]> gcc.gnu.org Git - gcc.git/blame - gcc/sel-sched-ir.c
[Ada] Incorrect Reinit_Field_To_Zero calls for concurrent entities
[gcc.git] / gcc / sel-sched-ir.c
CommitLineData
e855c69d 1/* Instruction scheduling pass. Selective scheduler and pipeliner.
99dee823 2 Copyright (C) 2006-2021 Free Software Foundation, Inc.
e855c69d
AB
3
4This file is part of GCC.
5
6GCC is free software; you can redistribute it and/or modify it under
7the terms of the GNU General Public License as published by the Free
8Software Foundation; either version 3, or (at your option) any later
9version.
10
11GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12WARRANTY; without even the implied warranty of MERCHANTABILITY or
13FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14for more details.
15
16You should have received a copy of the GNU General Public License
17along with GCC; see the file COPYING3. If not see
18<http://www.gnu.org/licenses/>. */
19
20#include "config.h"
21#include "system.h"
22#include "coretypes.h"
c7131fb2 23#include "backend.h"
9fdcd34e 24#include "cfghooks.h"
c7131fb2 25#include "tree.h"
e855c69d 26#include "rtl.h"
c7131fb2 27#include "df.h"
4d0cdd0c 28#include "memmodel.h"
e855c69d 29#include "tm_p.h"
60393bbc
AM
30#include "cfgrtl.h"
31#include "cfganal.h"
32#include "cfgbuild.h"
e855c69d
AB
33#include "insn-config.h"
34#include "insn-attr.h"
e855c69d 35#include "recog.h"
e855c69d 36#include "target.h"
e855c69d 37#include "sched-int.h"
5936d944 38#include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */
e855c69d
AB
39
40#ifdef INSN_SCHEDULING
c7131fb2
AM
41#include "regset.h"
42#include "cfgloop.h"
e855c69d
AB
43#include "sel-sched-ir.h"
44/* We don't have to use it except for sel_print_insn. */
45#include "sel-sched-dump.h"
46
47/* A vector holding bb info for whole scheduling pass. */
7de76362 48vec<sel_global_bb_info_def> sel_global_bb_info;
e855c69d
AB
49
50/* A vector holding bb info. */
7de76362 51vec<sel_region_bb_info_def> sel_region_bb_info;
e855c69d
AB
52
53/* A pool for allocating all lists. */
fcb87c50 54object_allocator<_list_node> sched_lists_pool ("sel-sched-lists");
e855c69d
AB
55
56/* This contains information about successors for compute_av_set. */
57struct succs_info current_succs;
58
59/* Data structure to describe interaction with the generic scheduler utils. */
60static struct common_sched_info_def sel_common_sched_info;
61
62/* The loop nest being pipelined. */
99b1c316 63class loop *current_loop_nest;
e855c69d
AB
64
65/* LOOP_NESTS is a vector containing the corresponding loop nest for
66 each region. */
7de76362 67static vec<loop_p> loop_nests;
e855c69d
AB
68
69/* Saves blocks already in loop regions, indexed by bb->index. */
70static sbitmap bbs_in_loop_rgns = NULL;
71
72/* CFG hooks that are saved before changing create_basic_block hook. */
73static struct cfg_hooks orig_cfg_hooks;
74\f
75
76/* Array containing reverse topological index of function basic blocks,
77 indexed by BB->INDEX. */
78static int *rev_top_order_index = NULL;
79
80/* Length of the above array. */
81static int rev_top_order_index_len = -1;
82
83/* A regset pool structure. */
84static struct
85{
86 /* The stack to which regsets are returned. */
87 regset *v;
88
89 /* Its pointer. */
90 int n;
91
92 /* Its size. */
93 int s;
94
95 /* In VV we save all generated regsets so that, when destructing the
96 pool, we can compare it with V and check that every regset was returned
97 back to pool. */
98 regset *vv;
99
100 /* The pointer of VV stack. */
101 int nn;
102
103 /* Its size. */
104 int ss;
105
106 /* The difference between allocated and returned regsets. */
107 int diff;
108} regset_pool = { NULL, 0, 0, NULL, 0, 0, 0 };
109
110/* This represents the nop pool. */
111static struct
112{
113 /* The vector which holds previously emitted nops. */
114 insn_t *v;
115
116 /* Its pointer. */
117 int n;
118
119 /* Its size. */
b8698a0f 120 int s;
e855c69d
AB
121} nop_pool = { NULL, 0, 0 };
122
123/* The pool for basic block notes. */
66e8df53 124static vec<rtx_note *> bb_note_pool;
e855c69d
AB
125
126/* A NOP pattern used to emit placeholder insns. */
127rtx nop_pattern = NULL_RTX;
128/* A special instruction that resides in EXIT_BLOCK.
129 EXIT_INSN is successor of the insns that lead to EXIT_BLOCK. */
c5db5458 130rtx_insn *exit_insn = NULL;
e855c69d 131
b8698a0f 132/* TRUE if while scheduling current region, which is loop, its preheader
e855c69d
AB
133 was removed. */
134bool preheader_removed = false;
135\f
136
137/* Forward static declarations. */
138static void fence_clear (fence_t);
139
140static void deps_init_id (idata_t, insn_t, bool);
141static void init_id_from_df (idata_t, insn_t, bool);
142static expr_t set_insn_init (expr_t, vinsn_t, int);
143
144static void cfg_preds (basic_block, insn_t **, int *);
145static void prepare_insn_expr (insn_t, int);
9771b263 146static void free_history_vect (vec<expr_history_def> &);
e855c69d
AB
147
148static void move_bb_info (basic_block, basic_block);
149static void remove_empty_bb (basic_block, bool);
262d8232 150static void sel_merge_blocks (basic_block, basic_block);
e855c69d 151static void sel_remove_loop_preheader (void);
753de8cf 152static bool bb_has_removable_jump_to_p (basic_block, basic_block);
e855c69d
AB
153
154static bool insn_is_the_only_one_in_bb_p (insn_t);
155static void create_initial_data_sets (basic_block);
156
b5b8b0ac 157static void free_av_set (basic_block);
e855c69d
AB
158static void invalidate_av_set (basic_block);
159static void extend_insn_data (void);
92e265ac 160static void sel_init_new_insn (insn_t, int, int = -1);
e855c69d
AB
161static void finish_insns (void);
162\f
163/* Various list functions. */
164
165/* Copy an instruction list L. */
166ilist_t
167ilist_copy (ilist_t l)
168{
169 ilist_t head = NULL, *tailp = &head;
170
171 while (l)
172 {
173 ilist_add (tailp, ILIST_INSN (l));
174 tailp = &ILIST_NEXT (*tailp);
175 l = ILIST_NEXT (l);
176 }
177
178 return head;
179}
180
181/* Invert an instruction list L. */
182ilist_t
183ilist_invert (ilist_t l)
184{
185 ilist_t res = NULL;
186
187 while (l)
188 {
189 ilist_add (&res, ILIST_INSN (l));
190 l = ILIST_NEXT (l);
191 }
192
193 return res;
194}
195
196/* Add a new boundary to the LP list with parameters TO, PTR, and DC. */
197void
198blist_add (blist_t *lp, insn_t to, ilist_t ptr, deps_t dc)
199{
200 bnd_t bnd;
201
202 _list_add (lp);
203 bnd = BLIST_BND (*lp);
204
6144a836 205 BND_TO (bnd) = to;
e855c69d
AB
206 BND_PTR (bnd) = ptr;
207 BND_AV (bnd) = NULL;
208 BND_AV1 (bnd) = NULL;
209 BND_DC (bnd) = dc;
210}
211
212/* Remove the list note pointed to by LP. */
213void
214blist_remove (blist_t *lp)
215{
216 bnd_t b = BLIST_BND (*lp);
217
218 av_set_clear (&BND_AV (b));
219 av_set_clear (&BND_AV1 (b));
220 ilist_clear (&BND_PTR (b));
221
222 _list_remove (lp);
223}
224
225/* Init a fence tail L. */
226void
227flist_tail_init (flist_tail_t l)
228{
229 FLIST_TAIL_HEAD (l) = NULL;
230 FLIST_TAIL_TAILP (l) = &FLIST_TAIL_HEAD (l);
231}
232
233/* Try to find fence corresponding to INSN in L. */
234fence_t
235flist_lookup (flist_t l, insn_t insn)
236{
237 while (l)
238 {
239 if (FENCE_INSN (FLIST_FENCE (l)) == insn)
240 return FLIST_FENCE (l);
241
242 l = FLIST_NEXT (l);
243 }
244
245 return NULL;
246}
247
248/* Init the fields of F before running fill_insns. */
249static void
250init_fence_for_scheduling (fence_t f)
251{
252 FENCE_BNDS (f) = NULL;
253 FENCE_PROCESSED_P (f) = false;
254 FENCE_SCHEDULED_P (f) = false;
255}
256
257/* Add new fence consisting of INSN and STATE to the list pointed to by LP. */
258static void
b8698a0f 259flist_add (flist_t *lp, insn_t insn, state_t state, deps_t dc, void *tc,
6144a836 260 insn_t last_scheduled_insn, vec<rtx_insn *, va_gc> *executing_insns,
b8698a0f 261 int *ready_ticks, int ready_ticks_size, insn_t sched_next,
136e01a3 262 int cycle, int cycle_issued_insns, int issue_more,
e855c69d
AB
263 bool starts_cycle_p, bool after_stall_p)
264{
265 fence_t f;
266
267 _list_add (lp);
268 f = FLIST_FENCE (*lp);
269
270 FENCE_INSN (f) = insn;
271
272 gcc_assert (state != NULL);
273 FENCE_STATE (f) = state;
274
275 FENCE_CYCLE (f) = cycle;
276 FENCE_ISSUED_INSNS (f) = cycle_issued_insns;
277 FENCE_STARTS_CYCLE_P (f) = starts_cycle_p;
278 FENCE_AFTER_STALL_P (f) = after_stall_p;
279
280 gcc_assert (dc != NULL);
281 FENCE_DC (f) = dc;
282
283 gcc_assert (tc != NULL || targetm.sched.alloc_sched_context == NULL);
284 FENCE_TC (f) = tc;
285
286 FENCE_LAST_SCHEDULED_INSN (f) = last_scheduled_insn;
136e01a3 287 FENCE_ISSUE_MORE (f) = issue_more;
e855c69d
AB
288 FENCE_EXECUTING_INSNS (f) = executing_insns;
289 FENCE_READY_TICKS (f) = ready_ticks;
290 FENCE_READY_TICKS_SIZE (f) = ready_ticks_size;
291 FENCE_SCHED_NEXT (f) = sched_next;
292
293 init_fence_for_scheduling (f);
294}
295
296/* Remove the head node of the list pointed to by LP. */
297static void
298flist_remove (flist_t *lp)
299{
300 if (FENCE_INSN (FLIST_FENCE (*lp)))
301 fence_clear (FLIST_FENCE (*lp));
302 _list_remove (lp);
303}
304
305/* Clear the fence list pointed to by LP. */
306void
307flist_clear (flist_t *lp)
308{
309 while (*lp)
310 flist_remove (lp);
311}
312
497b699b 313/* Add ORIGINAL_INSN the def list DL honoring CROSSED_CALL_ABIS. */
e855c69d 314void
497b699b
RS
315def_list_add (def_list_t *dl, insn_t original_insn,
316 unsigned int crossed_call_abis)
e855c69d
AB
317{
318 def_t d;
b8698a0f 319
e855c69d
AB
320 _list_add (dl);
321 d = DEF_LIST_DEF (*dl);
322
323 d->orig_insn = original_insn;
497b699b 324 d->crossed_call_abis = crossed_call_abis;
e855c69d
AB
325}
326\f
327
328/* Functions to work with target contexts. */
329
b8698a0f 330/* Bulk target context. It is convenient for debugging purposes to ensure
e855c69d
AB
331 that there are no uninitialized (null) target contexts. */
332static tc_t bulk_tc = (tc_t) 1;
333
b8698a0f 334/* Target hooks wrappers. In the future we can provide some default
e855c69d
AB
335 implementations for them. */
336
337/* Allocate a store for the target context. */
338static tc_t
339alloc_target_context (void)
340{
341 return (targetm.sched.alloc_sched_context
342 ? targetm.sched.alloc_sched_context () : bulk_tc);
343}
344
345/* Init target context TC.
346 If CLEAN_P is true, then make TC as it is beginning of the scheduler.
347 Overwise, copy current backend context to TC. */
348static void
349init_target_context (tc_t tc, bool clean_p)
350{
351 if (targetm.sched.init_sched_context)
352 targetm.sched.init_sched_context (tc, clean_p);
353}
354
355/* Allocate and initialize a target context. Meaning of CLEAN_P is the same as
356 int init_target_context (). */
357tc_t
358create_target_context (bool clean_p)
359{
360 tc_t tc = alloc_target_context ();
361
362 init_target_context (tc, clean_p);
363 return tc;
364}
365
366/* Copy TC to the current backend context. */
367void
368set_target_context (tc_t tc)
369{
370 if (targetm.sched.set_sched_context)
371 targetm.sched.set_sched_context (tc);
372}
373
374/* TC is about to be destroyed. Free any internal data. */
375static void
376clear_target_context (tc_t tc)
377{
378 if (targetm.sched.clear_sched_context)
379 targetm.sched.clear_sched_context (tc);
380}
381
382/* Clear and free it. */
383static void
384delete_target_context (tc_t tc)
385{
386 clear_target_context (tc);
387
388 if (targetm.sched.free_sched_context)
389 targetm.sched.free_sched_context (tc);
390}
391
392/* Make a copy of FROM in TO.
393 NB: May be this should be a hook. */
394static void
395copy_target_context (tc_t to, tc_t from)
396{
397 tc_t tmp = create_target_context (false);
398
399 set_target_context (from);
400 init_target_context (to, false);
401
402 set_target_context (tmp);
403 delete_target_context (tmp);
404}
405
406/* Create a copy of TC. */
407static tc_t
408create_copy_of_target_context (tc_t tc)
409{
410 tc_t copy = alloc_target_context ();
411
412 copy_target_context (copy, tc);
413
414 return copy;
415}
416
417/* Clear TC and initialize it according to CLEAN_P. The meaning of CLEAN_P
418 is the same as in init_target_context (). */
419void
420reset_target_context (tc_t tc, bool clean_p)
421{
422 clear_target_context (tc);
423 init_target_context (tc, clean_p);
424}
425\f
b8698a0f 426/* Functions to work with dependence contexts.
99b1c316 427 Dc (aka deps context, aka deps_t, aka class deps_desc *) is short for dependence
e855c69d
AB
428 context. It accumulates information about processed insns to decide if
429 current insn is dependent on the processed ones. */
430
431/* Make a copy of FROM in TO. */
432static void
433copy_deps_context (deps_t to, deps_t from)
434{
bcf33775 435 init_deps (to, false);
e855c69d
AB
436 deps_join (to, from);
437}
438
439/* Allocate store for dep context. */
440static deps_t
441alloc_deps_context (void)
442{
99b1c316 443 return XNEW (class deps_desc);
e855c69d
AB
444}
445
446/* Allocate and initialize dep context. */
447static deps_t
448create_deps_context (void)
449{
450 deps_t dc = alloc_deps_context ();
451
bcf33775 452 init_deps (dc, false);
e855c69d
AB
453 return dc;
454}
455
456/* Create a copy of FROM. */
457static deps_t
458create_copy_of_deps_context (deps_t from)
459{
460 deps_t to = alloc_deps_context ();
461
462 copy_deps_context (to, from);
463 return to;
464}
465
466/* Clean up internal data of DC. */
467static void
468clear_deps_context (deps_t dc)
469{
470 free_deps (dc);
471}
472
473/* Clear and free DC. */
474static void
475delete_deps_context (deps_t dc)
476{
477 clear_deps_context (dc);
478 free (dc);
479}
480
481/* Clear and init DC. */
482static void
483reset_deps_context (deps_t dc)
484{
485 clear_deps_context (dc);
bcf33775 486 init_deps (dc, false);
e855c69d
AB
487}
488
b8698a0f 489/* This structure describes the dependence analysis hooks for advancing
e855c69d
AB
490 dependence context. */
491static struct sched_deps_info_def advance_deps_context_sched_deps_info =
492 {
493 NULL,
494
495 NULL, /* start_insn */
496 NULL, /* finish_insn */
497 NULL, /* start_lhs */
498 NULL, /* finish_lhs */
499 NULL, /* start_rhs */
500 NULL, /* finish_rhs */
501 haifa_note_reg_set,
502 haifa_note_reg_clobber,
503 haifa_note_reg_use,
504 NULL, /* note_mem_dep */
505 NULL, /* note_dep */
506
507 0, 0, 0
508 };
509
510/* Process INSN and add its impact on DC. */
511void
512advance_deps_context (deps_t dc, insn_t insn)
513{
514 sched_deps_info = &advance_deps_context_sched_deps_info;
6144a836 515 deps_analyze_insn (dc, insn);
e855c69d
AB
516}
517\f
518
519/* Functions to work with DFA states. */
520
521/* Allocate store for a DFA state. */
522static state_t
523state_alloc (void)
524{
525 return xmalloc (dfa_state_size);
526}
527
528/* Allocate and initialize DFA state. */
529static state_t
530state_create (void)
531{
532 state_t state = state_alloc ();
533
534 state_reset (state);
535 advance_state (state);
536 return state;
537}
538
539/* Free DFA state. */
540static void
541state_free (state_t state)
542{
543 free (state);
544}
545
546/* Make a copy of FROM in TO. */
547static void
548state_copy (state_t to, state_t from)
549{
550 memcpy (to, from, dfa_state_size);
551}
552
553/* Create a copy of FROM. */
554static state_t
555state_create_copy (state_t from)
556{
557 state_t to = state_alloc ();
558
559 state_copy (to, from);
560 return to;
561}
562\f
563
564/* Functions to work with fences. */
565
566/* Clear the fence. */
567static void
568fence_clear (fence_t f)
569{
570 state_t s = FENCE_STATE (f);
571 deps_t dc = FENCE_DC (f);
572 void *tc = FENCE_TC (f);
573
574 ilist_clear (&FENCE_BNDS (f));
575
576 gcc_assert ((s != NULL && dc != NULL && tc != NULL)
577 || (s == NULL && dc == NULL && tc == NULL));
578
04695783 579 free (s);
e855c69d
AB
580
581 if (dc != NULL)
582 delete_deps_context (dc);
583
584 if (tc != NULL)
585 delete_target_context (tc);
9771b263 586 vec_free (FENCE_EXECUTING_INSNS (f));
e855c69d
AB
587 free (FENCE_READY_TICKS (f));
588 FENCE_READY_TICKS (f) = NULL;
589}
590
591/* Init a list of fences with successors of OLD_FENCE. */
592void
593init_fences (insn_t old_fence)
594{
595 insn_t succ;
596 succ_iterator si;
597 bool first = true;
598 int ready_ticks_size = get_max_uid () + 1;
b8698a0f
L
599
600 FOR_EACH_SUCC_1 (succ, si, old_fence,
e855c69d
AB
601 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
602 {
b8698a0f 603
e855c69d
AB
604 if (first)
605 first = false;
606 else
607 gcc_assert (flag_sel_sched_pipelining_outer_loops);
608
609 flist_add (&fences, succ,
610 state_create (),
611 create_deps_context () /* dc */,
612 create_target_context (true) /* tc */,
6144a836 613 NULL /* last_scheduled_insn */,
e855c69d
AB
614 NULL, /* executing_insns */
615 XCNEWVEC (int, ready_ticks_size), /* ready_ticks */
616 ready_ticks_size,
6144a836 617 NULL /* sched_next */,
b8698a0f 618 1 /* cycle */, 0 /* cycle_issued_insns */,
136e01a3 619 issue_rate, /* issue_more */
b8698a0f 620 1 /* starts_cycle_p */, 0 /* after_stall_p */);
e855c69d
AB
621 }
622}
623
624/* Merges two fences (filling fields of fence F with resulting values) by
625 following rules: 1) state, target context and last scheduled insn are
b8698a0f 626 propagated from fallthrough edge if it is available;
e855c69d 627 2) deps context and cycle is propagated from more probable edge;
b8698a0f 628 3) all other fields are set to corresponding constant values.
e855c69d 629
b8698a0f 630 INSN, STATE, DC, TC, LAST_SCHEDULED_INSN, EXECUTING_INSNS,
136e01a3
AB
631 READY_TICKS, READY_TICKS_SIZE, SCHED_NEXT, CYCLE, ISSUE_MORE
632 and AFTER_STALL_P are the corresponding fields of the second fence. */
e855c69d
AB
633static void
634merge_fences (fence_t f, insn_t insn,
b8698a0f 635 state_t state, deps_t dc, void *tc,
6144a836
DM
636 rtx_insn *last_scheduled_insn,
637 vec<rtx_insn *, va_gc> *executing_insns,
e855c69d 638 int *ready_ticks, int ready_ticks_size,
136e01a3 639 rtx sched_next, int cycle, int issue_more, bool after_stall_p)
e855c69d
AB
640{
641 insn_t last_scheduled_insn_old = FENCE_LAST_SCHEDULED_INSN (f);
642
643 gcc_assert (sel_bb_head_p (FENCE_INSN (f))
644 && !sched_next && !FENCE_SCHED_NEXT (f));
645
b8698a0f 646 /* Check if we can decide which path fences came.
e855c69d
AB
647 If we can't (or don't want to) - reset all. */
648 if (last_scheduled_insn == NULL
649 || last_scheduled_insn_old == NULL
b8698a0f
L
650 /* This is a case when INSN is reachable on several paths from
651 one insn (this can happen when pipelining of outer loops is on and
652 there are two edges: one going around of inner loop and the other -
e855c69d
AB
653 right through it; in such case just reset everything). */
654 || last_scheduled_insn == last_scheduled_insn_old)
655 {
656 state_reset (FENCE_STATE (f));
657 state_free (state);
b8698a0f 658
e855c69d
AB
659 reset_deps_context (FENCE_DC (f));
660 delete_deps_context (dc);
b8698a0f 661
e855c69d
AB
662 reset_target_context (FENCE_TC (f), true);
663 delete_target_context (tc);
664
665 if (cycle > FENCE_CYCLE (f))
666 FENCE_CYCLE (f) = cycle;
667
668 FENCE_LAST_SCHEDULED_INSN (f) = NULL;
136e01a3 669 FENCE_ISSUE_MORE (f) = issue_rate;
9771b263 670 vec_free (executing_insns);
e855c69d
AB
671 free (ready_ticks);
672 if (FENCE_EXECUTING_INSNS (f))
9771b263
DN
673 FENCE_EXECUTING_INSNS (f)->block_remove (0,
674 FENCE_EXECUTING_INSNS (f)->length ());
e855c69d
AB
675 if (FENCE_READY_TICKS (f))
676 memset (FENCE_READY_TICKS (f), 0, FENCE_READY_TICKS_SIZE (f));
677 }
678 else
679 {
680 edge edge_old = NULL, edge_new = NULL;
681 edge candidate;
682 succ_iterator si;
683 insn_t succ;
b8698a0f 684
e855c69d
AB
685 /* Find fallthrough edge. */
686 gcc_assert (BLOCK_FOR_INSN (insn)->prev_bb);
0fd4b31d 687 candidate = find_fallthru_edge_from (BLOCK_FOR_INSN (insn)->prev_bb);
e855c69d
AB
688
689 if (!candidate
690 || (candidate->src != BLOCK_FOR_INSN (last_scheduled_insn)
691 && candidate->src != BLOCK_FOR_INSN (last_scheduled_insn_old)))
692 {
693 /* No fallthrough edge leading to basic block of INSN. */
694 state_reset (FENCE_STATE (f));
695 state_free (state);
b8698a0f 696
e855c69d
AB
697 reset_target_context (FENCE_TC (f), true);
698 delete_target_context (tc);
b8698a0f 699
e855c69d 700 FENCE_LAST_SCHEDULED_INSN (f) = NULL;
136e01a3 701 FENCE_ISSUE_MORE (f) = issue_rate;
e855c69d
AB
702 }
703 else
704 if (candidate->src == BLOCK_FOR_INSN (last_scheduled_insn))
705 {
e855c69d
AB
706 state_free (FENCE_STATE (f));
707 FENCE_STATE (f) = state;
708
709 delete_target_context (FENCE_TC (f));
710 FENCE_TC (f) = tc;
711
712 FENCE_LAST_SCHEDULED_INSN (f) = last_scheduled_insn;
136e01a3 713 FENCE_ISSUE_MORE (f) = issue_more;
e855c69d
AB
714 }
715 else
716 {
717 /* Leave STATE, TC and LAST_SCHEDULED_INSN fields untouched. */
718 state_free (state);
719 delete_target_context (tc);
720
721 gcc_assert (BLOCK_FOR_INSN (insn)->prev_bb
722 != BLOCK_FOR_INSN (last_scheduled_insn));
723 }
724
4839de55
PP
725 /* Find edge of first predecessor (last_scheduled_insn_old->insn). */
726 FOR_EACH_SUCC_1 (succ, si, last_scheduled_insn_old,
727 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
728 {
729 if (succ == insn)
730 {
731 /* No same successor allowed from several edges. */
732 gcc_assert (!edge_old);
733 edge_old = si.e1;
734 }
735 }
736 /* Find edge of second predecessor (last_scheduled_insn->insn). */
737 FOR_EACH_SUCC_1 (succ, si, last_scheduled_insn,
738 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
739 {
740 if (succ == insn)
741 {
742 /* No same successor allowed from several edges. */
743 gcc_assert (!edge_new);
744 edge_new = si.e1;
745 }
746 }
747
748 /* Check if we can choose most probable predecessor. */
749 if (edge_old == NULL || edge_new == NULL)
750 {
751 reset_deps_context (FENCE_DC (f));
752 delete_deps_context (dc);
753 vec_free (executing_insns);
754 free (ready_ticks);
755
756 FENCE_CYCLE (f) = MAX (FENCE_CYCLE (f), cycle);
757 if (FENCE_EXECUTING_INSNS (f))
758 FENCE_EXECUTING_INSNS (f)->block_remove (0,
759 FENCE_EXECUTING_INSNS (f)->length ());
760 if (FENCE_READY_TICKS (f))
761 memset (FENCE_READY_TICKS (f), 0, FENCE_READY_TICKS_SIZE (f));
762 }
763 else
764 if (edge_new->probability > edge_old->probability)
765 {
766 delete_deps_context (FENCE_DC (f));
767 FENCE_DC (f) = dc;
768 vec_free (FENCE_EXECUTING_INSNS (f));
769 FENCE_EXECUTING_INSNS (f) = executing_insns;
770 free (FENCE_READY_TICKS (f));
771 FENCE_READY_TICKS (f) = ready_ticks;
772 FENCE_READY_TICKS_SIZE (f) = ready_ticks_size;
773 FENCE_CYCLE (f) = cycle;
774 }
775 else
776 {
777 /* Leave DC and CYCLE untouched. */
778 delete_deps_context (dc);
779 vec_free (executing_insns);
780 free (ready_ticks);
781 }
e855c69d
AB
782 }
783
784 /* Fill remaining invariant fields. */
785 if (after_stall_p)
786 FENCE_AFTER_STALL_P (f) = 1;
787
788 FENCE_ISSUED_INSNS (f) = 0;
789 FENCE_STARTS_CYCLE_P (f) = 1;
790 FENCE_SCHED_NEXT (f) = NULL;
791}
792
b8698a0f 793/* Add a new fence to NEW_FENCES list, initializing it from all
e855c69d
AB
794 other parameters. */
795static void
796add_to_fences (flist_tail_t new_fences, insn_t insn,
6144a836
DM
797 state_t state, deps_t dc, void *tc,
798 rtx_insn *last_scheduled_insn,
799 vec<rtx_insn *, va_gc> *executing_insns, int *ready_ticks,
800 int ready_ticks_size, rtx_insn *sched_next, int cycle,
136e01a3
AB
801 int cycle_issued_insns, int issue_rate,
802 bool starts_cycle_p, bool after_stall_p)
e855c69d
AB
803{
804 fence_t f = flist_lookup (FLIST_TAIL_HEAD (new_fences), insn);
805
806 if (! f)
807 {
808 flist_add (FLIST_TAIL_TAILP (new_fences), insn, state, dc, tc,
b8698a0f 809 last_scheduled_insn, executing_insns, ready_ticks,
e855c69d 810 ready_ticks_size, sched_next, cycle, cycle_issued_insns,
136e01a3 811 issue_rate, starts_cycle_p, after_stall_p);
e855c69d
AB
812
813 FLIST_TAIL_TAILP (new_fences)
814 = &FLIST_NEXT (*FLIST_TAIL_TAILP (new_fences));
815 }
816 else
817 {
b8698a0f
L
818 merge_fences (f, insn, state, dc, tc, last_scheduled_insn,
819 executing_insns, ready_ticks, ready_ticks_size,
136e01a3 820 sched_next, cycle, issue_rate, after_stall_p);
e855c69d
AB
821 }
822}
823
824/* Move the first fence in the OLD_FENCES list to NEW_FENCES. */
825void
826move_fence_to_fences (flist_t old_fences, flist_tail_t new_fences)
827{
828 fence_t f, old;
829 flist_t *tailp = FLIST_TAIL_TAILP (new_fences);
830
831 old = FLIST_FENCE (old_fences);
b8698a0f 832 f = flist_lookup (FLIST_TAIL_HEAD (new_fences),
e855c69d
AB
833 FENCE_INSN (FLIST_FENCE (old_fences)));
834 if (f)
835 {
836 merge_fences (f, old->insn, old->state, old->dc, old->tc,
837 old->last_scheduled_insn, old->executing_insns,
838 old->ready_ticks, old->ready_ticks_size,
136e01a3 839 old->sched_next, old->cycle, old->issue_more,
e855c69d
AB
840 old->after_stall_p);
841 }
842 else
843 {
844 _list_add (tailp);
845 FLIST_TAIL_TAILP (new_fences) = &FLIST_NEXT (*tailp);
846 *FLIST_FENCE (*tailp) = *old;
847 init_fence_for_scheduling (FLIST_FENCE (*tailp));
848 }
849 FENCE_INSN (old) = NULL;
850}
851
b8698a0f 852/* Add a new fence to NEW_FENCES list and initialize most of its data
e855c69d
AB
853 as a clean one. */
854void
855add_clean_fence_to_fences (flist_tail_t new_fences, insn_t succ, fence_t fence)
856{
857 int ready_ticks_size = get_max_uid () + 1;
b8698a0f 858
e855c69d
AB
859 add_to_fences (new_fences,
860 succ, state_create (), create_deps_context (),
861 create_target_context (true),
6144a836 862 NULL, NULL,
e855c69d 863 XCNEWVEC (int, ready_ticks_size), ready_ticks_size,
6144a836 864 NULL, FENCE_CYCLE (fence) + 1,
136e01a3 865 0, issue_rate, 1, FENCE_AFTER_STALL_P (fence));
e855c69d
AB
866}
867
b8698a0f 868/* Add a new fence to NEW_FENCES list and initialize all of its data
e855c69d
AB
869 from FENCE and SUCC. */
870void
871add_dirty_fence_to_fences (flist_tail_t new_fences, insn_t succ, fence_t fence)
872{
b8698a0f 873 int * new_ready_ticks
e855c69d 874 = XNEWVEC (int, FENCE_READY_TICKS_SIZE (fence));
b8698a0f 875
e855c69d
AB
876 memcpy (new_ready_ticks, FENCE_READY_TICKS (fence),
877 FENCE_READY_TICKS_SIZE (fence) * sizeof (int));
878 add_to_fences (new_fences,
879 succ, state_create_copy (FENCE_STATE (fence)),
880 create_copy_of_deps_context (FENCE_DC (fence)),
881 create_copy_of_target_context (FENCE_TC (fence)),
b8698a0f 882 FENCE_LAST_SCHEDULED_INSN (fence),
9771b263 883 vec_safe_copy (FENCE_EXECUTING_INSNS (fence)),
e855c69d
AB
884 new_ready_ticks,
885 FENCE_READY_TICKS_SIZE (fence),
886 FENCE_SCHED_NEXT (fence),
887 FENCE_CYCLE (fence),
888 FENCE_ISSUED_INSNS (fence),
136e01a3 889 FENCE_ISSUE_MORE (fence),
e855c69d
AB
890 FENCE_STARTS_CYCLE_P (fence),
891 FENCE_AFTER_STALL_P (fence));
892}
893\f
894
895/* Functions to work with regset and nop pools. */
896
897/* Returns the new regset from pool. It might have some of the bits set
898 from the previous usage. */
899regset
900get_regset_from_pool (void)
901{
902 regset rs;
903
904 if (regset_pool.n != 0)
905 rs = regset_pool.v[--regset_pool.n];
906 else
907 /* We need to create the regset. */
908 {
909 rs = ALLOC_REG_SET (&reg_obstack);
910
911 if (regset_pool.nn == regset_pool.ss)
912 regset_pool.vv = XRESIZEVEC (regset, regset_pool.vv,
913 (regset_pool.ss = 2 * regset_pool.ss + 1));
914 regset_pool.vv[regset_pool.nn++] = rs;
915 }
916
917 regset_pool.diff++;
918
919 return rs;
920}
921
922/* Same as above, but returns the empty regset. */
923regset
924get_clear_regset_from_pool (void)
925{
926 regset rs = get_regset_from_pool ();
927
928 CLEAR_REG_SET (rs);
929 return rs;
930}
931
932/* Return regset RS to the pool for future use. */
933void
934return_regset_to_pool (regset rs)
935{
9ef1bf71 936 gcc_assert (rs);
e855c69d
AB
937 regset_pool.diff--;
938
939 if (regset_pool.n == regset_pool.s)
940 regset_pool.v = XRESIZEVEC (regset, regset_pool.v,
941 (regset_pool.s = 2 * regset_pool.s + 1));
942 regset_pool.v[regset_pool.n++] = rs;
943}
944
945/* This is used as a qsort callback for sorting regset pool stacks.
