]> gcc.gnu.org Git - gcc.git/blame - gcc/sched-rgn.c
trans-io.c (set_string): Use fold_build2 and build_int_cst instead of build2 and...
[gcc.git] / gcc / sched-rgn.c
CommitLineData
b4ead7d4
BS
1/* Instruction scheduling pass.
2 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998,
ad616de1 3 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
b4ead7d4
BS
4 Contributed by Michael Tiemann (tiemann@cygnus.com) Enhanced by,
5 and currently maintained by, Jim Wilson (wilson@cygnus.com)
6
1322177d 7This file is part of GCC.
b4ead7d4 8
1322177d
LB
9GCC is free software; you can redistribute it and/or modify it under
10the terms of the GNU General Public License as published by the Free
11Software Foundation; either version 2, or (at your option) any later
12version.
b4ead7d4 13
1322177d
LB
14GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15WARRANTY; without even the implied warranty of MERCHANTABILITY or
b4ead7d4
BS
16FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17for more details.
18
19You should have received a copy of the GNU General Public License
47a1bd82 20along with GCC; see the file COPYING. If not, write to the Free
366ccddb
KC
21Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
2202110-1301, USA. */
b4ead7d4
BS
23
24/* This pass implements list scheduling within basic blocks. It is
25 run twice: (1) after flow analysis, but before register allocation,
26 and (2) after register allocation.
27
28 The first run performs interblock scheduling, moving insns between
29 different blocks in the same "region", and the second runs only
30 basic block scheduling.
31
32 Interblock motions performed are useful motions and speculative
33 motions, including speculative loads. Motions requiring code
34 duplication are not supported. The identification of motion type
35 and the check for validity of speculative motions requires
36 construction and analysis of the function's control flow graph.
37
38 The main entry point for this pass is schedule_insns(), called for
39 each function. The work of the scheduler is organized in three
40 levels: (1) function level: insns are subject to splitting,
41 control-flow-graph is constructed, regions are computed (after
42 reload, each region is of one block), (2) region level: control
43 flow graph attributes required for interblock scheduling are
44 computed (dominators, reachability, etc.), data dependences and
45 priorities are computed, and (3) block level: insns in the block
46 are actually scheduled. */
47\f
48#include "config.h"
49#include "system.h"
4977bab6
ZW
50#include "coretypes.h"
51#include "tm.h"
b4ead7d4
BS
52#include "toplev.h"
53#include "rtl.h"
54#include "tm_p.h"
55#include "hard-reg-set.h"
b4ead7d4
BS
56#include "regs.h"
57#include "function.h"
58#include "flags.h"
59#include "insn-config.h"
60#include "insn-attr.h"
61#include "except.h"
62#include "toplev.h"
63#include "recog.h"
d73b1f07 64#include "cfglayout.h"
f72c6b56 65#include "params.h"
b4ead7d4 66#include "sched-int.h"
fae15c93 67#include "target.h"
ef330312
PB
68#include "timevar.h"
69#include "tree-pass.h"
b4ead7d4 70
73991d6a
JH
71/* Define when we want to do count REG_DEAD notes before and after scheduling
72 for sanity checking. We can't do that when conditional execution is used,
73 as REG_DEAD exist only for unconditional deaths. */
74
75#if !defined (HAVE_conditional_execution) && defined (ENABLE_CHECKING)
76#define CHECK_DEAD_NOTES 1
77#else
78#define CHECK_DEAD_NOTES 0
79#endif
80
81
f56887a7 82#ifdef INSN_SCHEDULING
b4ead7d4
BS
83/* Some accessor macros for h_i_d members only used within this file. */
84#define INSN_REF_COUNT(INSN) (h_i_d[INSN_UID (INSN)].ref_count)
85#define FED_BY_SPEC_LOAD(insn) (h_i_d[INSN_UID (insn)].fed_by_spec_load)
86#define IS_LOAD_INSN(insn) (h_i_d[INSN_UID (insn)].is_load_insn)
87
b4ead7d4
BS
88/* nr_inter/spec counts interblock/speculative motion for the function. */
89static int nr_inter, nr_spec;
90
46c5ad27 91static int is_cfg_nonregular (void);
d72372e4 92static bool sched_is_disabled_for_current_region_p (void);
b4ead7d4
BS
93
94/* A region is the main entity for interblock scheduling: insns
95 are allowed to move between blocks in the same region, along
96 control flow graph edges, in the 'up' direction. */
97typedef struct
98{
496d7bb0
MK
99 /* Number of extended basic blocks in region. */
100 int rgn_nr_blocks;
101 /* cblocks in the region (actually index in rgn_bb_table). */
102 int rgn_blocks;
103 /* Dependencies for this region are already computed. Basically, indicates,
104 that this is a recovery block. */
105 unsigned int dont_calc_deps : 1;
106 /* This region has at least one non-trivial ebb. */
107 unsigned int has_real_ebb : 1;
b4ead7d4
BS
108}
109region;
110
111/* Number of regions in the procedure. */
112static int nr_regions;
113
114/* Table of region descriptions. */
115static region *rgn_table;
116
117/* Array of lists of regions' blocks. */
118static int *rgn_bb_table;
119
120/* Topological order of blocks in the region (if b2 is reachable from
121 b1, block_to_bb[b2] > block_to_bb[b1]). Note: A basic block is
122 always referred to by either block or b, while its topological
4d6922ee 123 order name (in the region) is referred to by bb. */
b4ead7d4
BS
124static int *block_to_bb;
125
126/* The number of the region containing a block. */
127static int *containing_rgn;
128
36968131
PS
129/* The minimum probability of reaching a source block so that it will be
130 considered for speculative scheduling. */
131static int min_spec_prob;
132
b4ead7d4
BS
133#define RGN_NR_BLOCKS(rgn) (rgn_table[rgn].rgn_nr_blocks)
134#define RGN_BLOCKS(rgn) (rgn_table[rgn].rgn_blocks)
496d7bb0
MK
135#define RGN_DONT_CALC_DEPS(rgn) (rgn_table[rgn].dont_calc_deps)
136#define RGN_HAS_REAL_EBB(rgn) (rgn_table[rgn].has_real_ebb)
b4ead7d4
BS
137#define BLOCK_TO_BB(block) (block_to_bb[block])
138#define CONTAINING_RGN(block) (containing_rgn[block])
139
46c5ad27
AJ
140void debug_regions (void);
141static void find_single_block_region (void);
dcda8480 142static void find_rgns (void);
d08eefb9 143static void extend_rgns (int *, int *, sbitmap, int *);
f72c6b56 144static bool too_large (int, int *, int *);
b4ead7d4 145
46c5ad27 146extern void debug_live (int, int);
b4ead7d4
BS
147
148/* Blocks of the current region being scheduled. */
149static int current_nr_blocks;
150static int current_blocks;
151
496d7bb0
MK
152static int rgn_n_insns;
153
154/* The mapping from ebb to block. */
155/* ebb_head [i] - is index in rgn_bb_table, while
156 EBB_HEAD (i) - is basic block index.
157 BASIC_BLOCK (EBB_HEAD (i)) - head of ebb. */
158#define BB_TO_BLOCK(ebb) (rgn_bb_table[ebb_head[ebb]])
159#define EBB_FIRST_BB(ebb) BASIC_BLOCK (BB_TO_BLOCK (ebb))
160#define EBB_LAST_BB(ebb) BASIC_BLOCK (rgn_bb_table[ebb_head[ebb + 1] - 1])
b4ead7d4 161
b4ead7d4
BS
162/* Target info declarations.
163
164 The block currently being scheduled is referred to as the "target" block,
165 while other blocks in the region from which insns can be moved to the
166 target are called "source" blocks. The candidate structure holds info
167 about such sources: are they valid? Speculative? Etc. */
dcda8480
UW
168typedef struct
169{
170 basic_block *first_member;
171 int nr_members;
172}
173bblst;
174
b4ead7d4
BS
175typedef struct
176{
177 char is_valid;
178 char is_speculative;
179 int src_prob;
180 bblst split_bbs;
181 bblst update_bbs;
182}
183candidate;
184
185static candidate *candidate_table;
186
187/* A speculative motion requires checking live information on the path
188 from 'source' to 'target'. The split blocks are those to be checked.
189 After a speculative motion, live information should be modified in
190 the 'update' blocks.
191
192 Lists of split and update blocks for each candidate of the current
193 target are in array bblst_table. */
dcda8480
UW
194static basic_block *bblst_table;
195static int bblst_size, bblst_last;
b4ead7d4
BS
196
197#define IS_VALID(src) ( candidate_table[src].is_valid )
198#define IS_SPECULATIVE(src) ( candidate_table[src].is_speculative )
199#define SRC_PROB(src) ( candidate_table[src].src_prob )
200
201/* The bb being currently scheduled. */
202static int target_bb;
203
204/* List of edges. */
dcda8480
UW
205typedef struct
206{
207 edge *first_member;
208 int nr_members;
209}
210edgelst;
211
212static edge *edgelst_table;
213static int edgelst_last;
214
215static void extract_edgelst (sbitmap, edgelst *);
216
b4ead7d4
BS
217
218/* Target info functions. */
46c5ad27
AJ
219static void split_edges (int, int, edgelst *);
220static void compute_trg_info (int);
221void debug_candidate (int);
222void debug_candidates (int);
b4ead7d4 223
bdfa170f 224/* Dominators array: dom[i] contains the sbitmap of dominators of
b4ead7d4 225 bb i in the region. */
bdfa170f 226static sbitmap *dom;
b4ead7d4
BS
227
228/* bb 0 is the only region entry. */
229#define IS_RGN_ENTRY(bb) (!bb)
230
231/* Is bb_src dominated by bb_trg. */
232#define IS_DOMINATED(bb_src, bb_trg) \
bdfa170f 233( TEST_BIT (dom[bb_src], bb_trg) )
b4ead7d4 234
36968131
PS
235/* Probability: Prob[i] is an int in [0, REG_BR_PROB_BASE] which is
236 the probability of bb i relative to the region entry. */
237static int *prob;
b4ead7d4
BS
238
239/* Bit-set of edges, where bit i stands for edge i. */
bdfa170f 240typedef sbitmap edgeset;
b4ead7d4
BS
241
242/* Number of edges in the region. */
243static int rgn_nr_edges;
244
245/* Array of size rgn_nr_edges. */
dcda8480 246static edge *rgn_edges;
b4ead7d4
BS
247
248/* Mapping from each edge in the graph to its number in the rgn. */
dcda8480
UW
249#define EDGE_TO_BIT(edge) ((int)(size_t)(edge)->aux)
250#define SET_EDGE_TO_BIT(edge,nr) ((edge)->aux = (void *)(size_t)(nr))
b4ead7d4
BS
251
252/* The split edges of a source bb is different for each target
253 bb. In order to compute this efficiently, the 'potential-split edges'
254 are computed for each bb prior to scheduling a region. This is actually
255 the split edges of each bb relative to the region entry.
256
257 pot_split[bb] is the set of potential split edges of bb. */
258static edgeset *pot_split;
259
260/* For every bb, a set of its ancestor edges. */
261static edgeset *ancestor_edges;
262
496d7bb0
MK
263/* Array of EBBs sizes. Currently we can get a ebb only through
264 splitting of currently scheduling block, therefore, we don't need
265 ebb_head array for every region, its sufficient to hold it only
266 for current one. */
267static int *ebb_head;
268
46c5ad27 269static void compute_dom_prob_ps (int);
b4ead7d4 270
b4ead7d4
BS
271#define INSN_PROBABILITY(INSN) (SRC_PROB (BLOCK_TO_BB (BLOCK_NUM (INSN))))
272#define IS_SPECULATIVE_INSN(INSN) (IS_SPECULATIVE (BLOCK_TO_BB (BLOCK_NUM (INSN))))
273#define INSN_BB(INSN) (BLOCK_TO_BB (BLOCK_NUM (INSN)))
274
b4ead7d4 275/* Speculative scheduling functions. */
46c5ad27
AJ
276static int check_live_1 (int, rtx);
277static void update_live_1 (int, rtx);
278static int check_live (rtx, int);
279static void update_live (rtx, int);
280static void set_spec_fed (rtx);
281static int is_pfree (rtx, int, int);
282static int find_conditional_protection (rtx, int);
283static int is_conditionally_protected (rtx, int, int);
284static int is_prisky (rtx, int, int);
285static int is_exception_free (rtx, int, int);
286
287static bool sets_likely_spilled (rtx);
288static void sets_likely_spilled_1 (rtx, rtx, void *);
289static void add_branch_dependences (rtx, rtx);
290static void compute_block_backward_dependences (int);
291void debug_dependencies (void);
292
293static void init_regions (void);
294static void schedule_region (int);
295static rtx concat_INSN_LIST (rtx, rtx);
296static void concat_insn_mem_list (rtx, rtx, rtx *, rtx *);
297static void propagate_deps (int, struct deps *);
298static void free_pending_lists (void);
b4ead7d4
BS
299
300/* Functions for construction of the control flow graph. */
301
302/* Return 1 if control flow graph should not be constructed, 0 otherwise.
303
304 We decide not to build the control flow graph if there is possibly more
dcda8480
UW
305 than one entry to the function, if computed branches exist, if we
306 have nonlocal gotos, or if we have an unreachable loop. */
b4ead7d4
BS
307
308static int
46c5ad27 309is_cfg_nonregular (void)
b4ead7d4 310{
e0082a72 311 basic_block b;
b4ead7d4 312 rtx insn;
b4ead7d4
BS
313
314 /* If we have a label that could be the target of a nonlocal goto, then
315 the cfg is not well structured. */
316 if (nonlocal_goto_handler_labels)
317 return 1;
318
319 /* If we have any forced labels, then the cfg is not well structured. */
320 if (forced_labels)
321 return 1;
322
b4ead7d4
BS
323 /* If we have exception handlers, then we consider the cfg not well
324 structured. ?!? We should be able to handle this now that flow.c
325 computes an accurate cfg for EH. */
6a58eee9 326 if (current_function_has_exception_handlers ())
b4ead7d4
BS
327 return 1;
328
329 /* If we have non-jumping insns which refer to labels, then we consider
330 the cfg not well structured. */
e0082a72 331 FOR_EACH_BB (b)
f7aa1423 332 FOR_BB_INSNS (b, insn)
b4ead7d4 333 {
f7aa1423
SB
334 /* Check for labels referred by non-jump insns. */
335 if (NONJUMP_INSN_P (insn) || CALL_P (insn))
b4ead7d4 336 {
cabf3891 337 rtx note = find_reg_note (insn, REG_LABEL, NULL_RTX);
f759eb8b 338 if (note
4b4bf941 339 && ! (JUMP_P (NEXT_INSN (insn))
cabf3891 340 && find_reg_note (NEXT_INSN (insn), REG_LABEL,
f759eb8b
AO
341 XEXP (note, 0))))
342 return 1;
b4ead7d4 343 }
f7aa1423
SB
344 /* If this function has a computed jump, then we consider the cfg
345 not well structured. */
346 else if (JUMP_P (insn) && computed_jump_p (insn))
347 return 1;
b4ead7d4
BS
348 }
349
b4ead7d4
BS
350 /* Unreachable loops with more than one basic block are detected
351 during the DFS traversal in find_rgns.
352
353 Unreachable loops with a single block are detected here. This
354 test is redundant with the one in find_rgns, but it's much
dcda8480 355 cheaper to go ahead and catch the trivial case here. */
e0082a72 356 FOR_EACH_BB (b)
b4ead7d4 357 {
628f6a4e 358 if (EDGE_COUNT (b->preds) == 0
c5cbcccf
ZD
359 || (single_pred_p (b)
360 && single_pred (b) == b))
dcda8480 361 return 1;
b4ead7d4
BS
362 }
363
dcda8480
UW
364 /* All the tests passed. Consider the cfg well structured. */
365 return 0;
b4ead7d4
BS
366}
367
dcda8480 368/* Extract list of edges from a bitmap containing EDGE_TO_BIT bits. */
b4ead7d4
BS
369
370static void
dcda8480 371extract_edgelst (sbitmap set, edgelst *el)
b4ead7d4 372{
dfea6c85 373 unsigned int i = 0;
b6e7e9af 374 sbitmap_iterator sbi;
b4ead7d4 375
dcda8480
UW
376 /* edgelst table space is reused in each call to extract_edgelst. */
377 edgelst_last = 0;
b4ead7d4 378
dcda8480
UW
379 el->first_member = &edgelst_table[edgelst_last];
380 el->nr_members = 0;
b4ead7d4
BS
381
382 /* Iterate over each word in the bitset. */
b6e7e9af
KH
383 EXECUTE_IF_SET_IN_SBITMAP (set, 0, i, sbi)
384 {
385 edgelst_table[edgelst_last++] = rgn_edges[i];
386 el->nr_members++;
387 }
b4ead7d4
BS
388}
389
390/* Functions for the construction of regions. */
391
392/* Print the regions, for debugging purposes. Callable from debugger. */
393
394void
46c5ad27 395debug_regions (void)
b4ead7d4
BS
396{
397 int rgn, bb;
398
399 fprintf (sched_dump, "\n;; ------------ REGIONS ----------\n\n");
400 for (rgn = 0; rgn < nr_regions; rgn++)
401 {
402 fprintf (sched_dump, ";;\trgn %d nr_blocks %d:\n", rgn,
403 rgn_table[rgn].rgn_nr_blocks);
404 fprintf (sched_dump, ";;\tbb/block: ");
405
496d7bb0
MK
406 /* We don't have ebb_head initialized yet, so we can't use
407 BB_TO_BLOCK (). */
408 current_blocks = RGN_BLOCKS (rgn);
b4ead7d4 409
496d7bb0
MK
410 for (bb = 0; bb < rgn_table[rgn].rgn_nr_blocks; bb++)
411 fprintf (sched_dump, " %d/%d ", bb, rgn_bb_table[current_blocks + bb]);
b4ead7d4
BS
412
413 fprintf (sched_dump, "\n\n");
414 }
415}
416
417/* Build a single block region for each basic block in the function.
