]> gcc.gnu.org Git - gcc.git/blame - gcc/rtlanal.c
Move MEMMODEL_* from coretypes.h to memmodel.h
[gcc.git] / gcc / rtlanal.c
CommitLineData
af082de3 1/* Analyze RTL for GNU compiler.
818ab71a 2 Copyright (C) 1987-2016 Free Software Foundation, Inc.
2c88418c 3
1322177d 4This file is part of GCC.
2c88418c 5
1322177d
LB
6GCC is free software; you can redistribute it and/or modify it under
7the terms of the GNU General Public License as published by the Free
9dcd6f09 8Software Foundation; either version 3, or (at your option) any later
1322177d 9version.
2c88418c 10
1322177d
LB
11GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12WARRANTY; without even the implied warranty of MERCHANTABILITY or
13FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14for more details.
2c88418c
RS
15
16You should have received a copy of the GNU General Public License
9dcd6f09
NC
17along with GCC; see the file COPYING3. If not see
18<http://www.gnu.org/licenses/>. */
2c88418c
RS
19
20
21#include "config.h"
670ee920 22#include "system.h"
4977bab6 23#include "coretypes.h"
c7131fb2 24#include "backend.h"
957060b5 25#include "target.h"
9f02e6a5 26#include "rtl.h"
957060b5
AM
27#include "tree.h"
28#include "predict.h"
c7131fb2 29#include "df.h"
4d0cdd0c 30#include "memmodel.h"
957060b5 31#include "tm_p.h"
bc204393 32#include "insn-config.h"
957060b5
AM
33#include "regs.h"
34#include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */
bc204393 35#include "recog.h"
277f65de 36#include "addresses.h"
476dd0ce 37#include "rtl-iter.h"
2c88418c 38
e2373f95 39/* Forward declarations */
7bc980e1 40static void set_of_1 (rtx, const_rtx, void *);
f7d504c2
KG
41static bool covers_regno_p (const_rtx, unsigned int);
42static bool covers_regno_no_parallel_p (const_rtx, unsigned int);
f7d504c2 43static int computed_jump_p_1 (const_rtx);
7bc980e1 44static void parms_set (rtx, const_rtx, void *);
2a1777af 45
ef4bddc2
RS
46static unsigned HOST_WIDE_INT cached_nonzero_bits (const_rtx, machine_mode,
47 const_rtx, machine_mode,
2f93eea8 48 unsigned HOST_WIDE_INT);
ef4bddc2
RS
49static unsigned HOST_WIDE_INT nonzero_bits1 (const_rtx, machine_mode,
50 const_rtx, machine_mode,
2f93eea8 51 unsigned HOST_WIDE_INT);
ef4bddc2
RS
52static unsigned int cached_num_sign_bit_copies (const_rtx, machine_mode, const_rtx,
53 machine_mode,
2f93eea8 54 unsigned int);
ef4bddc2
RS
55static unsigned int num_sign_bit_copies1 (const_rtx, machine_mode, const_rtx,
56 machine_mode, unsigned int);
2f93eea8 57
476dd0ce
RS
58rtx_subrtx_bound_info rtx_all_subrtx_bounds[NUM_RTX_CODE];
59rtx_subrtx_bound_info rtx_nonconst_subrtx_bounds[NUM_RTX_CODE];
60
b12cbf2c
AN
61/* Truncation narrows the mode from SOURCE mode to DESTINATION mode.
62 If TARGET_MODE_REP_EXTENDED (DESTINATION, DESTINATION_REP) is
63 SIGN_EXTEND then while narrowing we also have to enforce the
64 representation and sign-extend the value to mode DESTINATION_REP.
65
66 If the value is already sign-extended to DESTINATION_REP mode we
67 can just switch to DESTINATION mode on it. For each pair of
68 integral modes SOURCE and DESTINATION, when truncating from SOURCE
69 to DESTINATION, NUM_SIGN_BIT_COPIES_IN_REP[SOURCE][DESTINATION]
70 contains the number of high-order bits in SOURCE that have to be
71 copies of the sign-bit so that we can do this mode-switch to
72 DESTINATION. */
73
74static unsigned int
75num_sign_bit_copies_in_rep[MAX_MODE_INT + 1][MAX_MODE_INT + 1];
2c88418c 76\f
476dd0ce
RS
77/* Store X into index I of ARRAY. ARRAY is known to have at least I
78 elements. Return the new base of ARRAY. */
79
80template <typename T>
81typename T::value_type *
82generic_subrtx_iterator <T>::add_single_to_queue (array_type &array,
83 value_type *base,
84 size_t i, value_type x)
85{
86 if (base == array.stack)
87 {
88 if (i < LOCAL_ELEMS)
89 {
90 base[i] = x;
91 return base;
92 }
93 gcc_checking_assert (i == LOCAL_ELEMS);
cb6f4591
RS
94 /* A previous iteration might also have moved from the stack to the
95 heap, in which case the heap array will already be big enough. */
96 if (vec_safe_length (array.heap) <= i)
97 vec_safe_grow (array.heap, i + 1);
476dd0ce
RS
98 base = array.heap->address ();
99 memcpy (base, array.stack, sizeof (array.stack));
100 base[LOCAL_ELEMS] = x;
101 return base;
102 }
103 unsigned int length = array.heap->length ();
104 if (length > i)
105 {
106 gcc_checking_assert (base == array.heap->address ());
107 base[i] = x;
108 return base;
109 }
110 else
111 {
112 gcc_checking_assert (i == length);
113 vec_safe_push (array.heap, x);
114 return array.heap->address ();
115 }
116}
117
118/* Add the subrtxes of X to worklist ARRAY, starting at END. Return the
119 number of elements added to the worklist. */
120
121template <typename T>
122size_t
123generic_subrtx_iterator <T>::add_subrtxes_to_queue (array_type &array,
124 value_type *base,
125 size_t end, rtx_type x)
126{
641123eb
RS
127 enum rtx_code code = GET_CODE (x);
128 const char *format = GET_RTX_FORMAT (code);
476dd0ce 129 size_t orig_end = end;
641123eb
RS
130 if (__builtin_expect (INSN_P (x), false))
131 {
132 /* Put the pattern at the top of the queue, since that's what
133 we're likely to want most. It also allows for the SEQUENCE
134 code below. */
135 for (int i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; --i)
136 if (format[i] == 'e')
137 {
138 value_type subx = T::get_value (x->u.fld[i].rt_rtx);
139 if (__builtin_expect (end < LOCAL_ELEMS, true))
140 base[end++] = subx;
141 else
142 base = add_single_to_queue (array, base, end++, subx);
143 }
144 }
145 else
146 for (int i = 0; format[i]; ++i)
147 if (format[i] == 'e')
148 {
149 value_type subx = T::get_value (x->u.fld[i].rt_rtx);
150 if (__builtin_expect (end < LOCAL_ELEMS, true))
151 base[end++] = subx;
152 else
153 base = add_single_to_queue (array, base, end++, subx);
154 }
155 else if (format[i] == 'E')
156 {
157 unsigned int length = GET_NUM_ELEM (x->u.fld[i].rt_rtvec);
158 rtx *vec = x->u.fld[i].rt_rtvec->elem;
159 if (__builtin_expect (end + length <= LOCAL_ELEMS, true))
160 for (unsigned int j = 0; j < length; j++)
161 base[end++] = T::get_value (vec[j]);
162 else
163 for (unsigned int j = 0; j < length; j++)
164 base = add_single_to_queue (array, base, end++,
165 T::get_value (vec[j]));
166 if (code == SEQUENCE && end == length)
167 /* If the subrtxes of the sequence fill the entire array then
168 we know that no other parts of a containing insn are queued.
169 The caller is therefore iterating over the sequence as a
170 PATTERN (...), so we also want the patterns of the
171 subinstructions. */
172 for (unsigned int j = 0; j < length; j++)
173 {
174 typename T::rtx_type x = T::get_rtx (base[j]);
175 if (INSN_P (x))
176 base[j] = T::get_value (PATTERN (x));
177 }
178 }
476dd0ce
RS
179 return end - orig_end;
180}
181
182template <typename T>
183void
184generic_subrtx_iterator <T>::free_array (array_type &array)
185{
186 vec_free (array.heap);
187}
188
189template <typename T>
190const size_t generic_subrtx_iterator <T>::LOCAL_ELEMS;
191
192template class generic_subrtx_iterator <const_rtx_accessor>;
193template class generic_subrtx_iterator <rtx_var_accessor>;
194template class generic_subrtx_iterator <rtx_ptr_accessor>;
195
2c88418c
RS
196/* Return 1 if the value of X is unstable
197 (would be different at a different point in the program).
198 The frame pointer, arg pointer, etc. are considered stable
199 (within one function) and so is anything marked `unchanging'. */
200
201int
f7d504c2 202rtx_unstable_p (const_rtx x)
2c88418c 203{
f7d504c2 204 const RTX_CODE code = GET_CODE (x);
b3694847
SS
205 int i;
206 const char *fmt;
2c88418c 207
ae0fb1b9
JW
208 switch (code)
209 {
210 case MEM:
389fdba0 211 return !MEM_READONLY_P (x) || rtx_unstable_p (XEXP (x, 0));
2c88418c 212
ae0fb1b9 213 case CONST:
d8116890 214 CASE_CONST_ANY:
ae0fb1b9
JW
215 case SYMBOL_REF:
216 case LABEL_REF:
217 return 0;
2c88418c 218
ae0fb1b9
JW
219 case REG:
220 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
c0fc376b 221 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
3335f1d9 222 /* The arg pointer varies if it is not a fixed register. */
389fdba0 223 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
c0fc376b 224 return 0;
c0fc376b
RH
225 /* ??? When call-clobbered, the value is stable modulo the restore
226 that must happen after a call. This currently screws up local-alloc
227 into believing that the restore is not needed. */
f8fe0a4a 228 if (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED && x == pic_offset_table_rtx)
c0fc376b 229 return 0;
c0fc376b 230 return 1;
ae0fb1b9
JW
231
232 case ASM_OPERANDS:
233 if (MEM_VOLATILE_P (x))
234 return 1;
235
5d3cc252 236 /* Fall through. */
ae0fb1b9
JW
237
238 default:
239 break;
240 }
2c88418c
RS
241
242 fmt = GET_RTX_FORMAT (code);
243 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
244 if (fmt[i] == 'e')
9c82ac6b
JW
245 {
246 if (rtx_unstable_p (XEXP (x, i)))
247 return 1;
248 }
249 else if (fmt[i] == 'E')
250 {
251 int j;
252 for (j = 0; j < XVECLEN (x, i); j++)
253 if (rtx_unstable_p (XVECEXP (x, i, j)))
254 return 1;
255 }
256
2c88418c
RS
257 return 0;
258}
259
260/* Return 1 if X has a value that can vary even between two
261 executions of the program. 0 means X can be compared reliably
262 against certain constants or near-constants.
e38fe8e0
BS
263 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
264 zero, we are slightly more conservative.
2c88418c
RS
265 The frame pointer and the arg pointer are considered constant. */
266
4f588890
KG
267bool
268rtx_varies_p (const_rtx x, bool for_alias)
2c88418c 269{
e978d62e 270 RTX_CODE code;
b3694847
SS
271 int i;
272 const char *fmt;
2c88418c 273
e978d62e
PB
274 if (!x)
275 return 0;
276
277 code = GET_CODE (x);
2c88418c
RS
278 switch (code)
279 {
280 case MEM:
389fdba0 281 return !MEM_READONLY_P (x) || rtx_varies_p (XEXP (x, 0), for_alias);
55efb413 282
2c88418c 283 case CONST:
d8116890 284 CASE_CONST_ANY:
2c88418c
RS
285 case SYMBOL_REF:
286 case LABEL_REF:
287 return 0;
288
289 case REG:
290 /* Note that we have to test for the actual rtx used for the frame
291 and arg pointers and not just the register number in case we have
292 eliminated the frame and/or arg pointer and are using it
293 for pseudos. */
c0fc376b 294 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
3335f1d9
JL
295 /* The arg pointer varies if it is not a fixed register. */
296 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
c0fc376b 297 return 0;
e38fe8e0 298 if (x == pic_offset_table_rtx
e38fe8e0
BS
299 /* ??? When call-clobbered, the value is stable modulo the restore
300 that must happen after a call. This currently screws up
301 local-alloc into believing that the restore is not needed, so we
302 must return 0 only if we are called from alias analysis. */
f8fe0a4a 303 && (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED || for_alias))
e38fe8e0 304 return 0;
c0fc376b 305 return 1;
2c88418c
RS
306
307 case LO_SUM:
308 /* The operand 0 of a LO_SUM is considered constant
e7d96a83
JW
309 (in fact it is related specifically to operand 1)
310 during alias analysis. */
311 return (! for_alias && rtx_varies_p (XEXP (x, 0), for_alias))
312 || rtx_varies_p (XEXP (x, 1), for_alias);
a6a2274a 313
ae0fb1b9
JW
314 case ASM_OPERANDS:
315 if (MEM_VOLATILE_P (x))
316 return 1;
317
5d3cc252 318 /* Fall through. */
ae0fb1b9 319
e9a25f70
JL
320 default:
321 break;
2c88418c
RS
322 }
323
324 fmt = GET_RTX_FORMAT (code);
325 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
326 if (fmt[i] == 'e')
9c82ac6b 327 {
e38fe8e0 328 if (rtx_varies_p (XEXP (x, i), for_alias))
9c82ac6b
JW
329 return 1;
330 }
331 else if (fmt[i] == 'E')
332 {
333 int j;
334 for (j = 0; j < XVECLEN (x, i); j++)
e38fe8e0 335 if (rtx_varies_p (XVECEXP (x, i, j), for_alias))
9c82ac6b
JW
336 return 1;
337 }
338
2c88418c
RS
339 return 0;
340}
341
1e677938
BE
342/* Compute an approximation for the offset between the register
343 FROM and TO for the current function, as it was at the start
344 of the routine. */
345
346static HOST_WIDE_INT
347get_initial_register_offset (int from, int to)
348{
1e677938
BE
349 static const struct elim_table_t
350 {
351 const int from;
352 const int to;
353 } table[] = ELIMINABLE_REGS;
354 HOST_WIDE_INT offset1, offset2;
355 unsigned int i, j;
356
357 if (to == from)
358 return 0;
359
360 /* It is not safe to call INITIAL_ELIMINATION_OFFSET
361 before the reload pass. We need to give at least
362 an estimation for the resulting frame size. */
363 if (! reload_completed)
364 {
365 offset1 = crtl->outgoing_args_size + get_frame_size ();
366#if !STACK_GROWS_DOWNWARD
367 offset1 = - offset1;
368#endif
369 if (to == STACK_POINTER_REGNUM)
370 return offset1;
371 else if (from == STACK_POINTER_REGNUM)
372 return - offset1;
373 else
374 return 0;
375 }
376
377 for (i = 0; i < ARRAY_SIZE (table); i++)
378 if (table[i].from == from)
379 {
380 if (table[i].to == to)
381 {
382 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
383 offset1);
384 return offset1;
385 }
386 for (j = 0; j < ARRAY_SIZE (table); j++)
387 {
388 if (table[j].to == to
389 && table[j].from == table[i].to)
390 {
391 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
392 offset1);
393 INITIAL_ELIMINATION_OFFSET (table[j].from, table[j].to,
394 offset2);
395 return offset1 + offset2;
396 }
397 if (table[j].from == to
398 && table[j].to == table[i].to)
399 {
400 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
401 offset1);
402 INITIAL_ELIMINATION_OFFSET (table[j].from, table[j].to,
403 offset2);
404 return offset1 - offset2;
405 }
406 }
407 }
408 else if (table[i].to == from)
409 {
410 if (table[i].from == to)
411 {
412 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
413 offset1);
414 return - offset1;
415 }
416 for (j = 0; j < ARRAY_SIZE (table); j++)
417 {
418 if (table[j].to == to
419 && table[j].from == table[i].from)
420 {
421 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
422 offset1);
423 INITIAL_ELIMINATION_OFFSET (table[j].from, table[j].to,
424 offset2);
425 return - offset1 + offset2;
426 }
427 if (table[j].from == to
428 && table[j].to == table[i].from)
429 {
430 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
431 offset1);
432 INITIAL_ELIMINATION_OFFSET (table[j].from, table[j].to,
433 offset2);
434 return - offset1 - offset2;
435 }
436 }
437 }
438
439 /* If the requested register combination was not found,
440 try a different more simple combination. */
441 if (from == ARG_POINTER_REGNUM)
442 return get_initial_register_offset (HARD_FRAME_POINTER_REGNUM, to);
443 else if (to == ARG_POINTER_REGNUM)
444 return get_initial_register_offset (from, HARD_FRAME_POINTER_REGNUM);
445 else if (from == HARD_FRAME_POINTER_REGNUM)
446 return get_initial_register_offset (FRAME_POINTER_REGNUM, to);
447 else if (to == HARD_FRAME_POINTER_REGNUM)
448 return get_initial_register_offset (from, FRAME_POINTER_REGNUM);
449 else
450 return 0;
1e677938
BE
451}
452
c7e30a96
EB
453/* Return nonzero if the use of X+OFFSET as an address in a MEM with SIZE
454 bytes can cause a trap. MODE is the mode of the MEM (not that of X) and
455 UNALIGNED_MEMS controls whether nonzero is returned for unaligned memory
456 references on strict alignment machines. */
2c88418c 457
2358ff91 458static int
48e8382e 459rtx_addr_can_trap_p_1 (const_rtx x, HOST_WIDE_INT offset, HOST_WIDE_INT size,
ef4bddc2 460 machine_mode mode, bool unaligned_mems)
2c88418c 461{
b3694847 462 enum rtx_code code = GET_CODE (x);
2c88418c 463
c7e30a96
EB
464 /* The offset must be a multiple of the mode size if we are considering
465 unaligned memory references on strict alignment machines. */
466 if (STRICT_ALIGNMENT && unaligned_mems && GET_MODE_SIZE (mode) != 0)
48e8382e
PB
467 {
468 HOST_WIDE_INT actual_offset = offset;
c7e30a96 469
48e8382e
PB
470#ifdef SPARC_STACK_BOUNDARY_HACK
471 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
472 the real alignment of %sp. However, when it does this, the
473 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
474 if (SPARC_STACK_BOUNDARY_HACK
475 && (x == stack_pointer_rtx || x == hard_frame_pointer_rtx))
476 actual_offset -= STACK_POINTER_OFFSET;
477#endif
478
65a74b5d
PB
479 if (actual_offset % GET_MODE_SIZE (mode) != 0)
480 return 1;
48e8382e
PB
481 }
482
2c88418c
RS
483 switch (code)
484 {
485 case SYMBOL_REF:
48e8382e
PB
486 if (SYMBOL_REF_WEAK (x))
487 return 1;
488 if (!CONSTANT_POOL_ADDRESS_P (x))
489 {
490 tree decl;
491 HOST_WIDE_INT decl_size;
492
493 if (offset < 0)
494 return 1;
495 if (size == 0)
496 size = GET_MODE_SIZE (mode);
497 if (size == 0)
498 return offset != 0;
499
500 /* If the size of the access or of the symbol is unknown,
501 assume the worst. */
502 decl = SYMBOL_REF_DECL (x);
503
504 /* Else check that the access is in bounds. TODO: restructure
71c00b5c 505 expr_size/tree_expr_size/int_expr_size and just use the latter. */
48e8382e
PB
506 if (!decl)
507 decl_size = -1;
508 else if (DECL_P (decl) && DECL_SIZE_UNIT (decl))
9541ffee 509 decl_size = (tree_fits_shwi_p (DECL_SIZE_UNIT (decl))
9439e9a1 510 ? tree_to_shwi (DECL_SIZE_UNIT (decl))
48e8382e
PB
511 : -1);
512 else if (TREE_CODE (decl) == STRING_CST)
513 decl_size = TREE_STRING_LENGTH (decl);
514 else if (TYPE_SIZE_UNIT (TREE_TYPE (decl)))
515 decl_size = int_size_in_bytes (TREE_TYPE (decl));
516 else
517 decl_size = -1;
518
519 return (decl_size <= 0 ? offset != 0 : offset + size > decl_size);
520 }
521
522 return 0;
ff0b6b99 523
2c88418c 524 case LABEL_REF:
2c88418c
RS
525 return 0;
526
527 case REG:
c7e30a96
EB
528 /* Stack references are assumed not to trap, but we need to deal with
529 nonsensical offsets. */
1e677938
BE
530 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
531 || x == stack_pointer_rtx
532 /* The arg pointer varies if it is not a fixed register. */
533 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
c7e30a96 534 {
1e677938
BE
535#ifdef RED_ZONE_SIZE
536 HOST_WIDE_INT red_zone_size = RED_ZONE_SIZE;
537#else
538 HOST_WIDE_INT red_zone_size = 0;
539#endif
540 HOST_WIDE_INT stack_boundary = PREFERRED_STACK_BOUNDARY
541 / BITS_PER_UNIT;
542 HOST_WIDE_INT low_bound, high_bound;
543
c7e30a96
EB
544 if (size == 0)
545 size = GET_MODE_SIZE (mode);
1e677938
BE
546
547 if (x == frame_pointer_rtx)
548 {
549 if (FRAME_GROWS_DOWNWARD)
550 {
551 high_bound = STARTING_FRAME_OFFSET;
552 low_bound = high_bound - get_frame_size ();
553 }
554 else
555 {
556 low_bound = STARTING_FRAME_OFFSET;
557 high_bound = low_bound + get_frame_size ();
558 }
559 }
560 else if (x == hard_frame_pointer_rtx)
c7e30a96 561 {
1e677938
BE
562 HOST_WIDE_INT sp_offset
563 = get_initial_register_offset (STACK_POINTER_REGNUM,
564 HARD_FRAME_POINTER_REGNUM);
565 HOST_WIDE_INT ap_offset
566 = get_initial_register_offset (ARG_POINTER_REGNUM,
567 HARD_FRAME_POINTER_REGNUM);
568
569#if STACK_GROWS_DOWNWARD
570 low_bound = sp_offset - red_zone_size - stack_boundary;
571 high_bound = ap_offset
572 + FIRST_PARM_OFFSET (current_function_decl)
573#if !ARGS_GROW_DOWNWARD
574 + crtl->args.size
575#endif
576 + stack_boundary;
577#else
578 high_bound = sp_offset + red_zone_size + stack_boundary;
579 low_bound = ap_offset
580 + FIRST_PARM_OFFSET (current_function_decl)
581#if ARGS_GROW_DOWNWARD
582 - crtl->args.size
583#endif
584 - stack_boundary;
585#endif
586 }
587 else if (x == stack_pointer_rtx)
588 {
589 HOST_WIDE_INT ap_offset
590 = get_initial_register_offset (ARG_POINTER_REGNUM,
591 STACK_POINTER_REGNUM);
592
593#if STACK_GROWS_DOWNWARD
594 low_bound = - red_zone_size - stack_boundary;
595 high_bound = ap_offset
596 + FIRST_PARM_OFFSET (current_function_decl)
597#if !ARGS_GROW_DOWNWARD
598 + crtl->args.size
599#endif
600 + stack_boundary;
601#else
602 high_bound = red_zone_size + stack_boundary;
603 low_bound = ap_offset
604 + FIRST_PARM_OFFSET (current_function_decl)
605#if ARGS_GROW_DOWNWARD
606 - crtl->args.size
607#endif
608 - stack_boundary;
609#endif
c7e30a96
EB
610 }
611 else
612 {
1e677938
BE
613 /* We assume that accesses are safe to at least the
614 next stack boundary.
615 Examples are varargs and __builtin_return_address. */
616#if ARGS_GROW_DOWNWARD
617 high_bound = FIRST_PARM_OFFSET (current_function_decl)
618 + stack_boundary;
619 low_bound = FIRST_PARM_OFFSET (current_function_decl)
620 - crtl->args.size - stack_boundary;
621#else
622 low_bound = FIRST_PARM_OFFSET (current_function_decl)
623 - stack_boundary;
624 high_bound = FIRST_PARM_OFFSET (current_function_decl)
625 + crtl->args.size + stack_boundary;
626#endif
c7e30a96 627 }
1e677938
BE
628
629 if (offset >= low_bound && offset <= high_bound - size)
630 return 0;
631 return 1;
c7e30a96 632 }
4f73495e
RH
633 /* All of the virtual frame registers are stack references. */
634 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
635 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
636 return 0;
637 return 1;
2c88418c
RS
638
639 case CONST:
48e8382e
PB
640 return rtx_addr_can_trap_p_1 (XEXP (x, 0), offset, size,
641 mode, unaligned_mems);
2c88418c
RS
642
643 case PLUS:
2358ff91 644 /* An address is assumed not to trap if:
48e8382e
PB
645 - it is the pic register plus a constant. */
646 if (XEXP (x, 0) == pic_offset_table_rtx && CONSTANT_P (XEXP (x, 1)))
647 return 0;
648
c7e30a96 649 /* - or it is an address that can't trap plus a constant integer. */
481683e1 650 if (CONST_INT_P (XEXP (x, 1))
48e8382e
PB
651 && !rtx_addr_can_trap_p_1 (XEXP (x, 0), offset + INTVAL (XEXP (x, 1)),
652 size, mode, unaligned_mems))
2358ff91
EB
653 return 0;
654
655 return 1;
2c88418c
RS
656
657 case LO_SUM:
4f73495e 658 case PRE_MODIFY:
48e8382e
PB
659 return rtx_addr_can_trap_p_1 (XEXP (x, 1), offset, size,
660 mode, unaligned_mems);
4f73495e
RH
661
662 case PRE_DEC:
663 case PRE_INC:
664 case POST_DEC:
665 case POST_INC:
666 case POST_MODIFY:
48e8382e
PB
667 return rtx_addr_can_trap_p_1 (XEXP (x, 0), offset, size,
668 mode, unaligned_mems);
4f73495e 669
e9a25f70
JL
670 default:
671 break;
2c88418c
RS
672 }
673
674 /* If it isn't one of the case above, it can cause a trap. */
675 return 1;
676}
677
2358ff91
EB
678/* Return nonzero if the use of X as an address in a MEM can cause a trap. */
679
680int
f7d504c2 681rtx_addr_can_trap_p (const_rtx x)
2358ff91 682{
48e8382e 683 return rtx_addr_can_trap_p_1 (x, 0, 0, VOIDmode, false);
2358ff91
EB
684}
685
4977bab6
ZW
686/* Return true if X is an address that is known to not be zero. */
687
688bool
f7d504c2 689nonzero_address_p (const_rtx x)
4977bab6 690{
f7d504c2 691 const enum rtx_code code = GET_CODE (x);
4977bab6
ZW
692
693 switch (code)
694 {
695 case SYMBOL_REF:
06da803c 696 return flag_delete_null_pointer_checks && !SYMBOL_REF_WEAK (x);
4977bab6
ZW
697
698 case LABEL_REF:
699 return true;
700
4977bab6
ZW
701 case REG:
702 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
703 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
704 || x == stack_pointer_rtx
705 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
706 return true;
707 /* All of the virtual frame registers are stack references. */
708 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
709 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
710 return true;
711 return false;
712
713 case CONST:
714 return nonzero_address_p (XEXP (x, 0));
715
716 case PLUS:
4977bab6 717 /* Handle PIC references. */
bc2164e8 718 if (XEXP (x, 0) == pic_offset_table_rtx
4977bab6
ZW
719 && CONSTANT_P (XEXP (x, 1)))
720 return true;
721 return false;
722
723 case PRE_MODIFY:
724 /* Similar to the above; allow positive offsets. Further, since
725 auto-inc is only allowed in memories, the register must be a
726 pointer. */
481683e1 727 if (CONST_INT_P (XEXP (x, 1))
4977bab6
ZW
728 && INTVAL (XEXP (x, 1)) > 0)
729 return true;
730 return nonzero_address_p (XEXP (x, 0));
731
732 case PRE_INC:
733 /* Similarly. Further, the offset is always positive. */
734 return true;
735
736 case PRE_DEC:
737 case POST_DEC:
738 case POST_INC:
739 case POST_MODIFY:
740 return nonzero_address_p (XEXP (x, 0));
741
742 case LO_SUM:
743 return nonzero_address_p (XEXP (x, 1));
744
745 default:
746 break;
747 }
748
749 /* If it isn't one of the case above, might be zero. */
750 return false;
751}
752
a6a2274a 753/* Return 1 if X refers to a memory location whose address
2c88418c 754 cannot be compared reliably with constant addresses,
a6a2274a 755 or if X refers to a BLKmode memory object.
e38fe8e0
BS
756 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
757 zero, we are slightly more conservative. */
2c88418c 758
4f588890
KG
759bool
760rtx_addr_varies_p (const_rtx x, bool for_alias)
2c88418c 761{
b3694847
SS
762 enum rtx_code code;
763 int i;
764 const char *fmt;
2c88418c
RS
765
766 if (x == 0)
767 return 0;
768
769 code = GET_CODE (x);
770 if (code == MEM)
e38fe8e0 771 return GET_MODE (x) == BLKmode || rtx_varies_p (XEXP (x, 0), for_alias);
2c88418c
RS
772
773 fmt = GET_RTX_FORMAT (code);
774 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
775 if (fmt[i] == 'e')
833c0b26 776 {
e38fe8e0 777 if (rtx_addr_varies_p (XEXP (x, i), for_alias))
833c0b26
RK
778 return 1;
779 }
780 else if (fmt[i] == 'E')
781 {
782 int j;
783 for (j = 0; j < XVECLEN (x, i); j++)
e38fe8e0 784 if (rtx_addr_varies_p (XVECEXP (x, i, j), for_alias))
833c0b26
RK
785 return 1;
786 }
2c88418c
RS
787 return 0;
788}
789\f
da4fdf2d
SB
790/* Return the CALL in X if there is one. */
791
792rtx
793get_call_rtx_from (rtx x)
794{
795 if (INSN_P (x))
796 x = PATTERN (x);
797 if (GET_CODE (x) == PARALLEL)
798 x = XVECEXP (x, 0, 0);
799 if (GET_CODE (x) == SET)
800 x = SET_SRC (x);
801 if (GET_CODE (x) == CALL && MEM_P (XEXP (x, 0)))
802 return x;
803 return NULL_RTX;
804}
805\f
2c88418c
RS
806/* Return the value of the integer term in X, if one is apparent;
807 otherwise return 0.
808 Only obvious integer terms are detected.
3ef42a0c 809 This is used in cse.c with the `related_value' field. */
2c88418c 810
c166a311 811HOST_WIDE_INT
f7d504c2 812get_integer_term (const_rtx x)
2c88418c
RS
813{
814 if (GET_CODE (x) == CONST)
815 x = XEXP (x, 0);
816
817 if (GET_CODE (x) == MINUS
481683e1 818 && CONST_INT_P (XEXP (x, 1)))
2c88418c
RS
819 return - INTVAL (XEXP (x, 1));
820 if (GET_CODE (x) == PLUS
481683e1 821 && CONST_INT_P (XEXP (x, 1)))
2c88418c
RS
822 return INTVAL (XEXP (x, 1));
823 return 0;
824}
825
826/* If X is a constant, return the value sans apparent integer term;
827 otherwise return 0.
