]> gcc.gnu.org Git - gcc.git/blame - gcc/reload1.c
alias.c (can_address_p): Compnonents are not addressable if the containing type has...
[gcc.git] / gcc / reload1.c
CommitLineData
32131a9c 1/* Reload pseudo regs into hard regs for insns that require hard regs.
af841dbd 2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
e56b4594 3 1999, 2000, 2001 Free Software Foundation, Inc.
32131a9c 4
1322177d 5This file is part of GCC.
32131a9c 6
1322177d
LB
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
9Software Foundation; either version 2, or (at your option) any later
10version.
32131a9c 11
1322177d
LB
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15for more details.
32131a9c
RK
16
17You should have received a copy of the GNU General Public License
1322177d
LB
18along with GCC; see the file COPYING. If not, write to the Free
19Software Foundation, 59 Temple Place - Suite 330, Boston, MA
2002111-1307, USA. */
32131a9c 21
32131a9c 22#include "config.h"
670ee920 23#include "system.h"
cab634f2
KG
24
25#include "machmode.h"
26#include "hard-reg-set.h"
32131a9c 27#include "rtl.h"
6baf1cc8 28#include "tm_p.h"
32131a9c
RK
29#include "obstack.h"
30#include "insn-config.h"
32131a9c 31#include "flags.h"
49ad7cfa 32#include "function.h"
32131a9c 33#include "expr.h"
e78d8e51 34#include "optabs.h"
32131a9c 35#include "regs.h"
cad6f7d0 36#include "basic-block.h"
32131a9c
RK
37#include "reload.h"
38#include "recog.h"
32131a9c 39#include "output.h"
eab5c70a 40#include "cselib.h"
a9c366bf 41#include "real.h"
10f0ad3d 42#include "toplev.h"
39f95a2c 43#include "except.h"
32131a9c
RK
44
45/* This file contains the reload pass of the compiler, which is
46 run after register allocation has been done. It checks that
47 each insn is valid (operands required to be in registers really
48 are in registers of the proper class) and fixes up invalid ones
49 by copying values temporarily into registers for the insns
50 that need them.
51
52 The results of register allocation are described by the vector
53 reg_renumber; the insns still contain pseudo regs, but reg_renumber
54 can be used to find which hard reg, if any, a pseudo reg is in.
55
56 The technique we always use is to free up a few hard regs that are
57 called ``reload regs'', and for each place where a pseudo reg
58 must be in a hard reg, copy it temporarily into one of the reload regs.
59
03acd8f8
BS
60 Reload regs are allocated locally for every instruction that needs
61 reloads. When there are pseudos which are allocated to a register that
62 has been chosen as a reload reg, such pseudos must be ``spilled''.
63 This means that they go to other hard regs, or to stack slots if no other
32131a9c
RK
64 available hard regs can be found. Spilling can invalidate more
65 insns, requiring additional need for reloads, so we must keep checking
66 until the process stabilizes.
67
68 For machines with different classes of registers, we must keep track
69 of the register class needed for each reload, and make sure that
70 we allocate enough reload registers of each class.
71
72 The file reload.c contains the code that checks one insn for
73 validity and reports the reloads that it needs. This file
74 is in charge of scanning the entire rtl code, accumulating the
75 reload needs, spilling, assigning reload registers to use for
76 fixing up each insn, and generating the new insns to copy values
77 into the reload registers. */
546b63fb 78
546b63fb 79#ifndef REGISTER_MOVE_COST
e56b4594 80#define REGISTER_MOVE_COST(m, x, y) 2
546b63fb 81#endif
2a3e384f
RH
82
83#ifndef LOCAL_REGNO
84#define LOCAL_REGNO(REGNO) 0
85#endif
32131a9c
RK
86\f
87/* During reload_as_needed, element N contains a REG rtx for the hard reg
0f41302f 88 into which reg N has been reloaded (perhaps for a previous insn). */
32131a9c
RK
89static rtx *reg_last_reload_reg;
90
91/* Elt N nonzero if reg_last_reload_reg[N] has been set in this insn
92 for an output reload that stores into reg N. */
93static char *reg_has_output_reload;
94
95/* Indicates which hard regs are reload-registers for an output reload
96 in the current insn. */
97static HARD_REG_SET reg_is_output_reload;
98
99/* Element N is the constant value to which pseudo reg N is equivalent,
100 or zero if pseudo reg N is not equivalent to a constant.
101 find_reloads looks at this in order to replace pseudo reg N
102 with the constant it stands for. */
103rtx *reg_equiv_constant;
104
105/* Element N is a memory location to which pseudo reg N is equivalent,
106 prior to any register elimination (such as frame pointer to stack
107 pointer). Depending on whether or not it is a valid address, this value
108 is transferred to either reg_equiv_address or reg_equiv_mem. */
4803a34a 109rtx *reg_equiv_memory_loc;
32131a9c
RK
110
111/* Element N is the address of stack slot to which pseudo reg N is equivalent.
112 This is used when the address is not valid as a memory address
113 (because its displacement is too big for the machine.) */
114rtx *reg_equiv_address;
115
116/* Element N is the memory slot to which pseudo reg N is equivalent,
117 or zero if pseudo reg N is not equivalent to a memory slot. */
118rtx *reg_equiv_mem;
119
120/* Widest width in which each pseudo reg is referred to (via subreg). */
770ae6cc 121static unsigned int *reg_max_ref_width;
32131a9c 122
135eb61c 123/* Element N is the list of insns that initialized reg N from its equivalent
32131a9c
RK
124 constant or memory slot. */
125static rtx *reg_equiv_init;
126
03acd8f8
BS
127/* Vector to remember old contents of reg_renumber before spilling. */
128static short *reg_old_renumber;
129
e6e52be0 130/* During reload_as_needed, element N contains the last pseudo regno reloaded
03acd8f8 131 into hard register N. If that pseudo reg occupied more than one register,
32131a9c
RK
132 reg_reloaded_contents points to that pseudo for each spill register in
133 use; all of these must remain set for an inheritance to occur. */
134static int reg_reloaded_contents[FIRST_PSEUDO_REGISTER];
135
136/* During reload_as_needed, element N contains the insn for which
e6e52be0
R
137 hard register N was last used. Its contents are significant only
138 when reg_reloaded_valid is set for this register. */
32131a9c
RK
139static rtx reg_reloaded_insn[FIRST_PSEUDO_REGISTER];
140
e6e52be0
R
141/* Indicate if reg_reloaded_insn / reg_reloaded_contents is valid */
142static HARD_REG_SET reg_reloaded_valid;
143/* Indicate if the register was dead at the end of the reload.
144 This is only valid if reg_reloaded_contents is set and valid. */
145static HARD_REG_SET reg_reloaded_dead;
146
32131a9c
RK
147/* Number of spill-regs so far; number of valid elements of spill_regs. */
148static int n_spills;
149
150/* In parallel with spill_regs, contains REG rtx's for those regs.
151 Holds the last rtx used for any given reg, or 0 if it has never
152 been used for spilling yet. This rtx is reused, provided it has
153 the proper mode. */
154static rtx spill_reg_rtx[FIRST_PSEUDO_REGISTER];
155
156/* In parallel with spill_regs, contains nonzero for a spill reg
157 that was stored after the last time it was used.
158 The precise value is the insn generated to do the store. */
159static rtx spill_reg_store[FIRST_PSEUDO_REGISTER];
160
cb2afeb3
R
161/* This is the register that was stored with spill_reg_store. This is a
162 copy of reload_out / reload_out_reg when the value was stored; if
163 reload_out is a MEM, spill_reg_stored_to will be set to reload_out_reg. */
164static rtx spill_reg_stored_to[FIRST_PSEUDO_REGISTER];
165
32131a9c
RK
166/* This table is the inverse mapping of spill_regs:
167 indexed by hard reg number,
168 it contains the position of that reg in spill_regs,
05d10675 169 or -1 for something that is not in spill_regs.
13c8e8e3
JL
170
171 ?!? This is no longer accurate. */
32131a9c
RK
172static short spill_reg_order[FIRST_PSEUDO_REGISTER];
173
03acd8f8
BS
174/* This reg set indicates registers that can't be used as spill registers for
175 the currently processed insn. These are the hard registers which are live
176 during the insn, but not allocated to pseudos, as well as fixed
177 registers. */
32131a9c
RK
178static HARD_REG_SET bad_spill_regs;
179
03acd8f8
BS
180/* These are the hard registers that can't be used as spill register for any
181 insn. This includes registers used for user variables and registers that
182 we can't eliminate. A register that appears in this set also can't be used
183 to retry register allocation. */
184static HARD_REG_SET bad_spill_regs_global;
185
32131a9c 186/* Describes order of use of registers for reloading
03acd8f8
BS
187 of spilled pseudo-registers. `n_spills' is the number of
188 elements that are actually valid; new ones are added at the end.
189
190 Both spill_regs and spill_reg_order are used on two occasions:
191 once during find_reload_regs, where they keep track of the spill registers
192 for a single insn, but also during reload_as_needed where they show all
193 the registers ever used by reload. For the latter case, the information
194 is calculated during finish_spills. */
32131a9c
RK
195static short spill_regs[FIRST_PSEUDO_REGISTER];
196
03acd8f8
BS
197/* This vector of reg sets indicates, for each pseudo, which hard registers
198 may not be used for retrying global allocation because the register was
199 formerly spilled from one of them. If we allowed reallocating a pseudo to
200 a register that it was already allocated to, reload might not
201 terminate. */
202static HARD_REG_SET *pseudo_previous_regs;
203
204/* This vector of reg sets indicates, for each pseudo, which hard
205 registers may not be used for retrying global allocation because they
206 are used as spill registers during one of the insns in which the
207 pseudo is live. */
208static HARD_REG_SET *pseudo_forbidden_regs;
209
210/* All hard regs that have been used as spill registers for any insn are
211 marked in this set. */
212static HARD_REG_SET used_spill_regs;
8b4f9969 213
4079cd63
JW
214/* Index of last register assigned as a spill register. We allocate in
215 a round-robin fashion. */
4079cd63
JW
216static int last_spill_reg;
217
32131a9c
RK
218/* Nonzero if indirect addressing is supported on the machine; this means
219 that spilling (REG n) does not require reloading it into a register in
220 order to do (MEM (REG n)) or (MEM (PLUS (REG n) (CONST_INT c))). The
221 value indicates the level of indirect addressing supported, e.g., two
222 means that (MEM (MEM (REG n))) is also valid if (REG n) does not get
223 a hard register. */
32131a9c
RK
224static char spill_indirect_levels;
225
226/* Nonzero if indirect addressing is supported when the innermost MEM is
227 of the form (MEM (SYMBOL_REF sym)). It is assumed that the level to
6d2f8887 228 which these are valid is the same as spill_indirect_levels, above. */
32131a9c
RK
229char indirect_symref_ok;
230
231/* Nonzero if an address (plus (reg frame_pointer) (reg ...)) is valid. */
32131a9c
RK
232char double_reg_address_ok;
233
234/* Record the stack slot for each spilled hard register. */
32131a9c
RK
235static rtx spill_stack_slot[FIRST_PSEUDO_REGISTER];
236
237/* Width allocated so far for that stack slot. */
770ae6cc 238static unsigned int spill_stack_slot_width[FIRST_PSEUDO_REGISTER];
32131a9c 239
7609e720 240/* Record which pseudos needed to be spilled. */
f5d8c9f4
BS
241static regset_head spilled_pseudos;
242
243/* Used for communication between order_regs_for_reload and count_pseudo.
244 Used to avoid counting one pseudo twice. */
245static regset_head pseudos_counted;
7609e720 246
32131a9c
RK
247/* First uid used by insns created by reload in this function.
248 Used in find_equiv_reg. */
249int reload_first_uid;
250
251/* Flag set by local-alloc or global-alloc if anything is live in
252 a call-clobbered reg across calls. */
32131a9c
RK
253int caller_save_needed;
254
255/* Set to 1 while reload_as_needed is operating.
256 Required by some machines to handle any generated moves differently. */
32131a9c
RK
257int reload_in_progress = 0;
258
259/* These arrays record the insn_code of insns that may be needed to
260 perform input and output reloads of special objects. They provide a
261 place to pass a scratch register. */
32131a9c
RK
262enum insn_code reload_in_optab[NUM_MACHINE_MODES];
263enum insn_code reload_out_optab[NUM_MACHINE_MODES];
264
d45cf215 265/* This obstack is used for allocation of rtl during register elimination.
32131a9c
RK
266 The allocated storage can be freed once find_reloads has processed the
267 insn. */
32131a9c 268struct obstack reload_obstack;
cad6f7d0
BS
269
270/* Points to the beginning of the reload_obstack. All insn_chain structures
271 are allocated first. */
272char *reload_startobj;
273
274/* The point after all insn_chain structures. Used to quickly deallocate
f5d8c9f4 275 memory allocated in copy_reloads during calculate_needs_all_insns. */
32131a9c
RK
276char *reload_firstobj;
277
f5d8c9f4
BS
278/* This points before all local rtl generated by register elimination.
279 Used to quickly free all memory after processing one insn. */
280static char *reload_insn_firstobj;
281
32131a9c
RK
282#define obstack_chunk_alloc xmalloc
283#define obstack_chunk_free free
284
cad6f7d0
BS
285/* List of insn_chain instructions, one for every insn that reload needs to
286 examine. */
287struct insn_chain *reload_insn_chain;
7609e720 288
dfb7c80f
JL
289#ifdef TREE_CODE
290extern tree current_function_decl;
291#else
122a860e 292extern union tree_node *current_function_decl;
dfb7c80f
JL
293#endif
294
03acd8f8 295/* List of all insns needing reloads. */
7609e720 296static struct insn_chain *insns_need_reload;
32131a9c
RK
297\f
298/* This structure is used to record information about register eliminations.
299 Each array entry describes one possible way of eliminating a register
300 in favor of another. If there is more than one way of eliminating a
301 particular register, the most preferred should be specified first. */
302
590cf94d 303struct elim_table
32131a9c 304{
0f41302f
MS
305 int from; /* Register number to be eliminated. */
306 int to; /* Register number used as replacement. */
307 int initial_offset; /* Initial difference between values. */
308 int can_eliminate; /* Non-zero if this elimination can be done. */
32131a9c 309 int can_eliminate_previous; /* Value of CAN_ELIMINATE in previous scan over
0f41302f
MS
310 insns made by reload. */
311 int offset; /* Current offset between the two regs. */
0f41302f
MS
312 int previous_offset; /* Offset at end of previous insn. */
313 int ref_outside_mem; /* "to" has been referenced outside a MEM. */
32131a9c
RK
314 rtx from_rtx; /* REG rtx for the register to be eliminated.
315 We cannot simply compare the number since
316 we might then spuriously replace a hard
317 register corresponding to a pseudo
0f41302f
MS
318 assigned to the reg to be eliminated. */
319 rtx to_rtx; /* REG rtx for the replacement. */
590cf94d
KG
320};
321
1d7254c5 322static struct elim_table *reg_eliminate = 0;
590cf94d
KG
323
324/* This is an intermediate structure to initialize the table. It has
1d7254c5 325 exactly the members provided by ELIMINABLE_REGS. */
590cf94d
KG
326static struct elim_table_1
327{
328 int from;
329 int to;
330} reg_eliminate_1[] =
32131a9c
RK
331
332/* If a set of eliminable registers was specified, define the table from it.
333 Otherwise, default to the normal case of the frame pointer being
334 replaced by the stack pointer. */
335
336#ifdef ELIMINABLE_REGS
337 ELIMINABLE_REGS;
338#else
339 {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}};
340#endif
341
b6a1cbae 342#define NUM_ELIMINABLE_REGS ARRAY_SIZE (reg_eliminate_1)
32131a9c
RK
343
344/* Record the number of pending eliminations that have an offset not equal
345 to their initial offset. If non-zero, we use a new copy of each
346 replacement result in any insns encountered. */
cb2afeb3 347int num_not_at_initial_offset;
32131a9c
RK
348
349/* Count the number of registers that we may be able to eliminate. */
350static int num_eliminable;
2b49ee39
R
351/* And the number of registers that are equivalent to a constant that
352 can be eliminated to frame_pointer / arg_pointer + constant. */
353static int num_eliminable_invariants;
32131a9c
RK
354
355/* For each label, we record the offset of each elimination. If we reach
356 a label by more than one path and an offset differs, we cannot do the
357 elimination. This information is indexed by the number of the label.
358 The first table is an array of flags that records whether we have yet
359 encountered a label and the second table is an array of arrays, one
360 entry in the latter array for each elimination. */
361
362static char *offsets_known_at;
363static int (*offsets_at)[NUM_ELIMINABLE_REGS];
364
365/* Number of labels in the current function. */
366
367static int num_labels;
368\f
174fa2c4
AJ
369static void replace_pseudos_in_call_usage PARAMS((rtx *,
370 enum machine_mode,
371 rtx));
cdadb1dd
KG
372static void maybe_fix_stack_asms PARAMS ((void));
373static void copy_reloads PARAMS ((struct insn_chain *));
374static void calculate_needs_all_insns PARAMS ((int));
e04ca094
JL
375static int find_reg PARAMS ((struct insn_chain *, int));
376static void find_reload_regs PARAMS ((struct insn_chain *));
377static void select_reload_regs PARAMS ((void));
cdadb1dd
KG
378static void delete_caller_save_insns PARAMS ((void));
379
380static void spill_failure PARAMS ((rtx, enum reg_class));
381static void count_spilled_pseudo PARAMS ((int, int, int));
382static void delete_dead_insn PARAMS ((rtx));
174fa2c4 383static void alter_reg PARAMS ((int, int));
cdadb1dd
KG
384static void set_label_offsets PARAMS ((rtx, rtx, int));
385static void check_eliminable_occurrences PARAMS ((rtx));
386static void elimination_effects PARAMS ((rtx, enum machine_mode));
387static int eliminate_regs_in_insn PARAMS ((rtx, int));
388static void update_eliminable_offsets PARAMS ((void));
389static void mark_not_eliminable PARAMS ((rtx, rtx, void *));
390static void set_initial_elim_offsets PARAMS ((void));
391static void verify_initial_elim_offsets PARAMS ((void));
392static void set_initial_label_offsets PARAMS ((void));
393static void set_offsets_for_label PARAMS ((rtx));
394static void init_elim_table PARAMS ((void));
395static void update_eliminables PARAMS ((HARD_REG_SET *));
e04ca094
JL
396static void spill_hard_reg PARAMS ((unsigned int, int));
397static int finish_spills PARAMS ((int));
cdadb1dd
KG
398static void ior_hard_reg_set PARAMS ((HARD_REG_SET *, HARD_REG_SET *));
399static void scan_paradoxical_subregs PARAMS ((rtx));
400static void count_pseudo PARAMS ((int));
401static void order_regs_for_reload PARAMS ((struct insn_chain *));
e04ca094 402static void reload_as_needed PARAMS ((int));
cdadb1dd
KG
403static void forget_old_reloads_1 PARAMS ((rtx, rtx, void *));
404static int reload_reg_class_lower PARAMS ((const PTR, const PTR));
770ae6cc
RK
405static void mark_reload_reg_in_use PARAMS ((unsigned int, int,
406 enum reload_type,
407 enum machine_mode));
408static void clear_reload_reg_in_use PARAMS ((unsigned int, int,
409 enum reload_type,
410 enum machine_mode));
411static int reload_reg_free_p PARAMS ((unsigned int, int,
412 enum reload_type));
304a22dd
R
413static int reload_reg_free_for_value_p PARAMS ((int, int, int,
414 enum reload_type,
770ae6cc 415 rtx, rtx, int, int));
c02cad8f
BS
416static int free_for_value_p PARAMS ((int, enum machine_mode, int,
417 enum reload_type, rtx, rtx,
418 int, int));
770ae6cc
RK
419static int reload_reg_reaches_end_p PARAMS ((unsigned int, int,
420 enum reload_type));
421static int allocate_reload_reg PARAMS ((struct insn_chain *, int,
422 int));
ff6534ad 423static int conflicts_with_override PARAMS ((rtx));
cdadb1dd
KG
424static void failed_reload PARAMS ((rtx, int));
425static int set_reload_reg PARAMS ((int, int));
426static void choose_reload_regs_init PARAMS ((struct insn_chain *, rtx *));
427static void choose_reload_regs PARAMS ((struct insn_chain *));
428static void merge_assigned_reloads PARAMS ((rtx));
429static void emit_input_reload_insns PARAMS ((struct insn_chain *,
770ae6cc 430 struct reload *, rtx, int));
cdadb1dd 431static void emit_output_reload_insns PARAMS ((struct insn_chain *,
770ae6cc 432 struct reload *, int));
cdadb1dd 433static void do_input_reload PARAMS ((struct insn_chain *,
770ae6cc 434 struct reload *, int));
cdadb1dd 435static void do_output_reload PARAMS ((struct insn_chain *,
770ae6cc 436 struct reload *, int));
e04ca094 437static void emit_reload_insns PARAMS ((struct insn_chain *));
cdadb1dd
KG
438static void delete_output_reload PARAMS ((rtx, int, int));
439static void delete_address_reloads PARAMS ((rtx, rtx));
440static void delete_address_reloads_1 PARAMS ((rtx, rtx, rtx));
441static rtx inc_for_reload PARAMS ((rtx, rtx, rtx, int));
442static int constraint_accepts_reg_p PARAMS ((const char *, rtx));
443static void reload_cse_regs_1 PARAMS ((rtx));
eab5c70a 444static int reload_cse_noop_set_p PARAMS ((rtx));
cdadb1dd
KG
445static int reload_cse_simplify_set PARAMS ((rtx, rtx));
446static int reload_cse_simplify_operands PARAMS ((rtx));
770ae6cc
RK
447static void reload_combine PARAMS ((void));
448static void reload_combine_note_use PARAMS ((rtx *, rtx));
449static void reload_combine_note_store PARAMS ((rtx, rtx, void *));
450static void reload_cse_move2add PARAMS ((rtx));
451static void move2add_note_store PARAMS ((rtx, rtx, void *));
2dfa9a87 452#ifdef AUTO_INC_DEC
770ae6cc 453static void add_auto_inc_notes PARAMS ((rtx, rtx));
2dfa9a87 454#endif
94bd63e5 455static void copy_eh_notes PARAMS ((rtx, rtx));
61f5625b 456static HOST_WIDE_INT sext_for_mode PARAMS ((enum machine_mode,
770ae6cc 457 HOST_WIDE_INT));
cdadb1dd
KG
458static void failed_reload PARAMS ((rtx, int));
459static int set_reload_reg PARAMS ((int, int));
e77d72cb
KG
460static void reload_cse_delete_noop_set PARAMS ((rtx, rtx));
461static void reload_cse_simplify PARAMS ((rtx));
f1330226 462static void fixup_abnormal_edges PARAMS ((void));
e04ca094 463extern void dump_needs PARAMS ((struct insn_chain *));
32131a9c 464\f
546b63fb
RK
465/* Initialize the reload pass once per compilation. */
466
32131a9c
RK
467void
468init_reload ()
469{
b3694847 470 int i;
32131a9c
RK
471
472 /* Often (MEM (REG n)) is still valid even if (REG n) is put on the stack.
473 Set spill_indirect_levels to the number of levels such addressing is
474 permitted, zero if it is not permitted at all. */
475
b3694847 476 rtx tem
38a448ca
RH
477 = gen_rtx_MEM (Pmode,
478 gen_rtx_PLUS (Pmode,
c5c76735
JL
479 gen_rtx_REG (Pmode,
480 LAST_VIRTUAL_REGISTER + 1),
38a448ca 481 GEN_INT (4)));
32131a9c
RK
482 spill_indirect_levels = 0;
483
484 while (memory_address_p (QImode, tem))
485 {
486 spill_indirect_levels++;
38a448ca 487 tem = gen_rtx_MEM (Pmode, tem);
32131a9c
RK
488 }
489
490 /* See if indirect addressing is valid for (MEM (SYMBOL_REF ...)). */
491
38a448ca 492 tem = gen_rtx_MEM (Pmode, gen_rtx_SYMBOL_REF (Pmode, "foo"));
32131a9c
RK
493 indirect_symref_ok = memory_address_p (QImode, tem);
494
495 /* See if reg+reg is a valid (and offsettable) address. */
496
65701fd2 497 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
57caa638 498 {
38a448ca
RH
499 tem = gen_rtx_PLUS (Pmode,
500 gen_rtx_REG (Pmode, HARD_FRAME_POINTER_REGNUM),
501 gen_rtx_REG (Pmode, i));
c5c76735 502
57caa638
RS
503 /* This way, we make sure that reg+reg is an offsettable address. */
504 tem = plus_constant (tem, 4);
505
506 if (memory_address_p (QImode, tem))
507 {
508 double_reg_address_ok = 1;
509 break;
510 }
511 }
32131a9c 512
0f41302f 513 /* Initialize obstack for our rtl allocation. */
32131a9c 514 gcc_obstack_init (&reload_obstack);
cad6f7d0 515 reload_startobj = (char *) obstack_alloc (&reload_obstack, 0);
f5d8c9f4
BS
516
517 INIT_REG_SET (&spilled_pseudos);
518 INIT_REG_SET (&pseudos_counted);
32131a9c
RK
519}
520
cad6f7d0
BS
521/* List of insn chains that are currently unused. */
522static struct insn_chain *unused_insn_chains = 0;
523
524/* Allocate an empty insn_chain structure. */
525struct insn_chain *
526new_insn_chain ()
527{
528 struct insn_chain *c;
529
530 if (unused_insn_chains == 0)
531 {
8db99db2
KG
532 c = (struct insn_chain *)
533 obstack_alloc (&reload_obstack, sizeof (struct insn_chain));
239a0f5b
BS
534 INIT_REG_SET (&c->live_throughout);
535 INIT_REG_SET (&c->dead_or_set);
cad6f7d0
BS
536 }
537 else
538 {
539 c = unused_insn_chains;
540 unused_insn_chains = c->next;
541 }
542 c->is_caller_save_insn = 0;
03acd8f8 543 c->need_operand_change = 0;
cad6f7d0
BS
544 c->need_reload = 0;
545 c->need_elim = 0;
546 return c;
547}
548
7609e720
BS
549/* Small utility function to set all regs in hard reg set TO which are
550 allocated to pseudos in regset FROM. */
770ae6cc 551
7609e720
BS
552void
553compute_use_by_pseudos (to, from)
554 HARD_REG_SET *to;
555 regset from;
556{
770ae6cc
RK
557 unsigned int regno;
558
7609e720
BS
559 EXECUTE_IF_SET_IN_REG_SET
560 (from, FIRST_PSEUDO_REGISTER, regno,
561 {
562 int r = reg_renumber[regno];
563 int nregs;
770ae6cc 564
7609e720 565 if (r < 0)
404d95c4
R
566 {
567 /* reload_combine uses the information from
e881bb1b
RH
568 BASIC_BLOCK->global_live_at_start, which might still
569 contain registers that have not actually been allocated
570 since they have an equivalence. */
404d95c4
R
571 if (! reload_completed)
572 abort ();
573 }
574 else
575 {
576 nregs = HARD_REGNO_NREGS (r, PSEUDO_REGNO_MODE (regno));
577 while (nregs-- > 0)
578 SET_HARD_REG_BIT (*to, r + nregs);
579 }
7609e720
BS
580 });
581}
f474c6f8
AO
582
583/* Replace all pseudos found in LOC with their corresponding
584 equivalences. */
585
586static void
587replace_pseudos_in_call_usage (loc, mem_mode, usage)
588 rtx *loc;
589 enum machine_mode mem_mode;
590 rtx usage;
591{
592 rtx x = *loc;
593 enum rtx_code code;
594 const char *fmt;
595 int i, j;
596
597 if (! x)
598 return;
174fa2c4 599
f474c6f8
AO
600 code = GET_CODE (x);
601 if (code == REG)
602 {
ae0ed63a 603 unsigned int regno = REGNO (x);
086fef9e
AO
604
605 if (regno < FIRST_PSEUDO_REGISTER)
f474c6f8
AO
606 return;
607
608 x = eliminate_regs (x, mem_mode, usage);
609 if (x != *loc)
610 {
611 *loc = x;
612 replace_pseudos_in_call_usage (loc, mem_mode, usage);
613 return;
614 }
615
086fef9e
AO
616 if (reg_equiv_constant[regno])
617 *loc = reg_equiv_constant[regno];
618 else if (reg_equiv_mem[regno])
619 *loc = reg_equiv_mem[regno];
620 else if (reg_equiv_address[regno])
621 *loc = gen_rtx_MEM (GET_MODE (x), reg_equiv_address[regno]);
622 else if (GET_CODE (regno_reg_rtx[regno]) != REG
623 || REGNO (regno_reg_rtx[regno]) != regno)
624 *loc = regno_reg_rtx[regno];
f474c6f8
AO
625 else
626 abort ();
627
628 return;
629 }
630 else if (code == MEM)
631 {
632 replace_pseudos_in_call_usage (& XEXP (x, 0), GET_MODE (x), usage);
633 return;
634 }
174fa2c4 635
f474c6f8
AO
636 /* Process each of our operands recursively. */
637 fmt = GET_RTX_FORMAT (code);
638 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
639 if (*fmt == 'e')
640 replace_pseudos_in_call_usage (&XEXP (x, i), mem_mode, usage);
641 else if (*fmt == 'E')
642 for (j = 0; j < XVECLEN (x, i); j++)
643 replace_pseudos_in_call_usage (& XVECEXP (x, i, j), mem_mode, usage);
644}
645
03acd8f8 646\f
1e5bd841
BS
647/* Global variables used by reload and its subroutines. */
648
1e5bd841
BS
649/* Set during calculate_needs if an insn needs register elimination. */
650static int something_needs_elimination;
cb2afeb3
R
651/* Set during calculate_needs if an insn needs an operand changed. */
652int something_needs_operands_changed;
1e5bd841 653
1e5bd841
BS
654/* Nonzero means we couldn't get enough spill regs. */
655static int failure;
656
546b63fb 657/* Main entry point for the reload pass.
32131a9c
RK
658
659 FIRST is the first insn of the function being compiled.
660
661 GLOBAL nonzero means we were called from global_alloc
662 and should attempt to reallocate any pseudoregs that we
663 displace from hard regs we will use for reloads.
664 If GLOBAL is zero, we do not have enough information to do that,
665 so any pseudo reg that is spilled must go to the stack.
666
5352b11a
RS
667 Return value is nonzero if reload failed
668 and we must not do any more for this function. */
669
670int
e04ca094 671reload (first, global)
32131a9c
RK
672 rtx first;
673 int global;
32131a9c 674{
b3694847
SS
675 int i;
676 rtx insn;
677 struct elim_table *ep;
32131a9c 678
a68d4b75
BK
679 /* The two pointers used to track the true location of the memory used
680 for label offsets. */
9714cf43 681 char *real_known_ptr = NULL;
a68d4b75
BK
682 int (*real_at_ptr)[NUM_ELIMINABLE_REGS];
683
32131a9c
RK
684 /* Make sure even insns with volatile mem refs are recognizable. */
685 init_recog ();
686
1e5bd841
BS
687 failure = 0;
688
cad6f7d0
BS
689 reload_firstobj = (char *) obstack_alloc (&reload_obstack, 0);
690
437a710d
BS
691 /* Make sure that the last insn in the chain
692 is not something that needs reloading. */
6496a589 693 emit_note (NULL, NOTE_INSN_DELETED);
437a710d 694
32131a9c
RK
695 /* Enable find_equiv_reg to distinguish insns made by reload. */
696 reload_first_uid = get_max_uid ();
697
0dadecf6
RK
698#ifdef SECONDARY_MEMORY_NEEDED
699 /* Initialize the secondary memory table. */
700 clear_secondary_mem ();
701#endif
702
32131a9c 703 /* We don't have a stack slot for any spill reg yet. */
961192e1
JM
704 memset ((char *) spill_stack_slot, 0, sizeof spill_stack_slot);
705 memset ((char *) spill_stack_slot_width, 0, sizeof spill_stack_slot_width);
32131a9c 706
a8efe40d
RK
707 /* Initialize the save area information for caller-save, in case some
708 are needed. */
709 init_save_areas ();
a8fdc208 710
32131a9c
RK
711 /* Compute which hard registers are now in use
712 as homes for pseudo registers.
713 This is done here rather than (eg) in global_alloc
714 because this point is reached even if not optimizing. */
32131a9c
RK
715 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
716 mark_home_live (i);
717
8dddd002
RK
718 /* A function that receives a nonlocal goto must save all call-saved
719 registers. */
720 if (current_function_has_nonlocal_label)
721 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2a3e384f
RH
722 if (! call_used_regs[i] && ! fixed_regs[i] && ! LOCAL_REGNO (i))
723 regs_ever_live[i] = 1;
8dddd002 724
32131a9c
RK
725 /* Find all the pseudo registers that didn't get hard regs
726 but do have known equivalent constants or memory slots.
727 These include parameters (known equivalent to parameter slots)
728 and cse'd or loop-moved constant memory addresses.
729
730 Record constant equivalents in reg_equiv_constant
731 so they will be substituted by find_reloads.
732 Record memory equivalents in reg_mem_equiv so they can
733 be substituted eventually by altering the REG-rtx's. */
734
ad85216e 735 reg_equiv_constant = (rtx *) xcalloc (max_regno, sizeof (rtx));
ad85216e
KG
736 reg_equiv_mem = (rtx *) xcalloc (max_regno, sizeof (rtx));
737 reg_equiv_init = (rtx *) xcalloc (max_regno, sizeof (rtx));
738 reg_equiv_address = (rtx *) xcalloc (max_regno, sizeof (rtx));
f9e158c3 739 reg_max_ref_width = (unsigned int *) xcalloc (max_regno, sizeof (int));
ad85216e 740 reg_old_renumber = (short *) xcalloc (max_regno, sizeof (short));
4e135bdd 741 memcpy (reg_old_renumber, reg_renumber, max_regno * sizeof (short));
03acd8f8
BS
742 pseudo_forbidden_regs
743 = (HARD_REG_SET *) xmalloc (max_regno * sizeof (HARD_REG_SET));
744 pseudo_previous_regs
ad85216e 745 = (HARD_REG_SET *) xcalloc (max_regno, sizeof (HARD_REG_SET));
32131a9c 746
03acd8f8 747 CLEAR_HARD_REG_SET (bad_spill_regs_global);
56f58d3a 748
32131a9c 749 /* Look for REG_EQUIV notes; record what each pseudo is equivalent to.
56f58d3a
RK
750 Also find all paradoxical subregs and find largest such for each pseudo.
751 On machines with small register classes, record hard registers that
05d10675 752 are used for user variables. These can never be used for spills.
570a98eb 753 Also look for a "constant" REG_SETJMP. This means that all
b453cb0b 754 caller-saved registers must be marked live. */
32131a9c 755
2b49ee39 756 num_eliminable_invariants = 0;
32131a9c
RK
757 for (insn = first; insn; insn = NEXT_INSN (insn))
758 {
759 rtx set = single_set (insn);
760
3d17d93d
AO
761 /* We may introduce USEs that we want to remove at the end, so
762 we'll mark them with QImode. Make sure there are no
763 previously-marked insns left by say regmove. */
764 if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == USE
765 && GET_MODE (insn) != VOIDmode)
766 PUT_MODE (insn, VOIDmode);
767
19652adf
ZW
768 if (GET_CODE (insn) == CALL_INSN
769 && find_reg_note (insn, REG_SETJMP, NULL))
b453cb0b
RK
770 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
771 if (! call_used_regs[i])
772 regs_ever_live[i] = 1;
773
32131a9c
RK
774 if (set != 0 && GET_CODE (SET_DEST (set)) == REG)
775 {
fb3821f7 776 rtx note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
a8efe40d
RK
777 if (note
778#ifdef LEGITIMATE_PIC_OPERAND_P
2b49ee39
R
779 && (! function_invariant_p (XEXP (note, 0))
780 || ! flag_pic
129c0899
HPN
781 /* A function invariant is often CONSTANT_P but may
782 include a register. We promise to only pass
783 CONSTANT_P objects to LEGITIMATE_PIC_OPERAND_P. */
784 || (CONSTANT_P (XEXP (note, 0))
785 && LEGITIMATE_PIC_OPERAND_P (XEXP (note, 0))))
a8efe40d
RK
786#endif
787 )
32131a9c
RK
788 {
789 rtx x = XEXP (note, 0);
790 i = REGNO (SET_DEST (set));
791 if (i > LAST_VIRTUAL_REGISTER)
792 {
793 if (GET_CODE (x) == MEM)
956d6950 794 {
cf728d61
HPN
795 /* Always unshare the equivalence, so we can
796 substitute into this insn without touching the
2ba84f36 797 equivalence. */
cf728d61 798 reg_equiv_memory_loc[i] = copy_rtx (x);
956d6950 799 }
2b49ee39 800 else if (function_invariant_p (x))
32131a9c 801 {
2b49ee39
R
802 if (GET_CODE (x) == PLUS)
803 {
804 /* This is PLUS of frame pointer and a constant,
805 and might be shared. Unshare it. */
806 reg_equiv_constant[i] = copy_rtx (x);
807 num_eliminable_invariants++;
808 }
809 else if (x == frame_pointer_rtx
810 || x == arg_pointer_rtx)
811 {
812 reg_equiv_constant[i] = x;
813 num_eliminable_invariants++;
814 }
815 else if (LEGITIMATE_CONSTANT_P (x))
32131a9c
RK
816 reg_equiv_constant[i] = x;
817 else
818 reg_equiv_memory_loc[i]
d445b551 819 = force_const_mem (GET_MODE (SET_DEST (set)), x);
32131a9c
RK
820 }
821 else
822 continue;
823
824 /* If this register is being made equivalent to a MEM
825 and the MEM is not SET_SRC, the equivalencing insn
826 is one with the MEM as a SET_DEST and it occurs later.
827 So don't mark this insn now. */
828 if (GET_CODE (x) != MEM
829 || rtx_equal_p (SET_SRC (set), x))
135eb61c
R
830 reg_equiv_init[i]
831 = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv_init[i]);
32131a9c
RK
832 }
833 }
834 }
835
836 /* If this insn is setting a MEM from a register equivalent to it,
837 this is the equivalencing insn. */
838 else if (set && GET_CODE (SET_DEST (set)) == MEM
839 && GET_CODE (SET_SRC (set)) == REG
840 && reg_equiv_memory_loc[REGNO (SET_SRC (set))]
841 && rtx_equal_p (SET_DEST (set),
842 reg_equiv_memory_loc[REGNO (SET_SRC (set))]))
135eb61c
R
843 reg_equiv_init[REGNO (SET_SRC (set))]
844 = gen_rtx_INSN_LIST (VOIDmode, insn,
845 reg_equiv_init[REGNO (SET_SRC (set))]);
32131a9c 846
2c3c49de 847 if (INSN_P (insn))
32131a9c
RK
848 scan_paradoxical_subregs (PATTERN (insn));
849 }
850
09dd1133 851 init_elim_table ();
32131a9c
RK
852
853 num_labels = max_label_num () - get_first_label_num ();
854
855 /* Allocate the tables used to store offset information at labels. */
a68d4b75
BK
856 /* We used to use alloca here, but the size of what it would try to
857 allocate would occasionally cause it to exceed the stack limit and
858 cause a core dump. */
859 real_known_ptr = xmalloc (num_labels);
860 real_at_ptr
32131a9c 861 = (int (*)[NUM_ELIMINABLE_REGS])
a68d4b75 862 xmalloc (num_labels * NUM_ELIMINABLE_REGS * sizeof (int));
32131a9c 863
a68d4b75
BK
864 offsets_known_at = real_known_ptr - get_first_label_num ();
865 offsets_at
866 = (int (*)[NUM_ELIMINABLE_REGS]) (real_at_ptr - get_first_label_num ());
32131a9c
RK
867
868 /* Alter each pseudo-reg rtx to contain its hard reg number.
869 Assign stack slots to the pseudos that lack hard regs or equivalents.
870 Do not touch virtual registers. */
871
872 for (i = LAST_VIRTUAL_REGISTER + 1; i < max_regno; i++)
873 alter_reg (i, -1);
874
32131a9c
RK
875 /* If we have some registers we think can be eliminated, scan all insns to
876 see if there is an insn that sets one of these registers to something
877 other than itself plus a constant. If so, the register cannot be
878 eliminated. Doing this scan here eliminates an extra pass through the
879 main reload loop in the most common case where register elimination
880 cannot be done. */
881 for (insn = first; insn && num_eliminable; insn = NEXT_INSN (insn))
882 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
883 || GET_CODE (insn) == CALL_INSN)
84832317 884 note_stores (PATTERN (insn), mark_not_eliminable, NULL);
32131a9c 885
18a90182
BS
886 maybe_fix_stack_asms ();
887
03acd8f8
BS
888 insns_need_reload = 0;
889 something_needs_elimination = 0;
05d10675 890
4079cd63
JW
891 /* Initialize to -1, which means take the first spill register. */
892 last_spill_reg = -1;
893
32131a9c 894 /* Spill any hard regs that we know we can't eliminate. */
03acd8f8 895 CLEAR_HARD_REG_SET (used_spill_regs);
32131a9c
RK
896 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
897 if (! ep->can_eliminate)
e04ca094 898 spill_hard_reg (ep->from, 1);
9ff3516a
RK
899
900#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
901 if (frame_pointer_needed)
e04ca094 902 spill_hard_reg (HARD_FRAME_POINTER_REGNUM, 1);
9ff3516a 903#endif
e04ca094 904 finish_spills (global);
7609e720 905
f1db3576
JL
906 /* From now on, we may need to generate moves differently. We may also
907 allow modifications of insns which cause them to not be recognized.
908 Any such modifications will be cleaned up during reload itself. */
b2f15f94
RK
909 reload_in_progress = 1;
910
32131a9c
RK
911 /* This loop scans the entire function each go-round
912 and repeats until one repetition spills no additional hard regs. */
03acd8f8 913 for (;;)
32131a9c 914 {
03acd8f8
BS
915 int something_changed;
916 int did_spill;
32131a9c 917
03acd8f8 918 HOST_WIDE_INT starting_frame_size;
32131a9c 919
665792eb 920 /* Round size of stack frame to stack_alignment_needed. This must be done
7657bf2f
JW
921 here because the stack size may be a part of the offset computation
922 for register elimination, and there might have been new stack slots
6d2f8887 923 created in the last iteration of this loop. */
665792eb
JH
924 if (cfun->stack_alignment_needed)
925 assign_stack_local (BLKmode, 0, cfun->stack_alignment_needed);
7657bf2f
JW
926
927 starting_frame_size = get_frame_size ();
928
09dd1133 929 set_initial_elim_offsets ();
1f3b1e1a 930 set_initial_label_offsets ();
03acd8f8 931
32131a9c
RK
932 /* For each pseudo register that has an equivalent location defined,
933 try to eliminate any eliminable registers (such as the frame pointer)
934 assuming initial offsets for the replacement register, which
935 is the normal case.
936
937 If the resulting location is directly addressable, substitute
938 the MEM we just got directly for the old REG.
939
940 If it is not addressable but is a constant or the sum of a hard reg
941 and constant, it is probably not addressable because the constant is
942 out of range, in that case record the address; we will generate
943 hairy code to compute the address in a register each time it is
6491dbbb
RK
944 needed. Similarly if it is a hard register, but one that is not
945 valid as an address register.
32131a9c
RK
946
947 If the location is not addressable, but does not have one of the
948 above forms, assign a stack slot. We have to do this to avoid the
949 potential of producing lots of reloads if, e.g., a location involves
950 a pseudo that didn't get a hard register and has an equivalent memory
951 location that also involves a pseudo that didn't get a hard register.
952
953 Perhaps at some point we will improve reload_when_needed handling
954 so this problem goes away. But that's very hairy. */
955
956 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
957 if (reg_renumber[i] < 0 && reg_equiv_memory_loc[i])
958 {
1914f5da 959 rtx x = eliminate_regs (reg_equiv_memory_loc[i], 0, NULL_RTX);
32131a9c
RK
960
961 if (strict_memory_address_p (GET_MODE (regno_reg_rtx[i]),
962 XEXP (x, 0)))
963 reg_equiv_mem[i] = x, reg_equiv_address[i] = 0;
964 else if (CONSTANT_P (XEXP (x, 0))
6491dbbb
RK
965 || (GET_CODE (XEXP (x, 0)) == REG
966 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
32131a9c
RK
967 || (GET_CODE (XEXP (x, 0)) == PLUS
968 && GET_CODE (XEXP (XEXP (x, 0), 0)) == REG
969 && (REGNO (XEXP (XEXP (x, 0), 0))
970 < FIRST_PSEUDO_REGISTER)
971 && CONSTANT_P (XEXP (XEXP (x, 0), 1))))
972 reg_equiv_address[i] = XEXP (x, 0), reg_equiv_mem[i] = 0;
973 else
974 {
975 /* Make a new stack slot. Then indicate that something
a8fdc208 976 changed so we go back and recompute offsets for
32131a9c
RK
977 eliminable registers because the allocation of memory
978 below might change some offset. reg_equiv_{mem,address}
979 will be set up for this pseudo on the next pass around
980 the loop. */
981 reg_equiv_memory_loc[i] = 0;
982 reg_equiv_init[i] = 0;
983 alter_reg (i, -1);
32131a9c
RK
984 }
985 }
a8fdc208 986
437a710d
BS
987 if (caller_save_needed)
988 setup_save_areas ();
989
03acd8f8 990 /* If we allocated another stack slot, redo elimination bookkeeping. */
437a710d 991 if (starting_frame_size != get_frame_size ())
32131a9c
RK
992 continue;
993
437a710d 994 if (caller_save_needed)
a8efe40d 995 {
437a710d
BS
996 save_call_clobbered_regs ();
997 /* That might have allocated new insn_chain structures. */
998 reload_firstobj = (char *) obstack_alloc (&reload_obstack, 0);
a8efe40d
RK
999 }
1000
03acd8f8
BS
1001 calculate_needs_all_insns (global);
1002
f5d8c9f4 1003 CLEAR_REG_SET (&spilled_pseudos);
03acd8f8
BS
1004 did_spill = 0;
1005
1006 something_changed = 0;
32131a9c 1007
0dadecf6
RK
1008 /* If we allocated any new memory locations, make another pass
1009 since it might have changed elimination offsets. */
1010 if (starting_frame_size != get_frame_size ())
1011 something_changed = 1;
1012
09dd1133
BS
1013 {
1014 HARD_REG_SET to_spill;
1015 CLEAR_HARD_REG_SET (to_spill);
1016 update_eliminables (&to_spill);
1017 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1018 if (TEST_HARD_REG_BIT (to_spill, i))
32131a9c 1019 {
e04ca094 1020 spill_hard_reg (i, 1);
03acd8f8 1021 did_spill = 1;
8f5db3c1
JL
1022
1023 /* Regardless of the state of spills, if we previously had
1024 a register that we thought we could eliminate, but no can
1025 not eliminate, we must run another pass.
1026
1027 Consider pseudos which have an entry in reg_equiv_* which
1028 reference an eliminable register. We must make another pass
1029 to update reg_equiv_* so that we do not substitute in the
1030 old value from when we thought the elimination could be
1031 performed. */
1032 something_changed = 1;
32131a9c 1033 }
09dd1133 1034 }
9ff3516a 1035
e04ca094 1036 select_reload_regs ();
e483bf9c
BS
1037 if (failure)
1038 goto failed;
437a710d 1039
e483bf9c 1040 if (insns_need_reload != 0 || did_spill)
e04ca094 1041 something_changed |= finish_spills (global);
7609e720 1042
03acd8f8
BS
1043 if (! something_changed)
1044 break;
1045
1046 if (caller_save_needed)
7609e720 1047 delete_caller_save_insns ();
f5d8c9f4
BS
1048
1049 obstack_free (&reload_obstack, reload_firstobj);
32131a9c
RK
1050 }
1051
1052 /* If global-alloc was run, notify it of any register eliminations we have
1053 done. */
1054 if (global)
1055 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
1056 if (ep->can_eliminate)
1057 mark_elimination (ep->from, ep->to);
1058
32131a9c
RK
1059 /* If a pseudo has no hard reg, delete the insns that made the equivalence.
1060 If that insn didn't set the register (i.e., it copied the register to
1061 memory), just delete that insn instead of the equivalencing insn plus
1062 anything now dead. If we call delete_dead_insn on that insn, we may
135eb61c 1063 delete the insn that actually sets the register if the register dies
32131a9c
RK
1064 there and that is incorrect. */
1065
1066 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
135eb61c
R
1067 {
1068 if (reg_renumber[i] < 0 && reg_equiv_init[i] != 0)
1069 {
1070 rtx list;
1071 for (list = reg_equiv_init[i]; list; list = XEXP (list, 1))
1072 {
1073 rtx equiv_insn = XEXP (list, 0);
1074 if (GET_CODE (equiv_insn) == NOTE)
1075 continue;
1076 if (reg_set_p (regno_reg_rtx[i], PATTERN (equiv_insn)))
1077 delete_dead_insn (equiv_insn);
1078 else
1079 {
1080 PUT_CODE (equiv_insn, NOTE);
1081 NOTE_SOURCE_FILE (equiv_insn) = 0;
1082 NOTE_LINE_NUMBER (equiv_insn) = NOTE_INSN_DELETED;
1083 }
1084 }
1085 }
1086 }
32131a9c
RK
1087
1088 /* Use the reload registers where necessary
1089 by generating move instructions to move the must-be-register
1090 values into or out of the reload registers. */
1091
03acd8f8
BS
1092 if (insns_need_reload != 0 || something_needs_elimination
1093 || something_needs_operands_changed)
c47f5ea5 1094 {
102870fb 1095 HOST_WIDE_INT old_frame_size = get_frame_size ();
c47f5ea5 1096
e04ca094 1097 reload_as_needed (global);
c47f5ea5
BS
1098
1099 if (old_frame_size != get_frame_size ())
1100 abort ();
1101
1102 if (num_eliminable)
1103 verify_initial_elim_offsets ();
1104 }
32131a9c 1105
2a1f8b6b 1106 /* If we were able to eliminate the frame pointer, show that it is no
546b63fb 1107 longer live at the start of any basic block. If it ls live by
2a1f8b6b
RK
1108 virtue of being in a pseudo, that pseudo will be marked live
1109 and hence the frame pointer will be known to be live via that
1110 pseudo. */
1111
1112 if (! frame_pointer_needed)
1113 for (i = 0; i < n_basic_blocks; i++)
e881bb1b 1114 CLEAR_REGNO_REG_SET (BASIC_BLOCK (i)->global_live_at_start,
8e08106d 1115 HARD_FRAME_POINTER_REGNUM);
2a1f8b6b 1116
5352b11a
RS
1117 /* Come here (with failure set nonzero) if we can't get enough spill regs
1118 and we decide not to abort about it. */
1119 failed:
1120
f5d8c9f4 1121 CLEAR_REG_SET (&spilled_pseudos);
a3ec87a8
RS
1122 reload_in_progress = 0;
1123
32131a9c
RK
1124 /* Now eliminate all pseudo regs by modifying them into
1125 their equivalent memory references.
1126 The REG-rtx's for the pseudos are modified in place,
1127 so all insns that used to refer to them now refer to memory.
