727 | ||
1728 | emit_queue (); | |
1729 | } | |
1730 | ||
1731 | /* Warn if EXP contains any computations whose results are not used. | |
1732 | Return 1 if a warning is printed; 0 otherwise. */ | |
1733 | ||
150a992a | 1734 | int |
28d81abb RK |
1735 | warn_if_unused_value (exp) |
1736 | tree exp; | |
1737 | { | |
1738 | if (TREE_USED (exp)) | |
1739 | return 0; | |
1740 | ||
1741 | switch (TREE_CODE (exp)) | |
1742 | { | |
1743 | case PREINCREMENT_EXPR: | |
1744 | case POSTINCREMENT_EXPR: | |
1745 | case PREDECREMENT_EXPR: | |
1746 | case POSTDECREMENT_EXPR: | |
1747 | case MODIFY_EXPR: | |
1748 | case INIT_EXPR: | |
1749 | case TARGET_EXPR: | |
1750 | case CALL_EXPR: | |
1751 | case METHOD_CALL_EXPR: | |
1752 | case RTL_EXPR: | |
28d81abb RK |
1753 | case WITH_CLEANUP_EXPR: |
1754 | case EXIT_EXPR: | |
1755 | /* We don't warn about COND_EXPR because it may be a useful | |
1756 | construct if either arm contains a side effect. */ | |
1757 | case COND_EXPR: | |
1758 | return 0; | |
1759 | ||
1760 | case BIND_EXPR: | |
1761 | /* For a binding, warn if no side effect within it. */ | |
1762 | return warn_if_unused_value (TREE_OPERAND (exp, 1)); | |
1763 | ||
de73f171 RK |
1764 | case SAVE_EXPR: |
1765 | return warn_if_unused_value (TREE_OPERAND (exp, 1)); | |
1766 | ||
28d81abb RK |
1767 | case TRUTH_ORIF_EXPR: |
1768 | case TRUTH_ANDIF_EXPR: | |
1769 | /* In && or ||, warn if 2nd operand has no side effect. */ | |
1770 | return warn_if_unused_value (TREE_OPERAND (exp, 1)); | |
1771 | ||
1772 | case COMPOUND_EXPR: | |
a646a211 JM |
1773 | if (TREE_NO_UNUSED_WARNING (exp)) |
1774 | return 0; | |
28d81abb RK |
1775 | if (warn_if_unused_value (TREE_OPERAND (exp, 0))) |
1776 | return 1; | |
4d23e509 RS |
1777 | /* Let people do `(foo (), 0)' without a warning. */ |
1778 | if (TREE_CONSTANT (TREE_OPERAND (exp, 1))) | |
1779 | return 0; | |
28d81abb RK |
1780 | return warn_if_unused_value (TREE_OPERAND (exp, 1)); |
1781 | ||
1782 | case NOP_EXPR: | |
1783 | case CONVERT_EXPR: | |
b4ac57ab | 1784 | case NON_LVALUE_EXPR: |
28d81abb RK |
1785 | /* Don't warn about values cast to void. */ |
1786 | if (TREE_TYPE (exp) == void_type_node) | |
1787 | return 0; | |
1788 | /* Don't warn about conversions not explicit in the user's program. */ | |
1789 | if (TREE_NO_UNUSED_WARNING (exp)) | |
1790 | return 0; | |
1791 | /* Assignment to a cast usually results in a cast of a modify. | |
55cd1c09 JW |
1792 | Don't complain about that. There can be an arbitrary number of |
1793 | casts before the modify, so we must loop until we find the first | |
1794 | non-cast expression and then test to see if that is a modify. */ | |
1795 | { | |
1796 | tree tem = TREE_OPERAND (exp, 0); | |
1797 | ||
1798 | while (TREE_CODE (tem) == CONVERT_EXPR || TREE_CODE (tem) == NOP_EXPR) | |
1799 | tem = TREE_OPERAND (tem, 0); | |
1800 | ||
de73f171 RK |
1801 | if (TREE_CODE (tem) == MODIFY_EXPR || TREE_CODE (tem) == INIT_EXPR |
1802 | || TREE_CODE (tem) == CALL_EXPR) | |
55cd1c09 JW |
1803 | return 0; |
1804 | } | |
d1e1adfb | 1805 | goto warn; |
28d81abb | 1806 | |
d1e1adfb JM |
1807 | case INDIRECT_REF: |
1808 | /* Don't warn about automatic dereferencing of references, since | |
1809 | the user cannot control it. */ | |
1810 | if (TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 0))) == REFERENCE_TYPE) | |
1811 | return warn_if_unused_value (TREE_OPERAND (exp, 0)); | |
1812 | /* ... fall through ... */ | |
1813 | ||
28d81abb | 1814 | default: |
ddbe9812 RS |
1815 | /* Referencing a volatile value is a side effect, so don't warn. */ |
1816 | if ((TREE_CODE_CLASS (TREE_CODE (exp)) == 'd' | |
1817 | || TREE_CODE_CLASS (TREE_CODE (exp)) == 'r') | |
1818 | && TREE_THIS_VOLATILE (exp)) | |
1819 | return 0; | |
d1e1adfb | 1820 | warn: |
28d81abb RK |
1821 | warning_with_file_and_line (emit_filename, emit_lineno, |
1822 | "value computed is not used"); | |
1823 | return 1; | |
1824 | } | |
1825 | } | |
1826 | ||
1827 | /* Clear out the memory of the last expression evaluated. */ | |
1828 | ||
1829 | void | |
1830 | clear_last_expr () | |
1831 | { | |
1832 | last_expr_type = 0; | |
1833 | } | |
1834 | ||
1835 | /* Begin a statement which will return a value. | |
1836 | Return the RTL_EXPR for this statement expr. | |
1837 | The caller must save that value and pass it to expand_end_stmt_expr. */ | |
1838 | ||
1839 | tree | |
1840 | expand_start_stmt_expr () | |
1841 | { | |
ca695ac9 JB |
1842 | int momentary; |
1843 | tree t; | |
1844 | ||
1845 | /* When generating bytecode just note down the stack depth */ | |
1846 | if (output_bytecode) | |
1847 | return (build_int_2 (stack_depth, 0)); | |
1848 | ||
28d81abb RK |
1849 | /* Make the RTL_EXPR node temporary, not momentary, |
1850 | so that rtl_expr_chain doesn't become garbage. */ | |
ca695ac9 JB |
1851 | momentary = suspend_momentary (); |
1852 | t = make_node (RTL_EXPR); | |
28d81abb | 1853 | resume_momentary (momentary); |
caf6ec99 | 1854 | start_sequence_for_rtl_expr (t); |
28d81abb RK |
1855 | NO_DEFER_POP; |
1856 | expr_stmts_for_value++; | |
1857 | return t; | |
1858 | } | |
1859 | ||
1860 | /* Restore the previous state at the end of a statement that returns a value. | |
1861 | Returns a tree node representing the statement's value and the | |
1862 | insns to compute the value. | |
1863 | ||
1864 | The nodes of that expression have been freed by now, so we cannot use them. | |
1865 | But we don't want to do that anyway; the expression has already been | |
1866 | evaluated and now we just want to use the value. So generate a RTL_EXPR | |
1867 | with the proper type and RTL value. | |
1868 | ||
1869 | If the last substatement was not an expression, | |
1870 | return something with type `void'. */ | |
1871 | ||
1872 | tree | |
1873 | expand_end_stmt_expr (t) | |
1874 | tree t; | |
1875 | { | |
ca695ac9 JB |
1876 | if (output_bytecode) |
1877 | { | |
1878 | int i; | |
1879 | tree t; | |
1880 | ||
1881 | ||
1882 | /* At this point, all expressions have been evaluated in order. | |
1883 | However, all expression values have been popped when evaluated, | |
1884 | which means we have to recover the last expression value. This is | |
1885 | the last value removed by means of a `drop' instruction. Instead | |
1886 | of adding code to inhibit dropping the last expression value, it | |
1887 | is here recovered by undoing the `drop'. Since `drop' is | |
1888 | equivalent to `adjustackSI [1]', it can be undone with `adjstackSI | |
1889 | [-1]'. */ | |
1890 | ||
1891 | bc_adjust_stack (-1); | |
1892 | ||
1893 | if (!last_expr_type) | |
1894 | last_expr_type = void_type_node; | |
1895 | ||
1896 | t = make_node (RTL_EXPR); | |
1897 | TREE_TYPE (t) = last_expr_type; | |
1898 | RTL_EXPR_RTL (t) = NULL; | |
1899 | RTL_EXPR_SEQUENCE (t) = NULL; | |
1900 | ||
1901 | /* Don't consider deleting this expr or containing exprs at tree level. */ | |
1902 | TREE_THIS_VOLATILE (t) = 1; | |
1903 | ||
1904 | last_expr_type = 0; | |
1905 | return t; | |
1906 | } | |
1907 | ||
28d81abb RK |
1908 | OK_DEFER_POP; |
1909 | ||
1910 | if (last_expr_type == 0) | |
1911 | { | |
1912 | last_expr_type = void_type_node; | |
1913 | last_expr_value = const0_rtx; | |
1914 | } | |
1915 | else if (last_expr_value == 0) | |
1916 | /* There are some cases where this can happen, such as when the | |
1917 | statement is void type. */ | |
1918 | last_expr_value = const0_rtx; | |
1919 | else if (GET_CODE (last_expr_value) != REG && ! CONSTANT_P (last_expr_value)) | |
1920 | /* Remove any possible QUEUED. */ | |
1921 | last_expr_value = protect_from_queue (last_expr_value, 0); | |
1922 | ||
1923 | emit_queue (); | |
1924 | ||
1925 | TREE_TYPE (t) = last_expr_type; | |
1926 | RTL_EXPR_RTL (t) = last_expr_value; | |
1927 | RTL_EXPR_SEQUENCE (t) = get_insns (); | |
1928 | ||
1929 | rtl_expr_chain = tree_cons (NULL_TREE, t, rtl_expr_chain); | |
1930 | ||
1931 | end_sequence (); | |
1932 | ||
1933 | /* Don't consider deleting this expr or containing exprs at tree level. */ | |
1934 | TREE_SIDE_EFFECTS (t) = 1; | |
1935 | /* Propagate volatility of the actual RTL expr. */ | |
1936 | TREE_THIS_VOLATILE (t) = volatile_refs_p (last_expr_value); | |
1937 | ||
1938 | last_expr_type = 0; | |
1939 | expr_stmts_for_value--; | |
1940 | ||
1941 | return t; | |
1942 | } | |
1943 | \f | |
28d81abb RK |
1944 | /* Generate RTL for the start of an if-then. COND is the expression |
1945 | whose truth should be tested. | |
1946 | ||
1947 | If EXITFLAG is nonzero, this conditional is visible to | |
1948 | `exit_something'. */ | |
1949 | ||
1950 | void | |
1951 | expand_start_cond (cond, exitflag) | |
1952 | tree cond; | |
1953 | int exitflag; | |
1954 | { | |
1955 | struct nesting *thiscond = ALLOC_NESTING (); | |
1956 | ||
1957 | /* Make an entry on cond_stack for the cond we are entering. */ | |
1958 | ||
1959 | thiscond->next = cond_stack; | |
1960 | thiscond->all = nesting_stack; | |
1961 | thiscond->depth = ++nesting_depth; | |
1962 | thiscond->data.cond.next_label = gen_label_rtx (); | |
1963 | /* Before we encounter an `else', we don't need a separate exit label | |
1964 | unless there are supposed to be exit statements | |
1965 | to exit this conditional. */ | |
1966 | thiscond->exit_label = exitflag ? gen_label_rtx () : 0; | |
1967 | thiscond->data.cond.endif_label = thiscond->exit_label; | |
1968 | cond_stack = thiscond; | |
1969 | nesting_stack = thiscond; | |
1970 | ||
ca695ac9 JB |
1971 | if (output_bytecode) |
1972 | bc_expand_start_cond (cond, exitflag); | |
1973 | else | |
1974 | do_jump (cond, thiscond->data.cond.next_label, NULL_RTX); | |
28d81abb RK |
1975 | } |
1976 | ||
1977 | /* Generate RTL between then-clause and the elseif-clause | |
1978 | of an if-then-elseif-.... */ | |
1979 | ||
1980 | void | |
1981 | expand_start_elseif (cond) | |
1982 | tree cond; | |
1983 | { | |
1984 | if (cond_stack->data.cond.endif_label == 0) | |
1985 | cond_stack->data.cond.endif_label = gen_label_rtx (); | |
1986 | emit_jump (cond_stack->data.cond.endif_label); | |
1987 | emit_label (cond_stack->data.cond.next_label); | |
1988 | cond_stack->data.cond.next_label = gen_label_rtx (); | |
37366632 | 1989 | do_jump (cond, cond_stack->data.cond.next_label, NULL_RTX); |
28d81abb RK |
1990 | } |
1991 | ||
1992 | /* Generate RTL between the then-clause and the else-clause | |
1993 | of an if-then-else. */ | |
1994 | ||
1995 | void | |
1996 | expand_start_else () | |
1997 | { | |
1998 | if (cond_stack->data.cond.endif_label == 0) | |
1999 | cond_stack->data.cond.endif_label = gen_label_rtx (); | |
ca695ac9 JB |
2000 | |
2001 | if (output_bytecode) | |
2002 | { | |
2003 | bc_expand_start_else (); | |
2004 | return; | |
2005 | } | |
2006 | ||
28d81abb RK |
2007 | emit_jump (cond_stack->data.cond.endif_label); |
2008 | emit_label (cond_stack->data.cond.next_label); | |
2009 | cond_stack->data.cond.next_label = 0; /* No more _else or _elseif calls. */ | |
2010 | } | |
2011 | ||
d947ba59 RK |
2012 | /* After calling expand_start_else, turn this "else" into an "else if" |
2013 | by providing another condition. */ | |
2014 | ||
2015 | void | |
2016 | expand_elseif (cond) | |
2017 | tree cond; | |
2018 | { | |
2019 | cond_stack->data.cond.next_label = gen_label_rtx (); | |
2020 | do_jump (cond, cond_stack->data.cond.next_label, NULL_RTX); | |
2021 | } | |
2022 | ||
28d81abb RK |
2023 | /* Generate RTL for the end of an if-then. |
2024 | Pop the record for it off of cond_stack. */ | |
2025 | ||
2026 | void | |
2027 | expand_end_cond () | |
2028 | { | |
2029 | struct nesting *thiscond = cond_stack; | |
2030 | ||
ca695ac9 JB |
2031 | if (output_bytecode) |
2032 | bc_expand_end_cond (); | |
2033 | else | |
2034 | { | |
2035 | do_pending_stack_adjust (); | |
2036 | if (thiscond->data.cond.next_label) | |
2037 | emit_label (thiscond->data.cond.next_label); | |
2038 | if (thiscond->data.cond.endif_label) | |
2039 | emit_label (thiscond->data.cond.endif_label); | |
2040 | } | |
28d81abb RK |
2041 | |
2042 | POPSTACK (cond_stack); | |
2043 | last_expr_type = 0; | |
2044 | } | |
ca695ac9 JB |
2045 | |
2046 | ||
2047 | /* Generate code for the start of an if-then. COND is the expression | |
2048 | whose truth is to be tested; if EXITFLAG is nonzero this conditional | |
2049 | is to be visible to exit_something. It is assumed that the caller | |
2050 | has pushed the previous context on the cond stack. */ | |
704f4dca RK |
2051 | |
2052 | static void | |
ca695ac9 JB |
2053 | bc_expand_start_cond (cond, exitflag) |
2054 | tree cond; | |
2055 | int exitflag; | |
2056 | { | |
2057 | struct nesting *thiscond = cond_stack; | |
2058 | ||
2059 | thiscond->data.case_stmt.nominal_type = cond; | |
8e2b13c3 RK |
2060 | if (! exitflag) |
2061 | thiscond->exit_label = gen_label_rtx (); | |
ca695ac9 | 2062 | bc_expand_expr (cond); |
c3a2235b | 2063 | bc_emit_bytecode (xjumpifnot); |
c53e9440 | 2064 | bc_emit_bytecode_labelref (BYTECODE_BC_LABEL (thiscond->exit_label)); |
ca695ac9 JB |
2065 | |
2066 | #ifdef DEBUG_PRINT_CODE | |
2067 | fputc ('\n', stderr); | |
2068 | #endif | |
2069 | } | |
2070 | ||
2071 | /* Generate the label for the end of an if with | |
2072 | no else- clause. */ | |
704f4dca RK |
2073 | |
2074 | static void | |
ca695ac9 JB |
2075 | bc_expand_end_cond () |
2076 | { | |
2077 | struct nesting *thiscond = cond_stack; | |
2078 | ||
c53e9440 | 2079 | bc_emit_bytecode_labeldef (BYTECODE_BC_LABEL (thiscond->exit_label)); |
ca695ac9 JB |
2080 | } |
2081 | ||
2082 | /* Generate code for the start of the else- clause of | |
2083 | an if-then-else. */ | |
704f4dca RK |
2084 | |
2085 | static void | |
ca695ac9 JB |
2086 | bc_expand_start_else () |
2087 | { | |
2088 | struct nesting *thiscond = cond_stack; | |
2089 | ||
2090 | thiscond->data.cond.endif_label = thiscond->exit_label; | |
2091 | thiscond->exit_label = gen_label_rtx (); | |
2092 | bc_emit_bytecode (jump); | |
c53e9440 | 2093 | bc_emit_bytecode_labelref (BYTECODE_BC_LABEL (thiscond->exit_label)); |
ca695ac9 JB |
2094 | |
2095 | #ifdef DEBUG_PRINT_CODE | |
2096 | fputc ('\n', stderr); | |
2097 | #endif | |
2098 | ||
c53e9440 | 2099 | bc_emit_bytecode_labeldef (BYTECODE_BC_LABEL (thiscond->data.cond.endif_label)); |
ca695ac9 | 2100 | } |
28d81abb RK |
2101 | \f |
2102 | /* Generate RTL for the start of a loop. EXIT_FLAG is nonzero if this | |
2103 | loop should be exited by `exit_something'. This is a loop for which | |
2104 | `expand_continue' will jump to the top of the loop. | |
2105 | ||
2106 | Make an entry on loop_stack to record the labels associated with | |
2107 | this loop. */ | |
2108 | ||
2109 | struct nesting * | |
2110 | expand_start_loop (exit_flag) | |
2111 | int exit_flag; | |
2112 | { | |
2113 | register struct nesting *thisloop = ALLOC_NESTING (); | |
2114 | ||
2115 | /* Make an entry on loop_stack for the loop we are entering. */ | |
2116 | ||
2117 | thisloop->next = loop_stack; | |
2118 | thisloop->all = nesting_stack; | |
2119 | thisloop->depth = ++nesting_depth; | |
2120 | thisloop->data.loop.start_label = gen_label_rtx (); | |
2121 | thisloop->data.loop.end_label = gen_label_rtx (); | |
8afad312 | 2122 | thisloop->data.loop.alt_end_label = 0; |
28d81abb RK |
2123 | thisloop->data.loop.continue_label = thisloop->data.loop.start_label; |
2124 | thisloop->exit_label = exit_flag ? thisloop->data.loop.end_label : 0; | |
2125 | loop_stack = thisloop; | |
2126 | nesting_stack = thisloop; | |
2127 | ||
ca695ac9 JB |
2128 | if (output_bytecode) |
2129 | { | |
c53e9440 | 2130 | bc_emit_bytecode_labeldef (BYTECODE_BC_LABEL (thisloop->data.loop.start_label)); |
ca695ac9 JB |
2131 | return thisloop; |
2132 | } | |
2133 | ||
28d81abb RK |
2134 | do_pending_stack_adjust (); |
2135 | emit_queue (); | |
37366632 | 2136 | emit_note (NULL_PTR, NOTE_INSN_LOOP_BEG); |
28d81abb RK |
2137 | emit_label (thisloop->data.loop.start_label); |
2138 | ||
2139 | return thisloop; | |
2140 | } | |
2141 | ||
2142 | /* Like expand_start_loop but for a loop where the continuation point | |
2143 | (for expand_continue_loop) will be specified explicitly. */ | |
2144 | ||
2145 | struct nesting * | |
2146 | expand_start_loop_continue_elsewhere (exit_flag) | |
2147 | int exit_flag; | |
2148 | { | |
2149 | struct nesting *thisloop = expand_start_loop (exit_flag); | |
2150 | loop_stack->data.loop.continue_label = gen_label_rtx (); | |
2151 | return thisloop; | |
2152 | } | |
2153 | ||
2154 | /* Specify the continuation point for a loop started with | |
2155 | expand_start_loop_continue_elsewhere. | |
2156 | Use this at the point in the code to which a continue statement | |
2157 | should jump. */ | |
2158 | ||
2159 | void | |
2160 | expand_loop_continue_here () | |
2161 | { | |
ca695ac9 JB |
2162 | if (output_bytecode) |
2163 | { | |
c53e9440 | 2164 | bc_emit_bytecode_labeldef (BYTECODE_BC_LABEL (loop_stack->data.loop.continue_label)); |
ca695ac9 JB |
2165 | return; |
2166 | } | |
28d81abb | 2167 | do_pending_stack_adjust (); |
37366632 | 2168 | emit_note (NULL_PTR, NOTE_INSN_LOOP_CONT); |
28d81abb RK |
2169 | emit_label (loop_stack->data.loop.continue_label); |
2170 | } | |
2171 | ||
ca695ac9 | 2172 | /* End a loop. */ |
704f4dca | 2173 | |
ca695ac9 JB |
2174 | static void |
2175 | bc_expand_end_loop () | |
2176 | { | |
2177 | struct nesting *thisloop = loop_stack; | |
2178 | ||
2179 | bc_emit_bytecode (jump); | |
c53e9440 | 2180 | bc_emit_bytecode_labelref (BYTECODE_BC_LABEL (thisloop->data.loop.start_label)); |
ca695ac9 JB |
2181 | |
2182 | #ifdef DEBUG_PRINT_CODE | |
2183 | fputc ('\n', stderr); | |
2184 | #endif | |
2185 | ||
c53e9440 | 2186 | bc_emit_bytecode_labeldef (BYTECODE_BC_LABEL (thisloop->exit_label)); |
ca695ac9 JB |
2187 | POPSTACK (loop_stack); |
2188 | last_expr_type = 0; | |
2189 | } | |
2190 | ||
2191 | ||
28d81abb RK |
2192 | /* Finish a loop. Generate a jump back to the top and the loop-exit label. |
2193 | Pop the block off of loop_stack. */ | |
2194 | ||
2195 | void | |
2196 | expand_end_loop () | |
2197 | { | |
ca695ac9 JB |
2198 | register rtx insn; |
2199 | register rtx start_label; | |
28d81abb RK |
2200 | rtx last_test_insn = 0; |
2201 | int num_insns = 0; | |
ca695ac9 JB |
2202 | |
2203 | if (output_bytecode) | |
2204 | { | |
2205 | bc_expand_end_loop (); | |
2206 | return; | |
2207 | } | |
2208 | ||
2209 | insn = get_last_insn (); | |
2210 | start_label = loop_stack->data.loop.start_label; | |
28d81abb RK |
2211 | |
2212 | /* Mark the continue-point at the top of the loop if none elsewhere. */ | |
2213 | if (start_label == loop_stack->data.loop.continue_label) | |
2214 | emit_note_before (NOTE_INSN_LOOP_CONT, start_label); | |
2215 | ||
2216 | do_pending_stack_adjust (); | |
2217 | ||
2218 | /* If optimizing, perhaps reorder the loop. If the loop | |
2219 | starts with a conditional exit, roll that to the end | |
2220 | where it will optimize together with the jump back. | |
2221 | ||
2222 | We look for the last conditional branch to the exit that we encounter | |
2223 | before hitting 30 insns or a CALL_INSN. If we see an unconditional | |
2224 | branch to the exit first, use it. | |
2225 | ||
2226 | We must also stop at NOTE_INSN_BLOCK_BEG and NOTE_INSN_BLOCK_END notes | |
2227 | because moving them is not valid. */ | |
2228 | ||
2229 | if (optimize | |
2230 | && | |
2231 | ! (GET_CODE (insn) == JUMP_INSN | |
2232 | && GET_CODE (PATTERN (insn)) == SET | |
2233 | && SET_DEST (PATTERN (insn)) == pc_rtx | |
2234 | && GET_CODE (SET_SRC (PATTERN (insn))) == IF_THEN_ELSE)) | |
2235 | { | |
2236 | /* Scan insns from the top of the loop looking for a qualified | |
2237 | conditional exit. */ | |
2238 | for (insn = NEXT_INSN (loop_stack->data.loop.start_label); insn; | |
2239 | insn = NEXT_INSN (insn)) | |
2240 | { | |
2241 | if (GET_CODE (insn) == CALL_INSN || GET_CODE (insn) == CODE_LABEL) | |
2242 | break; | |
2243 | ||
2244 | if (GET_CODE (insn) == NOTE | |
2245 | && (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG | |
2246 | || NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)) | |
2247 | break; | |
2248 | ||
2249 | if (GET_CODE (insn) == JUMP_INSN || GET_CODE (insn) == INSN) | |
2250 | num_insns++; | |
2251 | ||
2252 | if (last_test_insn && num_insns > 30) | |
2253 | break; | |
2254 | ||
2255 | if (GET_CODE (insn) == JUMP_INSN && GET_CODE (PATTERN (insn)) == SET | |
2256 | && SET_DEST (PATTERN (insn)) == pc_rtx | |
2257 | && GET_CODE (SET_SRC (PATTERN (insn))) == IF_THEN_ELSE | |
2258 | && ((GET_CODE (XEXP (SET_SRC (PATTERN (insn)), 1)) == LABEL_REF | |
8afad312 JW |
2259 | && ((XEXP (XEXP (SET_SRC (PATTERN (insn)), 1), 0) |
2260 | == loop_stack->data.loop.end_label) | |