828 Only obvious integer terms are detected. */
829
830rtx
f7d504c2 831get_related_value (const_rtx x)
2c88418c
RS
832{
833 if (GET_CODE (x) != CONST)
834 return 0;
835 x = XEXP (x, 0);
836 if (GET_CODE (x) == PLUS
481683e1 837 && CONST_INT_P (XEXP (x, 1)))
2c88418c
RS
838 return XEXP (x, 0);
839 else if (GET_CODE (x) == MINUS
481683e1 840 && CONST_INT_P (XEXP (x, 1)))
2c88418c
RS
841 return XEXP (x, 0);
842 return 0;
843}
844\f
7ffb5e78
RS
845/* Return true if SYMBOL is a SYMBOL_REF and OFFSET + SYMBOL points
846 to somewhere in the same object or object_block as SYMBOL. */
847
848bool
f7d504c2 849offset_within_block_p (const_rtx symbol, HOST_WIDE_INT offset)
7ffb5e78
RS
850{
851 tree decl;
852
853 if (GET_CODE (symbol) != SYMBOL_REF)
854 return false;
855
856 if (offset == 0)
857 return true;
858
859 if (offset > 0)
860 {
861 if (CONSTANT_POOL_ADDRESS_P (symbol)
862 && offset < (int) GET_MODE_SIZE (get_pool_mode (symbol)))
863 return true;
864
865 decl = SYMBOL_REF_DECL (symbol);
866 if (decl && offset < int_size_in_bytes (TREE_TYPE (decl)))
867 return true;
868 }
869
870 if (SYMBOL_REF_HAS_BLOCK_INFO_P (symbol)
871 && SYMBOL_REF_BLOCK (symbol)
872 && SYMBOL_REF_BLOCK_OFFSET (symbol) >= 0
873 && ((unsigned HOST_WIDE_INT) offset + SYMBOL_REF_BLOCK_OFFSET (symbol)
874 < (unsigned HOST_WIDE_INT) SYMBOL_REF_BLOCK (symbol)->size))
875 return true;
876
877 return false;
878}
879
880/* Split X into a base and a constant offset, storing them in *BASE_OUT
881 and *OFFSET_OUT respectively. */
882
883void
884split_const (rtx x, rtx *base_out, rtx *offset_out)
885{
886 if (GET_CODE (x) == CONST)
887 {
888 x = XEXP (x, 0);
481683e1 889 if (GET_CODE (x) == PLUS && CONST_INT_P (XEXP (x, 1)))
7ffb5e78
RS
890 {
891 *base_out = XEXP (x, 0);
892 *offset_out = XEXP (x, 1);
893 return;
894 }
895 }
896 *base_out = x;
897 *offset_out = const0_rtx;
898}
899\f
4b983fdc
RH
900/* Return the number of places FIND appears within X. If COUNT_DEST is
901 zero, we do not count occurrences inside the destination of a SET. */
902
903int
f7d504c2 904count_occurrences (const_rtx x, const_rtx find, int count_dest)
4b983fdc
RH
905{
906 int i, j;
907 enum rtx_code code;
908 const char *format_ptr;
909 int count;
910
911 if (x == find)
912 return 1;
913
914 code = GET_CODE (x);
915
916 switch (code)
917 {
918 case REG:
d8116890 919 CASE_CONST_ANY:
4b983fdc
RH
920 case SYMBOL_REF:
921 case CODE_LABEL:
922 case PC:
923 case CC0:
924 return 0;
925
2372a062
BS
926 case EXPR_LIST:
927 count = count_occurrences (XEXP (x, 0), find, count_dest);
928 if (XEXP (x, 1))
929 count += count_occurrences (XEXP (x, 1), find, count_dest);
930 return count;
b8698a0f 931
4b983fdc 932 case MEM:
3c0cb5de 933 if (MEM_P (find) && rtx_equal_p (x, find))
4b983fdc
RH
934 return 1;
935 break;
936
937 case SET:
938 if (SET_DEST (x) == find && ! count_dest)
939 return count_occurrences (SET_SRC (x), find, count_dest);
940 break;
941
942 default:
943 break;
944 }
945
946 format_ptr = GET_RTX_FORMAT (code);
947 count = 0;
948
949 for (i = 0; i < GET_RTX_LENGTH (code); i++)
950 {
951 switch (*format_ptr++)
952 {
953 case 'e':
954 count += count_occurrences (XEXP (x, i), find, count_dest);
955 break;
956
957 case 'E':
958 for (j = 0; j < XVECLEN (x, i); j++)
959 count += count_occurrences (XVECEXP (x, i, j), find, count_dest);
960 break;
961 }
962 }
963 return count;
964}
6fb5fa3c 965
7bc14a04
PB
966\f
967/* Return TRUE if OP is a register or subreg of a register that
968 holds an unsigned quantity. Otherwise, return FALSE. */
969
970bool
971unsigned_reg_p (rtx op)
972{
973 if (REG_P (op)
974 && REG_EXPR (op)
975 && TYPE_UNSIGNED (TREE_TYPE (REG_EXPR (op))))
976 return true;
977
978 if (GET_CODE (op) == SUBREG
362d42dc 979 && SUBREG_PROMOTED_SIGN (op))
7bc14a04
PB
980 return true;
981
982 return false;
983}
984
4b983fdc 985\f
2c88418c
RS
986/* Nonzero if register REG appears somewhere within IN.
987 Also works if REG is not a register; in this case it checks
988 for a subexpression of IN that is Lisp "equal" to REG. */
989
990int
f7d504c2 991reg_mentioned_p (const_rtx reg, const_rtx in)
2c88418c 992{
b3694847
SS
993 const char *fmt;
994 int i;
995 enum rtx_code code;
2c88418c
RS
996
997 if (in == 0)
998 return 0;
999
1000 if (reg == in)
1001 return 1;
1002
1003 if (GET_CODE (in) == LABEL_REF)
a827d9b1 1004 return reg == LABEL_REF_LABEL (in);
2c88418c
RS
1005
1006 code = GET_CODE (in);
1007
1008 switch (code)
1009 {
1010 /* Compare registers by number. */
1011 case REG:
f8cfc6aa 1012 return REG_P (reg) && REGNO (in) == REGNO (reg);
2c88418c
RS
1013
1014 /* These codes have no constituent expressions
1015 and are unique. */
1016 case SCRATCH:
1017 case CC0:
1018 case PC:
1019 return 0;
1020
d8116890 1021 CASE_CONST_ANY:
2c88418c
RS
1022 /* These are kept unique for a given value. */
1023 return 0;
a6a2274a 1024
e9a25f70
JL
1025 default:
1026 break;
2c88418c
RS
1027 }
1028
1029 if (GET_CODE (reg) == code && rtx_equal_p (reg, in))
1030 return 1;
1031
1032 fmt = GET_RTX_FORMAT (code);
1033
1034 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1035 {
1036 if (fmt[i] == 'E')
1037 {
b3694847 1038 int j;
2c88418c
RS
1039 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
1040 if (reg_mentioned_p (reg, XVECEXP (in, i, j)))
1041 return 1;
1042 }
1043 else if (fmt[i] == 'e'
1044 && reg_mentioned_p (reg, XEXP (in, i)))
1045 return 1;
1046 }
1047 return 0;
1048}
1049\f
1050/* Return 1 if in between BEG and END, exclusive of BEG and END, there is
1051 no CODE_LABEL insn. */
1052
1053int
b32d5189 1054no_labels_between_p (const rtx_insn *beg, const rtx_insn *end)
2c88418c 1055{
b32d5189 1056 rtx_insn *p;
978f547f
JH
1057 if (beg == end)
1058 return 0;
2c88418c 1059 for (p = NEXT_INSN (beg); p != end; p = NEXT_INSN (p))
4b4bf941 1060 if (LABEL_P (p))
2c88418c
RS
1061 return 0;
1062 return 1;
1063}
1064
1065/* Nonzero if register REG is used in an insn between
1066 FROM_INSN and TO_INSN (exclusive of those two). */
1067
1068int
b32d5189
DM
1069reg_used_between_p (const_rtx reg, const rtx_insn *from_insn,
1070 const rtx_insn *to_insn)
2c88418c 1071{
1bbbc4a3 1072 rtx_insn *insn;
2c88418c
RS
1073
1074 if (from_insn == to_insn)
1075 return 0;
1076
1077 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
b5b8b0ac 1078 if (NONDEBUG_INSN_P (insn)
8f3e7a26 1079 && (reg_overlap_mentioned_p (reg, PATTERN (insn))
76dd5923 1080 || (CALL_P (insn) && find_reg_fusage (insn, USE, reg))))
2c88418c
RS
1081 return 1;
1082 return 0;
1083}
1084\f
1085/* Nonzero if the old value of X, a register, is referenced in BODY. If X
1086 is entirely replaced by a new value and the only use is as a SET_DEST,
1087 we do not consider it a reference. */
1088
1089int
f7d504c2 1090reg_referenced_p (const_rtx x, const_rtx body)
2c88418c
RS
1091{
1092 int i;
1093
1094 switch (GET_CODE (body))
1095 {
1096 case SET:
1097 if (reg_overlap_mentioned_p (x, SET_SRC (body)))
1098 return 1;
1099
1100 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
1101 of a REG that occupies all of the REG, the insn references X if
1102 it is mentioned in the destination. */
1103 if (GET_CODE (SET_DEST (body)) != CC0
1104 && GET_CODE (SET_DEST (body)) != PC
f8cfc6aa 1105 && !REG_P (SET_DEST (body))
2c88418c 1106 && ! (GET_CODE (SET_DEST (body)) == SUBREG
f8cfc6aa 1107 && REG_P (SUBREG_REG (SET_DEST (body)))
2c88418c
RS
1108 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (body))))
1109 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
1110 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (body)))
1111 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
1112 && reg_overlap_mentioned_p (x, SET_DEST (body)))
1113 return 1;
e9a25f70 1114 return 0;
2c88418c
RS
1115
1116 case ASM_OPERANDS:
1117 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
1118 if (reg_overlap_mentioned_p (x, ASM_OPERANDS_INPUT (body, i)))
1119 return 1;
e9a25f70 1120 return 0;
2c88418c
RS
1121
1122 case CALL:
1123 case USE:
14a774a9 1124 case IF_THEN_ELSE:
2c88418c
RS
1125 return reg_overlap_mentioned_p (x, body);
1126
1127 case TRAP_IF:
1128 return reg_overlap_mentioned_p (x, TRAP_CONDITION (body));
1129
21b8482a
JJ
1130 case PREFETCH:
1131 return reg_overlap_mentioned_p (x, XEXP (body, 0));
1132
2ac4fed0
RK
1133 case UNSPEC:
1134 case UNSPEC_VOLATILE:
2f9fb4c2
R
1135 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1136 if (reg_overlap_mentioned_p (x, XVECEXP (body, 0, i)))
1137 return 1;
1138 return 0;
1139
2c88418c
RS
1140 case PARALLEL:
1141 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1142 if (reg_referenced_p (x, XVECEXP (body, 0, i)))
1143 return 1;
e9a25f70 1144 return 0;
a6a2274a 1145
0d3ffb5a 1146 case CLOBBER:
3c0cb5de 1147 if (MEM_P (XEXP (body, 0)))
0d3ffb5a
GK
1148 if (reg_overlap_mentioned_p (x, XEXP (XEXP (body, 0), 0)))
1149 return 1;
1150 return 0;
1151
0c99ec5c
RH
1152 case COND_EXEC:
1153 if (reg_overlap_mentioned_p (x, COND_EXEC_TEST (body)))
1154 return 1;
1155 return reg_referenced_p (x, COND_EXEC_CODE (body));
1156
e9a25f70
JL
1157 default:
1158 return 0;
2c88418c 1159 }
2c88418c 1160}
2c88418c
RS
1161\f
1162/* Nonzero if register REG is set or clobbered in an insn between
1163 FROM_INSN and TO_INSN (exclusive of those two). */
1164
1165int
a5d567ec
DM
1166reg_set_between_p (const_rtx reg, const rtx_insn *from_insn,
1167 const rtx_insn *to_insn)
2c88418c 1168{
1bbbc4a3 1169 const rtx_insn *insn;
2c88418c
RS
1170
1171 if (from_insn == to_insn)
1172 return 0;
1173
1174 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
2c3c49de 1175 if (INSN_P (insn) && reg_set_p (reg, insn))
2c88418c
RS
1176 return 1;
1177 return 0;
1178}
1179
a69a0436
KT
1180/* Return true if REG is set or clobbered inside INSN. */
1181
2c88418c 1182int
ed7a4b4b 1183reg_set_p (const_rtx reg, const_rtx insn)
2c88418c 1184{
d9a5f0cc
OE
1185 /* After delay slot handling, call and branch insns might be in a
1186 sequence. Check all the elements there. */
1187 if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
1188 {
1189 for (int i = 0; i < XVECLEN (PATTERN (insn), 0); ++i)
1190 if (reg_set_p (reg, XVECEXP (PATTERN (insn), 0, i)))
1191 return true;
1192
1193 return false;
1194 }
1195
2c88418c
RS
1196 /* We can be passed an insn or part of one. If we are passed an insn,
1197 check if a side-effect of the insn clobbers REG. */
4977bab6
ZW
1198 if (INSN_P (insn)
1199 && (FIND_REG_INC_NOTE (insn, reg)
4b4bf941 1200 || (CALL_P (insn)
f8cfc6aa 1201 && ((REG_P (reg)
4f1605d2 1202 && REGNO (reg) < FIRST_PSEUDO_REGISTER
5da20cfe
RS
1203 && overlaps_hard_reg_set_p (regs_invalidated_by_call,
1204 GET_MODE (reg), REGNO (reg)))
3c0cb5de 1205 || MEM_P (reg)
4977bab6 1206 || find_reg_fusage (insn, CLOBBER, reg)))))
d9a5f0cc 1207 return true;
2c88418c 1208
91b2d119 1209 return set_of (reg, insn) != NULL_RTX;
2c88418c
RS
1210}
1211
1212/* Similar to reg_set_between_p, but check all registers in X. Return 0
1213 only if none of them are modified between START and END. Return 1 if
fa10beec 1214 X contains a MEM; this routine does use memory aliasing. */
2c88418c
RS
1215
1216int
8f6bce51 1217modified_between_p (const_rtx x, const rtx_insn *start, const rtx_insn *end)
2c88418c 1218{
9678086d 1219 const enum rtx_code code = GET_CODE (x);
6f7d635c 1220 const char *fmt;
f8163c92 1221 int i, j;
1bbbc4a3 1222 rtx_insn *insn;
7b52eede
JH
1223
1224 if (start == end)
1225 return 0;
2c88418c
RS
1226
1227 switch (code)
1228 {
d8116890 1229 CASE_CONST_ANY:
2c88418c
RS
1230 case CONST:
1231 case SYMBOL_REF:
1232 case LABEL_REF:
1233 return 0;
1234
1235 case PC:
1236 case CC0:
1237 return 1;
1238
1239 case MEM:
7b52eede 1240 if (modified_between_p (XEXP (x, 0), start, end))
2c88418c 1241 return 1;
550b7784
KK
1242 if (MEM_READONLY_P (x))
1243 return 0;
7b52eede
JH
1244 for (insn = NEXT_INSN (start); insn != end; insn = NEXT_INSN (insn))
1245 if (memory_modified_in_insn_p (x, insn))
1246 return 1;
1247 return 0;
2c88418c
RS
1248
1249 case REG:
1250 return reg_set_between_p (x, start, end);
a6a2274a 1251
e9a25f70
JL
1252 default:
1253 break;
2c88418c
RS
1254 }
1255
1256 fmt = GET_RTX_FORMAT (code);
1257 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
f8163c92
RK
1258 {
1259 if (fmt[i] == 'e' && modified_between_p (XEXP (x, i), start, end))
1260 return 1;
1261
d4757e6a 1262 else if (fmt[i] == 'E')
f8163c92
RK
1263 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1264 if (modified_between_p (XVECEXP (x, i, j), start, end))
1265 return 1;
1266 }
1267
1268 return 0;
1269}
1270
1271/* Similar to reg_set_p, but check all registers in X. Return 0 only if none
1272 of them are modified in INSN. Return 1 if X contains a MEM; this routine
7b52eede 1273 does use memory aliasing. */
f8163c92
RK
1274
1275int
9678086d 1276modified_in_p (const_rtx x, const_rtx insn)
f8163c92 1277{
9678086d 1278 const enum rtx_code code = GET_CODE (x);
6f7d635c 1279 const char *fmt;
f8163c92
RK
1280 int i, j;
1281
1282 switch (code)
1283 {
d8116890 1284 CASE_CONST_ANY:
f8163c92
RK
1285 case CONST:
1286 case SYMBOL_REF:
1287 case LABEL_REF:
1288 return 0;
1289
1290 case PC:
1291 case CC0:
2c88418c
RS
1292 return 1;
1293
f8163c92 1294 case MEM:
7b52eede 1295 if (modified_in_p (XEXP (x, 0), insn))
f8163c92 1296 return 1;
550b7784
KK
1297 if (MEM_READONLY_P (x))
1298 return 0;
7b52eede
JH
1299 if (memory_modified_in_insn_p (x, insn))
1300 return 1;
1301 return 0;
f8163c92
RK
1302
1303 case REG:
1304 return reg_set_p (x, insn);
e9a25f70
JL
1305
1306 default:
1307 break;
f8163c92
RK
1308 }
1309
1310 fmt = GET_RTX_FORMAT (code);
1311 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1312 {
1313 if (fmt[i] == 'e' && modified_in_p (XEXP (x, i), insn))
1314 return 1;
1315
d4757e6a 1316 else if (fmt[i] == 'E')
f8163c92
RK
1317 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1318 if (modified_in_p (XVECEXP (x, i, j), insn))
1319 return 1;
1320 }
1321
2c88418c
RS
1322 return 0;
1323}
1324\f
91b2d119
JH
1325/* Helper function for set_of. */
1326struct set_of_data
1327 {
7bc980e1
KG
1328 const_rtx found;
1329 const_rtx pat;
91b2d119
JH
1330 };
1331
1332static void
7bc980e1 1333set_of_1 (rtx x, const_rtx pat, void *data1)
91b2d119 1334{
7bc980e1
KG
1335 struct set_of_data *const data = (struct set_of_data *) (data1);
1336 if (rtx_equal_p (x, data->pat)
1337 || (!MEM_P (x) && reg_overlap_mentioned_p (data->pat, x)))
1338 data->found = pat;
91b2d119
JH
1339}
1340
1341/* Give an INSN, return a SET or CLOBBER expression that does modify PAT
eaec9b3d 1342 (either directly or via STRICT_LOW_PART and similar modifiers). */
7bc980e1
KG
1343const_rtx
1344set_of (const_rtx pat, const_rtx insn)
91b2d119
JH
1345{
1346 struct set_of_data data;
1347 data.found = NULL_RTX;
1348 data.pat = pat;
1349 note_stores (INSN_P (insn) ? PATTERN (insn) : insn, set_of_1, &data);
1350 return data.found;
1351}
e2724e63 1352
f7d0b0fc
RS
1353/* Add all hard register in X to *PSET. */
1354void
1355find_all_hard_regs (const_rtx x, HARD_REG_SET *pset)
1356{
1357 subrtx_iterator::array_type array;
1358 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
1359 {
1360 const_rtx x = *iter;
1361 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
1362 add_to_hard_reg_set (pset, GET_MODE (x), REGNO (x));
1363 }
1364}
1365
e2724e63
BS
1366/* This function, called through note_stores, collects sets and
1367 clobbers of hard registers in a HARD_REG_SET, which is pointed to
1368 by DATA. */
1369void
1370record_hard_reg_sets (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
1371{
1372 HARD_REG_SET *pset = (HARD_REG_SET *)data;
1373 if (REG_P (x) && HARD_REGISTER_P (x))
1374 add_to_hard_reg_set (pset, GET_MODE (x), REGNO (x));
1375}
1376
1377/* Examine INSN, and compute the set of hard registers written by it.
1378 Store it in *PSET. Should only be called after reload. */
1379void
fd769c94 1380find_all_hard_reg_sets (const rtx_insn *insn, HARD_REG_SET *pset, bool implicit)
e2724e63
BS
1381{
1382 rtx link;
1383
1384 CLEAR_HARD_REG_SET (*pset);
1385 note_stores (PATTERN (insn), record_hard_reg_sets, pset);
3ee634fd
TV
1386 if (CALL_P (insn))
1387 {
1388 if (implicit)
1389 IOR_HARD_REG_SET (*pset, call_used_reg_set);
1390
1391 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
1392 record_hard_reg_sets (XEXP (link, 0), NULL, pset);
1393 }
e2724e63
BS
1394 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1395 if (REG_NOTE_KIND (link) == REG_INC)
1396 record_hard_reg_sets (XEXP (link, 0), NULL, pset);
1397}
1398
e2724e63
BS
1399/* Like record_hard_reg_sets, but called through note_uses. */
1400void
1401record_hard_reg_uses (rtx *px, void *data)
1402{
f7d0b0fc 1403 find_all_hard_regs (*px, (HARD_REG_SET *) data);
e2724e63 1404}
91b2d119 1405\f
2c88418c
RS
1406/* Given an INSN, return a SET expression if this insn has only a single SET.
1407 It may also have CLOBBERs, USEs, or SET whose output
1408 will not be used, which we ignore. */
1409
1410rtx
e8a54173 1411single_set_2 (const rtx_insn *insn, const_rtx pat)
2c88418c 1412{
c9b89a21
JH
1413 rtx set = NULL;
1414 int set_verified = 1;
2c88418c 1415 int i;
c9b89a21 1416
b1cdafbb 1417 if (GET_CODE (pat) == PARALLEL)
2c88418c 1418 {
c9b89a21 1419 for (i = 0; i < XVECLEN (pat, 0); i++)
b1cdafbb 1420 {
c9b89a21
JH
1421 rtx sub = XVECEXP (pat, 0, i);
1422 switch (GET_CODE (sub))
1423 {
1424 case USE:
1425 case CLOBBER:
1426 break;
1427
1428 case SET:
1429 /* We can consider insns having multiple sets, where all
1430 but one are dead as single set insns. In common case
1431 only single set is present in the pattern so we want
f63d1bf7 1432 to avoid checking for REG_UNUSED notes unless necessary.
c9b89a21
JH
1433
1434 When we reach set first time, we just expect this is
1435 the single set we are looking for and only when more
1436 sets are found in the insn, we check them. */
1437 if (!set_verified)
1438 {
1439 if (find_reg_note (insn, REG_UNUSED, SET_DEST (set))
1440 && !side_effects_p (set))
1441 set = NULL;
1442 else
1443 set_verified = 1;
1444 }
1445 if (!set)
1446 set = sub, set_verified = 0;
1447 else if (!find_reg_note (insn, REG_UNUSED, SET_DEST (sub))
1448 || side_effects_p (sub))
1449 return NULL_RTX;
1450 break;
1451
1452 default:
1453 return NULL_RTX;
1454 }
787ccee0 1455 }
2c88418c 1456 }
c9b89a21 1457 return set;
2c88418c 1458}
941c63ac
JL
1459
1460/* Given an INSN, return nonzero if it has more than one SET, else return
1461 zero. */
1462
5f7d3786 1463int
f7d504c2 1464multiple_sets (const_rtx insn)
941c63ac 1465{
cae8acdd 1466 int found;
941c63ac 1467 int i;
a6a2274a 1468
941c63ac 1469 /* INSN must be an insn. */
2c3c49de 1470 if (! INSN_P (insn))
941c63ac
JL
1471 return 0;
1472
1473 /* Only a PARALLEL can have multiple SETs. */
1474 if (GET_CODE (PATTERN (insn)) == PARALLEL)
1475 {
1476 for (i = 0, found = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1477 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
1478 {
1479 /* If we have already found a SET, then return now. */
1480 if (found)
1481 return 1;
1482 else
1483 found = 1;
1484 }
1485 }
a6a2274a 1486
941c63ac
JL
1487 /* Either zero or one SET. */
1488 return 0;
1489}
2c88418c 1490\f
7142e318
JW
1491/* Return nonzero if the destination of SET equals the source
1492 and there are no side effects. */
1493
1494int
f7d504c2 1495set_noop_p (const_rtx set)
7142e318
JW
1496{
1497 rtx src = SET_SRC (set);
1498 rtx dst = SET_DEST (set);
1499
371b8fc0
JH
1500 if (dst == pc_rtx && src == pc_rtx)
1501 return 1;
1502
3c0cb5de 1503 if (MEM_P (dst) && MEM_P (src))
cd648cec
JH
1504 return rtx_equal_p (dst, src) && !side_effects_p (dst);
1505
46d096a3 1506 if (GET_CODE (dst) == ZERO_EXTRACT)
7142e318 1507 return rtx_equal_p (XEXP (dst, 0), src)
0c91a1fb 1508 && !BITS_BIG_ENDIAN && XEXP (dst, 2) == const0_rtx
cd648cec 1509 && !side_effects_p (src);
7142e318
JW
1510
1511 if (GET_CODE (dst) == STRICT_LOW_PART)
1512 dst = XEXP (dst, 0);
1513
1514 if (GET_CODE (src) == SUBREG && GET_CODE (dst) == SUBREG)
1515 {
1516 if (SUBREG_BYTE (src) != SUBREG_BYTE (dst))
1517 return 0;
1518 src = SUBREG_REG (src);
1519 dst = SUBREG_REG (dst);
1520 }
1521
8c895291
TB
1522 /* It is a NOOP if destination overlaps with selected src vector
1523 elements. */
1524 if (GET_CODE (src) == VEC_SELECT
1525 && REG_P (XEXP (src, 0)) && REG_P (dst)
1526 && HARD_REGISTER_P (XEXP (src, 0))
1527 && HARD_REGISTER_P (dst))
1528 {
1529 int i;
1530 rtx par = XEXP (src, 1);
1531 rtx src0 = XEXP (src, 0);
1532 int c0 = INTVAL (XVECEXP (par, 0, 0));
1533 HOST_WIDE_INT offset = GET_MODE_UNIT_SIZE (GET_MODE (src0)) * c0;
1534
1535 for (i = 1; i < XVECLEN (par, 0); i++)
1536 if (INTVAL (XVECEXP (par, 0, i)) != c0 + i)
1537 return 0;
1538 return
1539 simplify_subreg_regno (REGNO (src0), GET_MODE (src0),
1540 offset, GET_MODE (dst)) == (int) REGNO (dst);
1541 }
1542
f8cfc6aa 1543 return (REG_P (src) && REG_P (dst)
7142e318
JW
1544 && REGNO (src) == REGNO (dst));
1545}
0005550b
JH
1546\f
1547/* Return nonzero if an insn consists only of SETs, each of which only sets a
1548 value to itself. */
1549
1550int
8a1b6388 1551noop_move_p (const rtx_insn *insn)
0005550b
JH
1552{
1553 rtx pat = PATTERN (insn);
1554
b5832b43
JH
1555 if (INSN_CODE (insn) == NOOP_MOVE_INSN_CODE)
1556 return 1;
1557
0005550b
JH
1558 /* Insns carrying these notes are useful later on. */
1559 if (find_reg_note (insn, REG_EQUAL, NULL_RTX))
1560 return 0;
1561
8f7e6e33
BC
1562 /* Check the code to be executed for COND_EXEC. */
1563 if (GET_CODE (pat) == COND_EXEC)
1564 pat = COND_EXEC_CODE (pat);
1565
0005550b
JH
1566 if (GET_CODE (pat) == SET && set_noop_p (pat))
1567 return 1;
1568
1569 if (GET_CODE (pat) == PARALLEL)
1570 {
1571 int i;
1572 /* If nothing but SETs of registers to themselves,
1573 this insn can also be deleted. */
1574 for (i = 0; i < XVECLEN (pat, 0); i++)
1575 {
1576 rtx tem = XVECEXP (pat, 0, i);
1577
1578 if (GET_CODE (tem) == USE
1579 || GET_CODE (tem) == CLOBBER)
1580 continue;
1581
1582 if (GET_CODE (tem) != SET || ! set_noop_p (tem))
1583 return 0;
1584 }
1585
1586 return 1;
1587 }
1588 return 0;
1589}
1590\f
7142e318 1591
2c88418c
RS
1592/* Return nonzero if register in range [REGNO, ENDREGNO)
1593 appears either explicitly or implicitly in X
1594 other than being stored into.
