]> gcc.gnu.org Git - gcc.git/blame - gcc/reload1.c
Makefile.in (reload1.o): Add dedendancy on except.h
[gcc.git] / gcc / reload1.c
CommitLineData
32131a9c 1/* Reload pseudo regs into hard regs for insns that require hard regs.
af841dbd 2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
e56b4594 3 1999, 2000, 2001 Free Software Foundation, Inc.
32131a9c
RK
4
5This file is part of GNU CC.
6
7GNU CC is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
9the Free Software Foundation; either version 2, or (at your option)
10any later version.
11
12GNU CC is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with GNU CC; see the file COPYING. If not, write to
e99215a3
RK
19the Free Software Foundation, 59 Temple Place - Suite 330,
20Boston, MA 02111-1307, USA. */
32131a9c 21
32131a9c 22#include "config.h"
670ee920 23#include "system.h"
cab634f2
KG
24
25#include "machmode.h"
26#include "hard-reg-set.h"
32131a9c 27#include "rtl.h"
6baf1cc8 28#include "tm_p.h"
32131a9c
RK
29#include "obstack.h"
30#include "insn-config.h"
32131a9c 31#include "flags.h"
49ad7cfa 32#include "function.h"
32131a9c
RK
33#include "expr.h"
34#include "regs.h"
cad6f7d0 35#include "basic-block.h"
32131a9c
RK
36#include "reload.h"
37#include "recog.h"
32131a9c 38#include "output.h"
eab5c70a 39#include "cselib.h"
a9c366bf 40#include "real.h"
10f0ad3d 41#include "toplev.h"
39f95a2c 42#include "except.h"
32131a9c 43
65954bd8
JL
44#if !defined PREFERRED_STACK_BOUNDARY && defined STACK_BOUNDARY
45#define PREFERRED_STACK_BOUNDARY STACK_BOUNDARY
46#endif
47
32131a9c
RK
48/* This file contains the reload pass of the compiler, which is
49 run after register allocation has been done. It checks that
50 each insn is valid (operands required to be in registers really
51 are in registers of the proper class) and fixes up invalid ones
52 by copying values temporarily into registers for the insns
53 that need them.
54
55 The results of register allocation are described by the vector
56 reg_renumber; the insns still contain pseudo regs, but reg_renumber
57 can be used to find which hard reg, if any, a pseudo reg is in.
58
59 The technique we always use is to free up a few hard regs that are
60 called ``reload regs'', and for each place where a pseudo reg
61 must be in a hard reg, copy it temporarily into one of the reload regs.
62
03acd8f8
BS
63 Reload regs are allocated locally for every instruction that needs
64 reloads. When there are pseudos which are allocated to a register that
65 has been chosen as a reload reg, such pseudos must be ``spilled''.
66 This means that they go to other hard regs, or to stack slots if no other
32131a9c
RK
67 available hard regs can be found. Spilling can invalidate more
68 insns, requiring additional need for reloads, so we must keep checking
69 until the process stabilizes.
70
71 For machines with different classes of registers, we must keep track
72 of the register class needed for each reload, and make sure that
73 we allocate enough reload registers of each class.
74
75 The file reload.c contains the code that checks one insn for
76 validity and reports the reloads that it needs. This file
77 is in charge of scanning the entire rtl code, accumulating the
78 reload needs, spilling, assigning reload registers to use for
79 fixing up each insn, and generating the new insns to copy values
80 into the reload registers. */
546b63fb 81
546b63fb 82#ifndef REGISTER_MOVE_COST
e56b4594 83#define REGISTER_MOVE_COST(m, x, y) 2
546b63fb 84#endif
2a3e384f
RH
85
86#ifndef LOCAL_REGNO
87#define LOCAL_REGNO(REGNO) 0
88#endif
32131a9c
RK
89\f
90/* During reload_as_needed, element N contains a REG rtx for the hard reg
0f41302f 91 into which reg N has been reloaded (perhaps for a previous insn). */
32131a9c
RK
92static rtx *reg_last_reload_reg;
93
94/* Elt N nonzero if reg_last_reload_reg[N] has been set in this insn
95 for an output reload that stores into reg N. */
96static char *reg_has_output_reload;
97
98/* Indicates which hard regs are reload-registers for an output reload
99 in the current insn. */
100static HARD_REG_SET reg_is_output_reload;
101
102/* Element N is the constant value to which pseudo reg N is equivalent,
103 or zero if pseudo reg N is not equivalent to a constant.
104 find_reloads looks at this in order to replace pseudo reg N
105 with the constant it stands for. */
106rtx *reg_equiv_constant;
107
108/* Element N is a memory location to which pseudo reg N is equivalent,
109 prior to any register elimination (such as frame pointer to stack
110 pointer). Depending on whether or not it is a valid address, this value
111 is transferred to either reg_equiv_address or reg_equiv_mem. */
4803a34a 112rtx *reg_equiv_memory_loc;
32131a9c
RK
113
114/* Element N is the address of stack slot to which pseudo reg N is equivalent.
115 This is used when the address is not valid as a memory address
116 (because its displacement is too big for the machine.) */
117rtx *reg_equiv_address;
118
119/* Element N is the memory slot to which pseudo reg N is equivalent,
120 or zero if pseudo reg N is not equivalent to a memory slot. */
121rtx *reg_equiv_mem;
122
123/* Widest width in which each pseudo reg is referred to (via subreg). */
770ae6cc 124static unsigned int *reg_max_ref_width;
32131a9c 125
135eb61c 126/* Element N is the list of insns that initialized reg N from its equivalent
32131a9c
RK
127 constant or memory slot. */
128static rtx *reg_equiv_init;
129
03acd8f8
BS
130/* Vector to remember old contents of reg_renumber before spilling. */
131static short *reg_old_renumber;
132
e6e52be0 133/* During reload_as_needed, element N contains the last pseudo regno reloaded
03acd8f8 134 into hard register N. If that pseudo reg occupied more than one register,
32131a9c
RK
135 reg_reloaded_contents points to that pseudo for each spill register in
136 use; all of these must remain set for an inheritance to occur. */
137static int reg_reloaded_contents[FIRST_PSEUDO_REGISTER];
138
139/* During reload_as_needed, element N contains the insn for which
e6e52be0
R
140 hard register N was last used. Its contents are significant only
141 when reg_reloaded_valid is set for this register. */
32131a9c
RK
142static rtx reg_reloaded_insn[FIRST_PSEUDO_REGISTER];
143
e6e52be0
R
144/* Indicate if reg_reloaded_insn / reg_reloaded_contents is valid */
145static HARD_REG_SET reg_reloaded_valid;
146/* Indicate if the register was dead at the end of the reload.
147 This is only valid if reg_reloaded_contents is set and valid. */
148static HARD_REG_SET reg_reloaded_dead;
149
32131a9c
RK
150/* Number of spill-regs so far; number of valid elements of spill_regs. */
151static int n_spills;
152
153/* In parallel with spill_regs, contains REG rtx's for those regs.
154 Holds the last rtx used for any given reg, or 0 if it has never
155 been used for spilling yet. This rtx is reused, provided it has
156 the proper mode. */
157static rtx spill_reg_rtx[FIRST_PSEUDO_REGISTER];
158
159/* In parallel with spill_regs, contains nonzero for a spill reg
160 that was stored after the last time it was used.
161 The precise value is the insn generated to do the store. */
162static rtx spill_reg_store[FIRST_PSEUDO_REGISTER];
163
cb2afeb3
R
164/* This is the register that was stored with spill_reg_store. This is a
165 copy of reload_out / reload_out_reg when the value was stored; if
166 reload_out is a MEM, spill_reg_stored_to will be set to reload_out_reg. */
167static rtx spill_reg_stored_to[FIRST_PSEUDO_REGISTER];
168
32131a9c
RK
169/* This table is the inverse mapping of spill_regs:
170 indexed by hard reg number,
171 it contains the position of that reg in spill_regs,
05d10675 172 or -1 for something that is not in spill_regs.
13c8e8e3
JL
173
174 ?!? This is no longer accurate. */
32131a9c
RK
175static short spill_reg_order[FIRST_PSEUDO_REGISTER];
176
03acd8f8
BS
177/* This reg set indicates registers that can't be used as spill registers for
178 the currently processed insn. These are the hard registers which are live
179 during the insn, but not allocated to pseudos, as well as fixed
180 registers. */
32131a9c
RK
181static HARD_REG_SET bad_spill_regs;
182
03acd8f8
BS
183/* These are the hard registers that can't be used as spill register for any
184 insn. This includes registers used for user variables and registers that
185 we can't eliminate. A register that appears in this set also can't be used
186 to retry register allocation. */
187static HARD_REG_SET bad_spill_regs_global;
188
32131a9c 189/* Describes order of use of registers for reloading
03acd8f8
BS
190 of spilled pseudo-registers. `n_spills' is the number of
191 elements that are actually valid; new ones are added at the end.
192
193 Both spill_regs and spill_reg_order are used on two occasions:
194 once during find_reload_regs, where they keep track of the spill registers
195 for a single insn, but also during reload_as_needed where they show all
196 the registers ever used by reload. For the latter case, the information
197 is calculated during finish_spills. */
32131a9c
RK
198static short spill_regs[FIRST_PSEUDO_REGISTER];
199
03acd8f8
BS
200/* This vector of reg sets indicates, for each pseudo, which hard registers
201 may not be used for retrying global allocation because the register was
202 formerly spilled from one of them. If we allowed reallocating a pseudo to
203 a register that it was already allocated to, reload might not
204 terminate. */
205static HARD_REG_SET *pseudo_previous_regs;
206
207/* This vector of reg sets indicates, for each pseudo, which hard
208 registers may not be used for retrying global allocation because they
209 are used as spill registers during one of the insns in which the
210 pseudo is live. */
211static HARD_REG_SET *pseudo_forbidden_regs;
212
213/* All hard regs that have been used as spill registers for any insn are
214 marked in this set. */
215static HARD_REG_SET used_spill_regs;
8b4f9969 216
4079cd63
JW
217/* Index of last register assigned as a spill register. We allocate in
218 a round-robin fashion. */
4079cd63
JW
219static int last_spill_reg;
220
32131a9c
RK
221/* Nonzero if indirect addressing is supported on the machine; this means
222 that spilling (REG n) does not require reloading it into a register in
223 order to do (MEM (REG n)) or (MEM (PLUS (REG n) (CONST_INT c))). The
224 value indicates the level of indirect addressing supported, e.g., two
225 means that (MEM (MEM (REG n))) is also valid if (REG n) does not get
226 a hard register. */
32131a9c
RK
227static char spill_indirect_levels;
228
229/* Nonzero if indirect addressing is supported when the innermost MEM is
230 of the form (MEM (SYMBOL_REF sym)). It is assumed that the level to
231 which these are valid is the same as spill_indirect_levels, above. */
32131a9c
RK
232char indirect_symref_ok;
233
234/* Nonzero if an address (plus (reg frame_pointer) (reg ...)) is valid. */
32131a9c
RK
235char double_reg_address_ok;
236
237/* Record the stack slot for each spilled hard register. */
32131a9c
RK
238static rtx spill_stack_slot[FIRST_PSEUDO_REGISTER];
239
240/* Width allocated so far for that stack slot. */
770ae6cc 241static unsigned int spill_stack_slot_width[FIRST_PSEUDO_REGISTER];
32131a9c 242
7609e720 243/* Record which pseudos needed to be spilled. */
f5d8c9f4
BS
244static regset_head spilled_pseudos;
245
246/* Used for communication between order_regs_for_reload and count_pseudo.
247 Used to avoid counting one pseudo twice. */
248static regset_head pseudos_counted;
7609e720 249
32131a9c
RK
250/* First uid used by insns created by reload in this function.
251 Used in find_equiv_reg. */
252int reload_first_uid;
253
254/* Flag set by local-alloc or global-alloc if anything is live in
255 a call-clobbered reg across calls. */
32131a9c
RK
256int caller_save_needed;
257
258/* Set to 1 while reload_as_needed is operating.
259 Required by some machines to handle any generated moves differently. */
32131a9c
RK
260int reload_in_progress = 0;
261
262/* These arrays record the insn_code of insns that may be needed to
263 perform input and output reloads of special objects. They provide a
264 place to pass a scratch register. */
32131a9c
RK
265enum insn_code reload_in_optab[NUM_MACHINE_MODES];
266enum insn_code reload_out_optab[NUM_MACHINE_MODES];
267
d45cf215 268/* This obstack is used for allocation of rtl during register elimination.
32131a9c
RK
269 The allocated storage can be freed once find_reloads has processed the
270 insn. */
32131a9c 271struct obstack reload_obstack;
cad6f7d0
BS
272
273/* Points to the beginning of the reload_obstack. All insn_chain structures
274 are allocated first. */
275char *reload_startobj;
276
277/* The point after all insn_chain structures. Used to quickly deallocate
f5d8c9f4 278 memory allocated in copy_reloads during calculate_needs_all_insns. */
32131a9c
RK
279char *reload_firstobj;
280
f5d8c9f4
BS
281/* This points before all local rtl generated by register elimination.
282 Used to quickly free all memory after processing one insn. */
283static char *reload_insn_firstobj;
284
32131a9c
RK
285#define obstack_chunk_alloc xmalloc
286#define obstack_chunk_free free
287
cad6f7d0
BS
288/* List of insn_chain instructions, one for every insn that reload needs to
289 examine. */
290struct insn_chain *reload_insn_chain;
7609e720 291
dfb7c80f
JL
292#ifdef TREE_CODE
293extern tree current_function_decl;
294#else
122a860e 295extern union tree_node *current_function_decl;
dfb7c80f
JL
296#endif
297
03acd8f8 298/* List of all insns needing reloads. */
7609e720 299static struct insn_chain *insns_need_reload;
32131a9c
RK
300\f
301/* This structure is used to record information about register eliminations.
302 Each array entry describes one possible way of eliminating a register
303 in favor of another. If there is more than one way of eliminating a
304 particular register, the most preferred should be specified first. */
305
590cf94d 306struct elim_table
32131a9c 307{
0f41302f
MS
308 int from; /* Register number to be eliminated. */
309 int to; /* Register number used as replacement. */
310 int initial_offset; /* Initial difference between values. */
311 int can_eliminate; /* Non-zero if this elimination can be done. */
32131a9c 312 int can_eliminate_previous; /* Value of CAN_ELIMINATE in previous scan over
0f41302f
MS
313 insns made by reload. */
314 int offset; /* Current offset between the two regs. */
0f41302f
MS
315 int previous_offset; /* Offset at end of previous insn. */
316 int ref_outside_mem; /* "to" has been referenced outside a MEM. */
32131a9c
RK
317 rtx from_rtx; /* REG rtx for the register to be eliminated.
318 We cannot simply compare the number since
319 we might then spuriously replace a hard
320 register corresponding to a pseudo
0f41302f
MS
321 assigned to the reg to be eliminated. */
322 rtx to_rtx; /* REG rtx for the replacement. */
590cf94d
KG
323};
324
1d7254c5 325static struct elim_table *reg_eliminate = 0;
590cf94d
KG
326
327/* This is an intermediate structure to initialize the table. It has
1d7254c5 328 exactly the members provided by ELIMINABLE_REGS. */
590cf94d
KG
329static struct elim_table_1
330{
331 int from;
332 int to;
333} reg_eliminate_1[] =
32131a9c
RK
334
335/* If a set of eliminable registers was specified, define the table from it.
336 Otherwise, default to the normal case of the frame pointer being
337 replaced by the stack pointer. */
338
339#ifdef ELIMINABLE_REGS
340 ELIMINABLE_REGS;
341#else
342 {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}};
343#endif
344
b6a1cbae 345#define NUM_ELIMINABLE_REGS ARRAY_SIZE (reg_eliminate_1)
32131a9c
RK
346
347/* Record the number of pending eliminations that have an offset not equal
348 to their initial offset. If non-zero, we use a new copy of each
349 replacement result in any insns encountered. */
cb2afeb3 350int num_not_at_initial_offset;
32131a9c
RK
351
352/* Count the number of registers that we may be able to eliminate. */
353static int num_eliminable;
2b49ee39
R
354/* And the number of registers that are equivalent to a constant that
355 can be eliminated to frame_pointer / arg_pointer + constant. */
356static int num_eliminable_invariants;
32131a9c
RK
357
358/* For each label, we record the offset of each elimination. If we reach
359 a label by more than one path and an offset differs, we cannot do the
360 elimination. This information is indexed by the number of the label.
361 The first table is an array of flags that records whether we have yet
362 encountered a label and the second table is an array of arrays, one
363 entry in the latter array for each elimination. */
364
365static char *offsets_known_at;
366static int (*offsets_at)[NUM_ELIMINABLE_REGS];
367
368/* Number of labels in the current function. */
369
370static int num_labels;
371\f
174fa2c4
AJ
372static void replace_pseudos_in_call_usage PARAMS((rtx *,
373 enum machine_mode,
374 rtx));
cdadb1dd
KG
375static void maybe_fix_stack_asms PARAMS ((void));
376static void copy_reloads PARAMS ((struct insn_chain *));
377static void calculate_needs_all_insns PARAMS ((int));
e04ca094
JL
378static int find_reg PARAMS ((struct insn_chain *, int));
379static void find_reload_regs PARAMS ((struct insn_chain *));
380static void select_reload_regs PARAMS ((void));
cdadb1dd
KG
381static void delete_caller_save_insns PARAMS ((void));
382
383static void spill_failure PARAMS ((rtx, enum reg_class));
384static void count_spilled_pseudo PARAMS ((int, int, int));
385static void delete_dead_insn PARAMS ((rtx));
174fa2c4 386static void alter_reg PARAMS ((int, int));
cdadb1dd
KG
387static void set_label_offsets PARAMS ((rtx, rtx, int));
388static void check_eliminable_occurrences PARAMS ((rtx));
389static void elimination_effects PARAMS ((rtx, enum machine_mode));
390static int eliminate_regs_in_insn PARAMS ((rtx, int));
391static void update_eliminable_offsets PARAMS ((void));
392static void mark_not_eliminable PARAMS ((rtx, rtx, void *));
393static void set_initial_elim_offsets PARAMS ((void));
394static void verify_initial_elim_offsets PARAMS ((void));
395static void set_initial_label_offsets PARAMS ((void));
396static void set_offsets_for_label PARAMS ((rtx));
397static void init_elim_table PARAMS ((void));
398static void update_eliminables PARAMS ((HARD_REG_SET *));
e04ca094
JL
399static void spill_hard_reg PARAMS ((unsigned int, int));
400static int finish_spills PARAMS ((int));
cdadb1dd
KG
401static void ior_hard_reg_set PARAMS ((HARD_REG_SET *, HARD_REG_SET *));
402static void scan_paradoxical_subregs PARAMS ((rtx));
403static void count_pseudo PARAMS ((int));
404static void order_regs_for_reload PARAMS ((struct insn_chain *));
e04ca094 405static void reload_as_needed PARAMS ((int));
cdadb1dd
KG
406static void forget_old_reloads_1 PARAMS ((rtx, rtx, void *));
407static int reload_reg_class_lower PARAMS ((const PTR, const PTR));
770ae6cc
RK
408static void mark_reload_reg_in_use PARAMS ((unsigned int, int,
409 enum reload_type,
410 enum machine_mode));
411static void clear_reload_reg_in_use PARAMS ((unsigned int, int,
412 enum reload_type,
413 enum machine_mode));
414static int reload_reg_free_p PARAMS ((unsigned int, int,
415 enum reload_type));
304a22dd
R
416static int reload_reg_free_for_value_p PARAMS ((int, int, int,
417 enum reload_type,
770ae6cc 418 rtx, rtx, int, int));
c02cad8f
BS
419static int free_for_value_p PARAMS ((int, enum machine_mode, int,
420 enum reload_type, rtx, rtx,
421 int, int));
770ae6cc
RK
422static int reload_reg_reaches_end_p PARAMS ((unsigned int, int,
423 enum reload_type));
424static int allocate_reload_reg PARAMS ((struct insn_chain *, int,
425 int));
ff6534ad 426static int conflicts_with_override PARAMS ((rtx));
cdadb1dd
KG
427static void failed_reload PARAMS ((rtx, int));
428static int set_reload_reg PARAMS ((int, int));
429static void choose_reload_regs_init PARAMS ((struct insn_chain *, rtx *));
430static void choose_reload_regs PARAMS ((struct insn_chain *));
431static void merge_assigned_reloads PARAMS ((rtx));
432static void emit_input_reload_insns PARAMS ((struct insn_chain *,
770ae6cc 433 struct reload *, rtx, int));
cdadb1dd 434static void emit_output_reload_insns PARAMS ((struct insn_chain *,
770ae6cc 435 struct reload *, int));
cdadb1dd 436static void do_input_reload PARAMS ((struct insn_chain *,
770ae6cc 437 struct reload *, int));
cdadb1dd 438static void do_output_reload PARAMS ((struct insn_chain *,
770ae6cc 439 struct reload *, int));
e04ca094 440static void emit_reload_insns PARAMS ((struct insn_chain *));
cdadb1dd
KG
441static void delete_output_reload PARAMS ((rtx, int, int));
442static void delete_address_reloads PARAMS ((rtx, rtx));
443static void delete_address_reloads_1 PARAMS ((rtx, rtx, rtx));
444static rtx inc_for_reload PARAMS ((rtx, rtx, rtx, int));
445static int constraint_accepts_reg_p PARAMS ((const char *, rtx));
446static void reload_cse_regs_1 PARAMS ((rtx));
eab5c70a 447static int reload_cse_noop_set_p PARAMS ((rtx));
cdadb1dd
KG
448static int reload_cse_simplify_set PARAMS ((rtx, rtx));
449static int reload_cse_simplify_operands PARAMS ((rtx));
770ae6cc
RK
450static void reload_combine PARAMS ((void));
451static void reload_combine_note_use PARAMS ((rtx *, rtx));
452static void reload_combine_note_store PARAMS ((rtx, rtx, void *));
453static void reload_cse_move2add PARAMS ((rtx));
454static void move2add_note_store PARAMS ((rtx, rtx, void *));
2dfa9a87 455#ifdef AUTO_INC_DEC
770ae6cc 456static void add_auto_inc_notes PARAMS ((rtx, rtx));
2dfa9a87 457#endif
94bd63e5 458static void copy_eh_notes PARAMS ((rtx, rtx));
61f5625b 459static HOST_WIDE_INT sext_for_mode PARAMS ((enum machine_mode,
770ae6cc 460 HOST_WIDE_INT));
cdadb1dd
KG
461static void failed_reload PARAMS ((rtx, int));
462static int set_reload_reg PARAMS ((int, int));
e77d72cb
KG
463static void reload_cse_delete_noop_set PARAMS ((rtx, rtx));
464static void reload_cse_simplify PARAMS ((rtx));
f1330226 465static void fixup_abnormal_edges PARAMS ((void));
e04ca094 466extern void dump_needs PARAMS ((struct insn_chain *));
32131a9c 467\f
546b63fb
RK
468/* Initialize the reload pass once per compilation. */
469
32131a9c
RK
470void
471init_reload ()
472{
473 register int i;
474
475 /* Often (MEM (REG n)) is still valid even if (REG n) is put on the stack.
476 Set spill_indirect_levels to the number of levels such addressing is
477 permitted, zero if it is not permitted at all. */
478
479 register rtx tem
38a448ca
RH
480 = gen_rtx_MEM (Pmode,
481 gen_rtx_PLUS (Pmode,
c5c76735
JL
482 gen_rtx_REG (Pmode,
483 LAST_VIRTUAL_REGISTER + 1),
38a448ca 484 GEN_INT (4)));
32131a9c
RK
485 spill_indirect_levels = 0;
486
487 while (memory_address_p (QImode, tem))
488 {
489 spill_indirect_levels++;
38a448ca 490 tem = gen_rtx_MEM (Pmode, tem);
32131a9c
RK
491 }
492
493 /* See if indirect addressing is valid for (MEM (SYMBOL_REF ...)). */
494
38a448ca 495 tem = gen_rtx_MEM (Pmode, gen_rtx_SYMBOL_REF (Pmode, "foo"));
32131a9c
RK
496 indirect_symref_ok = memory_address_p (QImode, tem);
497
498 /* See if reg+reg is a valid (and offsettable) address. */
499
65701fd2 500 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
57caa638 501 {
38a448ca
RH
502 tem = gen_rtx_PLUS (Pmode,
503 gen_rtx_REG (Pmode, HARD_FRAME_POINTER_REGNUM),
504 gen_rtx_REG (Pmode, i));
c5c76735 505
57caa638
RS
506 /* This way, we make sure that reg+reg is an offsettable address. */
507 tem = plus_constant (tem, 4);
508
509 if (memory_address_p (QImode, tem))
510 {
511 double_reg_address_ok = 1;
512 break;
513 }
514 }
32131a9c 515
0f41302f 516 /* Initialize obstack for our rtl allocation. */
32131a9c 517 gcc_obstack_init (&reload_obstack);
cad6f7d0 518 reload_startobj = (char *) obstack_alloc (&reload_obstack, 0);
f5d8c9f4
BS
519
520 INIT_REG_SET (&spilled_pseudos);
521 INIT_REG_SET (&pseudos_counted);
32131a9c
RK
522}
523
cad6f7d0
BS
524/* List of insn chains that are currently unused. */
525static struct insn_chain *unused_insn_chains = 0;
526
527/* Allocate an empty insn_chain structure. */
528struct insn_chain *
529new_insn_chain ()
530{
531 struct insn_chain *c;
532
533 if (unused_insn_chains == 0)
534 {
8db99db2
KG
535 c = (struct insn_chain *)
536 obstack_alloc (&reload_obstack, sizeof (struct insn_chain));
239a0f5b
BS
537 INIT_REG_SET (&c->live_throughout);
538 INIT_REG_SET (&c->dead_or_set);
cad6f7d0
BS
539 }
540 else
541 {
542 c = unused_insn_chains;
543 unused_insn_chains = c->next;
544 }
545 c->is_caller_save_insn = 0;
03acd8f8 546 c->need_operand_change = 0;
cad6f7d0
BS
547 c->need_reload = 0;
548 c->need_elim = 0;
549 return c;
550}
551
7609e720
BS
552/* Small utility function to set all regs in hard reg set TO which are
553 allocated to pseudos in regset FROM. */
770ae6cc 554
7609e720
BS
555void
556compute_use_by_pseudos (to, from)
557 HARD_REG_SET *to;
558 regset from;
559{
770ae6cc
RK
560 unsigned int regno;
561
7609e720
BS
562 EXECUTE_IF_SET_IN_REG_SET
563 (from, FIRST_PSEUDO_REGISTER, regno,
564 {
565 int r = reg_renumber[regno];
566 int nregs;
770ae6cc 567
7609e720 568 if (r < 0)
404d95c4
R
569 {
570 /* reload_combine uses the information from
e881bb1b
RH
571 BASIC_BLOCK->global_live_at_start, which might still
572 contain registers that have not actually been allocated
573 since they have an equivalence. */
404d95c4
R
574 if (! reload_completed)
575 abort ();
576 }
577 else
578 {
579 nregs = HARD_REGNO_NREGS (r, PSEUDO_REGNO_MODE (regno));
580 while (nregs-- > 0)
581 SET_HARD_REG_BIT (*to, r + nregs);
582 }
7609e720
BS
583 });
584}
f474c6f8
AO
585
586/* Replace all pseudos found in LOC with their corresponding
587 equivalences. */
588
589static void
590replace_pseudos_in_call_usage (loc, mem_mode, usage)
591 rtx *loc;
592 enum machine_mode mem_mode;
593 rtx usage;
594{
595 rtx x = *loc;
596 enum rtx_code code;
597 const char *fmt;
598 int i, j;
599
600 if (! x)
601 return;
174fa2c4 602
f474c6f8
AO
603 code = GET_CODE (x);
604 if (code == REG)
605 {
ae0ed63a 606 unsigned int regno = REGNO (x);
086fef9e
AO
607
608 if (regno < FIRST_PSEUDO_REGISTER)
f474c6f8
AO
609 return;
610
611 x = eliminate_regs (x, mem_mode, usage);
612 if (x != *loc)
613 {
614 *loc = x;
615 replace_pseudos_in_call_usage (loc, mem_mode, usage);
616 return;
617 }
618
086fef9e
AO
619 if (reg_equiv_constant[regno])
620 *loc = reg_equiv_constant[regno];
621 else if (reg_equiv_mem[regno])
622 *loc = reg_equiv_mem[regno];
623 else if (reg_equiv_address[regno])
624 *loc = gen_rtx_MEM (GET_MODE (x), reg_equiv_address[regno]);
625 else if (GET_CODE (regno_reg_rtx[regno]) != REG
626 || REGNO (regno_reg_rtx[regno]) != regno)
627 *loc = regno_reg_rtx[regno];
f474c6f8
AO
628 else
629 abort ();
630
631 return;
632 }
633 else if (code == MEM)
634 {
635 replace_pseudos_in_call_usage (& XEXP (x, 0), GET_MODE (x), usage);
636 return;
637 }
174fa2c4 638
f474c6f8
AO
639 /* Process each of our operands recursively. */
640 fmt = GET_RTX_FORMAT (code);
641 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
642 if (*fmt == 'e')
643 replace_pseudos_in_call_usage (&XEXP (x, i), mem_mode, usage);
644 else if (*fmt == 'E')
645 for (j = 0; j < XVECLEN (x, i); j++)
646 replace_pseudos_in_call_usage (& XVECEXP (x, i, j), mem_mode, usage);
647}
648
03acd8f8 649\f
1e5bd841
BS
650/* Global variables used by reload and its subroutines. */
651
1e5bd841
BS
652/* Set during calculate_needs if an insn needs register elimination. */
653static int something_needs_elimination;
cb2afeb3
R
654/* Set during calculate_needs if an insn needs an operand changed. */
655int something_needs_operands_changed;
1e5bd841 656
1e5bd841
BS
657/* Nonzero means we couldn't get enough spill regs. */
658static int failure;
659
546b63fb 660/* Main entry point for the reload pass.
32131a9c
RK
661
662 FIRST is the first insn of the function being compiled.
663
664 GLOBAL nonzero means we were called from global_alloc
665 and should attempt to reallocate any pseudoregs that we
666 displace from hard regs we will use for reloads.
667 If GLOBAL is zero, we do not have enough information to do that,
668 so any pseudo reg that is spilled must go to the stack.
669
5352b11a
RS
670 Return value is nonzero if reload failed
671 and we must not do any more for this function. */
672
673int
e04ca094 674reload (first, global)
32131a9c
RK
675 rtx first;
676 int global;
32131a9c 677{
03acd8f8 678 register int i;
32131a9c
RK
679 register rtx insn;
680 register struct elim_table *ep;
681
a68d4b75
BK
682 /* The two pointers used to track the true location of the memory used
683 for label offsets. */
9714cf43 684 char *real_known_ptr = NULL;
a68d4b75
BK
685 int (*real_at_ptr)[NUM_ELIMINABLE_REGS];
686
32131a9c
RK
687 /* Make sure even insns with volatile mem refs are recognizable. */
688 init_recog ();
689
1e5bd841
BS
690 failure = 0;
691
cad6f7d0
BS
692 reload_firstobj = (char *) obstack_alloc (&reload_obstack, 0);
693
437a710d
BS
694 /* Make sure that the last insn in the chain
695 is not something that needs reloading. */
6496a589 696 emit_note (NULL, NOTE_INSN_DELETED);
437a710d 697
32131a9c
RK
698 /* Enable find_equiv_reg to distinguish insns made by reload. */
699 reload_first_uid = get_max_uid ();
700
0dadecf6
RK
701#ifdef SECONDARY_MEMORY_NEEDED
702 /* Initialize the secondary memory table. */
703 clear_secondary_mem ();
704#endif
705
32131a9c 706 /* We don't have a stack slot for any spill reg yet. */
961192e1
JM
707 memset ((char *) spill_stack_slot, 0, sizeof spill_stack_slot);
708 memset ((char *) spill_stack_slot_width, 0, sizeof spill_stack_slot_width);
32131a9c 709
a8efe40d
RK
710 /* Initialize the save area information for caller-save, in case some
711 are needed. */
712 init_save_areas ();
a8fdc208 713
32131a9c
RK
714 /* Compute which hard registers are now in use
715 as homes for pseudo registers.
716 This is done here rather than (eg) in global_alloc
717 because this point is reached even if not optimizing. */
32131a9c
RK
718 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
719 mark_home_live (i);
720
8dddd002
RK
721 /* A function that receives a nonlocal goto must save all call-saved
722 registers. */
723 if (current_function_has_nonlocal_label)
724 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2a3e384f
RH
725 if (! call_used_regs[i] && ! fixed_regs[i] && ! LOCAL_REGNO (i))
726 regs_ever_live[i] = 1;
8dddd002 727
32131a9c
RK
728 /* Find all the pseudo registers that didn't get hard regs
729 but do have known equivalent constants or memory slots.
730 These include parameters (known equivalent to parameter slots)
731 and cse'd or loop-moved constant memory addresses.
732
733 Record constant equivalents in reg_equiv_constant
734 so they will be substituted by find_reloads.
735 Record memory equivalents in reg_mem_equiv so they can
736 be substituted eventually by altering the REG-rtx's. */
737
ad85216e
KG
738 reg_equiv_constant = (rtx *) xcalloc (max_regno, sizeof (rtx));
739 reg_equiv_memory_loc = (rtx *) xcalloc (max_regno, sizeof (rtx));
740 reg_equiv_mem = (rtx *) xcalloc (max_regno, sizeof (rtx));
741 reg_equiv_init = (rtx *) xcalloc (max_regno, sizeof (rtx));
742 reg_equiv_address = (rtx *) xcalloc (max_regno, sizeof (rtx));
f9e158c3 743 reg_max_ref_width = (unsigned int *) xcalloc (max_regno, sizeof (int));
ad85216e 744 reg_old_renumber = (short *) xcalloc (max_regno, sizeof (short));
4e135bdd 745 memcpy (reg_old_renumber, reg_renumber, max_regno * sizeof (short));
03acd8f8
BS
746 pseudo_forbidden_regs
747 = (HARD_REG_SET *) xmalloc (max_regno * sizeof (HARD_REG_SET));
748 pseudo_previous_regs
ad85216e 749 = (HARD_REG_SET *) xcalloc (max_regno, sizeof (HARD_REG_SET));
32131a9c 750
03acd8f8 751 CLEAR_HARD_REG_SET (bad_spill_regs_global);
56f58d3a 752
32131a9c 753 /* Look for REG_EQUIV notes; record what each pseudo is equivalent to.
56f58d3a
RK
754 Also find all paradoxical subregs and find largest such for each pseudo.
755 On machines with small register classes, record hard registers that
05d10675 756 are used for user variables. These can never be used for spills.
b453cb0b
RK
757 Also look for a "constant" NOTE_INSN_SETJMP. This means that all
758 caller-saved registers must be marked live. */
32131a9c 759
2b49ee39 760 num_eliminable_invariants = 0;
32131a9c
RK
761 for (insn = first; insn; insn = NEXT_INSN (insn))
762 {
763 rtx set = single_set (insn);
764
b453cb0b
RK
765 if (GET_CODE (insn) == NOTE && CONST_CALL_P (insn)
766 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_SETJMP)
767 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
768 if (! call_used_regs[i])
769 regs_ever_live[i] = 1;
770
32131a9c
RK
771 if (set != 0 && GET_CODE (SET_DEST (set)) == REG)
772 {
fb3821f7 773 rtx note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
a8efe40d
RK
774 if (note
775#ifdef LEGITIMATE_PIC_OPERAND_P
2b49ee39
R
776 && (! function_invariant_p (XEXP (note, 0))
777 || ! flag_pic
a8efe40d
RK
778 || LEGITIMATE_PIC_OPERAND_P (XEXP (note, 0)))
779#endif
780 )
32131a9c
RK
781 {
782 rtx x = XEXP (note, 0);
783 i = REGNO (SET_DEST (set));
784 if (i > LAST_VIRTUAL_REGISTER)
785 {
786 if (GET_CODE (x) == MEM)
956d6950
JL
787 {
788 /* If the operand is a PLUS, the MEM may be shared,
789 so make sure we have an unshared copy here. */
790 if (GET_CODE (XEXP (x, 0)) == PLUS)
791 x = copy_rtx (x);
792
793 reg_equiv_memory_loc[i] = x;
794 }
2b49ee39 795 else if (function_invariant_p (x))
32131a9c 796 {
2b49ee39
R
797 if (GET_CODE (x) == PLUS)
798 {
799 /* This is PLUS of frame pointer and a constant,
800 and might be shared. Unshare it. */
801 reg_equiv_constant[i] = copy_rtx (x);
802 num_eliminable_invariants++;
803 }
804 else if (x == frame_pointer_rtx
805 || x == arg_pointer_rtx)
806 {
807 reg_equiv_constant[i] = x;
808 num_eliminable_invariants++;
809 }
810 else if (LEGITIMATE_CONSTANT_P (x))
32131a9c
RK
811 reg_equiv_constant[i] = x;
812 else
813 reg_equiv_memory_loc[i]
d445b551 814 = force_const_mem (GET_MODE (SET_DEST (set)), x);
32131a9c
RK
815 }
816 else
817 continue;
818
819 /* If this register is being made equivalent to a MEM
820 and the MEM is not SET_SRC, the equivalencing insn
821 is one with the MEM as a SET_DEST and it occurs later.
822 So don't mark this insn now. */
823 if (GET_CODE (x) != MEM
824 || rtx_equal_p (SET_SRC (set), x))
135eb61c
R
825 reg_equiv_init[i]
826 = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv_init[i]);
32131a9c
RK
827 }
828 }
829 }
830
831 /* If this insn is setting a MEM from a register equivalent to it,
832 this is the equivalencing insn. */
833 else if (set && GET_CODE (SET_DEST (set)) == MEM
834 && GET_CODE (SET_SRC (set)) == REG
835 && reg_equiv_memory_loc[REGNO (SET_SRC (set))]
836 && rtx_equal_p (SET_DEST (set),
837 reg_equiv_memory_loc[REGNO (SET_SRC (set))]))
135eb61c
R
838 reg_equiv_init[REGNO (SET_SRC (set))]
839 = gen_rtx_INSN_LIST (VOIDmode, insn,
840 reg_equiv_init[REGNO (SET_SRC (set))]);
32131a9c 841
2c3c49de 842 if (INSN_P (insn))
32131a9c
RK
843 scan_paradoxical_subregs (PATTERN (insn));
844 }
845
09dd1133 846 init_elim_table ();
32131a9c
RK
847
848 num_labels = max_label_num () - get_first_label_num ();
849
850 /* Allocate the tables used to store offset information at labels. */
a68d4b75
BK
851 /* We used to use alloca here, but the size of what it would try to
852 allocate would occasionally cause it to exceed the stack limit and
853 cause a core dump. */
854 real_known_ptr = xmalloc (num_labels);
855 real_at_ptr
32131a9c 856 = (int (*)[NUM_ELIMINABLE_REGS])
a68d4b75 857 xmalloc (num_labels * NUM_ELIMINABLE_REGS * sizeof (int));
32131a9c 858
a68d4b75
BK
859 offsets_known_at = real_known_ptr - get_first_label_num ();
860 offsets_at
861 = (int (*)[NUM_ELIMINABLE_REGS]) (real_at_ptr - get_first_label_num ());
32131a9c
RK
862
863 /* Alter each pseudo-reg rtx to contain its hard reg number.
864 Assign stack slots to the pseudos that lack hard regs or equivalents.
865 Do not touch virtual registers. */
866
867 for (i = LAST_VIRTUAL_REGISTER + 1; i < max_regno; i++)
868 alter_reg (i, -1);
869
32131a9c
RK
870 /* If we have some registers we think can be eliminated, scan all insns to
871 see if there is an insn that sets one of these registers to something
872 other than itself plus a constant. If so, the register cannot be
873 eliminated. Doing this scan here eliminates an extra pass through the
874 main reload loop in the most common case where register elimination
875 cannot be done. */
876 for (insn = first; insn && num_eliminable; insn = NEXT_INSN (insn))
877 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
878 || GET_CODE (insn) == CALL_INSN)
84832317 879 note_stores (PATTERN (insn), mark_not_eliminable, NULL);
32131a9c 880
18a90182
BS
881 maybe_fix_stack_asms ();
882
03acd8f8
BS
883 insns_need_reload = 0;
884 something_needs_elimination = 0;
05d10675 885
4079cd63
JW
886 /* Initialize to -1, which means take the first spill register. */
887 last_spill_reg = -1;
888
32131a9c 889 /* Spill any hard regs that we know we can't eliminate. */
03acd8f8 890 CLEAR_HARD_REG_SET (used_spill_regs);
32131a9c
RK
891 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
892 if (! ep->can_eliminate)
e04ca094 893 spill_hard_reg (ep->from, 1);
9ff3516a
RK
894
895#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
896 if (frame_pointer_needed)
e04ca094 897 spill_hard_reg (HARD_FRAME_POINTER_REGNUM, 1);
9ff3516a 898#endif
e04ca094 899 finish_spills (global);
7609e720 900
f1db3576
JL
901 /* From now on, we may need to generate moves differently. We may also
902 allow modifications of insns which cause them to not be recognized.
903 Any such modifications will be cleaned up during reload itself. */
b2f15f94
RK
904 reload_in_progress = 1;
905
32131a9c
RK
906 /* This loop scans the entire function each go-round
907 and repeats until one repetition spills no additional hard regs. */
03acd8f8 908 for (;;)
32131a9c 909 {
03acd8f8
BS
910 int something_changed;
911 int did_spill;
32131a9c 912
03acd8f8 913 HOST_WIDE_INT starting_frame_size;
32131a9c 914
665792eb 915 /* Round size of stack frame to stack_alignment_needed. This must be done
7657bf2f
JW
916 here because the stack size may be a part of the offset computation
917 for register elimination, and there might have been new stack slots
918 created in the last iteration of this loop. */
665792eb
JH
919 if (cfun->stack_alignment_needed)
920 assign_stack_local (BLKmode, 0, cfun->stack_alignment_needed);
7657bf2f
JW
921
922 starting_frame_size = get_frame_size ();
923
09dd1133 924 set_initial_elim_offsets ();
1f3b1e1a 925 set_initial_label_offsets ();
03acd8f8 926
32131a9c
RK
927 /* For each pseudo register that has an equivalent location defined,
928 try to eliminate any eliminable registers (such as the frame pointer)
929 assuming initial offsets for the replacement register, which
930 is the normal case.
931
932 If the resulting location is directly addressable, substitute
933 the MEM we just got directly for the old REG.
934
935 If it is not addressable but is a constant or the sum of a hard reg
936 and constant, it is probably not addressable because the constant is
937 out of range, in that case record the address; we will generate
938 hairy code to compute the address in a register each time it is
6491dbbb
RK
939 needed. Similarly if it is a hard register, but one that is not
940 valid as an address register.
32131a9c
RK
941
942 If the location is not addressable, but does not have one of the
943 above forms, assign a stack slot. We have to do this to avoid the
944 potential of producing lots of reloads if, e.g., a location involves
945 a pseudo that didn't get a hard register and has an equivalent memory
946 location that also involves a pseudo that didn't get a hard register.
947
948 Perhaps at some point we will improve reload_when_needed handling
949 so this problem goes away. But that's very hairy. */
950
951 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
952 if (reg_renumber[i] < 0 && reg_equiv_memory_loc[i])
953 {
1914f5da 954 rtx x = eliminate_regs (reg_equiv_memory_loc[i], 0, NULL_RTX);
32131a9c
RK
955
956 if (strict_memory_address_p (GET_MODE (regno_reg_rtx[i]),
957 XEXP (x, 0)))
958 reg_equiv_mem[i] = x, reg_equiv_address[i] = 0;
959 else if (CONSTANT_P (XEXP (x, 0))
6491dbbb
RK
960 || (GET_CODE (XEXP (x, 0)) == REG
961 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
32131a9c
RK
962 || (GET_CODE (XEXP (x, 0)) == PLUS
963 && GET_CODE (XEXP (XEXP (x, 0), 0)) == REG
964 && (REGNO (XEXP (XEXP (x, 0), 0))
965 < FIRST_PSEUDO_REGISTER)
966 && CONSTANT_P (XEXP (XEXP (x, 0), 1))))
967 reg_equiv_address[i] = XEXP (x, 0), reg_equiv_mem[i] = 0;
968 else
969 {
970 /* Make a new stack slot. Then indicate that something
a8fdc208 971 changed so we go back and recompute offsets for
32131a9c
RK
972 eliminable registers because the allocation of memory
973 below might change some offset. reg_equiv_{mem,address}
974 will be set up for this pseudo on the next pass around
975 the loop. */
976 reg_equiv_memory_loc[i] = 0;
977 reg_equiv_init[i] = 0;
978 alter_reg (i, -1);
32131a9c
RK
979 }
980 }
a8fdc208 981
437a710d
BS
982 if (caller_save_needed)
983 setup_save_areas ();
984
03acd8f8 985 /* If we allocated another stack slot, redo elimination bookkeeping. */
437a710d 986 if (starting_frame_size != get_frame_size ())
32131a9c
RK
987 continue;
988
437a710d 989 if (caller_save_needed)
a8efe40d 990 {
437a710d
BS
991 save_call_clobbered_regs ();
992 /* That might have allocated new insn_chain structures. */
993 reload_firstobj = (char *) obstack_alloc (&reload_obstack, 0);
a8efe40d
RK
994 }
995
03acd8f8
BS
996 calculate_needs_all_insns (global);
997
f5d8c9f4 998 CLEAR_REG_SET (&spilled_pseudos);
03acd8f8
BS
999 did_spill = 0;
1000
1001 something_changed = 0;
32131a9c 1002
0dadecf6
RK
1003 /* If we allocated any new memory locations, make another pass
1004 since it might have changed elimination offsets. */
1005 if (starting_frame_size != get_frame_size ())
1006 something_changed = 1;
1007
09dd1133
BS
1008 {
1009 HARD_REG_SET to_spill;
1010 CLEAR_HARD_REG_SET (to_spill);
1011 update_eliminables (&to_spill);
1012 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1013 if (TEST_HARD_REG_BIT (to_spill, i))
32131a9c 1014 {
e04ca094 1015 spill_hard_reg (i, 1);
03acd8f8 1016 did_spill = 1;
8f5db3c1
JL
1017
1018 /* Regardless of the state of spills, if we previously had
1019 a register that we thought we could eliminate, but no can
1020 not eliminate, we must run another pass.
1021
1022 Consider pseudos which have an entry in reg_equiv_* which
1023 reference an eliminable register. We must make another pass
1024 to update reg_equiv_* so that we do not substitute in the
1025 old value from when we thought the elimination could be
1026 performed. */
1027 something_changed = 1;
32131a9c 1028 }
09dd1133 1029 }
9ff3516a 1030
e04ca094 1031 select_reload_regs ();
e483bf9c
BS
1032 if (failure)
1033 goto failed;
437a710d 1034
e483bf9c 1035 if (insns_need_reload != 0 || did_spill)
e04ca094 1036 something_changed |= finish_spills (global);
7609e720 1037
03acd8f8
BS
1038 if (! something_changed)
1039 break;
1040
1041 if (caller_save_needed)
7609e720 1042 delete_caller_save_insns ();
f5d8c9f4
BS
1043
1044 obstack_free (&reload_obstack, reload_firstobj);
32131a9c
RK
1045 }
1046
1047 /* If global-alloc was run, notify it of any register eliminations we have
1048 done. */
1049 if (global)
1050 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
1051 if (ep->can_eliminate)
1052 mark_elimination (ep->from, ep->to);
1053
32131a9c
RK
1054 /* If a pseudo has no hard reg, delete the insns that made the equivalence.
1055 If that insn didn't set the register (i.e., it copied the register to
1056 memory), just delete that insn instead of the equivalencing insn plus
1057 anything now dead. If we call delete_dead_insn on that insn, we may
135eb61c 1058 delete the insn that actually sets the register if the register dies
32131a9c
RK
1059 there and that is incorrect. */
1060
1061 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
135eb61c
R
1062 {
1063 if (reg_renumber[i] < 0 && reg_equiv_init[i] != 0)
1064 {
1065 rtx list;
1066 for (list = reg_equiv_init[i]; list; list = XEXP (list, 1))
1067 {
1068 rtx equiv_insn = XEXP (list, 0);
1069 if (GET_CODE (equiv_insn) == NOTE)
1070 continue;
1071 if (reg_set_p (regno_reg_rtx[i], PATTERN (equiv_insn)))
1072 delete_dead_insn (equiv_insn);
1073 else
1074 {
1075 PUT_CODE (equiv_insn, NOTE);
1076 NOTE_SOURCE_FILE (equiv_insn) = 0;
1077 NOTE_LINE_NUMBER (equiv_insn) = NOTE_INSN_DELETED;
1078 }
1079 }
1080 }
1081 }
32131a9c
RK
1082
1083 /* Use the reload registers where necessary
1084 by generating move instructions to move the must-be-register
1085 values into or out of the reload registers. */
1086
03acd8f8
BS
1087 if (insns_need_reload != 0 || something_needs_elimination
1088 || something_needs_operands_changed)
c47f5ea5 1089 {
102870fb 1090 HOST_WIDE_INT old_frame_size = get_frame_size ();
c47f5ea5 1091
e04ca094 1092 reload_as_needed (global);
c47f5ea5
BS
1093
1094 if (old_frame_size != get_frame_size ())
1095 abort ();
1096
1097 if (num_eliminable)
1098 verify_initial_elim_offsets ();
1099 }
32131a9c 1100
2a1f8b6b 1101 /* If we were able to eliminate the frame pointer, show that it is no
546b63fb 1102 longer live at the start of any basic block. If it ls live by
2a1f8b6b
RK
1103 virtue of being in a pseudo, that pseudo will be marked live
1104 and hence the frame pointer will be known to be live via that
1105 pseudo. */
1106
1107 if (! frame_pointer_needed)
1108 for (i = 0; i < n_basic_blocks; i++)
e881bb1b 1109 CLEAR_REGNO_REG_SET (BASIC_BLOCK (i)->global_live_at_start,
8e08106d 1110 HARD_FRAME_POINTER_REGNUM);
2a1f8b6b 1111
5352b11a
RS
1112 /* Come here (with failure set nonzero) if we can't get enough spill regs
1113 and we decide not to abort about it. */
1114 failed:
1115
f5d8c9f4 1116 CLEAR_REG_SET (&spilled_pseudos);
a3ec87a8
RS
1117 reload_in_progress = 0;
1118
32131a9c
RK
1119 /* Now eliminate all pseudo regs by modifying them into
1120 their equivalent memory references.
1121 The REG-rtx's for the pseudos are modified in place,
1122 so all insns that used to refer to them now refer to memory.
