]> gcc.gnu.org Git - gcc.git/blame - gcc/reload1.c
Makefile.in (resource.o): Depend on except.h.
[gcc.git] / gcc / reload1.c
CommitLineData
32131a9c 1/* Reload pseudo regs into hard regs for insns that require hard regs.
af841dbd
JL
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000 Free Software Foundation, Inc.
32131a9c
RK
4
5This file is part of GNU CC.
6
7GNU CC is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
9the Free Software Foundation; either version 2, or (at your option)
10any later version.
11
12GNU CC is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with GNU CC; see the file COPYING. If not, write to
e99215a3
RK
19the Free Software Foundation, 59 Temple Place - Suite 330,
20Boston, MA 02111-1307, USA. */
32131a9c
RK
21
22
23#include "config.h"
670ee920 24#include "system.h"
cab634f2
KG
25
26#include "machmode.h"
27#include "hard-reg-set.h"
32131a9c 28#include "rtl.h"
6baf1cc8 29#include "tm_p.h"
32131a9c
RK
30#include "obstack.h"
31#include "insn-config.h"
32#include "insn-flags.h"
33#include "insn-codes.h"
34#include "flags.h"
49ad7cfa 35#include "function.h"
32131a9c
RK
36#include "expr.h"
37#include "regs.h"
cad6f7d0 38#include "basic-block.h"
32131a9c
RK
39#include "reload.h"
40#include "recog.h"
32131a9c 41#include "output.h"
eab5c70a 42#include "cselib.h"
a9c366bf 43#include "real.h"
10f0ad3d 44#include "toplev.h"
32131a9c 45
65954bd8
JL
46#if !defined PREFERRED_STACK_BOUNDARY && defined STACK_BOUNDARY
47#define PREFERRED_STACK_BOUNDARY STACK_BOUNDARY
48#endif
49
32131a9c
RK
50/* This file contains the reload pass of the compiler, which is
51 run after register allocation has been done. It checks that
52 each insn is valid (operands required to be in registers really
53 are in registers of the proper class) and fixes up invalid ones
54 by copying values temporarily into registers for the insns
55 that need them.
56
57 The results of register allocation are described by the vector
58 reg_renumber; the insns still contain pseudo regs, but reg_renumber
59 can be used to find which hard reg, if any, a pseudo reg is in.
60
61 The technique we always use is to free up a few hard regs that are
62 called ``reload regs'', and for each place where a pseudo reg
63 must be in a hard reg, copy it temporarily into one of the reload regs.
64
03acd8f8
BS
65 Reload regs are allocated locally for every instruction that needs
66 reloads. When there are pseudos which are allocated to a register that
67 has been chosen as a reload reg, such pseudos must be ``spilled''.
68 This means that they go to other hard regs, or to stack slots if no other
32131a9c
RK
69 available hard regs can be found. Spilling can invalidate more
70 insns, requiring additional need for reloads, so we must keep checking
71 until the process stabilizes.
72
73 For machines with different classes of registers, we must keep track
74 of the register class needed for each reload, and make sure that
75 we allocate enough reload registers of each class.
76
77 The file reload.c contains the code that checks one insn for
78 validity and reports the reloads that it needs. This file
79 is in charge of scanning the entire rtl code, accumulating the
80 reload needs, spilling, assigning reload registers to use for
81 fixing up each insn, and generating the new insns to copy values
82 into the reload registers. */
546b63fb
RK
83
84
85#ifndef REGISTER_MOVE_COST
86#define REGISTER_MOVE_COST(x, y) 2
87#endif
32131a9c
RK
88\f
89/* During reload_as_needed, element N contains a REG rtx for the hard reg
0f41302f 90 into which reg N has been reloaded (perhaps for a previous insn). */
32131a9c
RK
91static rtx *reg_last_reload_reg;
92
93/* Elt N nonzero if reg_last_reload_reg[N] has been set in this insn
94 for an output reload that stores into reg N. */
95static char *reg_has_output_reload;
96
97/* Indicates which hard regs are reload-registers for an output reload
98 in the current insn. */
99static HARD_REG_SET reg_is_output_reload;
100
101/* Element N is the constant value to which pseudo reg N is equivalent,
102 or zero if pseudo reg N is not equivalent to a constant.
103 find_reloads looks at this in order to replace pseudo reg N
104 with the constant it stands for. */
105rtx *reg_equiv_constant;
106
107/* Element N is a memory location to which pseudo reg N is equivalent,
108 prior to any register elimination (such as frame pointer to stack
109 pointer). Depending on whether or not it is a valid address, this value
110 is transferred to either reg_equiv_address or reg_equiv_mem. */
4803a34a 111rtx *reg_equiv_memory_loc;
32131a9c
RK
112
113/* Element N is the address of stack slot to which pseudo reg N is equivalent.
114 This is used when the address is not valid as a memory address
115 (because its displacement is too big for the machine.) */
116rtx *reg_equiv_address;
117
118/* Element N is the memory slot to which pseudo reg N is equivalent,
119 or zero if pseudo reg N is not equivalent to a memory slot. */
120rtx *reg_equiv_mem;
121
122/* Widest width in which each pseudo reg is referred to (via subreg). */
770ae6cc 123static unsigned int *reg_max_ref_width;
32131a9c 124
135eb61c 125/* Element N is the list of insns that initialized reg N from its equivalent
32131a9c
RK
126 constant or memory slot. */
127static rtx *reg_equiv_init;
128
03acd8f8
BS
129/* Vector to remember old contents of reg_renumber before spilling. */
130static short *reg_old_renumber;
131
e6e52be0 132/* During reload_as_needed, element N contains the last pseudo regno reloaded
03acd8f8 133 into hard register N. If that pseudo reg occupied more than one register,
32131a9c
RK
134 reg_reloaded_contents points to that pseudo for each spill register in
135 use; all of these must remain set for an inheritance to occur. */
136static int reg_reloaded_contents[FIRST_PSEUDO_REGISTER];
137
138/* During reload_as_needed, element N contains the insn for which
e6e52be0
R
139 hard register N was last used. Its contents are significant only
140 when reg_reloaded_valid is set for this register. */
32131a9c
RK
141static rtx reg_reloaded_insn[FIRST_PSEUDO_REGISTER];
142
e6e52be0
R
143/* Indicate if reg_reloaded_insn / reg_reloaded_contents is valid */
144static HARD_REG_SET reg_reloaded_valid;
145/* Indicate if the register was dead at the end of the reload.
146 This is only valid if reg_reloaded_contents is set and valid. */
147static HARD_REG_SET reg_reloaded_dead;
148
32131a9c
RK
149/* Number of spill-regs so far; number of valid elements of spill_regs. */
150static int n_spills;
151
152/* In parallel with spill_regs, contains REG rtx's for those regs.
153 Holds the last rtx used for any given reg, or 0 if it has never
154 been used for spilling yet. This rtx is reused, provided it has
155 the proper mode. */
156static rtx spill_reg_rtx[FIRST_PSEUDO_REGISTER];
157
158/* In parallel with spill_regs, contains nonzero for a spill reg
159 that was stored after the last time it was used.
160 The precise value is the insn generated to do the store. */
161static rtx spill_reg_store[FIRST_PSEUDO_REGISTER];
162
cb2afeb3
R
163/* This is the register that was stored with spill_reg_store. This is a
164 copy of reload_out / reload_out_reg when the value was stored; if
165 reload_out is a MEM, spill_reg_stored_to will be set to reload_out_reg. */
166static rtx spill_reg_stored_to[FIRST_PSEUDO_REGISTER];
167
32131a9c
RK
168/* This table is the inverse mapping of spill_regs:
169 indexed by hard reg number,
170 it contains the position of that reg in spill_regs,
05d10675 171 or -1 for something that is not in spill_regs.
13c8e8e3
JL
172
173 ?!? This is no longer accurate. */
32131a9c
RK
174static short spill_reg_order[FIRST_PSEUDO_REGISTER];
175
03acd8f8
BS
176/* This reg set indicates registers that can't be used as spill registers for
177 the currently processed insn. These are the hard registers which are live
178 during the insn, but not allocated to pseudos, as well as fixed
179 registers. */
32131a9c
RK
180static HARD_REG_SET bad_spill_regs;
181
03acd8f8
BS
182/* These are the hard registers that can't be used as spill register for any
183 insn. This includes registers used for user variables and registers that
184 we can't eliminate. A register that appears in this set also can't be used
185 to retry register allocation. */
186static HARD_REG_SET bad_spill_regs_global;
187
32131a9c 188/* Describes order of use of registers for reloading
03acd8f8
BS
189 of spilled pseudo-registers. `n_spills' is the number of
190 elements that are actually valid; new ones are added at the end.
191
192 Both spill_regs and spill_reg_order are used on two occasions:
193 once during find_reload_regs, where they keep track of the spill registers
194 for a single insn, but also during reload_as_needed where they show all
195 the registers ever used by reload. For the latter case, the information
196 is calculated during finish_spills. */
32131a9c
RK
197static short spill_regs[FIRST_PSEUDO_REGISTER];
198
03acd8f8
BS
199/* This vector of reg sets indicates, for each pseudo, which hard registers
200 may not be used for retrying global allocation because the register was
201 formerly spilled from one of them. If we allowed reallocating a pseudo to
202 a register that it was already allocated to, reload might not
203 terminate. */
204static HARD_REG_SET *pseudo_previous_regs;
205
206/* This vector of reg sets indicates, for each pseudo, which hard
207 registers may not be used for retrying global allocation because they
208 are used as spill registers during one of the insns in which the
209 pseudo is live. */
210static HARD_REG_SET *pseudo_forbidden_regs;
211
212/* All hard regs that have been used as spill registers for any insn are
213 marked in this set. */
214static HARD_REG_SET used_spill_regs;
8b4f9969 215
4079cd63
JW
216/* Index of last register assigned as a spill register. We allocate in
217 a round-robin fashion. */
4079cd63
JW
218static int last_spill_reg;
219
32131a9c
RK
220/* Nonzero if indirect addressing is supported on the machine; this means
221 that spilling (REG n) does not require reloading it into a register in
222 order to do (MEM (REG n)) or (MEM (PLUS (REG n) (CONST_INT c))). The
223 value indicates the level of indirect addressing supported, e.g., two
224 means that (MEM (MEM (REG n))) is also valid if (REG n) does not get
225 a hard register. */
32131a9c
RK
226static char spill_indirect_levels;
227
228/* Nonzero if indirect addressing is supported when the innermost MEM is
229 of the form (MEM (SYMBOL_REF sym)). It is assumed that the level to
230 which these are valid is the same as spill_indirect_levels, above. */
32131a9c
RK
231char indirect_symref_ok;
232
233/* Nonzero if an address (plus (reg frame_pointer) (reg ...)) is valid. */
32131a9c
RK
234char double_reg_address_ok;
235
236/* Record the stack slot for each spilled hard register. */
32131a9c
RK
237static rtx spill_stack_slot[FIRST_PSEUDO_REGISTER];
238
239/* Width allocated so far for that stack slot. */
770ae6cc 240static unsigned int spill_stack_slot_width[FIRST_PSEUDO_REGISTER];
32131a9c 241
7609e720 242/* Record which pseudos needed to be spilled. */
f5d8c9f4
BS
243static regset_head spilled_pseudos;
244
245/* Used for communication between order_regs_for_reload and count_pseudo.
246 Used to avoid counting one pseudo twice. */
247static regset_head pseudos_counted;
7609e720 248
32131a9c
RK
249/* First uid used by insns created by reload in this function.
250 Used in find_equiv_reg. */
251int reload_first_uid;
252
253/* Flag set by local-alloc or global-alloc if anything is live in
254 a call-clobbered reg across calls. */
32131a9c
RK
255int caller_save_needed;
256
257/* Set to 1 while reload_as_needed is operating.
258 Required by some machines to handle any generated moves differently. */
32131a9c
RK
259int reload_in_progress = 0;
260
261/* These arrays record the insn_code of insns that may be needed to
262 perform input and output reloads of special objects. They provide a
263 place to pass a scratch register. */
32131a9c
RK
264enum insn_code reload_in_optab[NUM_MACHINE_MODES];
265enum insn_code reload_out_optab[NUM_MACHINE_MODES];
266
d45cf215 267/* This obstack is used for allocation of rtl during register elimination.
32131a9c
RK
268 The allocated storage can be freed once find_reloads has processed the
269 insn. */
32131a9c 270struct obstack reload_obstack;
cad6f7d0
BS
271
272/* Points to the beginning of the reload_obstack. All insn_chain structures
273 are allocated first. */
274char *reload_startobj;
275
276/* The point after all insn_chain structures. Used to quickly deallocate
f5d8c9f4 277 memory allocated in copy_reloads during calculate_needs_all_insns. */
32131a9c
RK
278char *reload_firstobj;
279
f5d8c9f4
BS
280/* This points before all local rtl generated by register elimination.
281 Used to quickly free all memory after processing one insn. */
282static char *reload_insn_firstobj;
283
32131a9c
RK
284#define obstack_chunk_alloc xmalloc
285#define obstack_chunk_free free
286
cad6f7d0
BS
287/* List of insn_chain instructions, one for every insn that reload needs to
288 examine. */
289struct insn_chain *reload_insn_chain;
7609e720 290
dfb7c80f
JL
291#ifdef TREE_CODE
292extern tree current_function_decl;
293#else
122a860e 294extern union tree_node *current_function_decl;
dfb7c80f
JL
295#endif
296
03acd8f8 297/* List of all insns needing reloads. */
7609e720 298static struct insn_chain *insns_need_reload;
32131a9c
RK
299\f
300/* This structure is used to record information about register eliminations.
301 Each array entry describes one possible way of eliminating a register
302 in favor of another. If there is more than one way of eliminating a
303 particular register, the most preferred should be specified first. */
304
590cf94d 305struct elim_table
32131a9c 306{
0f41302f
MS
307 int from; /* Register number to be eliminated. */
308 int to; /* Register number used as replacement. */
309 int initial_offset; /* Initial difference between values. */
310 int can_eliminate; /* Non-zero if this elimination can be done. */
32131a9c 311 int can_eliminate_previous; /* Value of CAN_ELIMINATE in previous scan over
0f41302f
MS
312 insns made by reload. */
313 int offset; /* Current offset between the two regs. */
0f41302f
MS
314 int previous_offset; /* Offset at end of previous insn. */
315 int ref_outside_mem; /* "to" has been referenced outside a MEM. */
32131a9c
RK
316 rtx from_rtx; /* REG rtx for the register to be eliminated.
317 We cannot simply compare the number since
318 we might then spuriously replace a hard
319 register corresponding to a pseudo
0f41302f
MS
320 assigned to the reg to be eliminated. */
321 rtx to_rtx; /* REG rtx for the replacement. */
590cf94d
KG
322};
323
324static struct elim_table * reg_eliminate = 0;
325
326/* This is an intermediate structure to initialize the table. It has
327 exactly the members provided by ELIMINABLE_REGS. */
328static struct elim_table_1
329{
330 int from;
331 int to;
332} reg_eliminate_1[] =
32131a9c
RK
333
334/* If a set of eliminable registers was specified, define the table from it.
335 Otherwise, default to the normal case of the frame pointer being
336 replaced by the stack pointer. */
337
338#ifdef ELIMINABLE_REGS
339 ELIMINABLE_REGS;
340#else
341 {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}};
342#endif
343
590cf94d 344#define NUM_ELIMINABLE_REGS (sizeof reg_eliminate_1/sizeof reg_eliminate_1[0])
32131a9c
RK
345
346/* Record the number of pending eliminations that have an offset not equal
347 to their initial offset. If non-zero, we use a new copy of each
348 replacement result in any insns encountered. */
cb2afeb3 349int num_not_at_initial_offset;
32131a9c
RK
350
351/* Count the number of registers that we may be able to eliminate. */
352static int num_eliminable;
2b49ee39
R
353/* And the number of registers that are equivalent to a constant that
354 can be eliminated to frame_pointer / arg_pointer + constant. */
355static int num_eliminable_invariants;
32131a9c
RK
356
357/* For each label, we record the offset of each elimination. If we reach
358 a label by more than one path and an offset differs, we cannot do the
359 elimination. This information is indexed by the number of the label.
360 The first table is an array of flags that records whether we have yet
361 encountered a label and the second table is an array of arrays, one
362 entry in the latter array for each elimination. */
363
364static char *offsets_known_at;
365static int (*offsets_at)[NUM_ELIMINABLE_REGS];
366
367/* Number of labels in the current function. */
368
369static int num_labels;
370\f
cdadb1dd
KG
371static void maybe_fix_stack_asms PARAMS ((void));
372static void copy_reloads PARAMS ((struct insn_chain *));
373static void calculate_needs_all_insns PARAMS ((int));
374static int find_reg PARAMS ((struct insn_chain *, int,
03acd8f8 375 FILE *));
cdadb1dd
KG
376static void find_reload_regs PARAMS ((struct insn_chain *, FILE *));
377static void select_reload_regs PARAMS ((FILE *));
378static void delete_caller_save_insns PARAMS ((void));
379
380static void spill_failure PARAMS ((rtx, enum reg_class));
381static void count_spilled_pseudo PARAMS ((int, int, int));
382static void delete_dead_insn PARAMS ((rtx));
383static void alter_reg PARAMS ((int, int));
384static void set_label_offsets PARAMS ((rtx, rtx, int));
385static void check_eliminable_occurrences PARAMS ((rtx));
386static void elimination_effects PARAMS ((rtx, enum machine_mode));
387static int eliminate_regs_in_insn PARAMS ((rtx, int));
388static void update_eliminable_offsets PARAMS ((void));
389static void mark_not_eliminable PARAMS ((rtx, rtx, void *));
390static void set_initial_elim_offsets PARAMS ((void));
391static void verify_initial_elim_offsets PARAMS ((void));
392static void set_initial_label_offsets PARAMS ((void));
393static void set_offsets_for_label PARAMS ((rtx));
394static void init_elim_table PARAMS ((void));
395static void update_eliminables PARAMS ((HARD_REG_SET *));
770ae6cc 396static void spill_hard_reg PARAMS ((unsigned int, FILE *, int));
cdadb1dd
KG
397static int finish_spills PARAMS ((int, FILE *));
398static void ior_hard_reg_set PARAMS ((HARD_REG_SET *, HARD_REG_SET *));
399static void scan_paradoxical_subregs PARAMS ((rtx));
400static void count_pseudo PARAMS ((int));
401static void order_regs_for_reload PARAMS ((struct insn_chain *));
402static void reload_as_needed PARAMS ((int));
403static void forget_old_reloads_1 PARAMS ((rtx, rtx, void *));
404static int reload_reg_class_lower PARAMS ((const PTR, const PTR));
770ae6cc
RK
405static void mark_reload_reg_in_use PARAMS ((unsigned int, int,
406 enum reload_type,
407 enum machine_mode));
408static void clear_reload_reg_in_use PARAMS ((unsigned int, int,
409 enum reload_type,
410 enum machine_mode));
411static int reload_reg_free_p PARAMS ((unsigned int, int,
412 enum reload_type));
cdadb1dd 413static int reload_reg_free_for_value_p PARAMS ((int, int, enum reload_type,
770ae6cc
RK
414 rtx, rtx, int, int));
415static int reload_reg_reaches_end_p PARAMS ((unsigned int, int,
416 enum reload_type));
417static int allocate_reload_reg PARAMS ((struct insn_chain *, int,
418 int));
cdadb1dd
KG
419static void failed_reload PARAMS ((rtx, int));
420static int set_reload_reg PARAMS ((int, int));
421static void choose_reload_regs_init PARAMS ((struct insn_chain *, rtx *));
422static void choose_reload_regs PARAMS ((struct insn_chain *));
423static void merge_assigned_reloads PARAMS ((rtx));
424static void emit_input_reload_insns PARAMS ((struct insn_chain *,
770ae6cc 425 struct reload *, rtx, int));
cdadb1dd 426static void emit_output_reload_insns PARAMS ((struct insn_chain *,
770ae6cc 427 struct reload *, int));
cdadb1dd 428static void do_input_reload PARAMS ((struct insn_chain *,
770ae6cc 429 struct reload *, int));
cdadb1dd 430static void do_output_reload PARAMS ((struct insn_chain *,
770ae6cc 431 struct reload *, int));
cdadb1dd
KG
432static void emit_reload_insns PARAMS ((struct insn_chain *));
433static void delete_output_reload PARAMS ((rtx, int, int));
434static void delete_address_reloads PARAMS ((rtx, rtx));
435static void delete_address_reloads_1 PARAMS ((rtx, rtx, rtx));
436static rtx inc_for_reload PARAMS ((rtx, rtx, rtx, int));
437static int constraint_accepts_reg_p PARAMS ((const char *, rtx));
438static void reload_cse_regs_1 PARAMS ((rtx));
eab5c70a 439static int reload_cse_noop_set_p PARAMS ((rtx));
cdadb1dd
KG
440static int reload_cse_simplify_set PARAMS ((rtx, rtx));
441static int reload_cse_simplify_operands PARAMS ((rtx));
770ae6cc
RK
442static void reload_combine PARAMS ((void));
443static void reload_combine_note_use PARAMS ((rtx *, rtx));
444static void reload_combine_note_store PARAMS ((rtx, rtx, void *));
445static void reload_cse_move2add PARAMS ((rtx));
446static void move2add_note_store PARAMS ((rtx, rtx, void *));
2dfa9a87 447#ifdef AUTO_INC_DEC
770ae6cc 448static void add_auto_inc_notes PARAMS ((rtx, rtx));
2dfa9a87 449#endif
cdadb1dd 450static rtx gen_mode_int PARAMS ((enum machine_mode,
770ae6cc 451 HOST_WIDE_INT));
cdadb1dd
KG
452static void failed_reload PARAMS ((rtx, int));
453static int set_reload_reg PARAMS ((int, int));
e77d72cb
KG
454static void reload_cse_delete_noop_set PARAMS ((rtx, rtx));
455static void reload_cse_simplify PARAMS ((rtx));
cdadb1dd 456extern void dump_needs PARAMS ((struct insn_chain *, FILE *));
32131a9c 457\f
546b63fb
RK
458/* Initialize the reload pass once per compilation. */
459
32131a9c
RK
460void
461init_reload ()
462{
463 register int i;
464
465 /* Often (MEM (REG n)) is still valid even if (REG n) is put on the stack.
466 Set spill_indirect_levels to the number of levels such addressing is
467 permitted, zero if it is not permitted at all. */
468
469 register rtx tem
38a448ca
RH
470 = gen_rtx_MEM (Pmode,
471 gen_rtx_PLUS (Pmode,
c5c76735
JL
472 gen_rtx_REG (Pmode,
473 LAST_VIRTUAL_REGISTER + 1),
38a448ca 474 GEN_INT (4)));
32131a9c
RK
475 spill_indirect_levels = 0;
476
477 while (memory_address_p (QImode, tem))
478 {
479 spill_indirect_levels++;
38a448ca 480 tem = gen_rtx_MEM (Pmode, tem);
32131a9c
RK
481 }
482
483 /* See if indirect addressing is valid for (MEM (SYMBOL_REF ...)). */
484
38a448ca 485 tem = gen_rtx_MEM (Pmode, gen_rtx_SYMBOL_REF (Pmode, "foo"));
32131a9c
RK
486 indirect_symref_ok = memory_address_p (QImode, tem);
487
488 /* See if reg+reg is a valid (and offsettable) address. */
489
65701fd2 490 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
57caa638 491 {
38a448ca
RH
492 tem = gen_rtx_PLUS (Pmode,
493 gen_rtx_REG (Pmode, HARD_FRAME_POINTER_REGNUM),
494 gen_rtx_REG (Pmode, i));
c5c76735 495
57caa638
RS
496 /* This way, we make sure that reg+reg is an offsettable address. */
497 tem = plus_constant (tem, 4);
498
499 if (memory_address_p (QImode, tem))
500 {
501 double_reg_address_ok = 1;
502 break;
503 }
504 }
32131a9c 505
0f41302f 506 /* Initialize obstack for our rtl allocation. */
32131a9c 507 gcc_obstack_init (&reload_obstack);
cad6f7d0 508 reload_startobj = (char *) obstack_alloc (&reload_obstack, 0);
f5d8c9f4
BS
509
510 INIT_REG_SET (&spilled_pseudos);
511 INIT_REG_SET (&pseudos_counted);
32131a9c
RK
512}
513
cad6f7d0
BS
514/* List of insn chains that are currently unused. */
515static struct insn_chain *unused_insn_chains = 0;
516
517/* Allocate an empty insn_chain structure. */
518struct insn_chain *
519new_insn_chain ()
520{
521 struct insn_chain *c;
522
523 if (unused_insn_chains == 0)
524 {
8db99db2
KG
525 c = (struct insn_chain *)
526 obstack_alloc (&reload_obstack, sizeof (struct insn_chain));
239a0f5b
BS
527 INIT_REG_SET (&c->live_throughout);
528 INIT_REG_SET (&c->dead_or_set);
cad6f7d0
BS
529 }
530 else
531 {
532 c = unused_insn_chains;
533 unused_insn_chains = c->next;
534 }
535 c->is_caller_save_insn = 0;
03acd8f8 536 c->need_operand_change = 0;
cad6f7d0
BS
537 c->need_reload = 0;
538 c->need_elim = 0;
539 return c;
540}
541
7609e720
BS
542/* Small utility function to set all regs in hard reg set TO which are
543 allocated to pseudos in regset FROM. */
770ae6cc 544
7609e720
BS
545void
546compute_use_by_pseudos (to, from)
547 HARD_REG_SET *to;
548 regset from;
549{
770ae6cc
RK
550 unsigned int regno;
551
7609e720
BS
552 EXECUTE_IF_SET_IN_REG_SET
553 (from, FIRST_PSEUDO_REGISTER, regno,
554 {
555 int r = reg_renumber[regno];
556 int nregs;
770ae6cc 557
7609e720 558 if (r < 0)
404d95c4
R
559 {
560 /* reload_combine uses the information from
e881bb1b
RH
561 BASIC_BLOCK->global_live_at_start, which might still
562 contain registers that have not actually been allocated
563 since they have an equivalence. */
404d95c4
R
564 if (! reload_completed)
565 abort ();
566 }
567 else
568 {
569 nregs = HARD_REGNO_NREGS (r, PSEUDO_REGNO_MODE (regno));
570 while (nregs-- > 0)
571 SET_HARD_REG_BIT (*to, r + nregs);
572 }
7609e720
BS
573 });
574}
03acd8f8 575\f
1e5bd841
BS
576/* Global variables used by reload and its subroutines. */
577
1e5bd841
BS
578/* Set during calculate_needs if an insn needs register elimination. */
579static int something_needs_elimination;
cb2afeb3
R
580/* Set during calculate_needs if an insn needs an operand changed. */
581int something_needs_operands_changed;
1e5bd841 582
1e5bd841
BS
583/* Nonzero means we couldn't get enough spill regs. */
584static int failure;
585
546b63fb 586/* Main entry point for the reload pass.
32131a9c
RK
587
588 FIRST is the first insn of the function being compiled.
589
590 GLOBAL nonzero means we were called from global_alloc
591 and should attempt to reallocate any pseudoregs that we
592 displace from hard regs we will use for reloads.
593 If GLOBAL is zero, we do not have enough information to do that,
594 so any pseudo reg that is spilled must go to the stack.
595
596 DUMPFILE is the global-reg debugging dump file stream, or 0.
597 If it is nonzero, messages are written to it to describe
598 which registers are seized as reload regs, which pseudo regs
5352b11a 599 are spilled from them, and where the pseudo regs are reallocated to.
32131a9c 600
5352b11a
RS
601 Return value is nonzero if reload failed
602 and we must not do any more for this function. */
603
604int
32131a9c
RK
605reload (first, global, dumpfile)
606 rtx first;
607 int global;
608 FILE *dumpfile;
609{
03acd8f8 610 register int i;
32131a9c
RK
611 register rtx insn;
612 register struct elim_table *ep;
613
a68d4b75
BK
614 /* The two pointers used to track the true location of the memory used
615 for label offsets. */
616 char *real_known_ptr = NULL_PTR;
617 int (*real_at_ptr)[NUM_ELIMINABLE_REGS];
618
32131a9c
RK
619 /* Make sure even insns with volatile mem refs are recognizable. */
620 init_recog ();
621
1e5bd841
BS
622 failure = 0;
623
cad6f7d0
BS
624 reload_firstobj = (char *) obstack_alloc (&reload_obstack, 0);
625
437a710d
BS
626 /* Make sure that the last insn in the chain
627 is not something that needs reloading. */
628 emit_note (NULL_PTR, NOTE_INSN_DELETED);
629
32131a9c
RK
630 /* Enable find_equiv_reg to distinguish insns made by reload. */
631 reload_first_uid = get_max_uid ();
632
0dadecf6
RK
633#ifdef SECONDARY_MEMORY_NEEDED
634 /* Initialize the secondary memory table. */
635 clear_secondary_mem ();
636#endif
637
32131a9c 638 /* We don't have a stack slot for any spill reg yet. */
4c9a05bc
RK
639 bzero ((char *) spill_stack_slot, sizeof spill_stack_slot);
640 bzero ((char *) spill_stack_slot_width, sizeof spill_stack_slot_width);
32131a9c 641
a8efe40d
RK
642 /* Initialize the save area information for caller-save, in case some
643 are needed. */
644 init_save_areas ();
a8fdc208 645
32131a9c
RK
646 /* Compute which hard registers are now in use
647 as homes for pseudo registers.
648 This is done here rather than (eg) in global_alloc
649 because this point is reached even if not optimizing. */
32131a9c
RK
650 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
651 mark_home_live (i);
652
8dddd002
RK
653 /* A function that receives a nonlocal goto must save all call-saved
654 registers. */
655 if (current_function_has_nonlocal_label)
656 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
657 {
658 if (! call_used_regs[i] && ! fixed_regs[i])
659 regs_ever_live[i] = 1;
660 }
661
32131a9c
RK
662 /* Find all the pseudo registers that didn't get hard regs
663 but do have known equivalent constants or memory slots.
664 These include parameters (known equivalent to parameter slots)
665 and cse'd or loop-moved constant memory addresses.
666
667 Record constant equivalents in reg_equiv_constant
668 so they will be substituted by find_reloads.
669 Record memory equivalents in reg_mem_equiv so they can
670 be substituted eventually by altering the REG-rtx's. */
671
ad85216e
KG
672 reg_equiv_constant = (rtx *) xcalloc (max_regno, sizeof (rtx));
673 reg_equiv_memory_loc = (rtx *) xcalloc (max_regno, sizeof (rtx));
674 reg_equiv_mem = (rtx *) xcalloc (max_regno, sizeof (rtx));
675 reg_equiv_init = (rtx *) xcalloc (max_regno, sizeof (rtx));
676 reg_equiv_address = (rtx *) xcalloc (max_regno, sizeof (rtx));
f9e158c3 677 reg_max_ref_width = (unsigned int *) xcalloc (max_regno, sizeof (int));
ad85216e 678 reg_old_renumber = (short *) xcalloc (max_regno, sizeof (short));
47c3ed98 679 bcopy ((PTR) reg_renumber, (PTR) reg_old_renumber, max_regno * sizeof (short));
03acd8f8
BS
680 pseudo_forbidden_regs
681 = (HARD_REG_SET *) xmalloc (max_regno * sizeof (HARD_REG_SET));
682 pseudo_previous_regs
ad85216e 683 = (HARD_REG_SET *) xcalloc (max_regno, sizeof (HARD_REG_SET));
32131a9c 684
03acd8f8 685 CLEAR_HARD_REG_SET (bad_spill_regs_global);
56f58d3a 686
32131a9c 687 /* Look for REG_EQUIV notes; record what each pseudo is equivalent to.
56f58d3a
RK
688 Also find all paradoxical subregs and find largest such for each pseudo.
689 On machines with small register classes, record hard registers that
05d10675 690 are used for user variables. These can never be used for spills.
b453cb0b
RK
691 Also look for a "constant" NOTE_INSN_SETJMP. This means that all
692 caller-saved registers must be marked live. */
32131a9c 693
2b49ee39 694 num_eliminable_invariants = 0;
32131a9c
RK
695 for (insn = first; insn; insn = NEXT_INSN (insn))
696 {
697 rtx set = single_set (insn);
698
b453cb0b
RK
699 if (GET_CODE (insn) == NOTE && CONST_CALL_P (insn)
700 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_SETJMP)
701 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
702 if (! call_used_regs[i])
703 regs_ever_live[i] = 1;
704
32131a9c
RK
705 if (set != 0 && GET_CODE (SET_DEST (set)) == REG)
706 {
fb3821f7 707 rtx note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
a8efe40d
RK
708 if (note
709#ifdef LEGITIMATE_PIC_OPERAND_P
2b49ee39
R
710 && (! function_invariant_p (XEXP (note, 0))
711 || ! flag_pic
a8efe40d
RK
712 || LEGITIMATE_PIC_OPERAND_P (XEXP (note, 0)))
713#endif
714 )
32131a9c
RK
715 {
716 rtx x = XEXP (note, 0);
717 i = REGNO (SET_DEST (set));
718 if (i > LAST_VIRTUAL_REGISTER)
719 {
720 if (GET_CODE (x) == MEM)
956d6950
JL
721 {
722 /* If the operand is a PLUS, the MEM may be shared,
723 so make sure we have an unshared copy here. */
724 if (GET_CODE (XEXP (x, 0)) == PLUS)
725 x = copy_rtx (x);
726
727 reg_equiv_memory_loc[i] = x;
728 }
2b49ee39 729 else if (function_invariant_p (x))
32131a9c 730 {
2b49ee39
R
731 if (GET_CODE (x) == PLUS)
732 {
733 /* This is PLUS of frame pointer and a constant,
734 and might be shared. Unshare it. */
735 reg_equiv_constant[i] = copy_rtx (x);
736 num_eliminable_invariants++;
737 }
738 else if (x == frame_pointer_rtx
739 || x == arg_pointer_rtx)
740 {
741 reg_equiv_constant[i] = x;
742 num_eliminable_invariants++;
743 }
744 else if (LEGITIMATE_CONSTANT_P (x))
32131a9c
RK
745 reg_equiv_constant[i] = x;
746 else
747 reg_equiv_memory_loc[i]
d445b551 748 = force_const_mem (GET_MODE (SET_DEST (set)), x);
32131a9c
RK
749 }
750 else
751 continue;
752
753 /* If this register is being made equivalent to a MEM
754 and the MEM is not SET_SRC, the equivalencing insn
755 is one with the MEM as a SET_DEST and it occurs later.
756 So don't mark this insn now. */
757 if (GET_CODE (x) != MEM
758 || rtx_equal_p (SET_SRC (set), x))
135eb61c
R
759 reg_equiv_init[i]
760 = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv_init[i]);
32131a9c
RK
761 }
762 }
763 }
764
765 /* If this insn is setting a MEM from a register equivalent to it,
766 this is the equivalencing insn. */
767 else if (set && GET_CODE (SET_DEST (set)) == MEM
768 && GET_CODE (SET_SRC (set)) == REG
769 && reg_equiv_memory_loc[REGNO (SET_SRC (set))]
770 && rtx_equal_p (SET_DEST (set),
771 reg_equiv_memory_loc[REGNO (SET_SRC (set))]))
135eb61c
R
772 reg_equiv_init[REGNO (SET_SRC (set))]
773 = gen_rtx_INSN_LIST (VOIDmode, insn,
774 reg_equiv_init[REGNO (SET_SRC (set))]);
32131a9c
RK
775
776 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
777 scan_paradoxical_subregs (PATTERN (insn));
778 }
779
09dd1133 780 init_elim_table ();
32131a9c
RK
781
782 num_labels = max_label_num () - get_first_label_num ();
783
784 /* Allocate the tables used to store offset information at labels. */
a68d4b75
BK
785 /* We used to use alloca here, but the size of what it would try to
786 allocate would occasionally cause it to exceed the stack limit and
787 cause a core dump. */
788 real_known_ptr = xmalloc (num_labels);
789 real_at_ptr
32131a9c 790 = (int (*)[NUM_ELIMINABLE_REGS])
a68d4b75 791 xmalloc (num_labels * NUM_ELIMINABLE_REGS * sizeof (int));
32131a9c 792
a68d4b75
BK
793 offsets_known_at = real_known_ptr - get_first_label_num ();
794 offsets_at
795 = (int (*)[NUM_ELIMINABLE_REGS]) (real_at_ptr - get_first_label_num ());
32131a9c
RK
796
797 /* Alter each pseudo-reg rtx to contain its hard reg number.
798 Assign stack slots to the pseudos that lack hard regs or equivalents.
799 Do not touch virtual registers. */
800
801 for (i = LAST_VIRTUAL_REGISTER + 1; i < max_regno; i++)
802 alter_reg (i, -1);
803
32131a9c
RK
804 /* If we have some registers we think can be eliminated, scan all insns to
805 see if there is an insn that sets one of these registers to something
806 other than itself plus a constant. If so, the register cannot be
807 eliminated. Doing this scan here eliminates an extra pass through the
808 main reload loop in the most common case where register elimination
809 cannot be done. */
810 for (insn = first; insn && num_eliminable; insn = NEXT_INSN (insn))
811 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
812 || GET_CODE (insn) == CALL_INSN)
84832317 813 note_stores (PATTERN (insn), mark_not_eliminable, NULL);
32131a9c 814
18a90182
BS
815 maybe_fix_stack_asms ();
816
03acd8f8
BS
817 insns_need_reload = 0;
818 something_needs_elimination = 0;
05d10675 819
4079cd63
JW
820 /* Initialize to -1, which means take the first spill register. */
821 last_spill_reg = -1;
822
32131a9c 823 /* Spill any hard regs that we know we can't eliminate. */
03acd8f8 824 CLEAR_HARD_REG_SET (used_spill_regs);
32131a9c
RK
825 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
826 if (! ep->can_eliminate)
03acd8f8 827 spill_hard_reg (ep->from, dumpfile, 1);
9ff3516a
RK
828
829#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
830 if (frame_pointer_needed)
03acd8f8 831 spill_hard_reg (HARD_FRAME_POINTER_REGNUM, dumpfile, 1);
9ff3516a 832#endif
7609e720
BS
833 finish_spills (global, dumpfile);
834
f1db3576
JL
835 /* From now on, we may need to generate moves differently. We may also
836 allow modifications of insns which cause them to not be recognized.
837 Any such modifications will be cleaned up during reload itself. */
b2f15f94
RK
838 reload_in_progress = 1;
839
32131a9c
RK
840 /* This loop scans the entire function each go-round
841 and repeats until one repetition spills no additional hard regs. */
03acd8f8 842 for (;;)
32131a9c 843 {
03acd8f8
BS
844 int something_changed;
845 int did_spill;
32131a9c 846
03acd8f8 847 HOST_WIDE_INT starting_frame_size;
32131a9c 848
665792eb 849 /* Round size of stack frame to stack_alignment_needed. This must be done
7657bf2f
JW
850 here because the stack size may be a part of the offset computation
851 for register elimination, and there might have been new stack slots
852 created in the last iteration of this loop. */
665792eb
JH
853 if (cfun->stack_alignment_needed)
854 assign_stack_local (BLKmode, 0, cfun->stack_alignment_needed);
7657bf2f
JW
855
856 starting_frame_size = get_frame_size ();
857
09dd1133 858 set_initial_elim_offsets ();
1f3b1e1a 859 set_initial_label_offsets ();
03acd8f8 860
32131a9c
RK
861 /* For each pseudo register that has an equivalent location defined,
862 try to eliminate any eliminable registers (such as the frame pointer)
863 assuming initial offsets for the replacement register, which
864 is the normal case.
865
866 If the resulting location is directly addressable, substitute
867 the MEM we just got directly for the old REG.
868
869 If it is not addressable but is a constant or the sum of a hard reg
870 and constant, it is probably not addressable because the constant is
871 out of range, in that case record the address; we will generate
872 hairy code to compute the address in a register each time it is
6491dbbb
RK
873 needed. Similarly if it is a hard register, but one that is not
874 valid as an address register.
32131a9c
RK
875
876 If the location is not addressable, but does not have one of the
877 above forms, assign a stack slot. We have to do this to avoid the
878 potential of producing lots of reloads if, e.g., a location involves
879 a pseudo that didn't get a hard register and has an equivalent memory
880 location that also involves a pseudo that didn't get a hard register.
881
882 Perhaps at some point we will improve reload_when_needed handling
883 so this problem goes away. But that's very hairy. */
884
885 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
886 if (reg_renumber[i] < 0 && reg_equiv_memory_loc[i])
887 {
1914f5da 888 rtx x = eliminate_regs (reg_equiv_memory_loc[i], 0, NULL_RTX);
32131a9c
RK
889
890 if (strict_memory_address_p (GET_MODE (regno_reg_rtx[i]),
891 XEXP (x, 0)))
892 reg_equiv_mem[i] = x, reg_equiv_address[i] = 0;
893 else if (CONSTANT_P (XEXP (x, 0))
6491dbbb
RK
894 || (GET_CODE (XEXP (x, 0)) == REG
895 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
32131a9c
RK
896 || (GET_CODE (XEXP (x, 0)) == PLUS
897 && GET_CODE (XEXP (XEXP (x, 0), 0)) == REG
898 && (REGNO (XEXP (XEXP (x, 0), 0))
899 < FIRST_PSEUDO_REGISTER)
900 && CONSTANT_P (XEXP (XEXP (x, 0), 1))))
901 reg_equiv_address[i] = XEXP (x, 0), reg_equiv_mem[i] = 0;
902 else
903 {
904 /* Make a new stack slot. Then indicate that something
a8fdc208 905 changed so we go back and recompute offsets for
32131a9c
RK
906 eliminable registers because the allocation of memory
907 below might change some offset. reg_equiv_{mem,address}
908 will be set up for this pseudo on the next pass around
909 the loop. */
910 reg_equiv_memory_loc[i] = 0;
911 reg_equiv_init[i] = 0;
912 alter_reg (i, -1);
32131a9c
RK
913 }
914 }
a8fdc208 915
437a710d
BS
916 if (caller_save_needed)
917 setup_save_areas ();
918
03acd8f8 919 /* If we allocated another stack slot, redo elimination bookkeeping. */
437a710d 920 if (starting_frame_size != get_frame_size ())
32131a9c
RK
921 continue;
922
437a710d 923 if (caller_save_needed)
a8efe40d 924 {
437a710d
BS
925 save_call_clobbered_regs ();
926 /* That might have allocated new insn_chain structures. */
927 reload_firstobj = (char *) obstack_alloc (&reload_obstack, 0);
a8efe40d
RK
928 }
929
03acd8f8
BS
930 calculate_needs_all_insns (global);
931
f5d8c9f4 932 CLEAR_REG_SET (&spilled_pseudos);
03acd8f8
BS
933 did_spill = 0;
934
935 something_changed = 0;
32131a9c 936
0dadecf6
RK
937 /* If we allocated any new memory locations, make another pass
938 since it might have changed elimination offsets. */
939 if (starting_frame_size != get_frame_size ())
940 something_changed = 1;
941
09dd1133
BS
942 {
943 HARD_REG_SET to_spill;
944 CLEAR_HARD_REG_SET (to_spill);
945 update_eliminables (&to_spill);
946 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
947 if (TEST_HARD_REG_BIT (to_spill, i))
32131a9c 948 {
03acd8f8
BS
949 spill_hard_reg (i, dumpfile, 1);
950 did_spill = 1;
8f5db3c1
JL
951
952 /* Regardless of the state of spills, if we previously had
953 a register that we thought we could eliminate, but no can
954 not eliminate, we must run another pass.
955
956 Consider pseudos which have an entry in reg_equiv_* which
957 reference an eliminable register. We must make another pass
958 to update reg_equiv_* so that we do not substitute in the
959 old value from when we thought the elimination could be
960 performed. */
961 something_changed = 1;
32131a9c 962 }
09dd1133 963 }
9ff3516a 964
e483bf9c
BS
965 select_reload_regs (dumpfile);
966 if (failure)
967 goto failed;
437a710d 968
e483bf9c
BS
969 if (insns_need_reload != 0 || did_spill)
970 something_changed |= finish_spills (global, dumpfile);
7609e720 971
03acd8f8
BS
972 if (! something_changed)
973 break;
974
975 if (caller_save_needed)
7609e720 976 delete_caller_save_insns ();
f5d8c9f4
BS
977
978 obstack_free (&reload_obstack, reload_firstobj);
32131a9c
RK
979 }
980
981 /* If global-alloc was run, notify it of any register eliminations we have
982 done. */
983 if (global)
984 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
985 if (ep->can_eliminate)
986 mark_elimination (ep->from, ep->to);
987
32131a9c
RK
988 /* If a pseudo has no hard reg, delete the insns that made the equivalence.
989 If that insn didn't set the register (i.e., it copied the register to
990 memory), just delete that insn instead of the equivalencing insn plus
991 anything now dead. If we call delete_dead_insn on that insn, we may
135eb61c 992 delete the insn that actually sets the register if the register dies
32131a9c
RK
993 there and that is incorrect. */
994
995 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
135eb61c
R
996 {
997 if (reg_renumber[i] < 0 && reg_equiv_init[i] != 0)
998 {
999 rtx list;
1000 for (list = reg_equiv_init[i]; list; list = XEXP (list, 1))
1001 {
1002 rtx equiv_insn = XEXP (list, 0);
1003 if (GET_CODE (equiv_insn) == NOTE)
1004 continue;
1005 if (reg_set_p (regno_reg_rtx[i], PATTERN (equiv_insn)))
1006 delete_dead_insn (equiv_insn);
1007 else
1008 {
1009 PUT_CODE (equiv_insn, NOTE);
1010 NOTE_SOURCE_FILE (equiv_insn) = 0;
1011 NOTE_LINE_NUMBER (equiv_insn) = NOTE_INSN_DELETED;
1012 }
1013 }
1014 }
1015 }
32131a9c
RK
1016
1017 /* Use the reload registers where necessary
1018 by generating move instructions to move the must-be-register
1019 values into or out of the reload registers. */
1020
03acd8f8
BS
1021 if (insns_need_reload != 0 || something_needs_elimination
1022 || something_needs_operands_changed)
c47f5ea5
BS
1023 {
1024 int old_frame_size = get_frame_size ();
1025
1026 reload_as_needed (global);
1027
1028 if (old_frame_size != get_frame_size ())
1029 abort ();
1030
1031 if (num_eliminable)
1032 verify_initial_elim_offsets ();
1033 }
32131a9c 1034
2a1f8b6b 1035 /* If we were able to eliminate the frame pointer, show that it is no
546b63fb 1036 longer live at the start of any basic block. If it ls live by
2a1f8b6b
RK
1037 virtue of being in a pseudo, that pseudo will be marked live
1038 and hence the frame pointer will be known to be live via that
1039 pseudo. */
1040
1041 if (! frame_pointer_needed)
1042 for (i = 0; i < n_basic_blocks; i++)
e881bb1b 1043 CLEAR_REGNO_REG_SET (BASIC_BLOCK (i)->global_live_at_start,
8e08106d 1044 HARD_FRAME_POINTER_REGNUM);
2a1f8b6b 1045
5352b11a
RS
1046 /* Come here (with failure set nonzero) if we can't get enough spill regs
1047 and we decide not to abort about it. */
1048 failed:
1049
f5d8c9f4 1050 CLEAR_REG_SET (&spilled_pseudos);
a3ec87a8
RS
1051 reload_in_progress = 0;
1052
32131a9c
RK
1053 /* Now eliminate all pseudo regs by modifying them into
1054 their equivalent memory references.
1055 The REG-rtx's for the pseudos are modified in place,
1056 so all insns that used to refer to them now refer to memory.