946 X and XX are addresses of two regsets. They are never equal. */
947static int
948cmp_v_in_regset_pool (const void *x, const void *xx)
949{
d38933a0
SB
950 uintptr_t r1 = (uintptr_t) *((const regset *) x);
951 uintptr_t r2 = (uintptr_t) *((const regset *) xx);
952 if (r1 > r2)
953 return 1;
954 else if (r1 < r2)
955 return -1;
956 gcc_unreachable ();
e855c69d
AB
957}
958
b2b29377 959/* Free the regset pool possibly checking for memory leaks. */
e855c69d
AB
960void
961free_regset_pool (void)
962{
b2b29377
MM
963 if (flag_checking)
964 {
965 regset *v = regset_pool.v;
966 int i = 0;
967 int n = regset_pool.n;
b8698a0f 968
b2b29377
MM
969 regset *vv = regset_pool.vv;
970 int ii = 0;
971 int nn = regset_pool.nn;
b8698a0f 972
b2b29377 973 int diff = 0;
b8698a0f 974
b2b29377 975 gcc_assert (n <= nn);
b8698a0f 976
b2b29377
MM
977 /* Sort both vectors so it will be possible to compare them. */
978 qsort (v, n, sizeof (*v), cmp_v_in_regset_pool);
979 qsort (vv, nn, sizeof (*vv), cmp_v_in_regset_pool);
b8698a0f 980
b2b29377
MM
981 while (ii < nn)
982 {
983 if (v[i] == vv[ii])
984 i++;
985 else
986 /* VV[II] was lost. */
987 diff++;
b8698a0f 988
b2b29377
MM
989 ii++;
990 }
b8698a0f 991
b2b29377
MM
992 gcc_assert (diff == regset_pool.diff);
993 }
b8698a0f 994
e855c69d
AB
995 /* If not true - we have a memory leak. */
996 gcc_assert (regset_pool.diff == 0);
b8698a0f 997
e855c69d
AB
998 while (regset_pool.n)
999 {
1000 --regset_pool.n;
1001 FREE_REG_SET (regset_pool.v[regset_pool.n]);
1002 }
1003
1004 free (regset_pool.v);
1005 regset_pool.v = NULL;
1006 regset_pool.s = 0;
b8698a0f 1007
e855c69d
AB
1008 free (regset_pool.vv);
1009 regset_pool.vv = NULL;
1010 regset_pool.nn = 0;
1011 regset_pool.ss = 0;
1012
1013 regset_pool.diff = 0;
1014}
1015\f
1016
b8698a0f
L
1017/* Functions to work with nop pools. NOP insns are used as temporary
1018 placeholders of the insns being scheduled to allow correct update of
e855c69d
AB
1019 the data sets. When update is finished, NOPs are deleted. */
1020
1021/* A vinsn that is used to represent a nop. This vinsn is shared among all
1022 nops sel-sched generates. */
1023static vinsn_t nop_vinsn = NULL;
1024
1025/* Emit a nop before INSN, taking it from pool. */
1026insn_t
1027get_nop_from_pool (insn_t insn)
1028{
6144a836 1029 rtx nop_pat;
e855c69d
AB
1030 insn_t nop;
1031 bool old_p = nop_pool.n != 0;
1032 int flags;
1033
1034 if (old_p)
6144a836 1035 nop_pat = nop_pool.v[--nop_pool.n];
e855c69d 1036 else
6144a836 1037 nop_pat = nop_pattern;
e855c69d 1038
6144a836 1039 nop = emit_insn_before (nop_pat, insn);
e855c69d
AB
1040
1041 if (old_p)
1042 flags = INSN_INIT_TODO_SSID;
1043 else
1044 flags = INSN_INIT_TODO_LUID | INSN_INIT_TODO_SSID;
1045
1046 set_insn_init (INSN_EXPR (insn), nop_vinsn, INSN_SEQNO (insn));
1047 sel_init_new_insn (nop, flags);
1048
1049 return nop;
1050}
1051
1052/* Remove NOP from the instruction stream and return it to the pool. */
1053void
b5b8b0ac 1054return_nop_to_pool (insn_t nop, bool full_tidying)
e855c69d
AB
1055{
1056 gcc_assert (INSN_IN_STREAM_P (nop));
b5b8b0ac 1057 sel_remove_insn (nop, false, full_tidying);
e855c69d 1058
1f397f45 1059 /* We'll recycle this nop. */
4654c0cf 1060 nop->set_undeleted ();
1f397f45 1061
e855c69d 1062 if (nop_pool.n == nop_pool.s)
6144a836 1063 nop_pool.v = XRESIZEVEC (rtx_insn *, nop_pool.v,
e855c69d
AB
1064 (nop_pool.s = 2 * nop_pool.s + 1));
1065 nop_pool.v[nop_pool.n++] = nop;
1066}
1067
1068/* Free the nop pool. */
1069void
1070free_nop_pool (void)
1071{
1072 nop_pool.n = 0;
1073 nop_pool.s = 0;
1074 free (nop_pool.v);
1075 nop_pool.v = NULL;
1076}
1077\f
1078
b8698a0f 1079/* Skip unspec to support ia64 speculation. Called from rtx_equal_p_cb.
e855c69d
AB
1080 The callback is given two rtxes XX and YY and writes the new rtxes
1081 to NX and NY in case some needs to be skipped. */
1082static int
1083skip_unspecs_callback (const_rtx *xx, const_rtx *yy, rtx *nx, rtx* ny)
1084{
1085 const_rtx x = *xx;
1086 const_rtx y = *yy;
b8698a0f 1087
e855c69d
AB
1088 if (GET_CODE (x) == UNSPEC
1089 && (targetm.sched.skip_rtx_p == NULL
1090 || targetm.sched.skip_rtx_p (x)))
1091 {
1092 *nx = XVECEXP (x, 0, 0);
1093 *ny = CONST_CAST_RTX (y);
1094 return 1;
1095 }
b8698a0f 1096
e855c69d
AB
1097 if (GET_CODE (y) == UNSPEC
1098 && (targetm.sched.skip_rtx_p == NULL
1099 || targetm.sched.skip_rtx_p (y)))
1100 {
1101 *nx = CONST_CAST_RTX (x);
1102 *ny = XVECEXP (y, 0, 0);
1103 return 1;
1104 }
b8698a0f 1105
e855c69d
AB
1106 return 0;
1107}
1108
b8698a0f 1109/* Callback, called from hash_rtx_cb. Helps to hash UNSPEC rtx X in a correct way
e855c69d
AB
1110 to support ia64 speculation. When changes are needed, new rtx X and new mode
1111 NMODE are written, and the callback returns true. */
1112static int
ef4bddc2
RS
1113hash_with_unspec_callback (const_rtx x, machine_mode mode ATTRIBUTE_UNUSED,
1114 rtx *nx, machine_mode* nmode)
e855c69d 1115{
b8698a0f 1116 if (GET_CODE (x) == UNSPEC
e855c69d
AB
1117 && targetm.sched.skip_rtx_p
1118 && targetm.sched.skip_rtx_p (x))
1119 {
1120 *nx = XVECEXP (x, 0 ,0);
32e8bb8e 1121 *nmode = VOIDmode;
e855c69d
AB
1122 return 1;
1123 }
b8698a0f 1124
e855c69d
AB
1125 return 0;
1126}
1127
1128/* Returns LHS and RHS are ok to be scheduled separately. */
1129static bool
1130lhs_and_rhs_separable_p (rtx lhs, rtx rhs)
1131{
1132 if (lhs == NULL || rhs == NULL)
1133 return false;
1134
807e902e
KZ
1135 /* Do not schedule constants as rhs: no point to use reg, if const
1136 can be used. Moreover, scheduling const as rhs may lead to mode
1137 mismatch cause consts don't have modes but they could be merged
1138 from branches where the same const used in different modes. */
e855c69d
AB
1139 if (CONSTANT_P (rhs))
1140 return false;
1141
1142 /* ??? Do not rename predicate registers to avoid ICEs in bundling. */
1143 if (COMPARISON_P (rhs))
1144 return false;
1145
1146 /* Do not allow single REG to be an rhs. */
1147 if (REG_P (rhs))
1148 return false;
1149
b8698a0f 1150 /* See comment at find_used_regs_1 (*1) for explanation of this
e855c69d
AB
1151 restriction. */
1152 /* FIXME: remove this later. */
1153 if (MEM_P (lhs))
1154 return false;
1155
1156 /* This will filter all tricky things like ZERO_EXTRACT etc.
1157 For now we don't handle it. */
1158 if (!REG_P (lhs) && !MEM_P (lhs))
1159 return false;
1160
1161 return true;
1162}
1163
b8698a0f
L
1164/* Initialize vinsn VI for INSN. Only for use from vinsn_create (). When
1165 FORCE_UNIQUE_P is true, the resulting vinsn will not be clonable. This is
e855c69d
AB
1166 used e.g. for insns from recovery blocks. */
1167static void
1168vinsn_init (vinsn_t vi, insn_t insn, bool force_unique_p)
1169{
1170 hash_rtx_callback_function hrcf;
1171 int insn_class;
1172
3d30f4e8 1173 VINSN_INSN_RTX (vi) = insn;
e855c69d
AB
1174 VINSN_COUNT (vi) = 0;
1175 vi->cost = -1;
b8698a0f 1176
9ef1bf71
AM
1177 if (INSN_NOP_P (insn))
1178 return;
1179
e855c69d
AB
1180 if (DF_INSN_UID_SAFE_GET (INSN_UID (insn)) != NULL)
1181 init_id_from_df (VINSN_ID (vi), insn, force_unique_p);
1182 else
1183 deps_init_id (VINSN_ID (vi), insn, force_unique_p);
b8698a0f 1184
e855c69d
AB
1185 /* Hash vinsn depending on whether it is separable or not. */
1186 hrcf = targetm.sched.skip_rtx_p ? hash_with_unspec_callback : NULL;
1187 if (VINSN_SEPARABLE_P (vi))
1188 {
1189 rtx rhs = VINSN_RHS (vi);
1190
1191 VINSN_HASH (vi) = hash_rtx_cb (rhs, GET_MODE (rhs),
1192 NULL, NULL, false, hrcf);
1193 VINSN_HASH_RTX (vi) = hash_rtx_cb (VINSN_PATTERN (vi),
1194 VOIDmode, NULL, NULL,
1195 false, hrcf);
1196 }
1197 else
1198 {
1199 VINSN_HASH (vi) = hash_rtx_cb (VINSN_PATTERN (vi), VOIDmode,
1200 NULL, NULL, false, hrcf);
1201 VINSN_HASH_RTX (vi) = VINSN_HASH (vi);
1202 }
b8698a0f 1203
e855c69d
AB
1204 insn_class = haifa_classify_insn (insn);
1205 if (insn_class >= 2
1206 && (!targetm.sched.get_insn_spec_ds
1207 || ((targetm.sched.get_insn_spec_ds (insn) & BEGIN_CONTROL)
1208 == 0)))
1209 VINSN_MAY_TRAP_P (vi) = true;
1210 else
1211 VINSN_MAY_TRAP_P (vi) = false;
1212}
1213
1214/* Indicate that VI has become the part of an rtx object. */
1215void
1216vinsn_attach (vinsn_t vi)
1217{
1218 /* Assert that VI is not pending for deletion. */
1219 gcc_assert (VINSN_INSN_RTX (vi));
1220
1221 VINSN_COUNT (vi)++;
1222}
1223
b8698a0f 1224/* Create and init VI from the INSN. Use UNIQUE_P for determining the correct
e855c69d
AB
1225 VINSN_TYPE (VI). */
1226static vinsn_t
1227vinsn_create (insn_t insn, bool force_unique_p)
1228{
1229 vinsn_t vi = XCNEW (struct vinsn_def);
1230
1231 vinsn_init (vi, insn, force_unique_p);
1232 return vi;
1233}
1234
1235/* Return a copy of VI. When REATTACH_P is true, detach VI and attach
1236 the copy. */
b8698a0f 1237vinsn_t
e855c69d
AB
1238vinsn_copy (vinsn_t vi, bool reattach_p)
1239{
9ee1fbb1 1240 rtx_insn *copy;
e855c69d
AB
1241 bool unique = VINSN_UNIQUE_P (vi);
1242 vinsn_t new_vi;
b8698a0f 1243
e855c69d
AB
1244 copy = create_copy_of_insn_rtx (VINSN_INSN_RTX (vi));
1245 new_vi = create_vinsn_from_insn_rtx (copy, unique);
1246 if (reattach_p)
1247 {
1248 vinsn_detach (vi);
1249 vinsn_attach (new_vi);
1250 }
1251
1252 return new_vi;
1253}
1254
1255/* Delete the VI vinsn and free its data. */
1256static void
1257vinsn_delete (vinsn_t vi)
1258{
1259 gcc_assert (VINSN_COUNT (vi) == 0);
1260
9ef1bf71
AM
1261 if (!INSN_NOP_P (VINSN_INSN_RTX (vi)))
1262 {
1263 return_regset_to_pool (VINSN_REG_SETS (vi));
1264 return_regset_to_pool (VINSN_REG_USES (vi));
1265 return_regset_to_pool (VINSN_REG_CLOBBERS (vi));
1266 }
e855c69d
AB
1267
1268 free (vi);
1269}
1270
b8698a0f 1271/* Indicate that VI is no longer a part of some rtx object.
e855c69d
AB
1272 Remove VI if it is no longer needed. */
1273void
1274vinsn_detach (vinsn_t vi)
1275{
1276 gcc_assert (VINSN_COUNT (vi) > 0);
1277
1278 if (--VINSN_COUNT (vi) == 0)
1279 vinsn_delete (vi);
1280}
1281
1282/* Returns TRUE if VI is a branch. */
1283bool
1284vinsn_cond_branch_p (vinsn_t vi)
1285{
1286 insn_t insn;
1287
1288 if (!VINSN_UNIQUE_P (vi))
1289 return false;
1290
1291 insn = VINSN_INSN_RTX (vi);
1292 if (BB_END (BLOCK_FOR_INSN (insn)) != insn)
1293 return false;
1294
1295 return control_flow_insn_p (insn);
1296}
1297
1298/* Return latency of INSN. */
1299static int
647d790d 1300sel_insn_rtx_cost (rtx_insn *insn)
e855c69d
AB
1301{
1302 int cost;
1303
1304 /* A USE insn, or something else we don't need to
1305 understand. We can't pass these directly to
1306 result_ready_cost or insn_default_latency because it will
1307 trigger a fatal error for unrecognizable insns. */
1308 if (recog_memoized (insn) < 0)
1309 cost = 0;
1310 else
1311 {
1312 cost = insn_default_latency (insn);
1313
1314 if (cost < 0)
1315 cost = 0;
1316 }
1317
1318 return cost;
1319}
1320
1321/* Return the cost of the VI.
ffc1ded5 1322 !!! FIXME: Unify with haifa-sched.c: insn_sched_cost (). */
e855c69d
AB
1323int
1324sel_vinsn_cost (vinsn_t vi)
1325{
1326 int cost = vi->cost;
1327
1328 if (cost < 0)
1329 {
1330 cost = sel_insn_rtx_cost (VINSN_INSN_RTX (vi));
1331 vi->cost = cost;
1332 }
1333
1334 return cost;
1335}
1336\f
1337
1338/* Functions for insn emitting. */
1339
1340/* Emit new insn after AFTER based on PATTERN and initialize its data from
1341 EXPR and SEQNO. */
1342insn_t
1343sel_gen_insn_from_rtx_after (rtx pattern, expr_t expr, int seqno, insn_t after)
1344{
1345 insn_t new_insn;
1346
1347 gcc_assert (EXPR_TARGET_AVAILABLE (expr) == true);
1348
1349 new_insn = emit_insn_after (pattern, after);
1350 set_insn_init (expr, NULL, seqno);
1351 sel_init_new_insn (new_insn, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SSID);
1352
1353 return new_insn;
1354}
1355
1356/* Force newly generated vinsns to be unique. */
1357static bool init_insn_force_unique_p = false;
1358
1359/* Emit new speculation recovery insn after AFTER based on PATTERN and
1360 initialize its data from EXPR and SEQNO. */
1361insn_t
1362sel_gen_recovery_insn_from_rtx_after (rtx pattern, expr_t expr, int seqno,
1363 insn_t after)
1364{
1365 insn_t insn;
1366
1367 gcc_assert (!init_insn_force_unique_p);
1368
1369 init_insn_force_unique_p = true;
1370 insn = sel_gen_insn_from_rtx_after (pattern, expr, seqno, after);
1371 CANT_MOVE (insn) = 1;
1372 init_insn_force_unique_p = false;
1373
1374 return insn;
1375}
1376
1377/* Emit new insn after AFTER based on EXPR and SEQNO. If VINSN is not NULL,
b8698a0f
L
1378 take it as a new vinsn instead of EXPR's vinsn.
1379 We simplify insns later, after scheduling region in
e855c69d
AB
1380 simplify_changed_insns. */
1381insn_t
b8698a0f 1382sel_gen_insn_from_expr_after (expr_t expr, vinsn_t vinsn, int seqno,
e855c69d
AB
1383 insn_t after)
1384{
1385 expr_t emit_expr;
1386 insn_t insn;
1387 int flags;
b8698a0f
L
1388
1389 emit_expr = set_insn_init (expr, vinsn ? vinsn : EXPR_VINSN (expr),
e855c69d
AB
1390 seqno);
1391 insn = EXPR_INSN_RTX (emit_expr);
fe08255d
AB
1392
1393 /* The insn may come from the transformation cache, which may hold already
1394 deleted insns, so mark it as not deleted. */
4654c0cf 1395 insn->set_undeleted ();
fe08255d 1396
b8698a0f 1397 add_insn_after (insn, after, BLOCK_FOR_INSN (insn));
e855c69d
AB
1398
1399 flags = INSN_INIT_TODO_SSID;
1400 if (INSN_LUID (insn) == 0)
1401 flags |= INSN_INIT_TODO_LUID;
1402 sel_init_new_insn (insn, flags);
1403
1404 return insn;
1405}
1406
1407/* Move insn from EXPR after AFTER. */
1408insn_t
1409sel_move_insn (expr_t expr, int seqno, insn_t after)
1410{
1411 insn_t insn = EXPR_INSN_RTX (expr);
1412 basic_block bb = BLOCK_FOR_INSN (after);
1413 insn_t next = NEXT_INSN (after);
1414
1415 /* Assert that in move_op we disconnected this insn properly. */
1416 gcc_assert (EXPR_VINSN (INSN_EXPR (insn)) != NULL);
0f82e5c9
DM
1417 SET_PREV_INSN (insn) = after;
1418 SET_NEXT_INSN (insn) = next;
e855c69d 1419
0f82e5c9
DM
1420 SET_NEXT_INSN (after) = insn;
1421 SET_PREV_INSN (next) = insn;
e855c69d
AB
1422
1423 /* Update links from insn to bb and vice versa. */
1424 df_insn_change_bb (insn, bb);
1425 if (BB_END (bb) == after)
1130d5e3 1426 BB_END (bb) = insn;
b8698a0f 1427
e855c69d
AB
1428 prepare_insn_expr (insn, seqno);
1429 return insn;
1430}
1431
1432\f
1433/* Functions to work with right-hand sides. */
1434
b8698a0f 1435/* Search for a hash value determined by UID/NEW_VINSN in a sorted vector
e855c69d 1436 VECT and return true when found. Use NEW_VINSN for comparison only when
b8698a0f
L
1437 COMPARE_VINSNS is true. Write to INDP the index on which
1438 the search has stopped, such that inserting the new element at INDP will
e855c69d
AB
1439 retain VECT's sort order. */
1440static bool
9771b263 1441find_in_history_vect_1 (vec<expr_history_def> vect,
b8698a0f 1442 unsigned uid, vinsn_t new_vinsn,
e855c69d
AB
1443 bool compare_vinsns, int *indp)
1444{
1445 expr_history_def *arr;
9771b263 1446 int i, j, len = vect.length ();
e855c69d
AB
1447
1448 if (len == 0)
1449 {
1450 *indp = 0;
1451 return false;
1452 }
1453
9771b263 1454 arr = vect.address ();
e855c69d
AB
1455 i = 0, j = len - 1;
1456
1457 while (i <= j)
1458 {
1459 unsigned auid = arr[i].uid;
b8698a0f 1460 vinsn_t avinsn = arr[i].new_expr_vinsn;
e855c69d
AB
1461
1462 if (auid == uid
b8698a0f
L
1463 /* When undoing transformation on a bookkeeping copy, the new vinsn
1464 may not be exactly equal to the one that is saved in the vector.
e855c69d
AB
1465 This is because the insn whose copy we're checking was possibly
1466 substituted itself. */
b8698a0f 1467 && (! compare_vinsns
e855c69d
AB
1468 || vinsn_equal_p (avinsn, new_vinsn)))
1469 {
1470 *indp = i;
1471 return true;
1472 }
1473 else if (auid > uid)
1474 break;
1475 i++;
1476 }
1477
1478 *indp = i;
1479 return false;
1480}
1481
b8698a0f
L
1482/* Search for a uid of INSN and NEW_VINSN in a sorted vector VECT. Return
1483 the position found or -1, if no such value is in vector.
