]> gcc.gnu.org Git - gcc.git/blame - gcc/reload1.c
basic-block.h (reg_set_iterator): New.
[gcc.git] / gcc / reload1.c
CommitLineData
32131a9c 1/* Reload pseudo regs into hard regs for insns that require hard regs.
af841dbd 2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
dd3adcf8 3 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
32131a9c 4
1322177d 5This file is part of GCC.
32131a9c 6
1322177d
LB
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
9Software Foundation; either version 2, or (at your option) any later
10version.
32131a9c 11
1322177d
LB
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15for more details.
32131a9c
RK
16
17You should have received a copy of the GNU General Public License
1322177d
LB
18along with GCC; see the file COPYING. If not, write to the Free
19Software Foundation, 59 Temple Place - Suite 330, Boston, MA
2002111-1307, USA. */
32131a9c 21
32131a9c 22#include "config.h"
670ee920 23#include "system.h"
4977bab6
ZW
24#include "coretypes.h"
25#include "tm.h"
cab634f2
KG
26
27#include "machmode.h"
28#include "hard-reg-set.h"
32131a9c 29#include "rtl.h"
6baf1cc8 30#include "tm_p.h"
32131a9c
RK
31#include "obstack.h"
32#include "insn-config.h"
32131a9c 33#include "flags.h"
49ad7cfa 34#include "function.h"
32131a9c 35#include "expr.h"
e78d8e51 36#include "optabs.h"
32131a9c 37#include "regs.h"
cad6f7d0 38#include "basic-block.h"
32131a9c
RK
39#include "reload.h"
40#include "recog.h"
32131a9c 41#include "output.h"
a9c366bf 42#include "real.h"
10f0ad3d 43#include "toplev.h"
39f95a2c 44#include "except.h"
a20fd5ac 45#include "tree.h"
32131a9c
RK
46
47/* This file contains the reload pass of the compiler, which is
48 run after register allocation has been done. It checks that
49 each insn is valid (operands required to be in registers really
50 are in registers of the proper class) and fixes up invalid ones
51 by copying values temporarily into registers for the insns
52 that need them.
53
54 The results of register allocation are described by the vector
55 reg_renumber; the insns still contain pseudo regs, but reg_renumber
56 can be used to find which hard reg, if any, a pseudo reg is in.
57
58 The technique we always use is to free up a few hard regs that are
59 called ``reload regs'', and for each place where a pseudo reg
60 must be in a hard reg, copy it temporarily into one of the reload regs.
61
03acd8f8
BS
62 Reload regs are allocated locally for every instruction that needs
63 reloads. When there are pseudos which are allocated to a register that
64 has been chosen as a reload reg, such pseudos must be ``spilled''.
65 This means that they go to other hard regs, or to stack slots if no other
32131a9c
RK
66 available hard regs can be found. Spilling can invalidate more
67 insns, requiring additional need for reloads, so we must keep checking
68 until the process stabilizes.
69
70 For machines with different classes of registers, we must keep track
71 of the register class needed for each reload, and make sure that
72 we allocate enough reload registers of each class.
73
74 The file reload.c contains the code that checks one insn for
75 validity and reports the reloads that it needs. This file
76 is in charge of scanning the entire rtl code, accumulating the
77 reload needs, spilling, assigning reload registers to use for
78 fixing up each insn, and generating the new insns to copy values
79 into the reload registers. */
80\f
81/* During reload_as_needed, element N contains a REG rtx for the hard reg
0f41302f 82 into which reg N has been reloaded (perhaps for a previous insn). */
32131a9c
RK
83static rtx *reg_last_reload_reg;
84
85/* Elt N nonzero if reg_last_reload_reg[N] has been set in this insn
86 for an output reload that stores into reg N. */
87static char *reg_has_output_reload;
88
89/* Indicates which hard regs are reload-registers for an output reload
90 in the current insn. */
91static HARD_REG_SET reg_is_output_reload;
92
93/* Element N is the constant value to which pseudo reg N is equivalent,
94 or zero if pseudo reg N is not equivalent to a constant.
95 find_reloads looks at this in order to replace pseudo reg N
96 with the constant it stands for. */
97rtx *reg_equiv_constant;
98
99/* Element N is a memory location to which pseudo reg N is equivalent,
100 prior to any register elimination (such as frame pointer to stack
101 pointer). Depending on whether or not it is a valid address, this value
102 is transferred to either reg_equiv_address or reg_equiv_mem. */
4803a34a 103rtx *reg_equiv_memory_loc;
32131a9c 104
965ccc5a
R
105/* We allocate reg_equiv_memory_loc inside a varray so that the garbage
106 collector can keep track of what is inside. */
107varray_type reg_equiv_memory_loc_varray;
108
32131a9c
RK
109/* Element N is the address of stack slot to which pseudo reg N is equivalent.
110 This is used when the address is not valid as a memory address
111 (because its displacement is too big for the machine.) */
112rtx *reg_equiv_address;
113
114/* Element N is the memory slot to which pseudo reg N is equivalent,
115 or zero if pseudo reg N is not equivalent to a memory slot. */
116rtx *reg_equiv_mem;
117
118/* Widest width in which each pseudo reg is referred to (via subreg). */
770ae6cc 119static unsigned int *reg_max_ref_width;
32131a9c 120
135eb61c 121/* Element N is the list of insns that initialized reg N from its equivalent
32131a9c
RK
122 constant or memory slot. */
123static rtx *reg_equiv_init;
124
03acd8f8
BS
125/* Vector to remember old contents of reg_renumber before spilling. */
126static short *reg_old_renumber;
127
e6e52be0 128/* During reload_as_needed, element N contains the last pseudo regno reloaded
03acd8f8 129 into hard register N. If that pseudo reg occupied more than one register,
32131a9c
RK
130 reg_reloaded_contents points to that pseudo for each spill register in
131 use; all of these must remain set for an inheritance to occur. */
132static int reg_reloaded_contents[FIRST_PSEUDO_REGISTER];
133
134/* During reload_as_needed, element N contains the insn for which
e6e52be0
R
135 hard register N was last used. Its contents are significant only
136 when reg_reloaded_valid is set for this register. */
32131a9c
RK
137static rtx reg_reloaded_insn[FIRST_PSEUDO_REGISTER];
138
3eae4643 139/* Indicate if reg_reloaded_insn / reg_reloaded_contents is valid. */
e6e52be0
R
140static HARD_REG_SET reg_reloaded_valid;
141/* Indicate if the register was dead at the end of the reload.
142 This is only valid if reg_reloaded_contents is set and valid. */
143static HARD_REG_SET reg_reloaded_dead;
144
e3e9336f
DJ
145/* Indicate whether the register's current value is one that is not
146 safe to retain across a call, even for registers that are normally
147 call-saved. */
148static HARD_REG_SET reg_reloaded_call_part_clobbered;
149
32131a9c
RK
150/* Number of spill-regs so far; number of valid elements of spill_regs. */
151static int n_spills;
152
153/* In parallel with spill_regs, contains REG rtx's for those regs.
154 Holds the last rtx used for any given reg, or 0 if it has never
155 been used for spilling yet. This rtx is reused, provided it has
156 the proper mode. */
157static rtx spill_reg_rtx[FIRST_PSEUDO_REGISTER];
158
159/* In parallel with spill_regs, contains nonzero for a spill reg
160 that was stored after the last time it was used.
161 The precise value is the insn generated to do the store. */
162static rtx spill_reg_store[FIRST_PSEUDO_REGISTER];
163
cb2afeb3
R
164/* This is the register that was stored with spill_reg_store. This is a
165 copy of reload_out / reload_out_reg when the value was stored; if
166 reload_out is a MEM, spill_reg_stored_to will be set to reload_out_reg. */
167static rtx spill_reg_stored_to[FIRST_PSEUDO_REGISTER];
168
32131a9c
RK
169/* This table is the inverse mapping of spill_regs:
170 indexed by hard reg number,
171 it contains the position of that reg in spill_regs,
05d10675 172 or -1 for something that is not in spill_regs.
13c8e8e3
JL
173
174 ?!? This is no longer accurate. */
32131a9c
RK
175static short spill_reg_order[FIRST_PSEUDO_REGISTER];
176
03acd8f8
BS
177/* This reg set indicates registers that can't be used as spill registers for
178 the currently processed insn. These are the hard registers which are live
179 during the insn, but not allocated to pseudos, as well as fixed
180 registers. */
32131a9c
RK
181static HARD_REG_SET bad_spill_regs;
182
03acd8f8
BS
183/* These are the hard registers that can't be used as spill register for any
184 insn. This includes registers used for user variables and registers that
185 we can't eliminate. A register that appears in this set also can't be used
186 to retry register allocation. */
187static HARD_REG_SET bad_spill_regs_global;
188
32131a9c 189/* Describes order of use of registers for reloading
03acd8f8
BS
190 of spilled pseudo-registers. `n_spills' is the number of
191 elements that are actually valid; new ones are added at the end.
192
193 Both spill_regs and spill_reg_order are used on two occasions:
194 once during find_reload_regs, where they keep track of the spill registers
195 for a single insn, but also during reload_as_needed where they show all
196 the registers ever used by reload. For the latter case, the information
197 is calculated during finish_spills. */
32131a9c
RK
198static short spill_regs[FIRST_PSEUDO_REGISTER];
199
03acd8f8
BS
200/* This vector of reg sets indicates, for each pseudo, which hard registers
201 may not be used for retrying global allocation because the register was
202 formerly spilled from one of them. If we allowed reallocating a pseudo to
203 a register that it was already allocated to, reload might not
204 terminate. */
205static HARD_REG_SET *pseudo_previous_regs;
206
207/* This vector of reg sets indicates, for each pseudo, which hard
208 registers may not be used for retrying global allocation because they
209 are used as spill registers during one of the insns in which the
210 pseudo is live. */
211static HARD_REG_SET *pseudo_forbidden_regs;
212
213/* All hard regs that have been used as spill registers for any insn are
214 marked in this set. */
215static HARD_REG_SET used_spill_regs;
8b4f9969 216
4079cd63
JW
217/* Index of last register assigned as a spill register. We allocate in
218 a round-robin fashion. */
4079cd63
JW
219static int last_spill_reg;
220
32131a9c
RK
221/* Nonzero if indirect addressing is supported on the machine; this means
222 that spilling (REG n) does not require reloading it into a register in
223 order to do (MEM (REG n)) or (MEM (PLUS (REG n) (CONST_INT c))). The
224 value indicates the level of indirect addressing supported, e.g., two
225 means that (MEM (MEM (REG n))) is also valid if (REG n) does not get
226 a hard register. */
32131a9c
RK
227static char spill_indirect_levels;
228
229/* Nonzero if indirect addressing is supported when the innermost MEM is
230 of the form (MEM (SYMBOL_REF sym)). It is assumed that the level to
6d2f8887 231 which these are valid is the same as spill_indirect_levels, above. */
32131a9c
RK
232char indirect_symref_ok;
233
234/* Nonzero if an address (plus (reg frame_pointer) (reg ...)) is valid. */
32131a9c
RK
235char double_reg_address_ok;
236
237/* Record the stack slot for each spilled hard register. */
32131a9c
RK
238static rtx spill_stack_slot[FIRST_PSEUDO_REGISTER];
239
240/* Width allocated so far for that stack slot. */
770ae6cc 241static unsigned int spill_stack_slot_width[FIRST_PSEUDO_REGISTER];
32131a9c 242
7609e720 243/* Record which pseudos needed to be spilled. */
f5d8c9f4
BS
244static regset_head spilled_pseudos;
245
246/* Used for communication between order_regs_for_reload and count_pseudo.
247 Used to avoid counting one pseudo twice. */
248static regset_head pseudos_counted;
7609e720 249
32131a9c
RK
250/* First uid used by insns created by reload in this function.
251 Used in find_equiv_reg. */
252int reload_first_uid;
253
254/* Flag set by local-alloc or global-alloc if anything is live in
255 a call-clobbered reg across calls. */
32131a9c
RK
256int caller_save_needed;
257
258/* Set to 1 while reload_as_needed is operating.
259 Required by some machines to handle any generated moves differently. */
32131a9c
RK
260int reload_in_progress = 0;
261
262/* These arrays record the insn_code of insns that may be needed to
263 perform input and output reloads of special objects. They provide a
264 place to pass a scratch register. */
32131a9c
RK
265enum insn_code reload_in_optab[NUM_MACHINE_MODES];
266enum insn_code reload_out_optab[NUM_MACHINE_MODES];
267
d45cf215 268/* This obstack is used for allocation of rtl during register elimination.
32131a9c
RK
269 The allocated storage can be freed once find_reloads has processed the
270 insn. */
32131a9c 271struct obstack reload_obstack;
cad6f7d0
BS
272
273/* Points to the beginning of the reload_obstack. All insn_chain structures
274 are allocated first. */
275char *reload_startobj;
276
277/* The point after all insn_chain structures. Used to quickly deallocate
f5d8c9f4 278 memory allocated in copy_reloads during calculate_needs_all_insns. */
32131a9c
RK
279char *reload_firstobj;
280
f5d8c9f4
BS
281/* This points before all local rtl generated by register elimination.
282 Used to quickly free all memory after processing one insn. */
283static char *reload_insn_firstobj;
284
cad6f7d0
BS
285/* List of insn_chain instructions, one for every insn that reload needs to
286 examine. */
287struct insn_chain *reload_insn_chain;
7609e720 288
03acd8f8 289/* List of all insns needing reloads. */
7609e720 290static struct insn_chain *insns_need_reload;
32131a9c
RK
291\f
292/* This structure is used to record information about register eliminations.
293 Each array entry describes one possible way of eliminating a register
294 in favor of another. If there is more than one way of eliminating a
295 particular register, the most preferred should be specified first. */
296
590cf94d 297struct elim_table
32131a9c 298{
0f41302f
MS
299 int from; /* Register number to be eliminated. */
300 int to; /* Register number used as replacement. */
b19ee4bd 301 HOST_WIDE_INT initial_offset; /* Initial difference between values. */
272d0bee 302 int can_eliminate; /* Nonzero if this elimination can be done. */
32131a9c 303 int can_eliminate_previous; /* Value of CAN_ELIMINATE in previous scan over
0f41302f 304 insns made by reload. */
b19ee4bd
JJ
305 HOST_WIDE_INT offset; /* Current offset between the two regs. */
306 HOST_WIDE_INT previous_offset;/* Offset at end of previous insn. */
0f41302f 307 int ref_outside_mem; /* "to" has been referenced outside a MEM. */
32131a9c
RK
308 rtx from_rtx; /* REG rtx for the register to be eliminated.
309 We cannot simply compare the number since
310 we might then spuriously replace a hard
311 register corresponding to a pseudo
0f41302f
MS
312 assigned to the reg to be eliminated. */
313 rtx to_rtx; /* REG rtx for the replacement. */
590cf94d
KG
314};
315
1d7254c5 316static struct elim_table *reg_eliminate = 0;
590cf94d
KG
317
318/* This is an intermediate structure to initialize the table. It has
1d7254c5 319 exactly the members provided by ELIMINABLE_REGS. */
0b5826ac 320static const struct elim_table_1
590cf94d 321{
0b5826ac
KG
322 const int from;
323 const int to;
590cf94d 324} reg_eliminate_1[] =
32131a9c
RK
325
326/* If a set of eliminable registers was specified, define the table from it.
327 Otherwise, default to the normal case of the frame pointer being
328 replaced by the stack pointer. */
329
330#ifdef ELIMINABLE_REGS
331 ELIMINABLE_REGS;
332#else
333 {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}};
334#endif
335
b6a1cbae 336#define NUM_ELIMINABLE_REGS ARRAY_SIZE (reg_eliminate_1)
32131a9c
RK
337
338/* Record the number of pending eliminations that have an offset not equal
40f03658 339 to their initial offset. If nonzero, we use a new copy of each
32131a9c 340 replacement result in any insns encountered. */
cb2afeb3 341int num_not_at_initial_offset;
32131a9c
RK
342
343/* Count the number of registers that we may be able to eliminate. */
344static int num_eliminable;
2b49ee39
R
345/* And the number of registers that are equivalent to a constant that
346 can be eliminated to frame_pointer / arg_pointer + constant. */
347static int num_eliminable_invariants;
32131a9c
RK
348
349/* For each label, we record the offset of each elimination. If we reach
350 a label by more than one path and an offset differs, we cannot do the
4cc0fdd2
JDA
351 elimination. This information is indexed by the difference of the
352 number of the label and the first label number. We can't offset the
353 pointer itself as this can cause problems on machines with segmented
354 memory. The first table is an array of flags that records whether we
355 have yet encountered a label and the second table is an array of arrays,
356 one entry in the latter array for each elimination. */
357
358static int first_label_num;
32131a9c 359static char *offsets_known_at;
b19ee4bd 360static HOST_WIDE_INT (*offsets_at)[NUM_ELIMINABLE_REGS];
32131a9c
RK
361
362/* Number of labels in the current function. */
363
364static int num_labels;
365\f
0c20a65f
AJ
366static void replace_pseudos_in (rtx *, enum machine_mode, rtx);
367static void maybe_fix_stack_asms (void);
368static void copy_reloads (struct insn_chain *);
369static void calculate_needs_all_insns (int);
370static int find_reg (struct insn_chain *, int);
371static void find_reload_regs (struct insn_chain *);
372static void select_reload_regs (void);
373static void delete_caller_save_insns (void);
374
375static void spill_failure (rtx, enum reg_class);
376static void count_spilled_pseudo (int, int, int);
377static void delete_dead_insn (rtx);
378static void alter_reg (int, int);
379static void set_label_offsets (rtx, rtx, int);
380static void check_eliminable_occurrences (rtx);
381static void elimination_effects (rtx, enum machine_mode);
382static int eliminate_regs_in_insn (rtx, int);
383static void update_eliminable_offsets (void);
384static void mark_not_eliminable (rtx, rtx, void *);
385static void set_initial_elim_offsets (void);
386static void verify_initial_elim_offsets (void);
387static void set_initial_label_offsets (void);
388static void set_offsets_for_label (rtx);
389static void init_elim_table (void);
390static void update_eliminables (HARD_REG_SET *);
391static void spill_hard_reg (unsigned int, int);
392static int finish_spills (int);
393static void ior_hard_reg_set (HARD_REG_SET *, HARD_REG_SET *);
394static void scan_paradoxical_subregs (rtx);
395static void count_pseudo (int);
396static void order_regs_for_reload (struct insn_chain *);
397static void reload_as_needed (int);
398static void forget_old_reloads_1 (rtx, rtx, void *);
399static int reload_reg_class_lower (const void *, const void *);
400static void mark_reload_reg_in_use (unsigned int, int, enum reload_type,
401 enum machine_mode);
402static void clear_reload_reg_in_use (unsigned int, int, enum reload_type,
403 enum machine_mode);
404static int reload_reg_free_p (unsigned int, int, enum reload_type);
405static int reload_reg_free_for_value_p (int, int, int, enum reload_type,
406 rtx, rtx, int, int);
407static int free_for_value_p (int, enum machine_mode, int, enum reload_type,
408 rtx, rtx, int, int);
86caf04d 409static int function_invariant_p (rtx);
0c20a65f
AJ
410static int reload_reg_reaches_end_p (unsigned int, int, enum reload_type);
411static int allocate_reload_reg (struct insn_chain *, int, int);
412static int conflicts_with_override (rtx);
413static void failed_reload (rtx, int);
414static int set_reload_reg (int, int);
415static void choose_reload_regs_init (struct insn_chain *, rtx *);
416static void choose_reload_regs (struct insn_chain *);
417static void merge_assigned_reloads (rtx);
418static void emit_input_reload_insns (struct insn_chain *, struct reload *,
419 rtx, int);
420static void emit_output_reload_insns (struct insn_chain *, struct reload *,
421 int);
422static void do_input_reload (struct insn_chain *, struct reload *, int);
423static void do_output_reload (struct insn_chain *, struct reload *, int);
b5ba341f 424static bool inherit_piecemeal_p (int, int);
0c20a65f
AJ
425static void emit_reload_insns (struct insn_chain *);
426static void delete_output_reload (rtx, int, int);
427static void delete_address_reloads (rtx, rtx);
428static void delete_address_reloads_1 (rtx, rtx, rtx);
429static rtx inc_for_reload (rtx, rtx, rtx, int);
2dfa9a87 430#ifdef AUTO_INC_DEC
0c20a65f 431static void add_auto_inc_notes (rtx, rtx);
2dfa9a87 432#endif
0c20a65f 433static void copy_eh_notes (rtx, rtx);
32131a9c 434\f
546b63fb
RK
435/* Initialize the reload pass once per compilation. */
436
32131a9c 437void
0c20a65f 438init_reload (void)
32131a9c 439{
b3694847 440 int i;
32131a9c
RK
441
442 /* Often (MEM (REG n)) is still valid even if (REG n) is put on the stack.
443 Set spill_indirect_levels to the number of levels such addressing is
444 permitted, zero if it is not permitted at all. */
445
b3694847 446 rtx tem
38a448ca
RH
447 = gen_rtx_MEM (Pmode,
448 gen_rtx_PLUS (Pmode,
c5c76735
JL
449 gen_rtx_REG (Pmode,
450 LAST_VIRTUAL_REGISTER + 1),
38a448ca 451 GEN_INT (4)));
32131a9c
RK
452 spill_indirect_levels = 0;
453
454 while (memory_address_p (QImode, tem))
455 {
456 spill_indirect_levels++;
38a448ca 457 tem = gen_rtx_MEM (Pmode, tem);
32131a9c
RK
458 }
459
460 /* See if indirect addressing is valid for (MEM (SYMBOL_REF ...)). */
461
38a448ca 462 tem = gen_rtx_MEM (Pmode, gen_rtx_SYMBOL_REF (Pmode, "foo"));
32131a9c
RK
463 indirect_symref_ok = memory_address_p (QImode, tem);
464
465 /* See if reg+reg is a valid (and offsettable) address. */
466
65701fd2 467 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
57caa638 468 {
38a448ca
RH
469 tem = gen_rtx_PLUS (Pmode,
470 gen_rtx_REG (Pmode, HARD_FRAME_POINTER_REGNUM),
471 gen_rtx_REG (Pmode, i));
c5c76735 472
57caa638
RS
473 /* This way, we make sure that reg+reg is an offsettable address. */
474 tem = plus_constant (tem, 4);
475
476 if (memory_address_p (QImode, tem))
477 {
478 double_reg_address_ok = 1;
479 break;
480 }
481 }
32131a9c 482
0f41302f 483 /* Initialize obstack for our rtl allocation. */
32131a9c 484 gcc_obstack_init (&reload_obstack);
703ad42b 485 reload_startobj = obstack_alloc (&reload_obstack, 0);
f5d8c9f4
BS
486
487 INIT_REG_SET (&spilled_pseudos);
488 INIT_REG_SET (&pseudos_counted);
965ccc5a 489 VARRAY_RTX_INIT (reg_equiv_memory_loc_varray, 0, "reg_equiv_memory_loc");
32131a9c
RK
490}
491
cad6f7d0
BS
492/* List of insn chains that are currently unused. */
493static struct insn_chain *unused_insn_chains = 0;
494
495/* Allocate an empty insn_chain structure. */
496struct insn_chain *
0c20a65f 497new_insn_chain (void)
cad6f7d0
BS
498{
499 struct insn_chain *c;
500
501 if (unused_insn_chains == 0)
502 {
703ad42b 503 c = obstack_alloc (&reload_obstack, sizeof (struct insn_chain));
239a0f5b
BS
504 INIT_REG_SET (&c->live_throughout);
505 INIT_REG_SET (&c->dead_or_set);
cad6f7d0
BS
506 }
507 else
508 {
509 c = unused_insn_chains;
510 unused_insn_chains = c->next;
511 }
512 c->is_caller_save_insn = 0;
03acd8f8 513 c->need_operand_change = 0;
cad6f7d0
BS
514 c->need_reload = 0;
515 c->need_elim = 0;
516 return c;
517}
518
7609e720
BS
519/* Small utility function to set all regs in hard reg set TO which are
520 allocated to pseudos in regset FROM. */
770ae6cc 521
7609e720 522void
0c20a65f 523compute_use_by_pseudos (HARD_REG_SET *to, regset from)
7609e720 524{
770ae6cc 525 unsigned int regno;
a2041967 526 reg_set_iterator rsi;
770ae6cc 527
a2041967
KH
528 EXECUTE_IF_SET_IN_REG_SET (from, FIRST_PSEUDO_REGISTER, regno, rsi)
529 {
530 int r = reg_renumber[regno];
531 int nregs;
532
533 if (r < 0)
534 {
535 /* reload_combine uses the information from
536 BASIC_BLOCK->global_live_at_start, which might still
537 contain registers that have not actually been allocated
538 since they have an equivalence. */
539 gcc_assert (reload_completed);
540 }
541 else
542 {
543 nregs = hard_regno_nregs[r][PSEUDO_REGNO_MODE (regno)];
544 while (nregs-- > 0)
545 SET_HARD_REG_BIT (*to, r + nregs);
546 }
547 }
7609e720 548}
f474c6f8
AO
549
550/* Replace all pseudos found in LOC with their corresponding
551 equivalences. */
552
553static void
0c20a65f 554replace_pseudos_in (rtx *loc, enum machine_mode mem_mode, rtx usage)
f474c6f8
AO
555{
556 rtx x = *loc;
557 enum rtx_code code;
558 const char *fmt;
559 int i, j;
560
561 if (! x)
562 return;
174fa2c4 563
f474c6f8
AO
564 code = GET_CODE (x);
565 if (code == REG)
566 {
ae0ed63a 567 unsigned int regno = REGNO (x);
086fef9e
AO
568
569 if (regno < FIRST_PSEUDO_REGISTER)
f474c6f8
AO
570 return;
571
572 x = eliminate_regs (x, mem_mode, usage);
573 if (x != *loc)
574 {
575 *loc = x;
ee960939 576 replace_pseudos_in (loc, mem_mode, usage);
f474c6f8
AO
577 return;
578 }
579
086fef9e
AO
580 if (reg_equiv_constant[regno])
581 *loc = reg_equiv_constant[regno];
582 else if (reg_equiv_mem[regno])
583 *loc = reg_equiv_mem[regno];
584 else if (reg_equiv_address[regno])
585 *loc = gen_rtx_MEM (GET_MODE (x), reg_equiv_address[regno]);
f474c6f8 586 else
41374e13
NS
587 {
588 gcc_assert (!REG_P (regno_reg_rtx[regno])
589 || REGNO (regno_reg_rtx[regno]) != regno);
590 *loc = regno_reg_rtx[regno];
591 }
f474c6f8
AO
592
593 return;
594 }
595 else if (code == MEM)
596 {
ee960939 597 replace_pseudos_in (& XEXP (x, 0), GET_MODE (x), usage);
f474c6f8
AO
598 return;
599 }
174fa2c4 600
f474c6f8
AO
601 /* Process each of our operands recursively. */
602 fmt = GET_RTX_FORMAT (code);
603 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
604 if (*fmt == 'e')
ee960939 605 replace_pseudos_in (&XEXP (x, i), mem_mode, usage);
f474c6f8
AO
606 else if (*fmt == 'E')
607 for (j = 0; j < XVECLEN (x, i); j++)
ee960939 608 replace_pseudos_in (& XVECEXP (x, i, j), mem_mode, usage);
f474c6f8
AO
609}
610
03acd8f8 611\f
1e5bd841
BS
612/* Global variables used by reload and its subroutines. */
613
1e5bd841
BS
614/* Set during calculate_needs if an insn needs register elimination. */
615static int something_needs_elimination;
cb2afeb3
R
616/* Set during calculate_needs if an insn needs an operand changed. */
617int something_needs_operands_changed;
1e5bd841 618
1e5bd841
BS
619/* Nonzero means we couldn't get enough spill regs. */
620static int failure;
621
546b63fb 622/* Main entry point for the reload pass.
32131a9c
RK
623
624 FIRST is the first insn of the function being compiled.
625
626 GLOBAL nonzero means we were called from global_alloc
627 and should attempt to reallocate any pseudoregs that we
628 displace from hard regs we will use for reloads.
629 If GLOBAL is zero, we do not have enough information to do that,
630 so any pseudo reg that is spilled must go to the stack.
631
5352b11a
RS
632 Return value is nonzero if reload failed
633 and we must not do any more for this function. */
634
635int
0c20a65f 636reload (rtx first, int global)
32131a9c 637{
b3694847
SS
638 int i;
639 rtx insn;
640 struct elim_table *ep;
e0082a72 641 basic_block bb;
32131a9c 642
32131a9c
RK
643 /* Make sure even insns with volatile mem refs are recognizable. */
644 init_recog ();
645
1e5bd841
BS
646 failure = 0;
647
703ad42b 648 reload_firstobj = obstack_alloc (&reload_obstack, 0);
cad6f7d0 649
437a710d
BS
650 /* Make sure that the last insn in the chain
651 is not something that needs reloading. */
2e040219 652 emit_note (NOTE_INSN_DELETED);
437a710d 653
32131a9c
RK
654 /* Enable find_equiv_reg to distinguish insns made by reload. */
655 reload_first_uid = get_max_uid ();
656
0dadecf6
RK
657#ifdef SECONDARY_MEMORY_NEEDED
658 /* Initialize the secondary memory table. */
659 clear_secondary_mem ();
660#endif
661
32131a9c 662 /* We don't have a stack slot for any spill reg yet. */
703ad42b
KG
663 memset (spill_stack_slot, 0, sizeof spill_stack_slot);
664 memset (spill_stack_slot_width, 0, sizeof spill_stack_slot_width);
32131a9c 665
a8efe40d
RK
666 /* Initialize the save area information for caller-save, in case some
667 are needed. */
668 init_save_areas ();
a8fdc208 669
32131a9c
RK
670 /* Compute which hard registers are now in use
671 as homes for pseudo registers.
672 This is done here rather than (eg) in global_alloc
673 because this point is reached even if not optimizing. */
32131a9c
RK
674 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
675 mark_home_live (i);
676
8dddd002
RK
677 /* A function that receives a nonlocal goto must save all call-saved
678 registers. */
679 if (current_function_has_nonlocal_label)
680 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2a3e384f
RH
681 if (! call_used_regs[i] && ! fixed_regs[i] && ! LOCAL_REGNO (i))
682 regs_ever_live[i] = 1;
8dddd002 683
5583e33d
JW
684#ifdef NON_SAVING_SETJMP
685 /* A function that calls setjmp should save and restore all the
686 call-saved registers on a system where longjmp clobbers them. */
687 if (NON_SAVING_SETJMP && current_function_calls_setjmp)
688 {
689 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
690 if (! call_used_regs[i])
691 regs_ever_live[i] = 1;
692 }
693#endif
694
32131a9c
RK
695 /* Find all the pseudo registers that didn't get hard regs
696 but do have known equivalent constants or memory slots.
697 These include parameters (known equivalent to parameter slots)
698 and cse'd or loop-moved constant memory addresses.
699
700 Record constant equivalents in reg_equiv_constant
701 so they will be substituted by find_reloads.
702 Record memory equivalents in reg_mem_equiv so they can
703 be substituted eventually by altering the REG-rtx's. */
704
703ad42b
KG
705 reg_equiv_constant = xcalloc (max_regno, sizeof (rtx));
706 reg_equiv_mem = xcalloc (max_regno, sizeof (rtx));
707 reg_equiv_init = xcalloc (max_regno, sizeof (rtx));
708 reg_equiv_address = xcalloc (max_regno, sizeof (rtx));
709 reg_max_ref_width = xcalloc (max_regno, sizeof (int));
710 reg_old_renumber = xcalloc (max_regno, sizeof (short));
4e135bdd 711 memcpy (reg_old_renumber, reg_renumber, max_regno * sizeof (short));
703ad42b
KG
712 pseudo_forbidden_regs = xmalloc (max_regno * sizeof (HARD_REG_SET));
713 pseudo_previous_regs = xcalloc (max_regno, sizeof (HARD_REG_SET));
32131a9c 714
03acd8f8 715 CLEAR_HARD_REG_SET (bad_spill_regs_global);
56f58d3a 716
d754127f
ILT
717 /* Look for REG_EQUIV notes; record what each pseudo is equivalent
718 to. Also find all paradoxical subregs and find largest such for
719 each pseudo. */
32131a9c 720
2b49ee39 721 num_eliminable_invariants = 0;
32131a9c
RK
722 for (insn = first; insn; insn = NEXT_INSN (insn))
723 {
724 rtx set = single_set (insn);
725
3d17d93d
AO
726 /* We may introduce USEs that we want to remove at the end, so
727 we'll mark them with QImode. Make sure there are no
728 previously-marked insns left by say regmove. */
729 if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == USE
730 && GET_MODE (insn) != VOIDmode)
731 PUT_MODE (insn, VOIDmode);
732
f8cfc6aa 733 if (set != 0 && REG_P (SET_DEST (set)))
32131a9c 734 {
fb3821f7 735 rtx note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
a8efe40d 736 if (note
2b49ee39
R
737 && (! function_invariant_p (XEXP (note, 0))
738 || ! flag_pic
129c0899
HPN
739 /* A function invariant is often CONSTANT_P but may
740 include a register. We promise to only pass
741 CONSTANT_P objects to LEGITIMATE_PIC_OPERAND_P. */
742 || (CONSTANT_P (XEXP (note, 0))
2e4e72b1 743 && LEGITIMATE_PIC_OPERAND_P (XEXP (note, 0)))))
32131a9c
RK
744 {
745 rtx x = XEXP (note, 0);
746 i = REGNO (SET_DEST (set));
747 if (i > LAST_VIRTUAL_REGISTER)
748 {
6a45951f
UW
749 /* It can happen that a REG_EQUIV note contains a MEM
750 that is not a legitimate memory operand. As later
751 stages of reload assume that all addresses found
752 in the reg_equiv_* arrays were originally legitimate,
753 we ignore such REG_EQUIV notes. */
754 if (memory_operand (x, VOIDmode))
956d6950 755 {
cf728d61
HPN
756 /* Always unshare the equivalence, so we can
757 substitute into this insn without touching the
2ba84f36 758 equivalence. */
cf728d61 759 reg_equiv_memory_loc[i] = copy_rtx (x);
956d6950 760 }
2b49ee39 761 else if (function_invariant_p (x))
32131a9c 762 {
2b49ee39
R
763 if (GET_CODE (x) == PLUS)
764 {
765 /* This is PLUS of frame pointer and a constant,
766 and might be shared. Unshare it. */
767 reg_equiv_constant[i] = copy_rtx (x);
768 num_eliminable_invariants++;
769 }
770 else if (x == frame_pointer_rtx
771 || x == arg_pointer_rtx)
772 {
773 reg_equiv_constant[i] = x;
774 num_eliminable_invariants++;
775 }
776 else if (LEGITIMATE_CONSTANT_P (x))
32131a9c
RK
777 reg_equiv_constant[i] = x;
778 else
3a04ff64
RH
779 {
780 reg_equiv_memory_loc[i]
781 = force_const_mem (GET_MODE (SET_DEST (set)), x);
782 if (!reg_equiv_memory_loc[i])
783 continue;
784 }
32131a9c
RK
785 }
786 else
787 continue;
788
789 /* If this register is being made equivalent to a MEM
790 and the MEM is not SET_SRC, the equivalencing insn
791 is one with the MEM as a SET_DEST and it occurs later.
792 So don't mark this insn now. */
3c0cb5de 793 if (!MEM_P (x)
32131a9c 794 || rtx_equal_p (SET_SRC (set), x))
135eb61c
R
795 reg_equiv_init[i]
796 = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv_init[i]);
32131a9c
RK
797 }
798 }
799 }
800
801 /* If this insn is setting a MEM from a register equivalent to it,
802 this is the equivalencing insn. */
3c0cb5de 803 else if (set && MEM_P (SET_DEST (set))
f8cfc6aa 804 && REG_P (SET_SRC (set))
32131a9c
RK
805 && reg_equiv_memory_loc[REGNO (SET_SRC (set))]
806 && rtx_equal_p (SET_DEST (set),
807 reg_equiv_memory_loc[REGNO (SET_SRC (set))]))
135eb61c
R
808 reg_equiv_init[REGNO (SET_SRC (set))]
809 = gen_rtx_INSN_LIST (VOIDmode, insn,
810 reg_equiv_init[REGNO (SET_SRC (set))]);
32131a9c 811
2c3c49de 812 if (INSN_P (insn))
32131a9c
RK
813 scan_paradoxical_subregs (PATTERN (insn));
814 }
815
09dd1133 816 init_elim_table ();
32131a9c 817
4cc0fdd2
JDA
818 first_label_num = get_first_label_num ();
819 num_labels = max_label_num () - first_label_num;
32131a9c
RK
820
821 /* Allocate the tables used to store offset information at labels. */
a68d4b75
BK
822 /* We used to use alloca here, but the size of what it would try to
823 allocate would occasionally cause it to exceed the stack limit and
824 cause a core dump. */
4cc0fdd2 825 offsets_known_at = xmalloc (num_labels);
b19ee4bd 826 offsets_at = xmalloc (num_labels * NUM_ELIMINABLE_REGS * sizeof (HOST_WIDE_INT));
32131a9c 827
32131a9c
RK
828 /* Alter each pseudo-reg rtx to contain its hard reg number.
829 Assign stack slots to the pseudos that lack hard regs or equivalents.
830 Do not touch virtual registers. */
831
832 for (i = LAST_VIRTUAL_REGISTER + 1; i < max_regno; i++)
833 alter_reg (i, -1);
834
32131a9c
RK
835 /* If we have some registers we think can be eliminated, scan all insns to
836 see if there is an insn that sets one of these registers to something
837 other than itself plus a constant. If so, the register cannot be
838 eliminated. Doing this scan here eliminates an extra pass through the
839 main reload loop in the most common case where register elimination
840 cannot be done. */
841 for (insn = first; insn && num_eliminable; insn = NEXT_INSN (insn))
4b4bf941 842 if (INSN_P (insn))
84832317 843 note_stores (PATTERN (insn), mark_not_eliminable, NULL);
32131a9c 844
18a90182
BS
845 maybe_fix_stack_asms ();
846
03acd8f8
BS
847 insns_need_reload = 0;
848 something_needs_elimination = 0;
05d10675 849
4079cd63
JW
850 /* Initialize to -1, which means take the first spill register. */
851 last_spill_reg = -1;
852
32131a9c 853 /* Spill any hard regs that we know we can't eliminate. */
03acd8f8 854 CLEAR_HARD_REG_SET (used_spill_regs);
4ab51fb5
R
855 /* There can be multiple ways to eliminate a register;
856 they should be listed adjacently.
857 Elimination for any register fails only if all possible ways fail. */
858 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; )
859 {
860 int from = ep->from;
861 int can_eliminate = 0;
862 do
863 {
864 can_eliminate |= ep->can_eliminate;
865 ep++;
866 }
867 while (ep < &reg_eliminate[NUM_ELIMINABLE_REGS] && ep->from == from);
868 if (! can_eliminate)
869 spill_hard_reg (from, 1);
870 }
9ff3516a
RK
871
872#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
873 if (frame_pointer_needed)
e04ca094 874 spill_hard_reg (HARD_FRAME_POINTER_REGNUM, 1);
9ff3516a 875#endif
e04ca094 876 finish_spills (global);
7609e720 877
f1db3576
JL
878 /* From now on, we may need to generate moves differently. We may also
879 allow modifications of insns which cause them to not be recognized.
880 Any such modifications will be cleaned up during reload itself. */
b2f15f94
RK
881 reload_in_progress = 1;
882
32131a9c
RK
883 /* This loop scans the entire function each go-round
884 and repeats until one repetition spills no additional hard regs. */
03acd8f8 885 for (;;)
32131a9c 886 {
03acd8f8
BS
887 int something_changed;
888 int did_spill;
32131a9c 889
03acd8f8 890 HOST_WIDE_INT starting_frame_size;
32131a9c 891
665792eb 892 /* Round size of stack frame to stack_alignment_needed. This must be done
7657bf2f
JW
893 here because the stack size may be a part of the offset computation
894 for register elimination, and there might have been new stack slots
6d2f8887 895 created in the last iteration of this loop. */
665792eb
JH
896 if (cfun->stack_alignment_needed)
897 assign_stack_local (BLKmode, 0, cfun->stack_alignment_needed);
7657bf2f
JW
898
899 starting_frame_size = get_frame_size ();
900
09dd1133 901 set_initial_elim_offsets ();
1f3b1e1a 902 set_initial_label_offsets ();
03acd8f8 903
32131a9c
RK
904 /* For each pseudo register that has an equivalent location defined,
905 try to eliminate any eliminable registers (such as the frame pointer)
906 assuming initial offsets for the replacement register, which
907 is the normal case.
908
909 If the resulting location is directly addressable, substitute
910 the MEM we just got directly for the old REG.
911
912 If it is not addressable but is a constant or the sum of a hard reg
913 and constant, it is probably not addressable because the constant is
914 out of range, in that case record the address; we will generate
915 hairy code to compute the address in a register each time it is
6491dbbb
RK
916 needed. Similarly if it is a hard register, but one that is not
917 valid as an address register.
32131a9c
RK
918
919 If the location is not addressable, but does not have one of the
920 above forms, assign a stack slot. We have to do this to avoid the
921 potential of producing lots of reloads if, e.g., a location involves
922 a pseudo that didn't get a hard register and has an equivalent memory
923 location that also involves a pseudo that didn't get a hard register.
924
925 Perhaps at some point we will improve reload_when_needed handling
926 so this problem goes away. But that's very hairy. */
927
928 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
929 if (reg_renumber[i] < 0 && reg_equiv_memory_loc[i])
930 {
1914f5da 931 rtx x = eliminate_regs (reg_equiv_memory_loc[i], 0, NULL_RTX);
32131a9c
RK
932
933 if (strict_memory_address_p (GET_MODE (regno_reg_rtx[i]),
934 XEXP (x, 0)))
935 reg_equiv_mem[i] = x, reg_equiv_address[i] = 0;
1f663989 936 else if (CONSTANT_P (XEXP (x, 0))
f8cfc6aa 937 || (REG_P (XEXP (x, 0))
6491dbbb 938 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
32131a9c 939 || (GET_CODE (XEXP (x, 0)) == PLUS
f8cfc6aa 940 && REG_P (XEXP (XEXP (x, 0), 0))
32131a9c
RK
941 && (REGNO (XEXP (XEXP (x, 0), 0))
942 < FIRST_PSEUDO_REGISTER)
1f663989 943 && CONSTANT_P (XEXP (XEXP (x, 0), 1))))
32131a9c
RK
944 reg_equiv_address[i] = XEXP (x, 0), reg_equiv_mem[i] = 0;
945 else
946 {
947 /* Make a new stack slot. Then indicate that something
a8fdc208 948 changed so we go back and recompute offsets for
32131a9c
RK
949 eliminable registers because the allocation of memory
950 below might change some offset. reg_equiv_{mem,address}
951 will be set up for this pseudo on the next pass around
952 the loop. */
953 reg_equiv_memory_loc[i] = 0;
954 reg_equiv_init[i] = 0;
955 alter_reg (i, -1);
32131a9c
RK
956 }
957 }
a8fdc208 958
437a710d
BS
959 if (caller_save_needed)
960 setup_save_areas ();
961
03acd8f8 962 /* If we allocated another stack slot, redo elimination bookkeeping. */
437a710d 963 if (starting_frame_size != get_frame_size ())
32131a9c
RK
964 continue;
965
437a710d 966 if (caller_save_needed)
a8efe40d 967 {
437a710d
BS
968 save_call_clobbered_regs ();
969 /* That might have allocated new insn_chain structures. */
703ad42b 970 reload_firstobj = obstack_alloc (&reload_obstack, 0);
a8efe40d
RK
971 }
972
03acd8f8
BS
973 calculate_needs_all_insns (global);
974
f5d8c9f4 975 CLEAR_REG_SET (&spilled_pseudos);
03acd8f8
BS
976 did_spill = 0;
977
978 something_changed = 0;
32131a9c 979
0dadecf6
RK
980 /* If we allocated any new memory locations, make another pass
981 since it might have changed elimination offsets. */
982 if (starting_frame_size != get_frame_size ())
983 something_changed = 1;
984
09dd1133
BS
985 {
986 HARD_REG_SET to_spill;
987 CLEAR_HARD_REG_SET (to_spill);
988 update_eliminables (&to_spill);
989 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
990 if (TEST_HARD_REG_BIT (to_spill, i))
32131a9c 991 {
e04ca094 992 spill_hard_reg (i, 1);
03acd8f8 993 did_spill = 1;
8f5db3c1
JL
994
995 /* Regardless of the state of spills, if we previously had
e591c83d 996 a register that we thought we could eliminate, but now can
8f5db3c1
JL
997 not eliminate, we must run another pass.
998
999 Consider pseudos which have an entry in reg_equiv_* which
1000 reference an eliminable register. We must make another pass
1001 to update reg_equiv_* so that we do not substitute in the
1002 old value from when we thought the elimination could be
1003 performed. */
1004 something_changed = 1;
32131a9c 1005 }
09dd1133 1006 }
9ff3516a 1007
e04ca094 1008 select_reload_regs ();
e483bf9c
BS
1009 if (failure)
1010 goto failed;
437a710d 1011
e483bf9c 1012 if (insns_need_reload != 0 || did_spill)
e04ca094 1013 something_changed |= finish_spills (global);
7609e720 1014
03acd8f8
BS
1015 if (! something_changed)
1016 break;
1017
1018 if (caller_save_needed)
7609e720 1019 delete_caller_save_insns ();
f5d8c9f4
BS
1020
1021 obstack_free (&reload_obstack, reload_firstobj);
32131a9c
RK
1022 }
1023
1024 /* If global-alloc was run, notify it of any register eliminations we have
1025 done. */
1026 if (global)
1027 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
1028 if (ep->can_eliminate)
1029 mark_elimination (ep->from, ep->to);
1030
32131a9c
RK
1031 /* If a pseudo has no hard reg, delete the insns that made the equivalence.