2261 | || (XEXP (XEXP (SET_SRC (PATTERN (insn)), 1), 0) | |
2262 | == loop_stack->data.loop.alt_end_label))) | |
28d81abb | 2263 | || (GET_CODE (XEXP (SET_SRC (PATTERN (insn)), 2)) == LABEL_REF |
8afad312 JW |
2264 | && ((XEXP (XEXP (SET_SRC (PATTERN (insn)), 2), 0) |
2265 | == loop_stack->data.loop.end_label) | |
2266 | || (XEXP (XEXP (SET_SRC (PATTERN (insn)), 2), 0) | |
2267 | == loop_stack->data.loop.alt_end_label))))) | |
28d81abb RK |
2268 | last_test_insn = insn; |
2269 | ||
2270 | if (last_test_insn == 0 && GET_CODE (insn) == JUMP_INSN | |
2271 | && GET_CODE (PATTERN (insn)) == SET | |
2272 | && SET_DEST (PATTERN (insn)) == pc_rtx | |
2273 | && GET_CODE (SET_SRC (PATTERN (insn))) == LABEL_REF | |
8afad312 JW |
2274 | && ((XEXP (SET_SRC (PATTERN (insn)), 0) |
2275 | == loop_stack->data.loop.end_label) | |
2276 | || (XEXP (SET_SRC (PATTERN (insn)), 0) | |
2277 | == loop_stack->data.loop.alt_end_label))) | |
28d81abb RK |
2278 | /* Include BARRIER. */ |
2279 | last_test_insn = NEXT_INSN (insn); | |
2280 | } | |
2281 | ||
2282 | if (last_test_insn != 0 && last_test_insn != get_last_insn ()) | |
2283 | { | |
2284 | /* We found one. Move everything from there up | |
2285 | to the end of the loop, and add a jump into the loop | |
2286 | to jump to there. */ | |
2287 | register rtx newstart_label = gen_label_rtx (); | |
2288 | register rtx start_move = start_label; | |
2289 | ||
b4ac57ab | 2290 | /* If the start label is preceded by a NOTE_INSN_LOOP_CONT note, |
28d81abb RK |
2291 | then we want to move this note also. */ |
2292 | if (GET_CODE (PREV_INSN (start_move)) == NOTE | |
2293 | && (NOTE_LINE_NUMBER (PREV_INSN (start_move)) | |
2294 | == NOTE_INSN_LOOP_CONT)) | |
2295 | start_move = PREV_INSN (start_move); | |
2296 | ||
2297 | emit_label_after (newstart_label, PREV_INSN (start_move)); | |
2298 | reorder_insns (start_move, last_test_insn, get_last_insn ()); | |
2299 | emit_jump_insn_after (gen_jump (start_label), | |
2300 | PREV_INSN (newstart_label)); | |
2301 | emit_barrier_after (PREV_INSN (newstart_label)); | |
2302 | start_label = newstart_label; | |
2303 | } | |
2304 | } | |
2305 | ||
2306 | emit_jump (start_label); | |
37366632 | 2307 | emit_note (NULL_PTR, NOTE_INSN_LOOP_END); |
28d81abb RK |
2308 | emit_label (loop_stack->data.loop.end_label); |
2309 | ||
2310 | POPSTACK (loop_stack); | |
2311 | ||
2312 | last_expr_type = 0; | |
2313 | } | |
2314 | ||
2315 | /* Generate a jump to the current loop's continue-point. | |
2316 | This is usually the top of the loop, but may be specified | |
2317 | explicitly elsewhere. If not currently inside a loop, | |
2318 | return 0 and do nothing; caller will print an error message. */ | |
2319 | ||
2320 | int | |
2321 | expand_continue_loop (whichloop) | |
2322 | struct nesting *whichloop; | |
2323 | { | |
2324 | last_expr_type = 0; | |
2325 | if (whichloop == 0) | |
2326 | whichloop = loop_stack; | |
2327 | if (whichloop == 0) | |
2328 | return 0; | |
37366632 RK |
2329 | expand_goto_internal (NULL_TREE, whichloop->data.loop.continue_label, |
2330 | NULL_RTX); | |
28d81abb RK |
2331 | return 1; |
2332 | } | |
2333 | ||
2334 | /* Generate a jump to exit the current loop. If not currently inside a loop, | |
2335 | return 0 and do nothing; caller will print an error message. */ | |
2336 | ||
2337 | int | |
2338 | expand_exit_loop (whichloop) | |
2339 | struct nesting *whichloop; | |
2340 | { | |
2341 | last_expr_type = 0; | |
2342 | if (whichloop == 0) | |
2343 | whichloop = loop_stack; | |
2344 | if (whichloop == 0) | |
2345 | return 0; | |
37366632 | 2346 | expand_goto_internal (NULL_TREE, whichloop->data.loop.end_label, NULL_RTX); |
28d81abb RK |
2347 | return 1; |
2348 | } | |
2349 | ||
2350 | /* Generate a conditional jump to exit the current loop if COND | |
2351 | evaluates to zero. If not currently inside a loop, | |
2352 | return 0 and do nothing; caller will print an error message. */ | |
2353 | ||
2354 | int | |
2355 | expand_exit_loop_if_false (whichloop, cond) | |
2356 | struct nesting *whichloop; | |
2357 | tree cond; | |
2358 | { | |
2359 | last_expr_type = 0; | |
2360 | if (whichloop == 0) | |
2361 | whichloop = loop_stack; | |
2362 | if (whichloop == 0) | |
2363 | return 0; | |
ca695ac9 JB |
2364 | if (output_bytecode) |
2365 | { | |
2366 | bc_expand_expr (cond); | |
c3a2235b RS |
2367 | bc_expand_goto_internal (xjumpifnot, |
2368 | BYTECODE_BC_LABEL (whichloop->exit_label), | |
704f4dca | 2369 | NULL_TREE); |
ca695ac9 JB |
2370 | } |
2371 | else | |
d902c7ea JW |
2372 | { |
2373 | /* In order to handle fixups, we actually create a conditional jump | |
2374 | around a unconditional branch to exit the loop. If fixups are | |
2375 | necessary, they go before the unconditional branch. */ | |
2376 | ||
2377 | rtx label = gen_label_rtx (); | |
8afad312 JW |
2378 | rtx last_insn; |
2379 | ||
d902c7ea | 2380 | do_jump (cond, NULL_RTX, label); |
8afad312 JW |
2381 | last_insn = get_last_insn (); |
2382 | if (GET_CODE (last_insn) == CODE_LABEL) | |
2383 | whichloop->data.loop.alt_end_label = last_insn; | |
d902c7ea JW |
2384 | expand_goto_internal (NULL_TREE, whichloop->data.loop.end_label, |
2385 | NULL_RTX); | |
2386 | emit_label (label); | |
2387 | } | |
ca695ac9 | 2388 | |
28d81abb RK |
2389 | return 1; |
2390 | } | |
2391 | ||
2392 | /* Return non-zero if we should preserve sub-expressions as separate | |
2393 | pseudos. We never do so if we aren't optimizing. We always do so | |
2394 | if -fexpensive-optimizations. | |
2395 | ||
2396 | Otherwise, we only do so if we are in the "early" part of a loop. I.e., | |
2397 | the loop may still be a small one. */ | |
2398 | ||
2399 | int | |
2400 | preserve_subexpressions_p () | |
2401 | { | |
2402 | rtx insn; | |
2403 | ||
2404 | if (flag_expensive_optimizations) | |
2405 | return 1; | |
2406 | ||
2407 | if (optimize == 0 || loop_stack == 0) | |
2408 | return 0; | |
2409 | ||
2410 | insn = get_last_insn_anywhere (); | |
2411 | ||
2412 | return (insn | |
2413 | && (INSN_UID (insn) - INSN_UID (loop_stack->data.loop.start_label) | |
2414 | < n_non_fixed_regs * 3)); | |
2415 | ||
2416 | } | |
2417 | ||
2418 | /* Generate a jump to exit the current loop, conditional, binding contour | |
2419 | or case statement. Not all such constructs are visible to this function, | |
2420 | only those started with EXIT_FLAG nonzero. Individual languages use | |
2421 | the EXIT_FLAG parameter to control which kinds of constructs you can | |
2422 | exit this way. | |
2423 | ||
2424 | If not currently inside anything that can be exited, | |
2425 | return 0 and do nothing; caller will print an error message. */ | |
2426 | ||
2427 | int | |
2428 | expand_exit_something () | |
2429 | { | |
2430 | struct nesting *n; | |
2431 | last_expr_type = 0; | |
2432 | for (n = nesting_stack; n; n = n->all) | |
2433 | if (n->exit_label != 0) | |
2434 | { | |
37366632 | 2435 | expand_goto_internal (NULL_TREE, n->exit_label, NULL_RTX); |
28d81abb RK |
2436 | return 1; |
2437 | } | |
2438 | ||
2439 | return 0; | |
2440 | } | |
2441 | \f | |
2442 | /* Generate RTL to return from the current function, with no value. | |
2443 | (That is, we do not do anything about returning any value.) */ | |
2444 | ||
2445 | void | |
2446 | expand_null_return () | |
2447 | { | |
2448 | struct nesting *block = block_stack; | |
2449 | rtx last_insn = 0; | |
2450 | ||
ca695ac9 JB |
2451 | if (output_bytecode) |
2452 | { | |
2453 | bc_emit_instruction (ret); | |
2454 | return; | |
2455 | } | |
2456 | ||
28d81abb RK |
2457 | /* Does any pending block have cleanups? */ |
2458 | ||
2459 | while (block && block->data.block.cleanups == 0) | |
2460 | block = block->next; | |
2461 | ||
2462 | /* If yes, use a goto to return, since that runs cleanups. */ | |
2463 | ||
2464 | expand_null_return_1 (last_insn, block != 0); | |
2465 | } | |
2466 | ||
2467 | /* Generate RTL to return from the current function, with value VAL. */ | |
2468 | ||
8d800403 | 2469 | static void |
28d81abb RK |
2470 | expand_value_return (val) |
2471 | rtx val; | |
2472 | { | |
2473 | struct nesting *block = block_stack; | |
2474 | rtx last_insn = get_last_insn (); | |
2475 | rtx return_reg = DECL_RTL (DECL_RESULT (current_function_decl)); | |
2476 | ||
2477 | /* Copy the value to the return location | |
2478 | unless it's already there. */ | |
2479 | ||
2480 | if (return_reg != val) | |
77636079 RS |
2481 | { |
2482 | #ifdef PROMOTE_FUNCTION_RETURN | |
77636079 RS |
2483 | tree type = TREE_TYPE (DECL_RESULT (current_function_decl)); |
2484 | int unsignedp = TREE_UNSIGNED (type); | |
28612f9e RK |
2485 | enum machine_mode mode |
2486 | = promote_mode (type, DECL_MODE (DECL_RESULT (current_function_decl)), | |
2487 | &unsignedp, 1); | |
77636079 RS |
2488 | |
2489 | if (GET_MODE (val) != VOIDmode && GET_MODE (val) != mode) | |
3af6dfd8 | 2490 | convert_move (return_reg, val, unsignedp); |
77636079 RS |
2491 | else |
2492 | #endif | |
2493 | emit_move_insn (return_reg, val); | |
2494 | } | |
28d81abb RK |
2495 | if (GET_CODE (return_reg) == REG |
2496 | && REGNO (return_reg) < FIRST_PSEUDO_REGISTER) | |
2497 | emit_insn (gen_rtx (USE, VOIDmode, return_reg)); | |
2498 | ||
2499 | /* Does any pending block have cleanups? */ | |
2500 | ||
2501 | while (block && block->data.block.cleanups == 0) | |
2502 | block = block->next; | |
2503 | ||
2504 | /* If yes, use a goto to return, since that runs cleanups. | |
2505 | Use LAST_INSN to put cleanups *before* the move insn emitted above. */ | |
2506 | ||
2507 | expand_null_return_1 (last_insn, block != 0); | |
2508 | } | |
2509 | ||
2510 | /* Output a return with no value. If LAST_INSN is nonzero, | |
2511 | pretend that the return takes place after LAST_INSN. | |
2512 | If USE_GOTO is nonzero then don't use a return instruction; | |
2513 | go to the return label instead. This causes any cleanups | |
2514 | of pending blocks to be executed normally. */ | |
2515 | ||
2516 | static void | |
2517 | expand_null_return_1 (last_insn, use_goto) | |
2518 | rtx last_insn; | |
2519 | int use_goto; | |
2520 | { | |
2521 | rtx end_label = cleanup_label ? cleanup_label : return_label; | |
2522 | ||
2523 | clear_pending_stack_adjust (); | |
2524 | do_pending_stack_adjust (); | |
2525 | last_expr_type = 0; | |
2526 | ||
2527 | /* PCC-struct return always uses an epilogue. */ | |
2528 | if (current_function_returns_pcc_struct || use_goto) | |
2529 | { | |
2530 | if (end_label == 0) | |
2531 | end_label = return_label = gen_label_rtx (); | |
37366632 | 2532 | expand_goto_internal (NULL_TREE, end_label, last_insn); |
28d81abb RK |
2533 | return; |
2534 | } | |
2535 | ||
2536 | /* Otherwise output a simple return-insn if one is available, | |
2537 | unless it won't do the job. */ | |
2538 | #ifdef HAVE_return | |
2539 | if (HAVE_return && use_goto == 0 && cleanup_label == 0) | |
2540 | { | |
2541 | emit_jump_insn (gen_return ()); | |
2542 | emit_barrier (); | |
2543 | return; | |
2544 | } | |
2545 | #endif | |
2546 | ||
2547 | /* Otherwise jump to the epilogue. */ | |
37366632 | 2548 | expand_goto_internal (NULL_TREE, end_label, last_insn); |
28d81abb RK |
2549 | } |
2550 | \f | |
2551 | /* Generate RTL to evaluate the expression RETVAL and return it | |
2552 | from the current function. */ | |
2553 | ||
2554 | void | |
2555 | expand_return (retval) | |
2556 | tree retval; | |
2557 | { | |
2558 | /* If there are any cleanups to be performed, then they will | |
2559 | be inserted following LAST_INSN. It is desirable | |
2560 | that the last_insn, for such purposes, should be the | |
2561 | last insn before computing the return value. Otherwise, cleanups | |
2562 | which call functions can clobber the return value. */ | |
2563 | /* ??? rms: I think that is erroneous, because in C++ it would | |
2564 | run destructors on variables that might be used in the subsequent | |
2565 | computation of the return value. */ | |
2566 | rtx last_insn = 0; | |
2567 | register rtx val = 0; | |
2568 | register rtx op0; | |
2569 | tree retval_rhs; | |
2570 | int cleanups; | |
2571 | struct nesting *block; | |
2572 | ||
ca695ac9 JB |
2573 | /* Bytecode returns are quite simple, just leave the result on the |
2574 | arithmetic stack. */ | |
2575 | if (output_bytecode) | |
2576 | { | |
2577 | bc_expand_expr (retval); | |
2578 | bc_emit_instruction (ret); | |
2579 | return; | |
2580 | } | |
2581 | ||
28d81abb RK |
2582 | /* If function wants no value, give it none. */ |
2583 | if (TREE_CODE (TREE_TYPE (TREE_TYPE (current_function_decl))) == VOID_TYPE) | |
2584 | { | |
37366632 | 2585 | expand_expr (retval, NULL_RTX, VOIDmode, 0); |
7e70e7c5 | 2586 | emit_queue (); |
28d81abb RK |
2587 | expand_null_return (); |
2588 | return; | |
2589 | } | |
2590 | ||
2591 | /* Are any cleanups needed? E.g. C++ destructors to be run? */ | |
7a9a00be MS |
2592 | /* This is not sufficient. We also need to watch for cleanups of the |
2593 | expression we are about to expand. Unfortunately, we cannot know | |
2594 | if it has cleanups until we expand it, and we want to change how we | |
2595 | expand it depending upon if we need cleanups. We can't win. */ | |
2596 | #if 0 | |
28d81abb | 2597 | cleanups = any_pending_cleanups (1); |
7a9a00be MS |
2598 | #else |
2599 | cleanups = 1; | |
2600 | #endif | |
28d81abb RK |
2601 | |
2602 | if (TREE_CODE (retval) == RESULT_DECL) | |
2603 | retval_rhs = retval; | |
2604 | else if ((TREE_CODE (retval) == MODIFY_EXPR || TREE_CODE (retval) == INIT_EXPR) | |
2605 | && TREE_CODE (TREE_OPERAND (retval, 0)) == RESULT_DECL) | |
2606 | retval_rhs = TREE_OPERAND (retval, 1); | |
2607 | else if (TREE_TYPE (retval) == void_type_node) | |
2608 | /* Recognize tail-recursive call to void function. */ | |
2609 | retval_rhs = retval; | |
2610 | else | |
2611 | retval_rhs = NULL_TREE; | |
2612 | ||
2613 | /* Only use `last_insn' if there are cleanups which must be run. */ | |
2614 | if (cleanups || cleanup_label != 0) | |
2615 | last_insn = get_last_insn (); | |
2616 | ||
2617 | /* Distribute return down conditional expr if either of the sides | |
2618 | may involve tail recursion (see test below). This enhances the number | |
2619 | of tail recursions we see. Don't do this always since it can produce | |
2620 | sub-optimal code in some cases and we distribute assignments into | |
2621 | conditional expressions when it would help. */ | |
2622 | ||
2623 | if (optimize && retval_rhs != 0 | |
2624 | && frame_offset == 0 | |
2625 | && TREE_CODE (retval_rhs) == COND_EXPR | |
2626 | && (TREE_CODE (TREE_OPERAND (retval_rhs, 1)) == CALL_EXPR | |
2627 | || TREE_CODE (TREE_OPERAND (retval_rhs, 2)) == CALL_EXPR)) | |
2628 | { | |
2629 | rtx label = gen_label_rtx (); | |
a0a34f94 RK |
2630 | tree expr; |
2631 | ||
37366632 | 2632 | do_jump (TREE_OPERAND (retval_rhs, 0), label, NULL_RTX); |
a0a34f94 RK |
2633 | expr = build (MODIFY_EXPR, TREE_TYPE (current_function_decl), |
2634 | DECL_RESULT (current_function_decl), | |
2635 | TREE_OPERAND (retval_rhs, 1)); | |
2636 | TREE_SIDE_EFFECTS (expr) = 1; | |
2637 | expand_return (expr); | |
28d81abb | 2638 | emit_label (label); |
a0a34f94 RK |
2639 | |
2640 | expr = build (MODIFY_EXPR, TREE_TYPE (current_function_decl), | |
2641 | DECL_RESULT (current_function_decl), | |
2642 | TREE_OPERAND (retval_rhs, 2)); | |
2643 | TREE_SIDE_EFFECTS (expr) = 1; | |
2644 | expand_return (expr); | |
28d81abb RK |
2645 | return; |
2646 | } | |
2647 | ||
2648 | /* For tail-recursive call to current function, | |
2649 | just jump back to the beginning. | |
2650 | It's unsafe if any auto variable in this function | |
2651 | has its address taken; for simplicity, | |
2652 | require stack frame to be empty. */ | |
2653 | if (optimize && retval_rhs != 0 | |
2654 | && frame_offset == 0 | |
2655 | && TREE_CODE (retval_rhs) == CALL_EXPR | |
2656 | && TREE_CODE (TREE_OPERAND (retval_rhs, 0)) == ADDR_EXPR | |
2657 | && TREE_OPERAND (TREE_OPERAND (retval_rhs, 0), 0) == current_function_decl | |
2658 | /* Finish checking validity, and if valid emit code | |
2659 | to set the argument variables for the new call. */ | |
2660 | && tail_recursion_args (TREE_OPERAND (retval_rhs, 1), | |
2661 | DECL_ARGUMENTS (current_function_decl))) | |
2662 | { | |
2663 | if (tail_recursion_label == 0) | |
2664 | { | |
2665 | tail_recursion_label = gen_label_rtx (); | |
2666 | emit_label_after (tail_recursion_label, | |
2667 | tail_recursion_reentry); | |
2668 | } | |
a3229491 | 2669 | emit_queue (); |
37366632 | 2670 | expand_goto_internal (NULL_TREE, tail_recursion_label, last_insn); |
28d81abb RK |
2671 | emit_barrier (); |
2672 | return; | |
2673 | } | |
2674 | #ifdef HAVE_return | |
2675 | /* This optimization is safe if there are local cleanups | |
2676 | because expand_null_return takes care of them. | |
2677 | ??? I think it should also be safe when there is a cleanup label, | |
2678 | because expand_null_return takes care of them, too. | |
2679 | Any reason why not? */ | |
2680 | if (HAVE_return && cleanup_label == 0 | |
5eb94e4e RK |
2681 | && ! current_function_returns_pcc_struct |
2682 | && BRANCH_COST <= 1) | |
28d81abb RK |
2683 | { |
2684 | /* If this is return x == y; then generate | |
2685 | if (x == y) return 1; else return 0; | |
5eb94e4e RK |
2686 | if we can do it with explicit return insns and |
2687 | branches are cheap. */ | |
28d81abb RK |
2688 | if (retval_rhs) |
2689 | switch (TREE_CODE (retval_rhs)) | |
2690 | { | |
2691 | case EQ_EXPR: | |
2692 | case NE_EXPR: | |
2693 | case GT_EXPR: | |
2694 | case GE_EXPR: | |
2695 | case LT_EXPR: | |
2696 | case LE_EXPR: | |
2697 | case TRUTH_ANDIF_EXPR: | |
2698 | case TRUTH_ORIF_EXPR: | |
2699 | case TRUTH_AND_EXPR: | |
2700 | case TRUTH_OR_EXPR: | |
2701 | case TRUTH_NOT_EXPR: | |
94ed3915 | 2702 | case TRUTH_XOR_EXPR: |
28d81abb RK |
2703 | op0 = gen_label_rtx (); |
2704 | jumpifnot (retval_rhs, op0); | |
2705 | expand_value_return (const1_rtx); | |
2706 | emit_label (op0); | |
2707 | expand_value_return (const0_rtx); | |
2708 | return; | |
2709 | } | |
2710 | } | |
2711 | #endif /* HAVE_return */ | |
2712 | ||
4c485b63 JL |
2713 | /* If the result is an aggregate that is being returned in one (or more) |
2714 | registers, load the registers here. The compiler currently can't handle | |
2715 | copying a BLKmode value into registers. We could put this code in a | |
2716 | more general area (for use by everyone instead of just function | |
2717 | call/return), but until this feature is generally usable it is kept here | |
3ffeb8f1 JW |
2718 | (and in expand_call). The value must go into a pseudo in case there |
2719 | are cleanups that will clobber the real return register. */ | |
4c485b63 JL |
2720 | |
2721 | if (retval_rhs != 0 | |
2722 | && TYPE_MODE (TREE_TYPE (retval_rhs)) == BLKmode | |
2723 | && GET_CODE (DECL_RTL (DECL_RESULT (current_function_decl))) == REG) | |
2724 | { | |
2725 | int i; | |
2726 | int big_endian_correction = 0; | |
2727 | int bytes = int_size_in_bytes (TREE_TYPE (retval_rhs)); | |
2728 | int n_regs = (bytes + UNITS_PER_WORD - 1) / UNITS_PER_WORD; | |
2729 | rtx *result_pseudos = (rtx *) alloca (sizeof (rtx) * n_regs); | |
3ffeb8f1 | 2730 | rtx result_reg; |
4c485b63 | 2731 | rtx result_val = expand_expr (retval_rhs, NULL_RTX, VOIDmode, 0); |
af55da56 | 2732 | enum machine_mode tmpmode, result_reg_mode; |
4c485b63 JL |
2733 | |
2734 | /* Structures smaller than a word are aligned to the least significant | |
2735 | byte (to the right). On a BYTES_BIG_ENDIAN machine, this means we | |
2736 | must skip the empty high order bytes when calculating the bit | |
2737 | offset. */ | |
2738 | if (BYTES_BIG_ENDIAN && bytes < UNITS_PER_WORD) | |
2739 | big_endian_correction = (BITS_PER_WORD - (bytes * BITS_PER_UNIT)); | |
2740 | ||
2741 | for (i = 0; i < n_regs; i++) | |
2742 | { | |
2743 | rtx reg = gen_reg_rtx (word_mode); | |
2744 | rtx word = operand_subword_force (result_val, i, BLKmode); | |
2745 | int bitsize = MIN (TYPE_ALIGN (TREE_TYPE (retval_rhs)),BITS_PER_WORD); | |
2746 | int bitpos; | |
2747 | ||
2748 | result_pseudos[i] = reg; | |
2749 | ||
2750 | /* Clobber REG and move each partword into it. Ensure we don't | |
2751 | go past the end of the structure. Note that the loop below | |
2752 | works because we've already verified that padding and | |
9faa82d8 | 2753 | endianness are compatible. */ |
4c485b63 JL |
2754 | emit_insn (gen_rtx (CLOBBER, VOIDmode, reg)); |
2755 | ||
2756 | for (bitpos = 0; | |
2757 | bitpos < BITS_PER_WORD && bytes > 0; | |
2758 | bitpos += bitsize, bytes -= bitsize / BITS_PER_UNIT) | |
2759 | { | |