1123
1124 For a reg that has a reg_equiv_address, all those insns
1125 were changed by reloading so that no insns refer to it any longer;
1126 but the DECL_RTL of a variable decl may refer to it,
1127 and if so this causes the debugging info to mention the variable. */
1128
1129 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1130 {
1131 rtx addr = 0;
ab1fd483 1132 int in_struct = 0;
6a651371 1133 int is_scalar = 0;
9ec36da5
JL
1134 int is_readonly = 0;
1135
1136 if (reg_equiv_memory_loc[i])
ab1fd483 1137 {
9ec36da5 1138 in_struct = MEM_IN_STRUCT_P (reg_equiv_memory_loc[i]);
c6df88cb 1139 is_scalar = MEM_SCALAR_P (reg_equiv_memory_loc[i]);
9ec36da5 1140 is_readonly = RTX_UNCHANGING_P (reg_equiv_memory_loc[i]);
ab1fd483 1141 }
9ec36da5
JL
1142
1143 if (reg_equiv_mem[i])
1144 addr = XEXP (reg_equiv_mem[i], 0);
1145
32131a9c
RK
1146 if (reg_equiv_address[i])
1147 addr = reg_equiv_address[i];
9ec36da5 1148
32131a9c
RK
1149 if (addr)
1150 {
1151 if (reg_renumber[i] < 0)
1152 {
1153 rtx reg = regno_reg_rtx[i];
ef178af3 1154 PUT_CODE (reg, MEM);
32131a9c
RK
1155 XEXP (reg, 0) = addr;
1156 REG_USERVAR_P (reg) = 0;
9ec36da5 1157 RTX_UNCHANGING_P (reg) = is_readonly;
ab1fd483 1158 MEM_IN_STRUCT_P (reg) = in_struct;
c6df88cb 1159 MEM_SCALAR_P (reg) = is_scalar;
41472af8
MM
1160 /* We have no alias information about this newly created
1161 MEM. */
ba4828e0 1162 set_mem_alias_set (reg, 0);
32131a9c
RK
1163 }
1164 else if (reg_equiv_mem[i])
1165 XEXP (reg_equiv_mem[i], 0) = addr;
1166 }
1167 }
1168
2ae74651
JL
1169 /* We must set reload_completed now since the cleanup_subreg_operands call
1170 below will re-recognize each insn and reload may have generated insns
1171 which are only valid during and after reload. */
1172 reload_completed = 1;
1173
bd695e1e
RH
1174 /* Make a pass over all the insns and delete all USEs which we inserted
1175 only to tag a REG_EQUAL note on them. Remove all REG_DEAD and REG_UNUSED
1176 notes. Delete all CLOBBER insns that don't refer to the return value
1177 and simplify (subreg (reg)) operands. Also remove all REG_RETVAL and
1178 REG_LIBCALL notes since they are no longer useful or accurate. Strip
1179 and regenerate REG_INC notes that may have been moved around. */
32131a9c
RK
1180
1181 for (insn = first; insn; insn = NEXT_INSN (insn))
2c3c49de 1182 if (INSN_P (insn))
32131a9c 1183 {
6764d250 1184 rtx *pnote;
32131a9c 1185
f474c6f8
AO
1186 if (GET_CODE (insn) == CALL_INSN)
1187 replace_pseudos_in_call_usage (& CALL_INSN_FUNCTION_USAGE (insn),
1188 VOIDmode,
1189 CALL_INSN_FUNCTION_USAGE (insn));
1190
0304f787 1191 if ((GET_CODE (PATTERN (insn)) == USE
1b577f5a 1192 && find_reg_note (insn, REG_EQUAL, NULL_RTX))
bd695e1e
RH
1193 || (GET_CODE (PATTERN (insn)) == CLOBBER
1194 && (GET_CODE (XEXP (PATTERN (insn), 0)) != REG
1195 || ! REG_FUNCTION_VALUE_P (XEXP (PATTERN (insn), 0)))))
b60a8416
R
1196 {
1197 PUT_CODE (insn, NOTE);
1198 NOTE_SOURCE_FILE (insn) = 0;
1199 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
1200 continue;
1201 }
6764d250
BS
1202
1203 pnote = &REG_NOTES (insn);
1204 while (*pnote != 0)
32131a9c 1205 {
6764d250 1206 if (REG_NOTE_KIND (*pnote) == REG_DEAD
80599fd9 1207 || REG_NOTE_KIND (*pnote) == REG_UNUSED
2dfa9a87 1208 || REG_NOTE_KIND (*pnote) == REG_INC
80599fd9
NC
1209 || REG_NOTE_KIND (*pnote) == REG_RETVAL
1210 || REG_NOTE_KIND (*pnote) == REG_LIBCALL)
6764d250
BS
1211 *pnote = XEXP (*pnote, 1);
1212 else
1213 pnote = &XEXP (*pnote, 1);
32131a9c 1214 }
0304f787 1215
2dfa9a87
MH
1216#ifdef AUTO_INC_DEC
1217 add_auto_inc_notes (insn, PATTERN (insn));
1218#endif
1219
0304f787
JL
1220 /* And simplify (subreg (reg)) if it appears as an operand. */
1221 cleanup_subreg_operands (insn);
b60a8416 1222 }
32131a9c 1223
ab87f8c8
JL
1224 /* If we are doing stack checking, give a warning if this function's
1225 frame size is larger than we expect. */
1226 if (flag_stack_check && ! STACK_CHECK_BUILTIN)
1227 {
1228 HOST_WIDE_INT size = get_frame_size () + STACK_CHECK_FIXED_FRAME_SIZE;
05d10675
BS
1229 static int verbose_warned = 0;
1230
ab87f8c8
JL
1231 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1232 if (regs_ever_live[i] && ! fixed_regs[i] && call_used_regs[i])
1233 size += UNITS_PER_WORD;
1234
1235 if (size > STACK_CHECK_MAX_FRAME_SIZE)
05d10675 1236 {
ab87f8c8
JL
1237 warning ("frame size too large for reliable stack checking");
1238 if (! verbose_warned)
1239 {
1240 warning ("try reducing the number of local variables");
1241 verbose_warned = 1;
1242 }
1243 }
1244 }
1245
32131a9c 1246 /* Indicate that we no longer have known memory locations or constants. */
58d9f9d9
JL
1247 if (reg_equiv_constant)
1248 free (reg_equiv_constant);
32131a9c 1249 reg_equiv_constant = 0;
58d9f9d9
JL
1250 if (reg_equiv_memory_loc)
1251 free (reg_equiv_memory_loc);
32131a9c 1252 reg_equiv_memory_loc = 0;
5352b11a 1253
a68d4b75
BK
1254 if (real_known_ptr)
1255 free (real_known_ptr);
1256 if (real_at_ptr)
1257 free (real_at_ptr);
1258
56a65848
DB
1259 free (reg_equiv_mem);
1260 free (reg_equiv_init);
1261 free (reg_equiv_address);
1262 free (reg_max_ref_width);
03acd8f8
BS
1263 free (reg_old_renumber);
1264 free (pseudo_previous_regs);
1265 free (pseudo_forbidden_regs);
56a65848 1266
8b4f9969
JW
1267 CLEAR_HARD_REG_SET (used_spill_regs);
1268 for (i = 0; i < n_spills; i++)
1269 SET_HARD_REG_BIT (used_spill_regs, spill_regs[i]);
1270
7609e720
BS
1271 /* Free all the insn_chain structures at once. */
1272 obstack_free (&reload_obstack, reload_startobj);
1273 unused_insn_chains = 0;
f1330226 1274 fixup_abnormal_edges ();
7609e720 1275
5352b11a 1276 return failure;
32131a9c 1277}
1e5bd841 1278
18a90182
BS
1279/* Yet another special case. Unfortunately, reg-stack forces people to
1280 write incorrect clobbers in asm statements. These clobbers must not
1281 cause the register to appear in bad_spill_regs, otherwise we'll call
1282 fatal_insn later. We clear the corresponding regnos in the live
1283 register sets to avoid this.
1284 The whole thing is rather sick, I'm afraid. */
efc9bd41 1285
18a90182
BS
1286static void
1287maybe_fix_stack_asms ()
1288{
1289#ifdef STACK_REGS
392dccb7 1290 const char *constraints[MAX_RECOG_OPERANDS];
18a90182
BS
1291 enum machine_mode operand_mode[MAX_RECOG_OPERANDS];
1292 struct insn_chain *chain;
1293
1294 for (chain = reload_insn_chain; chain != 0; chain = chain->next)
1295 {
1296 int i, noperands;
1297 HARD_REG_SET clobbered, allowed;
1298 rtx pat;
1299
2c3c49de 1300 if (! INSN_P (chain->insn)
18a90182
BS
1301 || (noperands = asm_noperands (PATTERN (chain->insn))) < 0)
1302 continue;
1303 pat = PATTERN (chain->insn);
1304 if (GET_CODE (pat) != PARALLEL)
1305 continue;
1306
1307 CLEAR_HARD_REG_SET (clobbered);
1308 CLEAR_HARD_REG_SET (allowed);
1309
1310 /* First, make a mask of all stack regs that are clobbered. */
1311 for (i = 0; i < XVECLEN (pat, 0); i++)
1312 {
1313 rtx t = XVECEXP (pat, 0, i);
1314 if (GET_CODE (t) == CLOBBER && STACK_REG_P (XEXP (t, 0)))
1315 SET_HARD_REG_BIT (clobbered, REGNO (XEXP (t, 0)));
1316 }
1317
1318 /* Get the operand values and constraints out of the insn. */
1ccbefce 1319 decode_asm_operands (pat, recog_data.operand, recog_data.operand_loc,
18a90182
BS
1320 constraints, operand_mode);
1321
1322 /* For every operand, see what registers are allowed. */
1323 for (i = 0; i < noperands; i++)
1324 {
6b9c6f4f 1325 const char *p = constraints[i];
18a90182
BS
1326 /* For every alternative, we compute the class of registers allowed
1327 for reloading in CLS, and merge its contents into the reg set
1328 ALLOWED. */
1329 int cls = (int) NO_REGS;
1330
1331 for (;;)
1332 {
1333 char c = *p++;
1334
1335 if (c == '\0' || c == ',' || c == '#')
1336 {
1337 /* End of one alternative - mark the regs in the current
1338 class, and reset the class. */
1339 IOR_HARD_REG_SET (allowed, reg_class_contents[cls]);
1340 cls = NO_REGS;
1341 if (c == '#')
1342 do {
1343 c = *p++;
1344 } while (c != '\0' && c != ',');
1345 if (c == '\0')
1346 break;
1347 continue;
1348 }
1349
1350 switch (c)
1351 {
1352 case '=': case '+': case '*': case '%': case '?': case '!':
1353 case '0': case '1': case '2': case '3': case '4': case 'm':
1354 case '<': case '>': case 'V': case 'o': case '&': case 'E':
1355 case 'F': case 's': case 'i': case 'n': case 'X': case 'I':
1356 case 'J': case 'K': case 'L': case 'M': case 'N': case 'O':
1357 case 'P':
18a90182
BS
1358 break;
1359
1360 case 'p':
1361 cls = (int) reg_class_subunion[cls][(int) BASE_REG_CLASS];
1362 break;
1363
1364 case 'g':
1365 case 'r':
1366 cls = (int) reg_class_subunion[cls][(int) GENERAL_REGS];
1367 break;
1368
1369 default:
1370 cls = (int) reg_class_subunion[cls][(int) REG_CLASS_FROM_LETTER (c)];
05d10675 1371
18a90182
BS
1372 }
1373 }
1374 }
1375 /* Those of the registers which are clobbered, but allowed by the
1376 constraints, must be usable as reload registers. So clear them
1377 out of the life information. */
1378 AND_HARD_REG_SET (allowed, clobbered);
1379 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1380 if (TEST_HARD_REG_BIT (allowed, i))
1381 {
239a0f5b
BS
1382 CLEAR_REGNO_REG_SET (&chain->live_throughout, i);
1383 CLEAR_REGNO_REG_SET (&chain->dead_or_set, i);
18a90182
BS
1384 }
1385 }
1386
1387#endif
1388}
03acd8f8 1389\f
f5d8c9f4
BS
1390/* Copy the global variables n_reloads and rld into the corresponding elts
1391 of CHAIN. */
1392static void
1393copy_reloads (chain)
1394 struct insn_chain *chain;
1395{
1396 chain->n_reloads = n_reloads;
1397 chain->rld
1398 = (struct reload *) obstack_alloc (&reload_obstack,
1399 n_reloads * sizeof (struct reload));
1400 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
1401 reload_insn_firstobj = (char *) obstack_alloc (&reload_obstack, 0);
1402}
1403
03acd8f8
BS
1404/* Walk the chain of insns, and determine for each whether it needs reloads
1405 and/or eliminations. Build the corresponding insns_need_reload list, and
1406 set something_needs_elimination as appropriate. */
1407static void
7609e720 1408calculate_needs_all_insns (global)
1e5bd841
BS
1409 int global;
1410{
7609e720 1411 struct insn_chain **pprev_reload = &insns_need_reload;
462561b7 1412 struct insn_chain *chain, *next = 0;
1e5bd841 1413
03acd8f8
BS
1414 something_needs_elimination = 0;
1415
f5d8c9f4 1416 reload_insn_firstobj = (char *) obstack_alloc (&reload_obstack, 0);
462561b7 1417 for (chain = reload_insn_chain; chain != 0; chain = next)
1e5bd841 1418 {
67e61fe7 1419 rtx insn = chain->insn;
03acd8f8 1420
462561b7
JJ
1421 next = chain->next;
1422
f5d8c9f4
BS
1423 /* Clear out the shortcuts. */
1424 chain->n_reloads = 0;
67e61fe7
BS
1425 chain->need_elim = 0;
1426 chain->need_reload = 0;
1427 chain->need_operand_change = 0;
1e5bd841 1428
03acd8f8
BS
1429 /* If this is a label, a JUMP_INSN, or has REG_NOTES (which might
1430 include REG_LABEL), we need to see what effects this has on the
1431 known offsets at labels. */
1e5bd841
BS
1432
1433 if (GET_CODE (insn) == CODE_LABEL || GET_CODE (insn) == JUMP_INSN
2c3c49de 1434 || (INSN_P (insn) && REG_NOTES (insn) != 0))
1e5bd841
BS
1435 set_label_offsets (insn, insn, 0);
1436
2c3c49de 1437 if (INSN_P (insn))
1e5bd841
BS
1438 {
1439 rtx old_body = PATTERN (insn);
1440 int old_code = INSN_CODE (insn);
1441 rtx old_notes = REG_NOTES (insn);
1442 int did_elimination = 0;
cb2afeb3 1443 int operands_changed = 0;
2b49ee39
R
1444 rtx set = single_set (insn);
1445
1446 /* Skip insns that only set an equivalence. */
1447 if (set && GET_CODE (SET_DEST (set)) == REG
1448 && reg_renumber[REGNO (SET_DEST (set))] < 0
1449 && reg_equiv_constant[REGNO (SET_DEST (set))])
67e61fe7 1450 continue;
1e5bd841 1451
1e5bd841 1452 /* If needed, eliminate any eliminable registers. */
2b49ee39 1453 if (num_eliminable || num_eliminable_invariants)
1e5bd841
BS
1454 did_elimination = eliminate_regs_in_insn (insn, 0);
1455
1456 /* Analyze the instruction. */
cb2afeb3
R
1457 operands_changed = find_reloads (insn, 0, spill_indirect_levels,
1458 global, spill_reg_order);
1459
1460 /* If a no-op set needs more than one reload, this is likely
1461 to be something that needs input address reloads. We
1462 can't get rid of this cleanly later, and it is of no use
1463 anyway, so discard it now.
1464 We only do this when expensive_optimizations is enabled,
1465 since this complements reload inheritance / output
1466 reload deletion, and it can make debugging harder. */
1467 if (flag_expensive_optimizations && n_reloads > 1)
1468 {
1469 rtx set = single_set (insn);
1470 if (set
1471 && SET_SRC (set) == SET_DEST (set)
1472 && GET_CODE (SET_SRC (set)) == REG
1473 && REGNO (SET_SRC (set)) >= FIRST_PSEUDO_REGISTER)
1474 {
1475 PUT_CODE (insn, NOTE);
1476 NOTE_SOURCE_FILE (insn) = 0;
1477 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
462561b7
JJ
1478 /* Delete it from the reload chain */
1479 if (chain->prev)
1480 chain->prev->next = next;
1481 else
1482 reload_insn_chain = next;
1483 if (next)
1484 next->prev = chain->prev;
1485 chain->next = unused_insn_chains;
1486 unused_insn_chains = chain;
cb2afeb3
R
1487 continue;
1488 }
1489 }
1490 if (num_eliminable)
1491 update_eliminable_offsets ();
1e5bd841
BS
1492
1493 /* Remember for later shortcuts which insns had any reloads or
7609e720
BS
1494 register eliminations. */
1495 chain->need_elim = did_elimination;
03acd8f8
BS
1496 chain->need_reload = n_reloads > 0;
1497 chain->need_operand_change = operands_changed;
1e5bd841
BS
1498
1499 /* Discard any register replacements done. */
1500 if (did_elimination)
1501 {
f5d8c9f4 1502 obstack_free (&reload_obstack, reload_insn_firstobj);
1e5bd841
BS
1503 PATTERN (insn) = old_body;
1504 INSN_CODE (insn) = old_code;
1505 REG_NOTES (insn) = old_notes;
1506 something_needs_elimination = 1;
1507 }
1508
cb2afeb3
R
1509 something_needs_operands_changed |= operands_changed;
1510
437a710d 1511 if (n_reloads != 0)
7609e720 1512 {
f5d8c9f4 1513 copy_reloads (chain);
7609e720
BS
1514 *pprev_reload = chain;
1515 pprev_reload = &chain->next_need_reload;
7609e720 1516 }
1e5bd841 1517 }
1e5bd841 1518 }
7609e720 1519 *pprev_reload = 0;
1e5bd841 1520}
f5d8c9f4
BS
1521\f
1522/* Comparison function for qsort to decide which of two reloads
1523 should be handled first. *P1 and *P2 are the reload numbers. */
1e5bd841 1524
f5d8c9f4
BS
1525static int
1526reload_reg_class_lower (r1p, r2p)
1527 const PTR r1p;
1528 const PTR r2p;
1e5bd841 1529{
1d7254c5 1530 register int r1 = *(const short *) r1p, r2 = *(const short *) r2p;
f5d8c9f4 1531 register int t;
1e5bd841 1532
f5d8c9f4
BS
1533 /* Consider required reloads before optional ones. */
1534 t = rld[r1].optional - rld[r2].optional;
1535 if (t != 0)
1536 return t;
1e5bd841 1537
f5d8c9f4
BS
1538 /* Count all solitary classes before non-solitary ones. */
1539 t = ((reg_class_size[(int) rld[r2].class] == 1)
1540 - (reg_class_size[(int) rld[r1].class] == 1));
1541 if (t != 0)
1542 return t;
1e5bd841 1543
f5d8c9f4
BS
1544 /* Aside from solitaires, consider all multi-reg groups first. */
1545 t = rld[r2].nregs - rld[r1].nregs;
1546 if (t != 0)
1547 return t;
1e5bd841 1548
f5d8c9f4
BS
1549 /* Consider reloads in order of increasing reg-class number. */
1550 t = (int) rld[r1].class - (int) rld[r2].class;
1551 if (t != 0)
1552 return t;
1e5bd841 1553
f5d8c9f4
BS
1554 /* If reloads are equally urgent, sort by reload number,
1555 so that the results of qsort leave nothing to chance. */
1556 return r1 - r2;
1557}
1558\f
1559/* The cost of spilling each hard reg. */
1560static int spill_cost[FIRST_PSEUDO_REGISTER];
1e5bd841 1561
f5d8c9f4
BS
1562/* When spilling multiple hard registers, we use SPILL_COST for the first
1563 spilled hard reg and SPILL_ADD_COST for subsequent regs. SPILL_ADD_COST
1564 only the first hard reg for a multi-reg pseudo. */
1565static int spill_add_cost[FIRST_PSEUDO_REGISTER];
1e5bd841 1566
f5d8c9f4 1567/* Update the spill cost arrays, considering that pseudo REG is live. */
770ae6cc 1568
f5d8c9f4
BS
1569static void
1570count_pseudo (reg)
1571 int reg;
1572{
b2aec5c0 1573 int freq = REG_FREQ (reg);
f5d8c9f4
BS
1574 int r = reg_renumber[reg];
1575 int nregs;
1e5bd841 1576
f5d8c9f4
BS
1577 if (REGNO_REG_SET_P (&pseudos_counted, reg)
1578 || REGNO_REG_SET_P (&spilled_pseudos, reg))
1579 return;
1e5bd841 1580
f5d8c9f4 1581 SET_REGNO_REG_SET (&pseudos_counted, reg);
1e5bd841 1582
f5d8c9f4
BS
1583 if (r < 0)
1584 abort ();
1d7254c5 1585
b2aec5c0 1586 spill_add_cost[r] += freq;
1e5bd841 1587
f5d8c9f4
BS
1588 nregs = HARD_REGNO_NREGS (r, PSEUDO_REGNO_MODE (reg));
1589 while (nregs-- > 0)
b2aec5c0 1590 spill_cost[r + nregs] += freq;
f5d8c9f4 1591}
1e5bd841 1592
f5d8c9f4
BS
1593/* Calculate the SPILL_COST and SPILL_ADD_COST arrays and determine the
1594 contents of BAD_SPILL_REGS for the insn described by CHAIN. */
efc9bd41 1595
f5d8c9f4
BS
1596static void
1597order_regs_for_reload (chain)
1598 struct insn_chain *chain;
1599{
fbd40359 1600 int i;
efc9bd41
RK
1601 HARD_REG_SET used_by_pseudos;
1602 HARD_REG_SET used_by_pseudos2;
1e5bd841 1603
efc9bd41 1604 COPY_HARD_REG_SET (bad_spill_regs, fixed_reg_set);
1e5bd841 1605
f5d8c9f4
BS
1606 memset (spill_cost, 0, sizeof spill_cost);
1607 memset (spill_add_cost, 0, sizeof spill_add_cost);
1e5bd841 1608
f5d8c9f4 1609 /* Count number of uses of each hard reg by pseudo regs allocated to it
efc9bd41
RK
1610 and then order them by decreasing use. First exclude hard registers
1611 that are live in or across this insn. */
1612
1613 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
1614 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
1615 IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos);
1616 IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos2);
1e5bd841 1617
f5d8c9f4
BS
1618 /* Now find out which pseudos are allocated to it, and update
1619 hard_reg_n_uses. */
1620 CLEAR_REG_SET (&pseudos_counted);
1e5bd841 1621
f5d8c9f4 1622 EXECUTE_IF_SET_IN_REG_SET
fbd40359 1623 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i,
f5d8c9f4 1624 {
fbd40359 1625 count_pseudo (i);
f5d8c9f4
BS
1626 });
1627 EXECUTE_IF_SET_IN_REG_SET
fbd40359 1628 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i,
f5d8c9f4 1629 {
fbd40359 1630 count_pseudo (i);
f5d8c9f4
BS
1631 });
1632 CLEAR_REG_SET (&pseudos_counted);
1e5bd841 1633}
03acd8f8 1634\f
f5d8c9f4
BS
1635/* Vector of reload-numbers showing the order in which the reloads should
1636 be processed. */
1637static short reload_order[MAX_RELOADS];
1e5bd841 1638
f5d8c9f4
BS
1639/* This is used to keep track of the spill regs used in one insn. */
1640static HARD_REG_SET used_spill_regs_local;
03acd8f8 1641
f5d8c9f4
BS
1642/* We decided to spill hard register SPILLED, which has a size of
1643 SPILLED_NREGS. Determine how pseudo REG, which is live during the insn,
1644 is affected. We will add it to SPILLED_PSEUDOS if necessary, and we will
1645 update SPILL_COST/SPILL_ADD_COST. */
770ae6cc 1646
03acd8f8 1647static void
f5d8c9f4
BS
1648count_spilled_pseudo (spilled, spilled_nregs, reg)
1649 int spilled, spilled_nregs, reg;
1e5bd841 1650{
f5d8c9f4
BS
1651 int r = reg_renumber[reg];
1652 int nregs = HARD_REGNO_NREGS (r, PSEUDO_REGNO_MODE (reg));
1e5bd841 1653
f5d8c9f4
BS
1654 if (REGNO_REG_SET_P (&spilled_pseudos, reg)
1655 || spilled + spilled_nregs <= r || r + nregs <= spilled)
1656 return;
1e5bd841 1657
f5d8c9f4 1658 SET_REGNO_REG_SET (&spilled_pseudos, reg);
1e5bd841 1659
b2aec5c0 1660 spill_add_cost[r] -= REG_FREQ (reg);
f5d8c9f4 1661 while (nregs-- > 0)
b2aec5c0 1662 spill_cost[r + nregs] -= REG_FREQ (reg);
1e5bd841
BS
1663}
1664
f5d8c9f4 1665/* Find reload register to use for reload number ORDER. */
03acd8f8 1666
f5d8c9f4 1667static int
e04ca094 1668find_reg (chain, order)
03acd8f8 1669 struct insn_chain *chain;
f5d8c9f4 1670 int order;
1e5bd841 1671{
f5d8c9f4
BS
1672 int rnum = reload_order[order];
1673 struct reload *rl = rld + rnum;
1674 int best_cost = INT_MAX;
1675 int best_reg = -1;
770ae6cc
RK
1676 unsigned int i, j;
1677 int k;
f5d8c9f4
BS
1678 HARD_REG_SET not_usable;
1679 HARD_REG_SET used_by_other_reload;
1e5bd841 1680
f5d8c9f4
BS
1681 COPY_HARD_REG_SET (not_usable, bad_spill_regs);
1682 IOR_HARD_REG_SET (not_usable, bad_spill_regs_global);
1683 IOR_COMPL_HARD_REG_SET (not_usable, reg_class_contents[rl->class]);
1684
1685 CLEAR_HARD_REG_SET (used_by_other_reload);
770ae6cc 1686 for (k = 0; k < order; k++)
1e5bd841 1687 {
770ae6cc
RK
1688 int other = reload_order[k];
1689
f5d8c9f4
BS
1690 if (rld[other].regno >= 0 && reloads_conflict (other, rnum))
1691 for (j = 0; j < rld[other].nregs; j++)
1692 SET_HARD_REG_BIT (used_by_other_reload, rld[other].regno + j);
1693 }
1e5bd841 1694
f5d8c9f4
BS
1695 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1696 {
770ae6cc
RK
1697 unsigned int regno = i;
1698
f5d8c9f4
BS
1699 if (! TEST_HARD_REG_BIT (not_usable, regno)
1700 && ! TEST_HARD_REG_BIT (used_by_other_reload, regno)
1701 && HARD_REGNO_MODE_OK (regno, rl->mode))
1e5bd841 1702 {
f5d8c9f4
BS
1703 int this_cost = spill_cost[regno];
1704 int ok = 1;
770ae6cc 1705 unsigned int this_nregs = HARD_REGNO_NREGS (regno, rl->mode);
1e5bd841 1706
f5d8c9f4
BS
1707 for (j = 1; j < this_nregs; j++)
1708 {
1709 this_cost += spill_add_cost[regno + j];
1710 if ((TEST_HARD_REG_BIT (not_usable, regno + j))
1711 || TEST_HARD_REG_BIT (used_by_other_reload, regno + j))
1712 ok = 0;
1713 }
1714 if (! ok)
1715 continue;
1716 if (rl->in && GET_CODE (rl->in) == REG && REGNO (rl->in) == regno)
1717 this_cost--;
1718 if (rl->out && GET_CODE (rl->out) == REG && REGNO (rl->out) == regno)
1719 this_cost--;
1720 if (this_cost < best_cost
1721 /* Among registers with equal cost, prefer caller-saved ones, or
1722 use REG_ALLOC_ORDER if it is defined. */
1723 || (this_cost == best_cost
1724#ifdef REG_ALLOC_ORDER
1725 && (inv_reg_alloc_order[regno]
1726 < inv_reg_alloc_order[best_reg])
1727#else
1728 && call_used_regs[regno]
1729 && ! call_used_regs[best_reg]
1730#endif
1731 ))
1732 {
1733 best_reg = regno;
1734 best_cost = this_cost;
1e5bd841
BS
1735 }
1736 }
1737 }
f5d8c9f4
BS
1738 if (best_reg == -1)
1739 return 0;
770ae6cc 1740
e04ca094
JL
1741 if (rtl_dump_file)
1742 fprintf (rtl_dump_file, "Using reg %d for reload %d\n", best_reg, rnum);
770ae6cc 1743
f5d8c9f4
BS
1744 rl->nregs = HARD_REGNO_NREGS (best_reg, rl->mode);
1745 rl->regno = best_reg;
1e5bd841 1746
f5d8c9f4 1747 EXECUTE_IF_SET_IN_REG_SET
239a0f5b 1748 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, j,
f5d8c9f4
BS
1749 {
1750 count_spilled_pseudo (best_reg, rl->nregs, j);
1751 });
770ae6cc 1752
f5d8c9f4 1753 EXECUTE_IF_SET_IN_REG_SET
239a0f5b 1754 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, j,
f5d8c9f4
BS
1755 {
1756 count_spilled_pseudo (best_reg, rl->nregs, j);
1757 });
03acd8f8 1758
f5d8c9f4
BS
1759 for (i = 0; i < rl->nregs; i++)
1760 {
1761 if (spill_cost[best_reg + i] != 0
1762 || spill_add_cost[best_reg + i] != 0)
1763 abort ();
1764 SET_HARD_REG_BIT (used_spill_regs_local, best_reg + i);
1765 }
1766 return 1;
03acd8f8
BS
1767}
1768
1769/* Find more reload regs to satisfy the remaining need of an insn, which
1770 is given by CHAIN.
1e5bd841
BS
1771 Do it by ascending class number, since otherwise a reg
1772 might be spilled for a big class and might fail to count
f5d8c9f4 1773 for a smaller class even though it belongs to that class. */
1e5bd841 1774
03acd8f8 1775static void
e04ca094 1776find_reload_regs (chain)
03acd8f8 1777 struct insn_chain *chain;
1e5bd841 1778{
f5d8c9f4 1779 int i;
1e5bd841 1780
f5d8c9f4
BS
1781 /* In order to be certain of getting the registers we need,
1782 we must sort the reloads into order of increasing register class.
1783 Then our grabbing of reload registers will parallel the process
1784 that provided the reload registers. */
1785 for (i = 0; i < chain->n_reloads; i++)
1e5bd841 1786 {
f5d8c9f4
BS
1787 /* Show whether this reload already has a hard reg. */
1788 if (chain->rld[i].reg_rtx)
1e5bd841 1789 {
f5d8c9f4
BS
1790 int regno = REGNO (chain->rld[i].reg_rtx);
1791 chain->rld[i].regno = regno;
770ae6cc
RK
1792 chain->rld[i].nregs
1793 = HARD_REGNO_NREGS (regno, GET_MODE (chain->rld[i].reg_rtx));
1e5bd841 1794 }
f5d8c9f4
BS
1795 else
1796 chain->rld[i].regno = -1;
1797 reload_order[i] = i;
1798 }
1e5bd841 1799
f5d8c9f4
BS
1800 n_reloads = chain->n_reloads;
1801 memcpy (rld, chain->rld, n_reloads * sizeof (struct reload));
1e5bd841 1802
f5d8c9f4 1803 CLEAR_HARD_REG_SET (used_spill_regs_local);
03acd8f8 1804
e04ca094
JL
1805 if (rtl_dump_file)
1806 fprintf (rtl_dump_file, "Spilling for insn %d.\n", INSN_UID (chain->insn));
1e5bd841 1807
f5d8c9f4 1808 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
1e5bd841 1809
f5d8c9f4 1810 /* Compute the order of preference for hard registers to spill. */
1e5bd841 1811
f5d8c9f4 1812 order_regs_for_reload (chain);
1e5bd841 1813
f5d8c9f4
BS
1814 for (i = 0; i < n_reloads; i++)
1815 {
1816 int r = reload_order[i];
1e5bd841 1817
f5d8c9f4
BS
1818 /* Ignore reloads that got marked inoperative. */
1819 if ((rld[r].out != 0 || rld[r].in != 0 || rld[r].secondary_p)
1820 && ! rld[r].optional
1821 && rld[r].regno == -1)
e04ca094 1822 if (! find_reg (chain, i))
f5d8c9f4 1823 {
ecf3151a 1824 spill_failure (chain->insn, rld[r].class);
f5d8c9f4 1825 failure = 1;
03acd8f8 1826 return;
f5d8c9f4 1827 }
1e5bd841 1828 }
05d10675 1829
f5d8c9f4
BS
1830 COPY_HARD_REG_SET (chain->used_spill_regs, used_spill_regs_local);
1831 IOR_HARD_REG_SET (used_spill_regs, used_spill_regs_local);
03acd8f8 1832
f5d8c9f4 1833 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
1e5bd841
BS
1834}
1835
f5d8c9f4 1836static void
e04ca094 1837select_reload_regs ()
09dd1133 1838{
f5d8c9f4 1839 struct insn_chain *chain;
09dd1133 1840
f5d8c9f4
BS
1841 /* Try to satisfy the needs for each insn. */
1842 for (chain = insns_need_reload; chain != 0;
1843 chain = chain->next_need_reload)
e04ca094 1844 find_reload_regs (chain);
09dd1133 1845}
32131a9c 1846\f
437a710d
BS
1847/* Delete all insns that were inserted by emit_caller_save_insns during
1848 this iteration. */
1849static void
7609e720 1850delete_caller_save_insns ()
437a710d 1851{
7609e720 1852 struct insn_chain *c = reload_insn_chain;
437a710d 1853
7609e720 1854 while (c != 0)
437a710d 1855 {
7609e720 1856 while (c != 0 && c->is_caller_save_insn)
437a710d 1857 {
7609e720
BS
1858 struct insn_chain *next = c->next;
1859 rtx insn = c->insn;
1860
3b413743
RH
1861 if (insn == BLOCK_HEAD (c->block))
1862 BLOCK_HEAD (c->block) = NEXT_INSN (insn);
1863 if (insn == BLOCK_END (c->block))
1864 BLOCK_END (c->block) = PREV_INSN (insn);
7609e720
BS
1865 if (c == reload_insn_chain)
1866 reload_insn_chain = next;
1867
1868 if (NEXT_INSN (insn) != 0)
1869 PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn);
1870 if (PREV_INSN (insn) != 0)
1871 NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn);
1872
1873 if (next)
1874 next->prev = c->prev;
1875 if (c->prev)
1876 c->prev->next = next;
1877 c->next = unused_insn_chains;
1878 unused_insn_chains = c;
1879 c = next;
437a710d 1880 }
7609e720
BS
1881 if (c != 0)
1882 c = c->next;
437a710d
BS
1883 }
1884}
1885\f
5352b11a
RS
1886/* Handle the failure to find a register to spill.
1887 INSN should be one of the insns which needed this particular spill reg. */
1888
1889static void
ecf3151a 1890spill_failure (insn, class)
5352b11a 1891 rtx insn;
ecf3151a 1892 enum reg_class class;
5352b11a 1893{
ecf3151a 1894 static const char *const reg_class_names[] = REG_CLASS_NAMES;
5352b11a 1895 if (asm_noperands (PATTERN (insn)) >= 0)
ecf3151a
BS
1896 error_for_asm (insn, "Can't find a register in class `%s' while reloading `asm'.",
1897 reg_class_names[class]);
5352b11a 1898 else
ecf3151a
BS
1899 {
1900 error ("Unable to find a register to spill in class `%s'.",
1901 reg_class_names[class]);
1902 fatal_insn ("This is the insn:", insn);
1903 }
5352b11a 1904}
32131a9c
RK
1905\f
1906/* Delete an unneeded INSN and any previous insns who sole purpose is loading
1907 data that is dead in INSN. */
1908
1909static void
1910delete_dead_insn (insn)
1911 rtx insn;
1912{
1913 rtx prev = prev_real_insn (insn);
1914 rtx prev_dest;
1915
1916 /* If the previous insn sets a register that dies in our insn, delete it
1917 too. */
1918 if (prev && GET_CODE (PATTERN (prev)) == SET
1919 && (prev_dest = SET_DEST (PATTERN (prev)), GET_CODE (prev_dest) == REG)
1920 && reg_mentioned_p (prev_dest, PATTERN (insn))
b294ca38
R
1921 && find_regno_note (insn, REG_DEAD, REGNO (prev_dest))
1922 && ! side_effects_p (SET_SRC (PATTERN (prev))))
32131a9c
RK
1923 delete_dead_insn (prev);
1924
1925 PUT_CODE (insn, NOTE);
1926 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
1927 NOTE_SOURCE_FILE (insn) = 0;
1928}
1929
1930/* Modify the home of pseudo-reg I.
1931 The new home is present in reg_renumber[I].
1932
1933 FROM_REG may be the hard reg that the pseudo-reg is being spilled from;
1934 or it may be -1, meaning there is none or it is not relevant.
1935 This is used so that all pseudos spilled from a given hard reg
1936 can share one stack slot. */
1937
1938static void
1939alter_reg (i, from_reg)
1940 register int i;
1941 int from_reg;
1942{
1943 /* When outputting an inline function, this can happen
1944 for a reg that isn't actually used. */
1945 if (regno_reg_rtx[i] == 0)
1946 return;
1947
1948 /* If the reg got changed to a MEM at rtl-generation time,
1949 ignore it. */
1950 if (GET_CODE (regno_reg_rtx[i]) != REG)
1951 return;
1952
1953 /* Modify the reg-rtx to contain the new hard reg
1954 number or else to contain its pseudo reg number. */
1955 REGNO (regno_reg_rtx[i])
1956 = reg_renumber[i] >= 0 ? reg_renumber[i] : i;
1957
1958 /* If we have a pseudo that is needed but has no hard reg or equivalent,
1959 allocate a stack slot for it. */
1960
1961 if (reg_renumber[i] < 0
b1f21e0a 1962 && REG_N_REFS (i) > 0
32131a9c
RK
1963 && reg_equiv_constant[i] == 0
1964 && reg_equiv_memory_loc[i] == 0)
1965 {
1966 register rtx x;
770ae6cc
RK
1967 unsigned int inherent_size = PSEUDO_REGNO_BYTES (i);
1968 unsigned int total_size = MAX (inherent_size, reg_max_ref_width[i]);
32131a9c
RK
1969 int adjust = 0;
1970
1971 /* Each pseudo reg has an inherent size which comes from its own mode,
1972 and a total size which provides room for paradoxical subregs
1973 which refer to the pseudo reg in wider modes.
1974
1975 We can use a slot already allocated if it provides both
1976 enough inherent space and enough total space.
1977 Otherwise, we allocate a new slot, making sure that it has no less
1978 inherent space, and no less total space, then the previous slot. */
1979 if (from_reg == -1)
1980 {
1981 /* No known place to spill from => no slot to reuse. */
cabcf079
ILT
1982 x = assign_stack_local (GET_MODE (regno_reg_rtx[i]), total_size,
1983 inherent_size == total_size ? 0 : -1);
f76b9db2 1984 if (BYTES_BIG_ENDIAN)
02db8dd0
RK
1985 /* Cancel the big-endian correction done in assign_stack_local.
1986 Get the address of the beginning of the slot.
1987 This is so we can do a big-endian correction unconditionally
1988 below. */
1989 adjust = inherent_size - total_size;
1990
1991 RTX_UNCHANGING_P (x) = RTX_UNCHANGING_P (regno_reg_rtx[i]);
3bdf5ad1
RK
1992
1993 /* Nothing can alias this slot except this pseudo. */
ba4828e0 1994 set_mem_alias_set (x, new_alias_set ());
32131a9c 1995 }
3bdf5ad1 1996
32131a9c
RK
1997 /* Reuse a stack slot if possible. */
1998 else if (spill_stack_slot[from_reg] != 0
1999 && spill_stack_slot_width[from_reg] >= total_size
2000 && (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
2001 >= inherent_size))
2002 x = spill_stack_slot[from_reg];
3bdf5ad1 2003
32131a9c
RK
2004 /* Allocate a bigger slot. */
2005 else
2006 {
2007 /* Compute maximum size needed, both for inherent size
2008 and for total size. */
2009 enum machine_mode mode = GET_MODE (regno_reg_rtx[i]);
4f2d3674 2010 rtx stack_slot;
3bdf5ad1 2011
32131a9c
RK
2012 if (spill_stack_slot[from_reg])
2013 {
2014 if (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
2015 > inherent_size)
2016 mode = GET_MODE (spill_stack_slot[from_reg]);
2017 if (spill_stack_slot_width[from_reg] > total_size)
2018 total_size = spill_stack_slot_width[from_reg];
2019 }
3bdf5ad1 2020
32131a9c 2021 /* Make a slot with that size. */
cabcf079
ILT
2022 x = assign_stack_local (mode, total_size,
2023 inherent_size == total_size ? 0 : -1);
4f2d3674 2024 stack_slot = x;
3bdf5ad1
RK
2025
2026 /* All pseudos mapped to this slot can alias each other. */
2027 if (spill_stack_slot[from_reg])
ba4828e0 2028 set_mem_alias_set (x, MEM_ALIAS_SET (spill_stack_slot[from_reg]));
3bdf5ad1 2029 else
ba4828e0 2030 set_mem_alias_set (x, new_alias_set ());
3bdf5ad1 2031
f76b9db2
ILT
2032 if (BYTES_BIG_ENDIAN)
2033 {
2034 /* Cancel the big-endian correction done in assign_stack_local.
2035 Get the address of the beginning of the slot.
2036 This is so we can do a big-endian correction unconditionally
2037 below. */
2038 adjust = GET_MODE_SIZE (mode) - total_size;
4f2d3674 2039 if (adjust)
38a448ca
RH
2040 stack_slot = gen_rtx_MEM (mode_for_size (total_size
2041 * BITS_PER_UNIT,
2042 MODE_INT, 1),
05d10675 2043 plus_constant (XEXP (x, 0), adjust));
f76b9db2 2044 }
3bdf5ad1 2045
4f2d3674 2046 spill_stack_slot[from_reg] = stack_slot;
32131a9c
RK
2047 spill_stack_slot_width[from_reg] = total_size;
2048 }
2049
32131a9c
RK
2050 /* On a big endian machine, the "address" of the slot
2051 is the address of the low part that fits its inherent mode. */
f76b9db2 2052 if (BYTES_BIG_ENDIAN && inherent_size < total_size)
32131a9c 2053 adjust += (total_size - inherent_size);
32131a9c
RK
2054
2055 /* If we have any adjustment to make, or if the stack slot is the
2056 wrong mode, make a new stack slot. */
2057 if (adjust != 0 || GET_MODE (x) != GET_MODE (regno_reg_rtx[i]))
f1ec5147 2058 x = adjust_address_nv (x, GET_MODE (regno_reg_rtx[i]), adjust);
32131a9c
RK
2059
2060 /* Save the stack slot for later. */
2061 reg_equiv_memory_loc[i] = x;
2062 }
2063}
2064
2065/* Mark the slots in regs_ever_live for the hard regs
2066 used by pseudo-reg number REGNO. */
2067
2068void
2069mark_home_live (regno)
2070 int regno;
2071{
2072 register int i, lim;
770ae6cc 2073
32131a9c
RK
2074 i = reg_renumber[regno];
2075 if (i < 0)
2076 return;
2077 lim = i + HARD_REGNO_NREGS (i, PSEUDO_REGNO_MODE (regno));
2078 while (i < lim)
2079 regs_ever_live[i++] = 1;
2080}
2081\f
2082/* This function handles the tracking of elimination offsets around branches.
2083
2084 X is a piece of RTL being scanned.
2085
2086 INSN is the insn that it came from, if any.
2087
2088 INITIAL_P is non-zero if we are to set the offset to be the initial
2089 offset and zero if we are setting the offset of the label to be the
2090 current offset. */
2091
2092static void
2093set_label_offsets (x, insn, initial_p)
2094 rtx x;
2095 rtx insn;
2096 int initial_p;
2097{
2098 enum rtx_code code = GET_CODE (x);
2099 rtx tem;
e51712db 2100 unsigned int i;
32131a9c
RK
2101 struct elim_table *p;
2102
2103 switch (code)
2104 {
2105 case LABEL_REF:
8be386d9
RS
2106 if (LABEL_REF_NONLOCAL_P (x))
2107 return;
2108
32131a9c
RK
2109 x = XEXP (x, 0);
2110
0f41302f 2111 /* ... fall through ... */
32131a9c
RK
2112
2113 case CODE_LABEL:
2114 /* If we know nothing about this label, set the desired offsets. Note
2115 that this sets the offset at a label to be the offset before a label
2116 if we don't know anything about the label. This is not correct for
2117 the label after a BARRIER, but is the best guess we can make. If
2118 we guessed wrong, we will suppress an elimination that might have
2119 been possible had we been able to guess correctly. */
2120
2121 if (! offsets_known_at[CODE_LABEL_NUMBER (x)])
2122 {
2123 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2124 offsets_at[CODE_LABEL_NUMBER (x)][i]
2125 = (initial_p ? reg_eliminate[i].initial_offset
2126 : reg_eliminate[i].offset);
2127 offsets_known_at[CODE_LABEL_NUMBER (x)] = 1;
2128 }
2129
2130 /* Otherwise, if this is the definition of a label and it is
d45cf215 2131 preceded by a BARRIER, set our offsets to the known offset of
32131a9c
RK
2132 that label. */
2133
2134 else if (x == insn
2135 && (tem = prev_nonnote_insn (insn)) != 0
2136 && GET_CODE (tem) == BARRIER)
1f3b1e1a 2137 set_offsets_for_label (insn);
32131a9c
RK
2138 else
2139 /* If neither of the above cases is true, compare each offset
2140 with those previously recorded and suppress any eliminations
2141 where the offsets disagree. */
a8fdc208 2142
32131a9c
RK
2143 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2144 if (offsets_at[CODE_LABEL_NUMBER (x)][i]
2145 != (initial_p ? reg_eliminate[i].initial_offset
2146 : reg_eliminate[i].offset))
2147 reg_eliminate[i].can_eliminate = 0;
2148
2149 return;
2150
2151 case JUMP_INSN:
2152 set_label_offsets (PATTERN (insn), insn, initial_p);
2153
0f41302f 2154 /* ... fall through ... */
32131a9c
RK
2155
2156 case INSN:
2157 case CALL_INSN:
2158 /* Any labels mentioned in REG_LABEL notes can be branched to indirectly
2159 and hence must have all eliminations at their initial offsets. */
2160 for (tem = REG_NOTES (x); tem; tem = XEXP (tem, 1))
2161 if (REG_NOTE_KIND (tem) == REG_LABEL)
2162 set_label_offsets (XEXP (tem, 0), insn, 1);
2163 return;
2164
0c0ba09c 2165 case PARALLEL:
32131a9c
RK
2166 case ADDR_VEC:
2167 case ADDR_DIFF_VEC:
0c0ba09c
JJ
2168 /* Each of the labels in the parallel or address vector must be
2169 at their initial offsets. We want the first field for PARALLEL
2170 and ADDR_VEC and the second field for ADDR_DIFF_VEC. */
32131a9c 2171
e51712db 2172 for (i = 0; i < (unsigned) XVECLEN (x, code == ADDR_DIFF_VEC); i++)
32131a9c
RK
2173 set_label_offsets (XVECEXP (x, code == ADDR_DIFF_VEC, i),
2174 insn, initial_p);
2175 return;
2176
2177 case SET:
2178 /* We only care about setting PC. If the source is not RETURN,
2179 IF_THEN_ELSE, or a label, disable any eliminations not at
2180 their initial offsets. Similarly if any arm of the IF_THEN_ELSE
2181 isn't one of those possibilities. For branches to a label,
2182 call ourselves recursively.
2183
2184 Note that this can disable elimination unnecessarily when we have
2185 a non-local goto since it will look like a non-constant jump to
2186 someplace in the current function. This isn't a significant
2187 problem since such jumps will normally be when all elimination
2188 pairs are back to their initial offsets. */
2189
2190 if (SET_DEST (x) != pc_rtx)
2191 return;
2192
2193 switch (GET_CODE (SET_SRC (x)))
2194 {
2195 case PC:
2196 case RETURN:
2197 return;
2198
2199 case LABEL_REF:
2200 set_label_offsets (XEXP (SET_SRC (x), 0), insn, initial_p);
2201 return;
2202
2203 case IF_THEN_ELSE:
2204 tem = XEXP (SET_SRC (x), 1);
2205 if (GET_CODE (tem) == LABEL_REF)
2206 set_label_offsets (XEXP (tem, 0), insn, initial_p);
2207 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2208 break;
2209
2210 tem = XEXP (SET_SRC (x), 2);
2211 if (GET_CODE (tem) == LABEL_REF)
2212 set_label_offsets (XEXP (tem, 0), insn, initial_p);
2213 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2214 break;
2215 return;
e9a25f70
JL
2216
2217 default:
2218 break;
32131a9c
RK
2219 }
2220
2221 /* If we reach here, all eliminations must be at their initial
2222 offset because we are doing a jump to a variable address. */
2223 for (p = reg_eliminate; p < &reg_eliminate[NUM_ELIMINABLE_REGS]; p++)
2224 if (p->offset != p->initial_offset)
2225 p->can_eliminate = 0;
e9a25f70 2226 break;
05d10675 2227
e9a25f70
JL
2228 default:
2229 break;
32131a9c
RK
2230 }
2231}
2232\f
a8fdc208 2233/* Scan X and replace any eliminable registers (such as fp) with a
32131a9c
RK
2234 replacement (such as sp), plus an offset.
2235
2236 MEM_MODE is the mode of an enclosing MEM. We need this to know how
2237 much to adjust a register for, e.g., PRE_DEC. Also, if we are inside a
2238 MEM, we are allowed to replace a sum of a register and the constant zero
2239 with the register, which we cannot do outside a MEM. In addition, we need
2240 to record the fact that a register is referenced outside a MEM.
2241
ff32812a 2242 If INSN is an insn, it is the insn containing X. If we replace a REG
32131a9c
RK
2243 in a SET_DEST with an equivalent MEM and INSN is non-zero, write a
2244 CLOBBER of the pseudo after INSN so find_equiv_regs will know that
38e01259 2245 the REG is being modified.
32131a9c 2246
ff32812a
RS
2247 Alternatively, INSN may be a note (an EXPR_LIST or INSN_LIST).
2248 That's used when we eliminate in expressions stored in notes.
2249 This means, do not set ref_outside_mem even if the reference
2250 is outside of MEMs.
2251
32131a9c
RK
2252 REG_EQUIV_MEM and REG_EQUIV_ADDRESS contain address that have had
2253 replacements done assuming all offsets are at their initial values. If
2254 they are not, or if REG_EQUIV_ADDRESS is nonzero for a pseudo we
2255 encounter, return the actual location so that find_reloads will do
2256 the proper thing. */
2257
2258rtx
1914f5da 2259eliminate_regs (x, mem_mode, insn)
32131a9c
RK
2260 rtx x;
2261 enum machine_mode mem_mode;
2262 rtx insn;
2263{
2264 enum rtx_code code = GET_CODE (x);
2265 struct elim_table *ep;
2266 int regno;
2267 rtx new;
2268 int i, j;
6f7d635c 2269 const char *fmt;
32131a9c
RK
2270 int copied = 0;
2271
d6633f01
NS
2272 if (! current_function_decl)
2273 return x;
9969bb2c 2274
32131a9c
RK
2275 switch (code)
2276 {
2277 case CONST_INT:
2278 case CONST_DOUBLE:
2279 case CONST:
2280 case SYMBOL_REF:
2281 case CODE_LABEL:
2282 case PC:
2283 case CC0:
2284 case ASM_INPUT:
2285 case ADDR_VEC:
2286 case ADDR_DIFF_VEC:
2287 case RETURN:
2288 return x;
2289
e9a25f70
JL
2290 case ADDRESSOF:
2291 /* This is only for the benefit of the debugging backends, which call
2292 eliminate_regs on DECL_RTL; any ADDRESSOFs in the actual insns are
2293 removed after CSE. */
1914f5da 2294 new = eliminate_regs (XEXP (x, 0), 0, insn);
e9a25f70
JL
2295 if (GET_CODE (new) == MEM)
2296 return XEXP (new, 0);
2297 return x;
2298
32131a9c
RK
2299 case REG:
2300 regno = REGNO (x);
2301
2302 /* First handle the case where we encounter a bare register that
2303 is eliminable. Replace it with a PLUS. */
2304 if (regno < FIRST_PSEUDO_REGISTER)
2305 {
2306 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2307 ep++)
2308 if (ep->from_rtx == x && ep->can_eliminate)
dfac187e 2309 return plus_constant (ep->to_rtx, ep->previous_offset);
32131a9c
RK
2310
2311 }
2b49ee39
R
2312 else if (reg_renumber[regno] < 0 && reg_equiv_constant
2313 && reg_equiv_constant[regno]
2314 && ! CONSTANT_P (reg_equiv_constant[regno]))
2315 return eliminate_regs (copy_rtx (reg_equiv_constant[regno]),
2316 mem_mode, insn);
32131a9c
RK
2317 return x;
2318
c5c76735
JL
2319 /* You might think handling MINUS in a manner similar to PLUS is a
2320 good idea. It is not. It has been tried multiple times and every
2321 time the change has had to have been reverted.
2322
2323 Other parts of reload know a PLUS is special (gen_reload for example)
2324 and require special code to handle code a reloaded PLUS operand.
2325
2326 Also consider backends where the flags register is clobbered by a
2327 MINUS, but we can emit a PLUS that does not clobber flags (ia32,
2328 lea instruction comes to mind). If we try to reload a MINUS, we
2329 may kill the flags register that was holding a useful value.
2330
2331 So, please before trying to handle MINUS, consider reload as a
2332 whole instead of this little section as well as the backend issues. */
32131a9c
RK
2333 case PLUS:
2334 /* If this is the sum of an eliminable register and a constant, rework
2335 the sum. */
2336 if (GET_CODE (XEXP (x, 0)) == REG
2337 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2338 && CONSTANT_P (XEXP (x, 1)))
2339 {
2340 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2341 ep++)
2342 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2343 {
32131a9c
RK
2344 /* The only time we want to replace a PLUS with a REG (this
2345 occurs when the constant operand of the PLUS is the negative
2346 of the offset) is when we are inside a MEM. We won't want
2347 to do so at other times because that would change the
2348 structure of the insn in a way that reload can't handle.
2349 We special-case the commonest situation in
2350 eliminate_regs_in_insn, so just replace a PLUS with a
2351 PLUS here, unless inside a MEM. */
a23b64d5 2352 if (mem_mode != 0 && GET_CODE (XEXP (x, 1)) == CONST_INT
32131a9c
RK
2353 && INTVAL (XEXP (x, 1)) == - ep->previous_offset)
2354 return ep->to_rtx;
2355 else
38a448ca
RH
2356 return gen_rtx_PLUS (Pmode, ep->to_rtx,
2357 plus_constant (XEXP (x, 1),
2358 ep->previous_offset));
32131a9c
RK
2359 }
2360
2361 /* If the register is not eliminable, we are done since the other
2362 operand is a constant. */
2363 return x;
2364 }
2365
2366 /* If this is part of an address, we want to bring any constant to the
2367 outermost PLUS. We will do this by doing register replacement in
2368 our operands and seeing if a constant shows up in one of them.
