]> gcc.gnu.org Git - gcc.git/blame - gcc/ssa-dce.c
decl.c, [...]: Don't use the PTR macro.
[gcc.git] / gcc / ssa-dce.c
CommitLineData
b53978a3 1/* Dead-code elimination pass for the GNU compiler.
cf403648 2 Copyright (C) 2000, 2001, 2002 Free Software Foundation, Inc.
b53978a3
JO
3 Written by Jeffrey D. Oldham <oldham@codesourcery.com>.
4
1322177d 5This file is part of GCC.
b53978a3 6
1322177d
LB
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
9Software Foundation; either version 2, or (at your option) any later
10version.
b53978a3 11
1322177d
LB
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
b53978a3
JO
14FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15for more details.
16
17You should have received a copy of the GNU General Public License
1322177d 18along with GCC; see the file COPYING. If not, write to the Free
b53978a3
JO
19Software Foundation, 59 Temple Place - Suite 330, Boston, MA
2002111-1307, USA. */
21
22/* Dead-code elimination is the removal of instructions which have no
23 impact on the program's output. "Dead instructions" have no impact
24 on the program's output, while "necessary instructions" may have
25 impact on the output.
26
27 The algorithm consists of three phases:
28 1) marking as necessary all instructions known to be necessary,
29 e.g., writing a value to memory,
30 2) propagating necessary instructions, e.g., the instructions
31 giving values to operands in necessary instructions, and
32 3) removing dead instructions (except replacing dead conditionals
33 with unconditional jumps).
34
35 Side Effects:
36 The last step can require adding labels, deleting insns, and
37 modifying basic block structures. Some conditional jumps may be
38 converted to unconditional jumps so the control-flow graph may be
766890e1 39 out-of-date.
b53978a3
JO
40
41 Edges from some infinite loops to the exit block can be added to
d72c3ec3
JL
42 the control-flow graph, but will be removed after this pass is
43 complete.
b53978a3
JO
44
45 It Does Not Perform:
46 We decided to not simultaneously perform jump optimization and dead
47 loop removal during dead-code elimination. Thus, all jump
48 instructions originally present remain after dead-code elimination
49 but 1) unnecessary conditional jump instructions are changed to
50 unconditional jump instructions and 2) all unconditional jump
51 instructions remain.
52
53 Assumptions:
54 1) SSA has been performed.
55 2) The basic block and control-flow graph structures are accurate.
56 3) The flow graph permits constructing an edge_list.
57 4) note rtxes should be saved.
58
59 Unfinished:
60 When replacing unnecessary conditional jumps with unconditional
61 jumps, the control-flow graph is not updated. It should be.
62
63 References:
64 Building an Optimizing Compiler
65 Robert Morgan
66 Butterworth-Heinemann, 1998
67 Section 8.9
68*/
69
70#include "config.h"
71#include "system.h"
4977bab6
ZW
72#include "coretypes.h"
73#include "tm.h"
b53978a3
JO
74
75#include "rtl.h"
76#include "hard-reg-set.h"
77#include "basic-block.h"
78#include "ssa.h"
79#include "insn-config.h"
80#include "recog.h"
81#include "output.h"
82
b53978a3
JO
83\f
84/* A map from blocks to the edges on which they are control dependent. */
85typedef struct {
86 /* An dynamically allocated array. The Nth element corresponds to
87 the block with index N + 2. The Ith bit in the bitmap is set if
88 that block is dependent on the Ith edge. */
89 bitmap *data;
90 /* The number of elements in the array. */
91 int length;
92} control_dependent_block_to_edge_map_s, *control_dependent_block_to_edge_map;
93
94/* Local function prototypes. */
95static control_dependent_block_to_edge_map control_dependent_block_to_edge_map_create
