]>
Commit | Line | Data |
---|---|---|
9c7e2978 | 1 | /* Perform instruction reorganizations for delay slot filling. |
f1f9081a | 2 | Copyright (C) 1992 Free Software Foundation, Inc. |
9c7e2978 RK |
3 | Contributed by Richard Kenner (kenner@nyu.edu). |
4 | Hacked by Michael Tiemann (tiemann@cygnus.com). | |
5 | ||
6 | This file is part of GNU CC. | |
7 | ||
8 | GNU CC is free software; you can redistribute it and/or modify | |
9 | it under the terms of the GNU General Public License as published by | |
10 | the Free Software Foundation; either version 2, or (at your option) | |
11 | any later version. | |
12 | ||
13 | GNU CC is distributed in the hope that it will be useful, | |
14 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 | GNU General Public License for more details. | |
17 | ||
18 | You should have received a copy of the GNU General Public License | |
19 | along with GNU CC; see the file COPYING. If not, write to | |
20 | the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */ | |
21 | ||
9c7e2978 RK |
22 | /* Instruction reorganization pass. |
23 | ||
24 | This pass runs after register allocation and final jump | |
25 | optimization. It should be the last pass to run before peephole. | |
26 | It serves primarily to fill delay slots of insns, typically branch | |
27 | and call insns. Other insns typically involve more complicated | |
6dc42e49 | 28 | interactions of data dependencies and resource constraints, and |
9c7e2978 RK |
29 | are better handled by scheduling before register allocation (by the |
30 | function `schedule_insns'). | |
31 | ||
32 | The Branch Penalty is the number of extra cycles that are needed to | |
33 | execute a branch insn. On an ideal machine, branches take a single | |
34 | cycle, and the Branch Penalty is 0. Several RISC machines approach | |
35 | branch delays differently: | |
36 | ||
37 | The MIPS and AMD 29000 have a single branch delay slot. Most insns | |
38 | (except other branches) can be used to fill this slot. When the | |
39 | slot is filled, two insns execute in two cycles, reducing the | |
40 | branch penalty to zero. | |
41 | ||
42 | The Motorola 88000 conditionally exposes its branch delay slot, | |
43 | so code is shorter when it is turned off, but will run faster | |
44 | when useful insns are scheduled there. | |
45 | ||
46 | The IBM ROMP has two forms of branch and call insns, both with and | |
47 | without a delay slot. Much like the 88k, insns not using the delay | |
48 | slot can be shorted (2 bytes vs. 4 bytes), but will run slowed. | |
49 | ||
50 | The SPARC always has a branch delay slot, but its effects can be | |
51 | annulled when the branch is not taken. This means that failing to | |
52 | find other sources of insns, we can hoist an insn from the branch | |
53 | target that would only be safe to execute knowing that the branch | |
54 | is taken. | |
55 | ||
56 | Three techniques for filling delay slots have been implemented so far: | |
57 | ||
58 | (1) `fill_simple_delay_slots' is the simplest, most efficient way | |
59 | to fill delay slots. This pass first looks for insns which come | |
60 | from before the branch and which are safe to execute after the | |
61 | branch. Then it searches after the insn requiring delay slots or, | |
62 | in the case of a branch, for insns that are after the point at | |
63 | which the branch merges into the fallthrough code, if such a point | |
64 | exists. When such insns are found, the branch penalty decreases | |
65 | and no code expansion takes place. | |
66 | ||
67 | (2) `fill_eager_delay_slots' is more complicated: it is used for | |
68 | scheduling conditional jumps, or for scheduling jumps which cannot | |
69 | be filled using (1). A machine need not have annulled jumps to use | |
70 | this strategy, but it helps (by keeping more options open). | |
71 | `fill_eager_delay_slots' tries to guess the direction the branch | |
72 | will go; if it guesses right 100% of the time, it can reduce the | |
c0e12601 | 73 | branch penalty as much as `fill_simple_delay_slots' does. If it |
9c7e2978 RK |
74 | guesses wrong 100% of the time, it might as well schedule nops (or |
75 | on the m88k, unexpose the branch slot). When | |
76 | `fill_eager_delay_slots' takes insns from the fall-through path of | |
77 | the jump, usually there is no code expansion; when it takes insns | |
78 | from the branch target, there is code expansion if it is not the | |
79 | only way to reach that target. | |
80 | ||
81 | (3) `relax_delay_slots' uses a set of rules to simplify code that | |
82 | has been reorganized by (1) and (2). It finds cases where | |
83 | conditional test can be eliminated, jumps can be threaded, extra | |
84 | insns can be eliminated, etc. It is the job of (1) and (2) to do a | |
85 | good job of scheduling locally; `relax_delay_slots' takes care of | |
86 | making the various individual schedules work well together. It is | |
87 | especially tuned to handle the control flow interactions of branch | |
88 | insns. It does nothing for insns with delay slots that do not | |
89 | branch. | |
90 | ||
91 | On machines that use CC0, we are very conservative. We will not make | |
92 | a copy of an insn involving CC0 since we want to maintain a 1-1 | |
d45cf215 | 93 | correspondence between the insn that sets and uses CC0. The insns are |
9c7e2978 RK |
94 | allowed to be separated by placing an insn that sets CC0 (but not an insn |
95 | that uses CC0; we could do this, but it doesn't seem worthwhile) in a | |
96 | delay slot. In that case, we point each insn at the other with REG_CC_USER | |
97 | and REG_CC_SETTER notes. Note that these restrictions affect very few | |
98 | machines because most RISC machines with delay slots will not use CC0 | |
99 | (the RT is the only known exception at this point). | |
100 | ||
101 | Not yet implemented: | |
102 | ||
103 | The Acorn Risc Machine can conditionally execute most insns, so | |
104 | it is profitable to move single insns into a position to execute | |
105 | based on the condition code of the previous insn. | |
106 | ||
107 | The HP-PA can conditionally nullify insns, providing a similar | |
108 | effect to the ARM, differing mostly in which insn is "in charge". */ | |
109 | ||
110 | #include <stdio.h> | |
111 | #include "config.h" | |
112 | #include "rtl.h" | |
113 | #include "insn-config.h" | |
114 | #include "conditions.h" | |
115 | #include "hard-reg-set.h" | |
116 | #include "basic-block.h" | |
117 | #include "regs.h" | |
118 | #include "insn-flags.h" | |
119 | #include "recog.h" | |
120 | #include "flags.h" | |
121 | #include "output.h" | |
122 | #include "obstack.h" | |
d80e9fd7 RS |
123 | #include "insn-attr.h" |
124 | ||
125 | #ifdef DELAY_SLOTS | |
9c7e2978 RK |
126 | |
127 | #define obstack_chunk_alloc xmalloc | |
128 | #define obstack_chunk_free free | |
129 | ||
9c7e2978 RK |
130 | #ifndef ANNUL_IFTRUE_SLOTS |
131 | #define eligible_for_annul_true(INSN, SLOTS, TRIAL) 0 | |
132 | #endif | |
133 | #ifndef ANNUL_IFFALSE_SLOTS | |
134 | #define eligible_for_annul_false(INSN, SLOTS, TRIAL) 0 | |
135 | #endif | |
136 | ||
137 | /* Insns which have delay slots that have not yet been filled. */ | |
138 | ||
139 | static struct obstack unfilled_slots_obstack; | |
140 | static rtx *unfilled_firstobj; | |
141 | ||
142 | /* Define macros to refer to the first and last slot containing unfilled | |
143 | insns. These are used because the list may move and its address | |
144 | should be recomputed at each use. */ | |
145 | ||
146 | #define unfilled_slots_base \ | |
147 | ((rtx *) obstack_base (&unfilled_slots_obstack)) | |
148 | ||
149 | #define unfilled_slots_next \ | |
150 | ((rtx *) obstack_next_free (&unfilled_slots_obstack)) | |
151 | ||
152 | /* This structure is used to indicate which hardware resources are set or | |
153 | needed by insns so far. */ | |
154 | ||
155 | struct resources | |
156 | { | |
157 | char memory; /* Insn sets or needs a memory location. */ | |
158 | char volatil; /* Insn sets or needs a volatile memory loc. */ | |
159 | char cc; /* Insn sets or needs the condition codes. */ | |
160 | HARD_REG_SET regs; /* Which registers are set or needed. */ | |
161 | }; | |
162 | ||
163 | /* Macro to clear all resources. */ | |
164 | #define CLEAR_RESOURCE(RES) \ | |
165 | do { (RES)->memory = (RES)->volatil = (RES)->cc = 0; \ | |
166 | CLEAR_HARD_REG_SET ((RES)->regs); } while (0) | |
167 | ||
7bd80f37 TW |
168 | /* Indicates what resources are required at the beginning of the epilogue. */ |
169 | static struct resources start_of_epilogue_needs; | |
170 | ||
9c7e2978 RK |
171 | /* Indicates what resources are required at function end. */ |
172 | static struct resources end_of_function_needs; | |
173 | ||
174 | /* Points to the label before the end of the function. */ | |
175 | static rtx end_of_function_label; | |
176 | ||
6dc42e49 | 177 | /* This structure is used to record liveness information at the targets or |
9c7e2978 RK |
178 | fallthrough insns of branches. We will most likely need the information |
179 | at targets again, so save them in a hash table rather than recomputing them | |
180 | each time. */ | |
181 | ||
182 | struct target_info | |
183 | { | |
184 | int uid; /* INSN_UID of target. */ | |
185 | struct target_info *next; /* Next info for same hash bucket. */ | |
186 | HARD_REG_SET live_regs; /* Registers live at target. */ | |
187 | int block; /* Basic block number containing target. */ | |
188 | int bb_tick; /* Generation count of basic block info. */ | |
189 | }; | |
190 | ||
191 | #define TARGET_HASH_PRIME 257 | |
192 | ||
193 | /* Define the hash table itself. */ | |
194 | static struct target_info **target_hash_table; | |
195 | ||
196 | /* For each basic block, we maintain a generation number of its basic | |
197 | block info, which is updated each time we move an insn from the | |
198 | target of a jump. This is the generation number indexed by block | |
199 | number. */ | |
200 | ||
201 | static int *bb_ticks; | |
202 | ||
203 | /* Mapping between INSN_UID's and position in the code since INSN_UID's do | |
204 | not always monotonically increase. */ | |
205 | static int *uid_to_ruid; | |
206 | ||
207 | /* Highest valid index in `uid_to_ruid'. */ | |
208 | static int max_uid; | |
209 | ||
210 | /* Forward references: */ | |
211 | ||
212 | static int redundant_insn_p (); | |
213 | static void update_block (); | |
214 | \f | |
215 | /* Given X, some rtl, and RES, a pointer to a `struct resource', mark | |
216 | which resources are references by the insn. If INCLUDE_CALLED_ROUTINE | |
217 | is TRUE, resources used by the called routine will be included for | |
218 | CALL_INSNs. */ | |
219 | ||
220 | static void | |
221 | mark_referenced_resources (x, res, include_called_routine) | |
222 | register rtx x; | |
223 | register struct resources *res; | |
224 | register int include_called_routine; | |
225 | { | |
226 | register enum rtx_code code = GET_CODE (x); | |
227 | register int i, j; | |
228 | register char *format_ptr; | |
229 | ||
230 | /* Handle leaf items for which we set resource flags. Also, special-case | |
231 | CALL, SET and CLOBBER operators. */ | |
232 | switch (code) | |
233 | { | |
234 | case CONST: | |
235 | case CONST_INT: | |
236 | case CONST_DOUBLE: | |
237 | case PC: | |
238 | case SYMBOL_REF: | |
239 | case LABEL_REF: | |
240 | return; | |
241 | ||
242 | case SUBREG: | |
243 | if (GET_CODE (SUBREG_REG (x)) != REG) | |
244 | mark_referenced_resources (SUBREG_REG (x), res, 0); | |
245 | else | |
246 | { | |
247 | int regno = REGNO (SUBREG_REG (x)) + SUBREG_WORD (x); | |
248 | int last_regno = regno + HARD_REGNO_NREGS (regno, GET_MODE (x)); | |
249 | for (i = regno; i < last_regno; i++) | |
250 | SET_HARD_REG_BIT (res->regs, i); | |
251 | } | |
252 | return; | |
253 | ||
254 | case REG: | |
255 | for (i = 0; i < HARD_REGNO_NREGS (REGNO (x), GET_MODE (x)); i++) | |
256 | SET_HARD_REG_BIT (res->regs, REGNO (x) + i); | |
257 | return; | |
258 | ||
259 | case MEM: | |
260 | /* If this memory shouldn't change, it really isn't referencing | |
261 | memory. */ | |
262 | if (! RTX_UNCHANGING_P (x)) | |
263 | res->memory = 1; | |
264 | res->volatil = MEM_VOLATILE_P (x); | |
265 | ||
266 | /* Mark registers used to access memory. */ | |
267 | mark_referenced_resources (XEXP (x, 0), res, 0); | |
268 | return; | |
269 | ||
270 | case CC0: | |
271 | res->cc = 1; | |
272 | return; | |
273 | ||
6e7348c1 | 274 | case UNSPEC_VOLATILE: |
f1f9081a RS |
275 | case ASM_INPUT: |
276 | /* Traditional asm's are always volatile. */ | |
277 | res->volatil = 1; | |
278 | return; | |
279 | ||
280 | case ASM_OPERANDS: | |
281 | res->volatil = MEM_VOLATILE_P (x); | |
282 | ||
283 | /* For all ASM_OPERANDS, we must traverse the vector of input operands. | |
284 | We can not just fall through here since then we would be confused | |
285 | by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate | |
286 | traditional asms unlike their normal usage. */ | |
287 | ||
288 | for (i = 0; i < ASM_OPERANDS_INPUT_LENGTH (x); i++) | |
289 | mark_referenced_resources (ASM_OPERANDS_INPUT (x, i), res, 0); | |
290 | return; | |
291 | ||
9c7e2978 RK |
292 | case CALL: |
293 | /* The first operand will be a (MEM (xxx)) but doesn't really reference | |
294 | memory. The second operand may be referenced, though. */ | |
295 | mark_referenced_resources (XEXP (XEXP (x, 0), 0), res, 0); | |
296 | mark_referenced_resources (XEXP (x, 1), res, 0); | |
297 | return; | |
298 | ||
299 | case SET: | |
300 | /* Usually, the first operand of SET is set, not referenced. But | |
301 | registers used to access memory are referenced. SET_DEST is | |
302 | also referenced if it is a ZERO_EXTRACT or SIGN_EXTRACT. */ | |
303 | ||
304 | mark_referenced_resources (SET_SRC (x), res, 0); | |
305 | ||
306 | x = SET_DEST (x); | |
307 | if (GET_CODE (x) == SIGN_EXTRACT || GET_CODE (x) == ZERO_EXTRACT) | |
308 | mark_referenced_resources (x, res, 0); | |
309 | else if (GET_CODE (x) == SUBREG) | |
310 | x = SUBREG_REG (x); | |
311 | if (GET_CODE (x) == MEM) | |
312 | mark_referenced_resources (XEXP (x, 0), res, 0); | |
313 | return; | |
314 | ||
315 | case CLOBBER: | |
316 | return; | |
317 | ||
318 | case CALL_INSN: | |
319 | if (include_called_routine) | |
320 | { | |
321 | /* A CALL references memory, the frame pointer if it exists, the | |
3462dc45 RK |
322 | stack pointer, any global registers and any registers given in |
323 | USE insns immediately in front of the CALL. | |
9c7e2978 RK |
324 | |
325 | However, we may have moved some of the parameter loading insns | |
326 | into the delay slot of this CALL. If so, the USE's for them | |
327 | don't count and should be skipped. */ | |
328 | rtx insn = PREV_INSN (x); | |
329 | rtx sequence = 0; | |
330 | int seq_size = 0; | |
331 | int i; | |
332 | ||
333 | /* If we are part of a delay slot sequence, point at the SEQUENCE. */ | |
334 | if (NEXT_INSN (insn) != x) | |
335 | { | |
336 | sequence = PATTERN (NEXT_INSN (insn)); | |
337 | seq_size = XVECLEN (sequence, 0); | |
338 | if (GET_CODE (sequence) != SEQUENCE) | |
339 | abort (); | |
340 | } | |
341 | ||
342 | res->memory = 1; | |
343 | SET_HARD_REG_BIT (res->regs, STACK_POINTER_REGNUM); | |
344 | if (frame_pointer_needed) | |
345 | SET_HARD_REG_BIT (res->regs, FRAME_POINTER_REGNUM); | |
346 | ||
3462dc45 RK |
347 | for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) |
348 | if (global_regs[i]) | |
349 | SET_HARD_REG_BIT (res->regs, i); | |
350 | ||
9c7e2978 RK |
351 | /* Skip any labels between the CALL_INSN and possible USE insns. */ |
352 | while (GET_CODE (insn) == CODE_LABEL) | |
353 | insn = PREV_INSN (insn); | |
354 | ||
355 | for ( ; (insn && GET_CODE (insn) == INSN | |
356 | && GET_CODE (PATTERN (insn)) == USE); | |
357 | insn = PREV_INSN (insn)) | |
358 | { | |
359 | for (i = 1; i < seq_size; i++) | |
360 | { | |
361 | rtx slot_pat = PATTERN (XVECEXP (sequence, 0, i)); | |
362 | if (GET_CODE (slot_pat) == SET | |
363 | && rtx_equal_p (SET_DEST (slot_pat), | |
364 | XEXP (PATTERN (insn), 0))) | |
365 | break; | |
366 | } | |
367 | if (i >= seq_size) | |
368 | mark_referenced_resources (XEXP (PATTERN (insn), 0), res, 0); | |
369 | } | |
370 | } | |
371 | ||
6dc42e49 | 372 | /* ... fall through to other INSN processing ... */ |
9c7e2978 RK |
373 | |
374 | case INSN: | |
375 | case JUMP_INSN: | |
376 | /* No special processing, just speed up. */ | |
377 | mark_referenced_resources (PATTERN (x), res, include_called_routine); | |
378 | return; | |
379 | } | |
380 | ||
381 | /* Process each sub-expression and flag what it needs. */ | |
382 | format_ptr = GET_RTX_FORMAT (code); | |
383 | for (i = 0; i < GET_RTX_LENGTH (code); i++) | |
384 | switch (*format_ptr++) | |
385 | { | |
386 | case 'e': | |
387 | mark_referenced_resources (XEXP (x, i), res, include_called_routine); | |
388 | break; | |
389 | ||
390 | case 'E': | |
391 | for (j = 0; j < XVECLEN (x, i); j++) | |
392 | mark_referenced_resources (XVECEXP (x, i, j), res, | |
393 | include_called_routine); | |
394 | break; | |
395 | } | |
396 | } | |
397 | \f | |
26d970a5 RK |
398 | /* Given X, a part of an insn, and a pointer to a `struct resource', RES, |
399 | indicate which resources are modified by the insn. If INCLUDE_CALLED_ROUTINE | |
400 | is nonzero, also mark resources potentially set by the called routine. | |
401 | ||
402 | If IN_DEST is nonzero, it means we are inside a SET. Otherwise, | |
403 | objects are being referenced instead of set. | |
9c7e2978 RK |
404 | |
405 | We never mark the insn as modifying the condition code unless it explicitly | |
406 | SETs CC0 even though this is not totally correct. The reason for this is | |
6dc42e49 | 407 | that we require a SET of CC0 to immediately precede the reference to CC0. |
9c7e2978 RK |
408 | So if some other insn sets CC0 as a side-effect, we know it cannot affect |
409 | our computation and thus may be placed in a delay slot. */ | |
410 | ||
411 | static void | |
26d970a5 RK |
412 | mark_set_resources (x, res, in_dest, include_called_routine) |
413 | register rtx x; | |
9c7e2978 | 414 | register struct resources *res; |
26d970a5 | 415 | int in_dest; |
9c7e2978 RK |
416 | int include_called_routine; |
417 | { | |
d2c9e30f | 418 | register enum rtx_code code; |
26d970a5 RK |
419 | register int i, j; |
420 | register char *format_ptr; | |
9c7e2978 | 421 | |
26d970a5 RK |
422 | restart: |
423 | ||
d2c9e30f RK |
424 | code = GET_CODE (x); |
425 | ||
26d970a5 | 426 | switch (code) |
9c7e2978 RK |
427 | { |
428 | case NOTE: | |
429 | case BARRIER: | |
430 | case CODE_LABEL: | |
26d970a5 RK |
431 | case USE: |
432 | case CONST_INT: | |
433 | case CONST_DOUBLE: | |
434 | case LABEL_REF: | |
435 | case SYMBOL_REF: | |
436 | case CONST: | |
437 | case PC: | |
9c7e2978 RK |
438 | /* These don't set any resources. */ |
439 | return; | |
440 | ||
ba12108c RK |
441 | case CC0: |
442 | if (in_dest) | |
443 | res->cc = 1; | |
444 | return; | |
445 | ||