1057
1058 For a reg that has a reg_equiv_address, all those insns
1059 were changed by reloading so that no insns refer to it any longer;
1060 but the DECL_RTL of a variable decl may refer to it,
1061 and if so this causes the debugging info to mention the variable. */
1062
1063 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1064 {
1065 rtx addr = 0;
ab1fd483 1066 int in_struct = 0;
6a651371 1067 int is_scalar = 0;
9ec36da5
JL
1068 int is_readonly = 0;
1069
1070 if (reg_equiv_memory_loc[i])
ab1fd483 1071 {
9ec36da5 1072 in_struct = MEM_IN_STRUCT_P (reg_equiv_memory_loc[i]);
c6df88cb 1073 is_scalar = MEM_SCALAR_P (reg_equiv_memory_loc[i]);
9ec36da5 1074 is_readonly = RTX_UNCHANGING_P (reg_equiv_memory_loc[i]);
ab1fd483 1075 }
9ec36da5
JL
1076
1077 if (reg_equiv_mem[i])
1078 addr = XEXP (reg_equiv_mem[i], 0);
1079
32131a9c
RK
1080 if (reg_equiv_address[i])
1081 addr = reg_equiv_address[i];
9ec36da5 1082
32131a9c
RK
1083 if (addr)
1084 {
1085 if (reg_renumber[i] < 0)
1086 {
1087 rtx reg = regno_reg_rtx[i];
ef178af3 1088 PUT_CODE (reg, MEM);
32131a9c
RK
1089 XEXP (reg, 0) = addr;
1090 REG_USERVAR_P (reg) = 0;
9ec36da5 1091 RTX_UNCHANGING_P (reg) = is_readonly;
ab1fd483 1092 MEM_IN_STRUCT_P (reg) = in_struct;
c6df88cb 1093 MEM_SCALAR_P (reg) = is_scalar;
41472af8
MM
1094 /* We have no alias information about this newly created
1095 MEM. */
1096 MEM_ALIAS_SET (reg) = 0;
32131a9c
RK
1097 }
1098 else if (reg_equiv_mem[i])
1099 XEXP (reg_equiv_mem[i], 0) = addr;
1100 }
1101 }
1102
2ae74651
JL
1103 /* We must set reload_completed now since the cleanup_subreg_operands call
1104 below will re-recognize each insn and reload may have generated insns
1105 which are only valid during and after reload. */
1106 reload_completed = 1;
1107
bd695e1e
RH
1108 /* Make a pass over all the insns and delete all USEs which we inserted
1109 only to tag a REG_EQUAL note on them. Remove all REG_DEAD and REG_UNUSED
1110 notes. Delete all CLOBBER insns that don't refer to the return value
1111 and simplify (subreg (reg)) operands. Also remove all REG_RETVAL and
1112 REG_LIBCALL notes since they are no longer useful or accurate. Strip
1113 and regenerate REG_INC notes that may have been moved around. */
32131a9c
RK
1114
1115 for (insn = first; insn; insn = NEXT_INSN (insn))
1116 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
1117 {
6764d250 1118 rtx *pnote;
32131a9c 1119
0304f787
JL
1120 if ((GET_CODE (PATTERN (insn)) == USE
1121 && find_reg_note (insn, REG_EQUAL, NULL_RTX))
bd695e1e
RH
1122 || (GET_CODE (PATTERN (insn)) == CLOBBER
1123 && (GET_CODE (XEXP (PATTERN (insn), 0)) != REG
1124 || ! REG_FUNCTION_VALUE_P (XEXP (PATTERN (insn), 0)))))
b60a8416
R
1125 {
1126 PUT_CODE (insn, NOTE);
1127 NOTE_SOURCE_FILE (insn) = 0;
1128 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
1129 continue;
1130 }
6764d250
BS
1131
1132 pnote = &REG_NOTES (insn);
1133 while (*pnote != 0)
32131a9c 1134 {
6764d250 1135 if (REG_NOTE_KIND (*pnote) == REG_DEAD
80599fd9 1136 || REG_NOTE_KIND (*pnote) == REG_UNUSED
2dfa9a87 1137 || REG_NOTE_KIND (*pnote) == REG_INC
80599fd9
NC
1138 || REG_NOTE_KIND (*pnote) == REG_RETVAL
1139 || REG_NOTE_KIND (*pnote) == REG_LIBCALL)
6764d250
BS
1140 *pnote = XEXP (*pnote, 1);
1141 else
1142 pnote = &XEXP (*pnote, 1);
32131a9c 1143 }
0304f787 1144
2dfa9a87
MH
1145#ifdef AUTO_INC_DEC
1146 add_auto_inc_notes (insn, PATTERN (insn));
1147#endif
1148
0304f787
JL
1149 /* And simplify (subreg (reg)) if it appears as an operand. */
1150 cleanup_subreg_operands (insn);
b60a8416 1151 }
32131a9c 1152
ab87f8c8
JL
1153 /* If we are doing stack checking, give a warning if this function's
1154 frame size is larger than we expect. */
1155 if (flag_stack_check && ! STACK_CHECK_BUILTIN)
1156 {
1157 HOST_WIDE_INT size = get_frame_size () + STACK_CHECK_FIXED_FRAME_SIZE;
05d10675
BS
1158 static int verbose_warned = 0;
1159
ab87f8c8
JL
1160 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1161 if (regs_ever_live[i] && ! fixed_regs[i] && call_used_regs[i])
1162 size += UNITS_PER_WORD;
1163
1164 if (size > STACK_CHECK_MAX_FRAME_SIZE)
05d10675 1165 {
ab87f8c8
JL
1166 warning ("frame size too large for reliable stack checking");
1167 if (! verbose_warned)
1168 {
1169 warning ("try reducing the number of local variables");
1170 verbose_warned = 1;
1171 }
1172 }
1173 }
1174
32131a9c 1175 /* Indicate that we no longer have known memory locations or constants. */
58d9f9d9
JL
1176 if (reg_equiv_constant)
1177 free (reg_equiv_constant);
32131a9c 1178 reg_equiv_constant = 0;
58d9f9d9
JL
1179 if (reg_equiv_memory_loc)
1180 free (reg_equiv_memory_loc);
32131a9c 1181 reg_equiv_memory_loc = 0;
5352b11a 1182
a68d4b75
BK
1183 if (real_known_ptr)
1184 free (real_known_ptr);
1185 if (real_at_ptr)
1186 free (real_at_ptr);
1187
56a65848
DB
1188 free (reg_equiv_mem);
1189 free (reg_equiv_init);
1190 free (reg_equiv_address);
1191 free (reg_max_ref_width);
03acd8f8
BS
1192 free (reg_old_renumber);
1193 free (pseudo_previous_regs);
1194 free (pseudo_forbidden_regs);
56a65848 1195
8b4f9969
JW
1196 CLEAR_HARD_REG_SET (used_spill_regs);
1197 for (i = 0; i < n_spills; i++)
1198 SET_HARD_REG_BIT (used_spill_regs, spill_regs[i]);
1199
7609e720
BS
1200 /* Free all the insn_chain structures at once. */
1201 obstack_free (&reload_obstack, reload_startobj);
1202 unused_insn_chains = 0;
1203
5352b11a 1204 return failure;
32131a9c 1205}
1e5bd841 1206
18a90182
BS
1207/* Yet another special case. Unfortunately, reg-stack forces people to
1208 write incorrect clobbers in asm statements. These clobbers must not
1209 cause the register to appear in bad_spill_regs, otherwise we'll call
1210 fatal_insn later. We clear the corresponding regnos in the live
1211 register sets to avoid this.
1212 The whole thing is rather sick, I'm afraid. */
efc9bd41 1213
18a90182
BS
1214static void
1215maybe_fix_stack_asms ()
1216{
1217#ifdef STACK_REGS
392dccb7 1218 const char *constraints[MAX_RECOG_OPERANDS];
18a90182
BS
1219 enum machine_mode operand_mode[MAX_RECOG_OPERANDS];
1220 struct insn_chain *chain;
1221
1222 for (chain = reload_insn_chain; chain != 0; chain = chain->next)
1223 {
1224 int i, noperands;
1225 HARD_REG_SET clobbered, allowed;
1226 rtx pat;
1227
1228 if (GET_RTX_CLASS (GET_CODE (chain->insn)) != 'i'
1229 || (noperands = asm_noperands (PATTERN (chain->insn))) < 0)
1230 continue;
1231 pat = PATTERN (chain->insn);
1232 if (GET_CODE (pat) != PARALLEL)
1233 continue;
1234
1235 CLEAR_HARD_REG_SET (clobbered);
1236 CLEAR_HARD_REG_SET (allowed);
1237
1238 /* First, make a mask of all stack regs that are clobbered. */
1239 for (i = 0; i < XVECLEN (pat, 0); i++)
1240 {
1241 rtx t = XVECEXP (pat, 0, i);
1242 if (GET_CODE (t) == CLOBBER && STACK_REG_P (XEXP (t, 0)))
1243 SET_HARD_REG_BIT (clobbered, REGNO (XEXP (t, 0)));
1244 }
1245
1246 /* Get the operand values and constraints out of the insn. */
1ccbefce 1247 decode_asm_operands (pat, recog_data.operand, recog_data.operand_loc,
18a90182
BS
1248 constraints, operand_mode);
1249
1250 /* For every operand, see what registers are allowed. */
1251 for (i = 0; i < noperands; i++)
1252 {
6b9c6f4f 1253 const char *p = constraints[i];
18a90182
BS
1254 /* For every alternative, we compute the class of registers allowed
1255 for reloading in CLS, and merge its contents into the reg set
1256 ALLOWED. */
1257 int cls = (int) NO_REGS;
1258
1259 for (;;)
1260 {
1261 char c = *p++;
1262
1263 if (c == '\0' || c == ',' || c == '#')
1264 {
1265 /* End of one alternative - mark the regs in the current
1266 class, and reset the class. */
1267 IOR_HARD_REG_SET (allowed, reg_class_contents[cls]);
1268 cls = NO_REGS;
1269 if (c == '#')
1270 do {
1271 c = *p++;
1272 } while (c != '\0' && c != ',');
1273 if (c == '\0')
1274 break;
1275 continue;
1276 }
1277
1278 switch (c)
1279 {
1280 case '=': case '+': case '*': case '%': case '?': case '!':
1281 case '0': case '1': case '2': case '3': case '4': case 'm':
1282 case '<': case '>': case 'V': case 'o': case '&': case 'E':
1283 case 'F': case 's': case 'i': case 'n': case 'X': case 'I':
1284 case 'J': case 'K': case 'L': case 'M': case 'N': case 'O':
1285 case 'P':
1286#ifdef EXTRA_CONSTRAINT
1287 case 'Q': case 'R': case 'S': case 'T': case 'U':
1288#endif
1289 break;
1290
1291 case 'p':
1292 cls = (int) reg_class_subunion[cls][(int) BASE_REG_CLASS];
1293 break;
1294
1295 case 'g':
1296 case 'r':
1297 cls = (int) reg_class_subunion[cls][(int) GENERAL_REGS];
1298 break;
1299
1300 default:
1301 cls = (int) reg_class_subunion[cls][(int) REG_CLASS_FROM_LETTER (c)];
05d10675 1302
18a90182
BS
1303 }
1304 }
1305 }
1306 /* Those of the registers which are clobbered, but allowed by the
1307 constraints, must be usable as reload registers. So clear them
1308 out of the life information. */
1309 AND_HARD_REG_SET (allowed, clobbered);
1310 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1311 if (TEST_HARD_REG_BIT (allowed, i))
1312 {
239a0f5b
BS
1313 CLEAR_REGNO_REG_SET (&chain->live_throughout, i);
1314 CLEAR_REGNO_REG_SET (&chain->dead_or_set, i);
18a90182
BS
1315 }
1316 }
1317
1318#endif
1319}
03acd8f8 1320\f
f5d8c9f4
BS
1321/* Copy the global variables n_reloads and rld into the corresponding elts
1322 of CHAIN. */
1323static void
1324copy_reloads (chain)
1325 struct insn_chain *chain;
1326{
1327 chain->n_reloads = n_reloads;
1328 chain->rld
1329 = (struct reload *) obstack_alloc (&reload_obstack,
1330 n_reloads * sizeof (struct reload));
1331 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
1332 reload_insn_firstobj = (char *) obstack_alloc (&reload_obstack, 0);
1333}
1334
03acd8f8
BS
1335/* Walk the chain of insns, and determine for each whether it needs reloads
1336 and/or eliminations. Build the corresponding insns_need_reload list, and
1337 set something_needs_elimination as appropriate. */
1338static void
7609e720 1339calculate_needs_all_insns (global)
1e5bd841
BS
1340 int global;
1341{
7609e720 1342 struct insn_chain **pprev_reload = &insns_need_reload;
67e61fe7 1343 struct insn_chain *chain;
1e5bd841 1344
03acd8f8
BS
1345 something_needs_elimination = 0;
1346
f5d8c9f4 1347 reload_insn_firstobj = (char *) obstack_alloc (&reload_obstack, 0);
67e61fe7 1348 for (chain = reload_insn_chain; chain != 0; chain = chain->next)
1e5bd841 1349 {
67e61fe7 1350 rtx insn = chain->insn;
03acd8f8 1351
f5d8c9f4
BS
1352 /* Clear out the shortcuts. */
1353 chain->n_reloads = 0;
67e61fe7
BS
1354 chain->need_elim = 0;
1355 chain->need_reload = 0;
1356 chain->need_operand_change = 0;
1e5bd841 1357
03acd8f8
BS
1358 /* If this is a label, a JUMP_INSN, or has REG_NOTES (which might
1359 include REG_LABEL), we need to see what effects this has on the
1360 known offsets at labels. */
1e5bd841
BS
1361
1362 if (GET_CODE (insn) == CODE_LABEL || GET_CODE (insn) == JUMP_INSN
1363 || (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
1364 && REG_NOTES (insn) != 0))
1365 set_label_offsets (insn, insn, 0);
1366
1367 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
1368 {
1369 rtx old_body = PATTERN (insn);
1370 int old_code = INSN_CODE (insn);
1371 rtx old_notes = REG_NOTES (insn);
1372 int did_elimination = 0;
cb2afeb3 1373 int operands_changed = 0;
2b49ee39
R
1374 rtx set = single_set (insn);
1375
1376 /* Skip insns that only set an equivalence. */
1377 if (set && GET_CODE (SET_DEST (set)) == REG
1378 && reg_renumber[REGNO (SET_DEST (set))] < 0
1379 && reg_equiv_constant[REGNO (SET_DEST (set))])
67e61fe7 1380 continue;
1e5bd841 1381
1e5bd841 1382 /* If needed, eliminate any eliminable registers. */
2b49ee39 1383 if (num_eliminable || num_eliminable_invariants)
1e5bd841
BS
1384 did_elimination = eliminate_regs_in_insn (insn, 0);
1385
1386 /* Analyze the instruction. */
cb2afeb3
R
1387 operands_changed = find_reloads (insn, 0, spill_indirect_levels,
1388 global, spill_reg_order);
1389
1390 /* If a no-op set needs more than one reload, this is likely
1391 to be something that needs input address reloads. We
1392 can't get rid of this cleanly later, and it is of no use
1393 anyway, so discard it now.
1394 We only do this when expensive_optimizations is enabled,
1395 since this complements reload inheritance / output
1396 reload deletion, and it can make debugging harder. */
1397 if (flag_expensive_optimizations && n_reloads > 1)
1398 {
1399 rtx set = single_set (insn);
1400 if (set
1401 && SET_SRC (set) == SET_DEST (set)
1402 && GET_CODE (SET_SRC (set)) == REG
1403 && REGNO (SET_SRC (set)) >= FIRST_PSEUDO_REGISTER)
1404 {
1405 PUT_CODE (insn, NOTE);
1406 NOTE_SOURCE_FILE (insn) = 0;
1407 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
1408 continue;
1409 }
1410 }
1411 if (num_eliminable)
1412 update_eliminable_offsets ();
1e5bd841
BS
1413
1414 /* Remember for later shortcuts which insns had any reloads or
7609e720
BS
1415 register eliminations. */
1416 chain->need_elim = did_elimination;
03acd8f8
BS
1417 chain->need_reload = n_reloads > 0;
1418 chain->need_operand_change = operands_changed;
1e5bd841
BS
1419
1420 /* Discard any register replacements done. */
1421 if (did_elimination)
1422 {
f5d8c9f4 1423 obstack_free (&reload_obstack, reload_insn_firstobj);
1e5bd841
BS
1424 PATTERN (insn) = old_body;
1425 INSN_CODE (insn) = old_code;
1426 REG_NOTES (insn) = old_notes;
1427 something_needs_elimination = 1;
1428 }
1429
cb2afeb3
R
1430 something_needs_operands_changed |= operands_changed;
1431
437a710d 1432 if (n_reloads != 0)
7609e720 1433 {
f5d8c9f4 1434 copy_reloads (chain);
7609e720
BS
1435 *pprev_reload = chain;
1436 pprev_reload = &chain->next_need_reload;
7609e720 1437 }
1e5bd841 1438 }
1e5bd841 1439 }
7609e720 1440 *pprev_reload = 0;
1e5bd841 1441}
f5d8c9f4
BS
1442\f
1443/* Comparison function for qsort to decide which of two reloads
1444 should be handled first. *P1 and *P2 are the reload numbers. */
1e5bd841 1445
f5d8c9f4
BS
1446static int
1447reload_reg_class_lower (r1p, r2p)
1448 const PTR r1p;
1449 const PTR r2p;
1e5bd841 1450{
272df862 1451 register int r1 = *(const short *)r1p, r2 = *(const short *)r2p;
f5d8c9f4 1452 register int t;
1e5bd841 1453
f5d8c9f4
BS
1454 /* Consider required reloads before optional ones. */
1455 t = rld[r1].optional - rld[r2].optional;
1456 if (t != 0)
1457 return t;
1e5bd841 1458
f5d8c9f4
BS
1459 /* Count all solitary classes before non-solitary ones. */
1460 t = ((reg_class_size[(int) rld[r2].class] == 1)
1461 - (reg_class_size[(int) rld[r1].class] == 1));
1462 if (t != 0)
1463 return t;
1e5bd841 1464
f5d8c9f4
BS
1465 /* Aside from solitaires, consider all multi-reg groups first. */
1466 t = rld[r2].nregs - rld[r1].nregs;
1467 if (t != 0)
1468 return t;
1e5bd841 1469
f5d8c9f4
BS
1470 /* Consider reloads in order of increasing reg-class number. */
1471 t = (int) rld[r1].class - (int) rld[r2].class;
1472 if (t != 0)
1473 return t;
1e5bd841 1474
f5d8c9f4
BS
1475 /* If reloads are equally urgent, sort by reload number,
1476 so that the results of qsort leave nothing to chance. */
1477 return r1 - r2;
1478}
1479\f
1480/* The cost of spilling each hard reg. */
1481static int spill_cost[FIRST_PSEUDO_REGISTER];
1e5bd841 1482
f5d8c9f4
BS
1483/* When spilling multiple hard registers, we use SPILL_COST for the first
1484 spilled hard reg and SPILL_ADD_COST for subsequent regs. SPILL_ADD_COST
1485 only the first hard reg for a multi-reg pseudo. */
1486static int spill_add_cost[FIRST_PSEUDO_REGISTER];
1e5bd841 1487
f5d8c9f4 1488/* Update the spill cost arrays, considering that pseudo REG is live. */
770ae6cc 1489
f5d8c9f4
BS
1490static void
1491count_pseudo (reg)
1492 int reg;
1493{
1494 int n_refs = REG_N_REFS (reg);
1495 int r = reg_renumber[reg];
1496 int nregs;
1e5bd841 1497
f5d8c9f4
BS
1498 if (REGNO_REG_SET_P (&pseudos_counted, reg)
1499 || REGNO_REG_SET_P (&spilled_pseudos, reg))
1500 return;
1e5bd841 1501
f5d8c9f4 1502 SET_REGNO_REG_SET (&pseudos_counted, reg);
1e5bd841 1503
f5d8c9f4
BS
1504 if (r < 0)
1505 abort ();
1506
1507 spill_add_cost[r] += n_refs;
1e5bd841 1508
f5d8c9f4
BS
1509 nregs = HARD_REGNO_NREGS (r, PSEUDO_REGNO_MODE (reg));
1510 while (nregs-- > 0)
1511 spill_cost[r + nregs] += n_refs;
1512}
1e5bd841 1513
f5d8c9f4
BS
1514/* Calculate the SPILL_COST and SPILL_ADD_COST arrays and determine the
1515 contents of BAD_SPILL_REGS for the insn described by CHAIN. */
efc9bd41 1516
f5d8c9f4
BS
1517static void
1518order_regs_for_reload (chain)
1519 struct insn_chain *chain;
1520{
fbd40359 1521 int i;
efc9bd41
RK
1522 HARD_REG_SET used_by_pseudos;
1523 HARD_REG_SET used_by_pseudos2;
1e5bd841 1524
efc9bd41 1525 COPY_HARD_REG_SET (bad_spill_regs, fixed_reg_set);
1e5bd841 1526
f5d8c9f4
BS
1527 memset (spill_cost, 0, sizeof spill_cost);
1528 memset (spill_add_cost, 0, sizeof spill_add_cost);
1e5bd841 1529
f5d8c9f4 1530 /* Count number of uses of each hard reg by pseudo regs allocated to it
efc9bd41
RK
1531 and then order them by decreasing use. First exclude hard registers
1532 that are live in or across this insn. */
1533
1534 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
1535 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
1536 IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos);
1537 IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos2);
1e5bd841 1538
f5d8c9f4
BS
1539 /* Now find out which pseudos are allocated to it, and update
1540 hard_reg_n_uses. */
1541 CLEAR_REG_SET (&pseudos_counted);
1e5bd841 1542
f5d8c9f4 1543 EXECUTE_IF_SET_IN_REG_SET
fbd40359 1544 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i,
f5d8c9f4 1545 {
fbd40359 1546 count_pseudo (i);
f5d8c9f4
BS
1547 });
1548 EXECUTE_IF_SET_IN_REG_SET
fbd40359 1549 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i,
f5d8c9f4 1550 {
fbd40359 1551 count_pseudo (i);
f5d8c9f4
BS
1552 });
1553 CLEAR_REG_SET (&pseudos_counted);
1e5bd841 1554}
03acd8f8 1555\f
f5d8c9f4
BS
1556/* Vector of reload-numbers showing the order in which the reloads should
1557 be processed. */
1558static short reload_order[MAX_RELOADS];
1e5bd841 1559
f5d8c9f4
BS
1560/* This is used to keep track of the spill regs used in one insn. */
1561static HARD_REG_SET used_spill_regs_local;
03acd8f8 1562
f5d8c9f4
BS
1563/* We decided to spill hard register SPILLED, which has a size of
1564 SPILLED_NREGS. Determine how pseudo REG, which is live during the insn,
1565 is affected. We will add it to SPILLED_PSEUDOS if necessary, and we will
1566 update SPILL_COST/SPILL_ADD_COST. */
770ae6cc 1567
03acd8f8 1568static void
f5d8c9f4
BS
1569count_spilled_pseudo (spilled, spilled_nregs, reg)
1570 int spilled, spilled_nregs, reg;
1e5bd841 1571{
f5d8c9f4
BS
1572 int r = reg_renumber[reg];
1573 int nregs = HARD_REGNO_NREGS (r, PSEUDO_REGNO_MODE (reg));
1e5bd841 1574
f5d8c9f4
BS
1575 if (REGNO_REG_SET_P (&spilled_pseudos, reg)
1576 || spilled + spilled_nregs <= r || r + nregs <= spilled)
1577 return;
1e5bd841 1578
f5d8c9f4 1579 SET_REGNO_REG_SET (&spilled_pseudos, reg);
1e5bd841 1580
f5d8c9f4
BS
1581 spill_add_cost[r] -= REG_N_REFS (reg);
1582 while (nregs-- > 0)
1583 spill_cost[r + nregs] -= REG_N_REFS (reg);
1e5bd841
BS
1584}
1585
f5d8c9f4 1586/* Find reload register to use for reload number ORDER. */
03acd8f8 1587
f5d8c9f4
BS
1588static int
1589find_reg (chain, order, dumpfile)
03acd8f8 1590 struct insn_chain *chain;
f5d8c9f4 1591 int order;
1e5bd841
BS
1592 FILE *dumpfile;
1593{
f5d8c9f4
BS
1594 int rnum = reload_order[order];
1595 struct reload *rl = rld + rnum;
1596 int best_cost = INT_MAX;
1597 int best_reg = -1;
770ae6cc
RK
1598 unsigned int i, j;
1599 int k;
f5d8c9f4
BS
1600 HARD_REG_SET not_usable;
1601 HARD_REG_SET used_by_other_reload;
1e5bd841 1602
f5d8c9f4
BS
1603 COPY_HARD_REG_SET (not_usable, bad_spill_regs);
1604 IOR_HARD_REG_SET (not_usable, bad_spill_regs_global);
1605 IOR_COMPL_HARD_REG_SET (not_usable, reg_class_contents[rl->class]);
1606
1607 CLEAR_HARD_REG_SET (used_by_other_reload);
770ae6cc 1608 for (k = 0; k < order; k++)
1e5bd841 1609 {
770ae6cc
RK
1610 int other = reload_order[k];
1611
f5d8c9f4
BS
1612 if (rld[other].regno >= 0 && reloads_conflict (other, rnum))
1613 for (j = 0; j < rld[other].nregs; j++)
1614 SET_HARD_REG_BIT (used_by_other_reload, rld[other].regno + j);
1615 }
1e5bd841 1616
f5d8c9f4
BS
1617 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1618 {
770ae6cc
RK
1619 unsigned int regno = i;
1620
f5d8c9f4
BS
1621 if (! TEST_HARD_REG_BIT (not_usable, regno)
1622 && ! TEST_HARD_REG_BIT (used_by_other_reload, regno)
1623 && HARD_REGNO_MODE_OK (regno, rl->mode))
1e5bd841 1624 {
f5d8c9f4
BS
1625 int this_cost = spill_cost[regno];
1626 int ok = 1;
770ae6cc 1627 unsigned int this_nregs = HARD_REGNO_NREGS (regno, rl->mode);
1e5bd841 1628
f5d8c9f4
BS
1629 for (j = 1; j < this_nregs; j++)
1630 {
1631 this_cost += spill_add_cost[regno + j];
1632 if ((TEST_HARD_REG_BIT (not_usable, regno + j))
1633 || TEST_HARD_REG_BIT (used_by_other_reload, regno + j))
1634 ok = 0;
1635 }
1636 if (! ok)
1637 continue;
1638 if (rl->in && GET_CODE (rl->in) == REG && REGNO (rl->in) == regno)
1639 this_cost--;
1640 if (rl->out && GET_CODE (rl->out) == REG && REGNO (rl->out) == regno)
1641 this_cost--;
1642 if (this_cost < best_cost
1643 /* Among registers with equal cost, prefer caller-saved ones, or
1644 use REG_ALLOC_ORDER if it is defined. */
1645 || (this_cost == best_cost
1646#ifdef REG_ALLOC_ORDER
1647 && (inv_reg_alloc_order[regno]
1648 < inv_reg_alloc_order[best_reg])
1649#else
1650 && call_used_regs[regno]
1651 && ! call_used_regs[best_reg]
1652#endif
1653 ))
1654 {
1655 best_reg = regno;
1656 best_cost = this_cost;
1e5bd841
BS
1657 }
1658 }
1659 }
f5d8c9f4
BS
1660 if (best_reg == -1)
1661 return 0;
770ae6cc 1662
f5d8c9f4
BS
1663 if (dumpfile)
1664 fprintf (dumpfile, "Using reg %d for reload %d\n", best_reg, rnum);
770ae6cc 1665
f5d8c9f4
BS
1666 rl->nregs = HARD_REGNO_NREGS (best_reg, rl->mode);
1667 rl->regno = best_reg;
1e5bd841 1668
f5d8c9f4 1669 EXECUTE_IF_SET_IN_REG_SET
239a0f5b 1670 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, j,
f5d8c9f4
BS
1671 {
1672 count_spilled_pseudo (best_reg, rl->nregs, j);
1673 });
770ae6cc 1674
f5d8c9f4 1675 EXECUTE_IF_SET_IN_REG_SET
239a0f5b 1676 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, j,
f5d8c9f4
BS
1677 {
1678 count_spilled_pseudo (best_reg, rl->nregs, j);
1679 });
03acd8f8 1680
f5d8c9f4
BS
1681 for (i = 0; i < rl->nregs; i++)
1682 {
1683 if (spill_cost[best_reg + i] != 0
1684 || spill_add_cost[best_reg + i] != 0)
1685 abort ();
1686 SET_HARD_REG_BIT (used_spill_regs_local, best_reg + i);
1687 }
1688 return 1;
03acd8f8
BS
1689}
1690
1691/* Find more reload regs to satisfy the remaining need of an insn, which
1692 is given by CHAIN.
1e5bd841
BS
1693 Do it by ascending class number, since otherwise a reg
1694 might be spilled for a big class and might fail to count
f5d8c9f4 1695 for a smaller class even though it belongs to that class. */
1e5bd841 1696
03acd8f8
BS
1697static void
1698find_reload_regs (chain, dumpfile)
1699 struct insn_chain *chain;
1e5bd841
BS
1700 FILE *dumpfile;
1701{
f5d8c9f4 1702 int i;
1e5bd841 1703
f5d8c9f4
BS
1704 /* In order to be certain of getting the registers we need,
1705 we must sort the reloads into order of increasing register class.
1706 Then our grabbing of reload registers will parallel the process
1707 that provided the reload registers. */
1708 for (i = 0; i < chain->n_reloads; i++)
1e5bd841 1709 {
f5d8c9f4
BS
1710 /* Show whether this reload already has a hard reg. */
1711 if (chain->rld[i].reg_rtx)
1e5bd841 1712 {
f5d8c9f4
BS
1713 int regno = REGNO (chain->rld[i].reg_rtx);
1714 chain->rld[i].regno = regno;
770ae6cc
RK
1715 chain->rld[i].nregs
1716 = HARD_REGNO_NREGS (regno, GET_MODE (chain->rld[i].reg_rtx));
1e5bd841 1717 }
f5d8c9f4
BS
1718 else
1719 chain->rld[i].regno = -1;
1720 reload_order[i] = i;
1721 }
1e5bd841 1722
f5d8c9f4
BS
1723 n_reloads = chain->n_reloads;
1724 memcpy (rld, chain->rld, n_reloads * sizeof (struct reload));
1e5bd841 1725
f5d8c9f4 1726 CLEAR_HARD_REG_SET (used_spill_regs_local);
03acd8f8 1727
f5d8c9f4
BS
1728 if (dumpfile)
1729 fprintf (dumpfile, "Spilling for insn %d.\n", INSN_UID (chain->insn));
1e5bd841 1730
f5d8c9f4 1731 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
1e5bd841 1732
f5d8c9f4 1733 /* Compute the order of preference for hard registers to spill. */
1e5bd841 1734
f5d8c9f4 1735 order_regs_for_reload (chain);
1e5bd841 1736
f5d8c9f4
BS
1737 for (i = 0; i < n_reloads; i++)
1738 {
1739 int r = reload_order[i];
1e5bd841 1740
f5d8c9f4
BS
1741 /* Ignore reloads that got marked inoperative. */
1742 if ((rld[r].out != 0 || rld[r].in != 0 || rld[r].secondary_p)
1743 && ! rld[r].optional
1744 && rld[r].regno == -1)
1745 if (! find_reg (chain, i, dumpfile))
1746 {
ecf3151a 1747 spill_failure (chain->insn, rld[r].class);
f5d8c9f4 1748 failure = 1;
03acd8f8 1749 return;
f5d8c9f4 1750 }
1e5bd841 1751 }
05d10675 1752
f5d8c9f4
BS
1753 COPY_HARD_REG_SET (chain->used_spill_regs, used_spill_regs_local);
1754 IOR_HARD_REG_SET (used_spill_regs, used_spill_regs_local);
03acd8f8 1755
f5d8c9f4 1756 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
1e5bd841
BS
1757}
1758
f5d8c9f4
BS
1759static void
1760select_reload_regs (dumpfile)
09dd1133
BS
1761 FILE *dumpfile;
1762{
f5d8c9f4 1763 struct insn_chain *chain;
09dd1133 1764
f5d8c9f4
BS
1765 /* Try to satisfy the needs for each insn. */
1766 for (chain = insns_need_reload; chain != 0;
1767 chain = chain->next_need_reload)
1768 find_reload_regs (chain, dumpfile);
09dd1133 1769}
32131a9c 1770\f
437a710d
BS
1771/* Delete all insns that were inserted by emit_caller_save_insns during
1772 this iteration. */
1773static void
7609e720 1774delete_caller_save_insns ()
437a710d 1775{
7609e720 1776 struct insn_chain *c = reload_insn_chain;
437a710d 1777
7609e720 1778 while (c != 0)
437a710d 1779 {
7609e720 1780 while (c != 0 && c->is_caller_save_insn)
437a710d 1781 {
7609e720
BS
1782 struct insn_chain *next = c->next;
1783 rtx insn = c->insn;
1784
3b413743
RH
1785 if (insn == BLOCK_HEAD (c->block))
1786 BLOCK_HEAD (c->block) = NEXT_INSN (insn);
1787 if (insn == BLOCK_END (c->block))
1788 BLOCK_END (c->block) = PREV_INSN (insn);
7609e720
BS
1789 if (c == reload_insn_chain)
1790 reload_insn_chain = next;
1791
1792 if (NEXT_INSN (insn) != 0)
1793 PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn);
1794 if (PREV_INSN (insn) != 0)
1795 NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn);
1796
1797 if (next)
1798 next->prev = c->prev;
1799 if (c->prev)
1800 c->prev->next = next;
1801 c->next = unused_insn_chains;
1802 unused_insn_chains = c;
1803 c = next;
437a710d 1804 }
7609e720
BS
1805 if (c != 0)
1806 c = c->next;
437a710d
BS
1807 }
1808}
1809\f
5352b11a
RS
1810/* Handle the failure to find a register to spill.
1811 INSN should be one of the insns which needed this particular spill reg. */
1812
1813static void
ecf3151a 1814spill_failure (insn, class)
5352b11a 1815 rtx insn;
ecf3151a 1816 enum reg_class class;
5352b11a 1817{
ecf3151a 1818 static const char *const reg_class_names[] = REG_CLASS_NAMES;
5352b11a 1819 if (asm_noperands (PATTERN (insn)) >= 0)
ecf3151a
BS
1820 error_for_asm (insn, "Can't find a register in class `%s' while reloading `asm'.",
1821 reg_class_names[class]);
5352b11a 1822 else
ecf3151a
BS
1823 {
1824 error ("Unable to find a register to spill in class `%s'.",
1825 reg_class_names[class]);
1826 fatal_insn ("This is the insn:", insn);
1827 }
5352b11a 1828}
32131a9c
RK
1829\f
1830/* Delete an unneeded INSN and any previous insns who sole purpose is loading
1831 data that is dead in INSN. */
1832
1833static void
1834delete_dead_insn (insn)
1835 rtx insn;
1836{
1837 rtx prev = prev_real_insn (insn);
1838 rtx prev_dest;
1839
1840 /* If the previous insn sets a register that dies in our insn, delete it
1841 too. */
1842 if (prev && GET_CODE (PATTERN (prev)) == SET
1843 && (prev_dest = SET_DEST (PATTERN (prev)), GET_CODE (prev_dest) == REG)
1844 && reg_mentioned_p (prev_dest, PATTERN (insn))
b294ca38
R
1845 && find_regno_note (insn, REG_DEAD, REGNO (prev_dest))
1846 && ! side_effects_p (SET_SRC (PATTERN (prev))))
32131a9c
RK
1847 delete_dead_insn (prev);
1848
1849 PUT_CODE (insn, NOTE);
1850 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
1851 NOTE_SOURCE_FILE (insn) = 0;
1852}
1853
1854/* Modify the home of pseudo-reg I.
1855 The new home is present in reg_renumber[I].
1856
1857 FROM_REG may be the hard reg that the pseudo-reg is being spilled from;
1858 or it may be -1, meaning there is none or it is not relevant.
1859 This is used so that all pseudos spilled from a given hard reg
1860 can share one stack slot. */
1861
1862static void
1863alter_reg (i, from_reg)
1864 register int i;
1865 int from_reg;
1866{
1867 /* When outputting an inline function, this can happen
1868 for a reg that isn't actually used. */
1869 if (regno_reg_rtx[i] == 0)
1870 return;
1871
1872 /* If the reg got changed to a MEM at rtl-generation time,
1873 ignore it. */
1874 if (GET_CODE (regno_reg_rtx[i]) != REG)
1875 return;
1876
1877 /* Modify the reg-rtx to contain the new hard reg
1878 number or else to contain its pseudo reg number. */
1879 REGNO (regno_reg_rtx[i])
1880 = reg_renumber[i] >= 0 ? reg_renumber[i] : i;
1881
1882 /* If we have a pseudo that is needed but has no hard reg or equivalent,
1883 allocate a stack slot for it. */
1884
1885 if (reg_renumber[i] < 0
b1f21e0a 1886 && REG_N_REFS (i) > 0
32131a9c
RK
1887 && reg_equiv_constant[i] == 0
1888 && reg_equiv_memory_loc[i] == 0)
1889 {
1890 register rtx x;
770ae6cc
RK
1891 unsigned int inherent_size = PSEUDO_REGNO_BYTES (i);
1892 unsigned int total_size = MAX (inherent_size, reg_max_ref_width[i]);
32131a9c
RK
1893 int adjust = 0;
1894
1895 /* Each pseudo reg has an inherent size which comes from its own mode,
1896 and a total size which provides room for paradoxical subregs
1897 which refer to the pseudo reg in wider modes.
1898
1899 We can use a slot already allocated if it provides both
1900 enough inherent space and enough total space.
1901 Otherwise, we allocate a new slot, making sure that it has no less
1902 inherent space, and no less total space, then the previous slot. */
1903 if (from_reg == -1)
1904 {
1905 /* No known place to spill from => no slot to reuse. */
cabcf079
ILT
1906 x = assign_stack_local (GET_MODE (regno_reg_rtx[i]), total_size,
1907 inherent_size == total_size ? 0 : -1);
f76b9db2 1908 if (BYTES_BIG_ENDIAN)
02db8dd0
RK
1909 /* Cancel the big-endian correction done in assign_stack_local.
1910 Get the address of the beginning of the slot.
1911 This is so we can do a big-endian correction unconditionally
1912 below. */
1913 adjust = inherent_size - total_size;
1914
1915 RTX_UNCHANGING_P (x) = RTX_UNCHANGING_P (regno_reg_rtx[i]);
32131a9c
RK
1916 }
1917 /* Reuse a stack slot if possible. */
1918 else if (spill_stack_slot[from_reg] != 0
1919 && spill_stack_slot_width[from_reg] >= total_size
1920 && (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
1921 >= inherent_size))
1922 x = spill_stack_slot[from_reg];
1923 /* Allocate a bigger slot. */
1924 else
1925 {
1926 /* Compute maximum size needed, both for inherent size
1927 and for total size. */
1928 enum machine_mode mode = GET_MODE (regno_reg_rtx[i]);
4f2d3674 1929 rtx stack_slot;
32131a9c
RK
1930 if (spill_stack_slot[from_reg])
1931 {
1932 if (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
1933 > inherent_size)
1934 mode = GET_MODE (spill_stack_slot[from_reg]);
1935 if (spill_stack_slot_width[from_reg] > total_size)
1936 total_size = spill_stack_slot_width[from_reg];
1937 }
1938 /* Make a slot with that size. */
cabcf079
ILT
1939 x = assign_stack_local (mode, total_size,
1940 inherent_size == total_size ? 0 : -1);
4f2d3674 1941 stack_slot = x;
f76b9db2
ILT
1942 if (BYTES_BIG_ENDIAN)
1943 {
1944 /* Cancel the big-endian correction done in assign_stack_local.
1945 Get the address of the beginning of the slot.
1946 This is so we can do a big-endian correction unconditionally
1947 below. */
1948 adjust = GET_MODE_SIZE (mode) - total_size;
4f2d3674 1949 if (adjust)
38a448ca
RH
1950 stack_slot = gen_rtx_MEM (mode_for_size (total_size
1951 * BITS_PER_UNIT,
1952 MODE_INT, 1),
05d10675 1953 plus_constant (XEXP (x, 0), adjust));
f76b9db2 1954 }
4f2d3674 1955 spill_stack_slot[from_reg] = stack_slot;
32131a9c
RK
1956 spill_stack_slot_width[from_reg] = total_size;
1957 }
1958
32131a9c
RK
1959 /* On a big endian machine, the "address" of the slot
1960 is the address of the low part that fits its inherent mode. */
f76b9db2 1961 if (BYTES_BIG_ENDIAN && inherent_size < total_size)
32131a9c 1962 adjust += (total_size - inherent_size);
32131a9c
RK
1963
1964 /* If we have any adjustment to make, or if the stack slot is the
1965 wrong mode, make a new stack slot. */
1966 if (adjust != 0 || GET_MODE (x) != GET_MODE (regno_reg_rtx[i]))
1967 {
38a448ca 1968 x = gen_rtx_MEM (GET_MODE (regno_reg_rtx[i]),
05d10675 1969 plus_constant (XEXP (x, 0), adjust));
9ec36da5
JL
1970
1971 /* If this was shared among registers, must ensure we never
1972 set it readonly since that can cause scheduling
1973 problems. Note we would only have in this adjustment
1974 case in any event, since the code above doesn't set it. */
1975
1976 if (from_reg == -1)
1977 RTX_UNCHANGING_P (x) = RTX_UNCHANGING_P (regno_reg_rtx[i]);
32131a9c
RK
1978 }
1979
1980 /* Save the stack slot for later. */
1981 reg_equiv_memory_loc[i] = x;
1982 }
1983}
1984
1985/* Mark the slots in regs_ever_live for the hard regs
1986 used by pseudo-reg number REGNO. */
1987
1988void
1989mark_home_live (regno)
1990 int regno;
1991{
1992 register int i, lim;
770ae6cc 1993
32131a9c
RK
1994 i = reg_renumber[regno];
1995 if (i < 0)
1996 return;
1997 lim = i + HARD_REGNO_NREGS (i, PSEUDO_REGNO_MODE (regno));
1998 while (i < lim)
1999 regs_ever_live[i++] = 1;
2000}
2001\f
2002/* This function handles the tracking of elimination offsets around branches.
2003
2004 X is a piece of RTL being scanned.
2005
2006 INSN is the insn that it came from, if any.
2007
2008 INITIAL_P is non-zero if we are to set the offset to be the initial
2009 offset and zero if we are setting the offset of the label to be the
2010 current offset. */
2011
2012static void
2013set_label_offsets (x, insn, initial_p)
2014 rtx x;
2015 rtx insn;
2016 int initial_p;
2017{
2018 enum rtx_code code = GET_CODE (x);
2019 rtx tem;
e51712db 2020 unsigned int i;
32131a9c
RK
2021 struct elim_table *p;
2022
2023 switch (code)
2024 {
2025 case LABEL_REF:
8be386d9
RS
2026 if (LABEL_REF_NONLOCAL_P (x))
2027 return;
2028
32131a9c
RK
2029 x = XEXP (x, 0);
2030
0f41302f 2031 /* ... fall through ... */
32131a9c
RK
2032
2033 case CODE_LABEL:
2034 /* If we know nothing about this label, set the desired offsets. Note
2035 that this sets the offset at a label to be the offset before a label
2036 if we don't know anything about the label. This is not correct for
2037 the label after a BARRIER, but is the best guess we can make. If
2038 we guessed wrong, we will suppress an elimination that might have
2039 been possible had we been able to guess correctly. */
2040
2041 if (! offsets_known_at[CODE_LABEL_NUMBER (x)])
2042 {
2043 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2044 offsets_at[CODE_LABEL_NUMBER (x)][i]
2045 = (initial_p ? reg_eliminate[i].initial_offset
2046 : reg_eliminate[i].offset);
2047 offsets_known_at[CODE_LABEL_NUMBER (x)] = 1;
2048 }
2049
2050 /* Otherwise, if this is the definition of a label and it is
d45cf215 2051 preceded by a BARRIER, set our offsets to the known offset of
32131a9c
RK
2052 that label. */
2053
2054 else if (x == insn
2055 && (tem = prev_nonnote_insn (insn)) != 0
2056 && GET_CODE (tem) == BARRIER)
1f3b1e1a 2057 set_offsets_for_label (insn);
32131a9c
RK
2058 else
2059 /* If neither of the above cases is true, compare each offset
2060 with those previously recorded and suppress any eliminations
2061 where the offsets disagree. */
a8fdc208 2062
32131a9c
RK
2063 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2064 if (offsets_at[CODE_LABEL_NUMBER (x)][i]
2065 != (initial_p ? reg_eliminate[i].initial_offset
2066 : reg_eliminate[i].offset))
2067 reg_eliminate[i].can_eliminate = 0;
2068
2069 return;
2070
2071 case JUMP_INSN:
2072 set_label_offsets (PATTERN (insn), insn, initial_p);
2073
0f41302f 2074 /* ... fall through ... */
32131a9c
RK
2075
2076 case INSN:
2077 case CALL_INSN:
2078 /* Any labels mentioned in REG_LABEL notes can be branched to indirectly
2079 and hence must have all eliminations at their initial offsets. */
2080 for (tem = REG_NOTES (x); tem; tem = XEXP (tem, 1))
2081 if (REG_NOTE_KIND (tem) == REG_LABEL)
2082 set_label_offsets (XEXP (tem, 0), insn, 1);
2083 return;
2084
2085 case ADDR_VEC:
2086 case ADDR_DIFF_VEC:
2087 /* Each of the labels in the address vector must be at their initial
38e01259 2088 offsets. We want the first field for ADDR_VEC and the second
32131a9c
RK
2089 field for ADDR_DIFF_VEC. */
2090
e51712db 2091 for (i = 0; i < (unsigned) XVECLEN (x, code == ADDR_DIFF_VEC); i++)
32131a9c
RK
2092 set_label_offsets (XVECEXP (x, code == ADDR_DIFF_VEC, i),
2093 insn, initial_p);
2094 return;
2095
2096 case SET:
2097 /* We only care about setting PC. If the source is not RETURN,
2098 IF_THEN_ELSE, or a label, disable any eliminations not at
2099 their initial offsets. Similarly if any arm of the IF_THEN_ELSE
2100 isn't one of those possibilities. For branches to a label,
2101 call ourselves recursively.
2102
2103 Note that this can disable elimination unnecessarily when we have
2104 a non-local goto since it will look like a non-constant jump to
2105 someplace in the current function. This isn't a significant
2106 problem since such jumps will normally be when all elimination
2107 pairs are back to their initial offsets. */
2108
2109 if (SET_DEST (x) != pc_rtx)
2110 return;
2111
2112 switch (GET_CODE (SET_SRC (x)))
2113 {
2114 case PC:
2115 case RETURN:
2116 return;
2117
2118 case LABEL_REF:
2119 set_label_offsets (XEXP (SET_SRC (x), 0), insn, initial_p);
2120 return;
2121
2122 case IF_THEN_ELSE:
2123 tem = XEXP (SET_SRC (x), 1);
2124 if (GET_CODE (tem) == LABEL_REF)
2125 set_label_offsets (XEXP (tem, 0), insn, initial_p);
2126 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2127 break;
2128
2129 tem = XEXP (SET_SRC (x), 2);
2130 if (GET_CODE (tem) == LABEL_REF)
2131 set_label_offsets (XEXP (tem, 0), insn, initial_p);
2132 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2133 break;
2134 return;
e9a25f70
JL
2135
2136 default:
2137 break;
32131a9c
RK
2138 }
2139
2140 /* If we reach here, all eliminations must be at their initial
2141 offset because we are doing a jump to a variable address. */
2142 for (p = reg_eliminate; p < &reg_eliminate[NUM_ELIMINABLE_REGS]; p++)
2143 if (p->offset != p->initial_offset)
2144 p->can_eliminate = 0;
e9a25f70 2145 break;
05d10675 2146
e9a25f70
JL
2147 default:
2148 break;
32131a9c
RK
2149 }
2150}
2151\f
a8fdc208 2152/* Scan X and replace any eliminable registers (such as fp) with a
32131a9c
RK
2153 replacement (such as sp), plus an offset.
2154
2155 MEM_MODE is the mode of an enclosing MEM. We need this to know how
2156 much to adjust a register for, e.g., PRE_DEC. Also, if we are inside a
2157 MEM, we are allowed to replace a sum of a register and the constant zero
2158 with the register, which we cannot do outside a MEM. In addition, we need
2159 to record the fact that a register is referenced outside a MEM.
2160
ff32812a 2161 If INSN is an insn, it is the insn containing X. If we replace a REG
32131a9c
RK
2162 in a SET_DEST with an equivalent MEM and INSN is non-zero, write a
2163 CLOBBER of the pseudo after INSN so find_equiv_regs will know that
38e01259 2164 the REG is being modified.
32131a9c 2165
ff32812a
RS
2166 Alternatively, INSN may be a note (an EXPR_LIST or INSN_LIST).
2167 That's used when we eliminate in expressions stored in notes.
2168 This means, do not set ref_outside_mem even if the reference
2169 is outside of MEMs.
2170
32131a9c
RK
2171 REG_EQUIV_MEM and REG_EQUIV_ADDRESS contain address that have had
2172 replacements done assuming all offsets are at their initial values. If
2173 they are not, or if REG_EQUIV_ADDRESS is nonzero for a pseudo we
2174 encounter, return the actual location so that find_reloads will do
2175 the proper thing. */
2176
2177rtx
1914f5da 2178eliminate_regs (x, mem_mode, insn)
32131a9c
RK
2179 rtx x;
2180 enum machine_mode mem_mode;
2181 rtx insn;
2182{
2183 enum rtx_code code = GET_CODE (x);
2184 struct elim_table *ep;
2185 int regno;
2186 rtx new;
2187 int i, j;
6f7d635c 2188 const char *fmt;
32131a9c
RK
2189 int copied = 0;
2190
d6633f01
NS
2191 if (! current_function_decl)
2192 return x;
9969bb2c 2193
32131a9c
RK
2194 switch (code)
2195 {
2196 case CONST_INT:
2197 case CONST_DOUBLE:
2198 case CONST:
2199 case SYMBOL_REF:
2200 case CODE_LABEL:
2201 case PC:
2202 case CC0:
2203 case ASM_INPUT:
2204 case ADDR_VEC:
2205 case ADDR_DIFF_VEC:
2206 case RETURN:
2207 return x;
2208
e9a25f70
JL
2209 case ADDRESSOF:
2210 /* This is only for the benefit of the debugging backends, which call
2211 eliminate_regs on DECL_RTL; any ADDRESSOFs in the actual insns are
2212 removed after CSE. */
1914f5da 2213 new = eliminate_regs (XEXP (x, 0), 0, insn);
e9a25f70
JL
2214 if (GET_CODE (new) == MEM)
2215 return XEXP (new, 0);
2216 return x;
2217
32131a9c
RK
2218 case REG:
2219 regno = REGNO (x);
2220
2221 /* First handle the case where we encounter a bare register that
2222 is eliminable. Replace it with a PLUS. */
2223 if (regno < FIRST_PSEUDO_REGISTER)
2224 {
2225 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2226 ep++)
2227 if (ep->from_rtx == x && ep->can_eliminate)
dfac187e 2228 return plus_constant (ep->to_rtx, ep->previous_offset);
32131a9c
RK
2229
2230 }
2b49ee39
R
2231 else if (reg_renumber[regno] < 0 && reg_equiv_constant
2232 && reg_equiv_constant[regno]
2233 && ! CONSTANT_P (reg_equiv_constant[regno]))
2234 return eliminate_regs (copy_rtx (reg_equiv_constant[regno]),
2235 mem_mode, insn);
32131a9c
RK
2236 return x;
2237
c5c76735
JL
2238 /* You might think handling MINUS in a manner similar to PLUS is a
2239 good idea. It is not. It has been tried multiple times and every
2240 time the change has had to have been reverted.
2241
2242 Other parts of reload know a PLUS is special (gen_reload for example)
2243 and require special code to handle code a reloaded PLUS operand.
2244
2245 Also consider backends where the flags register is clobbered by a
2246 MINUS, but we can emit a PLUS that does not clobber flags (ia32,
2247 lea instruction comes to mind). If we try to reload a MINUS, we
2248 may kill the flags register that was holding a useful value.
2249
2250 So, please before trying to handle MINUS, consider reload as a
2251 whole instead of this little section as well as the backend issues. */
32131a9c
RK
2252 case PLUS:
2253 /* If this is the sum of an eliminable register and a constant, rework
2254 the sum. */
2255 if (GET_CODE (XEXP (x, 0)) == REG
2256 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2257 && CONSTANT_P (XEXP (x, 1)))
2258 {
2259 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2260 ep++)
2261 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2262 {
32131a9c
RK
2263 /* The only time we want to replace a PLUS with a REG (this
2264 occurs when the constant operand of the PLUS is the negative
2265 of the offset) is when we are inside a MEM. We won't want
2266 to do so at other times because that would change the
2267 structure of the insn in a way that reload can't handle.
2268 We special-case the commonest situation in
2269 eliminate_regs_in_insn, so just replace a PLUS with a
2270 PLUS here, unless inside a MEM. */
a23b64d5 2271 if (mem_mode != 0 && GET_CODE (XEXP (x, 1)) == CONST_INT
32131a9c
RK
2272 && INTVAL (XEXP (x, 1)) == - ep->previous_offset)
2273 return ep->to_rtx;
2274 else
38a448ca
RH
2275 return gen_rtx_PLUS (Pmode, ep->to_rtx,
2276 plus_constant (XEXP (x, 1),
2277 ep->previous_offset));
32131a9c
RK
2278 }
2279
2280 /* If the register is not eliminable, we are done since the other
2281 operand is a constant. */
2282 return x;
2283 }
2284
2285 /* If this is part of an address, we want to bring any constant to the
2286 outermost PLUS. We will do this by doing register replacement in
2287 our operands and seeing if a constant shows up in one of them.