96 PARAMS((size_t num_basic_blocks));
97static void set_control_dependent_block_to_edge_map_bit
98 PARAMS ((control_dependent_block_to_edge_map c, basic_block bb,
99 int edge_index));
100static void control_dependent_block_to_edge_map_free
101 PARAMS ((control_dependent_block_to_edge_map c));
102static void find_all_control_dependences
355be0dc 103 PARAMS ((struct edge_list *el, dominance_info pdom,
b53978a3
JO
104 control_dependent_block_to_edge_map cdbte));
105static void find_control_dependence
355be0dc 106 PARAMS ((struct edge_list *el, int edge_index, dominance_info pdom,
b53978a3
JO
107 control_dependent_block_to_edge_map cdbte));
108static basic_block find_pdom
355be0dc 109 PARAMS ((dominance_info pdom, basic_block block));
b53978a3
JO
110static int inherently_necessary_register_1
111 PARAMS ((rtx *current_rtx, void *data));
112static int inherently_necessary_register
113 PARAMS ((rtx current_rtx));
114static int find_inherently_necessary
115 PARAMS ((rtx current_rtx));
116static int propagate_necessity_through_operand
117 PARAMS ((rtx *current_rtx, void *data));
8f2f6da1
JL
118static void note_inherently_necessary_set
119 PARAMS ((rtx, rtx, void *));
b53978a3
JO
120\f
121/* Unnecessary insns are indicated using insns' in_struct bit. */
122
123/* Indicate INSN is dead-code; returns nothing. */
124#define KILL_INSN(INSN) INSN_DEAD_CODE_P(INSN) = 1
125/* Indicate INSN is necessary, i.e., not dead-code; returns nothing. */
126#define RESURRECT_INSN(INSN) INSN_DEAD_CODE_P(INSN) = 0
127/* Return nonzero if INSN is unnecessary. */
128#define UNNECESSARY_P(INSN) INSN_DEAD_CODE_P(INSN)
129static void mark_all_insn_unnecessary
130 PARAMS ((void));
131/* Execute CODE with free variable INSN for all unnecessary insns in
132 an unspecified order, producing no output. */
133#define EXECUTE_IF_UNNECESSARY(INSN, CODE) \
134{ \
135 rtx INSN; \
136 \
137 for (INSN = get_insns (); INSN != NULL_RTX; INSN = NEXT_INSN (INSN)) \
ecd4a73b
JR
138 if (INSN_P (insn) && INSN_DEAD_CODE_P (INSN)) \
139 { \
140 CODE; \
141 } \
b53978a3 142}
ecd4a73b 143
b53978a3
JO
144/* Find the label beginning block BB. */
145static rtx find_block_label
146 PARAMS ((basic_block bb));
147/* Remove INSN, updating its basic block structure. */
148static void delete_insn_bb
149 PARAMS ((rtx insn));
150\f
151/* Recording which blocks are control dependent on which edges. We
152 expect each block to be control dependent on very few edges so we
153 use a bitmap for each block recording its edges. An array holds
154 the bitmap. Its position 0 entry holds the bitmap for block
155 INVALID_BLOCK+1 so that all blocks, including the entry and exit
156 blocks can participate in the data structure. */
157
158/* Create a control_dependent_block_to_edge_map, given the number
159 NUM_BASIC_BLOCKS of non-entry, non-exit basic blocks, e.g.,
0b17ab2f 160 n_basic_blocks. This memory must be released using
b53978a3
JO
161 control_dependent_block_to_edge_map_free (). */
162
163static control_dependent_block_to_edge_map
164control_dependent_block_to_edge_map_create (num_basic_blocks)
165 size_t num_basic_blocks;
166{
167 int i;
168 control_dependent_block_to_edge_map c
169 = xmalloc (sizeof (control_dependent_block_to_edge_map_s));
170 c->length = num_basic_blocks - (INVALID_BLOCK+1);
171 c->data = xmalloc ((size_t) c->length*sizeof (bitmap));
172 for (i = 0; i < c->length; ++i)
173 c->data[i] = BITMAP_XMALLOC ();
174
175 return c;
176}
177
178/* Indicate block BB is control dependent on an edge with index
179 EDGE_INDEX in the mapping C of blocks to edges on which they are
180 control-dependent. */
181
182static void
183set_control_dependent_block_to_edge_map_bit (c, bb, edge_index)
