]> gcc.gnu.org Git - gcc.git/blame - gcc/reload1.c
Add prototypes file.
[gcc.git] / gcc / reload1.c
CommitLineData
32131a9c 1/* Reload pseudo regs into hard regs for insns that require hard regs.
a5cad800 2 Copyright (C) 1987, 88, 89, 92-98, 1999 Free Software Foundation, Inc.
32131a9c
RK
3
4This file is part of GNU CC.
5
6GNU CC is free software; you can redistribute it and/or modify
7it under the terms of the GNU General Public License as published by
8the Free Software Foundation; either version 2, or (at your option)
9any later version.
10
11GNU CC is distributed in the hope that it will be useful,
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14GNU General Public License for more details.
15
16You should have received a copy of the GNU General Public License
17along with GNU CC; see the file COPYING. If not, write to
e99215a3
RK
18the Free Software Foundation, 59 Temple Place - Suite 330,
19Boston, MA 02111-1307, USA. */
32131a9c
RK
20
21
22#include "config.h"
670ee920 23#include "system.h"
cab634f2
KG
24
25#include "machmode.h"
26#include "hard-reg-set.h"
32131a9c 27#include "rtl.h"
6baf1cc8 28#include "tm_p.h"
32131a9c
RK
29#include "obstack.h"
30#include "insn-config.h"
31#include "insn-flags.h"
32#include "insn-codes.h"
33#include "flags.h"
49ad7cfa 34#include "function.h"
32131a9c
RK
35#include "expr.h"
36#include "regs.h"
cad6f7d0 37#include "basic-block.h"
32131a9c
RK
38#include "reload.h"
39#include "recog.h"
32131a9c 40#include "output.h"
a9c366bf 41#include "real.h"
10f0ad3d 42#include "toplev.h"
32131a9c 43
65954bd8
JL
44#if !defined PREFERRED_STACK_BOUNDARY && defined STACK_BOUNDARY
45#define PREFERRED_STACK_BOUNDARY STACK_BOUNDARY
46#endif
47
32131a9c
RK
48/* This file contains the reload pass of the compiler, which is
49 run after register allocation has been done. It checks that
50 each insn is valid (operands required to be in registers really
51 are in registers of the proper class) and fixes up invalid ones
52 by copying values temporarily into registers for the insns
53 that need them.
54
55 The results of register allocation are described by the vector
56 reg_renumber; the insns still contain pseudo regs, but reg_renumber
57 can be used to find which hard reg, if any, a pseudo reg is in.
58
59 The technique we always use is to free up a few hard regs that are
60 called ``reload regs'', and for each place where a pseudo reg
61 must be in a hard reg, copy it temporarily into one of the reload regs.
62
03acd8f8
BS
63 Reload regs are allocated locally for every instruction that needs
64 reloads. When there are pseudos which are allocated to a register that
65 has been chosen as a reload reg, such pseudos must be ``spilled''.
66 This means that they go to other hard regs, or to stack slots if no other
32131a9c
RK
67 available hard regs can be found. Spilling can invalidate more
68 insns, requiring additional need for reloads, so we must keep checking
69 until the process stabilizes.
70
71 For machines with different classes of registers, we must keep track
72 of the register class needed for each reload, and make sure that
73 we allocate enough reload registers of each class.
74
75 The file reload.c contains the code that checks one insn for
76 validity and reports the reloads that it needs. This file
77 is in charge of scanning the entire rtl code, accumulating the
78 reload needs, spilling, assigning reload registers to use for
79 fixing up each insn, and generating the new insns to copy values
80 into the reload registers. */
546b63fb
RK
81
82
83#ifndef REGISTER_MOVE_COST
84#define REGISTER_MOVE_COST(x, y) 2
85#endif
32131a9c
RK
86\f
87/* During reload_as_needed, element N contains a REG rtx for the hard reg
0f41302f 88 into which reg N has been reloaded (perhaps for a previous insn). */
32131a9c
RK
89static rtx *reg_last_reload_reg;
90
91/* Elt N nonzero if reg_last_reload_reg[N] has been set in this insn
92 for an output reload that stores into reg N. */
93static char *reg_has_output_reload;
94
95/* Indicates which hard regs are reload-registers for an output reload
96 in the current insn. */
97static HARD_REG_SET reg_is_output_reload;
98
99/* Element N is the constant value to which pseudo reg N is equivalent,
100 or zero if pseudo reg N is not equivalent to a constant.
101 find_reloads looks at this in order to replace pseudo reg N
102 with the constant it stands for. */
103rtx *reg_equiv_constant;
104
105/* Element N is a memory location to which pseudo reg N is equivalent,
106 prior to any register elimination (such as frame pointer to stack
107 pointer). Depending on whether or not it is a valid address, this value
108 is transferred to either reg_equiv_address or reg_equiv_mem. */
4803a34a 109rtx *reg_equiv_memory_loc;
32131a9c
RK
110
111/* Element N is the address of stack slot to which pseudo reg N is equivalent.
112 This is used when the address is not valid as a memory address
113 (because its displacement is too big for the machine.) */
114rtx *reg_equiv_address;
115
116/* Element N is the memory slot to which pseudo reg N is equivalent,
117 or zero if pseudo reg N is not equivalent to a memory slot. */
118rtx *reg_equiv_mem;
119
120/* Widest width in which each pseudo reg is referred to (via subreg). */
121static int *reg_max_ref_width;
122
135eb61c 123/* Element N is the list of insns that initialized reg N from its equivalent
32131a9c
RK
124 constant or memory slot. */
125static rtx *reg_equiv_init;
126
03acd8f8
BS
127/* Vector to remember old contents of reg_renumber before spilling. */
128static short *reg_old_renumber;
129
e6e52be0 130/* During reload_as_needed, element N contains the last pseudo regno reloaded
03acd8f8 131 into hard register N. If that pseudo reg occupied more than one register,
32131a9c
RK
132 reg_reloaded_contents points to that pseudo for each spill register in
133 use; all of these must remain set for an inheritance to occur. */
134static int reg_reloaded_contents[FIRST_PSEUDO_REGISTER];
135
136/* During reload_as_needed, element N contains the insn for which
e6e52be0
R
137 hard register N was last used. Its contents are significant only
138 when reg_reloaded_valid is set for this register. */
32131a9c
RK
139static rtx reg_reloaded_insn[FIRST_PSEUDO_REGISTER];
140
e6e52be0
R
141/* Indicate if reg_reloaded_insn / reg_reloaded_contents is valid */
142static HARD_REG_SET reg_reloaded_valid;
143/* Indicate if the register was dead at the end of the reload.
144 This is only valid if reg_reloaded_contents is set and valid. */
145static HARD_REG_SET reg_reloaded_dead;
146
32131a9c
RK
147/* Number of spill-regs so far; number of valid elements of spill_regs. */
148static int n_spills;
149
150/* In parallel with spill_regs, contains REG rtx's for those regs.
151 Holds the last rtx used for any given reg, or 0 if it has never
152 been used for spilling yet. This rtx is reused, provided it has
153 the proper mode. */
154static rtx spill_reg_rtx[FIRST_PSEUDO_REGISTER];
155
156/* In parallel with spill_regs, contains nonzero for a spill reg
157 that was stored after the last time it was used.
158 The precise value is the insn generated to do the store. */
159static rtx spill_reg_store[FIRST_PSEUDO_REGISTER];
160
cb2afeb3
R
161/* This is the register that was stored with spill_reg_store. This is a
162 copy of reload_out / reload_out_reg when the value was stored; if
163 reload_out is a MEM, spill_reg_stored_to will be set to reload_out_reg. */
164static rtx spill_reg_stored_to[FIRST_PSEUDO_REGISTER];
165
32131a9c
RK
166/* This table is the inverse mapping of spill_regs:
167 indexed by hard reg number,
168 it contains the position of that reg in spill_regs,
05d10675 169 or -1 for something that is not in spill_regs.
13c8e8e3
JL
170
171 ?!? This is no longer accurate. */
32131a9c
RK
172static short spill_reg_order[FIRST_PSEUDO_REGISTER];
173
03acd8f8
BS
174/* This reg set indicates registers that can't be used as spill registers for
175 the currently processed insn. These are the hard registers which are live
176 during the insn, but not allocated to pseudos, as well as fixed
177 registers. */
32131a9c
RK
178static HARD_REG_SET bad_spill_regs;
179
03acd8f8
BS
180/* These are the hard registers that can't be used as spill register for any
181 insn. This includes registers used for user variables and registers that
182 we can't eliminate. A register that appears in this set also can't be used
183 to retry register allocation. */
184static HARD_REG_SET bad_spill_regs_global;
185
32131a9c 186/* Describes order of use of registers for reloading
03acd8f8
BS
187 of spilled pseudo-registers. `n_spills' is the number of
188 elements that are actually valid; new ones are added at the end.
189
190 Both spill_regs and spill_reg_order are used on two occasions:
191 once during find_reload_regs, where they keep track of the spill registers
192 for a single insn, but also during reload_as_needed where they show all
193 the registers ever used by reload. For the latter case, the information
194 is calculated during finish_spills. */
32131a9c
RK
195static short spill_regs[FIRST_PSEUDO_REGISTER];
196
03acd8f8
BS
197/* This vector of reg sets indicates, for each pseudo, which hard registers
198 may not be used for retrying global allocation because the register was
199 formerly spilled from one of them. If we allowed reallocating a pseudo to
200 a register that it was already allocated to, reload might not
201 terminate. */
202static HARD_REG_SET *pseudo_previous_regs;
203
204/* This vector of reg sets indicates, for each pseudo, which hard
205 registers may not be used for retrying global allocation because they
206 are used as spill registers during one of the insns in which the
207 pseudo is live. */
208static HARD_REG_SET *pseudo_forbidden_regs;
209
210/* All hard regs that have been used as spill registers for any insn are
211 marked in this set. */
212static HARD_REG_SET used_spill_regs;
8b4f9969 213
4079cd63
JW
214/* Index of last register assigned as a spill register. We allocate in
215 a round-robin fashion. */
4079cd63
JW
216static int last_spill_reg;
217
32131a9c
RK
218/* Describes order of preference for putting regs into spill_regs.
219 Contains the numbers of all the hard regs, in order most preferred first.
220 This order is different for each function.
221 It is set up by order_regs_for_reload.
222 Empty elements at the end contain -1. */
223static short potential_reload_regs[FIRST_PSEUDO_REGISTER];
224
32131a9c
RK
225/* Nonzero if indirect addressing is supported on the machine; this means
226 that spilling (REG n) does not require reloading it into a register in
227 order to do (MEM (REG n)) or (MEM (PLUS (REG n) (CONST_INT c))). The
228 value indicates the level of indirect addressing supported, e.g., two
229 means that (MEM (MEM (REG n))) is also valid if (REG n) does not get
230 a hard register. */
32131a9c
RK
231static char spill_indirect_levels;
232
233/* Nonzero if indirect addressing is supported when the innermost MEM is
234 of the form (MEM (SYMBOL_REF sym)). It is assumed that the level to
235 which these are valid is the same as spill_indirect_levels, above. */
32131a9c
RK
236char indirect_symref_ok;
237
238/* Nonzero if an address (plus (reg frame_pointer) (reg ...)) is valid. */
32131a9c
RK
239char double_reg_address_ok;
240
241/* Record the stack slot for each spilled hard register. */
32131a9c
RK
242static rtx spill_stack_slot[FIRST_PSEUDO_REGISTER];
243
244/* Width allocated so far for that stack slot. */
32131a9c
RK
245static int spill_stack_slot_width[FIRST_PSEUDO_REGISTER];
246
7609e720
BS
247/* Record which pseudos needed to be spilled. */
248static regset spilled_pseudos;
249
32131a9c
RK
250/* First uid used by insns created by reload in this function.
251 Used in find_equiv_reg. */
252int reload_first_uid;
253
254/* Flag set by local-alloc or global-alloc if anything is live in
255 a call-clobbered reg across calls. */
32131a9c
RK
256int caller_save_needed;
257
258/* Set to 1 while reload_as_needed is operating.
259 Required by some machines to handle any generated moves differently. */
32131a9c
RK
260int reload_in_progress = 0;
261
262/* These arrays record the insn_code of insns that may be needed to
263 perform input and output reloads of special objects. They provide a
264 place to pass a scratch register. */
32131a9c
RK
265enum insn_code reload_in_optab[NUM_MACHINE_MODES];
266enum insn_code reload_out_optab[NUM_MACHINE_MODES];
267
d45cf215 268/* This obstack is used for allocation of rtl during register elimination.
32131a9c
RK
269 The allocated storage can be freed once find_reloads has processed the
270 insn. */
32131a9c 271struct obstack reload_obstack;
cad6f7d0
BS
272
273/* Points to the beginning of the reload_obstack. All insn_chain structures
274 are allocated first. */
275char *reload_startobj;
276
277/* The point after all insn_chain structures. Used to quickly deallocate
278 memory used while processing one insn. */
32131a9c
RK
279char *reload_firstobj;
280
281#define obstack_chunk_alloc xmalloc
282#define obstack_chunk_free free
283
cad6f7d0
BS
284/* List of insn_chain instructions, one for every insn that reload needs to
285 examine. */
286struct insn_chain *reload_insn_chain;
7609e720 287
dfb7c80f
JL
288#ifdef TREE_CODE
289extern tree current_function_decl;
290#else
122a860e 291extern union tree_node *current_function_decl;
dfb7c80f
JL
292#endif
293
03acd8f8 294/* List of all insns needing reloads. */
7609e720 295static struct insn_chain *insns_need_reload;
32131a9c
RK
296\f
297/* This structure is used to record information about register eliminations.
298 Each array entry describes one possible way of eliminating a register
299 in favor of another. If there is more than one way of eliminating a
300 particular register, the most preferred should be specified first. */
301
590cf94d 302struct elim_table
32131a9c 303{
0f41302f
MS
304 int from; /* Register number to be eliminated. */
305 int to; /* Register number used as replacement. */
306 int initial_offset; /* Initial difference between values. */
307 int can_eliminate; /* Non-zero if this elimination can be done. */
32131a9c 308 int can_eliminate_previous; /* Value of CAN_ELIMINATE in previous scan over
0f41302f
MS
309 insns made by reload. */
310 int offset; /* Current offset between the two regs. */
0f41302f
MS
311 int previous_offset; /* Offset at end of previous insn. */
312 int ref_outside_mem; /* "to" has been referenced outside a MEM. */
32131a9c
RK
313 rtx from_rtx; /* REG rtx for the register to be eliminated.
314 We cannot simply compare the number since
315 we might then spuriously replace a hard
316 register corresponding to a pseudo
0f41302f
MS
317 assigned to the reg to be eliminated. */
318 rtx to_rtx; /* REG rtx for the replacement. */
590cf94d
KG
319};
320
321static struct elim_table * reg_eliminate = 0;
322
323/* This is an intermediate structure to initialize the table. It has
324 exactly the members provided by ELIMINABLE_REGS. */
325static struct elim_table_1
326{
327 int from;
328 int to;
329} reg_eliminate_1[] =
32131a9c
RK
330
331/* If a set of eliminable registers was specified, define the table from it.
332 Otherwise, default to the normal case of the frame pointer being
333 replaced by the stack pointer. */
334
335#ifdef ELIMINABLE_REGS
336 ELIMINABLE_REGS;
337#else
338 {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}};
339#endif
340
590cf94d 341#define NUM_ELIMINABLE_REGS (sizeof reg_eliminate_1/sizeof reg_eliminate_1[0])
32131a9c
RK
342
343/* Record the number of pending eliminations that have an offset not equal
344 to their initial offset. If non-zero, we use a new copy of each
345 replacement result in any insns encountered. */
cb2afeb3 346int num_not_at_initial_offset;
32131a9c
RK
347
348/* Count the number of registers that we may be able to eliminate. */
349static int num_eliminable;
2b49ee39
R
350/* And the number of registers that are equivalent to a constant that
351 can be eliminated to frame_pointer / arg_pointer + constant. */
352static int num_eliminable_invariants;
32131a9c
RK
353
354/* For each label, we record the offset of each elimination. If we reach
355 a label by more than one path and an offset differs, we cannot do the
356 elimination. This information is indexed by the number of the label.
357 The first table is an array of flags that records whether we have yet
358 encountered a label and the second table is an array of arrays, one
359 entry in the latter array for each elimination. */
360
361static char *offsets_known_at;
362static int (*offsets_at)[NUM_ELIMINABLE_REGS];
363
364/* Number of labels in the current function. */
365
366static int num_labels;
546b63fb 367
03acd8f8
BS
368struct hard_reg_n_uses
369{
370 int regno;
371 unsigned int uses;
372};
32131a9c 373\f
18a90182 374static void maybe_fix_stack_asms PROTO((void));
03acd8f8
BS
375static void calculate_needs_all_insns PROTO((int));
376static void calculate_needs PROTO((struct insn_chain *));
377static void find_reload_regs PROTO((struct insn_chain *chain,
378 FILE *));
379static void find_tworeg_group PROTO((struct insn_chain *, int,
380 FILE *));
381static void find_group PROTO((struct insn_chain *, int,
382 FILE *));
383static int possible_group_p PROTO((struct insn_chain *, int));
384static void count_possible_groups PROTO((struct insn_chain *, int));
546b63fb
RK
385static int modes_equiv_for_class_p PROTO((enum machine_mode,
386 enum machine_mode,
387 enum reg_class));
7609e720 388static void delete_caller_save_insns PROTO((void));
03acd8f8 389
546b63fb 390static void spill_failure PROTO((rtx));
03acd8f8
BS
391static void new_spill_reg PROTO((struct insn_chain *, int, int,
392 int, FILE *));
393static void maybe_mark_pseudo_spilled PROTO((int));
546b63fb
RK
394static void delete_dead_insn PROTO((rtx));
395static void alter_reg PROTO((int, int));
396static void set_label_offsets PROTO((rtx, rtx, int));
dfac187e
BS
397static void check_eliminable_occurrences PROTO((rtx));
398static void elimination_effects PROTO((rtx, enum machine_mode));
546b63fb 399static int eliminate_regs_in_insn PROTO((rtx, int));
cb2afeb3 400static void update_eliminable_offsets PROTO((void));
84832317 401static void mark_not_eliminable PROTO((rtx, rtx, void *));
09dd1133 402static void set_initial_elim_offsets PROTO((void));
c47f5ea5 403static void verify_initial_elim_offsets PROTO((void));
1f3b1e1a
JL
404static void set_initial_label_offsets PROTO((void));
405static void set_offsets_for_label PROTO((rtx));
09dd1133
BS
406static void init_elim_table PROTO((void));
407static void update_eliminables PROTO((HARD_REG_SET *));
03acd8f8
BS
408static void spill_hard_reg PROTO((int, FILE *, int));
409static int finish_spills PROTO((int, FILE *));
410static void ior_hard_reg_set PROTO((HARD_REG_SET *, HARD_REG_SET *));
546b63fb 411static void scan_paradoxical_subregs PROTO((rtx));
e1b6684c 412static int hard_reg_use_compare PROTO((const PTR, const PTR));
03acd8f8
BS
413static void count_pseudo PROTO((struct hard_reg_n_uses *, int));
414static void order_regs_for_reload PROTO((struct insn_chain *));
7609e720 415static void reload_as_needed PROTO((int));
84832317 416static void forget_old_reloads_1 PROTO((rtx, rtx, void *));
e1b6684c 417static int reload_reg_class_lower PROTO((const PTR, const PTR));
546b63fb
RK
418static void mark_reload_reg_in_use PROTO((int, int, enum reload_type,
419 enum machine_mode));
be7ae2a4
RK
420static void clear_reload_reg_in_use PROTO((int, int, enum reload_type,
421 enum machine_mode));
546b63fb 422static int reload_reg_free_p PROTO((int, int, enum reload_type));
dfe96118 423static int reload_reg_free_for_value_p PROTO((int, int, enum reload_type, rtx, rtx, int, int));
546b63fb 424static int reload_reg_reaches_end_p PROTO((int, int, enum reload_type));
03acd8f8
BS
425static int allocate_reload_reg PROTO((struct insn_chain *, int, int,
426 int));
67e61fe7 427static void choose_reload_regs_init PROTO((struct insn_chain *, rtx *));
03acd8f8 428static void choose_reload_regs PROTO((struct insn_chain *));
546b63fb 429static void merge_assigned_reloads PROTO((rtx));
7609e720 430static void emit_reload_insns PROTO((struct insn_chain *));
cb2afeb3
R
431static void delete_output_reload PROTO((rtx, int, int));
432static void delete_address_reloads PROTO((rtx, rtx));
433static void delete_address_reloads_1 PROTO((rtx, rtx, rtx));
434static rtx inc_for_reload PROTO((rtx, rtx, rtx, int));
9b3142b3 435static int constraint_accepts_reg_p PROTO((const char *, rtx));
5adf6da0 436static void reload_cse_regs_1 PROTO((rtx));
2a9fb548 437static void reload_cse_invalidate_regno PROTO((int, enum machine_mode, int));
cbfc3ad3 438static int reload_cse_mem_conflict_p PROTO((rtx, rtx));
2a9fb548 439static void reload_cse_invalidate_mem PROTO((rtx));
84832317 440static void reload_cse_invalidate_rtx PROTO((rtx, rtx, void *));
2a9fb548 441static int reload_cse_regno_equal_p PROTO((int, rtx, enum machine_mode));
31418d35 442static int reload_cse_noop_set_p PROTO((rtx, rtx));
e9a25f70
JL
443static int reload_cse_simplify_set PROTO((rtx, rtx));
444static int reload_cse_simplify_operands PROTO((rtx));
84832317 445static void reload_cse_check_clobber PROTO((rtx, rtx, void *));
2a9fb548 446static void reload_cse_record_set PROTO((rtx, rtx));
5adf6da0
R
447static void reload_combine PROTO((void));
448static void reload_combine_note_use PROTO((rtx *, rtx));
84832317 449static void reload_combine_note_store PROTO((rtx, rtx, void *));
5adf6da0 450static void reload_cse_move2add PROTO((rtx));
84832317 451static void move2add_note_store PROTO((rtx, rtx, void *));
2dfa9a87
MH
452#ifdef AUTO_INC_DEC
453static void add_auto_inc_notes PROTO((rtx, rtx));
454#endif
f428f252
KG
455static rtx gen_mode_int PROTO((enum machine_mode,
456 HOST_WIDE_INT));
a8f227e7
KG
457static void failed_reload PROTO((rtx, int));
458static int set_reload_reg PROTO((int, int));
f428f252 459extern void dump_needs PROTO((struct insn_chain *, FILE *));
32131a9c 460\f
546b63fb
RK
461/* Initialize the reload pass once per compilation. */
462
32131a9c
RK
463void
464init_reload ()
465{
466 register int i;
467
468 /* Often (MEM (REG n)) is still valid even if (REG n) is put on the stack.
469 Set spill_indirect_levels to the number of levels such addressing is
470 permitted, zero if it is not permitted at all. */
471
472 register rtx tem
38a448ca
RH
473 = gen_rtx_MEM (Pmode,
474 gen_rtx_PLUS (Pmode,
c5c76735
JL
475 gen_rtx_REG (Pmode,
476 LAST_VIRTUAL_REGISTER + 1),
38a448ca 477 GEN_INT (4)));
32131a9c
RK
478 spill_indirect_levels = 0;
479
480 while (memory_address_p (QImode, tem))
481 {
482 spill_indirect_levels++;
38a448ca 483 tem = gen_rtx_MEM (Pmode, tem);
32131a9c
RK
484 }
485
486 /* See if indirect addressing is valid for (MEM (SYMBOL_REF ...)). */
487
38a448ca 488 tem = gen_rtx_MEM (Pmode, gen_rtx_SYMBOL_REF (Pmode, "foo"));
32131a9c
RK
489 indirect_symref_ok = memory_address_p (QImode, tem);
490
491 /* See if reg+reg is a valid (and offsettable) address. */
492
65701fd2 493 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
57caa638 494 {
38a448ca
RH
495 tem = gen_rtx_PLUS (Pmode,
496 gen_rtx_REG (Pmode, HARD_FRAME_POINTER_REGNUM),
497 gen_rtx_REG (Pmode, i));
c5c76735 498
57caa638
RS
499 /* This way, we make sure that reg+reg is an offsettable address. */
500 tem = plus_constant (tem, 4);
501
502 if (memory_address_p (QImode, tem))
503 {
504 double_reg_address_ok = 1;
505 break;
506 }
507 }
32131a9c 508
0f41302f 509 /* Initialize obstack for our rtl allocation. */
32131a9c 510 gcc_obstack_init (&reload_obstack);
cad6f7d0 511 reload_startobj = (char *) obstack_alloc (&reload_obstack, 0);
32131a9c
RK
512}
513
cad6f7d0
BS
514/* List of insn chains that are currently unused. */
515static struct insn_chain *unused_insn_chains = 0;
516
517/* Allocate an empty insn_chain structure. */
518struct insn_chain *
519new_insn_chain ()
520{
521 struct insn_chain *c;
522
523 if (unused_insn_chains == 0)
524 {
8db99db2
KG
525 c = (struct insn_chain *)
526 obstack_alloc (&reload_obstack, sizeof (struct insn_chain));
cad6f7d0
BS
527 c->live_before = OBSTACK_ALLOC_REG_SET (&reload_obstack);
528 c->live_after = OBSTACK_ALLOC_REG_SET (&reload_obstack);
529 }
530 else
531 {
532 c = unused_insn_chains;
533 unused_insn_chains = c->next;
534 }
535 c->is_caller_save_insn = 0;
03acd8f8 536 c->need_operand_change = 0;
cad6f7d0
BS
537 c->need_reload = 0;
538 c->need_elim = 0;
539 return c;
540}
541
7609e720
BS
542/* Small utility function to set all regs in hard reg set TO which are
543 allocated to pseudos in regset FROM. */
544void
545compute_use_by_pseudos (to, from)
546 HARD_REG_SET *to;
547 regset from;
548{
549 int regno;
550 EXECUTE_IF_SET_IN_REG_SET
551 (from, FIRST_PSEUDO_REGISTER, regno,
552 {
553 int r = reg_renumber[regno];
554 int nregs;
555 if (r < 0)
404d95c4
R
556 {
557 /* reload_combine uses the information from
e881bb1b
RH
558 BASIC_BLOCK->global_live_at_start, which might still
559 contain registers that have not actually been allocated
560 since they have an equivalence. */
404d95c4
R
561 if (! reload_completed)
562 abort ();
563 }
564 else
565 {
566 nregs = HARD_REGNO_NREGS (r, PSEUDO_REGNO_MODE (regno));
567 while (nregs-- > 0)
568 SET_HARD_REG_BIT (*to, r + nregs);
569 }
7609e720
BS
570 });
571}
03acd8f8 572\f
1e5bd841
BS
573/* Global variables used by reload and its subroutines. */
574
1e5bd841
BS
575/* Set during calculate_needs if an insn needs register elimination. */
576static int something_needs_elimination;
cb2afeb3
R
577/* Set during calculate_needs if an insn needs an operand changed. */
578int something_needs_operands_changed;
1e5bd841 579
1e5bd841
BS
580/* Nonzero means we couldn't get enough spill regs. */
581static int failure;
582
546b63fb 583/* Main entry point for the reload pass.
32131a9c
RK
584
585 FIRST is the first insn of the function being compiled.
586
587 GLOBAL nonzero means we were called from global_alloc
588 and should attempt to reallocate any pseudoregs that we
589 displace from hard regs we will use for reloads.
590 If GLOBAL is zero, we do not have enough information to do that,
591 so any pseudo reg that is spilled must go to the stack.
592
593 DUMPFILE is the global-reg debugging dump file stream, or 0.
594 If it is nonzero, messages are written to it to describe
595 which registers are seized as reload regs, which pseudo regs
5352b11a 596 are spilled from them, and where the pseudo regs are reallocated to.
32131a9c 597
5352b11a
RS
598 Return value is nonzero if reload failed
599 and we must not do any more for this function. */
600
601int
32131a9c
RK
602reload (first, global, dumpfile)
603 rtx first;
604 int global;
605 FILE *dumpfile;
606{
03acd8f8 607 register int i;
32131a9c
RK
608 register rtx insn;
609 register struct elim_table *ep;
610
a68d4b75
BK
611 /* The two pointers used to track the true location of the memory used
612 for label offsets. */
613 char *real_known_ptr = NULL_PTR;
614 int (*real_at_ptr)[NUM_ELIMINABLE_REGS];
615
32131a9c
RK
616 /* Make sure even insns with volatile mem refs are recognizable. */
617 init_recog ();
618
1e5bd841
BS
619 failure = 0;
620
cad6f7d0
BS
621 reload_firstobj = (char *) obstack_alloc (&reload_obstack, 0);
622
437a710d
BS
623 /* Make sure that the last insn in the chain
624 is not something that needs reloading. */
625 emit_note (NULL_PTR, NOTE_INSN_DELETED);
626
32131a9c
RK
627 /* Enable find_equiv_reg to distinguish insns made by reload. */
628 reload_first_uid = get_max_uid ();
629
0dadecf6
RK
630#ifdef SECONDARY_MEMORY_NEEDED
631 /* Initialize the secondary memory table. */
632 clear_secondary_mem ();
633#endif
634
32131a9c 635 /* We don't have a stack slot for any spill reg yet. */
4c9a05bc
RK
636 bzero ((char *) spill_stack_slot, sizeof spill_stack_slot);
637 bzero ((char *) spill_stack_slot_width, sizeof spill_stack_slot_width);
32131a9c 638
a8efe40d
RK
639 /* Initialize the save area information for caller-save, in case some
640 are needed. */
641 init_save_areas ();
a8fdc208 642
32131a9c
RK
643 /* Compute which hard registers are now in use
644 as homes for pseudo registers.
645 This is done here rather than (eg) in global_alloc
646 because this point is reached even if not optimizing. */
32131a9c
RK
647 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
648 mark_home_live (i);
649
8dddd002
RK
650 /* A function that receives a nonlocal goto must save all call-saved
651 registers. */
652 if (current_function_has_nonlocal_label)
653 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
654 {
655 if (! call_used_regs[i] && ! fixed_regs[i])
656 regs_ever_live[i] = 1;
657 }
658
32131a9c
RK
659 /* Find all the pseudo registers that didn't get hard regs
660 but do have known equivalent constants or memory slots.
661 These include parameters (known equivalent to parameter slots)
662 and cse'd or loop-moved constant memory addresses.
663
664 Record constant equivalents in reg_equiv_constant
665 so they will be substituted by find_reloads.
666 Record memory equivalents in reg_mem_equiv so they can
667 be substituted eventually by altering the REG-rtx's. */
668
ad85216e
KG
669 reg_equiv_constant = (rtx *) xcalloc (max_regno, sizeof (rtx));
670 reg_equiv_memory_loc = (rtx *) xcalloc (max_regno, sizeof (rtx));
671 reg_equiv_mem = (rtx *) xcalloc (max_regno, sizeof (rtx));
672 reg_equiv_init = (rtx *) xcalloc (max_regno, sizeof (rtx));
673 reg_equiv_address = (rtx *) xcalloc (max_regno, sizeof (rtx));
674 reg_max_ref_width = (int *) xcalloc (max_regno, sizeof (int));
675 reg_old_renumber = (short *) xcalloc (max_regno, sizeof (short));
47c3ed98 676 bcopy ((PTR) reg_renumber, (PTR) reg_old_renumber, max_regno * sizeof (short));
03acd8f8
BS
677 pseudo_forbidden_regs
678 = (HARD_REG_SET *) xmalloc (max_regno * sizeof (HARD_REG_SET));
679 pseudo_previous_regs
ad85216e 680 = (HARD_REG_SET *) xcalloc (max_regno, sizeof (HARD_REG_SET));
32131a9c 681
03acd8f8 682 CLEAR_HARD_REG_SET (bad_spill_regs_global);
56f58d3a 683
32131a9c 684 /* Look for REG_EQUIV notes; record what each pseudo is equivalent to.
56f58d3a
RK
685 Also find all paradoxical subregs and find largest such for each pseudo.
686 On machines with small register classes, record hard registers that
05d10675 687 are used for user variables. These can never be used for spills.
b453cb0b
RK
688 Also look for a "constant" NOTE_INSN_SETJMP. This means that all
689 caller-saved registers must be marked live. */
32131a9c 690
2b49ee39 691 num_eliminable_invariants = 0;
32131a9c
RK
692 for (insn = first; insn; insn = NEXT_INSN (insn))
693 {
694 rtx set = single_set (insn);
695
b453cb0b
RK
696 if (GET_CODE (insn) == NOTE && CONST_CALL_P (insn)
697 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_SETJMP)
698 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
699 if (! call_used_regs[i])
700 regs_ever_live[i] = 1;
701
32131a9c
RK
702 if (set != 0 && GET_CODE (SET_DEST (set)) == REG)
703 {
fb3821f7 704 rtx note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
a8efe40d
RK
705 if (note
706#ifdef LEGITIMATE_PIC_OPERAND_P
2b49ee39
R
707 && (! function_invariant_p (XEXP (note, 0))
708 || ! flag_pic
a8efe40d
RK
709 || LEGITIMATE_PIC_OPERAND_P (XEXP (note, 0)))
710#endif
711 )
32131a9c
RK
712 {
713 rtx x = XEXP (note, 0);
714 i = REGNO (SET_DEST (set));
715 if (i > LAST_VIRTUAL_REGISTER)
716 {
717 if (GET_CODE (x) == MEM)
956d6950
JL
718 {
719 /* If the operand is a PLUS, the MEM may be shared,
720 so make sure we have an unshared copy here. */
721 if (GET_CODE (XEXP (x, 0)) == PLUS)
722 x = copy_rtx (x);
723
724 reg_equiv_memory_loc[i] = x;
725 }
2b49ee39 726 else if (function_invariant_p (x))
32131a9c 727 {
2b49ee39
R
728 if (GET_CODE (x) == PLUS)
729 {
730 /* This is PLUS of frame pointer and a constant,
731 and might be shared. Unshare it. */
732 reg_equiv_constant[i] = copy_rtx (x);
733 num_eliminable_invariants++;
734 }
735 else if (x == frame_pointer_rtx
736 || x == arg_pointer_rtx)
737 {
738 reg_equiv_constant[i] = x;
739 num_eliminable_invariants++;
740 }
741 else if (LEGITIMATE_CONSTANT_P (x))
32131a9c
RK
742 reg_equiv_constant[i] = x;
743 else
744 reg_equiv_memory_loc[i]
d445b551 745 = force_const_mem (GET_MODE (SET_DEST (set)), x);
32131a9c
RK
746 }
747 else
748 continue;
749
750 /* If this register is being made equivalent to a MEM
751 and the MEM is not SET_SRC, the equivalencing insn
752 is one with the MEM as a SET_DEST and it occurs later.
753 So don't mark this insn now. */
754 if (GET_CODE (x) != MEM
755 || rtx_equal_p (SET_SRC (set), x))
135eb61c
R
756 reg_equiv_init[i]
757 = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv_init[i]);
32131a9c
RK
758 }
759 }
760 }
761
762 /* If this insn is setting a MEM from a register equivalent to it,
763 this is the equivalencing insn. */
764 else if (set && GET_CODE (SET_DEST (set)) == MEM
765 && GET_CODE (SET_SRC (set)) == REG
766 && reg_equiv_memory_loc[REGNO (SET_SRC (set))]
767 && rtx_equal_p (SET_DEST (set),
768 reg_equiv_memory_loc[REGNO (SET_SRC (set))]))
135eb61c
R
769 reg_equiv_init[REGNO (SET_SRC (set))]
770 = gen_rtx_INSN_LIST (VOIDmode, insn,
771 reg_equiv_init[REGNO (SET_SRC (set))]);
32131a9c
RK
772
773 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
774 scan_paradoxical_subregs (PATTERN (insn));
775 }
776
09dd1133 777 init_elim_table ();
32131a9c
RK
778
779 num_labels = max_label_num () - get_first_label_num ();
780
781 /* Allocate the tables used to store offset information at labels. */
a68d4b75
BK
782 /* We used to use alloca here, but the size of what it would try to
783 allocate would occasionally cause it to exceed the stack limit and
784 cause a core dump. */
785 real_known_ptr = xmalloc (num_labels);
786 real_at_ptr
32131a9c 787 = (int (*)[NUM_ELIMINABLE_REGS])
a68d4b75 788 xmalloc (num_labels * NUM_ELIMINABLE_REGS * sizeof (int));
32131a9c 789
a68d4b75
BK
790 offsets_known_at = real_known_ptr - get_first_label_num ();
791 offsets_at
792 = (int (*)[NUM_ELIMINABLE_REGS]) (real_at_ptr - get_first_label_num ());
32131a9c
RK
793
794 /* Alter each pseudo-reg rtx to contain its hard reg number.
795 Assign stack slots to the pseudos that lack hard regs or equivalents.
796 Do not touch virtual registers. */
797
798 for (i = LAST_VIRTUAL_REGISTER + 1; i < max_regno; i++)
799 alter_reg (i, -1);
800
32131a9c
RK
801 /* If we have some registers we think can be eliminated, scan all insns to
802 see if there is an insn that sets one of these registers to something
803 other than itself plus a constant. If so, the register cannot be
804 eliminated. Doing this scan here eliminates an extra pass through the
805 main reload loop in the most common case where register elimination
806 cannot be done. */
807 for (insn = first; insn && num_eliminable; insn = NEXT_INSN (insn))
808 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
809 || GET_CODE (insn) == CALL_INSN)
84832317 810 note_stores (PATTERN (insn), mark_not_eliminable, NULL);
32131a9c 811
18a90182
BS
812 maybe_fix_stack_asms ();
813
03acd8f8
BS
814 insns_need_reload = 0;
815 something_needs_elimination = 0;
05d10675 816
4079cd63
JW
817 /* Initialize to -1, which means take the first spill register. */
818 last_spill_reg = -1;
819
7609e720
BS
820 spilled_pseudos = ALLOCA_REG_SET ();
821
32131a9c 822 /* Spill any hard regs that we know we can't eliminate. */
03acd8f8 823 CLEAR_HARD_REG_SET (used_spill_regs);
32131a9c
RK
824 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
825 if (! ep->can_eliminate)
03acd8f8 826 spill_hard_reg (ep->from, dumpfile, 1);
9ff3516a
RK
827
828#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
829 if (frame_pointer_needed)
03acd8f8 830 spill_hard_reg (HARD_FRAME_POINTER_REGNUM, dumpfile, 1);
9ff3516a 831#endif
7609e720
BS
832 finish_spills (global, dumpfile);
833
f1db3576
JL
834 /* From now on, we may need to generate moves differently. We may also
835 allow modifications of insns which cause them to not be recognized.
836 Any such modifications will be cleaned up during reload itself. */
b2f15f94
RK
837 reload_in_progress = 1;
838
32131a9c
RK
839 /* This loop scans the entire function each go-round
840 and repeats until one repetition spills no additional hard regs. */
03acd8f8 841 for (;;)
32131a9c 842 {
03acd8f8
BS
843 int something_changed;
844 int did_spill;
845 struct insn_chain *chain;
32131a9c 846
03acd8f8 847 HOST_WIDE_INT starting_frame_size;
32131a9c 848
7657bf2f
JW
849 /* Round size of stack frame to BIGGEST_ALIGNMENT. This must be done
850 here because the stack size may be a part of the offset computation
851 for register elimination, and there might have been new stack slots
852 created in the last iteration of this loop. */
853 assign_stack_local (BLKmode, 0, 0);
854
855 starting_frame_size = get_frame_size ();
856
09dd1133 857 set_initial_elim_offsets ();
1f3b1e1a 858 set_initial_label_offsets ();
03acd8f8 859
32131a9c
RK
860 /* For each pseudo register that has an equivalent location defined,
861 try to eliminate any eliminable registers (such as the frame pointer)
862 assuming initial offsets for the replacement register, which
863 is the normal case.
864
865 If the resulting location is directly addressable, substitute
866 the MEM we just got directly for the old REG.
867
868 If it is not addressable but is a constant or the sum of a hard reg
869 and constant, it is probably not addressable because the constant is
870 out of range, in that case record the address; we will generate
871 hairy code to compute the address in a register each time it is
6491dbbb
RK
872 needed. Similarly if it is a hard register, but one that is not
873 valid as an address register.
32131a9c
RK
874
875 If the location is not addressable, but does not have one of the
876 above forms, assign a stack slot. We have to do this to avoid the
877 potential of producing lots of reloads if, e.g., a location involves
878 a pseudo that didn't get a hard register and has an equivalent memory
879 location that also involves a pseudo that didn't get a hard register.
880
881 Perhaps at some point we will improve reload_when_needed handling
882 so this problem goes away. But that's very hairy. */
883
884 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
885 if (reg_renumber[i] < 0 && reg_equiv_memory_loc[i])
886 {
1914f5da 887 rtx x = eliminate_regs (reg_equiv_memory_loc[i], 0, NULL_RTX);
32131a9c
RK
888
889 if (strict_memory_address_p (GET_MODE (regno_reg_rtx[i]),
890 XEXP (x, 0)))
891 reg_equiv_mem[i] = x, reg_equiv_address[i] = 0;
892 else if (CONSTANT_P (XEXP (x, 0))
6491dbbb
RK
893 || (GET_CODE (XEXP (x, 0)) == REG
894 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
32131a9c
RK
895 || (GET_CODE (XEXP (x, 0)) == PLUS
896 && GET_CODE (XEXP (XEXP (x, 0), 0)) == REG
897 && (REGNO (XEXP (XEXP (x, 0), 0))
898 < FIRST_PSEUDO_REGISTER)
899 && CONSTANT_P (XEXP (XEXP (x, 0), 1))))
900 reg_equiv_address[i] = XEXP (x, 0), reg_equiv_mem[i] = 0;
901 else
902 {
903 /* Make a new stack slot. Then indicate that something
a8fdc208 904 changed so we go back and recompute offsets for
32131a9c
RK
905 eliminable registers because the allocation of memory
906 below might change some offset. reg_equiv_{mem,address}
907 will be set up for this pseudo on the next pass around
908 the loop. */
909 reg_equiv_memory_loc[i] = 0;
910 reg_equiv_init[i] = 0;
911 alter_reg (i, -1);
32131a9c
RK
912 }
913 }
a8fdc208 914
437a710d
BS
915 if (caller_save_needed)
916 setup_save_areas ();
917
03acd8f8 918 /* If we allocated another stack slot, redo elimination bookkeeping. */
437a710d 919 if (starting_frame_size != get_frame_size ())
32131a9c
RK
920 continue;
921
437a710d 922 if (caller_save_needed)
a8efe40d 923 {
437a710d
BS
924 save_call_clobbered_regs ();
925 /* That might have allocated new insn_chain structures. */
926 reload_firstobj = (char *) obstack_alloc (&reload_obstack, 0);
a8efe40d
RK
927 }
928
03acd8f8
BS
929 calculate_needs_all_insns (global);
930
931 CLEAR_REG_SET (spilled_pseudos);
932 did_spill = 0;
933
934 something_changed = 0;
32131a9c 935
0dadecf6
RK
936 /* If we allocated any new memory locations, make another pass
937 since it might have changed elimination offsets. */
938 if (starting_frame_size != get_frame_size ())
939 something_changed = 1;
940
09dd1133
BS
941 {
942 HARD_REG_SET to_spill;
943 CLEAR_HARD_REG_SET (to_spill);
944 update_eliminables (&to_spill);
945 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
946 if (TEST_HARD_REG_BIT (to_spill, i))
32131a9c 947 {
03acd8f8
BS
948 spill_hard_reg (i, dumpfile, 1);
949 did_spill = 1;
8f5db3c1
JL
950
951 /* Regardless of the state of spills, if we previously had
952 a register that we thought we could eliminate, but no can
953 not eliminate, we must run another pass.
954
955 Consider pseudos which have an entry in reg_equiv_* which
956 reference an eliminable register. We must make another pass
957 to update reg_equiv_* so that we do not substitute in the
958 old value from when we thought the elimination could be
959 performed. */
960 something_changed = 1;
32131a9c 961 }
09dd1133 962 }
9ff3516a 963
03acd8f8
BS
964 CLEAR_HARD_REG_SET (used_spill_regs);
965 /* Try to satisfy the needs for each insn. */
966 for (chain = insns_need_reload; chain != 0;
967 chain = chain->next_need_reload)
968 find_reload_regs (chain, dumpfile);
32131a9c 969
1e5bd841
BS
970 if (failure)
971 goto failed;
437a710d 972
03acd8f8
BS
973 if (insns_need_reload != 0 || did_spill)
974 something_changed |= finish_spills (global, dumpfile);
7609e720 975
03acd8f8
BS
976 if (! something_changed)
977 break;
978
979 if (caller_save_needed)
7609e720 980 delete_caller_save_insns ();
32131a9c
RK
981 }
982
983 /* If global-alloc was run, notify it of any register eliminations we have
984 done. */
985 if (global)
986 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
987 if (ep->can_eliminate)
988 mark_elimination (ep->from, ep->to);
989
32131a9c
RK
990 /* If a pseudo has no hard reg, delete the insns that made the equivalence.
991 If that insn didn't set the register (i.e., it copied the register to
992 memory), just delete that insn instead of the equivalencing insn plus
993 anything now dead. If we call delete_dead_insn on that insn, we may
135eb61c 994 delete the insn that actually sets the register if the register dies
32131a9c
RK
995 there and that is incorrect. */
996
997 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
135eb61c
R
998 {
999 if (reg_renumber[i] < 0 && reg_equiv_init[i] != 0)
1000 {
1001 rtx list;
1002 for (list = reg_equiv_init[i]; list; list = XEXP (list, 1))
1003 {
1004 rtx equiv_insn = XEXP (list, 0);
1005 if (GET_CODE (equiv_insn) == NOTE)
1006 continue;
1007 if (reg_set_p (regno_reg_rtx[i], PATTERN (equiv_insn)))
1008 delete_dead_insn (equiv_insn);
1009 else
1010 {
1011 PUT_CODE (equiv_insn, NOTE);
1012 NOTE_SOURCE_FILE (equiv_insn) = 0;
1013 NOTE_LINE_NUMBER (equiv_insn) = NOTE_INSN_DELETED;
1014 }
1015 }
1016 }
1017 }
32131a9c
RK
1018
1019 /* Use the reload registers where necessary
1020 by generating move instructions to move the must-be-register
1021 values into or out of the reload registers. */
1022
03acd8f8
BS
1023 if (insns_need_reload != 0 || something_needs_elimination
1024 || something_needs_operands_changed)
c47f5ea5
BS
1025 {
1026 int old_frame_size = get_frame_size ();
1027
1028 reload_as_needed (global);
1029
1030 if (old_frame_size != get_frame_size ())
1031 abort ();
1032
1033 if (num_eliminable)
1034 verify_initial_elim_offsets ();
1035 }
32131a9c 1036
2a1f8b6b 1037 /* If we were able to eliminate the frame pointer, show that it is no
546b63fb 1038 longer live at the start of any basic block. If it ls live by
2a1f8b6b
RK
1039 virtue of being in a pseudo, that pseudo will be marked live
1040 and hence the frame pointer will be known to be live via that
1041 pseudo. */
1042
1043 if (! frame_pointer_needed)
1044 for (i = 0; i < n_basic_blocks; i++)
e881bb1b 1045 CLEAR_REGNO_REG_SET (BASIC_BLOCK (i)->global_live_at_start,
8e08106d 1046 HARD_FRAME_POINTER_REGNUM);
2a1f8b6b 1047
5352b11a
RS
1048 /* Come here (with failure set nonzero) if we can't get enough spill regs
1049 and we decide not to abort about it. */
1050 failed:
1051
a3ec87a8
RS
1052 reload_in_progress = 0;
1053
32131a9c
RK
1054 /* Now eliminate all pseudo regs by modifying them into
1055 their equivalent memory references.
1056 The REG-rtx's for the pseudos are modified in place,
1057 so all insns that used to refer to them now refer to memory.
1058
1059 For a reg that has a reg_equiv_address, all those insns
1060 were changed by reloading so that no insns refer to it any longer;
1061 but the DECL_RTL of a variable decl may refer to it,
1062 and if so this causes the debugging info to mention the variable. */
1063
1064 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1065 {
1066 rtx addr = 0;
ab1fd483 1067 int in_struct = 0;
6a651371 1068 int is_scalar = 0;
9ec36da5
JL
1069 int is_readonly = 0;
1070
1071 if (reg_equiv_memory_loc[i])
ab1fd483 1072 {
9ec36da5 1073 in_struct = MEM_IN_STRUCT_P (reg_equiv_memory_loc[i]);
c6df88cb 1074 is_scalar = MEM_SCALAR_P (reg_equiv_memory_loc[i]);
9ec36da5 1075 is_readonly = RTX_UNCHANGING_P (reg_equiv_memory_loc[i]);
ab1fd483 1076 }
9ec36da5
JL
1077
1078 if (reg_equiv_mem[i])
1079 addr = XEXP (reg_equiv_mem[i], 0);
1080
32131a9c
RK
1081 if (reg_equiv_address[i])
1082 addr = reg_equiv_address[i];
9ec36da5 1083
32131a9c
RK
1084 if (addr)
1085 {
1086 if (reg_renumber[i] < 0)
1087 {
1088 rtx reg = regno_reg_rtx[i];
ef178af3 1089 PUT_CODE (reg, MEM);
32131a9c
RK
1090 XEXP (reg, 0) = addr;
1091 REG_USERVAR_P (reg) = 0;
9ec36da5 1092 RTX_UNCHANGING_P (reg) = is_readonly;
ab1fd483 1093 MEM_IN_STRUCT_P (reg) = in_struct;
c6df88cb 1094 MEM_SCALAR_P (reg) = is_scalar;
41472af8
MM
1095 /* We have no alias information about this newly created
1096 MEM. */
1097 MEM_ALIAS_SET (reg) = 0;
32131a9c
RK
1098 }
1099 else if (reg_equiv_mem[i])
1100 XEXP (reg_equiv_mem[i], 0) = addr;
1101 }
1102 }
1103
2ae74651
JL
1104 /* We must set reload_completed now since the cleanup_subreg_operands call
1105 below will re-recognize each insn and reload may have generated insns
1106 which are only valid during and after reload. */
1107 reload_completed = 1;
1108
bd695e1e
RH
1109 /* Make a pass over all the insns and delete all USEs which we inserted
1110 only to tag a REG_EQUAL note on them. Remove all REG_DEAD and REG_UNUSED
1111 notes. Delete all CLOBBER insns that don't refer to the return value
1112 and simplify (subreg (reg)) operands. Also remove all REG_RETVAL and
1113 REG_LIBCALL notes since they are no longer useful or accurate. Strip
1114 and regenerate REG_INC notes that may have been moved around. */
32131a9c
RK
1115
1116 for (insn = first; insn; insn = NEXT_INSN (insn))
1117 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
1118 {
6764d250 1119 rtx *pnote;
32131a9c 1120
0304f787
JL
1121 if ((GET_CODE (PATTERN (insn)) == USE
1122 && find_reg_note (insn, REG_EQUAL, NULL_RTX))
bd695e1e
RH
1123 || (GET_CODE (PATTERN (insn)) == CLOBBER
1124 && (GET_CODE (XEXP (PATTERN (insn), 0)) != REG
1125 || ! REG_FUNCTION_VALUE_P (XEXP (PATTERN (insn), 0)))))
b60a8416
R
1126 {
1127 PUT_CODE (insn, NOTE);
1128 NOTE_SOURCE_FILE (insn) = 0;
1129 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
1130 continue;
1131 }
6764d250
BS
1132
1133 pnote = &REG_NOTES (insn);
1134 while (*pnote != 0)
32131a9c 1135 {
6764d250 1136 if (REG_NOTE_KIND (*pnote) == REG_DEAD
80599fd9 1137 || REG_NOTE_KIND (*pnote) == REG_UNUSED
2dfa9a87 1138 || REG_NOTE_KIND (*pnote) == REG_INC
80599fd9
NC
1139 || REG_NOTE_KIND (*pnote) == REG_RETVAL
1140 || REG_NOTE_KIND (*pnote) == REG_LIBCALL)
6764d250
BS
1141 *pnote = XEXP (*pnote, 1);
1142 else
1143 pnote = &XEXP (*pnote, 1);
32131a9c 1144 }
0304f787 1145
2dfa9a87
MH
1146#ifdef AUTO_INC_DEC
1147 add_auto_inc_notes (insn, PATTERN (insn));
1148#endif
1149
0304f787
JL
1150 /* And simplify (subreg (reg)) if it appears as an operand. */
1151 cleanup_subreg_operands (insn);
b60a8416 1152 }
32131a9c 1153
ab87f8c8
JL
1154 /* If we are doing stack checking, give a warning if this function's
1155 frame size is larger than we expect. */
1156 if (flag_stack_check && ! STACK_CHECK_BUILTIN)
1157 {
1158 HOST_WIDE_INT size = get_frame_size () + STACK_CHECK_FIXED_FRAME_SIZE;
05d10675
BS
1159 static int verbose_warned = 0;
1160
ab87f8c8
JL
1161 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1162 if (regs_ever_live[i] && ! fixed_regs[i] && call_used_regs[i])
1163 size += UNITS_PER_WORD;
1164
1165 if (size > STACK_CHECK_MAX_FRAME_SIZE)
05d10675 1166 {
ab87f8c8
JL
1167 warning ("frame size too large for reliable stack checking");
1168 if (! verbose_warned)
1169 {
1170 warning ("try reducing the number of local variables");
1171 verbose_warned = 1;
1172 }
1173 }
1174 }
1175
32131a9c 1176 /* Indicate that we no longer have known memory locations or constants. */
58d9f9d9
JL
1177 if (reg_equiv_constant)
1178 free (reg_equiv_constant);
32131a9c 1179 reg_equiv_constant = 0;
58d9f9d9
JL
1180 if (reg_equiv_memory_loc)
1181 free (reg_equiv_memory_loc);
32131a9c 1182 reg_equiv_memory_loc = 0;
5352b11a 1183
a68d4b75
BK
1184 if (real_known_ptr)
1185 free (real_known_ptr);
1186 if (real_at_ptr)
1187 free (real_at_ptr);
1188
56a65848
DB
1189 free (reg_equiv_mem);
1190 free (reg_equiv_init);
1191 free (reg_equiv_address);
1192 free (reg_max_ref_width);
03acd8f8
BS
1193 free (reg_old_renumber);
1194 free (pseudo_previous_regs);
1195 free (pseudo_forbidden_regs);
56a65848 1196
7609e720
BS
1197 FREE_REG_SET (spilled_pseudos);
1198
8b4f9969
JW
1199 CLEAR_HARD_REG_SET (used_spill_regs);
1200 for (i = 0; i < n_spills; i++)
1201 SET_HARD_REG_BIT (used_spill_regs, spill_regs[i]);
1202
7609e720
BS
1203 /* Free all the insn_chain structures at once. */
1204 obstack_free (&reload_obstack, reload_startobj);
1205 unused_insn_chains = 0;
1206
5352b11a 1207 return failure;
32131a9c 1208}
1e5bd841 1209
18a90182
BS
1210/* Yet another special case. Unfortunately, reg-stack forces people to
1211 write incorrect clobbers in asm statements. These clobbers must not
1212 cause the register to appear in bad_spill_regs, otherwise we'll call
1213 fatal_insn later. We clear the corresponding regnos in the live
1214 register sets to avoid this.
