]> gcc.gnu.org Git - gcc.git/blame - gcc/reload.c
new
[gcc.git] / gcc / reload.c
CommitLineData
eab89b90 1/* Search an insn for pseudo regs that must be in hard regs and are not.
e5e809f4 2 Copyright (C) 1987, 88, 89, 92-97, 1998 Free Software Foundation, Inc.
eab89b90
RK
3
4This file is part of GNU CC.
5
6GNU CC is free software; you can redistribute it and/or modify
7it under the terms of the GNU General Public License as published by
8the Free Software Foundation; either version 2, or (at your option)
9any later version.
10
11GNU CC is distributed in the hope that it will be useful,
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14GNU General Public License for more details.
15
16You should have received a copy of the GNU General Public License
17along with GNU CC; see the file COPYING. If not, write to
e99215a3
RK
18the Free Software Foundation, 59 Temple Place - Suite 330,
19Boston, MA 02111-1307, USA. */
eab89b90
RK
20
21
22/* This file contains subroutines used only from the file reload1.c.
23 It knows how to scan one insn for operands and values
24 that need to be copied into registers to make valid code.
25 It also finds other operands and values which are valid
26 but for which equivalent values in registers exist and
27 ought to be used instead.
28
29 Before processing the first insn of the function, call `init_reload'.
30
31 To scan an insn, call `find_reloads'. This does two things:
32 1. sets up tables describing which values must be reloaded
33 for this insn, and what kind of hard regs they must be reloaded into;
34 2. optionally record the locations where those values appear in
35 the data, so they can be replaced properly later.
36 This is done only if the second arg to `find_reloads' is nonzero.
37
38 The third arg to `find_reloads' specifies the number of levels
39 of indirect addressing supported by the machine. If it is zero,
40 indirect addressing is not valid. If it is one, (MEM (REG n))
41 is valid even if (REG n) did not get a hard register; if it is two,
42 (MEM (MEM (REG n))) is also valid even if (REG n) did not get a
43 hard register, and similarly for higher values.
44
45 Then you must choose the hard regs to reload those pseudo regs into,
46 and generate appropriate load insns before this insn and perhaps
47 also store insns after this insn. Set up the array `reload_reg_rtx'
48 to contain the REG rtx's for the registers you used. In some
49 cases `find_reloads' will return a nonzero value in `reload_reg_rtx'
50 for certain reloads. Then that tells you which register to use,
51 so you do not need to allocate one. But you still do need to add extra
52 instructions to copy the value into and out of that register.
53
54 Finally you must call `subst_reloads' to substitute the reload reg rtx's
55 into the locations already recorded.
56
57NOTE SIDE EFFECTS:
58
59 find_reloads can alter the operands of the instruction it is called on.
60
61 1. Two operands of any sort may be interchanged, if they are in a
62 commutative instruction.
63 This happens only if find_reloads thinks the instruction will compile
64 better that way.
65
66 2. Pseudo-registers that are equivalent to constants are replaced
67 with those constants if they are not in hard registers.
68
691 happens every time find_reloads is called.
702 happens only when REPLACE is 1, which is only when
71actually doing the reloads, not when just counting them.
72
73
74Using a reload register for several reloads in one insn:
75
76When an insn has reloads, it is considered as having three parts:
77the input reloads, the insn itself after reloading, and the output reloads.
78Reloads of values used in memory addresses are often needed for only one part.
79
80When this is so, reload_when_needed records which part needs the reload.
81Two reloads for different parts of the insn can share the same reload
82register.
83
84When a reload is used for addresses in multiple parts, or when it is
85an ordinary operand, it is classified as RELOAD_OTHER, and cannot share
86a register with any other reload. */
87
88#define REG_OK_STRICT
89
90#include "config.h"
670ee920 91#include "system.h"
eab89b90
RK
92#include "rtl.h"
93#include "insn-config.h"
94#include "insn-codes.h"
95#include "recog.h"
96#include "reload.h"
97#include "regs.h"
98#include "hard-reg-set.h"
99#include "flags.h"
100#include "real.h"
8a840ac9 101#include "output.h"
55c22565 102#include "expr.h"
10f0ad3d 103#include "toplev.h"
eab89b90
RK
104
105#ifndef REGISTER_MOVE_COST
106#define REGISTER_MOVE_COST(x, y) 2
107#endif
858c3c8c
ILT
108
109#ifndef REGNO_MODE_OK_FOR_BASE_P
110#define REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) REGNO_OK_FOR_BASE_P (REGNO)
111#endif
112
113#ifndef REG_MODE_OK_FOR_BASE_P
114#define REG_MODE_OK_FOR_BASE_P(REGNO, MODE) REG_OK_FOR_BASE_P (REGNO)
115#endif
eab89b90
RK
116\f
117/* The variables set up by `find_reloads' are:
118
119 n_reloads number of distinct reloads needed; max reload # + 1
120 tables indexed by reload number
121 reload_in rtx for value to reload from
122 reload_out rtx for where to store reload-reg afterward if nec
123 (often the same as reload_in)
124 reload_reg_class enum reg_class, saying what regs to reload into
125 reload_inmode enum machine_mode; mode this operand should have
126 when reloaded, on input.
127 reload_outmode enum machine_mode; mode this operand should have
128 when reloaded, on output.
eab89b90
RK
129 reload_optional char, nonzero for an optional reload.
130 Optional reloads are ignored unless the
131 value is already sitting in a register.
f5963e61
JL
132 reload_nongroup char, nonzero when a reload must use a register
133 not already allocated to a group.
eab89b90
RK
134 reload_inc int, positive amount to increment or decrement by if
135 reload_in is a PRE_DEC, PRE_INC, POST_DEC, POST_INC.
136 Ignored otherwise (don't assume it is zero).
137 reload_in_reg rtx. A reg for which reload_in is the equivalent.
138 If reload_in is a symbol_ref which came from
139 reg_equiv_constant, then this is the pseudo
140 which has that symbol_ref as equivalent.
141 reload_reg_rtx rtx. This is the register to reload into.
142 If it is zero when `find_reloads' returns,
143 you must find a suitable register in the class
144 specified by reload_reg_class, and store here
145 an rtx for that register with mode from
146 reload_inmode or reload_outmode.
147 reload_nocombine char, nonzero if this reload shouldn't be
148 combined with another reload.
a8c9daeb
RK
149 reload_opnum int, operand number being reloaded. This is
150 used to group related reloads and need not always
151 be equal to the actual operand number in the insn,
152 though it current will be; for in-out operands, it
153 is one of the two operand numbers.
154 reload_when_needed enum, classifies reload as needed either for
eab89b90
RK
155 addressing an input reload, addressing an output,
156 for addressing a non-reloaded mem ref,
157 or for unspecified purposes (i.e., more than one
158 of the above).
eab89b90 159 reload_secondary_p int, 1 if this is a secondary register for one
9ec7078b
RK
160 or more reloads.
161 reload_secondary_in_reload
162 reload_secondary_out_reload
163 int, gives the reload number of a secondary
164 reload, when needed; otherwise -1
165 reload_secondary_in_icode
166 reload_secondary_out_icode
167 enum insn_code, if a secondary reload is required,
eab89b90
RK
168 gives the INSN_CODE that uses the secondary
169 reload as a scratch register, or CODE_FOR_nothing
170 if the secondary reload register is to be an
171 intermediate register. */
172int n_reloads;
173
174rtx reload_in[MAX_RELOADS];
175rtx reload_out[MAX_RELOADS];
176enum reg_class reload_reg_class[MAX_RELOADS];
177enum machine_mode reload_inmode[MAX_RELOADS];
178enum machine_mode reload_outmode[MAX_RELOADS];
eab89b90
RK
179rtx reload_reg_rtx[MAX_RELOADS];
180char reload_optional[MAX_RELOADS];
f5963e61 181char reload_nongroup[MAX_RELOADS];
eab89b90
RK
182int reload_inc[MAX_RELOADS];
183rtx reload_in_reg[MAX_RELOADS];
184char reload_nocombine[MAX_RELOADS];
a8c9daeb
RK
185int reload_opnum[MAX_RELOADS];
186enum reload_type reload_when_needed[MAX_RELOADS];
eab89b90 187int reload_secondary_p[MAX_RELOADS];
9ec7078b
RK
188int reload_secondary_in_reload[MAX_RELOADS];
189int reload_secondary_out_reload[MAX_RELOADS];
190enum insn_code reload_secondary_in_icode[MAX_RELOADS];
191enum insn_code reload_secondary_out_icode[MAX_RELOADS];
eab89b90
RK
192
193/* All the "earlyclobber" operands of the current insn
194 are recorded here. */
195int n_earlyclobbers;
196rtx reload_earlyclobbers[MAX_RECOG_OPERANDS];
197
a8c9daeb
RK
198int reload_n_operands;
199
eab89b90
RK
200/* Replacing reloads.
201
202 If `replace_reloads' is nonzero, then as each reload is recorded
203 an entry is made for it in the table `replacements'.
204 Then later `subst_reloads' can look through that table and
205 perform all the replacements needed. */
206
207/* Nonzero means record the places to replace. */
208static int replace_reloads;
209
210/* Each replacement is recorded with a structure like this. */
211struct replacement
212{
213 rtx *where; /* Location to store in */
214 rtx *subreg_loc; /* Location of SUBREG if WHERE is inside
215 a SUBREG; 0 otherwise. */
216 int what; /* which reload this is for */
217 enum machine_mode mode; /* mode it must have */
218};
219
220static struct replacement replacements[MAX_RECOG_OPERANDS * ((MAX_REGS_PER_ADDRESS * 2) + 1)];
221
222/* Number of replacements currently recorded. */
223static int n_replacements;
224
a8c9daeb
RK
225/* Used to track what is modified by an operand. */
226struct decomposition
227{
0f41302f
MS
228 int reg_flag; /* Nonzero if referencing a register. */
229 int safe; /* Nonzero if this can't conflict with anything. */
230 rtx base; /* Base address for MEM. */
231 HOST_WIDE_INT start; /* Starting offset or register number. */
2a6d5ce0 232 HOST_WIDE_INT end; /* Ending offset or register number. */
a8c9daeb
RK
233};
234
eab89b90
RK
235/* MEM-rtx's created for pseudo-regs in stack slots not directly addressable;
236 (see reg_equiv_address). */
237static rtx memlocs[MAX_RECOG_OPERANDS * ((MAX_REGS_PER_ADDRESS * 2) + 1)];
238static int n_memlocs;
239
0dadecf6
RK
240#ifdef SECONDARY_MEMORY_NEEDED
241
242/* Save MEMs needed to copy from one class of registers to another. One MEM
243 is used per mode, but normally only one or two modes are ever used.
244
a8c9daeb
RK
245 We keep two versions, before and after register elimination. The one
246 after register elimination is record separately for each operand. This
247 is done in case the address is not valid to be sure that we separately
248 reload each. */
0dadecf6
RK
249
250static rtx secondary_memlocs[NUM_MACHINE_MODES];
77545d45 251static rtx secondary_memlocs_elim[NUM_MACHINE_MODES][MAX_RECOG_OPERANDS];
0dadecf6
RK
252#endif
253
eab89b90
RK
254/* The instruction we are doing reloads for;
255 so we can test whether a register dies in it. */
256static rtx this_insn;
257
258/* Nonzero if this instruction is a user-specified asm with operands. */
259static int this_insn_is_asm;
260
261/* If hard_regs_live_known is nonzero,
262 we can tell which hard regs are currently live,
263 at least enough to succeed in choosing dummy reloads. */
264static int hard_regs_live_known;
265
266/* Indexed by hard reg number,
956d6950 267 element is nonnegative if hard reg has been spilled.
eab89b90
RK
268 This vector is passed to `find_reloads' as an argument
269 and is not changed here. */
270static short *static_reload_reg_p;
271
272/* Set to 1 in subst_reg_equivs if it changes anything. */
273static int subst_reg_equivs_changed;
274
275/* On return from push_reload, holds the reload-number for the OUT
276 operand, which can be different for that from the input operand. */
277static int output_reloadnum;
278
9ec7078b
RK
279 /* Compare two RTX's. */
280#define MATCHES(x, y) \
281 (x == y || (x != 0 && (GET_CODE (x) == REG \
282 ? GET_CODE (y) == REG && REGNO (x) == REGNO (y) \
283 : rtx_equal_p (x, y) && ! side_effects_p (x))))
284
285 /* Indicates if two reloads purposes are for similar enough things that we
286 can merge their reloads. */
287#define MERGABLE_RELOADS(when1, when2, op1, op2) \
288 ((when1) == RELOAD_OTHER || (when2) == RELOAD_OTHER \
289 || ((when1) == (when2) && (op1) == (op2)) \
290 || ((when1) == RELOAD_FOR_INPUT && (when2) == RELOAD_FOR_INPUT) \
291 || ((when1) == RELOAD_FOR_OPERAND_ADDRESS \
292 && (when2) == RELOAD_FOR_OPERAND_ADDRESS) \
293 || ((when1) == RELOAD_FOR_OTHER_ADDRESS \
294 && (when2) == RELOAD_FOR_OTHER_ADDRESS))
295
296 /* Nonzero if these two reload purposes produce RELOAD_OTHER when merged. */
297#define MERGE_TO_OTHER(when1, when2, op1, op2) \
298 ((when1) != (when2) \
299 || ! ((op1) == (op2) \
300 || (when1) == RELOAD_FOR_INPUT \
301 || (when1) == RELOAD_FOR_OPERAND_ADDRESS \
302 || (when1) == RELOAD_FOR_OTHER_ADDRESS))
303
47c8cf91
ILT
304 /* If we are going to reload an address, compute the reload type to
305 use. */
306#define ADDR_TYPE(type) \
307 ((type) == RELOAD_FOR_INPUT_ADDRESS \
308 ? RELOAD_FOR_INPADDR_ADDRESS \
309 : ((type) == RELOAD_FOR_OUTPUT_ADDRESS \
310 ? RELOAD_FOR_OUTADDR_ADDRESS \
311 : (type)))
312
56c5d8bf 313#ifdef HAVE_SECONDARY_RELOADS
9ec7078b
RK
314static int push_secondary_reload PROTO((int, rtx, int, int, enum reg_class,
315 enum machine_mode, enum reload_type,
316 enum insn_code *));
56c5d8bf 317#endif
c6716840 318static enum reg_class find_valid_class PROTO((enum machine_mode, int));
a8c9daeb
RK
319static int push_reload PROTO((rtx, rtx, rtx *, rtx *, enum reg_class,
320 enum machine_mode, enum machine_mode,
321 int, int, int, enum reload_type));
322static void push_replacement PROTO((rtx *, int, enum machine_mode));
323static void combine_reloads PROTO((void));
324static rtx find_dummy_reload PROTO((rtx, rtx, rtx *, rtx *,
36b50568 325 enum machine_mode, enum machine_mode,
189086f9 326 enum reg_class, int, int));
4644aad4 327static int earlyclobber_operand_p PROTO((rtx));
a8c9daeb
RK
328static int hard_reg_set_here_p PROTO((int, int, rtx));
329static struct decomposition decompose PROTO((rtx));
330static int immune_p PROTO((rtx, rtx, struct decomposition));
331static int alternative_allows_memconst PROTO((char *, int));
332static rtx find_reloads_toplev PROTO((rtx, int, enum reload_type, int, int));
333static rtx make_memloc PROTO((rtx, int));
334static int find_reloads_address PROTO((enum machine_mode, rtx *, rtx, rtx *,
55c22565 335 int, enum reload_type, int, rtx));
a8c9daeb
RK
336static rtx subst_reg_equivs PROTO((rtx));
337static rtx subst_indexed_address PROTO((rtx));
858c3c8c 338static int find_reloads_address_1 PROTO((enum machine_mode, rtx, int, rtx *,
55c22565 339 int, enum reload_type,int, rtx));
a8c9daeb
RK
340static void find_reloads_address_part PROTO((rtx, rtx *, enum reg_class,
341 enum machine_mode, int,
342 enum reload_type, int));
343static int find_inc_amount PROTO((rtx, rtx));
eab89b90
RK
344\f
345#ifdef HAVE_SECONDARY_RELOADS
346
347/* Determine if any secondary reloads are needed for loading (if IN_P is
348 non-zero) or storing (if IN_P is zero) X to or from a reload register of
9ec7078b
RK
349 register class RELOAD_CLASS in mode RELOAD_MODE. If secondary reloads
350 are needed, push them.