1128
1129 For a reg that has a reg_equiv_address, all those insns
1130 were changed by reloading so that no insns refer to it any longer;
1131 but the DECL_RTL of a variable decl may refer to it,
1132 and if so this causes the debugging info to mention the variable. */
1133
1134 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1135 {
1136 rtx addr = 0;
9ec36da5
JL
1137
1138 if (reg_equiv_mem[i])
1139 addr = XEXP (reg_equiv_mem[i], 0);
1140
32131a9c
RK
1141 if (reg_equiv_address[i])
1142 addr = reg_equiv_address[i];
9ec36da5 1143
32131a9c
RK
1144 if (addr)
1145 {
1146 if (reg_renumber[i] < 0)
1147 {
1148 rtx reg = regno_reg_rtx[i];
173b24b9 1149
ef178af3 1150 PUT_CODE (reg, MEM);
32131a9c
RK
1151 XEXP (reg, 0) = addr;
1152 REG_USERVAR_P (reg) = 0;
173b24b9
RK
1153 if (reg_equiv_memory_loc[i])
1154 MEM_COPY_ATTRIBUTES (reg, reg_equiv_memory_loc[i]);
1155 else
1156 {
1157 RTX_UNCHANGING_P (reg) = MEM_IN_STRUCT_P (reg)
1158 = MEM_SCALAR_P (reg) = 0;
1159 MEM_ATTRS (reg) = 0;
1160 }
32131a9c
RK
1161 }
1162 else if (reg_equiv_mem[i])
1163 XEXP (reg_equiv_mem[i], 0) = addr;
1164 }
1165 }
1166
2ae74651
JL
1167 /* We must set reload_completed now since the cleanup_subreg_operands call
1168 below will re-recognize each insn and reload may have generated insns
1169 which are only valid during and after reload. */
1170 reload_completed = 1;
1171
bd695e1e
RH
1172 /* Make a pass over all the insns and delete all USEs which we inserted
1173 only to tag a REG_EQUAL note on them. Remove all REG_DEAD and REG_UNUSED
1174 notes. Delete all CLOBBER insns that don't refer to the return value
1175 and simplify (subreg (reg)) operands. Also remove all REG_RETVAL and
1176 REG_LIBCALL notes since they are no longer useful or accurate. Strip
1177 and regenerate REG_INC notes that may have been moved around. */
32131a9c
RK
1178
1179 for (insn = first; insn; insn = NEXT_INSN (insn))
2c3c49de 1180 if (INSN_P (insn))
32131a9c 1181 {
6764d250 1182 rtx *pnote;
32131a9c 1183
f474c6f8
AO
1184 if (GET_CODE (insn) == CALL_INSN)
1185 replace_pseudos_in_call_usage (& CALL_INSN_FUNCTION_USAGE (insn),
1186 VOIDmode,
1187 CALL_INSN_FUNCTION_USAGE (insn));
1188
0304f787 1189 if ((GET_CODE (PATTERN (insn)) == USE
3d17d93d
AO
1190 /* We mark with QImode USEs introduced by reload itself. */
1191 && (GET_MODE (insn) == QImode
1192 || find_reg_note (insn, REG_EQUAL, NULL_RTX)))
bd695e1e
RH
1193 || (GET_CODE (PATTERN (insn)) == CLOBBER
1194 && (GET_CODE (XEXP (PATTERN (insn), 0)) != REG
1195 || ! REG_FUNCTION_VALUE_P (XEXP (PATTERN (insn), 0)))))
b60a8416 1196 {
e5eac8ef 1197 delete_insn (insn);
b60a8416
R
1198 continue;
1199 }
6764d250
BS
1200
1201 pnote = &REG_NOTES (insn);
1202 while (*pnote != 0)
32131a9c 1203 {
6764d250 1204 if (REG_NOTE_KIND (*pnote) == REG_DEAD
80599fd9 1205 || REG_NOTE_KIND (*pnote) == REG_UNUSED
2dfa9a87 1206 || REG_NOTE_KIND (*pnote) == REG_INC
80599fd9
NC
1207 || REG_NOTE_KIND (*pnote) == REG_RETVAL
1208 || REG_NOTE_KIND (*pnote) == REG_LIBCALL)
6764d250
BS
1209 *pnote = XEXP (*pnote, 1);
1210 else
1211 pnote = &XEXP (*pnote, 1);
32131a9c 1212 }
0304f787 1213
2dfa9a87
MH
1214#ifdef AUTO_INC_DEC
1215 add_auto_inc_notes (insn, PATTERN (insn));
1216#endif
1217
0304f787
JL
1218 /* And simplify (subreg (reg)) if it appears as an operand. */
1219 cleanup_subreg_operands (insn);
b60a8416 1220 }
32131a9c 1221
ab87f8c8
JL
1222 /* If we are doing stack checking, give a warning if this function's
1223 frame size is larger than we expect. */
1224 if (flag_stack_check && ! STACK_CHECK_BUILTIN)
1225 {
1226 HOST_WIDE_INT size = get_frame_size () + STACK_CHECK_FIXED_FRAME_SIZE;
05d10675
BS
1227 static int verbose_warned = 0;
1228
ab87f8c8
JL
1229 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1230 if (regs_ever_live[i] && ! fixed_regs[i] && call_used_regs[i])
1231 size += UNITS_PER_WORD;
1232
1233 if (size > STACK_CHECK_MAX_FRAME_SIZE)
05d10675 1234 {
ab87f8c8
JL
1235 warning ("frame size too large for reliable stack checking");
1236 if (! verbose_warned)
1237 {
1238 warning ("try reducing the number of local variables");
1239 verbose_warned = 1;
1240 }
1241 }
1242 }
1243
32131a9c 1244 /* Indicate that we no longer have known memory locations or constants. */
58d9f9d9
JL
1245 if (reg_equiv_constant)
1246 free (reg_equiv_constant);
32131a9c 1247 reg_equiv_constant = 0;
58d9f9d9
JL
1248 if (reg_equiv_memory_loc)
1249 free (reg_equiv_memory_loc);
32131a9c 1250 reg_equiv_memory_loc = 0;
5352b11a 1251
a68d4b75
BK
1252 if (real_known_ptr)
1253 free (real_known_ptr);
1254 if (real_at_ptr)
1255 free (real_at_ptr);
1256
56a65848
DB
1257 free (reg_equiv_mem);
1258 free (reg_equiv_init);
1259 free (reg_equiv_address);
1260 free (reg_max_ref_width);
03acd8f8
BS
1261 free (reg_old_renumber);
1262 free (pseudo_previous_regs);
1263 free (pseudo_forbidden_regs);
56a65848 1264
8b4f9969
JW
1265 CLEAR_HARD_REG_SET (used_spill_regs);
1266 for (i = 0; i < n_spills; i++)
1267 SET_HARD_REG_BIT (used_spill_regs, spill_regs[i]);
1268
7609e720
BS
1269 /* Free all the insn_chain structures at once. */
1270 obstack_free (&reload_obstack, reload_startobj);
1271 unused_insn_chains = 0;
f1330226 1272 fixup_abnormal_edges ();
7609e720 1273
5352b11a 1274 return failure;
32131a9c 1275}
1e5bd841 1276
18a90182
BS
1277/* Yet another special case. Unfortunately, reg-stack forces people to
1278 write incorrect clobbers in asm statements. These clobbers must not
1279 cause the register to appear in bad_spill_regs, otherwise we'll call
1280 fatal_insn later. We clear the corresponding regnos in the live
1281 register sets to avoid this.
1282 The whole thing is rather sick, I'm afraid. */
efc9bd41 1283
18a90182
BS
1284static void
1285maybe_fix_stack_asms ()
1286{
1287#ifdef STACK_REGS
392dccb7 1288 const char *constraints[MAX_RECOG_OPERANDS];
18a90182
BS
1289 enum machine_mode operand_mode[MAX_RECOG_OPERANDS];
1290 struct insn_chain *chain;
1291
1292 for (chain = reload_insn_chain; chain != 0; chain = chain->next)
1293 {
1294 int i, noperands;
1295 HARD_REG_SET clobbered, allowed;
1296 rtx pat;
1297
2c3c49de 1298 if (! INSN_P (chain->insn)
18a90182
BS
1299 || (noperands = asm_noperands (PATTERN (chain->insn))) < 0)
1300 continue;
1301 pat = PATTERN (chain->insn);
1302 if (GET_CODE (pat) != PARALLEL)
1303 continue;
1304
1305 CLEAR_HARD_REG_SET (clobbered);
1306 CLEAR_HARD_REG_SET (allowed);
1307
1308 /* First, make a mask of all stack regs that are clobbered. */
1309 for (i = 0; i < XVECLEN (pat, 0); i++)
1310 {
1311 rtx t = XVECEXP (pat, 0, i);
1312 if (GET_CODE (t) == CLOBBER && STACK_REG_P (XEXP (t, 0)))
1313 SET_HARD_REG_BIT (clobbered, REGNO (XEXP (t, 0)));
1314 }
1315
1316 /* Get the operand values and constraints out of the insn. */
1ccbefce 1317 decode_asm_operands (pat, recog_data.operand, recog_data.operand_loc,
18a90182
BS
1318 constraints, operand_mode);
1319
1320 /* For every operand, see what registers are allowed. */
1321 for (i = 0; i < noperands; i++)
1322 {
6b9c6f4f 1323 const char *p = constraints[i];
18a90182
BS
1324 /* For every alternative, we compute the class of registers allowed
1325 for reloading in CLS, and merge its contents into the reg set
1326 ALLOWED. */
1327 int cls = (int) NO_REGS;
1328
1329 for (;;)
1330 {
1331 char c = *p++;
1332
1333 if (c == '\0' || c == ',' || c == '#')
1334 {
1335 /* End of one alternative - mark the regs in the current
1336 class, and reset the class. */
1337 IOR_HARD_REG_SET (allowed, reg_class_contents[cls]);
1338 cls = NO_REGS;
1339 if (c == '#')
1340 do {
1341 c = *p++;
1342 } while (c != '\0' && c != ',');
1343 if (c == '\0')
1344 break;
1345 continue;
1346 }
1347
1348 switch (c)
1349 {
1350 case '=': case '+': case '*': case '%': case '?': case '!':
1351 case '0': case '1': case '2': case '3': case '4': case 'm':
1352 case '<': case '>': case 'V': case 'o': case '&': case 'E':
1353 case 'F': case 's': case 'i': case 'n': case 'X': case 'I':
1354 case 'J': case 'K': case 'L': case 'M': case 'N': case 'O':
1355 case 'P':
18a90182
BS
1356 break;
1357
1358 case 'p':
1359 cls = (int) reg_class_subunion[cls][(int) BASE_REG_CLASS];
1360 break;
1361
1362 case 'g':
1363 case 'r':
1364 cls = (int) reg_class_subunion[cls][(int) GENERAL_REGS];
1365 break;
1366
1367 default:
1368 cls = (int) reg_class_subunion[cls][(int) REG_CLASS_FROM_LETTER (c)];
05d10675 1369
18a90182
BS
1370 }
1371 }
1372 }
1373 /* Those of the registers which are clobbered, but allowed by the
1374 constraints, must be usable as reload registers. So clear them
1375 out of the life information. */
1376 AND_HARD_REG_SET (allowed, clobbered);
1377 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1378 if (TEST_HARD_REG_BIT (allowed, i))
1379 {
239a0f5b
BS
1380 CLEAR_REGNO_REG_SET (&chain->live_throughout, i);
1381 CLEAR_REGNO_REG_SET (&chain->dead_or_set, i);
18a90182
BS
1382 }
1383 }
1384
1385#endif
1386}
03acd8f8 1387\f
f5d8c9f4
BS
1388/* Copy the global variables n_reloads and rld into the corresponding elts
1389 of CHAIN. */
1390static void
1391copy_reloads (chain)
1392 struct insn_chain *chain;
1393{
1394 chain->n_reloads = n_reloads;
1395 chain->rld
1396 = (struct reload *) obstack_alloc (&reload_obstack,
1397 n_reloads * sizeof (struct reload));
1398 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
1399 reload_insn_firstobj = (char *) obstack_alloc (&reload_obstack, 0);
1400}
1401
03acd8f8
BS
1402/* Walk the chain of insns, and determine for each whether it needs reloads
1403 and/or eliminations. Build the corresponding insns_need_reload list, and
1404 set something_needs_elimination as appropriate. */
1405static void
7609e720 1406calculate_needs_all_insns (global)
1e5bd841
BS
1407 int global;
1408{
7609e720 1409 struct insn_chain **pprev_reload = &insns_need_reload;
462561b7 1410 struct insn_chain *chain, *next = 0;
1e5bd841 1411
03acd8f8
BS
1412 something_needs_elimination = 0;
1413
f5d8c9f4 1414 reload_insn_firstobj = (char *) obstack_alloc (&reload_obstack, 0);
462561b7 1415 for (chain = reload_insn_chain; chain != 0; chain = next)
1e5bd841 1416 {
67e61fe7 1417 rtx insn = chain->insn;
03acd8f8 1418
462561b7
JJ
1419 next = chain->next;
1420
f5d8c9f4
BS
1421 /* Clear out the shortcuts. */
1422 chain->n_reloads = 0;
67e61fe7
BS
1423 chain->need_elim = 0;
1424 chain->need_reload = 0;
1425 chain->need_operand_change = 0;
1e5bd841 1426
03acd8f8
BS
1427 /* If this is a label, a JUMP_INSN, or has REG_NOTES (which might
1428 include REG_LABEL), we need to see what effects this has on the
1429 known offsets at labels. */
1e5bd841
BS
1430
1431 if (GET_CODE (insn) == CODE_LABEL || GET_CODE (insn) == JUMP_INSN
2c3c49de 1432 || (INSN_P (insn) && REG_NOTES (insn) != 0))
1e5bd841
BS
1433 set_label_offsets (insn, insn, 0);
1434
2c3c49de 1435 if (INSN_P (insn))
1e5bd841
BS
1436 {
1437 rtx old_body = PATTERN (insn);
1438 int old_code = INSN_CODE (insn);
1439 rtx old_notes = REG_NOTES (insn);
1440 int did_elimination = 0;
cb2afeb3 1441 int operands_changed = 0;
2b49ee39
R
1442 rtx set = single_set (insn);
1443
1444 /* Skip insns that only set an equivalence. */
1445 if (set && GET_CODE (SET_DEST (set)) == REG
1446 && reg_renumber[REGNO (SET_DEST (set))] < 0
1447 && reg_equiv_constant[REGNO (SET_DEST (set))])
67e61fe7 1448 continue;
1e5bd841 1449
1e5bd841 1450 /* If needed, eliminate any eliminable registers. */
2b49ee39 1451 if (num_eliminable || num_eliminable_invariants)
1e5bd841
BS
1452 did_elimination = eliminate_regs_in_insn (insn, 0);
1453
1454 /* Analyze the instruction. */
cb2afeb3
R
1455 operands_changed = find_reloads (insn, 0, spill_indirect_levels,
1456 global, spill_reg_order);
1457
1458 /* If a no-op set needs more than one reload, this is likely
1459 to be something that needs input address reloads. We
1460 can't get rid of this cleanly later, and it is of no use
1461 anyway, so discard it now.
1462 We only do this when expensive_optimizations is enabled,
1463 since this complements reload inheritance / output
1464 reload deletion, and it can make debugging harder. */
1465 if (flag_expensive_optimizations && n_reloads > 1)
1466 {
1467 rtx set = single_set (insn);
1468 if (set
1469 && SET_SRC (set) == SET_DEST (set)
1470 && GET_CODE (SET_SRC (set)) == REG
1471 && REGNO (SET_SRC (set)) >= FIRST_PSEUDO_REGISTER)
1472 {
ca6c03ca 1473 delete_insn (insn);
462561b7
JJ
1474 /* Delete it from the reload chain */
1475 if (chain->prev)
1476 chain->prev->next = next;
1477 else
1478 reload_insn_chain = next;
1479 if (next)
1480 next->prev = chain->prev;
1481 chain->next = unused_insn_chains;
1482 unused_insn_chains = chain;
cb2afeb3
R
1483 continue;
1484 }
1485 }
1486 if (num_eliminable)
1487 update_eliminable_offsets ();
1e5bd841
BS
1488
1489 /* Remember for later shortcuts which insns had any reloads or
7609e720
BS
1490 register eliminations. */
1491 chain->need_elim = did_elimination;
03acd8f8
BS
1492 chain->need_reload = n_reloads > 0;
1493 chain->need_operand_change = operands_changed;
1e5bd841
BS
1494
1495 /* Discard any register replacements done. */
1496 if (did_elimination)
1497 {
f5d8c9f4 1498 obstack_free (&reload_obstack, reload_insn_firstobj);
1e5bd841
BS
1499 PATTERN (insn) = old_body;
1500 INSN_CODE (insn) = old_code;
1501 REG_NOTES (insn) = old_notes;
1502 something_needs_elimination = 1;
1503 }
1504
cb2afeb3
R
1505 something_needs_operands_changed |= operands_changed;
1506
437a710d 1507 if (n_reloads != 0)
7609e720 1508 {
f5d8c9f4 1509 copy_reloads (chain);
7609e720
BS
1510 *pprev_reload = chain;
1511 pprev_reload = &chain->next_need_reload;
7609e720 1512 }
1e5bd841 1513 }
1e5bd841 1514 }
7609e720 1515 *pprev_reload = 0;
1e5bd841 1516}
f5d8c9f4
BS
1517\f
1518/* Comparison function for qsort to decide which of two reloads
1519 should be handled first. *P1 and *P2 are the reload numbers. */
1e5bd841 1520
f5d8c9f4
BS
1521static int
1522reload_reg_class_lower (r1p, r2p)
1523 const PTR r1p;
1524 const PTR r2p;
1e5bd841 1525{
b3694847
SS
1526 int r1 = *(const short *) r1p, r2 = *(const short *) r2p;
1527 int t;
1e5bd841 1528
f5d8c9f4
BS
1529 /* Consider required reloads before optional ones. */
1530 t = rld[r1].optional - rld[r2].optional;
1531 if (t != 0)
1532 return t;
1e5bd841 1533
f5d8c9f4
BS
1534 /* Count all solitary classes before non-solitary ones. */
1535 t = ((reg_class_size[(int) rld[r2].class] == 1)
1536 - (reg_class_size[(int) rld[r1].class] == 1));
1537 if (t != 0)
1538 return t;
1e5bd841 1539
f5d8c9f4
BS
1540 /* Aside from solitaires, consider all multi-reg groups first. */
1541 t = rld[r2].nregs - rld[r1].nregs;
1542 if (t != 0)
1543 return t;
1e5bd841 1544
f5d8c9f4
BS
1545 /* Consider reloads in order of increasing reg-class number. */
1546 t = (int) rld[r1].class - (int) rld[r2].class;
1547 if (t != 0)
1548 return t;
1e5bd841 1549
f5d8c9f4
BS
1550 /* If reloads are equally urgent, sort by reload number,
1551 so that the results of qsort leave nothing to chance. */
1552 return r1 - r2;
1553}
1554\f
1555/* The cost of spilling each hard reg. */
1556static int spill_cost[FIRST_PSEUDO_REGISTER];
1e5bd841 1557
f5d8c9f4
BS
1558/* When spilling multiple hard registers, we use SPILL_COST for the first
1559 spilled hard reg and SPILL_ADD_COST for subsequent regs. SPILL_ADD_COST
1560 only the first hard reg for a multi-reg pseudo. */
1561static int spill_add_cost[FIRST_PSEUDO_REGISTER];
1e5bd841 1562
f5d8c9f4 1563/* Update the spill cost arrays, considering that pseudo REG is live. */
770ae6cc 1564
f5d8c9f4
BS
1565static void
1566count_pseudo (reg)
1567 int reg;
1568{
b2aec5c0 1569 int freq = REG_FREQ (reg);
f5d8c9f4
BS
1570 int r = reg_renumber[reg];
1571 int nregs;
1e5bd841 1572
f5d8c9f4
BS
1573 if (REGNO_REG_SET_P (&pseudos_counted, reg)
1574 || REGNO_REG_SET_P (&spilled_pseudos, reg))
1575 return;
1e5bd841 1576
f5d8c9f4 1577 SET_REGNO_REG_SET (&pseudos_counted, reg);
1e5bd841 1578
f5d8c9f4
BS
1579 if (r < 0)
1580 abort ();
1d7254c5 1581
b2aec5c0 1582 spill_add_cost[r] += freq;
1e5bd841 1583
f5d8c9f4
BS
1584 nregs = HARD_REGNO_NREGS (r, PSEUDO_REGNO_MODE (reg));
1585 while (nregs-- > 0)
b2aec5c0 1586 spill_cost[r + nregs] += freq;
f5d8c9f4 1587}
1e5bd841 1588
f5d8c9f4
BS
1589/* Calculate the SPILL_COST and SPILL_ADD_COST arrays and determine the
1590 contents of BAD_SPILL_REGS for the insn described by CHAIN. */
efc9bd41 1591
f5d8c9f4
BS
1592static void
1593order_regs_for_reload (chain)
1594 struct insn_chain *chain;
1595{
fbd40359 1596 int i;
efc9bd41
RK
1597 HARD_REG_SET used_by_pseudos;
1598 HARD_REG_SET used_by_pseudos2;
1e5bd841 1599
efc9bd41 1600 COPY_HARD_REG_SET (bad_spill_regs, fixed_reg_set);
1e5bd841 1601
f5d8c9f4
BS
1602 memset (spill_cost, 0, sizeof spill_cost);
1603 memset (spill_add_cost, 0, sizeof spill_add_cost);
1e5bd841 1604
f5d8c9f4 1605 /* Count number of uses of each hard reg by pseudo regs allocated to it
efc9bd41
RK
1606 and then order them by decreasing use. First exclude hard registers
1607 that are live in or across this insn. */
1608
1609 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
1610 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
1611 IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos);
1612 IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos2);
1e5bd841 1613
f5d8c9f4
BS
1614 /* Now find out which pseudos are allocated to it, and update
1615 hard_reg_n_uses. */
1616 CLEAR_REG_SET (&pseudos_counted);
1e5bd841 1617
f5d8c9f4 1618 EXECUTE_IF_SET_IN_REG_SET
fbd40359 1619 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i,
f5d8c9f4 1620 {
fbd40359 1621 count_pseudo (i);
f5d8c9f4
BS
1622 });
1623 EXECUTE_IF_SET_IN_REG_SET
fbd40359 1624 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i,
f5d8c9f4 1625 {
fbd40359 1626 count_pseudo (i);
f5d8c9f4
BS
1627 });
1628 CLEAR_REG_SET (&pseudos_counted);
1e5bd841 1629}
03acd8f8 1630\f
f5d8c9f4
BS
1631/* Vector of reload-numbers showing the order in which the reloads should
1632 be processed. */
1633static short reload_order[MAX_RELOADS];
1e5bd841 1634
f5d8c9f4
BS
1635/* This is used to keep track of the spill regs used in one insn. */
1636static HARD_REG_SET used_spill_regs_local;
03acd8f8 1637
f5d8c9f4
BS
1638/* We decided to spill hard register SPILLED, which has a size of
1639 SPILLED_NREGS. Determine how pseudo REG, which is live during the insn,
1640 is affected. We will add it to SPILLED_PSEUDOS if necessary, and we will
1641 update SPILL_COST/SPILL_ADD_COST. */
770ae6cc 1642
03acd8f8 1643static void
f5d8c9f4
BS
1644count_spilled_pseudo (spilled, spilled_nregs, reg)
1645 int spilled, spilled_nregs, reg;
1e5bd841 1646{
f5d8c9f4
BS
1647 int r = reg_renumber[reg];
1648 int nregs = HARD_REGNO_NREGS (r, PSEUDO_REGNO_MODE (reg));
1e5bd841 1649
f5d8c9f4
BS
1650 if (REGNO_REG_SET_P (&spilled_pseudos, reg)
1651 || spilled + spilled_nregs <= r || r + nregs <= spilled)
1652 return;
1e5bd841 1653
f5d8c9f4 1654 SET_REGNO_REG_SET (&spilled_pseudos, reg);
1e5bd841 1655
b2aec5c0 1656 spill_add_cost[r] -= REG_FREQ (reg);
f5d8c9f4 1657 while (nregs-- > 0)
b2aec5c0 1658 spill_cost[r + nregs] -= REG_FREQ (reg);
1e5bd841
BS
1659}
1660
f5d8c9f4 1661/* Find reload register to use for reload number ORDER. */
03acd8f8 1662
f5d8c9f4 1663static int
e04ca094 1664find_reg (chain, order)
03acd8f8 1665 struct insn_chain *chain;
f5d8c9f4 1666 int order;
1e5bd841 1667{
f5d8c9f4
BS
1668 int rnum = reload_order[order];
1669 struct reload *rl = rld + rnum;
1670 int best_cost = INT_MAX;
1671 int best_reg = -1;
770ae6cc
RK
1672 unsigned int i, j;
1673 int k;
f5d8c9f4
BS
1674 HARD_REG_SET not_usable;
1675 HARD_REG_SET used_by_other_reload;
1e5bd841 1676
f5d8c9f4
BS
1677 COPY_HARD_REG_SET (not_usable, bad_spill_regs);
1678 IOR_HARD_REG_SET (not_usable, bad_spill_regs_global);
1679 IOR_COMPL_HARD_REG_SET (not_usable, reg_class_contents[rl->class]);
1680
1681 CLEAR_HARD_REG_SET (used_by_other_reload);
770ae6cc 1682 for (k = 0; k < order; k++)
1e5bd841 1683 {
770ae6cc
RK
1684 int other = reload_order[k];
1685
f5d8c9f4
BS
1686 if (rld[other].regno >= 0 && reloads_conflict (other, rnum))
1687 for (j = 0; j < rld[other].nregs; j++)
1688 SET_HARD_REG_BIT (used_by_other_reload, rld[other].regno + j);
1689 }
1e5bd841 1690
f5d8c9f4
BS
1691 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1692 {
770ae6cc
RK
1693 unsigned int regno = i;
1694
f5d8c9f4
BS
1695 if (! TEST_HARD_REG_BIT (not_usable, regno)
1696 && ! TEST_HARD_REG_BIT (used_by_other_reload, regno)
1697 && HARD_REGNO_MODE_OK (regno, rl->mode))
1e5bd841 1698 {
f5d8c9f4
BS
1699 int this_cost = spill_cost[regno];
1700 int ok = 1;
770ae6cc 1701 unsigned int this_nregs = HARD_REGNO_NREGS (regno, rl->mode);
1e5bd841 1702
f5d8c9f4
BS
1703 for (j = 1; j < this_nregs; j++)
1704 {
1705 this_cost += spill_add_cost[regno + j];
1706 if ((TEST_HARD_REG_BIT (not_usable, regno + j))
1707 || TEST_HARD_REG_BIT (used_by_other_reload, regno + j))
1708 ok = 0;
1709 }
1710 if (! ok)
1711 continue;
1712 if (rl->in && GET_CODE (rl->in) == REG && REGNO (rl->in) == regno)
1713 this_cost--;
1714 if (rl->out && GET_CODE (rl->out) == REG && REGNO (rl->out) == regno)
1715 this_cost--;
1716 if (this_cost < best_cost
1717 /* Among registers with equal cost, prefer caller-saved ones, or
1718 use REG_ALLOC_ORDER if it is defined. */
1719 || (this_cost == best_cost
1720#ifdef REG_ALLOC_ORDER
1721 && (inv_reg_alloc_order[regno]
1722 < inv_reg_alloc_order[best_reg])
1723#else
1724 && call_used_regs[regno]
1725 && ! call_used_regs[best_reg]
1726#endif
1727 ))
1728 {
1729 best_reg = regno;
1730 best_cost = this_cost;
1e5bd841
BS
1731 }
1732 }
1733 }
f5d8c9f4
BS
1734 if (best_reg == -1)
1735 return 0;
770ae6cc 1736
e04ca094
JL
1737 if (rtl_dump_file)
1738 fprintf (rtl_dump_file, "Using reg %d for reload %d\n", best_reg, rnum);
770ae6cc 1739
f5d8c9f4
BS
1740 rl->nregs = HARD_REGNO_NREGS (best_reg, rl->mode);
1741 rl->regno = best_reg;
1e5bd841 1742
f5d8c9f4 1743 EXECUTE_IF_SET_IN_REG_SET
239a0f5b 1744 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, j,
f5d8c9f4
BS
1745 {
1746 count_spilled_pseudo (best_reg, rl->nregs, j);
1747 });
770ae6cc 1748
f5d8c9f4 1749 EXECUTE_IF_SET_IN_REG_SET
239a0f5b 1750 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, j,
f5d8c9f4
BS
1751 {
1752 count_spilled_pseudo (best_reg, rl->nregs, j);
1753 });
03acd8f8 1754
f5d8c9f4
BS
1755 for (i = 0; i < rl->nregs; i++)
1756 {
1757 if (spill_cost[best_reg + i] != 0
1758 || spill_add_cost[best_reg + i] != 0)
1759 abort ();
1760 SET_HARD_REG_BIT (used_spill_regs_local, best_reg + i);
1761 }
1762 return 1;
03acd8f8
BS
1763}
1764
1765/* Find more reload regs to satisfy the remaining need of an insn, which
1766 is given by CHAIN.
1e5bd841
BS
1767 Do it by ascending class number, since otherwise a reg
1768 might be spilled for a big class and might fail to count
f5d8c9f4 1769 for a smaller class even though it belongs to that class. */
1e5bd841 1770
03acd8f8 1771static void
e04ca094 1772find_reload_regs (chain)
03acd8f8 1773 struct insn_chain *chain;
1e5bd841 1774{
f5d8c9f4 1775 int i;
1e5bd841 1776
f5d8c9f4
BS
1777 /* In order to be certain of getting the registers we need,
1778 we must sort the reloads into order of increasing register class.
1779 Then our grabbing of reload registers will parallel the process
1780 that provided the reload registers. */
1781 for (i = 0; i < chain->n_reloads; i++)
1e5bd841 1782 {
f5d8c9f4
BS
1783 /* Show whether this reload already has a hard reg. */
1784 if (chain->rld[i].reg_rtx)
1e5bd841 1785 {
f5d8c9f4
BS
1786 int regno = REGNO (chain->rld[i].reg_rtx);
1787 chain->rld[i].regno = regno;
770ae6cc
RK
1788 chain->rld[i].nregs
1789 = HARD_REGNO_NREGS (regno, GET_MODE (chain->rld[i].reg_rtx));
1e5bd841 1790 }
f5d8c9f4
BS
1791 else
1792 chain->rld[i].regno = -1;
1793 reload_order[i] = i;
1794 }
1e5bd841 1795
f5d8c9f4
BS
1796 n_reloads = chain->n_reloads;
1797 memcpy (rld, chain->rld, n_reloads * sizeof (struct reload));
1e5bd841 1798
f5d8c9f4 1799 CLEAR_HARD_REG_SET (used_spill_regs_local);
03acd8f8 1800
e04ca094
JL
1801 if (rtl_dump_file)
1802 fprintf (rtl_dump_file, "Spilling for insn %d.\n", INSN_UID (chain->insn));
1e5bd841 1803
f5d8c9f4 1804 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
1e5bd841 1805
f5d8c9f4 1806 /* Compute the order of preference for hard registers to spill. */
1e5bd841 1807
f5d8c9f4 1808 order_regs_for_reload (chain);
1e5bd841 1809
f5d8c9f4
BS
1810 for (i = 0; i < n_reloads; i++)
1811 {
1812 int r = reload_order[i];
1e5bd841 1813
f5d8c9f4
BS
1814 /* Ignore reloads that got marked inoperative. */
1815 if ((rld[r].out != 0 || rld[r].in != 0 || rld[r].secondary_p)
1816 && ! rld[r].optional
1817 && rld[r].regno == -1)
e04ca094 1818 if (! find_reg (chain, i))
f5d8c9f4 1819 {
ecf3151a 1820 spill_failure (chain->insn, rld[r].class);
f5d8c9f4 1821 failure = 1;
03acd8f8 1822 return;
f5d8c9f4 1823 }
1e5bd841 1824 }
05d10675 1825
f5d8c9f4
BS
1826 COPY_HARD_REG_SET (chain->used_spill_regs, used_spill_regs_local);
1827 IOR_HARD_REG_SET (used_spill_regs, used_spill_regs_local);
03acd8f8 1828
f5d8c9f4 1829 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
1e5bd841
BS
1830}
1831
f5d8c9f4 1832static void
e04ca094 1833select_reload_regs ()
09dd1133 1834{
f5d8c9f4 1835 struct insn_chain *chain;
09dd1133 1836
f5d8c9f4
BS
1837 /* Try to satisfy the needs for each insn. */
1838 for (chain = insns_need_reload; chain != 0;
1839 chain = chain->next_need_reload)
e04ca094 1840 find_reload_regs (chain);
09dd1133 1841}
32131a9c 1842\f
437a710d
BS
1843/* Delete all insns that were inserted by emit_caller_save_insns during
1844 this iteration. */
1845static void
7609e720 1846delete_caller_save_insns ()
437a710d 1847{
7609e720 1848 struct insn_chain *c = reload_insn_chain;
437a710d 1849
7609e720 1850 while (c != 0)
437a710d 1851 {
7609e720 1852 while (c != 0 && c->is_caller_save_insn)
437a710d 1853 {
7609e720
BS
1854 struct insn_chain *next = c->next;
1855 rtx insn = c->insn;
1856
7609e720
BS
1857 if (c == reload_insn_chain)
1858 reload_insn_chain = next;
ca6c03ca 1859 delete_insn (insn);
7609e720
BS
1860
1861 if (next)
1862 next->prev = c->prev;
1863 if (c->prev)
1864 c->prev->next = next;
1865 c->next = unused_insn_chains;
1866 unused_insn_chains = c;
1867 c = next;
437a710d 1868 }
7609e720
BS
1869 if (c != 0)
1870 c = c->next;
437a710d
BS
1871 }
1872}
1873\f
5352b11a
RS
1874/* Handle the failure to find a register to spill.
1875 INSN should be one of the insns which needed this particular spill reg. */
1876
1877static void
ecf3151a 1878spill_failure (insn, class)
5352b11a 1879 rtx insn;
ecf3151a 1880 enum reg_class class;
5352b11a 1881{
ecf3151a 1882 static const char *const reg_class_names[] = REG_CLASS_NAMES;
5352b11a 1883 if (asm_noperands (PATTERN (insn)) >= 0)
ecf3151a
BS
1884 error_for_asm (insn, "Can't find a register in class `%s' while reloading `asm'.",
1885 reg_class_names[class]);
5352b11a 1886 else
ecf3151a
BS
1887 {
1888 error ("Unable to find a register to spill in class `%s'.",
1889 reg_class_names[class]);
1890 fatal_insn ("This is the insn:", insn);
1891 }
5352b11a 1892}
32131a9c
RK
1893\f
1894/* Delete an unneeded INSN and any previous insns who sole purpose is loading
1895 data that is dead in INSN. */
1896
1897static void
1898delete_dead_insn (insn)
1899 rtx insn;
1900{
1901 rtx prev = prev_real_insn (insn);
1902 rtx prev_dest;
1903
1904 /* If the previous insn sets a register that dies in our insn, delete it
1905 too. */
1906 if (prev && GET_CODE (PATTERN (prev)) == SET
1907 && (prev_dest = SET_DEST (PATTERN (prev)), GET_CODE (prev_dest) == REG)
1908 && reg_mentioned_p (prev_dest, PATTERN (insn))
b294ca38
R
1909 && find_regno_note (insn, REG_DEAD, REGNO (prev_dest))
1910 && ! side_effects_p (SET_SRC (PATTERN (prev))))
32131a9c
RK
1911 delete_dead_insn (prev);
1912
1913 PUT_CODE (insn, NOTE);
1914 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
1915 NOTE_SOURCE_FILE (insn) = 0;
1916}
1917
1918/* Modify the home of pseudo-reg I.
1919 The new home is present in reg_renumber[I].
1920
1921 FROM_REG may be the hard reg that the pseudo-reg is being spilled from;
1922 or it may be -1, meaning there is none or it is not relevant.
1923 This is used so that all pseudos spilled from a given hard reg
1924 can share one stack slot. */
1925
1926static void
1927alter_reg (i, from_reg)
b3694847 1928 int i;
32131a9c
RK
1929 int from_reg;
1930{
1931 /* When outputting an inline function, this can happen
1932 for a reg that isn't actually used. */
1933 if (regno_reg_rtx[i] == 0)
1934 return;
1935
1936 /* If the reg got changed to a MEM at rtl-generation time,
1937 ignore it. */
1938 if (GET_CODE (regno_reg_rtx[i]) != REG)
1939 return;
1940
1941 /* Modify the reg-rtx to contain the new hard reg
1942 number or else to contain its pseudo reg number. */
1943 REGNO (regno_reg_rtx[i])
1944 = reg_renumber[i] >= 0 ? reg_renumber[i] : i;
1945
1946 /* If we have a pseudo that is needed but has no hard reg or equivalent,
1947 allocate a stack slot for it. */
1948
1949 if (reg_renumber[i] < 0
b1f21e0a 1950 && REG_N_REFS (i) > 0
32131a9c
RK
1951 && reg_equiv_constant[i] == 0
1952 && reg_equiv_memory_loc[i] == 0)
1953 {
b3694847 1954 rtx x;
770ae6cc
RK
1955 unsigned int inherent_size = PSEUDO_REGNO_BYTES (i);
1956 unsigned int total_size = MAX (inherent_size, reg_max_ref_width[i]);
32131a9c
RK
1957 int adjust = 0;
1958
1959 /* Each pseudo reg has an inherent size which comes from its own mode,
1960 and a total size which provides room for paradoxical subregs
1961 which refer to the pseudo reg in wider modes.
1962
1963 We can use a slot already allocated if it provides both
1964 enough inherent space and enough total space.
1965 Otherwise, we allocate a new slot, making sure that it has no less
1966 inherent space, and no less total space, then the previous slot. */
1967 if (from_reg == -1)
1968 {
1969 /* No known place to spill from => no slot to reuse. */
cabcf079
ILT
1970 x = assign_stack_local (GET_MODE (regno_reg_rtx[i]), total_size,
1971 inherent_size == total_size ? 0 : -1);
f76b9db2 1972 if (BYTES_BIG_ENDIAN)
02db8dd0
RK
1973 /* Cancel the big-endian correction done in assign_stack_local.
1974 Get the address of the beginning of the slot.
1975 This is so we can do a big-endian correction unconditionally
1976 below. */
1977 adjust = inherent_size - total_size;
1978
1979 RTX_UNCHANGING_P (x) = RTX_UNCHANGING_P (regno_reg_rtx[i]);
3bdf5ad1
RK
1980
1981 /* Nothing can alias this slot except this pseudo. */
ba4828e0 1982 set_mem_alias_set (x, new_alias_set ());
32131a9c 1983 }
3bdf5ad1 1984
32131a9c
RK
1985 /* Reuse a stack slot if possible. */
1986 else if (spill_stack_slot[from_reg] != 0
1987 && spill_stack_slot_width[from_reg] >= total_size
1988 && (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
1989 >= inherent_size))
1990 x = spill_stack_slot[from_reg];
3bdf5ad1 1991
32131a9c
RK
1992 /* Allocate a bigger slot. */
1993 else
1994 {
1995 /* Compute maximum size needed, both for inherent size
1996 and for total size. */
1997 enum machine_mode mode = GET_MODE (regno_reg_rtx[i]);
4f2d3674 1998 rtx stack_slot;
3bdf5ad1 1999
32131a9c
RK
2000 if (spill_stack_slot[from_reg])
2001 {
2002 if (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
2003 > inherent_size)
2004 mode = GET_MODE (spill_stack_slot[from_reg]);
2005 if (spill_stack_slot_width[from_reg] > total_size)
2006 total_size = spill_stack_slot_width[from_reg];
2007 }
3bdf5ad1 2008
32131a9c 2009 /* Make a slot with that size. */
cabcf079
ILT
2010 x = assign_stack_local (mode, total_size,
2011 inherent_size == total_size ? 0 : -1);
4f2d3674 2012 stack_slot = x;
3bdf5ad1
RK
2013
2014 /* All pseudos mapped to this slot can alias each other. */
2015 if (spill_stack_slot[from_reg])
ba4828e0 2016 set_mem_alias_set (x, MEM_ALIAS_SET (spill_stack_slot[from_reg]));
3bdf5ad1 2017 else
ba4828e0 2018 set_mem_alias_set (x, new_alias_set ());
3bdf5ad1 2019
f76b9db2
ILT
2020 if (BYTES_BIG_ENDIAN)
2021 {
2022 /* Cancel the big-endian correction done in assign_stack_local.
2023 Get the address of the beginning of the slot.
2024 This is so we can do a big-endian correction unconditionally
2025 below. */
2026 adjust = GET_MODE_SIZE (mode) - total_size;
4f2d3674 2027 if (adjust)
8ac61af7
RK
2028 stack_slot
2029 = adjust_address_nv (x, mode_for_size (total_size
38a448ca
RH
2030 * BITS_PER_UNIT,
2031 MODE_INT, 1),
8ac61af7 2032 adjust);
f76b9db2 2033 }
3bdf5ad1 2034
4f2d3674 2035 spill_stack_slot[from_reg] = stack_slot;
32131a9c
RK
2036 spill_stack_slot_width[from_reg] = total_size;
2037 }
2038
32131a9c
RK
2039 /* On a big endian machine, the "address" of the slot
2040 is the address of the low part that fits its inherent mode. */
f76b9db2 2041 if (BYTES_BIG_ENDIAN && inherent_size < total_size)
32131a9c 2042 adjust += (total_size - inherent_size);
32131a9c
RK
2043
2044 /* If we have any adjustment to make, or if the stack slot is the
2045 wrong mode, make a new stack slot. */
2046 if (adjust != 0 || GET_MODE (x) != GET_MODE (regno_reg_rtx[i]))
f1ec5147 2047 x = adjust_address_nv (x, GET_MODE (regno_reg_rtx[i]), adjust);
32131a9c 2048
6d2f8887 2049 /* Save the stack slot for later. */
32131a9c
RK
2050 reg_equiv_memory_loc[i] = x;
2051 }
2052}
2053
2054/* Mark the slots in regs_ever_live for the hard regs
2055 used by pseudo-reg number REGNO. */
2056
2057void
2058mark_home_live (regno)
2059 int regno;
2060{
b3694847 2061 int i, lim;
770ae6cc 2062
32131a9c
RK
2063 i = reg_renumber[regno];
2064 if (i < 0)
2065 return;
2066 lim = i + HARD_REGNO_NREGS (i, PSEUDO_REGNO_MODE (regno));
2067 while (i < lim)
2068 regs_ever_live[i++] = 1;
2069}
2070\f
2071/* This function handles the tracking of elimination offsets around branches.
2072
2073 X is a piece of RTL being scanned.
2074
2075 INSN is the insn that it came from, if any.
2076
2077 INITIAL_P is non-zero if we are to set the offset to be the initial
2078 offset and zero if we are setting the offset of the label to be the
2079 current offset. */
2080
2081static void
2082set_label_offsets (x, insn, initial_p)
2083 rtx x;
2084 rtx insn;
2085 int initial_p;
2086{
2087 enum rtx_code code = GET_CODE (x);
2088 rtx tem;
e51712db 2089 unsigned int i;
32131a9c
RK
2090 struct elim_table *p;
2091
2092 switch (code)
2093 {
2094 case LABEL_REF:
8be386d9
RS
2095 if (LABEL_REF_NONLOCAL_P (x))
2096 return;
2097
32131a9c
RK
2098 x = XEXP (x, 0);
2099
0f41302f 2100 /* ... fall through ... */
32131a9c
RK
2101
2102 case CODE_LABEL:
2103 /* If we know nothing about this label, set the desired offsets. Note
2104 that this sets the offset at a label to be the offset before a label
2105 if we don't know anything about the label. This is not correct for
2106 the label after a BARRIER, but is the best guess we can make. If
2107 we guessed wrong, we will suppress an elimination that might have
2108 been possible had we been able to guess correctly. */
2109
2110 if (! offsets_known_at[CODE_LABEL_NUMBER (x)])
2111 {
2112 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2113 offsets_at[CODE_LABEL_NUMBER (x)][i]
2114 = (initial_p ? reg_eliminate[i].initial_offset
2115 : reg_eliminate[i].offset);
2116 offsets_known_at[CODE_LABEL_NUMBER (x)] = 1;
2117 }
2118
2119 /* Otherwise, if this is the definition of a label and it is
d45cf215 2120 preceded by a BARRIER, set our offsets to the known offset of
32131a9c
RK
2121 that label. */
2122
2123 else if (x == insn
2124 && (tem = prev_nonnote_insn (insn)) != 0
2125 && GET_CODE (tem) == BARRIER)
1f3b1e1a 2126 set_offsets_for_label (insn);
32131a9c
RK
2127 else
2128 /* If neither of the above cases is true, compare each offset
2129 with those previously recorded and suppress any eliminations
2130 where the offsets disagree. */
a8fdc208 2131
32131a9c
RK
2132 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2133 if (offsets_at[CODE_LABEL_NUMBER (x)][i]
2134 != (initial_p ? reg_eliminate[i].initial_offset
2135 : reg_eliminate[i].offset))
2136 reg_eliminate[i].can_eliminate = 0;
2137
2138 return;
2139
2140 case JUMP_INSN:
2141 set_label_offsets (PATTERN (insn), insn, initial_p);
2142
0f41302f 2143 /* ... fall through ... */
32131a9c
RK
2144
2145 case INSN:
2146 case CALL_INSN:
2147 /* Any labels mentioned in REG_LABEL notes can be branched to indirectly
2148 and hence must have all eliminations at their initial offsets. */
2149 for (tem = REG_NOTES (x); tem; tem = XEXP (tem, 1))
2150 if (REG_NOTE_KIND (tem) == REG_LABEL)
2151 set_label_offsets (XEXP (tem, 0), insn, 1);
2152 return;
2153
0c0ba09c 2154 case PARALLEL:
32131a9c
RK
2155 case ADDR_VEC:
2156 case ADDR_DIFF_VEC:
0c0ba09c
JJ
2157 /* Each of the labels in the parallel or address vector must be
2158 at their initial offsets. We want the first field for PARALLEL
2159 and ADDR_VEC and the second field for ADDR_DIFF_VEC. */
32131a9c 2160
e51712db 2161 for (i = 0; i < (unsigned) XVECLEN (x, code == ADDR_DIFF_VEC); i++)
32131a9c
RK
2162 set_label_offsets (XVECEXP (x, code == ADDR_DIFF_VEC, i),
2163 insn, initial_p);
2164 return;
2165
2166 case SET:
2167 /* We only care about setting PC. If the source is not RETURN,
2168 IF_THEN_ELSE, or a label, disable any eliminations not at
2169 their initial offsets. Similarly if any arm of the IF_THEN_ELSE
2170 isn't one of those possibilities. For branches to a label,
2171 call ourselves recursively.
2172
2173 Note that this can disable elimination unnecessarily when we have
2174 a non-local goto since it will look like a non-constant jump to
2175 someplace in the current function. This isn't a significant
2176 problem since such jumps will normally be when all elimination
2177 pairs are back to their initial offsets. */
2178
2179 if (SET_DEST (x) != pc_rtx)
2180 return;
2181
2182 switch (GET_CODE (SET_SRC (x)))
2183 {
2184 case PC:
2185 case RETURN:
2186 return;
2187
2188 case LABEL_REF:
2189 set_label_offsets (XEXP (SET_SRC (x), 0), insn, initial_p);
2190 return;
2191
2192 case IF_THEN_ELSE:
2193 tem = XEXP (SET_SRC (x), 1);
2194 if (GET_CODE (tem) == LABEL_REF)
2195 set_label_offsets (XEXP (tem, 0), insn, initial_p);
2196 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2197 break;
2198
2199 tem = XEXP (SET_SRC (x), 2);
2200 if (GET_CODE (tem) == LABEL_REF)
2201 set_label_offsets (XEXP (tem, 0), insn, initial_p);
2202 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2203 break;
2204 return;
e9a25f70
JL
2205
2206 default:
2207 break;
32131a9c
RK
2208 }
2209
2210 /* If we reach here, all eliminations must be at their initial
2211 offset because we are doing a jump to a variable address. */
2212 for (p = reg_eliminate; p < &reg_eliminate[NUM_ELIMINABLE_REGS]; p++)
2213 if (p->offset != p->initial_offset)
2214 p->can_eliminate = 0;
e9a25f70 2215 break;
05d10675 2216
e9a25f70
JL
2217 default:
2218 break;
32131a9c
RK
2219 }
2220}
2221\f
a8fdc208 2222/* Scan X and replace any eliminable registers (such as fp) with a
32131a9c
RK
2223 replacement (such as sp), plus an offset.
2224
2225 MEM_MODE is the mode of an enclosing MEM. We need this to know how
2226 much to adjust a register for, e.g., PRE_DEC. Also, if we are inside a
2227 MEM, we are allowed to replace a sum of a register and the constant zero
2228 with the register, which we cannot do outside a MEM. In addition, we need
2229 to record the fact that a register is referenced outside a MEM.
2230
ff32812a 2231 If INSN is an insn, it is the insn containing X. If we replace a REG
32131a9c
RK
2232 in a SET_DEST with an equivalent MEM and INSN is non-zero, write a
2233 CLOBBER of the pseudo after INSN so find_equiv_regs will know that
38e01259 2234 the REG is being modified.
32131a9c 2235
ff32812a
RS
2236 Alternatively, INSN may be a note (an EXPR_LIST or INSN_LIST).
2237 That's used when we eliminate in expressions stored in notes.
2238 This means, do not set ref_outside_mem even if the reference
2239 is outside of MEMs.
2240
32131a9c
RK
2241 REG_EQUIV_MEM and REG_EQUIV_ADDRESS contain address that have had
2242 replacements done assuming all offsets are at their initial values. If
2243 they are not, or if REG_EQUIV_ADDRESS is nonzero for a pseudo we
2244 encounter, return the actual location so that find_reloads will do
2245 the proper thing. */
2246
2247rtx
1914f5da 2248eliminate_regs (x, mem_mode, insn)
32131a9c
RK
2249 rtx x;
2250 enum machine_mode mem_mode;
2251 rtx insn;
2252{
2253 enum rtx_code code = GET_CODE (x);
2254 struct elim_table *ep;
2255 int regno;
2256 rtx new;
2257 int i, j;
6f7d635c 2258 const char *fmt;
32131a9c
RK
2259 int copied = 0;
2260
d6633f01
NS
2261 if (! current_function_decl)
2262 return x;
9969bb2c 2263
32131a9c
RK
2264 switch (code)
2265 {
2266 case CONST_INT:
2267 case CONST_DOUBLE:
2268 case CONST:
2269 case SYMBOL_REF:
2270 case CODE_LABEL:
2271 case PC:
2272 case CC0:
2273 case ASM_INPUT:
2274 case ADDR_VEC:
2275 case ADDR_DIFF_VEC:
2276 case RETURN:
2277 return x;
2278
e9a25f70
JL
2279 case ADDRESSOF:
2280 /* This is only for the benefit of the debugging backends, which call
2281 eliminate_regs on DECL_RTL; any ADDRESSOFs in the actual insns are
2282 removed after CSE. */
1914f5da 2283 new = eliminate_regs (XEXP (x, 0), 0, insn);
e9a25f70
JL
2284 if (GET_CODE (new) == MEM)
2285 return XEXP (new, 0);
2286 return x;
2287
32131a9c
RK
2288 case REG:
2289 regno = REGNO (x);
2290
2291 /* First handle the case where we encounter a bare register that
2292 is eliminable. Replace it with a PLUS. */
2293 if (regno < FIRST_PSEUDO_REGISTER)
2294 {
2295 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2296 ep++)
2297 if (ep->from_rtx == x && ep->can_eliminate)
dfac187e 2298 return plus_constant (ep->to_rtx, ep->previous_offset);
32131a9c
RK
2299
2300 }
2b49ee39
R
2301 else if (reg_renumber[regno] < 0 && reg_equiv_constant
2302 && reg_equiv_constant[regno]
2303 && ! CONSTANT_P (reg_equiv_constant[regno]))
2304 return eliminate_regs (copy_rtx (reg_equiv_constant[regno]),
2305 mem_mode, insn);
32131a9c
RK
2306 return x;
2307
c5c76735
JL
2308 /* You might think handling MINUS in a manner similar to PLUS is a
2309 good idea. It is not. It has been tried multiple times and every
2310 time the change has had to have been reverted.
2311
2312 Other parts of reload know a PLUS is special (gen_reload for example)
2313 and require special code to handle code a reloaded PLUS operand.
2314
2315 Also consider backends where the flags register is clobbered by a
2316 MINUS, but we can emit a PLUS that does not clobber flags (ia32,
2317 lea instruction comes to mind). If we try to reload a MINUS, we
2318 may kill the flags register that was holding a useful value.
2319
2320 So, please before trying to handle MINUS, consider reload as a
2321 whole instead of this little section as well as the backend issues. */
32131a9c
RK
2322 case PLUS:
2323 /* If this is the sum of an eliminable register and a constant, rework
6d2f8887 2324 the sum. */
32131a9c
RK
2325 if (GET_CODE (XEXP (x, 0)) == REG
2326 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2327 && CONSTANT_P (XEXP (x, 1)))
2328 {
2329 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2330 ep++)
2331 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2332 {
32131a9c
RK
2333 /* The only time we want to replace a PLUS with a REG (this
2334 occurs when the constant operand of the PLUS is the negative
2335 of the offset) is when we are inside a MEM. We won't want
2336 to do so at other times because that would change the
2337 structure of the insn in a way that reload can't handle.
2338 We special-case the commonest situation in
2339 eliminate_regs_in_insn, so just replace a PLUS with a
2340 PLUS here, unless inside a MEM. */
a23b64d5 2341 if (mem_mode != 0 && GET_CODE (XEXP (x, 1)) == CONST_INT
32131a9c
RK
2342 && INTVAL (XEXP (x, 1)) == - ep->previous_offset)
2343 return ep->to_rtx;
2344 else
38a448ca
RH
2345 return gen_rtx_PLUS (Pmode, ep->to_rtx,
2346 plus_constant (XEXP (x, 1),
2347 ep->previous_offset));
32131a9c
RK
2348 }
2349
2350 /* If the register is not eliminable, we are done since the other
2351 operand is a constant. */
2352 return x;
2353 }
2354
2355 /* If this is part of an address, we want to bring any constant to the
2356 outermost PLUS. We will do this by doing register replacement in
2357 our operands and seeing if a constant shows up in one of them.