1595
1596 References contained within the substructure at LOC do not count.
1597 LOC may be zero, meaning don't ignore anything. */
1598
c9bd6bcd 1599bool
f7d504c2 1600refers_to_regno_p (unsigned int regno, unsigned int endregno, const_rtx x,
0c20a65f 1601 rtx *loc)
2c88418c 1602{
770ae6cc
RK
1603 int i;
1604 unsigned int x_regno;
1605 RTX_CODE code;
1606 const char *fmt;
2c88418c
RS
1607
1608 repeat:
1609 /* The contents of a REG_NONNEG note is always zero, so we must come here
1610 upon repeat in case the last REG_NOTE is a REG_NONNEG note. */
1611 if (x == 0)
c9bd6bcd 1612 return false;
2c88418c
RS
1613
1614 code = GET_CODE (x);
1615
1616 switch (code)
1617 {
1618 case REG:
770ae6cc 1619 x_regno = REGNO (x);
f8163c92
RK
1620
1621 /* If we modifying the stack, frame, or argument pointer, it will
1622 clobber a virtual register. In fact, we could be more precise,
1623 but it isn't worth it. */
770ae6cc 1624 if ((x_regno == STACK_POINTER_REGNUM
3f393fc6
TS
1625 || (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1626 && x_regno == ARG_POINTER_REGNUM)
770ae6cc 1627 || x_regno == FRAME_POINTER_REGNUM)
f8163c92 1628 && regno >= FIRST_VIRTUAL_REGISTER && regno <= LAST_VIRTUAL_REGISTER)
c9bd6bcd 1629 return true;
f8163c92 1630
09e18274 1631 return endregno > x_regno && regno < END_REGNO (x);
2c88418c
RS
1632
1633 case SUBREG:
1634 /* If this is a SUBREG of a hard reg, we can see exactly which
1635 registers are being modified. Otherwise, handle normally. */
f8cfc6aa 1636 if (REG_P (SUBREG_REG (x))
2c88418c
RS
1637 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
1638 {
ddef6bc7 1639 unsigned int inner_regno = subreg_regno (x);
770ae6cc 1640 unsigned int inner_endregno
403c659c 1641 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
f1f4e530 1642 ? subreg_nregs (x) : 1);
2c88418c
RS
1643
1644 return endregno > inner_regno && regno < inner_endregno;
1645 }
1646 break;
1647
1648 case CLOBBER:
1649 case SET:
1650 if (&SET_DEST (x) != loc
1651 /* Note setting a SUBREG counts as referring to the REG it is in for
1652 a pseudo but not for hard registers since we can
1653 treat each word individually. */
1654 && ((GET_CODE (SET_DEST (x)) == SUBREG
1655 && loc != &SUBREG_REG (SET_DEST (x))
f8cfc6aa 1656 && REG_P (SUBREG_REG (SET_DEST (x)))
2c88418c
RS
1657 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
1658 && refers_to_regno_p (regno, endregno,
1659 SUBREG_REG (SET_DEST (x)), loc))
f8cfc6aa 1660 || (!REG_P (SET_DEST (x))
2c88418c 1661 && refers_to_regno_p (regno, endregno, SET_DEST (x), loc))))
c9bd6bcd 1662 return true;
2c88418c
RS
1663
1664 if (code == CLOBBER || loc == &SET_SRC (x))
c9bd6bcd 1665 return false;
2c88418c
RS
1666 x = SET_SRC (x);
1667 goto repeat;
e9a25f70
JL
1668
1669 default:
1670 break;
2c88418c
RS
1671 }
1672
1673 /* X does not match, so try its subexpressions. */
1674
1675 fmt = GET_RTX_FORMAT (code);
1676 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1677 {
1678 if (fmt[i] == 'e' && loc != &XEXP (x, i))
1679 {
1680 if (i == 0)
1681 {
1682 x = XEXP (x, 0);
1683 goto repeat;
1684 }
1685 else
1686 if (refers_to_regno_p (regno, endregno, XEXP (x, i), loc))
c9bd6bcd 1687 return true;
2c88418c
RS
1688 }
1689 else if (fmt[i] == 'E')
1690 {
b3694847 1691 int j;
6a87d634 1692 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2c88418c
RS
1693 if (loc != &XVECEXP (x, i, j)
1694 && refers_to_regno_p (regno, endregno, XVECEXP (x, i, j), loc))
c9bd6bcd 1695 return true;
2c88418c
RS
1696 }
1697 }
c9bd6bcd 1698 return false;
2c88418c
RS
1699}
1700
1701/* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
1702 we check if any register number in X conflicts with the relevant register
1703 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
1704 contains a MEM (we don't bother checking for memory addresses that can't
1705 conflict because we expect this to be a rare case. */
1706
1707int
f7d504c2 1708reg_overlap_mentioned_p (const_rtx x, const_rtx in)
2c88418c 1709{
770ae6cc 1710 unsigned int regno, endregno;
2c88418c 1711
6f626d1b
PB
1712 /* If either argument is a constant, then modifying X can not
1713 affect IN. Here we look at IN, we can profitably combine
1714 CONSTANT_P (x) with the switch statement below. */
1715 if (CONSTANT_P (in))
b98b49ac 1716 return 0;
0c99ec5c 1717
6f626d1b 1718 recurse:
0c99ec5c 1719 switch (GET_CODE (x))
2c88418c 1720 {
6f626d1b
PB
1721 case STRICT_LOW_PART:
1722 case ZERO_EXTRACT:
1723 case SIGN_EXTRACT:
1724 /* Overly conservative. */
1725 x = XEXP (x, 0);
1726 goto recurse;
1727
0c99ec5c 1728 case SUBREG:
2c88418c
RS
1729 regno = REGNO (SUBREG_REG (x));
1730 if (regno < FIRST_PSEUDO_REGISTER)
ddef6bc7 1731 regno = subreg_regno (x);
f1f4e530
JM
1732 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
1733 ? subreg_nregs (x) : 1);
0c99ec5c 1734 goto do_reg;
2c88418c 1735
0c99ec5c
RH
1736 case REG:
1737 regno = REGNO (x);
09e18274 1738 endregno = END_REGNO (x);
f1f4e530 1739 do_reg:
8e2e89f7 1740 return refers_to_regno_p (regno, endregno, in, (rtx*) 0);
2c88418c 1741
0c99ec5c
RH
1742 case MEM:
1743 {
1744 const char *fmt;
1745 int i;
2c88418c 1746
3c0cb5de 1747 if (MEM_P (in))
2c88418c
RS
1748 return 1;
1749
0c99ec5c
RH
1750 fmt = GET_RTX_FORMAT (GET_CODE (in));
1751 for (i = GET_RTX_LENGTH (GET_CODE (in)) - 1; i >= 0; i--)
3b009185
RH
1752 if (fmt[i] == 'e')
1753 {
1754 if (reg_overlap_mentioned_p (x, XEXP (in, i)))
1755 return 1;
1756 }
1757 else if (fmt[i] == 'E')
1758 {
1759 int j;
1760 for (j = XVECLEN (in, i) - 1; j >= 0; --j)
1761 if (reg_overlap_mentioned_p (x, XVECEXP (in, i, j)))
1762 return 1;
1763 }
c0222c21 1764
0c99ec5c
RH
1765 return 0;
1766 }
1767
1768 case SCRATCH:
1769 case PC:
1770 case CC0:
1771 return reg_mentioned_p (x, in);
1772
1773 case PARALLEL:
37ceff9d 1774 {
90d036a0 1775 int i;
37ceff9d
RH
1776
1777 /* If any register in here refers to it we return true. */
7193d1dc
RK
1778 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1779 if (XEXP (XVECEXP (x, 0, i), 0) != 0
1780 && reg_overlap_mentioned_p (XEXP (XVECEXP (x, 0, i), 0), in))
6f626d1b 1781 return 1;
7193d1dc 1782 return 0;
37ceff9d 1783 }
2c88418c 1784
0c99ec5c 1785 default:
41374e13 1786 gcc_assert (CONSTANT_P (x));
6f626d1b
PB
1787 return 0;
1788 }
2c88418c
RS
1789}
1790\f
2c88418c 1791/* Call FUN on each register or MEM that is stored into or clobbered by X.
c3a1ef9d
MM
1792 (X would be the pattern of an insn). DATA is an arbitrary pointer,
1793 ignored by note_stores, but passed to FUN.
1794
1795 FUN receives three arguments:
1796 1. the REG, MEM, CC0 or PC being stored in or clobbered,
1797 2. the SET or CLOBBER rtx that does the store,
1798 3. the pointer DATA provided to note_stores.
2c88418c
RS
1799
1800 If the item being stored in or clobbered is a SUBREG of a hard register,
1801 the SUBREG will be passed. */
a6a2274a 1802
2c88418c 1803void
7bc980e1 1804note_stores (const_rtx x, void (*fun) (rtx, const_rtx, void *), void *data)
2c88418c 1805{
aa317c97 1806 int i;
90d036a0 1807
aa317c97
KG
1808 if (GET_CODE (x) == COND_EXEC)
1809 x = COND_EXEC_CODE (x);
90d036a0 1810
aa317c97
KG
1811 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
1812 {
1813 rtx dest = SET_DEST (x);
1814
1815 while ((GET_CODE (dest) == SUBREG
1816 && (!REG_P (SUBREG_REG (dest))
1817 || REGNO (SUBREG_REG (dest)) >= FIRST_PSEUDO_REGISTER))
1818 || GET_CODE (dest) == ZERO_EXTRACT
1819 || GET_CODE (dest) == STRICT_LOW_PART)
1820 dest = XEXP (dest, 0);
1821
1822 /* If we have a PARALLEL, SET_DEST is a list of EXPR_LIST expressions,
1823 each of whose first operand is a register. */
1824 if (GET_CODE (dest) == PARALLEL)
1825 {
1826 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
1827 if (XEXP (XVECEXP (dest, 0, i), 0) != 0)
1828 (*fun) (XEXP (XVECEXP (dest, 0, i), 0), x, data);
1829 }
1830 else
1831 (*fun) (dest, x, data);
1832 }
770ae6cc 1833
aa317c97
KG
1834 else if (GET_CODE (x) == PARALLEL)
1835 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1836 note_stores (XVECEXP (x, 0, i), fun, data);
1837}
2c88418c 1838\f
e2373f95
RK
1839/* Like notes_stores, but call FUN for each expression that is being
1840 referenced in PBODY, a pointer to the PATTERN of an insn. We only call
1841 FUN for each expression, not any interior subexpressions. FUN receives a
1842 pointer to the expression and the DATA passed to this function.
1843
1844 Note that this is not quite the same test as that done in reg_referenced_p
1845 since that considers something as being referenced if it is being
1846 partially set, while we do not. */
1847
1848void
0c20a65f 1849note_uses (rtx *pbody, void (*fun) (rtx *, void *), void *data)
e2373f95
RK
1850{
1851 rtx body = *pbody;
1852 int i;
1853
1854 switch (GET_CODE (body))
1855 {
1856 case COND_EXEC:
1857 (*fun) (&COND_EXEC_TEST (body), data);
1858 note_uses (&COND_EXEC_CODE (body), fun, data);
1859 return;
1860
1861 case PARALLEL:
1862 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1863 note_uses (&XVECEXP (body, 0, i), fun, data);
1864 return;
1865
bbbc206e
BS
1866 case SEQUENCE:
1867 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1868 note_uses (&PATTERN (XVECEXP (body, 0, i)), fun, data);
1869 return;
1870
e2373f95
RK
1871 case USE:
1872 (*fun) (&XEXP (body, 0), data);
1873 return;
1874
1875 case ASM_OPERANDS:
1876 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
1877 (*fun) (&ASM_OPERANDS_INPUT (body, i), data);
1878 return;
1879
1880 case TRAP_IF:
1881 (*fun) (&TRAP_CONDITION (body), data);
1882 return;
1883
21b8482a
JJ
1884 case PREFETCH:
1885 (*fun) (&XEXP (body, 0), data);
1886 return;
1887
e2373f95
RK
1888 case UNSPEC:
1889 case UNSPEC_VOLATILE:
1890 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1891 (*fun) (&XVECEXP (body, 0, i), data);
1892 return;
1893
1894 case CLOBBER:
3c0cb5de 1895 if (MEM_P (XEXP (body, 0)))
e2373f95
RK
1896 (*fun) (&XEXP (XEXP (body, 0), 0), data);
1897 return;
1898
1899 case SET:
1900 {
1901 rtx dest = SET_DEST (body);
1902
1903 /* For sets we replace everything in source plus registers in memory
1904 expression in store and operands of a ZERO_EXTRACT. */
1905 (*fun) (&SET_SRC (body), data);
1906
1907 if (GET_CODE (dest) == ZERO_EXTRACT)
1908 {
1909 (*fun) (&XEXP (dest, 1), data);
1910 (*fun) (&XEXP (dest, 2), data);
1911 }
1912
1913 while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART)
1914 dest = XEXP (dest, 0);
1915
3c0cb5de 1916 if (MEM_P (dest))
e2373f95
RK
1917 (*fun) (&XEXP (dest, 0), data);
1918 }
1919 return;
1920
1921 default:
1922 /* All the other possibilities never store. */
1923 (*fun) (pbody, data);
1924 return;
1925 }
1926}
1927\f
2c88418c
RS
1928/* Return nonzero if X's old contents don't survive after INSN.
1929 This will be true if X is (cc0) or if X is a register and
1930 X dies in INSN or because INSN entirely sets X.
1931
46d096a3
SB
1932 "Entirely set" means set directly and not through a SUBREG, or
1933 ZERO_EXTRACT, so no trace of the old contents remains.
2c88418c
RS
1934 Likewise, REG_INC does not count.
1935
1936 REG may be a hard or pseudo reg. Renumbering is not taken into account,
1937 but for this use that makes no difference, since regs don't overlap
1938 during their lifetimes. Therefore, this function may be used
6fb5fa3c 1939 at any time after deaths have been computed.
2c88418c
RS
1940
1941 If REG is a hard reg that occupies multiple machine registers, this
1942 function will only return 1 if each of those registers will be replaced
1943 by INSN. */
1944
1945int
f7d504c2 1946dead_or_set_p (const_rtx insn, const_rtx x)
2c88418c 1947{
09e18274 1948 unsigned int regno, end_regno;
770ae6cc 1949 unsigned int i;
2c88418c
RS
1950
1951 /* Can't use cc0_rtx below since this file is used by genattrtab.c. */
1952 if (GET_CODE (x) == CC0)
1953 return 1;
1954
41374e13 1955 gcc_assert (REG_P (x));
2c88418c
RS
1956
1957 regno = REGNO (x);
09e18274
RS
1958 end_regno = END_REGNO (x);
1959 for (i = regno; i < end_regno; i++)
2c88418c
RS
1960 if (! dead_or_set_regno_p (insn, i))
1961 return 0;
1962
1963 return 1;
1964}
1965
194acded
HPN
1966/* Return TRUE iff DEST is a register or subreg of a register and
1967 doesn't change the number of words of the inner register, and any
1968 part of the register is TEST_REGNO. */
1969
1970static bool
f7d504c2 1971covers_regno_no_parallel_p (const_rtx dest, unsigned int test_regno)
194acded
HPN
1972{
1973 unsigned int regno, endregno;
1974
1975 if (GET_CODE (dest) == SUBREG
1976 && (((GET_MODE_SIZE (GET_MODE (dest))
1977 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1978 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
1979 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
1980 dest = SUBREG_REG (dest);
1981
1982 if (!REG_P (dest))
1983 return false;
1984
1985 regno = REGNO (dest);
09e18274 1986 endregno = END_REGNO (dest);
194acded
HPN
1987 return (test_regno >= regno && test_regno < endregno);
1988}
1989
1990/* Like covers_regno_no_parallel_p, but also handles PARALLELs where
1991 any member matches the covers_regno_no_parallel_p criteria. */
1992
1993static bool
f7d504c2 1994covers_regno_p (const_rtx dest, unsigned int test_regno)
194acded
HPN
1995{
1996 if (GET_CODE (dest) == PARALLEL)
1997 {
1998 /* Some targets place small structures in registers for return
1999 values of functions, and those registers are wrapped in
2000 PARALLELs that we may see as the destination of a SET. */
2001 int i;
2002
2003 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
2004 {
2005 rtx inner = XEXP (XVECEXP (dest, 0, i), 0);
2006 if (inner != NULL_RTX
2007 && covers_regno_no_parallel_p (inner, test_regno))
2008 return true;
2009 }
2010
2011 return false;
2012 }
2013 else
2014 return covers_regno_no_parallel_p (dest, test_regno);
2015}
2016
6fb5fa3c 2017/* Utility function for dead_or_set_p to check an individual register. */
2c88418c
RS
2018
2019int
f7d504c2 2020dead_or_set_regno_p (const_rtx insn, unsigned int test_regno)
2c88418c 2021{
f7d504c2 2022 const_rtx pattern;
2c88418c 2023
0a2287bf
RH
2024 /* See if there is a death note for something that includes TEST_REGNO. */
2025 if (find_regno_note (insn, REG_DEAD, test_regno))
2026 return 1;
2c88418c 2027
4b4bf941 2028 if (CALL_P (insn)
8f3e7a26
RK
2029 && find_regno_fusage (insn, CLOBBER, test_regno))
2030 return 1;
2031
0c99ec5c
RH
2032 pattern = PATTERN (insn);
2033
10439b59 2034 /* If a COND_EXEC is not executed, the value survives. */
0c99ec5c 2035 if (GET_CODE (pattern) == COND_EXEC)
10439b59 2036 return 0;
0c99ec5c
RH
2037
2038 if (GET_CODE (pattern) == SET)
194acded 2039 return covers_regno_p (SET_DEST (pattern), test_regno);
0c99ec5c 2040 else if (GET_CODE (pattern) == PARALLEL)
2c88418c 2041 {
b3694847 2042 int i;
2c88418c 2043
0c99ec5c 2044 for (i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
2c88418c 2045 {
0c99ec5c
RH
2046 rtx body = XVECEXP (pattern, 0, i);
2047
2048 if (GET_CODE (body) == COND_EXEC)
2049 body = COND_EXEC_CODE (body);
2c88418c 2050
194acded
HPN
2051 if ((GET_CODE (body) == SET || GET_CODE (body) == CLOBBER)
2052 && covers_regno_p (SET_DEST (body), test_regno))
2053 return 1;
2c88418c
RS
2054 }
2055 }
2056
2057 return 0;
2058}
2059
2060/* Return the reg-note of kind KIND in insn INSN, if there is one.
2061 If DATUM is nonzero, look for one whose datum is DATUM. */
2062
2063rtx
f7d504c2 2064find_reg_note (const_rtx insn, enum reg_note kind, const_rtx datum)
2c88418c 2065{
b3694847 2066 rtx link;
2c88418c 2067
7a40b8b1 2068 gcc_checking_assert (insn);
af082de3 2069
ae78d276 2070 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
2c3c49de 2071 if (! INSN_P (insn))
ae78d276 2072 return 0;
cd798543
AP
2073 if (datum == 0)
2074 {
2075 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2076 if (REG_NOTE_KIND (link) == kind)
2077 return link;
2078 return 0;
2079 }
ae78d276 2080
2c88418c 2081 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
cd798543 2082 if (REG_NOTE_KIND (link) == kind && datum == XEXP (link, 0))
2c88418c
RS
2083 return link;
2084 return 0;
2085}
2086
2087/* Return the reg-note of kind KIND in insn INSN which applies to register
99309f3b
RK
2088 number REGNO, if any. Return 0 if there is no such reg-note. Note that
2089 the REGNO of this NOTE need not be REGNO if REGNO is a hard register;
2090 it might be the case that the note overlaps REGNO. */
2c88418c
RS
2091
2092rtx
f7d504c2 2093find_regno_note (const_rtx insn, enum reg_note kind, unsigned int regno)
2c88418c 2094{
b3694847 2095 rtx link;
2c88418c 2096
ae78d276 2097 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
2c3c49de 2098 if (! INSN_P (insn))
ae78d276
MM
2099 return 0;
2100
2c88418c
RS
2101 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2102 if (REG_NOTE_KIND (link) == kind
2103 /* Verify that it is a register, so that scratch and MEM won't cause a
2104 problem here. */
f8cfc6aa 2105 && REG_P (XEXP (link, 0))
99309f3b 2106 && REGNO (XEXP (link, 0)) <= regno
09e18274 2107 && END_REGNO (XEXP (link, 0)) > regno)
2c88418c
RS
2108 return link;
2109 return 0;
2110}
8f3e7a26 2111
d9c695ff
RK
2112/* Return a REG_EQUIV or REG_EQUAL note if insn has only a single set and
2113 has such a note. */
2114
2115rtx
f7d504c2 2116find_reg_equal_equiv_note (const_rtx insn)
d9c695ff 2117{
cd648cec 2118 rtx link;
d9c695ff 2119
cd648cec 2120 if (!INSN_P (insn))
d9c695ff 2121 return 0;
ea8f106d 2122
cd648cec
JH
2123 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2124 if (REG_NOTE_KIND (link) == REG_EQUAL
2125 || REG_NOTE_KIND (link) == REG_EQUIV)
2126 {
ea8f106d
SB
2127 /* FIXME: We should never have REG_EQUAL/REG_EQUIV notes on
2128 insns that have multiple sets. Checking single_set to
2129 make sure of this is not the proper check, as explained
2130 in the comment in set_unique_reg_note.
2131
2132 This should be changed into an assert. */
2133 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
cd648cec
JH
2134 return 0;
2135 return link;
2136 }
2137 return NULL;
d9c695ff
RK
2138}
2139
2a450639
RS
2140/* Check whether INSN is a single_set whose source is known to be
2141 equivalent to a constant. Return that constant if so, otherwise
2142 return null. */
2143
2144rtx
68a1a6c0 2145find_constant_src (const rtx_insn *insn)
2a450639
RS
2146{
2147 rtx note, set, x;
2148
2149 set = single_set (insn);
2150 if (set)
2151 {
2152 x = avoid_constant_pool_reference (SET_SRC (set));
2153 if (CONSTANT_P (x))
2154 return x;
2155 }
2156
2157 note = find_reg_equal_equiv_note (insn);
2158 if (note && CONSTANT_P (XEXP (note, 0)))
2159 return XEXP (note, 0);
2160
2161 return NULL_RTX;
2162}
2163
8f3e7a26
RK
2164/* Return true if DATUM, or any overlap of DATUM, of kind CODE is found
2165 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
2166
2167int
f7d504c2 2168find_reg_fusage (const_rtx insn, enum rtx_code code, const_rtx datum)
8f3e7a26
RK
2169{
2170 /* If it's not a CALL_INSN, it can't possibly have a
2171 CALL_INSN_FUNCTION_USAGE field, so don't bother checking. */
4b4bf941 2172 if (!CALL_P (insn))
8f3e7a26
RK
2173 return 0;
2174
41374e13 2175 gcc_assert (datum);
8f3e7a26 2176
f8cfc6aa 2177 if (!REG_P (datum))
8f3e7a26 2178 {
b3694847 2179 rtx link;
8f3e7a26
RK
2180
2181 for (link = CALL_INSN_FUNCTION_USAGE (insn);
a6a2274a 2182 link;
8f3e7a26 2183 link = XEXP (link, 1))
a6a2274a 2184 if (GET_CODE (XEXP (link, 0)) == code
cc863bea 2185 && rtx_equal_p (datum, XEXP (XEXP (link, 0), 0)))
a6a2274a 2186 return 1;
8f3e7a26
RK
2187 }
2188 else
2189 {
770ae6cc 2190 unsigned int regno = REGNO (datum);
8f3e7a26
RK
2191
2192 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
2193 to pseudo registers, so don't bother checking. */
2194
2195 if (regno < FIRST_PSEUDO_REGISTER)
a6a2274a 2196 {
72d19505 2197 unsigned int end_regno = END_REGNO (datum);
770ae6cc 2198 unsigned int i;
8f3e7a26
RK
2199
2200 for (i = regno; i < end_regno; i++)
2201 if (find_regno_fusage (insn, code, i))
2202 return 1;
a6a2274a 2203 }
8f3e7a26
RK
2204 }
2205
2206 return 0;
2207}
2208
2209/* Return true if REGNO, or any overlap of REGNO, of kind CODE is found
2210 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
2211
2212int
f7d504c2 2213find_regno_fusage (const_rtx insn, enum rtx_code code, unsigned int regno)
8f3e7a26 2214{
b3694847 2215 rtx link;
8f3e7a26
RK
2216
2217 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
2218 to pseudo registers, so don't bother checking. */
2219
2220 if (regno >= FIRST_PSEUDO_REGISTER
4b4bf941 2221 || !CALL_P (insn) )
8f3e7a26
RK
2222 return 0;
2223
2224 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
83ab3839 2225 {
770ae6cc 2226 rtx op, reg;
83ab3839
RH
2227
2228 if (GET_CODE (op = XEXP (link, 0)) == code
f8cfc6aa 2229 && REG_P (reg = XEXP (op, 0))
09e18274 2230 && REGNO (reg) <= regno
72d19505 2231 && END_REGNO (reg) > regno)
83ab3839
RH
2232 return 1;
2233 }
8f3e7a26
RK
2234
2235 return 0;
2236}
a6a063b8 2237
2c88418c 2238\f
e5af9ddd
RS
2239/* Return true if KIND is an integer REG_NOTE. */
2240
2241static bool
2242int_reg_note_p (enum reg_note kind)
2243{
2244 return kind == REG_BR_PROB;
2245}
2246
efc0b2bd
ILT
2247/* Allocate a register note with kind KIND and datum DATUM. LIST is
2248 stored as the pointer to the next register note. */
65c5f2a6 2249
efc0b2bd
ILT
2250rtx
2251alloc_reg_note (enum reg_note kind, rtx datum, rtx list)
65c5f2a6
ILT
2252{
2253 rtx note;
2254
e5af9ddd 2255 gcc_checking_assert (!int_reg_note_p (kind));
65c5f2a6
ILT
2256 switch (kind)
2257 {
2258 case REG_CC_SETTER:
2259 case REG_CC_USER:
2260 case REG_LABEL_TARGET:
2261 case REG_LABEL_OPERAND:
0a35513e 2262 case REG_TM:
65c5f2a6
ILT
2263 /* These types of register notes use an INSN_LIST rather than an
2264 EXPR_LIST, so that copying is done right and dumps look
2265 better. */
efc0b2bd 2266 note = alloc_INSN_LIST (datum, list);
65c5f2a6
ILT
2267 PUT_REG_NOTE_KIND (note, kind);
2268 break;
2269
2270 default:
efc0b2bd 2271 note = alloc_EXPR_LIST (kind, datum, list);
65c5f2a6
ILT
2272 break;
2273 }
2274
efc0b2bd
ILT
2275 return note;
2276}
2277
2278/* Add register note with kind KIND and datum DATUM to INSN. */
2279
2280void
2281add_reg_note (rtx insn, enum reg_note kind, rtx datum)
2282{
2283 REG_NOTES (insn) = alloc_reg_note (kind, datum, REG_NOTES (insn));
65c5f2a6
ILT
2284}
2285
e5af9ddd
RS
2286/* Add an integer register note with kind KIND and datum DATUM to INSN. */
2287
2288void
2289add_int_reg_note (rtx insn, enum reg_note kind, int datum)
2290{
2291 gcc_checking_assert (int_reg_note_p (kind));
ef4bddc2 2292 REG_NOTES (insn) = gen_rtx_INT_LIST ((machine_mode) kind,
e5af9ddd
RS
2293 datum, REG_NOTES (insn));
2294}
2295
2296/* Add a register note like NOTE to INSN. */
2297
2298void
9b8d3c60 2299add_shallow_copy_of_reg_note (rtx_insn *insn, rtx note)
e5af9ddd
RS
2300{
2301 if (GET_CODE (note) == INT_LIST)
2302 add_int_reg_note (insn, REG_NOTE_KIND (note), XINT (note, 0));
2303 else
2304 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
2305}
2306
2c88418c
RS
2307/* Remove register note NOTE from the REG_NOTES of INSN. */
2308
2309void
f7d504c2 2310remove_note (rtx insn, const_rtx note)
2c88418c 2311{
b3694847 2312 rtx link;
2c88418c 2313
49c3bb12
RH
2314 if (note == NULL_RTX)
2315 return;
2316
2c88418c 2317 if (REG_NOTES (insn) == note)
6fb5fa3c
DB
2318 REG_NOTES (insn) = XEXP (note, 1);
2319 else
2320 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2321 if (XEXP (link, 1) == note)
2322 {
2323 XEXP (link, 1) = XEXP (note, 1);
2324 break;
2325 }
2326
2327 switch (REG_NOTE_KIND (note))
2c88418c 2328 {
6fb5fa3c
DB
2329 case REG_EQUAL:
2330 case REG_EQUIV:
b2908ba6 2331 df_notes_rescan (as_a <rtx_insn *> (insn));
6fb5fa3c
DB
2332 break;
2333 default:
2334 break;
2c88418c 2335 }
2c88418c 2336}
55a98783 2337
7cd689bc
SB
2338/* Remove REG_EQUAL and/or REG_EQUIV notes if INSN has such notes. */
2339
2340void
43534595 2341remove_reg_equal_equiv_notes (rtx_insn *insn)
7cd689bc
SB
2342{
2343 rtx *loc;
2344
2345 loc = &REG_NOTES (insn);
2346 while (*loc)
2347 {
2348 enum reg_note kind = REG_NOTE_KIND (*loc);
2349 if (kind == REG_EQUAL || kind == REG_EQUIV)
2350 *loc = XEXP (*loc, 1);
2351 else
2352 loc = &XEXP (*loc, 1);
2353 }
2354}
885c9b5d
EB
2355
2356/* Remove all REG_EQUAL and REG_EQUIV notes referring to REGNO. */
2357
2358void
2359remove_reg_equal_equiv_notes_for_regno (unsigned int regno)
2360{
2361 df_ref eq_use;
2362
2363 if (!df)
2364 return;
2365
2366 /* This loop is a little tricky. We cannot just go down the chain because
2367 it is being modified by some actions in the loop. So we just iterate
2368 over the head. We plan to drain the list anyway. */
2369 while ((eq_use = DF_REG_EQ_USE_CHAIN (regno)) != NULL)
2370 {
1bbbc4a3 2371 rtx_insn *insn = DF_REF_INSN (eq_use);
885c9b5d
EB
2372 rtx note = find_reg_equal_equiv_note (insn);
2373
2374 /* This assert is generally triggered when someone deletes a REG_EQUAL
2375 or REG_EQUIV note by hacking the list manually rather than calling
2376 remove_note. */
2377 gcc_assert (note);
2378
2379 remove_note (insn, note);
2380 }
2381}
7cd689bc 2382
5f0d2358
RK
2383/* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
2384 return 1 if it is found. A simple equality test is used to determine if
2385 NODE matches. */
2386
0d53e74e
TS
2387bool
2388in_insn_list_p (const rtx_insn_list *listp, const rtx_insn *node)
5f0d2358 2389{
f7d504c2 2390 const_rtx x;
5f0d2358
RK
2391
2392 for (x = listp; x; x = XEXP (x, 1))
2393 if (node == XEXP (x, 0))
0d53e74e 2394 return true;
5f0d2358 2395
0d53e74e 2396 return false;
5f0d2358
RK
2397}
2398
dd248abd
RK
2399/* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
2400 remove that entry from the list if it is found.
55a98783 2401
dd248abd 2402 A simple equality test is used to determine if NODE matches. */
55a98783
JL
2403
2404void
2382940b 2405remove_node_from_expr_list (const_rtx node, rtx_expr_list **listp)
55a98783 2406{
2382940b 2407 rtx_expr_list *temp = *listp;
e67d1102 2408 rtx_expr_list *prev = NULL;
55a98783
JL
2409
2410 while (temp)
2411 {
2382940b 2412 if (node == temp->element ())
55a98783
JL
2413 {
2414 /* Splice the node out of the list. */
2415 if (prev)
2382940b 2416 XEXP (prev, 1) = temp->next ();
55a98783 2417 else
2382940b 2418 *listp = temp->next ();
55a98783
JL
2419
2420 return;
2421 }
dd248abd
RK
2422
2423 prev = temp;
2382940b 2424 temp = temp->next ();
55a98783
JL
2425 }
2426}
b5241a5a
DM
2427
2428/* Search LISTP (an INSN_LIST) for an entry whose first operand is NODE and
2429 remove that entry from the list if it is found.
2430
2431 A simple equality test is used to determine if NODE matches. */
2432
2433void
2434remove_node_from_insn_list (const rtx_insn *node, rtx_insn_list **listp)
2435{
2436 rtx_insn_list *temp = *listp;
e67d1102 2437 rtx_insn_list *prev = NULL;
b5241a5a
DM
2438
2439 while (temp)
2440 {
2441 if (node == temp->insn ())
2442 {
2443 /* Splice the node out of the list. */
2444 if (prev)
2445 XEXP (prev, 1) = temp->next ();
2446 else
2447 *listp = temp->next ();
2448
2449 return;
2450 }
2451
2452 prev = temp;
2453 temp = temp->next ();
2454 }
2455}
2c88418c 2456\f
2b067faf
RS
2457/* Nonzero if X contains any volatile instructions. These are instructions
2458 which may cause unpredictable machine state instructions, and thus no
adddc347
HPN
2459 instructions or register uses should be moved or combined across them.