351
352 Return the reload number of the secondary reload we made, or -1 if
353 we didn't need one. *PICODE is set to the insn_code to use if we do
354 need a secondary reload. */
355
356static int
357push_secondary_reload (in_p, x, opnum, optional, reload_class, reload_mode,
358 type, picode)
359 int in_p;
eab89b90 360 rtx x;
9ec7078b
RK
361 int opnum;
362 int optional;
eab89b90
RK
363 enum reg_class reload_class;
364 enum machine_mode reload_mode;
9ec7078b 365 enum reload_type type;
eab89b90 366 enum insn_code *picode;
eab89b90
RK
367{
368 enum reg_class class = NO_REGS;
369 enum machine_mode mode = reload_mode;
370 enum insn_code icode = CODE_FOR_nothing;
371 enum reg_class t_class = NO_REGS;
372 enum machine_mode t_mode = VOIDmode;
373 enum insn_code t_icode = CODE_FOR_nothing;
d94d2abc 374 enum reload_type secondary_type;
9ec7078b
RK
375 int s_reload, t_reload = -1;
376
47c8cf91
ILT
377 if (type == RELOAD_FOR_INPUT_ADDRESS
378 || type == RELOAD_FOR_OUTPUT_ADDRESS
379 || type == RELOAD_FOR_INPADDR_ADDRESS
380 || type == RELOAD_FOR_OUTADDR_ADDRESS)
d94d2abc
RK
381 secondary_type = type;
382 else
383 secondary_type = in_p ? RELOAD_FOR_INPUT_ADDRESS : RELOAD_FOR_OUTPUT_ADDRESS;
384
9ec7078b 385 *picode = CODE_FOR_nothing;
eab89b90 386
67340b03
RK
387 /* If X is a paradoxical SUBREG, use the inner value to determine both the
388 mode and object being reloaded. */
389 if (GET_CODE (x) == SUBREG
390 && (GET_MODE_SIZE (GET_MODE (x))
391 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))))
392 {
393 x = SUBREG_REG (x);
394 reload_mode = GET_MODE (x);
395 }
396
d45cf215
RS
397 /* If X is a pseudo-register that has an equivalent MEM (actually, if it
398 is still a pseudo-register by now, it *must* have an equivalent MEM
399 but we don't want to assume that), use that equivalent when seeing if
400 a secondary reload is needed since whether or not a reload is needed
401 might be sensitive to the form of the MEM. */
402
403 if (GET_CODE (x) == REG && REGNO (x) >= FIRST_PSEUDO_REGISTER
404 && reg_equiv_mem[REGNO (x)] != 0)
405 x = reg_equiv_mem[REGNO (x)];
406
eab89b90
RK
407#ifdef SECONDARY_INPUT_RELOAD_CLASS
408 if (in_p)
409 class = SECONDARY_INPUT_RELOAD_CLASS (reload_class, reload_mode, x);
410#endif
411
412#ifdef SECONDARY_OUTPUT_RELOAD_CLASS
413 if (! in_p)
414 class = SECONDARY_OUTPUT_RELOAD_CLASS (reload_class, reload_mode, x);
415#endif
416
9ec7078b 417 /* If we don't need any secondary registers, done. */
eab89b90 418 if (class == NO_REGS)
9ec7078b 419 return -1;
eab89b90
RK
420
421 /* Get a possible insn to use. If the predicate doesn't accept X, don't
422 use the insn. */
423
424 icode = (in_p ? reload_in_optab[(int) reload_mode]
425 : reload_out_optab[(int) reload_mode]);
426
427 if (icode != CODE_FOR_nothing
428 && insn_operand_predicate[(int) icode][in_p]
429 && (! (insn_operand_predicate[(int) icode][in_p]) (x, reload_mode)))
430 icode = CODE_FOR_nothing;
431
432 /* If we will be using an insn, see if it can directly handle the reload
433 register we will be using. If it can, the secondary reload is for a
434 scratch register. If it can't, we will use the secondary reload for
435 an intermediate register and require a tertiary reload for the scratch
436 register. */
437
438 if (icode != CODE_FOR_nothing)
439 {
440 /* If IN_P is non-zero, the reload register will be the output in
441 operand 0. If IN_P is zero, the reload register will be the input
442 in operand 1. Outputs should have an initial "=", which we must
443 skip. */
444
d45cf215 445 char insn_letter = insn_operand_constraint[(int) icode][!in_p][in_p];
eab89b90 446 enum reg_class insn_class
d45cf215
RS
447 = (insn_letter == 'r' ? GENERAL_REGS
448 : REG_CLASS_FROM_LETTER (insn_letter));
eab89b90
RK
449
450 if (insn_class == NO_REGS
451 || (in_p && insn_operand_constraint[(int) icode][!in_p][0] != '=')
452 /* The scratch register's constraint must start with "=&". */
453 || insn_operand_constraint[(int) icode][2][0] != '='
454 || insn_operand_constraint[(int) icode][2][1] != '&')
455 abort ();
456
457 if (reg_class_subset_p (reload_class, insn_class))
458 mode = insn_operand_mode[(int) icode][2];
459 else
460 {
d45cf215 461 char t_letter = insn_operand_constraint[(int) icode][2][2];
eab89b90
RK
462 class = insn_class;
463 t_mode = insn_operand_mode[(int) icode][2];
d45cf215
RS
464 t_class = (t_letter == 'r' ? GENERAL_REGS
465 : REG_CLASS_FROM_LETTER (t_letter));
eab89b90
RK
466 t_icode = icode;
467 icode = CODE_FOR_nothing;
468 }
469 }
470
9ec7078b
RK
471 /* This case isn't valid, so fail. Reload is allowed to use the same
472 register for RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT reloads, but
473 in the case of a secondary register, we actually need two different
474 registers for correct code. We fail here to prevent the possibility of
475 silently generating incorrect code later.
476
477 The convention is that secondary input reloads are valid only if the
478 secondary_class is different from class. If you have such a case, you
479 can not use secondary reloads, you must work around the problem some
480 other way.
481
482 Allow this when MODE is not reload_mode and assume that the generated
483 code handles this case (it does on the Alpha, which is the only place
484 this currently happens). */
485
486 if (in_p && class == reload_class && mode == reload_mode)
487 abort ();
488
489 /* If we need a tertiary reload, see if we have one we can reuse or else
490 make a new one. */
491
492 if (t_class != NO_REGS)
493 {
494 for (t_reload = 0; t_reload < n_reloads; t_reload++)
495 if (reload_secondary_p[t_reload]
496 && (reg_class_subset_p (t_class, reload_reg_class[t_reload])
497 || reg_class_subset_p (reload_reg_class[t_reload], t_class))
498 && ((in_p && reload_inmode[t_reload] == t_mode)
499 || (! in_p && reload_outmode[t_reload] == t_mode))
500 && ((in_p && (reload_secondary_in_icode[t_reload]
501 == CODE_FOR_nothing))
502 || (! in_p &&(reload_secondary_out_icode[t_reload]
503 == CODE_FOR_nothing)))
e9a25f70 504 && (reg_class_size[(int) t_class] == 1 || SMALL_REGISTER_CLASSES)
9ec7078b
RK
505 && MERGABLE_RELOADS (secondary_type,
506 reload_when_needed[t_reload],
507 opnum, reload_opnum[t_reload]))
508 {
509 if (in_p)
510 reload_inmode[t_reload] = t_mode;
511 if (! in_p)
512 reload_outmode[t_reload] = t_mode;
513
514 if (reg_class_subset_p (t_class, reload_reg_class[t_reload]))
515 reload_reg_class[t_reload] = t_class;
516
517 reload_opnum[t_reload] = MIN (reload_opnum[t_reload], opnum);
518 reload_optional[t_reload] &= optional;
519 reload_secondary_p[t_reload] = 1;
520 if (MERGE_TO_OTHER (secondary_type, reload_when_needed[t_reload],
521 opnum, reload_opnum[t_reload]))
522 reload_when_needed[t_reload] = RELOAD_OTHER;
523 }
524
525 if (t_reload == n_reloads)
526 {
527 /* We need to make a new tertiary reload for this register class. */
528 reload_in[t_reload] = reload_out[t_reload] = 0;
529 reload_reg_class[t_reload] = t_class;
530 reload_inmode[t_reload] = in_p ? t_mode : VOIDmode;
531 reload_outmode[t_reload] = ! in_p ? t_mode : VOIDmode;
532 reload_reg_rtx[t_reload] = 0;
533 reload_optional[t_reload] = optional;
f5963e61 534 reload_nongroup[t_reload] = 0;
9ec7078b
RK
535 reload_inc[t_reload] = 0;
536 /* Maybe we could combine these, but it seems too tricky. */
537 reload_nocombine[t_reload] = 1;
538 reload_in_reg[t_reload] = 0;
539 reload_opnum[t_reload] = opnum;
540 reload_when_needed[t_reload] = secondary_type;
541 reload_secondary_in_reload[t_reload] = -1;
542 reload_secondary_out_reload[t_reload] = -1;
543 reload_secondary_in_icode[t_reload] = CODE_FOR_nothing;
544 reload_secondary_out_icode[t_reload] = CODE_FOR_nothing;
545 reload_secondary_p[t_reload] = 1;
546
547 n_reloads++;
548 }
549 }
550
551 /* See if we can reuse an existing secondary reload. */
552 for (s_reload = 0; s_reload < n_reloads; s_reload++)
553 if (reload_secondary_p[s_reload]
554 && (reg_class_subset_p (class, reload_reg_class[s_reload])
555 || reg_class_subset_p (reload_reg_class[s_reload], class))
556 && ((in_p && reload_inmode[s_reload] == mode)
557 || (! in_p && reload_outmode[s_reload] == mode))
558 && ((in_p && reload_secondary_in_reload[s_reload] == t_reload)
559 || (! in_p && reload_secondary_out_reload[s_reload] == t_reload))
560 && ((in_p && reload_secondary_in_icode[s_reload] == t_icode)
561 || (! in_p && reload_secondary_out_icode[s_reload] == t_icode))
e9a25f70 562 && (reg_class_size[(int) class] == 1 || SMALL_REGISTER_CLASSES)
9ec7078b
RK
563 && MERGABLE_RELOADS (secondary_type, reload_when_needed[s_reload],
564 opnum, reload_opnum[s_reload]))
565 {
566 if (in_p)
567 reload_inmode[s_reload] = mode;
568 if (! in_p)
569 reload_outmode[s_reload] = mode;
570
571 if (reg_class_subset_p (class, reload_reg_class[s_reload]))
572 reload_reg_class[s_reload] = class;
573
574 reload_opnum[s_reload] = MIN (reload_opnum[s_reload], opnum);
575 reload_optional[s_reload] &= optional;
576 reload_secondary_p[s_reload] = 1;
577 if (MERGE_TO_OTHER (secondary_type, reload_when_needed[s_reload],
578 opnum, reload_opnum[s_reload]))
579 reload_when_needed[s_reload] = RELOAD_OTHER;
580 }
eab89b90 581
9ec7078b
RK
582 if (s_reload == n_reloads)
583 {
e9a25f70
JL
584#ifdef SECONDARY_MEMORY_NEEDED
585 /* If we need a memory location to copy between the two reload regs,
586 set it up now. Note that we do the input case before making
587 the reload and the output case after. This is due to the
588 way reloads are output. */
589
590 if (in_p && icode == CODE_FOR_nothing
591 && SECONDARY_MEMORY_NEEDED (class, reload_class, mode))
592 get_secondary_mem (x, reload_mode, opnum, type);
593#endif
594
9ec7078b
RK
595 /* We need to make a new secondary reload for this register class. */
596 reload_in[s_reload] = reload_out[s_reload] = 0;
597 reload_reg_class[s_reload] = class;
598
599 reload_inmode[s_reload] = in_p ? mode : VOIDmode;
600 reload_outmode[s_reload] = ! in_p ? mode : VOIDmode;
601 reload_reg_rtx[s_reload] = 0;
602 reload_optional[s_reload] = optional;
f5963e61 603 reload_nongroup[s_reload] = 0;
9ec7078b
RK
604 reload_inc[s_reload] = 0;
605 /* Maybe we could combine these, but it seems too tricky. */
606 reload_nocombine[s_reload] = 1;
607 reload_in_reg[s_reload] = 0;
608 reload_opnum[s_reload] = opnum;
609 reload_when_needed[s_reload] = secondary_type;
610 reload_secondary_in_reload[s_reload] = in_p ? t_reload : -1;
611 reload_secondary_out_reload[s_reload] = ! in_p ? t_reload : -1;
612 reload_secondary_in_icode[s_reload] = in_p ? t_icode : CODE_FOR_nothing;
613 reload_secondary_out_icode[s_reload]
614 = ! in_p ? t_icode : CODE_FOR_nothing;
615 reload_secondary_p[s_reload] = 1;
616
617 n_reloads++;
618
619#ifdef SECONDARY_MEMORY_NEEDED
9ec7078b 620 if (! in_p && icode == CODE_FOR_nothing
f49e4127
JW
621 && SECONDARY_MEMORY_NEEDED (reload_class, class, mode))
622 get_secondary_mem (x, mode, opnum, type);
9ec7078b
RK
623#endif
624 }
625
626 *picode = icode;
627 return s_reload;
eab89b90
RK
628}
629#endif /* HAVE_SECONDARY_RELOADS */
630\f
0dadecf6
RK
631#ifdef SECONDARY_MEMORY_NEEDED
632
633/* Return a memory location that will be used to copy X in mode MODE.
634 If we haven't already made a location for this mode in this insn,
635 call find_reloads_address on the location being returned. */
636
637rtx
a8c9daeb 638get_secondary_mem (x, mode, opnum, type)
0dadecf6
RK
639 rtx x;
640 enum machine_mode mode;
a8c9daeb
RK
641 int opnum;
642 enum reload_type type;
0dadecf6
RK
643{
644 rtx loc;
645 int mem_valid;
646
64609742
RK
647 /* By default, if MODE is narrower than a word, widen it to a word.
648 This is required because most machines that require these memory
649 locations do not support short load and stores from all registers
650 (e.g., FP registers). */
651
652#ifdef SECONDARY_MEMORY_NEEDED_MODE
653 mode = SECONDARY_MEMORY_NEEDED_MODE (mode);
654#else
0dadecf6
RK
655 if (GET_MODE_BITSIZE (mode) < BITS_PER_WORD)
656 mode = mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (mode), 0);
64609742 657#endif
0dadecf6 658
77545d45
RK
659 /* If we already have made a MEM for this operand in MODE, return it. */
660 if (secondary_memlocs_elim[(int) mode][opnum] != 0)
661 return secondary_memlocs_elim[(int) mode][opnum];
0dadecf6
RK
662
663 /* If this is the first time we've tried to get a MEM for this mode,
664 allocate a new one. `something_changed' in reload will get set
665 by noticing that the frame size has changed. */
666
667 if (secondary_memlocs[(int) mode] == 0)
b24a53d5
JW
668 {
669#ifdef SECONDARY_MEMORY_NEEDED_RTX
670 secondary_memlocs[(int) mode] = SECONDARY_MEMORY_NEEDED_RTX (mode);
671#else
672 secondary_memlocs[(int) mode]
673 = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
674#endif
675 }
0dadecf6
RK
676
677 /* Get a version of the address doing any eliminations needed. If that
678 didn't give us a new MEM, make a new one if it isn't valid. */
679
1914f5da 680 loc = eliminate_regs (secondary_memlocs[(int) mode], VOIDmode, NULL_RTX);
0dadecf6
RK
681 mem_valid = strict_memory_address_p (mode, XEXP (loc, 0));
682
683 if (! mem_valid && loc == secondary_memlocs[(int) mode])
684 loc = copy_rtx (loc);
685
686 /* The only time the call below will do anything is if the stack
687 offset is too large. In that case IND_LEVELS doesn't matter, so we
a8c9daeb
RK
688 can just pass a zero. Adjust the type to be the address of the
689 corresponding object. If the address was valid, save the eliminated
690 address. If it wasn't valid, we need to make a reload each time, so
691 don't save it. */
0dadecf6 692
a8c9daeb
RK
693 if (! mem_valid)
694 {
695 type = (type == RELOAD_FOR_INPUT ? RELOAD_FOR_INPUT_ADDRESS
696 : type == RELOAD_FOR_OUTPUT ? RELOAD_FOR_OUTPUT_ADDRESS
697 : RELOAD_OTHER);
8d618585 698
a8c9daeb 699 find_reloads_address (mode, NULL_PTR, XEXP (loc, 0), &XEXP (loc, 0),
55c22565 700 opnum, type, 0, 0);
a8c9daeb 701 }
0dadecf6 702
77545d45 703 secondary_memlocs_elim[(int) mode][opnum] = loc;
0dadecf6
RK
704 return loc;
705}
706
707/* Clear any secondary memory locations we've made. */
708
709void
710clear_secondary_mem ()
711{
4c9a05bc 712 bzero ((char *) secondary_memlocs, sizeof secondary_memlocs);
0dadecf6
RK
713}
714#endif /* SECONDARY_MEMORY_NEEDED */
715\f
c6716840
RK
716/* Find the largest class for which every register number plus N is valid in
717 M1 (if in range). Abort if no such class exists. */
718
719static enum reg_class
720find_valid_class (m1, n)
721 enum machine_mode m1;
722 int n;
723{
724 int class;
725 int regno;
726 enum reg_class best_class;
727 int best_size = 0;
728
729 for (class = 1; class < N_REG_CLASSES; class++)
730 {
731 int bad = 0;
732 for (regno = 0; regno < FIRST_PSEUDO_REGISTER && ! bad; regno++)
733 if (TEST_HARD_REG_BIT (reg_class_contents[class], regno)
734 && TEST_HARD_REG_BIT (reg_class_contents[class], regno + n)
735 && ! HARD_REGNO_MODE_OK (regno + n, m1))
736 bad = 1;
737
738 if (! bad && reg_class_size[class] > best_size)
739 best_class = class, best_size = reg_class_size[class];
740 }
741
742 if (best_size == 0)
743 abort ();
744
745 return best_class;
746}
747\f
a8c9daeb 748/* Record one reload that needs to be performed.
eab89b90
RK
749 IN is an rtx saying where the data are to be found before this instruction.
750 OUT says where they must be stored after the instruction.
751 (IN is zero for data not read, and OUT is zero for data not written.)
752 INLOC and OUTLOC point to the places in the instructions where
753 IN and OUT were found.
a8c9daeb
RK
754 If IN and OUT are both non-zero, it means the same register must be used
755 to reload both IN and OUT.
756
eab89b90
RK
757 CLASS is a register class required for the reloaded data.
758 INMODE is the machine mode that the instruction requires
759 for the reg that replaces IN and OUTMODE is likewise for OUT.
760
761 If IN is zero, then OUT's location and mode should be passed as
762 INLOC and INMODE.
763
764 STRICT_LOW is the 1 if there is a containing STRICT_LOW_PART rtx.
765
766 OPTIONAL nonzero means this reload does not need to be performed:
767 it can be discarded if that is more convenient.
768
a8c9daeb
RK
769 OPNUM and TYPE say what the purpose of this reload is.
770
eab89b90
RK
771 The return value is the reload-number for this reload.
772
773 If both IN and OUT are nonzero, in some rare cases we might
774 want to make two separate reloads. (Actually we never do this now.)
775 Therefore, the reload-number for OUT is stored in
776 output_reloadnum when we return; the return value applies to IN.
