]> gcc.gnu.org Git - gcc.git/blame - gcc/sibcall.c
Fix reg-alloc error reported by Andreas Schwab to Trillian list.
[gcc.git] / gcc / sibcall.c
CommitLineData
0a1c58a2 1/* Generic sibling call optimization support
e5c617ff 2 Copyright (C) 1999, 2000, 2001 Free Software Foundation, Inc.
0a1c58a2
JL
3
4This file is part of GNU CC.
5
6GNU CC is free software; you can redistribute it and/or modify
7it under the terms of the GNU General Public License as published by
8the Free Software Foundation; either version 2, or (at your option)
9any later version.
10
11GNU CC is distributed in the hope that it will be useful,
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14GNU General Public License for more details.
15
16You should have received a copy of the GNU General Public License
17along with GNU CC; see the file COPYING. If not, write to
18the Free Software Foundation, 59 Temple Place - Suite 330,
19Boston, MA 02111-1307, USA. */
20
21#include "config.h"
22#include "system.h"
23
24#include "rtl.h"
25#include "regs.h"
26#include "function.h"
27#include "hard-reg-set.h"
28#include "flags.h"
29#include "insn-config.h"
30#include "recog.h"
31#include "basic-block.h"
32#include "output.h"
33#include "except.h"
34
35static int identify_call_return_value PARAMS ((rtx, rtx *, rtx *));
cd5a58e5 36static rtx skip_copy_to_return_value PARAMS ((rtx));
0a1c58a2
JL
37static rtx skip_use_of_return_value PARAMS ((rtx, enum rtx_code));
38static rtx skip_stack_adjustment PARAMS ((rtx));
fd442cef 39static rtx skip_pic_restore PARAMS ((rtx));
0a1c58a2 40static rtx skip_jump_insn PARAMS ((rtx));
e5c617ff 41static int call_ends_block_p PARAMS ((rtx, rtx));
055bcfee 42static int uses_addressof PARAMS ((rtx));
0a1c58a2
JL
43static int sequence_uses_addressof PARAMS ((rtx));
44static void purge_reg_equiv_notes PARAMS ((void));
f85b5d65 45static void purge_mem_unchanging_flag PARAMS ((rtx));
0a1c58a2
JL
46
47/* Examine a CALL_PLACEHOLDER pattern and determine where the call's
48 return value is located. P_HARD_RETURN receives the hard register
49 that the function used; P_SOFT_RETURN receives the pseudo register
50 that the sequence used. Return non-zero if the values were located. */
51
52static int
53identify_call_return_value (cp, p_hard_return, p_soft_return)
54 rtx cp;
55 rtx *p_hard_return, *p_soft_return;
56{
57 rtx insn, set, hard, soft;
58
0a1c58a2 59 insn = XEXP (cp, 0);
1e9d75e8
JH
60 /* Search backward through the "normal" call sequence to the CALL insn. */
61 while (NEXT_INSN (insn))
0a1c58a2 62 insn = NEXT_INSN (insn);
1e9d75e8
JH
63 while (GET_CODE (insn) != CALL_INSN)
64 insn = PREV_INSN (insn);
0a1c58a2
JL
65
66 /* Assume the pattern is (set (dest) (call ...)), or that the first
67 member of a parallel is. This is the hard return register used
68 by the function. */
69 if (GET_CODE (PATTERN (insn)) == SET
70 && GET_CODE (SET_SRC (PATTERN (insn))) == CALL)
71 hard = SET_DEST (PATTERN (insn));
72 else if (GET_CODE (PATTERN (insn)) == PARALLEL
73 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET
74 && GET_CODE (SET_SRC (XVECEXP (PATTERN (insn), 0, 0))) == CALL)
75 hard = SET_DEST (XVECEXP (PATTERN (insn), 0, 0));
76 else
77 return 0;
78
79 /* If we didn't get a single hard register (e.g. a parallel), give up. */
80 if (GET_CODE (hard) != REG)
81 return 0;
82
1e9d75e8
JH
83 /* Stack adjustment done after call may appear here. */
84 insn = skip_stack_adjustment (insn);