2460 This includes only volatile asms and UNSPEC_VOLATILE instructions. */
2b067faf
RS
2461
2462int
f7d504c2 2463volatile_insn_p (const_rtx x)
2b067faf 2464{
f7d504c2 2465 const RTX_CODE code = GET_CODE (x);
2b067faf
RS
2466 switch (code)
2467 {
2468 case LABEL_REF:
2469 case SYMBOL_REF:
2b067faf 2470 case CONST:
d8116890 2471 CASE_CONST_ANY:
2b067faf
RS
2472 case CC0:
2473 case PC:
2474 case REG:
2475 case SCRATCH:
2476 case CLOBBER:
2b067faf
RS
2477 case ADDR_VEC:
2478 case ADDR_DIFF_VEC:
2479 case CALL:
2480 case MEM:
2481 return 0;
2482
2483 case UNSPEC_VOLATILE:
2b067faf
RS
2484 return 1;
2485
4c46ea23 2486 case ASM_INPUT:
2b067faf
RS
2487 case ASM_OPERANDS:
2488 if (MEM_VOLATILE_P (x))
2489 return 1;
e9a25f70
JL
2490
2491 default:
2492 break;
2b067faf
RS
2493 }
2494
2495 /* Recursively scan the operands of this expression. */
2496
2497 {
f7d504c2 2498 const char *const fmt = GET_RTX_FORMAT (code);
b3694847 2499 int i;
a6a2274a 2500
2b067faf
RS
2501 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2502 {
2503 if (fmt[i] == 'e')
2504 {
31001f72 2505 if (volatile_insn_p (XEXP (x, i)))
2b067faf
RS
2506 return 1;
2507 }
d4757e6a 2508 else if (fmt[i] == 'E')
2b067faf 2509 {
b3694847 2510 int j;
2b067faf 2511 for (j = 0; j < XVECLEN (x, i); j++)
31001f72 2512 if (volatile_insn_p (XVECEXP (x, i, j)))
2b067faf
RS
2513 return 1;
2514 }
2515 }
2516 }
2517 return 0;
2518}
2519
2c88418c 2520/* Nonzero if X contains any volatile memory references
2ac4fed0 2521 UNSPEC_VOLATILE operations or volatile ASM_OPERANDS expressions. */
2c88418c
RS
2522
2523int
f7d504c2 2524volatile_refs_p (const_rtx x)
2c88418c 2525{
f7d504c2 2526 const RTX_CODE code = GET_CODE (x);
2c88418c
RS
2527 switch (code)
2528 {
2529 case LABEL_REF:
2530 case SYMBOL_REF:
2c88418c 2531 case CONST:
d8116890 2532 CASE_CONST_ANY:
2c88418c
RS
2533 case CC0:
2534 case PC:
2535 case REG:
2536 case SCRATCH:
2537 case CLOBBER:
2c88418c
RS
2538 case ADDR_VEC:
2539 case ADDR_DIFF_VEC:
2540 return 0;
2541
2ac4fed0 2542 case UNSPEC_VOLATILE:
2c88418c
RS
2543 return 1;
2544
2545 case MEM:
4c46ea23 2546 case ASM_INPUT:
2c88418c
RS
2547 case ASM_OPERANDS:
2548 if (MEM_VOLATILE_P (x))
2549 return 1;
e9a25f70
JL
2550
2551 default:
2552 break;
2c88418c
RS
2553 }
2554
2555 /* Recursively scan the operands of this expression. */
2556
2557 {
f7d504c2 2558 const char *const fmt = GET_RTX_FORMAT (code);
b3694847 2559 int i;
a6a2274a 2560
2c88418c
RS
2561 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2562 {
2563 if (fmt[i] == 'e')
2564 {
2565 if (volatile_refs_p (XEXP (x, i)))
2566 return 1;
2567 }
d4757e6a 2568 else if (fmt[i] == 'E')
2c88418c 2569 {
b3694847 2570 int j;
2c88418c
RS
2571 for (j = 0; j < XVECLEN (x, i); j++)
2572 if (volatile_refs_p (XVECEXP (x, i, j)))
2573 return 1;
2574 }
2575 }
2576 }
2577 return 0;
2578}
2579
2580/* Similar to above, except that it also rejects register pre- and post-
2581 incrementing. */
2582
2583int
f7d504c2 2584side_effects_p (const_rtx x)
2c88418c 2585{
f7d504c2 2586 const RTX_CODE code = GET_CODE (x);
2c88418c
RS
2587 switch (code)
2588 {
2589 case LABEL_REF:
2590 case SYMBOL_REF:
2c88418c 2591 case CONST:
d8116890 2592 CASE_CONST_ANY:
2c88418c
RS
2593 case CC0:
2594 case PC:
2595 case REG:
2596 case SCRATCH:
2c88418c
RS
2597 case ADDR_VEC:
2598 case ADDR_DIFF_VEC:
b5b8b0ac 2599 case VAR_LOCATION:
2c88418c
RS
2600 return 0;
2601
2602 case CLOBBER:
2603 /* Reject CLOBBER with a non-VOID mode. These are made by combine.c
2604 when some combination can't be done. If we see one, don't think
2605 that we can simplify the expression. */
2606 return (GET_MODE (x) != VOIDmode);
2607
2608 case PRE_INC:
2609 case PRE_DEC:
2610 case POST_INC:
2611 case POST_DEC:
1fb9c5cd
MH
2612 case PRE_MODIFY:
2613 case POST_MODIFY:
2c88418c 2614 case CALL:
2ac4fed0 2615 case UNSPEC_VOLATILE:
2c88418c
RS
2616 return 1;
2617
2618 case MEM:
4c46ea23 2619 case ASM_INPUT:
2c88418c
RS
2620 case ASM_OPERANDS:
2621 if (MEM_VOLATILE_P (x))
2622 return 1;
e9a25f70
JL
2623
2624 default:
2625 break;
2c88418c
RS
2626 }
2627
2628 /* Recursively scan the operands of this expression. */
2629
2630 {
b3694847
SS
2631 const char *fmt = GET_RTX_FORMAT (code);
2632 int i;
a6a2274a 2633
2c88418c
RS
2634 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2635 {
2636 if (fmt[i] == 'e')
2637 {
2638 if (side_effects_p (XEXP (x, i)))
2639 return 1;
2640 }
d4757e6a 2641 else if (fmt[i] == 'E')
2c88418c 2642 {
b3694847 2643 int j;
2c88418c
RS
2644 for (j = 0; j < XVECLEN (x, i); j++)
2645 if (side_effects_p (XVECEXP (x, i, j)))
2646 return 1;
2647 }
2648 }
2649 }
2650 return 0;
2651}
2652\f
e755fcf5 2653/* Return nonzero if evaluating rtx X might cause a trap.
48e8382e
PB
2654 FLAGS controls how to consider MEMs. A nonzero means the context
2655 of the access may have changed from the original, such that the
2656 address may have become invalid. */
2c88418c 2657
215b063c 2658int
f7d504c2 2659may_trap_p_1 (const_rtx x, unsigned flags)
2c88418c
RS
2660{
2661 int i;
2662 enum rtx_code code;
6f7d635c 2663 const char *fmt;
48e8382e
PB
2664
2665 /* We make no distinction currently, but this function is part of
2666 the internal target-hooks ABI so we keep the parameter as
2667 "unsigned flags". */
2668 bool code_changed = flags != 0;
2c88418c
RS
2669
2670 if (x == 0)
2671 return 0;
2672 code = GET_CODE (x);
2673 switch (code)
2674 {
2675 /* Handle these cases quickly. */
d8116890 2676 CASE_CONST_ANY:
2c88418c
RS
2677 case SYMBOL_REF:
2678 case LABEL_REF:
2679 case CONST:
2680 case PC:
2681 case CC0:
2682 case REG:
2683 case SCRATCH:
2684 return 0;
2685
215b063c 2686 case UNSPEC:
215b063c
PB
2687 return targetm.unspec_may_trap_p (x, flags);
2688
c84a808e 2689 case UNSPEC_VOLATILE:
215b063c 2690 case ASM_INPUT:
2c88418c
RS
2691 case TRAP_IF:
2692 return 1;
2693
22aa60a1
RH
2694 case ASM_OPERANDS:
2695 return MEM_VOLATILE_P (x);
2696
2c88418c
RS
2697 /* Memory ref can trap unless it's a static var or a stack slot. */
2698 case MEM:
d809253a
EB
2699 /* Recognize specific pattern of stack checking probes. */
2700 if (flag_stack_check
2701 && MEM_VOLATILE_P (x)
2702 && XEXP (x, 0) == stack_pointer_rtx)
2703 return 1;
e755fcf5 2704 if (/* MEM_NOTRAP_P only relates to the actual position of the memory
48e8382e
PB
2705 reference; moving it out of context such as when moving code
2706 when optimizing, might cause its address to become invalid. */
2707 code_changed
2708 || !MEM_NOTRAP_P (x))
2709 {
f5541398 2710 HOST_WIDE_INT size = MEM_SIZE_KNOWN_P (x) ? MEM_SIZE (x) : 0;
48e8382e
PB
2711 return rtx_addr_can_trap_p_1 (XEXP (x, 0), 0, size,
2712 GET_MODE (x), code_changed);
2713 }
2714
2715 return 0;
2c88418c
RS
2716
2717 /* Division by a non-constant might trap. */
2718 case DIV:
2719 case MOD:
2720 case UDIV:
2721 case UMOD:
3d3dbadd 2722 if (HONOR_SNANS (x))
52bfebf0 2723 return 1;
3d8bf70f 2724 if (SCALAR_FLOAT_MODE_P (GET_MODE (x)))
f9013075
DE
2725 return flag_trapping_math;
2726 if (!CONSTANT_P (XEXP (x, 1)) || (XEXP (x, 1) == const0_rtx))
2c88418c 2727 return 1;
e9a25f70
JL
2728 break;
2729
b278301b
RK
2730 case EXPR_LIST:
2731 /* An EXPR_LIST is used to represent a function call. This
2732 certainly may trap. */
2733 return 1;
e9a25f70 2734
734508ea
JW
2735 case GE:
2736 case GT:
2737 case LE:
2738 case LT:
19aec195 2739 case LTGT:
55143861 2740 case COMPARE:
734508ea 2741 /* Some floating point comparisons may trap. */
f5eb5fd0
JH
2742 if (!flag_trapping_math)
2743 break;
734508ea
JW
2744 /* ??? There is no machine independent way to check for tests that trap
2745 when COMPARE is used, though many targets do make this distinction.
2746 For instance, sparc uses CCFPE for compares which generate exceptions
2747 and CCFP for compares which do not generate exceptions. */
1b457aa4 2748 if (HONOR_NANS (x))
55143861
JJ
2749 return 1;
2750 /* But often the compare has some CC mode, so check operand
2751 modes as well. */
1b457aa4
MG
2752 if (HONOR_NANS (XEXP (x, 0))
2753 || HONOR_NANS (XEXP (x, 1)))
52bfebf0
RS
2754 return 1;
2755 break;
2756
2757 case EQ:
2758 case NE:
3d3dbadd 2759 if (HONOR_SNANS (x))
52bfebf0
RS
2760 return 1;
2761 /* Often comparison is CC mode, so check operand modes. */
3d3dbadd
MG
2762 if (HONOR_SNANS (XEXP (x, 0))
2763 || HONOR_SNANS (XEXP (x, 1)))
55143861
JJ
2764 return 1;
2765 break;
2766
22fd5743
FH
2767 case FIX:
2768 /* Conversion of floating point might trap. */
1b457aa4 2769 if (flag_trapping_math && HONOR_NANS (XEXP (x, 0)))
22fd5743
FH
2770 return 1;
2771 break;
2772
05cc23e8
RH
2773 case NEG:
2774 case ABS:
e3947b34 2775 case SUBREG:
05cc23e8
RH
2776 /* These operations don't trap even with floating point. */
2777 break;
2778
2c88418c
RS
2779 default:
2780 /* Any floating arithmetic may trap. */
c84a808e 2781 if (SCALAR_FLOAT_MODE_P (GET_MODE (x)) && flag_trapping_math)
2c88418c
RS
2782 return 1;
2783 }
2784
2785 fmt = GET_RTX_FORMAT (code);
2786 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2787 {
2788 if (fmt[i] == 'e')
2789 {
e755fcf5 2790 if (may_trap_p_1 (XEXP (x, i), flags))
2c88418c
RS
2791 return 1;
2792 }
2793 else if (fmt[i] == 'E')
2794 {
b3694847 2795 int j;
2c88418c 2796 for (j = 0; j < XVECLEN (x, i); j++)
e755fcf5 2797 if (may_trap_p_1 (XVECEXP (x, i, j), flags))
2c88418c
RS
2798 return 1;
2799 }
2800 }
2801 return 0;
2802}
2358ff91
EB
2803
2804/* Return nonzero if evaluating rtx X might cause a trap. */
2805
2806int
f7d504c2 2807may_trap_p (const_rtx x)
2358ff91 2808{
e755fcf5
ZD
2809 return may_trap_p_1 (x, 0);
2810}
2811
c0220ea4 2812/* Same as above, but additionally return nonzero if evaluating rtx X might
2358ff91
EB
2813 cause a fault. We define a fault for the purpose of this function as a
2814 erroneous execution condition that cannot be encountered during the normal
2815 execution of a valid program; the typical example is an unaligned memory
2816 access on a strict alignment machine. The compiler guarantees that it
2817 doesn't generate code that will fault from a valid program, but this
2818 guarantee doesn't mean anything for individual instructions. Consider
2819 the following example:
2820
2821 struct S { int d; union { char *cp; int *ip; }; };
2822
2823 int foo(struct S *s)
2824 {
2825 if (s->d == 1)
2826 return *s->ip;
2827 else
2828 return *s->cp;
2829 }
2830
2831 on a strict alignment machine. In a valid program, foo will never be
2832 invoked on a structure for which d is equal to 1 and the underlying
2833 unique field of the union not aligned on a 4-byte boundary, but the
2834 expression *s->ip might cause a fault if considered individually.
2835
2836 At the RTL level, potentially problematic expressions will almost always
2837 verify may_trap_p; for example, the above dereference can be emitted as
2838 (mem:SI (reg:P)) and this expression is may_trap_p for a generic register.
2839 However, suppose that foo is inlined in a caller that causes s->cp to
2840 point to a local character variable and guarantees that s->d is not set
2841 to 1; foo may have been effectively translated into pseudo-RTL as:
2842
2843 if ((reg:SI) == 1)
2844 (set (reg:SI) (mem:SI (%fp - 7)))
2845 else
2846 (set (reg:QI) (mem:QI (%fp - 7)))
2847
2848 Now (mem:SI (%fp - 7)) is considered as not may_trap_p since it is a
2849 memory reference to a stack slot, but it will certainly cause a fault
2850 on a strict alignment machine. */
2851
2852int
f7d504c2 2853may_trap_or_fault_p (const_rtx x)
2358ff91 2854{
48e8382e 2855 return may_trap_p_1 (x, 1);
2358ff91 2856}
2c88418c
RS
2857\f
2858/* Return nonzero if X contains a comparison that is not either EQ or NE,
2859 i.e., an inequality. */
2860
2861int
f7d504c2 2862inequality_comparisons_p (const_rtx x)
2c88418c 2863{
b3694847
SS
2864 const char *fmt;
2865 int len, i;
f7d504c2 2866 const enum rtx_code code = GET_CODE (x);
2c88418c
RS
2867
2868 switch (code)
2869 {
2870 case REG:
2871 case SCRATCH:
2872 case PC:
2873 case CC0:
d8116890 2874 CASE_CONST_ANY:
2c88418c
RS
2875 case CONST:
2876 case LABEL_REF:
2877 case SYMBOL_REF:
2878 return 0;
2879
2880 case LT:
2881 case LTU:
2882 case GT:
2883 case GTU:
2884 case LE:
2885 case LEU:
2886 case GE:
2887 case GEU:
2888 return 1;
a6a2274a 2889
e9a25f70
JL
2890 default:
2891 break;
2c88418c
RS
2892 }
2893
2894 len = GET_RTX_LENGTH (code);
2895 fmt = GET_RTX_FORMAT (code);
2896
2897 for (i = 0; i < len; i++)
2898 {
2899 if (fmt[i] == 'e')
2900 {
2901 if (inequality_comparisons_p (XEXP (x, i)))
2902 return 1;
2903 }
2904 else if (fmt[i] == 'E')
2905 {
b3694847 2906 int j;
2c88418c
RS
2907 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2908 if (inequality_comparisons_p (XVECEXP (x, i, j)))
2909 return 1;
2910 }
2911 }
a6a2274a 2912
2c88418c
RS
2913 return 0;
2914}
2915\f
1ed0205e
VM
2916/* Replace any occurrence of FROM in X with TO. The function does
2917 not enter into CONST_DOUBLE for the replace.
2c88418c
RS
2918
2919 Note that copying is not done so X must not be shared unless all copies
9bc057c8
JJ
2920 are to be modified.
2921
2922 ALL_REGS is true if we want to replace all REGs equal to FROM, not just
2923 those pointer-equal ones. */
2c88418c
RS
2924
2925rtx
9bc057c8 2926replace_rtx (rtx x, rtx from, rtx to, bool all_regs)
2c88418c 2927{
b3694847
SS
2928 int i, j;
2929 const char *fmt;
2c88418c
RS
2930
2931 if (x == from)
2932 return to;
2933
2934 /* Allow this function to make replacements in EXPR_LISTs. */
2935 if (x == 0)
2936 return 0;
2937
9bc057c8
JJ
2938 if (all_regs
2939 && REG_P (x)
2940 && REG_P (from)
2941 && REGNO (x) == REGNO (from))
2942 {
2943 gcc_assert (GET_MODE (x) == GET_MODE (from));
2944 return to;
2945 }
2946 else if (GET_CODE (x) == SUBREG)
9dd791c8 2947 {
9bc057c8 2948 rtx new_rtx = replace_rtx (SUBREG_REG (x), from, to, all_regs);
9dd791c8 2949
481683e1 2950 if (CONST_INT_P (new_rtx))
9dd791c8 2951 {
55d796da 2952 x = simplify_subreg (GET_MODE (x), new_rtx,
9dd791c8
AO
2953 GET_MODE (SUBREG_REG (x)),
2954 SUBREG_BYTE (x));
41374e13 2955 gcc_assert (x);
9dd791c8
AO
2956 }
2957 else
55d796da 2958 SUBREG_REG (x) = new_rtx;
9dd791c8
AO
2959
2960 return x;
2961 }
2962 else if (GET_CODE (x) == ZERO_EXTEND)
2963 {
9bc057c8 2964 rtx new_rtx = replace_rtx (XEXP (x, 0), from, to, all_regs);
9dd791c8 2965
481683e1 2966 if (CONST_INT_P (new_rtx))
9dd791c8
AO
2967 {
2968 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
55d796da 2969 new_rtx, GET_MODE (XEXP (x, 0)));
41374e13 2970 gcc_assert (x);
9dd791c8
AO
2971 }
2972 else
55d796da 2973 XEXP (x, 0) = new_rtx;
9dd791c8
AO
2974
2975 return x;
2976 }
2977
2c88418c
RS
2978 fmt = GET_RTX_FORMAT (GET_CODE (x));
2979 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
2980 {
2981 if (fmt[i] == 'e')
9bc057c8 2982 XEXP (x, i) = replace_rtx (XEXP (x, i), from, to, all_regs);
2c88418c
RS
2983 else if (fmt[i] == 'E')
2984 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9bc057c8
JJ
2985 XVECEXP (x, i, j) = replace_rtx (XVECEXP (x, i, j),
2986 from, to, all_regs);
2c88418c
RS
2987 }
2988
2989 return x;
a6a2274a 2990}
2c88418c 2991\f
a2b7026c
RS
2992/* Replace occurrences of the OLD_LABEL in *LOC with NEW_LABEL. Also track
2993 the change in LABEL_NUSES if UPDATE_LABEL_NUSES. */
39811184 2994
a2b7026c
RS
2995void
2996replace_label (rtx *loc, rtx old_label, rtx new_label, bool update_label_nuses)
39811184 2997{
a2b7026c
RS
2998 /* Handle jump tables specially, since ADDR_{DIFF_,}VECs can be long. */
2999 rtx x = *loc;
3000 if (JUMP_TABLE_DATA_P (x))
4af16369 3001 {
a2b7026c
RS
3002 x = PATTERN (x);
3003 rtvec vec = XVEC (x, GET_CODE (x) == ADDR_DIFF_VEC);
3004 int len = GET_NUM_ELEM (vec);
3005 for (int i = 0; i < len; ++i)
4af16369 3006 {
a2b7026c
RS
3007 rtx ref = RTVEC_ELT (vec, i);
3008 if (XEXP (ref, 0) == old_label)
3009 {
3010 XEXP (ref, 0) = new_label;
3011 if (update_label_nuses)
3012 {
3013 ++LABEL_NUSES (new_label);
3014 --LABEL_NUSES (old_label);
3015 }
3016 }
4af16369 3017 }
a2b7026c 3018 return;
4af16369
JZ
3019 }
3020
39811184 3021 /* If this is a JUMP_INSN, then we also need to fix the JUMP_LABEL
a2b7026c 3022 field. This is not handled by the iterator because it doesn't
39811184 3023 handle unprinted ('0') fields. */
a2b7026c
RS
3024 if (JUMP_P (x) && JUMP_LABEL (x) == old_label)
3025 JUMP_LABEL (x) = new_label;
39811184 3026
a2b7026c
RS
3027 subrtx_ptr_iterator::array_type array;
3028 FOR_EACH_SUBRTX_PTR (iter, array, loc, ALL)
4af16369 3029 {
a2b7026c
RS
3030 rtx *loc = *iter;
3031 if (rtx x = *loc)
4af16369 3032 {
a2b7026c
RS
3033 if (GET_CODE (x) == SYMBOL_REF
3034 && CONSTANT_POOL_ADDRESS_P (x))
3035 {
3036 rtx c = get_pool_constant (x);
3037 if (rtx_referenced_p (old_label, c))
3038 {
3039 /* Create a copy of constant C; replace the label inside
3040 but do not update LABEL_NUSES because uses in constant pool
3041 are not counted. */
3042 rtx new_c = copy_rtx (c);
3043 replace_label (&new_c, old_label, new_label, false);
3044
3045 /* Add the new constant NEW_C to constant pool and replace
3046 the old reference to constant by new reference. */
3047 rtx new_mem = force_const_mem (get_pool_mode (x), new_c);
3048 *loc = replace_rtx (x, x, XEXP (new_mem, 0));
3049 }
3050 }
3051
3052 if ((GET_CODE (x) == LABEL_REF
3053 || GET_CODE (x) == INSN_LIST)
3054 && XEXP (x, 0) == old_label)
3055 {
3056 XEXP (x, 0) = new_label;
3057 if (update_label_nuses)
3058 {
3059 ++LABEL_NUSES (new_label);
3060 --LABEL_NUSES (old_label);
3061 }
3062 }
4af16369 3063 }
4af16369 3064 }
a2b7026c 3065}
39811184 3066
a2b7026c
RS
3067void
3068replace_label_in_insn (rtx_insn *insn, rtx old_label, rtx new_label,
3069 bool update_label_nuses)
3070{
3071 rtx insn_as_rtx = insn;
3072 replace_label (&insn_as_rtx, old_label, new_label, update_label_nuses);
3073 gcc_checking_assert (insn_as_rtx == insn);
39811184
JZ
3074}
3075
e08cf836 3076/* Return true if X is referenced in BODY. */
39811184 3077
e08cf836
RS
3078bool
3079rtx_referenced_p (const_rtx x, const_rtx body)
39811184 3080{
e08cf836
RS
3081 subrtx_iterator::array_type array;
3082 FOR_EACH_SUBRTX (iter, array, body, ALL)
3083 if (const_rtx y = *iter)
3084 {
3085 /* Check if a label_ref Y refers to label X. */
a827d9b1
DM
3086 if (GET_CODE (y) == LABEL_REF
3087 && LABEL_P (x)
3088 && LABEL_REF_LABEL (y) == x)
e08cf836 3089 return true;
39811184 3090
e08cf836
RS
3091 if (rtx_equal_p (x, y))
3092 return true;
39811184 3093
e08cf836
RS
3094 /* If Y is a reference to pool constant traverse the constant. */
3095 if (GET_CODE (y) == SYMBOL_REF
3096 && CONSTANT_POOL_ADDRESS_P (y))
3097 iter.substitute (get_pool_constant (y));
3098 }
3099 return false;
39811184
JZ
3100}
3101
ee735eef
JZ
3102/* If INSN is a tablejump return true and store the label (before jump table) to
3103 *LABELP and the jump table to *TABLEP. LABELP and TABLEP may be NULL. */
39811184
JZ
3104
3105bool
c5241a21 3106tablejump_p (const rtx_insn *insn, rtx *labelp, rtx_jump_table_data **tablep)
39811184 3107{
1476d1bd
MM
3108 rtx label;
3109 rtx_insn *table;
ee735eef 3110
dc0ff1c8
BS
3111 if (!JUMP_P (insn))
3112 return false;
3113
3114 label = JUMP_LABEL (insn);
3115 if (label != NULL_RTX && !ANY_RETURN_P (label)
b32d5189 3116 && (table = NEXT_INSN (as_a <rtx_insn *> (label))) != NULL_RTX
481683e1 3117 && JUMP_TABLE_DATA_P (table))
39811184 3118 {
ee735eef
JZ
3119 if (labelp)
3120 *labelp = label;
3121 if (tablep)
8942ee0f 3122 *tablep = as_a <rtx_jump_table_data *> (table);
39811184
JZ
3123 return true;
3124 }
3125 return false;
3126}
3127
fce7e199
RH
3128/* A subroutine of computed_jump_p, return 1 if X contains a REG or MEM or
3129 constant that is not in the constant pool and not in the condition
3130 of an IF_THEN_ELSE. */
2a1777af
JL
3131
3132static int
f7d504c2 3133computed_jump_p_1 (const_rtx x)
2a1777af 3134{
f7d504c2 3135 const enum rtx_code code = GET_CODE (x);
2a1777af 3136 int i, j;
6f7d635c 3137 const char *fmt;
2a1777af
JL
3138
3139 switch (code)
3140 {
2a1777af
JL
3141 case LABEL_REF:
3142 case PC:
3143 return 0;
3144
fce7e199 3145 case CONST:
d8116890 3146 CASE_CONST_ANY:
fce7e199 3147 case SYMBOL_REF:
2a1777af
JL
3148 case REG:
3149 return 1;
3150
3151 case MEM:
3152 return ! (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
3153 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)));
3154
3155 case IF_THEN_ELSE:
fce7e199
RH
3156 return (computed_jump_p_1 (XEXP (x, 1))
3157 || computed_jump_p_1 (XEXP (x, 2)));
1d300e19
KG
3158
3159 default:
3160 break;
2a1777af
JL
3161 }
3162
3163 fmt = GET_RTX_FORMAT (code);
3164 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3165 {
3166 if (fmt[i] == 'e'
fce7e199 3167 && computed_jump_p_1 (XEXP (x, i)))
2a1777af
JL
3168 return 1;
3169
d4757e6a 3170 else if (fmt[i] == 'E')
2a1777af 3171 for (j = 0; j < XVECLEN (x, i); j++)
fce7e199 3172 if (computed_jump_p_1 (XVECEXP (x, i, j)))
2a1777af
JL
3173 return 1;
3174 }
3175
3176 return 0;
3177}
3178
3179/* Return nonzero if INSN is an indirect jump (aka computed jump).
3180
3181 Tablejumps and casesi insns are not considered indirect jumps;
4eb00163 3182 we can recognize them by a (use (label_ref)). */
2a1777af
JL
3183
3184int
63bd6324 3185computed_jump_p (const rtx_insn *insn)
2a1777af
JL
3186{
3187 int i;
4b4bf941 3188 if (JUMP_P (insn))
2a1777af
JL
3189 {
3190 rtx pat = PATTERN (insn);
2a1777af 3191
cf7c4aa6
HPN
3192 /* If we have a JUMP_LABEL set, we're not a computed jump. */
3193 if (JUMP_LABEL (insn) != NULL)
f759eb8b 3194 return 0;
cf7c4aa6
HPN
3195
3196 if (GET_CODE (pat) == PARALLEL)
2a1777af
JL
3197 {
3198 int len = XVECLEN (pat, 0);
3199 int has_use_labelref = 0;
3200
3201 for (i = len - 1; i >= 0; i--)
3202 if (GET_CODE (XVECEXP (pat, 0, i)) == USE
3203 && (GET_CODE (XEXP (XVECEXP (pat, 0, i), 0))
3204 == LABEL_REF))
c7b3b99f
PCC
3205 {
3206 has_use_labelref = 1;
3207 break;
3208 }
2a1777af
JL
3209
3210 if (! has_use_labelref)
3211 for (i = len - 1; i >= 0; i--)
3212 if (GET_CODE (XVECEXP (pat, 0, i)) == SET
3213 && SET_DEST (XVECEXP (pat, 0, i)) == pc_rtx
fce7e199 3214 && computed_jump_p_1 (SET_SRC (XVECEXP (pat, 0, i))))
2a1777af
JL
3215 return 1;
3216 }
3217 else if (GET_CODE (pat) == SET
3218 && SET_DEST (pat) == pc_rtx
fce7e199 3219 && computed_jump_p_1 (SET_SRC (pat)))
2a1777af
JL
3220 return 1;
3221 }
3222 return 0;
3223}
ccc2d6d0 3224
4deef538
AO
3225\f
3226
8d8e205b
RS
3227/* MEM has a PRE/POST-INC/DEC/MODIFY address X. Extract the operands of
3228 the equivalent add insn and pass the result to FN, using DATA as the
3229 final argument. */
4deef538
AO
3230
3231static int
8d8e205b 3232for_each_inc_dec_find_inc_dec (rtx mem, for_each_inc_dec_fn fn, void *data)
4deef538 3233{
8d8e205b 3234 rtx x = XEXP (mem, 0);
4deef538
AO
3235 switch (GET_CODE (x))
3236 {
3237 case PRE_INC:
3238 case POST_INC:
3239 {
8d8e205b 3240 int size = GET_MODE_SIZE (GET_MODE (mem));
4deef538
AO
3241 rtx r1 = XEXP (x, 0);
3242 rtx c = gen_int_mode (size, GET_MODE (r1));
8d8e205b 3243 return fn (mem, x, r1, r1, c, data);
4deef538
AO
3244 }
3245
3246 case PRE_DEC:
3247 case POST_DEC:
3248 {
8d8e205b 3249 int size = GET_MODE_SIZE (GET_MODE (mem));
4deef538
AO
3250 rtx r1 = XEXP (x, 0);
3251 rtx c = gen_int_mode (-size, GET_MODE (r1));
8d8e205b 3252 return fn (mem, x, r1, r1, c, data);
4deef538
AO
3253 }
3254
3255 case PRE_MODIFY:
3256 case POST_MODIFY:
3257 {
3258 rtx r1 = XEXP (x, 0);
3259 rtx add = XEXP (x, 1);
8d8e205b 3260 return fn (mem, x, r1, add, NULL, data);
4deef538
AO
3261 }
3262
3263 default:
8d8e205b 3264 gcc_unreachable ();
4deef538
AO
3265 }
3266}
3267
8d8e205b
RS
3268/* Traverse *LOC looking for MEMs that have autoinc addresses.
3269 For each such autoinc operation found, call FN, passing it
4deef538
AO
3270 the innermost enclosing MEM, the operation itself, the RTX modified
3271 by the operation, two RTXs (the second may be NULL) that, once
3272 added, represent the value to be held by the modified RTX
8d8e205b
RS
3273 afterwards, and DATA. FN is to return 0 to continue the
3274 traversal or any other value to have it returned to the caller of
4deef538
AO
3275 for_each_inc_dec. */
3276
3277int
8d8e205b 3278for_each_inc_dec (rtx x,
4deef538 3279 for_each_inc_dec_fn fn,
8d8e205b 3280 void *data)
4deef538 3281{
8d8e205b
RS
3282 subrtx_var_iterator::array_type array;
3283 FOR_EACH_SUBRTX_VAR (iter, array, x, NONCONST)
3284 {
3285 rtx mem = *iter;
3286 if (mem
3287 && MEM_P (mem)
3288 && GET_RTX_CLASS (GET_CODE (XEXP (mem, 0))) == RTX_AUTOINC)
3289 {
3290 int res = for_each_inc_dec_find_inc_dec (mem, fn, data);
3291 if (res != 0)
3292 return res;
3293 iter.skip_subrtxes ();
3294 }
3295 }
3296 return 0;
4deef538
AO
3297}
3298
3299\f
777b1b71
RH
3300/* Searches X for any reference to REGNO, returning the rtx of the
3301 reference found if any. Otherwise, returns NULL_RTX. */
3302
3303rtx
0c20a65f 3304regno_use_in (unsigned int regno, rtx x)
777b1b71 3305{
b3694847 3306 const char *fmt;
777b1b71
RH
3307 int i, j;
3308 rtx tem;
3309
f8cfc6aa 3310 if (REG_P (x) && REGNO (x) == regno)
777b1b71
RH
3311 return x;
3312
3313 fmt = GET_RTX_FORMAT (GET_CODE (x));
3314 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
3315 {
3316 if (fmt[i] == 'e')
3317 {
3318 if ((tem = regno_use_in (regno, XEXP (x, i))))
3319 return tem;
3320 }
3321 else if (fmt[i] == 'E')
3322 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3323 if ((tem = regno_use_in (regno , XVECEXP (x, i, j))))
3324 return tem;
3325 }
3326
3327 return NULL_RTX;
3328}
2dfa9a87 3329
e5c56fd9 3330/* Return a value indicating whether OP, an operand of a commutative
350911e6
AM
3331 operation, is preferred as the first or second operand. The more
3332 positive the value, the stronger the preference for being the first
3333 operand. */
e5c56fd9 3334
9b3bd424 3335int
0c20a65f 3336commutative_operand_precedence (rtx op)
e5c56fd9 3337{
e3d6e740 3338 enum rtx_code code = GET_CODE (op);
b8698a0f 3339
350911e6 3340 /* Constants always become the second operand. Prefer "nice" constants. */
e3d6e740 3341 if (code == CONST_INT)
7e0b4eae 3342 return -8;
807e902e 3343 if (code == CONST_WIDE_INT)
b7b528a4 3344 return -7;
e3d6e740 3345 if (code == CONST_DOUBLE)
7e0b4eae 3346 return -7;
091a3ac7
CF
3347 if (code == CONST_FIXED)
3348 return -7;
9ce79a7a 3349 op = avoid_constant_pool_reference (op);
79b82df3 3350 code = GET_CODE (op);
ec8e098d
PB
3351
3352 switch (GET_RTX_CLASS (code))
3353 {
3354 case RTX_CONST_OBJ:
3355 if (code == CONST_INT)
7e0b4eae 3356 return -6;
807e902e
KZ
3357 if (code == CONST_WIDE_INT)
3358 return -6;
ec8e098d 3359 if (code == CONST_DOUBLE)
7e0b4eae 3360 return -5;
091a3ac7
CF
3361 if (code == CONST_FIXED)
3362 return -5;
7e0b4eae 3363 return -4;
ec8e098d
PB
3364
3365 case RTX_EXTRA:
3366 /* SUBREGs of objects should come second. */
3367 if (code == SUBREG && OBJECT_P (SUBREG_REG (op)))
7e0b4eae 3368 return -3;
6fb5fa3c 3369 return 0;
ec8e098d
PB
3370
3371 case RTX_OBJ:
3372 /* Complex expressions should be the first, so decrease priority
7e0b4eae
PB
3373 of objects. Prefer pointer objects over non pointer objects. */
3374 if ((REG_P (op) && REG_POINTER (op))
3375 || (MEM_P (op) && MEM_POINTER (op)))
3376 return -1;
3377 return -2;
ec8e098d
PB
3378
3379 case RTX_COMM_ARITH:
3380 /* Prefer operands that are themselves commutative to be first.