9c7e2978 RK |
446 | case CALL_INSN: |
447 | /* Called routine modifies the condition code, memory, any registers | |
3462dc45 RK |
448 | that aren't saved across calls, global registers and anything |
449 | explicitly CLOBBERed immediately after the CALL_INSN. */ | |
9c7e2978 RK |
450 | |
451 | if (include_called_routine) | |
452 | { | |
26d970a5 | 453 | rtx next = NEXT_INSN (x); |
9c7e2978 RK |
454 | |
455 | res->cc = res->memory = 1; | |
456 | for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) | |
3462dc45 | 457 | if (call_used_regs[i] || global_regs[i]) |
9c7e2978 RK |
458 | SET_HARD_REG_BIT (res->regs, i); |
459 | ||
460 | /* Skip any possible labels between the CALL_INSN and CLOBBERs. */ | |
461 | while (GET_CODE (next) == CODE_LABEL) | |
462 | next = NEXT_INSN (next); | |
463 | ||
464 | for (; (next && GET_CODE (next) == INSN | |
465 | && GET_CODE (PATTERN (next)) == CLOBBER); | |
466 | next = NEXT_INSN (next)) | |
26d970a5 | 467 | mark_set_resources (XEXP (PATTERN (next), 0), res, 1, 0); |
9c7e2978 RK |
468 | } |
469 | ||
470 | /* ... and also what it's RTL says it modifies, if anything. */ | |
471 | ||
472 | case JUMP_INSN: | |
473 | case INSN: | |
9c7e2978 | 474 | |
26d970a5 RK |
475 | /* An insn consisting of just a CLOBBER (or USE) is just for flow |
476 | and doesn't actually do anything, so we ignore it. */ | |
9c7e2978 | 477 | |
26d970a5 RK |
478 | x = PATTERN (x); |
479 | if (GET_CODE (x) != USE && GET_CODE (x) != CLOBBER) | |
480 | goto restart; | |
481 | return; | |
482 | ||
483 | case SET: | |
484 | /* If the source of a SET is a CALL, this is actually done by | |
485 | the called routine. So only include it if we are to include the | |
486 | effects of the calling routine. */ | |
487 | ||
488 | mark_set_resources (SET_DEST (x), res, | |
489 | (include_called_routine | |
490 | || GET_CODE (SET_SRC (x)) != CALL), | |
491 | 0); | |
492 | ||
493 | mark_set_resources (SET_SRC (x), res, 0, 0); | |
494 | return; | |
495 | ||
496 | case CLOBBER: | |
497 | mark_set_resources (XEXP (x, 0), res, 1, 0); | |
498 | return; | |
499 | ||
500 | case SEQUENCE: | |
501 | for (i = 0; i < XVECLEN (x, 0); i++) | |
502 | if (! (INSN_ANNULLED_BRANCH_P (XVECEXP (x, 0, 0)) | |
503 | && INSN_FROM_TARGET_P (XVECEXP (x, 0, i)))) | |
504 | mark_set_resources (XVECEXP (x, 0, i), res, 0, | |
505 | include_called_routine); | |
506 | return; | |
507 | ||
508 | case POST_INC: | |
509 | case PRE_INC: | |
510 | case POST_DEC: | |
511 | case PRE_DEC: | |
512 | mark_set_resources (XEXP (x, 0), res, 1, 0); | |
513 | return; | |
514 | ||
515 | case ZERO_EXTRACT: | |
516 | mark_set_resources (XEXP (x, 0), res, in_dest, 0); | |
517 | mark_set_resources (XEXP (x, 1), res, 0, 0); | |
518 | mark_set_resources (XEXP (x, 2), res, 0, 0); | |
519 | return; | |
520 | ||
521 | case MEM: | |
522 | if (in_dest) | |
523 | { | |
524 | res->memory = 1; | |
525 | res->volatil = MEM_VOLATILE_P (x); | |
526 | } | |
527 | ||
528 | mark_set_resources (XEXP (x, 0), res, 0, 0); | |
d2c9e30f | 529 | return; |
26d970a5 RK |
530 | |
531 | case REG: | |
4323a0e1 JL |
532 | if (in_dest) |
533 | for (i = 0; i < HARD_REGNO_NREGS (REGNO (x), GET_MODE (x)); i++) | |
534 | SET_HARD_REG_BIT (res->regs, REGNO (x) + i); | |
26d970a5 | 535 | return; |
9c7e2978 | 536 | } |
26d970a5 RK |
537 | |
538 | /* Process each sub-expression and flag what it needs. */ | |
539 | format_ptr = GET_RTX_FORMAT (code); | |
540 | for (i = 0; i < GET_RTX_LENGTH (code); i++) | |
541 | switch (*format_ptr++) | |
542 | { | |
543 | case 'e': | |
544 | mark_set_resources (XEXP (x, i), res, in_dest, include_called_routine); | |
545 | break; | |
546 | ||
547 | case 'E': | |
548 | for (j = 0; j < XVECLEN (x, i); j++) | |
549 | mark_set_resources (XVECEXP (x, i, j), res, in_dest, | |
550 | include_called_routine); | |
551 | break; | |
552 | } | |
9c7e2978 RK |
553 | } |
554 | \f | |
555 | /* Return TRUE if this insn should stop the search for insn to fill delay | |
556 | slots. LABELS_P indicates that labels should terminate the search. | |
557 | In all cases, jumps terminate the search. */ | |
558 | ||
559 | static int | |
560 | stop_search_p (insn, labels_p) | |
561 | rtx insn; | |
562 | int labels_p; | |
563 | { | |
564 | if (insn == 0) | |
565 | return 1; | |
566 | ||
567 | switch (GET_CODE (insn)) | |
568 | { | |
569 | case NOTE: | |
570 | case CALL_INSN: | |
571 | return 0; | |
572 | ||
573 | case CODE_LABEL: | |
574 | return labels_p; | |
575 | ||
576 | case JUMP_INSN: | |
577 | case BARRIER: | |
578 | return 1; | |
579 | ||
580 | case INSN: | |
581 | /* OK unless it contains a delay slot or is an `asm' insn of some type. | |
582 | We don't know anything about these. */ | |
583 | return (GET_CODE (PATTERN (insn)) == SEQUENCE | |
584 | || GET_CODE (PATTERN (insn)) == ASM_INPUT | |
585 | || asm_noperands (PATTERN (insn)) >= 0); | |
586 | ||
587 | default: | |
588 | abort (); | |
589 | } | |
590 | } | |
591 | \f | |
592 | /* Return TRUE if any resources are marked in both RES1 and RES2 or if either | |
593 | resource set contains a volatile memory reference. Otherwise, return FALSE. */ | |
594 | ||
595 | static int | |
596 | resource_conflicts_p (res1, res2) | |
597 | struct resources *res1, *res2; | |
598 | { | |
599 | if ((res1->cc && res2->cc) || (res1->memory && res2->memory) | |
600 | || res1->volatil || res2->volatil) | |
601 | return 1; | |
602 | ||
603 | #ifdef HARD_REG_SET | |
604 | return (res1->regs & res2->regs) != HARD_CONST (0); | |
605 | #else | |
606 | { | |
607 | int i; | |
608 | ||
609 | for (i = 0; i < HARD_REG_SET_LONGS; i++) | |
610 | if ((res1->regs[i] & res2->regs[i]) != 0) | |
611 | return 1; | |
612 | return 0; | |
613 | } | |
614 | #endif | |
615 | } | |
616 | ||
617 | /* Return TRUE if any resource marked in RES, a `struct resources', is | |
618 | referenced by INSN. If INCLUDE_CALLED_ROUTINE is set, return if the called | |
619 | routine is using those resources. | |
620 | ||
621 | We compute this by computing all the resources referenced by INSN and | |
622 | seeing if this conflicts with RES. It might be faster to directly check | |
623 | ourselves, and this is the way it used to work, but it means duplicating | |
624 | a large block of complex code. */ | |
625 | ||
626 | static int | |
627 | insn_references_resource_p (insn, res, include_called_routine) | |
628 | register rtx insn; | |
629 | register struct resources *res; | |
630 | int include_called_routine; | |
631 | { | |
632 | struct resources insn_res; | |
633 | ||
634 | CLEAR_RESOURCE (&insn_res); | |
635 | mark_referenced_resources (insn, &insn_res, include_called_routine); | |
636 | return resource_conflicts_p (&insn_res, res); | |
637 | } | |
638 | ||
639 | /* Return TRUE if INSN modifies resources that are marked in RES. | |
640 | INCLUDE_CALLED_ROUTINE is set if the actions of that routine should be | |
641 | included. CC0 is only modified if it is explicitly set; see comments | |
642 | in front of mark_set_resources for details. */ | |
643 | ||
644 | static int | |
645 | insn_sets_resource_p (insn, res, include_called_routine) | |
646 | register rtx insn; | |
647 | register struct resources *res; | |
648 | int include_called_routine; | |
649 | { | |
650 | struct resources insn_sets; | |
651 | ||
652 | CLEAR_RESOURCE (&insn_sets); | |
26d970a5 | 653 | mark_set_resources (insn, &insn_sets, 0, include_called_routine); |
9c7e2978 RK |
654 | return resource_conflicts_p (&insn_sets, res); |
655 | } | |
656 | \f | |
657 | /* Find a label at the end of the function or before a RETURN. If there is | |
658 | none, make one. */ | |
659 | ||
660 | static rtx | |
661 | find_end_label () | |
662 | { | |
663 | rtx insn; | |
664 | ||
665 | /* If we found one previously, return it. */ | |
666 | if (end_of_function_label) | |
667 | return end_of_function_label; | |
668 | ||
669 | /* Otherwise, see if there is a label at the end of the function. If there | |
670 | is, it must be that RETURN insns aren't needed, so that is our return | |
671 | label and we don't have to do anything else. */ | |
672 | ||
673 | insn = get_last_insn (); | |
674 | while (GET_CODE (insn) == NOTE | |
675 | || (GET_CODE (insn) == INSN | |
676 | && (GET_CODE (PATTERN (insn)) == USE | |
677 | || GET_CODE (PATTERN (insn)) == CLOBBER))) | |
678 | insn = PREV_INSN (insn); | |
679 | ||
680 | if (GET_CODE (insn) == CODE_LABEL) | |
681 | end_of_function_label = insn; | |
682 | else | |
683 | { | |
684 | /* Otherwise, make a new label and emit a RETURN and BARRIER, | |
685 | if needed. */ | |
686 | end_of_function_label = gen_label_rtx (); | |
687 | LABEL_NUSES (end_of_function_label) = 0; | |
688 | emit_label (end_of_function_label); | |
689 | #ifdef HAVE_return | |
690 | if (HAVE_return) | |
691 | { | |
692 | emit_jump_insn (gen_return ()); | |
693 | emit_barrier (); | |
694 | } | |
695 | #endif | |
696 | } | |
697 | ||
698 | /* Show one additional use for this label so it won't go away until | |
699 | we are done. */ | |
700 | ++LABEL_NUSES (end_of_function_label); | |
701 | ||
702 | return end_of_function_label; | |
703 | } | |
704 | \f | |
705 | /* Put INSN and LIST together in a SEQUENCE rtx of LENGTH, and replace | |
706 | the pattern of INSN with the SEQUENCE. | |
707 | ||
708 | Chain the insns so that NEXT_INSN of each insn in the sequence points to | |
709 | the next and NEXT_INSN of the last insn in the sequence points to | |
710 | the first insn after the sequence. Similarly for PREV_INSN. This makes | |
711 | it easier to scan all insns. | |
712 | ||
713 | Returns the SEQUENCE that replaces INSN. */ | |
714 | ||
715 | static rtx | |
716 | emit_delay_sequence (insn, list, length, avail) | |
717 | rtx insn; | |
718 | rtx list; | |
719 | int length; | |
720 | int avail; | |
721 | { | |
722 | register int i = 1; | |
723 | register rtx li; | |
724 | int had_barrier = 0; | |
725 | ||
726 | /* Allocate the the rtvec to hold the insns and the SEQUENCE. */ | |
727 | rtvec seqv = rtvec_alloc (length + 1); | |
728 | rtx seq = gen_rtx (SEQUENCE, VOIDmode, seqv); | |
729 | rtx seq_insn = make_insn_raw (seq); | |
730 | rtx first = get_insns (); | |
731 | rtx last = get_last_insn (); | |
732 | ||
733 | /* Make a copy of the insn having delay slots. */ | |
734 | rtx delay_insn = copy_rtx (insn); | |
735 | ||
736 | /* If INSN is followed by a BARRIER, delete the BARRIER since it will only | |
737 | confuse further processing. Update LAST in case it was the last insn. | |
738 | We will put the BARRIER back in later. */ | |
739 | if (NEXT_INSN (insn) && GET_CODE (NEXT_INSN (insn)) == BARRIER) | |
740 | { | |
741 | delete_insn (NEXT_INSN (insn)); | |
742 | last = get_last_insn (); | |
743 | had_barrier = 1; | |
744 | } | |
745 | ||
746 | /* Splice our SEQUENCE into the insn stream where INSN used to be. */ | |
747 | NEXT_INSN (seq_insn) = NEXT_INSN (insn); | |
748 | PREV_INSN (seq_insn) = PREV_INSN (insn); | |
749 | ||
750 | if (insn == last) | |
751 | set_new_first_and_last_insn (first, seq_insn); | |
752 | else | |
753 | PREV_INSN (NEXT_INSN (seq_insn)) = seq_insn; | |
754 | ||
755 | if (insn == first) | |
756 | set_new_first_and_last_insn (seq_insn, last); | |
757 | else | |
758 | NEXT_INSN (PREV_INSN (seq_insn)) = seq_insn; | |
759 | ||
760 | /* Build our SEQUENCE and rebuild the insn chain. */ | |
761 | XVECEXP (seq, 0, 0) = delay_insn; | |
762 | INSN_DELETED_P (delay_insn) = 0; | |
763 | PREV_INSN (delay_insn) = PREV_INSN (seq_insn); | |
764 | ||
765 | for (li = list; li; li = XEXP (li, 1), i++) | |
766 | { | |
767 | rtx tem = XEXP (li, 0); | |
768 | rtx note; | |
769 | ||
770 | /* Show that this copy of the insn isn't deleted. */ | |
771 | INSN_DELETED_P (tem) = 0; | |
772 | ||
773 | XVECEXP (seq, 0, i) = tem; | |
774 | PREV_INSN (tem) = XVECEXP (seq, 0, i - 1); | |
775 | NEXT_INSN (XVECEXP (seq, 0, i - 1)) = tem; | |
776 | ||
777 | /* Remove any REG_DEAD notes because we can't rely on them now | |
778 | that the insn has been moved. */ | |
779 | for (note = REG_NOTES (tem); note; note = XEXP (note, 1)) | |
780 | if (REG_NOTE_KIND (note) == REG_DEAD) | |
781 | XEXP (note, 0) = const0_rtx; | |
782 | } | |
783 | ||
784 | NEXT_INSN (XVECEXP (seq, 0, length)) = NEXT_INSN (seq_insn); | |
785 | ||
f1f9081a RS |
786 | /* If the previous insn is a SEQUENCE, update the NEXT_INSN pointer on the |
787 | last insn in that SEQUENCE to point to us. Similarly for the first | |
788 | insn in the following insn if it is a SEQUENCE. */ | |
789 | ||
790 | if (PREV_INSN (seq_insn) && GET_CODE (PREV_INSN (seq_insn)) == INSN | |
791 | && GET_CODE (PATTERN (PREV_INSN (seq_insn))) == SEQUENCE) | |
792 | NEXT_INSN (XVECEXP (PATTERN (PREV_INSN (seq_insn)), 0, | |
793 | XVECLEN (PATTERN (PREV_INSN (seq_insn)), 0) - 1)) | |
794 | = seq_insn; | |
795 | ||
796 | if (NEXT_INSN (seq_insn) && GET_CODE (NEXT_INSN (seq_insn)) == INSN | |
797 | && GET_CODE (PATTERN (NEXT_INSN (seq_insn))) == SEQUENCE) | |
798 | PREV_INSN (XVECEXP (PATTERN (NEXT_INSN (seq_insn)), 0, 0)) = seq_insn; | |
799 | ||
9c7e2978 RK |
800 | /* If there used to be a BARRIER, put it back. */ |
801 | if (had_barrier) | |
802 | emit_barrier_after (seq_insn); | |
803 | ||
804 | if (i != length + 1) | |
805 | abort (); | |
806 | ||
807 | return seq_insn; | |
808 | } | |
809 | ||
810 | /* Add INSN to DELAY_LIST and return the head of the new list. The list must | |
811 | be in the order in which the insns are to be executed. */ | |
812 | ||
813 | static rtx | |
814 | add_to_delay_list (insn, delay_list) | |
815 | rtx insn; | |
816 | rtx delay_list; | |
817 | { | |
818 | /* If we have an empty list, just make a new list element. */ | |
819 | if (delay_list == 0) | |
fb3821f7 | 820 | return gen_rtx (INSN_LIST, VOIDmode, insn, NULL_RTX); |
9c7e2978 RK |
821 | |
822 | /* Otherwise this must be an INSN_LIST. Add INSN to the end of the | |
823 | list. */ | |
824 | XEXP (delay_list, 1) = add_to_delay_list (insn, XEXP (delay_list, 1)); | |
825 | ||
826 | return delay_list; | |
827 | } | |
9c7e2978 RK |
828 | \f |
829 | /* Delete INSN from the the delay slot of the insn that it is in. This may | |
830 | produce an insn without anything in its delay slots. */ | |
831 | ||
832 | static void | |
833 | delete_from_delay_slot (insn) | |
834 | rtx insn; | |
835 | { | |
836 | rtx trial, seq_insn, seq, prev; | |
837 | rtx delay_list = 0; | |
838 | int i; | |
839 | ||
840 | /* We first must find the insn containing the SEQUENCE with INSN in its | |
841 | delay slot. Do this by finding an insn, TRIAL, where | |
842 | PREV_INSN (NEXT_INSN (TRIAL)) != TRIAL. */ | |
843 | ||
844 | for (trial = insn; | |
845 | PREV_INSN (NEXT_INSN (trial)) == trial; | |
846 | trial = NEXT_INSN (trial)) | |
847 | ; | |
848 | ||
849 | seq_insn = PREV_INSN (NEXT_INSN (trial)); | |
850 | seq = PATTERN (seq_insn); | |
851 | ||
852 | /* Create a delay list consisting of all the insns other than the one | |
853 | we are deleting (unless we were the only one). */ | |
854 | if (XVECLEN (seq, 0) > 2) | |
855 | for (i = 1; i < XVECLEN (seq, 0); i++) | |
856 | if (XVECEXP (seq, 0, i) != insn) | |
857 | delay_list = add_to_delay_list (XVECEXP (seq, 0, i), delay_list); | |
858 | ||
859 | /* Delete the old SEQUENCE, re-emit the insn that used to have the delay | |
860 | list, and rebuild the delay list if non-empty. */ | |
861 | prev = PREV_INSN (seq_insn); | |
862 | trial = XVECEXP (seq, 0, 0); | |
863 | delete_insn (seq_insn); | |
864 | add_insn_after (trial, prev); | |
865 | ||
866 | if (GET_CODE (trial) == JUMP_INSN | |
867 | && (simplejump_p (trial) || GET_CODE (PATTERN (trial)) == RETURN)) | |
868 | emit_barrier_after (trial); | |
869 | ||
870 | /* If there are any delay insns, remit them. Otherwise clear the | |
871 | annul flag. */ | |
872 | if (delay_list) | |
f1f9081a | 873 | trial = emit_delay_sequence (trial, delay_list, XVECLEN (seq, 0) - 2, 0); |
9c7e2978 RK |
874 | else |
875 | INSN_ANNULLED_BRANCH_P (trial) = 0; | |
876 | ||
877 | INSN_FROM_TARGET_P (insn) = 0; | |
878 | ||
879 | /* Show we need to fill this insn again. */ | |
880 | obstack_ptr_grow (&unfilled_slots_obstack, trial); | |
881 | } | |
882 | \f | |
883 | /* Delete INSN, a JUMP_INSN. If it is a conditional jump, we must track down | |
884 | the insn that sets CC0 for it and delete it too. */ | |
885 | ||
886 | static void | |
887 | delete_scheduled_jump (insn) | |
888 | rtx insn; | |
889 | { | |
890 | /* Delete the insn that sets cc0 for us. On machines without cc0, we could | |
891 | delete the insn that sets the condition code, but it is hard to find it. | |
892 | Since this case is rare anyway, don't bother trying; there would likely | |
893 | be other insns that became dead anyway, which we wouldn't know to | |
894 | delete. */ | |
895 | ||
896 | #ifdef HAVE_cc0 | |
897 | if (reg_mentioned_p (cc0_rtx, insn)) | |
898 | { | |
fb3821f7 | 899 | rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX); |
9c7e2978 RK |
900 | |
901 | /* If a reg-note was found, it points to an insn to set CC0. This | |
902 | insn is in the delay list of some other insn. So delete it from | |
903 | the delay list it was in. */ | |
904 | if (note) | |
905 | { | |
fb3821f7 | 906 | if (! FIND_REG_INC_NOTE (XEXP (note, 0), NULL_RTX) |
9c7e2978 RK |
907 | && sets_cc0_p (PATTERN (XEXP (note, 0))) == 1) |
908 | delete_from_delay_slot (XEXP (note, 0)); | |
909 | } | |
910 | else | |
911 | { | |
912 | /* The insn setting CC0 is our previous insn, but it may be in | |
913 | a delay slot. It will be the last insn in the delay slot, if | |
914 | it is. */ | |
915 | rtx trial = previous_insn (insn); | |
916 | if (GET_CODE (trial) == NOTE) | |
917 | trial = prev_nonnote_insn (trial); | |
918 | if (sets_cc0_p (PATTERN (trial)) != 1 | |
919 | || FIND_REG_INC_NOTE (trial, 0)) | |
920 | return; | |
921 | if (PREV_INSN (NEXT_INSN (trial)) == trial) | |
922 | delete_insn (trial); | |
923 | else | |
924 | delete_from_delay_slot (trial); | |
925 | } | |
926 | } | |
927 | #endif | |
928 | ||
929 | delete_insn (insn); | |
930 | } | |
931 | \f | |
932 | /* Counters for delay-slot filling. */ | |
933 | ||
934 | #define NUM_REORG_FUNCTIONS 2 | |
935 | #define MAX_DELAY_HISTOGRAM 3 | |
936 | #define MAX_REORG_PASSES 2 | |
937 | ||
938 | static int num_insns_needing_delays[NUM_REORG_FUNCTIONS][MAX_REORG_PASSES]; | |
939 | ||
940 | static int num_filled_delays[NUM_REORG_FUNCTIONS][MAX_DELAY_HISTOGRAM+1][MAX_REORG_PASSES]; | |
941 | ||
942 | static int reorg_pass_number; | |
943 | ||
944 | static void | |
945 | note_delay_statistics (slots_filled, index) | |
946 | int slots_filled, index; | |
947 | { | |
948 | num_insns_needing_delays[index][reorg_pass_number]++; | |
949 | if (slots_filled > MAX_DELAY_HISTOGRAM) | |
950 | slots_filled = MAX_DELAY_HISTOGRAM; | |
951 | num_filled_delays[index][slots_filled][reorg_pass_number]++; | |
952 | } | |
953 | \f | |
954 | #if defined(ANNUL_IFFALSE_SLOTS) || defined(ANNUL_IFTRUE_SLOTS) | |
955 | ||
956 | /* Optimize the following cases: | |
957 | ||