777 Usually (presently always), when IN and OUT are nonzero,
778 the two reload-numbers are equal, but the caller should be careful to
779 distinguish them. */
780
781static int
782push_reload (in, out, inloc, outloc, class,
a8c9daeb 783 inmode, outmode, strict_low, optional, opnum, type)
eab89b90
RK
784 register rtx in, out;
785 rtx *inloc, *outloc;
786 enum reg_class class;
787 enum machine_mode inmode, outmode;
788 int strict_low;
789 int optional;
a8c9daeb
RK
790 int opnum;
791 enum reload_type type;
eab89b90
RK
792{
793 register int i;
794 int dont_share = 0;
74347d76 795 int dont_remove_subreg = 0;
eab89b90 796 rtx *in_subreg_loc = 0, *out_subreg_loc = 0;
9ec7078b 797 int secondary_in_reload = -1, secondary_out_reload = -1;
a229128d
RK
798 enum insn_code secondary_in_icode = CODE_FOR_nothing;
799 enum insn_code secondary_out_icode = CODE_FOR_nothing;
a8c9daeb 800
eab89b90
RK
801 /* INMODE and/or OUTMODE could be VOIDmode if no mode
802 has been specified for the operand. In that case,
803 use the operand's mode as the mode to reload. */
804 if (inmode == VOIDmode && in != 0)
805 inmode = GET_MODE (in);
806 if (outmode == VOIDmode && out != 0)
807 outmode = GET_MODE (out);
808
809 /* If IN is a pseudo register everywhere-equivalent to a constant, and
810 it is not in a hard register, reload straight from the constant,
811 since we want to get rid of such pseudo registers.
812 Often this is done earlier, but not always in find_reloads_address. */
813 if (in != 0 && GET_CODE (in) == REG)
814 {
815 register int regno = REGNO (in);
816
817 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
818 && reg_equiv_constant[regno] != 0)
819 in = reg_equiv_constant[regno];
820 }
821
822 /* Likewise for OUT. Of course, OUT will never be equivalent to
823 an actual constant, but it might be equivalent to a memory location
824 (in the case of a parameter). */
825 if (out != 0 && GET_CODE (out) == REG)
826 {
827 register int regno = REGNO (out);
828
829 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
830 && reg_equiv_constant[regno] != 0)
831 out = reg_equiv_constant[regno];
832 }
833
834 /* If we have a read-write operand with an address side-effect,
835 change either IN or OUT so the side-effect happens only once. */
836 if (in != 0 && out != 0 && GET_CODE (in) == MEM && rtx_equal_p (in, out))
837 {
838 if (GET_CODE (XEXP (in, 0)) == POST_INC
839 || GET_CODE (XEXP (in, 0)) == POST_DEC)
38a448ca 840 in = gen_rtx_MEM (GET_MODE (in), XEXP (XEXP (in, 0), 0));
eab89b90
RK
841 if (GET_CODE (XEXP (in, 0)) == PRE_INC
842 || GET_CODE (XEXP (in, 0)) == PRE_DEC)
38a448ca 843 out = gen_rtx_MEM (GET_MODE (out), XEXP (XEXP (out, 0), 0));
eab89b90
RK
844 }
845
a61c98cf 846 /* If we are reloading a (SUBREG constant ...), really reload just the
ca769828 847 inside expression in its own mode. Similarly for (SUBREG (PLUS ...)).
a61c98cf
RK
848 If we have (SUBREG:M1 (MEM:M2 ...) ...) (or an inner REG that is still
849 a pseudo and hence will become a MEM) with M1 wider than M2 and the
850 register is a pseudo, also reload the inside expression.
f72ccbe6 851 For machines that extend byte loads, do this for any SUBREG of a pseudo
486d8509
RK
852 where both M1 and M2 are a word or smaller, M1 is wider than M2, and
853 M2 is an integral mode that gets extended when loaded.
86c31b2d 854 Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
eab89b90
RK
855 either M1 is not valid for R or M2 is wider than a word but we only
856 need one word to store an M2-sized quantity in R.
86c31b2d
RS
857 (However, if OUT is nonzero, we need to reload the reg *and*
858 the subreg, so do nothing here, and let following statement handle it.)
859
eab89b90
RK
860 Note that the case of (SUBREG (CONST_INT...)...) is handled elsewhere;
861 we can't handle it here because CONST_INT does not indicate a mode.
862
863 Similarly, we must reload the inside expression if we have a
df62f951
RK
864 STRICT_LOW_PART (presumably, in == out in the cas).
865
866 Also reload the inner expression if it does not require a secondary
486d8509
RK
867 reload but the SUBREG does.
868
869 Finally, reload the inner expression if it is a register that is in
870 the class whose registers cannot be referenced in a different size
d030f4b2
RK
871 and M1 is not the same size as M2. If SUBREG_WORD is nonzero, we
872 cannot reload just the inside since we might end up with the wrong
0f41302f 873 register class. */
eab89b90 874
d030f4b2 875 if (in != 0 && GET_CODE (in) == SUBREG && SUBREG_WORD (in) == 0
94bafba7
RK
876#ifdef CLASS_CANNOT_CHANGE_SIZE
877 && class != CLASS_CANNOT_CHANGE_SIZE
878#endif
a61c98cf 879 && (CONSTANT_P (SUBREG_REG (in))
ca769828 880 || GET_CODE (SUBREG_REG (in)) == PLUS
eab89b90 881 || strict_low
a61c98cf
RK
882 || (((GET_CODE (SUBREG_REG (in)) == REG
883 && REGNO (SUBREG_REG (in)) >= FIRST_PSEUDO_REGISTER)
884 || GET_CODE (SUBREG_REG (in)) == MEM)
03b72c86
RK
885 && ((GET_MODE_SIZE (inmode)
886 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
09bf0250 887#ifdef LOAD_EXTEND_OP
03b72c86
RK
888 || (GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
889 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
890 <= UNITS_PER_WORD)
891 && (GET_MODE_SIZE (inmode)
486d8509
RK
892 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
893 && INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (in)))
894 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (in))) != NIL)
d2c92f5a
R
895#endif
896#ifdef WORD_REGISTER_OPERATIONS
897 || ((GET_MODE_SIZE (inmode)
898 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
899 && ((GET_MODE_SIZE (inmode) - 1) / UNITS_PER_WORD ==
900 ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))) - 1)
901 / UNITS_PER_WORD)))
f72ccbe6 902#endif
03b72c86 903 ))
a61c98cf
RK
904 || (GET_CODE (SUBREG_REG (in)) == REG
905 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
86c31b2d
RS
906 /* The case where out is nonzero
907 is handled differently in the following statement. */
908 && (out == 0 || SUBREG_WORD (in) == 0)
f72ccbe6
RK
909 && ((GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
910 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
911 > UNITS_PER_WORD)
912 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
913 / UNITS_PER_WORD)
914 != HARD_REGNO_NREGS (REGNO (SUBREG_REG (in)),
915 GET_MODE (SUBREG_REG (in)))))
916 || ! HARD_REGNO_MODE_OK ((REGNO (SUBREG_REG (in))
917 + SUBREG_WORD (in)),
918 inmode)))
df62f951
RK
919#ifdef SECONDARY_INPUT_RELOAD_CLASS
920 || (SECONDARY_INPUT_RELOAD_CLASS (class, inmode, in) != NO_REGS
921 && (SECONDARY_INPUT_RELOAD_CLASS (class,
922 GET_MODE (SUBREG_REG (in)),
923 SUBREG_REG (in))
924 == NO_REGS))
486d8509
RK
925#endif
926#ifdef CLASS_CANNOT_CHANGE_SIZE
927 || (GET_CODE (SUBREG_REG (in)) == REG
928 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
929 && (TEST_HARD_REG_BIT
930 (reg_class_contents[(int) CLASS_CANNOT_CHANGE_SIZE],
931 REGNO (SUBREG_REG (in))))
932 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
933 != GET_MODE_SIZE (inmode)))
df62f951
RK
934#endif
935 ))
eab89b90
RK
936 {
937 in_subreg_loc = inloc;
938 inloc = &SUBREG_REG (in);
939 in = *inloc;
d2c92f5a 940#if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
eab89b90
RK
941 if (GET_CODE (in) == MEM)
942 /* This is supposed to happen only for paradoxical subregs made by
943 combine.c. (SUBREG (MEM)) isn't supposed to occur other ways. */
944 if (GET_MODE_SIZE (GET_MODE (in)) > GET_MODE_SIZE (inmode))
945 abort ();
e05a9da8 946#endif
eab89b90
RK
947 inmode = GET_MODE (in);
948 }
949
86c31b2d
RS
950 /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
951 either M1 is not valid for R or M2 is wider than a word but we only
952 need one word to store an M2-sized quantity in R.
953
954 However, we must reload the inner reg *as well as* the subreg in
955 that case. */
956
6fd5ac08
JW
957 /* Similar issue for (SUBREG constant ...) if it was not handled by the
958 code above. This can happen if SUBREG_WORD != 0. */
959
86c31b2d 960 if (in != 0 && GET_CODE (in) == SUBREG
6fd5ac08
JW
961 && (CONSTANT_P (SUBREG_REG (in))
962 || (GET_CODE (SUBREG_REG (in)) == REG
963 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
964 && (! HARD_REGNO_MODE_OK (REGNO (SUBREG_REG (in))
965 + SUBREG_WORD (in),
966 inmode)
967 || (GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
968 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
969 > UNITS_PER_WORD)
970 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
971 / UNITS_PER_WORD)
972 != HARD_REGNO_NREGS (REGNO (SUBREG_REG (in)),
973 GET_MODE (SUBREG_REG (in)))))))))
86c31b2d 974 {
c96d01ab
RK
975 /* This relies on the fact that emit_reload_insns outputs the
976 instructions for input reloads of type RELOAD_OTHER in the same
977 order as the reloads. Thus if the outer reload is also of type
978 RELOAD_OTHER, we are guaranteed that this inner reload will be
979 output before the outer reload. */
86c31b2d 980 push_reload (SUBREG_REG (in), NULL_RTX, &SUBREG_REG (in), NULL_PTR,
c6716840
RK
981 find_valid_class (inmode, SUBREG_WORD (in)),
982 VOIDmode, VOIDmode, 0, 0, opnum, type);
74347d76 983 dont_remove_subreg = 1;
86c31b2d
RS
984 }
985
eab89b90
RK
986 /* Similarly for paradoxical and problematical SUBREGs on the output.
987 Note that there is no reason we need worry about the previous value
988 of SUBREG_REG (out); even if wider than out,
989 storing in a subreg is entitled to clobber it all
990 (except in the case of STRICT_LOW_PART,
991 and in that case the constraint should label it input-output.) */
d030f4b2 992 if (out != 0 && GET_CODE (out) == SUBREG && SUBREG_WORD (out) == 0
94bafba7
RK
993#ifdef CLASS_CANNOT_CHANGE_SIZE
994 && class != CLASS_CANNOT_CHANGE_SIZE
995#endif
a61c98cf 996 && (CONSTANT_P (SUBREG_REG (out))
eab89b90 997 || strict_low
a61c98cf
RK
998 || (((GET_CODE (SUBREG_REG (out)) == REG
999 && REGNO (SUBREG_REG (out)) >= FIRST_PSEUDO_REGISTER)
1000 || GET_CODE (SUBREG_REG (out)) == MEM)
03b72c86 1001 && ((GET_MODE_SIZE (outmode)
1914f5da
RH
1002 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
1003#ifdef WORD_REGISTER_OPERATIONS
6d49a073
JW
1004 || ((GET_MODE_SIZE (outmode)
1005 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
1006 && ((GET_MODE_SIZE (outmode) - 1) / UNITS_PER_WORD ==
1007 ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))) - 1)
1008 / UNITS_PER_WORD)))
1914f5da
RH
1009#endif
1010 ))
eab89b90
RK
1011 || (GET_CODE (SUBREG_REG (out)) == REG
1012 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
f72ccbe6
RK
1013 && ((GET_MODE_SIZE (outmode) <= UNITS_PER_WORD
1014 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1015 > UNITS_PER_WORD)
1016 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1017 / UNITS_PER_WORD)
1018 != HARD_REGNO_NREGS (REGNO (SUBREG_REG (out)),
1019 GET_MODE (SUBREG_REG (out)))))
1020 || ! HARD_REGNO_MODE_OK ((REGNO (SUBREG_REG (out))
1021 + SUBREG_WORD (out)),
1022 outmode)))
df62f951
RK
1023#ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1024 || (SECONDARY_OUTPUT_RELOAD_CLASS (class, outmode, out) != NO_REGS
1025 && (SECONDARY_OUTPUT_RELOAD_CLASS (class,
1026 GET_MODE (SUBREG_REG (out)),
1027 SUBREG_REG (out))
1028 == NO_REGS))
486d8509
RK
1029#endif
1030#ifdef CLASS_CANNOT_CHANGE_SIZE
1031 || (GET_CODE (SUBREG_REG (out)) == REG
1032 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1033 && (TEST_HARD_REG_BIT
1034 (reg_class_contents[(int) CLASS_CANNOT_CHANGE_SIZE],
1035 REGNO (SUBREG_REG (out))))
1036 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1037 != GET_MODE_SIZE (outmode)))
df62f951
RK
1038#endif
1039 ))
eab89b90
RK
1040 {
1041 out_subreg_loc = outloc;
1042 outloc = &SUBREG_REG (out);
e05a9da8 1043 out = *outloc;
d2c92f5a 1044#if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
e05a9da8 1045 if (GET_CODE (out) == MEM
eab89b90
RK
1046 && GET_MODE_SIZE (GET_MODE (out)) > GET_MODE_SIZE (outmode))
1047 abort ();
e05a9da8 1048#endif
eab89b90
RK
1049 outmode = GET_MODE (out);
1050 }
1051
74347d76
RK
1052 /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
1053 either M1 is not valid for R or M2 is wider than a word but we only
1054 need one word to store an M2-sized quantity in R.
1055
1056 However, we must reload the inner reg *as well as* the subreg in
1057 that case. In this case, the inner reg is an in-out reload. */
1058
1059 if (out != 0 && GET_CODE (out) == SUBREG
1060 && GET_CODE (SUBREG_REG (out)) == REG
1061 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
c6716840
RK
1062 && (! HARD_REGNO_MODE_OK (REGNO (SUBREG_REG (out)) + SUBREG_WORD (out),
1063 outmode)
74347d76
RK
1064 || (GET_MODE_SIZE (outmode) <= UNITS_PER_WORD
1065 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1066 > UNITS_PER_WORD)
1067 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1068 / UNITS_PER_WORD)
1069 != HARD_REGNO_NREGS (REGNO (SUBREG_REG (out)),
1070 GET_MODE (SUBREG_REG (out)))))))
1071 {
c96d01ab
RK
1072 /* This relies on the fact that emit_reload_insns outputs the
1073 instructions for output reloads of type RELOAD_OTHER in reverse
1074 order of the reloads. Thus if the outer reload is also of type
1075 RELOAD_OTHER, we are guaranteed that this inner reload will be
1076 output after the outer reload. */
74347d76
RK
1077 dont_remove_subreg = 1;
1078 push_reload (SUBREG_REG (out), SUBREG_REG (out), &SUBREG_REG (out),
c6716840
RK
1079 &SUBREG_REG (out),
1080 find_valid_class (outmode, SUBREG_WORD (out)),
1081 VOIDmode, VOIDmode, 0, 0,
74347d76
RK
1082 opnum, RELOAD_OTHER);
1083 }
1084
eab89b90
RK
1085 /* If IN appears in OUT, we can't share any input-only reload for IN. */
1086 if (in != 0 && out != 0 && GET_CODE (out) == MEM
1087 && (GET_CODE (in) == REG || GET_CODE (in) == MEM)
bfa30b22 1088 && reg_overlap_mentioned_for_reload_p (in, XEXP (out, 0)))
eab89b90
RK
1089 dont_share = 1;
1090
0dadecf6
RK
1091 /* If IN is a SUBREG of a hard register, make a new REG. This
1092 simplifies some of the cases below. */
1093
1094 if (in != 0 && GET_CODE (in) == SUBREG && GET_CODE (SUBREG_REG (in)) == REG
74347d76
RK
1095 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1096 && ! dont_remove_subreg)
38a448ca
RH
1097 in = gen_rtx_REG (GET_MODE (in),
1098 REGNO (SUBREG_REG (in)) + SUBREG_WORD (in));
0dadecf6
RK
1099
1100 /* Similarly for OUT. */
1101 if (out != 0 && GET_CODE (out) == SUBREG
1102 && GET_CODE (SUBREG_REG (out)) == REG
74347d76
RK
1103 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1104 && ! dont_remove_subreg)
38a448ca
RH
1105 out = gen_rtx_REG (GET_MODE (out),
1106 REGNO (SUBREG_REG (out)) + SUBREG_WORD (out));
0dadecf6 1107
eab89b90
RK
1108 /* Narrow down the class of register wanted if that is
1109 desirable on this machine for efficiency. */
1110 if (in != 0)
1111 class = PREFERRED_RELOAD_CLASS (in, class);
1112
ac2a9454 1113 /* Output reloads may need analogous treatment, different in detail. */
18a53b78
RS
1114#ifdef PREFERRED_OUTPUT_RELOAD_CLASS
1115 if (out != 0)
1116 class = PREFERRED_OUTPUT_RELOAD_CLASS (out, class);
1117#endif
1118
eab89b90
RK
1119 /* Make sure we use a class that can handle the actual pseudo
1120 inside any subreg. For example, on the 386, QImode regs
1121 can appear within SImode subregs. Although GENERAL_REGS
1122 can handle SImode, QImode needs a smaller class. */
1123#ifdef LIMIT_RELOAD_CLASS
1124 if (in_subreg_loc)
1125 class = LIMIT_RELOAD_CLASS (inmode, class);
1126 else if (in != 0 && GET_CODE (in) == SUBREG)
1127 class = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (in)), class);
1128
1129 if (out_subreg_loc)
1130 class = LIMIT_RELOAD_CLASS (outmode, class);
1131 if (out != 0 && GET_CODE (out) == SUBREG)
1132 class = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (out)), class);
1133#endif
1134
eab89b90
RK
1135 /* Verify that this class is at least possible for the mode that
1136 is specified. */
1137 if (this_insn_is_asm)
1138 {
1139 enum machine_mode mode;
1140 if (GET_MODE_SIZE (inmode) > GET_MODE_SIZE (outmode))
1141 mode = inmode;
1142 else
1143 mode = outmode;
5488078f
RS
1144 if (mode == VOIDmode)
1145 {
1146 error_for_asm (this_insn, "cannot reload integer constant operand in `asm'");
1147 mode = word_mode;
1148 if (in != 0)
1149 inmode = word_mode;
1150 if (out != 0)
1151 outmode = word_mode;
1152 }
eab89b90
RK
1153 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1154 if (HARD_REGNO_MODE_OK (i, mode)
1155 && TEST_HARD_REG_BIT (reg_class_contents[(int) class], i))
1156 {
1157 int nregs = HARD_REGNO_NREGS (i, mode);
1158
1159 int j;
1160 for (j = 1; j < nregs; j++)
1161 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class], i + j))
1162 break;
1163 if (j == nregs)
1164 break;
1165 }
1166 if (i == FIRST_PSEUDO_REGISTER)
1167 {
1168 error_for_asm (this_insn, "impossible register constraint in `asm'");
1169 class = ALL_REGS;
1170 }
1171 }
1172
5488078f
RS
1173 if (class == NO_REGS)
1174 abort ();
1175
eab89b90
RK
1176 /* We can use an existing reload if the class is right
1177 and at least one of IN and OUT is a match
1178 and the other is at worst neutral.
a8c9daeb
RK
1179 (A zero compared against anything is neutral.)