2369
dfac187e
BS
2370 Note that there is no risk of modifying the structure of the insn,
2371 since we only get called for its operands, thus we are either
2372 modifying the address inside a MEM, or something like an address
2373 operand of a load-address insn. */
32131a9c
RK
2374
2375 {
1914f5da
RH
2376 rtx new0 = eliminate_regs (XEXP (x, 0), mem_mode, insn);
2377 rtx new1 = eliminate_regs (XEXP (x, 1), mem_mode, insn);
32131a9c
RK
2378
2379 if (new0 != XEXP (x, 0) || new1 != XEXP (x, 1))
2380 {
2381 /* If one side is a PLUS and the other side is a pseudo that
a8fdc208 2382 didn't get a hard register but has a reg_equiv_constant,
32131a9c
RK
2383 we must replace the constant here since it may no longer
2384 be in the position of any operand. */
2385 if (GET_CODE (new0) == PLUS && GET_CODE (new1) == REG
2386 && REGNO (new1) >= FIRST_PSEUDO_REGISTER
2387 && reg_renumber[REGNO (new1)] < 0
2388 && reg_equiv_constant != 0
2389 && reg_equiv_constant[REGNO (new1)] != 0)
2390 new1 = reg_equiv_constant[REGNO (new1)];
2391 else if (GET_CODE (new1) == PLUS && GET_CODE (new0) == REG
2392 && REGNO (new0) >= FIRST_PSEUDO_REGISTER
2393 && reg_renumber[REGNO (new0)] < 0
2394 && reg_equiv_constant[REGNO (new0)] != 0)
2395 new0 = reg_equiv_constant[REGNO (new0)];
2396
2397 new = form_sum (new0, new1);
2398
2399 /* As above, if we are not inside a MEM we do not want to
2400 turn a PLUS into something else. We might try to do so here
2401 for an addition of 0 if we aren't optimizing. */
2402 if (! mem_mode && GET_CODE (new) != PLUS)
38a448ca 2403 return gen_rtx_PLUS (GET_MODE (x), new, const0_rtx);
32131a9c
RK
2404 else
2405 return new;
2406 }
2407 }
2408 return x;
2409
981c7390 2410 case MULT:
05d10675 2411 /* If this is the product of an eliminable register and a
981c7390
RK
2412 constant, apply the distribute law and move the constant out
2413 so that we have (plus (mult ..) ..). This is needed in order
9faa82d8 2414 to keep load-address insns valid. This case is pathological.
981c7390
RK
2415 We ignore the possibility of overflow here. */
2416 if (GET_CODE (XEXP (x, 0)) == REG
2417 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2418 && GET_CODE (XEXP (x, 1)) == CONST_INT)
2419 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2420 ep++)
2421 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2422 {
2423 if (! mem_mode
2424 /* Refs inside notes don't count for this purpose. */
2425 && ! (insn != 0 && (GET_CODE (insn) == EXPR_LIST
2426 || GET_CODE (insn) == INSN_LIST)))
2427 ep->ref_outside_mem = 1;
2428
2429 return
38a448ca 2430 plus_constant (gen_rtx_MULT (Pmode, ep->to_rtx, XEXP (x, 1)),
981c7390
RK
2431 ep->previous_offset * INTVAL (XEXP (x, 1)));
2432 }
32131a9c 2433
0f41302f 2434 /* ... fall through ... */
32131a9c 2435
32131a9c
RK
2436 case CALL:
2437 case COMPARE:
c5c76735 2438 /* See comments before PLUS about handling MINUS. */
930aeef3 2439 case MINUS:
32131a9c
RK
2440 case DIV: case UDIV:
2441 case MOD: case UMOD:
2442 case AND: case IOR: case XOR:
45620ed4
RK
2443 case ROTATERT: case ROTATE:
2444 case ASHIFTRT: case LSHIFTRT: case ASHIFT:
32131a9c
RK
2445 case NE: case EQ:
2446 case GE: case GT: case GEU: case GTU:
2447 case LE: case LT: case LEU: case LTU:
2448 {
1914f5da 2449 rtx new0 = eliminate_regs (XEXP (x, 0), mem_mode, insn);
fb3821f7 2450 rtx new1
1914f5da 2451 = XEXP (x, 1) ? eliminate_regs (XEXP (x, 1), mem_mode, insn) : 0;
32131a9c
RK
2452
2453 if (new0 != XEXP (x, 0) || new1 != XEXP (x, 1))
38a448ca 2454 return gen_rtx_fmt_ee (code, GET_MODE (x), new0, new1);
32131a9c
RK
2455 }
2456 return x;
2457
981c7390
RK
2458 case EXPR_LIST:
2459 /* If we have something in XEXP (x, 0), the usual case, eliminate it. */
2460 if (XEXP (x, 0))
2461 {
1914f5da 2462 new = eliminate_regs (XEXP (x, 0), mem_mode, insn);
981c7390 2463 if (new != XEXP (x, 0))
13bb79d4
R
2464 {
2465 /* If this is a REG_DEAD note, it is not valid anymore.
2466 Using the eliminated version could result in creating a
2467 REG_DEAD note for the stack or frame pointer. */
2468 if (GET_MODE (x) == REG_DEAD)
2469 return (XEXP (x, 1)
2470 ? eliminate_regs (XEXP (x, 1), mem_mode, insn)
2471 : NULL_RTX);
2472
2473 x = gen_rtx_EXPR_LIST (REG_NOTE_KIND (x), new, XEXP (x, 1));
2474 }
981c7390
RK
2475 }
2476
0f41302f 2477 /* ... fall through ... */
981c7390
RK
2478
2479 case INSN_LIST:
2480 /* Now do eliminations in the rest of the chain. If this was
2481 an EXPR_LIST, this might result in allocating more memory than is
2482 strictly needed, but it simplifies the code. */
2483 if (XEXP (x, 1))
2484 {
1914f5da 2485 new = eliminate_regs (XEXP (x, 1), mem_mode, insn);
981c7390 2486 if (new != XEXP (x, 1))
38a448ca 2487 return gen_rtx_fmt_ee (GET_CODE (x), GET_MODE (x), XEXP (x, 0), new);
981c7390
RK
2488 }
2489 return x;
2490
32131a9c
RK
2491 case PRE_INC:
2492 case POST_INC:
2493 case PRE_DEC:
2494 case POST_DEC:
32131a9c
RK
2495 case STRICT_LOW_PART:
2496 case NEG: case NOT:
2497 case SIGN_EXTEND: case ZERO_EXTEND:
2498 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
2499 case FLOAT: case FIX:
2500 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
2501 case ABS:
2502 case SQRT:
2503 case FFS:
1914f5da 2504 new = eliminate_regs (XEXP (x, 0), mem_mode, insn);
32131a9c 2505 if (new != XEXP (x, 0))
38a448ca 2506 return gen_rtx_fmt_e (code, GET_MODE (x), new);
32131a9c
RK
2507 return x;
2508
2509 case SUBREG:
ddef6bc7 2510 /* Similar to above processing, but preserve SUBREG_BYTE.
32131a9c
RK
2511 Convert (subreg (mem)) to (mem) if not paradoxical.
2512 Also, if we have a non-paradoxical (subreg (pseudo)) and the
2513 pseudo didn't get a hard reg, we must replace this with the
2514 eliminated version of the memory location because push_reloads
2515 may do the replacement in certain circumstances. */
2516 if (GET_CODE (SUBREG_REG (x)) == REG
2517 && (GET_MODE_SIZE (GET_MODE (x))
2518 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
2519 && reg_equiv_memory_loc != 0
2520 && reg_equiv_memory_loc[REGNO (SUBREG_REG (x))] != 0)
2521 {
cb2afeb3 2522 new = SUBREG_REG (x);
32131a9c
RK
2523 }
2524 else
1914f5da 2525 new = eliminate_regs (SUBREG_REG (x), mem_mode, insn);
32131a9c 2526
ddef6bc7 2527 if (new != SUBREG_REG (x))
32131a9c 2528 {
29ae5012
RK
2529 int x_size = GET_MODE_SIZE (GET_MODE (x));
2530 int new_size = GET_MODE_SIZE (GET_MODE (new));
2531
1914f5da 2532 if (GET_CODE (new) == MEM
6d49a073 2533 && ((x_size < new_size
1914f5da 2534#ifdef WORD_REGISTER_OPERATIONS
6d49a073
JW
2535 /* On these machines, combine can create rtl of the form
2536 (set (subreg:m1 (reg:m2 R) 0) ...)
05d10675 2537 where m1 < m2, and expects something interesting to
6d49a073
JW
2538 happen to the entire word. Moreover, it will use the
2539 (reg:m2 R) later, expecting all bits to be preserved.
05d10675 2540 So if the number of words is the same, preserve the
6d49a073 2541 subreg so that push_reloads can see it. */
5d9669fd
RK
2542 && ! ((x_size - 1) / UNITS_PER_WORD
2543 == (new_size -1 ) / UNITS_PER_WORD)
1914f5da 2544#endif
6d49a073 2545 )
5d9669fd 2546 || x_size == new_size)
1914f5da 2547 )
32131a9c 2548 {
ddef6bc7 2549 int offset = SUBREG_BYTE (x);
32131a9c
RK
2550 enum machine_mode mode = GET_MODE (x);
2551
32131a9c
RK
2552 PUT_MODE (new, mode);
2553 XEXP (new, 0) = plus_constant (XEXP (new, 0), offset);
2554 return new;
2555 }
2556 else
ddef6bc7 2557 return gen_rtx_SUBREG (GET_MODE (x), new, SUBREG_BYTE (x));
32131a9c
RK
2558 }
2559
2560 return x;
2561
32131a9c 2562 case MEM:
e9a25f70
JL
2563 /* This is only for the benefit of the debugging backends, which call
2564 eliminate_regs on DECL_RTL; any ADDRESSOFs in the actual insns are
2565 removed after CSE. */
2566 if (GET_CODE (XEXP (x, 0)) == ADDRESSOF)
1914f5da 2567 return eliminate_regs (XEXP (XEXP (x, 0), 0), 0, insn);
e9a25f70 2568
32131a9c
RK
2569 /* Our only special processing is to pass the mode of the MEM to our
2570 recursive call and copy the flags. While we are here, handle this
2571 case more efficiently. */
f1ec5147
RK
2572 return
2573 replace_equiv_address_nv (x,
2574 eliminate_regs (XEXP (x, 0),
2575 GET_MODE (x), insn));
05d10675 2576
dfac187e 2577 case USE:
055c7759
JDA
2578 /* Handle insn_list USE that a call to a pure function may generate. */
2579 new = eliminate_regs (XEXP (x, 0), 0, insn);
2580 if (new != XEXP (x, 0))
2581 return gen_rtx_USE (GET_MODE (x), new);
2582 return x;
2583
dfac187e
BS
2584 case CLOBBER:
2585 case ASM_OPERANDS:
2586 case SET:
2587 abort ();
2588
e9a25f70
JL
2589 default:
2590 break;
32131a9c
RK
2591 }
2592
2593 /* Process each of our operands recursively. If any have changed, make a
2594 copy of the rtx. */
2595 fmt = GET_RTX_FORMAT (code);
2596 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2597 {
2598 if (*fmt == 'e')
2599 {
1914f5da 2600 new = eliminate_regs (XEXP (x, i), mem_mode, insn);
32131a9c
RK
2601 if (new != XEXP (x, i) && ! copied)
2602 {
2603 rtx new_x = rtx_alloc (code);
4e135bdd
KG
2604 memcpy (new_x, x,
2605 (sizeof (*new_x) - sizeof (new_x->fld)
2606 + sizeof (new_x->fld[0]) * GET_RTX_LENGTH (code)));
32131a9c
RK
2607 x = new_x;
2608 copied = 1;
2609 }
2610 XEXP (x, i) = new;
2611 }
2612 else if (*fmt == 'E')
2613 {
2614 int copied_vec = 0;
2615 for (j = 0; j < XVECLEN (x, i); j++)
2616 {
1914f5da 2617 new = eliminate_regs (XVECEXP (x, i, j), mem_mode, insn);
32131a9c
RK
2618 if (new != XVECEXP (x, i, j) && ! copied_vec)
2619 {
8f985ec4
ZW
2620 rtvec new_v = gen_rtvec_v (XVECLEN (x, i),
2621 XVEC (x, i)->elem);
32131a9c
RK
2622 if (! copied)
2623 {
2624 rtx new_x = rtx_alloc (code);
4e135bdd
KG
2625 memcpy (new_x, x,
2626 (sizeof (*new_x) - sizeof (new_x->fld)
2627 + (sizeof (new_x->fld[0])
2628 * GET_RTX_LENGTH (code))));
32131a9c
RK
2629 x = new_x;
2630 copied = 1;
2631 }
2632 XVEC (x, i) = new_v;
2633 copied_vec = 1;
2634 }
2635 XVECEXP (x, i, j) = new;
2636 }
2637 }
2638 }
2639
2640 return x;
2641}
dfac187e
BS
2642
2643/* Scan rtx X for modifications of elimination target registers. Update
2644 the table of eliminables to reflect the changed state. MEM_MODE is
2645 the mode of an enclosing MEM rtx, or VOIDmode if not within a MEM. */
2646
2647static void
2648elimination_effects (x, mem_mode)
2649 rtx x;
2650 enum machine_mode mem_mode;
2651
2652{
2653 enum rtx_code code = GET_CODE (x);
2654 struct elim_table *ep;
2655 int regno;
2656 int i, j;
2657 const char *fmt;
2658
2659 switch (code)
2660 {
2661 case CONST_INT:
2662 case CONST_DOUBLE:
2663 case CONST:
2664 case SYMBOL_REF:
2665 case CODE_LABEL:
2666 case PC:
2667 case CC0:
2668 case ASM_INPUT:
2669 case ADDR_VEC:
2670 case ADDR_DIFF_VEC:
2671 case RETURN:
2672 return;
2673
2674 case ADDRESSOF:
2675 abort ();
2676
2677 case REG:
2678 regno = REGNO (x);
2679
2680 /* First handle the case where we encounter a bare register that
2681 is eliminable. Replace it with a PLUS. */
2682 if (regno < FIRST_PSEUDO_REGISTER)
2683 {
2684 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2685 ep++)
2686 if (ep->from_rtx == x && ep->can_eliminate)
2687 {
2688 if (! mem_mode)
2689 ep->ref_outside_mem = 1;
2690 return;
2691 }
2692
2693 }
2694 else if (reg_renumber[regno] < 0 && reg_equiv_constant
2695 && reg_equiv_constant[regno]
2696 && ! CONSTANT_P (reg_equiv_constant[regno]))
2697 elimination_effects (reg_equiv_constant[regno], mem_mode);
2698 return;
2699
2700 case PRE_INC:
2701 case POST_INC:
2702 case PRE_DEC:
2703 case POST_DEC:
4b983fdc
RH
2704 case POST_MODIFY:
2705 case PRE_MODIFY:
dfac187e
BS
2706 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2707 if (ep->to_rtx == XEXP (x, 0))
2708 {
2709 int size = GET_MODE_SIZE (mem_mode);
2710
2711 /* If more bytes than MEM_MODE are pushed, account for them. */
2712#ifdef PUSH_ROUNDING
2713 if (ep->to_rtx == stack_pointer_rtx)
2714 size = PUSH_ROUNDING (size);
2715#endif
2716 if (code == PRE_DEC || code == POST_DEC)
2717 ep->offset += size;
4b983fdc 2718 else if (code == PRE_INC || code == POST_INC)
dfac187e 2719 ep->offset -= size;
4b983fdc
RH
2720 else if ((code == PRE_MODIFY || code == POST_MODIFY)
2721 && GET_CODE (XEXP (x, 1)) == PLUS
2722 && XEXP (x, 0) == XEXP (XEXP (x, 1), 0)
2723 && CONSTANT_P (XEXP (XEXP (x, 1), 1)))
2724 ep->offset -= INTVAL (XEXP (XEXP (x, 1), 1));
dfac187e
BS
2725 }
2726
4b983fdc
RH
2727 /* These two aren't unary operators. */
2728 if (code == POST_MODIFY || code == PRE_MODIFY)
2729 break;
2730
dfac187e
BS
2731 /* Fall through to generic unary operation case. */
2732 case STRICT_LOW_PART:
2733 case NEG: case NOT:
2734 case SIGN_EXTEND: case ZERO_EXTEND:
2735 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
2736 case FLOAT: case FIX:
2737 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
2738 case ABS:
2739 case SQRT:
2740 case FFS:
2741 elimination_effects (XEXP (x, 0), mem_mode);
2742 return;
2743
2744 case SUBREG:
2745 if (GET_CODE (SUBREG_REG (x)) == REG
2746 && (GET_MODE_SIZE (GET_MODE (x))
2747 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
2748 && reg_equiv_memory_loc != 0
2749 && reg_equiv_memory_loc[REGNO (SUBREG_REG (x))] != 0)
2750 return;
2751
2752 elimination_effects (SUBREG_REG (x), mem_mode);
2753 return;
2754
2755 case USE:
2756 /* If using a register that is the source of an eliminate we still
2757 think can be performed, note it cannot be performed since we don't
2758 know how this register is used. */
2759 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2760 if (ep->from_rtx == XEXP (x, 0))
2761 ep->can_eliminate = 0;
2762
2763 elimination_effects (XEXP (x, 0), mem_mode);
2764 return;
2765
2766 case CLOBBER:
2767 /* If clobbering a register that is the replacement register for an
2768 elimination we still think can be performed, note that it cannot
2769 be performed. Otherwise, we need not be concerned about it. */
2770 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2771 if (ep->to_rtx == XEXP (x, 0))
2772 ep->can_eliminate = 0;
2773
2774 elimination_effects (XEXP (x, 0), mem_mode);
2775 return;
2776
2777 case SET:
2778 /* Check for setting a register that we know about. */
2779 if (GET_CODE (SET_DEST (x)) == REG)
2780 {
2781 /* See if this is setting the replacement register for an
2782 elimination.
2783
2784 If DEST is the hard frame pointer, we do nothing because we
2785 assume that all assignments to the frame pointer are for
2786 non-local gotos and are being done at a time when they are valid
2787 and do not disturb anything else. Some machines want to
2788 eliminate a fake argument pointer (or even a fake frame pointer)
2789 with either the real frame or the stack pointer. Assignments to
2790 the hard frame pointer must not prevent this elimination. */
2791
2792 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2793 ep++)
2794 if (ep->to_rtx == SET_DEST (x)
2795 && SET_DEST (x) != hard_frame_pointer_rtx)
2796 {
2797 /* If it is being incremented, adjust the offset. Otherwise,
2798 this elimination can't be done. */
2799 rtx src = SET_SRC (x);
2800
2801 if (GET_CODE (src) == PLUS
2802 && XEXP (src, 0) == SET_DEST (x)
2803 && GET_CODE (XEXP (src, 1)) == CONST_INT)
2804 ep->offset -= INTVAL (XEXP (src, 1));
2805 else
2806 ep->can_eliminate = 0;
2807 }
2808 }
2809
2810 elimination_effects (SET_DEST (x), 0);
2811 elimination_effects (SET_SRC (x), 0);
2812 return;
2813
2814 case MEM:
2815 if (GET_CODE (XEXP (x, 0)) == ADDRESSOF)
2816 abort ();
2817
2818 /* Our only special processing is to pass the mode of the MEM to our
2819 recursive call. */
2820 elimination_effects (XEXP (x, 0), GET_MODE (x));
2821 return;
2822
2823 default:
2824 break;
2825 }
2826
2827 fmt = GET_RTX_FORMAT (code);
2828 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2829 {
2830 if (*fmt == 'e')
2831 elimination_effects (XEXP (x, i), mem_mode);
2832 else if (*fmt == 'E')
2833 for (j = 0; j < XVECLEN (x, i); j++)
2834 elimination_effects (XVECEXP (x, i, j), mem_mode);
2835 }
2836}
2837
2838/* Descend through rtx X and verify that no references to eliminable registers
2839 remain. If any do remain, mark the involved register as not
2840 eliminable. */
1d813780 2841
dfac187e
BS
2842static void
2843check_eliminable_occurrences (x)
2844 rtx x;
2845{
2846 const char *fmt;
2847 int i;
2848 enum rtx_code code;
2849
2850 if (x == 0)
2851 return;
1d7254c5 2852
dfac187e
BS
2853 code = GET_CODE (x);
2854
2855 if (code == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
2856 {
2857 struct elim_table *ep;
2858
2859 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2860 if (ep->from_rtx == x && ep->can_eliminate)
2861 ep->can_eliminate = 0;
2862 return;
2863 }
1d7254c5 2864
dfac187e
BS
2865 fmt = GET_RTX_FORMAT (code);
2866 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2867 {
2868 if (*fmt == 'e')
2869 check_eliminable_occurrences (XEXP (x, i));
2870 else if (*fmt == 'E')
2871 {
2872 int j;
2873 for (j = 0; j < XVECLEN (x, i); j++)
2874 check_eliminable_occurrences (XVECEXP (x, i, j));
2875 }
2876 }
2877}
32131a9c
RK
2878\f
2879/* Scan INSN and eliminate all eliminable registers in it.
2880
2881 If REPLACE is nonzero, do the replacement destructively. Also
2882 delete the insn as dead it if it is setting an eliminable register.
2883
2884 If REPLACE is zero, do all our allocations in reload_obstack.
2885
2886 If no eliminations were done and this insn doesn't require any elimination
2887 processing (these are not identical conditions: it might be updating sp,
2888 but not referencing fp; this needs to be seen during reload_as_needed so
2889 that the offset between fp and sp can be taken into consideration), zero
2890 is returned. Otherwise, 1 is returned. */
2891
2892static int
2893eliminate_regs_in_insn (insn, replace)
2894 rtx insn;
2895 int replace;
2896{
dfac187e 2897 int icode = recog_memoized (insn);
32131a9c 2898 rtx old_body = PATTERN (insn);
dfac187e 2899 int insn_is_asm = asm_noperands (old_body) >= 0;
774672d2 2900 rtx old_set = single_set (insn);
32131a9c
RK
2901 rtx new_body;
2902 int val = 0;
dfac187e
BS
2903 int i, any_changes;
2904 rtx substed_operand[MAX_RECOG_OPERANDS];
2905 rtx orig_operand[MAX_RECOG_OPERANDS];
32131a9c
RK
2906 struct elim_table *ep;
2907
dfac187e
BS
2908 if (! insn_is_asm && icode < 0)
2909 {
2910 if (GET_CODE (PATTERN (insn)) == USE
2911 || GET_CODE (PATTERN (insn)) == CLOBBER
2912 || GET_CODE (PATTERN (insn)) == ADDR_VEC
2913 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
2914 || GET_CODE (PATTERN (insn)) == ASM_INPUT)
2915 return 0;
2916 abort ();
2917 }
2918
774672d2
RK
2919 if (old_set != 0 && GET_CODE (SET_DEST (old_set)) == REG
2920 && REGNO (SET_DEST (old_set)) < FIRST_PSEUDO_REGISTER)
32131a9c
RK
2921 {
2922 /* Check for setting an eliminable register. */
2923 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
774672d2 2924 if (ep->from_rtx == SET_DEST (old_set) && ep->can_eliminate)
32131a9c 2925 {
dd1eab0a
RK
2926#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2927 /* If this is setting the frame pointer register to the
2928 hardware frame pointer register and this is an elimination
2929 that will be done (tested above), this insn is really
2930 adjusting the frame pointer downward to compensate for
2931 the adjustment done before a nonlocal goto. */
2932 if (ep->from == FRAME_POINTER_REGNUM
2933 && ep->to == HARD_FRAME_POINTER_REGNUM)
2934 {
2935 rtx src = SET_SRC (old_set);
973838fd 2936 int offset = 0, ok = 0;
8026ebba 2937 rtx prev_insn, prev_set;
dd1eab0a
RK
2938
2939 if (src == ep->to_rtx)
2940 offset = 0, ok = 1;
2941 else if (GET_CODE (src) == PLUS
bb22893c
JW
2942 && GET_CODE (XEXP (src, 0)) == CONST_INT
2943 && XEXP (src, 1) == ep->to_rtx)
dd1eab0a 2944 offset = INTVAL (XEXP (src, 0)), ok = 1;
bb22893c
JW
2945 else if (GET_CODE (src) == PLUS
2946 && GET_CODE (XEXP (src, 1)) == CONST_INT
2947 && XEXP (src, 0) == ep->to_rtx)
2948 offset = INTVAL (XEXP (src, 1)), ok = 1;
8026ebba
ILT
2949 else if ((prev_insn = prev_nonnote_insn (insn)) != 0
2950 && (prev_set = single_set (prev_insn)) != 0
2951 && rtx_equal_p (SET_DEST (prev_set), src))
2952 {
2953 src = SET_SRC (prev_set);
2954 if (src == ep->to_rtx)
2955 offset = 0, ok = 1;
2956 else if (GET_CODE (src) == PLUS
2957 && GET_CODE (XEXP (src, 0)) == CONST_INT
2958 && XEXP (src, 1) == ep->to_rtx)
2959 offset = INTVAL (XEXP (src, 0)), ok = 1;
2960 else if (GET_CODE (src) == PLUS
2961 && GET_CODE (XEXP (src, 1)) == CONST_INT
2962 && XEXP (src, 0) == ep->to_rtx)
2963 offset = INTVAL (XEXP (src, 1)), ok = 1;
2964 }
dd1eab0a
RK
2965
2966 if (ok)
2967 {
c77fbfbe
GK
2968 rtx src
2969 = plus_constant (ep->to_rtx, offset - ep->offset);
2970
2971 new_body = old_body;
2972 if (! replace)
2973 {
2974 new_body = copy_insn (old_body);
2975 if (REG_NOTES (insn))
2976 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
2977 }
2978 PATTERN (insn) = new_body;
2979 old_set = single_set (insn);
2980
2981 /* First see if this insn remains valid when we
2982 make the change. If not, keep the INSN_CODE
2983 the same and let reload fit it up. */
2984 validate_change (insn, &SET_SRC (old_set), src, 1);
2985 validate_change (insn, &SET_DEST (old_set),
2986 ep->to_rtx, 1);
2987 if (! apply_change_group ())
dd1eab0a 2988 {
c77fbfbe
GK
2989 SET_SRC (old_set) = src;
2990 SET_DEST (old_set) = ep->to_rtx;
dd1eab0a
RK
2991 }
2992
2993 val = 1;
2994 goto done;
2995 }
2996 }
2997#endif
2998
32131a9c
RK
2999 /* In this case this insn isn't serving a useful purpose. We
3000 will delete it in reload_as_needed once we know that this
3001 elimination is, in fact, being done.
3002
abc95ed3 3003 If REPLACE isn't set, we can't delete this insn, but needn't
32131a9c
RK
3004 process it since it won't be used unless something changes. */
3005 if (replace)
8a34409d 3006 {
1d7254c5 3007 delete_dead_insn (insn);
8a34409d
RH
3008 return 1;
3009 }
32131a9c
RK
3010 val = 1;
3011 goto done;
3012 }
aa5524a9 3013 }
32131a9c 3014
aa5524a9
BS
3015 /* We allow one special case which happens to work on all machines we
3016 currently support: a single set with the source being a PLUS of an
3017 eliminable register and a constant. */
3018 if (old_set
1abdf5e7 3019 && GET_CODE (SET_DEST (old_set)) == REG
aa5524a9
BS
3020 && GET_CODE (SET_SRC (old_set)) == PLUS
3021 && GET_CODE (XEXP (SET_SRC (old_set), 0)) == REG
3022 && GET_CODE (XEXP (SET_SRC (old_set), 1)) == CONST_INT
3023 && REGNO (XEXP (SET_SRC (old_set), 0)) < FIRST_PSEUDO_REGISTER)
3024 {
3025 rtx reg = XEXP (SET_SRC (old_set), 0);
3026 int offset = INTVAL (XEXP (SET_SRC (old_set), 1));
32131a9c 3027
aa5524a9
BS
3028 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3029 if (ep->from_rtx == reg && ep->can_eliminate)
3030 {
3031 offset += ep->offset;
32131a9c 3032
aa5524a9
BS
3033 if (offset == 0)
3034 {
f34c06e5
R
3035 int num_clobbers;
3036 /* We assume here that if we need a PARALLEL with
3037 CLOBBERs for this assignment, we can do with the
3038 MATCH_SCRATCHes that add_clobbers allocates.
3039 There's not much we can do if that doesn't work. */
aa5524a9
BS
3040 PATTERN (insn) = gen_rtx_SET (VOIDmode,
3041 SET_DEST (old_set),
3042 ep->to_rtx);
f34c06e5
R
3043 num_clobbers = 0;
3044 INSN_CODE (insn) = recog (PATTERN (insn), insn, &num_clobbers);
3045 if (num_clobbers)
3046 {
3047 rtvec vec = rtvec_alloc (num_clobbers + 1);
3048
3049 vec->elem[0] = PATTERN (insn);
3050 PATTERN (insn) = gen_rtx_PARALLEL (VOIDmode, vec);
3051 add_clobbers (PATTERN (insn), INSN_CODE (insn));
3052 }
aa5524a9
BS
3053 if (INSN_CODE (insn) < 0)
3054 abort ();
3055 }
3056 else
3057 {
3058 new_body = old_body;
3059 if (! replace)
3060 {
3061 new_body = copy_insn (old_body);
3062 if (REG_NOTES (insn))
3063 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3064 }
3065 PATTERN (insn) = new_body;
3066 old_set = single_set (insn);
922d9d40 3067
aa5524a9
BS
3068 XEXP (SET_SRC (old_set), 0) = ep->to_rtx;
3069 XEXP (SET_SRC (old_set), 1) = GEN_INT (offset);
3070 }
3071 val = 1;
3072 /* This can't have an effect on elimination offsets, so skip right
3073 to the end. */
3074 goto done;
3075 }
32131a9c
RK
3076 }
3077
dfac187e
BS
3078 /* Determine the effects of this insn on elimination offsets. */
3079 elimination_effects (old_body, 0);
3080
3081 /* Eliminate all eliminable registers occurring in operands that
3082 can be handled by reload. */
3083 extract_insn (insn);
3084 any_changes = 0;
3085 for (i = 0; i < recog_data.n_operands; i++)
3086 {
3087 orig_operand[i] = recog_data.operand[i];
3088 substed_operand[i] = recog_data.operand[i];
3089
3090 /* For an asm statement, every operand is eliminable. */
3091 if (insn_is_asm || insn_data[icode].operand[i].eliminable)
3092 {
3093 /* Check for setting a register that we know about. */
3094 if (recog_data.operand_type[i] != OP_IN
3095 && GET_CODE (orig_operand[i]) == REG)
3096 {
3097 /* If we are assigning to a register that can be eliminated, it
3098 must be as part of a PARALLEL, since the code above handles
3099 single SETs. We must indicate that we can no longer
3100 eliminate this reg. */
3101 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3102 ep++)
3103 if (ep->from_rtx == orig_operand[i] && ep->can_eliminate)
3104 ep->can_eliminate = 0;
3105 }
3106
3107 substed_operand[i] = eliminate_regs (recog_data.operand[i], 0,
3108 replace ? insn : NULL_RTX);
3109 if (substed_operand[i] != orig_operand[i])
3110 val = any_changes = 1;
3111 /* Terminate the search in check_eliminable_occurrences at
3112 this point. */
3113 *recog_data.operand_loc[i] = 0;
3114
3115 /* If an output operand changed from a REG to a MEM and INSN is an
3116 insn, write a CLOBBER insn. */
3117 if (recog_data.operand_type[i] != OP_IN
3118 && GET_CODE (orig_operand[i]) == REG
3119 && GET_CODE (substed_operand[i]) == MEM
3120 && replace)
3121 emit_insn_after (gen_rtx_CLOBBER (VOIDmode, orig_operand[i]),
3122 insn);
3123 }
3124 }
3125
3126 for (i = 0; i < recog_data.n_dups; i++)
3127 *recog_data.dup_loc[i]
1d7254c5 3128 = *recog_data.operand_loc[(int) recog_data.dup_num[i]];
dfac187e
BS
3129
3130 /* If any eliminable remain, they aren't eliminable anymore. */
3131 check_eliminable_occurrences (old_body);
32131a9c 3132
dfac187e
BS
3133 /* Substitute the operands; the new values are in the substed_operand
3134 array. */
3135 for (i = 0; i < recog_data.n_operands; i++)
3136 *recog_data.operand_loc[i] = substed_operand[i];
3137 for (i = 0; i < recog_data.n_dups; i++)
1d7254c5 3138 *recog_data.dup_loc[i] = substed_operand[(int) recog_data.dup_num[i]];
32131a9c 3139
dfac187e 3140 /* If we are replacing a body that was a (set X (plus Y Z)), try to
32131a9c
RK
3141 re-recognize the insn. We do this in case we had a simple addition
3142 but now can do this as a load-address. This saves an insn in this
dfac187e
BS
3143 common case.
3144 If re-recognition fails, the old insn code number will still be used,
3145 and some register operands may have changed into PLUS expressions.
3146 These will be handled by find_reloads by loading them into a register
1d7254c5 3147 again. */
32131a9c 3148
dfac187e 3149 if (val)
32131a9c 3150 {
7c791b13
RK
3151 /* If we aren't replacing things permanently and we changed something,
3152 make another copy to ensure that all the RTL is new. Otherwise
3153 things can go wrong if find_reload swaps commutative operands
0f41302f 3154 and one is inside RTL that has been copied while the other is not. */
dfac187e
BS
3155 new_body = old_body;
3156 if (! replace)
1b3b5765
BS
3157 {
3158 new_body = copy_insn (old_body);
3159 if (REG_NOTES (insn))
3160 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3161 }
dfac187e 3162 PATTERN (insn) = new_body;
7c791b13 3163
774672d2
RK
3164 /* If we had a move insn but now we don't, rerecognize it. This will
3165 cause spurious re-recognition if the old move had a PARALLEL since
3166 the new one still will, but we can't call single_set without
3167 having put NEW_BODY into the insn and the re-recognition won't
3168 hurt in this rare case. */
dfac187e
BS
3169 /* ??? Why this huge if statement - why don't we just rerecognize the
3170 thing always? */
3171 if (! insn_is_asm
3172 && old_set != 0
774672d2
RK
3173 && ((GET_CODE (SET_SRC (old_set)) == REG
3174 && (GET_CODE (new_body) != SET
3175 || GET_CODE (SET_SRC (new_body)) != REG))
3176 /* If this was a load from or store to memory, compare
1ccbefce
RH
3177 the MEM in recog_data.operand to the one in the insn.
3178 If they are not equal, then rerecognize the insn. */
774672d2
RK
3179 || (old_set != 0
3180 && ((GET_CODE (SET_SRC (old_set)) == MEM
1ccbefce 3181 && SET_SRC (old_set) != recog_data.operand[1])
774672d2 3182 || (GET_CODE (SET_DEST (old_set)) == MEM
1ccbefce 3183 && SET_DEST (old_set) != recog_data.operand[0])))
774672d2
RK
3184 /* If this was an add insn before, rerecognize. */
3185 || GET_CODE (SET_SRC (old_set)) == PLUS))
4a5d0fb5 3186 {
dfac187e
BS
3187 int new_icode = recog (PATTERN (insn), insn, 0);
3188 if (new_icode < 0)
3189 INSN_CODE (insn) = icode;
4a5d0fb5 3190 }
dfac187e 3191 }
32131a9c 3192
dfac187e
BS
3193 /* Restore the old body. If there were any changes to it, we made a copy
3194 of it while the changes were still in place, so we'll correctly return
3195 a modified insn below. */
3196 if (! replace)
3197 {
3198 /* Restore the old body. */
3199 for (i = 0; i < recog_data.n_operands; i++)
3200 *recog_data.operand_loc[i] = orig_operand[i];
3201 for (i = 0; i < recog_data.n_dups; i++)
1d7254c5 3202 *recog_data.dup_loc[i] = orig_operand[(int) recog_data.dup_num[i]];
32131a9c 3203 }
a8fdc208 3204
dfac187e
BS
3205 /* Update all elimination pairs to reflect the status after the current
3206 insn. The changes we make were determined by the earlier call to
3207 elimination_effects.
a8efe40d 3208
32131a9c
RK
3209 We also detect a cases where register elimination cannot be done,
3210 namely, if a register would be both changed and referenced outside a MEM
3211 in the resulting insn since such an insn is often undefined and, even if
3212 not, we cannot know what meaning will be given to it. Note that it is
3213 valid to have a register used in an address in an insn that changes it
3214 (presumably with a pre- or post-increment or decrement).
3215
3216 If anything changes, return nonzero. */
3217
32131a9c
RK
3218 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3219 {
3220 if (ep->previous_offset != ep->offset && ep->ref_outside_mem)
3221 ep->can_eliminate = 0;
3222
3223 ep->ref_outside_mem = 0;
3224
3225 if (ep->previous_offset != ep->offset)
3226 val = 1;
32131a9c
RK
3227 }
3228
3229 done:
9faa82d8 3230 /* If we changed something, perform elimination in REG_NOTES. This is
05b4c365
RK
3231 needed even when REPLACE is zero because a REG_DEAD note might refer
3232 to a register that we eliminate and could cause a different number
3233 of spill registers to be needed in the final reload pass than in
3234 the pre-passes. */
20748cab 3235 if (val && REG_NOTES (insn) != 0)
1914f5da 3236 REG_NOTES (insn) = eliminate_regs (REG_NOTES (insn), 0, REG_NOTES (insn));
05b4c365 3237
32131a9c
RK
3238 return val;
3239}
3240
cb2afeb3
R
3241/* Loop through all elimination pairs.
3242 Recalculate the number not at initial offset.
3243
3244 Compute the maximum offset (minimum offset if the stack does not
3245 grow downward) for each elimination pair. */
3246
3247static void
3248update_eliminable_offsets ()
3249{
3250 struct elim_table *ep;
3251
3252 num_not_at_initial_offset = 0;
3253 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3254 {
3255 ep->previous_offset = ep->offset;
3256 if (ep->can_eliminate && ep->offset != ep->initial_offset)
3257 num_not_at_initial_offset++;
cb2afeb3
R
3258 }
3259}
3260
32131a9c
RK
3261/* Given X, a SET or CLOBBER of DEST, if DEST is the target of a register
3262 replacement we currently believe is valid, mark it as not eliminable if X
3263 modifies DEST in any way other than by adding a constant integer to it.
3264
3265 If DEST is the frame pointer, we do nothing because we assume that
3ec2ea3e
DE
3266 all assignments to the hard frame pointer are nonlocal gotos and are being
3267 done at a time when they are valid and do not disturb anything else.
32131a9c 3268 Some machines want to eliminate a fake argument pointer with either the
3ec2ea3e
DE
3269 frame or stack pointer. Assignments to the hard frame pointer must not
3270 prevent this elimination.
32131a9c
RK
3271
3272 Called via note_stores from reload before starting its passes to scan
3273 the insns of the function. */
3274
3275static void
84832317 3276mark_not_eliminable (dest, x, data)
32131a9c
RK
3277 rtx dest;
3278 rtx x;
84832317 3279 void *data ATTRIBUTE_UNUSED;
32131a9c 3280{
e51712db 3281 register unsigned int i;
32131a9c
RK
3282
3283 /* A SUBREG of a hard register here is just changing its mode. We should
3284 not see a SUBREG of an eliminable hard register, but check just in
3285 case. */
3286 if (GET_CODE (dest) == SUBREG)
3287 dest = SUBREG_REG (dest);
3288
3ec2ea3e 3289 if (dest == hard_frame_pointer_rtx)
32131a9c
RK
3290 return;
3291
3292 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
3293 if (reg_eliminate[i].can_eliminate && dest == reg_eliminate[i].to_rtx
3294 && (GET_CODE (x) != SET
3295 || GET_CODE (SET_SRC (x)) != PLUS
3296 || XEXP (SET_SRC (x), 0) != dest
3297 || GET_CODE (XEXP (SET_SRC (x), 1)) != CONST_INT))
3298 {
3299 reg_eliminate[i].can_eliminate_previous
3300 = reg_eliminate[i].can_eliminate = 0;
3301 num_eliminable--;
3302 }
3303}
09dd1133 3304
c47f5ea5
BS
3305/* Verify that the initial elimination offsets did not change since the
3306 last call to set_initial_elim_offsets. This is used to catch cases
3307 where something illegal happened during reload_as_needed that could
3308 cause incorrect code to be generated if we did not check for it. */
c8d8ed65 3309
c47f5ea5
BS
3310static void
3311verify_initial_elim_offsets ()
3312{
3313 int t;
3314
3315#ifdef ELIMINABLE_REGS
3316 struct elim_table *ep;
3317
3318 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3319 {
3320 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, t);
3321 if (t != ep->initial_offset)
3322 abort ();
3323 }
3324#else
3325 INITIAL_FRAME_POINTER_OFFSET (t);
3326 if (t != reg_eliminate[0].initial_offset)
3327 abort ();
05d10675 3328#endif
c47f5ea5
BS
3329}
3330
09dd1133 3331/* Reset all offsets on eliminable registers to their initial values. */
1d813780 3332
09dd1133
BS
3333static void
3334set_initial_elim_offsets ()
3335{
1f3b1e1a 3336 struct elim_table *ep = reg_eliminate;
09dd1133
BS
3337
3338#ifdef ELIMINABLE_REGS
1f3b1e1a 3339 for (; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
09dd1133
BS
3340 {
3341 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, ep->initial_offset);
1f3b1e1a 3342 ep->previous_offset = ep->offset = ep->initial_offset;
09dd1133
BS
3343 }
3344#else
1f3b1e1a
JL
3345 INITIAL_FRAME_POINTER_OFFSET (ep->initial_offset);
3346 ep->previous_offset = ep->offset = ep->initial_offset;
09dd1133
BS
3347#endif
3348
3349 num_not_at_initial_offset = 0;
1f3b1e1a 3350}
09dd1133 3351
1f3b1e1a
JL
3352/* Initialize the known label offsets.
3353 Set a known offset for each forced label to be at the initial offset
3354 of each elimination. We do this because we assume that all
3355 computed jumps occur from a location where each elimination is
3356 at its initial offset.
3357 For all other labels, show that we don't know the offsets. */
09dd1133 3358
1f3b1e1a
JL
3359static void
3360set_initial_label_offsets ()
3361{
3362 rtx x;
961192e1 3363 memset ((char *) &offsets_known_at[get_first_label_num ()], 0, num_labels);
09dd1133
BS
3364
3365 for (x = forced_labels; x; x = XEXP (x, 1))
3366 if (XEXP (x, 0))
3367 set_label_offsets (XEXP (x, 0), NULL_RTX, 1);
3368}
3369
1f3b1e1a
JL
3370/* Set all elimination offsets to the known values for the code label given
3371 by INSN. */
1d813780 3372
1f3b1e1a
JL
3373static void
3374set_offsets_for_label (insn)
3375 rtx insn;
3376{
973838fd 3377 unsigned int i;
1f3b1e1a
JL
3378 int label_nr = CODE_LABEL_NUMBER (insn);
3379 struct elim_table *ep;
3380
3381 num_not_at_initial_offset = 0;
3382 for (i = 0, ep = reg_eliminate; i < NUM_ELIMINABLE_REGS; ep++, i++)
3383 {
3384 ep->offset = ep->previous_offset = offsets_at[label_nr][i];
3385 if (ep->can_eliminate && ep->offset != ep->initial_offset)
3386 num_not_at_initial_offset++;
3387 }
3388}
3389
09dd1133
BS
3390/* See if anything that happened changes which eliminations are valid.
3391 For example, on the Sparc, whether or not the frame pointer can
3392 be eliminated can depend on what registers have been used. We need
3393 not check some conditions again (such as flag_omit_frame_pointer)
3394 since they can't have changed. */
3395
3396static void
3397update_eliminables (pset)
3398 HARD_REG_SET *pset;
3399{
3400#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
3401 int previous_frame_pointer_needed = frame_pointer_needed;
3402#endif
3403 struct elim_table *ep;
3404
3405 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3406 if ((ep->from == HARD_FRAME_POINTER_REGNUM && FRAME_POINTER_REQUIRED)
3407#ifdef ELIMINABLE_REGS
3408 || ! CAN_ELIMINATE (ep->from, ep->to)
3409#endif
3410 )
3411 ep->can_eliminate = 0;
3412
3413 /* Look for the case where we have discovered that we can't replace
3414 register A with register B and that means that we will now be
3415 trying to replace register A with register C. This means we can
3416 no longer replace register C with register B and we need to disable
3417 such an elimination, if it exists. This occurs often with A == ap,
3418 B == sp, and C == fp. */
3419
3420 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3421 {
3422 struct elim_table *op;
3423 register int new_to = -1;
3424
3425 if (! ep->can_eliminate && ep->can_eliminate_previous)
3426 {
3427 /* Find the current elimination for ep->from, if there is a
3428 new one. */
3429 for (op = reg_eliminate;
3430 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3431 if (op->from == ep->from && op->can_eliminate)
3432 {
3433 new_to = op->to;
3434 break;
3435 }
3436
3437 /* See if there is an elimination of NEW_TO -> EP->TO. If so,
3438 disable it. */
3439 for (op = reg_eliminate;
3440 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3441 if (op->from == new_to && op->to == ep->to)
3442 op->can_eliminate = 0;
3443 }
3444 }
3445
3446 /* See if any registers that we thought we could eliminate the previous
3447 time are no longer eliminable. If so, something has changed and we
3448 must spill the register. Also, recompute the number of eliminable
3449 registers and see if the frame pointer is needed; it is if there is
3450 no elimination of the frame pointer that we can perform. */
3451
3452 frame_pointer_needed = 1;
3453 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3454 {
3455 if (ep->can_eliminate && ep->from == FRAME_POINTER_REGNUM
3456 && ep->to != HARD_FRAME_POINTER_REGNUM)
3457 frame_pointer_needed = 0;
3458
3459 if (! ep->can_eliminate && ep->can_eliminate_previous)
3460 {
3461 ep->can_eliminate_previous = 0;
3462 SET_HARD_REG_BIT (*pset, ep->from);
3463 num_eliminable--;
3464 }
3465 }
3466
3467#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
3468 /* If we didn't need a frame pointer last time, but we do now, spill
3469 the hard frame pointer. */
3470 if (frame_pointer_needed && ! previous_frame_pointer_needed)
3471 SET_HARD_REG_BIT (*pset, HARD_FRAME_POINTER_REGNUM);
3472#endif
3473}
3474
3475/* Initialize the table of registers to eliminate. */
1d813780 3476
09dd1133
BS
3477static void
3478init_elim_table ()
3479{
3480 struct elim_table *ep;
590cf94d
KG
3481#ifdef ELIMINABLE_REGS
3482 struct elim_table_1 *ep1;
3483#endif
09dd1133 3484
590cf94d 3485 if (!reg_eliminate)
ad85216e 3486 reg_eliminate = (struct elim_table *)
1d7254c5 3487 xcalloc (sizeof (struct elim_table), NUM_ELIMINABLE_REGS);
05d10675 3488
09dd1133
BS
3489 /* Does this function require a frame pointer? */
3490
3491 frame_pointer_needed = (! flag_omit_frame_pointer
3492#ifdef EXIT_IGNORE_STACK
3493 /* ?? If EXIT_IGNORE_STACK is set, we will not save
3494 and restore sp for alloca. So we can't eliminate
3495 the frame pointer in that case. At some point,
3496 we should improve this by emitting the
3497 sp-adjusting insns for this case. */
3498 || (current_function_calls_alloca
3499 && EXIT_IGNORE_STACK)
3500#endif
3501 || FRAME_POINTER_REQUIRED);
3502
3503 num_eliminable = 0;
3504
3505#ifdef ELIMINABLE_REGS
590cf94d
KG
3506 for (ep = reg_eliminate, ep1 = reg_eliminate_1;
3507 ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++, ep1++)
09dd1133 3508 {
590cf94d
KG
3509 ep->from = ep1->from;
3510 ep->to = ep1->to;
09dd1133
BS
3511 ep->can_eliminate = ep->can_eliminate_previous
3512 = (CAN_ELIMINATE (ep->from, ep->to)
3513 && ! (ep->to == STACK_POINTER_REGNUM && frame_pointer_needed));
3514 }
3515#else
590cf94d
KG
3516 reg_eliminate[0].from = reg_eliminate_1[0].from;
3517 reg_eliminate[0].to = reg_eliminate_1[0].to;
09dd1133
BS
3518 reg_eliminate[0].can_eliminate = reg_eliminate[0].can_eliminate_previous
3519 = ! frame_pointer_needed;
3520#endif
3521
3522 /* Count the number of eliminable registers and build the FROM and TO
3523 REG rtx's. Note that code in gen_rtx will cause, e.g.,
3524 gen_rtx (REG, Pmode, STACK_POINTER_REGNUM) to equal stack_pointer_rtx.
3525 We depend on this. */
3526 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3527 {
3528 num_eliminable += ep->can_eliminate;
3529 ep->from_rtx = gen_rtx_REG (Pmode, ep->from);
3530 ep->to_rtx = gen_rtx_REG (Pmode, ep->to);
3531 }
3532}
32131a9c
RK
3533\f
3534/* Kick all pseudos out of hard register REGNO.
32131a9c
RK
3535
3536 If CANT_ELIMINATE is nonzero, it means that we are doing this spill
3537 because we found we can't eliminate some register. In the case, no pseudos
3538 are allowed to be in the register, even if they are only in a block that
3539 doesn't require spill registers, unlike the case when we are spilling this
3540 hard reg to produce another spill register.
3541
3542 Return nonzero if any pseudos needed to be kicked out. */
3543
03acd8f8 3544static void
e04ca094 3545spill_hard_reg (regno, cant_eliminate)
770ae6cc 3546 unsigned int regno;
32131a9c
RK
3547 int cant_eliminate;
3548{
32131a9c
RK
3549 register int i;
3550
9ff3516a 3551 if (cant_eliminate)
03acd8f8
BS
3552 {
3553 SET_HARD_REG_BIT (bad_spill_regs_global, regno);
3554 regs_ever_live[regno] = 1;
3555 }
9ff3516a 3556
32131a9c
RK
3557 /* Spill every pseudo reg that was allocated to this reg
3558 or to something that overlaps this reg. */
3559
3560 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
3561 if (reg_renumber[i] >= 0
770ae6cc
RK
3562 && (unsigned int) reg_renumber[i] <= regno
3563 && ((unsigned int) reg_renumber[i]
3564 + HARD_REGNO_NREGS ((unsigned int) reg_renumber[i],
32131a9c
RK
3565 PSEUDO_REGNO_MODE (i))
3566 > regno))
f5d8c9f4 3567 SET_REGNO_REG_SET (&spilled_pseudos, i);
03acd8f8 3568}
32131a9c 3569
03acd8f8
BS
3570/* I'm getting weird preprocessor errors if I use IOR_HARD_REG_SET
3571 from within EXECUTE_IF_SET_IN_REG_SET. Hence this awkwardness. */
770ae6cc 3572
03acd8f8
BS
3573static void
3574ior_hard_reg_set (set1, set2)
3575 HARD_REG_SET *set1, *set2;
3576{
3577 IOR_HARD_REG_SET (*set1, *set2);
3578}
05d10675 3579
03acd8f8
BS
3580/* After find_reload_regs has been run for all insn that need reloads,
3581 and/or spill_hard_regs was called, this function is used to actually
3582 spill pseudo registers and try to reallocate them. It also sets up the
3583 spill_regs array for use by choose_reload_regs. */
a8fdc208 3584
03acd8f8 3585static int
e04ca094 3586finish_spills (global)
03acd8f8 3587 int global;
03acd8f8
BS
3588{
3589 struct insn_chain *chain;
3590 int something_changed = 0;
3591 int i;
3592
3593 /* Build the spill_regs array for the function. */
3594 /* If there are some registers still to eliminate and one of the spill regs
3595 wasn't ever used before, additional stack space may have to be
3596 allocated to store this register. Thus, we may have changed the offset
3597 between the stack and frame pointers, so mark that something has changed.
32131a9c 3598
03acd8f8
BS
3599 One might think that we need only set VAL to 1 if this is a call-used
3600 register. However, the set of registers that must be saved by the
3601 prologue is not identical to the call-used set. For example, the
3602 register used by the call insn for the return PC is a call-used register,
3603 but must be saved by the prologue. */
3604
3605 n_spills = 0;
3606 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3607 if (TEST_HARD_REG_BIT (used_spill_regs, i))
3608 {
3609 spill_reg_order[i] = n_spills;
3610 spill_regs[n_spills++] = i;
3611 if (num_eliminable && ! regs_ever_live[i])
3612 something_changed = 1;
3613 regs_ever_live[i] = 1;
3614 }
3615 else
3616 spill_reg_order[i] = -1;
3617
efc9bd41
RK
3618 EXECUTE_IF_SET_IN_REG_SET
3619 (&spilled_pseudos, FIRST_PSEUDO_REGISTER, i,
3620 {
3621 /* Record the current hard register the pseudo is allocated to in
3622 pseudo_previous_regs so we avoid reallocating it to the same
3623 hard reg in a later pass. */
3624 if (reg_renumber[i] < 0)
3625 abort ();
3626
3627 SET_HARD_REG_BIT (pseudo_previous_regs[i], reg_renumber[i]);
3628 /* Mark it as no longer having a hard register home. */
3629 reg_renumber[i] = -1;
3630 /* We will need to scan everything again. */
3631 something_changed = 1;
3632 });
7609e720 3633
03acd8f8
BS
3634 /* Retry global register allocation if possible. */
3635 if (global)
3636 {
961192e1 3637 memset ((char *) pseudo_forbidden_regs, 0, max_regno * sizeof (HARD_REG_SET));
03acd8f8
BS
3638 /* For every insn that needs reloads, set the registers used as spill
3639 regs in pseudo_forbidden_regs for every pseudo live across the
3640 insn. */
3641 for (chain = insns_need_reload; chain; chain = chain->next_need_reload)
3642 {
3643 EXECUTE_IF_SET_IN_REG_SET
239a0f5b 3644 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i,
03acd8f8
BS
3645 {
3646 ior_hard_reg_set (pseudo_forbidden_regs + i,
3647 &chain->used_spill_regs);
3648 });
3649 EXECUTE_IF_SET_IN_REG_SET
239a0f5b 3650 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i,
03acd8f8
BS
3651 {
3652 ior_hard_reg_set (pseudo_forbidden_regs + i,
3653 &chain->used_spill_regs);
3654 });
3655 }
7609e720 3656
03acd8f8
BS
3657 /* Retry allocating the spilled pseudos. For each reg, merge the
3658 various reg sets that indicate which hard regs can't be used,
3659 and call retry_global_alloc.