184 control_dependent_block_to_edge_map c;
185 basic_block bb;
186 int edge_index;
187{
0b17ab2f 188 if (bb->index - (INVALID_BLOCK+1) >= c->length)
3db35af4
MM
189 abort ();
190
0b17ab2f 191 bitmap_set_bit (c->data[bb->index - (INVALID_BLOCK+1)],
b53978a3
JO
192 edge_index);
193}
194
195/* Execute CODE for each edge (given number EDGE_NUMBER within the
196 CODE) for which the block containing INSN is control dependent,
197 returning no output. CDBTE is the mapping of blocks to edges on
198 which they are control-dependent. */
199
200#define EXECUTE_IF_CONTROL_DEPENDENT(CDBTE, INSN, EDGE_NUMBER, CODE) \
201 EXECUTE_IF_SET_IN_BITMAP \
202 (CDBTE->data[BLOCK_NUM (INSN) - (INVALID_BLOCK+1)], 0, \
203 EDGE_NUMBER, CODE)
204
205/* Destroy a control_dependent_block_to_edge_map C. */
206
207static void
208control_dependent_block_to_edge_map_free (c)
209 control_dependent_block_to_edge_map c;
210{
211 int i;
212 for (i = 0; i < c->length; ++i)
213 BITMAP_XFREE (c->data[i]);
fad205ff 214 free (c);
b53978a3
JO
215}
216
217/* Record all blocks' control dependences on all edges in the edge
218 list EL, ala Morgan, Section 3.6. The mapping PDOM of blocks to
219 their postdominators are used, and results are stored in CDBTE,
220 which should be empty. */
221
222static void
223find_all_control_dependences (el, pdom, cdbte)
224 struct edge_list *el;
355be0dc 225 dominance_info pdom;
b53978a3
JO
226 control_dependent_block_to_edge_map cdbte;
227{
228 int i;
229
230 for (i = 0; i < NUM_EDGES (el); ++i)
231 find_control_dependence (el, i, pdom, cdbte);
232}
233
234/* Determine all blocks' control dependences on the given edge with
235 edge_list EL index EDGE_INDEX, ala Morgan, Section 3.6. The
236 mapping PDOM of blocks to their postdominators are used, and
237 results are stored in CDBTE, which is assumed to be initialized
238 with zeros in each (block b', edge) position. */
239
240static void
241find_control_dependence (el, edge_index, pdom, cdbte)
242 struct edge_list *el;
243 int edge_index;
355be0dc 244 dominance_info pdom;
b53978a3
JO
245 control_dependent_block_to_edge_map cdbte;
246{
247 basic_block current_block;
248 basic_block ending_block;
249
3db35af4
MM
250 if (INDEX_EDGE_PRED_BB (el, edge_index) == EXIT_BLOCK_PTR)
251 abort ();
766890e1
AJ
252 ending_block =
253 (INDEX_EDGE_PRED_BB (el, edge_index) == ENTRY_BLOCK_PTR)
f6366fc7 254 ? ENTRY_BLOCK_PTR->next_bb
b53978a3
JO
255 : find_pdom (pdom, INDEX_EDGE_PRED_BB (el, edge_index));
256
257 for (current_block = INDEX_EDGE_SUCC_BB (el, edge_index);
258 current_block != ending_block && current_block != EXIT_BLOCK_PTR;
259 current_block = find_pdom (pdom, current_block))
260 {
261 set_control_dependent_block_to_edge_map_bit (cdbte,
262 current_block,
263 edge_index);
264 }
265}
266\f
267/* Find the immediate postdominator PDOM of the specified basic block
268 BLOCK. This function is necessary because some blocks have
269 negative numbers. */
270
271static basic_block
272find_pdom (pdom, block)
355be0dc 273 dominance_info pdom;
b53978a3
JO
274 basic_block block;
275{
3db35af4
MM
276 if (!block)
277 abort ();
0b17ab2f 278 if (block->index == INVALID_BLOCK)
3db35af4
MM
279 abort ();
280
b53978a3 281 if (block == ENTRY_BLOCK_PTR)
f6366fc7 282 return ENTRY_BLOCK_PTR->next_bb;
355be0dc 283 else if (block == EXIT_BLOCK_PTR)
b53978a3
JO
284 return EXIT_BLOCK_PTR;
285 else
355be0dc
JH
286 {
287 basic_block bb = get_immediate_dominator (pdom, block);
288 if (!bb)
289 return EXIT_BLOCK_PTR;
290 return bb;
291 }
b53978a3
JO
292}
293
294/* Determine if the given CURRENT_RTX uses a hard register not
295 converted to SSA. Returns nonzero only if it uses such a hard
296 register. DATA is not used.