2760 | int xbitpos = bitpos + big_endian_correction; | |
2761 | ||
2762 | store_bit_field (reg, bitsize, xbitpos, word_mode, | |
2763 | extract_bit_field (word, bitsize, bitpos, 1, | |
2764 | NULL_RTX, word_mode, | |
2765 | word_mode, | |
2766 | bitsize / BITS_PER_UNIT, | |
2767 | BITS_PER_WORD), | |
2768 | bitsize / BITS_PER_UNIT, BITS_PER_WORD); | |
2769 | } | |
2770 | } | |
2771 | ||
4c485b63 JL |
2772 | /* Find the smallest integer mode large enough to hold the |
2773 | entire structure and use that mode instead of BLKmode | |
2774 | on the USE insn for the return register. */ | |
2775 | bytes = int_size_in_bytes (TREE_TYPE (retval_rhs)); | |
2776 | for (tmpmode = GET_CLASS_NARROWEST_MODE (MODE_INT); | |
2777 | tmpmode != MAX_MACHINE_MODE; | |
2778 | tmpmode = GET_MODE_WIDER_MODE (tmpmode)) | |
3ffeb8f1 JW |
2779 | { |
2780 | /* Have we found a large enough mode? */ | |
2781 | if (GET_MODE_SIZE (tmpmode) >= bytes) | |
2782 | break; | |
2783 | } | |
4c485b63 JL |
2784 | |
2785 | /* No suitable mode found. */ | |
2786 | if (tmpmode == MAX_MACHINE_MODE) | |
3ffeb8f1 | 2787 | abort (); |
4c485b63 | 2788 | |
3ffeb8f1 JW |
2789 | PUT_MODE (DECL_RTL (DECL_RESULT (current_function_decl)), tmpmode); |
2790 | ||
af55da56 JW |
2791 | if (GET_MODE_SIZE (tmpmode) < GET_MODE_SIZE (word_mode)) |
2792 | result_reg_mode = word_mode; | |
2793 | else | |
2794 | result_reg_mode = tmpmode; | |
2795 | result_reg = gen_reg_rtx (result_reg_mode); | |
2796 | ||
3ffeb8f1 JW |
2797 | /* Now that the value is in pseudos, copy it to the result reg(s). */ |
2798 | emit_queue (); | |
2799 | free_temp_slots (); | |
2800 | for (i = 0; i < n_regs; i++) | |
af55da56 | 2801 | emit_move_insn (operand_subword (result_reg, i, 0, result_reg_mode), |
3ffeb8f1 | 2802 | result_pseudos[i]); |
4c485b63 | 2803 | |
af55da56 JW |
2804 | if (tmpmode != result_reg_mode) |
2805 | result_reg = gen_lowpart (tmpmode, result_reg); | |
2806 | ||
4c485b63 JL |
2807 | expand_value_return (result_reg); |
2808 | } | |
2809 | else if (cleanups | |
28d81abb RK |
2810 | && retval_rhs != 0 |
2811 | && TREE_TYPE (retval_rhs) != void_type_node | |
2812 | && GET_CODE (DECL_RTL (DECL_RESULT (current_function_decl))) == REG) | |
2813 | { | |
2814 | /* Calculate the return value into a pseudo reg. */ | |
37366632 | 2815 | val = expand_expr (retval_rhs, NULL_RTX, VOIDmode, 0); |
28d81abb RK |
2816 | emit_queue (); |
2817 | /* All temporaries have now been used. */ | |
2818 | free_temp_slots (); | |
2819 | /* Return the calculated value, doing cleanups first. */ | |
2820 | expand_value_return (val); | |
2821 | } | |
2822 | else | |
2823 | { | |
2824 | /* No cleanups or no hard reg used; | |
2825 | calculate value into hard return reg. */ | |
cba389cd | 2826 | expand_expr (retval, const0_rtx, VOIDmode, 0); |
28d81abb RK |
2827 | emit_queue (); |
2828 | free_temp_slots (); | |
2829 | expand_value_return (DECL_RTL (DECL_RESULT (current_function_decl))); | |
2830 | } | |
2831 | } | |
2832 | ||
2833 | /* Return 1 if the end of the generated RTX is not a barrier. | |
2834 | This means code already compiled can drop through. */ | |
2835 | ||
2836 | int | |
2837 | drop_through_at_end_p () | |
2838 | { | |
2839 | rtx insn = get_last_insn (); | |
2840 | while (insn && GET_CODE (insn) == NOTE) | |
2841 | insn = PREV_INSN (insn); | |
2842 | return insn && GET_CODE (insn) != BARRIER; | |
2843 | } | |
2844 | \f | |
2845 | /* Emit code to alter this function's formal parms for a tail-recursive call. | |
2846 | ACTUALS is a list of actual parameter expressions (chain of TREE_LISTs). | |
2847 | FORMALS is the chain of decls of formals. | |
2848 | Return 1 if this can be done; | |
2849 | otherwise return 0 and do not emit any code. */ | |
2850 | ||
2851 | static int | |
2852 | tail_recursion_args (actuals, formals) | |
2853 | tree actuals, formals; | |
2854 | { | |
2855 | register tree a = actuals, f = formals; | |
2856 | register int i; | |
2857 | register rtx *argvec; | |
2858 | ||
2859 | /* Check that number and types of actuals are compatible | |
2860 | with the formals. This is not always true in valid C code. | |
2861 | Also check that no formal needs to be addressable | |
2862 | and that all formals are scalars. */ | |
2863 | ||
2864 | /* Also count the args. */ | |
2865 | ||
2866 | for (a = actuals, f = formals, i = 0; a && f; a = TREE_CHAIN (a), f = TREE_CHAIN (f), i++) | |
2867 | { | |
2868 | if (TREE_TYPE (TREE_VALUE (a)) != TREE_TYPE (f)) | |
2869 | return 0; | |
2870 | if (GET_CODE (DECL_RTL (f)) != REG || DECL_MODE (f) == BLKmode) | |
2871 | return 0; | |
2872 | } | |
2873 | if (a != 0 || f != 0) | |
2874 | return 0; | |
2875 | ||
2876 | /* Compute all the actuals. */ | |
2877 | ||
2878 | argvec = (rtx *) alloca (i * sizeof (rtx)); | |
2879 | ||
2880 | for (a = actuals, i = 0; a; a = TREE_CHAIN (a), i++) | |
37366632 | 2881 | argvec[i] = expand_expr (TREE_VALUE (a), NULL_RTX, VOIDmode, 0); |
28d81abb RK |
2882 | |
2883 | /* Find which actual values refer to current values of previous formals. | |
2884 | Copy each of them now, before any formal is changed. */ | |
2885 | ||
2886 | for (a = actuals, i = 0; a; a = TREE_CHAIN (a), i++) | |
2887 | { | |
2888 | int copy = 0; | |
2889 | register int j; | |
2890 | for (f = formals, j = 0; j < i; f = TREE_CHAIN (f), j++) | |
2891 | if (reg_mentioned_p (DECL_RTL (f), argvec[i])) | |
2892 | { copy = 1; break; } | |
2893 | if (copy) | |
2894 | argvec[i] = copy_to_reg (argvec[i]); | |
2895 | } | |
2896 | ||
2897 | /* Store the values of the actuals into the formals. */ | |
2898 | ||
2899 | for (f = formals, a = actuals, i = 0; f; | |
2900 | f = TREE_CHAIN (f), a = TREE_CHAIN (a), i++) | |
2901 | { | |
98f3b471 | 2902 | if (GET_MODE (DECL_RTL (f)) == GET_MODE (argvec[i])) |
28d81abb RK |
2903 | emit_move_insn (DECL_RTL (f), argvec[i]); |
2904 | else | |
2905 | convert_move (DECL_RTL (f), argvec[i], | |
2906 | TREE_UNSIGNED (TREE_TYPE (TREE_VALUE (a)))); | |
2907 | } | |
2908 | ||
2909 | free_temp_slots (); | |
2910 | return 1; | |
2911 | } | |
2912 | \f | |
2913 | /* Generate the RTL code for entering a binding contour. | |
2914 | The variables are declared one by one, by calls to `expand_decl'. | |
2915 | ||
2916 | EXIT_FLAG is nonzero if this construct should be visible to | |
2917 | `exit_something'. */ | |
2918 | ||
2919 | void | |
2920 | expand_start_bindings (exit_flag) | |
2921 | int exit_flag; | |
2922 | { | |
2923 | struct nesting *thisblock = ALLOC_NESTING (); | |
0575fe3c | 2924 | rtx note = output_bytecode ? 0 : emit_note (NULL_PTR, NOTE_INSN_BLOCK_BEG); |
28d81abb RK |
2925 | |
2926 | /* Make an entry on block_stack for the block we are entering. */ | |
2927 | ||
2928 | thisblock->next = block_stack; | |
2929 | thisblock->all = nesting_stack; | |
2930 | thisblock->depth = ++nesting_depth; | |
2931 | thisblock->data.block.stack_level = 0; | |
2932 | thisblock->data.block.cleanups = 0; | |
2933 | thisblock->data.block.function_call_count = 0; | |
2934 | #if 0 | |
2935 | if (block_stack) | |
2936 | { | |
2937 | if (block_stack->data.block.cleanups == NULL_TREE | |
2938 | && (block_stack->data.block.outer_cleanups == NULL_TREE | |
2939 | || block_stack->data.block.outer_cleanups == empty_cleanup_list)) | |
2940 | thisblock->data.block.outer_cleanups = empty_cleanup_list; | |
2941 | else | |
2942 | thisblock->data.block.outer_cleanups | |
2943 | = tree_cons (NULL_TREE, block_stack->data.block.cleanups, | |
2944 | block_stack->data.block.outer_cleanups); | |
2945 | } | |
2946 | else | |
2947 | thisblock->data.block.outer_cleanups = 0; | |
2948 | #endif | |
2949 | #if 1 | |
2950 | if (block_stack | |
2951 | && !(block_stack->data.block.cleanups == NULL_TREE | |
2952 | && block_stack->data.block.outer_cleanups == NULL_TREE)) | |
2953 | thisblock->data.block.outer_cleanups | |
2954 | = tree_cons (NULL_TREE, block_stack->data.block.cleanups, | |
2955 | block_stack->data.block.outer_cleanups); | |
2956 | else | |
2957 | thisblock->data.block.outer_cleanups = 0; | |
2958 | #endif | |
2959 | thisblock->data.block.label_chain = 0; | |
2960 | thisblock->data.block.innermost_stack_block = stack_block_stack; | |
2961 | thisblock->data.block.first_insn = note; | |
2962 | thisblock->data.block.block_start_count = ++block_start_count; | |
2963 | thisblock->exit_label = exit_flag ? gen_label_rtx () : 0; | |
2964 | block_stack = thisblock; | |
2965 | nesting_stack = thisblock; | |
2966 | ||
ca695ac9 JB |
2967 | if (!output_bytecode) |
2968 | { | |
2969 | /* Make a new level for allocating stack slots. */ | |
2970 | push_temp_slots (); | |
2971 | } | |
28d81abb RK |
2972 | } |
2973 | ||
7629c936 RS |
2974 | /* Given a pointer to a BLOCK node, save a pointer to the most recently |
2975 | generated NOTE_INSN_BLOCK_END in the BLOCK_END_NOTE field of the given | |
2976 | BLOCK node. */ | |
2977 | ||
2978 | void | |
2979 | remember_end_note (block) | |
2980 | register tree block; | |
2981 | { | |
2982 | BLOCK_END_NOTE (block) = last_block_end_note; | |
2983 | last_block_end_note = NULL_RTX; | |
2984 | } | |
2985 | ||
28d81abb RK |
2986 | /* Generate RTL code to terminate a binding contour. |
2987 | VARS is the chain of VAR_DECL nodes | |
2988 | for the variables bound in this contour. | |
2989 | MARK_ENDS is nonzero if we should put a note at the beginning | |
2990 | and end of this binding contour. | |
2991 | ||
2992 | DONT_JUMP_IN is nonzero if it is not valid to jump into this contour. | |
2993 | (That is true automatically if the contour has a saved stack level.) */ | |
2994 | ||
2995 | void | |
2996 | expand_end_bindings (vars, mark_ends, dont_jump_in) | |
2997 | tree vars; | |
2998 | int mark_ends; | |
2999 | int dont_jump_in; | |
3000 | { | |
3001 | register struct nesting *thisblock = block_stack; | |
3002 | register tree decl; | |
3003 | ||
ca695ac9 JB |
3004 | if (output_bytecode) |
3005 | { | |
3006 | bc_expand_end_bindings (vars, mark_ends, dont_jump_in); | |
3007 | return; | |
3008 | } | |
3009 | ||
28d81abb RK |
3010 | if (warn_unused) |
3011 | for (decl = vars; decl; decl = TREE_CHAIN (decl)) | |
7e70e7c5 RS |
3012 | if (! TREE_USED (decl) && TREE_CODE (decl) == VAR_DECL |
3013 | && ! DECL_IN_SYSTEM_HEADER (decl)) | |
28d81abb RK |
3014 | warning_with_decl (decl, "unused variable `%s'"); |
3015 | ||
28d81abb RK |
3016 | if (thisblock->exit_label) |
3017 | { | |
3018 | do_pending_stack_adjust (); | |
3019 | emit_label (thisblock->exit_label); | |
3020 | } | |
3021 | ||
3022 | /* If necessary, make a handler for nonlocal gotos taking | |
3023 | place in the function calls in this block. */ | |
3024 | if (function_call_count != thisblock->data.block.function_call_count | |
3025 | && nonlocal_labels | |
3026 | /* Make handler for outermost block | |
3027 | if there were any nonlocal gotos to this function. */ | |
3028 | && (thisblock->next == 0 ? current_function_has_nonlocal_label | |
3029 | /* Make handler for inner block if it has something | |
3030 | special to do when you jump out of it. */ | |
3031 | : (thisblock->data.block.cleanups != 0 | |
3032 | || thisblock->data.block.stack_level != 0))) | |
3033 | { | |
3034 | tree link; | |
3035 | rtx afterward = gen_label_rtx (); | |
3036 | rtx handler_label = gen_label_rtx (); | |
3037 | rtx save_receiver = gen_reg_rtx (Pmode); | |
ba83886f | 3038 | rtx insns; |
28d81abb RK |
3039 | |
3040 | /* Don't let jump_optimize delete the handler. */ | |
3041 | LABEL_PRESERVE_P (handler_label) = 1; | |
3042 | ||
3043 | /* Record the handler address in the stack slot for that purpose, | |
3044 | during this block, saving and restoring the outer value. */ | |
3045 | if (thisblock->next != 0) | |
3046 | { | |
3047 | emit_move_insn (nonlocal_goto_handler_slot, save_receiver); | |
ba83886f RS |
3048 | |
3049 | start_sequence (); | |
3050 | emit_move_insn (save_receiver, nonlocal_goto_handler_slot); | |
3051 | insns = get_insns (); | |
3052 | end_sequence (); | |
3053 | emit_insns_before (insns, thisblock->data.block.first_insn); | |
28d81abb | 3054 | } |
ba83886f RS |
3055 | |
3056 | start_sequence (); | |
3057 | emit_move_insn (nonlocal_goto_handler_slot, | |
3058 | gen_rtx (LABEL_REF, Pmode, handler_label)); | |
3059 | insns = get_insns (); | |
3060 | end_sequence (); | |
3061 | emit_insns_before (insns, thisblock->data.block.first_insn); | |
28d81abb RK |
3062 | |
3063 | /* Jump around the handler; it runs only when specially invoked. */ | |
3064 | emit_jump (afterward); | |
3065 | emit_label (handler_label); | |
3066 | ||
3067 | #ifdef HAVE_nonlocal_goto | |
3068 | if (! HAVE_nonlocal_goto) | |
3069 | #endif | |
3070 | /* First adjust our frame pointer to its actual value. It was | |
3071 | previously set to the start of the virtual area corresponding to | |
3072 | the stacked variables when we branched here and now needs to be | |
3073 | adjusted to the actual hardware fp value. | |
3074 | ||
3075 | Assignments are to virtual registers are converted by | |
3076 | instantiate_virtual_regs into the corresponding assignment | |
3077 | to the underlying register (fp in this case) that makes | |
3078 | the original assignment true. | |
3079 | So the following insn will actually be | |
3080 | decrementing fp by STARTING_FRAME_OFFSET. */ | |
705e524e | 3081 | emit_move_insn (virtual_stack_vars_rtx, hard_frame_pointer_rtx); |
28d81abb | 3082 | |
a35ad168 | 3083 | #if ARG_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM |
28d81abb RK |
3084 | if (fixed_regs[ARG_POINTER_REGNUM]) |
3085 | { | |
42495ca0 RK |
3086 | #ifdef ELIMINABLE_REGS |
3087 | /* If the argument pointer can be eliminated in favor of the | |
3088 | frame pointer, we don't need to restore it. We assume here | |
3089 | that if such an elimination is present, it can always be used. | |
3090 | This is the case on all known machines; if we don't make this | |
3091 | assumption, we do unnecessary saving on many machines. */ | |
3092 | static struct elims {int from, to;} elim_regs[] = ELIMINABLE_REGS; | |
3093 | int i; | |
3094 | ||
3095 | for (i = 0; i < sizeof elim_regs / sizeof elim_regs[0]; i++) | |
3096 | if (elim_regs[i].from == ARG_POINTER_REGNUM | |
a35ad168 | 3097 | && elim_regs[i].to == HARD_FRAME_POINTER_REGNUM) |
42495ca0 RK |
3098 | break; |
3099 | ||
3100 | if (i == sizeof elim_regs / sizeof elim_regs [0]) | |
3101 | #endif | |
3102 | { | |
3103 | /* Now restore our arg pointer from the address at which it | |
3104 | was saved in our stack frame. | |
3105 | If there hasn't be space allocated for it yet, make | |
3106 | some now. */ | |
3107 | if (arg_pointer_save_area == 0) | |
3108 | arg_pointer_save_area | |
3109 | = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0); | |
3110 | emit_move_insn (virtual_incoming_args_rtx, | |
3111 | /* We need a pseudo here, or else | |
3112 | instantiate_virtual_regs_1 complains. */ | |
3113 | copy_to_reg (arg_pointer_save_area)); | |
3114 | } | |
28d81abb RK |
3115 | } |
3116 | #endif | |
3117 | ||
3118 | /* The handler expects the desired label address in the static chain | |
3119 | register. It tests the address and does an appropriate jump | |
3120 | to whatever label is desired. */ | |
3121 | for (link = nonlocal_labels; link; link = TREE_CHAIN (link)) | |
3122 | /* Skip any labels we shouldn't be able to jump to from here. */ | |
3123 | if (! DECL_TOO_LATE (TREE_VALUE (link))) | |
3124 | { | |
3125 | rtx not_this = gen_label_rtx (); | |
3126 | rtx this = gen_label_rtx (); | |
3127 | do_jump_if_equal (static_chain_rtx, | |
3128 | gen_rtx (LABEL_REF, Pmode, DECL_RTL (TREE_VALUE (link))), | |
3129 | this, 0); | |
3130 | emit_jump (not_this); | |
3131 | emit_label (this); | |
3132 | expand_goto (TREE_VALUE (link)); | |
3133 | emit_label (not_this); | |
3134 | } | |
3135 | /* If label is not recognized, abort. */ | |
3136 | emit_library_call (gen_rtx (SYMBOL_REF, Pmode, "abort"), 0, | |
3137 | VOIDmode, 0); | |
a3fd7507 | 3138 | emit_barrier (); |
28d81abb RK |
3139 | emit_label (afterward); |
3140 | } | |
3141 | ||
3142 | /* Don't allow jumping into a block that has cleanups or a stack level. */ | |
3143 | if (dont_jump_in | |
3144 | || thisblock->data.block.stack_level != 0 | |
3145 | || thisblock->data.block.cleanups != 0) | |
3146 | { | |
3147 | struct label_chain *chain; | |
3148 | ||
3149 | /* Any labels in this block are no longer valid to go to. | |
3150 | Mark them to cause an error message. */ | |
3151 | for (chain = thisblock->data.block.label_chain; chain; chain = chain->next) | |
3152 | { | |
3153 | DECL_TOO_LATE (chain->label) = 1; | |
3154 | /* If any goto without a fixup came to this label, | |
3155 | that must be an error, because gotos without fixups | |
3156 | come from outside all saved stack-levels and all cleanups. */ | |
3157 | if (TREE_ADDRESSABLE (chain->label)) | |
3158 | error_with_decl (chain->label, | |
3159 | "label `%s' used before containing binding contour"); | |
3160 | } | |
3161 | } | |
3162 | ||
3163 | /* Restore stack level in effect before the block | |
3164 | (only if variable-size objects allocated). */ | |
3165 | /* Perform any cleanups associated with the block. */ | |
3166 | ||
3167 | if (thisblock->data.block.stack_level != 0 | |
3168 | || thisblock->data.block.cleanups != 0) | |
3169 | { | |
413ec213 | 3170 | /* Only clean up here if this point can actually be reached. */ |
50d1b7a1 | 3171 | int reachable = GET_CODE (get_last_insn ()) != BARRIER; |
28d81abb | 3172 | |
50d1b7a1 MS |
3173 | /* Don't let cleanups affect ({...}) constructs. */ |
3174 | int old_expr_stmts_for_value = expr_stmts_for_value; | |
3175 | rtx old_last_expr_value = last_expr_value; | |
3176 | tree old_last_expr_type = last_expr_type; | |
3177 | expr_stmts_for_value = 0; | |
28d81abb | 3178 | |
50d1b7a1 MS |
3179 | /* Do the cleanups. */ |
3180 | expand_cleanups (thisblock->data.block.cleanups, NULL_TREE, 0, reachable); | |
3181 | if (reachable) | |
3182 | do_pending_stack_adjust (); | |
28d81abb | 3183 | |
50d1b7a1 MS |
3184 | expr_stmts_for_value = old_expr_stmts_for_value; |
3185 | last_expr_value = old_last_expr_value; | |
3186 | last_expr_type = old_last_expr_type; | |
3187 | ||
3188 | /* Restore the stack level. */ | |
3189 | ||
3190 | if (reachable && thisblock->data.block.stack_level != 0) | |
3191 | { | |
3192 | emit_stack_restore (thisblock->next ? SAVE_BLOCK : SAVE_FUNCTION, | |
3193 | thisblock->data.block.stack_level, NULL_RTX); | |
3194 | if (nonlocal_goto_handler_slot != 0) | |
3195 | emit_stack_save (SAVE_NONLOCAL, &nonlocal_goto_stack_level, | |
3196 | NULL_RTX); | |
28d81abb RK |
3197 | } |
3198 | ||
3199 | /* Any gotos out of this block must also do these things. | |
59257ff7 RK |
3200 | Also report any gotos with fixups that came to labels in this |
3201 | level. */ | |
28d81abb RK |
3202 | fixup_gotos (thisblock, |
3203 | thisblock->data.block.stack_level, | |
3204 | thisblock->data.block.cleanups, | |
3205 | thisblock->data.block.first_insn, | |
3206 | dont_jump_in); | |
3207 | } | |
3208 | ||
c7d2d61d RS |
3209 | /* Mark the beginning and end of the scope if requested. |
3210 | We do this now, after running cleanups on the variables | |
3211 | just going out of scope, so they are in scope for their cleanups. */ | |
3212 | ||
3213 | if (mark_ends) | |
7629c936 | 3214 | last_block_end_note = emit_note (NULL_PTR, NOTE_INSN_BLOCK_END); |
c7d2d61d RS |
3215 | else |
3216 | /* Get rid of the beginning-mark if we don't make an end-mark. */ | |
3217 | NOTE_LINE_NUMBER (thisblock->data.block.first_insn) = NOTE_INSN_DELETED; | |
3218 | ||
28d81abb RK |
3219 | /* If doing stupid register allocation, make sure lives of all |
3220 | register variables declared here extend thru end of scope. */ | |
3221 | ||
3222 | if (obey_regdecls) | |
3223 | for (decl = vars; decl; decl = TREE_CHAIN (decl)) | |
3224 | { | |
3225 | rtx rtl = DECL_RTL (decl); | |
3226 | if (TREE_CODE (decl) == VAR_DECL && rtl != 0) | |
3227 | use_variable (rtl); | |
3228 | } | |
3229 | ||
3230 | /* Restore block_stack level for containing block. */ | |
3231 | ||
3232 | stack_block_stack = thisblock->data.block.innermost_stack_block; | |
3233 | POPSTACK (block_stack); | |
3234 | ||
3235 | /* Pop the stack slot nesting and free any slots at this level. */ | |
3236 | pop_temp_slots (); | |
3237 | } | |
ca695ac9 JB |
3238 | |
3239 | ||
3240 | /* End a binding contour. | |
3241 | VARS is the chain of VAR_DECL nodes for the variables bound | |
3242 | in this contour. MARK_ENDS is nonzer if we should put a note | |
3243 | at the beginning and end of this binding contour. | |
3244 | DONT_JUMP_IN is nonzero if it is not valid to jump into this | |
3245 | contour. */ | |
3246 | ||