1215 The whole thing is rather sick, I'm afraid. */
1216static void
1217maybe_fix_stack_asms ()
1218{
1219#ifdef STACK_REGS
392dccb7 1220 const char *constraints[MAX_RECOG_OPERANDS];
18a90182
BS
1221 enum machine_mode operand_mode[MAX_RECOG_OPERANDS];
1222 struct insn_chain *chain;
1223
1224 for (chain = reload_insn_chain; chain != 0; chain = chain->next)
1225 {
1226 int i, noperands;
1227 HARD_REG_SET clobbered, allowed;
1228 rtx pat;
1229
1230 if (GET_RTX_CLASS (GET_CODE (chain->insn)) != 'i'
1231 || (noperands = asm_noperands (PATTERN (chain->insn))) < 0)
1232 continue;
1233 pat = PATTERN (chain->insn);
1234 if (GET_CODE (pat) != PARALLEL)
1235 continue;
1236
1237 CLEAR_HARD_REG_SET (clobbered);
1238 CLEAR_HARD_REG_SET (allowed);
1239
1240 /* First, make a mask of all stack regs that are clobbered. */
1241 for (i = 0; i < XVECLEN (pat, 0); i++)
1242 {
1243 rtx t = XVECEXP (pat, 0, i);
1244 if (GET_CODE (t) == CLOBBER && STACK_REG_P (XEXP (t, 0)))
1245 SET_HARD_REG_BIT (clobbered, REGNO (XEXP (t, 0)));
1246 }
1247
1248 /* Get the operand values and constraints out of the insn. */
1ccbefce 1249 decode_asm_operands (pat, recog_data.operand, recog_data.operand_loc,
18a90182
BS
1250 constraints, operand_mode);
1251
1252 /* For every operand, see what registers are allowed. */
1253 for (i = 0; i < noperands; i++)
1254 {
6b9c6f4f 1255 const char *p = constraints[i];
18a90182
BS
1256 /* For every alternative, we compute the class of registers allowed
1257 for reloading in CLS, and merge its contents into the reg set
1258 ALLOWED. */
1259 int cls = (int) NO_REGS;
1260
1261 for (;;)
1262 {
1263 char c = *p++;
1264
1265 if (c == '\0' || c == ',' || c == '#')
1266 {
1267 /* End of one alternative - mark the regs in the current
1268 class, and reset the class. */
1269 IOR_HARD_REG_SET (allowed, reg_class_contents[cls]);
1270 cls = NO_REGS;
1271 if (c == '#')
1272 do {
1273 c = *p++;
1274 } while (c != '\0' && c != ',');
1275 if (c == '\0')
1276 break;
1277 continue;
1278 }
1279
1280 switch (c)
1281 {
1282 case '=': case '+': case '*': case '%': case '?': case '!':
1283 case '0': case '1': case '2': case '3': case '4': case 'm':
1284 case '<': case '>': case 'V': case 'o': case '&': case 'E':
1285 case 'F': case 's': case 'i': case 'n': case 'X': case 'I':
1286 case 'J': case 'K': case 'L': case 'M': case 'N': case 'O':
1287 case 'P':
1288#ifdef EXTRA_CONSTRAINT
1289 case 'Q': case 'R': case 'S': case 'T': case 'U':
1290#endif
1291 break;
1292
1293 case 'p':
1294 cls = (int) reg_class_subunion[cls][(int) BASE_REG_CLASS];
1295 break;
1296
1297 case 'g':
1298 case 'r':
1299 cls = (int) reg_class_subunion[cls][(int) GENERAL_REGS];
1300 break;
1301
1302 default:
1303 cls = (int) reg_class_subunion[cls][(int) REG_CLASS_FROM_LETTER (c)];
05d10675 1304
18a90182
BS
1305 }
1306 }
1307 }
1308 /* Those of the registers which are clobbered, but allowed by the
1309 constraints, must be usable as reload registers. So clear them
1310 out of the life information. */
1311 AND_HARD_REG_SET (allowed, clobbered);
1312 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1313 if (TEST_HARD_REG_BIT (allowed, i))
1314 {
1315 CLEAR_REGNO_REG_SET (chain->live_before, i);
1316 CLEAR_REGNO_REG_SET (chain->live_after, i);
1317 }
1318 }
1319
1320#endif
1321}
1322
03acd8f8
BS
1323\f
1324/* Walk the chain of insns, and determine for each whether it needs reloads
1325 and/or eliminations. Build the corresponding insns_need_reload list, and
1326 set something_needs_elimination as appropriate. */
1327static void
7609e720 1328calculate_needs_all_insns (global)
1e5bd841
BS
1329 int global;
1330{
7609e720 1331 struct insn_chain **pprev_reload = &insns_need_reload;
67e61fe7 1332 struct insn_chain *chain;
1e5bd841 1333
03acd8f8
BS
1334 something_needs_elimination = 0;
1335
67e61fe7 1336 for (chain = reload_insn_chain; chain != 0; chain = chain->next)
1e5bd841 1337 {
67e61fe7 1338 rtx insn = chain->insn;
03acd8f8 1339
67e61fe7
BS
1340 /* Clear out the shortcuts, in case they were set last time through. */
1341 chain->need_elim = 0;
1342 chain->need_reload = 0;
1343 chain->need_operand_change = 0;
1e5bd841 1344
03acd8f8
BS
1345 /* If this is a label, a JUMP_INSN, or has REG_NOTES (which might
1346 include REG_LABEL), we need to see what effects this has on the
1347 known offsets at labels. */
1e5bd841
BS
1348
1349 if (GET_CODE (insn) == CODE_LABEL || GET_CODE (insn) == JUMP_INSN
1350 || (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
1351 && REG_NOTES (insn) != 0))
1352 set_label_offsets (insn, insn, 0);
1353
1354 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
1355 {
1356 rtx old_body = PATTERN (insn);
1357 int old_code = INSN_CODE (insn);
1358 rtx old_notes = REG_NOTES (insn);
1359 int did_elimination = 0;
cb2afeb3 1360 int operands_changed = 0;
2b49ee39
R
1361 rtx set = single_set (insn);
1362
1363 /* Skip insns that only set an equivalence. */
1364 if (set && GET_CODE (SET_DEST (set)) == REG
1365 && reg_renumber[REGNO (SET_DEST (set))] < 0
1366 && reg_equiv_constant[REGNO (SET_DEST (set))])
67e61fe7 1367 continue;
1e5bd841 1368
1e5bd841 1369 /* If needed, eliminate any eliminable registers. */
2b49ee39 1370 if (num_eliminable || num_eliminable_invariants)
1e5bd841
BS
1371 did_elimination = eliminate_regs_in_insn (insn, 0);
1372
1373 /* Analyze the instruction. */
cb2afeb3
R
1374 operands_changed = find_reloads (insn, 0, spill_indirect_levels,
1375 global, spill_reg_order);
1376
1377 /* If a no-op set needs more than one reload, this is likely
1378 to be something that needs input address reloads. We
1379 can't get rid of this cleanly later, and it is of no use
1380 anyway, so discard it now.
1381 We only do this when expensive_optimizations is enabled,
1382 since this complements reload inheritance / output
1383 reload deletion, and it can make debugging harder. */
1384 if (flag_expensive_optimizations && n_reloads > 1)
1385 {
1386 rtx set = single_set (insn);
1387 if (set
1388 && SET_SRC (set) == SET_DEST (set)
1389 && GET_CODE (SET_SRC (set)) == REG
1390 && REGNO (SET_SRC (set)) >= FIRST_PSEUDO_REGISTER)
1391 {
1392 PUT_CODE (insn, NOTE);
1393 NOTE_SOURCE_FILE (insn) = 0;
1394 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
1395 continue;
1396 }
1397 }
1398 if (num_eliminable)
1399 update_eliminable_offsets ();
1e5bd841
BS
1400
1401 /* Remember for later shortcuts which insns had any reloads or
7609e720
BS
1402 register eliminations. */
1403 chain->need_elim = did_elimination;
03acd8f8
BS
1404 chain->need_reload = n_reloads > 0;
1405 chain->need_operand_change = operands_changed;
1e5bd841
BS
1406
1407 /* Discard any register replacements done. */
1408 if (did_elimination)
1409 {
1410 obstack_free (&reload_obstack, reload_firstobj);
1411 PATTERN (insn) = old_body;
1412 INSN_CODE (insn) = old_code;
1413 REG_NOTES (insn) = old_notes;
1414 something_needs_elimination = 1;
1415 }
1416
cb2afeb3
R
1417 something_needs_operands_changed |= operands_changed;
1418
437a710d 1419 if (n_reloads != 0)
7609e720
BS
1420 {
1421 *pprev_reload = chain;
1422 pprev_reload = &chain->next_need_reload;
03acd8f8
BS
1423
1424 calculate_needs (chain);
7609e720 1425 }
1e5bd841 1426 }
1e5bd841 1427 }
7609e720 1428 *pprev_reload = 0;
1e5bd841
BS
1429}
1430
03acd8f8
BS
1431/* Compute the most additional registers needed by one instruction,
1432 given by CHAIN. Collect information separately for each class of regs.
1433
1434 To compute the number of reload registers of each class needed for an
1435 insn, we must simulate what choose_reload_regs can do. We do this by
1436 splitting an insn into an "input" and an "output" part. RELOAD_OTHER
1437 reloads are used in both. The input part uses those reloads,
1438 RELOAD_FOR_INPUT reloads, which must be live over the entire input section
1439 of reloads, and the maximum of all the RELOAD_FOR_INPUT_ADDRESS and
1440 RELOAD_FOR_OPERAND_ADDRESS reloads, which conflict with the inputs.
1441
1442 The registers needed for output are RELOAD_OTHER and RELOAD_FOR_OUTPUT,
1443 which are live for the entire output portion, and the maximum of all the
1444 RELOAD_FOR_OUTPUT_ADDRESS reloads for each operand.
1e5bd841
BS
1445
1446 The total number of registers needed is the maximum of the
1447 inputs and outputs. */
1448
03acd8f8
BS
1449static void
1450calculate_needs (chain)
7609e720 1451 struct insn_chain *chain;
1e5bd841 1452{
1e5bd841
BS
1453 int i;
1454
1e5bd841
BS
1455 /* Each `struct needs' corresponds to one RELOAD_... type. */
1456 struct {
1457 struct needs other;
1458 struct needs input;
1459 struct needs output;
1460 struct needs insn;
1461 struct needs other_addr;
1462 struct needs op_addr;
1463 struct needs op_addr_reload;
1464 struct needs in_addr[MAX_RECOG_OPERANDS];
1465 struct needs in_addr_addr[MAX_RECOG_OPERANDS];
1466 struct needs out_addr[MAX_RECOG_OPERANDS];
1467 struct needs out_addr_addr[MAX_RECOG_OPERANDS];
1468 } insn_needs;
1469
03acd8f8
BS
1470 bzero ((char *) chain->group_size, sizeof chain->group_size);
1471 for (i = 0; i < N_REG_CLASSES; i++)
1472 chain->group_mode[i] = VOIDmode;
1e5bd841
BS
1473 bzero ((char *) &insn_needs, sizeof insn_needs);
1474
1475 /* Count each reload once in every class
1476 containing the reload's own class. */
1477
1478 for (i = 0; i < n_reloads; i++)
1479 {
1480 register enum reg_class *p;
eceef4c9 1481 enum reg_class class = rld[i].class;
1e5bd841
BS
1482 int size;
1483 enum machine_mode mode;
1484 struct needs *this_needs;
1485
1486 /* Don't count the dummy reloads, for which one of the
1487 regs mentioned in the insn can be used for reloading.
1488 Don't count optional reloads.
1489 Don't count reloads that got combined with others. */
eceef4c9
BS
1490 if (rld[i].reg_rtx != 0
1491 || rld[i].optional != 0
1492 || (rld[i].out == 0 && rld[i].in == 0
1493 && ! rld[i].secondary_p))
1e5bd841
BS
1494 continue;
1495
67e61fe7
BS
1496 mode = rld[i].mode;
1497 size = rld[i].nregs;
1e5bd841
BS
1498
1499 /* Decide which time-of-use to count this reload for. */
eceef4c9 1500 switch (rld[i].when_needed)
1e5bd841
BS
1501 {
1502 case RELOAD_OTHER:
1503 this_needs = &insn_needs.other;
1504 break;
1505 case RELOAD_FOR_INPUT:
1506 this_needs = &insn_needs.input;
1507 break;
1508 case RELOAD_FOR_OUTPUT:
1509 this_needs = &insn_needs.output;
1510 break;
1511 case RELOAD_FOR_INSN:
1512 this_needs = &insn_needs.insn;
1513 break;
1514 case RELOAD_FOR_OTHER_ADDRESS:
1515 this_needs = &insn_needs.other_addr;
1516 break;
1517 case RELOAD_FOR_INPUT_ADDRESS:
eceef4c9 1518 this_needs = &insn_needs.in_addr[rld[i].opnum];
1e5bd841
BS
1519 break;
1520 case RELOAD_FOR_INPADDR_ADDRESS:
eceef4c9 1521 this_needs = &insn_needs.in_addr_addr[rld[i].opnum];
1e5bd841
BS
1522 break;
1523 case RELOAD_FOR_OUTPUT_ADDRESS:
eceef4c9 1524 this_needs = &insn_needs.out_addr[rld[i].opnum];
1e5bd841
BS
1525 break;
1526 case RELOAD_FOR_OUTADDR_ADDRESS:
eceef4c9 1527 this_needs = &insn_needs.out_addr_addr[rld[i].opnum];
1e5bd841
BS
1528 break;
1529 case RELOAD_FOR_OPERAND_ADDRESS:
1530 this_needs = &insn_needs.op_addr;
1531 break;
1532 case RELOAD_FOR_OPADDR_ADDR:
1533 this_needs = &insn_needs.op_addr_reload;
1534 break;
973838fd
KG
1535 default:
1536 abort();
1e5bd841
BS
1537 }
1538
1539 if (size > 1)
1540 {
1541 enum machine_mode other_mode, allocate_mode;
1542
1543 /* Count number of groups needed separately from
1544 number of individual regs needed. */
1545 this_needs->groups[(int) class]++;
1546 p = reg_class_superclasses[(int) class];
1547 while (*p != LIM_REG_CLASSES)
1548 this_needs->groups[(int) *p++]++;
1549
1550 /* Record size and mode of a group of this class. */
1551 /* If more than one size group is needed,
1552 make all groups the largest needed size. */
03acd8f8 1553 if (chain->group_size[(int) class] < size)
1e5bd841 1554 {
03acd8f8 1555 other_mode = chain->group_mode[(int) class];
1e5bd841
BS
1556 allocate_mode = mode;
1557
03acd8f8
BS
1558 chain->group_size[(int) class] = size;
1559 chain->group_mode[(int) class] = mode;
1e5bd841
BS
1560 }
1561 else
1562 {
1563 other_mode = mode;
03acd8f8 1564 allocate_mode = chain->group_mode[(int) class];
1e5bd841
BS
1565 }
1566
1567 /* Crash if two dissimilar machine modes both need
1568 groups of consecutive regs of the same class. */
1569
1570 if (other_mode != VOIDmode && other_mode != allocate_mode
1571 && ! modes_equiv_for_class_p (allocate_mode,
1572 other_mode, class))
1573 fatal_insn ("Two dissimilar machine modes both need groups of consecutive regs of the same class",
03acd8f8 1574 chain->insn);
1e5bd841
BS
1575 }
1576 else if (size == 1)
1577 {
eceef4c9 1578 this_needs->regs[(unsigned char)rld[i].nongroup][(int) class] += 1;
1e5bd841
BS
1579 p = reg_class_superclasses[(int) class];
1580 while (*p != LIM_REG_CLASSES)
eceef4c9 1581 this_needs->regs[(unsigned char)rld[i].nongroup][(int) *p++] += 1;
1e5bd841
BS
1582 }
1583 else
1584 abort ();
1585 }
1586
1587 /* All reloads have been counted for this insn;
1588 now merge the various times of use.
1589 This sets insn_needs, etc., to the maximum total number
1590 of registers needed at any point in this insn. */
1591
1592 for (i = 0; i < N_REG_CLASSES; i++)
1593 {
1594 int j, in_max, out_max;
1595
1596 /* Compute normal and nongroup needs. */
1597 for (j = 0; j <= 1; j++)
1598 {
1599 int k;
1600 for (in_max = 0, out_max = 0, k = 0; k < reload_n_operands; k++)
1601 {
1602 in_max = MAX (in_max,
1603 (insn_needs.in_addr[k].regs[j][i]
1604 + insn_needs.in_addr_addr[k].regs[j][i]));
1605 out_max = MAX (out_max, insn_needs.out_addr[k].regs[j][i]);
1606 out_max = MAX (out_max,
1607 insn_needs.out_addr_addr[k].regs[j][i]);
1608 }
1609
1610 /* RELOAD_FOR_INSN reloads conflict with inputs, outputs,
1611 and operand addresses but not things used to reload
1612 them. Similarly, RELOAD_FOR_OPERAND_ADDRESS reloads
1613 don't conflict with things needed to reload inputs or
1614 outputs. */
1615
1616 in_max = MAX (MAX (insn_needs.op_addr.regs[j][i],
1617 insn_needs.op_addr_reload.regs[j][i]),
1618 in_max);
1619
1620 out_max = MAX (out_max, insn_needs.insn.regs[j][i]);
1621
1622 insn_needs.input.regs[j][i]
1623 = MAX (insn_needs.input.regs[j][i]
1624 + insn_needs.op_addr.regs[j][i]
1625 + insn_needs.insn.regs[j][i],
1626 in_max + insn_needs.input.regs[j][i]);
1627
1628 insn_needs.output.regs[j][i] += out_max;
1629 insn_needs.other.regs[j][i]
1630 += MAX (MAX (insn_needs.input.regs[j][i],
1631 insn_needs.output.regs[j][i]),
1632 insn_needs.other_addr.regs[j][i]);
1633
1634 }
1635
1636 /* Now compute group needs. */
1637 for (in_max = 0, out_max = 0, j = 0; j < reload_n_operands; j++)
1638 {
1639 in_max = MAX (in_max, insn_needs.in_addr[j].groups[i]);
1640 in_max = MAX (in_max, insn_needs.in_addr_addr[j].groups[i]);
1641 out_max = MAX (out_max, insn_needs.out_addr[j].groups[i]);
1642 out_max = MAX (out_max, insn_needs.out_addr_addr[j].groups[i]);
1643 }
1644
1645 in_max = MAX (MAX (insn_needs.op_addr.groups[i],
1646 insn_needs.op_addr_reload.groups[i]),
1647 in_max);
1648 out_max = MAX (out_max, insn_needs.insn.groups[i]);
1649
1650 insn_needs.input.groups[i]
1651 = MAX (insn_needs.input.groups[i]
1652 + insn_needs.op_addr.groups[i]
1653 + insn_needs.insn.groups[i],
1654 in_max + insn_needs.input.groups[i]);
1655
1656 insn_needs.output.groups[i] += out_max;
1657 insn_needs.other.groups[i]
1658 += MAX (MAX (insn_needs.input.groups[i],
1659 insn_needs.output.groups[i]),
1660 insn_needs.other_addr.groups[i]);
1661 }
1662
7609e720
BS
1663 /* Record the needs for later. */
1664 chain->need = insn_needs.other;
1e5bd841 1665}
03acd8f8 1666\f
1e5bd841
BS
1667/* Find a group of exactly 2 registers.
1668
1669 First try to fill out the group by spilling a single register which
1670 would allow completion of the group.
1671
1672 Then try to create a new group from a pair of registers, neither of
1673 which are explicitly used.
1674
1675 Then try to create a group from any pair of registers. */
03acd8f8
BS
1676
1677static void
1678find_tworeg_group (chain, class, dumpfile)
1679 struct insn_chain *chain;
1e5bd841
BS
1680 int class;
1681 FILE *dumpfile;
1682{
1683 int i;
1684 /* First, look for a register that will complete a group. */
1685 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1686 {
1687 int j, other;
1688
1689 j = potential_reload_regs[i];
1690 if (j >= 0 && ! TEST_HARD_REG_BIT (bad_spill_regs, j)
1691 && ((j > 0 && (other = j - 1, spill_reg_order[other] >= 0)
1692 && TEST_HARD_REG_BIT (reg_class_contents[class], j)
1693 && TEST_HARD_REG_BIT (reg_class_contents[class], other)
03acd8f8
BS
1694 && HARD_REGNO_MODE_OK (other, chain->group_mode[class])
1695 && ! TEST_HARD_REG_BIT (chain->counted_for_nongroups, other)
1e5bd841
BS
1696 /* We don't want one part of another group.
1697 We could get "two groups" that overlap! */
03acd8f8 1698 && ! TEST_HARD_REG_BIT (chain->counted_for_groups, other))
1e5bd841
BS
1699 || (j < FIRST_PSEUDO_REGISTER - 1
1700 && (other = j + 1, spill_reg_order[other] >= 0)
1701 && TEST_HARD_REG_BIT (reg_class_contents[class], j)
1702 && TEST_HARD_REG_BIT (reg_class_contents[class], other)
03acd8f8
BS
1703 && HARD_REGNO_MODE_OK (j, chain->group_mode[class])
1704 && ! TEST_HARD_REG_BIT (chain->counted_for_nongroups, other)
1705 && ! TEST_HARD_REG_BIT (chain->counted_for_groups, other))))
1e5bd841
BS
1706 {
1707 register enum reg_class *p;
1708
1709 /* We have found one that will complete a group,
1710 so count off one group as provided. */
03acd8f8 1711 chain->need.groups[class]--;
1e5bd841
BS
1712 p = reg_class_superclasses[class];
1713 while (*p != LIM_REG_CLASSES)
1714 {
03acd8f8
BS
1715 if (chain->group_size [(int) *p] <= chain->group_size [class])
1716 chain->need.groups[(int) *p]--;
1e5bd841
BS
1717 p++;
1718 }
1719
1720 /* Indicate both these regs are part of a group. */
03acd8f8
BS
1721 SET_HARD_REG_BIT (chain->counted_for_groups, j);
1722 SET_HARD_REG_BIT (chain->counted_for_groups, other);
1e5bd841
BS
1723 break;
1724 }
1725 }
1726 /* We can't complete a group, so start one. */
1e5bd841
BS
1727 if (i == FIRST_PSEUDO_REGISTER)
1728 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1729 {
1730 int j, k;
1731 j = potential_reload_regs[i];
1732 /* Verify that J+1 is a potential reload reg. */
1733 for (k = 0; k < FIRST_PSEUDO_REGISTER; k++)
1734 if (potential_reload_regs[k] == j + 1)
1735 break;
1736 if (j >= 0 && j + 1 < FIRST_PSEUDO_REGISTER
1737 && k < FIRST_PSEUDO_REGISTER
1738 && spill_reg_order[j] < 0 && spill_reg_order[j + 1] < 0
1739 && TEST_HARD_REG_BIT (reg_class_contents[class], j)
1740 && TEST_HARD_REG_BIT (reg_class_contents[class], j + 1)
03acd8f8
BS
1741 && HARD_REGNO_MODE_OK (j, chain->group_mode[class])
1742 && ! TEST_HARD_REG_BIT (chain->counted_for_nongroups, j + 1)
1e5bd841
BS
1743 && ! TEST_HARD_REG_BIT (bad_spill_regs, j + 1))
1744 break;
1745 }
1746
1747 /* I should be the index in potential_reload_regs
1748 of the new reload reg we have found. */
1749
03acd8f8 1750 new_spill_reg (chain, i, class, 0, dumpfile);
1e5bd841
BS
1751}
1752
1753/* Find a group of more than 2 registers.
1754 Look for a sufficient sequence of unspilled registers, and spill them all
1755 at once. */
03acd8f8
BS
1756
1757static void
1758find_group (chain, class, dumpfile)
1759 struct insn_chain *chain;
1e5bd841
BS
1760 int class;
1761 FILE *dumpfile;
1762{
1e5bd841
BS
1763 int i;
1764
1765 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1766 {
03acd8f8 1767 int j = potential_reload_regs[i];
1e5bd841 1768
1e5bd841 1769 if (j >= 0
03acd8f8
BS
1770 && j + chain->group_size[class] <= FIRST_PSEUDO_REGISTER
1771 && HARD_REGNO_MODE_OK (j, chain->group_mode[class]))
1e5bd841 1772 {
03acd8f8 1773 int k;
1e5bd841 1774 /* Check each reg in the sequence. */
03acd8f8 1775 for (k = 0; k < chain->group_size[class]; k++)
1e5bd841
BS
1776 if (! (spill_reg_order[j + k] < 0
1777 && ! TEST_HARD_REG_BIT (bad_spill_regs, j + k)
1778 && TEST_HARD_REG_BIT (reg_class_contents[class], j + k)))
1779 break;
1780 /* We got a full sequence, so spill them all. */
03acd8f8 1781 if (k == chain->group_size[class])
1e5bd841
BS
1782 {
1783 register enum reg_class *p;
03acd8f8 1784 for (k = 0; k < chain->group_size[class]; k++)
1e5bd841
BS
1785 {
1786 int idx;
03acd8f8 1787 SET_HARD_REG_BIT (chain->counted_for_groups, j + k);
1e5bd841
BS
1788 for (idx = 0; idx < FIRST_PSEUDO_REGISTER; idx++)
1789 if (potential_reload_regs[idx] == j + k)
1790 break;
03acd8f8 1791 new_spill_reg (chain, idx, class, 0, dumpfile);
1e5bd841
BS
1792 }
1793
1794 /* We have found one that will complete a group,
1795 so count off one group as provided. */
03acd8f8 1796 chain->need.groups[class]--;
1e5bd841
BS
1797 p = reg_class_superclasses[class];
1798 while (*p != LIM_REG_CLASSES)
1799 {
03acd8f8
BS
1800 if (chain->group_size [(int) *p]
1801 <= chain->group_size [class])
1802 chain->need.groups[(int) *p]--;
1e5bd841
BS
1803 p++;
1804 }
03acd8f8 1805 return;
1e5bd841
BS
1806 }
1807 }
1808 }
1809 /* There are no groups left. */
03acd8f8 1810 spill_failure (chain->insn);
1e5bd841 1811 failure = 1;
1e5bd841
BS
1812}
1813
03acd8f8
BS
1814/* If pseudo REG conflicts with one of our reload registers, mark it as
1815 spilled. */
1816static void
1817maybe_mark_pseudo_spilled (reg)
1818 int reg;
1819{
1820 int i;
1821 int r = reg_renumber[reg];
1822 int nregs;
1823
1824 if (r < 0)
1825 abort ();
1826 nregs = HARD_REGNO_NREGS (r, PSEUDO_REGNO_MODE (reg));
1827 for (i = 0; i < n_spills; i++)
1828 if (r <= spill_regs[i] && r + nregs > spill_regs[i])
1829 {
1830 SET_REGNO_REG_SET (spilled_pseudos, reg);
1831 return;
1832 }
1833}
1834
1835/* Find more reload regs to satisfy the remaining need of an insn, which
1836 is given by CHAIN.
1e5bd841
BS
1837 Do it by ascending class number, since otherwise a reg
1838 might be spilled for a big class and might fail to count
1839 for a smaller class even though it belongs to that class.
1840
1841 Count spilled regs in `spills', and add entries to
1842 `spill_regs' and `spill_reg_order'.
1843
1844 ??? Note there is a problem here.
1845 When there is a need for a group in a high-numbered class,
1846 and also need for non-group regs that come from a lower class,
1847 the non-group regs are chosen first. If there aren't many regs,
1848 they might leave no room for a group.
1849
1850 This was happening on the 386. To fix it, we added the code
1851 that calls possible_group_p, so that the lower class won't
1852 break up the last possible group.
1853
1854 Really fixing the problem would require changes above
1855 in counting the regs already spilled, and in choose_reload_regs.
1856 It might be hard to avoid introducing bugs there. */
1857
03acd8f8
BS
1858static void
1859find_reload_regs (chain, dumpfile)
1860 struct insn_chain *chain;
1e5bd841
BS
1861 FILE *dumpfile;
1862{
03acd8f8
BS
1863 int i, class;
1864 short *group_needs = chain->need.groups;
1865 short *simple_needs = chain->need.regs[0];
1866 short *nongroup_needs = chain->need.regs[1];
1867
1868 if (dumpfile)
1869 fprintf (dumpfile, "Spilling for insn %d.\n", INSN_UID (chain->insn));
1870
1871 /* Compute the order of preference for hard registers to spill.
1872 Store them by decreasing preference in potential_reload_regs. */
1873
1874 order_regs_for_reload (chain);
1875
1876 /* So far, no hard regs have been spilled. */
1877 n_spills = 0;
1878 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1879 spill_reg_order[i] = -1;
1e5bd841 1880
03acd8f8
BS
1881 CLEAR_HARD_REG_SET (chain->used_spill_regs);
1882 CLEAR_HARD_REG_SET (chain->counted_for_groups);
1883 CLEAR_HARD_REG_SET (chain->counted_for_nongroups);
1e5bd841
BS
1884
1885 for (class = 0; class < N_REG_CLASSES; class++)
1886 {
1887 /* First get the groups of registers.
1888 If we got single registers first, we might fragment
1889 possible groups. */
03acd8f8 1890 while (group_needs[class] > 0)
1e5bd841
BS
1891 {
1892 /* If any single spilled regs happen to form groups,
1893 count them now. Maybe we don't really need
1894 to spill another group. */
03acd8f8 1895 count_possible_groups (chain, class);
1e5bd841 1896
03acd8f8 1897 if (group_needs[class] <= 0)
1e5bd841
BS
1898 break;
1899
03acd8f8 1900 /* Groups of size 2, the only groups used on most machines,
1e5bd841 1901 are treated specially. */
03acd8f8
BS
1902 if (chain->group_size[class] == 2)
1903 find_tworeg_group (chain, class, dumpfile);
1e5bd841 1904 else
03acd8f8 1905 find_group (chain, class, dumpfile);
1e5bd841 1906 if (failure)
03acd8f8 1907 return;
1e5bd841
BS
1908 }
1909
1910 /* Now similarly satisfy all need for single registers. */
1911
03acd8f8 1912 while (simple_needs[class] > 0 || nongroup_needs[class] > 0)
1e5bd841 1913 {
1e5bd841
BS
1914 /* If we spilled enough regs, but they weren't counted
1915 against the non-group need, see if we can count them now.
1916 If so, we can avoid some actual spilling. */
03acd8f8 1917 if (simple_needs[class] <= 0 && nongroup_needs[class] > 0)
1e5bd841
BS
1918 for (i = 0; i < n_spills; i++)
1919 {
1920 int regno = spill_regs[i];
1921 if (TEST_HARD_REG_BIT (reg_class_contents[class], regno)
03acd8f8
BS
1922 && !TEST_HARD_REG_BIT (chain->counted_for_groups, regno)
1923 && !TEST_HARD_REG_BIT (chain->counted_for_nongroups, regno)
1924 && nongroup_needs[class] > 0)
1925 {
1926 register enum reg_class *p;
1e5bd841 1927
03acd8f8
BS
1928 SET_HARD_REG_BIT (chain->counted_for_nongroups, regno);
1929 nongroup_needs[class]--;
1930 p = reg_class_superclasses[class];
1931 while (*p != LIM_REG_CLASSES)
1932 nongroup_needs[(int) *p++]--;
1933 }
1e5bd841 1934 }
03acd8f8
BS
1935
1936 if (simple_needs[class] <= 0 && nongroup_needs[class] <= 0)
1e5bd841
BS
1937 break;
1938
1939 /* Consider the potential reload regs that aren't
1940 yet in use as reload regs, in order of preference.
1941 Find the most preferred one that's in this class. */
1942
1943 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1944 {
1945 int regno = potential_reload_regs[i];
1946 if (regno >= 0
1947 && TEST_HARD_REG_BIT (reg_class_contents[class], regno)
1948 /* If this reg will not be available for groups,
1949 pick one that does not foreclose possible groups.
1950 This is a kludge, and not very general,
1951 but it should be sufficient to make the 386 work,
1952 and the problem should not occur on machines with
1953 more registers. */
03acd8f8
BS
1954 && (nongroup_needs[class] == 0
1955 || possible_group_p (chain, regno)))
1e5bd841
BS
1956 break;
1957 }
1958
1959 /* If we couldn't get a register, try to get one even if we
1960 might foreclose possible groups. This may cause problems
1961 later, but that's better than aborting now, since it is
1962 possible that we will, in fact, be able to form the needed
1963 group even with this allocation. */
1964
1965 if (i >= FIRST_PSEUDO_REGISTER
03acd8f8 1966 && asm_noperands (chain->insn) < 0)
1e5bd841
BS
1967 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1968 if (potential_reload_regs[i] >= 0
1969 && TEST_HARD_REG_BIT (reg_class_contents[class],
1970 potential_reload_regs[i]))
1971 break;
1972
1973 /* I should be the index in potential_reload_regs
1974 of the new reload reg we have found. */
1975
03acd8f8
BS
1976 new_spill_reg (chain, i, class, 1, dumpfile);
1977 if (failure)
1978 return;
1e5bd841
BS
1979 }
1980 }
05d10675 1981
03acd8f8
BS
1982 /* We know which hard regs to use, now mark the pseudos that live in them
1983 as needing to be kicked out. */
1984 EXECUTE_IF_SET_IN_REG_SET
1985 (chain->live_before, FIRST_PSEUDO_REGISTER, i,
1986 {
1987 maybe_mark_pseudo_spilled (i);
1988 });
1989 EXECUTE_IF_SET_IN_REG_SET
1990 (chain->live_after, FIRST_PSEUDO_REGISTER, i,
1991 {
1992 maybe_mark_pseudo_spilled (i);
1993 });
1994
1995 IOR_HARD_REG_SET (used_spill_regs, chain->used_spill_regs);
1e5bd841
BS
1996}
1997
03acd8f8
BS
1998void
1999dump_needs (chain, dumpfile)
2000 struct insn_chain *chain;
09dd1133
BS
2001 FILE *dumpfile;
2002{
a4ec8d12 2003 static const char * const reg_class_names[] = REG_CLASS_NAMES;
09dd1133 2004 int i;
03acd8f8 2005 struct needs *n = &chain->need;
09dd1133
BS
2006
2007 for (i = 0; i < N_REG_CLASSES; i++)
2008 {
03acd8f8 2009 if (n->regs[i][0] > 0)
09dd1133 2010 fprintf (dumpfile,
03acd8f8
BS
2011 ";; Need %d reg%s of class %s.\n",
2012 n->regs[i][0], n->regs[i][0] == 1 ? "" : "s",
2013 reg_class_names[i]);
2014 if (n->regs[i][1] > 0)
09dd1133 2015 fprintf (dumpfile,
03acd8f8
BS
2016 ";; Need %d nongroup reg%s of class %s.\n",
2017 n->regs[i][1], n->regs[i][1] == 1 ? "" : "s",
2018 reg_class_names[i]);
2019 if (n->groups[i] > 0)
09dd1133 2020 fprintf (dumpfile,
03acd8f8
BS
2021 ";; Need %d group%s (%smode) of class %s.\n",
2022 n->groups[i], n->groups[i] == 1 ? "" : "s",
a4ec8d12 2023 GET_MODE_NAME(chain->group_mode[i]),
03acd8f8 2024 reg_class_names[i]);
09dd1133
BS
2025 }
2026}
32131a9c 2027\f
437a710d
BS
2028/* Delete all insns that were inserted by emit_caller_save_insns during
2029 this iteration. */
2030static void
7609e720 2031delete_caller_save_insns ()
437a710d 2032{
7609e720 2033 struct insn_chain *c = reload_insn_chain;
437a710d 2034
7609e720 2035 while (c != 0)
437a710d 2036 {
7609e720 2037 while (c != 0 && c->is_caller_save_insn)
437a710d 2038 {
7609e720
BS
2039 struct insn_chain *next = c->next;
2040 rtx insn = c->insn;
2041
3b413743
RH
2042 if (insn == BLOCK_HEAD (c->block))
2043 BLOCK_HEAD (c->block) = NEXT_INSN (insn);
2044 if (insn == BLOCK_END (c->block))
2045 BLOCK_END (c->block) = PREV_INSN (insn);
7609e720
BS
2046 if (c == reload_insn_chain)
2047 reload_insn_chain = next;
2048
2049 if (NEXT_INSN (insn) != 0)
2050 PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn);
2051 if (PREV_INSN (insn) != 0)
2052 NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn);
2053
2054 if (next)
2055 next->prev = c->prev;
2056 if (c->prev)
2057 c->prev->next = next;
2058 c->next = unused_insn_chains;
2059 unused_insn_chains = c;
2060 c = next;
437a710d 2061 }
7609e720
BS
2062 if (c != 0)
2063 c = c->next;
437a710d
BS
2064 }
2065}
2066\f
32131a9c
RK
2067/* Nonzero if, after spilling reg REGNO for non-groups,
2068 it will still be possible to find a group if we still need one. */
2069
2070static int
03acd8f8
BS
2071possible_group_p (chain, regno)
2072 struct insn_chain *chain;
32131a9c 2073 int regno;
32131a9c
RK
2074{
2075 int i;
2076 int class = (int) NO_REGS;
2077
2078 for (i = 0; i < (int) N_REG_CLASSES; i++)
03acd8f8 2079 if (chain->need.groups[i] > 0)
32131a9c
RK
2080 {
2081 class = i;
2082 break;
2083 }
2084
2085 if (class == (int) NO_REGS)
2086 return 1;
2087
2088 /* Consider each pair of consecutive registers. */
2089 for (i = 0; i < FIRST_PSEUDO_REGISTER - 1; i++)
2090 {
2091 /* Ignore pairs that include reg REGNO. */
2092 if (i == regno || i + 1 == regno)
2093 continue;
2094
2095 /* Ignore pairs that are outside the class that needs the group.
2096 ??? Here we fail to handle the case where two different classes
2097 independently need groups. But this never happens with our
2098 current machine descriptions. */
2099 if (! (TEST_HARD_REG_BIT (reg_class_contents[class], i)
2100 && TEST_HARD_REG_BIT (reg_class_contents[class], i + 1)))
2101 continue;
2102
2103 /* A pair of consecutive regs we can still spill does the trick. */
2104 if (spill_reg_order[i] < 0 && spill_reg_order[i + 1] < 0
2105 && ! TEST_HARD_REG_BIT (bad_spill_regs, i)
2106 && ! TEST_HARD_REG_BIT (bad_spill_regs, i + 1))
2107 return 1;
2108
2109 /* A pair of one already spilled and one we can spill does it
2110 provided the one already spilled is not otherwise reserved. */
2111 if (spill_reg_order[i] < 0
2112 && ! TEST_HARD_REG_BIT (bad_spill_regs, i)
2113 && spill_reg_order[i + 1] >= 0
03acd8f8
BS
2114 && ! TEST_HARD_REG_BIT (chain->counted_for_groups, i + 1)
2115 && ! TEST_HARD_REG_BIT (chain->counted_for_nongroups, i + 1))
32131a9c
RK
2116 return 1;
2117 if (spill_reg_order[i + 1] < 0
2118 && ! TEST_HARD_REG_BIT (bad_spill_regs, i + 1)
2119 && spill_reg_order[i] >= 0
03acd8f8
BS
2120 && ! TEST_HARD_REG_BIT (chain->counted_for_groups, i)
2121 && ! TEST_HARD_REG_BIT (chain->counted_for_nongroups, i))
32131a9c
RK
2122 return 1;
2123 }
2124
2125 return 0;
2126}
03acd8f8 2127
066aca28
RK
2128/* Count any groups of CLASS that can be formed from the registers recently
2129 spilled. */
32131a9c
RK
2130
2131static void
03acd8f8
BS
2132count_possible_groups (chain, class)
2133 struct insn_chain *chain;
066aca28 2134 int class;
32131a9c 2135{
066aca28
RK
2136 HARD_REG_SET new;
2137 int i, j;
2138
32131a9c
RK
2139 /* Now find all consecutive groups of spilled registers
2140 and mark each group off against the need for such groups.
2141 But don't count them against ordinary need, yet. */
2142
03acd8f8 2143 if (chain->group_size[class] == 0)
066aca28
RK
2144 return;
2145
2146 CLEAR_HARD_REG_SET (new);
2147
2148 /* Make a mask of all the regs that are spill regs in class I. */
2149 for (i = 0; i < n_spills; i++)
03acd8f8
BS
2150 {
2151 int regno = spill_regs[i];
2152
2153 if (TEST_HARD_REG_BIT (reg_class_contents[class], regno)
2154 && ! TEST_HARD_REG_BIT (chain->counted_for_groups, regno)
2155 && ! TEST_HARD_REG_BIT (chain->counted_for_nongroups, regno))
2156 SET_HARD_REG_BIT (new, regno);
2157 }
066aca28
RK
2158
2159 /* Find each consecutive group of them. */
03acd8f8 2160 for (i = 0; i < FIRST_PSEUDO_REGISTER && chain->need.groups[class] > 0; i++)
066aca28 2161 if (TEST_HARD_REG_BIT (new, i)
03acd8f8
BS
2162 && i + chain->group_size[class] <= FIRST_PSEUDO_REGISTER
2163 && HARD_REGNO_MODE_OK (i, chain->group_mode[class]))
32131a9c 2164 {
03acd8f8 2165 for (j = 1; j < chain->group_size[class]; j++)
066aca28
RK
2166 if (! TEST_HARD_REG_BIT (new, i + j))
2167 break;
32131a9c 2168
03acd8f8 2169 if (j == chain->group_size[class])
066aca28
RK
2170 {
2171 /* We found a group. Mark it off against this class's need for
2172 groups, and against each superclass too. */
2173 register enum reg_class *p;
2174
03acd8f8 2175 chain->need.groups[class]--;
066aca28
RK
2176 p = reg_class_superclasses[class];
2177 while (*p != LIM_REG_CLASSES)
d601d5da 2178 {
03acd8f8
BS
2179 if (chain->group_size [(int) *p] <= chain->group_size [class])
2180 chain->need.groups[(int) *p]--;
d601d5da
JW
2181 p++;
2182 }
066aca28
RK
2183
2184 /* Don't count these registers again. */
03acd8f8
BS
2185 for (j = 0; j < chain->group_size[class]; j++)
2186 SET_HARD_REG_BIT (chain->counted_for_groups, i + j);
066aca28
RK
2187 }
2188
2189 /* Skip to the last reg in this group. When i is incremented above,
2190 it will then point to the first reg of the next possible group. */
2191 i += j - 1;
2192 }
32131a9c
RK
2193}
2194\f
2195/* ALLOCATE_MODE is a register mode that needs to be reloaded. OTHER_MODE is
2196 another mode that needs to be reloaded for the same register class CLASS.
2197 If any reg in CLASS allows ALLOCATE_MODE but not OTHER_MODE, fail.
2198 ALLOCATE_MODE will never be smaller than OTHER_MODE.
2199
2200 This code used to also fail if any reg in CLASS allows OTHER_MODE but not
2201 ALLOCATE_MODE. This test is unnecessary, because we will never try to put
2202 something of mode ALLOCATE_MODE into an OTHER_MODE register. Testing this
2203 causes unnecessary failures on machines requiring alignment of register
2204 groups when the two modes are different sizes, because the larger mode has
2205 more strict alignment rules than the smaller mode. */
2206
2207static int
2208modes_equiv_for_class_p (allocate_mode, other_mode, class)
2209 enum machine_mode allocate_mode, other_mode;
2210 enum reg_class class;
2211{
2212 register int regno;
2213 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
2214 {
2215 if (TEST_HARD_REG_BIT (reg_class_contents[(int) class], regno)
2216 && HARD_REGNO_MODE_OK (regno, allocate_mode)
2217 && ! HARD_REGNO_MODE_OK (regno, other_mode))
2218 return 0;
2219 }
2220 return 1;
2221}
03acd8f8 2222\f
5352b11a
RS
2223/* Handle the failure to find a register to spill.
2224 INSN should be one of the insns which needed this particular spill reg. */
2225
2226static void
2227spill_failure (insn)
2228 rtx insn;
2229{
2230 if (asm_noperands (PATTERN (insn)) >= 0)
2231 error_for_asm (insn, "`asm' needs too many reloads");
2232 else
a89b2cc4 2233 fatal_insn ("Unable to find a register to spill.", insn);
5352b11a
RS
2234}
2235
03acd8f8
BS
2236/* Add a new register to the tables of available spill-registers.
2237 CHAIN is the insn for which the register will be used; we decrease the
2238 needs of that insn.
32131a9c
RK
2239 I is the index of this register in potential_reload_regs.
2240 CLASS is the regclass whose need is being satisfied.
03acd8f8
BS
2241 NONGROUP is 0 if this register is part of a group.
2242 DUMPFILE is the same as the one that `reload' got. */
32131a9c 2243
03acd8f8
BS
2244static void
2245new_spill_reg (chain, i, class, nongroup, dumpfile)
2246 struct insn_chain *chain;
32131a9c
RK
2247 int i;
2248 int class;
03acd8f8 2249 int nongroup;
32131a9c
RK
2250 FILE *dumpfile;
2251{
2252 register enum reg_class *p;
32131a9c
RK
2253 int regno = potential_reload_regs[i];
2254
2255 if (i >= FIRST_PSEUDO_REGISTER)
03acd8f8
BS
2256 {
2257 spill_failure (chain->insn);
2258 failure = 1;
2259 return;
2260 }
32131a9c 2261
03acd8f8 2262 if (TEST_HARD_REG_BIT (bad_spill_regs, regno))
da275344 2263 {
a4ec8d12 2264 static const char * const reg_class_names[] = REG_CLASS_NAMES;
03acd8f8
BS
2265
2266 if (asm_noperands (PATTERN (chain->insn)) < 0)
2267 {
05d10675
BS
2268 /* The error message is still correct - we know only that it wasn't
2269 an asm statement that caused the problem, but one of the global
2270 registers declared by the users might have screwed us. */
03acd8f8
BS
2271 error ("fixed or forbidden register %d (%s) was spilled for class %s.",
2272 regno, reg_names[regno], reg_class_names[class]);
2273 error ("This may be due to a compiler bug or to impossible asm");
2274 error ("statements or clauses.");
2275 fatal_insn ("This is the instruction:", chain->insn);
2276 }
2277 error_for_asm (chain->insn, "Invalid `asm' statement:");
2278 error_for_asm (chain->insn,
2279 "fixed or forbidden register %d (%s) was spilled for class %s.",
2280 regno, reg_names[regno], reg_class_names[class]);
2281 failure = 1;
2282 return;
da275344 2283 }
32131a9c
RK
2284
2285 /* Make reg REGNO an additional reload reg. */
2286
2287 potential_reload_regs[i] = -1;
2288 spill_regs[n_spills] = regno;
2289 spill_reg_order[regno] = n_spills;
2290 if (dumpfile)
03acd8f8
BS
2291 fprintf (dumpfile, "Spilling reg %d.\n", regno);
2292 SET_HARD_REG_BIT (chain->used_spill_regs, regno);
32131a9c
RK
2293
2294 /* Clear off the needs we just satisfied. */
2295
03acd8f8 2296 chain->need.regs[0][class]--;
32131a9c
RK
2297 p = reg_class_superclasses[class];
2298 while (*p != LIM_REG_CLASSES)
03acd8f8 2299 chain->need.regs[0][(int) *p++]--;
32131a9c 2300
03acd8f8 2301 if (nongroup && chain->need.regs[1][class] > 0)
32131a9c 2302 {
03acd8f8
BS
2303 SET_HARD_REG_BIT (chain->counted_for_nongroups, regno);
2304 chain->need.regs[1][class]--;
32131a9c
RK
2305 p = reg_class_superclasses[class];
2306 while (*p != LIM_REG_CLASSES)
03acd8f8 2307 chain->need.regs[1][(int) *p++]--;
32131a9c
RK
2308 }
2309
32131a9c 2310 n_spills++;
32131a9c
RK
2311}
2312\f
2313/* Delete an unneeded INSN and any previous insns who sole purpose is loading
2314 data that is dead in INSN. */
2315
2316static void
2317delete_dead_insn (insn)
2318 rtx insn;
2319{
2320 rtx prev = prev_real_insn (insn);
2321 rtx prev_dest;
2322
2323 /* If the previous insn sets a register that dies in our insn, delete it
2324 too. */
2325 if (prev && GET_CODE (PATTERN (prev)) == SET
2326 && (prev_dest = SET_DEST (PATTERN (prev)), GET_CODE (prev_dest) == REG)
2327 && reg_mentioned_p (prev_dest, PATTERN (insn))
b294ca38
R
2328 && find_regno_note (insn, REG_DEAD, REGNO (prev_dest))
2329 && ! side_effects_p (SET_SRC (PATTERN (prev))))
32131a9c
RK
2330 delete_dead_insn (prev);
2331
2332 PUT_CODE (insn, NOTE);
2333 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
2334 NOTE_SOURCE_FILE (insn) = 0;
2335}
2336
2337/* Modify the home of pseudo-reg I.
2338 The new home is present in reg_renumber[I].
2339
2340 FROM_REG may be the hard reg that the pseudo-reg is being spilled from;
2341 or it may be -1, meaning there is none or it is not relevant.
2342 This is used so that all pseudos spilled from a given hard reg
2343 can share one stack slot. */
2344
2345static void
2346alter_reg (i, from_reg)
2347 register int i;
2348 int from_reg;
2349{
2350 /* When outputting an inline function, this can happen
2351 for a reg that isn't actually used. */
2352 if (regno_reg_rtx[i] == 0)
2353 return;
2354
2355 /* If the reg got changed to a MEM at rtl-generation time,
2356 ignore it. */
2357 if (GET_CODE (regno_reg_rtx[i]) != REG)
2358 return;
2359
2360 /* Modify the reg-rtx to contain the new hard reg
2361 number or else to contain its pseudo reg number. */
2362 REGNO (regno_reg_rtx[i])
2363 = reg_renumber[i] >= 0 ? reg_renumber[i] : i;
2364
2365 /* If we have a pseudo that is needed but has no hard reg or equivalent,
2366 allocate a stack slot for it. */
2367
2368 if (reg_renumber[i] < 0
b1f21e0a 2369 && REG_N_REFS (i) > 0
32131a9c
RK
2370 && reg_equiv_constant[i] == 0
2371 && reg_equiv_memory_loc[i] == 0)
2372 {
2373 register rtx x;
2374 int inherent_size = PSEUDO_REGNO_BYTES (i);
2375 int total_size = MAX (inherent_size, reg_max_ref_width[i]);
2376 int adjust = 0;
2377
2378 /* Each pseudo reg has an inherent size which comes from its own mode,
2379 and a total size which provides room for paradoxical subregs
2380 which refer to the pseudo reg in wider modes.
2381
2382 We can use a slot already allocated if it provides both
2383 enough inherent space and enough total space.
2384 Otherwise, we allocate a new slot, making sure that it has no less
2385 inherent space, and no less total space, then the previous slot. */
2386 if (from_reg == -1)
2387 {
2388 /* No known place to spill from => no slot to reuse. */
cabcf079
ILT
2389 x = assign_stack_local (GET_MODE (regno_reg_rtx[i]), total_size,
2390 inherent_size == total_size ? 0 : -1);
f76b9db2 2391 if (BYTES_BIG_ENDIAN)
02db8dd0
RK
2392 /* Cancel the big-endian correction done in assign_stack_local.
2393 Get the address of the beginning of the slot.
2394 This is so we can do a big-endian correction unconditionally
2395 below. */
2396 adjust = inherent_size - total_size;
2397
2398 RTX_UNCHANGING_P (x) = RTX_UNCHANGING_P (regno_reg_rtx[i]);
32131a9c
RK
2399 }
2400 /* Reuse a stack slot if possible. */
2401 else if (spill_stack_slot[from_reg] != 0
2402 && spill_stack_slot_width[from_reg] >= total_size
2403 && (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
2404 >= inherent_size))
2405 x = spill_stack_slot[from_reg];
2406 /* Allocate a bigger slot. */
2407 else
2408 {
2409 /* Compute maximum size needed, both for inherent size
2410 and for total size. */
2411 enum machine_mode mode = GET_MODE (regno_reg_rtx[i]);
4f2d3674 2412 rtx stack_slot;
32131a9c
RK
2413 if (spill_stack_slot[from_reg])
2414 {
2415 if (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
2416 > inherent_size)
2417 mode = GET_MODE (spill_stack_slot[from_reg]);
2418 if (spill_stack_slot_width[from_reg] > total_size)
2419 total_size = spill_stack_slot_width[from_reg];
2420 }
2421 /* Make a slot with that size. */
cabcf079
ILT
2422 x = assign_stack_local (mode, total_size,
2423 inherent_size == total_size ? 0 : -1);
4f2d3674 2424 stack_slot = x;
f76b9db2
ILT
2425 if (BYTES_BIG_ENDIAN)
2426 {
2427 /* Cancel the big-endian correction done in assign_stack_local.
2428 Get the address of the beginning of the slot.
2429 This is so we can do a big-endian correction unconditionally
2430 below. */
2431 adjust = GET_MODE_SIZE (mode) - total_size;
4f2d3674 2432 if (adjust)
38a448ca
RH
2433 stack_slot = gen_rtx_MEM (mode_for_size (total_size
2434 * BITS_PER_UNIT,
2435 MODE_INT, 1),
05d10675 2436 plus_constant (XEXP (x, 0), adjust));
f76b9db2 2437 }
4f2d3674 2438 spill_stack_slot[from_reg] = stack_slot;
32131a9c
RK
2439 spill_stack_slot_width[from_reg] = total_size;
2440 }
2441
32131a9c
RK
2442 /* On a big endian machine, the "address" of the slot
2443 is the address of the low part that fits its inherent mode. */
f76b9db2 2444 if (BYTES_BIG_ENDIAN && inherent_size < total_size)
32131a9c 2445 adjust += (total_size - inherent_size);
32131a9c
RK
2446
2447 /* If we have any adjustment to make, or if the stack slot is the
2448 wrong mode, make a new stack slot. */
2449 if (adjust != 0 || GET_MODE (x) != GET_MODE (regno_reg_rtx[i]))
2450 {
38a448ca 2451 x = gen_rtx_MEM (GET_MODE (regno_reg_rtx[i]),
05d10675 2452 plus_constant (XEXP (x, 0), adjust));
9ec36da5
JL
2453
2454 /* If this was shared among registers, must ensure we never
2455 set it readonly since that can cause scheduling
2456 problems. Note we would only have in this adjustment
2457 case in any event, since the code above doesn't set it. */
2458
2459 if (from_reg == -1)
2460 RTX_UNCHANGING_P (x) = RTX_UNCHANGING_P (regno_reg_rtx[i]);
32131a9c
RK
2461 }
2462
2463 /* Save the stack slot for later. */
2464 reg_equiv_memory_loc[i] = x;
2465 }
2466}
2467
2468/* Mark the slots in regs_ever_live for the hard regs
2469 used by pseudo-reg number REGNO. */
2470
2471void
2472mark_home_live (regno)
2473 int regno;
2474{
2475 register int i, lim;
2476 i = reg_renumber[regno];
2477 if (i < 0)
2478 return;
2479 lim = i + HARD_REGNO_NREGS (i, PSEUDO_REGNO_MODE (regno));
2480 while (i < lim)
2481 regs_ever_live[i++] = 1;
2482}
2483\f
2484/* This function handles the tracking of elimination offsets around branches.
2485
2486 X is a piece of RTL being scanned.
2487
2488 INSN is the insn that it came from, if any.
2489
2490 INITIAL_P is non-zero if we are to set the offset to be the initial
2491 offset and zero if we are setting the offset of the label to be the
2492 current offset. */
2493
2494static void
2495set_label_offsets (x, insn, initial_p)
2496 rtx x;
2497 rtx insn;
2498 int initial_p;
2499{
2500 enum rtx_code code = GET_CODE (x);
2501 rtx tem;
e51712db 2502 unsigned int i;
32131a9c
RK
2503 struct elim_table *p;
2504
2505 switch (code)
2506 {
2507 case LABEL_REF:
8be386d9
RS
2508 if (LABEL_REF_NONLOCAL_P (x))
2509 return;
2510
32131a9c
RK
2511 x = XEXP (x, 0);
2512
0f41302f 2513 /* ... fall through ... */
32131a9c
RK
2514
2515 case CODE_LABEL:
2516 /* If we know nothing about this label, set the desired offsets. Note
2517 that this sets the offset at a label to be the offset before a label
2518 if we don't know anything about the label. This is not correct for
2519 the label after a BARRIER, but is the best guess we can make. If
2520 we guessed wrong, we will suppress an elimination that might have
2521 been possible had we been able to guess correctly. */
2522
2523 if (! offsets_known_at[CODE_LABEL_NUMBER (x)])
2524 {
2525 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2526 offsets_at[CODE_LABEL_NUMBER (x)][i]
2527 = (initial_p ? reg_eliminate[i].initial_offset
2528 : reg_eliminate[i].offset);
2529 offsets_known_at[CODE_LABEL_NUMBER (x)] = 1;
2530 }
2531
2532 /* Otherwise, if this is the definition of a label and it is
d45cf215 2533 preceded by a BARRIER, set our offsets to the known offset of
32131a9c
RK
2534 that label. */
2535
2536 else if (x == insn
2537 && (tem = prev_nonnote_insn (insn)) != 0
2538 && GET_CODE (tem) == BARRIER)
1f3b1e1a 2539 set_offsets_for_label (insn);
32131a9c
RK
2540 else
2541 /* If neither of the above cases is true, compare each offset
2542 with those previously recorded and suppress any eliminations
2543 where the offsets disagree. */
a8fdc208 2544
32131a9c
RK
2545 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2546 if (offsets_at[CODE_LABEL_NUMBER (x)][i]
2547 != (initial_p ? reg_eliminate[i].initial_offset
2548 : reg_eliminate[i].offset))
2549 reg_eliminate[i].can_eliminate = 0;
2550
2551 return;
2552
2553 case JUMP_INSN:
2554 set_label_offsets (PATTERN (insn), insn, initial_p);
2555
0f41302f 2556 /* ... fall through ... */
32131a9c
RK
2557
2558 case INSN:
2559 case CALL_INSN:
2560 /* Any labels mentioned in REG_LABEL notes can be branched to indirectly
2561 and hence must have all eliminations at their initial offsets. */
2562 for (tem = REG_NOTES (x); tem; tem = XEXP (tem, 1))
2563 if (REG_NOTE_KIND (tem) == REG_LABEL)
2564 set_label_offsets (XEXP (tem, 0), insn, 1);
2565 return;
2566
2567 case ADDR_VEC:
2568 case ADDR_DIFF_VEC:
2569 /* Each of the labels in the address vector must be at their initial
38e01259 2570 offsets. We want the first field for ADDR_VEC and the second
32131a9c
RK
2571 field for ADDR_DIFF_VEC. */
2572
e51712db 2573 for (i = 0; i < (unsigned) XVECLEN (x, code == ADDR_DIFF_VEC); i++)
32131a9c
RK
2574 set_label_offsets (XVECEXP (x, code == ADDR_DIFF_VEC, i),
2575 insn, initial_p);
2576 return;
2577
2578 case SET:
2579 /* We only care about setting PC. If the source is not RETURN,
2580 IF_THEN_ELSE, or a label, disable any eliminations not at
2581 their initial offsets. Similarly if any arm of the IF_THEN_ELSE
2582 isn't one of those possibilities. For branches to a label,
2583 call ourselves recursively.