2288
dfac187e
BS
2289 Note that there is no risk of modifying the structure of the insn,
2290 since we only get called for its operands, thus we are either
2291 modifying the address inside a MEM, or something like an address
2292 operand of a load-address insn. */
32131a9c
RK
2293
2294 {
1914f5da
RH
2295 rtx new0 = eliminate_regs (XEXP (x, 0), mem_mode, insn);
2296 rtx new1 = eliminate_regs (XEXP (x, 1), mem_mode, insn);
32131a9c
RK
2297
2298 if (new0 != XEXP (x, 0) || new1 != XEXP (x, 1))
2299 {
2300 /* If one side is a PLUS and the other side is a pseudo that
a8fdc208 2301 didn't get a hard register but has a reg_equiv_constant,
32131a9c
RK
2302 we must replace the constant here since it may no longer
2303 be in the position of any operand. */
2304 if (GET_CODE (new0) == PLUS && GET_CODE (new1) == REG
2305 && REGNO (new1) >= FIRST_PSEUDO_REGISTER
2306 && reg_renumber[REGNO (new1)] < 0
2307 && reg_equiv_constant != 0
2308 && reg_equiv_constant[REGNO (new1)] != 0)
2309 new1 = reg_equiv_constant[REGNO (new1)];
2310 else if (GET_CODE (new1) == PLUS && GET_CODE (new0) == REG
2311 && REGNO (new0) >= FIRST_PSEUDO_REGISTER
2312 && reg_renumber[REGNO (new0)] < 0
2313 && reg_equiv_constant[REGNO (new0)] != 0)
2314 new0 = reg_equiv_constant[REGNO (new0)];
2315
2316 new = form_sum (new0, new1);
2317
2318 /* As above, if we are not inside a MEM we do not want to
2319 turn a PLUS into something else. We might try to do so here
2320 for an addition of 0 if we aren't optimizing. */
2321 if (! mem_mode && GET_CODE (new) != PLUS)
38a448ca 2322 return gen_rtx_PLUS (GET_MODE (x), new, const0_rtx);
32131a9c
RK
2323 else
2324 return new;
2325 }
2326 }
2327 return x;
2328
981c7390 2329 case MULT:
05d10675 2330 /* If this is the product of an eliminable register and a
981c7390
RK
2331 constant, apply the distribute law and move the constant out
2332 so that we have (plus (mult ..) ..). This is needed in order
9faa82d8 2333 to keep load-address insns valid. This case is pathological.
981c7390
RK
2334 We ignore the possibility of overflow here. */
2335 if (GET_CODE (XEXP (x, 0)) == REG
2336 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2337 && GET_CODE (XEXP (x, 1)) == CONST_INT)
2338 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2339 ep++)
2340 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2341 {
2342 if (! mem_mode
2343 /* Refs inside notes don't count for this purpose. */
2344 && ! (insn != 0 && (GET_CODE (insn) == EXPR_LIST
2345 || GET_CODE (insn) == INSN_LIST)))
2346 ep->ref_outside_mem = 1;
2347
2348 return
38a448ca 2349 plus_constant (gen_rtx_MULT (Pmode, ep->to_rtx, XEXP (x, 1)),
981c7390
RK
2350 ep->previous_offset * INTVAL (XEXP (x, 1)));
2351 }
32131a9c 2352
0f41302f 2353 /* ... fall through ... */
32131a9c 2354
32131a9c
RK
2355 case CALL:
2356 case COMPARE:
c5c76735 2357 /* See comments before PLUS about handling MINUS. */
930aeef3 2358 case MINUS:
32131a9c
RK
2359 case DIV: case UDIV:
2360 case MOD: case UMOD:
2361 case AND: case IOR: case XOR:
45620ed4
RK
2362 case ROTATERT: case ROTATE:
2363 case ASHIFTRT: case LSHIFTRT: case ASHIFT:
32131a9c
RK
2364 case NE: case EQ:
2365 case GE: case GT: case GEU: case GTU:
2366 case LE: case LT: case LEU: case LTU:
2367 {
1914f5da 2368 rtx new0 = eliminate_regs (XEXP (x, 0), mem_mode, insn);
fb3821f7 2369 rtx new1
1914f5da 2370 = XEXP (x, 1) ? eliminate_regs (XEXP (x, 1), mem_mode, insn) : 0;
32131a9c
RK
2371
2372 if (new0 != XEXP (x, 0) || new1 != XEXP (x, 1))
38a448ca 2373 return gen_rtx_fmt_ee (code, GET_MODE (x), new0, new1);
32131a9c
RK
2374 }
2375 return x;
2376
981c7390
RK
2377 case EXPR_LIST:
2378 /* If we have something in XEXP (x, 0), the usual case, eliminate it. */
2379 if (XEXP (x, 0))
2380 {
1914f5da 2381 new = eliminate_regs (XEXP (x, 0), mem_mode, insn);
981c7390 2382 if (new != XEXP (x, 0))
13bb79d4
R
2383 {
2384 /* If this is a REG_DEAD note, it is not valid anymore.
2385 Using the eliminated version could result in creating a
2386 REG_DEAD note for the stack or frame pointer. */
2387 if (GET_MODE (x) == REG_DEAD)
2388 return (XEXP (x, 1)
2389 ? eliminate_regs (XEXP (x, 1), mem_mode, insn)
2390 : NULL_RTX);
2391
2392 x = gen_rtx_EXPR_LIST (REG_NOTE_KIND (x), new, XEXP (x, 1));
2393 }
981c7390
RK
2394 }
2395
0f41302f 2396 /* ... fall through ... */
981c7390
RK
2397
2398 case INSN_LIST:
2399 /* Now do eliminations in the rest of the chain. If this was
2400 an EXPR_LIST, this might result in allocating more memory than is
2401 strictly needed, but it simplifies the code. */
2402 if (XEXP (x, 1))
2403 {
1914f5da 2404 new = eliminate_regs (XEXP (x, 1), mem_mode, insn);
981c7390 2405 if (new != XEXP (x, 1))
38a448ca 2406 return gen_rtx_fmt_ee (GET_CODE (x), GET_MODE (x), XEXP (x, 0), new);
981c7390
RK
2407 }
2408 return x;
2409
32131a9c
RK
2410 case PRE_INC:
2411 case POST_INC:
2412 case PRE_DEC:
2413 case POST_DEC:
32131a9c
RK
2414 case STRICT_LOW_PART:
2415 case NEG: case NOT:
2416 case SIGN_EXTEND: case ZERO_EXTEND:
2417 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
2418 case FLOAT: case FIX:
2419 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
2420 case ABS:
2421 case SQRT:
2422 case FFS:
1914f5da 2423 new = eliminate_regs (XEXP (x, 0), mem_mode, insn);
32131a9c 2424 if (new != XEXP (x, 0))
38a448ca 2425 return gen_rtx_fmt_e (code, GET_MODE (x), new);
32131a9c
RK
2426 return x;
2427
2428 case SUBREG:
2429 /* Similar to above processing, but preserve SUBREG_WORD.
2430 Convert (subreg (mem)) to (mem) if not paradoxical.
2431 Also, if we have a non-paradoxical (subreg (pseudo)) and the
2432 pseudo didn't get a hard reg, we must replace this with the
2433 eliminated version of the memory location because push_reloads
2434 may do the replacement in certain circumstances. */
2435 if (GET_CODE (SUBREG_REG (x)) == REG
2436 && (GET_MODE_SIZE (GET_MODE (x))
2437 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
2438 && reg_equiv_memory_loc != 0
2439 && reg_equiv_memory_loc[REGNO (SUBREG_REG (x))] != 0)
2440 {
cb2afeb3 2441 new = SUBREG_REG (x);
32131a9c
RK
2442 }
2443 else
1914f5da 2444 new = eliminate_regs (SUBREG_REG (x), mem_mode, insn);
32131a9c
RK
2445
2446 if (new != XEXP (x, 0))
2447 {
29ae5012
RK
2448 int x_size = GET_MODE_SIZE (GET_MODE (x));
2449 int new_size = GET_MODE_SIZE (GET_MODE (new));
2450
1914f5da 2451 if (GET_CODE (new) == MEM
6d49a073 2452 && ((x_size < new_size
1914f5da 2453#ifdef WORD_REGISTER_OPERATIONS
6d49a073
JW
2454 /* On these machines, combine can create rtl of the form
2455 (set (subreg:m1 (reg:m2 R) 0) ...)
05d10675 2456 where m1 < m2, and expects something interesting to
6d49a073
JW
2457 happen to the entire word. Moreover, it will use the
2458 (reg:m2 R) later, expecting all bits to be preserved.
05d10675 2459 So if the number of words is the same, preserve the
6d49a073
JW
2460 subreg so that push_reloads can see it. */
2461 && ! ((x_size-1)/UNITS_PER_WORD == (new_size-1)/UNITS_PER_WORD)
1914f5da 2462#endif
6d49a073
JW
2463 )
2464 || (x_size == new_size))
1914f5da 2465 )
32131a9c
RK
2466 {
2467 int offset = SUBREG_WORD (x) * UNITS_PER_WORD;
2468 enum machine_mode mode = GET_MODE (x);
2469
f76b9db2
ILT
2470 if (BYTES_BIG_ENDIAN)
2471 offset += (MIN (UNITS_PER_WORD,
2472 GET_MODE_SIZE (GET_MODE (new)))
2473 - MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode)));
32131a9c
RK
2474
2475 PUT_MODE (new, mode);
2476 XEXP (new, 0) = plus_constant (XEXP (new, 0), offset);
2477 return new;
2478 }
2479 else
38a448ca 2480 return gen_rtx_SUBREG (GET_MODE (x), new, SUBREG_WORD (x));
32131a9c
RK
2481 }
2482
2483 return x;
2484
32131a9c 2485 case MEM:
e9a25f70
JL
2486 /* This is only for the benefit of the debugging backends, which call
2487 eliminate_regs on DECL_RTL; any ADDRESSOFs in the actual insns are
2488 removed after CSE. */
2489 if (GET_CODE (XEXP (x, 0)) == ADDRESSOF)
1914f5da 2490 return eliminate_regs (XEXP (XEXP (x, 0), 0), 0, insn);
e9a25f70 2491
32131a9c
RK
2492 /* Our only special processing is to pass the mode of the MEM to our
2493 recursive call and copy the flags. While we are here, handle this
2494 case more efficiently. */
1914f5da 2495 new = eliminate_regs (XEXP (x, 0), GET_MODE (x), insn);
32131a9c
RK
2496 if (new != XEXP (x, 0))
2497 {
38a448ca 2498 new = gen_rtx_MEM (GET_MODE (x), new);
32131a9c
RK
2499 new->volatil = x->volatil;
2500 new->unchanging = x->unchanging;
2501 new->in_struct = x->in_struct;
2502 return new;
2503 }
2504 else
2505 return x;
05d10675 2506
dfac187e
BS
2507 case USE:
2508 case CLOBBER:
2509 case ASM_OPERANDS:
2510 case SET:
2511 abort ();
2512
e9a25f70
JL
2513 default:
2514 break;
32131a9c
RK
2515 }
2516
2517 /* Process each of our operands recursively. If any have changed, make a
2518 copy of the rtx. */
2519 fmt = GET_RTX_FORMAT (code);
2520 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2521 {
2522 if (*fmt == 'e')
2523 {
1914f5da 2524 new = eliminate_regs (XEXP (x, i), mem_mode, insn);
32131a9c
RK
2525 if (new != XEXP (x, i) && ! copied)
2526 {
2527 rtx new_x = rtx_alloc (code);
4c9a05bc
RK
2528 bcopy ((char *) x, (char *) new_x,
2529 (sizeof (*new_x) - sizeof (new_x->fld)
2530 + sizeof (new_x->fld[0]) * GET_RTX_LENGTH (code)));
32131a9c
RK
2531 x = new_x;
2532 copied = 1;
2533 }
2534 XEXP (x, i) = new;
2535 }
2536 else if (*fmt == 'E')
2537 {
2538 int copied_vec = 0;
2539 for (j = 0; j < XVECLEN (x, i); j++)
2540 {
1914f5da 2541 new = eliminate_regs (XVECEXP (x, i, j), mem_mode, insn);
32131a9c
RK
2542 if (new != XVECEXP (x, i, j) && ! copied_vec)
2543 {
8f985ec4
ZW
2544 rtvec new_v = gen_rtvec_v (XVECLEN (x, i),
2545 XVEC (x, i)->elem);
32131a9c
RK
2546 if (! copied)
2547 {
2548 rtx new_x = rtx_alloc (code);
4c9a05bc
RK
2549 bcopy ((char *) x, (char *) new_x,
2550 (sizeof (*new_x) - sizeof (new_x->fld)
2551 + (sizeof (new_x->fld[0])
2552 * GET_RTX_LENGTH (code))));
32131a9c
RK
2553 x = new_x;
2554 copied = 1;
2555 }
2556 XVEC (x, i) = new_v;
2557 copied_vec = 1;
2558 }
2559 XVECEXP (x, i, j) = new;
2560 }
2561 }
2562 }
2563
2564 return x;
2565}
dfac187e
BS
2566
2567/* Scan rtx X for modifications of elimination target registers. Update
2568 the table of eliminables to reflect the changed state. MEM_MODE is
2569 the mode of an enclosing MEM rtx, or VOIDmode if not within a MEM. */
2570
2571static void
2572elimination_effects (x, mem_mode)
2573 rtx x;
2574 enum machine_mode mem_mode;
2575
2576{
2577 enum rtx_code code = GET_CODE (x);
2578 struct elim_table *ep;
2579 int regno;
2580 int i, j;
2581 const char *fmt;
2582
2583 switch (code)
2584 {
2585 case CONST_INT:
2586 case CONST_DOUBLE:
2587 case CONST:
2588 case SYMBOL_REF:
2589 case CODE_LABEL:
2590 case PC:
2591 case CC0:
2592 case ASM_INPUT:
2593 case ADDR_VEC:
2594 case ADDR_DIFF_VEC:
2595 case RETURN:
2596 return;
2597
2598 case ADDRESSOF:
2599 abort ();
2600
2601 case REG:
2602 regno = REGNO (x);
2603
2604 /* First handle the case where we encounter a bare register that
2605 is eliminable. Replace it with a PLUS. */
2606 if (regno < FIRST_PSEUDO_REGISTER)
2607 {
2608 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2609 ep++)
2610 if (ep->from_rtx == x && ep->can_eliminate)
2611 {
2612 if (! mem_mode)
2613 ep->ref_outside_mem = 1;
2614 return;
2615 }
2616
2617 }
2618 else if (reg_renumber[regno] < 0 && reg_equiv_constant
2619 && reg_equiv_constant[regno]
2620 && ! CONSTANT_P (reg_equiv_constant[regno]))
2621 elimination_effects (reg_equiv_constant[regno], mem_mode);
2622 return;
2623
2624 case PRE_INC:
2625 case POST_INC:
2626 case PRE_DEC:
2627 case POST_DEC:
2628 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2629 if (ep->to_rtx == XEXP (x, 0))
2630 {
2631 int size = GET_MODE_SIZE (mem_mode);
2632
2633 /* If more bytes than MEM_MODE are pushed, account for them. */
2634#ifdef PUSH_ROUNDING
2635 if (ep->to_rtx == stack_pointer_rtx)
2636 size = PUSH_ROUNDING (size);
2637#endif
2638 if (code == PRE_DEC || code == POST_DEC)
2639 ep->offset += size;
2640 else
2641 ep->offset -= size;
2642 }
2643
2644 /* Fall through to generic unary operation case. */
2645 case STRICT_LOW_PART:
2646 case NEG: case NOT:
2647 case SIGN_EXTEND: case ZERO_EXTEND:
2648 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
2649 case FLOAT: case FIX:
2650 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
2651 case ABS:
2652 case SQRT:
2653 case FFS:
2654 elimination_effects (XEXP (x, 0), mem_mode);
2655 return;
2656
2657 case SUBREG:
2658 if (GET_CODE (SUBREG_REG (x)) == REG
2659 && (GET_MODE_SIZE (GET_MODE (x))
2660 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
2661 && reg_equiv_memory_loc != 0
2662 && reg_equiv_memory_loc[REGNO (SUBREG_REG (x))] != 0)
2663 return;
2664
2665 elimination_effects (SUBREG_REG (x), mem_mode);
2666 return;
2667
2668 case USE:
2669 /* If using a register that is the source of an eliminate we still
2670 think can be performed, note it cannot be performed since we don't
2671 know how this register is used. */
2672 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2673 if (ep->from_rtx == XEXP (x, 0))
2674 ep->can_eliminate = 0;
2675
2676 elimination_effects (XEXP (x, 0), mem_mode);
2677 return;
2678
2679 case CLOBBER:
2680 /* If clobbering a register that is the replacement register for an
2681 elimination we still think can be performed, note that it cannot
2682 be performed. Otherwise, we need not be concerned about it. */
2683 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2684 if (ep->to_rtx == XEXP (x, 0))
2685 ep->can_eliminate = 0;
2686
2687 elimination_effects (XEXP (x, 0), mem_mode);
2688 return;
2689
2690 case SET:
2691 /* Check for setting a register that we know about. */
2692 if (GET_CODE (SET_DEST (x)) == REG)
2693 {
2694 /* See if this is setting the replacement register for an
2695 elimination.
2696
2697 If DEST is the hard frame pointer, we do nothing because we
2698 assume that all assignments to the frame pointer are for
2699 non-local gotos and are being done at a time when they are valid
2700 and do not disturb anything else. Some machines want to
2701 eliminate a fake argument pointer (or even a fake frame pointer)
2702 with either the real frame or the stack pointer. Assignments to
2703 the hard frame pointer must not prevent this elimination. */
2704
2705 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2706 ep++)
2707 if (ep->to_rtx == SET_DEST (x)
2708 && SET_DEST (x) != hard_frame_pointer_rtx)
2709 {
2710 /* If it is being incremented, adjust the offset. Otherwise,
2711 this elimination can't be done. */
2712 rtx src = SET_SRC (x);
2713
2714 if (GET_CODE (src) == PLUS
2715 && XEXP (src, 0) == SET_DEST (x)
2716 && GET_CODE (XEXP (src, 1)) == CONST_INT)
2717 ep->offset -= INTVAL (XEXP (src, 1));
2718 else
2719 ep->can_eliminate = 0;
2720 }
2721 }
2722
2723 elimination_effects (SET_DEST (x), 0);
2724 elimination_effects (SET_SRC (x), 0);
2725 return;
2726
2727 case MEM:
2728 if (GET_CODE (XEXP (x, 0)) == ADDRESSOF)
2729 abort ();
2730
2731 /* Our only special processing is to pass the mode of the MEM to our
2732 recursive call. */
2733 elimination_effects (XEXP (x, 0), GET_MODE (x));
2734 return;
2735
2736 default:
2737 break;
2738 }
2739
2740 fmt = GET_RTX_FORMAT (code);
2741 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2742 {
2743 if (*fmt == 'e')
2744 elimination_effects (XEXP (x, i), mem_mode);
2745 else if (*fmt == 'E')
2746 for (j = 0; j < XVECLEN (x, i); j++)
2747 elimination_effects (XVECEXP (x, i, j), mem_mode);
2748 }
2749}
2750
2751/* Descend through rtx X and verify that no references to eliminable registers
2752 remain. If any do remain, mark the involved register as not
2753 eliminable. */
1d813780 2754
dfac187e
BS
2755static void
2756check_eliminable_occurrences (x)
2757 rtx x;
2758{
2759 const char *fmt;
2760 int i;
2761 enum rtx_code code;
2762
2763 if (x == 0)
2764 return;
2765
2766 code = GET_CODE (x);
2767
2768 if (code == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
2769 {
2770 struct elim_table *ep;
2771
2772 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2773 if (ep->from_rtx == x && ep->can_eliminate)
2774 ep->can_eliminate = 0;
2775 return;
2776 }
2777
2778 fmt = GET_RTX_FORMAT (code);
2779 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2780 {
2781 if (*fmt == 'e')
2782 check_eliminable_occurrences (XEXP (x, i));
2783 else if (*fmt == 'E')
2784 {
2785 int j;
2786 for (j = 0; j < XVECLEN (x, i); j++)
2787 check_eliminable_occurrences (XVECEXP (x, i, j));
2788 }
2789 }
2790}
32131a9c
RK
2791\f
2792/* Scan INSN and eliminate all eliminable registers in it.
2793
2794 If REPLACE is nonzero, do the replacement destructively. Also
2795 delete the insn as dead it if it is setting an eliminable register.
2796
2797 If REPLACE is zero, do all our allocations in reload_obstack.
2798
2799 If no eliminations were done and this insn doesn't require any elimination
2800 processing (these are not identical conditions: it might be updating sp,
2801 but not referencing fp; this needs to be seen during reload_as_needed so
2802 that the offset between fp and sp can be taken into consideration), zero
2803 is returned. Otherwise, 1 is returned. */
2804
2805static int
2806eliminate_regs_in_insn (insn, replace)
2807 rtx insn;
2808 int replace;
2809{
dfac187e 2810 int icode = recog_memoized (insn);
32131a9c 2811 rtx old_body = PATTERN (insn);
dfac187e 2812 int insn_is_asm = asm_noperands (old_body) >= 0;
774672d2 2813 rtx old_set = single_set (insn);
32131a9c
RK
2814 rtx new_body;
2815 int val = 0;
dfac187e
BS
2816 int i, any_changes;
2817 rtx substed_operand[MAX_RECOG_OPERANDS];
2818 rtx orig_operand[MAX_RECOG_OPERANDS];
32131a9c
RK
2819 struct elim_table *ep;
2820
dfac187e
BS
2821 if (! insn_is_asm && icode < 0)
2822 {
2823 if (GET_CODE (PATTERN (insn)) == USE
2824 || GET_CODE (PATTERN (insn)) == CLOBBER
2825 || GET_CODE (PATTERN (insn)) == ADDR_VEC
2826 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
2827 || GET_CODE (PATTERN (insn)) == ASM_INPUT)
2828 return 0;
2829 abort ();
2830 }
2831
32131a9c
RK
2832 if (! replace)
2833 push_obstacks (&reload_obstack, &reload_obstack);
2834
774672d2
RK
2835 if (old_set != 0 && GET_CODE (SET_DEST (old_set)) == REG
2836 && REGNO (SET_DEST (old_set)) < FIRST_PSEUDO_REGISTER)
32131a9c
RK
2837 {
2838 /* Check for setting an eliminable register. */
2839 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
774672d2 2840 if (ep->from_rtx == SET_DEST (old_set) && ep->can_eliminate)
32131a9c 2841 {
dd1eab0a
RK
2842#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2843 /* If this is setting the frame pointer register to the
2844 hardware frame pointer register and this is an elimination
2845 that will be done (tested above), this insn is really
2846 adjusting the frame pointer downward to compensate for
2847 the adjustment done before a nonlocal goto. */
2848 if (ep->from == FRAME_POINTER_REGNUM
2849 && ep->to == HARD_FRAME_POINTER_REGNUM)
2850 {
2851 rtx src = SET_SRC (old_set);
973838fd 2852 int offset = 0, ok = 0;
8026ebba 2853 rtx prev_insn, prev_set;
dd1eab0a
RK
2854
2855 if (src == ep->to_rtx)
2856 offset = 0, ok = 1;
2857 else if (GET_CODE (src) == PLUS
bb22893c
JW
2858 && GET_CODE (XEXP (src, 0)) == CONST_INT
2859 && XEXP (src, 1) == ep->to_rtx)
dd1eab0a 2860 offset = INTVAL (XEXP (src, 0)), ok = 1;
bb22893c
JW
2861 else if (GET_CODE (src) == PLUS
2862 && GET_CODE (XEXP (src, 1)) == CONST_INT
2863 && XEXP (src, 0) == ep->to_rtx)
2864 offset = INTVAL (XEXP (src, 1)), ok = 1;
8026ebba
ILT
2865 else if ((prev_insn = prev_nonnote_insn (insn)) != 0
2866 && (prev_set = single_set (prev_insn)) != 0
2867 && rtx_equal_p (SET_DEST (prev_set), src))
2868 {
2869 src = SET_SRC (prev_set);
2870 if (src == ep->to_rtx)
2871 offset = 0, ok = 1;
2872 else if (GET_CODE (src) == PLUS
2873 && GET_CODE (XEXP (src, 0)) == CONST_INT
2874 && XEXP (src, 1) == ep->to_rtx)
2875 offset = INTVAL (XEXP (src, 0)), ok = 1;
2876 else if (GET_CODE (src) == PLUS
2877 && GET_CODE (XEXP (src, 1)) == CONST_INT
2878 && XEXP (src, 0) == ep->to_rtx)
2879 offset = INTVAL (XEXP (src, 1)), ok = 1;
2880 }
dd1eab0a
RK
2881
2882 if (ok)
2883 {
2884 if (replace)
2885 {
2886 rtx src
2887 = plus_constant (ep->to_rtx, offset - ep->offset);
2888
2889 /* First see if this insn remains valid when we
2890 make the change. If not, keep the INSN_CODE
2891 the same and let reload fit it up. */
2892 validate_change (insn, &SET_SRC (old_set), src, 1);
2893 validate_change (insn, &SET_DEST (old_set),
2894 ep->to_rtx, 1);
2895 if (! apply_change_group ())
2896 {
2897 SET_SRC (old_set) = src;
2898 SET_DEST (old_set) = ep->to_rtx;
2899 }
2900 }
2901
2902 val = 1;
2903 goto done;
2904 }
2905 }
2906#endif
2907
32131a9c
RK
2908 /* In this case this insn isn't serving a useful purpose. We
2909 will delete it in reload_as_needed once we know that this
2910 elimination is, in fact, being done.
2911
abc95ed3 2912 If REPLACE isn't set, we can't delete this insn, but needn't
32131a9c
RK
2913 process it since it won't be used unless something changes. */
2914 if (replace)
8a34409d
RH
2915 {
2916 delete_dead_insn (insn);
2917 return 1;
2918 }
32131a9c
RK
2919 val = 1;
2920 goto done;
2921 }
aa5524a9 2922 }
32131a9c 2923
aa5524a9
BS
2924 /* We allow one special case which happens to work on all machines we
2925 currently support: a single set with the source being a PLUS of an
2926 eliminable register and a constant. */
2927 if (old_set
2928 && GET_CODE (SET_SRC (old_set)) == PLUS
2929 && GET_CODE (XEXP (SET_SRC (old_set), 0)) == REG
2930 && GET_CODE (XEXP (SET_SRC (old_set), 1)) == CONST_INT
2931 && REGNO (XEXP (SET_SRC (old_set), 0)) < FIRST_PSEUDO_REGISTER)
2932 {
2933 rtx reg = XEXP (SET_SRC (old_set), 0);
2934 int offset = INTVAL (XEXP (SET_SRC (old_set), 1));
32131a9c 2935
aa5524a9
BS
2936 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2937 if (ep->from_rtx == reg && ep->can_eliminate)
2938 {
2939 offset += ep->offset;
32131a9c 2940
aa5524a9
BS
2941 if (offset == 0)
2942 {
2943 /* We assume here that we don't need a PARALLEL of
2944 any CLOBBERs for this assignment. There's not
2945 much we can do if we do need it. */
2946 PATTERN (insn) = gen_rtx_SET (VOIDmode,
2947 SET_DEST (old_set),
2948 ep->to_rtx);
2949 INSN_CODE (insn) = recog (PATTERN (insn), insn, 0);
2950 if (INSN_CODE (insn) < 0)
2951 abort ();
2952 }
2953 else
2954 {
2955 new_body = old_body;
2956 if (! replace)
2957 {
2958 new_body = copy_insn (old_body);
2959 if (REG_NOTES (insn))
2960 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
2961 }
2962 PATTERN (insn) = new_body;
2963 old_set = single_set (insn);
922d9d40 2964
aa5524a9
BS
2965 XEXP (SET_SRC (old_set), 0) = ep->to_rtx;
2966 XEXP (SET_SRC (old_set), 1) = GEN_INT (offset);
2967 }
2968 val = 1;
2969 /* This can't have an effect on elimination offsets, so skip right
2970 to the end. */
2971 goto done;
2972 }
32131a9c
RK
2973 }
2974
dfac187e
BS
2975 /* Determine the effects of this insn on elimination offsets. */
2976 elimination_effects (old_body, 0);
2977
2978 /* Eliminate all eliminable registers occurring in operands that
2979 can be handled by reload. */
2980 extract_insn (insn);
2981 any_changes = 0;
2982 for (i = 0; i < recog_data.n_operands; i++)
2983 {
2984 orig_operand[i] = recog_data.operand[i];
2985 substed_operand[i] = recog_data.operand[i];
2986
2987 /* For an asm statement, every operand is eliminable. */
2988 if (insn_is_asm || insn_data[icode].operand[i].eliminable)
2989 {
2990 /* Check for setting a register that we know about. */
2991 if (recog_data.operand_type[i] != OP_IN
2992 && GET_CODE (orig_operand[i]) == REG)
2993 {
2994 /* If we are assigning to a register that can be eliminated, it
2995 must be as part of a PARALLEL, since the code above handles
2996 single SETs. We must indicate that we can no longer
2997 eliminate this reg. */
2998 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2999 ep++)
3000 if (ep->from_rtx == orig_operand[i] && ep->can_eliminate)
3001 ep->can_eliminate = 0;
3002 }
3003
3004 substed_operand[i] = eliminate_regs (recog_data.operand[i], 0,
3005 replace ? insn : NULL_RTX);
3006 if (substed_operand[i] != orig_operand[i])
3007 val = any_changes = 1;
3008 /* Terminate the search in check_eliminable_occurrences at
3009 this point. */
3010 *recog_data.operand_loc[i] = 0;
3011
3012 /* If an output operand changed from a REG to a MEM and INSN is an
3013 insn, write a CLOBBER insn. */
3014 if (recog_data.operand_type[i] != OP_IN
3015 && GET_CODE (orig_operand[i]) == REG
3016 && GET_CODE (substed_operand[i]) == MEM
3017 && replace)
3018 emit_insn_after (gen_rtx_CLOBBER (VOIDmode, orig_operand[i]),
3019 insn);
3020 }
3021 }
3022
3023 for (i = 0; i < recog_data.n_dups; i++)
3024 *recog_data.dup_loc[i]
aa5524a9 3025 = *recog_data.operand_loc[(int)recog_data.dup_num[i]];
dfac187e
BS
3026
3027 /* If any eliminable remain, they aren't eliminable anymore. */
3028 check_eliminable_occurrences (old_body);
32131a9c 3029
dfac187e
BS
3030 /* Substitute the operands; the new values are in the substed_operand
3031 array. */
3032 for (i = 0; i < recog_data.n_operands; i++)
3033 *recog_data.operand_loc[i] = substed_operand[i];
3034 for (i = 0; i < recog_data.n_dups; i++)
3035 *recog_data.dup_loc[i] = substed_operand[(int)recog_data.dup_num[i]];
32131a9c 3036
dfac187e 3037 /* If we are replacing a body that was a (set X (plus Y Z)), try to
32131a9c
RK
3038 re-recognize the insn. We do this in case we had a simple addition
3039 but now can do this as a load-address. This saves an insn in this
dfac187e
BS
3040 common case.
3041 If re-recognition fails, the old insn code number will still be used,
3042 and some register operands may have changed into PLUS expressions.
3043 These will be handled by find_reloads by loading them into a register
3044 again.*/
32131a9c 3045
dfac187e 3046 if (val)
32131a9c 3047 {
7c791b13
RK
3048 /* If we aren't replacing things permanently and we changed something,
3049 make another copy to ensure that all the RTL is new. Otherwise
3050 things can go wrong if find_reload swaps commutative operands
0f41302f 3051 and one is inside RTL that has been copied while the other is not. */
dfac187e
BS
3052 new_body = old_body;
3053 if (! replace)
1b3b5765
BS
3054 {
3055 new_body = copy_insn (old_body);
3056 if (REG_NOTES (insn))
3057 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3058 }
dfac187e 3059 PATTERN (insn) = new_body;
7c791b13 3060
774672d2
RK
3061 /* If we had a move insn but now we don't, rerecognize it. This will
3062 cause spurious re-recognition if the old move had a PARALLEL since
3063 the new one still will, but we can't call single_set without
3064 having put NEW_BODY into the insn and the re-recognition won't
3065 hurt in this rare case. */
dfac187e
BS
3066 /* ??? Why this huge if statement - why don't we just rerecognize the
3067 thing always? */
3068 if (! insn_is_asm
3069 && old_set != 0
774672d2
RK
3070 && ((GET_CODE (SET_SRC (old_set)) == REG
3071 && (GET_CODE (new_body) != SET
3072 || GET_CODE (SET_SRC (new_body)) != REG))
3073 /* If this was a load from or store to memory, compare
1ccbefce
RH
3074 the MEM in recog_data.operand to the one in the insn.
3075 If they are not equal, then rerecognize the insn. */
774672d2
RK
3076 || (old_set != 0
3077 && ((GET_CODE (SET_SRC (old_set)) == MEM
1ccbefce 3078 && SET_SRC (old_set) != recog_data.operand[1])
774672d2 3079 || (GET_CODE (SET_DEST (old_set)) == MEM
1ccbefce 3080 && SET_DEST (old_set) != recog_data.operand[0])))
774672d2
RK
3081 /* If this was an add insn before, rerecognize. */
3082 || GET_CODE (SET_SRC (old_set)) == PLUS))
4a5d0fb5 3083 {
dfac187e
BS
3084 int new_icode = recog (PATTERN (insn), insn, 0);
3085 if (new_icode < 0)
3086 INSN_CODE (insn) = icode;
4a5d0fb5 3087 }
dfac187e 3088 }
32131a9c 3089
dfac187e
BS
3090 /* Restore the old body. If there were any changes to it, we made a copy
3091 of it while the changes were still in place, so we'll correctly return
3092 a modified insn below. */
3093 if (! replace)
3094 {
3095 /* Restore the old body. */
3096 for (i = 0; i < recog_data.n_operands; i++)
3097 *recog_data.operand_loc[i] = orig_operand[i];
3098 for (i = 0; i < recog_data.n_dups; i++)
3099 *recog_data.dup_loc[i] = orig_operand[(int)recog_data.dup_num[i]];
32131a9c 3100 }
a8fdc208 3101
dfac187e
BS
3102 /* Update all elimination pairs to reflect the status after the current
3103 insn. The changes we make were determined by the earlier call to
3104 elimination_effects.
a8efe40d 3105
32131a9c
RK
3106 We also detect a cases where register elimination cannot be done,
3107 namely, if a register would be both changed and referenced outside a MEM
3108 in the resulting insn since such an insn is often undefined and, even if
3109 not, we cannot know what meaning will be given to it. Note that it is
3110 valid to have a register used in an address in an insn that changes it
3111 (presumably with a pre- or post-increment or decrement).
3112
3113 If anything changes, return nonzero. */
3114
32131a9c
RK
3115 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3116 {
3117 if (ep->previous_offset != ep->offset && ep->ref_outside_mem)
3118 ep->can_eliminate = 0;
3119
3120 ep->ref_outside_mem = 0;
3121
3122 if (ep->previous_offset != ep->offset)
3123 val = 1;
32131a9c
RK
3124 }
3125
3126 done:
9faa82d8 3127 /* If we changed something, perform elimination in REG_NOTES. This is
05b4c365
RK
3128 needed even when REPLACE is zero because a REG_DEAD note might refer
3129 to a register that we eliminate and could cause a different number
3130 of spill registers to be needed in the final reload pass than in
3131 the pre-passes. */
20748cab 3132 if (val && REG_NOTES (insn) != 0)
1914f5da 3133 REG_NOTES (insn) = eliminate_regs (REG_NOTES (insn), 0, REG_NOTES (insn));
05b4c365 3134
32131a9c
RK
3135 if (! replace)
3136 pop_obstacks ();
3137
3138 return val;
3139}
3140
cb2afeb3
R
3141/* Loop through all elimination pairs.
3142 Recalculate the number not at initial offset.
3143
3144 Compute the maximum offset (minimum offset if the stack does not
3145 grow downward) for each elimination pair. */
3146
3147static void
3148update_eliminable_offsets ()
3149{
3150 struct elim_table *ep;
3151
3152 num_not_at_initial_offset = 0;
3153 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3154 {
3155 ep->previous_offset = ep->offset;
3156 if (ep->can_eliminate && ep->offset != ep->initial_offset)
3157 num_not_at_initial_offset++;
cb2afeb3
R
3158 }
3159}
3160
32131a9c
RK
3161/* Given X, a SET or CLOBBER of DEST, if DEST is the target of a register
3162 replacement we currently believe is valid, mark it as not eliminable if X
3163 modifies DEST in any way other than by adding a constant integer to it.
3164
3165 If DEST is the frame pointer, we do nothing because we assume that
3ec2ea3e
DE
3166 all assignments to the hard frame pointer are nonlocal gotos and are being
3167 done at a time when they are valid and do not disturb anything else.
32131a9c 3168 Some machines want to eliminate a fake argument pointer with either the
3ec2ea3e
DE
3169 frame or stack pointer. Assignments to the hard frame pointer must not
3170 prevent this elimination.
32131a9c
RK
3171
3172 Called via note_stores from reload before starting its passes to scan
3173 the insns of the function. */
3174
3175static void
84832317 3176mark_not_eliminable (dest, x, data)
32131a9c
RK
3177 rtx dest;
3178 rtx x;
84832317 3179 void *data ATTRIBUTE_UNUSED;
32131a9c 3180{
e51712db 3181 register unsigned int i;
32131a9c
RK
3182
3183 /* A SUBREG of a hard register here is just changing its mode. We should
3184 not see a SUBREG of an eliminable hard register, but check just in
3185 case. */
3186 if (GET_CODE (dest) == SUBREG)
3187 dest = SUBREG_REG (dest);
3188
3ec2ea3e 3189 if (dest == hard_frame_pointer_rtx)
32131a9c
RK
3190 return;
3191
3192 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
3193 if (reg_eliminate[i].can_eliminate && dest == reg_eliminate[i].to_rtx
3194 && (GET_CODE (x) != SET
3195 || GET_CODE (SET_SRC (x)) != PLUS
3196 || XEXP (SET_SRC (x), 0) != dest
3197 || GET_CODE (XEXP (SET_SRC (x), 1)) != CONST_INT))
3198 {
3199 reg_eliminate[i].can_eliminate_previous
3200 = reg_eliminate[i].can_eliminate = 0;
3201 num_eliminable--;
3202 }
3203}
09dd1133 3204
c47f5ea5
BS
3205/* Verify that the initial elimination offsets did not change since the
3206 last call to set_initial_elim_offsets. This is used to catch cases
3207 where something illegal happened during reload_as_needed that could
3208 cause incorrect code to be generated if we did not check for it. */
c8d8ed65 3209
c47f5ea5
BS
3210static void
3211verify_initial_elim_offsets ()
3212{
3213 int t;
3214
3215#ifdef ELIMINABLE_REGS
3216 struct elim_table *ep;
3217
3218 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3219 {
3220 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, t);
3221 if (t != ep->initial_offset)
3222 abort ();
3223 }
3224#else
3225 INITIAL_FRAME_POINTER_OFFSET (t);
3226 if (t != reg_eliminate[0].initial_offset)
3227 abort ();
05d10675 3228#endif
c47f5ea5
BS
3229}
3230
09dd1133 3231/* Reset all offsets on eliminable registers to their initial values. */
1d813780 3232
09dd1133
BS
3233static void
3234set_initial_elim_offsets ()
3235{
1f3b1e1a 3236 struct elim_table *ep = reg_eliminate;
09dd1133
BS
3237
3238#ifdef ELIMINABLE_REGS
1f3b1e1a 3239 for (; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
09dd1133
BS
3240 {
3241 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, ep->initial_offset);
1f3b1e1a 3242 ep->previous_offset = ep->offset = ep->initial_offset;
09dd1133
BS
3243 }
3244#else
1f3b1e1a
JL
3245 INITIAL_FRAME_POINTER_OFFSET (ep->initial_offset);
3246 ep->previous_offset = ep->offset = ep->initial_offset;
09dd1133
BS
3247#endif
3248
3249 num_not_at_initial_offset = 0;
1f3b1e1a 3250}
09dd1133 3251
1f3b1e1a
JL
3252/* Initialize the known label offsets.
3253 Set a known offset for each forced label to be at the initial offset
3254 of each elimination. We do this because we assume that all
3255 computed jumps occur from a location where each elimination is
3256 at its initial offset.
3257 For all other labels, show that we don't know the offsets. */
09dd1133 3258
1f3b1e1a
JL
3259static void
3260set_initial_label_offsets ()
3261{
3262 rtx x;
3263 bzero ((char *) &offsets_known_at[get_first_label_num ()], num_labels);
09dd1133
BS
3264
3265 for (x = forced_labels; x; x = XEXP (x, 1))
3266 if (XEXP (x, 0))
3267 set_label_offsets (XEXP (x, 0), NULL_RTX, 1);
3268}
3269
1f3b1e1a
JL
3270/* Set all elimination offsets to the known values for the code label given
3271 by INSN. */
1d813780 3272
1f3b1e1a
JL
3273static void
3274set_offsets_for_label (insn)
3275 rtx insn;
3276{
973838fd 3277 unsigned int i;
1f3b1e1a
JL
3278 int label_nr = CODE_LABEL_NUMBER (insn);
3279 struct elim_table *ep;
3280
3281 num_not_at_initial_offset = 0;
3282 for (i = 0, ep = reg_eliminate; i < NUM_ELIMINABLE_REGS; ep++, i++)
3283 {
3284 ep->offset = ep->previous_offset = offsets_at[label_nr][i];
3285 if (ep->can_eliminate && ep->offset != ep->initial_offset)
3286 num_not_at_initial_offset++;
3287 }
3288}
3289
09dd1133
BS
3290/* See if anything that happened changes which eliminations are valid.
3291 For example, on the Sparc, whether or not the frame pointer can
3292 be eliminated can depend on what registers have been used. We need
3293 not check some conditions again (such as flag_omit_frame_pointer)
3294 since they can't have changed. */
3295
3296static void
3297update_eliminables (pset)
3298 HARD_REG_SET *pset;
3299{
3300#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
3301 int previous_frame_pointer_needed = frame_pointer_needed;
3302#endif
3303 struct elim_table *ep;
3304
3305 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3306 if ((ep->from == HARD_FRAME_POINTER_REGNUM && FRAME_POINTER_REQUIRED)
3307#ifdef ELIMINABLE_REGS
3308 || ! CAN_ELIMINATE (ep->from, ep->to)
3309#endif
3310 )
3311 ep->can_eliminate = 0;
3312
3313 /* Look for the case where we have discovered that we can't replace
3314 register A with register B and that means that we will now be
3315 trying to replace register A with register C. This means we can
3316 no longer replace register C with register B and we need to disable
3317 such an elimination, if it exists. This occurs often with A == ap,
3318 B == sp, and C == fp. */
3319
3320 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3321 {
3322 struct elim_table *op;
3323 register int new_to = -1;
3324
3325 if (! ep->can_eliminate && ep->can_eliminate_previous)
3326 {
3327 /* Find the current elimination for ep->from, if there is a
3328 new one. */
3329 for (op = reg_eliminate;
3330 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3331 if (op->from == ep->from && op->can_eliminate)
3332 {
3333 new_to = op->to;
3334 break;
3335 }
3336
3337 /* See if there is an elimination of NEW_TO -> EP->TO. If so,
3338 disable it. */
3339 for (op = reg_eliminate;
3340 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3341 if (op->from == new_to && op->to == ep->to)
3342 op->can_eliminate = 0;
3343 }
3344 }
3345
3346 /* See if any registers that we thought we could eliminate the previous
3347 time are no longer eliminable. If so, something has changed and we
3348 must spill the register. Also, recompute the number of eliminable
3349 registers and see if the frame pointer is needed; it is if there is
3350 no elimination of the frame pointer that we can perform. */
3351
3352 frame_pointer_needed = 1;
3353 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3354 {
3355 if (ep->can_eliminate && ep->from == FRAME_POINTER_REGNUM
3356 && ep->to != HARD_FRAME_POINTER_REGNUM)
3357 frame_pointer_needed = 0;
3358
3359 if (! ep->can_eliminate && ep->can_eliminate_previous)
3360 {
3361 ep->can_eliminate_previous = 0;
3362 SET_HARD_REG_BIT (*pset, ep->from);
3363 num_eliminable--;
3364 }
3365 }
3366
3367#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
3368 /* If we didn't need a frame pointer last time, but we do now, spill
3369 the hard frame pointer. */
3370 if (frame_pointer_needed && ! previous_frame_pointer_needed)
3371 SET_HARD_REG_BIT (*pset, HARD_FRAME_POINTER_REGNUM);
3372#endif
3373}
3374
3375/* Initialize the table of registers to eliminate. */
1d813780 3376
09dd1133
BS
3377static void
3378init_elim_table ()
3379{
3380 struct elim_table *ep;
590cf94d
KG
3381#ifdef ELIMINABLE_REGS
3382 struct elim_table_1 *ep1;
3383#endif
09dd1133 3384
590cf94d 3385 if (!reg_eliminate)
ad85216e
KG
3386 reg_eliminate = (struct elim_table *)
3387 xcalloc(sizeof(struct elim_table), NUM_ELIMINABLE_REGS);
05d10675 3388
09dd1133
BS
3389 /* Does this function require a frame pointer? */
3390
3391 frame_pointer_needed = (! flag_omit_frame_pointer
3392#ifdef EXIT_IGNORE_STACK
3393 /* ?? If EXIT_IGNORE_STACK is set, we will not save
3394 and restore sp for alloca. So we can't eliminate
3395 the frame pointer in that case. At some point,
3396 we should improve this by emitting the
3397 sp-adjusting insns for this case. */
3398 || (current_function_calls_alloca
3399 && EXIT_IGNORE_STACK)
3400#endif
3401 || FRAME_POINTER_REQUIRED);
3402
3403 num_eliminable = 0;
3404
3405#ifdef ELIMINABLE_REGS
590cf94d
KG
3406 for (ep = reg_eliminate, ep1 = reg_eliminate_1;
3407 ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++, ep1++)
09dd1133 3408 {
590cf94d
KG
3409 ep->from = ep1->from;
3410 ep->to = ep1->to;
09dd1133
BS
3411 ep->can_eliminate = ep->can_eliminate_previous
3412 = (CAN_ELIMINATE (ep->from, ep->to)
3413 && ! (ep->to == STACK_POINTER_REGNUM && frame_pointer_needed));
3414 }
3415#else
590cf94d
KG
3416 reg_eliminate[0].from = reg_eliminate_1[0].from;
3417 reg_eliminate[0].to = reg_eliminate_1[0].to;
09dd1133
BS
3418 reg_eliminate[0].can_eliminate = reg_eliminate[0].can_eliminate_previous
3419 = ! frame_pointer_needed;
3420#endif
3421
3422 /* Count the number of eliminable registers and build the FROM and TO
3423 REG rtx's. Note that code in gen_rtx will cause, e.g.,
3424 gen_rtx (REG, Pmode, STACK_POINTER_REGNUM) to equal stack_pointer_rtx.
3425 We depend on this. */
3426 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3427 {
3428 num_eliminable += ep->can_eliminate;
3429 ep->from_rtx = gen_rtx_REG (Pmode, ep->from);
3430 ep->to_rtx = gen_rtx_REG (Pmode, ep->to);
3431 }
3432}
32131a9c
RK
3433\f
3434/* Kick all pseudos out of hard register REGNO.
32131a9c
RK
3435 If DUMPFILE is nonzero, log actions taken on that file.
3436
3437 If CANT_ELIMINATE is nonzero, it means that we are doing this spill
3438 because we found we can't eliminate some register. In the case, no pseudos
3439 are allowed to be in the register, even if they are only in a block that
3440 doesn't require spill registers, unlike the case when we are spilling this
3441 hard reg to produce another spill register.
3442
3443 Return nonzero if any pseudos needed to be kicked out. */
3444
03acd8f8
BS
3445static void
3446spill_hard_reg (regno, dumpfile, cant_eliminate)
770ae6cc 3447 unsigned int regno;
6a651371 3448 FILE *dumpfile ATTRIBUTE_UNUSED;
32131a9c
RK
3449 int cant_eliminate;
3450{
32131a9c
RK
3451 register int i;
3452
9ff3516a 3453 if (cant_eliminate)
03acd8f8
BS
3454 {
3455 SET_HARD_REG_BIT (bad_spill_regs_global, regno);
3456 regs_ever_live[regno] = 1;
3457 }
9ff3516a 3458
32131a9c
RK
3459 /* Spill every pseudo reg that was allocated to this reg
3460 or to something that overlaps this reg. */
3461
3462 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
3463 if (reg_renumber[i] >= 0
770ae6cc
RK
3464 && (unsigned int) reg_renumber[i] <= regno
3465 && ((unsigned int) reg_renumber[i]
3466 + HARD_REGNO_NREGS ((unsigned int) reg_renumber[i],
32131a9c
RK
3467 PSEUDO_REGNO_MODE (i))
3468 > regno))
f5d8c9f4 3469 SET_REGNO_REG_SET (&spilled_pseudos, i);
03acd8f8 3470}
32131a9c 3471
03acd8f8
BS
3472/* I'm getting weird preprocessor errors if I use IOR_HARD_REG_SET
3473 from within EXECUTE_IF_SET_IN_REG_SET. Hence this awkwardness. */
770ae6cc 3474
03acd8f8
BS
3475static void
3476ior_hard_reg_set (set1, set2)
3477 HARD_REG_SET *set1, *set2;
3478{
3479 IOR_HARD_REG_SET (*set1, *set2);
3480}
05d10675 3481
03acd8f8
BS
3482/* After find_reload_regs has been run for all insn that need reloads,
3483 and/or spill_hard_regs was called, this function is used to actually
3484 spill pseudo registers and try to reallocate them. It also sets up the
3485 spill_regs array for use by choose_reload_regs. */
a8fdc208 3486
03acd8f8
BS
3487static int
3488finish_spills (global, dumpfile)
3489 int global;
3490 FILE *dumpfile;
3491{
3492 struct insn_chain *chain;
3493 int something_changed = 0;
3494 int i;
3495
3496 /* Build the spill_regs array for the function. */
3497 /* If there are some registers still to eliminate and one of the spill regs
3498 wasn't ever used before, additional stack space may have to be
3499 allocated to store this register. Thus, we may have changed the offset
3500 between the stack and frame pointers, so mark that something has changed.
