]> gcc.gnu.org Git - gcc.git/blame - gcc/sched-rgn.c
Move MEMMODEL_* from coretypes.h to memmodel.h
[gcc.git] / gcc / sched-rgn.c
CommitLineData
b4ead7d4 1/* Instruction scheduling pass.
818ab71a 2 Copyright (C) 1992-2016 Free Software Foundation, Inc.
b4ead7d4
BS
3 Contributed by Michael Tiemann (tiemann@cygnus.com) Enhanced by,
4 and currently maintained by, Jim Wilson (wilson@cygnus.com)
5
1322177d 6This file is part of GCC.
b4ead7d4 7
1322177d
LB
8GCC is free software; you can redistribute it and/or modify it under
9the terms of the GNU General Public License as published by the Free
9dcd6f09 10Software Foundation; either version 3, or (at your option) any later
1322177d 11version.
b4ead7d4 12
1322177d
LB
13GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14WARRANTY; without even the implied warranty of MERCHANTABILITY or
b4ead7d4
BS
15FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16for more details.
17
18You should have received a copy of the GNU General Public License
9dcd6f09
NC
19along with GCC; see the file COPYING3. If not see
20<http://www.gnu.org/licenses/>. */
b4ead7d4
BS
21
22/* This pass implements list scheduling within basic blocks. It is
23 run twice: (1) after flow analysis, but before register allocation,
24 and (2) after register allocation.
25
26 The first run performs interblock scheduling, moving insns between
27 different blocks in the same "region", and the second runs only
28 basic block scheduling.
29
30 Interblock motions performed are useful motions and speculative
31 motions, including speculative loads. Motions requiring code
32 duplication are not supported. The identification of motion type
33 and the check for validity of speculative motions requires
34 construction and analysis of the function's control flow graph.
35
36 The main entry point for this pass is schedule_insns(), called for
37 each function. The work of the scheduler is organized in three
38 levels: (1) function level: insns are subject to splitting,
39 control-flow-graph is constructed, regions are computed (after
40 reload, each region is of one block), (2) region level: control
41 flow graph attributes required for interblock scheduling are
42 computed (dominators, reachability, etc.), data dependences and
43 priorities are computed, and (3) block level: insns in the block
44 are actually scheduled. */
45\f
46#include "config.h"
47#include "system.h"
4977bab6 48#include "coretypes.h"
c7131fb2 49#include "backend.h"
957060b5 50#include "target.h"
b4ead7d4 51#include "rtl.h"
c7131fb2 52#include "df.h"
4d0cdd0c 53#include "memmodel.h"
b4ead7d4 54#include "tm_p.h"
957060b5 55#include "insn-config.h"
957060b5
AM
56#include "emit-rtl.h"
57#include "recog.h"
59f2e9d8 58#include "profile.h"
b4ead7d4
BS
59#include "insn-attr.h"
60#include "except.h"
f72c6b56 61#include "params.h"
60393bbc 62#include "cfganal.h"
b4ead7d4 63#include "sched-int.h"
e855c69d 64#include "sel-sched.h"
ef330312 65#include "tree-pass.h"
6fb5fa3c 66#include "dbgcnt.h"
cdb0d947
NB
67#include "pretty-print.h"
68#include "print-rtl.h"
73991d6a 69
f56887a7 70#ifdef INSN_SCHEDULING
e855c69d 71
b4ead7d4 72/* Some accessor macros for h_i_d members only used within this file. */
e855c69d
AB
73#define FED_BY_SPEC_LOAD(INSN) (HID (INSN)->fed_by_spec_load)
74#define IS_LOAD_INSN(INSN) (HID (insn)->is_load_insn)
b4ead7d4 75
b4ead7d4
BS
76/* nr_inter/spec counts interblock/speculative motion for the function. */
77static int nr_inter, nr_spec;
78
46c5ad27 79static int is_cfg_nonregular (void);
b4ead7d4
BS
80
81/* Number of regions in the procedure. */
e855c69d 82int nr_regions = 0;
b4ead7d4 83
c4cd7435
AB
84/* Same as above before adding any new regions. */
85static int nr_regions_initial = 0;
86
b4ead7d4 87/* Table of region descriptions. */
e855c69d 88region *rgn_table = NULL;
b4ead7d4
BS
89
90/* Array of lists of regions' blocks. */
e855c69d 91int *rgn_bb_table = NULL;
b4ead7d4
BS
92
93/* Topological order of blocks in the region (if b2 is reachable from
94 b1, block_to_bb[b2] > block_to_bb[b1]). Note: A basic block is
95 always referred to by either block or b, while its topological
4d6922ee 96 order name (in the region) is referred to by bb. */
e855c69d 97int *block_to_bb = NULL;
b4ead7d4
BS
98
99/* The number of the region containing a block. */
e855c69d
AB
100int *containing_rgn = NULL;
101
102/* ebb_head [i] - is index in rgn_bb_table of the head basic block of i'th ebb.
103 Currently we can get a ebb only through splitting of currently
104 scheduling block, therefore, we don't need ebb_head array for every region,
105 hence, its sufficient to hold it for current one only. */
106int *ebb_head = NULL;
b4ead7d4 107
36968131
PS
108/* The minimum probability of reaching a source block so that it will be
109 considered for speculative scheduling. */
110static int min_spec_prob;
111
e855c69d 112static void find_single_block_region (bool);
dcda8480 113static void find_rgns (void);
f72c6b56 114static bool too_large (int, int *, int *);
b4ead7d4 115
b4ead7d4 116/* Blocks of the current region being scheduled. */
e855c69d
AB
117int current_nr_blocks;
118int current_blocks;
b4ead7d4 119
e855c69d
AB
120/* A speculative motion requires checking live information on the path
121 from 'source' to 'target'. The split blocks are those to be checked.
122 After a speculative motion, live information should be modified in
123 the 'update' blocks.
496d7bb0 124
e855c69d
AB
125 Lists of split and update blocks for each candidate of the current
126 target are in array bblst_table. */
127static basic_block *bblst_table;
128static int bblst_size, bblst_last;
b4ead7d4 129
28ea163c
SB
130/* Arrays that hold the DFA state at the end of a basic block, to re-use
131 as the initial state at the start of successor blocks. The BB_STATE
132 array holds the actual DFA state, and BB_STATE_ARRAY[I] is a pointer
133 into BB_STATE for basic block I. FIXME: This should be a vec. */
134static char *bb_state_array = NULL;
135static state_t *bb_state = NULL;
975ccf22 136
b4ead7d4
BS
137/* Target info declarations.
138
139 The block currently being scheduled is referred to as the "target" block,
140 while other blocks in the region from which insns can be moved to the
141 target are called "source" blocks. The candidate structure holds info
142 about such sources: are they valid? Speculative? Etc. */
a79683d5 143struct bblst
dcda8480
UW
144{
145 basic_block *first_member;
146 int nr_members;
a79683d5 147};
dcda8480 148
a79683d5 149struct candidate
b4ead7d4
BS
150{
151 char is_valid;
152 char is_speculative;
153 int src_prob;
154 bblst split_bbs;
155 bblst update_bbs;
a79683d5 156};
b4ead7d4
BS
157
158static candidate *candidate_table;
e855c69d
AB
159#define IS_VALID(src) (candidate_table[src].is_valid)
160#define IS_SPECULATIVE(src) (candidate_table[src].is_speculative)
161#define IS_SPECULATIVE_INSN(INSN) \
162 (IS_SPECULATIVE (BLOCK_TO_BB (BLOCK_NUM (INSN))))
b4ead7d4
BS
163#define SRC_PROB(src) ( candidate_table[src].src_prob )
164
165/* The bb being currently scheduled. */
e855c69d 166int target_bb;
b4ead7d4
BS
167
168/* List of edges. */
a79683d5 169struct edgelst
dcda8480
UW
170{
171 edge *first_member;
172 int nr_members;
a79683d5 173};
dcda8480
UW
174
175static edge *edgelst_table;
176static int edgelst_last;
177
178static void extract_edgelst (sbitmap, edgelst *);
179
b4ead7d4 180/* Target info functions. */
46c5ad27
AJ
181static void split_edges (int, int, edgelst *);
182static void compute_trg_info (int);
183void debug_candidate (int);
184void debug_candidates (int);
b4ead7d4 185
bdfa170f 186/* Dominators array: dom[i] contains the sbitmap of dominators of
b4ead7d4 187 bb i in the region. */
bdfa170f 188static sbitmap *dom;
b4ead7d4
BS
189
190/* bb 0 is the only region entry. */
191#define IS_RGN_ENTRY(bb) (!bb)
192
193/* Is bb_src dominated by bb_trg. */
194#define IS_DOMINATED(bb_src, bb_trg) \
d7c028c0 195( bitmap_bit_p (dom[bb_src], bb_trg) )
b4ead7d4 196
36968131
PS
197/* Probability: Prob[i] is an int in [0, REG_BR_PROB_BASE] which is
198 the probability of bb i relative to the region entry. */
199static int *prob;
b4ead7d4
BS
200
201/* Bit-set of edges, where bit i stands for edge i. */
bdfa170f 202typedef sbitmap edgeset;
b4ead7d4
BS
203
204/* Number of edges in the region. */
205static int rgn_nr_edges;
206
207/* Array of size rgn_nr_edges. */
dcda8480 208static edge *rgn_edges;
b4ead7d4
BS
209
210/* Mapping from each edge in the graph to its number in the rgn. */
dcda8480
UW
211#define EDGE_TO_BIT(edge) ((int)(size_t)(edge)->aux)
212#define SET_EDGE_TO_BIT(edge,nr) ((edge)->aux = (void *)(size_t)(nr))
b4ead7d4
BS
213
214/* The split edges of a source bb is different for each target
215 bb. In order to compute this efficiently, the 'potential-split edges'
216 are computed for each bb prior to scheduling a region. This is actually
217 the split edges of each bb relative to the region entry.
218
219 pot_split[bb] is the set of potential split edges of bb. */
220static edgeset *pot_split;
221
222/* For every bb, a set of its ancestor edges. */
223static edgeset *ancestor_edges;
224
b4ead7d4 225#define INSN_PROBABILITY(INSN) (SRC_PROB (BLOCK_TO_BB (BLOCK_NUM (INSN))))
b4ead7d4 226
b4ead7d4 227/* Speculative scheduling functions. */
46c5ad27
AJ
228static int check_live_1 (int, rtx);
229static void update_live_1 (int, rtx);
46c5ad27 230static int is_pfree (rtx, int, int);
90831096 231static int find_conditional_protection (rtx_insn *, int);
46c5ad27
AJ
232static int is_conditionally_protected (rtx, int, int);
233static int is_prisky (rtx, int, int);
90831096 234static int is_exception_free (rtx_insn *, int, int);
46c5ad27
AJ
235
236static bool sets_likely_spilled (rtx);
7bc980e1 237static void sets_likely_spilled_1 (rtx, const_rtx, void *);
ce1ce33a 238static void add_branch_dependences (rtx_insn *, rtx_insn *);
e2f6ff94 239static void compute_block_dependences (int);
46c5ad27 240
46c5ad27 241static void schedule_region (int);
2f33ff0a
DM
242static void concat_insn_mem_list (rtx_insn_list *, rtx_expr_list *,
243 rtx_insn_list **, rtx_expr_list **);
88302d54 244static void propagate_deps (int, struct deps_desc *);
46c5ad27 245static void free_pending_lists (void);
b4ead7d4
BS
246
247/* Functions for construction of the control flow graph. */
248
249/* Return 1 if control flow graph should not be constructed, 0 otherwise.
250
251 We decide not to build the control flow graph if there is possibly more
dcda8480
UW
252 than one entry to the function, if computed branches exist, if we
253 have nonlocal gotos, or if we have an unreachable loop. */
b4ead7d4
BS
254
255static int
46c5ad27 256is_cfg_nonregular (void)
b4ead7d4 257{
e0082a72 258 basic_block b;
23f5bd20 259 rtx_insn *insn;
b4ead7d4
BS
260
261 /* If we have a label that could be the target of a nonlocal goto, then
262 the cfg is not well structured. */
263 if (nonlocal_goto_handler_labels)
264 return 1;
265
266 /* If we have any forced labels, then the cfg is not well structured. */
267 if (forced_labels)
268 return 1;
269
b4ead7d4 270 /* If we have exception handlers, then we consider the cfg not well
6fb5fa3c
DB
271 structured. ?!? We should be able to handle this now that we
272 compute an accurate cfg for EH. */
6a58eee9 273 if (current_function_has_exception_handlers ())
b4ead7d4
BS
274 return 1;
275
cf7c4aa6
HPN
276 /* If we have insns which refer to labels as non-jumped-to operands,
277 then we consider the cfg not well structured. */
11cd3bed 278 FOR_EACH_BB_FN (b, cfun)
f7aa1423 279 FOR_BB_INSNS (b, insn)
b4ead7d4 280 {
23f5bd20
DM
281 rtx note, set, dest;
282 rtx_insn *next;
cf7c4aa6 283
f7aa1423
SB
284 /* If this function has a computed jump, then we consider the cfg
285 not well structured. */
cf7c4aa6 286 if (JUMP_P (insn) && computed_jump_p (insn))
f7aa1423 287 return 1;
cb2f563b
HPN
288
289 if (!INSN_P (insn))
290 continue;
291
292 note = find_reg_note (insn, REG_LABEL_OPERAND, NULL_RTX);
293 if (note == NULL_RTX)
294 continue;
295
296 /* For that label not to be seen as a referred-to label, this
297 must be a single-set which is feeding a jump *only*. This
298 could be a conditional jump with the label split off for
299 machine-specific reasons or a casesi/tablejump. */
300 next = next_nonnote_insn (insn);
301 if (next == NULL_RTX
302 || !JUMP_P (next)
303 || (JUMP_LABEL (next) != XEXP (note, 0)
304 && find_reg_note (next, REG_LABEL_TARGET,
305 XEXP (note, 0)) == NULL_RTX)
306 || BLOCK_FOR_INSN (insn) != BLOCK_FOR_INSN (next))
307 return 1;
308
309 set = single_set (insn);
310 if (set == NULL_RTX)
311 return 1;
312
313 dest = SET_DEST (set);
314 if (!REG_P (dest) || !dead_or_set_p (next, dest))
315 return 1;
b4ead7d4
BS
316 }
317
b4ead7d4
BS
318 /* Unreachable loops with more than one basic block are detected
319 during the DFS traversal in find_rgns.
320
321 Unreachable loops with a single block are detected here. This
322 test is redundant with the one in find_rgns, but it's much
dcda8480 323 cheaper to go ahead and catch the trivial case here. */
11cd3bed 324 FOR_EACH_BB_FN (b, cfun)
b4ead7d4 325 {
628f6a4e 326 if (EDGE_COUNT (b->preds) == 0
c5cbcccf
ZD
327 || (single_pred_p (b)
328 && single_pred (b) == b))
dcda8480 329 return 1;
b4ead7d4
BS
330 }
331
dcda8480
UW
332 /* All the tests passed. Consider the cfg well structured. */
333 return 0;
b4ead7d4
BS
334}
335
dcda8480 336/* Extract list of edges from a bitmap containing EDGE_TO_BIT bits. */
b4ead7d4
BS
337
338static void
dcda8480 339extract_edgelst (sbitmap set, edgelst *el)
b4ead7d4 340{
dfea6c85 341 unsigned int i = 0;
b6e7e9af 342 sbitmap_iterator sbi;
b4ead7d4 343
dcda8480
UW
344 /* edgelst table space is reused in each call to extract_edgelst. */
345 edgelst_last = 0;
b4ead7d4 346
dcda8480
UW
347 el->first_member = &edgelst_table[edgelst_last];
348 el->nr_members = 0;
b4ead7d4
BS
349
350 /* Iterate over each word in the bitset. */
d4ac4ce2 351 EXECUTE_IF_SET_IN_BITMAP (set, 0, i, sbi)
b6e7e9af
KH
352 {
353 edgelst_table[edgelst_last++] = rgn_edges[i];
354 el->nr_members++;
355 }
b4ead7d4
BS
356}
357
358/* Functions for the construction of regions. */
359
360/* Print the regions, for debugging purposes. Callable from debugger. */
361
24e47c76 362DEBUG_FUNCTION void
46c5ad27 363debug_regions (void)
b4ead7d4
BS
364{
365 int rgn, bb;
366
367 fprintf (sched_dump, "\n;; ------------ REGIONS ----------\n\n");
368 for (rgn = 0; rgn < nr_regions; rgn++)
369 {
370 fprintf (sched_dump, ";;\trgn %d nr_blocks %d:\n", rgn,
371 rgn_table[rgn].rgn_nr_blocks);
372 fprintf (sched_dump, ";;\tbb/block: ");
373
496d7bb0
MK
374 /* We don't have ebb_head initialized yet, so we can't use
375 BB_TO_BLOCK (). */
376 current_blocks = RGN_BLOCKS (rgn);
b4ead7d4 377
496d7bb0
MK
378 for (bb = 0; bb < rgn_table[rgn].rgn_nr_blocks; bb++)
379 fprintf (sched_dump, " %d/%d ", bb, rgn_bb_table[current_blocks + bb]);
b4ead7d4
BS
380
381 fprintf (sched_dump, "\n\n");
382 }
383}
384
e855c69d
AB
385/* Print the region's basic blocks. */
386
24e47c76 387DEBUG_FUNCTION void
e855c69d
AB
388debug_region (int rgn)
389{
390 int bb;
391
392 fprintf (stderr, "\n;; ------------ REGION %d ----------\n\n", rgn);
393 fprintf (stderr, ";;\trgn %d nr_blocks %d:\n", rgn,
394 rgn_table[rgn].rgn_nr_blocks);
395 fprintf (stderr, ";;\tbb/block: ");
396
397 /* We don't have ebb_head initialized yet, so we can't use
398 BB_TO_BLOCK (). */
399 current_blocks = RGN_BLOCKS (rgn);
400
401 for (bb = 0; bb < rgn_table[rgn].rgn_nr_blocks; bb++)
402 fprintf (stderr, " %d/%d ", bb, rgn_bb_table[current_blocks + bb]);
403
404 fprintf (stderr, "\n\n");
405
406 for (bb = 0; bb < rgn_table[rgn].rgn_nr_blocks; bb++)
407 {
06e28de2
DM
408 dump_bb (stderr,
409 BASIC_BLOCK_FOR_FN (cfun, rgn_bb_table[current_blocks + bb]),
c4669594 410 0, TDF_SLIM | TDF_BLOCKS);
e855c69d
AB
411 fprintf (stderr, "\n");
412 }
413
414 fprintf (stderr, "\n");
415
416}
417
418/* True when a bb with index BB_INDEX contained in region RGN. */
419static bool
420bb_in_region_p (int bb_index, int rgn)
421{
422 int i;
423
424 for (i = 0; i < rgn_table[rgn].rgn_nr_blocks; i++)
425 if (rgn_bb_table[current_blocks + i] == bb_index)
426 return true;
427
428 return false;
429}
430
431/* Dump region RGN to file F using dot syntax. */
432void
433dump_region_dot (FILE *f, int rgn)
434{
435 int i;
436
437 fprintf (f, "digraph Region_%d {\n", rgn);
438
439 /* We don't have ebb_head initialized yet, so we can't use
440 BB_TO_BLOCK (). */
441 current_blocks = RGN_BLOCKS (rgn);
442
443 for (i = 0; i < rgn_table[rgn].rgn_nr_blocks; i++)
444 {
445 edge e;
446 edge_iterator ei;
447 int src_bb_num = rgn_bb_table[current_blocks + i];
06e28de2 448 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, src_bb_num);
e855c69d
AB
449
450 FOR_EACH_EDGE (e, ei, bb->succs)
451 if (bb_in_region_p (e->dest->index, rgn))
452 fprintf (f, "\t%d -> %d\n", src_bb_num, e->dest->index);
453 }
454 fprintf (f, "}\n");
455}
456
457/* The same, but first open a file specified by FNAME. */
b8698a0f 458void
e855c69d
AB
459dump_region_dot_file (const char *fname, int rgn)
460{
461 FILE *f = fopen (fname, "wt");
462 dump_region_dot (f, rgn);
463 fclose (f);
464}
465
b4ead7d4
BS
466/* Build a single block region for each basic block in the function.