2584
2585 Note that this can disable elimination unnecessarily when we have
2586 a non-local goto since it will look like a non-constant jump to
2587 someplace in the current function. This isn't a significant
2588 problem since such jumps will normally be when all elimination
2589 pairs are back to their initial offsets. */
2590
2591 if (SET_DEST (x) != pc_rtx)
2592 return;
2593
2594 switch (GET_CODE (SET_SRC (x)))
2595 {
2596 case PC:
2597 case RETURN:
2598 return;
2599
2600 case LABEL_REF:
2601 set_label_offsets (XEXP (SET_SRC (x), 0), insn, initial_p);
2602 return;
2603
2604 case IF_THEN_ELSE:
2605 tem = XEXP (SET_SRC (x), 1);
2606 if (GET_CODE (tem) == LABEL_REF)
2607 set_label_offsets (XEXP (tem, 0), insn, initial_p);
2608 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2609 break;
2610
2611 tem = XEXP (SET_SRC (x), 2);
2612 if (GET_CODE (tem) == LABEL_REF)
2613 set_label_offsets (XEXP (tem, 0), insn, initial_p);
2614 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2615 break;
2616 return;
e9a25f70
JL
2617
2618 default:
2619 break;
32131a9c
RK
2620 }
2621
2622 /* If we reach here, all eliminations must be at their initial
2623 offset because we are doing a jump to a variable address. */
2624 for (p = reg_eliminate; p < &reg_eliminate[NUM_ELIMINABLE_REGS]; p++)
2625 if (p->offset != p->initial_offset)
2626 p->can_eliminate = 0;
e9a25f70 2627 break;
05d10675 2628
e9a25f70
JL
2629 default:
2630 break;
32131a9c
RK
2631 }
2632}
2633\f
a8fdc208 2634/* Scan X and replace any eliminable registers (such as fp) with a
32131a9c
RK
2635 replacement (such as sp), plus an offset.
2636
2637 MEM_MODE is the mode of an enclosing MEM. We need this to know how
2638 much to adjust a register for, e.g., PRE_DEC. Also, if we are inside a
2639 MEM, we are allowed to replace a sum of a register and the constant zero
2640 with the register, which we cannot do outside a MEM. In addition, we need
2641 to record the fact that a register is referenced outside a MEM.
2642
ff32812a 2643 If INSN is an insn, it is the insn containing X. If we replace a REG
32131a9c
RK
2644 in a SET_DEST with an equivalent MEM and INSN is non-zero, write a
2645 CLOBBER of the pseudo after INSN so find_equiv_regs will know that
38e01259 2646 the REG is being modified.
32131a9c 2647
ff32812a
RS
2648 Alternatively, INSN may be a note (an EXPR_LIST or INSN_LIST).
2649 That's used when we eliminate in expressions stored in notes.
2650 This means, do not set ref_outside_mem even if the reference
2651 is outside of MEMs.
2652
32131a9c
RK
2653 REG_EQUIV_MEM and REG_EQUIV_ADDRESS contain address that have had
2654 replacements done assuming all offsets are at their initial values. If
2655 they are not, or if REG_EQUIV_ADDRESS is nonzero for a pseudo we
2656 encounter, return the actual location so that find_reloads will do
2657 the proper thing. */
2658
2659rtx
1914f5da 2660eliminate_regs (x, mem_mode, insn)
32131a9c
RK
2661 rtx x;
2662 enum machine_mode mem_mode;
2663 rtx insn;
2664{
2665 enum rtx_code code = GET_CODE (x);
2666 struct elim_table *ep;
2667 int regno;
2668 rtx new;
2669 int i, j;
6f7d635c 2670 const char *fmt;
32131a9c
RK
2671 int copied = 0;
2672
d6633f01
NS
2673 if (! current_function_decl)
2674 return x;
9969bb2c 2675
32131a9c
RK
2676 switch (code)
2677 {
2678 case CONST_INT:
2679 case CONST_DOUBLE:
2680 case CONST:
2681 case SYMBOL_REF:
2682 case CODE_LABEL:
2683 case PC:
2684 case CC0:
2685 case ASM_INPUT:
2686 case ADDR_VEC:
2687 case ADDR_DIFF_VEC:
2688 case RETURN:
2689 return x;
2690
e9a25f70
JL
2691 case ADDRESSOF:
2692 /* This is only for the benefit of the debugging backends, which call
2693 eliminate_regs on DECL_RTL; any ADDRESSOFs in the actual insns are
2694 removed after CSE. */
1914f5da 2695 new = eliminate_regs (XEXP (x, 0), 0, insn);
e9a25f70
JL
2696 if (GET_CODE (new) == MEM)
2697 return XEXP (new, 0);
2698 return x;
2699
32131a9c
RK
2700 case REG:
2701 regno = REGNO (x);
2702
2703 /* First handle the case where we encounter a bare register that
2704 is eliminable. Replace it with a PLUS. */
2705 if (regno < FIRST_PSEUDO_REGISTER)
2706 {
2707 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2708 ep++)
2709 if (ep->from_rtx == x && ep->can_eliminate)
dfac187e 2710 return plus_constant (ep->to_rtx, ep->previous_offset);
32131a9c
RK
2711
2712 }
2b49ee39
R
2713 else if (reg_renumber[regno] < 0 && reg_equiv_constant
2714 && reg_equiv_constant[regno]
2715 && ! CONSTANT_P (reg_equiv_constant[regno]))
2716 return eliminate_regs (copy_rtx (reg_equiv_constant[regno]),
2717 mem_mode, insn);
32131a9c
RK
2718 return x;
2719
c5c76735
JL
2720 /* You might think handling MINUS in a manner similar to PLUS is a
2721 good idea. It is not. It has been tried multiple times and every
2722 time the change has had to have been reverted.
2723
2724 Other parts of reload know a PLUS is special (gen_reload for example)
2725 and require special code to handle code a reloaded PLUS operand.
2726
2727 Also consider backends where the flags register is clobbered by a
2728 MINUS, but we can emit a PLUS that does not clobber flags (ia32,
2729 lea instruction comes to mind). If we try to reload a MINUS, we
2730 may kill the flags register that was holding a useful value.
2731
2732 So, please before trying to handle MINUS, consider reload as a
2733 whole instead of this little section as well as the backend issues. */
32131a9c
RK
2734 case PLUS:
2735 /* If this is the sum of an eliminable register and a constant, rework
2736 the sum. */
2737 if (GET_CODE (XEXP (x, 0)) == REG
2738 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2739 && CONSTANT_P (XEXP (x, 1)))
2740 {
2741 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2742 ep++)
2743 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2744 {
32131a9c
RK
2745 /* The only time we want to replace a PLUS with a REG (this
2746 occurs when the constant operand of the PLUS is the negative
2747 of the offset) is when we are inside a MEM. We won't want
2748 to do so at other times because that would change the
2749 structure of the insn in a way that reload can't handle.
2750 We special-case the commonest situation in
2751 eliminate_regs_in_insn, so just replace a PLUS with a
2752 PLUS here, unless inside a MEM. */
a23b64d5 2753 if (mem_mode != 0 && GET_CODE (XEXP (x, 1)) == CONST_INT
32131a9c
RK
2754 && INTVAL (XEXP (x, 1)) == - ep->previous_offset)
2755 return ep->to_rtx;
2756 else
38a448ca
RH
2757 return gen_rtx_PLUS (Pmode, ep->to_rtx,
2758 plus_constant (XEXP (x, 1),
2759 ep->previous_offset));
32131a9c
RK
2760 }
2761
2762 /* If the register is not eliminable, we are done since the other
2763 operand is a constant. */
2764 return x;
2765 }
2766
2767 /* If this is part of an address, we want to bring any constant to the
2768 outermost PLUS. We will do this by doing register replacement in
2769 our operands and seeing if a constant shows up in one of them.
2770
dfac187e
BS
2771 Note that there is no risk of modifying the structure of the insn,
2772 since we only get called for its operands, thus we are either
2773 modifying the address inside a MEM, or something like an address
2774 operand of a load-address insn. */
32131a9c
RK
2775
2776 {
1914f5da
RH
2777 rtx new0 = eliminate_regs (XEXP (x, 0), mem_mode, insn);
2778 rtx new1 = eliminate_regs (XEXP (x, 1), mem_mode, insn);
32131a9c
RK
2779
2780 if (new0 != XEXP (x, 0) || new1 != XEXP (x, 1))
2781 {
2782 /* If one side is a PLUS and the other side is a pseudo that
a8fdc208 2783 didn't get a hard register but has a reg_equiv_constant,
32131a9c
RK
2784 we must replace the constant here since it may no longer
2785 be in the position of any operand. */
2786 if (GET_CODE (new0) == PLUS && GET_CODE (new1) == REG
2787 && REGNO (new1) >= FIRST_PSEUDO_REGISTER
2788 && reg_renumber[REGNO (new1)] < 0
2789 && reg_equiv_constant != 0
2790 && reg_equiv_constant[REGNO (new1)] != 0)
2791 new1 = reg_equiv_constant[REGNO (new1)];
2792 else if (GET_CODE (new1) == PLUS && GET_CODE (new0) == REG
2793 && REGNO (new0) >= FIRST_PSEUDO_REGISTER
2794 && reg_renumber[REGNO (new0)] < 0
2795 && reg_equiv_constant[REGNO (new0)] != 0)
2796 new0 = reg_equiv_constant[REGNO (new0)];
2797
2798 new = form_sum (new0, new1);
2799
2800 /* As above, if we are not inside a MEM we do not want to
2801 turn a PLUS into something else. We might try to do so here
2802 for an addition of 0 if we aren't optimizing. */
2803 if (! mem_mode && GET_CODE (new) != PLUS)
38a448ca 2804 return gen_rtx_PLUS (GET_MODE (x), new, const0_rtx);
32131a9c
RK
2805 else
2806 return new;
2807 }
2808 }
2809 return x;
2810
981c7390 2811 case MULT:
05d10675 2812 /* If this is the product of an eliminable register and a
981c7390
RK
2813 constant, apply the distribute law and move the constant out
2814 so that we have (plus (mult ..) ..). This is needed in order
9faa82d8 2815 to keep load-address insns valid. This case is pathological.
981c7390
RK
2816 We ignore the possibility of overflow here. */
2817 if (GET_CODE (XEXP (x, 0)) == REG
2818 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2819 && GET_CODE (XEXP (x, 1)) == CONST_INT)
2820 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2821 ep++)
2822 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2823 {
2824 if (! mem_mode
2825 /* Refs inside notes don't count for this purpose. */
2826 && ! (insn != 0 && (GET_CODE (insn) == EXPR_LIST
2827 || GET_CODE (insn) == INSN_LIST)))
2828 ep->ref_outside_mem = 1;
2829
2830 return
38a448ca 2831 plus_constant (gen_rtx_MULT (Pmode, ep->to_rtx, XEXP (x, 1)),
981c7390
RK
2832 ep->previous_offset * INTVAL (XEXP (x, 1)));
2833 }
32131a9c 2834
0f41302f 2835 /* ... fall through ... */
32131a9c 2836
32131a9c
RK
2837 case CALL:
2838 case COMPARE:
c5c76735 2839 /* See comments before PLUS about handling MINUS. */
930aeef3 2840 case MINUS:
32131a9c
RK
2841 case DIV: case UDIV:
2842 case MOD: case UMOD:
2843 case AND: case IOR: case XOR:
45620ed4
RK
2844 case ROTATERT: case ROTATE:
2845 case ASHIFTRT: case LSHIFTRT: case ASHIFT:
32131a9c
RK
2846 case NE: case EQ:
2847 case GE: case GT: case GEU: case GTU:
2848 case LE: case LT: case LEU: case LTU:
2849 {
1914f5da 2850 rtx new0 = eliminate_regs (XEXP (x, 0), mem_mode, insn);
fb3821f7 2851 rtx new1
1914f5da 2852 = XEXP (x, 1) ? eliminate_regs (XEXP (x, 1), mem_mode, insn) : 0;
32131a9c
RK
2853
2854 if (new0 != XEXP (x, 0) || new1 != XEXP (x, 1))
38a448ca 2855 return gen_rtx_fmt_ee (code, GET_MODE (x), new0, new1);
32131a9c
RK
2856 }
2857 return x;
2858
981c7390
RK
2859 case EXPR_LIST:
2860 /* If we have something in XEXP (x, 0), the usual case, eliminate it. */
2861 if (XEXP (x, 0))
2862 {
1914f5da 2863 new = eliminate_regs (XEXP (x, 0), mem_mode, insn);
981c7390 2864 if (new != XEXP (x, 0))
13bb79d4
R
2865 {
2866 /* If this is a REG_DEAD note, it is not valid anymore.
2867 Using the eliminated version could result in creating a
2868 REG_DEAD note for the stack or frame pointer. */
2869 if (GET_MODE (x) == REG_DEAD)
2870 return (XEXP (x, 1)
2871 ? eliminate_regs (XEXP (x, 1), mem_mode, insn)
2872 : NULL_RTX);
2873
2874 x = gen_rtx_EXPR_LIST (REG_NOTE_KIND (x), new, XEXP (x, 1));
2875 }
981c7390
RK
2876 }
2877
0f41302f 2878 /* ... fall through ... */
981c7390
RK
2879
2880 case INSN_LIST:
2881 /* Now do eliminations in the rest of the chain. If this was
2882 an EXPR_LIST, this might result in allocating more memory than is
2883 strictly needed, but it simplifies the code. */
2884 if (XEXP (x, 1))
2885 {
1914f5da 2886 new = eliminate_regs (XEXP (x, 1), mem_mode, insn);
981c7390 2887 if (new != XEXP (x, 1))
38a448ca 2888 return gen_rtx_fmt_ee (GET_CODE (x), GET_MODE (x), XEXP (x, 0), new);
981c7390
RK
2889 }
2890 return x;
2891
32131a9c
RK
2892 case PRE_INC:
2893 case POST_INC:
2894 case PRE_DEC:
2895 case POST_DEC:
32131a9c
RK
2896 case STRICT_LOW_PART:
2897 case NEG: case NOT:
2898 case SIGN_EXTEND: case ZERO_EXTEND:
2899 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
2900 case FLOAT: case FIX:
2901 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
2902 case ABS:
2903 case SQRT:
2904 case FFS:
1914f5da 2905 new = eliminate_regs (XEXP (x, 0), mem_mode, insn);
32131a9c 2906 if (new != XEXP (x, 0))
38a448ca 2907 return gen_rtx_fmt_e (code, GET_MODE (x), new);
32131a9c
RK
2908 return x;
2909
2910 case SUBREG:
2911 /* Similar to above processing, but preserve SUBREG_WORD.
2912 Convert (subreg (mem)) to (mem) if not paradoxical.
2913 Also, if we have a non-paradoxical (subreg (pseudo)) and the
2914 pseudo didn't get a hard reg, we must replace this with the
2915 eliminated version of the memory location because push_reloads
2916 may do the replacement in certain circumstances. */
2917 if (GET_CODE (SUBREG_REG (x)) == REG
2918 && (GET_MODE_SIZE (GET_MODE (x))
2919 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
2920 && reg_equiv_memory_loc != 0
2921 && reg_equiv_memory_loc[REGNO (SUBREG_REG (x))] != 0)
2922 {
cb2afeb3 2923 new = SUBREG_REG (x);
32131a9c
RK
2924 }
2925 else
1914f5da 2926 new = eliminate_regs (SUBREG_REG (x), mem_mode, insn);
32131a9c
RK
2927
2928 if (new != XEXP (x, 0))
2929 {
29ae5012
RK
2930 int x_size = GET_MODE_SIZE (GET_MODE (x));
2931 int new_size = GET_MODE_SIZE (GET_MODE (new));
2932
1914f5da 2933 if (GET_CODE (new) == MEM
6d49a073 2934 && ((x_size < new_size
1914f5da 2935#ifdef WORD_REGISTER_OPERATIONS
6d49a073
JW
2936 /* On these machines, combine can create rtl of the form
2937 (set (subreg:m1 (reg:m2 R) 0) ...)
05d10675 2938 where m1 < m2, and expects something interesting to
6d49a073
JW
2939 happen to the entire word. Moreover, it will use the
2940 (reg:m2 R) later, expecting all bits to be preserved.
05d10675 2941 So if the number of words is the same, preserve the
6d49a073
JW
2942 subreg so that push_reloads can see it. */
2943 && ! ((x_size-1)/UNITS_PER_WORD == (new_size-1)/UNITS_PER_WORD)
1914f5da 2944#endif
6d49a073
JW
2945 )
2946 || (x_size == new_size))
1914f5da 2947 )
32131a9c
RK
2948 {
2949 int offset = SUBREG_WORD (x) * UNITS_PER_WORD;
2950 enum machine_mode mode = GET_MODE (x);
2951
f76b9db2
ILT
2952 if (BYTES_BIG_ENDIAN)
2953 offset += (MIN (UNITS_PER_WORD,
2954 GET_MODE_SIZE (GET_MODE (new)))
2955 - MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode)));
32131a9c
RK
2956
2957 PUT_MODE (new, mode);
2958 XEXP (new, 0) = plus_constant (XEXP (new, 0), offset);
2959 return new;
2960 }
2961 else
38a448ca 2962 return gen_rtx_SUBREG (GET_MODE (x), new, SUBREG_WORD (x));
32131a9c
RK
2963 }
2964
2965 return x;
2966
32131a9c 2967 case MEM:
e9a25f70
JL
2968 /* This is only for the benefit of the debugging backends, which call
2969 eliminate_regs on DECL_RTL; any ADDRESSOFs in the actual insns are
2970 removed after CSE. */
2971 if (GET_CODE (XEXP (x, 0)) == ADDRESSOF)
1914f5da 2972 return eliminate_regs (XEXP (XEXP (x, 0), 0), 0, insn);
e9a25f70 2973
32131a9c
RK
2974 /* Our only special processing is to pass the mode of the MEM to our
2975 recursive call and copy the flags. While we are here, handle this
2976 case more efficiently. */
1914f5da 2977 new = eliminate_regs (XEXP (x, 0), GET_MODE (x), insn);
32131a9c
RK
2978 if (new != XEXP (x, 0))
2979 {
38a448ca 2980 new = gen_rtx_MEM (GET_MODE (x), new);
32131a9c
RK
2981 new->volatil = x->volatil;
2982 new->unchanging = x->unchanging;
2983 new->in_struct = x->in_struct;
2984 return new;
2985 }
2986 else
2987 return x;
05d10675 2988
dfac187e
BS
2989 case USE:
2990 case CLOBBER:
2991 case ASM_OPERANDS:
2992 case SET:
2993 abort ();
2994
e9a25f70
JL
2995 default:
2996 break;
32131a9c
RK
2997 }
2998
2999 /* Process each of our operands recursively. If any have changed, make a
3000 copy of the rtx. */
3001 fmt = GET_RTX_FORMAT (code);
3002 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3003 {
3004 if (*fmt == 'e')
3005 {
1914f5da 3006 new = eliminate_regs (XEXP (x, i), mem_mode, insn);
32131a9c
RK
3007 if (new != XEXP (x, i) && ! copied)
3008 {
3009 rtx new_x = rtx_alloc (code);
4c9a05bc
RK
3010 bcopy ((char *) x, (char *) new_x,
3011 (sizeof (*new_x) - sizeof (new_x->fld)
3012 + sizeof (new_x->fld[0]) * GET_RTX_LENGTH (code)));
32131a9c
RK
3013 x = new_x;
3014 copied = 1;
3015 }
3016 XEXP (x, i) = new;
3017 }
3018 else if (*fmt == 'E')
3019 {
3020 int copied_vec = 0;
3021 for (j = 0; j < XVECLEN (x, i); j++)
3022 {
1914f5da 3023 new = eliminate_regs (XVECEXP (x, i, j), mem_mode, insn);
32131a9c
RK
3024 if (new != XVECEXP (x, i, j) && ! copied_vec)
3025 {
8f985ec4
ZW
3026 rtvec new_v = gen_rtvec_v (XVECLEN (x, i),
3027 XVEC (x, i)->elem);
32131a9c
RK
3028 if (! copied)
3029 {
3030 rtx new_x = rtx_alloc (code);
4c9a05bc
RK
3031 bcopy ((char *) x, (char *) new_x,
3032 (sizeof (*new_x) - sizeof (new_x->fld)
3033 + (sizeof (new_x->fld[0])
3034 * GET_RTX_LENGTH (code))));
32131a9c
RK
3035 x = new_x;
3036 copied = 1;
3037 }
3038 XVEC (x, i) = new_v;
3039 copied_vec = 1;
3040 }
3041 XVECEXP (x, i, j) = new;
3042 }
3043 }
3044 }
3045
3046 return x;
3047}
dfac187e
BS
3048
3049/* Scan rtx X for modifications of elimination target registers. Update
3050 the table of eliminables to reflect the changed state. MEM_MODE is
3051 the mode of an enclosing MEM rtx, or VOIDmode if not within a MEM. */
3052
3053static void
3054elimination_effects (x, mem_mode)
3055 rtx x;
3056 enum machine_mode mem_mode;
3057
3058{
3059 enum rtx_code code = GET_CODE (x);
3060 struct elim_table *ep;
3061 int regno;
3062 int i, j;
3063 const char *fmt;
3064
3065 switch (code)
3066 {
3067 case CONST_INT:
3068 case CONST_DOUBLE:
3069 case CONST:
3070 case SYMBOL_REF:
3071 case CODE_LABEL:
3072 case PC:
3073 case CC0:
3074 case ASM_INPUT:
3075 case ADDR_VEC:
3076 case ADDR_DIFF_VEC:
3077 case RETURN:
3078 return;
3079
3080 case ADDRESSOF:
3081 abort ();
3082
3083 case REG:
3084 regno = REGNO (x);
3085
3086 /* First handle the case where we encounter a bare register that
3087 is eliminable. Replace it with a PLUS. */
3088 if (regno < FIRST_PSEUDO_REGISTER)
3089 {
3090 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3091 ep++)
3092 if (ep->from_rtx == x && ep->can_eliminate)
3093 {
3094 if (! mem_mode)
3095 ep->ref_outside_mem = 1;
3096 return;
3097 }
3098
3099 }
3100 else if (reg_renumber[regno] < 0 && reg_equiv_constant
3101 && reg_equiv_constant[regno]
3102 && ! CONSTANT_P (reg_equiv_constant[regno]))
3103 elimination_effects (reg_equiv_constant[regno], mem_mode);
3104 return;
3105
3106 case PRE_INC:
3107 case POST_INC:
3108 case PRE_DEC:
3109 case POST_DEC:
3110 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3111 if (ep->to_rtx == XEXP (x, 0))
3112 {
3113 int size = GET_MODE_SIZE (mem_mode);
3114
3115 /* If more bytes than MEM_MODE are pushed, account for them. */
3116#ifdef PUSH_ROUNDING
3117 if (ep->to_rtx == stack_pointer_rtx)
3118 size = PUSH_ROUNDING (size);
3119#endif
3120 if (code == PRE_DEC || code == POST_DEC)
3121 ep->offset += size;
3122 else
3123 ep->offset -= size;
3124 }
3125
3126 /* Fall through to generic unary operation case. */
3127 case STRICT_LOW_PART:
3128 case NEG: case NOT:
3129 case SIGN_EXTEND: case ZERO_EXTEND:
3130 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
3131 case FLOAT: case FIX:
3132 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
3133 case ABS:
3134 case SQRT:
3135 case FFS:
3136 elimination_effects (XEXP (x, 0), mem_mode);
3137 return;
3138
3139 case SUBREG:
3140 if (GET_CODE (SUBREG_REG (x)) == REG
3141 && (GET_MODE_SIZE (GET_MODE (x))
3142 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
3143 && reg_equiv_memory_loc != 0
3144 && reg_equiv_memory_loc[REGNO (SUBREG_REG (x))] != 0)
3145 return;
3146
3147 elimination_effects (SUBREG_REG (x), mem_mode);
3148 return;
3149
3150 case USE:
3151 /* If using a register that is the source of an eliminate we still
3152 think can be performed, note it cannot be performed since we don't
3153 know how this register is used. */
3154 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3155 if (ep->from_rtx == XEXP (x, 0))
3156 ep->can_eliminate = 0;
3157
3158 elimination_effects (XEXP (x, 0), mem_mode);
3159 return;
3160
3161 case CLOBBER:
3162 /* If clobbering a register that is the replacement register for an
3163 elimination we still think can be performed, note that it cannot
3164 be performed. Otherwise, we need not be concerned about it. */
3165 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3166 if (ep->to_rtx == XEXP (x, 0))
3167 ep->can_eliminate = 0;
3168
3169 elimination_effects (XEXP (x, 0), mem_mode);
3170 return;
3171
3172 case SET:
3173 /* Check for setting a register that we know about. */
3174 if (GET_CODE (SET_DEST (x)) == REG)
3175 {
3176 /* See if this is setting the replacement register for an
3177 elimination.
3178
3179 If DEST is the hard frame pointer, we do nothing because we
3180 assume that all assignments to the frame pointer are for
3181 non-local gotos and are being done at a time when they are valid
3182 and do not disturb anything else. Some machines want to
3183 eliminate a fake argument pointer (or even a fake frame pointer)
3184 with either the real frame or the stack pointer. Assignments to
3185 the hard frame pointer must not prevent this elimination. */
3186
3187 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3188 ep++)
3189 if (ep->to_rtx == SET_DEST (x)
3190 && SET_DEST (x) != hard_frame_pointer_rtx)
3191 {
3192 /* If it is being incremented, adjust the offset. Otherwise,
3193 this elimination can't be done. */
3194 rtx src = SET_SRC (x);
3195
3196 if (GET_CODE (src) == PLUS
3197 && XEXP (src, 0) == SET_DEST (x)
3198 && GET_CODE (XEXP (src, 1)) == CONST_INT)
3199 ep->offset -= INTVAL (XEXP (src, 1));
3200 else
3201 ep->can_eliminate = 0;
3202 }
3203 }
3204
3205 elimination_effects (SET_DEST (x), 0);
3206 elimination_effects (SET_SRC (x), 0);
3207 return;
3208
3209 case MEM:
3210 if (GET_CODE (XEXP (x, 0)) == ADDRESSOF)
3211 abort ();
3212
3213 /* Our only special processing is to pass the mode of the MEM to our
3214 recursive call. */
3215 elimination_effects (XEXP (x, 0), GET_MODE (x));
3216 return;
3217
3218 default:
3219 break;
3220 }
3221
3222 fmt = GET_RTX_FORMAT (code);
3223 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3224 {
3225 if (*fmt == 'e')
3226 elimination_effects (XEXP (x, i), mem_mode);
3227 else if (*fmt == 'E')
3228 for (j = 0; j < XVECLEN (x, i); j++)
3229 elimination_effects (XVECEXP (x, i, j), mem_mode);
3230 }
3231}
3232
3233/* Descend through rtx X and verify that no references to eliminable registers
3234 remain. If any do remain, mark the involved register as not
3235 eliminable. */
3236static void
3237check_eliminable_occurrences (x)
3238 rtx x;
3239{
3240 const char *fmt;
3241 int i;
3242 enum rtx_code code;
3243
3244 if (x == 0)
3245 return;
3246
3247 code = GET_CODE (x);
3248
3249 if (code == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
3250 {
3251 struct elim_table *ep;
3252
3253 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3254 if (ep->from_rtx == x && ep->can_eliminate)
3255 ep->can_eliminate = 0;
3256 return;
3257 }
3258
3259 fmt = GET_RTX_FORMAT (code);
3260 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3261 {
3262 if (*fmt == 'e')
3263 check_eliminable_occurrences (XEXP (x, i));
3264 else if (*fmt == 'E')
3265 {
3266 int j;
3267 for (j = 0; j < XVECLEN (x, i); j++)
3268 check_eliminable_occurrences (XVECEXP (x, i, j));
3269 }
3270 }
3271}
32131a9c
RK
3272\f
3273/* Scan INSN and eliminate all eliminable registers in it.
3274
3275 If REPLACE is nonzero, do the replacement destructively. Also
3276 delete the insn as dead it if it is setting an eliminable register.
3277
3278 If REPLACE is zero, do all our allocations in reload_obstack.
3279
3280 If no eliminations were done and this insn doesn't require any elimination
3281 processing (these are not identical conditions: it might be updating sp,
3282 but not referencing fp; this needs to be seen during reload_as_needed so
3283 that the offset between fp and sp can be taken into consideration), zero
3284 is returned. Otherwise, 1 is returned. */
3285
3286static int
3287eliminate_regs_in_insn (insn, replace)
3288 rtx insn;
3289 int replace;
3290{
dfac187e 3291 int icode = recog_memoized (insn);
32131a9c 3292 rtx old_body = PATTERN (insn);
dfac187e 3293 int insn_is_asm = asm_noperands (old_body) >= 0;
774672d2 3294 rtx old_set = single_set (insn);
32131a9c
RK
3295 rtx new_body;
3296 int val = 0;
dfac187e
BS
3297 int i, any_changes;
3298 rtx substed_operand[MAX_RECOG_OPERANDS];
3299 rtx orig_operand[MAX_RECOG_OPERANDS];
32131a9c
RK
3300 struct elim_table *ep;
3301
dfac187e
BS
3302 if (! insn_is_asm && icode < 0)
3303 {
3304 if (GET_CODE (PATTERN (insn)) == USE
3305 || GET_CODE (PATTERN (insn)) == CLOBBER
3306 || GET_CODE (PATTERN (insn)) == ADDR_VEC
3307 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
3308 || GET_CODE (PATTERN (insn)) == ASM_INPUT)
3309 return 0;
3310 abort ();
3311 }
3312
32131a9c
RK
3313 if (! replace)
3314 push_obstacks (&reload_obstack, &reload_obstack);
3315
774672d2
RK
3316 if (old_set != 0 && GET_CODE (SET_DEST (old_set)) == REG
3317 && REGNO (SET_DEST (old_set)) < FIRST_PSEUDO_REGISTER)
32131a9c
RK
3318 {
3319 /* Check for setting an eliminable register. */
3320 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
774672d2 3321 if (ep->from_rtx == SET_DEST (old_set) && ep->can_eliminate)
32131a9c 3322 {
dd1eab0a
RK
3323#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
3324 /* If this is setting the frame pointer register to the
3325 hardware frame pointer register and this is an elimination
3326 that will be done (tested above), this insn is really
3327 adjusting the frame pointer downward to compensate for
3328 the adjustment done before a nonlocal goto. */
3329 if (ep->from == FRAME_POINTER_REGNUM
3330 && ep->to == HARD_FRAME_POINTER_REGNUM)
3331 {
3332 rtx src = SET_SRC (old_set);
973838fd 3333 int offset = 0, ok = 0;
8026ebba 3334 rtx prev_insn, prev_set;
dd1eab0a
RK
3335
3336 if (src == ep->to_rtx)
3337 offset = 0, ok = 1;
3338 else if (GET_CODE (src) == PLUS
bb22893c
JW
3339 && GET_CODE (XEXP (src, 0)) == CONST_INT
3340 && XEXP (src, 1) == ep->to_rtx)
dd1eab0a 3341 offset = INTVAL (XEXP (src, 0)), ok = 1;
bb22893c
JW
3342 else if (GET_CODE (src) == PLUS
3343 && GET_CODE (XEXP (src, 1)) == CONST_INT
3344 && XEXP (src, 0) == ep->to_rtx)
3345 offset = INTVAL (XEXP (src, 1)), ok = 1;
8026ebba
ILT
3346 else if ((prev_insn = prev_nonnote_insn (insn)) != 0
3347 && (prev_set = single_set (prev_insn)) != 0
3348 && rtx_equal_p (SET_DEST (prev_set), src))
3349 {
3350 src = SET_SRC (prev_set);
3351 if (src == ep->to_rtx)
3352 offset = 0, ok = 1;
3353 else if (GET_CODE (src) == PLUS
3354 && GET_CODE (XEXP (src, 0)) == CONST_INT
3355 && XEXP (src, 1) == ep->to_rtx)
3356 offset = INTVAL (XEXP (src, 0)), ok = 1;
3357 else if (GET_CODE (src) == PLUS
3358 && GET_CODE (XEXP (src, 1)) == CONST_INT
3359 && XEXP (src, 0) == ep->to_rtx)
3360 offset = INTVAL (XEXP (src, 1)), ok = 1;
3361 }
dd1eab0a
RK
3362
3363 if (ok)
3364 {
3365 if (replace)
3366 {
3367 rtx src
3368 = plus_constant (ep->to_rtx, offset - ep->offset);
3369
3370 /* First see if this insn remains valid when we
3371 make the change. If not, keep the INSN_CODE
3372 the same and let reload fit it up. */
3373 validate_change (insn, &SET_SRC (old_set), src, 1);
3374 validate_change (insn, &SET_DEST (old_set),
3375 ep->to_rtx, 1);
3376 if (! apply_change_group ())
3377 {
3378 SET_SRC (old_set) = src;
3379 SET_DEST (old_set) = ep->to_rtx;
3380 }
3381 }
3382
3383 val = 1;
3384 goto done;
3385 }
3386 }
3387#endif
3388
32131a9c
RK
3389 /* In this case this insn isn't serving a useful purpose. We
3390 will delete it in reload_as_needed once we know that this
3391 elimination is, in fact, being done.
3392
abc95ed3 3393 If REPLACE isn't set, we can't delete this insn, but needn't
32131a9c
RK
3394 process it since it won't be used unless something changes. */
3395 if (replace)
8a34409d
RH
3396 {
3397 delete_dead_insn (insn);
3398 return 1;
3399 }
32131a9c
RK
3400 val = 1;
3401 goto done;
3402 }
3403
3404 /* Check for (set (reg) (plus (reg from) (offset))) where the offset
3405 in the insn is the negative of the offset in FROM. Substitute
3406 (set (reg) (reg to)) for the insn and change its code.
3407
cb2afeb3 3408 We have to do this here, rather than in eliminate_regs, so that we can
32131a9c
RK
3409 change the insn code. */
3410
774672d2
RK
3411 if (GET_CODE (SET_SRC (old_set)) == PLUS
3412 && GET_CODE (XEXP (SET_SRC (old_set), 0)) == REG
3413 && GET_CODE (XEXP (SET_SRC (old_set), 1)) == CONST_INT)
32131a9c
RK
3414 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3415 ep++)
774672d2 3416 if (ep->from_rtx == XEXP (SET_SRC (old_set), 0)
922d9d40 3417 && ep->can_eliminate)
32131a9c 3418 {
922d9d40
RK
3419 /* We must stop at the first elimination that will be used.
3420 If this one would replace the PLUS with a REG, do it
3421 now. Otherwise, quit the loop and let eliminate_regs
3422 do its normal replacement. */
774672d2 3423 if (ep->offset == - INTVAL (XEXP (SET_SRC (old_set), 1)))
922d9d40 3424 {
774672d2
RK
3425 /* We assume here that we don't need a PARALLEL of
3426 any CLOBBERs for this assignment. There's not
3427 much we can do if we do need it. */
38a448ca
RH
3428 PATTERN (insn) = gen_rtx_SET (VOIDmode,
3429 SET_DEST (old_set),
3430 ep->to_rtx);
922d9d40
RK
3431 INSN_CODE (insn) = -1;
3432 val = 1;
3433 goto done;
3434 }
3435
3436 break;
32131a9c
RK
3437 }
3438 }
3439
dfac187e
BS
3440 /* Determine the effects of this insn on elimination offsets. */
3441 elimination_effects (old_body, 0);
3442
3443 /* Eliminate all eliminable registers occurring in operands that
3444 can be handled by reload. */
3445 extract_insn (insn);
3446 any_changes = 0;
3447 for (i = 0; i < recog_data.n_operands; i++)
3448 {
3449 orig_operand[i] = recog_data.operand[i];
3450 substed_operand[i] = recog_data.operand[i];
3451
3452 /* For an asm statement, every operand is eliminable. */
3453 if (insn_is_asm || insn_data[icode].operand[i].eliminable)
3454 {
3455 /* Check for setting a register that we know about. */
3456 if (recog_data.operand_type[i] != OP_IN
3457 && GET_CODE (orig_operand[i]) == REG)
3458 {
3459 /* If we are assigning to a register that can be eliminated, it
3460 must be as part of a PARALLEL, since the code above handles
3461 single SETs. We must indicate that we can no longer
3462 eliminate this reg. */
3463 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3464 ep++)
3465 if (ep->from_rtx == orig_operand[i] && ep->can_eliminate)
3466 ep->can_eliminate = 0;
3467 }
3468
3469 substed_operand[i] = eliminate_regs (recog_data.operand[i], 0,
3470 replace ? insn : NULL_RTX);
3471 if (substed_operand[i] != orig_operand[i])
3472 val = any_changes = 1;
3473 /* Terminate the search in check_eliminable_occurrences at
3474 this point. */
3475 *recog_data.operand_loc[i] = 0;
3476
3477 /* If an output operand changed from a REG to a MEM and INSN is an
3478 insn, write a CLOBBER insn. */
3479 if (recog_data.operand_type[i] != OP_IN
3480 && GET_CODE (orig_operand[i]) == REG
3481 && GET_CODE (substed_operand[i]) == MEM
3482 && replace)
3483 emit_insn_after (gen_rtx_CLOBBER (VOIDmode, orig_operand[i]),
3484 insn);
3485 }
3486 }
3487
3488 for (i = 0; i < recog_data.n_dups; i++)
3489 *recog_data.dup_loc[i]
3490 = *recog_data.operand_loc[(int)recog_data.dup_num[i]];
3491
3492 /* If any eliminable remain, they aren't eliminable anymore. */
3493 check_eliminable_occurrences (old_body);
32131a9c 3494
dfac187e
BS
3495 /* Substitute the operands; the new values are in the substed_operand
3496 array. */
3497 for (i = 0; i < recog_data.n_operands; i++)
3498 *recog_data.operand_loc[i] = substed_operand[i];
3499 for (i = 0; i < recog_data.n_dups; i++)
3500 *recog_data.dup_loc[i] = substed_operand[(int)recog_data.dup_num[i]];
32131a9c 3501
dfac187e 3502 /* If we are replacing a body that was a (set X (plus Y Z)), try to
32131a9c
RK
3503 re-recognize the insn. We do this in case we had a simple addition
3504 but now can do this as a load-address. This saves an insn in this
dfac187e
BS
3505 common case.
3506 If re-recognition fails, the old insn code number will still be used,
3507 and some register operands may have changed into PLUS expressions.
3508 These will be handled by find_reloads by loading them into a register
3509 again.*/
32131a9c 3510
dfac187e 3511 if (val)
32131a9c 3512 {
7c791b13
RK
3513 /* If we aren't replacing things permanently and we changed something,
3514 make another copy to ensure that all the RTL is new. Otherwise
3515 things can go wrong if find_reload swaps commutative operands
0f41302f 3516 and one is inside RTL that has been copied while the other is not. */
dfac187e
BS
3517 new_body = old_body;
3518 if (! replace)
1b3b5765
BS
3519 {
3520 new_body = copy_insn (old_body);
3521 if (REG_NOTES (insn))
3522 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3523 }
dfac187e 3524 PATTERN (insn) = new_body;
7c791b13 3525
774672d2
RK
3526 /* If we had a move insn but now we don't, rerecognize it. This will
3527 cause spurious re-recognition if the old move had a PARALLEL since
3528 the new one still will, but we can't call single_set without
3529 having put NEW_BODY into the insn and the re-recognition won't
3530 hurt in this rare case. */
dfac187e
BS
3531 /* ??? Why this huge if statement - why don't we just rerecognize the
3532 thing always? */
3533 if (! insn_is_asm
3534 && old_set != 0
774672d2
RK
3535 && ((GET_CODE (SET_SRC (old_set)) == REG
3536 && (GET_CODE (new_body) != SET
3537 || GET_CODE (SET_SRC (new_body)) != REG))
3538 /* If this was a load from or store to memory, compare
1ccbefce
RH
3539 the MEM in recog_data.operand to the one in the insn.
3540 If they are not equal, then rerecognize the insn. */
774672d2
RK
3541 || (old_set != 0
3542 && ((GET_CODE (SET_SRC (old_set)) == MEM
1ccbefce 3543 && SET_SRC (old_set) != recog_data.operand[1])
774672d2 3544 || (GET_CODE (SET_DEST (old_set)) == MEM
1ccbefce 3545 && SET_DEST (old_set) != recog_data.operand[0])))
774672d2
RK
3546 /* If this was an add insn before, rerecognize. */
3547 || GET_CODE (SET_SRC (old_set)) == PLUS))
4a5d0fb5 3548 {
dfac187e
BS
3549 int new_icode = recog (PATTERN (insn), insn, 0);
3550 if (new_icode < 0)
3551 INSN_CODE (insn) = icode;
4a5d0fb5 3552 }
dfac187e 3553 }
32131a9c 3554
dfac187e
BS
3555 /* Restore the old body. If there were any changes to it, we made a copy
3556 of it while the changes were still in place, so we'll correctly return
3557 a modified insn below. */
3558 if (! replace)
3559 {
3560 /* Restore the old body. */
3561 for (i = 0; i < recog_data.n_operands; i++)
3562 *recog_data.operand_loc[i] = orig_operand[i];
3563 for (i = 0; i < recog_data.n_dups; i++)
3564 *recog_data.dup_loc[i] = orig_operand[(int)recog_data.dup_num[i]];
32131a9c 3565 }
a8fdc208 3566
dfac187e
BS
3567 /* Update all elimination pairs to reflect the status after the current
3568 insn. The changes we make were determined by the earlier call to
3569 elimination_effects.
a8efe40d 3570
32131a9c
RK
3571 We also detect a cases where register elimination cannot be done,
3572 namely, if a register would be both changed and referenced outside a MEM
3573 in the resulting insn since such an insn is often undefined and, even if
3574 not, we cannot know what meaning will be given to it. Note that it is
3575 valid to have a register used in an address in an insn that changes it
3576 (presumably with a pre- or post-increment or decrement).
3577
3578 If anything changes, return nonzero. */
3579
32131a9c
RK
3580 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3581 {
3582 if (ep->previous_offset != ep->offset && ep->ref_outside_mem)
3583 ep->can_eliminate = 0;
3584
3585 ep->ref_outside_mem = 0;
3586
3587 if (ep->previous_offset != ep->offset)
3588 val = 1;
32131a9c
RK
3589 }
3590
3591 done:
9faa82d8 3592 /* If we changed something, perform elimination in REG_NOTES. This is
05b4c365
RK
3593 needed even when REPLACE is zero because a REG_DEAD note might refer
3594 to a register that we eliminate and could cause a different number
3595 of spill registers to be needed in the final reload pass than in
3596 the pre-passes. */
20748cab 3597 if (val && REG_NOTES (insn) != 0)
1914f5da 3598 REG_NOTES (insn) = eliminate_regs (REG_NOTES (insn), 0, REG_NOTES (insn));
05b4c365 3599
32131a9c
RK
3600 if (! replace)
3601 pop_obstacks ();
3602
3603 return val;
3604}
3605
cb2afeb3
R
3606/* Loop through all elimination pairs.
3607 Recalculate the number not at initial offset.
3608
3609 Compute the maximum offset (minimum offset if the stack does not
3610 grow downward) for each elimination pair. */
3611
3612static void
3613update_eliminable_offsets ()
3614{
3615 struct elim_table *ep;
3616
3617 num_not_at_initial_offset = 0;
3618 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3619 {
3620 ep->previous_offset = ep->offset;
3621 if (ep->can_eliminate && ep->offset != ep->initial_offset)
3622 num_not_at_initial_offset++;
cb2afeb3
R
3623 }
3624}
3625
32131a9c
RK
3626/* Given X, a SET or CLOBBER of DEST, if DEST is the target of a register
3627 replacement we currently believe is valid, mark it as not eliminable if X
3628 modifies DEST in any way other than by adding a constant integer to it.
3629
3630 If DEST is the frame pointer, we do nothing because we assume that
3ec2ea3e
DE
3631 all assignments to the hard frame pointer are nonlocal gotos and are being
3632 done at a time when they are valid and do not disturb anything else.
32131a9c 3633 Some machines want to eliminate a fake argument pointer with either the
3ec2ea3e
DE
3634 frame or stack pointer. Assignments to the hard frame pointer must not
3635 prevent this elimination.
32131a9c
RK
3636
3637 Called via note_stores from reload before starting its passes to scan
3638 the insns of the function. */
3639
3640static void
84832317 3641mark_not_eliminable (dest, x, data)
32131a9c
RK
3642 rtx dest;
3643 rtx x;
84832317 3644 void *data ATTRIBUTE_UNUSED;
32131a9c 3645{
e51712db 3646 register unsigned int i;
32131a9c
RK
3647
3648 /* A SUBREG of a hard register here is just changing its mode. We should
3649 not see a SUBREG of an eliminable hard register, but check just in
3650 case. */
3651 if (GET_CODE (dest) == SUBREG)
3652 dest = SUBREG_REG (dest);
3653
3ec2ea3e 3654 if (dest == hard_frame_pointer_rtx)
32131a9c
RK
3655 return;
3656
3657 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
3658 if (reg_eliminate[i].can_eliminate && dest == reg_eliminate[i].to_rtx
3659 && (GET_CODE (x) != SET
3660 || GET_CODE (SET_SRC (x)) != PLUS
3661 || XEXP (SET_SRC (x), 0) != dest
3662 || GET_CODE (XEXP (SET_SRC (x), 1)) != CONST_INT))
3663 {
3664 reg_eliminate[i].can_eliminate_previous
3665 = reg_eliminate[i].can_eliminate = 0;
3666 num_eliminable--;
3667 }
3668}
09dd1133 3669
c47f5ea5
BS
3670/* Verify that the initial elimination offsets did not change since the
3671 last call to set_initial_elim_offsets. This is used to catch cases
3672 where something illegal happened during reload_as_needed that could
3673 cause incorrect code to be generated if we did not check for it. */
3674static void
3675verify_initial_elim_offsets ()
3676{
3677 int t;
3678
3679#ifdef ELIMINABLE_REGS
3680 struct elim_table *ep;
3681
3682 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3683 {
3684 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, t);
3685 if (t != ep->initial_offset)
3686 abort ();
3687 }
3688#else
3689 INITIAL_FRAME_POINTER_OFFSET (t);
3690 if (t != reg_eliminate[0].initial_offset)
3691 abort ();
05d10675 3692#endif
c47f5ea5
BS
3693}
3694
09dd1133
BS
3695/* Reset all offsets on eliminable registers to their initial values. */
3696static void
3697set_initial_elim_offsets ()
3698{
1f3b1e1a 3699 struct elim_table *ep = reg_eliminate;
09dd1133
BS
3700
3701#ifdef ELIMINABLE_REGS
1f3b1e1a 3702 for (; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
09dd1133
BS
3703 {
3704 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, ep->initial_offset);
1f3b1e1a 3705 ep->previous_offset = ep->offset = ep->initial_offset;
09dd1133
BS
3706 }
3707#else
1f3b1e1a
JL
3708 INITIAL_FRAME_POINTER_OFFSET (ep->initial_offset);
3709 ep->previous_offset = ep->offset = ep->initial_offset;
09dd1133
BS
3710#endif
3711
3712 num_not_at_initial_offset = 0;
1f3b1e1a 3713}
09dd1133 3714
1f3b1e1a
JL
3715/* Initialize the known label offsets.
3716 Set a known offset for each forced label to be at the initial offset
3717 of each elimination. We do this because we assume that all
3718 computed jumps occur from a location where each elimination is
3719 at its initial offset.
3720 For all other labels, show that we don't know the offsets. */
09dd1133 3721
1f3b1e1a
JL
3722static void
3723set_initial_label_offsets ()
3724{
3725 rtx x;
3726 bzero ((char *) &offsets_known_at[get_first_label_num ()], num_labels);
09dd1133
BS
3727
3728 for (x = forced_labels; x; x = XEXP (x, 1))
3729 if (XEXP (x, 0))
3730 set_label_offsets (XEXP (x, 0), NULL_RTX, 1);
3731}
3732
1f3b1e1a
JL
3733/* Set all elimination offsets to the known values for the code label given
3734 by INSN. */
3735static void
3736set_offsets_for_label (insn)
3737 rtx insn;
3738{
973838fd 3739 unsigned int i;
1f3b1e1a
JL
3740 int label_nr = CODE_LABEL_NUMBER (insn);
3741 struct elim_table *ep;
3742
3743 num_not_at_initial_offset = 0;
3744 for (i = 0, ep = reg_eliminate; i < NUM_ELIMINABLE_REGS; ep++, i++)
3745 {
3746 ep->offset = ep->previous_offset = offsets_at[label_nr][i];
3747 if (ep->can_eliminate && ep->offset != ep->initial_offset)
3748 num_not_at_initial_offset++;
3749 }
3750}
3751
09dd1133
BS
3752/* See if anything that happened changes which eliminations are valid.
3753 For example, on the Sparc, whether or not the frame pointer can
3754 be eliminated can depend on what registers have been used. We need
3755 not check some conditions again (such as flag_omit_frame_pointer)
3756 since they can't have changed. */
3757
3758static void
3759update_eliminables (pset)
3760 HARD_REG_SET *pset;
3761{
3762#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
3763 int previous_frame_pointer_needed = frame_pointer_needed;
3764#endif
3765 struct elim_table *ep;
3766
3767 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3768 if ((ep->from == HARD_FRAME_POINTER_REGNUM && FRAME_POINTER_REQUIRED)
3769#ifdef ELIMINABLE_REGS
3770 || ! CAN_ELIMINATE (ep->from, ep->to)
3771#endif
3772 )
3773 ep->can_eliminate = 0;
3774
3775 /* Look for the case where we have discovered that we can't replace
3776 register A with register B and that means that we will now be
3777 trying to replace register A with register C. This means we can
3778 no longer replace register C with register B and we need to disable
3779 such an elimination, if it exists. This occurs often with A == ap,
3780 B == sp, and C == fp. */
3781
3782 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3783 {
3784 struct elim_table *op;
3785 register int new_to = -1;
3786
3787 if (! ep->can_eliminate && ep->can_eliminate_previous)
3788 {
3789 /* Find the current elimination for ep->from, if there is a
3790 new one. */
3791 for (op = reg_eliminate;
3792 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3793 if (op->from == ep->from && op->can_eliminate)
3794 {
3795 new_to = op->to;
3796 break;
3797 }
3798
3799 /* See if there is an elimination of NEW_TO -> EP->TO. If so,
3800 disable it. */
3801 for (op = reg_eliminate;
3802 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3803 if (op->from == new_to && op->to == ep->to)
3804 op->can_eliminate = 0;
3805 }
3806 }
3807
3808 /* See if any registers that we thought we could eliminate the previous
3809 time are no longer eliminable. If so, something has changed and we
3810 must spill the register. Also, recompute the number of eliminable
3811 registers and see if the frame pointer is needed; it is if there is
3812 no elimination of the frame pointer that we can perform. */
3813
3814 frame_pointer_needed = 1;
3815 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3816 {
3817 if (ep->can_eliminate && ep->from == FRAME_POINTER_REGNUM
3818 && ep->to != HARD_FRAME_POINTER_REGNUM)
3819 frame_pointer_needed = 0;
3820
3821 if (! ep->can_eliminate && ep->can_eliminate_previous)
3822 {
3823 ep->can_eliminate_previous = 0;
3824 SET_HARD_REG_BIT (*pset, ep->from);
3825 num_eliminable--;
3826 }
3827 }
3828
3829#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
3830 /* If we didn't need a frame pointer last time, but we do now, spill
3831 the hard frame pointer. */
3832 if (frame_pointer_needed && ! previous_frame_pointer_needed)
3833 SET_HARD_REG_BIT (*pset, HARD_FRAME_POINTER_REGNUM);
3834#endif
3835}
3836
3837/* Initialize the table of registers to eliminate. */
3838static void
3839init_elim_table ()
3840{
3841 struct elim_table *ep;
590cf94d
KG
3842#ifdef ELIMINABLE_REGS
3843 struct elim_table_1 *ep1;
3844#endif
09dd1133 3845
590cf94d 3846 if (!reg_eliminate)
ad85216e
KG
3847 reg_eliminate = (struct elim_table *)
3848 xcalloc(sizeof(struct elim_table), NUM_ELIMINABLE_REGS);
05d10675 3849
09dd1133
BS
3850 /* Does this function require a frame pointer? */
3851
3852 frame_pointer_needed = (! flag_omit_frame_pointer
3853#ifdef EXIT_IGNORE_STACK
3854 /* ?? If EXIT_IGNORE_STACK is set, we will not save
3855 and restore sp for alloca. So we can't eliminate
3856 the frame pointer in that case. At some point,
3857 we should improve this by emitting the
3858 sp-adjusting insns for this case. */
3859 || (current_function_calls_alloca
3860 && EXIT_IGNORE_STACK)
3861#endif
3862 || FRAME_POINTER_REQUIRED);
3863
3864 num_eliminable = 0;
3865
3866#ifdef ELIMINABLE_REGS
590cf94d
KG
3867 for (ep = reg_eliminate, ep1 = reg_eliminate_1;
3868 ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++, ep1++)
09dd1133 3869 {
590cf94d
KG
3870 ep->from = ep1->from;
3871 ep->to = ep1->to;
09dd1133
BS
3872 ep->can_eliminate = ep->can_eliminate_previous
3873 = (CAN_ELIMINATE (ep->from, ep->to)
3874 && ! (ep->to == STACK_POINTER_REGNUM && frame_pointer_needed));
3875 }
3876#else
590cf94d
KG
3877 reg_eliminate[0].from = reg_eliminate_1[0].from;
3878 reg_eliminate[0].to = reg_eliminate_1[0].to;
09dd1133
BS
3879 reg_eliminate[0].can_eliminate = reg_eliminate[0].can_eliminate_previous
3880 = ! frame_pointer_needed;
3881#endif
3882
3883 /* Count the number of eliminable registers and build the FROM and TO
3884 REG rtx's. Note that code in gen_rtx will cause, e.g.,
3885 gen_rtx (REG, Pmode, STACK_POINTER_REGNUM) to equal stack_pointer_rtx.
3886 We depend on this. */
3887 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3888 {
3889 num_eliminable += ep->can_eliminate;
3890 ep->from_rtx = gen_rtx_REG (Pmode, ep->from);
3891 ep->to_rtx = gen_rtx_REG (Pmode, ep->to);
3892 }
3893}
32131a9c
RK
3894\f
3895/* Kick all pseudos out of hard register REGNO.
32131a9c
RK
3896 If DUMPFILE is nonzero, log actions taken on that file.
3897
3898 If CANT_ELIMINATE is nonzero, it means that we are doing this spill
3899 because we found we can't eliminate some register. In the case, no pseudos
3900 are allowed to be in the register, even if they are only in a block that
3901 doesn't require spill registers, unlike the case when we are spilling this
3902 hard reg to produce another spill register.
3903
3904 Return nonzero if any pseudos needed to be kicked out. */
3905
03acd8f8
BS
3906static void
3907spill_hard_reg (regno, dumpfile, cant_eliminate)
32131a9c 3908 register int regno;
6a651371 3909 FILE *dumpfile ATTRIBUTE_UNUSED;
32131a9c
RK
3910 int cant_eliminate;
3911{
32131a9c
RK
3912 register int i;
3913
9ff3516a 3914 if (cant_eliminate)
03acd8f8
BS
3915 {
3916 SET_HARD_REG_BIT (bad_spill_regs_global, regno);
3917 regs_ever_live[regno] = 1;
3918 }
9ff3516a 3919
32131a9c
RK
3920 /* Spill every pseudo reg that was allocated to this reg
3921 or to something that overlaps this reg. */
3922
3923 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
3924 if (reg_renumber[i] >= 0
3925 && reg_renumber[i] <= regno
a8fdc208 3926 && (reg_renumber[i]
32131a9c
RK
3927 + HARD_REGNO_NREGS (reg_renumber[i],
3928 PSEUDO_REGNO_MODE (i))
3929 > regno))
03acd8f8
BS
3930 SET_REGNO_REG_SET (spilled_pseudos, i);
3931}
32131a9c 3932
03acd8f8
BS
3933/* I'm getting weird preprocessor errors if I use IOR_HARD_REG_SET
3934 from within EXECUTE_IF_SET_IN_REG_SET. Hence this awkwardness. */
3935static void
3936ior_hard_reg_set (set1, set2)
3937 HARD_REG_SET *set1, *set2;
3938{
3939 IOR_HARD_REG_SET (*set1, *set2);
3940}
05d10675 3941
03acd8f8
BS
3942/* After find_reload_regs has been run for all insn that need reloads,
3943 and/or spill_hard_regs was called, this function is used to actually
3944 spill pseudo registers and try to reallocate them. It also sets up the
3945 spill_regs array for use by choose_reload_regs. */
a8fdc208 3946
03acd8f8
BS
3947static int
3948finish_spills (global, dumpfile)
3949 int global;
3950 FILE *dumpfile;
3951{
3952 struct insn_chain *chain;
3953 int something_changed = 0;
3954 int i;
3955
3956 /* Build the spill_regs array for the function. */
3957 /* If there are some registers still to eliminate and one of the spill regs
3958 wasn't ever used before, additional stack space may have to be
3959 allocated to store this register. Thus, we may have changed the offset
3960 between the stack and frame pointers, so mark that something has changed.