418 This allows for using the same code for interblock and basic block
419 scheduling. */
420
421static void
46c5ad27 422find_single_block_region (void)
b4ead7d4 423{
e0082a72 424 basic_block bb;
355e4ec4 425
e0082a72
ZD
426 nr_regions = 0;
427
428 FOR_EACH_BB (bb)
b4ead7d4 429 {
e0082a72
ZD
430 rgn_bb_table[nr_regions] = bb->index;
431 RGN_NR_BLOCKS (nr_regions) = 1;
432 RGN_BLOCKS (nr_regions) = nr_regions;
496d7bb0
MK
433 RGN_DONT_CALC_DEPS (nr_regions) = 0;
434 RGN_HAS_REAL_EBB (nr_regions) = 0;
e0082a72
ZD
435 CONTAINING_RGN (bb->index) = nr_regions;
436 BLOCK_TO_BB (bb->index) = 0;
437 nr_regions++;
b4ead7d4 438 }
b4ead7d4
BS
439}
440
441/* Update number of blocks and the estimate for number of insns
f72c6b56
DE
442 in the region. Return true if the region is "too large" for interblock
443 scheduling (compile time considerations). */
b4ead7d4 444
f72c6b56 445static bool
46c5ad27 446too_large (int block, int *num_bbs, int *num_insns)
b4ead7d4
BS
447{
448 (*num_bbs)++;
f72c6b56
DE
449 (*num_insns) += (INSN_LUID (BB_END (BASIC_BLOCK (block)))
450 - INSN_LUID (BB_HEAD (BASIC_BLOCK (block))));
451
452 return ((*num_bbs > PARAM_VALUE (PARAM_MAX_SCHED_REGION_BLOCKS))
453 || (*num_insns > PARAM_VALUE (PARAM_MAX_SCHED_REGION_INSNS)));
b4ead7d4
BS
454}
455
456/* Update_loop_relations(blk, hdr): Check if the loop headed by max_hdr[blk]
457 is still an inner loop. Put in max_hdr[blk] the header of the most inner
458 loop containing blk. */
786de7eb
KH
459#define UPDATE_LOOP_RELATIONS(blk, hdr) \
460{ \
461 if (max_hdr[blk] == -1) \
462 max_hdr[blk] = hdr; \
463 else if (dfs_nr[max_hdr[blk]] > dfs_nr[hdr]) \
464 RESET_BIT (inner, hdr); \
465 else if (dfs_nr[max_hdr[blk]] < dfs_nr[hdr]) \
466 { \
467 RESET_BIT (inner,max_hdr[blk]); \
468 max_hdr[blk] = hdr; \
469 } \
b4ead7d4
BS
470}
471
472/* Find regions for interblock scheduling.
473
474 A region for scheduling can be:
475
476 * A loop-free procedure, or
477
478 * A reducible inner loop, or
479
480 * A basic block not contained in any other region.
481
482 ?!? In theory we could build other regions based on extended basic
483 blocks or reverse extended basic blocks. Is it worth the trouble?
484
485 Loop blocks that form a region are put into the region's block list
486 in topological order.
487
488 This procedure stores its results into the following global (ick) variables
489
490 * rgn_nr
491 * rgn_table
492 * rgn_bb_table
493 * block_to_bb
494 * containing region
495
496 We use dominator relationships to avoid making regions out of non-reducible
497 loops.
498
499 This procedure needs to be converted to work on pred/succ lists instead
500 of edge tables. That would simplify it somewhat. */
501
502static void
dcda8480 503find_rgns (void)
b4ead7d4 504{
dcda8480 505 int *max_hdr, *dfs_nr, *degree;
b4ead7d4
BS
506 char no_loops = 1;
507 int node, child, loop_head, i, head, tail;
8a6b9b7f 508 int count = 0, sp, idx = 0;
dcda8480
UW
509 edge_iterator current_edge;
510 edge_iterator *stack;
b4ead7d4
BS
511 int num_bbs, num_insns, unreachable;
512 int too_large_failure;
e0082a72 513 basic_block bb;
b4ead7d4 514
b4ead7d4
BS
515 /* Note if a block is a natural loop header. */
516 sbitmap header;
517
09da1532 518 /* Note if a block is a natural inner loop header. */
b4ead7d4
BS
519 sbitmap inner;
520
521 /* Note if a block is in the block queue. */
522 sbitmap in_queue;
523
524 /* Note if a block is in the block queue. */
525 sbitmap in_stack;
526
b4ead7d4
BS
527 /* Perform a DFS traversal of the cfg. Identify loop headers, inner loops
528 and a mapping from block to its loop header (if the block is contained
529 in a loop, else -1).
530
531 Store results in HEADER, INNER, and MAX_HDR respectively, these will
532 be used as inputs to the second traversal.
533
534 STACK, SP and DFS_NR are only used during the first traversal. */
535
536 /* Allocate and initialize variables for the first traversal. */
5ed6ace5
MD
537 max_hdr = XNEWVEC (int, last_basic_block);
538 dfs_nr = XCNEWVEC (int, last_basic_block);
539 stack = XNEWVEC (edge_iterator, n_edges);
b4ead7d4 540
d55bc081 541 inner = sbitmap_alloc (last_basic_block);
b4ead7d4
BS
542 sbitmap_ones (inner);
543
d55bc081 544 header = sbitmap_alloc (last_basic_block);
b4ead7d4
BS
545 sbitmap_zero (header);
546
d55bc081 547 in_queue = sbitmap_alloc (last_basic_block);
b4ead7d4
BS
548 sbitmap_zero (in_queue);
549
d55bc081 550 in_stack = sbitmap_alloc (last_basic_block);
b4ead7d4
BS
551 sbitmap_zero (in_stack);
552
bf77398c 553 for (i = 0; i < last_basic_block; i++)
b4ead7d4
BS
554 max_hdr[i] = -1;
555
dcda8480
UW
556 #define EDGE_PASSED(E) (ei_end_p ((E)) || ei_edge ((E))->aux)
557 #define SET_EDGE_PASSED(E) (ei_edge ((E))->aux = ei_edge ((E)))
558
b4ead7d4
BS
559 /* DFS traversal to find inner loops in the cfg. */
560
c5cbcccf 561 current_edge = ei_start (single_succ (ENTRY_BLOCK_PTR)->succs);
b4ead7d4 562 sp = -1;
dcda8480 563
b4ead7d4
BS
564 while (1)
565 {
dcda8480 566 if (EDGE_PASSED (current_edge))
b4ead7d4
BS
567 {
568 /* We have reached a leaf node or a node that was already
569 processed. Pop edges off the stack until we find
570 an edge that has not yet been processed. */
dcda8480 571 while (sp >= 0 && EDGE_PASSED (current_edge))
b4ead7d4
BS
572 {
573 /* Pop entry off the stack. */
574 current_edge = stack[sp--];
dcda8480
UW
575 node = ei_edge (current_edge)->src->index;
576 gcc_assert (node != ENTRY_BLOCK);
577 child = ei_edge (current_edge)->dest->index;
578 gcc_assert (child != EXIT_BLOCK);
b4ead7d4
BS
579 RESET_BIT (in_stack, child);
580 if (max_hdr[child] >= 0 && TEST_BIT (in_stack, max_hdr[child]))
581 UPDATE_LOOP_RELATIONS (node, max_hdr[child]);
dcda8480 582 ei_next (&current_edge);
b4ead7d4
BS
583 }
584
585 /* See if have finished the DFS tree traversal. */
dcda8480 586 if (sp < 0 && EDGE_PASSED (current_edge))
b4ead7d4
BS
587 break;
588
589 /* Nope, continue the traversal with the popped node. */
590 continue;
591 }
592
593 /* Process a node. */
dcda8480
UW
594 node = ei_edge (current_edge)->src->index;
595 gcc_assert (node != ENTRY_BLOCK);
b4ead7d4
BS
596 SET_BIT (in_stack, node);
597 dfs_nr[node] = ++count;
598
dcda8480
UW
599 /* We don't traverse to the exit block. */
600 child = ei_edge (current_edge)->dest->index;
601 if (child == EXIT_BLOCK)
602 {
603 SET_EDGE_PASSED (current_edge);
604 ei_next (&current_edge);
605 continue;
606 }
607
b4ead7d4
BS
608 /* If the successor is in the stack, then we've found a loop.
609 Mark the loop, if it is not a natural loop, then it will
610 be rejected during the second traversal. */
611 if (TEST_BIT (in_stack, child))
612 {
613 no_loops = 0;
614 SET_BIT (header, child);
615 UPDATE_LOOP_RELATIONS (node, child);
dcda8480
UW
616 SET_EDGE_PASSED (current_edge);
617 ei_next (&current_edge);
b4ead7d4
BS
618 continue;
619 }
620
621 /* If the child was already visited, then there is no need to visit
622 it again. Just update the loop relationships and restart
623 with a new edge. */
624 if (dfs_nr[child])
625 {
626 if (max_hdr[child] >= 0 && TEST_BIT (in_stack, max_hdr[child]))
627 UPDATE_LOOP_RELATIONS (node, max_hdr[child]);
dcda8480
UW
628 SET_EDGE_PASSED (current_edge);
629 ei_next (&current_edge);
b4ead7d4
BS
630 continue;
631 }
632
633 /* Push an entry on the stack and continue DFS traversal. */
634 stack[++sp] = current_edge;
dcda8480
UW
635 SET_EDGE_PASSED (current_edge);
636 current_edge = ei_start (ei_edge (current_edge)->dest->succs);
637 }
638
639 /* Reset ->aux field used by EDGE_PASSED. */
640 FOR_ALL_BB (bb)
641 {
642 edge_iterator ei;
643 edge e;
644 FOR_EACH_EDGE (e, ei, bb->succs)
645 e->aux = NULL;
b4ead7d4
BS
646 }
647
dcda8480 648
b4ead7d4
BS
649 /* Another check for unreachable blocks. The earlier test in
650 is_cfg_nonregular only finds unreachable blocks that do not
651 form a loop.
652
653 The DFS traversal will mark every block that is reachable from
654 the entry node by placing a nonzero value in dfs_nr. Thus if
655 dfs_nr is zero for any block, then it must be unreachable. */
656 unreachable = 0;
e0082a72
ZD
657 FOR_EACH_BB (bb)
658 if (dfs_nr[bb->index] == 0)
b4ead7d4
BS
659 {
660 unreachable = 1;
661 break;
662 }
663
664 /* Gross. To avoid wasting memory, the second pass uses the dfs_nr array
665 to hold degree counts. */
666 degree = dfs_nr;
667
e0082a72 668 FOR_EACH_BB (bb)
dcda8480 669 degree[bb->index] = EDGE_COUNT (bb->preds);
b4ead7d4
BS
670
671 /* Do not perform region scheduling if there are any unreachable
672 blocks. */
673 if (!unreachable)
674 {
d08eefb9
MK
675 int *queue, *degree1 = NULL;
676 /* We use EXTENDED_RGN_HEADER as an addition to HEADER and put
677 there basic blocks, which are forced to be region heads.
678 This is done to try to assemble few smaller regions
679 from a too_large region. */
680 sbitmap extended_rgn_header = NULL;
681 bool extend_regions_p;
b4ead7d4
BS
682
683 if (no_loops)
684 SET_BIT (header, 0);
685
14b493d6 686 /* Second traversal:find reducible inner loops and topologically sort
b4ead7d4
BS
687 block of each region. */
688
5ed6ace5 689 queue = XNEWVEC (int, n_basic_blocks);
d08eefb9
MK
690
691 extend_regions_p = PARAM_VALUE (PARAM_MAX_SCHED_EXTEND_REGIONS_ITERS) > 0;
692 if (extend_regions_p)
693 {
694 degree1 = xmalloc (last_basic_block * sizeof (int));
695 extended_rgn_header = sbitmap_alloc (last_basic_block);
696 sbitmap_zero (extended_rgn_header);
697 }
b4ead7d4
BS
698
699 /* Find blocks which are inner loop headers. We still have non-reducible
700 loops to consider at this point. */
e0082a72 701 FOR_EACH_BB (bb)
b4ead7d4 702 {
e0082a72 703 if (TEST_BIT (header, bb->index) && TEST_BIT (inner, bb->index))
b4ead7d4
BS
704 {
705 edge e;
628f6a4e 706 edge_iterator ei;
e0082a72 707 basic_block jbb;
b4ead7d4
BS
708
709 /* Now check that the loop is reducible. We do this separate
710 from finding inner loops so that we do not find a reducible
711 loop which contains an inner non-reducible loop.
712
713 A simple way to find reducible/natural loops is to verify
714 that each block in the loop is dominated by the loop
715 header.
716
717 If there exists a block that is not dominated by the loop
718 header, then the block is reachable from outside the loop
719 and thus the loop is not a natural loop. */
e0082a72 720 FOR_EACH_BB (jbb)
b4ead7d4
BS
721 {
722 /* First identify blocks in the loop, except for the loop
723 entry block. */
e0082a72 724 if (bb->index == max_hdr[jbb->index] && bb != jbb)
b4ead7d4
BS
725 {
726 /* Now verify that the block is dominated by the loop
727 header. */
d47cc544 728 if (!dominated_by_p (CDI_DOMINATORS, jbb, bb))
b4ead7d4
BS
729 break;
730 }
731 }
732
733 /* If we exited the loop early, then I is the header of
734 a non-reducible loop and we should quit processing it
735 now. */
e0082a72 736 if (jbb != EXIT_BLOCK_PTR)
b4ead7d4
BS
737 continue;
738
739 /* I is a header of an inner loop, or block 0 in a subroutine
740 with no loops at all. */
741 head = tail = -1;
742 too_large_failure = 0;
e0082a72 743 loop_head = max_hdr[bb->index];
b4ead7d4 744
d08eefb9
MK
745 if (extend_regions_p)
746 /* We save degree in case when we meet a too_large region
747 and cancel it. We need a correct degree later when
748 calling extend_rgns. */
749 memcpy (degree1, degree, last_basic_block * sizeof (int));
750
b4ead7d4
BS
751 /* Decrease degree of all I's successors for topological
752 ordering. */
628f6a4e 753 FOR_EACH_EDGE (e, ei, bb->succs)
b4ead7d4 754 if (e->dest != EXIT_BLOCK_PTR)
0b17ab2f 755 --degree[e->dest->index];
b4ead7d4
BS
756
757 /* Estimate # insns, and count # blocks in the region. */
758 num_bbs = 1;
a813c111
SB
759 num_insns = (INSN_LUID (BB_END (bb))
760 - INSN_LUID (BB_HEAD (bb)));
b4ead7d4
BS
761
762 /* Find all loop latches (blocks with back edges to the loop
763 header) or all the leaf blocks in the cfg has no loops.
764
765 Place those blocks into the queue. */
766 if (no_loops)
767 {
e0082a72 768 FOR_EACH_BB (jbb)
b4ead7d4
BS
769 /* Leaf nodes have only a single successor which must
770 be EXIT_BLOCK. */
c5cbcccf
ZD
771 if (single_succ_p (jbb)
772 && single_succ (jbb) == EXIT_BLOCK_PTR)
b4ead7d4 773 {
e0082a72
ZD
774 queue[++tail] = jbb->index;
775 SET_BIT (in_queue, jbb->index);
b4ead7d4 776
e0082a72 777 if (too_large (jbb->index, &num_bbs, &num_insns))
b4ead7d4
BS
778 {
779 too_large_failure = 1;
780 break;
781 }
782 }
783 }
784 else
785 {
786 edge e;
787
628f6a4e 788 FOR_EACH_EDGE (e, ei, bb->preds)
b4ead7d4
BS
789 {
790 if (e->src == ENTRY_BLOCK_PTR)
791 continue;
792
0b17ab2f 793 node = e->src->index;
b4ead7d4 794
e0082a72 795 if (max_hdr[node] == loop_head && node != bb->index)
b4ead7d4
BS
796 {
797 /* This is a loop latch. */
798 queue[++tail] = node;
799 SET_BIT (in_queue, node);
800
801 if (too_large (node, &num_bbs, &num_insns))
802 {
803 too_large_failure = 1;
804 break;
805 }
806 }
807 }
808 }
809
810 /* Now add all the blocks in the loop to the queue.
811
812 We know the loop is a natural loop; however the algorithm
813 above will not always mark certain blocks as being in the
814 loop. Consider:
815 node children
816 a b,c
817 b c
818 c a,d
819 d b
820
821 The algorithm in the DFS traversal may not mark B & D as part
454ff5cb 822 of the loop (i.e. they will not have max_hdr set to A).
b4ead7d4
BS
823
824 We know they can not be loop latches (else they would have
825 had max_hdr set since they'd have a backedge to a dominator
826 block). So we don't need them on the initial queue.
827
828 We know they are part of the loop because they are dominated
829 by the loop header and can be reached by a backwards walk of
830 the edges starting with nodes on the initial queue.
831
832 It is safe and desirable to include those nodes in the
833 loop/scheduling region. To do so we would need to decrease
834 the degree of a node if it is the target of a backedge
835 within the loop itself as the node is placed in the queue.