958 | 1. When a conditional branch skips over only one instruction, | |
959 | use an annulling branch and put that insn in the delay slot. | |
6dc42e49 RS |
960 | Use either a branch that annuls when the condition if true or |
961 | invert the test with a branch that annuls when the condition is | |
9c7e2978 RK |
962 | false. This saves insns, since otherwise we must copy an insn |
963 | from the L1 target. | |
964 | ||
965 | (orig) (skip) (otherwise) | |
966 | Bcc.n L1 Bcc',a L1 Bcc,a L1' | |
967 | insn insn insn2 | |
968 | L1: L1: L1: | |
969 | insn2 insn2 insn2 | |
970 | insn3 insn3 L1': | |
971 | insn3 | |
972 | ||
973 | 2. When a conditional branch skips over only one instruction, | |
974 | and after that, it unconditionally branches somewhere else, | |
975 | perform the similar optimization. This saves executing the | |
976 | second branch in the case where the inverted condition is true. | |
977 | ||
978 | Bcc.n L1 Bcc',a L2 | |
979 | insn insn | |
980 | L1: L1: | |
981 | Bra L2 Bra L2 | |
982 | ||
983 | INSN is a JUMP_INSN. | |
984 | ||
985 | This should be expanded to skip over N insns, where N is the number | |
986 | of delay slots required. */ | |
987 | ||
988 | static rtx | |
989 | optimize_skip (insn) | |
990 | register rtx insn; | |
991 | { | |
992 | register rtx trial = next_nonnote_insn (insn); | |
993 | rtx next_trial = next_active_insn (trial); | |
994 | rtx delay_list = 0; | |
995 | rtx target_label; | |
996 | ||
997 | if (trial == 0 | |
998 | || GET_CODE (trial) != INSN | |
999 | || GET_CODE (PATTERN (trial)) == SEQUENCE | |
1000 | || recog_memoized (trial) < 0 | |
1001 | || (! eligible_for_annul_false (insn, 0, trial) | |
1002 | && ! eligible_for_annul_true (insn, 0, trial))) | |
1003 | return 0; | |
1004 | ||
1005 | /* There are two cases where we are just executing one insn (we assume | |
1006 | here that a branch requires only one insn; this should be generalized | |
1007 | at some point): Where the branch goes around a single insn or where | |
1008 | we have one insn followed by a branch to the same label we branch to. | |
1009 | In both of these cases, inverting the jump and annulling the delay | |
1010 | slot give the same effect in fewer insns. */ | |
1011 | if ((next_trial == next_active_insn (JUMP_LABEL (insn))) | |
1012 | || (next_trial != 0 | |
1013 | && GET_CODE (next_trial) == JUMP_INSN | |
1014 | && JUMP_LABEL (insn) == JUMP_LABEL (next_trial) | |
1015 | && (simplejump_p (next_trial) | |
1016 | || GET_CODE (PATTERN (next_trial)) == RETURN))) | |
1017 | { | |
1018 | if (eligible_for_annul_false (insn, 0, trial)) | |
1019 | { | |
1020 | if (invert_jump (insn, JUMP_LABEL (insn))) | |
1021 | INSN_FROM_TARGET_P (trial) = 1; | |
1022 | else if (! eligible_for_annul_true (insn, 0, trial)) | |
1023 | return 0; | |
1024 | } | |
1025 | ||
fb3821f7 | 1026 | delay_list = add_to_delay_list (trial, NULL_RTX); |
9c7e2978 RK |
1027 | next_trial = next_active_insn (trial); |
1028 | update_block (trial, trial); | |
1029 | delete_insn (trial); | |
1030 | ||
1031 | /* Also, if we are targeting an unconditional | |
1032 | branch, thread our jump to the target of that branch. Don't | |
1033 | change this into a RETURN here, because it may not accept what | |
1034 | we have in the delay slot. We'll fix this up later. */ | |
1035 | if (next_trial && GET_CODE (next_trial) == JUMP_INSN | |
1036 | && (simplejump_p (next_trial) | |
1037 | || GET_CODE (PATTERN (next_trial)) == RETURN)) | |
1038 | { | |
1039 | target_label = JUMP_LABEL (next_trial); | |
1040 | if (target_label == 0) | |
1041 | target_label = find_end_label (); | |
1042 | redirect_jump (insn, target_label); | |
1043 | } | |
1044 | ||
1045 | INSN_ANNULLED_BRANCH_P (insn) = 1; | |
1046 | } | |
1047 | ||
1048 | return delay_list; | |
1049 | } | |
1050 | #endif | |
1051 | \f | |
1052 | /* Return truth value of the statement that this branch | |
1053 | is mostly taken. If we think that the branch is extremely likely | |
1054 | to be taken, we return 2. If the branch is slightly more likely to be | |
1055 | taken, return 1. Otherwise, return 0. | |
1056 | ||
1057 | CONDITION, if non-zero, is the condition that JUMP_INSN is testing. */ | |
1058 | ||
1059 | static int | |
1060 | mostly_true_jump (jump_insn, condition) | |
1061 | rtx jump_insn, condition; | |
1062 | { | |
1063 | rtx target_label = JUMP_LABEL (jump_insn); | |
1064 | rtx insn; | |
1065 | ||
1066 | /* If this is a conditional return insn, assume it won't return. */ | |
1067 | if (target_label == 0) | |
1068 | return 0; | |
1069 | ||
1070 | /* If TARGET_LABEL has no jumps between it and the end of the function, | |
1071 | this is essentially a conditional return, so predict it as false. */ | |
4d0e69c3 RK |
1072 | for (insn = NEXT_INSN (target_label); insn; insn = NEXT_INSN (insn)) |
1073 | { | |
1074 | if (GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == SEQUENCE) | |
1075 | insn = XVECEXP (PATTERN (insn), 0, 0); | |
1076 | if (GET_CODE (insn) == JUMP_INSN) | |
1077 | break; | |
1078 | } | |
9c7e2978 RK |
1079 | |
1080 | if (insn == 0) | |
1081 | return 0; | |
1082 | ||
1083 | /* If this is the test of a loop, it is very likely true. We scan backwards | |
1084 | from the target label. If we find a NOTE_INSN_LOOP_BEG before the next | |
1085 | real insn, we assume the branch is to the top of the loop. */ | |
1086 | for (insn = PREV_INSN (target_label); | |
1087 | insn && GET_CODE (insn) == NOTE; | |
1088 | insn = PREV_INSN (insn)) | |
1089 | if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG) | |
1090 | return 2; | |
1091 | ||
4d0e69c3 RK |
1092 | /* If this is a jump to the test of a loop, it is likely true. We scan |
1093 | forwards from the target label. If we find a NOTE_INSN_LOOP_VTOP | |
1094 | before the next real insn, we assume the branch is to the loop branch | |
1095 | test. */ | |
1096 | for (insn = NEXT_INSN (target_label); | |
1097 | insn && GET_CODE (insn) == NOTE; | |
1098 | insn = PREV_INSN (insn)) | |
1099 | if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_VTOP) | |
1100 | return 1; | |
1101 | ||
9c7e2978 RK |
1102 | /* If we couldn't figure out what this jump was, assume it won't be |
1103 | taken. This should be rare. */ | |
1104 | if (condition == 0) | |
1105 | return 0; | |
1106 | ||
1107 | /* EQ tests are usually false and NE tests are usually true. Also, | |
1108 | most quantities are positive, so we can make the appropriate guesses | |
1109 | about signed comparisons against zero. */ | |
1110 | switch (GET_CODE (condition)) | |
1111 | { | |
1112 | case CONST_INT: | |
1113 | /* Unconditional branch. */ | |
1114 | return 1; | |
1115 | case EQ: | |
1116 | return 0; | |
1117 | case NE: | |
1118 | return 1; | |
1119 | case LE: | |
1120 | case LT: | |
1121 | if (XEXP (condition, 1) == const0_rtx) | |
1122 | return 0; | |
1123 | break; | |
1124 | case GE: | |
1125 | case GT: | |
1126 | if (XEXP (condition, 1) == const0_rtx) | |
1127 | return 1; | |
1128 | break; | |
1129 | } | |
1130 | ||
1131 | /* Predict backward branches usually take, forward branches usually not. If | |
1132 | we don't know whether this is forward or backward, assume the branch | |
1133 | will be taken, since most are. */ | |
1134 | return (INSN_UID (jump_insn) > max_uid || INSN_UID (target_label) > max_uid | |
1135 | || (uid_to_ruid[INSN_UID (jump_insn)] | |
1136 | > uid_to_ruid[INSN_UID (target_label)]));; | |
1137 | } | |
1138 | ||
1139 | /* Return the condition under which INSN will branch to TARGET. If TARGET | |
1140 | is zero, return the condition under which INSN will return. If INSN is | |
1141 | an unconditional branch, return const_true_rtx. If INSN isn't a simple | |
1142 | type of jump, or it doesn't go to TARGET, return 0. */ | |
1143 | ||
1144 | static rtx | |
1145 | get_branch_condition (insn, target) | |
1146 | rtx insn; | |
1147 | rtx target; | |
1148 | { | |
1149 | rtx pat = PATTERN (insn); | |
1150 | rtx src; | |
1151 | ||
1152 | if (GET_CODE (pat) == RETURN) | |
1153 | return target == 0 ? const_true_rtx : 0; | |
1154 | ||
1155 | else if (GET_CODE (pat) != SET || SET_DEST (pat) != pc_rtx) | |
1156 | return 0; | |
1157 | ||
1158 | src = SET_SRC (pat); | |
1159 | if (GET_CODE (src) == LABEL_REF && XEXP (src, 0) == target) | |
1160 | return const_true_rtx; | |
1161 | ||
1162 | else if (GET_CODE (src) == IF_THEN_ELSE | |
1163 | && ((target == 0 && GET_CODE (XEXP (src, 1)) == RETURN) | |
1164 | || (GET_CODE (XEXP (src, 1)) == LABEL_REF | |
1165 | && XEXP (XEXP (src, 1), 0) == target)) | |
1166 | && XEXP (src, 2) == pc_rtx) | |
1167 | return XEXP (src, 0); | |
1168 | ||
1169 | else if (GET_CODE (src) == IF_THEN_ELSE | |
1170 | && ((target == 0 && GET_CODE (XEXP (src, 2)) == RETURN) | |
1171 | || (GET_CODE (XEXP (src, 2)) == LABEL_REF | |
1172 | && XEXP (XEXP (src, 2), 0) == target)) | |
1173 | && XEXP (src, 1) == pc_rtx) | |
1174 | return gen_rtx (reverse_condition (GET_CODE (XEXP (src, 0))), | |
1175 | GET_MODE (XEXP (src, 0)), | |
1176 | XEXP (XEXP (src, 0), 0), XEXP (XEXP (src, 0), 1)); | |
58c8c593 RK |
1177 | |
1178 | return 0; | |
9c7e2978 RK |
1179 | } |
1180 | ||
1181 | /* Return non-zero if CONDITION is more strict than the condition of | |
1182 | INSN, i.e., if INSN will always branch if CONDITION is true. */ | |
1183 | ||
1184 | static int | |
1185 | condition_dominates_p (condition, insn) | |
1186 | rtx condition; | |
1187 | rtx insn; | |
1188 | { | |
1189 | rtx other_condition = get_branch_condition (insn, JUMP_LABEL (insn)); | |
1190 | enum rtx_code code = GET_CODE (condition); | |
1191 | enum rtx_code other_code; | |
1192 | ||
1193 | if (rtx_equal_p (condition, other_condition) | |
1194 | || other_condition == const_true_rtx) | |
1195 | return 1; | |
1196 | ||
1197 | else if (condition == const_true_rtx || other_condition == 0) | |
1198 | return 0; | |
1199 | ||
1200 | other_code = GET_CODE (other_condition); | |
1201 | if (GET_RTX_LENGTH (code) != 2 || GET_RTX_LENGTH (other_code) != 2 | |
1202 | || ! rtx_equal_p (XEXP (condition, 0), XEXP (other_condition, 0)) | |
1203 | || ! rtx_equal_p (XEXP (condition, 1), XEXP (other_condition, 1))) | |
1204 | return 0; | |
1205 | ||
1206 | return comparison_dominates_p (code, other_code); | |
1207 | } | |
1208 | \f | |
1209 | /* INSN branches to an insn whose pattern SEQ is a SEQUENCE. Given that | |
1210 | the condition tested by INSN is CONDITION and the resources shown in | |
1211 | OTHER_NEEDED are needed after INSN, see whether INSN can take all the insns | |
1212 | from SEQ's delay list, in addition to whatever insns it may execute | |
1213 | (in DELAY_LIST). SETS and NEEDED are denote resources already set and | |
1214 | needed while searching for delay slot insns. Return the concatenated | |
1215 | delay list if possible, otherwise, return 0. | |
1216 | ||
1217 | SLOTS_TO_FILL is the total number of slots required by INSN, and | |
1218 | PSLOTS_FILLED points to the number filled so far (also the number of | |
1219 | insns in DELAY_LIST). It is updated with the number that have been | |
1220 | filled from the SEQUENCE, if any. | |
1221 | ||
1222 | PANNUL_P points to a non-zero value if we already know that we need | |
1223 | to annul INSN. If this routine determines that annulling is needed, | |
1224 | it may set that value non-zero. | |
1225 | ||
1226 | PNEW_THREAD points to a location that is to receive the place at which | |
1227 | execution should continue. */ | |
1228 | ||
1229 | static rtx | |
1230 | steal_delay_list_from_target (insn, condition, seq, delay_list, | |
1231 | sets, needed, other_needed, | |
1232 | slots_to_fill, pslots_filled, pannul_p, | |
1233 | pnew_thread) | |
1234 | rtx insn, condition; | |
1235 | rtx seq; | |
1236 | rtx delay_list; | |
1237 | struct resources *sets, *needed, *other_needed; | |
1238 | int slots_to_fill; | |
1239 | int *pslots_filled; | |
1240 | int *pannul_p; | |
1241 | rtx *pnew_thread; | |
1242 | { | |
1243 | rtx temp; | |
1244 | int slots_remaining = slots_to_fill - *pslots_filled; | |
1245 | int total_slots_filled = *pslots_filled; | |
1246 | rtx new_delay_list = 0; | |
1247 | int must_annul = *pannul_p; | |
1248 | int i; | |
1249 | ||
1250 | /* We can't do anything if there are more delay slots in SEQ than we | |
1251 | can handle, or if we don't know that it will be a taken branch. | |
1252 | ||
1253 | We know that it will be a taken branch if it is either an unconditional | |
1254 | branch or a conditional branch with a stricter branch condition. */ | |
1255 | ||
1256 | if (XVECLEN (seq, 0) - 1 > slots_remaining | |
1257 | || ! condition_dominates_p (condition, XVECEXP (seq, 0, 0))) | |
1258 | return delay_list; | |
1259 | ||
1260 | for (i = 1; i < XVECLEN (seq, 0); i++) | |
1261 | { | |
1262 | rtx trial = XVECEXP (seq, 0, i); | |
1263 | ||
1264 | if (insn_references_resource_p (trial, sets, 0) | |
1265 | || insn_sets_resource_p (trial, needed, 0) | |
1266 | || insn_sets_resource_p (trial, sets, 0) | |
1267 | #ifdef HAVE_cc0 | |
1268 | /* If TRIAL sets CC0, we can't copy it, so we can't steal this | |
1269 | delay list. */ | |
fb3821f7 | 1270 | || find_reg_note (trial, REG_CC_USER, NULL_RTX) |
9c7e2978 RK |
1271 | #endif |
1272 | /* If TRIAL is from the fallthrough code of an annulled branch insn | |
1273 | in SEQ, we cannot use it. */ | |
1274 | || (INSN_ANNULLED_BRANCH_P (XVECEXP (seq, 0, 0)) | |
1275 | && ! INSN_FROM_TARGET_P (trial))) | |
1276 | return delay_list; | |
1277 | ||
1278 | /* If this insn was already done (usually in a previous delay slot), | |
1279 | pretend we put it in our delay slot. */ | |
1280 | if (redundant_insn_p (trial, insn, new_delay_list)) | |
1281 | continue; | |
1282 | ||
1283 | if (! must_annul | |
1284 | && ((condition == const_true_rtx | |
1285 | || (! insn_sets_resource_p (trial, other_needed, 0) | |
1286 | && ! may_trap_p (PATTERN (trial))))) | |
1287 | ? eligible_for_delay (insn, total_slots_filled, trial) | |
1288 | : (must_annul = 1, | |
1289 | eligible_for_annul_false (insn, total_slots_filled, trial))) | |
1290 | { | |
1291 | temp = copy_rtx (trial); | |
1292 | INSN_FROM_TARGET_P (temp) = 1; | |
1293 | new_delay_list = add_to_delay_list (temp, new_delay_list); | |
1294 | total_slots_filled++; | |
1295 | ||
1296 | if (--slots_remaining == 0) | |
1297 | break; | |
1298 | } | |
1299 | else | |
1300 | return delay_list; | |
1301 | } | |
1302 | ||
1303 | /* Show the place to which we will be branching. */ | |
1304 | *pnew_thread = next_active_insn (JUMP_LABEL (XVECEXP (seq, 0, 0))); | |
1305 | ||
1306 | /* Add any new insns to the delay list and update the count of the | |
1307 | number of slots filled. */ | |
1308 | *pslots_filled = total_slots_filled; | |
1309 | *pannul_p = must_annul; | |
1310 | ||
1311 | if (delay_list == 0) | |
1312 | return new_delay_list; | |
1313 | ||
1314 | for (temp = new_delay_list; temp; temp = XEXP (temp, 1)) | |
1315 | delay_list = add_to_delay_list (XEXP (temp, 0), delay_list); | |
1316 | ||
1317 | return delay_list; | |
1318 | } | |
1319 | \f | |
1320 | /* Similar to steal_delay_list_from_target except that SEQ is on the | |
1321 | fallthrough path of INSN. Here we only do something if the delay insn | |
1322 | of SEQ is an unconditional branch. In that case we steal its delay slot | |
1323 | for INSN since unconditional branches are much easier to fill. */ | |
1324 | ||
1325 | static rtx | |
1326 | steal_delay_list_from_fallthrough (insn, condition, seq, | |
1327 | delay_list, sets, needed, other_needed, | |
1328 | slots_to_fill, pslots_filled, pannul_p) | |
1329 | rtx insn, condition; | |
1330 | rtx seq; | |
1331 | rtx delay_list; | |
1332 | struct resources *sets, *needed, *other_needed; | |
1333 | int slots_to_fill; | |
1334 | int *pslots_filled; | |
1335 | int *pannul_p; | |
1336 | { | |
1337 | int i; | |
1338 | ||
1339 | /* We can't do anything if SEQ's delay insn isn't an | |
1340 | unconditional branch. */ | |
1341 | ||
1342 | if (! simplejump_p (XVECEXP (seq, 0, 0)) | |
1343 | && GET_CODE (PATTERN (XVECEXP (seq, 0, 0))) != RETURN) | |
1344 | return delay_list; | |
1345 | ||
1346 | for (i = 1; i < XVECLEN (seq, 0); i++) | |
1347 | { | |
1348 | rtx trial = XVECEXP (seq, 0, i); | |
1349 | ||
1350 | /* If TRIAL sets CC0, stealing it will move it too far from the use | |
1351 | of CC0. */ | |
1352 | if (insn_references_resource_p (trial, sets, 0) | |
1353 | || insn_sets_resource_p (trial, needed, 0) | |
1354 | || insn_sets_resource_p (trial, sets, 0) | |
1355 | #ifdef HAVE_cc0 | |
1356 | || sets_cc0_p (PATTERN (trial)) | |
1357 | #endif | |
1358 | ) | |
1359 | ||
1360 | break; | |
1361 | ||
1362 | /* If this insn was already done, we don't need it. */ | |
1363 | if (redundant_insn_p (trial, insn, delay_list)) | |
1364 | { | |
1365 | delete_from_delay_slot (trial); | |
1366 | continue; | |
1367 | } | |
1368 | ||
1369 | if (! *pannul_p | |
1370 | && ((condition == const_true_rtx | |
1371 | || (! insn_sets_resource_p (trial, other_needed, 0) | |
1372 | && ! may_trap_p (PATTERN (trial))))) | |
1373 | ? eligible_for_delay (insn, *pslots_filled, trial) | |
1374 | : (*pannul_p = 1, | |
1375 | eligible_for_annul_true (insn, *pslots_filled, trial))) | |
1376 | { | |
1377 | delete_from_delay_slot (trial); | |
1378 | delay_list = add_to_delay_list (trial, delay_list); | |
1379 | ||
1380 | if (++(*pslots_filled) == slots_to_fill) | |
1381 | break; | |
1382 | } | |
1383 | else | |
1384 | break; | |
1385 | } | |
1386 | ||
1387 | return delay_list; | |
1388 | } | |
1389 | \f | |
1390 | /* Try merging insns starting at THREAD which match exactly the insns in | |
1391 | INSN's delay list. | |
1392 | ||
1393 | If all insns were matched and the insn was previously annulling, the | |
1394 | annul bit will be cleared. | |
1395 | ||
1396 | For each insn that is merged, if the branch is or will be non-annulling, | |
1397 | we delete the merged insn. */ | |
1398 | ||
1399 | static void | |
1400 | try_merge_delay_insns (insn, thread) | |
1401 | rtx insn, thread; | |
1402 | { | |
1403 | rtx trial, next_trial; | |
1404 | rtx delay_insn = XVECEXP (PATTERN (insn), 0, 0); | |
1405 | int annul_p = INSN_ANNULLED_BRANCH_P (delay_insn); | |
1406 | int slot_number = 1; | |
1407 | int num_slots = XVECLEN (PATTERN (insn), 0); | |
1408 | rtx next_to_match = XVECEXP (PATTERN (insn), 0, slot_number); | |
1409 | struct resources set, needed; | |
1410 | rtx merged_insns = 0; | |
1411 | int i; | |
1412 | ||
1413 | CLEAR_RESOURCE (&needed); | |
1414 | CLEAR_RESOURCE (&set); | |
1415 | ||
1416 | /* If this is not an annulling branch, take into account anything needed in | |
1417 | NEXT_TO_MATCH. This prevents two increments from being incorrectly | |
1418 | folded into one. If we are annulling, this would be the correct | |
1419 | thing to do. (The alternative, looking at things set in NEXT_TO_MATCH | |
1420 | will essentially disable this optimization. This method is somewhat of | |
1421 | a kludge, but I don't see a better way.) */ | |
1422 | if (! annul_p) | |
1423 | mark_referenced_resources (next_to_match, &needed, 1); | |