1032 If that insn didn't set the register (i.e., it copied the register to
1033 memory), just delete that insn instead of the equivalencing insn plus
1034 anything now dead. If we call delete_dead_insn on that insn, we may
135eb61c 1035 delete the insn that actually sets the register if the register dies
32131a9c
RK
1036 there and that is incorrect. */
1037
1038 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
135eb61c
R
1039 {
1040 if (reg_renumber[i] < 0 && reg_equiv_init[i] != 0)
1041 {
1042 rtx list;
1043 for (list = reg_equiv_init[i]; list; list = XEXP (list, 1))
1044 {
1045 rtx equiv_insn = XEXP (list, 0);
78571511
RK
1046
1047 /* If we already deleted the insn or if it may trap, we can't
1048 delete it. The latter case shouldn't happen, but can
1049 if an insn has a variable address, gets a REG_EH_REGION
1050 note added to it, and then gets converted into an load
1051 from a constant address. */
4b4bf941 1052 if (NOTE_P (equiv_insn)
78571511
RK
1053 || can_throw_internal (equiv_insn))
1054 ;
1055 else if (reg_set_p (regno_reg_rtx[i], PATTERN (equiv_insn)))
135eb61c
R
1056 delete_dead_insn (equiv_insn);
1057 else
6773e15f 1058 SET_INSN_DELETED (equiv_insn);
135eb61c
R
1059 }
1060 }
1061 }
32131a9c
RK
1062
1063 /* Use the reload registers where necessary
1064 by generating move instructions to move the must-be-register
1065 values into or out of the reload registers. */
1066
03acd8f8
BS
1067 if (insns_need_reload != 0 || something_needs_elimination
1068 || something_needs_operands_changed)
c47f5ea5 1069 {
102870fb 1070 HOST_WIDE_INT old_frame_size = get_frame_size ();
c47f5ea5 1071
e04ca094 1072 reload_as_needed (global);
c47f5ea5 1073
41374e13 1074 gcc_assert (old_frame_size == get_frame_size ());
c47f5ea5
BS
1075
1076 if (num_eliminable)
1077 verify_initial_elim_offsets ();
1078 }
32131a9c 1079
2a1f8b6b 1080 /* If we were able to eliminate the frame pointer, show that it is no
546b63fb 1081 longer live at the start of any basic block. If it ls live by
2a1f8b6b
RK
1082 virtue of being in a pseudo, that pseudo will be marked live
1083 and hence the frame pointer will be known to be live via that
1084 pseudo. */
1085
1086 if (! frame_pointer_needed)
e0082a72
ZD
1087 FOR_EACH_BB (bb)
1088 CLEAR_REGNO_REG_SET (bb->global_live_at_start,
8e08106d 1089 HARD_FRAME_POINTER_REGNUM);
2a1f8b6b 1090
5352b11a
RS
1091 /* Come here (with failure set nonzero) if we can't get enough spill regs
1092 and we decide not to abort about it. */
1093 failed:
1094
f5d8c9f4 1095 CLEAR_REG_SET (&spilled_pseudos);
a3ec87a8
RS
1096 reload_in_progress = 0;
1097
32131a9c
RK
1098 /* Now eliminate all pseudo regs by modifying them into
1099 their equivalent memory references.
1100 The REG-rtx's for the pseudos are modified in place,
1101 so all insns that used to refer to them now refer to memory.
1102
1103 For a reg that has a reg_equiv_address, all those insns
1104 were changed by reloading so that no insns refer to it any longer;
1105 but the DECL_RTL of a variable decl may refer to it,
1106 and if so this causes the debugging info to mention the variable. */
1107
1108 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1109 {
1110 rtx addr = 0;
9ec36da5
JL
1111
1112 if (reg_equiv_mem[i])
1113 addr = XEXP (reg_equiv_mem[i], 0);
1114
32131a9c
RK
1115 if (reg_equiv_address[i])
1116 addr = reg_equiv_address[i];
9ec36da5 1117
32131a9c
RK
1118 if (addr)
1119 {
1120 if (reg_renumber[i] < 0)
1121 {
1122 rtx reg = regno_reg_rtx[i];
173b24b9 1123
5a63e069 1124 REG_USERVAR_P (reg) = 0;
ef178af3 1125 PUT_CODE (reg, MEM);
32131a9c 1126 XEXP (reg, 0) = addr;
173b24b9
RK
1127 if (reg_equiv_memory_loc[i])
1128 MEM_COPY_ATTRIBUTES (reg, reg_equiv_memory_loc[i]);
1129 else
1130 {
389fdba0 1131 MEM_IN_STRUCT_P (reg) = MEM_SCALAR_P (reg) = 0;
173b24b9
RK
1132 MEM_ATTRS (reg) = 0;
1133 }
32131a9c
RK
1134 }
1135 else if (reg_equiv_mem[i])
1136 XEXP (reg_equiv_mem[i], 0) = addr;
1137 }
1138 }
1139
2ae74651
JL
1140 /* We must set reload_completed now since the cleanup_subreg_operands call
1141 below will re-recognize each insn and reload may have generated insns
1142 which are only valid during and after reload. */
1143 reload_completed = 1;
1144
bd695e1e
RH
1145 /* Make a pass over all the insns and delete all USEs which we inserted
1146 only to tag a REG_EQUAL note on them. Remove all REG_DEAD and REG_UNUSED
41e34bab
DJ
1147 notes. Delete all CLOBBER insns, except those that refer to the return
1148 value and the special mem:BLK CLOBBERs added to prevent the scheduler
1149 from misarranging variable-array code, and simplify (subreg (reg))
260f91c2
DJ
1150 operands. Also remove all REG_RETVAL and REG_LIBCALL notes since they
1151 are no longer useful or accurate. Strip and regenerate REG_INC notes
1152 that may have been moved around. */
32131a9c
RK
1153
1154 for (insn = first; insn; insn = NEXT_INSN (insn))
2c3c49de 1155 if (INSN_P (insn))
32131a9c 1156 {
6764d250 1157 rtx *pnote;
32131a9c 1158
4b4bf941 1159 if (CALL_P (insn))
ee960939
OH
1160 replace_pseudos_in (& CALL_INSN_FUNCTION_USAGE (insn),
1161 VOIDmode, CALL_INSN_FUNCTION_USAGE (insn));
f474c6f8 1162
0304f787 1163 if ((GET_CODE (PATTERN (insn)) == USE
3d17d93d
AO
1164 /* We mark with QImode USEs introduced by reload itself. */
1165 && (GET_MODE (insn) == QImode
1166 || find_reg_note (insn, REG_EQUAL, NULL_RTX)))
bd695e1e 1167 || (GET_CODE (PATTERN (insn)) == CLOBBER
3c0cb5de 1168 && (!MEM_P (XEXP (PATTERN (insn), 0))
41e34bab
DJ
1169 || GET_MODE (XEXP (PATTERN (insn), 0)) != BLKmode
1170 || (GET_CODE (XEXP (XEXP (PATTERN (insn), 0), 0)) != SCRATCH
0c20a65f 1171 && XEXP (XEXP (PATTERN (insn), 0), 0)
41e34bab 1172 != stack_pointer_rtx))
f8cfc6aa 1173 && (!REG_P (XEXP (PATTERN (insn), 0))
bd695e1e 1174 || ! REG_FUNCTION_VALUE_P (XEXP (PATTERN (insn), 0)))))
b60a8416 1175 {
e5eac8ef 1176 delete_insn (insn);
b60a8416
R
1177 continue;
1178 }
6764d250 1179
ee960939
OH
1180 /* Some CLOBBERs may survive until here and still reference unassigned
1181 pseudos with const equivalent, which may in turn cause ICE in later
1182 passes if the reference remains in place. */
1183 if (GET_CODE (PATTERN (insn)) == CLOBBER)
1184 replace_pseudos_in (& XEXP (PATTERN (insn), 0),
1185 VOIDmode, PATTERN (insn));
1186
6764d250
BS
1187 pnote = &REG_NOTES (insn);
1188 while (*pnote != 0)
32131a9c 1189 {
6764d250 1190 if (REG_NOTE_KIND (*pnote) == REG_DEAD
80599fd9 1191 || REG_NOTE_KIND (*pnote) == REG_UNUSED
2dfa9a87 1192 || REG_NOTE_KIND (*pnote) == REG_INC
80599fd9
NC
1193 || REG_NOTE_KIND (*pnote) == REG_RETVAL
1194 || REG_NOTE_KIND (*pnote) == REG_LIBCALL)
6764d250
BS
1195 *pnote = XEXP (*pnote, 1);
1196 else
1197 pnote = &XEXP (*pnote, 1);
32131a9c 1198 }
0304f787 1199
2dfa9a87
MH
1200#ifdef AUTO_INC_DEC
1201 add_auto_inc_notes (insn, PATTERN (insn));
1202#endif
1203
0304f787
JL
1204 /* And simplify (subreg (reg)) if it appears as an operand. */
1205 cleanup_subreg_operands (insn);
b60a8416 1206 }
32131a9c 1207
ab87f8c8
JL
1208 /* If we are doing stack checking, give a warning if this function's
1209 frame size is larger than we expect. */
1210 if (flag_stack_check && ! STACK_CHECK_BUILTIN)
1211 {
1212 HOST_WIDE_INT size = get_frame_size () + STACK_CHECK_FIXED_FRAME_SIZE;
05d10675
BS
1213 static int verbose_warned = 0;
1214
ab87f8c8
JL
1215 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1216 if (regs_ever_live[i] && ! fixed_regs[i] && call_used_regs[i])
1217 size += UNITS_PER_WORD;
1218
1219 if (size > STACK_CHECK_MAX_FRAME_SIZE)
05d10675 1220 {
ab87f8c8
JL
1221 warning ("frame size too large for reliable stack checking");
1222 if (! verbose_warned)
1223 {
1224 warning ("try reducing the number of local variables");
1225 verbose_warned = 1;
1226 }
1227 }
1228 }
1229
32131a9c 1230 /* Indicate that we no longer have known memory locations or constants. */
58d9f9d9
JL
1231 if (reg_equiv_constant)
1232 free (reg_equiv_constant);
32131a9c 1233 reg_equiv_constant = 0;
965ccc5a 1234 VARRAY_GROW (reg_equiv_memory_loc_varray, 0);
32131a9c 1235 reg_equiv_memory_loc = 0;
5352b11a 1236
4cc0fdd2
JDA
1237 if (offsets_known_at)
1238 free (offsets_known_at);
1239 if (offsets_at)
1240 free (offsets_at);
a68d4b75 1241
56a65848
DB
1242 free (reg_equiv_mem);
1243 free (reg_equiv_init);
1244 free (reg_equiv_address);
1245 free (reg_max_ref_width);
03acd8f8
BS
1246 free (reg_old_renumber);
1247 free (pseudo_previous_regs);
1248 free (pseudo_forbidden_regs);
56a65848 1249
8b4f9969
JW
1250 CLEAR_HARD_REG_SET (used_spill_regs);
1251 for (i = 0; i < n_spills; i++)
1252 SET_HARD_REG_BIT (used_spill_regs, spill_regs[i]);
1253
7609e720
BS
1254 /* Free all the insn_chain structures at once. */
1255 obstack_free (&reload_obstack, reload_startobj);
1256 unused_insn_chains = 0;
f1330226 1257 fixup_abnormal_edges ();
7609e720 1258
e16e3291
UW
1259 /* Replacing pseudos with their memory equivalents might have
1260 created shared rtx. Subsequent passes would get confused
1261 by this, so unshare everything here. */
1262 unshare_all_rtl_again (first);
1263
b483cfb7
EB
1264#ifdef STACK_BOUNDARY
1265 /* init_emit has set the alignment of the hard frame pointer
1266 to STACK_BOUNDARY. It is very likely no longer valid if
1267 the hard frame pointer was used for register allocation. */
1268 if (!frame_pointer_needed)
1269 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = BITS_PER_UNIT;
1270#endif
1271
5352b11a 1272 return failure;
32131a9c 1273}
1e5bd841 1274
18a90182
BS
1275/* Yet another special case. Unfortunately, reg-stack forces people to
1276 write incorrect clobbers in asm statements. These clobbers must not
1277 cause the register to appear in bad_spill_regs, otherwise we'll call
1278 fatal_insn later. We clear the corresponding regnos in the live
1279 register sets to avoid this.
1280 The whole thing is rather sick, I'm afraid. */
efc9bd41 1281
18a90182 1282static void
0c20a65f 1283maybe_fix_stack_asms (void)
18a90182
BS
1284{
1285#ifdef STACK_REGS
392dccb7 1286 const char *constraints[MAX_RECOG_OPERANDS];
18a90182
BS
1287 enum machine_mode operand_mode[MAX_RECOG_OPERANDS];
1288 struct insn_chain *chain;
1289
1290 for (chain = reload_insn_chain; chain != 0; chain = chain->next)
1291 {
1292 int i, noperands;
1293 HARD_REG_SET clobbered, allowed;
1294 rtx pat;
1295
2c3c49de 1296 if (! INSN_P (chain->insn)
18a90182
BS
1297 || (noperands = asm_noperands (PATTERN (chain->insn))) < 0)
1298 continue;
1299 pat = PATTERN (chain->insn);
1300 if (GET_CODE (pat) != PARALLEL)
1301 continue;
1302
1303 CLEAR_HARD_REG_SET (clobbered);
1304 CLEAR_HARD_REG_SET (allowed);
1305
1306 /* First, make a mask of all stack regs that are clobbered. */
1307 for (i = 0; i < XVECLEN (pat, 0); i++)
1308 {
1309 rtx t = XVECEXP (pat, 0, i);
1310 if (GET_CODE (t) == CLOBBER && STACK_REG_P (XEXP (t, 0)))
1311 SET_HARD_REG_BIT (clobbered, REGNO (XEXP (t, 0)));
1312 }
1313
1314 /* Get the operand values and constraints out of the insn. */
1ccbefce 1315 decode_asm_operands (pat, recog_data.operand, recog_data.operand_loc,
18a90182
BS
1316 constraints, operand_mode);
1317
1318 /* For every operand, see what registers are allowed. */
1319 for (i = 0; i < noperands; i++)
1320 {
6b9c6f4f 1321 const char *p = constraints[i];
18a90182
BS
1322 /* For every alternative, we compute the class of registers allowed
1323 for reloading in CLS, and merge its contents into the reg set
1324 ALLOWED. */
1325 int cls = (int) NO_REGS;
1326
1327 for (;;)
1328 {
97488870 1329 char c = *p;
18a90182
BS
1330
1331 if (c == '\0' || c == ',' || c == '#')
1332 {
1333 /* End of one alternative - mark the regs in the current
1334 class, and reset the class. */
1335 IOR_HARD_REG_SET (allowed, reg_class_contents[cls]);
1336 cls = NO_REGS;
97488870 1337 p++;
18a90182
BS
1338 if (c == '#')
1339 do {
1340 c = *p++;
1341 } while (c != '\0' && c != ',');
1342 if (c == '\0')
1343 break;
1344 continue;
1345 }
1346
1347 switch (c)
1348 {
1349 case '=': case '+': case '*': case '%': case '?': case '!':
1350 case '0': case '1': case '2': case '3': case '4': case 'm':
1351 case '<': case '>': case 'V': case 'o': case '&': case 'E':
1352 case 'F': case 's': case 'i': case 'n': case 'X': case 'I':
1353 case 'J': case 'K': case 'L': case 'M': case 'N': case 'O':
1354 case 'P':
18a90182
BS
1355 break;
1356
1357 case 'p':
3dcc68a4
NC
1358 cls = (int) reg_class_subunion[cls]
1359 [(int) MODE_BASE_REG_CLASS (VOIDmode)];
18a90182
BS
1360 break;
1361
1362 case 'g':
1363 case 'r':
1364 cls = (int) reg_class_subunion[cls][(int) GENERAL_REGS];
1365 break;
1366
1367 default:
97488870 1368 if (EXTRA_ADDRESS_CONSTRAINT (c, p))
ccfc6cc8
UW
1369 cls = (int) reg_class_subunion[cls]
1370 [(int) MODE_BASE_REG_CLASS (VOIDmode)];
1371 else
1372 cls = (int) reg_class_subunion[cls]
97488870 1373 [(int) REG_CLASS_FROM_CONSTRAINT (c, p)];
18a90182 1374 }
97488870 1375 p += CONSTRAINT_LEN (c, p);
18a90182
BS
1376 }
1377 }
1378 /* Those of the registers which are clobbered, but allowed by the
1379 constraints, must be usable as reload registers. So clear them
1380 out of the life information. */
1381 AND_HARD_REG_SET (allowed, clobbered);
1382 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1383 if (TEST_HARD_REG_BIT (allowed, i))
1384 {
239a0f5b
BS
1385 CLEAR_REGNO_REG_SET (&chain->live_throughout, i);
1386 CLEAR_REGNO_REG_SET (&chain->dead_or_set, i);
18a90182
BS
1387 }
1388 }
1389
1390#endif
1391}
03acd8f8 1392\f
f5d8c9f4
BS
1393/* Copy the global variables n_reloads and rld into the corresponding elts
1394 of CHAIN. */
1395static void
0c20a65f 1396copy_reloads (struct insn_chain *chain)
f5d8c9f4
BS
1397{
1398 chain->n_reloads = n_reloads;
703ad42b
KG
1399 chain->rld = obstack_alloc (&reload_obstack,
1400 n_reloads * sizeof (struct reload));
f5d8c9f4 1401 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
703ad42b 1402 reload_insn_firstobj = obstack_alloc (&reload_obstack, 0);
f5d8c9f4
BS
1403}
1404
03acd8f8
BS
1405/* Walk the chain of insns, and determine for each whether it needs reloads
1406 and/or eliminations. Build the corresponding insns_need_reload list, and
1407 set something_needs_elimination as appropriate. */
1408static void
0c20a65f 1409calculate_needs_all_insns (int global)
1e5bd841 1410{
7609e720 1411 struct insn_chain **pprev_reload = &insns_need_reload;
462561b7 1412 struct insn_chain *chain, *next = 0;
1e5bd841 1413
03acd8f8
BS
1414 something_needs_elimination = 0;
1415
703ad42b 1416 reload_insn_firstobj = obstack_alloc (&reload_obstack, 0);
462561b7 1417 for (chain = reload_insn_chain; chain != 0; chain = next)
1e5bd841 1418 {
67e61fe7 1419 rtx insn = chain->insn;
03acd8f8 1420
462561b7
JJ
1421 next = chain->next;
1422
f5d8c9f4
BS
1423 /* Clear out the shortcuts. */
1424 chain->n_reloads = 0;
67e61fe7
BS
1425 chain->need_elim = 0;
1426 chain->need_reload = 0;
1427 chain->need_operand_change = 0;
1e5bd841 1428
03acd8f8
BS
1429 /* If this is a label, a JUMP_INSN, or has REG_NOTES (which might
1430 include REG_LABEL), we need to see what effects this has on the
1431 known offsets at labels. */
1e5bd841 1432
4b4bf941 1433 if (LABEL_P (insn) || JUMP_P (insn)
2c3c49de 1434 || (INSN_P (insn) && REG_NOTES (insn) != 0))
1e5bd841
BS
1435 set_label_offsets (insn, insn, 0);
1436
2c3c49de 1437 if (INSN_P (insn))
1e5bd841
BS
1438 {
1439 rtx old_body = PATTERN (insn);
1440 int old_code = INSN_CODE (insn);
1441 rtx old_notes = REG_NOTES (insn);
1442 int did_elimination = 0;
cb2afeb3 1443 int operands_changed = 0;
2b49ee39
R
1444 rtx set = single_set (insn);
1445
1446 /* Skip insns that only set an equivalence. */
f8cfc6aa 1447 if (set && REG_P (SET_DEST (set))
2b49ee39
R
1448 && reg_renumber[REGNO (SET_DEST (set))] < 0
1449 && reg_equiv_constant[REGNO (SET_DEST (set))])
67e61fe7 1450 continue;
1e5bd841 1451
1e5bd841 1452 /* If needed, eliminate any eliminable registers. */
2b49ee39 1453 if (num_eliminable || num_eliminable_invariants)
1e5bd841
BS
1454 did_elimination = eliminate_regs_in_insn (insn, 0);
1455
1456 /* Analyze the instruction. */
cb2afeb3
R
1457 operands_changed = find_reloads (insn, 0, spill_indirect_levels,
1458 global, spill_reg_order);
1459
1460 /* If a no-op set needs more than one reload, this is likely
1461 to be something that needs input address reloads. We
1462 can't get rid of this cleanly later, and it is of no use
1463 anyway, so discard it now.
1464 We only do this when expensive_optimizations is enabled,
1465 since this complements reload inheritance / output
1466 reload deletion, and it can make debugging harder. */
1467 if (flag_expensive_optimizations && n_reloads > 1)
1468 {
1469 rtx set = single_set (insn);
1470 if (set
1471 && SET_SRC (set) == SET_DEST (set)
f8cfc6aa 1472 && REG_P (SET_SRC (set))
cb2afeb3
R
1473 && REGNO (SET_SRC (set)) >= FIRST_PSEUDO_REGISTER)
1474 {
ca6c03ca 1475 delete_insn (insn);
3eae4643 1476 /* Delete it from the reload chain. */
462561b7
JJ
1477 if (chain->prev)
1478 chain->prev->next = next;
1479 else
1480 reload_insn_chain = next;
1481 if (next)
1482 next->prev = chain->prev;
1483 chain->next = unused_insn_chains;
1484 unused_insn_chains = chain;
cb2afeb3
R
1485 continue;
1486 }
1487 }
1488 if (num_eliminable)
1489 update_eliminable_offsets ();
1e5bd841
BS
1490
1491 /* Remember for later shortcuts which insns had any reloads or
7609e720
BS
1492 register eliminations. */
1493 chain->need_elim = did_elimination;
03acd8f8
BS
1494 chain->need_reload = n_reloads > 0;
1495 chain->need_operand_change = operands_changed;
1e5bd841
BS
1496
1497 /* Discard any register replacements done. */
1498 if (did_elimination)
1499 {
f5d8c9f4 1500 obstack_free (&reload_obstack, reload_insn_firstobj);
1e5bd841
BS
1501 PATTERN (insn) = old_body;
1502 INSN_CODE (insn) = old_code;
1503 REG_NOTES (insn) = old_notes;
1504 something_needs_elimination = 1;
1505 }
1506
cb2afeb3
R
1507 something_needs_operands_changed |= operands_changed;
1508
437a710d 1509 if (n_reloads != 0)
7609e720 1510 {
f5d8c9f4 1511 copy_reloads (chain);
7609e720
BS
1512 *pprev_reload = chain;
1513 pprev_reload = &chain->next_need_reload;
7609e720 1514 }
1e5bd841 1515 }
1e5bd841 1516 }
7609e720 1517 *pprev_reload = 0;
1e5bd841 1518}
f5d8c9f4
BS
1519\f
1520/* Comparison function for qsort to decide which of two reloads
1521 should be handled first. *P1 and *P2 are the reload numbers. */
1e5bd841 1522
f5d8c9f4 1523static int
0c20a65f 1524reload_reg_class_lower (const void *r1p, const void *r2p)
1e5bd841 1525{
b3694847
SS
1526 int r1 = *(const short *) r1p, r2 = *(const short *) r2p;
1527 int t;
1e5bd841 1528
f5d8c9f4
BS
1529 /* Consider required reloads before optional ones. */
1530 t = rld[r1].optional - rld[r2].optional;
1531 if (t != 0)
1532 return t;
1e5bd841 1533
f5d8c9f4
BS
1534 /* Count all solitary classes before non-solitary ones. */
1535 t = ((reg_class_size[(int) rld[r2].class] == 1)
1536 - (reg_class_size[(int) rld[r1].class] == 1));
1537 if (t != 0)
1538 return t;
1e5bd841 1539
f5d8c9f4
BS
1540 /* Aside from solitaires, consider all multi-reg groups first. */
1541 t = rld[r2].nregs - rld[r1].nregs;
1542 if (t != 0)
1543 return t;
1e5bd841 1544
f5d8c9f4
BS
1545 /* Consider reloads in order of increasing reg-class number. */
1546 t = (int) rld[r1].class - (int) rld[r2].class;
1547 if (t != 0)
1548 return t;
1e5bd841 1549
f5d8c9f4
BS
1550 /* If reloads are equally urgent, sort by reload number,
1551 so that the results of qsort leave nothing to chance. */
1552 return r1 - r2;
1553}
1554\f
1555/* The cost of spilling each hard reg. */
1556static int spill_cost[FIRST_PSEUDO_REGISTER];
1e5bd841 1557
f5d8c9f4
BS
1558/* When spilling multiple hard registers, we use SPILL_COST for the first
1559 spilled hard reg and SPILL_ADD_COST for subsequent regs. SPILL_ADD_COST
1560 only the first hard reg for a multi-reg pseudo. */
1561static int spill_add_cost[FIRST_PSEUDO_REGISTER];
1e5bd841 1562
f5d8c9f4 1563/* Update the spill cost arrays, considering that pseudo REG is live. */
770ae6cc 1564
f5d8c9f4 1565static void
0c20a65f 1566count_pseudo (int reg)
f5d8c9f4 1567{
b2aec5c0 1568 int freq = REG_FREQ (reg);
f5d8c9f4
BS
1569 int r = reg_renumber[reg];
1570 int nregs;
1e5bd841 1571
f5d8c9f4
BS
1572 if (REGNO_REG_SET_P (&pseudos_counted, reg)
1573 || REGNO_REG_SET_P (&spilled_pseudos, reg))
1574 return;
1e5bd841 1575
f5d8c9f4 1576 SET_REGNO_REG_SET (&pseudos_counted, reg);
1e5bd841 1577
41374e13 1578 gcc_assert (r >= 0);
1d7254c5 1579
b2aec5c0 1580 spill_add_cost[r] += freq;
1e5bd841 1581
66fd46b6 1582 nregs = hard_regno_nregs[r][PSEUDO_REGNO_MODE (reg)];
f5d8c9f4 1583 while (nregs-- > 0)
b2aec5c0 1584 spill_cost[r + nregs] += freq;
f5d8c9f4 1585}
1e5bd841 1586
f5d8c9f4
BS
1587/* Calculate the SPILL_COST and SPILL_ADD_COST arrays and determine the
1588 contents of BAD_SPILL_REGS for the insn described by CHAIN. */
efc9bd41 1589
f5d8c9f4 1590static void
0c20a65f 1591order_regs_for_reload (struct insn_chain *chain)
f5d8c9f4 1592{
fbd40359 1593 int i;
efc9bd41
RK
1594 HARD_REG_SET used_by_pseudos;
1595 HARD_REG_SET used_by_pseudos2;
a2041967 1596 reg_set_iterator rsi;
1e5bd841 1597
efc9bd41 1598 COPY_HARD_REG_SET (bad_spill_regs, fixed_reg_set);
1e5bd841 1599
f5d8c9f4
BS
1600 memset (spill_cost, 0, sizeof spill_cost);
1601 memset (spill_add_cost, 0, sizeof spill_add_cost);
1e5bd841 1602
f5d8c9f4 1603 /* Count number of uses of each hard reg by pseudo regs allocated to it
efc9bd41
RK
1604 and then order them by decreasing use. First exclude hard registers
1605 that are live in or across this insn. */
1606
1607 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
1608 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
1609 IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos);
1610 IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos2);
1e5bd841 1611
f5d8c9f4
BS
1612 /* Now find out which pseudos are allocated to it, and update
1613 hard_reg_n_uses. */
1614 CLEAR_REG_SET (&pseudos_counted);
1e5bd841 1615
f5d8c9f4 1616 EXECUTE_IF_SET_IN_REG_SET
a2041967
KH
1617 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i, rsi)
1618 {
1619 count_pseudo (i);
1620 }
f5d8c9f4 1621 EXECUTE_IF_SET_IN_REG_SET
a2041967
KH
1622 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i, rsi)
1623 {
1624 count_pseudo (i);
1625 }
f5d8c9f4 1626 CLEAR_REG_SET (&pseudos_counted);
1e5bd841 1627}
03acd8f8 1628\f
f5d8c9f4
BS
1629/* Vector of reload-numbers showing the order in which the reloads should
1630 be processed. */
1631static short reload_order[MAX_RELOADS];
1e5bd841 1632
f5d8c9f4
BS
1633/* This is used to keep track of the spill regs used in one insn. */
1634static HARD_REG_SET used_spill_regs_local;
03acd8f8 1635
f5d8c9f4
BS
1636/* We decided to spill hard register SPILLED, which has a size of
1637 SPILLED_NREGS. Determine how pseudo REG, which is live during the insn,
1638 is affected. We will add it to SPILLED_PSEUDOS if necessary, and we will
1639 update SPILL_COST/SPILL_ADD_COST. */
770ae6cc 1640
03acd8f8 1641static void
0c20a65f 1642count_spilled_pseudo (int spilled, int spilled_nregs, int reg)
1e5bd841 1643{
f5d8c9f4 1644 int r = reg_renumber[reg];
66fd46b6 1645 int nregs = hard_regno_nregs[r][PSEUDO_REGNO_MODE (reg)];
1e5bd841 1646
f5d8c9f4
BS
1647 if (REGNO_REG_SET_P (&spilled_pseudos, reg)
1648 || spilled + spilled_nregs <= r || r + nregs <= spilled)
1649 return;
1e5bd841 1650
f5d8c9f4 1651 SET_REGNO_REG_SET (&spilled_pseudos, reg);
1e5bd841 1652
b2aec5c0 1653 spill_add_cost[r] -= REG_FREQ (reg);
f5d8c9f4 1654 while (nregs-- > 0)
b2aec5c0 1655 spill_cost[r + nregs] -= REG_FREQ (reg);
1e5bd841
BS
1656}
1657
f5d8c9f4 1658/* Find reload register to use for reload number ORDER. */
03acd8f8 1659
f5d8c9f4 1660static int
0c20a65f 1661find_reg (struct insn_chain *chain, int order)
1e5bd841 1662{
f5d8c9f4
BS
1663 int rnum = reload_order[order];
1664 struct reload *rl = rld + rnum;
1665 int best_cost = INT_MAX;
1666 int best_reg = -1;
770ae6cc
RK
1667 unsigned int i, j;
1668 int k;
f5d8c9f4
BS
1669 HARD_REG_SET not_usable;
1670 HARD_REG_SET used_by_other_reload;
a2041967 1671 reg_set_iterator rsi;
1e5bd841 1672
f5d8c9f4
BS
1673 COPY_HARD_REG_SET (not_usable, bad_spill_regs);
1674 IOR_HARD_REG_SET (not_usable, bad_spill_regs_global);
1675 IOR_COMPL_HARD_REG_SET (not_usable, reg_class_contents[rl->class]);
1676
1677 CLEAR_HARD_REG_SET (used_by_other_reload);
770ae6cc 1678 for (k = 0; k < order; k++)
1e5bd841 1679 {
770ae6cc
RK
1680 int other = reload_order[k];
1681
f5d8c9f4
BS
1682 if (rld[other].regno >= 0 && reloads_conflict (other, rnum))
1683 for (j = 0; j < rld[other].nregs; j++)
1684 SET_HARD_REG_BIT (used_by_other_reload, rld[other].regno + j);
1685 }
1e5bd841 1686
f5d8c9f4
BS
1687 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1688 {
770ae6cc
RK
1689 unsigned int regno = i;
1690
f5d8c9f4
BS
1691 if (! TEST_HARD_REG_BIT (not_usable, regno)
1692 && ! TEST_HARD_REG_BIT (used_by_other_reload, regno)
1693 && HARD_REGNO_MODE_OK (regno, rl->mode))
1e5bd841 1694 {
f5d8c9f4
BS
1695 int this_cost = spill_cost[regno];
1696 int ok = 1;
66fd46b6 1697 unsigned int this_nregs = hard_regno_nregs[regno][rl->mode];
1e5bd841 1698
f5d8c9f4
BS
1699 for (j = 1; j < this_nregs; j++)
1700 {
1701 this_cost += spill_add_cost[regno + j];
1702 if ((TEST_HARD_REG_BIT (not_usable, regno + j))
1703 || TEST_HARD_REG_BIT (used_by_other_reload, regno + j))
1704 ok = 0;
1705 }
1706 if (! ok)
1707 continue;
f8cfc6aa 1708 if (rl->in && REG_P (rl->in) && REGNO (rl->in) == regno)
f5d8c9f4 1709 this_cost--;
f8cfc6aa 1710 if (rl->out && REG_P (rl->out) && REGNO (rl->out) == regno)
f5d8c9f4
BS
1711 this_cost--;
1712 if (this_cost < best_cost
1713 /* Among registers with equal cost, prefer caller-saved ones, or
1714 use REG_ALLOC_ORDER if it is defined. */
1715 || (this_cost == best_cost
1716#ifdef REG_ALLOC_ORDER
1717 && (inv_reg_alloc_order[regno]
1718 < inv_reg_alloc_order[best_reg])
1719#else
1720 && call_used_regs[regno]
1721 && ! call_used_regs[best_reg]
1722#endif
1723 ))
1724 {
1725 best_reg = regno;
1726 best_cost = this_cost;
1e5bd841
BS
1727 }
1728 }
1729 }
f5d8c9f4
BS
1730 if (best_reg == -1)
1731 return 0;
770ae6cc 1732
c263766c
RH
1733 if (dump_file)
1734 fprintf (dump_file, "Using reg %d for reload %d\n", best_reg, rnum);
770ae6cc 1735
66fd46b6 1736 rl->nregs = hard_regno_nregs[best_reg][rl->mode];
f5d8c9f4 1737 rl->regno = best_reg;
1e5bd841 1738
f5d8c9f4 1739 EXECUTE_IF_SET_IN_REG_SET
a2041967
KH
1740 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, j, rsi)
1741 {
1742 count_spilled_pseudo (best_reg, rl->nregs, j);
1743 }
770ae6cc 1744
f5d8c9f4 1745 EXECUTE_IF_SET_IN_REG_SET
a2041967
KH
1746 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, j, rsi)
1747 {
1748 count_spilled_pseudo (best_reg, rl->nregs, j);
1749 }
03acd8f8 1750
f5d8c9f4
BS
1751 for (i = 0; i < rl->nregs; i++)
1752 {
41374e13
NS
1753 gcc_assert (spill_cost[best_reg + i] == 0);
1754 gcc_assert (spill_add_cost[best_reg + i] == 0);
f5d8c9f4
BS
1755 SET_HARD_REG_BIT (used_spill_regs_local, best_reg + i);
1756 }
1757 return 1;
03acd8f8
BS
1758}
1759
1760/* Find more reload regs to satisfy the remaining need of an insn, which
1761 is given by CHAIN.
1e5bd841
BS
1762 Do it by ascending class number, since otherwise a reg
1763 might be spilled for a big class and might fail to count
f5d8c9f4 1764 for a smaller class even though it belongs to that class. */
1e5bd841 1765
03acd8f8 1766static void
0c20a65f 1767find_reload_regs (struct insn_chain *chain)
1e5bd841 1768{
f5d8c9f4 1769 int i;
1e5bd841 1770
f5d8c9f4
BS
1771 /* In order to be certain of getting the registers we need,
1772 we must sort the reloads into order of increasing register class.
1773 Then our grabbing of reload registers will parallel the process
1774 that provided the reload registers. */
1775 for (i = 0; i < chain->n_reloads; i++)
1e5bd841 1776 {
f5d8c9f4
BS
1777 /* Show whether this reload already has a hard reg. */
1778 if (chain->rld[i].reg_rtx)
1e5bd841 1779 {
f5d8c9f4
BS
1780 int regno = REGNO (chain->rld[i].reg_rtx);
1781 chain->rld[i].regno = regno;
770ae6cc 1782 chain->rld[i].nregs
66fd46b6 1783 = hard_regno_nregs[regno][GET_MODE (chain->rld[i].reg_rtx)];
1e5bd841 1784 }
f5d8c9f4
BS
1785 else
1786 chain->rld[i].regno = -1;
1787 reload_order[i] = i;
1788 }
1e5bd841 1789
f5d8c9f4
BS
1790 n_reloads = chain->n_reloads;
1791 memcpy (rld, chain->rld, n_reloads * sizeof (struct reload));
1e5bd841 1792
f5d8c9f4 1793 CLEAR_HARD_REG_SET (used_spill_regs_local);
03acd8f8 1794
c263766c
RH
1795 if (dump_file)
1796 fprintf (dump_file, "Spilling for insn %d.\n", INSN_UID (chain->insn));
1e5bd841 1797
f5d8c9f4 1798 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
1e5bd841 1799
f5d8c9f4 1800 /* Compute the order of preference for hard registers to spill. */
1e5bd841 1801
f5d8c9f4 1802 order_regs_for_reload (chain);
1e5bd841 1803
f5d8c9f4
BS
1804 for (i = 0; i < n_reloads; i++)
1805 {
1806 int r = reload_order[i];
1e5bd841 1807
f5d8c9f4
BS
1808 /* Ignore reloads that got marked inoperative. */
1809 if ((rld[r].out != 0 || rld[r].in != 0 || rld[r].secondary_p)
1810 && ! rld[r].optional
1811 && rld[r].regno == -1)
e04ca094 1812 if (! find_reg (chain, i))
f5d8c9f4 1813 {
ecf3151a 1814 spill_failure (chain->insn, rld[r].class);
f5d8c9f4 1815 failure = 1;
03acd8f8 1816 return;
f5d8c9f4 1817 }
1e5bd841 1818 }
05d10675 1819
f5d8c9f4
BS
1820 COPY_HARD_REG_SET (chain->used_spill_regs, used_spill_regs_local);
1821 IOR_HARD_REG_SET (used_spill_regs, used_spill_regs_local);
03acd8f8 1822
f5d8c9f4 1823 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
1e5bd841
BS
1824}
1825
f5d8c9f4 1826static void
0c20a65f 1827select_reload_regs (void)
09dd1133 1828{
f5d8c9f4 1829 struct insn_chain *chain;
09dd1133 1830
f5d8c9f4
BS
1831 /* Try to satisfy the needs for each insn. */
1832 for (chain = insns_need_reload; chain != 0;
1833 chain = chain->next_need_reload)
e04ca094 1834 find_reload_regs (chain);
09dd1133 1835}
32131a9c 1836\f
437a710d
BS
1837/* Delete all insns that were inserted by emit_caller_save_insns during
1838 this iteration. */
1839static void
0c20a65f 1840delete_caller_save_insns (void)
437a710d 1841{
7609e720 1842 struct insn_chain *c = reload_insn_chain;
437a710d 1843
7609e720 1844 while (c != 0)
437a710d 1845 {
7609e720 1846 while (c != 0 && c->is_caller_save_insn)
437a710d 1847 {
7609e720
BS
1848 struct insn_chain *next = c->next;
1849 rtx insn = c->insn;
1850
7609e720
BS
1851 if (c == reload_insn_chain)
1852 reload_insn_chain = next;
ca6c03ca 1853 delete_insn (insn);
7609e720
BS
1854
1855 if (next)
1856 next->prev = c->prev;
1857 if (c->prev)
1858 c->prev->next = next;
1859 c->next = unused_insn_chains;
1860 unused_insn_chains = c;
1861 c = next;
437a710d 1862 }
7609e720
BS
1863 if (c != 0)
1864 c = c->next;
437a710d
BS
1865 }
1866}
1867\f
5352b11a
RS
1868/* Handle the failure to find a register to spill.
1869 INSN should be one of the insns which needed this particular spill reg. */
1870
1871static void
0c20a65f 1872spill_failure (rtx insn, enum reg_class class)
5352b11a 1873{
ecf3151a 1874 static const char *const reg_class_names[] = REG_CLASS_NAMES;
5352b11a 1875 if (asm_noperands (PATTERN (insn)) >= 0)
971801ff
JM
1876 error_for_asm (insn, "can't find a register in class %qs while "
1877 "reloading %<asm%>",
ecf3151a 1878 reg_class_names[class]);
5352b11a 1879 else
ecf3151a 1880 {
971801ff 1881 error ("unable to find a register to spill in class %qs",
ecf3151a 1882 reg_class_names[class]);
1f978f5f 1883 fatal_insn ("this is the insn:", insn);
ecf3151a 1884 }
5352b11a 1885}
32131a9c
RK
1886\f
1887/* Delete an unneeded INSN and any previous insns who sole purpose is loading
1888 data that is dead in INSN. */
1889
1890static void
0c20a65f 1891delete_dead_insn (rtx insn)
32131a9c
RK
1892{
1893 rtx prev = prev_real_insn (insn);
1894 rtx prev_dest;
1895
1896 /* If the previous insn sets a register that dies in our insn, delete it
1897 too. */
1898 if (prev && GET_CODE (PATTERN (prev)) == SET
f8cfc6aa 1899 && (prev_dest = SET_DEST (PATTERN (prev)), REG_P (prev_dest))
32131a9c 1900 && reg_mentioned_p (prev_dest, PATTERN (insn))
b294ca38
R
1901 && find_regno_note (insn, REG_DEAD, REGNO (prev_dest))
1902 && ! side_effects_p (SET_SRC (PATTERN (prev))))
32131a9c
RK
1903 delete_dead_insn (prev);
1904
6773e15f 1905 SET_INSN_DELETED (insn);
32131a9c
RK
1906}
1907
1908/* Modify the home of pseudo-reg I.
1909 The new home is present in reg_renumber[I].
1910
1911 FROM_REG may be the hard reg that the pseudo-reg is being spilled from;
1912 or it may be -1, meaning there is none or it is not relevant.
1913 This is used so that all pseudos spilled from a given hard reg
1914 can share one stack slot. */
1915
1916static void
0c20a65f 1917alter_reg (int i, int from_reg)
32131a9c
RK
1918{
1919 /* When outputting an inline function, this can happen
1920 for a reg that isn't actually used. */
1921 if (regno_reg_rtx[i] == 0)
1922 return;
1923
1924 /* If the reg got changed to a MEM at rtl-generation time,
1925 ignore it. */
f8cfc6aa 1926 if (!REG_P (regno_reg_rtx[i]))
32131a9c
RK
1927 return;
1928
1929 /* Modify the reg-rtx to contain the new hard reg
1930 number or else to contain its pseudo reg number. */
1931 REGNO (regno_reg_rtx[i])
1932 = reg_renumber[i] >= 0 ? reg_renumber[i] : i;
1933
1934 /* If we have a pseudo that is needed but has no hard reg or equivalent,
1935 allocate a stack slot for it. */
1936
1937 if (reg_renumber[i] < 0
b1f21e0a 1938 && REG_N_REFS (i) > 0
32131a9c
RK
1939 && reg_equiv_constant[i] == 0
1940 && reg_equiv_memory_loc[i] == 0)
1941 {
b3694847 1942 rtx x;
770ae6cc
RK
1943 unsigned int inherent_size = PSEUDO_REGNO_BYTES (i);
1944 unsigned int total_size = MAX (inherent_size, reg_max_ref_width[i]);
32131a9c
RK
1945 int adjust = 0;
1946
1947 /* Each pseudo reg has an inherent size which comes from its own mode,
1948 and a total size which provides room for paradoxical subregs
1949 which refer to the pseudo reg in wider modes.
1950
1951 We can use a slot already allocated if it provides both
1952 enough inherent space and enough total space.
1953 Otherwise, we allocate a new slot, making sure that it has no less
1954 inherent space, and no less total space, then the previous slot. */
1955 if (from_reg == -1)
1956 {
1957 /* No known place to spill from => no slot to reuse. */
cabcf079
ILT
1958 x = assign_stack_local (GET_MODE (regno_reg_rtx[i]), total_size,
1959 inherent_size == total_size ? 0 : -1);
f76b9db2 1960 if (BYTES_BIG_ENDIAN)
02db8dd0
RK
1961 /* Cancel the big-endian correction done in assign_stack_local.
1962 Get the address of the beginning of the slot.
1963 This is so we can do a big-endian correction unconditionally
1964 below. */
1965 adjust = inherent_size - total_size;
1966
3bdf5ad1 1967 /* Nothing can alias this slot except this pseudo. */
ba4828e0 1968 set_mem_alias_set (x, new_alias_set ());
32131a9c 1969 }
3bdf5ad1 1970
32131a9c
RK
1971 /* Reuse a stack slot if possible. */
1972 else if (spill_stack_slot[from_reg] != 0
1973 && spill_stack_slot_width[from_reg] >= total_size
1974 && (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
1975 >= inherent_size))
1976 x = spill_stack_slot[from_reg];
3bdf5ad1 1977
32131a9c
RK
1978 /* Allocate a bigger slot. */
1979 else
1980 {
1981 /* Compute maximum size needed, both for inherent size
1982 and for total size. */
1983 enum machine_mode mode = GET_MODE (regno_reg_rtx[i]);
4f2d3674 1984 rtx stack_slot;
3bdf5ad1 1985
32131a9c
RK
1986 if (spill_stack_slot[from_reg])
1987 {
1988 if (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
1989 > inherent_size)
1990 mode = GET_MODE (spill_stack_slot[from_reg]);
1991 if (spill_stack_slot_width[from_reg] > total_size)
1992 total_size = spill_stack_slot_width[from_reg];
1993 }
3bdf5ad1 1994
32131a9c 1995 /* Make a slot with that size. */
cabcf079
ILT
1996 x = assign_stack_local (mode, total_size,
1997 inherent_size == total_size ? 0 : -1);
4f2d3674 1998 stack_slot = x;
3bdf5ad1
RK
1999
2000 /* All pseudos mapped to this slot can alias each other. */
2001 if (spill_stack_slot[from_reg])
ba4828e0 2002 set_mem_alias_set (x, MEM_ALIAS_SET (spill_stack_slot[from_reg]));
3bdf5ad1 2003 else
ba4828e0 2004 set_mem_alias_set (x, new_alias_set ());
3bdf5ad1 2005
f76b9db2
ILT
2006 if (BYTES_BIG_ENDIAN)
2007 {
2008 /* Cancel the big-endian correction done in assign_stack_local.
2009 Get the address of the beginning of the slot.
2010 This is so we can do a big-endian correction unconditionally
2011 below. */
2012 adjust = GET_MODE_SIZE (mode) - total_size;
4f2d3674 2013 if (adjust)
8ac61af7
RK
2014 stack_slot
2015 = adjust_address_nv (x, mode_for_size (total_size
38a448ca
RH
2016 * BITS_PER_UNIT,
2017 MODE_INT, 1),
8ac61af7 2018 adjust);
f76b9db2 2019 }
3bdf5ad1 2020
4f2d3674 2021 spill_stack_slot[from_reg] = stack_slot;
32131a9c
RK
2022 spill_stack_slot_width[from_reg] = total_size;
2023 }
2024
32131a9c
RK
2025 /* On a big endian machine, the "address" of the slot
2026 is the address of the low part that fits its inherent mode. */
f76b9db2 2027 if (BYTES_BIG_ENDIAN && inherent_size < total_size)
32131a9c 2028 adjust += (total_size - inherent_size);
32131a9c
RK
2029
2030 /* If we have any adjustment to make, or if the stack slot is the
2031 wrong mode, make a new stack slot. */
1285011e
RK
2032 x = adjust_address_nv (x, GET_MODE (regno_reg_rtx[i]), adjust);
2033
2034 /* If we have a decl for the original register, set it for the
2035 memory. If this is a shared MEM, make a copy. */
a560d4d4 2036 if (REG_EXPR (regno_reg_rtx[i])
6615c446 2037 && DECL_P (REG_EXPR (regno_reg_rtx[i])))
1285011e 2038 {
a560d4d4 2039 rtx decl = DECL_RTL_IF_SET (REG_EXPR (regno_reg_rtx[i]));
1285011e 2040
a20fd5ac
JJ
2041 /* We can do this only for the DECLs home pseudo, not for
2042 any copies of it, since otherwise when the stack slot
2043 is reused, nonoverlapping_memrefs_p might think they
2044 cannot overlap. */
f8cfc6aa 2045 if (decl && REG_P (decl) && REGNO (decl) == (unsigned) i)
a20fd5ac
JJ
2046 {
2047 if (from_reg != -1 && spill_stack_slot[from_reg] == x)
2048 x = copy_rtx (x);
2049
a560d4d4 2050 set_mem_attrs_from_reg (x, regno_reg_rtx[i]);
a20fd5ac 2051 }
1285011e 2052 }
32131a9c 2053
6d2f8887 2054 /* Save the stack slot for later. */
32131a9c
RK
2055 reg_equiv_memory_loc[i] = x;
2056 }
2057}
2058
2059/* Mark the slots in regs_ever_live for the hard regs
2060 used by pseudo-reg number REGNO. */
2061
2062void
0c20a65f 2063mark_home_live (int regno)
32131a9c 2064{
b3694847 2065 int i, lim;
770ae6cc 2066
32131a9c
RK
2067 i = reg_renumber[regno];
2068 if (i < 0)
2069 return;
66fd46b6 2070 lim = i + hard_regno_nregs[i][PSEUDO_REGNO_MODE (regno)];
32131a9c
RK
2071 while (i < lim)
2072 regs_ever_live[i++] = 1;
2073}
2074\f
2075/* This function handles the tracking of elimination offsets around branches.