467 This allows for using the same code for interblock and basic block
468 scheduling. */
469
470static void
e855c69d 471find_single_block_region (bool ebbs_p)
b4ead7d4 472{
e855c69d
AB
473 basic_block bb, ebb_start;
474 int i = 0;
355e4ec4 475
e0082a72
ZD
476 nr_regions = 0;
477
e855c69d
AB
478 if (ebbs_p) {
479 int probability_cutoff;
480 if (profile_info && flag_branch_probabilities)
481 probability_cutoff = PARAM_VALUE (TRACER_MIN_BRANCH_PROBABILITY_FEEDBACK);
482 else
483 probability_cutoff = PARAM_VALUE (TRACER_MIN_BRANCH_PROBABILITY);
484 probability_cutoff = REG_BR_PROB_BASE / 100 * probability_cutoff;
485
11cd3bed 486 FOR_EACH_BB_FN (ebb_start, cfun)
e855c69d
AB
487 {
488 RGN_NR_BLOCKS (nr_regions) = 0;
489 RGN_BLOCKS (nr_regions) = i;
490 RGN_DONT_CALC_DEPS (nr_regions) = 0;
491 RGN_HAS_REAL_EBB (nr_regions) = 0;
492
493 for (bb = ebb_start; ; bb = bb->next_bb)
494 {
495 edge e;
e855c69d
AB
496
497 rgn_bb_table[i] = bb->index;
498 RGN_NR_BLOCKS (nr_regions)++;
499 CONTAINING_RGN (bb->index) = nr_regions;
500 BLOCK_TO_BB (bb->index) = i - RGN_BLOCKS (nr_regions);
501 i++;
502
fefa31b5 503 if (bb->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
e855c69d
AB
504 || LABEL_P (BB_HEAD (bb->next_bb)))
505 break;
b8698a0f 506
0fd4b31d 507 e = find_fallthru_edge (bb->succs);
e855c69d
AB
508 if (! e)
509 break;
510 if (e->probability <= probability_cutoff)
511 break;
512 }
513
514 ebb_start = bb;
515 nr_regions++;
516 }
517 }
518 else
11cd3bed 519 FOR_EACH_BB_FN (bb, cfun)
e855c69d
AB
520 {
521 rgn_bb_table[nr_regions] = bb->index;
522 RGN_NR_BLOCKS (nr_regions) = 1;
523 RGN_BLOCKS (nr_regions) = nr_regions;
524 RGN_DONT_CALC_DEPS (nr_regions) = 0;
525 RGN_HAS_REAL_EBB (nr_regions) = 0;
526
527 CONTAINING_RGN (bb->index) = nr_regions;
528 BLOCK_TO_BB (bb->index) = 0;
529 nr_regions++;
530 }
531}
532
533/* Estimate number of the insns in the BB. */
534static int
535rgn_estimate_number_of_insns (basic_block bb)
536{
b5b8b0ac
AO
537 int count;
538
539 count = INSN_LUID (BB_END (bb)) - INSN_LUID (BB_HEAD (bb));
540
541 if (MAY_HAVE_DEBUG_INSNS)
542 {
ce1ce33a 543 rtx_insn *insn;
b5b8b0ac
AO
544
545 FOR_BB_INSNS (bb, insn)
546 if (DEBUG_INSN_P (insn))
547 count--;
548 }
549
550 return count;
b4ead7d4
BS
551}
552
553/* Update number of blocks and the estimate for number of insns
f72c6b56
DE
554 in the region. Return true if the region is "too large" for interblock
555 scheduling (compile time considerations). */
b4ead7d4 556
f72c6b56 557static bool
46c5ad27 558too_large (int block, int *num_bbs, int *num_insns)
b4ead7d4
BS
559{
560 (*num_bbs)++;
e855c69d 561 (*num_insns) += (common_sched_info->estimate_number_of_insns
06e28de2 562 (BASIC_BLOCK_FOR_FN (cfun, block)));
f72c6b56
DE
563
564 return ((*num_bbs > PARAM_VALUE (PARAM_MAX_SCHED_REGION_BLOCKS))
565 || (*num_insns > PARAM_VALUE (PARAM_MAX_SCHED_REGION_INSNS)));
b4ead7d4
BS
566}
567
568/* Update_loop_relations(blk, hdr): Check if the loop headed by max_hdr[blk]
569 is still an inner loop. Put in max_hdr[blk] the header of the most inner
570 loop containing blk. */
786de7eb
KH
571#define UPDATE_LOOP_RELATIONS(blk, hdr) \
572{ \
573 if (max_hdr[blk] == -1) \
574 max_hdr[blk] = hdr; \
575 else if (dfs_nr[max_hdr[blk]] > dfs_nr[hdr]) \
d7c028c0 576 bitmap_clear_bit (inner, hdr); \
786de7eb
KH
577 else if (dfs_nr[max_hdr[blk]] < dfs_nr[hdr]) \
578 { \
d7c028c0 579 bitmap_clear_bit (inner,max_hdr[blk]); \
786de7eb
KH
580 max_hdr[blk] = hdr; \
581 } \
b4ead7d4
BS
582}
583
584/* Find regions for interblock scheduling.
585
586 A region for scheduling can be:
587
588 * A loop-free procedure, or
589
590 * A reducible inner loop, or
591
592 * A basic block not contained in any other region.
593
594 ?!? In theory we could build other regions based on extended basic
595 blocks or reverse extended basic blocks. Is it worth the trouble?
596
597 Loop blocks that form a region are put into the region's block list
598 in topological order.
599
600 This procedure stores its results into the following global (ick) variables
601
602 * rgn_nr
603 * rgn_table
604 * rgn_bb_table
605 * block_to_bb
606 * containing region
607
608 We use dominator relationships to avoid making regions out of non-reducible
609 loops.
610
611 This procedure needs to be converted to work on pred/succ lists instead
612 of edge tables. That would simplify it somewhat. */
613
614static void
e855c69d 615haifa_find_rgns (void)
b4ead7d4 616{
dcda8480 617 int *max_hdr, *dfs_nr, *degree;
b4ead7d4
BS
618 char no_loops = 1;
619 int node, child, loop_head, i, head, tail;
8a6b9b7f 620 int count = 0, sp, idx = 0;
dcda8480
UW
621 edge_iterator current_edge;
622 edge_iterator *stack;
b4ead7d4
BS
623 int num_bbs, num_insns, unreachable;
624 int too_large_failure;
e0082a72 625 basic_block bb;
b4ead7d4 626
b4ead7d4
BS
627 /* Perform a DFS traversal of the cfg. Identify loop headers, inner loops
628 and a mapping from block to its loop header (if the block is contained
629 in a loop, else -1).
630
631 Store results in HEADER, INNER, and MAX_HDR respectively, these will
632 be used as inputs to the second traversal.
633
634 STACK, SP and DFS_NR are only used during the first traversal. */
635
636 /* Allocate and initialize variables for the first traversal. */
8b1c6fd7
DM
637 max_hdr = XNEWVEC (int, last_basic_block_for_fn (cfun));
638 dfs_nr = XCNEWVEC (int, last_basic_block_for_fn (cfun));
dc936fb2 639 stack = XNEWVEC (edge_iterator, n_edges_for_fn (cfun));
b4ead7d4 640
7ba9e72d
TS
641 /* Note if a block is a natural inner loop header. */
642 auto_sbitmap inner (last_basic_block_for_fn (cfun));
f61e445a 643 bitmap_ones (inner);
b4ead7d4 644
7ba9e72d
TS
645 /* Note if a block is a natural loop header. */
646 auto_sbitmap header (last_basic_block_for_fn (cfun));
f61e445a 647 bitmap_clear (header);
b4ead7d4 648
7ba9e72d
TS
649 /* Note if a block is in the block queue. */
650 auto_sbitmap in_queue (last_basic_block_for_fn (cfun));
f61e445a 651 bitmap_clear (in_queue);
b4ead7d4 652
7ba9e72d
TS
653 /* Note if a block is in the block queue. */
654 auto_sbitmap in_stack (last_basic_block_for_fn (cfun));
f61e445a 655 bitmap_clear (in_stack);
b4ead7d4 656
8b1c6fd7 657 for (i = 0; i < last_basic_block_for_fn (cfun); i++)
b4ead7d4
BS
658 max_hdr[i] = -1;
659
dcda8480
UW
660 #define EDGE_PASSED(E) (ei_end_p ((E)) || ei_edge ((E))->aux)
661 #define SET_EDGE_PASSED(E) (ei_edge ((E))->aux = ei_edge ((E)))
662
b4ead7d4
BS
663 /* DFS traversal to find inner loops in the cfg. */
664
fefa31b5 665 current_edge = ei_start (single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun))->succs);
b4ead7d4 666 sp = -1;
dcda8480 667
b4ead7d4
BS
668 while (1)
669 {
dcda8480 670 if (EDGE_PASSED (current_edge))
b4ead7d4
BS
671 {
672 /* We have reached a leaf node or a node that was already
673 processed. Pop edges off the stack until we find
674 an edge that has not yet been processed. */
dcda8480 675 while (sp >= 0 && EDGE_PASSED (current_edge))
b4ead7d4
BS
676 {
677 /* Pop entry off the stack. */
678 current_edge = stack[sp--];
dcda8480
UW
679 node = ei_edge (current_edge)->src->index;
680 gcc_assert (node != ENTRY_BLOCK);
681 child = ei_edge (current_edge)->dest->index;
682 gcc_assert (child != EXIT_BLOCK);
d7c028c0
LC
683 bitmap_clear_bit (in_stack, child);
684 if (max_hdr[child] >= 0 && bitmap_bit_p (in_stack, max_hdr[child]))
b4ead7d4 685 UPDATE_LOOP_RELATIONS (node, max_hdr[child]);
dcda8480 686 ei_next (&current_edge);
b4ead7d4
BS
687 }
688
689 /* See if have finished the DFS tree traversal. */
dcda8480 690 if (sp < 0 && EDGE_PASSED (current_edge))
b4ead7d4
BS
691 break;
692
693 /* Nope, continue the traversal with the popped node. */
694 continue;
695 }
696
697 /* Process a node. */
dcda8480
UW
698 node = ei_edge (current_edge)->src->index;
699 gcc_assert (node != ENTRY_BLOCK);
d7c028c0 700 bitmap_set_bit (in_stack, node);
b4ead7d4
BS
701 dfs_nr[node] = ++count;
702
dcda8480
UW
703 /* We don't traverse to the exit block. */
704 child = ei_edge (current_edge)->dest->index;
705 if (child == EXIT_BLOCK)
706 {
707 SET_EDGE_PASSED (current_edge);
708 ei_next (&current_edge);
709 continue;
710 }
711
b4ead7d4
BS
712 /* If the successor is in the stack, then we've found a loop.
713 Mark the loop, if it is not a natural loop, then it will
714 be rejected during the second traversal. */
d7c028c0 715 if (bitmap_bit_p (in_stack, child))
b4ead7d4
BS
716 {
717 no_loops = 0;
d7c028c0 718 bitmap_set_bit (header, child);
b4ead7d4 719 UPDATE_LOOP_RELATIONS (node, child);
dcda8480
UW
720 SET_EDGE_PASSED (current_edge);
721 ei_next (&current_edge);
b4ead7d4
BS
722 continue;
723 }
724
725 /* If the child was already visited, then there is no need to visit
726 it again. Just update the loop relationships and restart
727 with a new edge. */
728 if (dfs_nr[child])
729 {
d7c028c0 730 if (max_hdr[child] >= 0 && bitmap_bit_p (in_stack, max_hdr[child]))
b4ead7d4 731 UPDATE_LOOP_RELATIONS (node, max_hdr[child]);
dcda8480
UW
732 SET_EDGE_PASSED (current_edge);
733 ei_next (&current_edge);
b4ead7d4
BS
734 continue;
735 }
736
737 /* Push an entry on the stack and continue DFS traversal. */
738 stack[++sp] = current_edge;
dcda8480
UW
739 SET_EDGE_PASSED (current_edge);
740 current_edge = ei_start (ei_edge (current_edge)->dest->succs);
741 }
742
743 /* Reset ->aux field used by EDGE_PASSED. */
04a90bec 744 FOR_ALL_BB_FN (bb, cfun)
dcda8480
UW
745 {
746 edge_iterator ei;
747 edge e;
748 FOR_EACH_EDGE (e, ei, bb->succs)
749 e->aux = NULL;
b4ead7d4
BS
750 }
751
dcda8480 752
b4ead7d4
BS
753 /* Another check for unreachable blocks. The earlier test in
754 is_cfg_nonregular only finds unreachable blocks that do not
755 form a loop.
756
757 The DFS traversal will mark every block that is reachable from
758 the entry node by placing a nonzero value in dfs_nr. Thus if
759 dfs_nr is zero for any block, then it must be unreachable. */
760 unreachable = 0;
11cd3bed 761 FOR_EACH_BB_FN (bb, cfun)
e0082a72 762 if (dfs_nr[bb->index] == 0)
b4ead7d4
BS
763 {
764 unreachable = 1;
765 break;
766 }
767
768 /* Gross. To avoid wasting memory, the second pass uses the dfs_nr array
769 to hold degree counts. */
770 degree = dfs_nr;
771
11cd3bed 772 FOR_EACH_BB_FN (bb, cfun)
dcda8480 773 degree[bb->index] = EDGE_COUNT (bb->preds);
b4ead7d4
BS
774
775 /* Do not perform region scheduling if there are any unreachable
776 blocks. */
777 if (!unreachable)
778 {
d08eefb9
MK
779 int *queue, *degree1 = NULL;
780 /* We use EXTENDED_RGN_HEADER as an addition to HEADER and put
781 there basic blocks, which are forced to be region heads.
b8698a0f 782 This is done to try to assemble few smaller regions
d08eefb9
MK
783 from a too_large region. */
784 sbitmap extended_rgn_header = NULL;
785 bool extend_regions_p;
b4ead7d4
BS
786
787 if (no_loops)
d7c028c0 788 bitmap_set_bit (header, 0);
b4ead7d4 789
14b493d6 790 /* Second traversal:find reducible inner loops and topologically sort
b4ead7d4
BS
791 block of each region. */
792
0cae8d31 793 queue = XNEWVEC (int, n_basic_blocks_for_fn (cfun));
b8698a0f 794
d08eefb9
MK
795 extend_regions_p = PARAM_VALUE (PARAM_MAX_SCHED_EXTEND_REGIONS_ITERS) > 0;
796 if (extend_regions_p)
797 {
8b1c6fd7
DM
798 degree1 = XNEWVEC (int, last_basic_block_for_fn (cfun));
799 extended_rgn_header =
800 sbitmap_alloc (last_basic_block_for_fn (cfun));
f61e445a 801 bitmap_clear (extended_rgn_header);
d08eefb9 802 }
b4ead7d4
BS
803
804 /* Find blocks which are inner loop headers. We still have non-reducible
805 loops to consider at this point. */
11cd3bed 806 FOR_EACH_BB_FN (bb, cfun)
b4ead7d4 807 {
d7c028c0 808 if (bitmap_bit_p (header, bb->index) && bitmap_bit_p (inner, bb->index))
b4ead7d4
BS
809 {
810 edge e;
628f6a4e 811 edge_iterator ei;
e0082a72 812 basic_block jbb;
b4ead7d4
BS
813
814 /* Now check that the loop is reducible. We do this separate
815 from finding inner loops so that we do not find a reducible
816 loop which contains an inner non-reducible loop.
817
818 A simple way to find reducible/natural loops is to verify
819 that each block in the loop is dominated by the loop
820 header.
821
822 If there exists a block that is not dominated by the loop
823 header, then the block is reachable from outside the loop
824 and thus the loop is not a natural loop. */
11cd3bed 825 FOR_EACH_BB_FN (jbb, cfun)
b4ead7d4
BS
826 {
827 /* First identify blocks in the loop, except for the loop
828 entry block. */
e0082a72 829 if (bb->index == max_hdr[jbb->index] && bb != jbb)
b4ead7d4
BS
830 {
831 /* Now verify that the block is dominated by the loop
832 header. */
d47cc544 833 if (!dominated_by_p (CDI_DOMINATORS, jbb, bb))
b4ead7d4
BS
834 break;
835 }
836 }
837
838 /* If we exited the loop early, then I is the header of
839 a non-reducible loop and we should quit processing it
840 now. */
fefa31b5 841 if (jbb != EXIT_BLOCK_PTR_FOR_FN (cfun))
b4ead7d4
BS
842 continue;
843
844 /* I is a header of an inner loop, or block 0 in a subroutine
845 with no loops at all. */
846 head = tail = -1;
847 too_large_failure = 0;
e0082a72 848 loop_head = max_hdr[bb->index];
b4ead7d4 849
d08eefb9 850 if (extend_regions_p)
b8698a0f
L
851 /* We save degree in case when we meet a too_large region
852 and cancel it. We need a correct degree later when
d08eefb9 853 calling extend_rgns. */
8b1c6fd7
DM
854 memcpy (degree1, degree,
855 last_basic_block_for_fn (cfun) * sizeof (int));
b8698a0f 856
b4ead7d4
BS
857 /* Decrease degree of all I's successors for topological
858 ordering. */
628f6a4e 859 FOR_EACH_EDGE (e, ei, bb->succs)
fefa31b5 860 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
0b17ab2f 861 --degree[e->dest->index];
b4ead7d4
BS
862
863 /* Estimate # insns, and count # blocks in the region. */
864 num_bbs = 1;
e855c69d 865 num_insns = common_sched_info->estimate_number_of_insns (bb);
b4ead7d4
BS
866
867 /* Find all loop latches (blocks with back edges to the loop
868 header) or all the leaf blocks in the cfg has no loops.
869
870 Place those blocks into the queue. */
871 if (no_loops)
872 {
11cd3bed 873 FOR_EACH_BB_FN (jbb, cfun)
b4ead7d4
BS
874 /* Leaf nodes have only a single successor which must
875 be EXIT_BLOCK. */
c5cbcccf 876 if (single_succ_p (jbb)
fefa31b5 877 && single_succ (jbb) == EXIT_BLOCK_PTR_FOR_FN (cfun))
b4ead7d4 878 {
e0082a72 879 queue[++tail] = jbb->index;
d7c028c0 880 bitmap_set_bit (in_queue, jbb->index);
b4ead7d4 881
e0082a72 882 if (too_large (jbb->index, &num_bbs, &num_insns))
b4ead7d4
BS
883 {
884 too_large_failure = 1;
885 break;
886 }
887 }
888 }
889 else
890 {
891 edge e;
892
628f6a4e 893 FOR_EACH_EDGE (e, ei, bb->preds)
b4ead7d4 894 {
fefa31b5 895 if (e->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
b4ead7d4
BS
896 continue;
897
0b17ab2f 898 node = e->src->index;
b4ead7d4 899
e0082a72 900 if (max_hdr[node] == loop_head && node != bb->index)
b4ead7d4
BS
901 {
902 /* This is a loop latch. */
903 queue[++tail] = node;
d7c028c0 904 bitmap_set_bit (in_queue, node);
b4ead7d4
BS
905
906 if (too_large (node, &num_bbs, &num_insns))
907 {
908 too_large_failure = 1;
909 break;
910 }
911 }
912 }
913 }
914
915 /* Now add all the blocks in the loop to the queue.
916
917 We know the loop is a natural loop; however the algorithm
918 above will not always mark certain blocks as being in the
919 loop. Consider:
920 node children
921 a b,c
922 b c
923 c a,d
924 d b
925
926 The algorithm in the DFS traversal may not mark B & D as part
454ff5cb 927 of the loop (i.e. they will not have max_hdr set to A).
b4ead7d4
BS
928
929 We know they can not be loop latches (else they would have
930 had max_hdr set since they'd have a backedge to a dominator
931 block). So we don't need them on the initial queue.
932
933 We know they are part of the loop because they are dominated
934 by the loop header and can be reached by a backwards walk of
935 the edges starting with nodes on the initial queue.
936
937 It is safe and desirable to include those nodes in the
938 loop/scheduling region. To do so we would need to decrease
939 the degree of a node if it is the target of a backedge
940 within the loop itself as the node is placed in the queue.
941
942 We do not do this because I'm not sure that the actual
943 scheduling code will properly handle this case. ?!? */
944
945 while (head < tail && !too_large_failure)
946 {
947 edge e;
948 child = queue[++head];
949
06e28de2
DM
950 FOR_EACH_EDGE (e, ei,
951 BASIC_BLOCK_FOR_FN (cfun, child)->preds)
b4ead7d4 952 {
0b17ab2f 953 node = e->src->index;
b4ead7d4
BS
954
955 /* See discussion above about nodes not marked as in
956 this loop during the initial DFS traversal. */
fefa31b5 957 if (e->src == ENTRY_BLOCK_PTR_FOR_FN (cfun)
b4ead7d4
BS
958 || max_hdr[node] != loop_head)
959 {
960 tail = -1;
961 break;
962 }
d7c028c0 963 else if (!bitmap_bit_p (in_queue, node) && node != bb->index)
b4ead7d4
BS
964 {
965 queue[++tail] = node;
d7c028c0 966 bitmap_set_bit (in_queue, node);
b4ead7d4
BS
967
968 if (too_large (node, &num_bbs, &num_insns))
969 {
970 too_large_failure = 1;
971 break;
972 }
973 }
974 }
975 }
976
977 if (tail >= 0 && !too_large_failure)
978 {
979 /* Place the loop header into list of region blocks. */
e0082a72
ZD
980 degree[bb->index] = -1;
981 rgn_bb_table[idx] = bb->index;
b4ead7d4
BS
982 RGN_NR_BLOCKS (nr_regions) = num_bbs;
983 RGN_BLOCKS (nr_regions) = idx++;
496d7bb0
MK
984 RGN_DONT_CALC_DEPS (nr_regions) = 0;
985 RGN_HAS_REAL_EBB (nr_regions) = 0;
e0082a72
ZD
986 CONTAINING_RGN (bb->index) = nr_regions;
987 BLOCK_TO_BB (bb->index) = count = 0;
b4ead7d4
BS
988
989 /* Remove blocks from queue[] when their in degree
990 becomes zero. Repeat until no blocks are left on the
991 list. This produces a topological list of blocks in
992 the region. */
993 while (tail >= 0)
994 {
995 if (head < 0)
996 head = tail;
997 child = queue[head];
998 if (degree[child] == 0)
999 {
1000 edge e;
1001
1002 degree[child] = -1;
1003 rgn_bb_table[idx++] = child;
1004 BLOCK_TO_BB (child) = ++count;
1005 CONTAINING_RGN (child) = nr_regions;
1006 queue[head] = queue[tail--];
1007
06e28de2
DM
1008 FOR_EACH_EDGE (e, ei,
1009 BASIC_BLOCK_FOR_FN (cfun,
1010 child)->succs)
fefa31b5 1011 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
0b17ab2f 1012 --degree[e->dest->index];
b4ead7d4
BS
1013 }
1014 else
1015 --head;
1016 }
1017 ++nr_regions;
1018 }
d08eefb9
MK
1019 else if (extend_regions_p)
1020 {
1021 /* Restore DEGREE. */
1022 int *t = degree;
1023
1024 degree = degree1;
1025 degree1 = t;
b8698a0f 1026
d08eefb9
MK
1027 /* And force successors of BB to be region heads.