85 if (! insn)
86 return 0;
87
fd442cef
RH
88 /* Restore of GP register may appear here. */
89 insn = skip_pic_restore (insn);
90 if (! insn)
91 return 0;
92
0a1c58a2
JL
93 /* If there's nothing after, there's no soft return value. */
94 insn = NEXT_INSN (insn);
95 if (! insn)
96 return 0;
97
98 /* We're looking for a source of the hard return register. */
99 set = single_set (insn);
100 if (! set || SET_SRC (set) != hard)
101 return 0;
102
103 soft = SET_DEST (set);
104 insn = NEXT_INSN (insn);
105
106 /* Allow this first destination to be copied to a second register,
107 as might happen if the first register wasn't the particular pseudo
108 we'd been expecting. */
109 if (insn
110 && (set = single_set (insn)) != NULL_RTX
111 && SET_SRC (set) == soft)
112 {
113 soft = SET_DEST (set);
114 insn = NEXT_INSN (insn);
115 }
116
117 /* Don't fool with anything but pseudo registers. */
118 if (GET_CODE (soft) != REG || REGNO (soft) < FIRST_PSEUDO_REGISTER)
119 return 0;
120
121 /* This value must not be modified before the end of the sequence. */
122 if (reg_set_between_p (soft, insn, NULL_RTX))
123 return 0;
124
125 *p_hard_return = hard;
126 *p_soft_return = soft;
127
128 return 1;
129}
130
131/* If the first real insn after ORIG_INSN copies to this function's
132 return value from RETVAL, then return the insn which performs the
133 copy. Otherwise return ORIG_INSN. */
134
135static rtx
cd5a58e5 136skip_copy_to_return_value (orig_insn)
0a1c58a2 137 rtx orig_insn;
0a1c58a2
JL
138{
139 rtx insn, set = NULL_RTX;
cd5a58e5
ZW
140 rtx hardret, softret;
141
142 /* If there is no return value, we have nothing to do. */
143 if (! identify_call_return_value (PATTERN (orig_insn), &hardret, &softret))
144 return orig_insn;
0a1c58a2
JL
145
146 insn = next_nonnote_insn (orig_insn);
147 if (! insn)
148 return orig_insn;
149
150 set = single_set (insn);
151 if (! set)
152 return orig_insn;
153
154 /* The destination must be the same as the called function's return
155 value to ensure that any return value is put in the same place by the
156 current function and the function we're calling.
157
158 Further, the source must be the same as the pseudo into which the
159 called function's return value was copied. Otherwise we're returning
160 some other value. */
161
7d167afd
JJ
162#ifndef OUTGOING_REGNO
163#define OUTGOING_REGNO(N) (N)
164#endif
165
0a1c58a2
JL
166 if (SET_DEST (set) == current_function_return_rtx
167 && REG_P (SET_DEST (set))
7d167afd 168 && OUTGOING_REGNO (REGNO (SET_DEST (set))) == REGNO (hardret)
0a1c58a2
JL
169 && SET_SRC (set) == softret)
170 return insn;
171
172 /* It did not look like a copy of the return value, so return the
173 same insn we were passed. */
174 return orig_insn;
175}
176
177/* If the first real insn after ORIG_INSN is a CODE of this function's return
178 value, return insn. Otherwise return ORIG_INSN. */
179
180static rtx
181skip_use_of_return_value (orig_insn, code)
182 rtx orig_insn;
183 enum rtx_code code;
184{
185 rtx insn;
186
187 insn = next_nonnote_insn (orig_insn);
188
189 if (insn
190 && GET_CODE (insn) == INSN
191 && GET_CODE (PATTERN (insn)) == code
192 && (XEXP (PATTERN (insn), 0) == current_function_return_rtx
193 || XEXP (PATTERN (insn), 0) == const0_rtx))
194 return insn;
195
196 return orig_insn;
197}
198
199/* If the first real insn after ORIG_INSN adjusts the stack pointer
200 by a constant, return the insn with the stack pointer adjustment.