2076
2077 X is a piece of RTL being scanned.
2078
2079 INSN is the insn that it came from, if any.
2080
40f03658 2081 INITIAL_P is nonzero if we are to set the offset to be the initial
32131a9c
RK
2082 offset and zero if we are setting the offset of the label to be the
2083 current offset. */
2084
2085static void
0c20a65f 2086set_label_offsets (rtx x, rtx insn, int initial_p)
32131a9c
RK
2087{
2088 enum rtx_code code = GET_CODE (x);
2089 rtx tem;
e51712db 2090 unsigned int i;
32131a9c
RK
2091 struct elim_table *p;
2092
2093 switch (code)
2094 {
2095 case LABEL_REF:
8be386d9
RS
2096 if (LABEL_REF_NONLOCAL_P (x))
2097 return;
2098
32131a9c
RK
2099 x = XEXP (x, 0);
2100
0f41302f 2101 /* ... fall through ... */
32131a9c
RK
2102
2103 case CODE_LABEL:
2104 /* If we know nothing about this label, set the desired offsets. Note
2105 that this sets the offset at a label to be the offset before a label
2106 if we don't know anything about the label. This is not correct for
2107 the label after a BARRIER, but is the best guess we can make. If
2108 we guessed wrong, we will suppress an elimination that might have
2109 been possible had we been able to guess correctly. */
2110
4cc0fdd2 2111 if (! offsets_known_at[CODE_LABEL_NUMBER (x) - first_label_num])
32131a9c
RK
2112 {
2113 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
4cc0fdd2 2114 offsets_at[CODE_LABEL_NUMBER (x) - first_label_num][i]
32131a9c
RK
2115 = (initial_p ? reg_eliminate[i].initial_offset
2116 : reg_eliminate[i].offset);
4cc0fdd2 2117 offsets_known_at[CODE_LABEL_NUMBER (x) - first_label_num] = 1;
32131a9c
RK
2118 }
2119
2120 /* Otherwise, if this is the definition of a label and it is
d45cf215 2121 preceded by a BARRIER, set our offsets to the known offset of
32131a9c
RK
2122 that label. */
2123
2124 else if (x == insn
2125 && (tem = prev_nonnote_insn (insn)) != 0
4b4bf941 2126 && BARRIER_P (tem))
1f3b1e1a 2127 set_offsets_for_label (insn);
32131a9c
RK
2128 else
2129 /* If neither of the above cases is true, compare each offset
2130 with those previously recorded and suppress any eliminations
2131 where the offsets disagree. */
a8fdc208 2132
32131a9c 2133 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
4cc0fdd2 2134 if (offsets_at[CODE_LABEL_NUMBER (x) - first_label_num][i]
32131a9c
RK
2135 != (initial_p ? reg_eliminate[i].initial_offset
2136 : reg_eliminate[i].offset))
2137 reg_eliminate[i].can_eliminate = 0;
2138
2139 return;
2140
2141 case JUMP_INSN:
2142 set_label_offsets (PATTERN (insn), insn, initial_p);
2143
0f41302f 2144 /* ... fall through ... */
32131a9c
RK
2145
2146 case INSN:
2147 case CALL_INSN:
2148 /* Any labels mentioned in REG_LABEL notes can be branched to indirectly
2149 and hence must have all eliminations at their initial offsets. */
2150 for (tem = REG_NOTES (x); tem; tem = XEXP (tem, 1))
2151 if (REG_NOTE_KIND (tem) == REG_LABEL)
2152 set_label_offsets (XEXP (tem, 0), insn, 1);
2153 return;
2154
0c0ba09c 2155 case PARALLEL:
32131a9c
RK
2156 case ADDR_VEC:
2157 case ADDR_DIFF_VEC:
0c0ba09c
JJ
2158 /* Each of the labels in the parallel or address vector must be
2159 at their initial offsets. We want the first field for PARALLEL
2160 and ADDR_VEC and the second field for ADDR_DIFF_VEC. */
32131a9c 2161
e51712db 2162 for (i = 0; i < (unsigned) XVECLEN (x, code == ADDR_DIFF_VEC); i++)
32131a9c
RK
2163 set_label_offsets (XVECEXP (x, code == ADDR_DIFF_VEC, i),
2164 insn, initial_p);
2165 return;
2166
2167 case SET:
2168 /* We only care about setting PC. If the source is not RETURN,
2169 IF_THEN_ELSE, or a label, disable any eliminations not at
2170 their initial offsets. Similarly if any arm of the IF_THEN_ELSE
2171 isn't one of those possibilities. For branches to a label,
2172 call ourselves recursively.
2173
2174 Note that this can disable elimination unnecessarily when we have
2175 a non-local goto since it will look like a non-constant jump to
2176 someplace in the current function. This isn't a significant
2177 problem since such jumps will normally be when all elimination
2178 pairs are back to their initial offsets. */
2179
2180 if (SET_DEST (x) != pc_rtx)
2181 return;
2182
2183 switch (GET_CODE (SET_SRC (x)))
2184 {
2185 case PC:
2186 case RETURN:
2187 return;
2188
2189 case LABEL_REF:
8f235343 2190 set_label_offsets (SET_SRC (x), insn, initial_p);
32131a9c
RK
2191 return;
2192
2193 case IF_THEN_ELSE:
2194 tem = XEXP (SET_SRC (x), 1);
2195 if (GET_CODE (tem) == LABEL_REF)
2196 set_label_offsets (XEXP (tem, 0), insn, initial_p);
2197 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2198 break;
2199
2200 tem = XEXP (SET_SRC (x), 2);
2201 if (GET_CODE (tem) == LABEL_REF)
2202 set_label_offsets (XEXP (tem, 0), insn, initial_p);
2203 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2204 break;
2205 return;
e9a25f70
JL
2206
2207 default:
2208 break;
32131a9c
RK
2209 }
2210
2211 /* If we reach here, all eliminations must be at their initial
2212 offset because we are doing a jump to a variable address. */
2213 for (p = reg_eliminate; p < &reg_eliminate[NUM_ELIMINABLE_REGS]; p++)
2214 if (p->offset != p->initial_offset)
2215 p->can_eliminate = 0;
e9a25f70 2216 break;
05d10675 2217
e9a25f70
JL
2218 default:
2219 break;
32131a9c
RK
2220 }
2221}
2222\f
a8fdc208 2223/* Scan X and replace any eliminable registers (such as fp) with a
32131a9c
RK
2224 replacement (such as sp), plus an offset.
2225
2226 MEM_MODE is the mode of an enclosing MEM. We need this to know how
2227 much to adjust a register for, e.g., PRE_DEC. Also, if we are inside a
2228 MEM, we are allowed to replace a sum of a register and the constant zero
2229 with the register, which we cannot do outside a MEM. In addition, we need
2230 to record the fact that a register is referenced outside a MEM.
2231
ff32812a 2232 If INSN is an insn, it is the insn containing X. If we replace a REG
40f03658 2233 in a SET_DEST with an equivalent MEM and INSN is nonzero, write a
32131a9c 2234 CLOBBER of the pseudo after INSN so find_equiv_regs will know that
38e01259 2235 the REG is being modified.
32131a9c 2236
ff32812a
RS
2237 Alternatively, INSN may be a note (an EXPR_LIST or INSN_LIST).
2238 That's used when we eliminate in expressions stored in notes.
2239 This means, do not set ref_outside_mem even if the reference
2240 is outside of MEMs.
2241
32131a9c
RK
2242 REG_EQUIV_MEM and REG_EQUIV_ADDRESS contain address that have had
2243 replacements done assuming all offsets are at their initial values. If
2244 they are not, or if REG_EQUIV_ADDRESS is nonzero for a pseudo we
2245 encounter, return the actual location so that find_reloads will do
2246 the proper thing. */
2247
2248rtx
0c20a65f 2249eliminate_regs (rtx x, enum machine_mode mem_mode, rtx insn)
32131a9c
RK
2250{
2251 enum rtx_code code = GET_CODE (x);
2252 struct elim_table *ep;
2253 int regno;
2254 rtx new;
2255 int i, j;
6f7d635c 2256 const char *fmt;
32131a9c
RK
2257 int copied = 0;
2258
d6633f01
NS
2259 if (! current_function_decl)
2260 return x;
9969bb2c 2261
32131a9c
RK
2262 switch (code)
2263 {
2264 case CONST_INT:
2265 case CONST_DOUBLE:
69ef87e2 2266 case CONST_VECTOR:
32131a9c
RK
2267 case CONST:
2268 case SYMBOL_REF:
2269 case CODE_LABEL:
2270 case PC:
2271 case CC0:
2272 case ASM_INPUT:
2273 case ADDR_VEC:
2274 case ADDR_DIFF_VEC:
2275 case RETURN:
2276 return x;
2277
2278 case REG:
2279 regno = REGNO (x);
2280
2281 /* First handle the case where we encounter a bare register that
2282 is eliminable. Replace it with a PLUS. */
2283 if (regno < FIRST_PSEUDO_REGISTER)
2284 {
2285 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2286 ep++)
2287 if (ep->from_rtx == x && ep->can_eliminate)
dfac187e 2288 return plus_constant (ep->to_rtx, ep->previous_offset);
32131a9c
RK
2289
2290 }
cd7c9015
RK
2291 else if (reg_renumber && reg_renumber[regno] < 0
2292 && reg_equiv_constant && reg_equiv_constant[regno]
2b49ee39
R
2293 && ! CONSTANT_P (reg_equiv_constant[regno]))
2294 return eliminate_regs (copy_rtx (reg_equiv_constant[regno]),
2295 mem_mode, insn);
32131a9c
RK
2296 return x;
2297
c5c76735
JL
2298 /* You might think handling MINUS in a manner similar to PLUS is a
2299 good idea. It is not. It has been tried multiple times and every
2300 time the change has had to have been reverted.
2301
2302 Other parts of reload know a PLUS is special (gen_reload for example)
2303 and require special code to handle code a reloaded PLUS operand.
2304
2305 Also consider backends where the flags register is clobbered by a
a457ee07 2306 MINUS, but we can emit a PLUS that does not clobber flags (IA-32,
c5c76735
JL
2307 lea instruction comes to mind). If we try to reload a MINUS, we
2308 may kill the flags register that was holding a useful value.
2309
2310 So, please before trying to handle MINUS, consider reload as a
2311 whole instead of this little section as well as the backend issues. */
32131a9c
RK
2312 case PLUS:
2313 /* If this is the sum of an eliminable register and a constant, rework
6d2f8887 2314 the sum. */
f8cfc6aa 2315 if (REG_P (XEXP (x, 0))
32131a9c
RK
2316 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2317 && CONSTANT_P (XEXP (x, 1)))
2318 {
2319 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2320 ep++)
2321 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2322 {
32131a9c
RK
2323 /* The only time we want to replace a PLUS with a REG (this
2324 occurs when the constant operand of the PLUS is the negative
2325 of the offset) is when we are inside a MEM. We won't want
2326 to do so at other times because that would change the
2327 structure of the insn in a way that reload can't handle.
2328 We special-case the commonest situation in
2329 eliminate_regs_in_insn, so just replace a PLUS with a
2330 PLUS here, unless inside a MEM. */
a23b64d5 2331 if (mem_mode != 0 && GET_CODE (XEXP (x, 1)) == CONST_INT
32131a9c
RK
2332 && INTVAL (XEXP (x, 1)) == - ep->previous_offset)
2333 return ep->to_rtx;
2334 else
38a448ca
RH
2335 return gen_rtx_PLUS (Pmode, ep->to_rtx,
2336 plus_constant (XEXP (x, 1),
2337 ep->previous_offset));
32131a9c
RK
2338 }
2339
2340 /* If the register is not eliminable, we are done since the other
2341 operand is a constant. */
2342 return x;
2343 }
2344
2345 /* If this is part of an address, we want to bring any constant to the
2346 outermost PLUS. We will do this by doing register replacement in
2347 our operands and seeing if a constant shows up in one of them.
2348
dfac187e
BS
2349 Note that there is no risk of modifying the structure of the insn,
2350 since we only get called for its operands, thus we are either
2351 modifying the address inside a MEM, or something like an address
2352 operand of a load-address insn. */
32131a9c
RK
2353
2354 {
1914f5da
RH
2355 rtx new0 = eliminate_regs (XEXP (x, 0), mem_mode, insn);
2356 rtx new1 = eliminate_regs (XEXP (x, 1), mem_mode, insn);
32131a9c 2357
cd7c9015 2358 if (reg_renumber && (new0 != XEXP (x, 0) || new1 != XEXP (x, 1)))
32131a9c
RK
2359 {
2360 /* If one side is a PLUS and the other side is a pseudo that
a8fdc208 2361 didn't get a hard register but has a reg_equiv_constant,
32131a9c
RK
2362 we must replace the constant here since it may no longer
2363 be in the position of any operand. */
f8cfc6aa 2364 if (GET_CODE (new0) == PLUS && REG_P (new1)
32131a9c
RK
2365 && REGNO (new1) >= FIRST_PSEUDO_REGISTER
2366 && reg_renumber[REGNO (new1)] < 0
2367 && reg_equiv_constant != 0
2368 && reg_equiv_constant[REGNO (new1)] != 0)
2369 new1 = reg_equiv_constant[REGNO (new1)];
f8cfc6aa 2370 else if (GET_CODE (new1) == PLUS && REG_P (new0)
32131a9c
RK
2371 && REGNO (new0) >= FIRST_PSEUDO_REGISTER
2372 && reg_renumber[REGNO (new0)] < 0
2373 && reg_equiv_constant[REGNO (new0)] != 0)
2374 new0 = reg_equiv_constant[REGNO (new0)];
2375
2376 new = form_sum (new0, new1);
2377
2378 /* As above, if we are not inside a MEM we do not want to
2379 turn a PLUS into something else. We might try to do so here
2380 for an addition of 0 if we aren't optimizing. */
2381 if (! mem_mode && GET_CODE (new) != PLUS)
38a448ca 2382 return gen_rtx_PLUS (GET_MODE (x), new, const0_rtx);
32131a9c
RK
2383 else
2384 return new;
2385 }
2386 }
2387 return x;
2388
981c7390 2389 case MULT:
05d10675 2390 /* If this is the product of an eliminable register and a
981c7390
RK
2391 constant, apply the distribute law and move the constant out
2392 so that we have (plus (mult ..) ..). This is needed in order
9faa82d8 2393 to keep load-address insns valid. This case is pathological.
981c7390 2394 We ignore the possibility of overflow here. */
f8cfc6aa 2395 if (REG_P (XEXP (x, 0))
981c7390
RK
2396 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2397 && GET_CODE (XEXP (x, 1)) == CONST_INT)
2398 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2399 ep++)
2400 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2401 {
2402 if (! mem_mode
2403 /* Refs inside notes don't count for this purpose. */
2404 && ! (insn != 0 && (GET_CODE (insn) == EXPR_LIST
2405 || GET_CODE (insn) == INSN_LIST)))
2406 ep->ref_outside_mem = 1;
2407
2408 return
38a448ca 2409 plus_constant (gen_rtx_MULT (Pmode, ep->to_rtx, XEXP (x, 1)),
981c7390
RK
2410 ep->previous_offset * INTVAL (XEXP (x, 1)));
2411 }
32131a9c 2412
0f41302f 2413 /* ... fall through ... */
32131a9c 2414
32131a9c
RK
2415 case CALL:
2416 case COMPARE:
c5c76735 2417 /* See comments before PLUS about handling MINUS. */
930aeef3 2418 case MINUS:
32131a9c
RK
2419 case DIV: case UDIV:
2420 case MOD: case UMOD:
2421 case AND: case IOR: case XOR:
45620ed4
RK
2422 case ROTATERT: case ROTATE:
2423 case ASHIFTRT: case LSHIFTRT: case ASHIFT:
32131a9c
RK
2424 case NE: case EQ:
2425 case GE: case GT: case GEU: case GTU:
2426 case LE: case LT: case LEU: case LTU:
2427 {
1914f5da 2428 rtx new0 = eliminate_regs (XEXP (x, 0), mem_mode, insn);
fb3821f7 2429 rtx new1
1914f5da 2430 = XEXP (x, 1) ? eliminate_regs (XEXP (x, 1), mem_mode, insn) : 0;
32131a9c
RK
2431
2432 if (new0 != XEXP (x, 0) || new1 != XEXP (x, 1))
38a448ca 2433 return gen_rtx_fmt_ee (code, GET_MODE (x), new0, new1);
32131a9c
RK
2434 }
2435 return x;
2436
981c7390
RK
2437 case EXPR_LIST:
2438 /* If we have something in XEXP (x, 0), the usual case, eliminate it. */
2439 if (XEXP (x, 0))
2440 {
1914f5da 2441 new = eliminate_regs (XEXP (x, 0), mem_mode, insn);
981c7390 2442 if (new != XEXP (x, 0))
13bb79d4
R
2443 {
2444 /* If this is a REG_DEAD note, it is not valid anymore.
2445 Using the eliminated version could result in creating a
2446 REG_DEAD note for the stack or frame pointer. */
2447 if (GET_MODE (x) == REG_DEAD)
2448 return (XEXP (x, 1)
2449 ? eliminate_regs (XEXP (x, 1), mem_mode, insn)
2450 : NULL_RTX);
2451
2452 x = gen_rtx_EXPR_LIST (REG_NOTE_KIND (x), new, XEXP (x, 1));
2453 }
981c7390
RK
2454 }
2455
0f41302f 2456 /* ... fall through ... */
981c7390
RK
2457
2458 case INSN_LIST:
2459 /* Now do eliminations in the rest of the chain. If this was
2460 an EXPR_LIST, this might result in allocating more memory than is
2461 strictly needed, but it simplifies the code. */
2462 if (XEXP (x, 1))
2463 {
1914f5da 2464 new = eliminate_regs (XEXP (x, 1), mem_mode, insn);
981c7390 2465 if (new != XEXP (x, 1))
cd7c9015
RK
2466 return
2467 gen_rtx_fmt_ee (GET_CODE (x), GET_MODE (x), XEXP (x, 0), new);
981c7390
RK
2468 }
2469 return x;
2470
32131a9c
RK
2471 case PRE_INC:
2472 case POST_INC:
2473 case PRE_DEC:
2474 case POST_DEC:
32131a9c
RK
2475 case STRICT_LOW_PART:
2476 case NEG: case NOT:
2477 case SIGN_EXTEND: case ZERO_EXTEND:
2478 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
2479 case FLOAT: case FIX:
2480 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
2481 case ABS:
2482 case SQRT:
2483 case FFS:
2928cd7a
RH
2484 case CLZ:
2485 case CTZ:
2486 case POPCOUNT:
2487 case PARITY:
1914f5da 2488 new = eliminate_regs (XEXP (x, 0), mem_mode, insn);
32131a9c 2489 if (new != XEXP (x, 0))
38a448ca 2490 return gen_rtx_fmt_e (code, GET_MODE (x), new);
32131a9c
RK
2491 return x;
2492
2493 case SUBREG:
ddef6bc7 2494 /* Similar to above processing, but preserve SUBREG_BYTE.
32131a9c
RK
2495 Convert (subreg (mem)) to (mem) if not paradoxical.
2496 Also, if we have a non-paradoxical (subreg (pseudo)) and the
2497 pseudo didn't get a hard reg, we must replace this with the
bd235d86 2498 eliminated version of the memory location because push_reload
32131a9c 2499 may do the replacement in certain circumstances. */
f8cfc6aa 2500 if (REG_P (SUBREG_REG (x))
32131a9c
RK
2501 && (GET_MODE_SIZE (GET_MODE (x))
2502 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
2503 && reg_equiv_memory_loc != 0
2504 && reg_equiv_memory_loc[REGNO (SUBREG_REG (x))] != 0)
2505 {
cb2afeb3 2506 new = SUBREG_REG (x);
32131a9c
RK
2507 }
2508 else
1914f5da 2509 new = eliminate_regs (SUBREG_REG (x), mem_mode, insn);
32131a9c 2510
ddef6bc7 2511 if (new != SUBREG_REG (x))
32131a9c 2512 {
29ae5012
RK
2513 int x_size = GET_MODE_SIZE (GET_MODE (x));
2514 int new_size = GET_MODE_SIZE (GET_MODE (new));
2515
3c0cb5de 2516 if (MEM_P (new)
6d49a073 2517 && ((x_size < new_size
1914f5da 2518#ifdef WORD_REGISTER_OPERATIONS
6d49a073
JW
2519 /* On these machines, combine can create rtl of the form
2520 (set (subreg:m1 (reg:m2 R) 0) ...)
05d10675 2521 where m1 < m2, and expects something interesting to
6d49a073
JW
2522 happen to the entire word. Moreover, it will use the
2523 (reg:m2 R) later, expecting all bits to be preserved.
05d10675 2524 So if the number of words is the same, preserve the
bd235d86 2525 subreg so that push_reload can see it. */
5d9669fd
RK
2526 && ! ((x_size - 1) / UNITS_PER_WORD
2527 == (new_size -1 ) / UNITS_PER_WORD)
1914f5da 2528#endif
6d49a073 2529 )
5d9669fd 2530 || x_size == new_size)
1914f5da 2531 )
a2ff290c 2532 return adjust_address_nv (new, GET_MODE (x), SUBREG_BYTE (x));
32131a9c 2533 else
ddef6bc7 2534 return gen_rtx_SUBREG (GET_MODE (x), new, SUBREG_BYTE (x));
32131a9c
RK
2535 }
2536
2537 return x;
2538
32131a9c
RK
2539 case MEM:
2540 /* Our only special processing is to pass the mode of the MEM to our
2541 recursive call and copy the flags. While we are here, handle this
2542 case more efficiently. */
f1ec5147
RK
2543 return
2544 replace_equiv_address_nv (x,
2545 eliminate_regs (XEXP (x, 0),
2546 GET_MODE (x), insn));
05d10675 2547
dfac187e 2548 case USE:
055c7759
JDA
2549 /* Handle insn_list USE that a call to a pure function may generate. */
2550 new = eliminate_regs (XEXP (x, 0), 0, insn);
2551 if (new != XEXP (x, 0))
2552 return gen_rtx_USE (GET_MODE (x), new);
2553 return x;
2554
dfac187e
BS
2555 case CLOBBER:
2556 case ASM_OPERANDS:
2557 case SET:
41374e13 2558 gcc_unreachable ();
dfac187e 2559
e9a25f70
JL
2560 default:
2561 break;
32131a9c
RK
2562 }
2563
2564 /* Process each of our operands recursively. If any have changed, make a
2565 copy of the rtx. */
2566 fmt = GET_RTX_FORMAT (code);
2567 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2568 {
2569 if (*fmt == 'e')
2570 {
1914f5da 2571 new = eliminate_regs (XEXP (x, i), mem_mode, insn);
32131a9c
RK
2572 if (new != XEXP (x, i) && ! copied)
2573 {
2574 rtx new_x = rtx_alloc (code);
e1de1560 2575 memcpy (new_x, x, RTX_SIZE (code));
32131a9c
RK
2576 x = new_x;
2577 copied = 1;
2578 }
2579 XEXP (x, i) = new;
2580 }
2581 else if (*fmt == 'E')
2582 {
2583 int copied_vec = 0;
2584 for (j = 0; j < XVECLEN (x, i); j++)
2585 {
1914f5da 2586 new = eliminate_regs (XVECEXP (x, i, j), mem_mode, insn);
32131a9c
RK
2587 if (new != XVECEXP (x, i, j) && ! copied_vec)
2588 {
8f985ec4
ZW
2589 rtvec new_v = gen_rtvec_v (XVECLEN (x, i),
2590 XVEC (x, i)->elem);
32131a9c
RK
2591 if (! copied)
2592 {
2593 rtx new_x = rtx_alloc (code);
e1de1560 2594 memcpy (new_x, x, RTX_SIZE (code));
32131a9c
RK
2595 x = new_x;
2596 copied = 1;
2597 }
2598 XVEC (x, i) = new_v;
2599 copied_vec = 1;
2600 }
2601 XVECEXP (x, i, j) = new;
2602 }
2603 }
2604 }
2605
2606 return x;
2607}
dfac187e
BS
2608
2609/* Scan rtx X for modifications of elimination target registers. Update
2610 the table of eliminables to reflect the changed state. MEM_MODE is
2611 the mode of an enclosing MEM rtx, or VOIDmode if not within a MEM. */
2612
2613static void
0c20a65f 2614elimination_effects (rtx x, enum machine_mode mem_mode)
dfac187e
BS
2615{
2616 enum rtx_code code = GET_CODE (x);
2617 struct elim_table *ep;
2618 int regno;
2619 int i, j;
2620 const char *fmt;
2621
2622 switch (code)
2623 {
2624 case CONST_INT:
2625 case CONST_DOUBLE:
69ef87e2 2626 case CONST_VECTOR:
dfac187e
BS
2627 case CONST:
2628 case SYMBOL_REF:
2629 case CODE_LABEL:
2630 case PC:
2631 case CC0:
2632 case ASM_INPUT:
2633 case ADDR_VEC:
2634 case ADDR_DIFF_VEC:
2635 case RETURN:
2636 return;
2637
dfac187e
BS
2638 case REG:
2639 regno = REGNO (x);
2640
2641 /* First handle the case where we encounter a bare register that
2642 is eliminable. Replace it with a PLUS. */
2643 if (regno < FIRST_PSEUDO_REGISTER)
2644 {
2645 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2646 ep++)
2647 if (ep->from_rtx == x && ep->can_eliminate)
2648 {
2649 if (! mem_mode)
2650 ep->ref_outside_mem = 1;
2651 return;
2652 }
2653
2654 }
2655 else if (reg_renumber[regno] < 0 && reg_equiv_constant
2656 && reg_equiv_constant[regno]
92a21141 2657 && ! function_invariant_p (reg_equiv_constant[regno]))
dfac187e
BS
2658 elimination_effects (reg_equiv_constant[regno], mem_mode);
2659 return;
2660
2661 case PRE_INC:
2662 case POST_INC:
2663 case PRE_DEC:
2664 case POST_DEC:
4b983fdc
RH
2665 case POST_MODIFY:
2666 case PRE_MODIFY:
dfac187e
BS
2667 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2668 if (ep->to_rtx == XEXP (x, 0))
2669 {
2670 int size = GET_MODE_SIZE (mem_mode);
2671
2672 /* If more bytes than MEM_MODE are pushed, account for them. */
2673#ifdef PUSH_ROUNDING
2674 if (ep->to_rtx == stack_pointer_rtx)
2675 size = PUSH_ROUNDING (size);
2676#endif
2677 if (code == PRE_DEC || code == POST_DEC)
2678 ep->offset += size;
4b983fdc 2679 else if (code == PRE_INC || code == POST_INC)
dfac187e 2680 ep->offset -= size;
4b983fdc
RH
2681 else if ((code == PRE_MODIFY || code == POST_MODIFY)
2682 && GET_CODE (XEXP (x, 1)) == PLUS
2683 && XEXP (x, 0) == XEXP (XEXP (x, 1), 0)
2684 && CONSTANT_P (XEXP (XEXP (x, 1), 1)))
2685 ep->offset -= INTVAL (XEXP (XEXP (x, 1), 1));
dfac187e
BS
2686 }
2687
4b983fdc
RH
2688 /* These two aren't unary operators. */
2689 if (code == POST_MODIFY || code == PRE_MODIFY)
2690 break;
2691
dfac187e
BS
2692 /* Fall through to generic unary operation case. */
2693 case STRICT_LOW_PART:
2694 case NEG: case NOT:
2695 case SIGN_EXTEND: case ZERO_EXTEND:
2696 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
2697 case FLOAT: case FIX:
2698 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
2699 case ABS:
2700 case SQRT:
2701 case FFS:
2928cd7a
RH
2702 case CLZ:
2703 case CTZ:
2704 case POPCOUNT:
2705 case PARITY:
dfac187e
BS
2706 elimination_effects (XEXP (x, 0), mem_mode);
2707 return;
2708
2709 case SUBREG:
f8cfc6aa 2710 if (REG_P (SUBREG_REG (x))
dfac187e
BS
2711 && (GET_MODE_SIZE (GET_MODE (x))
2712 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
2713 && reg_equiv_memory_loc != 0
2714 && reg_equiv_memory_loc[REGNO (SUBREG_REG (x))] != 0)
2715 return;
2716
2717 elimination_effects (SUBREG_REG (x), mem_mode);
2718 return;
2719
2720 case USE:
2721 /* If using a register that is the source of an eliminate we still
2722 think can be performed, note it cannot be performed since we don't
2723 know how this register is used. */
2724 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2725 if (ep->from_rtx == XEXP (x, 0))
2726 ep->can_eliminate = 0;
2727
2728 elimination_effects (XEXP (x, 0), mem_mode);
2729 return;
2730
2731 case CLOBBER:
2732 /* If clobbering a register that is the replacement register for an
2733 elimination we still think can be performed, note that it cannot
2734 be performed. Otherwise, we need not be concerned about it. */
2735 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2736 if (ep->to_rtx == XEXP (x, 0))
2737 ep->can_eliminate = 0;
2738
2739 elimination_effects (XEXP (x, 0), mem_mode);
2740 return;
2741
2742 case SET:
2743 /* Check for setting a register that we know about. */
f8cfc6aa 2744 if (REG_P (SET_DEST (x)))
dfac187e
BS
2745 {
2746 /* See if this is setting the replacement register for an
2747 elimination.
2748
2749 If DEST is the hard frame pointer, we do nothing because we
2750 assume that all assignments to the frame pointer are for
2751 non-local gotos and are being done at a time when they are valid
2752 and do not disturb anything else. Some machines want to
2753 eliminate a fake argument pointer (or even a fake frame pointer)
2754 with either the real frame or the stack pointer. Assignments to
2755 the hard frame pointer must not prevent this elimination. */
2756
2757 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2758 ep++)
2759 if (ep->to_rtx == SET_DEST (x)
2760 && SET_DEST (x) != hard_frame_pointer_rtx)
2761 {
2762 /* If it is being incremented, adjust the offset. Otherwise,
2763 this elimination can't be done. */
2764 rtx src = SET_SRC (x);
2765
2766 if (GET_CODE (src) == PLUS
2767 && XEXP (src, 0) == SET_DEST (x)
2768 && GET_CODE (XEXP (src, 1)) == CONST_INT)
2769 ep->offset -= INTVAL (XEXP (src, 1));
2770 else
2771 ep->can_eliminate = 0;
2772 }
2773 }
2774
2775 elimination_effects (SET_DEST (x), 0);
2776 elimination_effects (SET_SRC (x), 0);
2777 return;
2778
2779 case MEM:
dfac187e
BS
2780 /* Our only special processing is to pass the mode of the MEM to our
2781 recursive call. */
2782 elimination_effects (XEXP (x, 0), GET_MODE (x));
2783 return;
2784
2785 default:
2786 break;
2787 }
2788
2789 fmt = GET_RTX_FORMAT (code);
2790 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2791 {
2792 if (*fmt == 'e')
2793 elimination_effects (XEXP (x, i), mem_mode);
2794 else if (*fmt == 'E')
2795 for (j = 0; j < XVECLEN (x, i); j++)
2796 elimination_effects (XVECEXP (x, i, j), mem_mode);
2797 }
2798}
2799
2800/* Descend through rtx X and verify that no references to eliminable registers
2801 remain. If any do remain, mark the involved register as not
2802 eliminable. */
1d813780 2803
dfac187e 2804static void
0c20a65f 2805check_eliminable_occurrences (rtx x)
dfac187e
BS
2806{
2807 const char *fmt;
2808 int i;
2809 enum rtx_code code;
2810
2811 if (x == 0)
2812 return;
1d7254c5 2813
dfac187e
BS
2814 code = GET_CODE (x);
2815
2816 if (code == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
2817 {
2818 struct elim_table *ep;
2819
2820 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
761fa0f7 2821 if (ep->from_rtx == x)
dfac187e
BS
2822 ep->can_eliminate = 0;
2823 return;
2824 }
1d7254c5 2825
dfac187e
BS
2826 fmt = GET_RTX_FORMAT (code);
2827 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2828 {
2829 if (*fmt == 'e')
2830 check_eliminable_occurrences (XEXP (x, i));
2831 else if (*fmt == 'E')
2832 {
2833 int j;
2834 for (j = 0; j < XVECLEN (x, i); j++)
2835 check_eliminable_occurrences (XVECEXP (x, i, j));
2836 }
2837 }
2838}
32131a9c
RK
2839\f
2840/* Scan INSN and eliminate all eliminable registers in it.
2841
2842 If REPLACE is nonzero, do the replacement destructively. Also
2843 delete the insn as dead it if it is setting an eliminable register.
2844
2845 If REPLACE is zero, do all our allocations in reload_obstack.
2846
2847 If no eliminations were done and this insn doesn't require any elimination
2848 processing (these are not identical conditions: it might be updating sp,
2849 but not referencing fp; this needs to be seen during reload_as_needed so
2850 that the offset between fp and sp can be taken into consideration), zero
2851 is returned. Otherwise, 1 is returned. */
2852
2853static int
0c20a65f 2854eliminate_regs_in_insn (rtx insn, int replace)
32131a9c 2855{
dfac187e 2856 int icode = recog_memoized (insn);
32131a9c 2857 rtx old_body = PATTERN (insn);
dfac187e 2858 int insn_is_asm = asm_noperands (old_body) >= 0;
774672d2 2859 rtx old_set = single_set (insn);
32131a9c
RK
2860 rtx new_body;
2861 int val = 0;
4977bab6 2862 int i;
dfac187e
BS
2863 rtx substed_operand[MAX_RECOG_OPERANDS];
2864 rtx orig_operand[MAX_RECOG_OPERANDS];
32131a9c 2865 struct elim_table *ep;
ace3ffcd 2866 rtx plus_src;
32131a9c 2867
dfac187e
BS
2868 if (! insn_is_asm && icode < 0)
2869 {
41374e13
NS
2870 gcc_assert (GET_CODE (PATTERN (insn)) == USE
2871 || GET_CODE (PATTERN (insn)) == CLOBBER
2872 || GET_CODE (PATTERN (insn)) == ADDR_VEC
2873 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
2874 || GET_CODE (PATTERN (insn)) == ASM_INPUT);
2875 return 0;
dfac187e
BS
2876 }
2877
f8cfc6aa 2878 if (old_set != 0 && REG_P (SET_DEST (old_set))
774672d2 2879 && REGNO (SET_DEST (old_set)) < FIRST_PSEUDO_REGISTER)
32131a9c
RK
2880 {
2881 /* Check for setting an eliminable register. */
2882 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
774672d2 2883 if (ep->from_rtx == SET_DEST (old_set) && ep->can_eliminate)
32131a9c 2884 {
dd1eab0a
RK
2885#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2886 /* If this is setting the frame pointer register to the
2887 hardware frame pointer register and this is an elimination
2888 that will be done (tested above), this insn is really
2889 adjusting the frame pointer downward to compensate for
2890 the adjustment done before a nonlocal goto. */
2891 if (ep->from == FRAME_POINTER_REGNUM
2892 && ep->to == HARD_FRAME_POINTER_REGNUM)
2893 {
75eefe3f
UW
2894 rtx base = SET_SRC (old_set);
2895 rtx base_insn = insn;
b19ee4bd 2896 HOST_WIDE_INT offset = 0;
75eefe3f
UW
2897
2898 while (base != ep->to_rtx)
8026ebba 2899 {
75eefe3f
UW
2900 rtx prev_insn, prev_set;
2901
2902 if (GET_CODE (base) == PLUS
2903 && GET_CODE (XEXP (base, 1)) == CONST_INT)
2904 {
2905 offset += INTVAL (XEXP (base, 1));
2906 base = XEXP (base, 0);
2907 }
2908 else if ((prev_insn = prev_nonnote_insn (base_insn)) != 0
2909 && (prev_set = single_set (prev_insn)) != 0
2910 && rtx_equal_p (SET_DEST (prev_set), base))
2911 {
2912 base = SET_SRC (prev_set);
2913 base_insn = prev_insn;
2914 }
2915 else
2916 break;
8026ebba 2917 }
dd1eab0a 2918
75eefe3f 2919 if (base == ep->to_rtx)
dd1eab0a 2920 {
c77fbfbe
GK
2921 rtx src
2922 = plus_constant (ep->to_rtx, offset - ep->offset);
2923
2924 new_body = old_body;
2925 if (! replace)
2926 {
2927 new_body = copy_insn (old_body);
2928 if (REG_NOTES (insn))
2929 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
2930 }
2931 PATTERN (insn) = new_body;
2932 old_set = single_set (insn);
2933
2934 /* First see if this insn remains valid when we
2935 make the change. If not, keep the INSN_CODE
2936 the same and let reload fit it up. */
2937 validate_change (insn, &SET_SRC (old_set), src, 1);
2938 validate_change (insn, &SET_DEST (old_set),
2939 ep->to_rtx, 1);
2940 if (! apply_change_group ())
dd1eab0a 2941 {
c77fbfbe
GK
2942 SET_SRC (old_set) = src;
2943 SET_DEST (old_set) = ep->to_rtx;
dd1eab0a
RK
2944 }
2945
2946 val = 1;
2947 goto done;
2948 }
2949 }
2950#endif
2951
32131a9c
RK
2952 /* In this case this insn isn't serving a useful purpose. We
2953 will delete it in reload_as_needed once we know that this
2954 elimination is, in fact, being done.
2955
abc95ed3 2956 If REPLACE isn't set, we can't delete this insn, but needn't
32131a9c
RK
2957 process it since it won't be used unless something changes. */
2958 if (replace)
8a34409d 2959 {
1d7254c5 2960 delete_dead_insn (insn);
8a34409d
RH
2961 return 1;
2962 }
32131a9c
RK
2963 val = 1;
2964 goto done;
2965 }
aa5524a9 2966 }
32131a9c 2967
aa5524a9 2968 /* We allow one special case which happens to work on all machines we
ace3ffcd
KH
2969 currently support: a single set with the source or a REG_EQUAL
2970 note being a PLUS of an eliminable register and a constant. */
2971 plus_src = 0;
f8cfc6aa 2972 if (old_set && REG_P (SET_DEST (old_set)))
aa5524a9 2973 {
ace3ffcd
KH
2974 /* First see if the source is of the form (plus (reg) CST). */
2975 if (GET_CODE (SET_SRC (old_set)) == PLUS
f8cfc6aa 2976 && REG_P (XEXP (SET_SRC (old_set), 0))
ace3ffcd
KH
2977 && GET_CODE (XEXP (SET_SRC (old_set), 1)) == CONST_INT
2978 && REGNO (XEXP (SET_SRC (old_set), 0)) < FIRST_PSEUDO_REGISTER)
2979 plus_src = SET_SRC (old_set);
f8cfc6aa 2980 else if (REG_P (SET_SRC (old_set)))
ace3ffcd
KH
2981 {
2982 /* Otherwise, see if we have a REG_EQUAL note of the form
2983 (plus (reg) CST). */
2984 rtx links;
2985 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
2986 {
2987 if (REG_NOTE_KIND (links) == REG_EQUAL
2988 && GET_CODE (XEXP (links, 0)) == PLUS
f8cfc6aa 2989 && REG_P (XEXP (XEXP (links, 0), 0))
ace3ffcd
KH
2990 && GET_CODE (XEXP (XEXP (links, 0), 1)) == CONST_INT
2991 && REGNO (XEXP (XEXP (links, 0), 0)) < FIRST_PSEUDO_REGISTER)
2992 {
2993 plus_src = XEXP (links, 0);
2994 break;
2995 }
2996 }
2997 }
2998 }
2999 if (plus_src)
3000 {
3001 rtx reg = XEXP (plus_src, 0);
3002 HOST_WIDE_INT offset = INTVAL (XEXP (plus_src, 1));
32131a9c 3003
aa5524a9
BS
3004 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3005 if (ep->from_rtx == reg && ep->can_eliminate)
3006 {
3007 offset += ep->offset;
32131a9c 3008
aa5524a9
BS
3009 if (offset == 0)
3010 {
f34c06e5
R
3011 int num_clobbers;
3012 /* We assume here that if we need a PARALLEL with
3013 CLOBBERs for this assignment, we can do with the
3014 MATCH_SCRATCHes that add_clobbers allocates.
3015 There's not much we can do if that doesn't work. */
aa5524a9
BS
3016 PATTERN (insn) = gen_rtx_SET (VOIDmode,
3017 SET_DEST (old_set),
3018 ep->to_rtx);
f34c06e5
R
3019 num_clobbers = 0;
3020 INSN_CODE (insn) = recog (PATTERN (insn), insn, &num_clobbers);
3021 if (num_clobbers)
3022 {
3023 rtvec vec = rtvec_alloc (num_clobbers + 1);
3024
3025 vec->elem[0] = PATTERN (insn);
3026 PATTERN (insn) = gen_rtx_PARALLEL (VOIDmode, vec);
3027 add_clobbers (PATTERN (insn), INSN_CODE (insn));
3028 }
41374e13 3029 gcc_assert (INSN_CODE (insn) >= 0);
aa5524a9 3030 }
ace3ffcd
KH
3031 /* If we have a nonzero offset, and the source is already
3032 a simple REG, the following transformation would
3033 increase the cost of the insn by replacing a simple REG
3034 with (plus (reg sp) CST). So try only when plus_src
3035 comes from old_set proper, not REG_NOTES. */
3036 else if (SET_SRC (old_set) == plus_src)
aa5524a9
BS
3037 {
3038 new_body = old_body;
3039 if (! replace)
3040 {
3041 new_body = copy_insn (old_body);
3042 if (REG_NOTES (insn))
3043 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3044 }
3045 PATTERN (insn) = new_body;
3046 old_set = single_set (insn);
922d9d40 3047
aa5524a9
BS
3048 XEXP (SET_SRC (old_set), 0) = ep->to_rtx;
3049 XEXP (SET_SRC (old_set), 1) = GEN_INT (offset);
3050 }
ace3ffcd
KH
3051 else
3052 break;
3053
aa5524a9
BS
3054 val = 1;
3055 /* This can't have an effect on elimination offsets, so skip right
3056 to the end. */
3057 goto done;
3058 }
32131a9c
RK
3059 }
3060
dfac187e
BS
3061 /* Determine the effects of this insn on elimination offsets. */
3062 elimination_effects (old_body, 0);
3063
3064 /* Eliminate all eliminable registers occurring in operands that
3065 can be handled by reload. */
3066 extract_insn (insn);
dfac187e
BS
3067 for (i = 0; i < recog_data.n_operands; i++)
3068 {
3069 orig_operand[i] = recog_data.operand[i];
3070 substed_operand[i] = recog_data.operand[i];
3071
3072 /* For an asm statement, every operand is eliminable. */
3073 if (insn_is_asm || insn_data[icode].operand[i].eliminable)
3074 {
3075 /* Check for setting a register that we know about. */
3076 if (recog_data.operand_type[i] != OP_IN
f8cfc6aa 3077 && REG_P (orig_operand[i]))
dfac187e
BS
3078 {
3079 /* If we are assigning to a register that can be eliminated, it
3080 must be as part of a PARALLEL, since the code above handles
3081 single SETs. We must indicate that we can no longer
3082 eliminate this reg. */
3083 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3084 ep++)
761fa0f7 3085 if (ep->from_rtx == orig_operand[i])
dfac187e
BS
3086 ep->can_eliminate = 0;
3087 }
3088
3089 substed_operand[i] = eliminate_regs (recog_data.operand[i], 0,
3090 replace ? insn : NULL_RTX);
3091 if (substed_operand[i] != orig_operand[i])
4977bab6 3092 val = 1;
dfac187e
BS
3093 /* Terminate the search in check_eliminable_occurrences at
3094 this point. */
3095 *recog_data.operand_loc[i] = 0;
3096
3097 /* If an output operand changed from a REG to a MEM and INSN is an
3098 insn, write a CLOBBER insn. */
3099 if (recog_data.operand_type[i] != OP_IN
f8cfc6aa 3100 && REG_P (orig_operand[i])
3c0cb5de 3101 && MEM_P (substed_operand[i])
dfac187e
BS
3102 && replace)
3103 emit_insn_after (gen_rtx_CLOBBER (VOIDmode, orig_operand[i]),
3104 insn);
3105 }
3106 }
3107
3108 for (i = 0; i < recog_data.n_dups; i++)
3109 *recog_data.dup_loc[i]
1d7254c5 3110 = *recog_data.operand_loc[(int) recog_data.dup_num[i]];
dfac187e
BS
3111
3112 /* If any eliminable remain, they aren't eliminable anymore. */
3113 check_eliminable_occurrences (old_body);
32131a9c 3114
dfac187e
BS
3115 /* Substitute the operands; the new values are in the substed_operand
3116 array. */
3117 for (i = 0; i < recog_data.n_operands; i++)
3118 *recog_data.operand_loc[i] = substed_operand[i];
3119 for (i = 0; i < recog_data.n_dups; i++)
1d7254c5 3120 *recog_data.dup_loc[i] = substed_operand[(int) recog_data.dup_num[i]];
32131a9c 3121
dfac187e 3122 /* If we are replacing a body that was a (set X (plus Y Z)), try to
32131a9c
RK
3123 re-recognize the insn. We do this in case we had a simple addition
3124 but now can do this as a load-address. This saves an insn in this
dfac187e
BS
3125 common case.
3126 If re-recognition fails, the old insn code number will still be used,
3127 and some register operands may have changed into PLUS expressions.