1028 This may provide several smaller regions instead
1029 of one too_large region. */
1030 FOR_EACH_EDGE (e, ei, bb->succs)
fefa31b5 1031 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
d7c028c0 1032 bitmap_set_bit (extended_rgn_header, e->dest->index);
d08eefb9 1033 }
b4ead7d4
BS
1034 }
1035 }
1036 free (queue);
d08eefb9
MK
1037
1038 if (extend_regions_p)
1039 {
1040 free (degree1);
b8698a0f 1041
f61e445a 1042 bitmap_ior (header, header, extended_rgn_header);
d08eefb9 1043 sbitmap_free (extended_rgn_header);
b8698a0f 1044
d08eefb9
MK
1045 extend_rgns (degree, &idx, header, max_hdr);
1046 }
b4ead7d4
BS
1047 }
1048
1049 /* Any block that did not end up in a region is placed into a region
1050 by itself. */
11cd3bed 1051 FOR_EACH_BB_FN (bb, cfun)
e0082a72 1052 if (degree[bb->index] >= 0)
b4ead7d4 1053 {
e0082a72 1054 rgn_bb_table[idx] = bb->index;
b4ead7d4
BS
1055 RGN_NR_BLOCKS (nr_regions) = 1;
1056 RGN_BLOCKS (nr_regions) = idx++;
496d7bb0
MK
1057 RGN_DONT_CALC_DEPS (nr_regions) = 0;
1058 RGN_HAS_REAL_EBB (nr_regions) = 0;
e0082a72
ZD
1059 CONTAINING_RGN (bb->index) = nr_regions++;
1060 BLOCK_TO_BB (bb->index) = 0;
b4ead7d4
BS
1061 }
1062
1063 free (max_hdr);
d08eefb9 1064 free (degree);
b4ead7d4 1065 free (stack);
b4ead7d4
BS
1066}
1067
e855c69d
AB
1068
1069/* Wrapper function.
1070 If FLAG_SEL_SCHED_PIPELINING is set, then use custom function to form
1071 regions. Otherwise just call find_rgns_haifa. */
1072static void
1073find_rgns (void)
1074{
1075 if (sel_sched_p () && flag_sel_sched_pipelining)
1076 sel_find_rgns ();
1077 else
1078 haifa_find_rgns ();
1079}
1080
d08eefb9
MK
1081static int gather_region_statistics (int **);
1082static void print_region_statistics (int *, int, int *, int);
1083
b8698a0f
L
1084/* Calculate the histogram that shows the number of regions having the
1085 given number of basic blocks, and store it in the RSP array. Return
d08eefb9
MK
1086 the size of this array. */
1087static int
1088gather_region_statistics (int **rsp)
1089{
1090 int i, *a = 0, a_sz = 0;
1091
1092 /* a[i] is the number of regions that have (i + 1) basic blocks. */
1093 for (i = 0; i < nr_regions; i++)
1094 {
1095 int nr_blocks = RGN_NR_BLOCKS (i);
1096
1097 gcc_assert (nr_blocks >= 1);
1098
1099 if (nr_blocks > a_sz)
b8698a0f 1100 {
1634b18f 1101 a = XRESIZEVEC (int, a, nr_blocks);
d08eefb9
MK
1102 do
1103 a[a_sz++] = 0;
1104 while (a_sz != nr_blocks);
1105 }
1106
1107 a[nr_blocks - 1]++;
1108 }
1109
1110 *rsp = a;
1111 return a_sz;
1112}
1113
b8698a0f 1114/* Print regions statistics. S1 and S2 denote the data before and after
d08eefb9
MK
1115 calling extend_rgns, respectively. */
1116static void
1117print_region_statistics (int *s1, int s1_sz, int *s2, int s2_sz)
1118{
1119 int i;
b8698a0f
L
1120
1121 /* We iterate until s2_sz because extend_rgns does not decrease
d08eefb9
MK
1122 the maximal region size. */
1123 for (i = 1; i < s2_sz; i++)
1124 {
1125 int n1, n2;
1126
1127 n2 = s2[i];
1128
1129 if (n2 == 0)
1130 continue;
1131
1132 if (i >= s1_sz)
1133 n1 = 0;
1134 else
1135 n1 = s1[i];
1136
1137 fprintf (sched_dump, ";; Region extension statistics: size %d: " \
1138 "was %d + %d more\n", i + 1, n1, n2 - n1);
1139 }
1140}
1141
1142/* Extend regions.
1143 DEGREE - Array of incoming edge count, considering only
1144 the edges, that don't have their sources in formed regions yet.
1145 IDXP - pointer to the next available index in rgn_bb_table.
1146 HEADER - set of all region heads.
1147 LOOP_HDR - mapping from block to the containing loop
1148 (two blocks can reside within one region if they have
1149 the same loop header). */
e855c69d 1150void
d08eefb9
MK
1151extend_rgns (int *degree, int *idxp, sbitmap header, int *loop_hdr)
1152{
1153 int *order, i, rescan = 0, idx = *idxp, iter = 0, max_iter, *max_hdr;
0cae8d31 1154 int nblocks = n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS;
d08eefb9
MK
1155
1156 max_iter = PARAM_VALUE (PARAM_MAX_SCHED_EXTEND_REGIONS_ITERS);
1157
8b1c6fd7 1158 max_hdr = XNEWVEC (int, last_basic_block_for_fn (cfun));
d08eefb9 1159
8b1c6fd7 1160 order = XNEWVEC (int, last_basic_block_for_fn (cfun));
6fb5fa3c 1161 post_order_compute (order, false, false);
d08eefb9
MK
1162
1163 for (i = nblocks - 1; i >= 0; i--)
1164 {
1165 int bbn = order[i];
1166 if (degree[bbn] >= 0)
1167 {
1168 max_hdr[bbn] = bbn;
1169 rescan = 1;
1170 }
1171 else
1172 /* This block already was processed in find_rgns. */
1173 max_hdr[bbn] = -1;
1174 }
b8698a0f 1175
d08eefb9
MK
1176 /* The idea is to topologically walk through CFG in top-down order.
1177 During the traversal, if all the predecessors of a node are
1178 marked to be in the same region (they all have the same max_hdr),
b8698a0f 1179 then current node is also marked to be a part of that region.
d08eefb9 1180 Otherwise the node starts its own region.
b8698a0f
L
1181 CFG should be traversed until no further changes are made. On each
1182 iteration the set of the region heads is extended (the set of those
1183 blocks that have max_hdr[bbi] == bbi). This set is upper bounded by the
e855c69d
AB
1184 set of all basic blocks, thus the algorithm is guaranteed to
1185 terminate. */
d08eefb9
MK
1186
1187 while (rescan && iter < max_iter)
1188 {
1189 rescan = 0;
b8698a0f 1190
d08eefb9
MK
1191 for (i = nblocks - 1; i >= 0; i--)
1192 {
1193 edge e;
1194 edge_iterator ei;
1195 int bbn = order[i];
b8698a0f 1196
d7c028c0 1197 if (max_hdr[bbn] != -1 && !bitmap_bit_p (header, bbn))
d08eefb9
MK
1198 {
1199 int hdr = -1;
1200
06e28de2 1201 FOR_EACH_EDGE (e, ei, BASIC_BLOCK_FOR_FN (cfun, bbn)->preds)
d08eefb9
MK
1202 {
1203 int predn = e->src->index;
1204
1205 if (predn != ENTRY_BLOCK
1206 /* If pred wasn't processed in find_rgns. */
1207 && max_hdr[predn] != -1
1208 /* And pred and bb reside in the same loop.
1209 (Or out of any loop). */
1210 && loop_hdr[bbn] == loop_hdr[predn])
1211 {
1212 if (hdr == -1)
1213 /* Then bb extends the containing region of pred. */
1214 hdr = max_hdr[predn];
1215 else if (hdr != max_hdr[predn])
1216 /* Too bad, there are at least two predecessors
1217 that reside in different regions. Thus, BB should
1218 begin its own region. */
1219 {
1220 hdr = bbn;
1221 break;
b8698a0f 1222 }
d08eefb9
MK
1223 }
1224 else
1225 /* BB starts its own region. */
1226 {
1227 hdr = bbn;
1228 break;
b8698a0f 1229 }
d08eefb9 1230 }
b8698a0f 1231
d08eefb9
MK
1232 if (hdr == bbn)
1233 {
1234 /* If BB start its own region,
1235 update set of headers with BB. */
d7c028c0 1236 bitmap_set_bit (header, bbn);
d08eefb9
MK
1237 rescan = 1;
1238 }
1239 else
b8698a0f 1240 gcc_assert (hdr != -1);
d08eefb9
MK
1241
1242 max_hdr[bbn] = hdr;
1243 }
1244 }
1245
1246 iter++;
1247 }
b8698a0f 1248
d08eefb9
MK
1249 /* Statistics were gathered on the SPEC2000 package of tests with
1250 mainline weekly snapshot gcc-4.1-20051015 on ia64.
b8698a0f 1251
d08eefb9
MK
1252 Statistics for SPECint:
1253 1 iteration : 1751 cases (38.7%)
1254 2 iterations: 2770 cases (61.3%)
1255 Blocks wrapped in regions by find_rgns without extension: 18295 blocks
1256 Blocks wrapped in regions by 2 iterations in extend_rgns: 23821 blocks
1257 (We don't count single block regions here).
b8698a0f 1258
d08eefb9
MK
1259 Statistics for SPECfp:
1260 1 iteration : 621 cases (35.9%)
1261 2 iterations: 1110 cases (64.1%)
1262 Blocks wrapped in regions by find_rgns without extension: 6476 blocks
1263 Blocks wrapped in regions by 2 iterations in extend_rgns: 11155 blocks
1264 (We don't count single block regions here).
1265
1266 By default we do at most 2 iterations.
917f1b7e 1267 This can be overridden with max-sched-extend-regions-iters parameter:
d08eefb9
MK
1268 0 - disable region extension,
1269 N > 0 - do at most N iterations. */
b8698a0f 1270
d08eefb9
MK
1271 if (sched_verbose && iter != 0)
1272 fprintf (sched_dump, ";; Region extension iterations: %d%s\n", iter,
1273 rescan ? "... failed" : "");
b8698a0f 1274
d08eefb9
MK
1275 if (!rescan && iter != 0)
1276 {
1277 int *s1 = NULL, s1_sz = 0;
1278
1279 /* Save the old statistics for later printout. */
1280 if (sched_verbose >= 6)
1281 s1_sz = gather_region_statistics (&s1);
1282
1283 /* We have succeeded. Now assemble the regions. */
1284 for (i = nblocks - 1; i >= 0; i--)
1285 {
1286 int bbn = order[i];
1287
1288 if (max_hdr[bbn] == bbn)
1289 /* BBN is a region head. */
1290 {
1291 edge e;
1292 edge_iterator ei;
1293 int num_bbs = 0, j, num_insns = 0, large;
b8698a0f 1294
d08eefb9
MK
1295 large = too_large (bbn, &num_bbs, &num_insns);
1296
1297 degree[bbn] = -1;
1298 rgn_bb_table[idx] = bbn;
1299 RGN_BLOCKS (nr_regions) = idx++;
496d7bb0
MK
1300 RGN_DONT_CALC_DEPS (nr_regions) = 0;
1301 RGN_HAS_REAL_EBB (nr_regions) = 0;
d08eefb9
MK
1302 CONTAINING_RGN (bbn) = nr_regions;
1303 BLOCK_TO_BB (bbn) = 0;
1304
06e28de2 1305 FOR_EACH_EDGE (e, ei, BASIC_BLOCK_FOR_FN (cfun, bbn)->succs)
fefa31b5 1306 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
d08eefb9
MK
1307 degree[e->dest->index]--;
1308
1309 if (!large)
1310 /* Here we check whether the region is too_large. */
1311 for (j = i - 1; j >= 0; j--)
1312 {
1313 int succn = order[j];
1314 if (max_hdr[succn] == bbn)
1315 {
1316 if ((large = too_large (succn, &num_bbs, &num_insns)))
1317 break;
1318 }
1319 }
1320
1321 if (large)
1322 /* If the region is too_large, then wrap every block of
1323 the region into single block region.
1324 Here we wrap region head only. Other blocks are
1325 processed in the below cycle. */
1326 {
1327 RGN_NR_BLOCKS (nr_regions) = 1;
1328 nr_regions++;
b8698a0f 1329 }
d08eefb9
MK
1330
1331 num_bbs = 1;
1332
1333 for (j = i - 1; j >= 0; j--)
1334 {
1335 int succn = order[j];
1336
1337 if (max_hdr[succn] == bbn)
b8698a0f 1338 /* This cycle iterates over all basic blocks, that
d08eefb9
MK
1339 are supposed to be in the region with head BBN,
1340 and wraps them into that region (or in single
1341 block region). */
1342 {
1343 gcc_assert (degree[succn] == 0);
1344
1345 degree[succn] = -1;
b8698a0f 1346 rgn_bb_table[idx] = succn;
d08eefb9
MK
1347 BLOCK_TO_BB (succn) = large ? 0 : num_bbs++;
1348 CONTAINING_RGN (succn) = nr_regions;
1349
1350 if (large)
1351 /* Wrap SUCCN into single block region. */
1352 {
1353 RGN_BLOCKS (nr_regions) = idx;
1354 RGN_NR_BLOCKS (nr_regions) = 1;
496d7bb0
MK
1355 RGN_DONT_CALC_DEPS (nr_regions) = 0;
1356 RGN_HAS_REAL_EBB (nr_regions) = 0;
d08eefb9
MK
1357 nr_regions++;
1358 }
1359
1360 idx++;
b8698a0f 1361
06e28de2
DM
1362 FOR_EACH_EDGE (e, ei,
1363 BASIC_BLOCK_FOR_FN (cfun, succn)->succs)
fefa31b5 1364 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
d08eefb9
MK
1365 degree[e->dest->index]--;
1366 }
1367 }
1368
1369 if (!large)
1370 {
1371 RGN_NR_BLOCKS (nr_regions) = num_bbs;
1372 nr_regions++;
1373 }
1374 }
1375 }
1376
1377 if (sched_verbose >= 6)
1378 {
1379 int *s2, s2_sz;
1380
b8698a0f 1381 /* Get the new statistics and print the comparison with the
d08eefb9
MK
1382 one before calling this function. */
1383 s2_sz = gather_region_statistics (&s2);
1384 print_region_statistics (s1, s1_sz, s2, s2_sz);
1385 free (s1);
1386 free (s2);
1387 }
1388 }
b8698a0f 1389
d08eefb9
MK
1390 free (order);
1391 free (max_hdr);
1392
b8698a0f 1393 *idxp = idx;
d08eefb9
MK
1394}
1395
b4ead7d4
BS
1396/* Functions for regions scheduling information. */
1397
1398/* Compute dominators, probability, and potential-split-edges of bb.
1399 Assume that these values were already computed for bb's predecessors. */
1400
1401static void
46c5ad27 1402compute_dom_prob_ps (int bb)
b4ead7d4 1403{
36968131
PS
1404 edge_iterator in_ei;
1405 edge in_edge;
b4ead7d4 1406
496d7bb0
MK
1407 /* We shouldn't have any real ebbs yet. */
1408 gcc_assert (ebb_head [bb] == bb + current_blocks);
b8698a0f 1409
b4ead7d4
BS
1410 if (IS_RGN_ENTRY (bb))
1411 {
d7c028c0 1412 bitmap_set_bit (dom[bb], 0);
36968131 1413 prob[bb] = REG_BR_PROB_BASE;
b4ead7d4
BS
1414 return;
1415 }
1416
36968131
PS
1417 prob[bb] = 0;
1418
eaec9b3d 1419 /* Initialize dom[bb] to '111..1'. */
f61e445a 1420 bitmap_ones (dom[bb]);
b4ead7d4 1421
06e28de2
DM
1422 FOR_EACH_EDGE (in_edge, in_ei,
1423 BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (bb))->preds)
b4ead7d4 1424 {
36968131
PS
1425 int pred_bb;
1426 edge out_edge;
1427 edge_iterator out_ei;
1428
fefa31b5 1429 if (in_edge->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
dcda8480 1430 continue;
b4ead7d4 1431
dcda8480 1432 pred_bb = BLOCK_TO_BB (in_edge->src->index);
f61e445a
LC
1433 bitmap_and (dom[bb], dom[bb], dom[pred_bb]);
1434 bitmap_ior (ancestor_edges[bb],
dcda8480 1435 ancestor_edges[bb], ancestor_edges[pred_bb]);
b4ead7d4 1436
d7c028c0 1437 bitmap_set_bit (ancestor_edges[bb], EDGE_TO_BIT (in_edge));
bdfa170f 1438
f61e445a 1439 bitmap_ior (pot_split[bb], pot_split[bb], pot_split[pred_bb]);
b4ead7d4 1440
dcda8480 1441 FOR_EACH_EDGE (out_edge, out_ei, in_edge->src->succs)
d7c028c0 1442 bitmap_set_bit (pot_split[bb], EDGE_TO_BIT (out_edge));
dcda8480 1443
8b47039c 1444 prob[bb] += combine_probabilities (prob[pred_bb], in_edge->probability);
68f073d4
TJ
1445 // The rounding divide in combine_probabilities can result in an extra
1446 // probability increment propagating along 50-50 edges. Eventually when
1447 // the edges re-merge, the accumulated probability can go slightly above
1448 // REG_BR_PROB_BASE.
1449 if (prob[bb] > REG_BR_PROB_BASE)
1450 prob[bb] = REG_BR_PROB_BASE;
b4ead7d4 1451 }
b4ead7d4 1452
d7c028c0 1453 bitmap_set_bit (dom[bb], bb);
f61e445a 1454 bitmap_and_compl (pot_split[bb], pot_split[bb], ancestor_edges[bb]);
b4ead7d4
BS
1455
1456 if (sched_verbose >= 2)
1457 fprintf (sched_dump, ";; bb_prob(%d, %d) = %3d\n", bb, BB_TO_BLOCK (bb),
36968131 1458 (100 * prob[bb]) / REG_BR_PROB_BASE);
b4ead7d4
BS
1459}
1460
1461/* Functions for target info. */
1462
1463/* Compute in BL the list of split-edges of bb_src relatively to bb_trg.
1464 Note that bb_trg dominates bb_src. */
1465
1466static void
46c5ad27 1467split_edges (int bb_src, int bb_trg, edgelst *bl)
b4ead7d4 1468{
7ba9e72d 1469 auto_sbitmap src (SBITMAP_SIZE (pot_split[bb_src]));
f61e445a 1470 bitmap_copy (src, pot_split[bb_src]);
bdfa170f 1471
f61e445a 1472 bitmap_and_compl (src, src, pot_split[bb_trg]);
dcda8480 1473 extract_edgelst (src, bl);
b4ead7d4
BS
1474}
1475
1476/* Find the valid candidate-source-blocks for the target block TRG, compute
1477 their probability, and check if they are speculative or not.
