]> gcc.gnu.org Git - gcc.git/blame - gcc/reload1.c
reload1.c (fixup_eh_region_notes): Remove write-only "trap_count" variable.
[gcc.git] / gcc / reload1.c
CommitLineData
32131a9c 1/* Reload pseudo regs into hard regs for insns that require hard regs.
af841dbd 2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
66647d44 3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
4c9034c5 4 Free Software Foundation, Inc.
32131a9c 5
1322177d 6This file is part of GCC.
32131a9c 7
1322177d
LB
8GCC is free software; you can redistribute it and/or modify it under
9the terms of the GNU General Public License as published by the Free
9dcd6f09 10Software Foundation; either version 3, or (at your option) any later
1322177d 11version.
32131a9c 12
1322177d
LB
13GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14WARRANTY; without even the implied warranty of MERCHANTABILITY or
15FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16for more details.
32131a9c
RK
17
18You should have received a copy of the GNU General Public License
9dcd6f09
NC
19along with GCC; see the file COPYING3. If not see
20<http://www.gnu.org/licenses/>. */
32131a9c 21
32131a9c 22#include "config.h"
670ee920 23#include "system.h"
4977bab6
ZW
24#include "coretypes.h"
25#include "tm.h"
cab634f2
KG
26
27#include "machmode.h"
28#include "hard-reg-set.h"
32131a9c 29#include "rtl.h"
6baf1cc8 30#include "tm_p.h"
32131a9c
RK
31#include "obstack.h"
32#include "insn-config.h"
32131a9c 33#include "flags.h"
49ad7cfa 34#include "function.h"
32131a9c 35#include "expr.h"
e78d8e51 36#include "optabs.h"
32131a9c 37#include "regs.h"
c4963a0a 38#include "addresses.h"
cad6f7d0 39#include "basic-block.h"
32131a9c
RK
40#include "reload.h"
41#include "recog.h"
32131a9c 42#include "output.h"
a9c366bf 43#include "real.h"
10f0ad3d 44#include "toplev.h"
39f95a2c 45#include "except.h"
a20fd5ac 46#include "tree.h"
058e97ec 47#include "ira.h"
6fb5fa3c 48#include "df.h"
8a99f6f9 49#include "target.h"
f6129d66 50#include "emit-rtl.h"
32131a9c
RK
51
52/* This file contains the reload pass of the compiler, which is
53 run after register allocation has been done. It checks that
54 each insn is valid (operands required to be in registers really
55 are in registers of the proper class) and fixes up invalid ones
56 by copying values temporarily into registers for the insns
57 that need them.
58
59 The results of register allocation are described by the vector
60 reg_renumber; the insns still contain pseudo regs, but reg_renumber
61 can be used to find which hard reg, if any, a pseudo reg is in.
62
63 The technique we always use is to free up a few hard regs that are
64 called ``reload regs'', and for each place where a pseudo reg
65 must be in a hard reg, copy it temporarily into one of the reload regs.
66
03acd8f8
BS
67 Reload regs are allocated locally for every instruction that needs
68 reloads. When there are pseudos which are allocated to a register that
69 has been chosen as a reload reg, such pseudos must be ``spilled''.
70 This means that they go to other hard regs, or to stack slots if no other
32131a9c
RK
71 available hard regs can be found. Spilling can invalidate more
72 insns, requiring additional need for reloads, so we must keep checking
73 until the process stabilizes.
74
75 For machines with different classes of registers, we must keep track
76 of the register class needed for each reload, and make sure that
77 we allocate enough reload registers of each class.
78
79 The file reload.c contains the code that checks one insn for
80 validity and reports the reloads that it needs. This file
81 is in charge of scanning the entire rtl code, accumulating the
82 reload needs, spilling, assigning reload registers to use for
83 fixing up each insn, and generating the new insns to copy values
84 into the reload registers. */
85\f
86/* During reload_as_needed, element N contains a REG rtx for the hard reg
0f41302f 87 into which reg N has been reloaded (perhaps for a previous insn). */
32131a9c
RK
88static rtx *reg_last_reload_reg;
89
90/* Elt N nonzero if reg_last_reload_reg[N] has been set in this insn
91 for an output reload that stores into reg N. */
2c61f5f1 92static regset_head reg_has_output_reload;
32131a9c
RK
93
94/* Indicates which hard regs are reload-registers for an output reload
95 in the current insn. */
96static HARD_REG_SET reg_is_output_reload;
97
98/* Element N is the constant value to which pseudo reg N is equivalent,
99 or zero if pseudo reg N is not equivalent to a constant.
100 find_reloads looks at this in order to replace pseudo reg N
101 with the constant it stands for. */
102rtx *reg_equiv_constant;
103
ab156144
RH
104/* Element N is an invariant value to which pseudo reg N is equivalent.
105 eliminate_regs_in_insn uses this to replace pseudos in particular
106 contexts. */
107rtx *reg_equiv_invariant;
108
32131a9c
RK
109/* Element N is a memory location to which pseudo reg N is equivalent,
110 prior to any register elimination (such as frame pointer to stack
111 pointer). Depending on whether or not it is a valid address, this value
112 is transferred to either reg_equiv_address or reg_equiv_mem. */
4803a34a 113rtx *reg_equiv_memory_loc;
32131a9c 114
965ccc5a
R
115/* We allocate reg_equiv_memory_loc inside a varray so that the garbage
116 collector can keep track of what is inside. */
43b373a2 117VEC(rtx,gc) *reg_equiv_memory_loc_vec;
965ccc5a 118
32131a9c
RK
119/* Element N is the address of stack slot to which pseudo reg N is equivalent.
120 This is used when the address is not valid as a memory address
121 (because its displacement is too big for the machine.) */
122rtx *reg_equiv_address;
123
124/* Element N is the memory slot to which pseudo reg N is equivalent,
125 or zero if pseudo reg N is not equivalent to a memory slot. */
126rtx *reg_equiv_mem;
127
3f1e3e70
AO
128/* Element N is an EXPR_LIST of REG_EQUIVs containing MEMs with
129 alternate representations of the location of pseudo reg N. */
130rtx *reg_equiv_alt_mem_list;
131
32131a9c 132/* Widest width in which each pseudo reg is referred to (via subreg). */
770ae6cc 133static unsigned int *reg_max_ref_width;
32131a9c 134
135eb61c 135/* Element N is the list of insns that initialized reg N from its equivalent
32131a9c 136 constant or memory slot. */
d7f88d86
BS
137rtx *reg_equiv_init;
138int reg_equiv_init_size;
32131a9c 139
03acd8f8
BS
140/* Vector to remember old contents of reg_renumber before spilling. */
141static short *reg_old_renumber;
142
e6e52be0 143/* During reload_as_needed, element N contains the last pseudo regno reloaded
03acd8f8 144 into hard register N. If that pseudo reg occupied more than one register,
32131a9c
RK
145 reg_reloaded_contents points to that pseudo for each spill register in
146 use; all of these must remain set for an inheritance to occur. */
147static int reg_reloaded_contents[FIRST_PSEUDO_REGISTER];
148
149/* During reload_as_needed, element N contains the insn for which
e6e52be0
R
150 hard register N was last used. Its contents are significant only
151 when reg_reloaded_valid is set for this register. */
32131a9c
RK
152static rtx reg_reloaded_insn[FIRST_PSEUDO_REGISTER];
153
3eae4643 154/* Indicate if reg_reloaded_insn / reg_reloaded_contents is valid. */
e6e52be0
R
155static HARD_REG_SET reg_reloaded_valid;
156/* Indicate if the register was dead at the end of the reload.
157 This is only valid if reg_reloaded_contents is set and valid. */
158static HARD_REG_SET reg_reloaded_dead;
159
e3e9336f
DJ
160/* Indicate whether the register's current value is one that is not
161 safe to retain across a call, even for registers that are normally
fb959f72 162 call-saved. This is only meaningful for members of reg_reloaded_valid. */
e3e9336f
DJ
163static HARD_REG_SET reg_reloaded_call_part_clobbered;
164
32131a9c
RK
165/* Number of spill-regs so far; number of valid elements of spill_regs. */
166static int n_spills;
167
168/* In parallel with spill_regs, contains REG rtx's for those regs.
169 Holds the last rtx used for any given reg, or 0 if it has never
170 been used for spilling yet. This rtx is reused, provided it has
171 the proper mode. */
172static rtx spill_reg_rtx[FIRST_PSEUDO_REGISTER];
173
174/* In parallel with spill_regs, contains nonzero for a spill reg
175 that was stored after the last time it was used.
176 The precise value is the insn generated to do the store. */
177static rtx spill_reg_store[FIRST_PSEUDO_REGISTER];
178
cb2afeb3
R
179/* This is the register that was stored with spill_reg_store. This is a
180 copy of reload_out / reload_out_reg when the value was stored; if
181 reload_out is a MEM, spill_reg_stored_to will be set to reload_out_reg. */
182static rtx spill_reg_stored_to[FIRST_PSEUDO_REGISTER];
183
32131a9c
RK
184/* This table is the inverse mapping of spill_regs:
185 indexed by hard reg number,
186 it contains the position of that reg in spill_regs,
05d10675 187 or -1 for something that is not in spill_regs.
13c8e8e3
JL
188
189 ?!? This is no longer accurate. */
32131a9c
RK
190static short spill_reg_order[FIRST_PSEUDO_REGISTER];
191
03acd8f8
BS
192/* This reg set indicates registers that can't be used as spill registers for
193 the currently processed insn. These are the hard registers which are live
194 during the insn, but not allocated to pseudos, as well as fixed
195 registers. */
32131a9c
RK
196static HARD_REG_SET bad_spill_regs;
197
03acd8f8
BS
198/* These are the hard registers that can't be used as spill register for any
199 insn. This includes registers used for user variables and registers that
200 we can't eliminate. A register that appears in this set also can't be used
201 to retry register allocation. */
202static HARD_REG_SET bad_spill_regs_global;
203
32131a9c 204/* Describes order of use of registers for reloading
03acd8f8
BS
205 of spilled pseudo-registers. `n_spills' is the number of
206 elements that are actually valid; new ones are added at the end.
207
208 Both spill_regs and spill_reg_order are used on two occasions:
209 once during find_reload_regs, where they keep track of the spill registers
210 for a single insn, but also during reload_as_needed where they show all
211 the registers ever used by reload. For the latter case, the information
212 is calculated during finish_spills. */
32131a9c
RK
213static short spill_regs[FIRST_PSEUDO_REGISTER];
214
03acd8f8
BS
215/* This vector of reg sets indicates, for each pseudo, which hard registers
216 may not be used for retrying global allocation because the register was
217 formerly spilled from one of them. If we allowed reallocating a pseudo to
218 a register that it was already allocated to, reload might not
219 terminate. */
220static HARD_REG_SET *pseudo_previous_regs;
221
222/* This vector of reg sets indicates, for each pseudo, which hard
223 registers may not be used for retrying global allocation because they
224 are used as spill registers during one of the insns in which the
225 pseudo is live. */
226static HARD_REG_SET *pseudo_forbidden_regs;
227
228/* All hard regs that have been used as spill registers for any insn are
229 marked in this set. */
230static HARD_REG_SET used_spill_regs;
8b4f9969 231
4079cd63
JW
232/* Index of last register assigned as a spill register. We allocate in
233 a round-robin fashion. */
4079cd63
JW
234static int last_spill_reg;
235
32131a9c
RK
236/* Nonzero if indirect addressing is supported on the machine; this means
237 that spilling (REG n) does not require reloading it into a register in
238 order to do (MEM (REG n)) or (MEM (PLUS (REG n) (CONST_INT c))). The
239 value indicates the level of indirect addressing supported, e.g., two
240 means that (MEM (MEM (REG n))) is also valid if (REG n) does not get
241 a hard register. */
32131a9c
RK
242static char spill_indirect_levels;
243
244/* Nonzero if indirect addressing is supported when the innermost MEM is
245 of the form (MEM (SYMBOL_REF sym)). It is assumed that the level to
6d2f8887 246 which these are valid is the same as spill_indirect_levels, above. */
98af7219 247char indirect_symref_ok;
32131a9c
RK
248
249/* Nonzero if an address (plus (reg frame_pointer) (reg ...)) is valid. */
32131a9c
RK
250char double_reg_address_ok;
251
252/* Record the stack slot for each spilled hard register. */
32131a9c
RK
253static rtx spill_stack_slot[FIRST_PSEUDO_REGISTER];
254
255/* Width allocated so far for that stack slot. */
770ae6cc 256static unsigned int spill_stack_slot_width[FIRST_PSEUDO_REGISTER];
32131a9c 257
7609e720 258/* Record which pseudos needed to be spilled. */
f5d8c9f4
BS
259static regset_head spilled_pseudos;
260
058e97ec
VM
261/* Record which pseudos changed their allocation in finish_spills. */
262static regset_head changed_allocation_pseudos;
263
f5d8c9f4
BS
264/* Used for communication between order_regs_for_reload and count_pseudo.
265 Used to avoid counting one pseudo twice. */
266static regset_head pseudos_counted;
7609e720 267
32131a9c
RK
268/* First uid used by insns created by reload in this function.
269 Used in find_equiv_reg. */
270int reload_first_uid;
271
272/* Flag set by local-alloc or global-alloc if anything is live in
273 a call-clobbered reg across calls. */
32131a9c
RK
274int caller_save_needed;
275
276/* Set to 1 while reload_as_needed is operating.
277 Required by some machines to handle any generated moves differently. */
32131a9c
RK
278int reload_in_progress = 0;
279
280/* These arrays record the insn_code of insns that may be needed to
281 perform input and output reloads of special objects. They provide a
282 place to pass a scratch register. */
32131a9c
RK
283enum insn_code reload_in_optab[NUM_MACHINE_MODES];
284enum insn_code reload_out_optab[NUM_MACHINE_MODES];
285
d45cf215 286/* This obstack is used for allocation of rtl during register elimination.
32131a9c
RK
287 The allocated storage can be freed once find_reloads has processed the
288 insn. */
5983a90e 289static struct obstack reload_obstack;
cad6f7d0
BS
290
291/* Points to the beginning of the reload_obstack. All insn_chain structures
292 are allocated first. */
cf0fa607 293static char *reload_startobj;
cad6f7d0
BS
294
295/* The point after all insn_chain structures. Used to quickly deallocate
f5d8c9f4 296 memory allocated in copy_reloads during calculate_needs_all_insns. */
cf0fa607 297static char *reload_firstobj;
32131a9c 298
f5d8c9f4
BS
299/* This points before all local rtl generated by register elimination.
300 Used to quickly free all memory after processing one insn. */
301static char *reload_insn_firstobj;
302
cad6f7d0
BS
303/* List of insn_chain instructions, one for every insn that reload needs to
304 examine. */
305struct insn_chain *reload_insn_chain;
7609e720 306
03acd8f8 307/* List of all insns needing reloads. */
7609e720 308static struct insn_chain *insns_need_reload;
32131a9c
RK
309\f
310/* This structure is used to record information about register eliminations.
311 Each array entry describes one possible way of eliminating a register
312 in favor of another. If there is more than one way of eliminating a
313 particular register, the most preferred should be specified first. */
314
590cf94d 315struct elim_table
32131a9c 316{
0f41302f
MS
317 int from; /* Register number to be eliminated. */
318 int to; /* Register number used as replacement. */
b19ee4bd 319 HOST_WIDE_INT initial_offset; /* Initial difference between values. */
272d0bee 320 int can_eliminate; /* Nonzero if this elimination can be done. */
32131a9c 321 int can_eliminate_previous; /* Value of CAN_ELIMINATE in previous scan over
0f41302f 322 insns made by reload. */
b19ee4bd
JJ
323 HOST_WIDE_INT offset; /* Current offset between the two regs. */
324 HOST_WIDE_INT previous_offset;/* Offset at end of previous insn. */
0f41302f 325 int ref_outside_mem; /* "to" has been referenced outside a MEM. */
32131a9c
RK
326 rtx from_rtx; /* REG rtx for the register to be eliminated.
327 We cannot simply compare the number since
328 we might then spuriously replace a hard
329 register corresponding to a pseudo
0f41302f
MS
330 assigned to the reg to be eliminated. */
331 rtx to_rtx; /* REG rtx for the replacement. */
590cf94d
KG
332};
333
1d7254c5 334static struct elim_table *reg_eliminate = 0;
590cf94d
KG
335
336/* This is an intermediate structure to initialize the table. It has
1d7254c5 337 exactly the members provided by ELIMINABLE_REGS. */
0b5826ac 338static const struct elim_table_1
590cf94d 339{
0b5826ac
KG
340 const int from;
341 const int to;
590cf94d 342} reg_eliminate_1[] =
32131a9c
RK
343
344/* If a set of eliminable registers was specified, define the table from it.
345 Otherwise, default to the normal case of the frame pointer being
346 replaced by the stack pointer. */
347
348#ifdef ELIMINABLE_REGS
349 ELIMINABLE_REGS;
350#else
351 {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}};
352#endif
353
b6a1cbae 354#define NUM_ELIMINABLE_REGS ARRAY_SIZE (reg_eliminate_1)
32131a9c
RK
355
356/* Record the number of pending eliminations that have an offset not equal
40f03658 357 to their initial offset. If nonzero, we use a new copy of each
32131a9c 358 replacement result in any insns encountered. */
cb2afeb3 359int num_not_at_initial_offset;
32131a9c
RK
360
361/* Count the number of registers that we may be able to eliminate. */
362static int num_eliminable;
2b49ee39
R
363/* And the number of registers that are equivalent to a constant that
364 can be eliminated to frame_pointer / arg_pointer + constant. */
365static int num_eliminable_invariants;
32131a9c
RK
366
367/* For each label, we record the offset of each elimination. If we reach
368 a label by more than one path and an offset differs, we cannot do the
4cc0fdd2
JDA
369 elimination. This information is indexed by the difference of the
370 number of the label and the first label number. We can't offset the
371 pointer itself as this can cause problems on machines with segmented
372 memory. The first table is an array of flags that records whether we
373 have yet encountered a label and the second table is an array of arrays,
374 one entry in the latter array for each elimination. */
375
376static int first_label_num;
32131a9c 377static char *offsets_known_at;
b19ee4bd 378static HOST_WIDE_INT (*offsets_at)[NUM_ELIMINABLE_REGS];
32131a9c
RK
379
380/* Number of labels in the current function. */
381
382static int num_labels;
383\f
0c20a65f
AJ
384static void replace_pseudos_in (rtx *, enum machine_mode, rtx);
385static void maybe_fix_stack_asms (void);
386static void copy_reloads (struct insn_chain *);
387static void calculate_needs_all_insns (int);
388static int find_reg (struct insn_chain *, int);
389static void find_reload_regs (struct insn_chain *);
390static void select_reload_regs (void);
391static void delete_caller_save_insns (void);
392
393static void spill_failure (rtx, enum reg_class);
394static void count_spilled_pseudo (int, int, int);
395static void delete_dead_insn (rtx);
058e97ec 396static void alter_reg (int, int, bool);
0c20a65f
AJ
397static void set_label_offsets (rtx, rtx, int);
398static void check_eliminable_occurrences (rtx);
399static void elimination_effects (rtx, enum machine_mode);
400static int eliminate_regs_in_insn (rtx, int);
401static void update_eliminable_offsets (void);
7bc980e1 402static void mark_not_eliminable (rtx, const_rtx, void *);
0c20a65f 403static void set_initial_elim_offsets (void);
9f938de1 404static bool verify_initial_elim_offsets (void);
0c20a65f
AJ
405static void set_initial_label_offsets (void);
406static void set_offsets_for_label (rtx);
407static void init_elim_table (void);
408static void update_eliminables (HARD_REG_SET *);
409static void spill_hard_reg (unsigned int, int);
410static int finish_spills (int);
0c20a65f
AJ
411static void scan_paradoxical_subregs (rtx);
412static void count_pseudo (int);
413static void order_regs_for_reload (struct insn_chain *);
414static void reload_as_needed (int);
7bc980e1 415static void forget_old_reloads_1 (rtx, const_rtx, void *);
db4c7386 416static void forget_marked_reloads (regset);
0c20a65f
AJ
417static int reload_reg_class_lower (const void *, const void *);
418static void mark_reload_reg_in_use (unsigned int, int, enum reload_type,
419 enum machine_mode);
420static void clear_reload_reg_in_use (unsigned int, int, enum reload_type,
421 enum machine_mode);
422static int reload_reg_free_p (unsigned int, int, enum reload_type);
423static int reload_reg_free_for_value_p (int, int, int, enum reload_type,
424 rtx, rtx, int, int);
425static int free_for_value_p (int, enum machine_mode, int, enum reload_type,
426 rtx, rtx, int, int);
427static int reload_reg_reaches_end_p (unsigned int, int, enum reload_type);
428static int allocate_reload_reg (struct insn_chain *, int, int);
429static int conflicts_with_override (rtx);
430static void failed_reload (rtx, int);
431static int set_reload_reg (int, int);
432static void choose_reload_regs_init (struct insn_chain *, rtx *);
433static void choose_reload_regs (struct insn_chain *);
434static void merge_assigned_reloads (rtx);
435static void emit_input_reload_insns (struct insn_chain *, struct reload *,
436 rtx, int);
437static void emit_output_reload_insns (struct insn_chain *, struct reload *,
438 int);
439static void do_input_reload (struct insn_chain *, struct reload *, int);
440static void do_output_reload (struct insn_chain *, struct reload *, int);
441static void emit_reload_insns (struct insn_chain *);
fb959f72 442static void delete_output_reload (rtx, int, int, rtx);
0c20a65f
AJ
443static void delete_address_reloads (rtx, rtx);
444static void delete_address_reloads_1 (rtx, rtx, rtx);
445static rtx inc_for_reload (rtx, rtx, rtx, int);
2dfa9a87 446#ifdef AUTO_INC_DEC
0c20a65f 447static void add_auto_inc_notes (rtx, rtx);
2dfa9a87 448#endif
0c20a65f 449static void copy_eh_notes (rtx, rtx);
058e97ec
VM
450static void substitute (rtx *, const_rtx, rtx);
451static bool gen_reload_chain_without_interm_reg_p (int, int);
bf9a0db3
KH
452static int reloads_conflict (int, int);
453static rtx gen_reload (rtx, rtx, int, enum reload_type);
ff0d9879 454static rtx emit_insn_if_valid_for_reload (rtx);
32131a9c 455\f
b5deb7b6
SL
456/* Initialize the reload pass. This is called at the beginning of compilation
457 and may be called again if the target is reinitialized. */
546b63fb 458
32131a9c 459void
0c20a65f 460init_reload (void)
32131a9c 461{
b3694847 462 int i;
32131a9c
RK
463
464 /* Often (MEM (REG n)) is still valid even if (REG n) is put on the stack.
465 Set spill_indirect_levels to the number of levels such addressing is
466 permitted, zero if it is not permitted at all. */
467
b3694847 468 rtx tem
38a448ca
RH
469 = gen_rtx_MEM (Pmode,
470 gen_rtx_PLUS (Pmode,
c5c76735
JL
471 gen_rtx_REG (Pmode,
472 LAST_VIRTUAL_REGISTER + 1),
38a448ca 473 GEN_INT (4)));
32131a9c
RK
474 spill_indirect_levels = 0;
475
476 while (memory_address_p (QImode, tem))
477 {
478 spill_indirect_levels++;
38a448ca 479 tem = gen_rtx_MEM (Pmode, tem);
32131a9c
RK
480 }
481
482 /* See if indirect addressing is valid for (MEM (SYMBOL_REF ...)). */
483
38a448ca 484 tem = gen_rtx_MEM (Pmode, gen_rtx_SYMBOL_REF (Pmode, "foo"));
32131a9c
RK
485 indirect_symref_ok = memory_address_p (QImode, tem);
486
487 /* See if reg+reg is a valid (and offsettable) address. */
488
65701fd2 489 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
57caa638 490 {
38a448ca
RH
491 tem = gen_rtx_PLUS (Pmode,
492 gen_rtx_REG (Pmode, HARD_FRAME_POINTER_REGNUM),
493 gen_rtx_REG (Pmode, i));
c5c76735 494
57caa638
RS
495 /* This way, we make sure that reg+reg is an offsettable address. */
496 tem = plus_constant (tem, 4);
497
498 if (memory_address_p (QImode, tem))
499 {
500 double_reg_address_ok = 1;
501 break;
502 }
503 }
32131a9c 504
0f41302f 505 /* Initialize obstack for our rtl allocation. */
32131a9c 506 gcc_obstack_init (&reload_obstack);
1634b18f 507 reload_startobj = XOBNEWVAR (&reload_obstack, char, 0);
f5d8c9f4
BS
508
509 INIT_REG_SET (&spilled_pseudos);
058e97ec 510 INIT_REG_SET (&changed_allocation_pseudos);
f5d8c9f4 511 INIT_REG_SET (&pseudos_counted);
32131a9c
RK
512}
513
cad6f7d0
BS
514/* List of insn chains that are currently unused. */
515static struct insn_chain *unused_insn_chains = 0;
516
517/* Allocate an empty insn_chain structure. */
518struct insn_chain *
0c20a65f 519new_insn_chain (void)
cad6f7d0
BS
520{
521 struct insn_chain *c;
522
523 if (unused_insn_chains == 0)
524 {
1634b18f 525 c = XOBNEW (&reload_obstack, struct insn_chain);
239a0f5b
BS
526 INIT_REG_SET (&c->live_throughout);
527 INIT_REG_SET (&c->dead_or_set);
cad6f7d0
BS
528 }
529 else
530 {
531 c = unused_insn_chains;
532 unused_insn_chains = c->next;
533 }
534 c->is_caller_save_insn = 0;
03acd8f8 535 c->need_operand_change = 0;
cad6f7d0
BS
536 c->need_reload = 0;
537 c->need_elim = 0;
538 return c;
539}
540
7609e720
BS
541/* Small utility function to set all regs in hard reg set TO which are
542 allocated to pseudos in regset FROM. */
770ae6cc 543
7609e720 544void
0c20a65f 545compute_use_by_pseudos (HARD_REG_SET *to, regset from)
7609e720 546{
770ae6cc 547 unsigned int regno;
a2041967 548 reg_set_iterator rsi;
770ae6cc 549
a2041967
KH
550 EXECUTE_IF_SET_IN_REG_SET (from, FIRST_PSEUDO_REGISTER, regno, rsi)
551 {
552 int r = reg_renumber[regno];
a2041967
KH
553
554 if (r < 0)
555 {
058e97ec
VM
556 /* reload_combine uses the information from DF_LIVE_IN,
557 which might still contain registers that have not
558 actually been allocated since they have an
559 equivalence. */
2af2dbdc 560 gcc_assert (ira_conflicts_p || reload_completed);
a2041967
KH
561 }
562 else
09e18274 563 add_to_hard_reg_set (to, PSEUDO_REGNO_MODE (regno), r);
a2041967 564 }
7609e720 565}
f474c6f8
AO
566
567/* Replace all pseudos found in LOC with their corresponding
568 equivalences. */
569
570static void
0c20a65f 571replace_pseudos_in (rtx *loc, enum machine_mode mem_mode, rtx usage)
f474c6f8
AO
572{
573 rtx x = *loc;
574 enum rtx_code code;
575 const char *fmt;
576 int i, j;
577
578 if (! x)
579 return;
174fa2c4 580
f474c6f8
AO
581 code = GET_CODE (x);
582 if (code == REG)
583 {
ae0ed63a 584 unsigned int regno = REGNO (x);
086fef9e
AO
585
586 if (regno < FIRST_PSEUDO_REGISTER)
f474c6f8
AO
587 return;
588
589 x = eliminate_regs (x, mem_mode, usage);
590 if (x != *loc)
591 {
592 *loc = x;
ee960939 593 replace_pseudos_in (loc, mem_mode, usage);
f474c6f8
AO
594 return;
595 }
596
086fef9e
AO
597 if (reg_equiv_constant[regno])
598 *loc = reg_equiv_constant[regno];
599 else if (reg_equiv_mem[regno])
600 *loc = reg_equiv_mem[regno];
601 else if (reg_equiv_address[regno])
602 *loc = gen_rtx_MEM (GET_MODE (x), reg_equiv_address[regno]);
f474c6f8 603 else
41374e13
NS
604 {
605 gcc_assert (!REG_P (regno_reg_rtx[regno])
606 || REGNO (regno_reg_rtx[regno]) != regno);
607 *loc = regno_reg_rtx[regno];
608 }
f474c6f8
AO
609
610 return;
611 }
612 else if (code == MEM)
613 {
ee960939 614 replace_pseudos_in (& XEXP (x, 0), GET_MODE (x), usage);
f474c6f8
AO
615 return;
616 }
174fa2c4 617
f474c6f8
AO
618 /* Process each of our operands recursively. */
619 fmt = GET_RTX_FORMAT (code);
620 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
621 if (*fmt == 'e')
ee960939 622 replace_pseudos_in (&XEXP (x, i), mem_mode, usage);
f474c6f8
AO
623 else if (*fmt == 'E')
624 for (j = 0; j < XVECLEN (x, i); j++)
ee960939 625 replace_pseudos_in (& XVECEXP (x, i, j), mem_mode, usage);
f474c6f8
AO
626}
627
ecaebb9e
NS
628/* Determine if the current function has an exception receiver block
629 that reaches the exit block via non-exceptional edges */
630
631static bool
632has_nonexceptional_receiver (void)
633{
634 edge e;
635 edge_iterator ei;
636 basic_block *tos, *worklist, bb;
637
638 /* If we're not optimizing, then just err on the safe side. */
639 if (!optimize)
640 return true;
641
642 /* First determine which blocks can reach exit via normal paths. */
1634b18f 643 tos = worklist = XNEWVEC (basic_block, n_basic_blocks + 1);
ecaebb9e
NS
644
645 FOR_EACH_BB (bb)
646 bb->flags &= ~BB_REACHABLE;
647
648 /* Place the exit block on our worklist. */
649 EXIT_BLOCK_PTR->flags |= BB_REACHABLE;
650 *tos++ = EXIT_BLOCK_PTR;
651
652 /* Iterate: find everything reachable from what we've already seen. */
653 while (tos != worklist)
654 {
655 bb = *--tos;
656
657 FOR_EACH_EDGE (e, ei, bb->preds)
658 if (!(e->flags & EDGE_ABNORMAL))
659 {
660 basic_block src = e->src;
661
662 if (!(src->flags & BB_REACHABLE))
663 {
664 src->flags |= BB_REACHABLE;
665 *tos++ = src;
666 }
667 }
668 }
669 free (worklist);
670
671 /* Now see if there's a reachable block with an exceptional incoming
672 edge. */
673 FOR_EACH_BB (bb)
674 if (bb->flags & BB_REACHABLE)
675 FOR_EACH_EDGE (e, ei, bb->preds)
676 if (e->flags & EDGE_ABNORMAL)
677 return true;
678
679 /* No exceptional block reached exit unexceptionally. */
680 return false;
681}
682
03acd8f8 683\f
1e5bd841
BS
684/* Global variables used by reload and its subroutines. */
685
1e5bd841
BS
686/* Set during calculate_needs if an insn needs register elimination. */
687static int something_needs_elimination;
cb2afeb3 688/* Set during calculate_needs if an insn needs an operand changed. */
cf0fa607 689static int something_needs_operands_changed;
1e5bd841 690
1e5bd841
BS
691/* Nonzero means we couldn't get enough spill regs. */
692static int failure;
693
058e97ec
VM
694/* Temporary array of pseudo-register number. */
695static int *temp_pseudo_reg_arr;
696
546b63fb 697/* Main entry point for the reload pass.
32131a9c
RK
698
699 FIRST is the first insn of the function being compiled.
700
701 GLOBAL nonzero means we were called from global_alloc
702 and should attempt to reallocate any pseudoregs that we
703 displace from hard regs we will use for reloads.
704 If GLOBAL is zero, we do not have enough information to do that,
705 so any pseudo reg that is spilled must go to the stack.
706
5352b11a
RS
707 Return value is nonzero if reload failed
708 and we must not do any more for this function. */
709
710int
0c20a65f 711reload (rtx first, int global)
32131a9c 712{
058e97ec 713 int i, n;
ba4807a0 714 rtx insn;
b3694847 715 struct elim_table *ep;
e0082a72 716 basic_block bb;
32131a9c 717
32131a9c
RK
718 /* Make sure even insns with volatile mem refs are recognizable. */
719 init_recog ();
720
1e5bd841
BS
721 failure = 0;
722
1634b18f 723 reload_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
cad6f7d0 724
437a710d
BS
725 /* Make sure that the last insn in the chain
726 is not something that needs reloading. */
2e040219 727 emit_note (NOTE_INSN_DELETED);
437a710d 728
32131a9c
RK
729 /* Enable find_equiv_reg to distinguish insns made by reload. */
730 reload_first_uid = get_max_uid ();
731
0dadecf6
RK
732#ifdef SECONDARY_MEMORY_NEEDED
733 /* Initialize the secondary memory table. */
734 clear_secondary_mem ();
735#endif
736
32131a9c 737 /* We don't have a stack slot for any spill reg yet. */
703ad42b
KG
738 memset (spill_stack_slot, 0, sizeof spill_stack_slot);
739 memset (spill_stack_slot_width, 0, sizeof spill_stack_slot_width);
32131a9c 740
a8efe40d
RK
741 /* Initialize the save area information for caller-save, in case some
742 are needed. */
743 init_save_areas ();
a8fdc208 744
32131a9c
RK
745 /* Compute which hard registers are now in use
746 as homes for pseudo registers.
747 This is done here rather than (eg) in global_alloc
748 because this point is reached even if not optimizing. */
32131a9c
RK
749 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
750 mark_home_live (i);
751
ecaebb9e
NS
752 /* A function that has a nonlocal label that can reach the exit
753 block via non-exceptional paths must save all call-saved
8dddd002 754 registers. */
e3b5732b 755 if (cfun->has_nonlocal_label
215161e2 756 && has_nonexceptional_receiver ())
e3b5732b 757 crtl->saves_all_registers = 1;
215161e2 758
e3b5732b 759 if (crtl->saves_all_registers)
8dddd002 760 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2a3e384f 761 if (! call_used_regs[i] && ! fixed_regs[i] && ! LOCAL_REGNO (i))
6fb5fa3c 762 df_set_regs_ever_live (i, true);
8dddd002 763
32131a9c
RK
764 /* Find all the pseudo registers that didn't get hard regs
765 but do have known equivalent constants or memory slots.
766 These include parameters (known equivalent to parameter slots)
767 and cse'd or loop-moved constant memory addresses.
768
769 Record constant equivalents in reg_equiv_constant
770 so they will be substituted by find_reloads.
771 Record memory equivalents in reg_mem_equiv so they can
772 be substituted eventually by altering the REG-rtx's. */
773
5ed6ace5
MD
774 reg_equiv_constant = XCNEWVEC (rtx, max_regno);
775 reg_equiv_invariant = XCNEWVEC (rtx, max_regno);
776 reg_equiv_mem = XCNEWVEC (rtx, max_regno);
3f1e3e70 777 reg_equiv_alt_mem_list = XCNEWVEC (rtx, max_regno);
5ed6ace5
MD
778 reg_equiv_address = XCNEWVEC (rtx, max_regno);
779 reg_max_ref_width = XCNEWVEC (unsigned int, max_regno);
780 reg_old_renumber = XCNEWVEC (short, max_regno);
4e135bdd 781 memcpy (reg_old_renumber, reg_renumber, max_regno * sizeof (short));
5ed6ace5
MD
782 pseudo_forbidden_regs = XNEWVEC (HARD_REG_SET, max_regno);
783 pseudo_previous_regs = XCNEWVEC (HARD_REG_SET, max_regno);
32131a9c 784
03acd8f8 785 CLEAR_HARD_REG_SET (bad_spill_regs_global);
56f58d3a 786
d754127f
ILT
787 /* Look for REG_EQUIV notes; record what each pseudo is equivalent
788 to. Also find all paradoxical subregs and find largest such for
789 each pseudo. */
32131a9c 790
2b49ee39 791 num_eliminable_invariants = 0;
32131a9c
RK
792 for (insn = first; insn; insn = NEXT_INSN (insn))
793 {
794 rtx set = single_set (insn);
795
3d17d93d
AO
796 /* We may introduce USEs that we want to remove at the end, so
797 we'll mark them with QImode. Make sure there are no
798 previously-marked insns left by say regmove. */
799 if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == USE
800 && GET_MODE (insn) != VOIDmode)
801 PUT_MODE (insn, VOIDmode);
802
d7f88d86
BS
803 if (INSN_P (insn))
804 scan_paradoxical_subregs (PATTERN (insn));
805
f8cfc6aa 806 if (set != 0 && REG_P (SET_DEST (set)))
32131a9c 807 {
fb3821f7 808 rtx note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
d7f88d86
BS
809 rtx x;
810
811 if (! note)
812 continue;
813
814 i = REGNO (SET_DEST (set));
815 x = XEXP (note, 0);
816
817 if (i <= LAST_VIRTUAL_REGISTER)
818 continue;
819
820 if (! function_invariant_p (x)
821 || ! flag_pic
822 /* A function invariant is often CONSTANT_P but may
823 include a register. We promise to only pass
824 CONSTANT_P objects to LEGITIMATE_PIC_OPERAND_P. */
825 || (CONSTANT_P (x)
826 && LEGITIMATE_PIC_OPERAND_P (x)))
32131a9c 827 {
d7f88d86
BS
828 /* It can happen that a REG_EQUIV note contains a MEM
829 that is not a legitimate memory operand. As later
830 stages of reload assume that all addresses found
831 in the reg_equiv_* arrays were originally legitimate,
832 we ignore such REG_EQUIV notes. */
833 if (memory_operand (x, VOIDmode))
32131a9c 834 {
d7f88d86
BS
835 /* Always unshare the equivalence, so we can
836 substitute into this insn without touching the
837 equivalence. */
838 reg_equiv_memory_loc[i] = copy_rtx (x);
839 }
840 else if (function_invariant_p (x))
841 {
842 if (GET_CODE (x) == PLUS)
956d6950 843 {
d7f88d86
BS
844 /* This is PLUS of frame pointer and a constant,
845 and might be shared. Unshare it. */
ab156144 846 reg_equiv_invariant[i] = copy_rtx (x);
d7f88d86 847 num_eliminable_invariants++;
956d6950 848 }
ab156144 849 else if (x == frame_pointer_rtx || x == arg_pointer_rtx)
32131a9c 850 {
ab156144 851 reg_equiv_invariant[i] = x;
d7f88d86 852 num_eliminable_invariants++;
32131a9c 853 }
d7f88d86
BS
854 else if (LEGITIMATE_CONSTANT_P (x))
855 reg_equiv_constant[i] = x;
32131a9c 856 else
d7f88d86
BS
857 {
858 reg_equiv_memory_loc[i]
859 = force_const_mem (GET_MODE (SET_DEST (set)), x);
860 if (! reg_equiv_memory_loc[i])
861 reg_equiv_init[i] = NULL_RTX;
862 }
863 }
864 else
865 {
866 reg_equiv_init[i] = NULL_RTX;
867 continue;
32131a9c
RK
868 }
869 }
d7f88d86
BS
870 else
871 reg_equiv_init[i] = NULL_RTX;
32131a9c 872 }
32131a9c
RK
873 }
874
d7f88d86
BS
875 if (dump_file)
876 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
877 if (reg_equiv_init[i])
878 {
879 fprintf (dump_file, "init_insns for %u: ", i);
880 print_inline_rtx (dump_file, reg_equiv_init[i], 20);
881 fprintf (dump_file, "\n");
882 }
883
09dd1133 884 init_elim_table ();
32131a9c 885
4cc0fdd2
JDA
886 first_label_num = get_first_label_num ();
887 num_labels = max_label_num () - first_label_num;
32131a9c
RK
888
889 /* Allocate the tables used to store offset information at labels. */
a68d4b75
BK
890 /* We used to use alloca here, but the size of what it would try to
891 allocate would occasionally cause it to exceed the stack limit and
892 cause a core dump. */
5ed6ace5
MD
893 offsets_known_at = XNEWVEC (char, num_labels);
894 offsets_at = (HOST_WIDE_INT (*)[NUM_ELIMINABLE_REGS]) xmalloc (num_labels * NUM_ELIMINABLE_REGS * sizeof (HOST_WIDE_INT));
32131a9c 895
058e97ec
VM
896 /* Alter each pseudo-reg rtx to contain its hard reg number. Assign
897 stack slots to the pseudos that lack hard regs or equivalents.
32131a9c
RK
898 Do not touch virtual registers. */
899
058e97ec
VM
900 temp_pseudo_reg_arr = XNEWVEC (int, max_regno - LAST_VIRTUAL_REGISTER - 1);
901 for (n = 0, i = LAST_VIRTUAL_REGISTER + 1; i < max_regno; i++)
902 temp_pseudo_reg_arr[n++] = i;
903
2af2dbdc 904 if (ira_conflicts_p)
058e97ec
VM
905 /* Ask IRA to order pseudo-registers for better stack slot
906 sharing. */
907 ira_sort_regnos_for_alter_reg (temp_pseudo_reg_arr, n, reg_max_ref_width);
908
909 for (i = 0; i < n; i++)
910 alter_reg (temp_pseudo_reg_arr[i], -1, false);
32131a9c 911
32131a9c
RK
912 /* If we have some registers we think can be eliminated, scan all insns to
913 see if there is an insn that sets one of these registers to something
914 other than itself plus a constant. If so, the register cannot be
915 eliminated. Doing this scan here eliminates an extra pass through the
916 main reload loop in the most common case where register elimination
917 cannot be done. */
918 for (insn = first; insn && num_eliminable; insn = NEXT_INSN (insn))
4b4bf941 919 if (INSN_P (insn))
84832317 920 note_stores (PATTERN (insn), mark_not_eliminable, NULL);
32131a9c 921
18a90182
BS
922 maybe_fix_stack_asms ();
923
03acd8f8
BS
924 insns_need_reload = 0;
925 something_needs_elimination = 0;
05d10675 926
4079cd63
JW
927 /* Initialize to -1, which means take the first spill register. */
928 last_spill_reg = -1;
929
32131a9c 930 /* Spill any hard regs that we know we can't eliminate. */
03acd8f8 931 CLEAR_HARD_REG_SET (used_spill_regs);
4ab51fb5
R
932 /* There can be multiple ways to eliminate a register;
933 they should be listed adjacently.
934 Elimination for any register fails only if all possible ways fail. */
935 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; )
936 {
937 int from = ep->from;
938 int can_eliminate = 0;
939 do
940 {
941 can_eliminate |= ep->can_eliminate;
942 ep++;
943 }
944 while (ep < &reg_eliminate[NUM_ELIMINABLE_REGS] && ep->from == from);
945 if (! can_eliminate)
946 spill_hard_reg (from, 1);
947 }
9ff3516a
RK
948
949#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
950 if (frame_pointer_needed)
e04ca094 951 spill_hard_reg (HARD_FRAME_POINTER_REGNUM, 1);
9ff3516a 952#endif
e04ca094 953 finish_spills (global);
7609e720 954
f1db3576
JL
955 /* From now on, we may need to generate moves differently. We may also
956 allow modifications of insns which cause them to not be recognized.
957 Any such modifications will be cleaned up during reload itself. */
b2f15f94
RK
958 reload_in_progress = 1;
959
32131a9c
RK
960 /* This loop scans the entire function each go-round
961 and repeats until one repetition spills no additional hard regs. */
03acd8f8 962 for (;;)
32131a9c 963 {
03acd8f8
BS
964 int something_changed;
965 int did_spill;
03acd8f8 966 HOST_WIDE_INT starting_frame_size;
32131a9c 967
7657bf2f
JW
968 starting_frame_size = get_frame_size ();
969
09dd1133 970 set_initial_elim_offsets ();
1f3b1e1a 971 set_initial_label_offsets ();
03acd8f8 972
32131a9c
RK
973 /* For each pseudo register that has an equivalent location defined,
974 try to eliminate any eliminable registers (such as the frame pointer)
975 assuming initial offsets for the replacement register, which
976 is the normal case.
977
978 If the resulting location is directly addressable, substitute
979 the MEM we just got directly for the old REG.
980
981 If it is not addressable but is a constant or the sum of a hard reg
982 and constant, it is probably not addressable because the constant is
983 out of range, in that case record the address; we will generate
984 hairy code to compute the address in a register each time it is
6491dbbb
RK
985 needed. Similarly if it is a hard register, but one that is not
986 valid as an address register.
32131a9c
RK
987
988 If the location is not addressable, but does not have one of the
989 above forms, assign a stack slot. We have to do this to avoid the
990 potential of producing lots of reloads if, e.g., a location involves
991 a pseudo that didn't get a hard register and has an equivalent memory
992 location that also involves a pseudo that didn't get a hard register.
993
994 Perhaps at some point we will improve reload_when_needed handling
995 so this problem goes away. But that's very hairy. */
996
997 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
998 if (reg_renumber[i] < 0 && reg_equiv_memory_loc[i])
999 {
1914f5da 1000 rtx x = eliminate_regs (reg_equiv_memory_loc[i], 0, NULL_RTX);
32131a9c
RK
1001
1002 if (strict_memory_address_p (GET_MODE (regno_reg_rtx[i]),
1003 XEXP (x, 0)))
1004 reg_equiv_mem[i] = x, reg_equiv_address[i] = 0;
1f663989 1005 else if (CONSTANT_P (XEXP (x, 0))
f8cfc6aa 1006 || (REG_P (XEXP (x, 0))
6491dbbb 1007 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
32131a9c 1008 || (GET_CODE (XEXP (x, 0)) == PLUS
f8cfc6aa 1009 && REG_P (XEXP (XEXP (x, 0), 0))
32131a9c
RK
1010 && (REGNO (XEXP (XEXP (x, 0), 0))
1011 < FIRST_PSEUDO_REGISTER)
1f663989 1012 && CONSTANT_P (XEXP (XEXP (x, 0), 1))))
32131a9c
RK
1013 reg_equiv_address[i] = XEXP (x, 0), reg_equiv_mem[i] = 0;
1014 else
1015 {
1016 /* Make a new stack slot. Then indicate that something
a8fdc208 1017 changed so we go back and recompute offsets for
32131a9c
RK
1018 eliminable registers because the allocation of memory
1019 below might change some offset. reg_equiv_{mem,address}
1020 will be set up for this pseudo on the next pass around
1021 the loop. */
1022 reg_equiv_memory_loc[i] = 0;
1023 reg_equiv_init[i] = 0;
058e97ec 1024 alter_reg (i, -1, true);
32131a9c
RK
1025 }
1026 }
a8fdc208 1027
437a710d
BS
1028 if (caller_save_needed)
1029 setup_save_areas ();
1030
03acd8f8 1031 /* If we allocated another stack slot, redo elimination bookkeeping. */
437a710d 1032 if (starting_frame_size != get_frame_size ())
32131a9c 1033 continue;
cb91fab0 1034 if (starting_frame_size && crtl->stack_alignment_needed)
970af867
NS
1035 {
1036 /* If we have a stack frame, we must align it now. The
1037 stack size may be a part of the offset computation for
1038 register elimination. So if this changes the stack size,
1039 then repeat the elimination bookkeeping. We don't
1040 realign when there is no stack, as that will cause a
1041 stack frame when none is needed should
1042 STARTING_FRAME_OFFSET not be already aligned to
1043 STACK_BOUNDARY. */
cb91fab0 1044 assign_stack_local (BLKmode, 0, crtl->stack_alignment_needed);
970af867
NS
1045 if (starting_frame_size != get_frame_size ())
1046 continue;
1047 }
32131a9c 1048
437a710d 1049 if (caller_save_needed)
a8efe40d 1050 {
437a710d
BS
1051 save_call_clobbered_regs ();
1052 /* That might have allocated new insn_chain structures. */
1634b18f 1053 reload_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
a8efe40d
RK
1054 }
1055
03acd8f8
BS
1056 calculate_needs_all_insns (global);
1057
2af2dbdc 1058 if (! ira_conflicts_p)
058e97ec
VM
1059 /* Don't do it for IRA. We need this info because we don't
1060 change live_throughout and dead_or_set for chains when IRA
1061 is used. */
1062 CLEAR_REG_SET (&spilled_pseudos);
1063
03acd8f8
BS
1064 did_spill = 0;
1065
1066 something_changed = 0;
32131a9c 1067
0dadecf6
RK
1068 /* If we allocated any new memory locations, make another pass
1069 since it might have changed elimination offsets. */
1070 if (starting_frame_size != get_frame_size ())
1071 something_changed = 1;
1072
9f938de1
UW
1073 /* Even if the frame size remained the same, we might still have
1074 changed elimination offsets, e.g. if find_reloads called
1075 force_const_mem requiring the back end to allocate a constant
1076 pool base register that needs to be saved on the stack. */
1077 else if (!verify_initial_elim_offsets ())
1078 something_changed = 1;
1079
09dd1133
BS
1080 {
1081 HARD_REG_SET to_spill;
1082 CLEAR_HARD_REG_SET (to_spill);
1083 update_eliminables (&to_spill);
247140ea 1084 AND_COMPL_HARD_REG_SET (used_spill_regs, to_spill);
184f4c56 1085
09dd1133
BS
1086 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1087 if (TEST_HARD_REG_BIT (to_spill, i))
32131a9c 1088 {
e04ca094 1089 spill_hard_reg (i, 1);
03acd8f8 1090 did_spill = 1;
8f5db3c1
JL
1091
1092 /* Regardless of the state of spills, if we previously had
e591c83d 1093 a register that we thought we could eliminate, but now can
8f5db3c1
JL
1094 not eliminate, we must run another pass.
1095
1096 Consider pseudos which have an entry in reg_equiv_* which
1097 reference an eliminable register. We must make another pass
1098 to update reg_equiv_* so that we do not substitute in the
1099 old value from when we thought the elimination could be
1100 performed. */
1101 something_changed = 1;
32131a9c 1102 }
09dd1133 1103 }
9ff3516a 1104
e04ca094 1105 select_reload_regs ();
e483bf9c
BS
1106 if (failure)
1107 goto failed;
437a710d 1108
e483bf9c 1109 if (insns_need_reload != 0 || did_spill)
e04ca094 1110 something_changed |= finish_spills (global);
7609e720 1111
03acd8f8
BS
1112 if (! something_changed)
1113 break;
1114
1115 if (caller_save_needed)
7609e720 1116 delete_caller_save_insns ();
f5d8c9f4
BS
1117
1118 obstack_free (&reload_obstack, reload_firstobj);
32131a9c
RK
1119 }
1120
1121 /* If global-alloc was run, notify it of any register eliminations we have
1122 done. */
1123 if (global)
1124 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
1125 if (ep->can_eliminate)
1126 mark_elimination (ep->from, ep->to);
1127
32131a9c
RK
1128 /* If a pseudo has no hard reg, delete the insns that made the equivalence.