3128 These will be handled by find_reloads by loading them into a register
1d7254c5 3129 again. */
32131a9c 3130
dfac187e 3131 if (val)
32131a9c 3132 {
7c791b13
RK
3133 /* If we aren't replacing things permanently and we changed something,
3134 make another copy to ensure that all the RTL is new. Otherwise
3135 things can go wrong if find_reload swaps commutative operands
0f41302f 3136 and one is inside RTL that has been copied while the other is not. */
dfac187e
BS
3137 new_body = old_body;
3138 if (! replace)
1b3b5765
BS
3139 {
3140 new_body = copy_insn (old_body);
3141 if (REG_NOTES (insn))
3142 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3143 }
dfac187e 3144 PATTERN (insn) = new_body;
7c791b13 3145
774672d2
RK
3146 /* If we had a move insn but now we don't, rerecognize it. This will
3147 cause spurious re-recognition if the old move had a PARALLEL since
3148 the new one still will, but we can't call single_set without
3149 having put NEW_BODY into the insn and the re-recognition won't
3150 hurt in this rare case. */
dfac187e
BS
3151 /* ??? Why this huge if statement - why don't we just rerecognize the
3152 thing always? */
3153 if (! insn_is_asm
3154 && old_set != 0
f8cfc6aa 3155 && ((REG_P (SET_SRC (old_set))
774672d2 3156 && (GET_CODE (new_body) != SET
f8cfc6aa 3157 || !REG_P (SET_SRC (new_body))))
774672d2 3158 /* If this was a load from or store to memory, compare
1ccbefce
RH
3159 the MEM in recog_data.operand to the one in the insn.
3160 If they are not equal, then rerecognize the insn. */
774672d2 3161 || (old_set != 0
3c0cb5de 3162 && ((MEM_P (SET_SRC (old_set))
1ccbefce 3163 && SET_SRC (old_set) != recog_data.operand[1])
3c0cb5de 3164 || (MEM_P (SET_DEST (old_set))
1ccbefce 3165 && SET_DEST (old_set) != recog_data.operand[0])))
774672d2
RK
3166 /* If this was an add insn before, rerecognize. */
3167 || GET_CODE (SET_SRC (old_set)) == PLUS))
4a5d0fb5 3168 {
dfac187e
BS
3169 int new_icode = recog (PATTERN (insn), insn, 0);
3170 if (new_icode < 0)
3171 INSN_CODE (insn) = icode;
4a5d0fb5 3172 }
dfac187e 3173 }
32131a9c 3174
dfac187e
BS
3175 /* Restore the old body. If there were any changes to it, we made a copy
3176 of it while the changes were still in place, so we'll correctly return
3177 a modified insn below. */
3178 if (! replace)
3179 {
3180 /* Restore the old body. */
3181 for (i = 0; i < recog_data.n_operands; i++)
3182 *recog_data.operand_loc[i] = orig_operand[i];
3183 for (i = 0; i < recog_data.n_dups; i++)
1d7254c5 3184 *recog_data.dup_loc[i] = orig_operand[(int) recog_data.dup_num[i]];
32131a9c 3185 }
a8fdc208 3186
dfac187e
BS
3187 /* Update all elimination pairs to reflect the status after the current
3188 insn. The changes we make were determined by the earlier call to
3189 elimination_effects.
a8efe40d 3190
423adbb9 3191 We also detect cases where register elimination cannot be done,
32131a9c
RK
3192 namely, if a register would be both changed and referenced outside a MEM
3193 in the resulting insn since such an insn is often undefined and, even if
3194 not, we cannot know what meaning will be given to it. Note that it is
3195 valid to have a register used in an address in an insn that changes it
3196 (presumably with a pre- or post-increment or decrement).
3197
3198 If anything changes, return nonzero. */
3199
32131a9c
RK
3200 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3201 {
3202 if (ep->previous_offset != ep->offset && ep->ref_outside_mem)
3203 ep->can_eliminate = 0;
3204
3205 ep->ref_outside_mem = 0;
3206
3207 if (ep->previous_offset != ep->offset)
3208 val = 1;
32131a9c
RK
3209 }
3210
3211 done:
9faa82d8 3212 /* If we changed something, perform elimination in REG_NOTES. This is
05b4c365
RK
3213 needed even when REPLACE is zero because a REG_DEAD note might refer
3214 to a register that we eliminate and could cause a different number
3215 of spill registers to be needed in the final reload pass than in
3216 the pre-passes. */
20748cab 3217 if (val && REG_NOTES (insn) != 0)
1914f5da 3218 REG_NOTES (insn) = eliminate_regs (REG_NOTES (insn), 0, REG_NOTES (insn));
05b4c365 3219
32131a9c
RK
3220 return val;
3221}
3222
cb2afeb3
R
3223/* Loop through all elimination pairs.
3224 Recalculate the number not at initial offset.
3225
3226 Compute the maximum offset (minimum offset if the stack does not
3227 grow downward) for each elimination pair. */
3228
3229static void
0c20a65f 3230update_eliminable_offsets (void)
cb2afeb3
R
3231{
3232 struct elim_table *ep;
3233
3234 num_not_at_initial_offset = 0;
3235 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3236 {
3237 ep->previous_offset = ep->offset;
3238 if (ep->can_eliminate && ep->offset != ep->initial_offset)
3239 num_not_at_initial_offset++;
cb2afeb3
R
3240 }
3241}
3242
32131a9c
RK
3243/* Given X, a SET or CLOBBER of DEST, if DEST is the target of a register
3244 replacement we currently believe is valid, mark it as not eliminable if X
3245 modifies DEST in any way other than by adding a constant integer to it.
3246
3247 If DEST is the frame pointer, we do nothing because we assume that
3ec2ea3e
DE
3248 all assignments to the hard frame pointer are nonlocal gotos and are being
3249 done at a time when they are valid and do not disturb anything else.
32131a9c 3250 Some machines want to eliminate a fake argument pointer with either the
3ec2ea3e
DE
3251 frame or stack pointer. Assignments to the hard frame pointer must not
3252 prevent this elimination.
32131a9c
RK
3253
3254 Called via note_stores from reload before starting its passes to scan
3255 the insns of the function. */
3256
3257static void
0c20a65f 3258mark_not_eliminable (rtx dest, rtx x, void *data ATTRIBUTE_UNUSED)
32131a9c 3259{
b3694847 3260 unsigned int i;
32131a9c
RK
3261
3262 /* A SUBREG of a hard register here is just changing its mode. We should
3263 not see a SUBREG of an eliminable hard register, but check just in
3264 case. */
3265 if (GET_CODE (dest) == SUBREG)
3266 dest = SUBREG_REG (dest);
3267
3ec2ea3e 3268 if (dest == hard_frame_pointer_rtx)
32131a9c
RK
3269 return;
3270
3271 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
3272 if (reg_eliminate[i].can_eliminate && dest == reg_eliminate[i].to_rtx
3273 && (GET_CODE (x) != SET
3274 || GET_CODE (SET_SRC (x)) != PLUS
3275 || XEXP (SET_SRC (x), 0) != dest
3276 || GET_CODE (XEXP (SET_SRC (x), 1)) != CONST_INT))
3277 {
3278 reg_eliminate[i].can_eliminate_previous
3279 = reg_eliminate[i].can_eliminate = 0;
3280 num_eliminable--;
3281 }
3282}
09dd1133 3283
c47f5ea5
BS
3284/* Verify that the initial elimination offsets did not change since the
3285 last call to set_initial_elim_offsets. This is used to catch cases
3286 where something illegal happened during reload_as_needed that could
3287 cause incorrect code to be generated if we did not check for it. */
c8d8ed65 3288
c47f5ea5 3289static void
0c20a65f 3290verify_initial_elim_offsets (void)
c47f5ea5 3291{
b19ee4bd 3292 HOST_WIDE_INT t;
c47f5ea5
BS
3293
3294#ifdef ELIMINABLE_REGS
3295 struct elim_table *ep;
3296
3297 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3298 {
3299 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, t);
41374e13 3300 gcc_assert (t == ep->initial_offset);
c47f5ea5
BS
3301 }
3302#else
3303 INITIAL_FRAME_POINTER_OFFSET (t);
41374e13 3304 gcc_assert (t == reg_eliminate[0].initial_offset);
05d10675 3305#endif
c47f5ea5
BS
3306}
3307
09dd1133 3308/* Reset all offsets on eliminable registers to their initial values. */
1d813780 3309
09dd1133 3310static void
0c20a65f 3311set_initial_elim_offsets (void)
09dd1133 3312{
1f3b1e1a 3313 struct elim_table *ep = reg_eliminate;
09dd1133
BS
3314
3315#ifdef ELIMINABLE_REGS
1f3b1e1a 3316 for (; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
09dd1133
BS
3317 {
3318 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, ep->initial_offset);
1f3b1e1a 3319 ep->previous_offset = ep->offset = ep->initial_offset;
09dd1133
BS
3320 }
3321#else
1f3b1e1a
JL
3322 INITIAL_FRAME_POINTER_OFFSET (ep->initial_offset);
3323 ep->previous_offset = ep->offset = ep->initial_offset;
09dd1133
BS
3324#endif
3325
3326 num_not_at_initial_offset = 0;
1f3b1e1a 3327}
09dd1133 3328
1f3b1e1a
JL
3329/* Initialize the known label offsets.
3330 Set a known offset for each forced label to be at the initial offset
3331 of each elimination. We do this because we assume that all
3332 computed jumps occur from a location where each elimination is
3333 at its initial offset.
3334 For all other labels, show that we don't know the offsets. */
09dd1133 3335
1f3b1e1a 3336static void
0c20a65f 3337set_initial_label_offsets (void)
1f3b1e1a
JL
3338{
3339 rtx x;
4cc0fdd2 3340 memset (offsets_known_at, 0, num_labels);
09dd1133
BS
3341
3342 for (x = forced_labels; x; x = XEXP (x, 1))
3343 if (XEXP (x, 0))
3344 set_label_offsets (XEXP (x, 0), NULL_RTX, 1);
3345}
3346
1f3b1e1a
JL
3347/* Set all elimination offsets to the known values for the code label given
3348 by INSN. */
1d813780 3349
1f3b1e1a 3350static void
0c20a65f 3351set_offsets_for_label (rtx insn)
1f3b1e1a 3352{
973838fd 3353 unsigned int i;
1f3b1e1a
JL
3354 int label_nr = CODE_LABEL_NUMBER (insn);
3355 struct elim_table *ep;
3356
3357 num_not_at_initial_offset = 0;
3358 for (i = 0, ep = reg_eliminate; i < NUM_ELIMINABLE_REGS; ep++, i++)
3359 {
4cc0fdd2
JDA
3360 ep->offset = ep->previous_offset
3361 = offsets_at[label_nr - first_label_num][i];
1f3b1e1a
JL
3362 if (ep->can_eliminate && ep->offset != ep->initial_offset)
3363 num_not_at_initial_offset++;
3364 }
3365}
3366
09dd1133 3367/* See if anything that happened changes which eliminations are valid.
981f6289 3368 For example, on the SPARC, whether or not the frame pointer can
09dd1133
BS
3369 be eliminated can depend on what registers have been used. We need
3370 not check some conditions again (such as flag_omit_frame_pointer)
3371 since they can't have changed. */
3372
3373static void
0c20a65f 3374update_eliminables (HARD_REG_SET *pset)
09dd1133 3375{
09dd1133 3376 int previous_frame_pointer_needed = frame_pointer_needed;
09dd1133
BS
3377 struct elim_table *ep;
3378
3379 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3380 if ((ep->from == HARD_FRAME_POINTER_REGNUM && FRAME_POINTER_REQUIRED)
3381#ifdef ELIMINABLE_REGS
3382 || ! CAN_ELIMINATE (ep->from, ep->to)
3383#endif
3384 )
3385 ep->can_eliminate = 0;
3386
3387 /* Look for the case where we have discovered that we can't replace
3388 register A with register B and that means that we will now be
3389 trying to replace register A with register C. This means we can
3390 no longer replace register C with register B and we need to disable
3391 such an elimination, if it exists. This occurs often with A == ap,
3392 B == sp, and C == fp. */
3393
3394 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3395 {
3396 struct elim_table *op;
b3694847 3397 int new_to = -1;
09dd1133
BS
3398
3399 if (! ep->can_eliminate && ep->can_eliminate_previous)
3400 {
3401 /* Find the current elimination for ep->from, if there is a
3402 new one. */
3403 for (op = reg_eliminate;
3404 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3405 if (op->from == ep->from && op->can_eliminate)
3406 {
3407 new_to = op->to;
3408 break;
3409 }
3410
3411 /* See if there is an elimination of NEW_TO -> EP->TO. If so,
3412 disable it. */
3413 for (op = reg_eliminate;
3414 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3415 if (op->from == new_to && op->to == ep->to)
3416 op->can_eliminate = 0;
3417 }
3418 }
3419
3420 /* See if any registers that we thought we could eliminate the previous
3421 time are no longer eliminable. If so, something has changed and we
3422 must spill the register. Also, recompute the number of eliminable
3423 registers and see if the frame pointer is needed; it is if there is
3424 no elimination of the frame pointer that we can perform. */
3425
3426 frame_pointer_needed = 1;
3427 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3428 {
3429 if (ep->can_eliminate && ep->from == FRAME_POINTER_REGNUM
3430 && ep->to != HARD_FRAME_POINTER_REGNUM)
3431 frame_pointer_needed = 0;
3432
3433 if (! ep->can_eliminate && ep->can_eliminate_previous)
3434 {
3435 ep->can_eliminate_previous = 0;
3436 SET_HARD_REG_BIT (*pset, ep->from);
3437 num_eliminable--;
3438 }
3439 }
3440
09dd1133
BS
3441 /* If we didn't need a frame pointer last time, but we do now, spill
3442 the hard frame pointer. */
3443 if (frame_pointer_needed && ! previous_frame_pointer_needed)
3444 SET_HARD_REG_BIT (*pset, HARD_FRAME_POINTER_REGNUM);
09dd1133
BS
3445}
3446
3447/* Initialize the table of registers to eliminate. */
1d813780 3448
09dd1133 3449static void
0c20a65f 3450init_elim_table (void)
09dd1133
BS
3451{
3452 struct elim_table *ep;
590cf94d 3453#ifdef ELIMINABLE_REGS
0b5826ac 3454 const struct elim_table_1 *ep1;
590cf94d 3455#endif
09dd1133 3456
590cf94d 3457 if (!reg_eliminate)
703ad42b 3458 reg_eliminate = xcalloc (sizeof (struct elim_table), NUM_ELIMINABLE_REGS);
05d10675 3459
09dd1133
BS
3460 /* Does this function require a frame pointer? */
3461
3462 frame_pointer_needed = (! flag_omit_frame_pointer
09dd1133
BS
3463 /* ?? If EXIT_IGNORE_STACK is set, we will not save
3464 and restore sp for alloca. So we can't eliminate
3465 the frame pointer in that case. At some point,
3466 we should improve this by emitting the
3467 sp-adjusting insns for this case. */
3468 || (current_function_calls_alloca
3469 && EXIT_IGNORE_STACK)
09dd1133
BS
3470 || FRAME_POINTER_REQUIRED);
3471
3472 num_eliminable = 0;
3473
3474#ifdef ELIMINABLE_REGS
590cf94d
KG
3475 for (ep = reg_eliminate, ep1 = reg_eliminate_1;
3476 ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++, ep1++)
09dd1133 3477 {
590cf94d
KG
3478 ep->from = ep1->from;
3479 ep->to = ep1->to;
09dd1133
BS
3480 ep->can_eliminate = ep->can_eliminate_previous
3481 = (CAN_ELIMINATE (ep->from, ep->to)
3482 && ! (ep->to == STACK_POINTER_REGNUM && frame_pointer_needed));
3483 }
3484#else
590cf94d
KG
3485 reg_eliminate[0].from = reg_eliminate_1[0].from;
3486 reg_eliminate[0].to = reg_eliminate_1[0].to;
09dd1133
BS
3487 reg_eliminate[0].can_eliminate = reg_eliminate[0].can_eliminate_previous
3488 = ! frame_pointer_needed;
3489#endif
3490
3491 /* Count the number of eliminable registers and build the FROM and TO
2fb00d7f 3492 REG rtx's. Note that code in gen_rtx_REG will cause, e.g.,
f84d109f 3493 gen_rtx_REG (Pmode, STACK_POINTER_REGNUM) to equal stack_pointer_rtx.
09dd1133
BS
3494 We depend on this. */
3495 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3496 {
3497 num_eliminable += ep->can_eliminate;
3498 ep->from_rtx = gen_rtx_REG (Pmode, ep->from);
3499 ep->to_rtx = gen_rtx_REG (Pmode, ep->to);
3500 }
3501}
32131a9c
RK
3502\f
3503/* Kick all pseudos out of hard register REGNO.
32131a9c
RK
3504
3505 If CANT_ELIMINATE is nonzero, it means that we are doing this spill
3506 because we found we can't eliminate some register. In the case, no pseudos
3507 are allowed to be in the register, even if they are only in a block that
3508 doesn't require spill registers, unlike the case when we are spilling this
3509 hard reg to produce another spill register.
3510
3511 Return nonzero if any pseudos needed to be kicked out. */
3512
03acd8f8 3513static void
0c20a65f 3514spill_hard_reg (unsigned int regno, int cant_eliminate)
32131a9c 3515{
b3694847 3516 int i;
32131a9c 3517
9ff3516a 3518 if (cant_eliminate)
03acd8f8
BS
3519 {
3520 SET_HARD_REG_BIT (bad_spill_regs_global, regno);
3521 regs_ever_live[regno] = 1;
3522 }
9ff3516a 3523
32131a9c
RK
3524 /* Spill every pseudo reg that was allocated to this reg
3525 or to something that overlaps this reg. */
3526
3527 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
3528 if (reg_renumber[i] >= 0
770ae6cc
RK
3529 && (unsigned int) reg_renumber[i] <= regno
3530 && ((unsigned int) reg_renumber[i]
66fd46b6
JH
3531 + hard_regno_nregs[(unsigned int) reg_renumber[i]]
3532 [PSEUDO_REGNO_MODE (i)]
32131a9c 3533 > regno))
f5d8c9f4 3534 SET_REGNO_REG_SET (&spilled_pseudos, i);
03acd8f8 3535}
32131a9c 3536
03acd8f8
BS
3537/* I'm getting weird preprocessor errors if I use IOR_HARD_REG_SET
3538 from within EXECUTE_IF_SET_IN_REG_SET. Hence this awkwardness. */
770ae6cc 3539
03acd8f8 3540static void
0c20a65f 3541ior_hard_reg_set (HARD_REG_SET *set1, HARD_REG_SET *set2)
03acd8f8
BS
3542{
3543 IOR_HARD_REG_SET (*set1, *set2);
3544}
05d10675 3545
03acd8f8
BS
3546/* After find_reload_regs has been run for all insn that need reloads,
3547 and/or spill_hard_regs was called, this function is used to actually
3548 spill pseudo registers and try to reallocate them. It also sets up the
3549 spill_regs array for use by choose_reload_regs. */
a8fdc208 3550
03acd8f8 3551static int
0c20a65f 3552finish_spills (int global)
03acd8f8
BS
3553{
3554 struct insn_chain *chain;
3555 int something_changed = 0;
3556 int i;
a2041967 3557 reg_set_iterator rsi;
03acd8f8
BS
3558
3559 /* Build the spill_regs array for the function. */
3560 /* If there are some registers still to eliminate and one of the spill regs
3561 wasn't ever used before, additional stack space may have to be
3562 allocated to store this register. Thus, we may have changed the offset
3563 between the stack and frame pointers, so mark that something has changed.
32131a9c 3564
03acd8f8
BS
3565 One might think that we need only set VAL to 1 if this is a call-used
3566 register. However, the set of registers that must be saved by the
3567 prologue is not identical to the call-used set. For example, the
3568 register used by the call insn for the return PC is a call-used register,
3569 but must be saved by the prologue. */
3570
3571 n_spills = 0;
3572 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3573 if (TEST_HARD_REG_BIT (used_spill_regs, i))
3574 {
3575 spill_reg_order[i] = n_spills;
3576 spill_regs[n_spills++] = i;
3577 if (num_eliminable && ! regs_ever_live[i])
3578 something_changed = 1;
3579 regs_ever_live[i] = 1;
3580 }
3581 else
3582 spill_reg_order[i] = -1;
3583
a2041967
KH
3584 EXECUTE_IF_SET_IN_REG_SET (&spilled_pseudos, FIRST_PSEUDO_REGISTER, i, rsi)
3585 {
3586 /* Record the current hard register the pseudo is allocated to in
3587 pseudo_previous_regs so we avoid reallocating it to the same
3588 hard reg in a later pass. */
3589 gcc_assert (reg_renumber[i] >= 0);
3590
3591 SET_HARD_REG_BIT (pseudo_previous_regs[i], reg_renumber[i]);
3592 /* Mark it as no longer having a hard register home. */
3593 reg_renumber[i] = -1;
3594 /* We will need to scan everything again. */
3595 something_changed = 1;
3596 }
7609e720 3597
03acd8f8
BS
3598 /* Retry global register allocation if possible. */
3599 if (global)
3600 {
703ad42b 3601 memset (pseudo_forbidden_regs, 0, max_regno * sizeof (HARD_REG_SET));
03acd8f8
BS
3602 /* For every insn that needs reloads, set the registers used as spill
3603 regs in pseudo_forbidden_regs for every pseudo live across the
3604 insn. */
3605 for (chain = insns_need_reload; chain; chain = chain->next_need_reload)
3606 {
3607 EXECUTE_IF_SET_IN_REG_SET
a2041967
KH
3608 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i, rsi)
3609 {
3610 ior_hard_reg_set (pseudo_forbidden_regs + i,
3611 &chain->used_spill_regs);
3612 }
03acd8f8 3613 EXECUTE_IF_SET_IN_REG_SET
a2041967
KH
3614 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i, rsi)
3615 {
3616 ior_hard_reg_set (pseudo_forbidden_regs + i,
3617 &chain->used_spill_regs);
3618 }
03acd8f8 3619 }
7609e720 3620
03acd8f8
BS
3621 /* Retry allocating the spilled pseudos. For each reg, merge the
3622 various reg sets that indicate which hard regs can't be used,
3623 and call retry_global_alloc.
05d10675 3624 We change spill_pseudos here to only contain pseudos that did not
03acd8f8
BS
3625 get a new hard register. */
3626 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
3627 if (reg_old_renumber[i] != reg_renumber[i])
32131a9c 3628 {
03acd8f8
BS
3629 HARD_REG_SET forbidden;
3630 COPY_HARD_REG_SET (forbidden, bad_spill_regs_global);
3631 IOR_HARD_REG_SET (forbidden, pseudo_forbidden_regs[i]);
3632 IOR_HARD_REG_SET (forbidden, pseudo_previous_regs[i]);
3633 retry_global_alloc (i, forbidden);
3634 if (reg_renumber[i] >= 0)
f5d8c9f4 3635 CLEAR_REGNO_REG_SET (&spilled_pseudos, i);
32131a9c 3636 }
03acd8f8 3637 }
7609e720 3638
03acd8f8
BS
3639 /* Fix up the register information in the insn chain.
3640 This involves deleting those of the spilled pseudos which did not get
3641 a new hard register home from the live_{before,after} sets. */
7609e720
BS
3642 for (chain = reload_insn_chain; chain; chain = chain->next)
3643 {
03acd8f8
BS
3644 HARD_REG_SET used_by_pseudos;
3645 HARD_REG_SET used_by_pseudos2;
3646
239a0f5b
BS
3647 AND_COMPL_REG_SET (&chain->live_throughout, &spilled_pseudos);
3648 AND_COMPL_REG_SET (&chain->dead_or_set, &spilled_pseudos);
03acd8f8
BS
3649
3650 /* Mark any unallocated hard regs as available for spills. That
3651 makes inheritance work somewhat better. */
3652 if (chain->need_reload)
3653 {
239a0f5b
BS
3654 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
3655 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
03acd8f8
BS
3656 IOR_HARD_REG_SET (used_by_pseudos, used_by_pseudos2);
3657
3658 /* Save the old value for the sanity test below. */
3659 COPY_HARD_REG_SET (used_by_pseudos2, chain->used_spill_regs);
3660
239a0f5b
BS
3661 compute_use_by_pseudos (&used_by_pseudos, &chain->live_throughout);
3662 compute_use_by_pseudos (&used_by_pseudos, &chain->dead_or_set);
03acd8f8
BS
3663 COMPL_HARD_REG_SET (chain->used_spill_regs, used_by_pseudos);
3664 AND_HARD_REG_SET (chain->used_spill_regs, used_spill_regs);
3665
3666 /* Make sure we only enlarge the set. */
3667 GO_IF_HARD_REG_SUBSET (used_by_pseudos2, chain->used_spill_regs, ok);
41374e13 3668 gcc_unreachable ();
03acd8f8
BS
3669 ok:;
3670 }
7609e720 3671 }
03acd8f8
BS
3672
3673 /* Let alter_reg modify the reg rtx's for the modified pseudos. */
3674 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
3675 {
3676 int regno = reg_renumber[i];
3677 if (reg_old_renumber[i] == regno)
3678 continue;
05d10675 3679
03acd8f8
BS
3680 alter_reg (i, reg_old_renumber[i]);
3681 reg_old_renumber[i] = regno;
c263766c 3682 if (dump_file)
03acd8f8
BS
3683 {
3684 if (regno == -1)
c263766c 3685 fprintf (dump_file, " Register %d now on stack.\n\n", i);
03acd8f8 3686 else
c263766c 3687 fprintf (dump_file, " Register %d now in %d.\n\n",
03acd8f8
BS
3688 i, reg_renumber[i]);
3689 }
3690 }
3691
3692 return something_changed;
7609e720 3693}
32131a9c 3694\f
d754127f 3695/* Find all paradoxical subregs within X and update reg_max_ref_width. */
32131a9c
RK
3696
3697static void
0c20a65f 3698scan_paradoxical_subregs (rtx x)
32131a9c 3699{
b3694847
SS
3700 int i;
3701 const char *fmt;
3702 enum rtx_code code = GET_CODE (x);
32131a9c
RK
3703
3704 switch (code)
3705 {
56f58d3a 3706 case REG:
32131a9c
RK
3707 case CONST_INT:
3708 case CONST:
3709 case SYMBOL_REF:
3710 case LABEL_REF:
3711 case CONST_DOUBLE:
69ef87e2 3712 case CONST_VECTOR: /* shouldn't happen, but just in case. */
32131a9c
RK
3713 case CC0:
3714 case PC:
32131a9c
RK
3715 case USE:
3716 case CLOBBER:
3717 return;
3718
3719 case SUBREG:
f8cfc6aa 3720 if (REG_P (SUBREG_REG (x))
32131a9c
RK
3721 && GET_MODE_SIZE (GET_MODE (x)) > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
3722 reg_max_ref_width[REGNO (SUBREG_REG (x))]
3723 = GET_MODE_SIZE (GET_MODE (x));
3724 return;
05d10675 3725
e9a25f70
JL
3726 default:
3727 break;
32131a9c
RK
3728 }
3729
3730 fmt = GET_RTX_FORMAT (code);
3731 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3732 {
3733 if (fmt[i] == 'e')
3734 scan_paradoxical_subregs (XEXP (x, i));
3735 else if (fmt[i] == 'E')
3736 {
b3694847 3737 int j;
1d7254c5 3738 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
32131a9c
RK
3739 scan_paradoxical_subregs (XVECEXP (x, i, j));
3740 }
3741 }
3742}
3743\f
32131a9c
RK
3744/* Reload pseudo-registers into hard regs around each insn as needed.
3745 Additional register load insns are output before the insn that needs it
3746 and perhaps store insns after insns that modify the reloaded pseudo reg.
3747
3748 reg_last_reload_reg and reg_reloaded_contents keep track of
d08ea79f 3749 which registers are already available in reload registers.
32131a9c
RK
3750 We update these for the reloads that we perform,
3751 as the insns are scanned. */
3752
3753static void
0c20a65f 3754reload_as_needed (int live_known)
32131a9c 3755{
7609e720 3756 struct insn_chain *chain;
553687c9 3757#if defined (AUTO_INC_DEC)
b3694847 3758 int i;
973838fd 3759#endif
32131a9c 3760 rtx x;
32131a9c 3761
703ad42b
KG
3762 memset (spill_reg_rtx, 0, sizeof spill_reg_rtx);
3763 memset (spill_reg_store, 0, sizeof spill_reg_store);
3764 reg_last_reload_reg = xcalloc (max_regno, sizeof (rtx));
3765 reg_has_output_reload = xmalloc (max_regno);
e6e52be0 3766 CLEAR_HARD_REG_SET (reg_reloaded_valid);
e3e9336f 3767 CLEAR_HARD_REG_SET (reg_reloaded_call_part_clobbered);
32131a9c 3768
1f3b1e1a 3769 set_initial_elim_offsets ();
32131a9c 3770
7609e720 3771 for (chain = reload_insn_chain; chain; chain = chain->next)
32131a9c 3772 {
0334ef47 3773 rtx prev = 0;
7609e720
BS
3774 rtx insn = chain->insn;
3775 rtx old_next = NEXT_INSN (insn);
32131a9c
RK
3776
3777 /* If we pass a label, copy the offsets from the label information
3778 into the current offsets of each elimination. */
4b4bf941 3779 if (LABEL_P (insn))
1f3b1e1a 3780 set_offsets_for_label (insn);
32131a9c 3781
2c3c49de 3782 else if (INSN_P (insn))
32131a9c 3783 {
449655a6 3784 rtx oldpat = copy_rtx (PATTERN (insn));
32131a9c 3785
2758481d
RS
3786 /* If this is a USE and CLOBBER of a MEM, ensure that any
3787 references to eliminable registers have been removed. */
3788
3789 if ((GET_CODE (PATTERN (insn)) == USE
3790 || GET_CODE (PATTERN (insn)) == CLOBBER)
3c0cb5de 3791 && MEM_P (XEXP (PATTERN (insn), 0)))
2758481d
RS
3792 XEXP (XEXP (PATTERN (insn), 0), 0)
3793 = eliminate_regs (XEXP (XEXP (PATTERN (insn), 0), 0),
29ae5012 3794 GET_MODE (XEXP (PATTERN (insn), 0)),
1914f5da 3795 NULL_RTX);
2758481d 3796
32131a9c
RK
3797 /* If we need to do register elimination processing, do so.
3798 This might delete the insn, in which case we are done. */
2b49ee39 3799 if ((num_eliminable || num_eliminable_invariants) && chain->need_elim)
32131a9c
RK
3800 {
3801 eliminate_regs_in_insn (insn, 1);
4b4bf941 3802 if (NOTE_P (insn))
cb2afeb3
R
3803 {
3804 update_eliminable_offsets ();
3805 continue;
3806 }
32131a9c
RK
3807 }
3808
7609e720
BS
3809 /* If need_elim is nonzero but need_reload is zero, one might think
3810 that we could simply set n_reloads to 0. However, find_reloads
3811 could have done some manipulation of the insn (such as swapping
3812 commutative operands), and these manipulations are lost during
3813 the first pass for every insn that needs register elimination.
3814 So the actions of find_reloads must be redone here. */
3815
03acd8f8
BS
3816 if (! chain->need_elim && ! chain->need_reload
3817 && ! chain->need_operand_change)
32131a9c
RK
3818 n_reloads = 0;
3819 /* First find the pseudo regs that must be reloaded for this insn.
3820 This info is returned in the tables reload_... (see reload.h).
3821 Also modify the body of INSN by substituting RELOAD
3822 rtx's for those pseudo regs. */
3823 else
3824 {
961192e1 3825 memset (reg_has_output_reload, 0, max_regno);
32131a9c
RK
3826 CLEAR_HARD_REG_SET (reg_is_output_reload);
3827
3828 find_reloads (insn, 1, spill_indirect_levels, live_known,
3829 spill_reg_order);
3830 }
3831
3832 if (n_reloads > 0)
3833 {
cb2afeb3 3834 rtx next = NEXT_INSN (insn);
3c3eeea6 3835 rtx p;
32131a9c 3836
cb2afeb3
R
3837 prev = PREV_INSN (insn);
3838
32131a9c
RK
3839 /* Now compute which reload regs to reload them into. Perhaps
3840 reusing reload regs from previous insns, or else output
3841 load insns to reload them. Maybe output store insns too.
3842 Record the choices of reload reg in reload_reg_rtx. */
03acd8f8 3843 choose_reload_regs (chain);
32131a9c 3844
05d10675 3845 /* Merge any reloads that we didn't combine for fear of
546b63fb
RK
3846 increasing the number of spill registers needed but now
3847 discover can be safely merged. */
f95182a4
ILT
3848 if (SMALL_REGISTER_CLASSES)
3849 merge_assigned_reloads (insn);
546b63fb 3850
32131a9c
RK
3851 /* Generate the insns to reload operands into or out of
3852 their reload regs. */
e04ca094 3853 emit_reload_insns (chain);
32131a9c
RK
3854
3855 /* Substitute the chosen reload regs from reload_reg_rtx
3856 into the insn's body (or perhaps into the bodies of other
3857 load and store insn that we just made for reloading
3858 and that we moved the structure into). */
f759eb8b 3859 subst_reloads (insn);
3c3eeea6
RK
3860
3861 /* If this was an ASM, make sure that all the reload insns
3862 we have generated are valid. If not, give an error
3863 and delete them. */
3864
3865 if (asm_noperands (PATTERN (insn)) >= 0)
3866 for (p = NEXT_INSN (prev); p != next; p = NEXT_INSN (p))
2c3c49de 3867 if (p != insn && INSN_P (p)
00dcfe80 3868 && GET_CODE (PATTERN (p)) != USE
3c3eeea6 3869 && (recog_memoized (p) < 0
0eadeb15 3870 || (extract_insn (p), ! constrain_operands (1))))
3c3eeea6
RK
3871 {
3872 error_for_asm (insn,
971801ff
JM
3873 "%<asm%> operand requires "
3874 "impossible reload");
ca6c03ca 3875 delete_insn (p);
3c3eeea6 3876 }
32131a9c 3877 }
5d7ef82a
BS
3878
3879 if (num_eliminable && chain->need_elim)
3880 update_eliminable_offsets ();
3881
32131a9c
RK
3882 /* Any previously reloaded spilled pseudo reg, stored in this insn,
3883 is no longer validly lying around to save a future reload.
3884 Note that this does not detect pseudos that were reloaded
3885 for this insn in order to be stored in
3886 (obeying register constraints). That is correct; such reload
3887 registers ARE still valid. */
84832317 3888 note_stores (oldpat, forget_old_reloads_1, NULL);
32131a9c
RK
3889
3890 /* There may have been CLOBBER insns placed after INSN. So scan
3891 between INSN and NEXT and use them to forget old reloads. */
7609e720 3892 for (x = NEXT_INSN (insn); x != old_next; x = NEXT_INSN (x))
4b4bf941 3893 if (NONJUMP_INSN_P (x) && GET_CODE (PATTERN (x)) == CLOBBER)
84832317 3894 note_stores (PATTERN (x), forget_old_reloads_1, NULL);
32131a9c
RK
3895
3896#ifdef AUTO_INC_DEC
cb2afeb3
R
3897 /* Likewise for regs altered by auto-increment in this insn.
3898 REG_INC notes have been changed by reloading:
3899 find_reloads_address_1 records substitutions for them,
3900 which have been performed by subst_reloads above. */
3901 for (i = n_reloads - 1; i >= 0; i--)
3902 {
eceef4c9 3903 rtx in_reg = rld[i].in_reg;
cb2afeb3
R
3904 if (in_reg)
3905 {
3906 enum rtx_code code = GET_CODE (in_reg);
3907 /* PRE_INC / PRE_DEC will have the reload register ending up
3908 with the same value as the stack slot, but that doesn't
3909 hold true for POST_INC / POST_DEC. Either we have to
3910 convert the memory access to a true POST_INC / POST_DEC,
3911 or we can't use the reload register for inheritance. */
3912 if ((code == POST_INC || code == POST_DEC)
3913 && TEST_HARD_REG_BIT (reg_reloaded_valid,
eceef4c9 3914 REGNO (rld[i].reg_rtx))
04bbb0c5
JW
3915 /* Make sure it is the inc/dec pseudo, and not
3916 some other (e.g. output operand) pseudo. */
fc555370 3917 && ((unsigned) reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
04bbb0c5 3918 == REGNO (XEXP (in_reg, 0))))
05d10675 3919
cb2afeb3 3920 {
eceef4c9 3921 rtx reload_reg = rld[i].reg_rtx;
cb2afeb3
R
3922 enum machine_mode mode = GET_MODE (reload_reg);
3923 int n = 0;
3924 rtx p;
3925
3926 for (p = PREV_INSN (old_next); p != prev; p = PREV_INSN (p))
3927 {
3928 /* We really want to ignore REG_INC notes here, so
3929 use PATTERN (p) as argument to reg_set_p . */
3930 if (reg_set_p (reload_reg, PATTERN (p)))
3931 break;
4b983fdc 3932 n = count_occurrences (PATTERN (p), reload_reg, 0);
cb2afeb3
R
3933 if (! n)
3934 continue;
3935 if (n == 1)
f67c2384
JL
3936 {
3937 n = validate_replace_rtx (reload_reg,
2fb00d7f
KH
3938 gen_rtx_fmt_e (code,
3939 mode,
3940 reload_reg),
f67c2384
JL
3941 p);
3942
3943 /* We must also verify that the constraints
3944 are met after the replacement. */
3945 extract_insn (p);
3946 if (n)
3947 n = constrain_operands (1);
3948 else
3949 break;
3950
3951 /* If the constraints were not met, then
3952 undo the replacement. */
3953 if (!n)
3954 {
2fb00d7f
KH
3955 validate_replace_rtx (gen_rtx_fmt_e (code,
3956 mode,
3957 reload_reg),
f67c2384
JL
3958 reload_reg, p);
3959 break;
3960 }
05d10675 3961
f67c2384 3962 }
cb2afeb3
R
3963 break;
3964 }
3965 if (n == 1)
02eb1393
R
3966 {
3967 REG_NOTES (p)
3968 = gen_rtx_EXPR_LIST (REG_INC, reload_reg,
3969 REG_NOTES (p));
3970 /* Mark this as having an output reload so that the
3971 REG_INC processing code below won't invalidate
3972 the reload for inheritance. */
3973 SET_HARD_REG_BIT (reg_is_output_reload,
3974 REGNO (reload_reg));
3975 reg_has_output_reload[REGNO (XEXP (in_reg, 0))] = 1;
3976 }
cb2afeb3 3977 else
1d7254c5 3978 forget_old_reloads_1 (XEXP (in_reg, 0), NULL_RTX,
84832317 3979 NULL);
cb2afeb3 3980 }
02eb1393
R
3981 else if ((code == PRE_INC || code == PRE_DEC)
3982 && TEST_HARD_REG_BIT (reg_reloaded_valid,
eceef4c9 3983 REGNO (rld[i].reg_rtx))
02eb1393
R
3984 /* Make sure it is the inc/dec pseudo, and not
3985 some other (e.g. output operand) pseudo. */
fc555370 3986 && ((unsigned) reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
02eb1393
R
3987 == REGNO (XEXP (in_reg, 0))))
3988 {
3989 SET_HARD_REG_BIT (reg_is_output_reload,
eceef4c9 3990 REGNO (rld[i].reg_rtx));
02eb1393
R
3991 reg_has_output_reload[REGNO (XEXP (in_reg, 0))] = 1;
3992 }
cb2afeb3
R
3993 }
3994 }
02eb1393
R
3995 /* If a pseudo that got a hard register is auto-incremented,
3996 we must purge records of copying it into pseudos without
3997 hard registers. */
32131a9c
RK
3998 for (x = REG_NOTES (insn); x; x = XEXP (x, 1))
3999 if (REG_NOTE_KIND (x) == REG_INC)
4000 {
4001 /* See if this pseudo reg was reloaded in this insn.
4002 If so, its last-reload info is still valid
4003 because it is based on this insn's reload. */
4004 for (i = 0; i < n_reloads; i++)
eceef4c9 4005 if (rld[i].out == XEXP (x, 0))
32131a9c
RK
4006 break;
4007
08fb99fa 4008 if (i == n_reloads)
84832317 4009 forget_old_reloads_1 (XEXP (x, 0), NULL_RTX, NULL);
32131a9c
RK
4010 }
4011#endif
4012 }
4013 /* A reload reg's contents are unknown after a label. */
4b4bf941 4014 if (LABEL_P (insn))
e6e52be0 4015 CLEAR_HARD_REG_SET (reg_reloaded_valid);
32131a9c
RK
4016
4017 /* Don't assume a reload reg is still good after a call insn
e3e9336f
DJ
4018 if it is a call-used reg, or if it contains a value that will
4019 be partially clobbered by the call. */
4b4bf941 4020 else if (CALL_P (insn))
e3e9336f 4021 {
8e2e89f7 4022 AND_COMPL_HARD_REG_SET (reg_reloaded_valid, call_used_reg_set);
e3e9336f
DJ
4023 AND_COMPL_HARD_REG_SET (reg_reloaded_valid, reg_reloaded_call_part_clobbered);
4024 }
32131a9c 4025 }
ff154f78
MM
4026
4027 /* Clean up. */
4028 free (reg_last_reload_reg);
4029 free (reg_has_output_reload);
32131a9c
RK
4030}
4031
4032/* Discard all record of any value reloaded from X,
4033 or reloaded in X from someplace else;
4034 unless X is an output reload reg of the current insn.
4035
4036 X may be a hard reg (the reload reg)
4037 or it may be a pseudo reg that was reloaded from. */
4038
4039static void
0c20a65f
AJ
4040forget_old_reloads_1 (rtx x, rtx ignored ATTRIBUTE_UNUSED,
4041 void *data ATTRIBUTE_UNUSED)
32131a9c 4042{
770ae6cc
RK
4043 unsigned int regno;
4044 unsigned int nr;
0a2e51a9 4045
ddef6bc7
JJ
4046 /* note_stores does give us subregs of hard regs,
4047 subreg_regno_offset will abort if it is not a hard reg. */
0a2e51a9
RS
4048 while (GET_CODE (x) == SUBREG)
4049 {
fefac463
AH
4050 /* We ignore the subreg offset when calculating the regno,
4051 because we are using the entire underlying hard register
4052 below. */
0a2e51a9
RS
4053 x = SUBREG_REG (x);
4054 }
32131a9c 4055
f8cfc6aa 4056 if (!REG_P (x))
32131a9c
RK
4057 return;
4058
fefac463 4059 regno = REGNO (x);
32131a9c
RK
4060
4061 if (regno >= FIRST_PSEUDO_REGISTER)
4062 nr = 1;
4063 else
4064 {
770ae6cc
RK
4065 unsigned int i;
4066
66fd46b6 4067 nr = hard_regno_nregs[regno][GET_MODE (x)];
32131a9c
RK
4068 /* Storing into a spilled-reg invalidates its contents.
4069 This can happen if a block-local pseudo is allocated to that reg
4070 and it wasn't spilled because this block's total need is 0.
4071 Then some insn might have an optional reload and use this reg. */
4072 for (i = 0; i < nr; i++)
e6e52be0
R
4073 /* But don't do this if the reg actually serves as an output
4074 reload reg in the current instruction. */
4075 if (n_reloads == 0
4076 || ! TEST_HARD_REG_BIT (reg_is_output_reload, regno + i))
5d77a50c
BS
4077 {
4078 CLEAR_HARD_REG_BIT (reg_reloaded_valid, regno + i);
e3e9336f 4079 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered, regno + i);
5d77a50c
BS
4080 spill_reg_store[regno + i] = 0;
4081 }
32131a9c
RK
4082 }
4083
4084 /* Since value of X has changed,
4085 forget any value previously copied from it. */
4086
4087 while (nr-- > 0)
4088 /* But don't forget a copy if this is the output reload
4089 that establishes the copy's validity. */
4090 if (n_reloads == 0 || reg_has_output_reload[regno + nr] == 0)
4091 reg_last_reload_reg[regno + nr] = 0;
4092}
4093\f
32131a9c
RK
4094/* The following HARD_REG_SETs indicate when each hard register is
4095 used for a reload of various parts of the current insn. */
4096
9e3a9cf2
BS
4097/* If reg is unavailable for all reloads. */
4098static HARD_REG_SET reload_reg_unavailable;
32131a9c
RK
4099/* If reg is in use as a reload reg for a RELOAD_OTHER reload. */
4100static HARD_REG_SET reload_reg_used;
546b63fb
RK
4101/* If reg is in use for a RELOAD_FOR_INPUT_ADDRESS reload for operand I. */
4102static HARD_REG_SET reload_reg_used_in_input_addr[MAX_RECOG_OPERANDS];
47c8cf91
ILT
4103/* If reg is in use for a RELOAD_FOR_INPADDR_ADDRESS reload for operand I. */
4104static HARD_REG_SET reload_reg_used_in_inpaddr_addr[MAX_RECOG_OPERANDS];
546b63fb
RK
4105/* If reg is in use for a RELOAD_FOR_OUTPUT_ADDRESS reload for operand I. */
4106static HARD_REG_SET reload_reg_used_in_output_addr[MAX_RECOG_OPERANDS];
47c8cf91
ILT
4107/* If reg is in use for a RELOAD_FOR_OUTADDR_ADDRESS reload for operand I. */
4108static HARD_REG_SET reload_reg_used_in_outaddr_addr[MAX_RECOG_OPERANDS];
546b63fb
RK
4109/* If reg is in use for a RELOAD_FOR_INPUT reload for operand I. */
4110static HARD_REG_SET reload_reg_used_in_input[MAX_RECOG_OPERANDS];
4111/* If reg is in use for a RELOAD_FOR_OUTPUT reload for operand I. */
4112static HARD_REG_SET reload_reg_used_in_output[MAX_RECOG_OPERANDS];
32131a9c
RK
4113/* If reg is in use for a RELOAD_FOR_OPERAND_ADDRESS reload. */
4114static HARD_REG_SET reload_reg_used_in_op_addr;
893bc853
RK
4115/* If reg is in use for a RELOAD_FOR_OPADDR_ADDR reload. */
4116static HARD_REG_SET reload_reg_used_in_op_addr_reload;
546b63fb
RK
4117/* If reg is in use for a RELOAD_FOR_INSN reload. */
4118static HARD_REG_SET reload_reg_used_in_insn;
4119/* If reg is in use for a RELOAD_FOR_OTHER_ADDRESS reload. */
4120static HARD_REG_SET reload_reg_used_in_other_addr;
32131a9c
RK
4121
4122/* If reg is in use as a reload reg for any sort of reload. */
4123static HARD_REG_SET reload_reg_used_at_all;
4124
be7ae2a4
RK
4125/* If reg is use as an inherited reload. We just mark the first register
4126 in the group. */
4127static HARD_REG_SET reload_reg_used_for_inherit;
4128
f1db3576
JL
4129/* Records which hard regs are used in any way, either as explicit use or
4130 by being allocated to a pseudo during any point of the current insn. */
4131static HARD_REG_SET reg_used_in_insn;
297927a8 4132
546b63fb
RK
4133/* Mark reg REGNO as in use for a reload of the sort spec'd by OPNUM and
4134 TYPE. MODE is used to indicate how many consecutive regs are
4135 actually used. */
32131a9c
RK
4136
4137static void
0c20a65f
AJ
4138mark_reload_reg_in_use (unsigned int regno, int opnum, enum reload_type type,
4139 enum machine_mode mode)
32131a9c 4140{
66fd46b6 4141 unsigned int nregs = hard_regno_nregs[regno][mode];
770ae6cc 4142 unsigned int i;
32131a9c
RK
4143
4144 for (i = regno; i < nregs + regno; i++)
4145 {
546b63fb 4146 switch (type)
32131a9c
RK
4147 {
4148 case RELOAD_OTHER:
4149 SET_HARD_REG_BIT (reload_reg_used, i);
4150 break;
4151
546b63fb
RK
4152 case RELOAD_FOR_INPUT_ADDRESS:
4153 SET_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], i);
32131a9c
RK
4154 break;
4155
47c8cf91
ILT
4156 case RELOAD_FOR_INPADDR_ADDRESS:
4157 SET_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], i);
4158 break;
4159
546b63fb
RK
4160 case RELOAD_FOR_OUTPUT_ADDRESS:
4161 SET_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], i);
32131a9c
RK
4162 break;
4163
47c8cf91
ILT
4164 case RELOAD_FOR_OUTADDR_ADDRESS:
4165 SET_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], i);
4166 break;
4167
32131a9c
RK
4168 case RELOAD_FOR_OPERAND_ADDRESS:
4169 SET_HARD_REG_BIT (reload_reg_used_in_op_addr, i);
4170 break;
4171
893bc853
RK
4172 case RELOAD_FOR_OPADDR_ADDR:
4173 SET_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, i);
4174 break;
4175
546b63fb
RK
4176 case RELOAD_FOR_OTHER_ADDRESS:
4177 SET_HARD_REG_BIT (reload_reg_used_in_other_addr, i);
4178 break;
4179
32131a9c 4180 case RELOAD_FOR_INPUT:
546b63fb 4181 SET_HARD_REG_BIT (reload_reg_used_in_input[opnum], i);
32131a9c
RK
4182 break;
4183
4184 case RELOAD_FOR_OUTPUT:
546b63fb
RK
4185 SET_HARD_REG_BIT (reload_reg_used_in_output[opnum], i);
4186 break;
4187
4188 case RELOAD_FOR_INSN:
4189 SET_HARD_REG_BIT (reload_reg_used_in_insn, i);
32131a9c
RK
4190 break;
4191 }
4192
4193 SET_HARD_REG_BIT (reload_reg_used_at_all, i);
4194 }
4195}
4196
be7ae2a4
RK
4197/* Similarly, but show REGNO is no longer in use for a reload. */
4198
4199static void
0c20a65f
AJ
4200clear_reload_reg_in_use (unsigned int regno, int opnum,
4201 enum reload_type type, enum machine_mode mode)
be7ae2a4 4202{
66fd46b6 4203 unsigned int nregs = hard_regno_nregs[regno][mode];
770ae6cc 4204 unsigned int start_regno, end_regno, r;
be7ae2a4 4205 int i;
cb2afeb3
R
4206 /* A complication is that for some reload types, inheritance might
4207 allow multiple reloads of the same types to share a reload register.