32131a9c 3961
03acd8f8
BS
3962 One might think that we need only set VAL to 1 if this is a call-used
3963 register. However, the set of registers that must be saved by the
3964 prologue is not identical to the call-used set. For example, the
3965 register used by the call insn for the return PC is a call-used register,
3966 but must be saved by the prologue. */
3967
3968 n_spills = 0;
3969 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3970 if (TEST_HARD_REG_BIT (used_spill_regs, i))
3971 {
3972 spill_reg_order[i] = n_spills;
3973 spill_regs[n_spills++] = i;
3974 if (num_eliminable && ! regs_ever_live[i])
3975 something_changed = 1;
3976 regs_ever_live[i] = 1;
3977 }
3978 else
3979 spill_reg_order[i] = -1;
3980
3981 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
3982 if (REGNO_REG_SET_P (spilled_pseudos, i))
3983 {
3984 /* Record the current hard register the pseudo is allocated to in
3985 pseudo_previous_regs so we avoid reallocating it to the same
3986 hard reg in a later pass. */
3987 if (reg_renumber[i] < 0)
3988 abort ();
3989 SET_HARD_REG_BIT (pseudo_previous_regs[i], reg_renumber[i]);
32131a9c
RK
3990 /* Mark it as no longer having a hard register home. */
3991 reg_renumber[i] = -1;
3992 /* We will need to scan everything again. */
3993 something_changed = 1;
03acd8f8 3994 }
7609e720 3995
03acd8f8
BS
3996 /* Retry global register allocation if possible. */
3997 if (global)
3998 {
3999 bzero ((char *) pseudo_forbidden_regs, max_regno * sizeof (HARD_REG_SET));
4000 /* For every insn that needs reloads, set the registers used as spill
4001 regs in pseudo_forbidden_regs for every pseudo live across the
4002 insn. */
4003 for (chain = insns_need_reload; chain; chain = chain->next_need_reload)
4004 {
4005 EXECUTE_IF_SET_IN_REG_SET
4006 (chain->live_before, FIRST_PSEUDO_REGISTER, i,
4007 {
4008 ior_hard_reg_set (pseudo_forbidden_regs + i,
4009 &chain->used_spill_regs);
4010 });
4011 EXECUTE_IF_SET_IN_REG_SET
4012 (chain->live_after, FIRST_PSEUDO_REGISTER, i,
4013 {
4014 ior_hard_reg_set (pseudo_forbidden_regs + i,
4015 &chain->used_spill_regs);
4016 });
4017 }
7609e720 4018
03acd8f8
BS
4019 /* Retry allocating the spilled pseudos. For each reg, merge the
4020 various reg sets that indicate which hard regs can't be used,
4021 and call retry_global_alloc.
05d10675 4022 We change spill_pseudos here to only contain pseudos that did not
03acd8f8
BS
4023 get a new hard register. */
4024 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
4025 if (reg_old_renumber[i] != reg_renumber[i])
32131a9c 4026 {
03acd8f8
BS
4027 HARD_REG_SET forbidden;
4028 COPY_HARD_REG_SET (forbidden, bad_spill_regs_global);
4029 IOR_HARD_REG_SET (forbidden, pseudo_forbidden_regs[i]);
4030 IOR_HARD_REG_SET (forbidden, pseudo_previous_regs[i]);
4031 retry_global_alloc (i, forbidden);
4032 if (reg_renumber[i] >= 0)
4033 CLEAR_REGNO_REG_SET (spilled_pseudos, i);
32131a9c 4034 }
03acd8f8 4035 }
7609e720 4036
03acd8f8
BS
4037 /* Fix up the register information in the insn chain.
4038 This involves deleting those of the spilled pseudos which did not get
4039 a new hard register home from the live_{before,after} sets. */
7609e720
BS
4040 for (chain = reload_insn_chain; chain; chain = chain->next)
4041 {
03acd8f8
BS
4042 HARD_REG_SET used_by_pseudos;
4043 HARD_REG_SET used_by_pseudos2;
4044
7609e720
BS
4045 AND_COMPL_REG_SET (chain->live_before, spilled_pseudos);
4046 AND_COMPL_REG_SET (chain->live_after, spilled_pseudos);
03acd8f8
BS
4047
4048 /* Mark any unallocated hard regs as available for spills. That
4049 makes inheritance work somewhat better. */
4050 if (chain->need_reload)
4051 {
4052 REG_SET_TO_HARD_REG_SET (used_by_pseudos, chain->live_before);
4053 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, chain->live_after);
4054 IOR_HARD_REG_SET (used_by_pseudos, used_by_pseudos2);
4055
4056 /* Save the old value for the sanity test below. */
4057 COPY_HARD_REG_SET (used_by_pseudos2, chain->used_spill_regs);
4058
4059 compute_use_by_pseudos (&used_by_pseudos, chain->live_before);
4060 compute_use_by_pseudos (&used_by_pseudos, chain->live_after);
4061 COMPL_HARD_REG_SET (chain->used_spill_regs, used_by_pseudos);
4062 AND_HARD_REG_SET (chain->used_spill_regs, used_spill_regs);
4063
4064 /* Make sure we only enlarge the set. */
4065 GO_IF_HARD_REG_SUBSET (used_by_pseudos2, chain->used_spill_regs, ok);
4066 abort ();
4067 ok:;
4068 }
7609e720 4069 }
03acd8f8
BS
4070
4071 /* Let alter_reg modify the reg rtx's for the modified pseudos. */
4072 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
4073 {
4074 int regno = reg_renumber[i];
4075 if (reg_old_renumber[i] == regno)
4076 continue;
05d10675 4077
03acd8f8
BS
4078 alter_reg (i, reg_old_renumber[i]);
4079 reg_old_renumber[i] = regno;
4080 if (dumpfile)
4081 {
4082 if (regno == -1)
4083 fprintf (dumpfile, " Register %d now on stack.\n\n", i);
4084 else
4085 fprintf (dumpfile, " Register %d now in %d.\n\n",
4086 i, reg_renumber[i]);
4087 }
4088 }
4089
4090 return something_changed;
7609e720 4091}
32131a9c 4092\f
05d10675 4093/* Find all paradoxical subregs within X and update reg_max_ref_width.
56f58d3a
RK
4094 Also mark any hard registers used to store user variables as
4095 forbidden from being used for spill registers. */
32131a9c
RK
4096
4097static void
4098scan_paradoxical_subregs (x)
4099 register rtx x;
4100{
4101 register int i;
6f7d635c 4102 register const char *fmt;
32131a9c
RK
4103 register enum rtx_code code = GET_CODE (x);
4104
4105 switch (code)
4106 {
56f58d3a 4107 case REG:
03acd8f8 4108#if 0
e9a25f70 4109 if (SMALL_REGISTER_CLASSES && REGNO (x) < FIRST_PSEUDO_REGISTER
f95182a4 4110 && REG_USERVAR_P (x))
03acd8f8
BS
4111 SET_HARD_REG_BIT (bad_spill_regs_global, REGNO (x));
4112#endif
56f58d3a
RK
4113 return;
4114
32131a9c
RK
4115 case CONST_INT:
4116 case CONST:
4117 case SYMBOL_REF:
4118 case LABEL_REF:
4119 case CONST_DOUBLE:
4120 case CC0:
4121 case PC:
32131a9c
RK
4122 case USE:
4123 case CLOBBER:
4124 return;
4125
4126 case SUBREG:
4127 if (GET_CODE (SUBREG_REG (x)) == REG
4128 && GET_MODE_SIZE (GET_MODE (x)) > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
4129 reg_max_ref_width[REGNO (SUBREG_REG (x))]
4130 = GET_MODE_SIZE (GET_MODE (x));
4131 return;
05d10675 4132
e9a25f70
JL
4133 default:
4134 break;
32131a9c
RK
4135 }
4136
4137 fmt = GET_RTX_FORMAT (code);
4138 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4139 {
4140 if (fmt[i] == 'e')
4141 scan_paradoxical_subregs (XEXP (x, i));
4142 else if (fmt[i] == 'E')
4143 {
4144 register int j;
4145 for (j = XVECLEN (x, i) - 1; j >=0; j--)
4146 scan_paradoxical_subregs (XVECEXP (x, i, j));
4147 }
4148 }
4149}
4150\f
32131a9c 4151static int
788a0818 4152hard_reg_use_compare (p1p, p2p)
e1b6684c
KG
4153 const PTR p1p;
4154 const PTR p2p;
05d10675 4155{
f428f252
KG
4156 const struct hard_reg_n_uses *p1 = (const struct hard_reg_n_uses *)p1p;
4157 const struct hard_reg_n_uses *p2 = (const struct hard_reg_n_uses *)p2p;
03acd8f8
BS
4158 int bad1 = TEST_HARD_REG_BIT (bad_spill_regs, p1->regno);
4159 int bad2 = TEST_HARD_REG_BIT (bad_spill_regs, p2->regno);
4160 if (bad1 && bad2)
4161 return p1->regno - p2->regno;
4162 if (bad1)
4163 return 1;
4164 if (bad2)
4165 return -1;
4166 if (p1->uses > p2->uses)
4167 return 1;
4168 if (p1->uses < p2->uses)
4169 return -1;
32131a9c
RK
4170 /* If regs are equally good, sort by regno,
4171 so that the results of qsort leave nothing to chance. */
4172 return p1->regno - p2->regno;
4173}
4174
03acd8f8
BS
4175/* Used for communication between order_regs_for_reload and count_pseudo.
4176 Used to avoid counting one pseudo twice. */
4177static regset pseudos_counted;
4178
4179/* Update the costs in N_USES, considering that pseudo REG is live. */
4180static void
4181count_pseudo (n_uses, reg)
4182 struct hard_reg_n_uses *n_uses;
4183 int reg;
4184{
4185 int r = reg_renumber[reg];
4186 int nregs;
4187
4188 if (REGNO_REG_SET_P (pseudos_counted, reg))
4189 return;
4190 SET_REGNO_REG_SET (pseudos_counted, reg);
4191
4192 if (r < 0)
4193 abort ();
4194
4195 nregs = HARD_REGNO_NREGS (r, PSEUDO_REGNO_MODE (reg));
4196 while (nregs-- > 0)
05d10675 4197 n_uses[r++].uses += REG_N_REFS (reg);
03acd8f8 4198}
32131a9c
RK
4199/* Choose the order to consider regs for use as reload registers
4200 based on how much trouble would be caused by spilling one.
4201 Store them in order of decreasing preference in potential_reload_regs. */
4202
4203static void
03acd8f8
BS
4204order_regs_for_reload (chain)
4205 struct insn_chain *chain;
32131a9c 4206{
03acd8f8 4207 register int i;
32131a9c 4208 register int o = 0;
32131a9c
RK
4209 struct hard_reg_n_uses hard_reg_n_uses[FIRST_PSEUDO_REGISTER];
4210
03acd8f8 4211 pseudos_counted = ALLOCA_REG_SET ();
32131a9c 4212
03acd8f8 4213 COPY_HARD_REG_SET (bad_spill_regs, bad_spill_regs_global);
32131a9c
RK
4214
4215 /* Count number of uses of each hard reg by pseudo regs allocated to it
4216 and then order them by decreasing use. */
4217
4218 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4219 {
2feb9704
BS
4220 hard_reg_n_uses[i].regno = i;
4221 hard_reg_n_uses[i].uses = 0;
03acd8f8 4222
03acd8f8
BS
4223 /* Test the various reasons why we can't use a register for
4224 spilling in this insn. */
4225 if (fixed_regs[i]
4226 || REGNO_REG_SET_P (chain->live_before, i)
4227 || REGNO_REG_SET_P (chain->live_after, i))
2feb9704
BS
4228 SET_HARD_REG_BIT (bad_spill_regs, i);
4229 }
32131a9c 4230
2feb9704
BS
4231 /* Now compute hard_reg_n_uses. */
4232 CLEAR_REG_SET (pseudos_counted);
03acd8f8 4233
2feb9704
BS
4234 EXECUTE_IF_SET_IN_REG_SET
4235 (chain->live_before, FIRST_PSEUDO_REGISTER, i,
4236 {
4237 count_pseudo (hard_reg_n_uses, i);
4238 });
4239 EXECUTE_IF_SET_IN_REG_SET
4240 (chain->live_after, FIRST_PSEUDO_REGISTER, i,
4241 {
4242 count_pseudo (hard_reg_n_uses, i);
4243 });
03acd8f8
BS
4244
4245 FREE_REG_SET (pseudos_counted);
32131a9c
RK
4246
4247 /* Prefer registers not so far used, for use in temporary loading.
4248 Among them, if REG_ALLOC_ORDER is defined, use that order.
4249 Otherwise, prefer registers not preserved by calls. */
4250
4251#ifdef REG_ALLOC_ORDER
4252 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4253 {
4254 int regno = reg_alloc_order[i];
4255
03acd8f8
BS
4256 if (hard_reg_n_uses[regno].uses == 0
4257 && ! TEST_HARD_REG_BIT (bad_spill_regs, regno))
32131a9c
RK
4258 potential_reload_regs[o++] = regno;
4259 }
4260#else
4261 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4262 {
03acd8f8
BS
4263 if (hard_reg_n_uses[i].uses == 0 && call_used_regs[i]
4264 && ! TEST_HARD_REG_BIT (bad_spill_regs, i))
32131a9c
RK
4265 potential_reload_regs[o++] = i;
4266 }
4267 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4268 {
03acd8f8
BS
4269 if (hard_reg_n_uses[i].uses == 0 && ! call_used_regs[i]
4270 && ! TEST_HARD_REG_BIT (bad_spill_regs, i))
32131a9c
RK
4271 potential_reload_regs[o++] = i;
4272 }
4273#endif
4274
4275 qsort (hard_reg_n_uses, FIRST_PSEUDO_REGISTER,
4276 sizeof hard_reg_n_uses[0], hard_reg_use_compare);
4277
4278 /* Now add the regs that are already used,
4279 preferring those used less often. The fixed and otherwise forbidden
4280 registers will be at the end of this list. */
4281
4282 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
03acd8f8
BS
4283 if (hard_reg_n_uses[i].uses != 0
4284 && ! TEST_HARD_REG_BIT (bad_spill_regs, hard_reg_n_uses[i].regno))
4285 potential_reload_regs[o++] = hard_reg_n_uses[i].regno;
4286 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4287 if (TEST_HARD_REG_BIT (bad_spill_regs, hard_reg_n_uses[i].regno))
32131a9c
RK
4288 potential_reload_regs[o++] = hard_reg_n_uses[i].regno;
4289}
4290\f
4291/* Reload pseudo-registers into hard regs around each insn as needed.
4292 Additional register load insns are output before the insn that needs it
4293 and perhaps store insns after insns that modify the reloaded pseudo reg.
4294
4295 reg_last_reload_reg and reg_reloaded_contents keep track of
d08ea79f 4296 which registers are already available in reload registers.
32131a9c
RK
4297 We update these for the reloads that we perform,
4298 as the insns are scanned. */
4299
4300static void
7609e720 4301reload_as_needed (live_known)
32131a9c
RK
4302 int live_known;
4303{
7609e720 4304 struct insn_chain *chain;
973838fd 4305#if defined (AUTO_INC_DEC) || defined (INSN_CLOBBERS_REGNO_P)
32131a9c 4306 register int i;
973838fd 4307#endif
32131a9c 4308 rtx x;
32131a9c 4309
4c9a05bc
RK
4310 bzero ((char *) spill_reg_rtx, sizeof spill_reg_rtx);
4311 bzero ((char *) spill_reg_store, sizeof spill_reg_store);
ff154f78
MM
4312 reg_last_reload_reg = (rtx *) xcalloc (max_regno, sizeof (rtx));
4313 reg_has_output_reload = (char *) xmalloc (max_regno);
e6e52be0 4314 CLEAR_HARD_REG_SET (reg_reloaded_valid);
32131a9c 4315
1f3b1e1a 4316 set_initial_elim_offsets ();
32131a9c 4317
7609e720 4318 for (chain = reload_insn_chain; chain; chain = chain->next)
32131a9c 4319 {
03acd8f8 4320 rtx prev;
7609e720
BS
4321 rtx insn = chain->insn;
4322 rtx old_next = NEXT_INSN (insn);
32131a9c
RK
4323
4324 /* If we pass a label, copy the offsets from the label information
4325 into the current offsets of each elimination. */
4326 if (GET_CODE (insn) == CODE_LABEL)
1f3b1e1a 4327 set_offsets_for_label (insn);
32131a9c
RK
4328
4329 else if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
4330 {
0639444f 4331 rtx oldpat = PATTERN (insn);
32131a9c 4332
2758481d
RS
4333 /* If this is a USE and CLOBBER of a MEM, ensure that any
4334 references to eliminable registers have been removed. */
4335
4336 if ((GET_CODE (PATTERN (insn)) == USE
4337 || GET_CODE (PATTERN (insn)) == CLOBBER)
4338 && GET_CODE (XEXP (PATTERN (insn), 0)) == MEM)
4339 XEXP (XEXP (PATTERN (insn), 0), 0)
4340 = eliminate_regs (XEXP (XEXP (PATTERN (insn), 0), 0),
29ae5012 4341 GET_MODE (XEXP (PATTERN (insn), 0)),
1914f5da 4342 NULL_RTX);
2758481d 4343
32131a9c
RK
4344 /* If we need to do register elimination processing, do so.
4345 This might delete the insn, in which case we are done. */
2b49ee39 4346 if ((num_eliminable || num_eliminable_invariants) && chain->need_elim)
32131a9c
RK
4347 {
4348 eliminate_regs_in_insn (insn, 1);
4349 if (GET_CODE (insn) == NOTE)
cb2afeb3
R
4350 {
4351 update_eliminable_offsets ();
4352 continue;
4353 }
32131a9c
RK
4354 }
4355
7609e720
BS
4356 /* If need_elim is nonzero but need_reload is zero, one might think
4357 that we could simply set n_reloads to 0. However, find_reloads
4358 could have done some manipulation of the insn (such as swapping
4359 commutative operands), and these manipulations are lost during
4360 the first pass for every insn that needs register elimination.
4361 So the actions of find_reloads must be redone here. */
4362
03acd8f8
BS
4363 if (! chain->need_elim && ! chain->need_reload
4364 && ! chain->need_operand_change)
32131a9c
RK
4365 n_reloads = 0;
4366 /* First find the pseudo regs that must be reloaded for this insn.
4367 This info is returned in the tables reload_... (see reload.h).
4368 Also modify the body of INSN by substituting RELOAD
4369 rtx's for those pseudo regs. */
4370 else
4371 {
4372 bzero (reg_has_output_reload, max_regno);
4373 CLEAR_HARD_REG_SET (reg_is_output_reload);
4374
4375 find_reloads (insn, 1, spill_indirect_levels, live_known,
4376 spill_reg_order);
4377 }
4378
dd6acd1b 4379 if (num_eliminable && chain->need_elim)
cb2afeb3
R
4380 update_eliminable_offsets ();
4381
32131a9c
RK
4382 if (n_reloads > 0)
4383 {
cb2afeb3 4384 rtx next = NEXT_INSN (insn);
3c3eeea6 4385 rtx p;
32131a9c 4386
cb2afeb3
R
4387 prev = PREV_INSN (insn);
4388
32131a9c
RK
4389 /* Now compute which reload regs to reload them into. Perhaps
4390 reusing reload regs from previous insns, or else output
4391 load insns to reload them. Maybe output store insns too.
4392 Record the choices of reload reg in reload_reg_rtx. */
03acd8f8 4393 choose_reload_regs (chain);
32131a9c 4394
05d10675 4395 /* Merge any reloads that we didn't combine for fear of
546b63fb
RK
4396 increasing the number of spill registers needed but now
4397 discover can be safely merged. */
f95182a4
ILT
4398 if (SMALL_REGISTER_CLASSES)
4399 merge_assigned_reloads (insn);
546b63fb 4400
32131a9c
RK
4401 /* Generate the insns to reload operands into or out of
4402 their reload regs. */
7609e720 4403 emit_reload_insns (chain);
32131a9c
RK
4404
4405 /* Substitute the chosen reload regs from reload_reg_rtx
4406 into the insn's body (or perhaps into the bodies of other
4407 load and store insn that we just made for reloading
4408 and that we moved the structure into). */
4409 subst_reloads ();
3c3eeea6
RK
4410
4411 /* If this was an ASM, make sure that all the reload insns
4412 we have generated are valid. If not, give an error
4413 and delete them. */
4414
4415 if (asm_noperands (PATTERN (insn)) >= 0)
4416 for (p = NEXT_INSN (prev); p != next; p = NEXT_INSN (p))
4417 if (p != insn && GET_RTX_CLASS (GET_CODE (p)) == 'i'
4418 && (recog_memoized (p) < 0
0eadeb15 4419 || (extract_insn (p), ! constrain_operands (1))))
3c3eeea6
RK
4420 {
4421 error_for_asm (insn,
4422 "`asm' operand requires impossible reload");
4423 PUT_CODE (p, NOTE);
4424 NOTE_SOURCE_FILE (p) = 0;
4425 NOTE_LINE_NUMBER (p) = NOTE_INSN_DELETED;
4426 }
32131a9c
RK
4427 }
4428 /* Any previously reloaded spilled pseudo reg, stored in this insn,
4429 is no longer validly lying around to save a future reload.
4430 Note that this does not detect pseudos that were reloaded
4431 for this insn in order to be stored in
4432 (obeying register constraints). That is correct; such reload
4433 registers ARE still valid. */
84832317 4434 note_stores (oldpat, forget_old_reloads_1, NULL);
32131a9c
RK
4435
4436 /* There may have been CLOBBER insns placed after INSN. So scan
4437 between INSN and NEXT and use them to forget old reloads. */
7609e720 4438 for (x = NEXT_INSN (insn); x != old_next; x = NEXT_INSN (x))
32131a9c 4439 if (GET_CODE (x) == INSN && GET_CODE (PATTERN (x)) == CLOBBER)
84832317 4440 note_stores (PATTERN (x), forget_old_reloads_1, NULL);
32131a9c
RK
4441
4442#ifdef AUTO_INC_DEC
cb2afeb3
R
4443 /* Likewise for regs altered by auto-increment in this insn.
4444 REG_INC notes have been changed by reloading:
4445 find_reloads_address_1 records substitutions for them,
4446 which have been performed by subst_reloads above. */
4447 for (i = n_reloads - 1; i >= 0; i--)
4448 {
eceef4c9 4449 rtx in_reg = rld[i].in_reg;
cb2afeb3
R
4450 if (in_reg)
4451 {
4452 enum rtx_code code = GET_CODE (in_reg);
4453 /* PRE_INC / PRE_DEC will have the reload register ending up
4454 with the same value as the stack slot, but that doesn't
4455 hold true for POST_INC / POST_DEC. Either we have to
4456 convert the memory access to a true POST_INC / POST_DEC,
4457 or we can't use the reload register for inheritance. */
4458 if ((code == POST_INC || code == POST_DEC)
4459 && TEST_HARD_REG_BIT (reg_reloaded_valid,
eceef4c9 4460 REGNO (rld[i].reg_rtx))
04bbb0c5
JW
4461 /* Make sure it is the inc/dec pseudo, and not
4462 some other (e.g. output operand) pseudo. */
eceef4c9 4463 && (reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
04bbb0c5 4464 == REGNO (XEXP (in_reg, 0))))
05d10675 4465
cb2afeb3 4466 {
eceef4c9 4467 rtx reload_reg = rld[i].reg_rtx;
cb2afeb3
R
4468 enum machine_mode mode = GET_MODE (reload_reg);
4469 int n = 0;
4470 rtx p;
4471
4472 for (p = PREV_INSN (old_next); p != prev; p = PREV_INSN (p))
4473 {
4474 /* We really want to ignore REG_INC notes here, so
4475 use PATTERN (p) as argument to reg_set_p . */
4476 if (reg_set_p (reload_reg, PATTERN (p)))
4477 break;
4478 n = count_occurrences (PATTERN (p), reload_reg);
4479 if (! n)
4480 continue;
4481 if (n == 1)
f67c2384
JL
4482 {
4483 n = validate_replace_rtx (reload_reg,
4484 gen_rtx (code, mode,
4485 reload_reg),
4486 p);
4487
4488 /* We must also verify that the constraints
4489 are met after the replacement. */
4490 extract_insn (p);
4491 if (n)
4492 n = constrain_operands (1);
4493 else
4494 break;
4495
4496 /* If the constraints were not met, then
4497 undo the replacement. */
4498 if (!n)
4499 {
4500 validate_replace_rtx (gen_rtx (code, mode,
4501 reload_reg),
4502 reload_reg, p);
4503 break;
4504 }
05d10675 4505
f67c2384 4506 }
cb2afeb3
R
4507 break;
4508 }
4509 if (n == 1)
02eb1393
R
4510 {
4511 REG_NOTES (p)
4512 = gen_rtx_EXPR_LIST (REG_INC, reload_reg,
4513 REG_NOTES (p));
4514 /* Mark this as having an output reload so that the
4515 REG_INC processing code below won't invalidate
4516 the reload for inheritance. */
4517 SET_HARD_REG_BIT (reg_is_output_reload,
4518 REGNO (reload_reg));
4519 reg_has_output_reload[REGNO (XEXP (in_reg, 0))] = 1;
4520 }
cb2afeb3 4521 else
84832317
MM
4522 forget_old_reloads_1 (XEXP (in_reg, 0), NULL_RTX,
4523 NULL);
cb2afeb3 4524 }
02eb1393
R
4525 else if ((code == PRE_INC || code == PRE_DEC)
4526 && TEST_HARD_REG_BIT (reg_reloaded_valid,
eceef4c9 4527 REGNO (rld[i].reg_rtx))
02eb1393
R
4528 /* Make sure it is the inc/dec pseudo, and not
4529 some other (e.g. output operand) pseudo. */
eceef4c9 4530 && (reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
02eb1393
R
4531 == REGNO (XEXP (in_reg, 0))))
4532 {
4533 SET_HARD_REG_BIT (reg_is_output_reload,
eceef4c9 4534 REGNO (rld[i].reg_rtx));
02eb1393
R
4535 reg_has_output_reload[REGNO (XEXP (in_reg, 0))] = 1;
4536 }
cb2afeb3
R
4537 }
4538 }
02eb1393
R
4539 /* If a pseudo that got a hard register is auto-incremented,
4540 we must purge records of copying it into pseudos without
4541 hard registers. */
32131a9c
RK
4542 for (x = REG_NOTES (insn); x; x = XEXP (x, 1))
4543 if (REG_NOTE_KIND (x) == REG_INC)
4544 {
4545 /* See if this pseudo reg was reloaded in this insn.
4546 If so, its last-reload info is still valid
4547 because it is based on this insn's reload. */
4548 for (i = 0; i < n_reloads; i++)
eceef4c9 4549 if (rld[i].out == XEXP (x, 0))
32131a9c
RK
4550 break;
4551
08fb99fa 4552 if (i == n_reloads)
84832317 4553 forget_old_reloads_1 (XEXP (x, 0), NULL_RTX, NULL);
32131a9c
RK
4554 }
4555#endif
4556 }
4557 /* A reload reg's contents are unknown after a label. */
4558 if (GET_CODE (insn) == CODE_LABEL)
e6e52be0 4559 CLEAR_HARD_REG_SET (reg_reloaded_valid);
32131a9c
RK
4560
4561 /* Don't assume a reload reg is still good after a call insn
4562 if it is a call-used reg. */
546b63fb 4563 else if (GET_CODE (insn) == CALL_INSN)
e6e52be0 4564 AND_COMPL_HARD_REG_SET(reg_reloaded_valid, call_used_reg_set);
32131a9c
RK
4565
4566 /* In case registers overlap, allow certain insns to invalidate
4567 particular hard registers. */
4568
4569#ifdef INSN_CLOBBERS_REGNO_P
e6e52be0
R
4570 for (i = 0 ; i < FIRST_PSEUDO_REGISTER; i++)
4571 if (TEST_HARD_REG_BIT (reg_reloaded_valid, i)
4572 && INSN_CLOBBERS_REGNO_P (insn, i))
4573 CLEAR_HARD_REG_BIT (reg_reloaded_valid, i);
32131a9c 4574#endif
32131a9c 4575 }
ff154f78
MM
4576
4577 /* Clean up. */
4578 free (reg_last_reload_reg);
4579 free (reg_has_output_reload);
32131a9c
RK
4580}
4581
4582/* Discard all record of any value reloaded from X,
4583 or reloaded in X from someplace else;
4584 unless X is an output reload reg of the current insn.
4585
4586 X may be a hard reg (the reload reg)
4587 or it may be a pseudo reg that was reloaded from. */
4588
4589static void
84832317 4590forget_old_reloads_1 (x, ignored, data)
32131a9c 4591 rtx x;
487a6e06 4592 rtx ignored ATTRIBUTE_UNUSED;
84832317 4593 void *data ATTRIBUTE_UNUSED;
32131a9c
RK
4594{
4595 register int regno;
4596 int nr;
0a2e51a9
RS
4597 int offset = 0;
4598
4599 /* note_stores does give us subregs of hard regs. */
4600 while (GET_CODE (x) == SUBREG)
4601 {
4602 offset += SUBREG_WORD (x);
4603 x = SUBREG_REG (x);
4604 }
32131a9c
RK
4605
4606 if (GET_CODE (x) != REG)
4607 return;
4608
0a2e51a9 4609 regno = REGNO (x) + offset;
32131a9c
RK
4610
4611 if (regno >= FIRST_PSEUDO_REGISTER)
4612 nr = 1;
4613 else
4614 {
4615 int i;
4616 nr = HARD_REGNO_NREGS (regno, GET_MODE (x));
4617 /* Storing into a spilled-reg invalidates its contents.
4618 This can happen if a block-local pseudo is allocated to that reg
4619 and it wasn't spilled because this block's total need is 0.
4620 Then some insn might have an optional reload and use this reg. */
4621 for (i = 0; i < nr; i++)
e6e52be0
R
4622 /* But don't do this if the reg actually serves as an output
4623 reload reg in the current instruction. */
4624 if (n_reloads == 0
4625 || ! TEST_HARD_REG_BIT (reg_is_output_reload, regno + i))
4626 CLEAR_HARD_REG_BIT (reg_reloaded_valid, regno + i);
32131a9c
RK
4627 }
4628
4629 /* Since value of X has changed,
4630 forget any value previously copied from it. */
4631
4632 while (nr-- > 0)
4633 /* But don't forget a copy if this is the output reload
4634 that establishes the copy's validity. */
4635 if (n_reloads == 0 || reg_has_output_reload[regno + nr] == 0)
4636 reg_last_reload_reg[regno + nr] = 0;
4637}
4638\f
32131a9c
RK
4639/* Comparison function for qsort to decide which of two reloads
4640 should be handled first. *P1 and *P2 are the reload numbers. */
4641
4642static int
788a0818 4643reload_reg_class_lower (r1p, r2p)
e1b6684c
KG
4644 const PTR r1p;
4645 const PTR r2p;
32131a9c 4646{
f428f252 4647 register int r1 = *(const short *)r1p, r2 = *(const short *)r2p;
32131a9c 4648 register int t;
a8fdc208 4649
32131a9c 4650 /* Consider required reloads before optional ones. */
eceef4c9 4651 t = rld[r1].optional - rld[r2].optional;
32131a9c
RK
4652 if (t != 0)
4653 return t;
4654
4655 /* Count all solitary classes before non-solitary ones. */
eceef4c9
BS
4656 t = ((reg_class_size[(int) rld[r2].class] == 1)
4657 - (reg_class_size[(int) rld[r1].class] == 1));
32131a9c
RK
4658 if (t != 0)
4659 return t;
4660
4661 /* Aside from solitaires, consider all multi-reg groups first. */
8ec450a4 4662 t = rld[r2].nregs - rld[r1].nregs;
32131a9c
RK
4663 if (t != 0)
4664 return t;
4665
4666 /* Consider reloads in order of increasing reg-class number. */
eceef4c9 4667 t = (int) rld[r1].class - (int) rld[r2].class;
32131a9c
RK
4668 if (t != 0)
4669 return t;
4670
4671 /* If reloads are equally urgent, sort by reload number,
4672 so that the results of qsort leave nothing to chance. */
4673 return r1 - r2;
4674}
4675\f
4676/* The following HARD_REG_SETs indicate when each hard register is
4677 used for a reload of various parts of the current insn. */
4678
4679/* If reg is in use as a reload reg for a RELOAD_OTHER reload. */
4680static HARD_REG_SET reload_reg_used;
546b63fb
RK
4681/* If reg is in use for a RELOAD_FOR_INPUT_ADDRESS reload for operand I. */
4682static HARD_REG_SET reload_reg_used_in_input_addr[MAX_RECOG_OPERANDS];
47c8cf91
ILT
4683/* If reg is in use for a RELOAD_FOR_INPADDR_ADDRESS reload for operand I. */
4684static HARD_REG_SET reload_reg_used_in_inpaddr_addr[MAX_RECOG_OPERANDS];
546b63fb
RK
4685/* If reg is in use for a RELOAD_FOR_OUTPUT_ADDRESS reload for operand I. */
4686static HARD_REG_SET reload_reg_used_in_output_addr[MAX_RECOG_OPERANDS];
47c8cf91
ILT
4687/* If reg is in use for a RELOAD_FOR_OUTADDR_ADDRESS reload for operand I. */
4688static HARD_REG_SET reload_reg_used_in_outaddr_addr[MAX_RECOG_OPERANDS];
546b63fb
RK
4689/* If reg is in use for a RELOAD_FOR_INPUT reload for operand I. */
4690static HARD_REG_SET reload_reg_used_in_input[MAX_RECOG_OPERANDS];
4691/* If reg is in use for a RELOAD_FOR_OUTPUT reload for operand I. */
4692static HARD_REG_SET reload_reg_used_in_output[MAX_RECOG_OPERANDS];
32131a9c
RK
4693/* If reg is in use for a RELOAD_FOR_OPERAND_ADDRESS reload. */
4694static HARD_REG_SET reload_reg_used_in_op_addr;
893bc853
RK
4695/* If reg is in use for a RELOAD_FOR_OPADDR_ADDR reload. */
4696static HARD_REG_SET reload_reg_used_in_op_addr_reload;
546b63fb
RK
4697/* If reg is in use for a RELOAD_FOR_INSN reload. */
4698static HARD_REG_SET reload_reg_used_in_insn;
4699/* If reg is in use for a RELOAD_FOR_OTHER_ADDRESS reload. */
4700static HARD_REG_SET reload_reg_used_in_other_addr;
32131a9c
RK
4701
4702/* If reg is in use as a reload reg for any sort of reload. */
4703static HARD_REG_SET reload_reg_used_at_all;
4704
be7ae2a4
RK
4705/* If reg is use as an inherited reload. We just mark the first register
4706 in the group. */
4707static HARD_REG_SET reload_reg_used_for_inherit;
4708
f1db3576
JL
4709/* Records which hard regs are used in any way, either as explicit use or
4710 by being allocated to a pseudo during any point of the current insn. */
4711static HARD_REG_SET reg_used_in_insn;
297927a8 4712
546b63fb
RK
4713/* Mark reg REGNO as in use for a reload of the sort spec'd by OPNUM and
4714 TYPE. MODE is used to indicate how many consecutive regs are
4715 actually used. */
32131a9c
RK
4716
4717static void
546b63fb 4718mark_reload_reg_in_use (regno, opnum, type, mode)
32131a9c 4719 int regno;
546b63fb
RK
4720 int opnum;
4721 enum reload_type type;
32131a9c
RK
4722 enum machine_mode mode;
4723{
4724 int nregs = HARD_REGNO_NREGS (regno, mode);
4725 int i;
4726
4727 for (i = regno; i < nregs + regno; i++)
4728 {
546b63fb 4729 switch (type)
32131a9c
RK
4730 {
4731 case RELOAD_OTHER:
4732 SET_HARD_REG_BIT (reload_reg_used, i);
4733 break;
4734
546b63fb
RK
4735 case RELOAD_FOR_INPUT_ADDRESS:
4736 SET_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], i);
32131a9c
RK
4737 break;
4738
47c8cf91
ILT
4739 case RELOAD_FOR_INPADDR_ADDRESS:
4740 SET_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], i);
4741 break;
4742
546b63fb
RK
4743 case RELOAD_FOR_OUTPUT_ADDRESS:
4744 SET_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], i);
32131a9c
RK
4745 break;
4746
47c8cf91
ILT
4747 case RELOAD_FOR_OUTADDR_ADDRESS:
4748 SET_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], i);
4749 break;
4750
32131a9c
RK
4751 case RELOAD_FOR_OPERAND_ADDRESS:
4752 SET_HARD_REG_BIT (reload_reg_used_in_op_addr, i);
4753 break;
4754
893bc853
RK
4755 case RELOAD_FOR_OPADDR_ADDR:
4756 SET_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, i);
4757 break;
4758
546b63fb
RK
4759 case RELOAD_FOR_OTHER_ADDRESS:
4760 SET_HARD_REG_BIT (reload_reg_used_in_other_addr, i);
4761 break;
4762
32131a9c 4763 case RELOAD_FOR_INPUT:
546b63fb 4764 SET_HARD_REG_BIT (reload_reg_used_in_input[opnum], i);
32131a9c
RK
4765 break;
4766
4767 case RELOAD_FOR_OUTPUT:
546b63fb
RK
4768 SET_HARD_REG_BIT (reload_reg_used_in_output[opnum], i);
4769 break;
4770
4771 case RELOAD_FOR_INSN:
4772 SET_HARD_REG_BIT (reload_reg_used_in_insn, i);
32131a9c
RK
4773 break;
4774 }
4775
4776 SET_HARD_REG_BIT (reload_reg_used_at_all, i);
4777 }
4778}
4779
be7ae2a4
RK
4780/* Similarly, but show REGNO is no longer in use for a reload. */
4781
4782static void
4783clear_reload_reg_in_use (regno, opnum, type, mode)
4784 int regno;
4785 int opnum;
4786 enum reload_type type;
4787 enum machine_mode mode;
4788{
4789 int nregs = HARD_REGNO_NREGS (regno, mode);
cb2afeb3 4790 int start_regno, end_regno;
be7ae2a4 4791 int i;
cb2afeb3
R
4792 /* A complication is that for some reload types, inheritance might
4793 allow multiple reloads of the same types to share a reload register.
4794 We set check_opnum if we have to check only reloads with the same
4795 operand number, and check_any if we have to check all reloads. */
4796 int check_opnum = 0;
4797 int check_any = 0;
4798 HARD_REG_SET *used_in_set;
be7ae2a4 4799
cb2afeb3 4800 switch (type)
be7ae2a4 4801 {
cb2afeb3
R
4802 case RELOAD_OTHER:
4803 used_in_set = &reload_reg_used;
4804 break;
be7ae2a4 4805
cb2afeb3
R
4806 case RELOAD_FOR_INPUT_ADDRESS:
4807 used_in_set = &reload_reg_used_in_input_addr[opnum];
4808 break;
be7ae2a4 4809
cb2afeb3
R
4810 case RELOAD_FOR_INPADDR_ADDRESS:
4811 check_opnum = 1;
4812 used_in_set = &reload_reg_used_in_inpaddr_addr[opnum];
4813 break;
47c8cf91 4814
cb2afeb3
R
4815 case RELOAD_FOR_OUTPUT_ADDRESS:
4816 used_in_set = &reload_reg_used_in_output_addr[opnum];
4817 break;
be7ae2a4 4818
cb2afeb3
R
4819 case RELOAD_FOR_OUTADDR_ADDRESS:
4820 check_opnum = 1;
4821 used_in_set = &reload_reg_used_in_outaddr_addr[opnum];
4822 break;
47c8cf91 4823
cb2afeb3
R
4824 case RELOAD_FOR_OPERAND_ADDRESS:
4825 used_in_set = &reload_reg_used_in_op_addr;
4826 break;
be7ae2a4 4827
cb2afeb3
R
4828 case RELOAD_FOR_OPADDR_ADDR:
4829 check_any = 1;
4830 used_in_set = &reload_reg_used_in_op_addr_reload;
4831 break;
893bc853 4832
cb2afeb3
R
4833 case RELOAD_FOR_OTHER_ADDRESS:
4834 used_in_set = &reload_reg_used_in_other_addr;
4835 check_any = 1;
4836 break;
be7ae2a4 4837
cb2afeb3
R
4838 case RELOAD_FOR_INPUT:
4839 used_in_set = &reload_reg_used_in_input[opnum];
4840 break;
be7ae2a4 4841
cb2afeb3
R
4842 case RELOAD_FOR_OUTPUT:
4843 used_in_set = &reload_reg_used_in_output[opnum];
4844 break;
be7ae2a4 4845
cb2afeb3
R
4846 case RELOAD_FOR_INSN:
4847 used_in_set = &reload_reg_used_in_insn;
4848 break;
4849 default:
4850 abort ();
4851 }
4852 /* We resolve conflicts with remaining reloads of the same type by
4853 excluding the intervals of of reload registers by them from the
4854 interval of freed reload registers. Since we only keep track of
4855 one set of interval bounds, we might have to exclude somewhat
4856 more then what would be necessary if we used a HARD_REG_SET here.
4857 But this should only happen very infrequently, so there should
4858 be no reason to worry about it. */
05d10675 4859
cb2afeb3
R
4860 start_regno = regno;
4861 end_regno = regno + nregs;
4862 if (check_opnum || check_any)
4863 {
4864 for (i = n_reloads - 1; i >= 0; i--)
4865 {
eceef4c9
BS
4866 if (rld[i].when_needed == type
4867 && (check_any || rld[i].opnum == opnum)
4868 && rld[i].reg_rtx)
cb2afeb3 4869 {
eceef4c9 4870 int conflict_start = true_regnum (rld[i].reg_rtx);
cb2afeb3
R
4871 int conflict_end
4872 = (conflict_start
8ec450a4 4873 + HARD_REGNO_NREGS (conflict_start, rld[i].mode));
cb2afeb3
R
4874
4875 /* If there is an overlap with the first to-be-freed register,
4876 adjust the interval start. */
4877 if (conflict_start <= start_regno && conflict_end > start_regno)
4878 start_regno = conflict_end;
4879 /* Otherwise, if there is a conflict with one of the other
4880 to-be-freed registers, adjust the interval end. */
4881 if (conflict_start > start_regno && conflict_start < end_regno)
4882 end_regno = conflict_start;
4883 }
be7ae2a4
RK
4884 }
4885 }
cb2afeb3
R
4886 for (i = start_regno; i < end_regno; i++)
4887 CLEAR_HARD_REG_BIT (*used_in_set, i);
be7ae2a4
RK
4888}
4889
32131a9c 4890/* 1 if reg REGNO is free as a reload reg for a reload of the sort
546b63fb 4891 specified by OPNUM and TYPE. */
32131a9c
RK
4892
4893static int
546b63fb 4894reload_reg_free_p (regno, opnum, type)
32131a9c 4895 int regno;
546b63fb
RK
4896 int opnum;
4897 enum reload_type type;
32131a9c 4898{
546b63fb
RK
4899 int i;
4900
2edc8d65
RK
4901 /* In use for a RELOAD_OTHER means it's not available for anything. */
4902 if (TEST_HARD_REG_BIT (reload_reg_used, regno))
32131a9c 4903 return 0;
546b63fb
RK
4904
4905 switch (type)
32131a9c
RK
4906 {
4907 case RELOAD_OTHER:
2edc8d65
RK
4908 /* In use for anything means we can't use it for RELOAD_OTHER. */
4909 if (TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno)
224f1d71
RK
4910 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4911 || TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
4912 return 0;
4913
4914 for (i = 0; i < reload_n_operands; i++)
4915 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
47c8cf91 4916 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
224f1d71 4917 || TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
47c8cf91 4918 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
224f1d71
RK
4919 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
4920 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4921 return 0;
4922
4923 return 1;
32131a9c 4924
32131a9c 4925 case RELOAD_FOR_INPUT:
546b63fb
RK
4926 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4927 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno))
4928 return 0;
4929
893bc853
RK
4930 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
4931 return 0;
4932
546b63fb
RK
4933 /* If it is used for some other input, can't use it. */
4934 for (i = 0; i < reload_n_operands; i++)
4935 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4936 return 0;
4937
4938 /* If it is used in a later operand's address, can't use it. */
4939 for (i = opnum + 1; i < reload_n_operands; i++)
47c8cf91
ILT
4940 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4941 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
546b63fb
RK
4942 return 0;
4943
4944 return 1;
4945
4946 case RELOAD_FOR_INPUT_ADDRESS:
4947 /* Can't use a register if it is used for an input address for this
4948 operand or used as an input in an earlier one. */
47c8cf91
ILT
4949 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], regno)
4950 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
4951 return 0;
4952
4953 for (i = 0; i < opnum; i++)
4954 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4955 return 0;
4956
4957 return 1;
4958
4959 case RELOAD_FOR_INPADDR_ADDRESS:
4960 /* Can't use a register if it is used for an input address
05d10675
BS
4961 for this operand or used as an input in an earlier
4962 one. */
47c8cf91 4963 if (TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
546b63fb
RK
4964 return 0;
4965
4966 for (i = 0; i < opnum; i++)
4967 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4968 return 0;
4969
4970 return 1;
4971
4972 case RELOAD_FOR_OUTPUT_ADDRESS:
4973 /* Can't use a register if it is used for an output address for this
4974 operand or used as an output in this or a later operand. */
4975 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], regno))
4976 return 0;
4977
4978 for (i = opnum; i < reload_n_operands; i++)
4979 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4980 return 0;
4981
4982 return 1;
4983
47c8cf91
ILT
4984 case RELOAD_FOR_OUTADDR_ADDRESS:
4985 /* Can't use a register if it is used for an output address
05d10675
BS
4986 for this operand or used as an output in this or a
4987 later operand. */
47c8cf91
ILT
4988 if (TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], regno))
4989 return 0;
4990
4991 for (i = opnum; i < reload_n_operands; i++)
4992 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4993 return 0;
4994
4995 return 1;
4996
32131a9c 4997 case RELOAD_FOR_OPERAND_ADDRESS:
546b63fb
RK
4998 for (i = 0; i < reload_n_operands; i++)
4999 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5000 return 0;
5001
5002 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5003 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
5004
893bc853
RK
5005 case RELOAD_FOR_OPADDR_ADDR:
5006 for (i = 0; i < reload_n_operands; i++)
05d10675
BS
5007 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5008 return 0;
893bc853 5009
a94ce333 5010 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno));
893bc853 5011
32131a9c 5012 case RELOAD_FOR_OUTPUT:
546b63fb
RK
5013 /* This cannot share a register with RELOAD_FOR_INSN reloads, other
5014 outputs, or an operand address for this or an earlier output. */
5015 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
5016 return 0;
5017
5018 for (i = 0; i < reload_n_operands; i++)
5019 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5020 return 0;
5021
5022 for (i = 0; i <= opnum; i++)
47c8cf91
ILT
5023 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5024 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
546b63fb
RK
5025 return 0;
5026
5027 return 1;
5028
5029 case RELOAD_FOR_INSN:
5030 for (i = 0; i < reload_n_operands; i++)
5031 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
5032 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5033 return 0;
5034
5035 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5036 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
5037
5038 case RELOAD_FOR_OTHER_ADDRESS:
5039 return ! TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno);
32131a9c
RK
5040 }
5041 abort ();
5042}
5043
32131a9c 5044/* Return 1 if the value in reload reg REGNO, as used by a reload
546b63fb 5045 needed for the part of the insn specified by OPNUM and TYPE,
32131a9c
RK
5046 is still available in REGNO at the end of the insn.
5047
5048 We can assume that the reload reg was already tested for availability
5049 at the time it is needed, and we should not check this again,
5050 in case the reg has already been marked in use. */
5051
5052static int
546b63fb 5053reload_reg_reaches_end_p (regno, opnum, type)
32131a9c 5054 int regno;
546b63fb
RK
5055 int opnum;
5056 enum reload_type type;
32131a9c 5057{
546b63fb
RK
5058 int i;
5059
5060 switch (type)
32131a9c
RK
5061 {
5062 case RELOAD_OTHER:
5063 /* Since a RELOAD_OTHER reload claims the reg for the entire insn,
5064 its value must reach the end. */
5065 return 1;
5066
5067 /* If this use is for part of the insn,
05d10675 5068 its value reaches if no subsequent part uses the same register.
546b63fb
RK
5069 Just like the above function, don't try to do this with lots
5070 of fallthroughs. */
5071
5072 case RELOAD_FOR_OTHER_ADDRESS:
5073 /* Here we check for everything else, since these don't conflict
5074 with anything else and everything comes later. */
5075
5076 for (i = 0; i < reload_n_operands; i++)
5077 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
47c8cf91 5078 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
546b63fb
RK
5079 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno)
5080 || TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
47c8cf91 5081 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
546b63fb
RK
5082 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5083 return 0;
5084
5085 return (! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5086 && ! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5087 && ! TEST_HARD_REG_BIT (reload_reg_used, regno));
5088
5089 case RELOAD_FOR_INPUT_ADDRESS:
47c8cf91 5090 case RELOAD_FOR_INPADDR_ADDRESS:
546b63fb
RK
5091 /* Similar, except that we check only for this and subsequent inputs
5092 and the address of only subsequent inputs and we do not need
5093 to check for RELOAD_OTHER objects since they are known not to
5094 conflict. */
5095
5096 for (i = opnum; i < reload_n_operands; i++)
5097 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5098 return 0;
5099
5100 for (i = opnum + 1; i < reload_n_operands; i++)
47c8cf91
ILT
5101 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5102 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
546b63fb
RK
5103 return 0;
5104
5105 for (i = 0; i < reload_n_operands; i++)
5106 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
47c8cf91 5107 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
546b63fb
RK
5108 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5109 return 0;
5110
893bc853
RK
5111 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
5112 return 0;
5113
546b63fb
RK
5114 return (! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5115 && ! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno));
5116
32131a9c 5117 case RELOAD_FOR_INPUT:
546b63fb 5118 /* Similar to input address, except we start at the next operand for
05d10675 5119 both input and input address and we do not check for
546b63fb
RK
5120 RELOAD_FOR_OPERAND_ADDRESS and RELOAD_FOR_INSN since these
5121 would conflict. */
5122
5123 for (i = opnum + 1; i < reload_n_operands; i++)
5124 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
47c8cf91 5125 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
546b63fb
RK
5126 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5127 return 0;
5128
0f41302f 5129 /* ... fall through ... */
546b63fb 5130
32131a9c 5131 case RELOAD_FOR_OPERAND_ADDRESS:
546b63fb
RK
5132 /* Check outputs and their addresses. */
5133
5134 for (i = 0; i < reload_n_operands; i++)
5135 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
47c8cf91 5136 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
546b63fb
RK
5137 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5138 return 0;
5139
5140 return 1;
5141
893bc853
RK
5142 case RELOAD_FOR_OPADDR_ADDR:
5143 for (i = 0; i < reload_n_operands; i++)
5144 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
47c8cf91 5145 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
893bc853
RK
5146 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5147 return 0;
5148
a94ce333
JW
5149 return (! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5150 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno));
893bc853 5151
546b63fb 5152 case RELOAD_FOR_INSN:
893bc853 5153 /* These conflict with other outputs with RELOAD_OTHER. So
546b63fb
RK
5154 we need only check for output addresses. */
5155
5156 opnum = -1;
5157
0f41302f 5158 /* ... fall through ... */
546b63fb 5159
32131a9c 5160 case RELOAD_FOR_OUTPUT:
546b63fb 5161 case RELOAD_FOR_OUTPUT_ADDRESS:
47c8cf91 5162 case RELOAD_FOR_OUTADDR_ADDRESS:
546b63fb
RK
5163 /* We already know these can't conflict with a later output. So the
5164 only thing to check are later output addresses. */
5165 for (i = opnum + 1; i < reload_n_operands; i++)
47c8cf91
ILT
5166 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5167 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
546b63fb
RK
5168 return 0;
5169
32131a9c
RK
5170 return 1;
5171 }
546b63fb 5172
32131a9c
RK
5173 abort ();
5174}
5175\f
351aa1c1
RK
5176/* Return 1 if the reloads denoted by R1 and R2 cannot share a register.
5177 Return 0 otherwise.
5178
5179 This function uses the same algorithm as reload_reg_free_p above. */
5180
f5963e61 5181int
351aa1c1
RK
5182reloads_conflict (r1, r2)
5183 int r1, r2;
5184{
eceef4c9
BS
5185 enum reload_type r1_type = rld[r1].when_needed;
5186 enum reload_type r2_type = rld[r2].when_needed;
5187 int r1_opnum = rld[r1].opnum;
5188 int r2_opnum = rld[r2].opnum;
351aa1c1 5189
2edc8d65
RK
5190 /* RELOAD_OTHER conflicts with everything. */
5191 if (r2_type == RELOAD_OTHER)
351aa1c1
RK
5192 return 1;
5193
5194 /* Otherwise, check conflicts differently for each type. */
5195
5196 switch (r1_type)
5197 {
5198 case RELOAD_FOR_INPUT:
05d10675 5199 return (r2_type == RELOAD_FOR_INSN
351aa1c1 5200 || r2_type == RELOAD_FOR_OPERAND_ADDRESS
893bc853 5201 || r2_type == RELOAD_FOR_OPADDR_ADDR
351aa1c1 5202 || r2_type == RELOAD_FOR_INPUT
47c8cf91
ILT
5203 || ((r2_type == RELOAD_FOR_INPUT_ADDRESS
5204 || r2_type == RELOAD_FOR_INPADDR_ADDRESS)
5205 && r2_opnum > r1_opnum));
351aa1c1
RK
5206
5207 case RELOAD_FOR_INPUT_ADDRESS:
5208 return ((r2_type == RELOAD_FOR_INPUT_ADDRESS && r1_opnum == r2_opnum)
5209 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
5210
47c8cf91
ILT
5211 case RELOAD_FOR_INPADDR_ADDRESS:
5212 return ((r2_type == RELOAD_FOR_INPADDR_ADDRESS && r1_opnum == r2_opnum)
5213 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
5214
351aa1c1
RK
5215 case RELOAD_FOR_OUTPUT_ADDRESS:
5216 return ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS && r2_opnum == r1_opnum)
5217 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum >= r1_opnum));
5218
47c8cf91
ILT
5219 case RELOAD_FOR_OUTADDR_ADDRESS:
5220 return ((r2_type == RELOAD_FOR_OUTADDR_ADDRESS && r2_opnum == r1_opnum)
5221 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum >= r1_opnum));
5222
351aa1c1
RK
5223 case RELOAD_FOR_OPERAND_ADDRESS:
5224 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_INSN
a94ce333 5225 || r2_type == RELOAD_FOR_OPERAND_ADDRESS);
351aa1c1 5226
893bc853 5227 case RELOAD_FOR_OPADDR_ADDR:
05d10675 5228 return (r2_type == RELOAD_FOR_INPUT
a94ce333 5229 || r2_type == RELOAD_FOR_OPADDR_ADDR);
893bc853 5230
351aa1c1
RK
5231 case RELOAD_FOR_OUTPUT:
5232 return (r2_type == RELOAD_FOR_INSN || r2_type == RELOAD_FOR_OUTPUT
47c8cf91
ILT
5233 || ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS
5234 || r2_type == RELOAD_FOR_OUTADDR_ADDRESS)
351aa1c1
RK
5235 && r2_opnum >= r1_opnum));
5236
5237 case RELOAD_FOR_INSN:
5238 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_OUTPUT
5239 || r2_type == RELOAD_FOR_INSN
5240 || r2_type == RELOAD_FOR_OPERAND_ADDRESS);
5241
5242 case RELOAD_FOR_OTHER_ADDRESS:
5243 return r2_type == RELOAD_FOR_OTHER_ADDRESS;
5244
adab4fc5 5245 case RELOAD_OTHER:
2edc8d65 5246 return 1;
adab4fc5 5247
351aa1c1
RK
5248 default:
5249 abort ();
5250 }
5251}
5252\f
32131a9c
RK
5253/* Vector of reload-numbers showing the order in which the reloads should
5254 be processed. */
5255short reload_order[MAX_RELOADS];
5256
5257/* Indexed by reload number, 1 if incoming value
5258 inherited from previous insns. */
5259char reload_inherited[MAX_RELOADS];
5260
5261/* For an inherited reload, this is the insn the reload was inherited from,
5262 if we know it. Otherwise, this is 0. */
5263rtx reload_inheritance_insn[MAX_RELOADS];
5264
5265/* If non-zero, this is a place to get the value of the reload,
5266 rather than using reload_in. */
5267rtx reload_override_in[MAX_RELOADS];
5268
e6e52be0
R
5269/* For each reload, the hard register number of the register used,
5270 or -1 if we did not need a register for this reload. */
32131a9c
RK
5271int reload_spill_index[MAX_RELOADS];
5272
6e684430
R
5273/* Return 1 if the value in reload reg REGNO, as used by a reload
5274 needed for the part of the insn specified by OPNUM and TYPE,
5275 may be used to load VALUE into it.
f5470689
R
5276
5277 Other read-only reloads with the same value do not conflict
5278 unless OUT is non-zero and these other reloads have to live while
5279 output reloads live.
dfe96118
R
5280 If OUT is CONST0_RTX, this is a special case: it means that the
5281 test should not be for using register REGNO as reload register, but
5282 for copying from register REGNO into the reload register.
f5470689
R
5283
5284 RELOADNUM is the number of the reload we want to load this value for;
5285 a reload does not conflict with itself.