1180
1181 If SMALL_REGISTER_CLASSES, don't use existing reloads unless they are
1182 for the same thing since that can cause us to need more reload registers
1183 than we otherwise would. */
1184
eab89b90
RK
1185 for (i = 0; i < n_reloads; i++)
1186 if ((reg_class_subset_p (class, reload_reg_class[i])
1187 || reg_class_subset_p (reload_reg_class[i], class))
eab89b90
RK
1188 /* If the existing reload has a register, it must fit our class. */
1189 && (reload_reg_rtx[i] == 0
1190 || TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1191 true_regnum (reload_reg_rtx[i])))
1192 && ((in != 0 && MATCHES (reload_in[i], in) && ! dont_share
1193 && (out == 0 || reload_out[i] == 0 || MATCHES (reload_out[i], out)))
1194 ||
1195 (out != 0 && MATCHES (reload_out[i], out)
a8c9daeb 1196 && (in == 0 || reload_in[i] == 0 || MATCHES (reload_in[i], in))))
e9a25f70 1197 && (reg_class_size[(int) class] == 1 || SMALL_REGISTER_CLASSES)
a8c9daeb
RK
1198 && MERGABLE_RELOADS (type, reload_when_needed[i],
1199 opnum, reload_opnum[i]))
eab89b90
RK
1200 break;
1201
1202 /* Reloading a plain reg for input can match a reload to postincrement
1203 that reg, since the postincrement's value is the right value.
1204 Likewise, it can match a preincrement reload, since we regard
1205 the preincrementation as happening before any ref in this insn
1206 to that register. */
1207 if (i == n_reloads)
1208 for (i = 0; i < n_reloads; i++)
1209 if ((reg_class_subset_p (class, reload_reg_class[i])
1210 || reg_class_subset_p (reload_reg_class[i], class))
1211 /* If the existing reload has a register, it must fit our class. */
1212 && (reload_reg_rtx[i] == 0
1213 || TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1214 true_regnum (reload_reg_rtx[i])))
eab89b90
RK
1215 && out == 0 && reload_out[i] == 0 && reload_in[i] != 0
1216 && ((GET_CODE (in) == REG
1217 && (GET_CODE (reload_in[i]) == POST_INC
1218 || GET_CODE (reload_in[i]) == POST_DEC
1219 || GET_CODE (reload_in[i]) == PRE_INC
1220 || GET_CODE (reload_in[i]) == PRE_DEC)
1221 && MATCHES (XEXP (reload_in[i], 0), in))
1222 ||
1223 (GET_CODE (reload_in[i]) == REG
1224 && (GET_CODE (in) == POST_INC
1225 || GET_CODE (in) == POST_DEC
1226 || GET_CODE (in) == PRE_INC
1227 || GET_CODE (in) == PRE_DEC)
a8c9daeb 1228 && MATCHES (XEXP (in, 0), reload_in[i])))
e9a25f70 1229 && (reg_class_size[(int) class] == 1 || SMALL_REGISTER_CLASSES)
a8c9daeb
RK
1230 && MERGABLE_RELOADS (type, reload_when_needed[i],
1231 opnum, reload_opnum[i]))
eab89b90
RK
1232 {
1233 /* Make sure reload_in ultimately has the increment,
1234 not the plain register. */
1235 if (GET_CODE (in) == REG)
1236 in = reload_in[i];
1237 break;
1238 }
1239
1240 if (i == n_reloads)
1241 {
9ec7078b
RK
1242 /* See if we need a secondary reload register to move between CLASS
1243 and IN or CLASS and OUT. Get the icode and push any required reloads
1244 needed for each of them if so. */
eab89b90
RK
1245
1246#ifdef SECONDARY_INPUT_RELOAD_CLASS
1247 if (in != 0)
9ec7078b
RK
1248 secondary_in_reload
1249 = push_secondary_reload (1, in, opnum, optional, class, inmode, type,
1250 &secondary_in_icode);
eab89b90
RK
1251#endif
1252
1253#ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1254 if (out != 0 && GET_CODE (out) != SCRATCH)
9ec7078b
RK
1255 secondary_out_reload
1256 = push_secondary_reload (0, out, opnum, optional, class, outmode,
1257 type, &secondary_out_icode);
eab89b90
RK
1258#endif
1259
1260 /* We found no existing reload suitable for re-use.
1261 So add an additional reload. */
1262
e9a25f70
JL
1263#ifdef SECONDARY_MEMORY_NEEDED
1264 /* If a memory location is needed for the copy, make one. */
1265 if (in != 0 && GET_CODE (in) == REG
1266 && REGNO (in) < FIRST_PSEUDO_REGISTER
1267 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (REGNO (in)),
1268 class, inmode))
1269 get_secondary_mem (in, inmode, opnum, type);
1270#endif
1271
9ec7078b 1272 i = n_reloads;
eab89b90
RK
1273 reload_in[i] = in;
1274 reload_out[i] = out;
1275 reload_reg_class[i] = class;
1276 reload_inmode[i] = inmode;
1277 reload_outmode[i] = outmode;
1278 reload_reg_rtx[i] = 0;
1279 reload_optional[i] = optional;
f5963e61 1280 reload_nongroup[i] = 0;
eab89b90 1281 reload_inc[i] = 0;
eab89b90
RK
1282 reload_nocombine[i] = 0;
1283 reload_in_reg[i] = inloc ? *inloc : 0;
a8c9daeb
RK
1284 reload_opnum[i] = opnum;
1285 reload_when_needed[i] = type;
9ec7078b
RK
1286 reload_secondary_in_reload[i] = secondary_in_reload;
1287 reload_secondary_out_reload[i] = secondary_out_reload;
1288 reload_secondary_in_icode[i] = secondary_in_icode;
1289 reload_secondary_out_icode[i] = secondary_out_icode;
eab89b90
RK
1290 reload_secondary_p[i] = 0;
1291
1292 n_reloads++;
0dadecf6
RK
1293
1294#ifdef SECONDARY_MEMORY_NEEDED
0dadecf6
RK
1295 if (out != 0 && GET_CODE (out) == REG
1296 && REGNO (out) < FIRST_PSEUDO_REGISTER
1297 && SECONDARY_MEMORY_NEEDED (class, REGNO_REG_CLASS (REGNO (out)),
1298 outmode))
a8c9daeb 1299 get_secondary_mem (out, outmode, opnum, type);
0dadecf6 1300#endif
eab89b90
RK
1301 }
1302 else
1303 {
1304 /* We are reusing an existing reload,
1305 but we may have additional information for it.
1306 For example, we may now have both IN and OUT
1307 while the old one may have just one of them. */
1308
6fd5ac08
JW
1309 /* The modes can be different. If they are, we want to reload in
1310 the larger mode, so that the value is valid for both modes. */
1311 if (inmode != VOIDmode
1312 && GET_MODE_SIZE (inmode) > GET_MODE_SIZE (reload_inmode[i]))
eab89b90 1313 reload_inmode[i] = inmode;
6fd5ac08
JW
1314 if (outmode != VOIDmode
1315 && GET_MODE_SIZE (outmode) > GET_MODE_SIZE (reload_outmode[i]))
eab89b90
RK
1316 reload_outmode[i] = outmode;
1317 if (in != 0)
1318 reload_in[i] = in;
1319 if (out != 0)
1320 reload_out[i] = out;
1321 if (reg_class_subset_p (class, reload_reg_class[i]))
1322 reload_reg_class[i] = class;
1323 reload_optional[i] &= optional;
a8c9daeb
RK
1324 if (MERGE_TO_OTHER (type, reload_when_needed[i],
1325 opnum, reload_opnum[i]))
1326 reload_when_needed[i] = RELOAD_OTHER;
1327 reload_opnum[i] = MIN (reload_opnum[i], opnum);
eab89b90
RK
1328 }
1329
1330 /* If the ostensible rtx being reload differs from the rtx found
1331 in the location to substitute, this reload is not safe to combine
1332 because we cannot reliably tell whether it appears in the insn. */
1333
1334 if (in != 0 && in != *inloc)
1335 reload_nocombine[i] = 1;
1336
1337#if 0
1338 /* This was replaced by changes in find_reloads_address_1 and the new
1339 function inc_for_reload, which go with a new meaning of reload_inc. */
1340
1341 /* If this is an IN/OUT reload in an insn that sets the CC,
1342 it must be for an autoincrement. It doesn't work to store
1343 the incremented value after the insn because that would clobber the CC.
1344 So we must do the increment of the value reloaded from,
1345 increment it, store it back, then decrement again. */
1346 if (out != 0 && sets_cc0_p (PATTERN (this_insn)))
1347 {
1348 out = 0;
1349 reload_out[i] = 0;
1350 reload_inc[i] = find_inc_amount (PATTERN (this_insn), in);
1351 /* If we did not find a nonzero amount-to-increment-by,
1352 that contradicts the belief that IN is being incremented
1353 in an address in this insn. */
1354 if (reload_inc[i] == 0)
1355 abort ();
1356 }
1357#endif
1358
1359 /* If we will replace IN and OUT with the reload-reg,
1360 record where they are located so that substitution need
1361 not do a tree walk. */
1362
1363 if (replace_reloads)
1364 {
1365 if (inloc != 0)
1366 {
1367 register struct replacement *r = &replacements[n_replacements++];
1368 r->what = i;
1369 r->subreg_loc = in_subreg_loc;
1370 r->where = inloc;
1371 r->mode = inmode;
1372 }
1373 if (outloc != 0 && outloc != inloc)
1374 {
1375 register struct replacement *r = &replacements[n_replacements++];
1376 r->what = i;
1377 r->where = outloc;
1378 r->subreg_loc = out_subreg_loc;
1379 r->mode = outmode;
1380 }
1381 }
1382
1383 /* If this reload is just being introduced and it has both
1384 an incoming quantity and an outgoing quantity that are
1385 supposed to be made to match, see if either one of the two
1386 can serve as the place to reload into.
1387
1388 If one of them is acceptable, set reload_reg_rtx[i]
1389 to that one. */
1390
1391 if (in != 0 && out != 0 && in != out && reload_reg_rtx[i] == 0)
1392 {
1393 reload_reg_rtx[i] = find_dummy_reload (in, out, inloc, outloc,
36b50568 1394 inmode, outmode,
189086f9 1395 reload_reg_class[i], i,
31c21e0c 1396 earlyclobber_operand_p (out));
eab89b90
RK
1397
1398 /* If the outgoing register already contains the same value
1399 as the incoming one, we can dispense with loading it.
1400 The easiest way to tell the caller that is to give a phony
1401 value for the incoming operand (same as outgoing one). */
1402 if (reload_reg_rtx[i] == out
1403 && (GET_CODE (in) == REG || CONSTANT_P (in))
1404 && 0 != find_equiv_reg (in, this_insn, 0, REGNO (out),
1405 static_reload_reg_p, i, inmode))
1406 reload_in[i] = out;
1407 }
1408
1409 /* If this is an input reload and the operand contains a register that
1410 dies in this insn and is used nowhere else, see if it is the right class
1411 to be used for this reload. Use it if so. (This occurs most commonly
1412 in the case of paradoxical SUBREGs and in-out reloads). We cannot do
1413 this if it is also an output reload that mentions the register unless
1414 the output is a SUBREG that clobbers an entire register.
1415
1416 Note that the operand might be one of the spill regs, if it is a
1417 pseudo reg and we are in a block where spilling has not taken place.
1418 But if there is no spilling in this block, that is OK.
1419 An explicitly used hard reg cannot be a spill reg. */
1420
1421 if (reload_reg_rtx[i] == 0 && in != 0)
1422 {
1423 rtx note;
1424 int regno;
1425
1426 for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1427 if (REG_NOTE_KIND (note) == REG_DEAD
1428 && GET_CODE (XEXP (note, 0)) == REG
1429 && (regno = REGNO (XEXP (note, 0))) < FIRST_PSEUDO_REGISTER
1430 && reg_mentioned_p (XEXP (note, 0), in)
1431 && ! refers_to_regno_for_reload_p (regno,
1432 (regno
1433 + HARD_REGNO_NREGS (regno,
1434 inmode)),
1435 PATTERN (this_insn), inloc)
05b4ec4f
RS
1436 /* If this is also an output reload, IN cannot be used as
1437 the reload register if it is set in this insn unless IN
1438 is also OUT. */
1439 && (out == 0 || in == out
1440 || ! hard_reg_set_here_p (regno,
1441 (regno
1442 + HARD_REGNO_NREGS (regno,
1443 inmode)),
1444 PATTERN (this_insn)))
1445 /* ??? Why is this code so different from the previous?
1446 Is there any simple coherent way to describe the two together?
1447 What's going on here. */
eab89b90
RK
1448 && (in != out
1449 || (GET_CODE (in) == SUBREG
1450 && (((GET_MODE_SIZE (GET_MODE (in)) + (UNITS_PER_WORD - 1))
1451 / UNITS_PER_WORD)
1452 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1453 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
1454 /* Make sure the operand fits in the reg that dies. */
1455 && GET_MODE_SIZE (inmode) <= GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
1456 && HARD_REGNO_MODE_OK (regno, inmode)
1457 && GET_MODE_SIZE (outmode) <= GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
1458 && HARD_REGNO_MODE_OK (regno, outmode)
1459 && TEST_HARD_REG_BIT (reg_class_contents[(int) class], regno)
1460 && !fixed_regs[regno])
1461 {
38a448ca 1462 reload_reg_rtx[i] = gen_rtx_REG (inmode, regno);
eab89b90
RK
1463 break;
1464 }
1465 }
1466
1467 if (out)
1468 output_reloadnum = i;
1469
1470 return i;
1471}
1472
1473/* Record an additional place we must replace a value
1474 for which we have already recorded a reload.
1475 RELOADNUM is the value returned by push_reload
1476 when the reload was recorded.
1477 This is used in insn patterns that use match_dup. */
1478
1479static void
1480push_replacement (loc, reloadnum, mode)
1481 rtx *loc;
1482 int reloadnum;
1483 enum machine_mode mode;
1484{
1485 if (replace_reloads)
1486 {
1487 register struct replacement *r = &replacements[n_replacements++];
1488 r->what = reloadnum;
1489 r->where = loc;
1490 r->subreg_loc = 0;
1491 r->mode = mode;
1492 }
1493}
1494\f
a8c9daeb
RK
1495/* Transfer all replacements that used to be in reload FROM to be in
1496 reload TO. */
1497
1498void
1499transfer_replacements (to, from)
1500 int to, from;
1501{
1502 int i;
1503
1504 for (i = 0; i < n_replacements; i++)
1505 if (replacements[i].what == from)
1506 replacements[i].what = to;
1507}
1508\f
029b38ff
R
1509/* Remove all replacements in reload FROM. */
1510void
1511remove_replacements (from)
1512 int from;
1513{
1514 int i, j;
1515
1516 for (i = 0, j = 0; i < n_replacements; i++)
1517 {
1518 if (replacements[i].what == from)
1519 continue;
1520 replacements[j++] = replacements[i];
1521 }
1522}
1523\f
eab89b90
RK
1524/* If there is only one output reload, and it is not for an earlyclobber
1525 operand, try to combine it with a (logically unrelated) input reload
1526 to reduce the number of reload registers needed.
1527
1528 This is safe if the input reload does not appear in
1529 the value being output-reloaded, because this implies
1530 it is not needed any more once the original insn completes.
1531
1532 If that doesn't work, see we can use any of the registers that
1533 die in this insn as a reload register. We can if it is of the right
1534 class and does not appear in the value being output-reloaded. */
1535
1536static void
1537combine_reloads ()
1538{
1539 int i;
1540 int output_reload = -1;
8922eb5b 1541 int secondary_out = -1;
eab89b90
RK
1542 rtx note;
1543
1544 /* Find the output reload; return unless there is exactly one
1545 and that one is mandatory. */
1546
1547 for (i = 0; i < n_reloads; i++)
1548 if (reload_out[i] != 0)
1549 {
1550 if (output_reload >= 0)
1551 return;
1552 output_reload = i;
1553 }
1554
1555 if (output_reload < 0 || reload_optional[output_reload])
1556 return;
1557
1558 /* An input-output reload isn't combinable. */
1559
1560 if (reload_in[output_reload] != 0)
1561 return;
1562
6dc42e49 1563 /* If this reload is for an earlyclobber operand, we can't do anything. */
4644aad4
RK
1564 if (earlyclobber_operand_p (reload_out[output_reload]))
1565 return;
eab89b90
RK
1566
1567 /* Check each input reload; can we combine it? */
1568
1569 for (i = 0; i < n_reloads; i++)
1570 if (reload_in[i] && ! reload_optional[i] && ! reload_nocombine[i]
1571 /* Life span of this reload must not extend past main insn. */
a8c9daeb 1572 && reload_when_needed[i] != RELOAD_FOR_OUTPUT_ADDRESS
47c8cf91 1573 && reload_when_needed[i] != RELOAD_FOR_OUTADDR_ADDRESS
a8c9daeb
RK
1574 && reload_when_needed[i] != RELOAD_OTHER
1575 && (CLASS_MAX_NREGS (reload_reg_class[i], reload_inmode[i])
1576 == CLASS_MAX_NREGS (reload_reg_class[output_reload],
1577 reload_outmode[output_reload]))
eab89b90
RK
1578 && reload_inc[i] == 0
1579 && reload_reg_rtx[i] == 0
a8c9daeb 1580#ifdef SECONDARY_MEMORY_NEEDED
9ec7078b
RK
1581 /* Don't combine two reloads with different secondary
1582 memory locations. */
77545d45
RK
1583 && (secondary_memlocs_elim[(int) reload_outmode[output_reload]][reload_opnum[i]] == 0
1584 || secondary_memlocs_elim[(int) reload_outmode[output_reload]][reload_opnum[output_reload]] == 0
1585 || rtx_equal_p (secondary_memlocs_elim[(int) reload_outmode[output_reload]][reload_opnum[i]],
1586 secondary_memlocs_elim[(int) reload_outmode[output_reload]][reload_opnum[output_reload]]))
a8c9daeb 1587#endif
e9a25f70
JL
1588 && (SMALL_REGISTER_CLASSES
1589 ? (reload_reg_class[i] == reload_reg_class[output_reload])
1590 : (reg_class_subset_p (reload_reg_class[i],
1591 reload_reg_class[output_reload])
1592 || reg_class_subset_p (reload_reg_class[output_reload],
1593 reload_reg_class[i])))
eab89b90
RK
1594 && (MATCHES (reload_in[i], reload_out[output_reload])
1595 /* Args reversed because the first arg seems to be
1596 the one that we imagine being modified
1597 while the second is the one that might be affected. */
bfa30b22
RK
1598 || (! reg_overlap_mentioned_for_reload_p (reload_out[output_reload],
1599 reload_in[i])
eab89b90
RK
1600 /* However, if the input is a register that appears inside
1601 the output, then we also can't share.