1478 For speculative sources, compute their update-blocks and split-blocks. */
1479
1480static void
46c5ad27 1481compute_trg_info (int trg)
b4ead7d4 1482{
b3694847 1483 candidate *sp;
ba8a73e9 1484 edgelst el = { NULL, 0 };
dcda8480
UW
1485 int i, j, k, update_idx;
1486 basic_block block;
1487 edge_iterator ei;
1488 edge e;
b4ead7d4 1489
e855c69d
AB
1490 candidate_table = XNEWVEC (candidate, current_nr_blocks);
1491
1492 bblst_last = 0;
1493 /* bblst_table holds split blocks and update blocks for each block after
1494 the current one in the region. split blocks and update blocks are
1495 the TO blocks of region edges, so there can be at most rgn_nr_edges
1496 of them. */
1497 bblst_size = (current_nr_blocks - target_bb) * rgn_nr_edges;
1498 bblst_table = XNEWVEC (basic_block, bblst_size);
1499
1500 edgelst_last = 0;
1501 edgelst_table = XNEWVEC (edge, rgn_nr_edges);
1502
b4ead7d4
BS
1503 /* Define some of the fields for the target bb as well. */
1504 sp = candidate_table + trg;
1505 sp->is_valid = 1;
1506 sp->is_speculative = 0;
36968131 1507 sp->src_prob = REG_BR_PROB_BASE;
b4ead7d4 1508
7ba9e72d 1509 auto_sbitmap visited (last_basic_block_for_fn (cfun));
740ce53d 1510
b4ead7d4
BS
1511 for (i = trg + 1; i < current_nr_blocks; i++)
1512 {
1513 sp = candidate_table + i;
1514
1515 sp->is_valid = IS_DOMINATED (i, trg);
1516 if (sp->is_valid)
1517 {
36968131
PS
1518 int tf = prob[trg], cf = prob[i];
1519
1520 /* In CFGs with low probability edges TF can possibly be zero. */
8b47039c 1521 sp->src_prob = (tf ? GCOV_COMPUTE_SCALE (cf, tf) : 0);
36968131 1522 sp->is_valid = (sp->src_prob >= min_spec_prob);
b4ead7d4
BS
1523 }
1524
1525 if (sp->is_valid)
1526 {
1527 split_edges (i, trg, &el);
1528 sp->is_speculative = (el.nr_members) ? 1 : 0;
1529 if (sp->is_speculative && !flag_schedule_speculative)
1530 sp->is_valid = 0;
1531 }
1532
1533 if (sp->is_valid)
1534 {
b4ead7d4
BS
1535 /* Compute split blocks and store them in bblst_table.
1536 The TO block of every split edge is a split block. */
1537 sp->split_bbs.first_member = &bblst_table[bblst_last];
1538 sp->split_bbs.nr_members = el.nr_members;
1539 for (j = 0; j < el.nr_members; bblst_last++, j++)
dcda8480 1540 bblst_table[bblst_last] = el.first_member[j]->dest;
b4ead7d4
BS
1541 sp->update_bbs.first_member = &bblst_table[bblst_last];
1542
1543 /* Compute update blocks and store them in bblst_table.
1544 For every split edge, look at the FROM block, and check
1545 all out edges. For each out edge that is not a split edge,
1546 add the TO block to the update block list. This list can end
1547 up with a lot of duplicates. We need to weed them out to avoid
1548 overrunning the end of the bblst_table. */
b4ead7d4
BS
1549
1550 update_idx = 0;
f61e445a 1551 bitmap_clear (visited);
b4ead7d4
BS
1552 for (j = 0; j < el.nr_members; j++)
1553 {
dcda8480
UW
1554 block = el.first_member[j]->src;
1555 FOR_EACH_EDGE (e, ei, block->succs)
b4ead7d4 1556 {
d7c028c0 1557 if (!bitmap_bit_p (visited, e->dest->index))
b4ead7d4
BS
1558 {
1559 for (k = 0; k < el.nr_members; k++)
dcda8480 1560 if (e == el.first_member[k])
b4ead7d4
BS
1561 break;
1562
1563 if (k >= el.nr_members)
1564 {
dcda8480 1565 bblst_table[bblst_last++] = e->dest;
d7c028c0 1566 bitmap_set_bit (visited, e->dest->index);
b4ead7d4
BS
1567 update_idx++;
1568 }
1569 }
b4ead7d4 1570 }
b4ead7d4
BS
1571 }
1572 sp->update_bbs.nr_members = update_idx;
1573
1574 /* Make sure we didn't overrun the end of bblst_table. */
41374e13 1575 gcc_assert (bblst_last <= bblst_size);
b4ead7d4
BS
1576 }
1577 else
1578 {
1579 sp->split_bbs.nr_members = sp->update_bbs.nr_members = 0;
1580
1581 sp->is_speculative = 0;
1582 sp->src_prob = 0;
1583 }
1584 }
1585}
1586
e855c69d
AB
1587/* Free the computed target info. */
1588static void
1589free_trg_info (void)
1590{
1591 free (candidate_table);
1592 free (bblst_table);
1593 free (edgelst_table);
1594}
1595
b4ead7d4
BS
1596/* Print candidates info, for debugging purposes. Callable from debugger. */
1597
24e47c76 1598DEBUG_FUNCTION void
46c5ad27 1599debug_candidate (int i)
b4ead7d4
BS
1600{
1601 if (!candidate_table[i].is_valid)
1602 return;
1603
1604 if (candidate_table[i].is_speculative)
1605 {
1606 int j;
1607 fprintf (sched_dump, "src b %d bb %d speculative \n", BB_TO_BLOCK (i), i);
1608
1609 fprintf (sched_dump, "split path: ");
1610 for (j = 0; j < candidate_table[i].split_bbs.nr_members; j++)
1611 {
dcda8480 1612 int b = candidate_table[i].split_bbs.first_member[j]->index;
b4ead7d4
BS
1613
1614 fprintf (sched_dump, " %d ", b);
1615 }
1616 fprintf (sched_dump, "\n");
1617
1618 fprintf (sched_dump, "update path: ");
1619 for (j = 0; j < candidate_table[i].update_bbs.nr_members; j++)
1620 {
dcda8480 1621 int b = candidate_table[i].update_bbs.first_member[j]->index;
b4ead7d4
BS
1622
1623 fprintf (sched_dump, " %d ", b);
1624 }
1625 fprintf (sched_dump, "\n");
1626 }
1627 else
1628 {
1629 fprintf (sched_dump, " src %d equivalent\n", BB_TO_BLOCK (i));
1630 }
1631}
1632
1633/* Print candidates info, for debugging purposes. Callable from debugger. */
1634
24e47c76 1635DEBUG_FUNCTION void
46c5ad27 1636debug_candidates (int trg)
b4ead7d4
BS
1637{
1638 int i;
1639
1640 fprintf (sched_dump, "----------- candidate table: target: b=%d bb=%d ---\n",
1641 BB_TO_BLOCK (trg), trg);
1642 for (i = trg + 1; i < current_nr_blocks; i++)
1643 debug_candidate (i);
1644}
1645
14b493d6 1646/* Functions for speculative scheduling. */
b4ead7d4 1647
6fb5fa3c
DB
1648static bitmap_head not_in_df;
1649
b4ead7d4
BS
1650/* Return 0 if x is a set of a register alive in the beginning of one
1651 of the split-blocks of src, otherwise return 1. */
1652
1653static int
46c5ad27 1654check_live_1 (int src, rtx x)
b4ead7d4 1655{
b3694847
SS
1656 int i;
1657 int regno;
1658 rtx reg = SET_DEST (x);
b4ead7d4
BS
1659
1660 if (reg == 0)
1661 return 1;
1662
46d096a3
SB
1663 while (GET_CODE (reg) == SUBREG
1664 || GET_CODE (reg) == ZERO_EXTRACT
b4ead7d4
BS
1665 || GET_CODE (reg) == STRICT_LOW_PART)
1666 reg = XEXP (reg, 0);
1667
7193d1dc 1668 if (GET_CODE (reg) == PARALLEL)
b4ead7d4 1669 {
b3694847 1670 int i;
90d036a0 1671
b4ead7d4 1672 for (i = XVECLEN (reg, 0) - 1; i >= 0; i--)
7193d1dc
RK
1673 if (XEXP (XVECEXP (reg, 0, i), 0) != 0)
1674 if (check_live_1 (src, XEXP (XVECEXP (reg, 0, i), 0)))
90d036a0 1675 return 1;
90d036a0 1676
b4ead7d4
BS
1677 return 0;
1678 }
1679
f8cfc6aa 1680 if (!REG_P (reg))
b4ead7d4
BS
1681 return 1;
1682
1683 regno = REGNO (reg);
1684
1685 if (regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
1686 {
1687 /* Global registers are assumed live. */
1688 return 0;
1689 }
1690 else
1691 {
1692 if (regno < FIRST_PSEUDO_REGISTER)
1693 {
1694 /* Check for hard registers. */
dc8afb70 1695 int j = REG_NREGS (reg);
b4ead7d4
BS
1696 while (--j >= 0)
1697 {
1698 for (i = 0; i < candidate_table[src].split_bbs.nr_members; i++)
1699 {
dcda8480 1700 basic_block b = candidate_table[src].split_bbs.first_member[i];
6fb5fa3c 1701 int t = bitmap_bit_p (&not_in_df, b->index);
b4ead7d4 1702
496d7bb0 1703 /* We can have split blocks, that were recently generated.
fa10beec 1704 Such blocks are always outside current region. */
6fb5fa3c
DB
1705 gcc_assert (!t || (CONTAINING_RGN (b->index)
1706 != CONTAINING_RGN (BB_TO_BLOCK (src))));
1707
89a95777 1708 if (t || REGNO_REG_SET_P (df_get_live_in (b), regno + j))
6fb5fa3c 1709 return 0;
b4ead7d4
BS
1710 }
1711 }
1712 }
1713 else
1714 {
2067c116 1715 /* Check for pseudo registers. */
b4ead7d4
BS
1716 for (i = 0; i < candidate_table[src].split_bbs.nr_members; i++)
1717 {
dcda8480 1718 basic_block b = candidate_table[src].split_bbs.first_member[i];
6fb5fa3c 1719 int t = bitmap_bit_p (&not_in_df, b->index);
b4ead7d4 1720
6fb5fa3c
DB
1721 gcc_assert (!t || (CONTAINING_RGN (b->index)
1722 != CONTAINING_RGN (BB_TO_BLOCK (src))));
1723
89a95777 1724 if (t || REGNO_REG_SET_P (df_get_live_in (b), regno))
6fb5fa3c 1725 return 0;
b4ead7d4
BS
1726 }
1727 }
1728 }
1729
1730 return 1;
1731}
1732
1733/* If x is a set of a register R, mark that R is alive in the beginning
1734 of every update-block of src. */
1735
1736static void
46c5ad27 1737update_live_1 (int src, rtx x)
b4ead7d4 1738{
b3694847
SS
1739 int i;
1740 int regno;
1741 rtx reg = SET_DEST (x);
b4ead7d4
BS
1742
1743 if (reg == 0)
1744 return;
1745
46d096a3
SB
1746 while (GET_CODE (reg) == SUBREG
1747 || GET_CODE (reg) == ZERO_EXTRACT
b4ead7d4
BS
1748 || GET_CODE (reg) == STRICT_LOW_PART)
1749 reg = XEXP (reg, 0);
1750
7193d1dc 1751 if (GET_CODE (reg) == PARALLEL)
b4ead7d4 1752 {
b3694847 1753 int i;
90d036a0 1754
b4ead7d4 1755 for (i = XVECLEN (reg, 0) - 1; i >= 0; i--)
7193d1dc
RK
1756 if (XEXP (XVECEXP (reg, 0, i), 0) != 0)
1757 update_live_1 (src, XEXP (XVECEXP (reg, 0, i), 0));
90d036a0 1758
b4ead7d4
BS
1759 return;
1760 }
1761
f8cfc6aa 1762 if (!REG_P (reg))
b4ead7d4
BS
1763 return;
1764
1765 /* Global registers are always live, so the code below does not apply
1766 to them. */
1767
1768 regno = REGNO (reg);
1769
f773c2bd
AS
1770 if (! HARD_REGISTER_NUM_P (regno)
1771 || !global_regs[regno])
b4ead7d4 1772 {
f773c2bd 1773 for (i = 0; i < candidate_table[src].update_bbs.nr_members; i++)
b4ead7d4 1774 {
f773c2bd 1775 basic_block b = candidate_table[src].update_bbs.first_member[i];
07a737f3 1776 bitmap_set_range (df_get_live_in (b), regno, REG_NREGS (reg));
b4ead7d4
BS
1777 }
1778 }
1779}
1780
1781/* Return 1 if insn can be speculatively moved from block src to trg,
1782 otherwise return 0. Called before first insertion of insn to
1783 ready-list or before the scheduling. */
1784
1785static int
ce1ce33a 1786check_live (rtx_insn *insn, int src)
b4ead7d4
BS
1787{
1788 /* Find the registers set by instruction. */
1789 if (GET_CODE (PATTERN (insn)) == SET
1790 || GET_CODE (PATTERN (insn)) == CLOBBER)
1791 return check_live_1 (src, PATTERN (insn));
1792 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
1793 {
1794 int j;
1795 for (j = XVECLEN (PATTERN (insn), 0) - 1; j >= 0; j--)
1796 if ((GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == SET
1797 || GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == CLOBBER)
1798 && !check_live_1 (src, XVECEXP (PATTERN (insn), 0, j)))
1799 return 0;
1800
1801 return 1;
1802 }
1803
1804 return 1;
1805}
1806
1807/* Update the live registers info after insn was moved speculatively from
1808 block src to trg. */
1809
1810static void
90831096 1811update_live (rtx_insn *insn, int src)
b4ead7d4
BS
1812{
1813 /* Find the registers set by instruction. */
1814 if (GET_CODE (PATTERN (insn)) == SET
1815 || GET_CODE (PATTERN (insn)) == CLOBBER)
1816 update_live_1 (src, PATTERN (insn));
1817 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
1818 {
1819 int j;
1820 for (j = XVECLEN (PATTERN (insn), 0) - 1; j >= 0; j--)
1821 if (GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == SET
1822 || GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == CLOBBER)
1823 update_live_1 (src, XVECEXP (PATTERN (insn), 0, j));
1824 }
1825}
1826
272d0bee 1827/* Nonzero if block bb_to is equal to, or reachable from block bb_from. */
b4ead7d4 1828#define IS_REACHABLE(bb_from, bb_to) \
786de7eb 1829 (bb_from == bb_to \
b4ead7d4 1830 || IS_RGN_ENTRY (bb_from) \
d7c028c0 1831 || (bitmap_bit_p (ancestor_edges[bb_to], \
06e28de2
DM
1832 EDGE_TO_BIT (single_pred_edge (BASIC_BLOCK_FOR_FN (cfun, \
1833 BB_TO_BLOCK (bb_from)))))))
b4ead7d4 1834
b4ead7d4
BS
1835/* Turns on the fed_by_spec_load flag for insns fed by load_insn. */
1836
1837static void
46c5ad27 1838set_spec_fed (rtx load_insn)
b4ead7d4 1839{
e2f6ff94
MK
1840 sd_iterator_def sd_it;
1841 dep_t dep;
b4ead7d4 1842
e2f6ff94
MK
1843 FOR_EACH_DEP (load_insn, SD_LIST_FORW, sd_it, dep)
1844 if (DEP_TYPE (dep) == REG_DEP_TRUE)
1845 FED_BY_SPEC_LOAD (DEP_CON (dep)) = 1;
b198261f 1846}
b4ead7d4
BS
1847
1848/* On the path from the insn to load_insn_bb, find a conditional
1849branch depending on insn, that guards the speculative load. */
1850
1851static int
90831096 1852find_conditional_protection (rtx_insn *insn, int load_insn_bb)
b4ead7d4 1853{
e2f6ff94
MK
1854 sd_iterator_def sd_it;
1855 dep_t dep;
b4ead7d4
BS
1856
1857 /* Iterate through DEF-USE forward dependences. */
e2f6ff94 1858 FOR_EACH_DEP (insn, SD_LIST_FORW, sd_it, dep)
b4ead7d4 1859 {
23f5bd20 1860 rtx_insn *next = DEP_CON (dep);
b198261f 1861
b4ead7d4
BS
1862 if ((CONTAINING_RGN (BLOCK_NUM (next)) ==
1863 CONTAINING_RGN (BB_TO_BLOCK (load_insn_bb)))
1864 && IS_REACHABLE (INSN_BB (next), load_insn_bb)
1865 && load_insn_bb != INSN_BB (next)
e2f6ff94 1866 && DEP_TYPE (dep) == REG_DEP_TRUE
4b4bf941 1867 && (JUMP_P (next)
b4ead7d4
BS
1868 || find_conditional_protection (next, load_insn_bb)))
1869 return 1;
1870 }
1871 return 0;
1872} /* find_conditional_protection */
1873
1874/* Returns 1 if the same insn1 that participates in the computation
1875 of load_insn's address is feeding a conditional branch that is
fa10beec 1876 guarding on load_insn. This is true if we find two DEF-USE
b4ead7d4
BS
1877 chains:
1878 insn1 -> ... -> conditional-branch
1879 insn1 -> ... -> load_insn,
fa10beec 1880 and if a flow path exists:
b4ead7d4
BS
1881 insn1 -> ... -> conditional-branch -> ... -> load_insn,
1882 and if insn1 is on the path
1883 region-entry -> ... -> bb_trg -> ... load_insn.
1884
b198261f
MK
1885 Locate insn1 by climbing on INSN_BACK_DEPS from load_insn.
1886 Locate the branch by following INSN_FORW_DEPS from insn1. */
b4ead7d4
BS
1887
1888static int
46c5ad27 1889is_conditionally_protected (rtx load_insn, int bb_src, int bb_trg)
b4ead7d4 1890{
e2f6ff94
MK
1891 sd_iterator_def sd_it;
1892 dep_t dep;
b4ead7d4 1893
e2f6ff94 1894 FOR_EACH_DEP (load_insn, SD_LIST_BACK, sd_it, dep)
b4ead7d4 1895 {
23f5bd20 1896 rtx_insn *insn1 = DEP_PRO (dep);
b4ead7d4
BS
1897
1898 /* Must be a DEF-USE dependence upon non-branch. */
e2f6ff94 1899 if (DEP_TYPE (dep) != REG_DEP_TRUE
4b4bf941 1900 || JUMP_P (insn1))
b4ead7d4
BS
1901 continue;
1902
1903 /* Must exist a path: region-entry -> ... -> bb_trg -> ... load_insn. */
1904 if (INSN_BB (insn1) == bb_src
1905 || (CONTAINING_RGN (BLOCK_NUM (insn1))
1906 != CONTAINING_RGN (BB_TO_BLOCK (bb_src)))
1907 || (!IS_REACHABLE (bb_trg, INSN_BB (insn1))
1908 && !IS_REACHABLE (INSN_BB (insn1), bb_trg)))
1909 continue;
1910
1911 /* Now search for the conditional-branch. */
1912 if (find_conditional_protection (insn1, bb_src))
1913 return 1;
1914
1915 /* Recursive step: search another insn1, "above" current insn1. */
1916 return is_conditionally_protected (insn1, bb_src, bb_trg);
1917 }
1918
1919 /* The chain does not exist. */
1920 return 0;
1921} /* is_conditionally_protected */
1922
1923/* Returns 1 if a clue for "similar load" 'insn2' is found, and hence
1924 load_insn can move speculatively from bb_src to bb_trg. All the
1925 following must hold:
1926
1927 (1) both loads have 1 base register (PFREE_CANDIDATEs).
1928 (2) load_insn and load1 have a def-use dependence upon
1929 the same insn 'insn1'.
1930 (3) either load2 is in bb_trg, or:
1931 - there's only one split-block, and
1932 - load1 is on the escape path, and
1933
1934 From all these we can conclude that the two loads access memory
1935 addresses that differ at most by a constant, and hence if moving
1936 load_insn would cause an exception, it would have been caused by
1937 load2 anyhow. */
1938
1939static int
46c5ad27 1940is_pfree (rtx load_insn, int bb_src, int bb_trg)
b4ead7d4 1941{
e2f6ff94
MK
1942 sd_iterator_def back_sd_it;
1943 dep_t back_dep;
b3694847 1944 candidate *candp = candidate_table + bb_src;
b4ead7d4
BS
1945
1946 if (candp->split_bbs.nr_members != 1)
1947 /* Must have exactly one escape block. */
1948 return 0;
1949
e2f6ff94 1950 FOR_EACH_DEP (load_insn, SD_LIST_BACK, back_sd_it, back_dep)
b4ead7d4 1951 {
23f5bd20 1952 rtx_insn *insn1 = DEP_PRO (back_dep);
b4ead7d4 1953
e2f6ff94
MK
1954 if (DEP_TYPE (back_dep) == REG_DEP_TRUE)
1955 /* Found a DEF-USE dependence (insn1, load_insn). */
b4ead7d4 1956 {
e2f6ff94
MK
1957 sd_iterator_def fore_sd_it;
1958 dep_t fore_dep;
b4ead7d4 1959
e2f6ff94 1960 FOR_EACH_DEP (insn1, SD_LIST_FORW, fore_sd_it, fore_dep)
b4ead7d4 1961 {
23f5bd20 1962 rtx_insn *insn2 = DEP_CON (fore_dep);
b198261f 1963
e2f6ff94 1964 if (DEP_TYPE (fore_dep) == REG_DEP_TRUE)
b4ead7d4
BS
1965 {
1966 /* Found a DEF-USE dependence (insn1, insn2). */
1967 if (haifa_classify_insn (insn2) != PFREE_CANDIDATE)
1968 /* insn2 not guaranteed to be a 1 base reg load. */
1969 continue;
1970
1971 if (INSN_BB (insn2) == bb_trg)
1972 /* insn2 is the similar load, in the target block. */
1973 return 1;
1974
dcda8480 1975 if (*(candp->split_bbs.first_member) == BLOCK_FOR_INSN (insn2))
b4ead7d4
BS
1976 /* insn2 is a similar load, in a split-block. */
1977 return 1;
1978 }
1979 }
1980 }
1981 }
1982
1983 /* Couldn't find a similar load. */
1984 return 0;
1985} /* is_pfree */
1986
b4ead7d4
BS
1987/* Return 1 if load_insn is prisky (i.e. if load_insn is fed by
1988 a load moved speculatively, or if load_insn is protected by
1989 a compare on load_insn's address). */
1990
1991static int
46c5ad27 1992is_prisky (rtx load_insn, int bb_src, int bb_trg)
b4ead7d4
BS
1993{
1994 if (FED_BY_SPEC_LOAD (load_insn))
1995 return 1;
1996
e2f6ff94 1997 if (sd_lists_empty_p (load_insn, SD_LIST_BACK))
b4ead7d4
BS
1998 /* Dependence may 'hide' out of the region. */
1999 return 1;
2000
2001 if (is_conditionally_protected (load_insn, bb_src, bb_trg))
2002 return 1;
2003
2004 return 0;
2005}
2006
2007/* Insn is a candidate to be moved speculatively from bb_src to bb_trg.