2358
dfac187e
BS
2359 Note that there is no risk of modifying the structure of the insn,
2360 since we only get called for its operands, thus we are either
2361 modifying the address inside a MEM, or something like an address
2362 operand of a load-address insn. */
32131a9c
RK
2363
2364 {
1914f5da
RH
2365 rtx new0 = eliminate_regs (XEXP (x, 0), mem_mode, insn);
2366 rtx new1 = eliminate_regs (XEXP (x, 1), mem_mode, insn);
32131a9c
RK
2367
2368 if (new0 != XEXP (x, 0) || new1 != XEXP (x, 1))
2369 {
2370 /* If one side is a PLUS and the other side is a pseudo that
a8fdc208 2371 didn't get a hard register but has a reg_equiv_constant,
32131a9c
RK
2372 we must replace the constant here since it may no longer
2373 be in the position of any operand. */
2374 if (GET_CODE (new0) == PLUS && GET_CODE (new1) == REG
2375 && REGNO (new1) >= FIRST_PSEUDO_REGISTER
2376 && reg_renumber[REGNO (new1)] < 0
2377 && reg_equiv_constant != 0
2378 && reg_equiv_constant[REGNO (new1)] != 0)
2379 new1 = reg_equiv_constant[REGNO (new1)];
2380 else if (GET_CODE (new1) == PLUS && GET_CODE (new0) == REG
2381 && REGNO (new0) >= FIRST_PSEUDO_REGISTER
2382 && reg_renumber[REGNO (new0)] < 0
2383 && reg_equiv_constant[REGNO (new0)] != 0)
2384 new0 = reg_equiv_constant[REGNO (new0)];
2385
2386 new = form_sum (new0, new1);
2387
2388 /* As above, if we are not inside a MEM we do not want to
2389 turn a PLUS into something else. We might try to do so here
2390 for an addition of 0 if we aren't optimizing. */
2391 if (! mem_mode && GET_CODE (new) != PLUS)
38a448ca 2392 return gen_rtx_PLUS (GET_MODE (x), new, const0_rtx);
32131a9c
RK
2393 else
2394 return new;
2395 }
2396 }
2397 return x;
2398
981c7390 2399 case MULT:
05d10675 2400 /* If this is the product of an eliminable register and a
981c7390
RK
2401 constant, apply the distribute law and move the constant out
2402 so that we have (plus (mult ..) ..). This is needed in order
9faa82d8 2403 to keep load-address insns valid. This case is pathological.
981c7390
RK
2404 We ignore the possibility of overflow here. */
2405 if (GET_CODE (XEXP (x, 0)) == REG
2406 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2407 && GET_CODE (XEXP (x, 1)) == CONST_INT)
2408 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2409 ep++)
2410 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2411 {
2412 if (! mem_mode
2413 /* Refs inside notes don't count for this purpose. */
2414 && ! (insn != 0 && (GET_CODE (insn) == EXPR_LIST
2415 || GET_CODE (insn) == INSN_LIST)))
2416 ep->ref_outside_mem = 1;
2417
2418 return
38a448ca 2419 plus_constant (gen_rtx_MULT (Pmode, ep->to_rtx, XEXP (x, 1)),
981c7390
RK
2420 ep->previous_offset * INTVAL (XEXP (x, 1)));
2421 }
32131a9c 2422
0f41302f 2423 /* ... fall through ... */
32131a9c 2424
32131a9c
RK
2425 case CALL:
2426 case COMPARE:
c5c76735 2427 /* See comments before PLUS about handling MINUS. */
930aeef3 2428 case MINUS:
32131a9c
RK
2429 case DIV: case UDIV:
2430 case MOD: case UMOD:
2431 case AND: case IOR: case XOR:
45620ed4
RK
2432 case ROTATERT: case ROTATE:
2433 case ASHIFTRT: case LSHIFTRT: case ASHIFT:
32131a9c
RK
2434 case NE: case EQ:
2435 case GE: case GT: case GEU: case GTU:
2436 case LE: case LT: case LEU: case LTU:
2437 {
1914f5da 2438 rtx new0 = eliminate_regs (XEXP (x, 0), mem_mode, insn);
fb3821f7 2439 rtx new1
1914f5da 2440 = XEXP (x, 1) ? eliminate_regs (XEXP (x, 1), mem_mode, insn) : 0;
32131a9c
RK
2441
2442 if (new0 != XEXP (x, 0) || new1 != XEXP (x, 1))
38a448ca 2443 return gen_rtx_fmt_ee (code, GET_MODE (x), new0, new1);
32131a9c
RK
2444 }
2445 return x;
2446
981c7390
RK
2447 case EXPR_LIST:
2448 /* If we have something in XEXP (x, 0), the usual case, eliminate it. */
2449 if (XEXP (x, 0))
2450 {
1914f5da 2451 new = eliminate_regs (XEXP (x, 0), mem_mode, insn);
981c7390 2452 if (new != XEXP (x, 0))
13bb79d4
R
2453 {
2454 /* If this is a REG_DEAD note, it is not valid anymore.
2455 Using the eliminated version could result in creating a
2456 REG_DEAD note for the stack or frame pointer. */
2457 if (GET_MODE (x) == REG_DEAD)
2458 return (XEXP (x, 1)
2459 ? eliminate_regs (XEXP (x, 1), mem_mode, insn)
2460 : NULL_RTX);
2461
2462 x = gen_rtx_EXPR_LIST (REG_NOTE_KIND (x), new, XEXP (x, 1));
2463 }
981c7390
RK
2464 }
2465
0f41302f 2466 /* ... fall through ... */
981c7390
RK
2467
2468 case INSN_LIST:
2469 /* Now do eliminations in the rest of the chain. If this was
2470 an EXPR_LIST, this might result in allocating more memory than is
2471 strictly needed, but it simplifies the code. */
2472 if (XEXP (x, 1))
2473 {
1914f5da 2474 new = eliminate_regs (XEXP (x, 1), mem_mode, insn);
981c7390 2475 if (new != XEXP (x, 1))
38a448ca 2476 return gen_rtx_fmt_ee (GET_CODE (x), GET_MODE (x), XEXP (x, 0), new);
981c7390
RK
2477 }
2478 return x;
2479
32131a9c
RK
2480 case PRE_INC:
2481 case POST_INC:
2482 case PRE_DEC:
2483 case POST_DEC:
32131a9c
RK
2484 case STRICT_LOW_PART:
2485 case NEG: case NOT:
2486 case SIGN_EXTEND: case ZERO_EXTEND:
2487 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
2488 case FLOAT: case FIX:
2489 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
2490 case ABS:
2491 case SQRT:
2492 case FFS:
1914f5da 2493 new = eliminate_regs (XEXP (x, 0), mem_mode, insn);
32131a9c 2494 if (new != XEXP (x, 0))
38a448ca 2495 return gen_rtx_fmt_e (code, GET_MODE (x), new);
32131a9c
RK
2496 return x;
2497
2498 case SUBREG:
ddef6bc7 2499 /* Similar to above processing, but preserve SUBREG_BYTE.
32131a9c
RK
2500 Convert (subreg (mem)) to (mem) if not paradoxical.
2501 Also, if we have a non-paradoxical (subreg (pseudo)) and the
2502 pseudo didn't get a hard reg, we must replace this with the
2503 eliminated version of the memory location because push_reloads
2504 may do the replacement in certain circumstances. */
2505 if (GET_CODE (SUBREG_REG (x)) == REG
2506 && (GET_MODE_SIZE (GET_MODE (x))
2507 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
2508 && reg_equiv_memory_loc != 0
2509 && reg_equiv_memory_loc[REGNO (SUBREG_REG (x))] != 0)
2510 {
cb2afeb3 2511 new = SUBREG_REG (x);
32131a9c
RK
2512 }
2513 else
1914f5da 2514 new = eliminate_regs (SUBREG_REG (x), mem_mode, insn);
32131a9c 2515
ddef6bc7 2516 if (new != SUBREG_REG (x))
32131a9c 2517 {
29ae5012
RK
2518 int x_size = GET_MODE_SIZE (GET_MODE (x));
2519 int new_size = GET_MODE_SIZE (GET_MODE (new));
2520
1914f5da 2521 if (GET_CODE (new) == MEM
6d49a073 2522 && ((x_size < new_size
1914f5da 2523#ifdef WORD_REGISTER_OPERATIONS
6d49a073
JW
2524 /* On these machines, combine can create rtl of the form
2525 (set (subreg:m1 (reg:m2 R) 0) ...)
05d10675 2526 where m1 < m2, and expects something interesting to
6d49a073
JW
2527 happen to the entire word. Moreover, it will use the
2528 (reg:m2 R) later, expecting all bits to be preserved.
05d10675 2529 So if the number of words is the same, preserve the
6d49a073 2530 subreg so that push_reloads can see it. */
5d9669fd
RK
2531 && ! ((x_size - 1) / UNITS_PER_WORD
2532 == (new_size -1 ) / UNITS_PER_WORD)
1914f5da 2533#endif
6d49a073 2534 )
5d9669fd 2535 || x_size == new_size)
1914f5da 2536 )
32131a9c 2537 {
ddef6bc7 2538 int offset = SUBREG_BYTE (x);
32131a9c
RK
2539 enum machine_mode mode = GET_MODE (x);
2540
32131a9c
RK
2541 PUT_MODE (new, mode);
2542 XEXP (new, 0) = plus_constant (XEXP (new, 0), offset);
2543 return new;
2544 }
2545 else
ddef6bc7 2546 return gen_rtx_SUBREG (GET_MODE (x), new, SUBREG_BYTE (x));
32131a9c
RK
2547 }
2548
2549 return x;
2550
32131a9c 2551 case MEM:
e9a25f70
JL
2552 /* This is only for the benefit of the debugging backends, which call
2553 eliminate_regs on DECL_RTL; any ADDRESSOFs in the actual insns are
2554 removed after CSE. */
2555 if (GET_CODE (XEXP (x, 0)) == ADDRESSOF)
1914f5da 2556 return eliminate_regs (XEXP (XEXP (x, 0), 0), 0, insn);
e9a25f70 2557
32131a9c
RK
2558 /* Our only special processing is to pass the mode of the MEM to our
2559 recursive call and copy the flags. While we are here, handle this
2560 case more efficiently. */
f1ec5147
RK
2561 return
2562 replace_equiv_address_nv (x,
2563 eliminate_regs (XEXP (x, 0),
2564 GET_MODE (x), insn));
05d10675 2565
dfac187e 2566 case USE:
055c7759
JDA
2567 /* Handle insn_list USE that a call to a pure function may generate. */
2568 new = eliminate_regs (XEXP (x, 0), 0, insn);
2569 if (new != XEXP (x, 0))
2570 return gen_rtx_USE (GET_MODE (x), new);
2571 return x;
2572
dfac187e
BS
2573 case CLOBBER:
2574 case ASM_OPERANDS:
2575 case SET:
2576 abort ();
2577
e9a25f70
JL
2578 default:
2579 break;
32131a9c
RK
2580 }
2581
2582 /* Process each of our operands recursively. If any have changed, make a
2583 copy of the rtx. */
2584 fmt = GET_RTX_FORMAT (code);
2585 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2586 {
2587 if (*fmt == 'e')
2588 {
1914f5da 2589 new = eliminate_regs (XEXP (x, i), mem_mode, insn);
32131a9c
RK
2590 if (new != XEXP (x, i) && ! copied)
2591 {
2592 rtx new_x = rtx_alloc (code);
4e135bdd
KG
2593 memcpy (new_x, x,
2594 (sizeof (*new_x) - sizeof (new_x->fld)
2595 + sizeof (new_x->fld[0]) * GET_RTX_LENGTH (code)));
32131a9c
RK
2596 x = new_x;
2597 copied = 1;
2598 }
2599 XEXP (x, i) = new;
2600 }
2601 else if (*fmt == 'E')
2602 {
2603 int copied_vec = 0;
2604 for (j = 0; j < XVECLEN (x, i); j++)
2605 {
1914f5da 2606 new = eliminate_regs (XVECEXP (x, i, j), mem_mode, insn);
32131a9c
RK
2607 if (new != XVECEXP (x, i, j) && ! copied_vec)
2608 {
8f985ec4
ZW
2609 rtvec new_v = gen_rtvec_v (XVECLEN (x, i),
2610 XVEC (x, i)->elem);
32131a9c
RK
2611 if (! copied)
2612 {
2613 rtx new_x = rtx_alloc (code);
4e135bdd
KG
2614 memcpy (new_x, x,
2615 (sizeof (*new_x) - sizeof (new_x->fld)
2616 + (sizeof (new_x->fld[0])
2617 * GET_RTX_LENGTH (code))));
32131a9c
RK
2618 x = new_x;
2619 copied = 1;
2620 }
2621 XVEC (x, i) = new_v;
2622 copied_vec = 1;
2623 }
2624 XVECEXP (x, i, j) = new;
2625 }
2626 }
2627 }
2628
2629 return x;
2630}
dfac187e
BS
2631
2632/* Scan rtx X for modifications of elimination target registers. Update
2633 the table of eliminables to reflect the changed state. MEM_MODE is
2634 the mode of an enclosing MEM rtx, or VOIDmode if not within a MEM. */
2635
2636static void
2637elimination_effects (x, mem_mode)
2638 rtx x;
2639 enum machine_mode mem_mode;
2640
2641{
2642 enum rtx_code code = GET_CODE (x);
2643 struct elim_table *ep;
2644 int regno;
2645 int i, j;
2646 const char *fmt;
2647
2648 switch (code)
2649 {
2650 case CONST_INT:
2651 case CONST_DOUBLE:
2652 case CONST:
2653 case SYMBOL_REF:
2654 case CODE_LABEL:
2655 case PC:
2656 case CC0:
2657 case ASM_INPUT:
2658 case ADDR_VEC:
2659 case ADDR_DIFF_VEC:
2660 case RETURN:
2661 return;
2662
2663 case ADDRESSOF:
2664 abort ();
2665
2666 case REG:
2667 regno = REGNO (x);
2668
2669 /* First handle the case where we encounter a bare register that
2670 is eliminable. Replace it with a PLUS. */
2671 if (regno < FIRST_PSEUDO_REGISTER)
2672 {
2673 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2674 ep++)
2675 if (ep->from_rtx == x && ep->can_eliminate)
2676 {
2677 if (! mem_mode)
2678 ep->ref_outside_mem = 1;
2679 return;
2680 }
2681
2682 }
2683 else if (reg_renumber[regno] < 0 && reg_equiv_constant
2684 && reg_equiv_constant[regno]
2685 && ! CONSTANT_P (reg_equiv_constant[regno]))
2686 elimination_effects (reg_equiv_constant[regno], mem_mode);
2687 return;
2688
2689 case PRE_INC:
2690 case POST_INC:
2691 case PRE_DEC:
2692 case POST_DEC:
4b983fdc
RH
2693 case POST_MODIFY:
2694 case PRE_MODIFY:
dfac187e
BS
2695 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2696 if (ep->to_rtx == XEXP (x, 0))
2697 {
2698 int size = GET_MODE_SIZE (mem_mode);
2699
2700 /* If more bytes than MEM_MODE are pushed, account for them. */
2701#ifdef PUSH_ROUNDING
2702 if (ep->to_rtx == stack_pointer_rtx)
2703 size = PUSH_ROUNDING (size);
2704#endif
2705 if (code == PRE_DEC || code == POST_DEC)
2706 ep->offset += size;
4b983fdc 2707 else if (code == PRE_INC || code == POST_INC)
dfac187e 2708 ep->offset -= size;
4b983fdc
RH
2709 else if ((code == PRE_MODIFY || code == POST_MODIFY)
2710 && GET_CODE (XEXP (x, 1)) == PLUS
2711 && XEXP (x, 0) == XEXP (XEXP (x, 1), 0)
2712 && CONSTANT_P (XEXP (XEXP (x, 1), 1)))
2713 ep->offset -= INTVAL (XEXP (XEXP (x, 1), 1));
dfac187e
BS
2714 }
2715
4b983fdc
RH
2716 /* These two aren't unary operators. */
2717 if (code == POST_MODIFY || code == PRE_MODIFY)
2718 break;
2719
dfac187e
BS
2720 /* Fall through to generic unary operation case. */
2721 case STRICT_LOW_PART:
2722 case NEG: case NOT:
2723 case SIGN_EXTEND: case ZERO_EXTEND:
2724 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
2725 case FLOAT: case FIX:
2726 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
2727 case ABS:
2728 case SQRT:
2729 case FFS:
2730 elimination_effects (XEXP (x, 0), mem_mode);
2731 return;
2732
2733 case SUBREG:
2734 if (GET_CODE (SUBREG_REG (x)) == REG
2735 && (GET_MODE_SIZE (GET_MODE (x))
2736 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
2737 && reg_equiv_memory_loc != 0
2738 && reg_equiv_memory_loc[REGNO (SUBREG_REG (x))] != 0)
2739 return;
2740
2741 elimination_effects (SUBREG_REG (x), mem_mode);
2742 return;
2743
2744 case USE:
2745 /* If using a register that is the source of an eliminate we still
2746 think can be performed, note it cannot be performed since we don't
2747 know how this register is used. */
2748 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2749 if (ep->from_rtx == XEXP (x, 0))
2750 ep->can_eliminate = 0;
2751
2752 elimination_effects (XEXP (x, 0), mem_mode);
2753 return;
2754
2755 case CLOBBER:
2756 /* If clobbering a register that is the replacement register for an
2757 elimination we still think can be performed, note that it cannot
2758 be performed. Otherwise, we need not be concerned about it. */
2759 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2760 if (ep->to_rtx == XEXP (x, 0))
2761 ep->can_eliminate = 0;
2762
2763 elimination_effects (XEXP (x, 0), mem_mode);
2764 return;
2765
2766 case SET:
2767 /* Check for setting a register that we know about. */
2768 if (GET_CODE (SET_DEST (x)) == REG)
2769 {
2770 /* See if this is setting the replacement register for an
2771 elimination.
2772
2773 If DEST is the hard frame pointer, we do nothing because we
2774 assume that all assignments to the frame pointer are for
2775 non-local gotos and are being done at a time when they are valid
2776 and do not disturb anything else. Some machines want to
2777 eliminate a fake argument pointer (or even a fake frame pointer)
2778 with either the real frame or the stack pointer. Assignments to
2779 the hard frame pointer must not prevent this elimination. */
2780
2781 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2782 ep++)
2783 if (ep->to_rtx == SET_DEST (x)
2784 && SET_DEST (x) != hard_frame_pointer_rtx)
2785 {
2786 /* If it is being incremented, adjust the offset. Otherwise,
2787 this elimination can't be done. */
2788 rtx src = SET_SRC (x);
2789
2790 if (GET_CODE (src) == PLUS
2791 && XEXP (src, 0) == SET_DEST (x)
2792 && GET_CODE (XEXP (src, 1)) == CONST_INT)
2793 ep->offset -= INTVAL (XEXP (src, 1));
2794 else
2795 ep->can_eliminate = 0;
2796 }
2797 }
2798
2799 elimination_effects (SET_DEST (x), 0);
2800 elimination_effects (SET_SRC (x), 0);
2801 return;
2802
2803 case MEM:
2804 if (GET_CODE (XEXP (x, 0)) == ADDRESSOF)
2805 abort ();
2806
2807 /* Our only special processing is to pass the mode of the MEM to our
2808 recursive call. */
2809 elimination_effects (XEXP (x, 0), GET_MODE (x));
2810 return;
2811
2812 default:
2813 break;
2814 }
2815
2816 fmt = GET_RTX_FORMAT (code);
2817 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2818 {
2819 if (*fmt == 'e')
2820 elimination_effects (XEXP (x, i), mem_mode);
2821 else if (*fmt == 'E')
2822 for (j = 0; j < XVECLEN (x, i); j++)
2823 elimination_effects (XVECEXP (x, i, j), mem_mode);
2824 }
2825}
2826
2827/* Descend through rtx X and verify that no references to eliminable registers
2828 remain. If any do remain, mark the involved register as not
2829 eliminable. */
1d813780 2830
dfac187e
BS
2831static void
2832check_eliminable_occurrences (x)
2833 rtx x;
2834{
2835 const char *fmt;
2836 int i;
2837 enum rtx_code code;
2838
2839 if (x == 0)
2840 return;
1d7254c5 2841
dfac187e
BS
2842 code = GET_CODE (x);
2843
2844 if (code == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
2845 {
2846 struct elim_table *ep;
2847
2848 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2849 if (ep->from_rtx == x && ep->can_eliminate)
2850 ep->can_eliminate = 0;
2851 return;
2852 }
1d7254c5 2853
dfac187e
BS
2854 fmt = GET_RTX_FORMAT (code);
2855 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2856 {
2857 if (*fmt == 'e')
2858 check_eliminable_occurrences (XEXP (x, i));
2859 else if (*fmt == 'E')
2860 {
2861 int j;
2862 for (j = 0; j < XVECLEN (x, i); j++)
2863 check_eliminable_occurrences (XVECEXP (x, i, j));
2864 }
2865 }
2866}
32131a9c
RK
2867\f
2868/* Scan INSN and eliminate all eliminable registers in it.
2869
2870 If REPLACE is nonzero, do the replacement destructively. Also
2871 delete the insn as dead it if it is setting an eliminable register.
2872
2873 If REPLACE is zero, do all our allocations in reload_obstack.
2874
2875 If no eliminations were done and this insn doesn't require any elimination
2876 processing (these are not identical conditions: it might be updating sp,
2877 but not referencing fp; this needs to be seen during reload_as_needed so
2878 that the offset between fp and sp can be taken into consideration), zero
2879 is returned. Otherwise, 1 is returned. */
2880
2881static int
2882eliminate_regs_in_insn (insn, replace)
2883 rtx insn;
2884 int replace;
2885{
dfac187e 2886 int icode = recog_memoized (insn);
32131a9c 2887 rtx old_body = PATTERN (insn);
dfac187e 2888 int insn_is_asm = asm_noperands (old_body) >= 0;
774672d2 2889 rtx old_set = single_set (insn);
32131a9c
RK
2890 rtx new_body;
2891 int val = 0;
dfac187e
BS
2892 int i, any_changes;
2893 rtx substed_operand[MAX_RECOG_OPERANDS];
2894 rtx orig_operand[MAX_RECOG_OPERANDS];
32131a9c
RK
2895 struct elim_table *ep;
2896
dfac187e
BS
2897 if (! insn_is_asm && icode < 0)
2898 {
2899 if (GET_CODE (PATTERN (insn)) == USE
2900 || GET_CODE (PATTERN (insn)) == CLOBBER
2901 || GET_CODE (PATTERN (insn)) == ADDR_VEC
2902 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
2903 || GET_CODE (PATTERN (insn)) == ASM_INPUT)
2904 return 0;
2905 abort ();
2906 }
2907
774672d2
RK
2908 if (old_set != 0 && GET_CODE (SET_DEST (old_set)) == REG
2909 && REGNO (SET_DEST (old_set)) < FIRST_PSEUDO_REGISTER)
32131a9c
RK
2910 {
2911 /* Check for setting an eliminable register. */
2912 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
774672d2 2913 if (ep->from_rtx == SET_DEST (old_set) && ep->can_eliminate)
32131a9c 2914 {
dd1eab0a
RK
2915#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2916 /* If this is setting the frame pointer register to the
2917 hardware frame pointer register and this is an elimination
2918 that will be done (tested above), this insn is really
2919 adjusting the frame pointer downward to compensate for
2920 the adjustment done before a nonlocal goto. */
2921 if (ep->from == FRAME_POINTER_REGNUM
2922 && ep->to == HARD_FRAME_POINTER_REGNUM)
2923 {
2924 rtx src = SET_SRC (old_set);
973838fd 2925 int offset = 0, ok = 0;
8026ebba 2926 rtx prev_insn, prev_set;
dd1eab0a
RK
2927
2928 if (src == ep->to_rtx)
2929 offset = 0, ok = 1;
2930 else if (GET_CODE (src) == PLUS
bb22893c
JW
2931 && GET_CODE (XEXP (src, 0)) == CONST_INT
2932 && XEXP (src, 1) == ep->to_rtx)
dd1eab0a 2933 offset = INTVAL (XEXP (src, 0)), ok = 1;
bb22893c
JW
2934 else if (GET_CODE (src) == PLUS
2935 && GET_CODE (XEXP (src, 1)) == CONST_INT
2936 && XEXP (src, 0) == ep->to_rtx)
2937 offset = INTVAL (XEXP (src, 1)), ok = 1;
8026ebba
ILT
2938 else if ((prev_insn = prev_nonnote_insn (insn)) != 0
2939 && (prev_set = single_set (prev_insn)) != 0
2940 && rtx_equal_p (SET_DEST (prev_set), src))
2941 {
2942 src = SET_SRC (prev_set);
2943 if (src == ep->to_rtx)
2944 offset = 0, ok = 1;
2945 else if (GET_CODE (src) == PLUS
2946 && GET_CODE (XEXP (src, 0)) == CONST_INT
2947 && XEXP (src, 1) == ep->to_rtx)
2948 offset = INTVAL (XEXP (src, 0)), ok = 1;
2949 else if (GET_CODE (src) == PLUS
2950 && GET_CODE (XEXP (src, 1)) == CONST_INT
2951 && XEXP (src, 0) == ep->to_rtx)
2952 offset = INTVAL (XEXP (src, 1)), ok = 1;
2953 }
dd1eab0a
RK
2954
2955 if (ok)
2956 {
c77fbfbe
GK
2957 rtx src
2958 = plus_constant (ep->to_rtx, offset - ep->offset);
2959
2960 new_body = old_body;
2961 if (! replace)
2962 {
2963 new_body = copy_insn (old_body);
2964 if (REG_NOTES (insn))
2965 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
2966 }
2967 PATTERN (insn) = new_body;
2968 old_set = single_set (insn);
2969
2970 /* First see if this insn remains valid when we
2971 make the change. If not, keep the INSN_CODE
2972 the same and let reload fit it up. */
2973 validate_change (insn, &SET_SRC (old_set), src, 1);
2974 validate_change (insn, &SET_DEST (old_set),
2975 ep->to_rtx, 1);
2976 if (! apply_change_group ())
dd1eab0a 2977 {
c77fbfbe
GK
2978 SET_SRC (old_set) = src;
2979 SET_DEST (old_set) = ep->to_rtx;
dd1eab0a
RK
2980 }
2981
2982 val = 1;
2983 goto done;
2984 }
2985 }
2986#endif
2987
32131a9c
RK
2988 /* In this case this insn isn't serving a useful purpose. We
2989 will delete it in reload_as_needed once we know that this
2990 elimination is, in fact, being done.
2991
abc95ed3 2992 If REPLACE isn't set, we can't delete this insn, but needn't
32131a9c
RK
2993 process it since it won't be used unless something changes. */
2994 if (replace)
8a34409d 2995 {
1d7254c5 2996 delete_dead_insn (insn);
8a34409d
RH
2997 return 1;
2998 }
32131a9c
RK
2999 val = 1;
3000 goto done;
3001 }
aa5524a9 3002 }
32131a9c 3003
aa5524a9
BS
3004 /* We allow one special case which happens to work on all machines we
3005 currently support: a single set with the source being a PLUS of an
3006 eliminable register and a constant. */
3007 if (old_set
1abdf5e7 3008 && GET_CODE (SET_DEST (old_set)) == REG
aa5524a9
BS
3009 && GET_CODE (SET_SRC (old_set)) == PLUS
3010 && GET_CODE (XEXP (SET_SRC (old_set), 0)) == REG
3011 && GET_CODE (XEXP (SET_SRC (old_set), 1)) == CONST_INT
3012 && REGNO (XEXP (SET_SRC (old_set), 0)) < FIRST_PSEUDO_REGISTER)
3013 {
3014 rtx reg = XEXP (SET_SRC (old_set), 0);
3015 int offset = INTVAL (XEXP (SET_SRC (old_set), 1));
32131a9c 3016
aa5524a9
BS
3017 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3018 if (ep->from_rtx == reg && ep->can_eliminate)
3019 {
3020 offset += ep->offset;
32131a9c 3021
aa5524a9
BS
3022 if (offset == 0)
3023 {
f34c06e5
R
3024 int num_clobbers;
3025 /* We assume here that if we need a PARALLEL with
3026 CLOBBERs for this assignment, we can do with the
3027 MATCH_SCRATCHes that add_clobbers allocates.
3028 There's not much we can do if that doesn't work. */
aa5524a9
BS
3029 PATTERN (insn) = gen_rtx_SET (VOIDmode,
3030 SET_DEST (old_set),
3031 ep->to_rtx);
f34c06e5
R
3032 num_clobbers = 0;
3033 INSN_CODE (insn) = recog (PATTERN (insn), insn, &num_clobbers);
3034 if (num_clobbers)
3035 {
3036 rtvec vec = rtvec_alloc (num_clobbers + 1);
3037
3038 vec->elem[0] = PATTERN (insn);
3039 PATTERN (insn) = gen_rtx_PARALLEL (VOIDmode, vec);
3040 add_clobbers (PATTERN (insn), INSN_CODE (insn));
3041 }
aa5524a9
BS
3042 if (INSN_CODE (insn) < 0)
3043 abort ();
3044 }
3045 else
3046 {
3047 new_body = old_body;
3048 if (! replace)
3049 {
3050 new_body = copy_insn (old_body);
3051 if (REG_NOTES (insn))
3052 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3053 }
3054 PATTERN (insn) = new_body;
3055 old_set = single_set (insn);
922d9d40 3056
aa5524a9
BS
3057 XEXP (SET_SRC (old_set), 0) = ep->to_rtx;
3058 XEXP (SET_SRC (old_set), 1) = GEN_INT (offset);
3059 }
3060 val = 1;
3061 /* This can't have an effect on elimination offsets, so skip right
3062 to the end. */
3063 goto done;
3064 }
32131a9c
RK
3065 }
3066
dfac187e
BS
3067 /* Determine the effects of this insn on elimination offsets. */
3068 elimination_effects (old_body, 0);
3069
3070 /* Eliminate all eliminable registers occurring in operands that
3071 can be handled by reload. */
3072 extract_insn (insn);
3073 any_changes = 0;
3074 for (i = 0; i < recog_data.n_operands; i++)
3075 {
3076 orig_operand[i] = recog_data.operand[i];
3077 substed_operand[i] = recog_data.operand[i];
3078
3079 /* For an asm statement, every operand is eliminable. */
3080 if (insn_is_asm || insn_data[icode].operand[i].eliminable)
3081 {
3082 /* Check for setting a register that we know about. */
3083 if (recog_data.operand_type[i] != OP_IN
3084 && GET_CODE (orig_operand[i]) == REG)
3085 {
3086 /* If we are assigning to a register that can be eliminated, it
3087 must be as part of a PARALLEL, since the code above handles
3088 single SETs. We must indicate that we can no longer
3089 eliminate this reg. */
3090 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3091 ep++)
3092 if (ep->from_rtx == orig_operand[i] && ep->can_eliminate)
3093 ep->can_eliminate = 0;
3094 }
3095
3096 substed_operand[i] = eliminate_regs (recog_data.operand[i], 0,
3097 replace ? insn : NULL_RTX);
3098 if (substed_operand[i] != orig_operand[i])
3099 val = any_changes = 1;
3100 /* Terminate the search in check_eliminable_occurrences at
3101 this point. */
3102 *recog_data.operand_loc[i] = 0;
3103
3104 /* If an output operand changed from a REG to a MEM and INSN is an
3105 insn, write a CLOBBER insn. */
3106 if (recog_data.operand_type[i] != OP_IN
3107 && GET_CODE (orig_operand[i]) == REG
3108 && GET_CODE (substed_operand[i]) == MEM
3109 && replace)
3110 emit_insn_after (gen_rtx_CLOBBER (VOIDmode, orig_operand[i]),
3111 insn);
3112 }
3113 }
3114
3115 for (i = 0; i < recog_data.n_dups; i++)
3116 *recog_data.dup_loc[i]
1d7254c5 3117 = *recog_data.operand_loc[(int) recog_data.dup_num[i]];
dfac187e
BS
3118
3119 /* If any eliminable remain, they aren't eliminable anymore. */
3120 check_eliminable_occurrences (old_body);
32131a9c 3121
dfac187e
BS
3122 /* Substitute the operands; the new values are in the substed_operand
3123 array. */
3124 for (i = 0; i < recog_data.n_operands; i++)
3125 *recog_data.operand_loc[i] = substed_operand[i];
3126 for (i = 0; i < recog_data.n_dups; i++)
1d7254c5 3127 *recog_data.dup_loc[i] = substed_operand[(int) recog_data.dup_num[i]];
32131a9c 3128
dfac187e 3129 /* If we are replacing a body that was a (set X (plus Y Z)), try to
32131a9c
RK
3130 re-recognize the insn. We do this in case we had a simple addition
3131 but now can do this as a load-address. This saves an insn in this
dfac187e
BS
3132 common case.
3133 If re-recognition fails, the old insn code number will still be used,
3134 and some register operands may have changed into PLUS expressions.
3135 These will be handled by find_reloads by loading them into a register
1d7254c5 3136 again. */
32131a9c 3137
dfac187e 3138 if (val)
32131a9c 3139 {
7c791b13
RK
3140 /* If we aren't replacing things permanently and we changed something,
3141 make another copy to ensure that all the RTL is new. Otherwise
3142 things can go wrong if find_reload swaps commutative operands
0f41302f 3143 and one is inside RTL that has been copied while the other is not. */
dfac187e
BS
3144 new_body = old_body;
3145 if (! replace)
1b3b5765
BS
3146 {
3147 new_body = copy_insn (old_body);
3148 if (REG_NOTES (insn))
3149 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3150 }
dfac187e 3151 PATTERN (insn) = new_body;
7c791b13 3152
774672d2
RK
3153 /* If we had a move insn but now we don't, rerecognize it. This will
3154 cause spurious re-recognition if the old move had a PARALLEL since
3155 the new one still will, but we can't call single_set without
3156 having put NEW_BODY into the insn and the re-recognition won't
3157 hurt in this rare case. */
dfac187e
BS
3158 /* ??? Why this huge if statement - why don't we just rerecognize the
3159 thing always? */
3160 if (! insn_is_asm
3161 && old_set != 0
774672d2
RK
3162 && ((GET_CODE (SET_SRC (old_set)) == REG
3163 && (GET_CODE (new_body) != SET
3164 || GET_CODE (SET_SRC (new_body)) != REG))
3165 /* If this was a load from or store to memory, compare
1ccbefce
RH
3166 the MEM in recog_data.operand to the one in the insn.
3167 If they are not equal, then rerecognize the insn. */
774672d2
RK
3168 || (old_set != 0
3169 && ((GET_CODE (SET_SRC (old_set)) == MEM
1ccbefce 3170 && SET_SRC (old_set) != recog_data.operand[1])
774672d2 3171 || (GET_CODE (SET_DEST (old_set)) == MEM
1ccbefce 3172 && SET_DEST (old_set) != recog_data.operand[0])))
774672d2
RK
3173 /* If this was an add insn before, rerecognize. */
3174 || GET_CODE (SET_SRC (old_set)) == PLUS))
4a5d0fb5 3175 {
dfac187e
BS
3176 int new_icode = recog (PATTERN (insn), insn, 0);
3177 if (new_icode < 0)
3178 INSN_CODE (insn) = icode;
4a5d0fb5 3179 }
dfac187e 3180 }
32131a9c 3181
dfac187e
BS
3182 /* Restore the old body. If there were any changes to it, we made a copy
3183 of it while the changes were still in place, so we'll correctly return
3184 a modified insn below. */
3185 if (! replace)
3186 {
3187 /* Restore the old body. */
3188 for (i = 0; i < recog_data.n_operands; i++)
3189 *recog_data.operand_loc[i] = orig_operand[i];
3190 for (i = 0; i < recog_data.n_dups; i++)
1d7254c5 3191 *recog_data.dup_loc[i] = orig_operand[(int) recog_data.dup_num[i]];
32131a9c 3192 }
a8fdc208 3193
dfac187e
BS
3194 /* Update all elimination pairs to reflect the status after the current
3195 insn. The changes we make were determined by the earlier call to
3196 elimination_effects.
a8efe40d 3197
32131a9c
RK
3198 We also detect a cases where register elimination cannot be done,
3199 namely, if a register would be both changed and referenced outside a MEM
3200 in the resulting insn since such an insn is often undefined and, even if
3201 not, we cannot know what meaning will be given to it. Note that it is
3202 valid to have a register used in an address in an insn that changes it
3203 (presumably with a pre- or post-increment or decrement).
3204
3205 If anything changes, return nonzero. */
3206
32131a9c
RK
3207 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3208 {
3209 if (ep->previous_offset != ep->offset && ep->ref_outside_mem)
3210 ep->can_eliminate = 0;
3211
3212 ep->ref_outside_mem = 0;
3213
3214 if (ep->previous_offset != ep->offset)
3215 val = 1;
32131a9c
RK
3216 }
3217
3218 done:
9faa82d8 3219 /* If we changed something, perform elimination in REG_NOTES. This is
05b4c365
RK
3220 needed even when REPLACE is zero because a REG_DEAD note might refer
3221 to a register that we eliminate and could cause a different number
3222 of spill registers to be needed in the final reload pass than in
3223 the pre-passes. */
20748cab 3224 if (val && REG_NOTES (insn) != 0)
1914f5da 3225 REG_NOTES (insn) = eliminate_regs (REG_NOTES (insn), 0, REG_NOTES (insn));
05b4c365 3226
32131a9c
RK
3227 return val;
3228}
3229
cb2afeb3
R
3230/* Loop through all elimination pairs.
3231 Recalculate the number not at initial offset.
3232
3233 Compute the maximum offset (minimum offset if the stack does not
3234 grow downward) for each elimination pair. */
3235
3236static void
3237update_eliminable_offsets ()
3238{
3239 struct elim_table *ep;
3240
3241 num_not_at_initial_offset = 0;
3242 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3243 {
3244 ep->previous_offset = ep->offset;
3245 if (ep->can_eliminate && ep->offset != ep->initial_offset)
3246 num_not_at_initial_offset++;
cb2afeb3
R
3247 }
3248}
3249
32131a9c
RK
3250/* Given X, a SET or CLOBBER of DEST, if DEST is the target of a register
3251 replacement we currently believe is valid, mark it as not eliminable if X
3252 modifies DEST in any way other than by adding a constant integer to it.
3253
3254 If DEST is the frame pointer, we do nothing because we assume that
3ec2ea3e
DE
3255 all assignments to the hard frame pointer are nonlocal gotos and are being
3256 done at a time when they are valid and do not disturb anything else.
32131a9c 3257 Some machines want to eliminate a fake argument pointer with either the
3ec2ea3e
DE
3258 frame or stack pointer. Assignments to the hard frame pointer must not
3259 prevent this elimination.
32131a9c
RK
3260
3261 Called via note_stores from reload before starting its passes to scan
3262 the insns of the function. */
3263
3264static void
84832317 3265mark_not_eliminable (dest, x, data)
32131a9c
RK
3266 rtx dest;
3267 rtx x;
84832317 3268 void *data ATTRIBUTE_UNUSED;
32131a9c 3269{
b3694847 3270 unsigned int i;
32131a9c
RK
3271
3272 /* A SUBREG of a hard register here is just changing its mode. We should
3273 not see a SUBREG of an eliminable hard register, but check just in
3274 case. */
3275 if (GET_CODE (dest) == SUBREG)
3276 dest = SUBREG_REG (dest);
3277
3ec2ea3e 3278 if (dest == hard_frame_pointer_rtx)
32131a9c
RK
3279 return;
3280
3281 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
3282 if (reg_eliminate[i].can_eliminate && dest == reg_eliminate[i].to_rtx
3283 && (GET_CODE (x) != SET
3284 || GET_CODE (SET_SRC (x)) != PLUS
3285 || XEXP (SET_SRC (x), 0) != dest
3286 || GET_CODE (XEXP (SET_SRC (x), 1)) != CONST_INT))
3287 {
3288 reg_eliminate[i].can_eliminate_previous
3289 = reg_eliminate[i].can_eliminate = 0;
3290 num_eliminable--;
3291 }
3292}
09dd1133 3293
c47f5ea5
BS
3294/* Verify that the initial elimination offsets did not change since the
3295 last call to set_initial_elim_offsets. This is used to catch cases
3296 where something illegal happened during reload_as_needed that could
3297 cause incorrect code to be generated if we did not check for it. */
c8d8ed65 3298
c47f5ea5
BS
3299static void
3300verify_initial_elim_offsets ()
3301{
3302 int t;
3303
3304#ifdef ELIMINABLE_REGS
3305 struct elim_table *ep;
3306
3307 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3308 {
3309 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, t);
3310 if (t != ep->initial_offset)
3311 abort ();
3312 }
3313#else
3314 INITIAL_FRAME_POINTER_OFFSET (t);
3315 if (t != reg_eliminate[0].initial_offset)
3316 abort ();
05d10675 3317#endif
c47f5ea5
BS
3318}
3319
09dd1133 3320/* Reset all offsets on eliminable registers to their initial values. */
1d813780 3321
09dd1133
BS
3322static void
3323set_initial_elim_offsets ()
3324{
1f3b1e1a 3325 struct elim_table *ep = reg_eliminate;
09dd1133
BS
3326
3327#ifdef ELIMINABLE_REGS
1f3b1e1a 3328 for (; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
09dd1133
BS
3329 {
3330 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, ep->initial_offset);
1f3b1e1a 3331 ep->previous_offset = ep->offset = ep->initial_offset;
09dd1133
BS
3332 }
3333#else
1f3b1e1a
JL
3334 INITIAL_FRAME_POINTER_OFFSET (ep->initial_offset);
3335 ep->previous_offset = ep->offset = ep->initial_offset;
09dd1133
BS
3336#endif
3337
3338 num_not_at_initial_offset = 0;
1f3b1e1a 3339}
09dd1133 3340
1f3b1e1a
JL
3341/* Initialize the known label offsets.
3342 Set a known offset for each forced label to be at the initial offset
3343 of each elimination. We do this because we assume that all
3344 computed jumps occur from a location where each elimination is
3345 at its initial offset.
3346 For all other labels, show that we don't know the offsets. */
09dd1133 3347
1f3b1e1a
JL
3348static void
3349set_initial_label_offsets ()
3350{
3351 rtx x;
961192e1 3352 memset ((char *) &offsets_known_at[get_first_label_num ()], 0, num_labels);
09dd1133
BS
3353
3354 for (x = forced_labels; x; x = XEXP (x, 1))
3355 if (XEXP (x, 0))
3356 set_label_offsets (XEXP (x, 0), NULL_RTX, 1);
3357}
3358
1f3b1e1a
JL
3359/* Set all elimination offsets to the known values for the code label given
3360 by INSN. */
1d813780 3361
1f3b1e1a
JL
3362static void
3363set_offsets_for_label (insn)
3364 rtx insn;
3365{
973838fd 3366 unsigned int i;
1f3b1e1a
JL
3367 int label_nr = CODE_LABEL_NUMBER (insn);
3368 struct elim_table *ep;
3369
3370 num_not_at_initial_offset = 0;
3371 for (i = 0, ep = reg_eliminate; i < NUM_ELIMINABLE_REGS; ep++, i++)
3372 {
3373 ep->offset = ep->previous_offset = offsets_at[label_nr][i];
3374 if (ep->can_eliminate && ep->offset != ep->initial_offset)
3375 num_not_at_initial_offset++;
3376 }
3377}
3378
09dd1133
BS
3379/* See if anything that happened changes which eliminations are valid.
3380 For example, on the Sparc, whether or not the frame pointer can
3381 be eliminated can depend on what registers have been used. We need
3382 not check some conditions again (such as flag_omit_frame_pointer)
3383 since they can't have changed. */
3384
3385static void
3386update_eliminables (pset)
3387 HARD_REG_SET *pset;
3388{
3389#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
3390 int previous_frame_pointer_needed = frame_pointer_needed;
3391#endif
3392 struct elim_table *ep;
3393
3394 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3395 if ((ep->from == HARD_FRAME_POINTER_REGNUM && FRAME_POINTER_REQUIRED)
3396#ifdef ELIMINABLE_REGS
3397 || ! CAN_ELIMINATE (ep->from, ep->to)
3398#endif
3399 )
3400 ep->can_eliminate = 0;
3401
3402 /* Look for the case where we have discovered that we can't replace
3403 register A with register B and that means that we will now be
3404 trying to replace register A with register C. This means we can
3405 no longer replace register C with register B and we need to disable
3406 such an elimination, if it exists. This occurs often with A == ap,
3407 B == sp, and C == fp. */
3408
3409 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3410 {
3411 struct elim_table *op;
b3694847 3412 int new_to = -1;
09dd1133
BS
3413
3414 if (! ep->can_eliminate && ep->can_eliminate_previous)
3415 {
3416 /* Find the current elimination for ep->from, if there is a
3417 new one. */
3418 for (op = reg_eliminate;
3419 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3420 if (op->from == ep->from && op->can_eliminate)
3421 {
3422 new_to = op->to;
3423 break;
3424 }
3425
3426 /* See if there is an elimination of NEW_TO -> EP->TO. If so,
3427 disable it. */
3428 for (op = reg_eliminate;
3429 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3430 if (op->from == new_to && op->to == ep->to)
3431 op->can_eliminate = 0;
3432 }
3433 }
3434
3435 /* See if any registers that we thought we could eliminate the previous
3436 time are no longer eliminable. If so, something has changed and we
3437 must spill the register. Also, recompute the number of eliminable
3438 registers and see if the frame pointer is needed; it is if there is
3439 no elimination of the frame pointer that we can perform. */
3440
3441 frame_pointer_needed = 1;
3442 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3443 {
3444 if (ep->can_eliminate && ep->from == FRAME_POINTER_REGNUM
3445 && ep->to != HARD_FRAME_POINTER_REGNUM)
3446 frame_pointer_needed = 0;
3447
3448 if (! ep->can_eliminate && ep->can_eliminate_previous)
3449 {
3450 ep->can_eliminate_previous = 0;
3451 SET_HARD_REG_BIT (*pset, ep->from);
3452 num_eliminable--;
3453 }
3454 }
3455
3456#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
3457 /* If we didn't need a frame pointer last time, but we do now, spill
3458 the hard frame pointer. */
3459 if (frame_pointer_needed && ! previous_frame_pointer_needed)
3460 SET_HARD_REG_BIT (*pset, HARD_FRAME_POINTER_REGNUM);
3461#endif
3462}
3463
3464/* Initialize the table of registers to eliminate. */
1d813780 3465
09dd1133
BS
3466static void
3467init_elim_table ()
3468{
3469 struct elim_table *ep;
590cf94d
KG
3470#ifdef ELIMINABLE_REGS
3471 struct elim_table_1 *ep1;
3472#endif
09dd1133 3473
590cf94d 3474 if (!reg_eliminate)
ad85216e 3475 reg_eliminate = (struct elim_table *)
1d7254c5 3476 xcalloc (sizeof (struct elim_table), NUM_ELIMINABLE_REGS);
05d10675 3477
09dd1133
BS
3478 /* Does this function require a frame pointer? */
3479
3480 frame_pointer_needed = (! flag_omit_frame_pointer
3481#ifdef EXIT_IGNORE_STACK
3482 /* ?? If EXIT_IGNORE_STACK is set, we will not save
3483 and restore sp for alloca. So we can't eliminate
3484 the frame pointer in that case. At some point,
3485 we should improve this by emitting the
3486 sp-adjusting insns for this case. */
3487 || (current_function_calls_alloca
3488 && EXIT_IGNORE_STACK)
3489#endif
3490 || FRAME_POINTER_REQUIRED);
3491
3492 num_eliminable = 0;
3493
3494#ifdef ELIMINABLE_REGS
590cf94d
KG
3495 for (ep = reg_eliminate, ep1 = reg_eliminate_1;
3496 ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++, ep1++)
09dd1133 3497 {
590cf94d
KG
3498 ep->from = ep1->from;
3499 ep->to = ep1->to;
09dd1133
BS
3500 ep->can_eliminate = ep->can_eliminate_previous
3501 = (CAN_ELIMINATE (ep->from, ep->to)
3502 && ! (ep->to == STACK_POINTER_REGNUM && frame_pointer_needed));
3503 }
3504#else
590cf94d
KG
3505 reg_eliminate[0].from = reg_eliminate_1[0].from;
3506 reg_eliminate[0].to = reg_eliminate_1[0].to;
09dd1133
BS
3507 reg_eliminate[0].can_eliminate = reg_eliminate[0].can_eliminate_previous
3508 = ! frame_pointer_needed;
3509#endif
3510
3511 /* Count the number of eliminable registers and build the FROM and TO
3512 REG rtx's. Note that code in gen_rtx will cause, e.g.,
3513 gen_rtx (REG, Pmode, STACK_POINTER_REGNUM) to equal stack_pointer_rtx.
3514 We depend on this. */
3515 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3516 {
3517 num_eliminable += ep->can_eliminate;
3518 ep->from_rtx = gen_rtx_REG (Pmode, ep->from);
3519 ep->to_rtx = gen_rtx_REG (Pmode, ep->to);
3520 }
3521}
32131a9c
RK
3522\f
3523/* Kick all pseudos out of hard register REGNO.
32131a9c
RK
3524
3525 If CANT_ELIMINATE is nonzero, it means that we are doing this spill
3526 because we found we can't eliminate some register. In the case, no pseudos
3527 are allowed to be in the register, even if they are only in a block that
3528 doesn't require spill registers, unlike the case when we are spilling this
3529 hard reg to produce another spill register.
3530
3531 Return nonzero if any pseudos needed to be kicked out. */
3532
03acd8f8 3533static void
e04ca094 3534spill_hard_reg (regno, cant_eliminate)
770ae6cc 3535 unsigned int regno;
32131a9c
RK
3536 int cant_eliminate;
3537{
b3694847 3538 int i;
32131a9c 3539
9ff3516a 3540 if (cant_eliminate)
03acd8f8
BS
3541 {
3542 SET_HARD_REG_BIT (bad_spill_regs_global, regno);
3543 regs_ever_live[regno] = 1;
3544 }
9ff3516a 3545
32131a9c
RK
3546 /* Spill every pseudo reg that was allocated to this reg
3547 or to something that overlaps this reg. */
3548
3549 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
3550 if (reg_renumber[i] >= 0
770ae6cc
RK
3551 && (unsigned int) reg_renumber[i] <= regno
3552 && ((unsigned int) reg_renumber[i]
3553 + HARD_REGNO_NREGS ((unsigned int) reg_renumber[i],
32131a9c
RK
3554 PSEUDO_REGNO_MODE (i))
3555 > regno))
f5d8c9f4 3556 SET_REGNO_REG_SET (&spilled_pseudos, i);
03acd8f8 3557}
32131a9c 3558
03acd8f8
BS
3559/* I'm getting weird preprocessor errors if I use IOR_HARD_REG_SET
3560 from within EXECUTE_IF_SET_IN_REG_SET. Hence this awkwardness. */
770ae6cc 3561
03acd8f8
BS
3562static void
3563ior_hard_reg_set (set1, set2)
3564 HARD_REG_SET *set1, *set2;
3565{
3566 IOR_HARD_REG_SET (*set1, *set2);
3567}
05d10675 3568
03acd8f8
BS
3569/* After find_reload_regs has been run for all insn that need reloads,
3570 and/or spill_hard_regs was called, this function is used to actually
3571 spill pseudo registers and try to reallocate them. It also sets up the
3572 spill_regs array for use by choose_reload_regs. */
a8fdc208 3573
03acd8f8 3574static int
e04ca094 3575finish_spills (global)
03acd8f8 3576 int global;
03acd8f8
BS
3577{
3578 struct insn_chain *chain;
3579 int something_changed = 0;
3580 int i;
3581
3582 /* Build the spill_regs array for the function. */
3583 /* If there are some registers still to eliminate and one of the spill regs
3584 wasn't ever used before, additional stack space may have to be
3585 allocated to store this register. Thus, we may have changed the offset
3586 between the stack and frame pointers, so mark that something has changed.
32131a9c 3587
03acd8f8
BS
3588 One might think that we need only set VAL to 1 if this is a call-used
3589 register. However, the set of registers that must be saved by the
3590 prologue is not identical to the call-used set. For example, the
3591 register used by the call insn for the return PC is a call-used register,
3592 but must be saved by the prologue. */
3593
3594 n_spills = 0;
3595 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3596 if (TEST_HARD_REG_BIT (used_spill_regs, i))
3597 {
3598 spill_reg_order[i] = n_spills;
3599 spill_regs[n_spills++] = i;
3600 if (num_eliminable && ! regs_ever_live[i])
3601 something_changed = 1;
3602 regs_ever_live[i] = 1;
3603 }
3604 else
3605 spill_reg_order[i] = -1;
3606
efc9bd41
RK
3607 EXECUTE_IF_SET_IN_REG_SET
3608 (&spilled_pseudos, FIRST_PSEUDO_REGISTER, i,
3609 {
3610 /* Record the current hard register the pseudo is allocated to in
3611 pseudo_previous_regs so we avoid reallocating it to the same
3612 hard reg in a later pass. */
3613 if (reg_renumber[i] < 0)
3614 abort ();
3615
3616 SET_HARD_REG_BIT (pseudo_previous_regs[i], reg_renumber[i]);
3617 /* Mark it as no longer having a hard register home. */
3618 reg_renumber[i] = -1;
3619 /* We will need to scan everything again. */
3620 something_changed = 1;
3621 });
7609e720 3622
03acd8f8
BS
3623 /* Retry global register allocation if possible. */
3624 if (global)
3625 {
961192e1 3626 memset ((char *) pseudo_forbidden_regs, 0, max_regno * sizeof (HARD_REG_SET));
03acd8f8
BS
3627 /* For every insn that needs reloads, set the registers used as spill
3628 regs in pseudo_forbidden_regs for every pseudo live across the
3629 insn. */
3630 for (chain = insns_need_reload; chain; chain = chain->next_need_reload)
3631 {
3632 EXECUTE_IF_SET_IN_REG_SET
239a0f5b 3633 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i,
03acd8f8
BS
3634 {
3635 ior_hard_reg_set (pseudo_forbidden_regs + i,
3636 &chain->used_spill_regs);
3637 });
3638 EXECUTE_IF_SET_IN_REG_SET
239a0f5b 3639 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i,
03acd8f8
BS
3640 {
3641 ior_hard_reg_set (pseudo_forbidden_regs + i,
3642 &chain->used_spill_regs);
3643 });
3644 }
7609e720 3645
03acd8f8
BS
3646 /* Retry allocating the spilled pseudos. For each reg, merge the
3647 various reg sets that indicate which hard regs can't be used,
3648 and call retry_global_alloc.
