]> gcc.gnu.org Git - gcc.git/blame - gcc/reload1.c
reload.c (push_secondary_reload): Don't check for "=" in output constraint after...
[gcc.git] / gcc / reload1.c
CommitLineData
32131a9c 1/* Reload pseudo regs into hard regs for insns that require hard regs.
af841dbd 2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
e56b4594 3 1999, 2000, 2001 Free Software Foundation, Inc.
32131a9c 4
1322177d 5This file is part of GCC.
32131a9c 6
1322177d
LB
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
9Software Foundation; either version 2, or (at your option) any later
10version.
32131a9c 11
1322177d
LB
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15for more details.
32131a9c
RK
16
17You should have received a copy of the GNU General Public License
1322177d
LB
18along with GCC; see the file COPYING. If not, write to the Free
19Software Foundation, 59 Temple Place - Suite 330, Boston, MA
2002111-1307, USA. */
32131a9c 21
32131a9c 22#include "config.h"
670ee920 23#include "system.h"
cab634f2
KG
24
25#include "machmode.h"
26#include "hard-reg-set.h"
32131a9c 27#include "rtl.h"
6baf1cc8 28#include "tm_p.h"
32131a9c
RK
29#include "obstack.h"
30#include "insn-config.h"
32131a9c 31#include "flags.h"
49ad7cfa 32#include "function.h"
32131a9c 33#include "expr.h"
e78d8e51 34#include "optabs.h"
32131a9c 35#include "regs.h"
cad6f7d0 36#include "basic-block.h"
32131a9c
RK
37#include "reload.h"
38#include "recog.h"
32131a9c 39#include "output.h"
eab5c70a 40#include "cselib.h"
a9c366bf 41#include "real.h"
10f0ad3d 42#include "toplev.h"
39f95a2c 43#include "except.h"
32131a9c
RK
44
45/* This file contains the reload pass of the compiler, which is
46 run after register allocation has been done. It checks that
47 each insn is valid (operands required to be in registers really
48 are in registers of the proper class) and fixes up invalid ones
49 by copying values temporarily into registers for the insns
50 that need them.
51
52 The results of register allocation are described by the vector
53 reg_renumber; the insns still contain pseudo regs, but reg_renumber
54 can be used to find which hard reg, if any, a pseudo reg is in.
55
56 The technique we always use is to free up a few hard regs that are
57 called ``reload regs'', and for each place where a pseudo reg
58 must be in a hard reg, copy it temporarily into one of the reload regs.
59
03acd8f8
BS
60 Reload regs are allocated locally for every instruction that needs
61 reloads. When there are pseudos which are allocated to a register that
62 has been chosen as a reload reg, such pseudos must be ``spilled''.
63 This means that they go to other hard regs, or to stack slots if no other
32131a9c
RK
64 available hard regs can be found. Spilling can invalidate more
65 insns, requiring additional need for reloads, so we must keep checking
66 until the process stabilizes.
67
68 For machines with different classes of registers, we must keep track
69 of the register class needed for each reload, and make sure that
70 we allocate enough reload registers of each class.
71
72 The file reload.c contains the code that checks one insn for
73 validity and reports the reloads that it needs. This file
74 is in charge of scanning the entire rtl code, accumulating the
75 reload needs, spilling, assigning reload registers to use for
76 fixing up each insn, and generating the new insns to copy values
77 into the reload registers. */
546b63fb 78
546b63fb 79#ifndef REGISTER_MOVE_COST
e56b4594 80#define REGISTER_MOVE_COST(m, x, y) 2
546b63fb 81#endif
2a3e384f
RH
82
83#ifndef LOCAL_REGNO
84#define LOCAL_REGNO(REGNO) 0
85#endif
32131a9c
RK
86\f
87/* During reload_as_needed, element N contains a REG rtx for the hard reg
0f41302f 88 into which reg N has been reloaded (perhaps for a previous insn). */
32131a9c
RK
89static rtx *reg_last_reload_reg;
90
91/* Elt N nonzero if reg_last_reload_reg[N] has been set in this insn
92 for an output reload that stores into reg N. */
93static char *reg_has_output_reload;
94
95/* Indicates which hard regs are reload-registers for an output reload
96 in the current insn. */
97static HARD_REG_SET reg_is_output_reload;
98
99/* Element N is the constant value to which pseudo reg N is equivalent,
100 or zero if pseudo reg N is not equivalent to a constant.
101 find_reloads looks at this in order to replace pseudo reg N
102 with the constant it stands for. */
103rtx *reg_equiv_constant;
104
105/* Element N is a memory location to which pseudo reg N is equivalent,
106 prior to any register elimination (such as frame pointer to stack
107 pointer). Depending on whether or not it is a valid address, this value
108 is transferred to either reg_equiv_address or reg_equiv_mem. */
4803a34a 109rtx *reg_equiv_memory_loc;
32131a9c
RK
110
111/* Element N is the address of stack slot to which pseudo reg N is equivalent.
112 This is used when the address is not valid as a memory address
113 (because its displacement is too big for the machine.) */
114rtx *reg_equiv_address;
115
116/* Element N is the memory slot to which pseudo reg N is equivalent,
117 or zero if pseudo reg N is not equivalent to a memory slot. */
118rtx *reg_equiv_mem;
119
120/* Widest width in which each pseudo reg is referred to (via subreg). */
770ae6cc 121static unsigned int *reg_max_ref_width;
32131a9c 122
135eb61c 123/* Element N is the list of insns that initialized reg N from its equivalent
32131a9c
RK
124 constant or memory slot. */
125static rtx *reg_equiv_init;
126
03acd8f8
BS
127/* Vector to remember old contents of reg_renumber before spilling. */
128static short *reg_old_renumber;
129
e6e52be0 130/* During reload_as_needed, element N contains the last pseudo regno reloaded
03acd8f8 131 into hard register N. If that pseudo reg occupied more than one register,
32131a9c
RK
132 reg_reloaded_contents points to that pseudo for each spill register in
133 use; all of these must remain set for an inheritance to occur. */
134static int reg_reloaded_contents[FIRST_PSEUDO_REGISTER];
135
136/* During reload_as_needed, element N contains the insn for which
e6e52be0
R
137 hard register N was last used. Its contents are significant only
138 when reg_reloaded_valid is set for this register. */
32131a9c
RK
139static rtx reg_reloaded_insn[FIRST_PSEUDO_REGISTER];
140
e6e52be0
R
141/* Indicate if reg_reloaded_insn / reg_reloaded_contents is valid */
142static HARD_REG_SET reg_reloaded_valid;
143/* Indicate if the register was dead at the end of the reload.
144 This is only valid if reg_reloaded_contents is set and valid. */
145static HARD_REG_SET reg_reloaded_dead;
146
32131a9c
RK
147/* Number of spill-regs so far; number of valid elements of spill_regs. */
148static int n_spills;
149
150/* In parallel with spill_regs, contains REG rtx's for those regs.
151 Holds the last rtx used for any given reg, or 0 if it has never
152 been used for spilling yet. This rtx is reused, provided it has
153 the proper mode. */
154static rtx spill_reg_rtx[FIRST_PSEUDO_REGISTER];
155
156/* In parallel with spill_regs, contains nonzero for a spill reg
157 that was stored after the last time it was used.
158 The precise value is the insn generated to do the store. */
159static rtx spill_reg_store[FIRST_PSEUDO_REGISTER];
160
cb2afeb3
R
161/* This is the register that was stored with spill_reg_store. This is a
162 copy of reload_out / reload_out_reg when the value was stored; if
163 reload_out is a MEM, spill_reg_stored_to will be set to reload_out_reg. */
164static rtx spill_reg_stored_to[FIRST_PSEUDO_REGISTER];
165
32131a9c
RK
166/* This table is the inverse mapping of spill_regs:
167 indexed by hard reg number,
168 it contains the position of that reg in spill_regs,
05d10675 169 or -1 for something that is not in spill_regs.
13c8e8e3
JL
170
171 ?!? This is no longer accurate. */
32131a9c
RK
172static short spill_reg_order[FIRST_PSEUDO_REGISTER];
173
03acd8f8
BS
174/* This reg set indicates registers that can't be used as spill registers for
175 the currently processed insn. These are the hard registers which are live
176 during the insn, but not allocated to pseudos, as well as fixed
177 registers. */
32131a9c
RK
178static HARD_REG_SET bad_spill_regs;
179
03acd8f8
BS
180/* These are the hard registers that can't be used as spill register for any
181 insn. This includes registers used for user variables and registers that
182 we can't eliminate. A register that appears in this set also can't be used
183 to retry register allocation. */
184static HARD_REG_SET bad_spill_regs_global;
185
32131a9c 186/* Describes order of use of registers for reloading
03acd8f8
BS
187 of spilled pseudo-registers. `n_spills' is the number of
188 elements that are actually valid; new ones are added at the end.
189
190 Both spill_regs and spill_reg_order are used on two occasions:
191 once during find_reload_regs, where they keep track of the spill registers
192 for a single insn, but also during reload_as_needed where they show all
193 the registers ever used by reload. For the latter case, the information
194 is calculated during finish_spills. */
32131a9c
RK
195static short spill_regs[FIRST_PSEUDO_REGISTER];
196
03acd8f8
BS
197/* This vector of reg sets indicates, for each pseudo, which hard registers
198 may not be used for retrying global allocation because the register was
199 formerly spilled from one of them. If we allowed reallocating a pseudo to
200 a register that it was already allocated to, reload might not
201 terminate. */
202static HARD_REG_SET *pseudo_previous_regs;
203
204/* This vector of reg sets indicates, for each pseudo, which hard
205 registers may not be used for retrying global allocation because they
206 are used as spill registers during one of the insns in which the
207 pseudo is live. */
208static HARD_REG_SET *pseudo_forbidden_regs;
209
210/* All hard regs that have been used as spill registers for any insn are
211 marked in this set. */
212static HARD_REG_SET used_spill_regs;
8b4f9969 213
4079cd63
JW
214/* Index of last register assigned as a spill register. We allocate in
215 a round-robin fashion. */
4079cd63
JW
216static int last_spill_reg;
217
32131a9c
RK
218/* Nonzero if indirect addressing is supported on the machine; this means
219 that spilling (REG n) does not require reloading it into a register in
220 order to do (MEM (REG n)) or (MEM (PLUS (REG n) (CONST_INT c))). The
221 value indicates the level of indirect addressing supported, e.g., two
222 means that (MEM (MEM (REG n))) is also valid if (REG n) does not get
223 a hard register. */
32131a9c
RK
224static char spill_indirect_levels;
225
226/* Nonzero if indirect addressing is supported when the innermost MEM is
227 of the form (MEM (SYMBOL_REF sym)). It is assumed that the level to
228 which these are valid is the same as spill_indirect_levels, above. */
32131a9c
RK
229char indirect_symref_ok;
230
231/* Nonzero if an address (plus (reg frame_pointer) (reg ...)) is valid. */
32131a9c
RK
232char double_reg_address_ok;
233
234/* Record the stack slot for each spilled hard register. */
32131a9c
RK
235static rtx spill_stack_slot[FIRST_PSEUDO_REGISTER];
236
237/* Width allocated so far for that stack slot. */
770ae6cc 238static unsigned int spill_stack_slot_width[FIRST_PSEUDO_REGISTER];
32131a9c 239
7609e720 240/* Record which pseudos needed to be spilled. */
f5d8c9f4
BS
241static regset_head spilled_pseudos;
242
243/* Used for communication between order_regs_for_reload and count_pseudo.
244 Used to avoid counting one pseudo twice. */
245static regset_head pseudos_counted;
7609e720 246
32131a9c
RK
247/* First uid used by insns created by reload in this function.
248 Used in find_equiv_reg. */
249int reload_first_uid;
250
251/* Flag set by local-alloc or global-alloc if anything is live in
252 a call-clobbered reg across calls. */
32131a9c
RK
253int caller_save_needed;
254
255/* Set to 1 while reload_as_needed is operating.
256 Required by some machines to handle any generated moves differently. */
32131a9c
RK
257int reload_in_progress = 0;
258
259/* These arrays record the insn_code of insns that may be needed to
260 perform input and output reloads of special objects. They provide a
261 place to pass a scratch register. */
32131a9c
RK
262enum insn_code reload_in_optab[NUM_MACHINE_MODES];
263enum insn_code reload_out_optab[NUM_MACHINE_MODES];
264
d45cf215 265/* This obstack is used for allocation of rtl during register elimination.
32131a9c
RK
266 The allocated storage can be freed once find_reloads has processed the
267 insn. */
32131a9c 268struct obstack reload_obstack;
cad6f7d0
BS
269
270/* Points to the beginning of the reload_obstack. All insn_chain structures
271 are allocated first. */
272char *reload_startobj;
273
274/* The point after all insn_chain structures. Used to quickly deallocate
f5d8c9f4 275 memory allocated in copy_reloads during calculate_needs_all_insns. */
32131a9c
RK
276char *reload_firstobj;
277
f5d8c9f4
BS
278/* This points before all local rtl generated by register elimination.
279 Used to quickly free all memory after processing one insn. */
280static char *reload_insn_firstobj;
281
32131a9c
RK
282#define obstack_chunk_alloc xmalloc
283#define obstack_chunk_free free
284
cad6f7d0
BS
285/* List of insn_chain instructions, one for every insn that reload needs to
286 examine. */
287struct insn_chain *reload_insn_chain;
7609e720 288
dfb7c80f
JL
289#ifdef TREE_CODE
290extern tree current_function_decl;
291#else
122a860e 292extern union tree_node *current_function_decl;
dfb7c80f
JL
293#endif
294
03acd8f8 295/* List of all insns needing reloads. */
7609e720 296static struct insn_chain *insns_need_reload;
32131a9c
RK
297\f
298/* This structure is used to record information about register eliminations.
299 Each array entry describes one possible way of eliminating a register
300 in favor of another. If there is more than one way of eliminating a
301 particular register, the most preferred should be specified first. */
302
590cf94d 303struct elim_table
32131a9c 304{
0f41302f
MS
305 int from; /* Register number to be eliminated. */
306 int to; /* Register number used as replacement. */
307 int initial_offset; /* Initial difference between values. */
308 int can_eliminate; /* Non-zero if this elimination can be done. */
32131a9c 309 int can_eliminate_previous; /* Value of CAN_ELIMINATE in previous scan over
0f41302f
MS
310 insns made by reload. */
311 int offset; /* Current offset between the two regs. */
0f41302f
MS
312 int previous_offset; /* Offset at end of previous insn. */
313 int ref_outside_mem; /* "to" has been referenced outside a MEM. */
32131a9c
RK
314 rtx from_rtx; /* REG rtx for the register to be eliminated.
315 We cannot simply compare the number since
316 we might then spuriously replace a hard
317 register corresponding to a pseudo
0f41302f
MS
318 assigned to the reg to be eliminated. */
319 rtx to_rtx; /* REG rtx for the replacement. */
590cf94d
KG
320};
321
1d7254c5 322static struct elim_table *reg_eliminate = 0;
590cf94d
KG
323
324/* This is an intermediate structure to initialize the table. It has
1d7254c5 325 exactly the members provided by ELIMINABLE_REGS. */
590cf94d
KG
326static struct elim_table_1
327{
328 int from;
329 int to;
330} reg_eliminate_1[] =
32131a9c
RK
331
332/* If a set of eliminable registers was specified, define the table from it.
333 Otherwise, default to the normal case of the frame pointer being
334 replaced by the stack pointer. */
335
336#ifdef ELIMINABLE_REGS
337 ELIMINABLE_REGS;
338#else
339 {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}};
340#endif
341
b6a1cbae 342#define NUM_ELIMINABLE_REGS ARRAY_SIZE (reg_eliminate_1)
32131a9c
RK
343
344/* Record the number of pending eliminations that have an offset not equal
345 to their initial offset. If non-zero, we use a new copy of each
346 replacement result in any insns encountered. */
cb2afeb3 347int num_not_at_initial_offset;
32131a9c
RK
348
349/* Count the number of registers that we may be able to eliminate. */
350static int num_eliminable;
2b49ee39
R
351/* And the number of registers that are equivalent to a constant that
352 can be eliminated to frame_pointer / arg_pointer + constant. */
353static int num_eliminable_invariants;
32131a9c
RK
354
355/* For each label, we record the offset of each elimination. If we reach
356 a label by more than one path and an offset differs, we cannot do the
357 elimination. This information is indexed by the number of the label.
358 The first table is an array of flags that records whether we have yet
359 encountered a label and the second table is an array of arrays, one
360 entry in the latter array for each elimination. */
361
362static char *offsets_known_at;
363static int (*offsets_at)[NUM_ELIMINABLE_REGS];
364
365/* Number of labels in the current function. */
366
367static int num_labels;
368\f
174fa2c4
AJ
369static void replace_pseudos_in_call_usage PARAMS((rtx *,
370 enum machine_mode,
371 rtx));
cdadb1dd
KG
372static void maybe_fix_stack_asms PARAMS ((void));
373static void copy_reloads PARAMS ((struct insn_chain *));
374static void calculate_needs_all_insns PARAMS ((int));
e04ca094
JL
375static int find_reg PARAMS ((struct insn_chain *, int));
376static void find_reload_regs PARAMS ((struct insn_chain *));
377static void select_reload_regs PARAMS ((void));
cdadb1dd
KG
378static void delete_caller_save_insns PARAMS ((void));
379
380static void spill_failure PARAMS ((rtx, enum reg_class));
381static void count_spilled_pseudo PARAMS ((int, int, int));
382static void delete_dead_insn PARAMS ((rtx));
174fa2c4 383static void alter_reg PARAMS ((int, int));
cdadb1dd
KG
384static void set_label_offsets PARAMS ((rtx, rtx, int));
385static void check_eliminable_occurrences PARAMS ((rtx));
386static void elimination_effects PARAMS ((rtx, enum machine_mode));
387static int eliminate_regs_in_insn PARAMS ((rtx, int));
388static void update_eliminable_offsets PARAMS ((void));
389static void mark_not_eliminable PARAMS ((rtx, rtx, void *));
390static void set_initial_elim_offsets PARAMS ((void));
391static void verify_initial_elim_offsets PARAMS ((void));
392static void set_initial_label_offsets PARAMS ((void));
393static void set_offsets_for_label PARAMS ((rtx));
394static void init_elim_table PARAMS ((void));
395static void update_eliminables PARAMS ((HARD_REG_SET *));
e04ca094
JL
396static void spill_hard_reg PARAMS ((unsigned int, int));
397static int finish_spills PARAMS ((int));
cdadb1dd
KG
398static void ior_hard_reg_set PARAMS ((HARD_REG_SET *, HARD_REG_SET *));
399static void scan_paradoxical_subregs PARAMS ((rtx));
400static void count_pseudo PARAMS ((int));
401static void order_regs_for_reload PARAMS ((struct insn_chain *));
e04ca094 402static void reload_as_needed PARAMS ((int));
cdadb1dd
KG
403static void forget_old_reloads_1 PARAMS ((rtx, rtx, void *));
404static int reload_reg_class_lower PARAMS ((const PTR, const PTR));
770ae6cc
RK
405static void mark_reload_reg_in_use PARAMS ((unsigned int, int,
406 enum reload_type,
407 enum machine_mode));
408static void clear_reload_reg_in_use PARAMS ((unsigned int, int,
409 enum reload_type,
410 enum machine_mode));
411static int reload_reg_free_p PARAMS ((unsigned int, int,
412 enum reload_type));
304a22dd
R
413static int reload_reg_free_for_value_p PARAMS ((int, int, int,
414 enum reload_type,
770ae6cc 415 rtx, rtx, int, int));
c02cad8f
BS
416static int free_for_value_p PARAMS ((int, enum machine_mode, int,
417 enum reload_type, rtx, rtx,
418 int, int));
770ae6cc
RK
419static int reload_reg_reaches_end_p PARAMS ((unsigned int, int,
420 enum reload_type));
421static int allocate_reload_reg PARAMS ((struct insn_chain *, int,
422 int));
ff6534ad 423static int conflicts_with_override PARAMS ((rtx));
cdadb1dd
KG
424static void failed_reload PARAMS ((rtx, int));
425static int set_reload_reg PARAMS ((int, int));
426static void choose_reload_regs_init PARAMS ((struct insn_chain *, rtx *));
427static void choose_reload_regs PARAMS ((struct insn_chain *));
428static void merge_assigned_reloads PARAMS ((rtx));
429static void emit_input_reload_insns PARAMS ((struct insn_chain *,
770ae6cc 430 struct reload *, rtx, int));
cdadb1dd 431static void emit_output_reload_insns PARAMS ((struct insn_chain *,
770ae6cc 432 struct reload *, int));
cdadb1dd 433static void do_input_reload PARAMS ((struct insn_chain *,
770ae6cc 434 struct reload *, int));
cdadb1dd 435static void do_output_reload PARAMS ((struct insn_chain *,
770ae6cc 436 struct reload *, int));
e04ca094 437static void emit_reload_insns PARAMS ((struct insn_chain *));
cdadb1dd
KG
438static void delete_output_reload PARAMS ((rtx, int, int));
439static void delete_address_reloads PARAMS ((rtx, rtx));
440static void delete_address_reloads_1 PARAMS ((rtx, rtx, rtx));
441static rtx inc_for_reload PARAMS ((rtx, rtx, rtx, int));
442static int constraint_accepts_reg_p PARAMS ((const char *, rtx));
443static void reload_cse_regs_1 PARAMS ((rtx));
eab5c70a 444static int reload_cse_noop_set_p PARAMS ((rtx));
cdadb1dd
KG
445static int reload_cse_simplify_set PARAMS ((rtx, rtx));
446static int reload_cse_simplify_operands PARAMS ((rtx));
770ae6cc
RK
447static void reload_combine PARAMS ((void));
448static void reload_combine_note_use PARAMS ((rtx *, rtx));
449static void reload_combine_note_store PARAMS ((rtx, rtx, void *));
450static void reload_cse_move2add PARAMS ((rtx));
451static void move2add_note_store PARAMS ((rtx, rtx, void *));
2dfa9a87 452#ifdef AUTO_INC_DEC
770ae6cc 453static void add_auto_inc_notes PARAMS ((rtx, rtx));
2dfa9a87 454#endif
94bd63e5 455static void copy_eh_notes PARAMS ((rtx, rtx));
61f5625b 456static HOST_WIDE_INT sext_for_mode PARAMS ((enum machine_mode,
770ae6cc 457 HOST_WIDE_INT));
cdadb1dd
KG
458static void failed_reload PARAMS ((rtx, int));
459static int set_reload_reg PARAMS ((int, int));
e77d72cb
KG
460static void reload_cse_delete_noop_set PARAMS ((rtx, rtx));
461static void reload_cse_simplify PARAMS ((rtx));
f1330226 462static void fixup_abnormal_edges PARAMS ((void));
e04ca094 463extern void dump_needs PARAMS ((struct insn_chain *));
32131a9c 464\f
546b63fb
RK
465/* Initialize the reload pass once per compilation. */
466
32131a9c
RK
467void
468init_reload ()
469{
470 register int i;
471
472 /* Often (MEM (REG n)) is still valid even if (REG n) is put on the stack.
473 Set spill_indirect_levels to the number of levels such addressing is
474 permitted, zero if it is not permitted at all. */
475
476 register rtx tem
38a448ca
RH
477 = gen_rtx_MEM (Pmode,
478 gen_rtx_PLUS (Pmode,
c5c76735
JL
479 gen_rtx_REG (Pmode,
480 LAST_VIRTUAL_REGISTER + 1),
38a448ca 481 GEN_INT (4)));
32131a9c
RK
482 spill_indirect_levels = 0;
483
484 while (memory_address_p (QImode, tem))
485 {
486 spill_indirect_levels++;
38a448ca 487 tem = gen_rtx_MEM (Pmode, tem);
32131a9c
RK
488 }
489
490 /* See if indirect addressing is valid for (MEM (SYMBOL_REF ...)). */
491
38a448ca 492 tem = gen_rtx_MEM (Pmode, gen_rtx_SYMBOL_REF (Pmode, "foo"));
32131a9c
RK
493 indirect_symref_ok = memory_address_p (QImode, tem);
494
495 /* See if reg+reg is a valid (and offsettable) address. */
496
65701fd2 497 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
57caa638 498 {
38a448ca
RH
499 tem = gen_rtx_PLUS (Pmode,
500 gen_rtx_REG (Pmode, HARD_FRAME_POINTER_REGNUM),
501 gen_rtx_REG (Pmode, i));
c5c76735 502
57caa638
RS
503 /* This way, we make sure that reg+reg is an offsettable address. */
504 tem = plus_constant (tem, 4);
505
506 if (memory_address_p (QImode, tem))
507 {
508 double_reg_address_ok = 1;
509 break;
510 }
511 }
32131a9c 512
0f41302f 513 /* Initialize obstack for our rtl allocation. */
32131a9c 514 gcc_obstack_init (&reload_obstack);
cad6f7d0 515 reload_startobj = (char *) obstack_alloc (&reload_obstack, 0);
f5d8c9f4
BS
516
517 INIT_REG_SET (&spilled_pseudos);
518 INIT_REG_SET (&pseudos_counted);
32131a9c
RK
519}
520
cad6f7d0
BS
521/* List of insn chains that are currently unused. */
522static struct insn_chain *unused_insn_chains = 0;
523
524/* Allocate an empty insn_chain structure. */
525struct insn_chain *
526new_insn_chain ()
527{
528 struct insn_chain *c;
529
530 if (unused_insn_chains == 0)
531 {
8db99db2
KG
532 c = (struct insn_chain *)
533 obstack_alloc (&reload_obstack, sizeof (struct insn_chain));
239a0f5b
BS
534 INIT_REG_SET (&c->live_throughout);
535 INIT_REG_SET (&c->dead_or_set);
cad6f7d0
BS
536 }
537 else
538 {
539 c = unused_insn_chains;
540 unused_insn_chains = c->next;
541 }
542 c->is_caller_save_insn = 0;
03acd8f8 543 c->need_operand_change = 0;
cad6f7d0
BS
544 c->need_reload = 0;
545 c->need_elim = 0;
546 return c;
547}
548
7609e720
BS
549/* Small utility function to set all regs in hard reg set TO which are
550 allocated to pseudos in regset FROM. */
770ae6cc 551
7609e720
BS
552void
553compute_use_by_pseudos (to, from)
554 HARD_REG_SET *to;
555 regset from;
556{
770ae6cc
RK
557 unsigned int regno;
558
7609e720
BS
559 EXECUTE_IF_SET_IN_REG_SET
560 (from, FIRST_PSEUDO_REGISTER, regno,
561 {
562 int r = reg_renumber[regno];
563 int nregs;
770ae6cc 564
7609e720 565 if (r < 0)
404d95c4
R
566 {
567 /* reload_combine uses the information from
e881bb1b
RH
568 BASIC_BLOCK->global_live_at_start, which might still
569 contain registers that have not actually been allocated
570 since they have an equivalence. */
404d95c4
R
571 if (! reload_completed)
572 abort ();
573 }
574 else
575 {
576 nregs = HARD_REGNO_NREGS (r, PSEUDO_REGNO_MODE (regno));
577 while (nregs-- > 0)
578 SET_HARD_REG_BIT (*to, r + nregs);
579 }
7609e720
BS
580 });
581}
f474c6f8
AO
582
583/* Replace all pseudos found in LOC with their corresponding
584 equivalences. */
585
586static void
587replace_pseudos_in_call_usage (loc, mem_mode, usage)
588 rtx *loc;
589 enum machine_mode mem_mode;
590 rtx usage;
591{
592 rtx x = *loc;
593 enum rtx_code code;
594 const char *fmt;
595 int i, j;
596
597 if (! x)
598 return;
174fa2c4 599
f474c6f8
AO
600 code = GET_CODE (x);
601 if (code == REG)
602 {
ae0ed63a 603 unsigned int regno = REGNO (x);
086fef9e
AO
604
605 if (regno < FIRST_PSEUDO_REGISTER)
f474c6f8
AO
606 return;
607
608 x = eliminate_regs (x, mem_mode, usage);
609 if (x != *loc)
610 {
611 *loc = x;
612 replace_pseudos_in_call_usage (loc, mem_mode, usage);
613 return;
614 }
615
086fef9e
AO
616 if (reg_equiv_constant[regno])
617 *loc = reg_equiv_constant[regno];
618 else if (reg_equiv_mem[regno])
619 *loc = reg_equiv_mem[regno];
620 else if (reg_equiv_address[regno])
621 *loc = gen_rtx_MEM (GET_MODE (x), reg_equiv_address[regno]);
622 else if (GET_CODE (regno_reg_rtx[regno]) != REG
623 || REGNO (regno_reg_rtx[regno]) != regno)
624 *loc = regno_reg_rtx[regno];
f474c6f8
AO
625 else
626 abort ();
627
628 return;
629 }
630 else if (code == MEM)
631 {
632 replace_pseudos_in_call_usage (& XEXP (x, 0), GET_MODE (x), usage);
633 return;
634 }
174fa2c4 635
f474c6f8
AO
636 /* Process each of our operands recursively. */
637 fmt = GET_RTX_FORMAT (code);
638 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
639 if (*fmt == 'e')
640 replace_pseudos_in_call_usage (&XEXP (x, i), mem_mode, usage);
641 else if (*fmt == 'E')
642 for (j = 0; j < XVECLEN (x, i); j++)
643 replace_pseudos_in_call_usage (& XVECEXP (x, i, j), mem_mode, usage);
644}
645
03acd8f8 646\f
1e5bd841
BS
647/* Global variables used by reload and its subroutines. */
648
1e5bd841
BS
649/* Set during calculate_needs if an insn needs register elimination. */
650static int something_needs_elimination;
cb2afeb3
R
651/* Set during calculate_needs if an insn needs an operand changed. */
652int something_needs_operands_changed;
1e5bd841 653
1e5bd841
BS
654/* Nonzero means we couldn't get enough spill regs. */
655static int failure;
656
546b63fb 657/* Main entry point for the reload pass.
32131a9c
RK
658
659 FIRST is the first insn of the function being compiled.
660
661 GLOBAL nonzero means we were called from global_alloc
662 and should attempt to reallocate any pseudoregs that we
663 displace from hard regs we will use for reloads.
664 If GLOBAL is zero, we do not have enough information to do that,
665 so any pseudo reg that is spilled must go to the stack.
666
5352b11a
RS
667 Return value is nonzero if reload failed
668 and we must not do any more for this function. */
669
670int
e04ca094 671reload (first, global)
32131a9c
RK
672 rtx first;
673 int global;
32131a9c 674{
03acd8f8 675 register int i;
32131a9c
RK
676 register rtx insn;
677 register struct elim_table *ep;
678
a68d4b75
BK
679 /* The two pointers used to track the true location of the memory used
680 for label offsets. */
9714cf43 681 char *real_known_ptr = NULL;
a68d4b75
BK
682 int (*real_at_ptr)[NUM_ELIMINABLE_REGS];
683
32131a9c
RK
684 /* Make sure even insns with volatile mem refs are recognizable. */
685 init_recog ();
686
1e5bd841
BS
687 failure = 0;
688
cad6f7d0
BS
689 reload_firstobj = (char *) obstack_alloc (&reload_obstack, 0);
690
437a710d
BS
691 /* Make sure that the last insn in the chain
692 is not something that needs reloading. */
6496a589 693 emit_note (NULL, NOTE_INSN_DELETED);
437a710d 694
32131a9c
RK
695 /* Enable find_equiv_reg to distinguish insns made by reload. */
696 reload_first_uid = get_max_uid ();
697
0dadecf6
RK
698#ifdef SECONDARY_MEMORY_NEEDED
699 /* Initialize the secondary memory table. */
700 clear_secondary_mem ();
701#endif
702
32131a9c 703 /* We don't have a stack slot for any spill reg yet. */
961192e1
JM
704 memset ((char *) spill_stack_slot, 0, sizeof spill_stack_slot);
705 memset ((char *) spill_stack_slot_width, 0, sizeof spill_stack_slot_width);
32131a9c 706
a8efe40d
RK
707 /* Initialize the save area information for caller-save, in case some
708 are needed. */
709 init_save_areas ();
a8fdc208 710
32131a9c
RK
711 /* Compute which hard registers are now in use
712 as homes for pseudo registers.
713 This is done here rather than (eg) in global_alloc
714 because this point is reached even if not optimizing. */
32131a9c
RK
715 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
716 mark_home_live (i);
717
8dddd002
RK
718 /* A function that receives a nonlocal goto must save all call-saved
719 registers. */
720 if (current_function_has_nonlocal_label)
721 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2a3e384f
RH
722 if (! call_used_regs[i] && ! fixed_regs[i] && ! LOCAL_REGNO (i))
723 regs_ever_live[i] = 1;
8dddd002 724
32131a9c
RK
725 /* Find all the pseudo registers that didn't get hard regs
726 but do have known equivalent constants or memory slots.
727 These include parameters (known equivalent to parameter slots)
728 and cse'd or loop-moved constant memory addresses.
729
730 Record constant equivalents in reg_equiv_constant
731 so they will be substituted by find_reloads.
732 Record memory equivalents in reg_mem_equiv so they can
733 be substituted eventually by altering the REG-rtx's. */
734
ad85216e 735 reg_equiv_constant = (rtx *) xcalloc (max_regno, sizeof (rtx));
ad85216e
KG
736 reg_equiv_mem = (rtx *) xcalloc (max_regno, sizeof (rtx));
737 reg_equiv_init = (rtx *) xcalloc (max_regno, sizeof (rtx));
738 reg_equiv_address = (rtx *) xcalloc (max_regno, sizeof (rtx));
f9e158c3 739 reg_max_ref_width = (unsigned int *) xcalloc (max_regno, sizeof (int));
ad85216e 740 reg_old_renumber = (short *) xcalloc (max_regno, sizeof (short));
4e135bdd 741 memcpy (reg_old_renumber, reg_renumber, max_regno * sizeof (short));
03acd8f8
BS
742 pseudo_forbidden_regs
743 = (HARD_REG_SET *) xmalloc (max_regno * sizeof (HARD_REG_SET));
744 pseudo_previous_regs
ad85216e 745 = (HARD_REG_SET *) xcalloc (max_regno, sizeof (HARD_REG_SET));
32131a9c 746
03acd8f8 747 CLEAR_HARD_REG_SET (bad_spill_regs_global);
56f58d3a 748
32131a9c 749 /* Look for REG_EQUIV notes; record what each pseudo is equivalent to.
56f58d3a
RK
750 Also find all paradoxical subregs and find largest such for each pseudo.
751 On machines with small register classes, record hard registers that
05d10675 752 are used for user variables. These can never be used for spills.
570a98eb 753 Also look for a "constant" REG_SETJMP. This means that all
b453cb0b 754 caller-saved registers must be marked live. */
32131a9c 755
2b49ee39 756 num_eliminable_invariants = 0;
32131a9c
RK
757 for (insn = first; insn; insn = NEXT_INSN (insn))
758 {
759 rtx set = single_set (insn);
760
19652adf
ZW
761 if (GET_CODE (insn) == CALL_INSN
762 && find_reg_note (insn, REG_SETJMP, NULL))
b453cb0b
RK
763 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
764 if (! call_used_regs[i])
765 regs_ever_live[i] = 1;
766
32131a9c
RK
767 if (set != 0 && GET_CODE (SET_DEST (set)) == REG)
768 {
fb3821f7 769 rtx note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
a8efe40d
RK
770 if (note
771#ifdef LEGITIMATE_PIC_OPERAND_P
2b49ee39
R
772 && (! function_invariant_p (XEXP (note, 0))
773 || ! flag_pic
a8efe40d
RK
774 || LEGITIMATE_PIC_OPERAND_P (XEXP (note, 0)))
775#endif
776 )
32131a9c
RK
777 {
778 rtx x = XEXP (note, 0);
779 i = REGNO (SET_DEST (set));
780 if (i > LAST_VIRTUAL_REGISTER)
781 {
782 if (GET_CODE (x) == MEM)
956d6950 783 {
cf728d61
HPN
784 /* Always unshare the equivalence, so we can
785 substitute into this insn without touching the
786 equivalence. */
787 reg_equiv_memory_loc[i] = copy_rtx (x);
956d6950 788 }
2b49ee39 789 else if (function_invariant_p (x))
32131a9c 790 {
2b49ee39
R
791 if (GET_CODE (x) == PLUS)
792 {
793 /* This is PLUS of frame pointer and a constant,
794 and might be shared. Unshare it. */
795 reg_equiv_constant[i] = copy_rtx (x);
796 num_eliminable_invariants++;
797 }
798 else if (x == frame_pointer_rtx
799 || x == arg_pointer_rtx)
800 {
801 reg_equiv_constant[i] = x;
802 num_eliminable_invariants++;
803 }
804 else if (LEGITIMATE_CONSTANT_P (x))
32131a9c
RK
805 reg_equiv_constant[i] = x;
806 else
807 reg_equiv_memory_loc[i]
d445b551 808 = force_const_mem (GET_MODE (SET_DEST (set)), x);
32131a9c
RK
809 }
810 else
811 continue;
812
813 /* If this register is being made equivalent to a MEM
814 and the MEM is not SET_SRC, the equivalencing insn
815 is one with the MEM as a SET_DEST and it occurs later.
816 So don't mark this insn now. */
817 if (GET_CODE (x) != MEM
818 || rtx_equal_p (SET_SRC (set), x))
135eb61c
R
819 reg_equiv_init[i]
820 = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv_init[i]);
32131a9c
RK
821 }
822 }
823 }
824
825 /* If this insn is setting a MEM from a register equivalent to it,
826 this is the equivalencing insn. */
827 else if (set && GET_CODE (SET_DEST (set)) == MEM
828 && GET_CODE (SET_SRC (set)) == REG
829 && reg_equiv_memory_loc[REGNO (SET_SRC (set))]
830 && rtx_equal_p (SET_DEST (set),
831 reg_equiv_memory_loc[REGNO (SET_SRC (set))]))
135eb61c
R
832 reg_equiv_init[REGNO (SET_SRC (set))]
833 = gen_rtx_INSN_LIST (VOIDmode, insn,
834 reg_equiv_init[REGNO (SET_SRC (set))]);
32131a9c 835
2c3c49de 836 if (INSN_P (insn))
32131a9c
RK
837 scan_paradoxical_subregs (PATTERN (insn));
838 }
839
09dd1133 840 init_elim_table ();
32131a9c
RK
841
842 num_labels = max_label_num () - get_first_label_num ();
843
844 /* Allocate the tables used to store offset information at labels. */
a68d4b75
BK
845 /* We used to use alloca here, but the size of what it would try to
846 allocate would occasionally cause it to exceed the stack limit and
847 cause a core dump. */
848 real_known_ptr = xmalloc (num_labels);
849 real_at_ptr
32131a9c 850 = (int (*)[NUM_ELIMINABLE_REGS])
a68d4b75 851 xmalloc (num_labels * NUM_ELIMINABLE_REGS * sizeof (int));
32131a9c 852
a68d4b75
BK
853 offsets_known_at = real_known_ptr - get_first_label_num ();
854 offsets_at
855 = (int (*)[NUM_ELIMINABLE_REGS]) (real_at_ptr - get_first_label_num ());
32131a9c
RK
856
857 /* Alter each pseudo-reg rtx to contain its hard reg number.
858 Assign stack slots to the pseudos that lack hard regs or equivalents.
859 Do not touch virtual registers. */
860
861 for (i = LAST_VIRTUAL_REGISTER + 1; i < max_regno; i++)
862 alter_reg (i, -1);
863
32131a9c
RK
864 /* If we have some registers we think can be eliminated, scan all insns to
865 see if there is an insn that sets one of these registers to something
866 other than itself plus a constant. If so, the register cannot be
867 eliminated. Doing this scan here eliminates an extra pass through the
868 main reload loop in the most common case where register elimination
869 cannot be done. */
870 for (insn = first; insn && num_eliminable; insn = NEXT_INSN (insn))
871 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
872 || GET_CODE (insn) == CALL_INSN)
84832317 873 note_stores (PATTERN (insn), mark_not_eliminable, NULL);
32131a9c 874
18a90182
BS
875 maybe_fix_stack_asms ();
876
03acd8f8
BS
877 insns_need_reload = 0;
878 something_needs_elimination = 0;
05d10675 879
4079cd63
JW
880 /* Initialize to -1, which means take the first spill register. */
881 last_spill_reg = -1;
882
32131a9c 883 /* Spill any hard regs that we know we can't eliminate. */
03acd8f8 884 CLEAR_HARD_REG_SET (used_spill_regs);
32131a9c
RK
885 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
886 if (! ep->can_eliminate)
e04ca094 887 spill_hard_reg (ep->from, 1);
9ff3516a
RK
888
889#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
890 if (frame_pointer_needed)
e04ca094 891 spill_hard_reg (HARD_FRAME_POINTER_REGNUM, 1);
9ff3516a 892#endif
e04ca094 893 finish_spills (global);
7609e720 894
f1db3576
JL
895 /* From now on, we may need to generate moves differently. We may also
896 allow modifications of insns which cause them to not be recognized.
897 Any such modifications will be cleaned up during reload itself. */
b2f15f94
RK
898 reload_in_progress = 1;
899
32131a9c
RK
900 /* This loop scans the entire function each go-round
901 and repeats until one repetition spills no additional hard regs. */
03acd8f8 902 for (;;)
32131a9c 903 {
03acd8f8
BS
904 int something_changed;
905 int did_spill;
32131a9c 906
03acd8f8 907 HOST_WIDE_INT starting_frame_size;
32131a9c 908
665792eb 909 /* Round size of stack frame to stack_alignment_needed. This must be done
7657bf2f
JW
910 here because the stack size may be a part of the offset computation
911 for register elimination, and there might have been new stack slots
912 created in the last iteration of this loop. */
665792eb
JH
913 if (cfun->stack_alignment_needed)
914 assign_stack_local (BLKmode, 0, cfun->stack_alignment_needed);
7657bf2f
JW
915
916 starting_frame_size = get_frame_size ();
917
09dd1133 918 set_initial_elim_offsets ();
1f3b1e1a 919 set_initial_label_offsets ();
03acd8f8 920
32131a9c
RK
921 /* For each pseudo register that has an equivalent location defined,
922 try to eliminate any eliminable registers (such as the frame pointer)
923 assuming initial offsets for the replacement register, which
924 is the normal case.
925
926 If the resulting location is directly addressable, substitute
927 the MEM we just got directly for the old REG.
928
929 If it is not addressable but is a constant or the sum of a hard reg
930 and constant, it is probably not addressable because the constant is
931 out of range, in that case record the address; we will generate
932 hairy code to compute the address in a register each time it is
6491dbbb
RK
933 needed. Similarly if it is a hard register, but one that is not
934 valid as an address register.
32131a9c
RK
935
936 If the location is not addressable, but does not have one of the
937 above forms, assign a stack slot. We have to do this to avoid the
938 potential of producing lots of reloads if, e.g., a location involves
939 a pseudo that didn't get a hard register and has an equivalent memory
940 location that also involves a pseudo that didn't get a hard register.
941
942 Perhaps at some point we will improve reload_when_needed handling
943 so this problem goes away. But that's very hairy. */
944
945 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
946 if (reg_renumber[i] < 0 && reg_equiv_memory_loc[i])
947 {
1914f5da 948 rtx x = eliminate_regs (reg_equiv_memory_loc[i], 0, NULL_RTX);
32131a9c
RK
949
950 if (strict_memory_address_p (GET_MODE (regno_reg_rtx[i]),
951 XEXP (x, 0)))
952 reg_equiv_mem[i] = x, reg_equiv_address[i] = 0;
953 else if (CONSTANT_P (XEXP (x, 0))
6491dbbb
RK
954 || (GET_CODE (XEXP (x, 0)) == REG
955 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
32131a9c
RK
956 || (GET_CODE (XEXP (x, 0)) == PLUS
957 && GET_CODE (XEXP (XEXP (x, 0), 0)) == REG
958 && (REGNO (XEXP (XEXP (x, 0), 0))
959 < FIRST_PSEUDO_REGISTER)
960 && CONSTANT_P (XEXP (XEXP (x, 0), 1))))
961 reg_equiv_address[i] = XEXP (x, 0), reg_equiv_mem[i] = 0;
962 else
963 {
964 /* Make a new stack slot. Then indicate that something
a8fdc208 965 changed so we go back and recompute offsets for
32131a9c
RK
966 eliminable registers because the allocation of memory
967 below might change some offset. reg_equiv_{mem,address}
968 will be set up for this pseudo on the next pass around
969 the loop. */
970 reg_equiv_memory_loc[i] = 0;
971 reg_equiv_init[i] = 0;
972 alter_reg (i, -1);
32131a9c
RK
973 }
974 }
a8fdc208 975
437a710d
BS
976 if (caller_save_needed)
977 setup_save_areas ();
978
03acd8f8 979 /* If we allocated another stack slot, redo elimination bookkeeping. */
437a710d 980 if (starting_frame_size != get_frame_size ())
32131a9c
RK
981 continue;
982
437a710d 983 if (caller_save_needed)
a8efe40d 984 {
437a710d
BS
985 save_call_clobbered_regs ();
986 /* That might have allocated new insn_chain structures. */
987 reload_firstobj = (char *) obstack_alloc (&reload_obstack, 0);
a8efe40d
RK
988 }
989
03acd8f8
BS
990 calculate_needs_all_insns (global);
991
f5d8c9f4 992 CLEAR_REG_SET (&spilled_pseudos);
03acd8f8
BS
993 did_spill = 0;
994
995 something_changed = 0;
32131a9c 996
0dadecf6
RK
997 /* If we allocated any new memory locations, make another pass
998 since it might have changed elimination offsets. */
999 if (starting_frame_size != get_frame_size ())
1000 something_changed = 1;
1001
09dd1133
BS
1002 {
1003 HARD_REG_SET to_spill;
1004 CLEAR_HARD_REG_SET (to_spill);
1005 update_eliminables (&to_spill);
1006 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1007 if (TEST_HARD_REG_BIT (to_spill, i))
32131a9c 1008 {
e04ca094 1009 spill_hard_reg (i, 1);
03acd8f8 1010 did_spill = 1;
8f5db3c1
JL
1011
1012 /* Regardless of the state of spills, if we previously had
1013 a register that we thought we could eliminate, but no can
1014 not eliminate, we must run another pass.
1015
1016 Consider pseudos which have an entry in reg_equiv_* which
1017 reference an eliminable register. We must make another pass
1018 to update reg_equiv_* so that we do not substitute in the
1019 old value from when we thought the elimination could be
1020 performed. */
1021 something_changed = 1;
32131a9c 1022 }
09dd1133 1023 }
9ff3516a 1024
e04ca094 1025 select_reload_regs ();
e483bf9c
BS
1026 if (failure)
1027 goto failed;
437a710d 1028
e483bf9c 1029 if (insns_need_reload != 0 || did_spill)
e04ca094 1030 something_changed |= finish_spills (global);
7609e720 1031
03acd8f8
BS
1032 if (! something_changed)
1033 break;
1034
1035 if (caller_save_needed)
7609e720 1036 delete_caller_save_insns ();
f5d8c9f4
BS
1037
1038 obstack_free (&reload_obstack, reload_firstobj);
32131a9c
RK
1039 }
1040
1041 /* If global-alloc was run, notify it of any register eliminations we have
1042 done. */
1043 if (global)
1044 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
1045 if (ep->can_eliminate)
1046 mark_elimination (ep->from, ep->to);
1047
32131a9c
RK
1048 /* If a pseudo has no hard reg, delete the insns that made the equivalence.
1049 If that insn didn't set the register (i.e., it copied the register to
1050 memory), just delete that insn instead of the equivalencing insn plus
1051 anything now dead. If we call delete_dead_insn on that insn, we may
135eb61c 1052 delete the insn that actually sets the register if the register dies
32131a9c
RK
1053 there and that is incorrect. */
1054
1055 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
135eb61c
R
1056 {
1057 if (reg_renumber[i] < 0 && reg_equiv_init[i] != 0)
1058 {
1059 rtx list;
1060 for (list = reg_equiv_init[i]; list; list = XEXP (list, 1))
1061 {
1062 rtx equiv_insn = XEXP (list, 0);
1063 if (GET_CODE (equiv_insn) == NOTE)
1064 continue;
1065 if (reg_set_p (regno_reg_rtx[i], PATTERN (equiv_insn)))
1066 delete_dead_insn (equiv_insn);
1067 else
1068 {
1069 PUT_CODE (equiv_insn, NOTE);
1070 NOTE_SOURCE_FILE (equiv_insn) = 0;
1071 NOTE_LINE_NUMBER (equiv_insn) = NOTE_INSN_DELETED;
1072 }
1073 }
1074 }
1075 }
32131a9c
RK
1076
1077 /* Use the reload registers where necessary
1078 by generating move instructions to move the must-be-register
1079 values into or out of the reload registers. */
1080
03acd8f8
BS
1081 if (insns_need_reload != 0 || something_needs_elimination
1082 || something_needs_operands_changed)
c47f5ea5 1083 {
102870fb 1084 HOST_WIDE_INT old_frame_size = get_frame_size ();
c47f5ea5 1085
e04ca094 1086 reload_as_needed (global);
c47f5ea5
BS
1087
1088 if (old_frame_size != get_frame_size ())
1089 abort ();
1090
1091 if (num_eliminable)
1092 verify_initial_elim_offsets ();
1093 }
32131a9c 1094
2a1f8b6b 1095 /* If we were able to eliminate the frame pointer, show that it is no
546b63fb 1096 longer live at the start of any basic block. If it ls live by
2a1f8b6b
RK
1097 virtue of being in a pseudo, that pseudo will be marked live
1098 and hence the frame pointer will be known to be live via that
1099 pseudo. */
1100
1101 if (! frame_pointer_needed)
1102 for (i = 0; i < n_basic_blocks; i++)
e881bb1b 1103 CLEAR_REGNO_REG_SET (BASIC_BLOCK (i)->global_live_at_start,
8e08106d 1104 HARD_FRAME_POINTER_REGNUM);
2a1f8b6b 1105
5352b11a
RS
1106 /* Come here (with failure set nonzero) if we can't get enough spill regs
1107 and we decide not to abort about it. */
1108 failed:
1109
f5d8c9f4 1110 CLEAR_REG_SET (&spilled_pseudos);
a3ec87a8
RS
1111 reload_in_progress = 0;
1112
32131a9c
RK
1113 /* Now eliminate all pseudo regs by modifying them into
1114 their equivalent memory references.
1115 The REG-rtx's for the pseudos are modified in place,
1116 so all insns that used to refer to them now refer to memory.