5286
dfe96118
R
5287 When IGNORE_ADDRESS_RELOADS is set, we can not have conflicts with
5288 reloads that load an address for the very reload we are considering.
5289
6e684430
R
5290 The caller has to make sure that there is no conflict with the return
5291 register. */
5292static int
dfe96118 5293reload_reg_free_for_value_p (regno, opnum, type, value, out, reloadnum,
05d10675 5294 ignore_address_reloads)
6e684430
R
5295 int regno;
5296 int opnum;
5297 enum reload_type type;
f5470689
R
5298 rtx value, out;
5299 int reloadnum;
5828374f 5300 int ignore_address_reloads;
6e684430
R
5301{
5302 int time1;
09a308fe
R
5303 /* Set if we see an input reload that must not share its reload register
5304 with any new earlyclobber, but might otherwise share the reload
5305 register with an output or input-output reload. */
5306 int check_earlyclobber = 0;
6e684430 5307 int i;
dfe96118
R
5308 int copy = 0;
5309
5310 if (out == const0_rtx)
5311 {
5312 copy = 1;
5313 out = NULL_RTX;
5314 }
6e684430
R
5315
5316 /* We use some pseudo 'time' value to check if the lifetimes of the
5317 new register use would overlap with the one of a previous reload
5318 that is not read-only or uses a different value.
5319 The 'time' used doesn't have to be linear in any shape or form, just
5320 monotonic.
5321 Some reload types use different 'buckets' for each operand.
5322 So there are MAX_RECOG_OPERANDS different time values for each
cecbf6e2
R
5323 such reload type.
5324 We compute TIME1 as the time when the register for the prospective
5325 new reload ceases to be live, and TIME2 for each existing
5326 reload as the time when that the reload register of that reload
5327 becomes live.
5328 Where there is little to be gained by exact lifetime calculations,
5329 we just make conservative assumptions, i.e. a longer lifetime;
5330 this is done in the 'default:' cases. */
6e684430
R
5331 switch (type)
5332 {
5333 case RELOAD_FOR_OTHER_ADDRESS:
c2b4b171
BS
5334 /* RELOAD_FOR_OTHER_ADDRESS conflits with RELOAD_OTHER reloads. */
5335 time1 = copy ? 0 : 1;
6e684430 5336 break;
dfe96118
R
5337 case RELOAD_OTHER:
5338 time1 = copy ? 1 : MAX_RECOG_OPERANDS * 5 + 5;
5339 break;
05d10675
BS
5340 /* For each input, we may have a sequence of RELOAD_FOR_INPADDR_ADDRESS,
5341 RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT. By adding 0 / 1 / 2 ,
5342 respectively, to the time values for these, we get distinct time
5343 values. To get distinct time values for each operand, we have to
5344 multiply opnum by at least three. We round that up to four because
5345 multiply by four is often cheaper. */
6e684430 5346 case RELOAD_FOR_INPADDR_ADDRESS:
dfe96118 5347 time1 = opnum * 4 + 2;
6e684430
R
5348 break;
5349 case RELOAD_FOR_INPUT_ADDRESS:
dfe96118
R
5350 time1 = opnum * 4 + 3;
5351 break;
5352 case RELOAD_FOR_INPUT:
5353 /* All RELOAD_FOR_INPUT reloads remain live till the instruction
5354 executes (inclusive). */
5355 time1 = copy ? opnum * 4 + 4 : MAX_RECOG_OPERANDS * 4 + 3;
6e684430 5356 break;
cb2afeb3 5357 case RELOAD_FOR_OPADDR_ADDR:
05d10675
BS
5358 /* opnum * 4 + 4
5359 <= (MAX_RECOG_OPERANDS - 1) * 4 + 4 == MAX_RECOG_OPERANDS * 4 */
cb2afeb3
R
5360 time1 = MAX_RECOG_OPERANDS * 4 + 1;
5361 break;
5362 case RELOAD_FOR_OPERAND_ADDRESS:
5363 /* RELOAD_FOR_OPERAND_ADDRESS reloads are live even while the insn
5364 is executed. */
dfe96118
R
5365 time1 = copy ? MAX_RECOG_OPERANDS * 4 + 2 : MAX_RECOG_OPERANDS * 4 + 3;
5366 break;
5367 case RELOAD_FOR_OUTADDR_ADDRESS:
5368 time1 = MAX_RECOG_OPERANDS * 4 + 4 + opnum;
6e684430 5369 break;
6e684430 5370 case RELOAD_FOR_OUTPUT_ADDRESS:
dfe96118 5371 time1 = MAX_RECOG_OPERANDS * 4 + 5 + opnum;
6e684430
R
5372 break;
5373 default:
dfe96118 5374 time1 = MAX_RECOG_OPERANDS * 5 + 5;
6e684430
R
5375 }
5376
5377 for (i = 0; i < n_reloads; i++)
5378 {
eceef4c9 5379 rtx reg = rld[i].reg_rtx;
6e684430
R
5380 if (reg && GET_CODE (reg) == REG
5381 && ((unsigned) regno - true_regnum (reg)
83e0821b 5382 <= HARD_REGNO_NREGS (REGNO (reg), GET_MODE (reg)) - (unsigned)1)
f5470689 5383 && i != reloadnum)
6e684430 5384 {
eceef4c9
BS
5385 if (! rld[i].in || ! rtx_equal_p (rld[i].in, value)
5386 || rld[i].out || out)
6e684430 5387 {
09a308fe 5388 int time2;
eceef4c9 5389 switch (rld[i].when_needed)
f5470689
R
5390 {
5391 case RELOAD_FOR_OTHER_ADDRESS:
5392 time2 = 0;
5393 break;
5394 case RELOAD_FOR_INPADDR_ADDRESS:
cb2afeb3
R
5395 /* find_reloads makes sure that a
5396 RELOAD_FOR_{INP,OP,OUT}ADDR_ADDRESS reload is only used
5397 by at most one - the first -
5398 RELOAD_FOR_{INPUT,OPERAND,OUTPUT}_ADDRESS . If the
5399 address reload is inherited, the address address reload
5400 goes away, so we can ignore this conflict. */
dfe96118
R
5401 if (type == RELOAD_FOR_INPUT_ADDRESS && reloadnum == i + 1
5402 && ignore_address_reloads
5403 /* Unless the RELOAD_FOR_INPUT is an auto_inc expression.
5404 Then the address address is still needed to store
5405 back the new address. */
eceef4c9 5406 && ! rld[reloadnum].out)
cb2afeb3 5407 continue;
dfe96118
R
5408 /* Likewise, if a RELOAD_FOR_INPUT can inherit a value, its
5409 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS
5410 reloads go away. */
eceef4c9 5411 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
dfe96118
R
5412 && ignore_address_reloads
5413 /* Unless we are reloading an auto_inc expression. */
eceef4c9 5414 && ! rld[reloadnum].out)
dfe96118 5415 continue;
eceef4c9 5416 time2 = rld[i].opnum * 4 + 2;
f5470689
R
5417 break;
5418 case RELOAD_FOR_INPUT_ADDRESS:
eceef4c9 5419 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
dfe96118 5420 && ignore_address_reloads
eceef4c9 5421 && ! rld[reloadnum].out)
dfe96118 5422 continue;
eceef4c9 5423 time2 = rld[i].opnum * 4 + 3;
f5470689
R
5424 break;
5425 case RELOAD_FOR_INPUT:
eceef4c9 5426 time2 = rld[i].opnum * 4 + 4;
09a308fe 5427 check_earlyclobber = 1;
f5470689 5428 break;
eceef4c9 5429 /* rld[i].opnum * 4 + 4 <= (MAX_RECOG_OPERAND - 1) * 4 + 4
05d10675 5430 == MAX_RECOG_OPERAND * 4 */
cb2afeb3 5431 case RELOAD_FOR_OPADDR_ADDR:
dfe96118
R
5432 if (type == RELOAD_FOR_OPERAND_ADDRESS && reloadnum == i + 1
5433 && ignore_address_reloads
eceef4c9 5434 && ! rld[reloadnum].out)
cb2afeb3 5435 continue;
dfe96118 5436 time2 = MAX_RECOG_OPERANDS * 4 + 1;
cb2afeb3
R
5437 break;
5438 case RELOAD_FOR_OPERAND_ADDRESS:
dfe96118 5439 time2 = MAX_RECOG_OPERANDS * 4 + 2;
09a308fe 5440 check_earlyclobber = 1;
dfe96118
R
5441 break;
5442 case RELOAD_FOR_INSN:
5443 time2 = MAX_RECOG_OPERANDS * 4 + 3;
cb2afeb3 5444 break;
f5470689 5445 case RELOAD_FOR_OUTPUT:
05d10675
BS
5446 /* All RELOAD_FOR_OUTPUT reloads become live just after the
5447 instruction is executed. */
dfe96118 5448 time2 = MAX_RECOG_OPERANDS * 4 + 4;
f5470689 5449 break;
05d10675
BS
5450 /* The first RELOAD_FOR_OUTADDR_ADDRESS reload conflicts with
5451 the RELOAD_FOR_OUTPUT reloads, so assign it the same time
5452 value. */
cb2afeb3 5453 case RELOAD_FOR_OUTADDR_ADDRESS:
dfe96118
R
5454 if (type == RELOAD_FOR_OUTPUT_ADDRESS && reloadnum == i + 1
5455 && ignore_address_reloads
eceef4c9 5456 && ! rld[reloadnum].out)
cb2afeb3 5457 continue;
eceef4c9 5458 time2 = MAX_RECOG_OPERANDS * 4 + 4 + rld[i].opnum;
dfe96118 5459 break;
f5470689 5460 case RELOAD_FOR_OUTPUT_ADDRESS:
eceef4c9 5461 time2 = MAX_RECOG_OPERANDS * 4 + 5 + rld[i].opnum;
f5470689
R
5462 break;
5463 case RELOAD_OTHER:
dfe96118
R
5464 /* If there is no conflict in the input part, handle this
5465 like an output reload. */
eceef4c9 5466 if (! rld[i].in || rtx_equal_p (rld[i].in, value))
f5470689 5467 {
dfe96118 5468 time2 = MAX_RECOG_OPERANDS * 4 + 4;
57850c85 5469 /* Earlyclobbered outputs must conflict with inputs. */
09a308fe
R
5470 if (earlyclobber_operand_p (rld[i].out))
5471 time2 = MAX_RECOG_OPERANDS * 4 + 3;
57850c85 5472
f5470689
R
5473 break;
5474 }
dfe96118
R
5475 time2 = 1;
5476 /* RELOAD_OTHER might be live beyond instruction execution,
5477 but this is not obvious when we set time2 = 1. So check
5478 here if there might be a problem with the new reload
5479 clobbering the register used by the RELOAD_OTHER. */
5480 if (out)
5481 return 0;
5482 break;
f5470689 5483 default:
dfe96118 5484 return 0;
f5470689 5485 }
25963977 5486 if ((time1 >= time2
eceef4c9
BS
5487 && (! rld[i].in || rld[i].out
5488 || ! rtx_equal_p (rld[i].in, value)))
5489 || (out && rld[reloadnum].out_reg
701d55e8 5490 && time2 >= MAX_RECOG_OPERANDS * 4 + 3))
f5470689 5491 return 0;
6e684430 5492 }
6e684430
R
5493 }
5494 }
09a308fe
R
5495
5496 /* Earlyclobbered outputs must conflict with inputs. */
5497 if (check_earlyclobber && out && earlyclobber_operand_p (out))
5498 return 0;
5499
6e684430
R
5500 return 1;
5501}
5502
67e61fe7
BS
5503/* Give an error message saying we failed to find a reload for INSN,
5504 and clear out reload R. */
5505static void
5506failed_reload (insn, r)
5507 rtx insn;
5508 int r;
5509{
5510 if (asm_noperands (PATTERN (insn)) < 0)
5511 /* It's the compiler's fault. */
5512 fatal_insn ("Could not find a spill register", insn);
5513
5514 /* It's the user's fault; the operand's mode and constraint
5515 don't match. Disable this reload so we don't crash in final. */
5516 error_for_asm (insn,
5517 "`asm' operand constraint incompatible with operand size");
5518 rld[r].in = 0;
5519 rld[r].out = 0;
5520 rld[r].reg_rtx = 0;
5521 rld[r].optional = 1;
5522 rld[r].secondary_p = 1;
5523}
5524
5525/* I is the index in SPILL_REG_RTX of the reload register we are to allocate
5526 for reload R. If it's valid, get an rtx for it. Return nonzero if
5527 successful. */
5528static int
5529set_reload_reg (i, r)
5530 int i, r;
5531{
5532 int regno;
5533 rtx reg = spill_reg_rtx[i];
5534
5535 if (reg == 0 || GET_MODE (reg) != rld[r].mode)
5536 spill_reg_rtx[i] = reg
5537 = gen_rtx_REG (rld[r].mode, spill_regs[i]);
5538
5539 regno = true_regnum (reg);
5540
5541 /* Detect when the reload reg can't hold the reload mode.
5542 This used to be one `if', but Sequent compiler can't handle that. */
5543 if (HARD_REGNO_MODE_OK (regno, rld[r].mode))
5544 {
5545 enum machine_mode test_mode = VOIDmode;
5546 if (rld[r].in)
5547 test_mode = GET_MODE (rld[r].in);
5548 /* If rld[r].in has VOIDmode, it means we will load it
5549 in whatever mode the reload reg has: to wit, rld[r].mode.
5550 We have already tested that for validity. */
5551 /* Aside from that, we need to test that the expressions
5552 to reload from or into have modes which are valid for this
5553 reload register. Otherwise the reload insns would be invalid. */
5554 if (! (rld[r].in != 0 && test_mode != VOIDmode
5555 && ! HARD_REGNO_MODE_OK (regno, test_mode)))
5556 if (! (rld[r].out != 0
5557 && ! HARD_REGNO_MODE_OK (regno, GET_MODE (rld[r].out))))
5558 {
5559 /* The reg is OK. */
5560 last_spill_reg = i;
5561
5562 /* Mark as in use for this insn the reload regs we use
5563 for this. */
5564 mark_reload_reg_in_use (spill_regs[i], rld[r].opnum,
5565 rld[r].when_needed, rld[r].mode);
5566
5567 rld[r].reg_rtx = reg;
5568 reload_spill_index[r] = spill_regs[i];
5569 return 1;
5570 }
5571 }
5572 return 0;
5573}
5574
32131a9c
RK
5575/* Find a spill register to use as a reload register for reload R.
5576 LAST_RELOAD is non-zero if this is the last reload for the insn being
5577 processed.
5578
eceef4c9 5579 Set rld[R].reg_rtx to the register allocated.
32131a9c
RK
5580
5581 If NOERROR is nonzero, we return 1 if successful,
5582 or 0 if we couldn't find a spill reg and we didn't change anything. */
5583
5584static int
7609e720
BS
5585allocate_reload_reg (chain, r, last_reload, noerror)
5586 struct insn_chain *chain;
32131a9c 5587 int r;
32131a9c
RK
5588 int last_reload;
5589 int noerror;
5590{
7609e720 5591 rtx insn = chain->insn;
67e61fe7 5592 int i, pass, count;
32131a9c
RK
5593
5594 /* If we put this reload ahead, thinking it is a group,
5595 then insist on finding a group. Otherwise we can grab a
a8fdc208 5596 reg that some other reload needs.
32131a9c
RK
5597 (That can happen when we have a 68000 DATA_OR_FP_REG
5598 which is a group of data regs or one fp reg.)
5599 We need not be so restrictive if there are no more reloads
5600 for this insn.
5601
5602 ??? Really it would be nicer to have smarter handling
5603 for that kind of reg class, where a problem like this is normal.
5604 Perhaps those classes should be avoided for reloading
5605 by use of more alternatives. */
5606
8ec450a4 5607 int force_group = rld[r].nregs > 1 && ! last_reload;
32131a9c
RK
5608
5609 /* If we want a single register and haven't yet found one,
5610 take any reg in the right class and not in use.
5611 If we want a consecutive group, here is where we look for it.
5612
5613 We use two passes so we can first look for reload regs to
5614 reuse, which are already in use for other reloads in this insn,
5615 and only then use additional registers.
5616 I think that maximizing reuse is needed to make sure we don't
5617 run out of reload regs. Suppose we have three reloads, and
5618 reloads A and B can share regs. These need two regs.
5619 Suppose A and B are given different regs.
5620 That leaves none for C. */
5621 for (pass = 0; pass < 2; pass++)
5622 {
5623 /* I is the index in spill_regs.
5624 We advance it round-robin between insns to use all spill regs
5625 equally, so that inherited reloads have a chance
a5339699
RK
5626 of leapfrogging each other. Don't do this, however, when we have
5627 group needs and failure would be fatal; if we only have a relatively
5628 small number of spill registers, and more than one of them has
05d10675 5629 group needs, then by starting in the middle, we may end up
a5339699
RK
5630 allocating the first one in such a way that we are not left with
5631 sufficient groups to handle the rest. */
5632
5633 if (noerror || ! force_group)
5634 i = last_spill_reg;
5635 else
5636 i = -1;
05d10675 5637
a5339699 5638 for (count = 0; count < n_spills; count++)
32131a9c 5639 {
eceef4c9 5640 int class = (int) rld[r].class;
03acd8f8 5641 int regnum;
32131a9c 5642
03acd8f8
BS
5643 i++;
5644 if (i >= n_spills)
5645 i -= n_spills;
5646 regnum = spill_regs[i];
32131a9c 5647
eceef4c9
BS
5648 if ((reload_reg_free_p (regnum, rld[r].opnum,
5649 rld[r].when_needed)
5650 || (rld[r].in
05d10675
BS
5651 /* We check reload_reg_used to make sure we
5652 don't clobber the return register. */
03acd8f8
BS
5653 && ! TEST_HARD_REG_BIT (reload_reg_used, regnum)
5654 && reload_reg_free_for_value_p (regnum,
eceef4c9
BS
5655 rld[r].opnum,
5656 rld[r].when_needed,
5657 rld[r].in,
5658 rld[r].out, r, 1)))
03acd8f8 5659 && TEST_HARD_REG_BIT (reg_class_contents[class], regnum)
8ec450a4 5660 && HARD_REGNO_MODE_OK (regnum, rld[r].mode)
be7ae2a4
RK
5661 /* Look first for regs to share, then for unshared. But
5662 don't share regs used for inherited reloads; they are
5663 the ones we want to preserve. */
5664 && (pass
5665 || (TEST_HARD_REG_BIT (reload_reg_used_at_all,
03acd8f8 5666 regnum)
be7ae2a4 5667 && ! TEST_HARD_REG_BIT (reload_reg_used_for_inherit,
03acd8f8 5668 regnum))))
32131a9c 5669 {
8ec450a4 5670 int nr = HARD_REGNO_NREGS (regnum, rld[r].mode);
32131a9c
RK
5671 /* Avoid the problem where spilling a GENERAL_OR_FP_REG
5672 (on 68000) got us two FP regs. If NR is 1,
5673 we would reject both of them. */
5674 if (force_group)
67e61fe7 5675 nr = rld[r].nregs;
32131a9c
RK
5676 /* If we need only one reg, we have already won. */
5677 if (nr == 1)
5678 {
5679 /* But reject a single reg if we demand a group. */
5680 if (force_group)
5681 continue;
5682 break;
5683 }
5684 /* Otherwise check that as many consecutive regs as we need
5685 are available here.
5686 Also, don't use for a group registers that are
5687 needed for nongroups. */
03acd8f8 5688 if (! TEST_HARD_REG_BIT (chain->counted_for_nongroups, regnum))
32131a9c
RK
5689 while (nr > 1)
5690 {
67e61fe7 5691 int regno = regnum + nr - 1;
32131a9c
RK
5692 if (!(TEST_HARD_REG_BIT (reg_class_contents[class], regno)
5693 && spill_reg_order[regno] >= 0
eceef4c9
BS
5694 && reload_reg_free_p (regno, rld[r].opnum,
5695 rld[r].when_needed)
03acd8f8 5696 && ! TEST_HARD_REG_BIT (chain->counted_for_nongroups,
32131a9c
RK
5697 regno)))
5698 break;
5699 nr--;
5700 }
5701 if (nr == 1)
5702 break;
5703 }
5704 }
5705
5706 /* If we found something on pass 1, omit pass 2. */
5707 if (count < n_spills)
5708 break;
5709 }
5710
5711 /* We should have found a spill register by now. */
5712 if (count == n_spills)
5713 {
5714 if (noerror)
5715 return 0;
139fc12e 5716 goto failure;
32131a9c
RK
5717 }
5718
67e61fe7
BS
5719 if (set_reload_reg (i, r))
5720 return 1;
32131a9c
RK
5721
5722 /* The reg is not OK. */
5723 if (noerror)
5724 return 0;
5725
139fc12e 5726 failure:
67e61fe7 5727 failed_reload (insn, r);
32131a9c
RK
5728
5729 return 1;
5730}
5731\f
67e61fe7
BS
5732/* Initialize all the tables needed to allocate reload registers.
5733 CHAIN is the insn currently being processed; SAVE_RELOAD_REG_RTX
5734 is the array we use to restore the reg_rtx field for every reload. */
32131a9c 5735static void
67e61fe7 5736choose_reload_regs_init (chain, save_reload_reg_rtx)
7609e720 5737 struct insn_chain *chain;
67e61fe7 5738 rtx *save_reload_reg_rtx;
32131a9c 5739{
67e61fe7 5740 int i;
32131a9c 5741
67e61fe7
BS
5742 for (i = 0; i < n_reloads; i++)
5743 rld[i].reg_rtx = save_reload_reg_rtx[i];
32131a9c
RK
5744
5745 bzero (reload_inherited, MAX_RELOADS);
4c9a05bc
RK
5746 bzero ((char *) reload_inheritance_insn, MAX_RELOADS * sizeof (rtx));
5747 bzero ((char *) reload_override_in, MAX_RELOADS * sizeof (rtx));
32131a9c
RK
5748
5749 CLEAR_HARD_REG_SET (reload_reg_used);
5750 CLEAR_HARD_REG_SET (reload_reg_used_at_all);
32131a9c 5751 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr);
893bc853 5752 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr_reload);
546b63fb
RK
5753 CLEAR_HARD_REG_SET (reload_reg_used_in_insn);
5754 CLEAR_HARD_REG_SET (reload_reg_used_in_other_addr);
32131a9c 5755
f1db3576
JL
5756 CLEAR_HARD_REG_SET (reg_used_in_insn);
5757 {
5758 HARD_REG_SET tmp;
5759 REG_SET_TO_HARD_REG_SET (tmp, chain->live_before);
5760 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
5761 REG_SET_TO_HARD_REG_SET (tmp, chain->live_after);
5762 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
5763 compute_use_by_pseudos (&reg_used_in_insn, chain->live_before);
5764 compute_use_by_pseudos (&reg_used_in_insn, chain->live_after);
5765 }
546b63fb
RK
5766 for (i = 0; i < reload_n_operands; i++)
5767 {
5768 CLEAR_HARD_REG_SET (reload_reg_used_in_output[i]);
5769 CLEAR_HARD_REG_SET (reload_reg_used_in_input[i]);
5770 CLEAR_HARD_REG_SET (reload_reg_used_in_input_addr[i]);
47c8cf91 5771 CLEAR_HARD_REG_SET (reload_reg_used_in_inpaddr_addr[i]);
546b63fb 5772 CLEAR_HARD_REG_SET (reload_reg_used_in_output_addr[i]);
47c8cf91 5773 CLEAR_HARD_REG_SET (reload_reg_used_in_outaddr_addr[i]);
546b63fb 5774 }
32131a9c 5775
03acd8f8 5776 IOR_COMPL_HARD_REG_SET (reload_reg_used, chain->used_spill_regs);
05d10675 5777
67e61fe7 5778 CLEAR_HARD_REG_SET (reload_reg_used_for_inherit);
32131a9c 5779
67e61fe7
BS
5780 for (i = 0; i < n_reloads; i++)
5781 /* If we have already decided to use a certain register,
5782 don't use it in another way. */
5783 if (rld[i].reg_rtx)
5784 mark_reload_reg_in_use (REGNO (rld[i].reg_rtx), rld[i].opnum,
5785 rld[i].when_needed, rld[i].mode);
5786}
32131a9c 5787
67e61fe7
BS
5788/* Assign hard reg targets for the pseudo-registers we must reload
5789 into hard regs for this insn.
5790 Also output the instructions to copy them in and out of the hard regs.
5791
5792 For machines with register classes, we are responsible for
5793 finding a reload reg in the proper class. */
5794
5795static void
5796choose_reload_regs (chain)
5797 struct insn_chain *chain;
5798{
5799 rtx insn = chain->insn;
5800 register int i, j;
5801 int max_group_size = 1;
5802 enum reg_class group_class = NO_REGS;
5803 int inheritance;
5804 int pass;
5805
5806 rtx save_reload_reg_rtx[MAX_RELOADS];
32131a9c 5807
32131a9c
RK
5808 /* In order to be certain of getting the registers we need,
5809 we must sort the reloads into order of increasing register class.
5810 Then our grabbing of reload registers will parallel the process
a8fdc208 5811 that provided the reload registers.
32131a9c
RK
5812
5813 Also note whether any of the reloads wants a consecutive group of regs.
5814 If so, record the maximum size of the group desired and what
5815 register class contains all the groups needed by this insn. */
5816
5817 for (j = 0; j < n_reloads; j++)
5818 {
5819 reload_order[j] = j;
5820 reload_spill_index[j] = -1;
5821
8ec450a4 5822 if (rld[j].nregs > 1)
32131a9c 5823 {
8ec450a4 5824 max_group_size = MAX (rld[j].nregs, max_group_size);
eceef4c9 5825 group_class = reg_class_superunion[(int)rld[j].class][(int)group_class];
32131a9c
RK
5826 }
5827
eceef4c9 5828 save_reload_reg_rtx[j] = rld[j].reg_rtx;
32131a9c
RK
5829 }
5830
5831 if (n_reloads > 1)
5832 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
5833
58b1581b
RS
5834 /* If -O, try first with inheritance, then turning it off.
5835 If not -O, don't do inheritance.
5836 Using inheritance when not optimizing leads to paradoxes
5837 with fp on the 68k: fp numbers (not NaNs) fail to be equal to themselves
5838 because one side of the comparison might be inherited. */
32131a9c 5839
58b1581b 5840 for (inheritance = optimize > 0; inheritance >= 0; inheritance--)
32131a9c 5841 {
67e61fe7
BS
5842 choose_reload_regs_init (chain, save_reload_reg_rtx);
5843
32131a9c
RK
5844 /* Process the reloads in order of preference just found.
5845 Beyond this point, subregs can be found in reload_reg_rtx.
5846
5847 This used to look for an existing reloaded home for all
5848 of the reloads, and only then perform any new reloads.
5849 But that could lose if the reloads were done out of reg-class order
5850 because a later reload with a looser constraint might have an old
5851 home in a register needed by an earlier reload with a tighter constraint.
5852
5853 To solve this, we make two passes over the reloads, in the order
5854 described above. In the first pass we try to inherit a reload
5855 from a previous insn. If there is a later reload that needs a
5856 class that is a proper subset of the class being processed, we must
5857 also allocate a spill register during the first pass.
5858
5859 Then make a second pass over the reloads to allocate any reloads
5860 that haven't been given registers yet. */
5861
5862 for (j = 0; j < n_reloads; j++)
5863 {
5864 register int r = reload_order[j];
8593b745 5865 rtx search_equiv = NULL_RTX;
32131a9c
RK
5866
5867 /* Ignore reloads that got marked inoperative. */
eceef4c9
BS
5868 if (rld[r].out == 0 && rld[r].in == 0
5869 && ! rld[r].secondary_p)
32131a9c
RK
5870 continue;
5871
b29514ee 5872 /* If find_reloads chose to use reload_in or reload_out as a reload
b080c137
RK
5873 register, we don't need to chose one. Otherwise, try even if it
5874 found one since we might save an insn if we find the value lying
b29514ee
R
5875 around.
5876 Try also when reload_in is a pseudo without a hard reg. */
eceef4c9
BS
5877 if (rld[r].in != 0 && rld[r].reg_rtx != 0
5878 && (rtx_equal_p (rld[r].in, rld[r].reg_rtx)
5879 || (rtx_equal_p (rld[r].out, rld[r].reg_rtx)
5880 && GET_CODE (rld[r].in) != MEM
5881 && true_regnum (rld[r].in) < FIRST_PSEUDO_REGISTER)))
32131a9c
RK
5882 continue;
5883
5884#if 0 /* No longer needed for correct operation.
5885 It might give better code, or might not; worth an experiment? */
5886 /* If this is an optional reload, we can't inherit from earlier insns
5887 until we are sure that any non-optional reloads have been allocated.
5888 The following code takes advantage of the fact that optional reloads
5889 are at the end of reload_order. */
eceef4c9 5890 if (rld[r].optional != 0)
32131a9c 5891 for (i = 0; i < j; i++)
eceef4c9
BS
5892 if ((rld[reload_order[i]].out != 0
5893 || rld[reload_order[i]].in != 0
5894 || rld[reload_order[i]].secondary_p)
5895 && ! rld[reload_order[i]].optional
5896 && rld[reload_order[i]].reg_rtx == 0)
7609e720 5897 allocate_reload_reg (chain, reload_order[i], 0, inheritance);
32131a9c
RK
5898#endif
5899
5900 /* First see if this pseudo is already available as reloaded
5901 for a previous insn. We cannot try to inherit for reloads
5902 that are smaller than the maximum number of registers needed
5903 for groups unless the register we would allocate cannot be used
5904 for the groups.
5905
5906 We could check here to see if this is a secondary reload for
5907 an object that is already in a register of the desired class.
5908 This would avoid the need for the secondary reload register.
5909 But this is complex because we can't easily determine what
b080c137
RK
5910 objects might want to be loaded via this reload. So let a
5911 register be allocated here. In `emit_reload_insns' we suppress
5912 one of the loads in the case described above. */
32131a9c
RK
5913
5914 if (inheritance)
5915 {
cb2afeb3 5916 int word = 0;
32131a9c 5917 register int regno = -1;
6a651371 5918 enum machine_mode mode = VOIDmode;
32131a9c 5919
eceef4c9 5920 if (rld[r].in == 0)
32131a9c 5921 ;
eceef4c9 5922 else if (GET_CODE (rld[r].in) == REG)
db660765 5923 {
eceef4c9
BS
5924 regno = REGNO (rld[r].in);
5925 mode = GET_MODE (rld[r].in);
db660765 5926 }
eceef4c9 5927 else if (GET_CODE (rld[r].in_reg) == REG)
db660765 5928 {
eceef4c9
BS
5929 regno = REGNO (rld[r].in_reg);
5930 mode = GET_MODE (rld[r].in_reg);
db660765 5931 }
eceef4c9
BS
5932 else if (GET_CODE (rld[r].in_reg) == SUBREG
5933 && GET_CODE (SUBREG_REG (rld[r].in_reg)) == REG)
b60a8416 5934 {
eceef4c9
BS
5935 word = SUBREG_WORD (rld[r].in_reg);
5936 regno = REGNO (SUBREG_REG (rld[r].in_reg));
cb2afeb3
R
5937 if (regno < FIRST_PSEUDO_REGISTER)
5938 regno += word;
eceef4c9 5939 mode = GET_MODE (rld[r].in_reg);
cb2afeb3
R
5940 }
5941#ifdef AUTO_INC_DEC
eceef4c9
BS
5942 else if ((GET_CODE (rld[r].in_reg) == PRE_INC
5943 || GET_CODE (rld[r].in_reg) == PRE_DEC
5944 || GET_CODE (rld[r].in_reg) == POST_INC
5945 || GET_CODE (rld[r].in_reg) == POST_DEC)
5946 && GET_CODE (XEXP (rld[r].in_reg, 0)) == REG)
cb2afeb3 5947 {
eceef4c9
BS
5948 regno = REGNO (XEXP (rld[r].in_reg, 0));
5949 mode = GET_MODE (XEXP (rld[r].in_reg, 0));
5950 rld[r].out = rld[r].in;
b60a8416 5951 }
cb2afeb3 5952#endif
32131a9c
RK
5953#if 0
5954 /* This won't work, since REGNO can be a pseudo reg number.
5955 Also, it takes much more hair to keep track of all the things
5956 that can invalidate an inherited reload of part of a pseudoreg. */
eceef4c9
BS
5957 else if (GET_CODE (rld[r].in) == SUBREG
5958 && GET_CODE (SUBREG_REG (rld[r].in)) == REG)
5959 regno = REGNO (SUBREG_REG (rld[r].in)) + SUBREG_WORD (rld[r].in);
32131a9c
RK
5960#endif
5961
5962 if (regno >= 0 && reg_last_reload_reg[regno] != 0)
5963 {
eceef4c9 5964 enum reg_class class = rld[r].class, last_class;
cb2afeb3 5965 rtx last_reg = reg_last_reload_reg[regno];
05d10675 5966
cb2afeb3
R
5967 i = REGNO (last_reg) + word;
5968 last_class = REGNO_REG_CLASS (i);
5969 if ((GET_MODE_SIZE (GET_MODE (last_reg))
5970 >= GET_MODE_SIZE (mode) + word * UNITS_PER_WORD)
5971 && reg_reloaded_contents[i] == regno
e6e52be0 5972 && TEST_HARD_REG_BIT (reg_reloaded_valid, i)
8ec450a4 5973 && HARD_REGNO_MODE_OK (i, rld[r].mode)
cb2afeb3
R
5974 && (TEST_HARD_REG_BIT (reg_class_contents[(int) class], i)
5975 /* Even if we can't use this register as a reload
5976 register, we might use it for reload_override_in,
5977 if copying it to the desired class is cheap
5978 enough. */
5979 || ((REGISTER_MOVE_COST (last_class, class)
5980 < MEMORY_MOVE_COST (mode, class, 1))
5981#ifdef SECONDARY_INPUT_RELOAD_CLASS
5982 && (SECONDARY_INPUT_RELOAD_CLASS (class, mode,
5983 last_reg)
5984 == NO_REGS)
5985#endif
5986#ifdef SECONDARY_MEMORY_NEEDED
5987 && ! SECONDARY_MEMORY_NEEDED (last_class, class,
5988 mode)
5989#endif
5990 ))
5991
8ec450a4 5992 && (rld[r].nregs == max_group_size
32131a9c 5993 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) group_class],
e6e52be0 5994 i))
eceef4c9
BS
5995 && reload_reg_free_for_value_p (i, rld[r].opnum,
5996 rld[r].when_needed,
5997 rld[r].in,
dfe96118 5998 const0_rtx, r, 1))
32131a9c
RK
5999 {
6000 /* If a group is needed, verify that all the subsequent
0f41302f 6001 registers still have their values intact. */
32131a9c 6002 int nr
8ec450a4 6003 = HARD_REGNO_NREGS (i, rld[r].mode);
32131a9c
RK
6004 int k;
6005
6006 for (k = 1; k < nr; k++)
e6e52be0
R
6007 if (reg_reloaded_contents[i + k] != regno
6008 || ! TEST_HARD_REG_BIT (reg_reloaded_valid, i + k))
32131a9c
RK
6009 break;
6010
6011 if (k == nr)
6012 {
c74fa651
RS
6013 int i1;
6014
cb2afeb3
R
6015 last_reg = (GET_MODE (last_reg) == mode
6016 ? last_reg : gen_rtx_REG (mode, i));
6017
c74fa651
RS
6018 /* We found a register that contains the
6019 value we need. If this register is the
6020 same as an `earlyclobber' operand of the
6021 current insn, just mark it as a place to
6022 reload from since we can't use it as the
6023 reload register itself. */
6024
6025 for (i1 = 0; i1 < n_earlyclobbers; i1++)
6026 if (reg_overlap_mentioned_for_reload_p
6027 (reg_last_reload_reg[regno],
6028 reload_earlyclobbers[i1]))
6029 break;
6030
8908158d 6031 if (i1 != n_earlyclobbers
dfe96118 6032 || ! (reload_reg_free_for_value_p
eceef4c9
BS
6033 (i, rld[r].opnum, rld[r].when_needed,
6034 rld[r].in, rld[r].out, r, 1))
e6e52be0 6035 /* Don't use it if we'd clobber a pseudo reg. */
f1db3576 6036 || (TEST_HARD_REG_BIT (reg_used_in_insn, i)
eceef4c9 6037 && rld[r].out
e6e52be0 6038 && ! TEST_HARD_REG_BIT (reg_reloaded_dead, i))
0c7f2259 6039 /* Don't clobber the frame pointer. */
67e61fe7 6040 || (i == HARD_FRAME_POINTER_REGNUM && rld[r].out)
8908158d
RS
6041 /* Don't really use the inherited spill reg
6042 if we need it wider than we've got it. */
8ec450a4 6043 || (GET_MODE_SIZE (rld[r].mode)
b29514ee 6044 > GET_MODE_SIZE (mode))
eceef4c9 6045 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].class],
cb2afeb3
R
6046 i)
6047
b29514ee
R
6048 /* If find_reloads chose reload_out as reload
6049 register, stay with it - that leaves the
6050 inherited register for subsequent reloads. */
eceef4c9 6051 || (rld[r].out && rld[r].reg_rtx
67e61fe7 6052 && rtx_equal_p (rld[r].out, rld[r].reg_rtx)))
cb2afeb3
R
6053 {
6054 reload_override_in[r] = last_reg;
6055 reload_inheritance_insn[r]
6056 = reg_reloaded_insn[i];
6057 }
c74fa651
RS
6058 else
6059 {
54c40e68 6060 int k;
c74fa651
RS
6061 /* We can use this as a reload reg. */
6062 /* Mark the register as in use for this part of
6063 the insn. */
e6e52be0 6064 mark_reload_reg_in_use (i,
eceef4c9
BS
6065 rld[r].opnum,
6066 rld[r].when_needed,
8ec450a4 6067 rld[r].mode);
eceef4c9 6068 rld[r].reg_rtx = last_reg;
c74fa651
RS
6069 reload_inherited[r] = 1;
6070 reload_inheritance_insn[r]
6071 = reg_reloaded_insn[i];
6072 reload_spill_index[r] = i;
54c40e68
RS
6073 for (k = 0; k < nr; k++)
6074 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
e6e52be0 6075 i + k);
c74fa651 6076 }
32131a9c
RK
6077 }
6078 }
6079 }
6080 }
6081
6082 /* Here's another way to see if the value is already lying around. */
6083 if (inheritance
eceef4c9 6084 && rld[r].in != 0
32131a9c 6085 && ! reload_inherited[r]
eceef4c9
BS
6086 && rld[r].out == 0
6087 && (CONSTANT_P (rld[r].in)
6088 || GET_CODE (rld[r].in) == PLUS
6089 || GET_CODE (rld[r].in) == REG
6090 || GET_CODE (rld[r].in) == MEM)
8ec450a4 6091 && (rld[r].nregs == max_group_size
eceef4c9
BS
6092 || ! reg_classes_intersect_p (rld[r].class, group_class)))
6093 search_equiv = rld[r].in;
8593b745
R
6094 /* If this is an output reload from a simple move insn, look
6095 if an equivalence for the input is available. */
eceef4c9 6096 else if (inheritance && rld[r].in == 0 && rld[r].out != 0)
8593b745
R
6097 {
6098 rtx set = single_set (insn);
6099
6100 if (set
eceef4c9 6101 && rtx_equal_p (rld[r].out, SET_DEST (set))
8593b745
R
6102 && CONSTANT_P (SET_SRC (set)))
6103 search_equiv = SET_SRC (set);
6104 }
6105
6106 if (search_equiv)
32131a9c
RK
6107 {
6108 register rtx equiv
eceef4c9 6109 = find_equiv_reg (search_equiv, insn, rld[r].class,
8ec450a4 6110 -1, NULL_PTR, 0, rld[r].mode);
f428f252 6111 int regno = 0;
32131a9c
RK
6112
6113 if (equiv != 0)
6114 {
6115 if (GET_CODE (equiv) == REG)
6116 regno = REGNO (equiv);
6117 else if (GET_CODE (equiv) == SUBREG)
6118 {
f8a9e02b
RK
6119 /* This must be a SUBREG of a hard register.
6120 Make a new REG since this might be used in an
6121 address and not all machines support SUBREGs
6122 there. */
6123 regno = REGNO (SUBREG_REG (equiv)) + SUBREG_WORD (equiv);
8ec450a4 6124 equiv = gen_rtx_REG (rld[r].mode, regno);
32131a9c
RK
6125 }
6126 else
6127 abort ();
6128 }
6129
6130 /* If we found a spill reg, reject it unless it is free
6131 and of the desired class. */
6132 if (equiv != 0
cb2afeb3 6133 && ((TEST_HARD_REG_BIT (reload_reg_used_at_all, regno)
eceef4c9
BS
6134 && ! reload_reg_free_for_value_p (regno, rld[r].opnum,
6135 rld[r].when_needed,
6136 rld[r].in,
6137 rld[r].out, r, 1))
6138 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].class],
32131a9c
RK
6139 regno)))
6140 equiv = 0;
6141
8ec450a4 6142 if (equiv != 0 && ! HARD_REGNO_MODE_OK (regno, rld[r].mode))
32131a9c
RK
6143 equiv = 0;
6144
6145 /* We found a register that contains the value we need.
6146 If this register is the same as an `earlyclobber' operand
6147 of the current insn, just mark it as a place to reload from
6148 since we can't use it as the reload register itself. */
6149
6150 if (equiv != 0)
6151 for (i = 0; i < n_earlyclobbers; i++)
bfa30b22
RK
6152 if (reg_overlap_mentioned_for_reload_p (equiv,
6153 reload_earlyclobbers[i]))
32131a9c
RK
6154 {
6155 reload_override_in[r] = equiv;
6156 equiv = 0;
6157 break;
6158 }
6159
3c785e47
R
6160 /* If the equiv register we have found is explicitly clobbered
6161 in the current insn, it depends on the reload type if we
6162 can use it, use it for reload_override_in, or not at all.
6163 In particular, we then can't use EQUIV for a
6164 RELOAD_FOR_OUTPUT_ADDRESS reload. */
32131a9c
RK
6165
6166 if (equiv != 0 && regno_clobbered_p (regno, insn))
6167 {
eceef4c9 6168 switch (rld[r].when_needed)
3c785e47
R
6169 {
6170 case RELOAD_FOR_OTHER_ADDRESS:
6171 case RELOAD_FOR_INPADDR_ADDRESS:
6172 case RELOAD_FOR_INPUT_ADDRESS:
6173 case RELOAD_FOR_OPADDR_ADDR:
6174 break;
6175 case RELOAD_OTHER:
6176 case RELOAD_FOR_INPUT:
6177 case RELOAD_FOR_OPERAND_ADDRESS:
6178 reload_override_in[r] = equiv;
6179 /* Fall through. */
6180 default:
6181 equiv = 0;
6182 break;
6183 }
32131a9c
RK
6184 }
6185
6186 /* If we found an equivalent reg, say no code need be generated
6187 to load it, and use it as our reload reg. */
3ec2ea3e 6188 if (equiv != 0 && regno != HARD_FRAME_POINTER_REGNUM)
32131a9c 6189 {
8ec450a4 6190 int nr = HARD_REGNO_NREGS (regno, rld[r].mode);
100338df 6191 int k;
eceef4c9 6192 rld[r].reg_rtx = equiv;
32131a9c 6193 reload_inherited[r] = 1;
100338df 6194
91d7e7ac
R
6195 /* If reg_reloaded_valid is not set for this register,
6196 there might be a stale spill_reg_store lying around.
6197 We must clear it, since otherwise emit_reload_insns
6198 might delete the store. */
6199 if (! TEST_HARD_REG_BIT (reg_reloaded_valid, regno))
6200 spill_reg_store[regno] = NULL_RTX;
100338df
JL
6201 /* If any of the hard registers in EQUIV are spill
6202 registers, mark them as in use for this insn. */
6203 for (k = 0; k < nr; k++)
be7ae2a4 6204 {
100338df
JL
6205 i = spill_reg_order[regno + k];
6206 if (i >= 0)
6207 {
eceef4c9
BS
6208 mark_reload_reg_in_use (regno, rld[r].opnum,
6209 rld[r].when_needed,
8ec450a4 6210 rld[r].mode);
100338df
JL
6211 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
6212 regno + k);
6213 }
be7ae2a4 6214 }
32131a9c
RK
6215 }
6216 }
6217
6218 /* If we found a register to use already, or if this is an optional
6219 reload, we are done. */
eceef4c9 6220 if (rld[r].reg_rtx != 0 || rld[r].optional != 0)
32131a9c
RK
6221 continue;
6222
6223#if 0 /* No longer needed for correct operation. Might or might not
6224 give better code on the average. Want to experiment? */
6225
6226 /* See if there is a later reload that has a class different from our
6227 class that intersects our class or that requires less register
6228 than our reload. If so, we must allocate a register to this
6229 reload now, since that reload might inherit a previous reload
6230 and take the only available register in our class. Don't do this
6231 for optional reloads since they will force all previous reloads
6232 to be allocated. Also don't do this for reloads that have been
6233 turned off. */
6234
6235 for (i = j + 1; i < n_reloads; i++)
6236 {
6237 int s = reload_order[i];
6238
eceef4c9
BS
6239 if ((rld[s].in == 0 && rld[s].out == 0
6240 && ! rld[s].secondary_p)
6241 || rld[s].optional)
32131a9c
RK
6242 continue;
6243
eceef4c9
BS
6244 if ((rld[s].class != rld[r].class
6245 && reg_classes_intersect_p (rld[r].class,
6246 rld[s].class))
8ec450a4 6247 || rld[s].nregs < rld[r].nregs)
05d10675 6248 break;
32131a9c
RK
6249 }
6250
6251 if (i == n_reloads)
6252 continue;
6253
7609e720 6254 allocate_reload_reg (chain, r, j == n_reloads - 1, inheritance);
32131a9c
RK
6255#endif
6256 }
6257
6258 /* Now allocate reload registers for anything non-optional that
6259 didn't get one yet. */
6260 for (j = 0; j < n_reloads; j++)
6261 {
6262 register int r = reload_order[j];
6263
6264 /* Ignore reloads that got marked inoperative. */
eceef4c9 6265 if (rld[r].out == 0 && rld[r].in == 0 && ! rld[r].secondary_p)
32131a9c
RK
6266 continue;
6267
6268 /* Skip reloads that already have a register allocated or are
0f41302f 6269 optional. */
eceef4c9 6270 if (rld[r].reg_rtx != 0 || rld[r].optional)
32131a9c
RK
6271 continue;
6272
7609e720 6273 if (! allocate_reload_reg (chain, r, j == n_reloads - 1, inheritance))
32131a9c
RK
6274 break;
6275 }
6276
6277 /* If that loop got all the way, we have won. */
6278 if (j == n_reloads)
6279 break;
6280
32131a9c 6281 /* Loop around and try without any inheritance. */
32131a9c
RK
6282 }
6283
6284 /* If we thought we could inherit a reload, because it seemed that
6285 nothing else wanted the same reload register earlier in the insn,
cb2afeb3
R
6286 verify that assumption, now that all reloads have been assigned.
6287 Likewise for reloads where reload_override_in has been set. */
32131a9c 6288
cb2afeb3
R
6289 /* If doing expensive optimizations, do one preliminary pass that doesn't
6290 cancel any inheritance, but removes reloads that have been needed only
6291 for reloads that we know can be inherited. */
6292 for (pass = flag_expensive_optimizations; pass >= 0; pass--)
32131a9c 6293 {
cb2afeb3 6294 for (j = 0; j < n_reloads; j++)
029b38ff 6295 {
cb2afeb3
R
6296 register int r = reload_order[j];
6297 rtx check_reg;
eceef4c9
BS
6298 if (reload_inherited[r] && rld[r].reg_rtx)
6299 check_reg = rld[r].reg_rtx;
cb2afeb3
R
6300 else if (reload_override_in[r]
6301 && (GET_CODE (reload_override_in[r]) == REG
05d10675 6302 || GET_CODE (reload_override_in[r]) == SUBREG))
cb2afeb3
R
6303 check_reg = reload_override_in[r];
6304 else
6305 continue;
dfe96118 6306 if (! reload_reg_free_for_value_p (true_regnum (check_reg),
eceef4c9
BS
6307 rld[r].opnum,
6308 rld[r].when_needed,
6309 rld[r].in,
05d10675 6310 (reload_inherited[r]
eceef4c9 6311 ? rld[r].out : const0_rtx),
dfe96118 6312 r, 1))
029b38ff 6313 {
cb2afeb3
R
6314 if (pass)
6315 continue;
6316 reload_inherited[r] = 0;
6317 reload_override_in[r] = 0;
029b38ff 6318 }
cb2afeb3
R
6319 /* If we can inherit a RELOAD_FOR_INPUT, or can use a
6320 reload_override_in, then we do not need its related
6321 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS reloads;
6322 likewise for other reload types.
6323 We handle this by removing a reload when its only replacement
6324 is mentioned in reload_in of the reload we are going to inherit.
6325 A special case are auto_inc expressions; even if the input is
6326 inherited, we still need the address for the output. We can
fe92fe26 6327 recognize them because they have RELOAD_OUT set to RELOAD_IN.
cb2afeb3
R
6328 If we suceeded removing some reload and we are doing a preliminary
6329 pass just to remove such reloads, make another pass, since the
6330 removal of one reload might allow us to inherit another one. */
eceef4c9
BS
6331 else if (rld[r].in
6332 && rld[r].out != rld[r].in
6333 && remove_address_replacements (rld[r].in) && pass)
cb2afeb3 6334 pass = 2;
32131a9c
RK
6335 }
6336 }
6337
6338 /* Now that reload_override_in is known valid,
6339 actually override reload_in. */
6340 for (j = 0; j < n_reloads; j++)
6341 if (reload_override_in[j])
eceef4c9 6342 rld[j].in = reload_override_in[j];
32131a9c
RK
6343
6344 /* If this reload won't be done because it has been cancelled or is
6345 optional and not inherited, clear reload_reg_rtx so other
6346 routines (such as subst_reloads) don't get confused. */
6347 for (j = 0; j < n_reloads; j++)
eceef4c9
BS
6348 if (rld[j].reg_rtx != 0
6349 && ((rld[j].optional && ! reload_inherited[j])
6350 || (rld[j].in == 0 && rld[j].out == 0
6351 && ! rld[j].secondary_p)))
be7ae2a4 6352 {
eceef4c9 6353 int regno = true_regnum (rld[j].reg_rtx);
be7ae2a4
RK
6354
6355 if (spill_reg_order[regno] >= 0)
eceef4c9 6356 clear_reload_reg_in_use (regno, rld[j].opnum,
8ec450a4 6357 rld[j].when_needed, rld[j].mode);
eceef4c9 6358 rld[j].reg_rtx = 0;
be7ae2a4 6359 }
32131a9c
RK
6360
6361 /* Record which pseudos and which spill regs have output reloads. */
6362 for (j = 0; j < n_reloads; j++)
6363 {
6364 register int r = reload_order[j];
6365
6366 i = reload_spill_index[r];
6367
e6e52be0 6368 /* I is nonneg if this reload uses a register.
eceef4c9 6369 If rld[r].reg_rtx is 0, this is an optional reload
32131a9c 6370 that we opted to ignore. */
eceef4c9
BS
6371 if (rld[r].out_reg != 0 && GET_CODE (rld[r].out_reg) == REG
6372 && rld[r].reg_rtx != 0)
32131a9c 6373 {
eceef4c9 6374 register int nregno = REGNO (rld[r].out_reg);
372e033b
RS
6375 int nr = 1;
6376
6377 if (nregno < FIRST_PSEUDO_REGISTER)
8ec450a4 6378 nr = HARD_REGNO_NREGS (nregno, rld[r].mode);
32131a9c
RK
6379
6380 while (--nr >= 0)
372e033b
RS
6381 reg_has_output_reload[nregno + nr] = 1;
6382
6383 if (i >= 0)
32131a9c 6384 {
8ec450a4 6385 nr = HARD_REGNO_NREGS (i, rld[r].mode);
372e033b 6386 while (--nr >= 0)
e6e52be0 6387 SET_HARD_REG_BIT (reg_is_output_reload, i + nr);
32131a9c
RK
6388 }
6389
eceef4c9
BS
6390 if (rld[r].when_needed != RELOAD_OTHER
6391 && rld[r].when_needed != RELOAD_FOR_OUTPUT
6392 && rld[r].when_needed != RELOAD_FOR_INSN)
32131a9c
RK
6393 abort ();
6394 }
6395 }
6396}
cb2afeb3
R
6397
6398/* Deallocate the reload register for reload R. This is called from
6399 remove_address_replacements. */
6400void
6401deallocate_reload_reg (r)
6402 int r;
6403{
6404 int regno;
6405
eceef4c9 6406 if (! rld[r].reg_rtx)
cb2afeb3 6407 return;
eceef4c9
BS
6408 regno = true_regnum (rld[r].reg_rtx);
6409 rld[r].reg_rtx = 0;
cb2afeb3 6410 if (spill_reg_order[regno] >= 0)
eceef4c9 6411 clear_reload_reg_in_use (regno, rld[r].opnum, rld[r].when_needed,
8ec450a4 6412 rld[r].mode);
cb2afeb3
R
6413 reload_spill_index[r] = -1;
6414}
32131a9c 6415\f
e9a25f70 6416/* If SMALL_REGISTER_CLASSES is non-zero, we may not have merged two
546b63fb
RK
6417 reloads of the same item for fear that we might not have enough reload
6418 registers. However, normally they will get the same reload register
05d10675 6419 and hence actually need not be loaded twice.
546b63fb
RK
6420
6421 Here we check for the most common case of this phenomenon: when we have
6422 a number of reloads for the same object, each of which were allocated
6423 the same reload_reg_rtx, that reload_reg_rtx is not used for any other
6424 reload, and is not modified in the insn itself. If we find such,
6425 merge all the reloads and set the resulting reload to RELOAD_OTHER.
6426 This will not increase the number of spill registers needed and will
6427 prevent redundant code. */
6428
546b63fb
RK
6429static void
6430merge_assigned_reloads (insn)
6431 rtx insn;
6432{
6433 int i, j;
6434
6435 /* Scan all the reloads looking for ones that only load values and
6436 are not already RELOAD_OTHER and ones whose reload_reg_rtx are
6437 assigned and not modified by INSN. */
6438
6439 for (i = 0; i < n_reloads; i++)
6440 {
d668e863
R
6441 int conflicting_input = 0;
6442 int max_input_address_opnum = -1;
6443 int min_conflicting_input_opnum = MAX_RECOG_OPERANDS;
6444
eceef4c9
BS
6445 if (rld[i].in == 0 || rld[i].when_needed == RELOAD_OTHER
6446 || rld[i].out != 0 || rld[i].reg_rtx == 0
6447 || reg_set_p (rld[i].reg_rtx, insn))
546b63fb
RK
6448 continue;
6449
6450 /* Look at all other reloads. Ensure that the only use of this
6451 reload_reg_rtx is in a reload that just loads the same value
6452 as we do. Note that any secondary reloads must be of the identical
6453 class since the values, modes, and result registers are the
6454 same, so we need not do anything with any secondary reloads. */
6455
6456 for (j = 0; j < n_reloads; j++)
6457 {
eceef4c9
BS
6458 if (i == j || rld[j].reg_rtx == 0
6459 || ! reg_overlap_mentioned_p (rld[j].reg_rtx,
6460 rld[i].reg_rtx))
546b63fb
RK
6461 continue;
6462
eceef4c9
BS
6463 if (rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
6464 && rld[j].opnum > max_input_address_opnum)
6465 max_input_address_opnum = rld[j].opnum;
d668e863 6466
546b63fb 6467 /* If the reload regs aren't exactly the same (e.g, different modes)
d668e863
R
6468 or if the values are different, we can't merge this reload.