1129 If that insn didn't set the register (i.e., it copied the register to
1130 memory), just delete that insn instead of the equivalencing insn plus
1131 anything now dead. If we call delete_dead_insn on that insn, we may
135eb61c 1132 delete the insn that actually sets the register if the register dies
32131a9c
RK
1133 there and that is incorrect. */
1134
1135 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
135eb61c
R
1136 {
1137 if (reg_renumber[i] < 0 && reg_equiv_init[i] != 0)
1138 {
1139 rtx list;
1140 for (list = reg_equiv_init[i]; list; list = XEXP (list, 1))
1141 {
1142 rtx equiv_insn = XEXP (list, 0);
78571511
RK
1143
1144 /* If we already deleted the insn or if it may trap, we can't
1145 delete it. The latter case shouldn't happen, but can
1146 if an insn has a variable address, gets a REG_EH_REGION
569b7f6a 1147 note added to it, and then gets converted into a load
78571511 1148 from a constant address. */
4b4bf941 1149 if (NOTE_P (equiv_insn)
78571511
RK
1150 || can_throw_internal (equiv_insn))
1151 ;
1152 else if (reg_set_p (regno_reg_rtx[i], PATTERN (equiv_insn)))
135eb61c
R
1153 delete_dead_insn (equiv_insn);
1154 else
6773e15f 1155 SET_INSN_DELETED (equiv_insn);
135eb61c
R
1156 }
1157 }
1158 }
32131a9c
RK
1159
1160 /* Use the reload registers where necessary
1161 by generating move instructions to move the must-be-register
1162 values into or out of the reload registers. */
1163
03acd8f8
BS
1164 if (insns_need_reload != 0 || something_needs_elimination
1165 || something_needs_operands_changed)
c47f5ea5 1166 {
102870fb 1167 HOST_WIDE_INT old_frame_size = get_frame_size ();
c47f5ea5 1168
e04ca094 1169 reload_as_needed (global);
c47f5ea5 1170
41374e13 1171 gcc_assert (old_frame_size == get_frame_size ());
c47f5ea5 1172
9f938de1 1173 gcc_assert (verify_initial_elim_offsets ());
c47f5ea5 1174 }
32131a9c 1175
2a1f8b6b 1176 /* If we were able to eliminate the frame pointer, show that it is no
546b63fb 1177 longer live at the start of any basic block. If it ls live by
2a1f8b6b
RK
1178 virtue of being in a pseudo, that pseudo will be marked live
1179 and hence the frame pointer will be known to be live via that
1180 pseudo. */
1181
1182 if (! frame_pointer_needed)
e0082a72 1183 FOR_EACH_BB (bb)
ba49cb7b 1184 bitmap_clear_bit (df_get_live_in (bb), HARD_FRAME_POINTER_REGNUM);
6fb5fa3c 1185
0e61db61
NS
1186 /* Come here (with failure set nonzero) if we can't get enough spill
1187 regs. */
5352b11a
RS
1188 failed:
1189
058e97ec 1190 CLEAR_REG_SET (&changed_allocation_pseudos);
f5d8c9f4 1191 CLEAR_REG_SET (&spilled_pseudos);
a3ec87a8
RS
1192 reload_in_progress = 0;
1193
32131a9c
RK
1194 /* Now eliminate all pseudo regs by modifying them into
1195 their equivalent memory references.
1196 The REG-rtx's for the pseudos are modified in place,
1197 so all insns that used to refer to them now refer to memory.
1198
1199 For a reg that has a reg_equiv_address, all those insns
1200 were changed by reloading so that no insns refer to it any longer;
1201 but the DECL_RTL of a variable decl may refer to it,
1202 and if so this causes the debugging info to mention the variable. */
1203
1204 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1205 {
1206 rtx addr = 0;
9ec36da5
JL
1207
1208 if (reg_equiv_mem[i])
1209 addr = XEXP (reg_equiv_mem[i], 0);
1210
32131a9c
RK
1211 if (reg_equiv_address[i])
1212 addr = reg_equiv_address[i];
9ec36da5 1213
32131a9c
RK
1214 if (addr)
1215 {
1216 if (reg_renumber[i] < 0)
1217 {
1218 rtx reg = regno_reg_rtx[i];
173b24b9 1219
5a63e069 1220 REG_USERVAR_P (reg) = 0;
ef178af3 1221 PUT_CODE (reg, MEM);
32131a9c 1222 XEXP (reg, 0) = addr;
173b24b9
RK
1223 if (reg_equiv_memory_loc[i])
1224 MEM_COPY_ATTRIBUTES (reg, reg_equiv_memory_loc[i]);
1225 else
1226 {
389fdba0 1227 MEM_IN_STRUCT_P (reg) = MEM_SCALAR_P (reg) = 0;
173b24b9
RK
1228 MEM_ATTRS (reg) = 0;
1229 }
be0c514c 1230 MEM_NOTRAP_P (reg) = 1;
32131a9c
RK
1231 }
1232 else if (reg_equiv_mem[i])
1233 XEXP (reg_equiv_mem[i], 0) = addr;
1234 }
1235 }
1236
2ae74651
JL
1237 /* We must set reload_completed now since the cleanup_subreg_operands call
1238 below will re-recognize each insn and reload may have generated insns
1239 which are only valid during and after reload. */
1240 reload_completed = 1;
1241
bd695e1e
RH
1242 /* Make a pass over all the insns and delete all USEs which we inserted
1243 only to tag a REG_EQUAL note on them. Remove all REG_DEAD and REG_UNUSED
41e34bab
DJ
1244 notes. Delete all CLOBBER insns, except those that refer to the return
1245 value and the special mem:BLK CLOBBERs added to prevent the scheduler
1246 from misarranging variable-array code, and simplify (subreg (reg))
4a8cae83
SB
1247 operands. Strip and regenerate REG_INC notes that may have been moved
1248 around. */
32131a9c 1249
ba4807a0
LB
1250 for (insn = first; insn; insn = NEXT_INSN (insn))
1251 if (INSN_P (insn))
1252 {
1253 rtx *pnote;
1254
1255 if (CALL_P (insn))
1256 replace_pseudos_in (& CALL_INSN_FUNCTION_USAGE (insn),
1257 VOIDmode, CALL_INSN_FUNCTION_USAGE (insn));
1258
1259 if ((GET_CODE (PATTERN (insn)) == USE
1260 /* We mark with QImode USEs introduced by reload itself. */
1261 && (GET_MODE (insn) == QImode
1262 || find_reg_note (insn, REG_EQUAL, NULL_RTX)))
1263 || (GET_CODE (PATTERN (insn)) == CLOBBER
1264 && (!MEM_P (XEXP (PATTERN (insn), 0))
1265 || GET_MODE (XEXP (PATTERN (insn), 0)) != BLKmode
1266 || (GET_CODE (XEXP (XEXP (PATTERN (insn), 0), 0)) != SCRATCH
1267 && XEXP (XEXP (PATTERN (insn), 0), 0)
1268 != stack_pointer_rtx))
1269 && (!REG_P (XEXP (PATTERN (insn), 0))
1270 || ! REG_FUNCTION_VALUE_P (XEXP (PATTERN (insn), 0)))))
1271 {
1272 delete_insn (insn);
1273 continue;
1274 }
1275
1276 /* Some CLOBBERs may survive until here and still reference unassigned
1277 pseudos with const equivalent, which may in turn cause ICE in later
1278 passes if the reference remains in place. */
1279 if (GET_CODE (PATTERN (insn)) == CLOBBER)
1280 replace_pseudos_in (& XEXP (PATTERN (insn), 0),
1281 VOIDmode, PATTERN (insn));
1282
1283 /* Discard obvious no-ops, even without -O. This optimization
1284 is fast and doesn't interfere with debugging. */
1285 if (NONJUMP_INSN_P (insn)
1286 && GET_CODE (PATTERN (insn)) == SET
1287 && REG_P (SET_SRC (PATTERN (insn)))
1288 && REG_P (SET_DEST (PATTERN (insn)))
1289 && (REGNO (SET_SRC (PATTERN (insn)))
1290 == REGNO (SET_DEST (PATTERN (insn)))))
1291 {
1292 delete_insn (insn);
1293 continue;
1294 }
1295
1296 pnote = &REG_NOTES (insn);
1297 while (*pnote != 0)
1298 {
1299 if (REG_NOTE_KIND (*pnote) == REG_DEAD
1300 || REG_NOTE_KIND (*pnote) == REG_UNUSED
4a8cae83 1301 || REG_NOTE_KIND (*pnote) == REG_INC)
ba4807a0
LB
1302 *pnote = XEXP (*pnote, 1);
1303 else
1304 pnote = &XEXP (*pnote, 1);
1305 }
0304f787 1306
2dfa9a87 1307#ifdef AUTO_INC_DEC
ba4807a0 1308 add_auto_inc_notes (insn, PATTERN (insn));
2dfa9a87
MH
1309#endif
1310
ba4807a0
LB
1311 /* Simplify (subreg (reg)) if it appears as an operand. */
1312 cleanup_subreg_operands (insn);
1313
1314 /* Clean up invalid ASMs so that they don't confuse later passes.
1315 See PR 21299. */
1316 if (asm_noperands (PATTERN (insn)) >= 0)
1317 {
1318 extract_insn (insn);
1319 if (!constrain_operands (1))
1320 {
1321 error_for_asm (insn,
1322 "%<asm%> operand has impossible constraints");
1323 delete_insn (insn);
1324 continue;
1325 }
1326 }
1327 }
32131a9c 1328
b38f3813
EB
1329 /* If we are doing generic stack checking, give a warning if this
1330 function's frame size is larger than we expect. */
1331 if (flag_stack_check == GENERIC_STACK_CHECK)
ab87f8c8
JL
1332 {
1333 HOST_WIDE_INT size = get_frame_size () + STACK_CHECK_FIXED_FRAME_SIZE;
05d10675
BS
1334 static int verbose_warned = 0;
1335
ab87f8c8 1336 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
6fb5fa3c 1337 if (df_regs_ever_live_p (i) && ! fixed_regs[i] && call_used_regs[i])
ab87f8c8
JL
1338 size += UNITS_PER_WORD;
1339
1340 if (size > STACK_CHECK_MAX_FRAME_SIZE)
05d10675 1341 {
d4ee4d25 1342 warning (0, "frame size too large for reliable stack checking");
ab87f8c8
JL
1343 if (! verbose_warned)
1344 {
d4ee4d25 1345 warning (0, "try reducing the number of local variables");
ab87f8c8
JL
1346 verbose_warned = 1;
1347 }
1348 }
1349 }
1350
32131a9c 1351 /* Indicate that we no longer have known memory locations or constants. */
58d9f9d9
JL
1352 if (reg_equiv_constant)
1353 free (reg_equiv_constant);
ab156144
RH
1354 if (reg_equiv_invariant)
1355 free (reg_equiv_invariant);
32131a9c 1356 reg_equiv_constant = 0;
ab156144 1357 reg_equiv_invariant = 0;
43b373a2 1358 VEC_free (rtx, gc, reg_equiv_memory_loc_vec);
32131a9c 1359 reg_equiv_memory_loc = 0;
5352b11a 1360
058e97ec
VM
1361 free (temp_pseudo_reg_arr);
1362
4cc0fdd2
JDA
1363 if (offsets_known_at)
1364 free (offsets_known_at);
1365 if (offsets_at)
1366 free (offsets_at);
a68d4b75 1367
3f1e3e70
AO
1368 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1369 if (reg_equiv_alt_mem_list[i])
1370 free_EXPR_LIST_list (&reg_equiv_alt_mem_list[i]);
1371 free (reg_equiv_alt_mem_list);
1372
56a65848 1373 free (reg_equiv_mem);
d7f88d86 1374 reg_equiv_init = 0;
56a65848
DB
1375 free (reg_equiv_address);
1376 free (reg_max_ref_width);
03acd8f8
BS
1377 free (reg_old_renumber);
1378 free (pseudo_previous_regs);
1379 free (pseudo_forbidden_regs);
56a65848 1380
8b4f9969
JW
1381 CLEAR_HARD_REG_SET (used_spill_regs);
1382 for (i = 0; i < n_spills; i++)
1383 SET_HARD_REG_BIT (used_spill_regs, spill_regs[i]);
1384
7609e720
BS
1385 /* Free all the insn_chain structures at once. */
1386 obstack_free (&reload_obstack, reload_startobj);
1387 unused_insn_chains = 0;
f1330226 1388 fixup_abnormal_edges ();
7609e720 1389
e16e3291
UW
1390 /* Replacing pseudos with their memory equivalents might have
1391 created shared rtx. Subsequent passes would get confused
1392 by this, so unshare everything here. */
1393 unshare_all_rtl_again (first);
1394
b483cfb7
EB
1395#ifdef STACK_BOUNDARY
1396 /* init_emit has set the alignment of the hard frame pointer
1397 to STACK_BOUNDARY. It is very likely no longer valid if
1398 the hard frame pointer was used for register allocation. */
1399 if (!frame_pointer_needed)
1400 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = BITS_PER_UNIT;
1401#endif
1402
5352b11a 1403 return failure;
32131a9c 1404}
1e5bd841 1405
18a90182
BS
1406/* Yet another special case. Unfortunately, reg-stack forces people to
1407 write incorrect clobbers in asm statements. These clobbers must not
1408 cause the register to appear in bad_spill_regs, otherwise we'll call
1409 fatal_insn later. We clear the corresponding regnos in the live
1410 register sets to avoid this.
1411 The whole thing is rather sick, I'm afraid. */
efc9bd41 1412
18a90182 1413static void
0c20a65f 1414maybe_fix_stack_asms (void)
18a90182
BS
1415{
1416#ifdef STACK_REGS
392dccb7 1417 const char *constraints[MAX_RECOG_OPERANDS];
18a90182
BS
1418 enum machine_mode operand_mode[MAX_RECOG_OPERANDS];
1419 struct insn_chain *chain;
1420
1421 for (chain = reload_insn_chain; chain != 0; chain = chain->next)
1422 {
1423 int i, noperands;
1424 HARD_REG_SET clobbered, allowed;
1425 rtx pat;
1426
2c3c49de 1427 if (! INSN_P (chain->insn)
18a90182
BS
1428 || (noperands = asm_noperands (PATTERN (chain->insn))) < 0)
1429 continue;
1430 pat = PATTERN (chain->insn);
1431 if (GET_CODE (pat) != PARALLEL)
1432 continue;
1433
1434 CLEAR_HARD_REG_SET (clobbered);
1435 CLEAR_HARD_REG_SET (allowed);
1436
1437 /* First, make a mask of all stack regs that are clobbered. */
1438 for (i = 0; i < XVECLEN (pat, 0); i++)
1439 {
1440 rtx t = XVECEXP (pat, 0, i);
1441 if (GET_CODE (t) == CLOBBER && STACK_REG_P (XEXP (t, 0)))
1442 SET_HARD_REG_BIT (clobbered, REGNO (XEXP (t, 0)));
1443 }
1444
1445 /* Get the operand values and constraints out of the insn. */
1ccbefce 1446 decode_asm_operands (pat, recog_data.operand, recog_data.operand_loc,
bff4b63d 1447 constraints, operand_mode, NULL);
18a90182
BS
1448
1449 /* For every operand, see what registers are allowed. */
1450 for (i = 0; i < noperands; i++)
1451 {
6b9c6f4f 1452 const char *p = constraints[i];
18a90182
BS
1453 /* For every alternative, we compute the class of registers allowed
1454 for reloading in CLS, and merge its contents into the reg set
1455 ALLOWED. */
1456 int cls = (int) NO_REGS;
1457
1458 for (;;)
1459 {
97488870 1460 char c = *p;
18a90182
BS
1461
1462 if (c == '\0' || c == ',' || c == '#')
1463 {
1464 /* End of one alternative - mark the regs in the current
1465 class, and reset the class. */
1466 IOR_HARD_REG_SET (allowed, reg_class_contents[cls]);
1467 cls = NO_REGS;
97488870 1468 p++;
18a90182
BS
1469 if (c == '#')
1470 do {
1471 c = *p++;
1472 } while (c != '\0' && c != ',');
1473 if (c == '\0')
1474 break;
1475 continue;
1476 }
1477
1478 switch (c)
1479 {
1480 case '=': case '+': case '*': case '%': case '?': case '!':
a4edaf83
AK
1481 case '0': case '1': case '2': case '3': case '4': case '<':
1482 case '>': case 'V': case 'o': case '&': case 'E': case 'F':
1483 case 's': case 'i': case 'n': case 'X': case 'I': case 'J':
1484 case 'K': case 'L': case 'M': case 'N': case 'O': case 'P':
1485 case TARGET_MEM_CONSTRAINT:
18a90182
BS
1486 break;
1487
1488 case 'p':
3dcc68a4 1489 cls = (int) reg_class_subunion[cls]
c4963a0a 1490 [(int) base_reg_class (VOIDmode, ADDRESS, SCRATCH)];
18a90182
BS
1491 break;
1492
1493 case 'g':
1494 case 'r':
1495 cls = (int) reg_class_subunion[cls][(int) GENERAL_REGS];
1496 break;
1497
1498 default:
97488870 1499 if (EXTRA_ADDRESS_CONSTRAINT (c, p))
ccfc6cc8 1500 cls = (int) reg_class_subunion[cls]
c4963a0a 1501 [(int) base_reg_class (VOIDmode, ADDRESS, SCRATCH)];
ccfc6cc8
UW
1502 else
1503 cls = (int) reg_class_subunion[cls]
97488870 1504 [(int) REG_CLASS_FROM_CONSTRAINT (c, p)];
18a90182 1505 }
97488870 1506 p += CONSTRAINT_LEN (c, p);
18a90182
BS
1507 }
1508 }
1509 /* Those of the registers which are clobbered, but allowed by the
1510 constraints, must be usable as reload registers. So clear them
1511 out of the life information. */
1512 AND_HARD_REG_SET (allowed, clobbered);
1513 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1514 if (TEST_HARD_REG_BIT (allowed, i))
1515 {
239a0f5b
BS
1516 CLEAR_REGNO_REG_SET (&chain->live_throughout, i);
1517 CLEAR_REGNO_REG_SET (&chain->dead_or_set, i);
18a90182
BS
1518 }
1519 }
1520
1521#endif
1522}
03acd8f8 1523\f
f5d8c9f4
BS
1524/* Copy the global variables n_reloads and rld into the corresponding elts
1525 of CHAIN. */
1526static void
0c20a65f 1527copy_reloads (struct insn_chain *chain)
f5d8c9f4
BS
1528{
1529 chain->n_reloads = n_reloads;
1634b18f 1530 chain->rld = XOBNEWVEC (&reload_obstack, struct reload, n_reloads);
f5d8c9f4 1531 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
1634b18f 1532 reload_insn_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
f5d8c9f4
BS
1533}
1534
03acd8f8
BS
1535/* Walk the chain of insns, and determine for each whether it needs reloads
1536 and/or eliminations. Build the corresponding insns_need_reload list, and
1537 set something_needs_elimination as appropriate. */
1538static void
0c20a65f 1539calculate_needs_all_insns (int global)
1e5bd841 1540{
7609e720 1541 struct insn_chain **pprev_reload = &insns_need_reload;
462561b7 1542 struct insn_chain *chain, *next = 0;
1e5bd841 1543
03acd8f8
BS
1544 something_needs_elimination = 0;
1545
1634b18f 1546 reload_insn_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
462561b7 1547 for (chain = reload_insn_chain; chain != 0; chain = next)
1e5bd841 1548 {
67e61fe7 1549 rtx insn = chain->insn;
03acd8f8 1550
462561b7
JJ
1551 next = chain->next;
1552
f5d8c9f4
BS
1553 /* Clear out the shortcuts. */
1554 chain->n_reloads = 0;
67e61fe7
BS
1555 chain->need_elim = 0;
1556 chain->need_reload = 0;
1557 chain->need_operand_change = 0;
1e5bd841 1558
03acd8f8 1559 /* If this is a label, a JUMP_INSN, or has REG_NOTES (which might
cf7c4aa6
HPN
1560 include REG_LABEL_OPERAND and REG_LABEL_TARGET), we need to see
1561 what effects this has on the known offsets at labels. */
1e5bd841 1562
4b4bf941 1563 if (LABEL_P (insn) || JUMP_P (insn)
2c3c49de 1564 || (INSN_P (insn) && REG_NOTES (insn) != 0))
1e5bd841
BS
1565 set_label_offsets (insn, insn, 0);
1566
2c3c49de 1567 if (INSN_P (insn))
1e5bd841
BS
1568 {
1569 rtx old_body = PATTERN (insn);
1570 int old_code = INSN_CODE (insn);
1571 rtx old_notes = REG_NOTES (insn);
1572 int did_elimination = 0;
cb2afeb3 1573 int operands_changed = 0;
2b49ee39
R
1574 rtx set = single_set (insn);
1575
1576 /* Skip insns that only set an equivalence. */
f8cfc6aa 1577 if (set && REG_P (SET_DEST (set))
2b49ee39 1578 && reg_renumber[REGNO (SET_DEST (set))] < 0
ab156144
RH
1579 && (reg_equiv_constant[REGNO (SET_DEST (set))]
1580 || (reg_equiv_invariant[REGNO (SET_DEST (set))]))
1581 && reg_equiv_init[REGNO (SET_DEST (set))])
67e61fe7 1582 continue;
1e5bd841 1583
1e5bd841 1584 /* If needed, eliminate any eliminable registers. */
2b49ee39 1585 if (num_eliminable || num_eliminable_invariants)
1e5bd841
BS
1586 did_elimination = eliminate_regs_in_insn (insn, 0);
1587
1588 /* Analyze the instruction. */
cb2afeb3
R
1589 operands_changed = find_reloads (insn, 0, spill_indirect_levels,
1590 global, spill_reg_order);
1591
1592 /* If a no-op set needs more than one reload, this is likely
1593 to be something that needs input address reloads. We
1594 can't get rid of this cleanly later, and it is of no use
1595 anyway, so discard it now.
1596 We only do this when expensive_optimizations is enabled,
1597 since this complements reload inheritance / output
1598 reload deletion, and it can make debugging harder. */
1599 if (flag_expensive_optimizations && n_reloads > 1)
1600 {
1601 rtx set = single_set (insn);
1602 if (set
058e97ec
VM
1603 &&
1604 ((SET_SRC (set) == SET_DEST (set)
1605 && REG_P (SET_SRC (set))
1606 && REGNO (SET_SRC (set)) >= FIRST_PSEUDO_REGISTER)
1607 || (REG_P (SET_SRC (set)) && REG_P (SET_DEST (set))
1608 && reg_renumber[REGNO (SET_SRC (set))] < 0
1609 && reg_renumber[REGNO (SET_DEST (set))] < 0
1610 && reg_equiv_memory_loc[REGNO (SET_SRC (set))] != NULL
1611 && reg_equiv_memory_loc[REGNO (SET_DEST (set))] != NULL
1612 && rtx_equal_p (reg_equiv_memory_loc
1613 [REGNO (SET_SRC (set))],
1614 reg_equiv_memory_loc
1615 [REGNO (SET_DEST (set))]))))
cb2afeb3 1616 {
2af2dbdc 1617 if (ira_conflicts_p)
058e97ec
VM
1618 /* Inform IRA about the insn deletion. */
1619 ira_mark_memory_move_deletion (REGNO (SET_DEST (set)),
1620 REGNO (SET_SRC (set)));
ca6c03ca 1621 delete_insn (insn);
3eae4643 1622 /* Delete it from the reload chain. */
462561b7
JJ
1623 if (chain->prev)
1624 chain->prev->next = next;
1625 else
1626 reload_insn_chain = next;
1627 if (next)
1628 next->prev = chain->prev;
1629 chain->next = unused_insn_chains;
1630 unused_insn_chains = chain;
cb2afeb3
R
1631 continue;
1632 }
1633 }
1634 if (num_eliminable)
1635 update_eliminable_offsets ();
1e5bd841
BS
1636
1637 /* Remember for later shortcuts which insns had any reloads or
7609e720
BS
1638 register eliminations. */
1639 chain->need_elim = did_elimination;
03acd8f8
BS
1640 chain->need_reload = n_reloads > 0;
1641 chain->need_operand_change = operands_changed;
1e5bd841
BS
1642
1643 /* Discard any register replacements done. */
1644 if (did_elimination)
1645 {
f5d8c9f4 1646 obstack_free (&reload_obstack, reload_insn_firstobj);
1e5bd841
BS
1647 PATTERN (insn) = old_body;
1648 INSN_CODE (insn) = old_code;
1649 REG_NOTES (insn) = old_notes;
1650 something_needs_elimination = 1;
1651 }
1652
cb2afeb3
R
1653 something_needs_operands_changed |= operands_changed;
1654
437a710d 1655 if (n_reloads != 0)
7609e720 1656 {
f5d8c9f4 1657 copy_reloads (chain);
7609e720
BS
1658 *pprev_reload = chain;
1659 pprev_reload = &chain->next_need_reload;
7609e720 1660 }
1e5bd841 1661 }
1e5bd841 1662 }
7609e720 1663 *pprev_reload = 0;
1e5bd841 1664}
f5d8c9f4
BS
1665\f
1666/* Comparison function for qsort to decide which of two reloads
1667 should be handled first. *P1 and *P2 are the reload numbers. */
1e5bd841 1668
f5d8c9f4 1669static int
0c20a65f 1670reload_reg_class_lower (const void *r1p, const void *r2p)
1e5bd841 1671{
b3694847
SS
1672 int r1 = *(const short *) r1p, r2 = *(const short *) r2p;
1673 int t;
1e5bd841 1674
f5d8c9f4
BS
1675 /* Consider required reloads before optional ones. */
1676 t = rld[r1].optional - rld[r2].optional;
1677 if (t != 0)
1678 return t;
1e5bd841 1679
f5d8c9f4 1680 /* Count all solitary classes before non-solitary ones. */
48c54229
KG
1681 t = ((reg_class_size[(int) rld[r2].rclass] == 1)
1682 - (reg_class_size[(int) rld[r1].rclass] == 1));
f5d8c9f4
BS
1683 if (t != 0)
1684 return t;
1e5bd841 1685
f5d8c9f4
BS
1686 /* Aside from solitaires, consider all multi-reg groups first. */
1687 t = rld[r2].nregs - rld[r1].nregs;
1688 if (t != 0)
1689 return t;
1e5bd841 1690
f5d8c9f4 1691 /* Consider reloads in order of increasing reg-class number. */
48c54229 1692 t = (int) rld[r1].rclass - (int) rld[r2].rclass;
f5d8c9f4
BS
1693 if (t != 0)
1694 return t;
1e5bd841 1695
f5d8c9f4
BS
1696 /* If reloads are equally urgent, sort by reload number,
1697 so that the results of qsort leave nothing to chance. */
1698 return r1 - r2;
1699}
1700\f
1701/* The cost of spilling each hard reg. */
1702static int spill_cost[FIRST_PSEUDO_REGISTER];
1e5bd841 1703
f5d8c9f4
BS
1704/* When spilling multiple hard registers, we use SPILL_COST for the first
1705 spilled hard reg and SPILL_ADD_COST for subsequent regs. SPILL_ADD_COST
1706 only the first hard reg for a multi-reg pseudo. */
1707static int spill_add_cost[FIRST_PSEUDO_REGISTER];
1e5bd841 1708
058e97ec
VM
1709/* Map of hard regno to pseudo regno currently occupying the hard
1710 reg. */
1711static int hard_regno_to_pseudo_regno[FIRST_PSEUDO_REGISTER];
1712
f5d8c9f4 1713/* Update the spill cost arrays, considering that pseudo REG is live. */
770ae6cc 1714
f5d8c9f4 1715static void
0c20a65f 1716count_pseudo (int reg)
f5d8c9f4 1717{
b2aec5c0 1718 int freq = REG_FREQ (reg);
f5d8c9f4
BS
1719 int r = reg_renumber[reg];
1720 int nregs;
1e5bd841 1721
f5d8c9f4 1722 if (REGNO_REG_SET_P (&pseudos_counted, reg)
058e97ec
VM
1723 || REGNO_REG_SET_P (&spilled_pseudos, reg)
1724 /* Ignore spilled pseudo-registers which can be here only if IRA
1725 is used. */
2af2dbdc 1726 || (ira_conflicts_p && r < 0))
f5d8c9f4 1727 return;
1e5bd841 1728
f5d8c9f4 1729 SET_REGNO_REG_SET (&pseudos_counted, reg);
1e5bd841 1730
41374e13 1731 gcc_assert (r >= 0);
1d7254c5 1732
b2aec5c0 1733 spill_add_cost[r] += freq;
66fd46b6 1734 nregs = hard_regno_nregs[r][PSEUDO_REGNO_MODE (reg)];
f5d8c9f4 1735 while (nregs-- > 0)
058e97ec
VM
1736 {
1737 hard_regno_to_pseudo_regno[r + nregs] = reg;
1738 spill_cost[r + nregs] += freq;
1739 }
f5d8c9f4 1740}
1e5bd841 1741
f5d8c9f4
BS
1742/* Calculate the SPILL_COST and SPILL_ADD_COST arrays and determine the
1743 contents of BAD_SPILL_REGS for the insn described by CHAIN. */
efc9bd41 1744
f5d8c9f4 1745static void
0c20a65f 1746order_regs_for_reload (struct insn_chain *chain)
f5d8c9f4 1747{
3cd8c58a 1748 unsigned i;
efc9bd41
RK
1749 HARD_REG_SET used_by_pseudos;
1750 HARD_REG_SET used_by_pseudos2;
a2041967 1751 reg_set_iterator rsi;
1e5bd841 1752
efc9bd41 1753 COPY_HARD_REG_SET (bad_spill_regs, fixed_reg_set);
1e5bd841 1754
f5d8c9f4
BS
1755 memset (spill_cost, 0, sizeof spill_cost);
1756 memset (spill_add_cost, 0, sizeof spill_add_cost);
058e97ec
VM
1757 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1758 hard_regno_to_pseudo_regno[i] = -1;
1e5bd841 1759
f5d8c9f4 1760 /* Count number of uses of each hard reg by pseudo regs allocated to it
efc9bd41
RK
1761 and then order them by decreasing use. First exclude hard registers
1762 that are live in or across this insn. */
1763
1764 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
1765 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
1766 IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos);
1767 IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos2);
1e5bd841 1768
f5d8c9f4
BS
1769 /* Now find out which pseudos are allocated to it, and update
1770 hard_reg_n_uses. */
1771 CLEAR_REG_SET (&pseudos_counted);
1e5bd841 1772
f5d8c9f4 1773 EXECUTE_IF_SET_IN_REG_SET
a2041967
KH
1774 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i, rsi)
1775 {
1776 count_pseudo (i);
1777 }
f5d8c9f4 1778 EXECUTE_IF_SET_IN_REG_SET
a2041967
KH
1779 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i, rsi)
1780 {
1781 count_pseudo (i);
1782 }
f5d8c9f4 1783 CLEAR_REG_SET (&pseudos_counted);
1e5bd841 1784}
03acd8f8 1785\f
f5d8c9f4
BS
1786/* Vector of reload-numbers showing the order in which the reloads should
1787 be processed. */
1788static short reload_order[MAX_RELOADS];
1e5bd841 1789
f5d8c9f4
BS
1790/* This is used to keep track of the spill regs used in one insn. */
1791static HARD_REG_SET used_spill_regs_local;
03acd8f8 1792
f5d8c9f4
BS
1793/* We decided to spill hard register SPILLED, which has a size of
1794 SPILLED_NREGS. Determine how pseudo REG, which is live during the insn,
1795 is affected. We will add it to SPILLED_PSEUDOS if necessary, and we will
1796 update SPILL_COST/SPILL_ADD_COST. */
770ae6cc 1797
03acd8f8 1798static void
0c20a65f 1799count_spilled_pseudo (int spilled, int spilled_nregs, int reg)
1e5bd841 1800{
058e97ec 1801 int freq = REG_FREQ (reg);
f5d8c9f4 1802 int r = reg_renumber[reg];
66fd46b6 1803 int nregs = hard_regno_nregs[r][PSEUDO_REGNO_MODE (reg)];
1e5bd841 1804
058e97ec
VM
1805 /* Ignore spilled pseudo-registers which can be here only if IRA is
1806 used. */
2af2dbdc 1807 if ((ira_conflicts_p && r < 0)
058e97ec 1808 || REGNO_REG_SET_P (&spilled_pseudos, reg)
f5d8c9f4
BS
1809 || spilled + spilled_nregs <= r || r + nregs <= spilled)
1810 return;
1e5bd841 1811
f5d8c9f4 1812 SET_REGNO_REG_SET (&spilled_pseudos, reg);
1e5bd841 1813
058e97ec 1814 spill_add_cost[r] -= freq;
f5d8c9f4 1815 while (nregs-- > 0)
058e97ec
VM
1816 {
1817 hard_regno_to_pseudo_regno[r + nregs] = -1;
1818 spill_cost[r + nregs] -= freq;
1819 }
1e5bd841
BS
1820}
1821
f5d8c9f4 1822/* Find reload register to use for reload number ORDER. */
03acd8f8 1823
f5d8c9f4 1824static int
0c20a65f 1825find_reg (struct insn_chain *chain, int order)
1e5bd841 1826{
f5d8c9f4
BS
1827 int rnum = reload_order[order];
1828 struct reload *rl = rld + rnum;
1829 int best_cost = INT_MAX;
1830 int best_reg = -1;
058e97ec 1831 unsigned int i, j, n;
770ae6cc 1832 int k;
f5d8c9f4
BS
1833 HARD_REG_SET not_usable;
1834 HARD_REG_SET used_by_other_reload;
a2041967 1835 reg_set_iterator rsi;
058e97ec
VM
1836 static int regno_pseudo_regs[FIRST_PSEUDO_REGISTER];
1837 static int best_regno_pseudo_regs[FIRST_PSEUDO_REGISTER];
1e5bd841 1838
f5d8c9f4
BS
1839 COPY_HARD_REG_SET (not_usable, bad_spill_regs);
1840 IOR_HARD_REG_SET (not_usable, bad_spill_regs_global);
48c54229 1841 IOR_COMPL_HARD_REG_SET (not_usable, reg_class_contents[rl->rclass]);
f5d8c9f4
BS
1842
1843 CLEAR_HARD_REG_SET (used_by_other_reload);
770ae6cc 1844 for (k = 0; k < order; k++)
1e5bd841 1845 {
770ae6cc
RK
1846 int other = reload_order[k];
1847
f5d8c9f4
BS
1848 if (rld[other].regno >= 0 && reloads_conflict (other, rnum))
1849 for (j = 0; j < rld[other].nregs; j++)
1850 SET_HARD_REG_BIT (used_by_other_reload, rld[other].regno + j);
1851 }
1e5bd841 1852
f5d8c9f4
BS
1853 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1854 {
058e97ec
VM
1855#ifdef REG_ALLOC_ORDER
1856 unsigned int regno = reg_alloc_order[i];
1857#else
770ae6cc 1858 unsigned int regno = i;
058e97ec 1859#endif
770ae6cc 1860
f5d8c9f4
BS
1861 if (! TEST_HARD_REG_BIT (not_usable, regno)
1862 && ! TEST_HARD_REG_BIT (used_by_other_reload, regno)
1863 && HARD_REGNO_MODE_OK (regno, rl->mode))
1e5bd841 1864 {
f5d8c9f4
BS
1865 int this_cost = spill_cost[regno];
1866 int ok = 1;
66fd46b6 1867 unsigned int this_nregs = hard_regno_nregs[regno][rl->mode];
1e5bd841 1868
f5d8c9f4
BS
1869 for (j = 1; j < this_nregs; j++)
1870 {
1871 this_cost += spill_add_cost[regno + j];
1872 if ((TEST_HARD_REG_BIT (not_usable, regno + j))
1873 || TEST_HARD_REG_BIT (used_by_other_reload, regno + j))
1874 ok = 0;
1875 }
1876 if (! ok)
1877 continue;
058e97ec 1878
2af2dbdc 1879 if (ira_conflicts_p)
058e97ec
VM
1880 {
1881 /* Ask IRA to find a better pseudo-register for
1882 spilling. */
1883 for (n = j = 0; j < this_nregs; j++)
1884 {
1885 int r = hard_regno_to_pseudo_regno[regno + j];
1886
1887 if (r < 0)
1888 continue;
1889 if (n == 0 || regno_pseudo_regs[n - 1] != r)
1890 regno_pseudo_regs[n++] = r;
1891 }
1892 regno_pseudo_regs[n++] = -1;
1893 if (best_reg < 0
1894 || ira_better_spill_reload_regno_p (regno_pseudo_regs,
1895 best_regno_pseudo_regs,
1896 rl->in, rl->out,
1897 chain->insn))
1898 {
1899 best_reg = regno;
1900 for (j = 0;; j++)
1901 {
1902 best_regno_pseudo_regs[j] = regno_pseudo_regs[j];
1903 if (regno_pseudo_regs[j] < 0)
1904 break;
1905 }
1906 }
1907 continue;
1908 }
1909
f8cfc6aa 1910 if (rl->in && REG_P (rl->in) && REGNO (rl->in) == regno)
f5d8c9f4 1911 this_cost--;
f8cfc6aa 1912 if (rl->out && REG_P (rl->out) && REGNO (rl->out) == regno)
f5d8c9f4
BS
1913 this_cost--;
1914 if (this_cost < best_cost
1915 /* Among registers with equal cost, prefer caller-saved ones, or
1916 use REG_ALLOC_ORDER if it is defined. */
1917 || (this_cost == best_cost
1918#ifdef REG_ALLOC_ORDER
1919 && (inv_reg_alloc_order[regno]
1920 < inv_reg_alloc_order[best_reg])
1921#else
1922 && call_used_regs[regno]
1923 && ! call_used_regs[best_reg]
1924#endif
1925 ))
1926 {
1927 best_reg = regno;
1928 best_cost = this_cost;
1e5bd841
BS
1929 }
1930 }
1931 }
f5d8c9f4
BS
1932 if (best_reg == -1)
1933 return 0;
770ae6cc 1934
c263766c
RH
1935 if (dump_file)
1936 fprintf (dump_file, "Using reg %d for reload %d\n", best_reg, rnum);
770ae6cc 1937
66fd46b6 1938 rl->nregs = hard_regno_nregs[best_reg][rl->mode];
f5d8c9f4 1939 rl->regno = best_reg;
1e5bd841 1940
f5d8c9f4 1941 EXECUTE_IF_SET_IN_REG_SET
a2041967
KH
1942 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, j, rsi)
1943 {
1944 count_spilled_pseudo (best_reg, rl->nregs, j);
1945 }
770ae6cc 1946
f5d8c9f4 1947 EXECUTE_IF_SET_IN_REG_SET
a2041967
KH
1948 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, j, rsi)
1949 {
1950 count_spilled_pseudo (best_reg, rl->nregs, j);
1951 }
03acd8f8 1952
f5d8c9f4
BS
1953 for (i = 0; i < rl->nregs; i++)
1954 {
41374e13
NS
1955 gcc_assert (spill_cost[best_reg + i] == 0);
1956 gcc_assert (spill_add_cost[best_reg + i] == 0);
058e97ec 1957 gcc_assert (hard_regno_to_pseudo_regno[best_reg + i] == -1);
f5d8c9f4
BS
1958 SET_HARD_REG_BIT (used_spill_regs_local, best_reg + i);
1959 }
1960 return 1;
03acd8f8
BS
1961}
1962
1963/* Find more reload regs to satisfy the remaining need of an insn, which
1964 is given by CHAIN.
1e5bd841
BS
1965 Do it by ascending class number, since otherwise a reg
1966 might be spilled for a big class and might fail to count
f5d8c9f4 1967 for a smaller class even though it belongs to that class. */
1e5bd841 1968
03acd8f8 1969static void
0c20a65f 1970find_reload_regs (struct insn_chain *chain)
1e5bd841 1971{
f5d8c9f4 1972 int i;
1e5bd841 1973
f5d8c9f4
BS
1974 /* In order to be certain of getting the registers we need,
1975 we must sort the reloads into order of increasing register class.
1976 Then our grabbing of reload registers will parallel the process
1977 that provided the reload registers. */
1978 for (i = 0; i < chain->n_reloads; i++)
1e5bd841 1979 {
f5d8c9f4
BS
1980 /* Show whether this reload already has a hard reg. */
1981 if (chain->rld[i].reg_rtx)
1e5bd841 1982 {
f5d8c9f4
BS
1983 int regno = REGNO (chain->rld[i].reg_rtx);
1984 chain->rld[i].regno = regno;
770ae6cc 1985 chain->rld[i].nregs
66fd46b6 1986 = hard_regno_nregs[regno][GET_MODE (chain->rld[i].reg_rtx)];
1e5bd841 1987 }
f5d8c9f4
BS
1988 else
1989 chain->rld[i].regno = -1;
1990 reload_order[i] = i;
1991 }
1e5bd841 1992
f5d8c9f4
BS
1993 n_reloads = chain->n_reloads;
1994 memcpy (rld, chain->rld, n_reloads * sizeof (struct reload));
1e5bd841 1995
f5d8c9f4 1996 CLEAR_HARD_REG_SET (used_spill_regs_local);
03acd8f8 1997
c263766c
RH
1998 if (dump_file)
1999 fprintf (dump_file, "Spilling for insn %d.\n", INSN_UID (chain->insn));
1e5bd841 2000
f5d8c9f4 2001 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
1e5bd841 2002
f5d8c9f4 2003 /* Compute the order of preference for hard registers to spill. */
1e5bd841 2004
f5d8c9f4 2005 order_regs_for_reload (chain);
1e5bd841 2006
f5d8c9f4
BS
2007 for (i = 0; i < n_reloads; i++)
2008 {
2009 int r = reload_order[i];
1e5bd841 2010
f5d8c9f4
BS
2011 /* Ignore reloads that got marked inoperative. */
2012 if ((rld[r].out != 0 || rld[r].in != 0 || rld[r].secondary_p)
2013 && ! rld[r].optional
2014 && rld[r].regno == -1)
e04ca094 2015 if (! find_reg (chain, i))
f5d8c9f4 2016 {
ff182b5c 2017 if (dump_file)
247140ea 2018 fprintf (dump_file, "reload failure for reload %d\n", r);
48c54229 2019 spill_failure (chain->insn, rld[r].rclass);
f5d8c9f4 2020 failure = 1;
03acd8f8 2021 return;
f5d8c9f4 2022 }
1e5bd841 2023 }
05d10675 2024
f5d8c9f4
BS
2025 COPY_HARD_REG_SET (chain->used_spill_regs, used_spill_regs_local);
2026 IOR_HARD_REG_SET (used_spill_regs, used_spill_regs_local);
03acd8f8 2027
f5d8c9f4 2028 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
1e5bd841
BS
2029}
2030
f5d8c9f4 2031static void
0c20a65f 2032select_reload_regs (void)
09dd1133 2033{
f5d8c9f4 2034 struct insn_chain *chain;
09dd1133 2035
f5d8c9f4
BS
2036 /* Try to satisfy the needs for each insn. */
2037 for (chain = insns_need_reload; chain != 0;
2038 chain = chain->next_need_reload)
e04ca094 2039 find_reload_regs (chain);
09dd1133 2040}
32131a9c 2041\f
437a710d
BS
2042/* Delete all insns that were inserted by emit_caller_save_insns during
2043 this iteration. */
2044static void
0c20a65f 2045delete_caller_save_insns (void)
437a710d 2046{
7609e720 2047 struct insn_chain *c = reload_insn_chain;
437a710d 2048
7609e720 2049 while (c != 0)
437a710d 2050 {
7609e720 2051 while (c != 0 && c->is_caller_save_insn)
437a710d 2052 {
7609e720
BS
2053 struct insn_chain *next = c->next;
2054 rtx insn = c->insn;
2055
7609e720
BS
2056 if (c == reload_insn_chain)
2057 reload_insn_chain = next;
ca6c03ca 2058 delete_insn (insn);
7609e720
BS
2059
2060 if (next)
2061 next->prev = c->prev;
2062 if (c->prev)
2063 c->prev->next = next;
2064 c->next = unused_insn_chains;
2065 unused_insn_chains = c;
2066 c = next;
437a710d 2067 }
7609e720
BS
2068 if (c != 0)
2069 c = c->next;
437a710d
BS
2070 }
2071}
2072\f
5352b11a
RS
2073/* Handle the failure to find a register to spill.
2074 INSN should be one of the insns which needed this particular spill reg. */
2075
2076static void
55d796da 2077spill_failure (rtx insn, enum reg_class rclass)
5352b11a
RS
2078{
2079 if (asm_noperands (PATTERN (insn)) >= 0)
971801ff
JM
2080 error_for_asm (insn, "can't find a register in class %qs while "
2081 "reloading %<asm%>",
55d796da 2082 reg_class_names[rclass]);
5352b11a 2083 else
ecf3151a 2084 {
971801ff 2085 error ("unable to find a register to spill in class %qs",
55d796da 2086 reg_class_names[rclass]);
ff182b5c
DD
2087
2088 if (dump_file)
2089 {
2090 fprintf (dump_file, "\nReloads for insn # %d\n", INSN_UID (insn));
2091 debug_reload_to_stream (dump_file);
2092 }
1f978f5f 2093 fatal_insn ("this is the insn:", insn);
ecf3151a 2094 }
5352b11a 2095}
32131a9c
RK
2096\f
2097/* Delete an unneeded INSN and any previous insns who sole purpose is loading
2098 data that is dead in INSN. */
2099
2100static void
0c20a65f 2101delete_dead_insn (rtx insn)
32131a9c
RK
2102{
2103 rtx prev = prev_real_insn (insn);
2104 rtx prev_dest;
2105
2106 /* If the previous insn sets a register that dies in our insn, delete it
2107 too. */
2108 if (prev && GET_CODE (PATTERN (prev)) == SET
f8cfc6aa 2109 && (prev_dest = SET_DEST (PATTERN (prev)), REG_P (prev_dest))
32131a9c 2110 && reg_mentioned_p (prev_dest, PATTERN (insn))
b294ca38
R
2111 && find_regno_note (insn, REG_DEAD, REGNO (prev_dest))
2112 && ! side_effects_p (SET_SRC (PATTERN (prev))))
32131a9c
RK
2113 delete_dead_insn (prev);
2114
6773e15f 2115 SET_INSN_DELETED (insn);
32131a9c
RK
2116}
2117
2118/* Modify the home of pseudo-reg I.
2119 The new home is present in reg_renumber[I].
2120
2121 FROM_REG may be the hard reg that the pseudo-reg is being spilled from;
2122 or it may be -1, meaning there is none or it is not relevant.
2123 This is used so that all pseudos spilled from a given hard reg
2124 can share one stack slot. */
2125
2126static void
058e97ec 2127alter_reg (int i, int from_reg, bool dont_share_p)
32131a9c
RK
2128{
2129 /* When outputting an inline function, this can happen
2130 for a reg that isn't actually used. */
2131 if (regno_reg_rtx[i] == 0)
2132 return;
2133
2134 /* If the reg got changed to a MEM at rtl-generation time,
2135 ignore it. */
f8cfc6aa 2136 if (!REG_P (regno_reg_rtx[i]))
32131a9c
RK
2137 return;
2138
2139 /* Modify the reg-rtx to contain the new hard reg
2140 number or else to contain its pseudo reg number. */
6fb5fa3c
DB
2141 SET_REGNO (regno_reg_rtx[i],
2142 reg_renumber[i] >= 0 ? reg_renumber[i] : i);
32131a9c
RK
2143
2144 /* If we have a pseudo that is needed but has no hard reg or equivalent,
2145 allocate a stack slot for it. */
2146
2147 if (reg_renumber[i] < 0
b1f21e0a 2148 && REG_N_REFS (i) > 0
32131a9c 2149 && reg_equiv_constant[i] == 0
ab156144 2150 && (reg_equiv_invariant[i] == 0 || reg_equiv_init[i] == 0)
32131a9c
RK
2151 && reg_equiv_memory_loc[i] == 0)
2152 {
f6129d66 2153 rtx x = NULL_RTX;
63a7a62b 2154 enum machine_mode mode = GET_MODE (regno_reg_rtx[i]);
770ae6cc 2155 unsigned int inherent_size = PSEUDO_REGNO_BYTES (i);
63a7a62b 2156 unsigned int inherent_align = GET_MODE_ALIGNMENT (mode);
770ae6cc 2157 unsigned int total_size = MAX (inherent_size, reg_max_ref_width[i]);
63a7a62b 2158 unsigned int min_align = reg_max_ref_width[i] * BITS_PER_UNIT;
32131a9c 2159 int adjust = 0;
058e97ec 2160
2af2dbdc 2161 if (ira_conflicts_p)
f6129d66
RH
2162 {
2163 /* Mark the spill for IRA. */
2164 SET_REGNO_REG_SET (&spilled_pseudos, i);
2165 if (!dont_share_p)
2166 x = ira_reuse_stack_slot (i, inherent_size, total_size);
2167 }
2168
058e97ec 2169 if (x)
f6129d66
RH
2170 ;
2171
32131a9c
RK
2172 /* Each pseudo reg has an inherent size which comes from its own mode,
2173 and a total size which provides room for paradoxical subregs
2174 which refer to the pseudo reg in wider modes.
2175
2176 We can use a slot already allocated if it provides both
2177 enough inherent space and enough total space.
2178 Otherwise, we allocate a new slot, making sure that it has no less
2179 inherent space, and no less total space, then the previous slot. */
2af2dbdc 2180 else if (from_reg == -1 || (!dont_share_p && ira_conflicts_p))
32131a9c 2181 {
13d7e8af 2182 rtx stack_slot;
6fb5fa3c 2183
32131a9c 2184 /* No known place to spill from => no slot to reuse. */
63a7a62b
RS
2185 x = assign_stack_local (mode, total_size,
2186 min_align > inherent_align
2187 || total_size > inherent_size ? -1 : 0);
13d7e8af
JL
2188
2189 stack_slot = x;
2190
f6129d66
RH
2191 /* Cancel the big-endian correction done in assign_stack_local.
2192 Get the address of the beginning of the slot. This is so we
2193 can do a big-endian correction unconditionally below. */
f76b9db2 2194 if (BYTES_BIG_ENDIAN)
6b5676ce 2195 {
6b5676ce
JL
2196 adjust = inherent_size - total_size;
2197 if (adjust)
2198 stack_slot
2199 = adjust_address_nv (x, mode_for_size (total_size
2200 * BITS_PER_UNIT,
2201 MODE_INT, 1),
2202 adjust);
2203 }
02db8dd0 2204
2af2dbdc 2205 if (! dont_share_p && ira_conflicts_p)
058e97ec 2206 /* Inform IRA about allocation a new stack slot. */
13d7e8af 2207 ira_mark_new_stack_slot (stack_slot, i, total_size);
32131a9c 2208 }
3bdf5ad1 2209
32131a9c
RK
2210 /* Reuse a stack slot if possible. */
2211 else if (spill_stack_slot[from_reg] != 0
2212 && spill_stack_slot_width[from_reg] >= total_size
2213 && (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
63a7a62b
RS
2214 >= inherent_size)
2215 && MEM_ALIGN (spill_stack_slot[from_reg]) >= min_align)
32131a9c 2216 x = spill_stack_slot[from_reg];
f6129d66 2217
32131a9c
RK
2218 /* Allocate a bigger slot. */
2219 else
2220 {
2221 /* Compute maximum size needed, both for inherent size
2222 and for total size. */
4f2d3674 2223 rtx stack_slot;
3bdf5ad1 2224
32131a9c
RK
2225 if (spill_stack_slot[from_reg])
2226 {
2227 if (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
2228 > inherent_size)
2229 mode = GET_MODE (spill_stack_slot[from_reg]);
2230 if (spill_stack_slot_width[from_reg] > total_size)
2231 total_size = spill_stack_slot_width[from_reg];
63a7a62b
RS
2232 if (MEM_ALIGN (spill_stack_slot[from_reg]) > min_align)
2233 min_align = MEM_ALIGN (spill_stack_slot[from_reg]);
32131a9c 2234 }
3bdf5ad1 2235
32131a9c 2236 /* Make a slot with that size. */
cabcf079 2237 x = assign_stack_local (mode, total_size,
63a7a62b
RS
2238 min_align > inherent_align
2239 || total_size > inherent_size ? -1 : 0);
4f2d3674 2240 stack_slot = x;
3bdf5ad1 2241
f6129d66
RH
2242 /* Cancel the big-endian correction done in assign_stack_local.