201 Otherwise return ORIG_INSN. */
202
203static rtx
204skip_stack_adjustment (orig_insn)
205 rtx orig_insn;
206{
207 rtx insn, set = NULL_RTX;
208
209 insn = next_nonnote_insn (orig_insn);
210
211 if (insn)
212 set = single_set (insn);
213
0a1c58a2
JL
214 if (insn
215 && set
216 && GET_CODE (SET_SRC (set)) == PLUS
217 && XEXP (SET_SRC (set), 0) == stack_pointer_rtx
218 && GET_CODE (XEXP (SET_SRC (set), 1)) == CONST_INT
219 && SET_DEST (set) == stack_pointer_rtx)
220 return insn;
221
fd442cef
RH
222 return orig_insn;
223}
224
225/* If the first real insn after ORIG_INSN sets the pic register,
226 return it. Otherwise return ORIG_INSN. */
227
228static rtx
229skip_pic_restore (orig_insn)
230 rtx orig_insn;
231{
232 rtx insn, set = NULL_RTX;
233
234 insn = next_nonnote_insn (orig_insn);
235
236 if (insn)
237 set = single_set (insn);
238
239 if (insn && set && SET_DEST (set) == pic_offset_table_rtx)
240 return insn;
241
0a1c58a2
JL
242 return orig_insn;
243}
244
245/* If the first real insn after ORIG_INSN is a jump, return the JUMP_INSN.
246 Otherwise return ORIG_INSN. */
247
248static rtx
249skip_jump_insn (orig_insn)
250 rtx orig_insn;
251{
252 rtx insn;
253
254 insn = next_nonnote_insn (orig_insn);
255
256 if (insn
257 && GET_CODE (insn) == JUMP_INSN
7f1c097d 258 && any_uncondjump_p (insn))
0a1c58a2
JL
259 return insn;
260
261 return orig_insn;
262}
e5c617ff
RK
263\f
264/* Using the above functions, see if INSN, skipping any of the above,
265 goes all the way to END, the end of a basic block. Return 1 if so. */
266
267static int
268call_ends_block_p (insn, end)
269 rtx insn;
270 rtx end;
271{
e5c617ff
RK
272 /* END might be a note, so get the last nonnote insn of the block. */
273 end = next_nonnote_insn (PREV_INSN (end));
274
275 /* If the call was the end of the block, then we're OK. */
276 if (insn == end)
277 return 1;
278
279 /* Skip over copying from the call's return value pseudo into
280 this function's hard return register and if that's the end
281 of the block, we're OK. */
cd5a58e5 282 insn = skip_copy_to_return_value (insn);
e5c617ff
RK
283 if (insn == end)
284 return 1;
285
286 /* Skip any stack adjustment. */
287 insn = skip_stack_adjustment (insn);
288 if (insn == end)
289 return 1;
290
291 /* Skip over a CLOBBER of the return value as a hard reg. */
292 insn = skip_use_of_return_value (insn, CLOBBER);
293 if (insn == end)
294 return 1;
295
296 /* Skip over a USE of the return value (as a hard reg). */
297 insn = skip_use_of_return_value (insn, USE);
298 if (insn == end)
299 return 1;
300
301 /* Skip over a JUMP_INSN at the end of the block. If that doesn't end the
302 block, the original CALL_INSN didn't. */
303 insn = skip_jump_insn (insn);
304 return insn == end;
305}
0a1c58a2 306
f5afd9e9
JJ
307/* Scan the rtx X for ADDRESSOF expressions or
308 current_function_internal_arg_pointer registers.
055bcfee
RH
309 Return nonzero if an ADDRESSOF or current_function_internal_arg_pointer
310 is found outside of some MEM expression, else return zero. */
0a1c58a2
JL
311
312static int
055bcfee 313uses_addressof (x)
0a1c58a2
JL
314 rtx x;
315{
316 RTX_CODE code;
317 int i, j;
318 const char *fmt;
319
320 if (x == NULL_RTX)
321 return 0;
322
323 code = GET_CODE (x);
324
055bcfee 325 if (code == ADDRESSOF || x == current_function_internal_arg_pointer)
f5afd9e9
JJ
326 return 1;
327
328 if (code == MEM)
055bcfee 329 return 0;
f5afd9e9 330
0a1c58a2
JL
331 /* Scan all subexpressions. */
332 fmt = GET_RTX_FORMAT (code);
333 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
334 {
335 if (*fmt == 'e')
336 {
055bcfee 337 if (uses_addressof (XEXP (x, i)))
0a1c58a2
JL
338 return 1;
339 }
340 else if (*fmt == 'E')
341 {
342 for (j = 0; j < XVECLEN (x, i); j++)
055bcfee 343 if (uses_addressof (XVECEXP (x, i, j)))
0a1c58a2
JL
344 return 1;
345 }
346 }
347 return 0;
348}
349
350/* Scan the sequence of insns in SEQ to see if any have an ADDRESSOF
f5afd9e9
JJ
351 rtl expression or current_function_internal_arg_pointer occurences
352 not enclosed within a MEM. If an ADDRESSOF expression or
353 current_function_internal_arg_pointer is found, return nonzero, otherwise
354 return zero.