704f4dca | 3247 | static void |
ca695ac9 JB |
3248 | bc_expand_end_bindings (vars, mark_ends, dont_jump_in) |
3249 | tree vars; | |
3250 | int mark_ends; | |
3251 | int dont_jump_in; | |
3252 | { | |
3253 | struct nesting *thisbind = nesting_stack; | |
3254 | tree decl; | |
3255 | ||
3256 | if (warn_unused) | |
3257 | for (decl = vars; decl; decl = TREE_CHAIN (decl)) | |
3258 | if (! TREE_USED (TREE_VALUE (decl)) && TREE_CODE (TREE_VALUE (decl)) == VAR_DECL) | |
3259 | warning_with_decl (decl, "unused variable `%s'"); | |
3260 | ||
8e2b13c3 RK |
3261 | if (thisbind->exit_label) |
3262 | bc_emit_bytecode_labeldef (BYTECODE_BC_LABEL (thisbind->exit_label)); | |
ca695ac9 JB |
3263 | |
3264 | /* Pop block/bindings off stack */ | |
ca695ac9 JB |
3265 | POPSTACK (block_stack); |
3266 | } | |
28d81abb RK |
3267 | \f |
3268 | /* Generate RTL for the automatic variable declaration DECL. | |
3269 | (Other kinds of declarations are simply ignored if seen here.) | |
3270 | CLEANUP is an expression to be executed at exit from this binding contour; | |
3271 | for example, in C++, it might call the destructor for this variable. | |
3272 | ||
3273 | If CLEANUP contains any SAVE_EXPRs, then you must preevaluate them | |
3274 | either before or after calling `expand_decl' but before compiling | |
3275 | any subsequent expressions. This is because CLEANUP may be expanded | |
3276 | more than once, on different branches of execution. | |
3277 | For the same reason, CLEANUP may not contain a CALL_EXPR | |
3278 | except as its topmost node--else `preexpand_calls' would get confused. | |
3279 | ||
3280 | If CLEANUP is nonzero and DECL is zero, we record a cleanup | |
3281 | that is not associated with any particular variable. | |
3282 | ||
3283 | There is no special support here for C++ constructors. | |
3284 | They should be handled by the proper code in DECL_INITIAL. */ | |
3285 | ||
3286 | void | |
3287 | expand_decl (decl) | |
3288 | register tree decl; | |
3289 | { | |
3290 | struct nesting *thisblock = block_stack; | |
ca695ac9 JB |
3291 | tree type; |
3292 | ||
3293 | if (output_bytecode) | |
3294 | { | |
3295 | bc_expand_decl (decl, 0); | |
3296 | return; | |
3297 | } | |
3298 | ||
3299 | type = TREE_TYPE (decl); | |
28d81abb RK |
3300 | |
3301 | /* Only automatic variables need any expansion done. | |
3302 | Static and external variables, and external functions, | |
3303 | will be handled by `assemble_variable' (called from finish_decl). | |
3304 | TYPE_DECL and CONST_DECL require nothing. | |
3305 | PARM_DECLs are handled in `assign_parms'. */ | |
3306 | ||
3307 | if (TREE_CODE (decl) != VAR_DECL) | |
3308 | return; | |
44fe2e80 | 3309 | if (TREE_STATIC (decl) || DECL_EXTERNAL (decl)) |
28d81abb RK |
3310 | return; |
3311 | ||
3312 | /* Create the RTL representation for the variable. */ | |
3313 | ||
3314 | if (type == error_mark_node) | |
3315 | DECL_RTL (decl) = gen_rtx (MEM, BLKmode, const0_rtx); | |
3316 | else if (DECL_SIZE (decl) == 0) | |
3317 | /* Variable with incomplete type. */ | |
3318 | { | |
3319 | if (DECL_INITIAL (decl) == 0) | |
3320 | /* Error message was already done; now avoid a crash. */ | |
3321 | DECL_RTL (decl) = assign_stack_temp (DECL_MODE (decl), 0, 1); | |
3322 | else | |
3323 | /* An initializer is going to decide the size of this array. | |
3324 | Until we know the size, represent its address with a reg. */ | |
3325 | DECL_RTL (decl) = gen_rtx (MEM, BLKmode, gen_reg_rtx (Pmode)); | |
3668e76e | 3326 | MEM_IN_STRUCT_P (DECL_RTL (decl)) = AGGREGATE_TYPE_P (type); |
28d81abb RK |
3327 | } |
3328 | else if (DECL_MODE (decl) != BLKmode | |
3329 | /* If -ffloat-store, don't put explicit float vars | |
3330 | into regs. */ | |
3331 | && !(flag_float_store | |
3332 | && TREE_CODE (type) == REAL_TYPE) | |
3333 | && ! TREE_THIS_VOLATILE (decl) | |
3334 | && ! TREE_ADDRESSABLE (decl) | |
44fe2e80 | 3335 | && (DECL_REGISTER (decl) || ! obey_regdecls)) |
28d81abb RK |
3336 | { |
3337 | /* Automatic variable that can go in a register. */ | |
98f3b471 | 3338 | int unsignedp = TREE_UNSIGNED (type); |
28612f9e RK |
3339 | enum machine_mode reg_mode |
3340 | = promote_mode (type, DECL_MODE (decl), &unsignedp, 0); | |
98f3b471 | 3341 | |
5998c7dc RS |
3342 | if (TREE_CODE (type) == COMPLEX_TYPE) |
3343 | { | |
3344 | rtx realpart, imagpart; | |
3345 | enum machine_mode partmode = TYPE_MODE (TREE_TYPE (type)); | |
3346 | ||
3347 | /* For a complex type variable, make a CONCAT of two pseudos | |
3348 | so that the real and imaginary parts | |
3349 | can be allocated separately. */ | |
3350 | realpart = gen_reg_rtx (partmode); | |
3351 | REG_USERVAR_P (realpart) = 1; | |
3352 | imagpart = gen_reg_rtx (partmode); | |
3353 | REG_USERVAR_P (imagpart) = 1; | |
3354 | DECL_RTL (decl) = gen_rtx (CONCAT, reg_mode, realpart, imagpart); | |
3355 | } | |
3356 | else | |
3357 | { | |
3358 | DECL_RTL (decl) = gen_reg_rtx (reg_mode); | |
3359 | if (TREE_CODE (type) == POINTER_TYPE) | |
3360 | mark_reg_pointer (DECL_RTL (decl)); | |
3361 | REG_USERVAR_P (DECL_RTL (decl)) = 1; | |
3362 | } | |
28d81abb RK |
3363 | } |
3364 | else if (TREE_CODE (DECL_SIZE (decl)) == INTEGER_CST) | |
3365 | { | |
3366 | /* Variable of fixed size that goes on the stack. */ | |
3367 | rtx oldaddr = 0; | |
3368 | rtx addr; | |
3369 | ||
3370 | /* If we previously made RTL for this decl, it must be an array | |
3371 | whose size was determined by the initializer. | |
3372 | The old address was a register; set that register now | |
3373 | to the proper address. */ | |
3374 | if (DECL_RTL (decl) != 0) | |
3375 | { | |
3376 | if (GET_CODE (DECL_RTL (decl)) != MEM | |
3377 | || GET_CODE (XEXP (DECL_RTL (decl), 0)) != REG) | |
3378 | abort (); | |
3379 | oldaddr = XEXP (DECL_RTL (decl), 0); | |
3380 | } | |
3381 | ||
3382 | DECL_RTL (decl) | |
3383 | = assign_stack_temp (DECL_MODE (decl), | |
3384 | ((TREE_INT_CST_LOW (DECL_SIZE (decl)) | |
3385 | + BITS_PER_UNIT - 1) | |
3386 | / BITS_PER_UNIT), | |
3387 | 1); | |
3668e76e | 3388 | MEM_IN_STRUCT_P (DECL_RTL (decl)) = AGGREGATE_TYPE_P (TREE_TYPE (decl)); |
28d81abb RK |
3389 | |
3390 | /* Set alignment we actually gave this decl. */ | |
3391 | DECL_ALIGN (decl) = (DECL_MODE (decl) == BLKmode ? BIGGEST_ALIGNMENT | |
3392 | : GET_MODE_BITSIZE (DECL_MODE (decl))); | |
3393 | ||
3394 | if (oldaddr) | |
3395 | { | |
3396 | addr = force_operand (XEXP (DECL_RTL (decl), 0), oldaddr); | |
3397 | if (addr != oldaddr) | |
3398 | emit_move_insn (oldaddr, addr); | |
3399 | } | |
3400 | ||
3401 | /* If this is a memory ref that contains aggregate components, | |
3402 | mark it as such for cse and loop optimize. */ | |
05e3bdb9 | 3403 | MEM_IN_STRUCT_P (DECL_RTL (decl)) = AGGREGATE_TYPE_P (TREE_TYPE (decl)); |
28d81abb RK |
3404 | #if 0 |
3405 | /* If this is in memory because of -ffloat-store, | |
3406 | set the volatile bit, to prevent optimizations from | |
3407 | undoing the effects. */ | |
3408 | if (flag_float_store && TREE_CODE (type) == REAL_TYPE) | |
3409 | MEM_VOLATILE_P (DECL_RTL (decl)) = 1; | |
3410 | #endif | |
3411 | } | |
3412 | else | |
3413 | /* Dynamic-size object: must push space on the stack. */ | |
3414 | { | |
3415 | rtx address, size; | |
3416 | ||
3417 | /* Record the stack pointer on entry to block, if have | |
3418 | not already done so. */ | |
3419 | if (thisblock->data.block.stack_level == 0) | |
3420 | { | |
3421 | do_pending_stack_adjust (); | |
59257ff7 RK |
3422 | emit_stack_save (thisblock->next ? SAVE_BLOCK : SAVE_FUNCTION, |
3423 | &thisblock->data.block.stack_level, | |
3424 | thisblock->data.block.first_insn); | |
28d81abb RK |
3425 | stack_block_stack = thisblock; |
3426 | } | |
3427 | ||
3428 | /* Compute the variable's size, in bytes. */ | |
3429 | size = expand_expr (size_binop (CEIL_DIV_EXPR, | |
3430 | DECL_SIZE (decl), | |
3431 | size_int (BITS_PER_UNIT)), | |
37366632 | 3432 | NULL_RTX, VOIDmode, 0); |
28d81abb RK |
3433 | free_temp_slots (); |
3434 | ||
3435 | /* Allocate space on the stack for the variable. */ | |
37366632 RK |
3436 | address = allocate_dynamic_stack_space (size, NULL_RTX, |
3437 | DECL_ALIGN (decl)); | |
28d81abb | 3438 | |
28d81abb RK |
3439 | /* Reference the variable indirect through that rtx. */ |
3440 | DECL_RTL (decl) = gen_rtx (MEM, DECL_MODE (decl), address); | |
3441 | ||
2207e295 RS |
3442 | /* If this is a memory ref that contains aggregate components, |
3443 | mark it as such for cse and loop optimize. */ | |
05e3bdb9 | 3444 | MEM_IN_STRUCT_P (DECL_RTL (decl)) = AGGREGATE_TYPE_P (TREE_TYPE (decl)); |
2207e295 | 3445 | |
28d81abb RK |
3446 | /* Indicate the alignment we actually gave this variable. */ |
3447 | #ifdef STACK_BOUNDARY | |
3448 | DECL_ALIGN (decl) = STACK_BOUNDARY; | |
3449 | #else | |
3450 | DECL_ALIGN (decl) = BIGGEST_ALIGNMENT; | |
3451 | #endif | |
3452 | } | |
3453 | ||
3454 | if (TREE_THIS_VOLATILE (decl)) | |
3455 | MEM_VOLATILE_P (DECL_RTL (decl)) = 1; | |
b4bf13a8 RS |
3456 | #if 0 /* A variable is not necessarily unchanging |
3457 | just because it is const. RTX_UNCHANGING_P | |
3458 | means no change in the function, | |
3459 | not merely no change in the variable's scope. | |
3460 | It is correct to set RTX_UNCHANGING_P if the variable's scope | |
3461 | is the whole function. There's no convenient way to test that. */ | |
28d81abb RK |
3462 | if (TREE_READONLY (decl)) |
3463 | RTX_UNCHANGING_P (DECL_RTL (decl)) = 1; | |
b4bf13a8 | 3464 | #endif |
28d81abb RK |
3465 | |
3466 | /* If doing stupid register allocation, make sure life of any | |
3467 | register variable starts here, at the start of its scope. */ | |
3468 | ||
3469 | if (obey_regdecls) | |
3470 | use_variable (DECL_RTL (decl)); | |
3471 | } | |
ca695ac9 JB |
3472 | |
3473 | ||
3474 | /* Generate code for the automatic variable declaration DECL. For | |
3475 | most variables this just means we give it a stack offset. The | |
3476 | compiler sometimes emits cleanups without variables and we will | |
3477 | have to deal with those too. */ | |
3478 | ||
704f4dca | 3479 | static void |
ca695ac9 JB |
3480 | bc_expand_decl (decl, cleanup) |
3481 | tree decl; | |
3482 | tree cleanup; | |
3483 | { | |
3484 | tree type; | |
3485 | ||
3486 | if (!decl) | |
3487 | { | |
3488 | /* A cleanup with no variable. */ | |
3489 | if (!cleanup) | |
3490 | abort (); | |
3491 | ||
3492 | return; | |
3493 | } | |
3494 | ||
3495 | /* Only auto variables need any work. */ | |
3496 | if (TREE_CODE (decl) != VAR_DECL || TREE_STATIC (decl) || DECL_EXTERNAL (decl)) | |
3497 | return; | |
3498 | ||
3499 | type = TREE_TYPE (decl); | |
3500 | ||
3501 | if (type == error_mark_node) | |
3502 | DECL_RTL (decl) = bc_gen_rtx ((char *) 0, 0, (struct bc_label *) 0); | |
3503 | ||
3504 | else if (DECL_SIZE (decl) == 0) | |
3505 | ||
3506 | /* Variable with incomplete type. The stack offset herein will be | |
3507 | fixed later in expand_decl_init (). */ | |
3508 | DECL_RTL (decl) = bc_gen_rtx ((char *) 0, 0, (struct bc_label *) 0); | |
3509 | ||
3510 | else if (TREE_CONSTANT (DECL_SIZE (decl))) | |
3511 | { | |
3512 | DECL_RTL (decl) = bc_allocate_local (TREE_INT_CST_LOW (DECL_SIZE (decl)) / BITS_PER_UNIT, | |
3513 | DECL_ALIGN (decl)); | |
3514 | } | |
3515 | else | |
3516 | DECL_RTL (decl) = bc_allocate_variable_array (DECL_SIZE (decl)); | |
3517 | } | |
28d81abb RK |
3518 | \f |
3519 | /* Emit code to perform the initialization of a declaration DECL. */ | |
3520 | ||
3521 | void | |
3522 | expand_decl_init (decl) | |
3523 | tree decl; | |
3524 | { | |
b4ac57ab RS |
3525 | int was_used = TREE_USED (decl); |
3526 | ||
704f4dca RK |
3527 | if (output_bytecode) |
3528 | { | |
3529 | bc_expand_decl_init (decl); | |
3530 | return; | |
3531 | } | |
3532 | ||
3564e40e RK |
3533 | /* If this is a CONST_DECL, we don't have to generate any code, but |
3534 | if DECL_INITIAL is a constant, call expand_expr to force TREE_CST_RTL | |
3535 | to be set while in the obstack containing the constant. If we don't | |
3536 | do this, we can lose if we have functions nested three deep and the middle | |
3537 | function makes a CONST_DECL whose DECL_INITIAL is a STRING_CST while | |
3538 | the innermost function is the first to expand that STRING_CST. */ | |
3539 | if (TREE_CODE (decl) == CONST_DECL) | |
3540 | { | |
3541 | if (DECL_INITIAL (decl) && TREE_CONSTANT (DECL_INITIAL (decl))) | |
3542 | expand_expr (DECL_INITIAL (decl), NULL_RTX, VOIDmode, | |
3543 | EXPAND_INITIALIZER); | |
3544 | return; | |
3545 | } | |
3546 | ||
28d81abb RK |
3547 | if (TREE_STATIC (decl)) |
3548 | return; | |
3549 | ||
3550 | /* Compute and store the initial value now. */ | |
3551 | ||
3552 | if (DECL_INITIAL (decl) == error_mark_node) | |
3553 | { | |
3554 | enum tree_code code = TREE_CODE (TREE_TYPE (decl)); | |
3555 | if (code == INTEGER_TYPE || code == REAL_TYPE || code == ENUMERAL_TYPE | |
3556 | || code == POINTER_TYPE) | |
3557 | expand_assignment (decl, convert (TREE_TYPE (decl), integer_zero_node), | |
3558 | 0, 0); | |
3559 | emit_queue (); | |
3560 | } | |
3561 | else if (DECL_INITIAL (decl) && TREE_CODE (DECL_INITIAL (decl)) != TREE_LIST) | |
3562 | { | |
3563 | emit_line_note (DECL_SOURCE_FILE (decl), DECL_SOURCE_LINE (decl)); | |
3564 | expand_assignment (decl, DECL_INITIAL (decl), 0, 0); | |
3565 | emit_queue (); | |
3566 | } | |
3567 | ||
b4ac57ab RS |
3568 | /* Don't let the initialization count as "using" the variable. */ |
3569 | TREE_USED (decl) = was_used; | |
3570 | ||
28d81abb | 3571 | /* Free any temporaries we made while initializing the decl. */ |
ae8c59c0 | 3572 | preserve_temp_slots (NULL_RTX); |
28d81abb RK |
3573 | free_temp_slots (); |
3574 | } | |
3575 | ||
ca695ac9 JB |
3576 | /* Expand initialization for variable-sized types. Allocate array |
3577 | using newlocalSI and set local variable, which is a pointer to the | |
3578 | storage. */ | |
3579 | ||
704f4dca | 3580 | static void |
ca695ac9 JB |
3581 | bc_expand_variable_local_init (decl) |
3582 | tree decl; | |
3583 | { | |
3584 | /* Evaluate size expression and coerce to SI */ | |
3585 | bc_expand_expr (DECL_SIZE (decl)); | |
3586 | ||
3587 | /* Type sizes are always (?) of TREE_CODE INTEGER_CST, so | |
3588 | no coercion is necessary (?) */ | |
3589 | ||
3590 | /* emit_typecode_conversion (preferred_typecode (TYPE_MODE (DECL_SIZE (decl)), | |
3591 | TREE_UNSIGNED (DECL_SIZE (decl))), SIcode); */ | |
3592 | ||
3593 | /* Emit code to allocate array */ | |
3594 | bc_emit_instruction (newlocalSI); | |
3595 | ||
3596 | /* Store array pointer in local variable. This is the only instance | |
3597 | where we actually want the address of the pointer to the | |
3598 | variable-size block, rather than the pointer itself. We avoid | |
3599 | using expand_address() since that would cause the pointer to be | |
3600 | pushed rather than its address. Hence the hard-coded reference; | |
3601 | notice also that the variable is always local (no global | |
3602 | variable-size type variables). */ | |
3603 | ||
3604 | bc_load_localaddr (DECL_RTL (decl)); | |
3605 | bc_emit_instruction (storeP); | |
3606 | } | |
3607 | ||
3608 | ||
3609 | /* Emit code to initialize a declaration. */ | |
704f4dca RK |
3610 | |
3611 | static void | |
ca695ac9 JB |
3612 | bc_expand_decl_init (decl) |
3613 | tree decl; | |
3614 | { | |
3615 | int org_stack_depth; | |
3616 | ||
3617 | /* Statical initializers are handled elsewhere */ | |
3618 | ||
3619 | if (TREE_STATIC (decl)) | |
3620 | return; | |
3621 | ||
3622 | /* Memory original stack depth */ | |
3623 | org_stack_depth = stack_depth; | |
3624 | ||
3625 | /* If the type is variable-size, we first create its space (we ASSUME | |
3626 | it CAN'T be static). We do this regardless of whether there's an | |
3627 | initializer assignment or not. */ | |
3628 | ||
3629 | if (TREE_CODE (DECL_SIZE (decl)) != INTEGER_CST) | |
3630 | bc_expand_variable_local_init (decl); | |
3631 | ||
3632 | /* Expand initializer assignment */ | |
3633 | if (DECL_INITIAL (decl) == error_mark_node) | |
3634 | { | |
3635 | enum tree_code code = TREE_CODE (TREE_TYPE (decl)); | |
3636 | ||
3637 | if (code == INTEGER_TYPE || code == REAL_TYPE || code == ENUMERAL_TYPE | |
3638 | || code == POINTER_TYPE) | |
3639 | ||
e81d77b5 | 3640 | expand_assignment (TREE_TYPE (decl), decl, 0, 0); |
ca695ac9 JB |
3641 | } |
3642 | else if (DECL_INITIAL (decl)) | |
e81d77b5 | 3643 | expand_assignment (TREE_TYPE (decl), decl, 0, 0); |
ca695ac9 JB |
3644 | |
3645 | /* Restore stack depth */ | |
3646 | if (org_stack_depth > stack_depth) | |
3647 | abort (); | |
3648 | ||
3649 | bc_adjust_stack (stack_depth - org_stack_depth); | |
3650 | } | |
3651 | ||
3652 | ||
28d81abb RK |
3653 | /* CLEANUP is an expression to be executed at exit from this binding contour; |
3654 | for example, in C++, it might call the destructor for this variable. | |
3655 | ||
3656 | If CLEANUP contains any SAVE_EXPRs, then you must preevaluate them | |
3657 | either before or after calling `expand_decl' but before compiling | |
3658 | any subsequent expressions. This is because CLEANUP may be expanded | |
3659 | more than once, on different branches of execution. | |
3660 | For the same reason, CLEANUP may not contain a CALL_EXPR | |
3661 | except as its topmost node--else `preexpand_calls' would get confused. | |
3662 | ||
3663 | If CLEANUP is nonzero and DECL is zero, we record a cleanup | |
3664 | that is not associated with any particular variable. */ | |
3665 | ||
3666 | int | |
3667 | expand_decl_cleanup (decl, cleanup) | |
3668 | tree decl, cleanup; | |
3669 | { | |
3670 | struct nesting *thisblock = block_stack; | |
3671 | ||
3672 | /* Error if we are not in any block. */ | |
3673 | if (thisblock == 0) | |
3674 | return 0; | |
3675 | ||
3676 | /* Record the cleanup if there is one. */ | |
3677 | ||
3678 | if (cleanup != 0) | |
3679 | { | |
3680 | thisblock->data.block.cleanups | |
3681 | = temp_tree_cons (decl, cleanup, thisblock->data.block.cleanups); | |
3682 | /* If this block has a cleanup, it belongs in stack_block_stack. */ | |
3683 | stack_block_stack = thisblock; | |
61d6b1cc | 3684 | (*interim_eh_hook) (NULL_TREE); |
28d81abb RK |
3685 | } |
3686 | return 1; | |
3687 | } | |
3688 | \f | |
3689 | /* DECL is an anonymous union. CLEANUP is a cleanup for DECL. | |
3690 | DECL_ELTS is the list of elements that belong to DECL's type. | |
3691 | In each, the TREE_VALUE is a VAR_DECL, and the TREE_PURPOSE a cleanup. */ | |
3692 | ||
3693 | void | |
3694 | expand_anon_union_decl (decl, cleanup, decl_elts) | |
3695 | tree decl, cleanup, decl_elts; | |
3696 | { | |
3697 | struct nesting *thisblock = block_stack; | |
3698 | rtx x; | |
3699 | ||
3700 | expand_decl (decl, cleanup); | |
3701 | x = DECL_RTL (decl); | |
3702 | ||
3703 | while (decl_elts) | |
3704 | { | |
3705 | tree decl_elt = TREE_VALUE (decl_elts); | |
3706 | tree cleanup_elt = TREE_PURPOSE (decl_elts); | |
3707 | enum machine_mode mode = TYPE_MODE (TREE_TYPE (decl_elt)); | |
3708 | ||
7b9032dd JM |
3709 | /* Propagate the union's alignment to the elements. */ |
3710 | DECL_ALIGN (decl_elt) = DECL_ALIGN (decl); | |
3711 | ||
3712 | /* If the element has BLKmode and the union doesn't, the union is | |
3713 | aligned such that the element doesn't need to have BLKmode, so | |
3714 | change the element's mode to the appropriate one for its size. */ | |
3715 | if (mode == BLKmode && DECL_MODE (decl) != BLKmode) | |
3716 | DECL_MODE (decl_elt) = mode | |
3717 | = mode_for_size (TREE_INT_CST_LOW (DECL_SIZE (decl_elt)), | |
3718 | MODE_INT, 1); | |
3719 | ||
28d81abb RK |
3720 | /* (SUBREG (MEM ...)) at RTL generation time is invalid, so we |
3721 | instead create a new MEM rtx with the proper mode. */ | |
3722 | if (GET_CODE (x) == MEM) | |
3723 | { | |
3724 | if (mode == GET_MODE (x)) | |
3725 | DECL_RTL (decl_elt) = x; | |
3726 | else | |
3727 | { | |
3728 | DECL_RTL (decl_elt) = gen_rtx (MEM, mode, copy_rtx (XEXP (x, 0))); | |
3729 | MEM_IN_STRUCT_P (DECL_RTL (decl_elt)) = MEM_IN_STRUCT_P (x); | |
3730 | RTX_UNCHANGING_P (DECL_RTL (decl_elt)) = RTX_UNCHANGING_P (x); | |
3731 | } | |
3732 | } | |
3733 | else if (GET_CODE (x) == REG) | |
3734 | { | |
3735 | if (mode == GET_MODE (x)) | |
3736 | DECL_RTL (decl_elt) = x; | |
3737 | else | |
3738 | DECL_RTL (decl_elt) = gen_rtx (SUBREG, mode, x, 0); | |
3739 | } | |
3740 | else | |
3741 | abort (); | |
3742 | ||
3743 | /* Record the cleanup if there is one. */ | |
3744 | ||
3745 | if (cleanup != 0) | |
3746 | thisblock->data.block.cleanups | |
3747 | = temp_tree_cons (decl_elt, cleanup_elt, | |
3748 | thisblock->data.block.cleanups); | |