1424 | ||
1425 | for (trial = thread; !stop_search_p (trial, 1); trial = next_trial) | |
1426 | { | |
1427 | rtx pat = PATTERN (trial); | |
1428 | ||
1429 | next_trial = next_nonnote_insn (trial); | |
1430 | ||
1431 | /* TRIAL must be a CALL_INSN or INSN. Skip USE and CLOBBER. */ | |
1432 | if (GET_CODE (trial) == INSN | |
1433 | && (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER)) | |
1434 | continue; | |
1435 | ||
1436 | if (GET_CODE (next_to_match) == GET_CODE (trial) | |
1437 | #ifdef HAVE_cc0 | |
1438 | /* We can't share an insn that sets cc0. */ | |
1439 | && ! sets_cc0_p (pat) | |
1440 | #endif | |
1441 | && ! insn_references_resource_p (trial, &set, 1) | |
1442 | && ! insn_sets_resource_p (trial, &set, 1) | |
1443 | && ! insn_sets_resource_p (trial, &needed, 1) | |
1444 | && (trial = try_split (pat, trial, 0)) != 0 | |
1445 | && rtx_equal_p (PATTERN (next_to_match), PATTERN (trial)) | |
1446 | /* Have to test this condition if annul condition is different | |
1447 | from (and less restrictive than) non-annulling one. */ | |
1448 | && eligible_for_delay (delay_insn, slot_number - 1, trial)) | |
1449 | { | |
1450 | next_trial = next_nonnote_insn (trial); | |
1451 | ||
1452 | if (! annul_p) | |
1453 | { | |
f1f9081a | 1454 | update_block (trial, thread); |
9c7e2978 RK |
1455 | delete_insn (trial); |
1456 | INSN_FROM_TARGET_P (next_to_match) = 0; | |
1457 | } | |
1458 | else | |
1459 | merged_insns = gen_rtx (INSN_LIST, VOIDmode, trial, merged_insns); | |
1460 | ||
1461 | if (++slot_number == num_slots) | |
1462 | break; | |
1463 | ||
1464 | next_to_match = XVECEXP (PATTERN (insn), 0, slot_number); | |
1465 | if (! annul_p) | |
1466 | mark_referenced_resources (next_to_match, &needed, 1); | |
1467 | } | |
1468 | ||
26d970a5 | 1469 | mark_set_resources (trial, &set, 0, 1); |
9c7e2978 RK |
1470 | mark_referenced_resources (trial, &needed, 1); |
1471 | } | |
1472 | ||
1473 | /* See if we stopped on a filled insn. If we did, try to see if its | |
1474 | delay slots match. */ | |
1475 | if (slot_number != num_slots | |
1476 | && trial && GET_CODE (trial) == INSN | |
1477 | && GET_CODE (PATTERN (trial)) == SEQUENCE | |
1478 | && ! INSN_ANNULLED_BRANCH_P (XVECEXP (PATTERN (trial), 0, 0))) | |
1479 | { | |
1480 | rtx pat = PATTERN (trial); | |
1481 | ||
1482 | for (i = 1; i < XVECLEN (pat, 0); i++) | |
1483 | { | |
1484 | rtx dtrial = XVECEXP (pat, 0, i); | |
1485 | ||
1486 | if (! insn_references_resource_p (dtrial, &set, 1) | |
1487 | && ! insn_sets_resource_p (dtrial, &set, 1) | |
1488 | && ! insn_sets_resource_p (dtrial, &needed, 1) | |
1489 | #ifdef HAVE_cc0 | |
1490 | && ! sets_cc0_p (PATTERN (dtrial)) | |
1491 | #endif | |
1492 | && rtx_equal_p (PATTERN (next_to_match), PATTERN (dtrial)) | |
1493 | && eligible_for_delay (delay_insn, slot_number - 1, dtrial)) | |
1494 | { | |
1495 | if (! annul_p) | |
1496 | { | |
f1f9081a | 1497 | update_block (dtrial, thread); |
9c7e2978 RK |
1498 | delete_from_delay_slot (dtrial); |
1499 | INSN_FROM_TARGET_P (next_to_match) = 0; | |
1500 | } | |
1501 | else | |
1502 | merged_insns = gen_rtx (INSN_LIST, SImode, dtrial, | |
1503 | merged_insns); | |
1504 | ||
1505 | if (++slot_number == num_slots) | |
1506 | break; | |
1507 | ||
1508 | next_to_match = XVECEXP (PATTERN (insn), 0, slot_number); | |
1509 | } | |
1510 | } | |
1511 | } | |
1512 | ||
1513 | /* If all insns in the delay slot have been matched and we were previously | |
1514 | annulling the branch, we need not any more. In that case delete all the | |
1515 | merged insns. Also clear the INSN_FROM_TARGET_P bit of each insn the | |
1516 | the delay list so that we know that it isn't only being used at the | |
1517 | target. */ | |
1518 | if (next_to_match == 0 && annul_p) | |
1519 | { | |
1520 | for (; merged_insns; merged_insns = XEXP (merged_insns, 1)) | |
1521 | { | |
1522 | if (GET_MODE (merged_insns) == SImode) | |
1523 | { | |
f1f9081a | 1524 | update_block (XEXP (merged_insns, 0), thread); |
9c7e2978 RK |
1525 | delete_from_delay_slot (XEXP (merged_insns, 0)); |
1526 | } | |
1527 | else | |
1528 | { | |
f1f9081a | 1529 | update_block (XEXP (merged_insns, 0), thread); |
9c7e2978 RK |
1530 | delete_insn (XEXP (merged_insns, 0)); |
1531 | } | |
1532 | } | |
1533 | ||
1534 | INSN_ANNULLED_BRANCH_P (delay_insn) = 0; | |
1535 | ||
1536 | for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++) | |
1537 | INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i)) = 0; | |
1538 | } | |
1539 | } | |
1540 | \f | |
1541 | /* See if INSN is redundant with an insn in front of TARGET. Often this | |
1542 | is called when INSN is a candidate for a delay slot of TARGET. | |
1543 | DELAY_LIST are insns that will be placed in delay slots of TARGET in front | |
1544 | of INSN. Often INSN will be redundant with an insn in a delay slot of | |
1545 | some previous insn. This happens when we have a series of branches to the | |
1546 | same label; in that case the first insn at the target might want to go | |
1547 | into each of the delay slots. | |
1548 | ||
1549 | If we are not careful, this routine can take up a significant fraction | |
1550 | of the total compilation time (4%), but only wins rarely. Hence we | |
1551 | speed this routine up by making two passes. The first pass goes back | |
1552 | until it hits a label and sees if it find an insn with an identical | |
1553 | pattern. Only in this (relatively rare) event does it check for | |
1554 | data conflicts. | |
1555 | ||
1556 | We do not split insns we encounter. This could cause us not to find a | |
1557 | redundant insn, but the cost of splitting seems greater than the possible | |
1558 | gain in rare cases. */ | |
1559 | ||
1560 | static int | |
1561 | redundant_insn_p (insn, target, delay_list) | |
1562 | rtx insn; | |
1563 | rtx target; | |
1564 | rtx delay_list; | |
1565 | { | |
1566 | rtx target_main = target; | |
1567 | rtx ipat = PATTERN (insn); | |
1568 | rtx trial, pat; | |
1569 | struct resources needed, set; | |
1570 | int i; | |
1571 | ||
1572 | /* Scan backwards looking for a match. */ | |
1573 | for (trial = PREV_INSN (target); trial; trial = PREV_INSN (trial)) | |
1574 | { | |
1575 | if (GET_CODE (trial) == CODE_LABEL) | |
1576 | return 0; | |
1577 | ||
1578 | if (GET_CODE (trial) != INSN && GET_CODE (trial) != JUMP_INSN | |
1579 | && GET_CODE (trial) != JUMP_INSN) | |
1580 | continue; | |
1581 | ||
1582 | pat = PATTERN (trial); | |
1583 | if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER) | |
1584 | continue; | |
1585 | ||
1586 | if (GET_CODE (pat) == SEQUENCE) | |
1587 | { | |
1588 | /* Stop for a CALL and its delay slots because it difficult to track | |
1589 | its resource needs correctly. */ | |
1590 | if (GET_CODE (XVECEXP (pat, 0, 0)) == CALL_INSN) | |
1591 | return 0; | |
1592 | ||
1593 | for (i = XVECLEN (pat, 0) - 1; i > 0; i--) | |
1594 | if (GET_CODE (XVECEXP (pat, 0, i)) == GET_CODE (insn) | |
1595 | && rtx_equal_p (PATTERN (XVECEXP (pat, 0, i)), ipat)) | |
1596 | break; | |
1597 | ||
1598 | /* If found a match, exit this loop early. */ | |
1599 | if (i > 0) | |
1600 | break; | |
1601 | } | |
1602 | ||
1603 | else if (GET_CODE (trial) == GET_CODE (insn) && rtx_equal_p (pat, ipat)) | |
1604 | break; | |
1605 | } | |
1606 | ||
1607 | /* If we didn't find an insn that matches, return 0. */ | |
1608 | if (trial == 0) | |
1609 | return 0; | |
1610 | ||
1611 | /* See what resources this insn sets and needs. If they overlap, or | |
1612 | if this insn references CC0, it can't be redundant. */ | |
1613 | ||
1614 | CLEAR_RESOURCE (&needed); | |
1615 | CLEAR_RESOURCE (&set); | |
26d970a5 | 1616 | mark_set_resources (insn, &set, 0, 1); |
9c7e2978 RK |
1617 | mark_referenced_resources (insn, &needed, 1); |
1618 | ||
1619 | /* If TARGET is a SEQUENCE, get the main insn. */ | |
1620 | if (GET_CODE (target) == INSN && GET_CODE (PATTERN (target)) == SEQUENCE) | |
1621 | target_main = XVECEXP (PATTERN (target), 0, 0); | |
1622 | ||
1623 | if (resource_conflicts_p (&needed, &set) | |
1624 | #ifdef HAVE_cc0 | |
1625 | || reg_mentioned_p (cc0_rtx, ipat) | |
1626 | #endif | |
1627 | /* The insn requiring the delay may not set anything needed or set by | |
1628 | INSN. */ | |
1629 | || insn_sets_resource_p (target_main, &needed, 1) | |
1630 | || insn_sets_resource_p (target_main, &set, 1)) | |
1631 | return 0; | |
1632 | ||
1633 | /* Insns we pass may not set either NEEDED or SET, so merge them for | |
1634 | simpler tests. */ | |
1635 | needed.memory |= set.memory; | |
1636 | IOR_HARD_REG_SET (needed.regs, set.regs); | |
1637 | ||
1638 | /* This insn isn't redundant if it conflicts with an insn that either is | |
1639 | or will be in a delay slot of TARGET. */ | |
1640 | ||
1641 | while (delay_list) | |
1642 | { | |
1643 | if (insn_sets_resource_p (XEXP (delay_list, 0), &needed, 1)) | |
1644 | return 0; | |
1645 | delay_list = XEXP (delay_list, 1); | |
1646 | } | |
1647 | ||
1648 | if (GET_CODE (target) == INSN && GET_CODE (PATTERN (target)) == SEQUENCE) | |
1649 | for (i = 1; i < XVECLEN (PATTERN (target), 0); i++) | |
1650 | if (insn_sets_resource_p (XVECEXP (PATTERN (target), 0, i), &needed, 1)) | |
1651 | return 0; | |
1652 | ||
1653 | /* Scan backwards until we reach a label or an insn that uses something | |
1654 | INSN sets or sets something insn uses or sets. */ | |
1655 | ||
1656 | for (trial = PREV_INSN (target); | |
1657 | trial && GET_CODE (trial) != CODE_LABEL; | |
1658 | trial = PREV_INSN (trial)) | |
1659 | { | |
1660 | if (GET_CODE (trial) != INSN && GET_CODE (trial) != CALL_INSN | |
1661 | && GET_CODE (trial) != JUMP_INSN) | |
1662 | continue; | |
1663 | ||
1664 | pat = PATTERN (trial); | |
1665 | if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER) | |
1666 | continue; | |
1667 | ||
1668 | if (GET_CODE (pat) == SEQUENCE) | |
1669 | { | |
1670 | /* If this is a CALL_INSN and its delay slots, it is hard to track | |
1671 | the resource needs properly, so give up. */ | |
1672 | if (GET_CODE (XVECEXP (pat, 0, 0)) == CALL_INSN) | |
1673 | return 0; | |
1674 | ||
1675 | /* See if any of the insns in the delay slot match, updating | |
1676 | resource requirements as we go. */ | |
1677 | for (i = XVECLEN (pat, 0) - 1; i > 0; i--) | |
1678 | { | |
1679 | rtx candidate = XVECEXP (pat, 0, i); | |
1680 | ||
1681 | /* If an insn will be annulled if the branch is false, it isn't | |
1682 | considered as a possible duplicate insn. */ | |
1683 | if (rtx_equal_p (PATTERN (candidate), ipat) | |
1684 | && ! (INSN_ANNULLED_BRANCH_P (XVECEXP (pat, 0, 0)) | |
1685 | && INSN_FROM_TARGET_P (candidate))) | |
1686 | { | |
1687 | /* Show that this insn will be used in the sequel. */ | |
1688 | INSN_FROM_TARGET_P (candidate) = 0; | |
1689 | return 1; | |
1690 | } | |
1691 | ||
1692 | /* Unless this is an annulled insn from the target of a branch, | |
1693 | we must stop if it sets anything needed or set by INSN. */ | |
1694 | if ((! INSN_ANNULLED_BRANCH_P (XVECEXP (pat, 0, 0)) | |
1695 | || ! INSN_FROM_TARGET_P (candidate)) | |
1696 | && insn_sets_resource_p (candidate, &needed, 1)) | |
1697 | return 0; | |
1698 | } | |
1699 | ||
1700 | ||
1701 | /* If the insn requiring the delay slot conflicts with INSN, we | |
1702 | must stop. */ | |
1703 | if (insn_sets_resource_p (XVECEXP (pat, 0, 0), &needed, 1)) | |
1704 | return 0; | |
1705 | } | |
1706 | else | |
1707 | { | |
1708 | /* See if TRIAL is the same as INSN. */ | |
1709 | pat = PATTERN (trial); | |
1710 | if (rtx_equal_p (pat, ipat)) | |
1711 | return 1; | |
1712 | ||
1713 | /* Can't go any further if TRIAL conflicts with INSN. */ | |
1714 | if (insn_sets_resource_p (trial, &needed, 1)) | |
1715 | return 0; | |
1716 | } | |
1717 | } | |
1718 | ||
1719 | return 0; | |
1720 | } | |
1721 | \f | |
1722 | /* Return 1 if THREAD can only be executed in one way. If LABEL is non-zero, | |
1723 | it is the target of the branch insn being scanned. If ALLOW_FALLTHROUGH | |
1724 | is non-zero, we are allowed to fall into this thread; otherwise, we are | |
1725 | not. | |
1726 | ||
1727 | If LABEL is used more than one or we pass a label other than LABEL before | |
1728 | finding an active insn, we do not own this thread. */ | |
1729 | ||
1730 | static int | |
1731 | own_thread_p (thread, label, allow_fallthrough) | |
1732 | rtx thread; | |
1733 | rtx label; | |
1734 | int allow_fallthrough; | |
1735 | { | |
1736 | rtx active_insn; | |
1737 | rtx insn; | |
1738 | ||
1739 | /* We don't own the function end. */ | |
1740 | if (thread == 0) | |
1741 | return 0; | |
1742 | ||
1743 | /* Get the first active insn, or THREAD, if it is an active insn. */ | |
1744 | active_insn = next_active_insn (PREV_INSN (thread)); | |
1745 | ||
1746 | for (insn = thread; insn != active_insn; insn = NEXT_INSN (insn)) | |
1747 | if (GET_CODE (insn) == CODE_LABEL | |
1748 | && (insn != label || LABEL_NUSES (insn) != 1)) | |
1749 | return 0; | |
1750 | ||
1751 | if (allow_fallthrough) | |
1752 | return 1; | |
1753 | ||
1754 | /* Ensure that we reach a BARRIER before any insn or label. */ | |
1755 | for (insn = prev_nonnote_insn (thread); | |
1756 | insn == 0 || GET_CODE (insn) != BARRIER; | |
1757 | insn = prev_nonnote_insn (insn)) | |
1758 | if (insn == 0 | |
1759 | || GET_CODE (insn) == CODE_LABEL | |
1760 | || (GET_CODE (insn) == INSN | |
1761 | && GET_CODE (PATTERN (insn)) != USE | |
1762 | && GET_CODE (PATTERN (insn)) != CLOBBER)) | |
1763 | return 0; | |
1764 | ||
1765 | return 1; | |
1766 | } | |
1767 | \f | |
1768 | /* Find the number of the basic block that starts closest to INSN. Return -1 | |
1769 | if we couldn't find such a basic block. */ | |
1770 | ||
1771 | static int | |
1772 | find_basic_block (insn) | |
1773 | rtx insn; | |
1774 | { | |
1775 | int i; | |
1776 | ||
1777 | /* Scan backwards to the previous BARRIER. Then see if we can find a | |
1778 | label that starts a basic block. Return the basic block number. */ | |
1779 | ||
1780 | for (insn = prev_nonnote_insn (insn); | |
1781 | insn && GET_CODE (insn) != BARRIER; | |
1782 | insn = prev_nonnote_insn (insn)) | |
1783 | ; | |
1784 | ||
1785 | /* The start of the function is basic block zero. */ | |
1786 | if (insn == 0) | |
1787 | return 0; | |
1788 | ||
1789 | /* See if any of the upcoming CODE_LABELs start a basic block. If we reach | |
1790 | anything other than a CODE_LABEL or note, we can't find this code. */ | |
1791 | for (insn = next_nonnote_insn (insn); | |
1792 | insn && GET_CODE (insn) == CODE_LABEL; | |
1793 | insn = next_nonnote_insn (insn)) | |
1794 | { | |
1795 | for (i = 0; i < n_basic_blocks; i++) | |
1796 | if (insn == basic_block_head[i]) | |
1797 | return i; | |
1798 | } | |
1799 | ||
1800 | return -1; | |
1801 | } | |
1802 | \f | |
9c7e2978 | 1803 | /* Called when INSN is being moved from a location near the target of a jump. |
aa2c50d6 | 1804 | We leave a marker of the form (use (INSN)) immediately in front |
9c7e2978 | 1805 | of WHERE for mark_target_live_regs. These markers will be deleted when |
aa2c50d6 RK |
1806 | reorg finishes. |
1807 | ||
1808 | We used to try to update the live status of registers if WHERE is at | |
1809 | the start of a basic block, but that can't work since we may remove a | |
1810 | BARRIER in relax_delay_slots. */ | |
9c7e2978 RK |
1811 | |
1812 | static void | |
1813 | update_block (insn, where) | |
1814 | rtx insn; | |
1815 | rtx where; | |
1816 | { | |
aa2c50d6 RK |
1817 | int b; |
1818 | ||
9c7e2978 RK |
1819 | /* Ignore if this was in a delay slot and it came from the target of |
1820 | a branch. */ | |
1821 | if (INSN_FROM_TARGET_P (insn)) | |
1822 | return; | |
1823 | ||
aa2c50d6 | 1824 | emit_insn_before (gen_rtx (USE, VOIDmode, insn), where); |
9c7e2978 RK |
1825 | |
1826 | /* INSN might be making a value live in a block where it didn't use to | |
1827 | be. So recompute liveness information for this block. */ | |
aa2c50d6 RK |
1828 | |
1829 | b = find_basic_block (insn); | |
1830 | if (b != -1) | |
1831 | bb_ticks[b]++; | |
9c7e2978 RK |
1832 | } |
1833 | \f | |
1834 | /* Marks registers possibly live at the current place being scanned by | |
1835 | mark_target_live_regs. Used only by next two function. */ | |
1836 | ||
1837 | static HARD_REG_SET current_live_regs; | |
1838 | ||
1839 | /* Marks registers for which we have seen a REG_DEAD note but no assignment. | |
1840 | Also only used by the next two functions. */ | |
1841 | ||
1842 | static HARD_REG_SET pending_dead_regs; | |
1843 | ||
1844 | /* Utility function called from mark_target_live_regs via note_stores. | |
1845 | It deadens any CLOBBERed registers and livens any SET registers. */ | |
1846 | ||
1847 | static void | |
1848 | update_live_status (dest, x) | |
1849 | rtx dest; | |
1850 | rtx x; | |
1851 | { | |
1852 | int first_regno, last_regno; | |
1853 | int i; | |
1854 | ||
1855 | if (GET_CODE (dest) != REG | |
1856 | && (GET_CODE (dest) != SUBREG || GET_CODE (SUBREG_REG (dest)) != REG)) | |
1857 | return; | |
1858 | ||
1859 | if (GET_CODE (dest) == SUBREG) | |
1860 | first_regno = REGNO (SUBREG_REG (dest)) + SUBREG_WORD (dest); | |
1861 | else | |
1862 | first_regno = REGNO (dest); | |
1863 | ||
1864 | last_regno = first_regno + HARD_REGNO_NREGS (first_regno, GET_MODE (dest)); | |
1865 | ||
1866 | if (GET_CODE (x) == CLOBBER) | |
1867 | for (i = first_regno; i < last_regno; i++) | |
1868 | CLEAR_HARD_REG_BIT (current_live_regs, i); | |
1869 | else | |
1870 | for (i = first_regno; i < last_regno; i++) | |
1871 | { | |
1872 | SET_HARD_REG_BIT (current_live_regs, i); | |
1873 | CLEAR_HARD_REG_BIT (pending_dead_regs, i); | |
1874 | } | |
1875 | } | |
1876 | ||
1877 | /* Similar to next_insn, but ignores insns in the delay slots of | |
1878 | an annulled branch. */ | |
1879 | ||
1880 | static rtx | |
1881 | next_insn_no_annul (insn) | |
1882 | rtx insn; | |
1883 | { | |
1884 | if (insn) | |
1885 | { | |
1886 | /* If INSN is an annulled branch, skip any insns from the target | |
1887 | of the branch. */ | |
1888 | if (INSN_ANNULLED_BRANCH_P (insn) | |
1889 | && NEXT_INSN (PREV_INSN (insn)) != insn) | |
1890 | while (INSN_FROM_TARGET_P (NEXT_INSN (insn))) | |
1891 | insn = NEXT_INSN (insn); | |
1892 | ||
1893 | insn = NEXT_INSN (insn); | |
1894 | if (insn && GET_CODE (insn) == INSN | |
1895 | && GET_CODE (PATTERN (insn)) == SEQUENCE) | |
1896 | insn = XVECEXP (PATTERN (insn), 0, 0); | |
1897 | } | |
1898 | ||
1899 | return insn; | |
1900 | } | |
1901 | \f | |
1902 | /* Set the resources that are live at TARGET. | |
1903 | ||
1904 | If TARGET is zero, we refer to the end of the current function and can | |
1905 | return our precomputed value. | |
1906 | ||
1907 | Otherwise, we try to find out what is live by consulting the basic block | |
1908 | information. This is tricky, because we must consider the actions of | |
1909 | reload and jump optimization, which occur after the basic block information | |
1910 | has been computed. | |
1911 | ||
1912 | Accordingly, we proceed as follows:: | |
1913 | ||