836
837 We do not do this because I'm not sure that the actual
838 scheduling code will properly handle this case. ?!? */
839
840 while (head < tail && !too_large_failure)
841 {
842 edge e;
843 child = queue[++head];
844
628f6a4e 845 FOR_EACH_EDGE (e, ei, BASIC_BLOCK (child)->preds)
b4ead7d4 846 {
0b17ab2f 847 node = e->src->index;
b4ead7d4
BS
848
849 /* See discussion above about nodes not marked as in
850 this loop during the initial DFS traversal. */
851 if (e->src == ENTRY_BLOCK_PTR
852 || max_hdr[node] != loop_head)
853 {
854 tail = -1;
855 break;
856 }
e0082a72 857 else if (!TEST_BIT (in_queue, node) && node != bb->index)
b4ead7d4
BS
858 {
859 queue[++tail] = node;
860 SET_BIT (in_queue, node);
861
862 if (too_large (node, &num_bbs, &num_insns))
863 {
864 too_large_failure = 1;
865 break;
866 }
867 }
868 }
869 }
870
871 if (tail >= 0 && !too_large_failure)
872 {
873 /* Place the loop header into list of region blocks. */
e0082a72
ZD
874 degree[bb->index] = -1;
875 rgn_bb_table[idx] = bb->index;
b4ead7d4
BS
876 RGN_NR_BLOCKS (nr_regions) = num_bbs;
877 RGN_BLOCKS (nr_regions) = idx++;
496d7bb0
MK
878 RGN_DONT_CALC_DEPS (nr_regions) = 0;
879 RGN_HAS_REAL_EBB (nr_regions) = 0;
e0082a72
ZD
880 CONTAINING_RGN (bb->index) = nr_regions;
881 BLOCK_TO_BB (bb->index) = count = 0;
b4ead7d4
BS
882
883 /* Remove blocks from queue[] when their in degree
884 becomes zero. Repeat until no blocks are left on the
885 list. This produces a topological list of blocks in
886 the region. */
887 while (tail >= 0)
888 {
889 if (head < 0)
890 head = tail;
891 child = queue[head];
892 if (degree[child] == 0)
893 {
894 edge e;
895
896 degree[child] = -1;
897 rgn_bb_table[idx++] = child;
898 BLOCK_TO_BB (child) = ++count;
899 CONTAINING_RGN (child) = nr_regions;
900 queue[head] = queue[tail--];
901
628f6a4e 902 FOR_EACH_EDGE (e, ei, BASIC_BLOCK (child)->succs)
b4ead7d4 903 if (e->dest != EXIT_BLOCK_PTR)
0b17ab2f 904 --degree[e->dest->index];
b4ead7d4
BS
905 }
906 else
907 --head;
908 }
909 ++nr_regions;
910 }
d08eefb9
MK
911 else if (extend_regions_p)
912 {
913 /* Restore DEGREE. */
914 int *t = degree;
915
916 degree = degree1;
917 degree1 = t;
918
919 /* And force successors of BB to be region heads.
920 This may provide several smaller regions instead
921 of one too_large region. */
922 FOR_EACH_EDGE (e, ei, bb->succs)
923 if (e->dest != EXIT_BLOCK_PTR)
924 SET_BIT (extended_rgn_header, e->dest->index);
925 }
b4ead7d4
BS
926 }
927 }
928 free (queue);
d08eefb9
MK
929
930 if (extend_regions_p)
931 {
932 free (degree1);
933
934 sbitmap_a_or_b (header, header, extended_rgn_header);
935 sbitmap_free (extended_rgn_header);
936
937 extend_rgns (degree, &idx, header, max_hdr);
938 }
b4ead7d4
BS
939 }
940
941 /* Any block that did not end up in a region is placed into a region
942 by itself. */
e0082a72
ZD
943 FOR_EACH_BB (bb)
944 if (degree[bb->index] >= 0)
b4ead7d4 945 {
e0082a72 946 rgn_bb_table[idx] = bb->index;
b4ead7d4
BS
947 RGN_NR_BLOCKS (nr_regions) = 1;
948 RGN_BLOCKS (nr_regions) = idx++;
496d7bb0
MK
949 RGN_DONT_CALC_DEPS (nr_regions) = 0;
950 RGN_HAS_REAL_EBB (nr_regions) = 0;
e0082a72
ZD
951 CONTAINING_RGN (bb->index) = nr_regions++;
952 BLOCK_TO_BB (bb->index) = 0;
b4ead7d4
BS
953 }
954
955 free (max_hdr);
d08eefb9 956 free (degree);
b4ead7d4 957 free (stack);
7b25b076
GS
958 sbitmap_free (header);
959 sbitmap_free (inner);
960 sbitmap_free (in_queue);
961 sbitmap_free (in_stack);
b4ead7d4
BS
962}
963
d08eefb9
MK
964static int gather_region_statistics (int **);
965static void print_region_statistics (int *, int, int *, int);
966
967/* Calculate the histogram that shows the number of regions having the
968 given number of basic blocks, and store it in the RSP array. Return
969 the size of this array. */
970static int
971gather_region_statistics (int **rsp)
972{
973 int i, *a = 0, a_sz = 0;
974
975 /* a[i] is the number of regions that have (i + 1) basic blocks. */
976 for (i = 0; i < nr_regions; i++)
977 {
978 int nr_blocks = RGN_NR_BLOCKS (i);
979
980 gcc_assert (nr_blocks >= 1);
981
982 if (nr_blocks > a_sz)
983 {
984 a = xrealloc (a, nr_blocks * sizeof (*a));
985 do
986 a[a_sz++] = 0;
987 while (a_sz != nr_blocks);
988 }
989
990 a[nr_blocks - 1]++;
991 }
992
993 *rsp = a;
994 return a_sz;
995}
996
997/* Print regions statistics. S1 and S2 denote the data before and after
998 calling extend_rgns, respectively. */
999static void
1000print_region_statistics (int *s1, int s1_sz, int *s2, int s2_sz)
1001{
1002 int i;
1003
1004 /* We iterate until s2_sz because extend_rgns does not decrease
1005 the maximal region size. */
1006 for (i = 1; i < s2_sz; i++)
1007 {
1008 int n1, n2;
1009
1010 n2 = s2[i];
1011
1012 if (n2 == 0)
1013 continue;
1014
1015 if (i >= s1_sz)
1016 n1 = 0;
1017 else
1018 n1 = s1[i];
1019
1020 fprintf (sched_dump, ";; Region extension statistics: size %d: " \
1021 "was %d + %d more\n", i + 1, n1, n2 - n1);
1022 }
1023}
1024
1025/* Extend regions.
1026 DEGREE - Array of incoming edge count, considering only
1027 the edges, that don't have their sources in formed regions yet.
1028 IDXP - pointer to the next available index in rgn_bb_table.
1029 HEADER - set of all region heads.
1030 LOOP_HDR - mapping from block to the containing loop
1031 (two blocks can reside within one region if they have
1032 the same loop header). */
1033static void
1034extend_rgns (int *degree, int *idxp, sbitmap header, int *loop_hdr)
1035{
1036 int *order, i, rescan = 0, idx = *idxp, iter = 0, max_iter, *max_hdr;
1037 int nblocks = n_basic_blocks - NUM_FIXED_BLOCKS;
1038
1039 max_iter = PARAM_VALUE (PARAM_MAX_SCHED_EXTEND_REGIONS_ITERS);
1040
1041 max_hdr = xmalloc (last_basic_block * sizeof (*max_hdr));
1042
1043 order = xmalloc (last_basic_block * sizeof (*order));
1044 post_order_compute (order, false);
1045
1046 for (i = nblocks - 1; i >= 0; i--)
1047 {
1048 int bbn = order[i];
1049 if (degree[bbn] >= 0)
1050 {
1051 max_hdr[bbn] = bbn;
1052 rescan = 1;
1053 }
1054 else
1055 /* This block already was processed in find_rgns. */
1056 max_hdr[bbn] = -1;
1057 }
1058
1059 /* The idea is to topologically walk through CFG in top-down order.
1060 During the traversal, if all the predecessors of a node are
1061 marked to be in the same region (they all have the same max_hdr),
1062 then current node is also marked to be a part of that region.
1063 Otherwise the node starts its own region.
1064 CFG should be traversed until no further changes are made. On each
1065 iteration the set of the region heads is extended (the set of those
1066 blocks that have max_hdr[bbi] == bbi). This set is upper bounded by the
1067 set of all basic blocks, thus the algorithm is guaranteed to terminate. */
1068
1069 while (rescan && iter < max_iter)
1070 {
1071 rescan = 0;
1072
1073 for (i = nblocks - 1; i >= 0; i--)
1074 {
1075 edge e;
1076 edge_iterator ei;
1077 int bbn = order[i];
1078
1079 if (max_hdr[bbn] != -1 && !TEST_BIT (header, bbn))
1080 {
1081 int hdr = -1;
1082
1083 FOR_EACH_EDGE (e, ei, BASIC_BLOCK (bbn)->preds)
1084 {
1085 int predn = e->src->index;
1086
1087 if (predn != ENTRY_BLOCK
1088 /* If pred wasn't processed in find_rgns. */
1089 && max_hdr[predn] != -1
1090 /* And pred and bb reside in the same loop.
1091 (Or out of any loop). */
1092 && loop_hdr[bbn] == loop_hdr[predn])
1093 {
1094 if (hdr == -1)
1095 /* Then bb extends the containing region of pred. */
1096 hdr = max_hdr[predn];
1097 else if (hdr != max_hdr[predn])
1098 /* Too bad, there are at least two predecessors
1099 that reside in different regions. Thus, BB should
1100 begin its own region. */
1101 {
1102 hdr = bbn;
1103 break;
1104 }
1105 }
1106 else
1107 /* BB starts its own region. */
1108 {
1109 hdr = bbn;
1110 break;
1111 }
1112 }
1113
1114 if (hdr == bbn)
1115 {
1116 /* If BB start its own region,
1117 update set of headers with BB. */
1118 SET_BIT (header, bbn);
1119 rescan = 1;
1120 }
1121 else
1122 gcc_assert (hdr != -1);
1123
1124 max_hdr[bbn] = hdr;
1125 }
1126 }
1127
1128 iter++;
1129 }
1130
1131 /* Statistics were gathered on the SPEC2000 package of tests with
1132 mainline weekly snapshot gcc-4.1-20051015 on ia64.
1133
1134 Statistics for SPECint:
1135 1 iteration : 1751 cases (38.7%)
1136 2 iterations: 2770 cases (61.3%)
1137 Blocks wrapped in regions by find_rgns without extension: 18295 blocks
1138 Blocks wrapped in regions by 2 iterations in extend_rgns: 23821 blocks
1139 (We don't count single block regions here).
1140
1141 Statistics for SPECfp:
1142 1 iteration : 621 cases (35.9%)
1143 2 iterations: 1110 cases (64.1%)
1144 Blocks wrapped in regions by find_rgns without extension: 6476 blocks
1145 Blocks wrapped in regions by 2 iterations in extend_rgns: 11155 blocks
1146 (We don't count single block regions here).
1147
1148 By default we do at most 2 iterations.
917f1b7e 1149 This can be overridden with max-sched-extend-regions-iters parameter:
d08eefb9
MK
1150 0 - disable region extension,
1151 N > 0 - do at most N iterations. */
1152
1153 if (sched_verbose && iter != 0)
1154 fprintf (sched_dump, ";; Region extension iterations: %d%s\n", iter,
1155 rescan ? "... failed" : "");
1156
1157 if (!rescan && iter != 0)
1158 {
1159 int *s1 = NULL, s1_sz = 0;
1160
1161 /* Save the old statistics for later printout. */
1162 if (sched_verbose >= 6)
1163 s1_sz = gather_region_statistics (&s1);
1164
1165 /* We have succeeded. Now assemble the regions. */
1166 for (i = nblocks - 1; i >= 0; i--)
1167 {
1168 int bbn = order[i];
1169
1170 if (max_hdr[bbn] == bbn)
1171 /* BBN is a region head. */
1172 {
1173 edge e;
1174 edge_iterator ei;
1175 int num_bbs = 0, j, num_insns = 0, large;
1176
1177 large = too_large (bbn, &num_bbs, &num_insns);
1178
1179 degree[bbn] = -1;
1180 rgn_bb_table[idx] = bbn;
1181 RGN_BLOCKS (nr_regions) = idx++;
496d7bb0
MK
1182 RGN_DONT_CALC_DEPS (nr_regions) = 0;
1183 RGN_HAS_REAL_EBB (nr_regions) = 0;
d08eefb9
MK
1184 CONTAINING_RGN (bbn) = nr_regions;
1185 BLOCK_TO_BB (bbn) = 0;
1186
1187 FOR_EACH_EDGE (e, ei, BASIC_BLOCK (bbn)->succs)
1188 if (e->dest != EXIT_BLOCK_PTR)
1189 degree[e->dest->index]--;
1190
1191 if (!large)
1192 /* Here we check whether the region is too_large. */
1193 for (j = i - 1; j >= 0; j--)
1194 {
1195 int succn = order[j];
1196 if (max_hdr[succn] == bbn)
1197 {
1198 if ((large = too_large (succn, &num_bbs, &num_insns)))
1199 break;
1200 }
1201 }
1202
1203 if (large)
1204 /* If the region is too_large, then wrap every block of
1205 the region into single block region.
1206 Here we wrap region head only. Other blocks are
1207 processed in the below cycle. */
1208 {
1209 RGN_NR_BLOCKS (nr_regions) = 1;
1210 nr_regions++;
1211 }
1212
1213 num_bbs = 1;
1214
1215 for (j = i - 1; j >= 0; j--)
1216 {
1217 int succn = order[j];
1218
1219 if (max_hdr[succn] == bbn)
1220 /* This cycle iterates over all basic blocks, that
1221 are supposed to be in the region with head BBN,
1222 and wraps them into that region (or in single
1223 block region). */
1224 {
1225 gcc_assert (degree[succn] == 0);
1226
1227 degree[succn] = -1;
1228 rgn_bb_table[idx] = succn;
1229 BLOCK_TO_BB (succn) = large ? 0 : num_bbs++;
1230 CONTAINING_RGN (succn) = nr_regions;
1231
1232 if (large)
1233 /* Wrap SUCCN into single block region. */
1234 {
1235 RGN_BLOCKS (nr_regions) = idx;
1236 RGN_NR_BLOCKS (nr_regions) = 1;
496d7bb0
MK
1237 RGN_DONT_CALC_DEPS (nr_regions) = 0;
1238 RGN_HAS_REAL_EBB (nr_regions) = 0;
d08eefb9
MK
1239 nr_regions++;
1240 }
1241
1242 idx++;
1243
1244 FOR_EACH_EDGE (e, ei, BASIC_BLOCK (succn)->succs)
1245 if (e->dest != EXIT_BLOCK_PTR)
1246 degree[e->dest->index]--;
1247 }
1248 }
1249
1250 if (!large)
1251 {
1252 RGN_NR_BLOCKS (nr_regions) = num_bbs;
1253 nr_regions++;
1254 }
1255 }
1256 }
1257
1258 if (sched_verbose >= 6)
1259 {
1260 int *s2, s2_sz;
1261
1262 /* Get the new statistics and print the comparison with the
1263 one before calling this function. */
1264 s2_sz = gather_region_statistics (&s2);
1265 print_region_statistics (s1, s1_sz, s2, s2_sz);
1266 free (s1);
1267 free (s2);
1268 }
1269 }
1270
1271 free (order);
1272 free (max_hdr);
1273
1274 *idxp = idx;
1275}
1276
b4ead7d4
BS
1277/* Functions for regions scheduling information. */
1278
1279/* Compute dominators, probability, and potential-split-edges of bb.
1280 Assume that these values were already computed for bb's predecessors. */
1281
1282static void
46c5ad27 1283compute_dom_prob_ps (int bb)
b4ead7d4 1284{
36968131
PS
1285 edge_iterator in_ei;
1286 edge in_edge;
b4ead7d4 1287
496d7bb0
MK
1288 /* We shouldn't have any real ebbs yet. */
1289 gcc_assert (ebb_head [bb] == bb + current_blocks);
1290
b4ead7d4
BS
1291 if (IS_RGN_ENTRY (bb))
1292 {
bdfa170f 1293 SET_BIT (dom[bb], 0);
36968131 1294 prob[bb] = REG_BR_PROB_BASE;
b4ead7d4
BS
1295 return;
1296 }
1297
36968131
PS
1298 prob[bb] = 0;
1299
eaec9b3d 1300 /* Initialize dom[bb] to '111..1'. */
bdfa170f 1301 sbitmap_ones (dom[bb]);
b4ead7d4 1302
dcda8480 1303 FOR_EACH_EDGE (in_edge, in_ei, BASIC_BLOCK (BB_TO_BLOCK (bb))->preds)
b4ead7d4 1304 {
36968131
PS
1305 int pred_bb;
1306 edge out_edge;
1307 edge_iterator out_ei;
1308
dcda8480
UW
1309 if (in_edge->src == ENTRY_BLOCK_PTR)
1310 continue;
b4ead7d4 1311
dcda8480
UW
1312 pred_bb = BLOCK_TO_BB (in_edge->src->index);
1313 sbitmap_a_and_b (dom[bb], dom[bb], dom[pred_bb]);
1314 sbitmap_a_or_b (ancestor_edges[bb],
1315 ancestor_edges[bb], ancestor_edges[pred_bb]);
b4ead7d4 1316
dcda8480 1317 SET_BIT (ancestor_edges[bb], EDGE_TO_BIT (in_edge));
bdfa170f 1318
dcda8480 1319 sbitmap_a_or_b (pot_split[bb], pot_split[bb], pot_split[pred_bb]);
b4ead7d4 1320
dcda8480 1321 FOR_EACH_EDGE (out_edge, out_ei, in_edge->src->succs)
36968131 1322 SET_BIT (pot_split[bb], EDGE_TO_BIT (out_edge));
dcda8480 1323
36968131 1324 prob[bb] += ((prob[pred_bb] * in_edge->probability) / REG_BR_PROB_BASE);
b4ead7d4 1325 }
b4ead7d4 1326
bdfa170f
DB
1327 SET_BIT (dom[bb], bb);
1328 sbitmap_difference (pot_split[bb], pot_split[bb], ancestor_edges[bb]);
b4ead7d4
BS
1329
1330 if (sched_verbose >= 2)
1331 fprintf (sched_dump, ";; bb_prob(%d, %d) = %3d\n", bb, BB_TO_BLOCK (bb),
36968131 1332 (100 * prob[bb]) / REG_BR_PROB_BASE);
b4ead7d4
BS
1333}
1334
1335/* Functions for target info. */
1336
1337/* Compute in BL the list of split-edges of bb_src relatively to bb_trg.