4208 We set check_opnum if we have to check only reloads with the same
4209 operand number, and check_any if we have to check all reloads. */
4210 int check_opnum = 0;
4211 int check_any = 0;
4212 HARD_REG_SET *used_in_set;
be7ae2a4 4213
cb2afeb3 4214 switch (type)
be7ae2a4 4215 {
cb2afeb3
R
4216 case RELOAD_OTHER:
4217 used_in_set = &reload_reg_used;
4218 break;
be7ae2a4 4219
cb2afeb3
R
4220 case RELOAD_FOR_INPUT_ADDRESS:
4221 used_in_set = &reload_reg_used_in_input_addr[opnum];
4222 break;
be7ae2a4 4223
cb2afeb3
R
4224 case RELOAD_FOR_INPADDR_ADDRESS:
4225 check_opnum = 1;
4226 used_in_set = &reload_reg_used_in_inpaddr_addr[opnum];
4227 break;
47c8cf91 4228
cb2afeb3
R
4229 case RELOAD_FOR_OUTPUT_ADDRESS:
4230 used_in_set = &reload_reg_used_in_output_addr[opnum];
4231 break;
be7ae2a4 4232
cb2afeb3
R
4233 case RELOAD_FOR_OUTADDR_ADDRESS:
4234 check_opnum = 1;
4235 used_in_set = &reload_reg_used_in_outaddr_addr[opnum];
4236 break;
47c8cf91 4237
cb2afeb3
R
4238 case RELOAD_FOR_OPERAND_ADDRESS:
4239 used_in_set = &reload_reg_used_in_op_addr;
4240 break;
be7ae2a4 4241
cb2afeb3
R
4242 case RELOAD_FOR_OPADDR_ADDR:
4243 check_any = 1;
4244 used_in_set = &reload_reg_used_in_op_addr_reload;
4245 break;
893bc853 4246
cb2afeb3
R
4247 case RELOAD_FOR_OTHER_ADDRESS:
4248 used_in_set = &reload_reg_used_in_other_addr;
4249 check_any = 1;
4250 break;
be7ae2a4 4251
cb2afeb3
R
4252 case RELOAD_FOR_INPUT:
4253 used_in_set = &reload_reg_used_in_input[opnum];
4254 break;
be7ae2a4 4255
cb2afeb3
R
4256 case RELOAD_FOR_OUTPUT:
4257 used_in_set = &reload_reg_used_in_output[opnum];
4258 break;
be7ae2a4 4259
cb2afeb3
R
4260 case RELOAD_FOR_INSN:
4261 used_in_set = &reload_reg_used_in_insn;
4262 break;
4263 default:
41374e13 4264 gcc_unreachable ();
cb2afeb3
R
4265 }
4266 /* We resolve conflicts with remaining reloads of the same type by
68e82b83 4267 excluding the intervals of reload registers by them from the
cb2afeb3
R
4268 interval of freed reload registers. Since we only keep track of
4269 one set of interval bounds, we might have to exclude somewhat
3e92902c 4270 more than what would be necessary if we used a HARD_REG_SET here.
cb2afeb3
R
4271 But this should only happen very infrequently, so there should
4272 be no reason to worry about it. */
05d10675 4273
cb2afeb3
R
4274 start_regno = regno;
4275 end_regno = regno + nregs;
4276 if (check_opnum || check_any)
4277 {
4278 for (i = n_reloads - 1; i >= 0; i--)
4279 {
eceef4c9
BS
4280 if (rld[i].when_needed == type
4281 && (check_any || rld[i].opnum == opnum)
4282 && rld[i].reg_rtx)
cb2afeb3 4283 {
770ae6cc
RK
4284 unsigned int conflict_start = true_regnum (rld[i].reg_rtx);
4285 unsigned int conflict_end
cb2afeb3 4286 = (conflict_start
66fd46b6 4287 + hard_regno_nregs[conflict_start][rld[i].mode]);
cb2afeb3
R
4288
4289 /* If there is an overlap with the first to-be-freed register,
4290 adjust the interval start. */
4291 if (conflict_start <= start_regno && conflict_end > start_regno)
4292 start_regno = conflict_end;
4293 /* Otherwise, if there is a conflict with one of the other
4294 to-be-freed registers, adjust the interval end. */
4295 if (conflict_start > start_regno && conflict_start < end_regno)
4296 end_regno = conflict_start;
4297 }
be7ae2a4
RK
4298 }
4299 }
770ae6cc
RK
4300
4301 for (r = start_regno; r < end_regno; r++)
4302 CLEAR_HARD_REG_BIT (*used_in_set, r);
be7ae2a4
RK
4303}
4304
32131a9c 4305/* 1 if reg REGNO is free as a reload reg for a reload of the sort
546b63fb 4306 specified by OPNUM and TYPE. */
32131a9c
RK
4307
4308static int
0c20a65f 4309reload_reg_free_p (unsigned int regno, int opnum, enum reload_type type)
32131a9c 4310{
546b63fb
RK
4311 int i;
4312
2edc8d65 4313 /* In use for a RELOAD_OTHER means it's not available for anything. */
9e3a9cf2
BS
4314 if (TEST_HARD_REG_BIT (reload_reg_used, regno)
4315 || TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
32131a9c 4316 return 0;
546b63fb
RK
4317
4318 switch (type)
32131a9c
RK
4319 {
4320 case RELOAD_OTHER:
2edc8d65
RK
4321 /* In use for anything means we can't use it for RELOAD_OTHER. */
4322 if (TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno)
224f1d71 4323 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
808ededc 4324 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno)
224f1d71
RK
4325 || TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
4326 return 0;
4327
4328 for (i = 0; i < reload_n_operands; i++)
4329 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
47c8cf91 4330 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
224f1d71 4331 || TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
47c8cf91 4332 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
224f1d71
RK
4333 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
4334 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4335 return 0;
4336
4337 return 1;
32131a9c 4338
32131a9c 4339 case RELOAD_FOR_INPUT:
546b63fb
RK
4340 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4341 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno))
4342 return 0;
4343
893bc853
RK
4344 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
4345 return 0;
4346
546b63fb
RK
4347 /* If it is used for some other input, can't use it. */
4348 for (i = 0; i < reload_n_operands; i++)
4349 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4350 return 0;
4351
4352 /* If it is used in a later operand's address, can't use it. */
4353 for (i = opnum + 1; i < reload_n_operands; i++)
47c8cf91
ILT
4354 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4355 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
546b63fb
RK
4356 return 0;
4357
4358 return 1;
4359
4360 case RELOAD_FOR_INPUT_ADDRESS:
4361 /* Can't use a register if it is used for an input address for this
4362 operand or used as an input in an earlier one. */
47c8cf91
ILT
4363 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], regno)
4364 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
4365 return 0;
4366
4367 for (i = 0; i < opnum; i++)
4368 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4369 return 0;
4370
4371 return 1;
4372
4373 case RELOAD_FOR_INPADDR_ADDRESS:
4374 /* Can't use a register if it is used for an input address
05d10675
BS
4375 for this operand or used as an input in an earlier
4376 one. */
47c8cf91 4377 if (TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
546b63fb
RK
4378 return 0;
4379
4380 for (i = 0; i < opnum; i++)
4381 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4382 return 0;
4383
4384 return 1;
4385
4386 case RELOAD_FOR_OUTPUT_ADDRESS:
4387 /* Can't use a register if it is used for an output address for this
d1d18b46
DJ
4388 operand or used as an output in this or a later operand. Note
4389 that multiple output operands are emitted in reverse order, so
4390 the conflicting ones are those with lower indices. */
546b63fb
RK
4391 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], regno))
4392 return 0;
4393
d1d18b46 4394 for (i = 0; i <= opnum; i++)
546b63fb
RK
4395 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4396 return 0;
4397
4398 return 1;
4399
47c8cf91
ILT
4400 case RELOAD_FOR_OUTADDR_ADDRESS:
4401 /* Can't use a register if it is used for an output address
05d10675 4402 for this operand or used as an output in this or a
d1d18b46
DJ
4403 later operand. Note that multiple output operands are
4404 emitted in reverse order, so the conflicting ones are
4405 those with lower indices. */
47c8cf91
ILT
4406 if (TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], regno))
4407 return 0;
4408
d1d18b46 4409 for (i = 0; i <= opnum; i++)
47c8cf91
ILT
4410 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4411 return 0;
4412
4413 return 1;
4414
32131a9c 4415 case RELOAD_FOR_OPERAND_ADDRESS:
546b63fb
RK
4416 for (i = 0; i < reload_n_operands; i++)
4417 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4418 return 0;
4419
4420 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4421 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
4422
893bc853
RK
4423 case RELOAD_FOR_OPADDR_ADDR:
4424 for (i = 0; i < reload_n_operands; i++)
05d10675
BS
4425 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4426 return 0;
893bc853 4427
a94ce333 4428 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno));
893bc853 4429
32131a9c 4430 case RELOAD_FOR_OUTPUT:
546b63fb 4431 /* This cannot share a register with RELOAD_FOR_INSN reloads, other
d1d18b46
DJ
4432 outputs, or an operand address for this or an earlier output.
4433 Note that multiple output operands are emitted in reverse order,
4434 so the conflicting ones are those with higher indices. */
546b63fb
RK
4435 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
4436 return 0;
4437
4438 for (i = 0; i < reload_n_operands; i++)
4439 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4440 return 0;
4441
d1d18b46 4442 for (i = opnum; i < reload_n_operands; i++)
47c8cf91
ILT
4443 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4444 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
546b63fb
RK
4445 return 0;
4446
4447 return 1;
4448
4449 case RELOAD_FOR_INSN:
4450 for (i = 0; i < reload_n_operands; i++)
4451 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
4452 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4453 return 0;
4454
4455 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4456 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
4457
4458 case RELOAD_FOR_OTHER_ADDRESS:
4459 return ! TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno);
41374e13
NS
4460
4461 default:
4462 gcc_unreachable ();
32131a9c 4463 }
32131a9c
RK
4464}
4465
32131a9c 4466/* Return 1 if the value in reload reg REGNO, as used by a reload
546b63fb 4467 needed for the part of the insn specified by OPNUM and TYPE,
32131a9c
RK
4468 is still available in REGNO at the end of the insn.
4469
4470 We can assume that the reload reg was already tested for availability
4471 at the time it is needed, and we should not check this again,
4472 in case the reg has already been marked in use. */
4473
4474static int
0c20a65f 4475reload_reg_reaches_end_p (unsigned int regno, int opnum, enum reload_type type)
32131a9c 4476{
546b63fb
RK
4477 int i;
4478
4479 switch (type)
32131a9c
RK
4480 {
4481 case RELOAD_OTHER:
4482 /* Since a RELOAD_OTHER reload claims the reg for the entire insn,
4483 its value must reach the end. */
4484 return 1;
4485
4486 /* If this use is for part of the insn,
05d10675 4487 its value reaches if no subsequent part uses the same register.
546b63fb
RK
4488 Just like the above function, don't try to do this with lots
4489 of fallthroughs. */
4490
4491 case RELOAD_FOR_OTHER_ADDRESS:
4492 /* Here we check for everything else, since these don't conflict
4493 with anything else and everything comes later. */
4494
4495 for (i = 0; i < reload_n_operands; i++)
4496 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
47c8cf91 4497 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
546b63fb
RK
4498 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno)
4499 || TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
47c8cf91 4500 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
546b63fb
RK
4501 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4502 return 0;
4503
4504 return (! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
808ededc 4505 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno)
546b63fb
RK
4506 && ! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4507 && ! TEST_HARD_REG_BIT (reload_reg_used, regno));
4508
4509 case RELOAD_FOR_INPUT_ADDRESS:
47c8cf91 4510 case RELOAD_FOR_INPADDR_ADDRESS:
546b63fb
RK
4511 /* Similar, except that we check only for this and subsequent inputs
4512 and the address of only subsequent inputs and we do not need
4513 to check for RELOAD_OTHER objects since they are known not to
4514 conflict. */
4515
4516 for (i = opnum; i < reload_n_operands; i++)
4517 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4518 return 0;
4519
4520 for (i = opnum + 1; i < reload_n_operands; i++)
47c8cf91
ILT
4521 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4522 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
546b63fb
RK
4523 return 0;
4524
4525 for (i = 0; i < reload_n_operands; i++)
4526 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
47c8cf91 4527 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
546b63fb
RK
4528 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4529 return 0;
4530
893bc853
RK
4531 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
4532 return 0;
4533
2af88768
GK
4534 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4535 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4536 && !TEST_HARD_REG_BIT (reload_reg_used, regno));
546b63fb 4537
32131a9c 4538 case RELOAD_FOR_INPUT:
546b63fb 4539 /* Similar to input address, except we start at the next operand for
05d10675 4540 both input and input address and we do not check for
546b63fb
RK
4541 RELOAD_FOR_OPERAND_ADDRESS and RELOAD_FOR_INSN since these
4542 would conflict. */
4543
4544 for (i = opnum + 1; i < reload_n_operands; i++)
4545 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
47c8cf91 4546 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
546b63fb
RK
4547 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4548 return 0;
4549
0f41302f 4550 /* ... fall through ... */
546b63fb 4551
32131a9c 4552 case RELOAD_FOR_OPERAND_ADDRESS:
546b63fb
RK
4553 /* Check outputs and their addresses. */
4554
4555 for (i = 0; i < reload_n_operands; i++)
4556 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
47c8cf91 4557 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
546b63fb
RK
4558 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4559 return 0;
4560
2af88768 4561 return (!TEST_HARD_REG_BIT (reload_reg_used, regno));
546b63fb 4562
893bc853
RK
4563 case RELOAD_FOR_OPADDR_ADDR:
4564 for (i = 0; i < reload_n_operands; i++)
4565 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
47c8cf91 4566 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
893bc853
RK
4567 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4568 return 0;
4569
2af88768
GK
4570 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4571 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4572 && !TEST_HARD_REG_BIT (reload_reg_used, regno));
893bc853 4573
546b63fb 4574 case RELOAD_FOR_INSN:
893bc853 4575 /* These conflict with other outputs with RELOAD_OTHER. So
546b63fb
RK
4576 we need only check for output addresses. */
4577
d1d18b46 4578 opnum = reload_n_operands;
546b63fb 4579
0f41302f 4580 /* ... fall through ... */
546b63fb 4581
32131a9c 4582 case RELOAD_FOR_OUTPUT:
546b63fb 4583 case RELOAD_FOR_OUTPUT_ADDRESS:
47c8cf91 4584 case RELOAD_FOR_OUTADDR_ADDRESS:
546b63fb 4585 /* We already know these can't conflict with a later output. So the
d1d18b46
DJ
4586 only thing to check are later output addresses.
4587 Note that multiple output operands are emitted in reverse order,
4588 so the conflicting ones are those with lower indices. */
4589 for (i = 0; i < opnum; i++)
47c8cf91
ILT
4590 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4591 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
546b63fb
RK
4592 return 0;
4593
32131a9c 4594 return 1;
546b63fb 4595
41374e13
NS
4596 default:
4597 gcc_unreachable ();
4598 }
32131a9c
RK
4599}
4600\f
351aa1c1
RK
4601/* Return 1 if the reloads denoted by R1 and R2 cannot share a register.
4602 Return 0 otherwise.
4603
4604 This function uses the same algorithm as reload_reg_free_p above. */
4605
f5963e61 4606int
0c20a65f 4607reloads_conflict (int r1, int r2)
351aa1c1 4608{
eceef4c9
BS
4609 enum reload_type r1_type = rld[r1].when_needed;
4610 enum reload_type r2_type = rld[r2].when_needed;
4611 int r1_opnum = rld[r1].opnum;
4612 int r2_opnum = rld[r2].opnum;
351aa1c1 4613
2edc8d65
RK
4614 /* RELOAD_OTHER conflicts with everything. */
4615 if (r2_type == RELOAD_OTHER)
351aa1c1
RK
4616 return 1;
4617
4618 /* Otherwise, check conflicts differently for each type. */
4619
4620 switch (r1_type)
4621 {
4622 case RELOAD_FOR_INPUT:
05d10675 4623 return (r2_type == RELOAD_FOR_INSN
351aa1c1 4624 || r2_type == RELOAD_FOR_OPERAND_ADDRESS
893bc853 4625 || r2_type == RELOAD_FOR_OPADDR_ADDR
351aa1c1 4626 || r2_type == RELOAD_FOR_INPUT
47c8cf91
ILT
4627 || ((r2_type == RELOAD_FOR_INPUT_ADDRESS
4628 || r2_type == RELOAD_FOR_INPADDR_ADDRESS)
4629 && r2_opnum > r1_opnum));
351aa1c1
RK
4630
4631 case RELOAD_FOR_INPUT_ADDRESS:
4632 return ((r2_type == RELOAD_FOR_INPUT_ADDRESS && r1_opnum == r2_opnum)
4633 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
4634
47c8cf91
ILT
4635 case RELOAD_FOR_INPADDR_ADDRESS:
4636 return ((r2_type == RELOAD_FOR_INPADDR_ADDRESS && r1_opnum == r2_opnum)
4637 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
4638
351aa1c1
RK
4639 case RELOAD_FOR_OUTPUT_ADDRESS:
4640 return ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS && r2_opnum == r1_opnum)
d1d18b46 4641 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
351aa1c1 4642
47c8cf91
ILT
4643 case RELOAD_FOR_OUTADDR_ADDRESS:
4644 return ((r2_type == RELOAD_FOR_OUTADDR_ADDRESS && r2_opnum == r1_opnum)
d1d18b46 4645 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
47c8cf91 4646
351aa1c1
RK
4647 case RELOAD_FOR_OPERAND_ADDRESS:
4648 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_INSN
a94ce333 4649 || r2_type == RELOAD_FOR_OPERAND_ADDRESS);
351aa1c1 4650
893bc853 4651 case RELOAD_FOR_OPADDR_ADDR:
05d10675 4652 return (r2_type == RELOAD_FOR_INPUT
a94ce333 4653 || r2_type == RELOAD_FOR_OPADDR_ADDR);
893bc853 4654
351aa1c1
RK
4655 case RELOAD_FOR_OUTPUT:
4656 return (r2_type == RELOAD_FOR_INSN || r2_type == RELOAD_FOR_OUTPUT
47c8cf91
ILT
4657 || ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS
4658 || r2_type == RELOAD_FOR_OUTADDR_ADDRESS)
d1d18b46 4659 && r2_opnum >= r1_opnum));
351aa1c1
RK
4660
4661 case RELOAD_FOR_INSN:
4662 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_OUTPUT
4663 || r2_type == RELOAD_FOR_INSN
4664 || r2_type == RELOAD_FOR_OPERAND_ADDRESS);
4665
4666 case RELOAD_FOR_OTHER_ADDRESS:
4667 return r2_type == RELOAD_FOR_OTHER_ADDRESS;
4668
adab4fc5 4669 case RELOAD_OTHER:
2edc8d65 4670 return 1;
adab4fc5 4671
351aa1c1 4672 default:
41374e13 4673 gcc_unreachable ();
351aa1c1
RK
4674 }
4675}
4676\f
32131a9c
RK
4677/* Indexed by reload number, 1 if incoming value
4678 inherited from previous insns. */
4679char reload_inherited[MAX_RELOADS];
4680
4681/* For an inherited reload, this is the insn the reload was inherited from,
4682 if we know it. Otherwise, this is 0. */
4683rtx reload_inheritance_insn[MAX_RELOADS];
4684
40f03658 4685/* If nonzero, this is a place to get the value of the reload,
32131a9c
RK
4686 rather than using reload_in. */
4687rtx reload_override_in[MAX_RELOADS];
4688
e6e52be0
R
4689/* For each reload, the hard register number of the register used,
4690 or -1 if we did not need a register for this reload. */
32131a9c
RK
4691int reload_spill_index[MAX_RELOADS];
4692
304a22dd
R
4693/* Subroutine of free_for_value_p, used to check a single register.
4694 START_REGNO is the starting regno of the full reload register
4695 (possibly comprising multiple hard registers) that we are considering. */
f5470689 4696
6e684430 4697static int
0c20a65f
AJ
4698reload_reg_free_for_value_p (int start_regno, int regno, int opnum,
4699 enum reload_type type, rtx value, rtx out,
4700 int reloadnum, int ignore_address_reloads)
6e684430
R
4701{
4702 int time1;
09a308fe
R
4703 /* Set if we see an input reload that must not share its reload register
4704 with any new earlyclobber, but might otherwise share the reload
4705 register with an output or input-output reload. */
4706 int check_earlyclobber = 0;
6e684430 4707 int i;
dfe96118
R
4708 int copy = 0;
4709
9e3a9cf2 4710 if (TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
dc8842bf
AH
4711 return 0;
4712
dfe96118
R
4713 if (out == const0_rtx)
4714 {
4715 copy = 1;
4716 out = NULL_RTX;
4717 }
6e684430
R
4718
4719 /* We use some pseudo 'time' value to check if the lifetimes of the
4720 new register use would overlap with the one of a previous reload
4721 that is not read-only or uses a different value.
4722 The 'time' used doesn't have to be linear in any shape or form, just
4723 monotonic.
4724 Some reload types use different 'buckets' for each operand.
4725 So there are MAX_RECOG_OPERANDS different time values for each
cecbf6e2
R
4726 such reload type.
4727 We compute TIME1 as the time when the register for the prospective
4728 new reload ceases to be live, and TIME2 for each existing
4729 reload as the time when that the reload register of that reload
4730 becomes live.
4731 Where there is little to be gained by exact lifetime calculations,
4732 we just make conservative assumptions, i.e. a longer lifetime;
4733 this is done in the 'default:' cases. */
6e684430
R
4734 switch (type)
4735 {
4736 case RELOAD_FOR_OTHER_ADDRESS:
203588e7 4737 /* RELOAD_FOR_OTHER_ADDRESS conflicts with RELOAD_OTHER reloads. */
c2b4b171 4738 time1 = copy ? 0 : 1;
6e684430 4739 break;
dfe96118
R
4740 case RELOAD_OTHER:
4741 time1 = copy ? 1 : MAX_RECOG_OPERANDS * 5 + 5;
4742 break;
05d10675
BS
4743 /* For each input, we may have a sequence of RELOAD_FOR_INPADDR_ADDRESS,
4744 RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT. By adding 0 / 1 / 2 ,
4745 respectively, to the time values for these, we get distinct time
4746 values. To get distinct time values for each operand, we have to
4747 multiply opnum by at least three. We round that up to four because
4748 multiply by four is often cheaper. */
6e684430 4749 case RELOAD_FOR_INPADDR_ADDRESS:
dfe96118 4750 time1 = opnum * 4 + 2;
6e684430
R
4751 break;
4752 case RELOAD_FOR_INPUT_ADDRESS:
dfe96118
R
4753 time1 = opnum * 4 + 3;
4754 break;
4755 case RELOAD_FOR_INPUT:
4756 /* All RELOAD_FOR_INPUT reloads remain live till the instruction
4757 executes (inclusive). */
4758 time1 = copy ? opnum * 4 + 4 : MAX_RECOG_OPERANDS * 4 + 3;
6e684430 4759 break;
cb2afeb3 4760 case RELOAD_FOR_OPADDR_ADDR:
05d10675
BS
4761 /* opnum * 4 + 4
4762 <= (MAX_RECOG_OPERANDS - 1) * 4 + 4 == MAX_RECOG_OPERANDS * 4 */
cb2afeb3
R
4763 time1 = MAX_RECOG_OPERANDS * 4 + 1;
4764 break;
4765 case RELOAD_FOR_OPERAND_ADDRESS:
4766 /* RELOAD_FOR_OPERAND_ADDRESS reloads are live even while the insn
4767 is executed. */
dfe96118
R
4768 time1 = copy ? MAX_RECOG_OPERANDS * 4 + 2 : MAX_RECOG_OPERANDS * 4 + 3;
4769 break;
4770 case RELOAD_FOR_OUTADDR_ADDRESS:
4771 time1 = MAX_RECOG_OPERANDS * 4 + 4 + opnum;
6e684430 4772 break;
6e684430 4773 case RELOAD_FOR_OUTPUT_ADDRESS:
dfe96118 4774 time1 = MAX_RECOG_OPERANDS * 4 + 5 + opnum;
6e684430
R
4775 break;
4776 default:
dfe96118 4777 time1 = MAX_RECOG_OPERANDS * 5 + 5;
6e684430
R
4778 }
4779
4780 for (i = 0; i < n_reloads; i++)
4781 {
eceef4c9 4782 rtx reg = rld[i].reg_rtx;
f8cfc6aa 4783 if (reg && REG_P (reg)
6e684430 4784 && ((unsigned) regno - true_regnum (reg)
66fd46b6 4785 <= hard_regno_nregs[REGNO (reg)][GET_MODE (reg)] - (unsigned) 1)
f5470689 4786 && i != reloadnum)
6e684430 4787 {
304a22dd
R
4788 rtx other_input = rld[i].in;
4789
4790 /* If the other reload loads the same input value, that
4791 will not cause a conflict only if it's loading it into
4792 the same register. */
4793 if (true_regnum (reg) != start_regno)
4794 other_input = NULL_RTX;
4795 if (! other_input || ! rtx_equal_p (other_input, value)
eceef4c9 4796 || rld[i].out || out)
6e684430 4797 {
09a308fe 4798 int time2;
eceef4c9 4799 switch (rld[i].when_needed)
f5470689
R
4800 {
4801 case RELOAD_FOR_OTHER_ADDRESS:
4802 time2 = 0;
4803 break;
4804 case RELOAD_FOR_INPADDR_ADDRESS:
cb2afeb3
R
4805 /* find_reloads makes sure that a
4806 RELOAD_FOR_{INP,OP,OUT}ADDR_ADDRESS reload is only used
4807 by at most one - the first -
4808 RELOAD_FOR_{INPUT,OPERAND,OUTPUT}_ADDRESS . If the
4809 address reload is inherited, the address address reload
4810 goes away, so we can ignore this conflict. */
dfe96118
R
4811 if (type == RELOAD_FOR_INPUT_ADDRESS && reloadnum == i + 1
4812 && ignore_address_reloads
4813 /* Unless the RELOAD_FOR_INPUT is an auto_inc expression.
4814 Then the address address is still needed to store
4815 back the new address. */
eceef4c9 4816 && ! rld[reloadnum].out)
cb2afeb3 4817 continue;
dfe96118
R
4818 /* Likewise, if a RELOAD_FOR_INPUT can inherit a value, its
4819 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS
4820 reloads go away. */
eceef4c9 4821 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
dfe96118
R
4822 && ignore_address_reloads
4823 /* Unless we are reloading an auto_inc expression. */
eceef4c9 4824 && ! rld[reloadnum].out)
dfe96118 4825 continue;
eceef4c9 4826 time2 = rld[i].opnum * 4 + 2;
f5470689
R
4827 break;
4828 case RELOAD_FOR_INPUT_ADDRESS:
eceef4c9 4829 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
dfe96118 4830 && ignore_address_reloads
eceef4c9 4831 && ! rld[reloadnum].out)
dfe96118 4832 continue;
eceef4c9 4833 time2 = rld[i].opnum * 4 + 3;
f5470689
R
4834 break;
4835 case RELOAD_FOR_INPUT:
eceef4c9 4836 time2 = rld[i].opnum * 4 + 4;
09a308fe 4837 check_earlyclobber = 1;
f5470689 4838 break;
eceef4c9 4839 /* rld[i].opnum * 4 + 4 <= (MAX_RECOG_OPERAND - 1) * 4 + 4
05d10675 4840 == MAX_RECOG_OPERAND * 4 */
cb2afeb3 4841 case RELOAD_FOR_OPADDR_ADDR:
dfe96118
R
4842 if (type == RELOAD_FOR_OPERAND_ADDRESS && reloadnum == i + 1
4843 && ignore_address_reloads
eceef4c9 4844 && ! rld[reloadnum].out)
cb2afeb3 4845 continue;
dfe96118 4846 time2 = MAX_RECOG_OPERANDS * 4 + 1;
cb2afeb3
R
4847 break;
4848 case RELOAD_FOR_OPERAND_ADDRESS:
dfe96118 4849 time2 = MAX_RECOG_OPERANDS * 4 + 2;
09a308fe 4850 check_earlyclobber = 1;
dfe96118
R
4851 break;
4852 case RELOAD_FOR_INSN:
4853 time2 = MAX_RECOG_OPERANDS * 4 + 3;
cb2afeb3 4854 break;
f5470689 4855 case RELOAD_FOR_OUTPUT:
05d10675
BS
4856 /* All RELOAD_FOR_OUTPUT reloads become live just after the
4857 instruction is executed. */
dfe96118 4858 time2 = MAX_RECOG_OPERANDS * 4 + 4;
f5470689 4859 break;
05d10675
BS
4860 /* The first RELOAD_FOR_OUTADDR_ADDRESS reload conflicts with
4861 the RELOAD_FOR_OUTPUT reloads, so assign it the same time
4862 value. */
cb2afeb3 4863 case RELOAD_FOR_OUTADDR_ADDRESS:
dfe96118
R
4864 if (type == RELOAD_FOR_OUTPUT_ADDRESS && reloadnum == i + 1
4865 && ignore_address_reloads
eceef4c9 4866 && ! rld[reloadnum].out)
cb2afeb3 4867 continue;
eceef4c9 4868 time2 = MAX_RECOG_OPERANDS * 4 + 4 + rld[i].opnum;
dfe96118 4869 break;
f5470689 4870 case RELOAD_FOR_OUTPUT_ADDRESS:
eceef4c9 4871 time2 = MAX_RECOG_OPERANDS * 4 + 5 + rld[i].opnum;
f5470689
R
4872 break;
4873 case RELOAD_OTHER:
dfe96118
R
4874 /* If there is no conflict in the input part, handle this
4875 like an output reload. */
304a22dd 4876 if (! rld[i].in || rtx_equal_p (other_input, value))
f5470689 4877 {
dfe96118 4878 time2 = MAX_RECOG_OPERANDS * 4 + 4;
57850c85 4879 /* Earlyclobbered outputs must conflict with inputs. */
09a308fe
R
4880 if (earlyclobber_operand_p (rld[i].out))
4881 time2 = MAX_RECOG_OPERANDS * 4 + 3;
1d7254c5 4882
f5470689
R
4883 break;
4884 }
dfe96118
R
4885 time2 = 1;
4886 /* RELOAD_OTHER might be live beyond instruction execution,
4887 but this is not obvious when we set time2 = 1. So check
4888 here if there might be a problem with the new reload
4889 clobbering the register used by the RELOAD_OTHER. */
4890 if (out)
4891 return 0;
4892 break;
f5470689 4893 default:
dfe96118 4894 return 0;
f5470689 4895 }
25963977 4896 if ((time1 >= time2
eceef4c9 4897 && (! rld[i].in || rld[i].out
304a22dd 4898 || ! rtx_equal_p (other_input, value)))
eceef4c9 4899 || (out && rld[reloadnum].out_reg
701d55e8 4900 && time2 >= MAX_RECOG_OPERANDS * 4 + 3))
f5470689 4901 return 0;
6e684430 4902 }
6e684430
R
4903 }
4904 }
09a308fe
R
4905
4906 /* Earlyclobbered outputs must conflict with inputs. */
4907 if (check_earlyclobber && out && earlyclobber_operand_p (out))
4908 return 0;
4909
6e684430
R
4910 return 1;
4911}
4912
c02cad8f
BS
4913/* Return 1 if the value in reload reg REGNO, as used by a reload
4914 needed for the part of the insn specified by OPNUM and TYPE,
4915 may be used to load VALUE into it.
4916
4917 MODE is the mode in which the register is used, this is needed to
4918 determine how many hard regs to test.
4919
4920 Other read-only reloads with the same value do not conflict
40f03658 4921 unless OUT is nonzero and these other reloads have to live while
c02cad8f
BS
4922 output reloads live.
4923 If OUT is CONST0_RTX, this is a special case: it means that the
4924 test should not be for using register REGNO as reload register, but
4925 for copying from register REGNO into the reload register.
4926
4927 RELOADNUM is the number of the reload we want to load this value for;
4928 a reload does not conflict with itself.
4929
4930 When IGNORE_ADDRESS_RELOADS is set, we can not have conflicts with
4931 reloads that load an address for the very reload we are considering.
4932
4933 The caller has to make sure that there is no conflict with the return
4934 register. */
4935
4936static int
0c20a65f
AJ
4937free_for_value_p (int regno, enum machine_mode mode, int opnum,
4938 enum reload_type type, rtx value, rtx out, int reloadnum,
4939 int ignore_address_reloads)
c02cad8f 4940{
66fd46b6 4941 int nregs = hard_regno_nregs[regno][mode];
c02cad8f 4942 while (nregs-- > 0)
304a22dd
R
4943 if (! reload_reg_free_for_value_p (regno, regno + nregs, opnum, type,
4944 value, out, reloadnum,
4945 ignore_address_reloads))
c02cad8f
BS
4946 return 0;
4947 return 1;
4948}
4949
86caf04d
PB
4950/* Return nonzero if the rtx X is invariant over the current function. */
4951/* ??? Actually, the places where we use this expect exactly what
4952 * is tested here, and not everything that is function invariant. In
4953 * particular, the frame pointer and arg pointer are special cased;
4954 * pic_offset_table_rtx is not, and this will cause aborts when we
4955 * go to spill these things to memory. */
4956
4957static int
4958function_invariant_p (rtx x)
4959{
4960 if (CONSTANT_P (x))
4961 return 1;
4962 if (x == frame_pointer_rtx || x == arg_pointer_rtx)
4963 return 1;
4964 if (GET_CODE (x) == PLUS
4965 && (XEXP (x, 0) == frame_pointer_rtx || XEXP (x, 0) == arg_pointer_rtx)
4966 && CONSTANT_P (XEXP (x, 1)))
4967 return 1;
4968 return 0;
4969}
4970
ff6534ad
BS
4971/* Determine whether the reload reg X overlaps any rtx'es used for
4972 overriding inheritance. Return nonzero if so. */
4973
4974static int
0c20a65f 4975conflicts_with_override (rtx x)
ff6534ad
BS
4976{
4977 int i;
4978 for (i = 0; i < n_reloads; i++)
4979 if (reload_override_in[i]
4980 && reg_overlap_mentioned_p (x, reload_override_in[i]))
4981 return 1;
4982 return 0;
4983}
4984\f
67e61fe7
BS
4985/* Give an error message saying we failed to find a reload for INSN,
4986 and clear out reload R. */
4987static void
0c20a65f 4988failed_reload (rtx insn, int r)
67e61fe7
BS
4989{
4990 if (asm_noperands (PATTERN (insn)) < 0)
4991 /* It's the compiler's fault. */
1f978f5f 4992 fatal_insn ("could not find a spill register", insn);
67e61fe7
BS
4993
4994 /* It's the user's fault; the operand's mode and constraint
4995 don't match. Disable this reload so we don't crash in final. */
4996 error_for_asm (insn,
971801ff 4997 "%<asm%> operand constraint incompatible with operand size");
67e61fe7
BS
4998 rld[r].in = 0;
4999 rld[r].out = 0;
5000 rld[r].reg_rtx = 0;
5001 rld[r].optional = 1;
5002 rld[r].secondary_p = 1;
5003}
5004
5005/* I is the index in SPILL_REG_RTX of the reload register we are to allocate
5006 for reload R. If it's valid, get an rtx for it. Return nonzero if
5007 successful. */
5008static int
0c20a65f 5009set_reload_reg (int i, int r)
67e61fe7
BS
5010{
5011 int regno;
5012 rtx reg = spill_reg_rtx[i];
5013
5014 if (reg == 0 || GET_MODE (reg) != rld[r].mode)
5015 spill_reg_rtx[i] = reg
5016 = gen_rtx_REG (rld[r].mode, spill_regs[i]);
5017
5018 regno = true_regnum (reg);
5019
5020 /* Detect when the reload reg can't hold the reload mode.
5021 This used to be one `if', but Sequent compiler can't handle that. */
5022 if (HARD_REGNO_MODE_OK (regno, rld[r].mode))
5023 {
5024 enum machine_mode test_mode = VOIDmode;
5025 if (rld[r].in)
5026 test_mode = GET_MODE (rld[r].in);
5027 /* If rld[r].in has VOIDmode, it means we will load it
5028 in whatever mode the reload reg has: to wit, rld[r].mode.
5029 We have already tested that for validity. */
5030 /* Aside from that, we need to test that the expressions
5031 to reload from or into have modes which are valid for this
5032 reload register. Otherwise the reload insns would be invalid. */
5033 if (! (rld[r].in != 0 && test_mode != VOIDmode
5034 && ! HARD_REGNO_MODE_OK (regno, test_mode)))
5035 if (! (rld[r].out != 0
5036 && ! HARD_REGNO_MODE_OK (regno, GET_MODE (rld[r].out))))
5037 {
5038 /* The reg is OK. */
5039 last_spill_reg = i;
5040
5041 /* Mark as in use for this insn the reload regs we use
5042 for this. */
5043 mark_reload_reg_in_use (spill_regs[i], rld[r].opnum,
5044 rld[r].when_needed, rld[r].mode);
5045
5046 rld[r].reg_rtx = reg;
5047 reload_spill_index[r] = spill_regs[i];
5048 return 1;
5049 }
5050 }
5051 return 0;
5052}
5053
32131a9c 5054/* Find a spill register to use as a reload register for reload R.
40f03658 5055 LAST_RELOAD is nonzero if this is the last reload for the insn being
32131a9c
RK
5056 processed.
5057
eceef4c9 5058 Set rld[R].reg_rtx to the register allocated.
32131a9c 5059
f5d8c9f4
BS
5060 We return 1 if successful, or 0 if we couldn't find a spill reg and
5061 we didn't change anything. */
32131a9c
RK
5062
5063static int
0c20a65f
AJ
5064allocate_reload_reg (struct insn_chain *chain ATTRIBUTE_UNUSED, int r,
5065 int last_reload)
32131a9c 5066{
67e61fe7 5067 int i, pass, count;
32131a9c
RK
5068
5069 /* If we put this reload ahead, thinking it is a group,
5070 then insist on finding a group. Otherwise we can grab a
a8fdc208 5071 reg that some other reload needs.
32131a9c
RK
5072 (That can happen when we have a 68000 DATA_OR_FP_REG
5073 which is a group of data regs or one fp reg.)
5074 We need not be so restrictive if there are no more reloads
5075 for this insn.
5076
5077 ??? Really it would be nicer to have smarter handling
5078 for that kind of reg class, where a problem like this is normal.
5079 Perhaps those classes should be avoided for reloading
5080 by use of more alternatives. */
5081
8ec450a4 5082 int force_group = rld[r].nregs > 1 && ! last_reload;
32131a9c
RK
5083
5084 /* If we want a single register and haven't yet found one,
5085 take any reg in the right class and not in use.
5086 If we want a consecutive group, here is where we look for it.
5087
5088 We use two passes so we can first look for reload regs to
5089 reuse, which are already in use for other reloads in this insn,
5090 and only then use additional registers.
5091 I think that maximizing reuse is needed to make sure we don't
5092 run out of reload regs. Suppose we have three reloads, and
5093 reloads A and B can share regs. These need two regs.
5094 Suppose A and B are given different regs.
5095 That leaves none for C. */
5096 for (pass = 0; pass < 2; pass++)
5097 {
5098 /* I is the index in spill_regs.
5099 We advance it round-robin between insns to use all spill regs
5100 equally, so that inherited reloads have a chance
f5d8c9f4
BS
5101 of leapfrogging each other. */
5102
5103 i = last_spill_reg;
05d10675 5104
a5339699 5105 for (count = 0; count < n_spills; count++)
32131a9c 5106 {
eceef4c9 5107 int class = (int) rld[r].class;
03acd8f8 5108 int regnum;
32131a9c 5109
03acd8f8
BS
5110 i++;
5111 if (i >= n_spills)
5112 i -= n_spills;
5113 regnum = spill_regs[i];
32131a9c 5114
eceef4c9
BS
5115 if ((reload_reg_free_p (regnum, rld[r].opnum,
5116 rld[r].when_needed)
5117 || (rld[r].in
05d10675
BS
5118 /* We check reload_reg_used to make sure we
5119 don't clobber the return register. */
03acd8f8 5120 && ! TEST_HARD_REG_BIT (reload_reg_used, regnum)
c02cad8f
BS
5121 && free_for_value_p (regnum, rld[r].mode, rld[r].opnum,
5122 rld[r].when_needed, rld[r].in,
5123 rld[r].out, r, 1)))
03acd8f8 5124 && TEST_HARD_REG_BIT (reg_class_contents[class], regnum)
8ec450a4 5125 && HARD_REGNO_MODE_OK (regnum, rld[r].mode)
be7ae2a4
RK
5126 /* Look first for regs to share, then for unshared. But
5127 don't share regs used for inherited reloads; they are
5128 the ones we want to preserve. */
5129 && (pass
5130 || (TEST_HARD_REG_BIT (reload_reg_used_at_all,
03acd8f8 5131 regnum)
be7ae2a4 5132 && ! TEST_HARD_REG_BIT (reload_reg_used_for_inherit,
03acd8f8 5133 regnum))))
32131a9c 5134 {
66fd46b6 5135 int nr = hard_regno_nregs[regnum][rld[r].mode];
32131a9c
RK
5136 /* Avoid the problem where spilling a GENERAL_OR_FP_REG
5137 (on 68000) got us two FP regs. If NR is 1,
5138 we would reject both of them. */
5139 if (force_group)
67e61fe7 5140 nr = rld[r].nregs;
32131a9c
RK
5141 /* If we need only one reg, we have already won. */
5142 if (nr == 1)
5143 {
5144 /* But reject a single reg if we demand a group. */
5145 if (force_group)
5146 continue;
5147 break;
5148 }
5149 /* Otherwise check that as many consecutive regs as we need
f5d8c9f4
BS
5150 are available here. */
5151 while (nr > 1)
5152 {
5153 int regno = regnum + nr - 1;
5154 if (!(TEST_HARD_REG_BIT (reg_class_contents[class], regno)
5155 && spill_reg_order[regno] >= 0
5156 && reload_reg_free_p (regno, rld[r].opnum,
5157 rld[r].when_needed)))
5158 break;
5159 nr--;
5160 }
32131a9c
RK
5161 if (nr == 1)
5162 break;
5163 }
5164 }
5165
5166 /* If we found something on pass 1, omit pass 2. */
5167 if (count < n_spills)
5168 break;
5169 }
1d7254c5 5170
32131a9c 5171 /* We should have found a spill register by now. */
f5d8c9f4 5172 if (count >= n_spills)
32131a9c
RK
5173 return 0;
5174
f5d8c9f4
BS
5175 /* I is the index in SPILL_REG_RTX of the reload register we are to
5176 allocate. Get an rtx for it and find its register number. */
32131a9c 5177
f5d8c9f4 5178 return set_reload_reg (i, r);
32131a9c
RK
5179}
5180\f
67e61fe7
BS
5181/* Initialize all the tables needed to allocate reload registers.