1914 | We find the previous BARRIER and look at all immediately following labels | |
1915 | (with no intervening active insns) to see if any of them start a basic | |
1916 | block. If we hit the start of the function first, we use block 0. | |
1917 | ||
1918 | Once we have found a basic block and a corresponding first insns, we can | |
1919 | accurately compute the live status from basic_block_live_regs and | |
1920 | reg_renumber. (By starting at a label following a BARRIER, we are immune | |
1921 | to actions taken by reload and jump.) Then we scan all insns between | |
1922 | that point and our target. For each CLOBBER (or for call-clobbered regs | |
1923 | when we pass a CALL_INSN), mark the appropriate registers are dead. For | |
1924 | a SET, mark them as live. | |
1925 | ||
1926 | We have to be careful when using REG_DEAD notes because they are not | |
1927 | updated by such things as find_equiv_reg. So keep track of registers | |
1928 | marked as dead that haven't been assigned to, and mark them dead at the | |
1929 | next CODE_LABEL since reload and jump won't propagate values across labels. | |
1930 | ||
1931 | If we cannot find the start of a basic block (should be a very rare | |
1932 | case, if it can happen at all), mark everything as potentially live. | |
1933 | ||
1934 | Next, scan forward from TARGET looking for things set or clobbered | |
1935 | before they are used. These are not live. | |
1936 | ||
1937 | Because we can be called many times on the same target, save our results | |
1938 | in a hash table indexed by INSN_UID. */ | |
1939 | ||
1940 | static void | |
1941 | mark_target_live_regs (target, res) | |
1942 | rtx target; | |
1943 | struct resources *res; | |
1944 | { | |
1945 | int b = -1; | |
1946 | int i; | |
1947 | struct target_info *tinfo; | |
1948 | rtx insn, next; | |
1949 | rtx jump_insn = 0; | |
464b453d | 1950 | rtx jump_target; |
9c7e2978 RK |
1951 | HARD_REG_SET scratch; |
1952 | struct resources set, needed; | |
1953 | int jump_count = 0; | |
1954 | ||
1955 | /* Handle end of function. */ | |
1956 | if (target == 0) | |
1957 | { | |
1958 | *res = end_of_function_needs; | |
1959 | return; | |
1960 | } | |
1961 | ||
1962 | /* We have to assume memory is needed, but the CC isn't. */ | |
1963 | res->memory = 1; | |
1964 | res->volatil = 0; | |
1965 | res->cc = 0; | |
1966 | ||
1967 | /* See if we have computed this value already. */ | |
1968 | for (tinfo = target_hash_table[INSN_UID (target) % TARGET_HASH_PRIME]; | |
1969 | tinfo; tinfo = tinfo->next) | |
1970 | if (tinfo->uid == INSN_UID (target)) | |
1971 | break; | |
1972 | ||
1973 | /* Start by getting the basic block number. If we have saved information, | |
1974 | we can get it from there unless the insn at the start of the basic block | |
1975 | has been deleted. */ | |
1976 | if (tinfo && tinfo->block != -1 | |
1977 | && ! INSN_DELETED_P (basic_block_head[tinfo->block])) | |
1978 | b = tinfo->block; | |
1979 | ||
1980 | if (b == -1) | |
1981 | b = find_basic_block (target); | |
1982 | ||
1983 | if (tinfo) | |
1984 | { | |
1985 | /* If the information is up-to-date, use it. Otherwise, we will | |
1986 | update it below. */ | |
1987 | if (b == tinfo->block && b != -1 && tinfo->bb_tick == bb_ticks[b]) | |
1988 | { | |
1989 | COPY_HARD_REG_SET (res->regs, tinfo->live_regs); | |
1990 | return; | |
1991 | } | |
1992 | } | |
1993 | else | |
1994 | { | |
1995 | /* Allocate a place to put our results and chain it into the | |
1996 | hash table. */ | |
1997 | tinfo = (struct target_info *) oballoc (sizeof (struct target_info)); | |
1998 | tinfo->uid = INSN_UID (target); | |
1999 | tinfo->block = b; | |
2000 | tinfo->next = target_hash_table[INSN_UID (target) % TARGET_HASH_PRIME]; | |
2001 | target_hash_table[INSN_UID (target) % TARGET_HASH_PRIME] = tinfo; | |
2002 | } | |
2003 | ||
2004 | CLEAR_HARD_REG_SET (pending_dead_regs); | |
2005 | ||
2006 | /* If we found a basic block, get the live registers from it and update | |
2007 | them with anything set or killed between its start and the insn before | |
2008 | TARGET. Otherwise, we must assume everything is live. */ | |
2009 | if (b != -1) | |
2010 | { | |
2011 | regset regs_live = basic_block_live_at_start[b]; | |
fb3821f7 CH |
2012 | int offset, j; |
2013 | REGSET_ELT_TYPE bit; | |
9c7e2978 RK |
2014 | int regno; |
2015 | rtx start_insn, stop_insn; | |
2016 | ||
2017 | /* Compute hard regs live at start of block -- this is the real hard regs | |
2018 | marked live, plus live pseudo regs that have been renumbered to | |
2019 | hard regs. */ | |
2020 | ||
2021 | #ifdef HARD_REG_SET | |
2022 | current_live_regs = *regs_live; | |
2023 | #else | |
2024 | COPY_HARD_REG_SET (current_live_regs, regs_live); | |
2025 | #endif | |
2026 | ||
2027 | for (offset = 0, i = 0; offset < regset_size; offset++) | |
2028 | { | |
2029 | if (regs_live[offset] == 0) | |
fb3821f7 | 2030 | i += REGSET_ELT_BITS; |
9c7e2978 RK |
2031 | else |
2032 | for (bit = 1; bit && i < max_regno; bit <<= 1, i++) | |
2033 | if ((regs_live[offset] & bit) | |
2034 | && (regno = reg_renumber[i]) >= 0) | |
2035 | for (j = regno; | |
2036 | j < regno + HARD_REGNO_NREGS (regno, | |
2037 | PSEUDO_REGNO_MODE (i)); | |
2038 | j++) | |
2039 | SET_HARD_REG_BIT (current_live_regs, j); | |
2040 | } | |
2041 | ||
2042 | /* Get starting and ending insn, handling the case where each might | |
2043 | be a SEQUENCE. */ | |
2044 | start_insn = (b == 0 ? get_insns () : basic_block_head[b]); | |
2045 | stop_insn = target; | |
2046 | ||
2047 | if (GET_CODE (start_insn) == INSN | |
2048 | && GET_CODE (PATTERN (start_insn)) == SEQUENCE) | |
2049 | start_insn = XVECEXP (PATTERN (start_insn), 0, 0); | |
2050 | ||
2051 | if (GET_CODE (stop_insn) == INSN | |
2052 | && GET_CODE (PATTERN (stop_insn)) == SEQUENCE) | |
2053 | stop_insn = next_insn (PREV_INSN (stop_insn)); | |
2054 | ||
2055 | for (insn = start_insn; insn != stop_insn; | |
2056 | insn = next_insn_no_annul (insn)) | |
2057 | { | |
2058 | rtx link; | |
2059 | rtx real_insn = insn; | |
2060 | ||
2061 | /* If this insn is from the target of a branch, it isn't going to | |
2062 | be used in the sequel. If it is used in both cases, this | |
2063 | test will not be true. */ | |
2064 | if (INSN_FROM_TARGET_P (insn)) | |
2065 | continue; | |
2066 | ||
2067 | /* If this insn is a USE made by update_block, we care about the | |
2068 | underlying insn. */ | |
2069 | if (GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == USE | |
1422dce0 | 2070 | && GET_RTX_CLASS (GET_CODE (XEXP (PATTERN (insn), 0))) == 'i') |
9c7e2978 RK |
2071 | real_insn = XEXP (PATTERN (insn), 0); |
2072 | ||
2073 | if (GET_CODE (real_insn) == CALL_INSN) | |
2074 | { | |
2075 | /* CALL clobbers all call-used regs that aren't fixed except | |
2076 | sp, ap, and fp. Do this before setting the result of the | |
2077 | call live. */ | |
2078 | for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) | |
6e7348c1 | 2079 | if (call_used_regs[i] |
9c7e2978 | 2080 | && i != STACK_POINTER_REGNUM && i != FRAME_POINTER_REGNUM |
6e7348c1 RK |
2081 | && i != ARG_POINTER_REGNUM |
2082 | #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM | |
2083 | && ! (i == ARG_POINTER_REGNUM && fixed_regs[i]) | |
2084 | #endif | |
2085 | #ifdef PIC_OFFSET_TABLE_REGNUM | |
2086 | && ! (i == PIC_OFFSET_TABLE_REGNUM && flag_pic) | |
2087 | #endif | |
2088 | ) | |
9c7e2978 | 2089 | CLEAR_HARD_REG_BIT (current_live_regs, i); |
a419da61 RK |
2090 | |
2091 | /* A CALL_INSN sets any global register live, since it may | |
2092 | have been modified by the call. */ | |
2093 | for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) | |
2094 | if (global_regs[i]) | |
2095 | SET_HARD_REG_BIT (current_live_regs, i); | |
9c7e2978 RK |
2096 | } |
2097 | ||
2098 | /* Mark anything killed in an insn to be deadened at the next | |
2099 | label. Ignore USE insns; the only REG_DEAD notes will be for | |
2100 | parameters. But they might be early. A CALL_INSN will usually | |
2101 | clobber registers used for parameters. It isn't worth bothering | |
2102 | with the unlikely case when it won't. */ | |
2103 | if ((GET_CODE (real_insn) == INSN | |
2104 | && GET_CODE (PATTERN (real_insn)) != USE) | |
2105 | || GET_CODE (real_insn) == JUMP_INSN | |
2106 | || GET_CODE (real_insn) == CALL_INSN) | |
2107 | { | |
2108 | for (link = REG_NOTES (real_insn); link; link = XEXP (link, 1)) | |
2109 | if (REG_NOTE_KIND (link) == REG_DEAD | |
2110 | && GET_CODE (XEXP (link, 0)) == REG | |
2111 | && REGNO (XEXP (link, 0)) < FIRST_PSEUDO_REGISTER) | |
2112 | { | |
2113 | int first_regno = REGNO (XEXP (link, 0)); | |
2114 | int last_regno | |
2115 | = (first_regno | |
2116 | + HARD_REGNO_NREGS (first_regno, | |
2117 | GET_MODE (XEXP (link, 0)))); | |
2118 | ||
2119 | for (i = first_regno; i < last_regno; i++) | |
2120 | SET_HARD_REG_BIT (pending_dead_regs, i); | |
2121 | } | |
2122 | ||
2123 | note_stores (PATTERN (real_insn), update_live_status); | |
2124 | ||
2125 | /* If any registers were unused after this insn, kill them. | |
2126 | These notes will always be accurate. */ | |
2127 | for (link = REG_NOTES (real_insn); link; link = XEXP (link, 1)) | |
2128 | if (REG_NOTE_KIND (link) == REG_UNUSED | |
2129 | && GET_CODE (XEXP (link, 0)) == REG | |
2130 | && REGNO (XEXP (link, 0)) < FIRST_PSEUDO_REGISTER) | |
2131 | { | |
2132 | int first_regno = REGNO (XEXP (link, 0)); | |
2133 | int last_regno | |
2134 | = (first_regno | |
2135 | + HARD_REGNO_NREGS (first_regno, | |
2136 | GET_MODE (XEXP (link, 0)))); | |
2137 | ||
2138 | for (i = first_regno; i < last_regno; i++) | |
2139 | CLEAR_HARD_REG_BIT (current_live_regs, i); | |
2140 | } | |
2141 | } | |
2142 | ||
7bd80f37 | 2143 | else if (GET_CODE (real_insn) == CODE_LABEL) |
9c7e2978 RK |
2144 | { |
2145 | /* A label clobbers the pending dead registers since neither | |
2146 | reload nor jump will propagate a value across a label. */ | |
2147 | AND_COMPL_HARD_REG_SET (current_live_regs, pending_dead_regs); | |
2148 | CLEAR_HARD_REG_SET (pending_dead_regs); | |
2149 | } | |
7bd80f37 TW |
2150 | |
2151 | /* The beginning of the epilogue corresponds to the end of the | |
2152 | RTL chain when there are no epilogue insns. Certain resources | |
2153 | are implicitly required at that point. */ | |
2154 | else if (GET_CODE (real_insn) == NOTE | |
2155 | && NOTE_LINE_NUMBER (real_insn) == NOTE_INSN_EPILOGUE_BEG) | |
2156 | IOR_HARD_REG_SET (current_live_regs, start_of_epilogue_needs.regs); | |
9c7e2978 RK |
2157 | } |
2158 | ||
2159 | COPY_HARD_REG_SET (res->regs, current_live_regs); | |
2160 | tinfo->block = b; | |
2161 | tinfo->bb_tick = bb_ticks[b]; | |
2162 | } | |
2163 | else | |
2164 | /* We didn't find the start of a basic block. Assume everything | |
2165 | in use. This should happen only extremely rarely. */ | |
2166 | SET_HARD_REG_SET (res->regs); | |
2167 | ||
2168 | /* Now step forward from TARGET looking for registers that are set before | |
2169 | they are used. These are dead. If we pass a label, any pending dead | |
2170 | registers that weren't yet used can be made dead. Stop when we pass a | |
2171 | conditional JUMP_INSN; follow the first few unconditional branches. */ | |
2172 | ||
2173 | CLEAR_RESOURCE (&set); | |
2174 | CLEAR_RESOURCE (&needed); | |
2175 | ||
2176 | for (insn = target; insn; insn = next) | |
2177 | { | |
464b453d | 2178 | rtx this_jump_insn = insn; |
9c7e2978 RK |
2179 | |
2180 | next = NEXT_INSN (insn); | |
2181 | switch (GET_CODE (insn)) | |
2182 | { | |
2183 | case CODE_LABEL: | |
2184 | AND_COMPL_HARD_REG_SET (pending_dead_regs, needed.regs); | |
2185 | AND_COMPL_HARD_REG_SET (res->regs, pending_dead_regs); | |
2186 | CLEAR_HARD_REG_SET (pending_dead_regs); | |
2187 | continue; | |
2188 | ||
2189 | case BARRIER: | |
2190 | case NOTE: | |
2191 | continue; | |
2192 | ||
2193 | case INSN: | |
1422dce0 RK |
2194 | if (GET_CODE (PATTERN (insn)) == USE) |
2195 | { | |
2196 | /* If INSN is a USE made by update_block, we care about the | |
014830a5 RK |
2197 | underlying insn. Any registers set by the underlying insn |
2198 | are live since the insn is being done somewhere else. */ | |
1422dce0 | 2199 | if (GET_RTX_CLASS (GET_CODE (XEXP (PATTERN (insn), 0))) == 'i') |
014830a5 | 2200 | mark_set_resources (XEXP (PATTERN (insn), 0), res, 0, 1); |
1422dce0 RK |
2201 | |
2202 | /* All other USE insns are to be ignored. */ | |
2203 | continue; | |
2204 | } | |
2205 | else if (GET_CODE (PATTERN (insn)) == CLOBBER) | |
9c7e2978 | 2206 | continue; |
1422dce0 | 2207 | else if (GET_CODE (PATTERN (insn)) == SEQUENCE) |
464b453d TW |
2208 | { |
2209 | /* An unconditional jump can be used to fill the delay slot | |
2210 | of a call, so search for a JUMP_INSN in any position. */ | |
2211 | for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++) | |
2212 | { | |
2213 | this_jump_insn = XVECEXP (PATTERN (insn), 0, i); | |
2214 | if (GET_CODE (this_jump_insn) == JUMP_INSN) | |
2215 | break; | |
2216 | } | |
2217 | } | |
9c7e2978 RK |
2218 | } |
2219 | ||
464b453d | 2220 | if (GET_CODE (this_jump_insn) == JUMP_INSN) |
9c7e2978 RK |
2221 | { |
2222 | if (jump_count++ < 10 | |
464b453d TW |
2223 | && (simplejump_p (this_jump_insn) |
2224 | || GET_CODE (PATTERN (this_jump_insn)) == RETURN)) | |
9c7e2978 | 2225 | { |
464b453d | 2226 | next = next_active_insn (JUMP_LABEL (this_jump_insn)); |
9c7e2978 | 2227 | if (jump_insn == 0) |
464b453d TW |
2228 | { |
2229 | jump_insn = insn; | |
2230 | jump_target = JUMP_LABEL (this_jump_insn); | |
2231 | } | |
9c7e2978 RK |
2232 | } |
2233 | else | |
2234 | break; | |
2235 | } | |
2236 | ||
2237 | mark_referenced_resources (insn, &needed, 1); | |
26d970a5 | 2238 | mark_set_resources (insn, &set, 0, 1); |
9c7e2978 RK |
2239 | |
2240 | COPY_HARD_REG_SET (scratch, set.regs); | |
2241 | AND_COMPL_HARD_REG_SET (scratch, needed.regs); | |
2242 | AND_COMPL_HARD_REG_SET (res->regs, scratch); | |
2243 | } | |
2244 | ||
2245 | /* If we hit an unconditional branch, we have another way of finding out | |
2246 | what is live: we can see what is live at the branch target and include | |
2247 | anything used but not set before the branch. The only things that are | |
98ccf8fe RK |
2248 | live are those that are live using the above test and the test below. |
2249 | ||
2250 | Don't try this if we expired our jump count above, since that would | |
2251 | mean there may be an infinite loop in the function being compiled. */ | |
2252 | ||
2253 | if (jump_insn && jump_count < 10) | |
9c7e2978 | 2254 | { |
9c7e2978 RK |
2255 | struct resources new_resources; |
2256 | rtx stop_insn = next_active_insn (jump_insn); | |
2257 | ||
2258 | mark_target_live_regs (next_active_insn (jump_target), &new_resources); | |
2259 | CLEAR_RESOURCE (&set); | |
2260 | CLEAR_RESOURCE (&needed); | |
2261 | ||
2262 | /* Include JUMP_INSN in the needed registers. */ | |
2263 | for (insn = target; insn != stop_insn; insn = next_active_insn (insn)) | |
2264 | { | |
2265 | mark_referenced_resources (insn, &needed, 1); | |
2266 | ||
2267 | COPY_HARD_REG_SET (scratch, needed.regs); | |
2268 | AND_COMPL_HARD_REG_SET (scratch, set.regs); | |
2269 | IOR_HARD_REG_SET (new_resources.regs, scratch); | |
2270 | ||
26d970a5 | 2271 | mark_set_resources (insn, &set, 0, 1); |
9c7e2978 RK |
2272 | } |
2273 | ||
2274 | AND_HARD_REG_SET (res->regs, new_resources.regs); | |
2275 | } | |
2276 | ||
2277 | COPY_HARD_REG_SET (tinfo->live_regs, res->regs); | |
2278 | } | |
2279 | \f | |
2280 | /* Scan a function looking for insns that need a delay slot and find insns to | |
2281 | put into the delay slot. | |
2282 | ||
2283 | NON_JUMPS_P is non-zero if we are to only try to fill non-jump insns (such | |
2284 | as calls). We do these first since we don't want jump insns (that are | |
2285 | easier to fill) to get the only insns that could be used for non-jump insns. | |
2286 | When it is zero, only try to fill JUMP_INSNs. | |
2287 | ||
2288 | When slots are filled in this manner, the insns (including the | |
2289 | delay_insn) are put together in a SEQUENCE rtx. In this fashion, | |
2290 | it is possible to tell whether a delay slot has really been filled | |
2291 | or not. `final' knows how to deal with this, by communicating | |
2292 | through FINAL_SEQUENCE. */ | |
2293 | ||
2294 | static void | |
2295 | fill_simple_delay_slots (first, non_jumps_p) | |
2296 | rtx first; | |
2297 | { | |
2298 | register rtx insn, pat, trial, next_trial; | |
464b453d | 2299 | register int i, j; |
9c7e2978 RK |
2300 | int num_unfilled_slots = unfilled_slots_next - unfilled_slots_base; |
2301 | struct resources needed, set; | |
2302 | register int slots_to_fill, slots_filled; | |
2303 | rtx delay_list; | |
2304 | ||
2305 | for (i = 0; i < num_unfilled_slots; i++) | |
2306 | { | |
2307 | /* Get the next insn to fill. If it has already had any slots assigned, | |
2308 | we can't do anything with it. Maybe we'll improve this later. */ | |
2309 | ||
2310 | insn = unfilled_slots_base[i]; | |
2311 | if (insn == 0 | |
2312 | || INSN_DELETED_P (insn) | |
2313 | || (GET_CODE (insn) == INSN | |
2314 | && GET_CODE (PATTERN (insn)) == SEQUENCE) | |
2315 | || (GET_CODE (insn) == JUMP_INSN && non_jumps_p) | |
2316 | || (GET_CODE (insn) != JUMP_INSN && ! non_jumps_p)) | |
2317 | continue; | |
2318 | ||
2319 | slots_to_fill = num_delay_slots (insn); | |
2320 | if (slots_to_fill == 0) | |
2321 | abort (); | |
2322 | ||
2323 | /* This insn needs, or can use, some delay slots. SLOTS_TO_FILL | |
464b453d TW |
2324 | says how many. After initialization, first try optimizing |
2325 | ||
2326 | call _foo call _foo | |
2327 | nop add %o7,.-L1,%o7 | |
2328 | b,a L1 | |
2329 | nop | |
2330 | ||
2331 | If this case applies, the delay slot of the call is filled with | |
2332 | the unconditional jump. This is done first to avoid having the | |
2333 | delay slot of the call filled in the backward scan. Also, since | |
2334 | the unconditional jump is likely to also have a delay slot, that | |
2335 | insn must exist when it is subsequently scanned. */ | |
2336 | ||
2337 | slots_filled = 0; | |
2338 | delay_list = 0; | |
2339 | ||
2340 | if (GET_CODE (insn) == CALL_INSN | |
2341 | && (trial = next_active_insn (insn)) | |
2342 | && GET_CODE (trial) == JUMP_INSN | |
2343 | && simplejump_p (trial) | |
2344 | && eligible_for_delay (insn, slots_filled, trial) | |
2345 | && no_labels_between_p (insn, trial)) | |
2346 | { | |
2347 | slots_filled++; | |
2348 | delay_list = add_to_delay_list (trial, delay_list); | |
2349 | /* Remove the unconditional jump from consideration for delay slot | |
2350 | filling and unthread it. */ | |
2351 | if (unfilled_slots_base[i + 1] == trial) | |
2352 | unfilled_slots_base[i + 1] = 0; | |
2353 | { | |
2354 | rtx next = NEXT_INSN (trial); | |
2355 | rtx prev = PREV_INSN (trial); | |
2356 | if (prev) | |
2357 | NEXT_INSN (prev) = next; | |
2358 | if (next) | |
2359 | PREV_INSN (next) = prev; | |
2360 | } | |
2361 | } | |
2362 | ||
2363 | /* Now, scan backwards from the insn to search for a potential | |