297
298 The program counter (PC) is not considered inherently necessary
299 since code should be position-independent and thus not depend on
300 particular PC values. */
301
302static int
303inherently_necessary_register_1 (current_rtx, data)
304 rtx *current_rtx;
305 void *data ATTRIBUTE_UNUSED;
306{
307 rtx x = *current_rtx;
308
309 if (x == NULL_RTX)
310 return 0;
311 switch (GET_CODE (x))
312 {
313 case CLOBBER:
314 /* Do not traverse the rest of the clobber. */
766890e1 315 return -1;
b53978a3
JO
316 break;
317 case PC:
318 return 0;
319 break;
320 case REG:
321 if (CONVERT_REGISTER_TO_SSA_P (REGNO (x)) || x == pc_rtx)
322 return 0;
323 else
324 return !0;
325 break;
326 default:
327 return 0;
328 break;
329 }
330}
331
332/* Return nonzero if the insn CURRENT_RTX is inherently necessary. */
333
334static int
335inherently_necessary_register (current_rtx)
336 rtx current_rtx;
337{
338 return for_each_rtx (&current_rtx,
339 &inherently_necessary_register_1, NULL);
340}
341
8f2f6da1
JL
342
343/* Called via note_stores for each store in an insn. Note whether
344 or not a particular store is inherently necessary. Store a
766890e1
AJ
345 nonzero value in inherently_necessary_p if such a store is found. */
346
8f2f6da1
JL
347static void
348note_inherently_necessary_set (dest, set, data)
766890e1 349 rtx set ATTRIBUTE_UNUSED;
8f2f6da1
JL
350 rtx dest;
351 void *data;
352{
cf403648 353 int *inherently_necessary_set_p = (int *) data;
8f2f6da1
JL
354
355 while (GET_CODE (dest) == SUBREG
356 || GET_CODE (dest) == STRICT_LOW_PART
357 || GET_CODE (dest) == ZERO_EXTRACT
358 || GET_CODE (dest) == SIGN_EXTRACT)
359 dest = XEXP (dest, 0);
360
361 if (GET_CODE (dest) == MEM
362 || GET_CODE (dest) == UNSPEC
363 || GET_CODE (dest) == UNSPEC_VOLATILE)
364 *inherently_necessary_set_p = 1;
365}
366
b53978a3
JO
367/* Mark X as inherently necessary if appropriate. For example,
368 function calls and storing values into memory are inherently
369 necessary. This function is to be used with for_each_rtx ().
370 Return nonzero iff inherently necessary. */
371
372static int
373find_inherently_necessary (x)
374 rtx x;
375{
b53978a3
JO
376 if (x == NULL_RTX)
377 return 0;
378 else if (inherently_necessary_register (x))
379 return !0;
380 else
381 switch (GET_CODE (x))
786de7eb 382 {
b53978a3 383 case CALL_INSN:
b62c8881 384 case BARRIER:
21b8482a 385 case PREFETCH:
8f2f6da1 386 return !0;
b53978a3
JO
387 case CODE_LABEL:
388 case NOTE:
8f2f6da1 389 return 0;
b53978a3
JO
390 case JUMP_INSN:
391 return JUMP_TABLE_DATA_P (x) || computed_jump_p (x) != 0;
b53978a3 392 case INSN:
8f2f6da1
JL
393 {
394 int inherently_necessary_set = 0;
395 note_stores (PATTERN (x),
396 note_inherently_necessary_set,
397 &inherently_necessary_set);
398
399 /* If we found an inherently necessary set or an asm
400 instruction, then we consider this insn inherently
401 necessary. */
402 return (inherently_necessary_set
403 || GET_CODE (PATTERN (x)) == ASM_INPUT
404 || asm_noperands (PATTERN (x)) >= 0);
405 }
b53978a3
JO
406 default:
407 /* Found an impossible insn type. */
cf403648 408 abort ();
b53978a3
JO
409 break;
410 }
411}
412
413/* Propagate necessity through REG and SUBREG operands of CURRENT_RTX.