5182 CHAIN is the insn currently being processed; SAVE_RELOAD_REG_RTX
5183 is the array we use to restore the reg_rtx field for every reload. */
efc9bd41 5184
32131a9c 5185static void
0c20a65f 5186choose_reload_regs_init (struct insn_chain *chain, rtx *save_reload_reg_rtx)
32131a9c 5187{
67e61fe7 5188 int i;
32131a9c 5189
67e61fe7
BS
5190 for (i = 0; i < n_reloads; i++)
5191 rld[i].reg_rtx = save_reload_reg_rtx[i];
32131a9c 5192
961192e1 5193 memset (reload_inherited, 0, MAX_RELOADS);
703ad42b
KG
5194 memset (reload_inheritance_insn, 0, MAX_RELOADS * sizeof (rtx));
5195 memset (reload_override_in, 0, MAX_RELOADS * sizeof (rtx));
32131a9c
RK
5196
5197 CLEAR_HARD_REG_SET (reload_reg_used);
5198 CLEAR_HARD_REG_SET (reload_reg_used_at_all);
32131a9c 5199 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr);
893bc853 5200 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr_reload);
546b63fb
RK
5201 CLEAR_HARD_REG_SET (reload_reg_used_in_insn);
5202 CLEAR_HARD_REG_SET (reload_reg_used_in_other_addr);
32131a9c 5203
f1db3576
JL
5204 CLEAR_HARD_REG_SET (reg_used_in_insn);
5205 {
5206 HARD_REG_SET tmp;
239a0f5b 5207 REG_SET_TO_HARD_REG_SET (tmp, &chain->live_throughout);
f1db3576 5208 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
239a0f5b 5209 REG_SET_TO_HARD_REG_SET (tmp, &chain->dead_or_set);
f1db3576 5210 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
239a0f5b
BS
5211 compute_use_by_pseudos (&reg_used_in_insn, &chain->live_throughout);
5212 compute_use_by_pseudos (&reg_used_in_insn, &chain->dead_or_set);
f1db3576 5213 }
efc9bd41 5214
546b63fb
RK
5215 for (i = 0; i < reload_n_operands; i++)
5216 {
5217 CLEAR_HARD_REG_SET (reload_reg_used_in_output[i]);
5218 CLEAR_HARD_REG_SET (reload_reg_used_in_input[i]);
5219 CLEAR_HARD_REG_SET (reload_reg_used_in_input_addr[i]);
47c8cf91 5220 CLEAR_HARD_REG_SET (reload_reg_used_in_inpaddr_addr[i]);
546b63fb 5221 CLEAR_HARD_REG_SET (reload_reg_used_in_output_addr[i]);
47c8cf91 5222 CLEAR_HARD_REG_SET (reload_reg_used_in_outaddr_addr[i]);
546b63fb 5223 }
32131a9c 5224
9e3a9cf2 5225 COMPL_HARD_REG_SET (reload_reg_unavailable, chain->used_spill_regs);
05d10675 5226
67e61fe7 5227 CLEAR_HARD_REG_SET (reload_reg_used_for_inherit);
32131a9c 5228
67e61fe7
BS
5229 for (i = 0; i < n_reloads; i++)
5230 /* If we have already decided to use a certain register,
5231 don't use it in another way. */
5232 if (rld[i].reg_rtx)
5233 mark_reload_reg_in_use (REGNO (rld[i].reg_rtx), rld[i].opnum,
5234 rld[i].when_needed, rld[i].mode);
5235}
32131a9c 5236
67e61fe7
BS
5237/* Assign hard reg targets for the pseudo-registers we must reload
5238 into hard regs for this insn.
5239 Also output the instructions to copy them in and out of the hard regs.
5240
5241 For machines with register classes, we are responsible for
5242 finding a reload reg in the proper class. */
5243
5244static void
0c20a65f 5245choose_reload_regs (struct insn_chain *chain)
67e61fe7
BS
5246{
5247 rtx insn = chain->insn;
b3694847 5248 int i, j;
770ae6cc 5249 unsigned int max_group_size = 1;
67e61fe7 5250 enum reg_class group_class = NO_REGS;
f5d8c9f4 5251 int pass, win, inheritance;
67e61fe7
BS
5252
5253 rtx save_reload_reg_rtx[MAX_RELOADS];
32131a9c 5254
32131a9c
RK
5255 /* In order to be certain of getting the registers we need,
5256 we must sort the reloads into order of increasing register class.
5257 Then our grabbing of reload registers will parallel the process
a8fdc208 5258 that provided the reload registers.
32131a9c
RK
5259
5260 Also note whether any of the reloads wants a consecutive group of regs.
5261 If so, record the maximum size of the group desired and what
5262 register class contains all the groups needed by this insn. */
5263
5264 for (j = 0; j < n_reloads; j++)
5265 {
5266 reload_order[j] = j;
5267 reload_spill_index[j] = -1;
5268
8ec450a4 5269 if (rld[j].nregs > 1)
32131a9c 5270 {
8ec450a4 5271 max_group_size = MAX (rld[j].nregs, max_group_size);
770ae6cc 5272 group_class
8e2e89f7 5273 = reg_class_superunion[(int) rld[j].class][(int) group_class];
32131a9c
RK
5274 }
5275
eceef4c9 5276 save_reload_reg_rtx[j] = rld[j].reg_rtx;
32131a9c
RK
5277 }
5278
5279 if (n_reloads > 1)
5280 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
5281
58b1581b
RS
5282 /* If -O, try first with inheritance, then turning it off.
5283 If not -O, don't do inheritance.
5284 Using inheritance when not optimizing leads to paradoxes
5285 with fp on the 68k: fp numbers (not NaNs) fail to be equal to themselves
5286 because one side of the comparison might be inherited. */
f5d8c9f4 5287 win = 0;
58b1581b 5288 for (inheritance = optimize > 0; inheritance >= 0; inheritance--)
32131a9c 5289 {
67e61fe7
BS
5290 choose_reload_regs_init (chain, save_reload_reg_rtx);
5291
32131a9c
RK
5292 /* Process the reloads in order of preference just found.
5293 Beyond this point, subregs can be found in reload_reg_rtx.
5294
770ae6cc
RK
5295 This used to look for an existing reloaded home for all of the
5296 reloads, and only then perform any new reloads. But that could lose
5297 if the reloads were done out of reg-class order because a later
5298 reload with a looser constraint might have an old home in a register
5299 needed by an earlier reload with a tighter constraint.
32131a9c
RK
5300
5301 To solve this, we make two passes over the reloads, in the order
5302 described above. In the first pass we try to inherit a reload
5303 from a previous insn. If there is a later reload that needs a
5304 class that is a proper subset of the class being processed, we must
5305 also allocate a spill register during the first pass.
5306
5307 Then make a second pass over the reloads to allocate any reloads
5308 that haven't been given registers yet. */
5309
5310 for (j = 0; j < n_reloads; j++)
5311 {
b3694847 5312 int r = reload_order[j];
8593b745 5313 rtx search_equiv = NULL_RTX;
32131a9c
RK
5314
5315 /* Ignore reloads that got marked inoperative. */
eceef4c9
BS
5316 if (rld[r].out == 0 && rld[r].in == 0
5317 && ! rld[r].secondary_p)
32131a9c
RK
5318 continue;
5319
b29514ee 5320 /* If find_reloads chose to use reload_in or reload_out as a reload
b080c137
RK
5321 register, we don't need to chose one. Otherwise, try even if it
5322 found one since we might save an insn if we find the value lying
b29514ee
R
5323 around.
5324 Try also when reload_in is a pseudo without a hard reg. */
eceef4c9
BS
5325 if (rld[r].in != 0 && rld[r].reg_rtx != 0
5326 && (rtx_equal_p (rld[r].in, rld[r].reg_rtx)
5327 || (rtx_equal_p (rld[r].out, rld[r].reg_rtx)
3c0cb5de 5328 && !MEM_P (rld[r].in)
eceef4c9 5329 && true_regnum (rld[r].in) < FIRST_PSEUDO_REGISTER)))
32131a9c
RK
5330 continue;
5331
5332#if 0 /* No longer needed for correct operation.
5333 It might give better code, or might not; worth an experiment? */
5334 /* If this is an optional reload, we can't inherit from earlier insns
5335 until we are sure that any non-optional reloads have been allocated.
5336 The following code takes advantage of the fact that optional reloads
5337 are at the end of reload_order. */
eceef4c9 5338 if (rld[r].optional != 0)
32131a9c 5339 for (i = 0; i < j; i++)
eceef4c9
BS
5340 if ((rld[reload_order[i]].out != 0
5341 || rld[reload_order[i]].in != 0
5342 || rld[reload_order[i]].secondary_p)
5343 && ! rld[reload_order[i]].optional
5344 && rld[reload_order[i]].reg_rtx == 0)
f5d8c9f4 5345 allocate_reload_reg (chain, reload_order[i], 0);
32131a9c
RK
5346#endif
5347
5348 /* First see if this pseudo is already available as reloaded
5349 for a previous insn. We cannot try to inherit for reloads
5350 that are smaller than the maximum number of registers needed
5351 for groups unless the register we would allocate cannot be used
5352 for the groups.
5353
5354 We could check here to see if this is a secondary reload for
5355 an object that is already in a register of the desired class.
5356 This would avoid the need for the secondary reload register.
5357 But this is complex because we can't easily determine what
b080c137
RK
5358 objects might want to be loaded via this reload. So let a
5359 register be allocated here. In `emit_reload_insns' we suppress
5360 one of the loads in the case described above. */
32131a9c
RK
5361
5362 if (inheritance)
5363 {
ddef6bc7 5364 int byte = 0;
b3694847 5365 int regno = -1;
6a651371 5366 enum machine_mode mode = VOIDmode;
32131a9c 5367
eceef4c9 5368 if (rld[r].in == 0)
32131a9c 5369 ;
f8cfc6aa 5370 else if (REG_P (rld[r].in))
db660765 5371 {
eceef4c9
BS
5372 regno = REGNO (rld[r].in);
5373 mode = GET_MODE (rld[r].in);
db660765 5374 }
f8cfc6aa 5375 else if (REG_P (rld[r].in_reg))
db660765 5376 {
eceef4c9
BS
5377 regno = REGNO (rld[r].in_reg);
5378 mode = GET_MODE (rld[r].in_reg);
db660765 5379 }
eceef4c9 5380 else if (GET_CODE (rld[r].in_reg) == SUBREG
f8cfc6aa 5381 && REG_P (SUBREG_REG (rld[r].in_reg)))
b60a8416 5382 {
ddef6bc7 5383 byte = SUBREG_BYTE (rld[r].in_reg);
eceef4c9 5384 regno = REGNO (SUBREG_REG (rld[r].in_reg));
cb2afeb3 5385 if (regno < FIRST_PSEUDO_REGISTER)
ddef6bc7 5386 regno = subreg_regno (rld[r].in_reg);
eceef4c9 5387 mode = GET_MODE (rld[r].in_reg);
cb2afeb3
R
5388 }
5389#ifdef AUTO_INC_DEC
eceef4c9
BS
5390 else if ((GET_CODE (rld[r].in_reg) == PRE_INC
5391 || GET_CODE (rld[r].in_reg) == PRE_DEC
5392 || GET_CODE (rld[r].in_reg) == POST_INC
5393 || GET_CODE (rld[r].in_reg) == POST_DEC)
f8cfc6aa 5394 && REG_P (XEXP (rld[r].in_reg, 0)))
cb2afeb3 5395 {
eceef4c9
BS
5396 regno = REGNO (XEXP (rld[r].in_reg, 0));
5397 mode = GET_MODE (XEXP (rld[r].in_reg, 0));
5398 rld[r].out = rld[r].in;
b60a8416 5399 }
cb2afeb3 5400#endif
32131a9c
RK
5401#if 0
5402 /* This won't work, since REGNO can be a pseudo reg number.
5403 Also, it takes much more hair to keep track of all the things
5404 that can invalidate an inherited reload of part of a pseudoreg. */
eceef4c9 5405 else if (GET_CODE (rld[r].in) == SUBREG
f8cfc6aa 5406 && REG_P (SUBREG_REG (rld[r].in)))
ddef6bc7 5407 regno = subreg_regno (rld[r].in);
32131a9c
RK
5408#endif
5409
5410 if (regno >= 0 && reg_last_reload_reg[regno] != 0)
5411 {
eceef4c9 5412 enum reg_class class = rld[r].class, last_class;
cb2afeb3 5413 rtx last_reg = reg_last_reload_reg[regno];
02188693 5414 enum machine_mode need_mode;
05d10675 5415
ddef6bc7
JJ
5416 i = REGNO (last_reg);
5417 i += subreg_regno_offset (i, GET_MODE (last_reg), byte, mode);
cb2afeb3 5418 last_class = REGNO_REG_CLASS (i);
02188693 5419
ddef6bc7 5420 if (byte == 0)
ce701d1b
BS
5421 need_mode = mode;
5422 else
5423 need_mode
ddef6bc7 5424 = smallest_mode_for_size (GET_MODE_SIZE (mode) + byte,
ce701d1b 5425 GET_MODE_CLASS (mode));
02188693 5426
c9d8a813 5427 if (
cff9f8d5
AH
5428#ifdef CANNOT_CHANGE_MODE_CLASS
5429 (!REG_CANNOT_CHANGE_MODE_P (i, GET_MODE (last_reg),
5430 need_mode)
1fe668e5 5431 &&
cff9f8d5 5432#endif
c9d8a813 5433 (GET_MODE_SIZE (GET_MODE (last_reg))
02188693 5434 >= GET_MODE_SIZE (need_mode))
cff9f8d5
AH
5435#ifdef CANNOT_CHANGE_MODE_CLASS
5436 )
c9d8a813 5437#endif
cb2afeb3 5438 && reg_reloaded_contents[i] == regno
e6e52be0 5439 && TEST_HARD_REG_BIT (reg_reloaded_valid, i)
8ec450a4 5440 && HARD_REGNO_MODE_OK (i, rld[r].mode)
cb2afeb3
R
5441 && (TEST_HARD_REG_BIT (reg_class_contents[(int) class], i)
5442 /* Even if we can't use this register as a reload
5443 register, we might use it for reload_override_in,
5444 if copying it to the desired class is cheap
5445 enough. */
e56b4594 5446 || ((REGISTER_MOVE_COST (mode, last_class, class)
cb2afeb3
R
5447 < MEMORY_MOVE_COST (mode, class, 1))
5448#ifdef SECONDARY_INPUT_RELOAD_CLASS
5449 && (SECONDARY_INPUT_RELOAD_CLASS (class, mode,
5450 last_reg)
5451 == NO_REGS)
5452#endif
5453#ifdef SECONDARY_MEMORY_NEEDED
5454 && ! SECONDARY_MEMORY_NEEDED (last_class, class,
5455 mode)
5456#endif
5457 ))
5458
8ec450a4 5459 && (rld[r].nregs == max_group_size
32131a9c 5460 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) group_class],
e6e52be0 5461 i))
c02cad8f
BS
5462 && free_for_value_p (i, rld[r].mode, rld[r].opnum,
5463 rld[r].when_needed, rld[r].in,
5464 const0_rtx, r, 1))
32131a9c
RK
5465 {
5466 /* If a group is needed, verify that all the subsequent
0f41302f 5467 registers still have their values intact. */
66fd46b6 5468 int nr = hard_regno_nregs[i][rld[r].mode];
32131a9c
RK
5469 int k;
5470
5471 for (k = 1; k < nr; k++)
e6e52be0
R
5472 if (reg_reloaded_contents[i + k] != regno
5473 || ! TEST_HARD_REG_BIT (reg_reloaded_valid, i + k))
32131a9c
RK
5474 break;
5475
5476 if (k == nr)
5477 {
c74fa651 5478 int i1;
eb4d554e 5479 int bad_for_class;
c74fa651 5480
cb2afeb3
R
5481 last_reg = (GET_MODE (last_reg) == mode
5482 ? last_reg : gen_rtx_REG (mode, i));
5483
eb4d554e
GK
5484 bad_for_class = 0;
5485 for (k = 0; k < nr; k++)
5486 bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].class],
5487 i+k);
5488
c74fa651
RS
5489 /* We found a register that contains the
5490 value we need. If this register is the
5491 same as an `earlyclobber' operand of the
5492 current insn, just mark it as a place to
5493 reload from since we can't use it as the
5494 reload register itself. */
5495
5496 for (i1 = 0; i1 < n_earlyclobbers; i1++)
5497 if (reg_overlap_mentioned_for_reload_p
5498 (reg_last_reload_reg[regno],
5499 reload_earlyclobbers[i1]))
5500 break;
5501
8908158d 5502 if (i1 != n_earlyclobbers
c02cad8f
BS
5503 || ! (free_for_value_p (i, rld[r].mode,
5504 rld[r].opnum,
5505 rld[r].when_needed, rld[r].in,
5506 rld[r].out, r, 1))
e6e52be0 5507 /* Don't use it if we'd clobber a pseudo reg. */
f1db3576 5508 || (TEST_HARD_REG_BIT (reg_used_in_insn, i)
eceef4c9 5509 && rld[r].out
e6e52be0 5510 && ! TEST_HARD_REG_BIT (reg_reloaded_dead, i))
0c7f2259 5511 /* Don't clobber the frame pointer. */
1d7254c5 5512 || (i == HARD_FRAME_POINTER_REGNUM
2f460a0a 5513 && frame_pointer_needed
1d7254c5 5514 && rld[r].out)
8908158d
RS
5515 /* Don't really use the inherited spill reg
5516 if we need it wider than we've got it. */
8ec450a4 5517 || (GET_MODE_SIZE (rld[r].mode)
b29514ee 5518 > GET_MODE_SIZE (mode))
eb4d554e 5519 || bad_for_class
cb2afeb3 5520
b29514ee
R
5521 /* If find_reloads chose reload_out as reload
5522 register, stay with it - that leaves the
5523 inherited register for subsequent reloads. */
eceef4c9 5524 || (rld[r].out && rld[r].reg_rtx
67e61fe7 5525 && rtx_equal_p (rld[r].out, rld[r].reg_rtx)))
cb2afeb3 5526 {
4c3a2649
BS
5527 if (! rld[r].optional)
5528 {
5529 reload_override_in[r] = last_reg;
5530 reload_inheritance_insn[r]
5531 = reg_reloaded_insn[i];
5532 }
cb2afeb3 5533 }
c74fa651
RS
5534 else
5535 {
54c40e68 5536 int k;
c74fa651
RS
5537 /* We can use this as a reload reg. */
5538 /* Mark the register as in use for this part of
5539 the insn. */
e6e52be0 5540 mark_reload_reg_in_use (i,
eceef4c9
BS
5541 rld[r].opnum,
5542 rld[r].when_needed,
8ec450a4 5543 rld[r].mode);
eceef4c9 5544 rld[r].reg_rtx = last_reg;
c74fa651
RS
5545 reload_inherited[r] = 1;
5546 reload_inheritance_insn[r]
5547 = reg_reloaded_insn[i];
5548 reload_spill_index[r] = i;
54c40e68
RS
5549 for (k = 0; k < nr; k++)
5550 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
e6e52be0 5551 i + k);
c74fa651 5552 }
32131a9c
RK
5553 }
5554 }
5555 }
5556 }
5557
5558 /* Here's another way to see if the value is already lying around. */
5559 if (inheritance
eceef4c9 5560 && rld[r].in != 0
32131a9c 5561 && ! reload_inherited[r]
eceef4c9
BS
5562 && rld[r].out == 0
5563 && (CONSTANT_P (rld[r].in)
5564 || GET_CODE (rld[r].in) == PLUS
f8cfc6aa 5565 || REG_P (rld[r].in)
3c0cb5de 5566 || MEM_P (rld[r].in))
8ec450a4 5567 && (rld[r].nregs == max_group_size
eceef4c9
BS
5568 || ! reg_classes_intersect_p (rld[r].class, group_class)))
5569 search_equiv = rld[r].in;
8593b745
R
5570 /* If this is an output reload from a simple move insn, look
5571 if an equivalence for the input is available. */
eceef4c9 5572 else if (inheritance && rld[r].in == 0 && rld[r].out != 0)
8593b745
R
5573 {
5574 rtx set = single_set (insn);
5575
5576 if (set
eceef4c9 5577 && rtx_equal_p (rld[r].out, SET_DEST (set))
8593b745
R
5578 && CONSTANT_P (SET_SRC (set)))
5579 search_equiv = SET_SRC (set);
5580 }
5581
5582 if (search_equiv)
32131a9c 5583 {
b3694847 5584 rtx equiv
eceef4c9 5585 = find_equiv_reg (search_equiv, insn, rld[r].class,
9714cf43 5586 -1, NULL, 0, rld[r].mode);
f428f252 5587 int regno = 0;
32131a9c
RK
5588
5589 if (equiv != 0)
5590 {
f8cfc6aa 5591 if (REG_P (equiv))
32131a9c 5592 regno = REGNO (equiv);
41374e13 5593 else
32131a9c 5594 {
f8a9e02b
RK
5595 /* This must be a SUBREG of a hard register.
5596 Make a new REG since this might be used in an
5597 address and not all machines support SUBREGs
5598 there. */
41374e13 5599 gcc_assert (GET_CODE (equiv) == SUBREG);
ddef6bc7 5600 regno = subreg_regno (equiv);
8ec450a4 5601 equiv = gen_rtx_REG (rld[r].mode, regno);
32131a9c 5602 }
32131a9c
RK
5603 }
5604
5605 /* If we found a spill reg, reject it unless it is free
5606 and of the desired class. */
f58d8c95
JW
5607 if (equiv != 0)
5608 {
5609 int regs_used = 0;
5610 int bad_for_class = 0;
5611 int max_regno = regno + rld[r].nregs;
5612
5613 for (i = regno; i < max_regno; i++)
5614 {
5615 regs_used |= TEST_HARD_REG_BIT (reload_reg_used_at_all,
5616 i);
0c20a65f 5617 bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].class],
f58d8c95
JW
5618 i);
5619 }
5620
5621 if ((regs_used
c02cad8f
BS
5622 && ! free_for_value_p (regno, rld[r].mode,
5623 rld[r].opnum, rld[r].when_needed,
5624 rld[r].in, rld[r].out, r, 1))
f58d8c95
JW
5625 || bad_for_class)
5626 equiv = 0;
5627 }
32131a9c 5628
8ec450a4 5629 if (equiv != 0 && ! HARD_REGNO_MODE_OK (regno, rld[r].mode))
32131a9c
RK
5630 equiv = 0;
5631
5632 /* We found a register that contains the value we need.
5633 If this register is the same as an `earlyclobber' operand
5634 of the current insn, just mark it as a place to reload from
5635 since we can't use it as the reload register itself. */
5636
5637 if (equiv != 0)
5638 for (i = 0; i < n_earlyclobbers; i++)
bfa30b22
RK
5639 if (reg_overlap_mentioned_for_reload_p (equiv,
5640 reload_earlyclobbers[i]))
32131a9c 5641 {
4c3a2649
BS
5642 if (! rld[r].optional)
5643 reload_override_in[r] = equiv;
32131a9c
RK
5644 equiv = 0;
5645 break;
5646 }
5647
3c785e47
R
5648 /* If the equiv register we have found is explicitly clobbered
5649 in the current insn, it depends on the reload type if we
5650 can use it, use it for reload_override_in, or not at all.
5651 In particular, we then can't use EQUIV for a
5652 RELOAD_FOR_OUTPUT_ADDRESS reload. */
32131a9c 5653
9532e31f 5654 if (equiv != 0)
174fa2c4 5655 {
9532e31f
BS
5656 if (regno_clobbered_p (regno, insn, rld[r].mode, 0))
5657 switch (rld[r].when_needed)
5658 {
5659 case RELOAD_FOR_OTHER_ADDRESS:
5660 case RELOAD_FOR_INPADDR_ADDRESS:
5661 case RELOAD_FOR_INPUT_ADDRESS:
5662 case RELOAD_FOR_OPADDR_ADDR:
5663 break;
5664 case RELOAD_OTHER:
5665 case RELOAD_FOR_INPUT:
5666 case RELOAD_FOR_OPERAND_ADDRESS:
5667 if (! rld[r].optional)
5668 reload_override_in[r] = equiv;
5669 /* Fall through. */
5670 default:
5671 equiv = 0;
5672 break;
5673 }
5674 else if (regno_clobbered_p (regno, insn, rld[r].mode, 1))
5675 switch (rld[r].when_needed)
5676 {
5677 case RELOAD_FOR_OTHER_ADDRESS:
5678 case RELOAD_FOR_INPADDR_ADDRESS:
5679 case RELOAD_FOR_INPUT_ADDRESS:
5680 case RELOAD_FOR_OPADDR_ADDR:
5681 case RELOAD_FOR_OPERAND_ADDRESS:
5682 case RELOAD_FOR_INPUT:
5683 break;
5684 case RELOAD_OTHER:
5685 if (! rld[r].optional)
5686 reload_override_in[r] = equiv;
5687 /* Fall through. */
5688 default:
5689 equiv = 0;
5690 break;
5691 }
32131a9c
RK
5692 }
5693
5694 /* If we found an equivalent reg, say no code need be generated
5695 to load it, and use it as our reload reg. */
a6a2274a
KH
5696 if (equiv != 0
5697 && (regno != HARD_FRAME_POINTER_REGNUM
2f460a0a 5698 || !frame_pointer_needed))
32131a9c 5699 {
66fd46b6 5700 int nr = hard_regno_nregs[regno][rld[r].mode];
100338df 5701 int k;
eceef4c9 5702 rld[r].reg_rtx = equiv;
32131a9c 5703 reload_inherited[r] = 1;
100338df 5704
91d7e7ac
R
5705 /* If reg_reloaded_valid is not set for this register,
5706 there might be a stale spill_reg_store lying around.
5707 We must clear it, since otherwise emit_reload_insns
5708 might delete the store. */
5709 if (! TEST_HARD_REG_BIT (reg_reloaded_valid, regno))
5710 spill_reg_store[regno] = NULL_RTX;
100338df
JL
5711 /* If any of the hard registers in EQUIV are spill
5712 registers, mark them as in use for this insn. */
5713 for (k = 0; k < nr; k++)
be7ae2a4 5714 {
100338df
JL
5715 i = spill_reg_order[regno + k];
5716 if (i >= 0)
5717 {
eceef4c9
BS
5718 mark_reload_reg_in_use (regno, rld[r].opnum,
5719 rld[r].when_needed,
8ec450a4 5720 rld[r].mode);
100338df
JL
5721 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
5722 regno + k);
5723 }
be7ae2a4 5724 }
32131a9c
RK
5725 }
5726 }
5727
5728 /* If we found a register to use already, or if this is an optional
5729 reload, we are done. */
eceef4c9 5730 if (rld[r].reg_rtx != 0 || rld[r].optional != 0)
32131a9c
RK
5731 continue;
5732
1d7254c5
KH
5733#if 0
5734 /* No longer needed for correct operation. Might or might
5735 not give better code on the average. Want to experiment? */
32131a9c
RK
5736
5737 /* See if there is a later reload that has a class different from our
5738 class that intersects our class or that requires less register
5739 than our reload. If so, we must allocate a register to this
5740 reload now, since that reload might inherit a previous reload
5741 and take the only available register in our class. Don't do this
5742 for optional reloads since they will force all previous reloads
5743 to be allocated. Also don't do this for reloads that have been
5744 turned off. */
5745
5746 for (i = j + 1; i < n_reloads; i++)
5747 {
5748 int s = reload_order[i];
5749
eceef4c9
BS
5750 if ((rld[s].in == 0 && rld[s].out == 0
5751 && ! rld[s].secondary_p)
5752 || rld[s].optional)
32131a9c
RK
5753 continue;
5754
eceef4c9
BS
5755 if ((rld[s].class != rld[r].class
5756 && reg_classes_intersect_p (rld[r].class,
5757 rld[s].class))
8ec450a4 5758 || rld[s].nregs < rld[r].nregs)
05d10675 5759 break;
32131a9c
RK
5760 }
5761
5762 if (i == n_reloads)
5763 continue;
5764
f5d8c9f4 5765 allocate_reload_reg (chain, r, j == n_reloads - 1);
32131a9c
RK
5766#endif
5767 }
5768
5769 /* Now allocate reload registers for anything non-optional that
5770 didn't get one yet. */
5771 for (j = 0; j < n_reloads; j++)
5772 {
b3694847 5773 int r = reload_order[j];
32131a9c
RK
5774
5775 /* Ignore reloads that got marked inoperative. */
eceef4c9 5776 if (rld[r].out == 0 && rld[r].in == 0 && ! rld[r].secondary_p)
32131a9c
RK
5777 continue;
5778
5779 /* Skip reloads that already have a register allocated or are
0f41302f 5780 optional. */
eceef4c9 5781 if (rld[r].reg_rtx != 0 || rld[r].optional)
32131a9c
RK
5782 continue;
5783
f5d8c9f4 5784 if (! allocate_reload_reg (chain, r, j == n_reloads - 1))
32131a9c
RK
5785 break;
5786 }
5787
5788 /* If that loop got all the way, we have won. */
5789 if (j == n_reloads)
f5d8c9f4
BS
5790 {
5791 win = 1;
5792 break;
5793 }
32131a9c 5794
32131a9c 5795 /* Loop around and try without any inheritance. */
32131a9c
RK
5796 }
5797
f5d8c9f4
BS
5798 if (! win)
5799 {
5800 /* First undo everything done by the failed attempt
5801 to allocate with inheritance. */
5802 choose_reload_regs_init (chain, save_reload_reg_rtx);
5803
5804 /* Some sanity tests to verify that the reloads found in the first
5805 pass are identical to the ones we have now. */
41374e13 5806 gcc_assert (chain->n_reloads == n_reloads);
f5d8c9f4
BS
5807
5808 for (i = 0; i < n_reloads; i++)
5809 {
5810 if (chain->rld[i].regno < 0 || chain->rld[i].reg_rtx != 0)
5811 continue;
41374e13 5812 gcc_assert (chain->rld[i].when_needed == rld[i].when_needed);
f5d8c9f4
BS
5813 for (j = 0; j < n_spills; j++)
5814 if (spill_regs[j] == chain->rld[i].regno)
5815 if (! set_reload_reg (j, i))
5816 failed_reload (chain->insn, i);
5817 }
5818 }
5819
32131a9c
RK
5820 /* If we thought we could inherit a reload, because it seemed that
5821 nothing else wanted the same reload register earlier in the insn,
cb2afeb3
R
5822 verify that assumption, now that all reloads have been assigned.
5823 Likewise for reloads where reload_override_in has been set. */
32131a9c 5824
cb2afeb3
R
5825 /* If doing expensive optimizations, do one preliminary pass that doesn't
5826 cancel any inheritance, but removes reloads that have been needed only
5827 for reloads that we know can be inherited. */
5828 for (pass = flag_expensive_optimizations; pass >= 0; pass--)
32131a9c 5829 {
cb2afeb3 5830 for (j = 0; j < n_reloads; j++)
029b38ff 5831 {
b3694847 5832 int r = reload_order[j];
cb2afeb3 5833 rtx check_reg;
eceef4c9
BS
5834 if (reload_inherited[r] && rld[r].reg_rtx)
5835 check_reg = rld[r].reg_rtx;
cb2afeb3 5836 else if (reload_override_in[r]
f8cfc6aa 5837 && (REG_P (reload_override_in[r])
05d10675 5838 || GET_CODE (reload_override_in[r]) == SUBREG))
cb2afeb3
R
5839 check_reg = reload_override_in[r];
5840 else
5841 continue;
c02cad8f
BS
5842 if (! free_for_value_p (true_regnum (check_reg), rld[r].mode,
5843 rld[r].opnum, rld[r].when_needed, rld[r].in,
5844 (reload_inherited[r]
5845 ? rld[r].out : const0_rtx),
5846 r, 1))
029b38ff 5847 {
cb2afeb3
R
5848 if (pass)
5849 continue;
5850 reload_inherited[r] = 0;
5851 reload_override_in[r] = 0;
029b38ff 5852 }
cb2afeb3
R
5853 /* If we can inherit a RELOAD_FOR_INPUT, or can use a
5854 reload_override_in, then we do not need its related
5855 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS reloads;
5856 likewise for other reload types.
5857 We handle this by removing a reload when its only replacement
5858 is mentioned in reload_in of the reload we are going to inherit.
5859 A special case are auto_inc expressions; even if the input is
5860 inherited, we still need the address for the output. We can
fe92fe26 5861 recognize them because they have RELOAD_OUT set to RELOAD_IN.
eaec9b3d 5862 If we succeeded removing some reload and we are doing a preliminary
cb2afeb3
R
5863 pass just to remove such reloads, make another pass, since the
5864 removal of one reload might allow us to inherit another one. */
eceef4c9
BS
5865 else if (rld[r].in
5866 && rld[r].out != rld[r].in
5867 && remove_address_replacements (rld[r].in) && pass)
cb2afeb3 5868 pass = 2;
32131a9c
RK
5869 }
5870 }
5871
5872 /* Now that reload_override_in is known valid,
5873 actually override reload_in. */
5874 for (j = 0; j < n_reloads; j++)
5875 if (reload_override_in[j])
eceef4c9 5876 rld[j].in = reload_override_in[j];
32131a9c 5877
272d0bee 5878 /* If this reload won't be done because it has been canceled or is
32131a9c
RK
5879 optional and not inherited, clear reload_reg_rtx so other
5880 routines (such as subst_reloads) don't get confused. */
5881 for (j = 0; j < n_reloads; j++)
eceef4c9
BS
5882 if (rld[j].reg_rtx != 0
5883 && ((rld[j].optional && ! reload_inherited[j])
5884 || (rld[j].in == 0 && rld[j].out == 0
5885 && ! rld[j].secondary_p)))
be7ae2a4 5886 {
eceef4c9 5887 int regno = true_regnum (rld[j].reg_rtx);
be7ae2a4
RK
5888
5889 if (spill_reg_order[regno] >= 0)
eceef4c9 5890 clear_reload_reg_in_use (regno, rld[j].opnum,
8ec450a4 5891 rld[j].when_needed, rld[j].mode);
eceef4c9 5892 rld[j].reg_rtx = 0;
c0029be5 5893 reload_spill_index[j] = -1;
be7ae2a4 5894 }
32131a9c
RK
5895
5896 /* Record which pseudos and which spill regs have output reloads. */
5897 for (j = 0; j < n_reloads; j++)
5898 {
b3694847 5899 int r = reload_order[j];
32131a9c
RK
5900
5901 i = reload_spill_index[r];
5902
e6e52be0 5903 /* I is nonneg if this reload uses a register.
eceef4c9 5904 If rld[r].reg_rtx is 0, this is an optional reload
32131a9c 5905 that we opted to ignore. */
f8cfc6aa 5906 if (rld[r].out_reg != 0 && REG_P (rld[r].out_reg)
eceef4c9 5907 && rld[r].reg_rtx != 0)
32131a9c 5908 {
b3694847 5909 int nregno = REGNO (rld[r].out_reg);
372e033b
RS
5910 int nr = 1;
5911
5912 if (nregno < FIRST_PSEUDO_REGISTER)
66fd46b6 5913 nr = hard_regno_nregs[nregno][rld[r].mode];
32131a9c
RK
5914
5915 while (--nr >= 0)
372e033b
RS
5916 reg_has_output_reload[nregno + nr] = 1;
5917
5918 if (i >= 0)
32131a9c 5919 {
66fd46b6 5920 nr = hard_regno_nregs[i][rld[r].mode];
372e033b 5921 while (--nr >= 0)
e6e52be0 5922 SET_HARD_REG_BIT (reg_is_output_reload, i + nr);
32131a9c
RK
5923 }
5924
41374e13
NS
5925 gcc_assert (rld[r].when_needed == RELOAD_OTHER
5926 || rld[r].when_needed == RELOAD_FOR_OUTPUT
5927 || rld[r].when_needed == RELOAD_FOR_INSN);
32131a9c
RK
5928 }
5929 }
5930}
cb2afeb3
R
5931
5932/* Deallocate the reload register for reload R. This is called from
5933 remove_address_replacements. */
1d813780 5934
cb2afeb3 5935void
0c20a65f 5936deallocate_reload_reg (int r)
cb2afeb3
R
5937{
5938 int regno;
5939
eceef4c9 5940 if (! rld[r].reg_rtx)
cb2afeb3 5941 return;
eceef4c9
BS
5942 regno = true_regnum (rld[r].reg_rtx);
5943 rld[r].reg_rtx = 0;
cb2afeb3 5944 if (spill_reg_order[regno] >= 0)
eceef4c9 5945 clear_reload_reg_in_use (regno, rld[r].opnum, rld[r].when_needed,
8ec450a4 5946 rld[r].mode);
cb2afeb3
R
5947 reload_spill_index[r] = -1;
5948}
32131a9c 5949\f
40f03658 5950/* If SMALL_REGISTER_CLASSES is nonzero, we may not have merged two
546b63fb
RK
5951 reloads of the same item for fear that we might not have enough reload
5952 registers. However, normally they will get the same reload register
05d10675 5953 and hence actually need not be loaded twice.
546b63fb
RK
5954
5955 Here we check for the most common case of this phenomenon: when we have
5956 a number of reloads for the same object, each of which were allocated
5957 the same reload_reg_rtx, that reload_reg_rtx is not used for any other
5958 reload, and is not modified in the insn itself. If we find such,
5959 merge all the reloads and set the resulting reload to RELOAD_OTHER.
5960 This will not increase the number of spill registers needed and will
5961 prevent redundant code. */
5962
546b63fb 5963static void
0c20a65f 5964merge_assigned_reloads (rtx insn)
546b63fb
RK
5965{
5966 int i, j;
5967
5968 /* Scan all the reloads looking for ones that only load values and
5969 are not already RELOAD_OTHER and ones whose reload_reg_rtx are
5970 assigned and not modified by INSN. */
5971
5972 for (i = 0; i < n_reloads; i++)
5973 {
d668e863
R
5974 int conflicting_input = 0;
5975 int max_input_address_opnum = -1;
5976 int min_conflicting_input_opnum = MAX_RECOG_OPERANDS;
5977
eceef4c9
BS
5978 if (rld[i].in == 0 || rld[i].when_needed == RELOAD_OTHER
5979 || rld[i].out != 0 || rld[i].reg_rtx == 0
5980 || reg_set_p (rld[i].reg_rtx, insn))
546b63fb
RK
5981 continue;
5982
5983 /* Look at all other reloads. Ensure that the only use of this
5984 reload_reg_rtx is in a reload that just loads the same value
5985 as we do. Note that any secondary reloads must be of the identical
5986 class since the values, modes, and result registers are the
5987 same, so we need not do anything with any secondary reloads. */
5988
5989 for (j = 0; j < n_reloads; j++)
5990 {
eceef4c9
BS
5991 if (i == j || rld[j].reg_rtx == 0
5992 || ! reg_overlap_mentioned_p (rld[j].reg_rtx,
5993 rld[i].reg_rtx))
546b63fb
RK
5994 continue;
5995
eceef4c9
BS
5996 if (rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
5997 && rld[j].opnum > max_input_address_opnum)
5998 max_input_address_opnum = rld[j].opnum;
d668e863 5999
546b63fb 6000 /* If the reload regs aren't exactly the same (e.g, different modes)
d668e863
R
6001 or if the values are different, we can't merge this reload.
6002 But if it is an input reload, we might still merge
6003 RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_OTHER_ADDRESS reloads. */
546b63fb 6004
eceef4c9
BS
6005 if (! rtx_equal_p (rld[i].reg_rtx, rld[j].reg_rtx)
6006 || rld[j].out != 0 || rld[j].in == 0
6007 || ! rtx_equal_p (rld[i].in, rld[j].in))
d668e863 6008 {
eceef4c9
BS
6009 if (rld[j].when_needed != RELOAD_FOR_INPUT
6010 || ((rld[i].when_needed != RELOAD_FOR_INPUT_ADDRESS
6011 || rld[i].opnum > rld[j].opnum)
6012 && rld[i].when_needed != RELOAD_FOR_OTHER_ADDRESS))
d668e863
R
6013 break;
6014 conflicting_input = 1;
eceef4c9
BS
6015 if (min_conflicting_input_opnum > rld[j].opnum)
6016 min_conflicting_input_opnum = rld[j].opnum;
d668e863 6017 }
546b63fb
RK
6018 }
6019
6020 /* If all is OK, merge the reloads. Only set this to RELOAD_OTHER if
6021 we, in fact, found any matching reloads. */
6022
d668e863
R
6023 if (j == n_reloads
6024 && max_input_address_opnum <= min_conflicting_input_opnum)
546b63fb
RK
6025 {
6026 for (j = 0; j < n_reloads; j++)
eceef4c9
BS
6027 if (i != j && rld[j].reg_rtx != 0
6028 && rtx_equal_p (rld[i].reg_rtx, rld[j].reg_rtx)
d668e863 6029 && (! conflicting_input
eceef4c9
BS
6030 || rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
6031 || rld[j].when_needed == RELOAD_FOR_OTHER_ADDRESS))
546b63fb 6032 {
eceef4c9
BS
6033 rld[i].when_needed = RELOAD_OTHER;
6034 rld[j].in = 0;
efdb3590 6035 reload_spill_index[j] = -1;
546b63fb
RK
6036 transfer_replacements (i, j);
6037 }
6038
6039 /* If this is now RELOAD_OTHER, look for any reloads that load
6040 parts of this operand and set them to RELOAD_FOR_OTHER_ADDRESS
6041 if they were for inputs, RELOAD_OTHER for outputs. Note that
6042 this test is equivalent to looking for reloads for this operand
6043 number. */
dec0798e
R
6044 /* We must take special care when there are two or more reloads to
6045 be merged and a RELOAD_FOR_OUTPUT_ADDRESS reload that loads the
6046 same value or a part of it; we must not change its type if there
6047 is a conflicting input. */
546b63fb 6048
eceef4c9 6049 if (rld[i].when_needed == RELOAD_OTHER)
546b63fb 6050 for (j = 0; j < n_reloads; j++)
eceef4c9 6051 if (rld[j].in != 0
91667711 6052 && rld[j].when_needed != RELOAD_OTHER
dec0798e
R
6053 && rld[j].when_needed != RELOAD_FOR_OTHER_ADDRESS
6054 && (! conflicting_input
6055 || rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
6056 || rld[j].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
eceef4c9
BS
6057 && reg_overlap_mentioned_for_reload_p (rld[j].in,
6058 rld[i].in))
c15c18c5
JW
6059 {
6060 int k;
6061
6062 rld[j].when_needed
6063 = ((rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
6064 || rld[j].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
6065 ? RELOAD_FOR_OTHER_ADDRESS : RELOAD_OTHER);
6066
6067 /* Check to see if we accidentally converted two reloads
8a5db2b4
JW
6068 that use the same reload register with different inputs
6069 to the same type. If so, the resulting code won't work,
6070 so abort. */
c15c18c5
JW
6071 if (rld[j].reg_rtx)
6072 for (k = 0; k < j; k++)
41374e13
NS
6073 gcc_assert (rld[k].in == 0 || rld[k].reg_rtx == 0
6074 || rld[k].when_needed != rld[j].when_needed
6075 || !rtx_equal_p (rld[k].reg_rtx,
6076 rld[j].reg_rtx)
6077 || rtx_equal_p (rld[k].in,
6078 rld[j].in));
c15c18c5 6079 }
546b63fb
RK
6080 }
6081 }
05d10675 6082}
546b63fb 6083\f
367b1cf5
BS
6084/* These arrays are filled by emit_reload_insns and its subroutines. */
6085static rtx input_reload_insns[MAX_RECOG_OPERANDS];
6086static rtx other_input_address_reload_insns = 0;
6087static rtx other_input_reload_insns = 0;
6088static rtx input_address_reload_insns[MAX_RECOG_OPERANDS];
6089static rtx inpaddr_address_reload_insns[MAX_RECOG_OPERANDS];
6090static rtx output_reload_insns[MAX_RECOG_OPERANDS];
6091static rtx output_address_reload_insns[MAX_RECOG_OPERANDS];
6092static rtx outaddr_address_reload_insns[MAX_RECOG_OPERANDS];
6093static rtx operand_reload_insns = 0;
6094static rtx other_operand_reload_insns = 0;
6095static rtx other_output_reload_insns[MAX_RECOG_OPERANDS];
6096
6097/* Values to be put in spill_reg_store are put here first. */
6098static rtx new_spill_reg_store[FIRST_PSEUDO_REGISTER];
6099static HARD_REG_SET reg_reloaded_died;
6100
6101/* Generate insns to perform reload RL, which is for the insn in CHAIN and
6102 has the number J. OLD contains the value to be used as input. */
770ae6cc 6103
32131a9c 6104static void
0c20a65f
AJ
6105emit_input_reload_insns (struct insn_chain *chain, struct reload *rl,
6106 rtx old, int j)
32131a9c 6107{
7609e720 6108 rtx insn = chain->insn;
b3694847 6109 rtx reloadreg = rl->reg_rtx;
367b1cf5
BS
6110 rtx oldequiv_reg = 0;
6111 rtx oldequiv = 0;
6112 int special = 0;
6113 enum machine_mode mode;
6114 rtx *where;
6115
6116 /* Determine the mode to reload in.
6117 This is very tricky because we have three to choose from.
6118 There is the mode the insn operand wants (rl->inmode).
6119 There is the mode of the reload register RELOADREG.
6120 There is the intrinsic mode of the operand, which we could find
6121 by stripping some SUBREGs.
6122 It turns out that RELOADREG's mode is irrelevant:
6123 we can change that arbitrarily.
6124
6125 Consider (SUBREG:SI foo:QI) as an operand that must be SImode;
6126 then the reload reg may not support QImode moves, so use SImode.
6127 If foo is in memory due to spilling a pseudo reg, this is safe,
6128 because the QImode value is in the least significant part of a
6129 slot big enough for a SImode. If foo is some other sort of
6130 memory reference, then it is impossible to reload this case,
6131 so previous passes had better make sure this never happens.
6132
6133 Then consider a one-word union which has SImode and one of its
6134 members is a float, being fetched as (SUBREG:SF union:SI).
6135 We must fetch that as SFmode because we could be loading into
6136 a float-only register. In this case OLD's mode is correct.
6137
6138 Consider an immediate integer: it has VOIDmode. Here we need
6139 to get a mode from something else.
6140
6141 In some cases, there is a fourth mode, the operand's
6142 containing mode. If the insn specifies a containing mode for
6143 this operand, it overrides all others.
6144
6145 I am not sure whether the algorithm here is always right,
6146 but it does the right things in those cases. */
6147
6148 mode = GET_MODE (old);
6149 if (mode == VOIDmode)
6150 mode = rl->inmode;
7609e720 6151
367b1cf5
BS
6152#ifdef SECONDARY_INPUT_RELOAD_CLASS
6153 /* If we need a secondary register for this operation, see if
6154 the value is already in a register in that class. Don't
6155 do this if the secondary register will be used as a scratch
6156 register. */
6157
6158 if (rl->secondary_in_reload >= 0
6159 && rl->secondary_in_icode == CODE_FOR_nothing
6160 && optimize)
6161 oldequiv
6162 = find_equiv_reg (old, insn,
6163 rld[rl->secondary_in_reload].class,
9714cf43 6164 -1, NULL, 0, mode);
367b1cf5 6165#endif
e6e52be0 6166
367b1cf5
BS
6167 /* If reloading from memory, see if there is a register
6168 that already holds the same value. If so, reload from there.