2364 | delay-slot candidate. Stop searching when a label or jump is hit. | |
2365 | ||
9c7e2978 RK |
2366 | For each candidate, if it is to go into the delay slot (moved |
2367 | forward in execution sequence), it must not need or set any resources | |
2368 | that were set by later insns and must not set any resources that | |
2369 | are needed for those insns. | |
2370 | ||
2371 | The delay slot insn itself sets resources unless it is a call | |
2372 | (in which case the called routine, not the insn itself, is doing | |
2373 | the setting). */ | |
2374 | ||
464b453d | 2375 | if (slots_filled < slots_to_fill) |
9c7e2978 | 2376 | { |
464b453d TW |
2377 | CLEAR_RESOURCE (&needed); |
2378 | CLEAR_RESOURCE (&set); | |
2379 | mark_set_resources (insn, &set, 0, 0); | |
2380 | mark_referenced_resources (insn, &needed, 0); | |
9c7e2978 | 2381 | |
464b453d TW |
2382 | for (trial = prev_nonnote_insn (insn); ! stop_search_p (trial, 1); |
2383 | trial = next_trial) | |
2384 | { | |
2385 | next_trial = prev_nonnote_insn (trial); | |
9c7e2978 | 2386 | |
464b453d TW |
2387 | /* This must be an INSN or CALL_INSN. */ |
2388 | pat = PATTERN (trial); | |
2389 | ||
2390 | /* USE and CLOBBER at this level was just for flow; ignore it. */ | |
2391 | if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER) | |
2392 | continue; | |
9c7e2978 | 2393 | |
464b453d TW |
2394 | /* Check for resource conflict first, to avoid unnecessary |
2395 | splitting. */ | |
2396 | if (! insn_references_resource_p (trial, &set, 1) | |
2397 | && ! insn_sets_resource_p (trial, &set, 1) | |
2398 | && ! insn_sets_resource_p (trial, &needed, 1) | |
9c7e2978 | 2399 | #ifdef HAVE_cc0 |
464b453d TW |
2400 | /* Can't separate set of cc0 from its use. */ |
2401 | && ! (reg_mentioned_p (cc0_rtx, pat) | |
2402 | && ! sets_cc0_p (cc0_rtx, pat)) | |
9c7e2978 | 2403 | #endif |
464b453d | 2404 | ) |
9c7e2978 | 2405 | { |
464b453d TW |
2406 | trial = try_split (pat, trial, 1); |
2407 | next_trial = prev_nonnote_insn (trial); | |
2408 | if (eligible_for_delay (insn, slots_filled, trial)) | |
2409 | { | |
2410 | /* In this case, we are searching backward, so if we | |
2411 | find insns to put on the delay list, we want | |
2412 | to put them at the head, rather than the | |
2413 | tail, of the list. */ | |
2414 | ||
2415 | delay_list = gen_rtx (INSN_LIST, VOIDmode, | |
2416 | trial, delay_list); | |
2417 | update_block (trial, trial); | |
2418 | delete_insn (trial); | |
2419 | if (slots_to_fill == ++slots_filled) | |
2420 | break; | |
2421 | continue; | |
2422 | } | |
9c7e2978 | 2423 | } |
9c7e2978 | 2424 | |
464b453d TW |
2425 | mark_set_resources (trial, &set, 0, 1); |
2426 | mark_referenced_resources (trial, &needed, 1); | |
2427 | } | |
9c7e2978 RK |
2428 | } |
2429 | ||
9c7e2978 RK |
2430 | /* If all needed slots haven't been filled, we come here. */ |
2431 | ||
2432 | /* Try to optimize case of jumping around a single insn. */ | |
2433 | #if defined(ANNUL_IFFALSE_SLOTS) || defined(ANNUL_IFTRUE_SLOTS) | |
2f9ba5a9 JL |
2434 | if (slots_filled != slots_to_fill |
2435 | && delay_list == 0 | |
2436 | && GET_CODE (insn) == JUMP_INSN && condjump_p (insn)) | |
9c7e2978 RK |
2437 | { |
2438 | delay_list = optimize_skip (insn); | |
2439 | if (delay_list) | |
2440 | slots_filled += 1; | |
2441 | } | |
2442 | #endif | |
2443 | ||
9c7e2978 RK |
2444 | /* Try to get insns from beyond the insn needing the delay slot. |
2445 | These insns can neither set or reference resources set in insns being | |
2446 | skipped, cannot set resources in the insn being skipped, and, if this | |
2447 | is a CALL_INSN (or a CALL_INSN is passed), cannot trap (because the | |
2448 | call might not return). | |
2449 | ||
2450 | If this is a conditional jump, see if it merges back to us early | |
2451 | enough for us to pick up insns from the merge point. Don't do | |
2452 | this if there is another branch to our label unless we pass all of | |
2453 | them. | |
2454 | ||
2455 | Another similar merge is if we jump to the same place that a | |
2456 | later unconditional jump branches to. In that case, we don't | |
2457 | care about the number of uses of our label. */ | |
2458 | ||
2f9ba5a9 JL |
2459 | if (slots_filled != slots_to_fill |
2460 | && (GET_CODE (insn) != JUMP_INSN | |
2461 | || (condjump_p (insn) && ! simplejump_p (insn) | |
2462 | && JUMP_LABEL (insn) != 0))) | |
9c7e2978 RK |
2463 | { |
2464 | rtx target = 0; | |
2465 | int maybe_never = 0; | |
2466 | int passed_label = 0; | |
2467 | int target_uses; | |
2468 | struct resources needed_at_jump; | |
2469 | ||
2470 | CLEAR_RESOURCE (&needed); | |
2471 | CLEAR_RESOURCE (&set); | |
2472 | ||
2473 | if (GET_CODE (insn) == CALL_INSN) | |
2474 | { | |
26d970a5 | 2475 | mark_set_resources (insn, &set, 0, 1); |
9c7e2978 RK |
2476 | mark_referenced_resources (insn, &needed, 1); |
2477 | maybe_never = 1; | |
2478 | } | |
2f9ba5a9 | 2479 | else |
9c7e2978 | 2480 | { |
2f9ba5a9 JL |
2481 | mark_set_resources (insn, &set, 0, 0); |
2482 | mark_referenced_resources (insn, &needed, 0); | |
2483 | if (GET_CODE (insn) == JUMP_INSN) | |
2484 | { | |
2485 | /* Get our target and show how many more uses we want to | |
2486 | see before we hit the label. */ | |
2487 | target = JUMP_LABEL (insn); | |
2488 | target_uses = LABEL_NUSES (target) - 1; | |
2489 | } | |
2490 | ||
9c7e2978 RK |
2491 | } |
2492 | ||
2493 | for (trial = next_nonnote_insn (insn); trial; trial = next_trial) | |
2494 | { | |
2495 | rtx pat, trial_delay; | |
2496 | ||
2497 | next_trial = next_nonnote_insn (trial); | |
2498 | ||
2499 | if (GET_CODE (trial) == CODE_LABEL) | |
2500 | { | |
2501 | passed_label = 1; | |
2502 | ||
2503 | /* If this is our target, see if we have seen all its uses. | |
2504 | If so, indicate we have passed our target and ignore it. | |
2505 | All other labels cause us to stop our search. */ | |
2506 | if (trial == target && target_uses == 0) | |
2507 | { | |
2508 | target = 0; | |
2509 | continue; | |
2510 | } | |
2511 | else | |
2512 | break; | |
2513 | } | |
2514 | else if (GET_CODE (trial) == BARRIER) | |
2515 | break; | |
2516 | ||
2517 | /* We must have an INSN, JUMP_INSN, or CALL_INSN. */ | |
2518 | pat = PATTERN (trial); | |
2519 | ||
2520 | /* Stand-alone USE and CLOBBER are just for flow. */ | |
2521 | if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER) | |
2522 | continue; | |
2523 | ||
2524 | /* If this already has filled delay slots, get the insn needing | |
2525 | the delay slots. */ | |
2526 | if (GET_CODE (pat) == SEQUENCE) | |
2527 | trial_delay = XVECEXP (pat, 0, 0); | |
2528 | else | |
2529 | trial_delay = trial; | |
2530 | ||
2531 | /* If this is a jump insn to our target, indicate that we have | |
2532 | seen another jump to it. If we aren't handling a conditional | |
2533 | jump, stop our search. Otherwise, compute the needs at its | |
2534 | target and add them to NEEDED. */ | |
2535 | if (GET_CODE (trial_delay) == JUMP_INSN) | |
2536 | { | |
2537 | if (target == 0) | |
2538 | break; | |
2539 | else if (JUMP_LABEL (trial_delay) == target) | |
2540 | target_uses--; | |
2541 | else | |
2542 | { | |
2543 | mark_target_live_regs | |
2544 | (next_active_insn (JUMP_LABEL (trial_delay)), | |
2545 | &needed_at_jump); | |
2546 | needed.memory |= needed_at_jump.memory; | |
2547 | IOR_HARD_REG_SET (needed.regs, needed_at_jump.regs); | |
2548 | } | |
2549 | } | |
2550 | ||
2551 | /* See if we have a resource problem before we try to | |
2552 | split. */ | |
2553 | if (target == 0 | |
2554 | && GET_CODE (pat) != SEQUENCE | |
2555 | && ! insn_references_resource_p (trial, &set, 1) | |
2556 | && ! insn_sets_resource_p (trial, &set, 1) | |
2557 | && ! insn_sets_resource_p (trial, &needed, 1) | |
2558 | #ifdef HAVE_cc0 | |
2559 | && ! (reg_mentioned_p (cc0_rtx, pat) && ! sets_cc0_p (pat)) | |
2560 | #endif | |
2561 | && ! (maybe_never && may_trap_p (pat)) | |
2562 | && (trial = try_split (pat, trial, 0)) | |
2563 | && eligible_for_delay (insn, slots_filled, trial)) | |
2564 | { | |
2565 | next_trial = next_nonnote_insn (trial); | |
2566 | delay_list = add_to_delay_list (trial, delay_list); | |
2567 | ||
2568 | #ifdef HAVE_cc0 | |
2569 | if (reg_mentioned_p (cc0_rtx, pat)) | |
2570 | link_cc0_insns (trial); | |
2571 | #endif | |
2572 | ||
2573 | if (passed_label) | |
2574 | update_block (trial, trial); | |
2575 | delete_insn (trial); | |
2576 | if (slots_to_fill == ++slots_filled) | |
2577 | break; | |
2578 | continue; | |
2579 | } | |
2580 | ||
26d970a5 | 2581 | mark_set_resources (trial, &set, 0, 1); |
9c7e2978 RK |
2582 | mark_referenced_resources (trial, &needed, 1); |
2583 | ||
2584 | /* Ensure we don't put insns between the setting of cc and the | |
2585 | comparison by moving a setting of cc into an earlier delay | |
2586 | slot since these insns could clobber the condition code. */ | |
2587 | set.cc = 1; | |
2588 | ||
2589 | /* If this is a call or jump, we might not get here. */ | |
2590 | if (GET_CODE (trial) == CALL_INSN | |
2591 | || GET_CODE (trial) == JUMP_INSN) | |
2592 | maybe_never = 1; | |
2593 | } | |
2594 | ||
2595 | /* If there are slots left to fill and our search was stopped by an | |
2596 | unconditional branch, try the insn at the branch target. We can | |
2597 | redirect the branch if it works. */ | |
2598 | if (slots_to_fill != slots_filled | |
2599 | && trial | |
2600 | && GET_CODE (trial) == JUMP_INSN | |
2601 | && simplejump_p (trial) | |
2602 | && (target == 0 || JUMP_LABEL (trial) == target) | |
2603 | && (next_trial = next_active_insn (JUMP_LABEL (trial))) != 0 | |
2604 | && ! (GET_CODE (next_trial) == INSN | |
2605 | && GET_CODE (PATTERN (next_trial)) == SEQUENCE) | |
2606 | && ! insn_references_resource_p (next_trial, &set, 1) | |
2607 | && ! insn_sets_resource_p (next_trial, &set, 1) | |
2608 | && ! insn_sets_resource_p (next_trial, &needed, 1) | |
2609 | #ifdef HAVE_cc0 | |
d6749dec | 2610 | && ! reg_mentioned_p (cc0_rtx, PATTERN (next_trial)) |
9c7e2978 RK |
2611 | #endif |
2612 | && ! (maybe_never && may_trap_p (PATTERN (next_trial))) | |
2613 | && (next_trial = try_split (PATTERN (next_trial), next_trial, 0)) | |
2614 | && eligible_for_delay (insn, slots_filled, next_trial)) | |
2615 | { | |
2616 | rtx new_label = next_active_insn (next_trial); | |
2617 | ||
2618 | if (new_label != 0) | |
2619 | new_label = get_label_before (new_label); | |
2620 | ||
2621 | delay_list | |
2622 | = add_to_delay_list (copy_rtx (next_trial), delay_list); | |
2623 | slots_filled++; | |
2624 | redirect_jump (trial, new_label); | |
2625 | ||
2626 | /* If we merged because we both jumped to the same place, | |
2627 | redirect the original insn also. */ | |
2628 | if (target) | |
2629 | redirect_jump (insn, new_label); | |
2630 | } | |
2631 | } | |
2632 | ||
2633 | if (delay_list) | |
2634 | unfilled_slots_base[i] | |
2635 | = emit_delay_sequence (insn, delay_list, | |
2636 | slots_filled, slots_to_fill); | |
2637 | ||
2638 | if (slots_to_fill == slots_filled) | |
2639 | unfilled_slots_base[i] = 0; | |
2640 | ||
2641 | note_delay_statistics (slots_filled, 0); | |
2642 | } | |
2643 | ||
2644 | #ifdef DELAY_SLOTS_FOR_EPILOGUE | |
2645 | /* See if the epilogue needs any delay slots. Try to fill them if so. | |
2646 | The only thing we can do is scan backwards from the end of the | |
2647 | function. If we did this in a previous pass, it is incorrect to do it | |
2648 | again. */ | |
2649 | if (current_function_epilogue_delay_list) | |
2650 | return; | |
2651 | ||
2652 | slots_to_fill = DELAY_SLOTS_FOR_EPILOGUE; | |
2653 | if (slots_to_fill == 0) | |
2654 | return; | |
2655 | ||
2656 | slots_filled = 0; | |
2657 | CLEAR_RESOURCE (&needed); | |
2658 | CLEAR_RESOURCE (&set); | |
2659 | ||
2660 | for (trial = get_last_insn (); ! stop_search_p (trial, 1); | |
2661 | trial = PREV_INSN (trial)) | |
2662 | { | |
2663 | if (GET_CODE (trial) == NOTE) | |
2664 | continue; | |
2665 | pat = PATTERN (trial); | |
2666 | if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER) | |
2667 | continue; | |
2668 | ||
2669 | if (! insn_references_resource_p (trial, &set, 1) | |
2670 | && ! insn_sets_resource_p (trial, &needed, 1) | |
2671 | #ifdef HAVE_cc0 | |
2672 | /* Don't want to mess with cc0 here. */ | |
2673 | && ! reg_mentioned_p (cc0_rtx, pat) | |
2674 | #endif | |
2675 | ) | |
2676 | { | |
2677 | trial = try_split (pat, trial, 1); | |
2678 | if (ELIGIBLE_FOR_EPILOGUE_DELAY (trial, slots_filled)) | |
2679 | { | |
17448690 RK |
2680 | /* Here as well we are searching backward, so put the |
2681 | insns we find on the head of the list. */ | |
2682 | ||
9c7e2978 | 2683 | current_function_epilogue_delay_list |
17448690 RK |
2684 | = gen_rtx (INSN_LIST, VOIDmode, trial, |
2685 | current_function_epilogue_delay_list); | |
9c7e2978 RK |
2686 | mark_referenced_resources (trial, &end_of_function_needs, 1); |
2687 | update_block (trial, trial); | |
2688 | delete_insn (trial); | |
2689 | ||
2690 | /* Clear deleted bit so final.c will output the insn. */ | |
2691 | INSN_DELETED_P (trial) = 0; | |
2692 | ||
2693 | if (slots_to_fill == ++slots_filled) | |
2694 | break; | |
2695 | continue; | |
2696 | } | |
2697 | } | |
2698 | ||
26d970a5 | 2699 | mark_set_resources (trial, &set, 0, 1); |
9c7e2978 RK |
2700 | mark_referenced_resources (trial, &needed, 1); |
2701 | } | |
2702 | ||
2703 | note_delay_statistics (slots_filled, 0); | |
2704 | #endif | |
2705 | } | |
2706 | \f | |
2707 | /* Try to find insns to place in delay slots. | |
2708 | ||
2709 | INSN is the jump needing SLOTS_TO_FILL delay slots. It tests CONDITION | |
2710 | or is an unconditional branch if CONDITION is const_true_rtx. | |
2711 | *PSLOTS_FILLED is updated with the number of slots that we have filled. | |
2712 | ||
2713 | THREAD is a flow-of-control, either the insns to be executed if the | |
2714 | branch is true or if the branch is false, THREAD_IF_TRUE says which. | |
2715 | ||
2716 | OPPOSITE_THREAD is the thread in the opposite direction. It is used | |
2717 | to see if any potential delay slot insns set things needed there. | |
2718 | ||
2719 | LIKELY is non-zero if it is extremely likely that the branch will be | |
2720 | taken and THREAD_IF_TRUE is set. This is used for the branch at the | |
2721 | end of a loop back up to the top. | |
2722 | ||
2723 | OWN_THREAD and OWN_OPPOSITE_THREAD are true if we are the only user of the | |
2724 | thread. I.e., it is the fallthrough code of our jump or the target of the | |
2725 | jump when we are the only jump going there. | |
2726 | ||
2727 | If OWN_THREAD is false, it must be the "true" thread of a jump. In that | |
2728 | case, we can only take insns from the head of the thread for our delay | |
2729 | slot. We then adjust the jump to point after the insns we have taken. */ | |
2730 | ||
2731 | static rtx | |
2732 | fill_slots_from_thread (insn, condition, thread, opposite_thread, likely, | |
2733 | thread_if_true, own_thread, own_opposite_thread, | |
2734 | slots_to_fill, pslots_filled) | |
2735 | rtx insn; | |
2736 | rtx condition; | |
2737 | rtx thread, opposite_thread; | |
2738 | int likely; | |
2739 | int thread_if_true; | |
2740 | int own_thread, own_opposite_thread; | |
2741 | int slots_to_fill, *pslots_filled; | |
2742 | { | |
d674b9e3 | 2743 | rtx new_thread; |
9c7e2978 RK |
2744 | rtx delay_list = 0; |
2745 | struct resources opposite_needed, set, needed; | |
2746 | rtx trial; | |
2747 | int lose = 0; | |
2748 | int must_annul = 0; | |
2749 | ||
2750 | /* Validate our arguments. */ | |
2751 | if ((condition == const_true_rtx && ! thread_if_true) | |
2752 | || (! own_thread && ! thread_if_true)) | |
2753 | abort (); | |
2754 | ||
2755 | /* If our thread is the end of subroutine, we can't get any delay | |
2756 | insns from that. */ | |
2757 | if (thread == 0) | |
2758 | return 0; | |
2759 | ||
2760 | /* If this is an unconditional branch, nothing is needed at the | |
2761 | opposite thread. Otherwise, compute what is needed there. */ | |
2762 | if (condition == const_true_rtx) | |
2763 | CLEAR_RESOURCE (&opposite_needed); | |
2764 | else | |
2765 | mark_target_live_regs (opposite_thread, &opposite_needed); | |
2766 | ||
d674b9e3 RK |
2767 | /* If the insn at THREAD can be split, do it here to avoid having to |
2768 | update THREAD and NEW_THREAD if it is done in the loop below. Also | |
2769 | initialize NEW_THREAD. */ | |
2770 | ||
d45cf215 | 2771 | new_thread = thread = try_split (PATTERN (thread), thread, 0); |
d674b9e3 | 2772 | |
9c7e2978 RK |
2773 | /* Scan insns at THREAD. We are looking for an insn that can be removed |
2774 | from THREAD (it neither sets nor references resources that were set | |
2775 | ahead of it and it doesn't set anything needs by the insns ahead of | |
2776 | it) and that either can be placed in an annulling insn or aren't | |
2777 | needed at OPPOSITE_THREAD. */ | |
2778 | ||
2779 | CLEAR_RESOURCE (&needed); | |
2780 | CLEAR_RESOURCE (&set); | |
2781 | ||
2782 | /* If we do not own this thread, we must stop as soon as we find | |
2783 | something that we can't put in a delay slot, since all we can do | |
2784 | is branch into THREAD at a later point. Therefore, labels stop | |
2785 | the search if this is not the `true' thread. */ | |
2786 | ||
2787 | for (trial = thread; | |
2788 | ! stop_search_p (trial, ! thread_if_true) && (! lose || own_thread); | |
2789 | trial = next_nonnote_insn (trial)) | |
2790 | { | |
2791 | rtx pat; | |
2792 | ||
2793 | /* If we have passed a label, we no longer own this thread. */ | |
2794 | if (GET_CODE (trial) == CODE_LABEL) | |
2795 | { | |
2796 | own_thread = 0; | |
2797 | continue; | |
2798 | } | |
2799 | ||
2800 | pat = PATTERN (trial); | |
2801 | if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER) | |
2802 | continue; | |
2803 | ||
2804 | /* If TRIAL conflicts with the insns ahead of it, we lose. Also, | |
2805 | don't separate or copy insns that set and use CC0. */ | |
2806 | if (! insn_references_resource_p (trial, &set, 1) | |
2807 | && ! insn_sets_resource_p (trial, &set, 1) | |
2808 | && ! insn_sets_resource_p (trial, &needed, 1) | |
2809 | #ifdef HAVE_cc0 | |
2810 | && ! (reg_mentioned_p (cc0_rtx, pat) | |
2811 | && (! own_thread || ! sets_cc0_p (pat))) | |
2812 | #endif | |
2813 | ) | |
2814 | { | |
2815 | /* If TRIAL is redundant with some insn before INSN, we don't | |
2816 | actually need to add it to the delay list; we can merely pretend | |
2817 | we did. */ | |
2818 | if (redundant_insn_p (trial, insn, delay_list)) | |
2819 | { | |
2820 | if (own_thread) | |
2821 | { | |
f1f9081a | 2822 | update_block (trial, thread); |
9c7e2978 RK |
2823 | delete_insn (trial); |
2824 | } | |
2825 | else | |
2826 | new_thread = next_active_insn (trial); | |
2827 | ||
2828 | continue; | |
2829 | } | |
2830 | ||
2831 | /* There are two ways we can win: If TRIAL doesn't set anything | |
2832 | needed at the opposite thread and can't trap, or if it can | |
2833 | go into an annulled delay slot. */ | |
2834 | if (condition == const_true_rtx | |