3381 This helps to make things linear. In particular,
3382 (and (and (reg) (reg)) (not (reg))) is canonical. */
3383 return 4;
3384
3385 case RTX_BIN_ARITH:
3386 /* If only one operand is a binary expression, it will be the first
3387 operand. In particular, (plus (minus (reg) (reg)) (neg (reg)))
3388 is canonical, although it will usually be further simplified. */
3389 return 2;
b8698a0f 3390
ec8e098d
PB
3391 case RTX_UNARY:
3392 /* Then prefer NEG and NOT. */
3393 if (code == NEG || code == NOT)
3394 return 1;
191816a3 3395 /* FALLTHRU */
e5c56fd9 3396
ec8e098d
PB
3397 default:
3398 return 0;
3399 }
e5c56fd9
JH
3400}
3401
f63d1bf7 3402/* Return 1 iff it is necessary to swap operands of commutative operation
e5c56fd9
JH
3403 in order to canonicalize expression. */
3404
7e0b4eae 3405bool
0c20a65f 3406swap_commutative_operands_p (rtx x, rtx y)
e5c56fd9 3407{
9b3bd424
RH
3408 return (commutative_operand_precedence (x)
3409 < commutative_operand_precedence (y));
e5c56fd9 3410}
2dfa9a87
MH
3411
3412/* Return 1 if X is an autoincrement side effect and the register is
3413 not the stack pointer. */
3414int
f7d504c2 3415auto_inc_p (const_rtx x)
2dfa9a87
MH
3416{
3417 switch (GET_CODE (x))
3418 {
3419 case PRE_INC:
3420 case POST_INC:
3421 case PRE_DEC:
3422 case POST_DEC:
3423 case PRE_MODIFY:
3424 case POST_MODIFY:
3425 /* There are no REG_INC notes for SP. */
3426 if (XEXP (x, 0) != stack_pointer_rtx)
3427 return 1;
3428 default:
3429 break;
3430 }
3431 return 0;
3432}
3b10cf4b 3433
f9da5064 3434/* Return nonzero if IN contains a piece of rtl that has the address LOC. */
db7ba742 3435int
f7d504c2 3436loc_mentioned_in_p (rtx *loc, const_rtx in)
db7ba742 3437{
a52b023a
PB
3438 enum rtx_code code;
3439 const char *fmt;
db7ba742
R
3440 int i, j;
3441
a52b023a
PB
3442 if (!in)
3443 return 0;
3444
3445 code = GET_CODE (in);
3446 fmt = GET_RTX_FORMAT (code);
db7ba742
R
3447 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3448 {
db7ba742
R
3449 if (fmt[i] == 'e')
3450 {
e0651058 3451 if (loc == &XEXP (in, i) || loc_mentioned_in_p (loc, XEXP (in, i)))
db7ba742
R
3452 return 1;
3453 }
3454 else if (fmt[i] == 'E')
3455 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
e0651058
AO
3456 if (loc == &XVECEXP (in, i, j)
3457 || loc_mentioned_in_p (loc, XVECEXP (in, i, j)))
db7ba742
R
3458 return 1;
3459 }
3460 return 0;
3461}
ddef6bc7 3462
bb51e270
RS
3463/* Helper function for subreg_lsb. Given a subreg's OUTER_MODE, INNER_MODE,
3464 and SUBREG_BYTE, return the bit offset where the subreg begins
3465 (counting from the least significant bit of the operand). */
33aceff2
JW
3466
3467unsigned int
ef4bddc2
RS
3468subreg_lsb_1 (machine_mode outer_mode,
3469 machine_mode inner_mode,
bb51e270 3470 unsigned int subreg_byte)
33aceff2 3471{
33aceff2
JW
3472 unsigned int bitpos;
3473 unsigned int byte;
3474 unsigned int word;
3475
3476 /* A paradoxical subreg begins at bit position 0. */
5511bc5a 3477 if (GET_MODE_PRECISION (outer_mode) > GET_MODE_PRECISION (inner_mode))
33aceff2
JW
3478 return 0;
3479
3480 if (WORDS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
3481 /* If the subreg crosses a word boundary ensure that
3482 it also begins and ends on a word boundary. */
41374e13
NS
3483 gcc_assert (!((subreg_byte % UNITS_PER_WORD
3484 + GET_MODE_SIZE (outer_mode)) > UNITS_PER_WORD
3485 && (subreg_byte % UNITS_PER_WORD
3486 || GET_MODE_SIZE (outer_mode) % UNITS_PER_WORD)));
33aceff2
JW
3487
3488 if (WORDS_BIG_ENDIAN)
3489 word = (GET_MODE_SIZE (inner_mode)
bb51e270 3490 - (subreg_byte + GET_MODE_SIZE (outer_mode))) / UNITS_PER_WORD;
33aceff2 3491 else
bb51e270 3492 word = subreg_byte / UNITS_PER_WORD;
33aceff2
JW
3493 bitpos = word * BITS_PER_WORD;
3494
3495 if (BYTES_BIG_ENDIAN)
3496 byte = (GET_MODE_SIZE (inner_mode)
bb51e270 3497 - (subreg_byte + GET_MODE_SIZE (outer_mode))) % UNITS_PER_WORD;
33aceff2 3498 else
bb51e270 3499 byte = subreg_byte % UNITS_PER_WORD;
33aceff2
JW
3500 bitpos += byte * BITS_PER_UNIT;
3501
3502 return bitpos;
3503}
3504
bb51e270
RS
3505/* Given a subreg X, return the bit offset where the subreg begins
3506 (counting from the least significant bit of the reg). */
3507
3508unsigned int
f7d504c2 3509subreg_lsb (const_rtx x)
bb51e270
RS
3510{
3511 return subreg_lsb_1 (GET_MODE (x), GET_MODE (SUBREG_REG (x)),
3512 SUBREG_BYTE (x));
3513}
3514
f1f4e530 3515/* Fill in information about a subreg of a hard register.
ddef6bc7
JJ
3516 xregno - A regno of an inner hard subreg_reg (or what will become one).
3517 xmode - The mode of xregno.
3518 offset - The byte offset.
3519 ymode - The mode of a top level SUBREG (or what may become one).
0cb07998
RS
3520 info - Pointer to structure to fill in.
3521
3522 Rather than considering one particular inner register (and thus one
3523 particular "outer" register) in isolation, this function really uses
3524 XREGNO as a model for a sequence of isomorphic hard registers. Thus the
3525 function does not check whether adding INFO->offset to XREGNO gives
3526 a valid hard register; even if INFO->offset + XREGNO is out of range,
3527 there might be another register of the same type that is in range.
3528 Likewise it doesn't check whether HARD_REGNO_MODE_OK accepts the new
3529 register, since that can depend on things like whether the final
3530 register number is even or odd. Callers that want to check whether
3531 this particular subreg can be replaced by a simple (reg ...) should
3532 use simplify_subreg_regno. */
3533
c619e982 3534void
ef4bddc2
RS
3535subreg_get_info (unsigned int xregno, machine_mode xmode,
3536 unsigned int offset, machine_mode ymode,
f1f4e530 3537 struct subreg_info *info)
04c5580f 3538{
8521c414 3539 int nregs_xmode, nregs_ymode;
04c5580f 3540 int mode_multiple, nregs_multiple;
f1f4e530 3541 int offset_adj, y_offset, y_offset_adj;
8521c414 3542 int regsize_xmode, regsize_ymode;
f1f4e530 3543 bool rknown;
04c5580f 3544
41374e13 3545 gcc_assert (xregno < FIRST_PSEUDO_REGISTER);
04c5580f 3546
f1f4e530
JM
3547 rknown = false;
3548
dd79bb7e
GK
3549 /* If there are holes in a non-scalar mode in registers, we expect
3550 that it is made up of its units concatenated together. */
8521c414 3551 if (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode))
dd79bb7e 3552 {
ef4bddc2 3553 machine_mode xmode_unit;
8521c414
JM
3554
3555 nregs_xmode = HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode);
1c0e448f 3556 xmode_unit = GET_MODE_INNER (xmode);
8521c414
JM
3557 gcc_assert (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode_unit));
3558 gcc_assert (nregs_xmode
3559 == (GET_MODE_NUNITS (xmode)
3560 * HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode_unit)));
3561 gcc_assert (hard_regno_nregs[xregno][xmode]
3562 == (hard_regno_nregs[xregno][xmode_unit]
3563 * GET_MODE_NUNITS (xmode)));
dd79bb7e
GK
3564
3565 /* You can only ask for a SUBREG of a value with holes in the middle
3566 if you don't cross the holes. (Such a SUBREG should be done by
3567 picking a different register class, or doing it in memory if
3568 necessary.) An example of a value with holes is XCmode on 32-bit
3569 x86 with -m128bit-long-double; it's represented in 6 32-bit registers,
b8698a0f 3570 3 for each part, but in memory it's two 128-bit parts.
dd79bb7e
GK
3571 Padding is assumed to be at the end (not necessarily the 'high part')
3572 of each unit. */
b8698a0f 3573 if ((offset / GET_MODE_SIZE (xmode_unit) + 1
8521c414
JM
3574 < GET_MODE_NUNITS (xmode))
3575 && (offset / GET_MODE_SIZE (xmode_unit)
dd79bb7e 3576 != ((offset + GET_MODE_SIZE (ymode) - 1)
8521c414 3577 / GET_MODE_SIZE (xmode_unit))))
f1f4e530
JM
3578 {
3579 info->representable_p = false;
3580 rknown = true;
3581 }
dd79bb7e
GK
3582 }
3583 else
3584 nregs_xmode = hard_regno_nregs[xregno][xmode];
b8698a0f 3585
66fd46b6 3586 nregs_ymode = hard_regno_nregs[xregno][ymode];
04c5580f 3587
dd79bb7e 3588 /* Paradoxical subregs are otherwise valid. */
f1f4e530
JM
3589 if (!rknown
3590 && offset == 0
5511bc5a 3591 && GET_MODE_PRECISION (ymode) > GET_MODE_PRECISION (xmode))
f1f4e530
JM
3592 {
3593 info->representable_p = true;
3594 /* If this is a big endian paradoxical subreg, which uses more
3595 actual hard registers than the original register, we must
3596 return a negative offset so that we find the proper highpart
3597 of the register. */
3598 if (GET_MODE_SIZE (ymode) > UNITS_PER_WORD
c0a6a1ef 3599 ? REG_WORDS_BIG_ENDIAN : BYTES_BIG_ENDIAN)
f1f4e530
JM
3600 info->offset = nregs_xmode - nregs_ymode;
3601 else
3602 info->offset = 0;
3603 info->nregs = nregs_ymode;
3604 return;
3605 }
04c5580f 3606
8521c414
JM
3607 /* If registers store different numbers of bits in the different
3608 modes, we cannot generally form this subreg. */
f1f4e530 3609 if (!HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode)
5f7fc2b8
JM
3610 && !HARD_REGNO_NREGS_HAS_PADDING (xregno, ymode)
3611 && (GET_MODE_SIZE (xmode) % nregs_xmode) == 0
3612 && (GET_MODE_SIZE (ymode) % nregs_ymode) == 0)
f1f4e530
JM
3613 {
3614 regsize_xmode = GET_MODE_SIZE (xmode) / nregs_xmode;
f1f4e530 3615 regsize_ymode = GET_MODE_SIZE (ymode) / nregs_ymode;
f1f4e530
JM
3616 if (!rknown && regsize_xmode > regsize_ymode && nregs_ymode > 1)
3617 {
3618 info->representable_p = false;
3619 info->nregs
3620 = (GET_MODE_SIZE (ymode) + regsize_xmode - 1) / regsize_xmode;
3621 info->offset = offset / regsize_xmode;
3622 return;
3623 }
3624 if (!rknown && regsize_ymode > regsize_xmode && nregs_xmode > 1)
3625 {
3626 info->representable_p = false;
3627 info->nregs
3628 = (GET_MODE_SIZE (ymode) + regsize_xmode - 1) / regsize_xmode;
3629 info->offset = offset / regsize_xmode;
3630 return;
3631 }
b5bd1978
KT
3632 /* It's not valid to extract a subreg of mode YMODE at OFFSET that
3633 would go outside of XMODE. */
3634 if (!rknown
3635 && GET_MODE_SIZE (ymode) + offset > GET_MODE_SIZE (xmode))
3636 {
3637 info->representable_p = false;
3638 info->nregs = nregs_ymode;
3639 info->offset = offset / regsize_xmode;
3640 return;
3641 }
9ab41c76
AH
3642 /* Quick exit for the simple and common case of extracting whole
3643 subregisters from a multiregister value. */
3644 /* ??? It would be better to integrate this into the code below,
3645 if we can generalize the concept enough and figure out how
3646 odd-sized modes can coexist with the other weird cases we support. */
3647 if (!rknown
3648 && WORDS_BIG_ENDIAN == REG_WORDS_BIG_ENDIAN
3649 && regsize_xmode == regsize_ymode
3650 && (offset % regsize_ymode) == 0)
3651 {
3652 info->representable_p = true;
3653 info->nregs = nregs_ymode;
3654 info->offset = offset / regsize_ymode;
3655 gcc_assert (info->offset + info->nregs <= nregs_xmode);
3656 return;
3657 }
f1f4e530 3658 }
8521c414 3659
dd79bb7e 3660 /* Lowpart subregs are otherwise valid. */
f1f4e530
JM
3661 if (!rknown && offset == subreg_lowpart_offset (ymode, xmode))
3662 {
3663 info->representable_p = true;
3664 rknown = true;
a446b4e8
JM
3665
3666 if (offset == 0 || nregs_xmode == nregs_ymode)
3667 {
3668 info->offset = 0;
3669 info->nregs = nregs_ymode;
3670 return;
3671 }
f1f4e530 3672 }
04c5580f 3673
dd79bb7e
GK
3674 /* This should always pass, otherwise we don't know how to verify
3675 the constraint. These conditions may be relaxed but
3676 subreg_regno_offset would need to be redesigned. */
41374e13 3677 gcc_assert ((GET_MODE_SIZE (xmode) % GET_MODE_SIZE (ymode)) == 0);
41374e13 3678 gcc_assert ((nregs_xmode % nregs_ymode) == 0);
04c5580f 3679
c0a6a1ef
BS
3680 if (WORDS_BIG_ENDIAN != REG_WORDS_BIG_ENDIAN
3681 && GET_MODE_SIZE (xmode) > UNITS_PER_WORD)
3682 {
3683 HOST_WIDE_INT xsize = GET_MODE_SIZE (xmode);
3684 HOST_WIDE_INT ysize = GET_MODE_SIZE (ymode);
3685 HOST_WIDE_INT off_low = offset & (ysize - 1);
3686 HOST_WIDE_INT off_high = offset & ~(ysize - 1);
3687 offset = (xsize - ysize - off_high) | off_low;
3688 }
b20b352b 3689 /* The XMODE value can be seen as a vector of NREGS_XMODE
dcc24678 3690 values. The subreg must represent a lowpart of given field.
04c5580f 3691 Compute what field it is. */
f1f4e530
JM
3692 offset_adj = offset;
3693 offset_adj -= subreg_lowpart_offset (ymode,
3694 mode_for_size (GET_MODE_BITSIZE (xmode)
3695 / nregs_xmode,
3696 MODE_INT, 0));
04c5580f 3697
dd79bb7e 3698 /* Size of ymode must not be greater than the size of xmode. */
04c5580f 3699 mode_multiple = GET_MODE_SIZE (xmode) / GET_MODE_SIZE (ymode);
41374e13 3700 gcc_assert (mode_multiple != 0);
04c5580f
JH
3701
3702 y_offset = offset / GET_MODE_SIZE (ymode);
f1f4e530
JM
3703 y_offset_adj = offset_adj / GET_MODE_SIZE (ymode);
3704 nregs_multiple = nregs_xmode / nregs_ymode;
41374e13 3705
f1f4e530 3706 gcc_assert ((offset_adj % GET_MODE_SIZE (ymode)) == 0);
41374e13
NS
3707 gcc_assert ((mode_multiple % nregs_multiple) == 0);
3708
f1f4e530
JM
3709 if (!rknown)
3710 {
3711 info->representable_p = (!(y_offset_adj % (mode_multiple / nregs_multiple)));
3712 rknown = true;
3713 }
3714 info->offset = (y_offset / (mode_multiple / nregs_multiple)) * nregs_ymode;
3715 info->nregs = nregs_ymode;
3716}
3717
3718/* This function returns the regno offset of a subreg expression.
3719 xregno - A regno of an inner hard subreg_reg (or what will become one).
3720 xmode - The mode of xregno.
3721 offset - The byte offset.
3722 ymode - The mode of a top level SUBREG (or what may become one).
3723 RETURN - The regno offset which would be used. */
3724unsigned int
ef4bddc2
RS
3725subreg_regno_offset (unsigned int xregno, machine_mode xmode,
3726 unsigned int offset, machine_mode ymode)
f1f4e530
JM
3727{
3728 struct subreg_info info;
3729 subreg_get_info (xregno, xmode, offset, ymode, &info);
3730 return info.offset;
3731}
3732
3733/* This function returns true when the offset is representable via
3734 subreg_offset in the given regno.
3735 xregno - A regno of an inner hard subreg_reg (or what will become one).
3736 xmode - The mode of xregno.
3737 offset - The byte offset.
3738 ymode - The mode of a top level SUBREG (or what may become one).
3739 RETURN - Whether the offset is representable. */
3740bool
ef4bddc2
RS
3741subreg_offset_representable_p (unsigned int xregno, machine_mode xmode,
3742 unsigned int offset, machine_mode ymode)
f1f4e530
JM
3743{
3744 struct subreg_info info;
3745 subreg_get_info (xregno, xmode, offset, ymode, &info);
05cee290 3746 return info.representable_p;
04c5580f
JH
3747}
3748
eef302d2
RS
3749/* Return the number of a YMODE register to which
3750
3751 (subreg:YMODE (reg:XMODE XREGNO) OFFSET)
3752
3753 can be simplified. Return -1 if the subreg can't be simplified.
3754
3755 XREGNO is a hard register number. */
3756
3757int
ef4bddc2
RS
3758simplify_subreg_regno (unsigned int xregno, machine_mode xmode,
3759 unsigned int offset, machine_mode ymode)
eef302d2
RS
3760{
3761 struct subreg_info info;
3762 unsigned int yregno;
3763
3764#ifdef CANNOT_CHANGE_MODE_CLASS
3765 /* Give the backend a chance to disallow the mode change. */
3766 if (GET_MODE_CLASS (xmode) != MODE_COMPLEX_INT
3767 && GET_MODE_CLASS (xmode) != MODE_COMPLEX_FLOAT
55a2c322
VM
3768 && REG_CANNOT_CHANGE_MODE_P (xregno, xmode, ymode)
3769 /* We can use mode change in LRA for some transformations. */
3770 && ! lra_in_progress)
eef302d2
RS
3771 return -1;
3772#endif
3773
3774 /* We shouldn't simplify stack-related registers. */
3775 if ((!reload_completed || frame_pointer_needed)
d4e0d036 3776 && xregno == FRAME_POINTER_REGNUM)
eef302d2
RS
3777 return -1;
3778
3779 if (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
98072ee5 3780 && xregno == ARG_POINTER_REGNUM)
eef302d2
RS
3781 return -1;
3782
55a2c322
VM
3783 if (xregno == STACK_POINTER_REGNUM
3784 /* We should convert hard stack register in LRA if it is
3785 possible. */
3786 && ! lra_in_progress)
eef302d2
RS
3787 return -1;
3788
3789 /* Try to get the register offset. */
3790 subreg_get_info (xregno, xmode, offset, ymode, &info);
3791 if (!info.representable_p)
3792 return -1;
3793
3794 /* Make sure that the offsetted register value is in range. */
3795 yregno = xregno + info.offset;
3796 if (!HARD_REGISTER_NUM_P (yregno))
3797 return -1;
3798
3799 /* See whether (reg:YMODE YREGNO) is valid.
3800
3801 ??? We allow invalid registers if (reg:XMODE XREGNO) is also invalid.
eb93b31f
EB
3802 This is a kludge to work around how complex FP arguments are passed
3803 on IA-64 and should be fixed. See PR target/49226. */
eef302d2
RS
3804 if (!HARD_REGNO_MODE_OK (yregno, ymode)
3805 && HARD_REGNO_MODE_OK (xregno, xmode))
3806 return -1;
3807
3808 return (int) yregno;
3809}
3810
dc297297 3811/* Return the final regno that a subreg expression refers to. */
a6a2274a 3812unsigned int
f7d504c2 3813subreg_regno (const_rtx x)
ddef6bc7
JJ
3814{
3815 unsigned int ret;
3816 rtx subreg = SUBREG_REG (x);
3817 int regno = REGNO (subreg);
3818
a6a2274a
KH
3819 ret = regno + subreg_regno_offset (regno,
3820 GET_MODE (subreg),
ddef6bc7
JJ
3821 SUBREG_BYTE (x),
3822 GET_MODE (x));
3823 return ret;
3824
3825}
f1f4e530
JM
3826
3827/* Return the number of registers that a subreg expression refers
3828 to. */
3829unsigned int
f7d504c2 3830subreg_nregs (const_rtx x)
ba49cb7b
KZ
3831{
3832 return subreg_nregs_with_regno (REGNO (SUBREG_REG (x)), x);
3833}
3834
3835/* Return the number of registers that a subreg REG with REGNO
3836 expression refers to. This is a copy of the rtlanal.c:subreg_nregs
3837 changed so that the regno can be passed in. */
3838
3839unsigned int
3840subreg_nregs_with_regno (unsigned int regno, const_rtx x)
f1f4e530
JM
3841{
3842 struct subreg_info info;
3843 rtx subreg = SUBREG_REG (x);
f1f4e530
JM
3844
3845 subreg_get_info (regno, GET_MODE (subreg), SUBREG_BYTE (x), GET_MODE (x),
3846 &info);
3847 return info.nregs;
3848}
3849
ba49cb7b 3850
833366d6
JH
3851struct parms_set_data
3852{
3853 int nregs;
3854 HARD_REG_SET regs;
3855};
3856
3857/* Helper function for noticing stores to parameter registers. */
3858static void
7bc980e1 3859parms_set (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
833366d6 3860{
1634b18f 3861 struct parms_set_data *const d = (struct parms_set_data *) data;
833366d6
JH
3862 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
3863 && TEST_HARD_REG_BIT (d->regs, REGNO (x)))
3864 {
3865 CLEAR_HARD_REG_BIT (d->regs, REGNO (x));
3866 d->nregs--;
3867 }
3868}
3869
a6a2274a 3870/* Look backward for first parameter to be loaded.
b2df20b4
DJ
3871 Note that loads of all parameters will not necessarily be
3872 found if CSE has eliminated some of them (e.g., an argument
3873 to the outer function is passed down as a parameter).
833366d6 3874 Do not skip BOUNDARY. */
62fc98cc 3875rtx_insn *
9321cf00 3876find_first_parameter_load (rtx_insn *call_insn, rtx_insn *boundary)
833366d6
JH
3877{
3878 struct parms_set_data parm;
9321cf00
DM
3879 rtx p;
3880 rtx_insn *before, *first_set;
833366d6
JH
3881
3882 /* Since different machines initialize their parameter registers
3883 in different orders, assume nothing. Collect the set of all
3884 parameter registers. */
3885 CLEAR_HARD_REG_SET (parm.regs);
3886 parm.nregs = 0;
3887 for (p = CALL_INSN_FUNCTION_USAGE (call_insn); p; p = XEXP (p, 1))
3888 if (GET_CODE (XEXP (p, 0)) == USE
f8cfc6aa 3889 && REG_P (XEXP (XEXP (p, 0), 0)))
833366d6 3890 {
41374e13 3891 gcc_assert (REGNO (XEXP (XEXP (p, 0), 0)) < FIRST_PSEUDO_REGISTER);
833366d6
JH
3892
3893 /* We only care about registers which can hold function
3894 arguments. */
3895 if (!FUNCTION_ARG_REGNO_P (REGNO (XEXP (XEXP (p, 0), 0))))
3896 continue;
3897
3898 SET_HARD_REG_BIT (parm.regs, REGNO (XEXP (XEXP (p, 0), 0)));
3899 parm.nregs++;
3900 }
3901 before = call_insn;
b2df20b4 3902 first_set = call_insn;
833366d6
JH
3903
3904 /* Search backward for the first set of a register in this set. */
3905 while (parm.nregs && before != boundary)
3906 {
3907 before = PREV_INSN (before);
3908
3909 /* It is possible that some loads got CSEed from one call to
3910 another. Stop in that case. */
4b4bf941 3911 if (CALL_P (before))
833366d6
JH
3912 break;
3913
dbc1a163 3914 /* Our caller needs either ensure that we will find all sets
833366d6 3915 (in case code has not been optimized yet), or take care
eaec9b3d 3916 for possible labels in a way by setting boundary to preceding
833366d6 3917 CODE_LABEL. */
4b4bf941 3918 if (LABEL_P (before))
dbc1a163 3919 {
41374e13 3920 gcc_assert (before == boundary);
dbc1a163
RH
3921 break;
3922 }
833366d6 3923
0d025d43 3924 if (INSN_P (before))
b2df20b4
DJ
3925 {
3926 int nregs_old = parm.nregs;
3927 note_stores (PATTERN (before), parms_set, &parm);
3928 /* If we found something that did not set a parameter reg,
3929 we're done. Do not keep going, as that might result
3930 in hoisting an insn before the setting of a pseudo
3931 that is used by the hoisted insn. */
3932 if (nregs_old != parm.nregs)
3933 first_set = before;
3934 else
3935 break;
3936 }
833366d6 3937 }
9321cf00 3938 return first_set;
833366d6 3939}
3dec4024 3940
14b493d6 3941/* Return true if we should avoid inserting code between INSN and preceding
3dec4024
JH
3942 call instruction. */
3943
3944bool
e4685bc8 3945keep_with_call_p (const rtx_insn *insn)
3dec4024
JH
3946{
3947 rtx set;
3948
3949 if (INSN_P (insn) && (set = single_set (insn)) != NULL)
3950 {
f8cfc6aa 3951 if (REG_P (SET_DEST (set))
5df533b3 3952 && REGNO (SET_DEST (set)) < FIRST_PSEUDO_REGISTER
3dec4024
JH
3953 && fixed_regs[REGNO (SET_DEST (set))]
3954 && general_operand (SET_SRC (set), VOIDmode))
3955 return true;
f8cfc6aa 3956 if (REG_P (SET_SRC (set))
82f81f18 3957 && targetm.calls.function_value_regno_p (REGNO (SET_SRC (set)))
f8cfc6aa 3958 && REG_P (SET_DEST (set))
3dec4024
JH
3959 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
3960 return true;
bc204393
RH
3961 /* There may be a stack pop just after the call and before the store
3962 of the return register. Search for the actual store when deciding
3963 if we can break or not. */
3dec4024
JH
3964 if (SET_DEST (set) == stack_pointer_rtx)
3965 {
75547801 3966 /* This CONST_CAST is okay because next_nonnote_insn just
4e9b57fa 3967 returns its argument and we assign it to a const_rtx
75547801 3968 variable. */
e4685bc8
TS
3969 const rtx_insn *i2
3970 = next_nonnote_insn (const_cast<rtx_insn *> (insn));
bc204393 3971 if (i2 && keep_with_call_p (i2))
3dec4024
JH
3972 return true;
3973 }
3974 }
3975 return false;
3976}
71d2c5bd 3977
432f982f
JH
3978/* Return true if LABEL is a target of JUMP_INSN. This applies only
3979 to non-complex jumps. That is, direct unconditional, conditional,
3980 and tablejumps, but not computed jumps or returns. It also does
3981 not apply to the fallthru case of a conditional jump. */
3982
3983bool
c5241a21 3984label_is_jump_target_p (const_rtx label, const rtx_insn *jump_insn)
432f982f
JH
3985{
3986 rtx tmp = JUMP_LABEL (jump_insn);
8942ee0f 3987 rtx_jump_table_data *table;
432f982f
JH
3988
3989 if (label == tmp)
3990 return true;
3991
8942ee0f 3992 if (tablejump_p (jump_insn, NULL, &table))
432f982f 3993 {
95c43227 3994 rtvec vec = table->get_labels ();
432f982f
JH
3995 int i, veclen = GET_NUM_ELEM (vec);
3996
3997 for (i = 0; i < veclen; ++i)
3998 if (XEXP (RTVEC_ELT (vec, i), 0) == label)
3999 return true;
4000 }
4001
cb2f563b
HPN
4002 if (find_reg_note (jump_insn, REG_LABEL_TARGET, label))
4003 return true;
4004
432f982f
JH
4005 return false;
4006}
4007
f894b69b
PB
4008\f
4009/* Return an estimate of the cost of computing rtx X.
4010 One use is in cse, to decide which expression to keep in the hash table.
4011 Another is in rtl generation, to pick the cheapest way to multiply.
b8698a0f 4012 Other uses like the latter are expected in the future.
f40751dd 4013
68f932c4
RS
4014 X appears as operand OPNO in an expression with code OUTER_CODE.
4015 SPEED specifies whether costs optimized for speed or size should
f40751dd 4016 be returned. */
f894b69b
PB
4017
4018int
e548c9df
AM
4019rtx_cost (rtx x, machine_mode mode, enum rtx_code outer_code,
4020 int opno, bool speed)
f894b69b
PB
4021{
4022 int i, j;
4023 enum rtx_code code;
4024 const char *fmt;
4025 int total;
e098c169 4026 int factor;
f894b69b
PB
4027
4028 if (x == 0)
4029 return 0;
4030
e548c9df
AM
4031 if (GET_MODE (x) != VOIDmode)
4032 mode = GET_MODE (x);
4033
e098c169
HPN
4034 /* A size N times larger than UNITS_PER_WORD likely needs N times as
4035 many insns, taking N times as long. */
e548c9df 4036 factor = GET_MODE_SIZE (mode) / UNITS_PER_WORD;
e098c169
HPN
4037 if (factor == 0)
4038 factor = 1;
4039
f894b69b
PB
4040 /* Compute the default costs of certain things.