1117
1118 For a reg that has a reg_equiv_address, all those insns
1119 were changed by reloading so that no insns refer to it any longer;
1120 but the DECL_RTL of a variable decl may refer to it,
1121 and if so this causes the debugging info to mention the variable. */
1122
1123 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1124 {
1125 rtx addr = 0;
ab1fd483 1126 int in_struct = 0;
6a651371 1127 int is_scalar = 0;
9ec36da5
JL
1128 int is_readonly = 0;
1129
1130 if (reg_equiv_memory_loc[i])
ab1fd483 1131 {
9ec36da5 1132 in_struct = MEM_IN_STRUCT_P (reg_equiv_memory_loc[i]);
c6df88cb 1133 is_scalar = MEM_SCALAR_P (reg_equiv_memory_loc[i]);
9ec36da5 1134 is_readonly = RTX_UNCHANGING_P (reg_equiv_memory_loc[i]);
ab1fd483 1135 }
9ec36da5
JL
1136
1137 if (reg_equiv_mem[i])
1138 addr = XEXP (reg_equiv_mem[i], 0);
1139
32131a9c
RK
1140 if (reg_equiv_address[i])
1141 addr = reg_equiv_address[i];
9ec36da5 1142
32131a9c
RK
1143 if (addr)
1144 {
1145 if (reg_renumber[i] < 0)
1146 {
1147 rtx reg = regno_reg_rtx[i];
ef178af3 1148 PUT_CODE (reg, MEM);
32131a9c
RK
1149 XEXP (reg, 0) = addr;
1150 REG_USERVAR_P (reg) = 0;
9ec36da5 1151 RTX_UNCHANGING_P (reg) = is_readonly;
ab1fd483 1152 MEM_IN_STRUCT_P (reg) = in_struct;
c6df88cb 1153 MEM_SCALAR_P (reg) = is_scalar;
41472af8
MM
1154 /* We have no alias information about this newly created
1155 MEM. */
ba4828e0 1156 set_mem_alias_set (reg, 0);
32131a9c
RK
1157 }
1158 else if (reg_equiv_mem[i])
1159 XEXP (reg_equiv_mem[i], 0) = addr;
1160 }
1161 }
1162
2ae74651
JL
1163 /* We must set reload_completed now since the cleanup_subreg_operands call
1164 below will re-recognize each insn and reload may have generated insns
1165 which are only valid during and after reload. */
1166 reload_completed = 1;
1167
bd695e1e
RH
1168 /* Make a pass over all the insns and delete all USEs which we inserted
1169 only to tag a REG_EQUAL note on them. Remove all REG_DEAD and REG_UNUSED
1170 notes. Delete all CLOBBER insns that don't refer to the return value
1171 and simplify (subreg (reg)) operands. Also remove all REG_RETVAL and
1172 REG_LIBCALL notes since they are no longer useful or accurate. Strip
1173 and regenerate REG_INC notes that may have been moved around. */
32131a9c
RK
1174
1175 for (insn = first; insn; insn = NEXT_INSN (insn))
2c3c49de 1176 if (INSN_P (insn))
32131a9c 1177 {
6764d250 1178 rtx *pnote;
32131a9c 1179
f474c6f8
AO
1180 if (GET_CODE (insn) == CALL_INSN)
1181 replace_pseudos_in_call_usage (& CALL_INSN_FUNCTION_USAGE (insn),
1182 VOIDmode,
1183 CALL_INSN_FUNCTION_USAGE (insn));
1184
0304f787 1185 if ((GET_CODE (PATTERN (insn)) == USE
1b577f5a 1186 && find_reg_note (insn, REG_EQUAL, NULL_RTX))
bd695e1e
RH
1187 || (GET_CODE (PATTERN (insn)) == CLOBBER
1188 && (GET_CODE (XEXP (PATTERN (insn), 0)) != REG
1189 || ! REG_FUNCTION_VALUE_P (XEXP (PATTERN (insn), 0)))))
b60a8416
R
1190 {
1191 PUT_CODE (insn, NOTE);
1192 NOTE_SOURCE_FILE (insn) = 0;
1193 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
1194 continue;
1195 }
6764d250
BS
1196
1197 pnote = &REG_NOTES (insn);
1198 while (*pnote != 0)
32131a9c 1199 {
6764d250 1200 if (REG_NOTE_KIND (*pnote) == REG_DEAD
80599fd9 1201 || REG_NOTE_KIND (*pnote) == REG_UNUSED
2dfa9a87 1202 || REG_NOTE_KIND (*pnote) == REG_INC
80599fd9
NC
1203 || REG_NOTE_KIND (*pnote) == REG_RETVAL
1204 || REG_NOTE_KIND (*pnote) == REG_LIBCALL)
6764d250
BS
1205 *pnote = XEXP (*pnote, 1);
1206 else
1207 pnote = &XEXP (*pnote, 1);
32131a9c 1208 }
0304f787 1209
2dfa9a87
MH
1210#ifdef AUTO_INC_DEC
1211 add_auto_inc_notes (insn, PATTERN (insn));
1212#endif
1213
0304f787
JL
1214 /* And simplify (subreg (reg)) if it appears as an operand. */
1215 cleanup_subreg_operands (insn);
b60a8416 1216 }
32131a9c 1217
ab87f8c8
JL
1218 /* If we are doing stack checking, give a warning if this function's
1219 frame size is larger than we expect. */
1220 if (flag_stack_check && ! STACK_CHECK_BUILTIN)
1221 {
1222 HOST_WIDE_INT size = get_frame_size () + STACK_CHECK_FIXED_FRAME_SIZE;
05d10675
BS
1223 static int verbose_warned = 0;
1224
ab87f8c8
JL
1225 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1226 if (regs_ever_live[i] && ! fixed_regs[i] && call_used_regs[i])
1227 size += UNITS_PER_WORD;
1228
1229 if (size > STACK_CHECK_MAX_FRAME_SIZE)
05d10675 1230 {
ab87f8c8
JL
1231 warning ("frame size too large for reliable stack checking");
1232 if (! verbose_warned)
1233 {
1234 warning ("try reducing the number of local variables");
1235 verbose_warned = 1;
1236 }
1237 }
1238 }
1239
32131a9c 1240 /* Indicate that we no longer have known memory locations or constants. */
58d9f9d9
JL
1241 if (reg_equiv_constant)
1242 free (reg_equiv_constant);
32131a9c 1243 reg_equiv_constant = 0;
58d9f9d9
JL
1244 if (reg_equiv_memory_loc)
1245 free (reg_equiv_memory_loc);
32131a9c 1246 reg_equiv_memory_loc = 0;
5352b11a 1247
a68d4b75
BK
1248 if (real_known_ptr)
1249 free (real_known_ptr);
1250 if (real_at_ptr)
1251 free (real_at_ptr);
1252
56a65848
DB
1253 free (reg_equiv_mem);
1254 free (reg_equiv_init);
1255 free (reg_equiv_address);
1256 free (reg_max_ref_width);
03acd8f8
BS
1257 free (reg_old_renumber);
1258 free (pseudo_previous_regs);
1259 free (pseudo_forbidden_regs);
56a65848 1260
8b4f9969
JW
1261 CLEAR_HARD_REG_SET (used_spill_regs);
1262 for (i = 0; i < n_spills; i++)
1263 SET_HARD_REG_BIT (used_spill_regs, spill_regs[i]);
1264
7609e720
BS
1265 /* Free all the insn_chain structures at once. */
1266 obstack_free (&reload_obstack, reload_startobj);
1267 unused_insn_chains = 0;
3c030e88 1268 compute_bb_for_insn (get_max_uid ());
f1330226 1269 fixup_abnormal_edges ();
7609e720 1270
5352b11a 1271 return failure;
32131a9c 1272}
1e5bd841 1273
18a90182
BS
1274/* Yet another special case. Unfortunately, reg-stack forces people to
1275 write incorrect clobbers in asm statements. These clobbers must not
1276 cause the register to appear in bad_spill_regs, otherwise we'll call
1277 fatal_insn later. We clear the corresponding regnos in the live
1278 register sets to avoid this.
1279 The whole thing is rather sick, I'm afraid. */
efc9bd41 1280
18a90182
BS
1281static void
1282maybe_fix_stack_asms ()
1283{
1284#ifdef STACK_REGS
392dccb7 1285 const char *constraints[MAX_RECOG_OPERANDS];
18a90182
BS
1286 enum machine_mode operand_mode[MAX_RECOG_OPERANDS];
1287 struct insn_chain *chain;
1288
1289 for (chain = reload_insn_chain; chain != 0; chain = chain->next)
1290 {
1291 int i, noperands;
1292 HARD_REG_SET clobbered, allowed;
1293 rtx pat;
1294
2c3c49de 1295 if (! INSN_P (chain->insn)
18a90182
BS
1296 || (noperands = asm_noperands (PATTERN (chain->insn))) < 0)
1297 continue;
1298 pat = PATTERN (chain->insn);
1299 if (GET_CODE (pat) != PARALLEL)
1300 continue;
1301
1302 CLEAR_HARD_REG_SET (clobbered);
1303 CLEAR_HARD_REG_SET (allowed);
1304
1305 /* First, make a mask of all stack regs that are clobbered. */
1306 for (i = 0; i < XVECLEN (pat, 0); i++)
1307 {
1308 rtx t = XVECEXP (pat, 0, i);
1309 if (GET_CODE (t) == CLOBBER && STACK_REG_P (XEXP (t, 0)))
1310 SET_HARD_REG_BIT (clobbered, REGNO (XEXP (t, 0)));
1311 }
1312
1313 /* Get the operand values and constraints out of the insn. */
1ccbefce 1314 decode_asm_operands (pat, recog_data.operand, recog_data.operand_loc,
18a90182
BS
1315 constraints, operand_mode);
1316
1317 /* For every operand, see what registers are allowed. */
1318 for (i = 0; i < noperands; i++)
1319 {
6b9c6f4f 1320 const char *p = constraints[i];
18a90182
BS
1321 /* For every alternative, we compute the class of registers allowed
1322 for reloading in CLS, and merge its contents into the reg set
1323 ALLOWED. */
1324 int cls = (int) NO_REGS;
1325
1326 for (;;)
1327 {
1328 char c = *p++;
1329
1330 if (c == '\0' || c == ',' || c == '#')
1331 {
1332 /* End of one alternative - mark the regs in the current
1333 class, and reset the class. */
1334 IOR_HARD_REG_SET (allowed, reg_class_contents[cls]);
1335 cls = NO_REGS;
1336 if (c == '#')
1337 do {
1338 c = *p++;
1339 } while (c != '\0' && c != ',');
1340 if (c == '\0')
1341 break;
1342 continue;
1343 }
1344
1345 switch (c)
1346 {
1347 case '=': case '+': case '*': case '%': case '?': case '!':
1348 case '0': case '1': case '2': case '3': case '4': case 'm':
1349 case '<': case '>': case 'V': case 'o': case '&': case 'E':
1350 case 'F': case 's': case 'i': case 'n': case 'X': case 'I':
1351 case 'J': case 'K': case 'L': case 'M': case 'N': case 'O':
1352 case 'P':
18a90182
BS
1353 break;
1354
1355 case 'p':
1356 cls = (int) reg_class_subunion[cls][(int) BASE_REG_CLASS];
1357 break;
1358
1359 case 'g':
1360 case 'r':
1361 cls = (int) reg_class_subunion[cls][(int) GENERAL_REGS];
1362 break;
1363
1364 default:
1365 cls = (int) reg_class_subunion[cls][(int) REG_CLASS_FROM_LETTER (c)];
05d10675 1366
18a90182
BS
1367 }
1368 }
1369 }
1370 /* Those of the registers which are clobbered, but allowed by the
1371 constraints, must be usable as reload registers. So clear them
1372 out of the life information. */
1373 AND_HARD_REG_SET (allowed, clobbered);
1374 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1375 if (TEST_HARD_REG_BIT (allowed, i))
1376 {
239a0f5b
BS
1377 CLEAR_REGNO_REG_SET (&chain->live_throughout, i);
1378 CLEAR_REGNO_REG_SET (&chain->dead_or_set, i);
18a90182
BS
1379 }
1380 }
1381
1382#endif
1383}
03acd8f8 1384\f
f5d8c9f4
BS
1385/* Copy the global variables n_reloads and rld into the corresponding elts
1386 of CHAIN. */
1387static void
1388copy_reloads (chain)
1389 struct insn_chain *chain;
1390{
1391 chain->n_reloads = n_reloads;
1392 chain->rld
1393 = (struct reload *) obstack_alloc (&reload_obstack,
1394 n_reloads * sizeof (struct reload));
1395 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
1396 reload_insn_firstobj = (char *) obstack_alloc (&reload_obstack, 0);
1397}
1398
03acd8f8
BS
1399/* Walk the chain of insns, and determine for each whether it needs reloads
1400 and/or eliminations. Build the corresponding insns_need_reload list, and
1401 set something_needs_elimination as appropriate. */
1402static void
7609e720 1403calculate_needs_all_insns (global)
1e5bd841
BS
1404 int global;
1405{
7609e720 1406 struct insn_chain **pprev_reload = &insns_need_reload;
462561b7 1407 struct insn_chain *chain, *next = 0;
1e5bd841 1408
03acd8f8
BS
1409 something_needs_elimination = 0;
1410
f5d8c9f4 1411 reload_insn_firstobj = (char *) obstack_alloc (&reload_obstack, 0);
462561b7 1412 for (chain = reload_insn_chain; chain != 0; chain = next)
1e5bd841 1413 {
67e61fe7 1414 rtx insn = chain->insn;
03acd8f8 1415
462561b7
JJ
1416 next = chain->next;
1417
f5d8c9f4
BS
1418 /* Clear out the shortcuts. */
1419 chain->n_reloads = 0;
67e61fe7
BS
1420 chain->need_elim = 0;
1421 chain->need_reload = 0;
1422 chain->need_operand_change = 0;
1e5bd841 1423
03acd8f8
BS
1424 /* If this is a label, a JUMP_INSN, or has REG_NOTES (which might
1425 include REG_LABEL), we need to see what effects this has on the
1426 known offsets at labels. */
1e5bd841
BS
1427
1428 if (GET_CODE (insn) == CODE_LABEL || GET_CODE (insn) == JUMP_INSN
2c3c49de 1429 || (INSN_P (insn) && REG_NOTES (insn) != 0))
1e5bd841
BS
1430 set_label_offsets (insn, insn, 0);
1431
2c3c49de 1432 if (INSN_P (insn))
1e5bd841
BS
1433 {
1434 rtx old_body = PATTERN (insn);
1435 int old_code = INSN_CODE (insn);
1436 rtx old_notes = REG_NOTES (insn);
1437 int did_elimination = 0;
cb2afeb3 1438 int operands_changed = 0;
2b49ee39
R
1439 rtx set = single_set (insn);
1440
1441 /* Skip insns that only set an equivalence. */
1442 if (set && GET_CODE (SET_DEST (set)) == REG
1443 && reg_renumber[REGNO (SET_DEST (set))] < 0
1444 && reg_equiv_constant[REGNO (SET_DEST (set))])
67e61fe7 1445 continue;
1e5bd841 1446
1e5bd841 1447 /* If needed, eliminate any eliminable registers. */
2b49ee39 1448 if (num_eliminable || num_eliminable_invariants)
1e5bd841
BS
1449 did_elimination = eliminate_regs_in_insn (insn, 0);
1450
1451 /* Analyze the instruction. */
cb2afeb3
R
1452 operands_changed = find_reloads (insn, 0, spill_indirect_levels,
1453 global, spill_reg_order);
1454
1455 /* If a no-op set needs more than one reload, this is likely
1456 to be something that needs input address reloads. We
1457 can't get rid of this cleanly later, and it is of no use
1458 anyway, so discard it now.
1459 We only do this when expensive_optimizations is enabled,
1460 since this complements reload inheritance / output
1461 reload deletion, and it can make debugging harder. */
1462 if (flag_expensive_optimizations && n_reloads > 1)
1463 {
1464 rtx set = single_set (insn);
1465 if (set
1466 && SET_SRC (set) == SET_DEST (set)
1467 && GET_CODE (SET_SRC (set)) == REG
1468 && REGNO (SET_SRC (set)) >= FIRST_PSEUDO_REGISTER)
1469 {
1470 PUT_CODE (insn, NOTE);
1471 NOTE_SOURCE_FILE (insn) = 0;
1472 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
462561b7
JJ
1473 /* Delete it from the reload chain */
1474 if (chain->prev)
1475 chain->prev->next = next;
1476 else
1477 reload_insn_chain = next;
1478 if (next)
1479 next->prev = chain->prev;
1480 chain->next = unused_insn_chains;
1481 unused_insn_chains = chain;
cb2afeb3
R
1482 continue;
1483 }
1484 }
1485 if (num_eliminable)
1486 update_eliminable_offsets ();
1e5bd841
BS
1487
1488 /* Remember for later shortcuts which insns had any reloads or
7609e720
BS
1489 register eliminations. */
1490 chain->need_elim = did_elimination;
03acd8f8
BS
1491 chain->need_reload = n_reloads > 0;
1492 chain->need_operand_change = operands_changed;
1e5bd841
BS
1493
1494 /* Discard any register replacements done. */
1495 if (did_elimination)
1496 {
f5d8c9f4 1497 obstack_free (&reload_obstack, reload_insn_firstobj);
1e5bd841
BS
1498 PATTERN (insn) = old_body;
1499 INSN_CODE (insn) = old_code;
1500 REG_NOTES (insn) = old_notes;
1501 something_needs_elimination = 1;
1502 }
1503
cb2afeb3
R
1504 something_needs_operands_changed |= operands_changed;
1505
437a710d 1506 if (n_reloads != 0)
7609e720 1507 {
f5d8c9f4 1508 copy_reloads (chain);
7609e720
BS
1509 *pprev_reload = chain;
1510 pprev_reload = &chain->next_need_reload;
7609e720 1511 }
1e5bd841 1512 }
1e5bd841 1513 }
7609e720 1514 *pprev_reload = 0;
1e5bd841 1515}
f5d8c9f4
BS
1516\f
1517/* Comparison function for qsort to decide which of two reloads
1518 should be handled first. *P1 and *P2 are the reload numbers. */
1e5bd841 1519
f5d8c9f4
BS
1520static int
1521reload_reg_class_lower (r1p, r2p)
1522 const PTR r1p;
1523 const PTR r2p;
1e5bd841 1524{
1d7254c5 1525 register int r1 = *(const short *) r1p, r2 = *(const short *) r2p;
f5d8c9f4 1526 register int t;
1e5bd841 1527
f5d8c9f4
BS
1528 /* Consider required reloads before optional ones. */
1529 t = rld[r1].optional - rld[r2].optional;
1530 if (t != 0)
1531 return t;
1e5bd841 1532
f5d8c9f4
BS
1533 /* Count all solitary classes before non-solitary ones. */
1534 t = ((reg_class_size[(int) rld[r2].class] == 1)
1535 - (reg_class_size[(int) rld[r1].class] == 1));
1536 if (t != 0)
1537 return t;
1e5bd841 1538
f5d8c9f4
BS
1539 /* Aside from solitaires, consider all multi-reg groups first. */
1540 t = rld[r2].nregs - rld[r1].nregs;
1541 if (t != 0)
1542 return t;
1e5bd841 1543
f5d8c9f4
BS
1544 /* Consider reloads in order of increasing reg-class number. */
1545 t = (int) rld[r1].class - (int) rld[r2].class;
1546 if (t != 0)
1547 return t;
1e5bd841 1548
f5d8c9f4
BS
1549 /* If reloads are equally urgent, sort by reload number,
1550 so that the results of qsort leave nothing to chance. */
1551 return r1 - r2;
1552}
1553\f
1554/* The cost of spilling each hard reg. */
1555static int spill_cost[FIRST_PSEUDO_REGISTER];
1e5bd841 1556
f5d8c9f4
BS
1557/* When spilling multiple hard registers, we use SPILL_COST for the first
1558 spilled hard reg and SPILL_ADD_COST for subsequent regs. SPILL_ADD_COST
1559 only the first hard reg for a multi-reg pseudo. */
1560static int spill_add_cost[FIRST_PSEUDO_REGISTER];
1e5bd841 1561
f5d8c9f4 1562/* Update the spill cost arrays, considering that pseudo REG is live. */
770ae6cc 1563
f5d8c9f4
BS
1564static void
1565count_pseudo (reg)
1566 int reg;
1567{
b2aec5c0 1568 int freq = REG_FREQ (reg);
f5d8c9f4
BS
1569 int r = reg_renumber[reg];
1570 int nregs;
1e5bd841 1571
f5d8c9f4
BS
1572 if (REGNO_REG_SET_P (&pseudos_counted, reg)
1573 || REGNO_REG_SET_P (&spilled_pseudos, reg))
1574 return;
1e5bd841 1575
f5d8c9f4 1576 SET_REGNO_REG_SET (&pseudos_counted, reg);
1e5bd841 1577
f5d8c9f4
BS
1578 if (r < 0)
1579 abort ();
1d7254c5 1580
b2aec5c0 1581 spill_add_cost[r] += freq;
1e5bd841 1582
f5d8c9f4
BS
1583 nregs = HARD_REGNO_NREGS (r, PSEUDO_REGNO_MODE (reg));
1584 while (nregs-- > 0)
b2aec5c0 1585 spill_cost[r + nregs] += freq;
f5d8c9f4 1586}
1e5bd841 1587
f5d8c9f4
BS
1588/* Calculate the SPILL_COST and SPILL_ADD_COST arrays and determine the
1589 contents of BAD_SPILL_REGS for the insn described by CHAIN. */
efc9bd41 1590
f5d8c9f4
BS
1591static void
1592order_regs_for_reload (chain)
1593 struct insn_chain *chain;
1594{
fbd40359 1595 int i;
efc9bd41
RK
1596 HARD_REG_SET used_by_pseudos;
1597 HARD_REG_SET used_by_pseudos2;
1e5bd841 1598
efc9bd41 1599 COPY_HARD_REG_SET (bad_spill_regs, fixed_reg_set);
1e5bd841 1600
f5d8c9f4
BS
1601 memset (spill_cost, 0, sizeof spill_cost);
1602 memset (spill_add_cost, 0, sizeof spill_add_cost);
1e5bd841 1603
f5d8c9f4 1604 /* Count number of uses of each hard reg by pseudo regs allocated to it
efc9bd41
RK
1605 and then order them by decreasing use. First exclude hard registers
1606 that are live in or across this insn. */
1607
1608 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
1609 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
1610 IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos);
1611 IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos2);
1e5bd841 1612
f5d8c9f4
BS
1613 /* Now find out which pseudos are allocated to it, and update
1614 hard_reg_n_uses. */
1615 CLEAR_REG_SET (&pseudos_counted);
1e5bd841 1616
f5d8c9f4 1617 EXECUTE_IF_SET_IN_REG_SET
fbd40359 1618 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i,
f5d8c9f4 1619 {
fbd40359 1620 count_pseudo (i);
f5d8c9f4
BS
1621 });
1622 EXECUTE_IF_SET_IN_REG_SET
fbd40359 1623 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i,
f5d8c9f4 1624 {
fbd40359 1625 count_pseudo (i);
f5d8c9f4
BS
1626 });
1627 CLEAR_REG_SET (&pseudos_counted);
1e5bd841 1628}
03acd8f8 1629\f
f5d8c9f4
BS
1630/* Vector of reload-numbers showing the order in which the reloads should
1631 be processed. */
1632static short reload_order[MAX_RELOADS];
1e5bd841 1633
f5d8c9f4
BS
1634/* This is used to keep track of the spill regs used in one insn. */
1635static HARD_REG_SET used_spill_regs_local;
03acd8f8 1636
f5d8c9f4
BS
1637/* We decided to spill hard register SPILLED, which has a size of
1638 SPILLED_NREGS. Determine how pseudo REG, which is live during the insn,
1639 is affected. We will add it to SPILLED_PSEUDOS if necessary, and we will
1640 update SPILL_COST/SPILL_ADD_COST. */
770ae6cc 1641
03acd8f8 1642static void
f5d8c9f4
BS
1643count_spilled_pseudo (spilled, spilled_nregs, reg)
1644 int spilled, spilled_nregs, reg;
1e5bd841 1645{
f5d8c9f4
BS
1646 int r = reg_renumber[reg];
1647 int nregs = HARD_REGNO_NREGS (r, PSEUDO_REGNO_MODE (reg));
1e5bd841 1648
f5d8c9f4
BS
1649 if (REGNO_REG_SET_P (&spilled_pseudos, reg)
1650 || spilled + spilled_nregs <= r || r + nregs <= spilled)
1651 return;
1e5bd841 1652
f5d8c9f4 1653 SET_REGNO_REG_SET (&spilled_pseudos, reg);
1e5bd841 1654
b2aec5c0 1655 spill_add_cost[r] -= REG_FREQ (reg);
f5d8c9f4 1656 while (nregs-- > 0)
b2aec5c0 1657 spill_cost[r + nregs] -= REG_FREQ (reg);
1e5bd841
BS
1658}
1659
f5d8c9f4 1660/* Find reload register to use for reload number ORDER. */
03acd8f8 1661
f5d8c9f4 1662static int
e04ca094 1663find_reg (chain, order)
03acd8f8 1664 struct insn_chain *chain;
f5d8c9f4 1665 int order;
1e5bd841 1666{
f5d8c9f4
BS
1667 int rnum = reload_order[order];
1668 struct reload *rl = rld + rnum;
1669 int best_cost = INT_MAX;
1670 int best_reg = -1;
770ae6cc
RK
1671 unsigned int i, j;
1672 int k;
f5d8c9f4
BS
1673 HARD_REG_SET not_usable;
1674 HARD_REG_SET used_by_other_reload;
1e5bd841 1675
f5d8c9f4
BS
1676 COPY_HARD_REG_SET (not_usable, bad_spill_regs);
1677 IOR_HARD_REG_SET (not_usable, bad_spill_regs_global);
1678 IOR_COMPL_HARD_REG_SET (not_usable, reg_class_contents[rl->class]);
1679
1680 CLEAR_HARD_REG_SET (used_by_other_reload);
770ae6cc 1681 for (k = 0; k < order; k++)
1e5bd841 1682 {
770ae6cc
RK
1683 int other = reload_order[k];
1684
f5d8c9f4
BS
1685 if (rld[other].regno >= 0 && reloads_conflict (other, rnum))
1686 for (j = 0; j < rld[other].nregs; j++)
1687 SET_HARD_REG_BIT (used_by_other_reload, rld[other].regno + j);
1688 }
1e5bd841 1689
f5d8c9f4
BS
1690 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1691 {
770ae6cc
RK
1692 unsigned int regno = i;
1693
f5d8c9f4
BS
1694 if (! TEST_HARD_REG_BIT (not_usable, regno)
1695 && ! TEST_HARD_REG_BIT (used_by_other_reload, regno)
1696 && HARD_REGNO_MODE_OK (regno, rl->mode))
1e5bd841 1697 {
f5d8c9f4
BS
1698 int this_cost = spill_cost[regno];
1699 int ok = 1;
770ae6cc 1700 unsigned int this_nregs = HARD_REGNO_NREGS (regno, rl->mode);
1e5bd841 1701
f5d8c9f4
BS
1702 for (j = 1; j < this_nregs; j++)
1703 {
1704 this_cost += spill_add_cost[regno + j];
1705 if ((TEST_HARD_REG_BIT (not_usable, regno + j))
1706 || TEST_HARD_REG_BIT (used_by_other_reload, regno + j))
1707 ok = 0;
1708 }
1709 if (! ok)
1710 continue;
1711 if (rl->in && GET_CODE (rl->in) == REG && REGNO (rl->in) == regno)
1712 this_cost--;
1713 if (rl->out && GET_CODE (rl->out) == REG && REGNO (rl->out) == regno)
1714 this_cost--;
1715 if (this_cost < best_cost
1716 /* Among registers with equal cost, prefer caller-saved ones, or
1717 use REG_ALLOC_ORDER if it is defined. */
1718 || (this_cost == best_cost
1719#ifdef REG_ALLOC_ORDER
1720 && (inv_reg_alloc_order[regno]
1721 < inv_reg_alloc_order[best_reg])
1722#else
1723 && call_used_regs[regno]
1724 && ! call_used_regs[best_reg]
1725#endif
1726 ))
1727 {
1728 best_reg = regno;
1729 best_cost = this_cost;
1e5bd841
BS
1730 }
1731 }
1732 }
f5d8c9f4
BS
1733 if (best_reg == -1)
1734 return 0;
770ae6cc 1735
e04ca094
JL
1736 if (rtl_dump_file)
1737 fprintf (rtl_dump_file, "Using reg %d for reload %d\n", best_reg, rnum);
770ae6cc 1738
f5d8c9f4
BS
1739 rl->nregs = HARD_REGNO_NREGS (best_reg, rl->mode);
1740 rl->regno = best_reg;
1e5bd841 1741
f5d8c9f4 1742 EXECUTE_IF_SET_IN_REG_SET
239a0f5b 1743 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, j,
f5d8c9f4
BS
1744 {
1745 count_spilled_pseudo (best_reg, rl->nregs, j);
1746 });
770ae6cc 1747
f5d8c9f4 1748 EXECUTE_IF_SET_IN_REG_SET
239a0f5b 1749 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, j,
f5d8c9f4
BS
1750 {
1751 count_spilled_pseudo (best_reg, rl->nregs, j);
1752 });
03acd8f8 1753
f5d8c9f4
BS
1754 for (i = 0; i < rl->nregs; i++)
1755 {
1756 if (spill_cost[best_reg + i] != 0
1757 || spill_add_cost[best_reg + i] != 0)
1758 abort ();
1759 SET_HARD_REG_BIT (used_spill_regs_local, best_reg + i);
1760 }
1761 return 1;
03acd8f8
BS
1762}
1763
1764/* Find more reload regs to satisfy the remaining need of an insn, which
1765 is given by CHAIN.
1e5bd841
BS
1766 Do it by ascending class number, since otherwise a reg
1767 might be spilled for a big class and might fail to count
f5d8c9f4 1768 for a smaller class even though it belongs to that class. */
1e5bd841 1769
03acd8f8 1770static void
e04ca094 1771find_reload_regs (chain)
03acd8f8 1772 struct insn_chain *chain;
1e5bd841 1773{
f5d8c9f4 1774 int i;
1e5bd841 1775
f5d8c9f4
BS
1776 /* In order to be certain of getting the registers we need,
1777 we must sort the reloads into order of increasing register class.
1778 Then our grabbing of reload registers will parallel the process
1779 that provided the reload registers. */
1780 for (i = 0; i < chain->n_reloads; i++)
1e5bd841 1781 {
f5d8c9f4
BS
1782 /* Show whether this reload already has a hard reg. */
1783 if (chain->rld[i].reg_rtx)
1e5bd841 1784 {
f5d8c9f4
BS
1785 int regno = REGNO (chain->rld[i].reg_rtx);
1786 chain->rld[i].regno = regno;
770ae6cc
RK
1787 chain->rld[i].nregs
1788 = HARD_REGNO_NREGS (regno, GET_MODE (chain->rld[i].reg_rtx));
1e5bd841 1789 }
f5d8c9f4
BS
1790 else
1791 chain->rld[i].regno = -1;
1792 reload_order[i] = i;
1793 }
1e5bd841 1794
f5d8c9f4
BS
1795 n_reloads = chain->n_reloads;
1796 memcpy (rld, chain->rld, n_reloads * sizeof (struct reload));
1e5bd841 1797
f5d8c9f4 1798 CLEAR_HARD_REG_SET (used_spill_regs_local);
03acd8f8 1799
e04ca094
JL
1800 if (rtl_dump_file)
1801 fprintf (rtl_dump_file, "Spilling for insn %d.\n", INSN_UID (chain->insn));
1e5bd841 1802
f5d8c9f4 1803 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
1e5bd841 1804
f5d8c9f4 1805 /* Compute the order of preference for hard registers to spill. */
1e5bd841 1806
f5d8c9f4 1807 order_regs_for_reload (chain);
1e5bd841 1808
f5d8c9f4
BS
1809 for (i = 0; i < n_reloads; i++)
1810 {
1811 int r = reload_order[i];
1e5bd841 1812
f5d8c9f4
BS
1813 /* Ignore reloads that got marked inoperative. */
1814 if ((rld[r].out != 0 || rld[r].in != 0 || rld[r].secondary_p)
1815 && ! rld[r].optional
1816 && rld[r].regno == -1)
e04ca094 1817 if (! find_reg (chain, i))
f5d8c9f4 1818 {
ecf3151a 1819 spill_failure (chain->insn, rld[r].class);
f5d8c9f4 1820 failure = 1;
03acd8f8 1821 return;
f5d8c9f4 1822 }
1e5bd841 1823 }
05d10675 1824
f5d8c9f4
BS
1825 COPY_HARD_REG_SET (chain->used_spill_regs, used_spill_regs_local);
1826 IOR_HARD_REG_SET (used_spill_regs, used_spill_regs_local);
03acd8f8 1827
f5d8c9f4 1828 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
1e5bd841
BS
1829}
1830
f5d8c9f4 1831static void
e04ca094 1832select_reload_regs ()
09dd1133 1833{
f5d8c9f4 1834 struct insn_chain *chain;
09dd1133 1835
f5d8c9f4
BS
1836 /* Try to satisfy the needs for each insn. */
1837 for (chain = insns_need_reload; chain != 0;
1838 chain = chain->next_need_reload)
e04ca094 1839 find_reload_regs (chain);
09dd1133 1840}
32131a9c 1841\f
437a710d
BS
1842/* Delete all insns that were inserted by emit_caller_save_insns during
1843 this iteration. */
1844static void
7609e720 1845delete_caller_save_insns ()
437a710d 1846{
7609e720 1847 struct insn_chain *c = reload_insn_chain;
437a710d 1848
7609e720 1849 while (c != 0)
437a710d 1850 {
7609e720 1851 while (c != 0 && c->is_caller_save_insn)
437a710d 1852 {
7609e720
BS
1853 struct insn_chain *next = c->next;
1854 rtx insn = c->insn;
1855
3b413743
RH
1856 if (insn == BLOCK_HEAD (c->block))
1857 BLOCK_HEAD (c->block) = NEXT_INSN (insn);
1858 if (insn == BLOCK_END (c->block))
1859 BLOCK_END (c->block) = PREV_INSN (insn);
7609e720
BS
1860 if (c == reload_insn_chain)
1861 reload_insn_chain = next;
1862
1863 if (NEXT_INSN (insn) != 0)
1864 PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn);
1865 if (PREV_INSN (insn) != 0)
1866 NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn);
1867
1868 if (next)
1869 next->prev = c->prev;
1870 if (c->prev)
1871 c->prev->next = next;
1872 c->next = unused_insn_chains;
1873 unused_insn_chains = c;
1874 c = next;
437a710d 1875 }
7609e720
BS
1876 if (c != 0)
1877 c = c->next;
437a710d
BS
1878 }
1879}
1880\f
5352b11a
RS
1881/* Handle the failure to find a register to spill.
1882 INSN should be one of the insns which needed this particular spill reg. */
1883
1884static void
ecf3151a 1885spill_failure (insn, class)
5352b11a 1886 rtx insn;
ecf3151a 1887 enum reg_class class;
5352b11a 1888{
ecf3151a 1889 static const char *const reg_class_names[] = REG_CLASS_NAMES;
5352b11a 1890 if (asm_noperands (PATTERN (insn)) >= 0)
ecf3151a
BS
1891 error_for_asm (insn, "Can't find a register in class `%s' while reloading `asm'.",
1892 reg_class_names[class]);
5352b11a 1893 else
ecf3151a
BS
1894 {
1895 error ("Unable to find a register to spill in class `%s'.",
1896 reg_class_names[class]);
1897 fatal_insn ("This is the insn:", insn);
1898 }
5352b11a 1899}
32131a9c
RK
1900\f
1901/* Delete an unneeded INSN and any previous insns who sole purpose is loading
1902 data that is dead in INSN. */
1903
1904static void
1905delete_dead_insn (insn)
1906 rtx insn;
1907{
1908 rtx prev = prev_real_insn (insn);
1909 rtx prev_dest;
1910
1911 /* If the previous insn sets a register that dies in our insn, delete it
1912 too. */
1913 if (prev && GET_CODE (PATTERN (prev)) == SET
1914 && (prev_dest = SET_DEST (PATTERN (prev)), GET_CODE (prev_dest) == REG)
1915 && reg_mentioned_p (prev_dest, PATTERN (insn))
b294ca38
R
1916 && find_regno_note (insn, REG_DEAD, REGNO (prev_dest))
1917 && ! side_effects_p (SET_SRC (PATTERN (prev))))
32131a9c
RK
1918 delete_dead_insn (prev);
1919
1920 PUT_CODE (insn, NOTE);
1921 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
1922 NOTE_SOURCE_FILE (insn) = 0;
1923}
1924
1925/* Modify the home of pseudo-reg I.
1926 The new home is present in reg_renumber[I].
1927
1928 FROM_REG may be the hard reg that the pseudo-reg is being spilled from;
1929 or it may be -1, meaning there is none or it is not relevant.
1930 This is used so that all pseudos spilled from a given hard reg
1931 can share one stack slot. */
1932
1933static void
1934alter_reg (i, from_reg)
1935 register int i;
1936 int from_reg;
1937{
1938 /* When outputting an inline function, this can happen
1939 for a reg that isn't actually used. */
1940 if (regno_reg_rtx[i] == 0)
1941 return;
1942
1943 /* If the reg got changed to a MEM at rtl-generation time,
1944 ignore it. */
1945 if (GET_CODE (regno_reg_rtx[i]) != REG)
1946 return;
1947
1948 /* Modify the reg-rtx to contain the new hard reg
1949 number or else to contain its pseudo reg number. */
1950 REGNO (regno_reg_rtx[i])
1951 = reg_renumber[i] >= 0 ? reg_renumber[i] : i;
1952
1953 /* If we have a pseudo that is needed but has no hard reg or equivalent,
1954 allocate a stack slot for it. */
1955
1956 if (reg_renumber[i] < 0
b1f21e0a 1957 && REG_N_REFS (i) > 0
32131a9c
RK
1958 && reg_equiv_constant[i] == 0
1959 && reg_equiv_memory_loc[i] == 0)
1960 {
1961 register rtx x;
770ae6cc
RK
1962 unsigned int inherent_size = PSEUDO_REGNO_BYTES (i);
1963 unsigned int total_size = MAX (inherent_size, reg_max_ref_width[i]);
32131a9c
RK
1964 int adjust = 0;
1965
1966 /* Each pseudo reg has an inherent size which comes from its own mode,
1967 and a total size which provides room for paradoxical subregs
1968 which refer to the pseudo reg in wider modes.
1969
1970 We can use a slot already allocated if it provides both
1971 enough inherent space and enough total space.
1972 Otherwise, we allocate a new slot, making sure that it has no less
1973 inherent space, and no less total space, then the previous slot. */
1974 if (from_reg == -1)
1975 {
1976 /* No known place to spill from => no slot to reuse. */
cabcf079
ILT
1977 x = assign_stack_local (GET_MODE (regno_reg_rtx[i]), total_size,
1978 inherent_size == total_size ? 0 : -1);
f76b9db2 1979 if (BYTES_BIG_ENDIAN)
02db8dd0
RK
1980 /* Cancel the big-endian correction done in assign_stack_local.
1981 Get the address of the beginning of the slot.
1982 This is so we can do a big-endian correction unconditionally
1983 below. */
1984 adjust = inherent_size - total_size;
1985
1986 RTX_UNCHANGING_P (x) = RTX_UNCHANGING_P (regno_reg_rtx[i]);
3bdf5ad1
RK
1987
1988 /* Nothing can alias this slot except this pseudo. */
ba4828e0 1989 set_mem_alias_set (x, new_alias_set ());
32131a9c 1990 }
3bdf5ad1 1991
32131a9c
RK
1992 /* Reuse a stack slot if possible. */
1993 else if (spill_stack_slot[from_reg] != 0
1994 && spill_stack_slot_width[from_reg] >= total_size
1995 && (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
1996 >= inherent_size))
1997 x = spill_stack_slot[from_reg];
3bdf5ad1 1998
32131a9c
RK
1999 /* Allocate a bigger slot. */
2000 else
2001 {
2002 /* Compute maximum size needed, both for inherent size
2003 and for total size. */
2004 enum machine_mode mode = GET_MODE (regno_reg_rtx[i]);
4f2d3674 2005 rtx stack_slot;
3bdf5ad1 2006
32131a9c
RK
2007 if (spill_stack_slot[from_reg])
2008 {
2009 if (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
2010 > inherent_size)
2011 mode = GET_MODE (spill_stack_slot[from_reg]);
2012 if (spill_stack_slot_width[from_reg] > total_size)
2013 total_size = spill_stack_slot_width[from_reg];
2014 }
3bdf5ad1 2015
32131a9c 2016 /* Make a slot with that size. */
cabcf079
ILT
2017 x = assign_stack_local (mode, total_size,
2018 inherent_size == total_size ? 0 : -1);
4f2d3674 2019 stack_slot = x;
3bdf5ad1
RK
2020
2021 /* All pseudos mapped to this slot can alias each other. */
2022 if (spill_stack_slot[from_reg])
ba4828e0 2023 set_mem_alias_set (x, MEM_ALIAS_SET (spill_stack_slot[from_reg]));
3bdf5ad1 2024 else
ba4828e0 2025 set_mem_alias_set (x, new_alias_set ());
3bdf5ad1 2026
f76b9db2
ILT
2027 if (BYTES_BIG_ENDIAN)
2028 {
2029 /* Cancel the big-endian correction done in assign_stack_local.
2030 Get the address of the beginning of the slot.
2031 This is so we can do a big-endian correction unconditionally
2032 below. */
2033 adjust = GET_MODE_SIZE (mode) - total_size;
4f2d3674 2034 if (adjust)
38a448ca
RH
2035 stack_slot = gen_rtx_MEM (mode_for_size (total_size
2036 * BITS_PER_UNIT,
2037 MODE_INT, 1),
05d10675 2038 plus_constant (XEXP (x, 0), adjust));
f76b9db2 2039 }
3bdf5ad1 2040
4f2d3674 2041 spill_stack_slot[from_reg] = stack_slot;
32131a9c
RK
2042 spill_stack_slot_width[from_reg] = total_size;
2043 }
2044
32131a9c
RK
2045 /* On a big endian machine, the "address" of the slot
2046 is the address of the low part that fits its inherent mode. */
f76b9db2 2047 if (BYTES_BIG_ENDIAN && inherent_size < total_size)
32131a9c 2048 adjust += (total_size - inherent_size);
32131a9c
RK
2049
2050 /* If we have any adjustment to make, or if the stack slot is the
2051 wrong mode, make a new stack slot. */
2052 if (adjust != 0 || GET_MODE (x) != GET_MODE (regno_reg_rtx[i]))
f1ec5147 2053 x = adjust_address_nv (x, GET_MODE (regno_reg_rtx[i]), adjust);
32131a9c
RK
2054
2055 /* Save the stack slot for later. */
2056 reg_equiv_memory_loc[i] = x;
2057 }
2058}
2059
2060/* Mark the slots in regs_ever_live for the hard regs
2061 used by pseudo-reg number REGNO. */
2062
2063void
2064mark_home_live (regno)
2065 int regno;
2066{
2067 register int i, lim;
770ae6cc 2068
32131a9c
RK
2069 i = reg_renumber[regno];
2070 if (i < 0)
2071 return;
2072 lim = i + HARD_REGNO_NREGS (i, PSEUDO_REGNO_MODE (regno));
2073 while (i < lim)
2074 regs_ever_live[i++] = 1;
2075}
2076\f
2077/* This function handles the tracking of elimination offsets around branches.
2078
2079 X is a piece of RTL being scanned.
2080
2081 INSN is the insn that it came from, if any.
2082
2083 INITIAL_P is non-zero if we are to set the offset to be the initial
2084 offset and zero if we are setting the offset of the label to be the
2085 current offset. */
2086
2087static void
2088set_label_offsets (x, insn, initial_p)
2089 rtx x;
2090 rtx insn;
2091 int initial_p;
2092{
2093 enum rtx_code code = GET_CODE (x);
2094 rtx tem;
e51712db 2095 unsigned int i;
32131a9c
RK
2096 struct elim_table *p;
2097
2098 switch (code)
2099 {
2100 case LABEL_REF:
8be386d9
RS
2101 if (LABEL_REF_NONLOCAL_P (x))
2102 return;
2103
32131a9c
RK
2104 x = XEXP (x, 0);
2105
0f41302f 2106 /* ... fall through ... */
32131a9c
RK
2107
2108 case CODE_LABEL:
2109 /* If we know nothing about this label, set the desired offsets. Note
2110 that this sets the offset at a label to be the offset before a label
2111 if we don't know anything about the label. This is not correct for
2112 the label after a BARRIER, but is the best guess we can make. If
2113 we guessed wrong, we will suppress an elimination that might have
2114 been possible had we been able to guess correctly. */
2115
2116 if (! offsets_known_at[CODE_LABEL_NUMBER (x)])
2117 {
2118 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2119 offsets_at[CODE_LABEL_NUMBER (x)][i]
2120 = (initial_p ? reg_eliminate[i].initial_offset
2121 : reg_eliminate[i].offset);
2122 offsets_known_at[CODE_LABEL_NUMBER (x)] = 1;
2123 }
2124
2125 /* Otherwise, if this is the definition of a label and it is
d45cf215 2126 preceded by a BARRIER, set our offsets to the known offset of
32131a9c
RK
2127 that label. */
2128
2129 else if (x == insn
2130 && (tem = prev_nonnote_insn (insn)) != 0
2131 && GET_CODE (tem) == BARRIER)
1f3b1e1a 2132 set_offsets_for_label (insn);
32131a9c
RK
2133 else
2134 /* If neither of the above cases is true, compare each offset
2135 with those previously recorded and suppress any eliminations
2136 where the offsets disagree. */
a8fdc208 2137
32131a9c
RK
2138 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2139 if (offsets_at[CODE_LABEL_NUMBER (x)][i]
2140 != (initial_p ? reg_eliminate[i].initial_offset
2141 : reg_eliminate[i].offset))
2142 reg_eliminate[i].can_eliminate = 0;
2143
2144 return;
2145
2146 case JUMP_INSN:
2147 set_label_offsets (PATTERN (insn), insn, initial_p);
2148
0f41302f 2149 /* ... fall through ... */
32131a9c
RK
2150
2151 case INSN:
2152 case CALL_INSN:
2153 /* Any labels mentioned in REG_LABEL notes can be branched to indirectly
2154 and hence must have all eliminations at their initial offsets. */
2155 for (tem = REG_NOTES (x); tem; tem = XEXP (tem, 1))
2156 if (REG_NOTE_KIND (tem) == REG_LABEL)
2157 set_label_offsets (XEXP (tem, 0), insn, 1);
2158 return;
2159
0c0ba09c 2160 case PARALLEL:
32131a9c
RK
2161 case ADDR_VEC:
2162 case ADDR_DIFF_VEC:
0c0ba09c
JJ
2163 /* Each of the labels in the parallel or address vector must be
2164 at their initial offsets. We want the first field for PARALLEL
2165 and ADDR_VEC and the second field for ADDR_DIFF_VEC. */
32131a9c 2166
e51712db 2167 for (i = 0; i < (unsigned) XVECLEN (x, code == ADDR_DIFF_VEC); i++)
32131a9c
RK
2168 set_label_offsets (XVECEXP (x, code == ADDR_DIFF_VEC, i),
2169 insn, initial_p);
2170 return;
2171
2172 case SET:
2173 /* We only care about setting PC. If the source is not RETURN,
2174 IF_THEN_ELSE, or a label, disable any eliminations not at
2175 their initial offsets. Similarly if any arm of the IF_THEN_ELSE
2176 isn't one of those possibilities. For branches to a label,
2177 call ourselves recursively.
2178
2179 Note that this can disable elimination unnecessarily when we have
2180 a non-local goto since it will look like a non-constant jump to
2181 someplace in the current function. This isn't a significant
2182 problem since such jumps will normally be when all elimination
2183 pairs are back to their initial offsets. */
2184
2185 if (SET_DEST (x) != pc_rtx)
2186 return;
2187
2188 switch (GET_CODE (SET_SRC (x)))
2189 {
2190 case PC:
2191 case RETURN:
2192 return;
2193
2194 case LABEL_REF:
2195 set_label_offsets (XEXP (SET_SRC (x), 0), insn, initial_p);
2196 return;
2197
2198 case IF_THEN_ELSE:
2199 tem = XEXP (SET_SRC (x), 1);
2200 if (GET_CODE (tem) == LABEL_REF)
2201 set_label_offsets (XEXP (tem, 0), insn, initial_p);
2202 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2203 break;
2204
2205 tem = XEXP (SET_SRC (x), 2);
2206 if (GET_CODE (tem) == LABEL_REF)
2207 set_label_offsets (XEXP (tem, 0), insn, initial_p);
2208 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2209 break;
2210 return;
e9a25f70
JL
2211
2212 default:
2213 break;
32131a9c
RK
2214 }
2215
2216 /* If we reach here, all eliminations must be at their initial
2217 offset because we are doing a jump to a variable address. */
2218 for (p = reg_eliminate; p < &reg_eliminate[NUM_ELIMINABLE_REGS]; p++)
2219 if (p->offset != p->initial_offset)
2220 p->can_eliminate = 0;
e9a25f70 2221 break;
05d10675 2222
e9a25f70
JL
2223 default:
2224 break;
32131a9c
RK
2225 }
2226}
2227\f
a8fdc208 2228/* Scan X and replace any eliminable registers (such as fp) with a
32131a9c
RK
2229 replacement (such as sp), plus an offset.
2230
2231 MEM_MODE is the mode of an enclosing MEM. We need this to know how
2232 much to adjust a register for, e.g., PRE_DEC. Also, if we are inside a
2233 MEM, we are allowed to replace a sum of a register and the constant zero
2234 with the register, which we cannot do outside a MEM. In addition, we need
2235 to record the fact that a register is referenced outside a MEM.
2236
ff32812a 2237 If INSN is an insn, it is the insn containing X. If we replace a REG
32131a9c
RK
2238 in a SET_DEST with an equivalent MEM and INSN is non-zero, write a
2239 CLOBBER of the pseudo after INSN so find_equiv_regs will know that
38e01259 2240 the REG is being modified.
32131a9c 2241
ff32812a
RS
2242 Alternatively, INSN may be a note (an EXPR_LIST or INSN_LIST).
2243 That's used when we eliminate in expressions stored in notes.
2244 This means, do not set ref_outside_mem even if the reference
2245 is outside of MEMs.
2246
32131a9c
RK
2247 REG_EQUIV_MEM and REG_EQUIV_ADDRESS contain address that have had
2248 replacements done assuming all offsets are at their initial values. If
2249 they are not, or if REG_EQUIV_ADDRESS is nonzero for a pseudo we
2250 encounter, return the actual location so that find_reloads will do
2251 the proper thing. */
2252
2253rtx
1914f5da 2254eliminate_regs (x, mem_mode, insn)
32131a9c
RK
2255 rtx x;
2256 enum machine_mode mem_mode;
2257 rtx insn;
2258{
2259 enum rtx_code code = GET_CODE (x);
2260 struct elim_table *ep;
2261 int regno;
2262 rtx new;
2263 int i, j;
6f7d635c 2264 const char *fmt;
32131a9c
RK
2265 int copied = 0;
2266
d6633f01
NS
2267 if (! current_function_decl)
2268 return x;
9969bb2c 2269
32131a9c
RK
2270 switch (code)
2271 {
2272 case CONST_INT:
2273 case CONST_DOUBLE:
2274 case CONST:
2275 case SYMBOL_REF:
2276 case CODE_LABEL:
2277 case PC:
2278 case CC0:
2279 case ASM_INPUT:
2280 case ADDR_VEC:
2281 case ADDR_DIFF_VEC:
2282 case RETURN:
2283 return x;
2284
e9a25f70
JL
2285 case ADDRESSOF:
2286 /* This is only for the benefit of the debugging backends, which call
2287 eliminate_regs on DECL_RTL; any ADDRESSOFs in the actual insns are
2288 removed after CSE. */
1914f5da 2289 new = eliminate_regs (XEXP (x, 0), 0, insn);
e9a25f70
JL
2290 if (GET_CODE (new) == MEM)
2291 return XEXP (new, 0);
2292 return x;
2293
32131a9c
RK
2294 case REG:
2295 regno = REGNO (x);
2296
2297 /* First handle the case where we encounter a bare register that
2298 is eliminable. Replace it with a PLUS. */
2299 if (regno < FIRST_PSEUDO_REGISTER)
2300 {
2301 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2302 ep++)
2303 if (ep->from_rtx == x && ep->can_eliminate)
dfac187e 2304 return plus_constant (ep->to_rtx, ep->previous_offset);
32131a9c
RK
2305
2306 }
2b49ee39
R
2307 else if (reg_renumber[regno] < 0 && reg_equiv_constant
2308 && reg_equiv_constant[regno]
2309 && ! CONSTANT_P (reg_equiv_constant[regno]))
2310 return eliminate_regs (copy_rtx (reg_equiv_constant[regno]),
2311 mem_mode, insn);
32131a9c
RK
2312 return x;
2313
c5c76735
JL
2314 /* You might think handling MINUS in a manner similar to PLUS is a
2315 good idea. It is not. It has been tried multiple times and every
2316 time the change has had to have been reverted.
2317
2318 Other parts of reload know a PLUS is special (gen_reload for example)
2319 and require special code to handle code a reloaded PLUS operand.
2320
2321 Also consider backends where the flags register is clobbered by a
2322 MINUS, but we can emit a PLUS that does not clobber flags (ia32,
2323 lea instruction comes to mind). If we try to reload a MINUS, we
2324 may kill the flags register that was holding a useful value.
2325
2326 So, please before trying to handle MINUS, consider reload as a
2327 whole instead of this little section as well as the backend issues. */
32131a9c
RK
2328 case PLUS:
2329 /* If this is the sum of an eliminable register and a constant, rework
2330 the sum. */
2331 if (GET_CODE (XEXP (x, 0)) == REG
2332 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2333 && CONSTANT_P (XEXP (x, 1)))
2334 {
2335 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2336 ep++)
2337 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2338 {
32131a9c
RK
2339 /* The only time we want to replace a PLUS with a REG (this
2340 occurs when the constant operand of the PLUS is the negative
2341 of the offset) is when we are inside a MEM. We won't want
2342 to do so at other times because that would change the
2343 structure of the insn in a way that reload can't handle.
2344 We special-case the commonest situation in
2345 eliminate_regs_in_insn, so just replace a PLUS with a
2346 PLUS here, unless inside a MEM. */
a23b64d5 2347 if (mem_mode != 0 && GET_CODE (XEXP (x, 1)) == CONST_INT
32131a9c
RK
2348 && INTVAL (XEXP (x, 1)) == - ep->previous_offset)
2349 return ep->to_rtx;
2350 else
38a448ca
RH
2351 return gen_rtx_PLUS (Pmode, ep->to_rtx,
2352 plus_constant (XEXP (x, 1),
2353 ep->previous_offset));
32131a9c
RK
2354 }
2355
2356 /* If the register is not eliminable, we are done since the other
2357 operand is a constant. */
2358 return x;
2359 }
2360
2361 /* If this is part of an address, we want to bring any constant to the
2362 outermost PLUS. We will do this by doing register replacement in
2363 our operands and seeing if a constant shows up in one of them.