414 This function is called with for_each_rtx () on necessary
415 instructions. The DATA must be a varray of unprocessed
416 instructions. */
417
418static int
419propagate_necessity_through_operand (current_rtx, data)
420 rtx *current_rtx;
421 void *data;
422{
423 rtx x = *current_rtx;
424 varray_type *unprocessed_instructions = (varray_type *) data;
425
426 if (x == NULL_RTX)
427 return 0;
428 switch ( GET_CODE (x))
429 {
430 case REG:
431 if (CONVERT_REGISTER_TO_SSA_P (REGNO (x)))
432 {
433 rtx insn = VARRAY_RTX (ssa_definition, REGNO (x));
434 if (insn != NULL_RTX && UNNECESSARY_P (insn))
435 {
436 RESURRECT_INSN (insn);
437 VARRAY_PUSH_RTX (*unprocessed_instructions, insn);
438 }
439 }
440 return 0;
441
442 default:
443 return 0;
444 }
445}
446
447/* Indicate all insns initially assumed to be unnecessary. */
448
449static void
450mark_all_insn_unnecessary ()
451{
452 rtx insn;
ecd4a73b
JR
453 for (insn = get_insns (); insn != NULL_RTX; insn = NEXT_INSN (insn)) {
454 if (INSN_P (insn))
455 KILL_INSN (insn);
456 }
457
b53978a3
JO
458}
459
460/* Find the label beginning block BB, adding one if necessary. */
461
462static rtx
463find_block_label (bb)
464 basic_block bb;
465{
466 rtx insn = bb->head;
467 if (LABEL_P (insn))
468 return insn;
469 else
470 {
471 rtx new_label = emit_label_before (gen_label_rtx (), insn);
472 if (insn == bb->head)
473 bb->head = new_label;
474 return new_label;
475 }
476}
477
478/* Remove INSN, updating its basic block structure. */
479
480static void
481delete_insn_bb (insn)
482 rtx insn;
483{
3db35af4
MM
484 if (!insn)
485 abort ();
8f2f6da1
JL
486
487 /* Do not actually delete anything that is not an INSN.
488
489 We can get here because we only consider INSNs as
490 potentially necessary. We leave it to later passes
491 to remove unnecessary notes, unused labels, etc. */
492 if (! INSN_P (insn))
493 return;
494
b53978a3
JO
495 delete_insn (insn);
496}
497\f
498/* Perform the dead-code elimination. */
499
500void
62d285ff 501ssa_eliminate_dead_code ()
b53978a3 502{
b53978a3 503 rtx insn;
e0082a72 504 basic_block bb;
b53978a3
JO
505 /* Necessary instructions with operands to explore. */
506 varray_type unprocessed_instructions;
507 /* Map element (b,e) is nonzero if the block is control dependent on
508 edge. "cdbte" abbreviates control dependent block to edge. */
509 control_dependent_block_to_edge_map cdbte;
b53978a3 510 /* Element I is the immediate postdominator of block I. */
355be0dc 511 dominance_info pdom;
b53978a3
JO
512 struct edge_list *el;
513
b53978a3
JO
514 /* Initialize the data structures. */
515 mark_all_insn_unnecessary ();
516 VARRAY_RTX_INIT (unprocessed_instructions, 64,
517 "unprocessed instructions");
d55bc081 518 cdbte = control_dependent_block_to_edge_map_create (last_basic_block);
b53978a3
JO
519
520 /* Prepare for use of BLOCK_NUM (). */
521 connect_infinite_loops_to_exit ();
b53978a3
JO
522
523 /* Compute control dependence. */
355be0dc 524 pdom = calculate_dominance_info (CDI_POST_DOMINATORS);
cf403648 525 el = create_edge_list ();
b53978a3
JO
526 find_all_control_dependences (el, pdom, cdbte);
527