3749 | ||
3750 | decl_elts = TREE_CHAIN (decl_elts); | |
3751 | } | |
3752 | } | |
3753 | \f | |
3754 | /* Expand a list of cleanups LIST. | |
3755 | Elements may be expressions or may be nested lists. | |
3756 | ||
3757 | If DONT_DO is nonnull, then any list-element | |
3758 | whose TREE_PURPOSE matches DONT_DO is omitted. | |
3759 | This is sometimes used to avoid a cleanup associated with | |
4e44807b MS |
3760 | a value that is being returned out of the scope. |
3761 | ||
3762 | If IN_FIXUP is non-zero, we are generating this cleanup for a fixup | |
50d1b7a1 MS |
3763 | goto and handle protection regions specially in that case. |
3764 | ||
3765 | If REACHABLE, we emit code, otherwise just inform the exception handling | |
3766 | code about this finalization. */ | |
28d81abb RK |
3767 | |
3768 | static void | |
50d1b7a1 | 3769 | expand_cleanups (list, dont_do, in_fixup, reachable) |
28d81abb RK |
3770 | tree list; |
3771 | tree dont_do; | |
4e44807b | 3772 | int in_fixup; |
50d1b7a1 | 3773 | int reachable; |
28d81abb RK |
3774 | { |
3775 | tree tail; | |
3776 | for (tail = list; tail; tail = TREE_CHAIN (tail)) | |
3777 | if (dont_do == 0 || TREE_PURPOSE (tail) != dont_do) | |
3778 | { | |
3779 | if (TREE_CODE (TREE_VALUE (tail)) == TREE_LIST) | |
50d1b7a1 | 3780 | expand_cleanups (TREE_VALUE (tail), dont_do, in_fixup, reachable); |
28d81abb RK |
3781 | else |
3782 | { | |
4e44807b MS |
3783 | if (! in_fixup) |
3784 | (*interim_eh_hook) (TREE_VALUE (tail)); | |
61d6b1cc | 3785 | |
50d1b7a1 MS |
3786 | if (reachable) |
3787 | { | |
3788 | /* Cleanups may be run multiple times. For example, | |
3789 | when exiting a binding contour, we expand the | |
3790 | cleanups associated with that contour. When a goto | |
3791 | within that binding contour has a target outside that | |
3792 | contour, it will expand all cleanups from its scope to | |
3793 | the target. Though the cleanups are expanded multiple | |
3794 | times, the control paths are non-overlapping so the | |
3795 | cleanups will not be executed twice. */ | |
3796 | expand_expr (TREE_VALUE (tail), const0_rtx, VOIDmode, 0); | |
3797 | free_temp_slots (); | |
3798 | } | |
28d81abb RK |
3799 | } |
3800 | } | |
3801 | } | |
3802 | ||
28d81abb RK |
3803 | /* Move all cleanups from the current block_stack |
3804 | to the containing block_stack, where they are assumed to | |
3805 | have been created. If anything can cause a temporary to | |
3806 | be created, but not expanded for more than one level of | |
3807 | block_stacks, then this code will have to change. */ | |
3808 | ||
3809 | void | |
3810 | move_cleanups_up () | |
3811 | { | |
3812 | struct nesting *block = block_stack; | |
3813 | struct nesting *outer = block->next; | |
3814 | ||
3815 | outer->data.block.cleanups | |
3816 | = chainon (block->data.block.cleanups, | |
3817 | outer->data.block.cleanups); | |
3818 | block->data.block.cleanups = 0; | |
3819 | } | |
3820 | ||
3821 | tree | |
3822 | last_cleanup_this_contour () | |
3823 | { | |
3824 | if (block_stack == 0) | |
3825 | return 0; | |
3826 | ||
3827 | return block_stack->data.block.cleanups; | |
3828 | } | |
3829 | ||
3830 | /* Return 1 if there are any pending cleanups at this point. | |
3831 | If THIS_CONTOUR is nonzero, check the current contour as well. | |
3832 | Otherwise, look only at the contours that enclose this one. */ | |
3833 | ||
3834 | int | |
3835 | any_pending_cleanups (this_contour) | |
3836 | int this_contour; | |
3837 | { | |
3838 | struct nesting *block; | |
3839 | ||
3840 | if (block_stack == 0) | |
3841 | return 0; | |
3842 | ||
3843 | if (this_contour && block_stack->data.block.cleanups != NULL) | |
3844 | return 1; | |
3845 | if (block_stack->data.block.cleanups == 0 | |
3846 | && (block_stack->data.block.outer_cleanups == 0 | |
3847 | #if 0 | |
3848 | || block_stack->data.block.outer_cleanups == empty_cleanup_list | |
3849 | #endif | |
3850 | )) | |
3851 | return 0; | |
3852 | ||
3853 | for (block = block_stack->next; block; block = block->next) | |
3854 | if (block->data.block.cleanups != 0) | |
3855 | return 1; | |
3856 | ||
3857 | return 0; | |
3858 | } | |
3859 | \f | |
3860 | /* Enter a case (Pascal) or switch (C) statement. | |
3861 | Push a block onto case_stack and nesting_stack | |
3862 | to accumulate the case-labels that are seen | |
3863 | and to record the labels generated for the statement. | |
3864 | ||
3865 | EXIT_FLAG is nonzero if `exit_something' should exit this case stmt. | |
3866 | Otherwise, this construct is transparent for `exit_something'. | |
3867 | ||
3868 | EXPR is the index-expression to be dispatched on. | |
3869 | TYPE is its nominal type. We could simply convert EXPR to this type, | |
3870 | but instead we take short cuts. */ | |
3871 | ||
3872 | void | |
3873 | expand_start_case (exit_flag, expr, type, printname) | |
3874 | int exit_flag; | |
3875 | tree expr; | |
3876 | tree type; | |
3877 | char *printname; | |
3878 | { | |
3879 | register struct nesting *thiscase = ALLOC_NESTING (); | |
3880 | ||
3881 | /* Make an entry on case_stack for the case we are entering. */ | |
3882 | ||
3883 | thiscase->next = case_stack; | |
3884 | thiscase->all = nesting_stack; | |
3885 | thiscase->depth = ++nesting_depth; | |
3886 | thiscase->exit_label = exit_flag ? gen_label_rtx () : 0; | |
3887 | thiscase->data.case_stmt.case_list = 0; | |
3888 | thiscase->data.case_stmt.index_expr = expr; | |
3889 | thiscase->data.case_stmt.nominal_type = type; | |
3890 | thiscase->data.case_stmt.default_label = 0; | |
3891 | thiscase->data.case_stmt.num_ranges = 0; | |
3892 | thiscase->data.case_stmt.printname = printname; | |
3893 | thiscase->data.case_stmt.seenlabel = 0; | |
3894 | case_stack = thiscase; | |
3895 | nesting_stack = thiscase; | |
3896 | ||
ca695ac9 JB |
3897 | if (output_bytecode) |
3898 | { | |
3899 | bc_expand_start_case (thiscase, expr, type, printname); | |
3900 | return; | |
3901 | } | |
3902 | ||
28d81abb RK |
3903 | do_pending_stack_adjust (); |
3904 | ||
3905 | /* Make sure case_stmt.start points to something that won't | |
3906 | need any transformation before expand_end_case. */ | |
3907 | if (GET_CODE (get_last_insn ()) != NOTE) | |
37366632 | 3908 | emit_note (NULL_PTR, NOTE_INSN_DELETED); |
28d81abb RK |
3909 | |
3910 | thiscase->data.case_stmt.start = get_last_insn (); | |
3911 | } | |
3912 | ||
ca695ac9 JB |
3913 | |
3914 | /* Enter a case statement. It is assumed that the caller has pushed | |
3915 | the current context onto the case stack. */ | |
704f4dca RK |
3916 | |
3917 | static void | |
ca695ac9 JB |
3918 | bc_expand_start_case (thiscase, expr, type, printname) |
3919 | struct nesting *thiscase; | |
3920 | tree expr; | |
3921 | tree type; | |
3922 | char *printname; | |
3923 | { | |
3924 | bc_expand_expr (expr); | |
3925 | bc_expand_conversion (TREE_TYPE (expr), type); | |
3926 | ||
3927 | /* For cases, the skip is a place we jump to that's emitted after | |
3928 | the size of the jump table is known. */ | |
3929 | ||
3930 | thiscase->data.case_stmt.skip_label = gen_label_rtx (); | |
3931 | bc_emit_bytecode (jump); | |
c53e9440 | 3932 | bc_emit_bytecode_labelref (BYTECODE_BC_LABEL (thiscase->data.case_stmt.skip_label)); |
ca695ac9 JB |
3933 | |
3934 | #ifdef DEBUG_PRINT_CODE | |
3935 | fputc ('\n', stderr); | |
3936 | #endif | |
3937 | } | |
3938 | ||
3939 | ||
28d81abb RK |
3940 | /* Start a "dummy case statement" within which case labels are invalid |
3941 | and are not connected to any larger real case statement. | |
3942 | This can be used if you don't want to let a case statement jump | |
3943 | into the middle of certain kinds of constructs. */ | |
3944 | ||
3945 | void | |
3946 | expand_start_case_dummy () | |
3947 | { | |
3948 | register struct nesting *thiscase = ALLOC_NESTING (); | |
3949 | ||
3950 | /* Make an entry on case_stack for the dummy. */ | |
3951 | ||
3952 | thiscase->next = case_stack; | |
3953 | thiscase->all = nesting_stack; | |
3954 | thiscase->depth = ++nesting_depth; | |
3955 | thiscase->exit_label = 0; | |
3956 | thiscase->data.case_stmt.case_list = 0; | |
3957 | thiscase->data.case_stmt.start = 0; | |
3958 | thiscase->data.case_stmt.nominal_type = 0; | |
3959 | thiscase->data.case_stmt.default_label = 0; | |
3960 | thiscase->data.case_stmt.num_ranges = 0; | |
3961 | case_stack = thiscase; | |
3962 | nesting_stack = thiscase; | |
3963 | } | |
3964 | ||
3965 | /* End a dummy case statement. */ | |
3966 | ||
3967 | void | |
3968 | expand_end_case_dummy () | |
3969 | { | |
3970 | POPSTACK (case_stack); | |
3971 | } | |
3972 | ||
3973 | /* Return the data type of the index-expression | |
3974 | of the innermost case statement, or null if none. */ | |
3975 | ||
3976 | tree | |
3977 | case_index_expr_type () | |
3978 | { | |
3979 | if (case_stack) | |
3980 | return TREE_TYPE (case_stack->data.case_stmt.index_expr); | |
3981 | return 0; | |
3982 | } | |
3983 | \f | |
3984 | /* Accumulate one case or default label inside a case or switch statement. | |
3985 | VALUE is the value of the case (a null pointer, for a default label). | |
f52fba84 PE |
3986 | The function CONVERTER, when applied to arguments T and V, |
3987 | converts the value V to the type T. | |
28d81abb RK |
3988 | |
3989 | If not currently inside a case or switch statement, return 1 and do | |
3990 | nothing. The caller will print a language-specific error message. | |
3991 | If VALUE is a duplicate or overlaps, return 2 and do nothing | |
3992 | except store the (first) duplicate node in *DUPLICATE. | |
3993 | If VALUE is out of range, return 3 and do nothing. | |
3994 | If we are jumping into the scope of a cleaup or var-sized array, return 5. | |
3995 | Return 0 on success. | |
3996 | ||
3997 | Extended to handle range statements. */ | |
3998 | ||
3999 | int | |
f52fba84 | 4000 | pushcase (value, converter, label, duplicate) |
28d81abb | 4001 | register tree value; |
f52fba84 | 4002 | tree (*converter) PROTO((tree, tree)); |
28d81abb RK |
4003 | register tree label; |
4004 | tree *duplicate; | |
4005 | { | |
4006 | register struct case_node **l; | |
4007 | register struct case_node *n; | |
4008 | tree index_type; | |
4009 | tree nominal_type; | |
4010 | ||
ca695ac9 JB |
4011 | if (output_bytecode) |
4012 | return bc_pushcase (value, label); | |
4013 | ||
28d81abb RK |
4014 | /* Fail if not inside a real case statement. */ |
4015 | if (! (case_stack && case_stack->data.case_stmt.start)) | |
4016 | return 1; | |
4017 | ||
4018 | if (stack_block_stack | |
4019 | && stack_block_stack->depth > case_stack->depth) | |
4020 | return 5; | |
4021 | ||
4022 | index_type = TREE_TYPE (case_stack->data.case_stmt.index_expr); | |
4023 | nominal_type = case_stack->data.case_stmt.nominal_type; | |
4024 | ||
4025 | /* If the index is erroneous, avoid more problems: pretend to succeed. */ | |
4026 | if (index_type == error_mark_node) | |
4027 | return 0; | |
4028 | ||
4029 | /* Convert VALUE to the type in which the comparisons are nominally done. */ | |
4030 | if (value != 0) | |
f52fba84 | 4031 | value = (*converter) (nominal_type, value); |
28d81abb RK |
4032 | |
4033 | /* If this is the first label, warn if any insns have been emitted. */ | |
4034 | if (case_stack->data.case_stmt.seenlabel == 0) | |
4035 | { | |
4036 | rtx insn; | |
4037 | for (insn = case_stack->data.case_stmt.start; | |
4038 | insn; | |
4039 | insn = NEXT_INSN (insn)) | |
4040 | { | |
4041 | if (GET_CODE (insn) == CODE_LABEL) | |
4042 | break; | |
4043 | if (GET_CODE (insn) != NOTE | |
4044 | && (GET_CODE (insn) != INSN || GET_CODE (PATTERN (insn)) != USE)) | |
4045 | { | |
4046 | warning ("unreachable code at beginning of %s", | |
4047 | case_stack->data.case_stmt.printname); | |
4048 | break; | |
4049 | } | |
4050 | } | |
4051 | } | |
4052 | case_stack->data.case_stmt.seenlabel = 1; | |
4053 | ||
4054 | /* Fail if this value is out of range for the actual type of the index | |
4055 | (which may be narrower than NOMINAL_TYPE). */ | |
4056 | if (value != 0 && ! int_fits_type_p (value, index_type)) | |
4057 | return 3; | |
4058 | ||
4059 | /* Fail if this is a duplicate or overlaps another entry. */ | |
4060 | if (value == 0) | |
4061 | { | |
4062 | if (case_stack->data.case_stmt.default_label != 0) | |
4063 | { | |
4064 | *duplicate = case_stack->data.case_stmt.default_label; | |
4065 | return 2; | |
4066 | } | |
4067 | case_stack->data.case_stmt.default_label = label; | |
4068 | } | |
4069 | else | |
4070 | { | |
4071 | /* Find the elt in the chain before which to insert the new value, | |
4072 | to keep the chain sorted in increasing order. | |
4073 | But report an error if this element is a duplicate. */ | |
4074 | for (l = &case_stack->data.case_stmt.case_list; | |
4075 | /* Keep going past elements distinctly less than VALUE. */ | |
4076 | *l != 0 && tree_int_cst_lt ((*l)->high, value); | |
4077 | l = &(*l)->right) | |
4078 | ; | |
4079 | if (*l) | |
4080 | { | |
4081 | /* Element we will insert before must be distinctly greater; | |
4082 | overlap means error. */ | |
4083 | if (! tree_int_cst_lt (value, (*l)->low)) | |
4084 | { | |
4085 | *duplicate = (*l)->code_label; | |
4086 | return 2; | |
4087 | } | |
4088 | } | |
4089 | ||
4090 | /* Add this label to the chain, and succeed. | |
4091 | Copy VALUE so it is on temporary rather than momentary | |
4092 | obstack and will thus survive till the end of the case statement. */ | |
4093 | n = (struct case_node *) oballoc (sizeof (struct case_node)); | |
4094 | n->left = 0; | |
4095 | n->right = *l; | |
4096 | n->high = n->low = copy_node (value); | |
4097 | n->code_label = label; | |
4098 | *l = n; | |
4099 | } | |
4100 | ||
4101 | expand_label (label); | |
4102 | return 0; | |
4103 | } | |
4104 | ||
4105 | /* Like pushcase but this case applies to all values | |
4106 | between VALUE1 and VALUE2 (inclusive). | |
4107 | The return value is the same as that of pushcase | |
4108 | but there is one additional error code: | |
4109 | 4 means the specified range was empty. */ | |
4110 | ||
4111 | int | |
f52fba84 | 4112 | pushcase_range (value1, value2, converter, label, duplicate) |
28d81abb | 4113 | register tree value1, value2; |
f52fba84 | 4114 | tree (*converter) PROTO((tree, tree)); |
28d81abb RK |
4115 | register tree label; |
4116 | tree *duplicate; | |
4117 | { | |
4118 | register struct case_node **l; | |
4119 | register struct case_node *n; | |
4120 | tree index_type; | |
4121 | tree nominal_type; | |
4122 | ||
4123 | /* Fail if not inside a real case statement. */ | |
4124 | if (! (case_stack && case_stack->data.case_stmt.start)) | |
4125 | return 1; | |
4126 | ||
4127 | if (stack_block_stack | |
4128 | && stack_block_stack->depth > case_stack->depth) | |
4129 | return 5; | |
4130 | ||
4131 | index_type = TREE_TYPE (case_stack->data.case_stmt.index_expr); | |
4132 | nominal_type = case_stack->data.case_stmt.nominal_type; | |
4133 | ||
4134 | /* If the index is erroneous, avoid more problems: pretend to succeed. */ | |
4135 | if (index_type == error_mark_node) | |
4136 | return 0; | |
4137 | ||
4138 | /* If this is the first label, warn if any insns have been emitted. */ | |
4139 | if (case_stack->data.case_stmt.seenlabel == 0) | |
4140 | { | |
4141 | rtx insn; | |
4142 | for (insn = case_stack->data.case_stmt.start; | |
4143 | insn; | |
4144 | insn = NEXT_INSN (insn)) | |
4145 | { | |
4146 | if (GET_CODE (insn) == CODE_LABEL) | |
4147 | break; | |
4148 | if (GET_CODE (insn) != NOTE | |
4149 | && (GET_CODE (insn) != INSN || GET_CODE (PATTERN (insn)) != USE)) | |
4150 | { | |
4151 | warning ("unreachable code at beginning of %s", | |
4152 | case_stack->data.case_stmt.printname); | |
4153 | break; | |
4154 | } | |
4155 | } | |
4156 | } | |
4157 | case_stack->data.case_stmt.seenlabel = 1; | |
4158 | ||
4159 | /* Convert VALUEs to type in which the comparisons are nominally done. */ | |
4160 | if (value1 == 0) /* Negative infinity. */ | |
4161 | value1 = TYPE_MIN_VALUE(index_type); | |
f52fba84 | 4162 | value1 = (*converter) (nominal_type, value1); |
28d81abb RK |
4163 | |
4164 | if (value2 == 0) /* Positive infinity. */ | |
4165 | value2 = TYPE_MAX_VALUE(index_type); | |
f52fba84 | 4166 | value2 = (*converter) (nominal_type, value2); |
28d81abb RK |
4167 | |
4168 | /* Fail if these values are out of range. */ | |
4169 | if (! int_fits_type_p (value1, index_type)) | |
4170 | return 3; | |
4171 | ||
4172 | if (! int_fits_type_p (value2, index_type)) | |
4173 | return 3; | |
4174 | ||
4175 | /* Fail if the range is empty. */ | |
4176 | if (tree_int_cst_lt (value2, value1)) | |
4177 | return 4; | |
4178 | ||
4179 | /* If the bounds are equal, turn this into the one-value case. */ | |
4180 | if (tree_int_cst_equal (value1, value2)) | |
f52fba84 | 4181 | return pushcase (value1, converter, label, duplicate); |
28d81abb RK |
4182 | |
4183 | /* Find the elt in the chain before which to insert the new value, | |
4184 | to keep the chain sorted in increasing order. | |
4185 | But report an error if this element is a duplicate. */ | |
4186 | for (l = &case_stack->data.case_stmt.case_list; | |
4187 | /* Keep going past elements distinctly less than this range. */ | |
4188 | *l != 0 && tree_int_cst_lt ((*l)->high, value1); | |
4189 | l = &(*l)->right) | |
4190 | ; | |
4191 | if (*l) | |
4192 | { | |
4193 | /* Element we will insert before must be distinctly greater; | |
4194 | overlap means error. */ | |
4195 | if (! tree_int_cst_lt (value2, (*l)->low)) | |
4196 | { | |
4197 | *duplicate = (*l)->code_label; | |
4198 | return 2; | |
4199 | } | |
4200 | } | |
4201 | ||
4202 | /* Add this label to the chain, and succeed. | |
4203 | Copy VALUE1, VALUE2 so they are on temporary rather than momentary | |
4204 | obstack and will thus survive till the end of the case statement. */ | |
4205 | ||
4206 | n = (struct case_node *) oballoc (sizeof (struct case_node)); | |
4207 | n->left = 0; | |
4208 | n->right = *l; | |
4209 | n->low = copy_node (value1); | |
4210 | n->high = copy_node (value2); | |
4211 | n->code_label = label; | |
4212 | *l = n; | |
4213 | ||
4214 | expand_label (label); | |
4215 | ||
4216 | case_stack->data.case_stmt.num_ranges++; | |
4217 | ||
4218 | return 0; | |
4219 | } | |
ca695ac9 JB |
4220 | |
4221 | ||
4222 | /* Accumulate one case or default label; VALUE is the value of the | |
4223 | case, or nil for a default label. If not currently inside a case, | |
4224 | return 1 and do nothing. If VALUE is a duplicate or overlaps, return | |
4225 | 2 and do nothing. If VALUE is out of range, return 3 and do nothing. | |
4226 | Return 0 on success. This function is a leftover from the earlier | |
4227 | bytecode compiler, which was based on gcc 1.37. It should be | |
4228 | merged into pushcase. */ | |
4229 | ||
704f4dca | 4230 | static int |
ca695ac9 JB |
4231 | bc_pushcase (value, label) |
4232 | tree value; | |
4233 | tree label; | |
4234 | { | |
4235 | struct nesting *thiscase = case_stack; | |
4236 | struct case_node *case_label, *new_label; | |
4237 | ||
4238 | if (! thiscase) | |
4239 | return 1; | |
4240 | ||
4241 | /* Fail if duplicate, overlap, or out of type range. */ | |
4242 | if (value) | |
4243 | { | |
4244 | value = convert (thiscase->data.case_stmt.nominal_type, value); | |
4245 | if (! int_fits_type_p (value, thiscase->data.case_stmt.nominal_type)) | |
4246 | return 3; | |
4247 | ||
4248 | for (case_label = thiscase->data.case_stmt.case_list; | |
4249 | case_label->left; case_label = case_label->left) | |
4250 | if (! tree_int_cst_lt (case_label->left->high, value)) | |
4251 | break; | |
4252 | ||
4253 | if (case_label != thiscase->data.case_stmt.case_list | |
4254 | && ! tree_int_cst_lt (case_label->high, value) | |
4255 | || case_label->left && ! tree_int_cst_lt (value, case_label->left->low)) | |
4256 | return 2; | |
4257 | ||
4258 | new_label = (struct case_node *) oballoc (sizeof (struct case_node)); | |
4259 | new_label->low = new_label->high = copy_node (value); | |
4260 | new_label->code_label = label; | |
4261 | new_label->left = case_label->left; | |
4262 | ||
4263 | case_label->left = new_label; | |
4264 | thiscase->data.case_stmt.num_ranges++; | |
4265 | } | |
4266 | else | |
4267 | { | |
4268 | if (thiscase->data.case_stmt.default_label) | |
4269 | return 2; | |
4270 | thiscase->data.case_stmt.default_label = label; | |
4271 | } | |
4272 | ||
4273 | expand_label (label); | |
4274 | return 0; | |
4275 | } | |
28d81abb | 4276 | \f |
94d6511c PB |
4277 | /* Returns the number of possible values of TYPE. |
4278 | Returns -1 if the number is unknown or variable. | |
4279 | Returns -2 if the number does not fit in a HOST_WIDE_INT. | |