2364
dfac187e
BS
2365 Note that there is no risk of modifying the structure of the insn,
2366 since we only get called for its operands, thus we are either
2367 modifying the address inside a MEM, or something like an address
2368 operand of a load-address insn. */
32131a9c
RK
2369
2370 {
1914f5da
RH
2371 rtx new0 = eliminate_regs (XEXP (x, 0), mem_mode, insn);
2372 rtx new1 = eliminate_regs (XEXP (x, 1), mem_mode, insn);
32131a9c
RK
2373
2374 if (new0 != XEXP (x, 0) || new1 != XEXP (x, 1))
2375 {
2376 /* If one side is a PLUS and the other side is a pseudo that
a8fdc208 2377 didn't get a hard register but has a reg_equiv_constant,
32131a9c
RK
2378 we must replace the constant here since it may no longer
2379 be in the position of any operand. */
2380 if (GET_CODE (new0) == PLUS && GET_CODE (new1) == REG
2381 && REGNO (new1) >= FIRST_PSEUDO_REGISTER
2382 && reg_renumber[REGNO (new1)] < 0
2383 && reg_equiv_constant != 0
2384 && reg_equiv_constant[REGNO (new1)] != 0)
2385 new1 = reg_equiv_constant[REGNO (new1)];
2386 else if (GET_CODE (new1) == PLUS && GET_CODE (new0) == REG
2387 && REGNO (new0) >= FIRST_PSEUDO_REGISTER
2388 && reg_renumber[REGNO (new0)] < 0
2389 && reg_equiv_constant[REGNO (new0)] != 0)
2390 new0 = reg_equiv_constant[REGNO (new0)];
2391
2392 new = form_sum (new0, new1);
2393
2394 /* As above, if we are not inside a MEM we do not want to
2395 turn a PLUS into something else. We might try to do so here
2396 for an addition of 0 if we aren't optimizing. */
2397 if (! mem_mode && GET_CODE (new) != PLUS)
38a448ca 2398 return gen_rtx_PLUS (GET_MODE (x), new, const0_rtx);
32131a9c
RK
2399 else
2400 return new;
2401 }
2402 }
2403 return x;
2404
981c7390 2405 case MULT:
05d10675 2406 /* If this is the product of an eliminable register and a
981c7390
RK
2407 constant, apply the distribute law and move the constant out
2408 so that we have (plus (mult ..) ..). This is needed in order
9faa82d8 2409 to keep load-address insns valid. This case is pathological.
981c7390
RK
2410 We ignore the possibility of overflow here. */
2411 if (GET_CODE (XEXP (x, 0)) == REG
2412 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2413 && GET_CODE (XEXP (x, 1)) == CONST_INT)
2414 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2415 ep++)
2416 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2417 {
2418 if (! mem_mode
2419 /* Refs inside notes don't count for this purpose. */
2420 && ! (insn != 0 && (GET_CODE (insn) == EXPR_LIST
2421 || GET_CODE (insn) == INSN_LIST)))
2422 ep->ref_outside_mem = 1;
2423
2424 return
38a448ca 2425 plus_constant (gen_rtx_MULT (Pmode, ep->to_rtx, XEXP (x, 1)),
981c7390
RK
2426 ep->previous_offset * INTVAL (XEXP (x, 1)));
2427 }
32131a9c 2428
0f41302f 2429 /* ... fall through ... */
32131a9c 2430
32131a9c
RK
2431 case CALL:
2432 case COMPARE:
c5c76735 2433 /* See comments before PLUS about handling MINUS. */
930aeef3 2434 case MINUS:
32131a9c
RK
2435 case DIV: case UDIV:
2436 case MOD: case UMOD:
2437 case AND: case IOR: case XOR:
45620ed4
RK
2438 case ROTATERT: case ROTATE:
2439 case ASHIFTRT: case LSHIFTRT: case ASHIFT:
32131a9c
RK
2440 case NE: case EQ:
2441 case GE: case GT: case GEU: case GTU:
2442 case LE: case LT: case LEU: case LTU:
2443 {
1914f5da 2444 rtx new0 = eliminate_regs (XEXP (x, 0), mem_mode, insn);
fb3821f7 2445 rtx new1
1914f5da 2446 = XEXP (x, 1) ? eliminate_regs (XEXP (x, 1), mem_mode, insn) : 0;
32131a9c
RK
2447
2448 if (new0 != XEXP (x, 0) || new1 != XEXP (x, 1))
38a448ca 2449 return gen_rtx_fmt_ee (code, GET_MODE (x), new0, new1);
32131a9c
RK
2450 }
2451 return x;
2452
981c7390
RK
2453 case EXPR_LIST:
2454 /* If we have something in XEXP (x, 0), the usual case, eliminate it. */
2455 if (XEXP (x, 0))
2456 {
1914f5da 2457 new = eliminate_regs (XEXP (x, 0), mem_mode, insn);
981c7390 2458 if (new != XEXP (x, 0))
13bb79d4
R
2459 {
2460 /* If this is a REG_DEAD note, it is not valid anymore.
2461 Using the eliminated version could result in creating a
2462 REG_DEAD note for the stack or frame pointer. */
2463 if (GET_MODE (x) == REG_DEAD)
2464 return (XEXP (x, 1)
2465 ? eliminate_regs (XEXP (x, 1), mem_mode, insn)
2466 : NULL_RTX);
2467
2468 x = gen_rtx_EXPR_LIST (REG_NOTE_KIND (x), new, XEXP (x, 1));
2469 }
981c7390
RK
2470 }
2471
0f41302f 2472 /* ... fall through ... */
981c7390
RK
2473
2474 case INSN_LIST:
2475 /* Now do eliminations in the rest of the chain. If this was
2476 an EXPR_LIST, this might result in allocating more memory than is
2477 strictly needed, but it simplifies the code. */
2478 if (XEXP (x, 1))
2479 {
1914f5da 2480 new = eliminate_regs (XEXP (x, 1), mem_mode, insn);
981c7390 2481 if (new != XEXP (x, 1))
38a448ca 2482 return gen_rtx_fmt_ee (GET_CODE (x), GET_MODE (x), XEXP (x, 0), new);
981c7390
RK
2483 }
2484 return x;
2485
32131a9c
RK
2486 case PRE_INC:
2487 case POST_INC:
2488 case PRE_DEC:
2489 case POST_DEC:
32131a9c
RK
2490 case STRICT_LOW_PART:
2491 case NEG: case NOT:
2492 case SIGN_EXTEND: case ZERO_EXTEND:
2493 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
2494 case FLOAT: case FIX:
2495 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
2496 case ABS:
2497 case SQRT:
2498 case FFS:
1914f5da 2499 new = eliminate_regs (XEXP (x, 0), mem_mode, insn);
32131a9c 2500 if (new != XEXP (x, 0))
38a448ca 2501 return gen_rtx_fmt_e (code, GET_MODE (x), new);
32131a9c
RK
2502 return x;
2503
2504 case SUBREG:
ddef6bc7 2505 /* Similar to above processing, but preserve SUBREG_BYTE.
32131a9c
RK
2506 Convert (subreg (mem)) to (mem) if not paradoxical.
2507 Also, if we have a non-paradoxical (subreg (pseudo)) and the
2508 pseudo didn't get a hard reg, we must replace this with the
2509 eliminated version of the memory location because push_reloads
2510 may do the replacement in certain circumstances. */
2511 if (GET_CODE (SUBREG_REG (x)) == REG
2512 && (GET_MODE_SIZE (GET_MODE (x))
2513 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
2514 && reg_equiv_memory_loc != 0
2515 && reg_equiv_memory_loc[REGNO (SUBREG_REG (x))] != 0)
2516 {
cb2afeb3 2517 new = SUBREG_REG (x);
32131a9c
RK
2518 }
2519 else
1914f5da 2520 new = eliminate_regs (SUBREG_REG (x), mem_mode, insn);
32131a9c 2521
ddef6bc7 2522 if (new != SUBREG_REG (x))
32131a9c 2523 {
29ae5012
RK
2524 int x_size = GET_MODE_SIZE (GET_MODE (x));
2525 int new_size = GET_MODE_SIZE (GET_MODE (new));
2526
1914f5da 2527 if (GET_CODE (new) == MEM
6d49a073 2528 && ((x_size < new_size
1914f5da 2529#ifdef WORD_REGISTER_OPERATIONS
6d49a073
JW
2530 /* On these machines, combine can create rtl of the form
2531 (set (subreg:m1 (reg:m2 R) 0) ...)
05d10675 2532 where m1 < m2, and expects something interesting to
6d49a073
JW
2533 happen to the entire word. Moreover, it will use the
2534 (reg:m2 R) later, expecting all bits to be preserved.
05d10675 2535 So if the number of words is the same, preserve the
6d49a073 2536 subreg so that push_reloads can see it. */
5d9669fd
RK
2537 && ! ((x_size - 1) / UNITS_PER_WORD
2538 == (new_size -1 ) / UNITS_PER_WORD)
1914f5da 2539#endif
6d49a073 2540 )
5d9669fd 2541 || x_size == new_size)
1914f5da 2542 )
32131a9c 2543 {
ddef6bc7 2544 int offset = SUBREG_BYTE (x);
32131a9c
RK
2545 enum machine_mode mode = GET_MODE (x);
2546
32131a9c
RK
2547 PUT_MODE (new, mode);
2548 XEXP (new, 0) = plus_constant (XEXP (new, 0), offset);
2549 return new;
2550 }
2551 else
ddef6bc7 2552 return gen_rtx_SUBREG (GET_MODE (x), new, SUBREG_BYTE (x));
32131a9c
RK
2553 }
2554
2555 return x;
2556
32131a9c 2557 case MEM:
e9a25f70
JL
2558 /* This is only for the benefit of the debugging backends, which call
2559 eliminate_regs on DECL_RTL; any ADDRESSOFs in the actual insns are
2560 removed after CSE. */
2561 if (GET_CODE (XEXP (x, 0)) == ADDRESSOF)
1914f5da 2562 return eliminate_regs (XEXP (XEXP (x, 0), 0), 0, insn);
e9a25f70 2563
32131a9c
RK
2564 /* Our only special processing is to pass the mode of the MEM to our
2565 recursive call and copy the flags. While we are here, handle this
2566 case more efficiently. */
f1ec5147
RK
2567 return
2568 replace_equiv_address_nv (x,
2569 eliminate_regs (XEXP (x, 0),
2570 GET_MODE (x), insn));
05d10675 2571
dfac187e 2572 case USE:
055c7759
JDA
2573 /* Handle insn_list USE that a call to a pure function may generate. */
2574 new = eliminate_regs (XEXP (x, 0), 0, insn);
2575 if (new != XEXP (x, 0))
2576 return gen_rtx_USE (GET_MODE (x), new);
2577 return x;
2578
dfac187e
BS
2579 case CLOBBER:
2580 case ASM_OPERANDS:
2581 case SET:
2582 abort ();
2583
e9a25f70
JL
2584 default:
2585 break;
32131a9c
RK
2586 }
2587
2588 /* Process each of our operands recursively. If any have changed, make a
2589 copy of the rtx. */
2590 fmt = GET_RTX_FORMAT (code);
2591 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2592 {
2593 if (*fmt == 'e')
2594 {
1914f5da 2595 new = eliminate_regs (XEXP (x, i), mem_mode, insn);
32131a9c
RK
2596 if (new != XEXP (x, i) && ! copied)
2597 {
2598 rtx new_x = rtx_alloc (code);
4e135bdd
KG
2599 memcpy (new_x, x,
2600 (sizeof (*new_x) - sizeof (new_x->fld)
2601 + sizeof (new_x->fld[0]) * GET_RTX_LENGTH (code)));
32131a9c
RK
2602 x = new_x;
2603 copied = 1;
2604 }
2605 XEXP (x, i) = new;
2606 }
2607 else if (*fmt == 'E')
2608 {
2609 int copied_vec = 0;
2610 for (j = 0; j < XVECLEN (x, i); j++)
2611 {
1914f5da 2612 new = eliminate_regs (XVECEXP (x, i, j), mem_mode, insn);
32131a9c
RK
2613 if (new != XVECEXP (x, i, j) && ! copied_vec)
2614 {
8f985ec4
ZW
2615 rtvec new_v = gen_rtvec_v (XVECLEN (x, i),
2616 XVEC (x, i)->elem);
32131a9c
RK
2617 if (! copied)
2618 {
2619 rtx new_x = rtx_alloc (code);
4e135bdd
KG
2620 memcpy (new_x, x,
2621 (sizeof (*new_x) - sizeof (new_x->fld)
2622 + (sizeof (new_x->fld[0])
2623 * GET_RTX_LENGTH (code))));
32131a9c
RK
2624 x = new_x;
2625 copied = 1;
2626 }
2627 XVEC (x, i) = new_v;
2628 copied_vec = 1;
2629 }
2630 XVECEXP (x, i, j) = new;
2631 }
2632 }
2633 }
2634
2635 return x;
2636}
dfac187e
BS
2637
2638/* Scan rtx X for modifications of elimination target registers. Update
2639 the table of eliminables to reflect the changed state. MEM_MODE is
2640 the mode of an enclosing MEM rtx, or VOIDmode if not within a MEM. */
2641
2642static void
2643elimination_effects (x, mem_mode)
2644 rtx x;
2645 enum machine_mode mem_mode;
2646
2647{
2648 enum rtx_code code = GET_CODE (x);
2649 struct elim_table *ep;
2650 int regno;
2651 int i, j;
2652 const char *fmt;
2653
2654 switch (code)
2655 {
2656 case CONST_INT:
2657 case CONST_DOUBLE:
2658 case CONST:
2659 case SYMBOL_REF:
2660 case CODE_LABEL:
2661 case PC:
2662 case CC0:
2663 case ASM_INPUT:
2664 case ADDR_VEC:
2665 case ADDR_DIFF_VEC:
2666 case RETURN:
2667 return;
2668
2669 case ADDRESSOF:
2670 abort ();
2671
2672 case REG:
2673 regno = REGNO (x);
2674
2675 /* First handle the case where we encounter a bare register that
2676 is eliminable. Replace it with a PLUS. */
2677 if (regno < FIRST_PSEUDO_REGISTER)
2678 {
2679 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2680 ep++)
2681 if (ep->from_rtx == x && ep->can_eliminate)
2682 {
2683 if (! mem_mode)
2684 ep->ref_outside_mem = 1;
2685 return;
2686 }
2687
2688 }
2689 else if (reg_renumber[regno] < 0 && reg_equiv_constant
2690 && reg_equiv_constant[regno]
2691 && ! CONSTANT_P (reg_equiv_constant[regno]))
2692 elimination_effects (reg_equiv_constant[regno], mem_mode);
2693 return;
2694
2695 case PRE_INC:
2696 case POST_INC:
2697 case PRE_DEC:
2698 case POST_DEC:
4b983fdc
RH
2699 case POST_MODIFY:
2700 case PRE_MODIFY:
dfac187e
BS
2701 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2702 if (ep->to_rtx == XEXP (x, 0))
2703 {
2704 int size = GET_MODE_SIZE (mem_mode);
2705
2706 /* If more bytes than MEM_MODE are pushed, account for them. */
2707#ifdef PUSH_ROUNDING
2708 if (ep->to_rtx == stack_pointer_rtx)
2709 size = PUSH_ROUNDING (size);
2710#endif
2711 if (code == PRE_DEC || code == POST_DEC)
2712 ep->offset += size;
4b983fdc 2713 else if (code == PRE_INC || code == POST_INC)
dfac187e 2714 ep->offset -= size;
4b983fdc
RH
2715 else if ((code == PRE_MODIFY || code == POST_MODIFY)
2716 && GET_CODE (XEXP (x, 1)) == PLUS
2717 && XEXP (x, 0) == XEXP (XEXP (x, 1), 0)
2718 && CONSTANT_P (XEXP (XEXP (x, 1), 1)))
2719 ep->offset -= INTVAL (XEXP (XEXP (x, 1), 1));
dfac187e
BS
2720 }
2721
4b983fdc
RH
2722 /* These two aren't unary operators. */
2723 if (code == POST_MODIFY || code == PRE_MODIFY)
2724 break;
2725
dfac187e
BS
2726 /* Fall through to generic unary operation case. */
2727 case STRICT_LOW_PART:
2728 case NEG: case NOT:
2729 case SIGN_EXTEND: case ZERO_EXTEND:
2730 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
2731 case FLOAT: case FIX:
2732 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
2733 case ABS:
2734 case SQRT:
2735 case FFS:
2736 elimination_effects (XEXP (x, 0), mem_mode);
2737 return;
2738
2739 case SUBREG:
2740 if (GET_CODE (SUBREG_REG (x)) == REG
2741 && (GET_MODE_SIZE (GET_MODE (x))
2742 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
2743 && reg_equiv_memory_loc != 0
2744 && reg_equiv_memory_loc[REGNO (SUBREG_REG (x))] != 0)
2745 return;
2746
2747 elimination_effects (SUBREG_REG (x), mem_mode);
2748 return;
2749
2750 case USE:
2751 /* If using a register that is the source of an eliminate we still
2752 think can be performed, note it cannot be performed since we don't
2753 know how this register is used. */
2754 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2755 if (ep->from_rtx == XEXP (x, 0))
2756 ep->can_eliminate = 0;
2757
2758 elimination_effects (XEXP (x, 0), mem_mode);
2759 return;
2760
2761 case CLOBBER:
2762 /* If clobbering a register that is the replacement register for an
2763 elimination we still think can be performed, note that it cannot
2764 be performed. Otherwise, we need not be concerned about it. */
2765 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2766 if (ep->to_rtx == XEXP (x, 0))
2767 ep->can_eliminate = 0;
2768
2769 elimination_effects (XEXP (x, 0), mem_mode);
2770 return;
2771
2772 case SET:
2773 /* Check for setting a register that we know about. */
2774 if (GET_CODE (SET_DEST (x)) == REG)
2775 {
2776 /* See if this is setting the replacement register for an
2777 elimination.
2778
2779 If DEST is the hard frame pointer, we do nothing because we
2780 assume that all assignments to the frame pointer are for
2781 non-local gotos and are being done at a time when they are valid
2782 and do not disturb anything else. Some machines want to
2783 eliminate a fake argument pointer (or even a fake frame pointer)
2784 with either the real frame or the stack pointer. Assignments to
2785 the hard frame pointer must not prevent this elimination. */
2786
2787 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2788 ep++)
2789 if (ep->to_rtx == SET_DEST (x)
2790 && SET_DEST (x) != hard_frame_pointer_rtx)
2791 {
2792 /* If it is being incremented, adjust the offset. Otherwise,
2793 this elimination can't be done. */
2794 rtx src = SET_SRC (x);
2795
2796 if (GET_CODE (src) == PLUS
2797 && XEXP (src, 0) == SET_DEST (x)
2798 && GET_CODE (XEXP (src, 1)) == CONST_INT)
2799 ep->offset -= INTVAL (XEXP (src, 1));
2800 else
2801 ep->can_eliminate = 0;
2802 }
2803 }
2804
2805 elimination_effects (SET_DEST (x), 0);
2806 elimination_effects (SET_SRC (x), 0);
2807 return;
2808
2809 case MEM:
2810 if (GET_CODE (XEXP (x, 0)) == ADDRESSOF)
2811 abort ();
2812
2813 /* Our only special processing is to pass the mode of the MEM to our
2814 recursive call. */
2815 elimination_effects (XEXP (x, 0), GET_MODE (x));
2816 return;
2817
2818 default:
2819 break;
2820 }
2821
2822 fmt = GET_RTX_FORMAT (code);
2823 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2824 {
2825 if (*fmt == 'e')
2826 elimination_effects (XEXP (x, i), mem_mode);
2827 else if (*fmt == 'E')
2828 for (j = 0; j < XVECLEN (x, i); j++)
2829 elimination_effects (XVECEXP (x, i, j), mem_mode);
2830 }
2831}
2832
2833/* Descend through rtx X and verify that no references to eliminable registers
2834 remain. If any do remain, mark the involved register as not
2835 eliminable. */
1d813780 2836
dfac187e
BS
2837static void
2838check_eliminable_occurrences (x)
2839 rtx x;
2840{
2841 const char *fmt;
2842 int i;
2843 enum rtx_code code;
2844
2845 if (x == 0)
2846 return;
1d7254c5 2847
dfac187e
BS
2848 code = GET_CODE (x);
2849
2850 if (code == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
2851 {
2852 struct elim_table *ep;
2853
2854 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2855 if (ep->from_rtx == x && ep->can_eliminate)
2856 ep->can_eliminate = 0;
2857 return;
2858 }
1d7254c5 2859
dfac187e
BS
2860 fmt = GET_RTX_FORMAT (code);
2861 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2862 {
2863 if (*fmt == 'e')
2864 check_eliminable_occurrences (XEXP (x, i));
2865 else if (*fmt == 'E')
2866 {
2867 int j;
2868 for (j = 0; j < XVECLEN (x, i); j++)
2869 check_eliminable_occurrences (XVECEXP (x, i, j));
2870 }
2871 }
2872}
32131a9c
RK
2873\f
2874/* Scan INSN and eliminate all eliminable registers in it.
2875
2876 If REPLACE is nonzero, do the replacement destructively. Also
2877 delete the insn as dead it if it is setting an eliminable register.
2878
2879 If REPLACE is zero, do all our allocations in reload_obstack.
2880
2881 If no eliminations were done and this insn doesn't require any elimination
2882 processing (these are not identical conditions: it might be updating sp,
2883 but not referencing fp; this needs to be seen during reload_as_needed so
2884 that the offset between fp and sp can be taken into consideration), zero
2885 is returned. Otherwise, 1 is returned. */
2886
2887static int
2888eliminate_regs_in_insn (insn, replace)
2889 rtx insn;
2890 int replace;
2891{
dfac187e 2892 int icode = recog_memoized (insn);
32131a9c 2893 rtx old_body = PATTERN (insn);
dfac187e 2894 int insn_is_asm = asm_noperands (old_body) >= 0;
774672d2 2895 rtx old_set = single_set (insn);
32131a9c
RK
2896 rtx new_body;
2897 int val = 0;
dfac187e
BS
2898 int i, any_changes;
2899 rtx substed_operand[MAX_RECOG_OPERANDS];
2900 rtx orig_operand[MAX_RECOG_OPERANDS];
32131a9c
RK
2901 struct elim_table *ep;
2902
dfac187e
BS
2903 if (! insn_is_asm && icode < 0)
2904 {
2905 if (GET_CODE (PATTERN (insn)) == USE
2906 || GET_CODE (PATTERN (insn)) == CLOBBER
2907 || GET_CODE (PATTERN (insn)) == ADDR_VEC
2908 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
2909 || GET_CODE (PATTERN (insn)) == ASM_INPUT)
2910 return 0;
2911 abort ();
2912 }
2913
774672d2
RK
2914 if (old_set != 0 && GET_CODE (SET_DEST (old_set)) == REG
2915 && REGNO (SET_DEST (old_set)) < FIRST_PSEUDO_REGISTER)
32131a9c
RK
2916 {
2917 /* Check for setting an eliminable register. */
2918 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
774672d2 2919 if (ep->from_rtx == SET_DEST (old_set) && ep->can_eliminate)
32131a9c 2920 {
dd1eab0a
RK
2921#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2922 /* If this is setting the frame pointer register to the
2923 hardware frame pointer register and this is an elimination
2924 that will be done (tested above), this insn is really
2925 adjusting the frame pointer downward to compensate for
2926 the adjustment done before a nonlocal goto. */
2927 if (ep->from == FRAME_POINTER_REGNUM
2928 && ep->to == HARD_FRAME_POINTER_REGNUM)
2929 {
2930 rtx src = SET_SRC (old_set);
973838fd 2931 int offset = 0, ok = 0;
8026ebba 2932 rtx prev_insn, prev_set;
dd1eab0a
RK
2933
2934 if (src == ep->to_rtx)
2935 offset = 0, ok = 1;
2936 else if (GET_CODE (src) == PLUS
bb22893c
JW
2937 && GET_CODE (XEXP (src, 0)) == CONST_INT
2938 && XEXP (src, 1) == ep->to_rtx)
dd1eab0a 2939 offset = INTVAL (XEXP (src, 0)), ok = 1;
bb22893c
JW
2940 else if (GET_CODE (src) == PLUS
2941 && GET_CODE (XEXP (src, 1)) == CONST_INT
2942 && XEXP (src, 0) == ep->to_rtx)
2943 offset = INTVAL (XEXP (src, 1)), ok = 1;
8026ebba
ILT
2944 else if ((prev_insn = prev_nonnote_insn (insn)) != 0
2945 && (prev_set = single_set (prev_insn)) != 0
2946 && rtx_equal_p (SET_DEST (prev_set), src))
2947 {
2948 src = SET_SRC (prev_set);
2949 if (src == ep->to_rtx)
2950 offset = 0, ok = 1;
2951 else if (GET_CODE (src) == PLUS
2952 && GET_CODE (XEXP (src, 0)) == CONST_INT
2953 && XEXP (src, 1) == ep->to_rtx)
2954 offset = INTVAL (XEXP (src, 0)), ok = 1;
2955 else if (GET_CODE (src) == PLUS
2956 && GET_CODE (XEXP (src, 1)) == CONST_INT
2957 && XEXP (src, 0) == ep->to_rtx)
2958 offset = INTVAL (XEXP (src, 1)), ok = 1;
2959 }
dd1eab0a
RK
2960
2961 if (ok)
2962 {
c77fbfbe
GK
2963 rtx src
2964 = plus_constant (ep->to_rtx, offset - ep->offset);
2965
2966 new_body = old_body;
2967 if (! replace)
2968 {
2969 new_body = copy_insn (old_body);
2970 if (REG_NOTES (insn))
2971 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
2972 }
2973 PATTERN (insn) = new_body;
2974 old_set = single_set (insn);
2975
2976 /* First see if this insn remains valid when we
2977 make the change. If not, keep the INSN_CODE
2978 the same and let reload fit it up. */
2979 validate_change (insn, &SET_SRC (old_set), src, 1);
2980 validate_change (insn, &SET_DEST (old_set),
2981 ep->to_rtx, 1);
2982 if (! apply_change_group ())
dd1eab0a 2983 {
c77fbfbe
GK
2984 SET_SRC (old_set) = src;
2985 SET_DEST (old_set) = ep->to_rtx;
dd1eab0a
RK
2986 }
2987
2988 val = 1;
2989 goto done;
2990 }
2991 }
2992#endif
2993
32131a9c
RK
2994 /* In this case this insn isn't serving a useful purpose. We
2995 will delete it in reload_as_needed once we know that this
2996 elimination is, in fact, being done.
2997
abc95ed3 2998 If REPLACE isn't set, we can't delete this insn, but needn't
32131a9c
RK
2999 process it since it won't be used unless something changes. */
3000 if (replace)
8a34409d 3001 {
1d7254c5 3002 delete_dead_insn (insn);
8a34409d
RH
3003 return 1;
3004 }
32131a9c
RK
3005 val = 1;
3006 goto done;
3007 }
aa5524a9 3008 }
32131a9c 3009
aa5524a9
BS
3010 /* We allow one special case which happens to work on all machines we
3011 currently support: a single set with the source being a PLUS of an
3012 eliminable register and a constant. */
3013 if (old_set
1abdf5e7 3014 && GET_CODE (SET_DEST (old_set)) == REG
aa5524a9
BS
3015 && GET_CODE (SET_SRC (old_set)) == PLUS
3016 && GET_CODE (XEXP (SET_SRC (old_set), 0)) == REG
3017 && GET_CODE (XEXP (SET_SRC (old_set), 1)) == CONST_INT
3018 && REGNO (XEXP (SET_SRC (old_set), 0)) < FIRST_PSEUDO_REGISTER)
3019 {
3020 rtx reg = XEXP (SET_SRC (old_set), 0);
3021 int offset = INTVAL (XEXP (SET_SRC (old_set), 1));
32131a9c 3022
aa5524a9
BS
3023 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3024 if (ep->from_rtx == reg && ep->can_eliminate)
3025 {
3026 offset += ep->offset;
32131a9c 3027
aa5524a9
BS
3028 if (offset == 0)
3029 {
f34c06e5
R
3030 int num_clobbers;
3031 /* We assume here that if we need a PARALLEL with
3032 CLOBBERs for this assignment, we can do with the
3033 MATCH_SCRATCHes that add_clobbers allocates.
3034 There's not much we can do if that doesn't work. */
aa5524a9
BS
3035 PATTERN (insn) = gen_rtx_SET (VOIDmode,
3036 SET_DEST (old_set),
3037 ep->to_rtx);
f34c06e5
R
3038 num_clobbers = 0;
3039 INSN_CODE (insn) = recog (PATTERN (insn), insn, &num_clobbers);
3040 if (num_clobbers)
3041 {
3042 rtvec vec = rtvec_alloc (num_clobbers + 1);
3043
3044 vec->elem[0] = PATTERN (insn);
3045 PATTERN (insn) = gen_rtx_PARALLEL (VOIDmode, vec);
3046 add_clobbers (PATTERN (insn), INSN_CODE (insn));
3047 }
aa5524a9
BS
3048 if (INSN_CODE (insn) < 0)
3049 abort ();
3050 }
3051 else
3052 {
3053 new_body = old_body;
3054 if (! replace)
3055 {
3056 new_body = copy_insn (old_body);
3057 if (REG_NOTES (insn))
3058 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3059 }
3060 PATTERN (insn) = new_body;
3061 old_set = single_set (insn);
922d9d40 3062
aa5524a9
BS
3063 XEXP (SET_SRC (old_set), 0) = ep->to_rtx;
3064 XEXP (SET_SRC (old_set), 1) = GEN_INT (offset);
3065 }
3066 val = 1;
3067 /* This can't have an effect on elimination offsets, so skip right
3068 to the end. */
3069 goto done;
3070 }
32131a9c
RK
3071 }
3072
dfac187e
BS
3073 /* Determine the effects of this insn on elimination offsets. */
3074 elimination_effects (old_body, 0);
3075
3076 /* Eliminate all eliminable registers occurring in operands that
3077 can be handled by reload. */
3078 extract_insn (insn);
3079 any_changes = 0;
3080 for (i = 0; i < recog_data.n_operands; i++)
3081 {
3082 orig_operand[i] = recog_data.operand[i];
3083 substed_operand[i] = recog_data.operand[i];
3084
3085 /* For an asm statement, every operand is eliminable. */
3086 if (insn_is_asm || insn_data[icode].operand[i].eliminable)
3087 {
3088 /* Check for setting a register that we know about. */
3089 if (recog_data.operand_type[i] != OP_IN
3090 && GET_CODE (orig_operand[i]) == REG)
3091 {
3092 /* If we are assigning to a register that can be eliminated, it
3093 must be as part of a PARALLEL, since the code above handles
3094 single SETs. We must indicate that we can no longer
3095 eliminate this reg. */
3096 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3097 ep++)
3098 if (ep->from_rtx == orig_operand[i] && ep->can_eliminate)
3099 ep->can_eliminate = 0;
3100 }
3101
3102 substed_operand[i] = eliminate_regs (recog_data.operand[i], 0,
3103 replace ? insn : NULL_RTX);
3104 if (substed_operand[i] != orig_operand[i])
3105 val = any_changes = 1;
3106 /* Terminate the search in check_eliminable_occurrences at
3107 this point. */
3108 *recog_data.operand_loc[i] = 0;
3109
3110 /* If an output operand changed from a REG to a MEM and INSN is an
3111 insn, write a CLOBBER insn. */
3112 if (recog_data.operand_type[i] != OP_IN
3113 && GET_CODE (orig_operand[i]) == REG
3114 && GET_CODE (substed_operand[i]) == MEM
3115 && replace)
3116 emit_insn_after (gen_rtx_CLOBBER (VOIDmode, orig_operand[i]),
3117 insn);
3118 }
3119 }
3120
3121 for (i = 0; i < recog_data.n_dups; i++)
3122 *recog_data.dup_loc[i]
1d7254c5 3123 = *recog_data.operand_loc[(int) recog_data.dup_num[i]];
dfac187e
BS
3124
3125 /* If any eliminable remain, they aren't eliminable anymore. */
3126 check_eliminable_occurrences (old_body);
32131a9c 3127
dfac187e
BS
3128 /* Substitute the operands; the new values are in the substed_operand
3129 array. */
3130 for (i = 0; i < recog_data.n_operands; i++)
3131 *recog_data.operand_loc[i] = substed_operand[i];
3132 for (i = 0; i < recog_data.n_dups; i++)
1d7254c5 3133 *recog_data.dup_loc[i] = substed_operand[(int) recog_data.dup_num[i]];
32131a9c 3134
dfac187e 3135 /* If we are replacing a body that was a (set X (plus Y Z)), try to
32131a9c
RK
3136 re-recognize the insn. We do this in case we had a simple addition
3137 but now can do this as a load-address. This saves an insn in this
dfac187e
BS
3138 common case.
3139 If re-recognition fails, the old insn code number will still be used,
3140 and some register operands may have changed into PLUS expressions.
3141 These will be handled by find_reloads by loading them into a register
1d7254c5 3142 again. */
32131a9c 3143
dfac187e 3144 if (val)
32131a9c 3145 {
7c791b13
RK
3146 /* If we aren't replacing things permanently and we changed something,
3147 make another copy to ensure that all the RTL is new. Otherwise
3148 things can go wrong if find_reload swaps commutative operands
0f41302f 3149 and one is inside RTL that has been copied while the other is not. */
dfac187e
BS
3150 new_body = old_body;
3151 if (! replace)
1b3b5765
BS
3152 {
3153 new_body = copy_insn (old_body);
3154 if (REG_NOTES (insn))
3155 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3156 }
dfac187e 3157 PATTERN (insn) = new_body;
7c791b13 3158
774672d2
RK
3159 /* If we had a move insn but now we don't, rerecognize it. This will
3160 cause spurious re-recognition if the old move had a PARALLEL since
3161 the new one still will, but we can't call single_set without
3162 having put NEW_BODY into the insn and the re-recognition won't
3163 hurt in this rare case. */
dfac187e
BS
3164 /* ??? Why this huge if statement - why don't we just rerecognize the
3165 thing always? */
3166 if (! insn_is_asm
3167 && old_set != 0
774672d2
RK
3168 && ((GET_CODE (SET_SRC (old_set)) == REG
3169 && (GET_CODE (new_body) != SET
3170 || GET_CODE (SET_SRC (new_body)) != REG))
3171 /* If this was a load from or store to memory, compare
1ccbefce
RH
3172 the MEM in recog_data.operand to the one in the insn.
3173 If they are not equal, then rerecognize the insn. */
774672d2
RK
3174 || (old_set != 0
3175 && ((GET_CODE (SET_SRC (old_set)) == MEM
1ccbefce 3176 && SET_SRC (old_set) != recog_data.operand[1])
774672d2 3177 || (GET_CODE (SET_DEST (old_set)) == MEM
1ccbefce 3178 && SET_DEST (old_set) != recog_data.operand[0])))
774672d2
RK
3179 /* If this was an add insn before, rerecognize. */
3180 || GET_CODE (SET_SRC (old_set)) == PLUS))
4a5d0fb5 3181 {
dfac187e
BS
3182 int new_icode = recog (PATTERN (insn), insn, 0);
3183 if (new_icode < 0)
3184 INSN_CODE (insn) = icode;
4a5d0fb5 3185 }
dfac187e 3186 }
32131a9c 3187
dfac187e
BS
3188 /* Restore the old body. If there were any changes to it, we made a copy
3189 of it while the changes were still in place, so we'll correctly return
3190 a modified insn below. */
3191 if (! replace)
3192 {
3193 /* Restore the old body. */
3194 for (i = 0; i < recog_data.n_operands; i++)
3195 *recog_data.operand_loc[i] = orig_operand[i];
3196 for (i = 0; i < recog_data.n_dups; i++)
1d7254c5 3197 *recog_data.dup_loc[i] = orig_operand[(int) recog_data.dup_num[i]];
32131a9c 3198 }
a8fdc208 3199
dfac187e
BS
3200 /* Update all elimination pairs to reflect the status after the current
3201 insn. The changes we make were determined by the earlier call to
3202 elimination_effects.
a8efe40d 3203
32131a9c
RK
3204 We also detect a cases where register elimination cannot be done,
3205 namely, if a register would be both changed and referenced outside a MEM
3206 in the resulting insn since such an insn is often undefined and, even if
3207 not, we cannot know what meaning will be given to it. Note that it is
3208 valid to have a register used in an address in an insn that changes it
3209 (presumably with a pre- or post-increment or decrement).
3210
3211 If anything changes, return nonzero. */
3212
32131a9c
RK
3213 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3214 {
3215 if (ep->previous_offset != ep->offset && ep->ref_outside_mem)
3216 ep->can_eliminate = 0;
3217
3218 ep->ref_outside_mem = 0;
3219
3220 if (ep->previous_offset != ep->offset)
3221 val = 1;
32131a9c
RK
3222 }
3223
3224 done:
9faa82d8 3225 /* If we changed something, perform elimination in REG_NOTES. This is
05b4c365
RK
3226 needed even when REPLACE is zero because a REG_DEAD note might refer
3227 to a register that we eliminate and could cause a different number
3228 of spill registers to be needed in the final reload pass than in
3229 the pre-passes. */
20748cab 3230 if (val && REG_NOTES (insn) != 0)
1914f5da 3231 REG_NOTES (insn) = eliminate_regs (REG_NOTES (insn), 0, REG_NOTES (insn));
05b4c365 3232
32131a9c
RK
3233 return val;
3234}
3235
cb2afeb3
R
3236/* Loop through all elimination pairs.
3237 Recalculate the number not at initial offset.
3238
3239 Compute the maximum offset (minimum offset if the stack does not
3240 grow downward) for each elimination pair. */
3241
3242static void
3243update_eliminable_offsets ()
3244{
3245 struct elim_table *ep;
3246
3247 num_not_at_initial_offset = 0;
3248 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3249 {
3250 ep->previous_offset = ep->offset;
3251 if (ep->can_eliminate && ep->offset != ep->initial_offset)
3252 num_not_at_initial_offset++;
cb2afeb3
R
3253 }
3254}
3255
32131a9c
RK
3256/* Given X, a SET or CLOBBER of DEST, if DEST is the target of a register
3257 replacement we currently believe is valid, mark it as not eliminable if X
3258 modifies DEST in any way other than by adding a constant integer to it.
3259
3260 If DEST is the frame pointer, we do nothing because we assume that
3ec2ea3e
DE
3261 all assignments to the hard frame pointer are nonlocal gotos and are being
3262 done at a time when they are valid and do not disturb anything else.
32131a9c 3263 Some machines want to eliminate a fake argument pointer with either the
3ec2ea3e
DE
3264 frame or stack pointer. Assignments to the hard frame pointer must not
3265 prevent this elimination.
32131a9c
RK
3266
3267 Called via note_stores from reload before starting its passes to scan
3268 the insns of the function. */
3269
3270static void
84832317 3271mark_not_eliminable (dest, x, data)
32131a9c
RK
3272 rtx dest;
3273 rtx x;
84832317 3274 void *data ATTRIBUTE_UNUSED;
32131a9c 3275{
e51712db 3276 register unsigned int i;
32131a9c
RK
3277
3278 /* A SUBREG of a hard register here is just changing its mode. We should
3279 not see a SUBREG of an eliminable hard register, but check just in
3280 case. */
3281 if (GET_CODE (dest) == SUBREG)
3282 dest = SUBREG_REG (dest);
3283
3ec2ea3e 3284 if (dest == hard_frame_pointer_rtx)
32131a9c
RK
3285 return;
3286
3287 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
3288 if (reg_eliminate[i].can_eliminate && dest == reg_eliminate[i].to_rtx
3289 && (GET_CODE (x) != SET
3290 || GET_CODE (SET_SRC (x)) != PLUS
3291 || XEXP (SET_SRC (x), 0) != dest
3292 || GET_CODE (XEXP (SET_SRC (x), 1)) != CONST_INT))
3293 {
3294 reg_eliminate[i].can_eliminate_previous
3295 = reg_eliminate[i].can_eliminate = 0;
3296 num_eliminable--;
3297 }
3298}
09dd1133 3299
c47f5ea5
BS
3300/* Verify that the initial elimination offsets did not change since the
3301 last call to set_initial_elim_offsets. This is used to catch cases
3302 where something illegal happened during reload_as_needed that could
3303 cause incorrect code to be generated if we did not check for it. */
c8d8ed65 3304
c47f5ea5
BS
3305static void
3306verify_initial_elim_offsets ()
3307{
3308 int t;
3309
3310#ifdef ELIMINABLE_REGS
3311 struct elim_table *ep;
3312
3313 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3314 {
3315 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, t);
3316 if (t != ep->initial_offset)
3317 abort ();
3318 }
3319#else
3320 INITIAL_FRAME_POINTER_OFFSET (t);
3321 if (t != reg_eliminate[0].initial_offset)
3322 abort ();
05d10675 3323#endif
c47f5ea5
BS
3324}
3325
09dd1133 3326/* Reset all offsets on eliminable registers to their initial values. */
1d813780 3327
09dd1133
BS
3328static void
3329set_initial_elim_offsets ()
3330{
1f3b1e1a 3331 struct elim_table *ep = reg_eliminate;
09dd1133
BS
3332
3333#ifdef ELIMINABLE_REGS
1f3b1e1a 3334 for (; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
09dd1133
BS
3335 {
3336 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, ep->initial_offset);
1f3b1e1a 3337 ep->previous_offset = ep->offset = ep->initial_offset;
09dd1133
BS
3338 }
3339#else
1f3b1e1a
JL
3340 INITIAL_FRAME_POINTER_OFFSET (ep->initial_offset);
3341 ep->previous_offset = ep->offset = ep->initial_offset;
09dd1133
BS
3342#endif
3343
3344 num_not_at_initial_offset = 0;
1f3b1e1a 3345}
09dd1133 3346
1f3b1e1a
JL
3347/* Initialize the known label offsets.
3348 Set a known offset for each forced label to be at the initial offset
3349 of each elimination. We do this because we assume that all
3350 computed jumps occur from a location where each elimination is
3351 at its initial offset.
3352 For all other labels, show that we don't know the offsets. */
09dd1133 3353
1f3b1e1a
JL
3354static void
3355set_initial_label_offsets ()
3356{
3357 rtx x;
961192e1 3358 memset ((char *) &offsets_known_at[get_first_label_num ()], 0, num_labels);
09dd1133
BS
3359
3360 for (x = forced_labels; x; x = XEXP (x, 1))
3361 if (XEXP (x, 0))
3362 set_label_offsets (XEXP (x, 0), NULL_RTX, 1);
3363}
3364
1f3b1e1a
JL
3365/* Set all elimination offsets to the known values for the code label given
3366 by INSN. */
1d813780 3367
1f3b1e1a
JL
3368static void
3369set_offsets_for_label (insn)
3370 rtx insn;
3371{
973838fd 3372 unsigned int i;
1f3b1e1a
JL
3373 int label_nr = CODE_LABEL_NUMBER (insn);
3374 struct elim_table *ep;
3375
3376 num_not_at_initial_offset = 0;
3377 for (i = 0, ep = reg_eliminate; i < NUM_ELIMINABLE_REGS; ep++, i++)
3378 {
3379 ep->offset = ep->previous_offset = offsets_at[label_nr][i];
3380 if (ep->can_eliminate && ep->offset != ep->initial_offset)
3381 num_not_at_initial_offset++;
3382 }
3383}
3384
09dd1133
BS
3385/* See if anything that happened changes which eliminations are valid.
3386 For example, on the Sparc, whether or not the frame pointer can
3387 be eliminated can depend on what registers have been used. We need
3388 not check some conditions again (such as flag_omit_frame_pointer)
3389 since they can't have changed. */
3390
3391static void
3392update_eliminables (pset)
3393 HARD_REG_SET *pset;
3394{
3395#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
3396 int previous_frame_pointer_needed = frame_pointer_needed;
3397#endif
3398 struct elim_table *ep;
3399
3400 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3401 if ((ep->from == HARD_FRAME_POINTER_REGNUM && FRAME_POINTER_REQUIRED)
3402#ifdef ELIMINABLE_REGS
3403 || ! CAN_ELIMINATE (ep->from, ep->to)
3404#endif
3405 )
3406 ep->can_eliminate = 0;
3407
3408 /* Look for the case where we have discovered that we can't replace
3409 register A with register B and that means that we will now be
3410 trying to replace register A with register C. This means we can
3411 no longer replace register C with register B and we need to disable
3412 such an elimination, if it exists. This occurs often with A == ap,
3413 B == sp, and C == fp. */
3414
3415 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3416 {
3417 struct elim_table *op;
3418 register int new_to = -1;
3419
3420 if (! ep->can_eliminate && ep->can_eliminate_previous)
3421 {
3422 /* Find the current elimination for ep->from, if there is a
3423 new one. */
3424 for (op = reg_eliminate;
3425 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3426 if (op->from == ep->from && op->can_eliminate)
3427 {
3428 new_to = op->to;
3429 break;
3430 }
3431
3432 /* See if there is an elimination of NEW_TO -> EP->TO. If so,
3433 disable it. */
3434 for (op = reg_eliminate;
3435 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3436 if (op->from == new_to && op->to == ep->to)
3437 op->can_eliminate = 0;
3438 }
3439 }
3440
3441 /* See if any registers that we thought we could eliminate the previous
3442 time are no longer eliminable. If so, something has changed and we
3443 must spill the register. Also, recompute the number of eliminable
3444 registers and see if the frame pointer is needed; it is if there is
3445 no elimination of the frame pointer that we can perform. */
3446
3447 frame_pointer_needed = 1;
3448 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3449 {
3450 if (ep->can_eliminate && ep->from == FRAME_POINTER_REGNUM
3451 && ep->to != HARD_FRAME_POINTER_REGNUM)
3452 frame_pointer_needed = 0;
3453
3454 if (! ep->can_eliminate && ep->can_eliminate_previous)
3455 {
3456 ep->can_eliminate_previous = 0;
3457 SET_HARD_REG_BIT (*pset, ep->from);
3458 num_eliminable--;
3459 }
3460 }
3461
3462#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
3463 /* If we didn't need a frame pointer last time, but we do now, spill
3464 the hard frame pointer. */
3465 if (frame_pointer_needed && ! previous_frame_pointer_needed)
3466 SET_HARD_REG_BIT (*pset, HARD_FRAME_POINTER_REGNUM);
3467#endif
3468}
3469
3470/* Initialize the table of registers to eliminate. */
1d813780 3471
09dd1133
BS
3472static void
3473init_elim_table ()
3474{
3475 struct elim_table *ep;
590cf94d
KG
3476#ifdef ELIMINABLE_REGS
3477 struct elim_table_1 *ep1;
3478#endif
09dd1133 3479
590cf94d 3480 if (!reg_eliminate)
ad85216e 3481 reg_eliminate = (struct elim_table *)
1d7254c5 3482 xcalloc (sizeof (struct elim_table), NUM_ELIMINABLE_REGS);
05d10675 3483
09dd1133
BS
3484 /* Does this function require a frame pointer? */
3485
3486 frame_pointer_needed = (! flag_omit_frame_pointer
3487#ifdef EXIT_IGNORE_STACK
3488 /* ?? If EXIT_IGNORE_STACK is set, we will not save
3489 and restore sp for alloca. So we can't eliminate
3490 the frame pointer in that case. At some point,
3491 we should improve this by emitting the
3492 sp-adjusting insns for this case. */
3493 || (current_function_calls_alloca
3494 && EXIT_IGNORE_STACK)
3495#endif
3496 || FRAME_POINTER_REQUIRED);
3497
3498 num_eliminable = 0;
3499
3500#ifdef ELIMINABLE_REGS
590cf94d
KG
3501 for (ep = reg_eliminate, ep1 = reg_eliminate_1;
3502 ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++, ep1++)
09dd1133 3503 {
590cf94d
KG
3504 ep->from = ep1->from;
3505 ep->to = ep1->to;
09dd1133
BS
3506 ep->can_eliminate = ep->can_eliminate_previous
3507 = (CAN_ELIMINATE (ep->from, ep->to)
3508 && ! (ep->to == STACK_POINTER_REGNUM && frame_pointer_needed));
3509 }
3510#else
590cf94d
KG
3511 reg_eliminate[0].from = reg_eliminate_1[0].from;
3512 reg_eliminate[0].to = reg_eliminate_1[0].to;
09dd1133
BS
3513 reg_eliminate[0].can_eliminate = reg_eliminate[0].can_eliminate_previous
3514 = ! frame_pointer_needed;
3515#endif
3516
3517 /* Count the number of eliminable registers and build the FROM and TO
3518 REG rtx's. Note that code in gen_rtx will cause, e.g.,
3519 gen_rtx (REG, Pmode, STACK_POINTER_REGNUM) to equal stack_pointer_rtx.
3520 We depend on this. */
3521 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3522 {
3523 num_eliminable += ep->can_eliminate;
3524 ep->from_rtx = gen_rtx_REG (Pmode, ep->from);
3525 ep->to_rtx = gen_rtx_REG (Pmode, ep->to);
3526 }
3527}
32131a9c
RK
3528\f
3529/* Kick all pseudos out of hard register REGNO.
32131a9c
RK
3530
3531 If CANT_ELIMINATE is nonzero, it means that we are doing this spill
3532 because we found we can't eliminate some register. In the case, no pseudos
3533 are allowed to be in the register, even if they are only in a block that
3534 doesn't require spill registers, unlike the case when we are spilling this
3535 hard reg to produce another spill register.
3536
3537 Return nonzero if any pseudos needed to be kicked out. */
3538
03acd8f8 3539static void
e04ca094 3540spill_hard_reg (regno, cant_eliminate)
770ae6cc 3541 unsigned int regno;
32131a9c
RK
3542 int cant_eliminate;
3543{
32131a9c
RK
3544 register int i;
3545
9ff3516a 3546 if (cant_eliminate)
03acd8f8
BS
3547 {
3548 SET_HARD_REG_BIT (bad_spill_regs_global, regno);
3549 regs_ever_live[regno] = 1;
3550 }
9ff3516a 3551
32131a9c
RK
3552 /* Spill every pseudo reg that was allocated to this reg
3553 or to something that overlaps this reg. */
3554
3555 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
3556 if (reg_renumber[i] >= 0
770ae6cc
RK
3557 && (unsigned int) reg_renumber[i] <= regno
3558 && ((unsigned int) reg_renumber[i]
3559 + HARD_REGNO_NREGS ((unsigned int) reg_renumber[i],
32131a9c
RK
3560 PSEUDO_REGNO_MODE (i))
3561 > regno))
f5d8c9f4 3562 SET_REGNO_REG_SET (&spilled_pseudos, i);
03acd8f8 3563}
32131a9c 3564
03acd8f8
BS
3565/* I'm getting weird preprocessor errors if I use IOR_HARD_REG_SET
3566 from within EXECUTE_IF_SET_IN_REG_SET. Hence this awkwardness. */
770ae6cc 3567
03acd8f8
BS
3568static void
3569ior_hard_reg_set (set1, set2)
3570 HARD_REG_SET *set1, *set2;
3571{
3572 IOR_HARD_REG_SET (*set1, *set2);
3573}
05d10675 3574
03acd8f8
BS
3575/* After find_reload_regs has been run for all insn that need reloads,
3576 and/or spill_hard_regs was called, this function is used to actually
3577 spill pseudo registers and try to reallocate them. It also sets up the
3578 spill_regs array for use by choose_reload_regs. */
a8fdc208 3579
03acd8f8 3580static int
e04ca094 3581finish_spills (global)
03acd8f8 3582 int global;
03acd8f8
BS
3583{
3584 struct insn_chain *chain;
3585 int something_changed = 0;
3586 int i;
3587
3588 /* Build the spill_regs array for the function. */
3589 /* If there are some registers still to eliminate and one of the spill regs
3590 wasn't ever used before, additional stack space may have to be
3591 allocated to store this register. Thus, we may have changed the offset
3592 between the stack and frame pointers, so mark that something has changed.
32131a9c 3593
03acd8f8
BS
3594 One might think that we need only set VAL to 1 if this is a call-used
3595 register. However, the set of registers that must be saved by the
3596 prologue is not identical to the call-used set. For example, the
3597 register used by the call insn for the return PC is a call-used register,
3598 but must be saved by the prologue. */
3599
3600 n_spills = 0;
3601 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3602 if (TEST_HARD_REG_BIT (used_spill_regs, i))
3603 {
3604 spill_reg_order[i] = n_spills;
3605 spill_regs[n_spills++] = i;
3606 if (num_eliminable && ! regs_ever_live[i])
3607 something_changed = 1;
3608 regs_ever_live[i] = 1;
3609 }
3610 else
3611 spill_reg_order[i] = -1;
3612
efc9bd41
RK
3613 EXECUTE_IF_SET_IN_REG_SET
3614 (&spilled_pseudos, FIRST_PSEUDO_REGISTER, i,
3615 {
3616 /* Record the current hard register the pseudo is allocated to in
3617 pseudo_previous_regs so we avoid reallocating it to the same
3618 hard reg in a later pass. */
3619 if (reg_renumber[i] < 0)
3620 abort ();
3621
3622 SET_HARD_REG_BIT (pseudo_previous_regs[i], reg_renumber[i]);
3623 /* Mark it as no longer having a hard register home. */
3624 reg_renumber[i] = -1;
3625 /* We will need to scan everything again. */
3626 something_changed = 1;
3627 });
7609e720 3628
03acd8f8
BS
3629 /* Retry global register allocation if possible. */
3630 if (global)
3631 {
961192e1 3632 memset ((char *) pseudo_forbidden_regs, 0, max_regno * sizeof (HARD_REG_SET));
03acd8f8
BS
3633 /* For every insn that needs reloads, set the registers used as spill
3634 regs in pseudo_forbidden_regs for every pseudo live across the
3635 insn. */
3636 for (chain = insns_need_reload; chain; chain = chain->next_need_reload)
3637 {
3638 EXECUTE_IF_SET_IN_REG_SET
239a0f5b 3639 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i,
03acd8f8
BS
3640 {
3641 ior_hard_reg_set (pseudo_forbidden_regs + i,
3642 &chain->used_spill_regs);
3643 });
3644 EXECUTE_IF_SET_IN_REG_SET
239a0f5b 3645 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i,
03acd8f8
BS
3646 {
3647 ior_hard_reg_set (pseudo_forbidden_regs + i,
3648 &chain->used_spill_regs);
3649 });
3650 }
7609e720 3651
03acd8f8
BS
3652 /* Retry allocating the spilled pseudos. For each reg, merge the
3653 various reg sets that indicate which hard regs can't be used,
3654 and call retry_global_alloc.