4041 Note that targetm.rtx_costs can override the defaults. */
4042
4043 code = GET_CODE (x);
4044 switch (code)
4045 {
4046 case MULT:
e098c169
HPN
4047 /* Multiplication has time-complexity O(N*N), where N is the
4048 number of units (translated from digits) when using
4049 schoolbook long multiplication. */
4050 total = factor * factor * COSTS_N_INSNS (5);
f894b69b
PB
4051 break;
4052 case DIV:
4053 case UDIV:
4054 case MOD:
4055 case UMOD:
e098c169
HPN
4056 /* Similarly, complexity for schoolbook long division. */
4057 total = factor * factor * COSTS_N_INSNS (7);
f894b69b
PB
4058 break;
4059 case USE:
db3edc20 4060 /* Used in combine.c as a marker. */
f894b69b
PB
4061 total = 0;
4062 break;
e098c169
HPN
4063 case SET:
4064 /* A SET doesn't have a mode, so let's look at the SET_DEST to get
4065 the mode for the factor. */
e548c9df
AM
4066 mode = GET_MODE (SET_DEST (x));
4067 factor = GET_MODE_SIZE (mode) / UNITS_PER_WORD;
e098c169
HPN
4068 if (factor == 0)
4069 factor = 1;
191816a3 4070 /* FALLTHRU */
f894b69b 4071 default:
e098c169 4072 total = factor * COSTS_N_INSNS (1);
f894b69b
PB
4073 }
4074
4075 switch (code)
4076 {
4077 case REG:
4078 return 0;
4079
4080 case SUBREG:
edb81165 4081 total = 0;
f894b69b
PB
4082 /* If we can't tie these modes, make this expensive. The larger
4083 the mode, the more expensive it is. */
e548c9df 4084 if (! MODES_TIEABLE_P (mode, GET_MODE (SUBREG_REG (x))))
e098c169 4085 return COSTS_N_INSNS (2 + factor);
f894b69b
PB
4086 break;
4087
4088 default:
e548c9df 4089 if (targetm.rtx_costs (x, mode, outer_code, opno, &total, speed))
f894b69b
PB
4090 return total;
4091 break;
4092 }
4093
4094 /* Sum the costs of the sub-rtx's, plus cost of this operation,
4095 which is already in total. */
4096
4097 fmt = GET_RTX_FORMAT (code);
4098 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4099 if (fmt[i] == 'e')
e548c9df 4100 total += rtx_cost (XEXP (x, i), mode, code, i, speed);
f894b69b
PB
4101 else if (fmt[i] == 'E')
4102 for (j = 0; j < XVECLEN (x, i); j++)
e548c9df 4103 total += rtx_cost (XVECEXP (x, i, j), mode, code, i, speed);
f894b69b
PB
4104
4105 return total;
4106}
22939744
BS
4107
4108/* Fill in the structure C with information about both speed and size rtx
68f932c4 4109 costs for X, which is operand OPNO in an expression with code OUTER. */
22939744
BS
4110
4111void
e548c9df 4112get_full_rtx_cost (rtx x, machine_mode mode, enum rtx_code outer, int opno,
68f932c4 4113 struct full_rtx_costs *c)
22939744 4114{
e548c9df
AM
4115 c->speed = rtx_cost (x, mode, outer, opno, true);
4116 c->size = rtx_cost (x, mode, outer, opno, false);
22939744
BS
4117}
4118
f894b69b
PB
4119\f
4120/* Return cost of address expression X.
b8698a0f 4121 Expect that X is properly formed address reference.
f40751dd
JH
4122
4123 SPEED parameter specify whether costs optimized for speed or size should
4124 be returned. */
f894b69b
PB
4125
4126int
ef4bddc2 4127address_cost (rtx x, machine_mode mode, addr_space_t as, bool speed)
f894b69b 4128{
f894b69b
PB
4129 /* We may be asked for cost of various unusual addresses, such as operands
4130 of push instruction. It is not worthwhile to complicate writing
4131 of the target hook by such cases. */
4132
09e881c9 4133 if (!memory_address_addr_space_p (mode, x, as))
f894b69b
PB
4134 return 1000;
4135
b413068c 4136 return targetm.address_cost (x, mode, as, speed);
f894b69b
PB
4137}
4138
4139/* If the target doesn't override, compute the cost as with arithmetic. */
4140
4141int
ef4bddc2 4142default_address_cost (rtx x, machine_mode, addr_space_t, bool speed)
f894b69b 4143{
e548c9df 4144 return rtx_cost (x, Pmode, MEM, 0, speed);
f894b69b 4145}
2f93eea8
PB
4146\f
4147
4148unsigned HOST_WIDE_INT
ef4bddc2 4149nonzero_bits (const_rtx x, machine_mode mode)
2f93eea8
PB
4150{
4151 return cached_nonzero_bits (x, mode, NULL_RTX, VOIDmode, 0);
4152}
4153
4154unsigned int
ef4bddc2 4155num_sign_bit_copies (const_rtx x, machine_mode mode)
2f93eea8
PB
4156{
4157 return cached_num_sign_bit_copies (x, mode, NULL_RTX, VOIDmode, 0);
4158}
4159
d0268b37
JJ
4160/* Return true if nonzero_bits1 might recurse into both operands
4161 of X. */
4162
4163static inline bool
4164nonzero_bits_binary_arith_p (const_rtx x)
4165{
4166 if (!ARITHMETIC_P (x))
4167 return false;
4168 switch (GET_CODE (x))
4169 {
4170 case AND:
4171 case XOR:
4172 case IOR:
4173 case UMIN:
4174 case UMAX:
4175 case SMIN:
4176 case SMAX:
4177 case PLUS:
4178 case MINUS:
4179 case MULT:
4180 case DIV:
4181 case UDIV:
4182 case MOD:
4183 case UMOD:
4184 return true;
4185 default:
4186 return false;
4187 }
4188}
4189
2f93eea8
PB
4190/* The function cached_nonzero_bits is a wrapper around nonzero_bits1.
4191 It avoids exponential behavior in nonzero_bits1 when X has
4192 identical subexpressions on the first or the second level. */
4193
4194static unsigned HOST_WIDE_INT
ef4bddc2
RS
4195cached_nonzero_bits (const_rtx x, machine_mode mode, const_rtx known_x,
4196 machine_mode known_mode,
2f93eea8
PB
4197 unsigned HOST_WIDE_INT known_ret)
4198{
4199 if (x == known_x && mode == known_mode)
4200 return known_ret;
4201
4202 /* Try to find identical subexpressions. If found call
4203 nonzero_bits1 on X with the subexpressions as KNOWN_X and the
4204 precomputed value for the subexpression as KNOWN_RET. */
4205
d0268b37 4206 if (nonzero_bits_binary_arith_p (x))
2f93eea8
PB
4207 {
4208 rtx x0 = XEXP (x, 0);
4209 rtx x1 = XEXP (x, 1);
4210
4211 /* Check the first level. */
4212 if (x0 == x1)
4213 return nonzero_bits1 (x, mode, x0, mode,
4214 cached_nonzero_bits (x0, mode, known_x,
4215 known_mode, known_ret));
4216
4217 /* Check the second level. */
d0268b37 4218 if (nonzero_bits_binary_arith_p (x0)
2f93eea8
PB
4219 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
4220 return nonzero_bits1 (x, mode, x1, mode,
4221 cached_nonzero_bits (x1, mode, known_x,
4222 known_mode, known_ret));
4223
d0268b37 4224 if (nonzero_bits_binary_arith_p (x1)
2f93eea8
PB
4225 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
4226 return nonzero_bits1 (x, mode, x0, mode,
4227 cached_nonzero_bits (x0, mode, known_x,
4228 known_mode, known_ret));
4229 }
4230
4231 return nonzero_bits1 (x, mode, known_x, known_mode, known_ret);
4232}
4233
4234/* We let num_sign_bit_copies recur into nonzero_bits as that is useful.
4235 We don't let nonzero_bits recur into num_sign_bit_copies, because that
4236 is less useful. We can't allow both, because that results in exponential
4237 run time recursion. There is a nullstone testcase that triggered
4238 this. This macro avoids accidental uses of num_sign_bit_copies. */
4239#define cached_num_sign_bit_copies sorry_i_am_preventing_exponential_behavior
4240
4241/* Given an expression, X, compute which bits in X can be nonzero.
4242 We don't care about bits outside of those defined in MODE.
4243
4244 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
4245 an arithmetic operation, we can do better. */
4246
4247static unsigned HOST_WIDE_INT
ef4bddc2
RS
4248nonzero_bits1 (const_rtx x, machine_mode mode, const_rtx known_x,
4249 machine_mode known_mode,
2f93eea8
PB
4250 unsigned HOST_WIDE_INT known_ret)
4251{
4252 unsigned HOST_WIDE_INT nonzero = GET_MODE_MASK (mode);
4253 unsigned HOST_WIDE_INT inner_nz;
4254 enum rtx_code code;
ef4bddc2 4255 machine_mode inner_mode;
5511bc5a 4256 unsigned int mode_width = GET_MODE_PRECISION (mode);
2f93eea8 4257
ff596cd2
RL
4258 /* For floating-point and vector values, assume all bits are needed. */
4259 if (FLOAT_MODE_P (GET_MODE (x)) || FLOAT_MODE_P (mode)
4260 || VECTOR_MODE_P (GET_MODE (x)) || VECTOR_MODE_P (mode))
2f93eea8
PB
4261 return nonzero;
4262
4263 /* If X is wider than MODE, use its mode instead. */
5511bc5a 4264 if (GET_MODE_PRECISION (GET_MODE (x)) > mode_width)
2f93eea8
PB
4265 {
4266 mode = GET_MODE (x);
4267 nonzero = GET_MODE_MASK (mode);
5511bc5a 4268 mode_width = GET_MODE_PRECISION (mode);
2f93eea8
PB
4269 }
4270
4271 if (mode_width > HOST_BITS_PER_WIDE_INT)
4272 /* Our only callers in this case look for single bit values. So
4273 just return the mode mask. Those tests will then be false. */
4274 return nonzero;
4275
2f93eea8
PB
4276 /* If MODE is wider than X, but both are a single word for both the host
4277 and target machines, we can compute this from which bits of the
4278 object might be nonzero in its own mode, taking into account the fact
4279 that on many CISC machines, accessing an object in a wider mode
4280 causes the high-order bits to become undefined. So they are
4281 not known to be zero. */
4282
9e11bfef
TS
4283 if (!WORD_REGISTER_OPERATIONS
4284 && GET_MODE (x) != VOIDmode
4285 && GET_MODE (x) != mode
5511bc5a
BS
4286 && GET_MODE_PRECISION (GET_MODE (x)) <= BITS_PER_WORD
4287 && GET_MODE_PRECISION (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
4288 && GET_MODE_PRECISION (mode) > GET_MODE_PRECISION (GET_MODE (x)))
2f93eea8
PB
4289 {
4290 nonzero &= cached_nonzero_bits (x, GET_MODE (x),
4291 known_x, known_mode, known_ret);
4292 nonzero |= GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x));
4293 return nonzero;
4294 }
2f93eea8 4295
d0268b37
JJ
4296 /* Please keep nonzero_bits_binary_arith_p above in sync with
4297 the code in the switch below. */
2f93eea8
PB
4298 code = GET_CODE (x);
4299 switch (code)
4300 {
4301 case REG:
2a870875 4302#if defined(POINTERS_EXTEND_UNSIGNED)
2f93eea8
PB
4303 /* If pointers extend unsigned and this is a pointer in Pmode, say that
4304 all the bits above ptr_mode are known to be zero. */
5932a4d4 4305 /* As we do not know which address space the pointer is referring to,
d4ebfa65
BE
4306 we can do this only if the target does not support different pointer
4307 or address modes depending on the address space. */
4308 if (target_default_pointer_address_modes_p ()
4309 && POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
2a870875
RS
4310 && REG_POINTER (x)
4311 && !targetm.have_ptr_extend ())
2f93eea8
PB
4312 nonzero &= GET_MODE_MASK (ptr_mode);
4313#endif
4314
4315 /* Include declared information about alignment of pointers. */
4316 /* ??? We don't properly preserve REG_POINTER changes across
4317 pointer-to-integer casts, so we can't trust it except for
4318 things that we know must be pointers. See execute/960116-1.c. */
4319 if ((x == stack_pointer_rtx
4320 || x == frame_pointer_rtx
4321 || x == arg_pointer_rtx)
4322 && REGNO_POINTER_ALIGN (REGNO (x)))
4323 {
4324 unsigned HOST_WIDE_INT alignment
4325 = REGNO_POINTER_ALIGN (REGNO (x)) / BITS_PER_UNIT;
4326
4327#ifdef PUSH_ROUNDING
4328 /* If PUSH_ROUNDING is defined, it is possible for the
4329 stack to be momentarily aligned only to that amount,
4330 so we pick the least alignment. */
4331 if (x == stack_pointer_rtx && PUSH_ARGS)
4332 alignment = MIN ((unsigned HOST_WIDE_INT) PUSH_ROUNDING (1),
4333 alignment);
4334#endif
4335
4336 nonzero &= ~(alignment - 1);
4337 }
4338
4339 {
4340 unsigned HOST_WIDE_INT nonzero_for_hook = nonzero;
55d796da 4341 rtx new_rtx = rtl_hooks.reg_nonzero_bits (x, mode, known_x,
2f93eea8
PB
4342 known_mode, known_ret,
4343 &nonzero_for_hook);
4344
55d796da
KG
4345 if (new_rtx)
4346 nonzero_for_hook &= cached_nonzero_bits (new_rtx, mode, known_x,
2f93eea8
PB
4347 known_mode, known_ret);
4348
4349 return nonzero_for_hook;
4350 }
4351
4352 case CONST_INT:
2f93eea8 4353 /* If X is negative in MODE, sign-extend the value. */
58f2ae18 4354 if (SHORT_IMMEDIATES_SIGN_EXTEND && INTVAL (x) > 0
c04fc4f0 4355 && mode_width < BITS_PER_WORD
fecfbfa4 4356 && (UINTVAL (x) & (HOST_WIDE_INT_1U << (mode_width - 1)))
c04fc4f0 4357 != 0)
0cadbfaa 4358 return UINTVAL (x) | (HOST_WIDE_INT_M1U << mode_width);
2f93eea8 4359
c04fc4f0 4360 return UINTVAL (x);
2f93eea8
PB
4361
4362 case MEM:
4363#ifdef LOAD_EXTEND_OP
4364 /* In many, if not most, RISC machines, reading a byte from memory
4365 zeros the rest of the register. Noticing that fact saves a lot
4366 of extra zero-extends. */
4367 if (LOAD_EXTEND_OP (GET_MODE (x)) == ZERO_EXTEND)
4368 nonzero &= GET_MODE_MASK (GET_MODE (x));
4369#endif
4370 break;
4371
4372 case EQ: case NE:
4373 case UNEQ: case LTGT:
4374 case GT: case GTU: case UNGT:
4375 case LT: case LTU: case UNLT:
4376 case GE: case GEU: case UNGE:
4377 case LE: case LEU: case UNLE:
4378 case UNORDERED: case ORDERED:
2f93eea8
PB
4379 /* If this produces an integer result, we know which bits are set.
4380 Code here used to clear bits outside the mode of X, but that is
4381 now done above. */
b8698a0f
L
4382 /* Mind that MODE is the mode the caller wants to look at this
4383 operation in, and not the actual operation mode. We can wind
505ac507
RH
4384 up with (subreg:DI (gt:V4HI x y)), and we don't have anything
4385 that describes the results of a vector compare. */
4386 if (GET_MODE_CLASS (GET_MODE (x)) == MODE_INT
2f93eea8
PB
4387 && mode_width <= HOST_BITS_PER_WIDE_INT)
4388 nonzero = STORE_FLAG_VALUE;
4389 break;
4390
4391 case NEG:
4392#if 0
4393 /* Disabled to avoid exponential mutual recursion between nonzero_bits
4394 and num_sign_bit_copies. */
4395 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
5511bc5a 4396 == GET_MODE_PRECISION (GET_MODE (x)))
2f93eea8
PB
4397 nonzero = 1;
4398#endif
4399
86cdf393 4400 if (GET_MODE_PRECISION (GET_MODE (x)) < mode_width)
2f93eea8
PB
4401 nonzero |= (GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x)));
4402 break;
4403
4404 case ABS:
4405#if 0
4406 /* Disabled to avoid exponential mutual recursion between nonzero_bits
4407 and num_sign_bit_copies. */
4408 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
5511bc5a 4409 == GET_MODE_PRECISION (GET_MODE (x)))
2f93eea8
PB
4410 nonzero = 1;
4411#endif
4412 break;
4413
4414 case TRUNCATE:
4415 nonzero &= (cached_nonzero_bits (XEXP (x, 0), mode,
4416 known_x, known_mode, known_ret)
4417 & GET_MODE_MASK (mode));
4418 break;
4419
4420 case ZERO_EXTEND:
4421 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
4422 known_x, known_mode, known_ret);
4423 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
4424 nonzero &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
4425 break;
4426
4427 case SIGN_EXTEND:
4428 /* If the sign bit is known clear, this is the same as ZERO_EXTEND.
4429 Otherwise, show all the bits in the outer mode but not the inner
4430 may be nonzero. */
4431 inner_nz = cached_nonzero_bits (XEXP (x, 0), mode,
4432 known_x, known_mode, known_ret);
4433 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
4434 {
4435 inner_nz &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
2d0c270f 4436 if (val_signbit_known_set_p (GET_MODE (XEXP (x, 0)), inner_nz))
2f93eea8
PB
4437 inner_nz |= (GET_MODE_MASK (mode)
4438 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0))));
4439 }
4440
4441 nonzero &= inner_nz;
4442 break;
4443
4444 case AND:
4445 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
4446 known_x, known_mode, known_ret)
4447 & cached_nonzero_bits (XEXP (x, 1), mode,
4448 known_x, known_mode, known_ret);
4449 break;
4450
4451 case XOR: case IOR:
4452 case UMIN: case UMAX: case SMIN: case SMAX:
4453 {
c04fc4f0
EB
4454 unsigned HOST_WIDE_INT nonzero0
4455 = cached_nonzero_bits (XEXP (x, 0), mode,
4456 known_x, known_mode, known_ret);
2f93eea8
PB
4457
4458 /* Don't call nonzero_bits for the second time if it cannot change
4459 anything. */
4460 if ((nonzero & nonzero0) != nonzero)
4461 nonzero &= nonzero0
4462 | cached_nonzero_bits (XEXP (x, 1), mode,
4463 known_x, known_mode, known_ret);
4464 }
4465 break;
4466
4467 case PLUS: case MINUS:
4468 case MULT:
4469 case DIV: case UDIV:
4470 case MOD: case UMOD:
4471 /* We can apply the rules of arithmetic to compute the number of
4472 high- and low-order zero bits of these operations. We start by
4473 computing the width (position of the highest-order nonzero bit)
4474 and the number of low-order zero bits for each value. */
4475 {
c04fc4f0
EB
4476 unsigned HOST_WIDE_INT nz0
4477 = cached_nonzero_bits (XEXP (x, 0), mode,
4478 known_x, known_mode, known_ret);
4479 unsigned HOST_WIDE_INT nz1
4480 = cached_nonzero_bits (XEXP (x, 1), mode,
4481 known_x, known_mode, known_ret);
5511bc5a 4482 int sign_index = GET_MODE_PRECISION (GET_MODE (x)) - 1;
2f93eea8
PB
4483 int width0 = floor_log2 (nz0) + 1;
4484 int width1 = floor_log2 (nz1) + 1;
146ec50f
JM
4485 int low0 = ctz_or_zero (nz0);
4486 int low1 = ctz_or_zero (nz1);
c04fc4f0 4487 unsigned HOST_WIDE_INT op0_maybe_minusp
fecfbfa4 4488 = nz0 & (HOST_WIDE_INT_1U << sign_index);
c04fc4f0 4489 unsigned HOST_WIDE_INT op1_maybe_minusp
fecfbfa4 4490 = nz1 & (HOST_WIDE_INT_1U << sign_index);
2f93eea8
PB
4491 unsigned int result_width = mode_width;
4492 int result_low = 0;
4493
4494 switch (code)
4495 {
4496 case PLUS:
4497 result_width = MAX (width0, width1) + 1;
4498 result_low = MIN (low0, low1);
4499 break;
4500 case MINUS:
4501 result_low = MIN (low0, low1);
4502 break;
4503 case MULT:
4504 result_width = width0 + width1;
4505 result_low = low0 + low1;
4506 break;
4507 case DIV:
4508 if (width1 == 0)
4509 break;
c04fc4f0 4510 if (!op0_maybe_minusp && !op1_maybe_minusp)
2f93eea8
PB
4511 result_width = width0;
4512 break;
4513 case UDIV:
4514 if (width1 == 0)
4515 break;
4516 result_width = width0;
4517 break;
4518 case MOD:
4519 if (width1 == 0)
4520 break;
c04fc4f0 4521 if (!op0_maybe_minusp && !op1_maybe_minusp)
2f93eea8
PB
4522 result_width = MIN (width0, width1);
4523 result_low = MIN (low0, low1);
4524 break;
4525 case UMOD:
4526 if (width1 == 0)
4527 break;
4528 result_width = MIN (width0, width1);
4529 result_low = MIN (low0, low1);
4530 break;
4531 default:
41374e13 4532 gcc_unreachable ();
2f93eea8
PB
4533 }
4534
4535 if (result_width < mode_width)
fecfbfa4 4536 nonzero &= (HOST_WIDE_INT_1U << result_width) - 1;
2f93eea8
PB
4537
4538 if (result_low > 0)
fecfbfa4 4539 nonzero &= ~((HOST_WIDE_INT_1U << result_low) - 1);
2f93eea8
PB
4540 }
4541 break;
4542
4543 case ZERO_EXTRACT:
481683e1 4544 if (CONST_INT_P (XEXP (x, 1))
2f93eea8 4545 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
fecfbfa4 4546 nonzero &= (HOST_WIDE_INT_1U << INTVAL (XEXP (x, 1))) - 1;
2f93eea8
PB
4547 break;
4548
4549 case SUBREG:
4550 /* If this is a SUBREG formed for a promoted variable that has
4551 been zero-extended, we know that at least the high-order bits
4552 are zero, though others might be too. */
4553
362d42dc 4554 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_UNSIGNED_P (x))
2f93eea8
PB
4555 nonzero = GET_MODE_MASK (GET_MODE (x))
4556 & cached_nonzero_bits (SUBREG_REG (x), GET_MODE (x),
4557 known_x, known_mode, known_ret);
4558
2d0c270f 4559 inner_mode = GET_MODE (SUBREG_REG (x));
2f93eea8
PB
4560 /* If the inner mode is a single word for both the host and target
4561 machines, we can compute this from which bits of the inner
4562 object might be nonzero. */
5511bc5a
BS
4563 if (GET_MODE_PRECISION (inner_mode) <= BITS_PER_WORD
4564 && (GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT))
2f93eea8
PB
4565 {
4566 nonzero &= cached_nonzero_bits (SUBREG_REG (x), mode,
4567 known_x, known_mode, known_ret);
4568
317d9887 4569#ifdef LOAD_EXTEND_OP
2f93eea8
PB
4570 /* If this is a typical RISC machine, we only have to worry
4571 about the way loads are extended. */
317d9887
KT
4572 if (WORD_REGISTER_OPERATIONS
4573 && ((LOAD_EXTEND_OP (inner_mode) == SIGN_EXTEND
4574 ? val_signbit_known_set_p (inner_mode, nonzero)
4575 : LOAD_EXTEND_OP (inner_mode) != ZERO_EXTEND)
4576 || !MEM_P (SUBREG_REG (x))))
2f93eea8
PB
4577#endif
4578 {
4579 /* On many CISC machines, accessing an object in a wider mode
4580 causes the high-order bits to become undefined. So they are
4581 not known to be zero. */
5511bc5a
BS
4582 if (GET_MODE_PRECISION (GET_MODE (x))
4583 > GET_MODE_PRECISION (inner_mode))
2f93eea8 4584 nonzero |= (GET_MODE_MASK (GET_MODE (x))
2d0c270f 4585 & ~GET_MODE_MASK (inner_mode));
2f93eea8
PB
4586 }
4587 }
4588 break;
4589
4590 case ASHIFTRT:
4591 case LSHIFTRT:
4592 case ASHIFT:
4593 case ROTATE:
4594 /* The nonzero bits are in two classes: any bits within MODE
4595 that aren't in GET_MODE (x) are always significant. The rest of the
4596 nonzero bits are those that are significant in the operand of
4597 the shift when shifted the appropriate number of bits. This
4598 shows that high-order bits are cleared by the right shift and
4599 low-order bits by left shifts. */
481683e1 4600 if (CONST_INT_P (XEXP (x, 1))
2f93eea8 4601 && INTVAL (XEXP (x, 1)) >= 0
39b2ac74 4602 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
5511bc5a 4603 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (GET_MODE (x)))
2f93eea8 4604 {
ef4bddc2 4605 machine_mode inner_mode = GET_MODE (x);
5511bc5a 4606 unsigned int width = GET_MODE_PRECISION (inner_mode);
2f93eea8
PB
4607 int count = INTVAL (XEXP (x, 1));
4608 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (inner_mode);
c04fc4f0
EB
4609 unsigned HOST_WIDE_INT op_nonzero
4610 = cached_nonzero_bits (XEXP (x, 0), mode,
4611 known_x, known_mode, known_ret);
2f93eea8
PB
4612 unsigned HOST_WIDE_INT inner = op_nonzero & mode_mask;
4613 unsigned HOST_WIDE_INT outer = 0;
4614
4615 if (mode_width > width)
4616 outer = (op_nonzero & nonzero & ~mode_mask);
4617
4618 if (code == LSHIFTRT)
4619 inner >>= count;
4620 else if (code == ASHIFTRT)
4621 {
4622 inner >>= count;
4623
4624 /* If the sign bit may have been nonzero before the shift, we
4625 need to mark all the places it could have been copied to
4626 by the shift as possibly nonzero. */
fecfbfa4
UB
4627 if (inner & (HOST_WIDE_INT_1U << (width - 1 - count)))
4628 inner |= ((HOST_WIDE_INT_1U << count) - 1)
c04fc4f0 4629 << (width - count);
2f93eea8
PB
4630 }
4631 else if (code == ASHIFT)
4632 inner <<= count;
4633 else
4634 inner = ((inner << (count % width)
4635 | (inner >> (width - (count % width)))) & mode_mask);
4636
4637 nonzero &= (outer | inner);
4638 }
4639 break;
4640
4641 case FFS:
4642 case POPCOUNT:
4643 /* This is at most the number of bits in the mode. */
c04fc4f0 4644 nonzero = ((unsigned HOST_WIDE_INT) 2 << (floor_log2 (mode_width))) - 1;
2f93eea8
PB
4645 break;
4646
4647 case CLZ:
4648 /* If CLZ has a known value at zero, then the nonzero bits are
4649 that value, plus the number of bits in the mode minus one. */
4650 if (CLZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
c04fc4f0 4651 nonzero
fecfbfa4 4652 |= (HOST_WIDE_INT_1U << (floor_log2 (mode_width))) - 1;
2f93eea8
PB
4653 else
4654 nonzero = -1;
4655 break;
4656
4657 case CTZ:
4658 /* If CTZ has a known value at zero, then the nonzero bits are
4659 that value, plus the number of bits in the mode minus one. */
4660 if (CTZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
c04fc4f0 4661 nonzero
fecfbfa4 4662 |= (HOST_WIDE_INT_1U << (floor_log2 (mode_width))) - 1;
2f93eea8
PB
4663 else
4664 nonzero = -1;
4665 break;
4666
8840ae2b
JJ
4667 case CLRSB:
4668 /* This is at most the number of bits in the mode minus 1. */
fecfbfa4 4669 nonzero = (HOST_WIDE_INT_1U << (floor_log2 (mode_width))) - 1;
8840ae2b
JJ
4670 break;
4671
2f93eea8
PB
4672 case PARITY:
4673 nonzero = 1;
4674 break;
4675
4676 case IF_THEN_ELSE:
4677 {
c04fc4f0
EB
4678 unsigned HOST_WIDE_INT nonzero_true
4679 = cached_nonzero_bits (XEXP (x, 1), mode,
4680 known_x, known_mode, known_ret);
2f93eea8
PB
4681
4682 /* Don't call nonzero_bits for the second time if it cannot change
4683 anything. */
4684 if ((nonzero & nonzero_true) != nonzero)
4685 nonzero &= nonzero_true
4686 | cached_nonzero_bits (XEXP (x, 2), mode,
4687 known_x, known_mode, known_ret);
4688 }
4689 break;
4690
4691 default:
4692 break;
4693 }
4694
4695 return nonzero;
4696}
4697
4698/* See the macro definition above. */
4699#undef cached_num_sign_bit_copies
4700
4701\f
d0268b37
JJ
4702/* Return true if num_sign_bit_copies1 might recurse into both operands
4703 of X. */
4704
4705static inline bool
4706num_sign_bit_copies_binary_arith_p (const_rtx x)
4707{
4708 if (!ARITHMETIC_P (x))
4709 return false;
4710 switch (GET_CODE (x))
4711 {
4712 case IOR:
4713 case AND:
4714 case XOR:
4715 case SMIN:
4716 case SMAX:
4717 case UMIN:
4718 case UMAX:
4719 case PLUS:
4720 case MINUS:
4721 case MULT:
4722 return true;
4723 default:
4724 return false;
4725 }
4726}
4727
2f93eea8
PB
4728/* The function cached_num_sign_bit_copies is a wrapper around
4729 num_sign_bit_copies1. It avoids exponential behavior in
4730 num_sign_bit_copies1 when X has identical subexpressions on the
4731 first or the second level. */
4732
4733static unsigned int
ef4bddc2
RS
4734cached_num_sign_bit_copies (const_rtx x, machine_mode mode, const_rtx known_x,
4735 machine_mode known_mode,
2f93eea8
PB
4736 unsigned int known_ret)
4737{
4738 if (x == known_x && mode == known_mode)
4739 return known_ret;
4740
4741 /* Try to find identical subexpressions. If found call
4742 num_sign_bit_copies1 on X with the subexpressions as KNOWN_X and
4743 the precomputed value for the subexpression as KNOWN_RET. */
4744
d0268b37 4745 if (num_sign_bit_copies_binary_arith_p (x))
2f93eea8
PB
4746 {
4747 rtx x0 = XEXP (x, 0);
4748 rtx x1 = XEXP (x, 1);
4749
4750 /* Check the first level. */
4751 if (x0 == x1)
4752 return
4753 num_sign_bit_copies1 (x, mode, x0, mode,
4754 cached_num_sign_bit_copies (x0, mode, known_x,
4755 known_mode,
4756 known_ret));
4757
4758 /* Check the second level. */
d0268b37 4759 if (num_sign_bit_copies_binary_arith_p (x0)
2f93eea8
PB
4760 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
4761 return
4762 num_sign_bit_copies1 (x, mode, x1, mode,
4763 cached_num_sign_bit_copies (x1, mode, known_x,
4764 known_mode,
4765 known_ret));
4766
d0268b37 4767 if (num_sign_bit_copies_binary_arith_p (x1)
2f93eea8
PB
4768 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
4769 return
4770 num_sign_bit_copies1 (x, mode, x0, mode,
4771 cached_num_sign_bit_copies (x0, mode, known_x,
4772 known_mode,
4773 known_ret));
4774 }
4775
4776 return num_sign_bit_copies1 (x, mode, known_x, known_mode, known_ret);
4777}
4778
4779/* Return the number of bits at the high-order end of X that are known to
4780 be equal to the sign bit. X will be used in mode MODE; if MODE is
4781 VOIDmode, X will be used in its own mode. The returned value will always
4782 be between 1 and the number of bits in MODE. */
4783
4784static unsigned int
ef4bddc2
RS
4785num_sign_bit_copies1 (const_rtx x, machine_mode mode, const_rtx known_x,
4786 machine_mode known_mode,
2f93eea8
PB
4787 unsigned int known_ret)
4788{
4789 enum rtx_code code = GET_CODE (x);
5511bc5a 4790 unsigned int bitwidth = GET_MODE_PRECISION (mode);
2f93eea8
PB
4791 int num0, num1, result;
4792 unsigned HOST_WIDE_INT nonzero;
4793
4794 /* If we weren't given a mode, use the mode of X. If the mode is still
4795 VOIDmode, we don't know anything. Likewise if one of the modes is
4796 floating-point. */
4797
4798 if (mode == VOIDmode)
4799 mode = GET_MODE (x);
4800
ff596cd2
RL
4801 if (mode == VOIDmode || FLOAT_MODE_P (mode) || FLOAT_MODE_P (GET_MODE (x))
4802 || VECTOR_MODE_P (GET_MODE (x)) || VECTOR_MODE_P (mode))
2f93eea8
PB
4803 return 1;
4804
4805 /* For a smaller object, just ignore the high bits. */
5511bc5a 4806 if (bitwidth < GET_MODE_PRECISION (GET_MODE (x)))
2f93eea8
PB
4807 {
4808 num0 = cached_num_sign_bit_copies (x, GET_MODE (x),
4809 known_x, known_mode, known_ret);
4810 return MAX (1,
5511bc5a 4811 num0 - (int) (GET_MODE_PRECISION (GET_MODE (x)) - bitwidth));
2f93eea8
PB
4812 }
4813
5511bc5a 4814 if (GET_MODE (x) != VOIDmode && bitwidth > GET_MODE_PRECISION (GET_MODE (x)))
2f93eea8 4815 {
5511bc5a
BS
4816 /* If this machine does not do all register operations on the entire
4817 register and MODE is wider than the mode of X, we can say nothing
4818 at all about the high-order bits. */
9e11bfef
TS
4819 if (!WORD_REGISTER_OPERATIONS)
4820 return 1;
4821
2f93eea8
PB
4822 /* Likewise on machines that do, if the mode of the object is smaller
4823 than a word and loads of that size don't sign extend, we can say
4824 nothing about the high order bits. */
5511bc5a 4825 if (GET_MODE_PRECISION (GET_MODE (x)) < BITS_PER_WORD
2f93eea8
PB
4826#ifdef LOAD_EXTEND_OP
4827 && LOAD_EXTEND_OP (GET_MODE (x)) != SIGN_EXTEND
4828#endif
4829 )
4830 return 1;
2f93eea8
PB
4831 }
4832
d0268b37
JJ
4833 /* Please keep num_sign_bit_copies_binary_arith_p above in sync with
4834 the code in the switch below. */
2f93eea8
PB
4835 switch (code)
4836 {
4837 case REG:
4838
2a870875 4839#if defined(POINTERS_EXTEND_UNSIGNED)
2f93eea8
PB
4840 /* If pointers extend signed and this is a pointer in Pmode, say that
4841 all the bits above ptr_mode are known to be sign bit copies. */
5932a4d4 4842 /* As we do not know which address space the pointer is referring to,
d4ebfa65
BE
4843 we can do this only if the target does not support different pointer
4844 or address modes depending on the address space. */
4845 if (target_default_pointer_address_modes_p ()
4846 && ! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
2a870875
RS
4847 && mode == Pmode && REG_POINTER (x)
4848 && !targetm.have_ptr_extend ())
5511bc5a 4849 return GET_MODE_PRECISION (Pmode) - GET_MODE_PRECISION (ptr_mode) + 1;
2f93eea8
PB
4850#endif
4851
4852 {
4853 unsigned int copies_for_hook = 1, copies = 1;
55d796da 4854 rtx new_rtx = rtl_hooks.reg_num_sign_bit_copies (x, mode, known_x,
2f93eea8
PB
4855 known_mode, known_ret,
4856 &copies_for_hook);
4857
55d796da
KG
4858 if (new_rtx)
4859 copies = cached_num_sign_bit_copies (new_rtx, mode, known_x,
2f93eea8
PB
4860 known_mode, known_ret);
4861
4862 if (copies > 1 || copies_for_hook > 1)
4863 return MAX (copies, copies_for_hook);
4864
4865 /* Else, use nonzero_bits to guess num_sign_bit_copies (see below). */
4866 }
4867 break;
4868
4869 case MEM:
4870#ifdef LOAD_EXTEND_OP
4871 /* Some RISC machines sign-extend all loads of smaller than a word. */
4872 if (LOAD_EXTEND_OP (GET_MODE (x)) == SIGN_EXTEND)
4873 return MAX (1, ((int) bitwidth
5511bc5a 4874 - (int) GET_MODE_PRECISION (GET_MODE (x)) + 1));
2f93eea8
PB
4875#endif
4876 break;
4877
4878 case CONST_INT:
4879 /* If the constant is negative, take its 1's complement and remask.