2008 Return 1 if insn is exception-free (and the motion is valid)
2009 and 0 otherwise. */
2010
2011static int
90831096 2012is_exception_free (rtx_insn *insn, int bb_src, int bb_trg)
b4ead7d4
BS
2013{
2014 int insn_class = haifa_classify_insn (insn);
2015
2016 /* Handle non-load insns. */
2017 switch (insn_class)
2018 {
2019 case TRAP_FREE:
2020 return 1;
2021 case TRAP_RISKY:
2022 return 0;
2023 default:;
2024 }
2025
2026 /* Handle loads. */
2027 if (!flag_schedule_speculative_load)
2028 return 0;
2029 IS_LOAD_INSN (insn) = 1;
2030 switch (insn_class)
2031 {
2032 case IFREE:
2033 return (1);
2034 case IRISKY:
2035 return 0;
2036 case PFREE_CANDIDATE:
2037 if (is_pfree (insn, bb_src, bb_trg))
2038 return 1;
2039 /* Don't 'break' here: PFREE-candidate is also PRISKY-candidate. */
191816a3 2040 /* FALLTHRU */
b4ead7d4
BS
2041 case PRISKY_CANDIDATE:
2042 if (!flag_schedule_speculative_load_dangerous
2043 || is_prisky (insn, bb_src, bb_trg))
2044 return 0;
2045 break;
2046 default:;
2047 }
2048
2049 return flag_schedule_speculative_load_dangerous;
2050}
2051\f
2052/* The number of insns from the current block scheduled so far. */
2053static int sched_target_n_insns;
2054/* The number of insns from the current block to be scheduled in total. */
2055static int target_n_insns;
2056/* The number of insns from the entire region scheduled so far. */
2057static int sched_n_insns;
2058
2059/* Implementations of the sched_info functions for region scheduling. */
63f54b1a 2060static void init_ready_list (void);
ce1ce33a
DM
2061static int can_schedule_ready_p (rtx_insn *);
2062static void begin_schedule_ready (rtx_insn *);
2063static ds_t new_ready (rtx_insn *, ds_t);
46c5ad27 2064static int schedule_more_p (void);
ce1ce33a
DM
2065static const char *rgn_print_insn (const rtx_insn *, int);
2066static int rgn_rank (rtx_insn *, rtx_insn *);
aef0e7a8 2067static void compute_jump_reg_dependencies (rtx, regset);
b4ead7d4 2068
496d7bb0 2069/* Functions for speculative scheduling. */
ce1ce33a 2070static void rgn_add_remove_insn (rtx_insn *, int);
e855c69d
AB
2071static void rgn_add_block (basic_block, basic_block);
2072static void rgn_fix_recovery_cfg (int, int, int);
ce1ce33a 2073static basic_block advance_target_bb (basic_block, rtx_insn *);
496d7bb0 2074
b4ead7d4
BS
2075/* Return nonzero if there are more insns that should be scheduled. */
2076
2077static int
46c5ad27 2078schedule_more_p (void)
b4ead7d4 2079{
496d7bb0 2080 return sched_target_n_insns < target_n_insns;
b4ead7d4
BS
2081}
2082
2083/* Add all insns that are initially ready to the ready list READY. Called
2084 once before scheduling a set of insns. */
2085
2086static void
63f54b1a 2087init_ready_list (void)
b4ead7d4 2088{
dc01c3d1
DM
2089 rtx_insn *prev_head = current_sched_info->prev_head;
2090 rtx_insn *next_tail = current_sched_info->next_tail;
b4ead7d4 2091 int bb_src;
ce1ce33a 2092 rtx_insn *insn;
b4ead7d4
BS
2093
2094 target_n_insns = 0;
2095 sched_target_n_insns = 0;
2096 sched_n_insns = 0;
2097
2098 /* Print debugging information. */
2099 if (sched_verbose >= 5)
b640bd8f 2100 debug_rgn_dependencies (target_bb);
b4ead7d4
BS
2101
2102 /* Prepare current target block info. */
2103 if (current_nr_blocks > 1)
e855c69d 2104 compute_trg_info (target_bb);
b4ead7d4
BS
2105
2106 /* Initialize ready list with all 'ready' insns in target block.
2107 Count number of insns in the target block being scheduled. */
2108 for (insn = NEXT_INSN (prev_head); insn != next_tail; insn = NEXT_INSN (insn))
b8698a0f 2109 {
1a83e602
BS
2110 gcc_assert (TODO_SPEC (insn) == HARD_DEP || TODO_SPEC (insn) == DEP_POSTPONED);
2111 TODO_SPEC (insn) = HARD_DEP;
63f54b1a 2112 try_ready (insn);
58fb7809 2113 target_n_insns++;
496d7bb0
MK
2114
2115 gcc_assert (!(TODO_SPEC (insn) & BEGIN_CONTROL));
b4ead7d4
BS
2116 }
2117
2118 /* Add to ready list all 'ready' insns in valid source blocks.
2119 For speculative insns, check-live, exception-free, and
2120 issue-delay. */
2121 for (bb_src = target_bb + 1; bb_src < current_nr_blocks; bb_src++)
2122 if (IS_VALID (bb_src))
2123 {
52d251b5
DM
2124 rtx_insn *src_head;
2125 rtx_insn *src_next_tail;
2126 rtx_insn *tail, *head;
b4ead7d4 2127
496d7bb0
MK
2128 get_ebb_head_tail (EBB_FIRST_BB (bb_src), EBB_LAST_BB (bb_src),
2129 &head, &tail);
b4ead7d4
BS
2130 src_next_tail = NEXT_INSN (tail);
2131 src_head = head;
2132
2133 for (insn = src_head; insn != src_next_tail; insn = NEXT_INSN (insn))
a59d15cf 2134 if (INSN_P (insn))
1a83e602
BS
2135 {
2136 gcc_assert (TODO_SPEC (insn) == HARD_DEP || TODO_SPEC (insn) == DEP_POSTPONED);
2137 TODO_SPEC (insn) = HARD_DEP;
2138 try_ready (insn);
2139 }
b4ead7d4
BS
2140 }
2141}
2142
2143/* Called after taking INSN from the ready list. Returns nonzero if this
2144 insn can be scheduled, nonzero if we should silently discard it. */
2145
2146static int
ce1ce33a 2147can_schedule_ready_p (rtx_insn *insn)
b4ead7d4 2148{
496d7bb0
MK
2149 /* An interblock motion? */
2150 if (INSN_BB (insn) != target_bb
2151 && IS_SPECULATIVE_INSN (insn)
2152 && !check_live (insn, INSN_BB (insn)))
b8698a0f 2153 return 0;
496d7bb0
MK
2154 else
2155 return 1;
2156}
79c2ffde 2157
917f1b7e 2158/* Updates counter and other information. Split from can_schedule_ready_p ()
496d7bb0
MK
2159 because when we schedule insn speculatively then insn passed to
2160 can_schedule_ready_p () differs from the one passed to
2161 begin_schedule_ready (). */
2162static void
ce1ce33a 2163begin_schedule_ready (rtx_insn *insn)
496d7bb0 2164{
b4ead7d4
BS
2165 /* An interblock motion? */
2166 if (INSN_BB (insn) != target_bb)
2167 {
b4ead7d4
BS
2168 if (IS_SPECULATIVE_INSN (insn))
2169 {
496d7bb0
MK
2170 gcc_assert (check_live (insn, INSN_BB (insn)));
2171
b4ead7d4
BS
2172 update_live (insn, INSN_BB (insn));
2173
2174 /* For speculative load, mark insns fed by it. */
2175 if (IS_LOAD_INSN (insn) || FED_BY_SPEC_LOAD (insn))
2176 set_spec_fed (insn);
2177
2178 nr_spec++;
2179 }
2180 nr_inter++;
b4ead7d4
BS
2181 }
2182 else
2183 {
2184 /* In block motion. */
2185 sched_target_n_insns++;
2186 }
2187 sched_n_insns++;
b4ead7d4
BS
2188}
2189
496d7bb0
MK
2190/* Called after INSN has all its hard dependencies resolved and the speculation
2191 of type TS is enough to overcome them all.
2192 Return nonzero if it should be moved to the ready list or the queue, or zero
2193 if we should silently discard it. */
2194static ds_t
ce1ce33a 2195new_ready (rtx_insn *next, ds_t ts)
b4ead7d4 2196{
496d7bb0
MK
2197 if (INSN_BB (next) != target_bb)
2198 {
2199 int not_ex_free = 0;
2200
2201 /* For speculative insns, before inserting to ready/queue,
b8698a0f 2202 check live, exception-free, and issue-delay. */
496d7bb0 2203 if (!IS_VALID (INSN_BB (next))
b4ead7d4
BS
2204 || CANT_MOVE (next)
2205 || (IS_SPECULATIVE_INSN (next)
fa0aee89 2206 && ((recog_memoized (next) >= 0
b8698a0f 2207 && min_insn_conflict_delay (curr_state, next, next)
496d7bb0 2208 > PARAM_VALUE (PARAM_MAX_SCHED_INSN_CONFLICT_DELAY))
d7bfd907 2209 || IS_SPECULATION_CHECK_P (next)
b4ead7d4 2210 || !check_live (next, INSN_BB (next))
496d7bb0
MK
2211 || (not_ex_free = !is_exception_free (next, INSN_BB (next),
2212 target_bb)))))
2213 {
2214 if (not_ex_free
2215 /* We are here because is_exception_free () == false.
2216 But we possibly can handle that with control speculation. */
e855c69d
AB
2217 && sched_deps_info->generate_spec_deps
2218 && spec_info->mask & BEGIN_CONTROL)
07da1cfc
MK
2219 {
2220 ds_t new_ds;
2221
2222 /* Add control speculation to NEXT's dependency type. */
2223 new_ds = set_dep_weak (ts, BEGIN_CONTROL, MAX_DEP_WEAK);
2224
2225 /* Check if NEXT can be speculated with new dependency type. */
2226 if (sched_insn_is_legitimate_for_speculation_p (next, new_ds))
2227 /* Here we got new control-speculative instruction. */
2228 ts = new_ds;
2229 else
2230 /* NEXT isn't ready yet. */
1a83e602 2231 ts = DEP_POSTPONED;
07da1cfc 2232 }
496d7bb0 2233 else
07da1cfc 2234 /* NEXT isn't ready yet. */
1a83e602 2235 ts = DEP_POSTPONED;
496d7bb0
MK
2236 }
2237 }
b8698a0f 2238
496d7bb0 2239 return ts;
b4ead7d4
BS
2240}
2241
2242/* Return a string that contains the insn uid and optionally anything else
2243 necessary to identify this insn in an output. It's valid to use a
2244 static buffer for this. The ALIGNED parameter should cause the string
2245 to be formatted so that multiple output lines will line up nicely. */
2246
2247static const char *
ce1ce33a 2248rgn_print_insn (const rtx_insn *insn, int aligned)
b4ead7d4
BS
2249{
2250 static char tmp[80];
2251
2252 if (aligned)
2253 sprintf (tmp, "b%3d: i%4d", INSN_BB (insn), INSN_UID (insn));
2254 else
2255 {
b4ead7d4 2256 if (current_nr_blocks > 1 && INSN_BB (insn) != target_bb)
f56887a7
BS
2257 sprintf (tmp, "%d/b%d", INSN_UID (insn), INSN_BB (insn));
2258 else
2259 sprintf (tmp, "%d", INSN_UID (insn));
b4ead7d4
BS
2260 }
2261 return tmp;
2262}
2263
2264/* Compare priority of two insns. Return a positive number if the second
2265 insn is to be preferred for scheduling, and a negative one if the first
2266 is to be preferred. Zero if they are equally good. */
2267
2268static int
ce1ce33a 2269rgn_rank (rtx_insn *insn1, rtx_insn *insn2)
b4ead7d4
BS
2270{
2271 /* Some comparison make sense in interblock scheduling only. */
2272 if (INSN_BB (insn1) != INSN_BB (insn2))
2273 {
2274 int spec_val, prob_val;
2275
2276 /* Prefer an inblock motion on an interblock motion. */
2277 if ((INSN_BB (insn2) == target_bb) && (INSN_BB (insn1) != target_bb))
2278 return 1;
2279 if ((INSN_BB (insn1) == target_bb) && (INSN_BB (insn2) != target_bb))
2280 return -1;
2281
2282 /* Prefer a useful motion on a speculative one. */
2283 spec_val = IS_SPECULATIVE_INSN (insn1) - IS_SPECULATIVE_INSN (insn2);
2284 if (spec_val)
2285 return spec_val;
2286
2287 /* Prefer a more probable (speculative) insn. */
2288 prob_val = INSN_PROBABILITY (insn2) - INSN_PROBABILITY (insn1);
2289 if (prob_val)
2290 return prob_val;
2291 }
2292 return 0;
2293}
2294
18e720b3
BS
2295/* NEXT is an instruction that depends on INSN (a backward dependence);
2296 return nonzero if we should include this dependence in priority
2297 calculations. */
2298
e855c69d 2299int
ce1ce33a 2300contributes_to_priority (rtx_insn *next, rtx_insn *insn)
18e720b3 2301{
496d7bb0
MK
2302 /* NEXT and INSN reside in one ebb. */
2303 return BLOCK_TO_BB (BLOCK_NUM (next)) == BLOCK_TO_BB (BLOCK_NUM (insn));
18e720b3
BS
2304}
2305
aef0e7a8
BS
2306/* INSN is a JUMP_INSN. Store the set of registers that must be
2307 considered as used by this jump in USED. */
18e720b3
BS
2308
2309static void
46c5ad27 2310compute_jump_reg_dependencies (rtx insn ATTRIBUTE_UNUSED,
aef0e7a8 2311 regset used ATTRIBUTE_UNUSED)
18e720b3
BS
2312{
2313 /* Nothing to do here, since we postprocess jumps in
2314 add_branch_dependences. */
2315}
2316
b8698a0f 2317/* This variable holds common_sched_info hooks and data relevant to
e855c69d
AB
2318 the interblock scheduler. */
2319static struct common_sched_info_def rgn_common_sched_info;
2320
2321
2322/* This holds data for the dependence analysis relevant to
2323 the interblock scheduler. */
2324static struct sched_deps_info_def rgn_sched_deps_info;
2325
2326/* This holds constant data used for initializing the above structure
2327 for the Haifa scheduler. */
2328static const struct sched_deps_info_def rgn_const_sched_deps_info =
2329 {
2330 compute_jump_reg_dependencies,
2331 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2332 0, 0, 0
2333 };
2334
2335/* Same as above, but for the selective scheduler. */
2336static const struct sched_deps_info_def rgn_const_sel_sched_deps_info =
2337 {
2338 compute_jump_reg_dependencies,
2339 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2340 0, 0, 0
2341 };
2342
356c23b3
MK
2343/* Return true if scheduling INSN will trigger finish of scheduling
2344 current block. */
2345static bool
ce1ce33a 2346rgn_insn_finishes_block_p (rtx_insn *insn)
356c23b3
MK
2347{
2348 if (INSN_BB (insn) == target_bb
2349 && sched_target_n_insns + 1 == target_n_insns)
2350 /* INSN is the last not-scheduled instruction in the current block. */
2351 return true;
2352
2353 return false;
2354}
2355
b4ead7d4
BS
2356/* Used in schedule_insns to initialize current_sched_info for scheduling
2357 regions (or single basic blocks). */
2358
e855c69d 2359static const struct haifa_sched_info rgn_const_sched_info =
b4ead7d4
BS
2360{
2361 init_ready_list,
2362 can_schedule_ready_p,
2363 schedule_more_p,
2364 new_ready,
2365 rgn_rank,
2366 rgn_print_insn,
18e720b3 2367 contributes_to_priority,
356c23b3 2368 rgn_insn_finishes_block_p,
b4ead7d4
BS
2369
2370 NULL, NULL,
2371 NULL, NULL,
e855c69d 2372 0, 0,
ddbd5439 2373
e855c69d 2374 rgn_add_remove_insn,
496d7bb0 2375 begin_schedule_ready,
86014d07 2376 NULL,
496d7bb0 2377 advance_target_bb,
26965010 2378 NULL, NULL,
6fb5fa3c 2379 SCHED_RGN
b4ead7d4
BS
2380};
2381
e855c69d
AB
2382/* This variable holds the data and hooks needed to the Haifa scheduler backend
2383 for the interblock scheduler frontend. */
2384static struct haifa_sched_info rgn_sched_info;
2385
2386/* Returns maximum priority that an insn was assigned to. */
2387
2388int
2389get_rgn_sched_max_insns_priority (void)
2390{
2391 return rgn_sched_info.sched_max_insns_priority;
2392}
2393
07b8f0a8 2394/* Determine if PAT sets a TARGET_CLASS_LIKELY_SPILLED_P register. */
68c17f30
RH
2395
2396static bool
46c5ad27 2397sets_likely_spilled (rtx pat)
68c17f30
RH
2398{
2399 bool ret = false;
2400 note_stores (pat, sets_likely_spilled_1, &ret);
2401 return ret;
2402}
2403
2404static void
7bc980e1 2405sets_likely_spilled_1 (rtx x, const_rtx pat, void *data)
68c17f30
RH
2406{
2407 bool *ret = (bool *) data;
2408
2409 if (GET_CODE (pat) == SET
2410 && REG_P (x)
07b8f0a8
AS
2411 && HARD_REGISTER_P (x)
2412 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (x))))
68c17f30
RH
2413 *ret = true;
2414}
2415
d9e74dfc
AM
2416/* A bitmap to note insns that participate in any dependency. Used in
2417 add_branch_dependences. */
2418static sbitmap insn_referenced;
e855c69d 2419
b4ead7d4
BS
2420/* Add dependences so that branches are scheduled to run last in their
2421 block. */
b4ead7d4 2422static void
ce1ce33a 2423add_branch_dependences (rtx_insn *head, rtx_insn *tail)
b4ead7d4 2424{
ce1ce33a 2425 rtx_insn *insn, *last;
b4ead7d4 2426
8d8a083e
RH
2427 /* For all branches, calls, uses, clobbers, cc0 setters, and instructions
2428 that can throw exceptions, force them to remain in order at the end of
2429 the block by adding dependencies and giving the last a high priority.
2430 There may be notes present, and prev_head may also be a note.
b4ead7d4
BS
2431
2432 Branches must obviously remain at the end. Calls should remain at the
2433 end since moving them results in worse register allocation. Uses remain
68c17f30
RH
2434 at the end to ensure proper register allocation.
2435
d91edf86 2436 cc0 setters remain at the end because they can't be moved away from
68c17f30
RH
2437 their cc0 user.