05d10675 3649 We change spill_pseudos here to only contain pseudos that did not
03acd8f8
BS
3650 get a new hard register. */
3651 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
3652 if (reg_old_renumber[i] != reg_renumber[i])
32131a9c 3653 {
03acd8f8
BS
3654 HARD_REG_SET forbidden;
3655 COPY_HARD_REG_SET (forbidden, bad_spill_regs_global);
3656 IOR_HARD_REG_SET (forbidden, pseudo_forbidden_regs[i]);
3657 IOR_HARD_REG_SET (forbidden, pseudo_previous_regs[i]);
3658 retry_global_alloc (i, forbidden);
3659 if (reg_renumber[i] >= 0)
f5d8c9f4 3660 CLEAR_REGNO_REG_SET (&spilled_pseudos, i);
32131a9c 3661 }
03acd8f8 3662 }
7609e720 3663
03acd8f8
BS
3664 /* Fix up the register information in the insn chain.
3665 This involves deleting those of the spilled pseudos which did not get
3666 a new hard register home from the live_{before,after} sets. */
7609e720
BS
3667 for (chain = reload_insn_chain; chain; chain = chain->next)
3668 {
03acd8f8
BS
3669 HARD_REG_SET used_by_pseudos;
3670 HARD_REG_SET used_by_pseudos2;
3671
239a0f5b
BS
3672 AND_COMPL_REG_SET (&chain->live_throughout, &spilled_pseudos);
3673 AND_COMPL_REG_SET (&chain->dead_or_set, &spilled_pseudos);
03acd8f8
BS
3674
3675 /* Mark any unallocated hard regs as available for spills. That
3676 makes inheritance work somewhat better. */
3677 if (chain->need_reload)
3678 {
239a0f5b
BS
3679 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
3680 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
03acd8f8
BS
3681 IOR_HARD_REG_SET (used_by_pseudos, used_by_pseudos2);
3682
3683 /* Save the old value for the sanity test below. */
3684 COPY_HARD_REG_SET (used_by_pseudos2, chain->used_spill_regs);
3685
239a0f5b
BS
3686 compute_use_by_pseudos (&used_by_pseudos, &chain->live_throughout);
3687 compute_use_by_pseudos (&used_by_pseudos, &chain->dead_or_set);
03acd8f8
BS
3688 COMPL_HARD_REG_SET (chain->used_spill_regs, used_by_pseudos);
3689 AND_HARD_REG_SET (chain->used_spill_regs, used_spill_regs);
3690
3691 /* Make sure we only enlarge the set. */
3692 GO_IF_HARD_REG_SUBSET (used_by_pseudos2, chain->used_spill_regs, ok);
3693 abort ();
3694 ok:;
3695 }
7609e720 3696 }
03acd8f8
BS
3697
3698 /* Let alter_reg modify the reg rtx's for the modified pseudos. */
3699 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
3700 {
3701 int regno = reg_renumber[i];
3702 if (reg_old_renumber[i] == regno)
3703 continue;
05d10675 3704
03acd8f8
BS
3705 alter_reg (i, reg_old_renumber[i]);
3706 reg_old_renumber[i] = regno;
e04ca094 3707 if (rtl_dump_file)
03acd8f8
BS
3708 {
3709 if (regno == -1)
e04ca094 3710 fprintf (rtl_dump_file, " Register %d now on stack.\n\n", i);
03acd8f8 3711 else
e04ca094 3712 fprintf (rtl_dump_file, " Register %d now in %d.\n\n",
03acd8f8
BS
3713 i, reg_renumber[i]);
3714 }
3715 }
3716
3717 return something_changed;
7609e720 3718}
32131a9c 3719\f
05d10675 3720/* Find all paradoxical subregs within X and update reg_max_ref_width.
56f58d3a
RK
3721 Also mark any hard registers used to store user variables as
3722 forbidden from being used for spill registers. */
32131a9c
RK
3723
3724static void
3725scan_paradoxical_subregs (x)
b3694847 3726 rtx x;
32131a9c 3727{
b3694847
SS
3728 int i;
3729 const char *fmt;
3730 enum rtx_code code = GET_CODE (x);
32131a9c
RK
3731
3732 switch (code)
3733 {
56f58d3a 3734 case REG:
03acd8f8 3735#if 0
e9a25f70 3736 if (SMALL_REGISTER_CLASSES && REGNO (x) < FIRST_PSEUDO_REGISTER
f95182a4 3737 && REG_USERVAR_P (x))
03acd8f8
BS
3738 SET_HARD_REG_BIT (bad_spill_regs_global, REGNO (x));
3739#endif
56f58d3a
RK
3740 return;
3741
32131a9c
RK
3742 case CONST_INT:
3743 case CONST:
3744 case SYMBOL_REF:
3745 case LABEL_REF:
3746 case CONST_DOUBLE:
3747 case CC0:
3748 case PC:
32131a9c
RK
3749 case USE:
3750 case CLOBBER:
3751 return;
3752
3753 case SUBREG:
3754 if (GET_CODE (SUBREG_REG (x)) == REG
3755 && GET_MODE_SIZE (GET_MODE (x)) > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
3756 reg_max_ref_width[REGNO (SUBREG_REG (x))]
3757 = GET_MODE_SIZE (GET_MODE (x));
3758 return;
05d10675 3759
e9a25f70
JL
3760 default:
3761 break;
32131a9c
RK
3762 }
3763
3764 fmt = GET_RTX_FORMAT (code);
3765 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3766 {
3767 if (fmt[i] == 'e')
3768 scan_paradoxical_subregs (XEXP (x, i));
3769 else if (fmt[i] == 'E')
3770 {
b3694847 3771 int j;
1d7254c5 3772 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
32131a9c
RK
3773 scan_paradoxical_subregs (XVECEXP (x, i, j));
3774 }
3775 }
3776}
3777\f
32131a9c
RK
3778/* Reload pseudo-registers into hard regs around each insn as needed.
3779 Additional register load insns are output before the insn that needs it
3780 and perhaps store insns after insns that modify the reloaded pseudo reg.
3781
3782 reg_last_reload_reg and reg_reloaded_contents keep track of
d08ea79f 3783 which registers are already available in reload registers.
32131a9c
RK
3784 We update these for the reloads that we perform,
3785 as the insns are scanned. */
3786
3787static void
e04ca094 3788reload_as_needed (live_known)
32131a9c
RK
3789 int live_known;
3790{
7609e720 3791 struct insn_chain *chain;
553687c9 3792#if defined (AUTO_INC_DEC)
b3694847 3793 int i;
973838fd 3794#endif
32131a9c 3795 rtx x;
32131a9c 3796
961192e1
JM
3797 memset ((char *) spill_reg_rtx, 0, sizeof spill_reg_rtx);
3798 memset ((char *) spill_reg_store, 0, sizeof spill_reg_store);
ff154f78
MM
3799 reg_last_reload_reg = (rtx *) xcalloc (max_regno, sizeof (rtx));
3800 reg_has_output_reload = (char *) xmalloc (max_regno);
e6e52be0 3801 CLEAR_HARD_REG_SET (reg_reloaded_valid);
32131a9c 3802
1f3b1e1a 3803 set_initial_elim_offsets ();
32131a9c 3804
7609e720 3805 for (chain = reload_insn_chain; chain; chain = chain->next)
32131a9c 3806 {
03acd8f8 3807 rtx prev;
7609e720
BS
3808 rtx insn = chain->insn;
3809 rtx old_next = NEXT_INSN (insn);
32131a9c
RK
3810
3811 /* If we pass a label, copy the offsets from the label information
3812 into the current offsets of each elimination. */
3813 if (GET_CODE (insn) == CODE_LABEL)
1f3b1e1a 3814 set_offsets_for_label (insn);
32131a9c 3815
2c3c49de 3816 else if (INSN_P (insn))
32131a9c 3817 {
0639444f 3818 rtx oldpat = PATTERN (insn);
32131a9c 3819
2758481d
RS
3820 /* If this is a USE and CLOBBER of a MEM, ensure that any
3821 references to eliminable registers have been removed. */
3822
3823 if ((GET_CODE (PATTERN (insn)) == USE
3824 || GET_CODE (PATTERN (insn)) == CLOBBER)
3825 && GET_CODE (XEXP (PATTERN (insn), 0)) == MEM)
3826 XEXP (XEXP (PATTERN (insn), 0), 0)
3827 = eliminate_regs (XEXP (XEXP (PATTERN (insn), 0), 0),
29ae5012 3828 GET_MODE (XEXP (PATTERN (insn), 0)),
1914f5da 3829 NULL_RTX);
2758481d 3830
32131a9c
RK
3831 /* If we need to do register elimination processing, do so.
3832 This might delete the insn, in which case we are done. */
2b49ee39 3833 if ((num_eliminable || num_eliminable_invariants) && chain->need_elim)
32131a9c
RK
3834 {
3835 eliminate_regs_in_insn (insn, 1);
3836 if (GET_CODE (insn) == NOTE)
cb2afeb3
R
3837 {
3838 update_eliminable_offsets ();
3839 continue;
3840 }
32131a9c
RK
3841 }
3842
7609e720
BS
3843 /* If need_elim is nonzero but need_reload is zero, one might think
3844 that we could simply set n_reloads to 0. However, find_reloads
3845 could have done some manipulation of the insn (such as swapping
3846 commutative operands), and these manipulations are lost during
3847 the first pass for every insn that needs register elimination.
3848 So the actions of find_reloads must be redone here. */
3849
03acd8f8
BS
3850 if (! chain->need_elim && ! chain->need_reload
3851 && ! chain->need_operand_change)
32131a9c
RK
3852 n_reloads = 0;
3853 /* First find the pseudo regs that must be reloaded for this insn.
3854 This info is returned in the tables reload_... (see reload.h).
3855 Also modify the body of INSN by substituting RELOAD
3856 rtx's for those pseudo regs. */
3857 else
3858 {
961192e1 3859 memset (reg_has_output_reload, 0, max_regno);
32131a9c
RK
3860 CLEAR_HARD_REG_SET (reg_is_output_reload);
3861
3862 find_reloads (insn, 1, spill_indirect_levels, live_known,
3863 spill_reg_order);
3864 }
3865
3866 if (n_reloads > 0)
3867 {
cb2afeb3 3868 rtx next = NEXT_INSN (insn);
3c3eeea6 3869 rtx p;
32131a9c 3870
cb2afeb3
R
3871 prev = PREV_INSN (insn);
3872
32131a9c
RK
3873 /* Now compute which reload regs to reload them into. Perhaps
3874 reusing reload regs from previous insns, or else output
3875 load insns to reload them. Maybe output store insns too.
3876 Record the choices of reload reg in reload_reg_rtx. */
03acd8f8 3877 choose_reload_regs (chain);
32131a9c 3878
05d10675 3879 /* Merge any reloads that we didn't combine for fear of
546b63fb
RK
3880 increasing the number of spill registers needed but now
3881 discover can be safely merged. */
f95182a4
ILT
3882 if (SMALL_REGISTER_CLASSES)
3883 merge_assigned_reloads (insn);
546b63fb 3884
32131a9c
RK
3885 /* Generate the insns to reload operands into or out of
3886 their reload regs. */
e04ca094 3887 emit_reload_insns (chain);
32131a9c
RK
3888
3889 /* Substitute the chosen reload regs from reload_reg_rtx
3890 into the insn's body (or perhaps into the bodies of other
3891 load and store insn that we just made for reloading
3892 and that we moved the structure into). */
f759eb8b 3893 subst_reloads (insn);
3c3eeea6
RK
3894
3895 /* If this was an ASM, make sure that all the reload insns
3896 we have generated are valid. If not, give an error
3897 and delete them. */
3898
3899 if (asm_noperands (PATTERN (insn)) >= 0)
3900 for (p = NEXT_INSN (prev); p != next; p = NEXT_INSN (p))
2c3c49de 3901 if (p != insn && INSN_P (p)
3c3eeea6 3902 && (recog_memoized (p) < 0
0eadeb15 3903 || (extract_insn (p), ! constrain_operands (1))))
3c3eeea6
RK
3904 {
3905 error_for_asm (insn,
3906 "`asm' operand requires impossible reload");
ca6c03ca 3907 delete_insn (p);
3c3eeea6 3908 }
32131a9c 3909 }
5d7ef82a
BS
3910
3911 if (num_eliminable && chain->need_elim)
3912 update_eliminable_offsets ();
3913
32131a9c
RK
3914 /* Any previously reloaded spilled pseudo reg, stored in this insn,
3915 is no longer validly lying around to save a future reload.
3916 Note that this does not detect pseudos that were reloaded
3917 for this insn in order to be stored in
3918 (obeying register constraints). That is correct; such reload
3919 registers ARE still valid. */
84832317 3920 note_stores (oldpat, forget_old_reloads_1, NULL);
32131a9c
RK
3921
3922 /* There may have been CLOBBER insns placed after INSN. So scan
3923 between INSN and NEXT and use them to forget old reloads. */
7609e720 3924 for (x = NEXT_INSN (insn); x != old_next; x = NEXT_INSN (x))
32131a9c 3925 if (GET_CODE (x) == INSN && GET_CODE (PATTERN (x)) == CLOBBER)
84832317 3926 note_stores (PATTERN (x), forget_old_reloads_1, NULL);
32131a9c
RK
3927
3928#ifdef AUTO_INC_DEC
cb2afeb3
R
3929 /* Likewise for regs altered by auto-increment in this insn.
3930 REG_INC notes have been changed by reloading:
3931 find_reloads_address_1 records substitutions for them,
3932 which have been performed by subst_reloads above. */
3933 for (i = n_reloads - 1; i >= 0; i--)
3934 {
eceef4c9 3935 rtx in_reg = rld[i].in_reg;
cb2afeb3
R
3936 if (in_reg)
3937 {
3938 enum rtx_code code = GET_CODE (in_reg);
3939 /* PRE_INC / PRE_DEC will have the reload register ending up
3940 with the same value as the stack slot, but that doesn't
3941 hold true for POST_INC / POST_DEC. Either we have to
3942 convert the memory access to a true POST_INC / POST_DEC,
3943 or we can't use the reload register for inheritance. */
3944 if ((code == POST_INC || code == POST_DEC)
3945 && TEST_HARD_REG_BIT (reg_reloaded_valid,
eceef4c9 3946 REGNO (rld[i].reg_rtx))
04bbb0c5
JW
3947 /* Make sure it is the inc/dec pseudo, and not
3948 some other (e.g. output operand) pseudo. */
eceef4c9 3949 && (reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
04bbb0c5 3950 == REGNO (XEXP (in_reg, 0))))
05d10675 3951
cb2afeb3 3952 {
eceef4c9 3953 rtx reload_reg = rld[i].reg_rtx;
cb2afeb3
R
3954 enum machine_mode mode = GET_MODE (reload_reg);
3955 int n = 0;
3956 rtx p;
3957
3958 for (p = PREV_INSN (old_next); p != prev; p = PREV_INSN (p))
3959 {
3960 /* We really want to ignore REG_INC notes here, so
3961 use PATTERN (p) as argument to reg_set_p . */
3962 if (reg_set_p (reload_reg, PATTERN (p)))
3963 break;
4b983fdc 3964 n = count_occurrences (PATTERN (p), reload_reg, 0);
cb2afeb3
R
3965 if (! n)
3966 continue;
3967 if (n == 1)
f67c2384
JL
3968 {
3969 n = validate_replace_rtx (reload_reg,
3970 gen_rtx (code, mode,
3971 reload_reg),
3972 p);
3973
3974 /* We must also verify that the constraints
3975 are met after the replacement. */
3976 extract_insn (p);
3977 if (n)
3978 n = constrain_operands (1);
3979 else
3980 break;
3981
3982 /* If the constraints were not met, then
3983 undo the replacement. */
3984 if (!n)
3985 {
3986 validate_replace_rtx (gen_rtx (code, mode,
3987 reload_reg),
3988 reload_reg, p);
3989 break;
3990 }
05d10675 3991
f67c2384 3992 }
cb2afeb3
R
3993 break;
3994 }
3995 if (n == 1)
02eb1393
R
3996 {
3997 REG_NOTES (p)
3998 = gen_rtx_EXPR_LIST (REG_INC, reload_reg,
3999 REG_NOTES (p));
4000 /* Mark this as having an output reload so that the
4001 REG_INC processing code below won't invalidate
4002 the reload for inheritance. */
4003 SET_HARD_REG_BIT (reg_is_output_reload,
4004 REGNO (reload_reg));
4005 reg_has_output_reload[REGNO (XEXP (in_reg, 0))] = 1;
4006 }
cb2afeb3 4007 else
1d7254c5 4008 forget_old_reloads_1 (XEXP (in_reg, 0), NULL_RTX,
84832317 4009 NULL);
cb2afeb3 4010 }
02eb1393
R
4011 else if ((code == PRE_INC || code == PRE_DEC)
4012 && TEST_HARD_REG_BIT (reg_reloaded_valid,
eceef4c9 4013 REGNO (rld[i].reg_rtx))
02eb1393
R
4014 /* Make sure it is the inc/dec pseudo, and not
4015 some other (e.g. output operand) pseudo. */
eceef4c9 4016 && (reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
02eb1393
R
4017 == REGNO (XEXP (in_reg, 0))))
4018 {
4019 SET_HARD_REG_BIT (reg_is_output_reload,
eceef4c9 4020 REGNO (rld[i].reg_rtx));
02eb1393
R
4021 reg_has_output_reload[REGNO (XEXP (in_reg, 0))] = 1;
4022 }
cb2afeb3
R
4023 }
4024 }
02eb1393
R
4025 /* If a pseudo that got a hard register is auto-incremented,
4026 we must purge records of copying it into pseudos without
4027 hard registers. */
32131a9c
RK
4028 for (x = REG_NOTES (insn); x; x = XEXP (x, 1))
4029 if (REG_NOTE_KIND (x) == REG_INC)
4030 {
4031 /* See if this pseudo reg was reloaded in this insn.
4032 If so, its last-reload info is still valid
4033 because it is based on this insn's reload. */
4034 for (i = 0; i < n_reloads; i++)
eceef4c9 4035 if (rld[i].out == XEXP (x, 0))
32131a9c
RK
4036 break;
4037
08fb99fa 4038 if (i == n_reloads)
84832317 4039 forget_old_reloads_1 (XEXP (x, 0), NULL_RTX, NULL);
32131a9c
RK
4040 }
4041#endif
4042 }
4043 /* A reload reg's contents are unknown after a label. */
4044 if (GET_CODE (insn) == CODE_LABEL)
e6e52be0 4045 CLEAR_HARD_REG_SET (reg_reloaded_valid);
32131a9c
RK
4046
4047 /* Don't assume a reload reg is still good after a call insn
4048 if it is a call-used reg. */
546b63fb 4049 else if (GET_CODE (insn) == CALL_INSN)
e6e52be0 4050 AND_COMPL_HARD_REG_SET(reg_reloaded_valid, call_used_reg_set);
32131a9c 4051 }
ff154f78
MM
4052
4053 /* Clean up. */
4054 free (reg_last_reload_reg);
4055 free (reg_has_output_reload);
32131a9c
RK
4056}
4057
4058/* Discard all record of any value reloaded from X,
4059 or reloaded in X from someplace else;
4060 unless X is an output reload reg of the current insn.
4061
4062 X may be a hard reg (the reload reg)
4063 or it may be a pseudo reg that was reloaded from. */
4064
4065static void
84832317 4066forget_old_reloads_1 (x, ignored, data)
32131a9c 4067 rtx x;
487a6e06 4068 rtx ignored ATTRIBUTE_UNUSED;
84832317 4069 void *data ATTRIBUTE_UNUSED;
32131a9c 4070{
770ae6cc
RK
4071 unsigned int regno;
4072 unsigned int nr;
0a2e51a9
RS
4073 int offset = 0;
4074
ddef6bc7
JJ
4075 /* note_stores does give us subregs of hard regs,
4076 subreg_regno_offset will abort if it is not a hard reg. */
0a2e51a9
RS
4077 while (GET_CODE (x) == SUBREG)
4078 {
ddef6bc7
JJ
4079 offset += subreg_regno_offset (REGNO (SUBREG_REG (x)),
4080 GET_MODE (SUBREG_REG (x)),
4081 SUBREG_BYTE (x),
4082 GET_MODE (x));
0a2e51a9
RS
4083 x = SUBREG_REG (x);
4084 }
32131a9c
RK
4085
4086 if (GET_CODE (x) != REG)
4087 return;
4088
0a2e51a9 4089 regno = REGNO (x) + offset;
32131a9c
RK
4090
4091 if (regno >= FIRST_PSEUDO_REGISTER)
4092 nr = 1;
4093 else
4094 {
770ae6cc
RK
4095 unsigned int i;
4096
32131a9c
RK
4097 nr = HARD_REGNO_NREGS (regno, GET_MODE (x));
4098 /* Storing into a spilled-reg invalidates its contents.
4099 This can happen if a block-local pseudo is allocated to that reg
4100 and it wasn't spilled because this block's total need is 0.
4101 Then some insn might have an optional reload and use this reg. */
4102 for (i = 0; i < nr; i++)
e6e52be0
R
4103 /* But don't do this if the reg actually serves as an output
4104 reload reg in the current instruction. */
4105 if (n_reloads == 0
4106 || ! TEST_HARD_REG_BIT (reg_is_output_reload, regno + i))
5d77a50c
BS
4107 {
4108 CLEAR_HARD_REG_BIT (reg_reloaded_valid, regno + i);
4109 spill_reg_store[regno + i] = 0;
4110 }
32131a9c
RK
4111 }
4112
4113 /* Since value of X has changed,
4114 forget any value previously copied from it. */
4115
4116 while (nr-- > 0)
4117 /* But don't forget a copy if this is the output reload
4118 that establishes the copy's validity. */
4119 if (n_reloads == 0 || reg_has_output_reload[regno + nr] == 0)
4120 reg_last_reload_reg[regno + nr] = 0;
4121}
4122\f
32131a9c
RK
4123/* The following HARD_REG_SETs indicate when each hard register is
4124 used for a reload of various parts of the current insn. */
4125
9e3a9cf2
BS
4126/* If reg is unavailable for all reloads. */
4127static HARD_REG_SET reload_reg_unavailable;
32131a9c
RK
4128/* If reg is in use as a reload reg for a RELOAD_OTHER reload. */
4129static HARD_REG_SET reload_reg_used;
546b63fb
RK
4130/* If reg is in use for a RELOAD_FOR_INPUT_ADDRESS reload for operand I. */
4131static HARD_REG_SET reload_reg_used_in_input_addr[MAX_RECOG_OPERANDS];
47c8cf91
ILT
4132/* If reg is in use for a RELOAD_FOR_INPADDR_ADDRESS reload for operand I. */
4133static HARD_REG_SET reload_reg_used_in_inpaddr_addr[MAX_RECOG_OPERANDS];
546b63fb
RK
4134/* If reg is in use for a RELOAD_FOR_OUTPUT_ADDRESS reload for operand I. */
4135static HARD_REG_SET reload_reg_used_in_output_addr[MAX_RECOG_OPERANDS];
47c8cf91
ILT
4136/* If reg is in use for a RELOAD_FOR_OUTADDR_ADDRESS reload for operand I. */
4137static HARD_REG_SET reload_reg_used_in_outaddr_addr[MAX_RECOG_OPERANDS];
546b63fb
RK
4138/* If reg is in use for a RELOAD_FOR_INPUT reload for operand I. */
4139static HARD_REG_SET reload_reg_used_in_input[MAX_RECOG_OPERANDS];
4140/* If reg is in use for a RELOAD_FOR_OUTPUT reload for operand I. */
4141static HARD_REG_SET reload_reg_used_in_output[MAX_RECOG_OPERANDS];
32131a9c
RK
4142/* If reg is in use for a RELOAD_FOR_OPERAND_ADDRESS reload. */
4143static HARD_REG_SET reload_reg_used_in_op_addr;
893bc853
RK
4144/* If reg is in use for a RELOAD_FOR_OPADDR_ADDR reload. */
4145static HARD_REG_SET reload_reg_used_in_op_addr_reload;
546b63fb
RK
4146/* If reg is in use for a RELOAD_FOR_INSN reload. */
4147static HARD_REG_SET reload_reg_used_in_insn;
4148/* If reg is in use for a RELOAD_FOR_OTHER_ADDRESS reload. */
4149static HARD_REG_SET reload_reg_used_in_other_addr;
32131a9c
RK
4150
4151/* If reg is in use as a reload reg for any sort of reload. */
4152static HARD_REG_SET reload_reg_used_at_all;
4153
be7ae2a4
RK
4154/* If reg is use as an inherited reload. We just mark the first register
4155 in the group. */
4156static HARD_REG_SET reload_reg_used_for_inherit;
4157
f1db3576
JL
4158/* Records which hard regs are used in any way, either as explicit use or
4159 by being allocated to a pseudo during any point of the current insn. */
4160static HARD_REG_SET reg_used_in_insn;
297927a8 4161
546b63fb
RK
4162/* Mark reg REGNO as in use for a reload of the sort spec'd by OPNUM and
4163 TYPE. MODE is used to indicate how many consecutive regs are
4164 actually used. */
32131a9c
RK
4165
4166static void
546b63fb 4167mark_reload_reg_in_use (regno, opnum, type, mode)
770ae6cc 4168 unsigned int regno;
546b63fb
RK
4169 int opnum;
4170 enum reload_type type;
32131a9c
RK
4171 enum machine_mode mode;
4172{
770ae6cc
RK
4173 unsigned int nregs = HARD_REGNO_NREGS (regno, mode);
4174 unsigned int i;
32131a9c
RK
4175
4176 for (i = regno; i < nregs + regno; i++)
4177 {
546b63fb 4178 switch (type)
32131a9c
RK
4179 {
4180 case RELOAD_OTHER:
4181 SET_HARD_REG_BIT (reload_reg_used, i);
4182 break;
4183
546b63fb
RK
4184 case RELOAD_FOR_INPUT_ADDRESS:
4185 SET_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], i);
32131a9c
RK
4186 break;
4187
47c8cf91
ILT
4188 case RELOAD_FOR_INPADDR_ADDRESS:
4189 SET_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], i);
4190 break;
4191
546b63fb
RK
4192 case RELOAD_FOR_OUTPUT_ADDRESS:
4193 SET_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], i);
32131a9c
RK
4194 break;
4195
47c8cf91
ILT
4196 case RELOAD_FOR_OUTADDR_ADDRESS:
4197 SET_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], i);
4198 break;
4199
32131a9c
RK
4200 case RELOAD_FOR_OPERAND_ADDRESS:
4201 SET_HARD_REG_BIT (reload_reg_used_in_op_addr, i);
4202 break;
4203
893bc853
RK
4204 case RELOAD_FOR_OPADDR_ADDR:
4205 SET_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, i);
4206 break;
4207
546b63fb
RK
4208 case RELOAD_FOR_OTHER_ADDRESS:
4209 SET_HARD_REG_BIT (reload_reg_used_in_other_addr, i);
4210 break;
4211
32131a9c 4212 case RELOAD_FOR_INPUT:
546b63fb 4213 SET_HARD_REG_BIT (reload_reg_used_in_input[opnum], i);
32131a9c
RK
4214 break;
4215
4216 case RELOAD_FOR_OUTPUT:
546b63fb
RK
4217 SET_HARD_REG_BIT (reload_reg_used_in_output[opnum], i);
4218 break;
4219
4220 case RELOAD_FOR_INSN:
4221 SET_HARD_REG_BIT (reload_reg_used_in_insn, i);
32131a9c
RK
4222 break;
4223 }
4224
4225 SET_HARD_REG_BIT (reload_reg_used_at_all, i);
4226 }
4227}
4228
be7ae2a4
RK
4229/* Similarly, but show REGNO is no longer in use for a reload. */
4230
4231static void
4232clear_reload_reg_in_use (regno, opnum, type, mode)
770ae6cc 4233 unsigned int regno;
be7ae2a4
RK
4234 int opnum;
4235 enum reload_type type;
4236 enum machine_mode mode;
4237{
770ae6cc
RK
4238 unsigned int nregs = HARD_REGNO_NREGS (regno, mode);
4239 unsigned int start_regno, end_regno, r;
be7ae2a4 4240 int i;
cb2afeb3
R
4241 /* A complication is that for some reload types, inheritance might
4242 allow multiple reloads of the same types to share a reload register.
4243 We set check_opnum if we have to check only reloads with the same
4244 operand number, and check_any if we have to check all reloads. */
4245 int check_opnum = 0;
4246 int check_any = 0;
4247 HARD_REG_SET *used_in_set;
be7ae2a4 4248
cb2afeb3 4249 switch (type)
be7ae2a4 4250 {
cb2afeb3
R
4251 case RELOAD_OTHER:
4252 used_in_set = &reload_reg_used;
4253 break;
be7ae2a4 4254
cb2afeb3
R
4255 case RELOAD_FOR_INPUT_ADDRESS:
4256 used_in_set = &reload_reg_used_in_input_addr[opnum];
4257 break;
be7ae2a4 4258
cb2afeb3
R
4259 case RELOAD_FOR_INPADDR_ADDRESS:
4260 check_opnum = 1;
4261 used_in_set = &reload_reg_used_in_inpaddr_addr[opnum];
4262 break;
47c8cf91 4263
cb2afeb3
R
4264 case RELOAD_FOR_OUTPUT_ADDRESS:
4265 used_in_set = &reload_reg_used_in_output_addr[opnum];
4266 break;
be7ae2a4 4267
cb2afeb3
R
4268 case RELOAD_FOR_OUTADDR_ADDRESS:
4269 check_opnum = 1;
4270 used_in_set = &reload_reg_used_in_outaddr_addr[opnum];
4271 break;
47c8cf91 4272
cb2afeb3
R
4273 case RELOAD_FOR_OPERAND_ADDRESS:
4274 used_in_set = &reload_reg_used_in_op_addr;
4275 break;
be7ae2a4 4276
cb2afeb3
R
4277 case RELOAD_FOR_OPADDR_ADDR:
4278 check_any = 1;
4279 used_in_set = &reload_reg_used_in_op_addr_reload;
4280 break;
893bc853 4281
cb2afeb3
R
4282 case RELOAD_FOR_OTHER_ADDRESS:
4283 used_in_set = &reload_reg_used_in_other_addr;
4284 check_any = 1;
4285 break;
be7ae2a4 4286
cb2afeb3
R
4287 case RELOAD_FOR_INPUT:
4288 used_in_set = &reload_reg_used_in_input[opnum];
4289 break;
be7ae2a4 4290
cb2afeb3
R
4291 case RELOAD_FOR_OUTPUT:
4292 used_in_set = &reload_reg_used_in_output[opnum];
4293 break;
be7ae2a4 4294
cb2afeb3
R
4295 case RELOAD_FOR_INSN:
4296 used_in_set = &reload_reg_used_in_insn;
4297 break;
4298 default:
4299 abort ();
4300 }
4301 /* We resolve conflicts with remaining reloads of the same type by
4302 excluding the intervals of of reload registers by them from the
4303 interval of freed reload registers. Since we only keep track of
4304 one set of interval bounds, we might have to exclude somewhat
4305 more then what would be necessary if we used a HARD_REG_SET here.
4306 But this should only happen very infrequently, so there should
4307 be no reason to worry about it. */
05d10675 4308
cb2afeb3
R
4309 start_regno = regno;
4310 end_regno = regno + nregs;
4311 if (check_opnum || check_any)
4312 {
4313 for (i = n_reloads - 1; i >= 0; i--)
4314 {
eceef4c9
BS
4315 if (rld[i].when_needed == type
4316 && (check_any || rld[i].opnum == opnum)
4317 && rld[i].reg_rtx)
cb2afeb3 4318 {
770ae6cc
RK
4319 unsigned int conflict_start = true_regnum (rld[i].reg_rtx);
4320 unsigned int conflict_end
cb2afeb3 4321 = (conflict_start
8ec450a4 4322 + HARD_REGNO_NREGS (conflict_start, rld[i].mode));
cb2afeb3
R
4323
4324 /* If there is an overlap with the first to-be-freed register,
4325 adjust the interval start. */
4326 if (conflict_start <= start_regno && conflict_end > start_regno)
4327 start_regno = conflict_end;
4328 /* Otherwise, if there is a conflict with one of the other
4329 to-be-freed registers, adjust the interval end. */
4330 if (conflict_start > start_regno && conflict_start < end_regno)
4331 end_regno = conflict_start;
4332 }
be7ae2a4
RK
4333 }
4334 }
770ae6cc
RK
4335
4336 for (r = start_regno; r < end_regno; r++)
4337 CLEAR_HARD_REG_BIT (*used_in_set, r);
be7ae2a4
RK
4338}
4339
32131a9c 4340/* 1 if reg REGNO is free as a reload reg for a reload of the sort
546b63fb 4341 specified by OPNUM and TYPE. */
32131a9c
RK
4342
4343static int
546b63fb 4344reload_reg_free_p (regno, opnum, type)
770ae6cc 4345 unsigned int regno;
546b63fb
RK
4346 int opnum;
4347 enum reload_type type;
32131a9c 4348{
546b63fb
RK
4349 int i;
4350
2edc8d65 4351 /* In use for a RELOAD_OTHER means it's not available for anything. */
9e3a9cf2
BS
4352 if (TEST_HARD_REG_BIT (reload_reg_used, regno)
4353 || TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
32131a9c 4354 return 0;
546b63fb
RK
4355
4356 switch (type)
32131a9c
RK
4357 {
4358 case RELOAD_OTHER:
2edc8d65
RK
4359 /* In use for anything means we can't use it for RELOAD_OTHER. */
4360 if (TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno)
224f1d71
RK
4361 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4362 || TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
4363 return 0;
4364
4365 for (i = 0; i < reload_n_operands; i++)
4366 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
47c8cf91 4367 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
224f1d71 4368 || TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
47c8cf91 4369 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
224f1d71
RK
4370 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
4371 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4372 return 0;
4373
4374 return 1;
32131a9c 4375
32131a9c 4376 case RELOAD_FOR_INPUT:
546b63fb
RK
4377 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4378 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno))
4379 return 0;
4380
893bc853
RK
4381 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
4382 return 0;
4383
546b63fb
RK
4384 /* If it is used for some other input, can't use it. */
4385 for (i = 0; i < reload_n_operands; i++)
4386 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4387 return 0;
4388
4389 /* If it is used in a later operand's address, can't use it. */
4390 for (i = opnum + 1; i < reload_n_operands; i++)
47c8cf91
ILT
4391 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4392 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
546b63fb
RK
4393 return 0;
4394
4395 return 1;
4396
4397 case RELOAD_FOR_INPUT_ADDRESS:
4398 /* Can't use a register if it is used for an input address for this
4399 operand or used as an input in an earlier one. */
47c8cf91
ILT
4400 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], regno)
4401 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
4402 return 0;
4403
4404 for (i = 0; i < opnum; i++)
4405 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4406 return 0;
4407
4408 return 1;
4409
4410 case RELOAD_FOR_INPADDR_ADDRESS:
4411 /* Can't use a register if it is used for an input address
05d10675
BS
4412 for this operand or used as an input in an earlier
4413 one. */
47c8cf91 4414 if (TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
546b63fb
RK
4415 return 0;
4416
4417 for (i = 0; i < opnum; i++)
4418 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4419 return 0;
4420
4421 return 1;
4422
4423 case RELOAD_FOR_OUTPUT_ADDRESS:
4424 /* Can't use a register if it is used for an output address for this
d1d18b46
DJ
4425 operand or used as an output in this or a later operand. Note
4426 that multiple output operands are emitted in reverse order, so
4427 the conflicting ones are those with lower indices. */
546b63fb
RK
4428 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], regno))
4429 return 0;
4430
d1d18b46 4431 for (i = 0; i <= opnum; i++)
546b63fb
RK
4432 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4433 return 0;
4434
4435 return 1;
4436
47c8cf91
ILT
4437 case RELOAD_FOR_OUTADDR_ADDRESS:
4438 /* Can't use a register if it is used for an output address
05d10675 4439 for this operand or used as an output in this or a
d1d18b46
DJ
4440 later operand. Note that multiple output operands are
4441 emitted in reverse order, so the conflicting ones are
4442 those with lower indices. */
47c8cf91
ILT
4443 if (TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], regno))
4444 return 0;
4445
d1d18b46 4446 for (i = 0; i <= opnum; i++)
47c8cf91
ILT
4447 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4448 return 0;
4449
4450 return 1;
4451
32131a9c 4452 case RELOAD_FOR_OPERAND_ADDRESS:
546b63fb
RK
4453 for (i = 0; i < reload_n_operands; i++)
4454 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4455 return 0;
4456
4457 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4458 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
4459
893bc853
RK
4460 case RELOAD_FOR_OPADDR_ADDR:
4461 for (i = 0; i < reload_n_operands; i++)
05d10675
BS
4462 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4463 return 0;
893bc853 4464
a94ce333 4465 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno));
893bc853 4466
32131a9c 4467 case RELOAD_FOR_OUTPUT:
546b63fb 4468 /* This cannot share a register with RELOAD_FOR_INSN reloads, other
d1d18b46
DJ
4469 outputs, or an operand address for this or an earlier output.
4470 Note that multiple output operands are emitted in reverse order,
4471 so the conflicting ones are those with higher indices. */
546b63fb
RK
4472 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
4473 return 0;
4474
4475 for (i = 0; i < reload_n_operands; i++)
4476 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4477 return 0;
4478
d1d18b46 4479 for (i = opnum; i < reload_n_operands; i++)
47c8cf91
ILT
4480 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4481 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
546b63fb
RK
4482 return 0;
4483
4484 return 1;
4485
4486 case RELOAD_FOR_INSN:
4487 for (i = 0; i < reload_n_operands; i++)
4488 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
4489 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4490 return 0;
4491
4492 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4493 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
4494
4495 case RELOAD_FOR_OTHER_ADDRESS:
4496 return ! TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno);
32131a9c
RK
4497 }
4498 abort ();
4499}
4500
32131a9c 4501/* Return 1 if the value in reload reg REGNO, as used by a reload
546b63fb 4502 needed for the part of the insn specified by OPNUM and TYPE,
32131a9c
RK
4503 is still available in REGNO at the end of the insn.
4504
4505 We can assume that the reload reg was already tested for availability
4506 at the time it is needed, and we should not check this again,
4507 in case the reg has already been marked in use. */
4508
4509static int
546b63fb 4510reload_reg_reaches_end_p (regno, opnum, type)
770ae6cc 4511 unsigned int regno;
546b63fb
RK
4512 int opnum;
4513 enum reload_type type;
32131a9c 4514{
546b63fb
RK
4515 int i;
4516
4517 switch (type)
32131a9c
RK
4518 {
4519 case RELOAD_OTHER:
4520 /* Since a RELOAD_OTHER reload claims the reg for the entire insn,
4521 its value must reach the end. */
4522 return 1;
4523
4524 /* If this use is for part of the insn,
05d10675 4525 its value reaches if no subsequent part uses the same register.
546b63fb
RK
4526 Just like the above function, don't try to do this with lots
4527 of fallthroughs. */
4528
4529 case RELOAD_FOR_OTHER_ADDRESS:
4530 /* Here we check for everything else, since these don't conflict
4531 with anything else and everything comes later. */
4532
4533 for (i = 0; i < reload_n_operands; i++)
4534 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
47c8cf91 4535 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
546b63fb
RK
4536 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno)
4537 || TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
47c8cf91 4538 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
546b63fb
RK
4539 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4540 return 0;
4541
4542 return (! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4543 && ! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4544 && ! TEST_HARD_REG_BIT (reload_reg_used, regno));
4545
4546 case RELOAD_FOR_INPUT_ADDRESS:
47c8cf91 4547 case RELOAD_FOR_INPADDR_ADDRESS:
546b63fb
RK
4548 /* Similar, except that we check only for this and subsequent inputs
4549 and the address of only subsequent inputs and we do not need
4550 to check for RELOAD_OTHER objects since they are known not to
4551 conflict. */
4552
4553 for (i = opnum; i < reload_n_operands; i++)
4554 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4555 return 0;
4556
4557 for (i = opnum + 1; i < reload_n_operands; i++)
47c8cf91
ILT
4558 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4559 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
546b63fb
RK
4560 return 0;
4561
4562 for (i = 0; i < reload_n_operands; i++)
4563 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
47c8cf91 4564 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
546b63fb
RK
4565 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4566 return 0;
4567
893bc853
RK
4568 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
4569 return 0;
4570
2af88768
GK
4571 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4572 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4573 && !TEST_HARD_REG_BIT (reload_reg_used, regno));
546b63fb 4574
32131a9c 4575 case RELOAD_FOR_INPUT:
546b63fb 4576 /* Similar to input address, except we start at the next operand for
05d10675 4577 both input and input address and we do not check for
546b63fb
RK
4578 RELOAD_FOR_OPERAND_ADDRESS and RELOAD_FOR_INSN since these
4579 would conflict. */
4580
4581 for (i = opnum + 1; i < reload_n_operands; i++)
4582 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
47c8cf91 4583 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
546b63fb
RK
4584 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4585 return 0;
4586
0f41302f 4587 /* ... fall through ... */
546b63fb 4588
32131a9c 4589 case RELOAD_FOR_OPERAND_ADDRESS:
546b63fb
RK
4590 /* Check outputs and their addresses. */
4591
4592 for (i = 0; i < reload_n_operands; i++)
4593 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
47c8cf91 4594 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
546b63fb
RK
4595 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4596 return 0;
4597
2af88768 4598 return (!TEST_HARD_REG_BIT (reload_reg_used, regno));
546b63fb 4599
893bc853
RK
4600 case RELOAD_FOR_OPADDR_ADDR:
4601 for (i = 0; i < reload_n_operands; i++)
4602 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
47c8cf91 4603 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
893bc853
RK
4604 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4605 return 0;
4606
2af88768
GK
4607 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4608 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4609 && !TEST_HARD_REG_BIT (reload_reg_used, regno));
893bc853 4610
546b63fb 4611 case RELOAD_FOR_INSN:
893bc853 4612 /* These conflict with other outputs with RELOAD_OTHER. So
546b63fb
RK
4613 we need only check for output addresses. */
4614
d1d18b46 4615 opnum = reload_n_operands;
546b63fb 4616
0f41302f 4617 /* ... fall through ... */
546b63fb 4618
32131a9c 4619 case RELOAD_FOR_OUTPUT:
546b63fb 4620 case RELOAD_FOR_OUTPUT_ADDRESS:
47c8cf91 4621 case RELOAD_FOR_OUTADDR_ADDRESS:
546b63fb 4622 /* We already know these can't conflict with a later output. So the
d1d18b46
DJ
4623 only thing to check are later output addresses.
4624 Note that multiple output operands are emitted in reverse order,
4625 so the conflicting ones are those with lower indices. */
4626 for (i = 0; i < opnum; i++)
47c8cf91
ILT
4627 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4628 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
546b63fb
RK
4629 return 0;
4630
32131a9c
RK
4631 return 1;
4632 }
546b63fb 4633
32131a9c
RK
4634 abort ();
4635}
4636\f
351aa1c1
RK
4637/* Return 1 if the reloads denoted by R1 and R2 cannot share a register.
4638 Return 0 otherwise.
4639
4640 This function uses the same algorithm as reload_reg_free_p above. */
4641
f5963e61 4642int
351aa1c1
RK
4643reloads_conflict (r1, r2)
4644 int r1, r2;
4645{
eceef4c9
BS
4646 enum reload_type r1_type = rld[r1].when_needed;
4647 enum reload_type r2_type = rld[r2].when_needed;
4648 int r1_opnum = rld[r1].opnum;
4649 int r2_opnum = rld[r2].opnum;
351aa1c1 4650
2edc8d65
RK
4651 /* RELOAD_OTHER conflicts with everything. */
4652 if (r2_type == RELOAD_OTHER)
351aa1c1
RK
4653 return 1;
4654
4655 /* Otherwise, check conflicts differently for each type. */
4656
4657 switch (r1_type)
4658 {
4659 case RELOAD_FOR_INPUT:
05d10675 4660 return (r2_type == RELOAD_FOR_INSN
351aa1c1 4661 || r2_type == RELOAD_FOR_OPERAND_ADDRESS
893bc853 4662 || r2_type == RELOAD_FOR_OPADDR_ADDR
351aa1c1 4663 || r2_type == RELOAD_FOR_INPUT
47c8cf91
ILT
4664 || ((r2_type == RELOAD_FOR_INPUT_ADDRESS
4665 || r2_type == RELOAD_FOR_INPADDR_ADDRESS)
4666 && r2_opnum > r1_opnum));
351aa1c1
RK
4667
4668 case RELOAD_FOR_INPUT_ADDRESS:
4669 return ((r2_type == RELOAD_FOR_INPUT_ADDRESS && r1_opnum == r2_opnum)
4670 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
4671
47c8cf91
ILT
4672 case RELOAD_FOR_INPADDR_ADDRESS:
4673 return ((r2_type == RELOAD_FOR_INPADDR_ADDRESS && r1_opnum == r2_opnum)
4674 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
4675
351aa1c1
RK
4676 case RELOAD_FOR_OUTPUT_ADDRESS:
4677 return ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS && r2_opnum == r1_opnum)
d1d18b46 4678 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
351aa1c1 4679
47c8cf91
ILT
4680 case RELOAD_FOR_OUTADDR_ADDRESS:
4681 return ((r2_type == RELOAD_FOR_OUTADDR_ADDRESS && r2_opnum == r1_opnum)
d1d18b46 4682 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
47c8cf91 4683
351aa1c1
RK
4684 case RELOAD_FOR_OPERAND_ADDRESS:
4685 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_INSN
a94ce333 4686 || r2_type == RELOAD_FOR_OPERAND_ADDRESS);
351aa1c1 4687
893bc853 4688 case RELOAD_FOR_OPADDR_ADDR:
05d10675 4689 return (r2_type == RELOAD_FOR_INPUT
a94ce333 4690 || r2_type == RELOAD_FOR_OPADDR_ADDR);
893bc853 4691
351aa1c1
RK
4692 case RELOAD_FOR_OUTPUT:
4693 return (r2_type == RELOAD_FOR_INSN || r2_type == RELOAD_FOR_OUTPUT
47c8cf91
ILT
4694 || ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS
4695 || r2_type == RELOAD_FOR_OUTADDR_ADDRESS)
d1d18b46 4696 && r2_opnum >= r1_opnum));
351aa1c1
RK
4697
4698 case RELOAD_FOR_INSN:
4699 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_OUTPUT
4700 || r2_type == RELOAD_FOR_INSN
4701 || r2_type == RELOAD_FOR_OPERAND_ADDRESS);
4702
4703 case RELOAD_FOR_OTHER_ADDRESS:
4704 return r2_type == RELOAD_FOR_OTHER_ADDRESS;
4705
adab4fc5 4706 case RELOAD_OTHER:
2edc8d65 4707 return 1;
adab4fc5 4708
351aa1c1
RK
4709 default:
4710 abort ();
4711 }
4712}
4713\f
32131a9c
RK
4714/* Indexed by reload number, 1 if incoming value
4715 inherited from previous insns. */
4716char reload_inherited[MAX_RELOADS];
4717
4718/* For an inherited reload, this is the insn the reload was inherited from,
4719 if we know it. Otherwise, this is 0. */
4720rtx reload_inheritance_insn[MAX_RELOADS];
4721
4722/* If non-zero, this is a place to get the value of the reload,
4723 rather than using reload_in. */
4724rtx reload_override_in[MAX_RELOADS];
4725
e6e52be0
R
4726/* For each reload, the hard register number of the register used,
4727 or -1 if we did not need a register for this reload. */
32131a9c
RK
4728int reload_spill_index[MAX_RELOADS];
4729
304a22dd
R
4730/* Subroutine of free_for_value_p, used to check a single register.
4731 START_REGNO is the starting regno of the full reload register
4732 (possibly comprising multiple hard registers) that we are considering. */
f5470689 4733
6e684430 4734static int
304a22dd
R
4735reload_reg_free_for_value_p (start_regno, regno, opnum, type, value, out,
4736 reloadnum, ignore_address_reloads)
4737 int start_regno, regno;
6e684430
R
4738 int opnum;
4739 enum reload_type type;
f5470689
R
4740 rtx value, out;
4741 int reloadnum;
5828374f 4742 int ignore_address_reloads;
6e684430
R
4743{
4744 int time1;
09a308fe
R
4745 /* Set if we see an input reload that must not share its reload register
4746 with any new earlyclobber, but might otherwise share the reload
4747 register with an output or input-output reload. */
4748 int check_earlyclobber = 0;
6e684430 4749 int i;
dfe96118
R
4750 int copy = 0;
4751
9e3a9cf2 4752 if (TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
dc8842bf
AH
4753 return 0;
4754
dfe96118
R
4755 if (out == const0_rtx)
4756 {
4757 copy = 1;
4758 out = NULL_RTX;
4759 }
6e684430
R
4760
4761 /* We use some pseudo 'time' value to check if the lifetimes of the
4762 new register use would overlap with the one of a previous reload
4763 that is not read-only or uses a different value.
4764 The 'time' used doesn't have to be linear in any shape or form, just
4765 monotonic.
4766 Some reload types use different 'buckets' for each operand.
4767 So there are MAX_RECOG_OPERANDS different time values for each
cecbf6e2
R
4768 such reload type.
4769 We compute TIME1 as the time when the register for the prospective
4770 new reload ceases to be live, and TIME2 for each existing
4771 reload as the time when that the reload register of that reload
4772 becomes live.
4773 Where there is little to be gained by exact lifetime calculations,
4774 we just make conservative assumptions, i.e. a longer lifetime;
4775 this is done in the 'default:' cases. */
6e684430
R
4776 switch (type)
4777 {
4778 case RELOAD_FOR_OTHER_ADDRESS:
203588e7 4779 /* RELOAD_FOR_OTHER_ADDRESS conflicts with RELOAD_OTHER reloads. */
c2b4b171 4780 time1 = copy ? 0 : 1;
6e684430 4781 break;
dfe96118
R
4782 case RELOAD_OTHER:
4783 time1 = copy ? 1 : MAX_RECOG_OPERANDS * 5 + 5;
4784 break;
05d10675
BS
4785 /* For each input, we may have a sequence of RELOAD_FOR_INPADDR_ADDRESS,
4786 RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT. By adding 0 / 1 / 2 ,
4787 respectively, to the time values for these, we get distinct time
4788 values. To get distinct time values for each operand, we have to
4789 multiply opnum by at least three. We round that up to four because
4790 multiply by four is often cheaper. */
6e684430 4791 case RELOAD_FOR_INPADDR_ADDRESS:
dfe96118 4792 time1 = opnum * 4 + 2;
6e684430
R
4793 break;
4794 case RELOAD_FOR_INPUT_ADDRESS:
dfe96118
R
4795 time1 = opnum * 4 + 3;
4796 break;
4797 case RELOAD_FOR_INPUT:
4798 /* All RELOAD_FOR_INPUT reloads remain live till the instruction
4799 executes (inclusive). */
4800 time1 = copy ? opnum * 4 + 4 : MAX_RECOG_OPERANDS * 4 + 3;
6e684430 4801 break;
cb2afeb3 4802 case RELOAD_FOR_OPADDR_ADDR:
05d10675
BS
4803 /* opnum * 4 + 4
4804 <= (MAX_RECOG_OPERANDS - 1) * 4 + 4 == MAX_RECOG_OPERANDS * 4 */
cb2afeb3
R
4805 time1 = MAX_RECOG_OPERANDS * 4 + 1;
4806 break;
4807 case RELOAD_FOR_OPERAND_ADDRESS:
4808 /* RELOAD_FOR_OPERAND_ADDRESS reloads are live even while the insn
4809 is executed. */
dfe96118
R
4810 time1 = copy ? MAX_RECOG_OPERANDS * 4 + 2 : MAX_RECOG_OPERANDS * 4 + 3;
4811 break;
4812 case RELOAD_FOR_OUTADDR_ADDRESS:
4813 time1 = MAX_RECOG_OPERANDS * 4 + 4 + opnum;
6e684430 4814 break;
6e684430 4815 case RELOAD_FOR_OUTPUT_ADDRESS:
dfe96118 4816 time1 = MAX_RECOG_OPERANDS * 4 + 5 + opnum;
6e684430
R
4817 break;
4818 default:
dfe96118 4819 time1 = MAX_RECOG_OPERANDS * 5 + 5;
6e684430
R
4820 }
4821
4822 for (i = 0; i < n_reloads; i++)
4823 {
eceef4c9 4824 rtx reg = rld[i].reg_rtx;
6e684430
R
4825 if (reg && GET_CODE (reg) == REG
4826 && ((unsigned) regno - true_regnum (reg)
83e0821b 4827 <= HARD_REGNO_NREGS (REGNO (reg), GET_MODE (reg)) - (unsigned)1)
f5470689 4828 && i != reloadnum)
6e684430 4829 {
304a22dd
R
4830 rtx other_input = rld[i].in;
4831
4832 /* If the other reload loads the same input value, that
4833 will not cause a conflict only if it's loading it into
4834 the same register. */
4835 if (true_regnum (reg) != start_regno)
4836 other_input = NULL_RTX;
4837 if (! other_input || ! rtx_equal_p (other_input, value)
eceef4c9 4838 || rld[i].out || out)
6e684430 4839 {
09a308fe 4840 int time2;
eceef4c9 4841 switch (rld[i].when_needed)
f5470689
R
4842 {
4843 case RELOAD_FOR_OTHER_ADDRESS:
4844 time2 = 0;
4845 break;
4846 case RELOAD_FOR_INPADDR_ADDRESS:
cb2afeb3
R
4847 /* find_reloads makes sure that a
4848 RELOAD_FOR_{INP,OP,OUT}ADDR_ADDRESS reload is only used
4849 by at most one - the first -
4850 RELOAD_FOR_{INPUT,OPERAND,OUTPUT}_ADDRESS . If the
4851 address reload is inherited, the address address reload
4852 goes away, so we can ignore this conflict. */
dfe96118
R
4853 if (type == RELOAD_FOR_INPUT_ADDRESS && reloadnum == i + 1
4854 && ignore_address_reloads
4855 /* Unless the RELOAD_FOR_INPUT is an auto_inc expression.