32131a9c 3501
03acd8f8
BS
3502 One might think that we need only set VAL to 1 if this is a call-used
3503 register. However, the set of registers that must be saved by the
3504 prologue is not identical to the call-used set. For example, the
3505 register used by the call insn for the return PC is a call-used register,
3506 but must be saved by the prologue. */
3507
3508 n_spills = 0;
3509 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3510 if (TEST_HARD_REG_BIT (used_spill_regs, i))
3511 {
3512 spill_reg_order[i] = n_spills;
3513 spill_regs[n_spills++] = i;
3514 if (num_eliminable && ! regs_ever_live[i])
3515 something_changed = 1;
3516 regs_ever_live[i] = 1;
3517 }
3518 else
3519 spill_reg_order[i] = -1;
3520
efc9bd41
RK
3521 EXECUTE_IF_SET_IN_REG_SET
3522 (&spilled_pseudos, FIRST_PSEUDO_REGISTER, i,
3523 {
3524 /* Record the current hard register the pseudo is allocated to in
3525 pseudo_previous_regs so we avoid reallocating it to the same
3526 hard reg in a later pass. */
3527 if (reg_renumber[i] < 0)
3528 abort ();
3529
3530 SET_HARD_REG_BIT (pseudo_previous_regs[i], reg_renumber[i]);
3531 /* Mark it as no longer having a hard register home. */
3532 reg_renumber[i] = -1;
3533 /* We will need to scan everything again. */
3534 something_changed = 1;
3535 });
7609e720 3536
03acd8f8
BS
3537 /* Retry global register allocation if possible. */
3538 if (global)
3539 {
3540 bzero ((char *) pseudo_forbidden_regs, max_regno * sizeof (HARD_REG_SET));
3541 /* For every insn that needs reloads, set the registers used as spill
3542 regs in pseudo_forbidden_regs for every pseudo live across the
3543 insn. */
3544 for (chain = insns_need_reload; chain; chain = chain->next_need_reload)
3545 {
3546 EXECUTE_IF_SET_IN_REG_SET
239a0f5b 3547 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i,
03acd8f8
BS
3548 {
3549 ior_hard_reg_set (pseudo_forbidden_regs + i,
3550 &chain->used_spill_regs);
3551 });
3552 EXECUTE_IF_SET_IN_REG_SET
239a0f5b 3553 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i,
03acd8f8
BS
3554 {
3555 ior_hard_reg_set (pseudo_forbidden_regs + i,
3556 &chain->used_spill_regs);
3557 });
3558 }
7609e720 3559
03acd8f8
BS
3560 /* Retry allocating the spilled pseudos. For each reg, merge the
3561 various reg sets that indicate which hard regs can't be used,
3562 and call retry_global_alloc.
05d10675 3563 We change spill_pseudos here to only contain pseudos that did not
03acd8f8
BS
3564 get a new hard register. */
3565 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
3566 if (reg_old_renumber[i] != reg_renumber[i])
32131a9c 3567 {
03acd8f8
BS
3568 HARD_REG_SET forbidden;
3569 COPY_HARD_REG_SET (forbidden, bad_spill_regs_global);
3570 IOR_HARD_REG_SET (forbidden, pseudo_forbidden_regs[i]);
3571 IOR_HARD_REG_SET (forbidden, pseudo_previous_regs[i]);
3572 retry_global_alloc (i, forbidden);
3573 if (reg_renumber[i] >= 0)
f5d8c9f4 3574 CLEAR_REGNO_REG_SET (&spilled_pseudos, i);
32131a9c 3575 }
03acd8f8 3576 }
7609e720 3577
03acd8f8
BS
3578 /* Fix up the register information in the insn chain.
3579 This involves deleting those of the spilled pseudos which did not get
3580 a new hard register home from the live_{before,after} sets. */
7609e720
BS
3581 for (chain = reload_insn_chain; chain; chain = chain->next)
3582 {
03acd8f8
BS
3583 HARD_REG_SET used_by_pseudos;
3584 HARD_REG_SET used_by_pseudos2;
3585
239a0f5b
BS
3586 AND_COMPL_REG_SET (&chain->live_throughout, &spilled_pseudos);
3587 AND_COMPL_REG_SET (&chain->dead_or_set, &spilled_pseudos);
03acd8f8
BS
3588
3589 /* Mark any unallocated hard regs as available for spills. That
3590 makes inheritance work somewhat better. */
3591 if (chain->need_reload)
3592 {
239a0f5b
BS
3593 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
3594 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
03acd8f8
BS
3595 IOR_HARD_REG_SET (used_by_pseudos, used_by_pseudos2);
3596
3597 /* Save the old value for the sanity test below. */
3598 COPY_HARD_REG_SET (used_by_pseudos2, chain->used_spill_regs);
3599
239a0f5b
BS
3600 compute_use_by_pseudos (&used_by_pseudos, &chain->live_throughout);
3601 compute_use_by_pseudos (&used_by_pseudos, &chain->dead_or_set);
03acd8f8
BS
3602 COMPL_HARD_REG_SET (chain->used_spill_regs, used_by_pseudos);
3603 AND_HARD_REG_SET (chain->used_spill_regs, used_spill_regs);
3604
3605 /* Make sure we only enlarge the set. */
3606 GO_IF_HARD_REG_SUBSET (used_by_pseudos2, chain->used_spill_regs, ok);
3607 abort ();
3608 ok:;
3609 }
7609e720 3610 }
03acd8f8
BS
3611
3612 /* Let alter_reg modify the reg rtx's for the modified pseudos. */
3613 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
3614 {
3615 int regno = reg_renumber[i];
3616 if (reg_old_renumber[i] == regno)
3617 continue;
05d10675 3618
03acd8f8
BS
3619 alter_reg (i, reg_old_renumber[i]);
3620 reg_old_renumber[i] = regno;
3621 if (dumpfile)
3622 {
3623 if (regno == -1)
3624 fprintf (dumpfile, " Register %d now on stack.\n\n", i);
3625 else
3626 fprintf (dumpfile, " Register %d now in %d.\n\n",
3627 i, reg_renumber[i]);
3628 }
3629 }
3630
3631 return something_changed;
7609e720 3632}
32131a9c 3633\f
05d10675 3634/* Find all paradoxical subregs within X and update reg_max_ref_width.
56f58d3a
RK
3635 Also mark any hard registers used to store user variables as
3636 forbidden from being used for spill registers. */
32131a9c
RK
3637
3638static void
3639scan_paradoxical_subregs (x)
3640 register rtx x;
3641{
3642 register int i;
6f7d635c 3643 register const char *fmt;
32131a9c
RK
3644 register enum rtx_code code = GET_CODE (x);
3645
3646 switch (code)
3647 {
56f58d3a 3648 case REG:
03acd8f8 3649#if 0
e9a25f70 3650 if (SMALL_REGISTER_CLASSES && REGNO (x) < FIRST_PSEUDO_REGISTER
f95182a4 3651 && REG_USERVAR_P (x))
03acd8f8
BS
3652 SET_HARD_REG_BIT (bad_spill_regs_global, REGNO (x));
3653#endif
56f58d3a
RK
3654 return;
3655
32131a9c
RK
3656 case CONST_INT:
3657 case CONST:
3658 case SYMBOL_REF:
3659 case LABEL_REF:
3660 case CONST_DOUBLE:
3661 case CC0:
3662 case PC:
32131a9c
RK
3663 case USE:
3664 case CLOBBER:
3665 return;
3666
3667 case SUBREG:
3668 if (GET_CODE (SUBREG_REG (x)) == REG
3669 && GET_MODE_SIZE (GET_MODE (x)) > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
3670 reg_max_ref_width[REGNO (SUBREG_REG (x))]
3671 = GET_MODE_SIZE (GET_MODE (x));
3672 return;
05d10675 3673
e9a25f70
JL
3674 default:
3675 break;
32131a9c
RK
3676 }
3677
3678 fmt = GET_RTX_FORMAT (code);
3679 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3680 {
3681 if (fmt[i] == 'e')
3682 scan_paradoxical_subregs (XEXP (x, i));
3683 else if (fmt[i] == 'E')
3684 {
3685 register int j;
3686 for (j = XVECLEN (x, i) - 1; j >=0; j--)
3687 scan_paradoxical_subregs (XVECEXP (x, i, j));
3688 }
3689 }
3690}
3691\f
32131a9c
RK
3692/* Reload pseudo-registers into hard regs around each insn as needed.
3693 Additional register load insns are output before the insn that needs it
3694 and perhaps store insns after insns that modify the reloaded pseudo reg.
3695
3696 reg_last_reload_reg and reg_reloaded_contents keep track of
d08ea79f 3697 which registers are already available in reload registers.
32131a9c
RK
3698 We update these for the reloads that we perform,
3699 as the insns are scanned. */
3700
3701static void
7609e720 3702reload_as_needed (live_known)
32131a9c
RK
3703 int live_known;
3704{
7609e720 3705 struct insn_chain *chain;
553687c9 3706#if defined (AUTO_INC_DEC)
32131a9c 3707 register int i;
973838fd 3708#endif
32131a9c 3709 rtx x;
32131a9c 3710
4c9a05bc
RK
3711 bzero ((char *) spill_reg_rtx, sizeof spill_reg_rtx);
3712 bzero ((char *) spill_reg_store, sizeof spill_reg_store);
ff154f78
MM
3713 reg_last_reload_reg = (rtx *) xcalloc (max_regno, sizeof (rtx));
3714 reg_has_output_reload = (char *) xmalloc (max_regno);
e6e52be0 3715 CLEAR_HARD_REG_SET (reg_reloaded_valid);
32131a9c 3716
1f3b1e1a 3717 set_initial_elim_offsets ();
32131a9c 3718
7609e720 3719 for (chain = reload_insn_chain; chain; chain = chain->next)
32131a9c 3720 {
03acd8f8 3721 rtx prev;
7609e720
BS
3722 rtx insn = chain->insn;
3723 rtx old_next = NEXT_INSN (insn);
32131a9c
RK
3724
3725 /* If we pass a label, copy the offsets from the label information
3726 into the current offsets of each elimination. */
3727 if (GET_CODE (insn) == CODE_LABEL)
1f3b1e1a 3728 set_offsets_for_label (insn);
32131a9c
RK
3729
3730 else if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
3731 {
0639444f 3732 rtx oldpat = PATTERN (insn);
32131a9c 3733
2758481d
RS
3734 /* If this is a USE and CLOBBER of a MEM, ensure that any
3735 references to eliminable registers have been removed. */
3736
3737 if ((GET_CODE (PATTERN (insn)) == USE
3738 || GET_CODE (PATTERN (insn)) == CLOBBER)
3739 && GET_CODE (XEXP (PATTERN (insn), 0)) == MEM)
3740 XEXP (XEXP (PATTERN (insn), 0), 0)
3741 = eliminate_regs (XEXP (XEXP (PATTERN (insn), 0), 0),
29ae5012 3742 GET_MODE (XEXP (PATTERN (insn), 0)),
1914f5da 3743 NULL_RTX);
2758481d 3744
32131a9c
RK
3745 /* If we need to do register elimination processing, do so.
3746 This might delete the insn, in which case we are done. */
2b49ee39 3747 if ((num_eliminable || num_eliminable_invariants) && chain->need_elim)
32131a9c
RK
3748 {
3749 eliminate_regs_in_insn (insn, 1);
3750 if (GET_CODE (insn) == NOTE)
cb2afeb3
R
3751 {
3752 update_eliminable_offsets ();
3753 continue;
3754 }
32131a9c
RK
3755 }
3756
7609e720
BS
3757 /* If need_elim is nonzero but need_reload is zero, one might think
3758 that we could simply set n_reloads to 0. However, find_reloads
3759 could have done some manipulation of the insn (such as swapping
3760 commutative operands), and these manipulations are lost during
3761 the first pass for every insn that needs register elimination.
3762 So the actions of find_reloads must be redone here. */
3763
03acd8f8
BS
3764 if (! chain->need_elim && ! chain->need_reload
3765 && ! chain->need_operand_change)
32131a9c
RK
3766 n_reloads = 0;
3767 /* First find the pseudo regs that must be reloaded for this insn.
3768 This info is returned in the tables reload_... (see reload.h).
3769 Also modify the body of INSN by substituting RELOAD
3770 rtx's for those pseudo regs. */
3771 else
3772 {
3773 bzero (reg_has_output_reload, max_regno);
3774 CLEAR_HARD_REG_SET (reg_is_output_reload);
3775
3776 find_reloads (insn, 1, spill_indirect_levels, live_known,
3777 spill_reg_order);
3778 }
3779
dd6acd1b 3780 if (num_eliminable && chain->need_elim)
cb2afeb3
R
3781 update_eliminable_offsets ();
3782
32131a9c
RK
3783 if (n_reloads > 0)
3784 {
cb2afeb3 3785 rtx next = NEXT_INSN (insn);
3c3eeea6 3786 rtx p;
32131a9c 3787
cb2afeb3
R
3788 prev = PREV_INSN (insn);
3789
32131a9c
RK
3790 /* Now compute which reload regs to reload them into. Perhaps
3791 reusing reload regs from previous insns, or else output
3792 load insns to reload them. Maybe output store insns too.
3793 Record the choices of reload reg in reload_reg_rtx. */
03acd8f8 3794 choose_reload_regs (chain);
32131a9c 3795
05d10675 3796 /* Merge any reloads that we didn't combine for fear of
546b63fb
RK
3797 increasing the number of spill registers needed but now
3798 discover can be safely merged. */
f95182a4
ILT
3799 if (SMALL_REGISTER_CLASSES)
3800 merge_assigned_reloads (insn);
546b63fb 3801
32131a9c
RK
3802 /* Generate the insns to reload operands into or out of
3803 their reload regs. */
7609e720 3804 emit_reload_insns (chain);
32131a9c
RK
3805
3806 /* Substitute the chosen reload regs from reload_reg_rtx
3807 into the insn's body (or perhaps into the bodies of other
3808 load and store insn that we just made for reloading
3809 and that we moved the structure into). */
3810 subst_reloads ();
3c3eeea6
RK
3811
3812 /* If this was an ASM, make sure that all the reload insns
3813 we have generated are valid. If not, give an error
3814 and delete them. */
3815
3816 if (asm_noperands (PATTERN (insn)) >= 0)
3817 for (p = NEXT_INSN (prev); p != next; p = NEXT_INSN (p))
3818 if (p != insn && GET_RTX_CLASS (GET_CODE (p)) == 'i'
3819 && (recog_memoized (p) < 0
0eadeb15 3820 || (extract_insn (p), ! constrain_operands (1))))
3c3eeea6
RK
3821 {
3822 error_for_asm (insn,
3823 "`asm' operand requires impossible reload");
3824 PUT_CODE (p, NOTE);
3825 NOTE_SOURCE_FILE (p) = 0;
3826 NOTE_LINE_NUMBER (p) = NOTE_INSN_DELETED;
3827 }
32131a9c
RK
3828 }
3829 /* Any previously reloaded spilled pseudo reg, stored in this insn,
3830 is no longer validly lying around to save a future reload.
3831 Note that this does not detect pseudos that were reloaded
3832 for this insn in order to be stored in
3833 (obeying register constraints). That is correct; such reload
3834 registers ARE still valid. */
84832317 3835 note_stores (oldpat, forget_old_reloads_1, NULL);
32131a9c
RK
3836
3837 /* There may have been CLOBBER insns placed after INSN. So scan
3838 between INSN and NEXT and use them to forget old reloads. */
7609e720 3839 for (x = NEXT_INSN (insn); x != old_next; x = NEXT_INSN (x))
32131a9c 3840 if (GET_CODE (x) == INSN && GET_CODE (PATTERN (x)) == CLOBBER)
84832317 3841 note_stores (PATTERN (x), forget_old_reloads_1, NULL);
32131a9c
RK
3842
3843#ifdef AUTO_INC_DEC
cb2afeb3
R
3844 /* Likewise for regs altered by auto-increment in this insn.
3845 REG_INC notes have been changed by reloading:
3846 find_reloads_address_1 records substitutions for them,
3847 which have been performed by subst_reloads above. */
3848 for (i = n_reloads - 1; i >= 0; i--)
3849 {
eceef4c9 3850 rtx in_reg = rld[i].in_reg;
cb2afeb3
R
3851 if (in_reg)
3852 {
3853 enum rtx_code code = GET_CODE (in_reg);
3854 /* PRE_INC / PRE_DEC will have the reload register ending up
3855 with the same value as the stack slot, but that doesn't
3856 hold true for POST_INC / POST_DEC. Either we have to
3857 convert the memory access to a true POST_INC / POST_DEC,
3858 or we can't use the reload register for inheritance. */
3859 if ((code == POST_INC || code == POST_DEC)
3860 && TEST_HARD_REG_BIT (reg_reloaded_valid,
eceef4c9 3861 REGNO (rld[i].reg_rtx))
04bbb0c5
JW
3862 /* Make sure it is the inc/dec pseudo, and not
3863 some other (e.g. output operand) pseudo. */
eceef4c9 3864 && (reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
04bbb0c5 3865 == REGNO (XEXP (in_reg, 0))))
05d10675 3866
cb2afeb3 3867 {
eceef4c9 3868 rtx reload_reg = rld[i].reg_rtx;
cb2afeb3
R
3869 enum machine_mode mode = GET_MODE (reload_reg);
3870 int n = 0;
3871 rtx p;
3872
3873 for (p = PREV_INSN (old_next); p != prev; p = PREV_INSN (p))
3874 {
3875 /* We really want to ignore REG_INC notes here, so
3876 use PATTERN (p) as argument to reg_set_p . */
3877 if (reg_set_p (reload_reg, PATTERN (p)))
3878 break;
3879 n = count_occurrences (PATTERN (p), reload_reg);
3880 if (! n)
3881 continue;
3882 if (n == 1)
f67c2384
JL
3883 {
3884 n = validate_replace_rtx (reload_reg,
3885 gen_rtx (code, mode,
3886 reload_reg),
3887 p);
3888
3889 /* We must also verify that the constraints
3890 are met after the replacement. */
3891 extract_insn (p);
3892 if (n)
3893 n = constrain_operands (1);
3894 else
3895 break;
3896
3897 /* If the constraints were not met, then
3898 undo the replacement. */
3899 if (!n)
3900 {
3901 validate_replace_rtx (gen_rtx (code, mode,
3902 reload_reg),
3903 reload_reg, p);
3904 break;
3905 }
05d10675 3906
f67c2384 3907 }
cb2afeb3
R
3908 break;
3909 }
3910 if (n == 1)
02eb1393
R
3911 {
3912 REG_NOTES (p)
3913 = gen_rtx_EXPR_LIST (REG_INC, reload_reg,
3914 REG_NOTES (p));
3915 /* Mark this as having an output reload so that the
3916 REG_INC processing code below won't invalidate
3917 the reload for inheritance. */
3918 SET_HARD_REG_BIT (reg_is_output_reload,
3919 REGNO (reload_reg));
3920 reg_has_output_reload[REGNO (XEXP (in_reg, 0))] = 1;
3921 }
cb2afeb3 3922 else
84832317
MM
3923 forget_old_reloads_1 (XEXP (in_reg, 0), NULL_RTX,
3924 NULL);
cb2afeb3 3925 }
02eb1393
R
3926 else if ((code == PRE_INC || code == PRE_DEC)
3927 && TEST_HARD_REG_BIT (reg_reloaded_valid,
eceef4c9 3928 REGNO (rld[i].reg_rtx))
02eb1393
R
3929 /* Make sure it is the inc/dec pseudo, and not
3930 some other (e.g. output operand) pseudo. */
eceef4c9 3931 && (reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
02eb1393
R
3932 == REGNO (XEXP (in_reg, 0))))
3933 {
3934 SET_HARD_REG_BIT (reg_is_output_reload,
eceef4c9 3935 REGNO (rld[i].reg_rtx));
02eb1393
R
3936 reg_has_output_reload[REGNO (XEXP (in_reg, 0))] = 1;
3937 }
cb2afeb3
R
3938 }
3939 }
02eb1393
R
3940 /* If a pseudo that got a hard register is auto-incremented,
3941 we must purge records of copying it into pseudos without
3942 hard registers. */
32131a9c
RK
3943 for (x = REG_NOTES (insn); x; x = XEXP (x, 1))
3944 if (REG_NOTE_KIND (x) == REG_INC)
3945 {
3946 /* See if this pseudo reg was reloaded in this insn.
3947 If so, its last-reload info is still valid
3948 because it is based on this insn's reload. */
3949 for (i = 0; i < n_reloads; i++)
eceef4c9 3950 if (rld[i].out == XEXP (x, 0))
32131a9c
RK
3951 break;
3952
08fb99fa 3953 if (i == n_reloads)
84832317 3954 forget_old_reloads_1 (XEXP (x, 0), NULL_RTX, NULL);
32131a9c
RK
3955 }
3956#endif
3957 }
3958 /* A reload reg's contents are unknown after a label. */
3959 if (GET_CODE (insn) == CODE_LABEL)
e6e52be0 3960 CLEAR_HARD_REG_SET (reg_reloaded_valid);
32131a9c
RK
3961
3962 /* Don't assume a reload reg is still good after a call insn
3963 if it is a call-used reg. */
546b63fb 3964 else if (GET_CODE (insn) == CALL_INSN)
e6e52be0 3965 AND_COMPL_HARD_REG_SET(reg_reloaded_valid, call_used_reg_set);
32131a9c 3966 }
ff154f78
MM
3967
3968 /* Clean up. */
3969 free (reg_last_reload_reg);
3970 free (reg_has_output_reload);
32131a9c
RK
3971}
3972
3973/* Discard all record of any value reloaded from X,
3974 or reloaded in X from someplace else;
3975 unless X is an output reload reg of the current insn.
3976
3977 X may be a hard reg (the reload reg)
3978 or it may be a pseudo reg that was reloaded from. */
3979
3980static void
84832317 3981forget_old_reloads_1 (x, ignored, data)
32131a9c 3982 rtx x;
487a6e06 3983 rtx ignored ATTRIBUTE_UNUSED;
84832317 3984 void *data ATTRIBUTE_UNUSED;
32131a9c 3985{
770ae6cc
RK
3986 unsigned int regno;
3987 unsigned int nr;
0a2e51a9
RS
3988 int offset = 0;
3989
3990 /* note_stores does give us subregs of hard regs. */
3991 while (GET_CODE (x) == SUBREG)
3992 {
3993 offset += SUBREG_WORD (x);
3994 x = SUBREG_REG (x);
3995 }
32131a9c
RK
3996
3997 if (GET_CODE (x) != REG)
3998 return;
3999
0a2e51a9 4000 regno = REGNO (x) + offset;
32131a9c
RK
4001
4002 if (regno >= FIRST_PSEUDO_REGISTER)
4003 nr = 1;
4004 else
4005 {
770ae6cc
RK
4006 unsigned int i;
4007
32131a9c
RK
4008 nr = HARD_REGNO_NREGS (regno, GET_MODE (x));
4009 /* Storing into a spilled-reg invalidates its contents.
4010 This can happen if a block-local pseudo is allocated to that reg
4011 and it wasn't spilled because this block's total need is 0.
4012 Then some insn might have an optional reload and use this reg. */
4013 for (i = 0; i < nr; i++)
e6e52be0
R
4014 /* But don't do this if the reg actually serves as an output
4015 reload reg in the current instruction. */
4016 if (n_reloads == 0
4017 || ! TEST_HARD_REG_BIT (reg_is_output_reload, regno + i))
4018 CLEAR_HARD_REG_BIT (reg_reloaded_valid, regno + i);
32131a9c
RK
4019 }
4020
4021 /* Since value of X has changed,
4022 forget any value previously copied from it. */
4023
4024 while (nr-- > 0)
4025 /* But don't forget a copy if this is the output reload
4026 that establishes the copy's validity. */
4027 if (n_reloads == 0 || reg_has_output_reload[regno + nr] == 0)
4028 reg_last_reload_reg[regno + nr] = 0;
4029}
4030\f
32131a9c
RK
4031/* The following HARD_REG_SETs indicate when each hard register is
4032 used for a reload of various parts of the current insn. */
4033
9e3a9cf2
BS
4034/* If reg is unavailable for all reloads. */
4035static HARD_REG_SET reload_reg_unavailable;
32131a9c
RK
4036/* If reg is in use as a reload reg for a RELOAD_OTHER reload. */
4037static HARD_REG_SET reload_reg_used;
546b63fb
RK
4038/* If reg is in use for a RELOAD_FOR_INPUT_ADDRESS reload for operand I. */
4039static HARD_REG_SET reload_reg_used_in_input_addr[MAX_RECOG_OPERANDS];
47c8cf91
ILT
4040/* If reg is in use for a RELOAD_FOR_INPADDR_ADDRESS reload for operand I. */
4041static HARD_REG_SET reload_reg_used_in_inpaddr_addr[MAX_RECOG_OPERANDS];
546b63fb
RK
4042/* If reg is in use for a RELOAD_FOR_OUTPUT_ADDRESS reload for operand I. */
4043static HARD_REG_SET reload_reg_used_in_output_addr[MAX_RECOG_OPERANDS];
47c8cf91
ILT
4044/* If reg is in use for a RELOAD_FOR_OUTADDR_ADDRESS reload for operand I. */
4045static HARD_REG_SET reload_reg_used_in_outaddr_addr[MAX_RECOG_OPERANDS];
546b63fb
RK
4046/* If reg is in use for a RELOAD_FOR_INPUT reload for operand I. */
4047static HARD_REG_SET reload_reg_used_in_input[MAX_RECOG_OPERANDS];
4048/* If reg is in use for a RELOAD_FOR_OUTPUT reload for operand I. */
4049static HARD_REG_SET reload_reg_used_in_output[MAX_RECOG_OPERANDS];
32131a9c
RK
4050/* If reg is in use for a RELOAD_FOR_OPERAND_ADDRESS reload. */
4051static HARD_REG_SET reload_reg_used_in_op_addr;
893bc853
RK
4052/* If reg is in use for a RELOAD_FOR_OPADDR_ADDR reload. */
4053static HARD_REG_SET reload_reg_used_in_op_addr_reload;
546b63fb
RK
4054/* If reg is in use for a RELOAD_FOR_INSN reload. */
4055static HARD_REG_SET reload_reg_used_in_insn;
4056/* If reg is in use for a RELOAD_FOR_OTHER_ADDRESS reload. */
4057static HARD_REG_SET reload_reg_used_in_other_addr;
32131a9c
RK
4058
4059/* If reg is in use as a reload reg for any sort of reload. */
4060static HARD_REG_SET reload_reg_used_at_all;
4061
be7ae2a4
RK
4062/* If reg is use as an inherited reload. We just mark the first register
4063 in the group. */
4064static HARD_REG_SET reload_reg_used_for_inherit;
4065
f1db3576
JL
4066/* Records which hard regs are used in any way, either as explicit use or
4067 by being allocated to a pseudo during any point of the current insn. */
4068static HARD_REG_SET reg_used_in_insn;
297927a8 4069
546b63fb
RK
4070/* Mark reg REGNO as in use for a reload of the sort spec'd by OPNUM and
4071 TYPE. MODE is used to indicate how many consecutive regs are
4072 actually used. */
32131a9c
RK
4073
4074static void
546b63fb 4075mark_reload_reg_in_use (regno, opnum, type, mode)
770ae6cc 4076 unsigned int regno;
546b63fb
RK
4077 int opnum;
4078 enum reload_type type;
32131a9c
RK
4079 enum machine_mode mode;
4080{
770ae6cc
RK
4081 unsigned int nregs = HARD_REGNO_NREGS (regno, mode);
4082 unsigned int i;
32131a9c
RK
4083
4084 for (i = regno; i < nregs + regno; i++)
4085 {
546b63fb 4086 switch (type)
32131a9c
RK
4087 {
4088 case RELOAD_OTHER:
4089 SET_HARD_REG_BIT (reload_reg_used, i);
4090 break;
4091
546b63fb
RK
4092 case RELOAD_FOR_INPUT_ADDRESS:
4093 SET_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], i);
32131a9c
RK
4094 break;
4095
47c8cf91
ILT
4096 case RELOAD_FOR_INPADDR_ADDRESS:
4097 SET_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], i);
4098 break;
4099
546b63fb
RK
4100 case RELOAD_FOR_OUTPUT_ADDRESS:
4101 SET_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], i);
32131a9c
RK
4102 break;
4103
47c8cf91
ILT
4104 case RELOAD_FOR_OUTADDR_ADDRESS:
4105 SET_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], i);
4106 break;
4107
32131a9c
RK
4108 case RELOAD_FOR_OPERAND_ADDRESS:
4109 SET_HARD_REG_BIT (reload_reg_used_in_op_addr, i);
4110 break;
4111
893bc853
RK
4112 case RELOAD_FOR_OPADDR_ADDR:
4113 SET_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, i);
4114 break;
4115
546b63fb
RK
4116 case RELOAD_FOR_OTHER_ADDRESS:
4117 SET_HARD_REG_BIT (reload_reg_used_in_other_addr, i);
4118 break;
4119
32131a9c 4120 case RELOAD_FOR_INPUT:
546b63fb 4121 SET_HARD_REG_BIT (reload_reg_used_in_input[opnum], i);
32131a9c
RK
4122 break;
4123
4124 case RELOAD_FOR_OUTPUT:
546b63fb
RK
4125 SET_HARD_REG_BIT (reload_reg_used_in_output[opnum], i);
4126 break;
4127
4128 case RELOAD_FOR_INSN:
4129 SET_HARD_REG_BIT (reload_reg_used_in_insn, i);
32131a9c
RK
4130 break;
4131 }
4132
4133 SET_HARD_REG_BIT (reload_reg_used_at_all, i);
4134 }
4135}
4136
be7ae2a4
RK
4137/* Similarly, but show REGNO is no longer in use for a reload. */
4138
4139static void
4140clear_reload_reg_in_use (regno, opnum, type, mode)
770ae6cc 4141 unsigned int regno;
be7ae2a4
RK
4142 int opnum;
4143 enum reload_type type;
4144 enum machine_mode mode;
4145{
770ae6cc
RK
4146 unsigned int nregs = HARD_REGNO_NREGS (regno, mode);
4147 unsigned int start_regno, end_regno, r;
be7ae2a4 4148 int i;
cb2afeb3
R
4149 /* A complication is that for some reload types, inheritance might
4150 allow multiple reloads of the same types to share a reload register.
4151 We set check_opnum if we have to check only reloads with the same
4152 operand number, and check_any if we have to check all reloads. */
4153 int check_opnum = 0;
4154 int check_any = 0;
4155 HARD_REG_SET *used_in_set;
be7ae2a4 4156
cb2afeb3 4157 switch (type)
be7ae2a4 4158 {
cb2afeb3
R
4159 case RELOAD_OTHER:
4160 used_in_set = &reload_reg_used;
4161 break;
be7ae2a4 4162
cb2afeb3
R
4163 case RELOAD_FOR_INPUT_ADDRESS:
4164 used_in_set = &reload_reg_used_in_input_addr[opnum];
4165 break;
be7ae2a4 4166
cb2afeb3
R
4167 case RELOAD_FOR_INPADDR_ADDRESS:
4168 check_opnum = 1;
4169 used_in_set = &reload_reg_used_in_inpaddr_addr[opnum];
4170 break;
47c8cf91 4171
cb2afeb3
R
4172 case RELOAD_FOR_OUTPUT_ADDRESS:
4173 used_in_set = &reload_reg_used_in_output_addr[opnum];
4174 break;
be7ae2a4 4175
cb2afeb3
R
4176 case RELOAD_FOR_OUTADDR_ADDRESS:
4177 check_opnum = 1;
4178 used_in_set = &reload_reg_used_in_outaddr_addr[opnum];
4179 break;
47c8cf91 4180
cb2afeb3
R
4181 case RELOAD_FOR_OPERAND_ADDRESS:
4182 used_in_set = &reload_reg_used_in_op_addr;
4183 break;
be7ae2a4 4184
cb2afeb3
R
4185 case RELOAD_FOR_OPADDR_ADDR:
4186 check_any = 1;
4187 used_in_set = &reload_reg_used_in_op_addr_reload;
4188 break;
893bc853 4189
cb2afeb3
R
4190 case RELOAD_FOR_OTHER_ADDRESS:
4191 used_in_set = &reload_reg_used_in_other_addr;
4192 check_any = 1;
4193 break;
be7ae2a4 4194
cb2afeb3
R
4195 case RELOAD_FOR_INPUT:
4196 used_in_set = &reload_reg_used_in_input[opnum];
4197 break;
be7ae2a4 4198
cb2afeb3
R
4199 case RELOAD_FOR_OUTPUT:
4200 used_in_set = &reload_reg_used_in_output[opnum];
4201 break;
be7ae2a4 4202
cb2afeb3
R
4203 case RELOAD_FOR_INSN:
4204 used_in_set = &reload_reg_used_in_insn;
4205 break;
4206 default:
4207 abort ();
4208 }
4209 /* We resolve conflicts with remaining reloads of the same type by
4210 excluding the intervals of of reload registers by them from the
4211 interval of freed reload registers. Since we only keep track of
4212 one set of interval bounds, we might have to exclude somewhat
4213 more then what would be necessary if we used a HARD_REG_SET here.
4214 But this should only happen very infrequently, so there should
4215 be no reason to worry about it. */
05d10675 4216
cb2afeb3
R
4217 start_regno = regno;
4218 end_regno = regno + nregs;
4219 if (check_opnum || check_any)
4220 {
4221 for (i = n_reloads - 1; i >= 0; i--)
4222 {
eceef4c9
BS
4223 if (rld[i].when_needed == type
4224 && (check_any || rld[i].opnum == opnum)
4225 && rld[i].reg_rtx)
cb2afeb3 4226 {
770ae6cc
RK
4227 unsigned int conflict_start = true_regnum (rld[i].reg_rtx);
4228 unsigned int conflict_end
cb2afeb3 4229 = (conflict_start
8ec450a4 4230 + HARD_REGNO_NREGS (conflict_start, rld[i].mode));
cb2afeb3
R
4231
4232 /* If there is an overlap with the first to-be-freed register,
4233 adjust the interval start. */
4234 if (conflict_start <= start_regno && conflict_end > start_regno)
4235 start_regno = conflict_end;
4236 /* Otherwise, if there is a conflict with one of the other
4237 to-be-freed registers, adjust the interval end. */
4238 if (conflict_start > start_regno && conflict_start < end_regno)
4239 end_regno = conflict_start;
4240 }
be7ae2a4
RK
4241 }
4242 }
770ae6cc
RK
4243
4244 for (r = start_regno; r < end_regno; r++)
4245 CLEAR_HARD_REG_BIT (*used_in_set, r);
be7ae2a4
RK
4246}
4247
32131a9c 4248/* 1 if reg REGNO is free as a reload reg for a reload of the sort
546b63fb 4249 specified by OPNUM and TYPE. */
32131a9c
RK
4250
4251static int
546b63fb 4252reload_reg_free_p (regno, opnum, type)
770ae6cc 4253 unsigned int regno;
546b63fb
RK
4254 int opnum;
4255 enum reload_type type;
32131a9c 4256{
546b63fb
RK
4257 int i;
4258
2edc8d65 4259 /* In use for a RELOAD_OTHER means it's not available for anything. */
9e3a9cf2
BS
4260 if (TEST_HARD_REG_BIT (reload_reg_used, regno)
4261 || TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
32131a9c 4262 return 0;
546b63fb
RK
4263
4264 switch (type)
32131a9c
RK
4265 {
4266 case RELOAD_OTHER:
2edc8d65
RK
4267 /* In use for anything means we can't use it for RELOAD_OTHER. */
4268 if (TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno)
224f1d71
RK
4269 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4270 || TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
4271 return 0;
4272
4273 for (i = 0; i < reload_n_operands; i++)
4274 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
47c8cf91 4275 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
224f1d71 4276 || TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
47c8cf91 4277 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
224f1d71
RK
4278 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
4279 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4280 return 0;
4281
4282 return 1;
32131a9c 4283
32131a9c 4284 case RELOAD_FOR_INPUT:
546b63fb
RK
4285 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4286 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno))
4287 return 0;
4288
893bc853
RK
4289 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
4290 return 0;
4291
546b63fb
RK
4292 /* If it is used for some other input, can't use it. */
4293 for (i = 0; i < reload_n_operands; i++)
4294 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4295 return 0;
4296
4297 /* If it is used in a later operand's address, can't use it. */
4298 for (i = opnum + 1; i < reload_n_operands; i++)
47c8cf91
ILT
4299 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4300 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
546b63fb
RK
4301 return 0;
4302
4303 return 1;
4304
4305 case RELOAD_FOR_INPUT_ADDRESS:
4306 /* Can't use a register if it is used for an input address for this
4307 operand or used as an input in an earlier one. */
47c8cf91
ILT
4308 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], regno)
4309 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
4310 return 0;
4311
4312 for (i = 0; i < opnum; i++)
4313 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4314 return 0;
4315
4316 return 1;
4317
4318 case RELOAD_FOR_INPADDR_ADDRESS:
4319 /* Can't use a register if it is used for an input address
05d10675
BS
4320 for this operand or used as an input in an earlier
4321 one. */
47c8cf91 4322 if (TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
546b63fb
RK
4323 return 0;
4324
4325 for (i = 0; i < opnum; i++)
4326 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4327 return 0;
4328
4329 return 1;
4330
4331 case RELOAD_FOR_OUTPUT_ADDRESS:
4332 /* Can't use a register if it is used for an output address for this
4333 operand or used as an output in this or a later operand. */
4334 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], regno))
4335 return 0;
4336
4337 for (i = opnum; i < reload_n_operands; i++)
4338 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4339 return 0;
4340
4341 return 1;
4342
47c8cf91
ILT
4343 case RELOAD_FOR_OUTADDR_ADDRESS:
4344 /* Can't use a register if it is used for an output address
05d10675
BS
4345 for this operand or used as an output in this or a
4346 later operand. */
47c8cf91
ILT
4347 if (TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], regno))
4348 return 0;
4349
4350 for (i = opnum; i < reload_n_operands; i++)
4351 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4352 return 0;
4353
4354 return 1;
4355
32131a9c 4356 case RELOAD_FOR_OPERAND_ADDRESS:
546b63fb
RK
4357 for (i = 0; i < reload_n_operands; i++)
4358 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4359 return 0;
4360
4361 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4362 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
4363
893bc853
RK
4364 case RELOAD_FOR_OPADDR_ADDR:
4365 for (i = 0; i < reload_n_operands; i++)
05d10675
BS
4366 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4367 return 0;
893bc853 4368
a94ce333 4369 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno));
893bc853 4370
32131a9c 4371 case RELOAD_FOR_OUTPUT:
546b63fb
RK
4372 /* This cannot share a register with RELOAD_FOR_INSN reloads, other
4373 outputs, or an operand address for this or an earlier output. */
4374 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
4375 return 0;
4376
4377 for (i = 0; i < reload_n_operands; i++)
4378 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4379 return 0;
4380
4381 for (i = 0; i <= opnum; i++)
47c8cf91
ILT
4382 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4383 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
546b63fb
RK
4384 return 0;
4385
4386 return 1;
4387
4388 case RELOAD_FOR_INSN:
4389 for (i = 0; i < reload_n_operands; i++)
4390 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
4391 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4392 return 0;
4393
4394 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4395 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
4396
4397 case RELOAD_FOR_OTHER_ADDRESS:
4398 return ! TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno);
32131a9c
RK
4399 }
4400 abort ();
4401}
4402
32131a9c 4403/* Return 1 if the value in reload reg REGNO, as used by a reload
546b63fb 4404 needed for the part of the insn specified by OPNUM and TYPE,
32131a9c
RK
4405 is still available in REGNO at the end of the insn.
4406
4407 We can assume that the reload reg was already tested for availability
4408 at the time it is needed, and we should not check this again,
4409 in case the reg has already been marked in use. */
4410
4411static int
546b63fb 4412reload_reg_reaches_end_p (regno, opnum, type)
770ae6cc 4413 unsigned int regno;
546b63fb
RK
4414 int opnum;
4415 enum reload_type type;
32131a9c 4416{
546b63fb
RK
4417 int i;
4418
4419 switch (type)
32131a9c
RK
4420 {
4421 case RELOAD_OTHER:
4422 /* Since a RELOAD_OTHER reload claims the reg for the entire insn,
4423 its value must reach the end. */
4424 return 1;
4425
4426 /* If this use is for part of the insn,
05d10675 4427 its value reaches if no subsequent part uses the same register.
546b63fb
RK
4428 Just like the above function, don't try to do this with lots
4429 of fallthroughs. */
4430
4431 case RELOAD_FOR_OTHER_ADDRESS:
4432 /* Here we check for everything else, since these don't conflict
4433 with anything else and everything comes later. */
4434
4435 for (i = 0; i < reload_n_operands; i++)
4436 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
47c8cf91 4437 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
546b63fb
RK
4438 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno)
4439 || TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
47c8cf91 4440 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
546b63fb
RK
4441 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4442 return 0;
4443
4444 return (! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4445 && ! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4446 && ! TEST_HARD_REG_BIT (reload_reg_used, regno));
4447
4448 case RELOAD_FOR_INPUT_ADDRESS:
47c8cf91 4449 case RELOAD_FOR_INPADDR_ADDRESS:
546b63fb
RK
4450 /* Similar, except that we check only for this and subsequent inputs
4451 and the address of only subsequent inputs and we do not need
4452 to check for RELOAD_OTHER objects since they are known not to
4453 conflict. */
4454
4455 for (i = opnum; i < reload_n_operands; i++)
4456 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4457 return 0;
4458
4459 for (i = opnum + 1; i < reload_n_operands; i++)
47c8cf91
ILT
4460 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4461 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
546b63fb
RK
4462 return 0;
4463
4464 for (i = 0; i < reload_n_operands; i++)
4465 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
47c8cf91 4466 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
546b63fb
RK
4467 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4468 return 0;
4469
893bc853
RK
4470 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
4471 return 0;
4472
546b63fb
RK
4473 return (! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4474 && ! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno));
4475
32131a9c 4476 case RELOAD_FOR_INPUT:
546b63fb 4477 /* Similar to input address, except we start at the next operand for
05d10675 4478 both input and input address and we do not check for
546b63fb
RK
4479 RELOAD_FOR_OPERAND_ADDRESS and RELOAD_FOR_INSN since these
4480 would conflict. */
4481
4482 for (i = opnum + 1; i < reload_n_operands; i++)
4483 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
47c8cf91 4484 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
546b63fb
RK
4485 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4486 return 0;
4487
0f41302f 4488 /* ... fall through ... */
546b63fb 4489
32131a9c 4490 case RELOAD_FOR_OPERAND_ADDRESS:
546b63fb
RK
4491 /* Check outputs and their addresses. */
4492
4493 for (i = 0; i < reload_n_operands; i++)
4494 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
47c8cf91 4495 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
546b63fb
RK
4496 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4497 return 0;
4498
4499 return 1;
4500
893bc853
RK
4501 case RELOAD_FOR_OPADDR_ADDR:
4502 for (i = 0; i < reload_n_operands; i++)
4503 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
47c8cf91 4504 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
893bc853
RK
4505 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4506 return 0;
4507
a94ce333
JW
4508 return (! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4509 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno));
893bc853 4510
546b63fb 4511 case RELOAD_FOR_INSN:
893bc853 4512 /* These conflict with other outputs with RELOAD_OTHER. So
546b63fb
RK
4513 we need only check for output addresses. */
4514
4515 opnum = -1;
4516
0f41302f 4517 /* ... fall through ... */
546b63fb 4518
32131a9c 4519 case RELOAD_FOR_OUTPUT:
546b63fb 4520 case RELOAD_FOR_OUTPUT_ADDRESS:
47c8cf91 4521 case RELOAD_FOR_OUTADDR_ADDRESS:
546b63fb
RK
4522 /* We already know these can't conflict with a later output. So the
4523 only thing to check are later output addresses. */
4524 for (i = opnum + 1; i < reload_n_operands; i++)
47c8cf91
ILT
4525 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4526 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
546b63fb
RK
4527 return 0;
4528
32131a9c
RK
4529 return 1;
4530 }
546b63fb 4531
32131a9c
RK
4532 abort ();
4533}
4534\f
351aa1c1
RK
4535/* Return 1 if the reloads denoted by R1 and R2 cannot share a register.
4536 Return 0 otherwise.
4537
4538 This function uses the same algorithm as reload_reg_free_p above. */
4539
f5963e61 4540int
351aa1c1
RK
4541reloads_conflict (r1, r2)
4542 int r1, r2;
4543{
eceef4c9
BS
4544 enum reload_type r1_type = rld[r1].when_needed;
4545 enum reload_type r2_type = rld[r2].when_needed;
4546 int r1_opnum = rld[r1].opnum;
4547 int r2_opnum = rld[r2].opnum;
351aa1c1 4548
2edc8d65
RK
4549 /* RELOAD_OTHER conflicts with everything. */
4550 if (r2_type == RELOAD_OTHER)
351aa1c1
RK
4551 return 1;
4552
4553 /* Otherwise, check conflicts differently for each type. */
4554
4555 switch (r1_type)
4556 {
4557 case RELOAD_FOR_INPUT:
05d10675 4558 return (r2_type == RELOAD_FOR_INSN
351aa1c1 4559 || r2_type == RELOAD_FOR_OPERAND_ADDRESS
893bc853 4560 || r2_type == RELOAD_FOR_OPADDR_ADDR
351aa1c1 4561 || r2_type == RELOAD_FOR_INPUT
47c8cf91
ILT
4562 || ((r2_type == RELOAD_FOR_INPUT_ADDRESS
4563 || r2_type == RELOAD_FOR_INPADDR_ADDRESS)
4564 && r2_opnum > r1_opnum));
351aa1c1
RK
4565
4566 case RELOAD_FOR_INPUT_ADDRESS:
4567 return ((r2_type == RELOAD_FOR_INPUT_ADDRESS && r1_opnum == r2_opnum)
4568 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
4569
47c8cf91
ILT
4570 case RELOAD_FOR_INPADDR_ADDRESS:
4571 return ((r2_type == RELOAD_FOR_INPADDR_ADDRESS && r1_opnum == r2_opnum)
4572 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
4573
351aa1c1
RK
4574 case RELOAD_FOR_OUTPUT_ADDRESS:
4575 return ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS && r2_opnum == r1_opnum)
4576 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum >= r1_opnum));
4577
47c8cf91
ILT
4578 case RELOAD_FOR_OUTADDR_ADDRESS:
4579 return ((r2_type == RELOAD_FOR_OUTADDR_ADDRESS && r2_opnum == r1_opnum)
4580 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum >= r1_opnum));
4581
351aa1c1
RK
4582 case RELOAD_FOR_OPERAND_ADDRESS:
4583 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_INSN
a94ce333 4584 || r2_type == RELOAD_FOR_OPERAND_ADDRESS);
351aa1c1 4585
893bc853 4586 case RELOAD_FOR_OPADDR_ADDR:
05d10675 4587 return (r2_type == RELOAD_FOR_INPUT
a94ce333 4588 || r2_type == RELOAD_FOR_OPADDR_ADDR);
893bc853 4589
351aa1c1
RK
4590 case RELOAD_FOR_OUTPUT:
4591 return (r2_type == RELOAD_FOR_INSN || r2_type == RELOAD_FOR_OUTPUT
47c8cf91
ILT
4592 || ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS
4593 || r2_type == RELOAD_FOR_OUTADDR_ADDRESS)
ca1a4af1 4594 && r2_opnum <= r1_opnum));
351aa1c1
RK
4595
4596 case RELOAD_FOR_INSN:
4597 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_OUTPUT
4598 || r2_type == RELOAD_FOR_INSN
4599 || r2_type == RELOAD_FOR_OPERAND_ADDRESS);
4600
4601 case RELOAD_FOR_OTHER_ADDRESS:
4602 return r2_type == RELOAD_FOR_OTHER_ADDRESS;
4603
adab4fc5 4604 case RELOAD_OTHER:
2edc8d65 4605 return 1;
adab4fc5 4606
351aa1c1
RK
4607 default:
4608 abort ();
4609 }
4610}
4611\f
32131a9c
RK
4612/* Indexed by reload number, 1 if incoming value
4613 inherited from previous insns. */
4614char reload_inherited[MAX_RELOADS];
4615
4616/* For an inherited reload, this is the insn the reload was inherited from,
4617 if we know it. Otherwise, this is 0. */
4618rtx reload_inheritance_insn[MAX_RELOADS];
4619
4620/* If non-zero, this is a place to get the value of the reload,
4621 rather than using reload_in. */
4622rtx reload_override_in[MAX_RELOADS];
4623
e6e52be0
R
4624/* For each reload, the hard register number of the register used,
4625 or -1 if we did not need a register for this reload. */
32131a9c
RK
4626int reload_spill_index[MAX_RELOADS];
4627
6e684430
R
4628/* Return 1 if the value in reload reg REGNO, as used by a reload
4629 needed for the part of the insn specified by OPNUM and TYPE,
4630 may be used to load VALUE into it.
f5470689
R
4631
4632 Other read-only reloads with the same value do not conflict
4633 unless OUT is non-zero and these other reloads have to live while
4634 output reloads live.
dfe96118
R
4635 If OUT is CONST0_RTX, this is a special case: it means that the
4636 test should not be for using register REGNO as reload register, but
4637 for copying from register REGNO into the reload register.
f5470689
R
4638
4639 RELOADNUM is the number of the reload we want to load this value for;
4640 a reload does not conflict with itself.
4641
dfe96118
R
4642 When IGNORE_ADDRESS_RELOADS is set, we can not have conflicts with
4643 reloads that load an address for the very reload we are considering.
4644
6e684430
R
4645 The caller has to make sure that there is no conflict with the return
4646 register. */
4647static int
dfe96118 4648reload_reg_free_for_value_p (regno, opnum, type, value, out, reloadnum,
05d10675 4649 ignore_address_reloads)
6e684430
R
4650 int regno;
4651 int opnum;
4652 enum reload_type type;
f5470689
R
4653 rtx value, out;
4654 int reloadnum;
5828374f 4655 int ignore_address_reloads;
6e684430
R
4656{
4657 int time1;
09a308fe
R
4658 /* Set if we see an input reload that must not share its reload register
4659 with any new earlyclobber, but might otherwise share the reload
4660 register with an output or input-output reload. */
4661 int check_earlyclobber = 0;
6e684430 4662 int i;
dfe96118
R
4663 int copy = 0;
4664
9e3a9cf2 4665 if (TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
dc8842bf
AH
4666 return 0;
4667
dfe96118
R
4668 if (out == const0_rtx)
4669 {
4670 copy = 1;
4671 out = NULL_RTX;
4672 }
6e684430
R
4673
4674 /* We use some pseudo 'time' value to check if the lifetimes of the
4675 new register use would overlap with the one of a previous reload
4676 that is not read-only or uses a different value.
4677 The 'time' used doesn't have to be linear in any shape or form, just
4678 monotonic.
4679 Some reload types use different 'buckets' for each operand.
4680 So there are MAX_RECOG_OPERANDS different time values for each
cecbf6e2
R
4681 such reload type.