1602 Imagine (set (mem (reg 69)) (plus (reg 69) ...)).
1603 If the same reload reg is used for both reg 69 and the
1604 result to be stored in memory, then that result
1605 will clobber the address of the memory ref. */
1606 && ! (GET_CODE (reload_in[i]) == REG
bfa30b22 1607 && reg_overlap_mentioned_for_reload_p (reload_in[i],
a8c9daeb
RK
1608 reload_out[output_reload]))))
1609 && (reg_class_size[(int) reload_reg_class[i]]
e9a25f70 1610 || SMALL_REGISTER_CLASSES)
a8c9daeb
RK
1611 /* We will allow making things slightly worse by combining an
1612 input and an output, but no worse than that. */
1613 && (reload_when_needed[i] == RELOAD_FOR_INPUT
1614 || reload_when_needed[i] == RELOAD_FOR_OUTPUT))
eab89b90
RK
1615 {
1616 int j;
1617
1618 /* We have found a reload to combine with! */
1619 reload_out[i] = reload_out[output_reload];
1620 reload_outmode[i] = reload_outmode[output_reload];
1621 /* Mark the old output reload as inoperative. */
1622 reload_out[output_reload] = 0;
1623 /* The combined reload is needed for the entire insn. */
eab89b90 1624 reload_when_needed[i] = RELOAD_OTHER;
0f41302f 1625 /* If the output reload had a secondary reload, copy it. */
9ec7078b
RK
1626 if (reload_secondary_out_reload[output_reload] != -1)
1627 {
1628 reload_secondary_out_reload[i]
1629 = reload_secondary_out_reload[output_reload];
1630 reload_secondary_out_icode[i]
1631 = reload_secondary_out_icode[output_reload];
1632 }
1633
a8c9daeb
RK
1634#ifdef SECONDARY_MEMORY_NEEDED
1635 /* Copy any secondary MEM. */
77545d45
RK
1636 if (secondary_memlocs_elim[(int) reload_outmode[output_reload]][reload_opnum[output_reload]] != 0)
1637 secondary_memlocs_elim[(int) reload_outmode[output_reload]][reload_opnum[i]]
1638 = secondary_memlocs_elim[(int) reload_outmode[output_reload]][reload_opnum[output_reload]];
a8c9daeb 1639#endif
0f41302f 1640 /* If required, minimize the register class. */
eab89b90
RK
1641 if (reg_class_subset_p (reload_reg_class[output_reload],
1642 reload_reg_class[i]))
1643 reload_reg_class[i] = reload_reg_class[output_reload];
1644
1645 /* Transfer all replacements from the old reload to the combined. */
1646 for (j = 0; j < n_replacements; j++)
1647 if (replacements[j].what == output_reload)
1648 replacements[j].what = i;
1649
1650 return;
1651 }
1652
1653 /* If this insn has only one operand that is modified or written (assumed
1654 to be the first), it must be the one corresponding to this reload. It
1655 is safe to use anything that dies in this insn for that output provided
1656 that it does not occur in the output (we already know it isn't an
1657 earlyclobber. If this is an asm insn, give up. */
1658
1659 if (INSN_CODE (this_insn) == -1)
1660 return;
1661
1662 for (i = 1; i < insn_n_operands[INSN_CODE (this_insn)]; i++)
1663 if (insn_operand_constraint[INSN_CODE (this_insn)][i][0] == '='
1664 || insn_operand_constraint[INSN_CODE (this_insn)][i][0] == '+')
1665 return;
1666
1667 /* See if some hard register that dies in this insn and is not used in
1668 the output is the right class. Only works if the register we pick
1669 up can fully hold our output reload. */
1670 for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1671 if (REG_NOTE_KIND (note) == REG_DEAD
1672 && GET_CODE (XEXP (note, 0)) == REG
bfa30b22
RK
1673 && ! reg_overlap_mentioned_for_reload_p (XEXP (note, 0),
1674 reload_out[output_reload])
eab89b90
RK
1675 && REGNO (XEXP (note, 0)) < FIRST_PSEUDO_REGISTER
1676 && HARD_REGNO_MODE_OK (REGNO (XEXP (note, 0)), reload_outmode[output_reload])
1677 && TEST_HARD_REG_BIT (reg_class_contents[(int) reload_reg_class[output_reload]],
1678 REGNO (XEXP (note, 0)))
1679 && (HARD_REGNO_NREGS (REGNO (XEXP (note, 0)), reload_outmode[output_reload])
1680 <= HARD_REGNO_NREGS (REGNO (XEXP (note, 0)), GET_MODE (XEXP (note, 0))))
8922eb5b
RK
1681 /* Ensure that a secondary or tertiary reload for this output
1682 won't want this register. */
1683 && ((secondary_out = reload_secondary_out_reload[output_reload]) == -1
1684 || (! (TEST_HARD_REG_BIT
1685 (reg_class_contents[(int) reload_reg_class[secondary_out]],
1686 REGNO (XEXP (note, 0))))
1687 && ((secondary_out = reload_secondary_out_reload[secondary_out]) == -1
1688 || ! (TEST_HARD_REG_BIT
1689 (reg_class_contents[(int) reload_reg_class[secondary_out]],
1690 REGNO (XEXP (note, 0)))))))
eab89b90
RK
1691 && ! fixed_regs[REGNO (XEXP (note, 0))])
1692 {
38a448ca
RH
1693 reload_reg_rtx[output_reload]
1694 = gen_rtx_REG (reload_outmode[output_reload],
1695 REGNO (XEXP (note, 0)));
eab89b90
RK
1696 return;
1697 }
1698}
1699\f
1700/* Try to find a reload register for an in-out reload (expressions IN and OUT).
1701 See if one of IN and OUT is a register that may be used;
1702 this is desirable since a spill-register won't be needed.
1703 If so, return the register rtx that proves acceptable.
1704
1705 INLOC and OUTLOC are locations where IN and OUT appear in the insn.
1706 CLASS is the register class required for the reload.
1707
1708 If FOR_REAL is >= 0, it is the number of the reload,
1709 and in some cases when it can be discovered that OUT doesn't need
1710 to be computed, clear out reload_out[FOR_REAL].
1711
1712 If FOR_REAL is -1, this should not be done, because this call
189086f9
RK
1713 is just to see if a register can be found, not to find and install it.
1714
1715 EARLYCLOBBER is non-zero if OUT is an earlyclobber operand. This
1716 puts an additional constraint on being able to use IN for OUT since
1717 IN must not appear elsewhere in the insn (it is assumed that IN itself
1718 is safe from the earlyclobber). */
eab89b90
RK
1719
1720static rtx
36b50568 1721find_dummy_reload (real_in, real_out, inloc, outloc,
189086f9 1722 inmode, outmode, class, for_real, earlyclobber)
eab89b90
RK
1723 rtx real_in, real_out;
1724 rtx *inloc, *outloc;
36b50568 1725 enum machine_mode inmode, outmode;
eab89b90
RK
1726 enum reg_class class;
1727 int for_real;
189086f9 1728 int earlyclobber;
eab89b90
RK
1729{
1730 rtx in = real_in;
1731 rtx out = real_out;
1732 int in_offset = 0;
1733 int out_offset = 0;
1734 rtx value = 0;
1735
1736 /* If operands exceed a word, we can't use either of them
1737 unless they have the same size. */
36b50568
RS
1738 if (GET_MODE_SIZE (outmode) != GET_MODE_SIZE (inmode)
1739 && (GET_MODE_SIZE (outmode) > UNITS_PER_WORD
1740 || GET_MODE_SIZE (inmode) > UNITS_PER_WORD))
eab89b90
RK
1741 return 0;
1742
1743 /* Find the inside of any subregs. */
1744 while (GET_CODE (out) == SUBREG)
1745 {
1746 out_offset = SUBREG_WORD (out);
1747 out = SUBREG_REG (out);
1748 }
1749 while (GET_CODE (in) == SUBREG)
1750 {
1751 in_offset = SUBREG_WORD (in);
1752 in = SUBREG_REG (in);
1753 }
1754
1755 /* Narrow down the reg class, the same way push_reload will;
1756 otherwise we might find a dummy now, but push_reload won't. */
1757 class = PREFERRED_RELOAD_CLASS (in, class);
1758
1759 /* See if OUT will do. */
1760 if (GET_CODE (out) == REG
1761 && REGNO (out) < FIRST_PSEUDO_REGISTER)
1762 {
1763 register int regno = REGNO (out) + out_offset;
36b50568 1764 int nwords = HARD_REGNO_NREGS (regno, outmode);
d3b9996a 1765 rtx saved_rtx;
eab89b90
RK
1766
1767 /* When we consider whether the insn uses OUT,
1768 ignore references within IN. They don't prevent us
1769 from copying IN into OUT, because those refs would
1770 move into the insn that reloads IN.
1771
1772 However, we only ignore IN in its role as this reload.
1773 If the insn uses IN elsewhere and it contains OUT,
1774 that counts. We can't be sure it's the "same" operand
1775 so it might not go through this reload. */
d3b9996a 1776 saved_rtx = *inloc;
eab89b90
RK
1777 *inloc = const0_rtx;
1778
1779 if (regno < FIRST_PSEUDO_REGISTER
1780 /* A fixed reg that can overlap other regs better not be used
1781 for reloading in any way. */
1782#ifdef OVERLAPPING_REGNO_P
1783 && ! (fixed_regs[regno] && OVERLAPPING_REGNO_P (regno))
1784#endif
1785 && ! refers_to_regno_for_reload_p (regno, regno + nwords,
1786 PATTERN (this_insn), outloc))
1787 {
1788 int i;
1789 for (i = 0; i < nwords; i++)
1790 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1791 regno + i))
1792 break;
1793
1794 if (i == nwords)
1795 {
1796 if (GET_CODE (real_out) == REG)
1797 value = real_out;
1798 else
38a448ca 1799 value = gen_rtx_REG (outmode, regno);
eab89b90
RK
1800 }
1801 }
1802
d3b9996a 1803 *inloc = saved_rtx;
eab89b90
RK
1804 }
1805
1806 /* Consider using IN if OUT was not acceptable
1807 or if OUT dies in this insn (like the quotient in a divmod insn).
1808 We can't use IN unless it is dies in this insn,
1809 which means we must know accurately which hard regs are live.
189086f9
RK
1810 Also, the result can't go in IN if IN is used within OUT,
1811 or if OUT is an earlyclobber and IN appears elsewhere in the insn. */
eab89b90
RK
1812 if (hard_regs_live_known
1813 && GET_CODE (in) == REG
1814 && REGNO (in) < FIRST_PSEUDO_REGISTER
1815 && (value == 0
1816 || find_reg_note (this_insn, REG_UNUSED, real_out))
1817 && find_reg_note (this_insn, REG_DEAD, real_in)
1818 && !fixed_regs[REGNO (in)]
36b50568
RS
1819 && HARD_REGNO_MODE_OK (REGNO (in),
1820 /* The only case where out and real_out might
1821 have different modes is where real_out
1822 is a subreg, and in that case, out
1823 has a real mode. */
1824 (GET_MODE (out) != VOIDmode
1825 ? GET_MODE (out) : outmode)))
eab89b90
RK
1826 {
1827 register int regno = REGNO (in) + in_offset;
36b50568 1828 int nwords = HARD_REGNO_NREGS (regno, inmode);
eab89b90 1829
fb3821f7 1830 if (! refers_to_regno_for_reload_p (regno, regno + nwords, out, NULL_PTR)
eab89b90 1831 && ! hard_reg_set_here_p (regno, regno + nwords,
189086f9
RK
1832 PATTERN (this_insn))
1833 && (! earlyclobber
1834 || ! refers_to_regno_for_reload_p (regno, regno + nwords,
1835 PATTERN (this_insn), inloc)))
eab89b90
RK
1836 {
1837 int i;
1838 for (i = 0; i < nwords; i++)
1839 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1840 regno + i))
1841 break;
1842
1843 if (i == nwords)
1844 {
1845 /* If we were going to use OUT as the reload reg
1846 and changed our mind, it means OUT is a dummy that
1847 dies here. So don't bother copying value to it. */
1848 if (for_real >= 0 && value == real_out)
1849 reload_out[for_real] = 0;
1850 if (GET_CODE (real_in) == REG)
1851 value = real_in;
1852 else
38a448ca 1853 value = gen_rtx_REG (inmode, regno);
eab89b90
RK
1854 }
1855 }
1856 }
1857
1858 return value;
1859}
1860\f
1861/* This page contains subroutines used mainly for determining
1862 whether the IN or an OUT of a reload can serve as the
1863 reload register. */
1864
4644aad4
RK
1865/* Return 1 if X is an operand of an insn that is being earlyclobbered. */
1866
1867static int
1868earlyclobber_operand_p (x)
1869 rtx x;
1870{
1871 int i;
1872
1873 for (i = 0; i < n_earlyclobbers; i++)
1874 if (reload_earlyclobbers[i] == x)
1875 return 1;
1876
1877 return 0;
1878}
1879
eab89b90
RK
1880/* Return 1 if expression X alters a hard reg in the range
1881 from BEG_REGNO (inclusive) to END_REGNO (exclusive),
1882 either explicitly or in the guise of a pseudo-reg allocated to REGNO.
1883 X should be the body of an instruction. */
1884
1885static int
1886hard_reg_set_here_p (beg_regno, end_regno, x)
1887 register int beg_regno, end_regno;
1888 rtx x;
1889{
1890 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
1891 {
1892 register rtx op0 = SET_DEST (x);
1893 while (GET_CODE (op0) == SUBREG)
1894 op0 = SUBREG_REG (op0);
1895 if (GET_CODE (op0) == REG)
1896 {
1897 register int r = REGNO (op0);
1898 /* See if this reg overlaps range under consideration. */
1899 if (r < end_regno
1900 && r + HARD_REGNO_NREGS (r, GET_MODE (op0)) > beg_regno)
1901 return 1;
1902 }
1903 }
1904 else if (GET_CODE (x) == PARALLEL)
1905 {
1906 register int i = XVECLEN (x, 0) - 1;
1907 for (; i >= 0; i--)
1908 if (hard_reg_set_here_p (beg_regno, end_regno, XVECEXP (x, 0, i)))
1909 return 1;
1910 }
1911
1912 return 0;
1913}
1914
1915/* Return 1 if ADDR is a valid memory address for mode MODE,
1916 and check that each pseudo reg has the proper kind of
1917 hard reg. */
1918
1919int
1920strict_memory_address_p (mode, addr)
1921 enum machine_mode mode;
1922 register rtx addr;
1923{
1924 GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
1925 return 0;
1926
1927 win:
1928 return 1;
1929}
eab89b90
RK
1930\f
1931/* Like rtx_equal_p except that it allows a REG and a SUBREG to match
1932 if they are the same hard reg, and has special hacks for
1933 autoincrement and autodecrement.
1934 This is specifically intended for find_reloads to use
1935 in determining whether two operands match.
1936 X is the operand whose number is the lower of the two.
1937
1938 The value is 2 if Y contains a pre-increment that matches
1939 a non-incrementing address in X. */
1940
1941/* ??? To be completely correct, we should arrange to pass
1942 for X the output operand and for Y the input operand.
1943 For now, we assume that the output operand has the lower number
1944 because that is natural in (SET output (... input ...)). */
1945
1946int
1947operands_match_p (x, y)
1948 register rtx x, y;
1949{
1950 register int i;
1951 register RTX_CODE code = GET_CODE (x);
1952 register char *fmt;
1953 int success_2;
1954
1955 if (x == y)
1956 return 1;
1957 if ((code == REG || (code == SUBREG && GET_CODE (SUBREG_REG (x)) == REG))
1958 && (GET_CODE (y) == REG || (GET_CODE (y) == SUBREG
1959 && GET_CODE (SUBREG_REG (y)) == REG)))
1960 {
1961 register int j;
1962
1963 if (code == SUBREG)
1964 {
1965 i = REGNO (SUBREG_REG (x));
1966 if (i >= FIRST_PSEUDO_REGISTER)
1967 goto slow;
1968 i += SUBREG_WORD (x);
1969 }
1970 else
1971 i = REGNO (x);
1972
1973 if (GET_CODE (y) == SUBREG)
1974 {
1975 j = REGNO (SUBREG_REG (y));
1976 if (j >= FIRST_PSEUDO_REGISTER)
1977 goto slow;
1978 j += SUBREG_WORD (y);
1979 }
1980 else
1981 j = REGNO (y);
1982
dca52d80
JW
1983 /* On a WORDS_BIG_ENDIAN machine, point to the last register of a
1984 multiple hard register group, so that for example (reg:DI 0) and
1985 (reg:SI 1) will be considered the same register. */
1986 if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD
1987 && i < FIRST_PSEUDO_REGISTER)
1988 i += (GET_MODE_SIZE (GET_MODE (x)) / UNITS_PER_WORD) - 1;
1989 if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (y)) > UNITS_PER_WORD
1990 && j < FIRST_PSEUDO_REGISTER)
1991 j += (GET_MODE_SIZE (GET_MODE (y)) / UNITS_PER_WORD) - 1;
1992
eab89b90
RK
1993 return i == j;
1994 }
1995 /* If two operands must match, because they are really a single
1996 operand of an assembler insn, then two postincrements are invalid
1997 because the assembler insn would increment only once.