4856 Then the address address is still needed to store
4857 back the new address. */
eceef4c9 4858 && ! rld[reloadnum].out)
cb2afeb3 4859 continue;
dfe96118
R
4860 /* Likewise, if a RELOAD_FOR_INPUT can inherit a value, its
4861 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS
4862 reloads go away. */
eceef4c9 4863 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
dfe96118
R
4864 && ignore_address_reloads
4865 /* Unless we are reloading an auto_inc expression. */
eceef4c9 4866 && ! rld[reloadnum].out)
dfe96118 4867 continue;
eceef4c9 4868 time2 = rld[i].opnum * 4 + 2;
f5470689
R
4869 break;
4870 case RELOAD_FOR_INPUT_ADDRESS:
eceef4c9 4871 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
dfe96118 4872 && ignore_address_reloads
eceef4c9 4873 && ! rld[reloadnum].out)
dfe96118 4874 continue;
eceef4c9 4875 time2 = rld[i].opnum * 4 + 3;
f5470689
R
4876 break;
4877 case RELOAD_FOR_INPUT:
eceef4c9 4878 time2 = rld[i].opnum * 4 + 4;
09a308fe 4879 check_earlyclobber = 1;
f5470689 4880 break;
eceef4c9 4881 /* rld[i].opnum * 4 + 4 <= (MAX_RECOG_OPERAND - 1) * 4 + 4
05d10675 4882 == MAX_RECOG_OPERAND * 4 */
cb2afeb3 4883 case RELOAD_FOR_OPADDR_ADDR:
dfe96118
R
4884 if (type == RELOAD_FOR_OPERAND_ADDRESS && reloadnum == i + 1
4885 && ignore_address_reloads
eceef4c9 4886 && ! rld[reloadnum].out)
cb2afeb3 4887 continue;
dfe96118 4888 time2 = MAX_RECOG_OPERANDS * 4 + 1;
cb2afeb3
R
4889 break;
4890 case RELOAD_FOR_OPERAND_ADDRESS:
dfe96118 4891 time2 = MAX_RECOG_OPERANDS * 4 + 2;
09a308fe 4892 check_earlyclobber = 1;
dfe96118
R
4893 break;
4894 case RELOAD_FOR_INSN:
4895 time2 = MAX_RECOG_OPERANDS * 4 + 3;
cb2afeb3 4896 break;
f5470689 4897 case RELOAD_FOR_OUTPUT:
05d10675
BS
4898 /* All RELOAD_FOR_OUTPUT reloads become live just after the
4899 instruction is executed. */
dfe96118 4900 time2 = MAX_RECOG_OPERANDS * 4 + 4;
f5470689 4901 break;
05d10675
BS
4902 /* The first RELOAD_FOR_OUTADDR_ADDRESS reload conflicts with
4903 the RELOAD_FOR_OUTPUT reloads, so assign it the same time
4904 value. */
cb2afeb3 4905 case RELOAD_FOR_OUTADDR_ADDRESS:
dfe96118
R
4906 if (type == RELOAD_FOR_OUTPUT_ADDRESS && reloadnum == i + 1
4907 && ignore_address_reloads
eceef4c9 4908 && ! rld[reloadnum].out)
cb2afeb3 4909 continue;
eceef4c9 4910 time2 = MAX_RECOG_OPERANDS * 4 + 4 + rld[i].opnum;
dfe96118 4911 break;
f5470689 4912 case RELOAD_FOR_OUTPUT_ADDRESS:
eceef4c9 4913 time2 = MAX_RECOG_OPERANDS * 4 + 5 + rld[i].opnum;
f5470689
R
4914 break;
4915 case RELOAD_OTHER:
dfe96118
R
4916 /* If there is no conflict in the input part, handle this
4917 like an output reload. */
304a22dd 4918 if (! rld[i].in || rtx_equal_p (other_input, value))
f5470689 4919 {
dfe96118 4920 time2 = MAX_RECOG_OPERANDS * 4 + 4;
57850c85 4921 /* Earlyclobbered outputs must conflict with inputs. */
09a308fe
R
4922 if (earlyclobber_operand_p (rld[i].out))
4923 time2 = MAX_RECOG_OPERANDS * 4 + 3;
1d7254c5 4924
f5470689
R
4925 break;
4926 }
dfe96118
R
4927 time2 = 1;
4928 /* RELOAD_OTHER might be live beyond instruction execution,
4929 but this is not obvious when we set time2 = 1. So check
4930 here if there might be a problem with the new reload
4931 clobbering the register used by the RELOAD_OTHER. */
4932 if (out)
4933 return 0;
4934 break;
f5470689 4935 default:
dfe96118 4936 return 0;
f5470689 4937 }
25963977 4938 if ((time1 >= time2
eceef4c9 4939 && (! rld[i].in || rld[i].out
304a22dd 4940 || ! rtx_equal_p (other_input, value)))
eceef4c9 4941 || (out && rld[reloadnum].out_reg
701d55e8 4942 && time2 >= MAX_RECOG_OPERANDS * 4 + 3))
f5470689 4943 return 0;
6e684430 4944 }
6e684430
R
4945 }
4946 }
09a308fe
R
4947
4948 /* Earlyclobbered outputs must conflict with inputs. */
4949 if (check_earlyclobber && out && earlyclobber_operand_p (out))
4950 return 0;
4951
6e684430
R
4952 return 1;
4953}
4954
c02cad8f
BS
4955/* Return 1 if the value in reload reg REGNO, as used by a reload
4956 needed for the part of the insn specified by OPNUM and TYPE,
4957 may be used to load VALUE into it.
4958
4959 MODE is the mode in which the register is used, this is needed to
4960 determine how many hard regs to test.
4961
4962 Other read-only reloads with the same value do not conflict
4963 unless OUT is non-zero and these other reloads have to live while
4964 output reloads live.
4965 If OUT is CONST0_RTX, this is a special case: it means that the
4966 test should not be for using register REGNO as reload register, but
4967 for copying from register REGNO into the reload register.
4968
4969 RELOADNUM is the number of the reload we want to load this value for;
4970 a reload does not conflict with itself.
4971
4972 When IGNORE_ADDRESS_RELOADS is set, we can not have conflicts with
4973 reloads that load an address for the very reload we are considering.
4974
4975 The caller has to make sure that there is no conflict with the return
4976 register. */
4977
4978static int
4979free_for_value_p (regno, mode, opnum, type, value, out, reloadnum,
4980 ignore_address_reloads)
4981 int regno;
4982 enum machine_mode mode;
4983 int opnum;
4984 enum reload_type type;
4985 rtx value, out;
4986 int reloadnum;
4987 int ignore_address_reloads;
4988{
4989 int nregs = HARD_REGNO_NREGS (regno, mode);
4990 while (nregs-- > 0)
304a22dd
R
4991 if (! reload_reg_free_for_value_p (regno, regno + nregs, opnum, type,
4992 value, out, reloadnum,
4993 ignore_address_reloads))
c02cad8f
BS
4994 return 0;
4995 return 1;
4996}
4997
ff6534ad
BS
4998/* Determine whether the reload reg X overlaps any rtx'es used for
4999 overriding inheritance. Return nonzero if so. */
5000
5001static int
5002conflicts_with_override (x)
5003 rtx x;
5004{
5005 int i;
5006 for (i = 0; i < n_reloads; i++)
5007 if (reload_override_in[i]
5008 && reg_overlap_mentioned_p (x, reload_override_in[i]))
5009 return 1;
5010 return 0;
5011}
5012\f
67e61fe7
BS
5013/* Give an error message saying we failed to find a reload for INSN,
5014 and clear out reload R. */
5015static void
5016failed_reload (insn, r)
5017 rtx insn;
5018 int r;
5019{
5020 if (asm_noperands (PATTERN (insn)) < 0)
5021 /* It's the compiler's fault. */
5022 fatal_insn ("Could not find a spill register", insn);
5023
5024 /* It's the user's fault; the operand's mode and constraint
5025 don't match. Disable this reload so we don't crash in final. */
5026 error_for_asm (insn,
5027 "`asm' operand constraint incompatible with operand size");
5028 rld[r].in = 0;
5029 rld[r].out = 0;
5030 rld[r].reg_rtx = 0;
5031 rld[r].optional = 1;
5032 rld[r].secondary_p = 1;
5033}
5034
5035/* I is the index in SPILL_REG_RTX of the reload register we are to allocate
5036 for reload R. If it's valid, get an rtx for it. Return nonzero if
5037 successful. */
5038static int
5039set_reload_reg (i, r)
5040 int i, r;
5041{
5042 int regno;
5043 rtx reg = spill_reg_rtx[i];
5044
5045 if (reg == 0 || GET_MODE (reg) != rld[r].mode)
5046 spill_reg_rtx[i] = reg
5047 = gen_rtx_REG (rld[r].mode, spill_regs[i]);
5048
5049 regno = true_regnum (reg);
5050
5051 /* Detect when the reload reg can't hold the reload mode.
5052 This used to be one `if', but Sequent compiler can't handle that. */
5053 if (HARD_REGNO_MODE_OK (regno, rld[r].mode))
5054 {
5055 enum machine_mode test_mode = VOIDmode;
5056 if (rld[r].in)
5057 test_mode = GET_MODE (rld[r].in);
5058 /* If rld[r].in has VOIDmode, it means we will load it
5059 in whatever mode the reload reg has: to wit, rld[r].mode.
5060 We have already tested that for validity. */
5061 /* Aside from that, we need to test that the expressions
5062 to reload from or into have modes which are valid for this
5063 reload register. Otherwise the reload insns would be invalid. */
5064 if (! (rld[r].in != 0 && test_mode != VOIDmode
5065 && ! HARD_REGNO_MODE_OK (regno, test_mode)))
5066 if (! (rld[r].out != 0
5067 && ! HARD_REGNO_MODE_OK (regno, GET_MODE (rld[r].out))))
5068 {
5069 /* The reg is OK. */
5070 last_spill_reg = i;
5071
5072 /* Mark as in use for this insn the reload regs we use
5073 for this. */
5074 mark_reload_reg_in_use (spill_regs[i], rld[r].opnum,
5075 rld[r].when_needed, rld[r].mode);
5076
5077 rld[r].reg_rtx = reg;
5078 reload_spill_index[r] = spill_regs[i];
5079 return 1;
5080 }
5081 }
5082 return 0;
5083}
5084
32131a9c
RK
5085/* Find a spill register to use as a reload register for reload R.
5086 LAST_RELOAD is non-zero if this is the last reload for the insn being
5087 processed.
5088
eceef4c9 5089 Set rld[R].reg_rtx to the register allocated.
32131a9c 5090
f5d8c9f4
BS
5091 We return 1 if successful, or 0 if we couldn't find a spill reg and
5092 we didn't change anything. */
32131a9c
RK
5093
5094static int
f5d8c9f4 5095allocate_reload_reg (chain, r, last_reload)
272df862 5096 struct insn_chain *chain ATTRIBUTE_UNUSED;
32131a9c 5097 int r;
32131a9c 5098 int last_reload;
32131a9c 5099{
67e61fe7 5100 int i, pass, count;
32131a9c
RK
5101
5102 /* If we put this reload ahead, thinking it is a group,
5103 then insist on finding a group. Otherwise we can grab a
a8fdc208 5104 reg that some other reload needs.
32131a9c
RK
5105 (That can happen when we have a 68000 DATA_OR_FP_REG
5106 which is a group of data regs or one fp reg.)
5107 We need not be so restrictive if there are no more reloads
5108 for this insn.
5109
5110 ??? Really it would be nicer to have smarter handling
5111 for that kind of reg class, where a problem like this is normal.
5112 Perhaps those classes should be avoided for reloading
5113 by use of more alternatives. */
5114
8ec450a4 5115 int force_group = rld[r].nregs > 1 && ! last_reload;
32131a9c
RK
5116
5117 /* If we want a single register and haven't yet found one,
5118 take any reg in the right class and not in use.
5119 If we want a consecutive group, here is where we look for it.
5120
5121 We use two passes so we can first look for reload regs to
5122 reuse, which are already in use for other reloads in this insn,
5123 and only then use additional registers.
5124 I think that maximizing reuse is needed to make sure we don't
5125 run out of reload regs. Suppose we have three reloads, and
5126 reloads A and B can share regs. These need two regs.
5127 Suppose A and B are given different regs.
5128 That leaves none for C. */
5129 for (pass = 0; pass < 2; pass++)
5130 {
5131 /* I is the index in spill_regs.
5132 We advance it round-robin between insns to use all spill regs
5133 equally, so that inherited reloads have a chance
f5d8c9f4
BS
5134 of leapfrogging each other. */
5135
5136 i = last_spill_reg;
05d10675 5137
a5339699 5138 for (count = 0; count < n_spills; count++)
32131a9c 5139 {
eceef4c9 5140 int class = (int) rld[r].class;
03acd8f8 5141 int regnum;
32131a9c 5142
03acd8f8
BS
5143 i++;
5144 if (i >= n_spills)
5145 i -= n_spills;
5146 regnum = spill_regs[i];
32131a9c 5147
eceef4c9
BS
5148 if ((reload_reg_free_p (regnum, rld[r].opnum,
5149 rld[r].when_needed)
5150 || (rld[r].in
05d10675
BS
5151 /* We check reload_reg_used to make sure we
5152 don't clobber the return register. */
03acd8f8 5153 && ! TEST_HARD_REG_BIT (reload_reg_used, regnum)
c02cad8f
BS
5154 && free_for_value_p (regnum, rld[r].mode, rld[r].opnum,
5155 rld[r].when_needed, rld[r].in,
5156 rld[r].out, r, 1)))
03acd8f8 5157 && TEST_HARD_REG_BIT (reg_class_contents[class], regnum)
8ec450a4 5158 && HARD_REGNO_MODE_OK (regnum, rld[r].mode)
be7ae2a4
RK
5159 /* Look first for regs to share, then for unshared. But
5160 don't share regs used for inherited reloads; they are
5161 the ones we want to preserve. */
5162 && (pass
5163 || (TEST_HARD_REG_BIT (reload_reg_used_at_all,
03acd8f8 5164 regnum)
be7ae2a4 5165 && ! TEST_HARD_REG_BIT (reload_reg_used_for_inherit,
03acd8f8 5166 regnum))))
32131a9c 5167 {
8ec450a4 5168 int nr = HARD_REGNO_NREGS (regnum, rld[r].mode);
32131a9c
RK
5169 /* Avoid the problem where spilling a GENERAL_OR_FP_REG
5170 (on 68000) got us two FP regs. If NR is 1,
5171 we would reject both of them. */
5172 if (force_group)
67e61fe7 5173 nr = rld[r].nregs;
32131a9c
RK
5174 /* If we need only one reg, we have already won. */
5175 if (nr == 1)
5176 {
5177 /* But reject a single reg if we demand a group. */
5178 if (force_group)
5179 continue;
5180 break;
5181 }
5182 /* Otherwise check that as many consecutive regs as we need
f5d8c9f4
BS
5183 are available here. */
5184 while (nr > 1)
5185 {
5186 int regno = regnum + nr - 1;
5187 if (!(TEST_HARD_REG_BIT (reg_class_contents[class], regno)
5188 && spill_reg_order[regno] >= 0
5189 && reload_reg_free_p (regno, rld[r].opnum,
5190 rld[r].when_needed)))
5191 break;
5192 nr--;
5193 }
32131a9c
RK
5194 if (nr == 1)
5195 break;
5196 }
5197 }
5198
5199 /* If we found something on pass 1, omit pass 2. */
5200 if (count < n_spills)
5201 break;
5202 }
1d7254c5 5203
32131a9c 5204 /* We should have found a spill register by now. */
f5d8c9f4 5205 if (count >= n_spills)
32131a9c
RK
5206 return 0;
5207
f5d8c9f4
BS
5208 /* I is the index in SPILL_REG_RTX of the reload register we are to
5209 allocate. Get an rtx for it and find its register number. */
32131a9c 5210
f5d8c9f4 5211 return set_reload_reg (i, r);
32131a9c
RK
5212}
5213\f
67e61fe7
BS
5214/* Initialize all the tables needed to allocate reload registers.
5215 CHAIN is the insn currently being processed; SAVE_RELOAD_REG_RTX
5216 is the array we use to restore the reg_rtx field for every reload. */
efc9bd41 5217
32131a9c 5218static void
67e61fe7 5219choose_reload_regs_init (chain, save_reload_reg_rtx)
7609e720 5220 struct insn_chain *chain;
67e61fe7 5221 rtx *save_reload_reg_rtx;
32131a9c 5222{
67e61fe7 5223 int i;
32131a9c 5224
67e61fe7
BS
5225 for (i = 0; i < n_reloads; i++)
5226 rld[i].reg_rtx = save_reload_reg_rtx[i];
32131a9c 5227
961192e1
JM
5228 memset (reload_inherited, 0, MAX_RELOADS);
5229 memset ((char *) reload_inheritance_insn, 0, MAX_RELOADS * sizeof (rtx));
5230 memset ((char *) reload_override_in, 0, MAX_RELOADS * sizeof (rtx));
32131a9c
RK
5231
5232 CLEAR_HARD_REG_SET (reload_reg_used);
5233 CLEAR_HARD_REG_SET (reload_reg_used_at_all);
32131a9c 5234 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr);
893bc853 5235 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr_reload);
546b63fb
RK
5236 CLEAR_HARD_REG_SET (reload_reg_used_in_insn);
5237 CLEAR_HARD_REG_SET (reload_reg_used_in_other_addr);
32131a9c 5238
f1db3576
JL
5239 CLEAR_HARD_REG_SET (reg_used_in_insn);
5240 {
5241 HARD_REG_SET tmp;
239a0f5b 5242 REG_SET_TO_HARD_REG_SET (tmp, &chain->live_throughout);
f1db3576 5243 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
239a0f5b 5244 REG_SET_TO_HARD_REG_SET (tmp, &chain->dead_or_set);
f1db3576 5245 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
239a0f5b
BS
5246 compute_use_by_pseudos (&reg_used_in_insn, &chain->live_throughout);
5247 compute_use_by_pseudos (&reg_used_in_insn, &chain->dead_or_set);
f1db3576 5248 }
efc9bd41 5249
546b63fb
RK
5250 for (i = 0; i < reload_n_operands; i++)
5251 {
5252 CLEAR_HARD_REG_SET (reload_reg_used_in_output[i]);
5253 CLEAR_HARD_REG_SET (reload_reg_used_in_input[i]);
5254 CLEAR_HARD_REG_SET (reload_reg_used_in_input_addr[i]);
47c8cf91 5255 CLEAR_HARD_REG_SET (reload_reg_used_in_inpaddr_addr[i]);
546b63fb 5256 CLEAR_HARD_REG_SET (reload_reg_used_in_output_addr[i]);
47c8cf91 5257 CLEAR_HARD_REG_SET (reload_reg_used_in_outaddr_addr[i]);
546b63fb 5258 }
32131a9c 5259
9e3a9cf2 5260 COMPL_HARD_REG_SET (reload_reg_unavailable, chain->used_spill_regs);
05d10675 5261
67e61fe7 5262 CLEAR_HARD_REG_SET (reload_reg_used_for_inherit);
32131a9c 5263
67e61fe7
BS
5264 for (i = 0; i < n_reloads; i++)
5265 /* If we have already decided to use a certain register,
5266 don't use it in another way. */
5267 if (rld[i].reg_rtx)
5268 mark_reload_reg_in_use (REGNO (rld[i].reg_rtx), rld[i].opnum,
5269 rld[i].when_needed, rld[i].mode);
5270}
32131a9c 5271
67e61fe7
BS
5272/* Assign hard reg targets for the pseudo-registers we must reload
5273 into hard regs for this insn.
5274 Also output the instructions to copy them in and out of the hard regs.
5275
5276 For machines with register classes, we are responsible for
5277 finding a reload reg in the proper class. */
5278
5279static void
5280choose_reload_regs (chain)
5281 struct insn_chain *chain;
5282{
5283 rtx insn = chain->insn;
b3694847 5284 int i, j;
770ae6cc 5285 unsigned int max_group_size = 1;
67e61fe7 5286 enum reg_class group_class = NO_REGS;
f5d8c9f4 5287 int pass, win, inheritance;
67e61fe7
BS
5288
5289 rtx save_reload_reg_rtx[MAX_RELOADS];
32131a9c 5290
32131a9c
RK
5291 /* In order to be certain of getting the registers we need,
5292 we must sort the reloads into order of increasing register class.
5293 Then our grabbing of reload registers will parallel the process
a8fdc208 5294 that provided the reload registers.
32131a9c
RK
5295
5296 Also note whether any of the reloads wants a consecutive group of regs.
5297 If so, record the maximum size of the group desired and what
5298 register class contains all the groups needed by this insn. */
5299
5300 for (j = 0; j < n_reloads; j++)
5301 {
5302 reload_order[j] = j;
5303 reload_spill_index[j] = -1;
5304
8ec450a4 5305 if (rld[j].nregs > 1)
32131a9c 5306 {
8ec450a4 5307 max_group_size = MAX (rld[j].nregs, max_group_size);
770ae6cc 5308 group_class
1d7254c5 5309 = reg_class_superunion[(int) rld[j].class][(int)group_class];
32131a9c
RK
5310 }
5311
eceef4c9 5312 save_reload_reg_rtx[j] = rld[j].reg_rtx;
32131a9c
RK
5313 }
5314
5315 if (n_reloads > 1)
5316 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
5317
58b1581b
RS
5318 /* If -O, try first with inheritance, then turning it off.
5319 If not -O, don't do inheritance.
5320 Using inheritance when not optimizing leads to paradoxes
5321 with fp on the 68k: fp numbers (not NaNs) fail to be equal to themselves
5322 because one side of the comparison might be inherited. */
f5d8c9f4 5323 win = 0;
58b1581b 5324 for (inheritance = optimize > 0; inheritance >= 0; inheritance--)
32131a9c 5325 {
67e61fe7
BS
5326 choose_reload_regs_init (chain, save_reload_reg_rtx);
5327
32131a9c
RK
5328 /* Process the reloads in order of preference just found.
5329 Beyond this point, subregs can be found in reload_reg_rtx.
5330
770ae6cc
RK
5331 This used to look for an existing reloaded home for all of the
5332 reloads, and only then perform any new reloads. But that could lose
5333 if the reloads were done out of reg-class order because a later
5334 reload with a looser constraint might have an old home in a register
5335 needed by an earlier reload with a tighter constraint.
32131a9c
RK
5336
5337 To solve this, we make two passes over the reloads, in the order
5338 described above. In the first pass we try to inherit a reload
5339 from a previous insn. If there is a later reload that needs a
5340 class that is a proper subset of the class being processed, we must
5341 also allocate a spill register during the first pass.
5342
5343 Then make a second pass over the reloads to allocate any reloads
5344 that haven't been given registers yet. */
5345
5346 for (j = 0; j < n_reloads; j++)
5347 {
b3694847 5348 int r = reload_order[j];
8593b745 5349 rtx search_equiv = NULL_RTX;
32131a9c
RK
5350
5351 /* Ignore reloads that got marked inoperative. */
eceef4c9
BS
5352 if (rld[r].out == 0 && rld[r].in == 0
5353 && ! rld[r].secondary_p)
32131a9c
RK
5354 continue;
5355
b29514ee 5356 /* If find_reloads chose to use reload_in or reload_out as a reload
b080c137
RK
5357 register, we don't need to chose one. Otherwise, try even if it
5358 found one since we might save an insn if we find the value lying
b29514ee
R
5359 around.
5360 Try also when reload_in is a pseudo without a hard reg. */
eceef4c9
BS
5361 if (rld[r].in != 0 && rld[r].reg_rtx != 0
5362 && (rtx_equal_p (rld[r].in, rld[r].reg_rtx)
5363 || (rtx_equal_p (rld[r].out, rld[r].reg_rtx)
5364 && GET_CODE (rld[r].in) != MEM
5365 && true_regnum (rld[r].in) < FIRST_PSEUDO_REGISTER)))
32131a9c
RK
5366 continue;
5367
5368#if 0 /* No longer needed for correct operation.
5369 It might give better code, or might not; worth an experiment? */
5370 /* If this is an optional reload, we can't inherit from earlier insns
5371 until we are sure that any non-optional reloads have been allocated.
5372 The following code takes advantage of the fact that optional reloads
5373 are at the end of reload_order. */
eceef4c9 5374 if (rld[r].optional != 0)
32131a9c 5375 for (i = 0; i < j; i++)
eceef4c9
BS
5376 if ((rld[reload_order[i]].out != 0
5377 || rld[reload_order[i]].in != 0
5378 || rld[reload_order[i]].secondary_p)
5379 && ! rld[reload_order[i]].optional
5380 && rld[reload_order[i]].reg_rtx == 0)
f5d8c9f4 5381 allocate_reload_reg (chain, reload_order[i], 0);
32131a9c
RK
5382#endif
5383
5384 /* First see if this pseudo is already available as reloaded
5385 for a previous insn. We cannot try to inherit for reloads
5386 that are smaller than the maximum number of registers needed
5387 for groups unless the register we would allocate cannot be used
5388 for the groups.
5389
5390 We could check here to see if this is a secondary reload for
5391 an object that is already in a register of the desired class.
5392 This would avoid the need for the secondary reload register.
5393 But this is complex because we can't easily determine what
b080c137
RK
5394 objects might want to be loaded via this reload. So let a
5395 register be allocated here. In `emit_reload_insns' we suppress
5396 one of the loads in the case described above. */
32131a9c
RK
5397
5398 if (inheritance)
5399 {
ddef6bc7 5400 int byte = 0;
b3694847 5401 int regno = -1;
6a651371 5402 enum machine_mode mode = VOIDmode;
32131a9c 5403
eceef4c9 5404 if (rld[r].in == 0)
32131a9c 5405 ;
eceef4c9 5406 else if (GET_CODE (rld[r].in) == REG)
db660765 5407 {
eceef4c9
BS
5408 regno = REGNO (rld[r].in);
5409 mode = GET_MODE (rld[r].in);
db660765 5410 }
eceef4c9 5411 else if (GET_CODE (rld[r].in_reg) == REG)
db660765 5412 {
eceef4c9
BS
5413 regno = REGNO (rld[r].in_reg);
5414 mode = GET_MODE (rld[r].in_reg);
db660765 5415 }
eceef4c9
BS
5416 else if (GET_CODE (rld[r].in_reg) == SUBREG
5417 && GET_CODE (SUBREG_REG (rld[r].in_reg)) == REG)
b60a8416 5418 {
ddef6bc7 5419 byte = SUBREG_BYTE (rld[r].in_reg);
eceef4c9 5420 regno = REGNO (SUBREG_REG (rld[r].in_reg));
cb2afeb3 5421 if (regno < FIRST_PSEUDO_REGISTER)
ddef6bc7 5422 regno = subreg_regno (rld[r].in_reg);
eceef4c9 5423 mode = GET_MODE (rld[r].in_reg);
cb2afeb3
R
5424 }
5425#ifdef AUTO_INC_DEC
eceef4c9
BS
5426 else if ((GET_CODE (rld[r].in_reg) == PRE_INC
5427 || GET_CODE (rld[r].in_reg) == PRE_DEC
5428 || GET_CODE (rld[r].in_reg) == POST_INC
5429 || GET_CODE (rld[r].in_reg) == POST_DEC)
5430 && GET_CODE (XEXP (rld[r].in_reg, 0)) == REG)
cb2afeb3 5431 {
eceef4c9
BS
5432 regno = REGNO (XEXP (rld[r].in_reg, 0));
5433 mode = GET_MODE (XEXP (rld[r].in_reg, 0));
5434 rld[r].out = rld[r].in;
b60a8416 5435 }
cb2afeb3 5436#endif
32131a9c
RK
5437#if 0
5438 /* This won't work, since REGNO can be a pseudo reg number.
5439 Also, it takes much more hair to keep track of all the things
5440 that can invalidate an inherited reload of part of a pseudoreg. */
eceef4c9
BS
5441 else if (GET_CODE (rld[r].in) == SUBREG
5442 && GET_CODE (SUBREG_REG (rld[r].in)) == REG)
ddef6bc7 5443 regno = subreg_regno (rld[r].in);
32131a9c
RK
5444#endif
5445
5446 if (regno >= 0 && reg_last_reload_reg[regno] != 0)
5447 {
eceef4c9 5448 enum reg_class class = rld[r].class, last_class;
cb2afeb3 5449 rtx last_reg = reg_last_reload_reg[regno];
02188693 5450 enum machine_mode need_mode;
05d10675 5451
ddef6bc7
JJ
5452 i = REGNO (last_reg);
5453 i += subreg_regno_offset (i, GET_MODE (last_reg), byte, mode);
cb2afeb3 5454 last_class = REGNO_REG_CLASS (i);
02188693 5455
ddef6bc7 5456 if (byte == 0)
ce701d1b
BS
5457 need_mode = mode;
5458 else
5459 need_mode
ddef6bc7 5460 = smallest_mode_for_size (GET_MODE_SIZE (mode) + byte,
ce701d1b 5461 GET_MODE_CLASS (mode));
02188693 5462
c9d8a813 5463 if (
02188693 5464#ifdef CLASS_CANNOT_CHANGE_MODE
c9d8a813 5465 (TEST_HARD_REG_BIT
02188693 5466 (reg_class_contents[(int) CLASS_CANNOT_CHANGE_MODE], i)
1d7254c5 5467 ? ! CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (last_reg),
02188693 5468 need_mode)
c9d8a813 5469 : (GET_MODE_SIZE (GET_MODE (last_reg))
02188693 5470 >= GET_MODE_SIZE (need_mode)))
c9d8a813
RH
5471#else
5472 (GET_MODE_SIZE (GET_MODE (last_reg))
02188693 5473 >= GET_MODE_SIZE (need_mode))
c9d8a813 5474#endif
cb2afeb3 5475 && reg_reloaded_contents[i] == regno
e6e52be0 5476 && TEST_HARD_REG_BIT (reg_reloaded_valid, i)
8ec450a4 5477 && HARD_REGNO_MODE_OK (i, rld[r].mode)
cb2afeb3
R
5478 && (TEST_HARD_REG_BIT (reg_class_contents[(int) class], i)
5479 /* Even if we can't use this register as a reload
5480 register, we might use it for reload_override_in,
5481 if copying it to the desired class is cheap
5482 enough. */
e56b4594 5483 || ((REGISTER_MOVE_COST (mode, last_class, class)
cb2afeb3
R
5484 < MEMORY_MOVE_COST (mode, class, 1))
5485#ifdef SECONDARY_INPUT_RELOAD_CLASS
5486 && (SECONDARY_INPUT_RELOAD_CLASS (class, mode,
5487 last_reg)
5488 == NO_REGS)
5489#endif
5490#ifdef SECONDARY_MEMORY_NEEDED
5491 && ! SECONDARY_MEMORY_NEEDED (last_class, class,
5492 mode)
5493#endif
5494 ))
5495
8ec450a4 5496 && (rld[r].nregs == max_group_size
32131a9c 5497 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) group_class],
e6e52be0 5498 i))
c02cad8f
BS
5499 && free_for_value_p (i, rld[r].mode, rld[r].opnum,
5500 rld[r].when_needed, rld[r].in,
5501 const0_rtx, r, 1))
32131a9c
RK
5502 {
5503 /* If a group is needed, verify that all the subsequent
0f41302f 5504 registers still have their values intact. */
1d7254c5 5505 int nr = HARD_REGNO_NREGS (i, rld[r].mode);
32131a9c
RK
5506 int k;
5507
5508 for (k = 1; k < nr; k++)
e6e52be0
R
5509 if (reg_reloaded_contents[i + k] != regno
5510 || ! TEST_HARD_REG_BIT (reg_reloaded_valid, i + k))
32131a9c
RK
5511 break;
5512
5513 if (k == nr)
5514 {
c74fa651 5515 int i1;
eb4d554e 5516 int bad_for_class;
c74fa651 5517
cb2afeb3
R
5518 last_reg = (GET_MODE (last_reg) == mode
5519 ? last_reg : gen_rtx_REG (mode, i));
5520
eb4d554e
GK
5521 bad_for_class = 0;
5522 for (k = 0; k < nr; k++)
5523 bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].class],
5524 i+k);
5525
c74fa651
RS
5526 /* We found a register that contains the
5527 value we need. If this register is the
5528 same as an `earlyclobber' operand of the
5529 current insn, just mark it as a place to
5530 reload from since we can't use it as the
5531 reload register itself. */
5532
5533 for (i1 = 0; i1 < n_earlyclobbers; i1++)
5534 if (reg_overlap_mentioned_for_reload_p
5535 (reg_last_reload_reg[regno],
5536 reload_earlyclobbers[i1]))
5537 break;
5538
8908158d 5539 if (i1 != n_earlyclobbers
c02cad8f
BS
5540 || ! (free_for_value_p (i, rld[r].mode,
5541 rld[r].opnum,
5542 rld[r].when_needed, rld[r].in,
5543 rld[r].out, r, 1))
e6e52be0 5544 /* Don't use it if we'd clobber a pseudo reg. */
f1db3576 5545 || (TEST_HARD_REG_BIT (reg_used_in_insn, i)
eceef4c9 5546 && rld[r].out
e6e52be0 5547 && ! TEST_HARD_REG_BIT (reg_reloaded_dead, i))
0c7f2259 5548 /* Don't clobber the frame pointer. */
1d7254c5
KH
5549 || (i == HARD_FRAME_POINTER_REGNUM
5550 && rld[r].out)
8908158d
RS
5551 /* Don't really use the inherited spill reg
5552 if we need it wider than we've got it. */
8ec450a4 5553 || (GET_MODE_SIZE (rld[r].mode)
b29514ee 5554 > GET_MODE_SIZE (mode))
eb4d554e 5555 || bad_for_class
cb2afeb3 5556
b29514ee
R
5557 /* If find_reloads chose reload_out as reload
5558 register, stay with it - that leaves the
5559 inherited register for subsequent reloads. */
eceef4c9 5560 || (rld[r].out && rld[r].reg_rtx
67e61fe7 5561 && rtx_equal_p (rld[r].out, rld[r].reg_rtx)))
cb2afeb3 5562 {
4c3a2649
BS
5563 if (! rld[r].optional)
5564 {
5565 reload_override_in[r] = last_reg;
5566 reload_inheritance_insn[r]
5567 = reg_reloaded_insn[i];
5568 }
cb2afeb3 5569 }
c74fa651
RS
5570 else
5571 {
54c40e68 5572 int k;
c74fa651
RS
5573 /* We can use this as a reload reg. */
5574 /* Mark the register as in use for this part of
5575 the insn. */
e6e52be0 5576 mark_reload_reg_in_use (i,
eceef4c9
BS
5577 rld[r].opnum,
5578 rld[r].when_needed,
8ec450a4 5579 rld[r].mode);
eceef4c9 5580 rld[r].reg_rtx = last_reg;
c74fa651
RS
5581 reload_inherited[r] = 1;
5582 reload_inheritance_insn[r]
5583 = reg_reloaded_insn[i];
5584 reload_spill_index[r] = i;
54c40e68
RS
5585 for (k = 0; k < nr; k++)
5586 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
e6e52be0 5587 i + k);
c74fa651 5588 }
32131a9c
RK
5589 }
5590 }
5591 }
5592 }
5593
5594 /* Here's another way to see if the value is already lying around. */
5595 if (inheritance
eceef4c9 5596 && rld[r].in != 0
32131a9c 5597 && ! reload_inherited[r]
eceef4c9
BS
5598 && rld[r].out == 0
5599 && (CONSTANT_P (rld[r].in)
5600 || GET_CODE (rld[r].in) == PLUS
5601 || GET_CODE (rld[r].in) == REG
5602 || GET_CODE (rld[r].in) == MEM)
8ec450a4 5603 && (rld[r].nregs == max_group_size
eceef4c9
BS
5604 || ! reg_classes_intersect_p (rld[r].class, group_class)))
5605 search_equiv = rld[r].in;
8593b745
R
5606 /* If this is an output reload from a simple move insn, look
5607 if an equivalence for the input is available. */
eceef4c9 5608 else if (inheritance && rld[r].in == 0 && rld[r].out != 0)
8593b745
R
5609 {
5610 rtx set = single_set (insn);
5611
5612 if (set
eceef4c9 5613 && rtx_equal_p (rld[r].out, SET_DEST (set))
8593b745
R
5614 && CONSTANT_P (SET_SRC (set)))
5615 search_equiv = SET_SRC (set);
5616 }
5617
5618 if (search_equiv)
32131a9c 5619 {
b3694847 5620 rtx equiv
eceef4c9 5621 = find_equiv_reg (search_equiv, insn, rld[r].class,
9714cf43 5622 -1, NULL, 0, rld[r].mode);
f428f252 5623 int regno = 0;
32131a9c
RK
5624
5625 if (equiv != 0)
5626 {
5627 if (GET_CODE (equiv) == REG)
5628 regno = REGNO (equiv);
5629 else if (GET_CODE (equiv) == SUBREG)
5630 {
f8a9e02b
RK
5631 /* This must be a SUBREG of a hard register.
5632 Make a new REG since this might be used in an
5633 address and not all machines support SUBREGs
5634 there. */
ddef6bc7 5635 regno = subreg_regno (equiv);
8ec450a4 5636 equiv = gen_rtx_REG (rld[r].mode, regno);
32131a9c
RK
5637 }
5638 else
5639 abort ();
5640 }
5641
5642 /* If we found a spill reg, reject it unless it is free
5643 and of the desired class. */
5644 if (equiv != 0
cb2afeb3 5645 && ((TEST_HARD_REG_BIT (reload_reg_used_at_all, regno)
c02cad8f
BS
5646 && ! free_for_value_p (regno, rld[r].mode,
5647 rld[r].opnum, rld[r].when_needed,
5648 rld[r].in, rld[r].out, r, 1))
eceef4c9 5649 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].class],
32131a9c
RK
5650 regno)))
5651 equiv = 0;
5652
8ec450a4 5653 if (equiv != 0 && ! HARD_REGNO_MODE_OK (regno, rld[r].mode))
32131a9c
RK
5654 equiv = 0;
5655
5656 /* We found a register that contains the value we need.
5657 If this register is the same as an `earlyclobber' operand
5658 of the current insn, just mark it as a place to reload from
5659 since we can't use it as the reload register itself. */
5660
5661 if (equiv != 0)
5662 for (i = 0; i < n_earlyclobbers; i++)
bfa30b22
RK
5663 if (reg_overlap_mentioned_for_reload_p (equiv,
5664 reload_earlyclobbers[i]))
32131a9c 5665 {
4c3a2649
BS
5666 if (! rld[r].optional)
5667 reload_override_in[r] = equiv;
32131a9c
RK
5668 equiv = 0;
5669 break;
5670 }
5671
3c785e47
R
5672 /* If the equiv register we have found is explicitly clobbered
5673 in the current insn, it depends on the reload type if we
5674 can use it, use it for reload_override_in, or not at all.
5675 In particular, we then can't use EQUIV for a
5676 RELOAD_FOR_OUTPUT_ADDRESS reload. */
32131a9c 5677
9532e31f 5678 if (equiv != 0)
174fa2c4 5679 {
9532e31f
BS
5680 if (regno_clobbered_p (regno, insn, rld[r].mode, 0))
5681 switch (rld[r].when_needed)
5682 {
5683 case RELOAD_FOR_OTHER_ADDRESS:
5684 case RELOAD_FOR_INPADDR_ADDRESS:
5685 case RELOAD_FOR_INPUT_ADDRESS:
5686 case RELOAD_FOR_OPADDR_ADDR:
5687 break;
5688 case RELOAD_OTHER:
5689 case RELOAD_FOR_INPUT:
5690 case RELOAD_FOR_OPERAND_ADDRESS:
5691 if (! rld[r].optional)
5692 reload_override_in[r] = equiv;
5693 /* Fall through. */
5694 default:
5695 equiv = 0;
5696 break;
5697 }
5698 else if (regno_clobbered_p (regno, insn, rld[r].mode, 1))
5699 switch (rld[r].when_needed)
5700 {
5701 case RELOAD_FOR_OTHER_ADDRESS:
5702 case RELOAD_FOR_INPADDR_ADDRESS:
5703 case RELOAD_FOR_INPUT_ADDRESS:
5704 case RELOAD_FOR_OPADDR_ADDR:
5705 case RELOAD_FOR_OPERAND_ADDRESS:
5706 case RELOAD_FOR_INPUT:
5707 break;
5708 case RELOAD_OTHER:
5709 if (! rld[r].optional)
5710 reload_override_in[r] = equiv;
5711 /* Fall through. */
5712 default:
5713 equiv = 0;
5714 break;
5715 }
32131a9c
RK
5716 }
5717
5718 /* If we found an equivalent reg, say no code need be generated
5719 to load it, and use it as our reload reg. */
3ec2ea3e 5720 if (equiv != 0 && regno != HARD_FRAME_POINTER_REGNUM)
32131a9c 5721 {
8ec450a4 5722 int nr = HARD_REGNO_NREGS (regno, rld[r].mode);
100338df 5723 int k;
eceef4c9 5724 rld[r].reg_rtx = equiv;
32131a9c 5725 reload_inherited[r] = 1;
100338df 5726
91d7e7ac
R
5727 /* If reg_reloaded_valid is not set for this register,
5728 there might be a stale spill_reg_store lying around.
5729 We must clear it, since otherwise emit_reload_insns
5730 might delete the store. */
5731 if (! TEST_HARD_REG_BIT (reg_reloaded_valid, regno))
5732 spill_reg_store[regno] = NULL_RTX;
100338df
JL
5733 /* If any of the hard registers in EQUIV are spill
5734 registers, mark them as in use for this insn. */
5735 for (k = 0; k < nr; k++)
be7ae2a4 5736 {
100338df
JL
5737 i = spill_reg_order[regno + k];
5738 if (i >= 0)
5739 {
eceef4c9
BS
5740 mark_reload_reg_in_use (regno, rld[r].opnum,
5741 rld[r].when_needed,
8ec450a4 5742 rld[r].mode);
100338df
JL
5743 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
5744 regno + k);
5745 }
be7ae2a4 5746 }
32131a9c
RK
5747 }
5748 }
5749
5750 /* If we found a register to use already, or if this is an optional
5751 reload, we are done. */
eceef4c9 5752 if (rld[r].reg_rtx != 0 || rld[r].optional != 0)
32131a9c
RK
5753 continue;
5754
1d7254c5
KH
5755#if 0
5756 /* No longer needed for correct operation. Might or might
5757 not give better code on the average. Want to experiment? */
32131a9c
RK
5758
5759 /* See if there is a later reload that has a class different from our
5760 class that intersects our class or that requires less register
5761 than our reload. If so, we must allocate a register to this
5762 reload now, since that reload might inherit a previous reload
5763 and take the only available register in our class. Don't do this
5764 for optional reloads since they will force all previous reloads
5765 to be allocated. Also don't do this for reloads that have been
5766 turned off. */
5767
5768 for (i = j + 1; i < n_reloads; i++)
5769 {
5770 int s = reload_order[i];
5771
eceef4c9
BS
5772 if ((rld[s].in == 0 && rld[s].out == 0
5773 && ! rld[s].secondary_p)
5774 || rld[s].optional)
32131a9c
RK
5775 continue;
5776
eceef4c9
BS
5777 if ((rld[s].class != rld[r].class
5778 && reg_classes_intersect_p (rld[r].class,
5779 rld[s].class))
8ec450a4 5780 || rld[s].nregs < rld[r].nregs)
05d10675 5781 break;
32131a9c
RK
5782 }
5783
5784 if (i == n_reloads)
5785 continue;
5786
f5d8c9f4 5787 allocate_reload_reg (chain, r, j == n_reloads - 1);
32131a9c
RK
5788#endif
5789 }
5790
5791 /* Now allocate reload registers for anything non-optional that
5792 didn't get one yet. */
5793 for (j = 0; j < n_reloads; j++)
5794 {
b3694847 5795 int r = reload_order[j];
32131a9c
RK
5796
5797 /* Ignore reloads that got marked inoperative. */
eceef4c9 5798 if (rld[r].out == 0 && rld[r].in == 0 && ! rld[r].secondary_p)
32131a9c
RK
5799 continue;
5800
5801 /* Skip reloads that already have a register allocated or are
0f41302f 5802 optional. */
eceef4c9 5803 if (rld[r].reg_rtx != 0 || rld[r].optional)
32131a9c
RK
5804 continue;
5805
f5d8c9f4 5806 if (! allocate_reload_reg (chain, r, j == n_reloads - 1))
32131a9c
RK
5807 break;
5808 }
5809
5810 /* If that loop got all the way, we have won. */
5811 if (j == n_reloads)
f5d8c9f4
BS
5812 {
5813 win = 1;
5814 break;
5815 }
32131a9c 5816
32131a9c 5817 /* Loop around and try without any inheritance. */
32131a9c
RK
5818 }
5819
f5d8c9f4
BS
5820 if (! win)
5821 {
5822 /* First undo everything done by the failed attempt
5823 to allocate with inheritance. */
5824 choose_reload_regs_init (chain, save_reload_reg_rtx);
5825
5826 /* Some sanity tests to verify that the reloads found in the first
5827 pass are identical to the ones we have now. */
5828 if (chain->n_reloads != n_reloads)
5829 abort ();
5830
5831 for (i = 0; i < n_reloads; i++)
5832 {
5833 if (chain->rld[i].regno < 0 || chain->rld[i].reg_rtx != 0)
5834 continue;
5835 if (chain->rld[i].when_needed != rld[i].when_needed)
5836 abort ();
5837 for (j = 0; j < n_spills; j++)
5838 if (spill_regs[j] == chain->rld[i].regno)
5839 if (! set_reload_reg (j, i))
5840 failed_reload (chain->insn, i);
5841 }
5842 }
5843
32131a9c
RK
5844 /* If we thought we could inherit a reload, because it seemed that
5845 nothing else wanted the same reload register earlier in the insn,
cb2afeb3
R
5846 verify that assumption, now that all reloads have been assigned.
5847 Likewise for reloads where reload_override_in has been set. */
32131a9c 5848
cb2afeb3
R
5849 /* If doing expensive optimizations, do one preliminary pass that doesn't
5850 cancel any inheritance, but removes reloads that have been needed only
5851 for reloads that we know can be inherited. */
5852 for (pass = flag_expensive_optimizations; pass >= 0; pass--)
32131a9c 5853 {
cb2afeb3 5854 for (j = 0; j < n_reloads; j++)
029b38ff 5855 {
b3694847 5856 int r = reload_order[j];
cb2afeb3 5857 rtx check_reg;
eceef4c9
BS
5858 if (reload_inherited[r] && rld[r].reg_rtx)
5859 check_reg = rld[r].reg_rtx;
cb2afeb3
R
5860 else if (reload_override_in[r]
5861 && (GET_CODE (reload_override_in[r]) == REG
05d10675 5862 || GET_CODE (reload_override_in[r]) == SUBREG))
cb2afeb3
R
5863 check_reg = reload_override_in[r];
5864 else
5865 continue;
c02cad8f
BS
5866 if (! free_for_value_p (true_regnum (check_reg), rld[r].mode,
5867 rld[r].opnum, rld[r].when_needed, rld[r].in,
5868 (reload_inherited[r]
5869 ? rld[r].out : const0_rtx),
5870 r, 1))
029b38ff 5871 {
cb2afeb3
R
5872 if (pass)
5873 continue;
5874 reload_inherited[r] = 0;
5875 reload_override_in[r] = 0;
029b38ff 5876 }
cb2afeb3
R
5877 /* If we can inherit a RELOAD_FOR_INPUT, or can use a
5878 reload_override_in, then we do not need its related
5879 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS reloads;
5880 likewise for other reload types.
5881 We handle this by removing a reload when its only replacement
5882 is mentioned in reload_in of the reload we are going to inherit.
5883 A special case are auto_inc expressions; even if the input is
5884 inherited, we still need the address for the output. We can
fe92fe26 5885 recognize them because they have RELOAD_OUT set to RELOAD_IN.
cb2afeb3
R
5886 If we suceeded removing some reload and we are doing a preliminary
5887 pass just to remove such reloads, make another pass, since the
5888 removal of one reload might allow us to inherit another one. */
eceef4c9
BS
5889 else if (rld[r].in
5890 && rld[r].out != rld[r].in
5891 && remove_address_replacements (rld[r].in) && pass)
cb2afeb3 5892 pass = 2;
32131a9c
RK
5893 }
5894 }
5895
5896 /* Now that reload_override_in is known valid,
5897 actually override reload_in. */
5898 for (j = 0; j < n_reloads; j++)
5899 if (reload_override_in[j])
eceef4c9 5900 rld[j].in = reload_override_in[j];
32131a9c
RK
5901
5902 /* If this reload won't be done because it has been cancelled or is
5903 optional and not inherited, clear reload_reg_rtx so other
5904 routines (such as subst_reloads) don't get confused. */
5905 for (j = 0; j < n_reloads; j++)
eceef4c9
BS
5906 if (rld[j].reg_rtx != 0
5907 && ((rld[j].optional && ! reload_inherited[j])
5908 || (rld[j].in == 0 && rld[j].out == 0
5909 && ! rld[j].secondary_p)))
be7ae2a4 5910 {
eceef4c9 5911 int regno = true_regnum (rld[j].reg_rtx);
be7ae2a4
RK
5912
5913 if (spill_reg_order[regno] >= 0)
eceef4c9 5914 clear_reload_reg_in_use (regno, rld[j].opnum,
8ec450a4 5915 rld[j].when_needed, rld[j].mode);
eceef4c9 5916 rld[j].reg_rtx = 0;
c0029be5 5917 reload_spill_index[j] = -1;
be7ae2a4 5918 }
32131a9c
RK
5919
5920 /* Record which pseudos and which spill regs have output reloads. */
5921 for (j = 0; j < n_reloads; j++)
5922 {
b3694847 5923 int r = reload_order[j];
32131a9c
RK
5924
5925 i = reload_spill_index[r];
5926
e6e52be0 5927 /* I is nonneg if this reload uses a register.
eceef4c9 5928 If rld[r].reg_rtx is 0, this is an optional reload
32131a9c 5929 that we opted to ignore. */
eceef4c9
BS
5930 if (rld[r].out_reg != 0 && GET_CODE (rld[r].out_reg) == REG
5931 && rld[r].reg_rtx != 0)
32131a9c 5932 {
b3694847 5933 int nregno = REGNO (rld[r].out_reg);
372e033b
RS
5934 int nr = 1;
5935
5936 if (nregno < FIRST_PSEUDO_REGISTER)
8ec450a4 5937 nr = HARD_REGNO_NREGS (nregno, rld[r].mode);
32131a9c
RK
5938
5939 while (--nr >= 0)
372e033b
RS
5940 reg_has_output_reload[nregno + nr] = 1;
5941
5942 if (i >= 0)
32131a9c 5943 {
8ec450a4 5944 nr = HARD_REGNO_NREGS (i, rld[r].mode);
372e033b 5945 while (--nr >= 0)
e6e52be0 5946 SET_HARD_REG_BIT (reg_is_output_reload, i + nr);
32131a9c
RK
5947 }
5948
eceef4c9
BS
5949 if (rld[r].when_needed != RELOAD_OTHER
5950 && rld[r].when_needed != RELOAD_FOR_OUTPUT
5951 && rld[r].when_needed != RELOAD_FOR_INSN)
32131a9c
RK
5952 abort ();
5953 }
5954 }
5955}
cb2afeb3
R
5956
5957/* Deallocate the reload register for reload R. This is called from
5958 remove_address_replacements. */
1d813780 5959
cb2afeb3
R
5960void
5961deallocate_reload_reg (r)
5962 int r;
5963{
5964 int regno;
5965
eceef4c9 5966 if (! rld[r].reg_rtx)
cb2afeb3 5967 return;
eceef4c9
BS
5968 regno = true_regnum (rld[r].reg_rtx);
5969 rld[r].reg_rtx = 0;
cb2afeb3 5970 if (spill_reg_order[regno] >= 0)
eceef4c9 5971 clear_reload_reg_in_use (regno, rld[r].opnum, rld[r].when_needed,
8ec450a4 5972 rld[r].mode);
cb2afeb3
R
5973 reload_spill_index[r] = -1;
5974}
32131a9c 5975\f
e9a25f70 5976/* If SMALL_REGISTER_CLASSES is non-zero, we may not have merged two
546b63fb
RK
5977 reloads of the same item for fear that we might not have enough reload
5978 registers. However, normally they will get the same reload register
05d10675 5979 and hence actually need not be loaded twice.
546b63fb
RK
5980
5981 Here we check for the most common case of this phenomenon: when we have
5982 a number of reloads for the same object, each of which were allocated
5983 the same reload_reg_rtx, that reload_reg_rtx is not used for any other
5984 reload, and is not modified in the insn itself. If we find such,
5985 merge all the reloads and set the resulting reload to RELOAD_OTHER.