2243 Get the address of the beginning of the slot. This is so we
2244 can do a big-endian correction unconditionally below. */
f76b9db2
ILT
2245 if (BYTES_BIG_ENDIAN)
2246 {
f76b9db2 2247 adjust = GET_MODE_SIZE (mode) - total_size;
4f2d3674 2248 if (adjust)
8ac61af7
RK
2249 stack_slot
2250 = adjust_address_nv (x, mode_for_size (total_size
38a448ca
RH
2251 * BITS_PER_UNIT,
2252 MODE_INT, 1),
8ac61af7 2253 adjust);
f76b9db2 2254 }
3bdf5ad1 2255
4f2d3674 2256 spill_stack_slot[from_reg] = stack_slot;
32131a9c
RK
2257 spill_stack_slot_width[from_reg] = total_size;
2258 }
2259
32131a9c
RK
2260 /* On a big endian machine, the "address" of the slot
2261 is the address of the low part that fits its inherent mode. */
f76b9db2 2262 if (BYTES_BIG_ENDIAN && inherent_size < total_size)
32131a9c 2263 adjust += (total_size - inherent_size);
32131a9c
RK
2264
2265 /* If we have any adjustment to make, or if the stack slot is the
2266 wrong mode, make a new stack slot. */
1285011e
RK
2267 x = adjust_address_nv (x, GET_MODE (regno_reg_rtx[i]), adjust);
2268
f6129d66
RH
2269 /* Set all of the memory attributes as appropriate for a spill. */
2270 set_mem_attrs_for_spill (x);
32131a9c 2271
6d2f8887 2272 /* Save the stack slot for later. */
32131a9c
RK
2273 reg_equiv_memory_loc[i] = x;
2274 }
2275}
2276
6fb5fa3c
DB
2277/* Mark the slots in regs_ever_live for the hard regs used by
2278 pseudo-reg number REGNO, accessed in MODE. */
32131a9c 2279
6fb5fa3c
DB
2280static void
2281mark_home_live_1 (int regno, enum machine_mode mode)
32131a9c 2282{
b3694847 2283 int i, lim;
770ae6cc 2284
32131a9c
RK
2285 i = reg_renumber[regno];
2286 if (i < 0)
2287 return;
b0384c54 2288 lim = end_hard_regno (mode, i);
32131a9c 2289 while (i < lim)
6fb5fa3c
DB
2290 df_set_regs_ever_live(i++, true);
2291}
2292
2293/* Mark the slots in regs_ever_live for the hard regs
2294 used by pseudo-reg number REGNO. */
2295
2296void
2297mark_home_live (int regno)
2298{
2299 if (reg_renumber[regno] >= 0)
2300 mark_home_live_1 (regno, PSEUDO_REGNO_MODE (regno));
32131a9c
RK
2301}
2302\f
2303/* This function handles the tracking of elimination offsets around branches.
2304
2305 X is a piece of RTL being scanned.
2306
2307 INSN is the insn that it came from, if any.
2308
40f03658 2309 INITIAL_P is nonzero if we are to set the offset to be the initial
32131a9c
RK
2310 offset and zero if we are setting the offset of the label to be the
2311 current offset. */
2312
2313static void
0c20a65f 2314set_label_offsets (rtx x, rtx insn, int initial_p)
32131a9c
RK
2315{
2316 enum rtx_code code = GET_CODE (x);
2317 rtx tem;
e51712db 2318 unsigned int i;
32131a9c
RK
2319 struct elim_table *p;
2320
2321 switch (code)
2322 {
2323 case LABEL_REF:
8be386d9
RS
2324 if (LABEL_REF_NONLOCAL_P (x))
2325 return;
2326
32131a9c
RK
2327 x = XEXP (x, 0);
2328
0f41302f 2329 /* ... fall through ... */
32131a9c
RK
2330
2331 case CODE_LABEL:
2332 /* If we know nothing about this label, set the desired offsets. Note
2333 that this sets the offset at a label to be the offset before a label
2334 if we don't know anything about the label. This is not correct for
2335 the label after a BARRIER, but is the best guess we can make. If
2336 we guessed wrong, we will suppress an elimination that might have
2337 been possible had we been able to guess correctly. */
2338
4cc0fdd2 2339 if (! offsets_known_at[CODE_LABEL_NUMBER (x) - first_label_num])
32131a9c
RK
2340 {
2341 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
4cc0fdd2 2342 offsets_at[CODE_LABEL_NUMBER (x) - first_label_num][i]
32131a9c
RK
2343 = (initial_p ? reg_eliminate[i].initial_offset
2344 : reg_eliminate[i].offset);
4cc0fdd2 2345 offsets_known_at[CODE_LABEL_NUMBER (x) - first_label_num] = 1;
32131a9c
RK
2346 }
2347
2348 /* Otherwise, if this is the definition of a label and it is
d45cf215 2349 preceded by a BARRIER, set our offsets to the known offset of
32131a9c
RK
2350 that label. */
2351
2352 else if (x == insn
2353 && (tem = prev_nonnote_insn (insn)) != 0
4b4bf941 2354 && BARRIER_P (tem))
1f3b1e1a 2355 set_offsets_for_label (insn);
32131a9c
RK
2356 else
2357 /* If neither of the above cases is true, compare each offset
2358 with those previously recorded and suppress any eliminations
2359 where the offsets disagree. */
a8fdc208 2360
32131a9c 2361 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
4cc0fdd2 2362 if (offsets_at[CODE_LABEL_NUMBER (x) - first_label_num][i]
32131a9c
RK
2363 != (initial_p ? reg_eliminate[i].initial_offset
2364 : reg_eliminate[i].offset))
2365 reg_eliminate[i].can_eliminate = 0;
2366
2367 return;
2368
2369 case JUMP_INSN:
2370 set_label_offsets (PATTERN (insn), insn, initial_p);
2371
0f41302f 2372 /* ... fall through ... */
32131a9c
RK
2373
2374 case INSN:
2375 case CALL_INSN:
cf7c4aa6
HPN
2376 /* Any labels mentioned in REG_LABEL_OPERAND notes can be branched
2377 to indirectly and hence must have all eliminations at their
2378 initial offsets. */
32131a9c 2379 for (tem = REG_NOTES (x); tem; tem = XEXP (tem, 1))
cf7c4aa6 2380 if (REG_NOTE_KIND (tem) == REG_LABEL_OPERAND)
32131a9c
RK
2381 set_label_offsets (XEXP (tem, 0), insn, 1);
2382 return;
2383
0c0ba09c 2384 case PARALLEL:
32131a9c
RK
2385 case ADDR_VEC:
2386 case ADDR_DIFF_VEC:
0c0ba09c
JJ
2387 /* Each of the labels in the parallel or address vector must be
2388 at their initial offsets. We want the first field for PARALLEL
2389 and ADDR_VEC and the second field for ADDR_DIFF_VEC. */
32131a9c 2390
e51712db 2391 for (i = 0; i < (unsigned) XVECLEN (x, code == ADDR_DIFF_VEC); i++)
32131a9c
RK
2392 set_label_offsets (XVECEXP (x, code == ADDR_DIFF_VEC, i),
2393 insn, initial_p);
2394 return;
2395
2396 case SET:
2397 /* We only care about setting PC. If the source is not RETURN,
2398 IF_THEN_ELSE, or a label, disable any eliminations not at
2399 their initial offsets. Similarly if any arm of the IF_THEN_ELSE
2400 isn't one of those possibilities. For branches to a label,
2401 call ourselves recursively.
2402
2403 Note that this can disable elimination unnecessarily when we have
2404 a non-local goto since it will look like a non-constant jump to
2405 someplace in the current function. This isn't a significant
2406 problem since such jumps will normally be when all elimination
2407 pairs are back to their initial offsets. */
2408
2409 if (SET_DEST (x) != pc_rtx)
2410 return;
2411
2412 switch (GET_CODE (SET_SRC (x)))
2413 {
2414 case PC:
2415 case RETURN:
2416 return;
2417
2418 case LABEL_REF:
8f235343 2419 set_label_offsets (SET_SRC (x), insn, initial_p);
32131a9c
RK
2420 return;
2421
2422 case IF_THEN_ELSE:
2423 tem = XEXP (SET_SRC (x), 1);
2424 if (GET_CODE (tem) == LABEL_REF)
2425 set_label_offsets (XEXP (tem, 0), insn, initial_p);
2426 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2427 break;
2428
2429 tem = XEXP (SET_SRC (x), 2);
2430 if (GET_CODE (tem) == LABEL_REF)
2431 set_label_offsets (XEXP (tem, 0), insn, initial_p);
2432 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2433 break;
2434 return;
e9a25f70
JL
2435
2436 default:
2437 break;
32131a9c
RK
2438 }
2439
2440 /* If we reach here, all eliminations must be at their initial
2441 offset because we are doing a jump to a variable address. */
2442 for (p = reg_eliminate; p < &reg_eliminate[NUM_ELIMINABLE_REGS]; p++)
2443 if (p->offset != p->initial_offset)
2444 p->can_eliminate = 0;
e9a25f70 2445 break;
05d10675 2446
e9a25f70
JL
2447 default:
2448 break;
32131a9c
RK
2449 }
2450}
2451\f
a8fdc208 2452/* Scan X and replace any eliminable registers (such as fp) with a
32131a9c
RK
2453 replacement (such as sp), plus an offset.
2454
2455 MEM_MODE is the mode of an enclosing MEM. We need this to know how
2456 much to adjust a register for, e.g., PRE_DEC. Also, if we are inside a
2457 MEM, we are allowed to replace a sum of a register and the constant zero
2458 with the register, which we cannot do outside a MEM. In addition, we need
2459 to record the fact that a register is referenced outside a MEM.
2460
ff32812a 2461 If INSN is an insn, it is the insn containing X. If we replace a REG
40f03658 2462 in a SET_DEST with an equivalent MEM and INSN is nonzero, write a
32131a9c 2463 CLOBBER of the pseudo after INSN so find_equiv_regs will know that
38e01259 2464 the REG is being modified.
32131a9c 2465
ff32812a
RS
2466 Alternatively, INSN may be a note (an EXPR_LIST or INSN_LIST).
2467 That's used when we eliminate in expressions stored in notes.
2468 This means, do not set ref_outside_mem even if the reference
2469 is outside of MEMs.
2470
32131a9c
RK
2471 REG_EQUIV_MEM and REG_EQUIV_ADDRESS contain address that have had
2472 replacements done assuming all offsets are at their initial values. If
2473 they are not, or if REG_EQUIV_ADDRESS is nonzero for a pseudo we
2474 encounter, return the actual location so that find_reloads will do
2475 the proper thing. */
2476
ab156144
RH
2477static rtx
2478eliminate_regs_1 (rtx x, enum machine_mode mem_mode, rtx insn,
2479 bool may_use_invariant)
32131a9c
RK
2480{
2481 enum rtx_code code = GET_CODE (x);
2482 struct elim_table *ep;
2483 int regno;
55d796da 2484 rtx new_rtx;
32131a9c 2485 int i, j;
6f7d635c 2486 const char *fmt;
32131a9c
RK
2487 int copied = 0;
2488
d6633f01
NS
2489 if (! current_function_decl)
2490 return x;
9969bb2c 2491
32131a9c
RK
2492 switch (code)
2493 {
2494 case CONST_INT:
2495 case CONST_DOUBLE:
091a3ac7 2496 case CONST_FIXED:
69ef87e2 2497 case CONST_VECTOR:
32131a9c
RK
2498 case CONST:
2499 case SYMBOL_REF:
2500 case CODE_LABEL:
2501 case PC:
2502 case CC0:
2503 case ASM_INPUT:
2504 case ADDR_VEC:
2505 case ADDR_DIFF_VEC:
2506 case RETURN:
2507 return x;
2508
2509 case REG:
2510 regno = REGNO (x);
2511
2512 /* First handle the case where we encounter a bare register that
2513 is eliminable. Replace it with a PLUS. */
2514 if (regno < FIRST_PSEUDO_REGISTER)
2515 {
2516 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2517 ep++)
2518 if (ep->from_rtx == x && ep->can_eliminate)
dfac187e 2519 return plus_constant (ep->to_rtx, ep->previous_offset);
32131a9c
RK
2520
2521 }
cd7c9015 2522 else if (reg_renumber && reg_renumber[regno] < 0
ab156144
RH
2523 && reg_equiv_invariant && reg_equiv_invariant[regno])
2524 {
2525 if (may_use_invariant)
2526 return eliminate_regs_1 (copy_rtx (reg_equiv_invariant[regno]),
2527 mem_mode, insn, true);
2528 /* There exists at least one use of REGNO that cannot be
2529 eliminated. Prevent the defining insn from being deleted. */
2530 reg_equiv_init[regno] = NULL_RTX;
058e97ec 2531 alter_reg (regno, -1, true);
ab156144 2532 }
32131a9c
RK
2533 return x;
2534
c5c76735
JL
2535 /* You might think handling MINUS in a manner similar to PLUS is a
2536 good idea. It is not. It has been tried multiple times and every
2537 time the change has had to have been reverted.
2538
2539 Other parts of reload know a PLUS is special (gen_reload for example)
2540 and require special code to handle code a reloaded PLUS operand.
2541
2542 Also consider backends where the flags register is clobbered by a
a457ee07 2543 MINUS, but we can emit a PLUS that does not clobber flags (IA-32,
c5c76735
JL
2544 lea instruction comes to mind). If we try to reload a MINUS, we
2545 may kill the flags register that was holding a useful value.
2546
2547 So, please before trying to handle MINUS, consider reload as a
2548 whole instead of this little section as well as the backend issues. */
32131a9c
RK
2549 case PLUS:
2550 /* If this is the sum of an eliminable register and a constant, rework
6d2f8887 2551 the sum. */
f8cfc6aa 2552 if (REG_P (XEXP (x, 0))
32131a9c
RK
2553 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2554 && CONSTANT_P (XEXP (x, 1)))
2555 {
2556 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2557 ep++)
2558 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2559 {
32131a9c
RK
2560 /* The only time we want to replace a PLUS with a REG (this
2561 occurs when the constant operand of the PLUS is the negative
2562 of the offset) is when we are inside a MEM. We won't want
2563 to do so at other times because that would change the
2564 structure of the insn in a way that reload can't handle.
2565 We special-case the commonest situation in
2566 eliminate_regs_in_insn, so just replace a PLUS with a
2567 PLUS here, unless inside a MEM. */
a23b64d5 2568 if (mem_mode != 0 && GET_CODE (XEXP (x, 1)) == CONST_INT
32131a9c
RK
2569 && INTVAL (XEXP (x, 1)) == - ep->previous_offset)
2570 return ep->to_rtx;
2571 else
38a448ca
RH
2572 return gen_rtx_PLUS (Pmode, ep->to_rtx,
2573 plus_constant (XEXP (x, 1),
2574 ep->previous_offset));
32131a9c
RK
2575 }
2576
2577 /* If the register is not eliminable, we are done since the other
2578 operand is a constant. */
2579 return x;
2580 }
2581
2582 /* If this is part of an address, we want to bring any constant to the
2583 outermost PLUS. We will do this by doing register replacement in
2584 our operands and seeing if a constant shows up in one of them.
2585
dfac187e
BS
2586 Note that there is no risk of modifying the structure of the insn,
2587 since we only get called for its operands, thus we are either
2588 modifying the address inside a MEM, or something like an address
2589 operand of a load-address insn. */
32131a9c
RK
2590
2591 {
ab156144
RH
2592 rtx new0 = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, true);
2593 rtx new1 = eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true);
32131a9c 2594
cd7c9015 2595 if (reg_renumber && (new0 != XEXP (x, 0) || new1 != XEXP (x, 1)))
32131a9c
RK
2596 {
2597 /* If one side is a PLUS and the other side is a pseudo that
a8fdc208 2598 didn't get a hard register but has a reg_equiv_constant,
32131a9c
RK
2599 we must replace the constant here since it may no longer
2600 be in the position of any operand. */
f8cfc6aa 2601 if (GET_CODE (new0) == PLUS && REG_P (new1)
32131a9c
RK
2602 && REGNO (new1) >= FIRST_PSEUDO_REGISTER
2603 && reg_renumber[REGNO (new1)] < 0
2604 && reg_equiv_constant != 0
2605 && reg_equiv_constant[REGNO (new1)] != 0)
2606 new1 = reg_equiv_constant[REGNO (new1)];
f8cfc6aa 2607 else if (GET_CODE (new1) == PLUS && REG_P (new0)
32131a9c
RK
2608 && REGNO (new0) >= FIRST_PSEUDO_REGISTER
2609 && reg_renumber[REGNO (new0)] < 0
2610 && reg_equiv_constant[REGNO (new0)] != 0)
2611 new0 = reg_equiv_constant[REGNO (new0)];
2612
55d796da 2613 new_rtx = form_sum (new0, new1);
32131a9c
RK
2614
2615 /* As above, if we are not inside a MEM we do not want to
2616 turn a PLUS into something else. We might try to do so here
2617 for an addition of 0 if we aren't optimizing. */
55d796da
KG
2618 if (! mem_mode && GET_CODE (new_rtx) != PLUS)
2619 return gen_rtx_PLUS (GET_MODE (x), new_rtx, const0_rtx);
32131a9c 2620 else
55d796da 2621 return new_rtx;
32131a9c
RK
2622 }
2623 }
2624 return x;
2625
981c7390 2626 case MULT:
05d10675 2627 /* If this is the product of an eliminable register and a
981c7390
RK
2628 constant, apply the distribute law and move the constant out
2629 so that we have (plus (mult ..) ..). This is needed in order
9faa82d8 2630 to keep load-address insns valid. This case is pathological.
981c7390 2631 We ignore the possibility of overflow here. */
f8cfc6aa 2632 if (REG_P (XEXP (x, 0))
981c7390
RK
2633 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2634 && GET_CODE (XEXP (x, 1)) == CONST_INT)
2635 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2636 ep++)
2637 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2638 {
2639 if (! mem_mode
2640 /* Refs inside notes don't count for this purpose. */
2641 && ! (insn != 0 && (GET_CODE (insn) == EXPR_LIST
2642 || GET_CODE (insn) == INSN_LIST)))
2643 ep->ref_outside_mem = 1;
2644
2645 return
38a448ca 2646 plus_constant (gen_rtx_MULT (Pmode, ep->to_rtx, XEXP (x, 1)),
981c7390
RK
2647 ep->previous_offset * INTVAL (XEXP (x, 1)));
2648 }
32131a9c 2649
0f41302f 2650 /* ... fall through ... */
32131a9c 2651
32131a9c
RK
2652 case CALL:
2653 case COMPARE:
c5c76735 2654 /* See comments before PLUS about handling MINUS. */
930aeef3 2655 case MINUS:
32131a9c
RK
2656 case DIV: case UDIV:
2657 case MOD: case UMOD:
2658 case AND: case IOR: case XOR:
45620ed4
RK
2659 case ROTATERT: case ROTATE:
2660 case ASHIFTRT: case LSHIFTRT: case ASHIFT:
32131a9c
RK
2661 case NE: case EQ:
2662 case GE: case GT: case GEU: case GTU:
2663 case LE: case LT: case LEU: case LTU:
2664 {
ab156144
RH
2665 rtx new0 = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, false);
2666 rtx new1 = XEXP (x, 1)
2667 ? eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, false) : 0;
32131a9c
RK
2668
2669 if (new0 != XEXP (x, 0) || new1 != XEXP (x, 1))
38a448ca 2670 return gen_rtx_fmt_ee (code, GET_MODE (x), new0, new1);
32131a9c
RK
2671 }
2672 return x;
2673
981c7390
RK
2674 case EXPR_LIST:
2675 /* If we have something in XEXP (x, 0), the usual case, eliminate it. */
2676 if (XEXP (x, 0))
2677 {
55d796da
KG
2678 new_rtx = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, true);
2679 if (new_rtx != XEXP (x, 0))
13bb79d4
R
2680 {
2681 /* If this is a REG_DEAD note, it is not valid anymore.
2682 Using the eliminated version could result in creating a
2683 REG_DEAD note for the stack or frame pointer. */
e0c68ce9 2684 if (REG_NOTE_KIND (x) == REG_DEAD)
13bb79d4 2685 return (XEXP (x, 1)
ab156144 2686 ? eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true)
13bb79d4
R
2687 : NULL_RTX);
2688
55d796da 2689 x = gen_rtx_EXPR_LIST (REG_NOTE_KIND (x), new_rtx, XEXP (x, 1));
13bb79d4 2690 }
981c7390
RK
2691 }
2692
0f41302f 2693 /* ... fall through ... */
981c7390
RK
2694
2695 case INSN_LIST:
2696 /* Now do eliminations in the rest of the chain. If this was
2697 an EXPR_LIST, this might result in allocating more memory than is
2698 strictly needed, but it simplifies the code. */
2699 if (XEXP (x, 1))
2700 {
55d796da
KG
2701 new_rtx = eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true);
2702 if (new_rtx != XEXP (x, 1))
cd7c9015 2703 return
55d796da 2704 gen_rtx_fmt_ee (GET_CODE (x), GET_MODE (x), XEXP (x, 0), new_rtx);
981c7390
RK
2705 }
2706 return x;
2707
32131a9c
RK
2708 case PRE_INC:
2709 case POST_INC:
2710 case PRE_DEC:
2711 case POST_DEC:
b098aaf2
UW
2712 /* We do not support elimination of a register that is modified.
2713 elimination_effects has already make sure that this does not
2714 happen. */
2715 return x;
2716
2717 case PRE_MODIFY:
2718 case POST_MODIFY:
2719 /* We do not support elimination of a register that is modified.
2720 elimination_effects has already make sure that this does not
2721 happen. The only remaining case we need to consider here is
2722 that the increment value may be an eliminable register. */
2723 if (GET_CODE (XEXP (x, 1)) == PLUS
2724 && XEXP (XEXP (x, 1), 0) == XEXP (x, 0))
2725 {
55d796da 2726 rtx new_rtx = eliminate_regs_1 (XEXP (XEXP (x, 1), 1), mem_mode,
b098aaf2
UW
2727 insn, true);
2728
55d796da 2729 if (new_rtx != XEXP (XEXP (x, 1), 1))
b098aaf2
UW
2730 return gen_rtx_fmt_ee (code, GET_MODE (x), XEXP (x, 0),
2731 gen_rtx_PLUS (GET_MODE (x),
55d796da 2732 XEXP (x, 0), new_rtx));
b098aaf2
UW
2733 }
2734 return x;
2735
32131a9c
RK
2736 case STRICT_LOW_PART:
2737 case NEG: case NOT:
2738 case SIGN_EXTEND: case ZERO_EXTEND:
2739 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
2740 case FLOAT: case FIX:
2741 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
2742 case ABS:
2743 case SQRT:
2744 case FFS:
2928cd7a
RH
2745 case CLZ:
2746 case CTZ:
2747 case POPCOUNT:
2748 case PARITY:
167fa32c 2749 case BSWAP:
55d796da
KG
2750 new_rtx = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, false);
2751 if (new_rtx != XEXP (x, 0))
2752 return gen_rtx_fmt_e (code, GET_MODE (x), new_rtx);
32131a9c
RK
2753 return x;
2754
2755 case SUBREG:
ddef6bc7 2756 /* Similar to above processing, but preserve SUBREG_BYTE.
32131a9c
RK
2757 Convert (subreg (mem)) to (mem) if not paradoxical.
2758 Also, if we have a non-paradoxical (subreg (pseudo)) and the
2759 pseudo didn't get a hard reg, we must replace this with the
bd235d86 2760 eliminated version of the memory location because push_reload
32131a9c 2761 may do the replacement in certain circumstances. */
f8cfc6aa 2762 if (REG_P (SUBREG_REG (x))
32131a9c
RK
2763 && (GET_MODE_SIZE (GET_MODE (x))
2764 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
2765 && reg_equiv_memory_loc != 0
2766 && reg_equiv_memory_loc[REGNO (SUBREG_REG (x))] != 0)
2767 {
55d796da 2768 new_rtx = SUBREG_REG (x);
32131a9c
RK
2769 }
2770 else
55d796da 2771 new_rtx = eliminate_regs_1 (SUBREG_REG (x), mem_mode, insn, false);
32131a9c 2772
55d796da 2773 if (new_rtx != SUBREG_REG (x))
32131a9c 2774 {
29ae5012 2775 int x_size = GET_MODE_SIZE (GET_MODE (x));
55d796da 2776 int new_size = GET_MODE_SIZE (GET_MODE (new_rtx));
29ae5012 2777
55d796da 2778 if (MEM_P (new_rtx)
6d49a073 2779 && ((x_size < new_size
1914f5da 2780#ifdef WORD_REGISTER_OPERATIONS
6d49a073
JW
2781 /* On these machines, combine can create rtl of the form
2782 (set (subreg:m1 (reg:m2 R) 0) ...)
05d10675 2783 where m1 < m2, and expects something interesting to
6d49a073
JW
2784 happen to the entire word. Moreover, it will use the
2785 (reg:m2 R) later, expecting all bits to be preserved.
05d10675 2786 So if the number of words is the same, preserve the
bd235d86 2787 subreg so that push_reload can see it. */
5d9669fd
RK
2788 && ! ((x_size - 1) / UNITS_PER_WORD
2789 == (new_size -1 ) / UNITS_PER_WORD)
1914f5da 2790#endif
6d49a073 2791 )
5d9669fd 2792 || x_size == new_size)
1914f5da 2793 )
55d796da 2794 return adjust_address_nv (new_rtx, GET_MODE (x), SUBREG_BYTE (x));
32131a9c 2795 else
55d796da 2796 return gen_rtx_SUBREG (GET_MODE (x), new_rtx, SUBREG_BYTE (x));
32131a9c
RK
2797 }
2798
2799 return x;
2800
32131a9c
RK
2801 case MEM:
2802 /* Our only special processing is to pass the mode of the MEM to our
2803 recursive call and copy the flags. While we are here, handle this
2804 case more efficiently. */
f1ec5147
RK
2805 return
2806 replace_equiv_address_nv (x,
ab156144
RH
2807 eliminate_regs_1 (XEXP (x, 0), GET_MODE (x),
2808 insn, true));
05d10675 2809
dfac187e 2810 case USE:
055c7759 2811 /* Handle insn_list USE that a call to a pure function may generate. */
55d796da
KG
2812 new_rtx = eliminate_regs_1 (XEXP (x, 0), 0, insn, false);
2813 if (new_rtx != XEXP (x, 0))
2814 return gen_rtx_USE (GET_MODE (x), new_rtx);
055c7759
JDA
2815 return x;
2816
dfac187e
BS
2817 case CLOBBER:
2818 case ASM_OPERANDS:
2819 case SET:
41374e13 2820 gcc_unreachable ();
dfac187e 2821
e9a25f70
JL
2822 default:
2823 break;
32131a9c
RK
2824 }
2825
2826 /* Process each of our operands recursively. If any have changed, make a
2827 copy of the rtx. */
2828 fmt = GET_RTX_FORMAT (code);
2829 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2830 {
2831 if (*fmt == 'e')
2832 {
55d796da
KG
2833 new_rtx = eliminate_regs_1 (XEXP (x, i), mem_mode, insn, false);
2834 if (new_rtx != XEXP (x, i) && ! copied)
32131a9c 2835 {
aacd3885 2836 x = shallow_copy_rtx (x);
32131a9c
RK
2837 copied = 1;
2838 }
55d796da 2839 XEXP (x, i) = new_rtx;
32131a9c
RK
2840 }
2841 else if (*fmt == 'E')
2842 {
2843 int copied_vec = 0;
2844 for (j = 0; j < XVECLEN (x, i); j++)
2845 {
55d796da
KG
2846 new_rtx = eliminate_regs_1 (XVECEXP (x, i, j), mem_mode, insn, false);
2847 if (new_rtx != XVECEXP (x, i, j) && ! copied_vec)
32131a9c 2848 {
8f985ec4
ZW
2849 rtvec new_v = gen_rtvec_v (XVECLEN (x, i),
2850 XVEC (x, i)->elem);
32131a9c
RK
2851 if (! copied)
2852 {
aacd3885 2853 x = shallow_copy_rtx (x);
32131a9c
RK
2854 copied = 1;
2855 }
2856 XVEC (x, i) = new_v;
2857 copied_vec = 1;
2858 }
55d796da 2859 XVECEXP (x, i, j) = new_rtx;
32131a9c
RK
2860 }
2861 }
2862 }
2863
2864 return x;
2865}
dfac187e 2866
ab156144
RH
2867rtx
2868eliminate_regs (rtx x, enum machine_mode mem_mode, rtx insn)
2869{
2870 return eliminate_regs_1 (x, mem_mode, insn, false);
2871}
2872
dfac187e
BS
2873/* Scan rtx X for modifications of elimination target registers. Update
2874 the table of eliminables to reflect the changed state. MEM_MODE is
2875 the mode of an enclosing MEM rtx, or VOIDmode if not within a MEM. */
2876
2877static void
0c20a65f 2878elimination_effects (rtx x, enum machine_mode mem_mode)
dfac187e
BS
2879{
2880 enum rtx_code code = GET_CODE (x);
2881 struct elim_table *ep;
2882 int regno;
2883 int i, j;
2884 const char *fmt;
2885
2886 switch (code)
2887 {
2888 case CONST_INT:
2889 case CONST_DOUBLE:
091a3ac7 2890 case CONST_FIXED:
69ef87e2 2891 case CONST_VECTOR:
dfac187e
BS
2892 case CONST:
2893 case SYMBOL_REF:
2894 case CODE_LABEL:
2895 case PC:
2896 case CC0:
2897 case ASM_INPUT:
2898 case ADDR_VEC:
2899 case ADDR_DIFF_VEC:
2900 case RETURN:
2901 return;
2902
dfac187e
BS
2903 case REG:
2904 regno = REGNO (x);
2905
2906 /* First handle the case where we encounter a bare register that
2907 is eliminable. Replace it with a PLUS. */
2908 if (regno < FIRST_PSEUDO_REGISTER)
2909 {
2910 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2911 ep++)
2912 if (ep->from_rtx == x && ep->can_eliminate)
2913 {
2914 if (! mem_mode)
2915 ep->ref_outside_mem = 1;
2916 return;
2917 }
2918
2919 }
2920 else if (reg_renumber[regno] < 0 && reg_equiv_constant
2921 && reg_equiv_constant[regno]
92a21141 2922 && ! function_invariant_p (reg_equiv_constant[regno]))
dfac187e
BS
2923 elimination_effects (reg_equiv_constant[regno], mem_mode);
2924 return;
2925
2926 case PRE_INC:
2927 case POST_INC:
2928 case PRE_DEC:
2929 case POST_DEC:
4b983fdc
RH
2930 case POST_MODIFY:
2931 case PRE_MODIFY:
b098aaf2
UW
2932 /* If we modify the source of an elimination rule, disable it. */
2933 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2934 if (ep->from_rtx == XEXP (x, 0))
2935 ep->can_eliminate = 0;
2936
2937 /* If we modify the target of an elimination rule by adding a constant,
2938 update its offset. If we modify the target in any other way, we'll
2939 have to disable the rule as well. */
dfac187e
BS
2940 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2941 if (ep->to_rtx == XEXP (x, 0))
2942 {
2943 int size = GET_MODE_SIZE (mem_mode);
2944
2945 /* If more bytes than MEM_MODE are pushed, account for them. */
2946#ifdef PUSH_ROUNDING
2947 if (ep->to_rtx == stack_pointer_rtx)
2948 size = PUSH_ROUNDING (size);
2949#endif
2950 if (code == PRE_DEC || code == POST_DEC)
2951 ep->offset += size;
4b983fdc 2952 else if (code == PRE_INC || code == POST_INC)
dfac187e 2953 ep->offset -= size;
b098aaf2
UW
2954 else if (code == PRE_MODIFY || code == POST_MODIFY)
2955 {
2956 if (GET_CODE (XEXP (x, 1)) == PLUS
2957 && XEXP (x, 0) == XEXP (XEXP (x, 1), 0)
2958 && CONST_INT_P (XEXP (XEXP (x, 1), 1)))
2959 ep->offset -= INTVAL (XEXP (XEXP (x, 1), 1));
2960 else
2961 ep->can_eliminate = 0;
2962 }
dfac187e
BS
2963 }
2964
4b983fdc
RH
2965 /* These two aren't unary operators. */
2966 if (code == POST_MODIFY || code == PRE_MODIFY)
2967 break;
2968
dfac187e
BS
2969 /* Fall through to generic unary operation case. */
2970 case STRICT_LOW_PART:
2971 case NEG: case NOT:
2972 case SIGN_EXTEND: case ZERO_EXTEND:
2973 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
2974 case FLOAT: case FIX:
2975 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
2976 case ABS:
2977 case SQRT:
2978 case FFS:
2928cd7a
RH
2979 case CLZ:
2980 case CTZ:
2981 case POPCOUNT:
2982 case PARITY:
167fa32c 2983 case BSWAP:
dfac187e
BS
2984 elimination_effects (XEXP (x, 0), mem_mode);
2985 return;
2986
2987 case SUBREG:
f8cfc6aa 2988 if (REG_P (SUBREG_REG (x))
dfac187e
BS
2989 && (GET_MODE_SIZE (GET_MODE (x))
2990 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
2991 && reg_equiv_memory_loc != 0
2992 && reg_equiv_memory_loc[REGNO (SUBREG_REG (x))] != 0)
2993 return;
2994
2995 elimination_effects (SUBREG_REG (x), mem_mode);
2996 return;
2997
2998 case USE:
2999 /* If using a register that is the source of an eliminate we still
3000 think can be performed, note it cannot be performed since we don't
3001 know how this register is used. */
3002 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3003 if (ep->from_rtx == XEXP (x, 0))
3004 ep->can_eliminate = 0;
3005
3006 elimination_effects (XEXP (x, 0), mem_mode);
3007 return;
3008
3009 case CLOBBER:
3010 /* If clobbering a register that is the replacement register for an
3011 elimination we still think can be performed, note that it cannot
3012 be performed. Otherwise, we need not be concerned about it. */
3013 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3014 if (ep->to_rtx == XEXP (x, 0))
3015 ep->can_eliminate = 0;
3016
3017 elimination_effects (XEXP (x, 0), mem_mode);
3018 return;
3019
3020 case SET:
3021 /* Check for setting a register that we know about. */
f8cfc6aa 3022 if (REG_P (SET_DEST (x)))
dfac187e
BS
3023 {
3024 /* See if this is setting the replacement register for an
3025 elimination.
3026
3027 If DEST is the hard frame pointer, we do nothing because we
3028 assume that all assignments to the frame pointer are for
3029 non-local gotos and are being done at a time when they are valid
3030 and do not disturb anything else. Some machines want to
3031 eliminate a fake argument pointer (or even a fake frame pointer)
3032 with either the real frame or the stack pointer. Assignments to
3033 the hard frame pointer must not prevent this elimination. */
3034
3035 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3036 ep++)
3037 if (ep->to_rtx == SET_DEST (x)
3038 && SET_DEST (x) != hard_frame_pointer_rtx)
3039 {
3040 /* If it is being incremented, adjust the offset. Otherwise,
3041 this elimination can't be done. */
3042 rtx src = SET_SRC (x);
3043
3044 if (GET_CODE (src) == PLUS
3045 && XEXP (src, 0) == SET_DEST (x)
3046 && GET_CODE (XEXP (src, 1)) == CONST_INT)
3047 ep->offset -= INTVAL (XEXP (src, 1));
3048 else
3049 ep->can_eliminate = 0;
3050 }
3051 }
3052
3053 elimination_effects (SET_DEST (x), 0);
3054 elimination_effects (SET_SRC (x), 0);
3055 return;
3056
3057 case MEM:
dfac187e
BS
3058 /* Our only special processing is to pass the mode of the MEM to our
3059 recursive call. */
3060 elimination_effects (XEXP (x, 0), GET_MODE (x));
3061 return;
3062
3063 default:
3064 break;
3065 }
3066
3067 fmt = GET_RTX_FORMAT (code);
3068 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3069 {
3070 if (*fmt == 'e')
3071 elimination_effects (XEXP (x, i), mem_mode);
3072 else if (*fmt == 'E')
3073 for (j = 0; j < XVECLEN (x, i); j++)
3074 elimination_effects (XVECEXP (x, i, j), mem_mode);
3075 }
3076}
3077
3078/* Descend through rtx X and verify that no references to eliminable registers
3079 remain. If any do remain, mark the involved register as not
3080 eliminable. */
1d813780 3081
dfac187e 3082static void
0c20a65f 3083check_eliminable_occurrences (rtx x)
dfac187e
BS
3084{
3085 const char *fmt;
3086 int i;
3087 enum rtx_code code;
3088
3089 if (x == 0)
3090 return;
1d7254c5 3091
dfac187e
BS
3092 code = GET_CODE (x);
3093
3094 if (code == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
3095 {
3096 struct elim_table *ep;
3097
3098 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
761fa0f7 3099 if (ep->from_rtx == x)
dfac187e
BS
3100 ep->can_eliminate = 0;
3101 return;
3102 }
1d7254c5 3103
dfac187e
BS
3104 fmt = GET_RTX_FORMAT (code);
3105 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3106 {
3107 if (*fmt == 'e')
3108 check_eliminable_occurrences (XEXP (x, i));
3109 else if (*fmt == 'E')
3110 {
3111 int j;
3112 for (j = 0; j < XVECLEN (x, i); j++)
3113 check_eliminable_occurrences (XVECEXP (x, i, j));
3114 }
3115 }
3116}
32131a9c
RK
3117\f
3118/* Scan INSN and eliminate all eliminable registers in it.
3119
3120 If REPLACE is nonzero, do the replacement destructively. Also
3121 delete the insn as dead it if it is setting an eliminable register.
3122
3123 If REPLACE is zero, do all our allocations in reload_obstack.
3124
3125 If no eliminations were done and this insn doesn't require any elimination
3126 processing (these are not identical conditions: it might be updating sp,
3127 but not referencing fp; this needs to be seen during reload_as_needed so
3128 that the offset between fp and sp can be taken into consideration), zero
3129 is returned. Otherwise, 1 is returned. */
3130
3131static int
0c20a65f 3132eliminate_regs_in_insn (rtx insn, int replace)
32131a9c 3133{
dfac187e 3134 int icode = recog_memoized (insn);
32131a9c 3135 rtx old_body = PATTERN (insn);
dfac187e 3136 int insn_is_asm = asm_noperands (old_body) >= 0;
774672d2 3137 rtx old_set = single_set (insn);
32131a9c
RK
3138 rtx new_body;
3139 int val = 0;
4977bab6 3140 int i;
dfac187e
BS
3141 rtx substed_operand[MAX_RECOG_OPERANDS];
3142 rtx orig_operand[MAX_RECOG_OPERANDS];
32131a9c 3143 struct elim_table *ep;
ab156144 3144 rtx plus_src, plus_cst_src;
32131a9c 3145
dfac187e
BS
3146 if (! insn_is_asm && icode < 0)
3147 {
41374e13
NS
3148 gcc_assert (GET_CODE (PATTERN (insn)) == USE
3149 || GET_CODE (PATTERN (insn)) == CLOBBER
3150 || GET_CODE (PATTERN (insn)) == ADDR_VEC
3151 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
3152 || GET_CODE (PATTERN (insn)) == ASM_INPUT);
3153 return 0;
dfac187e
BS
3154 }
3155
f8cfc6aa 3156 if (old_set != 0 && REG_P (SET_DEST (old_set))
774672d2 3157 && REGNO (SET_DEST (old_set)) < FIRST_PSEUDO_REGISTER)
32131a9c
RK
3158 {
3159 /* Check for setting an eliminable register. */
3160 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
774672d2 3161 if (ep->from_rtx == SET_DEST (old_set) && ep->can_eliminate)
32131a9c 3162 {
dd1eab0a
RK
3163#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
3164 /* If this is setting the frame pointer register to the
3165 hardware frame pointer register and this is an elimination
3166 that will be done (tested above), this insn is really
3167 adjusting the frame pointer downward to compensate for
3168 the adjustment done before a nonlocal goto. */
3169 if (ep->from == FRAME_POINTER_REGNUM
3170 && ep->to == HARD_FRAME_POINTER_REGNUM)
3171 {
75eefe3f
UW
3172 rtx base = SET_SRC (old_set);
3173 rtx base_insn = insn;
b19ee4bd 3174 HOST_WIDE_INT offset = 0;
75eefe3f
UW
3175
3176 while (base != ep->to_rtx)
8026ebba 3177 {
75eefe3f
UW
3178 rtx prev_insn, prev_set;
3179
3180 if (GET_CODE (base) == PLUS
3181 && GET_CODE (XEXP (base, 1)) == CONST_INT)
3182 {
3183 offset += INTVAL (XEXP (base, 1));
3184 base = XEXP (base, 0);
3185 }
3186 else if ((prev_insn = prev_nonnote_insn (base_insn)) != 0
3187 && (prev_set = single_set (prev_insn)) != 0
3188 && rtx_equal_p (SET_DEST (prev_set), base))
3189 {
3190 base = SET_SRC (prev_set);
3191 base_insn = prev_insn;
3192 }
3193 else
3194 break;
8026ebba 3195 }
dd1eab0a 3196
75eefe3f 3197 if (base == ep->to_rtx)
dd1eab0a 3198 {
c77fbfbe
GK
3199 rtx src
3200 = plus_constant (ep->to_rtx, offset - ep->offset);
3201
3202 new_body = old_body;
3203 if (! replace)
3204 {
3205 new_body = copy_insn (old_body);
3206 if (REG_NOTES (insn))
3207 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3208 }
3209 PATTERN (insn) = new_body;
3210 old_set = single_set (insn);
3211
3212 /* First see if this insn remains valid when we
3213 make the change. If not, keep the INSN_CODE
3214 the same and let reload fit it up. */
3215 validate_change (insn, &SET_SRC (old_set), src, 1);
3216 validate_change (insn, &SET_DEST (old_set),
3217 ep->to_rtx, 1);
3218 if (! apply_change_group ())
dd1eab0a 3219 {
c77fbfbe
GK
3220 SET_SRC (old_set) = src;
3221 SET_DEST (old_set) = ep->to_rtx;
dd1eab0a
RK
3222 }
3223
3224 val = 1;
3225 goto done;
3226 }
3227 }
3228#endif
3229
32131a9c
RK
3230 /* In this case this insn isn't serving a useful purpose. We
3231 will delete it in reload_as_needed once we know that this
3232 elimination is, in fact, being done.
3233
abc95ed3 3234 If REPLACE isn't set, we can't delete this insn, but needn't
32131a9c
RK
3235 process it since it won't be used unless something changes. */
3236 if (replace)
8a34409d 3237 {
1d7254c5 3238 delete_dead_insn (insn);
8a34409d
RH
3239 return 1;
3240 }
32131a9c
RK
3241 val = 1;
3242 goto done;
3243 }
aa5524a9 3244 }
32131a9c 3245
aa5524a9 3246 /* We allow one special case which happens to work on all machines we
ace3ffcd
KH
3247 currently support: a single set with the source or a REG_EQUAL
3248 note being a PLUS of an eliminable register and a constant. */
ab156144 3249 plus_src = plus_cst_src = 0;
f8cfc6aa 3250 if (old_set && REG_P (SET_DEST (old_set)))
aa5524a9 3251 {
ab156144 3252 if (GET_CODE (SET_SRC (old_set)) == PLUS)
ace3ffcd 3253 plus_src = SET_SRC (old_set);
7efd40b5 3254 /* First see if the source is of the form (plus (...) CST). */
ab156144 3255 if (plus_src
7efd40b5 3256 && GET_CODE (XEXP (plus_src, 1)) == CONST_INT)
ab156144
RH
3257 plus_cst_src = plus_src;
3258 else if (REG_P (SET_SRC (old_set))
3259 || plus_src)
ace3ffcd
KH
3260 {
3261 /* Otherwise, see if we have a REG_EQUAL note of the form
7efd40b5 3262 (plus (...) CST). */
ace3ffcd
KH
3263 rtx links;
3264 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
3265 {
7c11b28c
BS
3266 if ((REG_NOTE_KIND (links) == REG_EQUAL
3267 || REG_NOTE_KIND (links) == REG_EQUIV)
ace3ffcd 3268 && GET_CODE (XEXP (links, 0)) == PLUS
7efd40b5 3269 && GET_CODE (XEXP (XEXP (links, 0), 1)) == CONST_INT)
ace3ffcd 3270 {
ab156144 3271 plus_cst_src = XEXP (links, 0);
ace3ffcd
KH
3272 break;
3273 }
3274 }
3275 }
7efd40b5
UW
3276
3277 /* Check that the first operand of the PLUS is a hard reg or
3278 the lowpart subreg of one. */
3279 if (plus_cst_src)
3280 {
3281 rtx reg = XEXP (plus_cst_src, 0);
3282 if (GET_CODE (reg) == SUBREG && subreg_lowpart_p (reg))
3283 reg = SUBREG_REG (reg);
3284
3285 if (!REG_P (reg) || REGNO (reg) >= FIRST_PSEUDO_REGISTER)
3286 plus_cst_src = 0;
3287 }
ace3ffcd 3288 }
ab156144 3289 if (plus_cst_src)
ace3ffcd 3290 {
ab156144
RH
3291 rtx reg = XEXP (plus_cst_src, 0);
3292 HOST_WIDE_INT offset = INTVAL (XEXP (plus_cst_src, 1));
32131a9c 3293
7efd40b5
UW
3294 if (GET_CODE (reg) == SUBREG)
3295 reg = SUBREG_REG (reg);
3296
aa5524a9
BS
3297 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3298 if (ep->from_rtx == reg && ep->can_eliminate)
3299 {
7efd40b5 3300 rtx to_rtx = ep->to_rtx;
aa5524a9 3301 offset += ep->offset;
231a1e52 3302 offset = trunc_int_for_mode (offset, GET_MODE (plus_cst_src));
32131a9c 3303
7efd40b5
UW
3304 if (GET_CODE (XEXP (plus_cst_src, 0)) == SUBREG)
3305 to_rtx = gen_lowpart (GET_MODE (XEXP (plus_cst_src, 0)),
3306 to_rtx);
8c1249f9
PB
3307 /* If we have a nonzero offset, and the source is already
3308 a simple REG, the following transformation would
3309 increase the cost of the insn by replacing a simple REG
3310 with (plus (reg sp) CST). So try only when we already
3311 had a PLUS before. */
551d6929 3312 if (offset == 0 || plus_src)
8c1249f9 3313 {
551d6929
UW
3314 rtx new_src = plus_constant (to_rtx, offset);
3315
8c1249f9
PB
3316 new_body = old_body;
3317 if (! replace)
3318 {
3319 new_body = copy_insn (old_body);
3320 if (REG_NOTES (insn))
3321 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3322 }
3323 PATTERN (insn) = new_body;
3324 old_set = single_set (insn);
3325
551d6929
UW
3326 /* First see if this insn remains valid when we make the
3327 change. If not, try to replace the whole pattern with
3328 a simple set (this may help if the original insn was a
3329 PARALLEL that was only recognized as single_set due to
3330 REG_UNUSED notes). If this isn't valid either, keep
3331 the INSN_CODE the same and let reload fix it up. */
3332 if (!validate_change (insn, &SET_SRC (old_set), new_src, 0))
3333 {
3334 rtx new_pat = gen_rtx_SET (VOIDmode,
3335 SET_DEST (old_set), new_src);
3336
3337 if (!validate_change (insn, &PATTERN (insn), new_pat, 0))
3338 SET_SRC (old_set) = new_src;
3339 }
8c1249f9 3340 }
ace3ffcd
KH
3341 else
3342 break;
3343
aa5524a9
BS
3344 val = 1;
3345 /* This can't have an effect on elimination offsets, so skip right
3346 to the end. */
3347 goto done;
3348 }
32131a9c
RK
3349 }
3350
dfac187e
BS
3351 /* Determine the effects of this insn on elimination offsets. */
3352 elimination_effects (old_body, 0);
3353
3354 /* Eliminate all eliminable registers occurring in operands that
3355 can be handled by reload. */
3356 extract_insn (insn);
dfac187e
BS
3357 for (i = 0; i < recog_data.n_operands; i++)
3358 {
3359 orig_operand[i] = recog_data.operand[i];
3360 substed_operand[i] = recog_data.operand[i];
3361
3362 /* For an asm statement, every operand is eliminable. */
3363 if (insn_is_asm || insn_data[icode].operand[i].eliminable)
3364 {
ab156144
RH
3365 bool is_set_src, in_plus;
3366
dfac187e
BS
3367 /* Check for setting a register that we know about. */
3368 if (recog_data.operand_type[i] != OP_IN
f8cfc6aa 3369 && REG_P (orig_operand[i]))
dfac187e
BS
3370 {
3371 /* If we are assigning to a register that can be eliminated, it
3372 must be as part of a PARALLEL, since the code above handles
3373 single SETs. We must indicate that we can no longer
3374 eliminate this reg. */
3375 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3376 ep++)
761fa0f7 3377 if (ep->from_rtx == orig_operand[i])
dfac187e
BS
3378 ep->can_eliminate = 0;
3379 }
3380
ab156144
RH
3381 /* Companion to the above plus substitution, we can allow
3382 invariants as the source of a plain move. */
3383 is_set_src = false;
3384 if (old_set && recog_data.operand_loc[i] == &SET_SRC (old_set))
3385 is_set_src = true;
3386 in_plus = false;
3387 if (plus_src
3388 && (recog_data.operand_loc[i] == &XEXP (plus_src, 0)
3389 || recog_data.operand_loc[i] == &XEXP (plus_src, 1)))
3390 in_plus = true;
3391
3392 substed_operand[i]
3393 = eliminate_regs_1 (recog_data.operand[i], 0,
3394 replace ? insn : NULL_RTX,
3395 is_set_src || in_plus);
dfac187e 3396 if (substed_operand[i] != orig_operand[i])
4977bab6 3397 val = 1;
dfac187e
BS
3398 /* Terminate the search in check_eliminable_occurrences at
3399 this point. */
3400 *recog_data.operand_loc[i] = 0;
3401
c41c1387
RS
3402 /* If an output operand changed from a REG to a MEM and INSN is an
3403 insn, write a CLOBBER insn. */
dfac187e 3404 if (recog_data.operand_type[i] != OP_IN
f8cfc6aa 3405 && REG_P (orig_operand[i])
3c0cb5de 3406 && MEM_P (substed_operand[i])
dfac187e 3407 && replace)
c41c1387 3408 emit_insn_after (gen_clobber (orig_operand[i]), insn);
dfac187e
BS
3409 }
3410 }
3411
3412 for (i = 0; i < recog_data.n_dups; i++)
3413 *recog_data.dup_loc[i]
1d7254c5 3414 = *recog_data.operand_loc[(int) recog_data.dup_num[i]];
dfac187e
BS
3415
3416 /* If any eliminable remain, they aren't eliminable anymore. */
3417 check_eliminable_occurrences (old_body);
32131a9c 3418
dfac187e
BS
3419 /* Substitute the operands; the new values are in the substed_operand
3420 array. */
3421 for (i = 0; i < recog_data.n_operands; i++)
3422 *recog_data.operand_loc[i] = substed_operand[i];
3423 for (i = 0; i < recog_data.n_dups; i++)
1d7254c5 3424 *recog_data.dup_loc[i] = substed_operand[(int) recog_data.dup_num[i]];
32131a9c 3425
dfac187e 3426 /* If we are replacing a body that was a (set X (plus Y Z)), try to
32131a9c
RK
3427 re-recognize the insn. We do this in case we had a simple addition
3428 but now can do this as a load-address. This saves an insn in this
dfac187e
BS
3429 common case.
3430 If re-recognition fails, the old insn code number will still be used,
3431 and some register operands may have changed into PLUS expressions.