4880 Then see how many zero bits we have. */
c04fc4f0 4881 nonzero = UINTVAL (x) & GET_MODE_MASK (mode);
2f93eea8 4882 if (bitwidth <= HOST_BITS_PER_WIDE_INT
fecfbfa4 4883 && (nonzero & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0)
2f93eea8
PB
4884 nonzero = (~nonzero) & GET_MODE_MASK (mode);
4885
4886 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
4887
4888 case SUBREG:
4889 /* If this is a SUBREG for a promoted object that is sign-extended
4890 and we are looking at it in a wider mode, we know that at least the
4891 high-order bits are known to be sign bit copies. */
4892
362d42dc 4893 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_SIGNED_P (x))
2f93eea8
PB
4894 {
4895 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), mode,
4896 known_x, known_mode, known_ret);
4897 return MAX ((int) bitwidth
5511bc5a 4898 - (int) GET_MODE_PRECISION (GET_MODE (x)) + 1,
2f93eea8
PB
4899 num0);
4900 }
4901
4902 /* For a smaller object, just ignore the high bits. */
5511bc5a 4903 if (bitwidth <= GET_MODE_PRECISION (GET_MODE (SUBREG_REG (x))))
2f93eea8
PB
4904 {
4905 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), VOIDmode,
4906 known_x, known_mode, known_ret);
4907 return MAX (1, (num0
5511bc5a 4908 - (int) (GET_MODE_PRECISION (GET_MODE (SUBREG_REG (x)))
2f93eea8
PB
4909 - bitwidth)));
4910 }
4911
2f93eea8
PB
4912#ifdef LOAD_EXTEND_OP
4913 /* For paradoxical SUBREGs on machines where all register operations
4914 affect the entire register, just look inside. Note that we are
4915 passing MODE to the recursive call, so the number of sign bit copies
4916 will remain relative to that mode, not the inner mode. */
4917
4918 /* This works only if loads sign extend. Otherwise, if we get a
4919 reload for the inner part, it may be loaded from the stack, and
4920 then we lose all sign bit copies that existed before the store
4921 to the stack. */
4922
9e11bfef
TS
4923 if (WORD_REGISTER_OPERATIONS
4924 && paradoxical_subreg_p (x)
2f93eea8 4925 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
3c0cb5de 4926 && MEM_P (SUBREG_REG (x)))
2f93eea8
PB
4927 return cached_num_sign_bit_copies (SUBREG_REG (x), mode,
4928 known_x, known_mode, known_ret);
2f93eea8
PB
4929#endif
4930 break;
4931
4932 case SIGN_EXTRACT:
481683e1 4933 if (CONST_INT_P (XEXP (x, 1)))
2f93eea8
PB
4934 return MAX (1, (int) bitwidth - INTVAL (XEXP (x, 1)));
4935 break;
4936
4937 case SIGN_EXTEND:
5511bc5a 4938 return (bitwidth - GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
2f93eea8
PB
4939 + cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
4940 known_x, known_mode, known_ret));
4941
4942 case TRUNCATE:
4943 /* For a smaller object, just ignore the high bits. */
4944 num0 = cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
4945 known_x, known_mode, known_ret);
5511bc5a 4946 return MAX (1, (num0 - (int) (GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
2f93eea8
PB
4947 - bitwidth)));
4948
4949 case NOT:
4950 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
4951 known_x, known_mode, known_ret);
4952
4953 case ROTATE: case ROTATERT:
4954 /* If we are rotating left by a number of bits less than the number
4955 of sign bit copies, we can just subtract that amount from the
4956 number. */
481683e1 4957 if (CONST_INT_P (XEXP (x, 1))
2f93eea8
PB
4958 && INTVAL (XEXP (x, 1)) >= 0
4959 && INTVAL (XEXP (x, 1)) < (int) bitwidth)
4960 {
4961 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4962 known_x, known_mode, known_ret);
4963 return MAX (1, num0 - (code == ROTATE ? INTVAL (XEXP (x, 1))
4964 : (int) bitwidth - INTVAL (XEXP (x, 1))));
4965 }
4966 break;
4967
4968 case NEG:
4969 /* In general, this subtracts one sign bit copy. But if the value
4970 is known to be positive, the number of sign bit copies is the
4971 same as that of the input. Finally, if the input has just one bit
4972 that might be nonzero, all the bits are copies of the sign bit. */
4973 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4974 known_x, known_mode, known_ret);
4975 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4976 return num0 > 1 ? num0 - 1 : 1;
4977
4978 nonzero = nonzero_bits (XEXP (x, 0), mode);
4979 if (nonzero == 1)
4980 return bitwidth;
4981
4982 if (num0 > 1
fecfbfa4 4983 && ((HOST_WIDE_INT_1U << (bitwidth - 1)) & nonzero))
2f93eea8
PB
4984 num0--;
4985
4986 return num0;
4987
4988 case IOR: case AND: case XOR:
4989 case SMIN: case SMAX: case UMIN: case UMAX:
4990 /* Logical operations will preserve the number of sign-bit copies.
4991 MIN and MAX operations always return one of the operands. */
4992 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4993 known_x, known_mode, known_ret);
4994 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4995 known_x, known_mode, known_ret);
22761ec3
AN
4996
4997 /* If num1 is clearing some of the top bits then regardless of
4998 the other term, we are guaranteed to have at least that many
4999 high-order zero bits. */
5000 if (code == AND
5001 && num1 > 1
5002 && bitwidth <= HOST_BITS_PER_WIDE_INT
481683e1 5003 && CONST_INT_P (XEXP (x, 1))
c04fc4f0 5004 && (UINTVAL (XEXP (x, 1))
fecfbfa4 5005 & (HOST_WIDE_INT_1U << (bitwidth - 1))) == 0)
22761ec3
AN
5006 return num1;
5007
5008 /* Similarly for IOR when setting high-order bits. */
5009 if (code == IOR
5010 && num1 > 1
5011 && bitwidth <= HOST_BITS_PER_WIDE_INT
481683e1 5012 && CONST_INT_P (XEXP (x, 1))
c04fc4f0 5013 && (UINTVAL (XEXP (x, 1))
fecfbfa4 5014 & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0)
22761ec3
AN
5015 return num1;
5016
2f93eea8
PB
5017 return MIN (num0, num1);
5018
5019 case PLUS: case MINUS:
5020 /* For addition and subtraction, we can have a 1-bit carry. However,
5021 if we are subtracting 1 from a positive number, there will not
5022 be such a carry. Furthermore, if the positive number is known to
5023 be 0 or 1, we know the result is either -1 or 0. */
5024
5025 if (code == PLUS && XEXP (x, 1) == constm1_rtx
5026 && bitwidth <= HOST_BITS_PER_WIDE_INT)
5027 {
5028 nonzero = nonzero_bits (XEXP (x, 0), mode);
fecfbfa4 5029 if (((HOST_WIDE_INT_1U << (bitwidth - 1)) & nonzero) == 0)
2f93eea8
PB
5030 return (nonzero == 1 || nonzero == 0 ? bitwidth
5031 : bitwidth - floor_log2 (nonzero) - 1);
5032 }
5033
5034 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5035 known_x, known_mode, known_ret);
5036 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
5037 known_x, known_mode, known_ret);
5038 result = MAX (1, MIN (num0, num1) - 1);
5039
2f93eea8
PB
5040 return result;
5041
5042 case MULT:
5043 /* The number of bits of the product is the sum of the number of
5044 bits of both terms. However, unless one of the terms if known
5045 to be positive, we must allow for an additional bit since negating
5046 a negative number can remove one sign bit copy. */
5047
5048 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5049 known_x, known_mode, known_ret);
5050 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
5051 known_x, known_mode, known_ret);
5052
5053 result = bitwidth - (bitwidth - num0) - (bitwidth - num1);
5054 if (result > 0
5055 && (bitwidth > HOST_BITS_PER_WIDE_INT
5056 || (((nonzero_bits (XEXP (x, 0), mode)
fecfbfa4 5057 & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0)
2f93eea8 5058 && ((nonzero_bits (XEXP (x, 1), mode)
fecfbfa4 5059 & (HOST_WIDE_INT_1U << (bitwidth - 1)))
c04fc4f0 5060 != 0))))
2f93eea8
PB
5061 result--;
5062
5063 return MAX (1, result);
5064
5065 case UDIV:
5066 /* The result must be <= the first operand. If the first operand
5067 has the high bit set, we know nothing about the number of sign
5068 bit copies. */
5069 if (bitwidth > HOST_BITS_PER_WIDE_INT)
5070 return 1;
5071 else if ((nonzero_bits (XEXP (x, 0), mode)
fecfbfa4 5072 & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0)
2f93eea8
PB
5073 return 1;
5074 else
5075 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
5076 known_x, known_mode, known_ret);
5077
5078 case UMOD:
24d179b4
JJ
5079 /* The result must be <= the second operand. If the second operand
5080 has (or just might have) the high bit set, we know nothing about
5081 the number of sign bit copies. */
5082 if (bitwidth > HOST_BITS_PER_WIDE_INT)
5083 return 1;
5084 else if ((nonzero_bits (XEXP (x, 1), mode)
fecfbfa4 5085 & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0)
24d179b4
JJ
5086 return 1;
5087 else
5088 return cached_num_sign_bit_copies (XEXP (x, 1), mode,
2f93eea8
PB
5089 known_x, known_mode, known_ret);
5090
5091 case DIV:
5092 /* Similar to unsigned division, except that we have to worry about
5093 the case where the divisor is negative, in which case we have
5094 to add 1. */
5095 result = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5096 known_x, known_mode, known_ret);
5097 if (result > 1
5098 && (bitwidth > HOST_BITS_PER_WIDE_INT
5099 || (nonzero_bits (XEXP (x, 1), mode)
fecfbfa4 5100 & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0))
2f93eea8
PB
5101 result--;
5102
5103 return result;
5104
5105 case MOD:
5106 result = cached_num_sign_bit_copies (XEXP (x, 1), mode,
5107 known_x, known_mode, known_ret);
5108 if (result > 1
5109 && (bitwidth > HOST_BITS_PER_WIDE_INT
5110 || (nonzero_bits (XEXP (x, 1), mode)
fecfbfa4 5111 & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0))
2f93eea8
PB
5112 result--;
5113
5114 return result;
5115
5116 case ASHIFTRT:
5117 /* Shifts by a constant add to the number of bits equal to the
5118 sign bit. */
5119 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5120 known_x, known_mode, known_ret);
481683e1 5121 if (CONST_INT_P (XEXP (x, 1))
39b2ac74 5122 && INTVAL (XEXP (x, 1)) > 0
5511bc5a 5123 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (GET_MODE (x)))
2f93eea8
PB
5124 num0 = MIN ((int) bitwidth, num0 + INTVAL (XEXP (x, 1)));
5125
5126 return num0;
5127
5128 case ASHIFT:
5129 /* Left shifts destroy copies. */
481683e1 5130 if (!CONST_INT_P (XEXP (x, 1))
2f93eea8 5131 || INTVAL (XEXP (x, 1)) < 0
39b2ac74 5132 || INTVAL (XEXP (x, 1)) >= (int) bitwidth
5511bc5a 5133 || INTVAL (XEXP (x, 1)) >= GET_MODE_PRECISION (GET_MODE (x)))
2f93eea8
PB
5134 return 1;
5135
5136 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5137 known_x, known_mode, known_ret);
5138 return MAX (1, num0 - INTVAL (XEXP (x, 1)));
5139
5140 case IF_THEN_ELSE:
5141 num0 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
5142 known_x, known_mode, known_ret);
5143 num1 = cached_num_sign_bit_copies (XEXP (x, 2), mode,
5144 known_x, known_mode, known_ret);
5145 return MIN (num0, num1);
5146
5147 case EQ: case NE: case GE: case GT: case LE: case LT:
5148 case UNEQ: case LTGT: case UNGE: case UNGT: case UNLE: case UNLT:
5149 case GEU: case GTU: case LEU: case LTU:
5150 case UNORDERED: case ORDERED:
5151 /* If the constant is negative, take its 1's complement and remask.
5152 Then see how many zero bits we have. */
5153 nonzero = STORE_FLAG_VALUE;
5154 if (bitwidth <= HOST_BITS_PER_WIDE_INT
fecfbfa4 5155 && (nonzero & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0)
2f93eea8
PB
5156 nonzero = (~nonzero) & GET_MODE_MASK (mode);
5157
5158 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
5159
5160 default:
5161 break;
5162 }
5163
5164 /* If we haven't been able to figure it out by one of the above rules,
5165 see if some of the high-order bits are known to be zero. If so,
5166 count those bits and return one less than that amount. If we can't
5167 safely compute the mask for this mode, always return BITWIDTH. */
5168
5511bc5a 5169 bitwidth = GET_MODE_PRECISION (mode);
2f93eea8
PB
5170 if (bitwidth > HOST_BITS_PER_WIDE_INT)
5171 return 1;
5172
5173 nonzero = nonzero_bits (x, mode);
fecfbfa4 5174 return nonzero & (HOST_WIDE_INT_1U << (bitwidth - 1))
2f93eea8
PB
5175 ? 1 : bitwidth - floor_log2 (nonzero) - 1;
5176}
6fd21094
RS
5177
5178/* Calculate the rtx_cost of a single instruction. A return value of
5179 zero indicates an instruction pattern without a known cost. */
5180
5181int
f40751dd 5182insn_rtx_cost (rtx pat, bool speed)
6fd21094
RS
5183{
5184 int i, cost;
5185 rtx set;
5186
5187 /* Extract the single set rtx from the instruction pattern.
5188 We can't use single_set since we only have the pattern. */
5189 if (GET_CODE (pat) == SET)
5190 set = pat;
5191 else if (GET_CODE (pat) == PARALLEL)
5192 {
5193 set = NULL_RTX;
5194 for (i = 0; i < XVECLEN (pat, 0); i++)
5195 {
5196 rtx x = XVECEXP (pat, 0, i);
5197 if (GET_CODE (x) == SET)
5198 {
5199 if (set)
5200 return 0;
5201 set = x;
5202 }
5203 }
5204 if (!set)
5205 return 0;
5206 }
5207 else
5208 return 0;
5209
e548c9df 5210 cost = set_src_cost (SET_SRC (set), GET_MODE (SET_DEST (set)), speed);
6fd21094
RS
5211 return cost > 0 ? cost : COSTS_N_INSNS (1);
5212}
75473b02 5213
11204b2d
ZC
5214/* Returns estimate on cost of computing SEQ. */
5215
5216unsigned
5217seq_cost (const rtx_insn *seq, bool speed)
5218{
5219 unsigned cost = 0;
5220 rtx set;
5221
5222 for (; seq; seq = NEXT_INSN (seq))
5223 {
5224 set = single_set (seq);
5225 if (set)
5226 cost += set_rtx_cost (set, speed);
5227 else
5228 cost++;
5229 }
5230
5231 return cost;
5232}
5233
75473b02
SB
5234/* Given an insn INSN and condition COND, return the condition in a
5235 canonical form to simplify testing by callers. Specifically:
5236
5237 (1) The code will always be a comparison operation (EQ, NE, GT, etc.).
5238 (2) Both operands will be machine operands; (cc0) will have been replaced.
5239 (3) If an operand is a constant, it will be the second operand.
5240 (4) (LE x const) will be replaced with (LT x <const+1>) and similarly
5241 for GE, GEU, and LEU.
5242
5243 If the condition cannot be understood, or is an inequality floating-point
5244 comparison which needs to be reversed, 0 will be returned.
5245
5246 If REVERSE is nonzero, then reverse the condition prior to canonizing it.
5247
5248 If EARLIEST is nonzero, it is a pointer to a place where the earliest
5249 insn used in locating the condition was found. If a replacement test
5250 of the condition is desired, it should be placed in front of that
5251 insn and we will be sure that the inputs are still valid.
5252
5253 If WANT_REG is nonzero, we wish the condition to be relative to that
5254 register, if possible. Therefore, do not canonicalize the condition
b8698a0f 5255 further. If ALLOW_CC_MODE is nonzero, allow the condition returned
75473b02
SB
5256 to be a compare to a CC mode register.
5257
5258 If VALID_AT_INSN_P, the condition must be valid at both *EARLIEST
5259 and at INSN. */
5260
5261rtx
61aa0978
DM
5262canonicalize_condition (rtx_insn *insn, rtx cond, int reverse,
5263 rtx_insn **earliest,
75473b02
SB
5264 rtx want_reg, int allow_cc_mode, int valid_at_insn_p)
5265{
5266 enum rtx_code code;
61aa0978 5267 rtx_insn *prev = insn;
f7d504c2 5268 const_rtx set;
75473b02
SB
5269 rtx tem;
5270 rtx op0, op1;
5271 int reverse_code = 0;
ef4bddc2 5272 machine_mode mode;
569f8d98 5273 basic_block bb = BLOCK_FOR_INSN (insn);
75473b02
SB
5274
5275 code = GET_CODE (cond);
5276 mode = GET_MODE (cond);
5277 op0 = XEXP (cond, 0);
5278 op1 = XEXP (cond, 1);
5279
5280 if (reverse)
5281 code = reversed_comparison_code (cond, insn);
5282 if (code == UNKNOWN)
5283 return 0;
5284
5285 if (earliest)
5286 *earliest = insn;
5287
5288 /* If we are comparing a register with zero, see if the register is set
5289 in the previous insn to a COMPARE or a comparison operation. Perform
5290 the same tests as a function of STORE_FLAG_VALUE as find_comparison_args
5291 in cse.c */
5292
5293 while ((GET_RTX_CLASS (code) == RTX_COMPARE
5294 || GET_RTX_CLASS (code) == RTX_COMM_COMPARE)
5295 && op1 == CONST0_RTX (GET_MODE (op0))
5296 && op0 != want_reg)
5297 {
5298 /* Set nonzero when we find something of interest. */
5299 rtx x = 0;
5300
75473b02
SB
5301 /* If comparison with cc0, import actual comparison from compare
5302 insn. */
5303 if (op0 == cc0_rtx)
5304 {
5305 if ((prev = prev_nonnote_insn (prev)) == 0
5306 || !NONJUMP_INSN_P (prev)
5307 || (set = single_set (prev)) == 0
5308 || SET_DEST (set) != cc0_rtx)
5309 return 0;
5310
5311 op0 = SET_SRC (set);
5312 op1 = CONST0_RTX (GET_MODE (op0));
5313 if (earliest)
5314 *earliest = prev;
5315 }
75473b02
SB
5316
5317 /* If this is a COMPARE, pick up the two things being compared. */
5318 if (GET_CODE (op0) == COMPARE)
5319 {
5320 op1 = XEXP (op0, 1);
5321 op0 = XEXP (op0, 0);
5322 continue;
5323 }
5324 else if (!REG_P (op0))
5325 break;
5326
5327 /* Go back to the previous insn. Stop if it is not an INSN. We also
5328 stop if it isn't a single set or if it has a REG_INC note because
5329 we don't want to bother dealing with it. */
5330
f0fc0803 5331 prev = prev_nonnote_nondebug_insn (prev);
b5b8b0ac
AO
5332
5333 if (prev == 0
75473b02 5334 || !NONJUMP_INSN_P (prev)
569f8d98
ZD
5335 || FIND_REG_INC_NOTE (prev, NULL_RTX)
5336 /* In cfglayout mode, there do not have to be labels at the
5337 beginning of a block, or jumps at the end, so the previous
5338 conditions would not stop us when we reach bb boundary. */
5339 || BLOCK_FOR_INSN (prev) != bb)
75473b02
SB
5340 break;
5341
5342 set = set_of (op0, prev);
5343
5344 if (set
5345 && (GET_CODE (set) != SET
5346 || !rtx_equal_p (SET_DEST (set), op0)))
5347 break;
5348
5349 /* If this is setting OP0, get what it sets it to if it looks
5350 relevant. */
5351 if (set)
5352 {
ef4bddc2 5353 machine_mode inner_mode = GET_MODE (SET_DEST (set));
75473b02
SB
5354#ifdef FLOAT_STORE_FLAG_VALUE
5355 REAL_VALUE_TYPE fsfv;
5356#endif
5357
5358 /* ??? We may not combine comparisons done in a CCmode with
5359 comparisons not done in a CCmode. This is to aid targets
5360 like Alpha that have an IEEE compliant EQ instruction, and
5361 a non-IEEE compliant BEQ instruction. The use of CCmode is
5362 actually artificial, simply to prevent the combination, but
5363 should not affect other platforms.
5364
5365 However, we must allow VOIDmode comparisons to match either
5366 CCmode or non-CCmode comparison, because some ports have
5367 modeless comparisons inside branch patterns.
5368
5369 ??? This mode check should perhaps look more like the mode check
5370 in simplify_comparison in combine. */
2c8798a2
RS
5371 if (((GET_MODE_CLASS (mode) == MODE_CC)
5372 != (GET_MODE_CLASS (inner_mode) == MODE_CC))
5373 && mode != VOIDmode
5374 && inner_mode != VOIDmode)
5375 break;
5376 if (GET_CODE (SET_SRC (set)) == COMPARE
5377 || (((code == NE
5378 || (code == LT
5379 && val_signbit_known_set_p (inner_mode,
5380 STORE_FLAG_VALUE))
75473b02 5381#ifdef FLOAT_STORE_FLAG_VALUE
2c8798a2
RS
5382 || (code == LT
5383 && SCALAR_FLOAT_MODE_P (inner_mode)
5384 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
5385 REAL_VALUE_NEGATIVE (fsfv)))
75473b02 5386#endif
2c8798a2
RS
5387 ))
5388 && COMPARISON_P (SET_SRC (set))))
75473b02
SB
5389 x = SET_SRC (set);
5390 else if (((code == EQ
5391 || (code == GE
2d0c270f
BS
5392 && val_signbit_known_set_p (inner_mode,
5393 STORE_FLAG_VALUE))
75473b02
SB
5394#ifdef FLOAT_STORE_FLAG_VALUE
5395 || (code == GE
3d8bf70f 5396 && SCALAR_FLOAT_MODE_P (inner_mode)
75473b02
SB
5397 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
5398 REAL_VALUE_NEGATIVE (fsfv)))
5399#endif
5400 ))
2c8798a2 5401 && COMPARISON_P (SET_SRC (set)))
75473b02
SB
5402 {
5403 reverse_code = 1;
5404 x = SET_SRC (set);
5405 }
2c8798a2
RS
5406 else if ((code == EQ || code == NE)
5407 && GET_CODE (SET_SRC (set)) == XOR)
5408 /* Handle sequences like:
5409
5410 (set op0 (xor X Y))
5411 ...(eq|ne op0 (const_int 0))...
5412
5413 in which case:
5414
5415 (eq op0 (const_int 0)) reduces to (eq X Y)
5416 (ne op0 (const_int 0)) reduces to (ne X Y)
5417
5418 This is the form used by MIPS16, for example. */
5419 x = SET_SRC (set);
75473b02
SB
5420 else
5421 break;
5422 }
5423
5424 else if (reg_set_p (op0, prev))
5425 /* If this sets OP0, but not directly, we have to give up. */
5426 break;
5427
5428 if (x)
5429 {
5430 /* If the caller is expecting the condition to be valid at INSN,
5431 make sure X doesn't change before INSN. */
5432 if (valid_at_insn_p)
5433 if (modified_in_p (x, prev) || modified_between_p (x, prev, insn))
5434 break;
5435 if (COMPARISON_P (x))
5436 code = GET_CODE (x);
5437 if (reverse_code)
5438 {
5439 code = reversed_comparison_code (x, prev);
5440 if (code == UNKNOWN)
5441 return 0;
5442 reverse_code = 0;
5443 }
5444
5445 op0 = XEXP (x, 0), op1 = XEXP (x, 1);
5446 if (earliest)
5447 *earliest = prev;
5448 }
5449 }
5450
5451 /* If constant is first, put it last. */
5452 if (CONSTANT_P (op0))
5453 code = swap_condition (code), tem = op0, op0 = op1, op1 = tem;
5454
5455 /* If OP0 is the result of a comparison, we weren't able to find what
5456 was really being compared, so fail. */
5457 if (!allow_cc_mode
5458 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
5459 return 0;
5460
5461 /* Canonicalize any ordered comparison with integers involving equality
5462 if we can do computations in the relevant mode and we do not
5463 overflow. */
5464
5465 if (GET_MODE_CLASS (GET_MODE (op0)) != MODE_CC
481683e1 5466 && CONST_INT_P (op1)
75473b02 5467 && GET_MODE (op0) != VOIDmode
5511bc5a 5468 && GET_MODE_PRECISION (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT)
75473b02
SB
5469 {
5470 HOST_WIDE_INT const_val = INTVAL (op1);
5471 unsigned HOST_WIDE_INT uconst_val = const_val;
5472 unsigned HOST_WIDE_INT max_val
5473 = (unsigned HOST_WIDE_INT) GET_MODE_MASK (GET_MODE (op0));
5474
5475 switch (code)
5476 {
5477 case LE:
5478 if ((unsigned HOST_WIDE_INT) const_val != max_val >> 1)
5479 code = LT, op1 = gen_int_mode (const_val + 1, GET_MODE (op0));
5480 break;
5481
5482 /* When cross-compiling, const_val might be sign-extended from
5483 BITS_PER_WORD to HOST_BITS_PER_WIDE_INT */
5484 case GE:
c04fc4f0 5485 if ((const_val & max_val)
fecfbfa4 5486 != (HOST_WIDE_INT_1U
5511bc5a 5487 << (GET_MODE_PRECISION (GET_MODE (op0)) - 1)))
75473b02
SB
5488 code = GT, op1 = gen_int_mode (const_val - 1, GET_MODE (op0));
5489 break;
5490
5491 case LEU:
5492 if (uconst_val < max_val)
5493 code = LTU, op1 = gen_int_mode (uconst_val + 1, GET_MODE (op0));
5494 break;
5495
5496 case GEU:
5497 if (uconst_val != 0)
5498 code = GTU, op1 = gen_int_mode (uconst_val - 1, GET_MODE (op0));
5499 break;
5500
5501 default:
5502 break;
5503 }
5504 }
5505
5506 /* Never return CC0; return zero instead. */
5507 if (CC0_P (op0))
5508 return 0;
5509
5510 return gen_rtx_fmt_ee (code, VOIDmode, op0, op1);
5511}
5512
5513/* Given a jump insn JUMP, return the condition that will cause it to branch
5514 to its JUMP_LABEL. If the condition cannot be understood, or is an
5515 inequality floating-point comparison which needs to be reversed, 0 will
5516 be returned.