2835 | || (! insn_sets_resource_p (trial, &opposite_needed, 1) | |
2836 | && ! may_trap_p (pat))) | |
2837 | { | |
2838 | trial = try_split (pat, trial, 0); | |
2839 | pat = PATTERN (trial); | |
2840 | if (eligible_for_delay (insn, *pslots_filled, trial)) | |
2841 | goto winner; | |
2842 | } | |
2843 | else if (0 | |
2844 | #ifdef ANNUL_IFTRUE_SLOTS | |
2845 | || ! thread_if_true | |
2846 | #endif | |
2847 | #ifdef ANNUL_IFFALSE_SLOTS | |
2848 | || thread_if_true | |
2849 | #endif | |
2850 | ) | |
2851 | { | |
2852 | trial = try_split (pat, trial, 0); | |
2853 | pat = PATTERN (trial); | |
2854 | if ((thread_if_true | |
2855 | ? eligible_for_annul_false (insn, *pslots_filled, trial) | |
2856 | : eligible_for_annul_true (insn, *pslots_filled, trial))) | |
2857 | { | |
2858 | rtx temp; | |
2859 | ||
2860 | must_annul = 1; | |
2861 | winner: | |
2862 | ||
2863 | #ifdef HAVE_cc0 | |
2864 | if (reg_mentioned_p (cc0_rtx, pat)) | |
2865 | link_cc0_insns (trial); | |
2866 | #endif | |
2867 | ||
2868 | /* If we own this thread, delete the insn. If this is the | |
2869 | destination of a branch, show that a basic block status | |
2870 | may have been updated. In any case, mark the new | |
2871 | starting point of this thread. */ | |
2872 | if (own_thread) | |
2873 | { | |
f1f9081a | 2874 | update_block (trial, thread); |
9c7e2978 RK |
2875 | delete_insn (trial); |
2876 | } | |
2877 | else | |
2878 | new_thread = next_active_insn (trial); | |
2879 | ||
2880 | temp = own_thread ? trial : copy_rtx (trial); | |
2881 | if (thread_if_true) | |
2882 | INSN_FROM_TARGET_P (temp) = 1; | |
2883 | ||
2884 | delay_list = add_to_delay_list (temp, delay_list); | |
2885 | ||
2886 | if (slots_to_fill == ++(*pslots_filled)) | |
2887 | { | |
2888 | /* Even though we have filled all the slots, we | |
2889 | may be branching to a location that has a | |
2890 | redundant insn. Skip any if so. */ | |
2891 | while (new_thread && ! own_thread | |
2892 | && ! insn_sets_resource_p (new_thread, &set, 1) | |
2893 | && ! insn_sets_resource_p (new_thread, &needed, 1) | |
2894 | && ! insn_references_resource_p (new_thread, | |
2895 | &set, 1) | |
2896 | && redundant_insn_p (new_thread, insn, | |
2897 | delay_list)) | |
2898 | new_thread = next_active_insn (new_thread); | |
2899 | break; | |
2900 | } | |
2901 | ||
2902 | continue; | |
2903 | } | |
2904 | } | |
2905 | } | |
2906 | ||
2907 | /* This insn can't go into a delay slot. */ | |
2908 | lose = 1; | |
26d970a5 | 2909 | mark_set_resources (trial, &set, 0, 1); |
9c7e2978 RK |
2910 | mark_referenced_resources (trial, &needed, 1); |
2911 | ||
2912 | /* Ensure we don't put insns between the setting of cc and the comparison | |
2913 | by moving a setting of cc into an earlier delay slot since these insns | |
2914 | could clobber the condition code. */ | |
2915 | set.cc = 1; | |
2916 | ||
2917 | /* If this insn is a register-register copy and the next insn has | |
2918 | a use of our destination, change it to use our source. That way, | |
2919 | it will become a candidate for our delay slot the next time | |
2920 | through this loop. This case occurs commonly in loops that | |
2921 | scan a list. | |
2922 | ||
2923 | We could check for more complex cases than those tested below, | |
2924 | but it doesn't seem worth it. It might also be a good idea to try | |
9b72fab4 RK |
2925 | to swap the two insns. That might do better. |
2926 | ||
2927 | We can't do this if the next insn modifies our source, because that | |
2928 | would make the replacement into the insn invalid. This also | |
2929 | prevents updating the contents of a PRE_INC. */ | |
9c7e2978 RK |
2930 | |
2931 | if (GET_CODE (trial) == INSN && GET_CODE (pat) == SET | |
2932 | && GET_CODE (SET_SRC (pat)) == REG | |
2933 | && GET_CODE (SET_DEST (pat)) == REG) | |
2934 | { | |
2935 | rtx next = next_nonnote_insn (trial); | |
9c7e2978 RK |
2936 | |
2937 | if (next && GET_CODE (next) == INSN | |
9b72fab4 RK |
2938 | && GET_CODE (PATTERN (next)) != USE |
2939 | && ! reg_set_p (SET_DEST (pat), next) | |
2940 | && reg_referenced_p (SET_DEST (pat), PATTERN (next))) | |
9c7e2978 RK |
2941 | validate_replace_rtx (SET_DEST (pat), SET_SRC (pat), next); |
2942 | } | |
2943 | } | |
2944 | ||
2945 | /* If we stopped on a branch insn that has delay slots, see if we can | |
2946 | steal some of the insns in those slots. */ | |
2947 | if (trial && GET_CODE (trial) == INSN | |
2948 | && GET_CODE (PATTERN (trial)) == SEQUENCE | |
2949 | && GET_CODE (XVECEXP (PATTERN (trial), 0, 0)) == JUMP_INSN) | |
2950 | { | |
2951 | /* If this is the `true' thread, we will want to follow the jump, | |
2952 | so we can only do this if we have taken everything up to here. */ | |
2953 | if (thread_if_true && trial == new_thread) | |
2954 | delay_list | |
2955 | = steal_delay_list_from_target (insn, condition, PATTERN (trial), | |
2956 | delay_list, &set, &needed, | |
2957 | &opposite_needed, slots_to_fill, | |
2958 | pslots_filled, &must_annul, | |
2959 | &new_thread); | |
2960 | else if (! thread_if_true) | |
2961 | delay_list | |
2962 | = steal_delay_list_from_fallthrough (insn, condition, | |
2963 | PATTERN (trial), | |
2964 | delay_list, &set, &needed, | |
2965 | &opposite_needed, slots_to_fill, | |
2966 | pslots_filled, &must_annul); | |
2967 | } | |
2968 | ||
2969 | /* If we haven't found anything for this delay slot and it is very | |
2970 | likely that the branch will be taken, see if the insn at our target | |
d674b9e3 RK |
2971 | increments or decrements a register with an increment that does not |
2972 | depend on the destination register. If so, try to place the opposite | |
9c7e2978 RK |
2973 | arithmetic insn after the jump insn and put the arithmetic insn in the |
2974 | delay slot. If we can't do this, return. */ | |
2975 | if (delay_list == 0 && likely && new_thread && GET_CODE (new_thread) == INSN) | |
2976 | { | |
2977 | rtx pat = PATTERN (new_thread); | |
2978 | rtx dest; | |
2979 | rtx src; | |
2980 | ||
d674b9e3 | 2981 | trial = new_thread; |
9c7e2978 RK |
2982 | pat = PATTERN (trial); |
2983 | ||
2984 | if (GET_CODE (trial) != INSN || GET_CODE (pat) != SET | |
2985 | || ! eligible_for_delay (insn, 0, trial)) | |
2986 | return 0; | |
2987 | ||
2988 | dest = SET_DEST (pat), src = SET_SRC (pat); | |
2989 | if ((GET_CODE (src) == PLUS || GET_CODE (src) == MINUS) | |
d674b9e3 RK |
2990 | && rtx_equal_p (XEXP (src, 0), dest) |
2991 | && ! reg_overlap_mentioned_p (dest, XEXP (src, 1))) | |
9c7e2978 RK |
2992 | { |
2993 | rtx other = XEXP (src, 1); | |
2994 | rtx new_arith; | |
2995 | rtx ninsn; | |
2996 | ||
2997 | /* If this is a constant adjustment, use the same code with | |
2998 | the negated constant. Otherwise, reverse the sense of the | |
2999 | arithmetic. */ | |
3000 | if (GET_CODE (other) == CONST_INT) | |
3001 | new_arith = gen_rtx (GET_CODE (src), GET_MODE (src), dest, | |
3002 | negate_rtx (GET_MODE (src), other)); | |
3003 | else | |
3004 | new_arith = gen_rtx (GET_CODE (src) == PLUS ? MINUS : PLUS, | |
3005 | GET_MODE (src), dest, other); | |
3006 | ||
3007 | ninsn = emit_insn_after (gen_rtx (SET, VOIDmode, dest, new_arith), | |
3008 | insn); | |
3009 | ||
3010 | if (recog_memoized (ninsn) < 0 | |
3011 | || (insn_extract (ninsn), | |
3012 | ! constrain_operands (INSN_CODE (ninsn), 1))) | |
3013 | { | |
3014 | delete_insn (ninsn); | |
3015 | return 0; | |
3016 | } | |
3017 | ||
3018 | if (own_thread) | |
3019 | { | |
f1f9081a | 3020 | update_block (trial, thread); |
9c7e2978 RK |
3021 | delete_insn (trial); |
3022 | } | |
3023 | else | |
3024 | new_thread = next_active_insn (trial); | |
3025 | ||
3026 | ninsn = own_thread ? trial : copy_rtx (trial); | |
3027 | if (thread_if_true) | |
3028 | INSN_FROM_TARGET_P (ninsn) = 1; | |
3029 | ||
fb3821f7 | 3030 | delay_list = add_to_delay_list (ninsn, NULL_RTX); |
9c7e2978 RK |
3031 | (*pslots_filled)++; |
3032 | } | |
3033 | } | |
3034 | ||
3035 | if (delay_list && must_annul) | |
3036 | INSN_ANNULLED_BRANCH_P (insn) = 1; | |
3037 | ||
3038 | /* If we are to branch into the middle of this thread, find an appropriate | |
3039 | label or make a new one if none, and redirect INSN to it. If we hit the | |
3040 | end of the function, use the end-of-function label. */ | |
3041 | if (new_thread != thread) | |
3042 | { | |
3043 | rtx label; | |
3044 | ||
3045 | if (! thread_if_true) | |
3046 | abort (); | |
3047 | ||
3048 | if (new_thread && GET_CODE (new_thread) == JUMP_INSN | |
3049 | && (simplejump_p (new_thread) | |
3050 | || GET_CODE (PATTERN (new_thread)) == RETURN)) | |
22422dbf | 3051 | new_thread = follow_jumps (JUMP_LABEL (new_thread)); |
9c7e2978 RK |
3052 | |
3053 | if (new_thread == 0) | |
3054 | label = find_end_label (); | |
3055 | else if (GET_CODE (new_thread) == CODE_LABEL) | |
3056 | label = new_thread; | |
3057 | else | |
3058 | label = get_label_before (new_thread); | |
3059 | ||
3060 | redirect_jump (insn, label); | |
3061 | } | |
3062 | ||
3063 | return delay_list; | |
3064 | } | |
3065 | \f | |
3066 | /* Make another attempt to find insns to place in delay slots. | |
3067 | ||
3068 | We previously looked for insns located in front of the delay insn | |
3069 | and, for non-jump delay insns, located behind the delay insn. | |
3070 | ||
3071 | Here only try to schedule jump insns and try to move insns from either | |
3072 | the target or the following insns into the delay slot. If annulling is | |
3073 | supported, we will be likely to do this. Otherwise, we can do this only | |
3074 | if safe. */ | |
3075 | ||
3076 | static void | |
3077 | fill_eager_delay_slots (first) | |
3078 | rtx first; | |
3079 | { | |
3080 | register rtx insn; | |
3081 | register int i; | |
3082 | int num_unfilled_slots = unfilled_slots_next - unfilled_slots_base; | |
3083 | ||
3084 | for (i = 0; i < num_unfilled_slots; i++) | |
3085 | { | |
3086 | rtx condition; | |
3087 | rtx target_label, insn_at_target, fallthrough_insn; | |
3088 | rtx delay_list = 0; | |
3089 | int own_target; | |
3090 | int own_fallthrough; | |
3091 | int prediction, slots_to_fill, slots_filled; | |
3092 | ||
3093 | insn = unfilled_slots_base[i]; | |
3094 | if (insn == 0 | |
3095 | || INSN_DELETED_P (insn) | |
3096 | || GET_CODE (insn) != JUMP_INSN | |
3097 | || ! condjump_p (insn)) | |
3098 | continue; | |
3099 | ||
3100 | slots_to_fill = num_delay_slots (insn); | |
3101 | if (slots_to_fill == 0) | |
3102 | abort (); | |
3103 | ||
3104 | slots_filled = 0; | |
3105 | target_label = JUMP_LABEL (insn); | |
3106 | condition = get_branch_condition (insn, target_label); | |
3107 | ||
3108 | if (condition == 0) | |
3109 | continue; | |
3110 | ||
3111 | /* Get the next active fallthough and target insns and see if we own | |
3112 | them. Then see whether the branch is likely true. We don't need | |
3113 | to do a lot of this for unconditional branches. */ | |
3114 | ||
3115 | insn_at_target = next_active_insn (target_label); | |
3116 | own_target = own_thread_p (target_label, target_label, 0); | |
3117 | ||
3118 | if (condition == const_true_rtx) | |
3119 | { | |
3120 | own_fallthrough = 0; | |
3121 | fallthrough_insn = 0; | |
3122 | prediction = 2; | |
3123 | } | |
3124 | else | |
3125 | { | |
3126 | fallthrough_insn = next_active_insn (insn); | |
fb3821f7 | 3127 | own_fallthrough = own_thread_p (NEXT_INSN (insn), NULL_RTX, 1); |
9c7e2978 RK |
3128 | prediction = mostly_true_jump (insn, condition); |
3129 | } | |
3130 | ||
3131 | /* If this insn is expected to branch, first try to get insns from our | |
3132 | target, then our fallthrough insns. If it is not, expected to branch, | |
3133 | try the other order. */ | |
3134 | ||
3135 | if (prediction) | |
3136 | { | |
3137 | delay_list | |
3138 | = fill_slots_from_thread (insn, condition, insn_at_target, | |
3139 | fallthrough_insn, prediction == 2, 1, | |
3140 | own_target, own_fallthrough, | |
3141 | slots_to_fill, &slots_filled); | |
3142 | ||
3143 | if (delay_list == 0 && own_fallthrough) | |
3144 | { | |
3145 | /* Even though we didn't find anything for delay slots, | |
3146 | we might have found a redundant insn which we deleted | |
3147 | from the thread that was filled. So we have to recompute | |
3148 | the next insn at the target. */ | |
3149 | target_label = JUMP_LABEL (insn); | |
3150 | insn_at_target = next_active_insn (target_label); | |
3151 | ||
3152 | delay_list | |
3153 | = fill_slots_from_thread (insn, condition, fallthrough_insn, | |
3154 | insn_at_target, 0, 0, | |
3155 | own_fallthrough, own_target, | |
3156 | slots_to_fill, &slots_filled); | |
3157 | } | |
3158 | } | |
3159 | else | |
3160 | { | |
3161 | if (own_fallthrough) | |
3162 | delay_list | |
3163 | = fill_slots_from_thread (insn, condition, fallthrough_insn, | |
3164 | insn_at_target, 0, 0, | |
3165 | own_fallthrough, own_target, | |
3166 | slots_to_fill, &slots_filled); | |
3167 | ||
3168 | if (delay_list == 0) | |
3169 | delay_list | |
3170 | = fill_slots_from_thread (insn, condition, insn_at_target, | |
3171 | next_active_insn (insn), 0, 1, | |
3172 | own_target, own_fallthrough, | |
3173 | slots_to_fill, &slots_filled); | |
3174 | } | |
3175 | ||
3176 | if (delay_list) | |
3177 | unfilled_slots_base[i] | |
3178 | = emit_delay_sequence (insn, delay_list, | |
3179 | slots_filled, slots_to_fill); | |
3180 | ||
3181 | if (slots_to_fill == slots_filled) | |
3182 | unfilled_slots_base[i] = 0; | |
3183 | ||
3184 | note_delay_statistics (slots_filled, 1); | |
3185 | } | |
3186 | } | |
3187 | \f | |
3188 | /* Once we have tried two ways to fill a delay slot, make a pass over the | |
3189 | code to try to improve the results and to do such things as more jump | |
3190 | threading. */ | |
3191 | ||
3192 | static void | |
3193 | relax_delay_slots (first) | |
3194 | rtx first; | |
3195 | { | |
3196 | register rtx insn, next, pat; | |
3197 | register rtx trial, delay_insn, target_label; | |
3198 | ||
3199 | /* Look at every JUMP_INSN and see if we can improve it. */ | |
3200 | for (insn = first; insn; insn = next) | |
3201 | { | |
3202 | rtx other; | |
3203 | ||
3204 | next = next_active_insn (insn); | |
3205 | ||
3206 | /* If this is a jump insn, see if it now jumps to a jump, jumps to | |
3207 | the next insn, or jumps to a label that is not the last of a | |
3208 | group of consecutive labels. */ | |
3209 | if (GET_CODE (insn) == JUMP_INSN | |
9fca773d | 3210 | && condjump_p (insn) |
9c7e2978 RK |
3211 | && (target_label = JUMP_LABEL (insn)) != 0) |
3212 | { | |
22422dbf | 3213 | target_label = follow_jumps (target_label); |
9c7e2978 RK |
3214 | target_label = prev_label (next_active_insn (target_label)); |
3215 | ||
de5292c7 RK |
3216 | if (target_label == 0) |
3217 | target_label = find_end_label (); | |
3218 | ||
9c7e2978 RK |
3219 | if (next_active_insn (target_label) == next) |
3220 | { | |
3221 | delete_jump (insn); | |
3222 | continue; | |
3223 | } | |
3224 | ||
3225 | if (target_label != JUMP_LABEL (insn)) | |
de5292c7 | 3226 | redirect_jump (insn, target_label); |
9c7e2978 RK |
3227 | |
3228 | /* See if this jump branches around a unconditional jump. | |
3229 | If so, invert this jump and point it to the target of the | |
3230 | second jump. */ | |
3231 | if (next && GET_CODE (next) == JUMP_INSN | |
3232 | && (simplejump_p (next) || GET_CODE (PATTERN (next)) == RETURN) | |
3233 | && next_active_insn (target_label) == next_active_insn (next) | |
3234 | && no_labels_between_p (insn, next)) | |
3235 | { | |
3236 | rtx label = JUMP_LABEL (next); | |
3237 | ||
3238 | /* Be careful how we do this to avoid deleting code or | |
3239 | labels that are momentarily dead. See similar optimization | |
3240 | in jump.c. | |
3241 | ||
3242 | We also need to ensure we properly handle the case when | |
3243 | invert_jump fails. */ | |
3244 | ||
3245 | ++LABEL_NUSES (target_label); | |
3246 | if (label) | |
3247 | ++LABEL_NUSES (label); | |
3248 | ||
3249 | if (invert_jump (insn, label)) | |
3250 | { | |
3251 | delete_insn (next); | |
3252 | next = insn; | |
3253 | } | |
3254 | ||
3255 | if (label) | |
3256 | --LABEL_NUSES (label); | |
3257 | ||
3258 | if (--LABEL_NUSES (target_label) == 0) | |
3259 | delete_insn (target_label); | |
3260 | ||
3261 | continue; | |
3262 | } | |
3263 | } | |
3264 | ||
3265 | /* If this is an unconditional jump and the previous insn is a | |
3266 | conditional jump, try reversing the condition of the previous | |
3267 | insn and swapping our targets. The next pass might be able to | |
3268 | fill the slots. | |
3269 | ||
3270 | Don't do this if we expect the conditional branch to be true, because | |
3271 | we would then be making the more common case longer. */ | |
3272 | ||
3273 | if (GET_CODE (insn) == JUMP_INSN | |
3274 | && (simplejump_p (insn) || GET_CODE (PATTERN (insn)) == RETURN) | |
3275 | && (other = prev_active_insn (insn)) != 0 | |
3276 | && condjump_p (other) | |
3277 | && no_labels_between_p (other, insn) | |
3278 | && ! mostly_true_jump (other, | |
3279 | get_branch_condition (other, | |
3280 | JUMP_LABEL (other)))) | |
3281 | { | |
3282 | rtx other_target = JUMP_LABEL (other); | |
3283 | ||
3284 | /* Increment the count of OTHER_TARGET, so it doesn't get deleted | |
3285 | as we move the label. */ | |
3286 | if (other_target) | |
3287 | ++LABEL_NUSES (other_target); | |
3288 | ||
3289 | if (invert_jump (other, target_label)) | |
3290 | redirect_jump (insn, other_target); | |
3291 | ||
3292 | if (other_target) | |
3293 | --LABEL_NUSES (other_target); | |
3294 | } | |
3295 | ||
3296 | /* Now look only at cases where we have filled a delay slot. */ | |
3297 | if (GET_CODE (insn) != INSN | |
3298 | || GET_CODE (PATTERN (insn)) != SEQUENCE) | |
3299 | continue; | |
3300 | ||
3301 | pat = PATTERN (insn); | |
3302 | delay_insn = XVECEXP (pat, 0, 0); | |
3303 | ||
3304 | /* See if the first insn in the delay slot is redundant with some | |
3305 | previous insn. Remove it from the delay slot if so; then set up | |
3306 | to reprocess this insn. */ | |
3307 | if (redundant_insn_p (XVECEXP (pat, 0, 1), delay_insn, 0)) | |
3308 | { | |
3309 | delete_from_delay_slot (XVECEXP (pat, 0, 1)); | |
3310 | next = prev_active_insn (next); | |
3311 | continue; | |
3312 | } | |
3313 | ||
3314 | /* Now look only at the cases where we have a filled JUMP_INSN. */ | |
3315 | if (GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) != JUMP_INSN | |
3316 | || ! condjump_p (XVECEXP (PATTERN (insn), 0, 0))) | |
3317 | continue; | |
3318 | ||
3319 | target_label = JUMP_LABEL (delay_insn); | |
3320 | ||
3321 | if (target_label) | |
3322 | { | |
3323 | /* If this jump goes to another unconditional jump, thread it, but | |
3324 | don't convert a jump into a RETURN here. */ | |
22422dbf | 3325 | trial = follow_jumps (target_label); |
9c7e2978 RK |
3326 | trial = prev_label (next_active_insn (trial)); |
3327 | if (trial == 0 && target_label != 0) | |
3328 | trial = find_end_label (); | |
3329 | ||
3330 | if (trial != target_label) | |
3331 | { | |
3332 | redirect_jump (delay_insn, trial); | |