05d10675 3660 We change spill_pseudos here to only contain pseudos that did not
03acd8f8
BS
3661 get a new hard register. */
3662 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
3663 if (reg_old_renumber[i] != reg_renumber[i])
32131a9c 3664 {
03acd8f8
BS
3665 HARD_REG_SET forbidden;
3666 COPY_HARD_REG_SET (forbidden, bad_spill_regs_global);
3667 IOR_HARD_REG_SET (forbidden, pseudo_forbidden_regs[i]);
3668 IOR_HARD_REG_SET (forbidden, pseudo_previous_regs[i]);
3669 retry_global_alloc (i, forbidden);
3670 if (reg_renumber[i] >= 0)
f5d8c9f4 3671 CLEAR_REGNO_REG_SET (&spilled_pseudos, i);
32131a9c 3672 }
03acd8f8 3673 }
7609e720 3674
03acd8f8
BS
3675 /* Fix up the register information in the insn chain.
3676 This involves deleting those of the spilled pseudos which did not get
3677 a new hard register home from the live_{before,after} sets. */
7609e720
BS
3678 for (chain = reload_insn_chain; chain; chain = chain->next)
3679 {
03acd8f8
BS
3680 HARD_REG_SET used_by_pseudos;
3681 HARD_REG_SET used_by_pseudos2;
3682
239a0f5b
BS
3683 AND_COMPL_REG_SET (&chain->live_throughout, &spilled_pseudos);
3684 AND_COMPL_REG_SET (&chain->dead_or_set, &spilled_pseudos);
03acd8f8
BS
3685
3686 /* Mark any unallocated hard regs as available for spills. That
3687 makes inheritance work somewhat better. */
3688 if (chain->need_reload)
3689 {
239a0f5b
BS
3690 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
3691 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
03acd8f8
BS
3692 IOR_HARD_REG_SET (used_by_pseudos, used_by_pseudos2);
3693
3694 /* Save the old value for the sanity test below. */
3695 COPY_HARD_REG_SET (used_by_pseudos2, chain->used_spill_regs);
3696
239a0f5b
BS
3697 compute_use_by_pseudos (&used_by_pseudos, &chain->live_throughout);
3698 compute_use_by_pseudos (&used_by_pseudos, &chain->dead_or_set);
03acd8f8
BS
3699 COMPL_HARD_REG_SET (chain->used_spill_regs, used_by_pseudos);
3700 AND_HARD_REG_SET (chain->used_spill_regs, used_spill_regs);
3701
3702 /* Make sure we only enlarge the set. */
3703 GO_IF_HARD_REG_SUBSET (used_by_pseudos2, chain->used_spill_regs, ok);
3704 abort ();
3705 ok:;
3706 }
7609e720 3707 }
03acd8f8
BS
3708
3709 /* Let alter_reg modify the reg rtx's for the modified pseudos. */
3710 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
3711 {
3712 int regno = reg_renumber[i];
3713 if (reg_old_renumber[i] == regno)
3714 continue;
05d10675 3715
03acd8f8
BS
3716 alter_reg (i, reg_old_renumber[i]);
3717 reg_old_renumber[i] = regno;
e04ca094 3718 if (rtl_dump_file)
03acd8f8
BS
3719 {
3720 if (regno == -1)
e04ca094 3721 fprintf (rtl_dump_file, " Register %d now on stack.\n\n", i);
03acd8f8 3722 else
e04ca094 3723 fprintf (rtl_dump_file, " Register %d now in %d.\n\n",
03acd8f8
BS
3724 i, reg_renumber[i]);
3725 }
3726 }
3727
3728 return something_changed;
7609e720 3729}
32131a9c 3730\f
05d10675 3731/* Find all paradoxical subregs within X and update reg_max_ref_width.
56f58d3a
RK
3732 Also mark any hard registers used to store user variables as
3733 forbidden from being used for spill registers. */
32131a9c
RK
3734
3735static void
3736scan_paradoxical_subregs (x)
3737 register rtx x;
3738{
3739 register int i;
6f7d635c 3740 register const char *fmt;
32131a9c
RK
3741 register enum rtx_code code = GET_CODE (x);
3742
3743 switch (code)
3744 {
56f58d3a 3745 case REG:
03acd8f8 3746#if 0
e9a25f70 3747 if (SMALL_REGISTER_CLASSES && REGNO (x) < FIRST_PSEUDO_REGISTER
f95182a4 3748 && REG_USERVAR_P (x))
03acd8f8
BS
3749 SET_HARD_REG_BIT (bad_spill_regs_global, REGNO (x));
3750#endif
56f58d3a
RK
3751 return;
3752
32131a9c
RK
3753 case CONST_INT:
3754 case CONST:
3755 case SYMBOL_REF:
3756 case LABEL_REF:
3757 case CONST_DOUBLE:
3758 case CC0:
3759 case PC:
32131a9c
RK
3760 case USE:
3761 case CLOBBER:
3762 return;
3763
3764 case SUBREG:
3765 if (GET_CODE (SUBREG_REG (x)) == REG
3766 && GET_MODE_SIZE (GET_MODE (x)) > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
3767 reg_max_ref_width[REGNO (SUBREG_REG (x))]
3768 = GET_MODE_SIZE (GET_MODE (x));
3769 return;
05d10675 3770
e9a25f70
JL
3771 default:
3772 break;
32131a9c
RK
3773 }
3774
3775 fmt = GET_RTX_FORMAT (code);
3776 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3777 {
3778 if (fmt[i] == 'e')
3779 scan_paradoxical_subregs (XEXP (x, i));
3780 else if (fmt[i] == 'E')
3781 {
3782 register int j;
1d7254c5 3783 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
32131a9c
RK
3784 scan_paradoxical_subregs (XVECEXP (x, i, j));
3785 }
3786 }
3787}
3788\f
32131a9c
RK
3789/* Reload pseudo-registers into hard regs around each insn as needed.
3790 Additional register load insns are output before the insn that needs it
3791 and perhaps store insns after insns that modify the reloaded pseudo reg.
3792
3793 reg_last_reload_reg and reg_reloaded_contents keep track of
d08ea79f 3794 which registers are already available in reload registers.
32131a9c
RK
3795 We update these for the reloads that we perform,
3796 as the insns are scanned. */
3797
3798static void
e04ca094 3799reload_as_needed (live_known)
32131a9c
RK
3800 int live_known;
3801{
7609e720 3802 struct insn_chain *chain;
553687c9 3803#if defined (AUTO_INC_DEC)
32131a9c 3804 register int i;
973838fd 3805#endif
32131a9c 3806 rtx x;
32131a9c 3807
961192e1
JM
3808 memset ((char *) spill_reg_rtx, 0, sizeof spill_reg_rtx);
3809 memset ((char *) spill_reg_store, 0, sizeof spill_reg_store);
ff154f78
MM
3810 reg_last_reload_reg = (rtx *) xcalloc (max_regno, sizeof (rtx));
3811 reg_has_output_reload = (char *) xmalloc (max_regno);
e6e52be0 3812 CLEAR_HARD_REG_SET (reg_reloaded_valid);
32131a9c 3813
1f3b1e1a 3814 set_initial_elim_offsets ();
32131a9c 3815
7609e720 3816 for (chain = reload_insn_chain; chain; chain = chain->next)
32131a9c 3817 {
03acd8f8 3818 rtx prev;
7609e720
BS
3819 rtx insn = chain->insn;
3820 rtx old_next = NEXT_INSN (insn);
32131a9c
RK
3821
3822 /* If we pass a label, copy the offsets from the label information
3823 into the current offsets of each elimination. */
3824 if (GET_CODE (insn) == CODE_LABEL)
1f3b1e1a 3825 set_offsets_for_label (insn);
32131a9c 3826
2c3c49de 3827 else if (INSN_P (insn))
32131a9c 3828 {
0639444f 3829 rtx oldpat = PATTERN (insn);
32131a9c 3830
2758481d
RS
3831 /* If this is a USE and CLOBBER of a MEM, ensure that any
3832 references to eliminable registers have been removed. */
3833
3834 if ((GET_CODE (PATTERN (insn)) == USE
3835 || GET_CODE (PATTERN (insn)) == CLOBBER)
3836 && GET_CODE (XEXP (PATTERN (insn), 0)) == MEM)
3837 XEXP (XEXP (PATTERN (insn), 0), 0)
3838 = eliminate_regs (XEXP (XEXP (PATTERN (insn), 0), 0),
29ae5012 3839 GET_MODE (XEXP (PATTERN (insn), 0)),
1914f5da 3840 NULL_RTX);
2758481d 3841
32131a9c
RK
3842 /* If we need to do register elimination processing, do so.
3843 This might delete the insn, in which case we are done. */
2b49ee39 3844 if ((num_eliminable || num_eliminable_invariants) && chain->need_elim)
32131a9c
RK
3845 {
3846 eliminate_regs_in_insn (insn, 1);
3847 if (GET_CODE (insn) == NOTE)
cb2afeb3
R
3848 {
3849 update_eliminable_offsets ();
3850 continue;
3851 }
32131a9c
RK
3852 }
3853
7609e720
BS
3854 /* If need_elim is nonzero but need_reload is zero, one might think
3855 that we could simply set n_reloads to 0. However, find_reloads
3856 could have done some manipulation of the insn (such as swapping
3857 commutative operands), and these manipulations are lost during
3858 the first pass for every insn that needs register elimination.
3859 So the actions of find_reloads must be redone here. */
3860
03acd8f8
BS
3861 if (! chain->need_elim && ! chain->need_reload
3862 && ! chain->need_operand_change)
32131a9c
RK
3863 n_reloads = 0;
3864 /* First find the pseudo regs that must be reloaded for this insn.
3865 This info is returned in the tables reload_... (see reload.h).
3866 Also modify the body of INSN by substituting RELOAD
3867 rtx's for those pseudo regs. */
3868 else
3869 {
961192e1 3870 memset (reg_has_output_reload, 0, max_regno);
32131a9c
RK
3871 CLEAR_HARD_REG_SET (reg_is_output_reload);
3872
3873 find_reloads (insn, 1, spill_indirect_levels, live_known,
3874 spill_reg_order);
3875 }
3876
3877 if (n_reloads > 0)
3878 {
cb2afeb3 3879 rtx next = NEXT_INSN (insn);
3c3eeea6 3880 rtx p;
32131a9c 3881
cb2afeb3
R
3882 prev = PREV_INSN (insn);
3883
32131a9c
RK
3884 /* Now compute which reload regs to reload them into. Perhaps
3885 reusing reload regs from previous insns, or else output
3886 load insns to reload them. Maybe output store insns too.
3887 Record the choices of reload reg in reload_reg_rtx. */
03acd8f8 3888 choose_reload_regs (chain);
32131a9c 3889
05d10675 3890 /* Merge any reloads that we didn't combine for fear of
546b63fb
RK
3891 increasing the number of spill registers needed but now
3892 discover can be safely merged. */
f95182a4
ILT
3893 if (SMALL_REGISTER_CLASSES)
3894 merge_assigned_reloads (insn);
546b63fb 3895
32131a9c
RK
3896 /* Generate the insns to reload operands into or out of
3897 their reload regs. */
e04ca094 3898 emit_reload_insns (chain);
32131a9c
RK
3899
3900 /* Substitute the chosen reload regs from reload_reg_rtx
3901 into the insn's body (or perhaps into the bodies of other
3902 load and store insn that we just made for reloading
3903 and that we moved the structure into). */
f759eb8b 3904 subst_reloads (insn);
3c3eeea6
RK
3905
3906 /* If this was an ASM, make sure that all the reload insns
3907 we have generated are valid. If not, give an error
3908 and delete them. */
3909
3910 if (asm_noperands (PATTERN (insn)) >= 0)
3911 for (p = NEXT_INSN (prev); p != next; p = NEXT_INSN (p))
2c3c49de 3912 if (p != insn && INSN_P (p)
3c3eeea6 3913 && (recog_memoized (p) < 0
0eadeb15 3914 || (extract_insn (p), ! constrain_operands (1))))
3c3eeea6
RK
3915 {
3916 error_for_asm (insn,
3917 "`asm' operand requires impossible reload");
3918 PUT_CODE (p, NOTE);
3919 NOTE_SOURCE_FILE (p) = 0;
3920 NOTE_LINE_NUMBER (p) = NOTE_INSN_DELETED;
3921 }
32131a9c 3922 }
5d7ef82a
BS
3923
3924 if (num_eliminable && chain->need_elim)
3925 update_eliminable_offsets ();
3926
32131a9c
RK
3927 /* Any previously reloaded spilled pseudo reg, stored in this insn,
3928 is no longer validly lying around to save a future reload.
3929 Note that this does not detect pseudos that were reloaded
3930 for this insn in order to be stored in
3931 (obeying register constraints). That is correct; such reload
3932 registers ARE still valid. */
84832317 3933 note_stores (oldpat, forget_old_reloads_1, NULL);
32131a9c
RK
3934
3935 /* There may have been CLOBBER insns placed after INSN. So scan
3936 between INSN and NEXT and use them to forget old reloads. */
7609e720 3937 for (x = NEXT_INSN (insn); x != old_next; x = NEXT_INSN (x))
32131a9c 3938 if (GET_CODE (x) == INSN && GET_CODE (PATTERN (x)) == CLOBBER)
84832317 3939 note_stores (PATTERN (x), forget_old_reloads_1, NULL);
32131a9c
RK
3940
3941#ifdef AUTO_INC_DEC
cb2afeb3
R
3942 /* Likewise for regs altered by auto-increment in this insn.
3943 REG_INC notes have been changed by reloading:
3944 find_reloads_address_1 records substitutions for them,
3945 which have been performed by subst_reloads above. */
3946 for (i = n_reloads - 1; i >= 0; i--)
3947 {
eceef4c9 3948 rtx in_reg = rld[i].in_reg;
cb2afeb3
R
3949 if (in_reg)
3950 {
3951 enum rtx_code code = GET_CODE (in_reg);
3952 /* PRE_INC / PRE_DEC will have the reload register ending up
3953 with the same value as the stack slot, but that doesn't
3954 hold true for POST_INC / POST_DEC. Either we have to
3955 convert the memory access to a true POST_INC / POST_DEC,
3956 or we can't use the reload register for inheritance. */
3957 if ((code == POST_INC || code == POST_DEC)
3958 && TEST_HARD_REG_BIT (reg_reloaded_valid,
eceef4c9 3959 REGNO (rld[i].reg_rtx))
04bbb0c5
JW
3960 /* Make sure it is the inc/dec pseudo, and not
3961 some other (e.g. output operand) pseudo. */
eceef4c9 3962 && (reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
04bbb0c5 3963 == REGNO (XEXP (in_reg, 0))))
05d10675 3964
cb2afeb3 3965 {
eceef4c9 3966 rtx reload_reg = rld[i].reg_rtx;
cb2afeb3
R
3967 enum machine_mode mode = GET_MODE (reload_reg);
3968 int n = 0;
3969 rtx p;
3970
3971 for (p = PREV_INSN (old_next); p != prev; p = PREV_INSN (p))
3972 {
3973 /* We really want to ignore REG_INC notes here, so
3974 use PATTERN (p) as argument to reg_set_p . */
3975 if (reg_set_p (reload_reg, PATTERN (p)))
3976 break;
4b983fdc 3977 n = count_occurrences (PATTERN (p), reload_reg, 0);
cb2afeb3
R
3978 if (! n)
3979 continue;
3980 if (n == 1)
f67c2384
JL
3981 {
3982 n = validate_replace_rtx (reload_reg,
3983 gen_rtx (code, mode,
3984 reload_reg),
3985 p);
3986
3987 /* We must also verify that the constraints
3988 are met after the replacement. */
3989 extract_insn (p);
3990 if (n)
3991 n = constrain_operands (1);
3992 else
3993 break;
3994
3995 /* If the constraints were not met, then
3996 undo the replacement. */
3997 if (!n)
3998 {
3999 validate_replace_rtx (gen_rtx (code, mode,
4000 reload_reg),
4001 reload_reg, p);
4002 break;
4003 }
05d10675 4004
f67c2384 4005 }
cb2afeb3
R
4006 break;
4007 }
4008 if (n == 1)
02eb1393
R
4009 {
4010 REG_NOTES (p)
4011 = gen_rtx_EXPR_LIST (REG_INC, reload_reg,
4012 REG_NOTES (p));
4013 /* Mark this as having an output reload so that the
4014 REG_INC processing code below won't invalidate
4015 the reload for inheritance. */
4016 SET_HARD_REG_BIT (reg_is_output_reload,
4017 REGNO (reload_reg));
4018 reg_has_output_reload[REGNO (XEXP (in_reg, 0))] = 1;
4019 }
cb2afeb3 4020 else
1d7254c5 4021 forget_old_reloads_1 (XEXP (in_reg, 0), NULL_RTX,
84832317 4022 NULL);
cb2afeb3 4023 }
02eb1393
R
4024 else if ((code == PRE_INC || code == PRE_DEC)
4025 && TEST_HARD_REG_BIT (reg_reloaded_valid,
eceef4c9 4026 REGNO (rld[i].reg_rtx))
02eb1393
R
4027 /* Make sure it is the inc/dec pseudo, and not
4028 some other (e.g. output operand) pseudo. */
eceef4c9 4029 && (reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
02eb1393
R
4030 == REGNO (XEXP (in_reg, 0))))
4031 {
4032 SET_HARD_REG_BIT (reg_is_output_reload,
eceef4c9 4033 REGNO (rld[i].reg_rtx));
02eb1393
R
4034 reg_has_output_reload[REGNO (XEXP (in_reg, 0))] = 1;
4035 }
cb2afeb3
R
4036 }
4037 }
02eb1393
R
4038 /* If a pseudo that got a hard register is auto-incremented,
4039 we must purge records of copying it into pseudos without
4040 hard registers. */
32131a9c
RK
4041 for (x = REG_NOTES (insn); x; x = XEXP (x, 1))
4042 if (REG_NOTE_KIND (x) == REG_INC)
4043 {
4044 /* See if this pseudo reg was reloaded in this insn.
4045 If so, its last-reload info is still valid
4046 because it is based on this insn's reload. */
4047 for (i = 0; i < n_reloads; i++)
eceef4c9 4048 if (rld[i].out == XEXP (x, 0))
32131a9c
RK
4049 break;
4050
08fb99fa 4051 if (i == n_reloads)
84832317 4052 forget_old_reloads_1 (XEXP (x, 0), NULL_RTX, NULL);
32131a9c
RK
4053 }
4054#endif
4055 }
4056 /* A reload reg's contents are unknown after a label. */
4057 if (GET_CODE (insn) == CODE_LABEL)
e6e52be0 4058 CLEAR_HARD_REG_SET (reg_reloaded_valid);
32131a9c
RK
4059
4060 /* Don't assume a reload reg is still good after a call insn
4061 if it is a call-used reg. */
546b63fb 4062 else if (GET_CODE (insn) == CALL_INSN)
e6e52be0 4063 AND_COMPL_HARD_REG_SET(reg_reloaded_valid, call_used_reg_set);
32131a9c 4064 }
ff154f78
MM
4065
4066 /* Clean up. */
4067 free (reg_last_reload_reg);
4068 free (reg_has_output_reload);
32131a9c
RK
4069}
4070
4071/* Discard all record of any value reloaded from X,
4072 or reloaded in X from someplace else;
4073 unless X is an output reload reg of the current insn.
4074
4075 X may be a hard reg (the reload reg)
4076 or it may be a pseudo reg that was reloaded from. */
4077
4078static void
84832317 4079forget_old_reloads_1 (x, ignored, data)
32131a9c 4080 rtx x;
487a6e06 4081 rtx ignored ATTRIBUTE_UNUSED;
84832317 4082 void *data ATTRIBUTE_UNUSED;
32131a9c 4083{
770ae6cc
RK
4084 unsigned int regno;
4085 unsigned int nr;
0a2e51a9
RS
4086 int offset = 0;
4087
ddef6bc7
JJ
4088 /* note_stores does give us subregs of hard regs,
4089 subreg_regno_offset will abort if it is not a hard reg. */
0a2e51a9
RS
4090 while (GET_CODE (x) == SUBREG)
4091 {
ddef6bc7
JJ
4092 offset += subreg_regno_offset (REGNO (SUBREG_REG (x)),
4093 GET_MODE (SUBREG_REG (x)),
4094 SUBREG_BYTE (x),
4095 GET_MODE (x));
0a2e51a9
RS
4096 x = SUBREG_REG (x);
4097 }
32131a9c
RK
4098
4099 if (GET_CODE (x) != REG)
4100 return;
4101
0a2e51a9 4102 regno = REGNO (x) + offset;
32131a9c
RK
4103
4104 if (regno >= FIRST_PSEUDO_REGISTER)
4105 nr = 1;
4106 else
4107 {
770ae6cc
RK
4108 unsigned int i;
4109
32131a9c
RK
4110 nr = HARD_REGNO_NREGS (regno, GET_MODE (x));
4111 /* Storing into a spilled-reg invalidates its contents.
4112 This can happen if a block-local pseudo is allocated to that reg
4113 and it wasn't spilled because this block's total need is 0.
4114 Then some insn might have an optional reload and use this reg. */
4115 for (i = 0; i < nr; i++)
e6e52be0
R
4116 /* But don't do this if the reg actually serves as an output
4117 reload reg in the current instruction. */
4118 if (n_reloads == 0
4119 || ! TEST_HARD_REG_BIT (reg_is_output_reload, regno + i))
5d77a50c
BS
4120 {
4121 CLEAR_HARD_REG_BIT (reg_reloaded_valid, regno + i);
4122 spill_reg_store[regno + i] = 0;
4123 }
32131a9c
RK
4124 }
4125
4126 /* Since value of X has changed,
4127 forget any value previously copied from it. */
4128
4129 while (nr-- > 0)
4130 /* But don't forget a copy if this is the output reload
4131 that establishes the copy's validity. */
4132 if (n_reloads == 0 || reg_has_output_reload[regno + nr] == 0)
4133 reg_last_reload_reg[regno + nr] = 0;
4134}
4135\f
32131a9c
RK
4136/* The following HARD_REG_SETs indicate when each hard register is
4137 used for a reload of various parts of the current insn. */
4138
9e3a9cf2
BS
4139/* If reg is unavailable for all reloads. */
4140static HARD_REG_SET reload_reg_unavailable;
32131a9c
RK
4141/* If reg is in use as a reload reg for a RELOAD_OTHER reload. */
4142static HARD_REG_SET reload_reg_used;
546b63fb
RK
4143/* If reg is in use for a RELOAD_FOR_INPUT_ADDRESS reload for operand I. */
4144static HARD_REG_SET reload_reg_used_in_input_addr[MAX_RECOG_OPERANDS];
47c8cf91
ILT
4145/* If reg is in use for a RELOAD_FOR_INPADDR_ADDRESS reload for operand I. */
4146static HARD_REG_SET reload_reg_used_in_inpaddr_addr[MAX_RECOG_OPERANDS];
546b63fb
RK
4147/* If reg is in use for a RELOAD_FOR_OUTPUT_ADDRESS reload for operand I. */
4148static HARD_REG_SET reload_reg_used_in_output_addr[MAX_RECOG_OPERANDS];
47c8cf91
ILT
4149/* If reg is in use for a RELOAD_FOR_OUTADDR_ADDRESS reload for operand I. */
4150static HARD_REG_SET reload_reg_used_in_outaddr_addr[MAX_RECOG_OPERANDS];
546b63fb
RK
4151/* If reg is in use for a RELOAD_FOR_INPUT reload for operand I. */
4152static HARD_REG_SET reload_reg_used_in_input[MAX_RECOG_OPERANDS];
4153/* If reg is in use for a RELOAD_FOR_OUTPUT reload for operand I. */
4154static HARD_REG_SET reload_reg_used_in_output[MAX_RECOG_OPERANDS];
32131a9c
RK
4155/* If reg is in use for a RELOAD_FOR_OPERAND_ADDRESS reload. */
4156static HARD_REG_SET reload_reg_used_in_op_addr;
893bc853
RK
4157/* If reg is in use for a RELOAD_FOR_OPADDR_ADDR reload. */
4158static HARD_REG_SET reload_reg_used_in_op_addr_reload;
546b63fb
RK
4159/* If reg is in use for a RELOAD_FOR_INSN reload. */
4160static HARD_REG_SET reload_reg_used_in_insn;
4161/* If reg is in use for a RELOAD_FOR_OTHER_ADDRESS reload. */
4162static HARD_REG_SET reload_reg_used_in_other_addr;
32131a9c
RK
4163
4164/* If reg is in use as a reload reg for any sort of reload. */
4165static HARD_REG_SET reload_reg_used_at_all;
4166
be7ae2a4
RK
4167/* If reg is use as an inherited reload. We just mark the first register
4168 in the group. */
4169static HARD_REG_SET reload_reg_used_for_inherit;
4170
f1db3576
JL
4171/* Records which hard regs are used in any way, either as explicit use or
4172 by being allocated to a pseudo during any point of the current insn. */
4173static HARD_REG_SET reg_used_in_insn;
297927a8 4174
546b63fb
RK
4175/* Mark reg REGNO as in use for a reload of the sort spec'd by OPNUM and
4176 TYPE. MODE is used to indicate how many consecutive regs are
4177 actually used. */
32131a9c
RK
4178
4179static void
546b63fb 4180mark_reload_reg_in_use (regno, opnum, type, mode)
770ae6cc 4181 unsigned int regno;
546b63fb
RK
4182 int opnum;
4183 enum reload_type type;
32131a9c
RK
4184 enum machine_mode mode;
4185{
770ae6cc
RK
4186 unsigned int nregs = HARD_REGNO_NREGS (regno, mode);
4187 unsigned int i;
32131a9c
RK
4188
4189 for (i = regno; i < nregs + regno; i++)
4190 {
546b63fb 4191 switch (type)
32131a9c
RK
4192 {
4193 case RELOAD_OTHER:
4194 SET_HARD_REG_BIT (reload_reg_used, i);
4195 break;
4196
546b63fb
RK
4197 case RELOAD_FOR_INPUT_ADDRESS:
4198 SET_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], i);
32131a9c
RK
4199 break;
4200
47c8cf91
ILT
4201 case RELOAD_FOR_INPADDR_ADDRESS:
4202 SET_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], i);
4203 break;
4204
546b63fb
RK
4205 case RELOAD_FOR_OUTPUT_ADDRESS:
4206 SET_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], i);
32131a9c
RK
4207 break;
4208
47c8cf91
ILT
4209 case RELOAD_FOR_OUTADDR_ADDRESS:
4210 SET_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], i);
4211 break;
4212
32131a9c
RK
4213 case RELOAD_FOR_OPERAND_ADDRESS:
4214 SET_HARD_REG_BIT (reload_reg_used_in_op_addr, i);
4215 break;
4216
893bc853
RK
4217 case RELOAD_FOR_OPADDR_ADDR:
4218 SET_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, i);
4219 break;
4220
546b63fb
RK
4221 case RELOAD_FOR_OTHER_ADDRESS:
4222 SET_HARD_REG_BIT (reload_reg_used_in_other_addr, i);
4223 break;
4224
32131a9c 4225 case RELOAD_FOR_INPUT:
546b63fb 4226 SET_HARD_REG_BIT (reload_reg_used_in_input[opnum], i);
32131a9c
RK
4227 break;
4228
4229 case RELOAD_FOR_OUTPUT:
546b63fb
RK
4230 SET_HARD_REG_BIT (reload_reg_used_in_output[opnum], i);
4231 break;
4232
4233 case RELOAD_FOR_INSN:
4234 SET_HARD_REG_BIT (reload_reg_used_in_insn, i);
32131a9c
RK
4235 break;
4236 }
4237
4238 SET_HARD_REG_BIT (reload_reg_used_at_all, i);
4239 }
4240}
4241
be7ae2a4
RK
4242/* Similarly, but show REGNO is no longer in use for a reload. */
4243
4244static void
4245clear_reload_reg_in_use (regno, opnum, type, mode)
770ae6cc 4246 unsigned int regno;
be7ae2a4
RK
4247 int opnum;
4248 enum reload_type type;
4249 enum machine_mode mode;
4250{
770ae6cc
RK
4251 unsigned int nregs = HARD_REGNO_NREGS (regno, mode);
4252 unsigned int start_regno, end_regno, r;
be7ae2a4 4253 int i;
cb2afeb3
R
4254 /* A complication is that for some reload types, inheritance might
4255 allow multiple reloads of the same types to share a reload register.
4256 We set check_opnum if we have to check only reloads with the same
4257 operand number, and check_any if we have to check all reloads. */
4258 int check_opnum = 0;
4259 int check_any = 0;
4260 HARD_REG_SET *used_in_set;
be7ae2a4 4261
cb2afeb3 4262 switch (type)
be7ae2a4 4263 {
cb2afeb3
R
4264 case RELOAD_OTHER:
4265 used_in_set = &reload_reg_used;
4266 break;
be7ae2a4 4267
cb2afeb3
R
4268 case RELOAD_FOR_INPUT_ADDRESS:
4269 used_in_set = &reload_reg_used_in_input_addr[opnum];
4270 break;
be7ae2a4 4271
cb2afeb3
R
4272 case RELOAD_FOR_INPADDR_ADDRESS:
4273 check_opnum = 1;
4274 used_in_set = &reload_reg_used_in_inpaddr_addr[opnum];
4275 break;
47c8cf91 4276
cb2afeb3
R
4277 case RELOAD_FOR_OUTPUT_ADDRESS:
4278 used_in_set = &reload_reg_used_in_output_addr[opnum];
4279 break;
be7ae2a4 4280
cb2afeb3
R
4281 case RELOAD_FOR_OUTADDR_ADDRESS:
4282 check_opnum = 1;
4283 used_in_set = &reload_reg_used_in_outaddr_addr[opnum];
4284 break;
47c8cf91 4285
cb2afeb3
R
4286 case RELOAD_FOR_OPERAND_ADDRESS:
4287 used_in_set = &reload_reg_used_in_op_addr;
4288 break;
be7ae2a4 4289
cb2afeb3
R
4290 case RELOAD_FOR_OPADDR_ADDR:
4291 check_any = 1;
4292 used_in_set = &reload_reg_used_in_op_addr_reload;
4293 break;
893bc853 4294
cb2afeb3
R
4295 case RELOAD_FOR_OTHER_ADDRESS:
4296 used_in_set = &reload_reg_used_in_other_addr;
4297 check_any = 1;
4298 break;
be7ae2a4 4299
cb2afeb3
R
4300 case RELOAD_FOR_INPUT:
4301 used_in_set = &reload_reg_used_in_input[opnum];
4302 break;
be7ae2a4 4303
cb2afeb3
R
4304 case RELOAD_FOR_OUTPUT:
4305 used_in_set = &reload_reg_used_in_output[opnum];
4306 break;
be7ae2a4 4307
cb2afeb3
R
4308 case RELOAD_FOR_INSN:
4309 used_in_set = &reload_reg_used_in_insn;
4310 break;
4311 default:
4312 abort ();
4313 }
4314 /* We resolve conflicts with remaining reloads of the same type by
4315 excluding the intervals of of reload registers by them from the
4316 interval of freed reload registers. Since we only keep track of
4317 one set of interval bounds, we might have to exclude somewhat
4318 more then what would be necessary if we used a HARD_REG_SET here.
4319 But this should only happen very infrequently, so there should
4320 be no reason to worry about it. */
05d10675 4321
cb2afeb3
R
4322 start_regno = regno;
4323 end_regno = regno + nregs;
4324 if (check_opnum || check_any)
4325 {
4326 for (i = n_reloads - 1; i >= 0; i--)
4327 {
eceef4c9
BS
4328 if (rld[i].when_needed == type
4329 && (check_any || rld[i].opnum == opnum)
4330 && rld[i].reg_rtx)
cb2afeb3 4331 {
770ae6cc
RK
4332 unsigned int conflict_start = true_regnum (rld[i].reg_rtx);
4333 unsigned int conflict_end
cb2afeb3 4334 = (conflict_start
8ec450a4 4335 + HARD_REGNO_NREGS (conflict_start, rld[i].mode));
cb2afeb3
R
4336
4337 /* If there is an overlap with the first to-be-freed register,
4338 adjust the interval start. */
4339 if (conflict_start <= start_regno && conflict_end > start_regno)
4340 start_regno = conflict_end;
4341 /* Otherwise, if there is a conflict with one of the other
4342 to-be-freed registers, adjust the interval end. */
4343 if (conflict_start > start_regno && conflict_start < end_regno)
4344 end_regno = conflict_start;
4345 }
be7ae2a4
RK
4346 }
4347 }
770ae6cc
RK
4348
4349 for (r = start_regno; r < end_regno; r++)
4350 CLEAR_HARD_REG_BIT (*used_in_set, r);
be7ae2a4
RK
4351}
4352
32131a9c 4353/* 1 if reg REGNO is free as a reload reg for a reload of the sort
546b63fb 4354 specified by OPNUM and TYPE. */
32131a9c
RK
4355
4356static int
546b63fb 4357reload_reg_free_p (regno, opnum, type)
770ae6cc 4358 unsigned int regno;
546b63fb
RK
4359 int opnum;
4360 enum reload_type type;
32131a9c 4361{
546b63fb
RK
4362 int i;
4363
2edc8d65 4364 /* In use for a RELOAD_OTHER means it's not available for anything. */
9e3a9cf2
BS
4365 if (TEST_HARD_REG_BIT (reload_reg_used, regno)
4366 || TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
32131a9c 4367 return 0;
546b63fb
RK
4368
4369 switch (type)
32131a9c
RK
4370 {
4371 case RELOAD_OTHER:
2edc8d65
RK
4372 /* In use for anything means we can't use it for RELOAD_OTHER. */
4373 if (TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno)
224f1d71
RK
4374 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4375 || TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
4376 return 0;
4377
4378 for (i = 0; i < reload_n_operands; i++)
4379 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
47c8cf91 4380 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
224f1d71 4381 || TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
47c8cf91 4382 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
224f1d71
RK
4383 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
4384 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4385 return 0;
4386
4387 return 1;
32131a9c 4388
32131a9c 4389 case RELOAD_FOR_INPUT:
546b63fb
RK
4390 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4391 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno))
4392 return 0;
4393
893bc853
RK
4394 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
4395 return 0;
4396
546b63fb
RK
4397 /* If it is used for some other input, can't use it. */
4398 for (i = 0; i < reload_n_operands; i++)
4399 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4400 return 0;
4401
4402 /* If it is used in a later operand's address, can't use it. */
4403 for (i = opnum + 1; i < reload_n_operands; i++)
47c8cf91
ILT
4404 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4405 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
546b63fb
RK
4406 return 0;
4407
4408 return 1;
4409
4410 case RELOAD_FOR_INPUT_ADDRESS:
4411 /* Can't use a register if it is used for an input address for this
4412 operand or used as an input in an earlier one. */
47c8cf91
ILT
4413 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], regno)
4414 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
4415 return 0;
4416
4417 for (i = 0; i < opnum; i++)
4418 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4419 return 0;
4420
4421 return 1;
4422
4423 case RELOAD_FOR_INPADDR_ADDRESS:
4424 /* Can't use a register if it is used for an input address
05d10675
BS
4425 for this operand or used as an input in an earlier
4426 one. */
47c8cf91 4427 if (TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
546b63fb
RK
4428 return 0;
4429
4430 for (i = 0; i < opnum; i++)
4431 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4432 return 0;
4433
4434 return 1;
4435
4436 case RELOAD_FOR_OUTPUT_ADDRESS:
4437 /* Can't use a register if it is used for an output address for this
4438 operand or used as an output in this or a later operand. */
4439 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], regno))
4440 return 0;
4441
4442 for (i = opnum; i < reload_n_operands; i++)
4443 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4444 return 0;
4445
4446 return 1;
4447
47c8cf91
ILT
4448 case RELOAD_FOR_OUTADDR_ADDRESS:
4449 /* Can't use a register if it is used for an output address
05d10675
BS
4450 for this operand or used as an output in this or a
4451 later operand. */
47c8cf91
ILT
4452 if (TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], regno))
4453 return 0;
4454
4455 for (i = opnum; i < reload_n_operands; i++)
4456 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4457 return 0;
4458
4459 return 1;
4460
32131a9c 4461 case RELOAD_FOR_OPERAND_ADDRESS:
546b63fb
RK
4462 for (i = 0; i < reload_n_operands; i++)
4463 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4464 return 0;
4465
4466 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4467 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
4468
893bc853
RK
4469 case RELOAD_FOR_OPADDR_ADDR:
4470 for (i = 0; i < reload_n_operands; i++)
05d10675
BS
4471 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4472 return 0;
893bc853 4473
a94ce333 4474 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno));
893bc853 4475
32131a9c 4476 case RELOAD_FOR_OUTPUT:
546b63fb
RK
4477 /* This cannot share a register with RELOAD_FOR_INSN reloads, other
4478 outputs, or an operand address for this or an earlier output. */
4479 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
4480 return 0;
4481
4482 for (i = 0; i < reload_n_operands; i++)
4483 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4484 return 0;
4485
4486 for (i = 0; i <= opnum; i++)
47c8cf91
ILT
4487 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4488 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
546b63fb
RK
4489 return 0;
4490
4491 return 1;
4492
4493 case RELOAD_FOR_INSN:
4494 for (i = 0; i < reload_n_operands; i++)
4495 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
4496 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4497 return 0;
4498
4499 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4500 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
4501
4502 case RELOAD_FOR_OTHER_ADDRESS:
4503 return ! TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno);
32131a9c
RK
4504 }
4505 abort ();
4506}
4507
32131a9c 4508/* Return 1 if the value in reload reg REGNO, as used by a reload
546b63fb 4509 needed for the part of the insn specified by OPNUM and TYPE,
32131a9c
RK
4510 is still available in REGNO at the end of the insn.
4511
4512 We can assume that the reload reg was already tested for availability
4513 at the time it is needed, and we should not check this again,
4514 in case the reg has already been marked in use. */
4515
4516static int
546b63fb 4517reload_reg_reaches_end_p (regno, opnum, type)
770ae6cc 4518 unsigned int regno;
546b63fb
RK
4519 int opnum;
4520 enum reload_type type;
32131a9c 4521{
546b63fb
RK
4522 int i;
4523
4524 switch (type)
32131a9c
RK
4525 {
4526 case RELOAD_OTHER:
4527 /* Since a RELOAD_OTHER reload claims the reg for the entire insn,
4528 its value must reach the end. */
4529 return 1;
4530
4531 /* If this use is for part of the insn,
05d10675 4532 its value reaches if no subsequent part uses the same register.
546b63fb
RK
4533 Just like the above function, don't try to do this with lots
4534 of fallthroughs. */
4535
4536 case RELOAD_FOR_OTHER_ADDRESS:
4537 /* Here we check for everything else, since these don't conflict
4538 with anything else and everything comes later. */
4539
4540 for (i = 0; i < reload_n_operands; i++)
4541 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
47c8cf91 4542 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
546b63fb
RK
4543 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno)
4544 || TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
47c8cf91 4545 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
546b63fb
RK
4546 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4547 return 0;
4548
4549 return (! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4550 && ! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4551 && ! TEST_HARD_REG_BIT (reload_reg_used, regno));
4552
4553 case RELOAD_FOR_INPUT_ADDRESS:
47c8cf91 4554 case RELOAD_FOR_INPADDR_ADDRESS:
546b63fb
RK
4555 /* Similar, except that we check only for this and subsequent inputs
4556 and the address of only subsequent inputs and we do not need
4557 to check for RELOAD_OTHER objects since they are known not to
4558 conflict. */
4559
4560 for (i = opnum; i < reload_n_operands; i++)
4561 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4562 return 0;
4563
4564 for (i = opnum + 1; i < reload_n_operands; i++)
47c8cf91
ILT
4565 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4566 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
546b63fb
RK
4567 return 0;
4568
4569 for (i = 0; i < reload_n_operands; i++)
4570 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
47c8cf91 4571 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
546b63fb
RK
4572 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4573 return 0;
4574
893bc853
RK
4575 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
4576 return 0;
4577
2af88768
GK
4578 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4579 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4580 && !TEST_HARD_REG_BIT (reload_reg_used, regno));
546b63fb 4581
32131a9c 4582 case RELOAD_FOR_INPUT:
546b63fb 4583 /* Similar to input address, except we start at the next operand for
05d10675 4584 both input and input address and we do not check for
546b63fb
RK
4585 RELOAD_FOR_OPERAND_ADDRESS and RELOAD_FOR_INSN since these
4586 would conflict. */
4587
4588 for (i = opnum + 1; i < reload_n_operands; i++)
4589 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
47c8cf91 4590 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
546b63fb
RK
4591 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4592 return 0;
4593
0f41302f 4594 /* ... fall through ... */
546b63fb 4595
32131a9c 4596 case RELOAD_FOR_OPERAND_ADDRESS:
546b63fb
RK
4597 /* Check outputs and their addresses. */
4598
4599 for (i = 0; i < reload_n_operands; i++)
4600 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
47c8cf91 4601 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
546b63fb
RK
4602 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4603 return 0;
4604
2af88768 4605 return (!TEST_HARD_REG_BIT (reload_reg_used, regno));
546b63fb 4606
893bc853
RK
4607 case RELOAD_FOR_OPADDR_ADDR:
4608 for (i = 0; i < reload_n_operands; i++)
4609 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
47c8cf91 4610 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
893bc853
RK
4611 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4612 return 0;
4613
2af88768
GK
4614 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4615 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4616 && !TEST_HARD_REG_BIT (reload_reg_used, regno));
893bc853 4617
546b63fb 4618 case RELOAD_FOR_INSN:
893bc853 4619 /* These conflict with other outputs with RELOAD_OTHER. So
546b63fb
RK
4620 we need only check for output addresses. */
4621
4622 opnum = -1;
4623
0f41302f 4624 /* ... fall through ... */
546b63fb 4625
32131a9c 4626 case RELOAD_FOR_OUTPUT:
546b63fb 4627 case RELOAD_FOR_OUTPUT_ADDRESS:
47c8cf91 4628 case RELOAD_FOR_OUTADDR_ADDRESS:
546b63fb
RK
4629 /* We already know these can't conflict with a later output. So the
4630 only thing to check are later output addresses. */
4631 for (i = opnum + 1; i < reload_n_operands; i++)
47c8cf91
ILT
4632 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4633 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
546b63fb
RK
4634 return 0;
4635
32131a9c
RK
4636 return 1;
4637 }
546b63fb 4638
32131a9c
RK
4639 abort ();
4640}
4641\f
351aa1c1
RK
4642/* Return 1 if the reloads denoted by R1 and R2 cannot share a register.
4643 Return 0 otherwise.
4644
4645 This function uses the same algorithm as reload_reg_free_p above. */
4646
f5963e61 4647int
351aa1c1
RK
4648reloads_conflict (r1, r2)
4649 int r1, r2;
4650{
eceef4c9
BS
4651 enum reload_type r1_type = rld[r1].when_needed;
4652 enum reload_type r2_type = rld[r2].when_needed;
4653 int r1_opnum = rld[r1].opnum;
4654 int r2_opnum = rld[r2].opnum;
351aa1c1 4655
2edc8d65
RK
4656 /* RELOAD_OTHER conflicts with everything. */
4657 if (r2_type == RELOAD_OTHER)
351aa1c1
RK
4658 return 1;
4659
4660 /* Otherwise, check conflicts differently for each type. */
4661
4662 switch (r1_type)
4663 {
4664 case RELOAD_FOR_INPUT:
05d10675 4665 return (r2_type == RELOAD_FOR_INSN
351aa1c1 4666 || r2_type == RELOAD_FOR_OPERAND_ADDRESS
893bc853 4667 || r2_type == RELOAD_FOR_OPADDR_ADDR
351aa1c1 4668 || r2_type == RELOAD_FOR_INPUT
47c8cf91
ILT
4669 || ((r2_type == RELOAD_FOR_INPUT_ADDRESS
4670 || r2_type == RELOAD_FOR_INPADDR_ADDRESS)
4671 && r2_opnum > r1_opnum));
351aa1c1
RK
4672
4673 case RELOAD_FOR_INPUT_ADDRESS:
4674 return ((r2_type == RELOAD_FOR_INPUT_ADDRESS && r1_opnum == r2_opnum)
4675 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
4676
47c8cf91
ILT
4677 case RELOAD_FOR_INPADDR_ADDRESS:
4678 return ((r2_type == RELOAD_FOR_INPADDR_ADDRESS && r1_opnum == r2_opnum)
4679 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
4680
351aa1c1
RK
4681 case RELOAD_FOR_OUTPUT_ADDRESS:
4682 return ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS && r2_opnum == r1_opnum)
4683 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum >= r1_opnum));
4684
47c8cf91
ILT
4685 case RELOAD_FOR_OUTADDR_ADDRESS:
4686 return ((r2_type == RELOAD_FOR_OUTADDR_ADDRESS && r2_opnum == r1_opnum)
4687 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum >= r1_opnum));
4688
351aa1c1
RK
4689 case RELOAD_FOR_OPERAND_ADDRESS:
4690 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_INSN
a94ce333 4691 || r2_type == RELOAD_FOR_OPERAND_ADDRESS);
351aa1c1 4692
893bc853 4693 case RELOAD_FOR_OPADDR_ADDR:
05d10675 4694 return (r2_type == RELOAD_FOR_INPUT
a94ce333 4695 || r2_type == RELOAD_FOR_OPADDR_ADDR);
893bc853 4696
351aa1c1
RK
4697 case RELOAD_FOR_OUTPUT:
4698 return (r2_type == RELOAD_FOR_INSN || r2_type == RELOAD_FOR_OUTPUT
47c8cf91
ILT
4699 || ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS
4700 || r2_type == RELOAD_FOR_OUTADDR_ADDRESS)
ca1a4af1 4701 && r2_opnum <= r1_opnum));
351aa1c1
RK
4702
4703 case RELOAD_FOR_INSN:
4704 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_OUTPUT
4705 || r2_type == RELOAD_FOR_INSN
4706 || r2_type == RELOAD_FOR_OPERAND_ADDRESS);
4707
4708 case RELOAD_FOR_OTHER_ADDRESS:
4709 return r2_type == RELOAD_FOR_OTHER_ADDRESS;
4710
adab4fc5 4711 case RELOAD_OTHER:
2edc8d65 4712 return 1;
adab4fc5 4713
351aa1c1
RK
4714 default:
4715 abort ();
4716 }
4717}
4718\f
32131a9c
RK
4719/* Indexed by reload number, 1 if incoming value
4720 inherited from previous insns. */
4721char reload_inherited[MAX_RELOADS];
4722
4723/* For an inherited reload, this is the insn the reload was inherited from,
4724 if we know it. Otherwise, this is 0. */
4725rtx reload_inheritance_insn[MAX_RELOADS];
4726
4727/* If non-zero, this is a place to get the value of the reload,
4728 rather than using reload_in. */
4729rtx reload_override_in[MAX_RELOADS];
4730
e6e52be0
R
4731/* For each reload, the hard register number of the register used,
4732 or -1 if we did not need a register for this reload. */
32131a9c
RK
4733int reload_spill_index[MAX_RELOADS];
4734
304a22dd
R
4735/* Subroutine of free_for_value_p, used to check a single register.
4736 START_REGNO is the starting regno of the full reload register
4737 (possibly comprising multiple hard registers) that we are considering. */
f5470689 4738
6e684430 4739static int
304a22dd
R
4740reload_reg_free_for_value_p (start_regno, regno, opnum, type, value, out,
4741 reloadnum, ignore_address_reloads)
4742 int start_regno, regno;
6e684430
R
4743 int opnum;
4744 enum reload_type type;
f5470689
R
4745 rtx value, out;
4746 int reloadnum;
5828374f 4747 int ignore_address_reloads;
6e684430
R
4748{
4749 int time1;
09a308fe
R
4750 /* Set if we see an input reload that must not share its reload register
4751 with any new earlyclobber, but might otherwise share the reload
4752 register with an output or input-output reload. */
4753 int check_earlyclobber = 0;
6e684430 4754 int i;
dfe96118
R
4755 int copy = 0;
4756
9e3a9cf2 4757 if (TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
dc8842bf
AH
4758 return 0;
4759
dfe96118
R
4760 if (out == const0_rtx)
4761 {
4762 copy = 1;
4763 out = NULL_RTX;
4764 }
6e684430
R
4765
4766 /* We use some pseudo 'time' value to check if the lifetimes of the
4767 new register use would overlap with the one of a previous reload
4768 that is not read-only or uses a different value.
4769 The 'time' used doesn't have to be linear in any shape or form, just
4770 monotonic.
4771 Some reload types use different 'buckets' for each operand.
4772 So there are MAX_RECOG_OPERANDS different time values for each
cecbf6e2
R
4773 such reload type.
4774 We compute TIME1 as the time when the register for the prospective
4775 new reload ceases to be live, and TIME2 for each existing
4776 reload as the time when that the reload register of that reload
4777 becomes live.
4778 Where there is little to be gained by exact lifetime calculations,
4779 we just make conservative assumptions, i.e. a longer lifetime;
4780 this is done in the 'default:' cases. */
6e684430
R
4781 switch (type)
4782 {
4783 case RELOAD_FOR_OTHER_ADDRESS:
203588e7 4784 /* RELOAD_FOR_OTHER_ADDRESS conflicts with RELOAD_OTHER reloads. */
c2b4b171 4785 time1 = copy ? 0 : 1;
6e684430 4786 break;
dfe96118
R
4787 case RELOAD_OTHER:
4788 time1 = copy ? 1 : MAX_RECOG_OPERANDS * 5 + 5;
4789 break;
05d10675
BS
4790 /* For each input, we may have a sequence of RELOAD_FOR_INPADDR_ADDRESS,
4791 RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT. By adding 0 / 1 / 2 ,
4792 respectively, to the time values for these, we get distinct time
4793 values. To get distinct time values for each operand, we have to
4794 multiply opnum by at least three. We round that up to four because
4795 multiply by four is often cheaper. */
6e684430 4796 case RELOAD_FOR_INPADDR_ADDRESS:
dfe96118 4797 time1 = opnum * 4 + 2;
6e684430
R
4798 break;
4799 case RELOAD_FOR_INPUT_ADDRESS:
dfe96118
R
4800 time1 = opnum * 4 + 3;
4801 break;
4802 case RELOAD_FOR_INPUT:
4803 /* All RELOAD_FOR_INPUT reloads remain live till the instruction
4804 executes (inclusive). */
4805 time1 = copy ? opnum * 4 + 4 : MAX_RECOG_OPERANDS * 4 + 3;
6e684430 4806 break;
cb2afeb3 4807 case RELOAD_FOR_OPADDR_ADDR:
05d10675
BS
4808 /* opnum * 4 + 4
4809 <= (MAX_RECOG_OPERANDS - 1) * 4 + 4 == MAX_RECOG_OPERANDS * 4 */
cb2afeb3
R
4810 time1 = MAX_RECOG_OPERANDS * 4 + 1;
4811 break;
4812 case RELOAD_FOR_OPERAND_ADDRESS:
4813 /* RELOAD_FOR_OPERAND_ADDRESS reloads are live even while the insn
4814 is executed. */
dfe96118
R
4815 time1 = copy ? MAX_RECOG_OPERANDS * 4 + 2 : MAX_RECOG_OPERANDS * 4 + 3;
4816 break;
4817 case RELOAD_FOR_OUTADDR_ADDRESS:
4818 time1 = MAX_RECOG_OPERANDS * 4 + 4 + opnum;
6e684430 4819 break;
6e684430 4820 case RELOAD_FOR_OUTPUT_ADDRESS:
dfe96118 4821 time1 = MAX_RECOG_OPERANDS * 4 + 5 + opnum;
6e684430
R
4822 break;
4823 default:
dfe96118 4824 time1 = MAX_RECOG_OPERANDS * 5 + 5;
6e684430
R
4825 }
4826
4827 for (i = 0; i < n_reloads; i++)
4828 {
eceef4c9 4829 rtx reg = rld[i].reg_rtx;
6e684430
R
4830 if (reg && GET_CODE (reg) == REG
4831 && ((unsigned) regno - true_regnum (reg)
83e0821b 4832 <= HARD_REGNO_NREGS (REGNO (reg), GET_MODE (reg)) - (unsigned)1)
f5470689 4833 && i != reloadnum)
6e684430 4834 {
304a22dd
R
4835 rtx other_input = rld[i].in;
4836
4837 /* If the other reload loads the same input value, that
4838 will not cause a conflict only if it's loading it into
4839 the same register. */
4840 if (true_regnum (reg) != start_regno)
4841 other_input = NULL_RTX;
4842 if (! other_input || ! rtx_equal_p (other_input, value)
eceef4c9 4843 || rld[i].out || out)
6e684430 4844 {
09a308fe 4845 int time2;
eceef4c9 4846 switch (rld[i].when_needed)
f5470689
R
4847 {
4848 case RELOAD_FOR_OTHER_ADDRESS:
4849 time2 = 0;
4850 break;
4851 case RELOAD_FOR_INPADDR_ADDRESS:
cb2afeb3
R
4852 /* find_reloads makes sure that a
4853 RELOAD_FOR_{INP,OP,OUT}ADDR_ADDRESS reload is only used
4854 by at most one - the first -
4855 RELOAD_FOR_{INPUT,OPERAND,OUTPUT}_ADDRESS . If the
4856 address reload is inherited, the address address reload
4857 goes away, so we can ignore this conflict. */
dfe96118
R
4858 if (type == RELOAD_FOR_INPUT_ADDRESS && reloadnum == i + 1
4859 && ignore_address_reloads
4860 /* Unless the RELOAD_FOR_INPUT is an auto_inc expression.