1998 On the other hand, an postincrement matches ordinary indexing
1999 if the postincrement is the output operand. */
2000 if (code == POST_DEC || code == POST_INC)
2001 return operands_match_p (XEXP (x, 0), y);
2002 /* Two preincrements are invalid
2003 because the assembler insn would increment only once.
2004 On the other hand, an preincrement matches ordinary indexing
2005 if the preincrement is the input operand.
2006 In this case, return 2, since some callers need to do special
2007 things when this happens. */
2008 if (GET_CODE (y) == PRE_DEC || GET_CODE (y) == PRE_INC)
2009 return operands_match_p (x, XEXP (y, 0)) ? 2 : 0;
2010
2011 slow:
2012
2013 /* Now we have disposed of all the cases
2014 in which different rtx codes can match. */
2015 if (code != GET_CODE (y))
2016 return 0;
2017 if (code == LABEL_REF)
2018 return XEXP (x, 0) == XEXP (y, 0);
2019 if (code == SYMBOL_REF)
2020 return XSTR (x, 0) == XSTR (y, 0);
2021
2022 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
2023
2024 if (GET_MODE (x) != GET_MODE (y))
2025 return 0;
2026
2027 /* Compare the elements. If any pair of corresponding elements
2028 fail to match, return 0 for the whole things. */
2029
2030 success_2 = 0;
2031 fmt = GET_RTX_FORMAT (code);
2032 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2033 {
91bb873f 2034 int val, j;
eab89b90
RK
2035 switch (fmt[i])
2036 {
fb3821f7
CH
2037 case 'w':
2038 if (XWINT (x, i) != XWINT (y, i))
2039 return 0;
2040 break;
2041
eab89b90
RK
2042 case 'i':
2043 if (XINT (x, i) != XINT (y, i))
2044 return 0;
2045 break;
2046
2047 case 'e':
2048 val = operands_match_p (XEXP (x, i), XEXP (y, i));
2049 if (val == 0)
2050 return 0;
2051 /* If any subexpression returns 2,
2052 we should return 2 if we are successful. */
2053 if (val == 2)
2054 success_2 = 1;
2055 break;
2056
2057 case '0':
2058 break;
2059
91bb873f
RH
2060 case 'E':
2061 if (XVECLEN (x, i) != XVECLEN (y, i))
2062 return 0;
2063 for (j = XVECLEN (x, i) - 1; j >= 0; --j)
2064 {
2065 val = operands_match_p (XVECEXP (x, i, j), XVECEXP (y, i, j));
2066 if (val == 0)
2067 return 0;
2068 if (val == 2)
2069 success_2 = 1;
2070 }
2071 break;
2072
eab89b90
RK
2073 /* It is believed that rtx's at this level will never
2074 contain anything but integers and other rtx's,
2075 except for within LABEL_REFs and SYMBOL_REFs. */
2076 default:
2077 abort ();
2078 }
2079 }
2080 return 1 + success_2;
2081}
2082\f
2083/* Return the number of times character C occurs in string S. */
2084
e4600702 2085int
eab89b90 2086n_occurrences (c, s)
d149d5f5 2087 int c;
eab89b90
RK
2088 char *s;
2089{
2090 int n = 0;
2091 while (*s)
2092 n += (*s++ == c);
2093 return n;
2094}
2095\f
eab89b90
RK
2096/* Describe the range of registers or memory referenced by X.
2097 If X is a register, set REG_FLAG and put the first register
2098 number into START and the last plus one into END.
2099 If X is a memory reference, put a base address into BASE
2100 and a range of integer offsets into START and END.
2101 If X is pushing on the stack, we can assume it causes no trouble,
2102 so we set the SAFE field. */
2103
2104static struct decomposition
2105decompose (x)
2106 rtx x;
2107{
2108 struct decomposition val;
2109 int all_const = 0;
2110
2111 val.reg_flag = 0;
2112 val.safe = 0;
43984e29 2113 val.base = 0;
eab89b90
RK
2114 if (GET_CODE (x) == MEM)
2115 {
2116 rtx base, offset = 0;
2117 rtx addr = XEXP (x, 0);
2118
2119 if (GET_CODE (addr) == PRE_DEC || GET_CODE (addr) == PRE_INC
2120 || GET_CODE (addr) == POST_DEC || GET_CODE (addr) == POST_INC)
2121 {
2122 val.base = XEXP (addr, 0);
2123 val.start = - GET_MODE_SIZE (GET_MODE (x));
2124 val.end = GET_MODE_SIZE (GET_MODE (x));
2125 val.safe = REGNO (val.base) == STACK_POINTER_REGNUM;
2126 return val;
2127 }
2128
2129 if (GET_CODE (addr) == CONST)
2130 {
2131 addr = XEXP (addr, 0);
2132 all_const = 1;
2133 }
2134 if (GET_CODE (addr) == PLUS)
2135 {
2136 if (CONSTANT_P (XEXP (addr, 0)))
2137 {
2138 base = XEXP (addr, 1);
2139 offset = XEXP (addr, 0);
2140 }
2141 else if (CONSTANT_P (XEXP (addr, 1)))
2142 {
2143 base = XEXP (addr, 0);
2144 offset = XEXP (addr, 1);
2145 }
2146 }
2147
2148 if (offset == 0)
2149 {
2150 base = addr;
2151 offset = const0_rtx;
2152 }
2153 if (GET_CODE (offset) == CONST)
2154 offset = XEXP (offset, 0);
2155 if (GET_CODE (offset) == PLUS)
2156 {
2157 if (GET_CODE (XEXP (offset, 0)) == CONST_INT)
2158 {
38a448ca 2159 base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 1));
eab89b90
RK
2160 offset = XEXP (offset, 0);
2161 }
2162 else if (GET_CODE (XEXP (offset, 1)) == CONST_INT)
2163 {
38a448ca 2164 base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 0));
eab89b90
RK
2165 offset = XEXP (offset, 1);
2166 }
2167 else
2168 {
38a448ca 2169 base = gen_rtx_PLUS (GET_MODE (base), base, offset);
eab89b90
RK
2170 offset = const0_rtx;
2171 }
2172 }
2173 else if (GET_CODE (offset) != CONST_INT)
2174 {
38a448ca 2175 base = gen_rtx_PLUS (GET_MODE (base), base, offset);
eab89b90
RK
2176 offset = const0_rtx;
2177 }
2178
2179 if (all_const && GET_CODE (base) == PLUS)
38a448ca 2180 base = gen_rtx_CONST (GET_MODE (base), base);
eab89b90
RK
2181
2182 if (GET_CODE (offset) != CONST_INT)
2183 abort ();
2184
2185 val.start = INTVAL (offset);
2186 val.end = val.start + GET_MODE_SIZE (GET_MODE (x));
2187 val.base = base;
2188 return val;
2189 }
2190 else if (GET_CODE (x) == REG)
2191 {
2192 val.reg_flag = 1;
2193 val.start = true_regnum (x);
2194 if (val.start < 0)
2195 {
2196 /* A pseudo with no hard reg. */
2197 val.start = REGNO (x);
2198 val.end = val.start + 1;
2199 }
2200 else
2201 /* A hard reg. */
2202 val.end = val.start + HARD_REGNO_NREGS (val.start, GET_MODE (x));
2203 }
2204 else if (GET_CODE (x) == SUBREG)
2205 {
2206 if (GET_CODE (SUBREG_REG (x)) != REG)
2207 /* This could be more precise, but it's good enough. */
2208 return decompose (SUBREG_REG (x));
2209 val.reg_flag = 1;
2210 val.start = true_regnum (x);
2211 if (val.start < 0)
2212 return decompose (SUBREG_REG (x));
2213 else
2214 /* A hard reg. */
2215 val.end = val.start + HARD_REGNO_NREGS (val.start, GET_MODE (x));
2216 }
2217 else if (CONSTANT_P (x)
2218 /* This hasn't been assigned yet, so it can't conflict yet. */
2219 || GET_CODE (x) == SCRATCH)
2220 val.safe = 1;
2221 else
2222 abort ();
2223 return val;
2224}
2225
2226/* Return 1 if altering Y will not modify the value of X.
2227 Y is also described by YDATA, which should be decompose (Y). */
2228
2229static int
2230immune_p (x, y, ydata)
2231 rtx x, y;
2232 struct decomposition ydata;
2233{
2234 struct decomposition xdata;
2235
2236 if (ydata.reg_flag)
fb3821f7 2237 return !refers_to_regno_for_reload_p (ydata.start, ydata.end, x, NULL_PTR);
eab89b90
RK
2238 if (ydata.safe)
2239 return 1;
2240
2241 if (GET_CODE (y) != MEM)
2242 abort ();
2243 /* If Y is memory and X is not, Y can't affect X. */
2244 if (GET_CODE (x) != MEM)
2245 return 1;
2246
2247 xdata = decompose (x);
2248
2249 if (! rtx_equal_p (xdata.base, ydata.base))
2250 {
2251 /* If bases are distinct symbolic constants, there is no overlap. */
2252 if (CONSTANT_P (xdata.base) && CONSTANT_P (ydata.base))
2253 return 1;
2254 /* Constants and stack slots never overlap. */
2255 if (CONSTANT_P (xdata.base)
2256 && (ydata.base == frame_pointer_rtx
a36d4c62 2257 || ydata.base == hard_frame_pointer_rtx
eab89b90
RK
2258 || ydata.base == stack_pointer_rtx))
2259 return 1;
2260 if (CONSTANT_P (ydata.base)
2261 && (xdata.base == frame_pointer_rtx
a36d4c62 2262 || xdata.base == hard_frame_pointer_rtx
eab89b90
RK
2263 || xdata.base == stack_pointer_rtx))
2264 return 1;
2265 /* If either base is variable, we don't know anything. */
2266 return 0;
2267 }
2268
2269
2270 return (xdata.start >= ydata.end || ydata.start >= xdata.end);
2271}
44ace968 2272
f72aed24 2273/* Similar, but calls decompose. */
44ace968
JW
2274
2275int
2276safe_from_earlyclobber (op, clobber)
2277 rtx op, clobber;
2278{
2279 struct decomposition early_data;
2280
2281 early_data = decompose (clobber);
2282 return immune_p (op, clobber, early_data);
2283}
eab89b90
RK
2284\f
2285/* Main entry point of this file: search the body of INSN
2286 for values that need reloading and record them with push_reload.
2287 REPLACE nonzero means record also where the values occur
2288 so that subst_reloads can be used.
2289
2290 IND_LEVELS says how many levels of indirection are supported by this
2291 machine; a value of zero means that a memory reference is not a valid
2292 memory address.
2293
2294 LIVE_KNOWN says we have valid information about which hard
2295 regs are live at each point in the program; this is true when
2296 we are called from global_alloc but false when stupid register
2297 allocation has been done.
2298
2299 RELOAD_REG_P if nonzero is a vector indexed by hard reg number
2300 which is nonnegative if the reg has been commandeered for reloading into.
2301 It is copied into STATIC_RELOAD_REG_P and referenced from there
2302 by various subroutines. */
2303
2304void
2305find_reloads (insn, replace, ind_levels, live_known, reload_reg_p)
2306 rtx insn;
2307 int replace, ind_levels;
2308 int live_known;
2309 short *reload_reg_p;
2310{
eab89b90
RK
2311#ifdef REGISTER_CONSTRAINTS
2312
eab89b90 2313 register int insn_code_number;
a8c9daeb 2314 register int i, j;
eab89b90
RK
2315 int noperands;
2316 /* These are the constraints for the insn. We don't change them. */
2317 char *constraints1[MAX_RECOG_OPERANDS];
2318 /* These start out as the constraints for the insn
2319 and they are chewed up as we consider alternatives. */
2320 char *constraints[MAX_RECOG_OPERANDS];
2321 /* These are the preferred classes for an operand, or NO_REGS if it isn't
2322 a register. */
2323 enum reg_class preferred_class[MAX_RECOG_OPERANDS];
2324 char pref_or_nothing[MAX_RECOG_OPERANDS];
2325 /* Nonzero for a MEM operand whose entire address needs a reload. */
2326 int address_reloaded[MAX_RECOG_OPERANDS];
a8c9daeb
RK
2327 /* Value of enum reload_type to use for operand. */
2328 enum reload_type operand_type[MAX_RECOG_OPERANDS];
2329 /* Value of enum reload_type to use within address of operand. */
2330 enum reload_type address_type[MAX_RECOG_OPERANDS];
2331 /* Save the usage of each operand. */
2332 enum reload_usage { RELOAD_READ, RELOAD_READ_WRITE, RELOAD_WRITE } modified[MAX_RECOG_OPERANDS];
eab89b90
RK
2333 int no_input_reloads = 0, no_output_reloads = 0;
2334 int n_alternatives;
2335 int this_alternative[MAX_RECOG_OPERANDS];
2336 char this_alternative_win[MAX_RECOG_OPERANDS];
2337 char this_alternative_offmemok[MAX_RECOG_OPERANDS];
2338 char this_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2339 int this_alternative_matches[MAX_RECOG_OPERANDS];
2340 int swapped;
2341 int goal_alternative[MAX_RECOG_OPERANDS];
2342 int this_alternative_number;
2343 int goal_alternative_number;
2344 int operand_reloadnum[MAX_RECOG_OPERANDS];
2345 int goal_alternative_matches[MAX_RECOG_OPERANDS];
2346 int goal_alternative_matched[MAX_RECOG_OPERANDS];
2347 char goal_alternative_win[MAX_RECOG_OPERANDS];
2348 char goal_alternative_offmemok[MAX_RECOG_OPERANDS];
2349 char goal_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2350 int goal_alternative_swapped;
eab89b90
RK
2351 int best;
2352 int commutative;
f5963e61 2353 int changed;
eab89b90
RK
2354 char operands_match[MAX_RECOG_OPERANDS][MAX_RECOG_OPERANDS];
2355 rtx substed_operand[MAX_RECOG_OPERANDS];
2356 rtx body = PATTERN (insn);
2357 rtx set = single_set (insn);
2358 int goal_earlyclobber, this_earlyclobber;
2359 enum machine_mode operand_mode[MAX_RECOG_OPERANDS];
9ec36da5
JL
2360 /* Cache the last regno for the last pseudo we did an output reload
2361 for in case the next insn uses it. */
2362 static int last_output_reload_regno = -1;
eab89b90
RK
2363
2364 this_insn = insn;
2365 this_insn_is_asm = 0; /* Tentative. */
2366 n_reloads = 0;
2367 n_replacements = 0;
2368 n_memlocs = 0;
2369 n_earlyclobbers = 0;
2370 replace_reloads = replace;
2371 hard_regs_live_known = live_known;
2372 static_reload_reg_p = reload_reg_p;
2373
2374 /* JUMP_INSNs and CALL_INSNs are not allowed to have any output reloads;
2375 neither are insns that SET cc0. Insns that use CC0 are not allowed
2376 to have any input reloads. */
2377 if (GET_CODE (insn) == JUMP_INSN || GET_CODE (insn) == CALL_INSN)
2378 no_output_reloads = 1;
2379
2380#ifdef HAVE_cc0
2381 if (reg_referenced_p (cc0_rtx, PATTERN (insn)))
2382 no_input_reloads = 1;
2383 if (reg_set_p (cc0_rtx, PATTERN (insn)))
2384 no_output_reloads = 1;
2385#endif
2386
0dadecf6
RK
2387#ifdef SECONDARY_MEMORY_NEEDED
2388 /* The eliminated forms of any secondary memory locations are per-insn, so
2389 clear them out here. */
2390
4c9a05bc 2391 bzero ((char *) secondary_memlocs_elim, sizeof secondary_memlocs_elim);
0dadecf6
RK
2392#endif
2393
eab89b90
RK
2394 /* Find what kind of insn this is. NOPERANDS gets number of operands.
2395 Make OPERANDS point to a vector of operand values.
2396 Make OPERAND_LOCS point to a vector of pointers to
2397 where the operands were found.
2398 Fill CONSTRAINTS and CONSTRAINTS1 with pointers to the
2399 constraint-strings for this insn.
2400 Return if the insn needs no reload processing. */
2401
2402 switch (GET_CODE (body))
2403 {
2404 case USE:
2405 case CLOBBER:
2406 case ASM_INPUT:
2407 case ADDR_VEC:
2408 case ADDR_DIFF_VEC:
2409 return;
2410
2411 case SET:
2412 /* Dispose quickly of (set (reg..) (reg..)) if both have hard regs and it
2413 is cheap to move between them. If it is not, there may not be an insn
2414 to do the copy, so we may need a reload. */
2415 if (GET_CODE (SET_DEST (body)) == REG
2416 && REGNO (SET_DEST (body)) < FIRST_PSEUDO_REGISTER
2417 && GET_CODE (SET_SRC (body)) == REG
2418 && REGNO (SET_SRC (body)) < FIRST_PSEUDO_REGISTER
2419 && REGISTER_MOVE_COST (REGNO_REG_CLASS (REGNO (SET_SRC (body))),
2420 REGNO_REG_CLASS (REGNO (SET_DEST (body)))) == 2)
2421 return;
2422 case PARALLEL:
2423 case ASM_OPERANDS:
a8c9daeb 2424 reload_n_operands = noperands = asm_noperands (body);
eab89b90
RK
2425 if (noperands >= 0)
2426 {
2427 /* This insn is an `asm' with operands. */
2428
2429 insn_code_number = -1;
2430 this_insn_is_asm = 1;
2431
2432 /* expand_asm_operands makes sure there aren't too many operands. */
2433 if (noperands > MAX_RECOG_OPERANDS)
2434 abort ();
2435
2436 /* Now get the operand values and constraints out of the insn. */
2437
2438 decode_asm_operands (body, recog_operand, recog_operand_loc,
2439 constraints, operand_mode);
2440 if (noperands > 0)
2441 {
4c9a05bc
RK
2442 bcopy ((char *) constraints, (char *) constraints1,
2443 noperands * sizeof (char *));
eab89b90 2444 n_alternatives = n_occurrences (',', constraints[0]) + 1;
eab89b90
RK
2445 }
2446 break;
2447 }
2448
2449 default:
2450 /* Ordinary insn: recognize it, get the operands via insn_extract
2451 and get the constraints. */
2452
2453 insn_code_number = recog_memoized (insn);
2454 if (insn_code_number < 0)
2455 fatal_insn_not_found (insn);
2456
a8c9daeb 2457 reload_n_operands = noperands = insn_n_operands[insn_code_number];
eab89b90
RK
2458 n_alternatives = insn_n_alternatives[insn_code_number];
2459 /* Just return "no reloads" if insn has no operands with constraints. */
2460 if (n_alternatives == 0)
2461 return;
2462 insn_extract (insn);
2463 for (i = 0; i < noperands; i++)
2464 {
2465 constraints[i] = constraints1[i]
2466 = insn_operand_constraint[insn_code_number][i];
2467 operand_mode[i] = insn_operand_mode[insn_code_number][i];
2468 }
2469 }
2470
2471 if (noperands == 0)
2472 return;
2473
2474 commutative = -1;
2475
2476 /* If we will need to know, later, whether some pair of operands
2477 are the same, we must compare them now and save the result.