6169 We can pass 0 as the reload_reg_p argument because
6170 any other reload has either already been emitted,
6171 in which case find_equiv_reg will see the reload-insn,
6172 or has yet to be emitted, in which case it doesn't matter
6173 because we will use this equiv reg right away. */
6174
6175 if (oldequiv == 0 && optimize
3c0cb5de 6176 && (MEM_P (old)
f8cfc6aa 6177 || (REG_P (old)
367b1cf5
BS
6178 && REGNO (old) >= FIRST_PSEUDO_REGISTER
6179 && reg_renumber[REGNO (old)] < 0)))
9714cf43 6180 oldequiv = find_equiv_reg (old, insn, ALL_REGS, -1, NULL, 0, mode);
367b1cf5
BS
6181
6182 if (oldequiv)
6183 {
770ae6cc 6184 unsigned int regno = true_regnum (oldequiv);
367b1cf5
BS
6185
6186 /* Don't use OLDEQUIV if any other reload changes it at an
6187 earlier stage of this insn or at this stage. */
c02cad8f
BS
6188 if (! free_for_value_p (regno, rl->mode, rl->opnum, rl->when_needed,
6189 rl->in, const0_rtx, j, 0))
367b1cf5
BS
6190 oldequiv = 0;
6191
6192 /* If it is no cheaper to copy from OLDEQUIV into the
6193 reload register than it would be to move from memory,
6194 don't use it. Likewise, if we need a secondary register
6d2f8887 6195 or memory. */
367b1cf5
BS
6196
6197 if (oldequiv != 0
fc555370 6198 && (((enum reg_class) REGNO_REG_CLASS (regno) != rl->class
e56b4594 6199 && (REGISTER_MOVE_COST (mode, REGNO_REG_CLASS (regno),
367b1cf5
BS
6200 rl->class)
6201 >= MEMORY_MOVE_COST (mode, rl->class, 1)))
6202#ifdef SECONDARY_INPUT_RELOAD_CLASS
6203 || (SECONDARY_INPUT_RELOAD_CLASS (rl->class,
6204 mode, oldequiv)
6205 != NO_REGS)
6206#endif
6207#ifdef SECONDARY_MEMORY_NEEDED
6208 || SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (regno),
6209 rl->class,
6210 mode)
6211#endif
6212 ))
6213 oldequiv = 0;
6214 }
32131a9c 6215
367b1cf5
BS
6216 /* delete_output_reload is only invoked properly if old contains
6217 the original pseudo register. Since this is replaced with a
6218 hard reg when RELOAD_OVERRIDE_IN is set, see if we can
6219 find the pseudo in RELOAD_IN_REG. */
6220 if (oldequiv == 0
6221 && reload_override_in[j]
f8cfc6aa 6222 && REG_P (rl->in_reg))
367b1cf5
BS
6223 {
6224 oldequiv = old;
6225 old = rl->in_reg;
6226 }
6227 if (oldequiv == 0)
6228 oldequiv = old;
f8cfc6aa 6229 else if (REG_P (oldequiv))
367b1cf5
BS
6230 oldequiv_reg = oldequiv;
6231 else if (GET_CODE (oldequiv) == SUBREG)
6232 oldequiv_reg = SUBREG_REG (oldequiv);
6233
6234 /* If we are reloading from a register that was recently stored in
6235 with an output-reload, see if we can prove there was
6236 actually no need to store the old value in it. */
6237
f8cfc6aa 6238 if (optimize && REG_P (oldequiv)
367b1cf5
BS
6239 && REGNO (oldequiv) < FIRST_PSEUDO_REGISTER
6240 && spill_reg_store[REGNO (oldequiv)]
f8cfc6aa 6241 && REG_P (old)
367b1cf5
BS
6242 && (dead_or_set_p (insn, spill_reg_stored_to[REGNO (oldequiv)])
6243 || rtx_equal_p (spill_reg_stored_to[REGNO (oldequiv)],
6244 rl->out_reg)))
6245 delete_output_reload (insn, j, REGNO (oldequiv));
6246
6247 /* Encapsulate both RELOADREG and OLDEQUIV into that mode,
6248 then load RELOADREG from OLDEQUIV. Note that we cannot use
6249 gen_lowpart_common since it can do the wrong thing when
6250 RELOADREG has a multi-word mode. Note that RELOADREG
6251 must always be a REG here. */
6252
6253 if (GET_MODE (reloadreg) != mode)
f12448c8 6254 reloadreg = reload_adjust_reg_for_mode (reloadreg, mode);
367b1cf5
BS
6255 while (GET_CODE (oldequiv) == SUBREG && GET_MODE (oldequiv) != mode)
6256 oldequiv = SUBREG_REG (oldequiv);
6257 if (GET_MODE (oldequiv) != VOIDmode
6258 && mode != GET_MODE (oldequiv))
ddef6bc7 6259 oldequiv = gen_lowpart_SUBREG (mode, oldequiv);
367b1cf5
BS
6260
6261 /* Switch to the right place to emit the reload insns. */
6262 switch (rl->when_needed)
6263 {
6264 case RELOAD_OTHER:
6265 where = &other_input_reload_insns;
6266 break;
6267 case RELOAD_FOR_INPUT:
6268 where = &input_reload_insns[rl->opnum];
6269 break;
6270 case RELOAD_FOR_INPUT_ADDRESS:
6271 where = &input_address_reload_insns[rl->opnum];
6272 break;
6273 case RELOAD_FOR_INPADDR_ADDRESS:
6274 where = &inpaddr_address_reload_insns[rl->opnum];
6275 break;
6276 case RELOAD_FOR_OUTPUT_ADDRESS:
6277 where = &output_address_reload_insns[rl->opnum];
6278 break;
6279 case RELOAD_FOR_OUTADDR_ADDRESS:
6280 where = &outaddr_address_reload_insns[rl->opnum];
6281 break;
6282 case RELOAD_FOR_OPERAND_ADDRESS:
6283 where = &operand_reload_insns;
6284 break;
6285 case RELOAD_FOR_OPADDR_ADDR:
6286 where = &other_operand_reload_insns;
6287 break;
6288 case RELOAD_FOR_OTHER_ADDRESS:
6289 where = &other_input_address_reload_insns;
6290 break;
6291 default:
41374e13 6292 gcc_unreachable ();
367b1cf5 6293 }
546b63fb 6294
367b1cf5 6295 push_to_sequence (*where);
32131a9c 6296
367b1cf5
BS
6297 /* Auto-increment addresses must be reloaded in a special way. */
6298 if (rl->out && ! rl->out_reg)
32131a9c 6299 {
367b1cf5
BS
6300 /* We are not going to bother supporting the case where a
6301 incremented register can't be copied directly from
6302 OLDEQUIV since this seems highly unlikely. */
41374e13 6303 gcc_assert (rl->secondary_in_reload < 0);
32131a9c 6304
367b1cf5
BS
6305 if (reload_inherited[j])
6306 oldequiv = reloadreg;
cb2afeb3 6307
367b1cf5 6308 old = XEXP (rl->in_reg, 0);
32131a9c 6309
f8cfc6aa 6310 if (optimize && REG_P (oldequiv)
367b1cf5
BS
6311 && REGNO (oldequiv) < FIRST_PSEUDO_REGISTER
6312 && spill_reg_store[REGNO (oldequiv)]
f8cfc6aa 6313 && REG_P (old)
367b1cf5
BS
6314 && (dead_or_set_p (insn,
6315 spill_reg_stored_to[REGNO (oldequiv)])
6316 || rtx_equal_p (spill_reg_stored_to[REGNO (oldequiv)],
6317 old)))
6318 delete_output_reload (insn, j, REGNO (oldequiv));
6319
6320 /* Prevent normal processing of this reload. */
6321 special = 1;
6322 /* Output a special code sequence for this case. */
6323 new_spill_reg_store[REGNO (reloadreg)]
6324 = inc_for_reload (reloadreg, oldequiv, rl->out,
6325 rl->inc);
6326 }
32131a9c 6327
367b1cf5
BS
6328 /* If we are reloading a pseudo-register that was set by the previous
6329 insn, see if we can get rid of that pseudo-register entirely
6330 by redirecting the previous insn into our reload register. */
6331
f8cfc6aa 6332 else if (optimize && REG_P (old)
367b1cf5
BS
6333 && REGNO (old) >= FIRST_PSEUDO_REGISTER
6334 && dead_or_set_p (insn, old)
6335 /* This is unsafe if some other reload
6336 uses the same reg first. */
ff6534ad 6337 && ! conflicts_with_override (reloadreg)
c02cad8f
BS
6338 && free_for_value_p (REGNO (reloadreg), rl->mode, rl->opnum,
6339 rl->when_needed, old, rl->out, j, 0))
367b1cf5
BS
6340 {
6341 rtx temp = PREV_INSN (insn);
4b4bf941 6342 while (temp && NOTE_P (temp))
367b1cf5
BS
6343 temp = PREV_INSN (temp);
6344 if (temp
4b4bf941 6345 && NONJUMP_INSN_P (temp)
367b1cf5
BS
6346 && GET_CODE (PATTERN (temp)) == SET
6347 && SET_DEST (PATTERN (temp)) == old
6348 /* Make sure we can access insn_operand_constraint. */
6349 && asm_noperands (PATTERN (temp)) < 0
367b1cf5
BS
6350 /* This is unsafe if operand occurs more than once in current
6351 insn. Perhaps some occurrences aren't reloaded. */
10d1bb36 6352 && count_occurrences (PATTERN (insn), old, 0) == 1)
367b1cf5 6353 {
10d1bb36 6354 rtx old = SET_DEST (PATTERN (temp));
367b1cf5
BS
6355 /* Store into the reload register instead of the pseudo. */
6356 SET_DEST (PATTERN (temp)) = reloadreg;
6357
10d1bb36
JH
6358 /* Verify that resulting insn is valid. */
6359 extract_insn (temp);
6360 if (constrain_operands (1))
32131a9c 6361 {
10d1bb36
JH
6362 /* If the previous insn is an output reload, the source is
6363 a reload register, and its spill_reg_store entry will
6364 contain the previous destination. This is now
6365 invalid. */
f8cfc6aa 6366 if (REG_P (SET_SRC (PATTERN (temp)))
10d1bb36
JH
6367 && REGNO (SET_SRC (PATTERN (temp))) < FIRST_PSEUDO_REGISTER)
6368 {
6369 spill_reg_store[REGNO (SET_SRC (PATTERN (temp)))] = 0;
6370 spill_reg_stored_to[REGNO (SET_SRC (PATTERN (temp)))] = 0;
6371 }
32131a9c 6372
10d1bb36
JH
6373 /* If these are the only uses of the pseudo reg,
6374 pretend for GDB it lives in the reload reg we used. */
6375 if (REG_N_DEATHS (REGNO (old)) == 1
6376 && REG_N_SETS (REGNO (old)) == 1)
6377 {
6378 reg_renumber[REGNO (old)] = REGNO (rl->reg_rtx);
6379 alter_reg (REGNO (old), -1);
6380 }
6381 special = 1;
6382 }
6383 else
cb2afeb3 6384 {
10d1bb36 6385 SET_DEST (PATTERN (temp)) = old;
32131a9c 6386 }
367b1cf5
BS
6387 }
6388 }
32131a9c 6389
367b1cf5 6390 /* We can't do that, so output an insn to load RELOADREG. */
32131a9c 6391
367b1cf5
BS
6392#ifdef SECONDARY_INPUT_RELOAD_CLASS
6393 /* If we have a secondary reload, pick up the secondary register
6394 and icode, if any. If OLDEQUIV and OLD are different or
6395 if this is an in-out reload, recompute whether or not we
6396 still need a secondary register and what the icode should
6397 be. If we still need a secondary register and the class or
6398 icode is different, go back to reloading from OLD if using
6399 OLDEQUIV means that we got the wrong type of register. We
6400 cannot have different class or icode due to an in-out reload
6401 because we don't make such reloads when both the input and
6402 output need secondary reload registers. */
6403
07875628 6404 if (! special && rl->secondary_in_reload >= 0)
367b1cf5
BS
6405 {
6406 rtx second_reload_reg = 0;
6407 int secondary_reload = rl->secondary_in_reload;
6408 rtx real_oldequiv = oldequiv;
6409 rtx real_old = old;
6410 rtx tmp;
6411 enum insn_code icode;
6412
6413 /* If OLDEQUIV is a pseudo with a MEM, get the real MEM
6414 and similarly for OLD.
6415 See comments in get_secondary_reload in reload.c. */
6416 /* If it is a pseudo that cannot be replaced with its
6417 equivalent MEM, we must fall back to reload_in, which
6418 will have all the necessary substitutions registered.
6419 Likewise for a pseudo that can't be replaced with its
6420 equivalent constant.
6421
6422 Take extra care for subregs of such pseudos. Note that
6423 we cannot use reg_equiv_mem in this case because it is
6424 not in the right mode. */
6425
6426 tmp = oldequiv;
6427 if (GET_CODE (tmp) == SUBREG)
6428 tmp = SUBREG_REG (tmp);
f8cfc6aa 6429 if (REG_P (tmp)
367b1cf5
BS
6430 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
6431 && (reg_equiv_memory_loc[REGNO (tmp)] != 0
6432 || reg_equiv_constant[REGNO (tmp)] != 0))
6433 {
6434 if (! reg_equiv_mem[REGNO (tmp)]
6435 || num_not_at_initial_offset
6436 || GET_CODE (oldequiv) == SUBREG)
6437 real_oldequiv = rl->in;
6438 else
6439 real_oldequiv = reg_equiv_mem[REGNO (tmp)];
6440 }
32131a9c 6441
367b1cf5
BS
6442 tmp = old;
6443 if (GET_CODE (tmp) == SUBREG)
6444 tmp = SUBREG_REG (tmp);
f8cfc6aa 6445 if (REG_P (tmp)
367b1cf5
BS
6446 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
6447 && (reg_equiv_memory_loc[REGNO (tmp)] != 0
6448 || reg_equiv_constant[REGNO (tmp)] != 0))
6449 {
6450 if (! reg_equiv_mem[REGNO (tmp)]
6451 || num_not_at_initial_offset
6452 || GET_CODE (old) == SUBREG)
6453 real_old = rl->in;
6454 else
6455 real_old = reg_equiv_mem[REGNO (tmp)];
6456 }
6457
6458 second_reload_reg = rld[secondary_reload].reg_rtx;
6459 icode = rl->secondary_in_icode;
6460
6461 if ((old != oldequiv && ! rtx_equal_p (old, oldequiv))
6462 || (rl->in != 0 && rl->out != 0))
6463 {
6464 enum reg_class new_class
6465 = SECONDARY_INPUT_RELOAD_CLASS (rl->class,
6466 mode, real_oldequiv);
6467
6468 if (new_class == NO_REGS)
6469 second_reload_reg = 0;
6470 else
32131a9c 6471 {
367b1cf5
BS
6472 enum insn_code new_icode;
6473 enum machine_mode new_mode;
6474
6475 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) new_class],
6476 REGNO (second_reload_reg)))
6477 oldequiv = old, real_oldequiv = real_old;
6478 else
32131a9c 6479 {
367b1cf5
BS
6480 new_icode = reload_in_optab[(int) mode];
6481 if (new_icode != CODE_FOR_nothing
6482 && ((insn_data[(int) new_icode].operand[0].predicate
6483 && ! ((*insn_data[(int) new_icode].operand[0].predicate)
6484 (reloadreg, mode)))
6485 || (insn_data[(int) new_icode].operand[1].predicate
6486 && ! ((*insn_data[(int) new_icode].operand[1].predicate)
6487 (real_oldequiv, mode)))))
6488 new_icode = CODE_FOR_nothing;
6489
6490 if (new_icode == CODE_FOR_nothing)
6491 new_mode = mode;
6492 else
6493 new_mode = insn_data[(int) new_icode].operand[2].mode;
d30e8ef0 6494
367b1cf5 6495 if (GET_MODE (second_reload_reg) != new_mode)
32131a9c 6496 {
367b1cf5
BS
6497 if (!HARD_REGNO_MODE_OK (REGNO (second_reload_reg),
6498 new_mode))
6499 oldequiv = old, real_oldequiv = real_old;
6500 else
6501 second_reload_reg
f12448c8
AO
6502 = reload_adjust_reg_for_mode (second_reload_reg,
6503 new_mode);
32131a9c 6504 }
32131a9c
RK
6505 }
6506 }
367b1cf5 6507 }
32131a9c 6508
367b1cf5
BS
6509 /* If we still need a secondary reload register, check
6510 to see if it is being used as a scratch or intermediate
6511 register and generate code appropriately. If we need
6512 a scratch register, use REAL_OLDEQUIV since the form of
6513 the insn may depend on the actual address if it is
6514 a MEM. */
546b63fb 6515
367b1cf5
BS
6516 if (second_reload_reg)
6517 {
6518 if (icode != CODE_FOR_nothing)
32131a9c 6519 {
367b1cf5
BS
6520 emit_insn (GEN_FCN (icode) (reloadreg, real_oldequiv,
6521 second_reload_reg));
07875628 6522 special = 1;
367b1cf5
BS
6523 }
6524 else
6525 {
6526 /* See if we need a scratch register to load the
6527 intermediate register (a tertiary reload). */
6528 enum insn_code tertiary_icode
6529 = rld[secondary_reload].secondary_in_icode;
1554c2c6 6530
367b1cf5
BS
6531 if (tertiary_icode != CODE_FOR_nothing)
6532 {
6533 rtx third_reload_reg
6534 = rld[rld[secondary_reload].secondary_in_reload].reg_rtx;
1554c2c6 6535
367b1cf5
BS
6536 emit_insn ((GEN_FCN (tertiary_icode)
6537 (second_reload_reg, real_oldequiv,
6538 third_reload_reg)));
6539 }
6540 else
6541 gen_reload (second_reload_reg, real_oldequiv,
6542 rl->opnum,
6543 rl->when_needed);
32131a9c 6544
367b1cf5
BS
6545 oldequiv = second_reload_reg;
6546 }
6547 }
6548 }
6549#endif
32131a9c 6550
07875628 6551 if (! special && ! rtx_equal_p (reloadreg, oldequiv))
367b1cf5
BS
6552 {
6553 rtx real_oldequiv = oldequiv;
6554
f8cfc6aa 6555 if ((REG_P (oldequiv)
367b1cf5
BS
6556 && REGNO (oldequiv) >= FIRST_PSEUDO_REGISTER
6557 && (reg_equiv_memory_loc[REGNO (oldequiv)] != 0
6558 || reg_equiv_constant[REGNO (oldequiv)] != 0))
6559 || (GET_CODE (oldequiv) == SUBREG
f8cfc6aa 6560 && REG_P (SUBREG_REG (oldequiv))
367b1cf5
BS
6561 && (REGNO (SUBREG_REG (oldequiv))
6562 >= FIRST_PSEUDO_REGISTER)
6563 && ((reg_equiv_memory_loc
6564 [REGNO (SUBREG_REG (oldequiv))] != 0)
6565 || (reg_equiv_constant
716120a7
JJ
6566 [REGNO (SUBREG_REG (oldequiv))] != 0)))
6567 || (CONSTANT_P (oldequiv)
019d2e99
AS
6568 && (PREFERRED_RELOAD_CLASS (oldequiv,
6569 REGNO_REG_CLASS (REGNO (reloadreg)))
6570 == NO_REGS)))
367b1cf5
BS
6571 real_oldequiv = rl->in;
6572 gen_reload (reloadreg, real_oldequiv, rl->opnum,
6573 rl->when_needed);
6574 }
32131a9c 6575
94bd63e5
AH
6576 if (flag_non_call_exceptions)
6577 copy_eh_notes (insn, get_insns ());
6578
367b1cf5
BS
6579 /* End this sequence. */
6580 *where = get_insns ();
6581 end_sequence ();
a6a2274a 6582
367b1cf5
BS
6583 /* Update reload_override_in so that delete_address_reloads_1
6584 can see the actual register usage. */
6585 if (oldequiv_reg)
6586 reload_override_in[j] = oldequiv;
6587}
32131a9c 6588
367b1cf5
BS
6589/* Generate insns to for the output reload RL, which is for the insn described
6590 by CHAIN and has the number J. */
6591static void
0c20a65f
AJ
6592emit_output_reload_insns (struct insn_chain *chain, struct reload *rl,
6593 int j)
367b1cf5
BS
6594{
6595 rtx reloadreg = rl->reg_rtx;
6596 rtx insn = chain->insn;
6597 int special = 0;
6598 rtx old = rl->out;
6599 enum machine_mode mode = GET_MODE (old);
6600 rtx p;
32131a9c 6601
367b1cf5
BS
6602 if (rl->when_needed == RELOAD_OTHER)
6603 start_sequence ();
6604 else
6605 push_to_sequence (output_reload_insns[rl->opnum]);
32131a9c 6606
367b1cf5
BS
6607 /* Determine the mode to reload in.
6608 See comments above (for input reloading). */
32131a9c 6609
367b1cf5
BS
6610 if (mode == VOIDmode)
6611 {
6612 /* VOIDmode should never happen for an output. */
6613 if (asm_noperands (PATTERN (insn)) < 0)
6614 /* It's the compiler's fault. */
6615 fatal_insn ("VOIDmode on an output", insn);
971801ff 6616 error_for_asm (insn, "output operand is constant in %<asm%>");
367b1cf5
BS
6617 /* Prevent crash--use something we know is valid. */
6618 mode = word_mode;
6619 old = gen_rtx_REG (mode, REGNO (reloadreg));
6620 }
546b63fb 6621
367b1cf5 6622 if (GET_MODE (reloadreg) != mode)
f12448c8 6623 reloadreg = reload_adjust_reg_for_mode (reloadreg, mode);
32131a9c 6624
367b1cf5 6625#ifdef SECONDARY_OUTPUT_RELOAD_CLASS
32131a9c 6626
367b1cf5
BS
6627 /* If we need two reload regs, set RELOADREG to the intermediate
6628 one, since it will be stored into OLD. We might need a secondary
6629 register only for an input reload, so check again here. */
32131a9c 6630
367b1cf5
BS
6631 if (rl->secondary_out_reload >= 0)
6632 {
6633 rtx real_old = old;
cb2afeb3 6634
f8cfc6aa 6635 if (REG_P (old) && REGNO (old) >= FIRST_PSEUDO_REGISTER
367b1cf5
BS
6636 && reg_equiv_mem[REGNO (old)] != 0)
6637 real_old = reg_equiv_mem[REGNO (old)];
32131a9c 6638
367b1cf5
BS
6639 if ((SECONDARY_OUTPUT_RELOAD_CLASS (rl->class,
6640 mode, real_old)
6641 != NO_REGS))
b60a8416 6642 {
367b1cf5
BS
6643 rtx second_reloadreg = reloadreg;
6644 reloadreg = rld[rl->secondary_out_reload].reg_rtx;
32131a9c 6645
367b1cf5
BS
6646 /* See if RELOADREG is to be used as a scratch register
6647 or as an intermediate register. */
6648 if (rl->secondary_out_icode != CODE_FOR_nothing)
6649 {
6650 emit_insn ((GEN_FCN (rl->secondary_out_icode)
6651 (real_old, second_reloadreg, reloadreg)));
6652 special = 1;
6653 }
6654 else
6655 {
6656 /* See if we need both a scratch and intermediate reload
6657 register. */
32131a9c 6658
367b1cf5
BS
6659 int secondary_reload = rl->secondary_out_reload;
6660 enum insn_code tertiary_icode
6661 = rld[secondary_reload].secondary_out_icode;
32131a9c 6662
367b1cf5 6663 if (GET_MODE (reloadreg) != mode)
f12448c8 6664 reloadreg = reload_adjust_reg_for_mode (reloadreg, mode);
cb2afeb3 6665
367b1cf5
BS
6666 if (tertiary_icode != CODE_FOR_nothing)
6667 {
6668 rtx third_reloadreg
6669 = rld[rld[secondary_reload].secondary_out_reload].reg_rtx;
6670 rtx tem;
6671
6672 /* Copy primary reload reg to secondary reload reg.
6673 (Note that these have been swapped above, then
78adc5a0 6674 secondary reload reg to OLD using our insn.) */
367b1cf5
BS
6675
6676 /* If REAL_OLD is a paradoxical SUBREG, remove it
6677 and try to put the opposite SUBREG on
6678 RELOADREG. */
6679 if (GET_CODE (real_old) == SUBREG
6680 && (GET_MODE_SIZE (GET_MODE (real_old))
6681 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (real_old))))
6682 && 0 != (tem = gen_lowpart_common
6683 (GET_MODE (SUBREG_REG (real_old)),
6684 reloadreg)))
6685 real_old = SUBREG_REG (real_old), reloadreg = tem;
6686
6687 gen_reload (reloadreg, second_reloadreg,
6688 rl->opnum, rl->when_needed);
6689 emit_insn ((GEN_FCN (tertiary_icode)
6690 (real_old, reloadreg, third_reloadreg)));
6691 special = 1;
6692 }
05d10675 6693
367b1cf5
BS
6694 else
6695 /* Copy between the reload regs here and then to
6696 OUT later. */
cb2afeb3 6697
367b1cf5
BS
6698 gen_reload (reloadreg, second_reloadreg,
6699 rl->opnum, rl->when_needed);
a7911cd2 6700 }
367b1cf5
BS
6701 }
6702 }
32131a9c
RK
6703#endif
6704
367b1cf5
BS
6705 /* Output the last reload insn. */
6706 if (! special)
6707 {
6708 rtx set;
6709
6710 /* Don't output the last reload if OLD is not the dest of
1d7254c5 6711 INSN and is in the src and is clobbered by INSN. */
367b1cf5 6712 if (! flag_expensive_optimizations
f8cfc6aa 6713 || !REG_P (old)
367b1cf5
BS
6714 || !(set = single_set (insn))
6715 || rtx_equal_p (old, SET_DEST (set))
6716 || !reg_mentioned_p (old, SET_SRC (set))
9532e31f 6717 || !regno_clobbered_p (REGNO (old), insn, rl->mode, 0))
367b1cf5
BS
6718 gen_reload (old, reloadreg, rl->opnum,
6719 rl->when_needed);
6720 }
32131a9c 6721
367b1cf5
BS
6722 /* Look at all insns we emitted, just to be safe. */
6723 for (p = get_insns (); p; p = NEXT_INSN (p))
2c3c49de 6724 if (INSN_P (p))
367b1cf5
BS
6725 {
6726 rtx pat = PATTERN (p);
546b63fb 6727
367b1cf5
BS
6728 /* If this output reload doesn't come from a spill reg,
6729 clear any memory of reloaded copies of the pseudo reg.
6730 If this output reload comes from a spill reg,
6731 reg_has_output_reload will make this do nothing. */
6732 note_stores (pat, forget_old_reloads_1, NULL);
cb2afeb3 6733
367b1cf5
BS
6734 if (reg_mentioned_p (rl->reg_rtx, pat))
6735 {
6736 rtx set = single_set (insn);
6737 if (reload_spill_index[j] < 0
6738 && set
6739 && SET_SRC (set) == rl->reg_rtx)
6740 {
6741 int src = REGNO (SET_SRC (set));
32131a9c 6742
367b1cf5
BS
6743 reload_spill_index[j] = src;
6744 SET_HARD_REG_BIT (reg_is_output_reload, src);
6745 if (find_regno_note (insn, REG_DEAD, src))
6746 SET_HARD_REG_BIT (reg_reloaded_died, src);
6747 }
6748 if (REGNO (rl->reg_rtx) < FIRST_PSEUDO_REGISTER)
6749 {
6750 int s = rl->secondary_out_reload;
6751 set = single_set (p);
6752 /* If this reload copies only to the secondary reload
6753 register, the secondary reload does the actual
6754 store. */
6755 if (s >= 0 && set == NULL_RTX)
1d7254c5
KH
6756 /* We can't tell what function the secondary reload
6757 has and where the actual store to the pseudo is
6758 made; leave new_spill_reg_store alone. */
6759 ;
367b1cf5
BS
6760 else if (s >= 0
6761 && SET_SRC (set) == rl->reg_rtx
6762 && SET_DEST (set) == rld[s].reg_rtx)
6763 {
6764 /* Usually the next instruction will be the
6765 secondary reload insn; if we can confirm
6766 that it is, setting new_spill_reg_store to
6767 that insn will allow an extra optimization. */
6768 rtx s_reg = rld[s].reg_rtx;
6769 rtx next = NEXT_INSN (p);
6770 rld[s].out = rl->out;
6771 rld[s].out_reg = rl->out_reg;
6772 set = single_set (next);
6773 if (set && SET_SRC (set) == s_reg
6774 && ! new_spill_reg_store[REGNO (s_reg)])
6775 {
6776 SET_HARD_REG_BIT (reg_is_output_reload,
6777 REGNO (s_reg));
6778 new_spill_reg_store[REGNO (s_reg)] = next;
6779 }
6780 }
6781 else
6782 new_spill_reg_store[REGNO (rl->reg_rtx)] = p;
6783 }
6784 }
6785 }
32131a9c 6786
367b1cf5
BS
6787 if (rl->when_needed == RELOAD_OTHER)
6788 {
2f937369 6789 emit_insn (other_output_reload_insns[rl->opnum]);
367b1cf5
BS
6790 other_output_reload_insns[rl->opnum] = get_insns ();
6791 }
6792 else
6793 output_reload_insns[rl->opnum] = get_insns ();
32131a9c 6794
94bd63e5
AH
6795 if (flag_non_call_exceptions)
6796 copy_eh_notes (insn, get_insns ());
6797
1d7254c5 6798 end_sequence ();
367b1cf5 6799}
32131a9c 6800
367b1cf5
BS
6801/* Do input reloading for reload RL, which is for the insn described by CHAIN
6802 and has the number J. */
6803static void
0c20a65f 6804do_input_reload (struct insn_chain *chain, struct reload *rl, int j)
367b1cf5 6805{
367b1cf5 6806 rtx insn = chain->insn;
3c0cb5de 6807 rtx old = (rl->in && MEM_P (rl->in)
367b1cf5
BS
6808 ? rl->in_reg : rl->in);
6809
6810 if (old != 0
6811 /* AUTO_INC reloads need to be handled even if inherited. We got an
6812 AUTO_INC reload if reload_out is set but reload_out_reg isn't. */
6813 && (! reload_inherited[j] || (rl->out && ! rl->out_reg))
6814 && ! rtx_equal_p (rl->reg_rtx, old)
6815 && rl->reg_rtx != 0)
1d813780 6816 emit_input_reload_insns (chain, rld + j, old, j);
32131a9c 6817
367b1cf5
BS
6818 /* When inheriting a wider reload, we have a MEM in rl->in,
6819 e.g. inheriting a SImode output reload for
6820 (mem:HI (plus:SI (reg:SI 14 fp) (const_int 10))) */
6821 if (optimize && reload_inherited[j] && rl->in
3c0cb5de
JQ
6822 && MEM_P (rl->in)
6823 && MEM_P (rl->in_reg)
367b1cf5
BS
6824 && reload_spill_index[j] >= 0
6825 && TEST_HARD_REG_BIT (reg_reloaded_valid, reload_spill_index[j]))
4977bab6 6826 rl->in = regno_reg_rtx[reg_reloaded_contents[reload_spill_index[j]]];
32131a9c 6827
367b1cf5
BS
6828 /* If we are reloading a register that was recently stored in with an
6829 output-reload, see if we can prove there was
6830 actually no need to store the old value in it. */
32131a9c 6831
367b1cf5
BS
6832 if (optimize
6833 && (reload_inherited[j] || reload_override_in[j])
6834 && rl->reg_rtx
f8cfc6aa 6835 && REG_P (rl->reg_rtx)
367b1cf5
BS
6836 && spill_reg_store[REGNO (rl->reg_rtx)] != 0
6837#if 0
6838 /* There doesn't seem to be any reason to restrict this to pseudos
6839 and doing so loses in the case where we are copying from a
6840 register of the wrong class. */
6841 && (REGNO (spill_reg_stored_to[REGNO (rl->reg_rtx)])
6842 >= FIRST_PSEUDO_REGISTER)
6843#endif
6844 /* The insn might have already some references to stackslots
6845 replaced by MEMs, while reload_out_reg still names the
6846 original pseudo. */
6847 && (dead_or_set_p (insn,
6848 spill_reg_stored_to[REGNO (rl->reg_rtx)])
6849 || rtx_equal_p (spill_reg_stored_to[REGNO (rl->reg_rtx)],
6850 rl->out_reg)))
6851 delete_output_reload (insn, j, REGNO (rl->reg_rtx));
6852}
32131a9c 6853
367b1cf5
BS
6854/* Do output reloading for reload RL, which is for the insn described by
6855 CHAIN and has the number J.
6856 ??? At some point we need to support handling output reloads of
6857 JUMP_INSNs or insns that set cc0. */
6858static void
0c20a65f 6859do_output_reload (struct insn_chain *chain, struct reload *rl, int j)
367b1cf5
BS
6860{
6861 rtx note, old;
6862 rtx insn = chain->insn;
6863 /* If this is an output reload that stores something that is
6864 not loaded in this same reload, see if we can eliminate a previous
6865 store. */
6866 rtx pseudo = rl->out_reg;
6867
6868 if (pseudo
159d5964 6869 && optimize
f8cfc6aa 6870 && REG_P (pseudo)
367b1cf5
BS
6871 && ! rtx_equal_p (rl->in_reg, pseudo)
6872 && REGNO (pseudo) >= FIRST_PSEUDO_REGISTER
6873 && reg_last_reload_reg[REGNO (pseudo)])
6874 {
6875 int pseudo_no = REGNO (pseudo);
6876 int last_regno = REGNO (reg_last_reload_reg[pseudo_no]);
6877
6878 /* We don't need to test full validity of last_regno for
6879 inherit here; we only want to know if the store actually
6880 matches the pseudo. */
60ef417d
GK
6881 if (TEST_HARD_REG_BIT (reg_reloaded_valid, last_regno)
6882 && reg_reloaded_contents[last_regno] == pseudo_no
367b1cf5
BS
6883 && spill_reg_store[last_regno]
6884 && rtx_equal_p (pseudo, spill_reg_stored_to[last_regno]))
6885 delete_output_reload (insn, j, last_regno);
6886 }
5e03c156 6887
367b1cf5
BS
6888 old = rl->out_reg;
6889 if (old == 0
6890 || rl->reg_rtx == old
6891 || rl->reg_rtx == 0)
6892 return;
32131a9c 6893
367b1cf5
BS
6894 /* An output operand that dies right away does need a reload,
6895 but need not be copied from it. Show the new location in the
6896 REG_UNUSED note. */
f8cfc6aa 6897 if ((REG_P (old) || GET_CODE (old) == SCRATCH)
367b1cf5
BS
6898 && (note = find_reg_note (insn, REG_UNUSED, old)) != 0)
6899 {
6900 XEXP (note, 0) = rl->reg_rtx;
6901 return;
6902 }
6903 /* Likewise for a SUBREG of an operand that dies. */
6904 else if (GET_CODE (old) == SUBREG
f8cfc6aa 6905 && REG_P (SUBREG_REG (old))
367b1cf5
BS
6906 && 0 != (note = find_reg_note (insn, REG_UNUSED,
6907 SUBREG_REG (old))))
6908 {
6909 XEXP (note, 0) = gen_lowpart_common (GET_MODE (old),
6910 rl->reg_rtx);
6911 return;
6912 }
6913 else if (GET_CODE (old) == SCRATCH)
6914 /* If we aren't optimizing, there won't be a REG_UNUSED note,
6915 but we don't want to make an output reload. */
6916 return;
1554c2c6 6917
367b1cf5 6918 /* If is a JUMP_INSN, we can't support output reloads yet. */
41374e13 6919 gcc_assert (!JUMP_P (insn));
5e03c156 6920
367b1cf5
BS
6921 emit_output_reload_insns (chain, rld + j, j);
6922}
1554c2c6 6923
b5ba341f
RS
6924/* Reload number R reloads from or to a group of hard registers starting at
6925 register REGNO. Return true if it can be treated for inheritance purposes
6926 like a group of reloads, each one reloading a single hard register.
6927 The caller has already checked that the spill register and REGNO use
6928 the same number of registers to store the reload value. */
6929
6930static bool
cf9c6ca5 6931inherit_piecemeal_p (int r ATTRIBUTE_UNUSED, int regno ATTRIBUTE_UNUSED)
b5ba341f
RS
6932{
6933#ifdef CANNOT_CHANGE_MODE_CLASS
6934 return (!REG_CANNOT_CHANGE_MODE_P (reload_spill_index[r],
6935 GET_MODE (rld[r].reg_rtx),
6936 reg_raw_mode[reload_spill_index[r]])
6937 && !REG_CANNOT_CHANGE_MODE_P (regno,
6938 GET_MODE (rld[r].reg_rtx),
6939 reg_raw_mode[regno]));
6940#else
6941 return true;
6942#endif
6943}
6944
367b1cf5 6945/* Output insns to reload values in and out of the chosen reload regs. */
32131a9c 6946
367b1cf5 6947static void
0c20a65f 6948emit_reload_insns (struct insn_chain *chain)
367b1cf5
BS
6949{
6950 rtx insn = chain->insn;
32131a9c 6951
b3694847 6952 int j;
e6e52be0 6953
367b1cf5 6954 CLEAR_HARD_REG_SET (reg_reloaded_died);
e6e52be0 6955
367b1cf5
BS
6956 for (j = 0; j < reload_n_operands; j++)
6957 input_reload_insns[j] = input_address_reload_insns[j]
6958 = inpaddr_address_reload_insns[j]
6959 = output_reload_insns[j] = output_address_reload_insns[j]
6960 = outaddr_address_reload_insns[j]
6961 = other_output_reload_insns[j] = 0;
6962 other_input_address_reload_insns = 0;
6963 other_input_reload_insns = 0;
6964 operand_reload_insns = 0;
6965 other_operand_reload_insns = 0;
32131a9c 6966
850aac53 6967 /* Dump reloads into the dump file. */
c263766c 6968 if (dump_file)
850aac53 6969 {
c263766c
RH
6970 fprintf (dump_file, "\nReloads for insn # %d\n", INSN_UID (insn));
6971 debug_reload_to_stream (dump_file);
850aac53
JL
6972 }
6973
367b1cf5
BS
6974 /* Now output the instructions to copy the data into and out of the
6975 reload registers. Do these in the order that the reloads were reported,
6976 since reloads of base and index registers precede reloads of operands
6977 and the operands may need the base and index registers reloaded. */
32131a9c 6978
367b1cf5
BS
6979 for (j = 0; j < n_reloads; j++)
6980 {
6981 if (rld[j].reg_rtx
6982 && REGNO (rld[j].reg_rtx) < FIRST_PSEUDO_REGISTER)
6983 new_spill_reg_store[REGNO (rld[j].reg_rtx)] = 0;
d7e0324f 6984
367b1cf5
BS
6985 do_input_reload (chain, rld + j, j);
6986 do_output_reload (chain, rld + j, j);
32131a9c
RK
6987 }
6988
546b63fb
RK
6989 /* Now write all the insns we made for reloads in the order expected by
6990 the allocation functions. Prior to the insn being reloaded, we write
6991 the following reloads:
6992
6993 RELOAD_FOR_OTHER_ADDRESS reloads for input addresses.
6994
2edc8d65 6995 RELOAD_OTHER reloads.
546b63fb 6996
47c8cf91
ILT
6997 For each operand, any RELOAD_FOR_INPADDR_ADDRESS reloads followed
6998 by any RELOAD_FOR_INPUT_ADDRESS reloads followed by the
6999 RELOAD_FOR_INPUT reload for the operand.
546b63fb 7000
893bc853
RK
7001 RELOAD_FOR_OPADDR_ADDRS reloads.
7002
546b63fb
RK
7003 RELOAD_FOR_OPERAND_ADDRESS reloads.
7004
7005 After the insn being reloaded, we write the following:
7006
47c8cf91
ILT
7007 For each operand, any RELOAD_FOR_OUTADDR_ADDRESS reloads followed
7008 by any RELOAD_FOR_OUTPUT_ADDRESS reload followed by the
7009 RELOAD_FOR_OUTPUT reload, followed by any RELOAD_OTHER output
7010 reloads for the operand. The RELOAD_OTHER output reloads are
7011 output in descending order by reload number. */
546b63fb 7012
a7102479
JH
7013 emit_insn_before (other_input_address_reload_insns, insn);
7014 emit_insn_before (other_input_reload_insns, insn);
546b63fb
RK
7015
7016 for (j = 0; j < reload_n_operands; j++)
7017 {
a7102479
JH
7018 emit_insn_before (inpaddr_address_reload_insns[j], insn);
7019 emit_insn_before (input_address_reload_insns[j], insn);
7020 emit_insn_before (input_reload_insns[j], insn);
546b63fb
RK
7021 }
7022
a7102479
JH
7023 emit_insn_before (other_operand_reload_insns, insn);
7024 emit_insn_before (operand_reload_insns, insn);
546b63fb
RK
7025
7026 for (j = 0; j < reload_n_operands; j++)
7027 {
a7102479
JH
7028 rtx x = emit_insn_after (outaddr_address_reload_insns[j], insn);
7029 x = emit_insn_after (output_address_reload_insns[j], x);
7030 x = emit_insn_after (output_reload_insns[j], x);
7031 emit_insn_after (other_output_reload_insns[j], x);
546b63fb
RK
7032 }
7033
32131a9c
RK
7034 /* For all the spill regs newly reloaded in this instruction,
7035 record what they were reloaded from, so subsequent instructions
d445b551
RK
7036 can inherit the reloads.
7037
7038 Update spill_reg_store for the reloads of this insn.
e9e79d69 7039 Copy the elements that were updated in the loop above. */
32131a9c
RK
7040
7041 for (j = 0; j < n_reloads; j++)
7042 {
b3694847
SS
7043 int r = reload_order[j];
7044 int i = reload_spill_index[r];
32131a9c 7045
78a2bc08 7046 /* If this is a non-inherited input reload from a pseudo, we must
05d10675
BS
7047 clear any memory of a previous store to the same pseudo. Only do
7048 something if there will not be an output reload for the pseudo
7049 being reloaded. */
eceef4c9 7050 if (rld[r].in_reg != 0
05d10675
BS
7051 && ! (reload_inherited[r] || reload_override_in[r]))
7052 {
eceef4c9 7053 rtx reg = rld[r].in_reg;
78a2bc08 7054
05d10675 7055 if (GET_CODE (reg) == SUBREG)
78a2bc08 7056 reg = SUBREG_REG (reg);
05d10675 7057
f8cfc6aa 7058 if (REG_P (reg)
78a2bc08
R
7059 && REGNO (reg) >= FIRST_PSEUDO_REGISTER
7060 && ! reg_has_output_reload[REGNO (reg)])
7061 {
7062 int nregno = REGNO (reg);
7063
7064 if (reg_last_reload_reg[nregno])
05d10675
BS
7065 {
7066 int last_regno = REGNO (reg_last_reload_reg[nregno]);
78a2bc08 7067
05d10675 7068 if (reg_reloaded_contents[last_regno] == nregno)
78a2bc08 7069 spill_reg_store[last_regno] = 0;
05d10675 7070 }
78a2bc08
R
7071 }
7072 }
05d10675 7073
e6e52be0 7074 /* I is nonneg if this reload used a register.
eceef4c9 7075 If rld[r].reg_rtx is 0, this is an optional reload
51f0c3b7 7076 that we opted to ignore. */
d445b551 7077
eceef4c9 7078 if (i >= 0 && rld[r].reg_rtx != 0)
32131a9c 7079 {
66fd46b6 7080 int nr = hard_regno_nregs[i][GET_MODE (rld[r].reg_rtx)];
32131a9c 7081 int k;
51f0c3b7
JW
7082 int part_reaches_end = 0;
7083 int all_reaches_end = 1;
32131a9c 7084
51f0c3b7
JW
7085 /* For a multi register reload, we need to check if all or part
7086 of the value lives to the end. */
32131a9c
RK
7087 for (k = 0; k < nr; k++)
7088 {
eceef4c9
BS
7089 if (reload_reg_reaches_end_p (i + k, rld[r].opnum,
7090 rld[r].when_needed))
51f0c3b7
JW
7091 part_reaches_end = 1;
7092 else
7093 all_reaches_end = 0;
32131a9c
RK
7094 }
7095
51f0c3b7
JW
7096 /* Ignore reloads that don't reach the end of the insn in
7097 entirety. */
7098 if (all_reaches_end)
32131a9c 7099 {
51f0c3b7
JW
7100 /* First, clear out memory of what used to be in this spill reg.