4280 | Sets *SPARENESS to 2 if TYPE is an ENUMERAL_TYPE whose values | |
4281 | do not increase monotonically (there may be duplicates); | |
4282 | to 1 if the values increase monotonically, but not always by 1; | |
4283 | otherwise sets it to 0. */ | |
4284 | ||
4285 | HOST_WIDE_INT | |
4286 | all_cases_count (type, spareness) | |
4287 | tree type; | |
4288 | int *spareness; | |
4289 | { | |
4290 | HOST_WIDE_INT count, count_high = 0; | |
4291 | *spareness = 0; | |
4292 | ||
4293 | switch (TREE_CODE (type)) | |
4294 | { | |
4295 | tree t; | |
4296 | case BOOLEAN_TYPE: | |
4297 | count = 2; | |
4298 | break; | |
4299 | case CHAR_TYPE: | |
4300 | count = 1 << BITS_PER_UNIT; | |
4301 | break; | |
4302 | default: | |
4303 | case INTEGER_TYPE: | |
4304 | if (TREE_CODE (TYPE_MIN_VALUE (type)) != INTEGER_CST | |
c02aebe2 | 4305 | || TREE_CODE (TYPE_MAX_VALUE (type)) != INTEGER_CST) |
94d6511c PB |
4306 | return -1; |
4307 | else | |
4308 | { | |
4309 | /* count | |
4310 | = TREE_INT_CST_LOW (TYPE_MAX_VALUE (type)) | |
4311 | - TREE_INT_CST_LOW (TYPE_MIN_VALUE (type)) + 1 | |
4312 | but with overflow checking. */ | |
4313 | tree mint = TYPE_MIN_VALUE (type); | |
4314 | tree maxt = TYPE_MAX_VALUE (type); | |
4315 | HOST_WIDE_INT lo, hi; | |
4316 | neg_double(TREE_INT_CST_LOW (mint), TREE_INT_CST_HIGH (mint), | |
4317 | &lo, &hi); | |
4318 | add_double(TREE_INT_CST_LOW (maxt), TREE_INT_CST_HIGH (maxt), | |
4319 | lo, hi, &lo, &hi); | |
4320 | add_double (lo, hi, 1, 0, &lo, &hi); | |
4321 | if (hi != 0 || lo < 0) | |
4322 | return -2; | |
4323 | count = lo; | |
4324 | } | |
4325 | break; | |
4326 | case ENUMERAL_TYPE: | |
4327 | count = 0; | |
4328 | for (t = TYPE_VALUES (type); t != NULL_TREE; t = TREE_CHAIN (t)) | |
4329 | { | |
4330 | if (TREE_CODE (TYPE_MIN_VALUE (type)) != INTEGER_CST | |
4331 | || TREE_CODE (TREE_VALUE (t)) != INTEGER_CST | |
4332 | || TREE_INT_CST_LOW (TYPE_MIN_VALUE (type)) + count | |
4333 | != TREE_INT_CST_LOW (TREE_VALUE (t))) | |
4334 | *spareness = 1; | |
4335 | count++; | |
4336 | } | |
4337 | if (*spareness == 1) | |
4338 | { | |
4339 | tree prev = TREE_VALUE (TYPE_VALUES (type)); | |
4340 | for (t = TYPE_VALUES (type); t = TREE_CHAIN (t), t != NULL_TREE; ) | |
4341 | { | |
4342 | if (! tree_int_cst_lt (prev, TREE_VALUE (t))) | |
4343 | { | |
4344 | *spareness = 2; | |
4345 | break; | |
4346 | } | |
4347 | prev = TREE_VALUE (t); | |
4348 | } | |
4349 | ||
4350 | } | |
4351 | } | |
4352 | return count; | |
4353 | } | |
4354 | ||
4355 | ||
4356 | #define BITARRAY_TEST(ARRAY, INDEX) \ | |
4357 | ((ARRAY)[(unsigned)(INDEX) / HOST_BITS_PER_CHAR]\ | |
4358 | & (1 << ((unsigned)(INDEX) % HOST_BITS_PER_CHAR))) | |
4359 | #define BITARRAY_SET(ARRAY, INDEX) \ | |
4360 | ((ARRAY)[(unsigned)(INDEX) / HOST_BITS_PER_CHAR]\ | |
4361 | |= 1 << ((unsigned)(INDEX) % HOST_BITS_PER_CHAR)) | |
4362 | ||
4363 | /* Set the elements of the bitstring CASES_SEEN (which has length COUNT), | |
4364 | with the case values we have seen, assuming the case expression | |
4365 | has the given TYPE. | |
4366 | SPARSENESS is as determined by all_cases_count. | |
4367 | ||
9faa82d8 | 4368 | The time needed is proportional to COUNT, unless |
94d6511c PB |
4369 | SPARSENESS is 2, in which case quadratic time is needed. */ |
4370 | ||
4371 | void | |
4372 | mark_seen_cases (type, cases_seen, count, sparseness) | |
4373 | tree type; | |
4374 | unsigned char *cases_seen; | |
4375 | long count; | |
4376 | int sparseness; | |
4377 | { | |
4378 | long i; | |
4379 | ||
4380 | tree next_node_to_try = NULL_TREE; | |
4381 | long next_node_offset = 0; | |
4382 | ||
4383 | register struct case_node *n; | |
4384 | tree val = make_node (INTEGER_CST); | |
4385 | TREE_TYPE (val) = type; | |
4386 | for (n = case_stack->data.case_stmt.case_list; n; | |
4387 | n = n->right) | |
4388 | { | |
4389 | TREE_INT_CST_LOW (val) = TREE_INT_CST_LOW (n->low); | |
4390 | TREE_INT_CST_HIGH (val) = TREE_INT_CST_HIGH (n->low); | |
4391 | while ( ! tree_int_cst_lt (n->high, val)) | |
4392 | { | |
4393 | /* Calculate (into xlo) the "offset" of the integer (val). | |
4394 | The element with lowest value has offset 0, the next smallest | |
4395 | element has offset 1, etc. */ | |
4396 | ||
4397 | HOST_WIDE_INT xlo, xhi; | |
4398 | tree t; | |
4399 | if (sparseness == 2) | |
4400 | { | |
4401 | /* This less efficient loop is only needed to handle | |
4402 | duplicate case values (multiple enum constants | |
4403 | with the same value). */ | |
4404 | for (t = TYPE_VALUES (type), xlo = 0; t != NULL_TREE; | |
4405 | t = TREE_CHAIN (t), xlo++) | |
4406 | { | |
4407 | if (tree_int_cst_equal (val, TREE_VALUE (t))) | |
4408 | BITARRAY_SET (cases_seen, xlo); | |
4409 | } | |
4410 | } | |
4411 | else | |
4412 | { | |
4413 | if (sparseness && TYPE_VALUES (type) != NULL_TREE) | |
4414 | { | |
4415 | /* The TYPE_VALUES will be in increasing order, so | |
4416 | starting searching where we last ended. */ | |
4417 | t = next_node_to_try; | |
4418 | xlo = next_node_offset; | |
4419 | xhi = 0; | |
4420 | for (;;) | |
4421 | { | |
4422 | if (t == NULL_TREE) | |
4423 | { | |
4424 | t = TYPE_VALUES (type); | |
4425 | xlo = 0; | |
4426 | } | |
4427 | if (tree_int_cst_equal (val, TREE_VALUE (t))) | |
4428 | { | |
4429 | next_node_to_try = TREE_CHAIN (t); | |
4430 | next_node_offset = xlo + 1; | |
4431 | break; | |
4432 | } | |
4433 | xlo++; | |
4434 | t = TREE_CHAIN (t); | |
4435 | if (t == next_node_to_try) | |
4436 | break; | |
4437 | } | |
4438 | } | |
4439 | else | |
4440 | { | |
4441 | t = TYPE_MIN_VALUE (type); | |
4442 | if (t) | |
4443 | neg_double (TREE_INT_CST_LOW (t), TREE_INT_CST_HIGH (t), | |
4444 | &xlo, &xhi); | |
4445 | else | |
4446 | xlo = xhi = 0; | |
4447 | add_double (xlo, xhi, | |
4448 | TREE_INT_CST_LOW (val), TREE_INT_CST_HIGH (val), | |
4449 | &xlo, &xhi); | |
4450 | } | |
4451 | ||
9dd53f1e | 4452 | if (xhi == 0 && xlo >= 0 && xlo < count) |
94d6511c PB |
4453 | BITARRAY_SET (cases_seen, xlo); |
4454 | } | |
4455 | add_double (TREE_INT_CST_LOW (val), TREE_INT_CST_HIGH (val), | |
4456 | 1, 0, | |
4457 | &TREE_INT_CST_LOW (val), &TREE_INT_CST_HIGH (val)); | |
4458 | } | |
4459 | } | |
4460 | } | |
4461 | ||
28d81abb RK |
4462 | /* Called when the index of a switch statement is an enumerated type |
4463 | and there is no default label. | |
4464 | ||
4465 | Checks that all enumeration literals are covered by the case | |
4466 | expressions of a switch. Also, warn if there are any extra | |
4467 | switch cases that are *not* elements of the enumerated type. | |
4468 | ||
4469 | If all enumeration literals were covered by the case expressions, | |
4470 | turn one of the expressions into the default expression since it should | |
4471 | not be possible to fall through such a switch. */ | |
4472 | ||
4473 | void | |
4474 | check_for_full_enumeration_handling (type) | |
4475 | tree type; | |
4476 | { | |
4477 | register struct case_node *n; | |
4478 | register struct case_node **l; | |
4479 | register tree chain; | |
4480 | int all_values = 1; | |
4481 | ||
94d6511c PB |
4482 | /* True iff the selector type is a numbered set mode. */ |
4483 | int sparseness = 0; | |
4484 | ||
4485 | /* The number of possible selector values. */ | |
4486 | HOST_WIDE_INT size; | |
4487 | ||
4488 | /* For each possible selector value. a one iff it has been matched | |
4489 | by a case value alternative. */ | |
4490 | unsigned char *cases_seen; | |
4491 | ||
4492 | /* The allocated size of cases_seen, in chars. */ | |
4493 | long bytes_needed; | |
4494 | tree t; | |
4495 | ||
ca695ac9 JB |
4496 | if (output_bytecode) |
4497 | { | |
4498 | bc_check_for_full_enumeration_handling (type); | |
4499 | return; | |
4500 | } | |
4501 | ||
94d6511c PB |
4502 | if (! warn_switch) |
4503 | return; | |
4504 | ||
4505 | size = all_cases_count (type, &sparseness); | |
4506 | bytes_needed = (size + HOST_BITS_PER_CHAR) / HOST_BITS_PER_CHAR; | |
28d81abb | 4507 | |
94d6511c PB |
4508 | if (size > 0 && size < 600000 |
4509 | /* We deliberately use malloc here - not xmalloc. */ | |
ad03007a | 4510 | && (cases_seen = (unsigned char *) malloc (bytes_needed)) != NULL) |
28d81abb | 4511 | { |
94d6511c PB |
4512 | long i; |
4513 | tree v = TYPE_VALUES (type); | |
4514 | bzero (cases_seen, bytes_needed); | |
28d81abb | 4515 | |
94d6511c PB |
4516 | /* The time complexity of this code is normally O(N), where |
4517 | N being the number of members in the enumerated type. | |
4518 | However, if type is a ENUMERAL_TYPE whose values do not | |
4519 | increase monotonically, quadratic time may be needed. */ | |
4520 | ||
4521 | mark_seen_cases (type, cases_seen, size, sparseness); | |
4522 | ||
4523 | for (i = 0; v != NULL_TREE && i < size; i++, v = TREE_CHAIN (v)) | |
28d81abb | 4524 | { |
94d6511c | 4525 | if (BITARRAY_TEST(cases_seen, i) == 0) |
1ddde1cd | 4526 | warning ("enumeration value `%s' not handled in switch", |
94d6511c | 4527 | IDENTIFIER_POINTER (TREE_PURPOSE (v))); |
28d81abb | 4528 | } |
94d6511c PB |
4529 | |
4530 | free (cases_seen); | |
28d81abb RK |
4531 | } |
4532 | ||
4533 | /* Now we go the other way around; we warn if there are case | |
ac2a9454 | 4534 | expressions that don't correspond to enumerators. This can |
28d81abb RK |
4535 | occur since C and C++ don't enforce type-checking of |
4536 | assignments to enumeration variables. */ | |
4537 | ||
4538 | if (warn_switch) | |
4539 | for (n = case_stack->data.case_stmt.case_list; n; n = n->right) | |
4540 | { | |
4541 | for (chain = TYPE_VALUES (type); | |
4542 | chain && !tree_int_cst_equal (n->low, TREE_VALUE (chain)); | |
4543 | chain = TREE_CHAIN (chain)) | |
4544 | ; | |
4545 | ||
4546 | if (!chain) | |
3b24f55b RS |
4547 | { |
4548 | if (TYPE_NAME (type) == 0) | |
4549 | warning ("case value `%d' not in enumerated type", | |
4550 | TREE_INT_CST_LOW (n->low)); | |
4551 | else | |
4552 | warning ("case value `%d' not in enumerated type `%s'", | |
4553 | TREE_INT_CST_LOW (n->low), | |
4554 | IDENTIFIER_POINTER ((TREE_CODE (TYPE_NAME (type)) | |
4555 | == IDENTIFIER_NODE) | |
4556 | ? TYPE_NAME (type) | |
4557 | : DECL_NAME (TYPE_NAME (type)))); | |
4558 | } | |
1ddde1cd RS |
4559 | if (!tree_int_cst_equal (n->low, n->high)) |
4560 | { | |
4561 | for (chain = TYPE_VALUES (type); | |
4562 | chain && !tree_int_cst_equal (n->high, TREE_VALUE (chain)); | |
4563 | chain = TREE_CHAIN (chain)) | |
4564 | ; | |
4565 | ||
4566 | if (!chain) | |
3b24f55b RS |
4567 | { |
4568 | if (TYPE_NAME (type) == 0) | |
4569 | warning ("case value `%d' not in enumerated type", | |
4570 | TREE_INT_CST_LOW (n->high)); | |
4571 | else | |
4572 | warning ("case value `%d' not in enumerated type `%s'", | |
4573 | TREE_INT_CST_LOW (n->high), | |
4574 | IDENTIFIER_POINTER ((TREE_CODE (TYPE_NAME (type)) | |
4575 | == IDENTIFIER_NODE) | |
4576 | ? TYPE_NAME (type) | |
4577 | : DECL_NAME (TYPE_NAME (type)))); | |
4578 | } | |
1ddde1cd | 4579 | } |
28d81abb RK |
4580 | } |
4581 | ||
ae8cb346 RS |
4582 | #if 0 |
4583 | /* ??? This optimization is disabled because it causes valid programs to | |
4584 | fail. ANSI C does not guarantee that an expression with enum type | |
9faa82d8 | 4585 | will have a value that is the same as one of the enumeration literals. */ |
ae8cb346 | 4586 | |
28d81abb RK |
4587 | /* If all values were found as case labels, make one of them the default |
4588 | label. Thus, this switch will never fall through. We arbitrarily pick | |
4589 | the last one to make the default since this is likely the most | |
4590 | efficient choice. */ | |
4591 | ||
4592 | if (all_values) | |
4593 | { | |
4594 | for (l = &case_stack->data.case_stmt.case_list; | |
4595 | (*l)->right != 0; | |
4596 | l = &(*l)->right) | |
4597 | ; | |
4598 | ||
4599 | case_stack->data.case_stmt.default_label = (*l)->code_label; | |
4600 | *l = 0; | |
4601 | } | |
ae8cb346 | 4602 | #endif /* 0 */ |
28d81abb | 4603 | } |
ca695ac9 JB |
4604 | |
4605 | ||
4606 | /* Check that all enumeration literals are covered by the case | |
4607 | expressions of a switch. Also warn if there are any cases | |
4608 | that are not elements of the enumerated type. */ | |
704f4dca RK |
4609 | |
4610 | static void | |
ca695ac9 JB |
4611 | bc_check_for_full_enumeration_handling (type) |
4612 | tree type; | |
4613 | { | |
4614 | struct nesting *thiscase = case_stack; | |
4615 | struct case_node *c; | |
4616 | tree e; | |
4617 | ||
4618 | /* Check for enums not handled. */ | |
4619 | for (e = TYPE_VALUES (type); e; e = TREE_CHAIN (e)) | |
4620 | { | |
4621 | for (c = thiscase->data.case_stmt.case_list->left; | |
4622 | c && tree_int_cst_lt (c->high, TREE_VALUE (e)); | |
4623 | c = c->left) | |
4624 | ; | |
4625 | if (! (c && tree_int_cst_equal (c->low, TREE_VALUE (e)))) | |
4626 | warning ("enumerated value `%s' not handled in switch", | |
4627 | IDENTIFIER_POINTER (TREE_PURPOSE (e))); | |
4628 | } | |
4629 | ||
4630 | /* Check for cases not in the enumeration. */ | |
4631 | for (c = thiscase->data.case_stmt.case_list->left; c; c = c->left) | |
4632 | { | |
4633 | for (e = TYPE_VALUES (type); | |
4634 | e && !tree_int_cst_equal (c->low, TREE_VALUE (e)); | |
4635 | e = TREE_CHAIN (e)) | |
4636 | ; | |
4637 | if (! e) | |
4638 | warning ("case value `%d' not in enumerated type `%s'", | |
4639 | TREE_INT_CST_LOW (c->low), | |
4640 | IDENTIFIER_POINTER (TREE_CODE (TYPE_NAME (type)) == IDENTIFIER_NODE | |
4641 | ? TYPE_NAME (type) | |
4642 | : DECL_NAME (TYPE_NAME (type)))); | |
4643 | } | |
4644 | } | |
28d81abb RK |
4645 | \f |
4646 | /* Terminate a case (Pascal) or switch (C) statement | |
9ab0ddd7 | 4647 | in which ORIG_INDEX is the expression to be tested. |
28d81abb RK |
4648 | Generate the code to test it and jump to the right place. */ |
4649 | ||
4650 | void | |
4651 | expand_end_case (orig_index) | |
4652 | tree orig_index; | |
4653 | { | |
3474db0e | 4654 | tree minval, maxval, range, orig_minval; |
28d81abb RK |
4655 | rtx default_label = 0; |
4656 | register struct case_node *n; | |
4657 | int count; | |
4658 | rtx index; | |
ca695ac9 | 4659 | rtx table_label; |
28d81abb RK |
4660 | int ncases; |
4661 | rtx *labelvec; | |
4662 | register int i; | |
4663 | rtx before_case; | |
4664 | register struct nesting *thiscase = case_stack; | |
1b0cb6fc | 4665 | tree index_expr, index_type; |
ca695ac9 JB |
4666 | int unsignedp; |
4667 | ||
4668 | if (output_bytecode) | |
4669 | { | |
4670 | bc_expand_end_case (orig_index); | |
4671 | return; | |
4672 | } | |
4673 | ||
4674 | table_label = gen_label_rtx (); | |
4675 | index_expr = thiscase->data.case_stmt.index_expr; | |
1b0cb6fc RK |
4676 | index_type = TREE_TYPE (index_expr); |
4677 | unsignedp = TREE_UNSIGNED (index_type); | |
28d81abb RK |
4678 | |
4679 | do_pending_stack_adjust (); | |
4680 | ||
4681 | /* An ERROR_MARK occurs for various reasons including invalid data type. */ | |
1b0cb6fc | 4682 | if (index_type != error_mark_node) |
28d81abb RK |
4683 | { |
4684 | /* If switch expression was an enumerated type, check that all | |
4685 | enumeration literals are covered by the cases. | |
4686 | No sense trying this if there's a default case, however. */ | |
4687 | ||
4688 | if (!thiscase->data.case_stmt.default_label | |
4689 | && TREE_CODE (TREE_TYPE (orig_index)) == ENUMERAL_TYPE | |
4690 | && TREE_CODE (index_expr) != INTEGER_CST) | |
4691 | check_for_full_enumeration_handling (TREE_TYPE (orig_index)); | |
4692 | ||
4693 | /* If this is the first label, warn if any insns have been emitted. */ | |
4694 | if (thiscase->data.case_stmt.seenlabel == 0) | |
4695 | { | |
4696 | rtx insn; | |
4697 | for (insn = get_last_insn (); | |
4698 | insn != case_stack->data.case_stmt.start; | |
4699 | insn = PREV_INSN (insn)) | |
4700 | if (GET_CODE (insn) != NOTE | |
4701 | && (GET_CODE (insn) != INSN || GET_CODE (PATTERN (insn))!= USE)) | |
4702 | { | |
4703 | warning ("unreachable code at beginning of %s", | |
4704 | case_stack->data.case_stmt.printname); | |
4705 | break; | |
4706 | } | |
4707 | } | |
4708 | ||
4709 | /* If we don't have a default-label, create one here, | |
4710 | after the body of the switch. */ | |
4711 | if (thiscase->data.case_stmt.default_label == 0) | |
4712 | { | |
4713 | thiscase->data.case_stmt.default_label | |
4714 | = build_decl (LABEL_DECL, NULL_TREE, NULL_TREE); | |
4715 | expand_label (thiscase->data.case_stmt.default_label); | |
4716 | } | |
4717 | default_label = label_rtx (thiscase->data.case_stmt.default_label); | |
4718 | ||
4719 | before_case = get_last_insn (); | |
4720 | ||
4721 | /* Simplify the case-list before we count it. */ | |
4722 | group_case_nodes (thiscase->data.case_stmt.case_list); | |
4723 | ||
4724 | /* Get upper and lower bounds of case values. | |
4725 | Also convert all the case values to the index expr's data type. */ | |
4726 | ||
4727 | count = 0; | |
4728 | for (n = thiscase->data.case_stmt.case_list; n; n = n->right) | |
4729 | { | |
4730 | /* Check low and high label values are integers. */ | |
4731 | if (TREE_CODE (n->low) != INTEGER_CST) | |
4732 | abort (); | |
4733 | if (TREE_CODE (n->high) != INTEGER_CST) | |
4734 | abort (); | |
4735 | ||
1b0cb6fc RK |
4736 | n->low = convert (index_type, n->low); |
4737 | n->high = convert (index_type, n->high); | |
28d81abb RK |
4738 | |
4739 | /* Count the elements and track the largest and smallest | |
4740 | of them (treating them as signed even if they are not). */ | |
4741 | if (count++ == 0) | |
4742 | { | |
4743 | minval = n->low; | |
4744 | maxval = n->high; | |
4745 | } | |
4746 | else | |
4747 | { | |
4748 | if (INT_CST_LT (n->low, minval)) | |
4749 | minval = n->low; | |
4750 | if (INT_CST_LT (maxval, n->high)) | |
4751 | maxval = n->high; | |
4752 | } | |
4753 | /* A range counts double, since it requires two compares. */ | |
4754 | if (! tree_int_cst_equal (n->low, n->high)) | |
4755 | count++; | |
4756 | } | |
4757 | ||
3474db0e RS |
4758 | orig_minval = minval; |
4759 | ||
28d81abb RK |
4760 | /* Compute span of values. */ |
4761 | if (count != 0) | |
1b0cb6fc | 4762 | range = fold (build (MINUS_EXPR, index_type, maxval, minval)); |
28d81abb | 4763 | |
1b0cb6fc | 4764 | if (count == 0) |
28d81abb RK |
4765 | { |
4766 | expand_expr (index_expr, const0_rtx, VOIDmode, 0); | |
4767 | emit_queue (); | |
4768 | emit_jump (default_label); | |
4769 | } | |
3474db0e | 4770 | |
28d81abb RK |
4771 | /* If range of values is much bigger than number of values, |
4772 | make a sequence of conditional branches instead of a dispatch. | |
4773 | If the switch-index is a constant, do it this way | |
4774 | because we can optimize it. */ | |
4f73c5dd TW |
4775 | |
4776 | #ifndef CASE_VALUES_THRESHOLD | |
28d81abb | 4777 | #ifdef HAVE_casesi |
4f73c5dd | 4778 | #define CASE_VALUES_THRESHOLD (HAVE_casesi ? 4 : 5) |
28d81abb | 4779 | #else |
4f73c5dd TW |
4780 | /* If machine does not have a case insn that compares the |
4781 | bounds, this means extra overhead for dispatch tables | |
4782 | which raises the threshold for using them. */ | |
4783 | #define CASE_VALUES_THRESHOLD 5 | |
4784 | #endif /* HAVE_casesi */ | |
4785 | #endif /* CASE_VALUES_THRESHOLD */ | |
4786 | ||
4787 | else if (TREE_INT_CST_HIGH (range) != 0 | |
4788 | || count < CASE_VALUES_THRESHOLD | |
37366632 RK |
4789 | || ((unsigned HOST_WIDE_INT) (TREE_INT_CST_LOW (range)) |
4790 | > 10 * count) | |
28d81abb | 4791 | || TREE_CODE (index_expr) == INTEGER_CST |
b4ac57ab | 4792 | /* These will reduce to a constant. */ |
28d81abb | 4793 | || (TREE_CODE (index_expr) == CALL_EXPR |
de14fd73 | 4794 | && TREE_CODE (TREE_OPERAND (index_expr, 0)) == ADDR_EXPR |
28d81abb | 4795 | && TREE_CODE (TREE_OPERAND (TREE_OPERAND (index_expr, 0), 0)) == FUNCTION_DECL |
b4ac57ab RS |
4796 | && DECL_FUNCTION_CODE (TREE_OPERAND (TREE_OPERAND (index_expr, 0), 0)) == BUILT_IN_CLASSIFY_TYPE) |
4797 | || (TREE_CODE (index_expr) == COMPOUND_EXPR | |
4798 | && TREE_CODE (TREE_OPERAND (index_expr, 1)) == INTEGER_CST)) | |
28d81abb | 4799 | { |
37366632 | 4800 | index = expand_expr (index_expr, NULL_RTX, VOIDmode, 0); |
28d81abb RK |
4801 | |
4802 | /* If the index is a short or char that we do not have | |
4803 | an insn to handle comparisons directly, convert it to | |
4804 | a full integer now, rather than letting each comparison | |
4805 | generate the conversion. */ | |
4806 | ||
4807 | if (GET_MODE_CLASS (GET_MODE (index)) == MODE_INT | |
4808 | && (cmp_optab->handlers[(int) GET_MODE(index)].insn_code | |
4809 | == CODE_FOR_nothing)) | |
4810 | { | |
4811 | enum machine_mode wider_mode; | |
4812 | for (wider_mode = GET_MODE (index); wider_mode != VOIDmode; | |