2478 Reloading the base and index registers will clobber them
2479 and afterward they will fail to match. */
2480
2481 for (i = 0; i < noperands; i++)
2482 {
2483 register char *p;
2484 register int c;
2485
2486 substed_operand[i] = recog_operand[i];
2487 p = constraints[i];
2488
a8c9daeb
RK
2489 modified[i] = RELOAD_READ;
2490
2491 /* Scan this operand's constraint to see if it is an output operand,
2492 an in-out operand, is commutative, or should match another. */
eab89b90 2493
51723711 2494 while ((c = *p++))
a8c9daeb
RK
2495 {
2496 if (c == '=')
2497 modified[i] = RELOAD_WRITE;
2498 else if (c == '+')
2499 modified[i] = RELOAD_READ_WRITE;
2500 else if (c == '%')
2501 {
2502 /* The last operand should not be marked commutative. */
2503 if (i == noperands - 1)
2a230e9d
BS
2504 abort ();
2505
2506 commutative = i;
a8c9daeb
RK
2507 }
2508 else if (c >= '0' && c <= '9')
2509 {
2510 c -= '0';
2511 operands_match[c][i]
2512 = operands_match_p (recog_operand[c], recog_operand[i]);
ea9c5b9e 2513
a8c9daeb
RK
2514 /* An operand may not match itself. */
2515 if (c == i)
2a230e9d 2516 abort ();
ea9c5b9e 2517
a8c9daeb
RK
2518 /* If C can be commuted with C+1, and C might need to match I,
2519 then C+1 might also need to match I. */
2520 if (commutative >= 0)
2521 {
2522 if (c == commutative || c == commutative + 1)
2523 {
2524 int other = c + (c == commutative ? 1 : -1);
2525 operands_match[other][i]
2526 = operands_match_p (recog_operand[other], recog_operand[i]);
2527 }
2528 if (i == commutative || i == commutative + 1)
2529 {
2530 int other = i + (i == commutative ? 1 : -1);
2531 operands_match[c][other]
2532 = operands_match_p (recog_operand[c], recog_operand[other]);
2533 }
2534 /* Note that C is supposed to be less than I.
2535 No need to consider altering both C and I because in
2536 that case we would alter one into the other. */
2537 }
2538 }
2539 }
eab89b90
RK
2540 }
2541
2542 /* Examine each operand that is a memory reference or memory address
2543 and reload parts of the addresses into index registers.
eab89b90
RK
2544 Also here any references to pseudo regs that didn't get hard regs
2545 but are equivalent to constants get replaced in the insn itself
2546 with those constants. Nobody will ever see them again.
2547
2548 Finally, set up the preferred classes of each operand. */
2549
2550 for (i = 0; i < noperands; i++)
2551 {
2552 register RTX_CODE code = GET_CODE (recog_operand[i]);
a8c9daeb 2553
eab89b90 2554 address_reloaded[i] = 0;
a8c9daeb
RK
2555 operand_type[i] = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT
2556 : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT
2557 : RELOAD_OTHER);
2558 address_type[i]
2559 = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT_ADDRESS
2560 : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT_ADDRESS
2561 : RELOAD_OTHER);
eab89b90 2562
0d38001f
RS
2563 if (*constraints[i] == 0)
2564 /* Ignore things like match_operator operands. */
2565 ;
2566 else if (constraints[i][0] == 'p')
eab89b90 2567 {
fb3821f7 2568 find_reloads_address (VOIDmode, NULL_PTR,
eab89b90 2569 recog_operand[i], recog_operand_loc[i],
55c22565 2570 i, operand_type[i], ind_levels, insn);
b685dbae
RK
2571
2572 /* If we now have a simple operand where we used to have a
2573 PLUS or MULT, re-recognize and try again. */
2574 if ((GET_RTX_CLASS (GET_CODE (*recog_operand_loc[i])) == 'o'
2575 || GET_CODE (*recog_operand_loc[i]) == SUBREG)
2576 && (GET_CODE (recog_operand[i]) == MULT
2577 || GET_CODE (recog_operand[i]) == PLUS))
2578 {
2579 INSN_CODE (insn) = -1;
2580 find_reloads (insn, replace, ind_levels, live_known,
2581 reload_reg_p);
2582 return;
2583 }
2584
eab89b90
RK
2585 substed_operand[i] = recog_operand[i] = *recog_operand_loc[i];
2586 }
2587 else if (code == MEM)
2588 {
2589 if (find_reloads_address (GET_MODE (recog_operand[i]),
2590 recog_operand_loc[i],
2591 XEXP (recog_operand[i], 0),
2592 &XEXP (recog_operand[i], 0),
55c22565 2593 i, address_type[i], ind_levels, insn))
eab89b90
RK
2594 address_reloaded[i] = 1;
2595 substed_operand[i] = recog_operand[i] = *recog_operand_loc[i];
2596 }
2597 else if (code == SUBREG)
b60a8416
R
2598 {
2599 rtx reg = SUBREG_REG (recog_operand[i]);
2600 rtx op
2601 = find_reloads_toplev (recog_operand[i], i, address_type[i],
2602 ind_levels,
2603 set != 0
2604 && &SET_DEST (set) == recog_operand_loc[i]);
2605
2606 /* If we made a MEM to load (a part of) the stackslot of a pseudo
2607 that didn't get a hard register, emit a USE with a REG_EQUAL
2608 note in front so that we might inherit a previous, possibly
2609 wider reload. */
2610
2611 if (GET_CODE (op) == MEM
2612 && GET_CODE (reg) == REG
2613 && (GET_MODE_SIZE (GET_MODE (reg))
2614 >= GET_MODE_SIZE (GET_MODE (op))))
2615 REG_NOTES (emit_insn_before (gen_rtx_USE (VOIDmode, reg), insn))
2616 = gen_rtx_EXPR_LIST (REG_EQUAL,
2617 reg_equiv_memory_loc[REGNO (reg)], NULL_RTX);
2618
2619 substed_operand[i] = recog_operand[i] = *recog_operand_loc[i] = op;
2620 }
ff428c90
ILT
2621 else if (code == PLUS || GET_RTX_CLASS (code) == '1')
2622 /* We can get a PLUS as an "operand" as a result of register
2623 elimination. See eliminate_regs and gen_reload. We handle
2624 a unary operator by reloading the operand. */
944d7b14
RS
2625 substed_operand[i] = recog_operand[i] = *recog_operand_loc[i]
2626 = find_reloads_toplev (recog_operand[i], i, address_type[i],
2627 ind_levels, 0);
eab89b90
RK
2628 else if (code == REG)
2629 {
2630 /* This is equivalent to calling find_reloads_toplev.
2631 The code is duplicated for speed.
2632 When we find a pseudo always equivalent to a constant,
2633 we replace it by the constant. We must be sure, however,
2634 that we don't try to replace it in the insn in which it
2635 is being set. */
2636 register int regno = REGNO (recog_operand[i]);
2637 if (reg_equiv_constant[regno] != 0
2638 && (set == 0 || &SET_DEST (set) != recog_operand_loc[i]))
726e2d54
JW
2639 {
2640 /* Record the existing mode so that the check if constants are
2641 allowed will work when operand_mode isn't specified. */
2642
2643 if (operand_mode[i] == VOIDmode)
2644 operand_mode[i] = GET_MODE (recog_operand[i]);
2645
2646 substed_operand[i] = recog_operand[i]
2647 = reg_equiv_constant[regno];
2648 }
eab89b90
RK
2649#if 0 /* This might screw code in reload1.c to delete prior output-reload
2650 that feeds this insn. */
2651 if (reg_equiv_mem[regno] != 0)
2652 substed_operand[i] = recog_operand[i]
2653 = reg_equiv_mem[regno];
2654#endif
6c7c0e9f 2655 if (reg_equiv_address[regno] != 0)
eab89b90
RK
2656 {
2657 /* If reg_equiv_address is not a constant address, copy it,
2658 since it may be shared. */
4ffeab02
JW
2659 /* We must rerun eliminate_regs, in case the elimination
2660 offsets have changed. */
2661 rtx address = XEXP (eliminate_regs (reg_equiv_memory_loc[regno],
1914f5da 2662 0, NULL_RTX),
4ffeab02 2663 0);
eab89b90
RK
2664
2665 if (rtx_varies_p (address))
2666 address = copy_rtx (address);
2667
b60a8416
R
2668 /* Emit a USE that shows what register is being used/modified. */
2669 REG_NOTES (emit_insn_before (gen_rtx_USE (VOIDmode,
2670 recog_operand[i]),
2671 insn))
2672 = gen_rtx_EXPR_LIST (REG_EQUAL,
2673 reg_equiv_memory_loc[regno],
2674 NULL_RTX);
eab89b90
RK
2675
2676 *recog_operand_loc[i] = recog_operand[i]
38a448ca 2677 = gen_rtx_MEM (GET_MODE (recog_operand[i]), address);
eab89b90
RK
2678 RTX_UNCHANGING_P (recog_operand[i])
2679 = RTX_UNCHANGING_P (regno_reg_rtx[regno]);
2680 find_reloads_address (GET_MODE (recog_operand[i]),
130659a4 2681 recog_operand_loc[i],
eab89b90
RK
2682 XEXP (recog_operand[i], 0),
2683 &XEXP (recog_operand[i], 0),
55c22565 2684 i, address_type[i], ind_levels, insn);
eab89b90
RK
2685 substed_operand[i] = recog_operand[i] = *recog_operand_loc[i];
2686 }
2687 }
aaf9712e
RS
2688 /* If the operand is still a register (we didn't replace it with an
2689 equivalent), get the preferred class to reload it into. */
2690 code = GET_CODE (recog_operand[i]);
2691 preferred_class[i]
91f9a6ed 2692 = ((code == REG && REGNO (recog_operand[i]) >= FIRST_PSEUDO_REGISTER)
aaf9712e
RS
2693 ? reg_preferred_class (REGNO (recog_operand[i])) : NO_REGS);
2694 pref_or_nothing[i]
91f9a6ed 2695 = (code == REG && REGNO (recog_operand[i]) >= FIRST_PSEUDO_REGISTER
e4600702 2696 && reg_alternate_class (REGNO (recog_operand[i])) == NO_REGS);
eab89b90
RK
2697 }
2698
2699 /* If this is simply a copy from operand 1 to operand 0, merge the
2700 preferred classes for the operands. */
2701 if (set != 0 && noperands >= 2 && recog_operand[0] == SET_DEST (set)
2702 && recog_operand[1] == SET_SRC (set))
2703 {
2704 preferred_class[0] = preferred_class[1]
2705 = reg_class_subunion[(int) preferred_class[0]][(int) preferred_class[1]];
2706 pref_or_nothing[0] |= pref_or_nothing[1];
2707 pref_or_nothing[1] |= pref_or_nothing[0];
2708 }
2709
2710 /* Now see what we need for pseudo-regs that didn't get hard regs
2711 or got the wrong kind of hard reg. For this, we must consider
2712 all the operands together against the register constraints. */
2713
812f2051 2714 best = MAX_RECOG_OPERANDS * 2 + 600;
eab89b90
RK
2715
2716 swapped = 0;
2717 goal_alternative_swapped = 0;
2718 try_swapped:
2719
2720 /* The constraints are made of several alternatives.
2721 Each operand's constraint looks like foo,bar,... with commas
2722 separating the alternatives. The first alternatives for all
2723 operands go together, the second alternatives go together, etc.
2724
2725 First loop over alternatives. */
2726
2727 for (this_alternative_number = 0;
2728 this_alternative_number < n_alternatives;
2729 this_alternative_number++)
2730 {
2731 /* Loop over operands for one constraint alternative. */
2732 /* LOSERS counts those that don't fit this alternative
2733 and would require loading. */
2734 int losers = 0;
2735 /* BAD is set to 1 if it some operand can't fit this alternative
2736 even after reloading. */
2737 int bad = 0;
2738 /* REJECT is a count of how undesirable this alternative says it is
2739 if any reloading is required. If the alternative matches exactly
2740 then REJECT is ignored, but otherwise it gets this much
2741 counted against it in addition to the reloading needed. Each
2742 ? counts three times here since we want the disparaging caused by
2743 a bad register class to only count 1/3 as much. */
2744 int reject = 0;
2745
2746 this_earlyclobber = 0;
2747
2748 for (i = 0; i < noperands; i++)
2749 {
2750 register char *p = constraints[i];
2751 register int win = 0;
2752 /* 0 => this operand can be reloaded somehow for this alternative */
2753 int badop = 1;
2754 /* 0 => this operand can be reloaded if the alternative allows regs. */
2755 int winreg = 0;
2756 int c;
2757 register rtx operand = recog_operand[i];
2758 int offset = 0;
2759 /* Nonzero means this is a MEM that must be reloaded into a reg
2760 regardless of what the constraint says. */
2761 int force_reload = 0;
2762 int offmemok = 0;
9d926da5
RK
2763 /* Nonzero if a constant forced into memory would be OK for this
2764 operand. */
2765 int constmemok = 0;
eab89b90
RK
2766 int earlyclobber = 0;
2767
ff428c90 2768 /* If the predicate accepts a unary operator, it means that
ad729076
JL
2769 we need to reload the operand, but do not do this for
2770 match_operator and friends. */
2771 if (GET_RTX_CLASS (GET_CODE (operand)) == '1' && *p != 0)
ff428c90
ILT
2772 operand = XEXP (operand, 0);
2773
eab89b90
RK
2774 /* If the operand is a SUBREG, extract
2775 the REG or MEM (or maybe even a constant) within.
2776 (Constants can occur as a result of reg_equiv_constant.) */
2777
2778 while (GET_CODE (operand) == SUBREG)
2779 {
2780 offset += SUBREG_WORD (operand);
2781 operand = SUBREG_REG (operand);
38e01259 2782 /* Force reload if this is a constant or PLUS or if there may
a61c98cf
RK
2783 be a problem accessing OPERAND in the outer mode. */
2784 if (CONSTANT_P (operand)
ca769828 2785 || GET_CODE (operand) == PLUS
03b72c86
RK
2786 /* We must force a reload of paradoxical SUBREGs
2787 of a MEM because the alignment of the inner value
beb5a9b8
RK
2788 may not be enough to do the outer reference. On
2789 big-endian machines, it may also reference outside
2790 the object.
03b72c86
RK
2791
2792 On machines that extend byte operations and we have a
486d8509
RK
2793 SUBREG where both the inner and outer modes are no wider
2794 than a word and the inner mode is narrower, is integral,
2795 and gets extended when loaded from memory, combine.c has
2796 made assumptions about the behavior of the machine in such
03b72c86
RK
2797 register access. If the data is, in fact, in memory we
2798 must always load using the size assumed to be in the
2799 register and let the insn do the different-sized
5ec105cd
RH
2800 accesses.
2801
2802 This is doubly true if WORD_REGISTER_OPERATIONS. In
2803 this case eliminate_regs has left non-paradoxical
2804 subregs for push_reloads to see. Make sure it does
2805 by forcing the reload.
2806
2807 ??? When is it right at this stage to have a subreg
2808 of a mem that is _not_ to be handled specialy? IMO
2809 those should have been reduced to just a mem. */
a61c98cf
RK
2810 || ((GET_CODE (operand) == MEM
2811 || (GET_CODE (operand)== REG
2812 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
5ec105cd 2813#ifndef WORD_REGISTER_OPERATIONS
03b72c86
RK
2814 && (((GET_MODE_BITSIZE (GET_MODE (operand))
2815 < BIGGEST_ALIGNMENT)
2816 && (GET_MODE_SIZE (operand_mode[i])
2817 > GET_MODE_SIZE (GET_MODE (operand))))
beb5a9b8 2818 || (GET_CODE (operand) == MEM && BYTES_BIG_ENDIAN)
03b72c86
RK
2819#ifdef LOAD_EXTEND_OP
2820 || (GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
2821 && (GET_MODE_SIZE (GET_MODE (operand))
2822 <= UNITS_PER_WORD)
2823 && (GET_MODE_SIZE (operand_mode[i])
486d8509
RK
2824 > GET_MODE_SIZE (GET_MODE (operand)))
2825 && INTEGRAL_MODE_P (GET_MODE (operand))
2826 && LOAD_EXTEND_OP (GET_MODE (operand)) != NIL)
46da6b3a 2827#endif
5ec105cd
RH
2828 )
2829#endif
2830 )
eab89b90
RK
2831 /* Subreg of a hard reg which can't handle the subreg's mode
2832 or which would handle that mode in the wrong number of
2833 registers for subregging to work. */
a61c98cf
RK
2834 || (GET_CODE (operand) == REG
2835 && REGNO (operand) < FIRST_PSEUDO_REGISTER
f72ccbe6
RK
2836 && ((GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
2837 && (GET_MODE_SIZE (GET_MODE (operand))
2838 > UNITS_PER_WORD)
2839 && ((GET_MODE_SIZE (GET_MODE (operand))
2840 / UNITS_PER_WORD)
2841 != HARD_REGNO_NREGS (REGNO (operand),
2842 GET_MODE (operand))))
2843 || ! HARD_REGNO_MODE_OK (REGNO (operand) + offset,
2844 operand_mode[i]))))
eab89b90
RK
2845 force_reload = 1;
2846 }
2847
2848 this_alternative[i] = (int) NO_REGS;
2849 this_alternative_win[i] = 0;
2850 this_alternative_offmemok[i] = 0;
2851 this_alternative_earlyclobber[i] = 0;
2852 this_alternative_matches[i] = -1;
2853
2854 /* An empty constraint or empty alternative
2855 allows anything which matched the pattern. */
2856 if (*p == 0 || *p == ',')
2857 win = 1, badop = 0;
2858
2859 /* Scan this alternative's specs for this operand;
2860 set WIN if the operand fits any letter in this alternative.