4861 Then the address address is still needed to store
4862 back the new address. */
eceef4c9 4863 && ! rld[reloadnum].out)
cb2afeb3 4864 continue;
dfe96118
R
4865 /* Likewise, if a RELOAD_FOR_INPUT can inherit a value, its
4866 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS
4867 reloads go away. */
eceef4c9 4868 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
dfe96118
R
4869 && ignore_address_reloads
4870 /* Unless we are reloading an auto_inc expression. */
eceef4c9 4871 && ! rld[reloadnum].out)
dfe96118 4872 continue;
eceef4c9 4873 time2 = rld[i].opnum * 4 + 2;
f5470689
R
4874 break;
4875 case RELOAD_FOR_INPUT_ADDRESS:
eceef4c9 4876 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
dfe96118 4877 && ignore_address_reloads
eceef4c9 4878 && ! rld[reloadnum].out)
dfe96118 4879 continue;
eceef4c9 4880 time2 = rld[i].opnum * 4 + 3;
f5470689
R
4881 break;
4882 case RELOAD_FOR_INPUT:
eceef4c9 4883 time2 = rld[i].opnum * 4 + 4;
09a308fe 4884 check_earlyclobber = 1;
f5470689 4885 break;
eceef4c9 4886 /* rld[i].opnum * 4 + 4 <= (MAX_RECOG_OPERAND - 1) * 4 + 4
05d10675 4887 == MAX_RECOG_OPERAND * 4 */
cb2afeb3 4888 case RELOAD_FOR_OPADDR_ADDR:
dfe96118
R
4889 if (type == RELOAD_FOR_OPERAND_ADDRESS && reloadnum == i + 1
4890 && ignore_address_reloads
eceef4c9 4891 && ! rld[reloadnum].out)
cb2afeb3 4892 continue;
dfe96118 4893 time2 = MAX_RECOG_OPERANDS * 4 + 1;
cb2afeb3
R
4894 break;
4895 case RELOAD_FOR_OPERAND_ADDRESS:
dfe96118 4896 time2 = MAX_RECOG_OPERANDS * 4 + 2;
09a308fe 4897 check_earlyclobber = 1;
dfe96118
R
4898 break;
4899 case RELOAD_FOR_INSN:
4900 time2 = MAX_RECOG_OPERANDS * 4 + 3;
cb2afeb3 4901 break;
f5470689 4902 case RELOAD_FOR_OUTPUT:
05d10675
BS
4903 /* All RELOAD_FOR_OUTPUT reloads become live just after the
4904 instruction is executed. */
dfe96118 4905 time2 = MAX_RECOG_OPERANDS * 4 + 4;
f5470689 4906 break;
05d10675
BS
4907 /* The first RELOAD_FOR_OUTADDR_ADDRESS reload conflicts with
4908 the RELOAD_FOR_OUTPUT reloads, so assign it the same time
4909 value. */
cb2afeb3 4910 case RELOAD_FOR_OUTADDR_ADDRESS:
dfe96118
R
4911 if (type == RELOAD_FOR_OUTPUT_ADDRESS && reloadnum == i + 1
4912 && ignore_address_reloads
eceef4c9 4913 && ! rld[reloadnum].out)
cb2afeb3 4914 continue;
eceef4c9 4915 time2 = MAX_RECOG_OPERANDS * 4 + 4 + rld[i].opnum;
dfe96118 4916 break;
f5470689 4917 case RELOAD_FOR_OUTPUT_ADDRESS:
eceef4c9 4918 time2 = MAX_RECOG_OPERANDS * 4 + 5 + rld[i].opnum;
f5470689
R
4919 break;
4920 case RELOAD_OTHER:
dfe96118
R
4921 /* If there is no conflict in the input part, handle this
4922 like an output reload. */
304a22dd 4923 if (! rld[i].in || rtx_equal_p (other_input, value))
f5470689 4924 {
dfe96118 4925 time2 = MAX_RECOG_OPERANDS * 4 + 4;
57850c85 4926 /* Earlyclobbered outputs must conflict with inputs. */
09a308fe
R
4927 if (earlyclobber_operand_p (rld[i].out))
4928 time2 = MAX_RECOG_OPERANDS * 4 + 3;
1d7254c5 4929
f5470689
R
4930 break;
4931 }
dfe96118
R
4932 time2 = 1;
4933 /* RELOAD_OTHER might be live beyond instruction execution,
4934 but this is not obvious when we set time2 = 1. So check
4935 here if there might be a problem with the new reload
4936 clobbering the register used by the RELOAD_OTHER. */
4937 if (out)
4938 return 0;
4939 break;
f5470689 4940 default:
dfe96118 4941 return 0;
f5470689 4942 }
25963977 4943 if ((time1 >= time2
eceef4c9 4944 && (! rld[i].in || rld[i].out
304a22dd 4945 || ! rtx_equal_p (other_input, value)))
eceef4c9 4946 || (out && rld[reloadnum].out_reg
701d55e8 4947 && time2 >= MAX_RECOG_OPERANDS * 4 + 3))
f5470689 4948 return 0;
6e684430 4949 }
6e684430
R
4950 }
4951 }
09a308fe
R
4952
4953 /* Earlyclobbered outputs must conflict with inputs. */
4954 if (check_earlyclobber && out && earlyclobber_operand_p (out))
4955 return 0;
4956
6e684430
R
4957 return 1;
4958}
4959
c02cad8f
BS
4960/* Return 1 if the value in reload reg REGNO, as used by a reload
4961 needed for the part of the insn specified by OPNUM and TYPE,
4962 may be used to load VALUE into it.
4963
4964 MODE is the mode in which the register is used, this is needed to
4965 determine how many hard regs to test.
4966
4967 Other read-only reloads with the same value do not conflict
4968 unless OUT is non-zero and these other reloads have to live while
4969 output reloads live.
4970 If OUT is CONST0_RTX, this is a special case: it means that the
4971 test should not be for using register REGNO as reload register, but
4972 for copying from register REGNO into the reload register.
4973
4974 RELOADNUM is the number of the reload we want to load this value for;
4975 a reload does not conflict with itself.
4976
4977 When IGNORE_ADDRESS_RELOADS is set, we can not have conflicts with
4978 reloads that load an address for the very reload we are considering.
4979
4980 The caller has to make sure that there is no conflict with the return
4981 register. */
4982
4983static int
4984free_for_value_p (regno, mode, opnum, type, value, out, reloadnum,
4985 ignore_address_reloads)
4986 int regno;
4987 enum machine_mode mode;
4988 int opnum;
4989 enum reload_type type;
4990 rtx value, out;
4991 int reloadnum;
4992 int ignore_address_reloads;
4993{
4994 int nregs = HARD_REGNO_NREGS (regno, mode);
4995 while (nregs-- > 0)
304a22dd
R
4996 if (! reload_reg_free_for_value_p (regno, regno + nregs, opnum, type,
4997 value, out, reloadnum,
4998 ignore_address_reloads))
c02cad8f
BS
4999 return 0;
5000 return 1;
5001}
5002
ff6534ad
BS
5003/* Determine whether the reload reg X overlaps any rtx'es used for
5004 overriding inheritance. Return nonzero if so. */
5005
5006static int
5007conflicts_with_override (x)
5008 rtx x;
5009{
5010 int i;
5011 for (i = 0; i < n_reloads; i++)
5012 if (reload_override_in[i]
5013 && reg_overlap_mentioned_p (x, reload_override_in[i]))
5014 return 1;
5015 return 0;
5016}
5017\f
67e61fe7
BS
5018/* Give an error message saying we failed to find a reload for INSN,
5019 and clear out reload R. */
5020static void
5021failed_reload (insn, r)
5022 rtx insn;
5023 int r;
5024{
5025 if (asm_noperands (PATTERN (insn)) < 0)
5026 /* It's the compiler's fault. */
5027 fatal_insn ("Could not find a spill register", insn);
5028
5029 /* It's the user's fault; the operand's mode and constraint
5030 don't match. Disable this reload so we don't crash in final. */
5031 error_for_asm (insn,
5032 "`asm' operand constraint incompatible with operand size");
5033 rld[r].in = 0;
5034 rld[r].out = 0;
5035 rld[r].reg_rtx = 0;
5036 rld[r].optional = 1;
5037 rld[r].secondary_p = 1;
5038}
5039
5040/* I is the index in SPILL_REG_RTX of the reload register we are to allocate
5041 for reload R. If it's valid, get an rtx for it. Return nonzero if
5042 successful. */
5043static int
5044set_reload_reg (i, r)
5045 int i, r;
5046{
5047 int regno;
5048 rtx reg = spill_reg_rtx[i];
5049
5050 if (reg == 0 || GET_MODE (reg) != rld[r].mode)
5051 spill_reg_rtx[i] = reg
5052 = gen_rtx_REG (rld[r].mode, spill_regs[i]);
5053
5054 regno = true_regnum (reg);
5055
5056 /* Detect when the reload reg can't hold the reload mode.
5057 This used to be one `if', but Sequent compiler can't handle that. */
5058 if (HARD_REGNO_MODE_OK (regno, rld[r].mode))
5059 {
5060 enum machine_mode test_mode = VOIDmode;
5061 if (rld[r].in)
5062 test_mode = GET_MODE (rld[r].in);
5063 /* If rld[r].in has VOIDmode, it means we will load it
5064 in whatever mode the reload reg has: to wit, rld[r].mode.
5065 We have already tested that for validity. */
5066 /* Aside from that, we need to test that the expressions
5067 to reload from or into have modes which are valid for this
5068 reload register. Otherwise the reload insns would be invalid. */
5069 if (! (rld[r].in != 0 && test_mode != VOIDmode
5070 && ! HARD_REGNO_MODE_OK (regno, test_mode)))
5071 if (! (rld[r].out != 0
5072 && ! HARD_REGNO_MODE_OK (regno, GET_MODE (rld[r].out))))
5073 {
5074 /* The reg is OK. */
5075 last_spill_reg = i;
5076
5077 /* Mark as in use for this insn the reload regs we use
5078 for this. */
5079 mark_reload_reg_in_use (spill_regs[i], rld[r].opnum,
5080 rld[r].when_needed, rld[r].mode);
5081
5082 rld[r].reg_rtx = reg;
5083 reload_spill_index[r] = spill_regs[i];
5084 return 1;
5085 }
5086 }
5087 return 0;
5088}
5089
32131a9c
RK
5090/* Find a spill register to use as a reload register for reload R.
5091 LAST_RELOAD is non-zero if this is the last reload for the insn being
5092 processed.
5093
eceef4c9 5094 Set rld[R].reg_rtx to the register allocated.
32131a9c 5095
f5d8c9f4
BS
5096 We return 1 if successful, or 0 if we couldn't find a spill reg and
5097 we didn't change anything. */
32131a9c
RK
5098
5099static int
f5d8c9f4 5100allocate_reload_reg (chain, r, last_reload)
272df862 5101 struct insn_chain *chain ATTRIBUTE_UNUSED;
32131a9c 5102 int r;
32131a9c 5103 int last_reload;
32131a9c 5104{
67e61fe7 5105 int i, pass, count;
32131a9c
RK
5106
5107 /* If we put this reload ahead, thinking it is a group,
5108 then insist on finding a group. Otherwise we can grab a
a8fdc208 5109 reg that some other reload needs.
32131a9c
RK
5110 (That can happen when we have a 68000 DATA_OR_FP_REG
5111 which is a group of data regs or one fp reg.)
5112 We need not be so restrictive if there are no more reloads
5113 for this insn.
5114
5115 ??? Really it would be nicer to have smarter handling
5116 for that kind of reg class, where a problem like this is normal.
5117 Perhaps those classes should be avoided for reloading
5118 by use of more alternatives. */
5119
8ec450a4 5120 int force_group = rld[r].nregs > 1 && ! last_reload;
32131a9c
RK
5121
5122 /* If we want a single register and haven't yet found one,
5123 take any reg in the right class and not in use.
5124 If we want a consecutive group, here is where we look for it.
5125
5126 We use two passes so we can first look for reload regs to
5127 reuse, which are already in use for other reloads in this insn,
5128 and only then use additional registers.
5129 I think that maximizing reuse is needed to make sure we don't
5130 run out of reload regs. Suppose we have three reloads, and
5131 reloads A and B can share regs. These need two regs.
5132 Suppose A and B are given different regs.
5133 That leaves none for C. */
5134 for (pass = 0; pass < 2; pass++)
5135 {
5136 /* I is the index in spill_regs.
5137 We advance it round-robin between insns to use all spill regs
5138 equally, so that inherited reloads have a chance
f5d8c9f4
BS
5139 of leapfrogging each other. */
5140
5141 i = last_spill_reg;
05d10675 5142
a5339699 5143 for (count = 0; count < n_spills; count++)
32131a9c 5144 {
eceef4c9 5145 int class = (int) rld[r].class;
03acd8f8 5146 int regnum;
32131a9c 5147
03acd8f8
BS
5148 i++;
5149 if (i >= n_spills)
5150 i -= n_spills;
5151 regnum = spill_regs[i];
32131a9c 5152
eceef4c9
BS
5153 if ((reload_reg_free_p (regnum, rld[r].opnum,
5154 rld[r].when_needed)
5155 || (rld[r].in
05d10675
BS
5156 /* We check reload_reg_used to make sure we
5157 don't clobber the return register. */
03acd8f8 5158 && ! TEST_HARD_REG_BIT (reload_reg_used, regnum)
c02cad8f
BS
5159 && free_for_value_p (regnum, rld[r].mode, rld[r].opnum,
5160 rld[r].when_needed, rld[r].in,
5161 rld[r].out, r, 1)))
03acd8f8 5162 && TEST_HARD_REG_BIT (reg_class_contents[class], regnum)
8ec450a4 5163 && HARD_REGNO_MODE_OK (regnum, rld[r].mode)
be7ae2a4
RK
5164 /* Look first for regs to share, then for unshared. But
5165 don't share regs used for inherited reloads; they are
5166 the ones we want to preserve. */
5167 && (pass
5168 || (TEST_HARD_REG_BIT (reload_reg_used_at_all,
03acd8f8 5169 regnum)
be7ae2a4 5170 && ! TEST_HARD_REG_BIT (reload_reg_used_for_inherit,
03acd8f8 5171 regnum))))
32131a9c 5172 {
8ec450a4 5173 int nr = HARD_REGNO_NREGS (regnum, rld[r].mode);
32131a9c
RK
5174 /* Avoid the problem where spilling a GENERAL_OR_FP_REG
5175 (on 68000) got us two FP regs. If NR is 1,
5176 we would reject both of them. */
5177 if (force_group)
67e61fe7 5178 nr = rld[r].nregs;
32131a9c
RK
5179 /* If we need only one reg, we have already won. */
5180 if (nr == 1)
5181 {
5182 /* But reject a single reg if we demand a group. */
5183 if (force_group)
5184 continue;
5185 break;
5186 }
5187 /* Otherwise check that as many consecutive regs as we need
f5d8c9f4
BS
5188 are available here. */
5189 while (nr > 1)
5190 {
5191 int regno = regnum + nr - 1;
5192 if (!(TEST_HARD_REG_BIT (reg_class_contents[class], regno)
5193 && spill_reg_order[regno] >= 0
5194 && reload_reg_free_p (regno, rld[r].opnum,
5195 rld[r].when_needed)))
5196 break;
5197 nr--;
5198 }
32131a9c
RK
5199 if (nr == 1)
5200 break;
5201 }
5202 }
5203
5204 /* If we found something on pass 1, omit pass 2. */
5205 if (count < n_spills)
5206 break;
5207 }
1d7254c5 5208
32131a9c 5209 /* We should have found a spill register by now. */
f5d8c9f4 5210 if (count >= n_spills)
32131a9c
RK
5211 return 0;
5212
f5d8c9f4
BS
5213 /* I is the index in SPILL_REG_RTX of the reload register we are to
5214 allocate. Get an rtx for it and find its register number. */
32131a9c 5215
f5d8c9f4 5216 return set_reload_reg (i, r);
32131a9c
RK
5217}
5218\f
67e61fe7
BS
5219/* Initialize all the tables needed to allocate reload registers.
5220 CHAIN is the insn currently being processed; SAVE_RELOAD_REG_RTX
5221 is the array we use to restore the reg_rtx field for every reload. */
efc9bd41 5222
32131a9c 5223static void
67e61fe7 5224choose_reload_regs_init (chain, save_reload_reg_rtx)
7609e720 5225 struct insn_chain *chain;
67e61fe7 5226 rtx *save_reload_reg_rtx;
32131a9c 5227{
67e61fe7 5228 int i;
32131a9c 5229
67e61fe7
BS
5230 for (i = 0; i < n_reloads; i++)
5231 rld[i].reg_rtx = save_reload_reg_rtx[i];
32131a9c 5232
961192e1
JM
5233 memset (reload_inherited, 0, MAX_RELOADS);
5234 memset ((char *) reload_inheritance_insn, 0, MAX_RELOADS * sizeof (rtx));
5235 memset ((char *) reload_override_in, 0, MAX_RELOADS * sizeof (rtx));
32131a9c
RK
5236
5237 CLEAR_HARD_REG_SET (reload_reg_used);
5238 CLEAR_HARD_REG_SET (reload_reg_used_at_all);
32131a9c 5239 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr);
893bc853 5240 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr_reload);
546b63fb
RK
5241 CLEAR_HARD_REG_SET (reload_reg_used_in_insn);
5242 CLEAR_HARD_REG_SET (reload_reg_used_in_other_addr);
32131a9c 5243
f1db3576
JL
5244 CLEAR_HARD_REG_SET (reg_used_in_insn);
5245 {
5246 HARD_REG_SET tmp;
239a0f5b 5247 REG_SET_TO_HARD_REG_SET (tmp, &chain->live_throughout);
f1db3576 5248 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
239a0f5b 5249 REG_SET_TO_HARD_REG_SET (tmp, &chain->dead_or_set);
f1db3576 5250 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
239a0f5b
BS
5251 compute_use_by_pseudos (&reg_used_in_insn, &chain->live_throughout);
5252 compute_use_by_pseudos (&reg_used_in_insn, &chain->dead_or_set);
f1db3576 5253 }
efc9bd41 5254
546b63fb
RK
5255 for (i = 0; i < reload_n_operands; i++)
5256 {
5257 CLEAR_HARD_REG_SET (reload_reg_used_in_output[i]);
5258 CLEAR_HARD_REG_SET (reload_reg_used_in_input[i]);
5259 CLEAR_HARD_REG_SET (reload_reg_used_in_input_addr[i]);
47c8cf91 5260 CLEAR_HARD_REG_SET (reload_reg_used_in_inpaddr_addr[i]);
546b63fb 5261 CLEAR_HARD_REG_SET (reload_reg_used_in_output_addr[i]);
47c8cf91 5262 CLEAR_HARD_REG_SET (reload_reg_used_in_outaddr_addr[i]);
546b63fb 5263 }
32131a9c 5264
9e3a9cf2 5265 COMPL_HARD_REG_SET (reload_reg_unavailable, chain->used_spill_regs);
05d10675 5266
67e61fe7 5267 CLEAR_HARD_REG_SET (reload_reg_used_for_inherit);
32131a9c 5268
67e61fe7
BS
5269 for (i = 0; i < n_reloads; i++)
5270 /* If we have already decided to use a certain register,
5271 don't use it in another way. */
5272 if (rld[i].reg_rtx)
5273 mark_reload_reg_in_use (REGNO (rld[i].reg_rtx), rld[i].opnum,
5274 rld[i].when_needed, rld[i].mode);
5275}
32131a9c 5276
67e61fe7
BS
5277/* Assign hard reg targets for the pseudo-registers we must reload
5278 into hard regs for this insn.
5279 Also output the instructions to copy them in and out of the hard regs.
5280
5281 For machines with register classes, we are responsible for
5282 finding a reload reg in the proper class. */
5283
5284static void
5285choose_reload_regs (chain)
5286 struct insn_chain *chain;
5287{
5288 rtx insn = chain->insn;
5289 register int i, j;
770ae6cc 5290 unsigned int max_group_size = 1;
67e61fe7 5291 enum reg_class group_class = NO_REGS;
f5d8c9f4 5292 int pass, win, inheritance;
67e61fe7
BS
5293
5294 rtx save_reload_reg_rtx[MAX_RELOADS];
32131a9c 5295
32131a9c
RK
5296 /* In order to be certain of getting the registers we need,
5297 we must sort the reloads into order of increasing register class.
5298 Then our grabbing of reload registers will parallel the process
a8fdc208 5299 that provided the reload registers.
32131a9c
RK
5300
5301 Also note whether any of the reloads wants a consecutive group of regs.
5302 If so, record the maximum size of the group desired and what
5303 register class contains all the groups needed by this insn. */
5304
5305 for (j = 0; j < n_reloads; j++)
5306 {
5307 reload_order[j] = j;
5308 reload_spill_index[j] = -1;
5309
8ec450a4 5310 if (rld[j].nregs > 1)
32131a9c 5311 {
8ec450a4 5312 max_group_size = MAX (rld[j].nregs, max_group_size);
770ae6cc 5313 group_class
1d7254c5 5314 = reg_class_superunion[(int) rld[j].class][(int)group_class];
32131a9c
RK
5315 }
5316
eceef4c9 5317 save_reload_reg_rtx[j] = rld[j].reg_rtx;
32131a9c
RK
5318 }
5319
5320 if (n_reloads > 1)
5321 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
5322
58b1581b
RS
5323 /* If -O, try first with inheritance, then turning it off.
5324 If not -O, don't do inheritance.
5325 Using inheritance when not optimizing leads to paradoxes
5326 with fp on the 68k: fp numbers (not NaNs) fail to be equal to themselves
5327 because one side of the comparison might be inherited. */
f5d8c9f4 5328 win = 0;
58b1581b 5329 for (inheritance = optimize > 0; inheritance >= 0; inheritance--)
32131a9c 5330 {
67e61fe7
BS
5331 choose_reload_regs_init (chain, save_reload_reg_rtx);
5332
32131a9c
RK
5333 /* Process the reloads in order of preference just found.
5334 Beyond this point, subregs can be found in reload_reg_rtx.
5335
770ae6cc
RK
5336 This used to look for an existing reloaded home for all of the
5337 reloads, and only then perform any new reloads. But that could lose
5338 if the reloads were done out of reg-class order because a later
5339 reload with a looser constraint might have an old home in a register
5340 needed by an earlier reload with a tighter constraint.
32131a9c
RK
5341
5342 To solve this, we make two passes over the reloads, in the order
5343 described above. In the first pass we try to inherit a reload
5344 from a previous insn. If there is a later reload that needs a
5345 class that is a proper subset of the class being processed, we must
5346 also allocate a spill register during the first pass.
5347
5348 Then make a second pass over the reloads to allocate any reloads
5349 that haven't been given registers yet. */
5350
5351 for (j = 0; j < n_reloads; j++)
5352 {
5353 register int r = reload_order[j];
8593b745 5354 rtx search_equiv = NULL_RTX;
32131a9c
RK
5355
5356 /* Ignore reloads that got marked inoperative. */
eceef4c9
BS
5357 if (rld[r].out == 0 && rld[r].in == 0
5358 && ! rld[r].secondary_p)
32131a9c
RK
5359 continue;
5360
b29514ee 5361 /* If find_reloads chose to use reload_in or reload_out as a reload
b080c137
RK
5362 register, we don't need to chose one. Otherwise, try even if it
5363 found one since we might save an insn if we find the value lying
b29514ee
R
5364 around.
5365 Try also when reload_in is a pseudo without a hard reg. */
eceef4c9
BS
5366 if (rld[r].in != 0 && rld[r].reg_rtx != 0
5367 && (rtx_equal_p (rld[r].in, rld[r].reg_rtx)
5368 || (rtx_equal_p (rld[r].out, rld[r].reg_rtx)
5369 && GET_CODE (rld[r].in) != MEM
5370 && true_regnum (rld[r].in) < FIRST_PSEUDO_REGISTER)))
32131a9c
RK
5371 continue;
5372
5373#if 0 /* No longer needed for correct operation.
5374 It might give better code, or might not; worth an experiment? */
5375 /* If this is an optional reload, we can't inherit from earlier insns
5376 until we are sure that any non-optional reloads have been allocated.
5377 The following code takes advantage of the fact that optional reloads
5378 are at the end of reload_order. */
eceef4c9 5379 if (rld[r].optional != 0)
32131a9c 5380 for (i = 0; i < j; i++)
eceef4c9
BS
5381 if ((rld[reload_order[i]].out != 0
5382 || rld[reload_order[i]].in != 0
5383 || rld[reload_order[i]].secondary_p)
5384 && ! rld[reload_order[i]].optional
5385 && rld[reload_order[i]].reg_rtx == 0)
f5d8c9f4 5386 allocate_reload_reg (chain, reload_order[i], 0);
32131a9c
RK
5387#endif
5388
5389 /* First see if this pseudo is already available as reloaded
5390 for a previous insn. We cannot try to inherit for reloads
5391 that are smaller than the maximum number of registers needed
5392 for groups unless the register we would allocate cannot be used
5393 for the groups.
5394
5395 We could check here to see if this is a secondary reload for
5396 an object that is already in a register of the desired class.
5397 This would avoid the need for the secondary reload register.
5398 But this is complex because we can't easily determine what
b080c137
RK
5399 objects might want to be loaded via this reload. So let a
5400 register be allocated here. In `emit_reload_insns' we suppress
5401 one of the loads in the case described above. */
32131a9c
RK
5402
5403 if (inheritance)
5404 {
ddef6bc7 5405 int byte = 0;
32131a9c 5406 register int regno = -1;
6a651371 5407 enum machine_mode mode = VOIDmode;
32131a9c 5408
eceef4c9 5409 if (rld[r].in == 0)
32131a9c 5410 ;
eceef4c9 5411 else if (GET_CODE (rld[r].in) == REG)
db660765 5412 {
eceef4c9
BS
5413 regno = REGNO (rld[r].in);
5414 mode = GET_MODE (rld[r].in);
db660765 5415 }
eceef4c9 5416 else if (GET_CODE (rld[r].in_reg) == REG)
db660765 5417 {
eceef4c9
BS
5418 regno = REGNO (rld[r].in_reg);
5419 mode = GET_MODE (rld[r].in_reg);
db660765 5420 }
eceef4c9
BS
5421 else if (GET_CODE (rld[r].in_reg) == SUBREG
5422 && GET_CODE (SUBREG_REG (rld[r].in_reg)) == REG)
b60a8416 5423 {
ddef6bc7 5424 byte = SUBREG_BYTE (rld[r].in_reg);
eceef4c9 5425 regno = REGNO (SUBREG_REG (rld[r].in_reg));
cb2afeb3 5426 if (regno < FIRST_PSEUDO_REGISTER)
ddef6bc7 5427 regno = subreg_regno (rld[r].in_reg);
eceef4c9 5428 mode = GET_MODE (rld[r].in_reg);
cb2afeb3
R
5429 }
5430#ifdef AUTO_INC_DEC
eceef4c9
BS
5431 else if ((GET_CODE (rld[r].in_reg) == PRE_INC
5432 || GET_CODE (rld[r].in_reg) == PRE_DEC
5433 || GET_CODE (rld[r].in_reg) == POST_INC
5434 || GET_CODE (rld[r].in_reg) == POST_DEC)
5435 && GET_CODE (XEXP (rld[r].in_reg, 0)) == REG)
cb2afeb3 5436 {
eceef4c9
BS
5437 regno = REGNO (XEXP (rld[r].in_reg, 0));
5438 mode = GET_MODE (XEXP (rld[r].in_reg, 0));
5439 rld[r].out = rld[r].in;
b60a8416 5440 }
cb2afeb3 5441#endif
32131a9c
RK
5442#if 0
5443 /* This won't work, since REGNO can be a pseudo reg number.
5444 Also, it takes much more hair to keep track of all the things
5445 that can invalidate an inherited reload of part of a pseudoreg. */
eceef4c9
BS
5446 else if (GET_CODE (rld[r].in) == SUBREG
5447 && GET_CODE (SUBREG_REG (rld[r].in)) == REG)
ddef6bc7 5448 regno = subreg_regno (rld[r].in);
32131a9c
RK
5449#endif
5450
5451 if (regno >= 0 && reg_last_reload_reg[regno] != 0)
5452 {
eceef4c9 5453 enum reg_class class = rld[r].class, last_class;
cb2afeb3 5454 rtx last_reg = reg_last_reload_reg[regno];
02188693 5455 enum machine_mode need_mode;
05d10675 5456
ddef6bc7
JJ
5457 i = REGNO (last_reg);
5458 i += subreg_regno_offset (i, GET_MODE (last_reg), byte, mode);
cb2afeb3 5459 last_class = REGNO_REG_CLASS (i);
02188693 5460
ddef6bc7 5461 if (byte == 0)
ce701d1b
BS
5462 need_mode = mode;
5463 else
5464 need_mode
ddef6bc7 5465 = smallest_mode_for_size (GET_MODE_SIZE (mode) + byte,
ce701d1b 5466 GET_MODE_CLASS (mode));
02188693 5467
c9d8a813 5468 if (
02188693 5469#ifdef CLASS_CANNOT_CHANGE_MODE
c9d8a813 5470 (TEST_HARD_REG_BIT
02188693 5471 (reg_class_contents[(int) CLASS_CANNOT_CHANGE_MODE], i)
1d7254c5 5472 ? ! CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (last_reg),
02188693 5473 need_mode)
c9d8a813 5474 : (GET_MODE_SIZE (GET_MODE (last_reg))
02188693 5475 >= GET_MODE_SIZE (need_mode)))
c9d8a813
RH
5476#else
5477 (GET_MODE_SIZE (GET_MODE (last_reg))
02188693 5478 >= GET_MODE_SIZE (need_mode))
c9d8a813 5479#endif
cb2afeb3 5480 && reg_reloaded_contents[i] == regno
e6e52be0 5481 && TEST_HARD_REG_BIT (reg_reloaded_valid, i)
8ec450a4 5482 && HARD_REGNO_MODE_OK (i, rld[r].mode)
cb2afeb3
R
5483 && (TEST_HARD_REG_BIT (reg_class_contents[(int) class], i)
5484 /* Even if we can't use this register as a reload
5485 register, we might use it for reload_override_in,
5486 if copying it to the desired class is cheap
5487 enough. */
e56b4594 5488 || ((REGISTER_MOVE_COST (mode, last_class, class)
cb2afeb3
R
5489 < MEMORY_MOVE_COST (mode, class, 1))
5490#ifdef SECONDARY_INPUT_RELOAD_CLASS
5491 && (SECONDARY_INPUT_RELOAD_CLASS (class, mode,
5492 last_reg)
5493 == NO_REGS)
5494#endif
5495#ifdef SECONDARY_MEMORY_NEEDED
5496 && ! SECONDARY_MEMORY_NEEDED (last_class, class,
5497 mode)
5498#endif
5499 ))
5500
8ec450a4 5501 && (rld[r].nregs == max_group_size
32131a9c 5502 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) group_class],
e6e52be0 5503 i))
c02cad8f
BS
5504 && free_for_value_p (i, rld[r].mode, rld[r].opnum,
5505 rld[r].when_needed, rld[r].in,
5506 const0_rtx, r, 1))
32131a9c
RK
5507 {
5508 /* If a group is needed, verify that all the subsequent
0f41302f 5509 registers still have their values intact. */
1d7254c5 5510 int nr = HARD_REGNO_NREGS (i, rld[r].mode);
32131a9c
RK
5511 int k;
5512
5513 for (k = 1; k < nr; k++)
e6e52be0
R
5514 if (reg_reloaded_contents[i + k] != regno
5515 || ! TEST_HARD_REG_BIT (reg_reloaded_valid, i + k))
32131a9c
RK
5516 break;
5517
5518 if (k == nr)
5519 {
c74fa651 5520 int i1;
eb4d554e 5521 int bad_for_class;
c74fa651 5522
cb2afeb3
R
5523 last_reg = (GET_MODE (last_reg) == mode
5524 ? last_reg : gen_rtx_REG (mode, i));
5525
eb4d554e
GK
5526 bad_for_class = 0;
5527 for (k = 0; k < nr; k++)
5528 bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].class],
5529 i+k);
5530
c74fa651
RS
5531 /* We found a register that contains the
5532 value we need. If this register is the
5533 same as an `earlyclobber' operand of the
5534 current insn, just mark it as a place to
5535 reload from since we can't use it as the
5536 reload register itself. */
5537
5538 for (i1 = 0; i1 < n_earlyclobbers; i1++)
5539 if (reg_overlap_mentioned_for_reload_p
5540 (reg_last_reload_reg[regno],
5541 reload_earlyclobbers[i1]))
5542 break;
5543
8908158d 5544 if (i1 != n_earlyclobbers
c02cad8f
BS
5545 || ! (free_for_value_p (i, rld[r].mode,
5546 rld[r].opnum,
5547 rld[r].when_needed, rld[r].in,
5548 rld[r].out, r, 1))
e6e52be0 5549 /* Don't use it if we'd clobber a pseudo reg. */
f1db3576 5550 || (TEST_HARD_REG_BIT (reg_used_in_insn, i)
eceef4c9 5551 && rld[r].out
e6e52be0 5552 && ! TEST_HARD_REG_BIT (reg_reloaded_dead, i))
0c7f2259 5553 /* Don't clobber the frame pointer. */
1d7254c5
KH
5554 || (i == HARD_FRAME_POINTER_REGNUM
5555 && rld[r].out)
8908158d
RS
5556 /* Don't really use the inherited spill reg
5557 if we need it wider than we've got it. */
8ec450a4 5558 || (GET_MODE_SIZE (rld[r].mode)
b29514ee 5559 > GET_MODE_SIZE (mode))
eb4d554e 5560 || bad_for_class
cb2afeb3 5561
b29514ee
R
5562 /* If find_reloads chose reload_out as reload
5563 register, stay with it - that leaves the
5564 inherited register for subsequent reloads. */
eceef4c9 5565 || (rld[r].out && rld[r].reg_rtx
67e61fe7 5566 && rtx_equal_p (rld[r].out, rld[r].reg_rtx)))
cb2afeb3 5567 {
4c3a2649
BS
5568 if (! rld[r].optional)
5569 {
5570 reload_override_in[r] = last_reg;
5571 reload_inheritance_insn[r]
5572 = reg_reloaded_insn[i];
5573 }
cb2afeb3 5574 }
c74fa651
RS
5575 else
5576 {
54c40e68 5577 int k;
c74fa651
RS
5578 /* We can use this as a reload reg. */
5579 /* Mark the register as in use for this part of
5580 the insn. */
e6e52be0 5581 mark_reload_reg_in_use (i,
eceef4c9
BS
5582 rld[r].opnum,
5583 rld[r].when_needed,
8ec450a4 5584 rld[r].mode);
eceef4c9 5585 rld[r].reg_rtx = last_reg;
c74fa651
RS
5586 reload_inherited[r] = 1;
5587 reload_inheritance_insn[r]
5588 = reg_reloaded_insn[i];
5589 reload_spill_index[r] = i;
54c40e68
RS
5590 for (k = 0; k < nr; k++)
5591 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
e6e52be0 5592 i + k);
c74fa651 5593 }
32131a9c
RK
5594 }
5595 }
5596 }
5597 }
5598
5599 /* Here's another way to see if the value is already lying around. */
5600 if (inheritance
eceef4c9 5601 && rld[r].in != 0
32131a9c 5602 && ! reload_inherited[r]
eceef4c9
BS
5603 && rld[r].out == 0
5604 && (CONSTANT_P (rld[r].in)
5605 || GET_CODE (rld[r].in) == PLUS
5606 || GET_CODE (rld[r].in) == REG
5607 || GET_CODE (rld[r].in) == MEM)
8ec450a4 5608 && (rld[r].nregs == max_group_size
eceef4c9
BS
5609 || ! reg_classes_intersect_p (rld[r].class, group_class)))
5610 search_equiv = rld[r].in;
8593b745
R
5611 /* If this is an output reload from a simple move insn, look
5612 if an equivalence for the input is available. */
eceef4c9 5613 else if (inheritance && rld[r].in == 0 && rld[r].out != 0)
8593b745
R
5614 {
5615 rtx set = single_set (insn);
5616
5617 if (set
eceef4c9 5618 && rtx_equal_p (rld[r].out, SET_DEST (set))
8593b745
R
5619 && CONSTANT_P (SET_SRC (set)))
5620 search_equiv = SET_SRC (set);
5621 }
5622
5623 if (search_equiv)
32131a9c
RK
5624 {
5625 register rtx equiv
eceef4c9 5626 = find_equiv_reg (search_equiv, insn, rld[r].class,
9714cf43 5627 -1, NULL, 0, rld[r].mode);
f428f252 5628 int regno = 0;
32131a9c
RK
5629
5630 if (equiv != 0)
5631 {
5632 if (GET_CODE (equiv) == REG)
5633 regno = REGNO (equiv);
5634 else if (GET_CODE (equiv) == SUBREG)
5635 {
f8a9e02b
RK
5636 /* This must be a SUBREG of a hard register.
5637 Make a new REG since this might be used in an
5638 address and not all machines support SUBREGs
5639 there. */
ddef6bc7 5640 regno = subreg_regno (equiv);
8ec450a4 5641 equiv = gen_rtx_REG (rld[r].mode, regno);
32131a9c
RK
5642 }
5643 else
5644 abort ();
5645 }
5646
5647 /* If we found a spill reg, reject it unless it is free
5648 and of the desired class. */
5649 if (equiv != 0
cb2afeb3 5650 && ((TEST_HARD_REG_BIT (reload_reg_used_at_all, regno)
c02cad8f
BS
5651 && ! free_for_value_p (regno, rld[r].mode,
5652 rld[r].opnum, rld[r].when_needed,
5653 rld[r].in, rld[r].out, r, 1))
eceef4c9 5654 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].class],
32131a9c
RK
5655 regno)))
5656 equiv = 0;
5657
8ec450a4 5658 if (equiv != 0 && ! HARD_REGNO_MODE_OK (regno, rld[r].mode))
32131a9c
RK
5659 equiv = 0;
5660
5661 /* We found a register that contains the value we need.
5662 If this register is the same as an `earlyclobber' operand
5663 of the current insn, just mark it as a place to reload from
5664 since we can't use it as the reload register itself. */
5665
5666 if (equiv != 0)
5667 for (i = 0; i < n_earlyclobbers; i++)
bfa30b22
RK
5668 if (reg_overlap_mentioned_for_reload_p (equiv,
5669 reload_earlyclobbers[i]))
32131a9c 5670 {
4c3a2649
BS
5671 if (! rld[r].optional)
5672 reload_override_in[r] = equiv;
32131a9c
RK
5673 equiv = 0;
5674 break;
5675 }
5676
3c785e47
R
5677 /* If the equiv register we have found is explicitly clobbered
5678 in the current insn, it depends on the reload type if we
5679 can use it, use it for reload_override_in, or not at all.
5680 In particular, we then can't use EQUIV for a
5681 RELOAD_FOR_OUTPUT_ADDRESS reload. */
32131a9c 5682
9532e31f 5683 if (equiv != 0)
174fa2c4 5684 {
9532e31f
BS
5685 if (regno_clobbered_p (regno, insn, rld[r].mode, 0))
5686 switch (rld[r].when_needed)
5687 {
5688 case RELOAD_FOR_OTHER_ADDRESS:
5689 case RELOAD_FOR_INPADDR_ADDRESS:
5690 case RELOAD_FOR_INPUT_ADDRESS:
5691 case RELOAD_FOR_OPADDR_ADDR:
5692 break;
5693 case RELOAD_OTHER:
5694 case RELOAD_FOR_INPUT:
5695 case RELOAD_FOR_OPERAND_ADDRESS:
5696 if (! rld[r].optional)
5697 reload_override_in[r] = equiv;
5698 /* Fall through. */
5699 default:
5700 equiv = 0;
5701 break;
5702 }
5703 else if (regno_clobbered_p (regno, insn, rld[r].mode, 1))
5704 switch (rld[r].when_needed)
5705 {
5706 case RELOAD_FOR_OTHER_ADDRESS:
5707 case RELOAD_FOR_INPADDR_ADDRESS:
5708 case RELOAD_FOR_INPUT_ADDRESS:
5709 case RELOAD_FOR_OPADDR_ADDR:
5710 case RELOAD_FOR_OPERAND_ADDRESS:
5711 case RELOAD_FOR_INPUT:
5712 break;
5713 case RELOAD_OTHER:
5714 if (! rld[r].optional)
5715 reload_override_in[r] = equiv;
5716 /* Fall through. */
5717 default:
5718 equiv = 0;
5719 break;
5720 }
32131a9c
RK
5721 }
5722
5723 /* If we found an equivalent reg, say no code need be generated
5724 to load it, and use it as our reload reg. */
3ec2ea3e 5725 if (equiv != 0 && regno != HARD_FRAME_POINTER_REGNUM)
32131a9c 5726 {
8ec450a4 5727 int nr = HARD_REGNO_NREGS (regno, rld[r].mode);
100338df 5728 int k;
eceef4c9 5729 rld[r].reg_rtx = equiv;
32131a9c 5730 reload_inherited[r] = 1;
100338df 5731
91d7e7ac
R
5732 /* If reg_reloaded_valid is not set for this register,
5733 there might be a stale spill_reg_store lying around.
5734 We must clear it, since otherwise emit_reload_insns
5735 might delete the store. */
5736 if (! TEST_HARD_REG_BIT (reg_reloaded_valid, regno))
5737 spill_reg_store[regno] = NULL_RTX;
100338df
JL
5738 /* If any of the hard registers in EQUIV are spill
5739 registers, mark them as in use for this insn. */
5740 for (k = 0; k < nr; k++)
be7ae2a4 5741 {
100338df
JL
5742 i = spill_reg_order[regno + k];
5743 if (i >= 0)
5744 {
eceef4c9
BS
5745 mark_reload_reg_in_use (regno, rld[r].opnum,
5746 rld[r].when_needed,
8ec450a4 5747 rld[r].mode);
100338df
JL
5748 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
5749 regno + k);
5750 }
be7ae2a4 5751 }
32131a9c
RK
5752 }
5753 }
5754
5755 /* If we found a register to use already, or if this is an optional
5756 reload, we are done. */
eceef4c9 5757 if (rld[r].reg_rtx != 0 || rld[r].optional != 0)
32131a9c
RK
5758 continue;
5759
1d7254c5
KH
5760#if 0
5761 /* No longer needed for correct operation. Might or might
5762 not give better code on the average. Want to experiment? */
32131a9c
RK
5763
5764 /* See if there is a later reload that has a class different from our
5765 class that intersects our class or that requires less register
5766 than our reload. If so, we must allocate a register to this
5767 reload now, since that reload might inherit a previous reload
5768 and take the only available register in our class. Don't do this
5769 for optional reloads since they will force all previous reloads
5770 to be allocated. Also don't do this for reloads that have been
5771 turned off. */
5772
5773 for (i = j + 1; i < n_reloads; i++)
5774 {
5775 int s = reload_order[i];
5776
eceef4c9
BS
5777 if ((rld[s].in == 0 && rld[s].out == 0
5778 && ! rld[s].secondary_p)
5779 || rld[s].optional)
32131a9c
RK
5780 continue;
5781
eceef4c9
BS
5782 if ((rld[s].class != rld[r].class
5783 && reg_classes_intersect_p (rld[r].class,
5784 rld[s].class))
8ec450a4 5785 || rld[s].nregs < rld[r].nregs)
05d10675 5786 break;
32131a9c
RK
5787 }
5788
5789 if (i == n_reloads)
5790 continue;
5791
f5d8c9f4 5792 allocate_reload_reg (chain, r, j == n_reloads - 1);
32131a9c
RK
5793#endif
5794 }
5795
5796 /* Now allocate reload registers for anything non-optional that
5797 didn't get one yet. */
5798 for (j = 0; j < n_reloads; j++)
5799 {
5800 register int r = reload_order[j];
5801
5802 /* Ignore reloads that got marked inoperative. */
eceef4c9 5803 if (rld[r].out == 0 && rld[r].in == 0 && ! rld[r].secondary_p)
32131a9c
RK
5804 continue;
5805
5806 /* Skip reloads that already have a register allocated or are
0f41302f 5807 optional. */
eceef4c9 5808 if (rld[r].reg_rtx != 0 || rld[r].optional)
32131a9c
RK
5809 continue;
5810
f5d8c9f4 5811 if (! allocate_reload_reg (chain, r, j == n_reloads - 1))
32131a9c
RK
5812 break;
5813 }
5814
5815 /* If that loop got all the way, we have won. */
5816 if (j == n_reloads)
f5d8c9f4
BS
5817 {
5818 win = 1;
5819 break;
5820 }
32131a9c 5821
32131a9c 5822 /* Loop around and try without any inheritance. */
32131a9c
RK
5823 }
5824
f5d8c9f4
BS
5825 if (! win)
5826 {
5827 /* First undo everything done by the failed attempt
5828 to allocate with inheritance. */
5829 choose_reload_regs_init (chain, save_reload_reg_rtx);
5830
5831 /* Some sanity tests to verify that the reloads found in the first
5832 pass are identical to the ones we have now. */
5833 if (chain->n_reloads != n_reloads)
5834 abort ();
5835
5836 for (i = 0; i < n_reloads; i++)
5837 {
5838 if (chain->rld[i].regno < 0 || chain->rld[i].reg_rtx != 0)
5839 continue;
5840 if (chain->rld[i].when_needed != rld[i].when_needed)
5841 abort ();
5842 for (j = 0; j < n_spills; j++)
5843 if (spill_regs[j] == chain->rld[i].regno)
5844 if (! set_reload_reg (j, i))
5845 failed_reload (chain->insn, i);
5846 }
5847 }
5848
32131a9c
RK
5849 /* If we thought we could inherit a reload, because it seemed that
5850 nothing else wanted the same reload register earlier in the insn,
cb2afeb3
R
5851 verify that assumption, now that all reloads have been assigned.
5852 Likewise for reloads where reload_override_in has been set. */
32131a9c 5853
cb2afeb3
R
5854 /* If doing expensive optimizations, do one preliminary pass that doesn't
5855 cancel any inheritance, but removes reloads that have been needed only
5856 for reloads that we know can be inherited. */
5857 for (pass = flag_expensive_optimizations; pass >= 0; pass--)
32131a9c 5858 {
cb2afeb3 5859 for (j = 0; j < n_reloads; j++)
029b38ff 5860 {
cb2afeb3
R
5861 register int r = reload_order[j];
5862 rtx check_reg;
eceef4c9
BS
5863 if (reload_inherited[r] && rld[r].reg_rtx)
5864 check_reg = rld[r].reg_rtx;
cb2afeb3
R
5865 else if (reload_override_in[r]
5866 && (GET_CODE (reload_override_in[r]) == REG
05d10675 5867 || GET_CODE (reload_override_in[r]) == SUBREG))
cb2afeb3
R
5868 check_reg = reload_override_in[r];
5869 else
5870 continue;
c02cad8f
BS
5871 if (! free_for_value_p (true_regnum (check_reg), rld[r].mode,
5872 rld[r].opnum, rld[r].when_needed, rld[r].in,
5873 (reload_inherited[r]
5874 ? rld[r].out : const0_rtx),
5875 r, 1))
029b38ff 5876 {
cb2afeb3
R
5877 if (pass)
5878 continue;
5879 reload_inherited[r] = 0;
5880 reload_override_in[r] = 0;
029b38ff 5881 }
cb2afeb3
R
5882 /* If we can inherit a RELOAD_FOR_INPUT, or can use a
5883 reload_override_in, then we do not need its related
5884 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS reloads;
5885 likewise for other reload types.
5886 We handle this by removing a reload when its only replacement
5887 is mentioned in reload_in of the reload we are going to inherit.
5888 A special case are auto_inc expressions; even if the input is
5889 inherited, we still need the address for the output. We can
fe92fe26 5890 recognize them because they have RELOAD_OUT set to RELOAD_IN.
cb2afeb3
R
5891 If we suceeded removing some reload and we are doing a preliminary
5892 pass just to remove such reloads, make another pass, since the
5893 removal of one reload might allow us to inherit another one. */
eceef4c9
BS
5894 else if (rld[r].in
5895 && rld[r].out != rld[r].in
5896 && remove_address_replacements (rld[r].in) && pass)
cb2afeb3 5897 pass = 2;
32131a9c
RK
5898 }
5899 }
5900
5901 /* Now that reload_override_in is known valid,
5902 actually override reload_in. */
5903 for (j = 0; j < n_reloads; j++)
5904 if (reload_override_in[j])
eceef4c9 5905 rld[j].in = reload_override_in[j];
32131a9c
RK
5906
5907 /* If this reload won't be done because it has been cancelled or is
5908 optional and not inherited, clear reload_reg_rtx so other
5909 routines (such as subst_reloads) don't get confused. */
5910 for (j = 0; j < n_reloads; j++)
eceef4c9
BS
5911 if (rld[j].reg_rtx != 0
5912 && ((rld[j].optional && ! reload_inherited[j])
5913 || (rld[j].in == 0 && rld[j].out == 0
5914 && ! rld[j].secondary_p)))
be7ae2a4 5915 {
eceef4c9 5916 int regno = true_regnum (rld[j].reg_rtx);
be7ae2a4
RK
5917
5918 if (spill_reg_order[regno] >= 0)
eceef4c9 5919 clear_reload_reg_in_use (regno, rld[j].opnum,
8ec450a4 5920 rld[j].when_needed, rld[j].mode);
eceef4c9 5921 rld[j].reg_rtx = 0;
c0029be5 5922 reload_spill_index[j] = -1;
be7ae2a4 5923 }
32131a9c
RK
5924
5925 /* Record which pseudos and which spill regs have output reloads. */
5926 for (j = 0; j < n_reloads; j++)
5927 {
5928 register int r = reload_order[j];
5929
5930 i = reload_spill_index[r];
5931
e6e52be0 5932 /* I is nonneg if this reload uses a register.
eceef4c9 5933 If rld[r].reg_rtx is 0, this is an optional reload
32131a9c 5934 that we opted to ignore. */
eceef4c9
BS
5935 if (rld[r].out_reg != 0 && GET_CODE (rld[r].out_reg) == REG
5936 && rld[r].reg_rtx != 0)
32131a9c 5937 {
eceef4c9 5938 register int nregno = REGNO (rld[r].out_reg);
372e033b
RS
5939 int nr = 1;
5940
5941 if (nregno < FIRST_PSEUDO_REGISTER)
8ec450a4 5942 nr = HARD_REGNO_NREGS (nregno, rld[r].mode);
32131a9c
RK
5943
5944 while (--nr >= 0)
372e033b
RS
5945 reg_has_output_reload[nregno + nr] = 1;
5946
5947 if (i >= 0)
32131a9c 5948 {
8ec450a4 5949 nr = HARD_REGNO_NREGS (i, rld[r].mode);
372e033b 5950 while (--nr >= 0)
e6e52be0 5951 SET_HARD_REG_BIT (reg_is_output_reload, i + nr);
32131a9c
RK
5952 }
5953
eceef4c9
BS
5954 if (rld[r].when_needed != RELOAD_OTHER
5955 && rld[r].when_needed != RELOAD_FOR_OUTPUT
5956 && rld[r].when_needed != RELOAD_FOR_INSN)
32131a9c
RK
5957 abort ();
5958 }
5959 }
5960}
cb2afeb3
R
5961
5962/* Deallocate the reload register for reload R. This is called from
5963 remove_address_replacements. */
1d813780 5964
cb2afeb3
R
5965void
5966deallocate_reload_reg (r)
5967 int r;
5968{
5969 int regno;
5970
eceef4c9 5971 if (! rld[r].reg_rtx)
cb2afeb3 5972 return;
eceef4c9
BS
5973 regno = true_regnum (rld[r].reg_rtx);
5974 rld[r].reg_rtx = 0;
cb2afeb3 5975 if (spill_reg_order[regno] >= 0)
eceef4c9 5976 clear_reload_reg_in_use (regno, rld[r].opnum, rld[r].when_needed,
8ec450a4 5977 rld[r].mode);
cb2afeb3
R
5978 reload_spill_index[r] = -1;
5979}
32131a9c 5980\f
e9a25f70 5981/* If SMALL_REGISTER_CLASSES is non-zero, we may not have merged two
546b63fb
RK
5982 reloads of the same item for fear that we might not have enough reload
5983 registers. However, normally they will get the same reload register
05d10675 5984 and hence actually need not be loaded twice.
546b63fb
RK
5985
5986 Here we check for the most common case of this phenomenon: when we have
5987 a number of reloads for the same object, each of which were allocated
5988 the same reload_reg_rtx, that reload_reg_rtx is not used for any other
5989 reload, and is not modified in the insn itself. If we find such,
5990 merge all the reloads and set the resulting reload to RELOAD_OTHER.