e855c69d
AB
1484 Search also for UIDs of insn's originators, if ORIGINATORS_P is true. */
1485int
9771b263 1486find_in_history_vect (vec<expr_history_def> vect, rtx insn,
e855c69d
AB
1487 vinsn_t new_vinsn, bool originators_p)
1488{
1489 int ind;
1490
b8698a0f 1491 if (find_in_history_vect_1 (vect, INSN_UID (insn), new_vinsn,
e855c69d
AB
1492 false, &ind))
1493 return ind;
1494
1495 if (INSN_ORIGINATORS (insn) && originators_p)
1496 {
1497 unsigned uid;
1498 bitmap_iterator bi;
1499
1500 EXECUTE_IF_SET_IN_BITMAP (INSN_ORIGINATORS (insn), 0, uid, bi)
1501 if (find_in_history_vect_1 (vect, uid, new_vinsn, false, &ind))
1502 return ind;
1503 }
b8698a0f 1504
e855c69d
AB
1505 return -1;
1506}
1507
b8698a0f
L
1508/* Insert new element in a sorted history vector pointed to by PVECT,
1509 if it is not there already. The element is searched using
e855c69d
AB
1510 UID/NEW_EXPR_VINSN pair. TYPE, OLD_EXPR_VINSN and SPEC_DS save
1511 the history of a transformation. */
1512void
9771b263 1513insert_in_history_vect (vec<expr_history_def> *pvect,
e855c69d 1514 unsigned uid, enum local_trans_type type,
b8698a0f 1515 vinsn_t old_expr_vinsn, vinsn_t new_expr_vinsn,
e855c69d
AB
1516 ds_t spec_ds)
1517{
9771b263 1518 vec<expr_history_def> vect = *pvect;
e855c69d
AB
1519 expr_history_def temp;
1520 bool res;
1521 int ind;
1522
1523 res = find_in_history_vect_1 (vect, uid, new_expr_vinsn, true, &ind);
1524
1525 if (res)
1526 {
9771b263 1527 expr_history_def *phist = &vect[ind];
e855c69d 1528
b8698a0f 1529 /* It is possible that speculation types of expressions that were
e855c69d
AB
1530 propagated through different paths will be different here. In this
1531 case, merge the status to get the correct check later. */
1532 if (phist->spec_ds != spec_ds)
1533 phist->spec_ds = ds_max_merge (phist->spec_ds, spec_ds);
1534 return;
1535 }
b8698a0f 1536
e855c69d
AB
1537 temp.uid = uid;
1538 temp.old_expr_vinsn = old_expr_vinsn;
b8698a0f 1539 temp.new_expr_vinsn = new_expr_vinsn;
e855c69d
AB
1540 temp.spec_ds = spec_ds;
1541 temp.type = type;
1542
1543 vinsn_attach (old_expr_vinsn);
1544 vinsn_attach (new_expr_vinsn);
9771b263 1545 vect.safe_insert (ind, temp);
e855c69d
AB
1546 *pvect = vect;
1547}
1548
1549/* Free history vector PVECT. */
1550static void
9771b263 1551free_history_vect (vec<expr_history_def> &pvect)
e855c69d
AB
1552{
1553 unsigned i;
1554 expr_history_def *phist;
1555
9771b263 1556 if (! pvect.exists ())
e855c69d 1557 return;
b8698a0f 1558
9771b263 1559 for (i = 0; pvect.iterate (i, &phist); i++)
e855c69d
AB
1560 {
1561 vinsn_detach (phist->old_expr_vinsn);
1562 vinsn_detach (phist->new_expr_vinsn);
1563 }
b8698a0f 1564
9771b263 1565 pvect.release ();
e855c69d
AB
1566}
1567
5d369d58
AB
1568/* Merge vector FROM to PVECT. */
1569static void
9771b263
DN
1570merge_history_vect (vec<expr_history_def> *pvect,
1571 vec<expr_history_def> from)
5d369d58
AB
1572{
1573 expr_history_def *phist;
1574 int i;
1575
1576 /* We keep this vector sorted. */
9771b263 1577 for (i = 0; from.iterate (i, &phist); i++)
5d369d58
AB
1578 insert_in_history_vect (pvect, phist->uid, phist->type,
1579 phist->old_expr_vinsn, phist->new_expr_vinsn,
1580 phist->spec_ds);
1581}
e855c69d
AB
1582
1583/* Compare two vinsns as rhses if possible and as vinsns otherwise. */
1584bool
1585vinsn_equal_p (vinsn_t x, vinsn_t y)
1586{
1587 rtx_equal_p_callback_function repcf;
1588
1589 if (x == y)
1590 return true;
1591
1592 if (VINSN_TYPE (x) != VINSN_TYPE (y))
1593 return false;
1594
1595 if (VINSN_HASH (x) != VINSN_HASH (y))
1596 return false;
1597
1598 repcf = targetm.sched.skip_rtx_p ? skip_unspecs_callback : NULL;
b8698a0f 1599 if (VINSN_SEPARABLE_P (x))
e855c69d
AB
1600 {
1601 /* Compare RHSes of VINSNs. */
1602 gcc_assert (VINSN_RHS (x));
1603 gcc_assert (VINSN_RHS (y));
1604
1605 return rtx_equal_p_cb (VINSN_RHS (x), VINSN_RHS (y), repcf);
1606 }
1607
1608 return rtx_equal_p_cb (VINSN_PATTERN (x), VINSN_PATTERN (y), repcf);
1609}
1610\f
1611
1612/* Functions for working with expressions. */
1613
1614/* Initialize EXPR. */
1615static void
1616init_expr (expr_t expr, vinsn_t vi, int spec, int use, int priority,
1617 int sched_times, int orig_bb_index, ds_t spec_done_ds,
1618 ds_t spec_to_check_ds, int orig_sched_cycle,
9771b263
DN
1619 vec<expr_history_def> history,
1620 signed char target_available,
e855c69d
AB
1621 bool was_substituted, bool was_renamed, bool needs_spec_check_p,
1622 bool cant_move)
1623{
1624 vinsn_attach (vi);
1625
1626 EXPR_VINSN (expr) = vi;
1627 EXPR_SPEC (expr) = spec;
1628 EXPR_USEFULNESS (expr) = use;
1629 EXPR_PRIORITY (expr) = priority;
1630 EXPR_PRIORITY_ADJ (expr) = 0;
1631 EXPR_SCHED_TIMES (expr) = sched_times;
1632 EXPR_ORIG_BB_INDEX (expr) = orig_bb_index;
1633 EXPR_ORIG_SCHED_CYCLE (expr) = orig_sched_cycle;
1634 EXPR_SPEC_DONE_DS (expr) = spec_done_ds;
1635 EXPR_SPEC_TO_CHECK_DS (expr) = spec_to_check_ds;
1636
9771b263 1637 if (history.exists ())
e855c69d
AB
1638 EXPR_HISTORY_OF_CHANGES (expr) = history;
1639 else
9771b263 1640 EXPR_HISTORY_OF_CHANGES (expr).create (0);
e855c69d
AB
1641
1642 EXPR_TARGET_AVAILABLE (expr) = target_available;
1643 EXPR_WAS_SUBSTITUTED (expr) = was_substituted;
1644 EXPR_WAS_RENAMED (expr) = was_renamed;
1645 EXPR_NEEDS_SPEC_CHECK_P (expr) = needs_spec_check_p;
1646 EXPR_CANT_MOVE (expr) = cant_move;
1647}
1648
1649/* Make a copy of the expr FROM into the expr TO. */
1650void
1651copy_expr (expr_t to, expr_t from)
1652{
6e1aa848 1653 vec<expr_history_def> temp = vNULL;
e855c69d 1654
9771b263 1655 if (EXPR_HISTORY_OF_CHANGES (from).exists ())
e855c69d
AB
1656 {
1657 unsigned i;
1658 expr_history_def *phist;
1659
9771b263 1660 temp = EXPR_HISTORY_OF_CHANGES (from).copy ();
b8698a0f 1661 for (i = 0;
9771b263 1662 temp.iterate (i, &phist);
e855c69d
AB
1663 i++)
1664 {
1665 vinsn_attach (phist->old_expr_vinsn);
1666 vinsn_attach (phist->new_expr_vinsn);
1667 }
1668 }
1669
b8698a0f 1670 init_expr (to, EXPR_VINSN (from), EXPR_SPEC (from),
e855c69d
AB
1671 EXPR_USEFULNESS (from), EXPR_PRIORITY (from),
1672 EXPR_SCHED_TIMES (from), EXPR_ORIG_BB_INDEX (from),
b8698a0f 1673 EXPR_SPEC_DONE_DS (from), EXPR_SPEC_TO_CHECK_DS (from),
e855c69d 1674 EXPR_ORIG_SCHED_CYCLE (from), temp,
b8698a0f 1675 EXPR_TARGET_AVAILABLE (from), EXPR_WAS_SUBSTITUTED (from),
e855c69d
AB
1676 EXPR_WAS_RENAMED (from), EXPR_NEEDS_SPEC_CHECK_P (from),
1677 EXPR_CANT_MOVE (from));
1678}
1679
b8698a0f 1680/* Same, but the final expr will not ever be in av sets, so don't copy
e855c69d
AB
1681 "uninteresting" data such as bitmap cache. */
1682void
1683copy_expr_onside (expr_t to, expr_t from)
1684{
1685 init_expr (to, EXPR_VINSN (from), EXPR_SPEC (from), EXPR_USEFULNESS (from),
1686 EXPR_PRIORITY (from), EXPR_SCHED_TIMES (from), 0,
9771b263 1687 EXPR_SPEC_DONE_DS (from), EXPR_SPEC_TO_CHECK_DS (from), 0,
6e1aa848 1688 vNULL,
e855c69d
AB
1689 EXPR_TARGET_AVAILABLE (from), EXPR_WAS_SUBSTITUTED (from),
1690 EXPR_WAS_RENAMED (from), EXPR_NEEDS_SPEC_CHECK_P (from),
1691 EXPR_CANT_MOVE (from));
1692}
1693
1694/* Prepare the expr of INSN for scheduling. Used when moving insn and when
1695 initializing new insns. */
1696static void
1697prepare_insn_expr (insn_t insn, int seqno)
1698{
1699 expr_t expr = INSN_EXPR (insn);
1700 ds_t ds;
b8698a0f 1701
e855c69d
AB
1702 INSN_SEQNO (insn) = seqno;
1703 EXPR_ORIG_BB_INDEX (expr) = BLOCK_NUM (insn);
1704 EXPR_SPEC (expr) = 0;
1705 EXPR_ORIG_SCHED_CYCLE (expr) = 0;
1706 EXPR_WAS_SUBSTITUTED (expr) = 0;
1707 EXPR_WAS_RENAMED (expr) = 0;
1708 EXPR_TARGET_AVAILABLE (expr) = 1;
1709 INSN_LIVE_VALID_P (insn) = false;
1710
1711 /* ??? If this expression is speculative, make its dependence
1712 as weak as possible. We can filter this expression later
1713 in process_spec_exprs, because we do not distinguish
1714 between the status we got during compute_av_set and the
1715 existing status. To be fixed. */
1716 ds = EXPR_SPEC_DONE_DS (expr);
1717 if (ds)
1718 EXPR_SPEC_DONE_DS (expr) = ds_get_max_dep_weak (ds);
1719
9771b263 1720 free_history_vect (EXPR_HISTORY_OF_CHANGES (expr));
e855c69d
AB
1721}
1722
1723/* Update target_available bits when merging exprs TO and FROM. SPLIT_POINT
b8698a0f 1724 is non-null when expressions are merged from different successors at
e855c69d
AB
1725 a split point. */
1726static void
1727update_target_availability (expr_t to, expr_t from, insn_t split_point)
1728{
b8698a0f 1729 if (EXPR_TARGET_AVAILABLE (to) < 0
e855c69d
AB
1730 || EXPR_TARGET_AVAILABLE (from) < 0)
1731 EXPR_TARGET_AVAILABLE (to) = -1;
1732 else
1733 {
1734 /* We try to detect the case when one of the expressions
1735 can only be reached through another one. In this case,
1736 we can do better. */
1737 if (split_point == NULL)
1738 {
1739 int toind, fromind;
1740
1741 toind = EXPR_ORIG_BB_INDEX (to);
1742 fromind = EXPR_ORIG_BB_INDEX (from);
b8698a0f 1743
e855c69d 1744 if (toind && toind == fromind)
b8698a0f 1745 /* Do nothing -- everything is done in
e855c69d
AB
1746 merge_with_other_exprs. */
1747 ;
1748 else
1749 EXPR_TARGET_AVAILABLE (to) = -1;
1750 }
854b5fd7
AM
1751 else if (EXPR_TARGET_AVAILABLE (from) == 0
1752 && EXPR_LHS (from)
1753 && REG_P (EXPR_LHS (from))
1754 && REGNO (EXPR_LHS (to)) != REGNO (EXPR_LHS (from)))
1755 EXPR_TARGET_AVAILABLE (to) = -1;
e855c69d
AB
1756 else
1757 EXPR_TARGET_AVAILABLE (to) &= EXPR_TARGET_AVAILABLE (from);
1758 }
1759}
1760
1761/* Update speculation bits when merging exprs TO and FROM. SPLIT_POINT
b8698a0f 1762 is non-null when expressions are merged from different successors at
e855c69d
AB
1763 a split point. */
1764static void
1765update_speculative_bits (expr_t to, expr_t from, insn_t split_point)
1766{
1767 ds_t old_to_ds, old_from_ds;
1768
1769 old_to_ds = EXPR_SPEC_DONE_DS (to);
1770 old_from_ds = EXPR_SPEC_DONE_DS (from);
b8698a0f 1771
e855c69d
AB
1772 EXPR_SPEC_DONE_DS (to) = ds_max_merge (old_to_ds, old_from_ds);
1773 EXPR_SPEC_TO_CHECK_DS (to) |= EXPR_SPEC_TO_CHECK_DS (from);
1774 EXPR_NEEDS_SPEC_CHECK_P (to) |= EXPR_NEEDS_SPEC_CHECK_P (from);
1775
1776 /* When merging e.g. control & data speculative exprs, or a control
b8698a0f 1777 speculative with a control&data speculative one, we really have
e855c69d
AB
1778 to change vinsn too. Also, when speculative status is changed,
1779 we also need to record this as a transformation in expr's history. */
1780 if ((old_to_ds & SPECULATIVE) || (old_from_ds & SPECULATIVE))
1781 {
1782 old_to_ds = ds_get_speculation_types (old_to_ds);
1783 old_from_ds = ds_get_speculation_types (old_from_ds);
b8698a0f 1784
e855c69d
AB
1785 if (old_to_ds != old_from_ds)
1786 {
1787 ds_t record_ds;
b8698a0f
L
1788
1789 /* When both expressions are speculative, we need to change
e855c69d
AB
1790 the vinsn first. */
1791 if ((old_to_ds & SPECULATIVE) && (old_from_ds & SPECULATIVE))
1792 {
1793 int res;
b8698a0f 1794
e855c69d
AB
1795 res = speculate_expr (to, EXPR_SPEC_DONE_DS (to));
1796 gcc_assert (res >= 0);
1797 }
1798
1799 if (split_point != NULL)
1800 {
1801 /* Record the change with proper status. */
1802 record_ds = EXPR_SPEC_DONE_DS (to) & SPECULATIVE;
1803 record_ds &= ~(old_to_ds & SPECULATIVE);
1804 record_ds &= ~(old_from_ds & SPECULATIVE);
b8698a0f
L
1805
1806 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (to),
1807 INSN_UID (split_point), TRANS_SPECULATION,
e855c69d
AB
1808 EXPR_VINSN (from), EXPR_VINSN (to),
1809 record_ds);
1810 }
1811 }
1812 }
1813}
1814
1815
1816/* Merge bits of FROM expr to TO expr. When SPLIT_POINT is not NULL,
1817 this is done along different paths. */
1818void
1819merge_expr_data (expr_t to, expr_t from, insn_t split_point)
1820{
bf3a40e9
DM
1821 /* Choose the maximum of the specs of merged exprs. This is required
1822 for correctness of bookkeeping. */
1823 if (EXPR_SPEC (to) < EXPR_SPEC (from))
e855c69d
AB
1824 EXPR_SPEC (to) = EXPR_SPEC (from);
1825
1826 if (split_point)
1827 EXPR_USEFULNESS (to) += EXPR_USEFULNESS (from);
1828 else
b8698a0f 1829 EXPR_USEFULNESS (to) = MAX (EXPR_USEFULNESS (to),
e855c69d
AB
1830 EXPR_USEFULNESS (from));
1831
1832 if (EXPR_PRIORITY (to) < EXPR_PRIORITY (from))
1833 EXPR_PRIORITY (to) = EXPR_PRIORITY (from);
1834
8e9a9b01
AB
1835 /* We merge sched-times half-way to the larger value to avoid the endless
1836 pipelining of unneeded insns. The average seems to be good compromise
1837 between pipelining opportunities and avoiding extra work. */
1838 if (EXPR_SCHED_TIMES (to) != EXPR_SCHED_TIMES (from))
1839 EXPR_SCHED_TIMES (to) = ((EXPR_SCHED_TIMES (from) + EXPR_SCHED_TIMES (to)
1840 + 1) / 2);
e855c69d
AB
1841
1842 if (EXPR_ORIG_BB_INDEX (to) != EXPR_ORIG_BB_INDEX (from))
1843 EXPR_ORIG_BB_INDEX (to) = 0;
1844
b8698a0f 1845 EXPR_ORIG_SCHED_CYCLE (to) = MIN (EXPR_ORIG_SCHED_CYCLE (to),
e855c69d
AB
1846 EXPR_ORIG_SCHED_CYCLE (from));
1847
e855c69d
AB
1848 EXPR_WAS_SUBSTITUTED (to) |= EXPR_WAS_SUBSTITUTED (from);
1849 EXPR_WAS_RENAMED (to) |= EXPR_WAS_RENAMED (from);
1850 EXPR_CANT_MOVE (to) |= EXPR_CANT_MOVE (from);
1851
5d369d58
AB
1852 merge_history_vect (&EXPR_HISTORY_OF_CHANGES (to),
1853 EXPR_HISTORY_OF_CHANGES (from));
e855c69d
AB
1854 update_target_availability (to, from, split_point);
1855 update_speculative_bits (to, from, split_point);
1856}
1857
1858/* Merge bits of FROM expr to TO expr. Vinsns in the exprs should be equal
b8698a0f 1859 in terms of vinsn_equal_p. SPLIT_POINT is non-null when expressions
e855c69d
AB
1860 are merged from different successors at a split point. */
1861void
1862merge_expr (expr_t to, expr_t from, insn_t split_point)
1863{
1864 vinsn_t to_vi = EXPR_VINSN (to);
1865 vinsn_t from_vi = EXPR_VINSN (from);
1866
1867 gcc_assert (vinsn_equal_p (to_vi, from_vi));
1868
1869 /* Make sure that speculative pattern is propagated into exprs that
1870 have non-speculative one. This will provide us with consistent
1871 speculative bits and speculative patterns inside expr. */
11a6609c
AB
1872 if (EXPR_SPEC_DONE_DS (to) == 0
1873 && (EXPR_SPEC_DONE_DS (from) != 0
1874 /* Do likewise for volatile insns, so that we always retain
1875 the may_trap_p bit on the resulting expression. However,
1876 avoid propagating the trapping bit into the instructions
1877 already speculated. This would result in replacing the
1878 speculative pattern with the non-speculative one and breaking
1879 the speculation support. */
1880 || (!VINSN_MAY_TRAP_P (EXPR_VINSN (to))
1881 && VINSN_MAY_TRAP_P (EXPR_VINSN (from)))))
e855c69d
AB
1882 change_vinsn_in_expr (to, EXPR_VINSN (from));
1883
1884 merge_expr_data (to, from, split_point);
1885 gcc_assert (EXPR_USEFULNESS (to) <= REG_BR_PROB_BASE);
1886}
1887
1888/* Clear the information of this EXPR. */
1889void
1890clear_expr (expr_t expr)
1891{
b8698a0f 1892
e855c69d
AB
1893 vinsn_detach (EXPR_VINSN (expr));
1894 EXPR_VINSN (expr) = NULL;
1895
9771b263 1896 free_history_vect (EXPR_HISTORY_OF_CHANGES (expr));
e855c69d
AB
1897}
1898
1899/* For a given LV_SET, mark EXPR having unavailable target register. */
1900static void
1901set_unavailable_target_for_expr (expr_t expr, regset lv_set)
1902{
1903 if (EXPR_SEPARABLE_P (expr))
1904 {
1905 if (REG_P (EXPR_LHS (expr))
cf3d5824 1906 && register_unavailable_p (lv_set, EXPR_LHS (expr)))
e855c69d 1907 {
b8698a0f
L
1908 /* If it's an insn like r1 = use (r1, ...), and it exists in
1909 different forms in each of the av_sets being merged, we can't say
1910 whether original destination register is available or not.
1911 However, this still works if destination register is not used
e855c69d
AB
1912 in the original expression: if the branch at which LV_SET we're
1913 looking here is not actually 'other branch' in sense that same
b8698a0f 1914 expression is available through it (but it can't be determined
e855c69d 1915 at computation stage because of transformations on one of the
b8698a0f
L
1916 branches), it still won't affect the availability.
1917 Liveness of a register somewhere on a code motion path means
1918 it's either read somewhere on a codemotion path, live on
e855c69d
AB
1919 'other' branch, live at the point immediately following
1920 the original operation, or is read by the original operation.
1921 The latter case is filtered out in the condition below.
1922 It still doesn't cover the case when register is defined and used
1923 somewhere within the code motion path, and in this case we could
1924 miss a unifying code motion along both branches using a renamed
1925 register, but it won't affect a code correctness since upon
1926 an actual code motion a bookkeeping code would be generated. */
cf3d5824
SG
1927 if (register_unavailable_p (VINSN_REG_USES (EXPR_VINSN (expr)),
1928 EXPR_LHS (expr)))
e855c69d
AB
1929 EXPR_TARGET_AVAILABLE (expr) = -1;
1930 else
1931 EXPR_TARGET_AVAILABLE (expr) = false;
1932 }
1933 }
1934 else
1935 {
1936 unsigned regno;
1937 reg_set_iterator rsi;
b8698a0f
L
1938
1939 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_SETS (EXPR_VINSN (expr)),
e855c69d
AB
1940 0, regno, rsi)
1941 if (bitmap_bit_p (lv_set, regno))
1942 {
1943 EXPR_TARGET_AVAILABLE (expr) = false;
1944 break;
1945 }
1946
1947 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_CLOBBERS (EXPR_VINSN (expr)),
1948 0, regno, rsi)
1949 if (bitmap_bit_p (lv_set, regno))
1950 {
1951 EXPR_TARGET_AVAILABLE (expr) = false;
1952 break;
1953 }
1954 }
1955}
1956
b8698a0f 1957/* Try to make EXPR speculative. Return 1 when EXPR's pattern
e855c69d
AB
1958 or dependence status have changed, 2 when also the target register
1959 became unavailable, 0 if nothing had to be changed. */
1960int
1961speculate_expr (expr_t expr, ds_t ds)
1962{
1963 int res;
9ee1fbb1 1964 rtx_insn *orig_insn_rtx;
e855c69d
AB
1965 rtx spec_pat;
1966 ds_t target_ds, current_ds;
1967
1968 /* Obtain the status we need to put on EXPR. */
1969 target_ds = (ds & SPECULATIVE);
1970 current_ds = EXPR_SPEC_DONE_DS (expr);
1971 ds = ds_full_merge (current_ds, target_ds, NULL_RTX, NULL_RTX);
1972
1973 orig_insn_rtx = EXPR_INSN_RTX (expr);
1974
1975 res = sched_speculate_insn (orig_insn_rtx, ds, &spec_pat);
1976
1977 switch (res)
1978 {
1979 case 0:
1980 EXPR_SPEC_DONE_DS (expr) = ds;
1981 return current_ds != ds ? 1 : 0;
b8698a0f 1982
e855c69d
AB
1983 case 1:
1984 {
9ee1fbb1
DM
1985 rtx_insn *spec_insn_rtx =
1986 create_insn_rtx_from_pattern (spec_pat, NULL_RTX);
e855c69d
AB
1987 vinsn_t spec_vinsn = create_vinsn_from_insn_rtx (spec_insn_rtx, false);
1988
1989 change_vinsn_in_expr (expr, spec_vinsn);
1990 EXPR_SPEC_DONE_DS (expr) = ds;
1991 EXPR_NEEDS_SPEC_CHECK_P (expr) = true;
1992
b8698a0f 1993 /* Do not allow clobbering the address register of speculative
e855c69d 1994 insns. */
cf3d5824
SG
1995 if (register_unavailable_p (VINSN_REG_USES (EXPR_VINSN (expr)),
1996 expr_dest_reg (expr)))
e855c69d
AB
1997 {
1998 EXPR_TARGET_AVAILABLE (expr) = false;
1999 return 2;
2000 }
2001
2002 return 1;
2003 }
2004
2005 case -1:
2006 return -1;
2007
2008 default:
2009 gcc_unreachable ();
2010 return -1;
2011 }
2012}
2013
2014/* Return a destination register, if any, of EXPR. */
2015rtx
2016expr_dest_reg (expr_t expr)
2017{
2018 rtx dest = VINSN_LHS (EXPR_VINSN (expr));
2019
2020 if (dest != NULL_RTX && REG_P (dest))
2021 return dest;
2022
2023 return NULL_RTX;
2024}
2025
2026/* Returns the REGNO of the R's destination. */
2027unsigned
2028expr_dest_regno (expr_t expr)
2029{
2030 rtx dest = expr_dest_reg (expr);
2031
2032 gcc_assert (dest != NULL_RTX);
2033 return REGNO (dest);
2034}
2035
b8698a0f 2036/* For a given LV_SET, mark all expressions in JOIN_SET, but not present in
e855c69d
AB
2037 AV_SET having unavailable target register. */
2038void
2039mark_unavailable_targets (av_set_t join_set, av_set_t av_set, regset lv_set)
2040{
2041 expr_t expr;
2042 av_set_iterator avi;
2043
2044 FOR_EACH_EXPR (expr, avi, join_set)
2045 if (av_set_lookup (av_set, EXPR_VINSN (expr)) == NULL)
2046 set_unavailable_target_for_expr (expr, lv_set);
2047}
2048\f
2049
cf3d5824
SG
2050/* Returns true if REG (at least partially) is present in REGS. */
2051bool
2052register_unavailable_p (regset regs, rtx reg)
2053{
2054 unsigned regno, end_regno;
2055
2056 regno = REGNO (reg);
2057 if (bitmap_bit_p (regs, regno))
2058 return true;
2059
2060 end_regno = END_REGNO (reg);
2061
2062 while (++regno < end_regno)
2063 if (bitmap_bit_p (regs, regno))
2064 return true;
2065
2066 return false;
2067}
2068
e855c69d
AB
2069/* Av set functions. */
2070
2071/* Add a new element to av set SETP.
2072 Return the element added. */
2073static av_set_t
2074av_set_add_element (av_set_t *setp)
2075{
2076 /* Insert at the beginning of the list. */
2077 _list_add (setp);
2078 return *setp;
2079}
2080
2081/* Add EXPR to SETP. */
2082void
2083av_set_add (av_set_t *setp, expr_t expr)
2084{
2085 av_set_t elem;
b8698a0f 2086
e855c69d
AB
2087 gcc_assert (!INSN_NOP_P (EXPR_INSN_RTX (expr)));
2088 elem = av_set_add_element (setp);
2089 copy_expr (_AV_SET_EXPR (elem), expr);
2090}
2091
2092/* Same, but do not copy EXPR. */
2093static void
2094av_set_add_nocopy (av_set_t *setp, expr_t expr)
2095{
2096 av_set_t elem;
2097
2098 elem = av_set_add_element (setp);
2099 *_AV_SET_EXPR (elem) = *expr;
2100}
2101
2102/* Remove expr pointed to by IP from the av_set. */
2103void
2104av_set_iter_remove (av_set_iterator *ip)
2105{
2106 clear_expr (_AV_SET_EXPR (*ip->lp));
2107 _list_iter_remove (ip);
2108}
2109
2110/* Search for an expr in SET, such that it's equivalent to SOUGHT_VINSN in the
2111 sense of vinsn_equal_p function. Return NULL if no such expr is
2112 in SET was found. */
2113expr_t
2114av_set_lookup (av_set_t set, vinsn_t sought_vinsn)
2115{
2116 expr_t expr;
2117 av_set_iterator i;
2118
2119 FOR_EACH_EXPR (expr, i, set)
2120 if (vinsn_equal_p (EXPR_VINSN (expr), sought_vinsn))
2121 return expr;
2122 return NULL;
2123}
2124
2125/* Same, but also remove the EXPR found. */
2126static expr_t
2127av_set_lookup_and_remove (av_set_t *setp, vinsn_t sought_vinsn)
2128{
2129 expr_t expr;
2130 av_set_iterator i;
2131
2132 FOR_EACH_EXPR_1 (expr, i, setp)
2133 if (vinsn_equal_p (EXPR_VINSN (expr), sought_vinsn))
2134 {
2135 _list_iter_remove_nofree (&i);
2136 return expr;
2137 }
2138 return NULL;
2139}
2140
2141/* Search for an expr in SET, such that it's equivalent to EXPR in the
2142 sense of vinsn_equal_p function of their vinsns, but not EXPR itself.
2143 Returns NULL if no such expr is in SET was found. */
2144static expr_t
2145av_set_lookup_other_equiv_expr (av_set_t set, expr_t expr)
2146{
2147 expr_t cur_expr;
2148 av_set_iterator i;
2149
2150 FOR_EACH_EXPR (cur_expr, i, set)
2151 {
2152 if (cur_expr == expr)
2153 continue;
2154 if (vinsn_equal_p (EXPR_VINSN (cur_expr), EXPR_VINSN (expr)))
2155 return cur_expr;
2156 }
2157
2158 return NULL;
2159}
2160
2161/* If other expression is already in AVP, remove one of them. */
2162expr_t
2163merge_with_other_exprs (av_set_t *avp, av_set_iterator *ip, expr_t expr)
2164{
2165 expr_t expr2;
2166
2167 expr2 = av_set_lookup_other_equiv_expr (*avp, expr);
2168 if (expr2 != NULL)
2169 {
2170 /* Reset target availability on merge, since taking it only from one
2171 of the exprs would be controversial for different code. */
2172 EXPR_TARGET_AVAILABLE (expr2) = -1;
2173 EXPR_USEFULNESS (expr2) = 0;
2174
2175 merge_expr (expr2, expr, NULL);
b8698a0f 2176
e855c69d
AB
2177 /* Fix usefulness as it should be now REG_BR_PROB_BASE. */
2178 EXPR_USEFULNESS (expr2) = REG_BR_PROB_BASE;
b8698a0f 2179
e855c69d
AB
2180 av_set_iter_remove (ip);
2181 return expr2;
2182 }
2183
2184 return expr;
2185}
2186
2187/* Return true if there is an expr that correlates to VI in SET. */
2188bool
2189av_set_is_in_p (av_set_t set, vinsn_t vi)
2190{
2191 return av_set_lookup (set, vi) != NULL;
2192}
2193
2194/* Return a copy of SET. */
2195av_set_t
2196av_set_copy (av_set_t set)
2197{
2198 expr_t expr;
2199 av_set_iterator i;
2200 av_set_t res = NULL;
2201
2202 FOR_EACH_EXPR (expr, i, set)
2203 av_set_add (&res, expr);
2204
2205 return res;
2206}
2207
2208/* Join two av sets that do not have common elements by attaching second set
2209 (pointed to by FROMP) to the end of first set (TO_TAILP must point to
2210 _AV_SET_NEXT of first set's last element). */
2211static void
2212join_distinct_sets (av_set_t *to_tailp, av_set_t *fromp)
2213{
2214 gcc_assert (*to_tailp == NULL);
2215 *to_tailp = *fromp;
2216 *fromp = NULL;
2217}
2218
2219/* Makes set pointed to by TO to be the union of TO and FROM. Clear av_set
2220 pointed to by FROMP afterwards. */
2221void
2222av_set_union_and_clear (av_set_t *top, av_set_t *fromp, insn_t insn)
2223{
2224 expr_t expr1;
2225 av_set_iterator i;
2226
2227 /* Delete from TOP all exprs, that present in FROMP. */
2228 FOR_EACH_EXPR_1 (expr1, i, top)
2229 {
2230 expr_t expr2 = av_set_lookup (*fromp, EXPR_VINSN (expr1));
2231
2232 if (expr2)
2233 {
2234 merge_expr (expr2, expr1, insn);
2235 av_set_iter_remove (&i);
2236 }
2237 }
2238
2239 join_distinct_sets (i.lp, fromp);
2240}
2241
b8698a0f 2242/* Same as above, but also update availability of target register in
e855c69d
AB
2243 TOP judging by TO_LV_SET and FROM_LV_SET. */
2244void
2245av_set_union_and_live (av_set_t *top, av_set_t *fromp, regset to_lv_set,
2246 regset from_lv_set, insn_t insn)
2247{
2248 expr_t expr1;
2249 av_set_iterator i;
2250 av_set_t *to_tailp, in_both_set = NULL;
2251
2252 /* Delete from TOP all expres, that present in FROMP. */
2253 FOR_EACH_EXPR_1 (expr1, i, top)
2254 {
2255 expr_t expr2 = av_set_lookup_and_remove (fromp, EXPR_VINSN (expr1));
2256
2257 if (expr2)
2258 {
b8698a0f 2259 /* It may be that the expressions have different destination
e855c69d
AB
2260 registers, in which case we need to check liveness here. */
2261 if (EXPR_SEPARABLE_P (expr1))
2262 {
b8698a0f 2263 int regno1 = (REG_P (EXPR_LHS (expr1))
e855c69d 2264 ? (int) expr_dest_regno (expr1) : -1);
b8698a0f 2265 int regno2 = (REG_P (EXPR_LHS (expr2))
e855c69d 2266 ? (int) expr_dest_regno (expr2) : -1);
b8698a0f
L
2267
2268 /* ??? We don't have a way to check restrictions for
e855c69d
AB
2269 *other* register on the current path, we did it only
2270 for the current target register. Give up. */
2271 if (regno1 != regno2)
2272 EXPR_TARGET_AVAILABLE (expr2) = -1;
2273 }
2274 else if (EXPR_INSN_RTX (expr1) != EXPR_INSN_RTX (expr2))
2275 EXPR_TARGET_AVAILABLE (expr2) = -1;
2276
2277 merge_expr (expr2, expr1, insn);
2278 av_set_add_nocopy (&in_both_set, expr2);
2279 av_set_iter_remove (&i);
2280 }
2281 else
b8698a0f 2282 /* EXPR1 is present in TOP, but not in FROMP. Check it on
e855c69d
AB
2283 FROM_LV_SET. */
2284 set_unavailable_target_for_expr (expr1, from_lv_set);
2285 }
2286 to_tailp = i.lp;
2287
2288 /* These expressions are not present in TOP. Check liveness
2289 restrictions on TO_LV_SET. */
2290 FOR_EACH_EXPR (expr1, i, *fromp)
2291 set_unavailable_target_for_expr (expr1, to_lv_set);
2292
2293 join_distinct_sets (i.lp, &in_both_set);
2294 join_distinct_sets (to_tailp, fromp);
2295}
2296
2297/* Clear av_set pointed to by SETP. */
2298void
2299av_set_clear (av_set_t *setp)
2300{
2301 expr_t expr;
2302 av_set_iterator i;
2303
2304 FOR_EACH_EXPR_1 (expr, i, setp)
2305 av_set_iter_remove (&i);
2306
2307 gcc_assert (*setp == NULL);
2308}
2309
2310/* Leave only one non-speculative element in the SETP. */
2311void
2312av_set_leave_one_nonspec (av_set_t *setp)
2313{
2314 expr_t expr;
2315 av_set_iterator i;
2316 bool has_one_nonspec = false;
2317
b8698a0f 2318 /* Keep all speculative exprs, and leave one non-speculative
e855c69d
AB
2319 (the first one). */
2320 FOR_EACH_EXPR_1 (expr, i, setp)
2321 {
2322 if (!EXPR_SPEC_DONE_DS (expr))
2323 {
2324 if (has_one_nonspec)
2325 av_set_iter_remove (&i);
2326 else
2327 has_one_nonspec = true;
2328 }
2329 }
2330}
2331
2332/* Return the N'th element of the SET. */
2333expr_t
2334av_set_element (av_set_t set, int n)
2335{
2336 expr_t expr;
2337 av_set_iterator i;
2338
2339 FOR_EACH_EXPR (expr, i, set)
2340 if (n-- == 0)
2341 return expr;
2342
2343 gcc_unreachable ();
2344 return NULL;
2345}
2346
2347/* Deletes all expressions from AVP that are conditional branches (IFs). */
2348void
2349av_set_substract_cond_branches (av_set_t *avp)
2350{
2351 av_set_iterator i;
2352 expr_t expr;
2353
2354 FOR_EACH_EXPR_1 (expr, i, avp)
2355 if (vinsn_cond_branch_p (EXPR_VINSN (expr)))
2356 av_set_iter_remove (&i);
2357}
2358
b8698a0f 2359/* Multiplies usefulness attribute of each member of av-set *AVP by
e855c69d
AB
2360 value PROB / ALL_PROB. */
2361void
2362av_set_split_usefulness (av_set_t av, int prob, int all_prob)
2363{
2364 av_set_iterator i;
2365 expr_t expr;
2366
2367 FOR_EACH_EXPR (expr, i, av)
b8698a0f 2368 EXPR_USEFULNESS (expr) = (all_prob
e855c69d
AB
2369 ? (EXPR_USEFULNESS (expr) * prob) / all_prob
2370 : 0);
2371}
2372
2373/* Leave in AVP only those expressions, which are present in AV,
5d369d58 2374 and return it, merging history expressions. */
e855c69d 2375void
5d369d58 2376av_set_code_motion_filter (av_set_t *avp, av_set_t av)
e855c69d
AB
2377{
2378 av_set_iterator i;
5d369d58 2379 expr_t expr, expr2;
e855c69d
AB
2380
2381 FOR_EACH_EXPR_1 (expr, i, avp)
5d369d58 2382 if ((expr2 = av_set_lookup (av, EXPR_VINSN (expr))) == NULL)
e855c69d 2383 av_set_iter_remove (&i);
5d369d58
AB
2384 else
2385 /* When updating av sets in bookkeeping blocks, we can add more insns
2386 there which will be transformed but the upper av sets will not
2387 reflect those transformations. We then fail to undo those
2388 when searching for such insns. So merge the history saved
2389 in the av set of the block we are processing. */
2390 merge_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
2391 EXPR_HISTORY_OF_CHANGES (expr2));
e855c69d
AB
2392}
2393
2394\f
2395
2396/* Dependence hooks to initialize insn data. */
2397
2398/* This is used in hooks callable from dependence analysis when initializing
2399 instruction's data. */
2400static struct
2401{
2402 /* Where the dependence was found (lhs/rhs). */
2403 deps_where_t where;
2404
2405 /* The actual data object to initialize. */
2406 idata_t id;
2407
2408 /* True when the insn should not be made clonable. */
2409 bool force_unique_p;
2410
2411 /* True when insn should be treated as of type USE, i.e. never renamed. */
2412 bool force_use_p;
2413} deps_init_id_data;
2414
2415
b8698a0f 2416/* Setup ID for INSN. FORCE_UNIQUE_P is true when INSN should not be
e855c69d
AB
2417 clonable. */
2418static void
2419setup_id_for_insn (idata_t id, insn_t insn, bool force_unique_p)
2420{
2421 int type;
b8698a0f 2422
e855c69d
AB
2423 /* Determine whether INSN could be cloned and return appropriate vinsn type.