528 /* Find inherently necessary instructions. */
529 for (insn = get_insns (); insn != NULL_RTX; insn = NEXT_INSN (insn))
ecd4a73b 530 if (find_inherently_necessary (insn) && INSN_P (insn))
b53978a3
JO
531 {
532 RESURRECT_INSN (insn);
533 VARRAY_PUSH_RTX (unprocessed_instructions, insn);
534 }
535
536 /* Propagate necessity using the operands of necessary instructions. */
537 while (VARRAY_ACTIVE_SIZE (unprocessed_instructions) > 0)
538 {
539 rtx current_instruction;
540 int edge_number;
541
542 current_instruction = VARRAY_TOP_RTX (unprocessed_instructions);
543 VARRAY_POP (unprocessed_instructions);
544
545 /* Make corresponding control dependent edges necessary. */
546 /* Assume the only JUMP_INSN is the block's last insn. It appears
547 that the last instruction of the program need not be a
548 JUMP_INSN. */
549
550 if (INSN_P (current_instruction)
551 && !JUMP_TABLE_DATA_P (current_instruction))
552 {
553 /* Notes and labels contain no interesting operands. */
554 EXECUTE_IF_CONTROL_DEPENDENT
555 (cdbte, current_instruction, edge_number,
556 {
557 rtx jump_insn = (INDEX_EDGE_PRED_BB (el, edge_number))->end;
fbf83349
JL
558 if (GET_CODE (jump_insn) == JUMP_INSN
559 && UNNECESSARY_P (jump_insn))
560 {
561 RESURRECT_INSN (jump_insn);
562 VARRAY_PUSH_RTX (unprocessed_instructions, jump_insn);
563 }
b53978a3
JO
564 });
565
566 /* Propagate through the operands. */
567 for_each_rtx (&current_instruction,
568 &propagate_necessity_through_operand,
fad205ff 569 &unprocessed_instructions);
b53978a3 570
fa2eec9a
JL
571 /* PHI nodes are somewhat special in that each PHI alternative
572 has data and control dependencies. The data dependencies
573 are handled via propagate_necessity_through_operand. We
574 handle the control dependency here.
575
576 We consider the control dependent edges leading to the
577 predecessor block associated with each PHI alternative
578 as necessary. */
579 if (PHI_NODE_P (current_instruction))
580 {
581 rtvec phi_vec = XVEC (SET_SRC (PATTERN (current_instruction)), 0);
582 int num_elem = GET_NUM_ELEM (phi_vec);
583 int v;
584
585 for (v = num_elem - 2; v >= 0; v -= 2)
586 {
587 basic_block bb;
588
589 bb = BASIC_BLOCK (INTVAL (RTVEC_ELT (phi_vec, v + 1)));
590 EXECUTE_IF_CONTROL_DEPENDENT
591 (cdbte, bb->end, edge_number,
592 {
593 rtx jump_insn;
594
595 jump_insn = (INDEX_EDGE_PRED_BB (el, edge_number))->end;
596 if (((GET_CODE (jump_insn) == JUMP_INSN))
597 && UNNECESSARY_P (jump_insn))
598 {
599 RESURRECT_INSN (jump_insn);
600 VARRAY_PUSH_RTX (unprocessed_instructions, jump_insn);
601 }
602 });
603
604 }
605 }
b53978a3
JO
606 }
607 }
608
609 /* Remove the unnecessary instructions. */
610 EXECUTE_IF_UNNECESSARY (insn,
611 {
612 if (any_condjump_p (insn))
613 {
b62c8881
JL
614 basic_block bb = BLOCK_FOR_INSN (insn);
615 basic_block pdom_bb = find_pdom (pdom, bb);
616 rtx lbl;
617 edge e;
618
619 /* Egad. The immediate post dominator is the exit block. We
620 would like to optimize this conditional jump to jump directly
621 to the exit block. That can be difficult as we may not have
622 a suitable CODE_LABEL that allows us to fall unmolested into
623 the exit block.