1338 Note that bb_trg dominates bb_src. */
1339
1340static void
46c5ad27 1341split_edges (int bb_src, int bb_trg, edgelst *bl)
b4ead7d4 1342{
703ad42b 1343 sbitmap src = sbitmap_alloc (pot_split[bb_src]->n_bits);
bdfa170f
DB
1344 sbitmap_copy (src, pot_split[bb_src]);
1345
1346 sbitmap_difference (src, src, pot_split[bb_trg]);
dcda8480 1347 extract_edgelst (src, bl);
bdfa170f 1348 sbitmap_free (src);
b4ead7d4
BS
1349}
1350
1351/* Find the valid candidate-source-blocks for the target block TRG, compute
1352 their probability, and check if they are speculative or not.
1353 For speculative sources, compute their update-blocks and split-blocks. */
1354
1355static void
46c5ad27 1356compute_trg_info (int trg)
b4ead7d4 1357{
b3694847 1358 candidate *sp;
b4ead7d4 1359 edgelst el;
dcda8480
UW
1360 int i, j, k, update_idx;
1361 basic_block block;
740ce53d 1362 sbitmap visited;
dcda8480
UW
1363 edge_iterator ei;
1364 edge e;
b4ead7d4
BS
1365
1366 /* Define some of the fields for the target bb as well. */
1367 sp = candidate_table + trg;
1368 sp->is_valid = 1;
1369 sp->is_speculative = 0;
36968131 1370 sp->src_prob = REG_BR_PROB_BASE;
b4ead7d4 1371
24bd1a0b 1372 visited = sbitmap_alloc (last_basic_block);
740ce53d 1373
b4ead7d4
BS
1374 for (i = trg + 1; i < current_nr_blocks; i++)
1375 {
1376 sp = candidate_table + i;
1377
1378 sp->is_valid = IS_DOMINATED (i, trg);
1379 if (sp->is_valid)
1380 {
36968131
PS
1381 int tf = prob[trg], cf = prob[i];
1382
1383 /* In CFGs with low probability edges TF can possibly be zero. */
1384 sp->src_prob = (tf ? ((cf * REG_BR_PROB_BASE) / tf) : 0);
1385 sp->is_valid = (sp->src_prob >= min_spec_prob);
b4ead7d4
BS
1386 }
1387
1388 if (sp->is_valid)
1389 {
1390 split_edges (i, trg, &el);
1391 sp->is_speculative = (el.nr_members) ? 1 : 0;
1392 if (sp->is_speculative && !flag_schedule_speculative)
1393 sp->is_valid = 0;
1394 }
1395
1396 if (sp->is_valid)
1397 {
b4ead7d4
BS
1398 /* Compute split blocks and store them in bblst_table.
1399 The TO block of every split edge is a split block. */
1400 sp->split_bbs.first_member = &bblst_table[bblst_last];
1401 sp->split_bbs.nr_members = el.nr_members;
1402 for (j = 0; j < el.nr_members; bblst_last++, j++)
dcda8480 1403 bblst_table[bblst_last] = el.first_member[j]->dest;
b4ead7d4
BS
1404 sp->update_bbs.first_member = &bblst_table[bblst_last];
1405
1406 /* Compute update blocks and store them in bblst_table.
1407 For every split edge, look at the FROM block, and check
1408 all out edges. For each out edge that is not a split edge,
1409 add the TO block to the update block list. This list can end
1410 up with a lot of duplicates. We need to weed them out to avoid
1411 overrunning the end of the bblst_table. */
b4ead7d4
BS
1412
1413 update_idx = 0;
740ce53d 1414 sbitmap_zero (visited);
b4ead7d4
BS
1415 for (j = 0; j < el.nr_members; j++)
1416 {
dcda8480
UW
1417 block = el.first_member[j]->src;
1418 FOR_EACH_EDGE (e, ei, block->succs)
b4ead7d4 1419 {
24bd1a0b 1420 if (!TEST_BIT (visited, e->dest->index))
b4ead7d4
BS
1421 {
1422 for (k = 0; k < el.nr_members; k++)
dcda8480 1423 if (e == el.first_member[k])
b4ead7d4
BS
1424 break;
1425
1426 if (k >= el.nr_members)
1427 {
dcda8480 1428 bblst_table[bblst_last++] = e->dest;
24bd1a0b 1429 SET_BIT (visited, e->dest->index);
b4ead7d4
BS
1430 update_idx++;
1431 }
1432 }
b4ead7d4 1433 }
b4ead7d4
BS
1434 }
1435 sp->update_bbs.nr_members = update_idx;
1436
1437 /* Make sure we didn't overrun the end of bblst_table. */
41374e13 1438 gcc_assert (bblst_last <= bblst_size);
b4ead7d4
BS
1439 }
1440 else
1441 {
1442 sp->split_bbs.nr_members = sp->update_bbs.nr_members = 0;
1443
1444 sp->is_speculative = 0;
1445 sp->src_prob = 0;
1446 }
1447 }
740ce53d
SB
1448
1449 sbitmap_free (visited);
b4ead7d4
BS
1450}
1451
1452/* Print candidates info, for debugging purposes. Callable from debugger. */
1453
1454void
46c5ad27 1455debug_candidate (int i)
b4ead7d4
BS
1456{
1457 if (!candidate_table[i].is_valid)
1458 return;
1459
1460 if (candidate_table[i].is_speculative)
1461 {
1462 int j;
1463 fprintf (sched_dump, "src b %d bb %d speculative \n", BB_TO_BLOCK (i), i);
1464
1465 fprintf (sched_dump, "split path: ");
1466 for (j = 0; j < candidate_table[i].split_bbs.nr_members; j++)
1467 {
dcda8480 1468 int b = candidate_table[i].split_bbs.first_member[j]->index;
b4ead7d4
BS
1469
1470 fprintf (sched_dump, " %d ", b);
1471 }
1472 fprintf (sched_dump, "\n");
1473
1474 fprintf (sched_dump, "update path: ");
1475 for (j = 0; j < candidate_table[i].update_bbs.nr_members; j++)
1476 {
dcda8480 1477 int b = candidate_table[i].update_bbs.first_member[j]->index;
b4ead7d4
BS
1478
1479 fprintf (sched_dump, " %d ", b);
1480 }
1481 fprintf (sched_dump, "\n");
1482 }
1483 else
1484 {
1485 fprintf (sched_dump, " src %d equivalent\n", BB_TO_BLOCK (i));
1486 }
1487}
1488
1489/* Print candidates info, for debugging purposes. Callable from debugger. */
1490
1491void
46c5ad27 1492debug_candidates (int trg)
b4ead7d4
BS
1493{
1494 int i;
1495
1496 fprintf (sched_dump, "----------- candidate table: target: b=%d bb=%d ---\n",
1497 BB_TO_BLOCK (trg), trg);
1498 for (i = trg + 1; i < current_nr_blocks; i++)
1499 debug_candidate (i);
1500}
1501
14b493d6 1502/* Functions for speculative scheduling. */
b4ead7d4
BS
1503
1504/* Return 0 if x is a set of a register alive in the beginning of one
1505 of the split-blocks of src, otherwise return 1. */
1506
1507static int
46c5ad27 1508check_live_1 (int src, rtx x)
b4ead7d4 1509{
b3694847
SS
1510 int i;
1511 int regno;
1512 rtx reg = SET_DEST (x);
b4ead7d4
BS
1513
1514 if (reg == 0)
1515 return 1;
1516
46d096a3
SB
1517 while (GET_CODE (reg) == SUBREG
1518 || GET_CODE (reg) == ZERO_EXTRACT
b4ead7d4
BS
1519 || GET_CODE (reg) == STRICT_LOW_PART)
1520 reg = XEXP (reg, 0);
1521
7193d1dc 1522 if (GET_CODE (reg) == PARALLEL)
b4ead7d4 1523 {
b3694847 1524 int i;
90d036a0 1525
b4ead7d4 1526 for (i = XVECLEN (reg, 0) - 1; i >= 0; i--)
7193d1dc
RK
1527 if (XEXP (XVECEXP (reg, 0, i), 0) != 0)
1528 if (check_live_1 (src, XEXP (XVECEXP (reg, 0, i), 0)))
90d036a0 1529 return 1;
90d036a0 1530
b4ead7d4
BS
1531 return 0;
1532 }
1533
f8cfc6aa 1534 if (!REG_P (reg))
b4ead7d4
BS
1535 return 1;
1536
1537 regno = REGNO (reg);
1538
1539 if (regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
1540 {
1541 /* Global registers are assumed live. */
1542 return 0;
1543 }
1544 else
1545 {
1546 if (regno < FIRST_PSEUDO_REGISTER)
1547 {
1548 /* Check for hard registers. */
66fd46b6 1549 int j = hard_regno_nregs[regno][GET_MODE (reg)];
b4ead7d4
BS
1550 while (--j >= 0)
1551 {
1552 for (i = 0; i < candidate_table[src].split_bbs.nr_members; i++)
1553 {
dcda8480 1554 basic_block b = candidate_table[src].split_bbs.first_member[i];
b4ead7d4 1555
496d7bb0
MK
1556 /* We can have split blocks, that were recently generated.
1557 such blocks are always outside current region. */
1558 gcc_assert (glat_start[b->index]
1559 || CONTAINING_RGN (b->index)
1560 != CONTAINING_RGN (BB_TO_BLOCK (src)));
1561 if (!glat_start[b->index]
1562 || REGNO_REG_SET_P (glat_start[b->index],
1563 regno + j))
b4ead7d4
BS
1564 {
1565 return 0;
1566 }
1567 }
1568 }
1569 }
1570 else
1571 {
2067c116 1572 /* Check for pseudo registers. */
b4ead7d4
BS
1573 for (i = 0; i < candidate_table[src].split_bbs.nr_members; i++)
1574 {
dcda8480 1575 basic_block b = candidate_table[src].split_bbs.first_member[i];
b4ead7d4 1576
496d7bb0
MK
1577 gcc_assert (glat_start[b->index]
1578 || CONTAINING_RGN (b->index)
1579 != CONTAINING_RGN (BB_TO_BLOCK (src)));
1580 if (!glat_start[b->index]
1581 || REGNO_REG_SET_P (glat_start[b->index], regno))
b4ead7d4
BS
1582 {
1583 return 0;
1584 }
1585 }
1586 }
1587 }
1588
1589 return 1;
1590}
1591
1592/* If x is a set of a register R, mark that R is alive in the beginning
1593 of every update-block of src. */
1594
1595static void
46c5ad27 1596update_live_1 (int src, rtx x)
b4ead7d4 1597{
b3694847
SS
1598 int i;
1599 int regno;
1600 rtx reg = SET_DEST (x);
b4ead7d4
BS
1601
1602 if (reg == 0)
1603 return;
1604
46d096a3
SB
1605 while (GET_CODE (reg) == SUBREG
1606 || GET_CODE (reg) == ZERO_EXTRACT
b4ead7d4
BS
1607 || GET_CODE (reg) == STRICT_LOW_PART)
1608 reg = XEXP (reg, 0);
1609
7193d1dc 1610 if (GET_CODE (reg) == PARALLEL)
b4ead7d4 1611 {
b3694847 1612 int i;
90d036a0 1613
b4ead7d4 1614 for (i = XVECLEN (reg, 0) - 1; i >= 0; i--)
7193d1dc
RK
1615 if (XEXP (XVECEXP (reg, 0, i), 0) != 0)
1616 update_live_1 (src, XEXP (XVECEXP (reg, 0, i), 0));
90d036a0 1617
b4ead7d4
BS
1618 return;
1619 }
1620
f8cfc6aa 1621 if (!REG_P (reg))
b4ead7d4
BS
1622 return;
1623
1624 /* Global registers are always live, so the code below does not apply
1625 to them. */
1626
1627 regno = REGNO (reg);
1628
1629 if (regno >= FIRST_PSEUDO_REGISTER || !global_regs[regno])
1630 {
1631 if (regno < FIRST_PSEUDO_REGISTER)
1632 {
66fd46b6 1633 int j = hard_regno_nregs[regno][GET_MODE (reg)];
b4ead7d4
BS
1634 while (--j >= 0)
1635 {
1636 for (i = 0; i < candidate_table[src].update_bbs.nr_members; i++)
1637 {
dcda8480 1638 basic_block b = candidate_table[src].update_bbs.first_member[i];
b4ead7d4 1639
496d7bb0 1640 SET_REGNO_REG_SET (glat_start[b->index], regno + j);
b4ead7d4
BS
1641 }
1642 }
1643 }
1644 else
1645 {
1646 for (i = 0; i < candidate_table[src].update_bbs.nr_members; i++)
1647 {
dcda8480 1648 basic_block b = candidate_table[src].update_bbs.first_member[i];
b4ead7d4 1649
496d7bb0 1650 SET_REGNO_REG_SET (glat_start[b->index], regno);
b4ead7d4
BS
1651 }
1652 }
1653 }
1654}
1655
1656/* Return 1 if insn can be speculatively moved from block src to trg,
1657 otherwise return 0. Called before first insertion of insn to
1658 ready-list or before the scheduling. */
1659
1660static int
46c5ad27 1661check_live (rtx insn, int src)
b4ead7d4
BS
1662{
1663 /* Find the registers set by instruction. */
1664 if (GET_CODE (PATTERN (insn)) == SET
1665 || GET_CODE (PATTERN (insn)) == CLOBBER)
1666 return check_live_1 (src, PATTERN (insn));
1667 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
1668 {
1669 int j;
1670 for (j = XVECLEN (PATTERN (insn), 0) - 1; j >= 0; j--)
1671 if ((GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == SET
1672 || GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == CLOBBER)
1673 && !check_live_1 (src, XVECEXP (PATTERN (insn), 0, j)))
1674 return 0;
1675
1676 return 1;
1677 }
1678
1679 return 1;
1680}
1681
1682/* Update the live registers info after insn was moved speculatively from
1683 block src to trg. */
1684
1685static void
46c5ad27 1686update_live (rtx insn, int src)
b4ead7d4
BS
1687{
1688 /* Find the registers set by instruction. */
1689 if (GET_CODE (PATTERN (insn)) == SET
1690 || GET_CODE (PATTERN (insn)) == CLOBBER)
1691 update_live_1 (src, PATTERN (insn));
1692 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
1693 {
1694 int j;
1695 for (j = XVECLEN (PATTERN (insn), 0) - 1; j >= 0; j--)
1696 if (GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == SET
1697 || GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == CLOBBER)
1698 update_live_1 (src, XVECEXP (PATTERN (insn), 0, j));
1699 }
1700}
1701
272d0bee 1702/* Nonzero if block bb_to is equal to, or reachable from block bb_from. */
b4ead7d4 1703#define IS_REACHABLE(bb_from, bb_to) \
786de7eb 1704 (bb_from == bb_to \
b4ead7d4 1705 || IS_RGN_ENTRY (bb_from) \
786de7eb 1706 || (TEST_BIT (ancestor_edges[bb_to], \
c5cbcccf 1707 EDGE_TO_BIT (single_pred_edge (BASIC_BLOCK (BB_TO_BLOCK (bb_from)))))))
b4ead7d4 1708
b4ead7d4
BS
1709/* Turns on the fed_by_spec_load flag for insns fed by load_insn. */
1710
1711static void
46c5ad27 1712set_spec_fed (rtx load_insn)
b4ead7d4
BS
1713{
1714 rtx link;
1715
1716 for (link = INSN_DEPEND (load_insn); link; link = XEXP (link, 1))
1717 if (GET_MODE (link) == VOIDmode)
1718 FED_BY_SPEC_LOAD (XEXP (link, 0)) = 1;
1719} /* set_spec_fed */
1720
1721/* On the path from the insn to load_insn_bb, find a conditional
1722branch depending on insn, that guards the speculative load. */
1723
1724static int
46c5ad27 1725find_conditional_protection (rtx insn, int load_insn_bb)
b4ead7d4
BS
1726{
1727 rtx link;
1728
1729 /* Iterate through DEF-USE forward dependences. */
1730 for (link = INSN_DEPEND (insn); link; link = XEXP (link, 1))
1731 {
1732 rtx next = XEXP (link, 0);
1733 if ((CONTAINING_RGN (BLOCK_NUM (next)) ==
1734 CONTAINING_RGN (BB_TO_BLOCK (load_insn_bb)))
1735 && IS_REACHABLE (INSN_BB (next), load_insn_bb)
1736 && load_insn_bb != INSN_BB (next)
1737 && GET_MODE (link) == VOIDmode
4b4bf941 1738 && (JUMP_P (next)
b4ead7d4
BS
1739 || find_conditional_protection (next, load_insn_bb)))
1740 return 1;
1741 }
1742 return 0;
1743} /* find_conditional_protection */
1744
1745/* Returns 1 if the same insn1 that participates in the computation
1746 of load_insn's address is feeding a conditional branch that is
1747 guarding on load_insn. This is true if we find a the two DEF-USE
1748 chains:
1749 insn1 -> ... -> conditional-branch
1750 insn1 -> ... -> load_insn,
1751 and if a flow path exist:
1752 insn1 -> ... -> conditional-branch -> ... -> load_insn,
1753 and if insn1 is on the path
1754 region-entry -> ... -> bb_trg -> ... load_insn.