2424 That clonable insns which can be separated into lhs and rhs have type SET.
2425 Other clonable insns have type USE. */
2426 type = GET_CODE (insn);
2427
2428 /* Only regular insns could be cloned. */
2429 if (type == INSN && !force_unique_p)
2430 type = SET;
2431 else if (type == JUMP_INSN && simplejump_p (insn))
2432 type = PC;
b5b8b0ac
AO
2433 else if (type == DEBUG_INSN)
2434 type = !force_unique_p ? USE : INSN;
b8698a0f 2435
e855c69d
AB
2436 IDATA_TYPE (id) = type;
2437 IDATA_REG_SETS (id) = get_clear_regset_from_pool ();
2438 IDATA_REG_USES (id) = get_clear_regset_from_pool ();
2439 IDATA_REG_CLOBBERS (id) = get_clear_regset_from_pool ();
2440}
2441
2442/* Start initializing insn data. */
2443static void
2444deps_init_id_start_insn (insn_t insn)
2445{
2446 gcc_assert (deps_init_id_data.where == DEPS_IN_NOWHERE);
2447
2448 setup_id_for_insn (deps_init_id_data.id, insn,
2449 deps_init_id_data.force_unique_p);
2450 deps_init_id_data.where = DEPS_IN_INSN;
2451}
2452
2453/* Start initializing lhs data. */
2454static void
2455deps_init_id_start_lhs (rtx lhs)
2456{
2457 gcc_assert (deps_init_id_data.where == DEPS_IN_INSN);
2458 gcc_assert (IDATA_LHS (deps_init_id_data.id) == NULL);
2459
2460 if (IDATA_TYPE (deps_init_id_data.id) == SET)
2461 {
2462 IDATA_LHS (deps_init_id_data.id) = lhs;
2463 deps_init_id_data.where = DEPS_IN_LHS;
2464 }
2465}
2466
2467/* Finish initializing lhs data. */
2468static void
2469deps_init_id_finish_lhs (void)
2470{
2471 deps_init_id_data.where = DEPS_IN_INSN;
2472}
2473
2474/* Note a set of REGNO. */
2475static void
2476deps_init_id_note_reg_set (int regno)
2477{
2478 haifa_note_reg_set (regno);
2479
2480 if (deps_init_id_data.where == DEPS_IN_RHS)
2481 deps_init_id_data.force_use_p = true;
2482
2483 if (IDATA_TYPE (deps_init_id_data.id) != PC)
2484 SET_REGNO_REG_SET (IDATA_REG_SETS (deps_init_id_data.id), regno);
2485
2486#ifdef STACK_REGS
b8698a0f 2487 /* Make instructions that set stack registers to be ineligible for
e855c69d
AB
2488 renaming to avoid issues with find_used_regs. */
2489 if (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG))
2490 deps_init_id_data.force_use_p = true;
2491#endif
2492}
2493
2494/* Note a clobber of REGNO. */
2495static void
2496deps_init_id_note_reg_clobber (int regno)
2497{
2498 haifa_note_reg_clobber (regno);
2499
2500 if (deps_init_id_data.where == DEPS_IN_RHS)
2501 deps_init_id_data.force_use_p = true;
2502
2503 if (IDATA_TYPE (deps_init_id_data.id) != PC)
2504 SET_REGNO_REG_SET (IDATA_REG_CLOBBERS (deps_init_id_data.id), regno);
2505}
2506
2507/* Note a use of REGNO. */
2508static void
2509deps_init_id_note_reg_use (int regno)
2510{
2511 haifa_note_reg_use (regno);
2512
2513 if (IDATA_TYPE (deps_init_id_data.id) != PC)
2514 SET_REGNO_REG_SET (IDATA_REG_USES (deps_init_id_data.id), regno);
2515}
2516
2517/* Start initializing rhs data. */
2518static void
2519deps_init_id_start_rhs (rtx rhs)
2520{
2521 gcc_assert (deps_init_id_data.where == DEPS_IN_INSN);
2522
2523 /* And there was no sel_deps_reset_to_insn (). */
2524 if (IDATA_LHS (deps_init_id_data.id) != NULL)
2525 {
2526 IDATA_RHS (deps_init_id_data.id) = rhs;
2527 deps_init_id_data.where = DEPS_IN_RHS;
2528 }
2529}
2530
2531/* Finish initializing rhs data. */
2532static void
2533deps_init_id_finish_rhs (void)
2534{
2535 gcc_assert (deps_init_id_data.where == DEPS_IN_RHS
2536 || deps_init_id_data.where == DEPS_IN_INSN);
2537 deps_init_id_data.where = DEPS_IN_INSN;
2538}
2539
2540/* Finish initializing insn data. */
2541static void
2542deps_init_id_finish_insn (void)
2543{
2544 gcc_assert (deps_init_id_data.where == DEPS_IN_INSN);
2545
2546 if (IDATA_TYPE (deps_init_id_data.id) == SET)
2547 {
2548 rtx lhs = IDATA_LHS (deps_init_id_data.id);
2549 rtx rhs = IDATA_RHS (deps_init_id_data.id);
2550
2551 if (lhs == NULL || rhs == NULL || !lhs_and_rhs_separable_p (lhs, rhs)
2552 || deps_init_id_data.force_use_p)
2553 {
b8698a0f 2554 /* This should be a USE, as we don't want to schedule its RHS
e855c69d 2555 separately. However, we still want to have them recorded
b8698a0f 2556 for the purposes of substitution. That's why we don't
e855c69d
AB
2557 simply call downgrade_to_use () here. */
2558 gcc_assert (IDATA_TYPE (deps_init_id_data.id) == SET);
2559 gcc_assert (!lhs == !rhs);
2560
2561 IDATA_TYPE (deps_init_id_data.id) = USE;
2562 }
2563 }
2564
2565 deps_init_id_data.where = DEPS_IN_NOWHERE;
2566}
2567
2568/* This is dependence info used for initializing insn's data. */
2569static struct sched_deps_info_def deps_init_id_sched_deps_info;
2570
2571/* This initializes most of the static part of the above structure. */
2572static const struct sched_deps_info_def const_deps_init_id_sched_deps_info =
2573 {
2574 NULL,
2575
2576 deps_init_id_start_insn,
2577 deps_init_id_finish_insn,
2578 deps_init_id_start_lhs,
2579 deps_init_id_finish_lhs,
2580 deps_init_id_start_rhs,
2581 deps_init_id_finish_rhs,
2582 deps_init_id_note_reg_set,
2583 deps_init_id_note_reg_clobber,
2584 deps_init_id_note_reg_use,
2585 NULL, /* note_mem_dep */
2586 NULL, /* note_dep */
2587
2588 0, /* use_cselib */
2589 0, /* use_deps_list */
2590 0 /* generate_spec_deps */
2591 };
2592
2593/* Initialize INSN's lhs and rhs in ID. When FORCE_UNIQUE_P is true,
2594 we don't actually need information about lhs and rhs. */
2595static void
2596setup_id_lhs_rhs (idata_t id, insn_t insn, bool force_unique_p)
2597{
2598 rtx pat = PATTERN (insn);
b8698a0f 2599
481683e1 2600 if (NONJUMP_INSN_P (insn)
b8698a0f 2601 && GET_CODE (pat) == SET
e855c69d
AB
2602 && !force_unique_p)
2603 {
2604 IDATA_RHS (id) = SET_SRC (pat);
2605 IDATA_LHS (id) = SET_DEST (pat);
2606 }
2607 else
2608 IDATA_LHS (id) = IDATA_RHS (id) = NULL;
2609}
2610
2611/* Possibly downgrade INSN to USE. */
2612static void
2613maybe_downgrade_id_to_use (idata_t id, insn_t insn)
2614{
2615 bool must_be_use = false;
bfac633a 2616 df_ref def;
e855c69d
AB
2617 rtx lhs = IDATA_LHS (id);
2618 rtx rhs = IDATA_RHS (id);
b8698a0f 2619
e855c69d
AB
2620 /* We downgrade only SETs. */
2621 if (IDATA_TYPE (id) != SET)
2622 return;
2623
2624 if (!lhs || !lhs_and_rhs_separable_p (lhs, rhs))
2625 {
2626 IDATA_TYPE (id) = USE;
2627 return;
2628 }
b8698a0f 2629
bfac633a 2630 FOR_EACH_INSN_DEF (def, insn)
e855c69d 2631 {
e855c69d
AB
2632 if (DF_REF_INSN (def)
2633 && DF_REF_FLAGS_IS_SET (def, DF_REF_PRE_POST_MODIFY)
2634 && loc_mentioned_in_p (DF_REF_LOC (def), IDATA_RHS (id)))
2635 {
2636 must_be_use = true;
2637 break;
2638 }
2639
2640#ifdef STACK_REGS
b8698a0f 2641 /* Make instructions that set stack registers to be ineligible for
e855c69d
AB
2642 renaming to avoid issues with find_used_regs. */
2643 if (IN_RANGE (DF_REF_REGNO (def), FIRST_STACK_REG, LAST_STACK_REG))
2644 {
2645 must_be_use = true;
2646 break;
2647 }
2648#endif
b8698a0f
L
2649 }
2650
e855c69d
AB
2651 if (must_be_use)
2652 IDATA_TYPE (id) = USE;
2653}
2654
74ea9ab6
AB
2655/* Setup implicit register clobbers calculated by sched-deps for INSN
2656 before reload and save them in ID. */
2657static void
2658setup_id_implicit_regs (idata_t id, insn_t insn)
2659{
2660 if (reload_completed)
2661 return;
2662
2663 HARD_REG_SET temp;
74ea9ab6
AB
2664
2665 get_implicit_reg_pending_clobbers (&temp, insn);
148909bc 2666 IOR_REG_SET_HRS (IDATA_REG_SETS (id), temp);
74ea9ab6
AB
2667}
2668
e855c69d
AB
2669/* Setup register sets describing INSN in ID. */
2670static void
2671setup_id_reg_sets (idata_t id, insn_t insn)
2672{
bfac633a
RS
2673 struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
2674 df_ref def, use;
e855c69d 2675 regset tmp = get_clear_regset_from_pool ();
b8698a0f 2676
bfac633a 2677 FOR_EACH_INSN_INFO_DEF (def, insn_info)
e855c69d 2678 {
e855c69d 2679 unsigned int regno = DF_REF_REGNO (def);
b8698a0f 2680
e855c69d
AB
2681 /* Post modifies are treated like clobbers by sched-deps.c. */
2682 if (DF_REF_FLAGS_IS_SET (def, (DF_REF_MUST_CLOBBER
2683 | DF_REF_PRE_POST_MODIFY)))
2684 SET_REGNO_REG_SET (IDATA_REG_CLOBBERS (id), regno);
2685 else if (! DF_REF_FLAGS_IS_SET (def, DF_REF_MAY_CLOBBER))
2686 {
2687 SET_REGNO_REG_SET (IDATA_REG_SETS (id), regno);
2688
2689#ifdef STACK_REGS
b8698a0f 2690 /* For stack registers, treat writes to them as writes
e855c69d
AB
2691 to the first one to be consistent with sched-deps.c. */
2692 if (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG))
2693 SET_REGNO_REG_SET (IDATA_REG_SETS (id), FIRST_STACK_REG);
2694#endif
2695 }
2696 /* Mark special refs that generate read/write def pair. */
2697 if (DF_REF_FLAGS_IS_SET (def, DF_REF_CONDITIONAL)
2698 || regno == STACK_POINTER_REGNUM)
2699 bitmap_set_bit (tmp, regno);
2700 }
b8698a0f 2701
bfac633a 2702 FOR_EACH_INSN_INFO_USE (use, insn_info)
e855c69d 2703 {
e855c69d
AB
2704 unsigned int regno = DF_REF_REGNO (use);
2705
2706 /* When these refs are met for the first time, skip them, as
2707 these uses are just counterparts of some defs. */
2708 if (bitmap_bit_p (tmp, regno))
2709 bitmap_clear_bit (tmp, regno);
2710 else if (! DF_REF_FLAGS_IS_SET (use, DF_REF_CALL_STACK_USAGE))
2711 {
2712 SET_REGNO_REG_SET (IDATA_REG_USES (id), regno);
2713
2714#ifdef STACK_REGS
b8698a0f 2715 /* For stack registers, treat reads from them as reads from
e855c69d
AB
2716 the first one to be consistent with sched-deps.c. */
2717 if (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG))
2718 SET_REGNO_REG_SET (IDATA_REG_USES (id), FIRST_STACK_REG);
2719#endif
2720 }
2721 }
2722
74ea9ab6
AB
2723 /* Also get implicit reg clobbers from sched-deps. */
2724 setup_id_implicit_regs (id, insn);
2725
e855c69d
AB
2726 return_regset_to_pool (tmp);
2727}
2728
2729/* Initialize instruction data for INSN in ID using DF's data. */
2730static void
2731init_id_from_df (idata_t id, insn_t insn, bool force_unique_p)
2732{
2733 gcc_assert (DF_INSN_UID_SAFE_GET (INSN_UID (insn)) != NULL);
2734
2735 setup_id_for_insn (id, insn, force_unique_p);
2736 setup_id_lhs_rhs (id, insn, force_unique_p);
2737
2738 if (INSN_NOP_P (insn))
2739 return;
2740
2741 maybe_downgrade_id_to_use (id, insn);
2742 setup_id_reg_sets (id, insn);
2743}
2744
2745/* Initialize instruction data for INSN in ID. */
2746static void
2747deps_init_id (idata_t id, insn_t insn, bool force_unique_p)
2748{
99b1c316 2749 class deps_desc _dc, *dc = &_dc;
e855c69d
AB
2750
2751 deps_init_id_data.where = DEPS_IN_NOWHERE;
2752 deps_init_id_data.id = id;
2753 deps_init_id_data.force_unique_p = force_unique_p;
2754 deps_init_id_data.force_use_p = false;
2755
bcf33775 2756 init_deps (dc, false);
e855c69d
AB
2757 memcpy (&deps_init_id_sched_deps_info,
2758 &const_deps_init_id_sched_deps_info,
2759 sizeof (deps_init_id_sched_deps_info));
e855c69d
AB
2760 if (spec_info != NULL)
2761 deps_init_id_sched_deps_info.generate_spec_deps = 1;
e855c69d
AB
2762 sched_deps_info = &deps_init_id_sched_deps_info;
2763
6144a836 2764 deps_analyze_insn (dc, insn);
74ea9ab6
AB
2765 /* Implicit reg clobbers received from sched-deps separately. */
2766 setup_id_implicit_regs (id, insn);
e855c69d
AB
2767
2768 free_deps (dc);
e855c69d
AB
2769 deps_init_id_data.id = NULL;
2770}
2771
2772\f
a95b23b4
BS
2773struct sched_scan_info_def
2774{
2775 /* This hook notifies scheduler frontend to extend its internal per basic
2776 block data structures. This hook should be called once before a series of
2777 calls to bb_init (). */
2778 void (*extend_bb) (void);
2779
2780 /* This hook makes scheduler frontend to initialize its internal data
2781 structures for the passed basic block. */
2782 void (*init_bb) (basic_block);
2783
2784 /* This hook notifies scheduler frontend to extend its internal per insn data
2785 structures. This hook should be called once before a series of calls to
2786 insn_init (). */
2787 void (*extend_insn) (void);
2788
2789 /* This hook makes scheduler frontend to initialize its internal data
2790 structures for the passed insn. */
6144a836 2791 void (*init_insn) (insn_t);
a95b23b4
BS
2792};
2793
2794/* A driver function to add a set of basic blocks (BBS) to the
2795 scheduling region. */
2796static void
2797sched_scan (const struct sched_scan_info_def *ssi, bb_vec_t bbs)
2798{
2799 unsigned i;
2800 basic_block bb;
2801
2802 if (ssi->extend_bb)
2803 ssi->extend_bb ();
2804
2805 if (ssi->init_bb)
9771b263 2806 FOR_EACH_VEC_ELT (bbs, i, bb)
a95b23b4
BS
2807 ssi->init_bb (bb);
2808
2809 if (ssi->extend_insn)
2810 ssi->extend_insn ();
2811
2812 if (ssi->init_insn)
9771b263 2813 FOR_EACH_VEC_ELT (bbs, i, bb)
a95b23b4 2814 {
6144a836 2815 rtx_insn *insn;
a95b23b4
BS
2816
2817 FOR_BB_INSNS (bb, insn)
2818 ssi->init_insn (insn);
2819 }
2820}
e855c69d
AB
2821
2822/* Implement hooks for collecting fundamental insn properties like if insn is
2823 an ASM or is within a SCHED_GROUP. */
2824
2825/* True when a "one-time init" data for INSN was already inited. */
2826static bool
2827first_time_insn_init (insn_t insn)
2828{
2829 return INSN_LIVE (insn) == NULL;
2830}
2831
2832/* Hash an entry in a transformed_insns hashtable. */
2833static hashval_t
2834hash_transformed_insns (const void *p)
2835{
2836 return VINSN_HASH_RTX (((const struct transformed_insns *) p)->vinsn_old);
2837}
2838
2839/* Compare the entries in a transformed_insns hashtable. */
2840static int
2841eq_transformed_insns (const void *p, const void *q)
2842{
9ee1fbb1
DM
2843 rtx_insn *i1 =
2844 VINSN_INSN_RTX (((const struct transformed_insns *) p)->vinsn_old);
2845 rtx_insn *i2 =
2846 VINSN_INSN_RTX (((const struct transformed_insns *) q)->vinsn_old);
e855c69d
AB
2847
2848 if (INSN_UID (i1) == INSN_UID (i2))
2849 return 1;
2850 return rtx_equal_p (PATTERN (i1), PATTERN (i2));
2851}
2852
2853/* Free an entry in a transformed_insns hashtable. */
2854static void
2855free_transformed_insns (void *p)
2856{
2857 struct transformed_insns *pti = (struct transformed_insns *) p;
2858
2859 vinsn_detach (pti->vinsn_old);
2860 vinsn_detach (pti->vinsn_new);
2861 free (pti);
2862}
2863
b8698a0f 2864/* Init the s_i_d data for INSN which should be inited just once, when
e855c69d
AB
2865 we first see the insn. */
2866static void
2867init_first_time_insn_data (insn_t insn)
2868{
2869 /* This should not be set if this is the first time we init data for
2870 insn. */
2871 gcc_assert (first_time_insn_init (insn));
b8698a0f 2872
e855c69d
AB
2873 /* These are needed for nops too. */
2874 INSN_LIVE (insn) = get_regset_from_pool ();
2875 INSN_LIVE_VALID_P (insn) = false;
bcf33775 2876
e855c69d
AB
2877 if (!INSN_NOP_P (insn))
2878 {
2879 INSN_ANALYZED_DEPS (insn) = BITMAP_ALLOC (NULL);
2880 INSN_FOUND_DEPS (insn) = BITMAP_ALLOC (NULL);
b8698a0f 2881 INSN_TRANSFORMED_INSNS (insn)
e855c69d
AB
2882 = htab_create (16, hash_transformed_insns,
2883 eq_transformed_insns, free_transformed_insns);
bcf33775 2884 init_deps (&INSN_DEPS_CONTEXT (insn), true);
e855c69d
AB
2885 }
2886}
2887
b8698a0f 2888/* Free almost all above data for INSN that is scheduled already.
bcf33775
AB
2889 Used for extra-large basic blocks. */
2890void
2891free_data_for_scheduled_insn (insn_t insn)
e855c69d
AB
2892{
2893 gcc_assert (! first_time_insn_init (insn));
b8698a0f 2894
bcf33775
AB
2895 if (! INSN_ANALYZED_DEPS (insn))
2896 return;
b8698a0f 2897
e855c69d
AB
2898 BITMAP_FREE (INSN_ANALYZED_DEPS (insn));
2899 BITMAP_FREE (INSN_FOUND_DEPS (insn));
2900 htab_delete (INSN_TRANSFORMED_INSNS (insn));
b8698a0f 2901
e855c69d
AB
2902 /* This is allocated only for bookkeeping insns. */
2903 if (INSN_ORIGINATORS (insn))
2904 BITMAP_FREE (INSN_ORIGINATORS (insn));
2905 free_deps (&INSN_DEPS_CONTEXT (insn));
bcf33775
AB
2906
2907 INSN_ANALYZED_DEPS (insn) = NULL;
2908
b8698a0f 2909 /* Clear the readonly flag so we would ICE when trying to recalculate
bcf33775
AB
2910 the deps context (as we believe that it should not happen). */
2911 (&INSN_DEPS_CONTEXT (insn))->readonly = 0;
2912}
2913
2914/* Free the same data as above for INSN. */
2915static void
2916free_first_time_insn_data (insn_t insn)
2917{
2918 gcc_assert (! first_time_insn_init (insn));
2919
2920 free_data_for_scheduled_insn (insn);
2921 return_regset_to_pool (INSN_LIVE (insn));
2922 INSN_LIVE (insn) = NULL;
2923 INSN_LIVE_VALID_P (insn) = false;
e855c69d
AB
2924}
2925
2926/* Initialize region-scope data structures for basic blocks. */
2927static void
2928init_global_and_expr_for_bb (basic_block bb)
2929{
2930 if (sel_bb_empty_p (bb))
2931 return;
2932
2933 invalidate_av_set (bb);
2934}
2935
2936/* Data for global dependency analysis (to initialize CANT_MOVE and
2937 SCHED_GROUP_P). */
2938static struct
2939{
2940 /* Previous insn. */
2941 insn_t prev_insn;
2942} init_global_data;
2943
2944/* Determine if INSN is in the sched_group, is an asm or should not be
2945 cloned. After that initialize its expr. */
2946static void
2947init_global_and_expr_for_insn (insn_t insn)
2948{
2949 if (LABEL_P (insn))
2950 return;
2951
2952 if (NOTE_INSN_BASIC_BLOCK_P (insn))
2953 {
6144a836 2954 init_global_data.prev_insn = NULL;
e855c69d
AB
2955 return;
2956 }
2957
2958 gcc_assert (INSN_P (insn));
2959
2960 if (SCHED_GROUP_P (insn))
2961 /* Setup a sched_group. */
2962 {
2963 insn_t prev_insn = init_global_data.prev_insn;
2964
2965 if (prev_insn)
2966 INSN_SCHED_NEXT (prev_insn) = insn;
2967
2968 init_global_data.prev_insn = insn;
2969 }
2970 else
6144a836 2971 init_global_data.prev_insn = NULL;
e855c69d
AB
2972
2973 if (GET_CODE (PATTERN (insn)) == ASM_INPUT
2974 || asm_noperands (PATTERN (insn)) >= 0)
2975 /* Mark INSN as an asm. */
2976 INSN_ASM_P (insn) = true;
2977
2978 {
2979 bool force_unique_p;
2980 ds_t spec_done_ds;
2981
cfeb0fa8
AB
2982 /* Certain instructions cannot be cloned, and frame related insns and
2983 the insn adjacent to NOTE_INSN_EPILOGUE_BEG cannot be moved out of
2984 their block. */
2985 if (prologue_epilogue_contains (insn))
2986 {
2987 if (RTX_FRAME_RELATED_P (insn))
2988 CANT_MOVE (insn) = 1;
2989 else
2990 {
2991 rtx note;
2992 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2993 if (REG_NOTE_KIND (note) == REG_SAVE_NOTE
2994 && ((enum insn_note) INTVAL (XEXP (note, 0))
2995 == NOTE_INSN_EPILOGUE_BEG))
2996 {
2997 CANT_MOVE (insn) = 1;
2998 break;
2999 }
3000 }
3001 force_unique_p = true;
3002 }
e855c69d 3003 else
cfeb0fa8
AB
3004 if (CANT_MOVE (insn)
3005 || INSN_ASM_P (insn)
3006 || SCHED_GROUP_P (insn)
07643d76 3007 || CALL_P (insn)
cfeb0fa8
AB
3008 /* Exception handling insns are always unique. */
3009 || (cfun->can_throw_non_call_exceptions && can_throw_internal (insn))
3010 /* TRAP_IF though have an INSN code is control_flow_insn_p (). */
6bf2d156
DM
3011 || control_flow_insn_p (insn)
3012 || volatile_insn_p (PATTERN (insn))
3013 || (targetm.cannot_copy_insn_p
3014 && targetm.cannot_copy_insn_p (insn)))
cfeb0fa8
AB
3015 force_unique_p = true;
3016 else
3017 force_unique_p = false;
e855c69d
AB
3018
3019 if (targetm.sched.get_insn_spec_ds)
3020 {
3021 spec_done_ds = targetm.sched.get_insn_spec_ds (insn);
3022 spec_done_ds = ds_get_max_dep_weak (spec_done_ds);
3023 }
3024 else
3025 spec_done_ds = 0;
3026
3027 /* Initialize INSN's expr. */
3028 init_expr (INSN_EXPR (insn), vinsn_create (insn, force_unique_p), 0,
3029 REG_BR_PROB_BASE, INSN_PRIORITY (insn), 0, BLOCK_NUM (insn),
6e1aa848 3030 spec_done_ds, 0, 0, vNULL, true,
9771b263 3031 false, false, false, CANT_MOVE (insn));
e855c69d
AB
3032 }
3033
3034 init_first_time_insn_data (insn);
3035}
3036
3037/* Scan the region and initialize instruction data for basic blocks BBS. */
3038void
3039sel_init_global_and_expr (bb_vec_t bbs)
3040{
3041 /* ??? It would be nice to implement push / pop scheme for sched_infos. */
3042 const struct sched_scan_info_def ssi =
3043 {
3044 NULL, /* extend_bb */
3045 init_global_and_expr_for_bb, /* init_bb */
3046 extend_insn_data, /* extend_insn */
3047 init_global_and_expr_for_insn /* init_insn */
3048 };
b8698a0f 3049
a95b23b4 3050 sched_scan (&ssi, bbs);
e855c69d
AB
3051}
3052
3053/* Finalize region-scope data structures for basic blocks. */
3054static void
3055finish_global_and_expr_for_bb (basic_block bb)
3056{
3057 av_set_clear (&BB_AV_SET (bb));
3058 BB_AV_LEVEL (bb) = 0;
3059}
3060
3061/* Finalize INSN's data. */
3062static void
3063finish_global_and_expr_insn (insn_t insn)
3064{
3065 if (LABEL_P (insn) || NOTE_INSN_BASIC_BLOCK_P (insn))
3066 return;
3067
3068 gcc_assert (INSN_P (insn));
3069
3070 if (INSN_LUID (insn) > 0)
3071 {
3072 free_first_time_insn_data (insn);
3073 INSN_WS_LEVEL (insn) = 0;
3074 CANT_MOVE (insn) = 0;
b8698a0f
L
3075
3076 /* We can no longer assert this, as vinsns of this insn could be
3077 easily live in other insn's caches. This should be changed to
e855c69d
AB
3078 a counter-like approach among all vinsns. */
3079 gcc_assert (true || VINSN_COUNT (INSN_VINSN (insn)) == 1);
3080 clear_expr (INSN_EXPR (insn));
3081 }
3082}
3083
3084/* Finalize per instruction data for the whole region. */
3085void
3086sel_finish_global_and_expr (void)
3087{
3088 {
3089 bb_vec_t bbs;
3090 int i;
3091
9771b263 3092 bbs.create (current_nr_blocks);
e855c69d
AB
3093
3094 for (i = 0; i < current_nr_blocks; i++)
06e28de2 3095 bbs.quick_push (BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i)));
e855c69d
AB
3096
3097 /* Clear AV_SETs and INSN_EXPRs. */
3098 {
3099 const struct sched_scan_info_def ssi =
3100 {
3101 NULL, /* extend_bb */
3102 finish_global_and_expr_for_bb, /* init_bb */
3103 NULL, /* extend_insn */
3104 finish_global_and_expr_insn /* init_insn */
3105 };
3106
a95b23b4 3107 sched_scan (&ssi, bbs);
e855c69d
AB
3108 }
3109
9771b263 3110 bbs.release ();
e855c69d
AB
3111 }
3112
3113 finish_insns ();
3114}
3115\f
3116
b8698a0f
L
3117/* In the below hooks, we merely calculate whether or not a dependence
3118 exists, and in what part of insn. However, we will need more data
e855c69d
AB
3119 when we'll start caching dependence requests. */
3120
3121/* Container to hold information for dependency analysis. */
3122static struct
3123{
3124 deps_t dc;
3125
3126 /* A variable to track which part of rtx we are scanning in
3127 sched-deps.c: sched_analyze_insn (). */
3128 deps_where_t where;
3129
3130 /* Current producer. */
3131 insn_t pro;
3132
3133 /* Current consumer. */
3134 vinsn_t con;
3135
3136 /* Is SEL_DEPS_HAS_DEP_P[DEPS_IN_X] is true, then X has a dependence.
3137 X is from { INSN, LHS, RHS }. */
3138 ds_t has_dep_p[DEPS_IN_NOWHERE];
3139} has_dependence_data;
3140
3141/* Start analyzing dependencies of INSN. */
3142static void
3143has_dependence_start_insn (insn_t insn ATTRIBUTE_UNUSED)
3144{
3145 gcc_assert (has_dependence_data.where == DEPS_IN_NOWHERE);
3146
3147 has_dependence_data.where = DEPS_IN_INSN;
3148}
3149
3150/* Finish analyzing dependencies of an insn. */
3151static void
3152has_dependence_finish_insn (void)
3153{
3154 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3155
3156 has_dependence_data.where = DEPS_IN_NOWHERE;
3157}
3158
3159/* Start analyzing dependencies of LHS. */
3160static void
3161has_dependence_start_lhs (rtx lhs ATTRIBUTE_UNUSED)
3162{
3163 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3164
3165 if (VINSN_LHS (has_dependence_data.con) != NULL)
3166 has_dependence_data.where = DEPS_IN_LHS;
3167}
3168
3169/* Finish analyzing dependencies of an lhs. */
3170static void
3171has_dependence_finish_lhs (void)
3172{
3173 has_dependence_data.where = DEPS_IN_INSN;
3174}
3175
3176/* Start analyzing dependencies of RHS. */
3177static void
3178has_dependence_start_rhs (rtx rhs ATTRIBUTE_UNUSED)
3179{
3180 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3181
3182 if (VINSN_RHS (has_dependence_data.con) != NULL)
3183 has_dependence_data.where = DEPS_IN_RHS;
3184}
3185
3186/* Start analyzing dependencies of an rhs. */
3187static void
3188has_dependence_finish_rhs (void)
3189{
3190 gcc_assert (has_dependence_data.where == DEPS_IN_RHS
3191 || has_dependence_data.where == DEPS_IN_INSN);
3192
3193 has_dependence_data.where = DEPS_IN_INSN;
3194}
3195
3196/* Note a set of REGNO. */
3197static void
3198has_dependence_note_reg_set (int regno)
3199{
3200 struct deps_reg *reg_last = &has_dependence_data.dc->reg_last[regno];
3201
3202 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3203 VINSN_INSN_RTX
3204 (has_dependence_data.con)))
3205 {
3206 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3207
3208 if (reg_last->sets != NULL
3209 || reg_last->clobbers != NULL)
3210 *dsp = (*dsp & ~SPECULATIVE) | DEP_OUTPUT;
3211
50919d13 3212 if (reg_last->uses || reg_last->implicit_sets)
e855c69d
AB
3213 *dsp = (*dsp & ~SPECULATIVE) | DEP_ANTI;
3214 }
3215}
3216
3217/* Note a clobber of REGNO. */
3218static void
3219has_dependence_note_reg_clobber (int regno)
3220{
3221 struct deps_reg *reg_last = &has_dependence_data.dc->reg_last[regno];
3222
3223 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3224 VINSN_INSN_RTX
3225 (has_dependence_data.con)))
3226 {
3227 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3228
3229 if (reg_last->sets)
3230 *dsp = (*dsp & ~SPECULATIVE) | DEP_OUTPUT;
b8698a0f 3231
50919d13 3232 if (reg_last->uses || reg_last->implicit_sets)
e855c69d
AB
3233 *dsp = (*dsp & ~SPECULATIVE) | DEP_ANTI;
3234 }
3235}
3236
3237/* Note a use of REGNO. */
3238static void
3239has_dependence_note_reg_use (int regno)
3240{
3241 struct deps_reg *reg_last = &has_dependence_data.dc->reg_last[regno];
3242
3243 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3244 VINSN_INSN_RTX
3245 (has_dependence_data.con)))
3246 {
3247 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3248
3249 if (reg_last->sets)
3250 *dsp = (*dsp & ~SPECULATIVE) | DEP_TRUE;
3251
50919d13 3252 if (reg_last->clobbers || reg_last->implicit_sets)
e855c69d
AB
3253 *dsp = (*dsp & ~SPECULATIVE) | DEP_ANTI;
3254
0d4acd90
AB
3255 /* Merge BE_IN_SPEC bits into *DSP when the dependency producer
3256 is actually a check insn. We need to do this for any register
3257 read-read dependency with the check unless we track properly
3258 all registers written by BE_IN_SPEC-speculated insns, as
3259 we don't have explicit dependence lists. See PR 53975. */
e855c69d
AB
3260 if (reg_last->uses)
3261 {
3262 ds_t pro_spec_checked_ds;
3263
3264 pro_spec_checked_ds = INSN_SPEC_CHECKED_DS (has_dependence_data.pro);
3265 pro_spec_checked_ds = ds_get_max_dep_weak (pro_spec_checked_ds);
3266
0d4acd90 3267 if (pro_spec_checked_ds != 0)
e855c69d
AB
3268 *dsp = ds_full_merge (*dsp, pro_spec_checked_ds,
3269 NULL_RTX, NULL_RTX);
3270 }
3271 }
3272}
3273
3274/* Note a memory dependence. */
3275static void
3276has_dependence_note_mem_dep (rtx mem ATTRIBUTE_UNUSED,
3277 rtx pending_mem ATTRIBUTE_UNUSED,
3278 insn_t pending_insn ATTRIBUTE_UNUSED,
3279 ds_t ds ATTRIBUTE_UNUSED)
3280{
3281 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3282 VINSN_INSN_RTX (has_dependence_data.con)))
3283 {
3284 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3285
3286 *dsp = ds_full_merge (ds, *dsp, pending_mem, mem);
3287 }
3288}
3289
3290/* Note a dependence. */
3291static void
6abce739
AB
3292has_dependence_note_dep (insn_t pro, ds_t ds ATTRIBUTE_UNUSED)
3293{
3294 insn_t real_pro = has_dependence_data.pro;
3295 insn_t real_con = VINSN_INSN_RTX (has_dependence_data.con);
3296
3297 /* We do not allow for debug insns to move through others unless they
3298 are at the start of bb. This movement may create bookkeeping copies
3299 that later would not be able to move up, violating the invariant
3300 that a bookkeeping copy should be movable as the original insn.