5991 This will not increase the number of spill registers needed and will
5992 prevent redundant code. */
5993
546b63fb
RK
5994static void
5995merge_assigned_reloads (insn)
5996 rtx insn;
5997{
5998 int i, j;
5999
6000 /* Scan all the reloads looking for ones that only load values and
6001 are not already RELOAD_OTHER and ones whose reload_reg_rtx are
6002 assigned and not modified by INSN. */
6003
6004 for (i = 0; i < n_reloads; i++)
6005 {
d668e863
R
6006 int conflicting_input = 0;
6007 int max_input_address_opnum = -1;
6008 int min_conflicting_input_opnum = MAX_RECOG_OPERANDS;
6009
eceef4c9
BS
6010 if (rld[i].in == 0 || rld[i].when_needed == RELOAD_OTHER
6011 || rld[i].out != 0 || rld[i].reg_rtx == 0
6012 || reg_set_p (rld[i].reg_rtx, insn))
546b63fb
RK
6013 continue;
6014
6015 /* Look at all other reloads. Ensure that the only use of this
6016 reload_reg_rtx is in a reload that just loads the same value
6017 as we do. Note that any secondary reloads must be of the identical
6018 class since the values, modes, and result registers are the
6019 same, so we need not do anything with any secondary reloads. */
6020
6021 for (j = 0; j < n_reloads; j++)
6022 {
eceef4c9
BS
6023 if (i == j || rld[j].reg_rtx == 0
6024 || ! reg_overlap_mentioned_p (rld[j].reg_rtx,
6025 rld[i].reg_rtx))
546b63fb
RK
6026 continue;
6027
eceef4c9
BS
6028 if (rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
6029 && rld[j].opnum > max_input_address_opnum)
6030 max_input_address_opnum = rld[j].opnum;
d668e863 6031
546b63fb 6032 /* If the reload regs aren't exactly the same (e.g, different modes)
d668e863
R
6033 or if the values are different, we can't merge this reload.
6034 But if it is an input reload, we might still merge
6035 RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_OTHER_ADDRESS reloads. */
546b63fb 6036
eceef4c9
BS
6037 if (! rtx_equal_p (rld[i].reg_rtx, rld[j].reg_rtx)
6038 || rld[j].out != 0 || rld[j].in == 0
6039 || ! rtx_equal_p (rld[i].in, rld[j].in))
d668e863 6040 {
eceef4c9
BS
6041 if (rld[j].when_needed != RELOAD_FOR_INPUT
6042 || ((rld[i].when_needed != RELOAD_FOR_INPUT_ADDRESS
6043 || rld[i].opnum > rld[j].opnum)
6044 && rld[i].when_needed != RELOAD_FOR_OTHER_ADDRESS))
d668e863
R
6045 break;
6046 conflicting_input = 1;
eceef4c9
BS
6047 if (min_conflicting_input_opnum > rld[j].opnum)
6048 min_conflicting_input_opnum = rld[j].opnum;
d668e863 6049 }
546b63fb
RK
6050 }
6051
6052 /* If all is OK, merge the reloads. Only set this to RELOAD_OTHER if
6053 we, in fact, found any matching reloads. */
6054
d668e863
R
6055 if (j == n_reloads
6056 && max_input_address_opnum <= min_conflicting_input_opnum)
546b63fb
RK
6057 {
6058 for (j = 0; j < n_reloads; j++)
eceef4c9
BS
6059 if (i != j && rld[j].reg_rtx != 0
6060 && rtx_equal_p (rld[i].reg_rtx, rld[j].reg_rtx)
d668e863 6061 && (! conflicting_input
eceef4c9
BS
6062 || rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
6063 || rld[j].when_needed == RELOAD_FOR_OTHER_ADDRESS))
546b63fb 6064 {
eceef4c9
BS
6065 rld[i].when_needed = RELOAD_OTHER;
6066 rld[j].in = 0;
efdb3590 6067 reload_spill_index[j] = -1;
546b63fb
RK
6068 transfer_replacements (i, j);
6069 }
6070
6071 /* If this is now RELOAD_OTHER, look for any reloads that load
6072 parts of this operand and set them to RELOAD_FOR_OTHER_ADDRESS
6073 if they were for inputs, RELOAD_OTHER for outputs. Note that
6074 this test is equivalent to looking for reloads for this operand
6075 number. */
6076
eceef4c9 6077 if (rld[i].when_needed == RELOAD_OTHER)
546b63fb 6078 for (j = 0; j < n_reloads; j++)
eceef4c9 6079 if (rld[j].in != 0
91667711 6080 && rld[j].when_needed != RELOAD_OTHER
eceef4c9
BS
6081 && reg_overlap_mentioned_for_reload_p (rld[j].in,
6082 rld[i].in))
6083 rld[j].when_needed
91667711
SC
6084 = ((rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
6085 || rld[j].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
47c8cf91 6086 ? RELOAD_FOR_OTHER_ADDRESS : RELOAD_OTHER);
546b63fb
RK
6087 }
6088 }
05d10675 6089}
546b63fb 6090\f
367b1cf5
BS
6091/* These arrays are filled by emit_reload_insns and its subroutines. */
6092static rtx input_reload_insns[MAX_RECOG_OPERANDS];
6093static rtx other_input_address_reload_insns = 0;
6094static rtx other_input_reload_insns = 0;
6095static rtx input_address_reload_insns[MAX_RECOG_OPERANDS];
6096static rtx inpaddr_address_reload_insns[MAX_RECOG_OPERANDS];
6097static rtx output_reload_insns[MAX_RECOG_OPERANDS];
6098static rtx output_address_reload_insns[MAX_RECOG_OPERANDS];
6099static rtx outaddr_address_reload_insns[MAX_RECOG_OPERANDS];
6100static rtx operand_reload_insns = 0;
6101static rtx other_operand_reload_insns = 0;
6102static rtx other_output_reload_insns[MAX_RECOG_OPERANDS];
6103
6104/* Values to be put in spill_reg_store are put here first. */
6105static rtx new_spill_reg_store[FIRST_PSEUDO_REGISTER];
6106static HARD_REG_SET reg_reloaded_died;
6107
6108/* Generate insns to perform reload RL, which is for the insn in CHAIN and
6109 has the number J. OLD contains the value to be used as input. */
770ae6cc 6110
32131a9c 6111static void
367b1cf5 6112emit_input_reload_insns (chain, rl, old, j)
7609e720 6113 struct insn_chain *chain;
367b1cf5
BS
6114 struct reload *rl;
6115 rtx old;
6116 int j;
32131a9c 6117{
7609e720 6118 rtx insn = chain->insn;
367b1cf5
BS
6119 register rtx reloadreg = rl->reg_rtx;
6120 rtx oldequiv_reg = 0;
6121 rtx oldequiv = 0;
6122 int special = 0;
6123 enum machine_mode mode;
6124 rtx *where;
6125
6126 /* Determine the mode to reload in.
6127 This is very tricky because we have three to choose from.
6128 There is the mode the insn operand wants (rl->inmode).
6129 There is the mode of the reload register RELOADREG.
6130 There is the intrinsic mode of the operand, which we could find
6131 by stripping some SUBREGs.
6132 It turns out that RELOADREG's mode is irrelevant:
6133 we can change that arbitrarily.
6134
6135 Consider (SUBREG:SI foo:QI) as an operand that must be SImode;
6136 then the reload reg may not support QImode moves, so use SImode.
6137 If foo is in memory due to spilling a pseudo reg, this is safe,
6138 because the QImode value is in the least significant part of a
6139 slot big enough for a SImode. If foo is some other sort of
6140 memory reference, then it is impossible to reload this case,
6141 so previous passes had better make sure this never happens.
6142
6143 Then consider a one-word union which has SImode and one of its
6144 members is a float, being fetched as (SUBREG:SF union:SI).
6145 We must fetch that as SFmode because we could be loading into
6146 a float-only register. In this case OLD's mode is correct.
6147
6148 Consider an immediate integer: it has VOIDmode. Here we need
6149 to get a mode from something else.
6150
6151 In some cases, there is a fourth mode, the operand's
6152 containing mode. If the insn specifies a containing mode for
6153 this operand, it overrides all others.
6154
6155 I am not sure whether the algorithm here is always right,
6156 but it does the right things in those cases. */
6157
6158 mode = GET_MODE (old);
6159 if (mode == VOIDmode)
6160 mode = rl->inmode;
7609e720 6161
367b1cf5
BS
6162#ifdef SECONDARY_INPUT_RELOAD_CLASS
6163 /* If we need a secondary register for this operation, see if
6164 the value is already in a register in that class. Don't
6165 do this if the secondary register will be used as a scratch
6166 register. */
6167
6168 if (rl->secondary_in_reload >= 0
6169 && rl->secondary_in_icode == CODE_FOR_nothing
6170 && optimize)
6171 oldequiv
6172 = find_equiv_reg (old, insn,
6173 rld[rl->secondary_in_reload].class,
9714cf43 6174 -1, NULL, 0, mode);
367b1cf5 6175#endif
e6e52be0 6176
367b1cf5
BS
6177 /* If reloading from memory, see if there is a register
6178 that already holds the same value. If so, reload from there.
6179 We can pass 0 as the reload_reg_p argument because
6180 any other reload has either already been emitted,
6181 in which case find_equiv_reg will see the reload-insn,
6182 or has yet to be emitted, in which case it doesn't matter
6183 because we will use this equiv reg right away. */
6184
6185 if (oldequiv == 0 && optimize
6186 && (GET_CODE (old) == MEM
6187 || (GET_CODE (old) == REG
6188 && REGNO (old) >= FIRST_PSEUDO_REGISTER
6189 && reg_renumber[REGNO (old)] < 0)))
9714cf43 6190 oldequiv = find_equiv_reg (old, insn, ALL_REGS, -1, NULL, 0, mode);
367b1cf5
BS
6191
6192 if (oldequiv)
6193 {
770ae6cc 6194 unsigned int regno = true_regnum (oldequiv);
367b1cf5
BS
6195
6196 /* Don't use OLDEQUIV if any other reload changes it at an
6197 earlier stage of this insn or at this stage. */
c02cad8f
BS
6198 if (! free_for_value_p (regno, rl->mode, rl->opnum, rl->when_needed,
6199 rl->in, const0_rtx, j, 0))
367b1cf5
BS
6200 oldequiv = 0;
6201
6202 /* If it is no cheaper to copy from OLDEQUIV into the
6203 reload register than it would be to move from memory,
6204 don't use it. Likewise, if we need a secondary register
6205 or memory. */
6206
6207 if (oldequiv != 0
6208 && ((REGNO_REG_CLASS (regno) != rl->class
e56b4594 6209 && (REGISTER_MOVE_COST (mode, REGNO_REG_CLASS (regno),
367b1cf5
BS
6210 rl->class)
6211 >= MEMORY_MOVE_COST (mode, rl->class, 1)))
6212#ifdef SECONDARY_INPUT_RELOAD_CLASS
6213 || (SECONDARY_INPUT_RELOAD_CLASS (rl->class,
6214 mode, oldequiv)
6215 != NO_REGS)
6216#endif
6217#ifdef SECONDARY_MEMORY_NEEDED
6218 || SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (regno),
6219 rl->class,
6220 mode)
6221#endif
6222 ))
6223 oldequiv = 0;
6224 }
32131a9c 6225
367b1cf5
BS
6226 /* delete_output_reload is only invoked properly if old contains
6227 the original pseudo register. Since this is replaced with a
6228 hard reg when RELOAD_OVERRIDE_IN is set, see if we can
6229 find the pseudo in RELOAD_IN_REG. */
6230 if (oldequiv == 0
6231 && reload_override_in[j]
6232 && GET_CODE (rl->in_reg) == REG)
6233 {
6234 oldequiv = old;
6235 old = rl->in_reg;
6236 }
6237 if (oldequiv == 0)
6238 oldequiv = old;
6239 else if (GET_CODE (oldequiv) == REG)
6240 oldequiv_reg = oldequiv;
6241 else if (GET_CODE (oldequiv) == SUBREG)
6242 oldequiv_reg = SUBREG_REG (oldequiv);
6243
6244 /* If we are reloading from a register that was recently stored in
6245 with an output-reload, see if we can prove there was
6246 actually no need to store the old value in it. */
6247
6248 if (optimize && GET_CODE (oldequiv) == REG
6249 && REGNO (oldequiv) < FIRST_PSEUDO_REGISTER
6250 && spill_reg_store[REGNO (oldequiv)]
6251 && GET_CODE (old) == REG
6252 && (dead_or_set_p (insn, spill_reg_stored_to[REGNO (oldequiv)])
6253 || rtx_equal_p (spill_reg_stored_to[REGNO (oldequiv)],
6254 rl->out_reg)))
6255 delete_output_reload (insn, j, REGNO (oldequiv));
6256
6257 /* Encapsulate both RELOADREG and OLDEQUIV into that mode,
6258 then load RELOADREG from OLDEQUIV. Note that we cannot use
6259 gen_lowpart_common since it can do the wrong thing when
6260 RELOADREG has a multi-word mode. Note that RELOADREG
6261 must always be a REG here. */
6262
6263 if (GET_MODE (reloadreg) != mode)
6264 reloadreg = gen_rtx_REG (mode, REGNO (reloadreg));
6265 while (GET_CODE (oldequiv) == SUBREG && GET_MODE (oldequiv) != mode)
6266 oldequiv = SUBREG_REG (oldequiv);
6267 if (GET_MODE (oldequiv) != VOIDmode
6268 && mode != GET_MODE (oldequiv))
ddef6bc7 6269 oldequiv = gen_lowpart_SUBREG (mode, oldequiv);
367b1cf5
BS
6270
6271 /* Switch to the right place to emit the reload insns. */
6272 switch (rl->when_needed)
6273 {
6274 case RELOAD_OTHER:
6275 where = &other_input_reload_insns;
6276 break;
6277 case RELOAD_FOR_INPUT:
6278 where = &input_reload_insns[rl->opnum];
6279 break;
6280 case RELOAD_FOR_INPUT_ADDRESS:
6281 where = &input_address_reload_insns[rl->opnum];
6282 break;
6283 case RELOAD_FOR_INPADDR_ADDRESS:
6284 where = &inpaddr_address_reload_insns[rl->opnum];
6285 break;
6286 case RELOAD_FOR_OUTPUT_ADDRESS:
6287 where = &output_address_reload_insns[rl->opnum];
6288 break;
6289 case RELOAD_FOR_OUTADDR_ADDRESS:
6290 where = &outaddr_address_reload_insns[rl->opnum];
6291 break;
6292 case RELOAD_FOR_OPERAND_ADDRESS:
6293 where = &operand_reload_insns;
6294 break;
6295 case RELOAD_FOR_OPADDR_ADDR:
6296 where = &other_operand_reload_insns;
6297 break;
6298 case RELOAD_FOR_OTHER_ADDRESS:
6299 where = &other_input_address_reload_insns;
6300 break;
6301 default:
6302 abort ();
6303 }
546b63fb 6304
367b1cf5 6305 push_to_sequence (*where);
32131a9c 6306
367b1cf5
BS
6307 /* Auto-increment addresses must be reloaded in a special way. */
6308 if (rl->out && ! rl->out_reg)
32131a9c 6309 {
367b1cf5
BS
6310 /* We are not going to bother supporting the case where a
6311 incremented register can't be copied directly from
6312 OLDEQUIV since this seems highly unlikely. */
6313 if (rl->secondary_in_reload >= 0)
6314 abort ();
32131a9c 6315
367b1cf5
BS
6316 if (reload_inherited[j])
6317 oldequiv = reloadreg;
cb2afeb3 6318
367b1cf5 6319 old = XEXP (rl->in_reg, 0);
32131a9c 6320
367b1cf5
BS
6321 if (optimize && GET_CODE (oldequiv) == REG
6322 && REGNO (oldequiv) < FIRST_PSEUDO_REGISTER
6323 && spill_reg_store[REGNO (oldequiv)]
6324 && GET_CODE (old) == REG
6325 && (dead_or_set_p (insn,
6326 spill_reg_stored_to[REGNO (oldequiv)])
6327 || rtx_equal_p (spill_reg_stored_to[REGNO (oldequiv)],
6328 old)))
6329 delete_output_reload (insn, j, REGNO (oldequiv));
6330
6331 /* Prevent normal processing of this reload. */
6332 special = 1;
6333 /* Output a special code sequence for this case. */
6334 new_spill_reg_store[REGNO (reloadreg)]
6335 = inc_for_reload (reloadreg, oldequiv, rl->out,
6336 rl->inc);
6337 }
32131a9c 6338
367b1cf5
BS
6339 /* If we are reloading a pseudo-register that was set by the previous
6340 insn, see if we can get rid of that pseudo-register entirely
6341 by redirecting the previous insn into our reload register. */
6342
6343 else if (optimize && GET_CODE (old) == REG
6344 && REGNO (old) >= FIRST_PSEUDO_REGISTER
6345 && dead_or_set_p (insn, old)
6346 /* This is unsafe if some other reload
6347 uses the same reg first. */
ff6534ad 6348 && ! conflicts_with_override (reloadreg)
c02cad8f
BS
6349 && free_for_value_p (REGNO (reloadreg), rl->mode, rl->opnum,
6350 rl->when_needed, old, rl->out, j, 0))
367b1cf5
BS
6351 {
6352 rtx temp = PREV_INSN (insn);
6353 while (temp && GET_CODE (temp) == NOTE)
6354 temp = PREV_INSN (temp);
6355 if (temp
6356 && GET_CODE (temp) == INSN
6357 && GET_CODE (PATTERN (temp)) == SET
6358 && SET_DEST (PATTERN (temp)) == old
6359 /* Make sure we can access insn_operand_constraint. */
6360 && asm_noperands (PATTERN (temp)) < 0
6361 /* This is unsafe if prev insn rejects our reload reg. */
6362 && constraint_accepts_reg_p (insn_data[recog_memoized (temp)].operand[0].constraint,
6363 reloadreg)
6364 /* This is unsafe if operand occurs more than once in current
6365 insn. Perhaps some occurrences aren't reloaded. */
4b983fdc 6366 && count_occurrences (PATTERN (insn), old, 0) == 1
367b1cf5
BS
6367 /* Don't risk splitting a matching pair of operands. */
6368 && ! reg_mentioned_p (old, SET_SRC (PATTERN (temp))))
6369 {
6370 /* Store into the reload register instead of the pseudo. */
6371 SET_DEST (PATTERN (temp)) = reloadreg;
6372
6373 /* If the previous insn is an output reload, the source is
6374 a reload register, and its spill_reg_store entry will
6375 contain the previous destination. This is now
6376 invalid. */
6377 if (GET_CODE (SET_SRC (PATTERN (temp))) == REG
6378 && REGNO (SET_SRC (PATTERN (temp))) < FIRST_PSEUDO_REGISTER)
32131a9c 6379 {
367b1cf5
BS
6380 spill_reg_store[REGNO (SET_SRC (PATTERN (temp)))] = 0;
6381 spill_reg_stored_to[REGNO (SET_SRC (PATTERN (temp)))] = 0;
32131a9c
RK
6382 }
6383
367b1cf5
BS
6384 /* If these are the only uses of the pseudo reg,
6385 pretend for GDB it lives in the reload reg we used. */
6386 if (REG_N_DEATHS (REGNO (old)) == 1
6387 && REG_N_SETS (REGNO (old)) == 1)
cb2afeb3 6388 {
367b1cf5
BS
6389 reg_renumber[REGNO (old)] = REGNO (rl->reg_rtx);
6390 alter_reg (REGNO (old), -1);
32131a9c 6391 }
07875628 6392 special = 1;
367b1cf5
BS
6393 }
6394 }
32131a9c 6395
367b1cf5 6396 /* We can't do that, so output an insn to load RELOADREG. */
32131a9c 6397
367b1cf5
BS
6398#ifdef SECONDARY_INPUT_RELOAD_CLASS
6399 /* If we have a secondary reload, pick up the secondary register
6400 and icode, if any. If OLDEQUIV and OLD are different or
6401 if this is an in-out reload, recompute whether or not we
6402 still need a secondary register and what the icode should
6403 be. If we still need a secondary register and the class or
6404 icode is different, go back to reloading from OLD if using
6405 OLDEQUIV means that we got the wrong type of register. We
6406 cannot have different class or icode due to an in-out reload
6407 because we don't make such reloads when both the input and
6408 output need secondary reload registers. */
6409
07875628 6410 if (! special && rl->secondary_in_reload >= 0)
367b1cf5
BS
6411 {
6412 rtx second_reload_reg = 0;
6413 int secondary_reload = rl->secondary_in_reload;
6414 rtx real_oldequiv = oldequiv;
6415 rtx real_old = old;
6416 rtx tmp;
6417 enum insn_code icode;
6418
6419 /* If OLDEQUIV is a pseudo with a MEM, get the real MEM
6420 and similarly for OLD.
6421 See comments in get_secondary_reload in reload.c. */
6422 /* If it is a pseudo that cannot be replaced with its
6423 equivalent MEM, we must fall back to reload_in, which
6424 will have all the necessary substitutions registered.
6425 Likewise for a pseudo that can't be replaced with its
6426 equivalent constant.
6427
6428 Take extra care for subregs of such pseudos. Note that
6429 we cannot use reg_equiv_mem in this case because it is
6430 not in the right mode. */
6431
6432 tmp = oldequiv;
6433 if (GET_CODE (tmp) == SUBREG)
6434 tmp = SUBREG_REG (tmp);
6435 if (GET_CODE (tmp) == REG
6436 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
6437 && (reg_equiv_memory_loc[REGNO (tmp)] != 0
6438 || reg_equiv_constant[REGNO (tmp)] != 0))
6439 {
6440 if (! reg_equiv_mem[REGNO (tmp)]
6441 || num_not_at_initial_offset
6442 || GET_CODE (oldequiv) == SUBREG)
6443 real_oldequiv = rl->in;
6444 else
6445 real_oldequiv = reg_equiv_mem[REGNO (tmp)];
6446 }
32131a9c 6447
367b1cf5
BS
6448 tmp = old;
6449 if (GET_CODE (tmp) == SUBREG)
6450 tmp = SUBREG_REG (tmp);
6451 if (GET_CODE (tmp) == REG
6452 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
6453 && (reg_equiv_memory_loc[REGNO (tmp)] != 0
6454 || reg_equiv_constant[REGNO (tmp)] != 0))
6455 {
6456 if (! reg_equiv_mem[REGNO (tmp)]
6457 || num_not_at_initial_offset
6458 || GET_CODE (old) == SUBREG)
6459 real_old = rl->in;
6460 else
6461 real_old = reg_equiv_mem[REGNO (tmp)];
6462 }
6463
6464 second_reload_reg = rld[secondary_reload].reg_rtx;
6465 icode = rl->secondary_in_icode;
6466
6467 if ((old != oldequiv && ! rtx_equal_p (old, oldequiv))
6468 || (rl->in != 0 && rl->out != 0))
6469 {
6470 enum reg_class new_class
6471 = SECONDARY_INPUT_RELOAD_CLASS (rl->class,
6472 mode, real_oldequiv);
6473
6474 if (new_class == NO_REGS)
6475 second_reload_reg = 0;
6476 else
32131a9c 6477 {
367b1cf5
BS
6478 enum insn_code new_icode;
6479 enum machine_mode new_mode;
6480
6481 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) new_class],
6482 REGNO (second_reload_reg)))
6483 oldequiv = old, real_oldequiv = real_old;
6484 else
32131a9c 6485 {
367b1cf5
BS
6486 new_icode = reload_in_optab[(int) mode];
6487 if (new_icode != CODE_FOR_nothing
6488 && ((insn_data[(int) new_icode].operand[0].predicate
6489 && ! ((*insn_data[(int) new_icode].operand[0].predicate)
6490 (reloadreg, mode)))
6491 || (insn_data[(int) new_icode].operand[1].predicate
6492 && ! ((*insn_data[(int) new_icode].operand[1].predicate)
6493 (real_oldequiv, mode)))))
6494 new_icode = CODE_FOR_nothing;
6495
6496 if (new_icode == CODE_FOR_nothing)
6497 new_mode = mode;
6498 else
6499 new_mode = insn_data[(int) new_icode].operand[2].mode;
d30e8ef0 6500
367b1cf5 6501 if (GET_MODE (second_reload_reg) != new_mode)
32131a9c 6502 {
367b1cf5
BS
6503 if (!HARD_REGNO_MODE_OK (REGNO (second_reload_reg),
6504 new_mode))
6505 oldequiv = old, real_oldequiv = real_old;
6506 else
6507 second_reload_reg
6508 = gen_rtx_REG (new_mode,
6509 REGNO (second_reload_reg));
32131a9c 6510 }
32131a9c
RK
6511 }
6512 }
367b1cf5 6513 }
32131a9c 6514
367b1cf5
BS
6515 /* If we still need a secondary reload register, check
6516 to see if it is being used as a scratch or intermediate
6517 register and generate code appropriately. If we need
6518 a scratch register, use REAL_OLDEQUIV since the form of
6519 the insn may depend on the actual address if it is
6520 a MEM. */
546b63fb 6521
367b1cf5
BS
6522 if (second_reload_reg)
6523 {
6524 if (icode != CODE_FOR_nothing)
32131a9c 6525 {
367b1cf5
BS
6526 emit_insn (GEN_FCN (icode) (reloadreg, real_oldequiv,
6527 second_reload_reg));
07875628 6528 special = 1;
367b1cf5
BS
6529 }
6530 else
6531 {
6532 /* See if we need a scratch register to load the
6533 intermediate register (a tertiary reload). */
6534 enum insn_code tertiary_icode
6535 = rld[secondary_reload].secondary_in_icode;
1554c2c6 6536
367b1cf5
BS
6537 if (tertiary_icode != CODE_FOR_nothing)
6538 {
6539 rtx third_reload_reg
6540 = rld[rld[secondary_reload].secondary_in_reload].reg_rtx;
1554c2c6 6541
367b1cf5
BS
6542 emit_insn ((GEN_FCN (tertiary_icode)
6543 (second_reload_reg, real_oldequiv,
6544 third_reload_reg)));
6545 }
6546 else
6547 gen_reload (second_reload_reg, real_oldequiv,
6548 rl->opnum,
6549 rl->when_needed);
32131a9c 6550
367b1cf5
BS
6551 oldequiv = second_reload_reg;
6552 }
6553 }
6554 }
6555#endif
32131a9c 6556
07875628 6557 if (! special && ! rtx_equal_p (reloadreg, oldequiv))
367b1cf5
BS
6558 {
6559 rtx real_oldequiv = oldequiv;
6560
6561 if ((GET_CODE (oldequiv) == REG
6562 && REGNO (oldequiv) >= FIRST_PSEUDO_REGISTER
6563 && (reg_equiv_memory_loc[REGNO (oldequiv)] != 0
6564 || reg_equiv_constant[REGNO (oldequiv)] != 0))
6565 || (GET_CODE (oldequiv) == SUBREG
6566 && GET_CODE (SUBREG_REG (oldequiv)) == REG
6567 && (REGNO (SUBREG_REG (oldequiv))
6568 >= FIRST_PSEUDO_REGISTER)
6569 && ((reg_equiv_memory_loc
6570 [REGNO (SUBREG_REG (oldequiv))] != 0)
6571 || (reg_equiv_constant
716120a7
JJ
6572 [REGNO (SUBREG_REG (oldequiv))] != 0)))
6573 || (CONSTANT_P (oldequiv)
6574 && PREFERRED_RELOAD_CLASS (oldequiv,
6575 REGNO_REG_CLASS (REGNO (reloadreg))) == NO_REGS))
367b1cf5
BS
6576 real_oldequiv = rl->in;
6577 gen_reload (reloadreg, real_oldequiv, rl->opnum,
6578 rl->when_needed);
6579 }
32131a9c 6580
94bd63e5
AH
6581 if (flag_non_call_exceptions)
6582 copy_eh_notes (insn, get_insns ());
6583
367b1cf5
BS
6584 /* End this sequence. */
6585 *where = get_insns ();
6586 end_sequence ();
94bd63e5 6587
367b1cf5
BS
6588 /* Update reload_override_in so that delete_address_reloads_1
6589 can see the actual register usage. */
6590 if (oldequiv_reg)
6591 reload_override_in[j] = oldequiv;
6592}
32131a9c 6593
367b1cf5
BS
6594/* Generate insns to for the output reload RL, which is for the insn described
6595 by CHAIN and has the number J. */
6596static void
6597emit_output_reload_insns (chain, rl, j)
6598 struct insn_chain *chain;
6599 struct reload *rl;
6600 int j;
6601{
6602 rtx reloadreg = rl->reg_rtx;
6603 rtx insn = chain->insn;
6604 int special = 0;
6605 rtx old = rl->out;
6606 enum machine_mode mode = GET_MODE (old);
6607 rtx p;
32131a9c 6608
367b1cf5
BS
6609 if (rl->when_needed == RELOAD_OTHER)
6610 start_sequence ();
6611 else
6612 push_to_sequence (output_reload_insns[rl->opnum]);
32131a9c 6613
367b1cf5
BS
6614 /* Determine the mode to reload in.
6615 See comments above (for input reloading). */
32131a9c 6616
367b1cf5
BS
6617 if (mode == VOIDmode)
6618 {
6619 /* VOIDmode should never happen for an output. */
6620 if (asm_noperands (PATTERN (insn)) < 0)
6621 /* It's the compiler's fault. */
6622 fatal_insn ("VOIDmode on an output", insn);
6623 error_for_asm (insn, "output operand is constant in `asm'");
6624 /* Prevent crash--use something we know is valid. */
6625 mode = word_mode;
6626 old = gen_rtx_REG (mode, REGNO (reloadreg));
6627 }
546b63fb 6628
367b1cf5
BS
6629 if (GET_MODE (reloadreg) != mode)
6630 reloadreg = gen_rtx_REG (mode, REGNO (reloadreg));
32131a9c 6631
367b1cf5 6632#ifdef SECONDARY_OUTPUT_RELOAD_CLASS
32131a9c 6633
367b1cf5
BS
6634 /* If we need two reload regs, set RELOADREG to the intermediate
6635 one, since it will be stored into OLD. We might need a secondary
6636 register only for an input reload, so check again here. */
32131a9c 6637
367b1cf5
BS
6638 if (rl->secondary_out_reload >= 0)
6639 {
6640 rtx real_old = old;
cb2afeb3 6641
367b1cf5
BS
6642 if (GET_CODE (old) == REG && REGNO (old) >= FIRST_PSEUDO_REGISTER
6643 && reg_equiv_mem[REGNO (old)] != 0)
6644 real_old = reg_equiv_mem[REGNO (old)];
32131a9c 6645
367b1cf5
BS
6646 if ((SECONDARY_OUTPUT_RELOAD_CLASS (rl->class,
6647 mode, real_old)
6648 != NO_REGS))
b60a8416 6649 {
367b1cf5
BS
6650 rtx second_reloadreg = reloadreg;
6651 reloadreg = rld[rl->secondary_out_reload].reg_rtx;
32131a9c 6652
367b1cf5
BS
6653 /* See if RELOADREG is to be used as a scratch register
6654 or as an intermediate register. */
6655 if (rl->secondary_out_icode != CODE_FOR_nothing)
6656 {
6657 emit_insn ((GEN_FCN (rl->secondary_out_icode)
6658 (real_old, second_reloadreg, reloadreg)));
6659 special = 1;
6660 }
6661 else
6662 {
6663 /* See if we need both a scratch and intermediate reload
6664 register. */
32131a9c 6665
367b1cf5
BS
6666 int secondary_reload = rl->secondary_out_reload;
6667 enum insn_code tertiary_icode
6668 = rld[secondary_reload].secondary_out_icode;
32131a9c 6669
367b1cf5
BS
6670 if (GET_MODE (reloadreg) != mode)
6671 reloadreg = gen_rtx_REG (mode, REGNO (reloadreg));
cb2afeb3 6672
367b1cf5
BS
6673 if (tertiary_icode != CODE_FOR_nothing)
6674 {
6675 rtx third_reloadreg
6676 = rld[rld[secondary_reload].secondary_out_reload].reg_rtx;
6677 rtx tem;
6678
6679 /* Copy primary reload reg to secondary reload reg.
6680 (Note that these have been swapped above, then
78adc5a0 6681 secondary reload reg to OLD using our insn.) */
367b1cf5
BS
6682
6683 /* If REAL_OLD is a paradoxical SUBREG, remove it
6684 and try to put the opposite SUBREG on
6685 RELOADREG. */
6686 if (GET_CODE (real_old) == SUBREG
6687 && (GET_MODE_SIZE (GET_MODE (real_old))
6688 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (real_old))))
6689 && 0 != (tem = gen_lowpart_common
6690 (GET_MODE (SUBREG_REG (real_old)),
6691 reloadreg)))
6692 real_old = SUBREG_REG (real_old), reloadreg = tem;
6693
6694 gen_reload (reloadreg, second_reloadreg,
6695 rl->opnum, rl->when_needed);
6696 emit_insn ((GEN_FCN (tertiary_icode)
6697 (real_old, reloadreg, third_reloadreg)));
6698 special = 1;
6699 }
05d10675 6700
367b1cf5
BS
6701 else
6702 /* Copy between the reload regs here and then to
6703 OUT later. */
cb2afeb3 6704
367b1cf5
BS
6705 gen_reload (reloadreg, second_reloadreg,
6706 rl->opnum, rl->when_needed);
a7911cd2 6707 }
367b1cf5
BS
6708 }
6709 }
32131a9c
RK
6710#endif
6711
367b1cf5
BS
6712 /* Output the last reload insn. */
6713 if (! special)
6714 {
6715 rtx set;
6716
6717 /* Don't output the last reload if OLD is not the dest of
1d7254c5 6718 INSN and is in the src and is clobbered by INSN. */
367b1cf5
BS
6719 if (! flag_expensive_optimizations
6720 || GET_CODE (old) != REG
6721 || !(set = single_set (insn))
6722 || rtx_equal_p (old, SET_DEST (set))
6723 || !reg_mentioned_p (old, SET_SRC (set))
9532e31f 6724 || !regno_clobbered_p (REGNO (old), insn, rl->mode, 0))
367b1cf5
BS
6725 gen_reload (old, reloadreg, rl->opnum,
6726 rl->when_needed);
6727 }
32131a9c 6728
367b1cf5
BS
6729 /* Look at all insns we emitted, just to be safe. */
6730 for (p = get_insns (); p; p = NEXT_INSN (p))
2c3c49de 6731 if (INSN_P (p))
367b1cf5
BS
6732 {
6733 rtx pat = PATTERN (p);
546b63fb 6734
367b1cf5
BS
6735 /* If this output reload doesn't come from a spill reg,
6736 clear any memory of reloaded copies of the pseudo reg.
6737 If this output reload comes from a spill reg,
6738 reg_has_output_reload will make this do nothing. */
6739 note_stores (pat, forget_old_reloads_1, NULL);
cb2afeb3 6740
367b1cf5
BS
6741 if (reg_mentioned_p (rl->reg_rtx, pat))
6742 {
6743 rtx set = single_set (insn);
6744 if (reload_spill_index[j] < 0
6745 && set
6746 && SET_SRC (set) == rl->reg_rtx)
6747 {
6748 int src = REGNO (SET_SRC (set));
32131a9c 6749
367b1cf5
BS
6750 reload_spill_index[j] = src;
6751 SET_HARD_REG_BIT (reg_is_output_reload, src);
6752 if (find_regno_note (insn, REG_DEAD, src))
6753 SET_HARD_REG_BIT (reg_reloaded_died, src);
6754 }
6755 if (REGNO (rl->reg_rtx) < FIRST_PSEUDO_REGISTER)
6756 {
6757 int s = rl->secondary_out_reload;
6758 set = single_set (p);
6759 /* If this reload copies only to the secondary reload
6760 register, the secondary reload does the actual
6761 store. */
6762 if (s >= 0 && set == NULL_RTX)
1d7254c5
KH
6763 /* We can't tell what function the secondary reload
6764 has and where the actual store to the pseudo is
6765 made; leave new_spill_reg_store alone. */
6766 ;
367b1cf5
BS
6767 else if (s >= 0
6768 && SET_SRC (set) == rl->reg_rtx
6769 && SET_DEST (set) == rld[s].reg_rtx)
6770 {
6771 /* Usually the next instruction will be the
6772 secondary reload insn; if we can confirm
6773 that it is, setting new_spill_reg_store to
6774 that insn will allow an extra optimization. */
6775 rtx s_reg = rld[s].reg_rtx;
6776 rtx next = NEXT_INSN (p);
6777 rld[s].out = rl->out;
6778 rld[s].out_reg = rl->out_reg;
6779 set = single_set (next);
6780 if (set && SET_SRC (set) == s_reg
6781 && ! new_spill_reg_store[REGNO (s_reg)])
6782 {
6783 SET_HARD_REG_BIT (reg_is_output_reload,
6784 REGNO (s_reg));
6785 new_spill_reg_store[REGNO (s_reg)] = next;
6786 }
6787 }
6788 else
6789 new_spill_reg_store[REGNO (rl->reg_rtx)] = p;
6790 }
6791 }
6792 }
32131a9c 6793
367b1cf5
BS
6794 if (rl->when_needed == RELOAD_OTHER)
6795 {
6796 emit_insns (other_output_reload_insns[rl->opnum]);
6797 other_output_reload_insns[rl->opnum] = get_insns ();
6798 }
6799 else
6800 output_reload_insns[rl->opnum] = get_insns ();
32131a9c 6801
94bd63e5
AH
6802 if (flag_non_call_exceptions)
6803 copy_eh_notes (insn, get_insns ());
6804
1d7254c5 6805 end_sequence ();
367b1cf5 6806}
32131a9c 6807
367b1cf5
BS
6808/* Do input reloading for reload RL, which is for the insn described by CHAIN
6809 and has the number J. */
6810static void
6811do_input_reload (chain, rl, j)
6812 struct insn_chain *chain;
6813 struct reload *rl;
6814 int j;
6815{
6816 int expect_occurrences = 1;
6817 rtx insn = chain->insn;
6818 rtx old = (rl->in && GET_CODE (rl->in) == MEM
6819 ? rl->in_reg : rl->in);
6820
6821 if (old != 0
6822 /* AUTO_INC reloads need to be handled even if inherited. We got an
6823 AUTO_INC reload if reload_out is set but reload_out_reg isn't. */
6824 && (! reload_inherited[j] || (rl->out && ! rl->out_reg))
6825 && ! rtx_equal_p (rl->reg_rtx, old)
6826 && rl->reg_rtx != 0)
1d813780 6827 emit_input_reload_insns (chain, rld + j, old, j);
32131a9c 6828
367b1cf5
BS
6829 /* When inheriting a wider reload, we have a MEM in rl->in,
6830 e.g. inheriting a SImode output reload for
6831 (mem:HI (plus:SI (reg:SI 14 fp) (const_int 10))) */
6832 if (optimize && reload_inherited[j] && rl->in
6833 && GET_CODE (rl->in) == MEM
6834 && GET_CODE (rl->in_reg) == MEM
6835 && reload_spill_index[j] >= 0
6836 && TEST_HARD_REG_BIT (reg_reloaded_valid, reload_spill_index[j]))
6837 {
6838 expect_occurrences
4b983fdc 6839 = count_occurrences (PATTERN (insn), rl->in, 0) == 1 ? 0 : -1;
1d7254c5 6840 rl->in = regno_reg_rtx[reg_reloaded_contents[reload_spill_index[j]]];
367b1cf5 6841 }
32131a9c 6842
367b1cf5
BS
6843 /* If we are reloading a register that was recently stored in with an
6844 output-reload, see if we can prove there was
6845 actually no need to store the old value in it. */
32131a9c 6846
367b1cf5
BS
6847 if (optimize
6848 && (reload_inherited[j] || reload_override_in[j])
6849 && rl->reg_rtx
6850 && GET_CODE (rl->reg_rtx) == REG
6851 && spill_reg_store[REGNO (rl->reg_rtx)] != 0
6852#if 0
6853 /* There doesn't seem to be any reason to restrict this to pseudos
6854 and doing so loses in the case where we are copying from a
6855 register of the wrong class. */
6856 && (REGNO (spill_reg_stored_to[REGNO (rl->reg_rtx)])
6857 >= FIRST_PSEUDO_REGISTER)
6858#endif
6859 /* The insn might have already some references to stackslots
6860 replaced by MEMs, while reload_out_reg still names the
6861 original pseudo. */
6862 && (dead_or_set_p (insn,
6863 spill_reg_stored_to[REGNO (rl->reg_rtx)])
6864 || rtx_equal_p (spill_reg_stored_to[REGNO (rl->reg_rtx)],
6865 rl->out_reg)))
6866 delete_output_reload (insn, j, REGNO (rl->reg_rtx));
6867}
32131a9c 6868
367b1cf5
BS
6869/* Do output reloading for reload RL, which is for the insn described by
6870 CHAIN and has the number J.
6871 ??? At some point we need to support handling output reloads of
6872 JUMP_INSNs or insns that set cc0. */
6873static void
6874do_output_reload (chain, rl, j)
6875 struct insn_chain *chain;
6876 struct reload *rl;
6877 int j;
6878{
6879 rtx note, old;
6880 rtx insn = chain->insn;
6881 /* If this is an output reload that stores something that is
6882 not loaded in this same reload, see if we can eliminate a previous
6883 store. */
6884 rtx pseudo = rl->out_reg;
6885
6886 if (pseudo
6887 && GET_CODE (pseudo) == REG
6888 && ! rtx_equal_p (rl->in_reg, pseudo)
6889 && REGNO (pseudo) >= FIRST_PSEUDO_REGISTER
6890 && reg_last_reload_reg[REGNO (pseudo)])
6891 {
6892 int pseudo_no = REGNO (pseudo);
6893 int last_regno = REGNO (reg_last_reload_reg[pseudo_no]);
6894
6895 /* We don't need to test full validity of last_regno for
6896 inherit here; we only want to know if the store actually
6897 matches the pseudo. */
60ef417d
GK
6898 if (TEST_HARD_REG_BIT (reg_reloaded_valid, last_regno)
6899 && reg_reloaded_contents[last_regno] == pseudo_no
367b1cf5
BS
6900 && spill_reg_store[last_regno]
6901 && rtx_equal_p (pseudo, spill_reg_stored_to[last_regno]))
6902 delete_output_reload (insn, j, last_regno);
6903 }
5e03c156 6904
367b1cf5
BS
6905 old = rl->out_reg;
6906 if (old == 0
6907 || rl->reg_rtx == old
6908 || rl->reg_rtx == 0)
6909 return;
32131a9c 6910
367b1cf5
BS
6911 /* An output operand that dies right away does need a reload,
6912 but need not be copied from it. Show the new location in the
6913 REG_UNUSED note. */
6914 if ((GET_CODE (old) == REG || GET_CODE (old) == SCRATCH)
6915 && (note = find_reg_note (insn, REG_UNUSED, old)) != 0)
6916 {
6917 XEXP (note, 0) = rl->reg_rtx;
6918 return;
6919 }
6920 /* Likewise for a SUBREG of an operand that dies. */
6921 else if (GET_CODE (old) == SUBREG
6922 && GET_CODE (SUBREG_REG (old)) == REG
6923 && 0 != (note = find_reg_note (insn, REG_UNUSED,
6924 SUBREG_REG (old))))
6925 {
6926 XEXP (note, 0) = gen_lowpart_common (GET_MODE (old),
6927 rl->reg_rtx);
6928 return;
6929 }
6930 else if (GET_CODE (old) == SCRATCH)
6931 /* If we aren't optimizing, there won't be a REG_UNUSED note,
6932 but we don't want to make an output reload. */
6933 return;
1554c2c6 6934
367b1cf5
BS
6935 /* If is a JUMP_INSN, we can't support output reloads yet. */
6936 if (GET_CODE (insn) == JUMP_INSN)
6937 abort ();
5e03c156 6938
367b1cf5
BS
6939 emit_output_reload_insns (chain, rld + j, j);
6940}
1554c2c6 6941
367b1cf5 6942/* Output insns to reload values in and out of the chosen reload regs. */
32131a9c 6943
367b1cf5 6944static void
e04ca094 6945emit_reload_insns (chain)
367b1cf5
BS
6946 struct insn_chain *chain;
6947{
6948 rtx insn = chain->insn;
32131a9c 6949
367b1cf5
BS
6950 register int j;
6951 rtx following_insn = NEXT_INSN (insn);
6952 rtx before_insn = PREV_INSN (insn);
e6e52be0 6953
367b1cf5 6954 CLEAR_HARD_REG_SET (reg_reloaded_died);
e6e52be0 6955
367b1cf5
BS
6956 for (j = 0; j < reload_n_operands; j++)
6957 input_reload_insns[j] = input_address_reload_insns[j]
6958 = inpaddr_address_reload_insns[j]
6959 = output_reload_insns[j] = output_address_reload_insns[j]
6960 = outaddr_address_reload_insns[j]
6961 = other_output_reload_insns[j] = 0;
6962 other_input_address_reload_insns = 0;
6963 other_input_reload_insns = 0;
6964 operand_reload_insns = 0;
6965 other_operand_reload_insns = 0;
32131a9c 6966
850aac53 6967 /* Dump reloads into the dump file. */
e04ca094 6968 if (rtl_dump_file)
850aac53 6969 {
e04ca094
JL
6970 fprintf (rtl_dump_file, "\nReloads for insn # %d\n", INSN_UID (insn));
6971 debug_reload_to_stream (rtl_dump_file);
850aac53
JL
6972 }
6973
367b1cf5
BS
6974 /* Now output the instructions to copy the data into and out of the
6975 reload registers. Do these in the order that the reloads were reported,
6976 since reloads of base and index registers precede reloads of operands
6977 and the operands may need the base and index registers reloaded. */
32131a9c 6978
367b1cf5
BS
6979 for (j = 0; j < n_reloads; j++)
6980 {
6981 if (rld[j].reg_rtx
6982 && REGNO (rld[j].reg_rtx) < FIRST_PSEUDO_REGISTER)
6983 new_spill_reg_store[REGNO (rld[j].reg_rtx)] = 0;
d7e0324f 6984
367b1cf5
BS
6985 do_input_reload (chain, rld + j, j);
6986 do_output_reload (chain, rld + j, j);
32131a9c
RK
6987 }
6988
546b63fb
RK
6989 /* Now write all the insns we made for reloads in the order expected by
6990 the allocation functions. Prior to the insn being reloaded, we write
6991 the following reloads:
6992
6993 RELOAD_FOR_OTHER_ADDRESS reloads for input addresses.
6994
2edc8d65 6995 RELOAD_OTHER reloads.
546b63fb 6996
47c8cf91
ILT
6997 For each operand, any RELOAD_FOR_INPADDR_ADDRESS reloads followed
6998 by any RELOAD_FOR_INPUT_ADDRESS reloads followed by the
6999 RELOAD_FOR_INPUT reload for the operand.
546b63fb 7000
893bc853
RK
7001 RELOAD_FOR_OPADDR_ADDRS reloads.
7002
546b63fb
RK
7003 RELOAD_FOR_OPERAND_ADDRESS reloads.
7004
7005 After the insn being reloaded, we write the following:
7006
47c8cf91
ILT
7007 For each operand, any RELOAD_FOR_OUTADDR_ADDRESS reloads followed
7008 by any RELOAD_FOR_OUTPUT_ADDRESS reload followed by the
7009 RELOAD_FOR_OUTPUT reload, followed by any RELOAD_OTHER output
7010 reloads for the operand. The RELOAD_OTHER output reloads are
7011 output in descending order by reload number. */
546b63fb 7012
c93b03c2
RH
7013 emit_insns_before (other_input_address_reload_insns, insn);
7014 emit_insns_before (other_input_reload_insns, insn);
546b63fb
RK
7015
7016 for (j = 0; j < reload_n_operands; j++)
7017 {
c93b03c2
RH
7018 emit_insns_before (inpaddr_address_reload_insns[j], insn);
7019 emit_insns_before (input_address_reload_insns[j], insn);
7020 emit_insns_before (input_reload_insns[j], insn);
546b63fb
RK
7021 }
7022
c93b03c2
RH
7023 emit_insns_before (other_operand_reload_insns, insn);
7024 emit_insns_before (operand_reload_insns, insn);
546b63fb
RK
7025
7026 for (j = 0; j < reload_n_operands; j++)
7027 {
47c8cf91 7028 emit_insns_before (outaddr_address_reload_insns[j], following_insn);
546b63fb
RK
7029 emit_insns_before (output_address_reload_insns[j], following_insn);
7030 emit_insns_before (output_reload_insns[j], following_insn);
befa01b9 7031 emit_insns_before (other_output_reload_insns[j], following_insn);
c93b03c2
RH
7032 }
7033
7034 /* Keep basic block info up to date. */
7035 if (n_basic_blocks)
7036 {
3b413743 7037 if (BLOCK_HEAD (chain->block) == insn)
05d10675 7038 BLOCK_HEAD (chain->block) = NEXT_INSN (before_insn);
3b413743 7039 if (BLOCK_END (chain->block) == insn)
05d10675 7040 BLOCK_END (chain->block) = PREV_INSN (following_insn);
546b63fb
RK
7041 }
7042
32131a9c
RK
7043 /* For all the spill regs newly reloaded in this instruction,
7044 record what they were reloaded from, so subsequent instructions
d445b551
RK
7045 can inherit the reloads.
7046
7047 Update spill_reg_store for the reloads of this insn.
e9e79d69 7048 Copy the elements that were updated in the loop above. */
32131a9c
RK
7049
7050 for (j = 0; j < n_reloads; j++)
7051 {
7052 register int r = reload_order[j];
7053 register int i = reload_spill_index[r];
7054
78a2bc08 7055 /* If this is a non-inherited input reload from a pseudo, we must
05d10675
BS
7056 clear any memory of a previous store to the same pseudo. Only do
7057 something if there will not be an output reload for the pseudo
7058 being reloaded. */
eceef4c9 7059 if (rld[r].in_reg != 0
05d10675
BS
7060 && ! (reload_inherited[r] || reload_override_in[r]))
7061 {
eceef4c9 7062 rtx reg = rld[r].in_reg;
78a2bc08 7063
05d10675 7064 if (GET_CODE (reg) == SUBREG)
78a2bc08 7065 reg = SUBREG_REG (reg);
05d10675
BS
7066
7067 if (GET_CODE (reg) == REG
78a2bc08
R
7068 && REGNO (reg) >= FIRST_PSEUDO_REGISTER
7069 && ! reg_has_output_reload[REGNO (reg)])
7070 {
7071 int nregno = REGNO (reg);
7072
7073 if (reg_last_reload_reg[nregno])
05d10675
BS
7074 {
7075 int last_regno = REGNO (reg_last_reload_reg[nregno]);
78a2bc08 7076
05d10675 7077 if (reg_reloaded_contents[last_regno] == nregno)
78a2bc08 7078 spill_reg_store[last_regno] = 0;
05d10675 7079 }
78a2bc08
R
7080 }
7081 }
05d10675 7082
e6e52be0 7083 /* I is nonneg if this reload used a register.
eceef4c9 7084 If rld[r].reg_rtx is 0, this is an optional reload
51f0c3b7 7085 that we opted to ignore. */
d445b551 7086
eceef4c9 7087 if (i >= 0 && rld[r].reg_rtx != 0)
32131a9c 7088 {
1d7254c5 7089 int nr = HARD_REGNO_NREGS (i, GET_MODE (rld[r].reg_rtx));
32131a9c 7090 int k;
51f0c3b7
JW
7091 int part_reaches_end = 0;
7092 int all_reaches_end = 1;
32131a9c 7093
51f0c3b7
JW
7094 /* For a multi register reload, we need to check if all or part
7095 of the value lives to the end. */
32131a9c
RK
7096 for (k = 0; k < nr; k++)
7097 {
eceef4c9
BS
7098 if (reload_reg_reaches_end_p (i + k, rld[r].opnum,
7099 rld[r].when_needed))
51f0c3b7
JW
7100 part_reaches_end = 1;
7101 else
7102 all_reaches_end = 0;
32131a9c
RK
7103 }
7104
51f0c3b7
JW
7105 /* Ignore reloads that don't reach the end of the insn in
7106 entirety. */
7107 if (all_reaches_end)
32131a9c 7108 {
51f0c3b7
JW
7109 /* First, clear out memory of what used to be in this spill reg.