05d10675 3655 We change spill_pseudos here to only contain pseudos that did not
03acd8f8
BS
3656 get a new hard register. */
3657 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
3658 if (reg_old_renumber[i] != reg_renumber[i])
32131a9c 3659 {
03acd8f8
BS
3660 HARD_REG_SET forbidden;
3661 COPY_HARD_REG_SET (forbidden, bad_spill_regs_global);
3662 IOR_HARD_REG_SET (forbidden, pseudo_forbidden_regs[i]);
3663 IOR_HARD_REG_SET (forbidden, pseudo_previous_regs[i]);
3664 retry_global_alloc (i, forbidden);
3665 if (reg_renumber[i] >= 0)
f5d8c9f4 3666 CLEAR_REGNO_REG_SET (&spilled_pseudos, i);
32131a9c 3667 }
03acd8f8 3668 }
7609e720 3669
03acd8f8
BS
3670 /* Fix up the register information in the insn chain.
3671 This involves deleting those of the spilled pseudos which did not get
3672 a new hard register home from the live_{before,after} sets. */
7609e720
BS
3673 for (chain = reload_insn_chain; chain; chain = chain->next)
3674 {
03acd8f8
BS
3675 HARD_REG_SET used_by_pseudos;
3676 HARD_REG_SET used_by_pseudos2;
3677
239a0f5b
BS
3678 AND_COMPL_REG_SET (&chain->live_throughout, &spilled_pseudos);
3679 AND_COMPL_REG_SET (&chain->dead_or_set, &spilled_pseudos);
03acd8f8
BS
3680
3681 /* Mark any unallocated hard regs as available for spills. That
3682 makes inheritance work somewhat better. */
3683 if (chain->need_reload)
3684 {
239a0f5b
BS
3685 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
3686 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
03acd8f8
BS
3687 IOR_HARD_REG_SET (used_by_pseudos, used_by_pseudos2);
3688
3689 /* Save the old value for the sanity test below. */
3690 COPY_HARD_REG_SET (used_by_pseudos2, chain->used_spill_regs);
3691
239a0f5b
BS
3692 compute_use_by_pseudos (&used_by_pseudos, &chain->live_throughout);
3693 compute_use_by_pseudos (&used_by_pseudos, &chain->dead_or_set);
03acd8f8
BS
3694 COMPL_HARD_REG_SET (chain->used_spill_regs, used_by_pseudos);
3695 AND_HARD_REG_SET (chain->used_spill_regs, used_spill_regs);
3696
3697 /* Make sure we only enlarge the set. */
3698 GO_IF_HARD_REG_SUBSET (used_by_pseudos2, chain->used_spill_regs, ok);
3699 abort ();
3700 ok:;
3701 }
7609e720 3702 }
03acd8f8
BS
3703
3704 /* Let alter_reg modify the reg rtx's for the modified pseudos. */
3705 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
3706 {
3707 int regno = reg_renumber[i];
3708 if (reg_old_renumber[i] == regno)
3709 continue;
05d10675 3710
03acd8f8
BS
3711 alter_reg (i, reg_old_renumber[i]);
3712 reg_old_renumber[i] = regno;
e04ca094 3713 if (rtl_dump_file)
03acd8f8
BS
3714 {
3715 if (regno == -1)
e04ca094 3716 fprintf (rtl_dump_file, " Register %d now on stack.\n\n", i);
03acd8f8 3717 else
e04ca094 3718 fprintf (rtl_dump_file, " Register %d now in %d.\n\n",
03acd8f8
BS
3719 i, reg_renumber[i]);
3720 }
3721 }
3722
3723 return something_changed;
7609e720 3724}
32131a9c 3725\f
05d10675 3726/* Find all paradoxical subregs within X and update reg_max_ref_width.
56f58d3a
RK
3727 Also mark any hard registers used to store user variables as
3728 forbidden from being used for spill registers. */
32131a9c
RK
3729
3730static void
3731scan_paradoxical_subregs (x)
3732 register rtx x;
3733{
3734 register int i;
6f7d635c 3735 register const char *fmt;
32131a9c
RK
3736 register enum rtx_code code = GET_CODE (x);
3737
3738 switch (code)
3739 {
56f58d3a 3740 case REG:
03acd8f8 3741#if 0
e9a25f70 3742 if (SMALL_REGISTER_CLASSES && REGNO (x) < FIRST_PSEUDO_REGISTER
f95182a4 3743 && REG_USERVAR_P (x))
03acd8f8
BS
3744 SET_HARD_REG_BIT (bad_spill_regs_global, REGNO (x));
3745#endif
56f58d3a
RK
3746 return;
3747
32131a9c
RK
3748 case CONST_INT:
3749 case CONST:
3750 case SYMBOL_REF:
3751 case LABEL_REF:
3752 case CONST_DOUBLE:
3753 case CC0:
3754 case PC:
32131a9c
RK
3755 case USE:
3756 case CLOBBER:
3757 return;
3758
3759 case SUBREG:
3760 if (GET_CODE (SUBREG_REG (x)) == REG
3761 && GET_MODE_SIZE (GET_MODE (x)) > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
3762 reg_max_ref_width[REGNO (SUBREG_REG (x))]
3763 = GET_MODE_SIZE (GET_MODE (x));
3764 return;
05d10675 3765
e9a25f70
JL
3766 default:
3767 break;
32131a9c
RK
3768 }
3769
3770 fmt = GET_RTX_FORMAT (code);
3771 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3772 {
3773 if (fmt[i] == 'e')
3774 scan_paradoxical_subregs (XEXP (x, i));
3775 else if (fmt[i] == 'E')
3776 {
3777 register int j;
1d7254c5 3778 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
32131a9c
RK
3779 scan_paradoxical_subregs (XVECEXP (x, i, j));
3780 }
3781 }
3782}
3783\f
32131a9c
RK
3784/* Reload pseudo-registers into hard regs around each insn as needed.
3785 Additional register load insns are output before the insn that needs it
3786 and perhaps store insns after insns that modify the reloaded pseudo reg.
3787
3788 reg_last_reload_reg and reg_reloaded_contents keep track of
d08ea79f 3789 which registers are already available in reload registers.
32131a9c
RK
3790 We update these for the reloads that we perform,
3791 as the insns are scanned. */
3792
3793static void
e04ca094 3794reload_as_needed (live_known)
32131a9c
RK
3795 int live_known;
3796{
7609e720 3797 struct insn_chain *chain;
553687c9 3798#if defined (AUTO_INC_DEC)
32131a9c 3799 register int i;
973838fd 3800#endif
32131a9c 3801 rtx x;
32131a9c 3802
961192e1
JM
3803 memset ((char *) spill_reg_rtx, 0, sizeof spill_reg_rtx);
3804 memset ((char *) spill_reg_store, 0, sizeof spill_reg_store);
ff154f78
MM
3805 reg_last_reload_reg = (rtx *) xcalloc (max_regno, sizeof (rtx));
3806 reg_has_output_reload = (char *) xmalloc (max_regno);
e6e52be0 3807 CLEAR_HARD_REG_SET (reg_reloaded_valid);
32131a9c 3808
1f3b1e1a 3809 set_initial_elim_offsets ();
32131a9c 3810
7609e720 3811 for (chain = reload_insn_chain; chain; chain = chain->next)
32131a9c 3812 {
03acd8f8 3813 rtx prev;
7609e720
BS
3814 rtx insn = chain->insn;
3815 rtx old_next = NEXT_INSN (insn);
32131a9c
RK
3816
3817 /* If we pass a label, copy the offsets from the label information
3818 into the current offsets of each elimination. */
3819 if (GET_CODE (insn) == CODE_LABEL)
1f3b1e1a 3820 set_offsets_for_label (insn);
32131a9c 3821
2c3c49de 3822 else if (INSN_P (insn))
32131a9c 3823 {
0639444f 3824 rtx oldpat = PATTERN (insn);
32131a9c 3825
2758481d
RS
3826 /* If this is a USE and CLOBBER of a MEM, ensure that any
3827 references to eliminable registers have been removed. */
3828
3829 if ((GET_CODE (PATTERN (insn)) == USE
3830 || GET_CODE (PATTERN (insn)) == CLOBBER)
3831 && GET_CODE (XEXP (PATTERN (insn), 0)) == MEM)
3832 XEXP (XEXP (PATTERN (insn), 0), 0)
3833 = eliminate_regs (XEXP (XEXP (PATTERN (insn), 0), 0),
29ae5012 3834 GET_MODE (XEXP (PATTERN (insn), 0)),
1914f5da 3835 NULL_RTX);
2758481d 3836
32131a9c
RK
3837 /* If we need to do register elimination processing, do so.
3838 This might delete the insn, in which case we are done. */
2b49ee39 3839 if ((num_eliminable || num_eliminable_invariants) && chain->need_elim)
32131a9c
RK
3840 {
3841 eliminate_regs_in_insn (insn, 1);
3842 if (GET_CODE (insn) == NOTE)
cb2afeb3
R
3843 {
3844 update_eliminable_offsets ();
3845 continue;
3846 }
32131a9c
RK
3847 }
3848
7609e720
BS
3849 /* If need_elim is nonzero but need_reload is zero, one might think
3850 that we could simply set n_reloads to 0. However, find_reloads
3851 could have done some manipulation of the insn (such as swapping
3852 commutative operands), and these manipulations are lost during
3853 the first pass for every insn that needs register elimination.
3854 So the actions of find_reloads must be redone here. */
3855
03acd8f8
BS
3856 if (! chain->need_elim && ! chain->need_reload
3857 && ! chain->need_operand_change)
32131a9c
RK
3858 n_reloads = 0;
3859 /* First find the pseudo regs that must be reloaded for this insn.
3860 This info is returned in the tables reload_... (see reload.h).
3861 Also modify the body of INSN by substituting RELOAD
3862 rtx's for those pseudo regs. */
3863 else
3864 {
961192e1 3865 memset (reg_has_output_reload, 0, max_regno);
32131a9c
RK
3866 CLEAR_HARD_REG_SET (reg_is_output_reload);
3867
3868 find_reloads (insn, 1, spill_indirect_levels, live_known,
3869 spill_reg_order);
3870 }
3871
3872 if (n_reloads > 0)
3873 {
cb2afeb3 3874 rtx next = NEXT_INSN (insn);
3c3eeea6 3875 rtx p;
32131a9c 3876
cb2afeb3
R
3877 prev = PREV_INSN (insn);
3878
32131a9c
RK
3879 /* Now compute which reload regs to reload them into. Perhaps
3880 reusing reload regs from previous insns, or else output
3881 load insns to reload them. Maybe output store insns too.
3882 Record the choices of reload reg in reload_reg_rtx. */
03acd8f8 3883 choose_reload_regs (chain);
32131a9c 3884
05d10675 3885 /* Merge any reloads that we didn't combine for fear of
546b63fb
RK
3886 increasing the number of spill registers needed but now
3887 discover can be safely merged. */
f95182a4
ILT
3888 if (SMALL_REGISTER_CLASSES)
3889 merge_assigned_reloads (insn);
546b63fb 3890
32131a9c
RK
3891 /* Generate the insns to reload operands into or out of
3892 their reload regs. */
e04ca094 3893 emit_reload_insns (chain);
32131a9c
RK
3894
3895 /* Substitute the chosen reload regs from reload_reg_rtx
3896 into the insn's body (or perhaps into the bodies of other
3897 load and store insn that we just made for reloading
3898 and that we moved the structure into). */
f759eb8b 3899 subst_reloads (insn);
3c3eeea6
RK
3900
3901 /* If this was an ASM, make sure that all the reload insns
3902 we have generated are valid. If not, give an error
3903 and delete them. */
3904
3905 if (asm_noperands (PATTERN (insn)) >= 0)
3906 for (p = NEXT_INSN (prev); p != next; p = NEXT_INSN (p))
2c3c49de 3907 if (p != insn && INSN_P (p)
3c3eeea6 3908 && (recog_memoized (p) < 0
0eadeb15 3909 || (extract_insn (p), ! constrain_operands (1))))
3c3eeea6
RK
3910 {
3911 error_for_asm (insn,
3912 "`asm' operand requires impossible reload");
3913 PUT_CODE (p, NOTE);
3914 NOTE_SOURCE_FILE (p) = 0;
3915 NOTE_LINE_NUMBER (p) = NOTE_INSN_DELETED;
3916 }
32131a9c 3917 }
5d7ef82a
BS
3918
3919 if (num_eliminable && chain->need_elim)
3920 update_eliminable_offsets ();
3921
32131a9c
RK
3922 /* Any previously reloaded spilled pseudo reg, stored in this insn,
3923 is no longer validly lying around to save a future reload.
3924 Note that this does not detect pseudos that were reloaded
3925 for this insn in order to be stored in
3926 (obeying register constraints). That is correct; such reload
3927 registers ARE still valid. */
84832317 3928 note_stores (oldpat, forget_old_reloads_1, NULL);
32131a9c
RK
3929
3930 /* There may have been CLOBBER insns placed after INSN. So scan
3931 between INSN and NEXT and use them to forget old reloads. */
7609e720 3932 for (x = NEXT_INSN (insn); x != old_next; x = NEXT_INSN (x))
32131a9c 3933 if (GET_CODE (x) == INSN && GET_CODE (PATTERN (x)) == CLOBBER)
84832317 3934 note_stores (PATTERN (x), forget_old_reloads_1, NULL);
32131a9c
RK
3935
3936#ifdef AUTO_INC_DEC
cb2afeb3
R
3937 /* Likewise for regs altered by auto-increment in this insn.
3938 REG_INC notes have been changed by reloading:
3939 find_reloads_address_1 records substitutions for them,
3940 which have been performed by subst_reloads above. */
3941 for (i = n_reloads - 1; i >= 0; i--)
3942 {
eceef4c9 3943 rtx in_reg = rld[i].in_reg;
cb2afeb3
R
3944 if (in_reg)
3945 {
3946 enum rtx_code code = GET_CODE (in_reg);
3947 /* PRE_INC / PRE_DEC will have the reload register ending up
3948 with the same value as the stack slot, but that doesn't
3949 hold true for POST_INC / POST_DEC. Either we have to
3950 convert the memory access to a true POST_INC / POST_DEC,
3951 or we can't use the reload register for inheritance. */
3952 if ((code == POST_INC || code == POST_DEC)
3953 && TEST_HARD_REG_BIT (reg_reloaded_valid,
eceef4c9 3954 REGNO (rld[i].reg_rtx))
04bbb0c5
JW
3955 /* Make sure it is the inc/dec pseudo, and not
3956 some other (e.g. output operand) pseudo. */
eceef4c9 3957 && (reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
04bbb0c5 3958 == REGNO (XEXP (in_reg, 0))))
05d10675 3959
cb2afeb3 3960 {
eceef4c9 3961 rtx reload_reg = rld[i].reg_rtx;
cb2afeb3
R
3962 enum machine_mode mode = GET_MODE (reload_reg);
3963 int n = 0;
3964 rtx p;
3965
3966 for (p = PREV_INSN (old_next); p != prev; p = PREV_INSN (p))
3967 {
3968 /* We really want to ignore REG_INC notes here, so
3969 use PATTERN (p) as argument to reg_set_p . */
3970 if (reg_set_p (reload_reg, PATTERN (p)))
3971 break;
4b983fdc 3972 n = count_occurrences (PATTERN (p), reload_reg, 0);
cb2afeb3
R
3973 if (! n)
3974 continue;
3975 if (n == 1)
f67c2384
JL
3976 {
3977 n = validate_replace_rtx (reload_reg,
3978 gen_rtx (code, mode,
3979 reload_reg),
3980 p);
3981
3982 /* We must also verify that the constraints
3983 are met after the replacement. */
3984 extract_insn (p);
3985 if (n)
3986 n = constrain_operands (1);
3987 else
3988 break;
3989
3990 /* If the constraints were not met, then
3991 undo the replacement. */
3992 if (!n)
3993 {
3994 validate_replace_rtx (gen_rtx (code, mode,
3995 reload_reg),
3996 reload_reg, p);
3997 break;
3998 }
05d10675 3999
f67c2384 4000 }
cb2afeb3
R
4001 break;
4002 }
4003 if (n == 1)
02eb1393
R
4004 {
4005 REG_NOTES (p)
4006 = gen_rtx_EXPR_LIST (REG_INC, reload_reg,
4007 REG_NOTES (p));
4008 /* Mark this as having an output reload so that the
4009 REG_INC processing code below won't invalidate
4010 the reload for inheritance. */
4011 SET_HARD_REG_BIT (reg_is_output_reload,
4012 REGNO (reload_reg));
4013 reg_has_output_reload[REGNO (XEXP (in_reg, 0))] = 1;
4014 }
cb2afeb3 4015 else
1d7254c5 4016 forget_old_reloads_1 (XEXP (in_reg, 0), NULL_RTX,
84832317 4017 NULL);
cb2afeb3 4018 }
02eb1393
R
4019 else if ((code == PRE_INC || code == PRE_DEC)
4020 && TEST_HARD_REG_BIT (reg_reloaded_valid,
eceef4c9 4021 REGNO (rld[i].reg_rtx))
02eb1393
R
4022 /* Make sure it is the inc/dec pseudo, and not
4023 some other (e.g. output operand) pseudo. */
eceef4c9 4024 && (reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
02eb1393
R
4025 == REGNO (XEXP (in_reg, 0))))
4026 {
4027 SET_HARD_REG_BIT (reg_is_output_reload,
eceef4c9 4028 REGNO (rld[i].reg_rtx));
02eb1393
R
4029 reg_has_output_reload[REGNO (XEXP (in_reg, 0))] = 1;
4030 }
cb2afeb3
R
4031 }
4032 }
02eb1393
R
4033 /* If a pseudo that got a hard register is auto-incremented,
4034 we must purge records of copying it into pseudos without
4035 hard registers. */
32131a9c
RK
4036 for (x = REG_NOTES (insn); x; x = XEXP (x, 1))
4037 if (REG_NOTE_KIND (x) == REG_INC)
4038 {
4039 /* See if this pseudo reg was reloaded in this insn.
4040 If so, its last-reload info is still valid
4041 because it is based on this insn's reload. */
4042 for (i = 0; i < n_reloads; i++)
eceef4c9 4043 if (rld[i].out == XEXP (x, 0))
32131a9c
RK
4044 break;
4045
08fb99fa 4046 if (i == n_reloads)
84832317 4047 forget_old_reloads_1 (XEXP (x, 0), NULL_RTX, NULL);
32131a9c
RK
4048 }
4049#endif
4050 }
4051 /* A reload reg's contents are unknown after a label. */
4052 if (GET_CODE (insn) == CODE_LABEL)
e6e52be0 4053 CLEAR_HARD_REG_SET (reg_reloaded_valid);
32131a9c
RK
4054
4055 /* Don't assume a reload reg is still good after a call insn
4056 if it is a call-used reg. */
546b63fb 4057 else if (GET_CODE (insn) == CALL_INSN)
e6e52be0 4058 AND_COMPL_HARD_REG_SET(reg_reloaded_valid, call_used_reg_set);
32131a9c 4059 }
ff154f78
MM
4060
4061 /* Clean up. */
4062 free (reg_last_reload_reg);
4063 free (reg_has_output_reload);
32131a9c
RK
4064}
4065
4066/* Discard all record of any value reloaded from X,
4067 or reloaded in X from someplace else;
4068 unless X is an output reload reg of the current insn.
4069
4070 X may be a hard reg (the reload reg)
4071 or it may be a pseudo reg that was reloaded from. */
4072
4073static void
84832317 4074forget_old_reloads_1 (x, ignored, data)
32131a9c 4075 rtx x;
487a6e06 4076 rtx ignored ATTRIBUTE_UNUSED;
84832317 4077 void *data ATTRIBUTE_UNUSED;
32131a9c 4078{
770ae6cc
RK
4079 unsigned int regno;
4080 unsigned int nr;
0a2e51a9
RS
4081 int offset = 0;
4082
ddef6bc7
JJ
4083 /* note_stores does give us subregs of hard regs,
4084 subreg_regno_offset will abort if it is not a hard reg. */
0a2e51a9
RS
4085 while (GET_CODE (x) == SUBREG)
4086 {
ddef6bc7
JJ
4087 offset += subreg_regno_offset (REGNO (SUBREG_REG (x)),
4088 GET_MODE (SUBREG_REG (x)),
4089 SUBREG_BYTE (x),
4090 GET_MODE (x));
0a2e51a9
RS
4091 x = SUBREG_REG (x);
4092 }
32131a9c
RK
4093
4094 if (GET_CODE (x) != REG)
4095 return;
4096
0a2e51a9 4097 regno = REGNO (x) + offset;
32131a9c
RK
4098
4099 if (regno >= FIRST_PSEUDO_REGISTER)
4100 nr = 1;
4101 else
4102 {
770ae6cc
RK
4103 unsigned int i;
4104
32131a9c
RK
4105 nr = HARD_REGNO_NREGS (regno, GET_MODE (x));
4106 /* Storing into a spilled-reg invalidates its contents.
4107 This can happen if a block-local pseudo is allocated to that reg
4108 and it wasn't spilled because this block's total need is 0.
4109 Then some insn might have an optional reload and use this reg. */
4110 for (i = 0; i < nr; i++)
e6e52be0
R
4111 /* But don't do this if the reg actually serves as an output
4112 reload reg in the current instruction. */
4113 if (n_reloads == 0
4114 || ! TEST_HARD_REG_BIT (reg_is_output_reload, regno + i))
5d77a50c
BS
4115 {
4116 CLEAR_HARD_REG_BIT (reg_reloaded_valid, regno + i);
4117 spill_reg_store[regno + i] = 0;
4118 }
32131a9c
RK
4119 }
4120
4121 /* Since value of X has changed,
4122 forget any value previously copied from it. */
4123
4124 while (nr-- > 0)
4125 /* But don't forget a copy if this is the output reload
4126 that establishes the copy's validity. */
4127 if (n_reloads == 0 || reg_has_output_reload[regno + nr] == 0)
4128 reg_last_reload_reg[regno + nr] = 0;
4129}
4130\f
32131a9c
RK
4131/* The following HARD_REG_SETs indicate when each hard register is
4132 used for a reload of various parts of the current insn. */
4133
9e3a9cf2
BS
4134/* If reg is unavailable for all reloads. */
4135static HARD_REG_SET reload_reg_unavailable;
32131a9c
RK
4136/* If reg is in use as a reload reg for a RELOAD_OTHER reload. */
4137static HARD_REG_SET reload_reg_used;
546b63fb
RK
4138/* If reg is in use for a RELOAD_FOR_INPUT_ADDRESS reload for operand I. */
4139static HARD_REG_SET reload_reg_used_in_input_addr[MAX_RECOG_OPERANDS];
47c8cf91
ILT
4140/* If reg is in use for a RELOAD_FOR_INPADDR_ADDRESS reload for operand I. */
4141static HARD_REG_SET reload_reg_used_in_inpaddr_addr[MAX_RECOG_OPERANDS];
546b63fb
RK
4142/* If reg is in use for a RELOAD_FOR_OUTPUT_ADDRESS reload for operand I. */
4143static HARD_REG_SET reload_reg_used_in_output_addr[MAX_RECOG_OPERANDS];
47c8cf91
ILT
4144/* If reg is in use for a RELOAD_FOR_OUTADDR_ADDRESS reload for operand I. */
4145static HARD_REG_SET reload_reg_used_in_outaddr_addr[MAX_RECOG_OPERANDS];
546b63fb
RK
4146/* If reg is in use for a RELOAD_FOR_INPUT reload for operand I. */
4147static HARD_REG_SET reload_reg_used_in_input[MAX_RECOG_OPERANDS];
4148/* If reg is in use for a RELOAD_FOR_OUTPUT reload for operand I. */
4149static HARD_REG_SET reload_reg_used_in_output[MAX_RECOG_OPERANDS];
32131a9c
RK
4150/* If reg is in use for a RELOAD_FOR_OPERAND_ADDRESS reload. */
4151static HARD_REG_SET reload_reg_used_in_op_addr;
893bc853
RK
4152/* If reg is in use for a RELOAD_FOR_OPADDR_ADDR reload. */
4153static HARD_REG_SET reload_reg_used_in_op_addr_reload;
546b63fb
RK
4154/* If reg is in use for a RELOAD_FOR_INSN reload. */
4155static HARD_REG_SET reload_reg_used_in_insn;
4156/* If reg is in use for a RELOAD_FOR_OTHER_ADDRESS reload. */
4157static HARD_REG_SET reload_reg_used_in_other_addr;
32131a9c
RK
4158
4159/* If reg is in use as a reload reg for any sort of reload. */
4160static HARD_REG_SET reload_reg_used_at_all;
4161
be7ae2a4
RK
4162/* If reg is use as an inherited reload. We just mark the first register
4163 in the group. */
4164static HARD_REG_SET reload_reg_used_for_inherit;
4165
f1db3576
JL
4166/* Records which hard regs are used in any way, either as explicit use or
4167 by being allocated to a pseudo during any point of the current insn. */
4168static HARD_REG_SET reg_used_in_insn;
297927a8 4169
546b63fb
RK
4170/* Mark reg REGNO as in use for a reload of the sort spec'd by OPNUM and
4171 TYPE. MODE is used to indicate how many consecutive regs are
4172 actually used. */
32131a9c
RK
4173
4174static void
546b63fb 4175mark_reload_reg_in_use (regno, opnum, type, mode)
770ae6cc 4176 unsigned int regno;
546b63fb
RK
4177 int opnum;
4178 enum reload_type type;
32131a9c
RK
4179 enum machine_mode mode;
4180{
770ae6cc
RK
4181 unsigned int nregs = HARD_REGNO_NREGS (regno, mode);
4182 unsigned int i;
32131a9c
RK
4183
4184 for (i = regno; i < nregs + regno; i++)
4185 {
546b63fb 4186 switch (type)
32131a9c
RK
4187 {
4188 case RELOAD_OTHER:
4189 SET_HARD_REG_BIT (reload_reg_used, i);
4190 break;
4191
546b63fb
RK
4192 case RELOAD_FOR_INPUT_ADDRESS:
4193 SET_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], i);
32131a9c
RK
4194 break;
4195
47c8cf91
ILT
4196 case RELOAD_FOR_INPADDR_ADDRESS:
4197 SET_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], i);
4198 break;
4199
546b63fb
RK
4200 case RELOAD_FOR_OUTPUT_ADDRESS:
4201 SET_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], i);
32131a9c
RK
4202 break;
4203
47c8cf91
ILT
4204 case RELOAD_FOR_OUTADDR_ADDRESS:
4205 SET_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], i);
4206 break;
4207
32131a9c
RK
4208 case RELOAD_FOR_OPERAND_ADDRESS:
4209 SET_HARD_REG_BIT (reload_reg_used_in_op_addr, i);
4210 break;
4211
893bc853
RK
4212 case RELOAD_FOR_OPADDR_ADDR:
4213 SET_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, i);
4214 break;
4215
546b63fb
RK
4216 case RELOAD_FOR_OTHER_ADDRESS:
4217 SET_HARD_REG_BIT (reload_reg_used_in_other_addr, i);
4218 break;
4219
32131a9c 4220 case RELOAD_FOR_INPUT:
546b63fb 4221 SET_HARD_REG_BIT (reload_reg_used_in_input[opnum], i);
32131a9c
RK
4222 break;
4223
4224 case RELOAD_FOR_OUTPUT:
546b63fb
RK
4225 SET_HARD_REG_BIT (reload_reg_used_in_output[opnum], i);
4226 break;
4227
4228 case RELOAD_FOR_INSN:
4229 SET_HARD_REG_BIT (reload_reg_used_in_insn, i);
32131a9c
RK
4230 break;
4231 }
4232
4233 SET_HARD_REG_BIT (reload_reg_used_at_all, i);
4234 }
4235}
4236
be7ae2a4
RK
4237/* Similarly, but show REGNO is no longer in use for a reload. */
4238
4239static void
4240clear_reload_reg_in_use (regno, opnum, type, mode)
770ae6cc 4241 unsigned int regno;
be7ae2a4
RK
4242 int opnum;
4243 enum reload_type type;
4244 enum machine_mode mode;
4245{
770ae6cc
RK
4246 unsigned int nregs = HARD_REGNO_NREGS (regno, mode);
4247 unsigned int start_regno, end_regno, r;
be7ae2a4 4248 int i;
cb2afeb3
R
4249 /* A complication is that for some reload types, inheritance might
4250 allow multiple reloads of the same types to share a reload register.
4251 We set check_opnum if we have to check only reloads with the same
4252 operand number, and check_any if we have to check all reloads. */
4253 int check_opnum = 0;
4254 int check_any = 0;
4255 HARD_REG_SET *used_in_set;
be7ae2a4 4256
cb2afeb3 4257 switch (type)
be7ae2a4 4258 {
cb2afeb3
R
4259 case RELOAD_OTHER:
4260 used_in_set = &reload_reg_used;
4261 break;
be7ae2a4 4262
cb2afeb3
R
4263 case RELOAD_FOR_INPUT_ADDRESS:
4264 used_in_set = &reload_reg_used_in_input_addr[opnum];
4265 break;
be7ae2a4 4266
cb2afeb3
R
4267 case RELOAD_FOR_INPADDR_ADDRESS:
4268 check_opnum = 1;
4269 used_in_set = &reload_reg_used_in_inpaddr_addr[opnum];
4270 break;
47c8cf91 4271
cb2afeb3
R
4272 case RELOAD_FOR_OUTPUT_ADDRESS:
4273 used_in_set = &reload_reg_used_in_output_addr[opnum];
4274 break;
be7ae2a4 4275
cb2afeb3
R
4276 case RELOAD_FOR_OUTADDR_ADDRESS:
4277 check_opnum = 1;
4278 used_in_set = &reload_reg_used_in_outaddr_addr[opnum];
4279 break;
47c8cf91 4280
cb2afeb3
R
4281 case RELOAD_FOR_OPERAND_ADDRESS:
4282 used_in_set = &reload_reg_used_in_op_addr;
4283 break;
be7ae2a4 4284
cb2afeb3
R
4285 case RELOAD_FOR_OPADDR_ADDR:
4286 check_any = 1;
4287 used_in_set = &reload_reg_used_in_op_addr_reload;
4288 break;
893bc853 4289
cb2afeb3
R
4290 case RELOAD_FOR_OTHER_ADDRESS:
4291 used_in_set = &reload_reg_used_in_other_addr;
4292 check_any = 1;
4293 break;
be7ae2a4 4294
cb2afeb3
R
4295 case RELOAD_FOR_INPUT:
4296 used_in_set = &reload_reg_used_in_input[opnum];
4297 break;
be7ae2a4 4298
cb2afeb3
R
4299 case RELOAD_FOR_OUTPUT:
4300 used_in_set = &reload_reg_used_in_output[opnum];
4301 break;
be7ae2a4 4302
cb2afeb3
R
4303 case RELOAD_FOR_INSN:
4304 used_in_set = &reload_reg_used_in_insn;
4305 break;
4306 default:
4307 abort ();
4308 }
4309 /* We resolve conflicts with remaining reloads of the same type by
4310 excluding the intervals of of reload registers by them from the
4311 interval of freed reload registers. Since we only keep track of
4312 one set of interval bounds, we might have to exclude somewhat
4313 more then what would be necessary if we used a HARD_REG_SET here.
4314 But this should only happen very infrequently, so there should
4315 be no reason to worry about it. */
05d10675 4316
cb2afeb3
R
4317 start_regno = regno;
4318 end_regno = regno + nregs;
4319 if (check_opnum || check_any)
4320 {
4321 for (i = n_reloads - 1; i >= 0; i--)
4322 {
eceef4c9
BS
4323 if (rld[i].when_needed == type
4324 && (check_any || rld[i].opnum == opnum)
4325 && rld[i].reg_rtx)
cb2afeb3 4326 {
770ae6cc
RK
4327 unsigned int conflict_start = true_regnum (rld[i].reg_rtx);
4328 unsigned int conflict_end
cb2afeb3 4329 = (conflict_start
8ec450a4 4330 + HARD_REGNO_NREGS (conflict_start, rld[i].mode));
cb2afeb3
R
4331
4332 /* If there is an overlap with the first to-be-freed register,
4333 adjust the interval start. */
4334 if (conflict_start <= start_regno && conflict_end > start_regno)
4335 start_regno = conflict_end;
4336 /* Otherwise, if there is a conflict with one of the other
4337 to-be-freed registers, adjust the interval end. */
4338 if (conflict_start > start_regno && conflict_start < end_regno)
4339 end_regno = conflict_start;
4340 }
be7ae2a4
RK
4341 }
4342 }
770ae6cc
RK
4343
4344 for (r = start_regno; r < end_regno; r++)
4345 CLEAR_HARD_REG_BIT (*used_in_set, r);
be7ae2a4
RK
4346}
4347
32131a9c 4348/* 1 if reg REGNO is free as a reload reg for a reload of the sort
546b63fb 4349 specified by OPNUM and TYPE. */
32131a9c
RK
4350
4351static int
546b63fb 4352reload_reg_free_p (regno, opnum, type)
770ae6cc 4353 unsigned int regno;
546b63fb
RK
4354 int opnum;
4355 enum reload_type type;
32131a9c 4356{
546b63fb
RK
4357 int i;
4358
2edc8d65 4359 /* In use for a RELOAD_OTHER means it's not available for anything. */
9e3a9cf2
BS
4360 if (TEST_HARD_REG_BIT (reload_reg_used, regno)
4361 || TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
32131a9c 4362 return 0;
546b63fb
RK
4363
4364 switch (type)
32131a9c
RK
4365 {
4366 case RELOAD_OTHER:
2edc8d65
RK
4367 /* In use for anything means we can't use it for RELOAD_OTHER. */
4368 if (TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno)
224f1d71
RK
4369 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4370 || TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
4371 return 0;
4372
4373 for (i = 0; i < reload_n_operands; i++)
4374 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
47c8cf91 4375 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
224f1d71 4376 || TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
47c8cf91 4377 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
224f1d71
RK
4378 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
4379 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4380 return 0;
4381
4382 return 1;
32131a9c 4383
32131a9c 4384 case RELOAD_FOR_INPUT:
546b63fb
RK
4385 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4386 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno))
4387 return 0;
4388
893bc853
RK
4389 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
4390 return 0;
4391
546b63fb
RK
4392 /* If it is used for some other input, can't use it. */
4393 for (i = 0; i < reload_n_operands; i++)
4394 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4395 return 0;
4396
4397 /* If it is used in a later operand's address, can't use it. */
4398 for (i = opnum + 1; i < reload_n_operands; i++)
47c8cf91
ILT
4399 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4400 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
546b63fb
RK
4401 return 0;
4402
4403 return 1;
4404
4405 case RELOAD_FOR_INPUT_ADDRESS:
4406 /* Can't use a register if it is used for an input address for this
4407 operand or used as an input in an earlier one. */
47c8cf91
ILT
4408 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], regno)
4409 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
4410 return 0;
4411
4412 for (i = 0; i < opnum; i++)
4413 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4414 return 0;
4415
4416 return 1;
4417
4418 case RELOAD_FOR_INPADDR_ADDRESS:
4419 /* Can't use a register if it is used for an input address
05d10675
BS
4420 for this operand or used as an input in an earlier
4421 one. */
47c8cf91 4422 if (TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
546b63fb
RK
4423 return 0;
4424
4425 for (i = 0; i < opnum; i++)
4426 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4427 return 0;
4428
4429 return 1;
4430
4431 case RELOAD_FOR_OUTPUT_ADDRESS:
4432 /* Can't use a register if it is used for an output address for this
4433 operand or used as an output in this or a later operand. */
4434 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], regno))
4435 return 0;
4436
4437 for (i = opnum; i < reload_n_operands; i++)
4438 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4439 return 0;
4440
4441 return 1;
4442
47c8cf91
ILT
4443 case RELOAD_FOR_OUTADDR_ADDRESS:
4444 /* Can't use a register if it is used for an output address
05d10675
BS
4445 for this operand or used as an output in this or a
4446 later operand. */
47c8cf91
ILT
4447 if (TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], regno))
4448 return 0;
4449
4450 for (i = opnum; i < reload_n_operands; i++)
4451 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4452 return 0;
4453
4454 return 1;
4455
32131a9c 4456 case RELOAD_FOR_OPERAND_ADDRESS:
546b63fb
RK
4457 for (i = 0; i < reload_n_operands; i++)
4458 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4459 return 0;
4460
4461 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4462 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
4463
893bc853
RK
4464 case RELOAD_FOR_OPADDR_ADDR:
4465 for (i = 0; i < reload_n_operands; i++)
05d10675
BS
4466 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4467 return 0;
893bc853 4468
a94ce333 4469 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno));
893bc853 4470
32131a9c 4471 case RELOAD_FOR_OUTPUT:
546b63fb
RK
4472 /* This cannot share a register with RELOAD_FOR_INSN reloads, other
4473 outputs, or an operand address for this or an earlier output. */
4474 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
4475 return 0;
4476
4477 for (i = 0; i < reload_n_operands; i++)
4478 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4479 return 0;
4480
4481 for (i = 0; i <= opnum; i++)
47c8cf91
ILT
4482 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4483 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
546b63fb
RK
4484 return 0;
4485
4486 return 1;
4487
4488 case RELOAD_FOR_INSN:
4489 for (i = 0; i < reload_n_operands; i++)
4490 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
4491 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4492 return 0;
4493
4494 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4495 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
4496
4497 case RELOAD_FOR_OTHER_ADDRESS:
4498 return ! TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno);
32131a9c
RK
4499 }
4500 abort ();
4501}
4502
32131a9c 4503/* Return 1 if the value in reload reg REGNO, as used by a reload
546b63fb 4504 needed for the part of the insn specified by OPNUM and TYPE,
32131a9c
RK
4505 is still available in REGNO at the end of the insn.
4506
4507 We can assume that the reload reg was already tested for availability
4508 at the time it is needed, and we should not check this again,
4509 in case the reg has already been marked in use. */
4510
4511static int
546b63fb 4512reload_reg_reaches_end_p (regno, opnum, type)
770ae6cc 4513 unsigned int regno;
546b63fb
RK
4514 int opnum;
4515 enum reload_type type;
32131a9c 4516{
546b63fb
RK
4517 int i;
4518
4519 switch (type)
32131a9c
RK
4520 {
4521 case RELOAD_OTHER:
4522 /* Since a RELOAD_OTHER reload claims the reg for the entire insn,
4523 its value must reach the end. */
4524 return 1;
4525
4526 /* If this use is for part of the insn,
05d10675 4527 its value reaches if no subsequent part uses the same register.
546b63fb
RK
4528 Just like the above function, don't try to do this with lots
4529 of fallthroughs. */
4530
4531 case RELOAD_FOR_OTHER_ADDRESS:
4532 /* Here we check for everything else, since these don't conflict
4533 with anything else and everything comes later. */
4534
4535 for (i = 0; i < reload_n_operands; i++)
4536 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
47c8cf91 4537 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
546b63fb
RK
4538 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno)
4539 || TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
47c8cf91 4540 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
546b63fb
RK
4541 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4542 return 0;
4543
4544 return (! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4545 && ! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4546 && ! TEST_HARD_REG_BIT (reload_reg_used, regno));
4547
4548 case RELOAD_FOR_INPUT_ADDRESS:
47c8cf91 4549 case RELOAD_FOR_INPADDR_ADDRESS:
546b63fb
RK
4550 /* Similar, except that we check only for this and subsequent inputs
4551 and the address of only subsequent inputs and we do not need
4552 to check for RELOAD_OTHER objects since they are known not to
4553 conflict. */
4554
4555 for (i = opnum; i < reload_n_operands; i++)
4556 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4557 return 0;
4558
4559 for (i = opnum + 1; i < reload_n_operands; i++)
47c8cf91
ILT
4560 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4561 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
546b63fb
RK
4562 return 0;
4563
4564 for (i = 0; i < reload_n_operands; i++)
4565 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
47c8cf91 4566 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
546b63fb
RK
4567 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4568 return 0;
4569
893bc853
RK
4570 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
4571 return 0;
4572
2af88768
GK
4573 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4574 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4575 && !TEST_HARD_REG_BIT (reload_reg_used, regno));
546b63fb 4576
32131a9c 4577 case RELOAD_FOR_INPUT:
546b63fb 4578 /* Similar to input address, except we start at the next operand for
05d10675 4579 both input and input address and we do not check for
546b63fb
RK
4580 RELOAD_FOR_OPERAND_ADDRESS and RELOAD_FOR_INSN since these
4581 would conflict. */
4582
4583 for (i = opnum + 1; i < reload_n_operands; i++)
4584 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
47c8cf91 4585 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
546b63fb
RK
4586 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4587 return 0;
4588
0f41302f 4589 /* ... fall through ... */
546b63fb 4590
32131a9c 4591 case RELOAD_FOR_OPERAND_ADDRESS:
546b63fb
RK
4592 /* Check outputs and their addresses. */
4593
4594 for (i = 0; i < reload_n_operands; i++)
4595 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
47c8cf91 4596 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
546b63fb
RK
4597 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4598 return 0;
4599
2af88768 4600 return (!TEST_HARD_REG_BIT (reload_reg_used, regno));
546b63fb 4601
893bc853
RK
4602 case RELOAD_FOR_OPADDR_ADDR:
4603 for (i = 0; i < reload_n_operands; i++)
4604 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
47c8cf91 4605 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
893bc853
RK
4606 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4607 return 0;
4608
2af88768
GK
4609 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4610 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4611 && !TEST_HARD_REG_BIT (reload_reg_used, regno));
893bc853 4612
546b63fb 4613 case RELOAD_FOR_INSN:
893bc853 4614 /* These conflict with other outputs with RELOAD_OTHER. So
546b63fb
RK
4615 we need only check for output addresses. */
4616
4617 opnum = -1;
4618
0f41302f 4619 /* ... fall through ... */
546b63fb 4620
32131a9c 4621 case RELOAD_FOR_OUTPUT:
546b63fb 4622 case RELOAD_FOR_OUTPUT_ADDRESS:
47c8cf91 4623 case RELOAD_FOR_OUTADDR_ADDRESS:
546b63fb
RK
4624 /* We already know these can't conflict with a later output. So the
4625 only thing to check are later output addresses. */
4626 for (i = opnum + 1; i < reload_n_operands; i++)
47c8cf91
ILT
4627 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4628 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
546b63fb
RK
4629 return 0;
4630
32131a9c
RK
4631 return 1;
4632 }
546b63fb 4633
32131a9c
RK
4634 abort ();
4635}
4636\f
351aa1c1
RK
4637/* Return 1 if the reloads denoted by R1 and R2 cannot share a register.
4638 Return 0 otherwise.
4639
4640 This function uses the same algorithm as reload_reg_free_p above. */
4641
f5963e61 4642int
351aa1c1
RK
4643reloads_conflict (r1, r2)
4644 int r1, r2;
4645{
eceef4c9
BS
4646 enum reload_type r1_type = rld[r1].when_needed;
4647 enum reload_type r2_type = rld[r2].when_needed;
4648 int r1_opnum = rld[r1].opnum;
4649 int r2_opnum = rld[r2].opnum;
351aa1c1 4650
2edc8d65
RK
4651 /* RELOAD_OTHER conflicts with everything. */
4652 if (r2_type == RELOAD_OTHER)
351aa1c1
RK
4653 return 1;
4654
4655 /* Otherwise, check conflicts differently for each type. */
4656
4657 switch (r1_type)
4658 {
4659 case RELOAD_FOR_INPUT:
05d10675 4660 return (r2_type == RELOAD_FOR_INSN
351aa1c1 4661 || r2_type == RELOAD_FOR_OPERAND_ADDRESS
893bc853 4662 || r2_type == RELOAD_FOR_OPADDR_ADDR
351aa1c1 4663 || r2_type == RELOAD_FOR_INPUT
47c8cf91
ILT
4664 || ((r2_type == RELOAD_FOR_INPUT_ADDRESS
4665 || r2_type == RELOAD_FOR_INPADDR_ADDRESS)
4666 && r2_opnum > r1_opnum));
351aa1c1
RK
4667
4668 case RELOAD_FOR_INPUT_ADDRESS:
4669 return ((r2_type == RELOAD_FOR_INPUT_ADDRESS && r1_opnum == r2_opnum)
4670 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
4671
47c8cf91
ILT
4672 case RELOAD_FOR_INPADDR_ADDRESS:
4673 return ((r2_type == RELOAD_FOR_INPADDR_ADDRESS && r1_opnum == r2_opnum)
4674 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
4675
351aa1c1
RK
4676 case RELOAD_FOR_OUTPUT_ADDRESS:
4677 return ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS && r2_opnum == r1_opnum)
4678 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum >= r1_opnum));
4679
47c8cf91
ILT
4680 case RELOAD_FOR_OUTADDR_ADDRESS:
4681 return ((r2_type == RELOAD_FOR_OUTADDR_ADDRESS && r2_opnum == r1_opnum)
4682 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum >= r1_opnum));
4683
351aa1c1
RK
4684 case RELOAD_FOR_OPERAND_ADDRESS:
4685 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_INSN
a94ce333 4686 || r2_type == RELOAD_FOR_OPERAND_ADDRESS);
351aa1c1 4687
893bc853 4688 case RELOAD_FOR_OPADDR_ADDR:
05d10675 4689 return (r2_type == RELOAD_FOR_INPUT
a94ce333 4690 || r2_type == RELOAD_FOR_OPADDR_ADDR);
893bc853 4691
351aa1c1
RK
4692 case RELOAD_FOR_OUTPUT:
4693 return (r2_type == RELOAD_FOR_INSN || r2_type == RELOAD_FOR_OUTPUT
47c8cf91
ILT
4694 || ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS
4695 || r2_type == RELOAD_FOR_OUTADDR_ADDRESS)
ca1a4af1 4696 && r2_opnum <= r1_opnum));
351aa1c1
RK
4697
4698 case RELOAD_FOR_INSN:
4699 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_OUTPUT
4700 || r2_type == RELOAD_FOR_INSN
4701 || r2_type == RELOAD_FOR_OPERAND_ADDRESS);
4702
4703 case RELOAD_FOR_OTHER_ADDRESS:
4704 return r2_type == RELOAD_FOR_OTHER_ADDRESS;
4705
adab4fc5 4706 case RELOAD_OTHER:
2edc8d65 4707 return 1;
adab4fc5 4708
351aa1c1
RK
4709 default:
4710 abort ();
4711 }
4712}
4713\f
32131a9c
RK
4714/* Indexed by reload number, 1 if incoming value
4715 inherited from previous insns. */
4716char reload_inherited[MAX_RELOADS];
4717
4718/* For an inherited reload, this is the insn the reload was inherited from,
4719 if we know it. Otherwise, this is 0. */
4720rtx reload_inheritance_insn[MAX_RELOADS];
4721
4722/* If non-zero, this is a place to get the value of the reload,
4723 rather than using reload_in. */
4724rtx reload_override_in[MAX_RELOADS];
4725
e6e52be0
R
4726/* For each reload, the hard register number of the register used,
4727 or -1 if we did not need a register for this reload. */
32131a9c
RK
4728int reload_spill_index[MAX_RELOADS];
4729
304a22dd
R
4730/* Subroutine of free_for_value_p, used to check a single register.
4731 START_REGNO is the starting regno of the full reload register
4732 (possibly comprising multiple hard registers) that we are considering. */
f5470689 4733
6e684430 4734static int
304a22dd
R
4735reload_reg_free_for_value_p (start_regno, regno, opnum, type, value, out,
4736 reloadnum, ignore_address_reloads)
4737 int start_regno, regno;
6e684430
R
4738 int opnum;
4739 enum reload_type type;
f5470689
R
4740 rtx value, out;
4741 int reloadnum;
5828374f 4742 int ignore_address_reloads;
6e684430
R
4743{
4744 int time1;
09a308fe
R
4745 /* Set if we see an input reload that must not share its reload register
4746 with any new earlyclobber, but might otherwise share the reload
4747 register with an output or input-output reload. */
4748 int check_earlyclobber = 0;
6e684430 4749 int i;
dfe96118
R
4750 int copy = 0;
4751
9e3a9cf2 4752 if (TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
dc8842bf
AH
4753 return 0;
4754
dfe96118
R
4755 if (out == const0_rtx)
4756 {
4757 copy = 1;
4758 out = NULL_RTX;
4759 }
6e684430
R
4760
4761 /* We use some pseudo 'time' value to check if the lifetimes of the
4762 new register use would overlap with the one of a previous reload
4763 that is not read-only or uses a different value.
4764 The 'time' used doesn't have to be linear in any shape or form, just
4765 monotonic.
4766 Some reload types use different 'buckets' for each operand.
4767 So there are MAX_RECOG_OPERANDS different time values for each
cecbf6e2
R
4768 such reload type.
4769 We compute TIME1 as the time when the register for the prospective
4770 new reload ceases to be live, and TIME2 for each existing
4771 reload as the time when that the reload register of that reload
4772 becomes live.
4773 Where there is little to be gained by exact lifetime calculations,
4774 we just make conservative assumptions, i.e. a longer lifetime;
4775 this is done in the 'default:' cases. */
6e684430
R
4776 switch (type)
4777 {
4778 case RELOAD_FOR_OTHER_ADDRESS:
203588e7 4779 /* RELOAD_FOR_OTHER_ADDRESS conflicts with RELOAD_OTHER reloads. */
c2b4b171 4780 time1 = copy ? 0 : 1;
6e684430 4781 break;
dfe96118
R
4782 case RELOAD_OTHER:
4783 time1 = copy ? 1 : MAX_RECOG_OPERANDS * 5 + 5;
4784 break;
05d10675
BS
4785 /* For each input, we may have a sequence of RELOAD_FOR_INPADDR_ADDRESS,
4786 RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT. By adding 0 / 1 / 2 ,
4787 respectively, to the time values for these, we get distinct time
4788 values. To get distinct time values for each operand, we have to
4789 multiply opnum by at least three. We round that up to four because
4790 multiply by four is often cheaper. */
6e684430 4791 case RELOAD_FOR_INPADDR_ADDRESS:
dfe96118 4792 time1 = opnum * 4 + 2;
6e684430
R
4793 break;
4794 case RELOAD_FOR_INPUT_ADDRESS:
dfe96118
R
4795 time1 = opnum * 4 + 3;
4796 break;
4797 case RELOAD_FOR_INPUT:
4798 /* All RELOAD_FOR_INPUT reloads remain live till the instruction
4799 executes (inclusive). */
4800 time1 = copy ? opnum * 4 + 4 : MAX_RECOG_OPERANDS * 4 + 3;
6e684430 4801 break;
cb2afeb3 4802 case RELOAD_FOR_OPADDR_ADDR:
05d10675
BS
4803 /* opnum * 4 + 4
4804 <= (MAX_RECOG_OPERANDS - 1) * 4 + 4 == MAX_RECOG_OPERANDS * 4 */
cb2afeb3
R
4805 time1 = MAX_RECOG_OPERANDS * 4 + 1;
4806 break;
4807 case RELOAD_FOR_OPERAND_ADDRESS:
4808 /* RELOAD_FOR_OPERAND_ADDRESS reloads are live even while the insn
4809 is executed. */
dfe96118
R
4810 time1 = copy ? MAX_RECOG_OPERANDS * 4 + 2 : MAX_RECOG_OPERANDS * 4 + 3;
4811 break;
4812 case RELOAD_FOR_OUTADDR_ADDRESS:
4813 time1 = MAX_RECOG_OPERANDS * 4 + 4 + opnum;
6e684430 4814 break;
6e684430 4815 case RELOAD_FOR_OUTPUT_ADDRESS:
dfe96118 4816 time1 = MAX_RECOG_OPERANDS * 4 + 5 + opnum;
6e684430
R
4817 break;
4818 default:
dfe96118 4819 time1 = MAX_RECOG_OPERANDS * 5 + 5;
6e684430
R
4820 }
4821
4822 for (i = 0; i < n_reloads; i++)
4823 {
eceef4c9 4824 rtx reg = rld[i].reg_rtx;
6e684430
R
4825 if (reg && GET_CODE (reg) == REG
4826 && ((unsigned) regno - true_regnum (reg)
83e0821b 4827 <= HARD_REGNO_NREGS (REGNO (reg), GET_MODE (reg)) - (unsigned)1)
f5470689 4828 && i != reloadnum)
6e684430 4829 {
304a22dd
R
4830 rtx other_input = rld[i].in;
4831
4832 /* If the other reload loads the same input value, that
4833 will not cause a conflict only if it's loading it into
4834 the same register. */
4835 if (true_regnum (reg) != start_regno)
4836 other_input = NULL_RTX;
4837 if (! other_input || ! rtx_equal_p (other_input, value)
eceef4c9 4838 || rld[i].out || out)
6e684430 4839 {
09a308fe 4840 int time2;
eceef4c9 4841 switch (rld[i].when_needed)
f5470689
R
4842 {
4843 case RELOAD_FOR_OTHER_ADDRESS:
4844 time2 = 0;
4845 break;
4846 case RELOAD_FOR_INPADDR_ADDRESS:
cb2afeb3
R
4847 /* find_reloads makes sure that a
4848 RELOAD_FOR_{INP,OP,OUT}ADDR_ADDRESS reload is only used
4849 by at most one - the first -
4850 RELOAD_FOR_{INPUT,OPERAND,OUTPUT}_ADDRESS . If the
4851 address reload is inherited, the address address reload
4852 goes away, so we can ignore this conflict. */
dfe96118
R
4853 if (type == RELOAD_FOR_INPUT_ADDRESS && reloadnum == i + 1
4854 && ignore_address_reloads
4855 /* Unless the RELOAD_FOR_INPUT is an auto_inc expression.