5986 This will not increase the number of spill registers needed and will
5987 prevent redundant code. */
5988
546b63fb
RK
5989static void
5990merge_assigned_reloads (insn)
5991 rtx insn;
5992{
5993 int i, j;
5994
5995 /* Scan all the reloads looking for ones that only load values and
5996 are not already RELOAD_OTHER and ones whose reload_reg_rtx are
5997 assigned and not modified by INSN. */
5998
5999 for (i = 0; i < n_reloads; i++)
6000 {
d668e863
R
6001 int conflicting_input = 0;
6002 int max_input_address_opnum = -1;
6003 int min_conflicting_input_opnum = MAX_RECOG_OPERANDS;
6004
eceef4c9
BS
6005 if (rld[i].in == 0 || rld[i].when_needed == RELOAD_OTHER
6006 || rld[i].out != 0 || rld[i].reg_rtx == 0
6007 || reg_set_p (rld[i].reg_rtx, insn))
546b63fb
RK
6008 continue;
6009
6010 /* Look at all other reloads. Ensure that the only use of this
6011 reload_reg_rtx is in a reload that just loads the same value
6012 as we do. Note that any secondary reloads must be of the identical
6013 class since the values, modes, and result registers are the
6014 same, so we need not do anything with any secondary reloads. */
6015
6016 for (j = 0; j < n_reloads; j++)
6017 {
eceef4c9
BS
6018 if (i == j || rld[j].reg_rtx == 0
6019 || ! reg_overlap_mentioned_p (rld[j].reg_rtx,
6020 rld[i].reg_rtx))
546b63fb
RK
6021 continue;
6022
eceef4c9
BS
6023 if (rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
6024 && rld[j].opnum > max_input_address_opnum)
6025 max_input_address_opnum = rld[j].opnum;
d668e863 6026
546b63fb 6027 /* If the reload regs aren't exactly the same (e.g, different modes)
d668e863
R
6028 or if the values are different, we can't merge this reload.
6029 But if it is an input reload, we might still merge
6030 RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_OTHER_ADDRESS reloads. */
546b63fb 6031
eceef4c9
BS
6032 if (! rtx_equal_p (rld[i].reg_rtx, rld[j].reg_rtx)
6033 || rld[j].out != 0 || rld[j].in == 0
6034 || ! rtx_equal_p (rld[i].in, rld[j].in))
d668e863 6035 {
eceef4c9
BS
6036 if (rld[j].when_needed != RELOAD_FOR_INPUT
6037 || ((rld[i].when_needed != RELOAD_FOR_INPUT_ADDRESS
6038 || rld[i].opnum > rld[j].opnum)
6039 && rld[i].when_needed != RELOAD_FOR_OTHER_ADDRESS))
d668e863
R
6040 break;
6041 conflicting_input = 1;
eceef4c9
BS
6042 if (min_conflicting_input_opnum > rld[j].opnum)
6043 min_conflicting_input_opnum = rld[j].opnum;
d668e863 6044 }
546b63fb
RK
6045 }
6046
6047 /* If all is OK, merge the reloads. Only set this to RELOAD_OTHER if
6048 we, in fact, found any matching reloads. */
6049
d668e863
R
6050 if (j == n_reloads
6051 && max_input_address_opnum <= min_conflicting_input_opnum)
546b63fb
RK
6052 {
6053 for (j = 0; j < n_reloads; j++)
eceef4c9
BS
6054 if (i != j && rld[j].reg_rtx != 0
6055 && rtx_equal_p (rld[i].reg_rtx, rld[j].reg_rtx)
d668e863 6056 && (! conflicting_input
eceef4c9
BS
6057 || rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
6058 || rld[j].when_needed == RELOAD_FOR_OTHER_ADDRESS))
546b63fb 6059 {
eceef4c9
BS
6060 rld[i].when_needed = RELOAD_OTHER;
6061 rld[j].in = 0;
efdb3590 6062 reload_spill_index[j] = -1;
546b63fb
RK
6063 transfer_replacements (i, j);
6064 }
6065
6066 /* If this is now RELOAD_OTHER, look for any reloads that load
6067 parts of this operand and set them to RELOAD_FOR_OTHER_ADDRESS
6068 if they were for inputs, RELOAD_OTHER for outputs. Note that
6069 this test is equivalent to looking for reloads for this operand
6070 number. */
6071
eceef4c9 6072 if (rld[i].when_needed == RELOAD_OTHER)
546b63fb 6073 for (j = 0; j < n_reloads; j++)
eceef4c9 6074 if (rld[j].in != 0
91667711 6075 && rld[j].when_needed != RELOAD_OTHER
eceef4c9
BS
6076 && reg_overlap_mentioned_for_reload_p (rld[j].in,
6077 rld[i].in))
6078 rld[j].when_needed
91667711
SC
6079 = ((rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
6080 || rld[j].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
47c8cf91 6081 ? RELOAD_FOR_OTHER_ADDRESS : RELOAD_OTHER);
546b63fb
RK
6082 }
6083 }
05d10675 6084}
546b63fb 6085\f
367b1cf5
BS
6086/* These arrays are filled by emit_reload_insns and its subroutines. */
6087static rtx input_reload_insns[MAX_RECOG_OPERANDS];
6088static rtx other_input_address_reload_insns = 0;
6089static rtx other_input_reload_insns = 0;
6090static rtx input_address_reload_insns[MAX_RECOG_OPERANDS];
6091static rtx inpaddr_address_reload_insns[MAX_RECOG_OPERANDS];
6092static rtx output_reload_insns[MAX_RECOG_OPERANDS];
6093static rtx output_address_reload_insns[MAX_RECOG_OPERANDS];
6094static rtx outaddr_address_reload_insns[MAX_RECOG_OPERANDS];
6095static rtx operand_reload_insns = 0;
6096static rtx other_operand_reload_insns = 0;
6097static rtx other_output_reload_insns[MAX_RECOG_OPERANDS];
6098
6099/* Values to be put in spill_reg_store are put here first. */
6100static rtx new_spill_reg_store[FIRST_PSEUDO_REGISTER];
6101static HARD_REG_SET reg_reloaded_died;
6102
6103/* Generate insns to perform reload RL, which is for the insn in CHAIN and
6104 has the number J. OLD contains the value to be used as input. */
770ae6cc 6105
32131a9c 6106static void
367b1cf5 6107emit_input_reload_insns (chain, rl, old, j)
7609e720 6108 struct insn_chain *chain;
367b1cf5
BS
6109 struct reload *rl;
6110 rtx old;
6111 int j;
32131a9c 6112{
7609e720 6113 rtx insn = chain->insn;
b3694847 6114 rtx reloadreg = rl->reg_rtx;
367b1cf5
BS
6115 rtx oldequiv_reg = 0;
6116 rtx oldequiv = 0;
6117 int special = 0;
6118 enum machine_mode mode;
6119 rtx *where;
6120
6121 /* Determine the mode to reload in.
6122 This is very tricky because we have three to choose from.
6123 There is the mode the insn operand wants (rl->inmode).
6124 There is the mode of the reload register RELOADREG.
6125 There is the intrinsic mode of the operand, which we could find
6126 by stripping some SUBREGs.
6127 It turns out that RELOADREG's mode is irrelevant:
6128 we can change that arbitrarily.
6129
6130 Consider (SUBREG:SI foo:QI) as an operand that must be SImode;
6131 then the reload reg may not support QImode moves, so use SImode.
6132 If foo is in memory due to spilling a pseudo reg, this is safe,
6133 because the QImode value is in the least significant part of a
6134 slot big enough for a SImode. If foo is some other sort of
6135 memory reference, then it is impossible to reload this case,
6136 so previous passes had better make sure this never happens.
6137
6138 Then consider a one-word union which has SImode and one of its
6139 members is a float, being fetched as (SUBREG:SF union:SI).
6140 We must fetch that as SFmode because we could be loading into
6141 a float-only register. In this case OLD's mode is correct.
6142
6143 Consider an immediate integer: it has VOIDmode. Here we need
6144 to get a mode from something else.
6145
6146 In some cases, there is a fourth mode, the operand's
6147 containing mode. If the insn specifies a containing mode for
6148 this operand, it overrides all others.
6149
6150 I am not sure whether the algorithm here is always right,
6151 but it does the right things in those cases. */
6152
6153 mode = GET_MODE (old);
6154 if (mode == VOIDmode)
6155 mode = rl->inmode;
7609e720 6156
367b1cf5
BS
6157#ifdef SECONDARY_INPUT_RELOAD_CLASS
6158 /* If we need a secondary register for this operation, see if
6159 the value is already in a register in that class. Don't
6160 do this if the secondary register will be used as a scratch
6161 register. */
6162
6163 if (rl->secondary_in_reload >= 0
6164 && rl->secondary_in_icode == CODE_FOR_nothing
6165 && optimize)
6166 oldequiv
6167 = find_equiv_reg (old, insn,
6168 rld[rl->secondary_in_reload].class,
9714cf43 6169 -1, NULL, 0, mode);
367b1cf5 6170#endif
e6e52be0 6171
367b1cf5
BS
6172 /* If reloading from memory, see if there is a register
6173 that already holds the same value. If so, reload from there.
6174 We can pass 0 as the reload_reg_p argument because
6175 any other reload has either already been emitted,
6176 in which case find_equiv_reg will see the reload-insn,
6177 or has yet to be emitted, in which case it doesn't matter
6178 because we will use this equiv reg right away. */
6179
6180 if (oldequiv == 0 && optimize
6181 && (GET_CODE (old) == MEM
6182 || (GET_CODE (old) == REG
6183 && REGNO (old) >= FIRST_PSEUDO_REGISTER
6184 && reg_renumber[REGNO (old)] < 0)))
9714cf43 6185 oldequiv = find_equiv_reg (old, insn, ALL_REGS, -1, NULL, 0, mode);
367b1cf5
BS
6186
6187 if (oldequiv)
6188 {
770ae6cc 6189 unsigned int regno = true_regnum (oldequiv);
367b1cf5
BS
6190
6191 /* Don't use OLDEQUIV if any other reload changes it at an
6192 earlier stage of this insn or at this stage. */
c02cad8f
BS
6193 if (! free_for_value_p (regno, rl->mode, rl->opnum, rl->when_needed,
6194 rl->in, const0_rtx, j, 0))
367b1cf5
BS
6195 oldequiv = 0;
6196
6197 /* If it is no cheaper to copy from OLDEQUIV into the
6198 reload register than it would be to move from memory,
6199 don't use it. Likewise, if we need a secondary register
6d2f8887 6200 or memory. */
367b1cf5
BS
6201
6202 if (oldequiv != 0
6203 && ((REGNO_REG_CLASS (regno) != rl->class
e56b4594 6204 && (REGISTER_MOVE_COST (mode, REGNO_REG_CLASS (regno),
367b1cf5
BS
6205 rl->class)
6206 >= MEMORY_MOVE_COST (mode, rl->class, 1)))
6207#ifdef SECONDARY_INPUT_RELOAD_CLASS
6208 || (SECONDARY_INPUT_RELOAD_CLASS (rl->class,
6209 mode, oldequiv)
6210 != NO_REGS)
6211#endif
6212#ifdef SECONDARY_MEMORY_NEEDED
6213 || SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (regno),
6214 rl->class,
6215 mode)
6216#endif
6217 ))
6218 oldequiv = 0;
6219 }
32131a9c 6220
367b1cf5
BS
6221 /* delete_output_reload is only invoked properly if old contains
6222 the original pseudo register. Since this is replaced with a
6223 hard reg when RELOAD_OVERRIDE_IN is set, see if we can
6224 find the pseudo in RELOAD_IN_REG. */
6225 if (oldequiv == 0
6226 && reload_override_in[j]
6227 && GET_CODE (rl->in_reg) == REG)
6228 {
6229 oldequiv = old;
6230 old = rl->in_reg;
6231 }
6232 if (oldequiv == 0)
6233 oldequiv = old;
6234 else if (GET_CODE (oldequiv) == REG)
6235 oldequiv_reg = oldequiv;
6236 else if (GET_CODE (oldequiv) == SUBREG)
6237 oldequiv_reg = SUBREG_REG (oldequiv);
6238
6239 /* If we are reloading from a register that was recently stored in
6240 with an output-reload, see if we can prove there was
6241 actually no need to store the old value in it. */
6242
6243 if (optimize && GET_CODE (oldequiv) == REG
6244 && REGNO (oldequiv) < FIRST_PSEUDO_REGISTER
6245 && spill_reg_store[REGNO (oldequiv)]
6246 && GET_CODE (old) == REG
6247 && (dead_or_set_p (insn, spill_reg_stored_to[REGNO (oldequiv)])
6248 || rtx_equal_p (spill_reg_stored_to[REGNO (oldequiv)],
6249 rl->out_reg)))
6250 delete_output_reload (insn, j, REGNO (oldequiv));
6251
6252 /* Encapsulate both RELOADREG and OLDEQUIV into that mode,
6253 then load RELOADREG from OLDEQUIV. Note that we cannot use
6254 gen_lowpart_common since it can do the wrong thing when
6255 RELOADREG has a multi-word mode. Note that RELOADREG
6256 must always be a REG here. */
6257
6258 if (GET_MODE (reloadreg) != mode)
6259 reloadreg = gen_rtx_REG (mode, REGNO (reloadreg));
6260 while (GET_CODE (oldequiv) == SUBREG && GET_MODE (oldequiv) != mode)
6261 oldequiv = SUBREG_REG (oldequiv);
6262 if (GET_MODE (oldequiv) != VOIDmode
6263 && mode != GET_MODE (oldequiv))
ddef6bc7 6264 oldequiv = gen_lowpart_SUBREG (mode, oldequiv);
367b1cf5
BS
6265
6266 /* Switch to the right place to emit the reload insns. */
6267 switch (rl->when_needed)
6268 {
6269 case RELOAD_OTHER:
6270 where = &other_input_reload_insns;
6271 break;
6272 case RELOAD_FOR_INPUT:
6273 where = &input_reload_insns[rl->opnum];
6274 break;
6275 case RELOAD_FOR_INPUT_ADDRESS:
6276 where = &input_address_reload_insns[rl->opnum];
6277 break;
6278 case RELOAD_FOR_INPADDR_ADDRESS:
6279 where = &inpaddr_address_reload_insns[rl->opnum];
6280 break;
6281 case RELOAD_FOR_OUTPUT_ADDRESS:
6282 where = &output_address_reload_insns[rl->opnum];
6283 break;
6284 case RELOAD_FOR_OUTADDR_ADDRESS:
6285 where = &outaddr_address_reload_insns[rl->opnum];
6286 break;
6287 case RELOAD_FOR_OPERAND_ADDRESS:
6288 where = &operand_reload_insns;
6289 break;
6290 case RELOAD_FOR_OPADDR_ADDR:
6291 where = &other_operand_reload_insns;
6292 break;
6293 case RELOAD_FOR_OTHER_ADDRESS:
6294 where = &other_input_address_reload_insns;
6295 break;
6296 default:
6297 abort ();
6298 }
546b63fb 6299
367b1cf5 6300 push_to_sequence (*where);
32131a9c 6301
367b1cf5
BS
6302 /* Auto-increment addresses must be reloaded in a special way. */
6303 if (rl->out && ! rl->out_reg)
32131a9c 6304 {
367b1cf5
BS
6305 /* We are not going to bother supporting the case where a
6306 incremented register can't be copied directly from
6307 OLDEQUIV since this seems highly unlikely. */
6308 if (rl->secondary_in_reload >= 0)
6309 abort ();
32131a9c 6310
367b1cf5
BS
6311 if (reload_inherited[j])
6312 oldequiv = reloadreg;
cb2afeb3 6313
367b1cf5 6314 old = XEXP (rl->in_reg, 0);
32131a9c 6315
367b1cf5
BS
6316 if (optimize && GET_CODE (oldequiv) == REG
6317 && REGNO (oldequiv) < FIRST_PSEUDO_REGISTER
6318 && spill_reg_store[REGNO (oldequiv)]
6319 && GET_CODE (old) == REG
6320 && (dead_or_set_p (insn,
6321 spill_reg_stored_to[REGNO (oldequiv)])
6322 || rtx_equal_p (spill_reg_stored_to[REGNO (oldequiv)],
6323 old)))
6324 delete_output_reload (insn, j, REGNO (oldequiv));
6325
6326 /* Prevent normal processing of this reload. */
6327 special = 1;
6328 /* Output a special code sequence for this case. */
6329 new_spill_reg_store[REGNO (reloadreg)]
6330 = inc_for_reload (reloadreg, oldequiv, rl->out,
6331 rl->inc);
6332 }
32131a9c 6333
367b1cf5
BS
6334 /* If we are reloading a pseudo-register that was set by the previous
6335 insn, see if we can get rid of that pseudo-register entirely
6336 by redirecting the previous insn into our reload register. */
6337
6338 else if (optimize && GET_CODE (old) == REG
6339 && REGNO (old) >= FIRST_PSEUDO_REGISTER
6340 && dead_or_set_p (insn, old)
6341 /* This is unsafe if some other reload
6342 uses the same reg first. */
ff6534ad 6343 && ! conflicts_with_override (reloadreg)
c02cad8f
BS
6344 && free_for_value_p (REGNO (reloadreg), rl->mode, rl->opnum,
6345 rl->when_needed, old, rl->out, j, 0))
367b1cf5
BS
6346 {
6347 rtx temp = PREV_INSN (insn);
6348 while (temp && GET_CODE (temp) == NOTE)
6349 temp = PREV_INSN (temp);
6350 if (temp
6351 && GET_CODE (temp) == INSN
6352 && GET_CODE (PATTERN (temp)) == SET
6353 && SET_DEST (PATTERN (temp)) == old
6354 /* Make sure we can access insn_operand_constraint. */
6355 && asm_noperands (PATTERN (temp)) < 0
6356 /* This is unsafe if prev insn rejects our reload reg. */
6357 && constraint_accepts_reg_p (insn_data[recog_memoized (temp)].operand[0].constraint,
6358 reloadreg)
6359 /* This is unsafe if operand occurs more than once in current
6360 insn. Perhaps some occurrences aren't reloaded. */
4b983fdc 6361 && count_occurrences (PATTERN (insn), old, 0) == 1
367b1cf5
BS
6362 /* Don't risk splitting a matching pair of operands. */
6363 && ! reg_mentioned_p (old, SET_SRC (PATTERN (temp))))
6364 {
6365 /* Store into the reload register instead of the pseudo. */
6366 SET_DEST (PATTERN (temp)) = reloadreg;
6367
6368 /* If the previous insn is an output reload, the source is
6369 a reload register, and its spill_reg_store entry will
6370 contain the previous destination. This is now
6371 invalid. */
6372 if (GET_CODE (SET_SRC (PATTERN (temp))) == REG
6373 && REGNO (SET_SRC (PATTERN (temp))) < FIRST_PSEUDO_REGISTER)
32131a9c 6374 {
367b1cf5
BS
6375 spill_reg_store[REGNO (SET_SRC (PATTERN (temp)))] = 0;
6376 spill_reg_stored_to[REGNO (SET_SRC (PATTERN (temp)))] = 0;
32131a9c
RK
6377 }
6378
367b1cf5
BS
6379 /* If these are the only uses of the pseudo reg,
6380 pretend for GDB it lives in the reload reg we used. */
6381 if (REG_N_DEATHS (REGNO (old)) == 1
6382 && REG_N_SETS (REGNO (old)) == 1)
cb2afeb3 6383 {
367b1cf5
BS
6384 reg_renumber[REGNO (old)] = REGNO (rl->reg_rtx);
6385 alter_reg (REGNO (old), -1);
32131a9c 6386 }
07875628 6387 special = 1;
367b1cf5
BS
6388 }
6389 }
32131a9c 6390
367b1cf5 6391 /* We can't do that, so output an insn to load RELOADREG. */
32131a9c 6392
367b1cf5
BS
6393#ifdef SECONDARY_INPUT_RELOAD_CLASS
6394 /* If we have a secondary reload, pick up the secondary register
6395 and icode, if any. If OLDEQUIV and OLD are different or
6396 if this is an in-out reload, recompute whether or not we
6397 still need a secondary register and what the icode should
6398 be. If we still need a secondary register and the class or
6399 icode is different, go back to reloading from OLD if using
6400 OLDEQUIV means that we got the wrong type of register. We
6401 cannot have different class or icode due to an in-out reload
6402 because we don't make such reloads when both the input and
6403 output need secondary reload registers. */
6404
07875628 6405 if (! special && rl->secondary_in_reload >= 0)
367b1cf5
BS
6406 {
6407 rtx second_reload_reg = 0;
6408 int secondary_reload = rl->secondary_in_reload;
6409 rtx real_oldequiv = oldequiv;
6410 rtx real_old = old;
6411 rtx tmp;
6412 enum insn_code icode;
6413
6414 /* If OLDEQUIV is a pseudo with a MEM, get the real MEM
6415 and similarly for OLD.
6416 See comments in get_secondary_reload in reload.c. */
6417 /* If it is a pseudo that cannot be replaced with its
6418 equivalent MEM, we must fall back to reload_in, which
6419 will have all the necessary substitutions registered.
6420 Likewise for a pseudo that can't be replaced with its
6421 equivalent constant.
6422
6423 Take extra care for subregs of such pseudos. Note that
6424 we cannot use reg_equiv_mem in this case because it is
6425 not in the right mode. */
6426
6427 tmp = oldequiv;
6428 if (GET_CODE (tmp) == SUBREG)
6429 tmp = SUBREG_REG (tmp);
6430 if (GET_CODE (tmp) == REG
6431 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
6432 && (reg_equiv_memory_loc[REGNO (tmp)] != 0
6433 || reg_equiv_constant[REGNO (tmp)] != 0))
6434 {
6435 if (! reg_equiv_mem[REGNO (tmp)]
6436 || num_not_at_initial_offset
6437 || GET_CODE (oldequiv) == SUBREG)
6438 real_oldequiv = rl->in;
6439 else
6440 real_oldequiv = reg_equiv_mem[REGNO (tmp)];
6441 }
32131a9c 6442
367b1cf5
BS
6443 tmp = old;
6444 if (GET_CODE (tmp) == SUBREG)
6445 tmp = SUBREG_REG (tmp);
6446 if (GET_CODE (tmp) == REG
6447 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
6448 && (reg_equiv_memory_loc[REGNO (tmp)] != 0
6449 || reg_equiv_constant[REGNO (tmp)] != 0))
6450 {
6451 if (! reg_equiv_mem[REGNO (tmp)]
6452 || num_not_at_initial_offset
6453 || GET_CODE (old) == SUBREG)
6454 real_old = rl->in;
6455 else
6456 real_old = reg_equiv_mem[REGNO (tmp)];
6457 }
6458
6459 second_reload_reg = rld[secondary_reload].reg_rtx;
6460 icode = rl->secondary_in_icode;
6461
6462 if ((old != oldequiv && ! rtx_equal_p (old, oldequiv))
6463 || (rl->in != 0 && rl->out != 0))
6464 {
6465 enum reg_class new_class
6466 = SECONDARY_INPUT_RELOAD_CLASS (rl->class,
6467 mode, real_oldequiv);
6468
6469 if (new_class == NO_REGS)
6470 second_reload_reg = 0;
6471 else
32131a9c 6472 {
367b1cf5
BS
6473 enum insn_code new_icode;
6474 enum machine_mode new_mode;
6475
6476 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) new_class],
6477 REGNO (second_reload_reg)))
6478 oldequiv = old, real_oldequiv = real_old;
6479 else
32131a9c 6480 {
367b1cf5
BS
6481 new_icode = reload_in_optab[(int) mode];
6482 if (new_icode != CODE_FOR_nothing
6483 && ((insn_data[(int) new_icode].operand[0].predicate
6484 && ! ((*insn_data[(int) new_icode].operand[0].predicate)
6485 (reloadreg, mode)))
6486 || (insn_data[(int) new_icode].operand[1].predicate
6487 && ! ((*insn_data[(int) new_icode].operand[1].predicate)
6488 (real_oldequiv, mode)))))
6489 new_icode = CODE_FOR_nothing;
6490
6491 if (new_icode == CODE_FOR_nothing)
6492 new_mode = mode;
6493 else
6494 new_mode = insn_data[(int) new_icode].operand[2].mode;
d30e8ef0 6495
367b1cf5 6496 if (GET_MODE (second_reload_reg) != new_mode)
32131a9c 6497 {
367b1cf5
BS
6498 if (!HARD_REGNO_MODE_OK (REGNO (second_reload_reg),
6499 new_mode))
6500 oldequiv = old, real_oldequiv = real_old;
6501 else
6502 second_reload_reg
6503 = gen_rtx_REG (new_mode,
6504 REGNO (second_reload_reg));
32131a9c 6505 }
32131a9c
RK
6506 }
6507 }
367b1cf5 6508 }
32131a9c 6509
367b1cf5
BS
6510 /* If we still need a secondary reload register, check
6511 to see if it is being used as a scratch or intermediate
6512 register and generate code appropriately. If we need
6513 a scratch register, use REAL_OLDEQUIV since the form of
6514 the insn may depend on the actual address if it is
6515 a MEM. */
546b63fb 6516
367b1cf5
BS
6517 if (second_reload_reg)
6518 {
6519 if (icode != CODE_FOR_nothing)
32131a9c 6520 {
367b1cf5
BS
6521 emit_insn (GEN_FCN (icode) (reloadreg, real_oldequiv,
6522 second_reload_reg));
07875628 6523 special = 1;
367b1cf5
BS
6524 }
6525 else
6526 {
6527 /* See if we need a scratch register to load the
6528 intermediate register (a tertiary reload). */
6529 enum insn_code tertiary_icode
6530 = rld[secondary_reload].secondary_in_icode;
1554c2c6 6531
367b1cf5
BS
6532 if (tertiary_icode != CODE_FOR_nothing)
6533 {
6534 rtx third_reload_reg
6535 = rld[rld[secondary_reload].secondary_in_reload].reg_rtx;
1554c2c6 6536
367b1cf5
BS
6537 emit_insn ((GEN_FCN (tertiary_icode)
6538 (second_reload_reg, real_oldequiv,
6539 third_reload_reg)));
6540 }
6541 else
6542 gen_reload (second_reload_reg, real_oldequiv,
6543 rl->opnum,
6544 rl->when_needed);
32131a9c 6545
367b1cf5
BS
6546 oldequiv = second_reload_reg;
6547 }
6548 }
6549 }
6550#endif
32131a9c 6551
07875628 6552 if (! special && ! rtx_equal_p (reloadreg, oldequiv))
367b1cf5
BS
6553 {
6554 rtx real_oldequiv = oldequiv;
6555
6556 if ((GET_CODE (oldequiv) == REG
6557 && REGNO (oldequiv) >= FIRST_PSEUDO_REGISTER
6558 && (reg_equiv_memory_loc[REGNO (oldequiv)] != 0
6559 || reg_equiv_constant[REGNO (oldequiv)] != 0))
6560 || (GET_CODE (oldequiv) == SUBREG
6561 && GET_CODE (SUBREG_REG (oldequiv)) == REG
6562 && (REGNO (SUBREG_REG (oldequiv))
6563 >= FIRST_PSEUDO_REGISTER)
6564 && ((reg_equiv_memory_loc
6565 [REGNO (SUBREG_REG (oldequiv))] != 0)
6566 || (reg_equiv_constant
716120a7
JJ
6567 [REGNO (SUBREG_REG (oldequiv))] != 0)))
6568 || (CONSTANT_P (oldequiv)
6569 && PREFERRED_RELOAD_CLASS (oldequiv,
6570 REGNO_REG_CLASS (REGNO (reloadreg))) == NO_REGS))
367b1cf5
BS
6571 real_oldequiv = rl->in;
6572 gen_reload (reloadreg, real_oldequiv, rl->opnum,
6573 rl->when_needed);
6574 }
32131a9c 6575
94bd63e5
AH
6576 if (flag_non_call_exceptions)
6577 copy_eh_notes (insn, get_insns ());
6578
367b1cf5
BS
6579 /* End this sequence. */
6580 *where = get_insns ();
6581 end_sequence ();
94bd63e5 6582
367b1cf5
BS
6583 /* Update reload_override_in so that delete_address_reloads_1
6584 can see the actual register usage. */
6585 if (oldequiv_reg)
6586 reload_override_in[j] = oldequiv;
6587}
32131a9c 6588
367b1cf5
BS
6589/* Generate insns to for the output reload RL, which is for the insn described
6590 by CHAIN and has the number J. */
6591static void
6592emit_output_reload_insns (chain, rl, j)
6593 struct insn_chain *chain;
6594 struct reload *rl;
6595 int j;
6596{
6597 rtx reloadreg = rl->reg_rtx;
6598 rtx insn = chain->insn;
6599 int special = 0;
6600 rtx old = rl->out;
6601 enum machine_mode mode = GET_MODE (old);
6602 rtx p;
32131a9c 6603
367b1cf5
BS
6604 if (rl->when_needed == RELOAD_OTHER)
6605 start_sequence ();
6606 else
6607 push_to_sequence (output_reload_insns[rl->opnum]);
32131a9c 6608
367b1cf5
BS
6609 /* Determine the mode to reload in.
6610 See comments above (for input reloading). */
32131a9c 6611
367b1cf5
BS
6612 if (mode == VOIDmode)
6613 {
6614 /* VOIDmode should never happen for an output. */
6615 if (asm_noperands (PATTERN (insn)) < 0)
6616 /* It's the compiler's fault. */
6617 fatal_insn ("VOIDmode on an output", insn);
6618 error_for_asm (insn, "output operand is constant in `asm'");
6619 /* Prevent crash--use something we know is valid. */
6620 mode = word_mode;
6621 old = gen_rtx_REG (mode, REGNO (reloadreg));
6622 }
546b63fb 6623
367b1cf5
BS
6624 if (GET_MODE (reloadreg) != mode)
6625 reloadreg = gen_rtx_REG (mode, REGNO (reloadreg));
32131a9c 6626
367b1cf5 6627#ifdef SECONDARY_OUTPUT_RELOAD_CLASS
32131a9c 6628
367b1cf5
BS
6629 /* If we need two reload regs, set RELOADREG to the intermediate
6630 one, since it will be stored into OLD. We might need a secondary
6631 register only for an input reload, so check again here. */
32131a9c 6632
367b1cf5
BS
6633 if (rl->secondary_out_reload >= 0)
6634 {
6635 rtx real_old = old;
cb2afeb3 6636
367b1cf5
BS
6637 if (GET_CODE (old) == REG && REGNO (old) >= FIRST_PSEUDO_REGISTER
6638 && reg_equiv_mem[REGNO (old)] != 0)
6639 real_old = reg_equiv_mem[REGNO (old)];
32131a9c 6640
367b1cf5
BS
6641 if ((SECONDARY_OUTPUT_RELOAD_CLASS (rl->class,
6642 mode, real_old)
6643 != NO_REGS))
b60a8416 6644 {
367b1cf5
BS
6645 rtx second_reloadreg = reloadreg;
6646 reloadreg = rld[rl->secondary_out_reload].reg_rtx;
32131a9c 6647
367b1cf5
BS
6648 /* See if RELOADREG is to be used as a scratch register
6649 or as an intermediate register. */
6650 if (rl->secondary_out_icode != CODE_FOR_nothing)
6651 {
6652 emit_insn ((GEN_FCN (rl->secondary_out_icode)
6653 (real_old, second_reloadreg, reloadreg)));
6654 special = 1;
6655 }
6656 else
6657 {
6658 /* See if we need both a scratch and intermediate reload
6659 register. */
32131a9c 6660
367b1cf5
BS
6661 int secondary_reload = rl->secondary_out_reload;
6662 enum insn_code tertiary_icode
6663 = rld[secondary_reload].secondary_out_icode;
32131a9c 6664
367b1cf5
BS
6665 if (GET_MODE (reloadreg) != mode)
6666 reloadreg = gen_rtx_REG (mode, REGNO (reloadreg));
cb2afeb3 6667
367b1cf5
BS
6668 if (tertiary_icode != CODE_FOR_nothing)
6669 {
6670 rtx third_reloadreg
6671 = rld[rld[secondary_reload].secondary_out_reload].reg_rtx;
6672 rtx tem;
6673
6674 /* Copy primary reload reg to secondary reload reg.
6675 (Note that these have been swapped above, then
78adc5a0 6676 secondary reload reg to OLD using our insn.) */
367b1cf5
BS
6677
6678 /* If REAL_OLD is a paradoxical SUBREG, remove it
6679 and try to put the opposite SUBREG on
6680 RELOADREG. */
6681 if (GET_CODE (real_old) == SUBREG
6682 && (GET_MODE_SIZE (GET_MODE (real_old))
6683 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (real_old))))
6684 && 0 != (tem = gen_lowpart_common
6685 (GET_MODE (SUBREG_REG (real_old)),
6686 reloadreg)))
6687 real_old = SUBREG_REG (real_old), reloadreg = tem;
6688
6689 gen_reload (reloadreg, second_reloadreg,
6690 rl->opnum, rl->when_needed);
6691 emit_insn ((GEN_FCN (tertiary_icode)
6692 (real_old, reloadreg, third_reloadreg)));
6693 special = 1;
6694 }
05d10675 6695
367b1cf5
BS
6696 else
6697 /* Copy between the reload regs here and then to
6698 OUT later. */
cb2afeb3 6699
367b1cf5
BS
6700 gen_reload (reloadreg, second_reloadreg,
6701 rl->opnum, rl->when_needed);
a7911cd2 6702 }
367b1cf5
BS
6703 }
6704 }
32131a9c
RK
6705#endif
6706
367b1cf5
BS
6707 /* Output the last reload insn. */
6708 if (! special)
6709 {
6710 rtx set;
6711
6712 /* Don't output the last reload if OLD is not the dest of
1d7254c5 6713 INSN and is in the src and is clobbered by INSN. */
367b1cf5
BS
6714 if (! flag_expensive_optimizations
6715 || GET_CODE (old) != REG
6716 || !(set = single_set (insn))
6717 || rtx_equal_p (old, SET_DEST (set))
6718 || !reg_mentioned_p (old, SET_SRC (set))
9532e31f 6719 || !regno_clobbered_p (REGNO (old), insn, rl->mode, 0))
367b1cf5
BS
6720 gen_reload (old, reloadreg, rl->opnum,
6721 rl->when_needed);
6722 }
32131a9c 6723
367b1cf5
BS
6724 /* Look at all insns we emitted, just to be safe. */
6725 for (p = get_insns (); p; p = NEXT_INSN (p))
2c3c49de 6726 if (INSN_P (p))
367b1cf5
BS
6727 {
6728 rtx pat = PATTERN (p);
546b63fb 6729
367b1cf5
BS
6730 /* If this output reload doesn't come from a spill reg,
6731 clear any memory of reloaded copies of the pseudo reg.
6732 If this output reload comes from a spill reg,
6733 reg_has_output_reload will make this do nothing. */
6734 note_stores (pat, forget_old_reloads_1, NULL);
cb2afeb3 6735
367b1cf5
BS
6736 if (reg_mentioned_p (rl->reg_rtx, pat))
6737 {
6738 rtx set = single_set (insn);
6739 if (reload_spill_index[j] < 0
6740 && set
6741 && SET_SRC (set) == rl->reg_rtx)
6742 {
6743 int src = REGNO (SET_SRC (set));
32131a9c 6744
367b1cf5
BS
6745 reload_spill_index[j] = src;
6746 SET_HARD_REG_BIT (reg_is_output_reload, src);
6747 if (find_regno_note (insn, REG_DEAD, src))
6748 SET_HARD_REG_BIT (reg_reloaded_died, src);
6749 }
6750 if (REGNO (rl->reg_rtx) < FIRST_PSEUDO_REGISTER)
6751 {
6752 int s = rl->secondary_out_reload;
6753 set = single_set (p);
6754 /* If this reload copies only to the secondary reload
6755 register, the secondary reload does the actual
6756 store. */
6757 if (s >= 0 && set == NULL_RTX)
1d7254c5
KH
6758 /* We can't tell what function the secondary reload
6759 has and where the actual store to the pseudo is
6760 made; leave new_spill_reg_store alone. */
6761 ;
367b1cf5
BS
6762 else if (s >= 0
6763 && SET_SRC (set) == rl->reg_rtx
6764 && SET_DEST (set) == rld[s].reg_rtx)
6765 {
6766 /* Usually the next instruction will be the
6767 secondary reload insn; if we can confirm
6768 that it is, setting new_spill_reg_store to
6769 that insn will allow an extra optimization. */
6770 rtx s_reg = rld[s].reg_rtx;
6771 rtx next = NEXT_INSN (p);
6772 rld[s].out = rl->out;
6773 rld[s].out_reg = rl->out_reg;
6774 set = single_set (next);
6775 if (set && SET_SRC (set) == s_reg
6776 && ! new_spill_reg_store[REGNO (s_reg)])
6777 {
6778 SET_HARD_REG_BIT (reg_is_output_reload,
6779 REGNO (s_reg));
6780 new_spill_reg_store[REGNO (s_reg)] = next;
6781 }
6782 }
6783 else
6784 new_spill_reg_store[REGNO (rl->reg_rtx)] = p;
6785 }
6786 }
6787 }
32131a9c 6788
367b1cf5
BS
6789 if (rl->when_needed == RELOAD_OTHER)
6790 {
6791 emit_insns (other_output_reload_insns[rl->opnum]);
6792 other_output_reload_insns[rl->opnum] = get_insns ();
6793 }
6794 else
6795 output_reload_insns[rl->opnum] = get_insns ();
32131a9c 6796
94bd63e5
AH
6797 if (flag_non_call_exceptions)
6798 copy_eh_notes (insn, get_insns ());
6799
1d7254c5 6800 end_sequence ();
367b1cf5 6801}
32131a9c 6802
367b1cf5
BS
6803/* Do input reloading for reload RL, which is for the insn described by CHAIN
6804 and has the number J. */
6805static void
6806do_input_reload (chain, rl, j)
6807 struct insn_chain *chain;
6808 struct reload *rl;
6809 int j;
6810{
6811 int expect_occurrences = 1;
6812 rtx insn = chain->insn;
6813 rtx old = (rl->in && GET_CODE (rl->in) == MEM
6814 ? rl->in_reg : rl->in);
6815
6816 if (old != 0
6817 /* AUTO_INC reloads need to be handled even if inherited. We got an
6818 AUTO_INC reload if reload_out is set but reload_out_reg isn't. */
6819 && (! reload_inherited[j] || (rl->out && ! rl->out_reg))
6820 && ! rtx_equal_p (rl->reg_rtx, old)
6821 && rl->reg_rtx != 0)
1d813780 6822 emit_input_reload_insns (chain, rld + j, old, j);
32131a9c 6823
367b1cf5
BS
6824 /* When inheriting a wider reload, we have a MEM in rl->in,
6825 e.g. inheriting a SImode output reload for
6826 (mem:HI (plus:SI (reg:SI 14 fp) (const_int 10))) */
6827 if (optimize && reload_inherited[j] && rl->in
6828 && GET_CODE (rl->in) == MEM
6829 && GET_CODE (rl->in_reg) == MEM
6830 && reload_spill_index[j] >= 0
6831 && TEST_HARD_REG_BIT (reg_reloaded_valid, reload_spill_index[j]))
6832 {
6833 expect_occurrences
4b983fdc 6834 = count_occurrences (PATTERN (insn), rl->in, 0) == 1 ? 0 : -1;
1d7254c5 6835 rl->in = regno_reg_rtx[reg_reloaded_contents[reload_spill_index[j]]];
367b1cf5 6836 }
32131a9c 6837
367b1cf5
BS
6838 /* If we are reloading a register that was recently stored in with an
6839 output-reload, see if we can prove there was
6840 actually no need to store the old value in it. */
32131a9c 6841
367b1cf5
BS
6842 if (optimize
6843 && (reload_inherited[j] || reload_override_in[j])
6844 && rl->reg_rtx
6845 && GET_CODE (rl->reg_rtx) == REG
6846 && spill_reg_store[REGNO (rl->reg_rtx)] != 0
6847#if 0
6848 /* There doesn't seem to be any reason to restrict this to pseudos
6849 and doing so loses in the case where we are copying from a
6850 register of the wrong class. */
6851 && (REGNO (spill_reg_stored_to[REGNO (rl->reg_rtx)])
6852 >= FIRST_PSEUDO_REGISTER)
6853#endif
6854 /* The insn might have already some references to stackslots
6855 replaced by MEMs, while reload_out_reg still names the
6856 original pseudo. */
6857 && (dead_or_set_p (insn,
6858 spill_reg_stored_to[REGNO (rl->reg_rtx)])
6859 || rtx_equal_p (spill_reg_stored_to[REGNO (rl->reg_rtx)],
6860 rl->out_reg)))
6861 delete_output_reload (insn, j, REGNO (rl->reg_rtx));
6862}
32131a9c 6863
367b1cf5
BS
6864/* Do output reloading for reload RL, which is for the insn described by
6865 CHAIN and has the number J.
6866 ??? At some point we need to support handling output reloads of
6867 JUMP_INSNs or insns that set cc0. */
6868static void
6869do_output_reload (chain, rl, j)
6870 struct insn_chain *chain;
6871 struct reload *rl;
6872 int j;
6873{
6874 rtx note, old;
6875 rtx insn = chain->insn;
6876 /* If this is an output reload that stores something that is
6877 not loaded in this same reload, see if we can eliminate a previous
6878 store. */
6879 rtx pseudo = rl->out_reg;
6880
6881 if (pseudo
6882 && GET_CODE (pseudo) == REG
6883 && ! rtx_equal_p (rl->in_reg, pseudo)
6884 && REGNO (pseudo) >= FIRST_PSEUDO_REGISTER
6885 && reg_last_reload_reg[REGNO (pseudo)])
6886 {
6887 int pseudo_no = REGNO (pseudo);
6888 int last_regno = REGNO (reg_last_reload_reg[pseudo_no]);
6889
6890 /* We don't need to test full validity of last_regno for
6891 inherit here; we only want to know if the store actually
6892 matches the pseudo. */
60ef417d
GK
6893 if (TEST_HARD_REG_BIT (reg_reloaded_valid, last_regno)
6894 && reg_reloaded_contents[last_regno] == pseudo_no
367b1cf5
BS
6895 && spill_reg_store[last_regno]
6896 && rtx_equal_p (pseudo, spill_reg_stored_to[last_regno]))
6897 delete_output_reload (insn, j, last_regno);
6898 }
5e03c156 6899
367b1cf5
BS
6900 old = rl->out_reg;
6901 if (old == 0
6902 || rl->reg_rtx == old
6903 || rl->reg_rtx == 0)
6904 return;
32131a9c 6905
367b1cf5
BS
6906 /* An output operand that dies right away does need a reload,
6907 but need not be copied from it. Show the new location in the
6908 REG_UNUSED note. */
6909 if ((GET_CODE (old) == REG || GET_CODE (old) == SCRATCH)
6910 && (note = find_reg_note (insn, REG_UNUSED, old)) != 0)
6911 {
6912 XEXP (note, 0) = rl->reg_rtx;
6913 return;
6914 }
6915 /* Likewise for a SUBREG of an operand that dies. */
6916 else if (GET_CODE (old) == SUBREG
6917 && GET_CODE (SUBREG_REG (old)) == REG
6918 && 0 != (note = find_reg_note (insn, REG_UNUSED,
6919 SUBREG_REG (old))))
6920 {
6921 XEXP (note, 0) = gen_lowpart_common (GET_MODE (old),
6922 rl->reg_rtx);
6923 return;
6924 }
6925 else if (GET_CODE (old) == SCRATCH)
6926 /* If we aren't optimizing, there won't be a REG_UNUSED note,
6927 but we don't want to make an output reload. */
6928 return;
1554c2c6 6929
367b1cf5
BS
6930 /* If is a JUMP_INSN, we can't support output reloads yet. */
6931 if (GET_CODE (insn) == JUMP_INSN)
6932 abort ();
5e03c156 6933
367b1cf5
BS
6934 emit_output_reload_insns (chain, rld + j, j);
6935}
1554c2c6 6936
367b1cf5 6937/* Output insns to reload values in and out of the chosen reload regs. */
32131a9c 6938
367b1cf5 6939static void
e04ca094 6940emit_reload_insns (chain)
367b1cf5
BS
6941 struct insn_chain *chain;
6942{
6943 rtx insn = chain->insn;
32131a9c 6944
b3694847 6945 int j;
e6e52be0 6946
367b1cf5 6947 CLEAR_HARD_REG_SET (reg_reloaded_died);
e6e52be0 6948
367b1cf5
BS
6949 for (j = 0; j < reload_n_operands; j++)
6950 input_reload_insns[j] = input_address_reload_insns[j]
6951 = inpaddr_address_reload_insns[j]
6952 = output_reload_insns[j] = output_address_reload_insns[j]
6953 = outaddr_address_reload_insns[j]
6954 = other_output_reload_insns[j] = 0;
6955 other_input_address_reload_insns = 0;
6956 other_input_reload_insns = 0;
6957 operand_reload_insns = 0;
6958 other_operand_reload_insns = 0;
32131a9c 6959
850aac53 6960 /* Dump reloads into the dump file. */
e04ca094 6961 if (rtl_dump_file)
850aac53 6962 {
e04ca094
JL
6963 fprintf (rtl_dump_file, "\nReloads for insn # %d\n", INSN_UID (insn));
6964 debug_reload_to_stream (rtl_dump_file);
850aac53
JL
6965 }
6966
367b1cf5
BS
6967 /* Now output the instructions to copy the data into and out of the
6968 reload registers. Do these in the order that the reloads were reported,
6969 since reloads of base and index registers precede reloads of operands
6970 and the operands may need the base and index registers reloaded. */
32131a9c 6971
367b1cf5
BS
6972 for (j = 0; j < n_reloads; j++)
6973 {
6974 if (rld[j].reg_rtx
6975 && REGNO (rld[j].reg_rtx) < FIRST_PSEUDO_REGISTER)
6976 new_spill_reg_store[REGNO (rld[j].reg_rtx)] = 0;
d7e0324f 6977
367b1cf5
BS
6978 do_input_reload (chain, rld + j, j);
6979 do_output_reload (chain, rld + j, j);
32131a9c
RK
6980 }
6981
546b63fb
RK
6982 /* Now write all the insns we made for reloads in the order expected by
6983 the allocation functions. Prior to the insn being reloaded, we write
6984 the following reloads:
6985
6986 RELOAD_FOR_OTHER_ADDRESS reloads for input addresses.
6987
2edc8d65 6988 RELOAD_OTHER reloads.
546b63fb 6989
47c8cf91
ILT
6990 For each operand, any RELOAD_FOR_INPADDR_ADDRESS reloads followed
6991 by any RELOAD_FOR_INPUT_ADDRESS reloads followed by the
6992 RELOAD_FOR_INPUT reload for the operand.
546b63fb 6993
893bc853
RK
6994 RELOAD_FOR_OPADDR_ADDRS reloads.
6995
546b63fb
RK
6996 RELOAD_FOR_OPERAND_ADDRESS reloads.
6997
6998 After the insn being reloaded, we write the following:
6999
47c8cf91
ILT
7000 For each operand, any RELOAD_FOR_OUTADDR_ADDRESS reloads followed
7001 by any RELOAD_FOR_OUTPUT_ADDRESS reload followed by the
7002 RELOAD_FOR_OUTPUT reload, followed by any RELOAD_OTHER output
7003 reloads for the operand. The RELOAD_OTHER output reloads are
7004 output in descending order by reload number. */
546b63fb 7005
c93b03c2
RH
7006 emit_insns_before (other_input_address_reload_insns, insn);
7007 emit_insns_before (other_input_reload_insns, insn);
546b63fb
RK
7008
7009 for (j = 0; j < reload_n_operands; j++)
7010 {
c93b03c2
RH
7011 emit_insns_before (inpaddr_address_reload_insns[j], insn);
7012 emit_insns_before (input_address_reload_insns[j], insn);
7013 emit_insns_before (input_reload_insns[j], insn);
546b63fb
RK
7014 }
7015
c93b03c2
RH
7016 emit_insns_before (other_operand_reload_insns, insn);
7017 emit_insns_before (operand_reload_insns, insn);
546b63fb
RK
7018
7019 for (j = 0; j < reload_n_operands; j++)
7020 {
ca6c03ca
JH
7021 rtx x = emit_insns_after (outaddr_address_reload_insns[j], insn);
7022 x = emit_insns_after (output_address_reload_insns[j], x);
7023 x = emit_insns_after (output_reload_insns[j], x);
7024 emit_insns_after (other_output_reload_insns[j], x);
546b63fb
RK
7025 }
7026
32131a9c
RK
7027 /* For all the spill regs newly reloaded in this instruction,
7028 record what they were reloaded from, so subsequent instructions
d445b551
RK
7029 can inherit the reloads.
7030
7031 Update spill_reg_store for the reloads of this insn.
e9e79d69 7032 Copy the elements that were updated in the loop above. */
32131a9c
RK
7033
7034 for (j = 0; j < n_reloads; j++)
7035 {
b3694847
SS
7036 int r = reload_order[j];
7037 int i = reload_spill_index[r];
32131a9c 7038
78a2bc08 7039 /* If this is a non-inherited input reload from a pseudo, we must
05d10675
BS
7040 clear any memory of a previous store to the same pseudo. Only do
7041 something if there will not be an output reload for the pseudo
7042 being reloaded. */
eceef4c9 7043 if (rld[r].in_reg != 0
05d10675
BS
7044 && ! (reload_inherited[r] || reload_override_in[r]))
7045 {
eceef4c9 7046 rtx reg = rld[r].in_reg;
78a2bc08 7047
05d10675 7048 if (GET_CODE (reg) == SUBREG)
78a2bc08 7049 reg = SUBREG_REG (reg);
05d10675
BS
7050
7051 if (GET_CODE (reg) == REG
78a2bc08
R
7052 && REGNO (reg) >= FIRST_PSEUDO_REGISTER
7053 && ! reg_has_output_reload[REGNO (reg)])
7054 {
7055 int nregno = REGNO (reg);
7056
7057 if (reg_last_reload_reg[nregno])
05d10675
BS
7058 {
7059 int last_regno = REGNO (reg_last_reload_reg[nregno]);
78a2bc08 7060
05d10675 7061 if (reg_reloaded_contents[last_regno] == nregno)
78a2bc08 7062 spill_reg_store[last_regno] = 0;
05d10675 7063 }
78a2bc08
R
7064 }
7065 }
05d10675 7066
e6e52be0 7067 /* I is nonneg if this reload used a register.
eceef4c9 7068 If rld[r].reg_rtx is 0, this is an optional reload
51f0c3b7 7069 that we opted to ignore. */
d445b551 7070
eceef4c9 7071 if (i >= 0 && rld[r].reg_rtx != 0)
32131a9c 7072 {
1d7254c5 7073 int nr = HARD_REGNO_NREGS (i, GET_MODE (rld[r].reg_rtx));
32131a9c 7074 int k;
51f0c3b7
JW
7075 int part_reaches_end = 0;
7076 int all_reaches_end = 1;
32131a9c 7077
51f0c3b7
JW
7078 /* For a multi register reload, we need to check if all or part
7079 of the value lives to the end. */
32131a9c
RK
7080 for (k = 0; k < nr; k++)
7081 {
eceef4c9
BS
7082 if (reload_reg_reaches_end_p (i + k, rld[r].opnum,
7083 rld[r].when_needed))
51f0c3b7
JW
7084 part_reaches_end = 1;
7085 else
7086 all_reaches_end = 0;
32131a9c
RK
7087 }
7088
51f0c3b7
JW
7089 /* Ignore reloads that don't reach the end of the insn in
7090 entirety. */
7091 if (all_reaches_end)
32131a9c 7092 {
51f0c3b7
JW
7093 /* First, clear out memory of what used to be in this spill reg.