4682 We compute TIME1 as the time when the register for the prospective
4683 new reload ceases to be live, and TIME2 for each existing
4684 reload as the time when that the reload register of that reload
4685 becomes live.
4686 Where there is little to be gained by exact lifetime calculations,
4687 we just make conservative assumptions, i.e. a longer lifetime;
4688 this is done in the 'default:' cases. */
6e684430
R
4689 switch (type)
4690 {
4691 case RELOAD_FOR_OTHER_ADDRESS:
203588e7 4692 /* RELOAD_FOR_OTHER_ADDRESS conflicts with RELOAD_OTHER reloads. */
c2b4b171 4693 time1 = copy ? 0 : 1;
6e684430 4694 break;
dfe96118
R
4695 case RELOAD_OTHER:
4696 time1 = copy ? 1 : MAX_RECOG_OPERANDS * 5 + 5;
4697 break;
05d10675
BS
4698 /* For each input, we may have a sequence of RELOAD_FOR_INPADDR_ADDRESS,
4699 RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT. By adding 0 / 1 / 2 ,
4700 respectively, to the time values for these, we get distinct time
4701 values. To get distinct time values for each operand, we have to
4702 multiply opnum by at least three. We round that up to four because
4703 multiply by four is often cheaper. */
6e684430 4704 case RELOAD_FOR_INPADDR_ADDRESS:
dfe96118 4705 time1 = opnum * 4 + 2;
6e684430
R
4706 break;
4707 case RELOAD_FOR_INPUT_ADDRESS:
dfe96118
R
4708 time1 = opnum * 4 + 3;
4709 break;
4710 case RELOAD_FOR_INPUT:
4711 /* All RELOAD_FOR_INPUT reloads remain live till the instruction
4712 executes (inclusive). */
4713 time1 = copy ? opnum * 4 + 4 : MAX_RECOG_OPERANDS * 4 + 3;
6e684430 4714 break;
cb2afeb3 4715 case RELOAD_FOR_OPADDR_ADDR:
05d10675
BS
4716 /* opnum * 4 + 4
4717 <= (MAX_RECOG_OPERANDS - 1) * 4 + 4 == MAX_RECOG_OPERANDS * 4 */
cb2afeb3
R
4718 time1 = MAX_RECOG_OPERANDS * 4 + 1;
4719 break;
4720 case RELOAD_FOR_OPERAND_ADDRESS:
4721 /* RELOAD_FOR_OPERAND_ADDRESS reloads are live even while the insn
4722 is executed. */
dfe96118
R
4723 time1 = copy ? MAX_RECOG_OPERANDS * 4 + 2 : MAX_RECOG_OPERANDS * 4 + 3;
4724 break;
4725 case RELOAD_FOR_OUTADDR_ADDRESS:
4726 time1 = MAX_RECOG_OPERANDS * 4 + 4 + opnum;
6e684430 4727 break;
6e684430 4728 case RELOAD_FOR_OUTPUT_ADDRESS:
dfe96118 4729 time1 = MAX_RECOG_OPERANDS * 4 + 5 + opnum;
6e684430
R
4730 break;
4731 default:
dfe96118 4732 time1 = MAX_RECOG_OPERANDS * 5 + 5;
6e684430
R
4733 }
4734
4735 for (i = 0; i < n_reloads; i++)
4736 {
eceef4c9 4737 rtx reg = rld[i].reg_rtx;
6e684430
R
4738 if (reg && GET_CODE (reg) == REG
4739 && ((unsigned) regno - true_regnum (reg)
83e0821b 4740 <= HARD_REGNO_NREGS (REGNO (reg), GET_MODE (reg)) - (unsigned)1)
f5470689 4741 && i != reloadnum)
6e684430 4742 {
eceef4c9
BS
4743 if (! rld[i].in || ! rtx_equal_p (rld[i].in, value)
4744 || rld[i].out || out)
6e684430 4745 {
09a308fe 4746 int time2;
eceef4c9 4747 switch (rld[i].when_needed)
f5470689
R
4748 {
4749 case RELOAD_FOR_OTHER_ADDRESS:
4750 time2 = 0;
4751 break;
4752 case RELOAD_FOR_INPADDR_ADDRESS:
cb2afeb3
R
4753 /* find_reloads makes sure that a
4754 RELOAD_FOR_{INP,OP,OUT}ADDR_ADDRESS reload is only used
4755 by at most one - the first -
4756 RELOAD_FOR_{INPUT,OPERAND,OUTPUT}_ADDRESS . If the
4757 address reload is inherited, the address address reload
4758 goes away, so we can ignore this conflict. */
dfe96118
R
4759 if (type == RELOAD_FOR_INPUT_ADDRESS && reloadnum == i + 1
4760 && ignore_address_reloads
4761 /* Unless the RELOAD_FOR_INPUT is an auto_inc expression.
4762 Then the address address is still needed to store
4763 back the new address. */
eceef4c9 4764 && ! rld[reloadnum].out)
cb2afeb3 4765 continue;
dfe96118
R
4766 /* Likewise, if a RELOAD_FOR_INPUT can inherit a value, its
4767 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS
4768 reloads go away. */
eceef4c9 4769 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
dfe96118
R
4770 && ignore_address_reloads
4771 /* Unless we are reloading an auto_inc expression. */
eceef4c9 4772 && ! rld[reloadnum].out)
dfe96118 4773 continue;
eceef4c9 4774 time2 = rld[i].opnum * 4 + 2;
f5470689
R
4775 break;
4776 case RELOAD_FOR_INPUT_ADDRESS:
eceef4c9 4777 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
dfe96118 4778 && ignore_address_reloads
eceef4c9 4779 && ! rld[reloadnum].out)
dfe96118 4780 continue;
eceef4c9 4781 time2 = rld[i].opnum * 4 + 3;
f5470689
R
4782 break;
4783 case RELOAD_FOR_INPUT:
eceef4c9 4784 time2 = rld[i].opnum * 4 + 4;
09a308fe 4785 check_earlyclobber = 1;
f5470689 4786 break;
eceef4c9 4787 /* rld[i].opnum * 4 + 4 <= (MAX_RECOG_OPERAND - 1) * 4 + 4
05d10675 4788 == MAX_RECOG_OPERAND * 4 */
cb2afeb3 4789 case RELOAD_FOR_OPADDR_ADDR:
dfe96118
R
4790 if (type == RELOAD_FOR_OPERAND_ADDRESS && reloadnum == i + 1
4791 && ignore_address_reloads
eceef4c9 4792 && ! rld[reloadnum].out)
cb2afeb3 4793 continue;
dfe96118 4794 time2 = MAX_RECOG_OPERANDS * 4 + 1;
cb2afeb3
R
4795 break;
4796 case RELOAD_FOR_OPERAND_ADDRESS:
dfe96118 4797 time2 = MAX_RECOG_OPERANDS * 4 + 2;
09a308fe 4798 check_earlyclobber = 1;
dfe96118
R
4799 break;
4800 case RELOAD_FOR_INSN:
4801 time2 = MAX_RECOG_OPERANDS * 4 + 3;
cb2afeb3 4802 break;
f5470689 4803 case RELOAD_FOR_OUTPUT:
05d10675
BS
4804 /* All RELOAD_FOR_OUTPUT reloads become live just after the
4805 instruction is executed. */
dfe96118 4806 time2 = MAX_RECOG_OPERANDS * 4 + 4;
f5470689 4807 break;
05d10675
BS
4808 /* The first RELOAD_FOR_OUTADDR_ADDRESS reload conflicts with
4809 the RELOAD_FOR_OUTPUT reloads, so assign it the same time
4810 value. */
cb2afeb3 4811 case RELOAD_FOR_OUTADDR_ADDRESS:
dfe96118
R
4812 if (type == RELOAD_FOR_OUTPUT_ADDRESS && reloadnum == i + 1
4813 && ignore_address_reloads
eceef4c9 4814 && ! rld[reloadnum].out)
cb2afeb3 4815 continue;
eceef4c9 4816 time2 = MAX_RECOG_OPERANDS * 4 + 4 + rld[i].opnum;
dfe96118 4817 break;
f5470689 4818 case RELOAD_FOR_OUTPUT_ADDRESS:
eceef4c9 4819 time2 = MAX_RECOG_OPERANDS * 4 + 5 + rld[i].opnum;
f5470689
R
4820 break;
4821 case RELOAD_OTHER:
dfe96118
R
4822 /* If there is no conflict in the input part, handle this
4823 like an output reload. */
eceef4c9 4824 if (! rld[i].in || rtx_equal_p (rld[i].in, value))
f5470689 4825 {
dfe96118 4826 time2 = MAX_RECOG_OPERANDS * 4 + 4;
57850c85 4827 /* Earlyclobbered outputs must conflict with inputs. */
09a308fe
R
4828 if (earlyclobber_operand_p (rld[i].out))
4829 time2 = MAX_RECOG_OPERANDS * 4 + 3;
57850c85 4830
f5470689
R
4831 break;
4832 }
dfe96118
R
4833 time2 = 1;
4834 /* RELOAD_OTHER might be live beyond instruction execution,
4835 but this is not obvious when we set time2 = 1. So check
4836 here if there might be a problem with the new reload
4837 clobbering the register used by the RELOAD_OTHER. */
4838 if (out)
4839 return 0;
4840 break;
f5470689 4841 default:
dfe96118 4842 return 0;
f5470689 4843 }
25963977 4844 if ((time1 >= time2
eceef4c9
BS
4845 && (! rld[i].in || rld[i].out
4846 || ! rtx_equal_p (rld[i].in, value)))
4847 || (out && rld[reloadnum].out_reg
701d55e8 4848 && time2 >= MAX_RECOG_OPERANDS * 4 + 3))
f5470689 4849 return 0;
6e684430 4850 }
6e684430
R
4851 }
4852 }
09a308fe
R
4853
4854 /* Earlyclobbered outputs must conflict with inputs. */
4855 if (check_earlyclobber && out && earlyclobber_operand_p (out))
4856 return 0;
4857
6e684430
R
4858 return 1;
4859}
4860
67e61fe7
BS
4861/* Give an error message saying we failed to find a reload for INSN,
4862 and clear out reload R. */
4863static void
4864failed_reload (insn, r)
4865 rtx insn;
4866 int r;
4867{
4868 if (asm_noperands (PATTERN (insn)) < 0)
4869 /* It's the compiler's fault. */
4870 fatal_insn ("Could not find a spill register", insn);
4871
4872 /* It's the user's fault; the operand's mode and constraint
4873 don't match. Disable this reload so we don't crash in final. */
4874 error_for_asm (insn,
4875 "`asm' operand constraint incompatible with operand size");
4876 rld[r].in = 0;
4877 rld[r].out = 0;
4878 rld[r].reg_rtx = 0;
4879 rld[r].optional = 1;
4880 rld[r].secondary_p = 1;
4881}
4882
4883/* I is the index in SPILL_REG_RTX of the reload register we are to allocate
4884 for reload R. If it's valid, get an rtx for it. Return nonzero if
4885 successful. */
4886static int
4887set_reload_reg (i, r)
4888 int i, r;
4889{
4890 int regno;
4891 rtx reg = spill_reg_rtx[i];
4892
4893 if (reg == 0 || GET_MODE (reg) != rld[r].mode)
4894 spill_reg_rtx[i] = reg
4895 = gen_rtx_REG (rld[r].mode, spill_regs[i]);
4896
4897 regno = true_regnum (reg);
4898
4899 /* Detect when the reload reg can't hold the reload mode.
4900 This used to be one `if', but Sequent compiler can't handle that. */
4901 if (HARD_REGNO_MODE_OK (regno, rld[r].mode))
4902 {
4903 enum machine_mode test_mode = VOIDmode;
4904 if (rld[r].in)
4905 test_mode = GET_MODE (rld[r].in);
4906 /* If rld[r].in has VOIDmode, it means we will load it
4907 in whatever mode the reload reg has: to wit, rld[r].mode.
4908 We have already tested that for validity. */
4909 /* Aside from that, we need to test that the expressions
4910 to reload from or into have modes which are valid for this
4911 reload register. Otherwise the reload insns would be invalid. */
4912 if (! (rld[r].in != 0 && test_mode != VOIDmode
4913 && ! HARD_REGNO_MODE_OK (regno, test_mode)))
4914 if (! (rld[r].out != 0
4915 && ! HARD_REGNO_MODE_OK (regno, GET_MODE (rld[r].out))))
4916 {
4917 /* The reg is OK. */
4918 last_spill_reg = i;
4919
4920 /* Mark as in use for this insn the reload regs we use
4921 for this. */
4922 mark_reload_reg_in_use (spill_regs[i], rld[r].opnum,
4923 rld[r].when_needed, rld[r].mode);
4924
4925 rld[r].reg_rtx = reg;
4926 reload_spill_index[r] = spill_regs[i];
4927 return 1;
4928 }
4929 }
4930 return 0;
4931}
4932
32131a9c
RK
4933/* Find a spill register to use as a reload register for reload R.
4934 LAST_RELOAD is non-zero if this is the last reload for the insn being
4935 processed.
4936
eceef4c9 4937 Set rld[R].reg_rtx to the register allocated.
32131a9c 4938
f5d8c9f4
BS
4939 We return 1 if successful, or 0 if we couldn't find a spill reg and
4940 we didn't change anything. */
32131a9c
RK
4941
4942static int
f5d8c9f4 4943allocate_reload_reg (chain, r, last_reload)
272df862 4944 struct insn_chain *chain ATTRIBUTE_UNUSED;
32131a9c 4945 int r;
32131a9c 4946 int last_reload;
32131a9c 4947{
67e61fe7 4948 int i, pass, count;
32131a9c
RK
4949
4950 /* If we put this reload ahead, thinking it is a group,
4951 then insist on finding a group. Otherwise we can grab a
a8fdc208 4952 reg that some other reload needs.
32131a9c
RK
4953 (That can happen when we have a 68000 DATA_OR_FP_REG
4954 which is a group of data regs or one fp reg.)
4955 We need not be so restrictive if there are no more reloads
4956 for this insn.
4957
4958 ??? Really it would be nicer to have smarter handling
4959 for that kind of reg class, where a problem like this is normal.
4960 Perhaps those classes should be avoided for reloading
4961 by use of more alternatives. */
4962
8ec450a4 4963 int force_group = rld[r].nregs > 1 && ! last_reload;
32131a9c
RK
4964
4965 /* If we want a single register and haven't yet found one,
4966 take any reg in the right class and not in use.
4967 If we want a consecutive group, here is where we look for it.
4968
4969 We use two passes so we can first look for reload regs to
4970 reuse, which are already in use for other reloads in this insn,
4971 and only then use additional registers.
4972 I think that maximizing reuse is needed to make sure we don't
4973 run out of reload regs. Suppose we have three reloads, and
4974 reloads A and B can share regs. These need two regs.
4975 Suppose A and B are given different regs.
4976 That leaves none for C. */
4977 for (pass = 0; pass < 2; pass++)
4978 {
4979 /* I is the index in spill_regs.
4980 We advance it round-robin between insns to use all spill regs
4981 equally, so that inherited reloads have a chance
f5d8c9f4
BS
4982 of leapfrogging each other. */
4983
4984 i = last_spill_reg;
05d10675 4985
a5339699 4986 for (count = 0; count < n_spills; count++)
32131a9c 4987 {
eceef4c9 4988 int class = (int) rld[r].class;
03acd8f8 4989 int regnum;
32131a9c 4990
03acd8f8
BS
4991 i++;
4992 if (i >= n_spills)
4993 i -= n_spills;
4994 regnum = spill_regs[i];
32131a9c 4995
eceef4c9
BS
4996 if ((reload_reg_free_p (regnum, rld[r].opnum,
4997 rld[r].when_needed)
4998 || (rld[r].in
05d10675
BS
4999 /* We check reload_reg_used to make sure we
5000 don't clobber the return register. */
03acd8f8
BS
5001 && ! TEST_HARD_REG_BIT (reload_reg_used, regnum)
5002 && reload_reg_free_for_value_p (regnum,
eceef4c9
BS
5003 rld[r].opnum,
5004 rld[r].when_needed,
5005 rld[r].in,
5006 rld[r].out, r, 1)))
03acd8f8 5007 && TEST_HARD_REG_BIT (reg_class_contents[class], regnum)
8ec450a4 5008 && HARD_REGNO_MODE_OK (regnum, rld[r].mode)
be7ae2a4
RK
5009 /* Look first for regs to share, then for unshared. But
5010 don't share regs used for inherited reloads; they are
5011 the ones we want to preserve. */
5012 && (pass
5013 || (TEST_HARD_REG_BIT (reload_reg_used_at_all,
03acd8f8 5014 regnum)
be7ae2a4 5015 && ! TEST_HARD_REG_BIT (reload_reg_used_for_inherit,
03acd8f8 5016 regnum))))
32131a9c 5017 {
8ec450a4 5018 int nr = HARD_REGNO_NREGS (regnum, rld[r].mode);
32131a9c
RK
5019 /* Avoid the problem where spilling a GENERAL_OR_FP_REG
5020 (on 68000) got us two FP regs. If NR is 1,
5021 we would reject both of them. */
5022 if (force_group)
67e61fe7 5023 nr = rld[r].nregs;
32131a9c
RK
5024 /* If we need only one reg, we have already won. */
5025 if (nr == 1)
5026 {
5027 /* But reject a single reg if we demand a group. */
5028 if (force_group)
5029 continue;
5030 break;
5031 }
5032 /* Otherwise check that as many consecutive regs as we need
f5d8c9f4
BS
5033 are available here. */
5034 while (nr > 1)
5035 {
5036 int regno = regnum + nr - 1;
5037 if (!(TEST_HARD_REG_BIT (reg_class_contents[class], regno)
5038 && spill_reg_order[regno] >= 0
5039 && reload_reg_free_p (regno, rld[r].opnum,
5040 rld[r].when_needed)))
5041 break;
5042 nr--;
5043 }
32131a9c
RK
5044 if (nr == 1)
5045 break;
5046 }
5047 }
5048
5049 /* If we found something on pass 1, omit pass 2. */
5050 if (count < n_spills)
5051 break;
5052 }
f5d8c9f4 5053
32131a9c 5054 /* We should have found a spill register by now. */
f5d8c9f4 5055 if (count >= n_spills)
32131a9c
RK
5056 return 0;
5057
f5d8c9f4
BS
5058 /* I is the index in SPILL_REG_RTX of the reload register we are to
5059 allocate. Get an rtx for it and find its register number. */
32131a9c 5060
f5d8c9f4 5061 return set_reload_reg (i, r);
32131a9c
RK
5062}
5063\f
67e61fe7
BS
5064/* Initialize all the tables needed to allocate reload registers.
5065 CHAIN is the insn currently being processed; SAVE_RELOAD_REG_RTX
5066 is the array we use to restore the reg_rtx field for every reload. */
efc9bd41 5067
32131a9c 5068static void
67e61fe7 5069choose_reload_regs_init (chain, save_reload_reg_rtx)
7609e720 5070 struct insn_chain *chain;
67e61fe7 5071 rtx *save_reload_reg_rtx;
32131a9c 5072{
67e61fe7 5073 int i;
32131a9c 5074
67e61fe7
BS
5075 for (i = 0; i < n_reloads; i++)
5076 rld[i].reg_rtx = save_reload_reg_rtx[i];
32131a9c
RK
5077
5078 bzero (reload_inherited, MAX_RELOADS);
4c9a05bc
RK
5079 bzero ((char *) reload_inheritance_insn, MAX_RELOADS * sizeof (rtx));
5080 bzero ((char *) reload_override_in, MAX_RELOADS * sizeof (rtx));
32131a9c
RK
5081
5082 CLEAR_HARD_REG_SET (reload_reg_used);
5083 CLEAR_HARD_REG_SET (reload_reg_used_at_all);
32131a9c 5084 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr);
893bc853 5085 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr_reload);
546b63fb
RK
5086 CLEAR_HARD_REG_SET (reload_reg_used_in_insn);
5087 CLEAR_HARD_REG_SET (reload_reg_used_in_other_addr);
32131a9c 5088
f1db3576
JL
5089 CLEAR_HARD_REG_SET (reg_used_in_insn);
5090 {
5091 HARD_REG_SET tmp;
239a0f5b 5092 REG_SET_TO_HARD_REG_SET (tmp, &chain->live_throughout);
f1db3576 5093 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
239a0f5b 5094 REG_SET_TO_HARD_REG_SET (tmp, &chain->dead_or_set);
f1db3576 5095 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
239a0f5b
BS
5096 compute_use_by_pseudos (&reg_used_in_insn, &chain->live_throughout);
5097 compute_use_by_pseudos (&reg_used_in_insn, &chain->dead_or_set);
f1db3576 5098 }
efc9bd41 5099
546b63fb
RK
5100 for (i = 0; i < reload_n_operands; i++)
5101 {
5102 CLEAR_HARD_REG_SET (reload_reg_used_in_output[i]);
5103 CLEAR_HARD_REG_SET (reload_reg_used_in_input[i]);
5104 CLEAR_HARD_REG_SET (reload_reg_used_in_input_addr[i]);
47c8cf91 5105 CLEAR_HARD_REG_SET (reload_reg_used_in_inpaddr_addr[i]);
546b63fb 5106 CLEAR_HARD_REG_SET (reload_reg_used_in_output_addr[i]);
47c8cf91 5107 CLEAR_HARD_REG_SET (reload_reg_used_in_outaddr_addr[i]);
546b63fb 5108 }
32131a9c 5109
9e3a9cf2 5110 COMPL_HARD_REG_SET (reload_reg_unavailable, chain->used_spill_regs);
05d10675 5111
67e61fe7 5112 CLEAR_HARD_REG_SET (reload_reg_used_for_inherit);
32131a9c 5113
67e61fe7
BS
5114 for (i = 0; i < n_reloads; i++)
5115 /* If we have already decided to use a certain register,
5116 don't use it in another way. */
5117 if (rld[i].reg_rtx)
5118 mark_reload_reg_in_use (REGNO (rld[i].reg_rtx), rld[i].opnum,
5119 rld[i].when_needed, rld[i].mode);
5120}
32131a9c 5121
67e61fe7
BS
5122/* Assign hard reg targets for the pseudo-registers we must reload
5123 into hard regs for this insn.
5124 Also output the instructions to copy them in and out of the hard regs.
5125
5126 For machines with register classes, we are responsible for
5127 finding a reload reg in the proper class. */
5128
5129static void
5130choose_reload_regs (chain)
5131 struct insn_chain *chain;
5132{
5133 rtx insn = chain->insn;
5134 register int i, j;
770ae6cc 5135 unsigned int max_group_size = 1;
67e61fe7 5136 enum reg_class group_class = NO_REGS;
f5d8c9f4 5137 int pass, win, inheritance;
67e61fe7
BS
5138
5139 rtx save_reload_reg_rtx[MAX_RELOADS];
32131a9c 5140
32131a9c
RK
5141 /* In order to be certain of getting the registers we need,
5142 we must sort the reloads into order of increasing register class.
5143 Then our grabbing of reload registers will parallel the process
a8fdc208 5144 that provided the reload registers.
32131a9c
RK
5145
5146 Also note whether any of the reloads wants a consecutive group of regs.
5147 If so, record the maximum size of the group desired and what
5148 register class contains all the groups needed by this insn. */
5149
5150 for (j = 0; j < n_reloads; j++)
5151 {
5152 reload_order[j] = j;
5153 reload_spill_index[j] = -1;
5154
8ec450a4 5155 if (rld[j].nregs > 1)
32131a9c 5156 {
8ec450a4 5157 max_group_size = MAX (rld[j].nregs, max_group_size);
770ae6cc
RK
5158 group_class
5159 = reg_class_superunion[(int)rld[j].class][(int)group_class];
32131a9c
RK
5160 }
5161
eceef4c9 5162 save_reload_reg_rtx[j] = rld[j].reg_rtx;
32131a9c
RK
5163 }
5164
5165 if (n_reloads > 1)
5166 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
5167
58b1581b
RS
5168 /* If -O, try first with inheritance, then turning it off.
5169 If not -O, don't do inheritance.
5170 Using inheritance when not optimizing leads to paradoxes
5171 with fp on the 68k: fp numbers (not NaNs) fail to be equal to themselves
5172 because one side of the comparison might be inherited. */
f5d8c9f4 5173 win = 0;
58b1581b 5174 for (inheritance = optimize > 0; inheritance >= 0; inheritance--)
32131a9c 5175 {
67e61fe7
BS
5176 choose_reload_regs_init (chain, save_reload_reg_rtx);
5177
32131a9c
RK
5178 /* Process the reloads in order of preference just found.
5179 Beyond this point, subregs can be found in reload_reg_rtx.
5180
770ae6cc
RK
5181 This used to look for an existing reloaded home for all of the
5182 reloads, and only then perform any new reloads. But that could lose
5183 if the reloads were done out of reg-class order because a later
5184 reload with a looser constraint might have an old home in a register
5185 needed by an earlier reload with a tighter constraint.
32131a9c
RK
5186
5187 To solve this, we make two passes over the reloads, in the order
5188 described above. In the first pass we try to inherit a reload
5189 from a previous insn. If there is a later reload that needs a
5190 class that is a proper subset of the class being processed, we must
5191 also allocate a spill register during the first pass.
5192
5193 Then make a second pass over the reloads to allocate any reloads
5194 that haven't been given registers yet. */
5195
5196 for (j = 0; j < n_reloads; j++)
5197 {
5198 register int r = reload_order[j];
8593b745 5199 rtx search_equiv = NULL_RTX;
32131a9c
RK
5200
5201 /* Ignore reloads that got marked inoperative. */
eceef4c9
BS
5202 if (rld[r].out == 0 && rld[r].in == 0
5203 && ! rld[r].secondary_p)
32131a9c
RK
5204 continue;
5205
b29514ee 5206 /* If find_reloads chose to use reload_in or reload_out as a reload
b080c137
RK
5207 register, we don't need to chose one. Otherwise, try even if it
5208 found one since we might save an insn if we find the value lying
b29514ee
R
5209 around.
5210 Try also when reload_in is a pseudo without a hard reg. */
eceef4c9
BS
5211 if (rld[r].in != 0 && rld[r].reg_rtx != 0
5212 && (rtx_equal_p (rld[r].in, rld[r].reg_rtx)
5213 || (rtx_equal_p (rld[r].out, rld[r].reg_rtx)
5214 && GET_CODE (rld[r].in) != MEM
5215 && true_regnum (rld[r].in) < FIRST_PSEUDO_REGISTER)))
32131a9c
RK
5216 continue;
5217
5218#if 0 /* No longer needed for correct operation.
5219 It might give better code, or might not; worth an experiment? */
5220 /* If this is an optional reload, we can't inherit from earlier insns
5221 until we are sure that any non-optional reloads have been allocated.
5222 The following code takes advantage of the fact that optional reloads
5223 are at the end of reload_order. */
eceef4c9 5224 if (rld[r].optional != 0)
32131a9c 5225 for (i = 0; i < j; i++)
eceef4c9
BS
5226 if ((rld[reload_order[i]].out != 0
5227 || rld[reload_order[i]].in != 0
5228 || rld[reload_order[i]].secondary_p)
5229 && ! rld[reload_order[i]].optional
5230 && rld[reload_order[i]].reg_rtx == 0)
f5d8c9f4 5231 allocate_reload_reg (chain, reload_order[i], 0);
32131a9c
RK
5232#endif
5233
5234 /* First see if this pseudo is already available as reloaded
5235 for a previous insn. We cannot try to inherit for reloads
5236 that are smaller than the maximum number of registers needed
5237 for groups unless the register we would allocate cannot be used
5238 for the groups.
5239
5240 We could check here to see if this is a secondary reload for
5241 an object that is already in a register of the desired class.
5242 This would avoid the need for the secondary reload register.
5243 But this is complex because we can't easily determine what
b080c137
RK
5244 objects might want to be loaded via this reload. So let a
5245 register be allocated here. In `emit_reload_insns' we suppress
5246 one of the loads in the case described above. */
32131a9c
RK
5247
5248 if (inheritance)
5249 {
cb2afeb3 5250 int word = 0;
32131a9c 5251 register int regno = -1;
6a651371 5252 enum machine_mode mode = VOIDmode;
32131a9c 5253
eceef4c9 5254 if (rld[r].in == 0)
32131a9c 5255 ;
eceef4c9 5256 else if (GET_CODE (rld[r].in) == REG)
db660765 5257 {
eceef4c9
BS
5258 regno = REGNO (rld[r].in);
5259 mode = GET_MODE (rld[r].in);
db660765 5260 }
eceef4c9 5261 else if (GET_CODE (rld[r].in_reg) == REG)
db660765 5262 {
eceef4c9
BS
5263 regno = REGNO (rld[r].in_reg);
5264 mode = GET_MODE (rld[r].in_reg);
db660765 5265 }
eceef4c9
BS
5266 else if (GET_CODE (rld[r].in_reg) == SUBREG
5267 && GET_CODE (SUBREG_REG (rld[r].in_reg)) == REG)
b60a8416 5268 {
eceef4c9
BS
5269 word = SUBREG_WORD (rld[r].in_reg);
5270 regno = REGNO (SUBREG_REG (rld[r].in_reg));
cb2afeb3
R
5271 if (regno < FIRST_PSEUDO_REGISTER)
5272 regno += word;
eceef4c9 5273 mode = GET_MODE (rld[r].in_reg);
cb2afeb3
R
5274 }
5275#ifdef AUTO_INC_DEC
eceef4c9
BS
5276 else if ((GET_CODE (rld[r].in_reg) == PRE_INC
5277 || GET_CODE (rld[r].in_reg) == PRE_DEC
5278 || GET_CODE (rld[r].in_reg) == POST_INC
5279 || GET_CODE (rld[r].in_reg) == POST_DEC)
5280 && GET_CODE (XEXP (rld[r].in_reg, 0)) == REG)
cb2afeb3 5281 {
eceef4c9
BS
5282 regno = REGNO (XEXP (rld[r].in_reg, 0));
5283 mode = GET_MODE (XEXP (rld[r].in_reg, 0));
5284 rld[r].out = rld[r].in;
b60a8416 5285 }
cb2afeb3 5286#endif
32131a9c
RK
5287#if 0
5288 /* This won't work, since REGNO can be a pseudo reg number.
5289 Also, it takes much more hair to keep track of all the things
5290 that can invalidate an inherited reload of part of a pseudoreg. */
eceef4c9
BS
5291 else if (GET_CODE (rld[r].in) == SUBREG
5292 && GET_CODE (SUBREG_REG (rld[r].in)) == REG)
5293 regno = REGNO (SUBREG_REG (rld[r].in)) + SUBREG_WORD (rld[r].in);
32131a9c
RK
5294#endif
5295
5296 if (regno >= 0 && reg_last_reload_reg[regno] != 0)
5297 {
eceef4c9 5298 enum reg_class class = rld[r].class, last_class;
cb2afeb3 5299 rtx last_reg = reg_last_reload_reg[regno];
05d10675 5300
cb2afeb3
R
5301 i = REGNO (last_reg) + word;
5302 last_class = REGNO_REG_CLASS (i);
5303 if ((GET_MODE_SIZE (GET_MODE (last_reg))
5304 >= GET_MODE_SIZE (mode) + word * UNITS_PER_WORD)
5305 && reg_reloaded_contents[i] == regno
e6e52be0 5306 && TEST_HARD_REG_BIT (reg_reloaded_valid, i)
8ec450a4 5307 && HARD_REGNO_MODE_OK (i, rld[r].mode)
cb2afeb3
R
5308 && (TEST_HARD_REG_BIT (reg_class_contents[(int) class], i)
5309 /* Even if we can't use this register as a reload
5310 register, we might use it for reload_override_in,
5311 if copying it to the desired class is cheap
5312 enough. */
5313 || ((REGISTER_MOVE_COST (last_class, class)
5314 < MEMORY_MOVE_COST (mode, class, 1))
5315#ifdef SECONDARY_INPUT_RELOAD_CLASS
5316 && (SECONDARY_INPUT_RELOAD_CLASS (class, mode,
5317 last_reg)
5318 == NO_REGS)
5319#endif
5320#ifdef SECONDARY_MEMORY_NEEDED
5321 && ! SECONDARY_MEMORY_NEEDED (last_class, class,
5322 mode)
5323#endif
5324 ))
5325
8ec450a4 5326 && (rld[r].nregs == max_group_size
32131a9c 5327 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) group_class],
e6e52be0 5328 i))
eceef4c9
BS
5329 && reload_reg_free_for_value_p (i, rld[r].opnum,
5330 rld[r].when_needed,
5331 rld[r].in,
dfe96118 5332 const0_rtx, r, 1))
32131a9c
RK
5333 {
5334 /* If a group is needed, verify that all the subsequent
0f41302f 5335 registers still have their values intact. */
32131a9c 5336 int nr
8ec450a4 5337 = HARD_REGNO_NREGS (i, rld[r].mode);
32131a9c
RK
5338 int k;
5339
5340 for (k = 1; k < nr; k++)
e6e52be0
R
5341 if (reg_reloaded_contents[i + k] != regno
5342 || ! TEST_HARD_REG_BIT (reg_reloaded_valid, i + k))
32131a9c
RK
5343 break;
5344
5345 if (k == nr)
5346 {
c74fa651
RS
5347 int i1;
5348
cb2afeb3
R
5349 last_reg = (GET_MODE (last_reg) == mode
5350 ? last_reg : gen_rtx_REG (mode, i));
5351
c74fa651
RS
5352 /* We found a register that contains the
5353 value we need. If this register is the
5354 same as an `earlyclobber' operand of the
5355 current insn, just mark it as a place to
5356 reload from since we can't use it as the
5357 reload register itself. */
5358
5359 for (i1 = 0; i1 < n_earlyclobbers; i1++)
5360 if (reg_overlap_mentioned_for_reload_p
5361 (reg_last_reload_reg[regno],
5362 reload_earlyclobbers[i1]))
5363 break;
5364
8908158d 5365 if (i1 != n_earlyclobbers
dfe96118 5366 || ! (reload_reg_free_for_value_p
eceef4c9
BS
5367 (i, rld[r].opnum, rld[r].when_needed,
5368 rld[r].in, rld[r].out, r, 1))
e6e52be0 5369 /* Don't use it if we'd clobber a pseudo reg. */
f1db3576 5370 || (TEST_HARD_REG_BIT (reg_used_in_insn, i)
eceef4c9 5371 && rld[r].out
e6e52be0 5372 && ! TEST_HARD_REG_BIT (reg_reloaded_dead, i))
0c7f2259 5373 /* Don't clobber the frame pointer. */
67e61fe7 5374 || (i == HARD_FRAME_POINTER_REGNUM && rld[r].out)
8908158d
RS
5375 /* Don't really use the inherited spill reg
5376 if we need it wider than we've got it. */
8ec450a4 5377 || (GET_MODE_SIZE (rld[r].mode)
b29514ee 5378 > GET_MODE_SIZE (mode))
eceef4c9 5379 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].class],
cb2afeb3
R
5380 i)
5381
b29514ee
R
5382 /* If find_reloads chose reload_out as reload
5383 register, stay with it - that leaves the
5384 inherited register for subsequent reloads. */
eceef4c9 5385 || (rld[r].out && rld[r].reg_rtx
67e61fe7 5386 && rtx_equal_p (rld[r].out, rld[r].reg_rtx)))
cb2afeb3
R
5387 {
5388 reload_override_in[r] = last_reg;
5389 reload_inheritance_insn[r]
5390 = reg_reloaded_insn[i];
5391 }
c74fa651
RS
5392 else
5393 {
54c40e68 5394 int k;
c74fa651
RS
5395 /* We can use this as a reload reg. */
5396 /* Mark the register as in use for this part of
5397 the insn. */
e6e52be0 5398 mark_reload_reg_in_use (i,
eceef4c9
BS
5399 rld[r].opnum,
5400 rld[r].when_needed,
8ec450a4 5401 rld[r].mode);
eceef4c9 5402 rld[r].reg_rtx = last_reg;
c74fa651
RS
5403 reload_inherited[r] = 1;
5404 reload_inheritance_insn[r]
5405 = reg_reloaded_insn[i];
5406 reload_spill_index[r] = i;
54c40e68
RS
5407 for (k = 0; k < nr; k++)
5408 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
e6e52be0 5409 i + k);
c74fa651 5410 }
32131a9c
RK
5411 }
5412 }
5413 }
5414 }
5415
5416 /* Here's another way to see if the value is already lying around. */
5417 if (inheritance
eceef4c9 5418 && rld[r].in != 0
32131a9c 5419 && ! reload_inherited[r]
eceef4c9
BS
5420 && rld[r].out == 0
5421 && (CONSTANT_P (rld[r].in)
5422 || GET_CODE (rld[r].in) == PLUS
5423 || GET_CODE (rld[r].in) == REG
5424 || GET_CODE (rld[r].in) == MEM)
8ec450a4 5425 && (rld[r].nregs == max_group_size
eceef4c9
BS
5426 || ! reg_classes_intersect_p (rld[r].class, group_class)))
5427 search_equiv = rld[r].in;
8593b745
R
5428 /* If this is an output reload from a simple move insn, look
5429 if an equivalence for the input is available. */
eceef4c9 5430 else if (inheritance && rld[r].in == 0 && rld[r].out != 0)
8593b745
R
5431 {
5432 rtx set = single_set (insn);
5433
5434 if (set
eceef4c9 5435 && rtx_equal_p (rld[r].out, SET_DEST (set))
8593b745
R
5436 && CONSTANT_P (SET_SRC (set)))
5437 search_equiv = SET_SRC (set);
5438 }
5439
5440 if (search_equiv)
32131a9c
RK
5441 {
5442 register rtx equiv
eceef4c9 5443 = find_equiv_reg (search_equiv, insn, rld[r].class,
8ec450a4 5444 -1, NULL_PTR, 0, rld[r].mode);
f428f252 5445 int regno = 0;
32131a9c
RK
5446
5447 if (equiv != 0)
5448 {
5449 if (GET_CODE (equiv) == REG)
5450 regno = REGNO (equiv);
5451 else if (GET_CODE (equiv) == SUBREG)
5452 {
f8a9e02b
RK
5453 /* This must be a SUBREG of a hard register.
5454 Make a new REG since this might be used in an
5455 address and not all machines support SUBREGs
5456 there. */
5457 regno = REGNO (SUBREG_REG (equiv)) + SUBREG_WORD (equiv);
8ec450a4 5458 equiv = gen_rtx_REG (rld[r].mode, regno);
32131a9c
RK
5459 }
5460 else
5461 abort ();
5462 }
5463
5464 /* If we found a spill reg, reject it unless it is free
5465 and of the desired class. */
5466 if (equiv != 0
cb2afeb3 5467 && ((TEST_HARD_REG_BIT (reload_reg_used_at_all, regno)
eceef4c9
BS
5468 && ! reload_reg_free_for_value_p (regno, rld[r].opnum,
5469 rld[r].when_needed,
5470 rld[r].in,
5471 rld[r].out, r, 1))
5472 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].class],
32131a9c
RK
5473 regno)))
5474 equiv = 0;
5475
8ec450a4 5476 if (equiv != 0 && ! HARD_REGNO_MODE_OK (regno, rld[r].mode))
32131a9c
RK
5477 equiv = 0;
5478
5479 /* We found a register that contains the value we need.
5480 If this register is the same as an `earlyclobber' operand
5481 of the current insn, just mark it as a place to reload from
5482 since we can't use it as the reload register itself. */
5483
5484 if (equiv != 0)
5485 for (i = 0; i < n_earlyclobbers; i++)
bfa30b22
RK
5486 if (reg_overlap_mentioned_for_reload_p (equiv,
5487 reload_earlyclobbers[i]))
32131a9c
RK
5488 {
5489 reload_override_in[r] = equiv;
5490 equiv = 0;
5491 break;
5492 }
5493
3c785e47
R
5494 /* If the equiv register we have found is explicitly clobbered
5495 in the current insn, it depends on the reload type if we
5496 can use it, use it for reload_override_in, or not at all.
5497 In particular, we then can't use EQUIV for a
5498 RELOAD_FOR_OUTPUT_ADDRESS reload. */
32131a9c
RK
5499
5500 if (equiv != 0 && regno_clobbered_p (regno, insn))
5501 {
eceef4c9 5502 switch (rld[r].when_needed)
3c785e47
R
5503 {
5504 case RELOAD_FOR_OTHER_ADDRESS:
5505 case RELOAD_FOR_INPADDR_ADDRESS:
5506 case RELOAD_FOR_INPUT_ADDRESS:
5507 case RELOAD_FOR_OPADDR_ADDR:
5508 break;
5509 case RELOAD_OTHER:
5510 case RELOAD_FOR_INPUT:
5511 case RELOAD_FOR_OPERAND_ADDRESS:
5512 reload_override_in[r] = equiv;
5513 /* Fall through. */
5514 default:
5515 equiv = 0;
5516 break;
5517 }
32131a9c
RK
5518 }
5519
5520 /* If we found an equivalent reg, say no code need be generated
5521 to load it, and use it as our reload reg. */
3ec2ea3e 5522 if (equiv != 0 && regno != HARD_FRAME_POINTER_REGNUM)
32131a9c 5523 {
8ec450a4 5524 int nr = HARD_REGNO_NREGS (regno, rld[r].mode);
100338df 5525 int k;
eceef4c9 5526 rld[r].reg_rtx = equiv;
32131a9c 5527 reload_inherited[r] = 1;
100338df 5528
91d7e7ac
R
5529 /* If reg_reloaded_valid is not set for this register,
5530 there might be a stale spill_reg_store lying around.
5531 We must clear it, since otherwise emit_reload_insns
5532 might delete the store. */
5533 if (! TEST_HARD_REG_BIT (reg_reloaded_valid, regno))
5534 spill_reg_store[regno] = NULL_RTX;
100338df
JL
5535 /* If any of the hard registers in EQUIV are spill
5536 registers, mark them as in use for this insn. */
5537 for (k = 0; k < nr; k++)
be7ae2a4 5538 {
100338df
JL
5539 i = spill_reg_order[regno + k];
5540 if (i >= 0)
5541 {
eceef4c9
BS
5542 mark_reload_reg_in_use (regno, rld[r].opnum,
5543 rld[r].when_needed,
8ec450a4 5544 rld[r].mode);
100338df
JL
5545 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
5546 regno + k);
5547 }
be7ae2a4 5548 }
32131a9c
RK
5549 }
5550 }
5551
5552 /* If we found a register to use already, or if this is an optional
5553 reload, we are done. */
eceef4c9 5554 if (rld[r].reg_rtx != 0 || rld[r].optional != 0)
32131a9c
RK
5555 continue;
5556
5557#if 0 /* No longer needed for correct operation. Might or might not
5558 give better code on the average. Want to experiment? */
5559
5560 /* See if there is a later reload that has a class different from our
5561 class that intersects our class or that requires less register
5562 than our reload. If so, we must allocate a register to this
5563 reload now, since that reload might inherit a previous reload
5564 and take the only available register in our class. Don't do this
5565 for optional reloads since they will force all previous reloads
5566 to be allocated. Also don't do this for reloads that have been
5567 turned off. */
5568
5569 for (i = j + 1; i < n_reloads; i++)
5570 {
5571 int s = reload_order[i];
5572
eceef4c9
BS
5573 if ((rld[s].in == 0 && rld[s].out == 0
5574 && ! rld[s].secondary_p)
5575 || rld[s].optional)
32131a9c
RK
5576 continue;
5577
eceef4c9
BS
5578 if ((rld[s].class != rld[r].class
5579 && reg_classes_intersect_p (rld[r].class,
5580 rld[s].class))
8ec450a4 5581 || rld[s].nregs < rld[r].nregs)
05d10675 5582 break;
32131a9c
RK
5583 }
5584
5585 if (i == n_reloads)
5586 continue;
5587
f5d8c9f4 5588 allocate_reload_reg (chain, r, j == n_reloads - 1);
32131a9c
RK
5589#endif
5590 }
5591
5592 /* Now allocate reload registers for anything non-optional that
5593 didn't get one yet. */
5594 for (j = 0; j < n_reloads; j++)
5595 {
5596 register int r = reload_order[j];
5597
5598 /* Ignore reloads that got marked inoperative. */
eceef4c9 5599 if (rld[r].out == 0 && rld[r].in == 0 && ! rld[r].secondary_p)
32131a9c
RK
5600 continue;
5601
5602 /* Skip reloads that already have a register allocated or are
0f41302f 5603 optional. */
eceef4c9 5604 if (rld[r].reg_rtx != 0 || rld[r].optional)
32131a9c
RK
5605 continue;
5606
f5d8c9f4 5607 if (! allocate_reload_reg (chain, r, j == n_reloads - 1))
32131a9c
RK
5608 break;
5609 }
5610
5611 /* If that loop got all the way, we have won. */
5612 if (j == n_reloads)
f5d8c9f4
BS
5613 {
5614 win = 1;
5615 break;
5616 }
32131a9c 5617
32131a9c 5618 /* Loop around and try without any inheritance. */
32131a9c
RK
5619 }
5620
f5d8c9f4
BS
5621 if (! win)
5622 {
5623 /* First undo everything done by the failed attempt
5624 to allocate with inheritance. */
5625 choose_reload_regs_init (chain, save_reload_reg_rtx);
5626
5627 /* Some sanity tests to verify that the reloads found in the first
5628 pass are identical to the ones we have now. */
5629 if (chain->n_reloads != n_reloads)
5630 abort ();
5631
5632 for (i = 0; i < n_reloads; i++)
5633 {
5634 if (chain->rld[i].regno < 0 || chain->rld[i].reg_rtx != 0)
5635 continue;
5636 if (chain->rld[i].when_needed != rld[i].when_needed)
5637 abort ();
5638 for (j = 0; j < n_spills; j++)
5639 if (spill_regs[j] == chain->rld[i].regno)
5640 if (! set_reload_reg (j, i))
5641 failed_reload (chain->insn, i);
5642 }
5643 }
5644
32131a9c
RK
5645 /* If we thought we could inherit a reload, because it seemed that
5646 nothing else wanted the same reload register earlier in the insn,
cb2afeb3
R
5647 verify that assumption, now that all reloads have been assigned.
5648 Likewise for reloads where reload_override_in has been set. */
32131a9c 5649
cb2afeb3
R
5650 /* If doing expensive optimizations, do one preliminary pass that doesn't
5651 cancel any inheritance, but removes reloads that have been needed only
5652 for reloads that we know can be inherited. */
5653 for (pass = flag_expensive_optimizations; pass >= 0; pass--)
32131a9c 5654 {
cb2afeb3 5655 for (j = 0; j < n_reloads; j++)
029b38ff 5656 {
cb2afeb3
R
5657 register int r = reload_order[j];
5658 rtx check_reg;
eceef4c9
BS
5659 if (reload_inherited[r] && rld[r].reg_rtx)
5660 check_reg = rld[r].reg_rtx;
cb2afeb3
R
5661 else if (reload_override_in[r]
5662 && (GET_CODE (reload_override_in[r]) == REG
05d10675 5663 || GET_CODE (reload_override_in[r]) == SUBREG))
cb2afeb3
R
5664 check_reg = reload_override_in[r];
5665 else
5666 continue;
dfe96118 5667 if (! reload_reg_free_for_value_p (true_regnum (check_reg),
eceef4c9
BS
5668 rld[r].opnum,
5669 rld[r].when_needed,
5670 rld[r].in,
05d10675 5671 (reload_inherited[r]
eceef4c9 5672 ? rld[r].out : const0_rtx),
dfe96118 5673 r, 1))
029b38ff 5674 {
cb2afeb3
R
5675 if (pass)
5676 continue;
5677 reload_inherited[r] = 0;
5678 reload_override_in[r] = 0;
029b38ff 5679 }
cb2afeb3
R
5680 /* If we can inherit a RELOAD_FOR_INPUT, or can use a
5681 reload_override_in, then we do not need its related
5682 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS reloads;
5683 likewise for other reload types.
5684 We handle this by removing a reload when its only replacement
5685 is mentioned in reload_in of the reload we are going to inherit.
5686 A special case are auto_inc expressions; even if the input is
5687 inherited, we still need the address for the output. We can
fe92fe26 5688 recognize them because they have RELOAD_OUT set to RELOAD_IN.
cb2afeb3
R
5689 If we suceeded removing some reload and we are doing a preliminary
5690 pass just to remove such reloads, make another pass, since the
5691 removal of one reload might allow us to inherit another one. */
eceef4c9
BS
5692 else if (rld[r].in
5693 && rld[r].out != rld[r].in
5694 && remove_address_replacements (rld[r].in) && pass)
cb2afeb3 5695 pass = 2;
32131a9c
RK
5696 }
5697 }
5698
5699 /* Now that reload_override_in is known valid,
5700 actually override reload_in. */
5701 for (j = 0; j < n_reloads; j++)
5702 if (reload_override_in[j])
eceef4c9 5703 rld[j].in = reload_override_in[j];
32131a9c
RK
5704
5705 /* If this reload won't be done because it has been cancelled or is
5706 optional and not inherited, clear reload_reg_rtx so other
5707 routines (such as subst_reloads) don't get confused. */
5708 for (j = 0; j < n_reloads; j++)
eceef4c9
BS
5709 if (rld[j].reg_rtx != 0
5710 && ((rld[j].optional && ! reload_inherited[j])
5711 || (rld[j].in == 0 && rld[j].out == 0
5712 && ! rld[j].secondary_p)))
be7ae2a4 5713 {
eceef4c9 5714 int regno = true_regnum (rld[j].reg_rtx);
be7ae2a4
RK
5715
5716 if (spill_reg_order[regno] >= 0)
eceef4c9 5717 clear_reload_reg_in_use (regno, rld[j].opnum,
8ec450a4 5718 rld[j].when_needed, rld[j].mode);
eceef4c9 5719 rld[j].reg_rtx = 0;
c0029be5 5720 reload_spill_index[j] = -1;
be7ae2a4 5721 }
32131a9c
RK
5722
5723 /* Record which pseudos and which spill regs have output reloads. */
5724 for (j = 0; j < n_reloads; j++)
5725 {
5726 register int r = reload_order[j];
5727
5728 i = reload_spill_index[r];
5729
e6e52be0 5730 /* I is nonneg if this reload uses a register.
eceef4c9 5731 If rld[r].reg_rtx is 0, this is an optional reload
32131a9c 5732 that we opted to ignore. */
eceef4c9
BS
5733 if (rld[r].out_reg != 0 && GET_CODE (rld[r].out_reg) == REG
5734 && rld[r].reg_rtx != 0)
32131a9c 5735 {
eceef4c9 5736 register int nregno = REGNO (rld[r].out_reg);
372e033b
RS
5737 int nr = 1;
5738
5739 if (nregno < FIRST_PSEUDO_REGISTER)
8ec450a4 5740 nr = HARD_REGNO_NREGS (nregno, rld[r].mode);
32131a9c
RK
5741
5742 while (--nr >= 0)
372e033b
RS
5743 reg_has_output_reload[nregno + nr] = 1;
5744
5745 if (i >= 0)
32131a9c 5746 {
8ec450a4 5747 nr = HARD_REGNO_NREGS (i, rld[r].mode);
372e033b 5748 while (--nr >= 0)
e6e52be0 5749 SET_HARD_REG_BIT (reg_is_output_reload, i + nr);
32131a9c
RK
5750 }
5751
eceef4c9
BS
5752 if (rld[r].when_needed != RELOAD_OTHER
5753 && rld[r].when_needed != RELOAD_FOR_OUTPUT
5754 && rld[r].when_needed != RELOAD_FOR_INSN)
32131a9c
RK
5755 abort ();
5756 }
5757 }
5758}
cb2afeb3
R
5759
5760/* Deallocate the reload register for reload R. This is called from
5761 remove_address_replacements. */
1d813780 5762
cb2afeb3
R
5763void
5764deallocate_reload_reg (r)
5765 int r;
5766{
5767 int regno;
5768
eceef4c9 5769 if (! rld[r].reg_rtx)
cb2afeb3 5770 return;
eceef4c9
BS
5771 regno = true_regnum (rld[r].reg_rtx);
5772 rld[r].reg_rtx = 0;
cb2afeb3 5773 if (spill_reg_order[regno] >= 0)
eceef4c9 5774 clear_reload_reg_in_use (regno, rld[r].opnum, rld[r].when_needed,
8ec450a4 5775 rld[r].mode);
cb2afeb3
R
5776 reload_spill_index[r] = -1;
5777}
32131a9c 5778\f
e9a25f70 5779/* If SMALL_REGISTER_CLASSES is non-zero, we may not have merged two
546b63fb
RK
5780 reloads of the same item for fear that we might not have enough reload
5781 registers. However, normally they will get the same reload register
05d10675 5782 and hence actually need not be loaded twice.