3432 These will be handled by find_reloads by loading them into a register
1d7254c5 3433 again. */
32131a9c 3434
dfac187e 3435 if (val)
32131a9c 3436 {
7c791b13
RK
3437 /* If we aren't replacing things permanently and we changed something,
3438 make another copy to ensure that all the RTL is new. Otherwise
3439 things can go wrong if find_reload swaps commutative operands
0f41302f 3440 and one is inside RTL that has been copied while the other is not. */
dfac187e
BS
3441 new_body = old_body;
3442 if (! replace)
1b3b5765
BS
3443 {
3444 new_body = copy_insn (old_body);
3445 if (REG_NOTES (insn))
3446 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3447 }
dfac187e 3448 PATTERN (insn) = new_body;
7c791b13 3449
774672d2
RK
3450 /* If we had a move insn but now we don't, rerecognize it. This will
3451 cause spurious re-recognition if the old move had a PARALLEL since
3452 the new one still will, but we can't call single_set without
3453 having put NEW_BODY into the insn and the re-recognition won't
3454 hurt in this rare case. */
dfac187e
BS
3455 /* ??? Why this huge if statement - why don't we just rerecognize the
3456 thing always? */
3457 if (! insn_is_asm
3458 && old_set != 0
f8cfc6aa 3459 && ((REG_P (SET_SRC (old_set))
774672d2 3460 && (GET_CODE (new_body) != SET
f8cfc6aa 3461 || !REG_P (SET_SRC (new_body))))
774672d2 3462 /* If this was a load from or store to memory, compare
1ccbefce
RH
3463 the MEM in recog_data.operand to the one in the insn.
3464 If they are not equal, then rerecognize the insn. */
774672d2 3465 || (old_set != 0
3c0cb5de 3466 && ((MEM_P (SET_SRC (old_set))
1ccbefce 3467 && SET_SRC (old_set) != recog_data.operand[1])
3c0cb5de 3468 || (MEM_P (SET_DEST (old_set))
1ccbefce 3469 && SET_DEST (old_set) != recog_data.operand[0])))
774672d2
RK
3470 /* If this was an add insn before, rerecognize. */
3471 || GET_CODE (SET_SRC (old_set)) == PLUS))
4a5d0fb5 3472 {
dfac187e 3473 int new_icode = recog (PATTERN (insn), insn, 0);
a5ee7cba
AM
3474 if (new_icode >= 0)
3475 INSN_CODE (insn) = new_icode;
4a5d0fb5 3476 }
dfac187e 3477 }
32131a9c 3478
dfac187e
BS
3479 /* Restore the old body. If there were any changes to it, we made a copy
3480 of it while the changes were still in place, so we'll correctly return
3481 a modified insn below. */
3482 if (! replace)
3483 {
3484 /* Restore the old body. */
3485 for (i = 0; i < recog_data.n_operands; i++)
3486 *recog_data.operand_loc[i] = orig_operand[i];
3487 for (i = 0; i < recog_data.n_dups; i++)
1d7254c5 3488 *recog_data.dup_loc[i] = orig_operand[(int) recog_data.dup_num[i]];
32131a9c 3489 }
a8fdc208 3490
dfac187e
BS
3491 /* Update all elimination pairs to reflect the status after the current
3492 insn. The changes we make were determined by the earlier call to
3493 elimination_effects.
a8efe40d 3494
423adbb9 3495 We also detect cases where register elimination cannot be done,
32131a9c
RK
3496 namely, if a register would be both changed and referenced outside a MEM
3497 in the resulting insn since such an insn is often undefined and, even if
3498 not, we cannot know what meaning will be given to it. Note that it is
3499 valid to have a register used in an address in an insn that changes it
3500 (presumably with a pre- or post-increment or decrement).
3501
3502 If anything changes, return nonzero. */
3503
32131a9c
RK
3504 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3505 {
3506 if (ep->previous_offset != ep->offset && ep->ref_outside_mem)
3507 ep->can_eliminate = 0;
3508
3509 ep->ref_outside_mem = 0;
3510
3511 if (ep->previous_offset != ep->offset)
3512 val = 1;
32131a9c
RK
3513 }
3514
3515 done:
9faa82d8 3516 /* If we changed something, perform elimination in REG_NOTES. This is
05b4c365
RK
3517 needed even when REPLACE is zero because a REG_DEAD note might refer
3518 to a register that we eliminate and could cause a different number
3519 of spill registers to be needed in the final reload pass than in
3520 the pre-passes. */
20748cab 3521 if (val && REG_NOTES (insn) != 0)
ab156144
RH
3522 REG_NOTES (insn)
3523 = eliminate_regs_1 (REG_NOTES (insn), 0, REG_NOTES (insn), true);
05b4c365 3524
32131a9c
RK
3525 return val;
3526}
3527
cb2afeb3
R
3528/* Loop through all elimination pairs.
3529 Recalculate the number not at initial offset.
3530
3531 Compute the maximum offset (minimum offset if the stack does not
3532 grow downward) for each elimination pair. */
3533
3534static void
0c20a65f 3535update_eliminable_offsets (void)
cb2afeb3
R
3536{
3537 struct elim_table *ep;
3538
3539 num_not_at_initial_offset = 0;
3540 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3541 {
3542 ep->previous_offset = ep->offset;
3543 if (ep->can_eliminate && ep->offset != ep->initial_offset)
3544 num_not_at_initial_offset++;
cb2afeb3
R
3545 }
3546}
3547
32131a9c
RK
3548/* Given X, a SET or CLOBBER of DEST, if DEST is the target of a register
3549 replacement we currently believe is valid, mark it as not eliminable if X
3550 modifies DEST in any way other than by adding a constant integer to it.
3551
3552 If DEST is the frame pointer, we do nothing because we assume that
3ec2ea3e
DE
3553 all assignments to the hard frame pointer are nonlocal gotos and are being
3554 done at a time when they are valid and do not disturb anything else.
32131a9c 3555 Some machines want to eliminate a fake argument pointer with either the
3ec2ea3e
DE
3556 frame or stack pointer. Assignments to the hard frame pointer must not
3557 prevent this elimination.
32131a9c
RK
3558
3559 Called via note_stores from reload before starting its passes to scan
3560 the insns of the function. */
3561
3562static void
7bc980e1 3563mark_not_eliminable (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
32131a9c 3564{
b3694847 3565 unsigned int i;
32131a9c
RK
3566
3567 /* A SUBREG of a hard register here is just changing its mode. We should
3568 not see a SUBREG of an eliminable hard register, but check just in
3569 case. */
3570 if (GET_CODE (dest) == SUBREG)
3571 dest = SUBREG_REG (dest);
3572
3ec2ea3e 3573 if (dest == hard_frame_pointer_rtx)
32131a9c
RK
3574 return;
3575
3576 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
3577 if (reg_eliminate[i].can_eliminate && dest == reg_eliminate[i].to_rtx
3578 && (GET_CODE (x) != SET
3579 || GET_CODE (SET_SRC (x)) != PLUS
3580 || XEXP (SET_SRC (x), 0) != dest
3581 || GET_CODE (XEXP (SET_SRC (x), 1)) != CONST_INT))
3582 {
3583 reg_eliminate[i].can_eliminate_previous
3584 = reg_eliminate[i].can_eliminate = 0;
3585 num_eliminable--;
3586 }
3587}
09dd1133 3588
c47f5ea5
BS
3589/* Verify that the initial elimination offsets did not change since the
3590 last call to set_initial_elim_offsets. This is used to catch cases
3591 where something illegal happened during reload_as_needed that could
3592 cause incorrect code to be generated if we did not check for it. */
c8d8ed65 3593
9f938de1 3594static bool
0c20a65f 3595verify_initial_elim_offsets (void)
c47f5ea5 3596{
b19ee4bd 3597 HOST_WIDE_INT t;
c47f5ea5 3598
9f938de1
UW
3599 if (!num_eliminable)
3600 return true;
3601
c47f5ea5 3602#ifdef ELIMINABLE_REGS
67730e23
ILT
3603 {
3604 struct elim_table *ep;
3605
3606 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3607 {
3608 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, t);
3609 if (t != ep->initial_offset)
3610 return false;
3611 }
3612 }
c47f5ea5
BS
3613#else
3614 INITIAL_FRAME_POINTER_OFFSET (t);
9f938de1
UW
3615 if (t != reg_eliminate[0].initial_offset)
3616 return false;
05d10675 3617#endif
9f938de1
UW
3618
3619 return true;
c47f5ea5
BS
3620}
3621
09dd1133 3622/* Reset all offsets on eliminable registers to their initial values. */
1d813780 3623
09dd1133 3624static void
0c20a65f 3625set_initial_elim_offsets (void)
09dd1133 3626{
1f3b1e1a 3627 struct elim_table *ep = reg_eliminate;
09dd1133
BS
3628
3629#ifdef ELIMINABLE_REGS
1f3b1e1a 3630 for (; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
09dd1133
BS
3631 {
3632 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, ep->initial_offset);
1f3b1e1a 3633 ep->previous_offset = ep->offset = ep->initial_offset;
09dd1133
BS
3634 }
3635#else
1f3b1e1a
JL
3636 INITIAL_FRAME_POINTER_OFFSET (ep->initial_offset);
3637 ep->previous_offset = ep->offset = ep->initial_offset;
09dd1133
BS
3638#endif
3639
3640 num_not_at_initial_offset = 0;
1f3b1e1a 3641}
09dd1133 3642
58767f00
RH
3643/* Subroutine of set_initial_label_offsets called via for_each_eh_label. */
3644
3645static void
3646set_initial_eh_label_offset (rtx label)
3647{
3648 set_label_offsets (label, NULL_RTX, 1);
3649}
3650
1f3b1e1a
JL
3651/* Initialize the known label offsets.
3652 Set a known offset for each forced label to be at the initial offset
3653 of each elimination. We do this because we assume that all
3654 computed jumps occur from a location where each elimination is
3655 at its initial offset.
3656 For all other labels, show that we don't know the offsets. */
09dd1133 3657
1f3b1e1a 3658static void
0c20a65f 3659set_initial_label_offsets (void)
1f3b1e1a
JL
3660{
3661 rtx x;
4cc0fdd2 3662 memset (offsets_known_at, 0, num_labels);
09dd1133
BS
3663
3664 for (x = forced_labels; x; x = XEXP (x, 1))
3665 if (XEXP (x, 0))
3666 set_label_offsets (XEXP (x, 0), NULL_RTX, 1);
58767f00
RH
3667
3668 for_each_eh_label (set_initial_eh_label_offset);
09dd1133
BS
3669}
3670
1f3b1e1a
JL
3671/* Set all elimination offsets to the known values for the code label given
3672 by INSN. */
1d813780 3673
1f3b1e1a 3674static void
0c20a65f 3675set_offsets_for_label (rtx insn)
1f3b1e1a 3676{
973838fd 3677 unsigned int i;
1f3b1e1a
JL
3678 int label_nr = CODE_LABEL_NUMBER (insn);
3679 struct elim_table *ep;
3680
3681 num_not_at_initial_offset = 0;
3682 for (i = 0, ep = reg_eliminate; i < NUM_ELIMINABLE_REGS; ep++, i++)
3683 {
4cc0fdd2
JDA
3684 ep->offset = ep->previous_offset
3685 = offsets_at[label_nr - first_label_num][i];
1f3b1e1a
JL
3686 if (ep->can_eliminate && ep->offset != ep->initial_offset)
3687 num_not_at_initial_offset++;
3688 }
3689}
3690
09dd1133 3691/* See if anything that happened changes which eliminations are valid.
981f6289 3692 For example, on the SPARC, whether or not the frame pointer can
09dd1133
BS
3693 be eliminated can depend on what registers have been used. We need
3694 not check some conditions again (such as flag_omit_frame_pointer)
3695 since they can't have changed. */
3696
3697static void
0c20a65f 3698update_eliminables (HARD_REG_SET *pset)
09dd1133 3699{
09dd1133 3700 int previous_frame_pointer_needed = frame_pointer_needed;
09dd1133
BS
3701 struct elim_table *ep;
3702
3703 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3704 if ((ep->from == HARD_FRAME_POINTER_REGNUM && FRAME_POINTER_REQUIRED)
3705#ifdef ELIMINABLE_REGS
3706 || ! CAN_ELIMINATE (ep->from, ep->to)
3707#endif
3708 )
3709 ep->can_eliminate = 0;
3710
3711 /* Look for the case where we have discovered that we can't replace
3712 register A with register B and that means that we will now be
3713 trying to replace register A with register C. This means we can
3714 no longer replace register C with register B and we need to disable
3715 such an elimination, if it exists. This occurs often with A == ap,
3716 B == sp, and C == fp. */
3717
3718 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3719 {
3720 struct elim_table *op;
b3694847 3721 int new_to = -1;
09dd1133
BS
3722
3723 if (! ep->can_eliminate && ep->can_eliminate_previous)
3724 {
3725 /* Find the current elimination for ep->from, if there is a
3726 new one. */
3727 for (op = reg_eliminate;
3728 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3729 if (op->from == ep->from && op->can_eliminate)
3730 {
3731 new_to = op->to;
3732 break;
3733 }
3734
3735 /* See if there is an elimination of NEW_TO -> EP->TO. If so,
3736 disable it. */
3737 for (op = reg_eliminate;
3738 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3739 if (op->from == new_to && op->to == ep->to)
3740 op->can_eliminate = 0;
3741 }
3742 }
3743
3744 /* See if any registers that we thought we could eliminate the previous
3745 time are no longer eliminable. If so, something has changed and we
3746 must spill the register. Also, recompute the number of eliminable
3747 registers and see if the frame pointer is needed; it is if there is
3748 no elimination of the frame pointer that we can perform. */
3749
3750 frame_pointer_needed = 1;
3751 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3752 {
2e3f842f
L
3753 if (ep->can_eliminate
3754 && ep->from == FRAME_POINTER_REGNUM
3755 && ep->to != HARD_FRAME_POINTER_REGNUM
3756 && (! SUPPORTS_STACK_ALIGNMENT
3757 || ! crtl->stack_realign_needed))
09dd1133
BS
3758 frame_pointer_needed = 0;
3759
3760 if (! ep->can_eliminate && ep->can_eliminate_previous)
3761 {
3762 ep->can_eliminate_previous = 0;
3763 SET_HARD_REG_BIT (*pset, ep->from);
3764 num_eliminable--;
3765 }
3766 }
3767
09dd1133
BS
3768 /* If we didn't need a frame pointer last time, but we do now, spill
3769 the hard frame pointer. */
3770 if (frame_pointer_needed && ! previous_frame_pointer_needed)
3771 SET_HARD_REG_BIT (*pset, HARD_FRAME_POINTER_REGNUM);
09dd1133
BS
3772}
3773
8c74fb06
RS
3774/* Return true if X is used as the target register of an elimination. */
3775
3776bool
3777elimination_target_reg_p (rtx x)
3778{
3779 struct elim_table *ep;
3780
3781 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3782 if (ep->to_rtx == x && ep->can_eliminate)
3783 return true;
3784
3785 return false;
3786}
3787
38aa4d08
JY
3788/* Initialize the table of registers to eliminate.
3789 Pre-condition: global flag frame_pointer_needed has been set before
3790 calling this function. */
1d813780 3791
09dd1133 3792static void
0c20a65f 3793init_elim_table (void)
09dd1133
BS
3794{
3795 struct elim_table *ep;
590cf94d 3796#ifdef ELIMINABLE_REGS
0b5826ac 3797 const struct elim_table_1 *ep1;
590cf94d 3798#endif
09dd1133 3799
590cf94d 3800 if (!reg_eliminate)
1634b18f 3801 reg_eliminate = XCNEWVEC (struct elim_table, NUM_ELIMINABLE_REGS);
05d10675 3802
09dd1133
BS
3803 num_eliminable = 0;
3804
3805#ifdef ELIMINABLE_REGS
590cf94d
KG
3806 for (ep = reg_eliminate, ep1 = reg_eliminate_1;
3807 ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++, ep1++)
09dd1133 3808 {
590cf94d
KG
3809 ep->from = ep1->from;
3810 ep->to = ep1->to;
09dd1133
BS
3811 ep->can_eliminate = ep->can_eliminate_previous
3812 = (CAN_ELIMINATE (ep->from, ep->to)
2e3f842f
L
3813 && ! (ep->to == STACK_POINTER_REGNUM
3814 && frame_pointer_needed
3815 && (! SUPPORTS_STACK_ALIGNMENT
3816 || ! stack_realign_fp)));
09dd1133
BS
3817 }
3818#else
590cf94d
KG
3819 reg_eliminate[0].from = reg_eliminate_1[0].from;
3820 reg_eliminate[0].to = reg_eliminate_1[0].to;
09dd1133
BS
3821 reg_eliminate[0].can_eliminate = reg_eliminate[0].can_eliminate_previous
3822 = ! frame_pointer_needed;
3823#endif
3824
3825 /* Count the number of eliminable registers and build the FROM and TO
2fb00d7f 3826 REG rtx's. Note that code in gen_rtx_REG will cause, e.g.,
f84d109f 3827 gen_rtx_REG (Pmode, STACK_POINTER_REGNUM) to equal stack_pointer_rtx.
09dd1133
BS
3828 We depend on this. */
3829 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3830 {
3831 num_eliminable += ep->can_eliminate;
3832 ep->from_rtx = gen_rtx_REG (Pmode, ep->from);
3833 ep->to_rtx = gen_rtx_REG (Pmode, ep->to);
3834 }
3835}
32131a9c
RK
3836\f
3837/* Kick all pseudos out of hard register REGNO.
32131a9c
RK
3838
3839 If CANT_ELIMINATE is nonzero, it means that we are doing this spill
3840 because we found we can't eliminate some register. In the case, no pseudos
3841 are allowed to be in the register, even if they are only in a block that
3842 doesn't require spill registers, unlike the case when we are spilling this
3843 hard reg to produce another spill register.
3844
3845 Return nonzero if any pseudos needed to be kicked out. */
3846
03acd8f8 3847static void
0c20a65f 3848spill_hard_reg (unsigned int regno, int cant_eliminate)
32131a9c 3849{
b3694847 3850 int i;
32131a9c 3851
9ff3516a 3852 if (cant_eliminate)
03acd8f8
BS
3853 {
3854 SET_HARD_REG_BIT (bad_spill_regs_global, regno);
6fb5fa3c 3855 df_set_regs_ever_live (regno, true);
03acd8f8 3856 }
9ff3516a 3857
32131a9c
RK
3858 /* Spill every pseudo reg that was allocated to this reg
3859 or to something that overlaps this reg. */
3860
3861 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
3862 if (reg_renumber[i] >= 0
770ae6cc 3863 && (unsigned int) reg_renumber[i] <= regno
09e18274 3864 && end_hard_regno (PSEUDO_REGNO_MODE (i), reg_renumber[i]) > regno)
f5d8c9f4 3865 SET_REGNO_REG_SET (&spilled_pseudos, i);
03acd8f8 3866}
32131a9c 3867
03acd8f8
BS
3868/* After find_reload_regs has been run for all insn that need reloads,
3869 and/or spill_hard_regs was called, this function is used to actually
3870 spill pseudo registers and try to reallocate them. It also sets up the
3871 spill_regs array for use by choose_reload_regs. */
a8fdc208 3872
03acd8f8 3873static int
0c20a65f 3874finish_spills (int global)
03acd8f8
BS
3875{
3876 struct insn_chain *chain;
3877 int something_changed = 0;
3cd8c58a 3878 unsigned i;
a2041967 3879 reg_set_iterator rsi;
03acd8f8
BS
3880
3881 /* Build the spill_regs array for the function. */
3882 /* If there are some registers still to eliminate and one of the spill regs
3883 wasn't ever used before, additional stack space may have to be
3884 allocated to store this register. Thus, we may have changed the offset
3885 between the stack and frame pointers, so mark that something has changed.
32131a9c 3886
03acd8f8
BS
3887 One might think that we need only set VAL to 1 if this is a call-used
3888 register. However, the set of registers that must be saved by the
3889 prologue is not identical to the call-used set. For example, the
3890 register used by the call insn for the return PC is a call-used register,
3891 but must be saved by the prologue. */
3892
3893 n_spills = 0;
3894 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3895 if (TEST_HARD_REG_BIT (used_spill_regs, i))
3896 {
3897 spill_reg_order[i] = n_spills;
3898 spill_regs[n_spills++] = i;
6fb5fa3c 3899 if (num_eliminable && ! df_regs_ever_live_p (i))
03acd8f8 3900 something_changed = 1;
6fb5fa3c 3901 df_set_regs_ever_live (i, true);
03acd8f8
BS
3902 }
3903 else
3904 spill_reg_order[i] = -1;
3905
a2041967 3906 EXECUTE_IF_SET_IN_REG_SET (&spilled_pseudos, FIRST_PSEUDO_REGISTER, i, rsi)
2af2dbdc 3907 if (! ira_conflicts_p || reg_renumber[i] >= 0)
058e97ec
VM
3908 {
3909 /* Record the current hard register the pseudo is allocated to
3910 in pseudo_previous_regs so we avoid reallocating it to the
3911 same hard reg in a later pass. */
3912 gcc_assert (reg_renumber[i] >= 0);
3913
3914 SET_HARD_REG_BIT (pseudo_previous_regs[i], reg_renumber[i]);
3915 /* Mark it as no longer having a hard register home. */
3916 reg_renumber[i] = -1;
2af2dbdc 3917 if (ira_conflicts_p)
058e97ec
VM
3918 /* Inform IRA about the change. */
3919 ira_mark_allocation_change (i);
3920 /* We will need to scan everything again. */
3921 something_changed = 1;
3922 }
7609e720 3923
03acd8f8 3924 /* Retry global register allocation if possible. */
2af2dbdc 3925 if (global && ira_conflicts_p)
03acd8f8 3926 {
2af2dbdc
VM
3927 unsigned int n;
3928
703ad42b 3929 memset (pseudo_forbidden_regs, 0, max_regno * sizeof (HARD_REG_SET));
03acd8f8
BS
3930 /* For every insn that needs reloads, set the registers used as spill
3931 regs in pseudo_forbidden_regs for every pseudo live across the
3932 insn. */
3933 for (chain = insns_need_reload; chain; chain = chain->next_need_reload)
3934 {
3935 EXECUTE_IF_SET_IN_REG_SET
a2041967
KH
3936 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i, rsi)
3937 {
00268eb3
KH
3938 IOR_HARD_REG_SET (pseudo_forbidden_regs[i],
3939 chain->used_spill_regs);
a2041967 3940 }
03acd8f8 3941 EXECUTE_IF_SET_IN_REG_SET
a2041967
KH
3942 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i, rsi)
3943 {
00268eb3
KH
3944 IOR_HARD_REG_SET (pseudo_forbidden_regs[i],
3945 chain->used_spill_regs);
a2041967 3946 }
03acd8f8 3947 }
7609e720 3948
2af2dbdc
VM
3949 /* Retry allocating the pseudos spilled in IRA and the
3950 reload. For each reg, merge the various reg sets that
3951 indicate which hard regs can't be used, and call
3952 ira_reassign_pseudos. */
3953 for (n = 0, i = FIRST_PSEUDO_REGISTER; i < (unsigned) max_regno; i++)
3954 if (reg_old_renumber[i] != reg_renumber[i])
3955 {
3956 if (reg_renumber[i] < 0)
3957 temp_pseudo_reg_arr[n++] = i;
3958 else
3959 CLEAR_REGNO_REG_SET (&spilled_pseudos, i);
3960 }
3961 if (ira_reassign_pseudos (temp_pseudo_reg_arr, n,
3962 bad_spill_regs_global,
3963 pseudo_forbidden_regs, pseudo_previous_regs,
3964 &spilled_pseudos))
3965 something_changed = 1;
03acd8f8 3966 }
03acd8f8
BS
3967 /* Fix up the register information in the insn chain.
3968 This involves deleting those of the spilled pseudos which did not get
3969 a new hard register home from the live_{before,after} sets. */
7609e720
BS
3970 for (chain = reload_insn_chain; chain; chain = chain->next)
3971 {
03acd8f8
BS
3972 HARD_REG_SET used_by_pseudos;
3973 HARD_REG_SET used_by_pseudos2;
3974
2af2dbdc 3975 if (! ira_conflicts_p)
058e97ec
VM
3976 {
3977 /* Don't do it for IRA because IRA and the reload still can
3978 assign hard registers to the spilled pseudos on next
3979 reload iterations. */
3980 AND_COMPL_REG_SET (&chain->live_throughout, &spilled_pseudos);
3981 AND_COMPL_REG_SET (&chain->dead_or_set, &spilled_pseudos);
3982 }
03acd8f8
BS
3983 /* Mark any unallocated hard regs as available for spills. That
3984 makes inheritance work somewhat better. */
3985 if (chain->need_reload)
3986 {
239a0f5b
BS
3987 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
3988 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
03acd8f8
BS
3989 IOR_HARD_REG_SET (used_by_pseudos, used_by_pseudos2);
3990
239a0f5b
BS
3991 compute_use_by_pseudos (&used_by_pseudos, &chain->live_throughout);
3992 compute_use_by_pseudos (&used_by_pseudos, &chain->dead_or_set);
058e97ec
VM
3993 /* Value of chain->used_spill_regs from previous iteration
3994 may be not included in the value calculated here because
3995 of possible removing caller-saves insns (see function
3996 delete_caller_save_insns. */
03acd8f8
BS
3997 COMPL_HARD_REG_SET (chain->used_spill_regs, used_by_pseudos);
3998 AND_HARD_REG_SET (chain->used_spill_regs, used_spill_regs);
03acd8f8 3999 }
7609e720 4000 }
03acd8f8 4001
058e97ec 4002 CLEAR_REG_SET (&changed_allocation_pseudos);
03acd8f8 4003 /* Let alter_reg modify the reg rtx's for the modified pseudos. */
3cd8c58a 4004 for (i = FIRST_PSEUDO_REGISTER; i < (unsigned)max_regno; i++)
03acd8f8
BS
4005 {
4006 int regno = reg_renumber[i];
4007 if (reg_old_renumber[i] == regno)
4008 continue;
05d10675 4009
058e97ec
VM
4010 SET_REGNO_REG_SET (&changed_allocation_pseudos, i);
4011
4012 alter_reg (i, reg_old_renumber[i], false);
03acd8f8 4013 reg_old_renumber[i] = regno;
c263766c 4014 if (dump_file)
03acd8f8
BS
4015 {
4016 if (regno == -1)
c263766c 4017 fprintf (dump_file, " Register %d now on stack.\n\n", i);
03acd8f8 4018 else
c263766c 4019 fprintf (dump_file, " Register %d now in %d.\n\n",
03acd8f8
BS
4020 i, reg_renumber[i]);
4021 }
4022 }
4023
4024 return something_changed;
7609e720 4025}
32131a9c 4026\f
d754127f 4027/* Find all paradoxical subregs within X and update reg_max_ref_width. */
32131a9c
RK
4028
4029static void
0c20a65f 4030scan_paradoxical_subregs (rtx x)
32131a9c 4031{
b3694847
SS
4032 int i;
4033 const char *fmt;
4034 enum rtx_code code = GET_CODE (x);
32131a9c
RK
4035
4036 switch (code)
4037 {
56f58d3a 4038 case REG:
32131a9c
RK
4039 case CONST_INT:
4040 case CONST:
4041 case SYMBOL_REF:
4042 case LABEL_REF:
4043 case CONST_DOUBLE:
091a3ac7 4044 case CONST_FIXED:
69ef87e2 4045 case CONST_VECTOR: /* shouldn't happen, but just in case. */
32131a9c
RK
4046 case CC0:
4047 case PC:
32131a9c
RK
4048 case USE:
4049 case CLOBBER:
4050 return;
4051
4052 case SUBREG:
f8cfc6aa 4053 if (REG_P (SUBREG_REG (x))
63a7a62b
RS
4054 && (GET_MODE_SIZE (GET_MODE (x))
4055 > reg_max_ref_width[REGNO (SUBREG_REG (x))]))
6fb5fa3c
DB
4056 {
4057 reg_max_ref_width[REGNO (SUBREG_REG (x))]
4058 = GET_MODE_SIZE (GET_MODE (x));
4059 mark_home_live_1 (REGNO (SUBREG_REG (x)), GET_MODE (x));
4060 }
32131a9c 4061 return;
05d10675 4062
e9a25f70
JL
4063 default:
4064 break;
32131a9c
RK
4065 }
4066
4067 fmt = GET_RTX_FORMAT (code);
4068 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4069 {
4070 if (fmt[i] == 'e')
4071 scan_paradoxical_subregs (XEXP (x, i));
4072 else if (fmt[i] == 'E')
4073 {
b3694847 4074 int j;
1d7254c5 4075 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
32131a9c
RK
4076 scan_paradoxical_subregs (XVECEXP (x, i, j));
4077 }
4078 }
4079}
4080\f
be0c514c
RH
4081/* A subroutine of reload_as_needed. If INSN has a REG_EH_REGION note,
4082 examine all of the reload insns between PREV and NEXT exclusive, and
4083 annotate all that may trap. */
4084
4085static void
4086fixup_eh_region_note (rtx insn, rtx prev, rtx next)
4087{
4088 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
be0c514c
RH
4089 rtx i;
4090
4091 if (note == NULL)
4092 return;
4093
d3aa398e
JL
4094 if (! may_trap_p (PATTERN (insn)))
4095 remove_note (insn, note);
be0c514c 4096
ba4807a0 4097 for (i = NEXT_INSN (prev); i != next; i = NEXT_INSN (i))
be0c514c 4098 if (INSN_P (i) && i != insn && may_trap_p (PATTERN (i)))
d3aa398e 4099 add_reg_note (i, REG_EH_REGION, XEXP (note, 0));
be0c514c
RH
4100}
4101
32131a9c
RK
4102/* Reload pseudo-registers into hard regs around each insn as needed.
4103 Additional register load insns are output before the insn that needs it
4104 and perhaps store insns after insns that modify the reloaded pseudo reg.
4105
4106 reg_last_reload_reg and reg_reloaded_contents keep track of
d08ea79f 4107 which registers are already available in reload registers.
32131a9c
RK
4108 We update these for the reloads that we perform,
4109 as the insns are scanned. */
4110
4111static void
0c20a65f 4112reload_as_needed (int live_known)
32131a9c 4113{
7609e720 4114 struct insn_chain *chain;
553687c9 4115#if defined (AUTO_INC_DEC)
b3694847 4116 int i;
973838fd 4117#endif
32131a9c 4118 rtx x;
32131a9c 4119
703ad42b
KG
4120 memset (spill_reg_rtx, 0, sizeof spill_reg_rtx);
4121 memset (spill_reg_store, 0, sizeof spill_reg_store);
5ed6ace5 4122 reg_last_reload_reg = XCNEWVEC (rtx, max_regno);
2c61f5f1 4123 INIT_REG_SET (&reg_has_output_reload);
e6e52be0 4124 CLEAR_HARD_REG_SET (reg_reloaded_valid);
e3e9336f 4125 CLEAR_HARD_REG_SET (reg_reloaded_call_part_clobbered);
32131a9c 4126
1f3b1e1a 4127 set_initial_elim_offsets ();
32131a9c 4128
7609e720 4129 for (chain = reload_insn_chain; chain; chain = chain->next)
32131a9c 4130 {
0334ef47 4131 rtx prev = 0;
7609e720
BS
4132 rtx insn = chain->insn;
4133 rtx old_next = NEXT_INSN (insn);
bf8ba8ab
VM
4134#ifdef AUTO_INC_DEC
4135 rtx old_prev = PREV_INSN (insn);
4136#endif
32131a9c
RK
4137
4138 /* If we pass a label, copy the offsets from the label information
4139 into the current offsets of each elimination. */
4b4bf941 4140 if (LABEL_P (insn))
1f3b1e1a 4141 set_offsets_for_label (insn);
32131a9c 4142
2c3c49de 4143 else if (INSN_P (insn))
32131a9c 4144 {
db4c7386
JH
4145 regset_head regs_to_forget;
4146 INIT_REG_SET (&regs_to_forget);
4147 note_stores (PATTERN (insn), forget_old_reloads_1, &regs_to_forget);
7ffaaddc 4148
2758481d
RS
4149 /* If this is a USE and CLOBBER of a MEM, ensure that any
4150 references to eliminable registers have been removed. */
4151
4152 if ((GET_CODE (PATTERN (insn)) == USE
4153 || GET_CODE (PATTERN (insn)) == CLOBBER)
3c0cb5de 4154 && MEM_P (XEXP (PATTERN (insn), 0)))
2758481d
RS
4155 XEXP (XEXP (PATTERN (insn), 0), 0)
4156 = eliminate_regs (XEXP (XEXP (PATTERN (insn), 0), 0),
29ae5012 4157 GET_MODE (XEXP (PATTERN (insn), 0)),
1914f5da 4158 NULL_RTX);
2758481d 4159
32131a9c
RK
4160 /* If we need to do register elimination processing, do so.
4161 This might delete the insn, in which case we are done. */
2b49ee39 4162 if ((num_eliminable || num_eliminable_invariants) && chain->need_elim)
32131a9c
RK
4163 {
4164 eliminate_regs_in_insn (insn, 1);
4b4bf941 4165 if (NOTE_P (insn))
cb2afeb3
R
4166 {
4167 update_eliminable_offsets ();
db4c7386 4168 CLEAR_REG_SET (&regs_to_forget);
cb2afeb3
R
4169 continue;
4170 }
32131a9c
RK
4171 }
4172
7609e720
BS
4173 /* If need_elim is nonzero but need_reload is zero, one might think
4174 that we could simply set n_reloads to 0. However, find_reloads
4175 could have done some manipulation of the insn (such as swapping
4176 commutative operands), and these manipulations are lost during
4177 the first pass for every insn that needs register elimination.
4178 So the actions of find_reloads must be redone here. */
4179
03acd8f8
BS
4180 if (! chain->need_elim && ! chain->need_reload
4181 && ! chain->need_operand_change)
32131a9c
RK
4182 n_reloads = 0;
4183 /* First find the pseudo regs that must be reloaded for this insn.
4184 This info is returned in the tables reload_... (see reload.h).
4185 Also modify the body of INSN by substituting RELOAD
4186 rtx's for those pseudo regs. */
4187 else
4188 {
2c61f5f1 4189 CLEAR_REG_SET (&reg_has_output_reload);
32131a9c
RK
4190 CLEAR_HARD_REG_SET (reg_is_output_reload);
4191
4192 find_reloads (insn, 1, spill_indirect_levels, live_known,
4193 spill_reg_order);
4194 }
4195
4196 if (n_reloads > 0)
4197 {
cb2afeb3 4198 rtx next = NEXT_INSN (insn);
3c3eeea6 4199 rtx p;
32131a9c 4200
cb2afeb3
R
4201 prev = PREV_INSN (insn);
4202
32131a9c
RK
4203 /* Now compute which reload regs to reload them into. Perhaps
4204 reusing reload regs from previous insns, or else output
4205 load insns to reload them. Maybe output store insns too.
4206 Record the choices of reload reg in reload_reg_rtx. */
03acd8f8 4207 choose_reload_regs (chain);
32131a9c 4208
05d10675 4209 /* Merge any reloads that we didn't combine for fear of
546b63fb
RK
4210 increasing the number of spill registers needed but now
4211 discover can be safely merged. */
f95182a4
ILT
4212 if (SMALL_REGISTER_CLASSES)
4213 merge_assigned_reloads (insn);
546b63fb 4214
32131a9c
RK
4215 /* Generate the insns to reload operands into or out of
4216 their reload regs. */
e04ca094 4217 emit_reload_insns (chain);
32131a9c
RK
4218
4219 /* Substitute the chosen reload regs from reload_reg_rtx
4220 into the insn's body (or perhaps into the bodies of other
4221 load and store insn that we just made for reloading
4222 and that we moved the structure into). */
f759eb8b 4223 subst_reloads (insn);
3c3eeea6 4224
be0c514c 4225 /* Adjust the exception region notes for loads and stores. */
e3947b34 4226 if (flag_non_call_exceptions && !CALL_P (insn))
be0c514c
RH
4227 fixup_eh_region_note (insn, prev, next);
4228
3c3eeea6
RK
4229 /* If this was an ASM, make sure that all the reload insns
4230 we have generated are valid. If not, give an error
4231 and delete them. */
3c3eeea6
RK
4232 if (asm_noperands (PATTERN (insn)) >= 0)
4233 for (p = NEXT_INSN (prev); p != next; p = NEXT_INSN (p))
2c3c49de 4234 if (p != insn && INSN_P (p)
00dcfe80 4235 && GET_CODE (PATTERN (p)) != USE
3c3eeea6 4236 && (recog_memoized (p) < 0
0eadeb15 4237 || (extract_insn (p), ! constrain_operands (1))))
3c3eeea6
RK
4238 {
4239 error_for_asm (insn,
971801ff
JM
4240 "%<asm%> operand requires "
4241 "impossible reload");
ca6c03ca 4242 delete_insn (p);
3c3eeea6 4243 }
32131a9c 4244 }
5d7ef82a
BS
4245
4246 if (num_eliminable && chain->need_elim)
4247 update_eliminable_offsets ();
4248
32131a9c
RK
4249 /* Any previously reloaded spilled pseudo reg, stored in this insn,
4250 is no longer validly lying around to save a future reload.
4251 Note that this does not detect pseudos that were reloaded
4252 for this insn in order to be stored in
4253 (obeying register constraints). That is correct; such reload
4254 registers ARE still valid. */
db4c7386
JH
4255 forget_marked_reloads (&regs_to_forget);
4256 CLEAR_REG_SET (&regs_to_forget);
32131a9c
RK
4257
4258 /* There may have been CLOBBER insns placed after INSN. So scan
4259 between INSN and NEXT and use them to forget old reloads. */
7609e720 4260 for (x = NEXT_INSN (insn); x != old_next; x = NEXT_INSN (x))
4b4bf941 4261 if (NONJUMP_INSN_P (x) && GET_CODE (PATTERN (x)) == CLOBBER)
84832317 4262 note_stores (PATTERN (x), forget_old_reloads_1, NULL);
32131a9c
RK
4263
4264#ifdef AUTO_INC_DEC
cb2afeb3
R
4265 /* Likewise for regs altered by auto-increment in this insn.
4266 REG_INC notes have been changed by reloading:
4267 find_reloads_address_1 records substitutions for them,
4268 which have been performed by subst_reloads above. */
4269 for (i = n_reloads - 1; i >= 0; i--)
4270 {
eceef4c9 4271 rtx in_reg = rld[i].in_reg;
cb2afeb3
R
4272 if (in_reg)
4273 {
4274 enum rtx_code code = GET_CODE (in_reg);
4275 /* PRE_INC / PRE_DEC will have the reload register ending up
4276 with the same value as the stack slot, but that doesn't
4277 hold true for POST_INC / POST_DEC. Either we have to
4278 convert the memory access to a true POST_INC / POST_DEC,
4279 or we can't use the reload register for inheritance. */
4280 if ((code == POST_INC || code == POST_DEC)
4281 && TEST_HARD_REG_BIT (reg_reloaded_valid,
eceef4c9 4282 REGNO (rld[i].reg_rtx))
04bbb0c5
JW
4283 /* Make sure it is the inc/dec pseudo, and not
4284 some other (e.g. output operand) pseudo. */
fc555370 4285 && ((unsigned) reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
04bbb0c5 4286 == REGNO (XEXP (in_reg, 0))))
05d10675 4287
cb2afeb3 4288 {
eceef4c9 4289 rtx reload_reg = rld[i].reg_rtx;
cb2afeb3
R
4290 enum machine_mode mode = GET_MODE (reload_reg);
4291 int n = 0;
4292 rtx p;
4293
4294 for (p = PREV_INSN (old_next); p != prev; p = PREV_INSN (p))
4295 {
4296 /* We really want to ignore REG_INC notes here, so
4297 use PATTERN (p) as argument to reg_set_p . */
4298 if (reg_set_p (reload_reg, PATTERN (p)))
4299 break;
4b983fdc 4300 n = count_occurrences (PATTERN (p), reload_reg, 0);
cb2afeb3
R
4301 if (! n)
4302 continue;
4303 if (n == 1)
f67c2384
JL
4304 {
4305 n = validate_replace_rtx (reload_reg,
2fb00d7f
KH
4306 gen_rtx_fmt_e (code,
4307 mode,
4308 reload_reg),
f67c2384
JL
4309 p);
4310
4311 /* We must also verify that the constraints
4312 are met after the replacement. */
4313 extract_insn (p);
4314 if (n)
4315 n = constrain_operands (1);
4316 else
4317 break;
4318
4319 /* If the constraints were not met, then
4320 undo the replacement. */
4321 if (!n)
4322 {
2fb00d7f
KH
4323 validate_replace_rtx (gen_rtx_fmt_e (code,
4324 mode,
4325 reload_reg),
f67c2384
JL
4326 reload_reg, p);
4327 break;
4328 }
05d10675 4329
f67c2384 4330 }
cb2afeb3
R
4331 break;
4332 }
4333 if (n == 1)
02eb1393 4334 {
65c5f2a6 4335 add_reg_note (p, REG_INC, reload_reg);
02eb1393
R
4336 /* Mark this as having an output reload so that the
4337 REG_INC processing code below won't invalidate
4338 the reload for inheritance. */
4339 SET_HARD_REG_BIT (reg_is_output_reload,
4340 REGNO (reload_reg));
2c61f5f1
JH
4341 SET_REGNO_REG_SET (&reg_has_output_reload,
4342 REGNO (XEXP (in_reg, 0)));
02eb1393 4343 }
cb2afeb3 4344 else
1d7254c5 4345 forget_old_reloads_1 (XEXP (in_reg, 0), NULL_RTX,
84832317 4346 NULL);
cb2afeb3 4347 }
02eb1393
R
4348 else if ((code == PRE_INC || code == PRE_DEC)
4349 && TEST_HARD_REG_BIT (reg_reloaded_valid,
eceef4c9 4350 REGNO (rld[i].reg_rtx))
02eb1393
R
4351 /* Make sure it is the inc/dec pseudo, and not
4352 some other (e.g. output operand) pseudo. */
fc555370 4353 && ((unsigned) reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
02eb1393
R
4354 == REGNO (XEXP (in_reg, 0))))
4355 {
4356 SET_HARD_REG_BIT (reg_is_output_reload,
eceef4c9 4357 REGNO (rld[i].reg_rtx));
2c61f5f1
JH
4358 SET_REGNO_REG_SET (&reg_has_output_reload,
4359 REGNO (XEXP (in_reg, 0)));
02eb1393 4360 }
d5f89b53
VM
4361 else if (code == PRE_INC || code == PRE_DEC
4362 || code == POST_INC || code == POST_DEC)
bf8ba8ab 4363 {
bf8ba8ab
VM
4364 int in_regno = REGNO (XEXP (in_reg, 0));
4365
4366 if (reg_last_reload_reg[in_regno] != NULL_RTX)
4367 {
d5f89b53
VM
4368 int in_hard_regno;
4369 bool forget_p = true;
4370
bf8ba8ab 4371 in_hard_regno = REGNO (reg_last_reload_reg[in_regno]);
d5f89b53
VM
4372 if (TEST_HARD_REG_BIT (reg_reloaded_valid,
4373 in_hard_regno))
4374 {
4375 for (x = old_prev ? NEXT_INSN (old_prev) : insn;
4376 x != old_next;
4377 x = NEXT_INSN (x))
4378 if (x == reg_reloaded_insn[in_hard_regno])
4379 {
4380 forget_p = false;
4381 break;
4382 }
4383 }
bf8ba8ab
VM
4384 /* If for some reasons, we didn't set up
4385 reg_last_reload_reg in this insn,
4386 invalidate inheritance from previous
4387 insns for the incremented/decremented
4388 register. Such registers will be not in
d5f89b53
VM
4389 reg_has_output_reload. Invalidate it
4390 also if the corresponding element in
4391 reg_reloaded_insn is also
4392 invalidated. */
4393 if (forget_p)
bf8ba8ab
VM
4394 forget_old_reloads_1 (XEXP (in_reg, 0),
4395 NULL_RTX, NULL);
4396 }
4397 }
cb2afeb3
R
4398 }
4399 }
02eb1393
R
4400 /* If a pseudo that got a hard register is auto-incremented,
4401 we must purge records of copying it into pseudos without
4402 hard registers. */
32131a9c
RK
4403 for (x = REG_NOTES (insn); x; x = XEXP (x, 1))
4404 if (REG_NOTE_KIND (x) == REG_INC)
4405 {
4406 /* See if this pseudo reg was reloaded in this insn.
4407 If so, its last-reload info is still valid
4408 because it is based on this insn's reload. */
4409 for (i = 0; i < n_reloads; i++)
eceef4c9 4410 if (rld[i].out == XEXP (x, 0))
32131a9c
RK
4411 break;
4412
08fb99fa 4413 if (i == n_reloads)
84832317 4414 forget_old_reloads_1 (XEXP (x, 0), NULL_RTX, NULL);
32131a9c
RK
4415 }
4416#endif
4417 }
4418 /* A reload reg's contents are unknown after a label. */
4b4bf941 4419 if (LABEL_P (insn))
e6e52be0 4420 CLEAR_HARD_REG_SET (reg_reloaded_valid);
32131a9c
RK
4421
4422 /* Don't assume a reload reg is still good after a call insn
e3e9336f
DJ
4423 if it is a call-used reg, or if it contains a value that will
4424 be partially clobbered by the call. */
4b4bf941 4425 else if (CALL_P (insn))
e3e9336f 4426 {
058e97ec
VM
4427 AND_COMPL_HARD_REG_SET (reg_reloaded_valid, call_used_reg_set);
4428 AND_COMPL_HARD_REG_SET (reg_reloaded_valid, reg_reloaded_call_part_clobbered);
e3e9336f 4429 }
32131a9c 4430 }
ff154f78
MM
4431
4432 /* Clean up. */
4433 free (reg_last_reload_reg);
2c61f5f1 4434 CLEAR_REG_SET (&reg_has_output_reload);
32131a9c
RK
4435}
4436
4437/* Discard all record of any value reloaded from X,
4438 or reloaded in X from someplace else;
4439 unless X is an output reload reg of the current insn.
4440
4441 X may be a hard reg (the reload reg)
db4c7386
JH
4442 or it may be a pseudo reg that was reloaded from.
4443
4444 When DATA is non-NULL just mark the registers in regset
4445 to be forgotten later. */
32131a9c
RK
4446
4447static void
7bc980e1 4448forget_old_reloads_1 (rtx x, const_rtx ignored ATTRIBUTE_UNUSED,
db4c7386 4449 void *data)
32131a9c 4450{
770ae6cc
RK
4451 unsigned int regno;
4452 unsigned int nr;
db4c7386 4453 regset regs = (regset) data;
0a2e51a9 4454
ddef6bc7 4455 /* note_stores does give us subregs of hard regs,
0e61db61 4456 subreg_regno_offset requires a hard reg. */
0a2e51a9
RS
4457 while (GET_CODE (x) == SUBREG)
4458 {
fefac463
AH
4459 /* We ignore the subreg offset when calculating the regno,
4460 because we are using the entire underlying hard register
4461 below. */
0a2e51a9
RS
4462 x = SUBREG_REG (x);
4463 }
32131a9c 4464
f8cfc6aa 4465 if (!REG_P (x))
32131a9c
RK
4466 return;
4467
fefac463 4468 regno = REGNO (x);
32131a9c
RK
4469
4470 if (regno >= FIRST_PSEUDO_REGISTER)
4471 nr = 1;
4472 else
4473 {
770ae6cc
RK
4474 unsigned int i;
4475
66fd46b6 4476 nr = hard_regno_nregs[regno][GET_MODE (x)];
32131a9c
RK
4477 /* Storing into a spilled-reg invalidates its contents.
4478 This can happen if a block-local pseudo is allocated to that reg
4479 and it wasn't spilled because this block's total need is 0.