1755
1756 Locate insn1 by climbing on LOG_LINKS from load_insn.
1757 Locate the branch by following INSN_DEPEND from insn1. */
1758
1759static int
46c5ad27 1760is_conditionally_protected (rtx load_insn, int bb_src, int bb_trg)
b4ead7d4
BS
1761{
1762 rtx link;
1763
1764 for (link = LOG_LINKS (load_insn); link; link = XEXP (link, 1))
1765 {
1766 rtx insn1 = XEXP (link, 0);
1767
1768 /* Must be a DEF-USE dependence upon non-branch. */
1769 if (GET_MODE (link) != VOIDmode
4b4bf941 1770 || JUMP_P (insn1))
b4ead7d4
BS
1771 continue;
1772
1773 /* Must exist a path: region-entry -> ... -> bb_trg -> ... load_insn. */
1774 if (INSN_BB (insn1) == bb_src
1775 || (CONTAINING_RGN (BLOCK_NUM (insn1))
1776 != CONTAINING_RGN (BB_TO_BLOCK (bb_src)))
1777 || (!IS_REACHABLE (bb_trg, INSN_BB (insn1))
1778 && !IS_REACHABLE (INSN_BB (insn1), bb_trg)))
1779 continue;
1780
1781 /* Now search for the conditional-branch. */
1782 if (find_conditional_protection (insn1, bb_src))
1783 return 1;
1784
1785 /* Recursive step: search another insn1, "above" current insn1. */
1786 return is_conditionally_protected (insn1, bb_src, bb_trg);
1787 }
1788
1789 /* The chain does not exist. */
1790 return 0;
1791} /* is_conditionally_protected */
1792
1793/* Returns 1 if a clue for "similar load" 'insn2' is found, and hence
1794 load_insn can move speculatively from bb_src to bb_trg. All the
1795 following must hold:
1796
1797 (1) both loads have 1 base register (PFREE_CANDIDATEs).
1798 (2) load_insn and load1 have a def-use dependence upon
1799 the same insn 'insn1'.
1800 (3) either load2 is in bb_trg, or:
1801 - there's only one split-block, and
1802 - load1 is on the escape path, and
1803
1804 From all these we can conclude that the two loads access memory
1805 addresses that differ at most by a constant, and hence if moving
1806 load_insn would cause an exception, it would have been caused by
1807 load2 anyhow. */
1808
1809static int
46c5ad27 1810is_pfree (rtx load_insn, int bb_src, int bb_trg)
b4ead7d4
BS
1811{
1812 rtx back_link;
b3694847 1813 candidate *candp = candidate_table + bb_src;
b4ead7d4
BS
1814
1815 if (candp->split_bbs.nr_members != 1)
1816 /* Must have exactly one escape block. */
1817 return 0;
1818
1819 for (back_link = LOG_LINKS (load_insn);
1820 back_link; back_link = XEXP (back_link, 1))
1821 {
1822 rtx insn1 = XEXP (back_link, 0);
1823
1824 if (GET_MODE (back_link) == VOIDmode)
1825 {
1826 /* Found a DEF-USE dependence (insn1, load_insn). */
1827 rtx fore_link;
1828
1829 for (fore_link = INSN_DEPEND (insn1);
1830 fore_link; fore_link = XEXP (fore_link, 1))
1831 {
1832 rtx insn2 = XEXP (fore_link, 0);
1833 if (GET_MODE (fore_link) == VOIDmode)
1834 {
1835 /* Found a DEF-USE dependence (insn1, insn2). */
1836 if (haifa_classify_insn (insn2) != PFREE_CANDIDATE)
1837 /* insn2 not guaranteed to be a 1 base reg load. */
1838 continue;
1839
1840 if (INSN_BB (insn2) == bb_trg)
1841 /* insn2 is the similar load, in the target block. */
1842 return 1;
1843
dcda8480 1844 if (*(candp->split_bbs.first_member) == BLOCK_FOR_INSN (insn2))
b4ead7d4
BS
1845 /* insn2 is a similar load, in a split-block. */
1846 return 1;
1847 }
1848 }
1849 }
1850 }
1851
1852 /* Couldn't find a similar load. */
1853 return 0;
1854} /* is_pfree */
1855
b4ead7d4
BS
1856/* Return 1 if load_insn is prisky (i.e. if load_insn is fed by
1857 a load moved speculatively, or if load_insn is protected by
1858 a compare on load_insn's address). */
1859
1860static int
46c5ad27 1861is_prisky (rtx load_insn, int bb_src, int bb_trg)
b4ead7d4
BS
1862{
1863 if (FED_BY_SPEC_LOAD (load_insn))
1864 return 1;
1865
1866 if (LOG_LINKS (load_insn) == NULL)
1867 /* Dependence may 'hide' out of the region. */
1868 return 1;
1869
1870 if (is_conditionally_protected (load_insn, bb_src, bb_trg))
1871 return 1;
1872
1873 return 0;
1874}
1875
1876/* Insn is a candidate to be moved speculatively from bb_src to bb_trg.
1877 Return 1 if insn is exception-free (and the motion is valid)
1878 and 0 otherwise. */
1879
1880static int
46c5ad27 1881is_exception_free (rtx insn, int bb_src, int bb_trg)
b4ead7d4
BS
1882{
1883 int insn_class = haifa_classify_insn (insn);
1884
1885 /* Handle non-load insns. */
1886 switch (insn_class)
1887 {
1888 case TRAP_FREE:
1889 return 1;
1890 case TRAP_RISKY:
1891 return 0;
1892 default:;
1893 }
1894
1895 /* Handle loads. */
1896 if (!flag_schedule_speculative_load)
1897 return 0;
1898 IS_LOAD_INSN (insn) = 1;
1899 switch (insn_class)
1900 {
1901 case IFREE:
1902 return (1);
1903 case IRISKY:
1904 return 0;
1905 case PFREE_CANDIDATE:
1906 if (is_pfree (insn, bb_src, bb_trg))
1907 return 1;
1908 /* Don't 'break' here: PFREE-candidate is also PRISKY-candidate. */
1909 case PRISKY_CANDIDATE:
1910 if (!flag_schedule_speculative_load_dangerous
1911 || is_prisky (insn, bb_src, bb_trg))
1912 return 0;
1913 break;
1914 default:;
1915 }
1916
1917 return flag_schedule_speculative_load_dangerous;
1918}
1919\f
1920/* The number of insns from the current block scheduled so far. */
1921static int sched_target_n_insns;
1922/* The number of insns from the current block to be scheduled in total. */
1923static int target_n_insns;
1924/* The number of insns from the entire region scheduled so far. */
1925static int sched_n_insns;
1926
1927/* Implementations of the sched_info functions for region scheduling. */
63f54b1a 1928static void init_ready_list (void);
46c5ad27 1929static int can_schedule_ready_p (rtx);
496d7bb0
MK
1930static void begin_schedule_ready (rtx, rtx);
1931static ds_t new_ready (rtx, ds_t);
46c5ad27
AJ
1932static int schedule_more_p (void);
1933static const char *rgn_print_insn (rtx, int);
1934static int rgn_rank (rtx, rtx);
1935static int contributes_to_priority (rtx, rtx);
5a257872 1936static void compute_jump_reg_dependencies (rtx, regset, regset, regset);
b4ead7d4 1937
496d7bb0
MK
1938/* Functions for speculative scheduling. */
1939static void add_remove_insn (rtx, int);
1940static void extend_regions (void);
1941static void add_block1 (basic_block, basic_block);
1942static void fix_recovery_cfg (int, int, int);
1943static basic_block advance_target_bb (basic_block, rtx);
1944static void check_dead_notes1 (int, sbitmap);
1945#ifdef ENABLE_CHECKING
1946static int region_head_or_leaf_p (basic_block, int);
1947#endif
1948
b4ead7d4
BS
1949/* Return nonzero if there are more insns that should be scheduled. */
1950
1951static int
46c5ad27 1952schedule_more_p (void)
b4ead7d4 1953{
496d7bb0 1954 return sched_target_n_insns < target_n_insns;
b4ead7d4
BS
1955}
1956
1957/* Add all insns that are initially ready to the ready list READY. Called
1958 once before scheduling a set of insns. */
1959
1960static void
63f54b1a 1961init_ready_list (void)
b4ead7d4
BS
1962{
1963 rtx prev_head = current_sched_info->prev_head;
1964 rtx next_tail = current_sched_info->next_tail;
1965 int bb_src;
1966 rtx insn;
1967
1968 target_n_insns = 0;
1969 sched_target_n_insns = 0;
1970 sched_n_insns = 0;
1971
1972 /* Print debugging information. */
1973 if (sched_verbose >= 5)
1974 debug_dependencies ();
1975
1976 /* Prepare current target block info. */
1977 if (current_nr_blocks > 1)
1978 {
5ed6ace5 1979 candidate_table = XNEWVEC (candidate, current_nr_blocks);
b4ead7d4
BS
1980
1981 bblst_last = 0;
1982 /* bblst_table holds split blocks and update blocks for each block after
1983 the current one in the region. split blocks and update blocks are
1984 the TO blocks of region edges, so there can be at most rgn_nr_edges
1985 of them. */
1986 bblst_size = (current_nr_blocks - target_bb) * rgn_nr_edges;
5ed6ace5 1987 bblst_table = XNEWVEC (basic_block, bblst_size);
b4ead7d4 1988
dcda8480 1989 edgelst_last = 0;
5ed6ace5 1990 edgelst_table = XNEWVEC (edge, rgn_nr_edges);
b4ead7d4
BS
1991
1992 compute_trg_info (target_bb);
1993 }
1994
1995 /* Initialize ready list with all 'ready' insns in target block.
1996 Count number of insns in the target block being scheduled. */
1997 for (insn = NEXT_INSN (prev_head); insn != next_tail; insn = NEXT_INSN (insn))
63f54b1a
MK
1998 {
1999 try_ready (insn);
58fb7809 2000 target_n_insns++;
496d7bb0
MK
2001
2002 gcc_assert (!(TODO_SPEC (insn) & BEGIN_CONTROL));
b4ead7d4
BS
2003 }
2004
2005 /* Add to ready list all 'ready' insns in valid source blocks.
2006 For speculative insns, check-live, exception-free, and
2007 issue-delay. */
2008 for (bb_src = target_bb + 1; bb_src < current_nr_blocks; bb_src++)
2009 if (IS_VALID (bb_src))
2010 {
2011 rtx src_head;
2012 rtx src_next_tail;
2013 rtx tail, head;
2014
496d7bb0
MK
2015 get_ebb_head_tail (EBB_FIRST_BB (bb_src), EBB_LAST_BB (bb_src),
2016 &head, &tail);
b4ead7d4
BS
2017 src_next_tail = NEXT_INSN (tail);
2018 src_head = head;
2019
2020 for (insn = src_head; insn != src_next_tail; insn = NEXT_INSN (insn))
63f54b1a
MK
2021 if (INSN_P (insn))
2022 try_ready (insn);
b4ead7d4
BS
2023 }
2024}
2025
2026/* Called after taking INSN from the ready list. Returns nonzero if this
2027 insn can be scheduled, nonzero if we should silently discard it. */
2028
2029static int
46c5ad27 2030can_schedule_ready_p (rtx insn)
b4ead7d4 2031{
496d7bb0
MK
2032 /* An interblock motion? */
2033 if (INSN_BB (insn) != target_bb
2034 && IS_SPECULATIVE_INSN (insn)
2035 && !check_live (insn, INSN_BB (insn)))
2036 return 0;
2037 else
2038 return 1;
2039}
79c2ffde 2040
917f1b7e 2041/* Updates counter and other information. Split from can_schedule_ready_p ()
496d7bb0
MK
2042 because when we schedule insn speculatively then insn passed to
2043 can_schedule_ready_p () differs from the one passed to
2044 begin_schedule_ready (). */
2045static void
2046begin_schedule_ready (rtx insn, rtx last ATTRIBUTE_UNUSED)
2047{
b4ead7d4
BS
2048 /* An interblock motion? */
2049 if (INSN_BB (insn) != target_bb)
2050 {
b4ead7d4
BS
2051 if (IS_SPECULATIVE_INSN (insn))
2052 {
496d7bb0
MK
2053 gcc_assert (check_live (insn, INSN_BB (insn)));
2054
b4ead7d4
BS
2055 update_live (insn, INSN_BB (insn));
2056
2057 /* For speculative load, mark insns fed by it. */
2058 if (IS_LOAD_INSN (insn) || FED_BY_SPEC_LOAD (insn))
2059 set_spec_fed (insn);
2060
2061 nr_spec++;
2062 }
2063 nr_inter++;
b4ead7d4
BS
2064 }
2065 else
2066 {
2067 /* In block motion. */
2068 sched_target_n_insns++;
2069 }
2070 sched_n_insns++;
b4ead7d4
BS
2071}
2072
496d7bb0
MK
2073/* Called after INSN has all its hard dependencies resolved and the speculation
2074 of type TS is enough to overcome them all.
2075 Return nonzero if it should be moved to the ready list or the queue, or zero
2076 if we should silently discard it. */
2077static ds_t
2078new_ready (rtx next, ds_t ts)
b4ead7d4 2079{
496d7bb0
MK
2080 if (INSN_BB (next) != target_bb)
2081 {
2082 int not_ex_free = 0;
2083
2084 /* For speculative insns, before inserting to ready/queue,
2085 check live, exception-free, and issue-delay. */
2086 if (!IS_VALID (INSN_BB (next))
b4ead7d4
BS
2087 || CANT_MOVE (next)
2088 || (IS_SPECULATIVE_INSN (next)
fa0aee89 2089 && ((recog_memoized (next) >= 0
496d7bb0
MK
2090 && min_insn_conflict_delay (curr_state, next, next)
2091 > PARAM_VALUE (PARAM_MAX_SCHED_INSN_CONFLICT_DELAY))
2092 || RECOVERY_BLOCK (next)
b4ead7d4 2093 || !check_live (next, INSN_BB (next))
496d7bb0
MK
2094 || (not_ex_free = !is_exception_free (next, INSN_BB (next),
2095 target_bb)))))
2096 {
2097 if (not_ex_free
2098 /* We are here because is_exception_free () == false.