7094 If consecutive registers are used, clear them all. */
d08ea79f 7095
32131a9c 7096 for (k = 0; k < nr; k++)
e6e52be0 7097 CLEAR_HARD_REG_BIT (reg_reloaded_valid, i + k);
d08ea79f 7098
51f0c3b7 7099 /* Maybe the spill reg contains a copy of reload_out. */
eceef4c9
BS
7100 if (rld[r].out != 0
7101 && (GET_CODE (rld[r].out) == REG
cb2afeb3 7102#ifdef AUTO_INC_DEC
eceef4c9 7103 || ! rld[r].out_reg
cb2afeb3 7104#endif
eceef4c9 7105 || GET_CODE (rld[r].out_reg) == REG))
51f0c3b7 7106 {
eceef4c9
BS
7107 rtx out = (GET_CODE (rld[r].out) == REG
7108 ? rld[r].out
7109 : rld[r].out_reg
7110 ? rld[r].out_reg
7111/* AUTO_INC */ : XEXP (rld[r].in_reg, 0));
b3694847 7112 int nregno = REGNO (out);
51f0c3b7
JW
7113 int nnr = (nregno >= FIRST_PSEUDO_REGISTER ? 1
7114 : HARD_REGNO_NREGS (nregno,
eceef4c9 7115 GET_MODE (rld[r].reg_rtx)));
51f0c3b7
JW
7116
7117 spill_reg_store[i] = new_spill_reg_store[i];
cb2afeb3 7118 spill_reg_stored_to[i] = out;
eceef4c9 7119 reg_last_reload_reg[nregno] = rld[r].reg_rtx;
51f0c3b7
JW
7120
7121 /* If NREGNO is a hard register, it may occupy more than
05d10675 7122 one register. If it does, say what is in the
51f0c3b7
JW
7123 rest of the registers assuming that both registers
7124 agree on how many words the object takes. If not,
7125 invalidate the subsequent registers. */
7126
7127 if (nregno < FIRST_PSEUDO_REGISTER)
7128 for (k = 1; k < nnr; k++)
7129 reg_last_reload_reg[nregno + k]
7130 = (nr == nnr
eceef4c9
BS
7131 ? gen_rtx_REG (reg_raw_mode[REGNO (rld[r].reg_rtx) + k],
7132 REGNO (rld[r].reg_rtx) + k)
51f0c3b7
JW
7133 : 0);
7134
7135 /* Now do the inverse operation. */
7136 for (k = 0; k < nr; k++)
7137 {
e6e52be0
R
7138 CLEAR_HARD_REG_BIT (reg_reloaded_dead, i + k);
7139 reg_reloaded_contents[i + k]
51f0c3b7
JW
7140 = (nregno >= FIRST_PSEUDO_REGISTER || nr != nnr
7141 ? nregno
7142 : nregno + k);
e6e52be0
R
7143 reg_reloaded_insn[i + k] = insn;
7144 SET_HARD_REG_BIT (reg_reloaded_valid, i + k);
51f0c3b7
JW
7145 }
7146 }
d08ea79f 7147
51f0c3b7
JW
7148 /* Maybe the spill reg contains a copy of reload_in. Only do
7149 something if there will not be an output reload for
7150 the register being reloaded. */
eceef4c9
BS
7151 else if (rld[r].out_reg == 0
7152 && rld[r].in != 0
7153 && ((GET_CODE (rld[r].in) == REG
7154 && REGNO (rld[r].in) >= FIRST_PSEUDO_REGISTER
7155 && ! reg_has_output_reload[REGNO (rld[r].in)])
7156 || (GET_CODE (rld[r].in_reg) == REG
7157 && ! reg_has_output_reload[REGNO (rld[r].in_reg)]))
7158 && ! reg_set_p (rld[r].reg_rtx, PATTERN (insn)))
51f0c3b7 7159 {
b3694847 7160 int nregno;
51f0c3b7 7161 int nnr;
d445b551 7162
eceef4c9
BS
7163 if (GET_CODE (rld[r].in) == REG
7164 && REGNO (rld[r].in) >= FIRST_PSEUDO_REGISTER)
7165 nregno = REGNO (rld[r].in);
7166 else if (GET_CODE (rld[r].in_reg) == REG)
7167 nregno = REGNO (rld[r].in_reg);
cb2afeb3 7168 else
eceef4c9 7169 nregno = REGNO (XEXP (rld[r].in_reg, 0));
d08ea79f 7170
51f0c3b7
JW
7171 nnr = (nregno >= FIRST_PSEUDO_REGISTER ? 1
7172 : HARD_REGNO_NREGS (nregno,
eceef4c9 7173 GET_MODE (rld[r].reg_rtx)));
05d10675 7174
eceef4c9 7175 reg_last_reload_reg[nregno] = rld[r].reg_rtx;
51f0c3b7
JW
7176
7177 if (nregno < FIRST_PSEUDO_REGISTER)
7178 for (k = 1; k < nnr; k++)
7179 reg_last_reload_reg[nregno + k]
7180 = (nr == nnr
eceef4c9
BS
7181 ? gen_rtx_REG (reg_raw_mode[REGNO (rld[r].reg_rtx) + k],
7182 REGNO (rld[r].reg_rtx) + k)
51f0c3b7
JW
7183 : 0);
7184
7185 /* Unless we inherited this reload, show we haven't
cb2afeb3
R
7186 recently done a store.
7187 Previous stores of inherited auto_inc expressions
7188 also have to be discarded. */
7189 if (! reload_inherited[r]
eceef4c9 7190 || (rld[r].out && ! rld[r].out_reg))
51f0c3b7
JW
7191 spill_reg_store[i] = 0;
7192
7193 for (k = 0; k < nr; k++)
7194 {
e6e52be0
R
7195 CLEAR_HARD_REG_BIT (reg_reloaded_dead, i + k);
7196 reg_reloaded_contents[i + k]
51f0c3b7
JW
7197 = (nregno >= FIRST_PSEUDO_REGISTER || nr != nnr
7198 ? nregno
7199 : nregno + k);
e6e52be0
R
7200 reg_reloaded_insn[i + k] = insn;
7201 SET_HARD_REG_BIT (reg_reloaded_valid, i + k);
51f0c3b7
JW
7202 }
7203 }
7204 }
d445b551 7205
51f0c3b7
JW
7206 /* However, if part of the reload reaches the end, then we must
7207 invalidate the old info for the part that survives to the end. */
7208 else if (part_reaches_end)
7209 {
546b63fb 7210 for (k = 0; k < nr; k++)
e6e52be0 7211 if (reload_reg_reaches_end_p (i + k,
eceef4c9
BS
7212 rld[r].opnum,
7213 rld[r].when_needed))
e6e52be0 7214 CLEAR_HARD_REG_BIT (reg_reloaded_valid, i + k);
32131a9c
RK
7215 }
7216 }
7217
7218 /* The following if-statement was #if 0'd in 1.34 (or before...).
7219 It's reenabled in 1.35 because supposedly nothing else
7220 deals with this problem. */
7221
7222 /* If a register gets output-reloaded from a non-spill register,
7223 that invalidates any previous reloaded copy of it.
7224 But forget_old_reloads_1 won't get to see it, because
7225 it thinks only about the original insn. So invalidate it here. */
eceef4c9
BS
7226 if (i < 0 && rld[r].out != 0
7227 && (GET_CODE (rld[r].out) == REG
7228 || (GET_CODE (rld[r].out) == MEM
7229 && GET_CODE (rld[r].out_reg) == REG)))
32131a9c 7230 {
eceef4c9
BS
7231 rtx out = (GET_CODE (rld[r].out) == REG
7232 ? rld[r].out : rld[r].out_reg);
b3694847 7233 int nregno = REGNO (out);
c7093272 7234 if (nregno >= FIRST_PSEUDO_REGISTER)
cb2afeb3 7235 {
6a651371 7236 rtx src_reg, store_insn = NULL_RTX;
cb2afeb3
R
7237
7238 reg_last_reload_reg[nregno] = 0;
7239
7240 /* If we can find a hard register that is stored, record
7241 the storing insn so that we may delete this insn with
7242 delete_output_reload. */
eceef4c9 7243 src_reg = rld[r].reg_rtx;
cb2afeb3
R
7244
7245 /* If this is an optional reload, try to find the source reg
7246 from an input reload. */
7247 if (! src_reg)
7248 {
7249 rtx set = single_set (insn);
eceef4c9 7250 if (set && SET_DEST (set) == rld[r].out)
cb2afeb3
R
7251 {
7252 int k;
7253
7254 src_reg = SET_SRC (set);
7255 store_insn = insn;
7256 for (k = 0; k < n_reloads; k++)
7257 {
eceef4c9 7258 if (rld[k].in == src_reg)
cb2afeb3 7259 {
eceef4c9 7260 src_reg = rld[k].reg_rtx;
cb2afeb3
R
7261 break;
7262 }
7263 }
7264 }
7265 }
7266 else
7267 store_insn = new_spill_reg_store[REGNO (src_reg)];
7268 if (src_reg && GET_CODE (src_reg) == REG
7269 && REGNO (src_reg) < FIRST_PSEUDO_REGISTER)
7270 {
7271 int src_regno = REGNO (src_reg);
8ec450a4 7272 int nr = HARD_REGNO_NREGS (src_regno, rld[r].mode);
cb2afeb3
R
7273 /* The place where to find a death note varies with
7274 PRESERVE_DEATH_INFO_REGNO_P . The condition is not
7275 necessarily checked exactly in the code that moves
7276 notes, so just check both locations. */
7277 rtx note = find_regno_note (insn, REG_DEAD, src_regno);
1558b970 7278 if (! note && store_insn)
cb2afeb3
R
7279 note = find_regno_note (store_insn, REG_DEAD, src_regno);
7280 while (nr-- > 0)
7281 {
7282 spill_reg_store[src_regno + nr] = store_insn;
7283 spill_reg_stored_to[src_regno + nr] = out;
7284 reg_reloaded_contents[src_regno + nr] = nregno;
7285 reg_reloaded_insn[src_regno + nr] = store_insn;
00f9f1bc 7286 CLEAR_HARD_REG_BIT (reg_reloaded_dead, src_regno + nr);
cb2afeb3
R
7287 SET_HARD_REG_BIT (reg_reloaded_valid, src_regno + nr);
7288 SET_HARD_REG_BIT (reg_is_output_reload, src_regno + nr);
7289 if (note)
7290 SET_HARD_REG_BIT (reg_reloaded_died, src_regno);
7291 else
7292 CLEAR_HARD_REG_BIT (reg_reloaded_died, src_regno);
7293 }
7294 reg_last_reload_reg[nregno] = src_reg;
7295 }
7296 }
c7093272
RK
7297 else
7298 {
1d7254c5 7299 int num_regs = HARD_REGNO_NREGS (nregno, GET_MODE (rld[r].out));
36281332 7300
c7093272
RK
7301 while (num_regs-- > 0)
7302 reg_last_reload_reg[nregno + num_regs] = 0;
7303 }
32131a9c
RK
7304 }
7305 }
e6e52be0 7306 IOR_HARD_REG_SET (reg_reloaded_dead, reg_reloaded_died);
32131a9c
RK
7307}
7308\f
5e03c156
RK
7309/* Emit code to perform a reload from IN (which may be a reload register) to
7310 OUT (which may also be a reload register). IN or OUT is from operand
05d10675 7311 OPNUM with reload type TYPE.
546b63fb 7312
3c3eeea6 7313 Returns first insn emitted. */
32131a9c
RK
7314
7315rtx
5e03c156
RK
7316gen_reload (out, in, opnum, type)
7317 rtx out;
32131a9c 7318 rtx in;
546b63fb
RK
7319 int opnum;
7320 enum reload_type type;
32131a9c 7321{
546b63fb 7322 rtx last = get_last_insn ();
7a5b18b0
RK
7323 rtx tem;
7324
7325 /* If IN is a paradoxical SUBREG, remove it and try to put the
7326 opposite SUBREG on OUT. Likewise for a paradoxical SUBREG on OUT. */
7327 if (GET_CODE (in) == SUBREG
7328 && (GET_MODE_SIZE (GET_MODE (in))
7329 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
7330 && (tem = gen_lowpart_common (GET_MODE (SUBREG_REG (in)), out)) != 0)
7331 in = SUBREG_REG (in), out = tem;
7332 else if (GET_CODE (out) == SUBREG
eceef4c9
BS
7333 && (GET_MODE_SIZE (GET_MODE (out))
7334 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
7335 && (tem = gen_lowpart_common (GET_MODE (SUBREG_REG (out)), in)) != 0)
7a5b18b0 7336 out = SUBREG_REG (out), in = tem;
32131a9c 7337
a8fdc208 7338 /* How to do this reload can get quite tricky. Normally, we are being
32131a9c
RK
7339 asked to reload a simple operand, such as a MEM, a constant, or a pseudo
7340 register that didn't get a hard register. In that case we can just
7341 call emit_move_insn.
7342
a7fd196c
JW
7343 We can also be asked to reload a PLUS that adds a register or a MEM to
7344 another register, constant or MEM. This can occur during frame pointer
7345 elimination and while reloading addresses. This case is handled by
7346 trying to emit a single insn to perform the add. If it is not valid,
7347 we use a two insn sequence.
32131a9c
RK
7348
7349 Finally, we could be called to handle an 'o' constraint by putting
7350 an address into a register. In that case, we first try to do this
7351 with a named pattern of "reload_load_address". If no such pattern
7352 exists, we just emit a SET insn and hope for the best (it will normally
7353 be valid on machines that use 'o').
7354
7355 This entire process is made complex because reload will never
7356 process the insns we generate here and so we must ensure that
7357 they will fit their constraints and also by the fact that parts of
7358 IN might be being reloaded separately and replaced with spill registers.
7359 Because of this, we are, in some sense, just guessing the right approach
7360 here. The one listed above seems to work.
7361
7362 ??? At some point, this whole thing needs to be rethought. */
7363
7364 if (GET_CODE (in) == PLUS
a7fd196c 7365 && (GET_CODE (XEXP (in, 0)) == REG
5c6b1bd2 7366 || GET_CODE (XEXP (in, 0)) == SUBREG
a7fd196c
JW
7367 || GET_CODE (XEXP (in, 0)) == MEM)
7368 && (GET_CODE (XEXP (in, 1)) == REG
5c6b1bd2 7369 || GET_CODE (XEXP (in, 1)) == SUBREG
a7fd196c
JW
7370 || CONSTANT_P (XEXP (in, 1))
7371 || GET_CODE (XEXP (in, 1)) == MEM))
32131a9c 7372 {
a7fd196c
JW
7373 /* We need to compute the sum of a register or a MEM and another
7374 register, constant, or MEM, and put it into the reload
3002e160
JW
7375 register. The best possible way of doing this is if the machine
7376 has a three-operand ADD insn that accepts the required operands.
32131a9c
RK
7377
7378 The simplest approach is to try to generate such an insn and see if it
7379 is recognized and matches its constraints. If so, it can be used.
7380
7381 It might be better not to actually emit the insn unless it is valid,
0009eff2 7382 but we need to pass the insn as an operand to `recog' and
0eadeb15 7383 `extract_insn' and it is simpler to emit and then delete the insn if
0009eff2 7384 not valid than to dummy things up. */
a8fdc208 7385
af929c62 7386 rtx op0, op1, tem, insn;
32131a9c 7387 int code;
a8fdc208 7388
af929c62
RK
7389 op0 = find_replacement (&XEXP (in, 0));
7390 op1 = find_replacement (&XEXP (in, 1));
7391
32131a9c
RK
7392 /* Since constraint checking is strict, commutativity won't be
7393 checked, so we need to do that here to avoid spurious failure
7394 if the add instruction is two-address and the second operand
7395 of the add is the same as the reload reg, which is frequently
7396 the case. If the insn would be A = B + A, rearrange it so
0f41302f 7397 it will be A = A + B as constrain_operands expects. */
a8fdc208 7398
32131a9c 7399 if (GET_CODE (XEXP (in, 1)) == REG
5e03c156 7400 && REGNO (out) == REGNO (XEXP (in, 1)))
af929c62
RK
7401 tem = op0, op0 = op1, op1 = tem;
7402
7403 if (op0 != XEXP (in, 0) || op1 != XEXP (in, 1))
38a448ca 7404 in = gen_rtx_PLUS (GET_MODE (in), op0, op1);
32131a9c 7405
38a448ca 7406 insn = emit_insn (gen_rtx_SET (VOIDmode, out, in));
32131a9c
RK
7407 code = recog_memoized (insn);
7408
7409 if (code >= 0)
7410 {
0eadeb15 7411 extract_insn (insn);
32131a9c
RK
7412 /* We want constrain operands to treat this insn strictly in
7413 its validity determination, i.e., the way it would after reload
7414 has completed. */
0eadeb15 7415 if (constrain_operands (1))
32131a9c
RK
7416 return insn;
7417 }
7418
546b63fb 7419 delete_insns_since (last);
32131a9c
RK
7420
7421 /* If that failed, we must use a conservative two-insn sequence.
09522f21
FS
7422
7423 Use a move to copy one operand into the reload register. Prefer
7424 to reload a constant, MEM or pseudo since the move patterns can
7425 handle an arbitrary operand. If OP1 is not a constant, MEM or
7426 pseudo and OP1 is not a valid operand for an add instruction, then
7427 reload OP1.
7428
7429 After reloading one of the operands into the reload register, add
7430 the reload register to the output register.
32131a9c
RK
7431
7432 If there is another way to do this for a specific machine, a
7433 DEFINE_PEEPHOLE should be specified that recognizes the sequence
7434 we emit below. */
7435
09522f21
FS
7436 code = (int) add_optab->handlers[(int) GET_MODE (out)].insn_code;
7437
5c6b1bd2 7438 if (CONSTANT_P (op1) || GET_CODE (op1) == MEM || GET_CODE (op1) == SUBREG
af929c62 7439 || (GET_CODE (op1) == REG
09522f21
FS
7440 && REGNO (op1) >= FIRST_PSEUDO_REGISTER)
7441 || (code != CODE_FOR_nothing
a995e389
RH
7442 && ! ((*insn_data[code].operand[2].predicate)
7443 (op1, insn_data[code].operand[2].mode))))
af929c62 7444 tem = op0, op0 = op1, op1 = tem;
32131a9c 7445
5c6b1bd2 7446 gen_reload (out, op0, opnum, type);
39b56c2a 7447
5e03c156 7448 /* If OP0 and OP1 are the same, we can use OUT for OP1.
39b56c2a
RK
7449 This fixes a problem on the 32K where the stack pointer cannot
7450 be used as an operand of an add insn. */
7451
7452 if (rtx_equal_p (op0, op1))
5e03c156 7453 op1 = out;
39b56c2a 7454
5e03c156 7455 insn = emit_insn (gen_add2_insn (out, op1));
c77c9766
RK
7456
7457 /* If that failed, copy the address register to the reload register.
0f41302f 7458 Then add the constant to the reload register. */
c77c9766
RK
7459
7460 code = recog_memoized (insn);
7461
7462 if (code >= 0)
7463 {
0eadeb15 7464 extract_insn (insn);
c77c9766
RK
7465 /* We want constrain operands to treat this insn strictly in
7466 its validity determination, i.e., the way it would after reload
7467 has completed. */
0eadeb15 7468 if (constrain_operands (1))
4117a96b
R
7469 {
7470 /* Add a REG_EQUIV note so that find_equiv_reg can find it. */
7471 REG_NOTES (insn)
9e6a5703 7472 = gen_rtx_EXPR_LIST (REG_EQUIV, in, REG_NOTES (insn));
4117a96b
R
7473 return insn;
7474 }
c77c9766
RK
7475 }
7476
7477 delete_insns_since (last);
7478
5c6b1bd2 7479 gen_reload (out, op1, opnum, type);
4117a96b 7480 insn = emit_insn (gen_add2_insn (out, op0));
9e6a5703 7481 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_EQUIV, in, REG_NOTES (insn));
32131a9c
RK
7482 }
7483
0dadecf6
RK
7484#ifdef SECONDARY_MEMORY_NEEDED
7485 /* If we need a memory location to do the move, do it that way. */
7486 else if (GET_CODE (in) == REG && REGNO (in) < FIRST_PSEUDO_REGISTER
5e03c156 7487 && GET_CODE (out) == REG && REGNO (out) < FIRST_PSEUDO_REGISTER
0dadecf6 7488 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (REGNO (in)),
5e03c156
RK
7489 REGNO_REG_CLASS (REGNO (out)),
7490 GET_MODE (out)))
0dadecf6
RK
7491 {
7492 /* Get the memory to use and rewrite both registers to its mode. */
5e03c156 7493 rtx loc = get_secondary_mem (in, GET_MODE (out), opnum, type);
0dadecf6 7494
5e03c156 7495 if (GET_MODE (loc) != GET_MODE (out))
38a448ca 7496 out = gen_rtx_REG (GET_MODE (loc), REGNO (out));
0dadecf6
RK
7497
7498 if (GET_MODE (loc) != GET_MODE (in))
38a448ca 7499 in = gen_rtx_REG (GET_MODE (loc), REGNO (in));
0dadecf6 7500
5c6b1bd2
RK
7501 gen_reload (loc, in, opnum, type);
7502 gen_reload (out, loc, opnum, type);
0dadecf6
RK
7503 }
7504#endif
7505
32131a9c
RK
7506 /* If IN is a simple operand, use gen_move_insn. */
7507 else if (GET_RTX_CLASS (GET_CODE (in)) == 'o' || GET_CODE (in) == SUBREG)
5e03c156 7508 emit_insn (gen_move_insn (out, in));
32131a9c
RK
7509
7510#ifdef HAVE_reload_load_address
7511 else if (HAVE_reload_load_address)
5e03c156 7512 emit_insn (gen_reload_load_address (out, in));
32131a9c
RK
7513#endif
7514
5e03c156 7515 /* Otherwise, just write (set OUT IN) and hope for the best. */
32131a9c 7516 else
38a448ca 7517 emit_insn (gen_rtx_SET (VOIDmode, out, in));
32131a9c
RK
7518
7519 /* Return the first insn emitted.
546b63fb 7520 We can not just return get_last_insn, because there may have
32131a9c
RK
7521 been multiple instructions emitted. Also note that gen_move_insn may
7522 emit more than one insn itself, so we can not assume that there is one
7523 insn emitted per emit_insn_before call. */
7524
546b63fb 7525 return last ? NEXT_INSN (last) : get_insns ();
32131a9c
RK
7526}
7527\f
7528/* Delete a previously made output-reload
7529 whose result we now believe is not needed.
7530 First we double-check.
7531
7532 INSN is the insn now being processed.
cb2afeb3
R
7533 LAST_RELOAD_REG is the hard register number for which we want to delete
7534 the last output reload.
7535 J is the reload-number that originally used REG. The caller has made
7536 certain that reload J doesn't use REG any longer for input. */
32131a9c
RK
7537
7538static void
cb2afeb3 7539delete_output_reload (insn, j, last_reload_reg)
32131a9c
RK
7540 rtx insn;
7541 int j;
cb2afeb3 7542 int last_reload_reg;
32131a9c 7543{
cb2afeb3
R
7544 rtx output_reload_insn = spill_reg_store[last_reload_reg];
7545 rtx reg = spill_reg_stored_to[last_reload_reg];
7546 int k;
7547 int n_occurrences;
7548 int n_inherited = 0;
b3694847 7549 rtx i1;
cb2afeb3 7550 rtx substed;
05d10675 7551
32131a9c
RK
7552 /* Get the raw pseudo-register referred to. */
7553
32131a9c
RK
7554 while (GET_CODE (reg) == SUBREG)
7555 reg = SUBREG_REG (reg);
cb2afeb3
R
7556 substed = reg_equiv_memory_loc[REGNO (reg)];
7557
7558 /* This is unsafe if the operand occurs more often in the current
7559 insn than it is inherited. */
7560 for (k = n_reloads - 1; k >= 0; k--)
7561 {
eceef4c9 7562 rtx reg2 = rld[k].in;
cb2afeb3
R
7563 if (! reg2)
7564 continue;
7565 if (GET_CODE (reg2) == MEM || reload_override_in[k])
eceef4c9 7566 reg2 = rld[k].in_reg;
cb2afeb3 7567#ifdef AUTO_INC_DEC
eceef4c9
BS
7568 if (rld[k].out && ! rld[k].out_reg)
7569 reg2 = XEXP (rld[k].in_reg, 0);
cb2afeb3
R
7570#endif
7571 while (GET_CODE (reg2) == SUBREG)
7572 reg2 = SUBREG_REG (reg2);
7573 if (rtx_equal_p (reg2, reg))
2eb6dac7
AS
7574 {
7575 if (reload_inherited[k] || reload_override_in[k] || k == j)
7576 {
cb2afeb3 7577 n_inherited++;
eceef4c9 7578 reg2 = rld[k].out_reg;
2eb6dac7
AS
7579 if (! reg2)
7580 continue;
7581 while (GET_CODE (reg2) == SUBREG)
7582 reg2 = XEXP (reg2, 0);
7583 if (rtx_equal_p (reg2, reg))
7584 n_inherited++;
7585 }
7586 else
7587 return;
7588 }
cb2afeb3 7589 }
4b983fdc 7590 n_occurrences = count_occurrences (PATTERN (insn), reg, 0);
cb2afeb3 7591 if (substed)
5d7ef82a
BS
7592 n_occurrences += count_occurrences (PATTERN (insn),
7593 eliminate_regs (substed, 0,
7594 NULL_RTX), 0);
cb2afeb3
R
7595 if (n_occurrences > n_inherited)
7596 return;
32131a9c
RK
7597
7598 /* If the pseudo-reg we are reloading is no longer referenced
7599 anywhere between the store into it and here,
7600 and no jumps or labels intervene, then the value can get
7601 here through the reload reg alone.
7602 Otherwise, give up--return. */
7603 for (i1 = NEXT_INSN (output_reload_insn);
7604 i1 != insn; i1 = NEXT_INSN (i1))
7605 {
7606 if (GET_CODE (i1) == CODE_LABEL || GET_CODE (i1) == JUMP_INSN)
7607 return;
7608 if ((GET_CODE (i1) == INSN || GET_CODE (i1) == CALL_INSN)
7609 && reg_mentioned_p (reg, PATTERN (i1)))
aa6498c2 7610 {
cb2afeb3
R
7611 /* If this is USE in front of INSN, we only have to check that
7612 there are no more references than accounted for by inheritance. */
7613 while (GET_CODE (i1) == INSN && GET_CODE (PATTERN (i1)) == USE)
aa6498c2 7614 {
cb2afeb3 7615 n_occurrences += rtx_equal_p (reg, XEXP (PATTERN (i1), 0)) != 0;
aa6498c2
R
7616 i1 = NEXT_INSN (i1);
7617 }
cb2afeb3 7618 if (n_occurrences <= n_inherited && i1 == insn)
aa6498c2
R
7619 break;
7620 return;
7621 }
32131a9c
RK
7622 }
7623
aa6498c2
R
7624 /* The caller has already checked that REG dies or is set in INSN.
7625 It has also checked that we are optimizing, and thus some inaccurancies
7626 in the debugging information are acceptable.
7627 So we could just delete output_reload_insn.
7628 But in some cases we can improve the debugging information without
7629 sacrificing optimization - maybe even improving the code:
7630 See if the pseudo reg has been completely replaced
32131a9c
RK
7631 with reload regs. If so, delete the store insn
7632 and forget we had a stack slot for the pseudo. */
eceef4c9 7633 if (rld[j].out != rld[j].in
aa6498c2 7634 && REG_N_DEATHS (REGNO (reg)) == 1
a3a24aa6 7635 && REG_N_SETS (REGNO (reg)) == 1
aa6498c2
R
7636 && REG_BASIC_BLOCK (REGNO (reg)) >= 0
7637 && find_regno_note (insn, REG_DEAD, REGNO (reg)))
32131a9c
RK
7638 {
7639 rtx i2;
7640
7641 /* We know that it was used only between here
7642 and the beginning of the current basic block.
7643 (We also know that the last use before INSN was
7644 the output reload we are thinking of deleting, but never mind that.)
7645 Search that range; see if any ref remains. */
7646 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
7647 {
d445b551
RK
7648 rtx set = single_set (i2);
7649
32131a9c
RK
7650 /* Uses which just store in the pseudo don't count,
7651 since if they are the only uses, they are dead. */
d445b551 7652 if (set != 0 && SET_DEST (set) == reg)
32131a9c
RK
7653 continue;
7654 if (GET_CODE (i2) == CODE_LABEL
7655 || GET_CODE (i2) == JUMP_INSN)
7656 break;
7657 if ((GET_CODE (i2) == INSN || GET_CODE (i2) == CALL_INSN)
7658 && reg_mentioned_p (reg, PATTERN (i2)))
aa6498c2
R
7659 {
7660 /* Some other ref remains; just delete the output reload we
7661 know to be dead. */
cb2afeb3 7662 delete_address_reloads (output_reload_insn, insn);
ca6c03ca 7663 delete_insn (output_reload_insn);
aa6498c2
R
7664 return;
7665 }
32131a9c
RK
7666 }
7667
7668 /* Delete the now-dead stores into this pseudo. */
7669 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
7670 {
d445b551
RK
7671 rtx set = single_set (i2);
7672
7673 if (set != 0 && SET_DEST (set) == reg)
5507b94b 7674 {
cb2afeb3 7675 delete_address_reloads (i2, insn);
5507b94b
RK
7676 /* This might be a basic block head,
7677 thus don't use delete_insn. */
ca6c03ca 7678 delete_insn (i2);
5507b94b 7679 }
32131a9c
RK
7680 if (GET_CODE (i2) == CODE_LABEL
7681 || GET_CODE (i2) == JUMP_INSN)
7682 break;
7683 }
7684
7685 /* For the debugging info,
7686 say the pseudo lives in this reload reg. */
eceef4c9 7687 reg_renumber[REGNO (reg)] = REGNO (rld[j].reg_rtx);
32131a9c
RK
7688 alter_reg (REGNO (reg), -1);
7689 }
cb2afeb3 7690 delete_address_reloads (output_reload_insn, insn);
ca6c03ca 7691 delete_insn (output_reload_insn);
cb2afeb3
R
7692
7693}
7694
7695/* We are going to delete DEAD_INSN. Recursively delete loads of
7696 reload registers used in DEAD_INSN that are not used till CURRENT_INSN.
7697 CURRENT_INSN is being reloaded, so we have to check its reloads too. */
7698static void
7699delete_address_reloads (dead_insn, current_insn)
7700 rtx dead_insn, current_insn;
7701{
7702 rtx set = single_set (dead_insn);
7703 rtx set2, dst, prev, next;
7704 if (set)
7705 {
7706 rtx dst = SET_DEST (set);
7707 if (GET_CODE (dst) == MEM)
7708 delete_address_reloads_1 (dead_insn, XEXP (dst, 0), current_insn);
7709 }
7710 /* If we deleted the store from a reloaded post_{in,de}c expression,
7711 we can delete the matching adds. */
7712 prev = PREV_INSN (dead_insn);
7713 next = NEXT_INSN (dead_insn);
7714 if (! prev || ! next)
7715 return;
7716 set = single_set (next);
7717 set2 = single_set (prev);
7718 if (! set || ! set2
7719 || GET_CODE (SET_SRC (set)) != PLUS || GET_CODE (SET_SRC (set2)) != PLUS
7720 || GET_CODE (XEXP (SET_SRC (set), 1)) != CONST_INT
7721 || GET_CODE (XEXP (SET_SRC (set2), 1)) != CONST_INT)
7722 return;
7723 dst = SET_DEST (set);
7724 if (! rtx_equal_p (dst, SET_DEST (set2))
7725 || ! rtx_equal_p (dst, XEXP (SET_SRC (set), 0))
7726 || ! rtx_equal_p (dst, XEXP (SET_SRC (set2), 0))
7727 || (INTVAL (XEXP (SET_SRC (set), 1))
1d7254c5 7728 != -INTVAL (XEXP (SET_SRC (set2), 1))))
cb2afeb3 7729 return;
53c17031
JH
7730 delete_related_insns (prev);
7731 delete_related_insns (next);
cb2afeb3
R
7732}
7733
7734/* Subfunction of delete_address_reloads: process registers found in X. */
7735static void
7736delete_address_reloads_1 (dead_insn, x, current_insn)
7737 rtx dead_insn, x, current_insn;
7738{
7739 rtx prev, set, dst, i2;
7740 int i, j;
7741 enum rtx_code code = GET_CODE (x);
7742
7743 if (code != REG)
7744 {
1d7254c5 7745 const char *fmt = GET_RTX_FORMAT (code);
cb2afeb3
R
7746 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7747 {
7748 if (fmt[i] == 'e')
7749 delete_address_reloads_1 (dead_insn, XEXP (x, i), current_insn);
7750 else if (fmt[i] == 'E')
7751 {
1d7254c5 7752 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
cb2afeb3
R
7753 delete_address_reloads_1 (dead_insn, XVECEXP (x, i, j),
7754 current_insn);
7755 }
7756 }
7757 return;
7758 }
7759
7760 if (spill_reg_order[REGNO (x)] < 0)
7761 return;
aa6498c2 7762
cb2afeb3
R
7763 /* Scan backwards for the insn that sets x. This might be a way back due
7764 to inheritance. */
7765 for (prev = PREV_INSN (dead_insn); prev; prev = PREV_INSN (prev))
7766 {
7767 code = GET_CODE (prev);
7768 if (code == CODE_LABEL || code == JUMP_INSN)
7769 return;
7770 if (GET_RTX_CLASS (code) != 'i')
7771 continue;
7772 if (reg_set_p (x, PATTERN (prev)))
7773 break;
7774 if (reg_referenced_p (x, PATTERN (prev)))
7775 return;
7776 }
7777 if (! prev || INSN_UID (prev) < reload_first_uid)
7778 return;
7779 /* Check that PREV only sets the reload register. */
7780 set = single_set (prev);
7781 if (! set)
7782 return;
7783 dst = SET_DEST (set);
7784 if (GET_CODE (dst) != REG
7785 || ! rtx_equal_p (dst, x))
7786 return;
7787 if (! reg_set_p (dst, PATTERN (dead_insn)))
7788 {
7789 /* Check if DST was used in a later insn -
7790 it might have been inherited. */
7791 for (i2 = NEXT_INSN (dead_insn); i2; i2 = NEXT_INSN (i2))
7792 {
7793 if (GET_CODE (i2) == CODE_LABEL)
7794 break;
2c3c49de 7795 if (! INSN_P (i2))
cb2afeb3
R
7796 continue;
7797 if (reg_referenced_p (dst, PATTERN (i2)))
7798 {
7799 /* If there is a reference to the register in the current insn,
7800 it might be loaded in a non-inherited reload. If no other
7801 reload uses it, that means the register is set before
7802 referenced. */
7803 if (i2 == current_insn)
7804 {
7805 for (j = n_reloads - 1; j >= 0; j--)
eceef4c9 7806 if ((rld[j].reg_rtx == dst && reload_inherited[j])
cb2afeb3
R
7807 || reload_override_in[j] == dst)
7808 return;
7809 for (j = n_reloads - 1; j >= 0; j--)
eceef4c9 7810 if (rld[j].in && rld[j].reg_rtx == dst)
cb2afeb3
R
7811 break;
7812 if (j >= 0)
7813 break;
7814 }
7815 return;
7816 }
7817 if (GET_CODE (i2) == JUMP_INSN)
7818 break;
cb2afeb3 7819 /* If DST is still live at CURRENT_INSN, check if it is used for
3900dc09
R
7820 any reload. Note that even if CURRENT_INSN sets DST, we still
7821 have to check the reloads. */
cb2afeb3
R
7822 if (i2 == current_insn)
7823 {
7824 for (j = n_reloads - 1; j >= 0; j--)
eceef4c9 7825 if ((rld[j].reg_rtx == dst && reload_inherited[j])
cb2afeb3
R
7826 || reload_override_in[j] == dst)
7827 return;
7828 /* ??? We can't finish the loop here, because dst might be
7829 allocated to a pseudo in this block if no reload in this
7830 block needs any of the clsses containing DST - see
7831 spill_hard_reg. There is no easy way to tell this, so we
7832 have to scan till the end of the basic block. */
7833 }
3900dc09
R
7834 if (reg_set_p (dst, PATTERN (i2)))
7835 break;
cb2afeb3
R
7836 }
7837 }
7838 delete_address_reloads_1 (prev, SET_SRC (set), current_insn);
7839 reg_reloaded_contents[REGNO (dst)] = -1;
ca6c03ca 7840 delete_insn (prev);
32131a9c 7841}
32131a9c 7842\f
a8fdc208 7843/* Output reload-insns to reload VALUE into RELOADREG.
858a47b1 7844 VALUE is an autoincrement or autodecrement RTX whose operand
32131a9c
RK
7845 is a register or memory location;
7846 so reloading involves incrementing that location.
cb2afeb3 7847 IN is either identical to VALUE, or some cheaper place to reload from.
32131a9c
RK
7848
7849 INC_AMOUNT is the number to increment or decrement by (always positive).
cb2afeb3 7850 This cannot be deduced from VALUE.
32131a9c 7851
cb2afeb3
R
7852 Return the instruction that stores into RELOADREG. */
7853
7854static rtx
7855inc_for_reload (reloadreg, in, value, inc_amount)
32131a9c 7856 rtx reloadreg;
cb2afeb3 7857 rtx in, value;
32131a9c 7858 int inc_amount;
32131a9c
RK
7859{
7860 /* REG or MEM to be copied and incremented. */
7861 rtx incloc = XEXP (value, 0);
7862 /* Nonzero if increment after copying. */
7863 int post = (GET_CODE (value) == POST_DEC || GET_CODE (value) == POST_INC);
546b63fb 7864 rtx last;
0009eff2
RK
7865 rtx inc;
7866 rtx add_insn;
7867 int code;
cb2afeb3
R
7868 rtx store;
7869 rtx real_in = in == value ? XEXP (in, 0) : in;
32131a9c
RK
7870
7871 /* No hard register is equivalent to this register after
7872 inc/dec operation. If REG_LAST_RELOAD_REG were non-zero,
7873 we could inc/dec that register as well (maybe even using it for
7874 the source), but I'm not sure it's worth worrying about. */
7875 if (GET_CODE (incloc) == REG)
7876 reg_last_reload_reg[REGNO (incloc)] = 0;
7877
7878 if (GET_CODE (value) == PRE_DEC || GET_CODE (value) == POST_DEC)
1d7254c5 7879 inc_amount = -inc_amount;
32131a9c 7880
fb3821f7 7881 inc = GEN_INT (inc_amount);
0009eff2
RK
7882
7883 /* If this is post-increment, first copy the location to the reload reg. */
cb2afeb3
R
7884 if (post && real_in != reloadreg)
7885 emit_insn (gen_move_insn (reloadreg, real_in));
0009eff2 7886
cb2afeb3
R
7887 if (in == value)
7888 {
7889 /* See if we can directly increment INCLOC. Use a method similar to
7890 that in gen_reload. */
0009eff2 7891
cb2afeb3
R
7892 last = get_last_insn ();
7893 add_insn = emit_insn (gen_rtx_SET (VOIDmode, incloc,
7894 gen_rtx_PLUS (GET_MODE (incloc),
7895 incloc, inc)));
05d10675 7896
cb2afeb3
R
7897 code = recog_memoized (add_insn);
7898 if (code >= 0)
32131a9c 7899 {
0eadeb15
BS
7900 extract_insn (add_insn);
7901 if (constrain_operands (1))
cb2afeb3
R
7902 {
7903 /* If this is a pre-increment and we have incremented the value
7904 where it lives, copy the incremented value to RELOADREG to
7905 be used as an address. */
0009eff2 7906
cb2afeb3
R
7907 if (! post)
7908 emit_insn (gen_move_insn (reloadreg, incloc));
546b63fb 7909
cb2afeb3
R
7910 return add_insn;
7911 }
32131a9c 7912 }
cb2afeb3 7913 delete_insns_since (last);
32131a9c 7914 }
0009eff2 7915
0009eff2
RK
7916 /* If couldn't do the increment directly, must increment in RELOADREG.
7917 The way we do this depends on whether this is pre- or post-increment.
7918 For pre-increment, copy INCLOC to the reload register, increment it
7919 there, then save back. */
7920
7921 if (! post)
7922 {
cb2afeb3
R
7923 if (in != reloadreg)
7924 emit_insn (gen_move_insn (reloadreg, real_in));
546b63fb 7925 emit_insn (gen_add2_insn (reloadreg, inc));
cb2afeb3 7926 store = emit_insn (gen_move_insn (incloc, reloadreg));
0009eff2 7927 }
32131a9c
RK
7928 else
7929 {
0009eff2
RK
7930 /* Postincrement.
7931 Because this might be a jump insn or a compare, and because RELOADREG
7932 may not be available after the insn in an input reload, we must do
7933 the incrementation before the insn being reloaded for.
7934
cb2afeb3 7935 We have already copied IN to RELOADREG. Increment the copy in
0009eff2
RK
7936 RELOADREG, save that back, then decrement RELOADREG so it has
7937 the original value. */
7938
546b63fb 7939 emit_insn (gen_add2_insn (reloadreg, inc));
cb2afeb3 7940 store = emit_insn (gen_move_insn (incloc, reloadreg));
546b63fb 7941 emit_insn (gen_add2_insn (reloadreg, GEN_INT (-inc_amount)));
32131a9c 7942 }
0009eff2 7943
cb2afeb3 7944 return store;
32131a9c
RK
7945}
7946\f
7947/* Return 1 if we are certain that the constraint-string STRING allows
7948 the hard register REG. Return 0 if we can't be sure of this. */
7949
7950static int
7951constraint_accepts_reg_p (string, reg)
9b3142b3 7952 const char *string;
32131a9c
RK
7953 rtx reg;
7954{
7955 int value = 0;
7956 int regno = true_regnum (reg);
7957 int c;
7958
7959 /* Initialize for first alternative. */
7960 value = 0;
7961 /* Check that each alternative contains `g' or `r'. */
7962 while (1)
7963 switch (c = *string++)
7964 {
7965 case 0:
7966 /* If an alternative lacks `g' or `r', we lose. */
7967 return value;
7968 case ',':
7969 /* If an alternative lacks `g' or `r', we lose. */
7970 if (value == 0)
7971 return 0;
7972 /* Initialize for next alternative. */
7973 value = 0;
7974 break;
7975 case 'g':
7976 case 'r':
7977 /* Any general reg wins for this alternative. */
7978 if (TEST_HARD_REG_BIT (reg_class_contents[(int) GENERAL_REGS], regno))
7979 value = 1;
7980 break;
7981 default:
7982 /* Any reg in specified class wins for this alternative. */
7983 {
0009eff2 7984 enum reg_class class = REG_CLASS_FROM_LETTER (c);
32131a9c 7985
0009eff2 7986 if (TEST_HARD_REG_BIT (reg_class_contents[(int) class], regno))
32131a9c
RK
7987 value = 1;
7988 }
7989 }
7990}
7991\f
eab5c70a
BS
7992/* INSN is a no-op; delete it.
7993 If this sets the return value of the function, we must keep a USE around,
7994 in case this is in a different basic block than the final USE. Otherwise,
7995 we could loose important register lifeness information on
7996 SMALL_REGISTER_CLASSES machines, where return registers might be used as
7997 spills: subsequent passes assume that spill registers are dead at the end
7998 of a basic block.
7999 VALUE must be the return value in such a case, NULL otherwise. */
2a9fb548 8000static void
eab5c70a
BS
8001reload_cse_delete_noop_set (insn, value)
8002 rtx insn, value;
2a9fb548 8003{
eab5c70a 8004 if (value)
2a9fb548 8005 {
eab5c70a
BS
8006 PATTERN (insn) = gen_rtx_USE (VOIDmode, value);
8007 INSN_CODE (insn) = -1;
8008 REG_NOTES (insn) = NULL_RTX;
2a9fb548 8009 }
eab5c70a 8010 else
ca6c03ca 8011 delete_insn (insn);
2a9fb548
ILT
8012}
8013
eab5c70a 8014/* See whether a single set SET is a noop. */
2a9fb548 8015static int
eab5c70a
BS
8016reload_cse_noop_set_p (set)
8017 rtx set;
2a9fb548 8018{
eab5c70a
BS
8019 return rtx_equal_for_cselib_p (SET_DEST (set), SET_SRC (set));
8020}
2a9fb548 8021
eab5c70a
BS
8022/* Try to simplify INSN. */
8023static void
8024reload_cse_simplify (insn)
8025 rtx insn;
8026{
8027 rtx body = PATTERN (insn);
2a9fb548 8028
eab5c70a 8029 if (GET_CODE (body) == SET)
2a9fb548 8030 {
eab5c70a 8031 int count = 0;
d5ae21aa
AH
8032
8033 /* Simplify even if we may think it is a no-op.
8034 We may think a memory load of a value smaller than WORD_SIZE
8035 is redundant because we haven't taken into account possible
8036 implicit extension. reload_cse_simplify_set() will bring
8037 this out, so it's safer to simplify before we delete. */
8038 count += reload_cse_simplify_set (body, insn);
8039
8040 if (!count && reload_cse_noop_set_p (body))
2a9fb548 8041 {
eab5c70a
BS
8042 rtx value = SET_DEST (body);
8043 if (! REG_FUNCTION_VALUE_P (SET_DEST (body)))
8044 value = 0;
8045 reload_cse_delete_noop_set (insn, value);
8046 return;
2a9fb548 8047 }
2a9fb548 8048
eab5c70a
BS
8049 if (count > 0)
8050 apply_change_group ();
8051 else
8052 reload_cse_simplify_operands (insn);
8053 }
8054 else if (GET_CODE (body) == PARALLEL)
2a9fb548 8055 {
eab5c70a
BS
8056 int i;
8057 int count = 0;
8058 rtx value = NULL_RTX;
2a9fb548 8059
eab5c70a
BS
8060 /* If every action in a PARALLEL is a noop, we can delete
8061 the entire PARALLEL. */
8062 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
2a9fb548 8063 {
eab5c70a
BS
8064 rtx part = XVECEXP (body, 0, i);
8065 if (GET_CODE (part) == SET)
2a9fb548 8066 {
eab5c70a
BS
8067 if (! reload_cse_noop_set_p (part))
8068 break;
8069 if (REG_FUNCTION_VALUE_P (SET_DEST (part)))
2a9fb548 8070 {
eab5c70a
BS
8071 if (value)
8072 break;
8073 value = SET_DEST (part);
2a9fb548 8074 }
2a9fb548 8075 }
eab5c70a
BS
8076 else if (GET_CODE (part) != CLOBBER)
8077 break;
2a9fb548 8078 }
2a9fb548 8079
eab5c70a
BS
8080 if (i < 0)
8081 {
8082 reload_cse_delete_noop_set (insn, value);
8083 /* We're done with this insn. */
8084 return;
8085 }
2a9fb548 8086
eab5c70a
BS
8087 /* It's not a no-op, but we can try to simplify it. */
8088 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
8089 if (GET_CODE (XVECEXP (body, 0, i)) == SET)
8090 count += reload_cse_simplify_set (XVECEXP (body, 0, i), insn);
8091
8092 if (count > 0)
8093 apply_change_group ();
8094 else
8095 reload_cse_simplify_operands (insn);
8096 }
2a9fb548
ILT
8097}
8098
8099/* Do a very simple CSE pass over the hard registers.
8100
8101 This function detects no-op moves where we happened to assign two
8102 different pseudo-registers to the same hard register, and then
8103 copied one to the other. Reload will generate a useless
8104 instruction copying a register to itself.
8105
8106 This function also detects cases where we load a value from memory
8107 into two different registers, and (if memory is more expensive than
8108 registers) changes it to simply copy the first register into the
05d10675 8109 second register.
e9a25f70
JL
8110
8111 Another optimization is performed that scans the operands of each
8112 instruction to see whether the value is already available in a
8113 hard register. It then replaces the operand with the hard register
8114 if possible, much like an optional reload would. */
2a9fb548 8115
5adf6da0
R
8116static void
8117reload_cse_regs_1 (first)
2a9fb548
ILT
8118 rtx first;
8119{
2a9fb548
ILT
8120 rtx insn;
8121
1d7254c5 8122 cselib_init ();
cbfc3ad3
RK
8123 init_alias_analysis ();
8124
2a9fb548
ILT
8125 for (insn = first; insn; insn = NEXT_INSN (insn))
8126 {
2c3c49de 8127 if (INSN_P (insn))
eab5c70a 8128 reload_cse_simplify (insn);
2a9fb548 8129
eab5c70a 8130 cselib_process_insn (insn);
2a9fb548
ILT
8131 }
8132
e05e2395
MM
8133 /* Clean up. */
8134 end_alias_analysis ();
eab5c70a 8135 cselib_finish ();
2a9fb548
ILT
8136}
8137
5adf6da0
R
8138/* Call cse / combine like post-reload optimization phases.
8139 FIRST is the first instruction. */
8140void
8141reload_cse_regs (first)
8142 rtx first;
8143{
8144 reload_cse_regs_1 (first);
8145 reload_combine ();
8146 reload_cse_move2add (first);
8147 if (flag_expensive_optimizations)
8148 reload_cse_regs_1 (first);
8149}
8150
2a9fb548 8151/* Try to simplify a single SET instruction. SET is the set pattern.
e9a25f70
JL
8152 INSN is the instruction it came from.
8153 This function only handles one case: if we set a register to a value
8154 which is not a register, we try to find that value in some other register
8155 and change the set into a register copy. */
2a9fb548 8156
e9a25f70 8157static int
2a9fb548
ILT
8158reload_cse_simplify_set (set, insn)
8159 rtx set;
8160 rtx insn;
8161{
eab5c70a 8162 int did_change = 0;
2a9fb548
ILT
8163 int dreg;
8164 rtx src;
2a9fb548 8165 enum reg_class dclass;
eab5c70a
BS
8166 int old_cost;
8167 cselib_val *val;
8168 struct elt_loc_list *l;
78adc5a0
RH
8169#ifdef LOAD_EXTEND_OP
8170 enum rtx_code extend_op = NIL;
8171#endif
2a9fb548 8172
2a9fb548
ILT
8173 dreg = true_regnum (SET_DEST (set));
8174 if (dreg < 0)
e9a25f70 8175 return 0;
2a9fb548
ILT
8176
8177 src = SET_SRC (set);
8178 if (side_effects_p (src) || true_regnum (src) >= 0)
e9a25f70 8179 return 0;
2a9fb548 8180
cbd5b9a2
KR
8181 dclass = REGNO_REG_CLASS (dreg);
8182
78adc5a0
RH
8183#ifdef LOAD_EXTEND_OP
8184 /* When replacing a memory with a register, we need to honor assumptions
8185 that combine made wrt the contents of sign bits. We'll do this by
8186 generating an extend instruction instead of a reg->reg copy. Thus
8187 the destination must be a register that we can widen. */
8188 if (GET_CODE (src) == MEM
8189 && GET_MODE_BITSIZE (GET_MODE (src)) < BITS_PER_WORD
8190 && (extend_op = LOAD_EXTEND_OP (GET_MODE (src))) != NIL
8191 && GET_CODE (SET_DEST (set)) != REG)
8192 return 0;
8193#endif
8194
33ab8de0 8195 /* If memory loads are cheaper than register copies, don't change them. */
eab5c70a
BS
8196 if (GET_CODE (src) == MEM)
8197 old_cost = MEMORY_MOVE_COST (GET_MODE (src), dclass, 1);
8198 else if (CONSTANT_P (src))
8199 old_cost = rtx_cost (src, SET);
8200 else if (GET_CODE (src) == REG)
e56b4594
AO
8201 old_cost = REGISTER_MOVE_COST (GET_MODE (src),
8202 REGNO_REG_CLASS (REGNO (src)), dclass);
eab5c70a
BS
8203 else
8204 /* ??? */
8205 old_cost = rtx_cost (src, SET);
2a9fb548 8206
70bbeb8b 8207 val = cselib_lookup (src, GET_MODE (SET_DEST (set)), 0);
eab5c70a 8208 if (! val)
0254c561 8209 return 0;
eab5c70a 8210 for (l = val->locs; l; l = l->next)
2a9fb548 8211 {
78adc5a0 8212 rtx this_rtx = l->loc;
eab5c70a 8213 int this_cost;
78adc5a0
RH
8214
8215 if (CONSTANT_P (this_rtx) && ! references_value_p (this_rtx, 0))
8216 {
8217#ifdef LOAD_EXTEND_OP
8218 if (extend_op != NIL)
8219 {
8220 HOST_WIDE_INT this_val;
8221
8222 /* ??? I'm lazy and don't wish to handle CONST_DOUBLE. Other
8223 constants, such as SYMBOL_REF, cannot be extended. */
8224 if (GET_CODE (this_rtx) != CONST_INT)
8225 continue;
8226
8227 this_val = INTVAL (this_rtx);
8228 switch (extend_op)
8229 {
8230 case ZERO_EXTEND:
8231 this_val &= GET_MODE_MASK (GET_MODE (src));
8232 break;
8233 case SIGN_EXTEND:
8234 /* ??? In theory we're already extended. */
8235 if (this_val == trunc_int_for_mode (this_val, GET_MODE (src)))
8236 break;
8237 default:
8238 abort ();
8239 }
5cada064 8240 this_rtx = GEN_INT (this_val);
78adc5a0
RH
8241 }
8242#endif
8243 this_cost = rtx_cost (this_rtx, SET);
8244 }
8245 else if (GET_CODE (this_rtx) == REG)
8246 {
8247#ifdef LOAD_EXTEND_OP
8248 if (extend_op != NIL)
8249 {
8250 this_rtx = gen_rtx_fmt_e (extend_op, word_mode, this_rtx);
8251 this_cost = rtx_cost (this_rtx, SET);
8252 }
8253 else
8254#endif
8255 this_cost = REGISTER_MOVE_COST (GET_MODE (this_rtx),
8256 REGNO_REG_CLASS (REGNO (this_rtx)),
8257 dclass);
8258 }
eab5c70a
BS
8259 else
8260 continue;
78adc5a0
RH
8261
8262 /* If equal costs, prefer registers over anything else. That
8263 tends to lead to smaller instructions on some machines. */
8264 if (this_cost < old_cost
8265 || (this_cost == old_cost
8266 && GET_CODE (this_rtx) == REG
8267 && GET_CODE (SET_SRC (set)) != REG))
8268 {
8269#ifdef LOAD_EXTEND_OP
b216e516
JL
8270 if (GET_MODE_BITSIZE (GET_MODE (SET_DEST (set))) < BITS_PER_WORD
8271 && extend_op != NIL)
8272 {
8273 rtx wide_dest = gen_rtx_REG (word_mode, REGNO (SET_DEST (set)));
8274 ORIGINAL_REGNO (wide_dest) = ORIGINAL_REGNO (SET_DEST (set));
8275 validate_change (insn, &SET_DEST (set), wide_dest, 1);
8276 }
78adc5a0
RH
8277#endif
8278
8279 validate_change (insn, &SET_SRC (set), copy_rtx (this_rtx), 1);
8280 old_cost = this_cost, did_change = 1;
8281 }
e9a25f70 8282 }
eab5c70a
BS
8283
8284 return did_change;
e9a25f70
JL
8285}
8286
8287/* Try to replace operands in INSN with equivalent values that are already
05d10675
BS
8288 in registers. This can be viewed as optional reloading.