4856 Then the address address is still needed to store
4857 back the new address. */
eceef4c9 4858 && ! rld[reloadnum].out)
cb2afeb3 4859 continue;
dfe96118
R
4860 /* Likewise, if a RELOAD_FOR_INPUT can inherit a value, its
4861 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS
4862 reloads go away. */
eceef4c9 4863 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
dfe96118
R
4864 && ignore_address_reloads
4865 /* Unless we are reloading an auto_inc expression. */
eceef4c9 4866 && ! rld[reloadnum].out)
dfe96118 4867 continue;
eceef4c9 4868 time2 = rld[i].opnum * 4 + 2;
f5470689
R
4869 break;
4870 case RELOAD_FOR_INPUT_ADDRESS:
eceef4c9 4871 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
dfe96118 4872 && ignore_address_reloads
eceef4c9 4873 && ! rld[reloadnum].out)
dfe96118 4874 continue;
eceef4c9 4875 time2 = rld[i].opnum * 4 + 3;
f5470689
R
4876 break;
4877 case RELOAD_FOR_INPUT:
eceef4c9 4878 time2 = rld[i].opnum * 4 + 4;
09a308fe 4879 check_earlyclobber = 1;
f5470689 4880 break;
eceef4c9 4881 /* rld[i].opnum * 4 + 4 <= (MAX_RECOG_OPERAND - 1) * 4 + 4
05d10675 4882 == MAX_RECOG_OPERAND * 4 */
cb2afeb3 4883 case RELOAD_FOR_OPADDR_ADDR:
dfe96118
R
4884 if (type == RELOAD_FOR_OPERAND_ADDRESS && reloadnum == i + 1
4885 && ignore_address_reloads
eceef4c9 4886 && ! rld[reloadnum].out)
cb2afeb3 4887 continue;
dfe96118 4888 time2 = MAX_RECOG_OPERANDS * 4 + 1;
cb2afeb3
R
4889 break;
4890 case RELOAD_FOR_OPERAND_ADDRESS:
dfe96118 4891 time2 = MAX_RECOG_OPERANDS * 4 + 2;
09a308fe 4892 check_earlyclobber = 1;
dfe96118
R
4893 break;
4894 case RELOAD_FOR_INSN:
4895 time2 = MAX_RECOG_OPERANDS * 4 + 3;
cb2afeb3 4896 break;
f5470689 4897 case RELOAD_FOR_OUTPUT:
05d10675
BS
4898 /* All RELOAD_FOR_OUTPUT reloads become live just after the
4899 instruction is executed. */
dfe96118 4900 time2 = MAX_RECOG_OPERANDS * 4 + 4;
f5470689 4901 break;
05d10675
BS
4902 /* The first RELOAD_FOR_OUTADDR_ADDRESS reload conflicts with
4903 the RELOAD_FOR_OUTPUT reloads, so assign it the same time
4904 value. */
cb2afeb3 4905 case RELOAD_FOR_OUTADDR_ADDRESS:
dfe96118
R
4906 if (type == RELOAD_FOR_OUTPUT_ADDRESS && reloadnum == i + 1
4907 && ignore_address_reloads
eceef4c9 4908 && ! rld[reloadnum].out)
cb2afeb3 4909 continue;
eceef4c9 4910 time2 = MAX_RECOG_OPERANDS * 4 + 4 + rld[i].opnum;
dfe96118 4911 break;
f5470689 4912 case RELOAD_FOR_OUTPUT_ADDRESS:
eceef4c9 4913 time2 = MAX_RECOG_OPERANDS * 4 + 5 + rld[i].opnum;
f5470689
R
4914 break;
4915 case RELOAD_OTHER:
dfe96118
R
4916 /* If there is no conflict in the input part, handle this
4917 like an output reload. */
304a22dd 4918 if (! rld[i].in || rtx_equal_p (other_input, value))
f5470689 4919 {
dfe96118 4920 time2 = MAX_RECOG_OPERANDS * 4 + 4;
57850c85 4921 /* Earlyclobbered outputs must conflict with inputs. */
09a308fe
R
4922 if (earlyclobber_operand_p (rld[i].out))
4923 time2 = MAX_RECOG_OPERANDS * 4 + 3;
1d7254c5 4924
f5470689
R
4925 break;
4926 }
dfe96118
R
4927 time2 = 1;
4928 /* RELOAD_OTHER might be live beyond instruction execution,
4929 but this is not obvious when we set time2 = 1. So check
4930 here if there might be a problem with the new reload
4931 clobbering the register used by the RELOAD_OTHER. */
4932 if (out)
4933 return 0;
4934 break;
f5470689 4935 default:
dfe96118 4936 return 0;
f5470689 4937 }
25963977 4938 if ((time1 >= time2
eceef4c9 4939 && (! rld[i].in || rld[i].out
304a22dd 4940 || ! rtx_equal_p (other_input, value)))
eceef4c9 4941 || (out && rld[reloadnum].out_reg
701d55e8 4942 && time2 >= MAX_RECOG_OPERANDS * 4 + 3))
f5470689 4943 return 0;
6e684430 4944 }
6e684430
R
4945 }
4946 }
09a308fe
R
4947
4948 /* Earlyclobbered outputs must conflict with inputs. */
4949 if (check_earlyclobber && out && earlyclobber_operand_p (out))
4950 return 0;
4951
6e684430
R
4952 return 1;
4953}
4954
c02cad8f
BS
4955/* Return 1 if the value in reload reg REGNO, as used by a reload
4956 needed for the part of the insn specified by OPNUM and TYPE,
4957 may be used to load VALUE into it.
4958
4959 MODE is the mode in which the register is used, this is needed to
4960 determine how many hard regs to test.
4961
4962 Other read-only reloads with the same value do not conflict
4963 unless OUT is non-zero and these other reloads have to live while
4964 output reloads live.
4965 If OUT is CONST0_RTX, this is a special case: it means that the
4966 test should not be for using register REGNO as reload register, but
4967 for copying from register REGNO into the reload register.
4968
4969 RELOADNUM is the number of the reload we want to load this value for;
4970 a reload does not conflict with itself.
4971
4972 When IGNORE_ADDRESS_RELOADS is set, we can not have conflicts with
4973 reloads that load an address for the very reload we are considering.
4974
4975 The caller has to make sure that there is no conflict with the return
4976 register. */
4977
4978static int
4979free_for_value_p (regno, mode, opnum, type, value, out, reloadnum,
4980 ignore_address_reloads)
4981 int regno;
4982 enum machine_mode mode;
4983 int opnum;
4984 enum reload_type type;
4985 rtx value, out;
4986 int reloadnum;
4987 int ignore_address_reloads;
4988{
4989 int nregs = HARD_REGNO_NREGS (regno, mode);
4990 while (nregs-- > 0)
304a22dd
R
4991 if (! reload_reg_free_for_value_p (regno, regno + nregs, opnum, type,
4992 value, out, reloadnum,
4993 ignore_address_reloads))
c02cad8f
BS
4994 return 0;
4995 return 1;
4996}
4997
ff6534ad
BS
4998/* Determine whether the reload reg X overlaps any rtx'es used for
4999 overriding inheritance. Return nonzero if so. */
5000
5001static int
5002conflicts_with_override (x)
5003 rtx x;
5004{
5005 int i;
5006 for (i = 0; i < n_reloads; i++)
5007 if (reload_override_in[i]
5008 && reg_overlap_mentioned_p (x, reload_override_in[i]))
5009 return 1;
5010 return 0;
5011}
5012\f
67e61fe7
BS
5013/* Give an error message saying we failed to find a reload for INSN,
5014 and clear out reload R. */
5015static void
5016failed_reload (insn, r)
5017 rtx insn;
5018 int r;
5019{
5020 if (asm_noperands (PATTERN (insn)) < 0)
5021 /* It's the compiler's fault. */
5022 fatal_insn ("Could not find a spill register", insn);
5023
5024 /* It's the user's fault; the operand's mode and constraint
5025 don't match. Disable this reload so we don't crash in final. */
5026 error_for_asm (insn,
5027 "`asm' operand constraint incompatible with operand size");
5028 rld[r].in = 0;
5029 rld[r].out = 0;
5030 rld[r].reg_rtx = 0;
5031 rld[r].optional = 1;
5032 rld[r].secondary_p = 1;
5033}
5034
5035/* I is the index in SPILL_REG_RTX of the reload register we are to allocate
5036 for reload R. If it's valid, get an rtx for it. Return nonzero if
5037 successful. */
5038static int
5039set_reload_reg (i, r)
5040 int i, r;
5041{
5042 int regno;
5043 rtx reg = spill_reg_rtx[i];
5044
5045 if (reg == 0 || GET_MODE (reg) != rld[r].mode)
5046 spill_reg_rtx[i] = reg
5047 = gen_rtx_REG (rld[r].mode, spill_regs[i]);
5048
5049 regno = true_regnum (reg);
5050
5051 /* Detect when the reload reg can't hold the reload mode.
5052 This used to be one `if', but Sequent compiler can't handle that. */
5053 if (HARD_REGNO_MODE_OK (regno, rld[r].mode))
5054 {
5055 enum machine_mode test_mode = VOIDmode;
5056 if (rld[r].in)
5057 test_mode = GET_MODE (rld[r].in);
5058 /* If rld[r].in has VOIDmode, it means we will load it
5059 in whatever mode the reload reg has: to wit, rld[r].mode.
5060 We have already tested that for validity. */
5061 /* Aside from that, we need to test that the expressions
5062 to reload from or into have modes which are valid for this
5063 reload register. Otherwise the reload insns would be invalid. */
5064 if (! (rld[r].in != 0 && test_mode != VOIDmode
5065 && ! HARD_REGNO_MODE_OK (regno, test_mode)))
5066 if (! (rld[r].out != 0
5067 && ! HARD_REGNO_MODE_OK (regno, GET_MODE (rld[r].out))))
5068 {
5069 /* The reg is OK. */
5070 last_spill_reg = i;
5071
5072 /* Mark as in use for this insn the reload regs we use
5073 for this. */
5074 mark_reload_reg_in_use (spill_regs[i], rld[r].opnum,
5075 rld[r].when_needed, rld[r].mode);
5076
5077 rld[r].reg_rtx = reg;
5078 reload_spill_index[r] = spill_regs[i];
5079 return 1;
5080 }
5081 }
5082 return 0;
5083}
5084
32131a9c
RK
5085/* Find a spill register to use as a reload register for reload R.
5086 LAST_RELOAD is non-zero if this is the last reload for the insn being
5087 processed.
5088
eceef4c9 5089 Set rld[R].reg_rtx to the register allocated.
32131a9c 5090
f5d8c9f4
BS
5091 We return 1 if successful, or 0 if we couldn't find a spill reg and
5092 we didn't change anything. */
32131a9c
RK
5093
5094static int
f5d8c9f4 5095allocate_reload_reg (chain, r, last_reload)
272df862 5096 struct insn_chain *chain ATTRIBUTE_UNUSED;
32131a9c 5097 int r;
32131a9c 5098 int last_reload;
32131a9c 5099{
67e61fe7 5100 int i, pass, count;
32131a9c
RK
5101
5102 /* If we put this reload ahead, thinking it is a group,
5103 then insist on finding a group. Otherwise we can grab a
a8fdc208 5104 reg that some other reload needs.
32131a9c
RK
5105 (That can happen when we have a 68000 DATA_OR_FP_REG
5106 which is a group of data regs or one fp reg.)
5107 We need not be so restrictive if there are no more reloads
5108 for this insn.
5109
5110 ??? Really it would be nicer to have smarter handling
5111 for that kind of reg class, where a problem like this is normal.
5112 Perhaps those classes should be avoided for reloading
5113 by use of more alternatives. */
5114
8ec450a4 5115 int force_group = rld[r].nregs > 1 && ! last_reload;
32131a9c
RK
5116
5117 /* If we want a single register and haven't yet found one,
5118 take any reg in the right class and not in use.
5119 If we want a consecutive group, here is where we look for it.
5120
5121 We use two passes so we can first look for reload regs to
5122 reuse, which are already in use for other reloads in this insn,
5123 and only then use additional registers.
5124 I think that maximizing reuse is needed to make sure we don't
5125 run out of reload regs. Suppose we have three reloads, and
5126 reloads A and B can share regs. These need two regs.
5127 Suppose A and B are given different regs.
5128 That leaves none for C. */
5129 for (pass = 0; pass < 2; pass++)
5130 {
5131 /* I is the index in spill_regs.
5132 We advance it round-robin between insns to use all spill regs
5133 equally, so that inherited reloads have a chance
f5d8c9f4
BS
5134 of leapfrogging each other. */
5135
5136 i = last_spill_reg;
05d10675 5137
a5339699 5138 for (count = 0; count < n_spills; count++)
32131a9c 5139 {
eceef4c9 5140 int class = (int) rld[r].class;
03acd8f8 5141 int regnum;
32131a9c 5142
03acd8f8
BS
5143 i++;
5144 if (i >= n_spills)
5145 i -= n_spills;
5146 regnum = spill_regs[i];
32131a9c 5147
eceef4c9
BS
5148 if ((reload_reg_free_p (regnum, rld[r].opnum,
5149 rld[r].when_needed)
5150 || (rld[r].in
05d10675
BS
5151 /* We check reload_reg_used to make sure we
5152 don't clobber the return register. */
03acd8f8 5153 && ! TEST_HARD_REG_BIT (reload_reg_used, regnum)
c02cad8f
BS
5154 && free_for_value_p (regnum, rld[r].mode, rld[r].opnum,
5155 rld[r].when_needed, rld[r].in,
5156 rld[r].out, r, 1)))
03acd8f8 5157 && TEST_HARD_REG_BIT (reg_class_contents[class], regnum)
8ec450a4 5158 && HARD_REGNO_MODE_OK (regnum, rld[r].mode)
be7ae2a4
RK
5159 /* Look first for regs to share, then for unshared. But
5160 don't share regs used for inherited reloads; they are
5161 the ones we want to preserve. */
5162 && (pass
5163 || (TEST_HARD_REG_BIT (reload_reg_used_at_all,
03acd8f8 5164 regnum)
be7ae2a4 5165 && ! TEST_HARD_REG_BIT (reload_reg_used_for_inherit,
03acd8f8 5166 regnum))))
32131a9c 5167 {
8ec450a4 5168 int nr = HARD_REGNO_NREGS (regnum, rld[r].mode);
32131a9c
RK
5169 /* Avoid the problem where spilling a GENERAL_OR_FP_REG
5170 (on 68000) got us two FP regs. If NR is 1,
5171 we would reject both of them. */
5172 if (force_group)
67e61fe7 5173 nr = rld[r].nregs;
32131a9c
RK
5174 /* If we need only one reg, we have already won. */
5175 if (nr == 1)
5176 {
5177 /* But reject a single reg if we demand a group. */
5178 if (force_group)
5179 continue;
5180 break;
5181 }
5182 /* Otherwise check that as many consecutive regs as we need
f5d8c9f4
BS
5183 are available here. */
5184 while (nr > 1)
5185 {
5186 int regno = regnum + nr - 1;
5187 if (!(TEST_HARD_REG_BIT (reg_class_contents[class], regno)
5188 && spill_reg_order[regno] >= 0
5189 && reload_reg_free_p (regno, rld[r].opnum,
5190 rld[r].when_needed)))
5191 break;
5192 nr--;
5193 }
32131a9c
RK
5194 if (nr == 1)
5195 break;
5196 }
5197 }
5198
5199 /* If we found something on pass 1, omit pass 2. */
5200 if (count < n_spills)
5201 break;
5202 }
1d7254c5 5203
32131a9c 5204 /* We should have found a spill register by now. */
f5d8c9f4 5205 if (count >= n_spills)
32131a9c
RK
5206 return 0;
5207
f5d8c9f4
BS
5208 /* I is the index in SPILL_REG_RTX of the reload register we are to
5209 allocate. Get an rtx for it and find its register number. */
32131a9c 5210
f5d8c9f4 5211 return set_reload_reg (i, r);
32131a9c
RK
5212}
5213\f
67e61fe7
BS
5214/* Initialize all the tables needed to allocate reload registers.
5215 CHAIN is the insn currently being processed; SAVE_RELOAD_REG_RTX
5216 is the array we use to restore the reg_rtx field for every reload. */
efc9bd41 5217
32131a9c 5218static void
67e61fe7 5219choose_reload_regs_init (chain, save_reload_reg_rtx)
7609e720 5220 struct insn_chain *chain;
67e61fe7 5221 rtx *save_reload_reg_rtx;
32131a9c 5222{
67e61fe7 5223 int i;
32131a9c 5224
67e61fe7
BS
5225 for (i = 0; i < n_reloads; i++)
5226 rld[i].reg_rtx = save_reload_reg_rtx[i];
32131a9c 5227
961192e1
JM
5228 memset (reload_inherited, 0, MAX_RELOADS);
5229 memset ((char *) reload_inheritance_insn, 0, MAX_RELOADS * sizeof (rtx));
5230 memset ((char *) reload_override_in, 0, MAX_RELOADS * sizeof (rtx));
32131a9c
RK
5231
5232 CLEAR_HARD_REG_SET (reload_reg_used);
5233 CLEAR_HARD_REG_SET (reload_reg_used_at_all);
32131a9c 5234 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr);
893bc853 5235 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr_reload);
546b63fb
RK
5236 CLEAR_HARD_REG_SET (reload_reg_used_in_insn);
5237 CLEAR_HARD_REG_SET (reload_reg_used_in_other_addr);
32131a9c 5238
f1db3576
JL
5239 CLEAR_HARD_REG_SET (reg_used_in_insn);
5240 {
5241 HARD_REG_SET tmp;
239a0f5b 5242 REG_SET_TO_HARD_REG_SET (tmp, &chain->live_throughout);
f1db3576 5243 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
239a0f5b 5244 REG_SET_TO_HARD_REG_SET (tmp, &chain->dead_or_set);
f1db3576 5245 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
239a0f5b
BS
5246 compute_use_by_pseudos (&reg_used_in_insn, &chain->live_throughout);
5247 compute_use_by_pseudos (&reg_used_in_insn, &chain->dead_or_set);
f1db3576 5248 }
efc9bd41 5249
546b63fb
RK
5250 for (i = 0; i < reload_n_operands; i++)
5251 {
5252 CLEAR_HARD_REG_SET (reload_reg_used_in_output[i]);
5253 CLEAR_HARD_REG_SET (reload_reg_used_in_input[i]);
5254 CLEAR_HARD_REG_SET (reload_reg_used_in_input_addr[i]);
47c8cf91 5255 CLEAR_HARD_REG_SET (reload_reg_used_in_inpaddr_addr[i]);
546b63fb 5256 CLEAR_HARD_REG_SET (reload_reg_used_in_output_addr[i]);
47c8cf91 5257 CLEAR_HARD_REG_SET (reload_reg_used_in_outaddr_addr[i]);
546b63fb 5258 }
32131a9c 5259
9e3a9cf2 5260 COMPL_HARD_REG_SET (reload_reg_unavailable, chain->used_spill_regs);
05d10675 5261
67e61fe7 5262 CLEAR_HARD_REG_SET (reload_reg_used_for_inherit);
32131a9c 5263
67e61fe7
BS
5264 for (i = 0; i < n_reloads; i++)
5265 /* If we have already decided to use a certain register,
5266 don't use it in another way. */
5267 if (rld[i].reg_rtx)
5268 mark_reload_reg_in_use (REGNO (rld[i].reg_rtx), rld[i].opnum,
5269 rld[i].when_needed, rld[i].mode);
5270}
32131a9c 5271
67e61fe7
BS
5272/* Assign hard reg targets for the pseudo-registers we must reload
5273 into hard regs for this insn.
5274 Also output the instructions to copy them in and out of the hard regs.
5275
5276 For machines with register classes, we are responsible for
5277 finding a reload reg in the proper class. */
5278
5279static void
5280choose_reload_regs (chain)
5281 struct insn_chain *chain;
5282{
5283 rtx insn = chain->insn;
5284 register int i, j;
770ae6cc 5285 unsigned int max_group_size = 1;
67e61fe7 5286 enum reg_class group_class = NO_REGS;
f5d8c9f4 5287 int pass, win, inheritance;
67e61fe7
BS
5288
5289 rtx save_reload_reg_rtx[MAX_RELOADS];
32131a9c 5290
32131a9c
RK
5291 /* In order to be certain of getting the registers we need,
5292 we must sort the reloads into order of increasing register class.
5293 Then our grabbing of reload registers will parallel the process
a8fdc208 5294 that provided the reload registers.
32131a9c
RK
5295
5296 Also note whether any of the reloads wants a consecutive group of regs.
5297 If so, record the maximum size of the group desired and what
5298 register class contains all the groups needed by this insn. */
5299
5300 for (j = 0; j < n_reloads; j++)
5301 {
5302 reload_order[j] = j;
5303 reload_spill_index[j] = -1;
5304
8ec450a4 5305 if (rld[j].nregs > 1)
32131a9c 5306 {
8ec450a4 5307 max_group_size = MAX (rld[j].nregs, max_group_size);
770ae6cc 5308 group_class
1d7254c5 5309 = reg_class_superunion[(int) rld[j].class][(int)group_class];
32131a9c
RK
5310 }
5311
eceef4c9 5312 save_reload_reg_rtx[j] = rld[j].reg_rtx;
32131a9c
RK
5313 }
5314
5315 if (n_reloads > 1)
5316 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
5317
58b1581b
RS
5318 /* If -O, try first with inheritance, then turning it off.
5319 If not -O, don't do inheritance.
5320 Using inheritance when not optimizing leads to paradoxes
5321 with fp on the 68k: fp numbers (not NaNs) fail to be equal to themselves
5322 because one side of the comparison might be inherited. */
f5d8c9f4 5323 win = 0;
58b1581b 5324 for (inheritance = optimize > 0; inheritance >= 0; inheritance--)
32131a9c 5325 {
67e61fe7
BS
5326 choose_reload_regs_init (chain, save_reload_reg_rtx);
5327
32131a9c
RK
5328 /* Process the reloads in order of preference just found.
5329 Beyond this point, subregs can be found in reload_reg_rtx.
5330
770ae6cc
RK
5331 This used to look for an existing reloaded home for all of the
5332 reloads, and only then perform any new reloads. But that could lose
5333 if the reloads were done out of reg-class order because a later
5334 reload with a looser constraint might have an old home in a register
5335 needed by an earlier reload with a tighter constraint.
32131a9c
RK
5336
5337 To solve this, we make two passes over the reloads, in the order
5338 described above. In the first pass we try to inherit a reload
5339 from a previous insn. If there is a later reload that needs a
5340 class that is a proper subset of the class being processed, we must
5341 also allocate a spill register during the first pass.
5342
5343 Then make a second pass over the reloads to allocate any reloads
5344 that haven't been given registers yet. */
5345
5346 for (j = 0; j < n_reloads; j++)
5347 {
5348 register int r = reload_order[j];
8593b745 5349 rtx search_equiv = NULL_RTX;
32131a9c
RK
5350
5351 /* Ignore reloads that got marked inoperative. */
eceef4c9
BS
5352 if (rld[r].out == 0 && rld[r].in == 0
5353 && ! rld[r].secondary_p)
32131a9c
RK
5354 continue;
5355
b29514ee 5356 /* If find_reloads chose to use reload_in or reload_out as a reload
b080c137
RK
5357 register, we don't need to chose one. Otherwise, try even if it
5358 found one since we might save an insn if we find the value lying
b29514ee
R
5359 around.
5360 Try also when reload_in is a pseudo without a hard reg. */
eceef4c9
BS
5361 if (rld[r].in != 0 && rld[r].reg_rtx != 0
5362 && (rtx_equal_p (rld[r].in, rld[r].reg_rtx)
5363 || (rtx_equal_p (rld[r].out, rld[r].reg_rtx)
5364 && GET_CODE (rld[r].in) != MEM
5365 && true_regnum (rld[r].in) < FIRST_PSEUDO_REGISTER)))
32131a9c
RK
5366 continue;
5367
5368#if 0 /* No longer needed for correct operation.
5369 It might give better code, or might not; worth an experiment? */
5370 /* If this is an optional reload, we can't inherit from earlier insns
5371 until we are sure that any non-optional reloads have been allocated.
5372 The following code takes advantage of the fact that optional reloads
5373 are at the end of reload_order. */
eceef4c9 5374 if (rld[r].optional != 0)
32131a9c 5375 for (i = 0; i < j; i++)
eceef4c9
BS
5376 if ((rld[reload_order[i]].out != 0
5377 || rld[reload_order[i]].in != 0
5378 || rld[reload_order[i]].secondary_p)
5379 && ! rld[reload_order[i]].optional
5380 && rld[reload_order[i]].reg_rtx == 0)
f5d8c9f4 5381 allocate_reload_reg (chain, reload_order[i], 0);
32131a9c
RK
5382#endif
5383
5384 /* First see if this pseudo is already available as reloaded
5385 for a previous insn. We cannot try to inherit for reloads
5386 that are smaller than the maximum number of registers needed
5387 for groups unless the register we would allocate cannot be used
5388 for the groups.
5389
5390 We could check here to see if this is a secondary reload for
5391 an object that is already in a register of the desired class.
5392 This would avoid the need for the secondary reload register.
5393 But this is complex because we can't easily determine what
b080c137
RK
5394 objects might want to be loaded via this reload. So let a
5395 register be allocated here. In `emit_reload_insns' we suppress
5396 one of the loads in the case described above. */
32131a9c
RK
5397
5398 if (inheritance)
5399 {
ddef6bc7 5400 int byte = 0;
32131a9c 5401 register int regno = -1;
6a651371 5402 enum machine_mode mode = VOIDmode;
32131a9c 5403
eceef4c9 5404 if (rld[r].in == 0)
32131a9c 5405 ;
eceef4c9 5406 else if (GET_CODE (rld[r].in) == REG)
db660765 5407 {
eceef4c9
BS
5408 regno = REGNO (rld[r].in);
5409 mode = GET_MODE (rld[r].in);
db660765 5410 }
eceef4c9 5411 else if (GET_CODE (rld[r].in_reg) == REG)
db660765 5412 {
eceef4c9
BS
5413 regno = REGNO (rld[r].in_reg);
5414 mode = GET_MODE (rld[r].in_reg);
db660765 5415 }
eceef4c9
BS
5416 else if (GET_CODE (rld[r].in_reg) == SUBREG
5417 && GET_CODE (SUBREG_REG (rld[r].in_reg)) == REG)
b60a8416 5418 {
ddef6bc7 5419 byte = SUBREG_BYTE (rld[r].in_reg);
eceef4c9 5420 regno = REGNO (SUBREG_REG (rld[r].in_reg));
cb2afeb3 5421 if (regno < FIRST_PSEUDO_REGISTER)
ddef6bc7 5422 regno = subreg_regno (rld[r].in_reg);
eceef4c9 5423 mode = GET_MODE (rld[r].in_reg);
cb2afeb3
R
5424 }
5425#ifdef AUTO_INC_DEC
eceef4c9
BS
5426 else if ((GET_CODE (rld[r].in_reg) == PRE_INC
5427 || GET_CODE (rld[r].in_reg) == PRE_DEC
5428 || GET_CODE (rld[r].in_reg) == POST_INC
5429 || GET_CODE (rld[r].in_reg) == POST_DEC)
5430 && GET_CODE (XEXP (rld[r].in_reg, 0)) == REG)
cb2afeb3 5431 {
eceef4c9
BS
5432 regno = REGNO (XEXP (rld[r].in_reg, 0));
5433 mode = GET_MODE (XEXP (rld[r].in_reg, 0));
5434 rld[r].out = rld[r].in;
b60a8416 5435 }
cb2afeb3 5436#endif
32131a9c
RK
5437#if 0
5438 /* This won't work, since REGNO can be a pseudo reg number.
5439 Also, it takes much more hair to keep track of all the things
5440 that can invalidate an inherited reload of part of a pseudoreg. */
eceef4c9
BS
5441 else if (GET_CODE (rld[r].in) == SUBREG
5442 && GET_CODE (SUBREG_REG (rld[r].in)) == REG)
ddef6bc7 5443 regno = subreg_regno (rld[r].in);
32131a9c
RK
5444#endif
5445
5446 if (regno >= 0 && reg_last_reload_reg[regno] != 0)
5447 {
eceef4c9 5448 enum reg_class class = rld[r].class, last_class;
cb2afeb3 5449 rtx last_reg = reg_last_reload_reg[regno];
02188693 5450 enum machine_mode need_mode;
05d10675 5451
ddef6bc7
JJ
5452 i = REGNO (last_reg);
5453 i += subreg_regno_offset (i, GET_MODE (last_reg), byte, mode);
cb2afeb3 5454 last_class = REGNO_REG_CLASS (i);
02188693 5455
ddef6bc7 5456 if (byte == 0)
ce701d1b
BS
5457 need_mode = mode;
5458 else
5459 need_mode
ddef6bc7 5460 = smallest_mode_for_size (GET_MODE_SIZE (mode) + byte,
ce701d1b 5461 GET_MODE_CLASS (mode));
02188693 5462
c9d8a813 5463 if (
02188693 5464#ifdef CLASS_CANNOT_CHANGE_MODE
c9d8a813 5465 (TEST_HARD_REG_BIT
02188693 5466 (reg_class_contents[(int) CLASS_CANNOT_CHANGE_MODE], i)
1d7254c5 5467 ? ! CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (last_reg),
02188693 5468 need_mode)
c9d8a813 5469 : (GET_MODE_SIZE (GET_MODE (last_reg))
02188693 5470 >= GET_MODE_SIZE (need_mode)))
c9d8a813
RH
5471#else
5472 (GET_MODE_SIZE (GET_MODE (last_reg))
02188693 5473 >= GET_MODE_SIZE (need_mode))
c9d8a813 5474#endif
cb2afeb3 5475 && reg_reloaded_contents[i] == regno
e6e52be0 5476 && TEST_HARD_REG_BIT (reg_reloaded_valid, i)
8ec450a4 5477 && HARD_REGNO_MODE_OK (i, rld[r].mode)
cb2afeb3
R
5478 && (TEST_HARD_REG_BIT (reg_class_contents[(int) class], i)
5479 /* Even if we can't use this register as a reload
5480 register, we might use it for reload_override_in,
5481 if copying it to the desired class is cheap
5482 enough. */
e56b4594 5483 || ((REGISTER_MOVE_COST (mode, last_class, class)
cb2afeb3
R
5484 < MEMORY_MOVE_COST (mode, class, 1))
5485#ifdef SECONDARY_INPUT_RELOAD_CLASS
5486 && (SECONDARY_INPUT_RELOAD_CLASS (class, mode,
5487 last_reg)
5488 == NO_REGS)
5489#endif
5490#ifdef SECONDARY_MEMORY_NEEDED
5491 && ! SECONDARY_MEMORY_NEEDED (last_class, class,
5492 mode)
5493#endif
5494 ))
5495
8ec450a4 5496 && (rld[r].nregs == max_group_size
32131a9c 5497 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) group_class],
e6e52be0 5498 i))
c02cad8f
BS
5499 && free_for_value_p (i, rld[r].mode, rld[r].opnum,
5500 rld[r].when_needed, rld[r].in,
5501 const0_rtx, r, 1))
32131a9c
RK
5502 {
5503 /* If a group is needed, verify that all the subsequent
0f41302f 5504 registers still have their values intact. */
1d7254c5 5505 int nr = HARD_REGNO_NREGS (i, rld[r].mode);
32131a9c
RK
5506 int k;
5507
5508 for (k = 1; k < nr; k++)
e6e52be0
R
5509 if (reg_reloaded_contents[i + k] != regno
5510 || ! TEST_HARD_REG_BIT (reg_reloaded_valid, i + k))
32131a9c
RK
5511 break;
5512
5513 if (k == nr)
5514 {
c74fa651 5515 int i1;
eb4d554e 5516 int bad_for_class;
c74fa651 5517
cb2afeb3
R
5518 last_reg = (GET_MODE (last_reg) == mode
5519 ? last_reg : gen_rtx_REG (mode, i));
5520
eb4d554e
GK
5521 bad_for_class = 0;
5522 for (k = 0; k < nr; k++)
5523 bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].class],
5524 i+k);
5525
c74fa651
RS
5526 /* We found a register that contains the
5527 value we need. If this register is the
5528 same as an `earlyclobber' operand of the
5529 current insn, just mark it as a place to
5530 reload from since we can't use it as the
5531 reload register itself. */
5532
5533 for (i1 = 0; i1 < n_earlyclobbers; i1++)
5534 if (reg_overlap_mentioned_for_reload_p
5535 (reg_last_reload_reg[regno],
5536 reload_earlyclobbers[i1]))
5537 break;
5538
8908158d 5539 if (i1 != n_earlyclobbers
c02cad8f
BS
5540 || ! (free_for_value_p (i, rld[r].mode,
5541 rld[r].opnum,
5542 rld[r].when_needed, rld[r].in,
5543 rld[r].out, r, 1))
e6e52be0 5544 /* Don't use it if we'd clobber a pseudo reg. */
f1db3576 5545 || (TEST_HARD_REG_BIT (reg_used_in_insn, i)
eceef4c9 5546 && rld[r].out
e6e52be0 5547 && ! TEST_HARD_REG_BIT (reg_reloaded_dead, i))
0c7f2259 5548 /* Don't clobber the frame pointer. */
1d7254c5
KH
5549 || (i == HARD_FRAME_POINTER_REGNUM
5550 && rld[r].out)
8908158d
RS
5551 /* Don't really use the inherited spill reg
5552 if we need it wider than we've got it. */
8ec450a4 5553 || (GET_MODE_SIZE (rld[r].mode)
b29514ee 5554 > GET_MODE_SIZE (mode))
eb4d554e 5555 || bad_for_class
cb2afeb3 5556
b29514ee
R
5557 /* If find_reloads chose reload_out as reload
5558 register, stay with it - that leaves the
5559 inherited register for subsequent reloads. */
eceef4c9 5560 || (rld[r].out && rld[r].reg_rtx
67e61fe7 5561 && rtx_equal_p (rld[r].out, rld[r].reg_rtx)))
cb2afeb3 5562 {
4c3a2649
BS
5563 if (! rld[r].optional)
5564 {
5565 reload_override_in[r] = last_reg;
5566 reload_inheritance_insn[r]
5567 = reg_reloaded_insn[i];
5568 }
cb2afeb3 5569 }
c74fa651
RS
5570 else
5571 {
54c40e68 5572 int k;
c74fa651
RS
5573 /* We can use this as a reload reg. */
5574 /* Mark the register as in use for this part of
5575 the insn. */
e6e52be0 5576 mark_reload_reg_in_use (i,
eceef4c9
BS
5577 rld[r].opnum,
5578 rld[r].when_needed,
8ec450a4 5579 rld[r].mode);
eceef4c9 5580 rld[r].reg_rtx = last_reg;
c74fa651
RS
5581 reload_inherited[r] = 1;
5582 reload_inheritance_insn[r]
5583 = reg_reloaded_insn[i];
5584 reload_spill_index[r] = i;
54c40e68
RS
5585 for (k = 0; k < nr; k++)
5586 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
e6e52be0 5587 i + k);
c74fa651 5588 }
32131a9c
RK
5589 }
5590 }
5591 }
5592 }
5593
5594 /* Here's another way to see if the value is already lying around. */
5595 if (inheritance
eceef4c9 5596 && rld[r].in != 0
32131a9c 5597 && ! reload_inherited[r]
eceef4c9
BS
5598 && rld[r].out == 0
5599 && (CONSTANT_P (rld[r].in)
5600 || GET_CODE (rld[r].in) == PLUS
5601 || GET_CODE (rld[r].in) == REG
5602 || GET_CODE (rld[r].in) == MEM)
8ec450a4 5603 && (rld[r].nregs == max_group_size
eceef4c9
BS
5604 || ! reg_classes_intersect_p (rld[r].class, group_class)))
5605 search_equiv = rld[r].in;
8593b745
R
5606 /* If this is an output reload from a simple move insn, look
5607 if an equivalence for the input is available. */
eceef4c9 5608 else if (inheritance && rld[r].in == 0 && rld[r].out != 0)
8593b745
R
5609 {
5610 rtx set = single_set (insn);
5611
5612 if (set
eceef4c9 5613 && rtx_equal_p (rld[r].out, SET_DEST (set))
8593b745
R
5614 && CONSTANT_P (SET_SRC (set)))
5615 search_equiv = SET_SRC (set);
5616 }
5617
5618 if (search_equiv)
32131a9c
RK
5619 {
5620 register rtx equiv
eceef4c9 5621 = find_equiv_reg (search_equiv, insn, rld[r].class,
9714cf43 5622 -1, NULL, 0, rld[r].mode);
f428f252 5623 int regno = 0;
32131a9c
RK
5624
5625 if (equiv != 0)
5626 {
5627 if (GET_CODE (equiv) == REG)
5628 regno = REGNO (equiv);
5629 else if (GET_CODE (equiv) == SUBREG)
5630 {
f8a9e02b
RK
5631 /* This must be a SUBREG of a hard register.
5632 Make a new REG since this might be used in an
5633 address and not all machines support SUBREGs
5634 there. */
ddef6bc7 5635 regno = subreg_regno (equiv);
8ec450a4 5636 equiv = gen_rtx_REG (rld[r].mode, regno);
32131a9c
RK
5637 }
5638 else
5639 abort ();
5640 }
5641
5642 /* If we found a spill reg, reject it unless it is free
5643 and of the desired class. */
5644 if (equiv != 0
cb2afeb3 5645 && ((TEST_HARD_REG_BIT (reload_reg_used_at_all, regno)
c02cad8f
BS
5646 && ! free_for_value_p (regno, rld[r].mode,
5647 rld[r].opnum, rld[r].when_needed,
5648 rld[r].in, rld[r].out, r, 1))
eceef4c9 5649 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].class],
32131a9c
RK
5650 regno)))
5651 equiv = 0;
5652
8ec450a4 5653 if (equiv != 0 && ! HARD_REGNO_MODE_OK (regno, rld[r].mode))
32131a9c
RK
5654 equiv = 0;
5655
5656 /* We found a register that contains the value we need.
5657 If this register is the same as an `earlyclobber' operand
5658 of the current insn, just mark it as a place to reload from
5659 since we can't use it as the reload register itself. */
5660
5661 if (equiv != 0)
5662 for (i = 0; i < n_earlyclobbers; i++)
bfa30b22
RK
5663 if (reg_overlap_mentioned_for_reload_p (equiv,
5664 reload_earlyclobbers[i]))
32131a9c 5665 {
4c3a2649
BS
5666 if (! rld[r].optional)
5667 reload_override_in[r] = equiv;
32131a9c
RK
5668 equiv = 0;
5669 break;
5670 }
5671
3c785e47
R
5672 /* If the equiv register we have found is explicitly clobbered
5673 in the current insn, it depends on the reload type if we
5674 can use it, use it for reload_override_in, or not at all.
5675 In particular, we then can't use EQUIV for a
5676 RELOAD_FOR_OUTPUT_ADDRESS reload. */
32131a9c 5677
9532e31f 5678 if (equiv != 0)
174fa2c4 5679 {
9532e31f
BS
5680 if (regno_clobbered_p (regno, insn, rld[r].mode, 0))
5681 switch (rld[r].when_needed)
5682 {
5683 case RELOAD_FOR_OTHER_ADDRESS:
5684 case RELOAD_FOR_INPADDR_ADDRESS:
5685 case RELOAD_FOR_INPUT_ADDRESS:
5686 case RELOAD_FOR_OPADDR_ADDR:
5687 break;
5688 case RELOAD_OTHER:
5689 case RELOAD_FOR_INPUT:
5690 case RELOAD_FOR_OPERAND_ADDRESS:
5691 if (! rld[r].optional)
5692 reload_override_in[r] = equiv;
5693 /* Fall through. */
5694 default:
5695 equiv = 0;
5696 break;
5697 }
5698 else if (regno_clobbered_p (regno, insn, rld[r].mode, 1))
5699 switch (rld[r].when_needed)
5700 {
5701 case RELOAD_FOR_OTHER_ADDRESS:
5702 case RELOAD_FOR_INPADDR_ADDRESS:
5703 case RELOAD_FOR_INPUT_ADDRESS:
5704 case RELOAD_FOR_OPADDR_ADDR:
5705 case RELOAD_FOR_OPERAND_ADDRESS:
5706 case RELOAD_FOR_INPUT:
5707 break;
5708 case RELOAD_OTHER:
5709 if (! rld[r].optional)
5710 reload_override_in[r] = equiv;
5711 /* Fall through. */
5712 default:
5713 equiv = 0;
5714 break;
5715 }
32131a9c
RK
5716 }
5717
5718 /* If we found an equivalent reg, say no code need be generated
5719 to load it, and use it as our reload reg. */
3ec2ea3e 5720 if (equiv != 0 && regno != HARD_FRAME_POINTER_REGNUM)
32131a9c 5721 {
8ec450a4 5722 int nr = HARD_REGNO_NREGS (regno, rld[r].mode);
100338df 5723 int k;
eceef4c9 5724 rld[r].reg_rtx = equiv;
32131a9c 5725 reload_inherited[r] = 1;
100338df 5726
91d7e7ac
R
5727 /* If reg_reloaded_valid is not set for this register,
5728 there might be a stale spill_reg_store lying around.
5729 We must clear it, since otherwise emit_reload_insns
5730 might delete the store. */
5731 if (! TEST_HARD_REG_BIT (reg_reloaded_valid, regno))
5732 spill_reg_store[regno] = NULL_RTX;
100338df
JL
5733 /* If any of the hard registers in EQUIV are spill
5734 registers, mark them as in use for this insn. */
5735 for (k = 0; k < nr; k++)
be7ae2a4 5736 {
100338df
JL
5737 i = spill_reg_order[regno + k];
5738 if (i >= 0)
5739 {
eceef4c9
BS
5740 mark_reload_reg_in_use (regno, rld[r].opnum,
5741 rld[r].when_needed,
8ec450a4 5742 rld[r].mode);
100338df
JL
5743 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
5744 regno + k);
5745 }
be7ae2a4 5746 }
32131a9c
RK
5747 }
5748 }
5749
5750 /* If we found a register to use already, or if this is an optional
5751 reload, we are done. */
eceef4c9 5752 if (rld[r].reg_rtx != 0 || rld[r].optional != 0)
32131a9c
RK
5753 continue;
5754
1d7254c5
KH
5755#if 0
5756 /* No longer needed for correct operation. Might or might
5757 not give better code on the average. Want to experiment? */
32131a9c
RK
5758
5759 /* See if there is a later reload that has a class different from our
5760 class that intersects our class or that requires less register
5761 than our reload. If so, we must allocate a register to this
5762 reload now, since that reload might inherit a previous reload
5763 and take the only available register in our class. Don't do this
5764 for optional reloads since they will force all previous reloads
5765 to be allocated. Also don't do this for reloads that have been
5766 turned off. */
5767
5768 for (i = j + 1; i < n_reloads; i++)
5769 {
5770 int s = reload_order[i];
5771
eceef4c9
BS
5772 if ((rld[s].in == 0 && rld[s].out == 0
5773 && ! rld[s].secondary_p)
5774 || rld[s].optional)
32131a9c
RK
5775 continue;
5776
eceef4c9
BS
5777 if ((rld[s].class != rld[r].class
5778 && reg_classes_intersect_p (rld[r].class,
5779 rld[s].class))
8ec450a4 5780 || rld[s].nregs < rld[r].nregs)
05d10675 5781 break;
32131a9c
RK
5782 }
5783
5784 if (i == n_reloads)
5785 continue;
5786
f5d8c9f4 5787 allocate_reload_reg (chain, r, j == n_reloads - 1);
32131a9c
RK
5788#endif
5789 }
5790
5791 /* Now allocate reload registers for anything non-optional that
5792 didn't get one yet. */
5793 for (j = 0; j < n_reloads; j++)
5794 {
5795 register int r = reload_order[j];
5796
5797 /* Ignore reloads that got marked inoperative. */
eceef4c9 5798 if (rld[r].out == 0 && rld[r].in == 0 && ! rld[r].secondary_p)
32131a9c
RK
5799 continue;
5800
5801 /* Skip reloads that already have a register allocated or are
0f41302f 5802 optional. */
eceef4c9 5803 if (rld[r].reg_rtx != 0 || rld[r].optional)
32131a9c
RK
5804 continue;
5805
f5d8c9f4 5806 if (! allocate_reload_reg (chain, r, j == n_reloads - 1))
32131a9c
RK
5807 break;
5808 }
5809
5810 /* If that loop got all the way, we have won. */
5811 if (j == n_reloads)
f5d8c9f4
BS
5812 {
5813 win = 1;
5814 break;
5815 }
32131a9c 5816
32131a9c 5817 /* Loop around and try without any inheritance. */
32131a9c
RK
5818 }
5819
f5d8c9f4
BS
5820 if (! win)
5821 {
5822 /* First undo everything done by the failed attempt
5823 to allocate with inheritance. */
5824 choose_reload_regs_init (chain, save_reload_reg_rtx);
5825
5826 /* Some sanity tests to verify that the reloads found in the first
5827 pass are identical to the ones we have now. */
5828 if (chain->n_reloads != n_reloads)
5829 abort ();
5830
5831 for (i = 0; i < n_reloads; i++)
5832 {
5833 if (chain->rld[i].regno < 0 || chain->rld[i].reg_rtx != 0)
5834 continue;
5835 if (chain->rld[i].when_needed != rld[i].when_needed)
5836 abort ();
5837 for (j = 0; j < n_spills; j++)
5838 if (spill_regs[j] == chain->rld[i].regno)
5839 if (! set_reload_reg (j, i))
5840 failed_reload (chain->insn, i);
5841 }
5842 }
5843
32131a9c
RK
5844 /* If we thought we could inherit a reload, because it seemed that
5845 nothing else wanted the same reload register earlier in the insn,
cb2afeb3
R
5846 verify that assumption, now that all reloads have been assigned.
5847 Likewise for reloads where reload_override_in has been set. */
32131a9c 5848
cb2afeb3
R
5849 /* If doing expensive optimizations, do one preliminary pass that doesn't
5850 cancel any inheritance, but removes reloads that have been needed only
5851 for reloads that we know can be inherited. */
5852 for (pass = flag_expensive_optimizations; pass >= 0; pass--)
32131a9c 5853 {
cb2afeb3 5854 for (j = 0; j < n_reloads; j++)
029b38ff 5855 {
cb2afeb3
R
5856 register int r = reload_order[j];
5857 rtx check_reg;
eceef4c9
BS
5858 if (reload_inherited[r] && rld[r].reg_rtx)
5859 check_reg = rld[r].reg_rtx;
cb2afeb3
R
5860 else if (reload_override_in[r]
5861 && (GET_CODE (reload_override_in[r]) == REG
05d10675 5862 || GET_CODE (reload_override_in[r]) == SUBREG))
cb2afeb3
R
5863 check_reg = reload_override_in[r];
5864 else
5865 continue;
c02cad8f
BS
5866 if (! free_for_value_p (true_regnum (check_reg), rld[r].mode,
5867 rld[r].opnum, rld[r].when_needed, rld[r].in,
5868 (reload_inherited[r]
5869 ? rld[r].out : const0_rtx),
5870 r, 1))
029b38ff 5871 {
cb2afeb3
R
5872 if (pass)
5873 continue;
5874 reload_inherited[r] = 0;
5875 reload_override_in[r] = 0;
029b38ff 5876 }
cb2afeb3
R
5877 /* If we can inherit a RELOAD_FOR_INPUT, or can use a
5878 reload_override_in, then we do not need its related
5879 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS reloads;
5880 likewise for other reload types.
5881 We handle this by removing a reload when its only replacement
5882 is mentioned in reload_in of the reload we are going to inherit.
5883 A special case are auto_inc expressions; even if the input is
5884 inherited, we still need the address for the output. We can
fe92fe26 5885 recognize them because they have RELOAD_OUT set to RELOAD_IN.
cb2afeb3
R
5886 If we suceeded removing some reload and we are doing a preliminary
5887 pass just to remove such reloads, make another pass, since the
5888 removal of one reload might allow us to inherit another one. */
eceef4c9
BS
5889 else if (rld[r].in
5890 && rld[r].out != rld[r].in
5891 && remove_address_replacements (rld[r].in) && pass)
cb2afeb3 5892 pass = 2;
32131a9c
RK
5893 }
5894 }
5895
5896 /* Now that reload_override_in is known valid,
5897 actually override reload_in. */
5898 for (j = 0; j < n_reloads; j++)
5899 if (reload_override_in[j])
eceef4c9 5900 rld[j].in = reload_override_in[j];
32131a9c
RK
5901
5902 /* If this reload won't be done because it has been cancelled or is
5903 optional and not inherited, clear reload_reg_rtx so other
5904 routines (such as subst_reloads) don't get confused. */
5905 for (j = 0; j < n_reloads; j++)
eceef4c9
BS
5906 if (rld[j].reg_rtx != 0
5907 && ((rld[j].optional && ! reload_inherited[j])
5908 || (rld[j].in == 0 && rld[j].out == 0
5909 && ! rld[j].secondary_p)))
be7ae2a4 5910 {
eceef4c9 5911 int regno = true_regnum (rld[j].reg_rtx);
be7ae2a4
RK
5912
5913 if (spill_reg_order[regno] >= 0)
eceef4c9 5914 clear_reload_reg_in_use (regno, rld[j].opnum,
8ec450a4 5915 rld[j].when_needed, rld[j].mode);
eceef4c9 5916 rld[j].reg_rtx = 0;
c0029be5 5917 reload_spill_index[j] = -1;
be7ae2a4 5918 }
32131a9c
RK
5919
5920 /* Record which pseudos and which spill regs have output reloads. */
5921 for (j = 0; j < n_reloads; j++)
5922 {
5923 register int r = reload_order[j];
5924
5925 i = reload_spill_index[r];
5926
e6e52be0 5927 /* I is nonneg if this reload uses a register.
eceef4c9 5928 If rld[r].reg_rtx is 0, this is an optional reload
32131a9c 5929 that we opted to ignore. */
eceef4c9
BS
5930 if (rld[r].out_reg != 0 && GET_CODE (rld[r].out_reg) == REG
5931 && rld[r].reg_rtx != 0)
32131a9c 5932 {
eceef4c9 5933 register int nregno = REGNO (rld[r].out_reg);
372e033b
RS
5934 int nr = 1;
5935
5936 if (nregno < FIRST_PSEUDO_REGISTER)
8ec450a4 5937 nr = HARD_REGNO_NREGS (nregno, rld[r].mode);
32131a9c
RK
5938
5939 while (--nr >= 0)
372e033b
RS
5940 reg_has_output_reload[nregno + nr] = 1;
5941
5942 if (i >= 0)
32131a9c 5943 {
8ec450a4 5944 nr = HARD_REGNO_NREGS (i, rld[r].mode);
372e033b 5945 while (--nr >= 0)
e6e52be0 5946 SET_HARD_REG_BIT (reg_is_output_reload, i + nr);
32131a9c
RK
5947 }
5948
eceef4c9
BS
5949 if (rld[r].when_needed != RELOAD_OTHER
5950 && rld[r].when_needed != RELOAD_FOR_OUTPUT
5951 && rld[r].when_needed != RELOAD_FOR_INSN)
32131a9c
RK
5952 abort ();
5953 }
5954 }
5955}
cb2afeb3
R
5956
5957/* Deallocate the reload register for reload R. This is called from
5958 remove_address_replacements. */
1d813780 5959
cb2afeb3
R
5960void
5961deallocate_reload_reg (r)
5962 int r;
5963{
5964 int regno;
5965
eceef4c9 5966 if (! rld[r].reg_rtx)
cb2afeb3 5967 return;
eceef4c9
BS
5968 regno = true_regnum (rld[r].reg_rtx);
5969 rld[r].reg_rtx = 0;
cb2afeb3 5970 if (spill_reg_order[regno] >= 0)
eceef4c9 5971 clear_reload_reg_in_use (regno, rld[r].opnum, rld[r].when_needed,
8ec450a4 5972 rld[r].mode);
cb2afeb3
R
5973 reload_spill_index[r] = -1;
5974}
32131a9c 5975\f
e9a25f70 5976/* If SMALL_REGISTER_CLASSES is non-zero, we may not have merged two
546b63fb
RK
5977 reloads of the same item for fear that we might not have enough reload
5978 registers. However, normally they will get the same reload register
05d10675 5979 and hence actually need not be loaded twice.
546b63fb
RK
5980
5981 Here we check for the most common case of this phenomenon: when we have
5982 a number of reloads for the same object, each of which were allocated
5983 the same reload_reg_rtx, that reload_reg_rtx is not used for any other
5984 reload, and is not modified in the insn itself. If we find such,
5985 merge all the reloads and set the resulting reload to RELOAD_OTHER.