3301 Detect that here and allow that movement if we allowed it before
3302 in the first place. */
99219dba 3303 if (DEBUG_INSN_P (real_con) && !DEBUG_INSN_P (real_pro)
6abce739
AB
3304 && INSN_UID (NEXT_INSN (pro)) == INSN_UID (real_con))
3305 return;
3306
3307 if (!sched_insns_conditions_mutex_p (real_pro, real_con))
e855c69d
AB
3308 {
3309 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3310
3311 *dsp = ds_full_merge (ds, *dsp, NULL_RTX, NULL_RTX);
3312 }
3313}
3314
3315/* Mark the insn as having a hard dependence that prevents speculation. */
3316void
3317sel_mark_hard_insn (rtx insn)
3318{
3319 int i;
3320
3321 /* Only work when we're in has_dependence_p mode.
3322 ??? This is a hack, this should actually be a hook. */
3323 if (!has_dependence_data.dc || !has_dependence_data.pro)
3324 return;
3325
3326 gcc_assert (insn == VINSN_INSN_RTX (has_dependence_data.con));
3327 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3328
3329 for (i = 0; i < DEPS_IN_NOWHERE; i++)
3330 has_dependence_data.has_dep_p[i] &= ~SPECULATIVE;
3331}
3332
3333/* This structure holds the hooks for the dependency analysis used when
3334 actually processing dependencies in the scheduler. */
3335static struct sched_deps_info_def has_dependence_sched_deps_info;
3336
3337/* This initializes most of the fields of the above structure. */
3338static const struct sched_deps_info_def const_has_dependence_sched_deps_info =
3339 {
3340 NULL,
3341
3342 has_dependence_start_insn,
3343 has_dependence_finish_insn,
3344 has_dependence_start_lhs,
3345 has_dependence_finish_lhs,
3346 has_dependence_start_rhs,
3347 has_dependence_finish_rhs,
3348 has_dependence_note_reg_set,
3349 has_dependence_note_reg_clobber,
3350 has_dependence_note_reg_use,
3351 has_dependence_note_mem_dep,
3352 has_dependence_note_dep,
3353
3354 0, /* use_cselib */
3355 0, /* use_deps_list */
3356 0 /* generate_spec_deps */
3357 };
3358
3359/* Initialize has_dependence_sched_deps_info with extra spec field. */
3360static void
3361setup_has_dependence_sched_deps_info (void)
3362{
3363 memcpy (&has_dependence_sched_deps_info,
3364 &const_has_dependence_sched_deps_info,
3365 sizeof (has_dependence_sched_deps_info));
3366
3367 if (spec_info != NULL)
3368 has_dependence_sched_deps_info.generate_spec_deps = 1;
3369
3370 sched_deps_info = &has_dependence_sched_deps_info;
3371}
3372
3373/* Remove all dependences found and recorded in has_dependence_data array. */
3374void
3375sel_clear_has_dependence (void)
3376{
3377 int i;
3378
3379 for (i = 0; i < DEPS_IN_NOWHERE; i++)
3380 has_dependence_data.has_dep_p[i] = 0;
3381}
3382
3383/* Return nonzero if EXPR has is dependent upon PRED. Return the pointer
3384 to the dependence information array in HAS_DEP_PP. */
3385ds_t
3386has_dependence_p (expr_t expr, insn_t pred, ds_t **has_dep_pp)
3387{
3388 int i;
3389 ds_t ds;
99b1c316 3390 class deps_desc *dc;
e855c69d
AB
3391
3392 if (INSN_SIMPLEJUMP_P (pred))
3393 /* Unconditional jump is just a transfer of control flow.
3394 Ignore it. */
3395 return false;
3396
3397 dc = &INSN_DEPS_CONTEXT (pred);
bcf33775
AB
3398
3399 /* We init this field lazily. */
3400 if (dc->reg_last == NULL)
3401 init_deps_reg_last (dc);
b8698a0f 3402
e855c69d
AB
3403 if (!dc->readonly)
3404 {
3405 has_dependence_data.pro = NULL;
3406 /* Initialize empty dep context with information about PRED. */
3407 advance_deps_context (dc, pred);
3408 dc->readonly = 1;
3409 }
3410
3411 has_dependence_data.where = DEPS_IN_NOWHERE;
3412 has_dependence_data.pro = pred;
3413 has_dependence_data.con = EXPR_VINSN (expr);
3414 has_dependence_data.dc = dc;
3415
3416 sel_clear_has_dependence ();
3417
3418 /* Now catch all dependencies that would be generated between PRED and
3419 INSN. */
3420 setup_has_dependence_sched_deps_info ();
3421 deps_analyze_insn (dc, EXPR_INSN_RTX (expr));
3422 has_dependence_data.dc = NULL;
3423
3424 /* When a barrier was found, set DEPS_IN_INSN bits. */
3425 if (dc->last_reg_pending_barrier == TRUE_BARRIER)
3426 has_dependence_data.has_dep_p[DEPS_IN_INSN] = DEP_TRUE;
3427 else if (dc->last_reg_pending_barrier == MOVE_BARRIER)
3428 has_dependence_data.has_dep_p[DEPS_IN_INSN] = DEP_ANTI;
3429
3430 /* Do not allow stores to memory to move through checks. Currently
3431 we don't move this to sched-deps.c as the check doesn't have
b8698a0f 3432 obvious places to which this dependence can be attached.
e855c69d
AB
3433 FIMXE: this should go to a hook. */
3434 if (EXPR_LHS (expr)
3435 && MEM_P (EXPR_LHS (expr))
3436 && sel_insn_is_speculation_check (pred))
3437 has_dependence_data.has_dep_p[DEPS_IN_INSN] = DEP_ANTI;
b8698a0f 3438
e855c69d
AB
3439 *has_dep_pp = has_dependence_data.has_dep_p;
3440 ds = 0;
3441 for (i = 0; i < DEPS_IN_NOWHERE; i++)
3442 ds = ds_full_merge (ds, has_dependence_data.has_dep_p[i],
3443 NULL_RTX, NULL_RTX);
3444
3445 return ds;
3446}
3447\f
3448
b8698a0f
L
3449/* Dependence hooks implementation that checks dependence latency constraints
3450 on the insns being scheduled. The entry point for these routines is
3451 tick_check_p predicate. */
e855c69d
AB
3452
3453static struct
3454{
3455 /* An expr we are currently checking. */
3456 expr_t expr;
3457
3458 /* A minimal cycle for its scheduling. */
3459 int cycle;
3460
3461 /* Whether we have seen a true dependence while checking. */
3462 bool seen_true_dep_p;
3463} tick_check_data;
3464
3465/* Update minimal scheduling cycle for tick_check_insn given that it depends
3466 on PRO with status DS and weight DW. */
3467static void
3468tick_check_dep_with_dw (insn_t pro_insn, ds_t ds, dw_t dw)
3469{
3470 expr_t con_expr = tick_check_data.expr;
3471 insn_t con_insn = EXPR_INSN_RTX (con_expr);
3472
3473 if (con_insn != pro_insn)
3474 {
3475 enum reg_note dt;
3476 int tick;
3477
3478 if (/* PROducer was removed from above due to pipelining. */
3479 !INSN_IN_STREAM_P (pro_insn)
3480 /* Or PROducer was originally on the next iteration regarding the
3481 CONsumer. */
3482 || (INSN_SCHED_TIMES (pro_insn)
3483 - EXPR_SCHED_TIMES (con_expr)) > 1)
3484 /* Don't count this dependence. */
3485 return;
3486
3487 dt = ds_to_dt (ds);
3488 if (dt == REG_DEP_TRUE)
3489 tick_check_data.seen_true_dep_p = true;
3490
3491 gcc_assert (INSN_SCHED_CYCLE (pro_insn) > 0);
3492
3493 {
3494 dep_def _dep, *dep = &_dep;
3495
3496 init_dep (dep, pro_insn, con_insn, dt);
3497
3498 tick = INSN_SCHED_CYCLE (pro_insn) + dep_cost_1 (dep, dw);
3499 }
3500
3501 /* When there are several kinds of dependencies between pro and con,
3502 only REG_DEP_TRUE should be taken into account. */
3503 if (tick > tick_check_data.cycle
3504 && (dt == REG_DEP_TRUE || !tick_check_data.seen_true_dep_p))
3505 tick_check_data.cycle = tick;
3506 }
3507}
3508
3509/* An implementation of note_dep hook. */
3510static void
3511tick_check_note_dep (insn_t pro, ds_t ds)
3512{
3513 tick_check_dep_with_dw (pro, ds, 0);
3514}
3515
3516/* An implementation of note_mem_dep hook. */
3517static void
3518tick_check_note_mem_dep (rtx mem1, rtx mem2, insn_t pro, ds_t ds)
3519{
3520 dw_t dw;
3521
3522 dw = (ds_to_dt (ds) == REG_DEP_TRUE
3523 ? estimate_dep_weak (mem1, mem2)
3524 : 0);
3525
3526 tick_check_dep_with_dw (pro, ds, dw);
3527}
3528
3529/* This structure contains hooks for dependence analysis used when determining
3530 whether an insn is ready for scheduling. */
3531static struct sched_deps_info_def tick_check_sched_deps_info =
3532 {
3533 NULL,
3534
3535 NULL,
3536 NULL,
3537 NULL,
3538 NULL,
3539 NULL,
3540 NULL,
3541 haifa_note_reg_set,
3542 haifa_note_reg_clobber,
3543 haifa_note_reg_use,
3544 tick_check_note_mem_dep,
3545 tick_check_note_dep,
3546
3547 0, 0, 0
3548 };
3549
3550/* Estimate number of cycles from the current cycle of FENCE until EXPR can be
3551 scheduled. Return 0 if all data from producers in DC is ready. */
3552int
3553tick_check_p (expr_t expr, deps_t dc, fence_t fence)
3554{
3555 int cycles_left;
3556 /* Initialize variables. */
3557 tick_check_data.expr = expr;
3558 tick_check_data.cycle = 0;
3559 tick_check_data.seen_true_dep_p = false;
3560 sched_deps_info = &tick_check_sched_deps_info;
b8698a0f 3561
e855c69d
AB
3562 gcc_assert (!dc->readonly);
3563 dc->readonly = 1;
3564 deps_analyze_insn (dc, EXPR_INSN_RTX (expr));
3565 dc->readonly = 0;
3566
3567 cycles_left = tick_check_data.cycle - FENCE_CYCLE (fence);
3568
3569 return cycles_left >= 0 ? cycles_left : 0;
3570}
3571\f
3572
3573/* Functions to work with insns. */
3574
3575/* Returns true if LHS of INSN is the same as DEST of an insn
3576 being moved. */
3577bool
3578lhs_of_insn_equals_to_dest_p (insn_t insn, rtx dest)
3579{
3580 rtx lhs = INSN_LHS (insn);
3581
3582 if (lhs == NULL || dest == NULL)
3583 return false;
b8698a0f 3584
e855c69d
AB
3585 return rtx_equal_p (lhs, dest);
3586}
3587
3588/* Return s_i_d entry of INSN. Callable from debugger. */
3589sel_insn_data_def
3590insn_sid (insn_t insn)
3591{
3592 return *SID (insn);
3593}
3594
3595/* True when INSN is a speculative check. We can tell this by looking
3596 at the data structures of the selective scheduler, not by examining
3597 the pattern. */
3598bool
3599sel_insn_is_speculation_check (rtx insn)
3600{
9771b263 3601 return s_i_d.exists () && !! INSN_SPEC_CHECKED_DS (insn);
e855c69d
AB
3602}
3603
b8698a0f 3604/* Extracts machine mode MODE and destination location DST_LOC
e855c69d
AB
3605 for given INSN. */
3606void
ef4bddc2 3607get_dest_and_mode (rtx insn, rtx *dst_loc, machine_mode *mode)
e855c69d
AB
3608{
3609 rtx pat = PATTERN (insn);
3610
3611 gcc_assert (dst_loc);
3612 gcc_assert (GET_CODE (pat) == SET);
3613
3614 *dst_loc = SET_DEST (pat);
3615
3616 gcc_assert (*dst_loc);
3617 gcc_assert (MEM_P (*dst_loc) || REG_P (*dst_loc));
3618
3619 if (mode)
3620 *mode = GET_MODE (*dst_loc);
3621}
3622
b8698a0f 3623/* Returns true when moving through JUMP will result in bookkeeping
e855c69d
AB
3624 creation. */
3625bool
3626bookkeeping_can_be_created_if_moved_through_p (insn_t jump)
3627{
3628 insn_t succ;
3629 succ_iterator si;
3630
3631 FOR_EACH_SUCC (succ, si, jump)
3632 if (sel_num_cfg_preds_gt_1 (succ))
3633 return true;
3634
3635 return false;
3636}
3637
3638/* Return 'true' if INSN is the only one in its basic block. */
3639static bool
3640insn_is_the_only_one_in_bb_p (insn_t insn)
3641{
3642 return sel_bb_head_p (insn) && sel_bb_end_p (insn);
3643}
3644
b8698a0f 3645/* Check that the region we're scheduling still has at most one
e855c69d
AB
3646 backedge. */
3647static void
3648verify_backedges (void)
3649{
3650 if (pipelining_p)
3651 {
3652 int i, n = 0;
3653 edge e;
3654 edge_iterator ei;
b8698a0f 3655
e855c69d 3656 for (i = 0; i < current_nr_blocks; i++)
06e28de2 3657 FOR_EACH_EDGE (e, ei, BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i))->succs)
e855c69d
AB
3658 if (in_current_region_p (e->dest)
3659 && BLOCK_TO_BB (e->dest->index) < i)
3660 n++;
b8698a0f 3661
e855c69d
AB
3662 gcc_assert (n <= 1);
3663 }
3664}
e855c69d
AB
3665\f
3666
3667/* Functions to work with control flow. */
3668
b59ab570
AM
3669/* Recompute BLOCK_TO_BB and BB_FOR_BLOCK for current region so that blocks
3670 are sorted in topological order (it might have been invalidated by
3671 redirecting an edge). */
3672static void
3673sel_recompute_toporder (void)
3674{
3675 int i, n, rgn;
3676 int *postorder, n_blocks;
3677
0cae8d31 3678 postorder = XALLOCAVEC (int, n_basic_blocks_for_fn (cfun));
b59ab570
AM
3679 n_blocks = post_order_compute (postorder, false, false);
3680
3681 rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
3682 for (n = 0, i = n_blocks - 1; i >= 0; i--)
3683 if (CONTAINING_RGN (postorder[i]) == rgn)
3684 {
3685 BLOCK_TO_BB (postorder[i]) = n;
3686 BB_TO_BLOCK (n) = postorder[i];
3687 n++;
3688 }
3689
3690 /* Assert that we updated info for all blocks. We may miss some blocks if
3691 this function is called when redirecting an edge made a block
3692 unreachable, but that block is not deleted yet. */
3693 gcc_assert (n == RGN_NR_BLOCKS (rgn));
3694}
3695
e855c69d 3696/* Tidy the possibly empty block BB. */
65592aad 3697static bool
5f33b972 3698maybe_tidy_empty_bb (basic_block bb)
e855c69d 3699{
b7b5540a 3700 basic_block succ_bb, pred_bb, note_bb;
9771b263 3701 vec<basic_block> dom_bbs;
f2c45f08
AM
3702 edge e;
3703 edge_iterator ei;
e855c69d
AB
3704 bool rescan_p;
3705
3706 /* Keep empty bb only if this block immediately precedes EXIT and
762bffba
AB
3707 has incoming non-fallthrough edge, or it has no predecessors or
3708 successors. Otherwise remove it. */
b5b8b0ac 3709 if (!sel_bb_empty_p (bb)
b8698a0f 3710 || (single_succ_p (bb)
fefa31b5 3711 && single_succ (bb) == EXIT_BLOCK_PTR_FOR_FN (cfun)
b8698a0f 3712 && (!single_pred_p (bb)
762bffba
AB
3713 || !(single_pred_edge (bb)->flags & EDGE_FALLTHRU)))
3714 || EDGE_COUNT (bb->preds) == 0
3715 || EDGE_COUNT (bb->succs) == 0)
e855c69d
AB
3716 return false;
3717
f2c45f08
AM
3718 /* Do not attempt to redirect complex edges. */
3719 FOR_EACH_EDGE (e, ei, bb->preds)
3720 if (e->flags & EDGE_COMPLEX)
3721 return false;
5ef5a3b7
JJ
3722 else if (e->flags & EDGE_FALLTHRU)
3723 {
3724 rtx note;
3725 /* If prev bb ends with asm goto, see if any of the
3726 ASM_OPERANDS_LABELs don't point to the fallthru
3727 label. Do not attempt to redirect it in that case. */
3728 if (JUMP_P (BB_END (e->src))
3729 && (note = extract_asm_operands (PATTERN (BB_END (e->src)))))
3730 {
3731 int i, n = ASM_OPERANDS_LABEL_LENGTH (note);
3732
3733 for (i = 0; i < n; ++i)
3734 if (XEXP (ASM_OPERANDS_LABEL (note, i), 0) == BB_HEAD (bb))
3735 return false;
3736 }
3737 }
f2c45f08 3738
e855c69d
AB
3739 free_data_sets (bb);
3740
3741 /* Do not delete BB if it has more than one successor.
3742 That can occur when we moving a jump. */
3743 if (!single_succ_p (bb))
3744 {
3745 gcc_assert (can_merge_blocks_p (bb->prev_bb, bb));
3746 sel_merge_blocks (bb->prev_bb, bb);
3747 return true;
3748 }
3749
3750 succ_bb = single_succ (bb);
3751 rescan_p = true;
3752 pred_bb = NULL;
9771b263 3753 dom_bbs.create (0);
e855c69d 3754
b7b5540a
AB
3755 /* Save a pred/succ from the current region to attach the notes to. */
3756 note_bb = NULL;
3757 FOR_EACH_EDGE (e, ei, bb->preds)
3758 if (in_current_region_p (e->src))
3759 {
3760 note_bb = e->src;
3761 break;
3762 }
3763 if (note_bb == NULL)
3764 note_bb = succ_bb;
3765
e855c69d
AB
3766 /* Redirect all non-fallthru edges to the next bb. */
3767 while (rescan_p)
3768 {
e855c69d
AB
3769 rescan_p = false;
3770
3771 FOR_EACH_EDGE (e, ei, bb->preds)
3772 {
3773 pred_bb = e->src;
3774
3775 if (!(e->flags & EDGE_FALLTHRU))
3776 {
67914693 3777 /* We cannot invalidate computed topological order by moving
00c4e97c
AB
3778 the edge destination block (E->SUCC) along a fallthru edge.
3779
3780 We will update dominators here only when we'll get
3781 an unreachable block when redirecting, otherwise
3782 sel_redirect_edge_and_branch will take care of it. */
3783 if (e->dest != bb
3784 && single_pred_p (e->dest))
9771b263 3785 dom_bbs.safe_push (e->dest);
5f33b972 3786 sel_redirect_edge_and_branch (e, succ_bb);
e855c69d
AB
3787 rescan_p = true;
3788 break;
3789 }
5f33b972
AM
3790 /* If the edge is fallthru, but PRED_BB ends in a conditional jump
3791 to BB (so there is no non-fallthru edge from PRED_BB to BB), we
3792 still have to adjust it. */
3793 else if (single_succ_p (pred_bb) && any_condjump_p (BB_END (pred_bb)))
3794 {
3795 /* If possible, try to remove the unneeded conditional jump. */
4ec78ef4
MR
3796 if (onlyjump_p (BB_END (pred_bb))
3797 && INSN_SCHED_TIMES (BB_END (pred_bb)) == 0
5f33b972
AM
3798 && !IN_CURRENT_FENCE_P (BB_END (pred_bb)))
3799 {
3800 if (!sel_remove_insn (BB_END (pred_bb), false, false))
3801 tidy_fallthru_edge (e);
3802 }
3803 else
3804 sel_redirect_edge_and_branch (e, succ_bb);
3805 rescan_p = true;
3806 break;
3807 }
e855c69d
AB
3808 }
3809 }
3810
e855c69d
AB
3811 if (can_merge_blocks_p (bb->prev_bb, bb))
3812 sel_merge_blocks (bb->prev_bb, bb);
3813 else
e855c69d 3814 {
262d8232 3815 /* This is a block without fallthru predecessor. Just delete it. */
b7b5540a
AB
3816 gcc_assert (note_bb);
3817 move_bb_info (note_bb, bb);
e855c69d
AB
3818 remove_empty_bb (bb, true);
3819 }
3820
9771b263 3821 if (!dom_bbs.is_empty ())
00c4e97c 3822 {
9771b263 3823 dom_bbs.safe_push (succ_bb);
00c4e97c 3824 iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, false);
9771b263 3825 dom_bbs.release ();
00c4e97c
AB
3826 }
3827
e855c69d
AB
3828 return true;
3829}
3830
b8698a0f 3831/* Tidy the control flow after we have removed original insn from
e855c69d
AB
3832 XBB. Return true if we have removed some blocks. When FULL_TIDYING
3833 is true, also try to optimize control flow on non-empty blocks. */
3834bool
3835tidy_control_flow (basic_block xbb, bool full_tidying)
3836{
3837 bool changed = true;
b5b8b0ac 3838 insn_t first, last;
b8698a0f 3839
e855c69d 3840 /* First check whether XBB is empty. */
5f33b972 3841 changed = maybe_tidy_empty_bb (xbb);
e855c69d
AB
3842 if (changed || !full_tidying)
3843 return changed;
b8698a0f 3844
e855c69d 3845 /* Check if there is a unnecessary jump after insn left. */
753de8cf 3846 if (bb_has_removable_jump_to_p (xbb, xbb->next_bb)
e855c69d
AB
3847 && INSN_SCHED_TIMES (BB_END (xbb)) == 0
3848 && !IN_CURRENT_FENCE_P (BB_END (xbb)))
3849 {
ab6dceab
AB
3850 /* We used to call sel_remove_insn here that can trigger tidy_control_flow
3851 before we fix up the fallthru edge. Correct that ordering by
3852 explicitly doing the latter before the former. */
3853 clear_expr (INSN_EXPR (BB_END (xbb)));
e855c69d 3854 tidy_fallthru_edge (EDGE_SUCC (xbb, 0));
ab6dceab
AB
3855 if (tidy_control_flow (xbb, false))
3856 return true;
e855c69d
AB
3857 }
3858
b5b8b0ac
AO
3859 first = sel_bb_head (xbb);
3860 last = sel_bb_end (xbb);
3861 if (MAY_HAVE_DEBUG_INSNS)
3862 {
3863 if (first != last && DEBUG_INSN_P (first))
3864 do
3865 first = NEXT_INSN (first);
3866 while (first != last && (DEBUG_INSN_P (first) || NOTE_P (first)));
3867
3868 if (first != last && DEBUG_INSN_P (last))
3869 do
3870 last = PREV_INSN (last);
3871 while (first != last && (DEBUG_INSN_P (last) || NOTE_P (last)));
3872 }
e855c69d 3873 /* Check if there is an unnecessary jump in previous basic block leading
b8698a0f
L
3874 to next basic block left after removing INSN from stream.
3875 If it is so, remove that jump and redirect edge to current
3876 basic block (where there was INSN before deletion). This way
3877 when NOP will be deleted several instructions later with its
3878 basic block we will not get a jump to next instruction, which
e855c69d 3879 can be harmful. */
b5b8b0ac 3880 if (first == last
e855c69d 3881 && !sel_bb_empty_p (xbb)
b5b8b0ac 3882 && INSN_NOP_P (last)
e855c69d
AB
3883 /* Flow goes fallthru from current block to the next. */
3884 && EDGE_COUNT (xbb->succs) == 1
3885 && (EDGE_SUCC (xbb, 0)->flags & EDGE_FALLTHRU)
3886 /* When successor is an EXIT block, it may not be the next block. */
fefa31b5 3887 && single_succ (xbb) != EXIT_BLOCK_PTR_FOR_FN (cfun)
e855c69d
AB
3888 /* And unconditional jump in previous basic block leads to
3889 next basic block of XBB and this jump can be safely removed. */
3890 && in_current_region_p (xbb->prev_bb)
753de8cf 3891 && bb_has_removable_jump_to_p (xbb->prev_bb, xbb->next_bb)
e855c69d
AB
3892 && INSN_SCHED_TIMES (BB_END (xbb->prev_bb)) == 0
3893 /* Also this jump is not at the scheduling boundary. */
3894 && !IN_CURRENT_FENCE_P (BB_END (xbb->prev_bb)))
3895 {
b59ab570 3896 bool recompute_toporder_p;
e855c69d
AB
3897 /* Clear data structures of jump - jump itself will be removed
3898 by sel_redirect_edge_and_branch. */
3899 clear_expr (INSN_EXPR (BB_END (xbb->prev_bb)));
b59ab570
AM
3900 recompute_toporder_p
3901 = sel_redirect_edge_and_branch (EDGE_SUCC (xbb->prev_bb, 0), xbb);
3902
e855c69d
AB
3903 gcc_assert (EDGE_SUCC (xbb->prev_bb, 0)->flags & EDGE_FALLTHRU);
3904
6abce739
AB
3905 /* We could have skipped some debug insns which did not get removed with the block,
3906 and the seqnos could become incorrect. Fix them up here. */
3907 if (MAY_HAVE_DEBUG_INSNS && (sel_bb_head (xbb) != first || sel_bb_end (xbb) != last))
3908 {
3909 if (!sel_bb_empty_p (xbb->prev_bb))
3910 {
3911 int prev_seqno = INSN_SEQNO (sel_bb_end (xbb->prev_bb));
3912 if (prev_seqno > INSN_SEQNO (sel_bb_head (xbb)))
3913 for (insn_t insn = sel_bb_head (xbb); insn != first; insn = NEXT_INSN (insn))
3914 INSN_SEQNO (insn) = prev_seqno + 1;
3915 }
3916 }
3917
e855c69d
AB
3918 /* It can turn out that after removing unused jump, basic block
3919 that contained that jump, becomes empty too. In such case
3920 remove it too. */
3921 if (sel_bb_empty_p (xbb->prev_bb))
5f33b972
AM
3922 changed = maybe_tidy_empty_bb (xbb->prev_bb);
3923 if (recompute_toporder_p)
b59ab570 3924 sel_recompute_toporder ();
e855c69d 3925 }
d787f788 3926
b2b29377
MM
3927 /* TODO: use separate flag for CFG checking. */
3928 if (flag_checking)
3929 {
3930 verify_backedges ();
3931 verify_dominators (CDI_DOMINATORS);
3932 }
d787f788 3933
e855c69d
AB
3934 return changed;
3935}
3936
b59ab570
AM
3937/* Purge meaningless empty blocks in the middle of a region. */
3938void
3939purge_empty_blocks (void)
3940{
9d0dcda1 3941 int i;
b59ab570 3942
9d0dcda1
AM
3943 /* Do not attempt to delete the first basic block in the region. */
3944 for (i = 1; i < current_nr_blocks; )
b59ab570 3945 {
06e28de2 3946 basic_block b = BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i));
b59ab570 3947
5f33b972 3948 if (maybe_tidy_empty_bb (b))
b59ab570
AM
3949 continue;
3950
3951 i++;
3952 }
3953}
3954
b8698a0f
L
3955/* Rip-off INSN from the insn stream. When ONLY_DISCONNECT is true,
3956 do not delete insn's data, because it will be later re-emitted.
e855c69d
AB
3957 Return true if we have removed some blocks afterwards. */
3958bool
3959sel_remove_insn (insn_t insn, bool only_disconnect, bool full_tidying)
3960{
3961 basic_block bb = BLOCK_FOR_INSN (insn);
3962
3963 gcc_assert (INSN_IN_STREAM_P (insn));
3964
b5b8b0ac
AO
3965 if (DEBUG_INSN_P (insn) && BB_AV_SET_VALID_P (bb))
3966 {
3967 expr_t expr;
3968 av_set_iterator i;
3969
3970 /* When we remove a debug insn that is head of a BB, it remains
3971 in the AV_SET of the block, but it shouldn't. */
3972 FOR_EACH_EXPR_1 (expr, i, &BB_AV_SET (bb))
3973 if (EXPR_INSN_RTX (expr) == insn)
3974 {
3975 av_set_iter_remove (&i);
3976 break;
3977 }
3978 }
3979
e855c69d 3980 if (only_disconnect)
1f397f45 3981 remove_insn (insn);
e855c69d
AB
3982 else
3983 {
1f397f45 3984 delete_insn (insn);
e855c69d
AB
3985 clear_expr (INSN_EXPR (insn));
3986 }
3987
1f397f45
SB
3988 /* It is necessary to NULL these fields in case we are going to re-insert
3989 INSN into the insns stream, as will usually happen in the ONLY_DISCONNECT
3990 case, but also for NOPs that we will return to the nop pool. */
0f82e5c9
DM
3991 SET_PREV_INSN (insn) = NULL_RTX;
3992 SET_NEXT_INSN (insn) = NULL_RTX;
1f397f45 3993 set_block_for_insn (insn, NULL);
e855c69d
AB
3994
3995 return tidy_control_flow (bb, full_tidying);
3996}
3997
3998/* Estimate number of the insns in BB. */
3999static int
4000sel_estimate_number_of_insns (basic_block bb)
4001{
4002 int res = 0;
4003 insn_t insn = NEXT_INSN (BB_HEAD (bb)), next_tail = NEXT_INSN (BB_END (bb));
4004
4005 for (; insn != next_tail; insn = NEXT_INSN (insn))
b5b8b0ac 4006 if (NONDEBUG_INSN_P (insn))
e855c69d
AB
4007 res++;
4008
4009 return res;
4010}
4011
4012/* We don't need separate luids for notes or labels. */
4013static int
4014sel_luid_for_non_insn (rtx x)
4015{
4016 gcc_assert (NOTE_P (x) || LABEL_P (x));
4017
4018 return -1;
4019}
4020
0d9439b0
SG
4021/* Find the proper seqno for inserting at INSN by successors.