2438
a22449bd
WM
2439 Predecessors of SCHED_GROUP_P instructions at the end remain at the end.
2440
2bd1e239
SB
2441 COND_EXEC insns cannot be moved past a branch (see e.g. PR17808).
2442
07b8f0a8
AS
2443 Insns setting TARGET_CLASS_LIKELY_SPILLED_P registers (usually return
2444 values) are not moved before reload because we can wind up with register
68c17f30
RH
2445 allocation failures. */
2446
b5b8b0ac
AO
2447 while (tail != head && DEBUG_INSN_P (tail))
2448 tail = PREV_INSN (tail);
2449
b4ead7d4
BS
2450 insn = tail;
2451 last = 0;
4b4bf941 2452 while (CALL_P (insn)
39718607 2453 || JUMP_P (insn) || JUMP_TABLE_DATA_P (insn)
4b4bf941 2454 || (NONJUMP_INSN_P (insn)
b4ead7d4
BS
2455 && (GET_CODE (PATTERN (insn)) == USE
2456 || GET_CODE (PATTERN (insn)) == CLOBBER
8d8a083e 2457 || can_throw_internal (insn)
058eb3b0 2458 || (HAVE_cc0 && sets_cc0_p (PATTERN (insn)))
68c17f30
RH
2459 || (!reload_completed
2460 && sets_likely_spilled (PATTERN (insn)))))
a22449bd
WM
2461 || NOTE_P (insn)
2462 || (last != 0 && SCHED_GROUP_P (last)))
b4ead7d4 2463 {
4b4bf941 2464 if (!NOTE_P (insn))
b4ead7d4 2465 {
b198261f 2466 if (last != 0
e2f6ff94 2467 && sd_find_dep_between (insn, last, false) == NULL)
b4ead7d4 2468 {
2bd1e239
SB
2469 if (! sched_insns_conditions_mutex_p (last, insn))
2470 add_dependence (last, insn, REG_DEP_ANTI);
d7c028c0 2471 bitmap_set_bit (insn_referenced, INSN_LUID (insn));
b4ead7d4
BS
2472 }
2473
2474 CANT_MOVE (insn) = 1;
2475
2476 last = insn;
b4ead7d4
BS
2477 }
2478
2479 /* Don't overrun the bounds of the basic block. */
2480 if (insn == head)
2481 break;
2482
b5b8b0ac
AO
2483 do
2484 insn = PREV_INSN (insn);
2485 while (insn != head && DEBUG_INSN_P (insn));
b4ead7d4
BS
2486 }
2487
2488 /* Make sure these insns are scheduled last in their block. */
2489 insn = last;
2490 if (insn != 0)
2491 while (insn != head)
2492 {
2493 insn = prev_nonnote_insn (insn);
2494
d7c028c0 2495 if (bitmap_bit_p (insn_referenced, INSN_LUID (insn))
b5b8b0ac 2496 || DEBUG_INSN_P (insn))
b4ead7d4
BS
2497 continue;
2498
2bd1e239
SB
2499 if (! sched_insns_conditions_mutex_p (last, insn))
2500 add_dependence (last, insn, REG_DEP_ANTI);
b4ead7d4 2501 }
2bd1e239 2502
2929029c
WG
2503 if (!targetm.have_conditional_execution ())
2504 return;
2505
2bd1e239
SB
2506 /* Finally, if the block ends in a jump, and we are doing intra-block
2507 scheduling, make sure that the branch depends on any COND_EXEC insns
2508 inside the block to avoid moving the COND_EXECs past the branch insn.
2509
2510 We only have to do this after reload, because (1) before reload there
2511 are no COND_EXEC insns, and (2) the region scheduler is an intra-block
2512 scheduler after reload.
2513
2514 FIXME: We could in some cases move COND_EXEC insns past the branch if
2515 this scheduler would be a little smarter. Consider this code:
2516
2517 T = [addr]
2518 C ? addr += 4
abf86bf2 2519 !C ? X += 12
2bd1e239 2520 C ? T += 1
abf86bf2 2521 C ? jump foo
2bd1e239
SB
2522
2523 On a target with a one cycle stall on a memory access the optimal
2524 sequence would be:
2525
2526 T = [addr]
2527 C ? addr += 4
2528 C ? T += 1
2529 C ? jump foo
2530 !C ? X += 12
2531
2532 We don't want to put the 'X += 12' before the branch because it just
2533 wastes a cycle of execution time when the branch is taken.
2534
2535 Note that in the example "!C" will always be true. That is another
2536 possible improvement for handling COND_EXECs in this scheduler: it
2537 could remove always-true predicates. */
2538
39718607 2539 if (!reload_completed || ! (JUMP_P (tail) || JUMP_TABLE_DATA_P (tail)))
2bd1e239
SB
2540 return;
2541
abf86bf2 2542 insn = tail;
2bd1e239
SB
2543 while (insn != head)
2544 {
abf86bf2
RE
2545 insn = PREV_INSN (insn);
2546
2bd1e239
SB
2547 /* Note that we want to add this dependency even when
2548 sched_insns_conditions_mutex_p returns true. The whole point
2549 is that we _want_ this dependency, even if these insns really
2550 are independent. */
2551 if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == COND_EXEC)
2552 add_dependence (tail, insn, REG_DEP_ANTI);
2bd1e239 2553 }
b4ead7d4
BS
2554}
2555
2556/* Data structures for the computation of data dependences in a regions. We
2557 keep one `deps' structure for every basic block. Before analyzing the
2558 data dependences for a bb, its variables are initialized as a function of
2559 the variables of its predecessors. When the analysis for a bb completes,
2560 we save the contents to the corresponding bb_deps[bb] variable. */
2561
88302d54 2562static struct deps_desc *bb_deps;
b4ead7d4 2563
37a0f8a5 2564static void
2f33ff0a
DM
2565concat_insn_mem_list (rtx_insn_list *copy_insns,
2566 rtx_expr_list *copy_mems,
3dc99c19 2567 rtx_insn_list **old_insns_p,
2f33ff0a 2568 rtx_expr_list **old_mems_p)
37a0f8a5 2569{
3dc99c19 2570 rtx_insn_list *new_insns = *old_insns_p;
2f33ff0a 2571 rtx_expr_list *new_mems = *old_mems_p;
37a0f8a5
RH
2572
2573 while (copy_insns)
2574 {
3dc99c19 2575 new_insns = alloc_INSN_LIST (copy_insns->insn (), new_insns);
2f33ff0a 2576 new_mems = alloc_EXPR_LIST (VOIDmode, copy_mems->element (), new_mems);
3dc99c19 2577 copy_insns = copy_insns->next ();
2f33ff0a 2578 copy_mems = copy_mems->next ();
37a0f8a5
RH
2579 }
2580
2581 *old_insns_p = new_insns;
2582 *old_mems_p = new_mems;
2583}
2584
e855c69d
AB
2585/* Join PRED_DEPS to the SUCC_DEPS. */
2586void
88302d54 2587deps_join (struct deps_desc *succ_deps, struct deps_desc *pred_deps)
e855c69d
AB
2588{
2589 unsigned reg;
2590 reg_set_iterator rsi;
2591
2592 /* The reg_last lists are inherited by successor. */
2593 EXECUTE_IF_SET_IN_REG_SET (&pred_deps->reg_last_in_use, 0, reg, rsi)
2594 {
2595 struct deps_reg *pred_rl = &pred_deps->reg_last[reg];
2596 struct deps_reg *succ_rl = &succ_deps->reg_last[reg];
2597
2598 succ_rl->uses = concat_INSN_LIST (pred_rl->uses, succ_rl->uses);
2599 succ_rl->sets = concat_INSN_LIST (pred_rl->sets, succ_rl->sets);
ce18efcb
VM
2600 succ_rl->implicit_sets
2601 = concat_INSN_LIST (pred_rl->implicit_sets, succ_rl->implicit_sets);
e855c69d
AB
2602 succ_rl->clobbers = concat_INSN_LIST (pred_rl->clobbers,
2603 succ_rl->clobbers);
2604 succ_rl->uses_length += pred_rl->uses_length;
2605 succ_rl->clobbers_length += pred_rl->clobbers_length;
2606 }
2607 IOR_REG_SET (&succ_deps->reg_last_in_use, &pred_deps->reg_last_in_use);
2608
2609 /* Mem read/write lists are inherited by successor. */
2610 concat_insn_mem_list (pred_deps->pending_read_insns,
2611 pred_deps->pending_read_mems,
2612 &succ_deps->pending_read_insns,
2613 &succ_deps->pending_read_mems);
2614 concat_insn_mem_list (pred_deps->pending_write_insns,
2615 pred_deps->pending_write_mems,
2616 &succ_deps->pending_write_insns,
2617 &succ_deps->pending_write_mems);
2618
e2724e63
BS
2619 succ_deps->pending_jump_insns
2620 = concat_INSN_LIST (pred_deps->pending_jump_insns,
2621 succ_deps->pending_jump_insns);
e855c69d
AB
2622 succ_deps->last_pending_memory_flush
2623 = concat_INSN_LIST (pred_deps->last_pending_memory_flush,
2624 succ_deps->last_pending_memory_flush);
2625
2626 succ_deps->pending_read_list_length += pred_deps->pending_read_list_length;
2627 succ_deps->pending_write_list_length += pred_deps->pending_write_list_length;
2628 succ_deps->pending_flush_length += pred_deps->pending_flush_length;
2629
2630 /* last_function_call is inherited by successor. */
2631 succ_deps->last_function_call
2632 = concat_INSN_LIST (pred_deps->last_function_call,
2633 succ_deps->last_function_call);
2634
1098d3a5
JJ
2635 /* last_function_call_may_noreturn is inherited by successor. */
2636 succ_deps->last_function_call_may_noreturn
2637 = concat_INSN_LIST (pred_deps->last_function_call_may_noreturn,
2638 succ_deps->last_function_call_may_noreturn);
2639
e855c69d
AB
2640 /* sched_before_next_call is inherited by successor. */
2641 succ_deps->sched_before_next_call
2642 = concat_INSN_LIST (pred_deps->sched_before_next_call,
2643 succ_deps->sched_before_next_call);
2644}
2645
b4ead7d4 2646/* After computing the dependencies for block BB, propagate the dependencies
4ba478b8 2647 found in TMP_DEPS to the successors of the block. */
b4ead7d4 2648static void
88302d54 2649propagate_deps (int bb, struct deps_desc *pred_deps)
b4ead7d4 2650{
06e28de2 2651 basic_block block = BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (bb));
dcda8480
UW
2652 edge_iterator ei;
2653 edge e;
b4ead7d4
BS
2654
2655 /* bb's structures are inherited by its successors. */
dcda8480
UW
2656 FOR_EACH_EDGE (e, ei, block->succs)
2657 {
dcda8480 2658 /* Only bbs "below" bb, in the same region, are interesting. */
fefa31b5 2659 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)
dcda8480
UW
2660 || CONTAINING_RGN (block->index) != CONTAINING_RGN (e->dest->index)
2661 || BLOCK_TO_BB (e->dest->index) <= bb)
2662 continue;
37a0f8a5 2663
e855c69d 2664 deps_join (bb_deps + BLOCK_TO_BB (e->dest->index), pred_deps);
dcda8480 2665 }
b4ead7d4 2666
37a0f8a5
RH
2667 /* These lists should point to the right place, for correct
2668 freeing later. */
2669 bb_deps[bb].pending_read_insns = pred_deps->pending_read_insns;
2670 bb_deps[bb].pending_read_mems = pred_deps->pending_read_mems;
2671 bb_deps[bb].pending_write_insns = pred_deps->pending_write_insns;
2672 bb_deps[bb].pending_write_mems = pred_deps->pending_write_mems;
e2724e63 2673 bb_deps[bb].pending_jump_insns = pred_deps->pending_jump_insns;
37a0f8a5
RH
2674
2675 /* Can't allow these to be freed twice. */
2676 pred_deps->pending_read_insns = 0;
2677 pred_deps->pending_read_mems = 0;
2678 pred_deps->pending_write_insns = 0;
2679 pred_deps->pending_write_mems = 0;
e2724e63 2680 pred_deps->pending_jump_insns = 0;
b4ead7d4
BS
2681}
2682
e2f6ff94 2683/* Compute dependences inside bb. In a multiple blocks region:
b4ead7d4
BS
2684 (1) a bb is analyzed after its predecessors, and (2) the lists in
2685 effect at the end of bb (after analyzing for bb) are inherited by
14b493d6 2686 bb's successors.
b4ead7d4
BS
2687
2688 Specifically for reg-reg data dependences, the block insns are
ce18efcb 2689 scanned by sched_analyze () top-to-bottom. Three lists are
4ba478b8 2690 maintained by sched_analyze (): reg_last[].sets for register DEFs,
ce18efcb
VM
2691 reg_last[].implicit_sets for implicit hard register DEFs, and
2692 reg_last[].uses for register USEs.
b4ead7d4
BS
2693
2694 When analysis is completed for bb, we update for its successors:
2695 ; - DEFS[succ] = Union (DEFS [succ], DEFS [bb])
ce18efcb 2696 ; - IMPLICIT_DEFS[succ] = Union (IMPLICIT_DEFS [succ], IMPLICIT_DEFS [bb])
b4ead7d4
BS
2697 ; - USES[succ] = Union (USES [succ], DEFS [bb])
2698
2699 The mechanism for computing mem-mem data dependence is very
2700 similar, and the result is interblock dependences in the region. */
2701
2702static void
e2f6ff94 2703compute_block_dependences (int bb)
b4ead7d4 2704{
52d251b5 2705 rtx_insn *head, *tail;
88302d54 2706 struct deps_desc tmp_deps;
b4ead7d4
BS
2707
2708 tmp_deps = bb_deps[bb];
2709
2710 /* Do the analysis for this block. */
496d7bb0
MK
2711 gcc_assert (EBB_FIRST_BB (bb) == EBB_LAST_BB (bb));
2712 get_ebb_head_tail (EBB_FIRST_BB (bb), EBB_LAST_BB (bb), &head, &tail);
e2f6ff94 2713
b4ead7d4 2714 sched_analyze (&tmp_deps, head, tail);
e855c69d
AB
2715
2716 /* Selective scheduling handles control dependencies by itself. */
2717 if (!sel_sched_p ())
2718 add_branch_dependences (head, tail);
b4ead7d4
BS
2719
2720 if (current_nr_blocks > 1)
4ba478b8 2721 propagate_deps (bb, &tmp_deps);
b4ead7d4
BS
2722
2723 /* Free up the INSN_LISTs. */
2724 free_deps (&tmp_deps);
e2f6ff94
MK
2725
2726 if (targetm.sched.dependencies_evaluation_hook)
2727 targetm.sched.dependencies_evaluation_hook (head, tail);
2728}
2729
2730/* Free dependencies of instructions inside BB. */
2731static void
2732free_block_dependencies (int bb)
2733{
52d251b5
DM
2734 rtx_insn *head;
2735 rtx_insn *tail;
e2f6ff94
MK
2736
2737 get_ebb_head_tail (EBB_FIRST_BB (bb), EBB_LAST_BB (bb), &head, &tail);
2738
b5b8b0ac
AO
2739 if (no_real_insns_p (head, tail))
2740 return;
2741
e2f6ff94 2742 sched_free_deps (head, tail, true);
b4ead7d4 2743}
4ba478b8 2744
b4ead7d4
BS
2745/* Remove all INSN_LISTs and EXPR_LISTs from the pending lists and add
2746 them to the unused_*_list variables, so that they can be reused. */
2747
2748static void
46c5ad27 2749free_pending_lists (void)
b4ead7d4
BS
2750{
2751 int bb;
2752
2753 for (bb = 0; bb < current_nr_blocks; bb++)
2754 {
2755 free_INSN_LIST_list (&bb_deps[bb].pending_read_insns);
2756 free_INSN_LIST_list (&bb_deps[bb].pending_write_insns);
2757 free_EXPR_LIST_list (&bb_deps[bb].pending_read_mems);
2758 free_EXPR_LIST_list (&bb_deps[bb].pending_write_mems);
e2724e63 2759 free_INSN_LIST_list (&bb_deps[bb].pending_jump_insns);
b4ead7d4
BS
2760 }
2761}
2762\f
e2f6ff94
MK
2763/* Print dependences for debugging starting from FROM_BB.
2764 Callable from debugger. */
b640bd8f
MK
2765/* Print dependences for debugging starting from FROM_BB.
2766 Callable from debugger. */
24e47c76 2767DEBUG_FUNCTION void
b640bd8f 2768debug_rgn_dependencies (int from_bb)
b4ead7d4
BS
2769{
2770 int bb;
2771
b640bd8f
MK
2772 fprintf (sched_dump,
2773 ";; --------------- forward dependences: ------------ \n");
2774
2775 for (bb = from_bb; bb < current_nr_blocks; bb++)
b4ead7d4 2776 {
52d251b5 2777 rtx_insn *head, *tail;
fa0aee89 2778
496d7bb0 2779 get_ebb_head_tail (EBB_FIRST_BB (bb), EBB_LAST_BB (bb), &head, &tail);
fa0aee89
PB
2780 fprintf (sched_dump, "\n;; --- Region Dependences --- b %d bb %d \n",
2781 BB_TO_BLOCK (bb), bb);
2782
b640bd8f
MK
2783 debug_dependencies (head, tail);
2784 }
2785}
fa0aee89 2786
b640bd8f
MK
2787/* Print dependencies information for instructions between HEAD and TAIL.