546b63fb
RK
5783
5784 Here we check for the most common case of this phenomenon: when we have
5785 a number of reloads for the same object, each of which were allocated
5786 the same reload_reg_rtx, that reload_reg_rtx is not used for any other
5787 reload, and is not modified in the insn itself. If we find such,
5788 merge all the reloads and set the resulting reload to RELOAD_OTHER.
5789 This will not increase the number of spill registers needed and will
5790 prevent redundant code. */
5791
546b63fb
RK
5792static void
5793merge_assigned_reloads (insn)
5794 rtx insn;
5795{
5796 int i, j;
5797
5798 /* Scan all the reloads looking for ones that only load values and
5799 are not already RELOAD_OTHER and ones whose reload_reg_rtx are
5800 assigned and not modified by INSN. */
5801
5802 for (i = 0; i < n_reloads; i++)
5803 {
d668e863
R
5804 int conflicting_input = 0;
5805 int max_input_address_opnum = -1;
5806 int min_conflicting_input_opnum = MAX_RECOG_OPERANDS;
5807
eceef4c9
BS
5808 if (rld[i].in == 0 || rld[i].when_needed == RELOAD_OTHER
5809 || rld[i].out != 0 || rld[i].reg_rtx == 0
5810 || reg_set_p (rld[i].reg_rtx, insn))
546b63fb
RK
5811 continue;
5812
5813 /* Look at all other reloads. Ensure that the only use of this
5814 reload_reg_rtx is in a reload that just loads the same value
5815 as we do. Note that any secondary reloads must be of the identical
5816 class since the values, modes, and result registers are the
5817 same, so we need not do anything with any secondary reloads. */
5818
5819 for (j = 0; j < n_reloads; j++)
5820 {
eceef4c9
BS
5821 if (i == j || rld[j].reg_rtx == 0
5822 || ! reg_overlap_mentioned_p (rld[j].reg_rtx,
5823 rld[i].reg_rtx))
546b63fb
RK
5824 continue;
5825
eceef4c9
BS
5826 if (rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
5827 && rld[j].opnum > max_input_address_opnum)
5828 max_input_address_opnum = rld[j].opnum;
d668e863 5829
546b63fb 5830 /* If the reload regs aren't exactly the same (e.g, different modes)
d668e863
R
5831 or if the values are different, we can't merge this reload.
5832 But if it is an input reload, we might still merge
5833 RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_OTHER_ADDRESS reloads. */
546b63fb 5834
eceef4c9
BS
5835 if (! rtx_equal_p (rld[i].reg_rtx, rld[j].reg_rtx)
5836 || rld[j].out != 0 || rld[j].in == 0
5837 || ! rtx_equal_p (rld[i].in, rld[j].in))
d668e863 5838 {
eceef4c9
BS
5839 if (rld[j].when_needed != RELOAD_FOR_INPUT
5840 || ((rld[i].when_needed != RELOAD_FOR_INPUT_ADDRESS
5841 || rld[i].opnum > rld[j].opnum)
5842 && rld[i].when_needed != RELOAD_FOR_OTHER_ADDRESS))
d668e863
R
5843 break;
5844 conflicting_input = 1;
eceef4c9
BS
5845 if (min_conflicting_input_opnum > rld[j].opnum)
5846 min_conflicting_input_opnum = rld[j].opnum;
d668e863 5847 }
546b63fb
RK
5848 }
5849
5850 /* If all is OK, merge the reloads. Only set this to RELOAD_OTHER if
5851 we, in fact, found any matching reloads. */
5852
d668e863
R
5853 if (j == n_reloads
5854 && max_input_address_opnum <= min_conflicting_input_opnum)
546b63fb
RK
5855 {
5856 for (j = 0; j < n_reloads; j++)
eceef4c9
BS
5857 if (i != j && rld[j].reg_rtx != 0
5858 && rtx_equal_p (rld[i].reg_rtx, rld[j].reg_rtx)
d668e863 5859 && (! conflicting_input
eceef4c9
BS
5860 || rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
5861 || rld[j].when_needed == RELOAD_FOR_OTHER_ADDRESS))
546b63fb 5862 {
eceef4c9
BS
5863 rld[i].when_needed = RELOAD_OTHER;
5864 rld[j].in = 0;
efdb3590 5865 reload_spill_index[j] = -1;
546b63fb
RK
5866 transfer_replacements (i, j);
5867 }
5868
5869 /* If this is now RELOAD_OTHER, look for any reloads that load
5870 parts of this operand and set them to RELOAD_FOR_OTHER_ADDRESS
5871 if they were for inputs, RELOAD_OTHER for outputs. Note that
5872 this test is equivalent to looking for reloads for this operand
5873 number. */
5874
eceef4c9 5875 if (rld[i].when_needed == RELOAD_OTHER)
546b63fb 5876 for (j = 0; j < n_reloads; j++)
eceef4c9
BS
5877 if (rld[j].in != 0
5878 && rld[i].when_needed != RELOAD_OTHER
5879 && reg_overlap_mentioned_for_reload_p (rld[j].in,
5880 rld[i].in))
5881 rld[j].when_needed
5882 = ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
5883 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
47c8cf91 5884 ? RELOAD_FOR_OTHER_ADDRESS : RELOAD_OTHER);
546b63fb
RK
5885 }
5886 }
05d10675 5887}
e9a25f70 5888
546b63fb 5889\f
367b1cf5
BS
5890/* These arrays are filled by emit_reload_insns and its subroutines. */
5891static rtx input_reload_insns[MAX_RECOG_OPERANDS];
5892static rtx other_input_address_reload_insns = 0;
5893static rtx other_input_reload_insns = 0;
5894static rtx input_address_reload_insns[MAX_RECOG_OPERANDS];
5895static rtx inpaddr_address_reload_insns[MAX_RECOG_OPERANDS];
5896static rtx output_reload_insns[MAX_RECOG_OPERANDS];
5897static rtx output_address_reload_insns[MAX_RECOG_OPERANDS];
5898static rtx outaddr_address_reload_insns[MAX_RECOG_OPERANDS];
5899static rtx operand_reload_insns = 0;
5900static rtx other_operand_reload_insns = 0;
5901static rtx other_output_reload_insns[MAX_RECOG_OPERANDS];
5902
5903/* Values to be put in spill_reg_store are put here first. */
5904static rtx new_spill_reg_store[FIRST_PSEUDO_REGISTER];
5905static HARD_REG_SET reg_reloaded_died;
5906
5907/* Generate insns to perform reload RL, which is for the insn in CHAIN and
5908 has the number J. OLD contains the value to be used as input. */
770ae6cc 5909
32131a9c 5910static void
367b1cf5 5911emit_input_reload_insns (chain, rl, old, j)
7609e720 5912 struct insn_chain *chain;
367b1cf5
BS
5913 struct reload *rl;
5914 rtx old;
5915 int j;
32131a9c 5916{
7609e720 5917 rtx insn = chain->insn;
367b1cf5
BS
5918 register rtx reloadreg = rl->reg_rtx;
5919 rtx oldequiv_reg = 0;
5920 rtx oldequiv = 0;
5921 int special = 0;
5922 enum machine_mode mode;
5923 rtx *where;
5924
5925 /* Determine the mode to reload in.
5926 This is very tricky because we have three to choose from.
5927 There is the mode the insn operand wants (rl->inmode).
5928 There is the mode of the reload register RELOADREG.
5929 There is the intrinsic mode of the operand, which we could find
5930 by stripping some SUBREGs.
5931 It turns out that RELOADREG's mode is irrelevant:
5932 we can change that arbitrarily.
5933
5934 Consider (SUBREG:SI foo:QI) as an operand that must be SImode;
5935 then the reload reg may not support QImode moves, so use SImode.
5936 If foo is in memory due to spilling a pseudo reg, this is safe,
5937 because the QImode value is in the least significant part of a
5938 slot big enough for a SImode. If foo is some other sort of
5939 memory reference, then it is impossible to reload this case,
5940 so previous passes had better make sure this never happens.
5941
5942 Then consider a one-word union which has SImode and one of its
5943 members is a float, being fetched as (SUBREG:SF union:SI).
5944 We must fetch that as SFmode because we could be loading into
5945 a float-only register. In this case OLD's mode is correct.
5946
5947 Consider an immediate integer: it has VOIDmode. Here we need
5948 to get a mode from something else.
5949
5950 In some cases, there is a fourth mode, the operand's
5951 containing mode. If the insn specifies a containing mode for
5952 this operand, it overrides all others.
5953
5954 I am not sure whether the algorithm here is always right,
5955 but it does the right things in those cases. */
5956
5957 mode = GET_MODE (old);
5958 if (mode == VOIDmode)
5959 mode = rl->inmode;
7609e720 5960
367b1cf5
BS
5961#ifdef SECONDARY_INPUT_RELOAD_CLASS
5962 /* If we need a secondary register for this operation, see if
5963 the value is already in a register in that class. Don't
5964 do this if the secondary register will be used as a scratch
5965 register. */
5966
5967 if (rl->secondary_in_reload >= 0
5968 && rl->secondary_in_icode == CODE_FOR_nothing
5969 && optimize)
5970 oldequiv
5971 = find_equiv_reg (old, insn,
5972 rld[rl->secondary_in_reload].class,
5973 -1, NULL_PTR, 0, mode);
5974#endif
e6e52be0 5975
367b1cf5
BS
5976 /* If reloading from memory, see if there is a register
5977 that already holds the same value. If so, reload from there.
5978 We can pass 0 as the reload_reg_p argument because
5979 any other reload has either already been emitted,
5980 in which case find_equiv_reg will see the reload-insn,
5981 or has yet to be emitted, in which case it doesn't matter
5982 because we will use this equiv reg right away. */
5983
5984 if (oldequiv == 0 && optimize
5985 && (GET_CODE (old) == MEM
5986 || (GET_CODE (old) == REG
5987 && REGNO (old) >= FIRST_PSEUDO_REGISTER
5988 && reg_renumber[REGNO (old)] < 0)))
5989 oldequiv = find_equiv_reg (old, insn, ALL_REGS,
5990 -1, NULL_PTR, 0, mode);
5991
5992 if (oldequiv)
5993 {
770ae6cc 5994 unsigned int regno = true_regnum (oldequiv);
367b1cf5
BS
5995
5996 /* Don't use OLDEQUIV if any other reload changes it at an
5997 earlier stage of this insn or at this stage. */
5998 if (! reload_reg_free_for_value_p (regno, rl->opnum,
5999 rl->when_needed,
6000 rl->in, const0_rtx, j,
6001 0))
6002 oldequiv = 0;
6003
6004 /* If it is no cheaper to copy from OLDEQUIV into the
6005 reload register than it would be to move from memory,
6006 don't use it. Likewise, if we need a secondary register
6007 or memory. */
6008
6009 if (oldequiv != 0
6010 && ((REGNO_REG_CLASS (regno) != rl->class
6011 && (REGISTER_MOVE_COST (REGNO_REG_CLASS (regno),
6012 rl->class)
6013 >= MEMORY_MOVE_COST (mode, rl->class, 1)))
6014#ifdef SECONDARY_INPUT_RELOAD_CLASS
6015 || (SECONDARY_INPUT_RELOAD_CLASS (rl->class,
6016 mode, oldequiv)
6017 != NO_REGS)
6018#endif
6019#ifdef SECONDARY_MEMORY_NEEDED
6020 || SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (regno),
6021 rl->class,
6022 mode)
6023#endif
6024 ))
6025 oldequiv = 0;
6026 }
32131a9c 6027
367b1cf5
BS
6028 /* delete_output_reload is only invoked properly if old contains
6029 the original pseudo register. Since this is replaced with a
6030 hard reg when RELOAD_OVERRIDE_IN is set, see if we can
6031 find the pseudo in RELOAD_IN_REG. */
6032 if (oldequiv == 0
6033 && reload_override_in[j]
6034 && GET_CODE (rl->in_reg) == REG)
6035 {
6036 oldequiv = old;
6037 old = rl->in_reg;
6038 }
6039 if (oldequiv == 0)
6040 oldequiv = old;
6041 else if (GET_CODE (oldequiv) == REG)
6042 oldequiv_reg = oldequiv;
6043 else if (GET_CODE (oldequiv) == SUBREG)
6044 oldequiv_reg = SUBREG_REG (oldequiv);
6045
6046 /* If we are reloading from a register that was recently stored in
6047 with an output-reload, see if we can prove there was
6048 actually no need to store the old value in it. */
6049
6050 if (optimize && GET_CODE (oldequiv) == REG
6051 && REGNO (oldequiv) < FIRST_PSEUDO_REGISTER
6052 && spill_reg_store[REGNO (oldequiv)]
6053 && GET_CODE (old) == REG
6054 && (dead_or_set_p (insn, spill_reg_stored_to[REGNO (oldequiv)])
6055 || rtx_equal_p (spill_reg_stored_to[REGNO (oldequiv)],
6056 rl->out_reg)))
6057 delete_output_reload (insn, j, REGNO (oldequiv));
6058
6059 /* Encapsulate both RELOADREG and OLDEQUIV into that mode,
6060 then load RELOADREG from OLDEQUIV. Note that we cannot use
6061 gen_lowpart_common since it can do the wrong thing when
6062 RELOADREG has a multi-word mode. Note that RELOADREG
6063 must always be a REG here. */
6064
6065 if (GET_MODE (reloadreg) != mode)
6066 reloadreg = gen_rtx_REG (mode, REGNO (reloadreg));
6067 while (GET_CODE (oldequiv) == SUBREG && GET_MODE (oldequiv) != mode)
6068 oldequiv = SUBREG_REG (oldequiv);
6069 if (GET_MODE (oldequiv) != VOIDmode
6070 && mode != GET_MODE (oldequiv))
6071 oldequiv = gen_rtx_SUBREG (mode, oldequiv, 0);
6072
6073 /* Switch to the right place to emit the reload insns. */
6074 switch (rl->when_needed)
6075 {
6076 case RELOAD_OTHER:
6077 where = &other_input_reload_insns;
6078 break;
6079 case RELOAD_FOR_INPUT:
6080 where = &input_reload_insns[rl->opnum];
6081 break;
6082 case RELOAD_FOR_INPUT_ADDRESS:
6083 where = &input_address_reload_insns[rl->opnum];
6084 break;
6085 case RELOAD_FOR_INPADDR_ADDRESS:
6086 where = &inpaddr_address_reload_insns[rl->opnum];
6087 break;
6088 case RELOAD_FOR_OUTPUT_ADDRESS:
6089 where = &output_address_reload_insns[rl->opnum];
6090 break;
6091 case RELOAD_FOR_OUTADDR_ADDRESS:
6092 where = &outaddr_address_reload_insns[rl->opnum];
6093 break;
6094 case RELOAD_FOR_OPERAND_ADDRESS:
6095 where = &operand_reload_insns;
6096 break;
6097 case RELOAD_FOR_OPADDR_ADDR:
6098 where = &other_operand_reload_insns;
6099 break;
6100 case RELOAD_FOR_OTHER_ADDRESS:
6101 where = &other_input_address_reload_insns;
6102 break;
6103 default:
6104 abort ();
6105 }
546b63fb 6106
367b1cf5 6107 push_to_sequence (*where);
32131a9c 6108
367b1cf5
BS
6109 /* Auto-increment addresses must be reloaded in a special way. */
6110 if (rl->out && ! rl->out_reg)
32131a9c 6111 {
367b1cf5
BS
6112 /* We are not going to bother supporting the case where a
6113 incremented register can't be copied directly from
6114 OLDEQUIV since this seems highly unlikely. */
6115 if (rl->secondary_in_reload >= 0)
6116 abort ();
32131a9c 6117
367b1cf5
BS
6118 if (reload_inherited[j])
6119 oldequiv = reloadreg;
cb2afeb3 6120
367b1cf5 6121 old = XEXP (rl->in_reg, 0);
32131a9c 6122
367b1cf5
BS
6123 if (optimize && GET_CODE (oldequiv) == REG
6124 && REGNO (oldequiv) < FIRST_PSEUDO_REGISTER
6125 && spill_reg_store[REGNO (oldequiv)]
6126 && GET_CODE (old) == REG
6127 && (dead_or_set_p (insn,
6128 spill_reg_stored_to[REGNO (oldequiv)])
6129 || rtx_equal_p (spill_reg_stored_to[REGNO (oldequiv)],
6130 old)))
6131 delete_output_reload (insn, j, REGNO (oldequiv));
6132
6133 /* Prevent normal processing of this reload. */
6134 special = 1;
6135 /* Output a special code sequence for this case. */
6136 new_spill_reg_store[REGNO (reloadreg)]
6137 = inc_for_reload (reloadreg, oldequiv, rl->out,
6138 rl->inc);
6139 }
32131a9c 6140
367b1cf5
BS
6141 /* If we are reloading a pseudo-register that was set by the previous
6142 insn, see if we can get rid of that pseudo-register entirely
6143 by redirecting the previous insn into our reload register. */
6144
6145 else if (optimize && GET_CODE (old) == REG
6146 && REGNO (old) >= FIRST_PSEUDO_REGISTER
6147 && dead_or_set_p (insn, old)
6148 /* This is unsafe if some other reload
6149 uses the same reg first. */
6150 && reload_reg_free_for_value_p (REGNO (reloadreg),
6151 rl->opnum,
6152 rl->when_needed,
6153 old, rl->out,
6154 j, 0))
6155 {
6156 rtx temp = PREV_INSN (insn);
6157 while (temp && GET_CODE (temp) == NOTE)
6158 temp = PREV_INSN (temp);
6159 if (temp
6160 && GET_CODE (temp) == INSN
6161 && GET_CODE (PATTERN (temp)) == SET
6162 && SET_DEST (PATTERN (temp)) == old
6163 /* Make sure we can access insn_operand_constraint. */
6164 && asm_noperands (PATTERN (temp)) < 0
6165 /* This is unsafe if prev insn rejects our reload reg. */
6166 && constraint_accepts_reg_p (insn_data[recog_memoized (temp)].operand[0].constraint,
6167 reloadreg)
6168 /* This is unsafe if operand occurs more than once in current
6169 insn. Perhaps some occurrences aren't reloaded. */
6170 && count_occurrences (PATTERN (insn), old) == 1
6171 /* Don't risk splitting a matching pair of operands. */
6172 && ! reg_mentioned_p (old, SET_SRC (PATTERN (temp))))
6173 {
6174 /* Store into the reload register instead of the pseudo. */
6175 SET_DEST (PATTERN (temp)) = reloadreg;
6176
6177 /* If the previous insn is an output reload, the source is
6178 a reload register, and its spill_reg_store entry will
6179 contain the previous destination. This is now
6180 invalid. */
6181 if (GET_CODE (SET_SRC (PATTERN (temp))) == REG
6182 && REGNO (SET_SRC (PATTERN (temp))) < FIRST_PSEUDO_REGISTER)
32131a9c 6183 {
367b1cf5
BS
6184 spill_reg_store[REGNO (SET_SRC (PATTERN (temp)))] = 0;
6185 spill_reg_stored_to[REGNO (SET_SRC (PATTERN (temp)))] = 0;
32131a9c
RK
6186 }
6187
367b1cf5
BS
6188 /* If these are the only uses of the pseudo reg,
6189 pretend for GDB it lives in the reload reg we used. */
6190 if (REG_N_DEATHS (REGNO (old)) == 1
6191 && REG_N_SETS (REGNO (old)) == 1)
cb2afeb3 6192 {
367b1cf5
BS
6193 reg_renumber[REGNO (old)] = REGNO (rl->reg_rtx);
6194 alter_reg (REGNO (old), -1);
32131a9c 6195 }
07875628 6196 special = 1;
367b1cf5
BS
6197 }
6198 }
32131a9c 6199
367b1cf5 6200 /* We can't do that, so output an insn to load RELOADREG. */
32131a9c 6201
367b1cf5
BS
6202#ifdef SECONDARY_INPUT_RELOAD_CLASS
6203 /* If we have a secondary reload, pick up the secondary register
6204 and icode, if any. If OLDEQUIV and OLD are different or
6205 if this is an in-out reload, recompute whether or not we
6206 still need a secondary register and what the icode should
6207 be. If we still need a secondary register and the class or
6208 icode is different, go back to reloading from OLD if using
6209 OLDEQUIV means that we got the wrong type of register. We
6210 cannot have different class or icode due to an in-out reload
6211 because we don't make such reloads when both the input and
6212 output need secondary reload registers. */
6213
07875628 6214 if (! special && rl->secondary_in_reload >= 0)
367b1cf5
BS
6215 {
6216 rtx second_reload_reg = 0;
6217 int secondary_reload = rl->secondary_in_reload;
6218 rtx real_oldequiv = oldequiv;
6219 rtx real_old = old;
6220 rtx tmp;
6221 enum insn_code icode;
6222
6223 /* If OLDEQUIV is a pseudo with a MEM, get the real MEM
6224 and similarly for OLD.
6225 See comments in get_secondary_reload in reload.c. */
6226 /* If it is a pseudo that cannot be replaced with its
6227 equivalent MEM, we must fall back to reload_in, which
6228 will have all the necessary substitutions registered.
6229 Likewise for a pseudo that can't be replaced with its
6230 equivalent constant.
6231
6232 Take extra care for subregs of such pseudos. Note that
6233 we cannot use reg_equiv_mem in this case because it is
6234 not in the right mode. */
6235
6236 tmp = oldequiv;
6237 if (GET_CODE (tmp) == SUBREG)
6238 tmp = SUBREG_REG (tmp);
6239 if (GET_CODE (tmp) == REG
6240 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
6241 && (reg_equiv_memory_loc[REGNO (tmp)] != 0
6242 || reg_equiv_constant[REGNO (tmp)] != 0))
6243 {
6244 if (! reg_equiv_mem[REGNO (tmp)]
6245 || num_not_at_initial_offset
6246 || GET_CODE (oldequiv) == SUBREG)
6247 real_oldequiv = rl->in;
6248 else
6249 real_oldequiv = reg_equiv_mem[REGNO (tmp)];
6250 }
32131a9c 6251
367b1cf5
BS
6252 tmp = old;
6253 if (GET_CODE (tmp) == SUBREG)
6254 tmp = SUBREG_REG (tmp);
6255 if (GET_CODE (tmp) == REG
6256 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
6257 && (reg_equiv_memory_loc[REGNO (tmp)] != 0
6258 || reg_equiv_constant[REGNO (tmp)] != 0))
6259 {
6260 if (! reg_equiv_mem[REGNO (tmp)]
6261 || num_not_at_initial_offset
6262 || GET_CODE (old) == SUBREG)
6263 real_old = rl->in;
6264 else
6265 real_old = reg_equiv_mem[REGNO (tmp)];
6266 }
6267
6268 second_reload_reg = rld[secondary_reload].reg_rtx;
6269 icode = rl->secondary_in_icode;
6270
6271 if ((old != oldequiv && ! rtx_equal_p (old, oldequiv))
6272 || (rl->in != 0 && rl->out != 0))
6273 {
6274 enum reg_class new_class
6275 = SECONDARY_INPUT_RELOAD_CLASS (rl->class,
6276 mode, real_oldequiv);
6277
6278 if (new_class == NO_REGS)
6279 second_reload_reg = 0;
6280 else
32131a9c 6281 {
367b1cf5
BS
6282 enum insn_code new_icode;
6283 enum machine_mode new_mode;
6284
6285 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) new_class],
6286 REGNO (second_reload_reg)))
6287 oldequiv = old, real_oldequiv = real_old;
6288 else
32131a9c 6289 {
367b1cf5
BS
6290 new_icode = reload_in_optab[(int) mode];
6291 if (new_icode != CODE_FOR_nothing
6292 && ((insn_data[(int) new_icode].operand[0].predicate
6293 && ! ((*insn_data[(int) new_icode].operand[0].predicate)
6294 (reloadreg, mode)))
6295 || (insn_data[(int) new_icode].operand[1].predicate
6296 && ! ((*insn_data[(int) new_icode].operand[1].predicate)
6297 (real_oldequiv, mode)))))
6298 new_icode = CODE_FOR_nothing;
6299
6300 if (new_icode == CODE_FOR_nothing)
6301 new_mode = mode;
6302 else
6303 new_mode = insn_data[(int) new_icode].operand[2].mode;
d30e8ef0 6304
367b1cf5 6305 if (GET_MODE (second_reload_reg) != new_mode)
32131a9c 6306 {
367b1cf5
BS
6307 if (!HARD_REGNO_MODE_OK (REGNO (second_reload_reg),
6308 new_mode))
6309 oldequiv = old, real_oldequiv = real_old;
6310 else
6311 second_reload_reg
6312 = gen_rtx_REG (new_mode,
6313 REGNO (second_reload_reg));
32131a9c 6314 }
32131a9c
RK
6315 }
6316 }
367b1cf5 6317 }
32131a9c 6318
367b1cf5
BS
6319 /* If we still need a secondary reload register, check
6320 to see if it is being used as a scratch or intermediate
6321 register and generate code appropriately. If we need
6322 a scratch register, use REAL_OLDEQUIV since the form of
6323 the insn may depend on the actual address if it is
6324 a MEM. */
546b63fb 6325
367b1cf5
BS
6326 if (second_reload_reg)
6327 {
6328 if (icode != CODE_FOR_nothing)
32131a9c 6329 {
367b1cf5
BS
6330 emit_insn (GEN_FCN (icode) (reloadreg, real_oldequiv,
6331 second_reload_reg));
07875628 6332 special = 1;
367b1cf5
BS
6333 }
6334 else
6335 {
6336 /* See if we need a scratch register to load the
6337 intermediate register (a tertiary reload). */
6338 enum insn_code tertiary_icode
6339 = rld[secondary_reload].secondary_in_icode;
1554c2c6 6340
367b1cf5
BS
6341 if (tertiary_icode != CODE_FOR_nothing)
6342 {
6343 rtx third_reload_reg
6344 = rld[rld[secondary_reload].secondary_in_reload].reg_rtx;
1554c2c6 6345
367b1cf5
BS
6346 emit_insn ((GEN_FCN (tertiary_icode)
6347 (second_reload_reg, real_oldequiv,
6348 third_reload_reg)));
6349 }
6350 else
6351 gen_reload (second_reload_reg, real_oldequiv,
6352 rl->opnum,
6353 rl->when_needed);
32131a9c 6354
367b1cf5
BS
6355 oldequiv = second_reload_reg;
6356 }
6357 }
6358 }
6359#endif
32131a9c 6360
07875628 6361 if (! special && ! rtx_equal_p (reloadreg, oldequiv))
367b1cf5
BS
6362 {
6363 rtx real_oldequiv = oldequiv;
6364
6365 if ((GET_CODE (oldequiv) == REG
6366 && REGNO (oldequiv) >= FIRST_PSEUDO_REGISTER
6367 && (reg_equiv_memory_loc[REGNO (oldequiv)] != 0
6368 || reg_equiv_constant[REGNO (oldequiv)] != 0))
6369 || (GET_CODE (oldequiv) == SUBREG
6370 && GET_CODE (SUBREG_REG (oldequiv)) == REG
6371 && (REGNO (SUBREG_REG (oldequiv))
6372 >= FIRST_PSEUDO_REGISTER)
6373 && ((reg_equiv_memory_loc
6374 [REGNO (SUBREG_REG (oldequiv))] != 0)
6375 || (reg_equiv_constant
6376 [REGNO (SUBREG_REG (oldequiv))] != 0))))
6377 real_oldequiv = rl->in;
6378 gen_reload (reloadreg, real_oldequiv, rl->opnum,
6379 rl->when_needed);
6380 }
32131a9c 6381
367b1cf5
BS
6382 /* End this sequence. */
6383 *where = get_insns ();
6384 end_sequence ();
32131a9c 6385
367b1cf5
BS
6386 /* Update reload_override_in so that delete_address_reloads_1
6387 can see the actual register usage. */
6388 if (oldequiv_reg)
6389 reload_override_in[j] = oldequiv;
6390}
32131a9c 6391
367b1cf5
BS
6392/* Generate insns to for the output reload RL, which is for the insn described
6393 by CHAIN and has the number J. */
6394static void
6395emit_output_reload_insns (chain, rl, j)
6396 struct insn_chain *chain;
6397 struct reload *rl;
6398 int j;
6399{
6400 rtx reloadreg = rl->reg_rtx;
6401 rtx insn = chain->insn;
6402 int special = 0;
6403 rtx old = rl->out;
6404 enum machine_mode mode = GET_MODE (old);
6405 rtx p;
32131a9c 6406
367b1cf5
BS
6407 if (rl->when_needed == RELOAD_OTHER)
6408 start_sequence ();
6409 else
6410 push_to_sequence (output_reload_insns[rl->opnum]);
32131a9c 6411
367b1cf5
BS
6412 /* Determine the mode to reload in.
6413 See comments above (for input reloading). */
32131a9c 6414
367b1cf5
BS
6415 if (mode == VOIDmode)
6416 {
6417 /* VOIDmode should never happen for an output. */
6418 if (asm_noperands (PATTERN (insn)) < 0)
6419 /* It's the compiler's fault. */
6420 fatal_insn ("VOIDmode on an output", insn);
6421 error_for_asm (insn, "output operand is constant in `asm'");
6422 /* Prevent crash--use something we know is valid. */
6423 mode = word_mode;
6424 old = gen_rtx_REG (mode, REGNO (reloadreg));
6425 }
546b63fb 6426
367b1cf5
BS
6427 if (GET_MODE (reloadreg) != mode)
6428 reloadreg = gen_rtx_REG (mode, REGNO (reloadreg));
32131a9c 6429
367b1cf5 6430#ifdef SECONDARY_OUTPUT_RELOAD_CLASS
32131a9c 6431
367b1cf5
BS
6432 /* If we need two reload regs, set RELOADREG to the intermediate
6433 one, since it will be stored into OLD. We might need a secondary
6434 register only for an input reload, so check again here. */
32131a9c 6435
367b1cf5
BS
6436 if (rl->secondary_out_reload >= 0)
6437 {
6438 rtx real_old = old;
cb2afeb3 6439
367b1cf5
BS
6440 if (GET_CODE (old) == REG && REGNO (old) >= FIRST_PSEUDO_REGISTER
6441 && reg_equiv_mem[REGNO (old)] != 0)
6442 real_old = reg_equiv_mem[REGNO (old)];
32131a9c 6443
367b1cf5
BS
6444 if ((SECONDARY_OUTPUT_RELOAD_CLASS (rl->class,
6445 mode, real_old)
6446 != NO_REGS))
b60a8416 6447 {
367b1cf5
BS
6448 rtx second_reloadreg = reloadreg;
6449 reloadreg = rld[rl->secondary_out_reload].reg_rtx;
32131a9c 6450
367b1cf5
BS
6451 /* See if RELOADREG is to be used as a scratch register
6452 or as an intermediate register. */
6453 if (rl->secondary_out_icode != CODE_FOR_nothing)
6454 {
6455 emit_insn ((GEN_FCN (rl->secondary_out_icode)
6456 (real_old, second_reloadreg, reloadreg)));
6457 special = 1;
6458 }
6459 else
6460 {
6461 /* See if we need both a scratch and intermediate reload
6462 register. */
32131a9c 6463
367b1cf5
BS
6464 int secondary_reload = rl->secondary_out_reload;
6465 enum insn_code tertiary_icode
6466 = rld[secondary_reload].secondary_out_icode;
32131a9c 6467
367b1cf5
BS
6468 if (GET_MODE (reloadreg) != mode)
6469 reloadreg = gen_rtx_REG (mode, REGNO (reloadreg));
cb2afeb3 6470
367b1cf5
BS
6471 if (tertiary_icode != CODE_FOR_nothing)
6472 {
6473 rtx third_reloadreg
6474 = rld[rld[secondary_reload].secondary_out_reload].reg_rtx;
6475 rtx tem;
6476
6477 /* Copy primary reload reg to secondary reload reg.
6478 (Note that these have been swapped above, then
6479 secondary reload reg to OLD using our insn. */
6480
6481 /* If REAL_OLD is a paradoxical SUBREG, remove it
6482 and try to put the opposite SUBREG on
6483 RELOADREG. */
6484 if (GET_CODE (real_old) == SUBREG
6485 && (GET_MODE_SIZE (GET_MODE (real_old))
6486 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (real_old))))
6487 && 0 != (tem = gen_lowpart_common
6488 (GET_MODE (SUBREG_REG (real_old)),
6489 reloadreg)))
6490 real_old = SUBREG_REG (real_old), reloadreg = tem;
6491
6492 gen_reload (reloadreg, second_reloadreg,
6493 rl->opnum, rl->when_needed);
6494 emit_insn ((GEN_FCN (tertiary_icode)
6495 (real_old, reloadreg, third_reloadreg)));
6496 special = 1;
6497 }
05d10675 6498
367b1cf5
BS
6499 else
6500 /* Copy between the reload regs here and then to
6501 OUT later. */
cb2afeb3 6502
367b1cf5
BS
6503 gen_reload (reloadreg, second_reloadreg,
6504 rl->opnum, rl->when_needed);
a7911cd2 6505 }
367b1cf5
BS
6506 }
6507 }
32131a9c
RK
6508#endif
6509
367b1cf5
BS
6510 /* Output the last reload insn. */
6511 if (! special)
6512 {
6513 rtx set;
6514
6515 /* Don't output the last reload if OLD is not the dest of
6516 INSN and is in the src and is clobbered by INSN. */
6517 if (! flag_expensive_optimizations
6518 || GET_CODE (old) != REG
6519 || !(set = single_set (insn))
6520 || rtx_equal_p (old, SET_DEST (set))
6521 || !reg_mentioned_p (old, SET_SRC (set))
6522 || !regno_clobbered_p (REGNO (old), insn))
6523 gen_reload (old, reloadreg, rl->opnum,
6524 rl->when_needed);
6525 }
32131a9c 6526
367b1cf5
BS
6527 /* Look at all insns we emitted, just to be safe. */
6528 for (p = get_insns (); p; p = NEXT_INSN (p))
6529 if (GET_RTX_CLASS (GET_CODE (p)) == 'i')
6530 {
6531 rtx pat = PATTERN (p);
546b63fb 6532
367b1cf5
BS
6533 /* If this output reload doesn't come from a spill reg,
6534 clear any memory of reloaded copies of the pseudo reg.
6535 If this output reload comes from a spill reg,
6536 reg_has_output_reload will make this do nothing. */
6537 note_stores (pat, forget_old_reloads_1, NULL);
cb2afeb3 6538
367b1cf5
BS
6539 if (reg_mentioned_p (rl->reg_rtx, pat))
6540 {
6541 rtx set = single_set (insn);
6542 if (reload_spill_index[j] < 0
6543 && set
6544 && SET_SRC (set) == rl->reg_rtx)
6545 {
6546 int src = REGNO (SET_SRC (set));
32131a9c 6547
367b1cf5
BS
6548 reload_spill_index[j] = src;
6549 SET_HARD_REG_BIT (reg_is_output_reload, src);
6550 if (find_regno_note (insn, REG_DEAD, src))
6551 SET_HARD_REG_BIT (reg_reloaded_died, src);
6552 }
6553 if (REGNO (rl->reg_rtx) < FIRST_PSEUDO_REGISTER)
6554 {
6555 int s = rl->secondary_out_reload;
6556 set = single_set (p);
6557 /* If this reload copies only to the secondary reload
6558 register, the secondary reload does the actual
6559 store. */
6560 if (s >= 0 && set == NULL_RTX)
6561 ; /* We can't tell what function the secondary reload
6562 has and where the actual store to the pseudo is
6563 made; leave new_spill_reg_store alone. */
6564 else if (s >= 0
6565 && SET_SRC (set) == rl->reg_rtx
6566 && SET_DEST (set) == rld[s].reg_rtx)
6567 {
6568 /* Usually the next instruction will be the
6569 secondary reload insn; if we can confirm
6570 that it is, setting new_spill_reg_store to
6571 that insn will allow an extra optimization. */
6572 rtx s_reg = rld[s].reg_rtx;
6573 rtx next = NEXT_INSN (p);
6574 rld[s].out = rl->out;
6575 rld[s].out_reg = rl->out_reg;
6576 set = single_set (next);
6577 if (set && SET_SRC (set) == s_reg
6578 && ! new_spill_reg_store[REGNO (s_reg)])
6579 {
6580 SET_HARD_REG_BIT (reg_is_output_reload,
6581 REGNO (s_reg));
6582 new_spill_reg_store[REGNO (s_reg)] = next;
6583 }
6584 }
6585 else
6586 new_spill_reg_store[REGNO (rl->reg_rtx)] = p;
6587 }
6588 }
6589 }
32131a9c 6590
367b1cf5
BS
6591 if (rl->when_needed == RELOAD_OTHER)
6592 {
6593 emit_insns (other_output_reload_insns[rl->opnum]);
6594 other_output_reload_insns[rl->opnum] = get_insns ();
6595 }
6596 else
6597 output_reload_insns[rl->opnum] = get_insns ();
32131a9c 6598
367b1cf5
BS
6599 end_sequence ();
6600}
32131a9c 6601
367b1cf5
BS
6602/* Do input reloading for reload RL, which is for the insn described by CHAIN
6603 and has the number J. */
6604static void
6605do_input_reload (chain, rl, j)
6606 struct insn_chain *chain;
6607 struct reload *rl;
6608 int j;
6609{
6610 int expect_occurrences = 1;
6611 rtx insn = chain->insn;
6612 rtx old = (rl->in && GET_CODE (rl->in) == MEM
6613 ? rl->in_reg : rl->in);
6614
6615 if (old != 0
6616 /* AUTO_INC reloads need to be handled even if inherited. We got an
6617 AUTO_INC reload if reload_out is set but reload_out_reg isn't. */
6618 && (! reload_inherited[j] || (rl->out && ! rl->out_reg))
6619 && ! rtx_equal_p (rl->reg_rtx, old)
6620 && rl->reg_rtx != 0)
1d813780 6621 emit_input_reload_insns (chain, rld + j, old, j);
32131a9c 6622
367b1cf5
BS
6623 /* When inheriting a wider reload, we have a MEM in rl->in,
6624 e.g. inheriting a SImode output reload for
6625 (mem:HI (plus:SI (reg:SI 14 fp) (const_int 10))) */
6626 if (optimize && reload_inherited[j] && rl->in
6627 && GET_CODE (rl->in) == MEM
6628 && GET_CODE (rl->in_reg) == MEM
6629 && reload_spill_index[j] >= 0
6630 && TEST_HARD_REG_BIT (reg_reloaded_valid, reload_spill_index[j]))
6631 {
6632 expect_occurrences
6633 = count_occurrences (PATTERN (insn), rl->in) == 1 ? 0 : -1;
6634 rl->in
6635 = regno_reg_rtx[reg_reloaded_contents[reload_spill_index[j]]];
6636 }
32131a9c 6637
367b1cf5
BS
6638 /* If we are reloading a register that was recently stored in with an
6639 output-reload, see if we can prove there was
6640 actually no need to store the old value in it. */
32131a9c 6641
367b1cf5
BS
6642 if (optimize
6643 && (reload_inherited[j] || reload_override_in[j])
6644 && rl->reg_rtx
6645 && GET_CODE (rl->reg_rtx) == REG
6646 && spill_reg_store[REGNO (rl->reg_rtx)] != 0
6647#if 0
6648 /* There doesn't seem to be any reason to restrict this to pseudos
6649 and doing so loses in the case where we are copying from a
6650 register of the wrong class. */
6651 && (REGNO (spill_reg_stored_to[REGNO (rl->reg_rtx)])
6652 >= FIRST_PSEUDO_REGISTER)
6653#endif
6654 /* The insn might have already some references to stackslots
6655 replaced by MEMs, while reload_out_reg still names the
6656 original pseudo. */
6657 && (dead_or_set_p (insn,
6658 spill_reg_stored_to[REGNO (rl->reg_rtx)])
6659 || rtx_equal_p (spill_reg_stored_to[REGNO (rl->reg_rtx)],
6660 rl->out_reg)))
6661 delete_output_reload (insn, j, REGNO (rl->reg_rtx));
6662}
32131a9c 6663
367b1cf5
BS
6664/* Do output reloading for reload RL, which is for the insn described by
6665 CHAIN and has the number J.
6666 ??? At some point we need to support handling output reloads of
6667 JUMP_INSNs or insns that set cc0. */
6668static void
6669do_output_reload (chain, rl, j)
6670 struct insn_chain *chain;
6671 struct reload *rl;
6672 int j;
6673{
6674 rtx note, old;
6675 rtx insn = chain->insn;
6676 /* If this is an output reload that stores something that is
6677 not loaded in this same reload, see if we can eliminate a previous
6678 store. */
6679 rtx pseudo = rl->out_reg;
6680
6681 if (pseudo
6682 && GET_CODE (pseudo) == REG
6683 && ! rtx_equal_p (rl->in_reg, pseudo)
6684 && REGNO (pseudo) >= FIRST_PSEUDO_REGISTER
6685 && reg_last_reload_reg[REGNO (pseudo)])
6686 {
6687 int pseudo_no = REGNO (pseudo);
6688 int last_regno = REGNO (reg_last_reload_reg[pseudo_no]);
6689
6690 /* We don't need to test full validity of last_regno for
6691 inherit here; we only want to know if the store actually
6692 matches the pseudo. */
60ef417d
GK
6693 if (TEST_HARD_REG_BIT (reg_reloaded_valid, last_regno)
6694 && reg_reloaded_contents[last_regno] == pseudo_no
367b1cf5
BS
6695 && spill_reg_store[last_regno]
6696 && rtx_equal_p (pseudo, spill_reg_stored_to[last_regno]))
6697 delete_output_reload (insn, j, last_regno);
6698 }
5e03c156 6699
367b1cf5
BS
6700 old = rl->out_reg;
6701 if (old == 0
6702 || rl->reg_rtx == old
6703 || rl->reg_rtx == 0)
6704 return;
32131a9c 6705
367b1cf5
BS
6706 /* An output operand that dies right away does need a reload,
6707 but need not be copied from it. Show the new location in the
6708 REG_UNUSED note. */
6709 if ((GET_CODE (old) == REG || GET_CODE (old) == SCRATCH)
6710 && (note = find_reg_note (insn, REG_UNUSED, old)) != 0)
6711 {
6712 XEXP (note, 0) = rl->reg_rtx;
6713 return;
6714 }
6715 /* Likewise for a SUBREG of an operand that dies. */
6716 else if (GET_CODE (old) == SUBREG
6717 && GET_CODE (SUBREG_REG (old)) == REG
6718 && 0 != (note = find_reg_note (insn, REG_UNUSED,
6719 SUBREG_REG (old))))
6720 {
6721 XEXP (note, 0) = gen_lowpart_common (GET_MODE (old),
6722 rl->reg_rtx);
6723 return;
6724 }
6725 else if (GET_CODE (old) == SCRATCH)
6726 /* If we aren't optimizing, there won't be a REG_UNUSED note,
6727 but we don't want to make an output reload. */
6728 return;
1554c2c6 6729
367b1cf5
BS
6730 /* If is a JUMP_INSN, we can't support output reloads yet. */
6731 if (GET_CODE (insn) == JUMP_INSN)
6732 abort ();
5e03c156 6733
367b1cf5
BS
6734 emit_output_reload_insns (chain, rld + j, j);
6735}
1554c2c6 6736
367b1cf5 6737/* Output insns to reload values in and out of the chosen reload regs. */
32131a9c 6738
367b1cf5
BS
6739static void
6740emit_reload_insns (chain)
6741 struct insn_chain *chain;
6742{
6743 rtx insn = chain->insn;
32131a9c 6744
367b1cf5
BS
6745 register int j;
6746 rtx following_insn = NEXT_INSN (insn);
6747 rtx before_insn = PREV_INSN (insn);
e6e52be0 6748
367b1cf5 6749 CLEAR_HARD_REG_SET (reg_reloaded_died);
e6e52be0 6750
367b1cf5
BS
6751 for (j = 0; j < reload_n_operands; j++)
6752 input_reload_insns[j] = input_address_reload_insns[j]
6753 = inpaddr_address_reload_insns[j]
6754 = output_reload_insns[j] = output_address_reload_insns[j]
6755 = outaddr_address_reload_insns[j]
6756 = other_output_reload_insns[j] = 0;
6757 other_input_address_reload_insns = 0;
6758 other_input_reload_insns = 0;
6759 operand_reload_insns = 0;
6760 other_operand_reload_insns = 0;
32131a9c 6761
367b1cf5
BS
6762 /* Now output the instructions to copy the data into and out of the
6763 reload registers. Do these in the order that the reloads were reported,
6764 since reloads of base and index registers precede reloads of operands
6765 and the operands may need the base and index registers reloaded. */
32131a9c 6766
367b1cf5
BS
6767 for (j = 0; j < n_reloads; j++)
6768 {
6769 if (rld[j].reg_rtx
6770 && REGNO (rld[j].reg_rtx) < FIRST_PSEUDO_REGISTER)
6771 new_spill_reg_store[REGNO (rld[j].reg_rtx)] = 0;
d7e0324f 6772
367b1cf5
BS
6773 do_input_reload (chain, rld + j, j);
6774 do_output_reload (chain, rld + j, j);
32131a9c
RK
6775 }
6776
546b63fb
RK
6777 /* Now write all the insns we made for reloads in the order expected by
6778 the allocation functions. Prior to the insn being reloaded, we write
6779 the following reloads:
6780
6781 RELOAD_FOR_OTHER_ADDRESS reloads for input addresses.
6782
2edc8d65 6783 RELOAD_OTHER reloads.
546b63fb 6784
47c8cf91
ILT
6785 For each operand, any RELOAD_FOR_INPADDR_ADDRESS reloads followed
6786 by any RELOAD_FOR_INPUT_ADDRESS reloads followed by the
6787 RELOAD_FOR_INPUT reload for the operand.
546b63fb 6788
893bc853
RK
6789 RELOAD_FOR_OPADDR_ADDRS reloads.
6790
546b63fb
RK
6791 RELOAD_FOR_OPERAND_ADDRESS reloads.
6792
6793 After the insn being reloaded, we write the following:
6794
47c8cf91
ILT
6795 For each operand, any RELOAD_FOR_OUTADDR_ADDRESS reloads followed
6796 by any RELOAD_FOR_OUTPUT_ADDRESS reload followed by the
6797 RELOAD_FOR_OUTPUT reload, followed by any RELOAD_OTHER output
6798 reloads for the operand. The RELOAD_OTHER output reloads are
6799 output in descending order by reload number. */
546b63fb 6800
c93b03c2
RH
6801 emit_insns_before (other_input_address_reload_insns, insn);
6802 emit_insns_before (other_input_reload_insns, insn);
546b63fb
RK
6803
6804 for (j = 0; j < reload_n_operands; j++)
6805 {
c93b03c2
RH
6806 emit_insns_before (inpaddr_address_reload_insns[j], insn);
6807 emit_insns_before (input_address_reload_insns[j], insn);
6808 emit_insns_before (input_reload_insns[j], insn);
546b63fb
RK
6809 }
6810
c93b03c2
RH
6811 emit_insns_before (other_operand_reload_insns, insn);
6812 emit_insns_before (operand_reload_insns, insn);
546b63fb
RK
6813
6814 for (j = 0; j < reload_n_operands; j++)
6815 {
47c8cf91 6816 emit_insns_before (outaddr_address_reload_insns[j], following_insn);
546b63fb
RK
6817 emit_insns_before (output_address_reload_insns[j], following_insn);
6818 emit_insns_before (output_reload_insns[j], following_insn);
befa01b9 6819 emit_insns_before (other_output_reload_insns[j], following_insn);
c93b03c2
RH
6820 }
6821
6822 /* Keep basic block info up to date. */
6823 if (n_basic_blocks)
6824 {
3b413743 6825 if (BLOCK_HEAD (chain->block) == insn)
05d10675 6826 BLOCK_HEAD (chain->block) = NEXT_INSN (before_insn);
3b413743 6827 if (BLOCK_END (chain->block) == insn)
05d10675 6828 BLOCK_END (chain->block) = PREV_INSN (following_insn);
546b63fb
RK
6829 }
6830
32131a9c
RK
6831 /* For all the spill regs newly reloaded in this instruction,
6832 record what they were reloaded from, so subsequent instructions
d445b551
RK
6833 can inherit the reloads.