2099 But we possibly can handle that with control speculation. */
2100 && current_sched_info->flags & DO_SPECULATION)
2101 /* Here we got new control-speculative instruction. */
2102 ts = set_dep_weak (ts, BEGIN_CONTROL, MAX_DEP_WEAK);
2103 else
2104 ts = (ts & ~SPECULATIVE) | HARD_DEP;
2105 }
2106 }
2107
2108 return ts;
b4ead7d4
BS
2109}
2110
2111/* Return a string that contains the insn uid and optionally anything else
2112 necessary to identify this insn in an output. It's valid to use a
2113 static buffer for this. The ALIGNED parameter should cause the string
2114 to be formatted so that multiple output lines will line up nicely. */
2115
2116static const char *
46c5ad27 2117rgn_print_insn (rtx insn, int aligned)
b4ead7d4
BS
2118{
2119 static char tmp[80];
2120
2121 if (aligned)
2122 sprintf (tmp, "b%3d: i%4d", INSN_BB (insn), INSN_UID (insn));
2123 else
2124 {
b4ead7d4 2125 if (current_nr_blocks > 1 && INSN_BB (insn) != target_bb)
f56887a7
BS
2126 sprintf (tmp, "%d/b%d", INSN_UID (insn), INSN_BB (insn));
2127 else
2128 sprintf (tmp, "%d", INSN_UID (insn));
b4ead7d4
BS
2129 }
2130 return tmp;
2131}
2132
2133/* Compare priority of two insns. Return a positive number if the second
2134 insn is to be preferred for scheduling, and a negative one if the first
2135 is to be preferred. Zero if they are equally good. */
2136
2137static int
46c5ad27 2138rgn_rank (rtx insn1, rtx insn2)
b4ead7d4
BS
2139{
2140 /* Some comparison make sense in interblock scheduling only. */
2141 if (INSN_BB (insn1) != INSN_BB (insn2))
2142 {
2143 int spec_val, prob_val;
2144
2145 /* Prefer an inblock motion on an interblock motion. */
2146 if ((INSN_BB (insn2) == target_bb) && (INSN_BB (insn1) != target_bb))
2147 return 1;
2148 if ((INSN_BB (insn1) == target_bb) && (INSN_BB (insn2) != target_bb))
2149 return -1;
2150
2151 /* Prefer a useful motion on a speculative one. */
2152 spec_val = IS_SPECULATIVE_INSN (insn1) - IS_SPECULATIVE_INSN (insn2);
2153 if (spec_val)
2154 return spec_val;
2155
2156 /* Prefer a more probable (speculative) insn. */
2157 prob_val = INSN_PROBABILITY (insn2) - INSN_PROBABILITY (insn1);
2158 if (prob_val)
2159 return prob_val;
2160 }
2161 return 0;
2162}
2163
18e720b3
BS
2164/* NEXT is an instruction that depends on INSN (a backward dependence);
2165 return nonzero if we should include this dependence in priority
2166 calculations. */
2167
2168static int
46c5ad27 2169contributes_to_priority (rtx next, rtx insn)
18e720b3 2170{
496d7bb0
MK
2171 /* NEXT and INSN reside in one ebb. */
2172 return BLOCK_TO_BB (BLOCK_NUM (next)) == BLOCK_TO_BB (BLOCK_NUM (insn));
18e720b3
BS
2173}
2174
5a257872
EB
2175/* INSN is a JUMP_INSN, COND_SET is the set of registers that are
2176 conditionally set before INSN. Store the set of registers that
2177 must be considered as used by this jump in USED and that of
2178 registers that must be considered as set in SET. */
18e720b3
BS
2179
2180static void
46c5ad27 2181compute_jump_reg_dependencies (rtx insn ATTRIBUTE_UNUSED,
5a257872
EB
2182 regset cond_exec ATTRIBUTE_UNUSED,
2183 regset used ATTRIBUTE_UNUSED,
46c5ad27 2184 regset set ATTRIBUTE_UNUSED)
18e720b3
BS
2185{
2186 /* Nothing to do here, since we postprocess jumps in
2187 add_branch_dependences. */
2188}
2189
b4ead7d4
BS
2190/* Used in schedule_insns to initialize current_sched_info for scheduling
2191 regions (or single basic blocks). */
2192
2193static struct sched_info region_sched_info =
2194{
2195 init_ready_list,
2196 can_schedule_ready_p,
2197 schedule_more_p,
2198 new_ready,
2199 rgn_rank,
2200 rgn_print_insn,
18e720b3
BS
2201 contributes_to_priority,
2202 compute_jump_reg_dependencies,
b4ead7d4
BS
2203
2204 NULL, NULL,
2205 NULL, NULL,
ddbd5439
MK
2206 0, 0, 0,
2207
496d7bb0
MK
2208 add_remove_insn,
2209 begin_schedule_ready,
2210 add_block1,
2211 advance_target_bb,
2212 fix_recovery_cfg,
2213#ifdef ENABLE_CHECKING
2214 region_head_or_leaf_p,
2215#endif
2216 SCHED_RGN | USE_GLAT
2217#ifdef ENABLE_CHECKING
2218 | DETACH_LIFE_INFO
2219#endif
b4ead7d4
BS
2220};
2221
68c17f30
RH
2222/* Determine if PAT sets a CLASS_LIKELY_SPILLED_P register. */
2223
2224static bool
46c5ad27 2225sets_likely_spilled (rtx pat)
68c17f30
RH
2226{
2227 bool ret = false;
2228 note_stores (pat, sets_likely_spilled_1, &ret);
2229 return ret;
2230}
2231
2232static void
46c5ad27 2233sets_likely_spilled_1 (rtx x, rtx pat, void *data)
68c17f30
RH
2234{
2235 bool *ret = (bool *) data;
2236
2237 if (GET_CODE (pat) == SET
2238 && REG_P (x)
2239 && REGNO (x) < FIRST_PSEUDO_REGISTER
2240 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (REGNO (x))))
2241 *ret = true;
2242}
2243
b4ead7d4
BS
2244/* Add dependences so that branches are scheduled to run last in their
2245 block. */
2246
2247static void
46c5ad27 2248add_branch_dependences (rtx head, rtx tail)
b4ead7d4
BS
2249{
2250 rtx insn, last;
2251
8d8a083e
RH
2252 /* For all branches, calls, uses, clobbers, cc0 setters, and instructions
2253 that can throw exceptions, force them to remain in order at the end of
2254 the block by adding dependencies and giving the last a high priority.
2255 There may be notes present, and prev_head may also be a note.
b4ead7d4
BS
2256
2257 Branches must obviously remain at the end. Calls should remain at the
2258 end since moving them results in worse register allocation. Uses remain
68c17f30
RH
2259 at the end to ensure proper register allocation.
2260
d91edf86 2261 cc0 setters remain at the end because they can't be moved away from
68c17f30
RH
2262 their cc0 user.
2263
2bd1e239
SB
2264 COND_EXEC insns cannot be moved past a branch (see e.g. PR17808).
2265
68c17f30
RH
2266 Insns setting CLASS_LIKELY_SPILLED_P registers (usually return values)
2267 are not moved before reload because we can wind up with register
2268 allocation failures. */
2269
b4ead7d4
BS
2270 insn = tail;
2271 last = 0;
4b4bf941
JQ
2272 while (CALL_P (insn)
2273 || JUMP_P (insn)
2274 || (NONJUMP_INSN_P (insn)
b4ead7d4
BS
2275 && (GET_CODE (PATTERN (insn)) == USE
2276 || GET_CODE (PATTERN (insn)) == CLOBBER
8d8a083e 2277 || can_throw_internal (insn)
b4ead7d4
BS
2278#ifdef HAVE_cc0
2279 || sets_cc0_p (PATTERN (insn))
2280#endif
68c17f30
RH
2281 || (!reload_completed
2282 && sets_likely_spilled (PATTERN (insn)))))
4b4bf941 2283 || NOTE_P (insn))
b4ead7d4 2284 {
4b4bf941 2285 if (!NOTE_P (insn))
b4ead7d4 2286 {
37a0f8a5 2287 if (last != 0 && !find_insn_list (insn, LOG_LINKS (last)))
b4ead7d4 2288 {
2bd1e239
SB
2289 if (! sched_insns_conditions_mutex_p (last, insn))
2290 add_dependence (last, insn, REG_DEP_ANTI);
b4ead7d4
BS
2291 INSN_REF_COUNT (insn)++;
2292 }
2293
2294 CANT_MOVE (insn) = 1;
2295
2296 last = insn;
b4ead7d4
BS
2297 }
2298
2299 /* Don't overrun the bounds of the basic block. */
2300 if (insn == head)
2301 break;
2302
2303 insn = PREV_INSN (insn);
2304 }
2305
2306 /* Make sure these insns are scheduled last in their block. */
2307 insn = last;
2308 if (insn != 0)
2309 while (insn != head)
2310 {
2311 insn = prev_nonnote_insn (insn);
2312
2313 if (INSN_REF_COUNT (insn) != 0)
2314 continue;
2315
2bd1e239
SB
2316 if (! sched_insns_conditions_mutex_p (last, insn))
2317 add_dependence (last, insn, REG_DEP_ANTI);
b4ead7d4 2318 INSN_REF_COUNT (insn) = 1;
b4ead7d4 2319 }
2bd1e239
SB
2320
2321#ifdef HAVE_conditional_execution
2322 /* Finally, if the block ends in a jump, and we are doing intra-block
2323 scheduling, make sure that the branch depends on any COND_EXEC insns
2324 inside the block to avoid moving the COND_EXECs past the branch insn.
2325
2326 We only have to do this after reload, because (1) before reload there
2327 are no COND_EXEC insns, and (2) the region scheduler is an intra-block
2328 scheduler after reload.
2329
2330 FIXME: We could in some cases move COND_EXEC insns past the branch if
2331 this scheduler would be a little smarter. Consider this code:
2332
2333 T = [addr]
2334 C ? addr += 4
abf86bf2 2335 !C ? X += 12
2bd1e239 2336 C ? T += 1
abf86bf2 2337 C ? jump foo
2bd1e239
SB
2338
2339 On a target with a one cycle stall on a memory access the optimal
2340 sequence would be:
2341
2342 T = [addr]
2343 C ? addr += 4
2344 C ? T += 1
2345 C ? jump foo
2346 !C ? X += 12
2347
2348 We don't want to put the 'X += 12' before the branch because it just
2349 wastes a cycle of execution time when the branch is taken.
2350
2351 Note that in the example "!C" will always be true. That is another
2352 possible improvement for handling COND_EXECs in this scheduler: it
2353 could remove always-true predicates. */
2354
2355 if (!reload_completed || ! JUMP_P (tail))
2356 return;
2357
abf86bf2 2358 insn = tail;
2bd1e239
SB
2359 while (insn != head)
2360 {
abf86bf2
RE
2361 insn = PREV_INSN (insn);
2362
2bd1e239
SB
2363 /* Note that we want to add this dependency even when
2364 sched_insns_conditions_mutex_p returns true. The whole point
2365 is that we _want_ this dependency, even if these insns really
2366 are independent. */
2367 if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == COND_EXEC)
2368 add_dependence (tail, insn, REG_DEP_ANTI);
2bd1e239
SB
2369 }
2370#endif
b4ead7d4
BS
2371}
2372
2373/* Data structures for the computation of data dependences in a regions. We
2374 keep one `deps' structure for every basic block. Before analyzing the
2375 data dependences for a bb, its variables are initialized as a function of
2376 the variables of its predecessors. When the analysis for a bb completes,
2377 we save the contents to the corresponding bb_deps[bb] variable. */
2378
2379static struct deps *bb_deps;
2380
37a0f8a5
RH
2381/* Duplicate the INSN_LIST elements of COPY and prepend them to OLD. */
2382
2383static rtx
46c5ad27 2384concat_INSN_LIST (rtx copy, rtx old)
37a0f8a5
RH
2385{
2386 rtx new = old;
2387 for (; copy ; copy = XEXP (copy, 1))
2388 new = alloc_INSN_LIST (XEXP (copy, 0), new);
2389 return new;
2390}
2391
2392static void
46c5ad27
AJ
2393concat_insn_mem_list (rtx copy_insns, rtx copy_mems, rtx *old_insns_p,
2394 rtx *old_mems_p)
37a0f8a5
RH
2395{
2396 rtx new_insns = *old_insns_p;
2397 rtx new_mems = *old_mems_p;
2398
2399 while (copy_insns)
2400 {
2401 new_insns = alloc_INSN_LIST (XEXP (copy_insns, 0), new_insns);
2402 new_mems = alloc_EXPR_LIST (VOIDmode, XEXP (copy_mems, 0), new_mems);
2403 copy_insns = XEXP (copy_insns, 1);
2404 copy_mems = XEXP (copy_mems, 1);
2405 }
2406
2407 *old_insns_p = new_insns;
2408 *old_mems_p = new_mems;
2409}
2410
b4ead7d4 2411/* After computing the dependencies for block BB, propagate the dependencies
4ba478b8 2412 found in TMP_DEPS to the successors of the block. */
b4ead7d4 2413static void
46c5ad27 2414propagate_deps (int bb, struct deps *pred_deps)
b4ead7d4 2415{
dcda8480
UW
2416 basic_block block = BASIC_BLOCK (BB_TO_BLOCK (bb));
2417 edge_iterator ei;
2418 edge e;
b4ead7d4
BS
2419
2420 /* bb's structures are inherited by its successors. */
dcda8480
UW
2421 FOR_EACH_EDGE (e, ei, block->succs)
2422 {
2423 struct deps *succ_deps;
3cd8c58a 2424 unsigned reg;
a2041967 2425 reg_set_iterator rsi;
b4ead7d4 2426
dcda8480
UW
2427 /* Only bbs "below" bb, in the same region, are interesting. */
2428 if (e->dest == EXIT_BLOCK_PTR
2429 || CONTAINING_RGN (block->index) != CONTAINING_RGN (e->dest->index)
2430 || BLOCK_TO_BB (e->dest->index) <= bb)
2431 continue;
37a0f8a5 2432
dcda8480 2433 succ_deps = bb_deps + BLOCK_TO_BB (e->dest->index);
37a0f8a5 2434
dcda8480 2435 /* The reg_last lists are inherited by successor. */
a2041967 2436 EXECUTE_IF_SET_IN_REG_SET (&pred_deps->reg_last_in_use, 0, reg, rsi)
dcda8480
UW
2437 {
2438 struct deps_reg *pred_rl = &pred_deps->reg_last[reg];
2439 struct deps_reg *succ_rl = &succ_deps->reg_last[reg];
2440
2441 succ_rl->uses = concat_INSN_LIST (pred_rl->uses, succ_rl->uses);
2442 succ_rl->sets = concat_INSN_LIST (pred_rl->sets, succ_rl->sets);
2443 succ_rl->clobbers = concat_INSN_LIST (pred_rl->clobbers,
2444 succ_rl->clobbers);
2445 succ_rl->uses_length += pred_rl->uses_length;
2446 succ_rl->clobbers_length += pred_rl->clobbers_length;
a2041967 2447 }
dcda8480
UW
2448 IOR_REG_SET (&succ_deps->reg_last_in_use, &pred_deps->reg_last_in_use);
2449
2450 /* Mem read/write lists are inherited by successor. */
2451 concat_insn_mem_list (pred_deps->pending_read_insns,
2452 pred_deps->pending_read_mems,
2453 &succ_deps->pending_read_insns,
2454 &succ_deps->pending_read_mems);
2455 concat_insn_mem_list (pred_deps->pending_write_insns,
2456 pred_deps->pending_write_mems,
2457 &succ_deps->pending_write_insns,
2458 &succ_deps->pending_write_mems);
2459
2460 succ_deps->last_pending_memory_flush
2461 = concat_INSN_LIST (pred_deps->last_pending_memory_flush,
2462 succ_deps->last_pending_memory_flush);
2463
2464 succ_deps->pending_lists_length += pred_deps->pending_lists_length;
2465 succ_deps->pending_flush_length += pred_deps->pending_flush_length;
2466
2467 /* last_function_call is inherited by successor. */
2468 succ_deps->last_function_call
2469 = concat_INSN_LIST (pred_deps->last_function_call,
2470 succ_deps->last_function_call);
2471
2472 /* sched_before_next_call is inherited by successor. */
2473 succ_deps->sched_before_next_call
2474 = concat_INSN_LIST (pred_deps->sched_before_next_call,
2475 succ_deps->sched_before_next_call);
2476 }
b4ead7d4 2477
37a0f8a5
RH
2478 /* These lists should point to the right place, for correct
2479 freeing later. */
2480 bb_deps[bb].pending_read_insns = pred_deps->pending_read_insns;
2481 bb_deps[bb].pending_read_mems = pred_deps->pending_read_mems;
2482 bb_deps[bb].pending_write_insns = pred_deps->pending_write_insns;
2483 bb_deps[bb].pending_write_mems = pred_deps->pending_write_mems;
2484
2485 /* Can't allow these to be freed twice. */
2486 pred_deps->pending_read_insns = 0;
2487 pred_deps->pending_read_mems = 0;
2488 pred_deps->pending_write_insns = 0;
2489 pred_deps->pending_write_mems = 0;
b4ead7d4
BS
2490}
2491
2492/* Compute backward dependences inside bb. In a multiple blocks region:
2493 (1) a bb is analyzed after its predecessors, and (2) the lists in
2494 effect at the end of bb (after analyzing for bb) are inherited by
14b493d6 2495 bb's successors.
b4ead7d4
BS
2496
2497 Specifically for reg-reg data dependences, the block insns are
2498 scanned by sched_analyze () top-to-bottom. Two lists are
4ba478b8
RH
2499 maintained by sched_analyze (): reg_last[].sets for register DEFs,
2500 and reg_last[].uses for register USEs.