5986 This will not increase the number of spill registers needed and will
5987 prevent redundant code. */
5988
546b63fb
RK
5989static void
5990merge_assigned_reloads (insn)
5991 rtx insn;
5992{
5993 int i, j;
5994
5995 /* Scan all the reloads looking for ones that only load values and
5996 are not already RELOAD_OTHER and ones whose reload_reg_rtx are
5997 assigned and not modified by INSN. */
5998
5999 for (i = 0; i < n_reloads; i++)
6000 {
d668e863
R
6001 int conflicting_input = 0;
6002 int max_input_address_opnum = -1;
6003 int min_conflicting_input_opnum = MAX_RECOG_OPERANDS;
6004
eceef4c9
BS
6005 if (rld[i].in == 0 || rld[i].when_needed == RELOAD_OTHER
6006 || rld[i].out != 0 || rld[i].reg_rtx == 0
6007 || reg_set_p (rld[i].reg_rtx, insn))
546b63fb
RK
6008 continue;
6009
6010 /* Look at all other reloads. Ensure that the only use of this
6011 reload_reg_rtx is in a reload that just loads the same value
6012 as we do. Note that any secondary reloads must be of the identical
6013 class since the values, modes, and result registers are the
6014 same, so we need not do anything with any secondary reloads. */
6015
6016 for (j = 0; j < n_reloads; j++)
6017 {
eceef4c9
BS
6018 if (i == j || rld[j].reg_rtx == 0
6019 || ! reg_overlap_mentioned_p (rld[j].reg_rtx,
6020 rld[i].reg_rtx))
546b63fb
RK
6021 continue;
6022
eceef4c9
BS
6023 if (rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
6024 && rld[j].opnum > max_input_address_opnum)
6025 max_input_address_opnum = rld[j].opnum;
d668e863 6026
546b63fb 6027 /* If the reload regs aren't exactly the same (e.g, different modes)
d668e863
R
6028 or if the values are different, we can't merge this reload.
6029 But if it is an input reload, we might still merge
6030 RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_OTHER_ADDRESS reloads. */
546b63fb 6031
eceef4c9
BS
6032 if (! rtx_equal_p (rld[i].reg_rtx, rld[j].reg_rtx)
6033 || rld[j].out != 0 || rld[j].in == 0
6034 || ! rtx_equal_p (rld[i].in, rld[j].in))
d668e863 6035 {
eceef4c9
BS
6036 if (rld[j].when_needed != RELOAD_FOR_INPUT
6037 || ((rld[i].when_needed != RELOAD_FOR_INPUT_ADDRESS
6038 || rld[i].opnum > rld[j].opnum)
6039 && rld[i].when_needed != RELOAD_FOR_OTHER_ADDRESS))
d668e863
R
6040 break;
6041 conflicting_input = 1;
eceef4c9
BS
6042 if (min_conflicting_input_opnum > rld[j].opnum)
6043 min_conflicting_input_opnum = rld[j].opnum;
d668e863 6044 }
546b63fb
RK
6045 }
6046
6047 /* If all is OK, merge the reloads. Only set this to RELOAD_OTHER if
6048 we, in fact, found any matching reloads. */
6049
d668e863
R
6050 if (j == n_reloads
6051 && max_input_address_opnum <= min_conflicting_input_opnum)
546b63fb
RK
6052 {
6053 for (j = 0; j < n_reloads; j++)
eceef4c9
BS
6054 if (i != j && rld[j].reg_rtx != 0
6055 && rtx_equal_p (rld[i].reg_rtx, rld[j].reg_rtx)
d668e863 6056 && (! conflicting_input
eceef4c9
BS
6057 || rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
6058 || rld[j].when_needed == RELOAD_FOR_OTHER_ADDRESS))
546b63fb 6059 {
eceef4c9
BS
6060 rld[i].when_needed = RELOAD_OTHER;
6061 rld[j].in = 0;
efdb3590 6062 reload_spill_index[j] = -1;
546b63fb
RK
6063 transfer_replacements (i, j);
6064 }
6065
6066 /* If this is now RELOAD_OTHER, look for any reloads that load
6067 parts of this operand and set them to RELOAD_FOR_OTHER_ADDRESS
6068 if they were for inputs, RELOAD_OTHER for outputs. Note that
6069 this test is equivalent to looking for reloads for this operand
6070 number. */
6071
eceef4c9 6072 if (rld[i].when_needed == RELOAD_OTHER)
546b63fb 6073 for (j = 0; j < n_reloads; j++)
eceef4c9 6074 if (rld[j].in != 0
91667711 6075 && rld[j].when_needed != RELOAD_OTHER
eceef4c9
BS
6076 && reg_overlap_mentioned_for_reload_p (rld[j].in,
6077 rld[i].in))
6078 rld[j].when_needed
91667711
SC
6079 = ((rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
6080 || rld[j].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
47c8cf91 6081 ? RELOAD_FOR_OTHER_ADDRESS : RELOAD_OTHER);
546b63fb
RK
6082 }
6083 }
05d10675 6084}
546b63fb 6085\f
367b1cf5
BS
6086/* These arrays are filled by emit_reload_insns and its subroutines. */
6087static rtx input_reload_insns[MAX_RECOG_OPERANDS];
6088static rtx other_input_address_reload_insns = 0;
6089static rtx other_input_reload_insns = 0;
6090static rtx input_address_reload_insns[MAX_RECOG_OPERANDS];
6091static rtx inpaddr_address_reload_insns[MAX_RECOG_OPERANDS];
6092static rtx output_reload_insns[MAX_RECOG_OPERANDS];
6093static rtx output_address_reload_insns[MAX_RECOG_OPERANDS];
6094static rtx outaddr_address_reload_insns[MAX_RECOG_OPERANDS];
6095static rtx operand_reload_insns = 0;
6096static rtx other_operand_reload_insns = 0;
6097static rtx other_output_reload_insns[MAX_RECOG_OPERANDS];
6098
6099/* Values to be put in spill_reg_store are put here first. */
6100static rtx new_spill_reg_store[FIRST_PSEUDO_REGISTER];
6101static HARD_REG_SET reg_reloaded_died;
6102
6103/* Generate insns to perform reload RL, which is for the insn in CHAIN and
6104 has the number J. OLD contains the value to be used as input. */
770ae6cc 6105
32131a9c 6106static void
367b1cf5 6107emit_input_reload_insns (chain, rl, old, j)
7609e720 6108 struct insn_chain *chain;
367b1cf5
BS
6109 struct reload *rl;
6110 rtx old;
6111 int j;
32131a9c 6112{
7609e720 6113 rtx insn = chain->insn;
367b1cf5
BS
6114 register rtx reloadreg = rl->reg_rtx;
6115 rtx oldequiv_reg = 0;
6116 rtx oldequiv = 0;
6117 int special = 0;
6118 enum machine_mode mode;
6119 rtx *where;
6120
6121 /* Determine the mode to reload in.
6122 This is very tricky because we have three to choose from.
6123 There is the mode the insn operand wants (rl->inmode).
6124 There is the mode of the reload register RELOADREG.
6125 There is the intrinsic mode of the operand, which we could find
6126 by stripping some SUBREGs.
6127 It turns out that RELOADREG's mode is irrelevant:
6128 we can change that arbitrarily.
6129
6130 Consider (SUBREG:SI foo:QI) as an operand that must be SImode;
6131 then the reload reg may not support QImode moves, so use SImode.
6132 If foo is in memory due to spilling a pseudo reg, this is safe,
6133 because the QImode value is in the least significant part of a
6134 slot big enough for a SImode. If foo is some other sort of
6135 memory reference, then it is impossible to reload this case,
6136 so previous passes had better make sure this never happens.
6137
6138 Then consider a one-word union which has SImode and one of its
6139 members is a float, being fetched as (SUBREG:SF union:SI).
6140 We must fetch that as SFmode because we could be loading into
6141 a float-only register. In this case OLD's mode is correct.
6142
6143 Consider an immediate integer: it has VOIDmode. Here we need
6144 to get a mode from something else.
6145
6146 In some cases, there is a fourth mode, the operand's
6147 containing mode. If the insn specifies a containing mode for
6148 this operand, it overrides all others.
6149
6150 I am not sure whether the algorithm here is always right,
6151 but it does the right things in those cases. */
6152
6153 mode = GET_MODE (old);
6154 if (mode == VOIDmode)
6155 mode = rl->inmode;
7609e720 6156
367b1cf5
BS
6157#ifdef SECONDARY_INPUT_RELOAD_CLASS
6158 /* If we need a secondary register for this operation, see if
6159 the value is already in a register in that class. Don't
6160 do this if the secondary register will be used as a scratch
6161 register. */
6162
6163 if (rl->secondary_in_reload >= 0
6164 && rl->secondary_in_icode == CODE_FOR_nothing
6165 && optimize)
6166 oldequiv
6167 = find_equiv_reg (old, insn,
6168 rld[rl->secondary_in_reload].class,
9714cf43 6169 -1, NULL, 0, mode);
367b1cf5 6170#endif
e6e52be0 6171
367b1cf5
BS
6172 /* If reloading from memory, see if there is a register
6173 that already holds the same value. If so, reload from there.
6174 We can pass 0 as the reload_reg_p argument because
6175 any other reload has either already been emitted,
6176 in which case find_equiv_reg will see the reload-insn,
6177 or has yet to be emitted, in which case it doesn't matter
6178 because we will use this equiv reg right away. */
6179
6180 if (oldequiv == 0 && optimize
6181 && (GET_CODE (old) == MEM
6182 || (GET_CODE (old) == REG
6183 && REGNO (old) >= FIRST_PSEUDO_REGISTER
6184 && reg_renumber[REGNO (old)] < 0)))
9714cf43 6185 oldequiv = find_equiv_reg (old, insn, ALL_REGS, -1, NULL, 0, mode);
367b1cf5
BS
6186
6187 if (oldequiv)
6188 {
770ae6cc 6189 unsigned int regno = true_regnum (oldequiv);
367b1cf5
BS
6190
6191 /* Don't use OLDEQUIV if any other reload changes it at an
6192 earlier stage of this insn or at this stage. */
c02cad8f
BS
6193 if (! free_for_value_p (regno, rl->mode, rl->opnum, rl->when_needed,
6194 rl->in, const0_rtx, j, 0))
367b1cf5
BS
6195 oldequiv = 0;
6196
6197 /* If it is no cheaper to copy from OLDEQUIV into the
6198 reload register than it would be to move from memory,
6199 don't use it. Likewise, if we need a secondary register
6200 or memory. */
6201
6202 if (oldequiv != 0
6203 && ((REGNO_REG_CLASS (regno) != rl->class
e56b4594 6204 && (REGISTER_MOVE_COST (mode, REGNO_REG_CLASS (regno),
367b1cf5
BS
6205 rl->class)
6206 >= MEMORY_MOVE_COST (mode, rl->class, 1)))
6207#ifdef SECONDARY_INPUT_RELOAD_CLASS
6208 || (SECONDARY_INPUT_RELOAD_CLASS (rl->class,
6209 mode, oldequiv)
6210 != NO_REGS)
6211#endif
6212#ifdef SECONDARY_MEMORY_NEEDED
6213 || SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (regno),
6214 rl->class,
6215 mode)
6216#endif
6217 ))
6218 oldequiv = 0;
6219 }
32131a9c 6220
367b1cf5
BS
6221 /* delete_output_reload is only invoked properly if old contains
6222 the original pseudo register. Since this is replaced with a
6223 hard reg when RELOAD_OVERRIDE_IN is set, see if we can
6224 find the pseudo in RELOAD_IN_REG. */
6225 if (oldequiv == 0
6226 && reload_override_in[j]
6227 && GET_CODE (rl->in_reg) == REG)
6228 {
6229 oldequiv = old;
6230 old = rl->in_reg;
6231 }
6232 if (oldequiv == 0)
6233 oldequiv = old;
6234 else if (GET_CODE (oldequiv) == REG)
6235 oldequiv_reg = oldequiv;
6236 else if (GET_CODE (oldequiv) == SUBREG)
6237 oldequiv_reg = SUBREG_REG (oldequiv);
6238
6239 /* If we are reloading from a register that was recently stored in
6240 with an output-reload, see if we can prove there was
6241 actually no need to store the old value in it. */
6242
6243 if (optimize && GET_CODE (oldequiv) == REG
6244 && REGNO (oldequiv) < FIRST_PSEUDO_REGISTER
6245 && spill_reg_store[REGNO (oldequiv)]
6246 && GET_CODE (old) == REG
6247 && (dead_or_set_p (insn, spill_reg_stored_to[REGNO (oldequiv)])
6248 || rtx_equal_p (spill_reg_stored_to[REGNO (oldequiv)],
6249 rl->out_reg)))
6250 delete_output_reload (insn, j, REGNO (oldequiv));
6251
6252 /* Encapsulate both RELOADREG and OLDEQUIV into that mode,
6253 then load RELOADREG from OLDEQUIV. Note that we cannot use
6254 gen_lowpart_common since it can do the wrong thing when
6255 RELOADREG has a multi-word mode. Note that RELOADREG
6256 must always be a REG here. */
6257
6258 if (GET_MODE (reloadreg) != mode)
6259 reloadreg = gen_rtx_REG (mode, REGNO (reloadreg));
6260 while (GET_CODE (oldequiv) == SUBREG && GET_MODE (oldequiv) != mode)
6261 oldequiv = SUBREG_REG (oldequiv);
6262 if (GET_MODE (oldequiv) != VOIDmode
6263 && mode != GET_MODE (oldequiv))
ddef6bc7 6264 oldequiv = gen_lowpart_SUBREG (mode, oldequiv);
367b1cf5
BS
6265
6266 /* Switch to the right place to emit the reload insns. */
6267 switch (rl->when_needed)
6268 {
6269 case RELOAD_OTHER:
6270 where = &other_input_reload_insns;
6271 break;
6272 case RELOAD_FOR_INPUT:
6273 where = &input_reload_insns[rl->opnum];
6274 break;
6275 case RELOAD_FOR_INPUT_ADDRESS:
6276 where = &input_address_reload_insns[rl->opnum];
6277 break;
6278 case RELOAD_FOR_INPADDR_ADDRESS:
6279 where = &inpaddr_address_reload_insns[rl->opnum];
6280 break;
6281 case RELOAD_FOR_OUTPUT_ADDRESS:
6282 where = &output_address_reload_insns[rl->opnum];
6283 break;
6284 case RELOAD_FOR_OUTADDR_ADDRESS:
6285 where = &outaddr_address_reload_insns[rl->opnum];
6286 break;
6287 case RELOAD_FOR_OPERAND_ADDRESS:
6288 where = &operand_reload_insns;
6289 break;
6290 case RELOAD_FOR_OPADDR_ADDR:
6291 where = &other_operand_reload_insns;
6292 break;
6293 case RELOAD_FOR_OTHER_ADDRESS:
6294 where = &other_input_address_reload_insns;
6295 break;
6296 default:
6297 abort ();
6298 }
546b63fb 6299
367b1cf5 6300 push_to_sequence (*where);
32131a9c 6301
367b1cf5
BS
6302 /* Auto-increment addresses must be reloaded in a special way. */
6303 if (rl->out && ! rl->out_reg)
32131a9c 6304 {
367b1cf5
BS
6305 /* We are not going to bother supporting the case where a
6306 incremented register can't be copied directly from
6307 OLDEQUIV since this seems highly unlikely. */
6308 if (rl->secondary_in_reload >= 0)
6309 abort ();
32131a9c 6310
367b1cf5
BS
6311 if (reload_inherited[j])
6312 oldequiv = reloadreg;
cb2afeb3 6313
367b1cf5 6314 old = XEXP (rl->in_reg, 0);
32131a9c 6315
367b1cf5
BS
6316 if (optimize && GET_CODE (oldequiv) == REG
6317 && REGNO (oldequiv) < FIRST_PSEUDO_REGISTER
6318 && spill_reg_store[REGNO (oldequiv)]
6319 && GET_CODE (old) == REG
6320 && (dead_or_set_p (insn,
6321 spill_reg_stored_to[REGNO (oldequiv)])
6322 || rtx_equal_p (spill_reg_stored_to[REGNO (oldequiv)],
6323 old)))
6324 delete_output_reload (insn, j, REGNO (oldequiv));
6325
6326 /* Prevent normal processing of this reload. */
6327 special = 1;
6328 /* Output a special code sequence for this case. */
6329 new_spill_reg_store[REGNO (reloadreg)]
6330 = inc_for_reload (reloadreg, oldequiv, rl->out,
6331 rl->inc);
6332 }
32131a9c 6333
367b1cf5
BS
6334 /* If we are reloading a pseudo-register that was set by the previous
6335 insn, see if we can get rid of that pseudo-register entirely
6336 by redirecting the previous insn into our reload register. */
6337
6338 else if (optimize && GET_CODE (old) == REG
6339 && REGNO (old) >= FIRST_PSEUDO_REGISTER
6340 && dead_or_set_p (insn, old)
6341 /* This is unsafe if some other reload
6342 uses the same reg first. */
ff6534ad 6343 && ! conflicts_with_override (reloadreg)
c02cad8f
BS
6344 && free_for_value_p (REGNO (reloadreg), rl->mode, rl->opnum,
6345 rl->when_needed, old, rl->out, j, 0))
367b1cf5
BS
6346 {
6347 rtx temp = PREV_INSN (insn);
6348 while (temp && GET_CODE (temp) == NOTE)
6349 temp = PREV_INSN (temp);
6350 if (temp
6351 && GET_CODE (temp) == INSN
6352 && GET_CODE (PATTERN (temp)) == SET
6353 && SET_DEST (PATTERN (temp)) == old
6354 /* Make sure we can access insn_operand_constraint. */
6355 && asm_noperands (PATTERN (temp)) < 0
6356 /* This is unsafe if prev insn rejects our reload reg. */
6357 && constraint_accepts_reg_p (insn_data[recog_memoized (temp)].operand[0].constraint,
6358 reloadreg)
6359 /* This is unsafe if operand occurs more than once in current
6360 insn. Perhaps some occurrences aren't reloaded. */
4b983fdc 6361 && count_occurrences (PATTERN (insn), old, 0) == 1
367b1cf5
BS
6362 /* Don't risk splitting a matching pair of operands. */
6363 && ! reg_mentioned_p (old, SET_SRC (PATTERN (temp))))
6364 {
6365 /* Store into the reload register instead of the pseudo. */
6366 SET_DEST (PATTERN (temp)) = reloadreg;
6367
6368 /* If the previous insn is an output reload, the source is
6369 a reload register, and its spill_reg_store entry will
6370 contain the previous destination. This is now
6371 invalid. */
6372 if (GET_CODE (SET_SRC (PATTERN (temp))) == REG
6373 && REGNO (SET_SRC (PATTERN (temp))) < FIRST_PSEUDO_REGISTER)
32131a9c 6374 {
367b1cf5
BS
6375 spill_reg_store[REGNO (SET_SRC (PATTERN (temp)))] = 0;
6376 spill_reg_stored_to[REGNO (SET_SRC (PATTERN (temp)))] = 0;
32131a9c
RK
6377 }
6378
367b1cf5
BS
6379 /* If these are the only uses of the pseudo reg,
6380 pretend for GDB it lives in the reload reg we used. */
6381 if (REG_N_DEATHS (REGNO (old)) == 1
6382 && REG_N_SETS (REGNO (old)) == 1)
cb2afeb3 6383 {
367b1cf5
BS
6384 reg_renumber[REGNO (old)] = REGNO (rl->reg_rtx);
6385 alter_reg (REGNO (old), -1);
32131a9c 6386 }
07875628 6387 special = 1;
367b1cf5
BS
6388 }
6389 }
32131a9c 6390
367b1cf5 6391 /* We can't do that, so output an insn to load RELOADREG. */
32131a9c 6392
367b1cf5
BS
6393#ifdef SECONDARY_INPUT_RELOAD_CLASS
6394 /* If we have a secondary reload, pick up the secondary register
6395 and icode, if any. If OLDEQUIV and OLD are different or
6396 if this is an in-out reload, recompute whether or not we
6397 still need a secondary register and what the icode should
6398 be. If we still need a secondary register and the class or
6399 icode is different, go back to reloading from OLD if using
6400 OLDEQUIV means that we got the wrong type of register. We
6401 cannot have different class or icode due to an in-out reload
6402 because we don't make such reloads when both the input and
6403 output need secondary reload registers. */
6404
07875628 6405 if (! special && rl->secondary_in_reload >= 0)
367b1cf5
BS
6406 {
6407 rtx second_reload_reg = 0;
6408 int secondary_reload = rl->secondary_in_reload;
6409 rtx real_oldequiv = oldequiv;
6410 rtx real_old = old;
6411 rtx tmp;
6412 enum insn_code icode;
6413
6414 /* If OLDEQUIV is a pseudo with a MEM, get the real MEM
6415 and similarly for OLD.
6416 See comments in get_secondary_reload in reload.c. */
6417 /* If it is a pseudo that cannot be replaced with its
6418 equivalent MEM, we must fall back to reload_in, which
6419 will have all the necessary substitutions registered.
6420 Likewise for a pseudo that can't be replaced with its
6421 equivalent constant.
6422
6423 Take extra care for subregs of such pseudos. Note that
6424 we cannot use reg_equiv_mem in this case because it is
6425 not in the right mode. */
6426
6427 tmp = oldequiv;
6428 if (GET_CODE (tmp) == SUBREG)
6429 tmp = SUBREG_REG (tmp);
6430 if (GET_CODE (tmp) == REG
6431 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
6432 && (reg_equiv_memory_loc[REGNO (tmp)] != 0
6433 || reg_equiv_constant[REGNO (tmp)] != 0))
6434 {
6435 if (! reg_equiv_mem[REGNO (tmp)]
6436 || num_not_at_initial_offset
6437 || GET_CODE (oldequiv) == SUBREG)
6438 real_oldequiv = rl->in;
6439 else
6440 real_oldequiv = reg_equiv_mem[REGNO (tmp)];
6441 }
32131a9c 6442
367b1cf5
BS
6443 tmp = old;
6444 if (GET_CODE (tmp) == SUBREG)
6445 tmp = SUBREG_REG (tmp);
6446 if (GET_CODE (tmp) == REG
6447 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
6448 && (reg_equiv_memory_loc[REGNO (tmp)] != 0
6449 || reg_equiv_constant[REGNO (tmp)] != 0))
6450 {
6451 if (! reg_equiv_mem[REGNO (tmp)]
6452 || num_not_at_initial_offset
6453 || GET_CODE (old) == SUBREG)
6454 real_old = rl->in;
6455 else
6456 real_old = reg_equiv_mem[REGNO (tmp)];
6457 }
6458
6459 second_reload_reg = rld[secondary_reload].reg_rtx;
6460 icode = rl->secondary_in_icode;
6461
6462 if ((old != oldequiv && ! rtx_equal_p (old, oldequiv))
6463 || (rl->in != 0 && rl->out != 0))
6464 {
6465 enum reg_class new_class
6466 = SECONDARY_INPUT_RELOAD_CLASS (rl->class,
6467 mode, real_oldequiv);
6468
6469 if (new_class == NO_REGS)
6470 second_reload_reg = 0;
6471 else
32131a9c 6472 {
367b1cf5
BS
6473 enum insn_code new_icode;
6474 enum machine_mode new_mode;
6475
6476 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) new_class],
6477 REGNO (second_reload_reg)))
6478 oldequiv = old, real_oldequiv = real_old;
6479 else
32131a9c 6480 {
367b1cf5
BS
6481 new_icode = reload_in_optab[(int) mode];
6482 if (new_icode != CODE_FOR_nothing
6483 && ((insn_data[(int) new_icode].operand[0].predicate
6484 && ! ((*insn_data[(int) new_icode].operand[0].predicate)
6485 (reloadreg, mode)))
6486 || (insn_data[(int) new_icode].operand[1].predicate
6487 && ! ((*insn_data[(int) new_icode].operand[1].predicate)
6488 (real_oldequiv, mode)))))
6489 new_icode = CODE_FOR_nothing;
6490
6491 if (new_icode == CODE_FOR_nothing)
6492 new_mode = mode;
6493 else
6494 new_mode = insn_data[(int) new_icode].operand[2].mode;
d30e8ef0 6495
367b1cf5 6496 if (GET_MODE (second_reload_reg) != new_mode)
32131a9c 6497 {
367b1cf5
BS
6498 if (!HARD_REGNO_MODE_OK (REGNO (second_reload_reg),
6499 new_mode))
6500 oldequiv = old, real_oldequiv = real_old;
6501 else
6502 second_reload_reg
6503 = gen_rtx_REG (new_mode,
6504 REGNO (second_reload_reg));
32131a9c 6505 }
32131a9c
RK
6506 }
6507 }
367b1cf5 6508 }
32131a9c 6509
367b1cf5
BS
6510 /* If we still need a secondary reload register, check
6511 to see if it is being used as a scratch or intermediate
6512 register and generate code appropriately. If we need
6513 a scratch register, use REAL_OLDEQUIV since the form of
6514 the insn may depend on the actual address if it is
6515 a MEM. */
546b63fb 6516
367b1cf5
BS
6517 if (second_reload_reg)
6518 {
6519 if (icode != CODE_FOR_nothing)
32131a9c 6520 {
367b1cf5
BS
6521 emit_insn (GEN_FCN (icode) (reloadreg, real_oldequiv,
6522 second_reload_reg));
07875628 6523 special = 1;
367b1cf5
BS
6524 }
6525 else
6526 {
6527 /* See if we need a scratch register to load the
6528 intermediate register (a tertiary reload). */
6529 enum insn_code tertiary_icode
6530 = rld[secondary_reload].secondary_in_icode;
1554c2c6 6531
367b1cf5
BS
6532 if (tertiary_icode != CODE_FOR_nothing)
6533 {
6534 rtx third_reload_reg
6535 = rld[rld[secondary_reload].secondary_in_reload].reg_rtx;
1554c2c6 6536
367b1cf5
BS
6537 emit_insn ((GEN_FCN (tertiary_icode)
6538 (second_reload_reg, real_oldequiv,
6539 third_reload_reg)));
6540 }
6541 else
6542 gen_reload (second_reload_reg, real_oldequiv,
6543 rl->opnum,
6544 rl->when_needed);
32131a9c 6545
367b1cf5
BS
6546 oldequiv = second_reload_reg;
6547 }
6548 }
6549 }
6550#endif
32131a9c 6551
07875628 6552 if (! special && ! rtx_equal_p (reloadreg, oldequiv))
367b1cf5
BS
6553 {
6554 rtx real_oldequiv = oldequiv;
6555
6556 if ((GET_CODE (oldequiv) == REG
6557 && REGNO (oldequiv) >= FIRST_PSEUDO_REGISTER
6558 && (reg_equiv_memory_loc[REGNO (oldequiv)] != 0
6559 || reg_equiv_constant[REGNO (oldequiv)] != 0))
6560 || (GET_CODE (oldequiv) == SUBREG
6561 && GET_CODE (SUBREG_REG (oldequiv)) == REG
6562 && (REGNO (SUBREG_REG (oldequiv))
6563 >= FIRST_PSEUDO_REGISTER)
6564 && ((reg_equiv_memory_loc
6565 [REGNO (SUBREG_REG (oldequiv))] != 0)
6566 || (reg_equiv_constant
716120a7
JJ
6567 [REGNO (SUBREG_REG (oldequiv))] != 0)))
6568 || (CONSTANT_P (oldequiv)
6569 && PREFERRED_RELOAD_CLASS (oldequiv,
6570 REGNO_REG_CLASS (REGNO (reloadreg))) == NO_REGS))
367b1cf5
BS
6571 real_oldequiv = rl->in;
6572 gen_reload (reloadreg, real_oldequiv, rl->opnum,
6573 rl->when_needed);
6574 }
32131a9c 6575
94bd63e5
AH
6576 if (flag_non_call_exceptions)
6577 copy_eh_notes (insn, get_insns ());
6578
367b1cf5
BS
6579 /* End this sequence. */
6580 *where = get_insns ();
6581 end_sequence ();
94bd63e5 6582
367b1cf5
BS
6583 /* Update reload_override_in so that delete_address_reloads_1
6584 can see the actual register usage. */
6585 if (oldequiv_reg)
6586 reload_override_in[j] = oldequiv;
6587}
32131a9c 6588
367b1cf5
BS
6589/* Generate insns to for the output reload RL, which is for the insn described
6590 by CHAIN and has the number J. */
6591static void
6592emit_output_reload_insns (chain, rl, j)
6593 struct insn_chain *chain;
6594 struct reload *rl;
6595 int j;
6596{
6597 rtx reloadreg = rl->reg_rtx;
6598 rtx insn = chain->insn;
6599 int special = 0;
6600 rtx old = rl->out;
6601 enum machine_mode mode = GET_MODE (old);
6602 rtx p;
32131a9c 6603
367b1cf5
BS
6604 if (rl->when_needed == RELOAD_OTHER)
6605 start_sequence ();
6606 else
6607 push_to_sequence (output_reload_insns[rl->opnum]);
32131a9c 6608
367b1cf5
BS
6609 /* Determine the mode to reload in.
6610 See comments above (for input reloading). */
32131a9c 6611
367b1cf5
BS
6612 if (mode == VOIDmode)
6613 {
6614 /* VOIDmode should never happen for an output. */
6615 if (asm_noperands (PATTERN (insn)) < 0)
6616 /* It's the compiler's fault. */
6617 fatal_insn ("VOIDmode on an output", insn);
6618 error_for_asm (insn, "output operand is constant in `asm'");
6619 /* Prevent crash--use something we know is valid. */
6620 mode = word_mode;
6621 old = gen_rtx_REG (mode, REGNO (reloadreg));
6622 }
546b63fb 6623
367b1cf5
BS
6624 if (GET_MODE (reloadreg) != mode)
6625 reloadreg = gen_rtx_REG (mode, REGNO (reloadreg));
32131a9c 6626
367b1cf5 6627#ifdef SECONDARY_OUTPUT_RELOAD_CLASS
32131a9c 6628
367b1cf5
BS
6629 /* If we need two reload regs, set RELOADREG to the intermediate
6630 one, since it will be stored into OLD. We might need a secondary
6631 register only for an input reload, so check again here. */
32131a9c 6632
367b1cf5
BS
6633 if (rl->secondary_out_reload >= 0)
6634 {
6635 rtx real_old = old;
cb2afeb3 6636
367b1cf5
BS
6637 if (GET_CODE (old) == REG && REGNO (old) >= FIRST_PSEUDO_REGISTER
6638 && reg_equiv_mem[REGNO (old)] != 0)
6639 real_old = reg_equiv_mem[REGNO (old)];
32131a9c 6640
367b1cf5
BS
6641 if ((SECONDARY_OUTPUT_RELOAD_CLASS (rl->class,
6642 mode, real_old)
6643 != NO_REGS))
b60a8416 6644 {
367b1cf5
BS
6645 rtx second_reloadreg = reloadreg;
6646 reloadreg = rld[rl->secondary_out_reload].reg_rtx;
32131a9c 6647
367b1cf5
BS
6648 /* See if RELOADREG is to be used as a scratch register
6649 or as an intermediate register. */
6650 if (rl->secondary_out_icode != CODE_FOR_nothing)
6651 {
6652 emit_insn ((GEN_FCN (rl->secondary_out_icode)
6653 (real_old, second_reloadreg, reloadreg)));
6654 special = 1;
6655 }
6656 else
6657 {
6658 /* See if we need both a scratch and intermediate reload
6659 register. */
32131a9c 6660
367b1cf5
BS
6661 int secondary_reload = rl->secondary_out_reload;
6662 enum insn_code tertiary_icode
6663 = rld[secondary_reload].secondary_out_icode;
32131a9c 6664
367b1cf5
BS
6665 if (GET_MODE (reloadreg) != mode)
6666 reloadreg = gen_rtx_REG (mode, REGNO (reloadreg));
cb2afeb3 6667
367b1cf5
BS
6668 if (tertiary_icode != CODE_FOR_nothing)
6669 {
6670 rtx third_reloadreg
6671 = rld[rld[secondary_reload].secondary_out_reload].reg_rtx;
6672 rtx tem;
6673
6674 /* Copy primary reload reg to secondary reload reg.
6675 (Note that these have been swapped above, then
78adc5a0 6676 secondary reload reg to OLD using our insn.) */
367b1cf5
BS
6677
6678 /* If REAL_OLD is a paradoxical SUBREG, remove it
6679 and try to put the opposite SUBREG on
6680 RELOADREG. */
6681 if (GET_CODE (real_old) == SUBREG
6682 && (GET_MODE_SIZE (GET_MODE (real_old))
6683 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (real_old))))
6684 && 0 != (tem = gen_lowpart_common
6685 (GET_MODE (SUBREG_REG (real_old)),
6686 reloadreg)))
6687 real_old = SUBREG_REG (real_old), reloadreg = tem;
6688
6689 gen_reload (reloadreg, second_reloadreg,
6690 rl->opnum, rl->when_needed);
6691 emit_insn ((GEN_FCN (tertiary_icode)
6692 (real_old, reloadreg, third_reloadreg)));
6693 special = 1;
6694 }
05d10675 6695
367b1cf5
BS
6696 else
6697 /* Copy between the reload regs here and then to
6698 OUT later. */
cb2afeb3 6699
367b1cf5
BS
6700 gen_reload (reloadreg, second_reloadreg,
6701 rl->opnum, rl->when_needed);
a7911cd2 6702 }
367b1cf5
BS
6703 }
6704 }
32131a9c
RK
6705#endif
6706
367b1cf5
BS
6707 /* Output the last reload insn. */
6708 if (! special)
6709 {
6710 rtx set;
6711
6712 /* Don't output the last reload if OLD is not the dest of
1d7254c5 6713 INSN and is in the src and is clobbered by INSN. */
367b1cf5
BS
6714 if (! flag_expensive_optimizations
6715 || GET_CODE (old) != REG
6716 || !(set = single_set (insn))
6717 || rtx_equal_p (old, SET_DEST (set))
6718 || !reg_mentioned_p (old, SET_SRC (set))
9532e31f 6719 || !regno_clobbered_p (REGNO (old), insn, rl->mode, 0))
367b1cf5
BS
6720 gen_reload (old, reloadreg, rl->opnum,
6721 rl->when_needed);
6722 }
32131a9c 6723
367b1cf5
BS
6724 /* Look at all insns we emitted, just to be safe. */
6725 for (p = get_insns (); p; p = NEXT_INSN (p))
2c3c49de 6726 if (INSN_P (p))
367b1cf5
BS
6727 {
6728 rtx pat = PATTERN (p);
546b63fb 6729
367b1cf5
BS
6730 /* If this output reload doesn't come from a spill reg,
6731 clear any memory of reloaded copies of the pseudo reg.
6732 If this output reload comes from a spill reg,
6733 reg_has_output_reload will make this do nothing. */
6734 note_stores (pat, forget_old_reloads_1, NULL);
cb2afeb3 6735
367b1cf5
BS
6736 if (reg_mentioned_p (rl->reg_rtx, pat))
6737 {
6738 rtx set = single_set (insn);
6739 if (reload_spill_index[j] < 0
6740 && set
6741 && SET_SRC (set) == rl->reg_rtx)
6742 {
6743 int src = REGNO (SET_SRC (set));
32131a9c 6744
367b1cf5
BS
6745 reload_spill_index[j] = src;
6746 SET_HARD_REG_BIT (reg_is_output_reload, src);
6747 if (find_regno_note (insn, REG_DEAD, src))
6748 SET_HARD_REG_BIT (reg_reloaded_died, src);
6749 }
6750 if (REGNO (rl->reg_rtx) < FIRST_PSEUDO_REGISTER)
6751 {
6752 int s = rl->secondary_out_reload;
6753 set = single_set (p);
6754 /* If this reload copies only to the secondary reload
6755 register, the secondary reload does the actual
6756 store. */
6757 if (s >= 0 && set == NULL_RTX)
1d7254c5
KH
6758 /* We can't tell what function the secondary reload
6759 has and where the actual store to the pseudo is
6760 made; leave new_spill_reg_store alone. */
6761 ;
367b1cf5
BS
6762 else if (s >= 0
6763 && SET_SRC (set) == rl->reg_rtx
6764 && SET_DEST (set) == rld[s].reg_rtx)
6765 {
6766 /* Usually the next instruction will be the
6767 secondary reload insn; if we can confirm
6768 that it is, setting new_spill_reg_store to
6769 that insn will allow an extra optimization. */
6770 rtx s_reg = rld[s].reg_rtx;
6771 rtx next = NEXT_INSN (p);
6772 rld[s].out = rl->out;
6773 rld[s].out_reg = rl->out_reg;
6774 set = single_set (next);
6775 if (set && SET_SRC (set) == s_reg
6776 && ! new_spill_reg_store[REGNO (s_reg)])
6777 {
6778 SET_HARD_REG_BIT (reg_is_output_reload,
6779 REGNO (s_reg));
6780 new_spill_reg_store[REGNO (s_reg)] = next;
6781 }
6782 }
6783 else
6784 new_spill_reg_store[REGNO (rl->reg_rtx)] = p;
6785 }
6786 }
6787 }
32131a9c 6788
367b1cf5
BS
6789 if (rl->when_needed == RELOAD_OTHER)
6790 {
6791 emit_insns (other_output_reload_insns[rl->opnum]);
6792 other_output_reload_insns[rl->opnum] = get_insns ();
6793 }
6794 else
6795 output_reload_insns[rl->opnum] = get_insns ();
32131a9c 6796
94bd63e5
AH
6797 if (flag_non_call_exceptions)
6798 copy_eh_notes (insn, get_insns ());
6799
1d7254c5 6800 end_sequence ();
367b1cf5 6801}
32131a9c 6802
367b1cf5
BS
6803/* Do input reloading for reload RL, which is for the insn described by CHAIN
6804 and has the number J. */
6805static void
6806do_input_reload (chain, rl, j)
6807 struct insn_chain *chain;
6808 struct reload *rl;
6809 int j;
6810{
6811 int expect_occurrences = 1;
6812 rtx insn = chain->insn;
6813 rtx old = (rl->in && GET_CODE (rl->in) == MEM
6814 ? rl->in_reg : rl->in);
6815
6816 if (old != 0
6817 /* AUTO_INC reloads need to be handled even if inherited. We got an
6818 AUTO_INC reload if reload_out is set but reload_out_reg isn't. */
6819 && (! reload_inherited[j] || (rl->out && ! rl->out_reg))
6820 && ! rtx_equal_p (rl->reg_rtx, old)
6821 && rl->reg_rtx != 0)
1d813780 6822 emit_input_reload_insns (chain, rld + j, old, j);
32131a9c 6823
367b1cf5
BS
6824 /* When inheriting a wider reload, we have a MEM in rl->in,
6825 e.g. inheriting a SImode output reload for
6826 (mem:HI (plus:SI (reg:SI 14 fp) (const_int 10))) */
6827 if (optimize && reload_inherited[j] && rl->in
6828 && GET_CODE (rl->in) == MEM
6829 && GET_CODE (rl->in_reg) == MEM
6830 && reload_spill_index[j] >= 0
6831 && TEST_HARD_REG_BIT (reg_reloaded_valid, reload_spill_index[j]))
6832 {
6833 expect_occurrences
4b983fdc 6834 = count_occurrences (PATTERN (insn), rl->in, 0) == 1 ? 0 : -1;
1d7254c5 6835 rl->in = regno_reg_rtx[reg_reloaded_contents[reload_spill_index[j]]];
367b1cf5 6836 }
32131a9c 6837
367b1cf5
BS
6838 /* If we are reloading a register that was recently stored in with an
6839 output-reload, see if we can prove there was
6840 actually no need to store the old value in it. */
32131a9c 6841
367b1cf5
BS
6842 if (optimize
6843 && (reload_inherited[j] || reload_override_in[j])
6844 && rl->reg_rtx
6845 && GET_CODE (rl->reg_rtx) == REG
6846 && spill_reg_store[REGNO (rl->reg_rtx)] != 0
6847#if 0
6848 /* There doesn't seem to be any reason to restrict this to pseudos
6849 and doing so loses in the case where we are copying from a
6850 register of the wrong class. */
6851 && (REGNO (spill_reg_stored_to[REGNO (rl->reg_rtx)])
6852 >= FIRST_PSEUDO_REGISTER)
6853#endif
6854 /* The insn might have already some references to stackslots
6855 replaced by MEMs, while reload_out_reg still names the
6856 original pseudo. */
6857 && (dead_or_set_p (insn,
6858 spill_reg_stored_to[REGNO (rl->reg_rtx)])
6859 || rtx_equal_p (spill_reg_stored_to[REGNO (rl->reg_rtx)],
6860 rl->out_reg)))
6861 delete_output_reload (insn, j, REGNO (rl->reg_rtx));
6862}
32131a9c 6863
367b1cf5
BS
6864/* Do output reloading for reload RL, which is for the insn described by
6865 CHAIN and has the number J.
6866 ??? At some point we need to support handling output reloads of
6867 JUMP_INSNs or insns that set cc0. */
6868static void
6869do_output_reload (chain, rl, j)
6870 struct insn_chain *chain;
6871 struct reload *rl;
6872 int j;
6873{
6874 rtx note, old;
6875 rtx insn = chain->insn;
6876 /* If this is an output reload that stores something that is
6877 not loaded in this same reload, see if we can eliminate a previous
6878 store. */
6879 rtx pseudo = rl->out_reg;
6880
6881 if (pseudo
6882 && GET_CODE (pseudo) == REG
6883 && ! rtx_equal_p (rl->in_reg, pseudo)
6884 && REGNO (pseudo) >= FIRST_PSEUDO_REGISTER
6885 && reg_last_reload_reg[REGNO (pseudo)])
6886 {
6887 int pseudo_no = REGNO (pseudo);
6888 int last_regno = REGNO (reg_last_reload_reg[pseudo_no]);
6889
6890 /* We don't need to test full validity of last_regno for
6891 inherit here; we only want to know if the store actually
6892 matches the pseudo. */
60ef417d
GK
6893 if (TEST_HARD_REG_BIT (reg_reloaded_valid, last_regno)
6894 && reg_reloaded_contents[last_regno] == pseudo_no
367b1cf5
BS
6895 && spill_reg_store[last_regno]
6896 && rtx_equal_p (pseudo, spill_reg_stored_to[last_regno]))
6897 delete_output_reload (insn, j, last_regno);
6898 }
5e03c156 6899
367b1cf5
BS
6900 old = rl->out_reg;
6901 if (old == 0
6902 || rl->reg_rtx == old
6903 || rl->reg_rtx == 0)
6904 return;
32131a9c 6905
367b1cf5
BS
6906 /* An output operand that dies right away does need a reload,
6907 but need not be copied from it. Show the new location in the
6908 REG_UNUSED note. */
6909 if ((GET_CODE (old) == REG || GET_CODE (old) == SCRATCH)
6910 && (note = find_reg_note (insn, REG_UNUSED, old)) != 0)
6911 {
6912 XEXP (note, 0) = rl->reg_rtx;
6913 return;
6914 }
6915 /* Likewise for a SUBREG of an operand that dies. */
6916 else if (GET_CODE (old) == SUBREG
6917 && GET_CODE (SUBREG_REG (old)) == REG
6918 && 0 != (note = find_reg_note (insn, REG_UNUSED,
6919 SUBREG_REG (old))))
6920 {
6921 XEXP (note, 0) = gen_lowpart_common (GET_MODE (old),
6922 rl->reg_rtx);
6923 return;
6924 }
6925 else if (GET_CODE (old) == SCRATCH)
6926 /* If we aren't optimizing, there won't be a REG_UNUSED note,
6927 but we don't want to make an output reload. */
6928 return;
1554c2c6 6929
367b1cf5
BS
6930 /* If is a JUMP_INSN, we can't support output reloads yet. */
6931 if (GET_CODE (insn) == JUMP_INSN)
6932 abort ();
5e03c156 6933
367b1cf5
BS
6934 emit_output_reload_insns (chain, rld + j, j);
6935}
1554c2c6 6936
367b1cf5 6937/* Output insns to reload values in and out of the chosen reload regs. */
32131a9c 6938
367b1cf5 6939static void
e04ca094 6940emit_reload_insns (chain)
367b1cf5
BS
6941 struct insn_chain *chain;
6942{
6943 rtx insn = chain->insn;
32131a9c 6944
367b1cf5
BS
6945 register int j;
6946 rtx following_insn = NEXT_INSN (insn);
6947 rtx before_insn = PREV_INSN (insn);
e6e52be0 6948
367b1cf5 6949 CLEAR_HARD_REG_SET (reg_reloaded_died);
e6e52be0 6950
367b1cf5
BS
6951 for (j = 0; j < reload_n_operands; j++)
6952 input_reload_insns[j] = input_address_reload_insns[j]
6953 = inpaddr_address_reload_insns[j]
6954 = output_reload_insns[j] = output_address_reload_insns[j]
6955 = outaddr_address_reload_insns[j]
6956 = other_output_reload_insns[j] = 0;
6957 other_input_address_reload_insns = 0;
6958 other_input_reload_insns = 0;
6959 operand_reload_insns = 0;
6960 other_operand_reload_insns = 0;
32131a9c 6961
850aac53 6962 /* Dump reloads into the dump file. */
e04ca094 6963 if (rtl_dump_file)
850aac53 6964 {
e04ca094
JL
6965 fprintf (rtl_dump_file, "\nReloads for insn # %d\n", INSN_UID (insn));
6966 debug_reload_to_stream (rtl_dump_file);
850aac53
JL
6967 }
6968
367b1cf5
BS
6969 /* Now output the instructions to copy the data into and out of the
6970 reload registers. Do these in the order that the reloads were reported,
6971 since reloads of base and index registers precede reloads of operands
6972 and the operands may need the base and index registers reloaded. */
32131a9c 6973
367b1cf5
BS
6974 for (j = 0; j < n_reloads; j++)
6975 {
6976 if (rld[j].reg_rtx
6977 && REGNO (rld[j].reg_rtx) < FIRST_PSEUDO_REGISTER)
6978 new_spill_reg_store[REGNO (rld[j].reg_rtx)] = 0;
d7e0324f 6979
367b1cf5
BS
6980 do_input_reload (chain, rld + j, j);
6981 do_output_reload (chain, rld + j, j);
32131a9c
RK
6982 }
6983
546b63fb
RK
6984 /* Now write all the insns we made for reloads in the order expected by
6985 the allocation functions. Prior to the insn being reloaded, we write
6986 the following reloads:
6987
6988 RELOAD_FOR_OTHER_ADDRESS reloads for input addresses.
6989
2edc8d65 6990 RELOAD_OTHER reloads.
546b63fb 6991
47c8cf91
ILT
6992 For each operand, any RELOAD_FOR_INPADDR_ADDRESS reloads followed
6993 by any RELOAD_FOR_INPUT_ADDRESS reloads followed by the
6994 RELOAD_FOR_INPUT reload for the operand.
546b63fb 6995
893bc853
RK
6996 RELOAD_FOR_OPADDR_ADDRS reloads.
6997
546b63fb
RK
6998 RELOAD_FOR_OPERAND_ADDRESS reloads.
6999
7000 After the insn being reloaded, we write the following:
7001
47c8cf91
ILT
7002 For each operand, any RELOAD_FOR_OUTADDR_ADDRESS reloads followed
7003 by any RELOAD_FOR_OUTPUT_ADDRESS reload followed by the
7004 RELOAD_FOR_OUTPUT reload, followed by any RELOAD_OTHER output
7005 reloads for the operand. The RELOAD_OTHER output reloads are
7006 output in descending order by reload number. */
546b63fb 7007
c93b03c2
RH
7008 emit_insns_before (other_input_address_reload_insns, insn);
7009 emit_insns_before (other_input_reload_insns, insn);
546b63fb
RK
7010
7011 for (j = 0; j < reload_n_operands; j++)
7012 {
c93b03c2
RH
7013 emit_insns_before (inpaddr_address_reload_insns[j], insn);
7014 emit_insns_before (input_address_reload_insns[j], insn);
7015 emit_insns_before (input_reload_insns[j], insn);
546b63fb
RK
7016 }
7017
c93b03c2
RH
7018 emit_insns_before (other_operand_reload_insns, insn);
7019 emit_insns_before (operand_reload_insns, insn);
546b63fb
RK
7020
7021 for (j = 0; j < reload_n_operands; j++)
7022 {
47c8cf91 7023 emit_insns_before (outaddr_address_reload_insns[j], following_insn);
546b63fb
RK
7024 emit_insns_before (output_address_reload_insns[j], following_insn);
7025 emit_insns_before (output_reload_insns[j], following_insn);
befa01b9 7026 emit_insns_before (other_output_reload_insns[j], following_insn);
c93b03c2
RH
7027 }
7028
7029 /* Keep basic block info up to date. */
7030 if (n_basic_blocks)
7031 {
3b413743 7032 if (BLOCK_HEAD (chain->block) == insn)
05d10675 7033 BLOCK_HEAD (chain->block) = NEXT_INSN (before_insn);
3b413743 7034 if (BLOCK_END (chain->block) == insn)
05d10675 7035 BLOCK_END (chain->block) = PREV_INSN (following_insn);
546b63fb
RK
7036 }
7037
32131a9c
RK
7038 /* For all the spill regs newly reloaded in this instruction,
7039 record what they were reloaded from, so subsequent instructions
d445b551
RK
7040 can inherit the reloads.
7041
7042 Update spill_reg_store for the reloads of this insn.
e9e79d69 7043 Copy the elements that were updated in the loop above. */
32131a9c
RK
7044
7045 for (j = 0; j < n_reloads; j++)
7046 {
7047 register int r = reload_order[j];
7048 register int i = reload_spill_index[r];
7049
78a2bc08 7050 /* If this is a non-inherited input reload from a pseudo, we must
05d10675
BS
7051 clear any memory of a previous store to the same pseudo. Only do
7052 something if there will not be an output reload for the pseudo
7053 being reloaded. */
eceef4c9 7054 if (rld[r].in_reg != 0
05d10675
BS
7055 && ! (reload_inherited[r] || reload_override_in[r]))
7056 {
eceef4c9 7057 rtx reg = rld[r].in_reg;
78a2bc08 7058
05d10675 7059 if (GET_CODE (reg) == SUBREG)
78a2bc08 7060 reg = SUBREG_REG (reg);
05d10675
BS
7061
7062 if (GET_CODE (reg) == REG
78a2bc08
R
7063 && REGNO (reg) >= FIRST_PSEUDO_REGISTER
7064 && ! reg_has_output_reload[REGNO (reg)])
7065 {
7066 int nregno = REGNO (reg);
7067
7068 if (reg_last_reload_reg[nregno])
05d10675
BS
7069 {
7070 int last_regno = REGNO (reg_last_reload_reg[nregno]);
78a2bc08 7071
05d10675 7072 if (reg_reloaded_contents[last_regno] == nregno)
78a2bc08 7073 spill_reg_store[last_regno] = 0;
05d10675 7074 }
78a2bc08
R
7075 }
7076 }
05d10675 7077
e6e52be0 7078 /* I is nonneg if this reload used a register.
eceef4c9 7079 If rld[r].reg_rtx is 0, this is an optional reload
51f0c3b7 7080 that we opted to ignore. */
d445b551 7081
eceef4c9 7082 if (i >= 0 && rld[r].reg_rtx != 0)
32131a9c 7083 {
1d7254c5 7084 int nr = HARD_REGNO_NREGS (i, GET_MODE (rld[r].reg_rtx));
32131a9c 7085 int k;
51f0c3b7
JW
7086 int part_reaches_end = 0;
7087 int all_reaches_end = 1;
32131a9c 7088
51f0c3b7
JW
7089 /* For a multi register reload, we need to check if all or part
7090 of the value lives to the end. */
32131a9c
RK
7091 for (k = 0; k < nr; k++)
7092 {
eceef4c9
BS
7093 if (reload_reg_reaches_end_p (i + k, rld[r].opnum,
7094 rld[r].when_needed))
51f0c3b7
JW
7095 part_reaches_end = 1;
7096 else
7097 all_reaches_end = 0;
32131a9c
RK
7098 }
7099
51f0c3b7
JW
7100 /* Ignore reloads that don't reach the end of the insn in
7101 entirety. */
7102 if (all_reaches_end)
32131a9c 7103 {
51f0c3b7
JW
7104 /* First, clear out memory of what used to be in this spill reg.