4480 Then some insn might have an optional reload and use this reg. */
db4c7386
JH
4481 if (!regs)
4482 for (i = 0; i < nr; i++)
4483 /* But don't do this if the reg actually serves as an output
4484 reload reg in the current instruction. */
4485 if (n_reloads == 0
4486 || ! TEST_HARD_REG_BIT (reg_is_output_reload, regno + i))
4487 {
4488 CLEAR_HARD_REG_BIT (reg_reloaded_valid, regno + i);
db4c7386
JH
4489 spill_reg_store[regno + i] = 0;
4490 }
32131a9c
RK
4491 }
4492
db4c7386
JH
4493 if (regs)
4494 while (nr-- > 0)
4495 SET_REGNO_REG_SET (regs, regno + nr);
4496 else
4497 {
4498 /* Since value of X has changed,
4499 forget any value previously copied from it. */
4500
4501 while (nr-- > 0)
4502 /* But don't forget a copy if this is the output reload
4503 that establishes the copy's validity. */
2c61f5f1
JH
4504 if (n_reloads == 0
4505 || !REGNO_REG_SET_P (&reg_has_output_reload, regno + nr))
db4c7386
JH
4506 reg_last_reload_reg[regno + nr] = 0;
4507 }
4508}
32131a9c 4509
db4c7386
JH
4510/* Forget the reloads marked in regset by previous function. */
4511static void
4512forget_marked_reloads (regset regs)
4513{
4514 unsigned int reg;
4515 reg_set_iterator rsi;
4516 EXECUTE_IF_SET_IN_REG_SET (regs, 0, reg, rsi)
4517 {
4518 if (reg < FIRST_PSEUDO_REGISTER
4519 /* But don't do this if the reg actually serves as an output
4520 reload reg in the current instruction. */
4521 && (n_reloads == 0
4522 || ! TEST_HARD_REG_BIT (reg_is_output_reload, reg)))
4523 {
4524 CLEAR_HARD_REG_BIT (reg_reloaded_valid, reg);
db4c7386
JH
4525 spill_reg_store[reg] = 0;
4526 }
2c61f5f1
JH
4527 if (n_reloads == 0
4528 || !REGNO_REG_SET_P (&reg_has_output_reload, reg))
db4c7386
JH
4529 reg_last_reload_reg[reg] = 0;
4530 }
32131a9c
RK
4531}
4532\f
32131a9c
RK
4533/* The following HARD_REG_SETs indicate when each hard register is
4534 used for a reload of various parts of the current insn. */
4535
9e3a9cf2
BS
4536/* If reg is unavailable for all reloads. */
4537static HARD_REG_SET reload_reg_unavailable;
32131a9c
RK
4538/* If reg is in use as a reload reg for a RELOAD_OTHER reload. */
4539static HARD_REG_SET reload_reg_used;
546b63fb
RK
4540/* If reg is in use for a RELOAD_FOR_INPUT_ADDRESS reload for operand I. */
4541static HARD_REG_SET reload_reg_used_in_input_addr[MAX_RECOG_OPERANDS];
47c8cf91
ILT
4542/* If reg is in use for a RELOAD_FOR_INPADDR_ADDRESS reload for operand I. */
4543static HARD_REG_SET reload_reg_used_in_inpaddr_addr[MAX_RECOG_OPERANDS];
546b63fb
RK
4544/* If reg is in use for a RELOAD_FOR_OUTPUT_ADDRESS reload for operand I. */
4545static HARD_REG_SET reload_reg_used_in_output_addr[MAX_RECOG_OPERANDS];
47c8cf91
ILT
4546/* If reg is in use for a RELOAD_FOR_OUTADDR_ADDRESS reload for operand I. */
4547static HARD_REG_SET reload_reg_used_in_outaddr_addr[MAX_RECOG_OPERANDS];
546b63fb
RK
4548/* If reg is in use for a RELOAD_FOR_INPUT reload for operand I. */
4549static HARD_REG_SET reload_reg_used_in_input[MAX_RECOG_OPERANDS];
4550/* If reg is in use for a RELOAD_FOR_OUTPUT reload for operand I. */
4551static HARD_REG_SET reload_reg_used_in_output[MAX_RECOG_OPERANDS];
32131a9c
RK
4552/* If reg is in use for a RELOAD_FOR_OPERAND_ADDRESS reload. */
4553static HARD_REG_SET reload_reg_used_in_op_addr;
893bc853
RK
4554/* If reg is in use for a RELOAD_FOR_OPADDR_ADDR reload. */
4555static HARD_REG_SET reload_reg_used_in_op_addr_reload;
546b63fb
RK
4556/* If reg is in use for a RELOAD_FOR_INSN reload. */
4557static HARD_REG_SET reload_reg_used_in_insn;
4558/* If reg is in use for a RELOAD_FOR_OTHER_ADDRESS reload. */
4559static HARD_REG_SET reload_reg_used_in_other_addr;
32131a9c
RK
4560
4561/* If reg is in use as a reload reg for any sort of reload. */
4562static HARD_REG_SET reload_reg_used_at_all;
4563
be7ae2a4
RK
4564/* If reg is use as an inherited reload. We just mark the first register
4565 in the group. */
4566static HARD_REG_SET reload_reg_used_for_inherit;
4567
f1db3576
JL
4568/* Records which hard regs are used in any way, either as explicit use or
4569 by being allocated to a pseudo during any point of the current insn. */
4570static HARD_REG_SET reg_used_in_insn;
297927a8 4571
546b63fb
RK
4572/* Mark reg REGNO as in use for a reload of the sort spec'd by OPNUM and
4573 TYPE. MODE is used to indicate how many consecutive regs are
4574 actually used. */
32131a9c
RK
4575
4576static void
0c20a65f
AJ
4577mark_reload_reg_in_use (unsigned int regno, int opnum, enum reload_type type,
4578 enum machine_mode mode)
32131a9c 4579{
66fd46b6 4580 unsigned int nregs = hard_regno_nregs[regno][mode];
770ae6cc 4581 unsigned int i;
32131a9c
RK
4582
4583 for (i = regno; i < nregs + regno; i++)
4584 {
546b63fb 4585 switch (type)
32131a9c
RK
4586 {
4587 case RELOAD_OTHER:
4588 SET_HARD_REG_BIT (reload_reg_used, i);
4589 break;
4590
546b63fb
RK
4591 case RELOAD_FOR_INPUT_ADDRESS:
4592 SET_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], i);
32131a9c
RK
4593 break;
4594
47c8cf91
ILT
4595 case RELOAD_FOR_INPADDR_ADDRESS:
4596 SET_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], i);
4597 break;
4598
546b63fb
RK
4599 case RELOAD_FOR_OUTPUT_ADDRESS:
4600 SET_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], i);
32131a9c
RK
4601 break;
4602
47c8cf91
ILT
4603 case RELOAD_FOR_OUTADDR_ADDRESS:
4604 SET_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], i);
4605 break;
4606
32131a9c
RK
4607 case RELOAD_FOR_OPERAND_ADDRESS:
4608 SET_HARD_REG_BIT (reload_reg_used_in_op_addr, i);
4609 break;
4610
893bc853
RK
4611 case RELOAD_FOR_OPADDR_ADDR:
4612 SET_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, i);
4613 break;
4614
546b63fb
RK
4615 case RELOAD_FOR_OTHER_ADDRESS:
4616 SET_HARD_REG_BIT (reload_reg_used_in_other_addr, i);
4617 break;
4618
32131a9c 4619 case RELOAD_FOR_INPUT:
546b63fb 4620 SET_HARD_REG_BIT (reload_reg_used_in_input[opnum], i);
32131a9c
RK
4621 break;
4622
4623 case RELOAD_FOR_OUTPUT:
546b63fb
RK
4624 SET_HARD_REG_BIT (reload_reg_used_in_output[opnum], i);
4625 break;
4626
4627 case RELOAD_FOR_INSN:
4628 SET_HARD_REG_BIT (reload_reg_used_in_insn, i);
32131a9c
RK
4629 break;
4630 }
4631
4632 SET_HARD_REG_BIT (reload_reg_used_at_all, i);
4633 }
4634}
4635
be7ae2a4
RK
4636/* Similarly, but show REGNO is no longer in use for a reload. */
4637
4638static void
0c20a65f
AJ
4639clear_reload_reg_in_use (unsigned int regno, int opnum,
4640 enum reload_type type, enum machine_mode mode)
be7ae2a4 4641{
66fd46b6 4642 unsigned int nregs = hard_regno_nregs[regno][mode];
770ae6cc 4643 unsigned int start_regno, end_regno, r;
be7ae2a4 4644 int i;
cb2afeb3
R
4645 /* A complication is that for some reload types, inheritance might
4646 allow multiple reloads of the same types to share a reload register.
4647 We set check_opnum if we have to check only reloads with the same
4648 operand number, and check_any if we have to check all reloads. */
4649 int check_opnum = 0;
4650 int check_any = 0;
4651 HARD_REG_SET *used_in_set;
be7ae2a4 4652
cb2afeb3 4653 switch (type)
be7ae2a4 4654 {
cb2afeb3
R
4655 case RELOAD_OTHER:
4656 used_in_set = &reload_reg_used;
4657 break;
be7ae2a4 4658
cb2afeb3
R
4659 case RELOAD_FOR_INPUT_ADDRESS:
4660 used_in_set = &reload_reg_used_in_input_addr[opnum];
4661 break;
be7ae2a4 4662
cb2afeb3
R
4663 case RELOAD_FOR_INPADDR_ADDRESS:
4664 check_opnum = 1;
4665 used_in_set = &reload_reg_used_in_inpaddr_addr[opnum];
4666 break;
47c8cf91 4667
cb2afeb3
R
4668 case RELOAD_FOR_OUTPUT_ADDRESS:
4669 used_in_set = &reload_reg_used_in_output_addr[opnum];
4670 break;
be7ae2a4 4671
cb2afeb3
R
4672 case RELOAD_FOR_OUTADDR_ADDRESS:
4673 check_opnum = 1;
4674 used_in_set = &reload_reg_used_in_outaddr_addr[opnum];
4675 break;
47c8cf91 4676
cb2afeb3
R
4677 case RELOAD_FOR_OPERAND_ADDRESS:
4678 used_in_set = &reload_reg_used_in_op_addr;
4679 break;
be7ae2a4 4680
cb2afeb3
R
4681 case RELOAD_FOR_OPADDR_ADDR:
4682 check_any = 1;
4683 used_in_set = &reload_reg_used_in_op_addr_reload;
4684 break;
893bc853 4685
cb2afeb3
R
4686 case RELOAD_FOR_OTHER_ADDRESS:
4687 used_in_set = &reload_reg_used_in_other_addr;
4688 check_any = 1;
4689 break;
be7ae2a4 4690
cb2afeb3
R
4691 case RELOAD_FOR_INPUT:
4692 used_in_set = &reload_reg_used_in_input[opnum];
4693 break;
be7ae2a4 4694
cb2afeb3
R
4695 case RELOAD_FOR_OUTPUT:
4696 used_in_set = &reload_reg_used_in_output[opnum];
4697 break;
be7ae2a4 4698
cb2afeb3
R
4699 case RELOAD_FOR_INSN:
4700 used_in_set = &reload_reg_used_in_insn;
4701 break;
4702 default:
41374e13 4703 gcc_unreachable ();
cb2afeb3
R
4704 }
4705 /* We resolve conflicts with remaining reloads of the same type by
68e82b83 4706 excluding the intervals of reload registers by them from the
cb2afeb3
R
4707 interval of freed reload registers. Since we only keep track of
4708 one set of interval bounds, we might have to exclude somewhat
3e92902c 4709 more than what would be necessary if we used a HARD_REG_SET here.
cb2afeb3
R
4710 But this should only happen very infrequently, so there should
4711 be no reason to worry about it. */
05d10675 4712
cb2afeb3
R
4713 start_regno = regno;
4714 end_regno = regno + nregs;
4715 if (check_opnum || check_any)
4716 {
4717 for (i = n_reloads - 1; i >= 0; i--)
4718 {
eceef4c9
BS
4719 if (rld[i].when_needed == type
4720 && (check_any || rld[i].opnum == opnum)
4721 && rld[i].reg_rtx)
cb2afeb3 4722 {
770ae6cc
RK
4723 unsigned int conflict_start = true_regnum (rld[i].reg_rtx);
4724 unsigned int conflict_end
09e18274 4725 = end_hard_regno (rld[i].mode, conflict_start);
cb2afeb3
R
4726
4727 /* If there is an overlap with the first to-be-freed register,
4728 adjust the interval start. */
4729 if (conflict_start <= start_regno && conflict_end > start_regno)
4730 start_regno = conflict_end;
4731 /* Otherwise, if there is a conflict with one of the other
4732 to-be-freed registers, adjust the interval end. */
4733 if (conflict_start > start_regno && conflict_start < end_regno)
4734 end_regno = conflict_start;
4735 }
be7ae2a4
RK
4736 }
4737 }
770ae6cc
RK
4738
4739 for (r = start_regno; r < end_regno; r++)
4740 CLEAR_HARD_REG_BIT (*used_in_set, r);
be7ae2a4
RK
4741}
4742
32131a9c 4743/* 1 if reg REGNO is free as a reload reg for a reload of the sort
546b63fb 4744 specified by OPNUM and TYPE. */
32131a9c
RK
4745
4746static int
0c20a65f 4747reload_reg_free_p (unsigned int regno, int opnum, enum reload_type type)
32131a9c 4748{
546b63fb
RK
4749 int i;
4750
2edc8d65 4751 /* In use for a RELOAD_OTHER means it's not available for anything. */
9e3a9cf2
BS
4752 if (TEST_HARD_REG_BIT (reload_reg_used, regno)
4753 || TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
32131a9c 4754 return 0;
546b63fb
RK
4755
4756 switch (type)
32131a9c
RK
4757 {
4758 case RELOAD_OTHER:
2edc8d65
RK
4759 /* In use for anything means we can't use it for RELOAD_OTHER. */
4760 if (TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno)
224f1d71 4761 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
808ededc 4762 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno)
224f1d71
RK
4763 || TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
4764 return 0;
4765
4766 for (i = 0; i < reload_n_operands; i++)
4767 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
47c8cf91 4768 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
224f1d71 4769 || TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
47c8cf91 4770 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
224f1d71
RK
4771 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
4772 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4773 return 0;
4774
4775 return 1;
32131a9c 4776
32131a9c 4777 case RELOAD_FOR_INPUT:
546b63fb
RK
4778 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4779 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno))
4780 return 0;
4781
893bc853
RK
4782 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
4783 return 0;
4784
546b63fb
RK
4785 /* If it is used for some other input, can't use it. */
4786 for (i = 0; i < reload_n_operands; i++)
4787 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4788 return 0;
4789
4790 /* If it is used in a later operand's address, can't use it. */
4791 for (i = opnum + 1; i < reload_n_operands; i++)
47c8cf91
ILT
4792 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4793 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
546b63fb
RK
4794 return 0;
4795
4796 return 1;
4797
4798 case RELOAD_FOR_INPUT_ADDRESS:
4799 /* Can't use a register if it is used for an input address for this
4800 operand or used as an input in an earlier one. */
47c8cf91
ILT
4801 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], regno)
4802 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
4803 return 0;
4804
4805 for (i = 0; i < opnum; i++)
4806 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4807 return 0;
4808
4809 return 1;
4810
4811 case RELOAD_FOR_INPADDR_ADDRESS:
4812 /* Can't use a register if it is used for an input address
05d10675
BS
4813 for this operand or used as an input in an earlier
4814 one. */
47c8cf91 4815 if (TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
546b63fb
RK
4816 return 0;
4817
4818 for (i = 0; i < opnum; i++)
4819 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4820 return 0;
4821
4822 return 1;
4823
4824 case RELOAD_FOR_OUTPUT_ADDRESS:
4825 /* Can't use a register if it is used for an output address for this
d1d18b46
DJ
4826 operand or used as an output in this or a later operand. Note
4827 that multiple output operands are emitted in reverse order, so
4828 the conflicting ones are those with lower indices. */
546b63fb
RK
4829 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], regno))
4830 return 0;
4831
d1d18b46 4832 for (i = 0; i <= opnum; i++)
546b63fb
RK
4833 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4834 return 0;
4835
4836 return 1;
4837
47c8cf91
ILT
4838 case RELOAD_FOR_OUTADDR_ADDRESS:
4839 /* Can't use a register if it is used for an output address
05d10675 4840 for this operand or used as an output in this or a
d1d18b46
DJ
4841 later operand. Note that multiple output operands are
4842 emitted in reverse order, so the conflicting ones are
4843 those with lower indices. */
47c8cf91
ILT
4844 if (TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], regno))
4845 return 0;
4846
d1d18b46 4847 for (i = 0; i <= opnum; i++)
47c8cf91
ILT
4848 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4849 return 0;
4850
4851 return 1;
4852
32131a9c 4853 case RELOAD_FOR_OPERAND_ADDRESS:
546b63fb
RK
4854 for (i = 0; i < reload_n_operands; i++)
4855 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4856 return 0;
4857
4858 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4859 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
4860
893bc853
RK
4861 case RELOAD_FOR_OPADDR_ADDR:
4862 for (i = 0; i < reload_n_operands; i++)
05d10675
BS
4863 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4864 return 0;
893bc853 4865
a94ce333 4866 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno));
893bc853 4867
32131a9c 4868 case RELOAD_FOR_OUTPUT:
546b63fb 4869 /* This cannot share a register with RELOAD_FOR_INSN reloads, other
d1d18b46
DJ
4870 outputs, or an operand address for this or an earlier output.
4871 Note that multiple output operands are emitted in reverse order,
4872 so the conflicting ones are those with higher indices. */
546b63fb
RK
4873 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
4874 return 0;
4875
4876 for (i = 0; i < reload_n_operands; i++)
4877 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4878 return 0;
4879
d1d18b46 4880 for (i = opnum; i < reload_n_operands; i++)
47c8cf91
ILT
4881 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4882 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
546b63fb
RK
4883 return 0;
4884
4885 return 1;
4886
4887 case RELOAD_FOR_INSN:
4888 for (i = 0; i < reload_n_operands; i++)
4889 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
4890 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4891 return 0;
4892
4893 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4894 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
4895
4896 case RELOAD_FOR_OTHER_ADDRESS:
4897 return ! TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno);
41374e13
NS
4898
4899 default:
4900 gcc_unreachable ();
32131a9c 4901 }
32131a9c
RK
4902}
4903
32131a9c 4904/* Return 1 if the value in reload reg REGNO, as used by a reload
546b63fb 4905 needed for the part of the insn specified by OPNUM and TYPE,
32131a9c
RK
4906 is still available in REGNO at the end of the insn.
4907
4908 We can assume that the reload reg was already tested for availability
4909 at the time it is needed, and we should not check this again,
4910 in case the reg has already been marked in use. */
4911
4912static int
0c20a65f 4913reload_reg_reaches_end_p (unsigned int regno, int opnum, enum reload_type type)
32131a9c 4914{
546b63fb
RK
4915 int i;
4916
4917 switch (type)
32131a9c
RK
4918 {
4919 case RELOAD_OTHER:
4920 /* Since a RELOAD_OTHER reload claims the reg for the entire insn,
4921 its value must reach the end. */
4922 return 1;
4923
4924 /* If this use is for part of the insn,
05d10675 4925 its value reaches if no subsequent part uses the same register.
546b63fb
RK
4926 Just like the above function, don't try to do this with lots
4927 of fallthroughs. */
4928
4929 case RELOAD_FOR_OTHER_ADDRESS:
4930 /* Here we check for everything else, since these don't conflict
4931 with anything else and everything comes later. */
4932
4933 for (i = 0; i < reload_n_operands; i++)
4934 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
47c8cf91 4935 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
546b63fb
RK
4936 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno)
4937 || TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
47c8cf91 4938 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
546b63fb
RK
4939 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4940 return 0;
4941
4942 return (! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
808ededc 4943 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno)
546b63fb
RK
4944 && ! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4945 && ! TEST_HARD_REG_BIT (reload_reg_used, regno));
4946
4947 case RELOAD_FOR_INPUT_ADDRESS:
47c8cf91 4948 case RELOAD_FOR_INPADDR_ADDRESS:
546b63fb
RK
4949 /* Similar, except that we check only for this and subsequent inputs
4950 and the address of only subsequent inputs and we do not need
4951 to check for RELOAD_OTHER objects since they are known not to
4952 conflict. */
4953
4954 for (i = opnum; i < reload_n_operands; i++)
4955 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4956 return 0;
4957
4958 for (i = opnum + 1; i < reload_n_operands; i++)
47c8cf91
ILT
4959 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4960 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
546b63fb
RK
4961 return 0;
4962
4963 for (i = 0; i < reload_n_operands; i++)
4964 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
47c8cf91 4965 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
546b63fb
RK
4966 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4967 return 0;
4968
893bc853
RK
4969 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
4970 return 0;
4971
2af88768
GK
4972 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4973 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4974 && !TEST_HARD_REG_BIT (reload_reg_used, regno));
546b63fb 4975
32131a9c 4976 case RELOAD_FOR_INPUT:
546b63fb 4977 /* Similar to input address, except we start at the next operand for
05d10675 4978 both input and input address and we do not check for
546b63fb
RK
4979 RELOAD_FOR_OPERAND_ADDRESS and RELOAD_FOR_INSN since these
4980 would conflict. */
4981
4982 for (i = opnum + 1; i < reload_n_operands; i++)
4983 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
47c8cf91 4984 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
546b63fb
RK
4985 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4986 return 0;
4987
0f41302f 4988 /* ... fall through ... */
546b63fb 4989
32131a9c 4990 case RELOAD_FOR_OPERAND_ADDRESS:
546b63fb
RK
4991 /* Check outputs and their addresses. */
4992
4993 for (i = 0; i < reload_n_operands; i++)
4994 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
47c8cf91 4995 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
546b63fb
RK
4996 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4997 return 0;
4998
2af88768 4999 return (!TEST_HARD_REG_BIT (reload_reg_used, regno));
546b63fb 5000
893bc853
RK
5001 case RELOAD_FOR_OPADDR_ADDR:
5002 for (i = 0; i < reload_n_operands; i++)
5003 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
47c8cf91 5004 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
893bc853
RK
5005 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5006 return 0;
5007
2af88768
GK
5008 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5009 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5010 && !TEST_HARD_REG_BIT (reload_reg_used, regno));
893bc853 5011
546b63fb 5012 case RELOAD_FOR_INSN:
893bc853 5013 /* These conflict with other outputs with RELOAD_OTHER. So
546b63fb
RK
5014 we need only check for output addresses. */
5015
d1d18b46 5016 opnum = reload_n_operands;
546b63fb 5017
0f41302f 5018 /* ... fall through ... */
546b63fb 5019
32131a9c 5020 case RELOAD_FOR_OUTPUT:
546b63fb 5021 case RELOAD_FOR_OUTPUT_ADDRESS:
47c8cf91 5022 case RELOAD_FOR_OUTADDR_ADDRESS:
546b63fb 5023 /* We already know these can't conflict with a later output. So the
d1d18b46
DJ
5024 only thing to check are later output addresses.
5025 Note that multiple output operands are emitted in reverse order,
5026 so the conflicting ones are those with lower indices. */
5027 for (i = 0; i < opnum; i++)
47c8cf91
ILT
5028 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5029 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
546b63fb
RK
5030 return 0;
5031
32131a9c 5032 return 1;
546b63fb 5033
41374e13
NS
5034 default:
5035 gcc_unreachable ();
5036 }
32131a9c 5037}
fb959f72
RS
5038
5039/* Like reload_reg_reaches_end_p, but check that the condition holds for
5040 every register in the range [REGNO, REGNO + NREGS). */
5041
5042static bool
5043reload_regs_reach_end_p (unsigned int regno, int nregs,
5044 int opnum, enum reload_type type)
5045{
5046 int i;
5047
5048 for (i = 0; i < nregs; i++)
5049 if (!reload_reg_reaches_end_p (regno + i, opnum, type))
5050 return false;
5051 return true;
5052}
32131a9c 5053\f
d2c9375a
DD
5054
5055/* Returns whether R1 and R2 are uniquely chained: the value of one
5056 is used by the other, and that value is not used by any other
5057 reload for this insn. This is used to partially undo the decision
5058 made in find_reloads when in the case of multiple
5059 RELOAD_FOR_OPERAND_ADDRESS reloads it converts all
5060 RELOAD_FOR_OPADDR_ADDR reloads into RELOAD_FOR_OPERAND_ADDRESS
5061 reloads. This code tries to avoid the conflict created by that
5062 change. It might be cleaner to explicitly keep track of which
5063 RELOAD_FOR_OPADDR_ADDR reload is associated with which
5064 RELOAD_FOR_OPERAND_ADDRESS reload, rather than to try to detect
5065 this after the fact. */
5066static bool
5067reloads_unique_chain_p (int r1, int r2)
5068{
5069 int i;
5070
5071 /* We only check input reloads. */
5072 if (! rld[r1].in || ! rld[r2].in)
5073 return false;
5074
5075 /* Avoid anything with output reloads. */
5076 if (rld[r1].out || rld[r2].out)
5077 return false;
5078
5079 /* "chained" means one reload is a component of the other reload,
5080 not the same as the other reload. */
5081 if (rld[r1].opnum != rld[r2].opnum
5082 || rtx_equal_p (rld[r1].in, rld[r2].in)
5083 || rld[r1].optional || rld[r2].optional
5084 || ! (reg_mentioned_p (rld[r1].in, rld[r2].in)
5085 || reg_mentioned_p (rld[r2].in, rld[r1].in)))
5086 return false;
5087
5088 for (i = 0; i < n_reloads; i ++)
5089 /* Look for input reloads that aren't our two */
5090 if (i != r1 && i != r2 && rld[i].in)
5091 {
5092 /* If our reload is mentioned at all, it isn't a simple chain. */
5093 if (reg_mentioned_p (rld[r1].in, rld[i].in))
5094 return false;
5095 }
5096 return true;
5097}
5098
058e97ec
VM
5099
5100/* The recursive function change all occurrences of WHAT in *WHERE
5101 onto REPL. */
5102static void
5103substitute (rtx *where, const_rtx what, rtx repl)
5104{
5105 const char *fmt;
5106 int i;
5107 enum rtx_code code;
5108
5109 if (*where == 0)
5110 return;
5111
5112 if (*where == what || rtx_equal_p (*where, what))
5113 {
5114 *where = repl;
5115 return;
5116 }
5117
5118 code = GET_CODE (*where);
5119 fmt = GET_RTX_FORMAT (code);
5120 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5121 {
5122 if (fmt[i] == 'E')
5123 {
5124 int j;
5125
5126 for (j = XVECLEN (*where, i) - 1; j >= 0; j--)
5127 substitute (&XVECEXP (*where, i, j), what, repl);
5128 }
5129 else if (fmt[i] == 'e')
5130 substitute (&XEXP (*where, i), what, repl);
5131 }
5132}
5133
5134/* The function returns TRUE if chain of reload R1 and R2 (in any
5135 order) can be evaluated without usage of intermediate register for
5136 the reload containing another reload. It is important to see
5137 gen_reload to understand what the function is trying to do. As an
5138 example, let us have reload chain
5139
5140 r2: const
5141 r1: <something> + const
5142
5143 and reload R2 got reload reg HR. The function returns true if
5144 there is a correct insn HR = HR + <something>. Otherwise,
5145 gen_reload will use intermediate register (and this is the reload
5146 reg for R1) to reload <something>.
5147
5148 We need this function to find a conflict for chain reloads. In our
5149 example, if HR = HR + <something> is incorrect insn, then we cannot
5150 use HR as a reload register for R2. If we do use it then we get a
5151 wrong code:
5152
5153 HR = const
5154 HR = <something>
5155 HR = HR + HR
5156
5157*/
5158static bool
5159gen_reload_chain_without_interm_reg_p (int r1, int r2)
5160{
5161 bool result;
5162 int regno, n, code;
5163 rtx out, in, tem, insn;
5164 rtx last = get_last_insn ();
5165
5166 /* Make r2 a component of r1. */
5167 if (reg_mentioned_p (rld[r1].in, rld[r2].in))
5168 {
5169 n = r1;
5170 r1 = r2;
5171 r2 = n;
5172 }
5173 gcc_assert (reg_mentioned_p (rld[r2].in, rld[r1].in));
5174 regno = rld[r1].regno >= 0 ? rld[r1].regno : rld[r2].regno;
5175 gcc_assert (regno >= 0);
5176 out = gen_rtx_REG (rld[r1].mode, regno);
5177 in = copy_rtx (rld[r1].in);
5178 substitute (&in, rld[r2].in, gen_rtx_REG (rld[r2].mode, regno));
5179
5180 /* If IN is a paradoxical SUBREG, remove it and try to put the
5181 opposite SUBREG on OUT. Likewise for a paradoxical SUBREG on OUT. */
5182 if (GET_CODE (in) == SUBREG
5183 && (GET_MODE_SIZE (GET_MODE (in))
5184 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
5185 && (tem = gen_lowpart_common (GET_MODE (SUBREG_REG (in)), out)) != 0)
5186 in = SUBREG_REG (in), out = tem;
5187
5188 if (GET_CODE (in) == PLUS
5189 && (REG_P (XEXP (in, 0))
5190 || GET_CODE (XEXP (in, 0)) == SUBREG
5191 || MEM_P (XEXP (in, 0)))
5192 && (REG_P (XEXP (in, 1))
5193 || GET_CODE (XEXP (in, 1)) == SUBREG
5194 || CONSTANT_P (XEXP (in, 1))
5195 || MEM_P (XEXP (in, 1))))
5196 {
5197 insn = emit_insn (gen_rtx_SET (VOIDmode, out, in));
5198 code = recog_memoized (insn);
5199 result = false;
5200
5201 if (code >= 0)
5202 {
5203 extract_insn (insn);
5204 /* We want constrain operands to treat this insn strictly in
5205 its validity determination, i.e., the way it would after
5206 reload has completed. */
5207 result = constrain_operands (1);
5208 }
5209
5210 delete_insns_since (last);
5211 return result;
5212 }
5213
5214 /* It looks like other cases in gen_reload are not possible for
5215 chain reloads or do need an intermediate hard registers. */
5216 return true;
5217}
5218
351aa1c1
RK
5219/* Return 1 if the reloads denoted by R1 and R2 cannot share a register.
5220 Return 0 otherwise.
5221
5222 This function uses the same algorithm as reload_reg_free_p above. */
5223
bf9a0db3 5224static int
0c20a65f 5225reloads_conflict (int r1, int r2)
351aa1c1 5226{
eceef4c9
BS
5227 enum reload_type r1_type = rld[r1].when_needed;
5228 enum reload_type r2_type = rld[r2].when_needed;
5229 int r1_opnum = rld[r1].opnum;
5230 int r2_opnum = rld[r2].opnum;
351aa1c1 5231
2edc8d65
RK
5232 /* RELOAD_OTHER conflicts with everything. */
5233 if (r2_type == RELOAD_OTHER)
351aa1c1
RK
5234 return 1;
5235
5236 /* Otherwise, check conflicts differently for each type. */
5237
5238 switch (r1_type)
5239 {
5240 case RELOAD_FOR_INPUT:
05d10675 5241 return (r2_type == RELOAD_FOR_INSN
351aa1c1 5242 || r2_type == RELOAD_FOR_OPERAND_ADDRESS
893bc853 5243 || r2_type == RELOAD_FOR_OPADDR_ADDR
351aa1c1 5244 || r2_type == RELOAD_FOR_INPUT
47c8cf91
ILT
5245 || ((r2_type == RELOAD_FOR_INPUT_ADDRESS
5246 || r2_type == RELOAD_FOR_INPADDR_ADDRESS)
5247 && r2_opnum > r1_opnum));
351aa1c1
RK
5248
5249 case RELOAD_FOR_INPUT_ADDRESS:
5250 return ((r2_type == RELOAD_FOR_INPUT_ADDRESS && r1_opnum == r2_opnum)
5251 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
5252
47c8cf91
ILT
5253 case RELOAD_FOR_INPADDR_ADDRESS:
5254 return ((r2_type == RELOAD_FOR_INPADDR_ADDRESS && r1_opnum == r2_opnum)
5255 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
5256
351aa1c1
RK
5257 case RELOAD_FOR_OUTPUT_ADDRESS:
5258 return ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS && r2_opnum == r1_opnum)
d1d18b46 5259 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
351aa1c1 5260
47c8cf91
ILT
5261 case RELOAD_FOR_OUTADDR_ADDRESS:
5262 return ((r2_type == RELOAD_FOR_OUTADDR_ADDRESS && r2_opnum == r1_opnum)
d1d18b46 5263 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
47c8cf91 5264
351aa1c1
RK
5265 case RELOAD_FOR_OPERAND_ADDRESS:
5266 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_INSN
d2c9375a 5267 || (r2_type == RELOAD_FOR_OPERAND_ADDRESS
058e97ec
VM
5268 && (!reloads_unique_chain_p (r1, r2)
5269 || !gen_reload_chain_without_interm_reg_p (r1, r2))));
351aa1c1 5270
893bc853 5271 case RELOAD_FOR_OPADDR_ADDR:
05d10675 5272 return (r2_type == RELOAD_FOR_INPUT
a94ce333 5273 || r2_type == RELOAD_FOR_OPADDR_ADDR);
893bc853 5274
351aa1c1
RK
5275 case RELOAD_FOR_OUTPUT:
5276 return (r2_type == RELOAD_FOR_INSN || r2_type == RELOAD_FOR_OUTPUT
47c8cf91
ILT
5277 || ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS
5278 || r2_type == RELOAD_FOR_OUTADDR_ADDRESS)
d1d18b46 5279 && r2_opnum >= r1_opnum));
351aa1c1
RK
5280
5281 case RELOAD_FOR_INSN:
5282 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_OUTPUT
5283 || r2_type == RELOAD_FOR_INSN
5284 || r2_type == RELOAD_FOR_OPERAND_ADDRESS);
5285
5286 case RELOAD_FOR_OTHER_ADDRESS:
5287 return r2_type == RELOAD_FOR_OTHER_ADDRESS;
5288
adab4fc5 5289 case RELOAD_OTHER:
2edc8d65 5290 return 1;
adab4fc5 5291
351aa1c1 5292 default:
41374e13 5293 gcc_unreachable ();
351aa1c1
RK
5294 }
5295}
5296\f
32131a9c
RK
5297/* Indexed by reload number, 1 if incoming value
5298 inherited from previous insns. */
cf0fa607 5299static char reload_inherited[MAX_RELOADS];
32131a9c
RK
5300
5301/* For an inherited reload, this is the insn the reload was inherited from,
5302 if we know it. Otherwise, this is 0. */
cf0fa607 5303static rtx reload_inheritance_insn[MAX_RELOADS];
32131a9c 5304
40f03658 5305/* If nonzero, this is a place to get the value of the reload,
32131a9c 5306 rather than using reload_in. */
cf0fa607 5307static rtx reload_override_in[MAX_RELOADS];
32131a9c 5308
e6e52be0
R
5309/* For each reload, the hard register number of the register used,
5310 or -1 if we did not need a register for this reload. */
cf0fa607 5311static int reload_spill_index[MAX_RELOADS];
32131a9c 5312
fb959f72
RS
5313/* Index X is the value of rld[X].reg_rtx, adjusted for the input mode. */
5314static rtx reload_reg_rtx_for_input[MAX_RELOADS];
5315
5316/* Index X is the value of rld[X].reg_rtx, adjusted for the output mode. */
5317static rtx reload_reg_rtx_for_output[MAX_RELOADS];
5318
304a22dd
R
5319/* Subroutine of free_for_value_p, used to check a single register.
5320 START_REGNO is the starting regno of the full reload register
5321 (possibly comprising multiple hard registers) that we are considering. */
f5470689 5322
6e684430 5323static int
0c20a65f
AJ
5324reload_reg_free_for_value_p (int start_regno, int regno, int opnum,
5325 enum reload_type type, rtx value, rtx out,
5326 int reloadnum, int ignore_address_reloads)
6e684430
R
5327{
5328 int time1;
09a308fe
R
5329 /* Set if we see an input reload that must not share its reload register
5330 with any new earlyclobber, but might otherwise share the reload
5331 register with an output or input-output reload. */
5332 int check_earlyclobber = 0;
6e684430 5333 int i;
dfe96118
R
5334 int copy = 0;
5335
9e3a9cf2 5336 if (TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
dc8842bf
AH
5337 return 0;
5338
dfe96118
R
5339 if (out == const0_rtx)
5340 {
5341 copy = 1;
5342 out = NULL_RTX;
5343 }
6e684430
R
5344
5345 /* We use some pseudo 'time' value to check if the lifetimes of the
5346 new register use would overlap with the one of a previous reload
5347 that is not read-only or uses a different value.
5348 The 'time' used doesn't have to be linear in any shape or form, just
5349 monotonic.
5350 Some reload types use different 'buckets' for each operand.
5351 So there are MAX_RECOG_OPERANDS different time values for each
cecbf6e2
R
5352 such reload type.
5353 We compute TIME1 as the time when the register for the prospective
5354 new reload ceases to be live, and TIME2 for each existing
5355 reload as the time when that the reload register of that reload
5356 becomes live.
5357 Where there is little to be gained by exact lifetime calculations,
5358 we just make conservative assumptions, i.e. a longer lifetime;
5359 this is done in the 'default:' cases. */
6e684430
R
5360 switch (type)
5361 {
5362 case RELOAD_FOR_OTHER_ADDRESS:
203588e7 5363 /* RELOAD_FOR_OTHER_ADDRESS conflicts with RELOAD_OTHER reloads. */
c2b4b171 5364 time1 = copy ? 0 : 1;
6e684430 5365 break;
dfe96118
R
5366 case RELOAD_OTHER:
5367 time1 = copy ? 1 : MAX_RECOG_OPERANDS * 5 + 5;
5368 break;
05d10675
BS
5369 /* For each input, we may have a sequence of RELOAD_FOR_INPADDR_ADDRESS,
5370 RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT. By adding 0 / 1 / 2 ,
5371 respectively, to the time values for these, we get distinct time
5372 values. To get distinct time values for each operand, we have to
5373 multiply opnum by at least three. We round that up to four because
5374 multiply by four is often cheaper. */
6e684430 5375 case RELOAD_FOR_INPADDR_ADDRESS:
dfe96118 5376 time1 = opnum * 4 + 2;
6e684430
R
5377 break;
5378 case RELOAD_FOR_INPUT_ADDRESS:
dfe96118
R
5379 time1 = opnum * 4 + 3;
5380 break;
5381 case RELOAD_FOR_INPUT:
5382 /* All RELOAD_FOR_INPUT reloads remain live till the instruction
5383 executes (inclusive). */
5384 time1 = copy ? opnum * 4 + 4 : MAX_RECOG_OPERANDS * 4 + 3;
6e684430 5385 break;
cb2afeb3 5386 case RELOAD_FOR_OPADDR_ADDR:
05d10675
BS
5387 /* opnum * 4 + 4
5388 <= (MAX_RECOG_OPERANDS - 1) * 4 + 4 == MAX_RECOG_OPERANDS * 4 */
cb2afeb3
R
5389 time1 = MAX_RECOG_OPERANDS * 4 + 1;
5390 break;
5391 case RELOAD_FOR_OPERAND_ADDRESS:
5392 /* RELOAD_FOR_OPERAND_ADDRESS reloads are live even while the insn
5393 is executed. */
dfe96118
R
5394 time1 = copy ? MAX_RECOG_OPERANDS * 4 + 2 : MAX_RECOG_OPERANDS * 4 + 3;
5395 break;
5396 case RELOAD_FOR_OUTADDR_ADDRESS:
5397 time1 = MAX_RECOG_OPERANDS * 4 + 4 + opnum;
6e684430 5398 break;
6e684430 5399 case RELOAD_FOR_OUTPUT_ADDRESS:
dfe96118 5400 time1 = MAX_RECOG_OPERANDS * 4 + 5 + opnum;
6e684430
R
5401 break;
5402 default:
dfe96118 5403 time1 = MAX_RECOG_OPERANDS * 5 + 5;
6e684430
R
5404 }
5405
5406 for (i = 0; i < n_reloads; i++)
5407 {
eceef4c9 5408 rtx reg = rld[i].reg_rtx;
f8cfc6aa 5409 if (reg && REG_P (reg)
6e684430 5410 && ((unsigned) regno - true_regnum (reg)
66fd46b6 5411 <= hard_regno_nregs[REGNO (reg)][GET_MODE (reg)] - (unsigned) 1)
f5470689 5412 && i != reloadnum)
6e684430 5413 {
304a22dd
R
5414 rtx other_input = rld[i].in;
5415
5416 /* If the other reload loads the same input value, that
5417 will not cause a conflict only if it's loading it into
5418 the same register. */
5419 if (true_regnum (reg) != start_regno)
5420 other_input = NULL_RTX;
5421 if (! other_input || ! rtx_equal_p (other_input, value)
eceef4c9 5422 || rld[i].out || out)
6e684430 5423 {
09a308fe 5424 int time2;
eceef4c9 5425 switch (rld[i].when_needed)
f5470689
R
5426 {
5427 case RELOAD_FOR_OTHER_ADDRESS:
5428 time2 = 0;
5429 break;
5430 case RELOAD_FOR_INPADDR_ADDRESS:
cb2afeb3
R
5431 /* find_reloads makes sure that a
5432 RELOAD_FOR_{INP,OP,OUT}ADDR_ADDRESS reload is only used
5433 by at most one - the first -
5434 RELOAD_FOR_{INPUT,OPERAND,OUTPUT}_ADDRESS . If the
5435 address reload is inherited, the address address reload
5436 goes away, so we can ignore this conflict. */
dfe96118
R
5437 if (type == RELOAD_FOR_INPUT_ADDRESS && reloadnum == i + 1
5438 && ignore_address_reloads
5439 /* Unless the RELOAD_FOR_INPUT is an auto_inc expression.
5440 Then the address address is still needed to store
5441 back the new address. */
eceef4c9 5442 && ! rld[reloadnum].out)
cb2afeb3 5443 continue;
dfe96118
R
5444 /* Likewise, if a RELOAD_FOR_INPUT can inherit a value, its
5445 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS
5446 reloads go away. */
eceef4c9 5447 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
dfe96118
R
5448 && ignore_address_reloads
5449 /* Unless we are reloading an auto_inc expression. */
eceef4c9 5450 && ! rld[reloadnum].out)
dfe96118 5451 continue;
eceef4c9 5452 time2 = rld[i].opnum * 4 + 2;
f5470689
R
5453 break;
5454 case RELOAD_FOR_INPUT_ADDRESS:
eceef4c9 5455 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
dfe96118 5456 && ignore_address_reloads
eceef4c9 5457 && ! rld[reloadnum].out)
dfe96118 5458 continue;
eceef4c9 5459 time2 = rld[i].opnum * 4 + 3;
f5470689
R
5460 break;
5461 case RELOAD_FOR_INPUT:
eceef4c9 5462 time2 = rld[i].opnum * 4 + 4;
09a308fe 5463 check_earlyclobber = 1;
f5470689 5464 break;
eceef4c9 5465 /* rld[i].opnum * 4 + 4 <= (MAX_RECOG_OPERAND - 1) * 4 + 4
05d10675 5466 == MAX_RECOG_OPERAND * 4 */
cb2afeb3 5467 case RELOAD_FOR_OPADDR_ADDR:
dfe96118
R
5468 if (type == RELOAD_FOR_OPERAND_ADDRESS && reloadnum == i + 1
5469 && ignore_address_reloads
eceef4c9 5470 && ! rld[reloadnum].out)
cb2afeb3 5471 continue;
dfe96118 5472 time2 = MAX_RECOG_OPERANDS * 4 + 1;
cb2afeb3
R
5473 break;
5474 case RELOAD_FOR_OPERAND_ADDRESS:
dfe96118 5475 time2 = MAX_RECOG_OPERANDS * 4 + 2;
09a308fe 5476 check_earlyclobber = 1;
dfe96118
R
5477 break;
5478 case RELOAD_FOR_INSN:
5479 time2 = MAX_RECOG_OPERANDS * 4 + 3;
cb2afeb3 5480 break;
f5470689 5481 case RELOAD_FOR_OUTPUT:
05d10675
BS
5482 /* All RELOAD_FOR_OUTPUT reloads become live just after the
5483 instruction is executed. */
dfe96118 5484 time2 = MAX_RECOG_OPERANDS * 4 + 4;
f5470689 5485 break;
05d10675
BS
5486 /* The first RELOAD_FOR_OUTADDR_ADDRESS reload conflicts with
5487 the RELOAD_FOR_OUTPUT reloads, so assign it the same time
5488 value. */
cb2afeb3 5489 case RELOAD_FOR_OUTADDR_ADDRESS:
dfe96118
R
5490 if (type == RELOAD_FOR_OUTPUT_ADDRESS && reloadnum == i + 1
5491 && ignore_address_reloads
eceef4c9 5492 && ! rld[reloadnum].out)
cb2afeb3 5493 continue;
eceef4c9 5494 time2 = MAX_RECOG_OPERANDS * 4 + 4 + rld[i].opnum;
dfe96118 5495 break;
f5470689 5496 case RELOAD_FOR_OUTPUT_ADDRESS:
eceef4c9 5497 time2 = MAX_RECOG_OPERANDS * 4 + 5 + rld[i].opnum;
f5470689
R
5498 break;
5499 case RELOAD_OTHER:
dfe96118
R
5500 /* If there is no conflict in the input part, handle this
5501 like an output reload. */
304a22dd 5502 if (! rld[i].in || rtx_equal_p (other_input, value))
f5470689 5503 {
dfe96118 5504 time2 = MAX_RECOG_OPERANDS * 4 + 4;
57850c85 5505 /* Earlyclobbered outputs must conflict with inputs. */
09a308fe
R
5506 if (earlyclobber_operand_p (rld[i].out))
5507 time2 = MAX_RECOG_OPERANDS * 4 + 3;
1d7254c5 5508
f5470689
R
5509 break;
5510 }
dfe96118
R
5511 time2 = 1;
5512 /* RELOAD_OTHER might be live beyond instruction execution,
5513 but this is not obvious when we set time2 = 1. So check
5514 here if there might be a problem with the new reload
5515 clobbering the register used by the RELOAD_OTHER. */
5516 if (out)
5517 return 0;
5518 break;
f5470689 5519 default:
dfe96118 5520 return 0;
f5470689 5521 }
25963977 5522 if ((time1 >= time2
eceef4c9 5523 && (! rld[i].in || rld[i].out
304a22dd 5524 || ! rtx_equal_p (other_input, value)))
eceef4c9 5525 || (out && rld[reloadnum].out_reg
701d55e8 5526 && time2 >= MAX_RECOG_OPERANDS * 4 + 3))
f5470689 5527 return 0;
6e684430 5528 }
6e684430
R
5529 }
5530 }
09a308fe
R
5531
5532 /* Earlyclobbered outputs must conflict with inputs. */
5533 if (check_earlyclobber && out && earlyclobber_operand_p (out))
5534 return 0;
5535
6e684430
R
5536 return 1;
5537}
5538
c02cad8f
BS
5539/* Return 1 if the value in reload reg REGNO, as used by a reload
5540 needed for the part of the insn specified by OPNUM and TYPE,
5541 may be used to load VALUE into it.
5542
5543 MODE is the mode in which the register is used, this is needed to
5544 determine how many hard regs to test.
5545
5546 Other read-only reloads with the same value do not conflict
40f03658 5547 unless OUT is nonzero and these other reloads have to live while
c02cad8f
BS
5548 output reloads live.
5549 If OUT is CONST0_RTX, this is a special case: it means that the
5550 test should not be for using register REGNO as reload register, but
5551 for copying from register REGNO into the reload register.
5552
5553 RELOADNUM is the number of the reload we want to load this value for;
5554 a reload does not conflict with itself.
5555
5556 When IGNORE_ADDRESS_RELOADS is set, we can not have conflicts with
5557 reloads that load an address for the very reload we are considering.
5558
5559 The caller has to make sure that there is no conflict with the return
5560 register. */
5561
5562static int
0c20a65f
AJ
5563free_for_value_p (int regno, enum machine_mode mode, int opnum,
5564 enum reload_type type, rtx value, rtx out, int reloadnum,
5565 int ignore_address_reloads)
c02cad8f 5566{
66fd46b6 5567 int nregs = hard_regno_nregs[regno][mode];
c02cad8f 5568 while (nregs-- > 0)
304a22dd
R
5569 if (! reload_reg_free_for_value_p (regno, regno + nregs, opnum, type,
5570 value, out, reloadnum,
5571 ignore_address_reloads))
c02cad8f
BS
5572 return 0;
5573 return 1;
5574}
5575
86caf04d 5576/* Return nonzero if the rtx X is invariant over the current function. */
0e61db61
NS
5577/* ??? Actually, the places where we use this expect exactly what is
5578 tested here, and not everything that is function invariant. In
5579 particular, the frame pointer and arg pointer are special cased;
5580 pic_offset_table_rtx is not, and we must not spill these things to
5581 memory. */
86caf04d 5582
5fffc382 5583int
4f588890 5584function_invariant_p (const_rtx x)
86caf04d
PB
5585{
5586 if (CONSTANT_P (x))
5587 return 1;
5588 if (x == frame_pointer_rtx || x == arg_pointer_rtx)
5589 return 1;
5590 if (GET_CODE (x) == PLUS
5591 && (XEXP (x, 0) == frame_pointer_rtx || XEXP (x, 0) == arg_pointer_rtx)
5592 && CONSTANT_P (XEXP (x, 1)))
5593 return 1;
5594 return 0;
5595}
5596
ff6534ad
BS
5597/* Determine whether the reload reg X overlaps any rtx'es used for
5598 overriding inheritance. Return nonzero if so. */
5599
5600static int
0c20a65f 5601conflicts_with_override (rtx x)
ff6534ad
BS
5602{
5603 int i;
5604 for (i = 0; i < n_reloads; i++)
5605 if (reload_override_in[i]
5606 && reg_overlap_mentioned_p (x, reload_override_in[i]))
5607 return 1;
5608 return 0;
5609}
5610\f
67e61fe7
BS
5611/* Give an error message saying we failed to find a reload for INSN,
5612 and clear out reload R. */
5613static void
0c20a65f 5614failed_reload (rtx insn, int r)
67e61fe7
BS
5615{
5616 if (asm_noperands (PATTERN (insn)) < 0)
5617 /* It's the compiler's fault. */
1f978f5f 5618 fatal_insn ("could not find a spill register", insn);
67e61fe7
BS
5619
5620 /* It's the user's fault; the operand's mode and constraint
5621 don't match. Disable this reload so we don't crash in final. */
5622 error_for_asm (insn,
971801ff 5623 "%<asm%> operand constraint incompatible with operand size");
67e61fe7
BS
5624 rld[r].in = 0;
5625 rld[r].out = 0;
5626 rld[r].reg_rtx = 0;
5627 rld[r].optional = 1;
5628 rld[r].secondary_p = 1;
5629}
5630
5631/* I is the index in SPILL_REG_RTX of the reload register we are to allocate
5632 for reload R. If it's valid, get an rtx for it. Return nonzero if
5633 successful. */
5634static int
0c20a65f 5635set_reload_reg (int i, int r)
67e61fe7
BS
5636{
5637 int regno;
5638 rtx reg = spill_reg_rtx[i];
5639
5640 if (reg == 0 || GET_MODE (reg) != rld[r].mode)
5641 spill_reg_rtx[i] = reg
5642 = gen_rtx_REG (rld[r].mode, spill_regs[i]);
5643
5644 regno = true_regnum (reg);
5645
5646 /* Detect when the reload reg can't hold the reload mode.
5647 This used to be one `if', but Sequent compiler can't handle that. */
5648 if (HARD_REGNO_MODE_OK (regno, rld[r].mode))
5649 {
5650 enum machine_mode test_mode = VOIDmode;
5651 if (rld[r].in)
5652 test_mode = GET_MODE (rld[r].in);
5653 /* If rld[r].in has VOIDmode, it means we will load it
5654 in whatever mode the reload reg has: to wit, rld[r].mode.
5655 We have already tested that for validity. */
5656 /* Aside from that, we need to test that the expressions
5657 to reload from or into have modes which are valid for this
5658 reload register. Otherwise the reload insns would be invalid. */
5659 if (! (rld[r].in != 0 && test_mode != VOIDmode
5660 && ! HARD_REGNO_MODE_OK (regno, test_mode)))
5661 if (! (rld[r].out != 0
5662 && ! HARD_REGNO_MODE_OK (regno, GET_MODE (rld[r].out))))
5663 {
5664 /* The reg is OK. */
5665 last_spill_reg = i;
5666
5667 /* Mark as in use for this insn the reload regs we use
5668 for this. */
5669 mark_reload_reg_in_use (spill_regs[i], rld[r].opnum,
5670 rld[r].when_needed, rld[r].mode);
5671
5672 rld[r].reg_rtx = reg;
5673 reload_spill_index[r] = spill_regs[i];
5674 return 1;
5675 }
5676 }
5677 return 0;
5678}
5679
32131a9c 5680/* Find a spill register to use as a reload register for reload R.
40f03658 5681 LAST_RELOAD is nonzero if this is the last reload for the insn being
32131a9c
RK
5682 processed.
5683
eceef4c9 5684 Set rld[R].reg_rtx to the register allocated.
32131a9c 5685
f5d8c9f4
BS
5686 We return 1 if successful, or 0 if we couldn't find a spill reg and
5687 we didn't change anything. */
32131a9c
RK
5688
5689static int
0c20a65f
AJ
5690allocate_reload_reg (struct insn_chain *chain ATTRIBUTE_UNUSED, int r,
5691 int last_reload)
32131a9c 5692{
67e61fe7 5693 int i, pass, count;
32131a9c
RK
5694
5695 /* If we put this reload ahead, thinking it is a group,
5696 then insist on finding a group. Otherwise we can grab a
a8fdc208 5697 reg that some other reload needs.
32131a9c
RK
5698 (That can happen when we have a 68000 DATA_OR_FP_REG
5699 which is a group of data regs or one fp reg.)
5700 We need not be so restrictive if there are no more reloads
5701 for this insn.
5702
5703 ??? Really it would be nicer to have smarter handling
5704 for that kind of reg class, where a problem like this is normal.
5705 Perhaps those classes should be avoided for reloading
5706 by use of more alternatives. */
5707
8ec450a4 5708 int force_group = rld[r].nregs > 1 && ! last_reload;
32131a9c
RK
5709
5710 /* If we want a single register and haven't yet found one,
5711 take any reg in the right class and not in use.
5712 If we want a consecutive group, here is where we look for it.
5713
5714 We use two passes so we can first look for reload regs to
5715 reuse, which are already in use for other reloads in this insn,
5716 and only then use additional registers.
5717 I think that maximizing reuse is needed to make sure we don't
5718 run out of reload regs. Suppose we have three reloads, and
5719 reloads A and B can share regs. These need two regs.
5720 Suppose A and B are given different regs.
5721 That leaves none for C. */
5722 for (pass = 0; pass < 2; pass++)
5723 {
5724 /* I is the index in spill_regs.