8289
e9a25f70
JL
8290 For each non-register operand in the insn, see if any hard regs are
8291 known to be equivalent to that operand. Record the alternatives which
8292 can accept these hard registers. Among all alternatives, select the
8293 ones which are better or equal to the one currently matching, where
8294 "better" is in terms of '?' and '!' constraints. Among the remaining
8295 alternatives, select the one which replaces most operands with
8296 hard registers. */
8297
8298static int
8299reload_cse_simplify_operands (insn)
8300 rtx insn;
8301{
1d7254c5 8302 int i, j;
e9a25f70 8303
eab5c70a
BS
8304 /* For each operand, all registers that are equivalent to it. */
8305 HARD_REG_SET equiv_regs[MAX_RECOG_OPERANDS];
8306
9b3142b3 8307 const char *constraints[MAX_RECOG_OPERANDS];
05d10675 8308
e9a25f70
JL
8309 /* Vector recording how bad an alternative is. */
8310 int *alternative_reject;
8311 /* Vector recording how many registers can be introduced by choosing
8312 this alternative. */
8313 int *alternative_nregs;
8314 /* Array of vectors recording, for each operand and each alternative,
8315 which hard register to substitute, or -1 if the operand should be
8316 left as it is. */
8317 int *op_alt_regno[MAX_RECOG_OPERANDS];
8318 /* Array of alternatives, sorted in order of decreasing desirability. */
8319 int *alternative_order;
0254c561 8320 rtx reg = gen_rtx_REG (VOIDmode, -1);
05d10675 8321
0eadeb15 8322 extract_insn (insn);
e9a25f70 8323
1ccbefce 8324 if (recog_data.n_alternatives == 0 || recog_data.n_operands == 0)
1d300e19 8325 return 0;
e9a25f70
JL
8326
8327 /* Figure out which alternative currently matches. */
0eadeb15 8328 if (! constrain_operands (1))
b8705408 8329 fatal_insn_not_found (insn);
1d7254c5 8330
1ccbefce
RH
8331 alternative_reject = (int *) alloca (recog_data.n_alternatives * sizeof (int));
8332 alternative_nregs = (int *) alloca (recog_data.n_alternatives * sizeof (int));
8333 alternative_order = (int *) alloca (recog_data.n_alternatives * sizeof (int));
961192e1
JM
8334 memset ((char *)alternative_reject, 0, recog_data.n_alternatives * sizeof (int));
8335 memset ((char *)alternative_nregs, 0, recog_data.n_alternatives * sizeof (int));
e9a25f70 8336
eab5c70a
BS
8337 /* For each operand, find out which regs are equivalent. */
8338 for (i = 0; i < recog_data.n_operands; i++)
8339 {
8340 cselib_val *v;
8341 struct elt_loc_list *l;
8342
8343 CLEAR_HARD_REG_SET (equiv_regs[i]);
8344
8345 /* cselib blows up on CODE_LABELs. Trying to fix that doesn't seem
70bbeb8b
BS
8346 right, so avoid the problem here. Likewise if we have a constant
8347 and the insn pattern doesn't tell us the mode we need. */
8348 if (GET_CODE (recog_data.operand[i]) == CODE_LABEL
8349 || (CONSTANT_P (recog_data.operand[i])
8350 && recog_data.operand_mode[i] == VOIDmode))
eab5c70a
BS
8351 continue;
8352
8353 v = cselib_lookup (recog_data.operand[i], recog_data.operand_mode[i], 0);
8354 if (! v)
8355 continue;
8356
8357 for (l = v->locs; l; l = l->next)
8358 if (GET_CODE (l->loc) == REG)
8359 SET_HARD_REG_BIT (equiv_regs[i], REGNO (l->loc));
8360 }
8361
1ccbefce 8362 for (i = 0; i < recog_data.n_operands; i++)
e9a25f70
JL
8363 {
8364 enum machine_mode mode;
8365 int regno;
9b3142b3 8366 const char *p;
e9a25f70 8367
1ccbefce
RH
8368 op_alt_regno[i] = (int *) alloca (recog_data.n_alternatives * sizeof (int));
8369 for (j = 0; j < recog_data.n_alternatives; j++)
e9a25f70
JL
8370 op_alt_regno[i][j] = -1;
8371
1ccbefce
RH
8372 p = constraints[i] = recog_data.constraints[i];
8373 mode = recog_data.operand_mode[i];
e9a25f70
JL
8374
8375 /* Add the reject values for each alternative given by the constraints
8376 for this operand. */
8377 j = 0;
8378 while (*p != '\0')
8379 {
8380 char c = *p++;
8381 if (c == ',')
8382 j++;
8383 else if (c == '?')
8384 alternative_reject[j] += 3;
8385 else if (c == '!')
8386 alternative_reject[j] += 300;
8387 }
8388
8389 /* We won't change operands which are already registers. We
8390 also don't want to modify output operands. */
1ccbefce 8391 regno = true_regnum (recog_data.operand[i]);
e9a25f70
JL
8392 if (regno >= 0
8393 || constraints[i][0] == '='
8394 || constraints[i][0] == '+')
8395 continue;
8396
8397 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
8398 {
8399 int class = (int) NO_REGS;
8400
eab5c70a 8401 if (! TEST_HARD_REG_BIT (equiv_regs[i], regno))
e9a25f70
JL
8402 continue;
8403
0254c561
JC
8404 REGNO (reg) = regno;
8405 PUT_MODE (reg, mode);
8406
e9a25f70
JL
8407 /* We found a register equal to this operand. Now look for all
8408 alternatives that can accept this register and have not been
8409 assigned a register they can use yet. */
8410 j = 0;
8411 p = constraints[i];
8412 for (;;)
31418d35 8413 {
e9a25f70 8414 char c = *p++;
05d10675 8415
e9a25f70 8416 switch (c)
31418d35 8417 {
e9a25f70
JL
8418 case '=': case '+': case '?':
8419 case '#': case '&': case '!':
05d10675 8420 case '*': case '%':
e9a25f70 8421 case '0': case '1': case '2': case '3': case '4':
c5c76735 8422 case '5': case '6': case '7': case '8': case '9':
e9a25f70
JL
8423 case 'm': case '<': case '>': case 'V': case 'o':
8424 case 'E': case 'F': case 'G': case 'H':
8425 case 's': case 'i': case 'n':
8426 case 'I': case 'J': case 'K': case 'L':
8427 case 'M': case 'N': case 'O': case 'P':
e9a25f70
JL
8428 case 'p': case 'X':
8429 /* These don't say anything we care about. */
8430 break;
8431
8432 case 'g': case 'r':
8433 class = reg_class_subunion[(int) class][(int) GENERAL_REGS];
8434 break;
8435
8436 default:
8437 class
e51712db 8438 = reg_class_subunion[(int) class][(int) REG_CLASS_FROM_LETTER ((unsigned char)c)];
e9a25f70 8439 break;
31418d35 8440
e9a25f70
JL
8441 case ',': case '\0':
8442 /* See if REGNO fits this alternative, and set it up as the
8443 replacement register if we don't have one for this
0254c561 8444 alternative yet and the operand being replaced is not
1d7254c5 8445 a cheap CONST_INT. */
e9a25f70 8446 if (op_alt_regno[i][j] == -1
0254c561 8447 && reg_fits_class_p (reg, class, 0, mode)
1ccbefce
RH
8448 && (GET_CODE (recog_data.operand[i]) != CONST_INT
8449 || (rtx_cost (recog_data.operand[i], SET)
8450 > rtx_cost (reg, SET))))
31418d35 8451 {
e9a25f70
JL
8452 alternative_nregs[j]++;
8453 op_alt_regno[i][j] = regno;
31418d35 8454 }
e9a25f70
JL
8455 j++;
8456 break;
31418d35
ILT
8457 }
8458
e9a25f70
JL
8459 if (c == '\0')
8460 break;
8461 }
8462 }
8463 }
8464
8465 /* Record all alternatives which are better or equal to the currently
8466 matching one in the alternative_order array. */
1ccbefce 8467 for (i = j = 0; i < recog_data.n_alternatives; i++)
e9a25f70
JL
8468 if (alternative_reject[i] <= alternative_reject[which_alternative])
8469 alternative_order[j++] = i;
1ccbefce 8470 recog_data.n_alternatives = j;
e9a25f70
JL
8471
8472 /* Sort it. Given a small number of alternatives, a dumb algorithm
8473 won't hurt too much. */
1ccbefce 8474 for (i = 0; i < recog_data.n_alternatives - 1; i++)
e9a25f70
JL
8475 {
8476 int best = i;
8477 int best_reject = alternative_reject[alternative_order[i]];
8478 int best_nregs = alternative_nregs[alternative_order[i]];
8479 int tmp;
8480
1ccbefce 8481 for (j = i + 1; j < recog_data.n_alternatives; j++)
e9a25f70
JL
8482 {
8483 int this_reject = alternative_reject[alternative_order[j]];
8484 int this_nregs = alternative_nregs[alternative_order[j]];
8485
8486 if (this_reject < best_reject
8487 || (this_reject == best_reject && this_nregs < best_nregs))
8488 {
8489 best = j;
8490 best_reject = this_reject;
8491 best_nregs = this_nregs;
31418d35 8492 }
2a9fb548 8493 }
05d10675 8494
e9a25f70
JL
8495 tmp = alternative_order[best];
8496 alternative_order[best] = alternative_order[i];
8497 alternative_order[i] = tmp;
8498 }
05d10675 8499
e9a25f70
JL
8500 /* Substitute the operands as determined by op_alt_regno for the best
8501 alternative. */
8502 j = alternative_order[0];
e9a25f70 8503
1ccbefce 8504 for (i = 0; i < recog_data.n_operands; i++)
e9a25f70 8505 {
1ccbefce 8506 enum machine_mode mode = recog_data.operand_mode[i];
e9a25f70
JL
8507 if (op_alt_regno[i][j] == -1)
8508 continue;
8509
1ccbefce 8510 validate_change (insn, recog_data.operand_loc[i],
38a448ca 8511 gen_rtx_REG (mode, op_alt_regno[i][j]), 1);
e9a25f70
JL
8512 }
8513
1ccbefce 8514 for (i = recog_data.n_dups - 1; i >= 0; i--)
e9a25f70 8515 {
1ccbefce
RH
8516 int op = recog_data.dup_num[i];
8517 enum machine_mode mode = recog_data.operand_mode[op];
e9a25f70
JL
8518
8519 if (op_alt_regno[op][j] == -1)
8520 continue;
8521
1ccbefce 8522 validate_change (insn, recog_data.dup_loc[i],
38a448ca 8523 gen_rtx_REG (mode, op_alt_regno[op][j]), 1);
2a9fb548 8524 }
e9a25f70 8525
e9a25f70 8526 return apply_change_group ();
2a9fb548 8527}
5adf6da0
R
8528\f
8529/* If reload couldn't use reg+reg+offset addressing, try to use reg+reg
8530 addressing now.
8531 This code might also be useful when reload gave up on reg+reg addresssing
8532 because of clashes between the return register and INDEX_REG_CLASS. */
8533
8534/* The maximum number of uses of a register we can keep track of to
8535 replace them with reg+reg addressing. */
8536#define RELOAD_COMBINE_MAX_USES 6
8537
8538/* INSN is the insn where a register has ben used, and USEP points to the
8539 location of the register within the rtl. */
8540struct reg_use { rtx insn, *usep; };
8541
8542/* If the register is used in some unknown fashion, USE_INDEX is negative.
8543 If it is dead, USE_INDEX is RELOAD_COMBINE_MAX_USES, and STORE_RUID
8544 indicates where it becomes live again.
8545 Otherwise, USE_INDEX is the index of the last encountered use of the
8546 register (which is first among these we have seen since we scan backwards),
8547 OFFSET contains the constant offset that is added to the register in
8548 all encountered uses, and USE_RUID indicates the first encountered, i.e.
ed937a19
R
8549 last, of these uses.
8550 STORE_RUID is always meaningful if we only want to use a value in a
8551 register in a different place: it denotes the next insn in the insn
8552 stream (i.e. the last ecountered) that sets or clobbers the register. */
5adf6da0
R
8553static struct
8554 {
8555 struct reg_use reg_use[RELOAD_COMBINE_MAX_USES];
8556 int use_index;
8557 rtx offset;
8558 int store_ruid;
8559 int use_ruid;
8560 } reg_state[FIRST_PSEUDO_REGISTER];
8561
8562/* Reverse linear uid. This is increased in reload_combine while scanning
8563 the instructions from last to first. It is used to set last_label_ruid
8564 and the store_ruid / use_ruid fields in reg_state. */
8565static int reload_combine_ruid;
8566
b0634509
R
8567#define LABEL_LIVE(LABEL) \
8568 (label_live[CODE_LABEL_NUMBER (LABEL) - min_labelno])
8569
5adf6da0
R
8570static void
8571reload_combine ()
8572{
8573 rtx insn, set;
ae0ed63a
JM
8574 int first_index_reg = -1;
8575 int last_index_reg = 0;
5adf6da0 8576 int i;
f8cd4126 8577 unsigned int r;
5adf6da0 8578 int last_label_ruid;
b0634509
R
8579 int min_labelno, n_labels;
8580 HARD_REG_SET ever_live_at_start, *label_live;
5adf6da0
R
8581
8582 /* If reg+reg can be used in offsetable memory adresses, the main chunk of
8583 reload has already used it where appropriate, so there is no use in
8584 trying to generate it now. */
03acd8f8 8585 if (double_reg_address_ok && INDEX_REG_CLASS != NO_REGS)
5adf6da0
R
8586 return;
8587
8588 /* To avoid wasting too much time later searching for an index register,
8589 determine the minimum and maximum index register numbers. */
f8cd4126
RK
8590 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
8591 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], r))
8592 {
881a8969 8593 if (first_index_reg == -1)
4c3f1588
RK
8594 first_index_reg = r;
8595
8596 last_index_reg = r;
f8cd4126
RK
8597 }
8598
5adf6da0 8599 /* If no index register is available, we can quit now. */
881a8969 8600 if (first_index_reg == -1)
5adf6da0
R
8601 return;
8602
b0634509
R
8603 /* Set up LABEL_LIVE and EVER_LIVE_AT_START. The register lifetime
8604 information is a bit fuzzy immediately after reload, but it's
8605 still good enough to determine which registers are live at a jump
8606 destination. */
8607 min_labelno = get_first_label_num ();
8608 n_labels = max_label_num () - min_labelno;
8609 label_live = (HARD_REG_SET *) xmalloc (n_labels * sizeof (HARD_REG_SET));
8610 CLEAR_HARD_REG_SET (ever_live_at_start);
f8cd4126 8611
b0634509
R
8612 for (i = n_basic_blocks - 1; i >= 0; i--)
8613 {
3b413743 8614 insn = BLOCK_HEAD (i);
b0634509
R
8615 if (GET_CODE (insn) == CODE_LABEL)
8616 {
8617 HARD_REG_SET live;
8618
f8cd4126
RK
8619 REG_SET_TO_HARD_REG_SET (live,
8620 BASIC_BLOCK (i)->global_live_at_start);
8621 compute_use_by_pseudos (&live,
8622 BASIC_BLOCK (i)->global_live_at_start);
b0634509
R
8623 COPY_HARD_REG_SET (LABEL_LIVE (insn), live);
8624 IOR_HARD_REG_SET (ever_live_at_start, live);
8625 }
8626 }
8627
5adf6da0
R
8628 /* Initialize last_label_ruid, reload_combine_ruid and reg_state. */
8629 last_label_ruid = reload_combine_ruid = 0;
f8cd4126 8630 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
5adf6da0 8631 {
f8cd4126
RK
8632 reg_state[r].store_ruid = reload_combine_ruid;
8633 if (fixed_regs[r])
8634 reg_state[r].use_index = -1;
5adf6da0 8635 else
f8cd4126 8636 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
5adf6da0
R
8637 }
8638
8639 for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
8640 {
8641 rtx note;
8642
8643 /* We cannot do our optimization across labels. Invalidating all the use
8644 information we have would be costly, so we just note where the label
05d10675 8645 is and then later disable any optimization that would cross it. */
5adf6da0
R
8646 if (GET_CODE (insn) == CODE_LABEL)
8647 last_label_ruid = reload_combine_ruid;
f8cd4126
RK
8648 else if (GET_CODE (insn) == BARRIER)
8649 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
8650 if (! fixed_regs[r])
8651 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
8652
2c3c49de 8653 if (! INSN_P (insn))
5adf6da0 8654 continue;
f8cd4126 8655
5adf6da0
R
8656 reload_combine_ruid++;
8657
8658 /* Look for (set (REGX) (CONST_INT))
eceef4c9
BS
8659 (set (REGX) (PLUS (REGX) (REGY)))
8660 ...
8661 ... (MEM (REGX)) ...
5adf6da0 8662 and convert it to
eceef4c9
BS
8663 (set (REGZ) (CONST_INT))
8664 ...
8665 ... (MEM (PLUS (REGZ) (REGY)))... .
5adf6da0
R
8666
8667 First, check that we have (set (REGX) (PLUS (REGX) (REGY)))
8668 and that we know all uses of REGX before it dies. */
2abbc1bd
R
8669 set = single_set (insn);
8670 if (set != NULL_RTX
5adf6da0
R
8671 && GET_CODE (SET_DEST (set)) == REG
8672 && (HARD_REGNO_NREGS (REGNO (SET_DEST (set)),
8673 GET_MODE (SET_DEST (set)))
8674 == 1)
8675 && GET_CODE (SET_SRC (set)) == PLUS
8676 && GET_CODE (XEXP (SET_SRC (set), 1)) == REG
8677 && rtx_equal_p (XEXP (SET_SRC (set), 0), SET_DEST (set))
8678 && last_label_ruid < reg_state[REGNO (SET_DEST (set))].use_ruid)
8679 {
8680 rtx reg = SET_DEST (set);
8681 rtx plus = SET_SRC (set);
8682 rtx base = XEXP (plus, 1);
8683 rtx prev = prev_nonnote_insn (insn);
8684 rtx prev_set = prev ? single_set (prev) : NULL_RTX;
f8cd4126 8685 unsigned int regno = REGNO (reg);
6a651371 8686 rtx const_reg = NULL_RTX;
5adf6da0
R
8687 rtx reg_sum = NULL_RTX;
8688
8689 /* Now, we need an index register.
8690 We'll set index_reg to this index register, const_reg to the
8691 register that is to be loaded with the constant
8692 (denoted as REGZ in the substitution illustration above),
8693 and reg_sum to the register-register that we want to use to
8694 substitute uses of REG (typically in MEMs) with.
8695 First check REG and BASE for being index registers;
8696 we can use them even if they are not dead. */
8697 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], regno)
8698 || TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS],
8699 REGNO (base)))
8700 {
8701 const_reg = reg;
8702 reg_sum = plus;
8703 }
8704 else
8705 {
05d10675
BS
8706 /* Otherwise, look for a free index register. Since we have
8707 checked above that neiter REG nor BASE are index registers,
8708 if we find anything at all, it will be different from these
8709 two registers. */
8710 for (i = first_index_reg; i <= last_index_reg; i++)
5adf6da0 8711 {
f8cd4126
RK
8712 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS],
8713 i)
5adf6da0
R
8714 && reg_state[i].use_index == RELOAD_COMBINE_MAX_USES
8715 && reg_state[i].store_ruid <= reg_state[regno].use_ruid
8716 && HARD_REGNO_NREGS (i, GET_MODE (reg)) == 1)
8717 {
8718 rtx index_reg = gen_rtx_REG (GET_MODE (reg), i);
f8cd4126 8719
5adf6da0
R
8720 const_reg = index_reg;
8721 reg_sum = gen_rtx_PLUS (GET_MODE (reg), index_reg, base);
8722 break;
8723 }
8724 }
8725 }
f8cd4126 8726
ed937a19
R
8727 /* Check that PREV_SET is indeed (set (REGX) (CONST_INT)) and that
8728 (REGY), i.e. BASE, is not clobbered before the last use we'll
8729 create. */
f8cd4126 8730 if (prev_set != 0
5adf6da0
R
8731 && GET_CODE (SET_SRC (prev_set)) == CONST_INT
8732 && rtx_equal_p (SET_DEST (prev_set), reg)
8733 && reg_state[regno].use_index >= 0
f8cd4126
RK
8734 && (reg_state[REGNO (base)].store_ruid
8735 <= reg_state[regno].use_ruid)
8736 && reg_sum != 0)
5adf6da0
R
8737 {
8738 int i;
8739
f8cd4126 8740 /* Change destination register and, if necessary, the
5adf6da0
R
8741 constant value in PREV, the constant loading instruction. */
8742 validate_change (prev, &SET_DEST (prev_set), const_reg, 1);
8743 if (reg_state[regno].offset != const0_rtx)
8744 validate_change (prev,
8745 &SET_SRC (prev_set),
8746 GEN_INT (INTVAL (SET_SRC (prev_set))
8747 + INTVAL (reg_state[regno].offset)),
8748 1);
f8cd4126 8749
5adf6da0
R
8750 /* Now for every use of REG that we have recorded, replace REG
8751 with REG_SUM. */
8752 for (i = reg_state[regno].use_index;
8753 i < RELOAD_COMBINE_MAX_USES; i++)
8754 validate_change (reg_state[regno].reg_use[i].insn,
8755 reg_state[regno].reg_use[i].usep,
8756 reg_sum, 1);
8757
8758 if (apply_change_group ())
8759 {
8760 rtx *np;
8761
8762 /* Delete the reg-reg addition. */
ca6c03ca 8763 delete_insn (insn);
5adf6da0
R
8764
8765 if (reg_state[regno].offset != const0_rtx)
f8cd4126
RK
8766 /* Previous REG_EQUIV / REG_EQUAL notes for PREV
8767 are now invalid. */
1d7254c5 8768 for (np = &REG_NOTES (prev); *np;)
f8cd4126
RK
8769 {
8770 if (REG_NOTE_KIND (*np) == REG_EQUAL
8771 || REG_NOTE_KIND (*np) == REG_EQUIV)
8772 *np = XEXP (*np, 1);
8773 else
8774 np = &XEXP (*np, 1);
8775 }
8776
5adf6da0 8777 reg_state[regno].use_index = RELOAD_COMBINE_MAX_USES;
f8cd4126
RK
8778 reg_state[REGNO (const_reg)].store_ruid
8779 = reload_combine_ruid;
5adf6da0
R
8780 continue;
8781 }
8782 }
8783 }
f8cd4126 8784
1d7254c5 8785 note_stores (PATTERN (insn), reload_combine_note_store, NULL);
f8cd4126 8786
5adf6da0
R
8787 if (GET_CODE (insn) == CALL_INSN)
8788 {
8789 rtx link;
8790
f8cd4126
RK
8791 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
8792 if (call_used_regs[r])
8793 {
8794 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
8795 reg_state[r].store_ruid = reload_combine_ruid;
8796 }
8797
5adf6da0
R
8798 for (link = CALL_INSN_FUNCTION_USAGE (insn); link;
8799 link = XEXP (link, 1))
6a69653a
CM
8800 {
8801 rtx usage_rtx = XEXP (XEXP (link, 0), 0);
8802 if (GET_CODE (usage_rtx) == REG)
8803 {
ae0ed63a 8804 unsigned int i;
6a69653a
CM
8805 unsigned int start_reg = REGNO (usage_rtx);
8806 unsigned int num_regs =
8807 HARD_REGNO_NREGS (start_reg, GET_MODE (usage_rtx));
8808 unsigned int end_reg = start_reg + num_regs - 1;
8809 for (i = start_reg; i <= end_reg; i++)
8810 if (GET_CODE (XEXP (link, 0)) == CLOBBER)
8811 {
8812 reg_state[i].use_index = RELOAD_COMBINE_MAX_USES;
8813 reg_state[i].store_ruid = reload_combine_ruid;
8814 }
8815 else
8816 reg_state[i].use_index = -1;
8817 }
8818 }
f8cd4126 8819
5adf6da0 8820 }
f8cd4126
RK
8821 else if (GET_CODE (insn) == JUMP_INSN
8822 && GET_CODE (PATTERN (insn)) != RETURN)
5adf6da0
R
8823 {
8824 /* Non-spill registers might be used at the call destination in
8825 some unknown fashion, so we have to mark the unknown use. */
b0634509 8826 HARD_REG_SET *live;
f8cd4126 8827
b0634509
R
8828 if ((condjump_p (insn) || condjump_in_parallel_p (insn))
8829 && JUMP_LABEL (insn))
8830 live = &LABEL_LIVE (JUMP_LABEL (insn));
8831 else
8832 live = &ever_live_at_start;
f8cd4126 8833
5adf6da0 8834 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; --i)
f8cd4126
RK
8835 if (TEST_HARD_REG_BIT (*live, i))
8836 reg_state[i].use_index = -1;
5adf6da0 8837 }
f8cd4126 8838
5adf6da0
R
8839 reload_combine_note_use (&PATTERN (insn), insn);
8840 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
8841 {
8842 if (REG_NOTE_KIND (note) == REG_INC
8843 && GET_CODE (XEXP (note, 0)) == REG)
ed937a19
R
8844 {
8845 int regno = REGNO (XEXP (note, 0));
8846
8847 reg_state[regno].store_ruid = reload_combine_ruid;
8848 reg_state[regno].use_index = -1;
8849 }
5adf6da0
R
8850 }
8851 }
f8cd4126 8852
b0634509 8853 free (label_live);
5adf6da0
R
8854}
8855
8856/* Check if DST is a register or a subreg of a register; if it is,
8857 update reg_state[regno].store_ruid and reg_state[regno].use_index
f93233bb 8858 accordingly. Called via note_stores from reload_combine. */
f8cd4126 8859
5adf6da0 8860static void
84832317 8861reload_combine_note_store (dst, set, data)
f93233bb 8862 rtx dst, set;
84832317 8863 void *data ATTRIBUTE_UNUSED;
5adf6da0
R
8864{
8865 int regno = 0;
8866 int i;
54ed0905 8867 enum machine_mode mode = GET_MODE (dst);
5adf6da0
R
8868
8869 if (GET_CODE (dst) == SUBREG)
8870 {
ddef6bc7
JJ
8871 regno = subreg_regno_offset (REGNO (SUBREG_REG (dst)),
8872 GET_MODE (SUBREG_REG (dst)),
8873 SUBREG_BYTE (dst),
8874 GET_MODE (dst));
5adf6da0
R
8875 dst = SUBREG_REG (dst);
8876 }
8877 if (GET_CODE (dst) != REG)
8878 return;
8879 regno += REGNO (dst);
54ca6ffa 8880
5adf6da0 8881 /* note_stores might have stripped a STRICT_LOW_PART, so we have to be
05d10675 8882 careful with registers / register parts that are not full words.
54ca6ffa
JL
8883
8884 Similarly for ZERO_EXTRACT and SIGN_EXTRACT. */
8885 if (GET_CODE (set) != SET
8886 || GET_CODE (SET_DEST (set)) == ZERO_EXTRACT
8887 || GET_CODE (SET_DEST (set)) == SIGN_EXTRACT
8888 || GET_CODE (SET_DEST (set)) == STRICT_LOW_PART)
ed937a19 8889 {
54ed0905 8890 for (i = HARD_REGNO_NREGS (regno, mode) - 1 + regno; i >= regno; i--)
f93233bb
JL
8891 {
8892 reg_state[i].use_index = -1;
8893 reg_state[i].store_ruid = reload_combine_ruid;
8894 }
ed937a19 8895 }
5adf6da0
R
8896 else
8897 {
54ed0905 8898 for (i = HARD_REGNO_NREGS (regno, mode) - 1 + regno; i >= regno; i--)
5adf6da0
R
8899 {
8900 reg_state[i].store_ruid = reload_combine_ruid;
8901 reg_state[i].use_index = RELOAD_COMBINE_MAX_USES;
8902 }
8903 }
8904}
8905
8906/* XP points to a piece of rtl that has to be checked for any uses of
8907 registers.
8908 *XP is the pattern of INSN, or a part of it.
8909 Called from reload_combine, and recursively by itself. */
8910static void
8911reload_combine_note_use (xp, insn)
8912 rtx *xp, insn;
8913{
8914 rtx x = *xp;
8915 enum rtx_code code = x->code;
6f7d635c 8916 const char *fmt;
5adf6da0
R
8917 int i, j;
8918 rtx offset = const0_rtx; /* For the REG case below. */
8919
8920 switch (code)
8921 {
8922 case SET:
8923 if (GET_CODE (SET_DEST (x)) == REG)
8924 {
8925 reload_combine_note_use (&SET_SRC (x), insn);
8926 return;
8927 }
8928 break;
8929
6ce7e0f9
R
8930 case USE:
8931 /* If this is the USE of a return value, we can't change it. */
8932 if (GET_CODE (XEXP (x, 0)) == REG && REG_FUNCTION_VALUE_P (XEXP (x, 0)))
8933 {
8934 /* Mark the return register as used in an unknown fashion. */
8935 rtx reg = XEXP (x, 0);
8936 int regno = REGNO (reg);
8937 int nregs = HARD_REGNO_NREGS (regno, GET_MODE (reg));
8938
8939 while (--nregs >= 0)
8940 reg_state[regno + nregs].use_index = -1;
8941 return;
8942 }
8943 break;
8944
5adf6da0
R
8945 case CLOBBER:
8946 if (GET_CODE (SET_DEST (x)) == REG)
3d17d93d
AO
8947 {
8948 /* No spurious CLOBBERs of pseudo registers may remain. */
8949 if (REGNO (SET_DEST (x)) >= FIRST_PSEUDO_REGISTER)
8950 abort ();
8951 return;
8952 }
5adf6da0
R
8953 break;
8954
8955 case PLUS:
8956 /* We are interested in (plus (reg) (const_int)) . */
1d7254c5
KH
8957 if (GET_CODE (XEXP (x, 0)) != REG
8958 || GET_CODE (XEXP (x, 1)) != CONST_INT)
5adf6da0
R
8959 break;
8960 offset = XEXP (x, 1);
8961 x = XEXP (x, 0);
05d10675 8962 /* Fall through. */
5adf6da0
R
8963 case REG:
8964 {
8965 int regno = REGNO (x);
8966 int use_index;
6ce7e0f9 8967 int nregs;
5adf6da0 8968
3d17d93d 8969 /* No spurious USEs of pseudo registers may remain. */
5adf6da0 8970 if (regno >= FIRST_PSEUDO_REGISTER)
3d17d93d 8971 abort ();
5adf6da0 8972
6ce7e0f9
R
8973 nregs = HARD_REGNO_NREGS (regno, GET_MODE (x));
8974
8975 /* We can't substitute into multi-hard-reg uses. */
8976 if (nregs > 1)
8977 {
8978 while (--nregs >= 0)
8979 reg_state[regno + nregs].use_index = -1;
8980 return;
8981 }
8982
5adf6da0
R
8983 /* If this register is already used in some unknown fashion, we
8984 can't do anything.
8985 If we decrement the index from zero to -1, we can't store more
8986 uses, so this register becomes used in an unknown fashion. */
8987 use_index = --reg_state[regno].use_index;
8988 if (use_index < 0)
8989 return;
8990
8991 if (use_index != RELOAD_COMBINE_MAX_USES - 1)
8992 {
8993 /* We have found another use for a register that is already
8994 used later. Check if the offsets match; if not, mark the
8995 register as used in an unknown fashion. */
8996 if (! rtx_equal_p (offset, reg_state[regno].offset))
8997 {
8998 reg_state[regno].use_index = -1;
8999 return;
9000 }
9001 }
9002 else
9003 {
9004 /* This is the first use of this register we have seen since we
9005 marked it as dead. */
9006 reg_state[regno].offset = offset;
9007 reg_state[regno].use_ruid = reload_combine_ruid;
9008 }
9009 reg_state[regno].reg_use[use_index].insn = insn;
9010 reg_state[regno].reg_use[use_index].usep = xp;
9011 return;
9012 }
9013
9014 default:
9015 break;
9016 }
9017
9018 /* Recursively process the components of X. */
9019 fmt = GET_RTX_FORMAT (code);
9020 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9021 {
9022 if (fmt[i] == 'e')
9023 reload_combine_note_use (&XEXP (x, i), insn);
9024 else if (fmt[i] == 'E')
9025 {
9026 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9027 reload_combine_note_use (&XVECEXP (x, i, j), insn);
9028 }
9029 }
9030}
9031\f
61f5625b
AO
9032/* See if we can reduce the cost of a constant by replacing a move
9033 with an add. We track situations in which a register is set to a
9034 constant or to a register plus a constant. */
5adf6da0
R
9035/* We cannot do our optimization across labels. Invalidating all the
9036 information about register contents we have would be costly, so we
61f5625b
AO
9037 use move2add_last_label_luid to note where the label is and then
9038 later disable any optimization that would cross it.
5adf6da0 9039 reg_offset[n] / reg_base_reg[n] / reg_mode[n] are only valid if
61f5625b 9040 reg_set_luid[n] is greater than last_label_luid[n] . */
5adf6da0 9041static int reg_set_luid[FIRST_PSEUDO_REGISTER];
770ae6cc 9042
61f5625b
AO
9043/* If reg_base_reg[n] is negative, register n has been set to
9044 reg_offset[n] in mode reg_mode[n] .
9045 If reg_base_reg[n] is non-negative, register n has been set to the
9046 sum of reg_offset[n] and the value of register reg_base_reg[n]
dc297297 9047 before reg_set_luid[n], calculated in mode reg_mode[n] . */
61f5625b 9048static HOST_WIDE_INT reg_offset[FIRST_PSEUDO_REGISTER];
5adf6da0
R
9049static int reg_base_reg[FIRST_PSEUDO_REGISTER];
9050static enum machine_mode reg_mode[FIRST_PSEUDO_REGISTER];
770ae6cc 9051
5adf6da0
R
9052/* move2add_luid is linearily increased while scanning the instructions
9053 from first to last. It is used to set reg_set_luid in
6764d250 9054 reload_cse_move2add and move2add_note_store. */
5adf6da0
R
9055static int move2add_luid;
9056
61f5625b
AO
9057/* move2add_last_label_luid is set whenever a label is found. Labels
9058 invalidate all previously collected reg_offset data. */
9059static int move2add_last_label_luid;
9060
ccc4ae07 9061/* Generate a CONST_INT and force it in the range of MODE. */
770ae6cc 9062
61f5625b
AO
9063static HOST_WIDE_INT
9064sext_for_mode (mode, value)
ccc4ae07
AS
9065 enum machine_mode mode;
9066 HOST_WIDE_INT value;
9067{
9068 HOST_WIDE_INT cval = value & GET_MODE_MASK (mode);
9069 int width = GET_MODE_BITSIZE (mode);
9070
9071 /* If MODE is narrower than HOST_WIDE_INT and CVAL is a negative number,
9072 sign extend it. */
9073 if (width > 0 && width < HOST_BITS_PER_WIDE_INT
9074 && (cval & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
9075 cval |= (HOST_WIDE_INT) -1 << width;
9076
61f5625b 9077 return cval;
ccc4ae07
AS
9078}
9079
61f5625b
AO
9080/* ??? We don't know how zero / sign extension is handled, hence we
9081 can't go from a narrower to a wider mode. */
9082#define MODES_OK_FOR_MOVE2ADD(OUTMODE, INMODE) \
9083 (GET_MODE_SIZE (OUTMODE) == GET_MODE_SIZE (INMODE) \
9084 || (GET_MODE_SIZE (OUTMODE) <= GET_MODE_SIZE (INMODE) \
9085 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (OUTMODE), \
9086 GET_MODE_BITSIZE (INMODE))))
9087
5adf6da0
R
9088static void
9089reload_cse_move2add (first)
9090 rtx first;
9091{
9092 int i;
9093 rtx insn;
5adf6da0 9094
1d7254c5 9095 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
6764d250
BS
9096 reg_set_luid[i] = 0;
9097
61f5625b
AO
9098 move2add_last_label_luid = 0;
9099 move2add_luid = 2;
5adf6da0
R
9100 for (insn = first; insn; insn = NEXT_INSN (insn), move2add_luid++)
9101 {
9102 rtx pat, note;
9103
9104 if (GET_CODE (insn) == CODE_LABEL)
61f5625b
AO
9105 {
9106 move2add_last_label_luid = move2add_luid;
9107 /* We're going to increment move2add_luid twice after a
9108 label, so that we can use move2add_last_label_luid + 1 as
9109 the luid for constants. */
9110 move2add_luid++;
9111 continue;
9112 }
2c3c49de 9113 if (! INSN_P (insn))
5adf6da0
R
9114 continue;
9115 pat = PATTERN (insn);
9116 /* For simplicity, we only perform this optimization on
9117 straightforward SETs. */
9118 if (GET_CODE (pat) == SET
9119 && GET_CODE (SET_DEST (pat)) == REG)
9120 {
9121 rtx reg = SET_DEST (pat);
9122 int regno = REGNO (reg);
9123 rtx src = SET_SRC (pat);
9124
9125 /* Check if we have valid information on the contents of this
9126 register in the mode of REG. */
61f5625b
AO
9127 if (reg_set_luid[regno] > move2add_last_label_luid
9128 && MODES_OK_FOR_MOVE2ADD (GET_MODE (reg), reg_mode[regno]))
5adf6da0
R
9129 {
9130 /* Try to transform (set (REGX) (CONST_INT A))
9131 ...
9132 (set (REGX) (CONST_INT B))
9133 to
9134 (set (REGX) (CONST_INT A))
9135 ...
9136 (set (REGX) (plus (REGX) (CONST_INT B-A))) */
9137
9138 if (GET_CODE (src) == CONST_INT && reg_base_reg[regno] < 0)
9139 {
9140 int success = 0;
61f5625b
AO
9141 rtx new_src = GEN_INT (sext_for_mode (GET_MODE (reg),
9142 INTVAL (src)
9143 - reg_offset[regno]));
5adf6da0
R
9144 /* (set (reg) (plus (reg) (const_int 0))) is not canonical;
9145 use (set (reg) (reg)) instead.
9146 We don't delete this insn, nor do we convert it into a
9147 note, to avoid losing register notes or the return
9148 value flag. jump2 already knowns how to get rid of
9149 no-op moves. */
9150 if (new_src == const0_rtx)
9151 success = validate_change (insn, &SET_SRC (pat), reg, 0);
9152 else if (rtx_cost (new_src, PLUS) < rtx_cost (src, SET)
fb7e77d7 9153 && have_add2_insn (reg, new_src))
5adf6da0
R
9154 success = validate_change (insn, &PATTERN (insn),
9155 gen_add2_insn (reg, new_src), 0);
5adf6da0
R
9156 reg_set_luid[regno] = move2add_luid;
9157 reg_mode[regno] = GET_MODE (reg);
61f5625b 9158 reg_offset[regno] = INTVAL (src);
5adf6da0
R
9159 continue;
9160 }
9161
9162 /* Try to transform (set (REGX) (REGY))
9163 (set (REGX) (PLUS (REGX) (CONST_INT A)))
9164 ...
9165 (set (REGX) (REGY))
9166 (set (REGX) (PLUS (REGX) (CONST_INT B)))
9167 to
9168 (REGX) (REGY))
9169 (set (REGX) (PLUS (REGX) (CONST_INT A)))
9170 ...
9171 (set (REGX) (plus (REGX) (CONST_INT B-A))) */
9172 else if (GET_CODE (src) == REG
61f5625b
AO
9173 && reg_set_luid[regno] == reg_set_luid[REGNO (src)]
9174 && reg_base_reg[regno] == reg_base_reg[REGNO (src)]
9175 && MODES_OK_FOR_MOVE2ADD (GET_MODE (reg),
9176 reg_mode[REGNO (src)]))
5adf6da0
R
9177 {
9178 rtx next = next_nonnote_insn (insn);
6a651371 9179 rtx set = NULL_RTX;
5adf6da0
R
9180 if (next)
9181 set = single_set (next);
61f5625b 9182 if (set
5adf6da0
R
9183 && SET_DEST (set) == reg
9184 && GET_CODE (SET_SRC (set)) == PLUS
9185 && XEXP (SET_SRC (set), 0) == reg
9186 && GET_CODE (XEXP (SET_SRC (set), 1)) == CONST_INT)
9187 {
5adf6da0 9188 rtx src3 = XEXP (SET_SRC (set), 1);
61f5625b
AO
9189 HOST_WIDE_INT added_offset = INTVAL (src3);
9190 HOST_WIDE_INT base_offset = reg_offset[REGNO (src)];
9191 HOST_WIDE_INT regno_offset = reg_offset[regno];
9192 rtx new_src = GEN_INT (sext_for_mode (GET_MODE (reg),
9193 added_offset
9194 + base_offset
9195 - regno_offset));
5adf6da0
R
9196 int success = 0;
9197
9198 if (new_src == const0_rtx)
9199 /* See above why we create (set (reg) (reg)) here. */
9200 success
9201 = validate_change (next, &SET_SRC (set), reg, 0);
9202 else if ((rtx_cost (new_src, PLUS)
b437f1a7 9203 < COSTS_N_INSNS (1) + rtx_cost (src3, SET))
fb7e77d7 9204 && have_add2_insn (reg, new_src))
5adf6da0
R
9205 success
9206 = validate_change (next, &PATTERN (next),
9207 gen_add2_insn (reg, new_src), 0);
9208 if (success)
ca6c03ca 9209 delete_insn (insn);
5adf6da0 9210 insn = next;
5adf6da0 9211 reg_mode[regno] = GET_MODE (reg);
61f5625b
AO
9212 reg_offset[regno] = sext_for_mode (GET_MODE (reg),
9213 added_offset
9214 + base_offset);
5adf6da0
R
9215 continue;
9216 }
9217 }
9218 }
9219 }
9220
9221 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
9222 {
9223 if (REG_NOTE_KIND (note) == REG_INC
9224 && GET_CODE (XEXP (note, 0)) == REG)
9225 {
61f5625b 9226 /* Reset the information about this register. */
5adf6da0
R
9227 int regno = REGNO (XEXP (note, 0));
9228 if (regno < FIRST_PSEUDO_REGISTER)
61f5625b 9229 reg_set_luid[regno] = 0;
5adf6da0 9230 }
5adf6da0 9231 }
84832317 9232 note_stores (PATTERN (insn), move2add_note_store, NULL);
5adf6da0
R
9233 /* If this is a CALL_INSN, all call used registers are stored with
9234 unknown values. */
9235 if (GET_CODE (insn) == CALL_INSN)
9236 {
1d7254c5 9237 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
5adf6da0
R
9238 {
9239 if (call_used_regs[i])
61f5625b
AO
9240 /* Reset the information about this register. */
9241 reg_set_luid[i] = 0;
5adf6da0
R
9242 }
9243 }
9244 }
9245}
9246
9247/* SET is a SET or CLOBBER that sets DST.
9248 Update reg_set_luid, reg_offset and reg_base_reg accordingly.
9249 Called from reload_cse_move2add via note_stores. */
770ae6cc 9250
5adf6da0 9251static void
84832317 9252move2add_note_store (dst, set, data)
5adf6da0 9253 rtx dst, set;
84832317 9254 void *data ATTRIBUTE_UNUSED;
5adf6da0 9255{
770ae6cc
RK
9256 unsigned int regno = 0;
9257 unsigned int i;
5adf6da0 9258 enum machine_mode mode = GET_MODE (dst);
770ae6cc 9259
5adf6da0
R
9260 if (GET_CODE (dst) == SUBREG)
9261 {
ddef6bc7
JJ
9262 regno = subreg_regno_offset (REGNO (SUBREG_REG (dst)),
9263 GET_MODE (SUBREG_REG (dst)),
9264 SUBREG_BYTE (dst),
9265 GET_MODE (dst));
5adf6da0
R
9266 dst = SUBREG_REG (dst);
9267 }
770ae6cc 9268
19ca869b
JR
9269 /* Some targets do argument pushes without adding REG_INC notes. */
9270
9271 if (GET_CODE (dst) == MEM)
9272 {
9273 dst = XEXP (dst, 0);
52fdbf26 9274 if (GET_CODE (dst) == PRE_INC || GET_CODE (dst) == POST_INC
19ca869b 9275 || GET_CODE (dst) == PRE_DEC || GET_CODE (dst) == POST_DEC)
61f5625b 9276 reg_set_luid[REGNO (XEXP (dst, 0))] = 0;
19ca869b 9277 return;
174fa2c4 9278 }
5adf6da0
R
9279 if (GET_CODE (dst) != REG)
9280 return;
9281
9282 regno += REGNO (dst);
9283
f93233bb
JL
9284 if (HARD_REGNO_NREGS (regno, mode) == 1 && GET_CODE (set) == SET
9285 && GET_CODE (SET_DEST (set)) != ZERO_EXTRACT
9286 && GET_CODE (SET_DEST (set)) != SIGN_EXTRACT
9287 && GET_CODE (SET_DEST (set)) != STRICT_LOW_PART)
5adf6da0
R
9288 {
9289 rtx src = SET_SRC (set);
61f5625b
AO
9290 rtx base_reg;
9291 HOST_WIDE_INT offset;
9292 int base_regno;
9293 /* This may be different from mode, if SET_DEST (set) is a
9294 SUBREG. */
9295 enum machine_mode dst_mode = GET_MODE (dst);
5adf6da0 9296
5adf6da0
R
9297 switch (GET_CODE (src))
9298 {
9299 case PLUS:
61f5625b
AO
9300 if (GET_CODE (XEXP (src, 0)) == REG)
9301 {
9302 base_reg = XEXP (src, 0);
9303
9304 if (GET_CODE (XEXP (src, 1)) == CONST_INT)
9305 offset = INTVAL (XEXP (src, 1));
9306 else if (GET_CODE (XEXP (src, 1)) == REG
9307 && (reg_set_luid[REGNO (XEXP (src, 1))]
9308 > move2add_last_label_luid)
9309 && (MODES_OK_FOR_MOVE2ADD
9310 (dst_mode, reg_mode[REGNO (XEXP (src, 1))])))
9311 {
9312 if (reg_base_reg[REGNO (XEXP (src, 1))] < 0)
9313 offset = reg_offset[REGNO (XEXP (src, 1))];
9314 /* Maybe the first register is known to be a
9315 constant. */
9316 else if (reg_set_luid[REGNO (base_reg)]
9317 > move2add_last_label_luid
9318 && (MODES_OK_FOR_MOVE2ADD
9319 (dst_mode, reg_mode[REGNO (XEXP (src, 1))]))
9320 && reg_base_reg[REGNO (base_reg)] < 0)
9321 {
9322 offset = reg_offset[REGNO (base_reg)];
9323 base_reg = XEXP (src, 1);
9324 }
9325 else
9326 goto invalidate;
9327 }
9328 else
9329 goto invalidate;
770ae6cc 9330
61f5625b
AO
9331 break;
9332 }
770ae6cc 9333
61f5625b 9334 goto invalidate;
5adf6da0
R
9335
9336 case REG:
61f5625b
AO
9337 base_reg = src;
9338 offset = 0;
5adf6da0
R
9339 break;
9340
61f5625b
AO
9341 case CONST_INT:
9342 /* Start tracking the register as a constant. */
5adf6da0 9343 reg_base_reg[regno] = -1;
61f5625b
AO
9344 reg_offset[regno] = INTVAL (SET_SRC (set));
9345 /* We assign the same luid to all registers set to constants. */
9346 reg_set_luid[regno] = move2add_last_label_luid + 1;
9347 reg_mode[regno] = mode;
9348 return;
9349
9350 default:
9351 invalidate:
9352 /* Invalidate the contents of the register. */
9353 reg_set_luid[regno] = 0;
9354 return;
5adf6da0 9355 }
61f5625b
AO
9356
9357 base_regno = REGNO (base_reg);
9358 /* If information about the base register is not valid, set it
9359 up as a new base register, pretending its value is known
9360 starting from the current insn. */
9361 if (reg_set_luid[base_regno] <= move2add_last_label_luid)
9362 {
9363 reg_base_reg[base_regno] = base_regno;
9364 reg_offset[base_regno] = 0;
9365 reg_set_luid[base_regno] = move2add_luid;
9366 reg_mode[base_regno] = mode;
9367 }
9368 else if (! MODES_OK_FOR_MOVE2ADD (dst_mode,
9369 reg_mode[base_regno]))
9370 goto invalidate;
9371
9372 reg_mode[regno] = mode;
9373
9374 /* Copy base information from our base register. */
9375 reg_set_luid[regno] = reg_set_luid[base_regno];
9376 reg_base_reg[regno] = reg_base_reg[base_regno];
9377
9378 /* Compute the sum of the offsets or constants. */
9379 reg_offset[regno] = sext_for_mode (dst_mode,
9380 offset
9381 + reg_offset[base_regno]);
5adf6da0
R
9382 }
9383 else
9384 {
770ae6cc
RK
9385 unsigned int endregno = regno + HARD_REGNO_NREGS (regno, mode);
9386
9387 for (i = regno; i < endregno; i++)
61f5625b
AO
9388 /* Reset the information about this register. */
9389 reg_set_luid[i] = 0;
5adf6da0
R
9390 }
9391}
2dfa9a87
MH
9392
9393#ifdef AUTO_INC_DEC
9394static void
9395add_auto_inc_notes (insn, x)
9396 rtx insn;
9397 rtx x;
9398{
9399 enum rtx_code code = GET_CODE (x);
6f7d635c 9400 const char *fmt;
2dfa9a87
MH
9401 int i, j;
9402
9403 if (code == MEM && auto_inc_p (XEXP (x, 0)))
9404 {
9405 REG_NOTES (insn)
9406 = gen_rtx_EXPR_LIST (REG_INC, XEXP (XEXP (x, 0), 0), REG_NOTES (insn));
9407 return;
9408 }
9409
9410 /* Scan all the operand sub-expressions. */
9411 fmt = GET_RTX_FORMAT (code);
9412 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9413 {
9414 if (fmt[i] == 'e')
9415 add_auto_inc_notes (insn, XEXP (x, i));
9416 else if (fmt[i] == 'E')
9417 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9418 add_auto_inc_notes (insn, XVECEXP (x, i, j));
9419 }
9420}
9421#endif
94bd63e5
AH
9422
9423/* Copy EH notes from an insn to its reloads. */
9424static void
9425copy_eh_notes (insn, x)
9426 rtx insn;
9427 rtx x;
9428{
9429 rtx eh_note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
9430 if (eh_note)
9431 {
9432 for (; x != 0; x = NEXT_INSN (x))
9433 {
9434 if (may_trap_p (PATTERN (x)))
9435 REG_NOTES (x)
9436 = gen_rtx_EXPR_LIST (REG_EH_REGION, XEXP (eh_note, 0),
9437 REG_NOTES (x));
9438 }
9439 }
9440}
9441
f1330226
JH
9442/* This is used by reload pass, that does emit some instructions after
9443 abnormal calls moving basic block end, but in fact it wants to emit
9444 them on the edge. Looks for abnormal call edges, find backward the
9445 proper call and fix the damage.
9446
9447 Similar handle instructions throwing exceptions internally. */
9448static void
9449fixup_abnormal_edges ()
9450{
9451 int i;
9452 bool inserted = false;
9453
9454 for (i = 0; i < n_basic_blocks; i++)
9455 {
9456 basic_block bb = BASIC_BLOCK (i);
9457 edge e;
9458
9459 /* Look for cases we are interested in - an calls or instructions causing
9460 exceptions. */
9461 for (e = bb->succ; e; e = e->succ_next)
9462 {
9463 if (e->flags & EDGE_ABNORMAL_CALL)
9464 break;
9465 if ((e->flags & (EDGE_ABNORMAL | EDGE_EH))
9466 == (EDGE_ABNORMAL | EDGE_EH))
9467 break;
9468 }
9469 if (e && GET_CODE (bb->end) != CALL_INSN && !can_throw_internal (bb->end))
9470 {
0c4992b0 9471 rtx insn = bb->end, stop = NEXT_INSN (bb->end);
f1330226
JH
9472 rtx next;
9473 for (e = bb->succ; e; e = e->succ_next)
9474 if (e->flags & EDGE_FALLTHRU)
9475 break;
39f95a2c
JH
9476 /* Get past the new insns generated. Allow notes, as the insns may
9477 be already deleted. */
9478 while ((GET_CODE (insn) == INSN || GET_CODE (insn) == NOTE)
9479 && !can_throw_internal (insn)
9480 && insn != bb->head)
f1330226
JH
9481 insn = PREV_INSN (insn);
9482 if (GET_CODE (insn) != CALL_INSN && !can_throw_internal (insn))
9483 abort ();
9484 bb->end = insn;
9485 inserted = true;
9486 insn = NEXT_INSN (insn);
0c4992b0 9487 while (insn && insn != stop)
f1330226
JH
9488 {
9489 next = NEXT_INSN (insn);
0c4992b0
JH
9490 if (INSN_P (insn))
9491 {
9492 insert_insn_on_edge (PATTERN (insn), e);
53c17031 9493 delete_insn (insn);
0c4992b0 9494 }
f1330226
JH
9495 insn = next;
9496 }
9497 }
9498 }
9499 if (inserted)
9500 commit_edge_insertions ();
9501}
This page took 3.121671 seconds and 5 git commands to generate.