b4ead7d4
BS
2501
2502 When analysis is completed for bb, we update for its successors:
2503 ; - DEFS[succ] = Union (DEFS [succ], DEFS [bb])
2504 ; - USES[succ] = Union (USES [succ], DEFS [bb])
2505
2506 The mechanism for computing mem-mem data dependence is very
2507 similar, and the result is interblock dependences in the region. */
2508
2509static void
46c5ad27 2510compute_block_backward_dependences (int bb)
b4ead7d4
BS
2511{
2512 rtx head, tail;
b4ead7d4
BS
2513 struct deps tmp_deps;
2514
2515 tmp_deps = bb_deps[bb];
2516
2517 /* Do the analysis for this block. */
496d7bb0
MK
2518 gcc_assert (EBB_FIRST_BB (bb) == EBB_LAST_BB (bb));
2519 get_ebb_head_tail (EBB_FIRST_BB (bb), EBB_LAST_BB (bb), &head, &tail);
b4ead7d4
BS
2520 sched_analyze (&tmp_deps, head, tail);
2521 add_branch_dependences (head, tail);
2522
2523 if (current_nr_blocks > 1)
4ba478b8 2524 propagate_deps (bb, &tmp_deps);
b4ead7d4
BS
2525
2526 /* Free up the INSN_LISTs. */
2527 free_deps (&tmp_deps);
b4ead7d4 2528}
4ba478b8 2529
b4ead7d4
BS
2530/* Remove all INSN_LISTs and EXPR_LISTs from the pending lists and add
2531 them to the unused_*_list variables, so that they can be reused. */
2532
2533static void
46c5ad27 2534free_pending_lists (void)
b4ead7d4
BS
2535{
2536 int bb;
2537
2538 for (bb = 0; bb < current_nr_blocks; bb++)
2539 {
2540 free_INSN_LIST_list (&bb_deps[bb].pending_read_insns);
2541 free_INSN_LIST_list (&bb_deps[bb].pending_write_insns);
2542 free_EXPR_LIST_list (&bb_deps[bb].pending_read_mems);
2543 free_EXPR_LIST_list (&bb_deps[bb].pending_write_mems);
2544 }
2545}
2546\f
2547/* Print dependences for debugging, callable from debugger. */
2548
2549void
46c5ad27 2550debug_dependencies (void)
b4ead7d4
BS
2551{
2552 int bb;
2553
2554 fprintf (sched_dump, ";; --------------- forward dependences: ------------ \n");
2555 for (bb = 0; bb < current_nr_blocks; bb++)
2556 {
fa0aee89
PB
2557 rtx head, tail;
2558 rtx next_tail;
2559 rtx insn;
2560
496d7bb0
MK
2561 gcc_assert (EBB_FIRST_BB (bb) == EBB_LAST_BB (bb));
2562 get_ebb_head_tail (EBB_FIRST_BB (bb), EBB_LAST_BB (bb), &head, &tail);
fa0aee89
PB
2563 next_tail = NEXT_INSN (tail);
2564 fprintf (sched_dump, "\n;; --- Region Dependences --- b %d bb %d \n",
2565 BB_TO_BLOCK (bb), bb);
2566
2567 fprintf (sched_dump, ";; %7s%6s%6s%6s%6s%6s%14s\n",
2568 "insn", "code", "bb", "dep", "prio", "cost",
2569 "reservation");
2570 fprintf (sched_dump, ";; %7s%6s%6s%6s%6s%6s%14s\n",
2571 "----", "----", "--", "---", "----", "----",
2572 "-----------");
2573
2574 for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
b4ead7d4 2575 {
fa0aee89 2576 rtx link;
b4ead7d4 2577
fa0aee89 2578 if (! INSN_P (insn))
b4ead7d4 2579 {
fa0aee89
PB
2580 int n;
2581 fprintf (sched_dump, ";; %6d ", INSN_UID (insn));
2582 if (NOTE_P (insn))
b4ead7d4 2583 {
fa0aee89
PB
2584 n = NOTE_LINE_NUMBER (insn);
2585 if (n < 0)
2586 fprintf (sched_dump, "%s\n", GET_NOTE_INSN_NAME (n));
2587 else
b4ead7d4 2588 {
fa0aee89
PB
2589 expanded_location xloc;
2590 NOTE_EXPANDED_LOCATION (xloc, insn);
2591 fprintf (sched_dump, "line %d, file %s\n",
2592 xloc.line, xloc.file);
b4ead7d4 2593 }
fae15c93
VM
2594 }
2595 else
fa0aee89
PB
2596 fprintf (sched_dump, " {%s}\n", GET_RTX_NAME (GET_CODE (insn)));
2597 continue;
b4ead7d4 2598 }
fa0aee89
PB
2599
2600 fprintf (sched_dump,
2601 ";; %s%5d%6d%6d%6d%6d%6d ",
2602 (SCHED_GROUP_P (insn) ? "+" : " "),
2603 INSN_UID (insn),
2604 INSN_CODE (insn),
2605 INSN_BB (insn),
2606 INSN_DEP_COUNT (insn),
2607 INSN_PRIORITY (insn),
2608 insn_cost (insn, 0, 0));
2609
2610 if (recog_memoized (insn) < 0)
2611 fprintf (sched_dump, "nothing");
2612 else
2613 print_reservation (sched_dump, insn);
2614
2615 fprintf (sched_dump, "\t: ");
2616 for (link = INSN_DEPEND (insn); link; link = XEXP (link, 1))
2617 fprintf (sched_dump, "%d ", INSN_UID (XEXP (link, 0)));
2618 fprintf (sched_dump, "\n");
b4ead7d4
BS
2619 }
2620 }
2621 fprintf (sched_dump, "\n");
2622}
2623\f
d72372e4
MH
2624/* Returns true if all the basic blocks of the current region have
2625 NOTE_DISABLE_SCHED_OF_BLOCK which means not to schedule that region. */
2626static bool
2627sched_is_disabled_for_current_region_p (void)
2628{
d72372e4
MH
2629 int bb;
2630
2631 for (bb = 0; bb < current_nr_blocks; bb++)
076c7ab8
ZW
2632 if (!(BASIC_BLOCK (BB_TO_BLOCK (bb))->flags & BB_DISABLE_SCHEDULE))
2633 return false;
d72372e4
MH
2634
2635 return true;
2636}
2637
b4ead7d4
BS
2638/* Schedule a region. A region is either an inner loop, a loop-free
2639 subroutine, or a single basic block. Each bb in the region is
2640 scheduled after its flow predecessors. */
2641
2642static void
46c5ad27 2643schedule_region (int rgn)
b4ead7d4 2644{
dcda8480
UW
2645 basic_block block;
2646 edge_iterator ei;
2647 edge e;
b4ead7d4 2648 int bb;
b4ead7d4
BS
2649 int sched_rgn_n_insns = 0;
2650
496d7bb0 2651 rgn_n_insns = 0;
b4ead7d4
BS
2652 /* Set variables for the current region. */
2653 current_nr_blocks = RGN_NR_BLOCKS (rgn);
2654 current_blocks = RGN_BLOCKS (rgn);
496d7bb0
MK
2655
2656 /* See comments in add_block1, for what reasons we allocate +1 element. */
2657 ebb_head = xrealloc (ebb_head, (current_nr_blocks + 1) * sizeof (*ebb_head));
2658 for (bb = 0; bb <= current_nr_blocks; bb++)
2659 ebb_head[bb] = current_blocks + bb;
b4ead7d4 2660
d72372e4
MH
2661 /* Don't schedule region that is marked by
2662 NOTE_DISABLE_SCHED_OF_BLOCK. */
2663 if (sched_is_disabled_for_current_region_p ())
2664 return;
2665
496d7bb0
MK
2666 if (!RGN_DONT_CALC_DEPS (rgn))
2667 {
2668 init_deps_global ();
b4ead7d4 2669
496d7bb0
MK
2670 /* Initializations for region data dependence analysis. */
2671 bb_deps = XNEWVEC (struct deps, current_nr_blocks);
2672 for (bb = 0; bb < current_nr_blocks; bb++)
2673 init_deps (bb_deps + bb);
b4ead7d4 2674
496d7bb0
MK
2675 /* Compute LOG_LINKS. */
2676 for (bb = 0; bb < current_nr_blocks; bb++)
2677 compute_block_backward_dependences (bb);
b4ead7d4 2678
496d7bb0
MK
2679 /* Compute INSN_DEPEND. */
2680 for (bb = current_nr_blocks - 1; bb >= 0; bb--)
2681 {
2682 rtx head, tail;
b4ead7d4 2683
496d7bb0
MK
2684 gcc_assert (EBB_FIRST_BB (bb) == EBB_LAST_BB (bb));
2685 get_ebb_head_tail (EBB_FIRST_BB (bb), EBB_LAST_BB (bb), &head, &tail);
30028c85 2686
496d7bb0 2687 compute_forward_dependences (head, tail);
30028c85 2688
496d7bb0
MK
2689 if (targetm.sched.dependencies_evaluation_hook)
2690 targetm.sched.dependencies_evaluation_hook (head, tail);
2691 }
b4ead7d4 2692
496d7bb0
MK
2693 free_pending_lists ();
2694
2695 finish_deps_global ();
2696
2697 free (bb_deps);
2698 }
2699 else
2700 /* This is a recovery block. It is always a single block region. */
2701 gcc_assert (current_nr_blocks == 1);
2702
b4ead7d4 2703 /* Set priorities. */
63f54b1a 2704 current_sched_info->sched_max_insns_priority = 0;
b4ead7d4 2705 for (bb = 0; bb < current_nr_blocks; bb++)
79c2ffde
BS
2706 {
2707 rtx head, tail;
496d7bb0
MK
2708
2709 gcc_assert (EBB_FIRST_BB (bb) == EBB_LAST_BB (bb));
2710 get_ebb_head_tail (EBB_FIRST_BB (bb), EBB_LAST_BB (bb), &head, &tail);
79c2ffde
BS
2711
2712 rgn_n_insns += set_priorities (head, tail);
2713 }
63f54b1a 2714 current_sched_info->sched_max_insns_priority++;
b4ead7d4
BS
2715
2716 /* Compute interblock info: probabilities, split-edges, dominators, etc. */
2717 if (current_nr_blocks > 1)
2718 {
36968131 2719 prob = XNEWVEC (int, current_nr_blocks);
b4ead7d4 2720
bdfa170f
DB
2721 dom = sbitmap_vector_alloc (current_nr_blocks, current_nr_blocks);
2722 sbitmap_vector_zero (dom, current_nr_blocks);
dcda8480
UW
2723
2724 /* Use ->aux to implement EDGE_TO_BIT mapping. */
b4ead7d4 2725 rgn_nr_edges = 0;
dcda8480
UW
2726 FOR_EACH_BB (block)
2727 {
2728 if (CONTAINING_RGN (block->index) != rgn)
2729 continue;
2730 FOR_EACH_EDGE (e, ei, block->succs)
2731 SET_EDGE_TO_BIT (e, rgn_nr_edges++);
2732 }
b4ead7d4 2733
5ed6ace5 2734 rgn_edges = XNEWVEC (edge, rgn_nr_edges);
b4ead7d4 2735 rgn_nr_edges = 0;
dcda8480
UW
2736 FOR_EACH_BB (block)
2737 {
2738 if (CONTAINING_RGN (block->index) != rgn)
2739 continue;
2740 FOR_EACH_EDGE (e, ei, block->succs)
2741 rgn_edges[rgn_nr_edges++] = e;
2742 }
b4ead7d4
BS
2743
2744 /* Split edges. */
bdfa170f
DB
2745 pot_split = sbitmap_vector_alloc (current_nr_blocks, rgn_nr_edges);
2746 sbitmap_vector_zero (pot_split, current_nr_blocks);
2747 ancestor_edges = sbitmap_vector_alloc (current_nr_blocks, rgn_nr_edges);
2748 sbitmap_vector_zero (ancestor_edges, current_nr_blocks);
b4ead7d4
BS
2749
2750 /* Compute probabilities, dominators, split_edges. */
2751 for (bb = 0; bb < current_nr_blocks; bb++)
2752 compute_dom_prob_ps (bb);
496d7bb0
MK
2753
2754 /* Cleanup ->aux used for EDGE_TO_BIT mapping. */
917f1b7e 2755 /* We don't need them anymore. But we want to avoid duplication of
496d7bb0
MK
2756 aux fields in the newly created edges. */
2757 FOR_EACH_BB (block)
2758 {
2759 if (CONTAINING_RGN (block->index) != rgn)
2760 continue;
2761 FOR_EACH_EDGE (e, ei, block->succs)
2762 e->aux = NULL;
2763 }
b4ead7d4
BS
2764 }
2765
2766 /* Now we can schedule all blocks. */
2767 for (bb = 0; bb < current_nr_blocks; bb++)
2768 {
496d7bb0 2769 basic_block first_bb, last_bb, curr_bb;
b4ead7d4
BS
2770 rtx head, tail;
2771 int b = BB_TO_BLOCK (bb);
2772
496d7bb0
MK
2773 first_bb = EBB_FIRST_BB (bb);
2774 last_bb = EBB_LAST_BB (bb);
2775
2776 get_ebb_head_tail (first_bb, last_bb, &head, &tail);
b4ead7d4
BS
2777
2778 if (no_real_insns_p (head, tail))
496d7bb0
MK
2779 {
2780 gcc_assert (first_bb == last_bb);
2781 continue;
2782 }
b4ead7d4
BS
2783
2784 current_sched_info->prev_head = PREV_INSN (head);
2785 current_sched_info->next_tail = NEXT_INSN (tail);
2786
2787 if (write_symbols != NO_DEBUG)
2788 {
79c2ffde
BS
2789 save_line_notes (b, head, tail);
2790 rm_line_notes (head, tail);
b4ead7d4
BS
2791 }
2792
2793 /* rm_other_notes only removes notes which are _inside_ the
2794 block---that is, it won't remove notes before the first real insn
46c5ad27 2795 or after the last real insn of the block. So if the first insn
b4ead7d4
BS
2796 has a REG_SAVE_NOTE which would otherwise be emitted before the
2797 insn, it is redundant with the note before the start of the
570a98eb 2798 block, and so we have to take it out. */
b4ead7d4
BS
2799 if (INSN_P (head))
2800 {
2801 rtx note;
2802
2803 for (note = REG_NOTES (head); note; note = XEXP (note, 1))
2804 if (REG_NOTE_KIND (note) == REG_SAVE_NOTE)
668707f7 2805 remove_note (head, note);
b4ead7d4 2806 }
496d7bb0
MK
2807 else
2808 /* This means that first block in ebb is empty.
2809 It looks to me as an impossible thing. There at least should be
2810 a recovery check, that caused the splitting. */
2811 gcc_unreachable ();
b4ead7d4
BS
2812
2813 /* Remove remaining note insns from the block, save them in
2814 note_list. These notes are restored at the end of
2815 schedule_block (). */
2816 rm_other_notes (head, tail);
2817
496d7bb0
MK
2818 unlink_bb_notes (first_bb, last_bb);
2819
b4ead7d4
BS
2820 target_bb = bb;
2821
63f54b1a
MK
2822 gcc_assert (flag_schedule_interblock || current_nr_blocks == 1);
2823 current_sched_info->queue_must_finish_empty = current_nr_blocks == 1;
b4ead7d4 2824
496d7bb0
MK
2825 curr_bb = first_bb;
2826 schedule_block (&curr_bb, rgn_n_insns);
2827 gcc_assert (EBB_FIRST_BB (bb) == first_bb);
b4ead7d4
BS
2828 sched_rgn_n_insns += sched_n_insns;
2829
b4ead7d4
BS
2830 /* Clean up. */
2831 if (current_nr_blocks > 1)
2832 {
2833 free (candidate_table);
2834 free (bblst_table);
dcda8480 2835 free (edgelst_table);
b4ead7d4
BS
2836 }
2837 }
2838
2839 /* Sanity check: verify that all region insns were scheduled. */
41374e13 2840 gcc_assert (sched_rgn_n_insns == rgn_n_insns);
b4ead7d4
BS
2841
2842 /* Restore line notes. */
2843 if (write_symbols != NO_DEBUG)
2844 {
2845 for (bb = 0; bb < current_nr_blocks; bb++)
79c2ffde
BS
2846 {
2847 rtx head, tail;
496d7bb0
MK
2848
2849 get_ebb_head_tail (EBB_FIRST_BB (bb), EBB_LAST_BB (bb), &head, &tail);
14052b68 2850 restore_line_notes (head, tail);
79c2ffde 2851 }
b4ead7d4
BS
2852 }
2853
2854 /* Done with this region. */
b4ead7d4
BS
2855
2856 if (current_nr_blocks > 1)
2857 {
b4ead7d4 2858 free (prob);
bdfa170f
DB
2859 sbitmap_vector_free (dom);
2860 sbitmap_vector_free (pot_split);
2861 sbitmap_vector_free (ancestor_edges);
b4ead7d4 2862 free (rgn_edges);
b4ead7d4
BS
2863 }
2864}
2865
2866/* Indexed by region, holds the number of death notes found in that region.
2867 Used for consistency checks. */
2868static int *deaths_in_region;
2869
2870/* Initialize data structures for region scheduling. */
2871
2872static void
46c5ad27 2873init_regions (void)
b4ead7d4
BS
2874{
2875 sbitmap blocks;
2876 int rgn;
2877
2878 nr_regions = 0;
496d7bb0
MK
2879 rgn_table = 0;
2880 rgn_bb_table = 0;
2881 block_to_bb = 0;
2882 containing_rgn = 0;
2883 extend_regions ();
b4ead7d4 2884
b4ead7d4
BS
2885 /* Compute regions for scheduling. */
2886 if (reload_completed
24bd1a0b 2887 || n_basic_blocks == NUM_FIXED_BLOCKS + 1
dcda8480
UW
2888 || !flag_schedule_interblock
2889 || is_cfg_nonregular ())
b4ead7d4
BS
2890 {
2891 find_single_block_region ();
2892 }
2893 else
2894 {
dcda8480
UW
2895 /* Compute the dominators and post dominators. */
2896 calculate_dominance_info (CDI_DOMINATORS);
b4ead7d4 2897
dcda8480
UW
2898 /* Find regions. */
2899 find_rgns ();
b4ead7d4 2900
dcda8480
UW
2901 if (sched_verbose >= 3)
2902 debug_regions ();
b4ead7d4 2903
dcda8480
UW
2904 /* For now. This will move as more and more of haifa is converted
2905 to using the cfg code in flow.c. */
2906 free_dominance_info (CDI_DOMINATORS);
b4ead7d4 2907 }
496d7bb0
MK
2908 RGN_BLOCKS (nr_regions) = RGN_BLOCKS (nr_regions - 1) +
2909 RGN_NR_BLOCKS (nr_regions - 1);
b4ead7d4 2910
b4ead7d4 2911
73991d6a 2912 if (CHECK_DEAD_NOTES)
b4ead7d4 2913 {
d55bc081 2914 blocks = sbitmap_alloc (last_basic_block);
5ed6ace5 2915 deaths_in_region = XNEWVEC (int, nr_regions);
73991d6a
JH
2916 /* Remove all death notes from the subroutine. */
2917 for (rgn = 0; rgn < nr_regions; rgn++)
496d7bb0 2918 check_dead_notes1 (rgn, blocks);
b4ead7d4 2919
73991d6a 2920 sbitmap_free (blocks);
b4ead7d4 2921 }
73991d6a
JH
2922 else
2923 count_or_remove_death_notes (NULL, 1);
b4ead7d4
BS
2924}
2925
10d22567 2926/* The one entry point in this file. */
b4ead7d4
BS
2927
2928void
10d22567 2929schedule_insns (void)
b4ead7d4
BS
2930{
2931 sbitmap large_region_blocks, blocks;
2932 int rgn;
2933 int any_large_regions;
e0082a72 2934 basic_block bb;
b4ead7d4
BS
2935
2936 /* Taking care of this degenerate case makes the rest of
2937 this code simpler. */
24bd1a0b 2938 if (n_basic_blocks == NUM_FIXED_BLOCKS)
b4ead7d4
BS
2939 return;
2940
2941 nr_inter = 0;
2942 nr_spec = 0;
ddbd5439
MK
2943
2944 /* We need current_sched_info in init_dependency_caches, which is
2945 invoked via sched_init. */
2946 current_sched_info = &region_sched_info;
2947
10d22567 2948 sched_init ();
b4ead7d4 2949
36968131
PS
2950 min_spec_prob = ((PARAM_VALUE (PARAM_MIN_SPEC_PROB) * REG_BR_PROB_BASE)
2951 / 100);
2952
b4ead7d4
BS
2953 init_regions ();
2954
917f1b7e 2955 /* EBB_HEAD is a region-scope structure. But we realloc it for
496d7bb0
MK
2956 each region to save time/memory/something else. */
2957 ebb_head = 0;
2958
b4ead7d4
BS
2959 /* Schedule every region in the subroutine. */
2960 for (rgn = 0; rgn < nr_regions; rgn++)
2961 schedule_region (rgn);
496d7bb0
MK
2962
2963 free(ebb_head);
b4ead7d4
BS
2964
2965 /* Update life analysis for the subroutine. Do single block regions
2966 first so that we can verify that live_at_start didn't change. Then
6d2f8887 2967 do all other blocks. */
b4ead7d4 2968 /* ??? There is an outside possibility that update_life_info, or more
0e9e1e0a 2969 to the point propagate_block, could get called with nonzero flags
b4ead7d4
BS
2970 more than once for one basic block. This would be kinda bad if it
2971 were to happen, since REG_INFO would be accumulated twice for the
2972 block, and we'd have twice the REG_DEAD notes.