5517
5518 If EARLIEST is nonzero, it is a pointer to a place where the earliest
5519 insn used in locating the condition was found. If a replacement test
5520 of the condition is desired, it should be placed in front of that
5521 insn and we will be sure that the inputs are still valid. If EARLIEST
5522 is null, the returned condition will be valid at INSN.
5523
5524 If ALLOW_CC_MODE is nonzero, allow the condition returned to be a
5525 compare CC mode register.
5526
5527 VALID_AT_INSN_P is the same as for canonicalize_condition. */
5528
5529rtx
61aa0978
DM
5530get_condition (rtx_insn *jump, rtx_insn **earliest, int allow_cc_mode,
5531 int valid_at_insn_p)
75473b02
SB
5532{
5533 rtx cond;
5534 int reverse;
5535 rtx set;
5536
5537 /* If this is not a standard conditional jump, we can't parse it. */
5538 if (!JUMP_P (jump)
5539 || ! any_condjump_p (jump))
5540 return 0;
5541 set = pc_set (jump);
5542
5543 cond = XEXP (SET_SRC (set), 0);
5544
5545 /* If this branches to JUMP_LABEL when the condition is false, reverse
5546 the condition. */
5547 reverse
5548 = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
a827d9b1 5549 && LABEL_REF_LABEL (XEXP (SET_SRC (set), 2)) == JUMP_LABEL (jump);
75473b02
SB
5550
5551 return canonicalize_condition (jump, cond, reverse, earliest, NULL_RTX,
5552 allow_cc_mode, valid_at_insn_p);
5553}
5554
b12cbf2c
AN
5555/* Initialize the table NUM_SIGN_BIT_COPIES_IN_REP based on
5556 TARGET_MODE_REP_EXTENDED.
5557
5558 Note that we assume that the property of
5559 TARGET_MODE_REP_EXTENDED(B, C) is sticky to the integral modes
5560 narrower than mode B. I.e., if A is a mode narrower than B then in
5561 order to be able to operate on it in mode B, mode A needs to
5562 satisfy the requirements set by the representation of mode B. */
5563
5564static void
5565init_num_sign_bit_copies_in_rep (void)
5566{
ef4bddc2 5567 machine_mode mode, in_mode;
b12cbf2c
AN
5568
5569 for (in_mode = GET_CLASS_NARROWEST_MODE (MODE_INT); in_mode != VOIDmode;
5570 in_mode = GET_MODE_WIDER_MODE (mode))
5571 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != in_mode;
5572 mode = GET_MODE_WIDER_MODE (mode))
5573 {
ef4bddc2 5574 machine_mode i;
b12cbf2c
AN
5575
5576 /* Currently, it is assumed that TARGET_MODE_REP_EXTENDED
5577 extends to the next widest mode. */
5578 gcc_assert (targetm.mode_rep_extended (mode, in_mode) == UNKNOWN
5579 || GET_MODE_WIDER_MODE (mode) == in_mode);
5580
5581 /* We are in in_mode. Count how many bits outside of mode
5582 have to be copies of the sign-bit. */
5583 for (i = mode; i != in_mode; i = GET_MODE_WIDER_MODE (i))
5584 {
ef4bddc2 5585 machine_mode wider = GET_MODE_WIDER_MODE (i);
b12cbf2c
AN
5586
5587 if (targetm.mode_rep_extended (i, wider) == SIGN_EXTEND
5588 /* We can only check sign-bit copies starting from the
5589 top-bit. In order to be able to check the bits we
5590 have already seen we pretend that subsequent bits
5591 have to be sign-bit copies too. */
5592 || num_sign_bit_copies_in_rep [in_mode][mode])
5593 num_sign_bit_copies_in_rep [in_mode][mode]
5511bc5a 5594 += GET_MODE_PRECISION (wider) - GET_MODE_PRECISION (i);
b12cbf2c
AN
5595 }
5596 }
5597}
5598
d3b72690
PB
5599/* Suppose that truncation from the machine mode of X to MODE is not a
5600 no-op. See if there is anything special about X so that we can
5601 assume it already contains a truncated value of MODE. */
5602
5603bool
ef4bddc2 5604truncated_to_mode (machine_mode mode, const_rtx x)
d3b72690 5605{
b12cbf2c
AN
5606 /* This register has already been used in MODE without explicit
5607 truncation. */
5608 if (REG_P (x) && rtl_hooks.reg_truncated_to_mode (mode, x))
5609 return true;
5610
5611 /* See if we already satisfy the requirements of MODE. If yes we
5612 can just switch to MODE. */
5613 if (num_sign_bit_copies_in_rep[GET_MODE (x)][mode]
5614 && (num_sign_bit_copies (x, GET_MODE (x))
5615 >= num_sign_bit_copies_in_rep[GET_MODE (x)][mode] + 1))
5616 return true;
d3b72690 5617
b12cbf2c
AN
5618 return false;
5619}
cf94b0fc 5620\f
476dd0ce
RS
5621/* Return true if RTX code CODE has a single sequence of zero or more
5622 "e" operands and no rtvec operands. Initialize its rtx_all_subrtx_bounds
5623 entry in that case. */
5624
5625static bool
5626setup_reg_subrtx_bounds (unsigned int code)
5627{
5628 const char *format = GET_RTX_FORMAT ((enum rtx_code) code);
5629 unsigned int i = 0;
5630 for (; format[i] != 'e'; ++i)
5631 {
5632 if (!format[i])
5633 /* No subrtxes. Leave start and count as 0. */
5634 return true;
5635 if (format[i] == 'E' || format[i] == 'V')
5636 return false;
5637 }
5638
5639 /* Record the sequence of 'e's. */
5640 rtx_all_subrtx_bounds[code].start = i;
5641 do
5642 ++i;
5643 while (format[i] == 'e');
5644 rtx_all_subrtx_bounds[code].count = i - rtx_all_subrtx_bounds[code].start;
5645 /* rtl-iter.h relies on this. */
5646 gcc_checking_assert (rtx_all_subrtx_bounds[code].count <= 3);
5647
5648 for (; format[i]; ++i)
5649 if (format[i] == 'E' || format[i] == 'V' || format[i] == 'e')
5650 return false;
5651
5652 return true;
5653}
5654
e02101ff 5655/* Initialize rtx_all_subrtx_bounds. */
cf94b0fc
PB
5656void
5657init_rtlanal (void)
5658{
5659 int i;
5660 for (i = 0; i < NUM_RTX_CODE; i++)
5661 {
476dd0ce
RS
5662 if (!setup_reg_subrtx_bounds (i))
5663 rtx_all_subrtx_bounds[i].count = UCHAR_MAX;
5664 if (GET_RTX_CLASS (i) != RTX_CONST_OBJ)
5665 rtx_nonconst_subrtx_bounds[i] = rtx_all_subrtx_bounds[i];
cf94b0fc 5666 }
b12cbf2c
AN
5667
5668 init_num_sign_bit_copies_in_rep ();
cf94b0fc 5669}
3d8504ac
RS
5670\f
5671/* Check whether this is a constant pool constant. */
5672bool
5673constant_pool_constant_p (rtx x)
5674{
5675 x = avoid_constant_pool_reference (x);
48175537 5676 return CONST_DOUBLE_P (x);
3d8504ac 5677}
842e098c
AN
5678\f
5679/* If M is a bitmask that selects a field of low-order bits within an item but
5680 not the entire word, return the length of the field. Return -1 otherwise.
5681 M is used in machine mode MODE. */
5682
5683int
ef4bddc2 5684low_bitmask_len (machine_mode mode, unsigned HOST_WIDE_INT m)
842e098c
AN
5685{
5686 if (mode != VOIDmode)
5687 {
5511bc5a 5688 if (GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT)
842e098c
AN
5689 return -1;
5690 m &= GET_MODE_MASK (mode);
5691 }
5692
5693 return exact_log2 (m + 1);
5694}
372d6395
RS
5695
5696/* Return the mode of MEM's address. */
5697
ef4bddc2 5698machine_mode
372d6395
RS
5699get_address_mode (rtx mem)
5700{
ef4bddc2 5701 machine_mode mode;
372d6395
RS
5702
5703 gcc_assert (MEM_P (mem));
5704 mode = GET_MODE (XEXP (mem, 0));
5705 if (mode != VOIDmode)
5706 return mode;
5707 return targetm.addr_space.address_mode (MEM_ADDR_SPACE (mem));
5708}
ca3f2950
SB
5709\f
5710/* Split up a CONST_DOUBLE or integer constant rtx
5711 into two rtx's for single words,
5712 storing in *FIRST the word that comes first in memory in the target
807e902e
KZ
5713 and in *SECOND the other.
5714
5715 TODO: This function needs to be rewritten to work on any size
5716 integer. */
ca3f2950
SB
5717
5718void
5719split_double (rtx value, rtx *first, rtx *second)
5720{
5721 if (CONST_INT_P (value))
5722 {
5723 if (HOST_BITS_PER_WIDE_INT >= (2 * BITS_PER_WORD))
5724 {
5725 /* In this case the CONST_INT holds both target words.
5726 Extract the bits from it into two word-sized pieces.
5727 Sign extend each half to HOST_WIDE_INT. */
5728 unsigned HOST_WIDE_INT low, high;
5729 unsigned HOST_WIDE_INT mask, sign_bit, sign_extend;
5730 unsigned bits_per_word = BITS_PER_WORD;
5731
5732 /* Set sign_bit to the most significant bit of a word. */
5733 sign_bit = 1;
5734 sign_bit <<= bits_per_word - 1;
5735
5736 /* Set mask so that all bits of the word are set. We could
5737 have used 1 << BITS_PER_WORD instead of basing the
5738 calculation on sign_bit. However, on machines where
5739 HOST_BITS_PER_WIDE_INT == BITS_PER_WORD, it could cause a
5740 compiler warning, even though the code would never be
5741 executed. */
5742 mask = sign_bit << 1;
5743 mask--;
5744
5745 /* Set sign_extend as any remaining bits. */
5746 sign_extend = ~mask;
5747
5748 /* Pick the lower word and sign-extend it. */
5749 low = INTVAL (value);
5750 low &= mask;
5751 if (low & sign_bit)
5752 low |= sign_extend;
5753
5754 /* Pick the higher word, shifted to the least significant
5755 bits, and sign-extend it. */
5756 high = INTVAL (value);
5757 high >>= bits_per_word - 1;
5758 high >>= 1;
5759 high &= mask;
5760 if (high & sign_bit)
5761 high |= sign_extend;
5762
5763 /* Store the words in the target machine order. */
5764 if (WORDS_BIG_ENDIAN)
5765 {
5766 *first = GEN_INT (high);
5767 *second = GEN_INT (low);
5768 }
5769 else
5770 {
5771 *first = GEN_INT (low);
5772 *second = GEN_INT (high);
5773 }
5774 }
5775 else
5776 {
5777 /* The rule for using CONST_INT for a wider mode
5778 is that we regard the value as signed.
5779 So sign-extend it. */
5780 rtx high = (INTVAL (value) < 0 ? constm1_rtx : const0_rtx);
5781 if (WORDS_BIG_ENDIAN)
5782 {
5783 *first = high;
5784 *second = value;
5785 }
5786 else
5787 {
5788 *first = value;
5789 *second = high;
5790 }
5791 }
5792 }
807e902e
KZ
5793 else if (GET_CODE (value) == CONST_WIDE_INT)
5794 {
5795 /* All of this is scary code and needs to be converted to
5796 properly work with any size integer. */
5797 gcc_assert (CONST_WIDE_INT_NUNITS (value) == 2);
5798 if (WORDS_BIG_ENDIAN)
5799 {
5800 *first = GEN_INT (CONST_WIDE_INT_ELT (value, 1));
5801 *second = GEN_INT (CONST_WIDE_INT_ELT (value, 0));
5802 }
5803 else
5804 {
5805 *first = GEN_INT (CONST_WIDE_INT_ELT (value, 0));
5806 *second = GEN_INT (CONST_WIDE_INT_ELT (value, 1));
5807 }
5808 }
48175537 5809 else if (!CONST_DOUBLE_P (value))
ca3f2950
SB
5810 {
5811 if (WORDS_BIG_ENDIAN)
5812 {
5813 *first = const0_rtx;
5814 *second = value;
5815 }
5816 else
5817 {
5818 *first = value;
5819 *second = const0_rtx;
5820 }
5821 }
5822 else if (GET_MODE (value) == VOIDmode
5823 /* This is the old way we did CONST_DOUBLE integers. */
5824 || GET_MODE_CLASS (GET_MODE (value)) == MODE_INT)
5825 {
5826 /* In an integer, the words are defined as most and least significant.
5827 So order them by the target's convention. */
5828 if (WORDS_BIG_ENDIAN)
5829 {
5830 *first = GEN_INT (CONST_DOUBLE_HIGH (value));
5831 *second = GEN_INT (CONST_DOUBLE_LOW (value));
5832 }
5833 else
5834 {
5835 *first = GEN_INT (CONST_DOUBLE_LOW (value));
5836 *second = GEN_INT (CONST_DOUBLE_HIGH (value));
5837 }
5838 }
5839 else
5840 {
ca3f2950 5841 long l[2];
ca3f2950
SB
5842
5843 /* Note, this converts the REAL_VALUE_TYPE to the target's
5844 format, splits up the floating point double and outputs
5845 exactly 32 bits of it into each of l[0] and l[1] --
5846 not necessarily BITS_PER_WORD bits. */
34a72c33 5847 REAL_VALUE_TO_TARGET_DOUBLE (*CONST_DOUBLE_REAL_VALUE (value), l);
ca3f2950
SB
5848
5849 /* If 32 bits is an entire word for the target, but not for the host,
5850 then sign-extend on the host so that the number will look the same
5851 way on the host that it would on the target. See for instance
5852 simplify_unary_operation. The #if is needed to avoid compiler
5853 warnings. */
5854
5855#if HOST_BITS_PER_LONG > 32
5856 if (BITS_PER_WORD < HOST_BITS_PER_LONG && BITS_PER_WORD == 32)
5857 {
5858 if (l[0] & ((long) 1 << 31))
aa256c4a 5859 l[0] |= ((unsigned long) (-1) << 32);
ca3f2950 5860 if (l[1] & ((long) 1 << 31))
aa256c4a 5861 l[1] |= ((unsigned long) (-1) << 32);
ca3f2950
SB
5862 }
5863#endif
5864
5865 *first = GEN_INT (l[0]);
5866 *second = GEN_INT (l[1]);
5867 }
5868}
5869
3936bafc
YR
5870/* Return true if X is a sign_extract or zero_extract from the least
5871 significant bit. */
5872
5873static bool
5874lsb_bitfield_op_p (rtx x)
5875{
5876 if (GET_RTX_CLASS (GET_CODE (x)) == RTX_BITFIELD_OPS)
5877 {
ef4bddc2 5878 machine_mode mode = GET_MODE (XEXP (x, 0));
a9195970 5879 HOST_WIDE_INT len = INTVAL (XEXP (x, 1));
3936bafc
YR
5880 HOST_WIDE_INT pos = INTVAL (XEXP (x, 2));
5881
5882 return (pos == (BITS_BIG_ENDIAN ? GET_MODE_PRECISION (mode) - len : 0));
5883 }
5884 return false;
5885}
5886
277f65de
RS
5887/* Strip outer address "mutations" from LOC and return a pointer to the
5888 inner value. If OUTER_CODE is nonnull, store the code of the innermost
5889 stripped expression there.
5890
5891 "Mutations" either convert between modes or apply some kind of
3936bafc 5892 extension, truncation or alignment. */
277f65de
RS
5893
5894rtx *
5895strip_address_mutations (rtx *loc, enum rtx_code *outer_code)
5896{
5897 for (;;)
5898 {
5899 enum rtx_code code = GET_CODE (*loc);
5900 if (GET_RTX_CLASS (code) == RTX_UNARY)
5901 /* Things like SIGN_EXTEND, ZERO_EXTEND and TRUNCATE can be
5902 used to convert between pointer sizes. */
5903 loc = &XEXP (*loc, 0);
3936bafc
YR
5904 else if (lsb_bitfield_op_p (*loc))
5905 /* A [SIGN|ZERO]_EXTRACT from the least significant bit effectively
5906 acts as a combined truncation and extension. */
5907 loc = &XEXP (*loc, 0);
277f65de
RS
5908 else if (code == AND && CONST_INT_P (XEXP (*loc, 1)))
5909 /* (and ... (const_int -X)) is used to align to X bytes. */
5910 loc = &XEXP (*loc, 0);
163497f1
VM
5911 else if (code == SUBREG
5912 && !OBJECT_P (SUBREG_REG (*loc))
5913 && subreg_lowpart_p (*loc))
5914 /* (subreg (operator ...) ...) inside and is used for mode
5915 conversion too. */
99a0106f 5916 loc = &SUBREG_REG (*loc);
277f65de
RS
5917 else
5918 return loc;
5919 if (outer_code)
5920 *outer_code = code;
5921 }
5922}
5923
ec5a3504
RS
5924/* Return true if CODE applies some kind of scale. The scaled value is
5925 is the first operand and the scale is the second. */
277f65de
RS
5926
5927static bool
ec5a3504 5928binary_scale_code_p (enum rtx_code code)
277f65de 5929{
ec5a3504
RS
5930 return (code == MULT
5931 || code == ASHIFT
5932 /* Needed by ARM targets. */
5933 || code == ASHIFTRT
5934 || code == LSHIFTRT
5935 || code == ROTATE
5936 || code == ROTATERT);
277f65de
RS
5937}
5938
ec5a3504
RS
5939/* If *INNER can be interpreted as a base, return a pointer to the inner term
5940 (see address_info). Return null otherwise. */
277f65de 5941
ec5a3504
RS
5942static rtx *
5943get_base_term (rtx *inner)
277f65de 5944{
ec5a3504
RS
5945 if (GET_CODE (*inner) == LO_SUM)
5946 inner = strip_address_mutations (&XEXP (*inner, 0));
5947 if (REG_P (*inner)
5948 || MEM_P (*inner)
948cd9a5
MK
5949 || GET_CODE (*inner) == SUBREG
5950 || GET_CODE (*inner) == SCRATCH)
ec5a3504
RS
5951 return inner;
5952 return 0;
5953}
5954
5955/* If *INNER can be interpreted as an index, return a pointer to the inner term
5956 (see address_info). Return null otherwise. */
5957
5958static rtx *
5959get_index_term (rtx *inner)
5960{
5961 /* At present, only constant scales are allowed. */
5962 if (binary_scale_code_p (GET_CODE (*inner)) && CONSTANT_P (XEXP (*inner, 1)))
5963 inner = strip_address_mutations (&XEXP (*inner, 0));
5964 if (REG_P (*inner)
5965 || MEM_P (*inner)
71acd477
MK
5966 || GET_CODE (*inner) == SUBREG
5967 || GET_CODE (*inner) == SCRATCH)
ec5a3504
RS
5968 return inner;
5969 return 0;
277f65de
RS
5970}
5971
5972/* Set the segment part of address INFO to LOC, given that INNER is the
5973 unmutated value. */
5974
5975static void
5976set_address_segment (struct address_info *info, rtx *loc, rtx *inner)
5977{
277f65de
RS
5978 gcc_assert (!info->segment);
5979 info->segment = loc;
5980 info->segment_term = inner;
5981}
5982
5983/* Set the base part of address INFO to LOC, given that INNER is the
5984 unmutated value. */
5985
5986static void
5987set_address_base (struct address_info *info, rtx *loc, rtx *inner)
5988{
277f65de
RS
5989 gcc_assert (!info->base);
5990 info->base = loc;
5991 info->base_term = inner;
5992}
5993
5994/* Set the index part of address INFO to LOC, given that INNER is the
5995 unmutated value. */
5996
5997static void
5998set_address_index (struct address_info *info, rtx *loc, rtx *inner)
5999{
277f65de
RS
6000 gcc_assert (!info->index);
6001 info->index = loc;
6002 info->index_term = inner;
6003}
6004
6005/* Set the displacement part of address INFO to LOC, given that INNER
6006 is the constant term. */
6007
6008static void
6009set_address_disp (struct address_info *info, rtx *loc, rtx *inner)
6010{
277f65de
RS
6011 gcc_assert (!info->disp);
6012 info->disp = loc;
6013 info->disp_term = inner;
6014}
6015
6016/* INFO->INNER describes a {PRE,POST}_{INC,DEC} address. Set up the
6017 rest of INFO accordingly. */
6018
6019static void
6020decompose_incdec_address (struct address_info *info)
6021{
6022 info->autoinc_p = true;
6023
6024 rtx *base = &XEXP (*info->inner, 0);
6025 set_address_base (info, base, base);
6026 gcc_checking_assert (info->base == info->base_term);
6027
6028 /* These addresses are only valid when the size of the addressed
6029 value is known. */
6030 gcc_checking_assert (info->mode != VOIDmode);
6031}
6032
6033/* INFO->INNER describes a {PRE,POST}_MODIFY address. Set up the rest
6034 of INFO accordingly. */
6035
6036static void
6037decompose_automod_address (struct address_info *info)
6038{
6039 info->autoinc_p = true;
6040
6041 rtx *base = &XEXP (*info->inner, 0);
6042 set_address_base (info, base, base);
6043 gcc_checking_assert (info->base == info->base_term);
6044
6045 rtx plus = XEXP (*info->inner, 1);
6046 gcc_assert (GET_CODE (plus) == PLUS);
6047
6048 info->base_term2 = &XEXP (plus, 0);
6049 gcc_checking_assert (rtx_equal_p (*info->base_term, *info->base_term2));
6050
6051 rtx *step = &XEXP (plus, 1);
6052 rtx *inner_step = strip_address_mutations (step);
6053 if (CONSTANT_P (*inner_step))
6054 set_address_disp (info, step, inner_step);
6055 else
6056 set_address_index (info, step, inner_step);
6057}
6058
6059/* Treat *LOC as a tree of PLUS operands and store pointers to the summed
6060 values in [PTR, END). Return a pointer to the end of the used array. */
6061
6062static rtx **
6063extract_plus_operands (rtx *loc, rtx **ptr, rtx **end)
6064{
6065 rtx x = *loc;
6066 if (GET_CODE (x) == PLUS)
6067 {
6068 ptr = extract_plus_operands (&XEXP (x, 0), ptr, end);
6069 ptr = extract_plus_operands (&XEXP (x, 1), ptr, end);
6070 }
6071 else
6072 {
6073 gcc_assert (ptr != end);
6074 *ptr++ = loc;
6075 }
6076 return ptr;
6077}
6078
6079/* Evaluate the likelihood of X being a base or index value, returning
6080 positive if it is likely to be a base, negative if it is likely to be
6081 an index, and 0 if we can't tell. Make the magnitude of the return
6082 value reflect the amount of confidence we have in the answer.
6083
6084 MODE, AS, OUTER_CODE and INDEX_CODE are as for ok_for_base_p_1. */
6085
6086static int
ef4bddc2 6087baseness (rtx x, machine_mode mode, addr_space_t as,
277f65de
RS
6088 enum rtx_code outer_code, enum rtx_code index_code)
6089{
277f65de
RS
6090 /* Believe *_POINTER unless the address shape requires otherwise. */
6091 if (REG_P (x) && REG_POINTER (x))
6092 return 2;
6093 if (MEM_P (x) && MEM_POINTER (x))
6094 return 2;
6095
6096 if (REG_P (x) && HARD_REGISTER_P (x))
6097 {
6098 /* X is a hard register. If it only fits one of the base
6099 or index classes, choose that interpretation. */
6100 int regno = REGNO (x);
6101 bool base_p = ok_for_base_p_1 (regno, mode, as, outer_code, index_code);
6102 bool index_p = REGNO_OK_FOR_INDEX_P (regno);
6103 if (base_p != index_p)
6104 return base_p ? 1 : -1;
6105 }
6106 return 0;
6107}
6108
6109/* INFO->INNER describes a normal, non-automodified address.
6110 Fill in the rest of INFO accordingly. */
6111
6112static void
6113decompose_normal_address (struct address_info *info)
6114{
6115 /* Treat the address as the sum of up to four values. */
6116 rtx *ops[4];
6117 size_t n_ops = extract_plus_operands (info->inner, ops,
6118 ops + ARRAY_SIZE (ops)) - ops;
6119
6120 /* If there is more than one component, any base component is in a PLUS. */
6121 if (n_ops > 1)
6122 info->base_outer_code = PLUS;
6123
ec5a3504
RS
6124 /* Try to classify each sum operand now. Leave those that could be
6125 either a base or an index in OPS. */
277f65de
RS
6126 rtx *inner_ops[4];
6127 size_t out = 0;
6128 for (size_t in = 0; in < n_ops; ++in)
6129 {
6130 rtx *loc = ops[in];
6131 rtx *inner = strip_address_mutations (loc);
6132 if (CONSTANT_P (*inner))
6133 set_address_disp (info, loc, inner);
6134 else if (GET_CODE (*inner) == UNSPEC)
6135 set_address_segment (info, loc, inner);
6136 else
6137 {
ec5a3504
RS
6138 /* The only other possibilities are a base or an index. */
6139 rtx *base_term = get_base_term (inner);
6140 rtx *index_term = get_index_term (inner);
6141 gcc_assert (base_term || index_term);
6142 if (!base_term)
6143 set_address_index (info, loc, index_term);
6144 else if (!index_term)
6145 set_address_base (info, loc, base_term);
6146 else
6147 {
6148 gcc_assert (base_term == index_term);
6149 ops[out] = loc;
6150 inner_ops[out] = base_term;
6151 ++out;
6152 }
277f65de
RS
6153 }
6154 }
6155
6156 /* Classify the remaining OPS members as bases and indexes. */
6157 if (out == 1)
6158 {
ec5a3504
RS
6159 /* If we haven't seen a base or an index yet, assume that this is
6160 the base. If we were confident that another term was the base
6161 or index, treat the remaining operand as the other kind. */
6162 if (!info->base)
277f65de
RS
6163 set_address_base (info, ops[0], inner_ops[0]);
6164 else
6165 set_address_index (info, ops[0], inner_ops[0]);
6166 }
6167 else if (out == 2)
6168 {
6169 /* In the event of a tie, assume the base comes first. */
6170 if (baseness (*inner_ops[0], info->mode, info->as, PLUS,
6171 GET_CODE (*ops[1]))
6172 >= baseness (*inner_ops[1], info->mode, info->as, PLUS,
6173 GET_CODE (*ops[0])))
6174 {
6175 set_address_base (info, ops[0], inner_ops[0]);
6176 set_address_index (info, ops[1], inner_ops[1]);
6177 }
6178 else
6179 {
6180 set_address_base (info, ops[1], inner_ops[1]);
6181 set_address_index (info, ops[0], inner_ops[0]);
6182 }
6183 }
6184 else
6185 gcc_assert (out == 0);
6186}
6187
6188/* Describe address *LOC in *INFO. MODE is the mode of the addressed value,
6189 or VOIDmode if not known. AS is the address space associated with LOC.
6190 OUTER_CODE is MEM if *LOC is a MEM address and ADDRESS otherwise. */
6191
6192void
ef4bddc2 6193decompose_address (struct address_info *info, rtx *loc, machine_mode mode,
277f65de
RS
6194 addr_space_t as, enum rtx_code outer_code)
6195{
6196 memset (info, 0, sizeof (*info));
6197 info->mode = mode;
6198 info->as = as;
6199 info->addr_outer_code = outer_code;
6200 info->outer = loc;
6201 info->inner = strip_address_mutations (loc, &outer_code);
6202 info->base_outer_code = outer_code;
6203 switch (GET_CODE (*info->inner))
6204 {
6205 case PRE_DEC:
6206 case PRE_INC:
6207 case POST_DEC:
6208 case POST_INC:
6209 decompose_incdec_address (info);
6210 break;
6211
6212 case PRE_MODIFY:
6213 case POST_MODIFY:
6214 decompose_automod_address (info);
6215 break;
6216
6217 default:
6218 decompose_normal_address (info);
6219 break;
6220 }
6221}
6222
6223/* Describe address operand LOC in INFO. */
6224
6225void
6226decompose_lea_address (struct address_info *info, rtx *loc)
6227{
6228 decompose_address (info, loc, VOIDmode, ADDR_SPACE_GENERIC, ADDRESS);
6229}
6230
6231/* Describe the address of MEM X in INFO. */
6232
6233void
6234decompose_mem_address (struct address_info *info, rtx x)
6235{
6236 gcc_assert (MEM_P (x));
6237 decompose_address (info, &XEXP (x, 0), GET_MODE (x),
6238 MEM_ADDR_SPACE (x), MEM);
6239}
6240
6241/* Update INFO after a change to the address it describes. */
6242
6243void
6244update_address (struct address_info *info)
6245{
6246 decompose_address (info, info->outer, info->mode, info->as,
6247 info->addr_outer_code);
6248}
6249
6250/* Return the scale applied to *INFO->INDEX_TERM, or 0 if the index is
6251 more complicated than that. */
6252
6253HOST_WIDE_INT
6254get_index_scale (const struct address_info *info)
6255{
6256 rtx index = *info->index;
6257 if (GET_CODE (index) == MULT
6258 && CONST_INT_P (XEXP (index, 1))
6259 && info->index_term == &XEXP (index, 0))
6260 return INTVAL (XEXP (index, 1));
6261
6262 if (GET_CODE (index) == ASHIFT
6263 && CONST_INT_P (XEXP (index, 1))
6264 && info->index_term == &XEXP (index, 0))
fecfbfa4 6265 return HOST_WIDE_INT_1 << INTVAL (XEXP (index, 1));
277f65de
RS
6266
6267 if (info->index == info->index_term)
6268 return 1;
6269
6270 return 0;
6271}
6272
6273/* Return the "index code" of INFO, in the form required by
6274 ok_for_base_p_1. */
6275
6276enum rtx_code
6277get_index_code (const struct address_info *info)
6278{
6279 if (info->index)
6280 return GET_CODE (*info->index);
6281
6282 if (info->disp)
6283 return GET_CODE (*info->disp);
6284
6285 return SCRATCH;
6286}
093a6c99 6287
d614335f
AS
6288/* Return true if RTL X contains a SYMBOL_REF. */
6289
6290bool
6291contains_symbol_ref_p (const_rtx x)
6292{
6293 subrtx_iterator::array_type array;
6294 FOR_EACH_SUBRTX (iter, array, x, ALL)
6295 if (SYMBOL_REF_P (*iter))
6296 return true;
6297
6298 return false;
6299}
6300
9776e692
BS
6301/* Return true if RTL X contains a SYMBOL_REF or LABEL_REF. */
6302
6303bool
6304contains_symbolic_reference_p (const_rtx x)
6305{
6306 subrtx_iterator::array_type array;
6307 FOR_EACH_SUBRTX (iter, array, x, ALL)
6308 if (SYMBOL_REF_P (*iter) || GET_CODE (*iter) == LABEL_REF)
6309 return true;
6310
6311 return false;
6312}
6313
093a6c99
RS
6314/* Return true if X contains a thread-local symbol. */
6315
6316bool
6180e3d8 6317tls_referenced_p (const_rtx x)
093a6c99
RS
6318{
6319 if (!targetm.have_tls)
6320 return false;
6321
6180e3d8 6322 subrtx_iterator::array_type array;
ebd3cb12 6323 FOR_EACH_SUBRTX (iter, array, x, ALL)
6180e3d8
RS
6324 if (GET_CODE (*iter) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (*iter) != 0)
6325 return true;
6326 return false;
093a6c99 6327}
This page took 9.189904 seconds and 5 git commands to generate.