7101 If consecutive registers are used, clear them all. */
d08ea79f 7102
32131a9c 7103 for (k = 0; k < nr; k++)
e3e9336f 7104 {
e6e52be0 7105 CLEAR_HARD_REG_BIT (reg_reloaded_valid, i + k);
e3e9336f
DJ
7106 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered, i + k);
7107 }
d08ea79f 7108
51f0c3b7 7109 /* Maybe the spill reg contains a copy of reload_out. */
eceef4c9 7110 if (rld[r].out != 0
f8cfc6aa 7111 && (REG_P (rld[r].out)
cb2afeb3 7112#ifdef AUTO_INC_DEC
eceef4c9 7113 || ! rld[r].out_reg
cb2afeb3 7114#endif
f8cfc6aa 7115 || REG_P (rld[r].out_reg)))
51f0c3b7 7116 {
f8cfc6aa 7117 rtx out = (REG_P (rld[r].out)
eceef4c9
BS
7118 ? rld[r].out
7119 : rld[r].out_reg
7120 ? rld[r].out_reg
7121/* AUTO_INC */ : XEXP (rld[r].in_reg, 0));
b3694847 7122 int nregno = REGNO (out);
51f0c3b7 7123 int nnr = (nregno >= FIRST_PSEUDO_REGISTER ? 1
66fd46b6
JH
7124 : hard_regno_nregs[nregno]
7125 [GET_MODE (rld[r].reg_rtx)]);
b5ba341f 7126 bool piecemeal;
51f0c3b7
JW
7127
7128 spill_reg_store[i] = new_spill_reg_store[i];
cb2afeb3 7129 spill_reg_stored_to[i] = out;
eceef4c9 7130 reg_last_reload_reg[nregno] = rld[r].reg_rtx;
51f0c3b7 7131
b5ba341f
RS
7132 piecemeal = (nregno < FIRST_PSEUDO_REGISTER
7133 && nr == nnr
7134 && inherit_piecemeal_p (r, nregno));
7135
51f0c3b7 7136 /* If NREGNO is a hard register, it may occupy more than
05d10675 7137 one register. If it does, say what is in the
51f0c3b7
JW
7138 rest of the registers assuming that both registers
7139 agree on how many words the object takes. If not,
7140 invalidate the subsequent registers. */
7141
7142 if (nregno < FIRST_PSEUDO_REGISTER)
7143 for (k = 1; k < nnr; k++)
7144 reg_last_reload_reg[nregno + k]
b5ba341f 7145 = (piecemeal
39d31de8 7146 ? regno_reg_rtx[REGNO (rld[r].reg_rtx) + k]
51f0c3b7
JW
7147 : 0);
7148
7149 /* Now do the inverse operation. */
7150 for (k = 0; k < nr; k++)
7151 {
e6e52be0
R
7152 CLEAR_HARD_REG_BIT (reg_reloaded_dead, i + k);
7153 reg_reloaded_contents[i + k]
b5ba341f 7154 = (nregno >= FIRST_PSEUDO_REGISTER || !piecemeal
51f0c3b7
JW
7155 ? nregno
7156 : nregno + k);
e6e52be0
R
7157 reg_reloaded_insn[i + k] = insn;
7158 SET_HARD_REG_BIT (reg_reloaded_valid, i + k);
e3e9336f
DJ
7159 if (HARD_REGNO_CALL_PART_CLOBBERED (i + k, GET_MODE (out)))
7160 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered, i + k);
51f0c3b7
JW
7161 }
7162 }
d08ea79f 7163
51f0c3b7
JW
7164 /* Maybe the spill reg contains a copy of reload_in. Only do
7165 something if there will not be an output reload for
7166 the register being reloaded. */
eceef4c9
BS
7167 else if (rld[r].out_reg == 0
7168 && rld[r].in != 0
f8cfc6aa 7169 && ((REG_P (rld[r].in)
eceef4c9
BS
7170 && REGNO (rld[r].in) >= FIRST_PSEUDO_REGISTER
7171 && ! reg_has_output_reload[REGNO (rld[r].in)])
f8cfc6aa 7172 || (REG_P (rld[r].in_reg)
eceef4c9
BS
7173 && ! reg_has_output_reload[REGNO (rld[r].in_reg)]))
7174 && ! reg_set_p (rld[r].reg_rtx, PATTERN (insn)))
51f0c3b7 7175 {
b3694847 7176 int nregno;
51f0c3b7 7177 int nnr;
e3e9336f 7178 rtx in;
b5ba341f 7179 bool piecemeal;
d445b551 7180
f8cfc6aa 7181 if (REG_P (rld[r].in)
eceef4c9 7182 && REGNO (rld[r].in) >= FIRST_PSEUDO_REGISTER)
e3e9336f 7183 in = rld[r].in;
f8cfc6aa 7184 else if (REG_P (rld[r].in_reg))
e3e9336f 7185 in = rld[r].in_reg;
cb2afeb3 7186 else
e3e9336f
DJ
7187 in = XEXP (rld[r].in_reg, 0);
7188 nregno = REGNO (in);
d08ea79f 7189
51f0c3b7 7190 nnr = (nregno >= FIRST_PSEUDO_REGISTER ? 1
66fd46b6
JH
7191 : hard_regno_nregs[nregno]
7192 [GET_MODE (rld[r].reg_rtx)]);
05d10675 7193
eceef4c9 7194 reg_last_reload_reg[nregno] = rld[r].reg_rtx;
51f0c3b7 7195
b5ba341f
RS
7196 piecemeal = (nregno < FIRST_PSEUDO_REGISTER
7197 && nr == nnr
7198 && inherit_piecemeal_p (r, nregno));
7199
51f0c3b7
JW
7200 if (nregno < FIRST_PSEUDO_REGISTER)
7201 for (k = 1; k < nnr; k++)
7202 reg_last_reload_reg[nregno + k]
b5ba341f 7203 = (piecemeal
39d31de8 7204 ? regno_reg_rtx[REGNO (rld[r].reg_rtx) + k]
51f0c3b7
JW
7205 : 0);
7206
7207 /* Unless we inherited this reload, show we haven't
cb2afeb3
R
7208 recently done a store.
7209 Previous stores of inherited auto_inc expressions
7210 also have to be discarded. */
7211 if (! reload_inherited[r]
eceef4c9 7212 || (rld[r].out && ! rld[r].out_reg))
51f0c3b7
JW
7213 spill_reg_store[i] = 0;
7214
7215 for (k = 0; k < nr; k++)
7216 {
e6e52be0
R
7217 CLEAR_HARD_REG_BIT (reg_reloaded_dead, i + k);
7218 reg_reloaded_contents[i + k]
b5ba341f 7219 = (nregno >= FIRST_PSEUDO_REGISTER || !piecemeal
51f0c3b7
JW
7220 ? nregno
7221 : nregno + k);
e6e52be0
R
7222 reg_reloaded_insn[i + k] = insn;
7223 SET_HARD_REG_BIT (reg_reloaded_valid, i + k);
e3e9336f
DJ
7224 if (HARD_REGNO_CALL_PART_CLOBBERED (i + k, GET_MODE (in)))
7225 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered, i + k);
51f0c3b7
JW
7226 }
7227 }
7228 }
d445b551 7229
51f0c3b7
JW
7230 /* However, if part of the reload reaches the end, then we must
7231 invalidate the old info for the part that survives to the end. */
7232 else if (part_reaches_end)
7233 {
546b63fb 7234 for (k = 0; k < nr; k++)
e6e52be0 7235 if (reload_reg_reaches_end_p (i + k,
eceef4c9
BS
7236 rld[r].opnum,
7237 rld[r].when_needed))
e6e52be0 7238 CLEAR_HARD_REG_BIT (reg_reloaded_valid, i + k);
32131a9c
RK
7239 }
7240 }
7241
7242 /* The following if-statement was #if 0'd in 1.34 (or before...).
7243 It's reenabled in 1.35 because supposedly nothing else
7244 deals with this problem. */
7245
7246 /* If a register gets output-reloaded from a non-spill register,
7247 that invalidates any previous reloaded copy of it.
7248 But forget_old_reloads_1 won't get to see it, because
7249 it thinks only about the original insn. So invalidate it here. */
eceef4c9 7250 if (i < 0 && rld[r].out != 0
f8cfc6aa 7251 && (REG_P (rld[r].out)
3c0cb5de 7252 || (MEM_P (rld[r].out)
f8cfc6aa 7253 && REG_P (rld[r].out_reg))))
32131a9c 7254 {
f8cfc6aa 7255 rtx out = (REG_P (rld[r].out)
eceef4c9 7256 ? rld[r].out : rld[r].out_reg);
b3694847 7257 int nregno = REGNO (out);
c7093272 7258 if (nregno >= FIRST_PSEUDO_REGISTER)
cb2afeb3 7259 {
6a651371 7260 rtx src_reg, store_insn = NULL_RTX;
cb2afeb3
R
7261
7262 reg_last_reload_reg[nregno] = 0;
7263
7264 /* If we can find a hard register that is stored, record
7265 the storing insn so that we may delete this insn with
7266 delete_output_reload. */
eceef4c9 7267 src_reg = rld[r].reg_rtx;
cb2afeb3
R
7268
7269 /* If this is an optional reload, try to find the source reg
7270 from an input reload. */
7271 if (! src_reg)
7272 {
7273 rtx set = single_set (insn);
eceef4c9 7274 if (set && SET_DEST (set) == rld[r].out)
cb2afeb3
R
7275 {
7276 int k;
7277
7278 src_reg = SET_SRC (set);
7279 store_insn = insn;
7280 for (k = 0; k < n_reloads; k++)
7281 {
eceef4c9 7282 if (rld[k].in == src_reg)
cb2afeb3 7283 {
eceef4c9 7284 src_reg = rld[k].reg_rtx;
cb2afeb3
R
7285 break;
7286 }
7287 }
7288 }
7289 }
7290 else
7291 store_insn = new_spill_reg_store[REGNO (src_reg)];
f8cfc6aa 7292 if (src_reg && REG_P (src_reg)
cb2afeb3
R
7293 && REGNO (src_reg) < FIRST_PSEUDO_REGISTER)
7294 {
7295 int src_regno = REGNO (src_reg);
66fd46b6 7296 int nr = hard_regno_nregs[src_regno][rld[r].mode];
cb2afeb3
R
7297 /* The place where to find a death note varies with
7298 PRESERVE_DEATH_INFO_REGNO_P . The condition is not
7299 necessarily checked exactly in the code that moves
7300 notes, so just check both locations. */
7301 rtx note = find_regno_note (insn, REG_DEAD, src_regno);
1558b970 7302 if (! note && store_insn)
cb2afeb3
R
7303 note = find_regno_note (store_insn, REG_DEAD, src_regno);
7304 while (nr-- > 0)
7305 {
7306 spill_reg_store[src_regno + nr] = store_insn;
7307 spill_reg_stored_to[src_regno + nr] = out;
7308 reg_reloaded_contents[src_regno + nr] = nregno;
7309 reg_reloaded_insn[src_regno + nr] = store_insn;
00f9f1bc 7310 CLEAR_HARD_REG_BIT (reg_reloaded_dead, src_regno + nr);
cb2afeb3 7311 SET_HARD_REG_BIT (reg_reloaded_valid, src_regno + nr);
e3e9336f
DJ
7312 if (HARD_REGNO_CALL_PART_CLOBBERED (src_regno + nr,
7313 GET_MODE (src_reg)))
7314 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
7315 src_regno + nr);
cb2afeb3
R
7316 SET_HARD_REG_BIT (reg_is_output_reload, src_regno + nr);
7317 if (note)
7318 SET_HARD_REG_BIT (reg_reloaded_died, src_regno);
7319 else
7320 CLEAR_HARD_REG_BIT (reg_reloaded_died, src_regno);
7321 }
7322 reg_last_reload_reg[nregno] = src_reg;
9532c14f
UW
7323 /* We have to set reg_has_output_reload here, or else
7324 forget_old_reloads_1 will clear reg_last_reload_reg
7325 right away. */
7326 reg_has_output_reload[nregno] = 1;
cb2afeb3
R
7327 }
7328 }
c7093272
RK
7329 else
7330 {
66fd46b6 7331 int num_regs = hard_regno_nregs[nregno][GET_MODE (rld[r].out)];
36281332 7332
c7093272
RK
7333 while (num_regs-- > 0)
7334 reg_last_reload_reg[nregno + num_regs] = 0;
7335 }
32131a9c
RK
7336 }
7337 }
e6e52be0 7338 IOR_HARD_REG_SET (reg_reloaded_dead, reg_reloaded_died);
32131a9c
RK
7339}
7340\f
5e03c156
RK
7341/* Emit code to perform a reload from IN (which may be a reload register) to
7342 OUT (which may also be a reload register). IN or OUT is from operand
05d10675 7343 OPNUM with reload type TYPE.
546b63fb 7344
3c3eeea6 7345 Returns first insn emitted. */
32131a9c
RK
7346
7347rtx
0c20a65f 7348gen_reload (rtx out, rtx in, int opnum, enum reload_type type)
32131a9c 7349{
546b63fb 7350 rtx last = get_last_insn ();
7a5b18b0
RK
7351 rtx tem;
7352
7353 /* If IN is a paradoxical SUBREG, remove it and try to put the
7354 opposite SUBREG on OUT. Likewise for a paradoxical SUBREG on OUT. */
7355 if (GET_CODE (in) == SUBREG
7356 && (GET_MODE_SIZE (GET_MODE (in))
7357 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
7358 && (tem = gen_lowpart_common (GET_MODE (SUBREG_REG (in)), out)) != 0)
7359 in = SUBREG_REG (in), out = tem;
7360 else if (GET_CODE (out) == SUBREG
eceef4c9
BS
7361 && (GET_MODE_SIZE (GET_MODE (out))
7362 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
7363 && (tem = gen_lowpart_common (GET_MODE (SUBREG_REG (out)), in)) != 0)
7a5b18b0 7364 out = SUBREG_REG (out), in = tem;
32131a9c 7365
a8fdc208 7366 /* How to do this reload can get quite tricky. Normally, we are being
32131a9c
RK
7367 asked to reload a simple operand, such as a MEM, a constant, or a pseudo
7368 register that didn't get a hard register. In that case we can just
7369 call emit_move_insn.
7370
a7fd196c
JW
7371 We can also be asked to reload a PLUS that adds a register or a MEM to
7372 another register, constant or MEM. This can occur during frame pointer
7373 elimination and while reloading addresses. This case is handled by
7374 trying to emit a single insn to perform the add. If it is not valid,
7375 we use a two insn sequence.
32131a9c
RK
7376
7377 Finally, we could be called to handle an 'o' constraint by putting
7378 an address into a register. In that case, we first try to do this
7379 with a named pattern of "reload_load_address". If no such pattern
7380 exists, we just emit a SET insn and hope for the best (it will normally
7381 be valid on machines that use 'o').
7382
7383 This entire process is made complex because reload will never
7384 process the insns we generate here and so we must ensure that
7385 they will fit their constraints and also by the fact that parts of
7386 IN might be being reloaded separately and replaced with spill registers.
7387 Because of this, we are, in some sense, just guessing the right approach
7388 here. The one listed above seems to work.
7389
7390 ??? At some point, this whole thing needs to be rethought. */
7391
7392 if (GET_CODE (in) == PLUS
f8cfc6aa 7393 && (REG_P (XEXP (in, 0))
5c6b1bd2 7394 || GET_CODE (XEXP (in, 0)) == SUBREG
3c0cb5de 7395 || MEM_P (XEXP (in, 0)))
f8cfc6aa 7396 && (REG_P (XEXP (in, 1))
5c6b1bd2 7397 || GET_CODE (XEXP (in, 1)) == SUBREG
a7fd196c 7398 || CONSTANT_P (XEXP (in, 1))
3c0cb5de 7399 || MEM_P (XEXP (in, 1))))
32131a9c 7400 {
a7fd196c
JW
7401 /* We need to compute the sum of a register or a MEM and another
7402 register, constant, or MEM, and put it into the reload
3002e160
JW
7403 register. The best possible way of doing this is if the machine
7404 has a three-operand ADD insn that accepts the required operands.
32131a9c
RK
7405
7406 The simplest approach is to try to generate such an insn and see if it
7407 is recognized and matches its constraints. If so, it can be used.
7408
7409 It might be better not to actually emit the insn unless it is valid,
0009eff2 7410 but we need to pass the insn as an operand to `recog' and
0eadeb15 7411 `extract_insn' and it is simpler to emit and then delete the insn if
0009eff2 7412 not valid than to dummy things up. */
a8fdc208 7413
af929c62 7414 rtx op0, op1, tem, insn;
32131a9c 7415 int code;
a8fdc208 7416
af929c62
RK
7417 op0 = find_replacement (&XEXP (in, 0));
7418 op1 = find_replacement (&XEXP (in, 1));
7419
32131a9c
RK
7420 /* Since constraint checking is strict, commutativity won't be
7421 checked, so we need to do that here to avoid spurious failure
7422 if the add instruction is two-address and the second operand
7423 of the add is the same as the reload reg, which is frequently
7424 the case. If the insn would be A = B + A, rearrange it so
0f41302f 7425 it will be A = A + B as constrain_operands expects. */
a8fdc208 7426
f8cfc6aa 7427 if (REG_P (XEXP (in, 1))
5e03c156 7428 && REGNO (out) == REGNO (XEXP (in, 1)))
af929c62
RK
7429 tem = op0, op0 = op1, op1 = tem;
7430
7431 if (op0 != XEXP (in, 0) || op1 != XEXP (in, 1))
38a448ca 7432 in = gen_rtx_PLUS (GET_MODE (in), op0, op1);
32131a9c 7433
38a448ca 7434 insn = emit_insn (gen_rtx_SET (VOIDmode, out, in));
32131a9c
RK
7435 code = recog_memoized (insn);
7436
7437 if (code >= 0)
7438 {
0eadeb15 7439 extract_insn (insn);
32131a9c
RK
7440 /* We want constrain operands to treat this insn strictly in
7441 its validity determination, i.e., the way it would after reload
7442 has completed. */
0eadeb15 7443 if (constrain_operands (1))
32131a9c
RK
7444 return insn;
7445 }
7446
546b63fb 7447 delete_insns_since (last);
32131a9c
RK
7448
7449 /* If that failed, we must use a conservative two-insn sequence.
09522f21
FS
7450
7451 Use a move to copy one operand into the reload register. Prefer
7452 to reload a constant, MEM or pseudo since the move patterns can
7453 handle an arbitrary operand. If OP1 is not a constant, MEM or
7454 pseudo and OP1 is not a valid operand for an add instruction, then
7455 reload OP1.
7456
7457 After reloading one of the operands into the reload register, add
7458 the reload register to the output register.
32131a9c
RK
7459
7460 If there is another way to do this for a specific machine, a
7461 DEFINE_PEEPHOLE should be specified that recognizes the sequence
7462 we emit below. */
7463
09522f21
FS
7464 code = (int) add_optab->handlers[(int) GET_MODE (out)].insn_code;
7465
3c0cb5de 7466 if (CONSTANT_P (op1) || MEM_P (op1) || GET_CODE (op1) == SUBREG
f8cfc6aa 7467 || (REG_P (op1)
09522f21
FS
7468 && REGNO (op1) >= FIRST_PSEUDO_REGISTER)
7469 || (code != CODE_FOR_nothing
a995e389
RH
7470 && ! ((*insn_data[code].operand[2].predicate)
7471 (op1, insn_data[code].operand[2].mode))))
af929c62 7472 tem = op0, op0 = op1, op1 = tem;
32131a9c 7473
5c6b1bd2 7474 gen_reload (out, op0, opnum, type);
39b56c2a 7475
5e03c156 7476 /* If OP0 and OP1 are the same, we can use OUT for OP1.
39b56c2a
RK
7477 This fixes a problem on the 32K where the stack pointer cannot
7478 be used as an operand of an add insn. */
7479
7480 if (rtx_equal_p (op0, op1))
5e03c156 7481 op1 = out;
39b56c2a 7482
5e03c156 7483 insn = emit_insn (gen_add2_insn (out, op1));
c77c9766
RK
7484
7485 /* If that failed, copy the address register to the reload register.
0f41302f 7486 Then add the constant to the reload register. */
c77c9766
RK
7487
7488 code = recog_memoized (insn);
7489
7490 if (code >= 0)
7491 {
0eadeb15 7492 extract_insn (insn);
c77c9766
RK
7493 /* We want constrain operands to treat this insn strictly in
7494 its validity determination, i.e., the way it would after reload
7495 has completed. */
0eadeb15 7496 if (constrain_operands (1))
4117a96b
R
7497 {
7498 /* Add a REG_EQUIV note so that find_equiv_reg can find it. */
7499 REG_NOTES (insn)
9e6a5703 7500 = gen_rtx_EXPR_LIST (REG_EQUIV, in, REG_NOTES (insn));
4117a96b
R
7501 return insn;
7502 }
c77c9766
RK
7503 }
7504
7505 delete_insns_since (last);
7506
5c6b1bd2 7507 gen_reload (out, op1, opnum, type);
4117a96b 7508 insn = emit_insn (gen_add2_insn (out, op0));
9e6a5703 7509 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_EQUIV, in, REG_NOTES (insn));
32131a9c
RK
7510 }
7511
0dadecf6
RK
7512#ifdef SECONDARY_MEMORY_NEEDED
7513 /* If we need a memory location to do the move, do it that way. */
f8cfc6aa 7514 else if ((REG_P (in) || GET_CODE (in) == SUBREG)
344b78b8 7515 && reg_or_subregno (in) < FIRST_PSEUDO_REGISTER
f8cfc6aa 7516 && (REG_P (out) || GET_CODE (out) == SUBREG)
344b78b8
JH
7517 && reg_or_subregno (out) < FIRST_PSEUDO_REGISTER
7518 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (reg_or_subregno (in)),
7519 REGNO_REG_CLASS (reg_or_subregno (out)),
5e03c156 7520 GET_MODE (out)))
0dadecf6
RK
7521 {
7522 /* Get the memory to use and rewrite both registers to its mode. */
5e03c156 7523 rtx loc = get_secondary_mem (in, GET_MODE (out), opnum, type);
0dadecf6 7524
5e03c156 7525 if (GET_MODE (loc) != GET_MODE (out))
38a448ca 7526 out = gen_rtx_REG (GET_MODE (loc), REGNO (out));
0dadecf6
RK
7527
7528 if (GET_MODE (loc) != GET_MODE (in))
38a448ca 7529 in = gen_rtx_REG (GET_MODE (loc), REGNO (in));
0dadecf6 7530
5c6b1bd2
RK
7531 gen_reload (loc, in, opnum, type);
7532 gen_reload (out, loc, opnum, type);
0dadecf6
RK
7533 }
7534#endif
7535
32131a9c 7536 /* If IN is a simple operand, use gen_move_insn. */
ec8e098d 7537 else if (OBJECT_P (in) || GET_CODE (in) == SUBREG)
5e03c156 7538 emit_insn (gen_move_insn (out, in));
32131a9c
RK
7539
7540#ifdef HAVE_reload_load_address
7541 else if (HAVE_reload_load_address)
5e03c156 7542 emit_insn (gen_reload_load_address (out, in));
32131a9c
RK
7543#endif
7544
5e03c156 7545 /* Otherwise, just write (set OUT IN) and hope for the best. */
32131a9c 7546 else
38a448ca 7547 emit_insn (gen_rtx_SET (VOIDmode, out, in));
32131a9c
RK
7548
7549 /* Return the first insn emitted.
546b63fb 7550 We can not just return get_last_insn, because there may have
32131a9c
RK
7551 been multiple instructions emitted. Also note that gen_move_insn may
7552 emit more than one insn itself, so we can not assume that there is one
7553 insn emitted per emit_insn_before call. */
7554
546b63fb 7555 return last ? NEXT_INSN (last) : get_insns ();
32131a9c
RK
7556}
7557\f
cda94cbb
RH
7558/* Delete a previously made output-reload whose result we now believe
7559 is not needed. First we double-check.
32131a9c
RK
7560
7561 INSN is the insn now being processed.
cb2afeb3
R
7562 LAST_RELOAD_REG is the hard register number for which we want to delete
7563 the last output reload.
7564 J is the reload-number that originally used REG. The caller has made
7565 certain that reload J doesn't use REG any longer for input. */
32131a9c
RK
7566
7567static void
0c20a65f 7568delete_output_reload (rtx insn, int j, int last_reload_reg)
32131a9c 7569{
cb2afeb3
R
7570 rtx output_reload_insn = spill_reg_store[last_reload_reg];
7571 rtx reg = spill_reg_stored_to[last_reload_reg];
7572 int k;
7573 int n_occurrences;
7574 int n_inherited = 0;
b3694847 7575 rtx i1;
cb2afeb3 7576 rtx substed;
05d10675 7577
068f5dea
JH
7578 /* It is possible that this reload has been only used to set another reload
7579 we eliminated earlier and thus deleted this instruction too. */
7580 if (INSN_DELETED_P (output_reload_insn))
7581 return;
7582
32131a9c
RK
7583 /* Get the raw pseudo-register referred to. */
7584
32131a9c
RK
7585 while (GET_CODE (reg) == SUBREG)
7586 reg = SUBREG_REG (reg);
cb2afeb3
R
7587 substed = reg_equiv_memory_loc[REGNO (reg)];
7588
7589 /* This is unsafe if the operand occurs more often in the current
7590 insn than it is inherited. */
7591 for (k = n_reloads - 1; k >= 0; k--)
7592 {
eceef4c9 7593 rtx reg2 = rld[k].in;
cb2afeb3
R
7594 if (! reg2)
7595 continue;
3c0cb5de 7596 if (MEM_P (reg2) || reload_override_in[k])
eceef4c9 7597 reg2 = rld[k].in_reg;
cb2afeb3 7598#ifdef AUTO_INC_DEC
eceef4c9
BS
7599 if (rld[k].out && ! rld[k].out_reg)
7600 reg2 = XEXP (rld[k].in_reg, 0);
cb2afeb3
R
7601#endif
7602 while (GET_CODE (reg2) == SUBREG)
7603 reg2 = SUBREG_REG (reg2);
7604 if (rtx_equal_p (reg2, reg))
2eb6dac7
AS
7605 {
7606 if (reload_inherited[k] || reload_override_in[k] || k == j)
7607 {
cb2afeb3 7608 n_inherited++;
eceef4c9 7609 reg2 = rld[k].out_reg;
2eb6dac7
AS
7610 if (! reg2)
7611 continue;
7612 while (GET_CODE (reg2) == SUBREG)
7613 reg2 = XEXP (reg2, 0);
7614 if (rtx_equal_p (reg2, reg))
7615 n_inherited++;
7616 }
7617 else
7618 return;
7619 }
cb2afeb3 7620 }
4b983fdc 7621 n_occurrences = count_occurrences (PATTERN (insn), reg, 0);
cb2afeb3 7622 if (substed)
5d7ef82a
BS
7623 n_occurrences += count_occurrences (PATTERN (insn),
7624 eliminate_regs (substed, 0,
7625 NULL_RTX), 0);
cb2afeb3
R
7626 if (n_occurrences > n_inherited)
7627 return;
32131a9c
RK
7628
7629 /* If the pseudo-reg we are reloading is no longer referenced
7630 anywhere between the store into it and here,
7631 and no jumps or labels intervene, then the value can get
7632 here through the reload reg alone.
7633 Otherwise, give up--return. */
7634 for (i1 = NEXT_INSN (output_reload_insn);
7635 i1 != insn; i1 = NEXT_INSN (i1))
7636 {
4b4bf941 7637 if (LABEL_P (i1) || JUMP_P (i1))
32131a9c 7638 return;
4b4bf941 7639 if ((NONJUMP_INSN_P (i1) || CALL_P (i1))
32131a9c 7640 && reg_mentioned_p (reg, PATTERN (i1)))
aa6498c2 7641 {
cb2afeb3
R
7642 /* If this is USE in front of INSN, we only have to check that
7643 there are no more references than accounted for by inheritance. */
4b4bf941 7644 while (NONJUMP_INSN_P (i1) && GET_CODE (PATTERN (i1)) == USE)
aa6498c2 7645 {
cb2afeb3 7646 n_occurrences += rtx_equal_p (reg, XEXP (PATTERN (i1), 0)) != 0;
aa6498c2
R
7647 i1 = NEXT_INSN (i1);
7648 }
cb2afeb3 7649 if (n_occurrences <= n_inherited && i1 == insn)
aa6498c2
R
7650 break;
7651 return;
7652 }
32131a9c
RK
7653 }
7654
cda94cbb 7655 /* We will be deleting the insn. Remove the spill reg information. */
66fd46b6 7656 for (k = hard_regno_nregs[last_reload_reg][GET_MODE (reg)]; k-- > 0; )
cda94cbb
RH
7657 {
7658 spill_reg_store[last_reload_reg + k] = 0;
7659 spill_reg_stored_to[last_reload_reg + k] = 0;
7660 }
7661
aa6498c2 7662 /* The caller has already checked that REG dies or is set in INSN.
cda94cbb 7663 It has also checked that we are optimizing, and thus some
14b493d6 7664 inaccuracies in the debugging information are acceptable.
cda94cbb
RH
7665 So we could just delete output_reload_insn. But in some cases
7666 we can improve the debugging information without sacrificing
7667 optimization - maybe even improving the code: See if the pseudo
7668 reg has been completely replaced with reload regs. If so, delete
7669 the store insn and forget we had a stack slot for the pseudo. */
eceef4c9 7670 if (rld[j].out != rld[j].in
aa6498c2 7671 && REG_N_DEATHS (REGNO (reg)) == 1
a3a24aa6 7672 && REG_N_SETS (REGNO (reg)) == 1
aa6498c2
R
7673 && REG_BASIC_BLOCK (REGNO (reg)) >= 0
7674 && find_regno_note (insn, REG_DEAD, REGNO (reg)))
32131a9c
RK
7675 {
7676 rtx i2;
7677
cda94cbb
RH
7678 /* We know that it was used only between here and the beginning of
7679 the current basic block. (We also know that the last use before
7680 INSN was the output reload we are thinking of deleting, but never
7681 mind that.) Search that range; see if any ref remains. */
32131a9c
RK
7682 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
7683 {
d445b551
RK
7684 rtx set = single_set (i2);
7685
32131a9c
RK
7686 /* Uses which just store in the pseudo don't count,
7687 since if they are the only uses, they are dead. */
d445b551 7688 if (set != 0 && SET_DEST (set) == reg)
32131a9c 7689 continue;
4b4bf941
JQ
7690 if (LABEL_P (i2)
7691 || JUMP_P (i2))
32131a9c 7692 break;
4b4bf941 7693 if ((NONJUMP_INSN_P (i2) || CALL_P (i2))
32131a9c 7694 && reg_mentioned_p (reg, PATTERN (i2)))
aa6498c2
R
7695 {
7696 /* Some other ref remains; just delete the output reload we
7697 know to be dead. */
cb2afeb3 7698 delete_address_reloads (output_reload_insn, insn);
ca6c03ca 7699 delete_insn (output_reload_insn);
aa6498c2
R
7700 return;
7701 }
32131a9c
RK
7702 }
7703
cda94cbb
RH
7704 /* Delete the now-dead stores into this pseudo. Note that this
7705 loop also takes care of deleting output_reload_insn. */
32131a9c
RK
7706 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
7707 {
d445b551
RK
7708 rtx set = single_set (i2);
7709
7710 if (set != 0 && SET_DEST (set) == reg)
5507b94b 7711 {
cb2afeb3 7712 delete_address_reloads (i2, insn);
ca6c03ca 7713 delete_insn (i2);
5507b94b 7714 }
4b4bf941
JQ
7715 if (LABEL_P (i2)
7716 || JUMP_P (i2))
32131a9c
RK
7717 break;
7718 }
7719
cda94cbb 7720 /* For the debugging info, say the pseudo lives in this reload reg. */
eceef4c9 7721 reg_renumber[REGNO (reg)] = REGNO (rld[j].reg_rtx);
32131a9c
RK
7722 alter_reg (REGNO (reg), -1);
7723 }
cda94cbb
RH
7724 else
7725 {
7726 delete_address_reloads (output_reload_insn, insn);
7727 delete_insn (output_reload_insn);
7728 }
cb2afeb3
R
7729}
7730
7731/* We are going to delete DEAD_INSN. Recursively delete loads of
7732 reload registers used in DEAD_INSN that are not used till CURRENT_INSN.
7733 CURRENT_INSN is being reloaded, so we have to check its reloads too. */
7734static void
0c20a65f 7735delete_address_reloads (rtx dead_insn, rtx current_insn)
cb2afeb3
R
7736{
7737 rtx set = single_set (dead_insn);
7738 rtx set2, dst, prev, next;
7739 if (set)
7740 {
7741 rtx dst = SET_DEST (set);
3c0cb5de 7742 if (MEM_P (dst))
cb2afeb3
R
7743 delete_address_reloads_1 (dead_insn, XEXP (dst, 0), current_insn);
7744 }
7745 /* If we deleted the store from a reloaded post_{in,de}c expression,
7746 we can delete the matching adds. */
7747 prev = PREV_INSN (dead_insn);
7748 next = NEXT_INSN (dead_insn);
7749 if (! prev || ! next)
7750 return;
7751 set = single_set (next);
7752 set2 = single_set (prev);
7753 if (! set || ! set2
7754 || GET_CODE (SET_SRC (set)) != PLUS || GET_CODE (SET_SRC (set2)) != PLUS
7755 || GET_CODE (XEXP (SET_SRC (set), 1)) != CONST_INT
7756 || GET_CODE (XEXP (SET_SRC (set2), 1)) != CONST_INT)
7757 return;
7758 dst = SET_DEST (set);
7759 if (! rtx_equal_p (dst, SET_DEST (set2))
7760 || ! rtx_equal_p (dst, XEXP (SET_SRC (set), 0))
7761 || ! rtx_equal_p (dst, XEXP (SET_SRC (set2), 0))
7762 || (INTVAL (XEXP (SET_SRC (set), 1))
1d7254c5 7763 != -INTVAL (XEXP (SET_SRC (set2), 1))))
cb2afeb3 7764 return;
53c17031
JH
7765 delete_related_insns (prev);
7766 delete_related_insns (next);
cb2afeb3
R
7767}
7768
7769/* Subfunction of delete_address_reloads: process registers found in X. */
7770static void
0c20a65f 7771delete_address_reloads_1 (rtx dead_insn, rtx x, rtx current_insn)
cb2afeb3
R
7772{
7773 rtx prev, set, dst, i2;
7774 int i, j;
7775 enum rtx_code code = GET_CODE (x);
7776
7777 if (code != REG)
7778 {
1d7254c5 7779 const char *fmt = GET_RTX_FORMAT (code);
cb2afeb3
R
7780 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7781 {
7782 if (fmt[i] == 'e')
7783 delete_address_reloads_1 (dead_insn, XEXP (x, i), current_insn);
7784 else if (fmt[i] == 'E')
7785 {
1d7254c5 7786 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
cb2afeb3
R
7787 delete_address_reloads_1 (dead_insn, XVECEXP (x, i, j),
7788 current_insn);
7789 }
7790 }
7791 return;
7792 }
7793
7794 if (spill_reg_order[REGNO (x)] < 0)
7795 return;
aa6498c2 7796
cb2afeb3
R
7797 /* Scan backwards for the insn that sets x. This might be a way back due
7798 to inheritance. */
7799 for (prev = PREV_INSN (dead_insn); prev; prev = PREV_INSN (prev))
7800 {
7801 code = GET_CODE (prev);
7802 if (code == CODE_LABEL || code == JUMP_INSN)
7803 return;
ec8e098d 7804 if (!INSN_P (prev))
cb2afeb3
R
7805 continue;
7806 if (reg_set_p (x, PATTERN (prev)))
7807 break;
7808 if (reg_referenced_p (x, PATTERN (prev)))
7809 return;
7810 }
7811 if (! prev || INSN_UID (prev) < reload_first_uid)
7812 return;
7813 /* Check that PREV only sets the reload register. */
7814 set = single_set (prev);
7815 if (! set)
7816 return;
7817 dst = SET_DEST (set);
f8cfc6aa 7818 if (!REG_P (dst)
cb2afeb3
R
7819 || ! rtx_equal_p (dst, x))
7820 return;
7821 if (! reg_set_p (dst, PATTERN (dead_insn)))
7822 {
7823 /* Check if DST was used in a later insn -
7824 it might have been inherited. */
7825 for (i2 = NEXT_INSN (dead_insn); i2; i2 = NEXT_INSN (i2))
7826 {
4b4bf941 7827 if (LABEL_P (i2))
cb2afeb3 7828 break;
2c3c49de 7829 if (! INSN_P (i2))
cb2afeb3
R
7830 continue;
7831 if (reg_referenced_p (dst, PATTERN (i2)))
7832 {
7833 /* If there is a reference to the register in the current insn,
7834 it might be loaded in a non-inherited reload. If no other
7835 reload uses it, that means the register is set before
7836 referenced. */
7837 if (i2 == current_insn)
7838 {
7839 for (j = n_reloads - 1; j >= 0; j--)
eceef4c9 7840 if ((rld[j].reg_rtx == dst && reload_inherited[j])
cb2afeb3
R
7841 || reload_override_in[j] == dst)
7842 return;
7843 for (j = n_reloads - 1; j >= 0; j--)
eceef4c9 7844 if (rld[j].in && rld[j].reg_rtx == dst)
cb2afeb3
R
7845 break;
7846 if (j >= 0)
7847 break;
7848 }
7849 return;
7850 }
4b4bf941 7851 if (JUMP_P (i2))
cb2afeb3 7852 break;
cb2afeb3 7853 /* If DST is still live at CURRENT_INSN, check if it is used for
3900dc09
R
7854 any reload. Note that even if CURRENT_INSN sets DST, we still
7855 have to check the reloads. */
cb2afeb3
R
7856 if (i2 == current_insn)
7857 {
7858 for (j = n_reloads - 1; j >= 0; j--)
eceef4c9 7859 if ((rld[j].reg_rtx == dst && reload_inherited[j])
cb2afeb3
R
7860 || reload_override_in[j] == dst)
7861 return;
7862 /* ??? We can't finish the loop here, because dst might be
7863 allocated to a pseudo in this block if no reload in this
14b493d6 7864 block needs any of the classes containing DST - see
cb2afeb3
R
7865 spill_hard_reg. There is no easy way to tell this, so we
7866 have to scan till the end of the basic block. */
7867 }
3900dc09
R
7868 if (reg_set_p (dst, PATTERN (i2)))
7869 break;
cb2afeb3
R
7870 }
7871 }
7872 delete_address_reloads_1 (prev, SET_SRC (set), current_insn);
7873 reg_reloaded_contents[REGNO (dst)] = -1;
ca6c03ca 7874 delete_insn (prev);
32131a9c 7875}
32131a9c 7876\f
a8fdc208 7877/* Output reload-insns to reload VALUE into RELOADREG.
858a47b1 7878 VALUE is an autoincrement or autodecrement RTX whose operand
32131a9c
RK
7879 is a register or memory location;
7880 so reloading involves incrementing that location.
cb2afeb3 7881 IN is either identical to VALUE, or some cheaper place to reload from.
32131a9c
RK
7882
7883 INC_AMOUNT is the number to increment or decrement by (always positive).
cb2afeb3 7884 This cannot be deduced from VALUE.
32131a9c 7885
cb2afeb3
R
7886 Return the instruction that stores into RELOADREG. */
7887
7888static rtx
0c20a65f 7889inc_for_reload (rtx reloadreg, rtx in, rtx value, int inc_amount)
32131a9c
RK
7890{
7891 /* REG or MEM to be copied and incremented. */
7892 rtx incloc = XEXP (value, 0);
7893 /* Nonzero if increment after copying. */
7894 int post = (GET_CODE (value) == POST_DEC || GET_CODE (value) == POST_INC);
546b63fb 7895 rtx last;
0009eff2
RK
7896 rtx inc;
7897 rtx add_insn;
7898 int code;
cb2afeb3
R
7899 rtx store;
7900 rtx real_in = in == value ? XEXP (in, 0) : in;
32131a9c
RK
7901
7902 /* No hard register is equivalent to this register after
40f03658 7903 inc/dec operation. If REG_LAST_RELOAD_REG were nonzero,
32131a9c
RK
7904 we could inc/dec that register as well (maybe even using it for
7905 the source), but I'm not sure it's worth worrying about. */
f8cfc6aa 7906 if (REG_P (incloc))
32131a9c
RK
7907 reg_last_reload_reg[REGNO (incloc)] = 0;
7908
7909 if (GET_CODE (value) == PRE_DEC || GET_CODE (value) == POST_DEC)
1d7254c5 7910 inc_amount = -inc_amount;
32131a9c 7911
fb3821f7 7912 inc = GEN_INT (inc_amount);
0009eff2
RK
7913
7914 /* If this is post-increment, first copy the location to the reload reg. */
cb2afeb3
R
7915 if (post && real_in != reloadreg)
7916 emit_insn (gen_move_insn (reloadreg, real_in));
0009eff2 7917
cb2afeb3
R
7918 if (in == value)
7919 {
7920 /* See if we can directly increment INCLOC. Use a method similar to
7921 that in gen_reload. */
0009eff2 7922
cb2afeb3
R
7923 last = get_last_insn ();
7924 add_insn = emit_insn (gen_rtx_SET (VOIDmode, incloc,
7925 gen_rtx_PLUS (GET_MODE (incloc),
7926 incloc, inc)));
05d10675 7927
cb2afeb3
R
7928 code = recog_memoized (add_insn);
7929 if (code >= 0)
32131a9c 7930 {
0eadeb15
BS
7931 extract_insn (add_insn);
7932 if (constrain_operands (1))
cb2afeb3
R
7933 {
7934 /* If this is a pre-increment and we have incremented the value
7935 where it lives, copy the incremented value to RELOADREG to
7936 be used as an address. */
0009eff2 7937
cb2afeb3
R
7938 if (! post)
7939 emit_insn (gen_move_insn (reloadreg, incloc));
546b63fb 7940
cb2afeb3
R
7941 return add_insn;
7942 }
32131a9c 7943 }
cb2afeb3 7944 delete_insns_since (last);
32131a9c 7945 }
0009eff2 7946
0009eff2
RK
7947 /* If couldn't do the increment directly, must increment in RELOADREG.
7948 The way we do this depends on whether this is pre- or post-increment.
7949 For pre-increment, copy INCLOC to the reload register, increment it
7950 there, then save back. */
7951
7952 if (! post)
7953 {
cb2afeb3
R
7954 if (in != reloadreg)
7955 emit_insn (gen_move_insn (reloadreg, real_in));
546b63fb 7956 emit_insn (gen_add2_insn (reloadreg, inc));
cb2afeb3 7957 store = emit_insn (gen_move_insn (incloc, reloadreg));
0009eff2 7958 }
32131a9c
RK
7959 else
7960 {
0009eff2
RK
7961 /* Postincrement.
7962 Because this might be a jump insn or a compare, and because RELOADREG
7963 may not be available after the insn in an input reload, we must do
7964 the incrementation before the insn being reloaded for.
7965
cb2afeb3 7966 We have already copied IN to RELOADREG. Increment the copy in
0009eff2
RK
7967 RELOADREG, save that back, then decrement RELOADREG so it has
7968 the original value. */
7969
546b63fb 7970 emit_insn (gen_add2_insn (reloadreg, inc));
cb2afeb3 7971 store = emit_insn (gen_move_insn (incloc, reloadreg));
546b63fb 7972 emit_insn (gen_add2_insn (reloadreg, GEN_INT (-inc_amount)));
32131a9c 7973 }
0009eff2 7974
cb2afeb3 7975 return store;
32131a9c
RK
7976}
7977\f
2dfa9a87
MH
7978#ifdef AUTO_INC_DEC
7979static void
0c20a65f 7980add_auto_inc_notes (rtx insn, rtx x)
2dfa9a87
MH
7981{
7982 enum rtx_code code = GET_CODE (x);
6f7d635c 7983 const char *fmt;
2dfa9a87
MH
7984 int i, j;
7985
7986 if (code == MEM && auto_inc_p (XEXP (x, 0)))
7987 {
7988 REG_NOTES (insn)
7989 = gen_rtx_EXPR_LIST (REG_INC, XEXP (XEXP (x, 0), 0), REG_NOTES (insn));
7990 return;
7991 }
7992
7993 /* Scan all the operand sub-expressions. */
7994 fmt = GET_RTX_FORMAT (code);
7995 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7996 {
7997 if (fmt[i] == 'e')
7998 add_auto_inc_notes (insn, XEXP (x, i));
7999 else if (fmt[i] == 'E')
8000 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
8001 add_auto_inc_notes (insn, XVECEXP (x, i, j));
8002 }
8003}
8004#endif
94bd63e5
AH
8005
8006/* Copy EH notes from an insn to its reloads. */
8007static void
0c20a65f 8008copy_eh_notes (rtx insn, rtx x)
94bd63e5
AH
8009{
8010 rtx eh_note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
8011 if (eh_note)
8012 {
8013 for (; x != 0; x = NEXT_INSN (x))
8014 {
8015 if (may_trap_p (PATTERN (x)))
a6a2274a 8016 REG_NOTES (x)
94bd63e5
AH
8017 = gen_rtx_EXPR_LIST (REG_EH_REGION, XEXP (eh_note, 0),
8018 REG_NOTES (x));
8019 }
8020 }
8021}
8022
f1330226
JH
8023/* This is used by reload pass, that does emit some instructions after
8024 abnormal calls moving basic block end, but in fact it wants to emit
8025 them on the edge. Looks for abnormal call edges, find backward the
8026 proper call and fix the damage.
a6a2274a 8027
f1330226 8028 Similar handle instructions throwing exceptions internally. */
068473ec 8029void
0c20a65f 8030fixup_abnormal_edges (void)
f1330226 8031{
f1330226 8032 bool inserted = false;
e0082a72 8033 basic_block bb;
f1330226 8034
e0082a72 8035 FOR_EACH_BB (bb)
f1330226 8036 {
f1330226 8037 edge e;
628f6a4e 8038 edge_iterator ei;
f1330226 8039
09da1532 8040 /* Look for cases we are interested in - calls or instructions causing
f1330226 8041 exceptions. */
628f6a4e 8042 FOR_EACH_EDGE (e, ei, bb->succs)
f1330226
JH
8043 {
8044 if (e->flags & EDGE_ABNORMAL_CALL)
8045 break;
8046 if ((e->flags & (EDGE_ABNORMAL | EDGE_EH))
8047 == (EDGE_ABNORMAL | EDGE_EH))
8048 break;
8049 }
4b4bf941 8050 if (e && !CALL_P (BB_END (bb))
a813c111 8051 && !can_throw_internal (BB_END (bb)))
f1330226 8052 {
a813c111 8053 rtx insn = BB_END (bb), stop = NEXT_INSN (BB_END (bb));
f1330226 8054 rtx next;
628f6a4e 8055 FOR_EACH_EDGE (e, ei, bb->succs)
f1330226
JH
8056 if (e->flags & EDGE_FALLTHRU)
8057 break;
39f95a2c
JH
8058 /* Get past the new insns generated. Allow notes, as the insns may
8059 be already deleted. */
4b4bf941 8060 while ((NONJUMP_INSN_P (insn) || NOTE_P (insn))
39f95a2c 8061 && !can_throw_internal (insn)
a813c111 8062 && insn != BB_HEAD (bb))
f1330226 8063 insn = PREV_INSN (insn);
41374e13 8064 gcc_assert (CALL_P (insn) || can_throw_internal (insn));
a813c111 8065 BB_END (bb) = insn;
f1330226
JH
8066 inserted = true;
8067 insn = NEXT_INSN (insn);
0c4992b0 8068 while (insn && insn != stop)
f1330226
JH
8069 {
8070 next = NEXT_INSN (insn);
0c4992b0
JH
8071 if (INSN_P (insn))
8072 {
53c17031 8073 delete_insn (insn);
f8ed1958 8074
ed8d2920
MM
8075 /* Sometimes there's still the return value USE.
8076 If it's placed after a trapping call (i.e. that
8077 call is the last insn anyway), we have no fallthru
8078 edge. Simply delete this use and don't try to insert
14b493d6 8079 on the non-existent edge. */
ed8d2920
MM
8080 if (GET_CODE (PATTERN (insn)) != USE)
8081 {
ed8d2920
MM
8082 /* We're not deleting it, we're moving it. */
8083 INSN_DELETED_P (insn) = 0;
8084 PREV_INSN (insn) = NULL_RTX;
8085 NEXT_INSN (insn) = NULL_RTX;
f8ed1958 8086
ed8d2920
MM
8087 insert_insn_on_edge (insn, e);
8088 }
0c4992b0 8089 }
f1330226
JH
8090 insn = next;
8091 }
8092 }
8093 }
83fd323c
JH
8094 /* We've possibly turned single trapping insn into multiple ones. */
8095 if (flag_non_call_exceptions)
8096 {
8097 sbitmap blocks;
8098 blocks = sbitmap_alloc (last_basic_block);
8099 sbitmap_ones (blocks);
8100 find_many_sub_basic_blocks (blocks);
8101 }
f1330226
JH
8102 if (inserted)
8103 commit_edge_insertions ();
8104}
This page took 4.882797 seconds and 5 git commands to generate.