2788 ??? This function would probably fit best in haifa-sched.c. */
f57aa6b0 2789void debug_dependencies (rtx_insn *head, rtx_insn *tail)
b640bd8f 2790{
f57aa6b0
DM
2791 rtx_insn *insn;
2792 rtx_insn *next_tail = NEXT_INSN (tail);
b640bd8f
MK
2793
2794 fprintf (sched_dump, ";; %7s%6s%6s%6s%6s%6s%14s\n",
2795 "insn", "code", "bb", "dep", "prio", "cost",
2796 "reservation");
2797 fprintf (sched_dump, ";; %7s%6s%6s%6s%6s%6s%14s\n",
2798 "----", "----", "--", "---", "----", "----",
2799 "-----------");
b4ead7d4 2800
b640bd8f
MK
2801 for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
2802 {
b640bd8f
MK
2803 if (! INSN_P (insn))
2804 {
2805 int n;
2806 fprintf (sched_dump, ";; %6d ", INSN_UID (insn));
2807 if (NOTE_P (insn))
b4ead7d4 2808 {
a38e7aa5
JH
2809 n = NOTE_KIND (insn);
2810 fprintf (sched_dump, "%s\n", GET_NOTE_INSN_NAME (n));
b4ead7d4 2811 }
fa0aee89 2812 else
b640bd8f
MK
2813 fprintf (sched_dump, " {%s}\n", GET_RTX_NAME (GET_CODE (insn)));
2814 continue;
b4ead7d4 2815 }
b640bd8f
MK
2816
2817 fprintf (sched_dump,
2818 ";; %s%5d%6d%6d%6d%6d%6d ",
2819 (SCHED_GROUP_P (insn) ? "+" : " "),
2820 INSN_UID (insn),
2821 INSN_CODE (insn),
2822 BLOCK_NUM (insn),
e855c69d
AB
2823 sched_emulate_haifa_p ? -1 : sd_lists_size (insn, SD_LIST_BACK),
2824 (sel_sched_p () ? (sched_emulate_haifa_p ? -1
2825 : INSN_PRIORITY (insn))
2826 : INSN_PRIORITY (insn)),
2827 (sel_sched_p () ? (sched_emulate_haifa_p ? -1
2828 : insn_cost (insn))
2829 : insn_cost (insn)));
b640bd8f
MK
2830
2831 if (recog_memoized (insn) < 0)
2832 fprintf (sched_dump, "nothing");
2833 else
2834 print_reservation (sched_dump, insn);
2835
2836 fprintf (sched_dump, "\t: ");
e2f6ff94
MK
2837 {
2838 sd_iterator_def sd_it;
2839 dep_t dep;
2840
2841 FOR_EACH_DEP (insn, SD_LIST_FORW, sd_it, dep)
1a83e602
BS
2842 fprintf (sched_dump, "%d%s%s ", INSN_UID (DEP_CON (dep)),
2843 DEP_NONREG (dep) ? "n" : "",
2844 DEP_MULTIPLE (dep) ? "m" : "");
e2f6ff94 2845 }
b640bd8f 2846 fprintf (sched_dump, "\n");
b4ead7d4 2847 }
b640bd8f 2848
b4ead7d4
BS
2849 fprintf (sched_dump, "\n");
2850}
cdb0d947
NB
2851
2852/* Dump dependency graph for the current region to a file using dot syntax. */
2853
2854void
2855dump_rgn_dependencies_dot (FILE *file)
2856{
2857 rtx_insn *head, *tail, *con, *pro;
2858 sd_iterator_def sd_it;
2859 dep_t dep;
2860 int bb;
2861 pretty_printer pp;
2862
2863 pp.buffer->stream = file;
2864 pp_printf (&pp, "digraph SchedDG {\n");
2865
2866 for (bb = 0; bb < current_nr_blocks; ++bb)
2867 {
2868 /* Begin subgraph (basic block). */
2869 pp_printf (&pp, "subgraph cluster_block_%d {\n", bb);
2870 pp_printf (&pp, "\t" "color=blue;" "\n");
2871 pp_printf (&pp, "\t" "style=bold;" "\n");
2872 pp_printf (&pp, "\t" "label=\"BB #%d\";\n", BB_TO_BLOCK (bb));
2873
2874 /* Setup head and tail (no support for EBBs). */
2875 gcc_assert (EBB_FIRST_BB (bb) == EBB_LAST_BB (bb));
2876 get_ebb_head_tail (EBB_FIRST_BB (bb), EBB_LAST_BB (bb), &head, &tail);
2877 tail = NEXT_INSN (tail);
2878
2879 /* Dump all insns. */
2880 for (con = head; con != tail; con = NEXT_INSN (con))
2881 {
2882 if (!INSN_P (con))
2883 continue;
2884
2885 /* Pretty print the insn. */
2886 pp_printf (&pp, "\t%d [label=\"{", INSN_UID (con));
2887 pp_write_text_to_stream (&pp);
2888 print_insn (&pp, con, /*verbose=*/false);
2889 pp_write_text_as_dot_label_to_stream (&pp, /*for_record=*/true);
2890 pp_write_text_to_stream (&pp);
2891
2892 /* Dump instruction attributes. */
2893 pp_printf (&pp, "|{ uid:%d | luid:%d | prio:%d }}\",shape=record]\n",
2894 INSN_UID (con), INSN_LUID (con), INSN_PRIORITY (con));
2895
2896 /* Dump all deps. */
2897 FOR_EACH_DEP (con, SD_LIST_BACK, sd_it, dep)
2898 {
2899 int weight = 0;
2900 const char *color;
2901 pro = DEP_PRO (dep);
2902
2903 switch (DEP_TYPE (dep))
2904 {
2905 case REG_DEP_TRUE:
2906 color = "black";
2907 weight = 1;
2908 break;
2909 case REG_DEP_OUTPUT:
2910 case REG_DEP_ANTI:
2911 color = "orange";
2912 break;
2913 case REG_DEP_CONTROL:
2914 color = "blue";
2915 break;
2916 default:
2917 gcc_unreachable ();
2918 }
2919
2920 pp_printf (&pp, "\t%d -> %d [color=%s",
2921 INSN_UID (pro), INSN_UID (con), color);
2922 if (int cost = dep_cost (dep))
2923 pp_printf (&pp, ",label=%d", cost);
2924 pp_printf (&pp, ",weight=%d", weight);
2925 pp_printf (&pp, "];\n");
2926 }
2927 }
2928 pp_printf (&pp, "}\n");
2929 }
2930
2931 pp_printf (&pp, "}\n");
2932 pp_flush (&pp);
2933}
2934
2935/* Dump dependency graph for the current region to a file using dot syntax. */
2936
2937DEBUG_FUNCTION void
2938dump_rgn_dependencies_dot (const char *fname)
2939{
2940 FILE *fp;
2941
2942 fp = fopen (fname, "w");
2943 if (!fp)
2944 {
2945 perror ("fopen");
2946 return;
2947 }
2948
2949 dump_rgn_dependencies_dot (fp);
2950 fclose (fp);
2951}
2952
b4ead7d4 2953\f
d72372e4
MH
2954/* Returns true if all the basic blocks of the current region have
2955 NOTE_DISABLE_SCHED_OF_BLOCK which means not to schedule that region. */
e855c69d 2956bool
d72372e4
MH
2957sched_is_disabled_for_current_region_p (void)
2958{
d72372e4
MH
2959 int bb;
2960
2961 for (bb = 0; bb < current_nr_blocks; bb++)
06e28de2
DM
2962 if (!(BASIC_BLOCK_FOR_FN (cfun,
2963 BB_TO_BLOCK (bb))->flags & BB_DISABLE_SCHEDULE))
076c7ab8 2964 return false;
d72372e4
MH
2965
2966 return true;
2967}
2968
b8698a0f 2969/* Free all region dependencies saved in INSN_BACK_DEPS and
e855c69d 2970 INSN_RESOLVED_BACK_DEPS. The Haifa scheduler does this on the fly
b8698a0f 2971 when scheduling, so this function is supposed to be called from
e855c69d
AB
2972 the selective scheduling only. */
2973void
2974free_rgn_deps (void)
b4ead7d4
BS
2975{
2976 int bb;
d72372e4 2977
e855c69d 2978 for (bb = 0; bb < current_nr_blocks; bb++)
496d7bb0 2979 {
52d251b5 2980 rtx_insn *head, *tail;
b8698a0f 2981
e855c69d
AB
2982 gcc_assert (EBB_FIRST_BB (bb) == EBB_LAST_BB (bb));
2983 get_ebb_head_tail (EBB_FIRST_BB (bb), EBB_LAST_BB (bb), &head, &tail);
b4ead7d4 2984
e855c69d
AB
2985 sched_free_deps (head, tail, false);
2986 }
2987}
b4ead7d4 2988
e855c69d 2989static int rgn_n_insns;
496d7bb0 2990
e855c69d
AB
2991/* Compute insn priority for a current region. */
2992void
b8698a0f 2993compute_priorities (void)
e855c69d
AB
2994{
2995 int bb;
496d7bb0 2996
63f54b1a 2997 current_sched_info->sched_max_insns_priority = 0;
b4ead7d4 2998 for (bb = 0; bb < current_nr_blocks; bb++)
79c2ffde 2999 {
52d251b5 3000 rtx_insn *head, *tail;
b8698a0f 3001
496d7bb0
MK
3002 gcc_assert (EBB_FIRST_BB (bb) == EBB_LAST_BB (bb));
3003 get_ebb_head_tail (EBB_FIRST_BB (bb), EBB_LAST_BB (bb), &head, &tail);
79c2ffde 3004
b5b8b0ac
AO
3005 if (no_real_insns_p (head, tail))
3006 continue;
3007
79c2ffde
BS
3008 rgn_n_insns += set_priorities (head, tail);
3009 }
63f54b1a 3010 current_sched_info->sched_max_insns_priority++;
e855c69d 3011}
b4ead7d4 3012
28ea163c
SB
3013/* (Re-)initialize the arrays of DFA states at the end of each basic block.
3014
3015 SAVED_LAST_BASIC_BLOCK is the previous length of the arrays. It must be
3016 zero for the first call to this function, to allocate the arrays for the
3017 first time.
3018
3019 This function is called once during initialization of the scheduler, and
3020 called again to resize the arrays if new basic blocks have been created,
3021 for example for speculation recovery code. */
3022
3023static void
3024realloc_bb_state_array (int saved_last_basic_block)
3025{
3026 char *old_bb_state_array = bb_state_array;
8b1c6fd7 3027 size_t lbb = (size_t) last_basic_block_for_fn (cfun);
28ea163c
SB
3028 size_t slbb = (size_t) saved_last_basic_block;
3029
3030 /* Nothing to do if nothing changed since the last time this was called. */
8b1c6fd7 3031 if (saved_last_basic_block == last_basic_block_for_fn (cfun))
28ea163c
SB
3032 return;
3033
3034 /* The selective scheduler doesn't use the state arrays. */
3035 if (sel_sched_p ())
3036 {
3037 gcc_assert (bb_state_array == NULL && bb_state == NULL);
3038 return;
3039 }
3040
3041 gcc_checking_assert (saved_last_basic_block == 0
3042 || (bb_state_array != NULL && bb_state != NULL));
3043
3044 bb_state_array = XRESIZEVEC (char, bb_state_array, lbb * dfa_state_size);
3045 bb_state = XRESIZEVEC (state_t, bb_state, lbb);
3046
3047 /* If BB_STATE_ARRAY has moved, fixup all the state pointers array.
3048 Otherwise only fixup the newly allocated ones. For the state
3049 array itself, only initialize the new entries. */
3050 bool bb_state_array_moved = (bb_state_array != old_bb_state_array);
3051 for (size_t i = bb_state_array_moved ? 0 : slbb; i < lbb; i++)
3052 bb_state[i] = (state_t) (bb_state_array + i * dfa_state_size);
3053 for (size_t i = slbb; i < lbb; i++)
3054 state_reset (bb_state[i]);
3055}
3056
3057/* Free the arrays of DFA states at the end of each basic block. */
3058
3059static void
3060free_bb_state_array (void)
3061{
3062 free (bb_state_array);
3063 free (bb_state);
3064 bb_state_array = NULL;
3065 bb_state = NULL;
3066}
3067
e855c69d
AB
3068/* Schedule a region. A region is either an inner loop, a loop-free
3069 subroutine, or a single basic block. Each bb in the region is
3070 scheduled after its flow predecessors. */
b4ead7d4 3071
e855c69d
AB
3072static void
3073schedule_region (int rgn)
3074{
3075 int bb;
3076 int sched_rgn_n_insns = 0;
dcda8480 3077
e855c69d 3078 rgn_n_insns = 0;
b4ead7d4 3079
c4cd7435
AB
3080 /* Do not support register pressure sensitive scheduling for the new regions
3081 as we don't update the liveness info for them. */
9039622a
AB
3082 if (sched_pressure != SCHED_PRESSURE_NONE
3083 && rgn >= nr_regions_initial)
c4cd7435 3084 {
9039622a 3085 free_global_sched_pressure_data ();
c4cd7435
AB
3086 sched_pressure = SCHED_PRESSURE_NONE;
3087 }
3088
e855c69d 3089 rgn_setup_region (rgn);
b4ead7d4 3090
e855c69d
AB
3091 /* Don't schedule region that is marked by
3092 NOTE_DISABLE_SCHED_OF_BLOCK. */
3093 if (sched_is_disabled_for_current_region_p ())
3094 return;
b4ead7d4 3095
e855c69d 3096 sched_rgn_compute_dependencies (rgn);
496d7bb0 3097
e855c69d
AB
3098 sched_rgn_local_init (rgn);
3099
3100 /* Set priorities. */
3101 compute_priorities ();
3102
3103 sched_extend_ready_list (rgn_n_insns);
b4ead7d4 3104
60867e8c 3105 if (sched_pressure == SCHED_PRESSURE_WEIGHTED)
ce18efcb
VM
3106 {
3107 sched_init_region_reg_pressure_info ();
3108 for (bb = 0; bb < current_nr_blocks; bb++)
3109 {
3110 basic_block first_bb, last_bb;
52d251b5 3111 rtx_insn *head, *tail;
b8698a0f 3112
ce18efcb
VM
3113 first_bb = EBB_FIRST_BB (bb);
3114 last_bb = EBB_LAST_BB (bb);
b8698a0f 3115
ce18efcb 3116 get_ebb_head_tail (first_bb, last_bb, &head, &tail);
b8698a0f 3117
ce18efcb
VM
3118 if (no_real_insns_p (head, tail))
3119 {
3120 gcc_assert (first_bb == last_bb);
3121 continue;
3122 }
3123 sched_setup_bb_reg_pressure_info (first_bb, PREV_INSN (head));
3124 }
3125 }
3126
b4ead7d4
BS
3127 /* Now we can schedule all blocks. */
3128 for (bb = 0; bb < current_nr_blocks; bb++)
3129 {
496d7bb0 3130 basic_block first_bb, last_bb, curr_bb;
52d251b5 3131 rtx_insn *head, *tail;
b4ead7d4 3132
496d7bb0
MK
3133 first_bb = EBB_FIRST_BB (bb);
3134 last_bb = EBB_LAST_BB (bb);
3135
3136 get_ebb_head_tail (first_bb, last_bb, &head, &tail);
b4ead7d4
BS
3137
3138 if (no_real_insns_p (head, tail))
496d7bb0
MK
3139 {
3140 gcc_assert (first_bb == last_bb);
3141 continue;
3142 }
b4ead7d4
BS
3143
3144 current_sched_info->prev_head = PREV_INSN (head);
3145 current_sched_info->next_tail = NEXT_INSN (tail);
3146
e855c69d 3147 remove_notes (head, tail);
b4ead7d4 3148
496d7bb0
MK
3149 unlink_bb_notes (first_bb, last_bb);
3150
b4ead7d4
BS
3151 target_bb = bb;
3152
63f54b1a
MK
3153 gcc_assert (flag_schedule_interblock || current_nr_blocks == 1);
3154 current_sched_info->queue_must_finish_empty = current_nr_blocks == 1;
b4ead7d4 3155
496d7bb0 3156 curr_bb = first_bb;
6fb5fa3c
DB
3157 if (dbg_cnt (sched_block))
3158 {
975ccf22 3159 edge f;
8b1c6fd7 3160 int saved_last_basic_block = last_basic_block_for_fn (cfun);
975ccf22 3161
28ea163c
SB
3162 schedule_block (&curr_bb, bb_state[first_bb->index]);
3163 gcc_assert (EBB_FIRST_BB (bb) == first_bb);
3164 sched_rgn_n_insns += sched_n_insns;
3165 realloc_bb_state_array (saved_last_basic_block);
975ccf22
BS
3166 f = find_fallthru_edge (last_bb->succs);
3167 if (f && f->probability * 100 / REG_BR_PROB_BASE >=
3168 PARAM_VALUE (PARAM_SCHED_STATE_EDGE_PROB_CUTOFF))
3169 {
3170 memcpy (bb_state[f->dest->index], curr_state,
3171 dfa_state_size);
3172 if (sched_verbose >= 5)
3173 fprintf (sched_dump, "saving state for edge %d->%d\n",
3174 f->src->index, f->dest->index);
3175 }
6fb5fa3c
DB
3176 }
3177 else
3178 {
3179 sched_rgn_n_insns += rgn_n_insns;
3180 }
b4ead7d4 3181
b4ead7d4
BS
3182 /* Clean up. */
3183 if (current_nr_blocks > 1)
e855c69d 3184 free_trg_info ();
b4ead7d4
BS
3185 }
3186
3187 /* Sanity check: verify that all region insns were scheduled. */
41374e13 3188 gcc_assert (sched_rgn_n_insns == rgn_n_insns);
b4ead7d4 3189
e855c69d 3190 sched_finish_ready_list ();
b4ead7d4 3191
e855c69d
AB
3192 /* Done with this region. */
3193 sched_rgn_local_finish ();
e2f6ff94
MK
3194
3195 /* Free dependencies. */
3196 for (bb = 0; bb < current_nr_blocks; ++bb)
3197 free_block_dependencies (bb);
3198
3199 gcc_assert (haifa_recovery_bb_ever_added_p
3200 || deps_pools_are_empty_p ());
b4ead7d4
BS
3201}
3202
b4ead7d4
BS
3203/* Initialize data structures for region scheduling. */
3204
e855c69d
AB
3205void
3206sched_rgn_init (bool single_blocks_p)
b4ead7d4 3207{
e855c69d
AB
3208 min_spec_prob = ((PARAM_VALUE (PARAM_MIN_SPEC_PROB) * REG_BR_PROB_BASE)
3209 / 100);
3210
3211 nr_inter = 0;
3212 nr_spec = 0;
3213
496d7bb0 3214 extend_regions ();
b4ead7d4 3215
e855c69d
AB
3216 CONTAINING_RGN (ENTRY_BLOCK) = -1;
3217 CONTAINING_RGN (EXIT_BLOCK) = -1;
3218
28ea163c 3219 realloc_bb_state_array (0);
975ccf22 3220
b4ead7d4 3221 /* Compute regions for scheduling. */
e855c69d 3222 if (single_blocks_p
0cae8d31 3223 || n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS + 1
dcda8480
UW
3224 || !flag_schedule_interblock
3225 || is_cfg_nonregular ())
b4ead7d4 3226 {
e855c69d 3227 find_single_block_region (sel_sched_p ());
b4ead7d4
BS
3228 }
3229 else
3230 {
dcda8480 3231 /* Compute the dominators and post dominators. */
e855c69d
AB
3232 if (!sel_sched_p ())
3233 calculate_dominance_info (CDI_DOMINATORS);
b4ead7d4 3234
dcda8480
UW
3235 /* Find regions. */
3236 find_rgns ();
b4ead7d4 3237
dcda8480
UW
3238 if (sched_verbose >= 3)
3239 debug_regions ();
b4ead7d4 3240
dcda8480 3241 /* For now. This will move as more and more of haifa is converted
6fb5fa3c 3242 to using the cfg code. */
e855c69d
AB
3243 if (!sel_sched_p ())
3244 free_dominance_info (CDI_DOMINATORS);
b4ead7d4 3245 }
b4ead7d4 3246
0cae8d31 3247 gcc_assert (0 < nr_regions && nr_regions <= n_basic_blocks_for_fn (cfun));
b4ead7d4 3248
e855c69d
AB
3249 RGN_BLOCKS (nr_regions) = (RGN_BLOCKS (nr_regions - 1) +
3250 RGN_NR_BLOCKS (nr_regions - 1));
9039622a 3251 nr_regions_initial = nr_regions;
e855c69d
AB
3252}
3253
3254/* Free data structures for region scheduling. */
b4ead7d4 3255void
e855c69d 3256sched_rgn_finish (void)
b4ead7d4 3257{
28ea163c 3258 free_bb_state_array ();
975ccf22 3259
b4ead7d4
BS
3260 /* Reposition the prologue and epilogue notes in case we moved the
3261 prologue/epilogue insns. */
3262 if (reload_completed)
6fb5fa3c 3263 reposition_prologue_and_epilogue_notes ();
b4ead7d4 3264
b4ead7d4
BS
3265 if (sched_verbose)
3266 {
e855c69d
AB
3267 if (reload_completed == 0
3268 && flag_schedule_interblock)
b4ead7d4
BS
3269 {
3270 fprintf (sched_dump,
3271 "\n;; Procedure interblock/speculative motions == %d/%d \n",
3272 nr_inter, nr_spec);
3273 }
3274 else
41374e13 3275 gcc_assert (nr_inter <= 0);
b4ead7d4
BS
3276 fprintf (sched_dump, "\n\n");
3277 }
3278
e855c69d
AB
3279 nr_regions = 0;
3280
b4ead7d4 3281 free (rgn_table);
e855c69d
AB
3282 rgn_table = NULL;
3283
b4ead7d4 3284 free (rgn_bb_table);
e855c69d
AB
3285 rgn_bb_table = NULL;
3286
b4ead7d4 3287 free (block_to_bb);
e855c69d
AB
3288 block_to_bb = NULL;
3289
b4ead7d4 3290 free (containing_rgn);
e855c69d
AB
3291 containing_rgn = NULL;
3292
3293 free (ebb_head);
3294 ebb_head = NULL;
3295}
3296
3297/* Setup global variables like CURRENT_BLOCKS and CURRENT_NR_BLOCK to
3298 point to the region RGN. */
3299void
3300rgn_setup_region (int rgn)
3301{
3302 int bb;
3303
3304 /* Set variables for the current region. */
3305 current_nr_blocks = RGN_NR_BLOCKS (rgn);
3306 current_blocks = RGN_BLOCKS (rgn);
b8698a0f 3307
e855c69d
AB
3308 /* EBB_HEAD is a region-scope structure. But we realloc it for
3309 each region to save time/memory/something else.
3310 See comments in add_block1, for what reasons we allocate +1 element. */
3311 ebb_head = XRESIZEVEC (int, ebb_head, current_nr_blocks + 1);
3312 for (bb = 0; bb <= current_nr_blocks; bb++)
3313 ebb_head[bb] = current_blocks + bb;
3314}
3315
3316/* Compute instruction dependencies in region RGN. */
3317void
3318sched_rgn_compute_dependencies (int rgn)
3319{
3320 if (!RGN_DONT_CALC_DEPS (rgn))
3321 {
3322 int bb;
3323
3324 if (sel_sched_p ())
3325 sched_emulate_haifa_p = 1;
3326
3327 init_deps_global ();
3328
3329 /* Initializations for region data dependence analysis. */
88302d54 3330 bb_deps = XNEWVEC (struct deps_desc, current_nr_blocks);
e855c69d 3331 for (bb = 0; bb < current_nr_blocks; bb++)
bcf33775 3332 init_deps (bb_deps + bb, false);
e855c69d 3333
d9e74dfc
AM
3334 /* Initialize bitmap used in add_branch_dependences. */
3335 insn_referenced = sbitmap_alloc (sched_max_luid);
f61e445a 3336 bitmap_clear (insn_referenced);
b8698a0f 3337
e855c69d
AB
3338 /* Compute backward dependencies. */
3339 for (bb = 0; bb < current_nr_blocks; bb++)
3340 compute_block_dependences (bb);
b8698a0f 3341
d9e74dfc 3342 sbitmap_free (insn_referenced);
e855c69d
AB
3343 free_pending_lists ();
3344 finish_deps_global ();
3345 free (bb_deps);
b4ead7d4 3346
e855c69d
AB
3347 /* We don't want to recalculate this twice. */
3348 RGN_DONT_CALC_DEPS (rgn) = 1;
6fb5fa3c 3349
e855c69d
AB
3350 if (sel_sched_p ())
3351 sched_emulate_haifa_p = 0;
3352 }
3353 else
3354 /* (This is a recovery block. It is always a single block region.)