3333 | target_label = trial; | |
3334 | } | |
3335 | ||
3336 | /* If the first insn at TARGET_LABEL is redundant with a previous | |
3337 | insn, redirect the jump to the following insn process again. */ | |
3338 | trial = next_active_insn (target_label); | |
3339 | if (trial && GET_CODE (PATTERN (trial)) != SEQUENCE | |
3340 | && redundant_insn_p (trial, insn, 0)) | |
3341 | { | |
3342 | trial = next_active_insn (trial); | |
3343 | if (trial == 0) | |
3344 | target_label = find_end_label (); | |
3345 | else | |
3346 | target_label = get_label_before (trial); | |
3347 | redirect_jump (delay_insn, target_label); | |
3348 | next = insn; | |
3349 | continue; | |
3350 | } | |
3351 | ||
3352 | /* Similarly, if it is an unconditional jump with one insn in its | |
3353 | delay list and that insn is redundant, thread the jump. */ | |
3354 | if (trial && GET_CODE (PATTERN (trial)) == SEQUENCE | |
3355 | && XVECLEN (PATTERN (trial), 0) == 2 | |
3356 | && GET_CODE (XVECEXP (PATTERN (trial), 0, 0)) == JUMP_INSN | |
3357 | && (simplejump_p (XVECEXP (PATTERN (trial), 0, 0)) | |
3358 | || GET_CODE (PATTERN (XVECEXP (PATTERN (trial), 0, 0))) == RETURN) | |
3359 | && redundant_insn_p (XVECEXP (PATTERN (trial), 0, 1), insn, 0)) | |
3360 | { | |
3361 | target_label = JUMP_LABEL (XVECEXP (PATTERN (trial), 0, 0)); | |
3362 | if (target_label == 0) | |
3363 | target_label = find_end_label (); | |
3364 | redirect_jump (delay_insn, target_label); | |
3365 | next = insn; | |
3366 | continue; | |
3367 | } | |
3368 | } | |
3369 | ||
3370 | if (! INSN_ANNULLED_BRANCH_P (delay_insn) | |
3371 | && prev_active_insn (target_label) == insn | |
3372 | #ifdef HAVE_cc0 | |
3373 | /* If the last insn in the delay slot sets CC0 for some insn, | |
3374 | various code assumes that it is in a delay slot. We could | |
3375 | put it back where it belonged and delete the register notes, | |
6dc42e49 | 3376 | but it doesn't seem worthwhile in this uncommon case. */ |
9c7e2978 | 3377 | && ! find_reg_note (XVECEXP (pat, 0, XVECLEN (pat, 0) - 1), |
fb3821f7 | 3378 | REG_CC_USER, NULL_RTX) |
9c7e2978 RK |
3379 | #endif |
3380 | ) | |
3381 | { | |
ac224823 RK |
3382 | int i; |
3383 | ||
9c7e2978 RK |
3384 | /* All this insn does is execute its delay list and jump to the |
3385 | following insn. So delete the jump and just execute the delay | |
3386 | list insns. | |
3387 | ||
3388 | We do this by deleting the INSN containing the SEQUENCE, then | |
3389 | re-emitting the insns separately, and then deleting the jump. | |
3390 | This allows the count of the jump target to be properly | |
3391 | decremented. */ | |
3392 | ||
ac224823 RK |
3393 | /* Clear the from target bit, since these insns are no longer |
3394 | in delay slots. */ | |
3395 | for (i = 0; i < XVECLEN (pat, 0); i++) | |
3396 | INSN_FROM_TARGET_P (XVECEXP (pat, 0, i)) = 0; | |
3397 | ||
9c7e2978 RK |
3398 | trial = PREV_INSN (insn); |
3399 | delete_insn (insn); | |
3400 | emit_insn_after (pat, trial); | |
3401 | delete_scheduled_jump (delay_insn); | |
3402 | continue; | |
3403 | } | |
3404 | ||
3405 | /* See if this jump (with its delay slots) branches around another | |
3406 | jump (without delay slots). If so, invert this jump and point | |
3407 | it to the target of the second jump. We cannot do this for | |
3408 | annulled jumps, though. Again, don't convert a jump to a RETURN | |
3409 | here. */ | |
3410 | if (! INSN_ANNULLED_BRANCH_P (delay_insn) | |
3411 | && next && GET_CODE (next) == JUMP_INSN | |
3412 | && (simplejump_p (next) || GET_CODE (PATTERN (next)) == RETURN) | |
3413 | && next_active_insn (target_label) == next_active_insn (next) | |
3414 | && no_labels_between_p (insn, next)) | |
3415 | { | |
3416 | rtx label = JUMP_LABEL (next); | |
3417 | rtx old_label = JUMP_LABEL (delay_insn); | |
3418 | ||
3419 | if (label == 0) | |
3420 | label = find_end_label (); | |
3421 | ||
3422 | /* Be careful how we do this to avoid deleting code or labels | |
3423 | that are momentarily dead. See similar optimization in jump.c */ | |
3424 | if (old_label) | |
3425 | ++LABEL_NUSES (old_label); | |
3426 | ||
3427 | if (invert_jump (delay_insn, label)) | |
3428 | { | |
3429 | delete_insn (next); | |
3430 | next = insn; | |
3431 | } | |
3432 | ||
3433 | if (old_label && --LABEL_NUSES (old_label) == 0) | |
3434 | delete_insn (old_label); | |
3435 | continue; | |
3436 | } | |
3437 | ||
3438 | /* If we own the thread opposite the way this insn branches, see if we | |
3439 | can merge its delay slots with following insns. */ | |
3440 | if (INSN_FROM_TARGET_P (XVECEXP (pat, 0, 1)) | |
3441 | && own_thread_p (NEXT_INSN (insn), 0, 1)) | |
3442 | try_merge_delay_insns (insn, next); | |
3443 | else if (! INSN_FROM_TARGET_P (XVECEXP (pat, 0, 1)) | |
3444 | && own_thread_p (target_label, target_label, 0)) | |
3445 | try_merge_delay_insns (insn, next_active_insn (target_label)); | |
3446 | ||
3447 | /* If we get here, we haven't deleted INSN. But we may have deleted | |
3448 | NEXT, so recompute it. */ | |
3449 | next = next_active_insn (insn); | |
3450 | } | |
3451 | } | |
3452 | \f | |
3453 | #ifdef HAVE_return | |
3454 | ||
3455 | /* Look for filled jumps to the end of function label. We can try to convert | |
3456 | them into RETURN insns if the insns in the delay slot are valid for the | |
3457 | RETURN as well. */ | |
3458 | ||
3459 | static void | |
3460 | make_return_insns (first) | |
3461 | rtx first; | |
3462 | { | |
3463 | rtx insn, jump_insn, pat; | |
3464 | rtx real_return_label = end_of_function_label; | |
3465 | int slots, i; | |
3466 | ||
3467 | /* See if there is a RETURN insn in the function other than the one we | |
3468 | made for END_OF_FUNCTION_LABEL. If so, set up anything we can't change | |
3469 | into a RETURN to jump to it. */ | |
3470 | for (insn = first; insn; insn = NEXT_INSN (insn)) | |
3471 | if (GET_CODE (insn) == JUMP_INSN && GET_CODE (PATTERN (insn)) == RETURN) | |
3472 | { | |
3473 | real_return_label = get_label_before (insn); | |
3474 | break; | |
3475 | } | |
3476 | ||
3477 | /* Show an extra usage of REAL_RETURN_LABEL so it won't go away if it | |
3478 | was equal to END_OF_FUNCTION_LABEL. */ | |
3479 | LABEL_NUSES (real_return_label)++; | |
3480 | ||
3481 | /* Clear the list of insns to fill so we can use it. */ | |
3482 | obstack_free (&unfilled_slots_obstack, unfilled_firstobj); | |
3483 | ||
3484 | for (insn = first; insn; insn = NEXT_INSN (insn)) | |
3485 | { | |
3486 | /* Only look at filled JUMP_INSNs that go to the end of function | |
3487 | label. */ | |
3488 | if (GET_CODE (insn) != INSN | |
3489 | || GET_CODE (PATTERN (insn)) != SEQUENCE | |
3490 | || GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) != JUMP_INSN | |
3491 | || JUMP_LABEL (XVECEXP (PATTERN (insn), 0, 0)) != end_of_function_label) | |
3492 | continue; | |
3493 | ||
3494 | pat = PATTERN (insn); | |
3495 | jump_insn = XVECEXP (pat, 0, 0); | |
3496 | ||
3497 | /* If we can't make the jump into a RETURN, redirect it to the best | |
3498 | RETURN and go on to the next insn. */ | |
fb3821f7 | 3499 | if (! redirect_jump (jump_insn, NULL_RTX)) |
9c7e2978 RK |
3500 | { |
3501 | redirect_jump (jump_insn, real_return_label); | |
3502 | continue; | |
3503 | } | |
3504 | ||
3505 | /* See if this RETURN can accept the insns current in its delay slot. | |
3506 | It can if it has more or an equal number of slots and the contents | |
3507 | of each is valid. */ | |
3508 | ||
3509 | slots = num_delay_slots (jump_insn); | |
3510 | if (slots >= XVECLEN (pat, 0) - 1) | |
3511 | { | |
3512 | for (i = 1; i < XVECLEN (pat, 0); i++) | |
3513 | if (! ( | |
3514 | #ifdef ANNUL_IFFALSE_SLOTS | |
3515 | (INSN_ANNULLED_BRANCH_P (jump_insn) | |
3516 | && INSN_FROM_TARGET_P (XVECEXP (pat, 0, i))) | |
3517 | ? eligible_for_annul_false (jump_insn, i - 1, | |
3518 | XVECEXP (pat, 0, i)) : | |
3519 | #endif | |
3520 | #ifdef ANNUL_IFTRUE_SLOTS | |
3521 | (INSN_ANNULLED_BRANCH_P (jump_insn) | |
3522 | && ! INSN_FROM_TARGET_P (XVECEXP (pat, 0, i))) | |
3523 | ? eligible_for_annul_true (jump_insn, i - 1, | |
3524 | XVECEXP (pat, 0, i)) : | |
3525 | #endif | |
3526 | eligible_for_delay (jump_insn, i -1, XVECEXP (pat, 0, i)))) | |
3527 | break; | |
3528 | } | |
3529 | else | |
3530 | i = 0; | |
3531 | ||
3532 | if (i == XVECLEN (pat, 0)) | |
3533 | continue; | |
3534 | ||
3535 | /* We have to do something with this insn. If it is an unconditional | |
3536 | RETURN, delete the SEQUENCE and output the individual insns, | |
3537 | followed by the RETURN. Then set things up so we try to find | |
3538 | insns for its delay slots, if it needs some. */ | |
3539 | if (GET_CODE (PATTERN (jump_insn)) == RETURN) | |
3540 | { | |
3541 | rtx prev = PREV_INSN (insn); | |
3542 | ||
3543 | delete_insn (insn); | |
3544 | for (i = 1; i < XVECLEN (pat, 0); i++) | |
3545 | prev = emit_insn_after (PATTERN (XVECEXP (pat, 0, i)), prev); | |
3546 | ||
3547 | insn = emit_jump_insn_after (PATTERN (jump_insn), prev); | |
3548 | emit_barrier_after (insn); | |
3549 | ||
3550 | if (slots) | |
3551 | obstack_ptr_grow (&unfilled_slots_obstack, insn); | |
3552 | } | |
3553 | else | |
3554 | /* It is probably more efficient to keep this with its current | |
3555 | delay slot as a branch to a RETURN. */ | |
3556 | redirect_jump (jump_insn, real_return_label); | |
3557 | } | |
3558 | ||
3559 | /* Now delete REAL_RETURN_LABEL if we never used it. Then try to fill any | |
3560 | new delay slots we have created. */ | |
3561 | if (--LABEL_NUSES (real_return_label) == 0) | |
3562 | delete_insn (real_return_label); | |
3563 | ||
3564 | fill_simple_delay_slots (first, 1); | |
3565 | fill_simple_delay_slots (first, 0); | |
3566 | } | |
3567 | #endif | |
3568 | \f | |
3569 | /* Try to find insns to place in delay slots. */ | |
3570 | ||
3571 | void | |
3572 | dbr_schedule (first, file) | |
3573 | rtx first; | |
3574 | FILE *file; | |
3575 | { | |
7bd80f37 | 3576 | rtx insn, next, epilogue_insn = 0; |
9c7e2978 RK |
3577 | int i; |
3578 | #if 0 | |
3579 | int old_flag_no_peephole = flag_no_peephole; | |
3580 | ||
3581 | /* Execute `final' once in prescan mode to delete any insns that won't be | |
3582 | used. Don't let final try to do any peephole optimization--it will | |
3583 | ruin dataflow information for this pass. */ | |
3584 | ||
3585 | flag_no_peephole = 1; | |
3586 | final (first, 0, NO_DEBUG, 1, 1); | |
3587 | flag_no_peephole = old_flag_no_peephole; | |
3588 | #endif | |
3589 | ||
3590 | /* Find the highest INSN_UID and allocate and initialize our map from | |
3591 | INSN_UID's to position in code. */ | |
3592 | for (max_uid = 0, insn = first; insn; insn = NEXT_INSN (insn)) | |
7bd80f37 TW |
3593 | { |
3594 | if (INSN_UID (insn) > max_uid) | |
3595 | max_uid = INSN_UID (insn); | |
3596 | if (GET_CODE (insn) == NOTE | |
3597 | && NOTE_LINE_NUMBER (insn) == NOTE_INSN_EPILOGUE_BEG) | |
3598 | epilogue_insn = insn; | |
3599 | } | |
9c7e2978 RK |
3600 | |
3601 | uid_to_ruid = (int *) alloca ((max_uid + 1) * sizeof (int *)); | |
3602 | for (i = 0, insn = first; insn; i++, insn = NEXT_INSN (insn)) | |
3603 | uid_to_ruid[INSN_UID (insn)] = i; | |
3604 | ||
3605 | /* Initialize the list of insns that need filling. */ | |
3606 | if (unfilled_firstobj == 0) | |
3607 | { | |
3608 | gcc_obstack_init (&unfilled_slots_obstack); | |
3609 | unfilled_firstobj = (rtx *) obstack_alloc (&unfilled_slots_obstack, 0); | |
3610 | } | |
3611 | ||
3612 | for (insn = next_active_insn (first); insn; insn = next_active_insn (insn)) | |
3613 | { | |
3614 | rtx target; | |
3615 | ||
3616 | INSN_ANNULLED_BRANCH_P (insn) = 0; | |
3617 | INSN_FROM_TARGET_P (insn) = 0; | |
3618 | ||
3619 | /* Skip vector tables. We can't get attributes for them. */ | |
3620 | if (GET_CODE (insn) == JUMP_INSN | |
3621 | && (GET_CODE (PATTERN (insn)) == ADDR_VEC | |
3622 | || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)) | |
3623 | continue; | |
3624 | ||
3625 | if (num_delay_slots (insn) > 0) | |
3626 | obstack_ptr_grow (&unfilled_slots_obstack, insn); | |
3627 | ||
3628 | /* Ensure all jumps go to the last of a set of consecutive labels. */ | |
3629 | if (GET_CODE (insn) == JUMP_INSN && condjump_p (insn) | |
3630 | && JUMP_LABEL (insn) != 0 | |
3631 | && ((target = prev_label (next_active_insn (JUMP_LABEL (insn)))) | |
3632 | != JUMP_LABEL (insn))) | |
3633 | redirect_jump (insn, target); | |
3634 | } | |
3635 | ||
3636 | /* Indicate what resources are required to be valid at the end of the current | |
3637 | function. The condition code never is and memory always is. If the | |
3638 | frame pointer is needed, it is and so is the stack pointer unless | |
3639 | EXIT_IGNORE_STACK is non-zero. If the frame pointer is not needed, the | |
64af12fd RS |
3640 | stack pointer is. Registers used to return the function value are |
3641 | needed. Registers holding global variables are needed. */ | |
9c7e2978 RK |
3642 | |
3643 | end_of_function_needs.cc = 0; | |
3644 | end_of_function_needs.memory = 1; | |
3645 | CLEAR_HARD_REG_SET (end_of_function_needs.regs); | |
3646 | ||
3647 | if (frame_pointer_needed) | |
3648 | { | |
3649 | SET_HARD_REG_BIT (end_of_function_needs.regs, FRAME_POINTER_REGNUM); | |
3650 | #ifdef EXIT_IGNORE_STACK | |
3651 | if (! EXIT_IGNORE_STACK) | |
3652 | #endif | |
3653 | SET_HARD_REG_BIT (end_of_function_needs.regs, STACK_POINTER_REGNUM); | |
3654 | } | |
3655 | else | |
3656 | SET_HARD_REG_BIT (end_of_function_needs.regs, STACK_POINTER_REGNUM); | |
3657 | ||
3658 | if (current_function_return_rtx != 0 | |
3659 | && GET_CODE (current_function_return_rtx) == REG) | |
3660 | mark_referenced_resources (current_function_return_rtx, | |
3661 | &end_of_function_needs, 0); | |
3662 | ||
64af12fd RS |
3663 | for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) |
3664 | if (global_regs[i]) | |
3665 | SET_HARD_REG_BIT (end_of_function_needs.regs, i); | |
3666 | ||
7bd80f37 TW |
3667 | /* The registers required to be live at the end of the function are |
3668 | represented in the flow information as being dead just prior to | |
3669 | reaching the end of the function. For example, the return of a value | |
3670 | might be represented by a USE of the return register immediately | |
3671 | followed by an unconditional jump to the return label where the | |
3672 | return label is the end of the RTL chain. The end of the RTL chain | |
3673 | is then taken to mean that the return register is live. | |
3674 | ||
3675 | This sequence is no longer maintained when epilogue instructions are | |
3676 | added to the RTL chain. To reconstruct the original meaning, the | |
3677 | start of the epilogue (NOTE_INSN_EPILOGUE_BEG) is regarded as the | |
3678 | point where these registers become live (start_of_epilogue_needs). | |
3679 | If epilogue instructions are present, the registers set by those | |
3680 | instructions won't have been processed by flow. Thus, those | |
3681 | registers are additionally required at the end of the RTL chain | |
3682 | (end_of_function_needs). */ | |
3683 | ||
3684 | start_of_epilogue_needs = end_of_function_needs; | |
3685 | ||
3686 | while (epilogue_insn = next_nonnote_insn (epilogue_insn)) | |
3687 | mark_set_resources (epilogue_insn, &end_of_function_needs, 0, 0); | |
3688 | ||
9c7e2978 RK |
3689 | /* Show we haven't computed an end-of-function label yet. */ |
3690 | end_of_function_label = 0; | |
3691 | ||
3692 | /* Allocate and initialize the tables used by mark_target_live_regs. */ | |
3693 | target_hash_table | |
3694 | = (struct target_info **) alloca ((TARGET_HASH_PRIME | |
3695 | * sizeof (struct target_info *))); | |
3696 | bzero (target_hash_table, TARGET_HASH_PRIME * sizeof (struct target_info *)); | |
3697 | ||
3698 | bb_ticks = (int *) alloca (n_basic_blocks * sizeof (int)); | |
3699 | bzero (bb_ticks, n_basic_blocks * sizeof (int)); | |
3700 | ||
3701 | /* Initialize the statistics for this function. */ | |
3702 | bzero (num_insns_needing_delays, sizeof num_insns_needing_delays); | |
3703 | bzero (num_filled_delays, sizeof num_filled_delays); | |
3704 | ||
3705 | /* Now do the delay slot filling. Try everything twice in case earlier | |
3706 | changes make more slots fillable. */ | |
3707 | ||
3708 | for (reorg_pass_number = 0; | |
3709 | reorg_pass_number < MAX_REORG_PASSES; | |
3710 | reorg_pass_number++) | |
3711 | { | |
3712 | fill_simple_delay_slots (first, 1); | |
3713 | fill_simple_delay_slots (first, 0); | |
3714 | fill_eager_delay_slots (first); | |
3715 | relax_delay_slots (first); | |
3716 | } | |
3717 | ||
3718 | /* Delete any USE insns made by update_block; subsequent passes don't need | |
3719 | them or know how to deal with them. */ | |
3720 | for (insn = first; insn; insn = next) | |
3721 | { | |
3722 | next = NEXT_INSN (insn); | |
3723 | ||
3724 | if (GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == USE | |
1422dce0 | 3725 | && GET_RTX_CLASS (GET_CODE (XEXP (PATTERN (insn), 0))) == 'i') |
9c7e2978 RK |
3726 | next = delete_insn (insn); |
3727 | } | |
3728 | ||
3729 | /* If we made an end of function label, indicate that it is now | |
3730 | safe to delete it by undoing our prior adjustment to LABEL_NUSES. | |
3731 | If it is now unused, delete it. */ | |
3732 | if (end_of_function_label && --LABEL_NUSES (end_of_function_label) == 0) | |
3733 | delete_insn (end_of_function_label); | |
3734 | ||
3735 | #ifdef HAVE_return | |
3736 | if (HAVE_return && end_of_function_label != 0) | |
3737 | make_return_insns (first); | |
3738 | #endif | |
3739 | ||
3740 | obstack_free (&unfilled_slots_obstack, unfilled_firstobj); | |
3741 | ||
3742 | /* It is not clear why the line below is needed, but it does seem to be. */ | |
3743 | unfilled_firstobj = (rtx *) obstack_alloc (&unfilled_slots_obstack, 0); | |
3744 | ||
bdac5f58 TW |
3745 | /* Reposition the prologue and epilogue notes in case we moved the |
3746 | prologue/epilogue insns. */ | |
3747 | reposition_prologue_and_epilogue_notes (first); | |
3748 | ||
9c7e2978 RK |
3749 | if (file) |
3750 | { | |
3751 | register int i, j, need_comma; | |
3752 | ||
3753 | for (reorg_pass_number = 0; | |
3754 | reorg_pass_number < MAX_REORG_PASSES; | |
3755 | reorg_pass_number++) | |
3756 | { | |
3757 | fprintf (file, ";; Reorg pass #%d:\n", reorg_pass_number + 1); | |
3758 | for (i = 0; i < NUM_REORG_FUNCTIONS; i++) | |
3759 | { | |
3760 | need_comma = 0; | |
3761 | fprintf (file, ";; Reorg function #%d\n", i); | |
3762 | ||
3763 | fprintf (file, ";; %d insns needing delay slots\n;; ", | |
3764 | num_insns_needing_delays[i][reorg_pass_number]); | |
3765 | ||
3766 | for (j = 0; j < MAX_DELAY_HISTOGRAM; j++) | |
3767 | if (num_filled_delays[i][j][reorg_pass_number]) | |
3768 | { | |
3769 | if (need_comma) | |
3770 | fprintf (file, ", "); | |
3771 | need_comma = 1; | |
3772 | fprintf (file, "%d got %d delays", | |
3773 | num_filled_delays[i][j][reorg_pass_number], j); | |
3774 | } | |
3775 | fprintf (file, "\n"); | |
3776 | } | |
3777 | } | |
3778 | } | |
3779 | } | |
3780 | #endif /* DELAY_SLOTS */ |