6469 But if it is an input reload, we might still merge
6470 RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_OTHER_ADDRESS reloads. */
546b63fb 6471
eceef4c9
BS
6472 if (! rtx_equal_p (rld[i].reg_rtx, rld[j].reg_rtx)
6473 || rld[j].out != 0 || rld[j].in == 0
6474 || ! rtx_equal_p (rld[i].in, rld[j].in))
d668e863 6475 {
eceef4c9
BS
6476 if (rld[j].when_needed != RELOAD_FOR_INPUT
6477 || ((rld[i].when_needed != RELOAD_FOR_INPUT_ADDRESS
6478 || rld[i].opnum > rld[j].opnum)
6479 && rld[i].when_needed != RELOAD_FOR_OTHER_ADDRESS))
d668e863
R
6480 break;
6481 conflicting_input = 1;
eceef4c9
BS
6482 if (min_conflicting_input_opnum > rld[j].opnum)
6483 min_conflicting_input_opnum = rld[j].opnum;
d668e863 6484 }
546b63fb
RK
6485 }
6486
6487 /* If all is OK, merge the reloads. Only set this to RELOAD_OTHER if
6488 we, in fact, found any matching reloads. */
6489
d668e863
R
6490 if (j == n_reloads
6491 && max_input_address_opnum <= min_conflicting_input_opnum)
546b63fb
RK
6492 {
6493 for (j = 0; j < n_reloads; j++)
eceef4c9
BS
6494 if (i != j && rld[j].reg_rtx != 0
6495 && rtx_equal_p (rld[i].reg_rtx, rld[j].reg_rtx)
d668e863 6496 && (! conflicting_input
eceef4c9
BS
6497 || rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
6498 || rld[j].when_needed == RELOAD_FOR_OTHER_ADDRESS))
546b63fb 6499 {
eceef4c9
BS
6500 rld[i].when_needed = RELOAD_OTHER;
6501 rld[j].in = 0;
efdb3590 6502 reload_spill_index[j] = -1;
546b63fb
RK
6503 transfer_replacements (i, j);
6504 }
6505
6506 /* If this is now RELOAD_OTHER, look for any reloads that load
6507 parts of this operand and set them to RELOAD_FOR_OTHER_ADDRESS
6508 if they were for inputs, RELOAD_OTHER for outputs. Note that
6509 this test is equivalent to looking for reloads for this operand
6510 number. */
6511
eceef4c9 6512 if (rld[i].when_needed == RELOAD_OTHER)
546b63fb 6513 for (j = 0; j < n_reloads; j++)
eceef4c9
BS
6514 if (rld[j].in != 0
6515 && rld[i].when_needed != RELOAD_OTHER
6516 && reg_overlap_mentioned_for_reload_p (rld[j].in,
6517 rld[i].in))
6518 rld[j].when_needed
6519 = ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
6520 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
47c8cf91 6521 ? RELOAD_FOR_OTHER_ADDRESS : RELOAD_OTHER);
546b63fb
RK
6522 }
6523 }
05d10675 6524}
e9a25f70 6525
546b63fb 6526\f
32131a9c
RK
6527/* Output insns to reload values in and out of the chosen reload regs. */
6528
6529static void
7609e720
BS
6530emit_reload_insns (chain)
6531 struct insn_chain *chain;
32131a9c 6532{
7609e720
BS
6533 rtx insn = chain->insn;
6534
32131a9c 6535 register int j;
546b63fb
RK
6536 rtx input_reload_insns[MAX_RECOG_OPERANDS];
6537 rtx other_input_address_reload_insns = 0;
6538 rtx other_input_reload_insns = 0;
6539 rtx input_address_reload_insns[MAX_RECOG_OPERANDS];
47c8cf91 6540 rtx inpaddr_address_reload_insns[MAX_RECOG_OPERANDS];
546b63fb
RK
6541 rtx output_reload_insns[MAX_RECOG_OPERANDS];
6542 rtx output_address_reload_insns[MAX_RECOG_OPERANDS];
47c8cf91 6543 rtx outaddr_address_reload_insns[MAX_RECOG_OPERANDS];
546b63fb 6544 rtx operand_reload_insns = 0;
893bc853 6545 rtx other_operand_reload_insns = 0;
befa01b9 6546 rtx other_output_reload_insns[MAX_RECOG_OPERANDS];
32131a9c 6547 rtx following_insn = NEXT_INSN (insn);
c93b03c2 6548 rtx before_insn = PREV_INSN (insn);
32131a9c
RK
6549 int special;
6550 /* Values to be put in spill_reg_store are put here first. */
6551 rtx new_spill_reg_store[FIRST_PSEUDO_REGISTER];
e6e52be0
R
6552 HARD_REG_SET reg_reloaded_died;
6553
6554 CLEAR_HARD_REG_SET (reg_reloaded_died);
32131a9c 6555
546b63fb
RK
6556 for (j = 0; j < reload_n_operands; j++)
6557 input_reload_insns[j] = input_address_reload_insns[j]
47c8cf91 6558 = inpaddr_address_reload_insns[j]
befa01b9 6559 = output_reload_insns[j] = output_address_reload_insns[j]
47c8cf91 6560 = outaddr_address_reload_insns[j]
befa01b9 6561 = other_output_reload_insns[j] = 0;
546b63fb 6562
32131a9c
RK
6563 /* Now output the instructions to copy the data into and out of the
6564 reload registers. Do these in the order that the reloads were reported,
6565 since reloads of base and index registers precede reloads of operands
6566 and the operands may need the base and index registers reloaded. */
6567
6568 for (j = 0; j < n_reloads; j++)
6569 {
6570 register rtx old;
6571 rtx oldequiv_reg = 0;
80d92002 6572 rtx this_reload_insn = 0;
b60a8416 6573 int expect_occurrences = 1;
73b2ad9e 6574
eceef4c9
BS
6575 if (rld[j].reg_rtx
6576 && REGNO (rld[j].reg_rtx) < FIRST_PSEUDO_REGISTER)
6577 new_spill_reg_store[REGNO (rld[j].reg_rtx)] = 0;
32131a9c 6578
eceef4c9
BS
6579 old = (rld[j].in && GET_CODE (rld[j].in) == MEM
6580 ? rld[j].in_reg : rld[j].in);
cb2afeb3
R
6581
6582 if (old != 0
6583 /* AUTO_INC reloads need to be handled even if inherited. We got an
6584 AUTO_INC reload if reload_out is set but reload_out_reg isn't. */
eceef4c9
BS
6585 && (! reload_inherited[j] || (rld[j].out && ! rld[j].out_reg))
6586 && ! rtx_equal_p (rld[j].reg_rtx, old)
6587 && rld[j].reg_rtx != 0)
32131a9c 6588 {
eceef4c9 6589 register rtx reloadreg = rld[j].reg_rtx;
32131a9c
RK
6590 rtx oldequiv = 0;
6591 enum machine_mode mode;
546b63fb 6592 rtx *where;
32131a9c
RK
6593
6594 /* Determine the mode to reload in.
6595 This is very tricky because we have three to choose from.
eceef4c9 6596 There is the mode the insn operand wants (rld[J].inmode).
32131a9c
RK
6597 There is the mode of the reload register RELOADREG.
6598 There is the intrinsic mode of the operand, which we could find
6599 by stripping some SUBREGs.
6600 It turns out that RELOADREG's mode is irrelevant:
6601 we can change that arbitrarily.
6602
6603 Consider (SUBREG:SI foo:QI) as an operand that must be SImode;
6604 then the reload reg may not support QImode moves, so use SImode.
6605 If foo is in memory due to spilling a pseudo reg, this is safe,
6606 because the QImode value is in the least significant part of a
6607 slot big enough for a SImode. If foo is some other sort of
6608 memory reference, then it is impossible to reload this case,
6609 so previous passes had better make sure this never happens.
6610
6611 Then consider a one-word union which has SImode and one of its
6612 members is a float, being fetched as (SUBREG:SF union:SI).
6613 We must fetch that as SFmode because we could be loading into
6614 a float-only register. In this case OLD's mode is correct.
6615
6616 Consider an immediate integer: it has VOIDmode. Here we need
6617 to get a mode from something else.
6618
6619 In some cases, there is a fourth mode, the operand's
6620 containing mode. If the insn specifies a containing mode for
6621 this operand, it overrides all others.
6622
6623 I am not sure whether the algorithm here is always right,
6624 but it does the right things in those cases. */
6625
6626 mode = GET_MODE (old);
6627 if (mode == VOIDmode)
eceef4c9 6628 mode = rld[j].inmode;
32131a9c
RK
6629
6630#ifdef SECONDARY_INPUT_RELOAD_CLASS
6631 /* If we need a secondary register for this operation, see if
6632 the value is already in a register in that class. Don't
6633 do this if the secondary register will be used as a scratch
6634 register. */
6635
eceef4c9
BS
6636 if (rld[j].secondary_in_reload >= 0
6637 && rld[j].secondary_in_icode == CODE_FOR_nothing
58b1581b 6638 && optimize)
32131a9c
RK
6639 oldequiv
6640 = find_equiv_reg (old, insn,
eceef4c9 6641 rld[rld[j].secondary_in_reload].class,
fb3821f7 6642 -1, NULL_PTR, 0, mode);
32131a9c
RK
6643#endif
6644
6645 /* If reloading from memory, see if there is a register
6646 that already holds the same value. If so, reload from there.
6647 We can pass 0 as the reload_reg_p argument because
6648 any other reload has either already been emitted,
6649 in which case find_equiv_reg will see the reload-insn,
6650 or has yet to be emitted, in which case it doesn't matter
6651 because we will use this equiv reg right away. */
6652
58b1581b 6653 if (oldequiv == 0 && optimize
32131a9c
RK
6654 && (GET_CODE (old) == MEM
6655 || (GET_CODE (old) == REG
6656 && REGNO (old) >= FIRST_PSEUDO_REGISTER
6657 && reg_renumber[REGNO (old)] < 0)))
546b63fb 6658 oldequiv = find_equiv_reg (old, insn, ALL_REGS,
fb3821f7 6659 -1, NULL_PTR, 0, mode);
32131a9c
RK
6660
6661 if (oldequiv)
6662 {
6663 int regno = true_regnum (oldequiv);
6664
dfe96118
R
6665 /* Don't use OLDEQUIV if any other reload changes it at an
6666 earlier stage of this insn or at this stage. */
eceef4c9
BS
6667 if (! reload_reg_free_for_value_p (regno, rld[j].opnum,
6668 rld[j].when_needed,
6669 rld[j].in, const0_rtx, j,
dfe96118 6670 0))
32131a9c
RK
6671 oldequiv = 0;
6672
546b63fb
RK
6673 /* If it is no cheaper to copy from OLDEQUIV into the
6674 reload register than it would be to move from memory,
6675 don't use it. Likewise, if we need a secondary register
6676 or memory. */
6677
6678 if (oldequiv != 0
eceef4c9 6679 && ((REGNO_REG_CLASS (regno) != rld[j].class
546b63fb 6680 && (REGISTER_MOVE_COST (REGNO_REG_CLASS (regno),
eceef4c9
BS
6681 rld[j].class)
6682 >= MEMORY_MOVE_COST (mode, rld[j].class, 1)))
546b63fb 6683#ifdef SECONDARY_INPUT_RELOAD_CLASS
eceef4c9 6684 || (SECONDARY_INPUT_RELOAD_CLASS (rld[j].class,
546b63fb
RK
6685 mode, oldequiv)
6686 != NO_REGS)
6687#endif
6688#ifdef SECONDARY_MEMORY_NEEDED
370b1b83 6689 || SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (regno),
eceef4c9 6690 rld[j].class,
546b63fb
RK
6691 mode)
6692#endif
6693 ))
6694 oldequiv = 0;
32131a9c
RK
6695 }
6696
cb2afeb3
R
6697 /* delete_output_reload is only invoked properly if old contains
6698 the original pseudo register. Since this is replaced with a
6699 hard reg when RELOAD_OVERRIDE_IN is set, see if we can
6700 find the pseudo in RELOAD_IN_REG. */
6701 if (oldequiv == 0
6702 && reload_override_in[j]
eceef4c9 6703 && GET_CODE (rld[j].in_reg) == REG)
cb2afeb3
R
6704 {
6705 oldequiv = old;
eceef4c9 6706 old = rld[j].in_reg;
cb2afeb3 6707 }
32131a9c
RK
6708 if (oldequiv == 0)
6709 oldequiv = old;
6710 else if (GET_CODE (oldequiv) == REG)
6711 oldequiv_reg = oldequiv;
6712 else if (GET_CODE (oldequiv) == SUBREG)
6713 oldequiv_reg = SUBREG_REG (oldequiv);
6714
76182796
RK
6715 /* If we are reloading from a register that was recently stored in
6716 with an output-reload, see if we can prove there was
6717 actually no need to store the old value in it. */
6718
6719 if (optimize && GET_CODE (oldequiv) == REG
6720 && REGNO (oldequiv) < FIRST_PSEUDO_REGISTER
e6e52be0 6721 && spill_reg_store[REGNO (oldequiv)]
cb2afeb3
R
6722 && GET_CODE (old) == REG
6723 && (dead_or_set_p (insn, spill_reg_stored_to[REGNO (oldequiv)])
6724 || rtx_equal_p (spill_reg_stored_to[REGNO (oldequiv)],
eceef4c9 6725 rld[j].out_reg)))
cb2afeb3 6726 delete_output_reload (insn, j, REGNO (oldequiv));
76182796 6727
32131a9c 6728 /* Encapsulate both RELOADREG and OLDEQUIV into that mode,
3abe6f90
RK
6729 then load RELOADREG from OLDEQUIV. Note that we cannot use
6730 gen_lowpart_common since it can do the wrong thing when
6731 RELOADREG has a multi-word mode. Note that RELOADREG
6732 must always be a REG here. */
32131a9c
RK
6733
6734 if (GET_MODE (reloadreg) != mode)
38a448ca 6735 reloadreg = gen_rtx_REG (mode, REGNO (reloadreg));
32131a9c
RK
6736 while (GET_CODE (oldequiv) == SUBREG && GET_MODE (oldequiv) != mode)
6737 oldequiv = SUBREG_REG (oldequiv);
6738 if (GET_MODE (oldequiv) != VOIDmode
6739 && mode != GET_MODE (oldequiv))
38a448ca 6740 oldequiv = gen_rtx_SUBREG (mode, oldequiv, 0);
32131a9c 6741
546b63fb 6742 /* Switch to the right place to emit the reload insns. */
eceef4c9 6743 switch (rld[j].when_needed)
32131a9c 6744 {
32131a9c 6745 case RELOAD_OTHER:
546b63fb
RK
6746 where = &other_input_reload_insns;
6747 break;
6748 case RELOAD_FOR_INPUT:
eceef4c9 6749 where = &input_reload_insns[rld[j].opnum];
32131a9c 6750 break;
546b63fb 6751 case RELOAD_FOR_INPUT_ADDRESS:
eceef4c9 6752 where = &input_address_reload_insns[rld[j].opnum];
32131a9c 6753 break;
47c8cf91 6754 case RELOAD_FOR_INPADDR_ADDRESS:
eceef4c9 6755 where = &inpaddr_address_reload_insns[rld[j].opnum];
47c8cf91 6756 break;
546b63fb 6757 case RELOAD_FOR_OUTPUT_ADDRESS:
eceef4c9 6758 where = &output_address_reload_insns[rld[j].opnum];
32131a9c 6759 break;
47c8cf91 6760 case RELOAD_FOR_OUTADDR_ADDRESS:
eceef4c9 6761 where = &outaddr_address_reload_insns[rld[j].opnum];
47c8cf91 6762 break;
32131a9c 6763 case RELOAD_FOR_OPERAND_ADDRESS:
546b63fb
RK
6764 where = &operand_reload_insns;
6765 break;
893bc853
RK
6766 case RELOAD_FOR_OPADDR_ADDR:
6767 where = &other_operand_reload_insns;
6768 break;
546b63fb
RK
6769 case RELOAD_FOR_OTHER_ADDRESS:
6770 where = &other_input_address_reload_insns;
6771 break;
6772 default:
6773 abort ();
32131a9c
RK
6774 }
6775
546b63fb 6776 push_to_sequence (*where);
32131a9c
RK
6777 special = 0;
6778
6779 /* Auto-increment addresses must be reloaded in a special way. */
eceef4c9 6780 if (rld[j].out && ! rld[j].out_reg)
32131a9c
RK
6781 {
6782 /* We are not going to bother supporting the case where a
6783 incremented register can't be copied directly from
6784 OLDEQUIV since this seems highly unlikely. */
eceef4c9 6785 if (rld[j].secondary_in_reload >= 0)
32131a9c 6786 abort ();
cb2afeb3
R
6787
6788 if (reload_inherited[j])
6789 oldequiv = reloadreg;
6790
eceef4c9 6791 old = XEXP (rld[j].in_reg, 0);
cb2afeb3
R
6792
6793 if (optimize && GET_CODE (oldequiv) == REG
6794 && REGNO (oldequiv) < FIRST_PSEUDO_REGISTER
6795 && spill_reg_store[REGNO (oldequiv)]
6796 && GET_CODE (old) == REG
6797 && (dead_or_set_p (insn,
6798 spill_reg_stored_to[REGNO (oldequiv)])
6799 || rtx_equal_p (spill_reg_stored_to[REGNO (oldequiv)],
6800 old)))
6801 delete_output_reload (insn, j, REGNO (oldequiv));
6802
32131a9c
RK
6803 /* Prevent normal processing of this reload. */
6804 special = 1;
6805 /* Output a special code sequence for this case. */
cb2afeb3 6806 new_spill_reg_store[REGNO (reloadreg)]
eceef4c9
BS
6807 = inc_for_reload (reloadreg, oldequiv, rld[j].out,
6808 rld[j].inc);
32131a9c
RK
6809 }
6810
6811 /* If we are reloading a pseudo-register that was set by the previous
6812 insn, see if we can get rid of that pseudo-register entirely
6813 by redirecting the previous insn into our reload register. */
6814
6815 else if (optimize && GET_CODE (old) == REG
6816 && REGNO (old) >= FIRST_PSEUDO_REGISTER
6817 && dead_or_set_p (insn, old)
6818 /* This is unsafe if some other reload
6819 uses the same reg first. */
dfe96118 6820 && reload_reg_free_for_value_p (REGNO (reloadreg),
eceef4c9
BS
6821 rld[j].opnum,
6822 rld[j].when_needed,
6823 old, rld[j].out,
dfe96118 6824 j, 0))
32131a9c
RK
6825 {
6826 rtx temp = PREV_INSN (insn);
6827 while (temp && GET_CODE (temp) == NOTE)
6828 temp = PREV_INSN (temp);
6829 if (temp
6830 && GET_CODE (temp) == INSN
6831 && GET_CODE (PATTERN (temp)) == SET
6832 && SET_DEST (PATTERN (temp)) == old
6833 /* Make sure we can access insn_operand_constraint. */
6834 && asm_noperands (PATTERN (temp)) < 0
6835 /* This is unsafe if prev insn rejects our reload reg. */
a995e389 6836 && constraint_accepts_reg_p (insn_data[recog_memoized (temp)].operand[0].constraint,
32131a9c
RK
6837 reloadreg)
6838 /* This is unsafe if operand occurs more than once in current
6839 insn. Perhaps some occurrences aren't reloaded. */
6840 && count_occurrences (PATTERN (insn), old) == 1
6841 /* Don't risk splitting a matching pair of operands. */
6842 && ! reg_mentioned_p (old, SET_SRC (PATTERN (temp))))
6843 {
6844 /* Store into the reload register instead of the pseudo. */
6845 SET_DEST (PATTERN (temp)) = reloadreg;
d30e8ef0
BS
6846
6847 /* If the previous insn is an output reload, the source is
6848 a reload register, and its spill_reg_store entry will
6849 contain the previous destination. This is now
6850 invalid. */
6851 if (GET_CODE (SET_SRC (PATTERN (temp))) == REG
6852 && REGNO (SET_SRC (PATTERN (temp))) < FIRST_PSEUDO_REGISTER)
6853 {
6854 spill_reg_store[REGNO (SET_SRC (PATTERN (temp)))] = 0;
6855 spill_reg_stored_to[REGNO (SET_SRC (PATTERN (temp)))] = 0;
6856 }
6857
32131a9c
RK
6858 /* If these are the only uses of the pseudo reg,
6859 pretend for GDB it lives in the reload reg we used. */
b1f21e0a
MM
6860 if (REG_N_DEATHS (REGNO (old)) == 1
6861 && REG_N_SETS (REGNO (old)) == 1)
32131a9c 6862 {
eceef4c9 6863 reg_renumber[REGNO (old)] = REGNO (rld[j].reg_rtx);
32131a9c
RK
6864 alter_reg (REGNO (old), -1);
6865 }
6866 special = 1;
6867 }
6868 }
6869
546b63fb
RK
6870 /* We can't do that, so output an insn to load RELOADREG. */
6871
32131a9c
RK
6872 if (! special)
6873 {
6874#ifdef SECONDARY_INPUT_RELOAD_CLASS
6875 rtx second_reload_reg = 0;
6876 enum insn_code icode;
6877
6878 /* If we have a secondary reload, pick up the secondary register
d445b551
RK
6879 and icode, if any. If OLDEQUIV and OLD are different or
6880 if this is an in-out reload, recompute whether or not we
6881 still need a secondary register and what the icode should
6882 be. If we still need a secondary register and the class or
6883 icode is different, go back to reloading from OLD if using
6884 OLDEQUIV means that we got the wrong type of register. We
6885 cannot have different class or icode due to an in-out reload
6886 because we don't make such reloads when both the input and
6887 output need secondary reload registers. */
32131a9c 6888
eceef4c9 6889 if (rld[j].secondary_in_reload >= 0)
32131a9c 6890 {
eceef4c9 6891 int secondary_reload = rld[j].secondary_in_reload;
1554c2c6
RK
6892 rtx real_oldequiv = oldequiv;
6893 rtx real_old = old;
4eea1672 6894 rtx tmp;
1554c2c6
RK
6895
6896 /* If OLDEQUIV is a pseudo with a MEM, get the real MEM
6897 and similarly for OLD.
b80bba27 6898 See comments in get_secondary_reload in reload.c. */
cb2afeb3
R
6899 /* If it is a pseudo that cannot be replaced with its
6900 equivalent MEM, we must fall back to reload_in, which
d62dab41
R
6901 will have all the necessary substitutions registered.
6902 Likewise for a pseudo that can't be replaced with its
05d10675 6903 equivalent constant.
4eea1672
RH
6904
6905 Take extra care for subregs of such pseudos. Note that
6906 we cannot use reg_equiv_mem in this case because it is
6907 not in the right mode. */
05d10675 6908
4eea1672
RH
6909 tmp = oldequiv;
6910 if (GET_CODE (tmp) == SUBREG)
6911 tmp = SUBREG_REG (tmp);
6912 if (GET_CODE (tmp) == REG
6913 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
6914 && (reg_equiv_memory_loc[REGNO (tmp)] != 0
6915 || reg_equiv_constant[REGNO (tmp)] != 0))
cb2afeb3 6916 {
4eea1672
RH
6917 if (! reg_equiv_mem[REGNO (tmp)]
6918 || num_not_at_initial_offset
6919 || GET_CODE (oldequiv) == SUBREG)
eceef4c9 6920 real_oldequiv = rld[j].in;
cb2afeb3 6921 else
4eea1672 6922 real_oldequiv = reg_equiv_mem[REGNO (tmp)];
cb2afeb3 6923 }
1554c2c6 6924
4eea1672
RH
6925 tmp = old;
6926 if (GET_CODE (tmp) == SUBREG)
6927 tmp = SUBREG_REG (tmp);
6928 if (GET_CODE (tmp) == REG
6929 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
6930 && (reg_equiv_memory_loc[REGNO (tmp)] != 0
6931 || reg_equiv_constant[REGNO (tmp)] != 0))
cb2afeb3 6932 {
4eea1672
RH
6933 if (! reg_equiv_mem[REGNO (tmp)]
6934 || num_not_at_initial_offset
6935 || GET_CODE (old) == SUBREG)
eceef4c9 6936 real_old = rld[j].in;
cb2afeb3 6937 else
4eea1672 6938 real_old = reg_equiv_mem[REGNO (tmp)];
cb2afeb3 6939 }
1554c2c6 6940
eceef4c9
BS
6941 second_reload_reg = rld[secondary_reload].reg_rtx;
6942 icode = rld[j].secondary_in_icode;
32131a9c 6943
d445b551 6944 if ((old != oldequiv && ! rtx_equal_p (old, oldequiv))
eceef4c9 6945 || (rld[j].in != 0 && rld[j].out != 0))
32131a9c
RK
6946 {
6947 enum reg_class new_class
eceef4c9 6948 = SECONDARY_INPUT_RELOAD_CLASS (rld[j].class,
1554c2c6 6949 mode, real_oldequiv);
32131a9c
RK
6950
6951 if (new_class == NO_REGS)
6952 second_reload_reg = 0;
6953 else
6954 {
6955 enum insn_code new_icode;
6956 enum machine_mode new_mode;
6957
6958 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) new_class],
6959 REGNO (second_reload_reg)))
1554c2c6 6960 oldequiv = old, real_oldequiv = real_old;
32131a9c
RK
6961 else
6962 {
6963 new_icode = reload_in_optab[(int) mode];
6964 if (new_icode != CODE_FOR_nothing
a995e389
RH
6965 && ((insn_data[(int) new_icode].operand[0].predicate
6966 && ! ((*insn_data[(int) new_icode].operand[0].predicate)
32131a9c 6967 (reloadreg, mode)))
a995e389
RH
6968 || (insn_data[(int) new_icode].operand[1].predicate
6969 && ! ((*insn_data[(int) new_icode].operand[1].predicate)
1554c2c6 6970 (real_oldequiv, mode)))))
32131a9c
RK
6971 new_icode = CODE_FOR_nothing;
6972
6973 if (new_icode == CODE_FOR_nothing)
6974 new_mode = mode;
6975 else
a995e389 6976 new_mode = insn_data[(int) new_icode].operand[2].mode;
32131a9c
RK
6977
6978 if (GET_MODE (second_reload_reg) != new_mode)
6979 {
6980 if (!HARD_REGNO_MODE_OK (REGNO (second_reload_reg),
6981 new_mode))
1554c2c6 6982 oldequiv = old, real_oldequiv = real_old;
32131a9c
RK
6983 else
6984 second_reload_reg
38a448ca
RH
6985 = gen_rtx_REG (new_mode,
6986 REGNO (second_reload_reg));
32131a9c
RK
6987 }
6988 }
6989 }
6990 }
6991
6992 /* If we still need a secondary reload register, check
6993 to see if it is being used as a scratch or intermediate
1554c2c6
RK
6994 register and generate code appropriately. If we need
6995 a scratch register, use REAL_OLDEQUIV since the form of
05d10675 6996 the insn may depend on the actual address if it is
1554c2c6 6997 a MEM. */
32131a9c
RK
6998
6999 if (second_reload_reg)
7000 {
7001 if (icode != CODE_FOR_nothing)
7002 {
5e03c156
RK
7003 emit_insn (GEN_FCN (icode) (reloadreg, real_oldequiv,
7004 second_reload_reg));
32131a9c
RK
7005 special = 1;
7006 }
7007 else
7008 {
7009 /* See if we need a scratch register to load the
7010 intermediate register (a tertiary reload). */
7011 enum insn_code tertiary_icode
eceef4c9 7012 = rld[secondary_reload].secondary_in_icode;
32131a9c
RK
7013
7014 if (tertiary_icode != CODE_FOR_nothing)
7015 {
7016 rtx third_reload_reg
eceef4c9 7017 = rld[rld[secondary_reload].secondary_in_reload].reg_rtx;
32131a9c 7018
546b63fb
RK
7019 emit_insn ((GEN_FCN (tertiary_icode)
7020 (second_reload_reg, real_oldequiv,
7021 third_reload_reg)));
32131a9c
RK
7022 }
7023 else
cb2afeb3 7024 gen_reload (second_reload_reg, real_oldequiv,
eceef4c9
BS
7025 rld[j].opnum,
7026 rld[j].when_needed);
546b63fb
RK
7027
7028 oldequiv = second_reload_reg;
32131a9c
RK
7029 }
7030 }
7031 }
7032#endif
7033
2d182c6f 7034 if (! special && ! rtx_equal_p (reloadreg, oldequiv))
cb2afeb3
R
7035 {
7036 rtx real_oldequiv = oldequiv;
7037
7038 if ((GET_CODE (oldequiv) == REG
7039 && REGNO (oldequiv) >= FIRST_PSEUDO_REGISTER
d62dab41
R
7040 && (reg_equiv_memory_loc[REGNO (oldequiv)] != 0
7041 || reg_equiv_constant[REGNO (oldequiv)] != 0))
cb2afeb3
R
7042 || (GET_CODE (oldequiv) == SUBREG
7043 && GET_CODE (SUBREG_REG (oldequiv)) == REG
7044 && (REGNO (SUBREG_REG (oldequiv))
7045 >= FIRST_PSEUDO_REGISTER)
d62dab41
R
7046 && ((reg_equiv_memory_loc
7047 [REGNO (SUBREG_REG (oldequiv))] != 0)
7048 || (reg_equiv_constant
7049 [REGNO (SUBREG_REG (oldequiv))] != 0))))
eceef4c9
BS
7050 real_oldequiv = rld[j].in;
7051 gen_reload (reloadreg, real_oldequiv, rld[j].opnum,
7052 rld[j].when_needed);
cb2afeb3 7053 }
32131a9c 7054
32131a9c
RK
7055 }
7056
80d92002 7057 this_reload_insn = get_last_insn ();
546b63fb
RK
7058 /* End this sequence. */
7059 *where = get_insns ();
7060 end_sequence ();
cb2afeb3
R
7061
7062 /* Update reload_override_in so that delete_address_reloads_1
7063 can see the actual register usage. */
7064 if (oldequiv_reg)
7065 reload_override_in[j] = oldequiv;
32131a9c
RK
7066 }
7067
eceef4c9 7068 /* When inheriting a wider reload, we have a MEM in rld[j].in,
b60a8416
R
7069 e.g. inheriting a SImode output reload for
7070 (mem:HI (plus:SI (reg:SI 14 fp) (const_int 10))) */
eceef4c9
BS
7071 if (optimize && reload_inherited[j] && rld[j].in
7072 && GET_CODE (rld[j].in) == MEM
7073 && GET_CODE (rld[j].in_reg) == MEM
b60a8416
R
7074 && reload_spill_index[j] >= 0
7075 && TEST_HARD_REG_BIT (reg_reloaded_valid, reload_spill_index[j]))
7076 {
7077 expect_occurrences
eceef4c9
BS
7078 = count_occurrences (PATTERN (insn), rld[j].in) == 1 ? 0 : -1;
7079 rld[j].in
b60a8416
R
7080 = regno_reg_rtx[reg_reloaded_contents[reload_spill_index[j]]];
7081 }
32131a9c
RK
7082
7083 /* If we are reloading a register that was recently stored in with an
7084 output-reload, see if we can prove there was
7085 actually no need to store the old value in it. */
7086
cb2afeb3
R
7087 if (optimize
7088 && (reload_inherited[j] || reload_override_in[j])
eceef4c9
BS
7089 && rld[j].reg_rtx
7090 && GET_CODE (rld[j].reg_rtx) == REG
7091 && spill_reg_store[REGNO (rld[j].reg_rtx)] != 0
32131a9c
RK
7092#if 0
7093 /* There doesn't seem to be any reason to restrict this to pseudos
7094 and doing so loses in the case where we are copying from a
7095 register of the wrong class. */
eceef4c9 7096 && (REGNO (spill_reg_stored_to[REGNO (rld[j].reg_rtx)])
05d10675 7097 >= FIRST_PSEUDO_REGISTER)
32131a9c 7098#endif
05d10675
BS
7099 /* The insn might have already some references to stackslots
7100 replaced by MEMs, while reload_out_reg still names the
7101 original pseudo. */
cb2afeb3 7102 && (dead_or_set_p (insn,
eceef4c9
BS
7103 spill_reg_stored_to[REGNO (rld[j].reg_rtx)])
7104 || rtx_equal_p (spill_reg_stored_to[REGNO (rld[j].reg_rtx)],
7105 rld[j].out_reg)))
7106 delete_output_reload (insn, j, REGNO (rld[j].reg_rtx));
32131a9c
RK
7107
7108 /* Input-reloading is done. Now do output-reloading,
7109 storing the value from the reload-register after the main insn
eceef4c9 7110 if rld[j].out is nonzero.
32131a9c
RK
7111
7112 ??? At some point we need to support handling output reloads of
7113 JUMP_INSNs or insns that set cc0. */
cb2afeb3
R
7114
7115 /* If this is an output reload that stores something that is
7116 not loaded in this same reload, see if we can eliminate a previous
7117 store. */
7118 {
eceef4c9 7119 rtx pseudo = rld[j].out_reg;
05d10675 7120
cb2afeb3
R
7121 if (pseudo
7122 && GET_CODE (pseudo) == REG
eceef4c9 7123 && ! rtx_equal_p (rld[j].in_reg, pseudo)
cb2afeb3
R
7124 && REGNO (pseudo) >= FIRST_PSEUDO_REGISTER
7125 && reg_last_reload_reg[REGNO (pseudo)])
7126 {
7127 int pseudo_no = REGNO (pseudo);
7128 int last_regno = REGNO (reg_last_reload_reg[pseudo_no]);
7129
7130 /* We don't need to test full validity of last_regno for
7131 inherit here; we only want to know if the store actually
7132 matches the pseudo. */
7133 if (reg_reloaded_contents[last_regno] == pseudo_no
7134 && spill_reg_store[last_regno]
7135 && rtx_equal_p (pseudo, spill_reg_stored_to[last_regno]))
7136 delete_output_reload (insn, j, last_regno);
7137 }
7138 }
7139
eceef4c9 7140 old = rld[j].out_reg;
32131a9c 7141 if (old != 0
eceef4c9
BS
7142 && rld[j].reg_rtx != old
7143 && rld[j].reg_rtx != 0)
32131a9c 7144 {
eceef4c9 7145 register rtx reloadreg = rld[j].reg_rtx;
29a82058 7146#ifdef SECONDARY_OUTPUT_RELOAD_CLASS
32131a9c 7147 register rtx second_reloadreg = 0;
29a82058 7148#endif
32131a9c
RK
7149 rtx note, p;
7150 enum machine_mode mode;
7151 int special = 0;
7152
7153 /* An output operand that dies right away does need a reload,
7154 but need not be copied from it. Show the new location in the
7155 REG_UNUSED note. */
7156 if ((GET_CODE (old) == REG || GET_CODE (old) == SCRATCH)
7157 && (note = find_reg_note (insn, REG_UNUSED, old)) != 0)
7158 {
eceef4c9 7159 XEXP (note, 0) = rld[j].reg_rtx;
32131a9c
RK
7160 continue;
7161 }
a7911cd2
RK
7162 /* Likewise for a SUBREG of an operand that dies. */
7163 else if (GET_CODE (old) == SUBREG
7164 && GET_CODE (SUBREG_REG (old)) == REG
7165 && 0 != (note = find_reg_note (insn, REG_UNUSED,
7166 SUBREG_REG (old))))
7167 {
7168 XEXP (note, 0) = gen_lowpart_common (GET_MODE (old),
eceef4c9 7169 rld[j].reg_rtx);
a7911cd2
RK
7170 continue;
7171 }
32131a9c
RK
7172 else if (GET_CODE (old) == SCRATCH)
7173 /* If we aren't optimizing, there won't be a REG_UNUSED note,
7174 but we don't want to make an output reload. */
7175 continue;
7176
7177#if 0
7178 /* Strip off of OLD any size-increasing SUBREGs such as
7179 (SUBREG:SI foo:QI 0). */
7180
7181 while (GET_CODE (old) == SUBREG && SUBREG_WORD (old) == 0
7182 && (GET_MODE_SIZE (GET_MODE (old))
7183 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (old)))))
7184 old = SUBREG_REG (old);
7185#endif
7186
7187 /* If is a JUMP_INSN, we can't support output reloads yet. */
7188 if (GET_CODE (insn) == JUMP_INSN)
7189 abort ();
7190
eceef4c9 7191 if (rld[j].when_needed == RELOAD_OTHER)
5ca582cf 7192 start_sequence ();
d7e0324f 7193 else
eceef4c9 7194 push_to_sequence (output_reload_insns[rld[j].opnum]);
546b63fb 7195
eceef4c9 7196 old = rld[j].out;
cb2afeb3 7197
32131a9c
RK
7198 /* Determine the mode to reload in.
7199 See comments above (for input reloading). */
7200
7201 mode = GET_MODE (old);
7202 if (mode == VOIDmode)
79a365a7
RS
7203 {
7204 /* VOIDmode should never happen for an output. */
7205 if (asm_noperands (PATTERN (insn)) < 0)
7206 /* It's the compiler's fault. */
a89b2cc4 7207 fatal_insn ("VOIDmode on an output", insn);
79a365a7
RS
7208 error_for_asm (insn, "output operand is constant in `asm'");
7209 /* Prevent crash--use something we know is valid. */
7210 mode = word_mode;
38a448ca 7211 old = gen_rtx_REG (mode, REGNO (reloadreg));
79a365a7 7212 }
32131a9c 7213
32131a9c 7214 if (GET_MODE (reloadreg) != mode)
38a448ca 7215 reloadreg = gen_rtx_REG (mode, REGNO (reloadreg));
32131a9c
RK
7216
7217#ifdef SECONDARY_OUTPUT_RELOAD_CLASS
7218
7219 /* If we need two reload regs, set RELOADREG to the intermediate
5e03c156 7220 one, since it will be stored into OLD. We might need a secondary
32131a9c
RK
7221 register only for an input reload, so check again here. */
7222
eceef4c9 7223 if (rld[j].secondary_out_reload >= 0)
32131a9c 7224 {
1554c2c6 7225 rtx real_old = old;
32131a9c 7226
1554c2c6
RK
7227 if (GET_CODE (old) == REG && REGNO (old) >= FIRST_PSEUDO_REGISTER
7228 && reg_equiv_mem[REGNO (old)] != 0)
7229 real_old = reg_equiv_mem[REGNO (old)];
32131a9c 7230
eceef4c9 7231 if((SECONDARY_OUTPUT_RELOAD_CLASS (rld[j].class,
1554c2c6
RK
7232 mode, real_old)
7233 != NO_REGS))
7234 {
7235 second_reloadreg = reloadreg;
eceef4c9 7236 reloadreg = rld[rld[j].secondary_out_reload].reg_rtx;
32131a9c 7237
1554c2c6
RK
7238 /* See if RELOADREG is to be used as a scratch register
7239 or as an intermediate register. */
eceef4c9 7240 if (rld[j].secondary_out_icode != CODE_FOR_nothing)
32131a9c 7241 {
eceef4c9 7242 emit_insn ((GEN_FCN (rld[j].secondary_out_icode)
546b63fb 7243 (real_old, second_reloadreg, reloadreg)));
1554c2c6 7244 special = 1;
32131a9c
RK
7245 }
7246 else
1554c2c6
RK
7247 {
7248 /* See if we need both a scratch and intermediate reload
7249 register. */
5e03c156 7250
eceef4c9 7251 int secondary_reload = rld[j].secondary_out_reload;
1554c2c6 7252 enum insn_code tertiary_icode
eceef4c9 7253 = rld[secondary_reload].secondary_out_icode;
32131a9c 7254
1554c2c6 7255 if (GET_MODE (reloadreg) != mode)
38a448ca 7256 reloadreg = gen_rtx_REG (mode, REGNO (reloadreg));
1554c2c6
RK
7257
7258 if (tertiary_icode != CODE_FOR_nothing)
7259 {
7260 rtx third_reloadreg
eceef4c9 7261 = rld[rld[secondary_reload].secondary_out_reload].reg_rtx;
a7911cd2 7262 rtx tem;
5e03c156
RK
7263
7264 /* Copy primary reload reg to secondary reload reg.
7265 (Note that these have been swapped above, then
7266 secondary reload reg to OLD using our insn. */
7267
a7911cd2
RK
7268 /* If REAL_OLD is a paradoxical SUBREG, remove it
7269 and try to put the opposite SUBREG on
7270 RELOADREG. */
7271 if (GET_CODE (real_old) == SUBREG
7272 && (GET_MODE_SIZE (GET_MODE (real_old))
7273 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (real_old))))
7274 && 0 != (tem = gen_lowpart_common
7275 (GET_MODE (SUBREG_REG (real_old)),
7276 reloadreg)))
7277 real_old = SUBREG_REG (real_old), reloadreg = tem;
7278
5e03c156 7279 gen_reload (reloadreg, second_reloadreg,
eceef4c9 7280 rld[j].opnum, rld[j].when_needed);
5e03c156
RK
7281 emit_insn ((GEN_FCN (tertiary_icode)
7282 (real_old, reloadreg, third_reloadreg)));
7283 special = 1;
9ad5f9f6 7284 }
5e03c156 7285
1554c2c6 7286 else
5e03c156
RK
7287 /* Copy between the reload regs here and then to
7288 OUT later. */
1554c2c6 7289
5e03c156 7290 gen_reload (reloadreg, second_reloadreg,
eceef4c9 7291 rld[j].opnum, rld[j].when_needed);
1554c2c6 7292 }
32131a9c
RK
7293 }
7294 }
7295#endif
7296
7297 /* Output the last reload insn. */
7298 if (! special)
d7c2e385
L
7299 {
7300 rtx set;
7301
7302 /* Don't output the last reload if OLD is not the dest of
7303 INSN and is in the src and is clobbered by INSN. */
7304 if (! flag_expensive_optimizations
7305 || GET_CODE (old) != REG
7306 || !(set = single_set (insn))
7307 || rtx_equal_p (old, SET_DEST (set))
7308 || !reg_mentioned_p (old, SET_SRC (set))
7309 || !regno_clobbered_p (REGNO (old), insn))
eceef4c9
BS
7310 gen_reload (old, reloadreg, rld[j].opnum,
7311 rld[j].when_needed);
d7c2e385 7312 }
32131a9c 7313
32131a9c 7314 /* Look at all insns we emitted, just to be safe. */
546b63fb 7315 for (p = get_insns (); p; p = NEXT_INSN (p))
32131a9c
RK
7316 if (GET_RTX_CLASS (GET_CODE (p)) == 'i')
7317 {
e6e52be0
R
7318 rtx pat = PATTERN (p);
7319
32131a9c
RK
7320 /* If this output reload doesn't come from a spill reg,
7321 clear any memory of reloaded copies of the pseudo reg.
7322 If this output reload comes from a spill reg,
7323 reg_has_output_reload will make this do nothing. */
84832317 7324 note_stores (pat, forget_old_reloads_1, NULL);
e6e52be0 7325
eceef4c9 7326 if (reg_mentioned_p (rld[j].reg_rtx, pat))
e6e52be0 7327 {
cb2afeb3 7328 rtx set = single_set (insn);
e6e52be0 7329 if (reload_spill_index[j] < 0
cb2afeb3 7330 && set
eceef4c9 7331 && SET_SRC (set) == rld[j].reg_rtx)
e6e52be0 7332 {
cb2afeb3 7333 int src = REGNO (SET_SRC (set));
32131a9c 7334
e6e52be0
R
7335 reload_spill_index[j] = src;
7336 SET_HARD_REG_BIT (reg_is_output_reload, src);
7337 if (find_regno_note (insn, REG_DEAD, src))
7338 SET_HARD_REG_BIT (reg_reloaded_died, src);
7339 }
eceef4c9 7340 if (REGNO (rld[j].reg_rtx) < FIRST_PSEUDO_REGISTER)
9da46522 7341 {
eceef4c9 7342 int s = rld[j].secondary_out_reload;
cb2afeb3 7343 set = single_set (p);
9da46522
R
7344 /* If this reload copies only to the secondary reload
7345 register, the secondary reload does the actual
7346 store. */
7347 if (s >= 0 && set == NULL_RTX)
7348 ; /* We can't tell what function the secondary reload
7349 has and where the actual store to the pseudo is
7350 made; leave new_spill_reg_store alone. */
7351 else if (s >= 0
eceef4c9
BS
7352 && SET_SRC (set) == rld[j].reg_rtx
7353 && SET_DEST (set) == rld[s].reg_rtx)
9da46522
R
7354 {
7355 /* Usually the next instruction will be the
7356 secondary reload insn; if we can confirm
7357 that it is, setting new_spill_reg_store to
7358 that insn will allow an extra optimization. */
eceef4c9 7359 rtx s_reg = rld[s].reg_rtx;
9da46522 7360 rtx next = NEXT_INSN (p);
eceef4c9
BS
7361 rld[s].out = rld[j].out;
7362 rld[s].out_reg = rld[j].out_reg;
9da46522
R
7363 set = single_set (next);
7364 if (set && SET_SRC (set) == s_reg
7365 && ! new_spill_reg_store[REGNO (s_reg)])
cb2afeb3
R
7366 {
7367 SET_HARD_REG_BIT (reg_is_output_reload,
7368 REGNO (s_reg));
7369 new_spill_reg_store[REGNO (s_reg)] = next;
7370 }
9da46522
R
7371 }
7372 else
eceef4c9 7373 new_spill_reg_store[REGNO (rld[j].reg_rtx)] = p;
9da46522 7374 }
e6e52be0 7375 }
32131a9c
RK
7376 }
7377
eceef4c9 7378 if (rld[j].when_needed == RELOAD_OTHER)
befa01b9 7379 {
eceef4c9
BS
7380 emit_insns (other_output_reload_insns[rld[j].opnum]);
7381 other_output_reload_insns[rld[j].opnum] = get_insns ();
befa01b9
JW
7382 }
7383 else
eceef4c9 7384 output_reload_insns[rld[j].opnum] = get_insns ();
d7e0324f 7385
546b63fb 7386 end_sequence ();
32131a9c 7387 }
32131a9c
RK
7388 }
7389
546b63fb
RK
7390 /* Now write all the insns we made for reloads in the order expected by
7391 the allocation functions. Prior to the insn being reloaded, we write
7392 the following reloads:
7393
7394 RELOAD_FOR_OTHER_ADDRESS reloads for input addresses.
7395
2edc8d65 7396 RELOAD_OTHER reloads.
546b63fb 7397
47c8cf91
ILT
7398 For each operand, any RELOAD_FOR_INPADDR_ADDRESS reloads followed
7399 by any RELOAD_FOR_INPUT_ADDRESS reloads followed by the
7400 RELOAD_FOR_INPUT reload for the operand.
546b63fb 7401
893bc853
RK
7402 RELOAD_FOR_OPADDR_ADDRS reloads.
7403
546b63fb
RK
7404 RELOAD_FOR_OPERAND_ADDRESS reloads.
7405
7406 After the insn being reloaded, we write the following:
7407
47c8cf91
ILT
7408 For each operand, any RELOAD_FOR_OUTADDR_ADDRESS reloads followed
7409 by any RELOAD_FOR_OUTPUT_ADDRESS reload followed by the
7410 RELOAD_FOR_OUTPUT reload, followed by any RELOAD_OTHER output
7411 reloads for the operand. The RELOAD_OTHER output reloads are
7412 output in descending order by reload number. */
546b63fb 7413
c93b03c2
RH
7414 emit_insns_before (other_input_address_reload_insns, insn);
7415 emit_insns_before (other_input_reload_insns, insn);
546b63fb
RK
7416
7417 for (j = 0; j < reload_n_operands; j++)
7418 {
c93b03c2
RH
7419 emit_insns_before (inpaddr_address_reload_insns[j], insn);
7420 emit_insns_before (input_address_reload_insns[j], insn);
7421 emit_insns_before (input_reload_insns[j], insn);
546b63fb
RK
7422 }
7423
c93b03c2
RH
7424 emit_insns_before (other_operand_reload_insns, insn);
7425 emit_insns_before (operand_reload_insns, insn);
546b63fb
RK
7426
7427 for (j = 0; j < reload_n_operands; j++)
7428 {
47c8cf91 7429 emit_insns_before (outaddr_address_reload_insns[j], following_insn);
546b63fb
RK
7430 emit_insns_before (output_address_reload_insns[j], following_insn);
7431 emit_insns_before (output_reload_insns[j], following_insn);
befa01b9 7432 emit_insns_before (other_output_reload_insns[j], following_insn);
c93b03c2
RH
7433 }
7434
7435 /* Keep basic block info up to date. */
7436 if (n_basic_blocks)
7437 {
3b413743 7438 if (BLOCK_HEAD (chain->block) == insn)
05d10675 7439 BLOCK_HEAD (chain->block) = NEXT_INSN (before_insn);
3b413743 7440 if (BLOCK_END (chain->block) == insn)
05d10675 7441 BLOCK_END (chain->block) = PREV_INSN (following_insn);
546b63fb
RK
7442 }
7443
32131a9c
RK
7444 /* For all the spill regs newly reloaded in this instruction,
7445 record what they were reloaded from, so subsequent instructions
d445b551
RK
7446 can inherit the reloads.
7447
7448 Update spill_reg_store for the reloads of this insn.
e9e79d69 7449 Copy the elements that were updated in the loop above. */
32131a9c
RK
7450
7451 for (j = 0; j < n_reloads; j++)
7452 {
7453 register int r = reload_order[j];
7454 register int i = reload_spill_index[r];
7455
78a2bc08 7456 /* If this is a non-inherited input reload from a pseudo, we must
05d10675
BS
7457 clear any memory of a previous store to the same pseudo. Only do
7458 something if there will not be an output reload for the pseudo
7459 being reloaded. */
eceef4c9 7460 if (rld[r].in_reg != 0
05d10675
BS
7461 && ! (reload_inherited[r] || reload_override_in[r]))
7462 {
eceef4c9 7463 rtx reg = rld[r].in_reg;
78a2bc08 7464
05d10675 7465 if (GET_CODE (reg) == SUBREG)
78a2bc08 7466 reg = SUBREG_REG (reg);
05d10675
BS
7467
7468 if (GET_CODE (reg) == REG
78a2bc08
R
7469 && REGNO (reg) >= FIRST_PSEUDO_REGISTER
7470 && ! reg_has_output_reload[REGNO (reg)])
7471 {
7472 int nregno = REGNO (reg);
7473
7474 if (reg_last_reload_reg[nregno])
05d10675
BS
7475 {
7476 int last_regno = REGNO (reg_last_reload_reg[nregno]);
78a2bc08 7477
05d10675 7478 if (reg_reloaded_contents[last_regno] == nregno)
78a2bc08 7479 spill_reg_store[last_regno] = 0;
05d10675 7480 }
78a2bc08
R
7481 }
7482 }
05d10675 7483
e6e52be0 7484 /* I is nonneg if this reload used a register.
eceef4c9 7485 If rld[r].reg_rtx is 0, this is an optional reload
51f0c3b7 7486 that we opted to ignore. */
d445b551 7487
eceef4c9 7488 if (i >= 0 && rld[r].reg_rtx != 0)
32131a9c 7489 {
32131a9c 7490 int nr
eceef4c9 7491 = HARD_REGNO_NREGS (i, GET_MODE (rld[r].reg_rtx));
32131a9c 7492 int k;
51f0c3b7
JW
7493 int part_reaches_end = 0;
7494 int all_reaches_end = 1;
32131a9c 7495
51f0c3b7
JW
7496 /* For a multi register reload, we need to check if all or part
7497 of the value lives to the end. */
32131a9c
RK
7498 for (k = 0; k < nr; k++)
7499 {
eceef4c9
BS
7500 if (reload_reg_reaches_end_p (i + k, rld[r].opnum,
7501 rld[r].when_needed))
51f0c3b7
JW
7502 part_reaches_end = 1;
7503 else
7504 all_reaches_end = 0;
32131a9c
RK
7505 }
7506
51f0c3b7
JW
7507 /* Ignore reloads that don't reach the end of the insn in
7508 entirety. */
7509 if (all_reaches_end)
32131a9c 7510 {
51f0c3b7
JW
7511 /* First, clear out memory of what used to be in this spill reg.
7512 If consecutive registers are used, clear them all. */
d08ea79f 7513
32131a9c 7514 for (k = 0; k < nr; k++)
e6e52be0 7515 CLEAR_HARD_REG_BIT (reg_reloaded_valid, i + k);
d08ea79f 7516
51f0c3b7 7517 /* Maybe the spill reg contains a copy of reload_out. */
eceef4c9
BS
7518 if (rld[r].out != 0
7519 && (GET_CODE (rld[r].out) == REG
cb2afeb3 7520#ifdef AUTO_INC_DEC
eceef4c9 7521 || ! rld[r].out_reg
cb2afeb3 7522#endif
eceef4c9 7523 || GET_CODE (rld[r].out_reg) == REG))
51f0c3b7 7524 {
eceef4c9
BS
7525 rtx out = (GET_CODE (rld[r].out) == REG
7526 ? rld[r].out
7527 : rld[r].out_reg
7528 ? rld[r].out_reg
7529/* AUTO_INC */ : XEXP (rld[r].in_reg, 0));
cb2afeb3 7530 register int nregno = REGNO (out);
51f0c3b7
JW
7531 int nnr = (nregno >= FIRST_PSEUDO_REGISTER ? 1
7532 : HARD_REGNO_NREGS (nregno,
eceef4c9 7533 GET_MODE (rld[r].reg_rtx)));
51f0c3b7
JW
7534
7535 spill_reg_store[i] = new_spill_reg_store[i];
cb2afeb3 7536 spill_reg_stored_to[i] = out;
eceef4c9 7537 reg_last_reload_reg[nregno] = rld[r].reg_rtx;
51f0c3b7
JW
7538
7539 /* If NREGNO is a hard register, it may occupy more than
05d10675 7540 one register. If it does, say what is in the
51f0c3b7
JW
7541 rest of the registers assuming that both registers
7542 agree on how many words the object takes. If not,
7543 invalidate the subsequent registers. */
7544
7545 if (nregno < FIRST_PSEUDO_REGISTER)
7546 for (k = 1; k < nnr; k++)
7547 reg_last_reload_reg[nregno + k]
7548 = (nr == nnr
eceef4c9
BS
7549 ? gen_rtx_REG (reg_raw_mode[REGNO (rld[r].reg_rtx) + k],
7550 REGNO (rld[r].reg_rtx) + k)
51f0c3b7
JW
7551 : 0);
7552
7553 /* Now do the inverse operation. */
7554 for (k = 0; k < nr; k++)
7555 {
e6e52be0
R
7556 CLEAR_HARD_REG_BIT (reg_reloaded_dead, i + k);
7557 reg_reloaded_contents[i + k]
51f0c3b7
JW
7558 = (nregno >= FIRST_PSEUDO_REGISTER || nr != nnr
7559 ? nregno
7560 : nregno + k);
e6e52be0
R
7561 reg_reloaded_insn[i + k] = insn;
7562 SET_HARD_REG_BIT (reg_reloaded_valid, i + k);
51f0c3b7
JW
7563 }
7564 }
d08ea79f 7565
51f0c3b7
JW
7566 /* Maybe the spill reg contains a copy of reload_in. Only do
7567 something if there will not be an output reload for
7568 the register being reloaded. */
eceef4c9
BS
7569 else if (rld[r].out_reg == 0
7570 && rld[r].in != 0
7571 && ((GET_CODE (rld[r].in) == REG
7572 && REGNO (rld[r].in) >= FIRST_PSEUDO_REGISTER
7573 && ! reg_has_output_reload[REGNO (rld[r].in)])
7574 || (GET_CODE (rld[r].in_reg) == REG
7575 && ! reg_has_output_reload[REGNO (rld[r].in_reg)]))
7576 && ! reg_set_p (rld[r].reg_rtx, PATTERN (insn)))
51f0c3b7
JW
7577 {
7578 register int nregno;
7579 int nnr;
d445b551 7580
eceef4c9
BS
7581 if (GET_CODE (rld[r].in) == REG
7582 && REGNO (rld[r].in) >= FIRST_PSEUDO_REGISTER)
7583 nregno = REGNO (rld[r].in);
7584 else if (GET_CODE (rld[r].in_reg) == REG)
7585 nregno = REGNO (rld[r].in_reg);
cb2afeb3 7586 else
eceef4c9 7587 nregno = REGNO (XEXP (rld[r].in_reg, 0));
d08ea79f 7588
51f0c3b7
JW
7589 nnr = (nregno >= FIRST_PSEUDO_REGISTER ? 1
7590 : HARD_REGNO_NREGS (nregno,
eceef4c9 7591 GET_MODE (rld[r].reg_rtx)));
05d10675 7592
eceef4c9 7593 reg_last_reload_reg[nregno] = rld[r].reg_rtx;
51f0c3b7
JW
7594
7595 if (nregno < FIRST_PSEUDO_REGISTER)
7596 for (k = 1; k < nnr; k++)
7597 reg_last_reload_reg[nregno + k]
7598 = (nr == nnr
eceef4c9
BS
7599 ? gen_rtx_REG (reg_raw_mode[REGNO (rld[r].reg_rtx) + k],
7600 REGNO (rld[r].reg_rtx) + k)
51f0c3b7
JW
7601 : 0);
7602
7603 /* Unless we inherited this reload, show we haven't
cb2afeb3
R
7604 recently done a store.