6834
6835 Update spill_reg_store for the reloads of this insn.
e9e79d69 6836 Copy the elements that were updated in the loop above. */
32131a9c
RK
6837
6838 for (j = 0; j < n_reloads; j++)
6839 {
6840 register int r = reload_order[j];
6841 register int i = reload_spill_index[r];
6842
78a2bc08 6843 /* If this is a non-inherited input reload from a pseudo, we must
05d10675
BS
6844 clear any memory of a previous store to the same pseudo. Only do
6845 something if there will not be an output reload for the pseudo
6846 being reloaded. */
eceef4c9 6847 if (rld[r].in_reg != 0
05d10675
BS
6848 && ! (reload_inherited[r] || reload_override_in[r]))
6849 {
eceef4c9 6850 rtx reg = rld[r].in_reg;
78a2bc08 6851
05d10675 6852 if (GET_CODE (reg) == SUBREG)
78a2bc08 6853 reg = SUBREG_REG (reg);
05d10675
BS
6854
6855 if (GET_CODE (reg) == REG
78a2bc08
R
6856 && REGNO (reg) >= FIRST_PSEUDO_REGISTER
6857 && ! reg_has_output_reload[REGNO (reg)])
6858 {
6859 int nregno = REGNO (reg);
6860
6861 if (reg_last_reload_reg[nregno])
05d10675
BS
6862 {
6863 int last_regno = REGNO (reg_last_reload_reg[nregno]);
78a2bc08 6864
05d10675 6865 if (reg_reloaded_contents[last_regno] == nregno)
78a2bc08 6866 spill_reg_store[last_regno] = 0;
05d10675 6867 }
78a2bc08
R
6868 }
6869 }
05d10675 6870
e6e52be0 6871 /* I is nonneg if this reload used a register.
eceef4c9 6872 If rld[r].reg_rtx is 0, this is an optional reload
51f0c3b7 6873 that we opted to ignore. */
d445b551 6874
eceef4c9 6875 if (i >= 0 && rld[r].reg_rtx != 0)
32131a9c 6876 {
32131a9c 6877 int nr
eceef4c9 6878 = HARD_REGNO_NREGS (i, GET_MODE (rld[r].reg_rtx));
32131a9c 6879 int k;
51f0c3b7
JW
6880 int part_reaches_end = 0;
6881 int all_reaches_end = 1;
32131a9c 6882
51f0c3b7
JW
6883 /* For a multi register reload, we need to check if all or part
6884 of the value lives to the end. */
32131a9c
RK
6885 for (k = 0; k < nr; k++)
6886 {
eceef4c9
BS
6887 if (reload_reg_reaches_end_p (i + k, rld[r].opnum,
6888 rld[r].when_needed))
51f0c3b7
JW
6889 part_reaches_end = 1;
6890 else
6891 all_reaches_end = 0;
32131a9c
RK
6892 }
6893
51f0c3b7
JW
6894 /* Ignore reloads that don't reach the end of the insn in
6895 entirety. */
6896 if (all_reaches_end)
32131a9c 6897 {
51f0c3b7
JW
6898 /* First, clear out memory of what used to be in this spill reg.
6899 If consecutive registers are used, clear them all. */
d08ea79f 6900
32131a9c 6901 for (k = 0; k < nr; k++)
e6e52be0 6902 CLEAR_HARD_REG_BIT (reg_reloaded_valid, i + k);
d08ea79f 6903
51f0c3b7 6904 /* Maybe the spill reg contains a copy of reload_out. */
eceef4c9
BS
6905 if (rld[r].out != 0
6906 && (GET_CODE (rld[r].out) == REG
cb2afeb3 6907#ifdef AUTO_INC_DEC
eceef4c9 6908 || ! rld[r].out_reg
cb2afeb3 6909#endif
eceef4c9 6910 || GET_CODE (rld[r].out_reg) == REG))
51f0c3b7 6911 {
eceef4c9
BS
6912 rtx out = (GET_CODE (rld[r].out) == REG
6913 ? rld[r].out
6914 : rld[r].out_reg
6915 ? rld[r].out_reg
6916/* AUTO_INC */ : XEXP (rld[r].in_reg, 0));
cb2afeb3 6917 register int nregno = REGNO (out);
51f0c3b7
JW
6918 int nnr = (nregno >= FIRST_PSEUDO_REGISTER ? 1
6919 : HARD_REGNO_NREGS (nregno,
eceef4c9 6920 GET_MODE (rld[r].reg_rtx)));
51f0c3b7
JW
6921
6922 spill_reg_store[i] = new_spill_reg_store[i];
cb2afeb3 6923 spill_reg_stored_to[i] = out;
eceef4c9 6924 reg_last_reload_reg[nregno] = rld[r].reg_rtx;
51f0c3b7
JW
6925
6926 /* If NREGNO is a hard register, it may occupy more than
05d10675 6927 one register. If it does, say what is in the
51f0c3b7
JW
6928 rest of the registers assuming that both registers
6929 agree on how many words the object takes. If not,
6930 invalidate the subsequent registers. */
6931
6932 if (nregno < FIRST_PSEUDO_REGISTER)
6933 for (k = 1; k < nnr; k++)
6934 reg_last_reload_reg[nregno + k]
6935 = (nr == nnr
eceef4c9
BS
6936 ? gen_rtx_REG (reg_raw_mode[REGNO (rld[r].reg_rtx) + k],
6937 REGNO (rld[r].reg_rtx) + k)
51f0c3b7
JW
6938 : 0);
6939
6940 /* Now do the inverse operation. */
6941 for (k = 0; k < nr; k++)
6942 {
e6e52be0
R
6943 CLEAR_HARD_REG_BIT (reg_reloaded_dead, i + k);
6944 reg_reloaded_contents[i + k]
51f0c3b7
JW
6945 = (nregno >= FIRST_PSEUDO_REGISTER || nr != nnr
6946 ? nregno
6947 : nregno + k);
e6e52be0
R
6948 reg_reloaded_insn[i + k] = insn;
6949 SET_HARD_REG_BIT (reg_reloaded_valid, i + k);
51f0c3b7
JW
6950 }
6951 }
d08ea79f 6952
51f0c3b7
JW
6953 /* Maybe the spill reg contains a copy of reload_in. Only do
6954 something if there will not be an output reload for
6955 the register being reloaded. */
eceef4c9
BS
6956 else if (rld[r].out_reg == 0
6957 && rld[r].in != 0
6958 && ((GET_CODE (rld[r].in) == REG
6959 && REGNO (rld[r].in) >= FIRST_PSEUDO_REGISTER
6960 && ! reg_has_output_reload[REGNO (rld[r].in)])
6961 || (GET_CODE (rld[r].in_reg) == REG
6962 && ! reg_has_output_reload[REGNO (rld[r].in_reg)]))
6963 && ! reg_set_p (rld[r].reg_rtx, PATTERN (insn)))
51f0c3b7
JW
6964 {
6965 register int nregno;
6966 int nnr;
d445b551 6967
eceef4c9
BS
6968 if (GET_CODE (rld[r].in) == REG
6969 && REGNO (rld[r].in) >= FIRST_PSEUDO_REGISTER)
6970 nregno = REGNO (rld[r].in);
6971 else if (GET_CODE (rld[r].in_reg) == REG)
6972 nregno = REGNO (rld[r].in_reg);
cb2afeb3 6973 else
eceef4c9 6974 nregno = REGNO (XEXP (rld[r].in_reg, 0));
d08ea79f 6975
51f0c3b7
JW
6976 nnr = (nregno >= FIRST_PSEUDO_REGISTER ? 1
6977 : HARD_REGNO_NREGS (nregno,
eceef4c9 6978 GET_MODE (rld[r].reg_rtx)));
05d10675 6979
eceef4c9 6980 reg_last_reload_reg[nregno] = rld[r].reg_rtx;
51f0c3b7
JW
6981
6982 if (nregno < FIRST_PSEUDO_REGISTER)
6983 for (k = 1; k < nnr; k++)
6984 reg_last_reload_reg[nregno + k]
6985 = (nr == nnr
eceef4c9
BS
6986 ? gen_rtx_REG (reg_raw_mode[REGNO (rld[r].reg_rtx) + k],
6987 REGNO (rld[r].reg_rtx) + k)
51f0c3b7
JW
6988 : 0);
6989
6990 /* Unless we inherited this reload, show we haven't
cb2afeb3
R
6991 recently done a store.
6992 Previous stores of inherited auto_inc expressions
6993 also have to be discarded. */
6994 if (! reload_inherited[r]
eceef4c9 6995 || (rld[r].out && ! rld[r].out_reg))
51f0c3b7
JW
6996 spill_reg_store[i] = 0;
6997
6998 for (k = 0; k < nr; k++)
6999 {
e6e52be0
R
7000 CLEAR_HARD_REG_BIT (reg_reloaded_dead, i + k);
7001 reg_reloaded_contents[i + k]
51f0c3b7
JW
7002 = (nregno >= FIRST_PSEUDO_REGISTER || nr != nnr
7003 ? nregno
7004 : nregno + k);
e6e52be0
R
7005 reg_reloaded_insn[i + k] = insn;
7006 SET_HARD_REG_BIT (reg_reloaded_valid, i + k);
51f0c3b7
JW
7007 }
7008 }
7009 }
d445b551 7010
51f0c3b7
JW
7011 /* However, if part of the reload reaches the end, then we must
7012 invalidate the old info for the part that survives to the end. */
7013 else if (part_reaches_end)
7014 {
546b63fb 7015 for (k = 0; k < nr; k++)
e6e52be0 7016 if (reload_reg_reaches_end_p (i + k,
eceef4c9
BS
7017 rld[r].opnum,
7018 rld[r].when_needed))
e6e52be0 7019 CLEAR_HARD_REG_BIT (reg_reloaded_valid, i + k);
32131a9c
RK
7020 }
7021 }
7022
7023 /* The following if-statement was #if 0'd in 1.34 (or before...).
7024 It's reenabled in 1.35 because supposedly nothing else
7025 deals with this problem. */
7026
7027 /* If a register gets output-reloaded from a non-spill register,
7028 that invalidates any previous reloaded copy of it.
7029 But forget_old_reloads_1 won't get to see it, because
7030 it thinks only about the original insn. So invalidate it here. */
eceef4c9
BS
7031 if (i < 0 && rld[r].out != 0
7032 && (GET_CODE (rld[r].out) == REG
7033 || (GET_CODE (rld[r].out) == MEM
7034 && GET_CODE (rld[r].out_reg) == REG)))
32131a9c 7035 {
eceef4c9
BS
7036 rtx out = (GET_CODE (rld[r].out) == REG
7037 ? rld[r].out : rld[r].out_reg);
cb2afeb3 7038 register int nregno = REGNO (out);
c7093272 7039 if (nregno >= FIRST_PSEUDO_REGISTER)
cb2afeb3 7040 {
6a651371 7041 rtx src_reg, store_insn = NULL_RTX;
cb2afeb3
R
7042
7043 reg_last_reload_reg[nregno] = 0;
7044
7045 /* If we can find a hard register that is stored, record
7046 the storing insn so that we may delete this insn with
7047 delete_output_reload. */
eceef4c9 7048 src_reg = rld[r].reg_rtx;
cb2afeb3
R
7049
7050 /* If this is an optional reload, try to find the source reg
7051 from an input reload. */
7052 if (! src_reg)
7053 {
7054 rtx set = single_set (insn);
eceef4c9 7055 if (set && SET_DEST (set) == rld[r].out)
cb2afeb3
R
7056 {
7057 int k;
7058
7059 src_reg = SET_SRC (set);
7060 store_insn = insn;
7061 for (k = 0; k < n_reloads; k++)
7062 {
eceef4c9 7063 if (rld[k].in == src_reg)
cb2afeb3 7064 {
eceef4c9 7065 src_reg = rld[k].reg_rtx;
cb2afeb3
R
7066 break;
7067 }
7068 }
7069 }
7070 }
7071 else
7072 store_insn = new_spill_reg_store[REGNO (src_reg)];
7073 if (src_reg && GET_CODE (src_reg) == REG
7074 && REGNO (src_reg) < FIRST_PSEUDO_REGISTER)
7075 {
7076 int src_regno = REGNO (src_reg);
8ec450a4 7077 int nr = HARD_REGNO_NREGS (src_regno, rld[r].mode);
cb2afeb3
R
7078 /* The place where to find a death note varies with
7079 PRESERVE_DEATH_INFO_REGNO_P . The condition is not
7080 necessarily checked exactly in the code that moves
7081 notes, so just check both locations. */
7082 rtx note = find_regno_note (insn, REG_DEAD, src_regno);
7083 if (! note)
7084 note = find_regno_note (store_insn, REG_DEAD, src_regno);
7085 while (nr-- > 0)
7086 {
7087 spill_reg_store[src_regno + nr] = store_insn;
7088 spill_reg_stored_to[src_regno + nr] = out;
7089 reg_reloaded_contents[src_regno + nr] = nregno;
7090 reg_reloaded_insn[src_regno + nr] = store_insn;
00f9f1bc 7091 CLEAR_HARD_REG_BIT (reg_reloaded_dead, src_regno + nr);
cb2afeb3
R
7092 SET_HARD_REG_BIT (reg_reloaded_valid, src_regno + nr);
7093 SET_HARD_REG_BIT (reg_is_output_reload, src_regno + nr);
7094 if (note)
7095 SET_HARD_REG_BIT (reg_reloaded_died, src_regno);
7096 else
7097 CLEAR_HARD_REG_BIT (reg_reloaded_died, src_regno);
7098 }
7099 reg_last_reload_reg[nregno] = src_reg;
7100 }
7101 }
c7093272
RK
7102 else
7103 {
eceef4c9 7104 int num_regs = HARD_REGNO_NREGS (nregno,GET_MODE (rld[r].out));
36281332 7105
c7093272
RK
7106 while (num_regs-- > 0)
7107 reg_last_reload_reg[nregno + num_regs] = 0;
7108 }
32131a9c
RK
7109 }
7110 }
e6e52be0 7111 IOR_HARD_REG_SET (reg_reloaded_dead, reg_reloaded_died);
32131a9c
RK
7112}
7113\f
5e03c156
RK
7114/* Emit code to perform a reload from IN (which may be a reload register) to
7115 OUT (which may also be a reload register). IN or OUT is from operand
05d10675 7116 OPNUM with reload type TYPE.
546b63fb 7117
3c3eeea6 7118 Returns first insn emitted. */
32131a9c
RK
7119
7120rtx
5e03c156
RK
7121gen_reload (out, in, opnum, type)
7122 rtx out;
32131a9c 7123 rtx in;
546b63fb
RK
7124 int opnum;
7125 enum reload_type type;
32131a9c 7126{
546b63fb 7127 rtx last = get_last_insn ();
7a5b18b0
RK
7128 rtx tem;
7129
7130 /* If IN is a paradoxical SUBREG, remove it and try to put the
7131 opposite SUBREG on OUT. Likewise for a paradoxical SUBREG on OUT. */
7132 if (GET_CODE (in) == SUBREG
7133 && (GET_MODE_SIZE (GET_MODE (in))
7134 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
7135 && (tem = gen_lowpart_common (GET_MODE (SUBREG_REG (in)), out)) != 0)
7136 in = SUBREG_REG (in), out = tem;
7137 else if (GET_CODE (out) == SUBREG
eceef4c9
BS
7138 && (GET_MODE_SIZE (GET_MODE (out))
7139 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
7140 && (tem = gen_lowpart_common (GET_MODE (SUBREG_REG (out)), in)) != 0)
7a5b18b0 7141 out = SUBREG_REG (out), in = tem;
32131a9c 7142
a8fdc208 7143 /* How to do this reload can get quite tricky. Normally, we are being
32131a9c
RK
7144 asked to reload a simple operand, such as a MEM, a constant, or a pseudo
7145 register that didn't get a hard register. In that case we can just
7146 call emit_move_insn.
7147
a7fd196c
JW
7148 We can also be asked to reload a PLUS that adds a register or a MEM to
7149 another register, constant or MEM. This can occur during frame pointer
7150 elimination and while reloading addresses. This case is handled by
7151 trying to emit a single insn to perform the add. If it is not valid,
7152 we use a two insn sequence.
32131a9c
RK
7153
7154 Finally, we could be called to handle an 'o' constraint by putting
7155 an address into a register. In that case, we first try to do this
7156 with a named pattern of "reload_load_address". If no such pattern
7157 exists, we just emit a SET insn and hope for the best (it will normally
7158 be valid on machines that use 'o').
7159
7160 This entire process is made complex because reload will never
7161 process the insns we generate here and so we must ensure that
7162 they will fit their constraints and also by the fact that parts of
7163 IN might be being reloaded separately and replaced with spill registers.
7164 Because of this, we are, in some sense, just guessing the right approach
7165 here. The one listed above seems to work.
7166
7167 ??? At some point, this whole thing needs to be rethought. */
7168
7169 if (GET_CODE (in) == PLUS
a7fd196c 7170 && (GET_CODE (XEXP (in, 0)) == REG
5c6b1bd2 7171 || GET_CODE (XEXP (in, 0)) == SUBREG
a7fd196c
JW
7172 || GET_CODE (XEXP (in, 0)) == MEM)
7173 && (GET_CODE (XEXP (in, 1)) == REG
5c6b1bd2 7174 || GET_CODE (XEXP (in, 1)) == SUBREG
a7fd196c
JW
7175 || CONSTANT_P (XEXP (in, 1))
7176 || GET_CODE (XEXP (in, 1)) == MEM))
32131a9c 7177 {
a7fd196c
JW
7178 /* We need to compute the sum of a register or a MEM and another
7179 register, constant, or MEM, and put it into the reload
3002e160
JW
7180 register. The best possible way of doing this is if the machine
7181 has a three-operand ADD insn that accepts the required operands.
32131a9c
RK
7182
7183 The simplest approach is to try to generate such an insn and see if it
7184 is recognized and matches its constraints. If so, it can be used.
7185
7186 It might be better not to actually emit the insn unless it is valid,
0009eff2 7187 but we need to pass the insn as an operand to `recog' and
0eadeb15 7188 `extract_insn' and it is simpler to emit and then delete the insn if
0009eff2 7189 not valid than to dummy things up. */
a8fdc208 7190
af929c62 7191 rtx op0, op1, tem, insn;
32131a9c 7192 int code;
a8fdc208 7193
af929c62
RK
7194 op0 = find_replacement (&XEXP (in, 0));
7195 op1 = find_replacement (&XEXP (in, 1));
7196
32131a9c
RK
7197 /* Since constraint checking is strict, commutativity won't be
7198 checked, so we need to do that here to avoid spurious failure
7199 if the add instruction is two-address and the second operand
7200 of the add is the same as the reload reg, which is frequently
7201 the case. If the insn would be A = B + A, rearrange it so
0f41302f 7202 it will be A = A + B as constrain_operands expects. */
a8fdc208 7203
32131a9c 7204 if (GET_CODE (XEXP (in, 1)) == REG
5e03c156 7205 && REGNO (out) == REGNO (XEXP (in, 1)))
af929c62
RK
7206 tem = op0, op0 = op1, op1 = tem;
7207
7208 if (op0 != XEXP (in, 0) || op1 != XEXP (in, 1))
38a448ca 7209 in = gen_rtx_PLUS (GET_MODE (in), op0, op1);
32131a9c 7210
38a448ca 7211 insn = emit_insn (gen_rtx_SET (VOIDmode, out, in));
32131a9c
RK
7212 code = recog_memoized (insn);
7213
7214 if (code >= 0)
7215 {
0eadeb15 7216 extract_insn (insn);
32131a9c
RK
7217 /* We want constrain operands to treat this insn strictly in
7218 its validity determination, i.e., the way it would after reload
7219 has completed. */
0eadeb15 7220 if (constrain_operands (1))
32131a9c
RK
7221 return insn;
7222 }
7223
546b63fb 7224 delete_insns_since (last);
32131a9c
RK
7225
7226 /* If that failed, we must use a conservative two-insn sequence.
09522f21
FS
7227
7228 Use a move to copy one operand into the reload register. Prefer
7229 to reload a constant, MEM or pseudo since the move patterns can
7230 handle an arbitrary operand. If OP1 is not a constant, MEM or
7231 pseudo and OP1 is not a valid operand for an add instruction, then
7232 reload OP1.
7233
7234 After reloading one of the operands into the reload register, add
7235 the reload register to the output register.
32131a9c
RK
7236
7237 If there is another way to do this for a specific machine, a
7238 DEFINE_PEEPHOLE should be specified that recognizes the sequence
7239 we emit below. */
7240
09522f21
FS
7241 code = (int) add_optab->handlers[(int) GET_MODE (out)].insn_code;
7242
5c6b1bd2 7243 if (CONSTANT_P (op1) || GET_CODE (op1) == MEM || GET_CODE (op1) == SUBREG
af929c62 7244 || (GET_CODE (op1) == REG
09522f21
FS
7245 && REGNO (op1) >= FIRST_PSEUDO_REGISTER)
7246 || (code != CODE_FOR_nothing
a995e389
RH
7247 && ! ((*insn_data[code].operand[2].predicate)
7248 (op1, insn_data[code].operand[2].mode))))
af929c62 7249 tem = op0, op0 = op1, op1 = tem;
32131a9c 7250
5c6b1bd2 7251 gen_reload (out, op0, opnum, type);
39b56c2a 7252
5e03c156 7253 /* If OP0 and OP1 are the same, we can use OUT for OP1.
39b56c2a
RK
7254 This fixes a problem on the 32K where the stack pointer cannot
7255 be used as an operand of an add insn. */
7256
7257 if (rtx_equal_p (op0, op1))
5e03c156 7258 op1 = out;
39b56c2a 7259
5e03c156 7260 insn = emit_insn (gen_add2_insn (out, op1));
c77c9766
RK
7261
7262 /* If that failed, copy the address register to the reload register.
0f41302f 7263 Then add the constant to the reload register. */
c77c9766
RK
7264
7265 code = recog_memoized (insn);
7266
7267 if (code >= 0)
7268 {
0eadeb15 7269 extract_insn (insn);
c77c9766
RK
7270 /* We want constrain operands to treat this insn strictly in
7271 its validity determination, i.e., the way it would after reload
7272 has completed. */
0eadeb15 7273 if (constrain_operands (1))
4117a96b
R
7274 {
7275 /* Add a REG_EQUIV note so that find_equiv_reg can find it. */
7276 REG_NOTES (insn)
9e6a5703 7277 = gen_rtx_EXPR_LIST (REG_EQUIV, in, REG_NOTES (insn));
4117a96b
R
7278 return insn;
7279 }
c77c9766
RK
7280 }
7281
7282 delete_insns_since (last);
7283
5c6b1bd2 7284 gen_reload (out, op1, opnum, type);
4117a96b 7285 insn = emit_insn (gen_add2_insn (out, op0));
9e6a5703 7286 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_EQUIV, in, REG_NOTES (insn));
32131a9c
RK
7287 }
7288
0dadecf6
RK
7289#ifdef SECONDARY_MEMORY_NEEDED
7290 /* If we need a memory location to do the move, do it that way. */
7291 else if (GET_CODE (in) == REG && REGNO (in) < FIRST_PSEUDO_REGISTER
5e03c156 7292 && GET_CODE (out) == REG && REGNO (out) < FIRST_PSEUDO_REGISTER
0dadecf6 7293 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (REGNO (in)),
5e03c156
RK
7294 REGNO_REG_CLASS (REGNO (out)),
7295 GET_MODE (out)))
0dadecf6
RK
7296 {
7297 /* Get the memory to use and rewrite both registers to its mode. */
5e03c156 7298 rtx loc = get_secondary_mem (in, GET_MODE (out), opnum, type);
0dadecf6 7299
5e03c156 7300 if (GET_MODE (loc) != GET_MODE (out))
38a448ca 7301 out = gen_rtx_REG (GET_MODE (loc), REGNO (out));
0dadecf6
RK
7302
7303 if (GET_MODE (loc) != GET_MODE (in))
38a448ca 7304 in = gen_rtx_REG (GET_MODE (loc), REGNO (in));
0dadecf6 7305
5c6b1bd2
RK
7306 gen_reload (loc, in, opnum, type);
7307 gen_reload (out, loc, opnum, type);
0dadecf6
RK
7308 }
7309#endif
7310
32131a9c
RK
7311 /* If IN is a simple operand, use gen_move_insn. */
7312 else if (GET_RTX_CLASS (GET_CODE (in)) == 'o' || GET_CODE (in) == SUBREG)
5e03c156 7313 emit_insn (gen_move_insn (out, in));
32131a9c
RK
7314
7315#ifdef HAVE_reload_load_address
7316 else if (HAVE_reload_load_address)
5e03c156 7317 emit_insn (gen_reload_load_address (out, in));
32131a9c
RK
7318#endif
7319
5e03c156 7320 /* Otherwise, just write (set OUT IN) and hope for the best. */
32131a9c 7321 else
38a448ca 7322 emit_insn (gen_rtx_SET (VOIDmode, out, in));
32131a9c
RK
7323
7324 /* Return the first insn emitted.
546b63fb 7325 We can not just return get_last_insn, because there may have
32131a9c
RK
7326 been multiple instructions emitted. Also note that gen_move_insn may
7327 emit more than one insn itself, so we can not assume that there is one
7328 insn emitted per emit_insn_before call. */
7329
546b63fb 7330 return last ? NEXT_INSN (last) : get_insns ();
32131a9c
RK
7331}
7332\f
7333/* Delete a previously made output-reload
7334 whose result we now believe is not needed.
7335 First we double-check.
7336
7337 INSN is the insn now being processed.
cb2afeb3
R
7338 LAST_RELOAD_REG is the hard register number for which we want to delete
7339 the last output reload.
7340 J is the reload-number that originally used REG. The caller has made
7341 certain that reload J doesn't use REG any longer for input. */
32131a9c
RK
7342
7343static void
cb2afeb3 7344delete_output_reload (insn, j, last_reload_reg)
32131a9c
RK
7345 rtx insn;
7346 int j;
cb2afeb3 7347 int last_reload_reg;
32131a9c 7348{
cb2afeb3
R
7349 rtx output_reload_insn = spill_reg_store[last_reload_reg];
7350 rtx reg = spill_reg_stored_to[last_reload_reg];
7351 int k;
7352 int n_occurrences;
7353 int n_inherited = 0;
32131a9c 7354 register rtx i1;
cb2afeb3 7355 rtx substed;
05d10675 7356
32131a9c
RK
7357 /* Get the raw pseudo-register referred to. */
7358
32131a9c
RK
7359 while (GET_CODE (reg) == SUBREG)
7360 reg = SUBREG_REG (reg);
cb2afeb3
R
7361 substed = reg_equiv_memory_loc[REGNO (reg)];
7362
7363 /* This is unsafe if the operand occurs more often in the current
7364 insn than it is inherited. */
7365 for (k = n_reloads - 1; k >= 0; k--)
7366 {
eceef4c9 7367 rtx reg2 = rld[k].in;
cb2afeb3
R
7368 if (! reg2)
7369 continue;
7370 if (GET_CODE (reg2) == MEM || reload_override_in[k])
eceef4c9 7371 reg2 = rld[k].in_reg;
cb2afeb3 7372#ifdef AUTO_INC_DEC
eceef4c9
BS
7373 if (rld[k].out && ! rld[k].out_reg)
7374 reg2 = XEXP (rld[k].in_reg, 0);
cb2afeb3
R
7375#endif
7376 while (GET_CODE (reg2) == SUBREG)
7377 reg2 = SUBREG_REG (reg2);
7378 if (rtx_equal_p (reg2, reg))
2eb6dac7
AS
7379 {
7380 if (reload_inherited[k] || reload_override_in[k] || k == j)
7381 {
cb2afeb3 7382 n_inherited++;
eceef4c9 7383 reg2 = rld[k].out_reg;
2eb6dac7
AS
7384 if (! reg2)
7385 continue;
7386 while (GET_CODE (reg2) == SUBREG)
7387 reg2 = XEXP (reg2, 0);
7388 if (rtx_equal_p (reg2, reg))
7389 n_inherited++;
7390 }
7391 else
7392 return;
7393 }
cb2afeb3
R
7394 }
7395 n_occurrences = count_occurrences (PATTERN (insn), reg);
7396 if (substed)
7397 n_occurrences += count_occurrences (PATTERN (insn), substed);
7398 if (n_occurrences > n_inherited)
7399 return;
32131a9c
RK
7400
7401 /* If the pseudo-reg we are reloading is no longer referenced
7402 anywhere between the store into it and here,
7403 and no jumps or labels intervene, then the value can get
7404 here through the reload reg alone.
7405 Otherwise, give up--return. */
7406 for (i1 = NEXT_INSN (output_reload_insn);
7407 i1 != insn; i1 = NEXT_INSN (i1))
7408 {
7409 if (GET_CODE (i1) == CODE_LABEL || GET_CODE (i1) == JUMP_INSN)
7410 return;
7411 if ((GET_CODE (i1) == INSN || GET_CODE (i1) == CALL_INSN)
7412 && reg_mentioned_p (reg, PATTERN (i1)))
aa6498c2 7413 {
cb2afeb3
R
7414 /* If this is USE in front of INSN, we only have to check that
7415 there are no more references than accounted for by inheritance. */
7416 while (GET_CODE (i1) == INSN && GET_CODE (PATTERN (i1)) == USE)
aa6498c2 7417 {
cb2afeb3 7418 n_occurrences += rtx_equal_p (reg, XEXP (PATTERN (i1), 0)) != 0;
aa6498c2
R
7419 i1 = NEXT_INSN (i1);
7420 }
cb2afeb3 7421 if (n_occurrences <= n_inherited && i1 == insn)
aa6498c2
R
7422 break;
7423 return;
7424 }
32131a9c
RK
7425 }
7426
aa6498c2
R
7427 /* The caller has already checked that REG dies or is set in INSN.
7428 It has also checked that we are optimizing, and thus some inaccurancies
7429 in the debugging information are acceptable.
7430 So we could just delete output_reload_insn.
7431 But in some cases we can improve the debugging information without
7432 sacrificing optimization - maybe even improving the code:
7433 See if the pseudo reg has been completely replaced
32131a9c
RK
7434 with reload regs. If so, delete the store insn
7435 and forget we had a stack slot for the pseudo. */
eceef4c9 7436 if (rld[j].out != rld[j].in
aa6498c2 7437 && REG_N_DEATHS (REGNO (reg)) == 1
a3a24aa6 7438 && REG_N_SETS (REGNO (reg)) == 1
aa6498c2
R
7439 && REG_BASIC_BLOCK (REGNO (reg)) >= 0
7440 && find_regno_note (insn, REG_DEAD, REGNO (reg)))
32131a9c
RK
7441 {
7442 rtx i2;
7443
7444 /* We know that it was used only between here
7445 and the beginning of the current basic block.
7446 (We also know that the last use before INSN was
7447 the output reload we are thinking of deleting, but never mind that.)
7448 Search that range; see if any ref remains. */
7449 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
7450 {
d445b551
RK
7451 rtx set = single_set (i2);
7452
32131a9c
RK
7453 /* Uses which just store in the pseudo don't count,
7454 since if they are the only uses, they are dead. */
d445b551 7455 if (set != 0 && SET_DEST (set) == reg)
32131a9c
RK
7456 continue;
7457 if (GET_CODE (i2) == CODE_LABEL
7458 || GET_CODE (i2) == JUMP_INSN)
7459 break;
7460 if ((GET_CODE (i2) == INSN || GET_CODE (i2) == CALL_INSN)
7461 && reg_mentioned_p (reg, PATTERN (i2)))
aa6498c2
R
7462 {
7463 /* Some other ref remains; just delete the output reload we
7464 know to be dead. */
cb2afeb3
R
7465 delete_address_reloads (output_reload_insn, insn);
7466 PUT_CODE (output_reload_insn, NOTE);
7467 NOTE_SOURCE_FILE (output_reload_insn) = 0;
7468 NOTE_LINE_NUMBER (output_reload_insn) = NOTE_INSN_DELETED;
aa6498c2
R
7469 return;
7470 }
32131a9c
RK
7471 }
7472
7473 /* Delete the now-dead stores into this pseudo. */
7474 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
7475 {
d445b551
RK
7476 rtx set = single_set (i2);
7477
7478 if (set != 0 && SET_DEST (set) == reg)
5507b94b 7479 {
cb2afeb3 7480 delete_address_reloads (i2, insn);
5507b94b
RK
7481 /* This might be a basic block head,
7482 thus don't use delete_insn. */
7483 PUT_CODE (i2, NOTE);
7484 NOTE_SOURCE_FILE (i2) = 0;
7485 NOTE_LINE_NUMBER (i2) = NOTE_INSN_DELETED;
7486 }
32131a9c
RK
7487 if (GET_CODE (i2) == CODE_LABEL
7488 || GET_CODE (i2) == JUMP_INSN)
7489 break;
7490 }
7491
7492 /* For the debugging info,
7493 say the pseudo lives in this reload reg. */
eceef4c9 7494 reg_renumber[REGNO (reg)] = REGNO (rld[j].reg_rtx);
32131a9c
RK
7495 alter_reg (REGNO (reg), -1);
7496 }
cb2afeb3
R
7497 delete_address_reloads (output_reload_insn, insn);
7498 PUT_CODE (output_reload_insn, NOTE);
7499 NOTE_SOURCE_FILE (output_reload_insn) = 0;
7500 NOTE_LINE_NUMBER (output_reload_insn) = NOTE_INSN_DELETED;
7501
7502}
7503
7504/* We are going to delete DEAD_INSN. Recursively delete loads of
7505 reload registers used in DEAD_INSN that are not used till CURRENT_INSN.
7506 CURRENT_INSN is being reloaded, so we have to check its reloads too. */
7507static void
7508delete_address_reloads (dead_insn, current_insn)
7509 rtx dead_insn, current_insn;
7510{
7511 rtx set = single_set (dead_insn);
7512 rtx set2, dst, prev, next;
7513 if (set)
7514 {
7515 rtx dst = SET_DEST (set);
7516 if (GET_CODE (dst) == MEM)
7517 delete_address_reloads_1 (dead_insn, XEXP (dst, 0), current_insn);
7518 }
7519 /* If we deleted the store from a reloaded post_{in,de}c expression,
7520 we can delete the matching adds. */
7521 prev = PREV_INSN (dead_insn);
7522 next = NEXT_INSN (dead_insn);
7523 if (! prev || ! next)
7524 return;
7525 set = single_set (next);
7526 set2 = single_set (prev);
7527 if (! set || ! set2
7528 || GET_CODE (SET_SRC (set)) != PLUS || GET_CODE (SET_SRC (set2)) != PLUS
7529 || GET_CODE (XEXP (SET_SRC (set), 1)) != CONST_INT
7530 || GET_CODE (XEXP (SET_SRC (set2), 1)) != CONST_INT)
7531 return;
7532 dst = SET_DEST (set);
7533 if (! rtx_equal_p (dst, SET_DEST (set2))
7534 || ! rtx_equal_p (dst, XEXP (SET_SRC (set), 0))
7535 || ! rtx_equal_p (dst, XEXP (SET_SRC (set2), 0))
7536 || (INTVAL (XEXP (SET_SRC (set), 1))
7537 != - INTVAL (XEXP (SET_SRC (set2), 1))))
7538 return;
7539 delete_insn (prev);
7540 delete_insn (next);
7541}
7542
7543/* Subfunction of delete_address_reloads: process registers found in X. */
7544static void
7545delete_address_reloads_1 (dead_insn, x, current_insn)
7546 rtx dead_insn, x, current_insn;
7547{
7548 rtx prev, set, dst, i2;
7549 int i, j;
7550 enum rtx_code code = GET_CODE (x);
7551
7552 if (code != REG)
7553 {
6f7d635c 7554 const char *fmt= GET_RTX_FORMAT (code);
cb2afeb3
R
7555 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7556 {
7557 if (fmt[i] == 'e')
7558 delete_address_reloads_1 (dead_insn, XEXP (x, i), current_insn);
7559 else if (fmt[i] == 'E')
7560 {
7561 for (j = XVECLEN (x, i) - 1; j >=0; j--)
7562 delete_address_reloads_1 (dead_insn, XVECEXP (x, i, j),
7563 current_insn);
7564 }
7565 }
7566 return;
7567 }
7568
7569 if (spill_reg_order[REGNO (x)] < 0)
7570 return;
aa6498c2 7571
cb2afeb3
R
7572 /* Scan backwards for the insn that sets x. This might be a way back due
7573 to inheritance. */
7574 for (prev = PREV_INSN (dead_insn); prev; prev = PREV_INSN (prev))
7575 {
7576 code = GET_CODE (prev);
7577 if (code == CODE_LABEL || code == JUMP_INSN)
7578 return;
7579 if (GET_RTX_CLASS (code) != 'i')
7580 continue;
7581 if (reg_set_p (x, PATTERN (prev)))
7582 break;
7583 if (reg_referenced_p (x, PATTERN (prev)))
7584 return;
7585 }
7586 if (! prev || INSN_UID (prev) < reload_first_uid)
7587 return;
7588 /* Check that PREV only sets the reload register. */
7589 set = single_set (prev);
7590 if (! set)
7591 return;
7592 dst = SET_DEST (set);
7593 if (GET_CODE (dst) != REG
7594 || ! rtx_equal_p (dst, x))
7595 return;
7596 if (! reg_set_p (dst, PATTERN (dead_insn)))
7597 {
7598 /* Check if DST was used in a later insn -
7599 it might have been inherited. */
7600 for (i2 = NEXT_INSN (dead_insn); i2; i2 = NEXT_INSN (i2))
7601 {
7602 if (GET_CODE (i2) == CODE_LABEL)
7603 break;
7604 if (GET_RTX_CLASS (GET_CODE (i2)) != 'i')
7605 continue;
7606 if (reg_referenced_p (dst, PATTERN (i2)))
7607 {
7608 /* If there is a reference to the register in the current insn,
7609 it might be loaded in a non-inherited reload. If no other
7610 reload uses it, that means the register is set before
7611 referenced. */
7612 if (i2 == current_insn)
7613 {
7614 for (j = n_reloads - 1; j >= 0; j--)
eceef4c9 7615 if ((rld[j].reg_rtx == dst && reload_inherited[j])
cb2afeb3
R
7616 || reload_override_in[j] == dst)
7617 return;
7618 for (j = n_reloads - 1; j >= 0; j--)
eceef4c9 7619 if (rld[j].in && rld[j].reg_rtx == dst)
cb2afeb3
R
7620 break;
7621 if (j >= 0)
7622 break;
7623 }
7624 return;
7625 }
7626 if (GET_CODE (i2) == JUMP_INSN)
7627 break;
cb2afeb3 7628 /* If DST is still live at CURRENT_INSN, check if it is used for
3900dc09
R
7629 any reload. Note that even if CURRENT_INSN sets DST, we still
7630 have to check the reloads. */
cb2afeb3
R
7631 if (i2 == current_insn)
7632 {
7633 for (j = n_reloads - 1; j >= 0; j--)
eceef4c9 7634 if ((rld[j].reg_rtx == dst && reload_inherited[j])
cb2afeb3
R
7635 || reload_override_in[j] == dst)
7636 return;
7637 /* ??? We can't finish the loop here, because dst might be
7638 allocated to a pseudo in this block if no reload in this
7639 block needs any of the clsses containing DST - see
7640 spill_hard_reg. There is no easy way to tell this, so we
7641 have to scan till the end of the basic block. */
7642 }
3900dc09
R
7643 if (reg_set_p (dst, PATTERN (i2)))
7644 break;
cb2afeb3
R
7645 }
7646 }
7647 delete_address_reloads_1 (prev, SET_SRC (set), current_insn);
7648 reg_reloaded_contents[REGNO (dst)] = -1;
7649 /* Can't use delete_insn here because PREV might be a basic block head. */
7650 PUT_CODE (prev, NOTE);
7651 NOTE_LINE_NUMBER (prev) = NOTE_INSN_DELETED;
7652 NOTE_SOURCE_FILE (prev) = 0;
32131a9c 7653}
32131a9c 7654\f
a8fdc208 7655/* Output reload-insns to reload VALUE into RELOADREG.
858a47b1 7656 VALUE is an autoincrement or autodecrement RTX whose operand
32131a9c
RK
7657 is a register or memory location;
7658 so reloading involves incrementing that location.
cb2afeb3 7659 IN is either identical to VALUE, or some cheaper place to reload from.
32131a9c
RK
7660
7661 INC_AMOUNT is the number to increment or decrement by (always positive).
cb2afeb3 7662 This cannot be deduced from VALUE.
32131a9c 7663
cb2afeb3
R
7664 Return the instruction that stores into RELOADREG. */
7665
7666static rtx
7667inc_for_reload (reloadreg, in, value, inc_amount)
32131a9c 7668 rtx reloadreg;
cb2afeb3 7669 rtx in, value;
32131a9c 7670 int inc_amount;
32131a9c
RK
7671{
7672 /* REG or MEM to be copied and incremented. */
7673 rtx incloc = XEXP (value, 0);
7674 /* Nonzero if increment after copying. */
7675 int post = (GET_CODE (value) == POST_DEC || GET_CODE (value) == POST_INC);
546b63fb 7676 rtx last;
0009eff2
RK
7677 rtx inc;
7678 rtx add_insn;
7679 int code;
cb2afeb3
R
7680 rtx store;
7681 rtx real_in = in == value ? XEXP (in, 0) : in;
32131a9c
RK
7682
7683 /* No hard register is equivalent to this register after
7684 inc/dec operation. If REG_LAST_RELOAD_REG were non-zero,
7685 we could inc/dec that register as well (maybe even using it for
7686 the source), but I'm not sure it's worth worrying about. */
7687 if (GET_CODE (incloc) == REG)
7688 reg_last_reload_reg[REGNO (incloc)] = 0;
7689
7690 if (GET_CODE (value) == PRE_DEC || GET_CODE (value) == POST_DEC)
7691 inc_amount = - inc_amount;
7692
fb3821f7 7693 inc = GEN_INT (inc_amount);
0009eff2
RK
7694
7695 /* If this is post-increment, first copy the location to the reload reg. */
cb2afeb3
R
7696 if (post && real_in != reloadreg)
7697 emit_insn (gen_move_insn (reloadreg, real_in));
0009eff2 7698
cb2afeb3
R
7699 if (in == value)
7700 {
7701 /* See if we can directly increment INCLOC. Use a method similar to
7702 that in gen_reload. */
0009eff2 7703
cb2afeb3
R
7704 last = get_last_insn ();
7705 add_insn = emit_insn (gen_rtx_SET (VOIDmode, incloc,
7706 gen_rtx_PLUS (GET_MODE (incloc),
7707 incloc, inc)));
05d10675 7708
cb2afeb3
R
7709 code = recog_memoized (add_insn);
7710 if (code >= 0)
32131a9c 7711 {
0eadeb15
BS
7712 extract_insn (add_insn);
7713 if (constrain_operands (1))
cb2afeb3
R
7714 {
7715 /* If this is a pre-increment and we have incremented the value
7716 where it lives, copy the incremented value to RELOADREG to
7717 be used as an address. */
0009eff2 7718
cb2afeb3
R
7719 if (! post)
7720 emit_insn (gen_move_insn (reloadreg, incloc));
546b63fb 7721
cb2afeb3
R
7722 return add_insn;
7723 }
32131a9c 7724 }
cb2afeb3 7725 delete_insns_since (last);
32131a9c 7726 }
0009eff2 7727
0009eff2
RK
7728 /* If couldn't do the increment directly, must increment in RELOADREG.
7729 The way we do this depends on whether this is pre- or post-increment.
7730 For pre-increment, copy INCLOC to the reload register, increment it
7731 there, then save back. */
7732
7733 if (! post)
7734 {
cb2afeb3
R
7735 if (in != reloadreg)
7736 emit_insn (gen_move_insn (reloadreg, real_in));
546b63fb 7737 emit_insn (gen_add2_insn (reloadreg, inc));
cb2afeb3 7738 store = emit_insn (gen_move_insn (incloc, reloadreg));
0009eff2 7739 }
32131a9c
RK
7740 else
7741 {
0009eff2
RK
7742 /* Postincrement.
7743 Because this might be a jump insn or a compare, and because RELOADREG
7744 may not be available after the insn in an input reload, we must do
7745 the incrementation before the insn being reloaded for.
7746
cb2afeb3 7747 We have already copied IN to RELOADREG. Increment the copy in
0009eff2
RK
7748 RELOADREG, save that back, then decrement RELOADREG so it has
7749 the original value. */
7750
546b63fb 7751 emit_insn (gen_add2_insn (reloadreg, inc));
cb2afeb3 7752 store = emit_insn (gen_move_insn (incloc, reloadreg));
546b63fb 7753 emit_insn (gen_add2_insn (reloadreg, GEN_INT (-inc_amount)));
32131a9c 7754 }
0009eff2 7755
cb2afeb3 7756 return store;
32131a9c
RK
7757}
7758\f
7759/* Return 1 if we are certain that the constraint-string STRING allows
7760 the hard register REG. Return 0 if we can't be sure of this. */
7761
7762static int
7763constraint_accepts_reg_p (string, reg)
9b3142b3 7764 const char *string;
32131a9c
RK
7765 rtx reg;
7766{
7767 int value = 0;
7768 int regno = true_regnum (reg);
7769 int c;
7770
7771 /* Initialize for first alternative. */
7772 value = 0;
7773 /* Check that each alternative contains `g' or `r'. */
7774 while (1)
7775 switch (c = *string++)
7776 {
7777 case 0:
7778 /* If an alternative lacks `g' or `r', we lose. */
7779 return value;
7780 case ',':
7781 /* If an alternative lacks `g' or `r', we lose. */
7782 if (value == 0)
7783 return 0;
7784 /* Initialize for next alternative. */
7785 value = 0;
7786 break;
7787 case 'g':
7788 case 'r':
7789 /* Any general reg wins for this alternative. */
7790 if (TEST_HARD_REG_BIT (reg_class_contents[(int) GENERAL_REGS], regno))
7791 value = 1;
7792 break;
7793 default:
7794 /* Any reg in specified class wins for this alternative. */
7795 {
0009eff2 7796 enum reg_class class = REG_CLASS_FROM_LETTER (c);
32131a9c 7797
0009eff2 7798 if (TEST_HARD_REG_BIT (reg_class_contents[(int) class], regno))
32131a9c
RK
7799 value = 1;
7800 }
7801 }
7802}
7803\f
d445b551
RK
7804/* Return the number of places FIND appears within X, but don't count
7805 an occurrence if some SET_DEST is FIND. */
32131a9c 7806
184bb750 7807int
32131a9c
RK
7808count_occurrences (x, find)
7809 register rtx x, find;
7810{
7811 register int i, j;
7812 register enum rtx_code code;
6f7d635c 7813 register const char *format_ptr;
32131a9c
RK
7814 int count;
7815
7816 if (x == find)
7817 return 1;
7818 if (x == 0)
7819 return 0;
7820
7821 code = GET_CODE (x);
7822
7823 switch (code)
7824 {
7825 case REG:
7826 case QUEUED:
7827 case CONST_INT:
7828 case CONST_DOUBLE:
7829 case SYMBOL_REF:
7830 case CODE_LABEL:
7831 case PC:
7832 case CC0:
7833 return 0;
d445b551 7834
cb2afeb3
R
7835 case MEM:
7836 if (GET_CODE (find) == MEM && rtx_equal_p (x, find))
7837 return 1;
7838 break;
d445b551
RK
7839 case SET:
7840 if (SET_DEST (x) == find)
7841 return count_occurrences (SET_SRC (x), find);
7842 break;
05d10675 7843
e9a25f70
JL
7844 default:
7845 break;
32131a9c
RK
7846 }
7847
7848 format_ptr = GET_RTX_FORMAT (code);
7849 count = 0;
7850
7851 for (i = 0; i < GET_RTX_LENGTH (code); i++)
7852 {
7853 switch (*format_ptr++)
7854 {
7855 case 'e':
7856 count += count_occurrences (XEXP (x, i), find);
7857 break;
7858
7859 case 'E':
7860 if (XVEC (x, i) != NULL)
7861 {
7862 for (j = 0; j < XVECLEN (x, i); j++)
7863 count += count_occurrences (XVECEXP (x, i, j), find);
7864 }
7865 break;
7866 }
7867 }
7868 return count;
7869}
2a9fb548 7870\f
eab5c70a
BS
7871/* INSN is a no-op; delete it.
7872 If this sets the return value of the function, we must keep a USE around,
7873 in case this is in a different basic block than the final USE. Otherwise,
7874 we could loose important register lifeness information on
7875 SMALL_REGISTER_CLASSES machines, where return registers might be used as
7876 spills: subsequent passes assume that spill registers are dead at the end
7877 of a basic block.
7878 VALUE must be the return value in such a case, NULL otherwise. */
2a9fb548 7879static void
eab5c70a
BS
7880reload_cse_delete_noop_set (insn, value)
7881 rtx insn, value;
2a9fb548 7882{
eab5c70a 7883 if (value)
2a9fb548 7884 {
eab5c70a
BS
7885 PATTERN (insn) = gen_rtx_USE (VOIDmode, value);
7886 INSN_CODE (insn) = -1;
7887 REG_NOTES (insn) = NULL_RTX;
2a9fb548 7888 }
eab5c70a 7889 else
ba325eba 7890 {
eab5c70a
BS
7891 PUT_CODE (insn, NOTE);
7892 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
7893 NOTE_SOURCE_FILE (insn) = 0;
ba325eba 7894 }
2a9fb548
ILT
7895}
7896
eab5c70a 7897/* See whether a single set SET is a noop. */
2a9fb548 7898static int
eab5c70a
BS
7899reload_cse_noop_set_p (set)
7900 rtx set;
2a9fb548 7901{
eab5c70a
BS
7902 return rtx_equal_for_cselib_p (SET_DEST (set), SET_SRC (set));
7903}
2a9fb548 7904
eab5c70a
BS
7905/* Try to simplify INSN. */
7906static void
7907reload_cse_simplify (insn)
7908 rtx insn;
7909{
7910 rtx body = PATTERN (insn);
2a9fb548 7911
eab5c70a 7912 if (GET_CODE (body) == SET)
2a9fb548 7913 {
eab5c70a
BS
7914 int count = 0;
7915 if (reload_cse_noop_set_p (body))
2a9fb548 7916 {
eab5c70a
BS
7917 rtx value = SET_DEST (body);
7918 if (! REG_FUNCTION_VALUE_P (SET_DEST (body)))
7919 value = 0;
7920 reload_cse_delete_noop_set (insn, value);
7921 return;
2a9fb548 7922 }
2a9fb548 7923
eab5c70a
BS
7924 /* It's not a no-op, but we can try to simplify it. */
7925 count += reload_cse_simplify_set (body, insn);
2a9fb548 7926
eab5c70a
BS
7927 if (count > 0)
7928 apply_change_group ();
7929 else
7930 reload_cse_simplify_operands (insn);
7931 }
7932 else if (GET_CODE (body) == PARALLEL)
2a9fb548 7933 {
eab5c70a
BS
7934 int i;
7935 int count = 0;
7936 rtx value = NULL_RTX;
2a9fb548 7937
eab5c70a
BS
7938 /* If every action in a PARALLEL is a noop, we can delete
7939 the entire PARALLEL. */
7940 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
2a9fb548 7941 {
eab5c70a
BS
7942 rtx part = XVECEXP (body, 0, i);
7943 if (GET_CODE (part) == SET)
2a9fb548 7944 {
eab5c70a
BS
7945 if (! reload_cse_noop_set_p (part))
7946 break;
7947 if (REG_FUNCTION_VALUE_P (SET_DEST (part)))
2a9fb548 7948 {
eab5c70a
BS
7949 if (value)
7950 break;
7951 value = SET_DEST (part);
2a9fb548 7952 }
2a9fb548 7953 }
eab5c70a
BS
7954 else if (GET_CODE (part) != CLOBBER)
7955 break;
2a9fb548 7956 }
2a9fb548 7957
eab5c70a
BS
7958 if (i < 0)
7959 {
7960 reload_cse_delete_noop_set (insn, value);
7961 /* We're done with this insn. */
7962 return;
7963 }
2a9fb548 7964
eab5c70a
BS
7965 /* It's not a no-op, but we can try to simplify it. */
7966 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
7967 if (GET_CODE (XVECEXP (body, 0, i)) == SET)
7968 count += reload_cse_simplify_set (XVECEXP (body, 0, i), insn);
7969
7970 if (count > 0)
7971 apply_change_group ();
7972 else
7973 reload_cse_simplify_operands (insn);
7974 }
2a9fb548
ILT
7975}
7976
7977/* Do a very simple CSE pass over the hard registers.