0a1c58a2
JL
355
356 This function handles CALL_PLACEHOLDERs which contain multiple sequences
357 of insns. */
358
359static int
360sequence_uses_addressof (seq)
361 rtx seq;
362{
363 rtx insn;
364
365 for (insn = seq; insn; insn = NEXT_INSN (insn))
2c3c49de 366 if (INSN_P (insn))
0a1c58a2
JL
367 {
368 /* If this is a CALL_PLACEHOLDER, then recursively call ourselves
369 with each nonempty sequence attached to the CALL_PLACEHOLDER. */
370 if (GET_CODE (insn) == CALL_INSN
371 && GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
372 {
373 if (XEXP (PATTERN (insn), 0) != NULL_RTX
374 && sequence_uses_addressof (XEXP (PATTERN (insn), 0)))
375 return 1;
376 if (XEXP (PATTERN (insn), 1) != NULL_RTX
377 && sequence_uses_addressof (XEXP (PATTERN (insn), 1)))
378 return 1;
379 if (XEXP (PATTERN (insn), 2) != NULL_RTX
380 && sequence_uses_addressof (XEXP (PATTERN (insn), 2)))
381 return 1;
382 }
055bcfee
RH
383 else if (uses_addressof (PATTERN (insn))
384 || (REG_NOTES (insn) && uses_addressof (REG_NOTES (insn))))
0a1c58a2
JL
385 return 1;
386 }
387 return 0;
388}
389
390/* Remove all REG_EQUIV notes found in the insn chain. */
391
392static void
393purge_reg_equiv_notes ()
394{
395 rtx insn;
396
397 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
398 {
399 while (1)
400 {
401 rtx note = find_reg_note (insn, REG_EQUIV, 0);
402 if (note)
403 {
404 /* Remove the note and keep looking at the notes for
405 this insn. */
406 remove_note (insn, note);
407 continue;
408 }
409 break;
410 }
411 }
412}
413
f85b5d65
JJ
414/* Clear RTX_UNCHANGING_P flag of incoming argument MEMs. */
415
416static void
417purge_mem_unchanging_flag (x)
418 rtx x;
419{
420 RTX_CODE code;
421 int i, j;
422 const char *fmt;
423
424 if (x == NULL_RTX)
425 return;
426
427 code = GET_CODE (x);
428
429 if (code == MEM)
430 {
431 if (RTX_UNCHANGING_P (x)
432 && (XEXP (x, 0) == current_function_internal_arg_pointer
433 || (GET_CODE (XEXP (x, 0)) == PLUS
434 && XEXP (XEXP (x, 0), 0) ==
435 current_function_internal_arg_pointer
436 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)))
437 RTX_UNCHANGING_P (x) = 0;
438 return;
439 }
440
441 /* Scan all subexpressions. */
442 fmt = GET_RTX_FORMAT (code);
443 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
444 {
445 if (*fmt == 'e')
446 purge_mem_unchanging_flag (XEXP (x, i));
447 else if (*fmt == 'E')
448 for (j = 0; j < XVECLEN (x, i); j++)
449 purge_mem_unchanging_flag (XVECEXP (x, i, j));
450 }
451}
452
0a1c58a2
JL
453/* Replace the CALL_PLACEHOLDER with one of its children. INSN should be
454 the CALL_PLACEHOLDER insn; USE tells which child to use. */
455
456void
457replace_call_placeholder (insn, use)
458 rtx insn;
459 sibcall_use_t use;
460{
461 if (use == sibcall_use_tail_recursion)
462 emit_insns_before (XEXP (PATTERN (insn), 2), insn);
463 else if (use == sibcall_use_sibcall)
464 emit_insns_before (XEXP (PATTERN (insn), 1), insn);
465 else if (use == sibcall_use_normal)
466 emit_insns_before (XEXP (PATTERN (insn), 0), insn);
467 else
468 abort();
469
470 /* Turn off LABEL_PRESERVE_P for the tail recursion label if it
471 exists. We only had to set it long enough to keep the jump
472 pass above from deleting it as unused. */
473 if (XEXP (PATTERN (insn), 3))
474 LABEL_PRESERVE_P (XEXP (PATTERN (insn), 3)) = 0;
475
476 /* "Delete" the placeholder insn. */
477 PUT_CODE (insn, NOTE);
478 NOTE_SOURCE_FILE (insn) = 0;
479 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
480}
481
0a1c58a2
JL
482/* Given a (possibly empty) set of potential sibling or tail recursion call
483 sites, determine if optimization is possible.