4813 | wider_mode = GET_MODE_WIDER_MODE (wider_mode)) | |
4814 | if (cmp_optab->handlers[(int) wider_mode].insn_code | |
4815 | != CODE_FOR_nothing) | |
4816 | { | |
4817 | index = convert_to_mode (wider_mode, index, unsignedp); | |
4818 | break; | |
4819 | } | |
4820 | } | |
4821 | ||
4822 | emit_queue (); | |
4823 | do_pending_stack_adjust (); | |
4824 | ||
4825 | index = protect_from_queue (index, 0); | |
4826 | if (GET_CODE (index) == MEM) | |
4827 | index = copy_to_reg (index); | |
4828 | if (GET_CODE (index) == CONST_INT | |
4829 | || TREE_CODE (index_expr) == INTEGER_CST) | |
4830 | { | |
4831 | /* Make a tree node with the proper constant value | |
4832 | if we don't already have one. */ | |
4833 | if (TREE_CODE (index_expr) != INTEGER_CST) | |
4834 | { | |
4835 | index_expr | |
4836 | = build_int_2 (INTVAL (index), | |
e9a042b6 | 4837 | unsignedp || INTVAL (index) >= 0 ? 0 : -1); |
1b0cb6fc | 4838 | index_expr = convert (index_type, index_expr); |
28d81abb RK |
4839 | } |
4840 | ||
4841 | /* For constant index expressions we need only | |
4842 | issue a unconditional branch to the appropriate | |
4843 | target code. The job of removing any unreachable | |
4844 | code is left to the optimisation phase if the | |
4845 | "-O" option is specified. */ | |
1b0cb6fc RK |
4846 | for (n = thiscase->data.case_stmt.case_list; n; n = n->right) |
4847 | if (! tree_int_cst_lt (index_expr, n->low) | |
4848 | && ! tree_int_cst_lt (n->high, index_expr)) | |
4849 | break; | |
4850 | ||
28d81abb RK |
4851 | if (n) |
4852 | emit_jump (label_rtx (n->code_label)); | |
4853 | else | |
4854 | emit_jump (default_label); | |
4855 | } | |
4856 | else | |
4857 | { | |
4858 | /* If the index expression is not constant we generate | |
4859 | a binary decision tree to select the appropriate | |
4860 | target code. This is done as follows: | |
4861 | ||
4862 | The list of cases is rearranged into a binary tree, | |
4863 | nearly optimal assuming equal probability for each case. | |
4864 | ||
4865 | The tree is transformed into RTL, eliminating | |
4866 | redundant test conditions at the same time. | |
4867 | ||
4868 | If program flow could reach the end of the | |
4869 | decision tree an unconditional jump to the | |
4870 | default code is emitted. */ | |
4871 | ||
4872 | use_cost_table | |
4873 | = (TREE_CODE (TREE_TYPE (orig_index)) != ENUMERAL_TYPE | |
28d81abb | 4874 | && estimate_case_costs (thiscase->data.case_stmt.case_list)); |
37366632 RK |
4875 | balance_case_nodes (&thiscase->data.case_stmt.case_list, |
4876 | NULL_PTR); | |
28d81abb | 4877 | emit_case_nodes (index, thiscase->data.case_stmt.case_list, |
1b0cb6fc | 4878 | default_label, index_type); |
28d81abb RK |
4879 | emit_jump_if_reachable (default_label); |
4880 | } | |
4881 | } | |
4882 | else | |
4883 | { | |
4884 | int win = 0; | |
4885 | #ifdef HAVE_casesi | |
4886 | if (HAVE_casesi) | |
4887 | { | |
c4fcf531 | 4888 | enum machine_mode index_mode = SImode; |
5130a5cc | 4889 | int index_bits = GET_MODE_BITSIZE (index_mode); |
086f237d JW |
4890 | rtx op1, op2; |
4891 | enum machine_mode op_mode; | |
c4fcf531 | 4892 | |
28d81abb | 4893 | /* Convert the index to SImode. */ |
1b0cb6fc | 4894 | if (GET_MODE_BITSIZE (TYPE_MODE (index_type)) |
c4fcf531 | 4895 | > GET_MODE_BITSIZE (index_mode)) |
28d81abb | 4896 | { |
1b0cb6fc | 4897 | enum machine_mode omode = TYPE_MODE (index_type); |
37366632 | 4898 | rtx rangertx = expand_expr (range, NULL_RTX, VOIDmode, 0); |
af2682ef RS |
4899 | |
4900 | /* We must handle the endpoints in the original mode. */ | |
1b0cb6fc | 4901 | index_expr = build (MINUS_EXPR, index_type, |
28d81abb RK |
4902 | index_expr, minval); |
4903 | minval = integer_zero_node; | |
37366632 | 4904 | index = expand_expr (index_expr, NULL_RTX, VOIDmode, 0); |
3474db0e | 4905 | emit_cmp_insn (rangertx, index, LTU, NULL_RTX, omode, 1, 0); |
af2682ef RS |
4906 | emit_jump_insn (gen_bltu (default_label)); |
4907 | /* Now we can safely truncate. */ | |
4908 | index = convert_to_mode (index_mode, index, 0); | |
4909 | } | |
4910 | else | |
4911 | { | |
1b0cb6fc | 4912 | if (TYPE_MODE (index_type) != index_mode) |
d3b35d75 RK |
4913 | { |
4914 | index_expr = convert (type_for_size (index_bits, 0), | |
4915 | index_expr); | |
4916 | index_type = TREE_TYPE (index_expr); | |
4917 | } | |
4918 | ||
37366632 | 4919 | index = expand_expr (index_expr, NULL_RTX, VOIDmode, 0); |
28d81abb | 4920 | } |
28d81abb RK |
4921 | emit_queue (); |
4922 | index = protect_from_queue (index, 0); | |
4923 | do_pending_stack_adjust (); | |
4924 | ||
086f237d JW |
4925 | op_mode = insn_operand_mode[(int)CODE_FOR_casesi][0]; |
4926 | if (! (*insn_operand_predicate[(int)CODE_FOR_casesi][0]) | |
4927 | (index, op_mode)) | |
4928 | index = copy_to_mode_reg (op_mode, index); | |
4929 | ||
4930 | op1 = expand_expr (minval, NULL_RTX, VOIDmode, 0); | |
4931 | ||
4932 | op_mode = insn_operand_mode[(int)CODE_FOR_casesi][1]; | |
4933 | if (! (*insn_operand_predicate[(int)CODE_FOR_casesi][1]) | |
4934 | (op1, op_mode)) | |
4935 | op1 = copy_to_mode_reg (op_mode, op1); | |
4936 | ||
4937 | op2 = expand_expr (range, NULL_RTX, VOIDmode, 0); | |
4938 | ||
4939 | op_mode = insn_operand_mode[(int)CODE_FOR_casesi][2]; | |
4940 | if (! (*insn_operand_predicate[(int)CODE_FOR_casesi][2]) | |
4941 | (op2, op_mode)) | |
4942 | op2 = copy_to_mode_reg (op_mode, op2); | |
4943 | ||
4944 | emit_jump_insn (gen_casesi (index, op1, op2, | |
28d81abb RK |
4945 | table_label, default_label)); |
4946 | win = 1; | |
4947 | } | |
4948 | #endif | |
4949 | #ifdef HAVE_tablejump | |
4950 | if (! win && HAVE_tablejump) | |
4951 | { | |
4952 | index_expr = convert (thiscase->data.case_stmt.nominal_type, | |
1b0cb6fc | 4953 | fold (build (MINUS_EXPR, index_type, |
b4ac57ab | 4954 | index_expr, minval))); |
d3b35d75 | 4955 | index_type = TREE_TYPE (index_expr); |
37366632 | 4956 | index = expand_expr (index_expr, NULL_RTX, VOIDmode, 0); |
28d81abb | 4957 | emit_queue (); |
af2682ef | 4958 | index = protect_from_queue (index, 0); |
28d81abb RK |
4959 | do_pending_stack_adjust (); |
4960 | ||
1b0cb6fc | 4961 | do_tablejump (index, TYPE_MODE (index_type), |
37366632 | 4962 | expand_expr (range, NULL_RTX, VOIDmode, 0), |
28d81abb RK |
4963 | table_label, default_label); |
4964 | win = 1; | |
4965 | } | |
4966 | #endif | |
4967 | if (! win) | |
4968 | abort (); | |
4969 | ||
4970 | /* Get table of labels to jump to, in order of case index. */ | |
4971 | ||
4972 | ncases = TREE_INT_CST_LOW (range) + 1; | |
4973 | labelvec = (rtx *) alloca (ncases * sizeof (rtx)); | |
4c9a05bc | 4974 | bzero ((char *) labelvec, ncases * sizeof (rtx)); |
28d81abb RK |
4975 | |
4976 | for (n = thiscase->data.case_stmt.case_list; n; n = n->right) | |
4977 | { | |
37366632 | 4978 | register HOST_WIDE_INT i |
3474db0e | 4979 | = TREE_INT_CST_LOW (n->low) - TREE_INT_CST_LOW (orig_minval); |
28d81abb RK |
4980 | |
4981 | while (1) | |
4982 | { | |
4983 | labelvec[i] | |
4984 | = gen_rtx (LABEL_REF, Pmode, label_rtx (n->code_label)); | |
3474db0e | 4985 | if (i + TREE_INT_CST_LOW (orig_minval) |
28d81abb RK |
4986 | == TREE_INT_CST_LOW (n->high)) |
4987 | break; | |
4988 | i++; | |
4989 | } | |
4990 | } | |
4991 | ||
4992 | /* Fill in the gaps with the default. */ | |
4993 | for (i = 0; i < ncases; i++) | |
4994 | if (labelvec[i] == 0) | |
4995 | labelvec[i] = gen_rtx (LABEL_REF, Pmode, default_label); | |
4996 | ||
4997 | /* Output the table */ | |
4998 | emit_label (table_label); | |
4999 | ||
5000 | /* This would be a lot nicer if CASE_VECTOR_PC_RELATIVE | |
858a47b1 | 5001 | were an expression, instead of an #ifdef/#ifndef. */ |
28d81abb RK |
5002 | if ( |
5003 | #ifdef CASE_VECTOR_PC_RELATIVE | |
5004 | 1 || | |
5005 | #endif | |
5006 | flag_pic) | |
5007 | emit_jump_insn (gen_rtx (ADDR_DIFF_VEC, CASE_VECTOR_MODE, | |
5008 | gen_rtx (LABEL_REF, Pmode, table_label), | |
5009 | gen_rtvec_v (ncases, labelvec))); | |
5010 | else | |
5011 | emit_jump_insn (gen_rtx (ADDR_VEC, CASE_VECTOR_MODE, | |
5012 | gen_rtvec_v (ncases, labelvec))); | |
5013 | ||
5014 | /* If the case insn drops through the table, | |
5015 | after the table we must jump to the default-label. | |
5016 | Otherwise record no drop-through after the table. */ | |
5017 | #ifdef CASE_DROPS_THROUGH | |
5018 | emit_jump (default_label); | |
5019 | #else | |
5020 | emit_barrier (); | |
5021 | #endif | |
5022 | } | |
5023 | ||
915f619f JW |
5024 | before_case = squeeze_notes (NEXT_INSN (before_case), get_last_insn ()); |
5025 | reorder_insns (before_case, get_last_insn (), | |
28d81abb RK |
5026 | thiscase->data.case_stmt.start); |
5027 | } | |
1b0cb6fc | 5028 | |
28d81abb RK |
5029 | if (thiscase->exit_label) |
5030 | emit_label (thiscase->exit_label); | |
5031 | ||
5032 | POPSTACK (case_stack); | |
5033 | ||
5034 | free_temp_slots (); | |
5035 | } | |
5036 | ||
ca695ac9 JB |
5037 | |
5038 | /* Terminate a case statement. EXPR is the original index | |
5039 | expression. */ | |
704f4dca RK |
5040 | |
5041 | static void | |
ca695ac9 JB |
5042 | bc_expand_end_case (expr) |
5043 | tree expr; | |
5044 | { | |
5045 | struct nesting *thiscase = case_stack; | |
5046 | enum bytecode_opcode opcode; | |
5047 | struct bc_label *jump_label; | |
5048 | struct case_node *c; | |
5049 | ||
5050 | bc_emit_bytecode (jump); | |
c53e9440 | 5051 | bc_emit_bytecode_labelref (BYTECODE_BC_LABEL (thiscase->exit_label)); |
ca695ac9 JB |
5052 | |
5053 | #ifdef DEBUG_PRINT_CODE | |
5054 | fputc ('\n', stderr); | |
5055 | #endif | |
5056 | ||
5057 | /* Now that the size of the jump table is known, emit the actual | |
5058 | indexed jump instruction. */ | |
c53e9440 | 5059 | bc_emit_bytecode_labeldef (BYTECODE_BC_LABEL (thiscase->data.case_stmt.skip_label)); |
ca695ac9 JB |
5060 | |
5061 | opcode = TYPE_MODE (thiscase->data.case_stmt.nominal_type) == SImode | |
5062 | ? TREE_UNSIGNED (thiscase->data.case_stmt.nominal_type) ? caseSU : caseSI | |
5063 | : TREE_UNSIGNED (thiscase->data.case_stmt.nominal_type) ? caseDU : caseDI; | |
5064 | ||
5065 | bc_emit_bytecode (opcode); | |
5066 | ||
5067 | /* Now emit the case instructions literal arguments, in order. | |
5068 | In addition to the value on the stack, it uses: | |
5069 | 1. The address of the jump table. | |
5070 | 2. The size of the jump table. | |
5071 | 3. The default label. */ | |
5072 | ||
5073 | jump_label = bc_get_bytecode_label (); | |
5074 | bc_emit_bytecode_labelref (jump_label); | |
5075 | bc_emit_bytecode_const ((char *) &thiscase->data.case_stmt.num_ranges, | |
5076 | sizeof thiscase->data.case_stmt.num_ranges); | |
5077 | ||
5078 | if (thiscase->data.case_stmt.default_label) | |
c53e9440 | 5079 | bc_emit_bytecode_labelref (BYTECODE_BC_LABEL (DECL_RTL (thiscase->data.case_stmt.default_label))); |
ca695ac9 | 5080 | else |
c53e9440 | 5081 | bc_emit_bytecode_labelref (BYTECODE_BC_LABEL (thiscase->exit_label)); |
ca695ac9 JB |
5082 | |
5083 | /* Output the jump table. */ | |
5084 | ||
5085 | bc_align_bytecode (3 /* PTR_ALIGN */); | |
5086 | bc_emit_bytecode_labeldef (jump_label); | |
5087 | ||
5088 | if (TYPE_MODE (thiscase->data.case_stmt.nominal_type) == SImode) | |
5089 | for (c = thiscase->data.case_stmt.case_list->left; c; c = c->left) | |
5090 | { | |
5091 | opcode = TREE_INT_CST_LOW (c->low); | |
5092 | bc_emit_bytecode_const ((char *) &opcode, sizeof opcode); | |
5093 | ||
5094 | opcode = TREE_INT_CST_LOW (c->high); | |
5095 | bc_emit_bytecode_const ((char *) &opcode, sizeof opcode); | |
5096 | ||
c53e9440 | 5097 | bc_emit_bytecode_labelref (BYTECODE_BC_LABEL (DECL_RTL (c->code_label))); |
ca695ac9 JB |
5098 | } |
5099 | else | |
5100 | if (TYPE_MODE (thiscase->data.case_stmt.nominal_type) == DImode) | |
5101 | for (c = thiscase->data.case_stmt.case_list->left; c; c = c->left) | |
5102 | { | |
5103 | bc_emit_bytecode_DI_const (c->low); | |
5104 | bc_emit_bytecode_DI_const (c->high); | |
5105 | ||
c53e9440 | 5106 | bc_emit_bytecode_labelref (BYTECODE_BC_LABEL (DECL_RTL (c->code_label))); |
ca695ac9 JB |
5107 | } |
5108 | else | |
5109 | /* Bad mode */ | |
5110 | abort (); | |
5111 | ||
5112 | ||
c53e9440 | 5113 | bc_emit_bytecode_labeldef (BYTECODE_BC_LABEL (thiscase->exit_label)); |
ca695ac9 JB |
5114 | |
5115 | /* Possibly issue enumeration warnings. */ | |
5116 | ||
5117 | if (!thiscase->data.case_stmt.default_label | |
5118 | && TREE_CODE (TREE_TYPE (expr)) == ENUMERAL_TYPE | |
5119 | && TREE_CODE (expr) != INTEGER_CST | |
5120 | && warn_switch) | |
5121 | check_for_full_enumeration_handling (TREE_TYPE (expr)); | |
5122 | ||
5123 | ||
5124 | #ifdef DEBUG_PRINT_CODE | |
5125 | fputc ('\n', stderr); | |
5126 | #endif | |
5127 | ||
5128 | POPSTACK (case_stack); | |
5129 | } | |
5130 | ||
5131 | ||
5132 | /* Return unique bytecode ID. */ | |
704f4dca | 5133 | |
ca695ac9 JB |
5134 | int |
5135 | bc_new_uid () | |
5136 | { | |
5137 | static int bc_uid = 0; | |
5138 | ||
5139 | return (++bc_uid); | |
5140 | } | |
5141 | ||
28d81abb RK |
5142 | /* Generate code to jump to LABEL if OP1 and OP2 are equal. */ |
5143 | ||
5144 | static void | |
5145 | do_jump_if_equal (op1, op2, label, unsignedp) | |
5146 | rtx op1, op2, label; | |
5147 | int unsignedp; | |
5148 | { | |
5149 | if (GET_CODE (op1) == CONST_INT | |
5150 | && GET_CODE (op2) == CONST_INT) | |
5151 | { | |
5152 | if (INTVAL (op1) == INTVAL (op2)) | |
5153 | emit_jump (label); | |
5154 | } | |
5155 | else | |
5156 | { | |
5157 | enum machine_mode mode = GET_MODE (op1); | |
5158 | if (mode == VOIDmode) | |
5159 | mode = GET_MODE (op2); | |
37366632 | 5160 | emit_cmp_insn (op1, op2, EQ, NULL_RTX, mode, unsignedp, 0); |
28d81abb RK |
5161 | emit_jump_insn (gen_beq (label)); |
5162 | } | |
5163 | } | |
5164 | \f | |
5165 | /* Not all case values are encountered equally. This function | |
5166 | uses a heuristic to weight case labels, in cases where that | |
5167 | looks like a reasonable thing to do. | |
5168 | ||
5169 | Right now, all we try to guess is text, and we establish the | |
5170 | following weights: | |
5171 | ||
5172 | chars above space: 16 | |
5173 | digits: 16 | |
5174 | default: 12 | |
5175 | space, punct: 8 | |
5176 | tab: 4 | |
5177 | newline: 2 | |
5178 | other "\" chars: 1 | |
5179 | remaining chars: 0 | |
5180 | ||
5181 | If we find any cases in the switch that are not either -1 or in the range | |
5182 | of valid ASCII characters, or are control characters other than those | |
5183 | commonly used with "\", don't treat this switch scanning text. | |
5184 | ||
5185 | Return 1 if these nodes are suitable for cost estimation, otherwise | |
5186 | return 0. */ | |
5187 | ||
5188 | static int | |
5189 | estimate_case_costs (node) | |
5190 | case_node_ptr node; | |
5191 | { | |
5192 | tree min_ascii = build_int_2 (-1, -1); | |
5193 | tree max_ascii = convert (TREE_TYPE (node->high), build_int_2 (127, 0)); | |
5194 | case_node_ptr n; | |
5195 | int i; | |
5196 | ||
5197 | /* If we haven't already made the cost table, make it now. Note that the | |
5198 | lower bound of the table is -1, not zero. */ | |
5199 | ||
5200 | if (cost_table == NULL) | |
5201 | { | |
5202 | cost_table = ((short *) xmalloc (129 * sizeof (short))) + 1; | |
4c9a05bc | 5203 | bzero ((char *) (cost_table - 1), 129 * sizeof (short)); |
28d81abb RK |
5204 | |
5205 | for (i = 0; i < 128; i++) | |
5206 | { | |
5207 | if (isalnum (i)) | |
5208 | cost_table[i] = 16; | |
5209 | else if (ispunct (i)) | |
5210 | cost_table[i] = 8; | |
5211 | else if (iscntrl (i)) | |
5212 | cost_table[i] = -1; | |
5213 | } | |
5214 | ||
5215 | cost_table[' '] = 8; | |
5216 | cost_table['\t'] = 4; | |
5217 | cost_table['\0'] = 4; | |
5218 | cost_table['\n'] = 2; | |
5219 | cost_table['\f'] = 1; | |
5220 | cost_table['\v'] = 1; | |
5221 | cost_table['\b'] = 1; | |
5222 | } | |
5223 | ||
5224 | /* See if all the case expressions look like text. It is text if the | |
5225 | constant is >= -1 and the highest constant is <= 127. Do all comparisons | |
5226 | as signed arithmetic since we don't want to ever access cost_table with a | |
5227 | value less than -1. Also check that none of the constants in a range | |
5228 | are strange control characters. */ | |
5229 | ||
5230 | for (n = node; n; n = n->right) | |
5231 | { | |
5232 | if ((INT_CST_LT (n->low, min_ascii)) || INT_CST_LT (max_ascii, n->high)) | |
5233 | return 0; | |
5234 | ||
5235 | for (i = TREE_INT_CST_LOW (n->low); i <= TREE_INT_CST_LOW (n->high); i++) | |
5236 | if (cost_table[i] < 0) | |
5237 | return 0; | |
5238 | } | |
5239 | ||
5240 | /* All interesting values are within the range of interesting | |
5241 | ASCII characters. */ | |
5242 | return 1; | |
5243 | } | |
5244 | ||
5245 | /* Scan an ordered list of case nodes | |
5246 | combining those with consecutive values or ranges. | |
5247 | ||
5248 | Eg. three separate entries 1: 2: 3: become one entry 1..3: */ | |
5249 | ||
5250 | static void | |
5251 | group_case_nodes (head) | |
5252 | case_node_ptr head; | |
5253 | { | |
5254 | case_node_ptr node = head; | |
5255 | ||
5256 | while (node) | |
5257 | { | |
5258 | rtx lb = next_real_insn (label_rtx (node->code_label)); | |
5259 | case_node_ptr np = node; | |
5260 | ||
5261 | /* Try to group the successors of NODE with NODE. */ | |
5262 | while (((np = np->right) != 0) | |
5263 | /* Do they jump to the same place? */ | |
5264 | && next_real_insn (label_rtx (np->code_label)) == lb | |
5265 | /* Are their ranges consecutive? */ | |
5266 | && tree_int_cst_equal (np->low, | |
5267 | fold (build (PLUS_EXPR, | |
5268 | TREE_TYPE (node->high), | |
5269 | node->high, | |
5270 | integer_one_node))) | |
5271 | /* An overflow is not consecutive. */ | |
5272 | && tree_int_cst_lt (node->high, | |
5273 | fold (build (PLUS_EXPR, | |
5274 | TREE_TYPE (node->high), | |
5275 | node->high, | |
5276 | integer_one_node)))) | |
5277 | { | |
5278 | node->high = np->high; | |
5279 | } | |
5280 | /* NP is the first node after NODE which can't be grouped with it. | |
5281 | Delete the nodes in between, and move on to that node. */ | |
5282 | node->right = np; | |
5283 | node = np; | |
5284 | } | |
5285 | } | |
5286 | ||
5287 | /* Take an ordered list of case nodes | |
5288 | and transform them into a near optimal binary tree, | |
6dc42e49 | 5289 | on the assumption that any target code selection value is as |
28d81abb RK |
5290 | likely as any other. |
5291 | ||
5292 | The transformation is performed by splitting the ordered | |
5293 | list into two equal sections plus a pivot. The parts are | |
5294 | then attached to the pivot as left and right branches. Each | |
5295 | branch is is then transformed recursively. */ | |
5296 | ||
5297 | static void | |
5298 | balance_case_nodes (head, parent) | |
5299 | case_node_ptr *head; | |
5300 | case_node_ptr parent; | |
5301 | { | |
5302 | register case_node_ptr np; | |
5303 | ||
5304 | np = *head; | |
5305 | if (np) | |
5306 | { | |
5307 | int cost = 0; | |
5308 | int i = 0; | |
5309 | int ranges = 0; | |
5310 | register case_node_ptr *npp; | |
5311 | case_node_ptr left; | |
5312 | ||
5313 | /* Count the number of entries on branch. Also count the ranges. */ | |
5314 | ||
5315 | while (np) | |
5316 | { | |
5317 | if (!tree_int_cst_equal (np->low, np->high)) | |
5318 | { | |
5319 | ranges++; | |
5320 | if (use_cost_table) | |
5321 | cost += cost_table[TREE_INT_CST_LOW (np->high)]; | |
5322 | } | |
5323 | ||
5324 | if (use_cost_table) | |
5325 | cost += cost_table[TREE_INT_CST_LOW (np->low)]; | |
5326 | ||
5327 | i++; | |
5328 | np = np->right; | |
5329 | } | |
5330 | ||
5331 | if (i > 2) | |
5332 | { | |
5333 | /* Split this list if it is long enough for that to help. */ | |
5334 | npp = head; | |
5335 | left = *npp; | |
5336 | if (use_cost_table) | |
5337 | { | |
5338 | /* Find the place in the list that bisects the list's total cost, | |
5339 | Here I gets half the total cost. */ | |
5340 | int n_moved = 0; | |
5341 | i = (cost + 1) / 2; | |
5342 | while (1) | |
5343 | { | |
5344 | /* Skip nodes while their cost does not reach that amount. */ | |
5345 | if (!tree_int_cst_equal ((*npp)->low, (*npp)->high)) | |
5346 | i -= cost_table[TREE_INT_CST_LOW ((*npp)->high)]; | |
5347 | i -= cost_table[TREE_INT_CST_LOW ((*npp)->low)]; | |
5348 | if (i <= 0) | |
5349 | break; | |
5350 | npp = &(*npp)->right; | |
5351 | n_moved += 1; | |
5352 | } | |
5353 | if (n_moved == 0) | |
5354 | { | |
5355 | /* Leave this branch lopsided, but optimize left-hand | |
5356 | side and fill in `parent' fields for right-hand side. */ | |
5357 | np = *head; | |
5358 | np->parent = parent; | |
5359 | balance_case_nodes (&np->left, np); | |