7978
7979 This function detects no-op moves where we happened to assign two
7980 different pseudo-registers to the same hard register, and then
7981 copied one to the other. Reload will generate a useless
7982 instruction copying a register to itself.
7983
7984 This function also detects cases where we load a value from memory
7985 into two different registers, and (if memory is more expensive than
7986 registers) changes it to simply copy the first register into the
05d10675 7987 second register.
e9a25f70
JL
7988
7989 Another optimization is performed that scans the operands of each
7990 instruction to see whether the value is already available in a
7991 hard register. It then replaces the operand with the hard register
7992 if possible, much like an optional reload would. */
2a9fb548 7993
5adf6da0
R
7994static void
7995reload_cse_regs_1 (first)
2a9fb548
ILT
7996 rtx first;
7997{
2a9fb548
ILT
7998 rtx insn;
7999
eab5c70a 8000 cselib_init ();
cbfc3ad3
RK
8001 init_alias_analysis ();
8002
2a9fb548
ILT
8003 for (insn = first; insn; insn = NEXT_INSN (insn))
8004 {
eab5c70a
BS
8005 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
8006 reload_cse_simplify (insn);
2a9fb548 8007
eab5c70a 8008 cselib_process_insn (insn);
2a9fb548
ILT
8009 }
8010
e05e2395
MM
8011 /* Clean up. */
8012 end_alias_analysis ();
eab5c70a 8013 cselib_finish ();
2a9fb548
ILT
8014}
8015
5adf6da0
R
8016/* Call cse / combine like post-reload optimization phases.
8017 FIRST is the first instruction. */
8018void
8019reload_cse_regs (first)
8020 rtx first;
8021{
8022 reload_cse_regs_1 (first);
8023 reload_combine ();
8024 reload_cse_move2add (first);
8025 if (flag_expensive_optimizations)
8026 reload_cse_regs_1 (first);
8027}
8028
2a9fb548 8029/* Try to simplify a single SET instruction. SET is the set pattern.
e9a25f70
JL
8030 INSN is the instruction it came from.
8031 This function only handles one case: if we set a register to a value
8032 which is not a register, we try to find that value in some other register
8033 and change the set into a register copy. */
2a9fb548 8034
e9a25f70 8035static int
2a9fb548
ILT
8036reload_cse_simplify_set (set, insn)
8037 rtx set;
8038 rtx insn;
8039{
eab5c70a 8040 int did_change = 0;
2a9fb548
ILT
8041 int dreg;
8042 rtx src;
2a9fb548 8043 enum reg_class dclass;
eab5c70a
BS
8044 int old_cost;
8045 cselib_val *val;
8046 struct elt_loc_list *l;
2a9fb548 8047
2a9fb548
ILT
8048 dreg = true_regnum (SET_DEST (set));
8049 if (dreg < 0)
e9a25f70 8050 return 0;
2a9fb548
ILT
8051
8052 src = SET_SRC (set);
8053 if (side_effects_p (src) || true_regnum (src) >= 0)
e9a25f70 8054 return 0;
2a9fb548 8055
cbd5b9a2
KR
8056 dclass = REGNO_REG_CLASS (dreg);
8057
33ab8de0 8058 /* If memory loads are cheaper than register copies, don't change them. */
eab5c70a
BS
8059 if (GET_CODE (src) == MEM)
8060 old_cost = MEMORY_MOVE_COST (GET_MODE (src), dclass, 1);
8061 else if (CONSTANT_P (src))
8062 old_cost = rtx_cost (src, SET);
8063 else if (GET_CODE (src) == REG)
8064 old_cost = REGISTER_MOVE_COST (REGNO_REG_CLASS (REGNO (src)), dclass);
8065 else
8066 /* ??? */
8067 old_cost = rtx_cost (src, SET);
2a9fb548 8068
eab5c70a
BS
8069 val = cselib_lookup (src, VOIDmode, 0);
8070 if (! val)
0254c561 8071 return 0;
eab5c70a 8072 for (l = val->locs; l; l = l->next)
2a9fb548 8073 {
eab5c70a
BS
8074 int this_cost;
8075 if (CONSTANT_P (l->loc) && ! references_value_p (l->loc, 0))
8076 this_cost = rtx_cost (l->loc, SET);
8077 else if (GET_CODE (l->loc) == REG)
8078 this_cost = REGISTER_MOVE_COST (REGNO_REG_CLASS (REGNO (l->loc)),
8079 dclass);
8080 else
8081 continue;
8082 /* If equal costs, prefer registers over anything else. That tends to
8083 lead to smaller instructions on some machines. */
8084 if ((this_cost < old_cost
8085 || (this_cost == old_cost
8086 && GET_CODE (l->loc) == REG
8087 && GET_CODE (SET_SRC (set)) != REG))
8088 && validate_change (insn, &SET_SRC (set), copy_rtx (l->loc), 1))
8089 old_cost = this_cost, did_change = 1;
e9a25f70 8090 }
eab5c70a
BS
8091
8092 return did_change;
e9a25f70
JL
8093}
8094
8095/* Try to replace operands in INSN with equivalent values that are already
05d10675
BS
8096 in registers. This can be viewed as optional reloading.
8097
e9a25f70
JL
8098 For each non-register operand in the insn, see if any hard regs are
8099 known to be equivalent to that operand. Record the alternatives which
8100 can accept these hard registers. Among all alternatives, select the
8101 ones which are better or equal to the one currently matching, where
8102 "better" is in terms of '?' and '!' constraints. Among the remaining
8103 alternatives, select the one which replaces most operands with
8104 hard registers. */
8105
8106static int
8107reload_cse_simplify_operands (insn)
8108 rtx insn;
8109{
e9a25f70
JL
8110 int i,j;
8111
eab5c70a
BS
8112 /* For each operand, all registers that are equivalent to it. */
8113 HARD_REG_SET equiv_regs[MAX_RECOG_OPERANDS];
8114
9b3142b3 8115 const char *constraints[MAX_RECOG_OPERANDS];
05d10675 8116
e9a25f70
JL
8117 /* Vector recording how bad an alternative is. */
8118 int *alternative_reject;
8119 /* Vector recording how many registers can be introduced by choosing
8120 this alternative. */
8121 int *alternative_nregs;
8122 /* Array of vectors recording, for each operand and each alternative,
8123 which hard register to substitute, or -1 if the operand should be
8124 left as it is. */
8125 int *op_alt_regno[MAX_RECOG_OPERANDS];
8126 /* Array of alternatives, sorted in order of decreasing desirability. */
8127 int *alternative_order;
0254c561 8128 rtx reg = gen_rtx_REG (VOIDmode, -1);
05d10675 8129
0eadeb15 8130 extract_insn (insn);
e9a25f70 8131
1ccbefce 8132 if (recog_data.n_alternatives == 0 || recog_data.n_operands == 0)
1d300e19 8133 return 0;
e9a25f70
JL
8134
8135 /* Figure out which alternative currently matches. */
0eadeb15 8136 if (! constrain_operands (1))
b8705408 8137 fatal_insn_not_found (insn);
eab5c70a 8138
1ccbefce
RH
8139 alternative_reject = (int *) alloca (recog_data.n_alternatives * sizeof (int));
8140 alternative_nregs = (int *) alloca (recog_data.n_alternatives * sizeof (int));
8141 alternative_order = (int *) alloca (recog_data.n_alternatives * sizeof (int));
8142 bzero ((char *)alternative_reject, recog_data.n_alternatives * sizeof (int));
8143 bzero ((char *)alternative_nregs, recog_data.n_alternatives * sizeof (int));
e9a25f70 8144
eab5c70a
BS
8145 /* For each operand, find out which regs are equivalent. */
8146 for (i = 0; i < recog_data.n_operands; i++)
8147 {
8148 cselib_val *v;
8149 struct elt_loc_list *l;
8150
8151 CLEAR_HARD_REG_SET (equiv_regs[i]);
8152
8153 /* cselib blows up on CODE_LABELs. Trying to fix that doesn't seem
8154 right, so avoid the problem here. */
8155 if (GET_CODE (recog_data.operand[i]) == CODE_LABEL)
8156 continue;
8157
8158 v = cselib_lookup (recog_data.operand[i], recog_data.operand_mode[i], 0);
8159 if (! v)
8160 continue;
8161
8162 for (l = v->locs; l; l = l->next)
8163 if (GET_CODE (l->loc) == REG)
8164 SET_HARD_REG_BIT (equiv_regs[i], REGNO (l->loc));
8165 }
8166
1ccbefce 8167 for (i = 0; i < recog_data.n_operands; i++)
e9a25f70
JL
8168 {
8169 enum machine_mode mode;
8170 int regno;
9b3142b3 8171 const char *p;
e9a25f70 8172
1ccbefce
RH
8173 op_alt_regno[i] = (int *) alloca (recog_data.n_alternatives * sizeof (int));
8174 for (j = 0; j < recog_data.n_alternatives; j++)
e9a25f70
JL
8175 op_alt_regno[i][j] = -1;
8176
1ccbefce
RH
8177 p = constraints[i] = recog_data.constraints[i];
8178 mode = recog_data.operand_mode[i];
e9a25f70
JL
8179
8180 /* Add the reject values for each alternative given by the constraints
8181 for this operand. */
8182 j = 0;
8183 while (*p != '\0')
8184 {
8185 char c = *p++;
8186 if (c == ',')
8187 j++;
8188 else if (c == '?')
8189 alternative_reject[j] += 3;
8190 else if (c == '!')
8191 alternative_reject[j] += 300;
8192 }
8193
8194 /* We won't change operands which are already registers. We
8195 also don't want to modify output operands. */
1ccbefce 8196 regno = true_regnum (recog_data.operand[i]);
e9a25f70
JL
8197 if (regno >= 0
8198 || constraints[i][0] == '='
8199 || constraints[i][0] == '+')
8200 continue;
8201
8202 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
8203 {
8204 int class = (int) NO_REGS;
8205
eab5c70a 8206 if (! TEST_HARD_REG_BIT (equiv_regs[i], regno))
e9a25f70
JL
8207 continue;
8208
0254c561
JC
8209 REGNO (reg) = regno;
8210 PUT_MODE (reg, mode);
8211
e9a25f70
JL
8212 /* We found a register equal to this operand. Now look for all
8213 alternatives that can accept this register and have not been
8214 assigned a register they can use yet. */
8215 j = 0;
8216 p = constraints[i];
8217 for (;;)
31418d35 8218 {
e9a25f70 8219 char c = *p++;
05d10675 8220
e9a25f70 8221 switch (c)
31418d35 8222 {
e9a25f70
JL
8223 case '=': case '+': case '?':
8224 case '#': case '&': case '!':
05d10675 8225 case '*': case '%':
e9a25f70 8226 case '0': case '1': case '2': case '3': case '4':
c5c76735 8227 case '5': case '6': case '7': case '8': case '9':
e9a25f70
JL
8228 case 'm': case '<': case '>': case 'V': case 'o':
8229 case 'E': case 'F': case 'G': case 'H':
8230 case 's': case 'i': case 'n':
8231 case 'I': case 'J': case 'K': case 'L':
8232 case 'M': case 'N': case 'O': case 'P':
8233#ifdef EXTRA_CONSTRAINT
8234 case 'Q': case 'R': case 'S': case 'T': case 'U':
8235#endif
8236 case 'p': case 'X':
8237 /* These don't say anything we care about. */
8238 break;
8239
8240 case 'g': case 'r':
8241 class = reg_class_subunion[(int) class][(int) GENERAL_REGS];
8242 break;
8243
8244 default:
8245 class
e51712db 8246 = reg_class_subunion[(int) class][(int) REG_CLASS_FROM_LETTER ((unsigned char)c)];
e9a25f70 8247 break;
31418d35 8248
e9a25f70
JL
8249 case ',': case '\0':
8250 /* See if REGNO fits this alternative, and set it up as the
8251 replacement register if we don't have one for this
0254c561
JC
8252 alternative yet and the operand being replaced is not
8253 a cheap CONST_INT. */
e9a25f70 8254 if (op_alt_regno[i][j] == -1
0254c561 8255 && reg_fits_class_p (reg, class, 0, mode)
1ccbefce
RH
8256 && (GET_CODE (recog_data.operand[i]) != CONST_INT
8257 || (rtx_cost (recog_data.operand[i], SET)
8258 > rtx_cost (reg, SET))))
31418d35 8259 {
e9a25f70
JL
8260 alternative_nregs[j]++;
8261 op_alt_regno[i][j] = regno;
31418d35 8262 }
e9a25f70
JL
8263 j++;
8264 break;
31418d35
ILT
8265 }
8266
e9a25f70
JL
8267 if (c == '\0')
8268 break;
8269 }
8270 }
8271 }
8272
8273 /* Record all alternatives which are better or equal to the currently
8274 matching one in the alternative_order array. */
1ccbefce 8275 for (i = j = 0; i < recog_data.n_alternatives; i++)
e9a25f70
JL
8276 if (alternative_reject[i] <= alternative_reject[which_alternative])
8277 alternative_order[j++] = i;
1ccbefce 8278 recog_data.n_alternatives = j;
e9a25f70
JL
8279
8280 /* Sort it. Given a small number of alternatives, a dumb algorithm
8281 won't hurt too much. */
1ccbefce 8282 for (i = 0; i < recog_data.n_alternatives - 1; i++)
e9a25f70
JL
8283 {
8284 int best = i;
8285 int best_reject = alternative_reject[alternative_order[i]];
8286 int best_nregs = alternative_nregs[alternative_order[i]];
8287 int tmp;
8288
1ccbefce 8289 for (j = i + 1; j < recog_data.n_alternatives; j++)
e9a25f70
JL
8290 {
8291 int this_reject = alternative_reject[alternative_order[j]];
8292 int this_nregs = alternative_nregs[alternative_order[j]];
8293
8294 if (this_reject < best_reject
8295 || (this_reject == best_reject && this_nregs < best_nregs))
8296 {
8297 best = j;
8298 best_reject = this_reject;
8299 best_nregs = this_nregs;
31418d35 8300 }
2a9fb548 8301 }
05d10675 8302
e9a25f70
JL
8303 tmp = alternative_order[best];
8304 alternative_order[best] = alternative_order[i];
8305 alternative_order[i] = tmp;
8306 }
05d10675 8307
e9a25f70
JL
8308 /* Substitute the operands as determined by op_alt_regno for the best
8309 alternative. */
8310 j = alternative_order[0];
e9a25f70 8311
1ccbefce 8312 for (i = 0; i < recog_data.n_operands; i++)
e9a25f70 8313 {
1ccbefce 8314 enum machine_mode mode = recog_data.operand_mode[i];
e9a25f70
JL
8315 if (op_alt_regno[i][j] == -1)
8316 continue;
8317
1ccbefce 8318 validate_change (insn, recog_data.operand_loc[i],
38a448ca 8319 gen_rtx_REG (mode, op_alt_regno[i][j]), 1);
e9a25f70
JL
8320 }
8321
1ccbefce 8322 for (i = recog_data.n_dups - 1; i >= 0; i--)
e9a25f70 8323 {
1ccbefce
RH
8324 int op = recog_data.dup_num[i];
8325 enum machine_mode mode = recog_data.operand_mode[op];
e9a25f70
JL
8326
8327 if (op_alt_regno[op][j] == -1)
8328 continue;
8329
1ccbefce 8330 validate_change (insn, recog_data.dup_loc[i],
38a448ca 8331 gen_rtx_REG (mode, op_alt_regno[op][j]), 1);
2a9fb548 8332 }
e9a25f70 8333
e9a25f70 8334 return apply_change_group ();
2a9fb548 8335}
5adf6da0
R
8336\f
8337/* If reload couldn't use reg+reg+offset addressing, try to use reg+reg
8338 addressing now.
8339 This code might also be useful when reload gave up on reg+reg addresssing
8340 because of clashes between the return register and INDEX_REG_CLASS. */
8341
8342/* The maximum number of uses of a register we can keep track of to
8343 replace them with reg+reg addressing. */
8344#define RELOAD_COMBINE_MAX_USES 6
8345
8346/* INSN is the insn where a register has ben used, and USEP points to the
8347 location of the register within the rtl. */
8348struct reg_use { rtx insn, *usep; };
8349
8350/* If the register is used in some unknown fashion, USE_INDEX is negative.
8351 If it is dead, USE_INDEX is RELOAD_COMBINE_MAX_USES, and STORE_RUID
8352 indicates where it becomes live again.
8353 Otherwise, USE_INDEX is the index of the last encountered use of the
8354 register (which is first among these we have seen since we scan backwards),
8355 OFFSET contains the constant offset that is added to the register in
8356 all encountered uses, and USE_RUID indicates the first encountered, i.e.
ed937a19
R
8357 last, of these uses.
8358 STORE_RUID is always meaningful if we only want to use a value in a
8359 register in a different place: it denotes the next insn in the insn
8360 stream (i.e. the last ecountered) that sets or clobbers the register. */
5adf6da0
R
8361static struct
8362 {
8363 struct reg_use reg_use[RELOAD_COMBINE_MAX_USES];
8364 int use_index;
8365 rtx offset;
8366 int store_ruid;
8367 int use_ruid;
8368 } reg_state[FIRST_PSEUDO_REGISTER];
8369
8370/* Reverse linear uid. This is increased in reload_combine while scanning
8371 the instructions from last to first. It is used to set last_label_ruid
8372 and the store_ruid / use_ruid fields in reg_state. */
8373static int reload_combine_ruid;
8374
b0634509
R
8375#define LABEL_LIVE(LABEL) \
8376 (label_live[CODE_LABEL_NUMBER (LABEL) - min_labelno])
8377
5adf6da0
R
8378static void
8379reload_combine ()
8380{
8381 rtx insn, set;
8382 int first_index_reg = 1, last_index_reg = 0;
8383 int i;
f8cd4126 8384 unsigned int r;
5adf6da0 8385 int last_label_ruid;
b0634509
R
8386 int min_labelno, n_labels;
8387 HARD_REG_SET ever_live_at_start, *label_live;
5adf6da0
R
8388
8389 /* If reg+reg can be used in offsetable memory adresses, the main chunk of
8390 reload has already used it where appropriate, so there is no use in
8391 trying to generate it now. */
03acd8f8 8392 if (double_reg_address_ok && INDEX_REG_CLASS != NO_REGS)
5adf6da0
R
8393 return;
8394
8395 /* To avoid wasting too much time later searching for an index register,
8396 determine the minimum and maximum index register numbers. */
f8cd4126
RK
8397 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
8398 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], r))
8399 {
4c3f1588
RK
8400 if (! first_index_reg)
8401 first_index_reg = r;
8402
8403 last_index_reg = r;
f8cd4126
RK
8404 }
8405
5adf6da0
R
8406 /* If no index register is available, we can quit now. */
8407 if (first_index_reg > last_index_reg)
8408 return;
8409
b0634509
R
8410 /* Set up LABEL_LIVE and EVER_LIVE_AT_START. The register lifetime
8411 information is a bit fuzzy immediately after reload, but it's
8412 still good enough to determine which registers are live at a jump
8413 destination. */
8414 min_labelno = get_first_label_num ();
8415 n_labels = max_label_num () - min_labelno;
8416 label_live = (HARD_REG_SET *) xmalloc (n_labels * sizeof (HARD_REG_SET));
8417 CLEAR_HARD_REG_SET (ever_live_at_start);
f8cd4126 8418
b0634509
R
8419 for (i = n_basic_blocks - 1; i >= 0; i--)
8420 {
3b413743 8421 insn = BLOCK_HEAD (i);
b0634509
R
8422 if (GET_CODE (insn) == CODE_LABEL)
8423 {
8424 HARD_REG_SET live;
8425
f8cd4126
RK
8426 REG_SET_TO_HARD_REG_SET (live,
8427 BASIC_BLOCK (i)->global_live_at_start);
8428 compute_use_by_pseudos (&live,
8429 BASIC_BLOCK (i)->global_live_at_start);
b0634509
R
8430 COPY_HARD_REG_SET (LABEL_LIVE (insn), live);
8431 IOR_HARD_REG_SET (ever_live_at_start, live);
8432 }
8433 }
8434
5adf6da0
R
8435 /* Initialize last_label_ruid, reload_combine_ruid and reg_state. */
8436 last_label_ruid = reload_combine_ruid = 0;
f8cd4126 8437 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
5adf6da0 8438 {
f8cd4126
RK
8439 reg_state[r].store_ruid = reload_combine_ruid;
8440 if (fixed_regs[r])
8441 reg_state[r].use_index = -1;
5adf6da0 8442 else
f8cd4126 8443 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
5adf6da0
R
8444 }
8445
8446 for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
8447 {
8448 rtx note;
8449
8450 /* We cannot do our optimization across labels. Invalidating all the use
8451 information we have would be costly, so we just note where the label
05d10675 8452 is and then later disable any optimization that would cross it. */
5adf6da0
R
8453 if (GET_CODE (insn) == CODE_LABEL)
8454 last_label_ruid = reload_combine_ruid;
f8cd4126
RK
8455 else if (GET_CODE (insn) == BARRIER)
8456 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
8457 if (! fixed_regs[r])
8458 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
8459
5adf6da0
R
8460 if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
8461 continue;
f8cd4126 8462
5adf6da0
R
8463 reload_combine_ruid++;
8464
8465 /* Look for (set (REGX) (CONST_INT))
eceef4c9
BS
8466 (set (REGX) (PLUS (REGX) (REGY)))
8467 ...
8468 ... (MEM (REGX)) ...
5adf6da0 8469 and convert it to
eceef4c9
BS
8470 (set (REGZ) (CONST_INT))
8471 ...
8472 ... (MEM (PLUS (REGZ) (REGY)))... .
5adf6da0
R
8473
8474 First, check that we have (set (REGX) (PLUS (REGX) (REGY)))
8475 and that we know all uses of REGX before it dies. */
2abbc1bd
R
8476 set = single_set (insn);
8477 if (set != NULL_RTX
5adf6da0
R
8478 && GET_CODE (SET_DEST (set)) == REG
8479 && (HARD_REGNO_NREGS (REGNO (SET_DEST (set)),
8480 GET_MODE (SET_DEST (set)))
8481 == 1)
8482 && GET_CODE (SET_SRC (set)) == PLUS
8483 && GET_CODE (XEXP (SET_SRC (set), 1)) == REG
8484 && rtx_equal_p (XEXP (SET_SRC (set), 0), SET_DEST (set))
8485 && last_label_ruid < reg_state[REGNO (SET_DEST (set))].use_ruid)
8486 {
8487 rtx reg = SET_DEST (set);
8488 rtx plus = SET_SRC (set);
8489 rtx base = XEXP (plus, 1);
8490 rtx prev = prev_nonnote_insn (insn);
8491 rtx prev_set = prev ? single_set (prev) : NULL_RTX;
f8cd4126 8492 unsigned int regno = REGNO (reg);
6a651371 8493 rtx const_reg = NULL_RTX;
5adf6da0
R
8494 rtx reg_sum = NULL_RTX;
8495
8496 /* Now, we need an index register.
8497 We'll set index_reg to this index register, const_reg to the
8498 register that is to be loaded with the constant
8499 (denoted as REGZ in the substitution illustration above),
8500 and reg_sum to the register-register that we want to use to
8501 substitute uses of REG (typically in MEMs) with.
8502 First check REG and BASE for being index registers;
8503 we can use them even if they are not dead. */
8504 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], regno)
8505 || TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS],
8506 REGNO (base)))
8507 {
8508 const_reg = reg;
8509 reg_sum = plus;
8510 }
8511 else
8512 {
05d10675
BS
8513 /* Otherwise, look for a free index register. Since we have
8514 checked above that neiter REG nor BASE are index registers,
8515 if we find anything at all, it will be different from these
8516 two registers. */
8517 for (i = first_index_reg; i <= last_index_reg; i++)
5adf6da0 8518 {
f8cd4126
RK
8519 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS],
8520 i)
5adf6da0
R
8521 && reg_state[i].use_index == RELOAD_COMBINE_MAX_USES
8522 && reg_state[i].store_ruid <= reg_state[regno].use_ruid
8523 && HARD_REGNO_NREGS (i, GET_MODE (reg)) == 1)
8524 {
8525 rtx index_reg = gen_rtx_REG (GET_MODE (reg), i);
f8cd4126 8526
5adf6da0
R
8527 const_reg = index_reg;
8528 reg_sum = gen_rtx_PLUS (GET_MODE (reg), index_reg, base);
8529 break;
8530 }
8531 }
8532 }
f8cd4126 8533
ed937a19
R
8534 /* Check that PREV_SET is indeed (set (REGX) (CONST_INT)) and that
8535 (REGY), i.e. BASE, is not clobbered before the last use we'll
8536 create. */
f8cd4126 8537 if (prev_set != 0
5adf6da0
R
8538 && GET_CODE (SET_SRC (prev_set)) == CONST_INT
8539 && rtx_equal_p (SET_DEST (prev_set), reg)
8540 && reg_state[regno].use_index >= 0
f8cd4126
RK
8541 && (reg_state[REGNO (base)].store_ruid
8542 <= reg_state[regno].use_ruid)
8543 && reg_sum != 0)
5adf6da0
R
8544 {
8545 int i;
8546
f8cd4126 8547 /* Change destination register and, if necessary, the
5adf6da0
R
8548 constant value in PREV, the constant loading instruction. */
8549 validate_change (prev, &SET_DEST (prev_set), const_reg, 1);
8550 if (reg_state[regno].offset != const0_rtx)
8551 validate_change (prev,
8552 &SET_SRC (prev_set),
8553 GEN_INT (INTVAL (SET_SRC (prev_set))
8554 + INTVAL (reg_state[regno].offset)),
8555 1);
f8cd4126 8556
5adf6da0
R
8557 /* Now for every use of REG that we have recorded, replace REG
8558 with REG_SUM. */
8559 for (i = reg_state[regno].use_index;
8560 i < RELOAD_COMBINE_MAX_USES; i++)
8561 validate_change (reg_state[regno].reg_use[i].insn,
8562 reg_state[regno].reg_use[i].usep,
8563 reg_sum, 1);
8564
8565 if (apply_change_group ())
8566 {
8567 rtx *np;
8568
8569 /* Delete the reg-reg addition. */
8570 PUT_CODE (insn, NOTE);
8571 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
8572 NOTE_SOURCE_FILE (insn) = 0;
8573
8574 if (reg_state[regno].offset != const0_rtx)
f8cd4126
RK
8575 /* Previous REG_EQUIV / REG_EQUAL notes for PREV
8576 are now invalid. */
8577 for (np = &REG_NOTES (prev); *np; )
8578 {
8579 if (REG_NOTE_KIND (*np) == REG_EQUAL
8580 || REG_NOTE_KIND (*np) == REG_EQUIV)
8581 *np = XEXP (*np, 1);
8582 else
8583 np = &XEXP (*np, 1);
8584 }
8585
5adf6da0 8586 reg_state[regno].use_index = RELOAD_COMBINE_MAX_USES;
f8cd4126
RK
8587 reg_state[REGNO (const_reg)].store_ruid
8588 = reload_combine_ruid;
5adf6da0
R
8589 continue;
8590 }
8591 }
8592 }
f8cd4126
RK
8593
8594 note_stores (PATTERN (insn), reload_combine_note_store, NULL);
8595
5adf6da0
R
8596 if (GET_CODE (insn) == CALL_INSN)
8597 {
8598 rtx link;
8599
f8cd4126
RK
8600 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
8601 if (call_used_regs[r])
8602 {
8603 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
8604 reg_state[r].store_ruid = reload_combine_ruid;
8605 }
8606
5adf6da0
R
8607 for (link = CALL_INSN_FUNCTION_USAGE (insn); link;
8608 link = XEXP (link, 1))
f8cd4126
RK
8609 if (GET_CODE (XEXP (XEXP (link, 0), 0)) == REG)
8610 {
8611 unsigned int regno = REGNO (XEXP (XEXP (link, 0), 0));
8612
8613 if (GET_CODE (XEXP (link, 0)) == CLOBBER)
8614 {
8615 reg_state[regno].use_index = RELOAD_COMBINE_MAX_USES;
8616 reg_state[regno].store_ruid = reload_combine_ruid;
8617 }
8618 else
8619 reg_state[regno].use_index = -1;
8620 }
5adf6da0 8621 }
f8cd4126
RK
8622
8623 else if (GET_CODE (insn) == JUMP_INSN
8624 && GET_CODE (PATTERN (insn)) != RETURN)
5adf6da0
R
8625 {
8626 /* Non-spill registers might be used at the call destination in
8627 some unknown fashion, so we have to mark the unknown use. */
b0634509 8628 HARD_REG_SET *live;
f8cd4126 8629
b0634509
R
8630 if ((condjump_p (insn) || condjump_in_parallel_p (insn))
8631 && JUMP_LABEL (insn))
8632 live = &LABEL_LIVE (JUMP_LABEL (insn));
8633 else
8634 live = &ever_live_at_start;
f8cd4126 8635
5adf6da0 8636 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; --i)
f8cd4126
RK
8637 if (TEST_HARD_REG_BIT (*live, i))
8638 reg_state[i].use_index = -1;
5adf6da0 8639 }
f8cd4126 8640
5adf6da0
R
8641 reload_combine_note_use (&PATTERN (insn), insn);
8642 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
8643 {
8644 if (REG_NOTE_KIND (note) == REG_INC
8645 && GET_CODE (XEXP (note, 0)) == REG)
ed937a19
R
8646 {
8647 int regno = REGNO (XEXP (note, 0));
8648
8649 reg_state[regno].store_ruid = reload_combine_ruid;
8650 reg_state[regno].use_index = -1;
8651 }
5adf6da0
R
8652 }
8653 }
f8cd4126 8654
b0634509 8655 free (label_live);
5adf6da0
R
8656}
8657
8658/* Check if DST is a register or a subreg of a register; if it is,
8659 update reg_state[regno].store_ruid and reg_state[regno].use_index
f93233bb 8660 accordingly. Called via note_stores from reload_combine. */
f8cd4126 8661
5adf6da0 8662static void
84832317 8663reload_combine_note_store (dst, set, data)
f93233bb 8664 rtx dst, set;
84832317 8665 void *data ATTRIBUTE_UNUSED;
5adf6da0
R
8666{
8667 int regno = 0;
8668 int i;
54ed0905 8669 enum machine_mode mode = GET_MODE (dst);
5adf6da0
R
8670
8671 if (GET_CODE (dst) == SUBREG)
8672 {
8673 regno = SUBREG_WORD (dst);
8674 dst = SUBREG_REG (dst);
8675 }
8676 if (GET_CODE (dst) != REG)
8677 return;
8678 regno += REGNO (dst);
54ca6ffa 8679
5adf6da0 8680 /* note_stores might have stripped a STRICT_LOW_PART, so we have to be
05d10675 8681 careful with registers / register parts that are not full words.
54ca6ffa
JL
8682
8683 Similarly for ZERO_EXTRACT and SIGN_EXTRACT. */
8684 if (GET_CODE (set) != SET
8685 || GET_CODE (SET_DEST (set)) == ZERO_EXTRACT
8686 || GET_CODE (SET_DEST (set)) == SIGN_EXTRACT
8687 || GET_CODE (SET_DEST (set)) == STRICT_LOW_PART)
ed937a19 8688 {
54ed0905 8689 for (i = HARD_REGNO_NREGS (regno, mode) - 1 + regno; i >= regno; i--)
f93233bb
JL
8690 {
8691 reg_state[i].use_index = -1;
8692 reg_state[i].store_ruid = reload_combine_ruid;
8693 }
ed937a19 8694 }
5adf6da0
R
8695 else
8696 {
54ed0905 8697 for (i = HARD_REGNO_NREGS (regno, mode) - 1 + regno; i >= regno; i--)
5adf6da0
R
8698 {
8699 reg_state[i].store_ruid = reload_combine_ruid;
8700 reg_state[i].use_index = RELOAD_COMBINE_MAX_USES;
8701 }
8702 }
8703}
8704
8705/* XP points to a piece of rtl that has to be checked for any uses of
8706 registers.
8707 *XP is the pattern of INSN, or a part of it.
8708 Called from reload_combine, and recursively by itself. */
8709static void
8710reload_combine_note_use (xp, insn)
8711 rtx *xp, insn;
8712{
8713 rtx x = *xp;
8714 enum rtx_code code = x->code;
6f7d635c 8715 const char *fmt;
5adf6da0
R
8716 int i, j;
8717 rtx offset = const0_rtx; /* For the REG case below. */
8718
8719 switch (code)
8720 {
8721 case SET:
8722 if (GET_CODE (SET_DEST (x)) == REG)
8723 {
8724 reload_combine_note_use (&SET_SRC (x), insn);
8725 return;
8726 }
8727 break;
8728
6ce7e0f9
R
8729 case USE:
8730 /* If this is the USE of a return value, we can't change it. */
8731 if (GET_CODE (XEXP (x, 0)) == REG && REG_FUNCTION_VALUE_P (XEXP (x, 0)))
8732 {
8733 /* Mark the return register as used in an unknown fashion. */
8734 rtx reg = XEXP (x, 0);
8735 int regno = REGNO (reg);
8736 int nregs = HARD_REGNO_NREGS (regno, GET_MODE (reg));
8737
8738 while (--nregs >= 0)
8739 reg_state[regno + nregs].use_index = -1;
8740 return;
8741 }
8742 break;
8743
5adf6da0
R
8744 case CLOBBER:
8745 if (GET_CODE (SET_DEST (x)) == REG)
8746 return;
8747 break;
8748
8749 case PLUS:
8750 /* We are interested in (plus (reg) (const_int)) . */
8751 if (GET_CODE (XEXP (x, 0)) != REG || GET_CODE (XEXP (x, 1)) != CONST_INT)
8752 break;
8753 offset = XEXP (x, 1);
8754 x = XEXP (x, 0);
05d10675 8755 /* Fall through. */
5adf6da0
R
8756 case REG:
8757 {
8758 int regno = REGNO (x);
8759 int use_index;
6ce7e0f9 8760 int nregs;
5adf6da0
R
8761
8762 /* Some spurious USEs of pseudo registers might remain.
8763 Just ignore them. */
8764 if (regno >= FIRST_PSEUDO_REGISTER)
8765 return;
8766
6ce7e0f9
R
8767 nregs = HARD_REGNO_NREGS (regno, GET_MODE (x));
8768
8769 /* We can't substitute into multi-hard-reg uses. */
8770 if (nregs > 1)
8771 {
8772 while (--nregs >= 0)
8773 reg_state[regno + nregs].use_index = -1;
8774 return;
8775 }
8776
5adf6da0
R
8777 /* If this register is already used in some unknown fashion, we
8778 can't do anything.
8779 If we decrement the index from zero to -1, we can't store more
8780 uses, so this register becomes used in an unknown fashion. */
8781 use_index = --reg_state[regno].use_index;
8782 if (use_index < 0)
8783 return;
8784
8785 if (use_index != RELOAD_COMBINE_MAX_USES - 1)
8786 {
8787 /* We have found another use for a register that is already
8788 used later. Check if the offsets match; if not, mark the
8789 register as used in an unknown fashion. */
8790 if (! rtx_equal_p (offset, reg_state[regno].offset))
8791 {
8792 reg_state[regno].use_index = -1;
8793 return;
8794 }
8795 }
8796 else
8797 {
8798 /* This is the first use of this register we have seen since we
8799 marked it as dead. */
8800 reg_state[regno].offset = offset;
8801 reg_state[regno].use_ruid = reload_combine_ruid;
8802 }
8803 reg_state[regno].reg_use[use_index].insn = insn;
8804 reg_state[regno].reg_use[use_index].usep = xp;
8805 return;
8806 }
8807
8808 default:
8809 break;
8810 }
8811
8812 /* Recursively process the components of X. */
8813 fmt = GET_RTX_FORMAT (code);
8814 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8815 {
8816 if (fmt[i] == 'e')
8817 reload_combine_note_use (&XEXP (x, i), insn);
8818 else if (fmt[i] == 'E')
8819 {
8820 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
8821 reload_combine_note_use (&XVECEXP (x, i, j), insn);
8822 }
8823 }
8824}
8825\f
8826/* See if we can reduce the cost of a constant by replacing a move with
8827 an add. */
8828/* We cannot do our optimization across labels. Invalidating all the
8829 information about register contents we have would be costly, so we
8830 use last_label_luid (local variable of reload_cse_move2add) to note
8831 where the label is and then later disable any optimization that would
8832 cross it.
8833 reg_offset[n] / reg_base_reg[n] / reg_mode[n] are only valid if
8834 reg_set_luid[n] is larger than last_label_luid[n] . */
8835static int reg_set_luid[FIRST_PSEUDO_REGISTER];
770ae6cc 8836
5adf6da0
R
8837/* reg_offset[n] has to be CONST_INT for it and reg_base_reg[n] /
8838 reg_mode[n] to be valid.
8839 If reg_offset[n] is a CONST_INT and reg_base_reg[n] is negative, register n
8840 has been set to reg_offset[n] in mode reg_mode[n] .
8841 If reg_offset[n] is a CONST_INT and reg_base_reg[n] is non-negative,
8842 register n has been set to the sum of reg_offset[n] and register
8843 reg_base_reg[n], calculated in mode reg_mode[n] . */
8844static rtx reg_offset[FIRST_PSEUDO_REGISTER];
8845static int reg_base_reg[FIRST_PSEUDO_REGISTER];
8846static enum machine_mode reg_mode[FIRST_PSEUDO_REGISTER];
770ae6cc 8847
5adf6da0
R
8848/* move2add_luid is linearily increased while scanning the instructions
8849 from first to last. It is used to set reg_set_luid in
6764d250 8850 reload_cse_move2add and move2add_note_store. */
5adf6da0
R
8851static int move2add_luid;
8852
ccc4ae07 8853/* Generate a CONST_INT and force it in the range of MODE. */
770ae6cc 8854
ccc4ae07
AS
8855static rtx
8856gen_mode_int (mode, value)
8857 enum machine_mode mode;
8858 HOST_WIDE_INT value;
8859{
8860 HOST_WIDE_INT cval = value & GET_MODE_MASK (mode);
8861 int width = GET_MODE_BITSIZE (mode);
8862
8863 /* If MODE is narrower than HOST_WIDE_INT and CVAL is a negative number,
8864 sign extend it. */
8865 if (width > 0 && width < HOST_BITS_PER_WIDE_INT
8866 && (cval & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
8867 cval |= (HOST_WIDE_INT) -1 << width;
8868
8869 return GEN_INT (cval);
8870}
8871
5adf6da0
R
8872static void
8873reload_cse_move2add (first)
8874 rtx first;
8875{
8876 int i;
8877 rtx insn;
8878 int last_label_luid;
5adf6da0
R
8879
8880 for (i = FIRST_PSEUDO_REGISTER-1; i >= 0; i--)
6764d250
BS
8881 reg_set_luid[i] = 0;
8882
5adf6da0
R
8883 last_label_luid = 0;
8884 move2add_luid = 1;
8885 for (insn = first; insn; insn = NEXT_INSN (insn), move2add_luid++)
8886 {
8887 rtx pat, note;
8888
8889 if (GET_CODE (insn) == CODE_LABEL)
8890 last_label_luid = move2add_luid;
8891 if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
8892 continue;
8893 pat = PATTERN (insn);
8894 /* For simplicity, we only perform this optimization on
8895 straightforward SETs. */
8896 if (GET_CODE (pat) == SET
8897 && GET_CODE (SET_DEST (pat)) == REG)
8898 {
8899 rtx reg = SET_DEST (pat);
8900 int regno = REGNO (reg);
8901 rtx src = SET_SRC (pat);
8902
8903 /* Check if we have valid information on the contents of this
8904 register in the mode of REG. */
8905 /* ??? We don't know how zero / sign extension is handled, hence
8906 we can't go from a narrower to a wider mode. */
8907 if (reg_set_luid[regno] > last_label_luid
a3afe920
R
8908 && ((GET_MODE_SIZE (GET_MODE (reg))
8909 == GET_MODE_SIZE (reg_mode[regno]))
8910 || ((GET_MODE_SIZE (GET_MODE (reg))
8911 <= GET_MODE_SIZE (reg_mode[regno]))
8912 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (GET_MODE (reg)),
8913 GET_MODE_BITSIZE (reg_mode[regno]))))
05d10675 8914 && GET_CODE (reg_offset[regno]) == CONST_INT)
5adf6da0
R
8915 {
8916 /* Try to transform (set (REGX) (CONST_INT A))
8917 ...
8918 (set (REGX) (CONST_INT B))
8919 to
8920 (set (REGX) (CONST_INT A))
8921 ...
8922 (set (REGX) (plus (REGX) (CONST_INT B-A))) */
8923
8924 if (GET_CODE (src) == CONST_INT && reg_base_reg[regno] < 0)
8925 {
8926 int success = 0;
ccc4ae07
AS
8927 rtx new_src
8928 = gen_mode_int (GET_MODE (reg),
8929 INTVAL (src) - INTVAL (reg_offset[regno]));
5adf6da0
R
8930 /* (set (reg) (plus (reg) (const_int 0))) is not canonical;
8931 use (set (reg) (reg)) instead.
8932 We don't delete this insn, nor do we convert it into a
8933 note, to avoid losing register notes or the return
8934 value flag. jump2 already knowns how to get rid of
8935 no-op moves. */
8936 if (new_src == const0_rtx)
8937 success = validate_change (insn, &SET_SRC (pat), reg, 0);
8938 else if (rtx_cost (new_src, PLUS) < rtx_cost (src, SET)
8939 && have_add2_insn (GET_MODE (reg)))
8940 success = validate_change (insn, &PATTERN (insn),
8941 gen_add2_insn (reg, new_src), 0);
5adf6da0
R
8942 reg_set_luid[regno] = move2add_luid;
8943 reg_mode[regno] = GET_MODE (reg);
8944 reg_offset[regno] = src;
8945 continue;
8946 }
8947
8948 /* Try to transform (set (REGX) (REGY))
8949 (set (REGX) (PLUS (REGX) (CONST_INT A)))
8950 ...
8951 (set (REGX) (REGY))
8952 (set (REGX) (PLUS (REGX) (CONST_INT B)))
8953 to
8954 (REGX) (REGY))
8955 (set (REGX) (PLUS (REGX) (CONST_INT A)))
8956 ...
8957 (set (REGX) (plus (REGX) (CONST_INT B-A))) */
8958 else if (GET_CODE (src) == REG
770ae6cc 8959 && reg_base_reg[regno] == (int) REGNO (src)
5adf6da0
R
8960 && reg_set_luid[regno] > reg_set_luid[REGNO (src)])
8961 {
8962 rtx next = next_nonnote_insn (insn);
6a651371 8963 rtx set = NULL_RTX;
5adf6da0
R
8964 if (next)
8965 set = single_set (next);
8966 if (next
8967 && set
8968 && SET_DEST (set) == reg
8969 && GET_CODE (SET_SRC (set)) == PLUS
8970 && XEXP (SET_SRC (set), 0) == reg
8971 && GET_CODE (XEXP (SET_SRC (set), 1)) == CONST_INT)
8972 {
5adf6da0 8973 rtx src3 = XEXP (SET_SRC (set), 1);
ccc4ae07
AS
8974 rtx new_src
8975 = gen_mode_int (GET_MODE (reg),
8976 INTVAL (src3)
8977 - INTVAL (reg_offset[regno]));
5adf6da0
R
8978 int success = 0;
8979
8980 if (new_src == const0_rtx)
8981 /* See above why we create (set (reg) (reg)) here. */
8982 success
8983 = validate_change (next, &SET_SRC (set), reg, 0);
8984 else if ((rtx_cost (new_src, PLUS)
8985 < 2 + rtx_cost (src3, SET))
8986 && have_add2_insn (GET_MODE (reg)))
8987 success
8988 = validate_change (next, &PATTERN (next),
8989 gen_add2_insn (reg, new_src), 0);
8990 if (success)
8991 {
5adf6da0
R
8992 /* INSN might be the first insn in a basic block
8993 if the preceding insn is a conditional jump
8994 or a possible-throwing call. */
8995 PUT_CODE (insn, NOTE);
8996 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
8997 NOTE_SOURCE_FILE (insn) = 0;
8998 }
8999 insn = next;
9000 reg_set_luid[regno] = move2add_luid;
9001 reg_mode[regno] = GET_MODE (reg);
9002 reg_offset[regno] = src3;
9003 continue;
9004 }
9005 }
9006 }
9007 }
9008
9009 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
9010 {
9011 if (REG_NOTE_KIND (note) == REG_INC
9012 && GET_CODE (XEXP (note, 0)) == REG)
9013 {
9014 /* Indicate that this register has been recently written to,
9015 but the exact contents are not available. */
9016 int regno = REGNO (XEXP (note, 0));
9017 if (regno < FIRST_PSEUDO_REGISTER)
9018 {
9019 reg_set_luid[regno] = move2add_luid;
9020 reg_offset[regno] = note;
9021 }
9022 }
5adf6da0 9023 }
84832317 9024 note_stores (PATTERN (insn), move2add_note_store, NULL);
5adf6da0
R
9025 /* If this is a CALL_INSN, all call used registers are stored with
9026 unknown values. */
9027 if (GET_CODE (insn) == CALL_INSN)
9028 {
9029 for (i = FIRST_PSEUDO_REGISTER-1; i >= 0; i--)
9030 {
9031 if (call_used_regs[i])
9032 {
9033 reg_set_luid[i] = move2add_luid;
9034 reg_offset[i] = insn; /* Invalidate contents. */
9035 }
9036 }
9037 }
9038 }
9039}
9040
9041/* SET is a SET or CLOBBER that sets DST.
9042 Update reg_set_luid, reg_offset and reg_base_reg accordingly.
9043 Called from reload_cse_move2add via note_stores. */
770ae6cc 9044
5adf6da0 9045static void
84832317 9046move2add_note_store (dst, set, data)
5adf6da0 9047 rtx dst, set;
84832317 9048 void *data ATTRIBUTE_UNUSED;
5adf6da0 9049{
770ae6cc
RK
9050 unsigned int regno = 0;
9051 unsigned int i;
5adf6da0 9052 enum machine_mode mode = GET_MODE (dst);
770ae6cc 9053
5adf6da0
R
9054 if (GET_CODE (dst) == SUBREG)
9055 {
9056 regno = SUBREG_WORD (dst);
9057 dst = SUBREG_REG (dst);
9058 }
770ae6cc 9059
5adf6da0
R
9060 if (GET_CODE (dst) != REG)
9061 return;
9062
9063 regno += REGNO (dst);
9064
f93233bb
JL
9065 if (HARD_REGNO_NREGS (regno, mode) == 1 && GET_CODE (set) == SET
9066 && GET_CODE (SET_DEST (set)) != ZERO_EXTRACT
9067 && GET_CODE (SET_DEST (set)) != SIGN_EXTRACT
9068 && GET_CODE (SET_DEST (set)) != STRICT_LOW_PART)
5adf6da0
R
9069 {
9070 rtx src = SET_SRC (set);
9071
9072 reg_mode[regno] = mode;
9073 switch (GET_CODE (src))
9074 {
9075 case PLUS:
9076 {
9077 rtx src0 = XEXP (src, 0);
770ae6cc 9078
5adf6da0
R
9079 if (GET_CODE (src0) == REG)
9080 {
9081 if (REGNO (src0) != regno
9082 || reg_offset[regno] != const0_rtx)
9083 {
9084 reg_base_reg[regno] = REGNO (src0);
9085 reg_set_luid[regno] = move2add_luid;
9086 }
770ae6cc 9087
5adf6da0
R
9088 reg_offset[regno] = XEXP (src, 1);
9089 break;
9090 }
770ae6cc 9091
5adf6da0
R
9092 reg_set_luid[regno] = move2add_luid;
9093 reg_offset[regno] = set; /* Invalidate contents. */
9094 break;
9095 }
9096
9097 case REG:
9098 reg_base_reg[regno] = REGNO (SET_SRC (set));
9099 reg_offset[regno] = const0_rtx;
9100 reg_set_luid[regno] = move2add_luid;
9101 break;
9102
9103 default:
9104 reg_base_reg[regno] = -1;
9105 reg_offset[regno] = SET_SRC (set);
9106 reg_set_luid[regno] = move2add_luid;
9107 break;
9108 }
9109 }
9110 else
9111 {
770ae6cc
RK
9112 unsigned int endregno = regno + HARD_REGNO_NREGS (regno, mode);
9113
9114 for (i = regno; i < endregno; i++)
5adf6da0
R
9115 {
9116 /* Indicate that this register has been recently written to,
9117 but the exact contents are not available. */
9118 reg_set_luid[i] = move2add_luid;
9119 reg_offset[i] = dst;
9120 }
9121 }
9122}
2dfa9a87
MH
9123
9124#ifdef AUTO_INC_DEC
9125static void
9126add_auto_inc_notes (insn, x)
9127 rtx insn;
9128 rtx x;
9129{
9130 enum rtx_code code = GET_CODE (x);
6f7d635c 9131 const char *fmt;
2dfa9a87
MH
9132 int i, j;
9133
9134 if (code == MEM && auto_inc_p (XEXP (x, 0)))
9135 {
9136 REG_NOTES (insn)
9137 = gen_rtx_EXPR_LIST (REG_INC, XEXP (XEXP (x, 0), 0), REG_NOTES (insn));
9138 return;
9139 }
9140
9141 /* Scan all the operand sub-expressions. */
9142 fmt = GET_RTX_FORMAT (code);
9143 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9144 {
9145 if (fmt[i] == 'e')
9146 add_auto_inc_notes (insn, XEXP (x, i));
9147 else if (fmt[i] == 'E')
9148 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9149 add_auto_inc_notes (insn, XVECEXP (x, i, j));
9150 }
9151}
9152#endif
This page took 2.745859 seconds and 5 git commands to generate.