484
485 Potential sibling or tail recursion calls are marked with CALL_PLACEHOLDER
486 insns. The CALL_PLACEHOLDER insn holds chains of insns to implement a
487 normal call, sibling call or tail recursive call.
488
489 Replace the CALL_PLACEHOLDER with an appropriate insn chain. */
490
491void
492optimize_sibling_and_tail_recursive_calls ()
493{
494 rtx insn, insns;
495 basic_block alternate_exit = EXIT_BLOCK_PTR;
496 int current_function_uses_addressof;
497 int successful_sibling_call = 0;
498 int replaced_call_placeholder = 0;
499 edge e;
500
501 insns = get_insns ();
502
503 /* We do not perform these calls when flag_exceptions is true, so this
504 is probably a NOP at the current time. However, we may want to support
505 sibling and tail recursion optimizations in the future, so let's plan
506 ahead and find all the EH labels. */
507 find_exception_handler_labels ();
508
509 /* Run a jump optimization pass to clean up the CFG. We primarily want
510 this to thread jumps so that it is obvious which blocks jump to the
511 epilouge. */
512 jump_optimize_minimal (insns);
513
514 /* We need cfg information to determine which blocks are succeeded
515 only by the epilogue. */
516 find_basic_blocks (insns, max_reg_num (), 0);
517 cleanup_cfg (insns);
518
519 /* If there are no basic blocks, then there is nothing to do. */
520 if (n_basic_blocks == 0)
521 return;
522
523 /* Find the exit block.
524
525 It is possible that we have blocks which can reach the exit block
526 directly. However, most of the time a block will jump (or fall into)
527 N_BASIC_BLOCKS - 1, which in turn falls into the exit block. */
528 for (e = EXIT_BLOCK_PTR->pred;
529 e && alternate_exit == EXIT_BLOCK_PTR;
530 e = e->pred_next)
531 {
532 rtx insn;
533
534 if (e->dest != EXIT_BLOCK_PTR || e->succ_next != NULL)
535 continue;
536
537 /* Walk forwards through the last normal block and see if it
538 does nothing except fall into the exit block. */
539 for (insn = BLOCK_HEAD (n_basic_blocks - 1);
540 insn;
541 insn = NEXT_INSN (insn))
542 {
543 /* This should only happen once, at the start of this block. */
544 if (GET_CODE (insn) == CODE_LABEL)
545 continue;
546
547 if (GET_CODE (insn) == NOTE)
548 continue;
549
550 if (GET_CODE (insn) == INSN
551 && GET_CODE (PATTERN (insn)) == USE)
552 continue;
553
554 break;
555 }
556
557 /* If INSN is zero, then the search walked all the way through the
558 block without hitting anything interesting. This block is a
559 valid alternate exit block. */
560 if (insn == NULL)
561 alternate_exit = e->src;
562 }
563
564 /* If the function uses ADDRESSOF, we can't (easily) determine
565 at this point if the value will end up on the stack. */
566 current_function_uses_addressof = sequence_uses_addressof (insns);
567
568 /* Walk the insn chain and find any CALL_PLACEHOLDER insns. We need to
569 select one of the insn sequences attached to each CALL_PLACEHOLDER.
570
571 The different sequences represent different ways to implement the call,
572 ie, tail recursion, sibling call or normal call.