7110 If consecutive registers are used, clear them all. */
d08ea79f 7111
32131a9c 7112 for (k = 0; k < nr; k++)
e6e52be0 7113 CLEAR_HARD_REG_BIT (reg_reloaded_valid, i + k);
d08ea79f 7114
51f0c3b7 7115 /* Maybe the spill reg contains a copy of reload_out. */
eceef4c9
BS
7116 if (rld[r].out != 0
7117 && (GET_CODE (rld[r].out) == REG
cb2afeb3 7118#ifdef AUTO_INC_DEC
eceef4c9 7119 || ! rld[r].out_reg
cb2afeb3 7120#endif
eceef4c9 7121 || GET_CODE (rld[r].out_reg) == REG))
51f0c3b7 7122 {
eceef4c9
BS
7123 rtx out = (GET_CODE (rld[r].out) == REG
7124 ? rld[r].out
7125 : rld[r].out_reg
7126 ? rld[r].out_reg
7127/* AUTO_INC */ : XEXP (rld[r].in_reg, 0));
cb2afeb3 7128 register int nregno = REGNO (out);
51f0c3b7
JW
7129 int nnr = (nregno >= FIRST_PSEUDO_REGISTER ? 1
7130 : HARD_REGNO_NREGS (nregno,
eceef4c9 7131 GET_MODE (rld[r].reg_rtx)));
51f0c3b7
JW
7132
7133 spill_reg_store[i] = new_spill_reg_store[i];
cb2afeb3 7134 spill_reg_stored_to[i] = out;
eceef4c9 7135 reg_last_reload_reg[nregno] = rld[r].reg_rtx;
51f0c3b7
JW
7136
7137 /* If NREGNO is a hard register, it may occupy more than
05d10675 7138 one register. If it does, say what is in the
51f0c3b7
JW
7139 rest of the registers assuming that both registers
7140 agree on how many words the object takes. If not,
7141 invalidate the subsequent registers. */
7142
7143 if (nregno < FIRST_PSEUDO_REGISTER)
7144 for (k = 1; k < nnr; k++)
7145 reg_last_reload_reg[nregno + k]
7146 = (nr == nnr
eceef4c9
BS
7147 ? gen_rtx_REG (reg_raw_mode[REGNO (rld[r].reg_rtx) + k],
7148 REGNO (rld[r].reg_rtx) + k)
51f0c3b7
JW
7149 : 0);
7150
7151 /* Now do the inverse operation. */
7152 for (k = 0; k < nr; k++)
7153 {
e6e52be0
R
7154 CLEAR_HARD_REG_BIT (reg_reloaded_dead, i + k);
7155 reg_reloaded_contents[i + k]
51f0c3b7
JW
7156 = (nregno >= FIRST_PSEUDO_REGISTER || nr != nnr
7157 ? nregno
7158 : nregno + k);
e6e52be0
R
7159 reg_reloaded_insn[i + k] = insn;
7160 SET_HARD_REG_BIT (reg_reloaded_valid, i + k);
51f0c3b7
JW
7161 }
7162 }
d08ea79f 7163
51f0c3b7
JW
7164 /* Maybe the spill reg contains a copy of reload_in. Only do
7165 something if there will not be an output reload for
7166 the register being reloaded. */
eceef4c9
BS
7167 else if (rld[r].out_reg == 0
7168 && rld[r].in != 0
7169 && ((GET_CODE (rld[r].in) == REG
7170 && REGNO (rld[r].in) >= FIRST_PSEUDO_REGISTER
7171 && ! reg_has_output_reload[REGNO (rld[r].in)])
7172 || (GET_CODE (rld[r].in_reg) == REG
7173 && ! reg_has_output_reload[REGNO (rld[r].in_reg)]))
7174 && ! reg_set_p (rld[r].reg_rtx, PATTERN (insn)))
51f0c3b7
JW
7175 {
7176 register int nregno;
7177 int nnr;
d445b551 7178
eceef4c9
BS
7179 if (GET_CODE (rld[r].in) == REG
7180 && REGNO (rld[r].in) >= FIRST_PSEUDO_REGISTER)
7181 nregno = REGNO (rld[r].in);
7182 else if (GET_CODE (rld[r].in_reg) == REG)
7183 nregno = REGNO (rld[r].in_reg);
cb2afeb3 7184 else
eceef4c9 7185 nregno = REGNO (XEXP (rld[r].in_reg, 0));
d08ea79f 7186
51f0c3b7
JW
7187 nnr = (nregno >= FIRST_PSEUDO_REGISTER ? 1
7188 : HARD_REGNO_NREGS (nregno,
eceef4c9 7189 GET_MODE (rld[r].reg_rtx)));
05d10675 7190
eceef4c9 7191 reg_last_reload_reg[nregno] = rld[r].reg_rtx;
51f0c3b7
JW
7192
7193 if (nregno < FIRST_PSEUDO_REGISTER)
7194 for (k = 1; k < nnr; k++)
7195 reg_last_reload_reg[nregno + k]
7196 = (nr == nnr
eceef4c9
BS
7197 ? gen_rtx_REG (reg_raw_mode[REGNO (rld[r].reg_rtx) + k],
7198 REGNO (rld[r].reg_rtx) + k)
51f0c3b7
JW
7199 : 0);
7200
7201 /* Unless we inherited this reload, show we haven't
cb2afeb3
R
7202 recently done a store.
7203 Previous stores of inherited auto_inc expressions
7204 also have to be discarded. */
7205 if (! reload_inherited[r]
eceef4c9 7206 || (rld[r].out && ! rld[r].out_reg))
51f0c3b7
JW
7207 spill_reg_store[i] = 0;
7208
7209 for (k = 0; k < nr; k++)
7210 {
e6e52be0
R
7211 CLEAR_HARD_REG_BIT (reg_reloaded_dead, i + k);
7212 reg_reloaded_contents[i + k]
51f0c3b7
JW
7213 = (nregno >= FIRST_PSEUDO_REGISTER || nr != nnr
7214 ? nregno
7215 : nregno + k);
e6e52be0
R
7216 reg_reloaded_insn[i + k] = insn;
7217 SET_HARD_REG_BIT (reg_reloaded_valid, i + k);
51f0c3b7
JW
7218 }
7219 }
7220 }
d445b551 7221
51f0c3b7
JW
7222 /* However, if part of the reload reaches the end, then we must
7223 invalidate the old info for the part that survives to the end. */
7224 else if (part_reaches_end)
7225 {
546b63fb 7226 for (k = 0; k < nr; k++)
e6e52be0 7227 if (reload_reg_reaches_end_p (i + k,
eceef4c9
BS
7228 rld[r].opnum,
7229 rld[r].when_needed))
e6e52be0 7230 CLEAR_HARD_REG_BIT (reg_reloaded_valid, i + k);
32131a9c
RK
7231 }
7232 }
7233
7234 /* The following if-statement was #if 0'd in 1.34 (or before...).
7235 It's reenabled in 1.35 because supposedly nothing else
7236 deals with this problem. */
7237
7238 /* If a register gets output-reloaded from a non-spill register,
7239 that invalidates any previous reloaded copy of it.
7240 But forget_old_reloads_1 won't get to see it, because
7241 it thinks only about the original insn. So invalidate it here. */
eceef4c9
BS
7242 if (i < 0 && rld[r].out != 0
7243 && (GET_CODE (rld[r].out) == REG
7244 || (GET_CODE (rld[r].out) == MEM
7245 && GET_CODE (rld[r].out_reg) == REG)))
32131a9c 7246 {
eceef4c9
BS
7247 rtx out = (GET_CODE (rld[r].out) == REG
7248 ? rld[r].out : rld[r].out_reg);
cb2afeb3 7249 register int nregno = REGNO (out);
c7093272 7250 if (nregno >= FIRST_PSEUDO_REGISTER)
cb2afeb3 7251 {
6a651371 7252 rtx src_reg, store_insn = NULL_RTX;
cb2afeb3
R
7253
7254 reg_last_reload_reg[nregno] = 0;
7255
7256 /* If we can find a hard register that is stored, record
7257 the storing insn so that we may delete this insn with
7258 delete_output_reload. */
eceef4c9 7259 src_reg = rld[r].reg_rtx;
cb2afeb3
R
7260
7261 /* If this is an optional reload, try to find the source reg
7262 from an input reload. */
7263 if (! src_reg)
7264 {
7265 rtx set = single_set (insn);
eceef4c9 7266 if (set && SET_DEST (set) == rld[r].out)
cb2afeb3
R
7267 {
7268 int k;
7269
7270 src_reg = SET_SRC (set);
7271 store_insn = insn;
7272 for (k = 0; k < n_reloads; k++)
7273 {
eceef4c9 7274 if (rld[k].in == src_reg)
cb2afeb3 7275 {
eceef4c9 7276 src_reg = rld[k].reg_rtx;
cb2afeb3
R
7277 break;
7278 }
7279 }
7280 }
7281 }
7282 else
7283 store_insn = new_spill_reg_store[REGNO (src_reg)];
7284 if (src_reg && GET_CODE (src_reg) == REG
7285 && REGNO (src_reg) < FIRST_PSEUDO_REGISTER)
7286 {
7287 int src_regno = REGNO (src_reg);
8ec450a4 7288 int nr = HARD_REGNO_NREGS (src_regno, rld[r].mode);
cb2afeb3
R
7289 /* The place where to find a death note varies with
7290 PRESERVE_DEATH_INFO_REGNO_P . The condition is not
7291 necessarily checked exactly in the code that moves
7292 notes, so just check both locations. */
7293 rtx note = find_regno_note (insn, REG_DEAD, src_regno);
7294 if (! note)
7295 note = find_regno_note (store_insn, REG_DEAD, src_regno);
7296 while (nr-- > 0)
7297 {
7298 spill_reg_store[src_regno + nr] = store_insn;
7299 spill_reg_stored_to[src_regno + nr] = out;
7300 reg_reloaded_contents[src_regno + nr] = nregno;
7301 reg_reloaded_insn[src_regno + nr] = store_insn;
00f9f1bc 7302 CLEAR_HARD_REG_BIT (reg_reloaded_dead, src_regno + nr);
cb2afeb3
R
7303 SET_HARD_REG_BIT (reg_reloaded_valid, src_regno + nr);
7304 SET_HARD_REG_BIT (reg_is_output_reload, src_regno + nr);
7305 if (note)
7306 SET_HARD_REG_BIT (reg_reloaded_died, src_regno);
7307 else
7308 CLEAR_HARD_REG_BIT (reg_reloaded_died, src_regno);
7309 }
7310 reg_last_reload_reg[nregno] = src_reg;
7311 }
7312 }
c7093272
RK
7313 else
7314 {
1d7254c5 7315 int num_regs = HARD_REGNO_NREGS (nregno, GET_MODE (rld[r].out));
36281332 7316
c7093272
RK
7317 while (num_regs-- > 0)
7318 reg_last_reload_reg[nregno + num_regs] = 0;
7319 }
32131a9c
RK
7320 }
7321 }
e6e52be0 7322 IOR_HARD_REG_SET (reg_reloaded_dead, reg_reloaded_died);
32131a9c
RK
7323}
7324\f
5e03c156
RK
7325/* Emit code to perform a reload from IN (which may be a reload register) to
7326 OUT (which may also be a reload register). IN or OUT is from operand
05d10675 7327 OPNUM with reload type TYPE.
546b63fb 7328
3c3eeea6 7329 Returns first insn emitted. */
32131a9c
RK
7330
7331rtx
5e03c156
RK
7332gen_reload (out, in, opnum, type)
7333 rtx out;
32131a9c 7334 rtx in;
546b63fb
RK
7335 int opnum;
7336 enum reload_type type;
32131a9c 7337{
546b63fb 7338 rtx last = get_last_insn ();
7a5b18b0
RK
7339 rtx tem;
7340
7341 /* If IN is a paradoxical SUBREG, remove it and try to put the
7342 opposite SUBREG on OUT. Likewise for a paradoxical SUBREG on OUT. */
7343 if (GET_CODE (in) == SUBREG
7344 && (GET_MODE_SIZE (GET_MODE (in))
7345 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
7346 && (tem = gen_lowpart_common (GET_MODE (SUBREG_REG (in)), out)) != 0)
7347 in = SUBREG_REG (in), out = tem;
7348 else if (GET_CODE (out) == SUBREG
eceef4c9
BS
7349 && (GET_MODE_SIZE (GET_MODE (out))
7350 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
7351 && (tem = gen_lowpart_common (GET_MODE (SUBREG_REG (out)), in)) != 0)
7a5b18b0 7352 out = SUBREG_REG (out), in = tem;
32131a9c 7353
a8fdc208 7354 /* How to do this reload can get quite tricky. Normally, we are being
32131a9c
RK
7355 asked to reload a simple operand, such as a MEM, a constant, or a pseudo
7356 register that didn't get a hard register. In that case we can just
7357 call emit_move_insn.
7358
a7fd196c
JW
7359 We can also be asked to reload a PLUS that adds a register or a MEM to
7360 another register, constant or MEM. This can occur during frame pointer
7361 elimination and while reloading addresses. This case is handled by
7362 trying to emit a single insn to perform the add. If it is not valid,
7363 we use a two insn sequence.
32131a9c
RK
7364
7365 Finally, we could be called to handle an 'o' constraint by putting
7366 an address into a register. In that case, we first try to do this
7367 with a named pattern of "reload_load_address". If no such pattern
7368 exists, we just emit a SET insn and hope for the best (it will normally
7369 be valid on machines that use 'o').
7370
7371 This entire process is made complex because reload will never
7372 process the insns we generate here and so we must ensure that
7373 they will fit their constraints and also by the fact that parts of
7374 IN might be being reloaded separately and replaced with spill registers.
7375 Because of this, we are, in some sense, just guessing the right approach
7376 here. The one listed above seems to work.
7377
7378 ??? At some point, this whole thing needs to be rethought. */
7379
7380 if (GET_CODE (in) == PLUS
a7fd196c 7381 && (GET_CODE (XEXP (in, 0)) == REG
5c6b1bd2 7382 || GET_CODE (XEXP (in, 0)) == SUBREG
a7fd196c
JW
7383 || GET_CODE (XEXP (in, 0)) == MEM)
7384 && (GET_CODE (XEXP (in, 1)) == REG
5c6b1bd2 7385 || GET_CODE (XEXP (in, 1)) == SUBREG
a7fd196c
JW
7386 || CONSTANT_P (XEXP (in, 1))
7387 || GET_CODE (XEXP (in, 1)) == MEM))
32131a9c 7388 {
a7fd196c
JW
7389 /* We need to compute the sum of a register or a MEM and another
7390 register, constant, or MEM, and put it into the reload
3002e160
JW
7391 register. The best possible way of doing this is if the machine
7392 has a three-operand ADD insn that accepts the required operands.
32131a9c
RK
7393
7394 The simplest approach is to try to generate such an insn and see if it
7395 is recognized and matches its constraints. If so, it can be used.
7396
7397 It might be better not to actually emit the insn unless it is valid,
0009eff2 7398 but we need to pass the insn as an operand to `recog' and
0eadeb15 7399 `extract_insn' and it is simpler to emit and then delete the insn if
0009eff2 7400 not valid than to dummy things up. */
a8fdc208 7401
af929c62 7402 rtx op0, op1, tem, insn;
32131a9c 7403 int code;
a8fdc208 7404
af929c62
RK
7405 op0 = find_replacement (&XEXP (in, 0));
7406 op1 = find_replacement (&XEXP (in, 1));
7407
32131a9c
RK
7408 /* Since constraint checking is strict, commutativity won't be
7409 checked, so we need to do that here to avoid spurious failure
7410 if the add instruction is two-address and the second operand
7411 of the add is the same as the reload reg, which is frequently
7412 the case. If the insn would be A = B + A, rearrange it so
0f41302f 7413 it will be A = A + B as constrain_operands expects. */
a8fdc208 7414
32131a9c 7415 if (GET_CODE (XEXP (in, 1)) == REG
5e03c156 7416 && REGNO (out) == REGNO (XEXP (in, 1)))
af929c62
RK
7417 tem = op0, op0 = op1, op1 = tem;
7418
7419 if (op0 != XEXP (in, 0) || op1 != XEXP (in, 1))
38a448ca 7420 in = gen_rtx_PLUS (GET_MODE (in), op0, op1);
32131a9c 7421
38a448ca 7422 insn = emit_insn (gen_rtx_SET (VOIDmode, out, in));
32131a9c
RK
7423 code = recog_memoized (insn);
7424
7425 if (code >= 0)
7426 {
0eadeb15 7427 extract_insn (insn);
32131a9c
RK
7428 /* We want constrain operands to treat this insn strictly in
7429 its validity determination, i.e., the way it would after reload
7430 has completed. */
0eadeb15 7431 if (constrain_operands (1))
32131a9c
RK
7432 return insn;
7433 }
7434
546b63fb 7435 delete_insns_since (last);
32131a9c
RK
7436
7437 /* If that failed, we must use a conservative two-insn sequence.
09522f21
FS
7438
7439 Use a move to copy one operand into the reload register. Prefer
7440 to reload a constant, MEM or pseudo since the move patterns can
7441 handle an arbitrary operand. If OP1 is not a constant, MEM or
7442 pseudo and OP1 is not a valid operand for an add instruction, then
7443 reload OP1.
7444
7445 After reloading one of the operands into the reload register, add
7446 the reload register to the output register.
32131a9c
RK
7447
7448 If there is another way to do this for a specific machine, a
7449 DEFINE_PEEPHOLE should be specified that recognizes the sequence
7450 we emit below. */
7451
09522f21
FS
7452 code = (int) add_optab->handlers[(int) GET_MODE (out)].insn_code;
7453
5c6b1bd2 7454 if (CONSTANT_P (op1) || GET_CODE (op1) == MEM || GET_CODE (op1) == SUBREG
af929c62 7455 || (GET_CODE (op1) == REG
09522f21
FS
7456 && REGNO (op1) >= FIRST_PSEUDO_REGISTER)
7457 || (code != CODE_FOR_nothing
a995e389
RH
7458 && ! ((*insn_data[code].operand[2].predicate)
7459 (op1, insn_data[code].operand[2].mode))))
af929c62 7460 tem = op0, op0 = op1, op1 = tem;
32131a9c 7461
5c6b1bd2 7462 gen_reload (out, op0, opnum, type);
39b56c2a 7463
5e03c156 7464 /* If OP0 and OP1 are the same, we can use OUT for OP1.
39b56c2a
RK
7465 This fixes a problem on the 32K where the stack pointer cannot
7466 be used as an operand of an add insn. */
7467
7468 if (rtx_equal_p (op0, op1))
5e03c156 7469 op1 = out;
39b56c2a 7470
5e03c156 7471 insn = emit_insn (gen_add2_insn (out, op1));
c77c9766
RK
7472
7473 /* If that failed, copy the address register to the reload register.
0f41302f 7474 Then add the constant to the reload register. */
c77c9766
RK
7475
7476 code = recog_memoized (insn);
7477
7478 if (code >= 0)
7479 {
0eadeb15 7480 extract_insn (insn);
c77c9766
RK
7481 /* We want constrain operands to treat this insn strictly in
7482 its validity determination, i.e., the way it would after reload
7483 has completed. */
0eadeb15 7484 if (constrain_operands (1))
4117a96b
R
7485 {
7486 /* Add a REG_EQUIV note so that find_equiv_reg can find it. */
7487 REG_NOTES (insn)
9e6a5703 7488 = gen_rtx_EXPR_LIST (REG_EQUIV, in, REG_NOTES (insn));
4117a96b
R
7489 return insn;
7490 }
c77c9766
RK
7491 }
7492
7493 delete_insns_since (last);
7494
5c6b1bd2 7495 gen_reload (out, op1, opnum, type);
4117a96b 7496 insn = emit_insn (gen_add2_insn (out, op0));
9e6a5703 7497 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_EQUIV, in, REG_NOTES (insn));
32131a9c
RK
7498 }
7499
0dadecf6
RK
7500#ifdef SECONDARY_MEMORY_NEEDED
7501 /* If we need a memory location to do the move, do it that way. */
7502 else if (GET_CODE (in) == REG && REGNO (in) < FIRST_PSEUDO_REGISTER
5e03c156 7503 && GET_CODE (out) == REG && REGNO (out) < FIRST_PSEUDO_REGISTER
0dadecf6 7504 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (REGNO (in)),
5e03c156
RK
7505 REGNO_REG_CLASS (REGNO (out)),
7506 GET_MODE (out)))
0dadecf6
RK
7507 {
7508 /* Get the memory to use and rewrite both registers to its mode. */
5e03c156 7509 rtx loc = get_secondary_mem (in, GET_MODE (out), opnum, type);
0dadecf6 7510
5e03c156 7511 if (GET_MODE (loc) != GET_MODE (out))
38a448ca 7512 out = gen_rtx_REG (GET_MODE (loc), REGNO (out));
0dadecf6
RK
7513
7514 if (GET_MODE (loc) != GET_MODE (in))
38a448ca 7515 in = gen_rtx_REG (GET_MODE (loc), REGNO (in));
0dadecf6 7516
5c6b1bd2
RK
7517 gen_reload (loc, in, opnum, type);
7518 gen_reload (out, loc, opnum, type);
0dadecf6
RK
7519 }
7520#endif
7521
32131a9c
RK
7522 /* If IN is a simple operand, use gen_move_insn. */
7523 else if (GET_RTX_CLASS (GET_CODE (in)) == 'o' || GET_CODE (in) == SUBREG)
5e03c156 7524 emit_insn (gen_move_insn (out, in));
32131a9c
RK
7525
7526#ifdef HAVE_reload_load_address
7527 else if (HAVE_reload_load_address)
5e03c156 7528 emit_insn (gen_reload_load_address (out, in));
32131a9c
RK
7529#endif
7530
5e03c156 7531 /* Otherwise, just write (set OUT IN) and hope for the best. */
32131a9c 7532 else
38a448ca 7533 emit_insn (gen_rtx_SET (VOIDmode, out, in));
32131a9c
RK
7534
7535 /* Return the first insn emitted.
546b63fb 7536 We can not just return get_last_insn, because there may have
32131a9c
RK
7537 been multiple instructions emitted. Also note that gen_move_insn may
7538 emit more than one insn itself, so we can not assume that there is one
7539 insn emitted per emit_insn_before call. */
7540
546b63fb 7541 return last ? NEXT_INSN (last) : get_insns ();
32131a9c
RK
7542}
7543\f
7544/* Delete a previously made output-reload
7545 whose result we now believe is not needed.
7546 First we double-check.
7547
7548 INSN is the insn now being processed.
cb2afeb3
R
7549 LAST_RELOAD_REG is the hard register number for which we want to delete
7550 the last output reload.
7551 J is the reload-number that originally used REG. The caller has made
7552 certain that reload J doesn't use REG any longer for input. */
32131a9c
RK
7553
7554static void
cb2afeb3 7555delete_output_reload (insn, j, last_reload_reg)
32131a9c
RK
7556 rtx insn;
7557 int j;
cb2afeb3 7558 int last_reload_reg;
32131a9c 7559{
cb2afeb3
R
7560 rtx output_reload_insn = spill_reg_store[last_reload_reg];
7561 rtx reg = spill_reg_stored_to[last_reload_reg];
7562 int k;
7563 int n_occurrences;
7564 int n_inherited = 0;
32131a9c 7565 register rtx i1;
cb2afeb3 7566 rtx substed;
05d10675 7567
32131a9c
RK
7568 /* Get the raw pseudo-register referred to. */
7569
32131a9c
RK
7570 while (GET_CODE (reg) == SUBREG)
7571 reg = SUBREG_REG (reg);
cb2afeb3
R
7572 substed = reg_equiv_memory_loc[REGNO (reg)];
7573
7574 /* This is unsafe if the operand occurs more often in the current
7575 insn than it is inherited. */
7576 for (k = n_reloads - 1; k >= 0; k--)
7577 {
eceef4c9 7578 rtx reg2 = rld[k].in;
cb2afeb3
R
7579 if (! reg2)
7580 continue;
7581 if (GET_CODE (reg2) == MEM || reload_override_in[k])
eceef4c9 7582 reg2 = rld[k].in_reg;
cb2afeb3 7583#ifdef AUTO_INC_DEC
eceef4c9
BS
7584 if (rld[k].out && ! rld[k].out_reg)
7585 reg2 = XEXP (rld[k].in_reg, 0);
cb2afeb3
R
7586#endif
7587 while (GET_CODE (reg2) == SUBREG)
7588 reg2 = SUBREG_REG (reg2);
7589 if (rtx_equal_p (reg2, reg))
2eb6dac7
AS
7590 {
7591 if (reload_inherited[k] || reload_override_in[k] || k == j)
7592 {
cb2afeb3 7593 n_inherited++;
eceef4c9 7594 reg2 = rld[k].out_reg;
2eb6dac7
AS
7595 if (! reg2)
7596 continue;
7597 while (GET_CODE (reg2) == SUBREG)
7598 reg2 = XEXP (reg2, 0);
7599 if (rtx_equal_p (reg2, reg))
7600 n_inherited++;
7601 }
7602 else
7603 return;
7604 }
cb2afeb3 7605 }
4b983fdc 7606 n_occurrences = count_occurrences (PATTERN (insn), reg, 0);
cb2afeb3 7607 if (substed)
5d7ef82a
BS
7608 n_occurrences += count_occurrences (PATTERN (insn),
7609 eliminate_regs (substed, 0,
7610 NULL_RTX), 0);
cb2afeb3
R
7611 if (n_occurrences > n_inherited)
7612 return;
32131a9c
RK
7613
7614 /* If the pseudo-reg we are reloading is no longer referenced
7615 anywhere between the store into it and here,
7616 and no jumps or labels intervene, then the value can get
7617 here through the reload reg alone.
7618 Otherwise, give up--return. */
7619 for (i1 = NEXT_INSN (output_reload_insn);
7620 i1 != insn; i1 = NEXT_INSN (i1))
7621 {
7622 if (GET_CODE (i1) == CODE_LABEL || GET_CODE (i1) == JUMP_INSN)
7623 return;
7624 if ((GET_CODE (i1) == INSN || GET_CODE (i1) == CALL_INSN)
7625 && reg_mentioned_p (reg, PATTERN (i1)))
aa6498c2 7626 {
cb2afeb3
R
7627 /* If this is USE in front of INSN, we only have to check that
7628 there are no more references than accounted for by inheritance. */
7629 while (GET_CODE (i1) == INSN && GET_CODE (PATTERN (i1)) == USE)
aa6498c2 7630 {
cb2afeb3 7631 n_occurrences += rtx_equal_p (reg, XEXP (PATTERN (i1), 0)) != 0;
aa6498c2
R
7632 i1 = NEXT_INSN (i1);
7633 }
cb2afeb3 7634 if (n_occurrences <= n_inherited && i1 == insn)
aa6498c2
R
7635 break;
7636 return;
7637 }
32131a9c
RK
7638 }
7639
aa6498c2
R
7640 /* The caller has already checked that REG dies or is set in INSN.
7641 It has also checked that we are optimizing, and thus some inaccurancies
7642 in the debugging information are acceptable.
7643 So we could just delete output_reload_insn.
7644 But in some cases we can improve the debugging information without
7645 sacrificing optimization - maybe even improving the code:
7646 See if the pseudo reg has been completely replaced
32131a9c
RK
7647 with reload regs. If so, delete the store insn
7648 and forget we had a stack slot for the pseudo. */
eceef4c9 7649 if (rld[j].out != rld[j].in
aa6498c2 7650 && REG_N_DEATHS (REGNO (reg)) == 1
a3a24aa6 7651 && REG_N_SETS (REGNO (reg)) == 1
aa6498c2
R
7652 && REG_BASIC_BLOCK (REGNO (reg)) >= 0
7653 && find_regno_note (insn, REG_DEAD, REGNO (reg)))
32131a9c
RK
7654 {
7655 rtx i2;
7656
7657 /* We know that it was used only between here
7658 and the beginning of the current basic block.
7659 (We also know that the last use before INSN was
7660 the output reload we are thinking of deleting, but never mind that.)
7661 Search that range; see if any ref remains. */
7662 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
7663 {
d445b551
RK
7664 rtx set = single_set (i2);
7665
32131a9c
RK
7666 /* Uses which just store in the pseudo don't count,
7667 since if they are the only uses, they are dead. */
d445b551 7668 if (set != 0 && SET_DEST (set) == reg)
32131a9c
RK
7669 continue;
7670 if (GET_CODE (i2) == CODE_LABEL
7671 || GET_CODE (i2) == JUMP_INSN)
7672 break;
7673 if ((GET_CODE (i2) == INSN || GET_CODE (i2) == CALL_INSN)
7674 && reg_mentioned_p (reg, PATTERN (i2)))
aa6498c2
R
7675 {
7676 /* Some other ref remains; just delete the output reload we
7677 know to be dead. */
cb2afeb3
R
7678 delete_address_reloads (output_reload_insn, insn);
7679 PUT_CODE (output_reload_insn, NOTE);
7680 NOTE_SOURCE_FILE (output_reload_insn) = 0;
7681 NOTE_LINE_NUMBER (output_reload_insn) = NOTE_INSN_DELETED;
aa6498c2
R
7682 return;
7683 }
32131a9c
RK
7684 }
7685
7686 /* Delete the now-dead stores into this pseudo. */
7687 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
7688 {
d445b551
RK
7689 rtx set = single_set (i2);
7690
7691 if (set != 0 && SET_DEST (set) == reg)
5507b94b 7692 {
cb2afeb3 7693 delete_address_reloads (i2, insn);
5507b94b
RK
7694 /* This might be a basic block head,
7695 thus don't use delete_insn. */
7696 PUT_CODE (i2, NOTE);
7697 NOTE_SOURCE_FILE (i2) = 0;
7698 NOTE_LINE_NUMBER (i2) = NOTE_INSN_DELETED;
7699 }
32131a9c
RK
7700 if (GET_CODE (i2) == CODE_LABEL
7701 || GET_CODE (i2) == JUMP_INSN)
7702 break;
7703 }
7704
7705 /* For the debugging info,
7706 say the pseudo lives in this reload reg. */
eceef4c9 7707 reg_renumber[REGNO (reg)] = REGNO (rld[j].reg_rtx);
32131a9c
RK
7708 alter_reg (REGNO (reg), -1);
7709 }
cb2afeb3
R
7710 delete_address_reloads (output_reload_insn, insn);
7711 PUT_CODE (output_reload_insn, NOTE);
7712 NOTE_SOURCE_FILE (output_reload_insn) = 0;
7713 NOTE_LINE_NUMBER (output_reload_insn) = NOTE_INSN_DELETED;
7714
7715}
7716
7717/* We are going to delete DEAD_INSN. Recursively delete loads of
7718 reload registers used in DEAD_INSN that are not used till CURRENT_INSN.
7719 CURRENT_INSN is being reloaded, so we have to check its reloads too. */
7720static void
7721delete_address_reloads (dead_insn, current_insn)
7722 rtx dead_insn, current_insn;
7723{
7724 rtx set = single_set (dead_insn);
7725 rtx set2, dst, prev, next;
7726 if (set)
7727 {
7728 rtx dst = SET_DEST (set);
7729 if (GET_CODE (dst) == MEM)
7730 delete_address_reloads_1 (dead_insn, XEXP (dst, 0), current_insn);
7731 }
7732 /* If we deleted the store from a reloaded post_{in,de}c expression,
7733 we can delete the matching adds. */
7734 prev = PREV_INSN (dead_insn);
7735 next = NEXT_INSN (dead_insn);
7736 if (! prev || ! next)
7737 return;
7738 set = single_set (next);
7739 set2 = single_set (prev);
7740 if (! set || ! set2
7741 || GET_CODE (SET_SRC (set)) != PLUS || GET_CODE (SET_SRC (set2)) != PLUS
7742 || GET_CODE (XEXP (SET_SRC (set), 1)) != CONST_INT
7743 || GET_CODE (XEXP (SET_SRC (set2), 1)) != CONST_INT)
7744 return;
7745 dst = SET_DEST (set);
7746 if (! rtx_equal_p (dst, SET_DEST (set2))
7747 || ! rtx_equal_p (dst, XEXP (SET_SRC (set), 0))
7748 || ! rtx_equal_p (dst, XEXP (SET_SRC (set2), 0))
7749 || (INTVAL (XEXP (SET_SRC (set), 1))
1d7254c5 7750 != -INTVAL (XEXP (SET_SRC (set2), 1))))
cb2afeb3
R
7751 return;
7752 delete_insn (prev);
7753 delete_insn (next);
7754}
7755
7756/* Subfunction of delete_address_reloads: process registers found in X. */
7757static void
7758delete_address_reloads_1 (dead_insn, x, current_insn)
7759 rtx dead_insn, x, current_insn;
7760{
7761 rtx prev, set, dst, i2;
7762 int i, j;
7763 enum rtx_code code = GET_CODE (x);
7764
7765 if (code != REG)
7766 {
1d7254c5 7767 const char *fmt = GET_RTX_FORMAT (code);
cb2afeb3
R
7768 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7769 {
7770 if (fmt[i] == 'e')
7771 delete_address_reloads_1 (dead_insn, XEXP (x, i), current_insn);
7772 else if (fmt[i] == 'E')
7773 {
1d7254c5 7774 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
cb2afeb3
R
7775 delete_address_reloads_1 (dead_insn, XVECEXP (x, i, j),
7776 current_insn);
7777 }
7778 }
7779 return;
7780 }
7781
7782 if (spill_reg_order[REGNO (x)] < 0)
7783 return;
aa6498c2 7784
cb2afeb3
R
7785 /* Scan backwards for the insn that sets x. This might be a way back due
7786 to inheritance. */
7787 for (prev = PREV_INSN (dead_insn); prev; prev = PREV_INSN (prev))
7788 {
7789 code = GET_CODE (prev);
7790 if (code == CODE_LABEL || code == JUMP_INSN)
7791 return;
7792 if (GET_RTX_CLASS (code) != 'i')
7793 continue;
7794 if (reg_set_p (x, PATTERN (prev)))
7795 break;
7796 if (reg_referenced_p (x, PATTERN (prev)))
7797 return;
7798 }
7799 if (! prev || INSN_UID (prev) < reload_first_uid)
7800 return;
7801 /* Check that PREV only sets the reload register. */
7802 set = single_set (prev);
7803 if (! set)
7804 return;
7805 dst = SET_DEST (set);
7806 if (GET_CODE (dst) != REG
7807 || ! rtx_equal_p (dst, x))
7808 return;
7809 if (! reg_set_p (dst, PATTERN (dead_insn)))
7810 {
7811 /* Check if DST was used in a later insn -
7812 it might have been inherited. */
7813 for (i2 = NEXT_INSN (dead_insn); i2; i2 = NEXT_INSN (i2))
7814 {
7815 if (GET_CODE (i2) == CODE_LABEL)
7816 break;
2c3c49de 7817 if (! INSN_P (i2))
cb2afeb3
R
7818 continue;
7819 if (reg_referenced_p (dst, PATTERN (i2)))
7820 {
7821 /* If there is a reference to the register in the current insn,
7822 it might be loaded in a non-inherited reload. If no other
7823 reload uses it, that means the register is set before
7824 referenced. */
7825 if (i2 == current_insn)
7826 {
7827 for (j = n_reloads - 1; j >= 0; j--)
eceef4c9 7828 if ((rld[j].reg_rtx == dst && reload_inherited[j])
cb2afeb3
R
7829 || reload_override_in[j] == dst)
7830 return;
7831 for (j = n_reloads - 1; j >= 0; j--)
eceef4c9 7832 if (rld[j].in && rld[j].reg_rtx == dst)
cb2afeb3
R
7833 break;
7834 if (j >= 0)
7835 break;
7836 }
7837 return;
7838 }
7839 if (GET_CODE (i2) == JUMP_INSN)
7840 break;
cb2afeb3 7841 /* If DST is still live at CURRENT_INSN, check if it is used for
3900dc09
R
7842 any reload. Note that even if CURRENT_INSN sets DST, we still
7843 have to check the reloads. */
cb2afeb3
R
7844 if (i2 == current_insn)
7845 {
7846 for (j = n_reloads - 1; j >= 0; j--)
eceef4c9 7847 if ((rld[j].reg_rtx == dst && reload_inherited[j])
cb2afeb3
R
7848 || reload_override_in[j] == dst)
7849 return;
7850 /* ??? We can't finish the loop here, because dst might be
7851 allocated to a pseudo in this block if no reload in this
7852 block needs any of the clsses containing DST - see
7853 spill_hard_reg. There is no easy way to tell this, so we
7854 have to scan till the end of the basic block. */
7855 }
3900dc09
R
7856 if (reg_set_p (dst, PATTERN (i2)))
7857 break;
cb2afeb3
R
7858 }
7859 }
7860 delete_address_reloads_1 (prev, SET_SRC (set), current_insn);
7861 reg_reloaded_contents[REGNO (dst)] = -1;
7862 /* Can't use delete_insn here because PREV might be a basic block head. */
7863 PUT_CODE (prev, NOTE);
7864 NOTE_LINE_NUMBER (prev) = NOTE_INSN_DELETED;
7865 NOTE_SOURCE_FILE (prev) = 0;
32131a9c 7866}
32131a9c 7867\f
a8fdc208 7868/* Output reload-insns to reload VALUE into RELOADREG.
858a47b1 7869 VALUE is an autoincrement or autodecrement RTX whose operand
32131a9c
RK
7870 is a register or memory location;
7871 so reloading involves incrementing that location.
cb2afeb3 7872 IN is either identical to VALUE, or some cheaper place to reload from.
32131a9c
RK
7873
7874 INC_AMOUNT is the number to increment or decrement by (always positive).
cb2afeb3 7875 This cannot be deduced from VALUE.
32131a9c 7876
cb2afeb3
R
7877 Return the instruction that stores into RELOADREG. */
7878
7879static rtx
7880inc_for_reload (reloadreg, in, value, inc_amount)
32131a9c 7881 rtx reloadreg;
cb2afeb3 7882 rtx in, value;
32131a9c 7883 int inc_amount;
32131a9c
RK
7884{
7885 /* REG or MEM to be copied and incremented. */
7886 rtx incloc = XEXP (value, 0);
7887 /* Nonzero if increment after copying. */
7888 int post = (GET_CODE (value) == POST_DEC || GET_CODE (value) == POST_INC);
546b63fb 7889 rtx last;
0009eff2
RK
7890 rtx inc;
7891 rtx add_insn;
7892 int code;
cb2afeb3
R
7893 rtx store;
7894 rtx real_in = in == value ? XEXP (in, 0) : in;
32131a9c
RK
7895
7896 /* No hard register is equivalent to this register after
7897 inc/dec operation. If REG_LAST_RELOAD_REG were non-zero,
7898 we could inc/dec that register as well (maybe even using it for
7899 the source), but I'm not sure it's worth worrying about. */
7900 if (GET_CODE (incloc) == REG)
7901 reg_last_reload_reg[REGNO (incloc)] = 0;
7902
7903 if (GET_CODE (value) == PRE_DEC || GET_CODE (value) == POST_DEC)
1d7254c5 7904 inc_amount = -inc_amount;
32131a9c 7905
fb3821f7 7906 inc = GEN_INT (inc_amount);
0009eff2
RK
7907
7908 /* If this is post-increment, first copy the location to the reload reg. */
cb2afeb3
R
7909 if (post && real_in != reloadreg)
7910 emit_insn (gen_move_insn (reloadreg, real_in));
0009eff2 7911
cb2afeb3
R
7912 if (in == value)
7913 {
7914 /* See if we can directly increment INCLOC. Use a method similar to
7915 that in gen_reload. */
0009eff2 7916
cb2afeb3
R
7917 last = get_last_insn ();
7918 add_insn = emit_insn (gen_rtx_SET (VOIDmode, incloc,
7919 gen_rtx_PLUS (GET_MODE (incloc),
7920 incloc, inc)));
05d10675 7921
cb2afeb3
R
7922 code = recog_memoized (add_insn);
7923 if (code >= 0)
32131a9c 7924 {
0eadeb15
BS
7925 extract_insn (add_insn);
7926 if (constrain_operands (1))
cb2afeb3
R
7927 {
7928 /* If this is a pre-increment and we have incremented the value
7929 where it lives, copy the incremented value to RELOADREG to
7930 be used as an address. */
0009eff2 7931
cb2afeb3
R
7932 if (! post)
7933 emit_insn (gen_move_insn (reloadreg, incloc));
546b63fb 7934
cb2afeb3
R
7935 return add_insn;
7936 }
32131a9c 7937 }
cb2afeb3 7938 delete_insns_since (last);
32131a9c 7939 }
0009eff2 7940
0009eff2
RK
7941 /* If couldn't do the increment directly, must increment in RELOADREG.
7942 The way we do this depends on whether this is pre- or post-increment.
7943 For pre-increment, copy INCLOC to the reload register, increment it
7944 there, then save back. */
7945
7946 if (! post)
7947 {
cb2afeb3
R
7948 if (in != reloadreg)
7949 emit_insn (gen_move_insn (reloadreg, real_in));
546b63fb 7950 emit_insn (gen_add2_insn (reloadreg, inc));
cb2afeb3 7951 store = emit_insn (gen_move_insn (incloc, reloadreg));
0009eff2 7952 }
32131a9c
RK
7953 else
7954 {
0009eff2
RK
7955 /* Postincrement.
7956 Because this might be a jump insn or a compare, and because RELOADREG
7957 may not be available after the insn in an input reload, we must do
7958 the incrementation before the insn being reloaded for.
7959
cb2afeb3 7960 We have already copied IN to RELOADREG. Increment the copy in
0009eff2
RK
7961 RELOADREG, save that back, then decrement RELOADREG so it has
7962 the original value. */
7963
546b63fb 7964 emit_insn (gen_add2_insn (reloadreg, inc));
cb2afeb3 7965 store = emit_insn (gen_move_insn (incloc, reloadreg));
546b63fb 7966 emit_insn (gen_add2_insn (reloadreg, GEN_INT (-inc_amount)));
32131a9c 7967 }
0009eff2 7968
cb2afeb3 7969 return store;
32131a9c
RK
7970}
7971\f
7972/* Return 1 if we are certain that the constraint-string STRING allows
7973 the hard register REG. Return 0 if we can't be sure of this. */
7974
7975static int
7976constraint_accepts_reg_p (string, reg)
9b3142b3 7977 const char *string;
32131a9c
RK
7978 rtx reg;
7979{
7980 int value = 0;
7981 int regno = true_regnum (reg);
7982 int c;
7983
7984 /* Initialize for first alternative. */
7985 value = 0;
7986 /* Check that each alternative contains `g' or `r'. */
7987 while (1)
7988 switch (c = *string++)
7989 {
7990 case 0:
7991 /* If an alternative lacks `g' or `r', we lose. */
7992 return value;
7993 case ',':
7994 /* If an alternative lacks `g' or `r', we lose. */
7995 if (value == 0)
7996 return 0;
7997 /* Initialize for next alternative. */
7998 value = 0;
7999 break;
8000 case 'g':
8001 case 'r':
8002 /* Any general reg wins for this alternative. */
8003 if (TEST_HARD_REG_BIT (reg_class_contents[(int) GENERAL_REGS], regno))
8004 value = 1;
8005 break;
8006 default:
8007 /* Any reg in specified class wins for this alternative. */
8008 {
0009eff2 8009 enum reg_class class = REG_CLASS_FROM_LETTER (c);
32131a9c 8010
0009eff2 8011 if (TEST_HARD_REG_BIT (reg_class_contents[(int) class], regno))
32131a9c
RK
8012 value = 1;
8013 }
8014 }
8015}
8016\f
eab5c70a
BS
8017/* INSN is a no-op; delete it.
8018 If this sets the return value of the function, we must keep a USE around,
8019 in case this is in a different basic block than the final USE. Otherwise,
8020 we could loose important register lifeness information on
8021 SMALL_REGISTER_CLASSES machines, where return registers might be used as
8022 spills: subsequent passes assume that spill registers are dead at the end
8023 of a basic block.
8024 VALUE must be the return value in such a case, NULL otherwise. */
2a9fb548 8025static void
eab5c70a
BS
8026reload_cse_delete_noop_set (insn, value)
8027 rtx insn, value;
2a9fb548 8028{
eab5c70a 8029 if (value)
2a9fb548 8030 {
eab5c70a
BS
8031 PATTERN (insn) = gen_rtx_USE (VOIDmode, value);
8032 INSN_CODE (insn) = -1;
8033 REG_NOTES (insn) = NULL_RTX;
2a9fb548 8034 }
eab5c70a 8035 else
ba325eba 8036 {
eab5c70a
BS
8037 PUT_CODE (insn, NOTE);
8038 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
8039 NOTE_SOURCE_FILE (insn) = 0;
ba325eba 8040 }
2a9fb548
ILT
8041}
8042
eab5c70a 8043/* See whether a single set SET is a noop. */
2a9fb548 8044static int
eab5c70a
BS
8045reload_cse_noop_set_p (set)
8046 rtx set;
2a9fb548 8047{
eab5c70a
BS
8048 return rtx_equal_for_cselib_p (SET_DEST (set), SET_SRC (set));
8049}
2a9fb548 8050
eab5c70a
BS
8051/* Try to simplify INSN. */
8052static void
8053reload_cse_simplify (insn)
8054 rtx insn;
8055{
8056 rtx body = PATTERN (insn);
2a9fb548 8057
eab5c70a 8058 if (GET_CODE (body) == SET)
2a9fb548 8059 {
eab5c70a 8060 int count = 0;
d5ae21aa
AH
8061
8062 /* Simplify even if we may think it is a no-op.
8063 We may think a memory load of a value smaller than WORD_SIZE
8064 is redundant because we haven't taken into account possible
8065 implicit extension. reload_cse_simplify_set() will bring
8066 this out, so it's safer to simplify before we delete. */
8067 count += reload_cse_simplify_set (body, insn);
8068
8069 if (!count && reload_cse_noop_set_p (body))
2a9fb548 8070 {
eab5c70a
BS
8071 rtx value = SET_DEST (body);
8072 if (! REG_FUNCTION_VALUE_P (SET_DEST (body)))
8073 value = 0;
8074 reload_cse_delete_noop_set (insn, value);
8075 return;
2a9fb548 8076 }
2a9fb548 8077
eab5c70a
BS
8078 if (count > 0)
8079 apply_change_group ();
8080 else
8081 reload_cse_simplify_operands (insn);
8082 }
8083 else if (GET_CODE (body) == PARALLEL)
2a9fb548 8084 {
eab5c70a
BS
8085 int i;
8086 int count = 0;
8087 rtx value = NULL_RTX;
2a9fb548 8088
eab5c70a
BS
8089 /* If every action in a PARALLEL is a noop, we can delete
8090 the entire PARALLEL. */
8091 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
2a9fb548 8092 {
eab5c70a
BS
8093 rtx part = XVECEXP (body, 0, i);
8094 if (GET_CODE (part) == SET)
2a9fb548 8095 {
eab5c70a
BS
8096 if (! reload_cse_noop_set_p (part))
8097 break;
8098 if (REG_FUNCTION_VALUE_P (SET_DEST (part)))
2a9fb548 8099 {
eab5c70a
BS
8100 if (value)
8101 break;
8102 value = SET_DEST (part);
2a9fb548 8103 }
2a9fb548 8104 }
eab5c70a
BS
8105 else if (GET_CODE (part) != CLOBBER)
8106 break;
2a9fb548 8107 }
2a9fb548 8108
eab5c70a
BS
8109 if (i < 0)
8110 {
8111 reload_cse_delete_noop_set (insn, value);
8112 /* We're done with this insn. */
8113 return;
8114 }
2a9fb548 8115
eab5c70a
BS
8116 /* It's not a no-op, but we can try to simplify it. */
8117 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
8118 if (GET_CODE (XVECEXP (body, 0, i)) == SET)
8119 count += reload_cse_simplify_set (XVECEXP (body, 0, i), insn);
8120
8121 if (count > 0)
8122 apply_change_group ();
8123 else
8124 reload_cse_simplify_operands (insn);
8125 }
2a9fb548
ILT
8126}
8127
8128/* Do a very simple CSE pass over the hard registers.
8129
8130 This function detects no-op moves where we happened to assign two
8131 different pseudo-registers to the same hard register, and then
8132 copied one to the other. Reload will generate a useless
8133 instruction copying a register to itself.
8134
8135 This function also detects cases where we load a value from memory
8136 into two different registers, and (if memory is more expensive than
8137 registers) changes it to simply copy the first register into the
05d10675 8138 second register.
e9a25f70
JL
8139
8140 Another optimization is performed that scans the operands of each
8141 instruction to see whether the value is already available in a
8142 hard register. It then replaces the operand with the hard register
8143 if possible, much like an optional reload would. */
2a9fb548 8144
5adf6da0
R
8145static void
8146reload_cse_regs_1 (first)
2a9fb548
ILT
8147 rtx first;
8148{
2a9fb548
ILT
8149 rtx insn;
8150
1d7254c5 8151 cselib_init ();
cbfc3ad3
RK
8152 init_alias_analysis ();
8153
2a9fb548
ILT
8154 for (insn = first; insn; insn = NEXT_INSN (insn))
8155 {
2c3c49de 8156 if (INSN_P (insn))
eab5c70a 8157 reload_cse_simplify (insn);
2a9fb548 8158
eab5c70a 8159 cselib_process_insn (insn);
2a9fb548
ILT
8160 }
8161
e05e2395
MM
8162 /* Clean up. */
8163 end_alias_analysis ();
eab5c70a 8164 cselib_finish ();
2a9fb548
ILT
8165}
8166
5adf6da0
R
8167/* Call cse / combine like post-reload optimization phases.
8168 FIRST is the first instruction. */
8169void
8170reload_cse_regs (first)
8171 rtx first;
8172{
8173 reload_cse_regs_1 (first);
8174 reload_combine ();
8175 reload_cse_move2add (first);
8176 if (flag_expensive_optimizations)
8177 reload_cse_regs_1 (first);
8178}
8179
2a9fb548 8180/* Try to simplify a single SET instruction. SET is the set pattern.
e9a25f70
JL
8181 INSN is the instruction it came from.
8182 This function only handles one case: if we set a register to a value
8183 which is not a register, we try to find that value in some other register
8184 and change the set into a register copy. */
2a9fb548 8185
e9a25f70 8186static int
2a9fb548
ILT
8187reload_cse_simplify_set (set, insn)
8188 rtx set;
8189 rtx insn;
8190{
eab5c70a 8191 int did_change = 0;
2a9fb548
ILT
8192 int dreg;
8193 rtx src;
2a9fb548 8194 enum reg_class dclass;
eab5c70a
BS
8195 int old_cost;
8196 cselib_val *val;
8197 struct elt_loc_list *l;
78adc5a0
RH
8198#ifdef LOAD_EXTEND_OP
8199 enum rtx_code extend_op = NIL;
8200#endif
2a9fb548 8201
2a9fb548
ILT
8202 dreg = true_regnum (SET_DEST (set));
8203 if (dreg < 0)
e9a25f70 8204 return 0;
2a9fb548
ILT
8205
8206 src = SET_SRC (set);
8207 if (side_effects_p (src) || true_regnum (src) >= 0)
e9a25f70 8208 return 0;
2a9fb548 8209
cbd5b9a2
KR
8210 dclass = REGNO_REG_CLASS (dreg);
8211
78adc5a0
RH
8212#ifdef LOAD_EXTEND_OP
8213 /* When replacing a memory with a register, we need to honor assumptions
8214 that combine made wrt the contents of sign bits. We'll do this by
8215 generating an extend instruction instead of a reg->reg copy. Thus
8216 the destination must be a register that we can widen. */
8217 if (GET_CODE (src) == MEM
8218 && GET_MODE_BITSIZE (GET_MODE (src)) < BITS_PER_WORD
8219 && (extend_op = LOAD_EXTEND_OP (GET_MODE (src))) != NIL
8220 && GET_CODE (SET_DEST (set)) != REG)
8221 return 0;
8222#endif
8223
33ab8de0 8224 /* If memory loads are cheaper than register copies, don't change them. */
eab5c70a
BS
8225 if (GET_CODE (src) == MEM)
8226 old_cost = MEMORY_MOVE_COST (GET_MODE (src), dclass, 1);
8227 else if (CONSTANT_P (src))
8228 old_cost = rtx_cost (src, SET);
8229 else if (GET_CODE (src) == REG)
e56b4594
AO
8230 old_cost = REGISTER_MOVE_COST (GET_MODE (src),
8231 REGNO_REG_CLASS (REGNO (src)), dclass);
eab5c70a
BS
8232 else
8233 /* ??? */
8234 old_cost = rtx_cost (src, SET);
2a9fb548 8235
70bbeb8b 8236 val = cselib_lookup (src, GET_MODE (SET_DEST (set)), 0);
eab5c70a 8237 if (! val)
0254c561 8238 return 0;
eab5c70a 8239 for (l = val->locs; l; l = l->next)
2a9fb548 8240 {
78adc5a0 8241 rtx this_rtx = l->loc;
eab5c70a 8242 int this_cost;
78adc5a0
RH
8243
8244 if (CONSTANT_P (this_rtx) && ! references_value_p (this_rtx, 0))
8245 {
8246#ifdef LOAD_EXTEND_OP
8247 if (extend_op != NIL)
8248 {
8249 HOST_WIDE_INT this_val;
8250
8251 /* ??? I'm lazy and don't wish to handle CONST_DOUBLE. Other
8252 constants, such as SYMBOL_REF, cannot be extended. */
8253 if (GET_CODE (this_rtx) != CONST_INT)
8254 continue;
8255
8256 this_val = INTVAL (this_rtx);
8257 switch (extend_op)
8258 {
8259 case ZERO_EXTEND:
8260 this_val &= GET_MODE_MASK (GET_MODE (src));
8261 break;
8262 case SIGN_EXTEND:
8263 /* ??? In theory we're already extended. */
8264 if (this_val == trunc_int_for_mode (this_val, GET_MODE (src)))
8265 break;
8266 default:
8267 abort ();
8268 }
5cada064 8269 this_rtx = GEN_INT (this_val);
78adc5a0
RH
8270 }
8271#endif
8272 this_cost = rtx_cost (this_rtx, SET);
8273 }
8274 else if (GET_CODE (this_rtx) == REG)
8275 {
8276#ifdef LOAD_EXTEND_OP
8277 if (extend_op != NIL)
8278 {
8279 this_rtx = gen_rtx_fmt_e (extend_op, word_mode, this_rtx);
8280 this_cost = rtx_cost (this_rtx, SET);
8281 }
8282 else
8283#endif
8284 this_cost = REGISTER_MOVE_COST (GET_MODE (this_rtx),
8285 REGNO_REG_CLASS (REGNO (this_rtx)),
8286 dclass);
8287 }
eab5c70a
BS
8288 else
8289 continue;
78adc5a0
RH
8290
8291 /* If equal costs, prefer registers over anything else. That
8292 tends to lead to smaller instructions on some machines. */
8293 if (this_cost < old_cost
8294 || (this_cost == old_cost
8295 && GET_CODE (this_rtx) == REG
8296 && GET_CODE (SET_SRC (set)) != REG))
8297 {
8298#ifdef LOAD_EXTEND_OP
b216e516
JL
8299 if (GET_MODE_BITSIZE (GET_MODE (SET_DEST (set))) < BITS_PER_WORD
8300 && extend_op != NIL)
8301 {
8302 rtx wide_dest = gen_rtx_REG (word_mode, REGNO (SET_DEST (set)));
8303 ORIGINAL_REGNO (wide_dest) = ORIGINAL_REGNO (SET_DEST (set));
8304 validate_change (insn, &SET_DEST (set), wide_dest, 1);
8305 }
78adc5a0
RH
8306#endif
8307
8308 validate_change (insn, &SET_SRC (set), copy_rtx (this_rtx), 1);
8309 old_cost = this_cost, did_change = 1;
8310 }
e9a25f70 8311 }
eab5c70a
BS
8312
8313 return did_change;
e9a25f70
JL
8314}
8315
8316/* Try to replace operands in INSN with equivalent values that are already
05d10675
BS
8317 in registers. This can be viewed as optional reloading.