4022 Return -1 if no successors with positive seqno exist. */
e855c69d 4023static int
6144a836 4024get_seqno_by_succs (rtx_insn *insn)
0d9439b0
SG
4025{
4026 basic_block bb = BLOCK_FOR_INSN (insn);
6144a836 4027 rtx_insn *tmp = insn, *end = BB_END (bb);
0d9439b0
SG
4028 int seqno;
4029 insn_t succ = NULL;
4030 succ_iterator si;
4031
4032 while (tmp != end)
4033 {
4034 tmp = NEXT_INSN (tmp);
4035 if (INSN_P (tmp))
4036 return INSN_SEQNO (tmp);
4037 }
4038
4039 seqno = INT_MAX;
4040
4041 FOR_EACH_SUCC_1 (succ, si, end, SUCCS_NORMAL)
4042 if (INSN_SEQNO (succ) > 0)
4043 seqno = MIN (seqno, INSN_SEQNO (succ));
4044
4045 if (seqno == INT_MAX)
4046 return -1;
4047
4048 return seqno;
4049}
4050
92e265ac
AB
4051/* Compute seqno for INSN by its preds or succs. Use OLD_SEQNO to compute
4052 seqno in corner cases. */
0d9439b0 4053static int
92e265ac 4054get_seqno_for_a_jump (insn_t insn, int old_seqno)
e855c69d
AB
4055{
4056 int seqno;
4057
4058 gcc_assert (INSN_SIMPLEJUMP_P (insn));
4059
4060 if (!sel_bb_head_p (insn))
4061 seqno = INSN_SEQNO (PREV_INSN (insn));
4062 else
4063 {
4064 basic_block bb = BLOCK_FOR_INSN (insn);
4065
4066 if (single_pred_p (bb)
4067 && !in_current_region_p (single_pred (bb)))
4068 {
4069 /* We can have preds outside a region when splitting edges
b8698a0f 4070 for pipelining of an outer loop. Use succ instead.
e855c69d
AB
4071 There should be only one of them. */
4072 insn_t succ = NULL;
4073 succ_iterator si;
4074 bool first = true;
b8698a0f 4075
e855c69d
AB
4076 gcc_assert (flag_sel_sched_pipelining_outer_loops
4077 && current_loop_nest);
b8698a0f 4078 FOR_EACH_SUCC_1 (succ, si, insn,
e855c69d
AB
4079 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
4080 {
4081 gcc_assert (first);
4082 first = false;
4083 }
4084
4085 gcc_assert (succ != NULL);
4086 seqno = INSN_SEQNO (succ);
4087 }
4088 else
4089 {
4090 insn_t *preds;
4091 int n;
4092
4093 cfg_preds (BLOCK_FOR_INSN (insn), &preds, &n);
e855c69d 4094
0d9439b0
SG
4095 gcc_assert (n > 0);
4096 /* For one predecessor, use simple method. */
4097 if (n == 1)
4098 seqno = INSN_SEQNO (preds[0]);
4099 else
4100 seqno = get_seqno_by_preds (insn);
b8698a0f 4101
e855c69d
AB
4102 free (preds);
4103 }
4104 }
4105
0d9439b0
SG
4106 /* We were unable to find a good seqno among preds. */
4107 if (seqno < 0)
4108 seqno = get_seqno_by_succs (insn);
4109
92e265ac
AB
4110 if (seqno < 0)
4111 {
4112 /* The only case where this could be here legally is that the only
4113 unscheduled insn was a conditional jump that got removed and turned
4114 into this unconditional one. Initialize from the old seqno
4115 of that jump passed down to here. */
4116 seqno = old_seqno;
4117 }
0d9439b0 4118
92e265ac 4119 gcc_assert (seqno >= 0);
e855c69d
AB
4120 return seqno;
4121}
4122
da7ba240
AB
4123/* Find the proper seqno for inserting at INSN. Returns -1 if no predecessors
4124 with positive seqno exist. */
e855c69d 4125int
b32d5189 4126get_seqno_by_preds (rtx_insn *insn)
e855c69d
AB
4127{
4128 basic_block bb = BLOCK_FOR_INSN (insn);
b32d5189 4129 rtx_insn *tmp = insn, *head = BB_HEAD (bb);
e855c69d
AB
4130 insn_t *preds;
4131 int n, i, seqno;
4132
6598bb55
AB
4133 /* Loop backwards from INSN to HEAD including both. */
4134 while (1)
0d9439b0 4135 {
0d9439b0 4136 if (INSN_P (tmp))
6598bb55
AB
4137 return INSN_SEQNO (tmp);
4138 if (tmp == head)
4139 break;
4140 tmp = PREV_INSN (tmp);
0d9439b0 4141 }
b8698a0f 4142
e855c69d
AB
4143 cfg_preds (bb, &preds, &n);
4144 for (i = 0, seqno = -1; i < n; i++)
4145 seqno = MAX (seqno, INSN_SEQNO (preds[i]));
4146
e855c69d
AB
4147 return seqno;
4148}
4149
4150\f
4151
4152/* Extend pass-scope data structures for basic blocks. */
4153void
4154sel_extend_global_bb_info (void)
4155{
cb3874dc 4156 sel_global_bb_info.safe_grow_cleared (last_basic_block_for_fn (cfun), true);
e855c69d
AB
4157}
4158
4159/* Extend region-scope data structures for basic blocks. */
4160static void
4161extend_region_bb_info (void)
4162{
cb3874dc 4163 sel_region_bb_info.safe_grow_cleared (last_basic_block_for_fn (cfun), true);
e855c69d
AB
4164}
4165
4166/* Extend all data structures to fit for all basic blocks. */
4167static void
4168extend_bb_info (void)
4169{
4170 sel_extend_global_bb_info ();
4171 extend_region_bb_info ();
4172}
4173
4174/* Finalize pass-scope data structures for basic blocks. */
4175void
4176sel_finish_global_bb_info (void)
4177{
9771b263 4178 sel_global_bb_info.release ();
e855c69d
AB
4179}
4180
4181/* Finalize region-scope data structures for basic blocks. */
4182static void
4183finish_region_bb_info (void)
4184{
9771b263 4185 sel_region_bb_info.release ();
e855c69d
AB
4186}
4187\f
4188
4189/* Data for each insn in current region. */
7de76362 4190vec<sel_insn_data_def> s_i_d;
e855c69d 4191
e855c69d
AB
4192/* Extend data structures for insns from current region. */
4193static void
4194extend_insn_data (void)
4195{
4196 int reserve;
b8698a0f 4197
e855c69d
AB
4198 sched_extend_target ();
4199 sched_deps_init (false);
4200
4201 /* Extend data structures for insns from current region. */
9771b263
DN
4202 reserve = (sched_max_luid + 1 - s_i_d.length ());
4203 if (reserve > 0 && ! s_i_d.space (reserve))
bcf33775
AB
4204 {
4205 int size;
4206
4207 if (sched_max_luid / 2 > 1024)
4208 size = sched_max_luid + 1024;
4209 else
4210 size = 3 * sched_max_luid / 2;
b8698a0f 4211
bcf33775 4212
cb3874dc 4213 s_i_d.safe_grow_cleared (size, true);
bcf33775 4214 }
e855c69d
AB
4215}
4216
4217/* Finalize data structures for insns from current region. */
4218static void
4219finish_insns (void)
4220{
4221 unsigned i;
4222
4223 /* Clear here all dependence contexts that may have left from insns that were
4224 removed during the scheduling. */
9771b263 4225 for (i = 0; i < s_i_d.length (); i++)
e855c69d 4226 {
9771b263 4227 sel_insn_data_def *sid_entry = &s_i_d[i];
b8698a0f 4228
e855c69d
AB
4229 if (sid_entry->live)
4230 return_regset_to_pool (sid_entry->live);
4231 if (sid_entry->analyzed_deps)
4232 {
4233 BITMAP_FREE (sid_entry->analyzed_deps);
4234 BITMAP_FREE (sid_entry->found_deps);
4235 htab_delete (sid_entry->transformed_insns);
4236 free_deps (&sid_entry->deps_context);
4237 }
4238 if (EXPR_VINSN (&sid_entry->expr))
4239 {
4240 clear_expr (&sid_entry->expr);
b8698a0f 4241
e855c69d
AB
4242 /* Also, clear CANT_MOVE bit here, because we really don't want it
4243 to be passed to the next region. */
4244 CANT_MOVE_BY_LUID (i) = 0;
4245 }
4246 }
b8698a0f 4247
9771b263 4248 s_i_d.release ();
e855c69d
AB
4249}
4250
4251/* A proxy to pass initialization data to init_insn (). */
4252static sel_insn_data_def _insn_init_ssid;
4253static sel_insn_data_t insn_init_ssid = &_insn_init_ssid;
4254
4255/* If true create a new vinsn. Otherwise use the one from EXPR. */
4256static bool insn_init_create_new_vinsn_p;
4257
4258/* Set all necessary data for initialization of the new insn[s]. */
4259static expr_t
4260set_insn_init (expr_t expr, vinsn_t vi, int seqno)
4261{
4262 expr_t x = &insn_init_ssid->expr;
4263
4264 copy_expr_onside (x, expr);
4265 if (vi != NULL)
4266 {
4267 insn_init_create_new_vinsn_p = false;
4268 change_vinsn_in_expr (x, vi);
4269 }
4270 else
4271 insn_init_create_new_vinsn_p = true;
4272
4273 insn_init_ssid->seqno = seqno;
4274 return x;
4275}
4276
4277/* Init data for INSN. */
4278static void
4279init_insn_data (insn_t insn)
4280{
4281 expr_t expr;
4282 sel_insn_data_t ssid = insn_init_ssid;
4283
4284 /* The fields mentioned below are special and hence are not being
4285 propagated to the new insns. */
4286 gcc_assert (!ssid->asm_p && ssid->sched_next == NULL
4287 && !ssid->after_stall_p && ssid->sched_cycle == 0);
4288 gcc_assert (INSN_P (insn) && INSN_LUID (insn) > 0);
4289
4290 expr = INSN_EXPR (insn);
4291 copy_expr (expr, &ssid->expr);
4292 prepare_insn_expr (insn, ssid->seqno);
4293
4294 if (insn_init_create_new_vinsn_p)
4295 change_vinsn_in_expr (expr, vinsn_create (insn, init_insn_force_unique_p));
b8698a0f 4296
e855c69d
AB
4297 if (first_time_insn_init (insn))
4298 init_first_time_insn_data (insn);
4299}
4300
4301/* This is used to initialize spurious jumps generated by
92e265ac
AB
4302 sel_redirect_edge (). OLD_SEQNO is used for initializing seqnos
4303 in corner cases within get_seqno_for_a_jump. */
e855c69d 4304static void
92e265ac 4305init_simplejump_data (insn_t insn, int old_seqno)
e855c69d
AB
4306{
4307 init_expr (INSN_EXPR (insn), vinsn_create (insn, false), 0,
9771b263 4308 REG_BR_PROB_BASE, 0, 0, 0, 0, 0, 0,
6e1aa848 4309 vNULL, true, false, false,
e855c69d 4310 false, true);
92e265ac 4311 INSN_SEQNO (insn) = get_seqno_for_a_jump (insn, old_seqno);
e855c69d
AB
4312 init_first_time_insn_data (insn);
4313}
4314
b8698a0f 4315/* Perform deferred initialization of insns. This is used to process
92e265ac
AB
4316 a new jump that may be created by redirect_edge. OLD_SEQNO is used
4317 for initializing simplejumps in init_simplejump_data. */
4318static void
4319sel_init_new_insn (insn_t insn, int flags, int old_seqno)
e855c69d
AB
4320{
4321 /* We create data structures for bb when the first insn is emitted in it. */
4322 if (INSN_P (insn)
4323 && INSN_IN_STREAM_P (insn)
4324 && insn_is_the_only_one_in_bb_p (insn))
4325 {
4326 extend_bb_info ();
4327 create_initial_data_sets (BLOCK_FOR_INSN (insn));
4328 }
b8698a0f 4329
e855c69d 4330 if (flags & INSN_INIT_TODO_LUID)
a95b23b4
BS
4331 {
4332 sched_extend_luids ();
4333 sched_init_insn_luid (insn);
4334 }
e855c69d
AB
4335
4336 if (flags & INSN_INIT_TODO_SSID)
4337 {
4338 extend_insn_data ();
4339 init_insn_data (insn);
4340 clear_expr (&insn_init_ssid->expr);
4341 }
4342
4343 if (flags & INSN_INIT_TODO_SIMPLEJUMP)
4344 {
4345 extend_insn_data ();
92e265ac 4346 init_simplejump_data (insn, old_seqno);
e855c69d 4347 }
b8698a0f 4348
e855c69d
AB
4349 gcc_assert (CONTAINING_RGN (BLOCK_NUM (insn))
4350 == CONTAINING_RGN (BB_TO_BLOCK (0)));
4351}
4352\f
4353
4354/* Functions to init/finish work with lv sets. */
4355
4356/* Init BB_LV_SET of BB from DF_LR_IN set of BB. */
4357static void
4358init_lv_set (basic_block bb)
4359{
4360 gcc_assert (!BB_LV_SET_VALID_P (bb));
4361
4362 BB_LV_SET (bb) = get_regset_from_pool ();
b8698a0f 4363 COPY_REG_SET (BB_LV_SET (bb), DF_LR_IN (bb));
e855c69d
AB
4364 BB_LV_SET_VALID_P (bb) = true;
4365}
4366
4367/* Copy liveness information to BB from FROM_BB. */
4368static void
4369copy_lv_set_from (basic_block bb, basic_block from_bb)
4370{
4371 gcc_assert (!BB_LV_SET_VALID_P (bb));
b8698a0f 4372
e855c69d
AB
4373 COPY_REG_SET (BB_LV_SET (bb), BB_LV_SET (from_bb));
4374 BB_LV_SET_VALID_P (bb) = true;
b8698a0f 4375}
e855c69d
AB
4376
4377/* Initialize lv set of all bb headers. */
4378void
4379init_lv_sets (void)
4380{
4381 basic_block bb;
4382
4383 /* Initialize of LV sets. */
11cd3bed 4384 FOR_EACH_BB_FN (bb, cfun)
e855c69d
AB
4385 init_lv_set (bb);
4386
4387 /* Don't forget EXIT_BLOCK. */
fefa31b5 4388 init_lv_set (EXIT_BLOCK_PTR_FOR_FN (cfun));
e855c69d
AB
4389}
4390
4391/* Release lv set of HEAD. */
4392static void
4393free_lv_set (basic_block bb)
4394{
4395 gcc_assert (BB_LV_SET (bb) != NULL);
4396
4397 return_regset_to_pool (BB_LV_SET (bb));
4398 BB_LV_SET (bb) = NULL;
4399 BB_LV_SET_VALID_P (bb) = false;
4400}
4401
4402/* Finalize lv sets of all bb headers. */
4403void
4404free_lv_sets (void)
4405{
4406 basic_block bb;
4407
4408 /* Don't forget EXIT_BLOCK. */
fefa31b5 4409 free_lv_set (EXIT_BLOCK_PTR_FOR_FN (cfun));
e855c69d
AB
4410
4411 /* Free LV sets. */
11cd3bed 4412 FOR_EACH_BB_FN (bb, cfun)
e855c69d
AB
4413 if (BB_LV_SET (bb))
4414 free_lv_set (bb);
4415}
4416
5c416724
DM
4417/* Mark AV_SET for BB as invalid, so this set will be updated the next time
4418 compute_av() processes BB. This function is called when creating new basic
4419 blocks, as well as for blocks (either new or existing) where new jumps are
4420 created when the control flow is being updated. */
e855c69d
AB
4421static void
4422invalidate_av_set (basic_block bb)
4423{
e855c69d
AB
4424 BB_AV_LEVEL (bb) = -1;
4425}
4426
4427/* Create initial data sets for BB (they will be invalid). */
4428static void
4429create_initial_data_sets (basic_block bb)
4430{
4431 if (BB_LV_SET (bb))
4432 BB_LV_SET_VALID_P (bb) = false;
4433 else
4434 BB_LV_SET (bb) = get_regset_from_pool ();
4435 invalidate_av_set (bb);
4436}
4437
4438/* Free av set of BB. */
4439static void
4440free_av_set (basic_block bb)
4441{
4442 av_set_clear (&BB_AV_SET (bb));
4443 BB_AV_LEVEL (bb) = 0;
4444}
4445
4446/* Free data sets of BB. */
4447void
4448free_data_sets (basic_block bb)
4449{
4450 free_lv_set (bb);
4451 free_av_set (bb);
4452}
4453
e855c69d
AB
4454/* Exchange data sets of TO and FROM. */
4455void
4456exchange_data_sets (basic_block to, basic_block from)
4457{
6b4db501
MM
4458 /* Exchange lv sets of TO and FROM. */
4459 std::swap (BB_LV_SET (from), BB_LV_SET (to));
4460 std::swap (BB_LV_SET_VALID_P (from), BB_LV_SET_VALID_P (to));
4461
4462 /* Exchange av sets of TO and FROM. */
4463 std::swap (BB_AV_SET (from), BB_AV_SET (to));
4464 std::swap (BB_AV_LEVEL (from), BB_AV_LEVEL (to));
e855c69d
AB
4465}
4466
4467/* Copy data sets of FROM to TO. */
4468void
4469copy_data_sets (basic_block to, basic_block from)
4470{
4471 gcc_assert (!BB_LV_SET_VALID_P (to) && !BB_AV_SET_VALID_P (to));
4472 gcc_assert (BB_AV_SET (to) == NULL);
4473
4474 BB_AV_LEVEL (to) = BB_AV_LEVEL (from);
4475 BB_LV_SET_VALID_P (to) = BB_LV_SET_VALID_P (from);
4476
4477 if (BB_AV_SET_VALID_P (from))
4478 {
4479 BB_AV_SET (to) = av_set_copy (BB_AV_SET (from));
4480 }
4481 if (BB_LV_SET_VALID_P (from))
4482 {
4483 gcc_assert (BB_LV_SET (to) != NULL);
4484 COPY_REG_SET (BB_LV_SET (to), BB_LV_SET (from));
4485 }
4486}
4487
4488/* Return an av set for INSN, if any. */
4489av_set_t
4490get_av_set (insn_t insn)
4491{
4492 av_set_t av_set;
4493
4494 gcc_assert (AV_SET_VALID_P (insn));
4495
4496 if (sel_bb_head_p (insn))
4497 av_set = BB_AV_SET (BLOCK_FOR_INSN (insn));
4498 else
4499 av_set = NULL;
4500
4501 return av_set;
4502}
4503
4504/* Implementation of AV_LEVEL () macro. Return AV_LEVEL () of INSN. */
4505int
4506get_av_level (insn_t insn)
4507{
4508 int av_level;
4509
4510 gcc_assert (INSN_P (insn));
4511
4512 if (sel_bb_head_p (insn))
4513 av_level = BB_AV_LEVEL (BLOCK_FOR_INSN (insn));
4514 else
4515 av_level = INSN_WS_LEVEL (insn);
4516
4517 return av_level;
4518}
4519
4520\f
4521
4522/* Variables to work with control-flow graph. */
4523
4524/* The basic block that already has been processed by the sched_data_update (),
4525 but hasn't been in sel_add_bb () yet. */
7de76362 4526static vec<basic_block> last_added_blocks;
e855c69d
AB
4527
4528/* A pool for allocating successor infos. */
4529static struct
4530{
4531 /* A stack for saving succs_info structures. */
4532 struct succs_info *stack;
4533
4534 /* Its size. */
4535 int size;
4536
4537 /* Top of the stack. */
4538 int top;
4539
4540 /* Maximal value of the top. */
4541 int max_top;
4542} succs_info_pool;
4543
4544/* Functions to work with control-flow graph. */
4545
4546/* Return basic block note of BB. */
c5db5458 4547rtx_insn *
e855c69d
AB
4548sel_bb_head (basic_block bb)
4549{
c5db5458 4550 rtx_insn *head;
e855c69d 4551
fefa31b5 4552 if (bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
e855c69d
AB
4553 {
4554 gcc_assert (exit_insn != NULL_RTX);
4555 head = exit_insn;
4556 }
4557 else
4558 {
e67d1102 4559 rtx_note *note = bb_note (bb);
e855c69d
AB
4560 head = next_nonnote_insn (note);
4561
89ad0f25 4562 if (head && (BARRIER_P (head) || BLOCK_FOR_INSN (head) != bb))
c5db5458 4563 head = NULL;
e855c69d
AB
4564 }
4565
4566 return head;
4567}
4568
4569/* Return true if INSN is a basic block header. */
4570bool
4571sel_bb_head_p (insn_t insn)
4572{
4573 return sel_bb_head (BLOCK_FOR_INSN (insn)) == insn;
4574}
4575
4576/* Return last insn of BB. */
c5db5458 4577rtx_insn *
e855c69d
AB
4578sel_bb_end (basic_block bb)
4579{
4580 if (sel_bb_empty_p (bb))
c5db5458 4581 return NULL;
e855c69d 4582
fefa31b5 4583 gcc_assert (bb != EXIT_BLOCK_PTR_FOR_FN (cfun));
e855c69d
AB
4584
4585 return BB_END (bb);
4586}
4587
4588/* Return true if INSN is the last insn in its basic block. */
4589bool
4590sel_bb_end_p (insn_t insn)
4591{
4592 return insn == sel_bb_end (BLOCK_FOR_INSN (insn));
4593}
4594
4595/* Return true if BB consist of single NOTE_INSN_BASIC_BLOCK. */
4596bool
4597sel_bb_empty_p (basic_block bb)
4598{
4599 return sel_bb_head (bb) == NULL;
4600}
4601
4602/* True when BB belongs to the current scheduling region. */
4603bool
4604in_current_region_p (basic_block bb)
4605{
4606 if (bb->index < NUM_FIXED_BLOCKS)
4607 return false;
4608
4609 return CONTAINING_RGN (bb->index) == CONTAINING_RGN (BB_TO_BLOCK (0));
4610}
4611
4612/* Return the block which is a fallthru bb of a conditional jump JUMP. */
4613basic_block
68a1a6c0 4614fallthru_bb_of_jump (const rtx_insn *jump)
e855c69d
AB
4615{
4616 if (!JUMP_P (jump))
4617 return NULL;
4618
e855c69d
AB
4619 if (!any_condjump_p (jump))
4620 return NULL;
4621
268bab85
AB
4622 /* A basic block that ends with a conditional jump may still have one successor
4623 (and be followed by a barrier), we are not interested. */
4624 if (single_succ_p (BLOCK_FOR_INSN (jump)))
4625 return NULL;
4626
e855c69d
AB
4627 return FALLTHRU_EDGE (BLOCK_FOR_INSN (jump))->dest;
4628}
4629
4630/* Remove all notes from BB. */
4631static void
4632init_bb (basic_block bb)
4633{
4634 remove_notes (bb_note (bb), BB_END (bb));
b311fd0f 4635 BB_NOTE_LIST (bb) = note_list;
e855c69d
AB
4636}
4637
4638void
a95b23b4 4639sel_init_bbs (bb_vec_t bbs)
e855c69d
AB
4640{
4641 const struct sched_scan_info_def ssi =
4642 {
4643 extend_bb_info, /* extend_bb */
4644 init_bb, /* init_bb */
4645 NULL, /* extend_insn */
4646 NULL /* init_insn */
4647 };
4648
a95b23b4 4649 sched_scan (&ssi, bbs);
e855c69d
AB
4650}
4651
7898b93b 4652/* Restore notes for the whole region. */
e855c69d 4653static void
7898b93b 4654sel_restore_notes (void)
e855c69d
AB
4655{
4656 int bb;
7898b93b 4657 insn_t insn;
e855c69d
AB
4658
4659 for (bb = 0; bb < current_nr_blocks; bb++)
4660 {
4661 basic_block first, last;
4662
4663 first = EBB_FIRST_BB (bb);
4664 last = EBB_LAST_BB (bb)->next_bb;
4665
4666 do
4667 {
4668 note_list = BB_NOTE_LIST (first);
4669 restore_other_notes (NULL, first);
b311fd0f 4670 BB_NOTE_LIST (first) = NULL;
e855c69d 4671
7898b93b
AM
4672 FOR_BB_INSNS (first, insn)
4673 if (NONDEBUG_INSN_P (insn))
4674 reemit_notes (insn);
4675
e855c69d
AB
4676 first = first->next_bb;
4677 }
4678 while (first != last);
4679 }
4680}
4681
4682/* Free per-bb data structures. */
4683void
4684sel_finish_bbs (void)
4685{
7898b93b 4686 sel_restore_notes ();
e855c69d
AB
4687
4688 /* Remove current loop preheader from this loop. */
4689 if (current_loop_nest)
4690 sel_remove_loop_preheader ();
4691
4692 finish_region_bb_info ();
4693}
4694
4695/* Return true if INSN has a single successor of type FLAGS. */
4696bool
4697sel_insn_has_single_succ_p (insn_t insn, int flags)
4698{
4699 insn_t succ;
4700 succ_iterator si;
4701 bool first_p = true;
4702
4703 FOR_EACH_SUCC_1 (succ, si, insn, flags)
4704 {
4705 if (first_p)
4706 first_p = false;
4707 else
4708 return false;
4709 }
4710
4711 return true;
4712}
4713
4714/* Allocate successor's info. */
4715static struct succs_info *
4716alloc_succs_info (void)
4717{
4718 if (succs_info_pool.top == succs_info_pool.max_top)
4719 {
4720 int i;
b8698a0f 4721
e855c69d
AB
4722 if (++succs_info_pool.max_top >= succs_info_pool.size)
4723 gcc_unreachable ();
4724
4725 i = ++succs_info_pool.top;
9771b263
DN
4726 succs_info_pool.stack[i].succs_ok.create (10);
4727 succs_info_pool.stack[i].succs_other.create (10);
4728 succs_info_pool.stack[i].probs_ok.create (10);
e855c69d
AB
4729 }
4730 else
4731 succs_info_pool.top++;
4732
4733 return &succs_info_pool.stack[succs_info_pool.top];
4734}
4735
4736/* Free successor's info. */
4737void
4738free_succs_info (struct succs_info * sinfo)
4739{
b8698a0f 4740 gcc_assert (succs_info_pool.top >= 0
e855c69d
AB
4741 && &succs_info_pool.stack[succs_info_pool.top] == sinfo);
4742 succs_info_pool.top--;
4743
4744 /* Clear stale info. */
9771b263
DN
4745 sinfo->succs_ok.block_remove (0, sinfo->succs_ok.length ());
4746 sinfo->succs_other.block_remove (0, sinfo->succs_other.length ());
4747 sinfo->probs_ok.block_remove (0, sinfo->probs_ok.length ());
e855c69d
AB
4748 sinfo->all_prob = 0;
4749 sinfo->succs_ok_n = 0;
4750 sinfo->all_succs_n = 0;
4751}
4752
b8698a0f 4753/* Compute successor info for INSN. FLAGS are the flags passed
e855c69d
AB
4754 to the FOR_EACH_SUCC_1 iterator. */
4755struct succs_info *
4756compute_succs_info (insn_t insn, short flags)
4757{
4758 succ_iterator si;
4759 insn_t succ;
4760 struct succs_info *sinfo = alloc_succs_info ();
4761
4762 /* Traverse *all* successors and decide what to do with each. */
4763 FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_ALL)
4764 {
4765 /* FIXME: this doesn't work for skipping to loop exits, as we don't
4766 perform code motion through inner loops. */
4767 short current_flags = si.current_flags & ~SUCCS_SKIP_TO_LOOP_EXITS;
4768
4769 if (current_flags & flags)
4770 {
9771b263
DN
4771 sinfo->succs_ok.safe_push (succ);
4772 sinfo->probs_ok.safe_push (
4773 /* FIXME: Improve calculation when skipping
4774 inner loop to exits. */
9aad8d93
JH
4775 si.bb_end
4776 ? (si.e1->probability.initialized_p ()
4777 ? si.e1->probability.to_reg_br_prob_base ()
4778 : 0)
4779 : REG_BR_PROB_BASE);
e855c69d
AB
4780 sinfo->succs_ok_n++;
4781 }
4782 else
9771b263 4783 sinfo->succs_other.safe_push (succ);
e855c69d
AB
4784
4785 /* Compute all_prob. */
4786 if (!si.bb_end)
4787 sinfo->all_prob = REG_BR_PROB_BASE;
357067f2
JH
4788 else if (si.e1->probability.initialized_p ())
4789 sinfo->all_prob += si.e1->probability.to_reg_br_prob_base ();
e855c69d
AB
4790
4791 sinfo->all_succs_n++;
4792 }
4793
4794 return sinfo;
4795}
4796
b8698a0f 4797/* Return the predecessors of BB in PREDS and their number in N.
e855c69d
AB
4798 Empty blocks are skipped. SIZE is used to allocate PREDS. */
4799static void
4800cfg_preds_1 (basic_block bb, insn_t **preds, int *n, int *size)
4801{
4802 edge e;
4803 edge_iterator ei;
4804
4805 gcc_assert (BLOCK_TO_BB (bb->index) != 0);
4806
4807 FOR_EACH_EDGE (e, ei, bb->preds)
4808 {
4809 basic_block pred_bb = e->src;
4810 insn_t bb_end = BB_END (pred_bb);
4811
3e6a3f6f
AB
4812 if (!in_current_region_p (pred_bb))
4813 {
4814 gcc_assert (flag_sel_sched_pipelining_outer_loops
4815 && current_loop_nest);
4816 continue;
4817 }
e855c69d
AB
4818
4819 if (sel_bb_empty_p (pred_bb))
4820 cfg_preds_1 (pred_bb, preds, n, size);
4821 else
4822 {
4823 if (*n == *size)
b8698a0f 4824 *preds = XRESIZEVEC (insn_t, *preds,
e855c69d
AB
4825 (*size = 2 * *size + 1));
4826 (*preds)[(*n)++] = bb_end;
4827 }
4828 }
4829
3e6a3f6f
AB
4830 gcc_assert (*n != 0
4831 || (flag_sel_sched_pipelining_outer_loops
4832 && current_loop_nest));
e855c69d
AB
4833}
4834
b8698a0f
L
4835/* Find all predecessors of BB and record them in PREDS and their number
4836 in N. Empty blocks are skipped, and only normal (forward in-region)
e855c69d
AB
4837 edges are processed. */
4838static void
4839cfg_preds (basic_block bb, insn_t **preds, int *n)
4840{
4841 int size = 0;
4842
4843 *preds = NULL;
4844 *n = 0;
4845 cfg_preds_1 (bb, preds, n, &size);
4846}
4847
4848/* Returns true if we are moving INSN through join point. */
4849bool
4850sel_num_cfg_preds_gt_1 (insn_t insn)
4851{
4852 basic_block bb;
4853
4854 if (!sel_bb_head_p (insn) || INSN_BB (insn) == 0)
4855 return false;
4856
4857 bb = BLOCK_FOR_INSN (insn);
4858
4859 while (1)
4860 {
4861 if (EDGE_COUNT (bb->preds) > 1)
4862 return true;
4863
4864 gcc_assert (EDGE_PRED (bb, 0)->dest == bb);
4865 bb = EDGE_PRED (bb, 0)->src;
4866
4867 if (!sel_bb_empty_p (bb))
4868 break;
4869 }
4870
4871 return false;
4872}
4873
b8698a0f 4874/* Returns true when BB should be the end of an ebb. Adapted from the
e855c69d
AB
4875 code in sched-ebb.c. */
4876bool
4877bb_ends_ebb_p (basic_block bb)
4878{
4879 basic_block next_bb = bb_next_bb (bb);
4880 edge e;
b8698a0f 4881
fefa31b5 4882 if (next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
e855c69d
AB
4883 || bitmap_bit_p (forced_ebb_heads, next_bb->index)
4884 || (LABEL_P (BB_HEAD (next_bb))
4885 /* NB: LABEL_NUSES () is not maintained outside of jump.c.