5360 | for (; np->right; np = np->right) | |
5361 | np->right->parent = np; | |
5362 | return; | |
5363 | } | |
5364 | } | |
5365 | /* If there are just three nodes, split at the middle one. */ | |
5366 | else if (i == 3) | |
5367 | npp = &(*npp)->right; | |
5368 | else | |
5369 | { | |
5370 | /* Find the place in the list that bisects the list's total cost, | |
5371 | where ranges count as 2. | |
5372 | Here I gets half the total cost. */ | |
5373 | i = (i + ranges + 1) / 2; | |
5374 | while (1) | |
5375 | { | |
5376 | /* Skip nodes while their cost does not reach that amount. */ | |
5377 | if (!tree_int_cst_equal ((*npp)->low, (*npp)->high)) | |
5378 | i--; | |
5379 | i--; | |
5380 | if (i <= 0) | |
5381 | break; | |
5382 | npp = &(*npp)->right; | |
5383 | } | |
5384 | } | |
5385 | *head = np = *npp; | |
5386 | *npp = 0; | |
5387 | np->parent = parent; | |
5388 | np->left = left; | |
5389 | ||
5390 | /* Optimize each of the two split parts. */ | |
5391 | balance_case_nodes (&np->left, np); | |
5392 | balance_case_nodes (&np->right, np); | |
5393 | } | |
5394 | else | |
5395 | { | |
5396 | /* Else leave this branch as one level, | |
5397 | but fill in `parent' fields. */ | |
5398 | np = *head; | |
5399 | np->parent = parent; | |
5400 | for (; np->right; np = np->right) | |
5401 | np->right->parent = np; | |
5402 | } | |
5403 | } | |
5404 | } | |
5405 | \f | |
5406 | /* Search the parent sections of the case node tree | |
5407 | to see if a test for the lower bound of NODE would be redundant. | |
5408 | INDEX_TYPE is the type of the index expression. | |
5409 | ||
5410 | The instructions to generate the case decision tree are | |
5411 | output in the same order as nodes are processed so it is | |
5412 | known that if a parent node checks the range of the current | |
5413 | node minus one that the current node is bounded at its lower | |
5414 | span. Thus the test would be redundant. */ | |
5415 | ||
5416 | static int | |
5417 | node_has_low_bound (node, index_type) | |
5418 | case_node_ptr node; | |
5419 | tree index_type; | |
5420 | { | |
5421 | tree low_minus_one; | |
5422 | case_node_ptr pnode; | |
5423 | ||
5424 | /* If the lower bound of this node is the lowest value in the index type, | |
5425 | we need not test it. */ | |
5426 | ||
5427 | if (tree_int_cst_equal (node->low, TYPE_MIN_VALUE (index_type))) | |
5428 | return 1; | |
5429 | ||
5430 | /* If this node has a left branch, the value at the left must be less | |
5431 | than that at this node, so it cannot be bounded at the bottom and | |
5432 | we need not bother testing any further. */ | |
5433 | ||
5434 | if (node->left) | |
5435 | return 0; | |
5436 | ||
5437 | low_minus_one = fold (build (MINUS_EXPR, TREE_TYPE (node->low), | |
5438 | node->low, integer_one_node)); | |
5439 | ||
5440 | /* If the subtraction above overflowed, we can't verify anything. | |
5441 | Otherwise, look for a parent that tests our value - 1. */ | |
5442 | ||
5443 | if (! tree_int_cst_lt (low_minus_one, node->low)) | |
5444 | return 0; | |
5445 | ||
5446 | for (pnode = node->parent; pnode; pnode = pnode->parent) | |
5447 | if (tree_int_cst_equal (low_minus_one, pnode->high)) | |
5448 | return 1; | |
5449 | ||
5450 | return 0; | |
5451 | } | |
5452 | ||
5453 | /* Search the parent sections of the case node tree | |
5454 | to see if a test for the upper bound of NODE would be redundant. | |
5455 | INDEX_TYPE is the type of the index expression. | |
5456 | ||
5457 | The instructions to generate the case decision tree are | |
5458 | output in the same order as nodes are processed so it is | |
5459 | known that if a parent node checks the range of the current | |
5460 | node plus one that the current node is bounded at its upper | |
5461 | span. Thus the test would be redundant. */ | |
5462 | ||
5463 | static int | |
5464 | node_has_high_bound (node, index_type) | |
5465 | case_node_ptr node; | |
5466 | tree index_type; | |
5467 | { | |
5468 | tree high_plus_one; | |
5469 | case_node_ptr pnode; | |
5470 | ||
5471 | /* If the upper bound of this node is the highest value in the type | |
5472 | of the index expression, we need not test against it. */ | |
5473 | ||
5474 | if (tree_int_cst_equal (node->high, TYPE_MAX_VALUE (index_type))) | |
5475 | return 1; | |
5476 | ||
5477 | /* If this node has a right branch, the value at the right must be greater | |
5478 | than that at this node, so it cannot be bounded at the top and | |
5479 | we need not bother testing any further. */ | |
5480 | ||
5481 | if (node->right) | |
5482 | return 0; | |
5483 | ||
5484 | high_plus_one = fold (build (PLUS_EXPR, TREE_TYPE (node->high), | |
5485 | node->high, integer_one_node)); | |
5486 | ||
5487 | /* If the addition above overflowed, we can't verify anything. | |
5488 | Otherwise, look for a parent that tests our value + 1. */ | |
5489 | ||
5490 | if (! tree_int_cst_lt (node->high, high_plus_one)) | |
5491 | return 0; | |
5492 | ||
5493 | for (pnode = node->parent; pnode; pnode = pnode->parent) | |
5494 | if (tree_int_cst_equal (high_plus_one, pnode->low)) | |
5495 | return 1; | |
5496 | ||
5497 | return 0; | |
5498 | } | |
5499 | ||
5500 | /* Search the parent sections of the | |
5501 | case node tree to see if both tests for the upper and lower | |
5502 | bounds of NODE would be redundant. */ | |
5503 | ||
5504 | static int | |
5505 | node_is_bounded (node, index_type) | |
5506 | case_node_ptr node; | |
5507 | tree index_type; | |
5508 | { | |
5509 | return (node_has_low_bound (node, index_type) | |
5510 | && node_has_high_bound (node, index_type)); | |
5511 | } | |
5512 | ||
5513 | /* Emit an unconditional jump to LABEL unless it would be dead code. */ | |
5514 | ||
5515 | static void | |
5516 | emit_jump_if_reachable (label) | |
5517 | rtx label; | |
5518 | { | |
5519 | if (GET_CODE (get_last_insn ()) != BARRIER) | |
5520 | emit_jump (label); | |
5521 | } | |
5522 | \f | |
5523 | /* Emit step-by-step code to select a case for the value of INDEX. | |
5524 | The thus generated decision tree follows the form of the | |
5525 | case-node binary tree NODE, whose nodes represent test conditions. | |
5526 | INDEX_TYPE is the type of the index of the switch. | |
5527 | ||
5528 | Care is taken to prune redundant tests from the decision tree | |
5529 | by detecting any boundary conditions already checked by | |
5530 | emitted rtx. (See node_has_high_bound, node_has_low_bound | |
5531 | and node_is_bounded, above.) | |
5532 | ||
5533 | Where the test conditions can be shown to be redundant we emit | |
5534 | an unconditional jump to the target code. As a further | |
5535 | optimization, the subordinates of a tree node are examined to | |
5536 | check for bounded nodes. In this case conditional and/or | |
5537 | unconditional jumps as a result of the boundary check for the | |
5538 | current node are arranged to target the subordinates associated | |
5539 | code for out of bound conditions on the current node node. | |
5540 | ||
f72aed24 | 5541 | We can assume that when control reaches the code generated here, |
28d81abb RK |
5542 | the index value has already been compared with the parents |
5543 | of this node, and determined to be on the same side of each parent | |
5544 | as this node is. Thus, if this node tests for the value 51, | |
5545 | and a parent tested for 52, we don't need to consider | |
5546 | the possibility of a value greater than 51. If another parent | |
5547 | tests for the value 50, then this node need not test anything. */ | |
5548 | ||
5549 | static void | |
5550 | emit_case_nodes (index, node, default_label, index_type) | |
5551 | rtx index; | |
5552 | case_node_ptr node; | |
5553 | rtx default_label; | |
5554 | tree index_type; | |
5555 | { | |
5556 | /* If INDEX has an unsigned type, we must make unsigned branches. */ | |
5557 | int unsignedp = TREE_UNSIGNED (index_type); | |
5558 | typedef rtx rtx_function (); | |
5559 | rtx_function *gen_bgt_pat = unsignedp ? gen_bgtu : gen_bgt; | |
5560 | rtx_function *gen_bge_pat = unsignedp ? gen_bgeu : gen_bge; | |
5561 | rtx_function *gen_blt_pat = unsignedp ? gen_bltu : gen_blt; | |
5562 | rtx_function *gen_ble_pat = unsignedp ? gen_bleu : gen_ble; | |
5563 | enum machine_mode mode = GET_MODE (index); | |
5564 | ||
5565 | /* See if our parents have already tested everything for us. | |
5566 | If they have, emit an unconditional jump for this node. */ | |
5567 | if (node_is_bounded (node, index_type)) | |
5568 | emit_jump (label_rtx (node->code_label)); | |
5569 | ||
5570 | else if (tree_int_cst_equal (node->low, node->high)) | |
5571 | { | |
5572 | /* Node is single valued. First see if the index expression matches | |
5573 | this node and then check our children, if any. */ | |
5574 | ||
37366632 | 5575 | do_jump_if_equal (index, expand_expr (node->low, NULL_RTX, VOIDmode, 0), |
28d81abb RK |
5576 | label_rtx (node->code_label), unsignedp); |
5577 | ||
5578 | if (node->right != 0 && node->left != 0) | |
5579 | { | |
5580 | /* This node has children on both sides. | |
5581 | Dispatch to one side or the other | |
5582 | by comparing the index value with this node's value. | |
5583 | If one subtree is bounded, check that one first, | |
5584 | so we can avoid real branches in the tree. */ | |
5585 | ||
5586 | if (node_is_bounded (node->right, index_type)) | |
5587 | { | |
37366632 RK |
5588 | emit_cmp_insn (index, expand_expr (node->high, NULL_RTX, |
5589 | VOIDmode, 0), | |
5590 | GT, NULL_RTX, mode, unsignedp, 0); | |
28d81abb RK |
5591 | |
5592 | emit_jump_insn ((*gen_bgt_pat) (label_rtx (node->right->code_label))); | |
5593 | emit_case_nodes (index, node->left, default_label, index_type); | |
5594 | } | |
5595 | ||
5596 | else if (node_is_bounded (node->left, index_type)) | |
5597 | { | |
37366632 | 5598 | emit_cmp_insn (index, expand_expr (node->high, NULL_RTX, |
28d81abb | 5599 | VOIDmode, 0), |
37366632 | 5600 | LT, NULL_RTX, mode, unsignedp, 0); |
28d81abb RK |
5601 | emit_jump_insn ((*gen_blt_pat) (label_rtx (node->left->code_label))); |
5602 | emit_case_nodes (index, node->right, default_label, index_type); | |
5603 | } | |
5604 | ||
5605 | else | |
5606 | { | |
5607 | /* Neither node is bounded. First distinguish the two sides; | |
5608 | then emit the code for one side at a time. */ | |
5609 | ||
5610 | tree test_label | |
5611 | = build_decl (LABEL_DECL, NULL_TREE, NULL_TREE); | |
5612 | ||
5613 | /* See if the value is on the right. */ | |
37366632 | 5614 | emit_cmp_insn (index, expand_expr (node->high, NULL_RTX, |
28d81abb | 5615 | VOIDmode, 0), |
37366632 | 5616 | GT, NULL_RTX, mode, unsignedp, 0); |
28d81abb RK |
5617 | emit_jump_insn ((*gen_bgt_pat) (label_rtx (test_label))); |
5618 | ||
5619 | /* Value must be on the left. | |
5620 | Handle the left-hand subtree. */ | |
5621 | emit_case_nodes (index, node->left, default_label, index_type); | |
5622 | /* If left-hand subtree does nothing, | |
5623 | go to default. */ | |
5624 | emit_jump_if_reachable (default_label); | |
5625 | ||
5626 | /* Code branches here for the right-hand subtree. */ | |
5627 | expand_label (test_label); | |
5628 | emit_case_nodes (index, node->right, default_label, index_type); | |
5629 | } | |
5630 | } | |
5631 | ||
5632 | else if (node->right != 0 && node->left == 0) | |
5633 | { | |
5634 | /* Here we have a right child but no left so we issue conditional | |
5635 | branch to default and process the right child. | |
5636 | ||
5637 | Omit the conditional branch to default if we it avoid only one | |
5638 | right child; it costs too much space to save so little time. */ | |
5639 | ||
de14fd73 | 5640 | if (node->right->right || node->right->left |
28d81abb RK |
5641 | || !tree_int_cst_equal (node->right->low, node->right->high)) |
5642 | { | |
5643 | if (!node_has_low_bound (node, index_type)) | |
5644 | { | |
37366632 RK |
5645 | emit_cmp_insn (index, expand_expr (node->high, NULL_RTX, |
5646 | VOIDmode, 0), | |
5647 | LT, NULL_RTX, mode, unsignedp, 0); | |
28d81abb RK |
5648 | emit_jump_insn ((*gen_blt_pat) (default_label)); |
5649 | } | |
5650 | ||
5651 | emit_case_nodes (index, node->right, default_label, index_type); | |
5652 | } | |
5653 | else | |
5654 | /* We cannot process node->right normally | |
5655 | since we haven't ruled out the numbers less than | |
5656 | this node's value. So handle node->right explicitly. */ | |
5657 | do_jump_if_equal (index, | |
37366632 RK |
5658 | expand_expr (node->right->low, NULL_RTX, |
5659 | VOIDmode, 0), | |
28d81abb RK |
5660 | label_rtx (node->right->code_label), unsignedp); |
5661 | } | |
5662 | ||
5663 | else if (node->right == 0 && node->left != 0) | |
5664 | { | |
5665 | /* Just one subtree, on the left. */ | |
5666 | ||
de14fd73 RK |
5667 | #if 0 /* The following code and comment were formerly part |
5668 | of the condition here, but they didn't work | |
5669 | and I don't understand what the idea was. -- rms. */ | |
5670 | /* If our "most probable entry" is less probable | |
28d81abb RK |
5671 | than the default label, emit a jump to |
5672 | the default label using condition codes | |
5673 | already lying around. With no right branch, | |
5674 | a branch-greater-than will get us to the default | |
5675 | label correctly. */ | |
de14fd73 RK |
5676 | if (use_cost_table |
5677 | && cost_table[TREE_INT_CST_LOW (node->high)] < 12) | |
5678 | ; | |
5679 | #endif /* 0 */ | |
5680 | if (node->left->left || node->left->right | |
28d81abb RK |
5681 | || !tree_int_cst_equal (node->left->low, node->left->high)) |
5682 | { | |
5683 | if (!node_has_high_bound (node, index_type)) | |
5684 | { | |
37366632 RK |
5685 | emit_cmp_insn (index, expand_expr (node->high, NULL_RTX, |
5686 | VOIDmode, 0), | |
5687 | GT, NULL_RTX, mode, unsignedp, 0); | |
28d81abb RK |
5688 | emit_jump_insn ((*gen_bgt_pat) (default_label)); |
5689 | } | |
5690 | ||
5691 | emit_case_nodes (index, node->left, default_label, index_type); | |
5692 | } | |
5693 | else | |
5694 | /* We cannot process node->left normally | |
5695 | since we haven't ruled out the numbers less than | |
5696 | this node's value. So handle node->left explicitly. */ | |
5697 | do_jump_if_equal (index, | |
37366632 RK |
5698 | expand_expr (node->left->low, NULL_RTX, |
5699 | VOIDmode, 0), | |
28d81abb RK |
5700 | label_rtx (node->left->code_label), unsignedp); |
5701 | } | |
5702 | } | |
5703 | else | |
5704 | { | |
5705 | /* Node is a range. These cases are very similar to those for a single | |
5706 | value, except that we do not start by testing whether this node | |
5707 | is the one to branch to. */ | |
5708 | ||
5709 | if (node->right != 0 && node->left != 0) | |
5710 | { | |
5711 | /* Node has subtrees on both sides. | |
5712 | If the right-hand subtree is bounded, | |
5713 | test for it first, since we can go straight there. | |
5714 | Otherwise, we need to make a branch in the control structure, | |
5715 | then handle the two subtrees. */ | |
5716 | tree test_label = 0; | |
5717 | ||
37366632 RK |
5718 | emit_cmp_insn (index, expand_expr (node->high, NULL_RTX, |
5719 | VOIDmode, 0), | |
5720 | GT, NULL_RTX, mode, unsignedp, 0); | |
28d81abb RK |
5721 | |
5722 | if (node_is_bounded (node->right, index_type)) | |
5723 | /* Right hand node is fully bounded so we can eliminate any | |
5724 | testing and branch directly to the target code. */ | |
5725 | emit_jump_insn ((*gen_bgt_pat) (label_rtx (node->right->code_label))); | |
5726 | else | |
5727 | { | |
5728 | /* Right hand node requires testing. | |
5729 | Branch to a label where we will handle it later. */ | |
5730 | ||
5731 | test_label = build_decl (LABEL_DECL, NULL_TREE, NULL_TREE); | |
5732 | emit_jump_insn ((*gen_bgt_pat) (label_rtx (test_label))); | |
5733 | } | |
5734 | ||
5735 | /* Value belongs to this node or to the left-hand subtree. */ | |
5736 | ||
37366632 RK |
5737 | emit_cmp_insn (index, expand_expr (node->low, NULL_RTX, VOIDmode, 0), |
5738 | GE, NULL_RTX, mode, unsignedp, 0); | |
28d81abb RK |
5739 | emit_jump_insn ((*gen_bge_pat) (label_rtx (node->code_label))); |
5740 | ||
5741 | /* Handle the left-hand subtree. */ | |
5742 | emit_case_nodes (index, node->left, default_label, index_type); | |
5743 | ||
5744 | /* If right node had to be handled later, do that now. */ | |
5745 | ||
5746 | if (test_label) | |
5747 | { | |
5748 | /* If the left-hand subtree fell through, | |
5749 | don't let it fall into the right-hand subtree. */ | |
5750 | emit_jump_if_reachable (default_label); | |
5751 | ||
5752 | expand_label (test_label); | |
5753 | emit_case_nodes (index, node->right, default_label, index_type); | |
5754 | } | |
5755 | } | |
5756 | ||
5757 | else if (node->right != 0 && node->left == 0) | |
5758 | { | |
5759 | /* Deal with values to the left of this node, | |
5760 | if they are possible. */ | |
5761 | if (!node_has_low_bound (node, index_type)) | |
5762 | { | |
37366632 RK |
5763 | emit_cmp_insn (index, expand_expr (node->low, NULL_RTX, |
5764 | VOIDmode, 0), | |
5765 | LT, NULL_RTX, mode, unsignedp, 0); | |
28d81abb RK |
5766 | emit_jump_insn ((*gen_blt_pat) (default_label)); |
5767 | } | |
5768 | ||
5769 | /* Value belongs to this node or to the right-hand subtree. */ | |
5770 | ||
37366632 RK |
5771 | emit_cmp_insn (index, expand_expr (node->high, NULL_RTX, |
5772 | VOIDmode, 0), | |
5773 | LE, NULL_RTX, mode, unsignedp, 0); | |
28d81abb RK |
5774 | emit_jump_insn ((*gen_ble_pat) (label_rtx (node->code_label))); |
5775 | ||
5776 | emit_case_nodes (index, node->right, default_label, index_type); | |
5777 | } | |
5778 | ||
5779 | else if (node->right == 0 && node->left != 0) | |
5780 | { | |
5781 | /* Deal with values to the right of this node, | |
5782 | if they are possible. */ | |
5783 | if (!node_has_high_bound (node, index_type)) | |
5784 | { | |
37366632 RK |
5785 | emit_cmp_insn (index, expand_expr (node->high, NULL_RTX, |
5786 | VOIDmode, 0), | |
5787 | GT, NULL_RTX, mode, unsignedp, 0); | |
28d81abb RK |
5788 | emit_jump_insn ((*gen_bgt_pat) (default_label)); |
5789 | } | |
5790 | ||
5791 | /* Value belongs to this node or to the left-hand subtree. */ | |
5792 | ||
37366632 RK |
5793 | emit_cmp_insn (index, expand_expr (node->low, NULL_RTX, VOIDmode, 0), |
5794 | GE, NULL_RTX, mode, unsignedp, 0); | |
28d81abb RK |
5795 | emit_jump_insn ((*gen_bge_pat) (label_rtx (node->code_label))); |
5796 | ||
5797 | emit_case_nodes (index, node->left, default_label, index_type); | |
5798 | } | |
5799 | ||
5800 | else | |
5801 | { | |
5802 | /* Node has no children so we check low and high bounds to remove | |
5803 | redundant tests. Only one of the bounds can exist, | |
5804 | since otherwise this node is bounded--a case tested already. */ | |
5805 | ||
5806 | if (!node_has_high_bound (node, index_type)) | |
5807 | { | |
37366632 RK |
5808 | emit_cmp_insn (index, expand_expr (node->high, NULL_RTX, |
5809 | VOIDmode, 0), | |
5810 | GT, NULL_RTX, mode, unsignedp, 0); | |
28d81abb RK |
5811 | emit_jump_insn ((*gen_bgt_pat) (default_label)); |
5812 | } | |
5813 | ||
5814 | if (!node_has_low_bound (node, index_type)) | |
5815 | { | |
37366632 RK |
5816 | emit_cmp_insn (index, expand_expr (node->low, NULL_RTX, |
5817 | VOIDmode, 0), | |
5818 | LT, NULL_RTX, mode, unsignedp, 0); | |
28d81abb RK |
5819 | emit_jump_insn ((*gen_blt_pat) (default_label)); |
5820 | } | |
5821 | ||
5822 | emit_jump (label_rtx (node->code_label)); | |
5823 | } | |
5824 | } | |
5825 | } | |
5826 | \f | |
5827 | /* These routines are used by the loop unrolling code. They copy BLOCK trees | |
5828 | so that the debugging info will be correct for the unrolled loop. */ | |
5829 | ||
94dc8b56 | 5830 | /* Indexed by block number, contains a pointer to the N'th block node. */ |
28d81abb | 5831 | |
94dc8b56 | 5832 | static tree *block_vector; |
28d81abb RK |
5833 | |
5834 | void | |
94dc8b56 | 5835 | find_loop_tree_blocks () |
28d81abb | 5836 | { |
94dc8b56 | 5837 | tree block = DECL_INITIAL (current_function_decl); |
28d81abb | 5838 | |
94dc8b56 JW |
5839 | /* There first block is for the function body, and does not have |
5840 | corresponding block notes. Don't include it in the block vector. */ | |
5841 | block = BLOCK_SUBBLOCKS (block); | |
28d81abb | 5842 | |
94dc8b56 | 5843 | block_vector = identify_blocks (block, get_insns ()); |
28d81abb RK |
5844 | } |
5845 | ||
28d81abb | 5846 | void |
94dc8b56 | 5847 | unroll_block_trees () |
28d81abb | 5848 | { |
94dc8b56 | 5849 | tree block = DECL_INITIAL (current_function_decl); |
28d81abb | 5850 | |
94dc8b56 | 5851 | reorder_blocks (block_vector, block, get_insns ()); |
28d81abb | 5852 | } |
94dc8b56 | 5853 |