5725 We advance it round-robin between insns to use all spill regs
5726 equally, so that inherited reloads have a chance
f5d8c9f4
BS
5727 of leapfrogging each other. */
5728
5729 i = last_spill_reg;
05d10675 5730
a5339699 5731 for (count = 0; count < n_spills; count++)
32131a9c 5732 {
48c54229 5733 int rclass = (int) rld[r].rclass;
03acd8f8 5734 int regnum;
32131a9c 5735
03acd8f8
BS
5736 i++;
5737 if (i >= n_spills)
5738 i -= n_spills;
5739 regnum = spill_regs[i];
32131a9c 5740
eceef4c9
BS
5741 if ((reload_reg_free_p (regnum, rld[r].opnum,
5742 rld[r].when_needed)
5743 || (rld[r].in
05d10675
BS
5744 /* We check reload_reg_used to make sure we
5745 don't clobber the return register. */
03acd8f8 5746 && ! TEST_HARD_REG_BIT (reload_reg_used, regnum)
c02cad8f
BS
5747 && free_for_value_p (regnum, rld[r].mode, rld[r].opnum,
5748 rld[r].when_needed, rld[r].in,
5749 rld[r].out, r, 1)))
55d796da 5750 && TEST_HARD_REG_BIT (reg_class_contents[rclass], regnum)
8ec450a4 5751 && HARD_REGNO_MODE_OK (regnum, rld[r].mode)
be7ae2a4
RK
5752 /* Look first for regs to share, then for unshared. But
5753 don't share regs used for inherited reloads; they are
5754 the ones we want to preserve. */
5755 && (pass
5756 || (TEST_HARD_REG_BIT (reload_reg_used_at_all,
03acd8f8 5757 regnum)
be7ae2a4 5758 && ! TEST_HARD_REG_BIT (reload_reg_used_for_inherit,
03acd8f8 5759 regnum))))
32131a9c 5760 {
66fd46b6 5761 int nr = hard_regno_nregs[regnum][rld[r].mode];
32131a9c
RK
5762 /* Avoid the problem where spilling a GENERAL_OR_FP_REG
5763 (on 68000) got us two FP regs. If NR is 1,
5764 we would reject both of them. */
5765 if (force_group)
67e61fe7 5766 nr = rld[r].nregs;
32131a9c
RK
5767 /* If we need only one reg, we have already won. */
5768 if (nr == 1)
5769 {
5770 /* But reject a single reg if we demand a group. */
5771 if (force_group)
5772 continue;
5773 break;
5774 }
5775 /* Otherwise check that as many consecutive regs as we need
f5d8c9f4
BS
5776 are available here. */
5777 while (nr > 1)
5778 {
5779 int regno = regnum + nr - 1;
55d796da 5780 if (!(TEST_HARD_REG_BIT (reg_class_contents[rclass], regno)
f5d8c9f4
BS
5781 && spill_reg_order[regno] >= 0
5782 && reload_reg_free_p (regno, rld[r].opnum,
5783 rld[r].when_needed)))
5784 break;
5785 nr--;
5786 }
32131a9c
RK
5787 if (nr == 1)
5788 break;
5789 }
5790 }
5791
5792 /* If we found something on pass 1, omit pass 2. */
5793 if (count < n_spills)
5794 break;
5795 }
1d7254c5 5796
32131a9c 5797 /* We should have found a spill register by now. */
f5d8c9f4 5798 if (count >= n_spills)
32131a9c
RK
5799 return 0;
5800
f5d8c9f4
BS
5801 /* I is the index in SPILL_REG_RTX of the reload register we are to
5802 allocate. Get an rtx for it and find its register number. */
32131a9c 5803
f5d8c9f4 5804 return set_reload_reg (i, r);
32131a9c
RK
5805}
5806\f
67e61fe7
BS
5807/* Initialize all the tables needed to allocate reload registers.
5808 CHAIN is the insn currently being processed; SAVE_RELOAD_REG_RTX
5809 is the array we use to restore the reg_rtx field for every reload. */
efc9bd41 5810
32131a9c 5811static void
0c20a65f 5812choose_reload_regs_init (struct insn_chain *chain, rtx *save_reload_reg_rtx)
32131a9c 5813{
67e61fe7 5814 int i;
32131a9c 5815
67e61fe7
BS
5816 for (i = 0; i < n_reloads; i++)
5817 rld[i].reg_rtx = save_reload_reg_rtx[i];
32131a9c 5818
961192e1 5819 memset (reload_inherited, 0, MAX_RELOADS);
703ad42b
KG
5820 memset (reload_inheritance_insn, 0, MAX_RELOADS * sizeof (rtx));
5821 memset (reload_override_in, 0, MAX_RELOADS * sizeof (rtx));
32131a9c
RK
5822
5823 CLEAR_HARD_REG_SET (reload_reg_used);
5824 CLEAR_HARD_REG_SET (reload_reg_used_at_all);
32131a9c 5825 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr);
893bc853 5826 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr_reload);
546b63fb
RK
5827 CLEAR_HARD_REG_SET (reload_reg_used_in_insn);
5828 CLEAR_HARD_REG_SET (reload_reg_used_in_other_addr);
32131a9c 5829
f1db3576
JL
5830 CLEAR_HARD_REG_SET (reg_used_in_insn);
5831 {
5832 HARD_REG_SET tmp;
239a0f5b 5833 REG_SET_TO_HARD_REG_SET (tmp, &chain->live_throughout);
f1db3576 5834 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
239a0f5b 5835 REG_SET_TO_HARD_REG_SET (tmp, &chain->dead_or_set);
f1db3576 5836 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
239a0f5b
BS
5837 compute_use_by_pseudos (&reg_used_in_insn, &chain->live_throughout);
5838 compute_use_by_pseudos (&reg_used_in_insn, &chain->dead_or_set);
f1db3576 5839 }
efc9bd41 5840
546b63fb
RK
5841 for (i = 0; i < reload_n_operands; i++)
5842 {
5843 CLEAR_HARD_REG_SET (reload_reg_used_in_output[i]);
5844 CLEAR_HARD_REG_SET (reload_reg_used_in_input[i]);
5845 CLEAR_HARD_REG_SET (reload_reg_used_in_input_addr[i]);
47c8cf91 5846 CLEAR_HARD_REG_SET (reload_reg_used_in_inpaddr_addr[i]);
546b63fb 5847 CLEAR_HARD_REG_SET (reload_reg_used_in_output_addr[i]);
47c8cf91 5848 CLEAR_HARD_REG_SET (reload_reg_used_in_outaddr_addr[i]);
546b63fb 5849 }
32131a9c 5850
9e3a9cf2 5851 COMPL_HARD_REG_SET (reload_reg_unavailable, chain->used_spill_regs);
05d10675 5852
67e61fe7 5853 CLEAR_HARD_REG_SET (reload_reg_used_for_inherit);
32131a9c 5854
67e61fe7
BS
5855 for (i = 0; i < n_reloads; i++)
5856 /* If we have already decided to use a certain register,
5857 don't use it in another way. */
5858 if (rld[i].reg_rtx)
5859 mark_reload_reg_in_use (REGNO (rld[i].reg_rtx), rld[i].opnum,
5860 rld[i].when_needed, rld[i].mode);
5861}
32131a9c 5862
67e61fe7
BS
5863/* Assign hard reg targets for the pseudo-registers we must reload
5864 into hard regs for this insn.
5865 Also output the instructions to copy them in and out of the hard regs.
5866
5867 For machines with register classes, we are responsible for
5868 finding a reload reg in the proper class. */
5869
5870static void
0c20a65f 5871choose_reload_regs (struct insn_chain *chain)
67e61fe7
BS
5872{
5873 rtx insn = chain->insn;
b3694847 5874 int i, j;
770ae6cc 5875 unsigned int max_group_size = 1;
67e61fe7 5876 enum reg_class group_class = NO_REGS;
f5d8c9f4 5877 int pass, win, inheritance;
67e61fe7
BS
5878
5879 rtx save_reload_reg_rtx[MAX_RELOADS];
32131a9c 5880
32131a9c
RK
5881 /* In order to be certain of getting the registers we need,
5882 we must sort the reloads into order of increasing register class.
5883 Then our grabbing of reload registers will parallel the process
a8fdc208 5884 that provided the reload registers.
32131a9c
RK
5885
5886 Also note whether any of the reloads wants a consecutive group of regs.
5887 If so, record the maximum size of the group desired and what
5888 register class contains all the groups needed by this insn. */
5889
5890 for (j = 0; j < n_reloads; j++)
5891 {
5892 reload_order[j] = j;
374d961c
BS
5893 if (rld[j].reg_rtx != NULL_RTX)
5894 {
5895 gcc_assert (REG_P (rld[j].reg_rtx)
5896 && HARD_REGISTER_P (rld[j].reg_rtx));
5897 reload_spill_index[j] = REGNO (rld[j].reg_rtx);
5898 }
5899 else
5900 reload_spill_index[j] = -1;
32131a9c 5901
8ec450a4 5902 if (rld[j].nregs > 1)
32131a9c 5903 {
8ec450a4 5904 max_group_size = MAX (rld[j].nregs, max_group_size);
770ae6cc 5905 group_class
48c54229 5906 = reg_class_superunion[(int) rld[j].rclass][(int) group_class];
32131a9c
RK
5907 }
5908
eceef4c9 5909 save_reload_reg_rtx[j] = rld[j].reg_rtx;
32131a9c
RK
5910 }
5911
5912 if (n_reloads > 1)
5913 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
5914
58b1581b
RS
5915 /* If -O, try first with inheritance, then turning it off.
5916 If not -O, don't do inheritance.
5917 Using inheritance when not optimizing leads to paradoxes
5918 with fp on the 68k: fp numbers (not NaNs) fail to be equal to themselves
5919 because one side of the comparison might be inherited. */
f5d8c9f4 5920 win = 0;
58b1581b 5921 for (inheritance = optimize > 0; inheritance >= 0; inheritance--)
32131a9c 5922 {
67e61fe7
BS
5923 choose_reload_regs_init (chain, save_reload_reg_rtx);
5924
32131a9c
RK
5925 /* Process the reloads in order of preference just found.
5926 Beyond this point, subregs can be found in reload_reg_rtx.
5927
770ae6cc
RK
5928 This used to look for an existing reloaded home for all of the
5929 reloads, and only then perform any new reloads. But that could lose
5930 if the reloads were done out of reg-class order because a later
5931 reload with a looser constraint might have an old home in a register
5932 needed by an earlier reload with a tighter constraint.
32131a9c
RK
5933
5934 To solve this, we make two passes over the reloads, in the order
5935 described above. In the first pass we try to inherit a reload
5936 from a previous insn. If there is a later reload that needs a
5937 class that is a proper subset of the class being processed, we must
5938 also allocate a spill register during the first pass.
5939
5940 Then make a second pass over the reloads to allocate any reloads
5941 that haven't been given registers yet. */
5942
5943 for (j = 0; j < n_reloads; j++)
5944 {
b3694847 5945 int r = reload_order[j];
8593b745 5946 rtx search_equiv = NULL_RTX;
32131a9c
RK
5947
5948 /* Ignore reloads that got marked inoperative. */
eceef4c9
BS
5949 if (rld[r].out == 0 && rld[r].in == 0
5950 && ! rld[r].secondary_p)
32131a9c
RK
5951 continue;
5952
b29514ee 5953 /* If find_reloads chose to use reload_in or reload_out as a reload
b080c137
RK
5954 register, we don't need to chose one. Otherwise, try even if it
5955 found one since we might save an insn if we find the value lying
b29514ee
R
5956 around.
5957 Try also when reload_in is a pseudo without a hard reg. */
eceef4c9
BS
5958 if (rld[r].in != 0 && rld[r].reg_rtx != 0
5959 && (rtx_equal_p (rld[r].in, rld[r].reg_rtx)
5960 || (rtx_equal_p (rld[r].out, rld[r].reg_rtx)
3c0cb5de 5961 && !MEM_P (rld[r].in)
eceef4c9 5962 && true_regnum (rld[r].in) < FIRST_PSEUDO_REGISTER)))
32131a9c
RK
5963 continue;
5964
5965#if 0 /* No longer needed for correct operation.
5966 It might give better code, or might not; worth an experiment? */
5967 /* If this is an optional reload, we can't inherit from earlier insns
5968 until we are sure that any non-optional reloads have been allocated.
5969 The following code takes advantage of the fact that optional reloads
5970 are at the end of reload_order. */
eceef4c9 5971 if (rld[r].optional != 0)
32131a9c 5972 for (i = 0; i < j; i++)
eceef4c9
BS
5973 if ((rld[reload_order[i]].out != 0
5974 || rld[reload_order[i]].in != 0
5975 || rld[reload_order[i]].secondary_p)
5976 && ! rld[reload_order[i]].optional
5977 && rld[reload_order[i]].reg_rtx == 0)
f5d8c9f4 5978 allocate_reload_reg (chain, reload_order[i], 0);
32131a9c
RK
5979#endif
5980
5981 /* First see if this pseudo is already available as reloaded
5982 for a previous insn. We cannot try to inherit for reloads
5983 that are smaller than the maximum number of registers needed
5984 for groups unless the register we would allocate cannot be used
5985 for the groups.
5986
5987 We could check here to see if this is a secondary reload for
5988 an object that is already in a register of the desired class.
5989 This would avoid the need for the secondary reload register.
5990 But this is complex because we can't easily determine what
b080c137
RK
5991 objects might want to be loaded via this reload. So let a
5992 register be allocated here. In `emit_reload_insns' we suppress
5993 one of the loads in the case described above. */
32131a9c
RK
5994
5995 if (inheritance)
5996 {
ddef6bc7 5997 int byte = 0;
b3694847 5998 int regno = -1;
6a651371 5999 enum machine_mode mode = VOIDmode;
32131a9c 6000
eceef4c9 6001 if (rld[r].in == 0)
32131a9c 6002 ;
f8cfc6aa 6003 else if (REG_P (rld[r].in))
db660765 6004 {
eceef4c9
BS
6005 regno = REGNO (rld[r].in);
6006 mode = GET_MODE (rld[r].in);
db660765 6007 }
f8cfc6aa 6008 else if (REG_P (rld[r].in_reg))
db660765 6009 {
eceef4c9
BS
6010 regno = REGNO (rld[r].in_reg);
6011 mode = GET_MODE (rld[r].in_reg);
db660765 6012 }
eceef4c9 6013 else if (GET_CODE (rld[r].in_reg) == SUBREG
f8cfc6aa 6014 && REG_P (SUBREG_REG (rld[r].in_reg)))
b60a8416 6015 {
eceef4c9 6016 regno = REGNO (SUBREG_REG (rld[r].in_reg));
cb2afeb3 6017 if (regno < FIRST_PSEUDO_REGISTER)
ddef6bc7 6018 regno = subreg_regno (rld[r].in_reg);
15447fae
RIL
6019 else
6020 byte = SUBREG_BYTE (rld[r].in_reg);
eceef4c9 6021 mode = GET_MODE (rld[r].in_reg);
cb2afeb3
R
6022 }
6023#ifdef AUTO_INC_DEC
67f07489 6024 else if (GET_RTX_CLASS (GET_CODE (rld[r].in_reg)) == RTX_AUTOINC
f8cfc6aa 6025 && REG_P (XEXP (rld[r].in_reg, 0)))
cb2afeb3 6026 {
eceef4c9
BS
6027 regno = REGNO (XEXP (rld[r].in_reg, 0));
6028 mode = GET_MODE (XEXP (rld[r].in_reg, 0));
6029 rld[r].out = rld[r].in;
b60a8416 6030 }
cb2afeb3 6031#endif
32131a9c
RK
6032#if 0
6033 /* This won't work, since REGNO can be a pseudo reg number.
6034 Also, it takes much more hair to keep track of all the things
6035 that can invalidate an inherited reload of part of a pseudoreg. */
eceef4c9 6036 else if (GET_CODE (rld[r].in) == SUBREG
f8cfc6aa 6037 && REG_P (SUBREG_REG (rld[r].in)))
ddef6bc7 6038 regno = subreg_regno (rld[r].in);
32131a9c
RK
6039#endif
6040
21f14ff9
DD
6041 if (regno >= 0
6042 && reg_last_reload_reg[regno] != 0
6043#ifdef CANNOT_CHANGE_MODE_CLASS
6044 /* Verify that the register it's in can be used in
6045 mode MODE. */
6046 && !REG_CANNOT_CHANGE_MODE_P (REGNO (reg_last_reload_reg[regno]),
6047 GET_MODE (reg_last_reload_reg[regno]),
6048 mode)
6049#endif
6050 )
32131a9c 6051 {
48c54229 6052 enum reg_class rclass = rld[r].rclass, last_class;
cb2afeb3 6053 rtx last_reg = reg_last_reload_reg[regno];
02188693 6054 enum machine_mode need_mode;
05d10675 6055
ddef6bc7
JJ
6056 i = REGNO (last_reg);
6057 i += subreg_regno_offset (i, GET_MODE (last_reg), byte, mode);
cb2afeb3 6058 last_class = REGNO_REG_CLASS (i);
02188693 6059
ddef6bc7 6060 if (byte == 0)
ce701d1b
BS
6061 need_mode = mode;
6062 else
6063 need_mode
7db7ed3c
VM
6064 = smallest_mode_for_size
6065 (GET_MODE_BITSIZE (mode) + byte * BITS_PER_UNIT,
6066 GET_MODE_CLASS (mode) == MODE_PARTIAL_INT
6067 ? MODE_INT : GET_MODE_CLASS (mode));
02188693 6068
1de80b0e 6069 if ((GET_MODE_SIZE (GET_MODE (last_reg))
02188693 6070 >= GET_MODE_SIZE (need_mode))
cb2afeb3 6071 && reg_reloaded_contents[i] == regno
e6e52be0 6072 && TEST_HARD_REG_BIT (reg_reloaded_valid, i)
8ec450a4 6073 && HARD_REGNO_MODE_OK (i, rld[r].mode)
55d796da 6074 && (TEST_HARD_REG_BIT (reg_class_contents[(int) rclass], i)
cb2afeb3
R
6075 /* Even if we can't use this register as a reload
6076 register, we might use it for reload_override_in,
6077 if copying it to the desired class is cheap
6078 enough. */
55d796da
KG
6079 || ((REGISTER_MOVE_COST (mode, last_class, rclass)
6080 < MEMORY_MOVE_COST (mode, rclass, 1))
6081 && (secondary_reload_class (1, rclass, mode,
8a99f6f9 6082 last_reg)
cb2afeb3 6083 == NO_REGS)
cb2afeb3 6084#ifdef SECONDARY_MEMORY_NEEDED
55d796da 6085 && ! SECONDARY_MEMORY_NEEDED (last_class, rclass,
cb2afeb3
R
6086 mode)
6087#endif
6088 ))
6089
8ec450a4 6090 && (rld[r].nregs == max_group_size
32131a9c 6091 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) group_class],
e6e52be0 6092 i))
c02cad8f
BS
6093 && free_for_value_p (i, rld[r].mode, rld[r].opnum,
6094 rld[r].when_needed, rld[r].in,
6095 const0_rtx, r, 1))
32131a9c
RK
6096 {
6097 /* If a group is needed, verify that all the subsequent
0f41302f 6098 registers still have their values intact. */
66fd46b6 6099 int nr = hard_regno_nregs[i][rld[r].mode];
32131a9c
RK
6100 int k;
6101
6102 for (k = 1; k < nr; k++)
e6e52be0
R
6103 if (reg_reloaded_contents[i + k] != regno
6104 || ! TEST_HARD_REG_BIT (reg_reloaded_valid, i + k))
32131a9c
RK
6105 break;
6106
6107 if (k == nr)
6108 {
c74fa651 6109 int i1;
eb4d554e 6110 int bad_for_class;
c74fa651 6111
cb2afeb3
R
6112 last_reg = (GET_MODE (last_reg) == mode
6113 ? last_reg : gen_rtx_REG (mode, i));
6114
eb4d554e
GK
6115 bad_for_class = 0;
6116 for (k = 0; k < nr; k++)
48c54229 6117 bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].rclass],
eb4d554e
GK
6118 i+k);
6119
c74fa651
RS
6120 /* We found a register that contains the
6121 value we need. If this register is the
6122 same as an `earlyclobber' operand of the
6123 current insn, just mark it as a place to
6124 reload from since we can't use it as the
6125 reload register itself. */
6126
6127 for (i1 = 0; i1 < n_earlyclobbers; i1++)
6128 if (reg_overlap_mentioned_for_reload_p
6129 (reg_last_reload_reg[regno],
6130 reload_earlyclobbers[i1]))
6131 break;
6132
8908158d 6133 if (i1 != n_earlyclobbers
c02cad8f
BS
6134 || ! (free_for_value_p (i, rld[r].mode,
6135 rld[r].opnum,
6136 rld[r].when_needed, rld[r].in,
6137 rld[r].out, r, 1))
e6e52be0 6138 /* Don't use it if we'd clobber a pseudo reg. */
f1db3576 6139 || (TEST_HARD_REG_BIT (reg_used_in_insn, i)
eceef4c9 6140 && rld[r].out
e6e52be0 6141 && ! TEST_HARD_REG_BIT (reg_reloaded_dead, i))
0c7f2259 6142 /* Don't clobber the frame pointer. */
1d7254c5 6143 || (i == HARD_FRAME_POINTER_REGNUM
2f460a0a 6144 && frame_pointer_needed
1d7254c5 6145 && rld[r].out)
8908158d
RS
6146 /* Don't really use the inherited spill reg
6147 if we need it wider than we've got it. */
8ec450a4 6148 || (GET_MODE_SIZE (rld[r].mode)
b29514ee 6149 > GET_MODE_SIZE (mode))
eb4d554e 6150 || bad_for_class
cb2afeb3 6151
b29514ee
R
6152 /* If find_reloads chose reload_out as reload
6153 register, stay with it - that leaves the
6154 inherited register for subsequent reloads. */
eceef4c9 6155 || (rld[r].out && rld[r].reg_rtx
67e61fe7 6156 && rtx_equal_p (rld[r].out, rld[r].reg_rtx)))
cb2afeb3 6157 {
4c3a2649
BS
6158 if (! rld[r].optional)
6159 {
6160 reload_override_in[r] = last_reg;
6161 reload_inheritance_insn[r]
6162 = reg_reloaded_insn[i];
6163 }
cb2afeb3 6164 }
c74fa651
RS
6165 else
6166 {
54c40e68 6167 int k;
c74fa651
RS
6168 /* We can use this as a reload reg. */
6169 /* Mark the register as in use for this part of
6170 the insn. */
e6e52be0 6171 mark_reload_reg_in_use (i,
eceef4c9
BS
6172 rld[r].opnum,
6173 rld[r].when_needed,
8ec450a4 6174 rld[r].mode);
eceef4c9 6175 rld[r].reg_rtx = last_reg;
c74fa651
RS
6176 reload_inherited[r] = 1;
6177 reload_inheritance_insn[r]
6178 = reg_reloaded_insn[i];
6179 reload_spill_index[r] = i;
54c40e68
RS
6180 for (k = 0; k < nr; k++)
6181 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
e6e52be0 6182 i + k);
c74fa651 6183 }
32131a9c
RK
6184 }
6185 }
6186 }
6187 }
6188
6189 /* Here's another way to see if the value is already lying around. */
6190 if (inheritance
eceef4c9 6191 && rld[r].in != 0
32131a9c 6192 && ! reload_inherited[r]
eceef4c9
BS
6193 && rld[r].out == 0
6194 && (CONSTANT_P (rld[r].in)
6195 || GET_CODE (rld[r].in) == PLUS
f8cfc6aa 6196 || REG_P (rld[r].in)
3c0cb5de 6197 || MEM_P (rld[r].in))
8ec450a4 6198 && (rld[r].nregs == max_group_size
48c54229 6199 || ! reg_classes_intersect_p (rld[r].rclass, group_class)))
eceef4c9 6200 search_equiv = rld[r].in;
8593b745
R
6201 /* If this is an output reload from a simple move insn, look
6202 if an equivalence for the input is available. */
eceef4c9 6203 else if (inheritance && rld[r].in == 0 && rld[r].out != 0)
8593b745
R
6204 {
6205 rtx set = single_set (insn);
6206
6207 if (set
eceef4c9 6208 && rtx_equal_p (rld[r].out, SET_DEST (set))
8593b745
R
6209 && CONSTANT_P (SET_SRC (set)))
6210 search_equiv = SET_SRC (set);
6211 }
6212
6213 if (search_equiv)
32131a9c 6214 {
b3694847 6215 rtx equiv
48c54229 6216 = find_equiv_reg (search_equiv, insn, rld[r].rclass,
9714cf43 6217 -1, NULL, 0, rld[r].mode);
f428f252 6218 int regno = 0;
32131a9c
RK
6219
6220 if (equiv != 0)
6221 {
f8cfc6aa 6222 if (REG_P (equiv))
32131a9c 6223 regno = REGNO (equiv);
41374e13 6224 else
32131a9c 6225 {
f8a9e02b
RK
6226 /* This must be a SUBREG of a hard register.
6227 Make a new REG since this might be used in an
6228 address and not all machines support SUBREGs
6229 there. */
41374e13 6230 gcc_assert (GET_CODE (equiv) == SUBREG);
ddef6bc7 6231 regno = subreg_regno (equiv);
8ec450a4 6232 equiv = gen_rtx_REG (rld[r].mode, regno);
9c0a30c3
EB
6233 /* If we choose EQUIV as the reload register, but the
6234 loop below decides to cancel the inheritance, we'll
6235 end up reloading EQUIV in rld[r].mode, not the mode
6236 it had originally. That isn't safe when EQUIV isn't
6237 available as a spill register since its value might
6238 still be live at this point. */
6239 for (i = regno; i < regno + (int) rld[r].nregs; i++)
6240 if (TEST_HARD_REG_BIT (reload_reg_unavailable, i))
6241 equiv = 0;
32131a9c 6242 }
32131a9c
RK
6243 }
6244
6245 /* If we found a spill reg, reject it unless it is free
6246 and of the desired class. */
f58d8c95
JW
6247 if (equiv != 0)
6248 {
6249 int regs_used = 0;
6250 int bad_for_class = 0;
6251 int max_regno = regno + rld[r].nregs;
6252
6253 for (i = regno; i < max_regno; i++)
6254 {
6255 regs_used |= TEST_HARD_REG_BIT (reload_reg_used_at_all,
6256 i);
48c54229 6257 bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].rclass],
f58d8c95
JW
6258 i);
6259 }
6260
6261 if ((regs_used
c02cad8f
BS
6262 && ! free_for_value_p (regno, rld[r].mode,
6263 rld[r].opnum, rld[r].when_needed,
6264 rld[r].in, rld[r].out, r, 1))
f58d8c95
JW
6265 || bad_for_class)
6266 equiv = 0;
6267 }
32131a9c 6268
8ec450a4 6269 if (equiv != 0 && ! HARD_REGNO_MODE_OK (regno, rld[r].mode))
32131a9c
RK
6270 equiv = 0;
6271
6272 /* We found a register that contains the value we need.
6273 If this register is the same as an `earlyclobber' operand
6274 of the current insn, just mark it as a place to reload from
6275 since we can't use it as the reload register itself. */
6276
6277 if (equiv != 0)
6278 for (i = 0; i < n_earlyclobbers; i++)
bfa30b22
RK
6279 if (reg_overlap_mentioned_for_reload_p (equiv,
6280 reload_earlyclobbers[i]))
32131a9c 6281 {
4c3a2649
BS
6282 if (! rld[r].optional)
6283 reload_override_in[r] = equiv;
32131a9c
RK
6284 equiv = 0;
6285 break;
6286 }
6287
3c785e47
R
6288 /* If the equiv register we have found is explicitly clobbered
6289 in the current insn, it depends on the reload type if we
6290 can use it, use it for reload_override_in, or not at all.
6291 In particular, we then can't use EQUIV for a
6292 RELOAD_FOR_OUTPUT_ADDRESS reload. */
32131a9c 6293
9532e31f 6294 if (equiv != 0)
174fa2c4 6295 {
d0236c3b 6296 if (regno_clobbered_p (regno, insn, rld[r].mode, 2))
9532e31f
BS
6297 switch (rld[r].when_needed)
6298 {
6299 case RELOAD_FOR_OTHER_ADDRESS:
6300 case RELOAD_FOR_INPADDR_ADDRESS:
6301 case RELOAD_FOR_INPUT_ADDRESS:
6302 case RELOAD_FOR_OPADDR_ADDR:
6303 break;
6304 case RELOAD_OTHER:
6305 case RELOAD_FOR_INPUT:
6306 case RELOAD_FOR_OPERAND_ADDRESS:
6307 if (! rld[r].optional)
6308 reload_override_in[r] = equiv;
6309 /* Fall through. */
6310 default:
6311 equiv = 0;
6312 break;
6313 }
6314 else if (regno_clobbered_p (regno, insn, rld[r].mode, 1))
6315 switch (rld[r].when_needed)
6316 {
6317 case RELOAD_FOR_OTHER_ADDRESS:
6318 case RELOAD_FOR_INPADDR_ADDRESS:
6319 case RELOAD_FOR_INPUT_ADDRESS:
6320 case RELOAD_FOR_OPADDR_ADDR:
6321 case RELOAD_FOR_OPERAND_ADDRESS:
6322 case RELOAD_FOR_INPUT:
6323 break;
6324 case RELOAD_OTHER:
6325 if (! rld[r].optional)
6326 reload_override_in[r] = equiv;
6327 /* Fall through. */
6328 default:
6329 equiv = 0;
6330 break;
6331 }
32131a9c
RK
6332 }
6333
6334 /* If we found an equivalent reg, say no code need be generated
6335 to load it, and use it as our reload reg. */
a6a2274a
KH
6336 if (equiv != 0
6337 && (regno != HARD_FRAME_POINTER_REGNUM
2f460a0a 6338 || !frame_pointer_needed))
32131a9c 6339 {
66fd46b6 6340 int nr = hard_regno_nregs[regno][rld[r].mode];
100338df 6341 int k;
eceef4c9 6342 rld[r].reg_rtx = equiv;
a2a6f3cf 6343 reload_spill_index[r] = regno;
32131a9c 6344 reload_inherited[r] = 1;
100338df 6345
91d7e7ac
R
6346 /* If reg_reloaded_valid is not set for this register,
6347 there might be a stale spill_reg_store lying around.
6348 We must clear it, since otherwise emit_reload_insns
6349 might delete the store. */
6350 if (! TEST_HARD_REG_BIT (reg_reloaded_valid, regno))
6351 spill_reg_store[regno] = NULL_RTX;
100338df
JL
6352 /* If any of the hard registers in EQUIV are spill
6353 registers, mark them as in use for this insn. */
6354 for (k = 0; k < nr; k++)
be7ae2a4 6355 {
100338df
JL
6356 i = spill_reg_order[regno + k];
6357 if (i >= 0)
6358 {
eceef4c9
BS
6359 mark_reload_reg_in_use (regno, rld[r].opnum,
6360 rld[r].when_needed,
8ec450a4 6361 rld[r].mode);
100338df
JL
6362 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
6363 regno + k);
6364 }
be7ae2a4 6365 }
32131a9c
RK
6366 }
6367 }
6368
6369 /* If we found a register to use already, or if this is an optional
6370 reload, we are done. */
eceef4c9 6371 if (rld[r].reg_rtx != 0 || rld[r].optional != 0)
32131a9c
RK
6372 continue;
6373
1d7254c5
KH
6374#if 0
6375 /* No longer needed for correct operation. Might or might
6376 not give better code on the average. Want to experiment? */
32131a9c
RK
6377
6378 /* See if there is a later reload that has a class different from our
6379 class that intersects our class or that requires less register
6380 than our reload. If so, we must allocate a register to this
6381 reload now, since that reload might inherit a previous reload
6382 and take the only available register in our class. Don't do this
6383 for optional reloads since they will force all previous reloads
6384 to be allocated. Also don't do this for reloads that have been
6385 turned off. */
6386
6387 for (i = j + 1; i < n_reloads; i++)
6388 {
6389 int s = reload_order[i];
6390
eceef4c9
BS
6391 if ((rld[s].in == 0 && rld[s].out == 0
6392 && ! rld[s].secondary_p)
6393 || rld[s].optional)
32131a9c
RK
6394 continue;
6395
48c54229
KG
6396 if ((rld[s].rclass != rld[r].rclass
6397 && reg_classes_intersect_p (rld[r].rclass,
6398 rld[s].rclass))
8ec450a4 6399 || rld[s].nregs < rld[r].nregs)
05d10675 6400 break;
32131a9c
RK
6401 }
6402
6403 if (i == n_reloads)
6404 continue;
6405
f5d8c9f4 6406 allocate_reload_reg (chain, r, j == n_reloads - 1);
32131a9c
RK
6407#endif
6408 }
6409
6410 /* Now allocate reload registers for anything non-optional that
6411 didn't get one yet. */
6412 for (j = 0; j < n_reloads; j++)
6413 {
b3694847 6414 int r = reload_order[j];
32131a9c
RK
6415
6416 /* Ignore reloads that got marked inoperative. */
eceef4c9 6417 if (rld[r].out == 0 && rld[r].in == 0 && ! rld[r].secondary_p)
32131a9c
RK
6418 continue;
6419
6420 /* Skip reloads that already have a register allocated or are
0f41302f 6421 optional. */
eceef4c9 6422 if (rld[r].reg_rtx != 0 || rld[r].optional)
32131a9c
RK
6423 continue;
6424
f5d8c9f4 6425 if (! allocate_reload_reg (chain, r, j == n_reloads - 1))
32131a9c
RK
6426 break;
6427 }
6428
6429 /* If that loop got all the way, we have won. */
6430 if (j == n_reloads)
f5d8c9f4
BS
6431 {
6432 win = 1;
6433 break;
6434 }
32131a9c 6435
32131a9c 6436 /* Loop around and try without any inheritance. */
32131a9c
RK
6437 }
6438
f5d8c9f4
BS
6439 if (! win)
6440 {
6441 /* First undo everything done by the failed attempt
6442 to allocate with inheritance. */
6443 choose_reload_regs_init (chain, save_reload_reg_rtx);
6444
6445 /* Some sanity tests to verify that the reloads found in the first
6446 pass are identical to the ones we have now. */
41374e13 6447 gcc_assert (chain->n_reloads == n_reloads);
f5d8c9f4
BS
6448
6449 for (i = 0; i < n_reloads; i++)
6450 {
6451 if (chain->rld[i].regno < 0 || chain->rld[i].reg_rtx != 0)
6452 continue;
41374e13 6453 gcc_assert (chain->rld[i].when_needed == rld[i].when_needed);
f5d8c9f4
BS
6454 for (j = 0; j < n_spills; j++)
6455 if (spill_regs[j] == chain->rld[i].regno)
6456 if (! set_reload_reg (j, i))
6457 failed_reload (chain->insn, i);
6458 }
6459 }
6460
32131a9c
RK
6461 /* If we thought we could inherit a reload, because it seemed that
6462 nothing else wanted the same reload register earlier in the insn,
cb2afeb3
R
6463 verify that assumption, now that all reloads have been assigned.
6464 Likewise for reloads where reload_override_in has been set. */
32131a9c 6465
cb2afeb3
R
6466 /* If doing expensive optimizations, do one preliminary pass that doesn't
6467 cancel any inheritance, but removes reloads that have been needed only
6468 for reloads that we know can be inherited. */
6469 for (pass = flag_expensive_optimizations; pass >= 0; pass--)
32131a9c 6470 {
cb2afeb3 6471 for (j = 0; j < n_reloads; j++)
029b38ff 6472 {
b3694847 6473 int r = reload_order[j];
cb2afeb3 6474 rtx check_reg;
eceef4c9
BS
6475 if (reload_inherited[r] && rld[r].reg_rtx)
6476 check_reg = rld[r].reg_rtx;
cb2afeb3 6477 else if (reload_override_in[r]
f8cfc6aa 6478 && (REG_P (reload_override_in[r])
05d10675 6479 || GET_CODE (reload_override_in[r]) == SUBREG))
cb2afeb3
R
6480 check_reg = reload_override_in[r];
6481 else
6482 continue;
c02cad8f
BS
6483 if (! free_for_value_p (true_regnum (check_reg), rld[r].mode,
6484 rld[r].opnum, rld[r].when_needed, rld[r].in,
6485 (reload_inherited[r]
6486 ? rld[r].out : const0_rtx),
6487 r, 1))
029b38ff 6488 {
cb2afeb3
R
6489 if (pass)
6490 continue;
6491 reload_inherited[r] = 0;
6492 reload_override_in[r] = 0;
029b38ff 6493 }
cb2afeb3
R
6494 /* If we can inherit a RELOAD_FOR_INPUT, or can use a
6495 reload_override_in, then we do not need its related
6496 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS reloads;
6497 likewise for other reload types.
6498 We handle this by removing a reload when its only replacement
6499 is mentioned in reload_in of the reload we are going to inherit.
6500 A special case are auto_inc expressions; even if the input is
6501 inherited, we still need the address for the output. We can
fe92fe26 6502 recognize them because they have RELOAD_OUT set to RELOAD_IN.
eaec9b3d 6503 If we succeeded removing some reload and we are doing a preliminary
cb2afeb3
R
6504 pass just to remove such reloads, make another pass, since the
6505 removal of one reload might allow us to inherit another one. */
eceef4c9
BS
6506 else if (rld[r].in
6507 && rld[r].out != rld[r].in
6508 && remove_address_replacements (rld[r].in) && pass)
cb2afeb3 6509 pass = 2;
32131a9c
RK
6510 }
6511 }
6512
6513 /* Now that reload_override_in is known valid,
6514 actually override reload_in. */
6515 for (j = 0; j < n_reloads; j++)
6516 if (reload_override_in[j])
eceef4c9 6517 rld[j].in = reload_override_in[j];
32131a9c 6518
272d0bee 6519 /* If this reload won't be done because it has been canceled or is
32131a9c
RK
6520 optional and not inherited, clear reload_reg_rtx so other
6521 routines (such as subst_reloads) don't get confused. */
6522 for (j = 0; j < n_reloads; j++)
eceef4c9
BS
6523 if (rld[j].reg_rtx != 0
6524 && ((rld[j].optional && ! reload_inherited[j])
6525 || (rld[j].in == 0 && rld[j].out == 0
6526 && ! rld[j].secondary_p)))
be7ae2a4 6527 {
eceef4c9 6528 int regno = true_regnum (rld[j].reg_rtx);
be7ae2a4
RK
6529
6530 if (spill_reg_order[regno] >= 0)
eceef4c9 6531 clear_reload_reg_in_use (regno, rld[j].opnum,
8ec450a4 6532 rld[j].when_needed, rld[j].mode);
eceef4c9 6533 rld[j].reg_rtx = 0;
c0029be5 6534 reload_spill_index[j] = -1;
be7ae2a4 6535 }
32131a9c
RK
6536
6537 /* Record which pseudos and which spill regs have output reloads. */
6538 for (j = 0; j < n_reloads; j++)
6539 {
b3694847 6540 int r = reload_order[j];
32131a9c
RK
6541
6542 i = reload_spill_index[r];
6543
e6e52be0 6544 /* I is nonneg if this reload uses a register.
eceef4c9 6545 If rld[r].reg_rtx is 0, this is an optional reload
32131a9c 6546 that we opted to ignore. */
f8cfc6aa 6547 if (rld[r].out_reg != 0 && REG_P (rld[r].out_reg)
eceef4c9 6548 && rld[r].reg_rtx != 0)
32131a9c 6549 {
b3694847 6550 int nregno = REGNO (rld[r].out_reg);
372e033b
RS
6551 int nr = 1;
6552
6553 if (nregno < FIRST_PSEUDO_REGISTER)
66fd46b6 6554 nr = hard_regno_nregs[nregno][rld[r].mode];
32131a9c
RK
6555
6556 while (--nr >= 0)
2c61f5f1
JH
6557 SET_REGNO_REG_SET (&reg_has_output_reload,
6558 nregno + nr);
372e033b
RS
6559
6560 if (i >= 0)
32131a9c 6561 {
66fd46b6 6562 nr = hard_regno_nregs[i][rld[r].mode];
372e033b 6563 while (--nr >= 0)
e6e52be0 6564 SET_HARD_REG_BIT (reg_is_output_reload, i + nr);
32131a9c
RK
6565 }
6566
41374e13
NS
6567 gcc_assert (rld[r].when_needed == RELOAD_OTHER
6568 || rld[r].when_needed == RELOAD_FOR_OUTPUT
6569 || rld[r].when_needed == RELOAD_FOR_INSN);
32131a9c
RK
6570 }
6571 }
6572}
cb2afeb3
R
6573
6574/* Deallocate the reload register for reload R. This is called from
6575 remove_address_replacements. */
1d813780 6576
cb2afeb3 6577void
0c20a65f 6578deallocate_reload_reg (int r)
cb2afeb3
R
6579{
6580 int regno;
6581
eceef4c9 6582 if (! rld[r].reg_rtx)
cb2afeb3 6583 return;
eceef4c9
BS
6584 regno = true_regnum (rld[r].reg_rtx);
6585 rld[r].reg_rtx = 0;
cb2afeb3 6586 if (spill_reg_order[regno] >= 0)
eceef4c9 6587 clear_reload_reg_in_use (regno, rld[r].opnum, rld[r].when_needed,
8ec450a4 6588 rld[r].mode);
cb2afeb3
R
6589 reload_spill_index[r] = -1;
6590}
32131a9c 6591\f
40f03658 6592/* If SMALL_REGISTER_CLASSES is nonzero, we may not have merged two
546b63fb
RK
6593 reloads of the same item for fear that we might not have enough reload
6594 registers. However, normally they will get the same reload register
05d10675 6595 and hence actually need not be loaded twice.
546b63fb
RK
6596
6597 Here we check for the most common case of this phenomenon: when we have
6598 a number of reloads for the same object, each of which were allocated
6599 the same reload_reg_rtx, that reload_reg_rtx is not used for any other
6600 reload, and is not modified in the insn itself. If we find such,
6601 merge all the reloads and set the resulting reload to RELOAD_OTHER.
6602 This will not increase the number of spill registers needed and will
6603 prevent redundant code. */
6604
546b63fb 6605static void
0c20a65f 6606merge_assigned_reloads (rtx insn)
546b63fb
RK
6607{
6608 int i, j;
6609
6610 /* Scan all the reloads looking for ones that only load values and
6611 are not already RELOAD_OTHER and ones whose reload_reg_rtx are
6612 assigned and not modified by INSN. */
6613
6614 for (i = 0; i < n_reloads; i++)
6615 {
d668e863
R
6616 int conflicting_input = 0;
6617 int max_input_address_opnum = -1;
6618 int min_conflicting_input_opnum = MAX_RECOG_OPERANDS;
6619
eceef4c9
BS
6620 if (rld[i].in == 0 || rld[i].when_needed == RELOAD_OTHER
6621 || rld[i].out != 0 || rld[i].reg_rtx == 0
6622 || reg_set_p (rld[i].reg_rtx, insn))
546b63fb
RK
6623 continue;
6624
6625 /* Look at all other reloads. Ensure that the only use of this
6626 reload_reg_rtx is in a reload that just loads the same value
6627 as we do. Note that any secondary reloads must be of the identical
6628 class since the values, modes, and result registers are the
6629 same, so we need not do anything with any secondary reloads. */
6630
6631 for (j = 0; j < n_reloads; j++)
6632 {
eceef4c9
BS
6633 if (i == j || rld[j].reg_rtx == 0
6634 || ! reg_overlap_mentioned_p (rld[j].reg_rtx,
6635 rld[i].reg_rtx))
546b63fb
RK
6636 continue;
6637
eceef4c9
BS
6638 if (rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
6639 && rld[j].opnum > max_input_address_opnum)
6640 max_input_address_opnum = rld[j].opnum;
d668e863 6641
546b63fb 6642 /* If the reload regs aren't exactly the same (e.g, different modes)
d668e863
R
6643 or if the values are different, we can't merge this reload.
6644 But if it is an input reload, we might still merge
6645 RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_OTHER_ADDRESS reloads. */
546b63fb 6646
eceef4c9
BS
6647 if (! rtx_equal_p (rld[i].reg_rtx, rld[j].reg_rtx)
6648 || rld[j].out != 0 || rld[j].in == 0
6649 || ! rtx_equal_p (rld[i].in, rld[j].in))
d668e863 6650 {
eceef4c9
BS
6651 if (rld[j].when_needed != RELOAD_FOR_INPUT
6652 || ((rld[i].when_needed != RELOAD_FOR_INPUT_ADDRESS
6653 || rld[i].opnum > rld[j].opnum)
6654 && rld[i].when_needed != RELOAD_FOR_OTHER_ADDRESS))
d668e863
R
6655 break;
6656 conflicting_input = 1;
eceef4c9
BS
6657 if (min_conflicting_input_opnum > rld[j].opnum)
6658 min_conflicting_input_opnum = rld[j].opnum;
d668e863 6659 }
546b63fb
RK
6660 }
6661
6662 /* If all is OK, merge the reloads. Only set this to RELOAD_OTHER if
6663 we, in fact, found any matching reloads. */
6664
d668e863
R
6665 if (j == n_reloads
6666 && max_input_address_opnum <= min_conflicting_input_opnum)
546b63fb 6667 {
3f27846b
DJ
6668 gcc_assert (rld[i].when_needed != RELOAD_FOR_OUTPUT);
6669
546b63fb 6670 for (j = 0; j < n_reloads; j++)
eceef4c9
BS
6671 if (i != j && rld[j].reg_rtx != 0
6672 && rtx_equal_p (rld[i].reg_rtx, rld[j].reg_rtx)
d668e863 6673 && (! conflicting_input
eceef4c9
BS
6674 || rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
6675 || rld[j].when_needed == RELOAD_FOR_OTHER_ADDRESS))
546b63fb 6676 {
eceef4c9
BS
6677 rld[i].when_needed = RELOAD_OTHER;
6678 rld[j].in = 0;
efdb3590 6679 reload_spill_index[j] = -1;
546b63fb
RK
6680 transfer_replacements (i, j);
6681 }
6682
b883ab57
HMC
6683 /* If this is now RELOAD_OTHER, look for any reloads that
6684 load parts of this operand and set them to
6685 RELOAD_FOR_OTHER_ADDRESS if they were for inputs,
6686 RELOAD_OTHER for outputs. Note that this test is
6687 equivalent to looking for reloads for this operand
6688 number.
6689
6690 We must take special care with RELOAD_FOR_OUTPUT_ADDRESS;
6691 it may share registers with a RELOAD_FOR_INPUT, so we can
6692 not change it to RELOAD_FOR_OTHER_ADDRESS. We should
6693 never need to, since we do not modify RELOAD_FOR_OUTPUT.