4886 Work around that. */
4887 && !single_pred_p (next_bb)))
4888 return true;
4889
4890 if (!in_current_region_p (next_bb))
4891 return true;
4892
0fd4b31d
NF
4893 e = find_fallthru_edge (bb->succs);
4894 if (e)
4895 {
4896 gcc_assert (e->dest == next_bb);
4897
4898 return false;
4899 }
e855c69d
AB
4900
4901 return true;
4902}
4903
4904/* Returns true when INSN and SUCC are in the same EBB, given that SUCC is a
4905 successor of INSN. */
4906bool
4907in_same_ebb_p (insn_t insn, insn_t succ)
4908{
4909 basic_block ptr = BLOCK_FOR_INSN (insn);
4910
c3284718 4911 for (;;)
e855c69d
AB
4912 {
4913 if (ptr == BLOCK_FOR_INSN (succ))
4914 return true;
b8698a0f 4915
e855c69d
AB
4916 if (bb_ends_ebb_p (ptr))
4917 return false;
4918
4919 ptr = bb_next_bb (ptr);
4920 }
4921
4922 gcc_unreachable ();
4923 return false;
4924}
4925
4926/* Recomputes the reverse topological order for the function and
4927 saves it in REV_TOP_ORDER_INDEX. REV_TOP_ORDER_INDEX_LEN is also
4928 modified appropriately. */
4929static void
4930recompute_rev_top_order (void)
4931{
4932 int *postorder;
4933 int n_blocks, i;
4934
8b1c6fd7
DM
4935 if (!rev_top_order_index
4936 || rev_top_order_index_len < last_basic_block_for_fn (cfun))
e855c69d 4937 {
8b1c6fd7 4938 rev_top_order_index_len = last_basic_block_for_fn (cfun);
e855c69d
AB
4939 rev_top_order_index = XRESIZEVEC (int, rev_top_order_index,
4940 rev_top_order_index_len);
4941 }
4942
0cae8d31 4943 postorder = XNEWVEC (int, n_basic_blocks_for_fn (cfun));
e855c69d
AB
4944
4945 n_blocks = post_order_compute (postorder, true, false);
0cae8d31 4946 gcc_assert (n_basic_blocks_for_fn (cfun) == n_blocks);
e855c69d
AB
4947
4948 /* Build reverse function: for each basic block with BB->INDEX == K
4949 rev_top_order_index[K] is it's reverse topological sort number. */
4950 for (i = 0; i < n_blocks; i++)
4951 {
4952 gcc_assert (postorder[i] < rev_top_order_index_len);
4953 rev_top_order_index[postorder[i]] = i;
4954 }
4955
4956 free (postorder);
4957}
4958
4959/* Clear all flags from insns in BB that could spoil its rescheduling. */
4960void
4961clear_outdated_rtx_info (basic_block bb)
4962{
b32d5189 4963 rtx_insn *insn;
e855c69d
AB
4964
4965 FOR_BB_INSNS (bb, insn)
4966 if (INSN_P (insn))
4967 {
4968 SCHED_GROUP_P (insn) = 0;
4969 INSN_AFTER_STALL_P (insn) = 0;
4970 INSN_SCHED_TIMES (insn) = 0;
4971 EXPR_PRIORITY_ADJ (INSN_EXPR (insn)) = 0;
4972
4973 /* We cannot use the changed caches, as previously we could ignore
b8698a0f 4974 the LHS dependence due to enabled renaming and transform
e855c69d
AB
4975 the expression, and currently we'll be unable to do this. */
4976 htab_empty (INSN_TRANSFORMED_INSNS (insn));
4977 }
4978}
4979
4980/* Add BB_NOTE to the pool of available basic block notes. */
4981static void
4982return_bb_to_pool (basic_block bb)
4983{
e67d1102 4984 rtx_note *note = bb_note (bb);
e855c69d
AB
4985
4986 gcc_assert (NOTE_BASIC_BLOCK (note) == bb
4987 && bb->aux == NULL);
4988
4989 /* It turns out that current cfg infrastructure does not support
4990 reuse of basic blocks. Don't bother for now. */
9771b263 4991 /*bb_note_pool.safe_push (note);*/
e855c69d
AB
4992}
4993
4994/* Get a bb_note from pool or return NULL_RTX if pool is empty. */
66e8df53 4995static rtx_note *
e855c69d
AB
4996get_bb_note_from_pool (void)
4997{
9771b263 4998 if (bb_note_pool.is_empty ())
66e8df53 4999 return NULL;
e855c69d
AB
5000 else
5001 {
66e8df53 5002 rtx_note *note = bb_note_pool.pop ();
e855c69d 5003
0f82e5c9
DM
5004 SET_PREV_INSN (note) = NULL_RTX;
5005 SET_NEXT_INSN (note) = NULL_RTX;
e855c69d
AB
5006
5007 return note;
5008 }
5009}
5010
5011/* Free bb_note_pool. */
5012void
5013free_bb_note_pool (void)
5014{
9771b263 5015 bb_note_pool.release ();
e855c69d
AB
5016}
5017
5018/* Setup scheduler pool and successor structure. */
5019void
5020alloc_sched_pools (void)
5021{
5022 int succs_size;
5023
5024 succs_size = MAX_WS + 1;
b8698a0f 5025 succs_info_pool.stack = XCNEWVEC (struct succs_info, succs_size);
e855c69d
AB
5026 succs_info_pool.size = succs_size;
5027 succs_info_pool.top = -1;
5028 succs_info_pool.max_top = -1;
e855c69d
AB
5029}
5030
5031/* Free the pools. */
5032void
5033free_sched_pools (void)
5034{
5035 int i;
b8698a0f 5036
8bb6373a 5037 sched_lists_pool.release ();
e855c69d 5038 gcc_assert (succs_info_pool.top == -1);
85f5dbea 5039 for (i = 0; i <= succs_info_pool.max_top; i++)
e855c69d 5040 {
9771b263
DN
5041 succs_info_pool.stack[i].succs_ok.release ();
5042 succs_info_pool.stack[i].succs_other.release ();
5043 succs_info_pool.stack[i].probs_ok.release ();
e855c69d
AB
5044 }
5045 free (succs_info_pool.stack);
5046}
5047\f
5048
b8698a0f 5049/* Returns a position in RGN where BB can be inserted retaining
e855c69d
AB
5050 topological order. */
5051static int
5052find_place_to_insert_bb (basic_block bb, int rgn)
5053{
5054 bool has_preds_outside_rgn = false;
5055 edge e;
5056 edge_iterator ei;
b8698a0f 5057
e855c69d
AB
5058 /* Find whether we have preds outside the region. */
5059 FOR_EACH_EDGE (e, ei, bb->preds)
5060 if (!in_current_region_p (e->src))
5061 {
5062 has_preds_outside_rgn = true;
5063 break;
5064 }
b8698a0f 5065
e855c69d
AB
5066 /* Recompute the top order -- needed when we have > 1 pred
5067 and in case we don't have preds outside. */
5068 if (flag_sel_sched_pipelining_outer_loops
5069 && (has_preds_outside_rgn || EDGE_COUNT (bb->preds) > 1))
5070 {
5071 int i, bbi = bb->index, cur_bbi;
5072
5073 recompute_rev_top_order ();
5074 for (i = RGN_NR_BLOCKS (rgn) - 1; i >= 0; i--)
5075 {
5076 cur_bbi = BB_TO_BLOCK (i);
b8698a0f 5077 if (rev_top_order_index[bbi]
e855c69d
AB
5078 < rev_top_order_index[cur_bbi])
5079 break;
5080 }
b8698a0f 5081
073a8998 5082 /* We skipped the right block, so we increase i. We accommodate
e855c69d
AB
5083 it for increasing by step later, so we decrease i. */
5084 return (i + 1) - 1;
5085 }
5086 else if (has_preds_outside_rgn)
5087 {
5088 /* This is the case when we generate an extra empty block
5089 to serve as region head during pipelining. */
5090 e = EDGE_SUCC (bb, 0);
5091 gcc_assert (EDGE_COUNT (bb->succs) == 1
5092 && in_current_region_p (EDGE_SUCC (bb, 0)->dest)
5093 && (BLOCK_TO_BB (e->dest->index) == 0));
5094 return -1;
5095 }
5096
5097 /* We don't have preds outside the region. We should have
5098 the only pred, because the multiple preds case comes from
5099 the pipelining of outer loops, and that is handled above.
5100 Just take the bbi of this single pred. */
5101 if (EDGE_COUNT (bb->succs) > 0)
5102 {
5103 int pred_bbi;
b8698a0f 5104
e855c69d 5105 gcc_assert (EDGE_COUNT (bb->preds) == 1);
b8698a0f 5106
e855c69d
AB
5107 pred_bbi = EDGE_PRED (bb, 0)->src->index;
5108 return BLOCK_TO_BB (pred_bbi);
5109 }
5110 else
5111 /* BB has no successors. It is safe to put it in the end. */
5112 return current_nr_blocks - 1;
5113}
5114
5115/* Deletes an empty basic block freeing its data. */
5116static void
5117delete_and_free_basic_block (basic_block bb)
5118{
5119 gcc_assert (sel_bb_empty_p (bb));
5120
5121 if (BB_LV_SET (bb))
5122 free_lv_set (bb);
5123
5124 bitmap_clear_bit (blocks_to_reschedule, bb->index);
5125
b8698a0f
L
5126 /* Can't assert av_set properties because we use sel_aremove_bb
5127 when removing loop preheader from the region. At the point of
e855c69d
AB
5128 removing the preheader we already have deallocated sel_region_bb_info. */
5129 gcc_assert (BB_LV_SET (bb) == NULL
5130 && !BB_LV_SET_VALID_P (bb)
5131 && BB_AV_LEVEL (bb) == 0
5132 && BB_AV_SET (bb) == NULL);
b8698a0f 5133
e855c69d
AB
5134 delete_basic_block (bb);
5135}
5136
5137/* Add BB to the current region and update the region data. */
5138static void
5139add_block_to_current_region (basic_block bb)
5140{
5141 int i, pos, bbi = -2, rgn;
5142
5143 rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
5144 bbi = find_place_to_insert_bb (bb, rgn);
5145 bbi += 1;
5146 pos = RGN_BLOCKS (rgn) + bbi;
5147
5148 gcc_assert (RGN_HAS_REAL_EBB (rgn) == 0
5149 && ebb_head[bbi] == pos);
b8698a0f 5150
e855c69d
AB
5151 /* Make a place for the new block. */
5152 extend_regions ();
5153
5154 for (i = RGN_BLOCKS (rgn + 1) - 1; i >= pos; i--)
5155 BLOCK_TO_BB (rgn_bb_table[i])++;
b8698a0f 5156
e855c69d
AB
5157 memmove (rgn_bb_table + pos + 1,
5158 rgn_bb_table + pos,
5159 (RGN_BLOCKS (nr_regions) - pos) * sizeof (*rgn_bb_table));
5160
5161 /* Initialize data for BB. */
5162 rgn_bb_table[pos] = bb->index;
5163 BLOCK_TO_BB (bb->index) = bbi;
5164 CONTAINING_RGN (bb->index) = rgn;
5165
5166 RGN_NR_BLOCKS (rgn)++;
b8698a0f 5167
e855c69d
AB
5168 for (i = rgn + 1; i <= nr_regions; i++)
5169 RGN_BLOCKS (i)++;
5170}
5171
5172/* Remove BB from the current region and update the region data. */
5173static void
5174remove_bb_from_region (basic_block bb)
5175{
5176 int i, pos, bbi = -2, rgn;
5177
5178 rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
5179 bbi = BLOCK_TO_BB (bb->index);
5180 pos = RGN_BLOCKS (rgn) + bbi;
5181
5182 gcc_assert (RGN_HAS_REAL_EBB (rgn) == 0
5183 && ebb_head[bbi] == pos);
5184
5185 for (i = RGN_BLOCKS (rgn + 1) - 1; i >= pos; i--)
5186 BLOCK_TO_BB (rgn_bb_table[i])--;
5187
5188 memmove (rgn_bb_table + pos,
5189 rgn_bb_table + pos + 1,
5190 (RGN_BLOCKS (nr_regions) - pos) * sizeof (*rgn_bb_table));
5191
5192 RGN_NR_BLOCKS (rgn)--;
5193 for (i = rgn + 1; i <= nr_regions; i++)
5194 RGN_BLOCKS (i)--;
5195}
5196
b8698a0f 5197/* Add BB to the current region and update all data. If BB is NULL, add all
e855c69d
AB
5198 blocks from last_added_blocks vector. */
5199static void
5200sel_add_bb (basic_block bb)
5201{
5202 /* Extend luids so that new notes will receive zero luids. */
a95b23b4 5203 sched_extend_luids ();
e855c69d 5204 sched_init_bbs ();
a95b23b4 5205 sel_init_bbs (last_added_blocks);
e855c69d 5206
b8698a0f 5207 /* When bb is passed explicitly, the vector should contain
e855c69d
AB
5208 the only element that equals to bb; otherwise, the vector
5209 should not be NULL. */
9771b263 5210 gcc_assert (last_added_blocks.exists ());
b8698a0f 5211
e855c69d
AB
5212 if (bb != NULL)
5213 {
9771b263
DN
5214 gcc_assert (last_added_blocks.length () == 1
5215 && last_added_blocks[0] == bb);
e855c69d
AB
5216 add_block_to_current_region (bb);
5217
5218 /* We associate creating/deleting data sets with the first insn
5219 appearing / disappearing in the bb. */
5220 if (!sel_bb_empty_p (bb) && BB_LV_SET (bb) == NULL)
5221 create_initial_data_sets (bb);
b8698a0f 5222
9771b263 5223 last_added_blocks.release ();
e855c69d
AB
5224 }
5225 else
5226 /* BB is NULL - process LAST_ADDED_BLOCKS instead. */
5227 {
5228 int i;
5229 basic_block temp_bb = NULL;
5230
b8698a0f 5231 for (i = 0;
9771b263 5232 last_added_blocks.iterate (i, &bb); i++)
e855c69d
AB
5233 {
5234 add_block_to_current_region (bb);
5235 temp_bb = bb;
5236 }
5237
b8698a0f 5238 /* We need to fetch at least one bb so we know the region
e855c69d
AB
5239 to update. */
5240 gcc_assert (temp_bb != NULL);
5241 bb = temp_bb;
5242
9771b263 5243 last_added_blocks.release ();
e855c69d
AB
5244 }
5245
5246 rgn_setup_region (CONTAINING_RGN (bb->index));
5247}
5248
b8698a0f 5249/* Remove BB from the current region and update all data.
e855c69d
AB
5250 If REMOVE_FROM_CFG_PBB is true, also remove the block cfom cfg. */
5251static void
5252sel_remove_bb (basic_block bb, bool remove_from_cfg_p)
5253{
262d8232
AB
5254 unsigned idx = bb->index;
5255
e855c69d 5256 gcc_assert (bb != NULL && BB_NOTE_LIST (bb) == NULL_RTX);
b8698a0f 5257
e855c69d
AB
5258 remove_bb_from_region (bb);
5259 return_bb_to_pool (bb);
262d8232 5260 bitmap_clear_bit (blocks_to_reschedule, idx);
b8698a0f 5261
e855c69d 5262 if (remove_from_cfg_p)
00c4e97c
AB
5263 {
5264 basic_block succ = single_succ (bb);
5265 delete_and_free_basic_block (bb);
5266 set_immediate_dominator (CDI_DOMINATORS, succ,
5267 recompute_dominator (CDI_DOMINATORS, succ));
5268 }
e855c69d 5269
262d8232 5270 rgn_setup_region (CONTAINING_RGN (idx));
e855c69d
AB
5271}
5272
5273/* Concatenate info of EMPTY_BB to info of MERGE_BB. */
5274static void
5275move_bb_info (basic_block merge_bb, basic_block empty_bb)
5276{
b7b5540a
AB
5277 if (in_current_region_p (merge_bb))
5278 concat_note_lists (BB_NOTE_LIST (empty_bb),
b311fd0f
DM
5279 &BB_NOTE_LIST (merge_bb));
5280 BB_NOTE_LIST (empty_bb) = NULL;
e855c69d
AB
5281
5282}
5283
e855c69d
AB
5284/* Remove EMPTY_BB. If REMOVE_FROM_CFG_P is false, remove EMPTY_BB from
5285 region, but keep it in CFG. */
5286static void
5287remove_empty_bb (basic_block empty_bb, bool remove_from_cfg_p)
5288{
5289 /* The block should contain just a note or a label.
5290 We try to check whether it is unused below. */
5291 gcc_assert (BB_HEAD (empty_bb) == BB_END (empty_bb)
5292 || LABEL_P (BB_HEAD (empty_bb)));
5293
5294 /* If basic block has predecessors or successors, redirect them. */
5295 if (remove_from_cfg_p
5296 && (EDGE_COUNT (empty_bb->preds) > 0
5297 || EDGE_COUNT (empty_bb->succs) > 0))
5298 {
5299 basic_block pred;
5300 basic_block succ;
5301
5302 /* We need to init PRED and SUCC before redirecting edges. */
5303 if (EDGE_COUNT (empty_bb->preds) > 0)
5304 {
5305 edge e;
5306
5307 gcc_assert (EDGE_COUNT (empty_bb->preds) == 1);
5308
5309 e = EDGE_PRED (empty_bb, 0);
5310 gcc_assert (e->src == empty_bb->prev_bb
5311 && (e->flags & EDGE_FALLTHRU));
5312
5313 pred = empty_bb->prev_bb;
5314 }
5315 else
5316 pred = NULL;
5317
5318 if (EDGE_COUNT (empty_bb->succs) > 0)
5319 {
5320 /* We do not check fallthruness here as above, because
5321 after removing a jump the edge may actually be not fallthru. */
5322 gcc_assert (EDGE_COUNT (empty_bb->succs) == 1);
5323 succ = EDGE_SUCC (empty_bb, 0)->dest;
5324 }
5325 else
5326 succ = NULL;
5327
5328 if (EDGE_COUNT (empty_bb->preds) > 0 && succ != NULL)
5329 {
5330 edge e = EDGE_PRED (empty_bb, 0);
5331
5332 if (e->flags & EDGE_FALLTHRU)
5333 redirect_edge_succ_nodup (e, succ);
5334 else
5335 sel_redirect_edge_and_branch (EDGE_PRED (empty_bb, 0), succ);
5336 }
5337
5338 if (EDGE_COUNT (empty_bb->succs) > 0 && pred != NULL)
5339 {
5340 edge e = EDGE_SUCC (empty_bb, 0);
5341
5342 if (find_edge (pred, e->dest) == NULL)
5343 redirect_edge_pred (e, pred);
5344 }
5345 }
5346
5347 /* Finish removing. */
5348 sel_remove_bb (empty_bb, remove_from_cfg_p);
5349}
5350
b8698a0f 5351/* An implementation of create_basic_block hook, which additionally updates
e855c69d
AB
5352 per-bb data structures. */
5353static basic_block
5354sel_create_basic_block (void *headp, void *endp, basic_block after)
5355{
5356 basic_block new_bb;
66e8df53 5357 rtx_note *new_bb_note;
b8698a0f
L
5358
5359 gcc_assert (flag_sel_sched_pipelining_outer_loops
9771b263 5360 || !last_added_blocks.exists ());
e855c69d
AB
5361
5362 new_bb_note = get_bb_note_from_pool ();
5363
5364 if (new_bb_note == NULL_RTX)
5365 new_bb = orig_cfg_hooks.create_basic_block (headp, endp, after);
5366 else
5367 {
e00022e9
DM
5368 new_bb = create_basic_block_structure ((rtx_insn *) headp,
5369 (rtx_insn *) endp,
e855c69d
AB
5370 new_bb_note, after);
5371 new_bb->aux = NULL;
5372 }
5373
9771b263 5374 last_added_blocks.safe_push (new_bb);
e855c69d
AB
5375
5376 return new_bb;
5377}
5378
5379/* Implement sched_init_only_bb (). */
5380static void
5381sel_init_only_bb (basic_block bb, basic_block after)
5382{
5383 gcc_assert (after == NULL);
5384
5385 extend_regions ();
5386 rgn_make_new_region_out_of_new_block (bb);
5387}
5388
5389/* Update the latch when we've splitted or merged it from FROM block to TO.
5390 This should be checked for all outer loops, too. */
5391static void
5392change_loops_latches (basic_block from, basic_block to)
5393{
5394 gcc_assert (from != to);
5395
5396 if (current_loop_nest)
5397 {
99b1c316 5398 class loop *loop;
e855c69d
AB
5399
5400 for (loop = current_loop_nest; loop; loop = loop_outer (loop))
5401 if (considered_for_pipelining_p (loop) && loop->latch == from)
5402 {
5403 gcc_assert (loop == current_loop_nest);
5404 loop->latch = to;
5405 gcc_assert (loop_latch_edge (loop));
5406 }
5407 }
5408}
5409
b8698a0f 5410/* Splits BB on two basic blocks, adding it to the region and extending
e855c69d
AB
5411 per-bb data structures. Returns the newly created bb. */
5412static basic_block
5413sel_split_block (basic_block bb, rtx after)
5414{
5415 basic_block new_bb;
5416 insn_t insn;
5417
5418 new_bb = sched_split_block_1 (bb, after);
5419 sel_add_bb (new_bb);
5420
5421 /* This should be called after sel_add_bb, because this uses
b8698a0f 5422 CONTAINING_RGN for the new block, which is not yet initialized.
e855c69d
AB
5423 FIXME: this function may be a no-op now. */
5424 change_loops_latches (bb, new_bb);
5425
5426 /* Update ORIG_BB_INDEX for insns moved into the new block. */
5427 FOR_BB_INSNS (new_bb, insn)
5428 if (INSN_P (insn))
5429 EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = new_bb->index;
5430
5431 if (sel_bb_empty_p (bb))
5432 {
5433 gcc_assert (!sel_bb_empty_p (new_bb));
5434
5435 /* NEW_BB has data sets that need to be updated and BB holds
5436 data sets that should be removed. Exchange these data sets
5437 so that we won't lose BB's valid data sets. */
5438 exchange_data_sets (new_bb, bb);
5439 free_data_sets (bb);
5440 }
5441
5442 if (!sel_bb_empty_p (new_bb)
5443 && bitmap_bit_p (blocks_to_reschedule, bb->index))
5444 bitmap_set_bit (blocks_to_reschedule, new_bb->index);
5445
5446 return new_bb;
5447}
5448
5449/* If BB ends with a jump insn whose ID is bigger then PREV_MAX_UID, return it.
5450 Otherwise returns NULL. */
9ee1fbb1 5451static rtx_insn *
e855c69d
AB
5452check_for_new_jump (basic_block bb, int prev_max_uid)
5453{
9ee1fbb1 5454 rtx_insn *end;
e855c69d
AB
5455
5456 end = sel_bb_end (bb);
5457 if (end && INSN_UID (end) >= prev_max_uid)
5458 return end;
5459 return NULL;
5460}
5461
b8698a0f 5462/* Look for a new jump either in FROM_BB block or in newly created JUMP_BB block.
e855c69d 5463 New means having UID at least equal to PREV_MAX_UID. */
9ee1fbb1 5464static rtx_insn *
e855c69d
AB
5465find_new_jump (basic_block from, basic_block jump_bb, int prev_max_uid)
5466{
9ee1fbb1 5467 rtx_insn *jump;
e855c69d
AB
5468
5469 /* Return immediately if no new insns were emitted. */
5470 if (get_max_uid () == prev_max_uid)
5471 return NULL;
b8698a0f 5472
e855c69d
AB
5473 /* Now check both blocks for new jumps. It will ever be only one. */
5474 if ((jump = check_for_new_jump (from, prev_max_uid)))
5475 return jump;
5476
5477 if (jump_bb != NULL
5478 && (jump = check_for_new_jump (jump_bb, prev_max_uid)))
5479 return jump;
5480 return NULL;
5481}
5482
5483/* Splits E and adds the newly created basic block to the current region.
5484 Returns this basic block. */
5485basic_block
5486sel_split_edge (edge e)
5487{
5488 basic_block new_bb, src, other_bb = NULL;
5489 int prev_max_uid;
9ee1fbb1 5490 rtx_insn *jump;
e855c69d
AB
5491
5492 src = e->src;
5493 prev_max_uid = get_max_uid ();
5494 new_bb = split_edge (e);
5495
b8698a0f 5496 if (flag_sel_sched_pipelining_outer_loops
e855c69d
AB
5497 && current_loop_nest)
5498 {
5499 int i;
5500 basic_block bb;
5501
b8698a0f 5502 /* Some of the basic blocks might not have been added to the loop.
e855c69d 5503 Add them here, until this is fixed in force_fallthru. */
b8698a0f 5504 for (i = 0;
9771b263 5505 last_added_blocks.iterate (i, &bb); i++)
e855c69d
AB
5506 if (!bb->loop_father)
5507 {
5508 add_bb_to_loop (bb, e->dest->loop_father);
5509
5510 gcc_assert (!other_bb && (new_bb->index != bb->index));
5511 other_bb = bb;
5512 }
5513 }
5514
5515 /* Add all last_added_blocks to the region. */
5516 sel_add_bb (NULL);
5517
5518 jump = find_new_jump (src, new_bb, prev_max_uid);
5519 if (jump)
5520 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP);
5521
5522 /* Put the correct lv set on this block. */
5523 if (other_bb && !sel_bb_empty_p (other_bb))
5524 compute_live (sel_bb_head (other_bb));
5525
5526 return new_bb;
5527}
5528
5529/* Implement sched_create_empty_bb (). */
5530static basic_block
5531sel_create_empty_bb (basic_block after)
5532{
5533 basic_block new_bb;
5534
5535 new_bb = sched_create_empty_bb_1 (after);
5536
5537 /* We'll explicitly initialize NEW_BB via sel_init_only_bb () a bit
5538 later. */
9771b263
DN
5539 gcc_assert (last_added_blocks.length () == 1
5540 && last_added_blocks[0] == new_bb);
e855c69d 5541
9771b263 5542 last_added_blocks.release ();
e855c69d
AB
5543 return new_bb;
5544}
5545
5546/* Implement sched_create_recovery_block. ORIG_INSN is where block
5547 will be splitted to insert a check. */
5548basic_block
5549sel_create_recovery_block (insn_t orig_insn)
5550{
5551 basic_block first_bb, second_bb, recovery_block;
5552 basic_block before_recovery = NULL;
9ee1fbb1 5553 rtx_insn *jump;
e855c69d
AB
5554
5555 first_bb = BLOCK_FOR_INSN (orig_insn);
5556 if (sel_bb_end_p (orig_insn))
5557 {
5558 /* Avoid introducing an empty block while splitting. */
5559 gcc_assert (single_succ_p (first_bb));
5560 second_bb = single_succ (first_bb);
5561 }
5562 else
5563 second_bb = sched_split_block (first_bb, orig_insn);
5564
5565 recovery_block = sched_create_recovery_block (&before_recovery);
5566 if (before_recovery)
fefa31b5 5567 copy_lv_set_from (before_recovery, EXIT_BLOCK_PTR_FOR_FN (cfun));
e855c69d
AB
5568
5569 gcc_assert (sel_bb_empty_p (recovery_block));
5570 sched_create_recovery_edges (first_bb, recovery_block, second_bb);
5571 if (current_loops != NULL)
5572 add_bb_to_loop (recovery_block, first_bb->loop_father);
b8698a0f 5573
e855c69d 5574 sel_add_bb (recovery_block);
b8698a0f 5575
e855c69d
AB
5576 jump = BB_END (recovery_block);
5577 gcc_assert (sel_bb_head (recovery_block) == jump);
5578 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP);
5579
5580 return recovery_block;
5581}
5582
5583/* Merge basic block B into basic block A. */
262d8232 5584static void
e855c69d
AB
5585sel_merge_blocks (basic_block a, basic_block b)
5586{
262d8232
AB
5587 gcc_assert (sel_bb_empty_p (b)
5588 && EDGE_COUNT (b->preds) == 1
5589 && EDGE_PRED (b, 0)->src == b->prev_bb);
e855c69d 5590
262d8232
AB
5591 move_bb_info (b->prev_bb, b);
5592 remove_empty_bb (b, false);
5593 merge_blocks (a, b);
e855c69d
AB
5594 change_loops_latches (b, a);
5595}
5596
5597/* A wrapper for redirect_edge_and_branch_force, which also initializes
92e265ac 5598 data structures for possibly created bb and insns. */
e855c69d
AB
5599void
5600sel_redirect_edge_and_branch_force (edge e, basic_block to)
5601{
00c4e97c 5602 basic_block jump_bb, src, orig_dest = e->dest;
e855c69d 5603 int prev_max_uid;
9ee1fbb1 5604 rtx_insn *jump;
92e265ac 5605 int old_seqno = -1;
b8698a0f 5606
00c4e97c
AB
5607 /* This function is now used only for bookkeeping code creation, where
5608 we'll never get the single pred of orig_dest block and thus will not
5609 hit unreachable blocks when updating dominator info. */
5610 gcc_assert (!sel_bb_empty_p (e->src)
5611 && !single_pred_p (orig_dest));
e855c69d
AB
5612 src = e->src;
5613 prev_max_uid = get_max_uid ();
92e265ac
AB
5614 /* Compute and pass old_seqno down to sel_init_new_insn only for the case
5615 when the conditional jump being redirected may become unconditional. */
5616 if (any_condjump_p (BB_END (src))
5617 && INSN_SEQNO (BB_END (src)) >= 0)
5618 old_seqno = INSN_SEQNO (BB_END (src));
e855c69d 5619
92e265ac 5620 jump_bb = redirect_edge_and_branch_force (e, to);
e855c69d
AB
5621 if (jump_bb != NULL)
5622 sel_add_bb (jump_bb);
5623
5624 /* This function could not be used to spoil the loop structure by now,
5625 thus we don't care to update anything. But check it to be sure. */
5626 if (current_loop_nest
5627 && pipelining_p)
5628 gcc_assert (loop_latch_edge (current_loop_nest));
b8698a0f 5629
e855c69d
AB
5630 jump = find_new_jump (src, jump_bb, prev_max_uid);
5631 if (jump)
92e265ac
AB
5632 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP,
5633 old_seqno);
00c4e97c
AB
5634 set_immediate_dominator (CDI_DOMINATORS, to,
5635 recompute_dominator (CDI_DOMINATORS, to));
5636 set_immediate_dominator (CDI_DOMINATORS, orig_dest,
5637 recompute_dominator (CDI_DOMINATORS, orig_dest));
8bad0ced
AB
5638 if (jump && sel_bb_head_p (jump))
5639 compute_live (jump);
e855c69d
AB
5640}
5641
b59ab570
AM
5642/* A wrapper for redirect_edge_and_branch. Return TRUE if blocks connected by
5643 redirected edge are in reverse topological order. */
5644bool
e855c69d
AB
5645sel_redirect_edge_and_branch (edge e, basic_block to)
5646{
5647 bool latch_edge_p;
00c4e97c 5648 basic_block src, orig_dest = e->dest;
e855c69d 5649 int prev_max_uid;
9ee1fbb1 5650 rtx_insn *jump;
f2c45f08 5651 edge redirected;
b59ab570 5652 bool recompute_toporder_p = false;
00c4e97c 5653 bool maybe_unreachable = single_pred_p (orig_dest);
92e265ac 5654 int old_seqno = -1;
e855c69d
AB
5655
5656 latch_edge_p = (pipelining_p
5657 && current_loop_nest
5658 && e == loop_latch_edge (current_loop_nest));
5659
5660 src = e->src;
5661 prev_max_uid = get_max_uid ();
f2c45f08 5662
92e265ac
AB
5663 /* Compute and pass old_seqno down to sel_init_new_insn only for the case
5664 when the conditional jump being redirected may become unconditional. */
5665 if (any_condjump_p (BB_END (src))
5666 && INSN_SEQNO (BB_END (src)) >= 0)
5667 old_seqno = INSN_SEQNO (BB_END (src));
5668
f2c45f08
AM
5669 redirected = redirect_edge_and_branch (e, to);
5670
9771b263 5671 gcc_assert (redirected && !last_added_blocks.exists ());
e855c69d
AB
5672
5673 /* When we've redirected a latch edge, update the header. */
5674 if (latch_edge_p)
5675 {
5676 current_loop_nest->header = to;
5677 gcc_assert (loop_latch_edge (current_loop_nest));
5678 }
5679
b59ab570
AM
5680 /* In rare situations, the topological relation between the blocks connected
5681 by the redirected edge can change (see PR42245 for an example). Update
5682 block_to_bb/bb_to_block. */
5683 if (CONTAINING_RGN (e->src->index) == CONTAINING_RGN (to->index)
5684 && BLOCK_TO_BB (e->src->index) > BLOCK_TO_BB (to->index))
5685 recompute_toporder_p = true;
5686
e855c69d
AB
5687 jump = find_new_jump (src, NULL, prev_max_uid);
5688 if (jump)
92e265ac 5689 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP, old_seqno);
b59ab570 5690
00c4e97c
AB
5691 /* Only update dominator info when we don't have unreachable blocks.