573
574 Since we do not create nested CALL_PLACEHOLDERs, the scan
575 continues with the insn that was after a replaced CALL_PLACEHOLDER;
576 we don't rescan the replacement insns. */
577 for (insn = insns; insn; insn = NEXT_INSN (insn))
578 {
579 if (GET_CODE (insn) == CALL_INSN
580 && GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
581 {
582 int sibcall = (XEXP (PATTERN (insn), 1) != NULL_RTX);
583 int tailrecursion = (XEXP (PATTERN (insn), 2) != NULL_RTX);
e5c617ff 584 basic_block call_block = BLOCK_FOR_INSN (insn);
055bcfee 585
0a1c58a2
JL
586 /* alloca (until we have stack slot life analysis) inhibits
587 sibling call optimizations, but not tail recursion.
0a1c58a2
JL
588 Similarly if we use varargs or stdarg since they implicitly
589 may take the address of an argument. */
055bcfee 590 if (current_function_calls_alloca
0a1c58a2
JL
591 || current_function_varargs || current_function_stdarg)
592 sibcall = 0;
593
e5c617ff
RK
594 /* See if there are any reasons we can't perform either sibling or
595 tail call optimizations. We must be careful with stack slots
e7ca84b3
RK
596 which are live at potential optimization sites. ?!? The first
597 test is overly conservative and should be replaced. */
e5c617ff
RK
598 if (frame_offset
599 /* Can't take address of local var if used by recursive call. */
600 || current_function_uses_addressof
601 /* Can't if more than one successor or single successor is not
602 exit block. These two tests prevent tail call optimization
603 in the presense of active exception handlers. */
604 || call_block->succ == NULL
021921d0
RK
605 || call_block->succ->succ_next != NULL
606 || (call_block->succ->dest != EXIT_BLOCK_PTR
e5c617ff
RK
607 && call_block->succ->dest != alternate_exit)
608 /* If this call doesn't end the block, there are operations at
609 the end of the block which we must execute after returning. */
610 || ! call_ends_block_p (insn, call_block->end))
021921d0 611 sibcall = 0, tailrecursion = 0;
0a1c58a2
JL
612
613 /* Select a set of insns to implement the call and emit them.
614 Tail recursion is the most efficient, so select it over
615 a tail/sibling call. */
0a1c58a2
JL
616 if (sibcall)
617 successful_sibling_call = 1;
021921d0 618
0a1c58a2
JL
619 replaced_call_placeholder = 1;
620 replace_call_placeholder (insn,
621 tailrecursion != 0
622 ? sibcall_use_tail_recursion
623 : sibcall != 0
624 ? sibcall_use_sibcall
625 : sibcall_use_normal);
626 }
627 }
628
0a1c58a2 629 if (successful_sibling_call)
f85b5d65
JJ
630 {
631 rtx insn;
632
633 /* A sibling call sequence invalidates any REG_EQUIV notes made for
634 this function's incoming arguments.
635
636 At the start of RTL generation we know the only REG_EQUIV notes
637 in the rtl chain are those for incoming arguments, so we can safely
638 flush any REG_EQUIV note.
639
640 This is (slight) overkill. We could keep track of the highest
641 argument we clobber and be more selective in removing notes, but it
642 does not seem to be worth the effort. */
643 purge_reg_equiv_notes ();
644
645 /* A sibling call sequence also may invalidate RTX_UNCHANGING_P
646 flag of some incoming arguments MEM RTLs, because it can write into
647 those slots. We clear all those bits now.
648
649 This is (slight) overkill, we could keep track of which arguments
650 we actually write into. */
651 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
652 {
653 if (GET_CODE (insn) == NOTE)
654 {
655 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_BEG)
656 break;
657 }
658 else if (INSN_P (insn))
659 purge_mem_unchanging_flag (PATTERN (insn));
660 }
661 }
0a1c58a2
JL
662
663 /* There may have been NOTE_INSN_BLOCK_{BEGIN,END} notes in the
664 CALL_PLACEHOLDER alternatives that we didn't emit. Rebuild the
665 lexical block tree to correspond to the notes that still exist. */
666 if (replaced_call_placeholder)
116eebd6 667 reorder_blocks ();
0a1c58a2
JL
668
669 /* This information will be invalid after inline expansion. Kill it now. */
670 free_basic_block_vars (0);
671}
This page took 0.424297 seconds and 5 git commands to generate.