6694
6695 It is possible that the RELOAD_FOR_OPERAND_ADDRESS
6696 instruction is assigned the same register as the earlier
6697 RELOAD_FOR_OTHER_ADDRESS instruction. Merging these two
6698 instructions will cause the RELOAD_FOR_OTHER_ADDRESS
6699 instruction to be deleted later on. */
546b63fb 6700
eceef4c9 6701 if (rld[i].when_needed == RELOAD_OTHER)
546b63fb 6702 for (j = 0; j < n_reloads; j++)
eceef4c9 6703 if (rld[j].in != 0
91667711 6704 && rld[j].when_needed != RELOAD_OTHER
dec0798e 6705 && rld[j].when_needed != RELOAD_FOR_OTHER_ADDRESS
3f27846b 6706 && rld[j].when_needed != RELOAD_FOR_OUTPUT_ADDRESS
b883ab57 6707 && rld[j].when_needed != RELOAD_FOR_OPERAND_ADDRESS
dec0798e
R
6708 && (! conflicting_input
6709 || rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
6710 || rld[j].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
eceef4c9
BS
6711 && reg_overlap_mentioned_for_reload_p (rld[j].in,
6712 rld[i].in))
c15c18c5
JW
6713 {
6714 int k;
6715
6716 rld[j].when_needed
6717 = ((rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
6718 || rld[j].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
6719 ? RELOAD_FOR_OTHER_ADDRESS : RELOAD_OTHER);
6720
0e61db61
NS
6721 /* Check to see if we accidentally converted two
6722 reloads that use the same reload register with
6723 different inputs to the same type. If so, the
6724 resulting code won't work. */
c15c18c5
JW
6725 if (rld[j].reg_rtx)
6726 for (k = 0; k < j; k++)
41374e13
NS
6727 gcc_assert (rld[k].in == 0 || rld[k].reg_rtx == 0
6728 || rld[k].when_needed != rld[j].when_needed
6729 || !rtx_equal_p (rld[k].reg_rtx,
6730 rld[j].reg_rtx)
6731 || rtx_equal_p (rld[k].in,
6732 rld[j].in));
c15c18c5 6733 }
546b63fb
RK
6734 }
6735 }
05d10675 6736}
546b63fb 6737\f
367b1cf5
BS
6738/* These arrays are filled by emit_reload_insns and its subroutines. */
6739static rtx input_reload_insns[MAX_RECOG_OPERANDS];
6740static rtx other_input_address_reload_insns = 0;
6741static rtx other_input_reload_insns = 0;
6742static rtx input_address_reload_insns[MAX_RECOG_OPERANDS];
6743static rtx inpaddr_address_reload_insns[MAX_RECOG_OPERANDS];
6744static rtx output_reload_insns[MAX_RECOG_OPERANDS];
6745static rtx output_address_reload_insns[MAX_RECOG_OPERANDS];
6746static rtx outaddr_address_reload_insns[MAX_RECOG_OPERANDS];
6747static rtx operand_reload_insns = 0;
6748static rtx other_operand_reload_insns = 0;
6749static rtx other_output_reload_insns[MAX_RECOG_OPERANDS];
6750
6751/* Values to be put in spill_reg_store are put here first. */
6752static rtx new_spill_reg_store[FIRST_PSEUDO_REGISTER];
6753static HARD_REG_SET reg_reloaded_died;
6754
8a99f6f9
R
6755/* Check if *RELOAD_REG is suitable as an intermediate or scratch register
6756 of class NEW_CLASS with mode NEW_MODE. Or alternatively, if alt_reload_reg
6757 is nonzero, if that is suitable. On success, change *RELOAD_REG to the
6758 adjusted register, and return true. Otherwise, return false. */
6759static bool
6760reload_adjust_reg_for_temp (rtx *reload_reg, rtx alt_reload_reg,
6761 enum reg_class new_class,
6762 enum machine_mode new_mode)
6763
6764{
6765 rtx reg;
6766
6767 for (reg = *reload_reg; reg; reg = alt_reload_reg, alt_reload_reg = 0)
6768 {
6769 unsigned regno = REGNO (reg);
6770
6771 if (!TEST_HARD_REG_BIT (reg_class_contents[(int) new_class], regno))
6772 continue;
6773 if (GET_MODE (reg) != new_mode)
6774 {
6775 if (!HARD_REGNO_MODE_OK (regno, new_mode))
6776 continue;
6777 if (hard_regno_nregs[regno][new_mode]
6778 > hard_regno_nregs[regno][GET_MODE (reg)])
6779 continue;
6780 reg = reload_adjust_reg_for_mode (reg, new_mode);
6781 }
6782 *reload_reg = reg;
6783 return true;
6784 }
6785 return false;
6786}
6787
6788/* Check if *RELOAD_REG is suitable as a scratch register for the reload
6789 pattern with insn_code ICODE, or alternatively, if alt_reload_reg is
6790 nonzero, if that is suitable. On success, change *RELOAD_REG to the
6791 adjusted register, and return true. Otherwise, return false. */
6792static bool
6793reload_adjust_reg_for_icode (rtx *reload_reg, rtx alt_reload_reg,
6794 enum insn_code icode)
6795
6796{
6797 enum reg_class new_class = scratch_reload_class (icode);
6798 enum machine_mode new_mode = insn_data[(int) icode].operand[2].mode;
6799
6800 return reload_adjust_reg_for_temp (reload_reg, alt_reload_reg,
6801 new_class, new_mode);
6802}
6803
367b1cf5
BS
6804/* Generate insns to perform reload RL, which is for the insn in CHAIN and
6805 has the number J. OLD contains the value to be used as input. */
770ae6cc 6806
32131a9c 6807static void
0c20a65f
AJ
6808emit_input_reload_insns (struct insn_chain *chain, struct reload *rl,
6809 rtx old, int j)
32131a9c 6810{
7609e720 6811 rtx insn = chain->insn;
fb959f72 6812 rtx reloadreg;
367b1cf5
BS
6813 rtx oldequiv_reg = 0;
6814 rtx oldequiv = 0;
6815 int special = 0;
6816 enum machine_mode mode;
6817 rtx *where;
6818
367b1cf5
BS
6819 /* delete_output_reload is only invoked properly if old contains
6820 the original pseudo register. Since this is replaced with a
6821 hard reg when RELOAD_OVERRIDE_IN is set, see if we can
6822 find the pseudo in RELOAD_IN_REG. */
75803b85 6823 if (reload_override_in[j]
f8cfc6aa 6824 && REG_P (rl->in_reg))
367b1cf5
BS
6825 {
6826 oldequiv = old;
6827 old = rl->in_reg;
6828 }
6829 if (oldequiv == 0)
6830 oldequiv = old;
f8cfc6aa 6831 else if (REG_P (oldequiv))
367b1cf5
BS
6832 oldequiv_reg = oldequiv;
6833 else if (GET_CODE (oldequiv) == SUBREG)
6834 oldequiv_reg = SUBREG_REG (oldequiv);
6835
fb959f72
RS
6836 reloadreg = reload_reg_rtx_for_input[j];
6837 mode = GET_MODE (reloadreg);
6838
367b1cf5
BS
6839 /* If we are reloading from a register that was recently stored in
6840 with an output-reload, see if we can prove there was
6841 actually no need to store the old value in it. */
6842
f8cfc6aa 6843 if (optimize && REG_P (oldequiv)
367b1cf5
BS
6844 && REGNO (oldequiv) < FIRST_PSEUDO_REGISTER
6845 && spill_reg_store[REGNO (oldequiv)]
f8cfc6aa 6846 && REG_P (old)
367b1cf5
BS
6847 && (dead_or_set_p (insn, spill_reg_stored_to[REGNO (oldequiv)])
6848 || rtx_equal_p (spill_reg_stored_to[REGNO (oldequiv)],
6849 rl->out_reg)))
fb959f72 6850 delete_output_reload (insn, j, REGNO (oldequiv), reloadreg);
367b1cf5 6851
fb959f72
RS
6852 /* Encapsulate OLDEQUIV into the reload mode, then load RELOADREG from
6853 OLDEQUIV. */
367b1cf5 6854
367b1cf5
BS
6855 while (GET_CODE (oldequiv) == SUBREG && GET_MODE (oldequiv) != mode)
6856 oldequiv = SUBREG_REG (oldequiv);
6857 if (GET_MODE (oldequiv) != VOIDmode
6858 && mode != GET_MODE (oldequiv))
ddef6bc7 6859 oldequiv = gen_lowpart_SUBREG (mode, oldequiv);
367b1cf5
BS
6860
6861 /* Switch to the right place to emit the reload insns. */
6862 switch (rl->when_needed)
6863 {
6864 case RELOAD_OTHER:
6865 where = &other_input_reload_insns;
6866 break;
6867 case RELOAD_FOR_INPUT:
6868 where = &input_reload_insns[rl->opnum];
6869 break;
6870 case RELOAD_FOR_INPUT_ADDRESS:
6871 where = &input_address_reload_insns[rl->opnum];
6872 break;
6873 case RELOAD_FOR_INPADDR_ADDRESS:
6874 where = &inpaddr_address_reload_insns[rl->opnum];
6875 break;
6876 case RELOAD_FOR_OUTPUT_ADDRESS:
6877 where = &output_address_reload_insns[rl->opnum];
6878 break;
6879 case RELOAD_FOR_OUTADDR_ADDRESS:
6880 where = &outaddr_address_reload_insns[rl->opnum];
6881 break;
6882 case RELOAD_FOR_OPERAND_ADDRESS:
6883 where = &operand_reload_insns;
6884 break;
6885 case RELOAD_FOR_OPADDR_ADDR:
6886 where = &other_operand_reload_insns;
6887 break;
6888 case RELOAD_FOR_OTHER_ADDRESS:
6889 where = &other_input_address_reload_insns;
6890 break;
6891 default:
41374e13 6892 gcc_unreachable ();
367b1cf5 6893 }
546b63fb 6894
367b1cf5 6895 push_to_sequence (*where);
32131a9c 6896
367b1cf5
BS
6897 /* Auto-increment addresses must be reloaded in a special way. */
6898 if (rl->out && ! rl->out_reg)
32131a9c 6899 {
367b1cf5
BS
6900 /* We are not going to bother supporting the case where a
6901 incremented register can't be copied directly from
6902 OLDEQUIV since this seems highly unlikely. */
41374e13 6903 gcc_assert (rl->secondary_in_reload < 0);
32131a9c 6904
367b1cf5
BS
6905 if (reload_inherited[j])
6906 oldequiv = reloadreg;
cb2afeb3 6907
367b1cf5 6908 old = XEXP (rl->in_reg, 0);
32131a9c 6909
f8cfc6aa 6910 if (optimize && REG_P (oldequiv)
367b1cf5
BS
6911 && REGNO (oldequiv) < FIRST_PSEUDO_REGISTER
6912 && spill_reg_store[REGNO (oldequiv)]
f8cfc6aa 6913 && REG_P (old)
367b1cf5
BS
6914 && (dead_or_set_p (insn,
6915 spill_reg_stored_to[REGNO (oldequiv)])
6916 || rtx_equal_p (spill_reg_stored_to[REGNO (oldequiv)],
6917 old)))
fb959f72 6918 delete_output_reload (insn, j, REGNO (oldequiv), reloadreg);
367b1cf5
BS
6919
6920 /* Prevent normal processing of this reload. */
6921 special = 1;
6922 /* Output a special code sequence for this case. */
6923 new_spill_reg_store[REGNO (reloadreg)]
6924 = inc_for_reload (reloadreg, oldequiv, rl->out,
6925 rl->inc);
6926 }
32131a9c 6927
367b1cf5
BS
6928 /* If we are reloading a pseudo-register that was set by the previous
6929 insn, see if we can get rid of that pseudo-register entirely
6930 by redirecting the previous insn into our reload register. */
6931
f8cfc6aa 6932 else if (optimize && REG_P (old)
367b1cf5
BS
6933 && REGNO (old) >= FIRST_PSEUDO_REGISTER
6934 && dead_or_set_p (insn, old)
6935 /* This is unsafe if some other reload
6936 uses the same reg first. */
ff6534ad 6937 && ! conflicts_with_override (reloadreg)
c02cad8f
BS
6938 && free_for_value_p (REGNO (reloadreg), rl->mode, rl->opnum,
6939 rl->when_needed, old, rl->out, j, 0))
367b1cf5
BS
6940 {
6941 rtx temp = PREV_INSN (insn);
4b4bf941 6942 while (temp && NOTE_P (temp))
367b1cf5
BS
6943 temp = PREV_INSN (temp);
6944 if (temp
4b4bf941 6945 && NONJUMP_INSN_P (temp)
367b1cf5
BS
6946 && GET_CODE (PATTERN (temp)) == SET
6947 && SET_DEST (PATTERN (temp)) == old
6948 /* Make sure we can access insn_operand_constraint. */
6949 && asm_noperands (PATTERN (temp)) < 0
367b1cf5
BS
6950 /* This is unsafe if operand occurs more than once in current
6951 insn. Perhaps some occurrences aren't reloaded. */
10d1bb36 6952 && count_occurrences (PATTERN (insn), old, 0) == 1)
367b1cf5 6953 {
10d1bb36 6954 rtx old = SET_DEST (PATTERN (temp));
367b1cf5
BS
6955 /* Store into the reload register instead of the pseudo. */
6956 SET_DEST (PATTERN (temp)) = reloadreg;
6957
10d1bb36
JH
6958 /* Verify that resulting insn is valid. */
6959 extract_insn (temp);
6960 if (constrain_operands (1))
32131a9c 6961 {
10d1bb36
JH
6962 /* If the previous insn is an output reload, the source is
6963 a reload register, and its spill_reg_store entry will
6964 contain the previous destination. This is now
6965 invalid. */
f8cfc6aa 6966 if (REG_P (SET_SRC (PATTERN (temp)))
10d1bb36
JH
6967 && REGNO (SET_SRC (PATTERN (temp))) < FIRST_PSEUDO_REGISTER)
6968 {
6969 spill_reg_store[REGNO (SET_SRC (PATTERN (temp)))] = 0;
6970 spill_reg_stored_to[REGNO (SET_SRC (PATTERN (temp)))] = 0;
6971 }
32131a9c 6972
10d1bb36
JH
6973 /* If these are the only uses of the pseudo reg,
6974 pretend for GDB it lives in the reload reg we used. */
6975 if (REG_N_DEATHS (REGNO (old)) == 1
6976 && REG_N_SETS (REGNO (old)) == 1)
6977 {
fb959f72 6978 reg_renumber[REGNO (old)] = REGNO (reloadreg);
2af2dbdc 6979 if (ira_conflicts_p)
058e97ec
VM
6980 /* Inform IRA about the change. */
6981 ira_mark_allocation_change (REGNO (old));
6982 alter_reg (REGNO (old), -1, false);
10d1bb36
JH
6983 }
6984 special = 1;
6985 }
6986 else
cb2afeb3 6987 {
10d1bb36 6988 SET_DEST (PATTERN (temp)) = old;
32131a9c 6989 }
367b1cf5
BS
6990 }
6991 }
32131a9c 6992
367b1cf5 6993 /* We can't do that, so output an insn to load RELOADREG. */
32131a9c 6994
367b1cf5
BS
6995 /* If we have a secondary reload, pick up the secondary register
6996 and icode, if any. If OLDEQUIV and OLD are different or
6997 if this is an in-out reload, recompute whether or not we
6998 still need a secondary register and what the icode should
6999 be. If we still need a secondary register and the class or
7000 icode is different, go back to reloading from OLD if using
7001 OLDEQUIV means that we got the wrong type of register. We
7002 cannot have different class or icode due to an in-out reload
7003 because we don't make such reloads when both the input and
7004 output need secondary reload registers. */
7005
07875628 7006 if (! special && rl->secondary_in_reload >= 0)
367b1cf5
BS
7007 {
7008 rtx second_reload_reg = 0;
8a99f6f9 7009 rtx third_reload_reg = 0;
367b1cf5
BS
7010 int secondary_reload = rl->secondary_in_reload;
7011 rtx real_oldequiv = oldequiv;
7012 rtx real_old = old;
7013 rtx tmp;
7014 enum insn_code icode;
8a99f6f9 7015 enum insn_code tertiary_icode = CODE_FOR_nothing;
367b1cf5
BS
7016
7017 /* If OLDEQUIV is a pseudo with a MEM, get the real MEM
7018 and similarly for OLD.
7019 See comments in get_secondary_reload in reload.c. */
7020 /* If it is a pseudo that cannot be replaced with its
7021 equivalent MEM, we must fall back to reload_in, which
7022 will have all the necessary substitutions registered.
7023 Likewise for a pseudo that can't be replaced with its
7024 equivalent constant.
7025
7026 Take extra care for subregs of such pseudos. Note that
7027 we cannot use reg_equiv_mem in this case because it is
7028 not in the right mode. */
7029
7030 tmp = oldequiv;
7031 if (GET_CODE (tmp) == SUBREG)
7032 tmp = SUBREG_REG (tmp);
f8cfc6aa 7033 if (REG_P (tmp)
367b1cf5
BS
7034 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
7035 && (reg_equiv_memory_loc[REGNO (tmp)] != 0
7036 || reg_equiv_constant[REGNO (tmp)] != 0))
7037 {
7038 if (! reg_equiv_mem[REGNO (tmp)]
7039 || num_not_at_initial_offset
7040 || GET_CODE (oldequiv) == SUBREG)
7041 real_oldequiv = rl->in;
7042 else
7043 real_oldequiv = reg_equiv_mem[REGNO (tmp)];
7044 }
32131a9c 7045
367b1cf5
BS
7046 tmp = old;
7047 if (GET_CODE (tmp) == SUBREG)
7048 tmp = SUBREG_REG (tmp);
f8cfc6aa 7049 if (REG_P (tmp)
367b1cf5
BS
7050 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
7051 && (reg_equiv_memory_loc[REGNO (tmp)] != 0
7052 || reg_equiv_constant[REGNO (tmp)] != 0))
7053 {
7054 if (! reg_equiv_mem[REGNO (tmp)]
7055 || num_not_at_initial_offset
7056 || GET_CODE (old) == SUBREG)
7057 real_old = rl->in;
7058 else
7059 real_old = reg_equiv_mem[REGNO (tmp)];
7060 }
7061
7062 second_reload_reg = rld[secondary_reload].reg_rtx;
8a99f6f9
R
7063 if (rld[secondary_reload].secondary_in_reload >= 0)
7064 {
7065 int tertiary_reload = rld[secondary_reload].secondary_in_reload;
7066
7067 third_reload_reg = rld[tertiary_reload].reg_rtx;
7068 tertiary_icode = rld[secondary_reload].secondary_in_icode;
7069 /* We'd have to add more code for quartary reloads. */
7070 gcc_assert (rld[tertiary_reload].secondary_in_reload < 0);
7071 }
367b1cf5
BS
7072 icode = rl->secondary_in_icode;
7073
7074 if ((old != oldequiv && ! rtx_equal_p (old, oldequiv))
7075 || (rl->in != 0 && rl->out != 0))
7076 {
8a99f6f9
R
7077 secondary_reload_info sri, sri2;
7078 enum reg_class new_class, new_t_class;
367b1cf5 7079
8a99f6f9
R
7080 sri.icode = CODE_FOR_nothing;
7081 sri.prev_sri = NULL;
48c54229 7082 new_class = targetm.secondary_reload (1, real_oldequiv, rl->rclass,
8a99f6f9
R
7083 mode, &sri);
7084
7085 if (new_class == NO_REGS && sri.icode == CODE_FOR_nothing)
367b1cf5 7086 second_reload_reg = 0;
8a99f6f9 7087 else if (new_class == NO_REGS)
32131a9c 7088 {
8a99f6f9
R
7089 if (reload_adjust_reg_for_icode (&second_reload_reg,
7090 third_reload_reg, sri.icode))
7091 icode = sri.icode, third_reload_reg = 0;
367b1cf5 7092 else
8a99f6f9
R
7093 oldequiv = old, real_oldequiv = real_old;
7094 }
7095 else if (sri.icode != CODE_FOR_nothing)
7096 /* We currently lack a way to express this in reloads. */
7097 gcc_unreachable ();
7098 else
7099 {
7100 sri2.icode = CODE_FOR_nothing;
7101 sri2.prev_sri = &sri;
7102 new_t_class = targetm.secondary_reload (1, real_oldequiv,
7103 new_class, mode, &sri);
7104 if (new_t_class == NO_REGS && sri2.icode == CODE_FOR_nothing)
32131a9c 7105 {
8a99f6f9
R
7106 if (reload_adjust_reg_for_temp (&second_reload_reg,
7107 third_reload_reg,
7108 new_class, mode))
7109 third_reload_reg = 0, tertiary_icode = sri2.icode;
367b1cf5 7110 else
8a99f6f9
R
7111 oldequiv = old, real_oldequiv = real_old;
7112 }
7113 else if (new_t_class == NO_REGS && sri2.icode != CODE_FOR_nothing)
7114 {
7115 rtx intermediate = second_reload_reg;
d30e8ef0 7116
8a99f6f9
R
7117 if (reload_adjust_reg_for_temp (&intermediate, NULL,
7118 new_class, mode)
7119 && reload_adjust_reg_for_icode (&third_reload_reg, NULL,
7120 sri2.icode))
32131a9c 7121 {
8a99f6f9
R
7122 second_reload_reg = intermediate;
7123 tertiary_icode = sri2.icode;
7124 }
7125 else
7126 oldequiv = old, real_oldequiv = real_old;
7127 }
7128 else if (new_t_class != NO_REGS && sri2.icode == CODE_FOR_nothing)
7129 {
7130 rtx intermediate = second_reload_reg;
7131
7132 if (reload_adjust_reg_for_temp (&intermediate, NULL,
7133 new_class, mode)
7134 && reload_adjust_reg_for_temp (&third_reload_reg, NULL,
7135 new_t_class, mode))
7136 {
7137 second_reload_reg = intermediate;
7138 tertiary_icode = sri2.icode;
32131a9c 7139 }
8a99f6f9
R
7140 else
7141 oldequiv = old, real_oldequiv = real_old;
32131a9c 7142 }
8a99f6f9
R
7143 else
7144 /* This could be handled more intelligently too. */
7145 oldequiv = old, real_oldequiv = real_old;
32131a9c 7146 }
367b1cf5 7147 }
32131a9c 7148
367b1cf5
BS
7149 /* If we still need a secondary reload register, check
7150 to see if it is being used as a scratch or intermediate
7151 register and generate code appropriately. If we need
7152 a scratch register, use REAL_OLDEQUIV since the form of
7153 the insn may depend on the actual address if it is
7154 a MEM. */
546b63fb 7155
367b1cf5
BS
7156 if (second_reload_reg)
7157 {
7158 if (icode != CODE_FOR_nothing)
32131a9c 7159 {
8a99f6f9
R
7160 /* We'd have to add extra code to handle this case. */
7161 gcc_assert (!third_reload_reg);
7162
367b1cf5
BS
7163 emit_insn (GEN_FCN (icode) (reloadreg, real_oldequiv,
7164 second_reload_reg));
07875628 7165 special = 1;
367b1cf5
BS
7166 }
7167 else
7168 {
7169 /* See if we need a scratch register to load the
7170 intermediate register (a tertiary reload). */
367b1cf5
BS
7171 if (tertiary_icode != CODE_FOR_nothing)
7172 {
367b1cf5
BS
7173 emit_insn ((GEN_FCN (tertiary_icode)
7174 (second_reload_reg, real_oldequiv,
7175 third_reload_reg)));
7176 }
8a99f6f9
R
7177 else if (third_reload_reg)
7178 {
7179 gen_reload (third_reload_reg, real_oldequiv,
7180 rl->opnum,
7181 rl->when_needed);
7182 gen_reload (second_reload_reg, third_reload_reg,
7183 rl->opnum,
7184 rl->when_needed);
7185 }
367b1cf5
BS
7186 else
7187 gen_reload (second_reload_reg, real_oldequiv,
7188 rl->opnum,
7189 rl->when_needed);
32131a9c 7190
367b1cf5
BS
7191 oldequiv = second_reload_reg;
7192 }
7193 }
7194 }
32131a9c 7195
07875628 7196 if (! special && ! rtx_equal_p (reloadreg, oldequiv))
367b1cf5
BS
7197 {
7198 rtx real_oldequiv = oldequiv;
7199
f8cfc6aa 7200 if ((REG_P (oldequiv)
367b1cf5
BS
7201 && REGNO (oldequiv) >= FIRST_PSEUDO_REGISTER
7202 && (reg_equiv_memory_loc[REGNO (oldequiv)] != 0
7203 || reg_equiv_constant[REGNO (oldequiv)] != 0))
7204 || (GET_CODE (oldequiv) == SUBREG
f8cfc6aa 7205 && REG_P (SUBREG_REG (oldequiv))
367b1cf5
BS
7206 && (REGNO (SUBREG_REG (oldequiv))
7207 >= FIRST_PSEUDO_REGISTER)
7208 && ((reg_equiv_memory_loc
7209 [REGNO (SUBREG_REG (oldequiv))] != 0)
7210 || (reg_equiv_constant
716120a7
JJ
7211 [REGNO (SUBREG_REG (oldequiv))] != 0)))
7212 || (CONSTANT_P (oldequiv)
019d2e99
AS
7213 && (PREFERRED_RELOAD_CLASS (oldequiv,
7214 REGNO_REG_CLASS (REGNO (reloadreg)))
7215 == NO_REGS)))
367b1cf5
BS
7216 real_oldequiv = rl->in;
7217 gen_reload (reloadreg, real_oldequiv, rl->opnum,
7218 rl->when_needed);
7219 }
32131a9c 7220
94bd63e5
AH
7221 if (flag_non_call_exceptions)
7222 copy_eh_notes (insn, get_insns ());
7223
367b1cf5
BS
7224 /* End this sequence. */
7225 *where = get_insns ();
7226 end_sequence ();
a6a2274a 7227
367b1cf5
BS
7228 /* Update reload_override_in so that delete_address_reloads_1
7229 can see the actual register usage. */
7230 if (oldequiv_reg)
7231 reload_override_in[j] = oldequiv;
7232}
32131a9c 7233
367b1cf5
BS
7234/* Generate insns to for the output reload RL, which is for the insn described
7235 by CHAIN and has the number J. */
7236static void
0c20a65f
AJ
7237emit_output_reload_insns (struct insn_chain *chain, struct reload *rl,
7238 int j)
367b1cf5 7239{
fb959f72 7240 rtx reloadreg;
367b1cf5
BS
7241 rtx insn = chain->insn;
7242 int special = 0;
7243 rtx old = rl->out;
fb959f72 7244 enum machine_mode mode;
367b1cf5 7245 rtx p;
fb959f72 7246 rtx rl_reg_rtx;
32131a9c 7247
367b1cf5
BS
7248 if (rl->when_needed == RELOAD_OTHER)
7249 start_sequence ();
7250 else
7251 push_to_sequence (output_reload_insns[rl->opnum]);
32131a9c 7252
fb959f72
RS
7253 rl_reg_rtx = reload_reg_rtx_for_output[j];
7254 mode = GET_MODE (rl_reg_rtx);
546b63fb 7255
fb959f72 7256 reloadreg = rl_reg_rtx;
32131a9c 7257
367b1cf5
BS
7258 /* If we need two reload regs, set RELOADREG to the intermediate
7259 one, since it will be stored into OLD. We might need a secondary
7260 register only for an input reload, so check again here. */
32131a9c 7261
367b1cf5
BS
7262 if (rl->secondary_out_reload >= 0)
7263 {
7264 rtx real_old = old;
8a99f6f9
R
7265 int secondary_reload = rl->secondary_out_reload;
7266 int tertiary_reload = rld[secondary_reload].secondary_out_reload;
cb2afeb3 7267
f8cfc6aa 7268 if (REG_P (old) && REGNO (old) >= FIRST_PSEUDO_REGISTER
367b1cf5
BS
7269 && reg_equiv_mem[REGNO (old)] != 0)
7270 real_old = reg_equiv_mem[REGNO (old)];
32131a9c 7271
48c54229 7272 if (secondary_reload_class (0, rl->rclass, mode, real_old) != NO_REGS)
b60a8416 7273 {
367b1cf5 7274 rtx second_reloadreg = reloadreg;
8a99f6f9 7275 reloadreg = rld[secondary_reload].reg_rtx;
32131a9c 7276
367b1cf5
BS
7277 /* See if RELOADREG is to be used as a scratch register
7278 or as an intermediate register. */
7279 if (rl->secondary_out_icode != CODE_FOR_nothing)
7280 {
8a99f6f9
R
7281 /* We'd have to add extra code to handle this case. */
7282 gcc_assert (tertiary_reload < 0);
7283
367b1cf5
BS
7284 emit_insn ((GEN_FCN (rl->secondary_out_icode)
7285 (real_old, second_reloadreg, reloadreg)));
7286 special = 1;
7287 }
7288 else
7289 {
7290 /* See if we need both a scratch and intermediate reload
7291 register. */
32131a9c 7292
367b1cf5
BS
7293 enum insn_code tertiary_icode
7294 = rld[secondary_reload].secondary_out_icode;
32131a9c 7295
8a99f6f9
R
7296 /* We'd have to add more code for quartary reloads. */
7297 gcc_assert (tertiary_reload < 0
7298 || rld[tertiary_reload].secondary_out_reload < 0);
7299
367b1cf5 7300 if (GET_MODE (reloadreg) != mode)
f12448c8 7301 reloadreg = reload_adjust_reg_for_mode (reloadreg, mode);
cb2afeb3 7302
367b1cf5
BS
7303 if (tertiary_icode != CODE_FOR_nothing)
7304 {
8a99f6f9 7305 rtx third_reloadreg = rld[tertiary_reload].reg_rtx;
367b1cf5
BS
7306 rtx tem;
7307
7308 /* Copy primary reload reg to secondary reload reg.
7309 (Note that these have been swapped above, then
78adc5a0 7310 secondary reload reg to OLD using our insn.) */
367b1cf5
BS
7311
7312 /* If REAL_OLD is a paradoxical SUBREG, remove it
7313 and try to put the opposite SUBREG on
7314 RELOADREG. */
7315 if (GET_CODE (real_old) == SUBREG
7316 && (GET_MODE_SIZE (GET_MODE (real_old))
7317 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (real_old))))
7318 && 0 != (tem = gen_lowpart_common
7319 (GET_MODE (SUBREG_REG (real_old)),
7320 reloadreg)))
7321 real_old = SUBREG_REG (real_old), reloadreg = tem;
7322
7323 gen_reload (reloadreg, second_reloadreg,
7324 rl->opnum, rl->when_needed);
7325 emit_insn ((GEN_FCN (tertiary_icode)
7326 (real_old, reloadreg, third_reloadreg)));
7327 special = 1;
7328 }
05d10675 7329
367b1cf5 7330 else
8a99f6f9
R
7331 {
7332 /* Copy between the reload regs here and then to
7333 OUT later. */
7334
7335 gen_reload (reloadreg, second_reloadreg,
7336 rl->opnum, rl->when_needed);
7337 if (tertiary_reload >= 0)
7338 {
7339 rtx third_reloadreg = rld[tertiary_reload].reg_rtx;
cb2afeb3 7340
8a99f6f9
R
7341 gen_reload (third_reloadreg, reloadreg,
7342 rl->opnum, rl->when_needed);
7343 reloadreg = third_reloadreg;
7344 }
7345 }
a7911cd2 7346 }
367b1cf5
BS
7347 }
7348 }
32131a9c 7349
367b1cf5
BS
7350 /* Output the last reload insn. */
7351 if (! special)
7352 {
7353 rtx set;
7354
7355 /* Don't output the last reload if OLD is not the dest of
1d7254c5 7356 INSN and is in the src and is clobbered by INSN. */
367b1cf5 7357 if (! flag_expensive_optimizations
f8cfc6aa 7358 || !REG_P (old)
367b1cf5
BS
7359 || !(set = single_set (insn))
7360 || rtx_equal_p (old, SET_DEST (set))
7361 || !reg_mentioned_p (old, SET_SRC (set))
2ca39620
KK
7362 || !((REGNO (old) < FIRST_PSEUDO_REGISTER)
7363 && regno_clobbered_p (REGNO (old), insn, rl->mode, 0)))
367b1cf5
BS
7364 gen_reload (old, reloadreg, rl->opnum,
7365 rl->when_needed);
7366 }
32131a9c 7367
367b1cf5
BS
7368 /* Look at all insns we emitted, just to be safe. */
7369 for (p = get_insns (); p; p = NEXT_INSN (p))
2c3c49de 7370 if (INSN_P (p))
367b1cf5
BS
7371 {
7372 rtx pat = PATTERN (p);
546b63fb 7373
367b1cf5
BS
7374 /* If this output reload doesn't come from a spill reg,
7375 clear any memory of reloaded copies of the pseudo reg.
7376 If this output reload comes from a spill reg,
7377 reg_has_output_reload will make this do nothing. */
7378 note_stores (pat, forget_old_reloads_1, NULL);
cb2afeb3 7379
fb959f72 7380 if (reg_mentioned_p (rl_reg_rtx, pat))
367b1cf5
BS
7381 {
7382 rtx set = single_set (insn);
7383 if (reload_spill_index[j] < 0
7384 && set
fb959f72 7385 && SET_SRC (set) == rl_reg_rtx)
367b1cf5
BS
7386 {
7387 int src = REGNO (SET_SRC (set));
32131a9c 7388
367b1cf5
BS
7389 reload_spill_index[j] = src;
7390 SET_HARD_REG_BIT (reg_is_output_reload, src);
7391 if (find_regno_note (insn, REG_DEAD, src))
7392 SET_HARD_REG_BIT (reg_reloaded_died, src);
7393 }
fb959f72 7394 if (HARD_REGISTER_P (rl_reg_rtx))
367b1cf5
BS
7395 {
7396 int s = rl->secondary_out_reload;
7397 set = single_set (p);
7398 /* If this reload copies only to the secondary reload
7399 register, the secondary reload does the actual
7400 store. */
7401 if (s >= 0 && set == NULL_RTX)
1d7254c5
KH
7402 /* We can't tell what function the secondary reload
7403 has and where the actual store to the pseudo is
7404 made; leave new_spill_reg_store alone. */
7405 ;
367b1cf5 7406 else if (s >= 0
fb959f72 7407 && SET_SRC (set) == rl_reg_rtx
367b1cf5
BS
7408 && SET_DEST (set) == rld[s].reg_rtx)
7409 {
7410 /* Usually the next instruction will be the
7411 secondary reload insn; if we can confirm
7412 that it is, setting new_spill_reg_store to
7413 that insn will allow an extra optimization. */
7414 rtx s_reg = rld[s].reg_rtx;
7415 rtx next = NEXT_INSN (p);
7416 rld[s].out = rl->out;
7417 rld[s].out_reg = rl->out_reg;
7418 set = single_set (next);
7419 if (set && SET_SRC (set) == s_reg
7420 && ! new_spill_reg_store[REGNO (s_reg)])
7421 {
7422 SET_HARD_REG_BIT (reg_is_output_reload,
7423 REGNO (s_reg));
7424 new_spill_reg_store[REGNO (s_reg)] = next;
7425 }
7426 }
7427 else
fb959f72 7428 new_spill_reg_store[REGNO (rl_reg_rtx)] = p;
367b1cf5
BS
7429 }
7430 }
7431 }
32131a9c 7432
367b1cf5
BS
7433 if (rl->when_needed == RELOAD_OTHER)
7434 {
2f937369 7435 emit_insn (other_output_reload_insns[rl->opnum]);
367b1cf5
BS
7436 other_output_reload_insns[rl->opnum] = get_insns ();
7437 }
7438 else
7439 output_reload_insns[rl->opnum] = get_insns ();
32131a9c 7440
94bd63e5
AH
7441 if (flag_non_call_exceptions)
7442 copy_eh_notes (insn, get_insns ());
7443
1d7254c5 7444 end_sequence ();
367b1cf5 7445}
32131a9c 7446
367b1cf5
BS
7447/* Do input reloading for reload RL, which is for the insn described by CHAIN
7448 and has the number J. */
7449static void
0c20a65f 7450do_input_reload (struct insn_chain *chain, struct reload *rl, int j)
367b1cf5 7451{
367b1cf5 7452 rtx insn = chain->insn;
3c0cb5de 7453 rtx old = (rl->in && MEM_P (rl->in)
367b1cf5 7454 ? rl->in_reg : rl->in);
fb959f72
RS
7455 rtx reg_rtx = rl->reg_rtx;
7456
7457 if (old && reg_rtx)
7458 {
7459 enum machine_mode mode;
7460
7461 /* Determine the mode to reload in.
7462 This is very tricky because we have three to choose from.
7463 There is the mode the insn operand wants (rl->inmode).
7464 There is the mode of the reload register RELOADREG.
7465 There is the intrinsic mode of the operand, which we could find
7466 by stripping some SUBREGs.
7467 It turns out that RELOADREG's mode is irrelevant:
7468 we can change that arbitrarily.
7469
7470 Consider (SUBREG:SI foo:QI) as an operand that must be SImode;
7471 then the reload reg may not support QImode moves, so use SImode.
7472 If foo is in memory due to spilling a pseudo reg, this is safe,
7473 because the QImode value is in the least significant part of a
7474 slot big enough for a SImode. If foo is some other sort of
7475 memory reference, then it is impossible to reload this case,
7476 so previous passes had better make sure this never happens.
7477
7478 Then consider a one-word union which has SImode and one of its
7479 members is a float, being fetched as (SUBREG:SF union:SI).
7480 We must fetch that as SFmode because we could be loading into
7481 a float-only register. In this case OLD's mode is correct.
7482
7483 Consider an immediate integer: it has VOIDmode. Here we need
7484 to get a mode from something else.
7485
7486 In some cases, there is a fourth mode, the operand's
7487 containing mode. If the insn specifies a containing mode for
7488 this operand, it overrides all others.
7489
7490 I am not sure whether the algorithm here is always right,
7491 but it does the right things in those cases. */
7492
7493 mode = GET_MODE (old);
7494 if (mode == VOIDmode)
7495 mode = rl->inmode;
7496
7497 /* We cannot use gen_lowpart_common since it can do the wrong thing
7498 when REG_RTX has a multi-word mode. Note that REG_RTX must
7499 always be a REG here. */
7500 if (GET_MODE (reg_rtx) != mode)
7501 reg_rtx = reload_adjust_reg_for_mode (reg_rtx, mode);
7502 }
7503 reload_reg_rtx_for_input[j] = reg_rtx;
367b1cf5
BS
7504
7505 if (old != 0
7506 /* AUTO_INC reloads need to be handled even if inherited. We got an
7507 AUTO_INC reload if reload_out is set but reload_out_reg isn't. */
7508 && (! reload_inherited[j] || (rl->out && ! rl->out_reg))
fb959f72
RS
7509 && ! rtx_equal_p (reg_rtx, old)
7510 && reg_rtx != 0)
1d813780 7511 emit_input_reload_insns (chain, rld + j, old, j);
32131a9c 7512
367b1cf5
BS
7513 /* When inheriting a wider reload, we have a MEM in rl->in,
7514 e.g. inheriting a SImode output reload for
7515 (mem:HI (plus:SI (reg:SI 14 fp) (const_int 10))) */
7516 if (optimize && reload_inherited[j] && rl->in
3c0cb5de
JQ
7517 && MEM_P (rl->in)
7518 && MEM_P (rl->in_reg)
367b1cf5
BS
7519 && reload_spill_index[j] >= 0
7520 && TEST_HARD_REG_BIT (reg_reloaded_valid, reload_spill_index[j]))
4977bab6 7521 rl->in = regno_reg_rtx[reg_reloaded_contents[reload_spill_index[j]]];
32131a9c 7522
367b1cf5
BS
7523 /* If we are reloading a register that was recently stored in with an
7524 output-reload, see if we can prove there was
7525 actually no need to store the old value in it. */
32131a9c 7526
367b1cf5
BS
7527 if (optimize
7528 && (reload_inherited[j] || reload_override_in[j])
fb959f72
RS
7529 && reg_rtx
7530 && REG_P (reg_rtx)
7531 && spill_reg_store[REGNO (reg_rtx)] != 0
367b1cf5
BS
7532#if 0
7533 /* There doesn't seem to be any reason to restrict this to pseudos
7534 and doing so loses in the case where we are copying from a
7535 register of the wrong class. */
fb959f72 7536 && !HARD_REGISTER_P (spill_reg_stored_to[REGNO (reg_rtx)])
367b1cf5
BS
7537#endif
7538 /* The insn might have already some references to stackslots
7539 replaced by MEMs, while reload_out_reg still names the
7540 original pseudo. */
fb959f72
RS
7541 && (dead_or_set_p (insn, spill_reg_stored_to[REGNO (reg_rtx)])
7542 || rtx_equal_p (spill_reg_stored_to[REGNO (reg_rtx)], rl->out_reg)))
7543 delete_output_reload (insn, j, REGNO (reg_rtx), reg_rtx);
367b1cf5 7544}
32131a9c 7545
367b1cf5
BS
7546/* Do output reloading for reload RL, which is for the insn described by
7547 CHAIN and has the number J.
7548 ??? At some point we need to support handling output reloads of
7549 JUMP_INSNs or insns that set cc0. */
7550static void
0c20a65f 7551do_output_reload (struct insn_chain *chain, struct reload *rl, int j)
367b1cf5
BS
7552{
7553 rtx note, old;
7554 rtx insn = chain->insn;
7555 /* If this is an output reload that stores something that is
7556 not loaded in this same reload, see if we can eliminate a previous
7557 store. */
7558 rtx pseudo = rl->out_reg;
fb959f72
RS
7559 rtx reg_rtx = rl->reg_rtx;
7560
7561 if (rl->out && reg_rtx)
7562 {
7563 enum machine_mode mode;
7564
7565 /* Determine the mode to reload in.
7566 See comments above (for input reloading). */
7567 mode = GET_MODE (rl->out);
7568 if (mode == VOIDmode)
7569 {
7570 /* VOIDmode should never happen for an output. */
7571 if (asm_noperands (PATTERN (insn)) < 0)
7572 /* It's the compiler's fault. */
7573 fatal_insn ("VOIDmode on an output", insn);
7574 error_for_asm (insn, "output operand is constant in %<asm%>");
7575 /* Prevent crash--use something we know is valid. */
7576 mode = word_mode;
7577 rl->out = gen_rtx_REG (mode, REGNO (reg_rtx));
7578 }
7579 if (GET_MODE (reg_rtx) != mode)
7580 reg_rtx = reload_adjust_reg_for_mode (reg_rtx, mode);
7581 }
7582 reload_reg_rtx_for_output[j] = reg_rtx;
367b1cf5
BS
7583
7584 if (pseudo
159d5964 7585 && optimize
f8cfc6aa 7586 && REG_P (pseudo)
367b1cf5
BS
7587 && ! rtx_equal_p (rl->in_reg, pseudo)
7588 && REGNO (pseudo) >= FIRST_PSEUDO_REGISTER
7589 && reg_last_reload_reg[REGNO (pseudo)])
7590 {
7591 int pseudo_no = REGNO (pseudo);
7592 int last_regno = REGNO (reg_last_reload_reg[pseudo_no]);
7593
7594 /* We don't need to test full validity of last_regno for
7595 inherit here; we only want to know if the store actually
7596 matches the pseudo. */
60ef417d
GK
7597 if (TEST_HARD_REG_BIT (reg_reloaded_valid, last_regno)
7598 && reg_reloaded_contents[last_regno] == pseudo_no
367b1cf5
BS
7599 && spill_reg_store[last_regno]
7600 && rtx_equal_p (pseudo, spill_reg_stored_to[last_regno]))
fb959f72 7601 delete_output_reload (insn, j, last_regno, reg_rtx);
367b1cf5 7602 }
5e03c156 7603
367b1cf5
BS
7604 old = rl->out_reg;
7605 if (old == 0
fb959f72
RS
7606 || reg_rtx == 0
7607 || rtx_equal_p (old, reg_rtx))
367b1cf5 7608 return;
32131a9c 7609
367b1cf5
BS
7610 /* An output operand that dies right away does need a reload,
7611 but need not be copied from it. Show the new location in the
7612 REG_UNUSED note. */
f8cfc6aa 7613 if ((REG_P (old) || GET_CODE (old) == SCRATCH)
367b1cf5
BS
7614 && (note = find_reg_note (insn, REG_UNUSED, old)) != 0)
7615 {
fb959f72 7616 XEXP (note, 0) = reg_rtx;
367b1cf5
BS
7617 return;
7618 }
7619 /* Likewise for a SUBREG of an operand that dies. */
7620 else if (GET_CODE (old) == SUBREG
f8cfc6aa 7621 && REG_P (SUBREG_REG (old))
367b1cf5
BS
7622 && 0 != (note = find_reg_note (insn, REG_UNUSED,
7623 SUBREG_REG (old))))
7624 {
fb959f72 7625 XEXP (note, 0) = gen_lowpart_common (GET_MODE (old), reg_rtx);
367b1cf5
BS
7626 return;
7627 }
7628 else if (GET_CODE (old) == SCRATCH)
7629 /* If we aren't optimizing, there won't be a REG_UNUSED note,
7630 but we don't want to make an output reload. */
7631 return;
1554c2c6 7632
367b1cf5 7633 /* If is a JUMP_INSN, we can't support output reloads yet. */
ce99549f 7634 gcc_assert (NONJUMP_INSN_P (insn));
5e03c156 7635
367b1cf5
BS
7636 emit_output_reload_insns (chain, rld + j, j);
7637}
1554c2c6 7638
fb959f72
RS
7639/* A reload copies values of MODE from register SRC to register DEST.
7640 Return true if it can be treated for inheritance purposes like a
7641 group of reloads, each one reloading a single hard register. The
7642 caller has already checked that (reg:MODE SRC) and (reg:MODE DEST)
7643 occupy the same number of hard registers. */
b5ba341f
RS
7644
7645static bool
fb959f72
RS
7646inherit_piecemeal_p (int dest ATTRIBUTE_UNUSED,
7647 int src ATTRIBUTE_UNUSED,
7648 enum machine_mode mode ATTRIBUTE_UNUSED)
b5ba341f
RS
7649{
7650#ifdef CANNOT_CHANGE_MODE_CLASS
fb959f72
RS
7651 return (!REG_CANNOT_CHANGE_MODE_P (dest, mode, reg_raw_mode[dest])
7652 && !REG_CANNOT_CHANGE_MODE_P (src, mode, reg_raw_mode[src]));
b5ba341f
RS
7653#else
7654 return true;
7655#endif
7656}
7657
367b1cf5 7658/* Output insns to reload values in and out of the chosen reload regs. */
32131a9c 7659
367b1cf5 7660static void
0c20a65f 7661emit_reload_insns (struct insn_chain *chain)
367b1cf5
BS
7662{
7663 rtx insn = chain->insn;
32131a9c 7664
b3694847 7665 int j;
e6e52be0 7666
367b1cf5 7667 CLEAR_HARD_REG_SET (reg_reloaded_died);
e6e52be0 7668
367b1cf5
BS
7669 for (j = 0; j < reload_n_operands; j++)
7670 input_reload_insns[j] = input_address_reload_insns[j]
7671 = inpaddr_address_reload_insns[j]
7672 = output_reload_insns[j] = output_address_reload_insns[j]
7673 = outaddr_address_reload_insns[j]
7674 = other_output_reload_insns[j] = 0;
7675 other_input_address_reload_insns = 0;
7676 other_input_reload_insns = 0;
7677 operand_reload_insns = 0;
7678 other_operand_reload_insns = 0;
32131a9c 7679
850aac53 7680 /* Dump reloads into the dump file. */
c263766c 7681 if (dump_file)
850aac53 7682 {
c263766c
RH
7683 fprintf (dump_file, "\nReloads for insn # %d\n", INSN_UID (insn));
7684 debug_reload_to_stream (dump_file);
850aac53
JL
7685 }
7686
367b1cf5
BS
7687 /* Now output the instructions to copy the data into and out of the
7688 reload registers. Do these in the order that the reloads were reported,
7689 since reloads of base and index registers precede reloads of operands
7690 and the operands may need the base and index registers reloaded. */
32131a9c 7691
367b1cf5
BS
7692 for (j = 0; j < n_reloads; j++)
7693 {
fb959f72
RS
7694 if (rld[j].reg_rtx && HARD_REGISTER_P (rld[j].reg_rtx))
7695 {
7696 unsigned int i;
7697
7698 for (i = REGNO (rld[j].reg_rtx); i < END_REGNO (rld[j].reg_rtx); i++)
7699 new_spill_reg_store[i] = 0;
7700 }
d7e0324f 7701
367b1cf5
BS
7702 do_input_reload (chain, rld + j, j);
7703 do_output_reload (chain, rld + j, j);
32131a9c
RK
7704 }
7705
546b63fb
RK
7706 /* Now write all the insns we made for reloads in the order expected by
7707 the allocation functions. Prior to the insn being reloaded, we write
7708 the following reloads:
7709
7710 RELOAD_FOR_OTHER_ADDRESS reloads for input addresses.
7711
2edc8d65 7712 RELOAD_OTHER reloads.
546b63fb 7713
47c8cf91
ILT
7714 For each operand, any RELOAD_FOR_INPADDR_ADDRESS reloads followed
7715 by any RELOAD_FOR_INPUT_ADDRESS reloads followed by the
7716 RELOAD_FOR_INPUT reload for the operand.
546b63fb 7717
893bc853
RK
7718 RELOAD_FOR_OPADDR_ADDRS reloads.
7719
546b63fb
RK
7720 RELOAD_FOR_OPERAND_ADDRESS reloads.
7721
7722 After the insn being reloaded, we write the following:
7723
47c8cf91
ILT
7724 For each operand, any RELOAD_FOR_OUTADDR_ADDRESS reloads followed
7725 by any RELOAD_FOR_OUTPUT_ADDRESS reload followed by the
7726 RELOAD_FOR_OUTPUT reload, followed by any RELOAD_OTHER output
7727 reloads for the operand. The RELOAD_OTHER output reloads are
7728 output in descending order by reload number. */
546b63fb 7729
a7102479
JH
7730 emit_insn_before (other_input_address_reload_insns, insn);
7731 emit_insn_before (other_input_reload_insns, insn);
546b63fb
RK
7732
7733 for (j = 0; j < reload_n_operands; j++)
7734 {
a7102479
JH
7735 emit_insn_before (inpaddr_address_reload_insns[j], insn);
7736 emit_insn_before (input_address_reload_insns[j], insn);
7737 emit_insn_before (input_reload_insns[j], insn);
546b63fb
RK
7738 }
7739
a7102479
JH
7740 emit_insn_before (other_operand_reload_insns, insn);
7741 emit_insn_before (operand_reload_insns, insn);
546b63fb
RK
7742
7743 for (j = 0; j < reload_n_operands; j++)
7744 {
a7102479
JH
7745 rtx x = emit_insn_after (outaddr_address_reload_insns[j], insn);
7746 x = emit_insn_after (output_address_reload_insns[j], x);
7747 x = emit_insn_after (output_reload_insns[j], x);
7748 emit_insn_after (other_output_reload_insns[j], x);
546b63fb
RK
7749 }
7750
32131a9c
RK
7751 /* For all the spill regs newly reloaded in this instruction,
7752 record what they were reloaded from, so subsequent instructions
d445b551
RK
7753 can inherit the reloads.
7754
7755 Update spill_reg_store for the reloads of this insn.
e9e79d69 7756 Copy the elements that were updated in the loop above. */
32131a9c
RK
7757
7758 for (j = 0; j < n_reloads; j++)
7759 {
b3694847
SS
7760 int r = reload_order[j];
7761 int i = reload_spill_index[r];
32131a9c 7762
78a2bc08 7763 /* If this is a non-inherited input reload from a pseudo, we must
05d10675
BS
7764 clear any memory of a previous store to the same pseudo. Only do
7765 something if there will not be an output reload for the pseudo
7766 being reloaded. */
eceef4c9 7767 if (rld[r].in_reg != 0
05d10675
BS
7768 && ! (reload_inherited[r] || reload_override_in[r]))
7769 {
eceef4c9 7770 rtx reg = rld[r].in_reg;
78a2bc08 7771
05d10675 7772 if (GET_CODE (reg) == SUBREG)
78a2bc08 7773 reg = SUBREG_REG (reg);
05d10675 7774
f8cfc6aa 7775 if (REG_P (reg)
78a2bc08 7776 && REGNO (reg) >= FIRST_PSEUDO_REGISTER
2c61f5f1 7777 && !REGNO_REG_SET_P (&reg_has_output_reload, REGNO (reg)))
78a2bc08
R
7778 {
7779 int nregno = REGNO (reg);
7780
7781 if (reg_last_reload_reg[nregno])
05d10675
BS
7782 {
7783 int last_regno = REGNO (reg_last_reload_reg[nregno]);
78a2bc08 7784
05d10675 7785 if (reg_reloaded_contents[last_regno] == nregno)
78a2bc08 7786 spill_reg_store[last_regno] = 0;
05d10675 7787 }
78a2bc08
R
7788 }
7789 }
05d10675 7790
e6e52be0 7791 /* I is nonneg if this reload used a register.
eceef4c9 7792 If rld[r].reg_rtx is 0, this is an optional reload
51f0c3b7 7793 that we opted to ignore. */
d445b551 7794
eceef4c9 7795 if (i >= 0 && rld[r].reg_rtx != 0)
32131a9c 7796 {
66fd46b6 7797 int nr = hard_regno_nregs[i][GET_MODE (rld[r].reg_rtx)];
32131a9c
RK
7798 int k;
7799
51f0c3b7
JW
7800 /* For a multi register reload, we need to check if all or part
7801 of the value lives to the end. */
32131a9c 7802 for (k = 0; k < nr; k++)
fb959f72
RS
7803 if (reload_reg_reaches_end_p (i + k, rld[r].opnum,
7804 rld[r].when_needed))
7805 CLEAR_HARD_REG_BIT (reg_reloaded_valid, i + k);
32131a9c 7806
fb959f72
RS
7807 /* Maybe the spill reg contains a copy of reload_out. */
7808 if (rld[r].out != 0
7809 && (REG_P (rld[r].out)
cb2afeb3 7810#ifdef AUTO_INC_DEC
fb959f72 7811 || ! rld[r].out_reg
cb2afeb3 7812#endif
fb959f72
RS
7813 || REG_P (rld[r].out_reg)))
7814 {
7815 rtx reg;
7816 enum machine_mode mode;
7817 int regno, nregs;
7818
7819 reg = reload_reg_rtx_for_output[r];
7820 mode = GET_MODE (reg);
7821 regno = REGNO (reg);
7822 nregs = hard_regno_nregs[regno][mode];
7823 if (reload_regs_reach_end_p (regno, nregs, rld[r].opnum,
7824 rld[r].when_needed))
51f0c3b7 7825 {
f8cfc6aa 7826 rtx out = (REG_P (rld[r].out)
eceef4c9
BS
7827 ? rld[r].out
7828 : rld[r].out_reg
7829 ? rld[r].out_reg
7830/* AUTO_INC */ : XEXP (rld[r].in_reg, 0));
fb959f72
RS
7831 int out_regno = REGNO (out);
7832 int out_nregs = (!HARD_REGISTER_NUM_P (out_regno) ? 1
7833 : hard_regno_nregs[out_regno][mode]);
b5ba341f 7834 bool piecemeal;
51f0c3b7 7835
fb959f72
RS
7836 spill_reg_store[regno] = new_spill_reg_store[regno];
7837 spill_reg_stored_to[regno] = out;
7838 reg_last_reload_reg[out_regno] = reg;
51f0c3b7 7839
fb959f72
RS
7840 piecemeal = (HARD_REGISTER_NUM_P (out_regno)
7841 && nregs == out_nregs
7842 && inherit_piecemeal_p (out_regno, regno, mode));
b5ba341f 7843
fb959f72 7844 /* If OUT_REGNO is a hard register, it may occupy more than
05d10675 7845 one register. If it does, say what is in the
51f0c3b7
JW
7846 rest of the registers assuming that both registers
7847 agree on how many words the object takes. If not,
7848 invalidate the subsequent registers. */
7849
fb959f72
RS
7850 if (HARD_REGISTER_NUM_P (out_regno))
7851 for (k = 1; k < out_nregs; k++)
7852 reg_last_reload_reg[out_regno + k]
7853 = (piecemeal ? regno_reg_rtx[regno + k] : 0);
51f0c3b7
JW
7854
7855 /* Now do the inverse operation. */
fb959f72 7856 for (k = 0; k < nregs; k++)
51f0c3b7 7857 {
fb959f72
RS
7858 CLEAR_HARD_REG_BIT (reg_reloaded_dead, regno + k);
7859 reg_reloaded_contents[regno + k]
7860 = (!HARD_REGISTER_NUM_P (out_regno) || !piecemeal
7861 ? out_regno
7862 : out_regno + k);
7863 reg_reloaded_insn[regno + k] = insn;
7864 SET_HARD_REG_BIT (reg_reloaded_valid, regno + k);
7865 if (HARD_REGNO_CALL_PART_CLOBBERED (regno + k, mode))
7866 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
7867 regno + k);
7868 else
7869 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
7870 regno + k);
51f0c3b7
JW
7871 }
7872 }
fb959f72
RS
7873 }
7874 /* Maybe the spill reg contains a copy of reload_in. Only do
7875 something if there will not be an output reload for
7876 the register being reloaded. */
7877 else if (rld[r].out_reg == 0
7878 && rld[r].in != 0
7879 && ((REG_P (rld[r].in)
7880 && !HARD_REGISTER_P (rld[r].in)
7881 && !REGNO_REG_SET_P (&reg_has_output_reload,
7882 REGNO (rld[r].in)))
7883 || (REG_P (rld[r].in_reg)
7884 && !REGNO_REG_SET_P (&reg_has_output_reload,
7885 REGNO (rld[r].in_reg))))
7886 && !reg_set_p (reload_reg_rtx_for_input[r], PATTERN (insn)))
7887 {
7888 rtx reg;
7889 enum machine_mode mode;
7890 int regno, nregs;
7891
7892 reg = reload_reg_rtx_for_input[r];
7893 mode = GET_MODE (reg);
7894 regno = REGNO (reg);
7895 nregs = hard_regno_nregs[regno][mode];
7896 if (reload_regs_reach_end_p (regno, nregs, rld[r].opnum,
7897 rld[r].when_needed))
51f0c3b7 7898 {
fb959f72
RS
7899 int in_regno;
7900 int in_nregs;
e3e9336f 7901 rtx in;
b5ba341f 7902 bool piecemeal;
d445b551 7903
f8cfc6aa 7904 if (REG_P (rld[r].in)
eceef4c9 7905 && REGNO (rld[r].in) >= FIRST_PSEUDO_REGISTER)
e3e9336f 7906 in = rld[r].in;
f8cfc6aa 7907 else if (REG_P (rld[r].in_reg))
e3e9336f 7908 in = rld[r].in_reg;
cb2afeb3 7909 else
e3e9336f 7910 in = XEXP (rld[r].in_reg, 0);
fb959f72 7911 in_regno = REGNO (in);
d08ea79f 7912
fb959f72
RS
7913 in_nregs = (!HARD_REGISTER_NUM_P (in_regno) ? 1
7914 : hard_regno_nregs[in_regno][mode]);
05d10675 7915
fb959f72 7916 reg_last_reload_reg[in_regno] = reg;
51f0c3b7 7917
fb959f72
RS
7918 piecemeal = (HARD_REGISTER_NUM_P (in_regno)
7919 && nregs == in_nregs
7920 && inherit_piecemeal_p (regno, in_regno, mode));
b5ba341f 7921
fb959f72
RS
7922 if (HARD_REGISTER_NUM_P (in_regno))
7923 for (k = 1; k < in_nregs; k++)
7924 reg_last_reload_reg[in_regno + k]
7925 = (piecemeal ? regno_reg_rtx[regno + k] : 0);
51f0c3b7
JW
7926
7927 /* Unless we inherited this reload, show we haven't
cb2afeb3
R
7928 recently done a store.