8318
e9a25f70
JL
8319 For each non-register operand in the insn, see if any hard regs are
8320 known to be equivalent to that operand. Record the alternatives which
8321 can accept these hard registers. Among all alternatives, select the
8322 ones which are better or equal to the one currently matching, where
8323 "better" is in terms of '?' and '!' constraints. Among the remaining
8324 alternatives, select the one which replaces most operands with
8325 hard registers. */
8326
8327static int
8328reload_cse_simplify_operands (insn)
8329 rtx insn;
8330{
1d7254c5 8331 int i, j;
e9a25f70 8332
eab5c70a
BS
8333 /* For each operand, all registers that are equivalent to it. */
8334 HARD_REG_SET equiv_regs[MAX_RECOG_OPERANDS];
8335
9b3142b3 8336 const char *constraints[MAX_RECOG_OPERANDS];
05d10675 8337
e9a25f70
JL
8338 /* Vector recording how bad an alternative is. */
8339 int *alternative_reject;
8340 /* Vector recording how many registers can be introduced by choosing
8341 this alternative. */
8342 int *alternative_nregs;
8343 /* Array of vectors recording, for each operand and each alternative,
8344 which hard register to substitute, or -1 if the operand should be
8345 left as it is. */
8346 int *op_alt_regno[MAX_RECOG_OPERANDS];
8347 /* Array of alternatives, sorted in order of decreasing desirability. */
8348 int *alternative_order;
0254c561 8349 rtx reg = gen_rtx_REG (VOIDmode, -1);
05d10675 8350
0eadeb15 8351 extract_insn (insn);
e9a25f70 8352
1ccbefce 8353 if (recog_data.n_alternatives == 0 || recog_data.n_operands == 0)
1d300e19 8354 return 0;
e9a25f70
JL
8355
8356 /* Figure out which alternative currently matches. */
0eadeb15 8357 if (! constrain_operands (1))
b8705408 8358 fatal_insn_not_found (insn);
1d7254c5 8359
1ccbefce
RH
8360 alternative_reject = (int *) alloca (recog_data.n_alternatives * sizeof (int));
8361 alternative_nregs = (int *) alloca (recog_data.n_alternatives * sizeof (int));
8362 alternative_order = (int *) alloca (recog_data.n_alternatives * sizeof (int));
961192e1
JM
8363 memset ((char *)alternative_reject, 0, recog_data.n_alternatives * sizeof (int));
8364 memset ((char *)alternative_nregs, 0, recog_data.n_alternatives * sizeof (int));
e9a25f70 8365
eab5c70a
BS
8366 /* For each operand, find out which regs are equivalent. */
8367 for (i = 0; i < recog_data.n_operands; i++)
8368 {
8369 cselib_val *v;
8370 struct elt_loc_list *l;
8371
8372 CLEAR_HARD_REG_SET (equiv_regs[i]);
8373
8374 /* cselib blows up on CODE_LABELs. Trying to fix that doesn't seem
70bbeb8b
BS
8375 right, so avoid the problem here. Likewise if we have a constant
8376 and the insn pattern doesn't tell us the mode we need. */
8377 if (GET_CODE (recog_data.operand[i]) == CODE_LABEL
8378 || (CONSTANT_P (recog_data.operand[i])
8379 && recog_data.operand_mode[i] == VOIDmode))
eab5c70a
BS
8380 continue;
8381
8382 v = cselib_lookup (recog_data.operand[i], recog_data.operand_mode[i], 0);
8383 if (! v)
8384 continue;
8385
8386 for (l = v->locs; l; l = l->next)
8387 if (GET_CODE (l->loc) == REG)
8388 SET_HARD_REG_BIT (equiv_regs[i], REGNO (l->loc));
8389 }
8390
1ccbefce 8391 for (i = 0; i < recog_data.n_operands; i++)
e9a25f70
JL
8392 {
8393 enum machine_mode mode;
8394 int regno;
9b3142b3 8395 const char *p;
e9a25f70 8396
1ccbefce
RH
8397 op_alt_regno[i] = (int *) alloca (recog_data.n_alternatives * sizeof (int));
8398 for (j = 0; j < recog_data.n_alternatives; j++)
e9a25f70
JL
8399 op_alt_regno[i][j] = -1;
8400
1ccbefce
RH
8401 p = constraints[i] = recog_data.constraints[i];
8402 mode = recog_data.operand_mode[i];
e9a25f70
JL
8403
8404 /* Add the reject values for each alternative given by the constraints
8405 for this operand. */
8406 j = 0;
8407 while (*p != '\0')
8408 {
8409 char c = *p++;
8410 if (c == ',')
8411 j++;
8412 else if (c == '?')
8413 alternative_reject[j] += 3;
8414 else if (c == '!')
8415 alternative_reject[j] += 300;
8416 }
8417
8418 /* We won't change operands which are already registers. We
8419 also don't want to modify output operands. */
1ccbefce 8420 regno = true_regnum (recog_data.operand[i]);
e9a25f70
JL
8421 if (regno >= 0
8422 || constraints[i][0] == '='
8423 || constraints[i][0] == '+')
8424 continue;
8425
8426 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
8427 {
8428 int class = (int) NO_REGS;
8429
eab5c70a 8430 if (! TEST_HARD_REG_BIT (equiv_regs[i], regno))
e9a25f70
JL
8431 continue;
8432
0254c561
JC
8433 REGNO (reg) = regno;
8434 PUT_MODE (reg, mode);
8435
e9a25f70
JL
8436 /* We found a register equal to this operand. Now look for all
8437 alternatives that can accept this register and have not been
8438 assigned a register they can use yet. */
8439 j = 0;
8440 p = constraints[i];
8441 for (;;)
31418d35 8442 {
e9a25f70 8443 char c = *p++;
05d10675 8444
e9a25f70 8445 switch (c)
31418d35 8446 {
e9a25f70
JL
8447 case '=': case '+': case '?':
8448 case '#': case '&': case '!':
05d10675 8449 case '*': case '%':
e9a25f70 8450 case '0': case '1': case '2': case '3': case '4':
c5c76735 8451 case '5': case '6': case '7': case '8': case '9':
e9a25f70
JL
8452 case 'm': case '<': case '>': case 'V': case 'o':
8453 case 'E': case 'F': case 'G': case 'H':
8454 case 's': case 'i': case 'n':
8455 case 'I': case 'J': case 'K': case 'L':
8456 case 'M': case 'N': case 'O': case 'P':
e9a25f70
JL
8457 case 'p': case 'X':
8458 /* These don't say anything we care about. */
8459 break;
8460
8461 case 'g': case 'r':
8462 class = reg_class_subunion[(int) class][(int) GENERAL_REGS];
8463 break;
8464
8465 default:
8466 class
e51712db 8467 = reg_class_subunion[(int) class][(int) REG_CLASS_FROM_LETTER ((unsigned char)c)];
e9a25f70 8468 break;
31418d35 8469
e9a25f70
JL
8470 case ',': case '\0':
8471 /* See if REGNO fits this alternative, and set it up as the
8472 replacement register if we don't have one for this
0254c561 8473 alternative yet and the operand being replaced is not
1d7254c5 8474 a cheap CONST_INT. */
e9a25f70 8475 if (op_alt_regno[i][j] == -1
0254c561 8476 && reg_fits_class_p (reg, class, 0, mode)
1ccbefce
RH
8477 && (GET_CODE (recog_data.operand[i]) != CONST_INT
8478 || (rtx_cost (recog_data.operand[i], SET)
8479 > rtx_cost (reg, SET))))
31418d35 8480 {
e9a25f70
JL
8481 alternative_nregs[j]++;
8482 op_alt_regno[i][j] = regno;
31418d35 8483 }
e9a25f70
JL
8484 j++;
8485 break;
31418d35
ILT
8486 }
8487
e9a25f70
JL
8488 if (c == '\0')
8489 break;
8490 }
8491 }
8492 }
8493
8494 /* Record all alternatives which are better or equal to the currently
8495 matching one in the alternative_order array. */
1ccbefce 8496 for (i = j = 0; i < recog_data.n_alternatives; i++)
e9a25f70
JL
8497 if (alternative_reject[i] <= alternative_reject[which_alternative])
8498 alternative_order[j++] = i;
1ccbefce 8499 recog_data.n_alternatives = j;
e9a25f70
JL
8500
8501 /* Sort it. Given a small number of alternatives, a dumb algorithm
8502 won't hurt too much. */
1ccbefce 8503 for (i = 0; i < recog_data.n_alternatives - 1; i++)
e9a25f70
JL
8504 {
8505 int best = i;
8506 int best_reject = alternative_reject[alternative_order[i]];
8507 int best_nregs = alternative_nregs[alternative_order[i]];
8508 int tmp;
8509
1ccbefce 8510 for (j = i + 1; j < recog_data.n_alternatives; j++)
e9a25f70
JL
8511 {
8512 int this_reject = alternative_reject[alternative_order[j]];
8513 int this_nregs = alternative_nregs[alternative_order[j]];
8514
8515 if (this_reject < best_reject
8516 || (this_reject == best_reject && this_nregs < best_nregs))
8517 {
8518 best = j;
8519 best_reject = this_reject;
8520 best_nregs = this_nregs;
31418d35 8521 }
2a9fb548 8522 }
05d10675 8523
e9a25f70
JL
8524 tmp = alternative_order[best];
8525 alternative_order[best] = alternative_order[i];
8526 alternative_order[i] = tmp;
8527 }
05d10675 8528
e9a25f70
JL
8529 /* Substitute the operands as determined by op_alt_regno for the best
8530 alternative. */
8531 j = alternative_order[0];
e9a25f70 8532
1ccbefce 8533 for (i = 0; i < recog_data.n_operands; i++)
e9a25f70 8534 {
1ccbefce 8535 enum machine_mode mode = recog_data.operand_mode[i];
e9a25f70
JL
8536 if (op_alt_regno[i][j] == -1)
8537 continue;
8538
1ccbefce 8539 validate_change (insn, recog_data.operand_loc[i],
38a448ca 8540 gen_rtx_REG (mode, op_alt_regno[i][j]), 1);
e9a25f70
JL
8541 }
8542
1ccbefce 8543 for (i = recog_data.n_dups - 1; i >= 0; i--)
e9a25f70 8544 {
1ccbefce
RH
8545 int op = recog_data.dup_num[i];
8546 enum machine_mode mode = recog_data.operand_mode[op];
e9a25f70
JL
8547
8548 if (op_alt_regno[op][j] == -1)
8549 continue;
8550
1ccbefce 8551 validate_change (insn, recog_data.dup_loc[i],
38a448ca 8552 gen_rtx_REG (mode, op_alt_regno[op][j]), 1);
2a9fb548 8553 }
e9a25f70 8554
e9a25f70 8555 return apply_change_group ();
2a9fb548 8556}
5adf6da0
R
8557\f
8558/* If reload couldn't use reg+reg+offset addressing, try to use reg+reg
8559 addressing now.
8560 This code might also be useful when reload gave up on reg+reg addresssing
8561 because of clashes between the return register and INDEX_REG_CLASS. */
8562
8563/* The maximum number of uses of a register we can keep track of to
8564 replace them with reg+reg addressing. */
8565#define RELOAD_COMBINE_MAX_USES 6
8566
8567/* INSN is the insn where a register has ben used, and USEP points to the
8568 location of the register within the rtl. */
8569struct reg_use { rtx insn, *usep; };
8570
8571/* If the register is used in some unknown fashion, USE_INDEX is negative.
8572 If it is dead, USE_INDEX is RELOAD_COMBINE_MAX_USES, and STORE_RUID
8573 indicates where it becomes live again.
8574 Otherwise, USE_INDEX is the index of the last encountered use of the
8575 register (which is first among these we have seen since we scan backwards),
8576 OFFSET contains the constant offset that is added to the register in
8577 all encountered uses, and USE_RUID indicates the first encountered, i.e.
ed937a19
R
8578 last, of these uses.
8579 STORE_RUID is always meaningful if we only want to use a value in a
8580 register in a different place: it denotes the next insn in the insn
8581 stream (i.e. the last ecountered) that sets or clobbers the register. */
5adf6da0
R
8582static struct
8583 {
8584 struct reg_use reg_use[RELOAD_COMBINE_MAX_USES];
8585 int use_index;
8586 rtx offset;
8587 int store_ruid;
8588 int use_ruid;
8589 } reg_state[FIRST_PSEUDO_REGISTER];
8590
8591/* Reverse linear uid. This is increased in reload_combine while scanning
8592 the instructions from last to first. It is used to set last_label_ruid
8593 and the store_ruid / use_ruid fields in reg_state. */
8594static int reload_combine_ruid;
8595
b0634509
R
8596#define LABEL_LIVE(LABEL) \
8597 (label_live[CODE_LABEL_NUMBER (LABEL) - min_labelno])
8598
5adf6da0
R
8599static void
8600reload_combine ()
8601{
8602 rtx insn, set;
ae0ed63a
JM
8603 int first_index_reg = -1;
8604 int last_index_reg = 0;
5adf6da0 8605 int i;
f8cd4126 8606 unsigned int r;
5adf6da0 8607 int last_label_ruid;
b0634509
R
8608 int min_labelno, n_labels;
8609 HARD_REG_SET ever_live_at_start, *label_live;
5adf6da0
R
8610
8611 /* If reg+reg can be used in offsetable memory adresses, the main chunk of
8612 reload has already used it where appropriate, so there is no use in
8613 trying to generate it now. */
03acd8f8 8614 if (double_reg_address_ok && INDEX_REG_CLASS != NO_REGS)
5adf6da0
R
8615 return;
8616
8617 /* To avoid wasting too much time later searching for an index register,
8618 determine the minimum and maximum index register numbers. */
f8cd4126
RK
8619 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
8620 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], r))
8621 {
881a8969 8622 if (first_index_reg == -1)
4c3f1588
RK
8623 first_index_reg = r;
8624
8625 last_index_reg = r;
f8cd4126
RK
8626 }
8627
5adf6da0 8628 /* If no index register is available, we can quit now. */
881a8969 8629 if (first_index_reg == -1)
5adf6da0
R
8630 return;
8631
b0634509
R
8632 /* Set up LABEL_LIVE and EVER_LIVE_AT_START. The register lifetime
8633 information is a bit fuzzy immediately after reload, but it's
8634 still good enough to determine which registers are live at a jump
8635 destination. */
8636 min_labelno = get_first_label_num ();
8637 n_labels = max_label_num () - min_labelno;
8638 label_live = (HARD_REG_SET *) xmalloc (n_labels * sizeof (HARD_REG_SET));
8639 CLEAR_HARD_REG_SET (ever_live_at_start);
f8cd4126 8640
b0634509
R
8641 for (i = n_basic_blocks - 1; i >= 0; i--)
8642 {
3b413743 8643 insn = BLOCK_HEAD (i);
b0634509
R
8644 if (GET_CODE (insn) == CODE_LABEL)
8645 {
8646 HARD_REG_SET live;
8647
f8cd4126
RK
8648 REG_SET_TO_HARD_REG_SET (live,
8649 BASIC_BLOCK (i)->global_live_at_start);
8650 compute_use_by_pseudos (&live,
8651 BASIC_BLOCK (i)->global_live_at_start);
b0634509
R
8652 COPY_HARD_REG_SET (LABEL_LIVE (insn), live);
8653 IOR_HARD_REG_SET (ever_live_at_start, live);
8654 }
8655 }
8656
5adf6da0
R
8657 /* Initialize last_label_ruid, reload_combine_ruid and reg_state. */
8658 last_label_ruid = reload_combine_ruid = 0;
f8cd4126 8659 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
5adf6da0 8660 {
f8cd4126
RK
8661 reg_state[r].store_ruid = reload_combine_ruid;
8662 if (fixed_regs[r])
8663 reg_state[r].use_index = -1;
5adf6da0 8664 else
f8cd4126 8665 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
5adf6da0
R
8666 }
8667
8668 for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
8669 {
8670 rtx note;
8671
8672 /* We cannot do our optimization across labels. Invalidating all the use
8673 information we have would be costly, so we just note where the label
05d10675 8674 is and then later disable any optimization that would cross it. */
5adf6da0
R
8675 if (GET_CODE (insn) == CODE_LABEL)
8676 last_label_ruid = reload_combine_ruid;
f8cd4126
RK
8677 else if (GET_CODE (insn) == BARRIER)
8678 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
8679 if (! fixed_regs[r])
8680 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
8681
2c3c49de 8682 if (! INSN_P (insn))
5adf6da0 8683 continue;
f8cd4126 8684
5adf6da0
R
8685 reload_combine_ruid++;
8686
8687 /* Look for (set (REGX) (CONST_INT))
eceef4c9
BS
8688 (set (REGX) (PLUS (REGX) (REGY)))
8689 ...
8690 ... (MEM (REGX)) ...
5adf6da0 8691 and convert it to
eceef4c9
BS
8692 (set (REGZ) (CONST_INT))
8693 ...
8694 ... (MEM (PLUS (REGZ) (REGY)))... .
5adf6da0
R
8695
8696 First, check that we have (set (REGX) (PLUS (REGX) (REGY)))
8697 and that we know all uses of REGX before it dies. */
2abbc1bd
R
8698 set = single_set (insn);
8699 if (set != NULL_RTX
5adf6da0
R
8700 && GET_CODE (SET_DEST (set)) == REG
8701 && (HARD_REGNO_NREGS (REGNO (SET_DEST (set)),
8702 GET_MODE (SET_DEST (set)))
8703 == 1)
8704 && GET_CODE (SET_SRC (set)) == PLUS
8705 && GET_CODE (XEXP (SET_SRC (set), 1)) == REG
8706 && rtx_equal_p (XEXP (SET_SRC (set), 0), SET_DEST (set))
8707 && last_label_ruid < reg_state[REGNO (SET_DEST (set))].use_ruid)
8708 {
8709 rtx reg = SET_DEST (set);
8710 rtx plus = SET_SRC (set);
8711 rtx base = XEXP (plus, 1);
8712 rtx prev = prev_nonnote_insn (insn);
8713 rtx prev_set = prev ? single_set (prev) : NULL_RTX;
f8cd4126 8714 unsigned int regno = REGNO (reg);
6a651371 8715 rtx const_reg = NULL_RTX;
5adf6da0
R
8716 rtx reg_sum = NULL_RTX;
8717
8718 /* Now, we need an index register.
8719 We'll set index_reg to this index register, const_reg to the
8720 register that is to be loaded with the constant
8721 (denoted as REGZ in the substitution illustration above),
8722 and reg_sum to the register-register that we want to use to
8723 substitute uses of REG (typically in MEMs) with.
8724 First check REG and BASE for being index registers;
8725 we can use them even if they are not dead. */
8726 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], regno)
8727 || TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS],
8728 REGNO (base)))
8729 {
8730 const_reg = reg;
8731 reg_sum = plus;
8732 }
8733 else
8734 {
05d10675
BS
8735 /* Otherwise, look for a free index register. Since we have
8736 checked above that neiter REG nor BASE are index registers,
8737 if we find anything at all, it will be different from these
8738 two registers. */
8739 for (i = first_index_reg; i <= last_index_reg; i++)
5adf6da0 8740 {
f8cd4126
RK
8741 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS],
8742 i)
5adf6da0
R
8743 && reg_state[i].use_index == RELOAD_COMBINE_MAX_USES
8744 && reg_state[i].store_ruid <= reg_state[regno].use_ruid
8745 && HARD_REGNO_NREGS (i, GET_MODE (reg)) == 1)
8746 {
8747 rtx index_reg = gen_rtx_REG (GET_MODE (reg), i);
f8cd4126 8748
5adf6da0
R
8749 const_reg = index_reg;
8750 reg_sum = gen_rtx_PLUS (GET_MODE (reg), index_reg, base);
8751 break;
8752 }
8753 }
8754 }
f8cd4126 8755
ed937a19
R
8756 /* Check that PREV_SET is indeed (set (REGX) (CONST_INT)) and that
8757 (REGY), i.e. BASE, is not clobbered before the last use we'll
8758 create. */
f8cd4126 8759 if (prev_set != 0
5adf6da0
R
8760 && GET_CODE (SET_SRC (prev_set)) == CONST_INT
8761 && rtx_equal_p (SET_DEST (prev_set), reg)
8762 && reg_state[regno].use_index >= 0
f8cd4126
RK
8763 && (reg_state[REGNO (base)].store_ruid
8764 <= reg_state[regno].use_ruid)
8765 && reg_sum != 0)
5adf6da0
R
8766 {
8767 int i;
8768
f8cd4126 8769 /* Change destination register and, if necessary, the
5adf6da0
R
8770 constant value in PREV, the constant loading instruction. */
8771 validate_change (prev, &SET_DEST (prev_set), const_reg, 1);
8772 if (reg_state[regno].offset != const0_rtx)
8773 validate_change (prev,
8774 &SET_SRC (prev_set),
8775 GEN_INT (INTVAL (SET_SRC (prev_set))
8776 + INTVAL (reg_state[regno].offset)),
8777 1);
f8cd4126 8778
5adf6da0
R
8779 /* Now for every use of REG that we have recorded, replace REG
8780 with REG_SUM. */
8781 for (i = reg_state[regno].use_index;
8782 i < RELOAD_COMBINE_MAX_USES; i++)
8783 validate_change (reg_state[regno].reg_use[i].insn,
8784 reg_state[regno].reg_use[i].usep,
8785 reg_sum, 1);
8786
8787 if (apply_change_group ())
8788 {
8789 rtx *np;
8790
8791 /* Delete the reg-reg addition. */
8792 PUT_CODE (insn, NOTE);
8793 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
8794 NOTE_SOURCE_FILE (insn) = 0;
8795
8796 if (reg_state[regno].offset != const0_rtx)
f8cd4126
RK
8797 /* Previous REG_EQUIV / REG_EQUAL notes for PREV
8798 are now invalid. */
1d7254c5 8799 for (np = &REG_NOTES (prev); *np;)
f8cd4126
RK
8800 {
8801 if (REG_NOTE_KIND (*np) == REG_EQUAL
8802 || REG_NOTE_KIND (*np) == REG_EQUIV)
8803 *np = XEXP (*np, 1);
8804 else
8805 np = &XEXP (*np, 1);
8806 }
8807
5adf6da0 8808 reg_state[regno].use_index = RELOAD_COMBINE_MAX_USES;
f8cd4126
RK
8809 reg_state[REGNO (const_reg)].store_ruid
8810 = reload_combine_ruid;
5adf6da0
R
8811 continue;
8812 }
8813 }
8814 }
f8cd4126 8815
1d7254c5 8816 note_stores (PATTERN (insn), reload_combine_note_store, NULL);
f8cd4126 8817
5adf6da0
R
8818 if (GET_CODE (insn) == CALL_INSN)
8819 {
8820 rtx link;
8821
f8cd4126
RK
8822 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
8823 if (call_used_regs[r])
8824 {
8825 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
8826 reg_state[r].store_ruid = reload_combine_ruid;
8827 }
8828
5adf6da0
R
8829 for (link = CALL_INSN_FUNCTION_USAGE (insn); link;
8830 link = XEXP (link, 1))
6a69653a
CM
8831 {
8832 rtx usage_rtx = XEXP (XEXP (link, 0), 0);
8833 if (GET_CODE (usage_rtx) == REG)
8834 {
ae0ed63a 8835 unsigned int i;
6a69653a
CM
8836 unsigned int start_reg = REGNO (usage_rtx);
8837 unsigned int num_regs =
8838 HARD_REGNO_NREGS (start_reg, GET_MODE (usage_rtx));
8839 unsigned int end_reg = start_reg + num_regs - 1;
8840 for (i = start_reg; i <= end_reg; i++)
8841 if (GET_CODE (XEXP (link, 0)) == CLOBBER)
8842 {
8843 reg_state[i].use_index = RELOAD_COMBINE_MAX_USES;
8844 reg_state[i].store_ruid = reload_combine_ruid;
8845 }
8846 else
8847 reg_state[i].use_index = -1;
8848 }
8849 }
f8cd4126 8850
5adf6da0 8851 }
f8cd4126
RK
8852 else if (GET_CODE (insn) == JUMP_INSN
8853 && GET_CODE (PATTERN (insn)) != RETURN)
5adf6da0
R
8854 {
8855 /* Non-spill registers might be used at the call destination in
8856 some unknown fashion, so we have to mark the unknown use. */
b0634509 8857 HARD_REG_SET *live;
f8cd4126 8858
b0634509
R
8859 if ((condjump_p (insn) || condjump_in_parallel_p (insn))
8860 && JUMP_LABEL (insn))
8861 live = &LABEL_LIVE (JUMP_LABEL (insn));
8862 else
8863 live = &ever_live_at_start;
f8cd4126 8864
5adf6da0 8865 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; --i)
f8cd4126
RK
8866 if (TEST_HARD_REG_BIT (*live, i))
8867 reg_state[i].use_index = -1;
5adf6da0 8868 }
f8cd4126 8869
5adf6da0
R
8870 reload_combine_note_use (&PATTERN (insn), insn);
8871 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
8872 {
8873 if (REG_NOTE_KIND (note) == REG_INC
8874 && GET_CODE (XEXP (note, 0)) == REG)
ed937a19
R
8875 {
8876 int regno = REGNO (XEXP (note, 0));
8877
8878 reg_state[regno].store_ruid = reload_combine_ruid;
8879 reg_state[regno].use_index = -1;
8880 }
5adf6da0
R
8881 }
8882 }
f8cd4126 8883
b0634509 8884 free (label_live);
5adf6da0
R
8885}
8886
8887/* Check if DST is a register or a subreg of a register; if it is,
8888 update reg_state[regno].store_ruid and reg_state[regno].use_index
f93233bb 8889 accordingly. Called via note_stores from reload_combine. */
f8cd4126 8890
5adf6da0 8891static void
84832317 8892reload_combine_note_store (dst, set, data)
f93233bb 8893 rtx dst, set;
84832317 8894 void *data ATTRIBUTE_UNUSED;
5adf6da0
R
8895{
8896 int regno = 0;
8897 int i;
54ed0905 8898 enum machine_mode mode = GET_MODE (dst);
5adf6da0
R
8899
8900 if (GET_CODE (dst) == SUBREG)
8901 {
ddef6bc7
JJ
8902 regno = subreg_regno_offset (REGNO (SUBREG_REG (dst)),
8903 GET_MODE (SUBREG_REG (dst)),
8904 SUBREG_BYTE (dst),
8905 GET_MODE (dst));
5adf6da0
R
8906 dst = SUBREG_REG (dst);
8907 }
8908 if (GET_CODE (dst) != REG)
8909 return;
8910 regno += REGNO (dst);
54ca6ffa 8911
5adf6da0 8912 /* note_stores might have stripped a STRICT_LOW_PART, so we have to be
05d10675 8913 careful with registers / register parts that are not full words.
54ca6ffa
JL
8914
8915 Similarly for ZERO_EXTRACT and SIGN_EXTRACT. */
8916 if (GET_CODE (set) != SET
8917 || GET_CODE (SET_DEST (set)) == ZERO_EXTRACT
8918 || GET_CODE (SET_DEST (set)) == SIGN_EXTRACT
8919 || GET_CODE (SET_DEST (set)) == STRICT_LOW_PART)
ed937a19 8920 {
54ed0905 8921 for (i = HARD_REGNO_NREGS (regno, mode) - 1 + regno; i >= regno; i--)
f93233bb
JL
8922 {
8923 reg_state[i].use_index = -1;
8924 reg_state[i].store_ruid = reload_combine_ruid;
8925 }
ed937a19 8926 }
5adf6da0
R
8927 else
8928 {
54ed0905 8929 for (i = HARD_REGNO_NREGS (regno, mode) - 1 + regno; i >= regno; i--)
5adf6da0
R
8930 {
8931 reg_state[i].store_ruid = reload_combine_ruid;
8932 reg_state[i].use_index = RELOAD_COMBINE_MAX_USES;
8933 }
8934 }
8935}
8936
8937/* XP points to a piece of rtl that has to be checked for any uses of
8938 registers.
8939 *XP is the pattern of INSN, or a part of it.
8940 Called from reload_combine, and recursively by itself. */
8941static void
8942reload_combine_note_use (xp, insn)
8943 rtx *xp, insn;
8944{
8945 rtx x = *xp;
8946 enum rtx_code code = x->code;
6f7d635c 8947 const char *fmt;
5adf6da0
R
8948 int i, j;
8949 rtx offset = const0_rtx; /* For the REG case below. */
8950
8951 switch (code)
8952 {
8953 case SET:
8954 if (GET_CODE (SET_DEST (x)) == REG)
8955 {
8956 reload_combine_note_use (&SET_SRC (x), insn);
8957 return;
8958 }
8959 break;
8960
6ce7e0f9
R
8961 case USE:
8962 /* If this is the USE of a return value, we can't change it. */
8963 if (GET_CODE (XEXP (x, 0)) == REG && REG_FUNCTION_VALUE_P (XEXP (x, 0)))
8964 {
8965 /* Mark the return register as used in an unknown fashion. */
8966 rtx reg = XEXP (x, 0);
8967 int regno = REGNO (reg);
8968 int nregs = HARD_REGNO_NREGS (regno, GET_MODE (reg));
8969
8970 while (--nregs >= 0)
8971 reg_state[regno + nregs].use_index = -1;
8972 return;
8973 }
8974 break;
8975
5adf6da0
R
8976 case CLOBBER:
8977 if (GET_CODE (SET_DEST (x)) == REG)
8978 return;
8979 break;
8980
8981 case PLUS:
8982 /* We are interested in (plus (reg) (const_int)) . */
1d7254c5
KH
8983 if (GET_CODE (XEXP (x, 0)) != REG
8984 || GET_CODE (XEXP (x, 1)) != CONST_INT)
5adf6da0
R
8985 break;
8986 offset = XEXP (x, 1);
8987 x = XEXP (x, 0);
05d10675 8988 /* Fall through. */
5adf6da0
R
8989 case REG:
8990 {
8991 int regno = REGNO (x);
8992 int use_index;
6ce7e0f9 8993 int nregs;
5adf6da0
R
8994
8995 /* Some spurious USEs of pseudo registers might remain.
8996 Just ignore them. */
8997 if (regno >= FIRST_PSEUDO_REGISTER)
8998 return;
8999
6ce7e0f9
R
9000 nregs = HARD_REGNO_NREGS (regno, GET_MODE (x));
9001
9002 /* We can't substitute into multi-hard-reg uses. */
9003 if (nregs > 1)
9004 {
9005 while (--nregs >= 0)
9006 reg_state[regno + nregs].use_index = -1;
9007 return;
9008 }
9009
5adf6da0
R
9010 /* If this register is already used in some unknown fashion, we
9011 can't do anything.
9012 If we decrement the index from zero to -1, we can't store more
9013 uses, so this register becomes used in an unknown fashion. */
9014 use_index = --reg_state[regno].use_index;
9015 if (use_index < 0)
9016 return;
9017
9018 if (use_index != RELOAD_COMBINE_MAX_USES - 1)
9019 {
9020 /* We have found another use for a register that is already
9021 used later. Check if the offsets match; if not, mark the
9022 register as used in an unknown fashion. */
9023 if (! rtx_equal_p (offset, reg_state[regno].offset))
9024 {
9025 reg_state[regno].use_index = -1;
9026 return;
9027 }
9028 }
9029 else
9030 {
9031 /* This is the first use of this register we have seen since we
9032 marked it as dead. */
9033 reg_state[regno].offset = offset;
9034 reg_state[regno].use_ruid = reload_combine_ruid;
9035 }
9036 reg_state[regno].reg_use[use_index].insn = insn;
9037 reg_state[regno].reg_use[use_index].usep = xp;
9038 return;
9039 }
9040
9041 default:
9042 break;
9043 }
9044
9045 /* Recursively process the components of X. */
9046 fmt = GET_RTX_FORMAT (code);
9047 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9048 {
9049 if (fmt[i] == 'e')
9050 reload_combine_note_use (&XEXP (x, i), insn);
9051 else if (fmt[i] == 'E')
9052 {
9053 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9054 reload_combine_note_use (&XVECEXP (x, i, j), insn);
9055 }
9056 }
9057}
9058\f
61f5625b
AO
9059/* See if we can reduce the cost of a constant by replacing a move
9060 with an add. We track situations in which a register is set to a
9061 constant or to a register plus a constant. */
5adf6da0
R
9062/* We cannot do our optimization across labels. Invalidating all the
9063 information about register contents we have would be costly, so we
61f5625b
AO
9064 use move2add_last_label_luid to note where the label is and then
9065 later disable any optimization that would cross it.
5adf6da0 9066 reg_offset[n] / reg_base_reg[n] / reg_mode[n] are only valid if
61f5625b 9067 reg_set_luid[n] is greater than last_label_luid[n] . */
5adf6da0 9068static int reg_set_luid[FIRST_PSEUDO_REGISTER];
770ae6cc 9069
61f5625b
AO
9070/* If reg_base_reg[n] is negative, register n has been set to
9071 reg_offset[n] in mode reg_mode[n] .
9072 If reg_base_reg[n] is non-negative, register n has been set to the
9073 sum of reg_offset[n] and the value of register reg_base_reg[n]
9074 before reg_set_luid[n], calculated in mode reg_mode[n] . */
9075static HOST_WIDE_INT reg_offset[FIRST_PSEUDO_REGISTER];
5adf6da0
R
9076static int reg_base_reg[FIRST_PSEUDO_REGISTER];
9077static enum machine_mode reg_mode[FIRST_PSEUDO_REGISTER];
770ae6cc 9078
5adf6da0
R
9079/* move2add_luid is linearily increased while scanning the instructions
9080 from first to last. It is used to set reg_set_luid in
6764d250 9081 reload_cse_move2add and move2add_note_store. */
5adf6da0
R
9082static int move2add_luid;
9083
61f5625b
AO
9084/* move2add_last_label_luid is set whenever a label is found. Labels
9085 invalidate all previously collected reg_offset data. */
9086static int move2add_last_label_luid;
9087
ccc4ae07 9088/* Generate a CONST_INT and force it in the range of MODE. */
770ae6cc 9089
61f5625b
AO
9090static HOST_WIDE_INT
9091sext_for_mode (mode, value)
ccc4ae07
AS
9092 enum machine_mode mode;
9093 HOST_WIDE_INT value;
9094{
9095 HOST_WIDE_INT cval = value & GET_MODE_MASK (mode);
9096 int width = GET_MODE_BITSIZE (mode);
9097
9098 /* If MODE is narrower than HOST_WIDE_INT and CVAL is a negative number,
9099 sign extend it. */
9100 if (width > 0 && width < HOST_BITS_PER_WIDE_INT
9101 && (cval & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
9102 cval |= (HOST_WIDE_INT) -1 << width;
9103
61f5625b 9104 return cval;
ccc4ae07
AS
9105}
9106
61f5625b
AO
9107/* ??? We don't know how zero / sign extension is handled, hence we
9108 can't go from a narrower to a wider mode. */
9109#define MODES_OK_FOR_MOVE2ADD(OUTMODE, INMODE) \
9110 (GET_MODE_SIZE (OUTMODE) == GET_MODE_SIZE (INMODE) \
9111 || (GET_MODE_SIZE (OUTMODE) <= GET_MODE_SIZE (INMODE) \
9112 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (OUTMODE), \
9113 GET_MODE_BITSIZE (INMODE))))
9114
5adf6da0
R
9115static void
9116reload_cse_move2add (first)
9117 rtx first;
9118{
9119 int i;
9120 rtx insn;
5adf6da0 9121
1d7254c5 9122 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
6764d250
BS
9123 reg_set_luid[i] = 0;
9124
61f5625b
AO
9125 move2add_last_label_luid = 0;
9126 move2add_luid = 2;
5adf6da0
R
9127 for (insn = first; insn; insn = NEXT_INSN (insn), move2add_luid++)
9128 {
9129 rtx pat, note;
9130
9131 if (GET_CODE (insn) == CODE_LABEL)
61f5625b
AO
9132 {
9133 move2add_last_label_luid = move2add_luid;
9134 /* We're going to increment move2add_luid twice after a
9135 label, so that we can use move2add_last_label_luid + 1 as
9136 the luid for constants. */
9137 move2add_luid++;
9138 continue;
9139 }
2c3c49de 9140 if (! INSN_P (insn))
5adf6da0
R
9141 continue;
9142 pat = PATTERN (insn);
9143 /* For simplicity, we only perform this optimization on
9144 straightforward SETs. */
9145 if (GET_CODE (pat) == SET
9146 && GET_CODE (SET_DEST (pat)) == REG)
9147 {
9148 rtx reg = SET_DEST (pat);
9149 int regno = REGNO (reg);
9150 rtx src = SET_SRC (pat);
9151
9152 /* Check if we have valid information on the contents of this
9153 register in the mode of REG. */
61f5625b
AO
9154 if (reg_set_luid[regno] > move2add_last_label_luid
9155 && MODES_OK_FOR_MOVE2ADD (GET_MODE (reg), reg_mode[regno]))
5adf6da0
R
9156 {
9157 /* Try to transform (set (REGX) (CONST_INT A))
9158 ...
9159 (set (REGX) (CONST_INT B))
9160 to
9161 (set (REGX) (CONST_INT A))
9162 ...
9163 (set (REGX) (plus (REGX) (CONST_INT B-A))) */
9164
9165 if (GET_CODE (src) == CONST_INT && reg_base_reg[regno] < 0)
9166 {
9167 int success = 0;
61f5625b
AO
9168 rtx new_src = GEN_INT (sext_for_mode (GET_MODE (reg),
9169 INTVAL (src)
9170 - reg_offset[regno]));
5adf6da0
R
9171 /* (set (reg) (plus (reg) (const_int 0))) is not canonical;
9172 use (set (reg) (reg)) instead.
9173 We don't delete this insn, nor do we convert it into a
9174 note, to avoid losing register notes or the return
9175 value flag. jump2 already knowns how to get rid of
9176 no-op moves. */
9177 if (new_src == const0_rtx)
9178 success = validate_change (insn, &SET_SRC (pat), reg, 0);
9179 else if (rtx_cost (new_src, PLUS) < rtx_cost (src, SET)
fb7e77d7 9180 && have_add2_insn (reg, new_src))
5adf6da0
R
9181 success = validate_change (insn, &PATTERN (insn),
9182 gen_add2_insn (reg, new_src), 0);
5adf6da0
R
9183 reg_set_luid[regno] = move2add_luid;
9184 reg_mode[regno] = GET_MODE (reg);
61f5625b 9185 reg_offset[regno] = INTVAL (src);
5adf6da0
R
9186 continue;
9187 }
9188
9189 /* Try to transform (set (REGX) (REGY))
9190 (set (REGX) (PLUS (REGX) (CONST_INT A)))
9191 ...
9192 (set (REGX) (REGY))
9193 (set (REGX) (PLUS (REGX) (CONST_INT B)))
9194 to
9195 (REGX) (REGY))
9196 (set (REGX) (PLUS (REGX) (CONST_INT A)))
9197 ...
9198 (set (REGX) (plus (REGX) (CONST_INT B-A))) */
9199 else if (GET_CODE (src) == REG
61f5625b
AO
9200 && reg_set_luid[regno] == reg_set_luid[REGNO (src)]
9201 && reg_base_reg[regno] == reg_base_reg[REGNO (src)]
9202 && MODES_OK_FOR_MOVE2ADD (GET_MODE (reg),
9203 reg_mode[REGNO (src)]))
5adf6da0
R
9204 {
9205 rtx next = next_nonnote_insn (insn);
6a651371 9206 rtx set = NULL_RTX;
5adf6da0
R
9207 if (next)
9208 set = single_set (next);
61f5625b 9209 if (set
5adf6da0
R
9210 && SET_DEST (set) == reg
9211 && GET_CODE (SET_SRC (set)) == PLUS
9212 && XEXP (SET_SRC (set), 0) == reg
9213 && GET_CODE (XEXP (SET_SRC (set), 1)) == CONST_INT)
9214 {
5adf6da0 9215 rtx src3 = XEXP (SET_SRC (set), 1);
61f5625b
AO
9216 HOST_WIDE_INT added_offset = INTVAL (src3);
9217 HOST_WIDE_INT base_offset = reg_offset[REGNO (src)];
9218 HOST_WIDE_INT regno_offset = reg_offset[regno];
9219 rtx new_src = GEN_INT (sext_for_mode (GET_MODE (reg),
9220 added_offset
9221 + base_offset
9222 - regno_offset));
5adf6da0
R
9223 int success = 0;
9224
9225 if (new_src == const0_rtx)
9226 /* See above why we create (set (reg) (reg)) here. */
9227 success
9228 = validate_change (next, &SET_SRC (set), reg, 0);
9229 else if ((rtx_cost (new_src, PLUS)
b437f1a7 9230 < COSTS_N_INSNS (1) + rtx_cost (src3, SET))
fb7e77d7 9231 && have_add2_insn (reg, new_src))
5adf6da0
R
9232 success
9233 = validate_change (next, &PATTERN (next),
9234 gen_add2_insn (reg, new_src), 0);
9235 if (success)
9236 {
5adf6da0
R
9237 /* INSN might be the first insn in a basic block
9238 if the preceding insn is a conditional jump
9239 or a possible-throwing call. */
9240 PUT_CODE (insn, NOTE);
9241 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
9242 NOTE_SOURCE_FILE (insn) = 0;
9243 }
9244 insn = next;
5adf6da0 9245 reg_mode[regno] = GET_MODE (reg);
61f5625b
AO
9246 reg_offset[regno] = sext_for_mode (GET_MODE (reg),
9247 added_offset
9248 + base_offset);
5adf6da0
R
9249 continue;
9250 }
9251 }
9252 }
9253 }
9254
9255 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
9256 {
9257 if (REG_NOTE_KIND (note) == REG_INC
9258 && GET_CODE (XEXP (note, 0)) == REG)
9259 {
61f5625b 9260 /* Reset the information about this register. */
5adf6da0
R
9261 int regno = REGNO (XEXP (note, 0));
9262 if (regno < FIRST_PSEUDO_REGISTER)
61f5625b 9263 reg_set_luid[regno] = 0;
5adf6da0 9264 }
5adf6da0 9265 }
84832317 9266 note_stores (PATTERN (insn), move2add_note_store, NULL);
5adf6da0
R
9267 /* If this is a CALL_INSN, all call used registers are stored with
9268 unknown values. */
9269 if (GET_CODE (insn) == CALL_INSN)
9270 {
1d7254c5 9271 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
5adf6da0
R
9272 {
9273 if (call_used_regs[i])
61f5625b
AO
9274 /* Reset the information about this register. */
9275 reg_set_luid[i] = 0;
5adf6da0
R
9276 }
9277 }
9278 }
9279}
9280
9281/* SET is a SET or CLOBBER that sets DST.
9282 Update reg_set_luid, reg_offset and reg_base_reg accordingly.
9283 Called from reload_cse_move2add via note_stores. */
770ae6cc 9284
5adf6da0 9285static void
84832317 9286move2add_note_store (dst, set, data)
5adf6da0 9287 rtx dst, set;
84832317 9288 void *data ATTRIBUTE_UNUSED;
5adf6da0 9289{
770ae6cc
RK
9290 unsigned int regno = 0;
9291 unsigned int i;
5adf6da0 9292 enum machine_mode mode = GET_MODE (dst);
770ae6cc 9293
5adf6da0
R
9294 if (GET_CODE (dst) == SUBREG)
9295 {
ddef6bc7
JJ
9296 regno = subreg_regno_offset (REGNO (SUBREG_REG (dst)),
9297 GET_MODE (SUBREG_REG (dst)),
9298 SUBREG_BYTE (dst),
9299 GET_MODE (dst));
5adf6da0
R
9300 dst = SUBREG_REG (dst);
9301 }
770ae6cc 9302
19ca869b
JR
9303 /* Some targets do argument pushes without adding REG_INC notes. */
9304
9305 if (GET_CODE (dst) == MEM)
9306 {
9307 dst = XEXP (dst, 0);
9308 if (GET_CODE (dst) == PRE_INC || GET_CODE (dst) == POST_DEC
9309 || GET_CODE (dst) == PRE_DEC || GET_CODE (dst) == POST_DEC)
61f5625b 9310 reg_set_luid[REGNO (XEXP (dst, 0))] = 0;
19ca869b 9311 return;
174fa2c4 9312 }
5adf6da0
R
9313 if (GET_CODE (dst) != REG)
9314 return;
9315
9316 regno += REGNO (dst);
9317
f93233bb
JL
9318 if (HARD_REGNO_NREGS (regno, mode) == 1 && GET_CODE (set) == SET
9319 && GET_CODE (SET_DEST (set)) != ZERO_EXTRACT
9320 && GET_CODE (SET_DEST (set)) != SIGN_EXTRACT
9321 && GET_CODE (SET_DEST (set)) != STRICT_LOW_PART)
5adf6da0
R
9322 {
9323 rtx src = SET_SRC (set);
61f5625b
AO
9324 rtx base_reg;
9325 HOST_WIDE_INT offset;
9326 int base_regno;
9327 /* This may be different from mode, if SET_DEST (set) is a
9328 SUBREG. */
9329 enum machine_mode dst_mode = GET_MODE (dst);
5adf6da0 9330
5adf6da0
R
9331 switch (GET_CODE (src))
9332 {
9333 case PLUS:
61f5625b
AO
9334 if (GET_CODE (XEXP (src, 0)) == REG)
9335 {
9336 base_reg = XEXP (src, 0);
9337
9338 if (GET_CODE (XEXP (src, 1)) == CONST_INT)
9339 offset = INTVAL (XEXP (src, 1));
9340 else if (GET_CODE (XEXP (src, 1)) == REG
9341 && (reg_set_luid[REGNO (XEXP (src, 1))]
9342 > move2add_last_label_luid)
9343 && (MODES_OK_FOR_MOVE2ADD
9344 (dst_mode, reg_mode[REGNO (XEXP (src, 1))])))
9345 {
9346 if (reg_base_reg[REGNO (XEXP (src, 1))] < 0)
9347 offset = reg_offset[REGNO (XEXP (src, 1))];
9348 /* Maybe the first register is known to be a
9349 constant. */
9350 else if (reg_set_luid[REGNO (base_reg)]
9351 > move2add_last_label_luid
9352 && (MODES_OK_FOR_MOVE2ADD
9353 (dst_mode, reg_mode[REGNO (XEXP (src, 1))]))
9354 && reg_base_reg[REGNO (base_reg)] < 0)
9355 {
9356 offset = reg_offset[REGNO (base_reg)];
9357 base_reg = XEXP (src, 1);
9358 }
9359 else
9360 goto invalidate;
9361 }
9362 else
9363 goto invalidate;
770ae6cc 9364
61f5625b
AO
9365 break;
9366 }
770ae6cc 9367
61f5625b 9368 goto invalidate;
5adf6da0
R
9369
9370 case REG:
61f5625b
AO
9371 base_reg = src;
9372 offset = 0;
5adf6da0
R
9373 break;
9374
61f5625b
AO
9375 case CONST_INT:
9376 /* Start tracking the register as a constant. */
5adf6da0 9377 reg_base_reg[regno] = -1;
61f5625b
AO
9378 reg_offset[regno] = INTVAL (SET_SRC (set));
9379 /* We assign the same luid to all registers set to constants. */
9380 reg_set_luid[regno] = move2add_last_label_luid + 1;
9381 reg_mode[regno] = mode;
9382 return;
9383
9384 default:
9385 invalidate:
9386 /* Invalidate the contents of the register. */
9387 reg_set_luid[regno] = 0;
9388 return;
5adf6da0 9389 }
61f5625b
AO
9390
9391 base_regno = REGNO (base_reg);
9392 /* If information about the base register is not valid, set it
9393 up as a new base register, pretending its value is known
9394 starting from the current insn. */
9395 if (reg_set_luid[base_regno] <= move2add_last_label_luid)
9396 {
9397 reg_base_reg[base_regno] = base_regno;
9398 reg_offset[base_regno] = 0;
9399 reg_set_luid[base_regno] = move2add_luid;
9400 reg_mode[base_regno] = mode;
9401 }
9402 else if (! MODES_OK_FOR_MOVE2ADD (dst_mode,
9403 reg_mode[base_regno]))
9404 goto invalidate;
9405
9406 reg_mode[regno] = mode;
9407
9408 /* Copy base information from our base register. */
9409 reg_set_luid[regno] = reg_set_luid[base_regno];
9410 reg_base_reg[regno] = reg_base_reg[base_regno];
9411
9412 /* Compute the sum of the offsets or constants. */
9413 reg_offset[regno] = sext_for_mode (dst_mode,
9414 offset
9415 + reg_offset[base_regno]);
5adf6da0
R
9416 }
9417 else
9418 {
770ae6cc
RK
9419 unsigned int endregno = regno + HARD_REGNO_NREGS (regno, mode);
9420
9421 for (i = regno; i < endregno; i++)
61f5625b
AO
9422 /* Reset the information about this register. */
9423 reg_set_luid[i] = 0;
5adf6da0
R
9424 }
9425}
2dfa9a87
MH
9426
9427#ifdef AUTO_INC_DEC
9428static void
9429add_auto_inc_notes (insn, x)
9430 rtx insn;
9431 rtx x;
9432{
9433 enum rtx_code code = GET_CODE (x);
6f7d635c 9434 const char *fmt;
2dfa9a87
MH
9435 int i, j;
9436
9437 if (code == MEM && auto_inc_p (XEXP (x, 0)))
9438 {
9439 REG_NOTES (insn)
9440 = gen_rtx_EXPR_LIST (REG_INC, XEXP (XEXP (x, 0), 0), REG_NOTES (insn));
9441 return;
9442 }
9443
9444 /* Scan all the operand sub-expressions. */
9445 fmt = GET_RTX_FORMAT (code);
9446 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9447 {
9448 if (fmt[i] == 'e')
9449 add_auto_inc_notes (insn, XEXP (x, i));
9450 else if (fmt[i] == 'E')
9451 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9452 add_auto_inc_notes (insn, XVECEXP (x, i, j));
9453 }
9454}
9455#endif
94bd63e5
AH
9456
9457/* Copy EH notes from an insn to its reloads. */
9458static void
9459copy_eh_notes (insn, x)
9460 rtx insn;
9461 rtx x;
9462{
9463 rtx eh_note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
9464 if (eh_note)
9465 {
9466 for (; x != 0; x = NEXT_INSN (x))
9467 {
9468 if (may_trap_p (PATTERN (x)))
9469 REG_NOTES (x)
9470 = gen_rtx_EXPR_LIST (REG_EH_REGION, XEXP (eh_note, 0),
9471 REG_NOTES (x));
9472 }
9473 }
9474}
9475
f1330226
JH
9476/* This is used by reload pass, that does emit some instructions after
9477 abnormal calls moving basic block end, but in fact it wants to emit
9478 them on the edge. Looks for abnormal call edges, find backward the
9479 proper call and fix the damage.
9480
9481 Similar handle instructions throwing exceptions internally. */
9482static void
9483fixup_abnormal_edges ()
9484{
9485 int i;
9486 bool inserted = false;
9487
9488 for (i = 0; i < n_basic_blocks; i++)
9489 {
9490 basic_block bb = BASIC_BLOCK (i);
9491 edge e;
9492
9493 /* Look for cases we are interested in - an calls or instructions causing
9494 exceptions. */
9495 for (e = bb->succ; e; e = e->succ_next)
9496 {
9497 if (e->flags & EDGE_ABNORMAL_CALL)
9498 break;
9499 if ((e->flags & (EDGE_ABNORMAL | EDGE_EH))
9500 == (EDGE_ABNORMAL | EDGE_EH))
9501 break;
9502 }
9503 if (e && GET_CODE (bb->end) != CALL_INSN && !can_throw_internal (bb->end))
9504 {
9505 rtx insn = bb->end;
9506 rtx next;
9507 for (e = bb->succ; e; e = e->succ_next)
9508 if (e->flags & EDGE_FALLTHRU)
9509 break;
39f95a2c
JH
9510 /* Get past the new insns generated. Allow notes, as the insns may
9511 be already deleted. */
9512 while ((GET_CODE (insn) == INSN || GET_CODE (insn) == NOTE)
9513 && !can_throw_internal (insn)
9514 && insn != bb->head)
f1330226
JH
9515 insn = PREV_INSN (insn);
9516 if (GET_CODE (insn) != CALL_INSN && !can_throw_internal (insn))
9517 abort ();
9518 bb->end = insn;
9519 inserted = true;
9520 insn = NEXT_INSN (insn);
9521 while (insn && GET_CODE (insn) == INSN)
9522 {
9523 next = NEXT_INSN (insn);
9524 insert_insn_on_edge (PATTERN (insn), e);
9525 flow_delete_insn (insn);
9526 insn = next;
9527 }
9528 }
9529 }
9530 if (inserted)
9531 commit_edge_insertions ();
9532}
This page took 3.141539 seconds and 5 git commands to generate.