2973
2974 I'm fairly certain that this _shouldn't_ happen, since I don't think
2975 that live_at_start should change at region heads. Not sure what the
2976 best way to test for this kind of thing... */
2977
496d7bb0
MK
2978 if (current_sched_info->flags & DETACH_LIFE_INFO)
2979 /* this flag can be set either by the target or by ENABLE_CHECKING. */
2980 attach_life_info ();
2981
b4ead7d4 2982 allocate_reg_life_data ();
b4ead7d4
BS
2983
2984 any_large_regions = 0;
d55bc081 2985 large_region_blocks = sbitmap_alloc (last_basic_block);
e0082a72
ZD
2986 sbitmap_zero (large_region_blocks);
2987 FOR_EACH_BB (bb)
2988 SET_BIT (large_region_blocks, bb->index);
b4ead7d4 2989
d55bc081 2990 blocks = sbitmap_alloc (last_basic_block);
73991d6a 2991 sbitmap_zero (blocks);
b4ead7d4 2992
73991d6a
JH
2993 /* Update life information. For regions consisting of multiple blocks
2994 we've possibly done interblock scheduling that affects global liveness.
2995 For regions consisting of single blocks we need to do only local
2996 liveness. */
496d7bb0
MK
2997 for (rgn = 0; rgn < nr_regions; rgn++)
2998 if (RGN_NR_BLOCKS (rgn) > 1
917f1b7e 2999 /* Or the only block of this region has been split. */
496d7bb0
MK
3000 || RGN_HAS_REAL_EBB (rgn)
3001 /* New blocks (e.g. recovery blocks) should be processed
3002 as parts of large regions. */
3003 || !glat_start[rgn_bb_table[RGN_BLOCKS (rgn)]])
b4ead7d4
BS
3004 any_large_regions = 1;
3005 else
3006 {
b4ead7d4
BS
3007 SET_BIT (blocks, rgn_bb_table[RGN_BLOCKS (rgn)]);
3008 RESET_BIT (large_region_blocks, rgn_bb_table[RGN_BLOCKS (rgn)]);
b4ead7d4
BS
3009 }
3010
73991d6a
JH
3011 /* Don't update reg info after reload, since that affects
3012 regs_ever_live, which should not change after reload. */
3013 update_life_info (blocks, UPDATE_LIFE_LOCAL,
3014 (reload_completed ? PROP_DEATH_NOTES
496d7bb0 3015 : (PROP_DEATH_NOTES | PROP_REG_INFO)));
b4ead7d4
BS
3016 if (any_large_regions)
3017 {
3018 update_life_info (large_region_blocks, UPDATE_LIFE_GLOBAL,
496d7bb0
MK
3019 (reload_completed ? PROP_DEATH_NOTES
3020 : (PROP_DEATH_NOTES | PROP_REG_INFO)));
3021
3022#ifdef ENABLE_CHECKING
a57aee2a 3023 check_reg_live (true);
496d7bb0 3024#endif
b4ead7d4
BS
3025 }
3026
73991d6a
JH
3027 if (CHECK_DEAD_NOTES)
3028 {
496d7bb0 3029 /* Verify the counts of basic block notes in single basic block
6bbdfefd 3030 regions. */
73991d6a
JH
3031 for (rgn = 0; rgn < nr_regions; rgn++)
3032 if (RGN_NR_BLOCKS (rgn) == 1)
3033 {
73991d6a
JH
3034 sbitmap_zero (blocks);
3035 SET_BIT (blocks, rgn_bb_table[RGN_BLOCKS (rgn)]);
3036
41374e13
NS
3037 gcc_assert (deaths_in_region[rgn]
3038 == count_or_remove_death_notes (blocks, 0));
73991d6a
JH
3039 }
3040 free (deaths_in_region);
3041 }
3042
b4ead7d4
BS
3043 /* Reposition the prologue and epilogue notes in case we moved the
3044 prologue/epilogue insns. */
3045 if (reload_completed)
3046 reposition_prologue_and_epilogue_notes (get_insns ());
3047
3048 /* Delete redundant line notes. */
3049 if (write_symbols != NO_DEBUG)
3050 rm_redundant_line_notes ();
3051
3052 if (sched_verbose)
3053 {
3054 if (reload_completed == 0 && flag_schedule_interblock)
3055 {
3056 fprintf (sched_dump,
3057 "\n;; Procedure interblock/speculative motions == %d/%d \n",
3058 nr_inter, nr_spec);
3059 }
3060 else
41374e13 3061 gcc_assert (nr_inter <= 0);
b4ead7d4
BS
3062 fprintf (sched_dump, "\n\n");
3063 }
3064
3065 /* Clean up. */
3066 free (rgn_table);
3067 free (rgn_bb_table);
3068 free (block_to_bb);
3069 free (containing_rgn);
3070
3071 sched_finish ();
3072
b4ead7d4
BS
3073 sbitmap_free (blocks);
3074 sbitmap_free (large_region_blocks);
b4ead7d4 3075}
496d7bb0
MK
3076
3077/* INSN has been added to/removed from current region. */
3078static void
3079add_remove_insn (rtx insn, int remove_p)
3080{
3081 if (!remove_p)
3082 rgn_n_insns++;
3083 else
3084 rgn_n_insns--;
3085
3086 if (INSN_BB (insn) == target_bb)
3087 {
3088 if (!remove_p)
3089 target_n_insns++;
3090 else
3091 target_n_insns--;
3092 }
3093}
3094
3095/* Extend internal data structures. */
3096static void
3097extend_regions (void)
3098{
3099 rgn_table = XRESIZEVEC (region, rgn_table, n_basic_blocks);
3100 rgn_bb_table = XRESIZEVEC (int, rgn_bb_table, n_basic_blocks);
3101 block_to_bb = XRESIZEVEC (int, block_to_bb, last_basic_block);
3102 containing_rgn = XRESIZEVEC (int, containing_rgn, last_basic_block);
3103}
3104
3105/* BB was added to ebb after AFTER. */
3106static void
3107add_block1 (basic_block bb, basic_block after)
3108{
3109 extend_regions ();
3110
3111 if (after == 0 || after == EXIT_BLOCK_PTR)
3112 {
3113 int i;
3114
3115 i = RGN_BLOCKS (nr_regions);
3116 /* I - first free position in rgn_bb_table. */
3117
3118 rgn_bb_table[i] = bb->index;
3119 RGN_NR_BLOCKS (nr_regions) = 1;
3120 RGN_DONT_CALC_DEPS (nr_regions) = after == EXIT_BLOCK_PTR;
3121 RGN_HAS_REAL_EBB (nr_regions) = 0;
3122 CONTAINING_RGN (bb->index) = nr_regions;
3123 BLOCK_TO_BB (bb->index) = 0;
3124
3125 nr_regions++;
3126
3127 RGN_BLOCKS (nr_regions) = i + 1;
3128
3129 if (CHECK_DEAD_NOTES)
3130 {
3131 sbitmap blocks = sbitmap_alloc (last_basic_block);
3132 deaths_in_region = xrealloc (deaths_in_region, nr_regions *
3133 sizeof (*deaths_in_region));
3134
3135 check_dead_notes1 (nr_regions - 1, blocks);
3136
3137 sbitmap_free (blocks);
3138 }
3139 }
3140 else
3141 {
3142 int i, pos;
3143
3144 /* We need to fix rgn_table, block_to_bb, containing_rgn
3145 and ebb_head. */
3146
3147 BLOCK_TO_BB (bb->index) = BLOCK_TO_BB (after->index);
3148
3149 /* We extend ebb_head to one more position to
3150 easily find the last position of the last ebb in
3151 the current region. Thus, ebb_head[BLOCK_TO_BB (after) + 1]
3152 is _always_ valid for access. */
3153
3154 i = BLOCK_TO_BB (after->index) + 1;
3155 for (pos = ebb_head[i]; rgn_bb_table[pos] != after->index; pos--);
3156 pos++;
3157 gcc_assert (pos > ebb_head[i - 1]);
3158 /* i - ebb right after "AFTER". */
3159 /* ebb_head[i] - VALID. */
3160
3161 /* Source position: ebb_head[i]
917f1b7e 3162 Destination position: ebb_head[i] + 1
496d7bb0
MK
3163 Last position:
3164 RGN_BLOCKS (nr_regions) - 1
3165 Number of elements to copy: (last_position) - (source_position) + 1
3166 */
3167
3168 memmove (rgn_bb_table + pos + 1,
3169 rgn_bb_table + pos,
3170 ((RGN_BLOCKS (nr_regions) - 1) - (pos) + 1)
3171 * sizeof (*rgn_bb_table));
3172
3173 rgn_bb_table[pos] = bb->index;
3174
3175 for (; i <= current_nr_blocks; i++)
3176 ebb_head [i]++;
3177
3178 i = CONTAINING_RGN (after->index);
3179 CONTAINING_RGN (bb->index) = i;
3180
3181 RGN_HAS_REAL_EBB (i) = 1;
3182
3183 for (++i; i <= nr_regions; i++)
3184 RGN_BLOCKS (i)++;
3185
3186 /* We don't need to call check_dead_notes1 () because this new block
3187 is just a split of the old. We don't want to count anything twice. */
3188 }
3189}
3190
3191/* Fix internal data after interblock movement of jump instruction.
3192 For parameter meaning please refer to
3193 sched-int.h: struct sched_info: fix_recovery_cfg. */
3194static void
3195fix_recovery_cfg (int bbi, int check_bbi, int check_bb_nexti)
3196{
3197 int old_pos, new_pos, i;
3198
3199 BLOCK_TO_BB (check_bb_nexti) = BLOCK_TO_BB (bbi);
3200
3201 for (old_pos = ebb_head[BLOCK_TO_BB (check_bbi) + 1] - 1;
3202 rgn_bb_table[old_pos] != check_bb_nexti;
3203 old_pos--);
3204 gcc_assert (old_pos > ebb_head[BLOCK_TO_BB (check_bbi)]);
3205
3206 for (new_pos = ebb_head[BLOCK_TO_BB (bbi) + 1] - 1;
3207 rgn_bb_table[new_pos] != bbi;
3208 new_pos--);
3209 new_pos++;
3210 gcc_assert (new_pos > ebb_head[BLOCK_TO_BB (bbi)]);
3211
3212 gcc_assert (new_pos < old_pos);
3213
3214 memmove (rgn_bb_table + new_pos + 1,
3215 rgn_bb_table + new_pos,
3216 (old_pos - new_pos) * sizeof (*rgn_bb_table));
3217
3218 rgn_bb_table[new_pos] = check_bb_nexti;
3219
3220 for (i = BLOCK_TO_BB (bbi) + 1; i <= BLOCK_TO_BB (check_bbi); i++)
3221 ebb_head[i]++;
3222}
3223
3224/* Return next block in ebb chain. For parameter meaning please refer to
3225 sched-int.h: struct sched_info: advance_target_bb. */
3226static basic_block
3227advance_target_bb (basic_block bb, rtx insn)
3228{
3229 if (insn)
3230 return 0;
3231
3232 gcc_assert (BLOCK_TO_BB (bb->index) == target_bb
3233 && BLOCK_TO_BB (bb->next_bb->index) == target_bb);
3234 return bb->next_bb;
3235}
3236
3237/* Count and remove death notes in region RGN, which consists of blocks
3238 with indecies in BLOCKS. */
3239static void
3240check_dead_notes1 (int rgn, sbitmap blocks)
3241{
3242 int b;
3243
3244 sbitmap_zero (blocks);
3245 for (b = RGN_NR_BLOCKS (rgn) - 1; b >= 0; --b)
3246 SET_BIT (blocks, rgn_bb_table[RGN_BLOCKS (rgn) + b]);
3247
3248 deaths_in_region[rgn] = count_or_remove_death_notes (blocks, 1);
3249}
3250
3251#ifdef ENABLE_CHECKING
3252/* Return non zero, if BB is head or leaf (depending of LEAF_P) block in
3253 current region. For more information please refer to
3254 sched-int.h: struct sched_info: region_head_or_leaf_p. */
3255static int
3256region_head_or_leaf_p (basic_block bb, int leaf_p)
3257{
3258 if (!leaf_p)
3259 return bb->index == rgn_bb_table[RGN_BLOCKS (CONTAINING_RGN (bb->index))];
3260 else
3261 {
3262 int i;
3263 edge e;
3264 edge_iterator ei;
3265
3266 i = CONTAINING_RGN (bb->index);
3267
3268 FOR_EACH_EDGE (e, ei, bb->succs)
a57aee2a
MK
3269 if (e->dest != EXIT_BLOCK_PTR
3270 && CONTAINING_RGN (e->dest->index) == i
496d7bb0
MK
3271 /* except self-loop. */
3272 && e->dest != bb)
3273 return 0;
3274
3275 return 1;
3276 }
3277}
3278#endif /* ENABLE_CHECKING */
3279
f56887a7 3280#endif
ef330312
PB
3281\f
3282static bool
3283gate_handle_sched (void)
3284{
3285#ifdef INSN_SCHEDULING
3286 return flag_schedule_insns;
3287#else
3288 return 0;
3289#endif
3290}
3291
3292/* Run instruction scheduler. */
c2924966 3293static unsigned int
ef330312
PB
3294rest_of_handle_sched (void)
3295{
3296#ifdef INSN_SCHEDULING
3297 /* Do control and data sched analysis,
3298 and write some of the results to dump file. */
3299
10d22567 3300 schedule_insns ();
ef330312 3301#endif
c2924966 3302 return 0;
ef330312
PB
3303}
3304
3305static bool
3306gate_handle_sched2 (void)
3307{
3308#ifdef INSN_SCHEDULING
3309 return optimize > 0 && flag_schedule_insns_after_reload;
3310#else
3311 return 0;
3312#endif
3313}
3314
3315/* Run second scheduling pass after reload. */
c2924966 3316static unsigned int
ef330312
PB
3317rest_of_handle_sched2 (void)
3318{
3319#ifdef INSN_SCHEDULING
3320 /* Do control and data sched analysis again,
3321 and write some more of the results to dump file. */
3322
3323 split_all_insns (1);
3324
3325 if (flag_sched2_use_superblocks || flag_sched2_use_traces)
3326 {
10d22567 3327 schedule_ebbs ();
ef330312
PB
3328 /* No liveness updating code yet, but it should be easy to do.
3329 reg-stack recomputes the liveness when needed for now. */
3330 count_or_remove_death_notes (NULL, 1);
3331 cleanup_cfg (CLEANUP_EXPENSIVE);
3332 }
3333 else
10d22567 3334 schedule_insns ();
ef330312 3335#endif
c2924966 3336 return 0;
ef330312
PB
3337}
3338
3339struct tree_opt_pass pass_sched =
3340{
3341 "sched1", /* name */
3342 gate_handle_sched, /* gate */
3343 rest_of_handle_sched, /* execute */
3344 NULL, /* sub */
3345 NULL, /* next */
3346 0, /* static_pass_number */
3347 TV_SCHED, /* tv_id */
3348 0, /* properties_required */
3349 0, /* properties_provided */
3350 0, /* properties_destroyed */
3351 0, /* todo_flags_start */
3352 TODO_dump_func |
3353 TODO_ggc_collect, /* todo_flags_finish */
3354 'S' /* letter */
3355};
3356
3357struct tree_opt_pass pass_sched2 =
3358{
3359 "sched2", /* name */
3360 gate_handle_sched2, /* gate */
3361 rest_of_handle_sched2, /* execute */
3362 NULL, /* sub */
3363 NULL, /* next */
3364 0, /* static_pass_number */
3365 TV_SCHED2, /* tv_id */
3366 0, /* properties_required */
3367 0, /* properties_provided */
3368 0, /* properties_destroyed */
3369 0, /* todo_flags_start */
3370 TODO_dump_func |
3371 TODO_ggc_collect, /* todo_flags_finish */
3372 'R' /* letter */
3373};
3374
This page took 2.613972 seconds and 5 git commands to generate.