5692 Otherwise we'll update in maybe_tidy_empty_bb. */
5693 if (!maybe_unreachable)
5694 {
5695 set_immediate_dominator (CDI_DOMINATORS, to,
5696 recompute_dominator (CDI_DOMINATORS, to));
5697 set_immediate_dominator (CDI_DOMINATORS, orig_dest,
5698 recompute_dominator (CDI_DOMINATORS, orig_dest));
5699 }
8bad0ced
AB
5700 if (jump && sel_bb_head_p (jump))
5701 compute_live (jump);
b59ab570 5702 return recompute_toporder_p;
e855c69d
AB
5703}
5704
5705/* This variable holds the cfg hooks used by the selective scheduler. */
5706static struct cfg_hooks sel_cfg_hooks;
5707
5708/* Register sel-sched cfg hooks. */
5709void
5710sel_register_cfg_hooks (void)
5711{
5712 sched_split_block = sel_split_block;
5713
5714 orig_cfg_hooks = get_cfg_hooks ();
5715 sel_cfg_hooks = orig_cfg_hooks;
5716
5717 sel_cfg_hooks.create_basic_block = sel_create_basic_block;
5718
5719 set_cfg_hooks (sel_cfg_hooks);
5720
5721 sched_init_only_bb = sel_init_only_bb;
5722 sched_split_block = sel_split_block;
5723 sched_create_empty_bb = sel_create_empty_bb;
5724}
5725
5726/* Unregister sel-sched cfg hooks. */
5727void
5728sel_unregister_cfg_hooks (void)
5729{
5730 sched_create_empty_bb = NULL;
5731 sched_split_block = NULL;
5732 sched_init_only_bb = NULL;
5733
5734 set_cfg_hooks (orig_cfg_hooks);
5735}
5736\f
5737
5738/* Emit an insn rtx based on PATTERN. If a jump insn is wanted,
5739 LABEL is where this jump should be directed. */
9c068b73 5740rtx_insn *
e855c69d
AB
5741create_insn_rtx_from_pattern (rtx pattern, rtx label)
5742{
9c068b73 5743 rtx_insn *insn_rtx;
e855c69d
AB
5744
5745 gcc_assert (!INSN_P (pattern));
5746
5747 start_sequence ();
5748
5749 if (label == NULL_RTX)
5750 insn_rtx = emit_insn (pattern);
b5b8b0ac
AO
5751 else if (DEBUG_INSN_P (label))
5752 insn_rtx = emit_debug_insn (pattern);
e855c69d
AB
5753 else
5754 {
5755 insn_rtx = emit_jump_insn (pattern);
5756 JUMP_LABEL (insn_rtx) = label;
5757 ++LABEL_NUSES (label);
5758 }
5759
5760 end_sequence ();
5761
a95b23b4 5762 sched_extend_luids ();
e855c69d
AB
5763 sched_extend_target ();
5764 sched_deps_init (false);
5765
5766 /* Initialize INSN_CODE now. */
5767 recog_memoized (insn_rtx);
5768 return insn_rtx;
5769}
5770
5771/* Create a new vinsn for INSN_RTX. FORCE_UNIQUE_P is true when the vinsn
5772 must not be clonable. */
5773vinsn_t
6144a836 5774create_vinsn_from_insn_rtx (rtx_insn *insn_rtx, bool force_unique_p)
e855c69d
AB
5775{
5776 gcc_assert (INSN_P (insn_rtx) && !INSN_IN_STREAM_P (insn_rtx));
5777
5778 /* If VINSN_TYPE is not USE, retain its uniqueness. */
5779 return vinsn_create (insn_rtx, force_unique_p);
5780}
5781
5782/* Create a copy of INSN_RTX. */
9c068b73 5783rtx_insn *
e855c69d
AB
5784create_copy_of_insn_rtx (rtx insn_rtx)
5785{
9c068b73
DM
5786 rtx_insn *res;
5787 rtx link;
e855c69d 5788
b5b8b0ac
AO
5789 if (DEBUG_INSN_P (insn_rtx))
5790 return create_insn_rtx_from_pattern (copy_rtx (PATTERN (insn_rtx)),
5791 insn_rtx);
5792
e855c69d
AB
5793 gcc_assert (NONJUMP_INSN_P (insn_rtx));
5794
5795 res = create_insn_rtx_from_pattern (copy_rtx (PATTERN (insn_rtx)),
5796 NULL_RTX);
d734e6c4 5797
1581a12c
BS
5798 /* Locate the end of existing REG_NOTES in NEW_RTX. */
5799 rtx *ptail = &REG_NOTES (res);
5800 while (*ptail != NULL_RTX)
5801 ptail = &XEXP (*ptail, 1);
5802
d734e6c4
JJ
5803 /* Copy all REG_NOTES except REG_EQUAL/REG_EQUIV and REG_LABEL_OPERAND
5804 since mark_jump_label will make them. REG_LABEL_TARGETs are created
5805 there too, but are supposed to be sticky, so we copy them. */
5806 for (link = REG_NOTES (insn_rtx); link; link = XEXP (link, 1))
5807 if (REG_NOTE_KIND (link) != REG_LABEL_OPERAND
5808 && REG_NOTE_KIND (link) != REG_EQUAL
5809 && REG_NOTE_KIND (link) != REG_EQUIV)
5810 {
1581a12c
BS
5811 *ptail = duplicate_reg_note (link);
5812 ptail = &XEXP (*ptail, 1);
d734e6c4
JJ
5813 }
5814
e855c69d
AB
5815 return res;
5816}
5817
5818/* Change vinsn field of EXPR to hold NEW_VINSN. */
5819void
5820change_vinsn_in_expr (expr_t expr, vinsn_t new_vinsn)
5821{
5822 vinsn_detach (EXPR_VINSN (expr));
5823
5824 EXPR_VINSN (expr) = new_vinsn;
5825 vinsn_attach (new_vinsn);
5826}
5827
5828/* Helpers for global init. */
5829/* This structure is used to be able to call existing bundling mechanism
5830 and calculate insn priorities. */
b8698a0f 5831static struct haifa_sched_info sched_sel_haifa_sched_info =
e855c69d
AB
5832{
5833 NULL, /* init_ready_list */
5834 NULL, /* can_schedule_ready_p */
5835 NULL, /* schedule_more_p */
5836 NULL, /* new_ready */
5837 NULL, /* rgn_rank */
5838 sel_print_insn, /* rgn_print_insn */
5839 contributes_to_priority,
356c23b3 5840 NULL, /* insn_finishes_block_p */
e855c69d
AB
5841
5842 NULL, NULL,
5843 NULL, NULL,
5844 0, 0,
5845
5846 NULL, /* add_remove_insn */
5847 NULL, /* begin_schedule_ready */
86014d07 5848 NULL, /* begin_move_insn */
e855c69d 5849 NULL, /* advance_target_bb */
26965010
BS
5850
5851 NULL,
5852 NULL,
5853
e855c69d
AB
5854 SEL_SCHED | NEW_BBS
5855};
5856
5857/* Setup special insns used in the scheduler. */
b8698a0f 5858void
e855c69d
AB
5859setup_nop_and_exit_insns (void)
5860{
5861 gcc_assert (nop_pattern == NULL_RTX
5862 && exit_insn == NULL_RTX);
5863
9ef1bf71 5864 nop_pattern = constm1_rtx;
e855c69d
AB
5865
5866 start_sequence ();
5867 emit_insn (nop_pattern);
5868 exit_insn = get_insns ();
5869 end_sequence ();
fefa31b5 5870 set_block_for_insn (exit_insn, EXIT_BLOCK_PTR_FOR_FN (cfun));
e855c69d
AB
5871}
5872
5873/* Free special insns used in the scheduler. */
5874void
5875free_nop_and_exit_insns (void)
5876{
c5db5458 5877 exit_insn = NULL;
e855c69d
AB
5878 nop_pattern = NULL_RTX;
5879}
5880
5881/* Setup a special vinsn used in new insns initialization. */
5882void
5883setup_nop_vinsn (void)
5884{
5885 nop_vinsn = vinsn_create (exit_insn, false);
5886 vinsn_attach (nop_vinsn);
5887}
5888
5889/* Free a special vinsn used in new insns initialization. */
5890void
5891free_nop_vinsn (void)
5892{
5893 gcc_assert (VINSN_COUNT (nop_vinsn) == 1);
5894 vinsn_detach (nop_vinsn);
5895 nop_vinsn = NULL;
5896}
5897
5898/* Call a set_sched_flags hook. */
5899void
5900sel_set_sched_flags (void)
5901{
b8698a0f 5902 /* ??? This means that set_sched_flags were called, and we decided to
e855c69d 5903 support speculation. However, set_sched_flags also modifies flags
b8698a0f 5904 on current_sched_info, doing this only at global init. And we
e855c69d
AB
5905 sometimes change c_s_i later. So put the correct flags again. */
5906 if (spec_info && targetm.sched.set_sched_flags)
5907 targetm.sched.set_sched_flags (spec_info);
5908}
5909
5910/* Setup pointers to global sched info structures. */
5911void
5912sel_setup_sched_infos (void)
5913{
5914 rgn_setup_common_sched_info ();
5915
5916 memcpy (&sel_common_sched_info, common_sched_info,
5917 sizeof (sel_common_sched_info));
5918
5919 sel_common_sched_info.fix_recovery_cfg = NULL;
5920 sel_common_sched_info.add_block = NULL;
5921 sel_common_sched_info.estimate_number_of_insns
5922 = sel_estimate_number_of_insns;
5923 sel_common_sched_info.luid_for_non_insn = sel_luid_for_non_insn;
5924 sel_common_sched_info.sched_pass_id = SCHED_SEL_PASS;
5925
5926 common_sched_info = &sel_common_sched_info;
5927
5928 current_sched_info = &sched_sel_haifa_sched_info;
b8698a0f 5929 current_sched_info->sched_max_insns_priority =
e855c69d 5930 get_rgn_sched_max_insns_priority ();
b8698a0f 5931
e855c69d
AB
5932 sel_set_sched_flags ();
5933}
5934\f
5935
5936/* Adds basic block BB to region RGN at the position *BB_ORD_INDEX,
5937 *BB_ORD_INDEX after that is increased. */
5938static void
5939sel_add_block_to_region (basic_block bb, int *bb_ord_index, int rgn)
5940{
5941 RGN_NR_BLOCKS (rgn) += 1;
5942 RGN_DONT_CALC_DEPS (rgn) = 0;
5943 RGN_HAS_REAL_EBB (rgn) = 0;
5944 CONTAINING_RGN (bb->index) = rgn;
5945 BLOCK_TO_BB (bb->index) = *bb_ord_index;
5946 rgn_bb_table[RGN_BLOCKS (rgn) + *bb_ord_index] = bb->index;
5947 (*bb_ord_index)++;
5948
5949 /* FIXME: it is true only when not scheduling ebbs. */
5950 RGN_BLOCKS (rgn + 1) = RGN_BLOCKS (rgn) + RGN_NR_BLOCKS (rgn);
5951}
5952
5953/* Functions to support pipelining of outer loops. */
5954
5955/* Creates a new empty region and returns it's number. */
5956static int
5957sel_create_new_region (void)
5958{
5959 int new_rgn_number = nr_regions;
5960
5961 RGN_NR_BLOCKS (new_rgn_number) = 0;
5962
5963 /* FIXME: This will work only when EBBs are not created. */
5964 if (new_rgn_number != 0)
b8698a0f 5965 RGN_BLOCKS (new_rgn_number) = RGN_BLOCKS (new_rgn_number - 1) +
e855c69d
AB
5966 RGN_NR_BLOCKS (new_rgn_number - 1);
5967 else
5968 RGN_BLOCKS (new_rgn_number) = 0;
5969
5970 /* Set the blocks of the next region so the other functions may
5971 calculate the number of blocks in the region. */
b8698a0f 5972 RGN_BLOCKS (new_rgn_number + 1) = RGN_BLOCKS (new_rgn_number) +
e855c69d
AB
5973 RGN_NR_BLOCKS (new_rgn_number);
5974
5975 nr_regions++;
5976
5977 return new_rgn_number;
5978}
5979
5980/* If X has a smaller topological sort number than Y, returns -1;
5981 if greater, returns 1. */
5982static int
5983bb_top_order_comparator (const void *x, const void *y)
5984{
5985 basic_block bb1 = *(const basic_block *) x;
5986 basic_block bb2 = *(const basic_block *) y;
5987
b8698a0f
L
5988 gcc_assert (bb1 == bb2
5989 || rev_top_order_index[bb1->index]
e855c69d
AB
5990 != rev_top_order_index[bb2->index]);
5991
5992 /* It's a reverse topological order in REV_TOP_ORDER_INDEX, so
5993 bbs with greater number should go earlier. */
5994 if (rev_top_order_index[bb1->index] > rev_top_order_index[bb2->index])
5995 return -1;
5996 else
5997 return 1;
5998}
5999
b8698a0f 6000/* Create a region for LOOP and return its number. If we don't want
e855c69d
AB
6001 to pipeline LOOP, return -1. */
6002static int
99b1c316 6003make_region_from_loop (class loop *loop)
e855c69d
AB
6004{
6005 unsigned int i;
6006 int new_rgn_number = -1;
99b1c316 6007 class loop *inner;
e855c69d
AB
6008
6009 /* Basic block index, to be assigned to BLOCK_TO_BB. */
6010 int bb_ord_index = 0;
6011 basic_block *loop_blocks;
6012 basic_block preheader_block;
6013
b8698a0f 6014 if (loop->num_nodes
028d4092 6015 > (unsigned) param_max_pipeline_region_blocks)
e855c69d 6016 return -1;
b8698a0f 6017
e855c69d
AB
6018 /* Don't pipeline loops whose latch belongs to some of its inner loops. */
6019 for (inner = loop->inner; inner; inner = inner->inner)
6020 if (flow_bb_inside_loop_p (inner, loop->latch))
6021 return -1;
6022
6023 loop->ninsns = num_loop_insns (loop);
028d4092 6024 if ((int) loop->ninsns > param_max_pipeline_region_insns)
e855c69d
AB
6025 return -1;
6026
6027 loop_blocks = get_loop_body_in_custom_order (loop, bb_top_order_comparator);
6028
6029 for (i = 0; i < loop->num_nodes; i++)
6030 if (loop_blocks[i]->flags & BB_IRREDUCIBLE_LOOP)
6031 {
6032 free (loop_blocks);
6033 return -1;
6034 }
6035
6036 preheader_block = loop_preheader_edge (loop)->src;
6037 gcc_assert (preheader_block);
6038 gcc_assert (loop_blocks[0] == loop->header);
6039
6040 new_rgn_number = sel_create_new_region ();
6041
6042 sel_add_block_to_region (preheader_block, &bb_ord_index, new_rgn_number);
d7c028c0 6043 bitmap_set_bit (bbs_in_loop_rgns, preheader_block->index);
e855c69d
AB
6044
6045 for (i = 0; i < loop->num_nodes; i++)
6046 {
6047 /* Add only those blocks that haven't been scheduled in the inner loop.
6048 The exception is the basic blocks with bookkeeping code - they should
b8698a0f 6049 be added to the region (and they actually don't belong to the loop
e855c69d
AB
6050 body, but to the region containing that loop body). */
6051
6052 gcc_assert (new_rgn_number >= 0);
6053
d7c028c0 6054 if (! bitmap_bit_p (bbs_in_loop_rgns, loop_blocks[i]->index))
e855c69d 6055 {
b8698a0f 6056 sel_add_block_to_region (loop_blocks[i], &bb_ord_index,
e855c69d 6057 new_rgn_number);
d7c028c0 6058 bitmap_set_bit (bbs_in_loop_rgns, loop_blocks[i]->index);
e855c69d
AB
6059 }
6060 }
6061
6062 free (loop_blocks);
6063 MARK_LOOP_FOR_PIPELINING (loop);
6064
6065 return new_rgn_number;
6066}
6067
6068/* Create a new region from preheader blocks LOOP_BLOCKS. */
6069void
9771b263 6070make_region_from_loop_preheader (vec<basic_block> *&loop_blocks)
e855c69d
AB
6071{
6072 unsigned int i;
6073 int new_rgn_number = -1;
6074 basic_block bb;
6075
6076 /* Basic block index, to be assigned to BLOCK_TO_BB. */
6077 int bb_ord_index = 0;
6078
6079 new_rgn_number = sel_create_new_region ();
6080
9771b263 6081 FOR_EACH_VEC_ELT (*loop_blocks, i, bb)
e855c69d
AB
6082 {
6083 gcc_assert (new_rgn_number >= 0);
6084
6085 sel_add_block_to_region (bb, &bb_ord_index, new_rgn_number);
6086 }
6087
9771b263 6088 vec_free (loop_blocks);
e855c69d
AB
6089}
6090
6091
6092/* Create region(s) from loop nest LOOP, such that inner loops will be
b8698a0f 6093 pipelined before outer loops. Returns true when a region for LOOP
e855c69d
AB
6094 is created. */
6095static bool
99b1c316 6096make_regions_from_loop_nest (class loop *loop)
b8698a0f 6097{
99b1c316 6098 class loop *cur_loop;
e855c69d
AB
6099 int rgn_number;
6100
6101 /* Traverse all inner nodes of the loop. */
6102 for (cur_loop = loop->inner; cur_loop; cur_loop = cur_loop->next)
d7c028c0 6103 if (! bitmap_bit_p (bbs_in_loop_rgns, cur_loop->header->index))
e855c69d
AB
6104 return false;
6105
6106 /* At this moment all regular inner loops should have been pipelined.
6107 Try to create a region from this loop. */
6108 rgn_number = make_region_from_loop (loop);
6109
6110 if (rgn_number < 0)
6111 return false;
6112
9771b263 6113 loop_nests.safe_push (loop);
e855c69d
AB
6114 return true;
6115}
6116
6117/* Initalize data structures needed. */
6118void
6119sel_init_pipelining (void)
6120{
6121 /* Collect loop information to be used in outer loops pipelining. */
6122 loop_optimizer_init (LOOPS_HAVE_PREHEADERS
6123 | LOOPS_HAVE_FALLTHRU_PREHEADERS
6124 | LOOPS_HAVE_RECORDED_EXITS
6125 | LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS);
6126 current_loop_nest = NULL;
6127
8b1c6fd7 6128 bbs_in_loop_rgns = sbitmap_alloc (last_basic_block_for_fn (cfun));
f61e445a 6129 bitmap_clear (bbs_in_loop_rgns);
e855c69d
AB
6130
6131 recompute_rev_top_order ();
6132}
6133
99b1c316 6134/* Returns a class loop for region RGN. */
e855c69d
AB
6135loop_p
6136get_loop_nest_for_rgn (unsigned int rgn)
6137{
6138 /* Regions created with extend_rgns don't have corresponding loop nests,
6139 because they don't represent loops. */
9771b263
DN
6140 if (rgn < loop_nests.length ())
6141 return loop_nests[rgn];
e855c69d
AB
6142 else
6143 return NULL;
6144}
6145
6146/* True when LOOP was included into pipelining regions. */
6147bool
99b1c316 6148considered_for_pipelining_p (class loop *loop)
e855c69d
AB
6149{
6150 if (loop_depth (loop) == 0)
6151 return false;
6152
b8698a0f
L
6153 /* Now, the loop could be too large or irreducible. Check whether its
6154 region is in LOOP_NESTS.
6155 We determine the region number of LOOP as the region number of its
6156 latch. We can't use header here, because this header could be
e855c69d
AB
6157 just removed preheader and it will give us the wrong region number.
6158 Latch can't be used because it could be in the inner loop too. */
8ec4d0ad 6159 if (LOOP_MARKED_FOR_PIPELINING_P (loop))
e855c69d
AB
6160 {
6161 int rgn = CONTAINING_RGN (loop->latch->index);
6162
9771b263 6163 gcc_assert ((unsigned) rgn < loop_nests.length ());
e855c69d
AB
6164 return true;
6165 }
b8698a0f 6166
e855c69d
AB
6167 return false;
6168}
6169
b8698a0f 6170/* Makes regions from the rest of the blocks, after loops are chosen
e855c69d
AB
6171 for pipelining. */
6172static void
6173make_regions_from_the_rest (void)
6174{
6175 int cur_rgn_blocks;
6176 int *loop_hdr;
6177 int i;
6178
6179 basic_block bb;
6180 edge e;
6181 edge_iterator ei;
6182 int *degree;
e855c69d
AB
6183
6184 /* Index in rgn_bb_table where to start allocating new regions. */
6185 cur_rgn_blocks = nr_regions ? RGN_BLOCKS (nr_regions) : 0;
e855c69d 6186
b8698a0f 6187 /* Make regions from all the rest basic blocks - those that don't belong to
e855c69d
AB
6188 any loop or belong to irreducible loops. Prepare the data structures
6189 for extend_rgns. */
6190
6191 /* LOOP_HDR[I] == -1 if I-th bb doesn't belong to any loop,
6192 LOOP_HDR[I] == LOOP_HDR[J] iff basic blocks I and J reside within the same
6193 loop. */
8b1c6fd7
DM
6194 loop_hdr = XNEWVEC (int, last_basic_block_for_fn (cfun));
6195 degree = XCNEWVEC (int, last_basic_block_for_fn (cfun));
e855c69d
AB
6196
6197
6198 /* For each basic block that belongs to some loop assign the number
6199 of innermost loop it belongs to. */
8b1c6fd7 6200 for (i = 0; i < last_basic_block_for_fn (cfun); i++)
e855c69d
AB
6201 loop_hdr[i] = -1;
6202
11cd3bed 6203 FOR_EACH_BB_FN (bb, cfun)
e855c69d 6204 {
13dfd554 6205 if (bb->loop_father && bb->loop_father->num != 0
e855c69d
AB
6206 && !(bb->flags & BB_IRREDUCIBLE_LOOP))
6207 loop_hdr[bb->index] = bb->loop_father->num;
6208 }
6209
b8698a0f 6210 /* For each basic block degree is calculated as the number of incoming
e855c69d
AB
6211 edges, that are going out of bbs that are not yet scheduled.
6212 The basic blocks that are scheduled have degree value of zero. */
11cd3bed 6213 FOR_EACH_BB_FN (bb, cfun)
e855c69d
AB
6214 {
6215 degree[bb->index] = 0;
6216
d7c028c0 6217 if (!bitmap_bit_p (bbs_in_loop_rgns, bb->index))
e855c69d
AB
6218 {
6219 FOR_EACH_EDGE (e, ei, bb->preds)
d7c028c0 6220 if (!bitmap_bit_p (bbs_in_loop_rgns, e->src->index))
e855c69d
AB
6221 degree[bb->index]++;
6222 }
6223 else
6224 degree[bb->index] = -1;
6225 }
6226
6227 extend_rgns (degree, &cur_rgn_blocks, bbs_in_loop_rgns, loop_hdr);
6228
6229 /* Any block that did not end up in a region is placed into a region
6230 by itself. */
11cd3bed 6231 FOR_EACH_BB_FN (bb, cfun)
e855c69d
AB
6232 if (degree[bb->index] >= 0)
6233 {
6234 rgn_bb_table[cur_rgn_blocks] = bb->index;
6235 RGN_NR_BLOCKS (nr_regions) = 1;
6236 RGN_BLOCKS (nr_regions) = cur_rgn_blocks++;
6237 RGN_DONT_CALC_DEPS (nr_regions) = 0;
6238 RGN_HAS_REAL_EBB (nr_regions) = 0;
6239 CONTAINING_RGN (bb->index) = nr_regions++;
6240 BLOCK_TO_BB (bb->index) = 0;
6241 }
6242
6243 free (degree);
6244 free (loop_hdr);
6245}
6246
6247/* Free data structures used in pipelining of loops. */
6248void sel_finish_pipelining (void)
6249{
99b1c316 6250 class loop *loop;
e855c69d
AB
6251
6252 /* Release aux fields so we don't free them later by mistake. */
f0bd40b1 6253 FOR_EACH_LOOP (loop, 0)
e855c69d
AB
6254 loop->aux = NULL;
6255
6256 loop_optimizer_finalize ();
6257
9771b263 6258 loop_nests.release ();
e855c69d
AB
6259
6260 free (rev_top_order_index);
6261 rev_top_order_index = NULL;
6262}
6263
b8698a0f 6264/* This function replaces the find_rgns when
e855c69d 6265 FLAG_SEL_SCHED_PIPELINING_OUTER_LOOPS is set. */
b8698a0f 6266void
e855c69d
AB
6267sel_find_rgns (void)
6268{
6269 sel_init_pipelining ();
6270 extend_regions ();
6271
6272 if (current_loops)
6273 {
6274 loop_p loop;
e855c69d 6275
f0bd40b1
RB
6276 FOR_EACH_LOOP (loop, (flag_sel_sched_pipelining_outer_loops
6277 ? LI_FROM_INNERMOST
6278 : LI_ONLY_INNERMOST))
e855c69d
AB
6279 make_regions_from_loop_nest (loop);
6280 }
6281
6282 /* Make regions from all the rest basic blocks and schedule them.
b8698a0f 6283 These blocks include blocks that don't belong to any loop or belong
e855c69d
AB
6284 to irreducible loops. */
6285 make_regions_from_the_rest ();
6286
6287 /* We don't need bbs_in_loop_rgns anymore. */
6288 sbitmap_free (bbs_in_loop_rgns);
6289 bbs_in_loop_rgns = NULL;
6290}
6291
ea4d630f
AM
6292/* Add the preheader blocks from previous loop to current region taking
6293 it from LOOP_PREHEADER_BLOCKS (current_loop_nest) and record them in *BBS.
e855c69d
AB
6294 This function is only used with -fsel-sched-pipelining-outer-loops. */
6295void
ea4d630f 6296sel_add_loop_preheaders (bb_vec_t *bbs)
e855c69d
AB
6297{
6298 int i;
6299 basic_block bb;
9771b263 6300 vec<basic_block> *preheader_blocks
e855c69d
AB
6301 = LOOP_PREHEADER_BLOCKS (current_loop_nest);
6302
9771b263
DN
6303 if (!preheader_blocks)
6304 return;
6305
6306 for (i = 0; preheader_blocks->iterate (i, &bb); i++)
8ec4d0ad 6307 {
9771b263
DN
6308 bbs->safe_push (bb);
6309 last_added_blocks.safe_push (bb);
e855c69d 6310 sel_add_bb (bb);
8ec4d0ad 6311 }
e855c69d 6312
9771b263 6313 vec_free (preheader_blocks);
e855c69d
AB
6314}
6315
b8698a0f
L
6316/* While pipelining outer loops, returns TRUE if BB is a loop preheader.
6317 Please note that the function should also work when pipelining_p is
6318 false, because it is used when deciding whether we should or should
e855c69d
AB
6319 not reschedule pipelined code. */
6320bool
6321sel_is_loop_preheader_p (basic_block bb)
6322{
6323 if (current_loop_nest)
6324 {
99b1c316 6325 class loop *outer;
e855c69d
AB
6326
6327 if (preheader_removed)
6328 return false;
6329
6330 /* Preheader is the first block in the region. */
6331 if (BLOCK_TO_BB (bb->index) == 0)
6332 return true;
6333
6334 /* We used to find a preheader with the topological information.
6335 Check that the above code is equivalent to what we did before. */
6336
6337 if (in_current_region_p (current_loop_nest->header))
b8698a0f 6338 gcc_assert (!(BLOCK_TO_BB (bb->index)
e855c69d
AB
6339 < BLOCK_TO_BB (current_loop_nest->header->index)));
6340
6341 /* Support the situation when the latch block of outer loop
6342 could be from here. */
6343 for (outer = loop_outer (current_loop_nest);
6344 outer;
6345 outer = loop_outer (outer))
6346 if (considered_for_pipelining_p (outer) && outer->latch == bb)
6347 gcc_unreachable ();
6348 }
6349
6350 return false;
6351}
6352
753de8cf
AM
6353/* Check whether JUMP_BB ends with a jump insn that leads only to DEST_BB and
6354 can be removed, making the corresponding edge fallthrough (assuming that
6355 all basic blocks between JUMP_BB and DEST_BB are empty). */
6356static bool
6357bb_has_removable_jump_to_p (basic_block jump_bb, basic_block dest_bb)
e855c69d 6358{
b4550bf7
AM
6359 if (!onlyjump_p (BB_END (jump_bb))
6360 || tablejump_p (BB_END (jump_bb), NULL, NULL))
e855c69d
AB
6361 return false;
6362
b8698a0f 6363 /* Several outgoing edges, abnormal edge or destination of jump is
e855c69d
AB
6364 not DEST_BB. */
6365 if (EDGE_COUNT (jump_bb->succs) != 1
753de8cf 6366 || EDGE_SUCC (jump_bb, 0)->flags & (EDGE_ABNORMAL | EDGE_CROSSING)
e855c69d
AB
6367 || EDGE_SUCC (jump_bb, 0)->dest != dest_bb)
6368 return false;
6369
6370 /* If not anything of the upper. */
6371 return true;
6372}
6373
6374/* Removes the loop preheader from the current region and saves it in
b8698a0f 6375 PREHEADER_BLOCKS of the father loop, so they will be added later to
e855c69d
AB
6376 region that represents an outer loop. */
6377static void
6378sel_remove_loop_preheader (void)
6379{
6380 int i, old_len;
6381 int cur_rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
6382 basic_block bb;
6383 bool all_empty_p = true;
9771b263 6384 vec<basic_block> *preheader_blocks
e855c69d
AB
6385 = LOOP_PREHEADER_BLOCKS (loop_outer (current_loop_nest));
6386
9771b263
DN
6387 vec_check_alloc (preheader_blocks, 0);
6388
e855c69d 6389 gcc_assert (current_loop_nest);
9771b263 6390 old_len = preheader_blocks->length ();
e855c69d
AB
6391
6392 /* Add blocks that aren't within the current loop to PREHEADER_BLOCKS. */
6393 for (i = 0; i < RGN_NR_BLOCKS (cur_rgn); i++)
6394 {
06e28de2 6395 bb = BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i));
e855c69d 6396
b8698a0f 6397 /* If the basic block belongs to region, but doesn't belong to
e855c69d
AB
6398 corresponding loop, then it should be a preheader. */
6399 if (sel_is_loop_preheader_p (bb))
6400 {
9771b263 6401 preheader_blocks->safe_push (bb);
e855c69d
AB
6402 if (BB_END (bb) != bb_note (bb))
6403 all_empty_p = false;
6404 }
6405 }
b8698a0f 6406
e855c69d 6407 /* Remove these blocks only after iterating over the whole region. */
9771b263 6408 for (i = preheader_blocks->length () - 1; i >= old_len; i--)
e855c69d 6409 {
9771b263 6410 bb = (*preheader_blocks)[i];
e855c69d
AB
6411 sel_remove_bb (bb, false);
6412 }
6413
6414 if (!considered_for_pipelining_p (loop_outer (current_loop_nest)))
6415 {
6416 if (!all_empty_p)
6417 /* Immediately create new region from preheader. */
9771b263 6418 make_region_from_loop_preheader (preheader_blocks);
e855c69d
AB
6419 else
6420 {
6421 /* If all preheader blocks are empty - dont create new empty region.
6422 Instead, remove them completely. */
9771b263 6423 FOR_EACH_VEC_ELT (*preheader_blocks, i, bb)
e855c69d
AB
6424 {
6425 edge e;
6426 edge_iterator ei;
6427 basic_block prev_bb = bb->prev_bb, next_bb = bb->next_bb;
6428
6429 /* Redirect all incoming edges to next basic block. */
6430 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
6431 {
6432 if (! (e->flags & EDGE_FALLTHRU))
6433 redirect_edge_and_branch (e, bb->next_bb);
6434 else
6435 redirect_edge_succ (e, bb->next_bb);
6436 }
6437 gcc_assert (BB_NOTE_LIST (bb) == NULL);
6438 delete_and_free_basic_block (bb);
6439
b8698a0f
L
6440 /* Check if after deleting preheader there is a nonconditional
6441 jump in PREV_BB that leads to the next basic block NEXT_BB.
6442 If it is so - delete this jump and clear data sets of its
e855c69d
AB
6443 basic block if it becomes empty. */
6444 if (next_bb->prev_bb == prev_bb
fefa31b5 6445 && prev_bb != ENTRY_BLOCK_PTR_FOR_FN (cfun)
753de8cf 6446 && bb_has_removable_jump_to_p (prev_bb, next_bb))
e855c69d
AB
6447 {
6448 redirect_edge_and_branch (EDGE_SUCC (prev_bb, 0), next_bb);
6449 if (BB_END (prev_bb) == bb_note (prev_bb))
6450 free_data_sets (prev_bb);
6451 }
00c4e97c
AB
6452
6453 set_immediate_dominator (CDI_DOMINATORS, next_bb,
6454 recompute_dominator (CDI_DOMINATORS,
6455 next_bb));
e855c69d
AB
6456 }
6457 }
9771b263 6458 vec_free (preheader_blocks);
e855c69d
AB
6459 }
6460 else
6461 /* Store preheader within the father's loop structure. */
6462 SET_LOOP_PREHEADER_BLOCKS (loop_outer (current_loop_nest),
6463 preheader_blocks);
6464}
68975683 6465
e855c69d 6466#endif
This page took 7.460946 seconds and 5 git commands to generate.