7105 If consecutive registers are used, clear them all. */
d08ea79f 7106
32131a9c 7107 for (k = 0; k < nr; k++)
e6e52be0 7108 CLEAR_HARD_REG_BIT (reg_reloaded_valid, i + k);
d08ea79f 7109
51f0c3b7 7110 /* Maybe the spill reg contains a copy of reload_out. */
eceef4c9
BS
7111 if (rld[r].out != 0
7112 && (GET_CODE (rld[r].out) == REG
cb2afeb3 7113#ifdef AUTO_INC_DEC
eceef4c9 7114 || ! rld[r].out_reg
cb2afeb3 7115#endif
eceef4c9 7116 || GET_CODE (rld[r].out_reg) == REG))
51f0c3b7 7117 {
eceef4c9
BS
7118 rtx out = (GET_CODE (rld[r].out) == REG
7119 ? rld[r].out
7120 : rld[r].out_reg
7121 ? rld[r].out_reg
7122/* AUTO_INC */ : XEXP (rld[r].in_reg, 0));
cb2afeb3 7123 register int nregno = REGNO (out);
51f0c3b7
JW
7124 int nnr = (nregno >= FIRST_PSEUDO_REGISTER ? 1
7125 : HARD_REGNO_NREGS (nregno,
eceef4c9 7126 GET_MODE (rld[r].reg_rtx)));
51f0c3b7
JW
7127
7128 spill_reg_store[i] = new_spill_reg_store[i];
cb2afeb3 7129 spill_reg_stored_to[i] = out;
eceef4c9 7130 reg_last_reload_reg[nregno] = rld[r].reg_rtx;
51f0c3b7
JW
7131
7132 /* If NREGNO is a hard register, it may occupy more than
05d10675 7133 one register. If it does, say what is in the
51f0c3b7
JW
7134 rest of the registers assuming that both registers
7135 agree on how many words the object takes. If not,
7136 invalidate the subsequent registers. */
7137
7138 if (nregno < FIRST_PSEUDO_REGISTER)
7139 for (k = 1; k < nnr; k++)
7140 reg_last_reload_reg[nregno + k]
7141 = (nr == nnr
eceef4c9
BS
7142 ? gen_rtx_REG (reg_raw_mode[REGNO (rld[r].reg_rtx) + k],
7143 REGNO (rld[r].reg_rtx) + k)
51f0c3b7
JW
7144 : 0);
7145
7146 /* Now do the inverse operation. */
7147 for (k = 0; k < nr; k++)
7148 {
e6e52be0
R
7149 CLEAR_HARD_REG_BIT (reg_reloaded_dead, i + k);
7150 reg_reloaded_contents[i + k]
51f0c3b7
JW
7151 = (nregno >= FIRST_PSEUDO_REGISTER || nr != nnr
7152 ? nregno
7153 : nregno + k);
e6e52be0
R
7154 reg_reloaded_insn[i + k] = insn;
7155 SET_HARD_REG_BIT (reg_reloaded_valid, i + k);
51f0c3b7
JW
7156 }
7157 }
d08ea79f 7158
51f0c3b7
JW
7159 /* Maybe the spill reg contains a copy of reload_in. Only do
7160 something if there will not be an output reload for
7161 the register being reloaded. */
eceef4c9
BS
7162 else if (rld[r].out_reg == 0
7163 && rld[r].in != 0
7164 && ((GET_CODE (rld[r].in) == REG
7165 && REGNO (rld[r].in) >= FIRST_PSEUDO_REGISTER
7166 && ! reg_has_output_reload[REGNO (rld[r].in)])
7167 || (GET_CODE (rld[r].in_reg) == REG
7168 && ! reg_has_output_reload[REGNO (rld[r].in_reg)]))
7169 && ! reg_set_p (rld[r].reg_rtx, PATTERN (insn)))
51f0c3b7
JW
7170 {
7171 register int nregno;
7172 int nnr;
d445b551 7173
eceef4c9
BS
7174 if (GET_CODE (rld[r].in) == REG
7175 && REGNO (rld[r].in) >= FIRST_PSEUDO_REGISTER)
7176 nregno = REGNO (rld[r].in);
7177 else if (GET_CODE (rld[r].in_reg) == REG)
7178 nregno = REGNO (rld[r].in_reg);
cb2afeb3 7179 else
eceef4c9 7180 nregno = REGNO (XEXP (rld[r].in_reg, 0));
d08ea79f 7181
51f0c3b7
JW
7182 nnr = (nregno >= FIRST_PSEUDO_REGISTER ? 1
7183 : HARD_REGNO_NREGS (nregno,
eceef4c9 7184 GET_MODE (rld[r].reg_rtx)));
05d10675 7185
eceef4c9 7186 reg_last_reload_reg[nregno] = rld[r].reg_rtx;
51f0c3b7
JW
7187
7188 if (nregno < FIRST_PSEUDO_REGISTER)
7189 for (k = 1; k < nnr; k++)
7190 reg_last_reload_reg[nregno + k]
7191 = (nr == nnr
eceef4c9
BS
7192 ? gen_rtx_REG (reg_raw_mode[REGNO (rld[r].reg_rtx) + k],
7193 REGNO (rld[r].reg_rtx) + k)
51f0c3b7
JW
7194 : 0);
7195
7196 /* Unless we inherited this reload, show we haven't
cb2afeb3
R
7197 recently done a store.
7198 Previous stores of inherited auto_inc expressions
7199 also have to be discarded. */
7200 if (! reload_inherited[r]
eceef4c9 7201 || (rld[r].out && ! rld[r].out_reg))
51f0c3b7
JW
7202 spill_reg_store[i] = 0;
7203
7204 for (k = 0; k < nr; k++)
7205 {
e6e52be0
R
7206 CLEAR_HARD_REG_BIT (reg_reloaded_dead, i + k);
7207 reg_reloaded_contents[i + k]
51f0c3b7
JW
7208 = (nregno >= FIRST_PSEUDO_REGISTER || nr != nnr
7209 ? nregno
7210 : nregno + k);
e6e52be0
R
7211 reg_reloaded_insn[i + k] = insn;
7212 SET_HARD_REG_BIT (reg_reloaded_valid, i + k);
51f0c3b7
JW
7213 }
7214 }
7215 }
d445b551 7216
51f0c3b7
JW
7217 /* However, if part of the reload reaches the end, then we must
7218 invalidate the old info for the part that survives to the end. */
7219 else if (part_reaches_end)
7220 {
546b63fb 7221 for (k = 0; k < nr; k++)
e6e52be0 7222 if (reload_reg_reaches_end_p (i + k,
eceef4c9
BS
7223 rld[r].opnum,
7224 rld[r].when_needed))
e6e52be0 7225 CLEAR_HARD_REG_BIT (reg_reloaded_valid, i + k);
32131a9c
RK
7226 }
7227 }
7228
7229 /* The following if-statement was #if 0'd in 1.34 (or before...).
7230 It's reenabled in 1.35 because supposedly nothing else
7231 deals with this problem. */
7232
7233 /* If a register gets output-reloaded from a non-spill register,
7234 that invalidates any previous reloaded copy of it.
7235 But forget_old_reloads_1 won't get to see it, because
7236 it thinks only about the original insn. So invalidate it here. */
eceef4c9
BS
7237 if (i < 0 && rld[r].out != 0
7238 && (GET_CODE (rld[r].out) == REG
7239 || (GET_CODE (rld[r].out) == MEM
7240 && GET_CODE (rld[r].out_reg) == REG)))
32131a9c 7241 {
eceef4c9
BS
7242 rtx out = (GET_CODE (rld[r].out) == REG
7243 ? rld[r].out : rld[r].out_reg);
cb2afeb3 7244 register int nregno = REGNO (out);
c7093272 7245 if (nregno >= FIRST_PSEUDO_REGISTER)
cb2afeb3 7246 {
6a651371 7247 rtx src_reg, store_insn = NULL_RTX;
cb2afeb3
R
7248
7249 reg_last_reload_reg[nregno] = 0;
7250
7251 /* If we can find a hard register that is stored, record
7252 the storing insn so that we may delete this insn with
7253 delete_output_reload. */
eceef4c9 7254 src_reg = rld[r].reg_rtx;
cb2afeb3
R
7255
7256 /* If this is an optional reload, try to find the source reg
7257 from an input reload. */
7258 if (! src_reg)
7259 {
7260 rtx set = single_set (insn);
eceef4c9 7261 if (set && SET_DEST (set) == rld[r].out)
cb2afeb3
R
7262 {
7263 int k;
7264
7265 src_reg = SET_SRC (set);
7266 store_insn = insn;
7267 for (k = 0; k < n_reloads; k++)
7268 {
eceef4c9 7269 if (rld[k].in == src_reg)
cb2afeb3 7270 {
eceef4c9 7271 src_reg = rld[k].reg_rtx;
cb2afeb3
R
7272 break;
7273 }
7274 }
7275 }
7276 }
7277 else
7278 store_insn = new_spill_reg_store[REGNO (src_reg)];
7279 if (src_reg && GET_CODE (src_reg) == REG
7280 && REGNO (src_reg) < FIRST_PSEUDO_REGISTER)
7281 {
7282 int src_regno = REGNO (src_reg);
8ec450a4 7283 int nr = HARD_REGNO_NREGS (src_regno, rld[r].mode);
cb2afeb3
R
7284 /* The place where to find a death note varies with
7285 PRESERVE_DEATH_INFO_REGNO_P . The condition is not
7286 necessarily checked exactly in the code that moves
7287 notes, so just check both locations. */
7288 rtx note = find_regno_note (insn, REG_DEAD, src_regno);
1558b970 7289 if (! note && store_insn)
cb2afeb3
R
7290 note = find_regno_note (store_insn, REG_DEAD, src_regno);
7291 while (nr-- > 0)
7292 {
7293 spill_reg_store[src_regno + nr] = store_insn;
7294 spill_reg_stored_to[src_regno + nr] = out;
7295 reg_reloaded_contents[src_regno + nr] = nregno;
7296 reg_reloaded_insn[src_regno + nr] = store_insn;
00f9f1bc 7297 CLEAR_HARD_REG_BIT (reg_reloaded_dead, src_regno + nr);
cb2afeb3
R
7298 SET_HARD_REG_BIT (reg_reloaded_valid, src_regno + nr);
7299 SET_HARD_REG_BIT (reg_is_output_reload, src_regno + nr);
7300 if (note)
7301 SET_HARD_REG_BIT (reg_reloaded_died, src_regno);
7302 else
7303 CLEAR_HARD_REG_BIT (reg_reloaded_died, src_regno);
7304 }
7305 reg_last_reload_reg[nregno] = src_reg;
7306 }
7307 }
c7093272
RK
7308 else
7309 {
1d7254c5 7310 int num_regs = HARD_REGNO_NREGS (nregno, GET_MODE (rld[r].out));
36281332 7311
c7093272
RK
7312 while (num_regs-- > 0)
7313 reg_last_reload_reg[nregno + num_regs] = 0;
7314 }
32131a9c
RK
7315 }
7316 }
e6e52be0 7317 IOR_HARD_REG_SET (reg_reloaded_dead, reg_reloaded_died);
32131a9c
RK
7318}
7319\f
5e03c156
RK
7320/* Emit code to perform a reload from IN (which may be a reload register) to
7321 OUT (which may also be a reload register). IN or OUT is from operand
05d10675 7322 OPNUM with reload type TYPE.
546b63fb 7323
3c3eeea6 7324 Returns first insn emitted. */
32131a9c
RK
7325
7326rtx
5e03c156
RK
7327gen_reload (out, in, opnum, type)
7328 rtx out;
32131a9c 7329 rtx in;
546b63fb
RK
7330 int opnum;
7331 enum reload_type type;
32131a9c 7332{
546b63fb 7333 rtx last = get_last_insn ();
7a5b18b0
RK
7334 rtx tem;
7335
7336 /* If IN is a paradoxical SUBREG, remove it and try to put the
7337 opposite SUBREG on OUT. Likewise for a paradoxical SUBREG on OUT. */
7338 if (GET_CODE (in) == SUBREG
7339 && (GET_MODE_SIZE (GET_MODE (in))
7340 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
7341 && (tem = gen_lowpart_common (GET_MODE (SUBREG_REG (in)), out)) != 0)
7342 in = SUBREG_REG (in), out = tem;
7343 else if (GET_CODE (out) == SUBREG
eceef4c9
BS
7344 && (GET_MODE_SIZE (GET_MODE (out))
7345 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
7346 && (tem = gen_lowpart_common (GET_MODE (SUBREG_REG (out)), in)) != 0)
7a5b18b0 7347 out = SUBREG_REG (out), in = tem;
32131a9c 7348
a8fdc208 7349 /* How to do this reload can get quite tricky. Normally, we are being
32131a9c
RK
7350 asked to reload a simple operand, such as a MEM, a constant, or a pseudo
7351 register that didn't get a hard register. In that case we can just
7352 call emit_move_insn.
7353
a7fd196c
JW
7354 We can also be asked to reload a PLUS that adds a register or a MEM to
7355 another register, constant or MEM. This can occur during frame pointer
7356 elimination and while reloading addresses. This case is handled by
7357 trying to emit a single insn to perform the add. If it is not valid,
7358 we use a two insn sequence.
32131a9c
RK
7359
7360 Finally, we could be called to handle an 'o' constraint by putting
7361 an address into a register. In that case, we first try to do this
7362 with a named pattern of "reload_load_address". If no such pattern
7363 exists, we just emit a SET insn and hope for the best (it will normally
7364 be valid on machines that use 'o').
7365
7366 This entire process is made complex because reload will never
7367 process the insns we generate here and so we must ensure that
7368 they will fit their constraints and also by the fact that parts of
7369 IN might be being reloaded separately and replaced with spill registers.
7370 Because of this, we are, in some sense, just guessing the right approach
7371 here. The one listed above seems to work.
7372
7373 ??? At some point, this whole thing needs to be rethought. */
7374
7375 if (GET_CODE (in) == PLUS
a7fd196c 7376 && (GET_CODE (XEXP (in, 0)) == REG
5c6b1bd2 7377 || GET_CODE (XEXP (in, 0)) == SUBREG
a7fd196c
JW
7378 || GET_CODE (XEXP (in, 0)) == MEM)
7379 && (GET_CODE (XEXP (in, 1)) == REG
5c6b1bd2 7380 || GET_CODE (XEXP (in, 1)) == SUBREG
a7fd196c
JW
7381 || CONSTANT_P (XEXP (in, 1))
7382 || GET_CODE (XEXP (in, 1)) == MEM))
32131a9c 7383 {
a7fd196c
JW
7384 /* We need to compute the sum of a register or a MEM and another
7385 register, constant, or MEM, and put it into the reload
3002e160
JW
7386 register. The best possible way of doing this is if the machine
7387 has a three-operand ADD insn that accepts the required operands.
32131a9c
RK
7388
7389 The simplest approach is to try to generate such an insn and see if it
7390 is recognized and matches its constraints. If so, it can be used.
7391
7392 It might be better not to actually emit the insn unless it is valid,
0009eff2 7393 but we need to pass the insn as an operand to `recog' and
0eadeb15 7394 `extract_insn' and it is simpler to emit and then delete the insn if
0009eff2 7395 not valid than to dummy things up. */
a8fdc208 7396
af929c62 7397 rtx op0, op1, tem, insn;
32131a9c 7398 int code;
a8fdc208 7399
af929c62
RK
7400 op0 = find_replacement (&XEXP (in, 0));
7401 op1 = find_replacement (&XEXP (in, 1));
7402
32131a9c
RK
7403 /* Since constraint checking is strict, commutativity won't be
7404 checked, so we need to do that here to avoid spurious failure
7405 if the add instruction is two-address and the second operand
7406 of the add is the same as the reload reg, which is frequently
7407 the case. If the insn would be A = B + A, rearrange it so
0f41302f 7408 it will be A = A + B as constrain_operands expects. */
a8fdc208 7409
32131a9c 7410 if (GET_CODE (XEXP (in, 1)) == REG
5e03c156 7411 && REGNO (out) == REGNO (XEXP (in, 1)))
af929c62
RK
7412 tem = op0, op0 = op1, op1 = tem;
7413
7414 if (op0 != XEXP (in, 0) || op1 != XEXP (in, 1))
38a448ca 7415 in = gen_rtx_PLUS (GET_MODE (in), op0, op1);
32131a9c 7416
38a448ca 7417 insn = emit_insn (gen_rtx_SET (VOIDmode, out, in));
32131a9c
RK
7418 code = recog_memoized (insn);
7419
7420 if (code >= 0)
7421 {
0eadeb15 7422 extract_insn (insn);
32131a9c
RK
7423 /* We want constrain operands to treat this insn strictly in
7424 its validity determination, i.e., the way it would after reload
7425 has completed. */
0eadeb15 7426 if (constrain_operands (1))
32131a9c
RK
7427 return insn;
7428 }
7429
546b63fb 7430 delete_insns_since (last);
32131a9c
RK
7431
7432 /* If that failed, we must use a conservative two-insn sequence.
09522f21
FS
7433
7434 Use a move to copy one operand into the reload register. Prefer
7435 to reload a constant, MEM or pseudo since the move patterns can
7436 handle an arbitrary operand. If OP1 is not a constant, MEM or
7437 pseudo and OP1 is not a valid operand for an add instruction, then
7438 reload OP1.
7439
7440 After reloading one of the operands into the reload register, add
7441 the reload register to the output register.
32131a9c
RK
7442
7443 If there is another way to do this for a specific machine, a
7444 DEFINE_PEEPHOLE should be specified that recognizes the sequence
7445 we emit below. */
7446
09522f21
FS
7447 code = (int) add_optab->handlers[(int) GET_MODE (out)].insn_code;
7448
5c6b1bd2 7449 if (CONSTANT_P (op1) || GET_CODE (op1) == MEM || GET_CODE (op1) == SUBREG
af929c62 7450 || (GET_CODE (op1) == REG
09522f21
FS
7451 && REGNO (op1) >= FIRST_PSEUDO_REGISTER)
7452 || (code != CODE_FOR_nothing
a995e389
RH
7453 && ! ((*insn_data[code].operand[2].predicate)
7454 (op1, insn_data[code].operand[2].mode))))
af929c62 7455 tem = op0, op0 = op1, op1 = tem;
32131a9c 7456
5c6b1bd2 7457 gen_reload (out, op0, opnum, type);
39b56c2a 7458
5e03c156 7459 /* If OP0 and OP1 are the same, we can use OUT for OP1.
39b56c2a
RK
7460 This fixes a problem on the 32K where the stack pointer cannot
7461 be used as an operand of an add insn. */
7462
7463 if (rtx_equal_p (op0, op1))
5e03c156 7464 op1 = out;
39b56c2a 7465
5e03c156 7466 insn = emit_insn (gen_add2_insn (out, op1));
c77c9766
RK
7467
7468 /* If that failed, copy the address register to the reload register.
0f41302f 7469 Then add the constant to the reload register. */
c77c9766
RK
7470
7471 code = recog_memoized (insn);
7472
7473 if (code >= 0)
7474 {
0eadeb15 7475 extract_insn (insn);
c77c9766
RK
7476 /* We want constrain operands to treat this insn strictly in
7477 its validity determination, i.e., the way it would after reload
7478 has completed. */
0eadeb15 7479 if (constrain_operands (1))
4117a96b
R
7480 {
7481 /* Add a REG_EQUIV note so that find_equiv_reg can find it. */
7482 REG_NOTES (insn)
9e6a5703 7483 = gen_rtx_EXPR_LIST (REG_EQUIV, in, REG_NOTES (insn));
4117a96b
R
7484 return insn;
7485 }
c77c9766
RK
7486 }
7487
7488 delete_insns_since (last);
7489
5c6b1bd2 7490 gen_reload (out, op1, opnum, type);
4117a96b 7491 insn = emit_insn (gen_add2_insn (out, op0));
9e6a5703 7492 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_EQUIV, in, REG_NOTES (insn));
32131a9c
RK
7493 }
7494
0dadecf6
RK
7495#ifdef SECONDARY_MEMORY_NEEDED
7496 /* If we need a memory location to do the move, do it that way. */
7497 else if (GET_CODE (in) == REG && REGNO (in) < FIRST_PSEUDO_REGISTER
5e03c156 7498 && GET_CODE (out) == REG && REGNO (out) < FIRST_PSEUDO_REGISTER
0dadecf6 7499 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (REGNO (in)),
5e03c156
RK
7500 REGNO_REG_CLASS (REGNO (out)),
7501 GET_MODE (out)))
0dadecf6
RK
7502 {
7503 /* Get the memory to use and rewrite both registers to its mode. */
5e03c156 7504 rtx loc = get_secondary_mem (in, GET_MODE (out), opnum, type);
0dadecf6 7505
5e03c156 7506 if (GET_MODE (loc) != GET_MODE (out))
38a448ca 7507 out = gen_rtx_REG (GET_MODE (loc), REGNO (out));
0dadecf6
RK
7508
7509 if (GET_MODE (loc) != GET_MODE (in))
38a448ca 7510 in = gen_rtx_REG (GET_MODE (loc), REGNO (in));
0dadecf6 7511
5c6b1bd2
RK
7512 gen_reload (loc, in, opnum, type);
7513 gen_reload (out, loc, opnum, type);
0dadecf6
RK
7514 }
7515#endif
7516
32131a9c
RK
7517 /* If IN is a simple operand, use gen_move_insn. */
7518 else if (GET_RTX_CLASS (GET_CODE (in)) == 'o' || GET_CODE (in) == SUBREG)
5e03c156 7519 emit_insn (gen_move_insn (out, in));
32131a9c
RK
7520
7521#ifdef HAVE_reload_load_address
7522 else if (HAVE_reload_load_address)
5e03c156 7523 emit_insn (gen_reload_load_address (out, in));
32131a9c
RK
7524#endif
7525
5e03c156 7526 /* Otherwise, just write (set OUT IN) and hope for the best. */
32131a9c 7527 else
38a448ca 7528 emit_insn (gen_rtx_SET (VOIDmode, out, in));
32131a9c
RK
7529
7530 /* Return the first insn emitted.
546b63fb 7531 We can not just return get_last_insn, because there may have
32131a9c
RK
7532 been multiple instructions emitted. Also note that gen_move_insn may
7533 emit more than one insn itself, so we can not assume that there is one
7534 insn emitted per emit_insn_before call. */
7535
546b63fb 7536 return last ? NEXT_INSN (last) : get_insns ();
32131a9c
RK
7537}
7538\f
7539/* Delete a previously made output-reload
7540 whose result we now believe is not needed.
7541 First we double-check.
7542
7543 INSN is the insn now being processed.
cb2afeb3
R
7544 LAST_RELOAD_REG is the hard register number for which we want to delete
7545 the last output reload.
7546 J is the reload-number that originally used REG. The caller has made
7547 certain that reload J doesn't use REG any longer for input. */
32131a9c
RK
7548
7549static void
cb2afeb3 7550delete_output_reload (insn, j, last_reload_reg)
32131a9c
RK
7551 rtx insn;
7552 int j;
cb2afeb3 7553 int last_reload_reg;
32131a9c 7554{
cb2afeb3
R
7555 rtx output_reload_insn = spill_reg_store[last_reload_reg];
7556 rtx reg = spill_reg_stored_to[last_reload_reg];
7557 int k;
7558 int n_occurrences;
7559 int n_inherited = 0;
32131a9c 7560 register rtx i1;
cb2afeb3 7561 rtx substed;
05d10675 7562
32131a9c
RK
7563 /* Get the raw pseudo-register referred to. */
7564
32131a9c
RK
7565 while (GET_CODE (reg) == SUBREG)
7566 reg = SUBREG_REG (reg);
cb2afeb3
R
7567 substed = reg_equiv_memory_loc[REGNO (reg)];
7568
7569 /* This is unsafe if the operand occurs more often in the current
7570 insn than it is inherited. */
7571 for (k = n_reloads - 1; k >= 0; k--)
7572 {
eceef4c9 7573 rtx reg2 = rld[k].in;
cb2afeb3
R
7574 if (! reg2)
7575 continue;
7576 if (GET_CODE (reg2) == MEM || reload_override_in[k])
eceef4c9 7577 reg2 = rld[k].in_reg;
cb2afeb3 7578#ifdef AUTO_INC_DEC
eceef4c9
BS
7579 if (rld[k].out && ! rld[k].out_reg)
7580 reg2 = XEXP (rld[k].in_reg, 0);
cb2afeb3
R
7581#endif
7582 while (GET_CODE (reg2) == SUBREG)
7583 reg2 = SUBREG_REG (reg2);
7584 if (rtx_equal_p (reg2, reg))
2eb6dac7
AS
7585 {
7586 if (reload_inherited[k] || reload_override_in[k] || k == j)
7587 {
cb2afeb3 7588 n_inherited++;
eceef4c9 7589 reg2 = rld[k].out_reg;
2eb6dac7
AS
7590 if (! reg2)
7591 continue;
7592 while (GET_CODE (reg2) == SUBREG)
7593 reg2 = XEXP (reg2, 0);
7594 if (rtx_equal_p (reg2, reg))
7595 n_inherited++;
7596 }
7597 else
7598 return;
7599 }
cb2afeb3 7600 }
4b983fdc 7601 n_occurrences = count_occurrences (PATTERN (insn), reg, 0);
cb2afeb3 7602 if (substed)
5d7ef82a
BS
7603 n_occurrences += count_occurrences (PATTERN (insn),
7604 eliminate_regs (substed, 0,
7605 NULL_RTX), 0);
cb2afeb3
R
7606 if (n_occurrences > n_inherited)
7607 return;
32131a9c
RK
7608
7609 /* If the pseudo-reg we are reloading is no longer referenced
7610 anywhere between the store into it and here,
7611 and no jumps or labels intervene, then the value can get
7612 here through the reload reg alone.
7613 Otherwise, give up--return. */
7614 for (i1 = NEXT_INSN (output_reload_insn);
7615 i1 != insn; i1 = NEXT_INSN (i1))
7616 {
7617 if (GET_CODE (i1) == CODE_LABEL || GET_CODE (i1) == JUMP_INSN)
7618 return;
7619 if ((GET_CODE (i1) == INSN || GET_CODE (i1) == CALL_INSN)
7620 && reg_mentioned_p (reg, PATTERN (i1)))
aa6498c2 7621 {
cb2afeb3
R
7622 /* If this is USE in front of INSN, we only have to check that
7623 there are no more references than accounted for by inheritance. */
7624 while (GET_CODE (i1) == INSN && GET_CODE (PATTERN (i1)) == USE)
aa6498c2 7625 {
cb2afeb3 7626 n_occurrences += rtx_equal_p (reg, XEXP (PATTERN (i1), 0)) != 0;
aa6498c2
R
7627 i1 = NEXT_INSN (i1);
7628 }
cb2afeb3 7629 if (n_occurrences <= n_inherited && i1 == insn)
aa6498c2
R
7630 break;
7631 return;
7632 }
32131a9c
RK
7633 }
7634
aa6498c2
R
7635 /* The caller has already checked that REG dies or is set in INSN.
7636 It has also checked that we are optimizing, and thus some inaccurancies
7637 in the debugging information are acceptable.
7638 So we could just delete output_reload_insn.
7639 But in some cases we can improve the debugging information without
7640 sacrificing optimization - maybe even improving the code:
7641 See if the pseudo reg has been completely replaced
32131a9c
RK
7642 with reload regs. If so, delete the store insn
7643 and forget we had a stack slot for the pseudo. */
eceef4c9 7644 if (rld[j].out != rld[j].in
aa6498c2 7645 && REG_N_DEATHS (REGNO (reg)) == 1
a3a24aa6 7646 && REG_N_SETS (REGNO (reg)) == 1
aa6498c2
R
7647 && REG_BASIC_BLOCK (REGNO (reg)) >= 0
7648 && find_regno_note (insn, REG_DEAD, REGNO (reg)))
32131a9c
RK
7649 {
7650 rtx i2;
7651
7652 /* We know that it was used only between here
7653 and the beginning of the current basic block.
7654 (We also know that the last use before INSN was
7655 the output reload we are thinking of deleting, but never mind that.)
7656 Search that range; see if any ref remains. */
7657 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
7658 {
d445b551
RK
7659 rtx set = single_set (i2);
7660
32131a9c
RK
7661 /* Uses which just store in the pseudo don't count,
7662 since if they are the only uses, they are dead. */
d445b551 7663 if (set != 0 && SET_DEST (set) == reg)
32131a9c
RK
7664 continue;
7665 if (GET_CODE (i2) == CODE_LABEL
7666 || GET_CODE (i2) == JUMP_INSN)
7667 break;
7668 if ((GET_CODE (i2) == INSN || GET_CODE (i2) == CALL_INSN)
7669 && reg_mentioned_p (reg, PATTERN (i2)))
aa6498c2
R
7670 {
7671 /* Some other ref remains; just delete the output reload we
7672 know to be dead. */
cb2afeb3
R
7673 delete_address_reloads (output_reload_insn, insn);
7674 PUT_CODE (output_reload_insn, NOTE);
7675 NOTE_SOURCE_FILE (output_reload_insn) = 0;
7676 NOTE_LINE_NUMBER (output_reload_insn) = NOTE_INSN_DELETED;
aa6498c2
R
7677 return;
7678 }
32131a9c
RK
7679 }
7680
7681 /* Delete the now-dead stores into this pseudo. */
7682 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
7683 {
d445b551
RK
7684 rtx set = single_set (i2);
7685
7686 if (set != 0 && SET_DEST (set) == reg)
5507b94b 7687 {
cb2afeb3 7688 delete_address_reloads (i2, insn);
5507b94b
RK
7689 /* This might be a basic block head,
7690 thus don't use delete_insn. */
7691 PUT_CODE (i2, NOTE);
7692 NOTE_SOURCE_FILE (i2) = 0;
7693 NOTE_LINE_NUMBER (i2) = NOTE_INSN_DELETED;
7694 }
32131a9c
RK
7695 if (GET_CODE (i2) == CODE_LABEL
7696 || GET_CODE (i2) == JUMP_INSN)
7697 break;
7698 }
7699
7700 /* For the debugging info,
7701 say the pseudo lives in this reload reg. */
eceef4c9 7702 reg_renumber[REGNO (reg)] = REGNO (rld[j].reg_rtx);
32131a9c
RK
7703 alter_reg (REGNO (reg), -1);
7704 }
cb2afeb3
R
7705 delete_address_reloads (output_reload_insn, insn);
7706 PUT_CODE (output_reload_insn, NOTE);
7707 NOTE_SOURCE_FILE (output_reload_insn) = 0;
7708 NOTE_LINE_NUMBER (output_reload_insn) = NOTE_INSN_DELETED;
7709
7710}
7711
7712/* We are going to delete DEAD_INSN. Recursively delete loads of
7713 reload registers used in DEAD_INSN that are not used till CURRENT_INSN.
7714 CURRENT_INSN is being reloaded, so we have to check its reloads too. */
7715static void
7716delete_address_reloads (dead_insn, current_insn)
7717 rtx dead_insn, current_insn;
7718{
7719 rtx set = single_set (dead_insn);
7720 rtx set2, dst, prev, next;
7721 if (set)
7722 {
7723 rtx dst = SET_DEST (set);
7724 if (GET_CODE (dst) == MEM)
7725 delete_address_reloads_1 (dead_insn, XEXP (dst, 0), current_insn);
7726 }
7727 /* If we deleted the store from a reloaded post_{in,de}c expression,
7728 we can delete the matching adds. */
7729 prev = PREV_INSN (dead_insn);
7730 next = NEXT_INSN (dead_insn);
7731 if (! prev || ! next)
7732 return;
7733 set = single_set (next);
7734 set2 = single_set (prev);
7735 if (! set || ! set2
7736 || GET_CODE (SET_SRC (set)) != PLUS || GET_CODE (SET_SRC (set2)) != PLUS
7737 || GET_CODE (XEXP (SET_SRC (set), 1)) != CONST_INT
7738 || GET_CODE (XEXP (SET_SRC (set2), 1)) != CONST_INT)
7739 return;
7740 dst = SET_DEST (set);
7741 if (! rtx_equal_p (dst, SET_DEST (set2))
7742 || ! rtx_equal_p (dst, XEXP (SET_SRC (set), 0))
7743 || ! rtx_equal_p (dst, XEXP (SET_SRC (set2), 0))
7744 || (INTVAL (XEXP (SET_SRC (set), 1))
1d7254c5 7745 != -INTVAL (XEXP (SET_SRC (set2), 1))))
cb2afeb3 7746 return;
53c17031
JH
7747 delete_related_insns (prev);
7748 delete_related_insns (next);
cb2afeb3
R
7749}
7750
7751/* Subfunction of delete_address_reloads: process registers found in X. */
7752static void
7753delete_address_reloads_1 (dead_insn, x, current_insn)
7754 rtx dead_insn, x, current_insn;
7755{
7756 rtx prev, set, dst, i2;
7757 int i, j;
7758 enum rtx_code code = GET_CODE (x);
7759
7760 if (code != REG)
7761 {
1d7254c5 7762 const char *fmt = GET_RTX_FORMAT (code);
cb2afeb3
R
7763 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7764 {
7765 if (fmt[i] == 'e')
7766 delete_address_reloads_1 (dead_insn, XEXP (x, i), current_insn);
7767 else if (fmt[i] == 'E')
7768 {
1d7254c5 7769 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
cb2afeb3
R
7770 delete_address_reloads_1 (dead_insn, XVECEXP (x, i, j),
7771 current_insn);
7772 }
7773 }
7774 return;
7775 }
7776
7777 if (spill_reg_order[REGNO (x)] < 0)
7778 return;
aa6498c2 7779
cb2afeb3
R
7780 /* Scan backwards for the insn that sets x. This might be a way back due
7781 to inheritance. */
7782 for (prev = PREV_INSN (dead_insn); prev; prev = PREV_INSN (prev))
7783 {
7784 code = GET_CODE (prev);
7785 if (code == CODE_LABEL || code == JUMP_INSN)
7786 return;
7787 if (GET_RTX_CLASS (code) != 'i')
7788 continue;
7789 if (reg_set_p (x, PATTERN (prev)))
7790 break;
7791 if (reg_referenced_p (x, PATTERN (prev)))
7792 return;
7793 }
7794 if (! prev || INSN_UID (prev) < reload_first_uid)
7795 return;
7796 /* Check that PREV only sets the reload register. */
7797 set = single_set (prev);
7798 if (! set)
7799 return;
7800 dst = SET_DEST (set);
7801 if (GET_CODE (dst) != REG
7802 || ! rtx_equal_p (dst, x))
7803 return;
7804 if (! reg_set_p (dst, PATTERN (dead_insn)))
7805 {
7806 /* Check if DST was used in a later insn -
7807 it might have been inherited. */
7808 for (i2 = NEXT_INSN (dead_insn); i2; i2 = NEXT_INSN (i2))
7809 {
7810 if (GET_CODE (i2) == CODE_LABEL)
7811 break;
2c3c49de 7812 if (! INSN_P (i2))
cb2afeb3
R
7813 continue;
7814 if (reg_referenced_p (dst, PATTERN (i2)))
7815 {
7816 /* If there is a reference to the register in the current insn,
7817 it might be loaded in a non-inherited reload. If no other
7818 reload uses it, that means the register is set before
7819 referenced. */
7820 if (i2 == current_insn)
7821 {
7822 for (j = n_reloads - 1; j >= 0; j--)
eceef4c9 7823 if ((rld[j].reg_rtx == dst && reload_inherited[j])
cb2afeb3
R
7824 || reload_override_in[j] == dst)
7825 return;
7826 for (j = n_reloads - 1; j >= 0; j--)
eceef4c9 7827 if (rld[j].in && rld[j].reg_rtx == dst)
cb2afeb3
R
7828 break;
7829 if (j >= 0)
7830 break;
7831 }
7832 return;
7833 }
7834 if (GET_CODE (i2) == JUMP_INSN)
7835 break;
cb2afeb3 7836 /* If DST is still live at CURRENT_INSN, check if it is used for
3900dc09
R
7837 any reload. Note that even if CURRENT_INSN sets DST, we still
7838 have to check the reloads. */
cb2afeb3
R
7839 if (i2 == current_insn)
7840 {
7841 for (j = n_reloads - 1; j >= 0; j--)
eceef4c9 7842 if ((rld[j].reg_rtx == dst && reload_inherited[j])
cb2afeb3
R
7843 || reload_override_in[j] == dst)
7844 return;
7845 /* ??? We can't finish the loop here, because dst might be
7846 allocated to a pseudo in this block if no reload in this
7847 block needs any of the clsses containing DST - see
7848 spill_hard_reg. There is no easy way to tell this, so we
7849 have to scan till the end of the basic block. */
7850 }
3900dc09
R
7851 if (reg_set_p (dst, PATTERN (i2)))
7852 break;
cb2afeb3
R
7853 }
7854 }
7855 delete_address_reloads_1 (prev, SET_SRC (set), current_insn);
7856 reg_reloaded_contents[REGNO (dst)] = -1;
7857 /* Can't use delete_insn here because PREV might be a basic block head. */
7858 PUT_CODE (prev, NOTE);
7859 NOTE_LINE_NUMBER (prev) = NOTE_INSN_DELETED;
7860 NOTE_SOURCE_FILE (prev) = 0;
32131a9c 7861}
32131a9c 7862\f
a8fdc208 7863/* Output reload-insns to reload VALUE into RELOADREG.
858a47b1 7864 VALUE is an autoincrement or autodecrement RTX whose operand
32131a9c
RK
7865 is a register or memory location;
7866 so reloading involves incrementing that location.
cb2afeb3 7867 IN is either identical to VALUE, or some cheaper place to reload from.
32131a9c
RK
7868
7869 INC_AMOUNT is the number to increment or decrement by (always positive).
cb2afeb3 7870 This cannot be deduced from VALUE.
32131a9c 7871
cb2afeb3
R
7872 Return the instruction that stores into RELOADREG. */
7873
7874static rtx
7875inc_for_reload (reloadreg, in, value, inc_amount)
32131a9c 7876 rtx reloadreg;
cb2afeb3 7877 rtx in, value;
32131a9c 7878 int inc_amount;
32131a9c
RK
7879{
7880 /* REG or MEM to be copied and incremented. */
7881 rtx incloc = XEXP (value, 0);
7882 /* Nonzero if increment after copying. */
7883 int post = (GET_CODE (value) == POST_DEC || GET_CODE (value) == POST_INC);
546b63fb 7884 rtx last;
0009eff2
RK
7885 rtx inc;
7886 rtx add_insn;
7887 int code;
cb2afeb3
R
7888 rtx store;
7889 rtx real_in = in == value ? XEXP (in, 0) : in;
32131a9c
RK
7890
7891 /* No hard register is equivalent to this register after
7892 inc/dec operation. If REG_LAST_RELOAD_REG were non-zero,
7893 we could inc/dec that register as well (maybe even using it for
7894 the source), but I'm not sure it's worth worrying about. */
7895 if (GET_CODE (incloc) == REG)
7896 reg_last_reload_reg[REGNO (incloc)] = 0;
7897
7898 if (GET_CODE (value) == PRE_DEC || GET_CODE (value) == POST_DEC)
1d7254c5 7899 inc_amount = -inc_amount;
32131a9c 7900
fb3821f7 7901 inc = GEN_INT (inc_amount);
0009eff2
RK
7902
7903 /* If this is post-increment, first copy the location to the reload reg. */
cb2afeb3
R
7904 if (post && real_in != reloadreg)
7905 emit_insn (gen_move_insn (reloadreg, real_in));
0009eff2 7906
cb2afeb3
R
7907 if (in == value)
7908 {
7909 /* See if we can directly increment INCLOC. Use a method similar to
7910 that in gen_reload. */
0009eff2 7911
cb2afeb3
R
7912 last = get_last_insn ();
7913 add_insn = emit_insn (gen_rtx_SET (VOIDmode, incloc,
7914 gen_rtx_PLUS (GET_MODE (incloc),
7915 incloc, inc)));
05d10675 7916
cb2afeb3
R
7917 code = recog_memoized (add_insn);
7918 if (code >= 0)
32131a9c 7919 {
0eadeb15
BS
7920 extract_insn (add_insn);
7921 if (constrain_operands (1))
cb2afeb3
R
7922 {
7923 /* If this is a pre-increment and we have incremented the value
7924 where it lives, copy the incremented value to RELOADREG to
7925 be used as an address. */
0009eff2 7926
cb2afeb3
R
7927 if (! post)
7928 emit_insn (gen_move_insn (reloadreg, incloc));
546b63fb 7929
cb2afeb3
R
7930 return add_insn;
7931 }
32131a9c 7932 }
cb2afeb3 7933 delete_insns_since (last);
32131a9c 7934 }
0009eff2 7935
0009eff2
RK
7936 /* If couldn't do the increment directly, must increment in RELOADREG.
7937 The way we do this depends on whether this is pre- or post-increment.
7938 For pre-increment, copy INCLOC to the reload register, increment it
7939 there, then save back. */
7940
7941 if (! post)
7942 {
cb2afeb3
R
7943 if (in != reloadreg)
7944 emit_insn (gen_move_insn (reloadreg, real_in));
546b63fb 7945 emit_insn (gen_add2_insn (reloadreg, inc));
cb2afeb3 7946 store = emit_insn (gen_move_insn (incloc, reloadreg));
0009eff2 7947 }
32131a9c
RK
7948 else
7949 {
0009eff2
RK
7950 /* Postincrement.
7951 Because this might be a jump insn or a compare, and because RELOADREG
7952 may not be available after the insn in an input reload, we must do
7953 the incrementation before the insn being reloaded for.
7954
cb2afeb3 7955 We have already copied IN to RELOADREG. Increment the copy in
0009eff2
RK
7956 RELOADREG, save that back, then decrement RELOADREG so it has
7957 the original value. */
7958
546b63fb 7959 emit_insn (gen_add2_insn (reloadreg, inc));
cb2afeb3 7960 store = emit_insn (gen_move_insn (incloc, reloadreg));
546b63fb 7961 emit_insn (gen_add2_insn (reloadreg, GEN_INT (-inc_amount)));
32131a9c 7962 }
0009eff2 7963
cb2afeb3 7964 return store;
32131a9c
RK
7965}
7966\f
7967/* Return 1 if we are certain that the constraint-string STRING allows
7968 the hard register REG. Return 0 if we can't be sure of this. */
7969
7970static int
7971constraint_accepts_reg_p (string, reg)
9b3142b3 7972 const char *string;
32131a9c
RK
7973 rtx reg;
7974{
7975 int value = 0;
7976 int regno = true_regnum (reg);
7977 int c;
7978
7979 /* Initialize for first alternative. */
7980 value = 0;
7981 /* Check that each alternative contains `g' or `r'. */
7982 while (1)
7983 switch (c = *string++)
7984 {
7985 case 0:
7986 /* If an alternative lacks `g' or `r', we lose. */
7987 return value;
7988 case ',':
7989 /* If an alternative lacks `g' or `r', we lose. */
7990 if (value == 0)
7991 return 0;
7992 /* Initialize for next alternative. */
7993 value = 0;
7994 break;
7995 case 'g':
7996 case 'r':
7997 /* Any general reg wins for this alternative. */
7998 if (TEST_HARD_REG_BIT (reg_class_contents[(int) GENERAL_REGS], regno))
7999 value = 1;
8000 break;
8001 default:
8002 /* Any reg in specified class wins for this alternative. */
8003 {
0009eff2 8004 enum reg_class class = REG_CLASS_FROM_LETTER (c);
32131a9c 8005
0009eff2 8006 if (TEST_HARD_REG_BIT (reg_class_contents[(int) class], regno))
32131a9c
RK
8007 value = 1;
8008 }
8009 }
8010}
8011\f
eab5c70a
BS
8012/* INSN is a no-op; delete it.
8013 If this sets the return value of the function, we must keep a USE around,
8014 in case this is in a different basic block than the final USE. Otherwise,
8015 we could loose important register lifeness information on
8016 SMALL_REGISTER_CLASSES machines, where return registers might be used as
8017 spills: subsequent passes assume that spill registers are dead at the end
8018 of a basic block.
8019 VALUE must be the return value in such a case, NULL otherwise. */
2a9fb548 8020static void
eab5c70a
BS
8021reload_cse_delete_noop_set (insn, value)
8022 rtx insn, value;
2a9fb548 8023{
eab5c70a 8024 if (value)
2a9fb548 8025 {
eab5c70a
BS
8026 PATTERN (insn) = gen_rtx_USE (VOIDmode, value);
8027 INSN_CODE (insn) = -1;
8028 REG_NOTES (insn) = NULL_RTX;
2a9fb548 8029 }
eab5c70a 8030 else
ba325eba 8031 {
eab5c70a
BS
8032 PUT_CODE (insn, NOTE);
8033 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
8034 NOTE_SOURCE_FILE (insn) = 0;
ba325eba 8035 }
2a9fb548
ILT
8036}
8037
eab5c70a 8038/* See whether a single set SET is a noop. */
2a9fb548 8039static int
eab5c70a
BS
8040reload_cse_noop_set_p (set)
8041 rtx set;
2a9fb548 8042{
eab5c70a
BS
8043 return rtx_equal_for_cselib_p (SET_DEST (set), SET_SRC (set));
8044}
2a9fb548 8045
eab5c70a
BS
8046/* Try to simplify INSN. */
8047static void
8048reload_cse_simplify (insn)
8049 rtx insn;
8050{
8051 rtx body = PATTERN (insn);
2a9fb548 8052
eab5c70a 8053 if (GET_CODE (body) == SET)
2a9fb548 8054 {
eab5c70a 8055 int count = 0;
d5ae21aa
AH
8056
8057 /* Simplify even if we may think it is a no-op.
8058 We may think a memory load of a value smaller than WORD_SIZE
8059 is redundant because we haven't taken into account possible
8060 implicit extension. reload_cse_simplify_set() will bring
8061 this out, so it's safer to simplify before we delete. */
8062 count += reload_cse_simplify_set (body, insn);
8063
8064 if (!count && reload_cse_noop_set_p (body))
2a9fb548 8065 {
eab5c70a
BS
8066 rtx value = SET_DEST (body);
8067 if (! REG_FUNCTION_VALUE_P (SET_DEST (body)))
8068 value = 0;
8069 reload_cse_delete_noop_set (insn, value);
8070 return;
2a9fb548 8071 }
2a9fb548 8072
eab5c70a
BS
8073 if (count > 0)
8074 apply_change_group ();
8075 else
8076 reload_cse_simplify_operands (insn);
8077 }
8078 else if (GET_CODE (body) == PARALLEL)
2a9fb548 8079 {
eab5c70a
BS
8080 int i;
8081 int count = 0;
8082 rtx value = NULL_RTX;
2a9fb548 8083
eab5c70a
BS
8084 /* If every action in a PARALLEL is a noop, we can delete
8085 the entire PARALLEL. */
8086 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
2a9fb548 8087 {
eab5c70a
BS
8088 rtx part = XVECEXP (body, 0, i);
8089 if (GET_CODE (part) == SET)
2a9fb548 8090 {
eab5c70a
BS
8091 if (! reload_cse_noop_set_p (part))
8092 break;
8093 if (REG_FUNCTION_VALUE_P (SET_DEST (part)))
2a9fb548 8094 {
eab5c70a
BS
8095 if (value)
8096 break;
8097 value = SET_DEST (part);
2a9fb548 8098 }
2a9fb548 8099 }
eab5c70a
BS
8100 else if (GET_CODE (part) != CLOBBER)
8101 break;
2a9fb548 8102 }
2a9fb548 8103
eab5c70a
BS
8104 if (i < 0)
8105 {
8106 reload_cse_delete_noop_set (insn, value);
8107 /* We're done with this insn. */
8108 return;
8109 }
2a9fb548 8110
eab5c70a
BS
8111 /* It's not a no-op, but we can try to simplify it. */
8112 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
8113 if (GET_CODE (XVECEXP (body, 0, i)) == SET)
8114 count += reload_cse_simplify_set (XVECEXP (body, 0, i), insn);
8115
8116 if (count > 0)
8117 apply_change_group ();
8118 else
8119 reload_cse_simplify_operands (insn);
8120 }
2a9fb548
ILT
8121}
8122
8123/* Do a very simple CSE pass over the hard registers.
8124
8125 This function detects no-op moves where we happened to assign two
8126 different pseudo-registers to the same hard register, and then
8127 copied one to the other. Reload will generate a useless
8128 instruction copying a register to itself.
8129
8130 This function also detects cases where we load a value from memory
8131 into two different registers, and (if memory is more expensive than
8132 registers) changes it to simply copy the first register into the
05d10675 8133 second register.
e9a25f70
JL
8134
8135 Another optimization is performed that scans the operands of each
8136 instruction to see whether the value is already available in a
8137 hard register. It then replaces the operand with the hard register
8138 if possible, much like an optional reload would. */
2a9fb548 8139
5adf6da0
R
8140static void
8141reload_cse_regs_1 (first)
2a9fb548
ILT
8142 rtx first;
8143{
2a9fb548
ILT
8144 rtx insn;
8145
1d7254c5 8146 cselib_init ();
cbfc3ad3
RK
8147 init_alias_analysis ();
8148
2a9fb548
ILT
8149 for (insn = first; insn; insn = NEXT_INSN (insn))
8150 {
2c3c49de 8151 if (INSN_P (insn))
eab5c70a 8152 reload_cse_simplify (insn);
2a9fb548 8153
eab5c70a 8154 cselib_process_insn (insn);
2a9fb548
ILT
8155 }
8156
e05e2395
MM
8157 /* Clean up. */
8158 end_alias_analysis ();
eab5c70a 8159 cselib_finish ();
2a9fb548
ILT
8160}
8161
5adf6da0
R
8162/* Call cse / combine like post-reload optimization phases.
8163 FIRST is the first instruction. */
8164void
8165reload_cse_regs (first)
8166 rtx first;
8167{
8168 reload_cse_regs_1 (first);
8169 reload_combine ();
8170 reload_cse_move2add (first);
8171 if (flag_expensive_optimizations)
8172 reload_cse_regs_1 (first);
8173}
8174
2a9fb548 8175/* Try to simplify a single SET instruction. SET is the set pattern.
e9a25f70
JL
8176 INSN is the instruction it came from.
8177 This function only handles one case: if we set a register to a value
8178 which is not a register, we try to find that value in some other register
8179 and change the set into a register copy. */
2a9fb548 8180
e9a25f70 8181static int
2a9fb548
ILT
8182reload_cse_simplify_set (set, insn)
8183 rtx set;
8184 rtx insn;
8185{
eab5c70a 8186 int did_change = 0;
2a9fb548
ILT
8187 int dreg;
8188 rtx src;
2a9fb548 8189 enum reg_class dclass;
eab5c70a
BS
8190 int old_cost;
8191 cselib_val *val;
8192 struct elt_loc_list *l;
78adc5a0
RH
8193#ifdef LOAD_EXTEND_OP
8194 enum rtx_code extend_op = NIL;
8195#endif
2a9fb548 8196
2a9fb548
ILT
8197 dreg = true_regnum (SET_DEST (set));
8198 if (dreg < 0)
e9a25f70 8199 return 0;
2a9fb548
ILT
8200
8201 src = SET_SRC (set);
8202 if (side_effects_p (src) || true_regnum (src) >= 0)
e9a25f70 8203 return 0;
2a9fb548 8204
cbd5b9a2
KR
8205 dclass = REGNO_REG_CLASS (dreg);
8206
78adc5a0
RH
8207#ifdef LOAD_EXTEND_OP
8208 /* When replacing a memory with a register, we need to honor assumptions
8209 that combine made wrt the contents of sign bits. We'll do this by
8210 generating an extend instruction instead of a reg->reg copy. Thus
8211 the destination must be a register that we can widen. */
8212 if (GET_CODE (src) == MEM
8213 && GET_MODE_BITSIZE (GET_MODE (src)) < BITS_PER_WORD
8214 && (extend_op = LOAD_EXTEND_OP (GET_MODE (src))) != NIL
8215 && GET_CODE (SET_DEST (set)) != REG)
8216 return 0;
8217#endif
8218
33ab8de0 8219 /* If memory loads are cheaper than register copies, don't change them. */
eab5c70a
BS
8220 if (GET_CODE (src) == MEM)
8221 old_cost = MEMORY_MOVE_COST (GET_MODE (src), dclass, 1);
8222 else if (CONSTANT_P (src))
8223 old_cost = rtx_cost (src, SET);
8224 else if (GET_CODE (src) == REG)
e56b4594
AO
8225 old_cost = REGISTER_MOVE_COST (GET_MODE (src),
8226 REGNO_REG_CLASS (REGNO (src)), dclass);
eab5c70a
BS
8227 else
8228 /* ??? */
8229 old_cost = rtx_cost (src, SET);
2a9fb548 8230
70bbeb8b 8231 val = cselib_lookup (src, GET_MODE (SET_DEST (set)), 0);
eab5c70a 8232 if (! val)
0254c561 8233 return 0;
eab5c70a 8234 for (l = val->locs; l; l = l->next)
2a9fb548 8235 {
78adc5a0 8236 rtx this_rtx = l->loc;
eab5c70a 8237 int this_cost;
78adc5a0
RH
8238
8239 if (CONSTANT_P (this_rtx) && ! references_value_p (this_rtx, 0))
8240 {
8241#ifdef LOAD_EXTEND_OP
8242 if (extend_op != NIL)
8243 {
8244 HOST_WIDE_INT this_val;
8245
8246 /* ??? I'm lazy and don't wish to handle CONST_DOUBLE. Other
8247 constants, such as SYMBOL_REF, cannot be extended. */
8248 if (GET_CODE (this_rtx) != CONST_INT)
8249 continue;
8250
8251 this_val = INTVAL (this_rtx);
8252 switch (extend_op)
8253 {
8254 case ZERO_EXTEND:
8255 this_val &= GET_MODE_MASK (GET_MODE (src));
8256 break;
8257 case SIGN_EXTEND:
8258 /* ??? In theory we're already extended. */
8259 if (this_val == trunc_int_for_mode (this_val, GET_MODE (src)))
8260 break;
8261 default:
8262 abort ();
8263 }
5cada064 8264 this_rtx = GEN_INT (this_val);
78adc5a0
RH
8265 }
8266#endif
8267 this_cost = rtx_cost (this_rtx, SET);
8268 }
8269 else if (GET_CODE (this_rtx) == REG)
8270 {
8271#ifdef LOAD_EXTEND_OP
8272 if (extend_op != NIL)
8273 {
8274 this_rtx = gen_rtx_fmt_e (extend_op, word_mode, this_rtx);
8275 this_cost = rtx_cost (this_rtx, SET);
8276 }
8277 else
8278#endif
8279 this_cost = REGISTER_MOVE_COST (GET_MODE (this_rtx),
8280 REGNO_REG_CLASS (REGNO (this_rtx)),
8281 dclass);
8282 }
eab5c70a
BS
8283 else
8284 continue;
78adc5a0
RH
8285
8286 /* If equal costs, prefer registers over anything else. That
8287 tends to lead to smaller instructions on some machines. */
8288 if (this_cost < old_cost
8289 || (this_cost == old_cost
8290 && GET_CODE (this_rtx) == REG
8291 && GET_CODE (SET_SRC (set)) != REG))
8292 {
8293#ifdef LOAD_EXTEND_OP
b216e516
JL
8294 if (GET_MODE_BITSIZE (GET_MODE (SET_DEST (set))) < BITS_PER_WORD
8295 && extend_op != NIL)
8296 {
8297 rtx wide_dest = gen_rtx_REG (word_mode, REGNO (SET_DEST (set)));
8298 ORIGINAL_REGNO (wide_dest) = ORIGINAL_REGNO (SET_DEST (set));
8299 validate_change (insn, &SET_DEST (set), wide_dest, 1);
8300 }
78adc5a0
RH
8301#endif
8302
8303 validate_change (insn, &SET_SRC (set), copy_rtx (this_rtx), 1);
8304 old_cost = this_cost, did_change = 1;
8305 }
e9a25f70 8306 }
eab5c70a
BS
8307
8308 return did_change;
e9a25f70
JL
8309}
8310
8311/* Try to replace operands in INSN with equivalent values that are already
05d10675
BS
8312 in registers. This can be viewed as optional reloading.