624
625 So, we just delete the conditional branch by turning it into
626 a deleted note. That is safe, but just not as optimal as
627 it could be. */
628 if (pdom_bb == EXIT_BLOCK_PTR)
629 {
630 /* Since we're going to just delete the branch, we need
631 look at all the edges and remove all those which are not
632 a fallthru edge. */
633 e = bb->succ;
634 while (e)
635 {
636 edge temp = e;
637
638 e = e->succ_next;
639 if ((temp->flags & EDGE_FALLTHRU) == 0)
640 {
641 /* We've found a non-fallthru edge, find any PHI nodes
642 at the target and clean them up. */
643 if (temp->dest != EXIT_BLOCK_PTR)
644 {
645 rtx insn
646 = first_insn_after_basic_block_note (temp->dest);
647
648 while (PHI_NODE_P (insn))
649 {
650 remove_phi_alternative (PATTERN (insn), temp->src);
651 insn = NEXT_INSN (insn);
652 }
653 }
654
655 remove_edge (temp);
656 }
657 }
658
659 /* Now "delete" the conditional jump. */
660 PUT_CODE (insn, NOTE);
661 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
662 continue;
663 }
664
665 /* We've found a conditional branch that is unnecessary.
666
667 First, remove all outgoing edges from this block, updating
668 PHI nodes as appropriate. */
669 e = bb->succ;
670 while (e)
b53978a3 671 {
b62c8881 672 edge temp = e;
766890e1 673
b62c8881 674 e = e->succ_next;
b53978a3 675
b62c8881
JL
676 if (temp->flags & EDGE_ABNORMAL)
677 continue;
b53978a3 678
b62c8881
JL
679 /* We found an edge that is not executable. First simplify
680 the PHI nodes in the target block. */
681 if (temp->dest != EXIT_BLOCK_PTR)
682 {
683 rtx insn = first_insn_after_basic_block_note (temp->dest);
b53978a3 684
b62c8881
JL
685 while (PHI_NODE_P (insn))
686 {
687 remove_phi_alternative (PATTERN (insn), temp->src);
688 insn = NEXT_INSN (insn);
689 }
690 }
691
692 remove_edge (temp);
b53978a3 693 }
b62c8881 694
786de7eb 695 /* Create an edge from this block to the post dominator.
b62c8881 696 What about the PHI nodes at the target? */
7ded4467 697 make_edge (bb, pdom_bb, 0);
b62c8881
JL
698
699 /* Third, transform this insn into an unconditional
700 jump to the label for the immediate postdominator. */
701 lbl = find_block_label (pdom_bb);
702 SET_SRC (PATTERN (insn)) = gen_rtx_LABEL_REF (VOIDmode, lbl);
703 INSN_CODE (insn) = -1;
704 JUMP_LABEL (insn) = lbl;
705 LABEL_NUSES (lbl)++;
706
707 /* A barrier must follow any unconditional jump. Barriers
708 are not in basic blocks so this must occur after
709 deleting the conditional jump. */
710 emit_barrier_after (insn);
b53978a3
JO
711 }
712 else if (!JUMP_P (insn))
713 delete_insn_bb (insn);
714 });
786de7eb 715
d72c3ec3
JL
716 /* Remove fake edges from the CFG. */
717 remove_fake_edges ();
718
b62c8881
JL
719 /* Find any blocks with no successors and ensure they are followed
720 by a BARRIER. delete_insn has the nasty habit of deleting barriers
721 when deleting insns. */
e0082a72 722 FOR_EACH_BB (bb)
b62c8881 723 {
b62c8881
JL
724 if (bb->succ == NULL)
725 {
726 rtx next = NEXT_INSN (bb->end);
727
728 if (!next || GET_CODE (next) != BARRIER)
729 emit_barrier_after (bb->end);
730 }
731 }
b53978a3 732 /* Release allocated memory. */
ecd4a73b
JR
733 for (insn = get_insns (); insn != NULL_RTX; insn = NEXT_INSN (insn)) {
734 if (INSN_P (insn))
735 RESURRECT_INSN (insn);
736 }
737
3db35af4
MM
738 if (VARRAY_ACTIVE_SIZE (unprocessed_instructions) != 0)
739 abort ();
b53978a3 740 control_dependent_block_to_edge_map_free (cdbte);
fad205ff 741 free (pdom);
b53978a3
JO
742 free_edge_list (el);
743}
This page took 1.006714 seconds and 5 git commands to generate.