7605 Previous stores of inherited auto_inc expressions
7606 also have to be discarded. */
7607 if (! reload_inherited[r]
eceef4c9 7608 || (rld[r].out && ! rld[r].out_reg))
51f0c3b7
JW
7609 spill_reg_store[i] = 0;
7610
7611 for (k = 0; k < nr; k++)
7612 {
e6e52be0
R
7613 CLEAR_HARD_REG_BIT (reg_reloaded_dead, i + k);
7614 reg_reloaded_contents[i + k]
51f0c3b7
JW
7615 = (nregno >= FIRST_PSEUDO_REGISTER || nr != nnr
7616 ? nregno
7617 : nregno + k);
e6e52be0
R
7618 reg_reloaded_insn[i + k] = insn;
7619 SET_HARD_REG_BIT (reg_reloaded_valid, i + k);
51f0c3b7
JW
7620 }
7621 }
7622 }
d445b551 7623
51f0c3b7
JW
7624 /* However, if part of the reload reaches the end, then we must
7625 invalidate the old info for the part that survives to the end. */
7626 else if (part_reaches_end)
7627 {
546b63fb 7628 for (k = 0; k < nr; k++)
e6e52be0 7629 if (reload_reg_reaches_end_p (i + k,
eceef4c9
BS
7630 rld[r].opnum,
7631 rld[r].when_needed))
e6e52be0 7632 CLEAR_HARD_REG_BIT (reg_reloaded_valid, i + k);
32131a9c
RK
7633 }
7634 }
7635
7636 /* The following if-statement was #if 0'd in 1.34 (or before...).
7637 It's reenabled in 1.35 because supposedly nothing else
7638 deals with this problem. */
7639
7640 /* If a register gets output-reloaded from a non-spill register,
7641 that invalidates any previous reloaded copy of it.
7642 But forget_old_reloads_1 won't get to see it, because
7643 it thinks only about the original insn. So invalidate it here. */
eceef4c9
BS
7644 if (i < 0 && rld[r].out != 0
7645 && (GET_CODE (rld[r].out) == REG
7646 || (GET_CODE (rld[r].out) == MEM
7647 && GET_CODE (rld[r].out_reg) == REG)))
32131a9c 7648 {
eceef4c9
BS
7649 rtx out = (GET_CODE (rld[r].out) == REG
7650 ? rld[r].out : rld[r].out_reg);
cb2afeb3 7651 register int nregno = REGNO (out);
c7093272 7652 if (nregno >= FIRST_PSEUDO_REGISTER)
cb2afeb3 7653 {
6a651371 7654 rtx src_reg, store_insn = NULL_RTX;
cb2afeb3
R
7655
7656 reg_last_reload_reg[nregno] = 0;
7657
7658 /* If we can find a hard register that is stored, record
7659 the storing insn so that we may delete this insn with
7660 delete_output_reload. */
eceef4c9 7661 src_reg = rld[r].reg_rtx;
cb2afeb3
R
7662
7663 /* If this is an optional reload, try to find the source reg
7664 from an input reload. */
7665 if (! src_reg)
7666 {
7667 rtx set = single_set (insn);
eceef4c9 7668 if (set && SET_DEST (set) == rld[r].out)
cb2afeb3
R
7669 {
7670 int k;
7671
7672 src_reg = SET_SRC (set);
7673 store_insn = insn;
7674 for (k = 0; k < n_reloads; k++)
7675 {
eceef4c9 7676 if (rld[k].in == src_reg)
cb2afeb3 7677 {
eceef4c9 7678 src_reg = rld[k].reg_rtx;
cb2afeb3
R
7679 break;
7680 }
7681 }
7682 }
7683 }
7684 else
7685 store_insn = new_spill_reg_store[REGNO (src_reg)];
7686 if (src_reg && GET_CODE (src_reg) == REG
7687 && REGNO (src_reg) < FIRST_PSEUDO_REGISTER)
7688 {
7689 int src_regno = REGNO (src_reg);
8ec450a4 7690 int nr = HARD_REGNO_NREGS (src_regno, rld[r].mode);
cb2afeb3
R
7691 /* The place where to find a death note varies with
7692 PRESERVE_DEATH_INFO_REGNO_P . The condition is not
7693 necessarily checked exactly in the code that moves
7694 notes, so just check both locations. */
7695 rtx note = find_regno_note (insn, REG_DEAD, src_regno);
7696 if (! note)
7697 note = find_regno_note (store_insn, REG_DEAD, src_regno);
7698 while (nr-- > 0)
7699 {
7700 spill_reg_store[src_regno + nr] = store_insn;
7701 spill_reg_stored_to[src_regno + nr] = out;
7702 reg_reloaded_contents[src_regno + nr] = nregno;
7703 reg_reloaded_insn[src_regno + nr] = store_insn;
00f9f1bc 7704 CLEAR_HARD_REG_BIT (reg_reloaded_dead, src_regno + nr);
cb2afeb3
R
7705 SET_HARD_REG_BIT (reg_reloaded_valid, src_regno + nr);
7706 SET_HARD_REG_BIT (reg_is_output_reload, src_regno + nr);
7707 if (note)
7708 SET_HARD_REG_BIT (reg_reloaded_died, src_regno);
7709 else
7710 CLEAR_HARD_REG_BIT (reg_reloaded_died, src_regno);
7711 }
7712 reg_last_reload_reg[nregno] = src_reg;
7713 }
7714 }
c7093272
RK
7715 else
7716 {
eceef4c9 7717 int num_regs = HARD_REGNO_NREGS (nregno,GET_MODE (rld[r].out));
36281332 7718
c7093272
RK
7719 while (num_regs-- > 0)
7720 reg_last_reload_reg[nregno + num_regs] = 0;
7721 }
32131a9c
RK
7722 }
7723 }
e6e52be0 7724 IOR_HARD_REG_SET (reg_reloaded_dead, reg_reloaded_died);
32131a9c
RK
7725}
7726\f
5e03c156
RK
7727/* Emit code to perform a reload from IN (which may be a reload register) to
7728 OUT (which may also be a reload register). IN or OUT is from operand
05d10675 7729 OPNUM with reload type TYPE.
546b63fb 7730
3c3eeea6 7731 Returns first insn emitted. */
32131a9c
RK
7732
7733rtx
5e03c156
RK
7734gen_reload (out, in, opnum, type)
7735 rtx out;
32131a9c 7736 rtx in;
546b63fb
RK
7737 int opnum;
7738 enum reload_type type;
32131a9c 7739{
546b63fb 7740 rtx last = get_last_insn ();
7a5b18b0
RK
7741 rtx tem;
7742
7743 /* If IN is a paradoxical SUBREG, remove it and try to put the
7744 opposite SUBREG on OUT. Likewise for a paradoxical SUBREG on OUT. */
7745 if (GET_CODE (in) == SUBREG
7746 && (GET_MODE_SIZE (GET_MODE (in))
7747 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
7748 && (tem = gen_lowpart_common (GET_MODE (SUBREG_REG (in)), out)) != 0)
7749 in = SUBREG_REG (in), out = tem;
7750 else if (GET_CODE (out) == SUBREG
eceef4c9
BS
7751 && (GET_MODE_SIZE (GET_MODE (out))
7752 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
7753 && (tem = gen_lowpart_common (GET_MODE (SUBREG_REG (out)), in)) != 0)
7a5b18b0 7754 out = SUBREG_REG (out), in = tem;
32131a9c 7755
a8fdc208 7756 /* How to do this reload can get quite tricky. Normally, we are being
32131a9c
RK
7757 asked to reload a simple operand, such as a MEM, a constant, or a pseudo
7758 register that didn't get a hard register. In that case we can just
7759 call emit_move_insn.
7760
a7fd196c
JW
7761 We can also be asked to reload a PLUS that adds a register or a MEM to
7762 another register, constant or MEM. This can occur during frame pointer
7763 elimination and while reloading addresses. This case is handled by
7764 trying to emit a single insn to perform the add. If it is not valid,
7765 we use a two insn sequence.
32131a9c
RK
7766
7767 Finally, we could be called to handle an 'o' constraint by putting
7768 an address into a register. In that case, we first try to do this
7769 with a named pattern of "reload_load_address". If no such pattern
7770 exists, we just emit a SET insn and hope for the best (it will normally
7771 be valid on machines that use 'o').
7772
7773 This entire process is made complex because reload will never
7774 process the insns we generate here and so we must ensure that
7775 they will fit their constraints and also by the fact that parts of
7776 IN might be being reloaded separately and replaced with spill registers.
7777 Because of this, we are, in some sense, just guessing the right approach
7778 here. The one listed above seems to work.
7779
7780 ??? At some point, this whole thing needs to be rethought. */
7781
7782 if (GET_CODE (in) == PLUS
a7fd196c 7783 && (GET_CODE (XEXP (in, 0)) == REG
5c6b1bd2 7784 || GET_CODE (XEXP (in, 0)) == SUBREG
a7fd196c
JW
7785 || GET_CODE (XEXP (in, 0)) == MEM)
7786 && (GET_CODE (XEXP (in, 1)) == REG
5c6b1bd2 7787 || GET_CODE (XEXP (in, 1)) == SUBREG
a7fd196c
JW
7788 || CONSTANT_P (XEXP (in, 1))
7789 || GET_CODE (XEXP (in, 1)) == MEM))
32131a9c 7790 {
a7fd196c
JW
7791 /* We need to compute the sum of a register or a MEM and another
7792 register, constant, or MEM, and put it into the reload
3002e160
JW
7793 register. The best possible way of doing this is if the machine
7794 has a three-operand ADD insn that accepts the required operands.
32131a9c
RK
7795
7796 The simplest approach is to try to generate such an insn and see if it
7797 is recognized and matches its constraints. If so, it can be used.
7798
7799 It might be better not to actually emit the insn unless it is valid,
0009eff2 7800 but we need to pass the insn as an operand to `recog' and
0eadeb15 7801 `extract_insn' and it is simpler to emit and then delete the insn if
0009eff2 7802 not valid than to dummy things up. */
a8fdc208 7803
af929c62 7804 rtx op0, op1, tem, insn;
32131a9c 7805 int code;
a8fdc208 7806
af929c62
RK
7807 op0 = find_replacement (&XEXP (in, 0));
7808 op1 = find_replacement (&XEXP (in, 1));
7809
32131a9c
RK
7810 /* Since constraint checking is strict, commutativity won't be
7811 checked, so we need to do that here to avoid spurious failure
7812 if the add instruction is two-address and the second operand
7813 of the add is the same as the reload reg, which is frequently
7814 the case. If the insn would be A = B + A, rearrange it so
0f41302f 7815 it will be A = A + B as constrain_operands expects. */
a8fdc208 7816
32131a9c 7817 if (GET_CODE (XEXP (in, 1)) == REG
5e03c156 7818 && REGNO (out) == REGNO (XEXP (in, 1)))
af929c62
RK
7819 tem = op0, op0 = op1, op1 = tem;
7820
7821 if (op0 != XEXP (in, 0) || op1 != XEXP (in, 1))
38a448ca 7822 in = gen_rtx_PLUS (GET_MODE (in), op0, op1);
32131a9c 7823
38a448ca 7824 insn = emit_insn (gen_rtx_SET (VOIDmode, out, in));
32131a9c
RK
7825 code = recog_memoized (insn);
7826
7827 if (code >= 0)
7828 {
0eadeb15 7829 extract_insn (insn);
32131a9c
RK
7830 /* We want constrain operands to treat this insn strictly in
7831 its validity determination, i.e., the way it would after reload
7832 has completed. */
0eadeb15 7833 if (constrain_operands (1))
32131a9c
RK
7834 return insn;
7835 }
7836
546b63fb 7837 delete_insns_since (last);
32131a9c
RK
7838
7839 /* If that failed, we must use a conservative two-insn sequence.
09522f21
FS
7840
7841 Use a move to copy one operand into the reload register. Prefer
7842 to reload a constant, MEM or pseudo since the move patterns can
7843 handle an arbitrary operand. If OP1 is not a constant, MEM or
7844 pseudo and OP1 is not a valid operand for an add instruction, then
7845 reload OP1.
7846
7847 After reloading one of the operands into the reload register, add
7848 the reload register to the output register.
32131a9c
RK
7849
7850 If there is another way to do this for a specific machine, a
7851 DEFINE_PEEPHOLE should be specified that recognizes the sequence
7852 we emit below. */
7853
09522f21
FS
7854 code = (int) add_optab->handlers[(int) GET_MODE (out)].insn_code;
7855
5c6b1bd2 7856 if (CONSTANT_P (op1) || GET_CODE (op1) == MEM || GET_CODE (op1) == SUBREG
af929c62 7857 || (GET_CODE (op1) == REG
09522f21
FS
7858 && REGNO (op1) >= FIRST_PSEUDO_REGISTER)
7859 || (code != CODE_FOR_nothing
a995e389
RH
7860 && ! ((*insn_data[code].operand[2].predicate)
7861 (op1, insn_data[code].operand[2].mode))))
af929c62 7862 tem = op0, op0 = op1, op1 = tem;
32131a9c 7863
5c6b1bd2 7864 gen_reload (out, op0, opnum, type);
39b56c2a 7865
5e03c156 7866 /* If OP0 and OP1 are the same, we can use OUT for OP1.
39b56c2a
RK
7867 This fixes a problem on the 32K where the stack pointer cannot
7868 be used as an operand of an add insn. */
7869
7870 if (rtx_equal_p (op0, op1))
5e03c156 7871 op1 = out;
39b56c2a 7872
5e03c156 7873 insn = emit_insn (gen_add2_insn (out, op1));
c77c9766
RK
7874
7875 /* If that failed, copy the address register to the reload register.
0f41302f 7876 Then add the constant to the reload register. */
c77c9766
RK
7877
7878 code = recog_memoized (insn);
7879
7880 if (code >= 0)
7881 {
0eadeb15 7882 extract_insn (insn);
c77c9766
RK
7883 /* We want constrain operands to treat this insn strictly in
7884 its validity determination, i.e., the way it would after reload
7885 has completed. */
0eadeb15 7886 if (constrain_operands (1))
4117a96b
R
7887 {
7888 /* Add a REG_EQUIV note so that find_equiv_reg can find it. */
7889 REG_NOTES (insn)
9e6a5703 7890 = gen_rtx_EXPR_LIST (REG_EQUIV, in, REG_NOTES (insn));
4117a96b
R
7891 return insn;
7892 }
c77c9766
RK
7893 }
7894
7895 delete_insns_since (last);
7896
5c6b1bd2 7897 gen_reload (out, op1, opnum, type);
4117a96b 7898 insn = emit_insn (gen_add2_insn (out, op0));
9e6a5703 7899 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_EQUIV, in, REG_NOTES (insn));
32131a9c
RK
7900 }
7901
0dadecf6
RK
7902#ifdef SECONDARY_MEMORY_NEEDED
7903 /* If we need a memory location to do the move, do it that way. */
7904 else if (GET_CODE (in) == REG && REGNO (in) < FIRST_PSEUDO_REGISTER
5e03c156 7905 && GET_CODE (out) == REG && REGNO (out) < FIRST_PSEUDO_REGISTER
0dadecf6 7906 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (REGNO (in)),
5e03c156
RK
7907 REGNO_REG_CLASS (REGNO (out)),
7908 GET_MODE (out)))
0dadecf6
RK
7909 {
7910 /* Get the memory to use and rewrite both registers to its mode. */
5e03c156 7911 rtx loc = get_secondary_mem (in, GET_MODE (out), opnum, type);
0dadecf6 7912
5e03c156 7913 if (GET_MODE (loc) != GET_MODE (out))
38a448ca 7914 out = gen_rtx_REG (GET_MODE (loc), REGNO (out));
0dadecf6
RK
7915
7916 if (GET_MODE (loc) != GET_MODE (in))
38a448ca 7917 in = gen_rtx_REG (GET_MODE (loc), REGNO (in));
0dadecf6 7918
5c6b1bd2
RK
7919 gen_reload (loc, in, opnum, type);
7920 gen_reload (out, loc, opnum, type);
0dadecf6
RK
7921 }
7922#endif
7923
32131a9c
RK
7924 /* If IN is a simple operand, use gen_move_insn. */
7925 else if (GET_RTX_CLASS (GET_CODE (in)) == 'o' || GET_CODE (in) == SUBREG)
5e03c156 7926 emit_insn (gen_move_insn (out, in));
32131a9c
RK
7927
7928#ifdef HAVE_reload_load_address
7929 else if (HAVE_reload_load_address)
5e03c156 7930 emit_insn (gen_reload_load_address (out, in));
32131a9c
RK
7931#endif
7932
5e03c156 7933 /* Otherwise, just write (set OUT IN) and hope for the best. */
32131a9c 7934 else
38a448ca 7935 emit_insn (gen_rtx_SET (VOIDmode, out, in));
32131a9c
RK
7936
7937 /* Return the first insn emitted.
546b63fb 7938 We can not just return get_last_insn, because there may have
32131a9c
RK
7939 been multiple instructions emitted. Also note that gen_move_insn may
7940 emit more than one insn itself, so we can not assume that there is one
7941 insn emitted per emit_insn_before call. */
7942
546b63fb 7943 return last ? NEXT_INSN (last) : get_insns ();
32131a9c
RK
7944}
7945\f
7946/* Delete a previously made output-reload
7947 whose result we now believe is not needed.
7948 First we double-check.
7949
7950 INSN is the insn now being processed.
cb2afeb3
R
7951 LAST_RELOAD_REG is the hard register number for which we want to delete
7952 the last output reload.
7953 J is the reload-number that originally used REG. The caller has made
7954 certain that reload J doesn't use REG any longer for input. */
32131a9c
RK
7955
7956static void
cb2afeb3 7957delete_output_reload (insn, j, last_reload_reg)
32131a9c
RK
7958 rtx insn;
7959 int j;
cb2afeb3 7960 int last_reload_reg;
32131a9c 7961{
cb2afeb3
R
7962 rtx output_reload_insn = spill_reg_store[last_reload_reg];
7963 rtx reg = spill_reg_stored_to[last_reload_reg];
7964 int k;
7965 int n_occurrences;
7966 int n_inherited = 0;
32131a9c 7967 register rtx i1;
cb2afeb3 7968 rtx substed;
05d10675 7969
32131a9c
RK
7970 /* Get the raw pseudo-register referred to. */
7971
32131a9c
RK
7972 while (GET_CODE (reg) == SUBREG)
7973 reg = SUBREG_REG (reg);
cb2afeb3
R
7974 substed = reg_equiv_memory_loc[REGNO (reg)];
7975
7976 /* This is unsafe if the operand occurs more often in the current
7977 insn than it is inherited. */
7978 for (k = n_reloads - 1; k >= 0; k--)
7979 {
eceef4c9 7980 rtx reg2 = rld[k].in;
cb2afeb3
R
7981 if (! reg2)
7982 continue;
7983 if (GET_CODE (reg2) == MEM || reload_override_in[k])
eceef4c9 7984 reg2 = rld[k].in_reg;
cb2afeb3 7985#ifdef AUTO_INC_DEC
eceef4c9
BS
7986 if (rld[k].out && ! rld[k].out_reg)
7987 reg2 = XEXP (rld[k].in_reg, 0);
cb2afeb3
R
7988#endif
7989 while (GET_CODE (reg2) == SUBREG)
7990 reg2 = SUBREG_REG (reg2);
7991 if (rtx_equal_p (reg2, reg))
2eb6dac7
AS
7992 {
7993 if (reload_inherited[k] || reload_override_in[k] || k == j)
7994 {
cb2afeb3 7995 n_inherited++;
eceef4c9 7996 reg2 = rld[k].out_reg;
2eb6dac7
AS
7997 if (! reg2)
7998 continue;
7999 while (GET_CODE (reg2) == SUBREG)
8000 reg2 = XEXP (reg2, 0);
8001 if (rtx_equal_p (reg2, reg))
8002 n_inherited++;
8003 }
8004 else
8005 return;
8006 }
cb2afeb3
R
8007 }
8008 n_occurrences = count_occurrences (PATTERN (insn), reg);
8009 if (substed)
8010 n_occurrences += count_occurrences (PATTERN (insn), substed);
8011 if (n_occurrences > n_inherited)
8012 return;
32131a9c
RK
8013
8014 /* If the pseudo-reg we are reloading is no longer referenced
8015 anywhere between the store into it and here,
8016 and no jumps or labels intervene, then the value can get
8017 here through the reload reg alone.
8018 Otherwise, give up--return. */
8019 for (i1 = NEXT_INSN (output_reload_insn);
8020 i1 != insn; i1 = NEXT_INSN (i1))
8021 {
8022 if (GET_CODE (i1) == CODE_LABEL || GET_CODE (i1) == JUMP_INSN)
8023 return;
8024 if ((GET_CODE (i1) == INSN || GET_CODE (i1) == CALL_INSN)
8025 && reg_mentioned_p (reg, PATTERN (i1)))
aa6498c2 8026 {
cb2afeb3
R
8027 /* If this is USE in front of INSN, we only have to check that
8028 there are no more references than accounted for by inheritance. */
8029 while (GET_CODE (i1) == INSN && GET_CODE (PATTERN (i1)) == USE)
aa6498c2 8030 {
cb2afeb3 8031 n_occurrences += rtx_equal_p (reg, XEXP (PATTERN (i1), 0)) != 0;
aa6498c2
R
8032 i1 = NEXT_INSN (i1);
8033 }
cb2afeb3 8034 if (n_occurrences <= n_inherited && i1 == insn)
aa6498c2
R
8035 break;
8036 return;
8037 }
32131a9c
RK
8038 }
8039
aa6498c2
R
8040 /* The caller has already checked that REG dies or is set in INSN.
8041 It has also checked that we are optimizing, and thus some inaccurancies
8042 in the debugging information are acceptable.
8043 So we could just delete output_reload_insn.
8044 But in some cases we can improve the debugging information without
8045 sacrificing optimization - maybe even improving the code:
8046 See if the pseudo reg has been completely replaced
32131a9c
RK
8047 with reload regs. If so, delete the store insn
8048 and forget we had a stack slot for the pseudo. */
eceef4c9 8049 if (rld[j].out != rld[j].in
aa6498c2 8050 && REG_N_DEATHS (REGNO (reg)) == 1
a3a24aa6 8051 && REG_N_SETS (REGNO (reg)) == 1
aa6498c2
R
8052 && REG_BASIC_BLOCK (REGNO (reg)) >= 0
8053 && find_regno_note (insn, REG_DEAD, REGNO (reg)))
32131a9c
RK
8054 {
8055 rtx i2;
8056
8057 /* We know that it was used only between here
8058 and the beginning of the current basic block.
8059 (We also know that the last use before INSN was
8060 the output reload we are thinking of deleting, but never mind that.)
8061 Search that range; see if any ref remains. */
8062 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
8063 {
d445b551
RK
8064 rtx set = single_set (i2);
8065
32131a9c
RK
8066 /* Uses which just store in the pseudo don't count,
8067 since if they are the only uses, they are dead. */
d445b551 8068 if (set != 0 && SET_DEST (set) == reg)
32131a9c
RK
8069 continue;
8070 if (GET_CODE (i2) == CODE_LABEL
8071 || GET_CODE (i2) == JUMP_INSN)
8072 break;
8073 if ((GET_CODE (i2) == INSN || GET_CODE (i2) == CALL_INSN)
8074 && reg_mentioned_p (reg, PATTERN (i2)))
aa6498c2
R
8075 {
8076 /* Some other ref remains; just delete the output reload we
8077 know to be dead. */
cb2afeb3
R
8078 delete_address_reloads (output_reload_insn, insn);
8079 PUT_CODE (output_reload_insn, NOTE);
8080 NOTE_SOURCE_FILE (output_reload_insn) = 0;
8081 NOTE_LINE_NUMBER (output_reload_insn) = NOTE_INSN_DELETED;
aa6498c2
R
8082 return;
8083 }
32131a9c
RK
8084 }
8085
8086 /* Delete the now-dead stores into this pseudo. */
8087 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
8088 {
d445b551
RK
8089 rtx set = single_set (i2);
8090
8091 if (set != 0 && SET_DEST (set) == reg)
5507b94b 8092 {
cb2afeb3 8093 delete_address_reloads (i2, insn);
5507b94b
RK
8094 /* This might be a basic block head,
8095 thus don't use delete_insn. */
8096 PUT_CODE (i2, NOTE);
8097 NOTE_SOURCE_FILE (i2) = 0;
8098 NOTE_LINE_NUMBER (i2) = NOTE_INSN_DELETED;
8099 }
32131a9c
RK
8100 if (GET_CODE (i2) == CODE_LABEL
8101 || GET_CODE (i2) == JUMP_INSN)
8102 break;
8103 }
8104
8105 /* For the debugging info,
8106 say the pseudo lives in this reload reg. */
eceef4c9 8107 reg_renumber[REGNO (reg)] = REGNO (rld[j].reg_rtx);
32131a9c
RK
8108 alter_reg (REGNO (reg), -1);
8109 }
cb2afeb3
R
8110 delete_address_reloads (output_reload_insn, insn);
8111 PUT_CODE (output_reload_insn, NOTE);
8112 NOTE_SOURCE_FILE (output_reload_insn) = 0;
8113 NOTE_LINE_NUMBER (output_reload_insn) = NOTE_INSN_DELETED;
8114
8115}
8116
8117/* We are going to delete DEAD_INSN. Recursively delete loads of
8118 reload registers used in DEAD_INSN that are not used till CURRENT_INSN.
8119 CURRENT_INSN is being reloaded, so we have to check its reloads too. */
8120static void
8121delete_address_reloads (dead_insn, current_insn)
8122 rtx dead_insn, current_insn;
8123{
8124 rtx set = single_set (dead_insn);
8125 rtx set2, dst, prev, next;
8126 if (set)
8127 {
8128 rtx dst = SET_DEST (set);
8129 if (GET_CODE (dst) == MEM)
8130 delete_address_reloads_1 (dead_insn, XEXP (dst, 0), current_insn);
8131 }
8132 /* If we deleted the store from a reloaded post_{in,de}c expression,
8133 we can delete the matching adds. */
8134 prev = PREV_INSN (dead_insn);
8135 next = NEXT_INSN (dead_insn);
8136 if (! prev || ! next)
8137 return;
8138 set = single_set (next);
8139 set2 = single_set (prev);
8140 if (! set || ! set2
8141 || GET_CODE (SET_SRC (set)) != PLUS || GET_CODE (SET_SRC (set2)) != PLUS
8142 || GET_CODE (XEXP (SET_SRC (set), 1)) != CONST_INT
8143 || GET_CODE (XEXP (SET_SRC (set2), 1)) != CONST_INT)
8144 return;
8145 dst = SET_DEST (set);
8146 if (! rtx_equal_p (dst, SET_DEST (set2))
8147 || ! rtx_equal_p (dst, XEXP (SET_SRC (set), 0))
8148 || ! rtx_equal_p (dst, XEXP (SET_SRC (set2), 0))
8149 || (INTVAL (XEXP (SET_SRC (set), 1))
8150 != - INTVAL (XEXP (SET_SRC (set2), 1))))
8151 return;
8152 delete_insn (prev);
8153 delete_insn (next);
8154}
8155
8156/* Subfunction of delete_address_reloads: process registers found in X. */
8157static void
8158delete_address_reloads_1 (dead_insn, x, current_insn)
8159 rtx dead_insn, x, current_insn;
8160{
8161 rtx prev, set, dst, i2;
8162 int i, j;
8163 enum rtx_code code = GET_CODE (x);
8164
8165 if (code != REG)
8166 {
6f7d635c 8167 const char *fmt= GET_RTX_FORMAT (code);
cb2afeb3
R
8168 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8169 {
8170 if (fmt[i] == 'e')
8171 delete_address_reloads_1 (dead_insn, XEXP (x, i), current_insn);
8172 else if (fmt[i] == 'E')
8173 {
8174 for (j = XVECLEN (x, i) - 1; j >=0; j--)
8175 delete_address_reloads_1 (dead_insn, XVECEXP (x, i, j),
8176 current_insn);
8177 }
8178 }
8179 return;
8180 }
8181
8182 if (spill_reg_order[REGNO (x)] < 0)
8183 return;
aa6498c2 8184
cb2afeb3
R
8185 /* Scan backwards for the insn that sets x. This might be a way back due
8186 to inheritance. */
8187 for (prev = PREV_INSN (dead_insn); prev; prev = PREV_INSN (prev))
8188 {
8189 code = GET_CODE (prev);
8190 if (code == CODE_LABEL || code == JUMP_INSN)
8191 return;
8192 if (GET_RTX_CLASS (code) != 'i')
8193 continue;
8194 if (reg_set_p (x, PATTERN (prev)))
8195 break;
8196 if (reg_referenced_p (x, PATTERN (prev)))
8197 return;
8198 }
8199 if (! prev || INSN_UID (prev) < reload_first_uid)
8200 return;
8201 /* Check that PREV only sets the reload register. */
8202 set = single_set (prev);
8203 if (! set)
8204 return;
8205 dst = SET_DEST (set);
8206 if (GET_CODE (dst) != REG
8207 || ! rtx_equal_p (dst, x))
8208 return;
8209 if (! reg_set_p (dst, PATTERN (dead_insn)))
8210 {
8211 /* Check if DST was used in a later insn -
8212 it might have been inherited. */
8213 for (i2 = NEXT_INSN (dead_insn); i2; i2 = NEXT_INSN (i2))
8214 {
8215 if (GET_CODE (i2) == CODE_LABEL)
8216 break;
8217 if (GET_RTX_CLASS (GET_CODE (i2)) != 'i')
8218 continue;
8219 if (reg_referenced_p (dst, PATTERN (i2)))
8220 {
8221 /* If there is a reference to the register in the current insn,
8222 it might be loaded in a non-inherited reload. If no other
8223 reload uses it, that means the register is set before
8224 referenced. */
8225 if (i2 == current_insn)
8226 {
8227 for (j = n_reloads - 1; j >= 0; j--)
eceef4c9 8228 if ((rld[j].reg_rtx == dst && reload_inherited[j])
cb2afeb3
R
8229 || reload_override_in[j] == dst)
8230 return;
8231 for (j = n_reloads - 1; j >= 0; j--)
eceef4c9 8232 if (rld[j].in && rld[j].reg_rtx == dst)
cb2afeb3
R
8233 break;
8234 if (j >= 0)
8235 break;
8236 }
8237 return;
8238 }
8239 if (GET_CODE (i2) == JUMP_INSN)
8240 break;
cb2afeb3 8241 /* If DST is still live at CURRENT_INSN, check if it is used for
3900dc09
R
8242 any reload. Note that even if CURRENT_INSN sets DST, we still
8243 have to check the reloads. */
cb2afeb3
R
8244 if (i2 == current_insn)
8245 {
8246 for (j = n_reloads - 1; j >= 0; j--)
eceef4c9 8247 if ((rld[j].reg_rtx == dst && reload_inherited[j])
cb2afeb3
R
8248 || reload_override_in[j] == dst)
8249 return;
8250 /* ??? We can't finish the loop here, because dst might be
8251 allocated to a pseudo in this block if no reload in this
8252 block needs any of the clsses containing DST - see
8253 spill_hard_reg. There is no easy way to tell this, so we
8254 have to scan till the end of the basic block. */
8255 }
3900dc09
R
8256 if (reg_set_p (dst, PATTERN (i2)))
8257 break;
cb2afeb3
R
8258 }
8259 }
8260 delete_address_reloads_1 (prev, SET_SRC (set), current_insn);
8261 reg_reloaded_contents[REGNO (dst)] = -1;
8262 /* Can't use delete_insn here because PREV might be a basic block head. */
8263 PUT_CODE (prev, NOTE);
8264 NOTE_LINE_NUMBER (prev) = NOTE_INSN_DELETED;
8265 NOTE_SOURCE_FILE (prev) = 0;
32131a9c 8266}
32131a9c 8267\f
a8fdc208 8268/* Output reload-insns to reload VALUE into RELOADREG.
858a47b1 8269 VALUE is an autoincrement or autodecrement RTX whose operand
32131a9c
RK
8270 is a register or memory location;
8271 so reloading involves incrementing that location.
cb2afeb3 8272 IN is either identical to VALUE, or some cheaper place to reload from.
32131a9c
RK
8273
8274 INC_AMOUNT is the number to increment or decrement by (always positive).
cb2afeb3 8275 This cannot be deduced from VALUE.
32131a9c 8276
cb2afeb3
R
8277 Return the instruction that stores into RELOADREG. */
8278
8279static rtx
8280inc_for_reload (reloadreg, in, value, inc_amount)
32131a9c 8281 rtx reloadreg;
cb2afeb3 8282 rtx in, value;
32131a9c 8283 int inc_amount;
32131a9c
RK
8284{
8285 /* REG or MEM to be copied and incremented. */
8286 rtx incloc = XEXP (value, 0);
8287 /* Nonzero if increment after copying. */
8288 int post = (GET_CODE (value) == POST_DEC || GET_CODE (value) == POST_INC);
546b63fb 8289 rtx last;
0009eff2
RK
8290 rtx inc;
8291 rtx add_insn;
8292 int code;
cb2afeb3
R
8293 rtx store;
8294 rtx real_in = in == value ? XEXP (in, 0) : in;
32131a9c
RK
8295
8296 /* No hard register is equivalent to this register after
8297 inc/dec operation. If REG_LAST_RELOAD_REG were non-zero,
8298 we could inc/dec that register as well (maybe even using it for
8299 the source), but I'm not sure it's worth worrying about. */
8300 if (GET_CODE (incloc) == REG)
8301 reg_last_reload_reg[REGNO (incloc)] = 0;
8302
8303 if (GET_CODE (value) == PRE_DEC || GET_CODE (value) == POST_DEC)
8304 inc_amount = - inc_amount;
8305
fb3821f7 8306 inc = GEN_INT (inc_amount);
0009eff2
RK
8307
8308 /* If this is post-increment, first copy the location to the reload reg. */
cb2afeb3
R
8309 if (post && real_in != reloadreg)
8310 emit_insn (gen_move_insn (reloadreg, real_in));
0009eff2 8311
cb2afeb3
R
8312 if (in == value)
8313 {
8314 /* See if we can directly increment INCLOC. Use a method similar to
8315 that in gen_reload. */
0009eff2 8316
cb2afeb3
R
8317 last = get_last_insn ();
8318 add_insn = emit_insn (gen_rtx_SET (VOIDmode, incloc,
8319 gen_rtx_PLUS (GET_MODE (incloc),
8320 incloc, inc)));
05d10675 8321
cb2afeb3
R
8322 code = recog_memoized (add_insn);
8323 if (code >= 0)
32131a9c 8324 {
0eadeb15
BS
8325 extract_insn (add_insn);
8326 if (constrain_operands (1))
cb2afeb3
R
8327 {
8328 /* If this is a pre-increment and we have incremented the value
8329 where it lives, copy the incremented value to RELOADREG to
8330 be used as an address. */
0009eff2 8331
cb2afeb3
R
8332 if (! post)
8333 emit_insn (gen_move_insn (reloadreg, incloc));
546b63fb 8334
cb2afeb3
R
8335 return add_insn;
8336 }
32131a9c 8337 }
cb2afeb3 8338 delete_insns_since (last);
32131a9c 8339 }
0009eff2 8340
0009eff2
RK
8341 /* If couldn't do the increment directly, must increment in RELOADREG.
8342 The way we do this depends on whether this is pre- or post-increment.
8343 For pre-increment, copy INCLOC to the reload register, increment it
8344 there, then save back. */
8345
8346 if (! post)
8347 {
cb2afeb3
R
8348 if (in != reloadreg)
8349 emit_insn (gen_move_insn (reloadreg, real_in));
546b63fb 8350 emit_insn (gen_add2_insn (reloadreg, inc));
cb2afeb3 8351 store = emit_insn (gen_move_insn (incloc, reloadreg));
0009eff2 8352 }
32131a9c
RK
8353 else
8354 {
0009eff2
RK
8355 /* Postincrement.
8356 Because this might be a jump insn or a compare, and because RELOADREG
8357 may not be available after the insn in an input reload, we must do
8358 the incrementation before the insn being reloaded for.
8359
cb2afeb3 8360 We have already copied IN to RELOADREG. Increment the copy in
0009eff2
RK
8361 RELOADREG, save that back, then decrement RELOADREG so it has
8362 the original value. */
8363
546b63fb 8364 emit_insn (gen_add2_insn (reloadreg, inc));
cb2afeb3 8365 store = emit_insn (gen_move_insn (incloc, reloadreg));
546b63fb 8366 emit_insn (gen_add2_insn (reloadreg, GEN_INT (-inc_amount)));
32131a9c 8367 }
0009eff2 8368
cb2afeb3 8369 return store;
32131a9c
RK
8370}
8371\f
8372/* Return 1 if we are certain that the constraint-string STRING allows
8373 the hard register REG. Return 0 if we can't be sure of this. */
8374
8375static int
8376constraint_accepts_reg_p (string, reg)
9b3142b3 8377 const char *string;
32131a9c
RK
8378 rtx reg;
8379{
8380 int value = 0;
8381 int regno = true_regnum (reg);
8382 int c;
8383
8384 /* Initialize for first alternative. */
8385 value = 0;
8386 /* Check that each alternative contains `g' or `r'. */
8387 while (1)
8388 switch (c = *string++)
8389 {
8390 case 0:
8391 /* If an alternative lacks `g' or `r', we lose. */
8392 return value;
8393 case ',':
8394 /* If an alternative lacks `g' or `r', we lose. */
8395 if (value == 0)
8396 return 0;
8397 /* Initialize for next alternative. */
8398 value = 0;
8399 break;
8400 case 'g':
8401 case 'r':
8402 /* Any general reg wins for this alternative. */
8403 if (TEST_HARD_REG_BIT (reg_class_contents[(int) GENERAL_REGS], regno))
8404 value = 1;
8405 break;
8406 default:
8407 /* Any reg in specified class wins for this alternative. */
8408 {
0009eff2 8409 enum reg_class class = REG_CLASS_FROM_LETTER (c);
32131a9c 8410
0009eff2 8411 if (TEST_HARD_REG_BIT (reg_class_contents[(int) class], regno))
32131a9c
RK
8412 value = 1;
8413 }
8414 }
8415}
8416\f
d445b551
RK
8417/* Return the number of places FIND appears within X, but don't count
8418 an occurrence if some SET_DEST is FIND. */
32131a9c 8419
184bb750 8420int
32131a9c
RK
8421count_occurrences (x, find)
8422 register rtx x, find;
8423{
8424 register int i, j;
8425 register enum rtx_code code;
6f7d635c 8426 register const char *format_ptr;
32131a9c
RK
8427 int count;
8428
8429 if (x == find)
8430 return 1;
8431 if (x == 0)
8432 return 0;
8433
8434 code = GET_CODE (x);
8435
8436 switch (code)
8437 {
8438 case REG:
8439 case QUEUED:
8440 case CONST_INT:
8441 case CONST_DOUBLE:
8442 case SYMBOL_REF:
8443 case CODE_LABEL:
8444 case PC:
8445 case CC0:
8446 return 0;
d445b551 8447
cb2afeb3
R
8448 case MEM:
8449 if (GET_CODE (find) == MEM && rtx_equal_p (x, find))
8450 return 1;
8451 break;
d445b551
RK
8452 case SET:
8453 if (SET_DEST (x) == find)
8454 return count_occurrences (SET_SRC (x), find);
8455 break;
05d10675 8456
e9a25f70
JL
8457 default:
8458 break;
32131a9c
RK
8459 }
8460
8461 format_ptr = GET_RTX_FORMAT (code);
8462 count = 0;
8463
8464 for (i = 0; i < GET_RTX_LENGTH (code); i++)
8465 {
8466 switch (*format_ptr++)
8467 {
8468 case 'e':
8469 count += count_occurrences (XEXP (x, i), find);
8470 break;
8471
8472 case 'E':
8473 if (XVEC (x, i) != NULL)
8474 {
8475 for (j = 0; j < XVECLEN (x, i); j++)
8476 count += count_occurrences (XVECEXP (x, i, j), find);
8477 }
8478 break;
8479 }
8480 }
8481 return count;
8482}
2a9fb548
ILT
8483\f
8484/* This array holds values which are equivalent to a hard register
8485 during reload_cse_regs. Each array element is an EXPR_LIST of
8486 values. Each time a hard register is set, we set the corresponding
8487 array element to the value. Each time a hard register is copied
8488 into memory, we add the memory location to the corresponding array
8489 element. We don't store values or memory addresses with side
8490 effects in this array.
8491
8492 If the value is a CONST_INT, then the mode of the containing
8493 EXPR_LIST is the mode in which that CONST_INT was referenced.
8494
8495 We sometimes clobber a specific entry in a list. In that case, we
8496 just set XEXP (list-entry, 0) to 0. */
8497
8498static rtx *reg_values;
8499
ba325eba
ILT
8500/* This is a preallocated REG rtx which we use as a temporary in
8501 reload_cse_invalidate_regno, so that we don't need to allocate a
8502 new one each time through a loop in that function. */
8503
8504static rtx invalidate_regno_rtx;
8505
2a9fb548
ILT
8506/* Invalidate any entries in reg_values which depend on REGNO,
8507 including those for REGNO itself. This is called if REGNO is
8508 changing. If CLOBBER is true, then always forget anything we
8509 currently know about REGNO. MODE is the mode of the assignment to
8510 REGNO, which is used to determine how many hard registers are being
8511 changed. If MODE is VOIDmode, then only REGNO is being changed;
8512 this is used when invalidating call clobbered registers across a
8513 call. */
8514
8515static void
8516reload_cse_invalidate_regno (regno, mode, clobber)
8517 int regno;
8518 enum machine_mode mode;
8519 int clobber;
8520{
8521 int endregno;
8522 register int i;
8523
8524 /* Our callers don't always go through true_regnum; we may see a
8525 pseudo-register here from a CLOBBER or the like. We probably
8526 won't ever see a pseudo-register that has a real register number,
8527 for we check anyhow for safety. */
8528 if (regno >= FIRST_PSEUDO_REGISTER)
8529 regno = reg_renumber[regno];
8530 if (regno < 0)
8531 return;
8532
8533 if (mode == VOIDmode)
8534 endregno = regno + 1;
8535 else
8536 endregno = regno + HARD_REGNO_NREGS (regno, mode);
8537
8538 if (clobber)
8539 for (i = regno; i < endregno; i++)
8540 reg_values[i] = 0;
8541
8542 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
8543 {
8544 rtx x;
8545
8546 for (x = reg_values[i]; x; x = XEXP (x, 1))
8547 {
8548 if (XEXP (x, 0) != 0
9e148ceb 8549 && refers_to_regno_p (regno, endregno, XEXP (x, 0), NULL_PTR))
2a9fb548
ILT
8550 {
8551 /* If this is the only entry on the list, clear
05d10675
BS
8552 reg_values[i]. Otherwise, just clear this entry on
8553 the list. */
2a9fb548
ILT
8554 if (XEXP (x, 1) == 0 && x == reg_values[i])
8555 {
8556 reg_values[i] = 0;
8557 break;
8558 }
8559 XEXP (x, 0) = 0;
8560 }
8561 }
8562 }
ba325eba
ILT
8563
8564 /* We must look at earlier registers, in case REGNO is part of a
8565 multi word value but is not the first register. If an earlier
8566 register has a value in a mode which overlaps REGNO, then we must
8567 invalidate that earlier register. Note that we do not need to
8568 check REGNO or later registers (we must not check REGNO itself,
8569 because we would incorrectly conclude that there was a conflict). */
8570
8571 for (i = 0; i < regno; i++)
8572 {
8573 rtx x;
8574
8575 for (x = reg_values[i]; x; x = XEXP (x, 1))
8576 {
8577 if (XEXP (x, 0) != 0)
8578 {
dbd7556e 8579 PUT_MODE (invalidate_regno_rtx, GET_MODE (x));
ba325eba
ILT
8580 REGNO (invalidate_regno_rtx) = i;
8581 if (refers_to_regno_p (regno, endregno, invalidate_regno_rtx,
8582 NULL_PTR))
8583 {
8584 reload_cse_invalidate_regno (i, VOIDmode, 1);
8585 break;
8586 }
8587 }
8588 }
8589 }
2a9fb548
ILT
8590}
8591
866aa3b6
DE
8592/* The memory at address MEM_BASE is being changed.
8593 Return whether this change will invalidate VAL. */
2a9fb548
ILT
8594
8595static int
cbfc3ad3 8596reload_cse_mem_conflict_p (mem_base, val)
2a9fb548 8597 rtx mem_base;
2a9fb548
ILT
8598 rtx val;
8599{
8600 enum rtx_code code;
6f7d635c 8601 const char *fmt;
2a9fb548
ILT
8602 int i;
8603
8604 code = GET_CODE (val);
8605 switch (code)
8606 {
8607 /* Get rid of a few simple cases quickly. */
8608 case REG:
2a9fb548
ILT
8609 case PC:
8610 case CC0:
8611 case SCRATCH:
8612 case CONST:
8613 case CONST_INT:
8614 case CONST_DOUBLE:
8615 case SYMBOL_REF:
8616 case LABEL_REF:
8617 return 0;
8618
8619 case MEM:
866aa3b6
DE
8620 if (GET_MODE (mem_base) == BLKmode
8621 || GET_MODE (val) == BLKmode)
8622 return 1;
e9a25f70
JL
8623 if (anti_dependence (val, mem_base))
8624 return 1;
8625 /* The address may contain nested MEMs. */
8626 break;
2a9fb548
ILT
8627
8628 default:
8629 break;
8630 }
8631
8632 fmt = GET_RTX_FORMAT (code);
8633
8634 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8635 {
8636 if (fmt[i] == 'e')
8637 {
cbfc3ad3 8638 if (reload_cse_mem_conflict_p (mem_base, XEXP (val, i)))
2a9fb548
ILT
8639 return 1;
8640 }
8641 else if (fmt[i] == 'E')
8642 {
8643 int j;
8644
8645 for (j = 0; j < XVECLEN (val, i); j++)
cbfc3ad3 8646 if (reload_cse_mem_conflict_p (mem_base, XVECEXP (val, i, j)))
2a9fb548
ILT
8647 return 1;
8648 }
8649 }
8650
8651 return 0;
8652}
8653
8654/* Invalidate any entries in reg_values which are changed because of a
8655 store to MEM_RTX. If this is called because of a non-const call
8656 instruction, MEM_RTX is (mem:BLK const0_rtx). */
8657
8658static void
8659reload_cse_invalidate_mem (mem_rtx)
8660 rtx mem_rtx;
8661{
8662 register int i;
2a9fb548
ILT
8663
8664 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
8665 {
8666 rtx x;
8667
8668 for (x = reg_values[i]; x; x = XEXP (x, 1))
8669 {
8670 if (XEXP (x, 0) != 0
cbfc3ad3 8671 && reload_cse_mem_conflict_p (mem_rtx, XEXP (x, 0)))
2a9fb548
ILT
8672 {
8673 /* If this is the only entry on the list, clear
05d10675
BS
8674 reg_values[i]. Otherwise, just clear this entry on
8675 the list. */
2a9fb548
ILT
8676 if (XEXP (x, 1) == 0 && x == reg_values[i])
8677 {
8678 reg_values[i] = 0;
8679 break;
8680 }
8681 XEXP (x, 0) = 0;
8682 }
8683 }
8684 }
8685}
8686
8687/* Invalidate DEST, which is being assigned to or clobbered. The
8688 second parameter exists so that this function can be passed to
8689 note_stores; it is ignored. */
8690
8691static void
84832317 8692reload_cse_invalidate_rtx (dest, ignore, data)
2a9fb548 8693 rtx dest;
487a6e06 8694 rtx ignore ATTRIBUTE_UNUSED;
84832317 8695 void *data ATTRIBUTE_UNUSED;
2a9fb548
ILT
8696{
8697 while (GET_CODE (dest) == STRICT_LOW_PART
8698 || GET_CODE (dest) == SIGN_EXTRACT
8699 || GET_CODE (dest) == ZERO_EXTRACT
8700 || GET_CODE (dest) == SUBREG)
8701 dest = XEXP (dest, 0);
8702
8703 if (GET_CODE (dest) == REG)
8704 reload_cse_invalidate_regno (REGNO (dest), GET_MODE (dest), 1);
8705 else if (GET_CODE (dest) == MEM)
8706 reload_cse_invalidate_mem (dest);
8707}
8708
8709/* Do a very simple CSE pass over the hard registers.
8710
8711 This function detects no-op moves where we happened to assign two
8712 different pseudo-registers to the same hard register, and then
8713 copied one to the other. Reload will generate a useless
8714 instruction copying a register to itself.
8715
8716 This function also detects cases where we load a value from memory
8717 into two different registers, and (if memory is more expensive than
8718 registers) changes it to simply copy the first register into the
05d10675 8719 second register.
e9a25f70
JL
8720
8721 Another optimization is performed that scans the operands of each
8722 instruction to see whether the value is already available in a
8723 hard register. It then replaces the operand with the hard register
8724 if possible, much like an optional reload would. */
2a9fb548 8725
5adf6da0
R
8726static void
8727reload_cse_regs_1 (first)
2a9fb548
ILT
8728 rtx first;
8729{
8730 char *firstobj;
8731 rtx callmem;
8732 register int i;
8733 rtx insn;
8734
cbfc3ad3
RK
8735 init_alias_analysis ();
8736
2a9fb548 8737 reg_values = (rtx *) alloca (FIRST_PSEUDO_REGISTER * sizeof (rtx));
e016950d 8738 bzero ((char *)reg_values, FIRST_PSEUDO_REGISTER * sizeof (rtx));
2a9fb548
ILT
8739
8740 /* Create our EXPR_LIST structures on reload_obstack, so that we can
8741 free them when we are done. */
8742 push_obstacks (&reload_obstack, &reload_obstack);
8743 firstobj = (char *) obstack_alloc (&reload_obstack, 0);
8744
8745 /* We pass this to reload_cse_invalidate_mem to invalidate all of
8746 memory for a non-const call instruction. */
38a448ca 8747 callmem = gen_rtx_MEM (BLKmode, const0_rtx);
2a9fb548 8748
ba325eba
ILT
8749 /* This is used in reload_cse_invalidate_regno to avoid consing a
8750 new REG in a loop in that function. */
38a448ca 8751 invalidate_regno_rtx = gen_rtx_REG (VOIDmode, 0);
ba325eba 8752
2a9fb548
ILT
8753 for (insn = first; insn; insn = NEXT_INSN (insn))
8754 {
8755 rtx body;
8756
8757 if (GET_CODE (insn) == CODE_LABEL)
8758 {
8759 /* Forget all the register values at a code label. We don't
05d10675 8760 try to do anything clever around jumps. */
2a9fb548
ILT
8761 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
8762 reg_values[i] = 0;
8763
8764 continue;
8765 }
8766
05d10675 8767#ifdef NON_SAVING_SETJMP
2a9fb548
ILT
8768 if (NON_SAVING_SETJMP && GET_CODE (insn) == NOTE
8769 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_SETJMP)
8770 {
8771 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
8772 reg_values[i] = 0;
8773
8774 continue;
8775 }
8776#endif
8777
8778 if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
8779 continue;
8780
8781 /* If this is a call instruction, forget anything stored in a
8782 call clobbered register, or, if this is not a const call, in
8783 memory. */
8784 if (GET_CODE (insn) == CALL_INSN)
8785 {
8786 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
8787 if (call_used_regs[i])
8788 reload_cse_invalidate_regno (i, VOIDmode, 1);
8789
8790 if (! CONST_CALL_P (insn))
8791 reload_cse_invalidate_mem (callmem);
8792 }
8793
05d10675 8794
01e752d3
JL
8795 /* Forget all the register values at a volatile asm. */
8796 if (GET_CODE (insn) == INSN
8797 && GET_CODE (PATTERN (insn)) == ASM_OPERANDS
8798 && MEM_VOLATILE_P (PATTERN (insn)))
8799 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
8800 reg_values[i] = 0;
8801
2a9fb548
ILT
8802 body = PATTERN (insn);
8803 if (GET_CODE (body) == SET)
8804 {
e9a25f70 8805 int count = 0;
31418d35 8806 if (reload_cse_noop_set_p (body, insn))
2a9fb548 8807 {
54e89d25
R
8808 /* If this sets the return value of the function, we must keep
8809 a USE around, in case this is in a different basic block
8810 than the final USE. Otherwise, we could loose important
8811 register lifeness information on SMALL_REGISTER_CLASSES
8812 machines, where return registers might be used as spills:
8813 subsequent passes assume that spill registers are dead at
8814 the end of a basic block. */
8815 if (REG_FUNCTION_VALUE_P (SET_DEST (body)))
8816 {
8817 pop_obstacks ();
8818 PATTERN (insn) = gen_rtx_USE (VOIDmode, SET_DEST (body));
8819 INSN_CODE (insn) = -1;
8820 REG_NOTES (insn) = NULL_RTX;
8821 push_obstacks (&reload_obstack, &reload_obstack);
8822 }
8823 else
8824 {
8825 PUT_CODE (insn, NOTE);
8826 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
8827 NOTE_SOURCE_FILE (insn) = 0;
8828 }
2a9fb548
ILT
8829
8830 /* We're done with this insn. */
8831 continue;
8832 }
8833
e9a25f70 8834 /* It's not a no-op, but we can try to simplify it. */
e9a25f70
JL
8835 count += reload_cse_simplify_set (body, insn);
8836
6764d250
BS
8837 if (count > 0)
8838 apply_change_group ();
121315ea 8839 else
6764d250 8840 reload_cse_simplify_operands (insn);
05d10675 8841
2a9fb548
ILT
8842 reload_cse_record_set (body, body);
8843 }
8844 else if (GET_CODE (body) == PARALLEL)
8845 {
e9a25f70 8846 int count = 0;
54e89d25 8847 rtx value = NULL_RTX;
2a9fb548
ILT
8848
8849 /* If every action in a PARALLEL is a noop, we can delete
05d10675 8850 the entire PARALLEL. */
2a9fb548 8851 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
54e89d25
R
8852 {
8853 rtx part = XVECEXP (body, 0, i);
8854 if (GET_CODE (part) == SET)
8855 {
8856 if (! reload_cse_noop_set_p (part, insn))
8857 break;
8858 if (REG_FUNCTION_VALUE_P (SET_DEST (part)))
8859 {
8860 if (value)
8861 break;
8862 value = SET_DEST (part);
8863 }
8864 }
8865 else if (GET_CODE (part) != CLOBBER)
8866 break;
8867 }
2a9fb548
ILT
8868 if (i < 0)
8869 {
54e89d25
R
8870 if (value)
8871 {
8872 pop_obstacks ();
8873 PATTERN (insn) = gen_rtx_USE (VOIDmode, value);
8874 INSN_CODE (insn) = -1;
8875 REG_NOTES (insn) = NULL_RTX;
8876 push_obstacks (&reload_obstack, &reload_obstack);
8877 }
8878 else
8879 {
8880 PUT_CODE (insn, NOTE);
8881 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
8882 NOTE_SOURCE_FILE (insn) = 0;
8883 }
2a9fb548
ILT
8884
8885 /* We're done with this insn. */
8886 continue;
8887 }
05d10675 8888
e9a25f70 8889 /* It's not a no-op, but we can try to simplify it. */
e9a25f70
JL
8890 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
8891 if (GET_CODE (XVECEXP (body, 0, i)) == SET)
8892 count += reload_cse_simplify_set (XVECEXP (body, 0, i), insn);
8893
6764d250
BS
8894 if (count > 0)
8895 apply_change_group ();
121315ea 8896 else
6764d250 8897 reload_cse_simplify_operands (insn);
2a9fb548
ILT
8898
8899 /* Look through the PARALLEL and record the values being
05d10675 8900 set, if possible. Also handle any CLOBBERs. */
2a9fb548
ILT
8901 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
8902 {
8903 rtx x = XVECEXP (body, 0, i);
8904
8905 if (GET_CODE (x) == SET)
8906 reload_cse_record_set (x, body);
8907 else
84832317 8908 note_stores (x, reload_cse_invalidate_rtx, NULL);
2a9fb548
ILT
8909 }
8910 }
8911 else
84832317 8912 note_stores (body, reload_cse_invalidate_rtx, NULL);
2a9fb548
ILT
8913
8914#ifdef AUTO_INC_DEC
8915 /* Clobber any registers which appear in REG_INC notes. We
05d10675
BS
8916 could keep track of the changes to their values, but it is
8917 unlikely to help. */
2a9fb548
ILT
8918 {
8919 rtx x;
8920
8921 for (x = REG_NOTES (insn); x; x = XEXP (x, 1))
8922 if (REG_NOTE_KIND (x) == REG_INC)
84832317 8923 reload_cse_invalidate_rtx (XEXP (x, 0), NULL_RTX, NULL);
2a9fb548
ILT
8924 }
8925#endif
8926
8927 /* Look for any CLOBBERs in CALL_INSN_FUNCTION_USAGE, but only
05d10675 8928 after we have processed the insn. */
2a9fb548
ILT
8929 if (GET_CODE (insn) == CALL_INSN)
8930 {
8931 rtx x;
8932
8933 for (x = CALL_INSN_FUNCTION_USAGE (insn); x; x = XEXP (x, 1))
8934 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
84832317
MM
8935 reload_cse_invalidate_rtx (XEXP (XEXP (x, 0), 0), NULL_RTX,
8936 NULL);
2a9fb548
ILT
8937 }
8938 }
8939
e05e2395
MM
8940 /* Clean up. */
8941 end_alias_analysis ();
8942
2a9fb548
ILT
8943 /* Free all the temporary structures we created, and go back to the
8944 regular obstacks. */
8945 obstack_free (&reload_obstack, firstobj);
8946 pop_obstacks ();
8947}
8948
5adf6da0
R
8949/* Call cse / combine like post-reload optimization phases.