7929 Previous stores of inherited auto_inc expressions
7930 also have to be discarded. */
7931 if (! reload_inherited[r]
eceef4c9 7932 || (rld[r].out && ! rld[r].out_reg))
fb959f72 7933 spill_reg_store[regno] = 0;
51f0c3b7 7934
fb959f72 7935 for (k = 0; k < nregs; k++)
51f0c3b7 7936 {
fb959f72
RS
7937 CLEAR_HARD_REG_BIT (reg_reloaded_dead, regno + k);
7938 reg_reloaded_contents[regno + k]
7939 = (!HARD_REGISTER_NUM_P (in_regno) || !piecemeal
7940 ? in_regno
7941 : in_regno + k);
7942 reg_reloaded_insn[regno + k] = insn;
7943 SET_HARD_REG_BIT (reg_reloaded_valid, regno + k);
7944 if (HARD_REGNO_CALL_PART_CLOBBERED (regno + k, mode))
7945 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
7946 regno + k);
7947 else
7948 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
7949 regno + k);
51f0c3b7
JW
7950 }
7951 }
7952 }
32131a9c
RK
7953 }
7954
7955 /* The following if-statement was #if 0'd in 1.34 (or before...).
7956 It's reenabled in 1.35 because supposedly nothing else
7957 deals with this problem. */
7958
7959 /* If a register gets output-reloaded from a non-spill register,
7960 that invalidates any previous reloaded copy of it.
7961 But forget_old_reloads_1 won't get to see it, because
b81ac288
PB
7962 it thinks only about the original insn. So invalidate it here.
7963 Also do the same thing for RELOAD_OTHER constraints where the
7964 output is discarded. */
fb959f72 7965 if (i < 0
b81ac288
PB
7966 && ((rld[r].out != 0
7967 && (REG_P (rld[r].out)
7968 || (MEM_P (rld[r].out)
7969 && REG_P (rld[r].out_reg))))
7970 || (rld[r].out == 0 && rld[r].out_reg
f8cfc6aa 7971 && REG_P (rld[r].out_reg))))
32131a9c 7972 {
b81ac288 7973 rtx out = ((rld[r].out && REG_P (rld[r].out))
eceef4c9 7974 ? rld[r].out : rld[r].out_reg);
fb959f72
RS
7975 int out_regno = REGNO (out);
7976 enum machine_mode mode = GET_MODE (out);
92d54592
RS
7977
7978 /* REG_RTX is now set or clobbered by the main instruction.
7979 As the comment above explains, forget_old_reloads_1 only
7980 sees the original instruction, and there is no guarantee
7981 that the original instruction also clobbered REG_RTX.
7982 For example, if find_reloads sees that the input side of
7983 a matched operand pair dies in this instruction, it may
7984 use the input register as the reload register.
7985
7986 Calling forget_old_reloads_1 is a waste of effort if
7987 REG_RTX is also the output register.
7988
7989 If we know that REG_RTX holds the value of a pseudo
7990 register, the code after the call will record that fact. */
7991 if (rld[r].reg_rtx && rld[r].reg_rtx != out)
7992 forget_old_reloads_1 (rld[r].reg_rtx, NULL_RTX, NULL);
7993
fb959f72 7994 if (!HARD_REGISTER_NUM_P (out_regno))
cb2afeb3 7995 {
6a651371 7996 rtx src_reg, store_insn = NULL_RTX;
cb2afeb3 7997
fb959f72 7998 reg_last_reload_reg[out_regno] = 0;
cb2afeb3
R
7999
8000 /* If we can find a hard register that is stored, record
8001 the storing insn so that we may delete this insn with
8002 delete_output_reload. */
fb959f72 8003 src_reg = reload_reg_rtx_for_output[r];
cb2afeb3
R
8004
8005 /* If this is an optional reload, try to find the source reg
8006 from an input reload. */
8007 if (! src_reg)
8008 {
8009 rtx set = single_set (insn);
eceef4c9 8010 if (set && SET_DEST (set) == rld[r].out)
cb2afeb3
R
8011 {
8012 int k;
8013
8014 src_reg = SET_SRC (set);
8015 store_insn = insn;
8016 for (k = 0; k < n_reloads; k++)
8017 {
eceef4c9 8018 if (rld[k].in == src_reg)
cb2afeb3 8019 {
fb959f72 8020 src_reg = reload_reg_rtx_for_input[k];
cb2afeb3
R
8021 break;
8022 }
8023 }
8024 }
8025 }
8026 else
8027 store_insn = new_spill_reg_store[REGNO (src_reg)];
f8cfc6aa 8028 if (src_reg && REG_P (src_reg)
cb2afeb3
R
8029 && REGNO (src_reg) < FIRST_PSEUDO_REGISTER)
8030 {
fb959f72
RS
8031 int src_regno, src_nregs, k;
8032 rtx note;
8033
8034 gcc_assert (GET_MODE (src_reg) == mode);
8035 src_regno = REGNO (src_reg);
8036 src_nregs = hard_regno_nregs[src_regno][mode];
cb2afeb3
R
8037 /* The place where to find a death note varies with
8038 PRESERVE_DEATH_INFO_REGNO_P . The condition is not
8039 necessarily checked exactly in the code that moves
8040 notes, so just check both locations. */
fb959f72 8041 note = find_regno_note (insn, REG_DEAD, src_regno);
1558b970 8042 if (! note && store_insn)
cb2afeb3 8043 note = find_regno_note (store_insn, REG_DEAD, src_regno);
fb959f72 8044 for (k = 0; k < src_nregs; k++)
cb2afeb3 8045 {
fb959f72
RS
8046 spill_reg_store[src_regno + k] = store_insn;
8047 spill_reg_stored_to[src_regno + k] = out;
8048 reg_reloaded_contents[src_regno + k] = out_regno;
8049 reg_reloaded_insn[src_regno + k] = store_insn;
8050 CLEAR_HARD_REG_BIT (reg_reloaded_dead, src_regno + k);
8051 SET_HARD_REG_BIT (reg_reloaded_valid, src_regno + k);
8052 if (HARD_REGNO_CALL_PART_CLOBBERED (src_regno + k,
8053 mode))
e3e9336f 8054 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
fb959f72
RS
8055 src_regno + k);
8056 else
8057 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8058 src_regno + k);
8059 SET_HARD_REG_BIT (reg_is_output_reload, src_regno + k);
cb2afeb3
R
8060 if (note)
8061 SET_HARD_REG_BIT (reg_reloaded_died, src_regno);
8062 else
8063 CLEAR_HARD_REG_BIT (reg_reloaded_died, src_regno);
8064 }
fb959f72 8065 reg_last_reload_reg[out_regno] = src_reg;
9532c14f
UW
8066 /* We have to set reg_has_output_reload here, or else
8067 forget_old_reloads_1 will clear reg_last_reload_reg
8068 right away. */
2c61f5f1 8069 SET_REGNO_REG_SET (&reg_has_output_reload,
fb959f72 8070 out_regno);
cb2afeb3
R
8071 }
8072 }
c7093272
RK
8073 else
8074 {
fb959f72 8075 int k, out_nregs = hard_regno_nregs[out_regno][mode];
36281332 8076
fb959f72
RS
8077 for (k = 0; k < out_nregs; k++)
8078 reg_last_reload_reg[out_regno + k] = 0;
c7093272 8079 }
32131a9c
RK
8080 }
8081 }
e6e52be0 8082 IOR_HARD_REG_SET (reg_reloaded_dead, reg_reloaded_died);
32131a9c
RK
8083}
8084\f
ff0d9879
HPN
8085/* Go through the motions to emit INSN and test if it is strictly valid.
8086 Return the emitted insn if valid, else return NULL. */
8087
8088static rtx
8089emit_insn_if_valid_for_reload (rtx insn)
8090{
8091 rtx last = get_last_insn ();
8092 int code;
8093
8094 insn = emit_insn (insn);
8095 code = recog_memoized (insn);
8096
8097 if (code >= 0)
8098 {
8099 extract_insn (insn);
8100 /* We want constrain operands to treat this insn strictly in its
8101 validity determination, i.e., the way it would after reload has
8102 completed. */
8103 if (constrain_operands (1))
8104 return insn;
8105 }
8106
8107 delete_insns_since (last);
8108 return NULL;
8109}
8110
5e03c156
RK
8111/* Emit code to perform a reload from IN (which may be a reload register) to
8112 OUT (which may also be a reload register). IN or OUT is from operand
05d10675 8113 OPNUM with reload type TYPE.
546b63fb 8114
3c3eeea6 8115 Returns first insn emitted. */
32131a9c 8116
bf9a0db3 8117static rtx
0c20a65f 8118gen_reload (rtx out, rtx in, int opnum, enum reload_type type)
32131a9c 8119{
546b63fb 8120 rtx last = get_last_insn ();
7a5b18b0
RK
8121 rtx tem;
8122
8123 /* If IN is a paradoxical SUBREG, remove it and try to put the
8124 opposite SUBREG on OUT. Likewise for a paradoxical SUBREG on OUT. */
8125 if (GET_CODE (in) == SUBREG
8126 && (GET_MODE_SIZE (GET_MODE (in))
8127 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
8128 && (tem = gen_lowpart_common (GET_MODE (SUBREG_REG (in)), out)) != 0)
8129 in = SUBREG_REG (in), out = tem;
8130 else if (GET_CODE (out) == SUBREG
eceef4c9
BS
8131 && (GET_MODE_SIZE (GET_MODE (out))
8132 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
8133 && (tem = gen_lowpart_common (GET_MODE (SUBREG_REG (out)), in)) != 0)
7a5b18b0 8134 out = SUBREG_REG (out), in = tem;
32131a9c 8135
a8fdc208 8136 /* How to do this reload can get quite tricky. Normally, we are being
32131a9c
RK
8137 asked to reload a simple operand, such as a MEM, a constant, or a pseudo
8138 register that didn't get a hard register. In that case we can just
8139 call emit_move_insn.
8140
a7fd196c
JW
8141 We can also be asked to reload a PLUS that adds a register or a MEM to
8142 another register, constant or MEM. This can occur during frame pointer
8143 elimination and while reloading addresses. This case is handled by
8144 trying to emit a single insn to perform the add. If it is not valid,
8145 we use a two insn sequence.
32131a9c 8146
ff0d9879
HPN
8147 Or we can be asked to reload an unary operand that was a fragment of
8148 an addressing mode, into a register. If it isn't recognized as-is,
8149 we try making the unop operand and the reload-register the same:
8150 (set reg:X (unop:X expr:Y))
8151 -> (set reg:Y expr:Y) (set reg:X (unop:X reg:Y)).
8152
32131a9c
RK
8153 Finally, we could be called to handle an 'o' constraint by putting
8154 an address into a register. In that case, we first try to do this
8155 with a named pattern of "reload_load_address". If no such pattern
8156 exists, we just emit a SET insn and hope for the best (it will normally
8157 be valid on machines that use 'o').
8158
8159 This entire process is made complex because reload will never
8160 process the insns we generate here and so we must ensure that
8161 they will fit their constraints and also by the fact that parts of
8162 IN might be being reloaded separately and replaced with spill registers.
8163 Because of this, we are, in some sense, just guessing the right approach
8164 here. The one listed above seems to work.
8165
8166 ??? At some point, this whole thing needs to be rethought. */
8167
8168 if (GET_CODE (in) == PLUS
f8cfc6aa 8169 && (REG_P (XEXP (in, 0))
5c6b1bd2 8170 || GET_CODE (XEXP (in, 0)) == SUBREG
3c0cb5de 8171 || MEM_P (XEXP (in, 0)))
f8cfc6aa 8172 && (REG_P (XEXP (in, 1))
5c6b1bd2 8173 || GET_CODE (XEXP (in, 1)) == SUBREG
a7fd196c 8174 || CONSTANT_P (XEXP (in, 1))
3c0cb5de 8175 || MEM_P (XEXP (in, 1))))
32131a9c 8176 {
a7fd196c
JW
8177 /* We need to compute the sum of a register or a MEM and another
8178 register, constant, or MEM, and put it into the reload
3002e160
JW
8179 register. The best possible way of doing this is if the machine
8180 has a three-operand ADD insn that accepts the required operands.
32131a9c
RK
8181
8182 The simplest approach is to try to generate such an insn and see if it
8183 is recognized and matches its constraints. If so, it can be used.
8184
8185 It might be better not to actually emit the insn unless it is valid,
0009eff2 8186 but we need to pass the insn as an operand to `recog' and
0eadeb15 8187 `extract_insn' and it is simpler to emit and then delete the insn if
0009eff2 8188 not valid than to dummy things up. */
a8fdc208 8189
af929c62 8190 rtx op0, op1, tem, insn;
32131a9c 8191 int code;
a8fdc208 8192
af929c62
RK
8193 op0 = find_replacement (&XEXP (in, 0));
8194 op1 = find_replacement (&XEXP (in, 1));
8195
32131a9c
RK
8196 /* Since constraint checking is strict, commutativity won't be
8197 checked, so we need to do that here to avoid spurious failure
8198 if the add instruction is two-address and the second operand
8199 of the add is the same as the reload reg, which is frequently
8200 the case. If the insn would be A = B + A, rearrange it so
0f41302f 8201 it will be A = A + B as constrain_operands expects. */
a8fdc208 8202
f8cfc6aa 8203 if (REG_P (XEXP (in, 1))
5e03c156 8204 && REGNO (out) == REGNO (XEXP (in, 1)))
af929c62
RK
8205 tem = op0, op0 = op1, op1 = tem;
8206
8207 if (op0 != XEXP (in, 0) || op1 != XEXP (in, 1))
38a448ca 8208 in = gen_rtx_PLUS (GET_MODE (in), op0, op1);
32131a9c 8209
ff0d9879
HPN
8210 insn = emit_insn_if_valid_for_reload (gen_rtx_SET (VOIDmode, out, in));
8211 if (insn)
8212 return insn;
32131a9c
RK
8213
8214 /* If that failed, we must use a conservative two-insn sequence.
09522f21
FS
8215
8216 Use a move to copy one operand into the reload register. Prefer
8217 to reload a constant, MEM or pseudo since the move patterns can
8218 handle an arbitrary operand. If OP1 is not a constant, MEM or
8219 pseudo and OP1 is not a valid operand for an add instruction, then
8220 reload OP1.
8221
8222 After reloading one of the operands into the reload register, add
8223 the reload register to the output register.
32131a9c
RK
8224
8225 If there is another way to do this for a specific machine, a
8226 DEFINE_PEEPHOLE should be specified that recognizes the sequence
8227 we emit below. */
8228
166cdb08 8229 code = (int) optab_handler (add_optab, GET_MODE (out))->insn_code;
09522f21 8230
3c0cb5de 8231 if (CONSTANT_P (op1) || MEM_P (op1) || GET_CODE (op1) == SUBREG
f8cfc6aa 8232 || (REG_P (op1)
09522f21
FS
8233 && REGNO (op1) >= FIRST_PSEUDO_REGISTER)
8234 || (code != CODE_FOR_nothing
a995e389
RH
8235 && ! ((*insn_data[code].operand[2].predicate)
8236 (op1, insn_data[code].operand[2].mode))))
af929c62 8237 tem = op0, op0 = op1, op1 = tem;
32131a9c 8238
5c6b1bd2 8239 gen_reload (out, op0, opnum, type);
39b56c2a 8240
5e03c156 8241 /* If OP0 and OP1 are the same, we can use OUT for OP1.
39b56c2a
RK
8242 This fixes a problem on the 32K where the stack pointer cannot
8243 be used as an operand of an add insn. */
8244
8245 if (rtx_equal_p (op0, op1))
5e03c156 8246 op1 = out;
39b56c2a 8247
ff0d9879
HPN
8248 insn = emit_insn_if_valid_for_reload (gen_add2_insn (out, op1));
8249 if (insn)
c77c9766 8250 {
ff0d9879 8251 /* Add a REG_EQUIV note so that find_equiv_reg can find it. */
a31830a7 8252 set_unique_reg_note (insn, REG_EQUIV, in);
ff0d9879 8253 return insn;
c77c9766
RK
8254 }
8255
ff0d9879
HPN
8256 /* If that failed, copy the address register to the reload register.
8257 Then add the constant to the reload register. */
c77c9766 8258
8c74fb06 8259 gcc_assert (!reg_overlap_mentioned_p (out, op0));
5c6b1bd2 8260 gen_reload (out, op1, opnum, type);
4117a96b 8261 insn = emit_insn (gen_add2_insn (out, op0));
a31830a7 8262 set_unique_reg_note (insn, REG_EQUIV, in);
32131a9c
RK
8263 }
8264
0dadecf6
RK
8265#ifdef SECONDARY_MEMORY_NEEDED
8266 /* If we need a memory location to do the move, do it that way. */
d47c3b4e
AP
8267 else if ((REG_P (in)
8268 || (GET_CODE (in) == SUBREG && REG_P (SUBREG_REG (in))))
344b78b8 8269 && reg_or_subregno (in) < FIRST_PSEUDO_REGISTER
d47c3b4e
AP
8270 && (REG_P (out)
8271 || (GET_CODE (out) == SUBREG && REG_P (SUBREG_REG (out))))
344b78b8
JH
8272 && reg_or_subregno (out) < FIRST_PSEUDO_REGISTER
8273 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (reg_or_subregno (in)),
8274 REGNO_REG_CLASS (reg_or_subregno (out)),
5e03c156 8275 GET_MODE (out)))
0dadecf6
RK
8276 {
8277 /* Get the memory to use and rewrite both registers to its mode. */
5e03c156 8278 rtx loc = get_secondary_mem (in, GET_MODE (out), opnum, type);
0dadecf6 8279
5e03c156 8280 if (GET_MODE (loc) != GET_MODE (out))
38a448ca 8281 out = gen_rtx_REG (GET_MODE (loc), REGNO (out));
0dadecf6
RK
8282
8283 if (GET_MODE (loc) != GET_MODE (in))
38a448ca 8284 in = gen_rtx_REG (GET_MODE (loc), REGNO (in));
0dadecf6 8285
5c6b1bd2
RK
8286 gen_reload (loc, in, opnum, type);
8287 gen_reload (out, loc, opnum, type);
0dadecf6
RK
8288 }
8289#endif
ff0d9879
HPN
8290 else if (REG_P (out) && UNARY_P (in))
8291 {
8292 rtx insn;
8293 rtx op1;
8294 rtx out_moded;
8295 rtx set;
0dadecf6 8296
d0ab13fd
R
8297 op1 = find_replacement (&XEXP (in, 0));
8298 if (op1 != XEXP (in, 0))
8299 in = gen_rtx_fmt_e (GET_CODE (in), GET_MODE (in), op1);
8300
ff0d9879
HPN
8301 /* First, try a plain SET. */
8302 set = emit_insn_if_valid_for_reload (gen_rtx_SET (VOIDmode, out, in));
8303 if (set)
8304 return set;
8305
8306 /* If that failed, move the inner operand to the reload
8307 register, and try the same unop with the inner expression
8308 replaced with the reload register. */
ff0d9879
HPN
8309
8310 if (GET_MODE (op1) != GET_MODE (out))
8311 out_moded = gen_rtx_REG (GET_MODE (op1), REGNO (out));
8312 else
8313 out_moded = out;
8314
8315 gen_reload (out_moded, op1, opnum, type);
8316
8317 insn
8318 = gen_rtx_SET (VOIDmode, out,
8319 gen_rtx_fmt_e (GET_CODE (in), GET_MODE (in),
8320 out_moded));
8321 insn = emit_insn_if_valid_for_reload (insn);
8322 if (insn)
8323 {
a31830a7 8324 set_unique_reg_note (insn, REG_EQUIV, in);
ff0d9879
HPN
8325 return insn;
8326 }
8327
8328 fatal_insn ("Failure trying to reload:", set);
8329 }
32131a9c 8330 /* If IN is a simple operand, use gen_move_insn. */
ec8e098d 8331 else if (OBJECT_P (in) || GET_CODE (in) == SUBREG)
8c339083
RS
8332 {
8333 tem = emit_insn (gen_move_insn (out, in));
cf7c4aa6 8334 /* IN may contain a LABEL_REF, if so add a REG_LABEL_OPERAND note. */
8c339083
RS
8335 mark_jump_label (in, tem, 0);
8336 }
32131a9c
RK
8337
8338#ifdef HAVE_reload_load_address
8339 else if (HAVE_reload_load_address)
5e03c156 8340 emit_insn (gen_reload_load_address (out, in));
32131a9c
RK
8341#endif
8342
5e03c156 8343 /* Otherwise, just write (set OUT IN) and hope for the best. */
32131a9c 8344 else
38a448ca 8345 emit_insn (gen_rtx_SET (VOIDmode, out, in));
32131a9c
RK
8346
8347 /* Return the first insn emitted.
546b63fb 8348 We can not just return get_last_insn, because there may have
32131a9c
RK
8349 been multiple instructions emitted. Also note that gen_move_insn may
8350 emit more than one insn itself, so we can not assume that there is one
8351 insn emitted per emit_insn_before call. */
8352
546b63fb 8353 return last ? NEXT_INSN (last) : get_insns ();
32131a9c
RK
8354}
8355\f
cda94cbb
RH
8356/* Delete a previously made output-reload whose result we now believe
8357 is not needed. First we double-check.
32131a9c
RK
8358
8359 INSN is the insn now being processed.
cb2afeb3
R
8360 LAST_RELOAD_REG is the hard register number for which we want to delete
8361 the last output reload.
8362 J is the reload-number that originally used REG. The caller has made
fb959f72
RS
8363 certain that reload J doesn't use REG any longer for input.
8364 NEW_RELOAD_REG is reload register that reload J is using for REG. */
32131a9c
RK
8365
8366static void
fb959f72 8367delete_output_reload (rtx insn, int j, int last_reload_reg, rtx new_reload_reg)
32131a9c 8368{
cb2afeb3
R
8369 rtx output_reload_insn = spill_reg_store[last_reload_reg];
8370 rtx reg = spill_reg_stored_to[last_reload_reg];
8371 int k;
8372 int n_occurrences;
8373 int n_inherited = 0;
b3694847 8374 rtx i1;
cb2afeb3 8375 rtx substed;
05d10675 8376
068f5dea
JH
8377 /* It is possible that this reload has been only used to set another reload
8378 we eliminated earlier and thus deleted this instruction too. */
8379 if (INSN_DELETED_P (output_reload_insn))
8380 return;
8381
32131a9c
RK
8382 /* Get the raw pseudo-register referred to. */
8383
32131a9c
RK
8384 while (GET_CODE (reg) == SUBREG)
8385 reg = SUBREG_REG (reg);
cb2afeb3
R
8386 substed = reg_equiv_memory_loc[REGNO (reg)];
8387
8388 /* This is unsafe if the operand occurs more often in the current
8389 insn than it is inherited. */
8390 for (k = n_reloads - 1; k >= 0; k--)
8391 {
eceef4c9 8392 rtx reg2 = rld[k].in;
cb2afeb3
R
8393 if (! reg2)
8394 continue;
3c0cb5de 8395 if (MEM_P (reg2) || reload_override_in[k])
eceef4c9 8396 reg2 = rld[k].in_reg;
cb2afeb3 8397#ifdef AUTO_INC_DEC
eceef4c9
BS
8398 if (rld[k].out && ! rld[k].out_reg)
8399 reg2 = XEXP (rld[k].in_reg, 0);
cb2afeb3
R
8400#endif
8401 while (GET_CODE (reg2) == SUBREG)
8402 reg2 = SUBREG_REG (reg2);
8403 if (rtx_equal_p (reg2, reg))
2eb6dac7
AS
8404 {
8405 if (reload_inherited[k] || reload_override_in[k] || k == j)
f2eb49dc 8406 n_inherited++;
2eb6dac7
AS
8407 else
8408 return;
8409 }
cb2afeb3 8410 }
4b983fdc 8411 n_occurrences = count_occurrences (PATTERN (insn), reg, 0);
2372a062
BS
8412 if (CALL_P (insn) && CALL_INSN_FUNCTION_USAGE (insn))
8413 n_occurrences += count_occurrences (CALL_INSN_FUNCTION_USAGE (insn),
8414 reg, 0);
cb2afeb3 8415 if (substed)
5d7ef82a
BS
8416 n_occurrences += count_occurrences (PATTERN (insn),
8417 eliminate_regs (substed, 0,
8418 NULL_RTX), 0);
058e97ec 8419 for (i1 = reg_equiv_alt_mem_list[REGNO (reg)]; i1; i1 = XEXP (i1, 1))
3f1e3e70
AO
8420 {
8421 gcc_assert (!rtx_equal_p (XEXP (i1, 0), substed));
8422 n_occurrences += count_occurrences (PATTERN (insn), XEXP (i1, 0), 0);
8423 }
cb2afeb3
R
8424 if (n_occurrences > n_inherited)
8425 return;
32131a9c
RK
8426
8427 /* If the pseudo-reg we are reloading is no longer referenced
8428 anywhere between the store into it and here,
0149f412
HPN
8429 and we're within the same basic block, then the value can only
8430 pass through the reload reg and end up here.
32131a9c
RK
8431 Otherwise, give up--return. */
8432 for (i1 = NEXT_INSN (output_reload_insn);
8433 i1 != insn; i1 = NEXT_INSN (i1))
8434 {
0149f412 8435 if (NOTE_INSN_BASIC_BLOCK_P (i1))
32131a9c 8436 return;
4b4bf941 8437 if ((NONJUMP_INSN_P (i1) || CALL_P (i1))
32131a9c 8438 && reg_mentioned_p (reg, PATTERN (i1)))
aa6498c2 8439 {
cb2afeb3
R
8440 /* If this is USE in front of INSN, we only have to check that
8441 there are no more references than accounted for by inheritance. */
4b4bf941 8442 while (NONJUMP_INSN_P (i1) && GET_CODE (PATTERN (i1)) == USE)
aa6498c2 8443 {
cb2afeb3 8444 n_occurrences += rtx_equal_p (reg, XEXP (PATTERN (i1), 0)) != 0;
aa6498c2
R
8445 i1 = NEXT_INSN (i1);
8446 }
cb2afeb3 8447 if (n_occurrences <= n_inherited && i1 == insn)
aa6498c2
R
8448 break;
8449 return;
8450 }
32131a9c
RK
8451 }
8452
cda94cbb 8453 /* We will be deleting the insn. Remove the spill reg information. */
66fd46b6 8454 for (k = hard_regno_nregs[last_reload_reg][GET_MODE (reg)]; k-- > 0; )
cda94cbb
RH
8455 {
8456 spill_reg_store[last_reload_reg + k] = 0;
8457 spill_reg_stored_to[last_reload_reg + k] = 0;
8458 }
8459
aa6498c2 8460 /* The caller has already checked that REG dies or is set in INSN.
cda94cbb 8461 It has also checked that we are optimizing, and thus some
14b493d6 8462 inaccuracies in the debugging information are acceptable.
cda94cbb
RH
8463 So we could just delete output_reload_insn. But in some cases
8464 we can improve the debugging information without sacrificing
8465 optimization - maybe even improving the code: See if the pseudo
8466 reg has been completely replaced with reload regs. If so, delete
8467 the store insn and forget we had a stack slot for the pseudo. */
eceef4c9 8468 if (rld[j].out != rld[j].in
aa6498c2 8469 && REG_N_DEATHS (REGNO (reg)) == 1
a3a24aa6 8470 && REG_N_SETS (REGNO (reg)) == 1
6fb5fa3c 8471 && REG_BASIC_BLOCK (REGNO (reg)) >= NUM_FIXED_BLOCKS
aa6498c2 8472 && find_regno_note (insn, REG_DEAD, REGNO (reg)))
32131a9c 8473 {
ba4807a0 8474 rtx i2;
32131a9c 8475
cda94cbb
RH
8476 /* We know that it was used only between here and the beginning of
8477 the current basic block. (We also know that the last use before
8478 INSN was the output reload we are thinking of deleting, but never
8479 mind that.) Search that range; see if any ref remains. */
ba4807a0 8480 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
32131a9c 8481 {
ba4807a0 8482 rtx set = single_set (i2);
d445b551 8483
32131a9c
RK
8484 /* Uses which just store in the pseudo don't count,
8485 since if they are the only uses, they are dead. */
d445b551 8486 if (set != 0 && SET_DEST (set) == reg)
32131a9c 8487 continue;
4b4bf941
JQ
8488 if (LABEL_P (i2)
8489 || JUMP_P (i2))
32131a9c 8490 break;
4b4bf941 8491 if ((NONJUMP_INSN_P (i2) || CALL_P (i2))
32131a9c 8492 && reg_mentioned_p (reg, PATTERN (i2)))
aa6498c2
R
8493 {
8494 /* Some other ref remains; just delete the output reload we
8495 know to be dead. */
cb2afeb3 8496 delete_address_reloads (output_reload_insn, insn);
ca6c03ca 8497 delete_insn (output_reload_insn);
aa6498c2
R
8498 return;
8499 }
32131a9c
RK
8500 }
8501
cda94cbb
RH
8502 /* Delete the now-dead stores into this pseudo. Note that this
8503 loop also takes care of deleting output_reload_insn. */
ba4807a0 8504 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
32131a9c 8505 {
ba4807a0 8506 rtx set = single_set (i2);
d445b551
RK
8507
8508 if (set != 0 && SET_DEST (set) == reg)
5507b94b 8509 {
cb2afeb3 8510 delete_address_reloads (i2, insn);
ca6c03ca 8511 delete_insn (i2);
5507b94b 8512 }
4b4bf941
JQ
8513 if (LABEL_P (i2)
8514 || JUMP_P (i2))
32131a9c
RK
8515 break;
8516 }
8517
cda94cbb 8518 /* For the debugging info, say the pseudo lives in this reload reg. */
fb959f72 8519 reg_renumber[REGNO (reg)] = REGNO (new_reload_reg);
2af2dbdc 8520 if (ira_conflicts_p)
058e97ec
VM
8521 /* Inform IRA about the change. */
8522 ira_mark_allocation_change (REGNO (reg));
8523 alter_reg (REGNO (reg), -1, false);
32131a9c 8524 }
cda94cbb
RH
8525 else
8526 {
8527 delete_address_reloads (output_reload_insn, insn);
8528 delete_insn (output_reload_insn);
8529 }
cb2afeb3
R
8530}
8531
8532/* We are going to delete DEAD_INSN. Recursively delete loads of
8533 reload registers used in DEAD_INSN that are not used till CURRENT_INSN.
8534 CURRENT_INSN is being reloaded, so we have to check its reloads too. */
8535static void
0c20a65f 8536delete_address_reloads (rtx dead_insn, rtx current_insn)
cb2afeb3
R
8537{
8538 rtx set = single_set (dead_insn);
8539 rtx set2, dst, prev, next;
8540 if (set)
8541 {
8542 rtx dst = SET_DEST (set);
3c0cb5de 8543 if (MEM_P (dst))
cb2afeb3
R
8544 delete_address_reloads_1 (dead_insn, XEXP (dst, 0), current_insn);
8545 }
8546 /* If we deleted the store from a reloaded post_{in,de}c expression,
8547 we can delete the matching adds. */
8548 prev = PREV_INSN (dead_insn);
8549 next = NEXT_INSN (dead_insn);
8550 if (! prev || ! next)
8551 return;
8552 set = single_set (next);
8553 set2 = single_set (prev);
8554 if (! set || ! set2
8555 || GET_CODE (SET_SRC (set)) != PLUS || GET_CODE (SET_SRC (set2)) != PLUS
8556 || GET_CODE (XEXP (SET_SRC (set), 1)) != CONST_INT
8557 || GET_CODE (XEXP (SET_SRC (set2), 1)) != CONST_INT)
8558 return;
8559 dst = SET_DEST (set);
8560 if (! rtx_equal_p (dst, SET_DEST (set2))
8561 || ! rtx_equal_p (dst, XEXP (SET_SRC (set), 0))
8562 || ! rtx_equal_p (dst, XEXP (SET_SRC (set2), 0))
8563 || (INTVAL (XEXP (SET_SRC (set), 1))
1d7254c5 8564 != -INTVAL (XEXP (SET_SRC (set2), 1))))
cb2afeb3 8565 return;
53c17031
JH
8566 delete_related_insns (prev);
8567 delete_related_insns (next);
cb2afeb3
R
8568}
8569
8570/* Subfunction of delete_address_reloads: process registers found in X. */
8571static void
0c20a65f 8572delete_address_reloads_1 (rtx dead_insn, rtx x, rtx current_insn)
cb2afeb3
R
8573{
8574 rtx prev, set, dst, i2;
8575 int i, j;
8576 enum rtx_code code = GET_CODE (x);
8577
8578 if (code != REG)
8579 {
1d7254c5 8580 const char *fmt = GET_RTX_FORMAT (code);
cb2afeb3
R
8581 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8582 {
8583 if (fmt[i] == 'e')
8584 delete_address_reloads_1 (dead_insn, XEXP (x, i), current_insn);
8585 else if (fmt[i] == 'E')
8586 {
1d7254c5 8587 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
cb2afeb3
R
8588 delete_address_reloads_1 (dead_insn, XVECEXP (x, i, j),
8589 current_insn);
8590 }
8591 }
8592 return;
8593 }
8594
8595 if (spill_reg_order[REGNO (x)] < 0)
8596 return;
aa6498c2 8597
cb2afeb3
R
8598 /* Scan backwards for the insn that sets x. This might be a way back due
8599 to inheritance. */
8600 for (prev = PREV_INSN (dead_insn); prev; prev = PREV_INSN (prev))
8601 {
8602 code = GET_CODE (prev);
8603 if (code == CODE_LABEL || code == JUMP_INSN)
8604 return;
ec8e098d 8605 if (!INSN_P (prev))
cb2afeb3
R
8606 continue;
8607 if (reg_set_p (x, PATTERN (prev)))
8608 break;
8609 if (reg_referenced_p (x, PATTERN (prev)))
8610 return;
8611 }
8612 if (! prev || INSN_UID (prev) < reload_first_uid)
8613 return;
8614 /* Check that PREV only sets the reload register. */
8615 set = single_set (prev);
8616 if (! set)
8617 return;
8618 dst = SET_DEST (set);
f8cfc6aa 8619 if (!REG_P (dst)
cb2afeb3
R
8620 || ! rtx_equal_p (dst, x))
8621 return;
8622 if (! reg_set_p (dst, PATTERN (dead_insn)))
8623 {
8624 /* Check if DST was used in a later insn -
8625 it might have been inherited. */
8626 for (i2 = NEXT_INSN (dead_insn); i2; i2 = NEXT_INSN (i2))
8627 {
4b4bf941 8628 if (LABEL_P (i2))
cb2afeb3 8629 break;
2c3c49de 8630 if (! INSN_P (i2))
cb2afeb3
R
8631 continue;
8632 if (reg_referenced_p (dst, PATTERN (i2)))
8633 {
8634 /* If there is a reference to the register in the current insn,
8635 it might be loaded in a non-inherited reload. If no other
8636 reload uses it, that means the register is set before
8637 referenced. */
8638 if (i2 == current_insn)
8639 {
8640 for (j = n_reloads - 1; j >= 0; j--)
eceef4c9 8641 if ((rld[j].reg_rtx == dst && reload_inherited[j])
cb2afeb3
R
8642 || reload_override_in[j] == dst)
8643 return;
8644 for (j = n_reloads - 1; j >= 0; j--)
eceef4c9 8645 if (rld[j].in && rld[j].reg_rtx == dst)
cb2afeb3
R
8646 break;
8647 if (j >= 0)
8648 break;
8649 }
8650 return;
8651 }
4b4bf941 8652 if (JUMP_P (i2))
cb2afeb3 8653 break;
cb2afeb3 8654 /* If DST is still live at CURRENT_INSN, check if it is used for
3900dc09
R
8655 any reload. Note that even if CURRENT_INSN sets DST, we still
8656 have to check the reloads. */
cb2afeb3
R
8657 if (i2 == current_insn)
8658 {
8659 for (j = n_reloads - 1; j >= 0; j--)
eceef4c9 8660 if ((rld[j].reg_rtx == dst && reload_inherited[j])
cb2afeb3
R
8661 || reload_override_in[j] == dst)
8662 return;
8663 /* ??? We can't finish the loop here, because dst might be
8664 allocated to a pseudo in this block if no reload in this
14b493d6 8665 block needs any of the classes containing DST - see
cb2afeb3
R
8666 spill_hard_reg. There is no easy way to tell this, so we
8667 have to scan till the end of the basic block. */
8668 }
3900dc09
R
8669 if (reg_set_p (dst, PATTERN (i2)))
8670 break;
cb2afeb3
R
8671 }
8672 }
8673 delete_address_reloads_1 (prev, SET_SRC (set), current_insn);
8674 reg_reloaded_contents[REGNO (dst)] = -1;
ca6c03ca 8675 delete_insn (prev);
32131a9c 8676}
32131a9c 8677\f
a8fdc208 8678/* Output reload-insns to reload VALUE into RELOADREG.
858a47b1 8679 VALUE is an autoincrement or autodecrement RTX whose operand
32131a9c
RK
8680 is a register or memory location;
8681 so reloading involves incrementing that location.
cb2afeb3 8682 IN is either identical to VALUE, or some cheaper place to reload from.
32131a9c
RK
8683
8684 INC_AMOUNT is the number to increment or decrement by (always positive).
cb2afeb3 8685 This cannot be deduced from VALUE.
32131a9c 8686
cb2afeb3
R
8687 Return the instruction that stores into RELOADREG. */
8688
8689static rtx
0c20a65f 8690inc_for_reload (rtx reloadreg, rtx in, rtx value, int inc_amount)
32131a9c
RK
8691{
8692 /* REG or MEM to be copied and incremented. */
4b7b277a 8693 rtx incloc = find_replacement (&XEXP (value, 0));
32131a9c 8694 /* Nonzero if increment after copying. */
67f07489
PB
8695 int post = (GET_CODE (value) == POST_DEC || GET_CODE (value) == POST_INC
8696 || GET_CODE (value) == POST_MODIFY);
546b63fb 8697 rtx last;
0009eff2
RK
8698 rtx inc;
8699 rtx add_insn;
8700 int code;
cb2afeb3 8701 rtx store;
4b7b277a 8702 rtx real_in = in == value ? incloc : in;
32131a9c
RK
8703
8704 /* No hard register is equivalent to this register after
40f03658 8705 inc/dec operation. If REG_LAST_RELOAD_REG were nonzero,
32131a9c
RK
8706 we could inc/dec that register as well (maybe even using it for
8707 the source), but I'm not sure it's worth worrying about. */
f8cfc6aa 8708 if (REG_P (incloc))
32131a9c
RK
8709 reg_last_reload_reg[REGNO (incloc)] = 0;
8710
67f07489
PB
8711 if (GET_CODE (value) == PRE_MODIFY || GET_CODE (value) == POST_MODIFY)
8712 {
8713 gcc_assert (GET_CODE (XEXP (value, 1)) == PLUS);
4b7b277a 8714 inc = find_replacement (&XEXP (XEXP (value, 1), 1));
67f07489
PB
8715 }
8716 else
8717 {
8718 if (GET_CODE (value) == PRE_DEC || GET_CODE (value) == POST_DEC)
8719 inc_amount = -inc_amount;
32131a9c 8720
67f07489
PB
8721 inc = GEN_INT (inc_amount);
8722 }
0009eff2
RK
8723
8724 /* If this is post-increment, first copy the location to the reload reg. */
cb2afeb3
R
8725 if (post && real_in != reloadreg)
8726 emit_insn (gen_move_insn (reloadreg, real_in));
0009eff2 8727
cb2afeb3
R
8728 if (in == value)
8729 {
8730 /* See if we can directly increment INCLOC. Use a method similar to
8731 that in gen_reload. */
0009eff2 8732
cb2afeb3
R
8733 last = get_last_insn ();
8734 add_insn = emit_insn (gen_rtx_SET (VOIDmode, incloc,
8735 gen_rtx_PLUS (GET_MODE (incloc),
8736 incloc, inc)));
05d10675 8737
cb2afeb3
R
8738 code = recog_memoized (add_insn);
8739 if (code >= 0)
32131a9c 8740 {
0eadeb15
BS
8741 extract_insn (add_insn);
8742 if (constrain_operands (1))
cb2afeb3
R
8743 {
8744 /* If this is a pre-increment and we have incremented the value
8745 where it lives, copy the incremented value to RELOADREG to
8746 be used as an address. */
0009eff2 8747
cb2afeb3
R
8748 if (! post)
8749 emit_insn (gen_move_insn (reloadreg, incloc));
546b63fb 8750
cb2afeb3
R
8751 return add_insn;
8752 }
32131a9c 8753 }
cb2afeb3 8754 delete_insns_since (last);
32131a9c 8755 }
0009eff2 8756
0009eff2
RK
8757 /* If couldn't do the increment directly, must increment in RELOADREG.
8758 The way we do this depends on whether this is pre- or post-increment.
8759 For pre-increment, copy INCLOC to the reload register, increment it
8760 there, then save back. */
8761
8762 if (! post)
8763 {
cb2afeb3
R
8764 if (in != reloadreg)
8765 emit_insn (gen_move_insn (reloadreg, real_in));
546b63fb 8766 emit_insn (gen_add2_insn (reloadreg, inc));
cb2afeb3 8767 store = emit_insn (gen_move_insn (incloc, reloadreg));
0009eff2 8768 }
32131a9c
RK
8769 else
8770 {
0009eff2
RK
8771 /* Postincrement.
8772 Because this might be a jump insn or a compare, and because RELOADREG
8773 may not be available after the insn in an input reload, we must do
8774 the incrementation before the insn being reloaded for.
8775
cb2afeb3 8776 We have already copied IN to RELOADREG. Increment the copy in
0009eff2
RK
8777 RELOADREG, save that back, then decrement RELOADREG so it has
8778 the original value. */
8779
546b63fb 8780 emit_insn (gen_add2_insn (reloadreg, inc));
cb2afeb3 8781 store = emit_insn (gen_move_insn (incloc, reloadreg));
67f07489 8782 if (GET_CODE (inc) == CONST_INT)
247140ea 8783 emit_insn (gen_add2_insn (reloadreg, GEN_INT (-INTVAL (inc))));
67f07489
PB
8784 else
8785 emit_insn (gen_sub2_insn (reloadreg, inc));
32131a9c 8786 }
0009eff2 8787
cb2afeb3 8788 return store;
32131a9c
RK
8789}
8790\f
2dfa9a87
MH
8791#ifdef AUTO_INC_DEC
8792static void
0c20a65f 8793add_auto_inc_notes (rtx insn, rtx x)
2dfa9a87
MH
8794{
8795 enum rtx_code code = GET_CODE (x);
6f7d635c 8796 const char *fmt;
2dfa9a87
MH
8797 int i, j;
8798
8799 if (code == MEM && auto_inc_p (XEXP (x, 0)))
8800 {
65c5f2a6 8801 add_reg_note (insn, REG_INC, XEXP (XEXP (x, 0), 0));
2dfa9a87
MH
8802 return;
8803 }
8804
8805 /* Scan all the operand sub-expressions. */
8806 fmt = GET_RTX_FORMAT (code);
8807 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8808 {
8809 if (fmt[i] == 'e')
8810 add_auto_inc_notes (insn, XEXP (x, i));
8811 else if (fmt[i] == 'E')
8812 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
8813 add_auto_inc_notes (insn, XVECEXP (x, i, j));
8814 }
8815}
8816#endif
94bd63e5
AH
8817
8818/* Copy EH notes from an insn to its reloads. */
8819static void
0c20a65f 8820copy_eh_notes (rtx insn, rtx x)
94bd63e5
AH
8821{
8822 rtx eh_note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
8823 if (eh_note)
8824 {
8825 for (; x != 0; x = NEXT_INSN (x))
8826 {
8827 if (may_trap_p (PATTERN (x)))
65c5f2a6 8828 add_reg_note (x, REG_EH_REGION, XEXP (eh_note, 0));
94bd63e5
AH
8829 }
8830 }
8831}
8832
f1330226
JH
8833/* This is used by reload pass, that does emit some instructions after
8834 abnormal calls moving basic block end, but in fact it wants to emit
8835 them on the edge. Looks for abnormal call edges, find backward the
8836 proper call and fix the damage.
a6a2274a 8837
f1330226 8838 Similar handle instructions throwing exceptions internally. */
068473ec 8839void
0c20a65f 8840fixup_abnormal_edges (void)
f1330226 8841{
f1330226 8842 bool inserted = false;
e0082a72 8843 basic_block bb;
f1330226 8844
e0082a72 8845 FOR_EACH_BB (bb)
f1330226 8846 {
f1330226 8847 edge e;
628f6a4e 8848 edge_iterator ei;
f1330226 8849
09da1532 8850 /* Look for cases we are interested in - calls or instructions causing
f1330226 8851 exceptions. */
628f6a4e 8852 FOR_EACH_EDGE (e, ei, bb->succs)
f1330226
JH
8853 {
8854 if (e->flags & EDGE_ABNORMAL_CALL)
8855 break;
8856 if ((e->flags & (EDGE_ABNORMAL | EDGE_EH))
8857 == (EDGE_ABNORMAL | EDGE_EH))
8858 break;
8859 }
4b4bf941 8860 if (e && !CALL_P (BB_END (bb))
a813c111 8861 && !can_throw_internal (BB_END (bb)))
f1330226 8862 {
be0c514c
RH
8863 rtx insn;
8864
8865 /* Get past the new insns generated. Allow notes, as the insns
8866 may be already deleted. */
8867 insn = BB_END (bb);
4b4bf941 8868 while ((NONJUMP_INSN_P (insn) || NOTE_P (insn))
39f95a2c 8869 && !can_throw_internal (insn)
a813c111 8870 && insn != BB_HEAD (bb))
f1330226 8871 insn = PREV_INSN (insn);
be0c514c
RH
8872
8873 if (CALL_P (insn) || can_throw_internal (insn))
f1330226 8874 {
be0c514c
RH
8875 rtx stop, next;
8876
8877 stop = NEXT_INSN (BB_END (bb));
8878 BB_END (bb) = insn;
8879 insn = NEXT_INSN (insn);
8880
8881 FOR_EACH_EDGE (e, ei, bb->succs)
8882 if (e->flags & EDGE_FALLTHRU)
8883 break;
8884
8885 while (insn && insn != stop)
0c4992b0 8886 {
be0c514c
RH
8887 next = NEXT_INSN (insn);
8888 if (INSN_P (insn))
ed8d2920 8889 {
36808d08 8890 delete_insn (insn);
be0c514c
RH
8891
8892 /* Sometimes there's still the return value USE.
8893 If it's placed after a trapping call (i.e. that
8894 call is the last insn anyway), we have no fallthru
8895 edge. Simply delete this use and don't try to insert
8896 on the non-existent edge. */
8897 if (GET_CODE (PATTERN (insn)) != USE)
8898 {
8899 /* We're not deleting it, we're moving it. */
8900 INSN_DELETED_P (insn) = 0;
8901 PREV_INSN (insn) = NULL_RTX;
8902 NEXT_INSN (insn) = NULL_RTX;
f8ed1958 8903
be0c514c
RH
8904 insert_insn_on_edge (insn, e);
8905 inserted = true;
8906 }
ed8d2920 8907 }
36808d08
EB
8908 else if (!BARRIER_P (insn))
8909 set_block_for_insn (insn, NULL);
be0c514c 8910 insn = next;
0c4992b0 8911 }
f1330226 8912 }
be0c514c
RH
8913
8914 /* It may be that we don't find any such trapping insn. In this
8915 case we discovered quite late that the insn that had been
8916 marked as can_throw_internal in fact couldn't trap at all.
8917 So we should in fact delete the EH edges out of the block. */
8918 else
8919 purge_dead_edges (bb);
f1330226
JH
8920 }
8921 }
be0c514c 8922
b735f45d
AK
8923 /* We've possibly turned single trapping insn into multiple ones. */
8924 if (flag_non_call_exceptions)
8925 {
8926 sbitmap blocks;
8927 blocks = sbitmap_alloc (last_basic_block);
8928 sbitmap_ones (blocks);
8929 find_many_sub_basic_blocks (blocks);
639d3040 8930 sbitmap_free (blocks);
b735f45d
AK
8931 }
8932
f1330226
JH
8933 if (inserted)
8934 commit_edge_insertions ();
be0c514c
RH
8935
8936#ifdef ENABLE_CHECKING
8937 /* Verify that we didn't turn one trapping insn into many, and that
8938 we found and corrected all of the problems wrt fixups on the
8939 fallthru edge. */
8940 verify_flow_info ();
8941#endif
f1330226 8942}
This page took 7.027854 seconds and 5 git commands to generate.