3355 OR (We use selective scheduling.) */
3356 gcc_assert (current_nr_blocks == 1 || sel_sched_p ());
3357}
3358
3359/* Init region data structures. Returns true if this region should
3360 not be scheduled. */
3361void
3362sched_rgn_local_init (int rgn)
3363{
3364 int bb;
b8698a0f 3365
e855c69d
AB
3366 /* Compute interblock info: probabilities, split-edges, dominators, etc. */
3367 if (current_nr_blocks > 1)
3368 {
3369 basic_block block;
3370 edge e;
3371 edge_iterator ei;
3372
3373 prob = XNEWVEC (int, current_nr_blocks);
3374
3375 dom = sbitmap_vector_alloc (current_nr_blocks, current_nr_blocks);
f61e445a 3376 bitmap_vector_clear (dom, current_nr_blocks);
e855c69d
AB
3377
3378 /* Use ->aux to implement EDGE_TO_BIT mapping. */
3379 rgn_nr_edges = 0;
11cd3bed 3380 FOR_EACH_BB_FN (block, cfun)
e855c69d
AB
3381 {
3382 if (CONTAINING_RGN (block->index) != rgn)
3383 continue;
3384 FOR_EACH_EDGE (e, ei, block->succs)
3385 SET_EDGE_TO_BIT (e, rgn_nr_edges++);
3386 }
3387
3388 rgn_edges = XNEWVEC (edge, rgn_nr_edges);
3389 rgn_nr_edges = 0;
11cd3bed 3390 FOR_EACH_BB_FN (block, cfun)
e855c69d
AB
3391 {
3392 if (CONTAINING_RGN (block->index) != rgn)
3393 continue;
3394 FOR_EACH_EDGE (e, ei, block->succs)
3395 rgn_edges[rgn_nr_edges++] = e;
3396 }
3397
3398 /* Split edges. */
3399 pot_split = sbitmap_vector_alloc (current_nr_blocks, rgn_nr_edges);
f61e445a 3400 bitmap_vector_clear (pot_split, current_nr_blocks);
e855c69d 3401 ancestor_edges = sbitmap_vector_alloc (current_nr_blocks, rgn_nr_edges);
f61e445a 3402 bitmap_vector_clear (ancestor_edges, current_nr_blocks);
e855c69d
AB
3403
3404 /* Compute probabilities, dominators, split_edges. */
3405 for (bb = 0; bb < current_nr_blocks; bb++)
3406 compute_dom_prob_ps (bb);
3407
3408 /* Cleanup ->aux used for EDGE_TO_BIT mapping. */
3409 /* We don't need them anymore. But we want to avoid duplication of
3410 aux fields in the newly created edges. */
11cd3bed 3411 FOR_EACH_BB_FN (block, cfun)
e855c69d
AB
3412 {
3413 if (CONTAINING_RGN (block->index) != rgn)
3414 continue;
3415 FOR_EACH_EDGE (e, ei, block->succs)
3416 e->aux = NULL;
3417 }
3418 }
3419}
3420
3421/* Free data computed for the finished region. */
b8698a0f 3422void
e855c69d
AB
3423sched_rgn_local_free (void)
3424{
3425 free (prob);
3426 sbitmap_vector_free (dom);
3427 sbitmap_vector_free (pot_split);
3428 sbitmap_vector_free (ancestor_edges);
3429 free (rgn_edges);
3430}
3431
3432/* Free data computed for the finished region. */
3433void
3434sched_rgn_local_finish (void)
3435{
3436 if (current_nr_blocks > 1 && !sel_sched_p ())
3437 {
3438 sched_rgn_local_free ();
3439 }
3440}
3441
3442/* Setup scheduler infos. */
3443void
3444rgn_setup_common_sched_info (void)
3445{
3446 memcpy (&rgn_common_sched_info, &haifa_common_sched_info,
3447 sizeof (rgn_common_sched_info));
3448
3449 rgn_common_sched_info.fix_recovery_cfg = rgn_fix_recovery_cfg;
3450 rgn_common_sched_info.add_block = rgn_add_block;
3451 rgn_common_sched_info.estimate_number_of_insns
3452 = rgn_estimate_number_of_insns;
3453 rgn_common_sched_info.sched_pass_id = SCHED_RGN_PASS;
3454
3455 common_sched_info = &rgn_common_sched_info;
3456}
3457
3458/* Setup all *_sched_info structures (for the Haifa frontend
3459 and for the dependence analysis) in the interblock scheduler. */
3460void
3461rgn_setup_sched_infos (void)
3462{
3463 if (!sel_sched_p ())
3464 memcpy (&rgn_sched_deps_info, &rgn_const_sched_deps_info,
3465 sizeof (rgn_sched_deps_info));
3466 else
3467 memcpy (&rgn_sched_deps_info, &rgn_const_sel_sched_deps_info,
3468 sizeof (rgn_sched_deps_info));
3469
3470 sched_deps_info = &rgn_sched_deps_info;
3471
3472 memcpy (&rgn_sched_info, &rgn_const_sched_info, sizeof (rgn_sched_info));
3473 current_sched_info = &rgn_sched_info;
3474}
3475
3476/* The one entry point in this file. */
3477void
3478schedule_insns (void)
3479{
3480 int rgn;
3481
3482 /* Taking care of this degenerate case makes the rest of
3483 this code simpler. */
0cae8d31 3484 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS)
e855c69d
AB
3485 return;
3486
3487 rgn_setup_common_sched_info ();
3488 rgn_setup_sched_infos ();
3489
3490 haifa_sched_init ();
3491 sched_rgn_init (reload_completed);
3492
3493 bitmap_initialize (&not_in_df, 0);
6fb5fa3c 3494 bitmap_clear (&not_in_df);
b4ead7d4 3495
e855c69d
AB
3496 /* Schedule every region in the subroutine. */
3497 for (rgn = 0; rgn < nr_regions; rgn++)
3498 if (dbg_cnt (sched_region))
3499 schedule_region (rgn);
3500
3501 /* Clean up. */
3502 sched_rgn_finish ();
3503 bitmap_clear (&not_in_df);
3504
3505 haifa_sched_finish ();
b4ead7d4 3506}
496d7bb0
MK
3507
3508/* INSN has been added to/removed from current region. */
3509static void
ce1ce33a 3510rgn_add_remove_insn (rtx_insn *insn, int remove_p)
496d7bb0
MK
3511{
3512 if (!remove_p)
3513 rgn_n_insns++;
3514 else
3515 rgn_n_insns--;
3516
3517 if (INSN_BB (insn) == target_bb)
3518 {
3519 if (!remove_p)
3520 target_n_insns++;
3521 else
3522 target_n_insns--;
3523 }
3524}
3525
3526/* Extend internal data structures. */
e855c69d 3527void
496d7bb0
MK
3528extend_regions (void)
3529{
0cae8d31 3530 rgn_table = XRESIZEVEC (region, rgn_table, n_basic_blocks_for_fn (cfun));
8b1c6fd7
DM
3531 rgn_bb_table = XRESIZEVEC (int, rgn_bb_table,
3532 n_basic_blocks_for_fn (cfun));
3533 block_to_bb = XRESIZEVEC (int, block_to_bb,
3534 last_basic_block_for_fn (cfun));
3535 containing_rgn = XRESIZEVEC (int, containing_rgn,
3536 last_basic_block_for_fn (cfun));
496d7bb0
MK
3537}
3538
e855c69d
AB
3539void
3540rgn_make_new_region_out_of_new_block (basic_block bb)
3541{
3542 int i;
3543
3544 i = RGN_BLOCKS (nr_regions);
3545 /* I - first free position in rgn_bb_table. */
3546
3547 rgn_bb_table[i] = bb->index;
3548 RGN_NR_BLOCKS (nr_regions) = 1;
3549 RGN_HAS_REAL_EBB (nr_regions) = 0;
3550 RGN_DONT_CALC_DEPS (nr_regions) = 0;
3551 CONTAINING_RGN (bb->index) = nr_regions;
3552 BLOCK_TO_BB (bb->index) = 0;
3553
3554 nr_regions++;
b8698a0f 3555
e855c69d
AB
3556 RGN_BLOCKS (nr_regions) = i + 1;
3557}
3558
496d7bb0
MK
3559/* BB was added to ebb after AFTER. */
3560static void
e855c69d 3561rgn_add_block (basic_block bb, basic_block after)
496d7bb0
MK
3562{
3563 extend_regions ();
6fb5fa3c
DB
3564 bitmap_set_bit (&not_in_df, bb->index);
3565
fefa31b5 3566 if (after == 0 || after == EXIT_BLOCK_PTR_FOR_FN (cfun))
496d7bb0 3567 {
e855c69d 3568 rgn_make_new_region_out_of_new_block (bb);
fefa31b5
DM
3569 RGN_DONT_CALC_DEPS (nr_regions - 1) = (after
3570 == EXIT_BLOCK_PTR_FOR_FN (cfun));
496d7bb0
MK
3571 }
3572 else
b8698a0f 3573 {
496d7bb0
MK
3574 int i, pos;
3575
3576 /* We need to fix rgn_table, block_to_bb, containing_rgn
3577 and ebb_head. */
3578
3579 BLOCK_TO_BB (bb->index) = BLOCK_TO_BB (after->index);
3580
3581 /* We extend ebb_head to one more position to
b8698a0f 3582 easily find the last position of the last ebb in
496d7bb0
MK
3583 the current region. Thus, ebb_head[BLOCK_TO_BB (after) + 1]
3584 is _always_ valid for access. */
3585
3586 i = BLOCK_TO_BB (after->index) + 1;
1d49ee6a
MK
3587 pos = ebb_head[i] - 1;
3588 /* Now POS is the index of the last block in the region. */
3589
3590 /* Find index of basic block AFTER. */
e84a58ff
EB
3591 for (; rgn_bb_table[pos] != after->index; pos--)
3592 ;
1d49ee6a 3593
496d7bb0
MK
3594 pos++;
3595 gcc_assert (pos > ebb_head[i - 1]);
1d49ee6a 3596
496d7bb0
MK
3597 /* i - ebb right after "AFTER". */
3598 /* ebb_head[i] - VALID. */
3599
3600 /* Source position: ebb_head[i]
917f1b7e 3601 Destination position: ebb_head[i] + 1
b8698a0f 3602 Last position:
496d7bb0
MK
3603 RGN_BLOCKS (nr_regions) - 1
3604 Number of elements to copy: (last_position) - (source_position) + 1
3605 */
b8698a0f 3606
496d7bb0
MK
3607 memmove (rgn_bb_table + pos + 1,
3608 rgn_bb_table + pos,
3609 ((RGN_BLOCKS (nr_regions) - 1) - (pos) + 1)
3610 * sizeof (*rgn_bb_table));
3611
3612 rgn_bb_table[pos] = bb->index;
b8698a0f 3613
496d7bb0
MK
3614 for (; i <= current_nr_blocks; i++)
3615 ebb_head [i]++;
3616
3617 i = CONTAINING_RGN (after->index);
3618 CONTAINING_RGN (bb->index) = i;
b8698a0f 3619
496d7bb0
MK
3620 RGN_HAS_REAL_EBB (i) = 1;
3621
3622 for (++i; i <= nr_regions; i++)
3623 RGN_BLOCKS (i)++;
496d7bb0
MK
3624 }
3625}
3626
3627/* Fix internal data after interblock movement of jump instruction.
3628 For parameter meaning please refer to
3629 sched-int.h: struct sched_info: fix_recovery_cfg. */
3630static void
e855c69d 3631rgn_fix_recovery_cfg (int bbi, int check_bbi, int check_bb_nexti)
496d7bb0
MK
3632{
3633 int old_pos, new_pos, i;
3634
3635 BLOCK_TO_BB (check_bb_nexti) = BLOCK_TO_BB (bbi);
b8698a0f 3636
496d7bb0
MK
3637 for (old_pos = ebb_head[BLOCK_TO_BB (check_bbi) + 1] - 1;
3638 rgn_bb_table[old_pos] != check_bb_nexti;
e84a58ff
EB
3639 old_pos--)
3640 ;
496d7bb0
MK
3641 gcc_assert (old_pos > ebb_head[BLOCK_TO_BB (check_bbi)]);
3642
3643 for (new_pos = ebb_head[BLOCK_TO_BB (bbi) + 1] - 1;
3644 rgn_bb_table[new_pos] != bbi;
e84a58ff
EB
3645 new_pos--)
3646 ;
496d7bb0
MK
3647 new_pos++;
3648 gcc_assert (new_pos > ebb_head[BLOCK_TO_BB (bbi)]);
b8698a0f 3649
496d7bb0
MK
3650 gcc_assert (new_pos < old_pos);
3651
3652 memmove (rgn_bb_table + new_pos + 1,
3653 rgn_bb_table + new_pos,
3654 (old_pos - new_pos) * sizeof (*rgn_bb_table));
3655
3656 rgn_bb_table[new_pos] = check_bb_nexti;
3657
3658 for (i = BLOCK_TO_BB (bbi) + 1; i <= BLOCK_TO_BB (check_bbi); i++)
3659 ebb_head[i]++;
3660}
3661
3662/* Return next block in ebb chain. For parameter meaning please refer to
3663 sched-int.h: struct sched_info: advance_target_bb. */
3664static basic_block
ce1ce33a 3665advance_target_bb (basic_block bb, rtx_insn *insn)
496d7bb0
MK
3666{
3667 if (insn)
3668 return 0;
3669
3670 gcc_assert (BLOCK_TO_BB (bb->index) == target_bb
3671 && BLOCK_TO_BB (bb->next_bb->index) == target_bb);
3672 return bb->next_bb;
3673}
3674
f56887a7 3675#endif
ef330312 3676\f
f20f2613
VM
3677/* Run instruction scheduler. */
3678static unsigned int
3679rest_of_handle_live_range_shrinkage (void)
3680{
3681#ifdef INSN_SCHEDULING
3682 int saved;
3683
3684 initialize_live_range_shrinkage ();
3685 saved = flag_schedule_interblock;
3686 flag_schedule_interblock = false;
3687 schedule_insns ();
3688 flag_schedule_interblock = saved;
3689 finish_live_range_shrinkage ();
3690#endif
3691 return 0;
3692}
3693
ef330312 3694/* Run instruction scheduler. */
c2924966 3695static unsigned int
ef330312
PB
3696rest_of_handle_sched (void)
3697{
3698#ifdef INSN_SCHEDULING
e855c69d
AB
3699 if (flag_selective_scheduling
3700 && ! maybe_skip_selective_scheduling ())
3701 run_selective_scheduling ();
3702 else
3703 schedule_insns ();
ef330312 3704#endif
c2924966 3705 return 0;
ef330312
PB
3706}
3707
ef330312 3708/* Run second scheduling pass after reload. */
c2924966 3709static unsigned int
ef330312
PB
3710rest_of_handle_sched2 (void)
3711{
3712#ifdef INSN_SCHEDULING
e855c69d
AB
3713 if (flag_selective_scheduling2
3714 && ! maybe_skip_selective_scheduling ())
3715 run_selective_scheduling ();
ef330312 3716 else
e855c69d
AB
3717 {
3718 /* Do control and data sched analysis again,
3719 and write some more of the results to dump file. */
57257f0d 3720 if (flag_sched2_use_superblocks)
e855c69d
AB
3721 schedule_ebbs ();
3722 else
3723 schedule_insns ();
3724 }
ef330312 3725#endif
c2924966 3726 return 0;
ef330312
PB
3727}
3728
b16abbcb
BC
3729static unsigned int
3730rest_of_handle_sched_fusion (void)
3731{
3732#ifdef INSN_SCHEDULING
3733 sched_fusion = true;
3734 schedule_insns ();
3735 sched_fusion = false;
3736#endif
3737 return 0;
3738}
3739
27a4cd48
DM
3740namespace {
3741
f20f2613
VM
3742const pass_data pass_data_live_range_shrinkage =
3743{
3744 RTL_PASS, /* type */
3745 "lr_shrinkage", /* name */
3746 OPTGROUP_NONE, /* optinfo_flags */
f20f2613
VM
3747 TV_LIVE_RANGE_SHRINKAGE, /* tv_id */
3748 0, /* properties_required */
3749 0, /* properties_provided */
3750 0, /* properties_destroyed */
3751 0, /* todo_flags_start */
3bea341f 3752 TODO_df_finish, /* todo_flags_finish */
f20f2613
VM
3753};
3754
3755class pass_live_range_shrinkage : public rtl_opt_pass
3756{
3757public:
3758 pass_live_range_shrinkage(gcc::context *ctxt)
3759 : rtl_opt_pass(pass_data_live_range_shrinkage, ctxt)
3760 {}
3761
3762 /* opt_pass methods: */
1a3d085c
TS
3763 virtual bool gate (function *)
3764 {
3765#ifdef INSN_SCHEDULING
3766 return flag_live_range_shrinkage;
3767#else
3768 return 0;
3769#endif
3770 }
3771
be55bfe6
TS
3772 virtual unsigned int execute (function *)
3773 {
3774 return rest_of_handle_live_range_shrinkage ();
3775 }
f20f2613
VM
3776
3777}; // class pass_live_range_shrinkage
3778
3779} // anon namespace
3780
3781rtl_opt_pass *
3782make_pass_live_range_shrinkage (gcc::context *ctxt)
3783{
3784 return new pass_live_range_shrinkage (ctxt);
3785}
3786
3787namespace {
3788
27a4cd48
DM
3789const pass_data pass_data_sched =
3790{
3791 RTL_PASS, /* type */
3792 "sched1", /* name */
3793 OPTGROUP_NONE, /* optinfo_flags */
27a4cd48
DM
3794 TV_SCHED, /* tv_id */
3795 0, /* properties_required */
3796 0, /* properties_provided */
3797 0, /* properties_destroyed */
3798 0, /* todo_flags_start */
3bea341f 3799 TODO_df_finish, /* todo_flags_finish */
ef330312
PB
3800};
3801
27a4cd48
DM
3802class pass_sched : public rtl_opt_pass
3803{
3804public:
c3284718
RS
3805 pass_sched (gcc::context *ctxt)
3806 : rtl_opt_pass (pass_data_sched, ctxt)
27a4cd48
DM
3807 {}
3808
3809 /* opt_pass methods: */
1a3d085c 3810 virtual bool gate (function *);
be55bfe6 3811 virtual unsigned int execute (function *) { return rest_of_handle_sched (); }
27a4cd48
DM
3812
3813}; // class pass_sched
3814
1a3d085c
TS
3815bool
3816pass_sched::gate (function *)
3817{
3818#ifdef INSN_SCHEDULING
3819 return optimize > 0 && flag_schedule_insns && dbg_cnt (sched_func);
3820#else
3821 return 0;
3822#endif
3823}
3824
27a4cd48
DM
3825} // anon namespace
3826
3827rtl_opt_pass *
3828make_pass_sched (gcc::context *ctxt)
3829{
3830 return new pass_sched (ctxt);
3831}
3832
3833namespace {
3834
3835const pass_data pass_data_sched2 =
3836{
3837 RTL_PASS, /* type */
3838 "sched2", /* name */
3839 OPTGROUP_NONE, /* optinfo_flags */
27a4cd48
DM
3840 TV_SCHED2, /* tv_id */
3841 0, /* properties_required */
3842 0, /* properties_provided */
3843 0, /* properties_destroyed */
3844 0, /* todo_flags_start */
3bea341f 3845 TODO_df_finish, /* todo_flags_finish */
ef330312 3846};
27a4cd48
DM
3847
3848class pass_sched2 : public rtl_opt_pass
3849{
3850public:
c3284718
RS
3851 pass_sched2 (gcc::context *ctxt)
3852 : rtl_opt_pass (pass_data_sched2, ctxt)
27a4cd48
DM
3853 {}
3854
3855 /* opt_pass methods: */
1a3d085c 3856 virtual bool gate (function *);
be55bfe6
TS
3857 virtual unsigned int execute (function *)
3858 {
3859 return rest_of_handle_sched2 ();
3860 }
27a4cd48
DM
3861
3862}; // class pass_sched2
3863
1a3d085c
TS
3864bool
3865pass_sched2::gate (function *)
3866{
3867#ifdef INSN_SCHEDULING
3868 return optimize > 0 && flag_schedule_insns_after_reload
3869 && !targetm.delay_sched2 && dbg_cnt (sched2_func);
3870#else
3871 return 0;
3872#endif
3873}
3874
27a4cd48
DM
3875} // anon namespace
3876
3877rtl_opt_pass *
3878make_pass_sched2 (gcc::context *ctxt)
3879{
3880 return new pass_sched2 (ctxt);
3881}
b16abbcb
BC
3882
3883namespace {
3884
3885const pass_data pass_data_sched_fusion =
3886{
3887 RTL_PASS, /* type */
3888 "sched_fusion", /* name */
3889 OPTGROUP_NONE, /* optinfo_flags */
3890 TV_SCHED_FUSION, /* tv_id */
3891 0, /* properties_required */
3892 0, /* properties_provided */
3893 0, /* properties_destroyed */
3894 0, /* todo_flags_start */
3895 TODO_df_finish, /* todo_flags_finish */
3896};
3897
3898class pass_sched_fusion : public rtl_opt_pass
3899{
3900public:
3901 pass_sched_fusion (gcc::context *ctxt)
3902 : rtl_opt_pass (pass_data_sched_fusion, ctxt)
3903 {}
3904
3905 /* opt_pass methods: */
3906 virtual bool gate (function *);
3907 virtual unsigned int execute (function *)
3908 {
3909 return rest_of_handle_sched_fusion ();
3910 }
3911
3912}; // class pass_sched2
3913
3914bool
3915pass_sched_fusion::gate (function *)
3916{
3917#ifdef INSN_SCHEDULING
3918 /* Scheduling fusion relies on peephole2 to do real fusion work,
3919 so only enable it if peephole2 is in effect. */
3920 return (optimize > 0 && flag_peephole2
3921 && flag_schedule_fusion && targetm.sched.fusion_priority != NULL);
3922#else
3923 return 0;
3924#endif
3925}
3926
3927} // anon namespace
3928
3929rtl_opt_pass *
3930make_pass_sched_fusion (gcc::context *ctxt)
3931{
3932 return new pass_sched_fusion (ctxt);
3933}
This page took 8.273674 seconds and 5 git commands to generate.