8950 FIRST is the first instruction. */
8951void
8952reload_cse_regs (first)
8953 rtx first;
8954{
8955 reload_cse_regs_1 (first);
8956 reload_combine ();
8957 reload_cse_move2add (first);
8958 if (flag_expensive_optimizations)
8959 reload_cse_regs_1 (first);
8960}
8961
2a9fb548
ILT
8962/* Return whether the values known for REGNO are equal to VAL. MODE
8963 is the mode of the object that VAL is being copied to; this matters
8964 if VAL is a CONST_INT. */
8965
8966static int
8967reload_cse_regno_equal_p (regno, val, mode)
8968 int regno;
8969 rtx val;
8970 enum machine_mode mode;
8971{
8972 rtx x;
8973
8974 if (val == 0)
8975 return 0;
8976
8977 for (x = reg_values[regno]; x; x = XEXP (x, 1))
8978 if (XEXP (x, 0) != 0
8979 && rtx_equal_p (XEXP (x, 0), val)
bb173ade
RK
8980 && (! flag_float_store || GET_CODE (XEXP (x, 0)) != MEM
8981 || GET_MODE_CLASS (GET_MODE (x)) != MODE_FLOAT)
2a9fb548
ILT
8982 && (GET_CODE (val) != CONST_INT
8983 || mode == GET_MODE (x)
8984 || (GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (x))
6e848450
RK
8985 /* On a big endian machine if the value spans more than
8986 one register then this register holds the high part of
8987 it and we can't use it.
8988
8989 ??? We should also compare with the high part of the
8990 value. */
8991 && !(WORDS_BIG_ENDIAN
8992 && HARD_REGNO_NREGS (regno, GET_MODE (x)) > 1)
2a9fb548
ILT
8993 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
8994 GET_MODE_BITSIZE (GET_MODE (x))))))
8995 return 1;
8996
8997 return 0;
8998}
8999
31418d35
ILT
9000/* See whether a single set is a noop. SET is the set instruction we
9001 are should check, and INSN is the instruction from which it came. */
2a9fb548
ILT
9002
9003static int
31418d35 9004reload_cse_noop_set_p (set, insn)
2a9fb548 9005 rtx set;
6a651371 9006 rtx insn ATTRIBUTE_UNUSED;
2a9fb548
ILT
9007{
9008 rtx src, dest;
9009 enum machine_mode dest_mode;
9010 int dreg, sreg;
31418d35 9011 int ret;
2a9fb548
ILT
9012
9013 src = SET_SRC (set);
9014 dest = SET_DEST (set);
9015 dest_mode = GET_MODE (dest);
9016
9017 if (side_effects_p (src))
9018 return 0;
9019
9020 dreg = true_regnum (dest);
9021 sreg = true_regnum (src);
9022
31418d35
ILT
9023 /* Check for setting a register to itself. In this case, we don't
9024 have to worry about REG_DEAD notes. */
9025 if (dreg >= 0 && dreg == sreg)
9026 return 1;
9027
9028 ret = 0;
2a9fb548
ILT
9029 if (dreg >= 0)
9030 {
9031 /* Check for setting a register to itself. */
9032 if (dreg == sreg)
31418d35 9033 ret = 1;
2a9fb548
ILT
9034
9035 /* Check for setting a register to a value which we already know
05d10675 9036 is in the register. */
31418d35
ILT
9037 else if (reload_cse_regno_equal_p (dreg, src, dest_mode))
9038 ret = 1;
2a9fb548
ILT
9039
9040 /* Check for setting a register DREG to another register SREG
05d10675 9041 where SREG is equal to a value which is already in DREG. */
31418d35 9042 else if (sreg >= 0)
2a9fb548
ILT
9043 {
9044 rtx x;
9045
9046 for (x = reg_values[sreg]; x; x = XEXP (x, 1))
31418d35 9047 {
99c2b71f
ILT
9048 rtx tmp;
9049
9050 if (XEXP (x, 0) == 0)
9051 continue;
9052
9053 if (dest_mode == GET_MODE (x))
9054 tmp = XEXP (x, 0);
9055 else if (GET_MODE_BITSIZE (dest_mode)
9056 < GET_MODE_BITSIZE (GET_MODE (x)))
9057 tmp = gen_lowpart_common (dest_mode, XEXP (x, 0));
9058 else
9059 continue;
9060
9061 if (tmp
9062 && reload_cse_regno_equal_p (dreg, tmp, dest_mode))
31418d35
ILT
9063 {
9064 ret = 1;
9065 break;
9066 }
9067 }
2a9fb548
ILT
9068 }
9069 }
9070 else if (GET_CODE (dest) == MEM)
9071 {
9072 /* Check for storing a register to memory when we know that the
05d10675 9073 register is equivalent to the memory location. */
2a9fb548
ILT
9074 if (sreg >= 0
9075 && reload_cse_regno_equal_p (sreg, dest, dest_mode)
9076 && ! side_effects_p (dest))
31418d35 9077 ret = 1;
2a9fb548
ILT
9078 }
9079
31418d35 9080 return ret;
2a9fb548
ILT
9081}
9082
9083/* Try to simplify a single SET instruction. SET is the set pattern.
e9a25f70
JL
9084 INSN is the instruction it came from.
9085 This function only handles one case: if we set a register to a value
9086 which is not a register, we try to find that value in some other register
9087 and change the set into a register copy. */
2a9fb548 9088
e9a25f70 9089static int
2a9fb548
ILT
9090reload_cse_simplify_set (set, insn)
9091 rtx set;
9092 rtx insn;
9093{
9094 int dreg;
9095 rtx src;
9096 enum machine_mode dest_mode;
9097 enum reg_class dclass;
9098 register int i;
9099
2a9fb548
ILT
9100 dreg = true_regnum (SET_DEST (set));
9101 if (dreg < 0)
e9a25f70 9102 return 0;
2a9fb548
ILT
9103
9104 src = SET_SRC (set);
9105 if (side_effects_p (src) || true_regnum (src) >= 0)
e9a25f70 9106 return 0;
2a9fb548 9107
cbd5b9a2
KR
9108 dclass = REGNO_REG_CLASS (dreg);
9109
33ab8de0 9110 /* If memory loads are cheaper than register copies, don't change them. */
cbd5b9a2
KR
9111 if (GET_CODE (src) == MEM
9112 && MEMORY_MOVE_COST (GET_MODE (src), dclass, 1) < 2)
e9a25f70 9113 return 0;
2a9fb548 9114
0254c561
JC
9115 /* If the constant is cheaper than a register, don't change it. */
9116 if (CONSTANT_P (src)
9117 && rtx_cost (src, SET) < 2)
9118 return 0;
9119
2a9fb548 9120 dest_mode = GET_MODE (SET_DEST (set));
2a9fb548
ILT
9121 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
9122 {
9123 if (i != dreg
9124 && REGISTER_MOVE_COST (REGNO_REG_CLASS (i), dclass) == 2
9125 && reload_cse_regno_equal_p (i, src, dest_mode))
9126 {
9127 int validated;
9128
9129 /* Pop back to the real obstacks while changing the insn. */
9130 pop_obstacks ();
9131
9132 validated = validate_change (insn, &SET_SRC (set),
38a448ca 9133 gen_rtx_REG (dest_mode, i), 1);
2a9fb548
ILT
9134
9135 /* Go back to the obstack we are using for temporary
05d10675 9136 storage. */
2a9fb548
ILT
9137 push_obstacks (&reload_obstack, &reload_obstack);
9138
6764d250
BS
9139 if (validated)
9140 return 1;
e9a25f70
JL
9141 }
9142 }
9143 return 0;
9144}
9145
9146/* Try to replace operands in INSN with equivalent values that are already
05d10675
BS
9147 in registers. This can be viewed as optional reloading.
9148
e9a25f70
JL
9149 For each non-register operand in the insn, see if any hard regs are
9150 known to be equivalent to that operand. Record the alternatives which
9151 can accept these hard registers. Among all alternatives, select the
9152 ones which are better or equal to the one currently matching, where
9153 "better" is in terms of '?' and '!' constraints. Among the remaining
9154 alternatives, select the one which replaces most operands with
9155 hard registers. */
9156
9157static int
9158reload_cse_simplify_operands (insn)
9159 rtx insn;
9160{
e9a25f70
JL
9161 int i,j;
9162
9b3142b3 9163 const char *constraints[MAX_RECOG_OPERANDS];
05d10675 9164
e9a25f70
JL
9165 /* Vector recording how bad an alternative is. */
9166 int *alternative_reject;
9167 /* Vector recording how many registers can be introduced by choosing
9168 this alternative. */
9169 int *alternative_nregs;
9170 /* Array of vectors recording, for each operand and each alternative,
9171 which hard register to substitute, or -1 if the operand should be
9172 left as it is. */
9173 int *op_alt_regno[MAX_RECOG_OPERANDS];
9174 /* Array of alternatives, sorted in order of decreasing desirability. */
9175 int *alternative_order;
0254c561 9176 rtx reg = gen_rtx_REG (VOIDmode, -1);
05d10675 9177
0eadeb15 9178 extract_insn (insn);
e9a25f70 9179
1ccbefce 9180 if (recog_data.n_alternatives == 0 || recog_data.n_operands == 0)
1d300e19 9181 return 0;
e9a25f70
JL
9182
9183 /* Figure out which alternative currently matches. */
0eadeb15 9184 if (! constrain_operands (1))
b8705408 9185 fatal_insn_not_found (insn);
e9a25f70 9186
1ccbefce
RH
9187 alternative_reject = (int *) alloca (recog_data.n_alternatives * sizeof (int));
9188 alternative_nregs = (int *) alloca (recog_data.n_alternatives * sizeof (int));
9189 alternative_order = (int *) alloca (recog_data.n_alternatives * sizeof (int));
9190 bzero ((char *)alternative_reject, recog_data.n_alternatives * sizeof (int));
9191 bzero ((char *)alternative_nregs, recog_data.n_alternatives * sizeof (int));
e9a25f70 9192
1ccbefce 9193 for (i = 0; i < recog_data.n_operands; i++)
e9a25f70
JL
9194 {
9195 enum machine_mode mode;
9196 int regno;
9b3142b3 9197 const char *p;
e9a25f70 9198
1ccbefce
RH
9199 op_alt_regno[i] = (int *) alloca (recog_data.n_alternatives * sizeof (int));
9200 for (j = 0; j < recog_data.n_alternatives; j++)
e9a25f70
JL
9201 op_alt_regno[i][j] = -1;
9202
1ccbefce
RH
9203 p = constraints[i] = recog_data.constraints[i];
9204 mode = recog_data.operand_mode[i];
e9a25f70
JL
9205
9206 /* Add the reject values for each alternative given by the constraints
9207 for this operand. */
9208 j = 0;
9209 while (*p != '\0')
9210 {
9211 char c = *p++;
9212 if (c == ',')
9213 j++;
9214 else if (c == '?')
9215 alternative_reject[j] += 3;
9216 else if (c == '!')
9217 alternative_reject[j] += 300;
9218 }
9219
9220 /* We won't change operands which are already registers. We
9221 also don't want to modify output operands. */
1ccbefce 9222 regno = true_regnum (recog_data.operand[i]);
e9a25f70
JL
9223 if (regno >= 0
9224 || constraints[i][0] == '='
9225 || constraints[i][0] == '+')
9226 continue;
9227
9228 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
9229 {
9230 int class = (int) NO_REGS;
9231
1ccbefce 9232 if (! reload_cse_regno_equal_p (regno, recog_data.operand[i], mode))
e9a25f70
JL
9233 continue;
9234
0254c561
JC
9235 REGNO (reg) = regno;
9236 PUT_MODE (reg, mode);
9237
e9a25f70
JL
9238 /* We found a register equal to this operand. Now look for all
9239 alternatives that can accept this register and have not been
9240 assigned a register they can use yet. */
9241 j = 0;
9242 p = constraints[i];
9243 for (;;)
31418d35 9244 {
e9a25f70 9245 char c = *p++;
05d10675 9246
e9a25f70 9247 switch (c)
31418d35 9248 {
e9a25f70
JL
9249 case '=': case '+': case '?':
9250 case '#': case '&': case '!':
05d10675 9251 case '*': case '%':
e9a25f70 9252 case '0': case '1': case '2': case '3': case '4':
c5c76735 9253 case '5': case '6': case '7': case '8': case '9':
e9a25f70
JL
9254 case 'm': case '<': case '>': case 'V': case 'o':
9255 case 'E': case 'F': case 'G': case 'H':
9256 case 's': case 'i': case 'n':
9257 case 'I': case 'J': case 'K': case 'L':
9258 case 'M': case 'N': case 'O': case 'P':
9259#ifdef EXTRA_CONSTRAINT
9260 case 'Q': case 'R': case 'S': case 'T': case 'U':
9261#endif
9262 case 'p': case 'X':
9263 /* These don't say anything we care about. */
9264 break;
9265
9266 case 'g': case 'r':
9267 class = reg_class_subunion[(int) class][(int) GENERAL_REGS];
9268 break;
9269
9270 default:
9271 class
e51712db 9272 = reg_class_subunion[(int) class][(int) REG_CLASS_FROM_LETTER ((unsigned char)c)];
e9a25f70 9273 break;
31418d35 9274
e9a25f70
JL
9275 case ',': case '\0':
9276 /* See if REGNO fits this alternative, and set it up as the
9277 replacement register if we don't have one for this
0254c561
JC
9278 alternative yet and the operand being replaced is not
9279 a cheap CONST_INT. */
e9a25f70 9280 if (op_alt_regno[i][j] == -1
0254c561 9281 && reg_fits_class_p (reg, class, 0, mode)
1ccbefce
RH
9282 && (GET_CODE (recog_data.operand[i]) != CONST_INT
9283 || (rtx_cost (recog_data.operand[i], SET)
9284 > rtx_cost (reg, SET))))
31418d35 9285 {
e9a25f70
JL
9286 alternative_nregs[j]++;
9287 op_alt_regno[i][j] = regno;
31418d35 9288 }
e9a25f70
JL
9289 j++;
9290 break;
31418d35
ILT
9291 }
9292
e9a25f70
JL
9293 if (c == '\0')
9294 break;
9295 }
9296 }
9297 }
9298
9299 /* Record all alternatives which are better or equal to the currently
9300 matching one in the alternative_order array. */
1ccbefce 9301 for (i = j = 0; i < recog_data.n_alternatives; i++)
e9a25f70
JL
9302 if (alternative_reject[i] <= alternative_reject[which_alternative])
9303 alternative_order[j++] = i;
1ccbefce 9304 recog_data.n_alternatives = j;
e9a25f70
JL
9305
9306 /* Sort it. Given a small number of alternatives, a dumb algorithm
9307 won't hurt too much. */
1ccbefce 9308 for (i = 0; i < recog_data.n_alternatives - 1; i++)
e9a25f70
JL
9309 {
9310 int best = i;
9311 int best_reject = alternative_reject[alternative_order[i]];
9312 int best_nregs = alternative_nregs[alternative_order[i]];
9313 int tmp;
9314
1ccbefce 9315 for (j = i + 1; j < recog_data.n_alternatives; j++)
e9a25f70
JL
9316 {
9317 int this_reject = alternative_reject[alternative_order[j]];
9318 int this_nregs = alternative_nregs[alternative_order[j]];
9319
9320 if (this_reject < best_reject
9321 || (this_reject == best_reject && this_nregs < best_nregs))
9322 {
9323 best = j;
9324 best_reject = this_reject;
9325 best_nregs = this_nregs;
31418d35 9326 }
2a9fb548 9327 }
05d10675 9328
e9a25f70
JL
9329 tmp = alternative_order[best];
9330 alternative_order[best] = alternative_order[i];
9331 alternative_order[i] = tmp;
9332 }
05d10675 9333
e9a25f70
JL
9334 /* Substitute the operands as determined by op_alt_regno for the best
9335 alternative. */
9336 j = alternative_order[0];
e9a25f70
JL
9337
9338 /* Pop back to the real obstacks while changing the insn. */
9339 pop_obstacks ();
9340
1ccbefce 9341 for (i = 0; i < recog_data.n_operands; i++)
e9a25f70 9342 {
1ccbefce 9343 enum machine_mode mode = recog_data.operand_mode[i];
e9a25f70
JL
9344 if (op_alt_regno[i][j] == -1)
9345 continue;
9346
1ccbefce 9347 validate_change (insn, recog_data.operand_loc[i],
38a448ca 9348 gen_rtx_REG (mode, op_alt_regno[i][j]), 1);
e9a25f70
JL
9349 }
9350
1ccbefce 9351 for (i = recog_data.n_dups - 1; i >= 0; i--)
e9a25f70 9352 {
1ccbefce
RH
9353 int op = recog_data.dup_num[i];
9354 enum machine_mode mode = recog_data.operand_mode[op];
e9a25f70
JL
9355
9356 if (op_alt_regno[op][j] == -1)
9357 continue;
9358
1ccbefce 9359 validate_change (insn, recog_data.dup_loc[i],
38a448ca 9360 gen_rtx_REG (mode, op_alt_regno[op][j]), 1);
2a9fb548 9361 }
e9a25f70
JL
9362
9363 /* Go back to the obstack we are using for temporary
9364 storage. */
9365 push_obstacks (&reload_obstack, &reload_obstack);
9366
9367 return apply_change_group ();
2a9fb548
ILT
9368}
9369
9370/* These two variables are used to pass information from
9371 reload_cse_record_set to reload_cse_check_clobber. */
9372
9373static int reload_cse_check_clobbered;
9374static rtx reload_cse_check_src;
9375
9376/* See if DEST overlaps with RELOAD_CSE_CHECK_SRC. If it does, set
9377 RELOAD_CSE_CHECK_CLOBBERED. This is called via note_stores. The
9378 second argument, which is passed by note_stores, is ignored. */
9379
9380static void
84832317 9381reload_cse_check_clobber (dest, ignore, data)
2a9fb548 9382 rtx dest;
487a6e06 9383 rtx ignore ATTRIBUTE_UNUSED;
84832317 9384 void *data ATTRIBUTE_UNUSED;
2a9fb548
ILT
9385{
9386 if (reg_overlap_mentioned_p (dest, reload_cse_check_src))
9387 reload_cse_check_clobbered = 1;
9388}
9389
9390/* Record the result of a SET instruction. SET is the set pattern.
9391 BODY is the pattern of the insn that it came from. */
9392
9393static void
9394reload_cse_record_set (set, body)
9395 rtx set;
9396 rtx body;
9397{
9e148ceb 9398 rtx dest, src, x;
2a9fb548
ILT
9399 int dreg, sreg;
9400 enum machine_mode dest_mode;
9401
9402 dest = SET_DEST (set);
9403 src = SET_SRC (set);
9404 dreg = true_regnum (dest);
9405 sreg = true_regnum (src);
9406 dest_mode = GET_MODE (dest);
9407
9e148ceb
ILT
9408 /* Some machines don't define AUTO_INC_DEC, but they still use push
9409 instructions. We need to catch that case here in order to
9410 invalidate the stack pointer correctly. Note that invalidating
9411 the stack pointer is different from invalidating DEST. */
9412 x = dest;
9413 while (GET_CODE (x) == SUBREG
9414 || GET_CODE (x) == ZERO_EXTRACT
9415 || GET_CODE (x) == SIGN_EXTRACT
9416 || GET_CODE (x) == STRICT_LOW_PART)
9417 x = XEXP (x, 0);
9418 if (push_operand (x, GET_MODE (x)))
9419 {
84832317
MM
9420 reload_cse_invalidate_rtx (stack_pointer_rtx, NULL_RTX, NULL);
9421 reload_cse_invalidate_rtx (dest, NULL_RTX, NULL);
9e148ceb
ILT
9422 return;
9423 }
9424
2a9fb548
ILT
9425 /* We can only handle an assignment to a register, or a store of a
9426 register to a memory location. For other cases, we just clobber
9427 the destination. We also have to just clobber if there are side
9428 effects in SRC or DEST. */
9429 if ((dreg < 0 && GET_CODE (dest) != MEM)
9430 || side_effects_p (src)
9431 || side_effects_p (dest))
9432 {
84832317 9433 reload_cse_invalidate_rtx (dest, NULL_RTX, NULL);
2a9fb548
ILT
9434 return;
9435 }
9436
9437#ifdef HAVE_cc0
9438 /* We don't try to handle values involving CC, because it's a pain
9439 to keep track of when they have to be invalidated. */
9440 if (reg_mentioned_p (cc0_rtx, src)
9441 || reg_mentioned_p (cc0_rtx, dest))
9442 {
84832317 9443 reload_cse_invalidate_rtx (dest, NULL_RTX, NULL);
2a9fb548
ILT
9444 return;
9445 }
9446#endif
9447
9448 /* If BODY is a PARALLEL, then we need to see whether the source of
9449 SET is clobbered by some other instruction in the PARALLEL. */
9450 if (GET_CODE (body) == PARALLEL)
9451 {
9452 int i;
9453
9454 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
9455 {
9456 rtx x;
9457
9458 x = XVECEXP (body, 0, i);
9459 if (x == set)
9460 continue;
9461
9462 reload_cse_check_clobbered = 0;
9463 reload_cse_check_src = src;
84832317 9464 note_stores (x, reload_cse_check_clobber, NULL);
2a9fb548
ILT
9465 if (reload_cse_check_clobbered)
9466 {
84832317 9467 reload_cse_invalidate_rtx (dest, NULL_RTX, NULL);
2a9fb548
ILT
9468 return;
9469 }
9470 }
9471 }
9472
9473 if (dreg >= 0)
9474 {
9475 int i;
9476
9477 /* This is an assignment to a register. Update the value we
05d10675 9478 have stored for the register. */
2a9fb548 9479 if (sreg >= 0)
ad578014
ILT
9480 {
9481 rtx x;
9482
9483 /* This is a copy from one register to another. Any values
9484 which were valid for SREG are now valid for DREG. If the
9485 mode changes, we use gen_lowpart_common to extract only
9486 the part of the value that is copied. */
9487 reg_values[dreg] = 0;
9488 for (x = reg_values[sreg]; x; x = XEXP (x, 1))
9489 {
9490 rtx tmp;
9491
9492 if (XEXP (x, 0) == 0)
9493 continue;
9494 if (dest_mode == GET_MODE (XEXP (x, 0)))
9495 tmp = XEXP (x, 0);
23e7786b 9496 else if (GET_MODE_BITSIZE (dest_mode)
05d10675 9497 > GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
23e7786b 9498 continue;
ad578014
ILT
9499 else
9500 tmp = gen_lowpart_common (dest_mode, XEXP (x, 0));
9501 if (tmp)
38a448ca
RH
9502 reg_values[dreg] = gen_rtx_EXPR_LIST (dest_mode, tmp,
9503 reg_values[dreg]);
05d10675 9504 }
ad578014 9505 }
2a9fb548 9506 else
38a448ca 9507 reg_values[dreg] = gen_rtx_EXPR_LIST (dest_mode, src, NULL_RTX);
2a9fb548
ILT
9508
9509 /* We've changed DREG, so invalidate any values held by other
05d10675 9510 registers that depend upon it. */
2a9fb548
ILT
9511 reload_cse_invalidate_regno (dreg, dest_mode, 0);
9512
9513 /* If this assignment changes more than one hard register,
05d10675 9514 forget anything we know about the others. */
2a9fb548
ILT
9515 for (i = 1; i < HARD_REGNO_NREGS (dreg, dest_mode); i++)
9516 reg_values[dreg + i] = 0;
9517 }
9518 else if (GET_CODE (dest) == MEM)
9519 {
9520 /* Invalidate conflicting memory locations. */
9521 reload_cse_invalidate_mem (dest);
9522
9523 /* If we're storing a register to memory, add DEST to the list
05d10675 9524 in REG_VALUES. */
2a9fb548 9525 if (sreg >= 0 && ! side_effects_p (dest))
38a448ca 9526 reg_values[sreg] = gen_rtx_EXPR_LIST (dest_mode, dest,
2a9fb548
ILT
9527 reg_values[sreg]);
9528 }
9529 else
9530 {
9531 /* We should have bailed out earlier. */
9532 abort ();
9533 }
9534}
5adf6da0
R
9535\f
9536/* If reload couldn't use reg+reg+offset addressing, try to use reg+reg
9537 addressing now.
9538 This code might also be useful when reload gave up on reg+reg addresssing
9539 because of clashes between the return register and INDEX_REG_CLASS. */
9540
9541/* The maximum number of uses of a register we can keep track of to
9542 replace them with reg+reg addressing. */
9543#define RELOAD_COMBINE_MAX_USES 6
9544
9545/* INSN is the insn where a register has ben used, and USEP points to the
9546 location of the register within the rtl. */
9547struct reg_use { rtx insn, *usep; };
9548
9549/* If the register is used in some unknown fashion, USE_INDEX is negative.
9550 If it is dead, USE_INDEX is RELOAD_COMBINE_MAX_USES, and STORE_RUID
9551 indicates where it becomes live again.
9552 Otherwise, USE_INDEX is the index of the last encountered use of the
9553 register (which is first among these we have seen since we scan backwards),
9554 OFFSET contains the constant offset that is added to the register in
9555 all encountered uses, and USE_RUID indicates the first encountered, i.e.
ed937a19
R
9556 last, of these uses.
9557 STORE_RUID is always meaningful if we only want to use a value in a
9558 register in a different place: it denotes the next insn in the insn
9559 stream (i.e. the last ecountered) that sets or clobbers the register. */
5adf6da0
R
9560static struct
9561 {
9562 struct reg_use reg_use[RELOAD_COMBINE_MAX_USES];
9563 int use_index;
9564 rtx offset;
9565 int store_ruid;
9566 int use_ruid;
9567 } reg_state[FIRST_PSEUDO_REGISTER];
9568
9569/* Reverse linear uid. This is increased in reload_combine while scanning
9570 the instructions from last to first. It is used to set last_label_ruid
9571 and the store_ruid / use_ruid fields in reg_state. */
9572static int reload_combine_ruid;
9573
b0634509
R
9574#define LABEL_LIVE(LABEL) \
9575 (label_live[CODE_LABEL_NUMBER (LABEL) - min_labelno])
9576
5adf6da0
R
9577static void
9578reload_combine ()
9579{
9580 rtx insn, set;
9581 int first_index_reg = 1, last_index_reg = 0;
9582 int i;
9583 int last_label_ruid;
b0634509
R
9584 int min_labelno, n_labels;
9585 HARD_REG_SET ever_live_at_start, *label_live;
5adf6da0
R
9586
9587 /* If reg+reg can be used in offsetable memory adresses, the main chunk of
9588 reload has already used it where appropriate, so there is no use in
9589 trying to generate it now. */
03acd8f8 9590 if (double_reg_address_ok && INDEX_REG_CLASS != NO_REGS)
5adf6da0
R
9591 return;
9592
9593 /* To avoid wasting too much time later searching for an index register,
9594 determine the minimum and maximum index register numbers. */
9595 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; --i)
9596 {
9597 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], i))
9598 {
9599 if (! last_index_reg)
9600 last_index_reg = i;
9601 first_index_reg = i;
9602 }
9603 }
9604 /* If no index register is available, we can quit now. */
9605 if (first_index_reg > last_index_reg)
9606 return;
9607
b0634509
R
9608 /* Set up LABEL_LIVE and EVER_LIVE_AT_START. The register lifetime
9609 information is a bit fuzzy immediately after reload, but it's
9610 still good enough to determine which registers are live at a jump
9611 destination. */
9612 min_labelno = get_first_label_num ();
9613 n_labels = max_label_num () - min_labelno;
9614 label_live = (HARD_REG_SET *) xmalloc (n_labels * sizeof (HARD_REG_SET));
9615 CLEAR_HARD_REG_SET (ever_live_at_start);
9616 for (i = n_basic_blocks - 1; i >= 0; i--)
9617 {
3b413743 9618 insn = BLOCK_HEAD (i);
b0634509
R
9619 if (GET_CODE (insn) == CODE_LABEL)
9620 {
9621 HARD_REG_SET live;
9622
e881bb1b
RH
9623 REG_SET_TO_HARD_REG_SET (live, BASIC_BLOCK (i)->global_live_at_start);
9624 compute_use_by_pseudos (&live, BASIC_BLOCK (i)->global_live_at_start);
b0634509
R
9625 COPY_HARD_REG_SET (LABEL_LIVE (insn), live);
9626 IOR_HARD_REG_SET (ever_live_at_start, live);
9627 }
9628 }
9629
5adf6da0
R
9630 /* Initialize last_label_ruid, reload_combine_ruid and reg_state. */
9631 last_label_ruid = reload_combine_ruid = 0;
9632 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; --i)
9633 {
ed937a19 9634 reg_state[i].store_ruid = reload_combine_ruid;
5adf6da0
R
9635 if (fixed_regs[i])
9636 reg_state[i].use_index = -1;
9637 else
ed937a19 9638 reg_state[i].use_index = RELOAD_COMBINE_MAX_USES;
5adf6da0
R
9639 }
9640
9641 for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
9642 {
9643 rtx note;
9644
9645 /* We cannot do our optimization across labels. Invalidating all the use
9646 information we have would be costly, so we just note where the label
05d10675 9647 is and then later disable any optimization that would cross it. */
5adf6da0
R
9648 if (GET_CODE (insn) == CODE_LABEL)
9649 last_label_ruid = reload_combine_ruid;
b0634509
R
9650 if (GET_CODE (insn) == BARRIER)
9651 {
9652 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; --i)
9653 reg_state[i].use_index = RELOAD_COMBINE_MAX_USES;
9654 }
5adf6da0
R
9655 if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
9656 continue;
9657 reload_combine_ruid++;
9658
9659 /* Look for (set (REGX) (CONST_INT))
eceef4c9
BS
9660 (set (REGX) (PLUS (REGX) (REGY)))
9661 ...
9662 ... (MEM (REGX)) ...
5adf6da0 9663 and convert it to
eceef4c9
BS
9664 (set (REGZ) (CONST_INT))
9665 ...
9666 ... (MEM (PLUS (REGZ) (REGY)))... .
5adf6da0
R
9667
9668 First, check that we have (set (REGX) (PLUS (REGX) (REGY)))
9669 and that we know all uses of REGX before it dies. */
2abbc1bd
R
9670 set = single_set (insn);
9671 if (set != NULL_RTX
5adf6da0
R
9672 && GET_CODE (SET_DEST (set)) == REG
9673 && (HARD_REGNO_NREGS (REGNO (SET_DEST (set)),
9674 GET_MODE (SET_DEST (set)))
9675 == 1)
9676 && GET_CODE (SET_SRC (set)) == PLUS
9677 && GET_CODE (XEXP (SET_SRC (set), 1)) == REG
9678 && rtx_equal_p (XEXP (SET_SRC (set), 0), SET_DEST (set))
9679 && last_label_ruid < reg_state[REGNO (SET_DEST (set))].use_ruid)
9680 {
9681 rtx reg = SET_DEST (set);
9682 rtx plus = SET_SRC (set);
9683 rtx base = XEXP (plus, 1);
9684 rtx prev = prev_nonnote_insn (insn);
9685 rtx prev_set = prev ? single_set (prev) : NULL_RTX;
9686 int regno = REGNO (reg);
6a651371 9687 rtx const_reg = NULL_RTX;
5adf6da0
R
9688 rtx reg_sum = NULL_RTX;
9689
9690 /* Now, we need an index register.
9691 We'll set index_reg to this index register, const_reg to the
9692 register that is to be loaded with the constant
9693 (denoted as REGZ in the substitution illustration above),
9694 and reg_sum to the register-register that we want to use to
9695 substitute uses of REG (typically in MEMs) with.
9696 First check REG and BASE for being index registers;
9697 we can use them even if they are not dead. */
9698 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], regno)
9699 || TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS],
9700 REGNO (base)))
9701 {
9702 const_reg = reg;
9703 reg_sum = plus;
9704 }
9705 else
9706 {
05d10675
BS
9707 /* Otherwise, look for a free index register. Since we have
9708 checked above that neiter REG nor BASE are index registers,
9709 if we find anything at all, it will be different from these
9710 two registers. */
9711 for (i = first_index_reg; i <= last_index_reg; i++)
5adf6da0
R
9712 {
9713 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], i)
9714 && reg_state[i].use_index == RELOAD_COMBINE_MAX_USES
9715 && reg_state[i].store_ruid <= reg_state[regno].use_ruid
9716 && HARD_REGNO_NREGS (i, GET_MODE (reg)) == 1)
9717 {
9718 rtx index_reg = gen_rtx_REG (GET_MODE (reg), i);
9719 const_reg = index_reg;
9720 reg_sum = gen_rtx_PLUS (GET_MODE (reg), index_reg, base);
9721 break;
9722 }
9723 }
9724 }
ed937a19
R
9725 /* Check that PREV_SET is indeed (set (REGX) (CONST_INT)) and that
9726 (REGY), i.e. BASE, is not clobbered before the last use we'll
9727 create. */
5adf6da0
R
9728 if (prev_set
9729 && GET_CODE (SET_SRC (prev_set)) == CONST_INT
9730 && rtx_equal_p (SET_DEST (prev_set), reg)
9731 && reg_state[regno].use_index >= 0
ed937a19 9732 && reg_state[REGNO (base)].store_ruid <= reg_state[regno].use_ruid
5adf6da0
R
9733 && reg_sum)
9734 {
9735 int i;
9736
9737 /* Change destination register and - if necessary - the
9738 constant value in PREV, the constant loading instruction. */
9739 validate_change (prev, &SET_DEST (prev_set), const_reg, 1);
9740 if (reg_state[regno].offset != const0_rtx)
9741 validate_change (prev,
9742 &SET_SRC (prev_set),
9743 GEN_INT (INTVAL (SET_SRC (prev_set))
9744 + INTVAL (reg_state[regno].offset)),
9745 1);
9746 /* Now for every use of REG that we have recorded, replace REG
9747 with REG_SUM. */
9748 for (i = reg_state[regno].use_index;
9749 i < RELOAD_COMBINE_MAX_USES; i++)
9750 validate_change (reg_state[regno].reg_use[i].insn,
9751 reg_state[regno].reg_use[i].usep,
9752 reg_sum, 1);
9753
9754 if (apply_change_group ())
9755 {
9756 rtx *np;
9757
9758 /* Delete the reg-reg addition. */
9759 PUT_CODE (insn, NOTE);
9760 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
9761 NOTE_SOURCE_FILE (insn) = 0;
9762
9763 if (reg_state[regno].offset != const0_rtx)
9764 {
9765 /* Previous REG_EQUIV / REG_EQUAL notes for PREV
9766 are now invalid. */
9767 for (np = &REG_NOTES (prev); *np; )
9768 {
9769 if (REG_NOTE_KIND (*np) == REG_EQUAL
9770 || REG_NOTE_KIND (*np) == REG_EQUIV)
9771 *np = XEXP (*np, 1);
9772 else
9773 np = &XEXP (*np, 1);
9774 }
9775 }
9776 reg_state[regno].use_index = RELOAD_COMBINE_MAX_USES;
9777 reg_state[REGNO (const_reg)].store_ruid = reload_combine_ruid;
9778 continue;
9779 }
9780 }
9781 }
84832317 9782 note_stores (PATTERN (insn), reload_combine_note_store, NULL);
5adf6da0
R
9783 if (GET_CODE (insn) == CALL_INSN)
9784 {
9785 rtx link;
9786
9787 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; --i)
9788 {
9789 if (call_used_regs[i])
9790 {
9791 reg_state[i].use_index = RELOAD_COMBINE_MAX_USES;
9792 reg_state[i].store_ruid = reload_combine_ruid;
9793 }
9794 }
9795 for (link = CALL_INSN_FUNCTION_USAGE (insn); link;
9796 link = XEXP (link, 1))
9797 {
9798 rtx use = XEXP (link, 0);
9799 int regno = REGNO (XEXP (use, 0));
9800 if (GET_CODE (use) == CLOBBER)
9801 {
9802 reg_state[regno].use_index = RELOAD_COMBINE_MAX_USES;
9803 reg_state[regno].store_ruid = reload_combine_ruid;
9804 }
9805 else
9806 reg_state[regno].use_index = -1;
9807 }
9808 }
b0634509 9809 if (GET_CODE (insn) == JUMP_INSN && GET_CODE (PATTERN (insn)) != RETURN)
5adf6da0
R
9810 {
9811 /* Non-spill registers might be used at the call destination in
9812 some unknown fashion, so we have to mark the unknown use. */
b0634509
R
9813 HARD_REG_SET *live;
9814 if ((condjump_p (insn) || condjump_in_parallel_p (insn))
9815 && JUMP_LABEL (insn))
9816 live = &LABEL_LIVE (JUMP_LABEL (insn));
9817 else
9818 live = &ever_live_at_start;
5adf6da0
R
9819 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; --i)
9820 {
b0634509 9821 if (TEST_HARD_REG_BIT (*live, i))
5adf6da0
R
9822 reg_state[i].use_index = -1;
9823 }
9824 }
9825 reload_combine_note_use (&PATTERN (insn), insn);
9826 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
9827 {
9828 if (REG_NOTE_KIND (note) == REG_INC
9829 && GET_CODE (XEXP (note, 0)) == REG)
ed937a19
R
9830 {
9831 int regno = REGNO (XEXP (note, 0));
9832
9833 reg_state[regno].store_ruid = reload_combine_ruid;
9834 reg_state[regno].use_index = -1;
9835 }
5adf6da0
R
9836 }
9837 }
b0634509 9838 free (label_live);
5adf6da0
R
9839}
9840
9841/* Check if DST is a register or a subreg of a register; if it is,
9842 update reg_state[regno].store_ruid and reg_state[regno].use_index
f93233bb 9843 accordingly. Called via note_stores from reload_combine. */
5adf6da0 9844static void
84832317 9845reload_combine_note_store (dst, set, data)
f93233bb 9846 rtx dst, set;
84832317 9847 void *data ATTRIBUTE_UNUSED;
5adf6da0
R
9848{
9849 int regno = 0;
9850 int i;
9851 unsigned size = GET_MODE_SIZE (GET_MODE (dst));
9852
9853 if (GET_CODE (dst) == SUBREG)
9854 {
9855 regno = SUBREG_WORD (dst);
9856 dst = SUBREG_REG (dst);
9857 }
9858 if (GET_CODE (dst) != REG)
9859 return;
9860 regno += REGNO (dst);
54ca6ffa 9861
5adf6da0 9862 /* note_stores might have stripped a STRICT_LOW_PART, so we have to be
05d10675 9863 careful with registers / register parts that are not full words.
54ca6ffa
JL
9864
9865 Similarly for ZERO_EXTRACT and SIGN_EXTRACT. */
9866 if (GET_CODE (set) != SET
9867 || GET_CODE (SET_DEST (set)) == ZERO_EXTRACT
9868 || GET_CODE (SET_DEST (set)) == SIGN_EXTRACT
9869 || GET_CODE (SET_DEST (set)) == STRICT_LOW_PART)
ed937a19 9870 {
43f854cf 9871 for (i = (size - 1) / UNITS_PER_WORD + regno; i >= regno; i--)
f93233bb
JL
9872 {
9873 reg_state[i].use_index = -1;
9874 reg_state[i].store_ruid = reload_combine_ruid;
9875 }
ed937a19 9876 }
5adf6da0
R
9877 else
9878 {
43f854cf 9879 for (i = (size - 1) / UNITS_PER_WORD + regno; i >= regno; i--)
5adf6da0
R
9880 {
9881 reg_state[i].store_ruid = reload_combine_ruid;
9882 reg_state[i].use_index = RELOAD_COMBINE_MAX_USES;
9883 }
9884 }
9885}
9886
9887/* XP points to a piece of rtl that has to be checked for any uses of
9888 registers.
9889 *XP is the pattern of INSN, or a part of it.
9890 Called from reload_combine, and recursively by itself. */
9891static void
9892reload_combine_note_use (xp, insn)
9893 rtx *xp, insn;
9894{
9895 rtx x = *xp;
9896 enum rtx_code code = x->code;
6f7d635c 9897 const char *fmt;
5adf6da0
R
9898 int i, j;
9899 rtx offset = const0_rtx; /* For the REG case below. */
9900
9901 switch (code)
9902 {
9903 case SET:
9904 if (GET_CODE (SET_DEST (x)) == REG)
9905 {
9906 reload_combine_note_use (&SET_SRC (x), insn);
9907 return;
9908 }
9909 break;
9910
9911 case CLOBBER:
9912 if (GET_CODE (SET_DEST (x)) == REG)
9913 return;
9914 break;
9915
9916 case PLUS:
9917 /* We are interested in (plus (reg) (const_int)) . */
9918 if (GET_CODE (XEXP (x, 0)) != REG || GET_CODE (XEXP (x, 1)) != CONST_INT)
9919 break;
9920 offset = XEXP (x, 1);
9921 x = XEXP (x, 0);
05d10675 9922 /* Fall through. */
5adf6da0
R
9923 case REG:
9924 {
9925 int regno = REGNO (x);
9926 int use_index;
9927
9928 /* Some spurious USEs of pseudo registers might remain.
9929 Just ignore them. */
9930 if (regno >= FIRST_PSEUDO_REGISTER)
9931 return;
9932
9933 /* If this register is already used in some unknown fashion, we
9934 can't do anything.
9935 If we decrement the index from zero to -1, we can't store more
9936 uses, so this register becomes used in an unknown fashion. */
9937 use_index = --reg_state[regno].use_index;
9938 if (use_index < 0)
9939 return;
9940
9941 if (use_index != RELOAD_COMBINE_MAX_USES - 1)
9942 {
9943 /* We have found another use for a register that is already
9944 used later. Check if the offsets match; if not, mark the
9945 register as used in an unknown fashion. */
9946 if (! rtx_equal_p (offset, reg_state[regno].offset))
9947 {
9948 reg_state[regno].use_index = -1;
9949 return;
9950 }
9951 }
9952 else
9953 {
9954 /* This is the first use of this register we have seen since we
9955 marked it as dead. */
9956 reg_state[regno].offset = offset;
9957 reg_state[regno].use_ruid = reload_combine_ruid;
9958 }
9959 reg_state[regno].reg_use[use_index].insn = insn;
9960 reg_state[regno].reg_use[use_index].usep = xp;
9961 return;
9962 }
9963
9964 default:
9965 break;
9966 }
9967
9968 /* Recursively process the components of X. */
9969 fmt = GET_RTX_FORMAT (code);
9970 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9971 {
9972 if (fmt[i] == 'e')
9973 reload_combine_note_use (&XEXP (x, i), insn);
9974 else if (fmt[i] == 'E')
9975 {
9976 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9977 reload_combine_note_use (&XVECEXP (x, i, j), insn);
9978 }
9979 }
9980}
9981\f
9982/* See if we can reduce the cost of a constant by replacing a move with
9983 an add. */
9984/* We cannot do our optimization across labels. Invalidating all the
9985 information about register contents we have would be costly, so we
9986 use last_label_luid (local variable of reload_cse_move2add) to note
9987 where the label is and then later disable any optimization that would
9988 cross it.
9989 reg_offset[n] / reg_base_reg[n] / reg_mode[n] are only valid if
9990 reg_set_luid[n] is larger than last_label_luid[n] . */
9991static int reg_set_luid[FIRST_PSEUDO_REGISTER];
9992/* reg_offset[n] has to be CONST_INT for it and reg_base_reg[n] /
9993 reg_mode[n] to be valid.
9994 If reg_offset[n] is a CONST_INT and reg_base_reg[n] is negative, register n
9995 has been set to reg_offset[n] in mode reg_mode[n] .
9996 If reg_offset[n] is a CONST_INT and reg_base_reg[n] is non-negative,
9997 register n has been set to the sum of reg_offset[n] and register
9998 reg_base_reg[n], calculated in mode reg_mode[n] . */
9999static rtx reg_offset[FIRST_PSEUDO_REGISTER];
10000static int reg_base_reg[FIRST_PSEUDO_REGISTER];
10001static enum machine_mode reg_mode[FIRST_PSEUDO_REGISTER];
10002/* move2add_luid is linearily increased while scanning the instructions
10003 from first to last. It is used to set reg_set_luid in
6764d250 10004 reload_cse_move2add and move2add_note_store. */
5adf6da0
R
10005static int move2add_luid;
10006
ccc4ae07
AS
10007/* Generate a CONST_INT and force it in the range of MODE. */
10008static rtx
10009gen_mode_int (mode, value)
10010 enum machine_mode mode;
10011 HOST_WIDE_INT value;
10012{
10013 HOST_WIDE_INT cval = value & GET_MODE_MASK (mode);
10014 int width = GET_MODE_BITSIZE (mode);
10015
10016 /* If MODE is narrower than HOST_WIDE_INT and CVAL is a negative number,
10017 sign extend it. */
10018 if (width > 0 && width < HOST_BITS_PER_WIDE_INT
10019 && (cval & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
10020 cval |= (HOST_WIDE_INT) -1 << width;
10021
10022 return GEN_INT (cval);
10023}
10024
5adf6da0
R
10025static void
10026reload_cse_move2add (first)
10027 rtx first;
10028{
10029 int i;
10030 rtx insn;
10031 int last_label_luid;
5adf6da0
R
10032
10033 for (i = FIRST_PSEUDO_REGISTER-1; i >= 0; i--)
6764d250
BS
10034 reg_set_luid[i] = 0;
10035
5adf6da0
R
10036 last_label_luid = 0;
10037 move2add_luid = 1;
10038 for (insn = first; insn; insn = NEXT_INSN (insn), move2add_luid++)
10039 {
10040 rtx pat, note;
10041
10042 if (GET_CODE (insn) == CODE_LABEL)
10043 last_label_luid = move2add_luid;
10044 if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
10045 continue;
10046 pat = PATTERN (insn);
10047 /* For simplicity, we only perform this optimization on
10048 straightforward SETs. */
10049 if (GET_CODE (pat) == SET
10050 && GET_CODE (SET_DEST (pat)) == REG)
10051 {
10052 rtx reg = SET_DEST (pat);
10053 int regno = REGNO (reg);
10054 rtx src = SET_SRC (pat);
10055
10056 /* Check if we have valid information on the contents of this
10057 register in the mode of REG. */
10058 /* ??? We don't know how zero / sign extension is handled, hence
10059 we can't go from a narrower to a wider mode. */
10060 if (reg_set_luid[regno] > last_label_luid
05d10675
BS
10061 && (GET_MODE_SIZE (GET_MODE (reg))
10062 <= GET_MODE_SIZE (reg_mode[regno]))
10063 && GET_CODE (reg_offset[regno]) == CONST_INT)
5adf6da0
R
10064 {
10065 /* Try to transform (set (REGX) (CONST_INT A))
10066 ...
10067 (set (REGX) (CONST_INT B))
10068 to
10069 (set (REGX) (CONST_INT A))
10070 ...
10071 (set (REGX) (plus (REGX) (CONST_INT B-A))) */
10072
10073 if (GET_CODE (src) == CONST_INT && reg_base_reg[regno] < 0)
10074 {
10075 int success = 0;
ccc4ae07
AS
10076 rtx new_src
10077 = gen_mode_int (GET_MODE (reg),
10078 INTVAL (src) - INTVAL (reg_offset[regno]));
5adf6da0
R
10079 /* (set (reg) (plus (reg) (const_int 0))) is not canonical;
10080 use (set (reg) (reg)) instead.
10081 We don't delete this insn, nor do we convert it into a
10082 note, to avoid losing register notes or the return
10083 value flag. jump2 already knowns how to get rid of
10084 no-op moves. */
10085 if (new_src == const0_rtx)
10086 success = validate_change (insn, &SET_SRC (pat), reg, 0);
10087 else if (rtx_cost (new_src, PLUS) < rtx_cost (src, SET)
10088 && have_add2_insn (GET_MODE (reg)))
10089 success = validate_change (insn, &PATTERN (insn),
10090 gen_add2_insn (reg, new_src), 0);
5adf6da0
R
10091 reg_set_luid[regno] = move2add_luid;
10092 reg_mode[regno] = GET_MODE (reg);
10093 reg_offset[regno] = src;
10094 continue;
10095 }
10096
10097 /* Try to transform (set (REGX) (REGY))
10098 (set (REGX) (PLUS (REGX) (CONST_INT A)))
10099 ...
10100 (set (REGX) (REGY))
10101 (set (REGX) (PLUS (REGX) (CONST_INT B)))
10102 to
10103 (REGX) (REGY))
10104 (set (REGX) (PLUS (REGX) (CONST_INT A)))
10105 ...
10106 (set (REGX) (plus (REGX) (CONST_INT B-A))) */
10107 else if (GET_CODE (src) == REG
10108 && reg_base_reg[regno] == REGNO (src)
10109 && reg_set_luid[regno] > reg_set_luid[REGNO (src)])
10110 {
10111 rtx next = next_nonnote_insn (insn);
6a651371 10112 rtx set = NULL_RTX;
5adf6da0
R
10113 if (next)
10114 set = single_set (next);
10115 if (next
10116 && set
10117 && SET_DEST (set) == reg
10118 && GET_CODE (SET_SRC (set)) == PLUS
10119 && XEXP (SET_SRC (set), 0) == reg
10120 && GET_CODE (XEXP (SET_SRC (set), 1)) == CONST_INT)
10121 {
5adf6da0 10122 rtx src3 = XEXP (SET_SRC (set), 1);
ccc4ae07
AS
10123 rtx new_src
10124 = gen_mode_int (GET_MODE (reg),
10125 INTVAL (src3)
10126 - INTVAL (reg_offset[regno]));
5adf6da0
R
10127 int success = 0;
10128
10129 if (new_src == const0_rtx)
10130 /* See above why we create (set (reg) (reg)) here. */
10131 success
10132 = validate_change (next, &SET_SRC (set), reg, 0);
10133 else if ((rtx_cost (new_src, PLUS)
10134 < 2 + rtx_cost (src3, SET))
10135 && have_add2_insn (GET_MODE (reg)))
10136 success
10137 = validate_change (next, &PATTERN (next),
10138 gen_add2_insn (reg, new_src), 0);
10139 if (success)
10140 {
5adf6da0
R
10141 /* INSN might be the first insn in a basic block
10142 if the preceding insn is a conditional jump
10143 or a possible-throwing call. */
10144 PUT_CODE (insn, NOTE);
10145 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
10146 NOTE_SOURCE_FILE (insn) = 0;
10147 }
10148 insn = next;
10149 reg_set_luid[regno] = move2add_luid;
10150 reg_mode[regno] = GET_MODE (reg);
10151 reg_offset[regno] = src3;
10152 continue;
10153 }
10154 }
10155 }
10156 }
10157
10158 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
10159 {
10160 if (REG_NOTE_KIND (note) == REG_INC
10161 && GET_CODE (XEXP (note, 0)) == REG)
10162 {
10163 /* Indicate that this register has been recently written to,
10164 but the exact contents are not available. */
10165 int regno = REGNO (XEXP (note, 0));
10166 if (regno < FIRST_PSEUDO_REGISTER)
10167 {
10168 reg_set_luid[regno] = move2add_luid;
10169 reg_offset[regno] = note;
10170 }
10171 }
5adf6da0 10172 }
84832317 10173 note_stores (PATTERN (insn), move2add_note_store, NULL);
5adf6da0
R
10174 /* If this is a CALL_INSN, all call used registers are stored with
10175 unknown values. */
10176 if (GET_CODE (insn) == CALL_INSN)
10177 {
10178 for (i = FIRST_PSEUDO_REGISTER-1; i >= 0; i--)
10179 {
10180 if (call_used_regs[i])
10181 {
10182 reg_set_luid[i] = move2add_luid;
10183 reg_offset[i] = insn; /* Invalidate contents. */
10184 }
10185 }
10186 }
10187 }
10188}
10189
10190/* SET is a SET or CLOBBER that sets DST.
10191 Update reg_set_luid, reg_offset and reg_base_reg accordingly.
10192 Called from reload_cse_move2add via note_stores. */
10193static void
84832317 10194move2add_note_store (dst, set, data)
5adf6da0 10195 rtx dst, set;
84832317 10196 void *data ATTRIBUTE_UNUSED;
5adf6da0
R
10197{
10198 int regno = 0;
10199 int i;
10200
10201 enum machine_mode mode = GET_MODE (dst);
10202 if (GET_CODE (dst) == SUBREG)
10203 {
10204 regno = SUBREG_WORD (dst);
10205 dst = SUBREG_REG (dst);
10206 }
10207 if (GET_CODE (dst) != REG)
10208 return;
10209
10210 regno += REGNO (dst);
10211
f93233bb
JL
10212 if (HARD_REGNO_NREGS (regno, mode) == 1 && GET_CODE (set) == SET
10213 && GET_CODE (SET_DEST (set)) != ZERO_EXTRACT
10214 && GET_CODE (SET_DEST (set)) != SIGN_EXTRACT
10215 && GET_CODE (SET_DEST (set)) != STRICT_LOW_PART)
5adf6da0
R
10216 {
10217 rtx src = SET_SRC (set);
10218
10219 reg_mode[regno] = mode;
10220 switch (GET_CODE (src))
10221 {
10222 case PLUS:
10223 {
10224 rtx src0 = XEXP (src, 0);
10225 if (GET_CODE (src0) == REG)
10226 {
10227 if (REGNO (src0) != regno
10228 || reg_offset[regno] != const0_rtx)
10229 {
10230 reg_base_reg[regno] = REGNO (src0);
10231 reg_set_luid[regno] = move2add_luid;
10232 }
10233 reg_offset[regno] = XEXP (src, 1);
10234 break;
10235 }
10236 reg_set_luid[regno] = move2add_luid;
10237 reg_offset[regno] = set; /* Invalidate contents. */
10238 break;
10239 }
10240
10241 case REG:
10242 reg_base_reg[regno] = REGNO (SET_SRC (set));
10243 reg_offset[regno] = const0_rtx;
10244 reg_set_luid[regno] = move2add_luid;
10245 break;
10246
10247 default:
10248 reg_base_reg[regno] = -1;
10249 reg_offset[regno] = SET_SRC (set);
10250 reg_set_luid[regno] = move2add_luid;
10251 break;
10252 }
10253 }
10254 else
10255 {
10256 for (i = regno + HARD_REGNO_NREGS (regno, mode) - 1; i >= regno; i--)
10257 {
10258 /* Indicate that this register has been recently written to,
10259 but the exact contents are not available. */
10260 reg_set_luid[i] = move2add_luid;
10261 reg_offset[i] = dst;
10262 }
10263 }
10264}
2dfa9a87
MH
10265
10266#ifdef AUTO_INC_DEC
10267static void
10268add_auto_inc_notes (insn, x)
10269 rtx insn;
10270 rtx x;
10271{
10272 enum rtx_code code = GET_CODE (x);
6f7d635c 10273 const char *fmt;
2dfa9a87
MH
10274 int i, j;
10275
10276 if (code == MEM && auto_inc_p (XEXP (x, 0)))
10277 {
10278 REG_NOTES (insn)
10279 = gen_rtx_EXPR_LIST (REG_INC, XEXP (XEXP (x, 0), 0), REG_NOTES (insn));
10280 return;
10281 }
10282
10283 /* Scan all the operand sub-expressions. */
10284 fmt = GET_RTX_FORMAT (code);
10285 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
10286 {
10287 if (fmt[i] == 'e')
10288 add_auto_inc_notes (insn, XEXP (x, i));
10289 else if (fmt[i] == 'E')
10290 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
10291 add_auto_inc_notes (insn, XVECEXP (x, i, j));
10292 }
10293}
10294#endif
This page took 2.616049 seconds and 5 git commands to generate.