8313
e9a25f70
JL
8314 For each non-register operand in the insn, see if any hard regs are
8315 known to be equivalent to that operand. Record the alternatives which
8316 can accept these hard registers. Among all alternatives, select the
8317 ones which are better or equal to the one currently matching, where
8318 "better" is in terms of '?' and '!' constraints. Among the remaining
8319 alternatives, select the one which replaces most operands with
8320 hard registers. */
8321
8322static int
8323reload_cse_simplify_operands (insn)
8324 rtx insn;
8325{
1d7254c5 8326 int i, j;
e9a25f70 8327
eab5c70a
BS
8328 /* For each operand, all registers that are equivalent to it. */
8329 HARD_REG_SET equiv_regs[MAX_RECOG_OPERANDS];
8330
9b3142b3 8331 const char *constraints[MAX_RECOG_OPERANDS];
05d10675 8332
e9a25f70
JL
8333 /* Vector recording how bad an alternative is. */
8334 int *alternative_reject;
8335 /* Vector recording how many registers can be introduced by choosing
8336 this alternative. */
8337 int *alternative_nregs;
8338 /* Array of vectors recording, for each operand and each alternative,
8339 which hard register to substitute, or -1 if the operand should be
8340 left as it is. */
8341 int *op_alt_regno[MAX_RECOG_OPERANDS];
8342 /* Array of alternatives, sorted in order of decreasing desirability. */
8343 int *alternative_order;
0254c561 8344 rtx reg = gen_rtx_REG (VOIDmode, -1);
05d10675 8345
0eadeb15 8346 extract_insn (insn);
e9a25f70 8347
1ccbefce 8348 if (recog_data.n_alternatives == 0 || recog_data.n_operands == 0)
1d300e19 8349 return 0;
e9a25f70
JL
8350
8351 /* Figure out which alternative currently matches. */
0eadeb15 8352 if (! constrain_operands (1))
b8705408 8353 fatal_insn_not_found (insn);
1d7254c5 8354
1ccbefce
RH
8355 alternative_reject = (int *) alloca (recog_data.n_alternatives * sizeof (int));
8356 alternative_nregs = (int *) alloca (recog_data.n_alternatives * sizeof (int));
8357 alternative_order = (int *) alloca (recog_data.n_alternatives * sizeof (int));
961192e1
JM
8358 memset ((char *)alternative_reject, 0, recog_data.n_alternatives * sizeof (int));
8359 memset ((char *)alternative_nregs, 0, recog_data.n_alternatives * sizeof (int));
e9a25f70 8360
eab5c70a
BS
8361 /* For each operand, find out which regs are equivalent. */
8362 for (i = 0; i < recog_data.n_operands; i++)
8363 {
8364 cselib_val *v;
8365 struct elt_loc_list *l;
8366
8367 CLEAR_HARD_REG_SET (equiv_regs[i]);
8368
8369 /* cselib blows up on CODE_LABELs. Trying to fix that doesn't seem
70bbeb8b
BS
8370 right, so avoid the problem here. Likewise if we have a constant
8371 and the insn pattern doesn't tell us the mode we need. */
8372 if (GET_CODE (recog_data.operand[i]) == CODE_LABEL
8373 || (CONSTANT_P (recog_data.operand[i])
8374 && recog_data.operand_mode[i] == VOIDmode))
eab5c70a
BS
8375 continue;
8376
8377 v = cselib_lookup (recog_data.operand[i], recog_data.operand_mode[i], 0);
8378 if (! v)
8379 continue;
8380
8381 for (l = v->locs; l; l = l->next)
8382 if (GET_CODE (l->loc) == REG)
8383 SET_HARD_REG_BIT (equiv_regs[i], REGNO (l->loc));
8384 }
8385
1ccbefce 8386 for (i = 0; i < recog_data.n_operands; i++)
e9a25f70
JL
8387 {
8388 enum machine_mode mode;
8389 int regno;
9b3142b3 8390 const char *p;
e9a25f70 8391
1ccbefce
RH
8392 op_alt_regno[i] = (int *) alloca (recog_data.n_alternatives * sizeof (int));
8393 for (j = 0; j < recog_data.n_alternatives; j++)
e9a25f70
JL
8394 op_alt_regno[i][j] = -1;
8395
1ccbefce
RH
8396 p = constraints[i] = recog_data.constraints[i];
8397 mode = recog_data.operand_mode[i];
e9a25f70
JL
8398
8399 /* Add the reject values for each alternative given by the constraints
8400 for this operand. */
8401 j = 0;
8402 while (*p != '\0')
8403 {
8404 char c = *p++;
8405 if (c == ',')
8406 j++;
8407 else if (c == '?')
8408 alternative_reject[j] += 3;
8409 else if (c == '!')
8410 alternative_reject[j] += 300;
8411 }
8412
8413 /* We won't change operands which are already registers. We
8414 also don't want to modify output operands. */
1ccbefce 8415 regno = true_regnum (recog_data.operand[i]);
e9a25f70
JL
8416 if (regno >= 0
8417 || constraints[i][0] == '='
8418 || constraints[i][0] == '+')
8419 continue;
8420
8421 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
8422 {
8423 int class = (int) NO_REGS;
8424
eab5c70a 8425 if (! TEST_HARD_REG_BIT (equiv_regs[i], regno))
e9a25f70
JL
8426 continue;
8427
0254c561
JC
8428 REGNO (reg) = regno;
8429 PUT_MODE (reg, mode);
8430
e9a25f70
JL
8431 /* We found a register equal to this operand. Now look for all
8432 alternatives that can accept this register and have not been
8433 assigned a register they can use yet. */
8434 j = 0;
8435 p = constraints[i];
8436 for (;;)
31418d35 8437 {
e9a25f70 8438 char c = *p++;
05d10675 8439
e9a25f70 8440 switch (c)
31418d35 8441 {
e9a25f70
JL
8442 case '=': case '+': case '?':
8443 case '#': case '&': case '!':
05d10675 8444 case '*': case '%':
e9a25f70 8445 case '0': case '1': case '2': case '3': case '4':
c5c76735 8446 case '5': case '6': case '7': case '8': case '9':
e9a25f70
JL
8447 case 'm': case '<': case '>': case 'V': case 'o':
8448 case 'E': case 'F': case 'G': case 'H':
8449 case 's': case 'i': case 'n':
8450 case 'I': case 'J': case 'K': case 'L':
8451 case 'M': case 'N': case 'O': case 'P':
e9a25f70
JL
8452 case 'p': case 'X':
8453 /* These don't say anything we care about. */
8454 break;
8455
8456 case 'g': case 'r':
8457 class = reg_class_subunion[(int) class][(int) GENERAL_REGS];
8458 break;
8459
8460 default:
8461 class
e51712db 8462 = reg_class_subunion[(int) class][(int) REG_CLASS_FROM_LETTER ((unsigned char)c)];
e9a25f70 8463 break;
31418d35 8464
e9a25f70
JL
8465 case ',': case '\0':
8466 /* See if REGNO fits this alternative, and set it up as the
8467 replacement register if we don't have one for this
0254c561 8468 alternative yet and the operand being replaced is not
1d7254c5 8469 a cheap CONST_INT. */
e9a25f70 8470 if (op_alt_regno[i][j] == -1
0254c561 8471 && reg_fits_class_p (reg, class, 0, mode)
1ccbefce
RH
8472 && (GET_CODE (recog_data.operand[i]) != CONST_INT
8473 || (rtx_cost (recog_data.operand[i], SET)
8474 > rtx_cost (reg, SET))))
31418d35 8475 {
e9a25f70
JL
8476 alternative_nregs[j]++;
8477 op_alt_regno[i][j] = regno;
31418d35 8478 }
e9a25f70
JL
8479 j++;
8480 break;
31418d35
ILT
8481 }
8482
e9a25f70
JL
8483 if (c == '\0')
8484 break;
8485 }
8486 }
8487 }
8488
8489 /* Record all alternatives which are better or equal to the currently
8490 matching one in the alternative_order array. */
1ccbefce 8491 for (i = j = 0; i < recog_data.n_alternatives; i++)
e9a25f70
JL
8492 if (alternative_reject[i] <= alternative_reject[which_alternative])
8493 alternative_order[j++] = i;
1ccbefce 8494 recog_data.n_alternatives = j;
e9a25f70
JL
8495
8496 /* Sort it. Given a small number of alternatives, a dumb algorithm
8497 won't hurt too much. */
1ccbefce 8498 for (i = 0; i < recog_data.n_alternatives - 1; i++)
e9a25f70
JL
8499 {
8500 int best = i;
8501 int best_reject = alternative_reject[alternative_order[i]];
8502 int best_nregs = alternative_nregs[alternative_order[i]];
8503 int tmp;
8504
1ccbefce 8505 for (j = i + 1; j < recog_data.n_alternatives; j++)
e9a25f70
JL
8506 {
8507 int this_reject = alternative_reject[alternative_order[j]];
8508 int this_nregs = alternative_nregs[alternative_order[j]];
8509
8510 if (this_reject < best_reject
8511 || (this_reject == best_reject && this_nregs < best_nregs))
8512 {
8513 best = j;
8514 best_reject = this_reject;
8515 best_nregs = this_nregs;
31418d35 8516 }
2a9fb548 8517 }
05d10675 8518
e9a25f70
JL
8519 tmp = alternative_order[best];
8520 alternative_order[best] = alternative_order[i];
8521 alternative_order[i] = tmp;
8522 }
05d10675 8523
e9a25f70
JL
8524 /* Substitute the operands as determined by op_alt_regno for the best
8525 alternative. */
8526 j = alternative_order[0];
e9a25f70 8527
1ccbefce 8528 for (i = 0; i < recog_data.n_operands; i++)
e9a25f70 8529 {
1ccbefce 8530 enum machine_mode mode = recog_data.operand_mode[i];
e9a25f70
JL
8531 if (op_alt_regno[i][j] == -1)
8532 continue;
8533
1ccbefce 8534 validate_change (insn, recog_data.operand_loc[i],
38a448ca 8535 gen_rtx_REG (mode, op_alt_regno[i][j]), 1);
e9a25f70
JL
8536 }
8537
1ccbefce 8538 for (i = recog_data.n_dups - 1; i >= 0; i--)
e9a25f70 8539 {
1ccbefce
RH
8540 int op = recog_data.dup_num[i];
8541 enum machine_mode mode = recog_data.operand_mode[op];
e9a25f70
JL
8542
8543 if (op_alt_regno[op][j] == -1)
8544 continue;
8545
1ccbefce 8546 validate_change (insn, recog_data.dup_loc[i],
38a448ca 8547 gen_rtx_REG (mode, op_alt_regno[op][j]), 1);
2a9fb548 8548 }
e9a25f70 8549
e9a25f70 8550 return apply_change_group ();
2a9fb548 8551}
5adf6da0
R
8552\f
8553/* If reload couldn't use reg+reg+offset addressing, try to use reg+reg
8554 addressing now.
8555 This code might also be useful when reload gave up on reg+reg addresssing
8556 because of clashes between the return register and INDEX_REG_CLASS. */
8557
8558/* The maximum number of uses of a register we can keep track of to
8559 replace them with reg+reg addressing. */
8560#define RELOAD_COMBINE_MAX_USES 6
8561
8562/* INSN is the insn where a register has ben used, and USEP points to the
8563 location of the register within the rtl. */
8564struct reg_use { rtx insn, *usep; };
8565
8566/* If the register is used in some unknown fashion, USE_INDEX is negative.
8567 If it is dead, USE_INDEX is RELOAD_COMBINE_MAX_USES, and STORE_RUID
8568 indicates where it becomes live again.
8569 Otherwise, USE_INDEX is the index of the last encountered use of the
8570 register (which is first among these we have seen since we scan backwards),
8571 OFFSET contains the constant offset that is added to the register in
8572 all encountered uses, and USE_RUID indicates the first encountered, i.e.
ed937a19
R
8573 last, of these uses.
8574 STORE_RUID is always meaningful if we only want to use a value in a
8575 register in a different place: it denotes the next insn in the insn
8576 stream (i.e. the last ecountered) that sets or clobbers the register. */
5adf6da0
R
8577static struct
8578 {
8579 struct reg_use reg_use[RELOAD_COMBINE_MAX_USES];
8580 int use_index;
8581 rtx offset;
8582 int store_ruid;
8583 int use_ruid;
8584 } reg_state[FIRST_PSEUDO_REGISTER];
8585
8586/* Reverse linear uid. This is increased in reload_combine while scanning
8587 the instructions from last to first. It is used to set last_label_ruid
8588 and the store_ruid / use_ruid fields in reg_state. */
8589static int reload_combine_ruid;
8590
b0634509
R
8591#define LABEL_LIVE(LABEL) \
8592 (label_live[CODE_LABEL_NUMBER (LABEL) - min_labelno])
8593
5adf6da0
R
8594static void
8595reload_combine ()
8596{
8597 rtx insn, set;
ae0ed63a
JM
8598 int first_index_reg = -1;
8599 int last_index_reg = 0;
5adf6da0 8600 int i;
f8cd4126 8601 unsigned int r;
5adf6da0 8602 int last_label_ruid;
b0634509
R
8603 int min_labelno, n_labels;
8604 HARD_REG_SET ever_live_at_start, *label_live;
5adf6da0
R
8605
8606 /* If reg+reg can be used in offsetable memory adresses, the main chunk of
8607 reload has already used it where appropriate, so there is no use in
8608 trying to generate it now. */
03acd8f8 8609 if (double_reg_address_ok && INDEX_REG_CLASS != NO_REGS)
5adf6da0
R
8610 return;
8611
8612 /* To avoid wasting too much time later searching for an index register,
8613 determine the minimum and maximum index register numbers. */
f8cd4126
RK
8614 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
8615 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], r))
8616 {
881a8969 8617 if (first_index_reg == -1)
4c3f1588
RK
8618 first_index_reg = r;
8619
8620 last_index_reg = r;
f8cd4126
RK
8621 }
8622
5adf6da0 8623 /* If no index register is available, we can quit now. */
881a8969 8624 if (first_index_reg == -1)
5adf6da0
R
8625 return;
8626
b0634509
R
8627 /* Set up LABEL_LIVE and EVER_LIVE_AT_START. The register lifetime
8628 information is a bit fuzzy immediately after reload, but it's
8629 still good enough to determine which registers are live at a jump
8630 destination. */
8631 min_labelno = get_first_label_num ();
8632 n_labels = max_label_num () - min_labelno;
8633 label_live = (HARD_REG_SET *) xmalloc (n_labels * sizeof (HARD_REG_SET));
8634 CLEAR_HARD_REG_SET (ever_live_at_start);
f8cd4126 8635
b0634509
R
8636 for (i = n_basic_blocks - 1; i >= 0; i--)
8637 {
3b413743 8638 insn = BLOCK_HEAD (i);
b0634509
R
8639 if (GET_CODE (insn) == CODE_LABEL)
8640 {
8641 HARD_REG_SET live;
8642
f8cd4126
RK
8643 REG_SET_TO_HARD_REG_SET (live,
8644 BASIC_BLOCK (i)->global_live_at_start);
8645 compute_use_by_pseudos (&live,
8646 BASIC_BLOCK (i)->global_live_at_start);
b0634509
R
8647 COPY_HARD_REG_SET (LABEL_LIVE (insn), live);
8648 IOR_HARD_REG_SET (ever_live_at_start, live);
8649 }
8650 }
8651
5adf6da0
R
8652 /* Initialize last_label_ruid, reload_combine_ruid and reg_state. */
8653 last_label_ruid = reload_combine_ruid = 0;
f8cd4126 8654 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
5adf6da0 8655 {
f8cd4126
RK
8656 reg_state[r].store_ruid = reload_combine_ruid;
8657 if (fixed_regs[r])
8658 reg_state[r].use_index = -1;
5adf6da0 8659 else
f8cd4126 8660 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
5adf6da0
R
8661 }
8662
8663 for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
8664 {
8665 rtx note;
8666
8667 /* We cannot do our optimization across labels. Invalidating all the use
8668 information we have would be costly, so we just note where the label
05d10675 8669 is and then later disable any optimization that would cross it. */
5adf6da0
R
8670 if (GET_CODE (insn) == CODE_LABEL)
8671 last_label_ruid = reload_combine_ruid;
f8cd4126
RK
8672 else if (GET_CODE (insn) == BARRIER)
8673 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
8674 if (! fixed_regs[r])
8675 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
8676
2c3c49de 8677 if (! INSN_P (insn))
5adf6da0 8678 continue;
f8cd4126 8679
5adf6da0
R
8680 reload_combine_ruid++;
8681
8682 /* Look for (set (REGX) (CONST_INT))
eceef4c9
BS
8683 (set (REGX) (PLUS (REGX) (REGY)))
8684 ...
8685 ... (MEM (REGX)) ...
5adf6da0 8686 and convert it to
eceef4c9
BS
8687 (set (REGZ) (CONST_INT))
8688 ...
8689 ... (MEM (PLUS (REGZ) (REGY)))... .
5adf6da0
R
8690
8691 First, check that we have (set (REGX) (PLUS (REGX) (REGY)))
8692 and that we know all uses of REGX before it dies. */
2abbc1bd
R
8693 set = single_set (insn);
8694 if (set != NULL_RTX
5adf6da0
R
8695 && GET_CODE (SET_DEST (set)) == REG
8696 && (HARD_REGNO_NREGS (REGNO (SET_DEST (set)),
8697 GET_MODE (SET_DEST (set)))
8698 == 1)
8699 && GET_CODE (SET_SRC (set)) == PLUS
8700 && GET_CODE (XEXP (SET_SRC (set), 1)) == REG
8701 && rtx_equal_p (XEXP (SET_SRC (set), 0), SET_DEST (set))
8702 && last_label_ruid < reg_state[REGNO (SET_DEST (set))].use_ruid)
8703 {
8704 rtx reg = SET_DEST (set);
8705 rtx plus = SET_SRC (set);
8706 rtx base = XEXP (plus, 1);
8707 rtx prev = prev_nonnote_insn (insn);
8708 rtx prev_set = prev ? single_set (prev) : NULL_RTX;
f8cd4126 8709 unsigned int regno = REGNO (reg);
6a651371 8710 rtx const_reg = NULL_RTX;
5adf6da0
R
8711 rtx reg_sum = NULL_RTX;
8712
8713 /* Now, we need an index register.
8714 We'll set index_reg to this index register, const_reg to the
8715 register that is to be loaded with the constant
8716 (denoted as REGZ in the substitution illustration above),
8717 and reg_sum to the register-register that we want to use to
8718 substitute uses of REG (typically in MEMs) with.
8719 First check REG and BASE for being index registers;
8720 we can use them even if they are not dead. */
8721 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], regno)
8722 || TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS],
8723 REGNO (base)))
8724 {
8725 const_reg = reg;
8726 reg_sum = plus;
8727 }
8728 else
8729 {
05d10675
BS
8730 /* Otherwise, look for a free index register. Since we have
8731 checked above that neiter REG nor BASE are index registers,
8732 if we find anything at all, it will be different from these
8733 two registers. */
8734 for (i = first_index_reg; i <= last_index_reg; i++)
5adf6da0 8735 {
f8cd4126
RK
8736 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS],
8737 i)
5adf6da0
R
8738 && reg_state[i].use_index == RELOAD_COMBINE_MAX_USES
8739 && reg_state[i].store_ruid <= reg_state[regno].use_ruid
8740 && HARD_REGNO_NREGS (i, GET_MODE (reg)) == 1)
8741 {
8742 rtx index_reg = gen_rtx_REG (GET_MODE (reg), i);
f8cd4126 8743
5adf6da0
R
8744 const_reg = index_reg;
8745 reg_sum = gen_rtx_PLUS (GET_MODE (reg), index_reg, base);
8746 break;
8747 }
8748 }
8749 }
f8cd4126 8750
ed937a19
R
8751 /* Check that PREV_SET is indeed (set (REGX) (CONST_INT)) and that
8752 (REGY), i.e. BASE, is not clobbered before the last use we'll
8753 create. */
f8cd4126 8754 if (prev_set != 0
5adf6da0
R
8755 && GET_CODE (SET_SRC (prev_set)) == CONST_INT
8756 && rtx_equal_p (SET_DEST (prev_set), reg)
8757 && reg_state[regno].use_index >= 0
f8cd4126
RK
8758 && (reg_state[REGNO (base)].store_ruid
8759 <= reg_state[regno].use_ruid)
8760 && reg_sum != 0)
5adf6da0
R
8761 {
8762 int i;
8763
f8cd4126 8764 /* Change destination register and, if necessary, the
5adf6da0
R
8765 constant value in PREV, the constant loading instruction. */
8766 validate_change (prev, &SET_DEST (prev_set), const_reg, 1);
8767 if (reg_state[regno].offset != const0_rtx)
8768 validate_change (prev,
8769 &SET_SRC (prev_set),
8770 GEN_INT (INTVAL (SET_SRC (prev_set))
8771 + INTVAL (reg_state[regno].offset)),
8772 1);
f8cd4126 8773
5adf6da0
R
8774 /* Now for every use of REG that we have recorded, replace REG
8775 with REG_SUM. */
8776 for (i = reg_state[regno].use_index;
8777 i < RELOAD_COMBINE_MAX_USES; i++)
8778 validate_change (reg_state[regno].reg_use[i].insn,
8779 reg_state[regno].reg_use[i].usep,
8780 reg_sum, 1);
8781
8782 if (apply_change_group ())
8783 {
8784 rtx *np;
8785
8786 /* Delete the reg-reg addition. */
8787 PUT_CODE (insn, NOTE);
8788 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
8789 NOTE_SOURCE_FILE (insn) = 0;
8790
8791 if (reg_state[regno].offset != const0_rtx)
f8cd4126
RK
8792 /* Previous REG_EQUIV / REG_EQUAL notes for PREV
8793 are now invalid. */
1d7254c5 8794 for (np = &REG_NOTES (prev); *np;)
f8cd4126
RK
8795 {
8796 if (REG_NOTE_KIND (*np) == REG_EQUAL
8797 || REG_NOTE_KIND (*np) == REG_EQUIV)
8798 *np = XEXP (*np, 1);
8799 else
8800 np = &XEXP (*np, 1);
8801 }
8802
5adf6da0 8803 reg_state[regno].use_index = RELOAD_COMBINE_MAX_USES;
f8cd4126
RK
8804 reg_state[REGNO (const_reg)].store_ruid
8805 = reload_combine_ruid;
5adf6da0
R
8806 continue;
8807 }
8808 }
8809 }
f8cd4126 8810
1d7254c5 8811 note_stores (PATTERN (insn), reload_combine_note_store, NULL);
f8cd4126 8812
5adf6da0
R
8813 if (GET_CODE (insn) == CALL_INSN)
8814 {
8815 rtx link;
8816
f8cd4126
RK
8817 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
8818 if (call_used_regs[r])
8819 {
8820 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
8821 reg_state[r].store_ruid = reload_combine_ruid;
8822 }
8823
5adf6da0
R
8824 for (link = CALL_INSN_FUNCTION_USAGE (insn); link;
8825 link = XEXP (link, 1))
6a69653a
CM
8826 {
8827 rtx usage_rtx = XEXP (XEXP (link, 0), 0);
8828 if (GET_CODE (usage_rtx) == REG)
8829 {
ae0ed63a 8830 unsigned int i;
6a69653a
CM
8831 unsigned int start_reg = REGNO (usage_rtx);
8832 unsigned int num_regs =
8833 HARD_REGNO_NREGS (start_reg, GET_MODE (usage_rtx));
8834 unsigned int end_reg = start_reg + num_regs - 1;
8835 for (i = start_reg; i <= end_reg; i++)
8836 if (GET_CODE (XEXP (link, 0)) == CLOBBER)
8837 {
8838 reg_state[i].use_index = RELOAD_COMBINE_MAX_USES;
8839 reg_state[i].store_ruid = reload_combine_ruid;
8840 }
8841 else
8842 reg_state[i].use_index = -1;
8843 }
8844 }
f8cd4126 8845
5adf6da0 8846 }
f8cd4126
RK
8847 else if (GET_CODE (insn) == JUMP_INSN
8848 && GET_CODE (PATTERN (insn)) != RETURN)
5adf6da0
R
8849 {
8850 /* Non-spill registers might be used at the call destination in
8851 some unknown fashion, so we have to mark the unknown use. */
b0634509 8852 HARD_REG_SET *live;
f8cd4126 8853
b0634509
R
8854 if ((condjump_p (insn) || condjump_in_parallel_p (insn))
8855 && JUMP_LABEL (insn))
8856 live = &LABEL_LIVE (JUMP_LABEL (insn));
8857 else
8858 live = &ever_live_at_start;
f8cd4126 8859
5adf6da0 8860 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; --i)
f8cd4126
RK
8861 if (TEST_HARD_REG_BIT (*live, i))
8862 reg_state[i].use_index = -1;
5adf6da0 8863 }
f8cd4126 8864
5adf6da0
R
8865 reload_combine_note_use (&PATTERN (insn), insn);
8866 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
8867 {
8868 if (REG_NOTE_KIND (note) == REG_INC
8869 && GET_CODE (XEXP (note, 0)) == REG)
ed937a19
R
8870 {
8871 int regno = REGNO (XEXP (note, 0));
8872
8873 reg_state[regno].store_ruid = reload_combine_ruid;
8874 reg_state[regno].use_index = -1;
8875 }
5adf6da0
R
8876 }
8877 }
f8cd4126 8878
b0634509 8879 free (label_live);
5adf6da0
R
8880}
8881
8882/* Check if DST is a register or a subreg of a register; if it is,
8883 update reg_state[regno].store_ruid and reg_state[regno].use_index
f93233bb 8884 accordingly. Called via note_stores from reload_combine. */
f8cd4126 8885
5adf6da0 8886static void
84832317 8887reload_combine_note_store (dst, set, data)
f93233bb 8888 rtx dst, set;
84832317 8889 void *data ATTRIBUTE_UNUSED;
5adf6da0
R
8890{
8891 int regno = 0;
8892 int i;
54ed0905 8893 enum machine_mode mode = GET_MODE (dst);
5adf6da0
R
8894
8895 if (GET_CODE (dst) == SUBREG)
8896 {
ddef6bc7
JJ
8897 regno = subreg_regno_offset (REGNO (SUBREG_REG (dst)),
8898 GET_MODE (SUBREG_REG (dst)),
8899 SUBREG_BYTE (dst),
8900 GET_MODE (dst));
5adf6da0
R
8901 dst = SUBREG_REG (dst);
8902 }
8903 if (GET_CODE (dst) != REG)
8904 return;
8905 regno += REGNO (dst);
54ca6ffa 8906
5adf6da0 8907 /* note_stores might have stripped a STRICT_LOW_PART, so we have to be
05d10675 8908 careful with registers / register parts that are not full words.
54ca6ffa
JL
8909
8910 Similarly for ZERO_EXTRACT and SIGN_EXTRACT. */
8911 if (GET_CODE (set) != SET
8912 || GET_CODE (SET_DEST (set)) == ZERO_EXTRACT
8913 || GET_CODE (SET_DEST (set)) == SIGN_EXTRACT
8914 || GET_CODE (SET_DEST (set)) == STRICT_LOW_PART)
ed937a19 8915 {
54ed0905 8916 for (i = HARD_REGNO_NREGS (regno, mode) - 1 + regno; i >= regno; i--)
f93233bb
JL
8917 {
8918 reg_state[i].use_index = -1;
8919 reg_state[i].store_ruid = reload_combine_ruid;
8920 }
ed937a19 8921 }
5adf6da0
R
8922 else
8923 {
54ed0905 8924 for (i = HARD_REGNO_NREGS (regno, mode) - 1 + regno; i >= regno; i--)
5adf6da0
R
8925 {
8926 reg_state[i].store_ruid = reload_combine_ruid;
8927 reg_state[i].use_index = RELOAD_COMBINE_MAX_USES;
8928 }
8929 }
8930}
8931
8932/* XP points to a piece of rtl that has to be checked for any uses of
8933 registers.
8934 *XP is the pattern of INSN, or a part of it.
8935 Called from reload_combine, and recursively by itself. */
8936static void
8937reload_combine_note_use (xp, insn)
8938 rtx *xp, insn;
8939{
8940 rtx x = *xp;
8941 enum rtx_code code = x->code;
6f7d635c 8942 const char *fmt;
5adf6da0
R
8943 int i, j;
8944 rtx offset = const0_rtx; /* For the REG case below. */
8945
8946 switch (code)
8947 {
8948 case SET:
8949 if (GET_CODE (SET_DEST (x)) == REG)
8950 {
8951 reload_combine_note_use (&SET_SRC (x), insn);
8952 return;
8953 }
8954 break;
8955
6ce7e0f9
R
8956 case USE:
8957 /* If this is the USE of a return value, we can't change it. */
8958 if (GET_CODE (XEXP (x, 0)) == REG && REG_FUNCTION_VALUE_P (XEXP (x, 0)))
8959 {
8960 /* Mark the return register as used in an unknown fashion. */
8961 rtx reg = XEXP (x, 0);
8962 int regno = REGNO (reg);
8963 int nregs = HARD_REGNO_NREGS (regno, GET_MODE (reg));
8964
8965 while (--nregs >= 0)
8966 reg_state[regno + nregs].use_index = -1;
8967 return;
8968 }
8969 break;
8970
5adf6da0
R
8971 case CLOBBER:
8972 if (GET_CODE (SET_DEST (x)) == REG)
8973 return;
8974 break;
8975
8976 case PLUS:
8977 /* We are interested in (plus (reg) (const_int)) . */
1d7254c5
KH
8978 if (GET_CODE (XEXP (x, 0)) != REG
8979 || GET_CODE (XEXP (x, 1)) != CONST_INT)
5adf6da0
R
8980 break;
8981 offset = XEXP (x, 1);
8982 x = XEXP (x, 0);
05d10675 8983 /* Fall through. */
5adf6da0
R
8984 case REG:
8985 {
8986 int regno = REGNO (x);
8987 int use_index;
6ce7e0f9 8988 int nregs;
5adf6da0
R
8989
8990 /* Some spurious USEs of pseudo registers might remain.
8991 Just ignore them. */
8992 if (regno >= FIRST_PSEUDO_REGISTER)
8993 return;
8994
6ce7e0f9
R
8995 nregs = HARD_REGNO_NREGS (regno, GET_MODE (x));
8996
8997 /* We can't substitute into multi-hard-reg uses. */
8998 if (nregs > 1)
8999 {
9000 while (--nregs >= 0)
9001 reg_state[regno + nregs].use_index = -1;
9002 return;
9003 }
9004
5adf6da0
R
9005 /* If this register is already used in some unknown fashion, we
9006 can't do anything.
9007 If we decrement the index from zero to -1, we can't store more
9008 uses, so this register becomes used in an unknown fashion. */
9009 use_index = --reg_state[regno].use_index;
9010 if (use_index < 0)
9011 return;
9012
9013 if (use_index != RELOAD_COMBINE_MAX_USES - 1)
9014 {
9015 /* We have found another use for a register that is already
9016 used later. Check if the offsets match; if not, mark the
9017 register as used in an unknown fashion. */
9018 if (! rtx_equal_p (offset, reg_state[regno].offset))
9019 {
9020 reg_state[regno].use_index = -1;
9021 return;
9022 }
9023 }
9024 else
9025 {
9026 /* This is the first use of this register we have seen since we
9027 marked it as dead. */
9028 reg_state[regno].offset = offset;
9029 reg_state[regno].use_ruid = reload_combine_ruid;
9030 }
9031 reg_state[regno].reg_use[use_index].insn = insn;
9032 reg_state[regno].reg_use[use_index].usep = xp;
9033 return;
9034 }
9035
9036 default:
9037 break;
9038 }
9039
9040 /* Recursively process the components of X. */
9041 fmt = GET_RTX_FORMAT (code);
9042 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9043 {
9044 if (fmt[i] == 'e')
9045 reload_combine_note_use (&XEXP (x, i), insn);
9046 else if (fmt[i] == 'E')
9047 {
9048 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9049 reload_combine_note_use (&XVECEXP (x, i, j), insn);
9050 }
9051 }
9052}
9053\f
61f5625b
AO
9054/* See if we can reduce the cost of a constant by replacing a move
9055 with an add. We track situations in which a register is set to a
9056 constant or to a register plus a constant. */
5adf6da0
R
9057/* We cannot do our optimization across labels. Invalidating all the
9058 information about register contents we have would be costly, so we
61f5625b
AO
9059 use move2add_last_label_luid to note where the label is and then
9060 later disable any optimization that would cross it.
5adf6da0 9061 reg_offset[n] / reg_base_reg[n] / reg_mode[n] are only valid if
61f5625b 9062 reg_set_luid[n] is greater than last_label_luid[n] . */
5adf6da0 9063static int reg_set_luid[FIRST_PSEUDO_REGISTER];
770ae6cc 9064
61f5625b
AO
9065/* If reg_base_reg[n] is negative, register n has been set to
9066 reg_offset[n] in mode reg_mode[n] .
9067 If reg_base_reg[n] is non-negative, register n has been set to the
9068 sum of reg_offset[n] and the value of register reg_base_reg[n]
dc297297 9069 before reg_set_luid[n], calculated in mode reg_mode[n] . */
61f5625b 9070static HOST_WIDE_INT reg_offset[FIRST_PSEUDO_REGISTER];
5adf6da0
R
9071static int reg_base_reg[FIRST_PSEUDO_REGISTER];
9072static enum machine_mode reg_mode[FIRST_PSEUDO_REGISTER];
770ae6cc 9073
5adf6da0
R
9074/* move2add_luid is linearily increased while scanning the instructions
9075 from first to last. It is used to set reg_set_luid in
6764d250 9076 reload_cse_move2add and move2add_note_store. */
5adf6da0
R
9077static int move2add_luid;
9078
61f5625b
AO
9079/* move2add_last_label_luid is set whenever a label is found. Labels
9080 invalidate all previously collected reg_offset data. */
9081static int move2add_last_label_luid;
9082
ccc4ae07 9083/* Generate a CONST_INT and force it in the range of MODE. */
770ae6cc 9084
61f5625b
AO
9085static HOST_WIDE_INT
9086sext_for_mode (mode, value)
ccc4ae07
AS
9087 enum machine_mode mode;
9088 HOST_WIDE_INT value;
9089{
9090 HOST_WIDE_INT cval = value & GET_MODE_MASK (mode);
9091 int width = GET_MODE_BITSIZE (mode);
9092
9093 /* If MODE is narrower than HOST_WIDE_INT and CVAL is a negative number,
9094 sign extend it. */
9095 if (width > 0 && width < HOST_BITS_PER_WIDE_INT
9096 && (cval & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
9097 cval |= (HOST_WIDE_INT) -1 << width;
9098
61f5625b 9099 return cval;
ccc4ae07
AS
9100}
9101
61f5625b
AO
9102/* ??? We don't know how zero / sign extension is handled, hence we
9103 can't go from a narrower to a wider mode. */
9104#define MODES_OK_FOR_MOVE2ADD(OUTMODE, INMODE) \
9105 (GET_MODE_SIZE (OUTMODE) == GET_MODE_SIZE (INMODE) \
9106 || (GET_MODE_SIZE (OUTMODE) <= GET_MODE_SIZE (INMODE) \
9107 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (OUTMODE), \
9108 GET_MODE_BITSIZE (INMODE))))
9109
5adf6da0
R
9110static void
9111reload_cse_move2add (first)
9112 rtx first;
9113{
9114 int i;
9115 rtx insn;
5adf6da0 9116
1d7254c5 9117 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
6764d250
BS
9118 reg_set_luid[i] = 0;
9119
61f5625b
AO
9120 move2add_last_label_luid = 0;
9121 move2add_luid = 2;
5adf6da0
R
9122 for (insn = first; insn; insn = NEXT_INSN (insn), move2add_luid++)
9123 {
9124 rtx pat, note;
9125
9126 if (GET_CODE (insn) == CODE_LABEL)
61f5625b
AO
9127 {
9128 move2add_last_label_luid = move2add_luid;
9129 /* We're going to increment move2add_luid twice after a
9130 label, so that we can use move2add_last_label_luid + 1 as
9131 the luid for constants. */
9132 move2add_luid++;
9133 continue;
9134 }
2c3c49de 9135 if (! INSN_P (insn))
5adf6da0
R
9136 continue;
9137 pat = PATTERN (insn);
9138 /* For simplicity, we only perform this optimization on
9139 straightforward SETs. */
9140 if (GET_CODE (pat) == SET
9141 && GET_CODE (SET_DEST (pat)) == REG)
9142 {
9143 rtx reg = SET_DEST (pat);
9144 int regno = REGNO (reg);
9145 rtx src = SET_SRC (pat);
9146
9147 /* Check if we have valid information on the contents of this
9148 register in the mode of REG. */
61f5625b
AO
9149 if (reg_set_luid[regno] > move2add_last_label_luid
9150 && MODES_OK_FOR_MOVE2ADD (GET_MODE (reg), reg_mode[regno]))
5adf6da0
R
9151 {
9152 /* Try to transform (set (REGX) (CONST_INT A))
9153 ...
9154 (set (REGX) (CONST_INT B))
9155 to
9156 (set (REGX) (CONST_INT A))
9157 ...
9158 (set (REGX) (plus (REGX) (CONST_INT B-A))) */
9159
9160 if (GET_CODE (src) == CONST_INT && reg_base_reg[regno] < 0)
9161 {
9162 int success = 0;
61f5625b
AO
9163 rtx new_src = GEN_INT (sext_for_mode (GET_MODE (reg),
9164 INTVAL (src)
9165 - reg_offset[regno]));
5adf6da0
R
9166 /* (set (reg) (plus (reg) (const_int 0))) is not canonical;
9167 use (set (reg) (reg)) instead.
9168 We don't delete this insn, nor do we convert it into a
9169 note, to avoid losing register notes or the return
9170 value flag. jump2 already knowns how to get rid of
9171 no-op moves. */
9172 if (new_src == const0_rtx)
9173 success = validate_change (insn, &SET_SRC (pat), reg, 0);
9174 else if (rtx_cost (new_src, PLUS) < rtx_cost (src, SET)
fb7e77d7 9175 && have_add2_insn (reg, new_src))
5adf6da0
R
9176 success = validate_change (insn, &PATTERN (insn),
9177 gen_add2_insn (reg, new_src), 0);
5adf6da0
R
9178 reg_set_luid[regno] = move2add_luid;
9179 reg_mode[regno] = GET_MODE (reg);
61f5625b 9180 reg_offset[regno] = INTVAL (src);
5adf6da0
R
9181 continue;
9182 }
9183
9184 /* Try to transform (set (REGX) (REGY))
9185 (set (REGX) (PLUS (REGX) (CONST_INT A)))
9186 ...
9187 (set (REGX) (REGY))
9188 (set (REGX) (PLUS (REGX) (CONST_INT B)))
9189 to
9190 (REGX) (REGY))
9191 (set (REGX) (PLUS (REGX) (CONST_INT A)))
9192 ...
9193 (set (REGX) (plus (REGX) (CONST_INT B-A))) */
9194 else if (GET_CODE (src) == REG
61f5625b
AO
9195 && reg_set_luid[regno] == reg_set_luid[REGNO (src)]
9196 && reg_base_reg[regno] == reg_base_reg[REGNO (src)]
9197 && MODES_OK_FOR_MOVE2ADD (GET_MODE (reg),
9198 reg_mode[REGNO (src)]))
5adf6da0
R
9199 {
9200 rtx next = next_nonnote_insn (insn);
6a651371 9201 rtx set = NULL_RTX;
5adf6da0
R
9202 if (next)
9203 set = single_set (next);
61f5625b 9204 if (set
5adf6da0
R
9205 && SET_DEST (set) == reg
9206 && GET_CODE (SET_SRC (set)) == PLUS
9207 && XEXP (SET_SRC (set), 0) == reg
9208 && GET_CODE (XEXP (SET_SRC (set), 1)) == CONST_INT)
9209 {
5adf6da0 9210 rtx src3 = XEXP (SET_SRC (set), 1);
61f5625b
AO
9211 HOST_WIDE_INT added_offset = INTVAL (src3);
9212 HOST_WIDE_INT base_offset = reg_offset[REGNO (src)];
9213 HOST_WIDE_INT regno_offset = reg_offset[regno];
9214 rtx new_src = GEN_INT (sext_for_mode (GET_MODE (reg),
9215 added_offset
9216 + base_offset
9217 - regno_offset));
5adf6da0
R
9218 int success = 0;
9219
9220 if (new_src == const0_rtx)
9221 /* See above why we create (set (reg) (reg)) here. */
9222 success
9223 = validate_change (next, &SET_SRC (set), reg, 0);
9224 else if ((rtx_cost (new_src, PLUS)
b437f1a7 9225 < COSTS_N_INSNS (1) + rtx_cost (src3, SET))
fb7e77d7 9226 && have_add2_insn (reg, new_src))
5adf6da0
R
9227 success
9228 = validate_change (next, &PATTERN (next),
9229 gen_add2_insn (reg, new_src), 0);
9230 if (success)
9231 {
5adf6da0
R
9232 /* INSN might be the first insn in a basic block
9233 if the preceding insn is a conditional jump
9234 or a possible-throwing call. */
9235 PUT_CODE (insn, NOTE);
9236 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
9237 NOTE_SOURCE_FILE (insn) = 0;
9238 }
9239 insn = next;
5adf6da0 9240 reg_mode[regno] = GET_MODE (reg);
61f5625b
AO
9241 reg_offset[regno] = sext_for_mode (GET_MODE (reg),
9242 added_offset
9243 + base_offset);
5adf6da0
R
9244 continue;
9245 }
9246 }
9247 }
9248 }
9249
9250 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
9251 {
9252 if (REG_NOTE_KIND (note) == REG_INC
9253 && GET_CODE (XEXP (note, 0)) == REG)
9254 {
61f5625b 9255 /* Reset the information about this register. */
5adf6da0
R
9256 int regno = REGNO (XEXP (note, 0));
9257 if (regno < FIRST_PSEUDO_REGISTER)
61f5625b 9258 reg_set_luid[regno] = 0;
5adf6da0 9259 }
5adf6da0 9260 }
84832317 9261 note_stores (PATTERN (insn), move2add_note_store, NULL);
5adf6da0
R
9262 /* If this is a CALL_INSN, all call used registers are stored with
9263 unknown values. */
9264 if (GET_CODE (insn) == CALL_INSN)
9265 {
1d7254c5 9266 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
5adf6da0
R
9267 {
9268 if (call_used_regs[i])
61f5625b
AO
9269 /* Reset the information about this register. */
9270 reg_set_luid[i] = 0;
5adf6da0
R
9271 }
9272 }
9273 }
9274}
9275
9276/* SET is a SET or CLOBBER that sets DST.
9277 Update reg_set_luid, reg_offset and reg_base_reg accordingly.
9278 Called from reload_cse_move2add via note_stores. */
770ae6cc 9279
5adf6da0 9280static void
84832317 9281move2add_note_store (dst, set, data)
5adf6da0 9282 rtx dst, set;
84832317 9283 void *data ATTRIBUTE_UNUSED;
5adf6da0 9284{
770ae6cc
RK
9285 unsigned int regno = 0;
9286 unsigned int i;
5adf6da0 9287 enum machine_mode mode = GET_MODE (dst);
770ae6cc 9288
5adf6da0
R
9289 if (GET_CODE (dst) == SUBREG)
9290 {
ddef6bc7
JJ
9291 regno = subreg_regno_offset (REGNO (SUBREG_REG (dst)),
9292 GET_MODE (SUBREG_REG (dst)),
9293 SUBREG_BYTE (dst),
9294 GET_MODE (dst));
5adf6da0
R
9295 dst = SUBREG_REG (dst);
9296 }
770ae6cc 9297
19ca869b
JR
9298 /* Some targets do argument pushes without adding REG_INC notes. */
9299
9300 if (GET_CODE (dst) == MEM)
9301 {
9302 dst = XEXP (dst, 0);
52fdbf26 9303 if (GET_CODE (dst) == PRE_INC || GET_CODE (dst) == POST_INC
19ca869b 9304 || GET_CODE (dst) == PRE_DEC || GET_CODE (dst) == POST_DEC)
61f5625b 9305 reg_set_luid[REGNO (XEXP (dst, 0))] = 0;
19ca869b 9306 return;
174fa2c4 9307 }
5adf6da0
R
9308 if (GET_CODE (dst) != REG)
9309 return;
9310
9311 regno += REGNO (dst);
9312
f93233bb
JL
9313 if (HARD_REGNO_NREGS (regno, mode) == 1 && GET_CODE (set) == SET
9314 && GET_CODE (SET_DEST (set)) != ZERO_EXTRACT
9315 && GET_CODE (SET_DEST (set)) != SIGN_EXTRACT
9316 && GET_CODE (SET_DEST (set)) != STRICT_LOW_PART)
5adf6da0
R
9317 {
9318 rtx src = SET_SRC (set);
61f5625b
AO
9319 rtx base_reg;
9320 HOST_WIDE_INT offset;
9321 int base_regno;
9322 /* This may be different from mode, if SET_DEST (set) is a
9323 SUBREG. */
9324 enum machine_mode dst_mode = GET_MODE (dst);
5adf6da0 9325
5adf6da0
R
9326 switch (GET_CODE (src))
9327 {
9328 case PLUS:
61f5625b
AO
9329 if (GET_CODE (XEXP (src, 0)) == REG)
9330 {
9331 base_reg = XEXP (src, 0);
9332
9333 if (GET_CODE (XEXP (src, 1)) == CONST_INT)
9334 offset = INTVAL (XEXP (src, 1));
9335 else if (GET_CODE (XEXP (src, 1)) == REG
9336 && (reg_set_luid[REGNO (XEXP (src, 1))]
9337 > move2add_last_label_luid)
9338 && (MODES_OK_FOR_MOVE2ADD
9339 (dst_mode, reg_mode[REGNO (XEXP (src, 1))])))
9340 {
9341 if (reg_base_reg[REGNO (XEXP (src, 1))] < 0)
9342 offset = reg_offset[REGNO (XEXP (src, 1))];
9343 /* Maybe the first register is known to be a
9344 constant. */
9345 else if (reg_set_luid[REGNO (base_reg)]
9346 > move2add_last_label_luid
9347 && (MODES_OK_FOR_MOVE2ADD
9348 (dst_mode, reg_mode[REGNO (XEXP (src, 1))]))
9349 && reg_base_reg[REGNO (base_reg)] < 0)
9350 {
9351 offset = reg_offset[REGNO (base_reg)];
9352 base_reg = XEXP (src, 1);
9353 }
9354 else
9355 goto invalidate;
9356 }
9357 else
9358 goto invalidate;
770ae6cc 9359
61f5625b
AO
9360 break;
9361 }
770ae6cc 9362
61f5625b 9363 goto invalidate;
5adf6da0
R
9364
9365 case REG:
61f5625b
AO
9366 base_reg = src;
9367 offset = 0;
5adf6da0
R
9368 break;
9369
61f5625b
AO
9370 case CONST_INT:
9371 /* Start tracking the register as a constant. */
5adf6da0 9372 reg_base_reg[regno] = -1;
61f5625b
AO
9373 reg_offset[regno] = INTVAL (SET_SRC (set));
9374 /* We assign the same luid to all registers set to constants. */
9375 reg_set_luid[regno] = move2add_last_label_luid + 1;
9376 reg_mode[regno] = mode;
9377 return;
9378
9379 default:
9380 invalidate:
9381 /* Invalidate the contents of the register. */
9382 reg_set_luid[regno] = 0;
9383 return;
5adf6da0 9384 }
61f5625b
AO
9385
9386 base_regno = REGNO (base_reg);
9387 /* If information about the base register is not valid, set it
9388 up as a new base register, pretending its value is known
9389 starting from the current insn. */
9390 if (reg_set_luid[base_regno] <= move2add_last_label_luid)
9391 {
9392 reg_base_reg[base_regno] = base_regno;
9393 reg_offset[base_regno] = 0;
9394 reg_set_luid[base_regno] = move2add_luid;
9395 reg_mode[base_regno] = mode;
9396 }
9397 else if (! MODES_OK_FOR_MOVE2ADD (dst_mode,
9398 reg_mode[base_regno]))
9399 goto invalidate;
9400
9401 reg_mode[regno] = mode;
9402
9403 /* Copy base information from our base register. */
9404 reg_set_luid[regno] = reg_set_luid[base_regno];
9405 reg_base_reg[regno] = reg_base_reg[base_regno];
9406
9407 /* Compute the sum of the offsets or constants. */
9408 reg_offset[regno] = sext_for_mode (dst_mode,
9409 offset
9410 + reg_offset[base_regno]);
5adf6da0
R
9411 }
9412 else
9413 {
770ae6cc
RK
9414 unsigned int endregno = regno + HARD_REGNO_NREGS (regno, mode);
9415
9416 for (i = regno; i < endregno; i++)
61f5625b
AO
9417 /* Reset the information about this register. */
9418 reg_set_luid[i] = 0;
5adf6da0
R
9419 }
9420}
2dfa9a87
MH
9421
9422#ifdef AUTO_INC_DEC
9423static void
9424add_auto_inc_notes (insn, x)
9425 rtx insn;
9426 rtx x;
9427{
9428 enum rtx_code code = GET_CODE (x);
6f7d635c 9429 const char *fmt;
2dfa9a87
MH
9430 int i, j;
9431
9432 if (code == MEM && auto_inc_p (XEXP (x, 0)))
9433 {
9434 REG_NOTES (insn)
9435 = gen_rtx_EXPR_LIST (REG_INC, XEXP (XEXP (x, 0), 0), REG_NOTES (insn));
9436 return;
9437 }
9438
9439 /* Scan all the operand sub-expressions. */
9440 fmt = GET_RTX_FORMAT (code);
9441 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9442 {
9443 if (fmt[i] == 'e')
9444 add_auto_inc_notes (insn, XEXP (x, i));
9445 else if (fmt[i] == 'E')
9446 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9447 add_auto_inc_notes (insn, XVECEXP (x, i, j));
9448 }
9449}
9450#endif
94bd63e5
AH
9451
9452/* Copy EH notes from an insn to its reloads. */
9453static void
9454copy_eh_notes (insn, x)
9455 rtx insn;
9456 rtx x;
9457{
9458 rtx eh_note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
9459 if (eh_note)
9460 {
9461 for (; x != 0; x = NEXT_INSN (x))
9462 {
9463 if (may_trap_p (PATTERN (x)))
9464 REG_NOTES (x)
9465 = gen_rtx_EXPR_LIST (REG_EH_REGION, XEXP (eh_note, 0),
9466 REG_NOTES (x));
9467 }
9468 }
9469}
9470
f1330226
JH
9471/* This is used by reload pass, that does emit some instructions after
9472 abnormal calls moving basic block end, but in fact it wants to emit
9473 them on the edge. Looks for abnormal call edges, find backward the
9474 proper call and fix the damage.
9475
9476 Similar handle instructions throwing exceptions internally. */
9477static void
9478fixup_abnormal_edges ()
9479{
9480 int i;
9481 bool inserted = false;
9482
9483 for (i = 0; i < n_basic_blocks; i++)
9484 {
9485 basic_block bb = BASIC_BLOCK (i);
9486 edge e;
9487
9488 /* Look for cases we are interested in - an calls or instructions causing
9489 exceptions. */
9490 for (e = bb->succ; e; e = e->succ_next)
9491 {
9492 if (e->flags & EDGE_ABNORMAL_CALL)
9493 break;
9494 if ((e->flags & (EDGE_ABNORMAL | EDGE_EH))
9495 == (EDGE_ABNORMAL | EDGE_EH))
9496 break;
9497 }
9498 if (e && GET_CODE (bb->end) != CALL_INSN && !can_throw_internal (bb->end))
9499 {
0c4992b0 9500 rtx insn = bb->end, stop = NEXT_INSN (bb->end);
f1330226
JH
9501 rtx next;
9502 for (e = bb->succ; e; e = e->succ_next)
9503 if (e->flags & EDGE_FALLTHRU)
9504 break;
39f95a2c
JH
9505 /* Get past the new insns generated. Allow notes, as the insns may
9506 be already deleted. */
9507 while ((GET_CODE (insn) == INSN || GET_CODE (insn) == NOTE)
9508 && !can_throw_internal (insn)
9509 && insn != bb->head)
f1330226
JH
9510 insn = PREV_INSN (insn);
9511 if (GET_CODE (insn) != CALL_INSN && !can_throw_internal (insn))
9512 abort ();
9513 bb->end = insn;
9514 inserted = true;
9515 insn = NEXT_INSN (insn);
0c4992b0 9516 while (insn && insn != stop)
f1330226
JH
9517 {
9518 next = NEXT_INSN (insn);
0c4992b0
JH
9519 if (INSN_P (insn))
9520 {
9521 insert_insn_on_edge (PATTERN (insn), e);
53c17031 9522 delete_insn (insn);
0c4992b0 9523 }
f1330226
JH
9524 insn = next;
9525 }
9526 }
9527 }
9528 if (inserted)
9529 commit_edge_insertions ();
9530}
This page took 3.180034 seconds and 5 git commands to generate.