2861 Otherwise, clear BADOP if this operand could
2862 fit some letter after reloads,
2863 or set WINREG if this operand could fit after reloads
2864 provided the constraint allows some registers. */
2865
2866 while (*p && (c = *p++) != ',')
2867 switch (c)
2868 {
2869 case '=':
eab89b90 2870 case '+':
eab89b90
RK
2871 case '*':
2872 break;
2873
2874 case '%':
42add480
TW
2875 /* The last operand should not be marked commutative. */
2876 if (i != noperands - 1)
2877 commutative = i;
eab89b90
RK
2878 break;
2879
2880 case '?':
812f2051 2881 reject += 6;
eab89b90
RK
2882 break;
2883
2884 case '!':
812f2051 2885 reject = 600;
eab89b90
RK
2886 break;
2887
2888 case '#':
2889 /* Ignore rest of this alternative as far as
2890 reloading is concerned. */
2891 while (*p && *p != ',') p++;
2892 break;
2893
2894 case '0':
2895 case '1':
2896 case '2':
2897 case '3':
2898 case '4':
2899 c -= '0';
2900 this_alternative_matches[i] = c;
2901 /* We are supposed to match a previous operand.
2902 If we do, we win if that one did.
2903 If we do not, count both of the operands as losers.
2904 (This is too conservative, since most of the time
2905 only a single reload insn will be needed to make
2906 the two operands win. As a result, this alternative
2907 may be rejected when it is actually desirable.) */
2908 if ((swapped && (c != commutative || i != commutative + 1))
2909 /* If we are matching as if two operands were swapped,
2910 also pretend that operands_match had been computed
2911 with swapped.
2912 But if I is the second of those and C is the first,
2913 don't exchange them, because operands_match is valid
2914 only on one side of its diagonal. */
2915 ? (operands_match
2916 [(c == commutative || c == commutative + 1)
2917 ? 2*commutative + 1 - c : c]
2918 [(i == commutative || i == commutative + 1)
2919 ? 2*commutative + 1 - i : i])
2920 : operands_match[c][i])
fc79eafe
JW
2921 {
2922 /* If we are matching a non-offsettable address where an
2923 offsettable address was expected, then we must reject
2924 this combination, because we can't reload it. */
2925 if (this_alternative_offmemok[c]
2926 && GET_CODE (recog_operand[c]) == MEM
2927 && this_alternative[c] == (int) NO_REGS
2928 && ! this_alternative_win[c])
2929 bad = 1;
2930
2931 win = this_alternative_win[c];
2932 }
eab89b90
RK
2933 else
2934 {
2935 /* Operands don't match. */
2936 rtx value;
2937 /* Retroactively mark the operand we had to match
2938 as a loser, if it wasn't already. */
2939 if (this_alternative_win[c])
2940 losers++;
2941 this_alternative_win[c] = 0;
2942 if (this_alternative[c] == (int) NO_REGS)
2943 bad = 1;
2944 /* But count the pair only once in the total badness of
2945 this alternative, if the pair can be a dummy reload. */
2946 value
2947 = find_dummy_reload (recog_operand[i], recog_operand[c],
2948 recog_operand_loc[i], recog_operand_loc[c],
adb44af8 2949 operand_mode[i], operand_mode[c],
189086f9
RK
2950 this_alternative[c], -1,
2951 this_alternative_earlyclobber[c]);
eab89b90
RK
2952
2953 if (value != 0)
2954 losers--;
2955 }
2956 /* This can be fixed with reloads if the operand
2957 we are supposed to match can be fixed with reloads. */
2958 badop = 0;
2959 this_alternative[i] = this_alternative[c];
e64c4f9e
RK
2960
2961 /* If we have to reload this operand and some previous
2962 operand also had to match the same thing as this
2963 operand, we don't know how to do that. So reject this
2964 alternative. */
2965 if (! win || force_reload)
2966 for (j = 0; j < i; j++)
2967 if (this_alternative_matches[j]
2968 == this_alternative_matches[i])
2969 badop = 1;
2970
eab89b90
RK
2971 break;
2972
2973 case 'p':
2974 /* All necessary reloads for an address_operand
2975 were handled in find_reloads_address. */
5c73e847 2976 this_alternative[i] = (int) BASE_REG_CLASS;
eab89b90
RK
2977 win = 1;
2978 break;
2979
2980 case 'm':
2981 if (force_reload)
2982 break;
2983 if (GET_CODE (operand) == MEM
2984 || (GET_CODE (operand) == REG
2985 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
2986 && reg_renumber[REGNO (operand)] < 0))
2987 win = 1;
3feffdfe
JW
2988 if (CONSTANT_P (operand)
2989 /* force_const_mem does not accept HIGH. */
2990 && GET_CODE (operand) != HIGH)
eab89b90 2991 badop = 0;
9d926da5 2992 constmemok = 1;
eab89b90
RK
2993 break;
2994
2995 case '<':
2996 if (GET_CODE (operand) == MEM
2997 && ! address_reloaded[i]
2998 && (GET_CODE (XEXP (operand, 0)) == PRE_DEC
2999 || GET_CODE (XEXP (operand, 0)) == POST_DEC))
3000 win = 1;
3001 break;
3002
3003 case '>':
3004 if (GET_CODE (operand) == MEM
3005 && ! address_reloaded[i]
3006 && (GET_CODE (XEXP (operand, 0)) == PRE_INC
3007 || GET_CODE (XEXP (operand, 0)) == POST_INC))
3008 win = 1;
3009 break;
3010
3011 /* Memory operand whose address is not offsettable. */
3012 case 'V':
3013 if (force_reload)
3014 break;
3015 if (GET_CODE (operand) == MEM
3016 && ! (ind_levels ? offsettable_memref_p (operand)
3017 : offsettable_nonstrict_memref_p (operand))
3018 /* Certain mem addresses will become offsettable
3019 after they themselves are reloaded. This is important;
3020 we don't want our own handling of unoffsettables
3021 to override the handling of reg_equiv_address. */
3022 && !(GET_CODE (XEXP (operand, 0)) == REG
3023 && (ind_levels == 0
3024 || reg_equiv_address[REGNO (XEXP (operand, 0))] != 0)))
3025 win = 1;
3026 break;
3027
3028 /* Memory operand whose address is offsettable. */
3029 case 'o':
3030 if (force_reload)
3031 break;
3032 if ((GET_CODE (operand) == MEM
3033 /* If IND_LEVELS, find_reloads_address won't reload a
3034 pseudo that didn't get a hard reg, so we have to
3035 reject that case. */
3036 && (ind_levels ? offsettable_memref_p (operand)
3037 : offsettable_nonstrict_memref_p (operand)))
26ba4aee
JW
3038 /* A reloaded auto-increment address is offsettable,
3039 because it is now just a simple register indirect. */
3040 || (GET_CODE (operand) == MEM
3041 && address_reloaded[i]
3042 && (GET_CODE (XEXP (operand, 0)) == PRE_INC
3043 || GET_CODE (XEXP (operand, 0)) == PRE_DEC
3044 || GET_CODE (XEXP (operand, 0)) == POST_INC
3045 || GET_CODE (XEXP (operand, 0)) == POST_DEC))
eab89b90
RK
3046 /* Certain mem addresses will become offsettable
3047 after they themselves are reloaded. This is important;
3048 we don't want our own handling of unoffsettables
3049 to override the handling of reg_equiv_address. */
3050 || (GET_CODE (operand) == MEM
3051 && GET_CODE (XEXP (operand, 0)) == REG
3052 && (ind_levels == 0
3053 || reg_equiv_address[REGNO (XEXP (operand, 0))] != 0))
3054 || (GET_CODE (operand) == REG
3055 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3a322c50
RK
3056 && reg_renumber[REGNO (operand)] < 0
3057 /* If reg_equiv_address is nonzero, we will be
3058 loading it into a register; hence it will be
3059 offsettable, but we cannot say that reg_equiv_mem
3060 is offsettable without checking. */
3061 && ((reg_equiv_mem[REGNO (operand)] != 0
3062 && offsettable_memref_p (reg_equiv_mem[REGNO (operand)]))
3063 || (reg_equiv_address[REGNO (operand)] != 0))))
eab89b90 3064 win = 1;
3feffdfe
JW
3065 /* force_const_mem does not accept HIGH. */
3066 if ((CONSTANT_P (operand) && GET_CODE (operand) != HIGH)
3067 || GET_CODE (operand) == MEM)
eab89b90 3068 badop = 0;
9d926da5 3069 constmemok = 1;
eab89b90
RK
3070 offmemok = 1;
3071 break;
3072
3073 case '&':
3074 /* Output operand that is stored before the need for the
3075 input operands (and their index registers) is over. */
3076 earlyclobber = 1, this_earlyclobber = 1;
3077 break;
3078
3079 case 'E':
293166be 3080#ifndef REAL_ARITHMETIC
eab89b90
RK
3081 /* Match any floating double constant, but only if
3082 we can examine the bits of it reliably. */
3083 if ((HOST_FLOAT_FORMAT != TARGET_FLOAT_FORMAT
fb3821f7 3084 || HOST_BITS_PER_WIDE_INT != BITS_PER_WORD)
eab89b90
RK
3085 && GET_MODE (operand) != VOIDmode && ! flag_pretend_float)
3086 break;
293166be 3087#endif
eab89b90
RK
3088 if (GET_CODE (operand) == CONST_DOUBLE)
3089 win = 1;
3090 break;
3091
3092 case 'F':
3093 if (GET_CODE (operand) == CONST_DOUBLE)
3094 win = 1;
3095 break;
3096
3097 case 'G':
3098 case 'H':
3099 if (GET_CODE (operand) == CONST_DOUBLE
3100 && CONST_DOUBLE_OK_FOR_LETTER_P (operand, c))
3101 win = 1;
3102 break;
3103
3104 case 's':
3105 if (GET_CODE (operand) == CONST_INT
3106 || (GET_CODE (operand) == CONST_DOUBLE
3107 && GET_MODE (operand) == VOIDmode))
3108 break;
3109 case 'i':
3110 if (CONSTANT_P (operand)
3111#ifdef LEGITIMATE_PIC_OPERAND_P
3112 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (operand))
3113#endif
3114 )
3115 win = 1;
3116 break;
3117
3118 case 'n':
3119 if (GET_CODE (operand) == CONST_INT
3120 || (GET_CODE (operand) == CONST_DOUBLE
3121 && GET_MODE (operand) == VOIDmode))
3122 win = 1;
3123 break;
3124
3125 case 'I':
3126 case 'J':
3127 case 'K':
3128 case 'L':
3129 case 'M':
3130 case 'N':
3131 case 'O':
3132 case 'P':
3133 if (GET_CODE (operand) == CONST_INT
3134 && CONST_OK_FOR_LETTER_P (INTVAL (operand), c))
3135 win = 1;
3136 break;
3137
3138 case 'X':
3139 win = 1;
3140 break;
3141
3142 case 'g':
3143 if (! force_reload
3144 /* A PLUS is never a valid operand, but reload can make
3145 it from a register when eliminating registers. */
3146 && GET_CODE (operand) != PLUS
3147 /* A SCRATCH is not a valid operand. */
3148 && GET_CODE (operand) != SCRATCH
3149#ifdef LEGITIMATE_PIC_OPERAND_P
3150 && (! CONSTANT_P (operand)
3151 || ! flag_pic
3152 || LEGITIMATE_PIC_OPERAND_P (operand))
3153#endif
3154 && (GENERAL_REGS == ALL_REGS
3155 || GET_CODE (operand) != REG
3156 || (REGNO (operand) >= FIRST_PSEUDO_REGISTER
3157 && reg_renumber[REGNO (operand)] < 0)))
3158 win = 1;
3159 /* Drop through into 'r' case */
3160
3161 case 'r':
3162 this_alternative[i]
3163 = (int) reg_class_subunion[this_alternative[i]][(int) GENERAL_REGS];
3164 goto reg;
3165
3166#ifdef EXTRA_CONSTRAINT
3167 case 'Q':
3168 case 'R':
3169 case 'S':
3170 case 'T':
3171 case 'U':
3172 if (EXTRA_CONSTRAINT (operand, c))
3173 win = 1;
3174 break;
3175#endif
3176
3177 default:
3178 this_alternative[i]
3179 = (int) reg_class_subunion[this_alternative[i]][(int) REG_CLASS_FROM_LETTER (c)];
3180
3181 reg:
3182 if (GET_MODE (operand) == BLKmode)
3183 break;
3184 winreg = 1;
3185 if (GET_CODE (operand) == REG
3186 && reg_fits_class_p (operand, this_alternative[i],
3187 offset, GET_MODE (recog_operand[i])))
3188 win = 1;
3189 break;
3190 }
3191
3192 constraints[i] = p;
3193
3194 /* If this operand could be handled with a reg,
3195 and some reg is allowed, then this operand can be handled. */
3196 if (winreg && this_alternative[i] != (int) NO_REGS)
3197 badop = 0;
3198
3199 /* Record which operands fit this alternative. */
3200 this_alternative_earlyclobber[i] = earlyclobber;
3201 if (win && ! force_reload)
3202 this_alternative_win[i] = 1;
3203 else
3204 {
9d926da5
RK
3205 int const_to_mem = 0;
3206
eab89b90
RK
3207 this_alternative_offmemok[i] = offmemok;
3208 losers++;
3209 if (badop)
3210 bad = 1;
3211 /* Alternative loses if it has no regs for a reg operand. */
3212 if (GET_CODE (operand) == REG
3213 && this_alternative[i] == (int) NO_REGS
3214 && this_alternative_matches[i] < 0)
3215 bad = 1;
3216
3b39dde8 3217#if 0
9ec36da5
JL
3218 /* If this is a pseudo-register that is set in the previous
3219 insns, there's a good chance that it will already be in a
3220 spill register and we can use that spill register. So
3b39dde8
JL
3221 make this case cheaper.
3222
3223 Disabled for egcs. egcs has better inheritance code and
3224 this change causes problems with the improved reload
3225 inheritance code. */
9ec36da5
JL
3226 if (GET_CODE (operand) == REG
3227 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3228 && REGNO (operand) == last_output_reload_regno)
3229 reject--;
3b39dde8 3230#endif
9ec36da5 3231
3a322c50
RK
3232 /* If this is a constant that is reloaded into the desired
3233 class by copying it to memory first, count that as another
3234 reload. This is consistent with other code and is
293166be 3235 required to avoid choosing another alternative when
3a322c50
RK
3236 the constant is moved into memory by this function on
3237 an early reload pass. Note that the test here is
3238 precisely the same as in the code below that calls
3239 force_const_mem. */
3240 if (CONSTANT_P (operand)
59f25cf9
RK
3241 /* force_const_mem does not accept HIGH. */
3242 && GET_CODE (operand) != HIGH
e5e809f4 3243 && ((PREFERRED_RELOAD_CLASS (operand,
3a322c50 3244 (enum reg_class) this_alternative[i])
e5e809f4
JL
3245 == NO_REGS)
3246 || no_input_reloads)
3a322c50 3247 && operand_mode[i] != VOIDmode)
9d926da5
RK
3248 {
3249 const_to_mem = 1;
3250 if (this_alternative[i] != (int) NO_REGS)
3251 losers++;
3252 }
3a322c50 3253
5e6aa513
RK
3254 /* If we can't reload this value at all, reject this
3255 alternative. Note that we could also lose due to
3256 LIMIT_RELOAD_RELOAD_CLASS, but we don't check that
3257 here. */
3258
3259 if (! CONSTANT_P (operand)
73b236b5 3260 && (enum reg_class) this_alternative[i] != NO_REGS
5e6aa513
RK
3261 && (PREFERRED_RELOAD_CLASS (operand,
3262 (enum reg_class) this_alternative[i])
3263 == NO_REGS))
3264 bad = 1;
3265
e5e809f4
JL
3266 /* Alternative loses if it requires a type of reload not
3267 permitted for this insn. We can always reload SCRATCH
3268 and objects with a REG_UNUSED note. */
3269 else if (GET_CODE (operand) != SCRATCH
3270 && modified[i] != RELOAD_READ && no_output_reloads
3271 && ! find_reg_note (insn, REG_UNUSED, operand))
3272 bad = 1;
3273 else if (modified[i] != RELOAD_WRITE && no_input_reloads
3274 && ! const_to_mem)
3275 bad = 1;
3276
3277
eab89b90
RK
3278 /* We prefer to reload pseudos over reloading other things,
3279 since such reloads may be able to be eliminated later.
3280 If we are reloading a SCRATCH, we won't be generating any
3281 insns, just using a register, so it is also preferred.
9d926da5
RK
3282 So bump REJECT in other cases. Don't do this in the
3283 case where we are forcing a constant into memory and
3284 it will then win since we don't want to have a different
3285 alternative match then. */
915bb763
RK
3286 if (! (GET_CODE (operand) == REG
3287 && REGNO (operand) >= FIRST_PSEUDO_REGISTER)
9d926da5
RK
3288 && GET_CODE (operand) != SCRATCH
3289 && ! (const_to_mem && constmemok))
812f2051
R
3290 reject += 2;
3291
3292 /* Input reloads can be inherited more often than output
3293 reloads can be removed, so penalize output reloads. */
7924156a
JW
3294 if (operand_type[i] != RELOAD_FOR_INPUT
3295 && GET_CODE (operand) != SCRATCH)
eab89b90
RK
3296 reject++;
3297 }
3298
3299 /* If this operand is a pseudo register that didn't get a hard
3300 reg and this alternative accepts some register, see if the
3301 class that we want is a subset of the preferred class for this
3302 register. If not, but it intersects that class, use the
3303 preferred class instead. If it does not intersect the preferred
3304 class, show that usage of this alternative should be discouraged;
3305 it will be discouraged more still if the register is `preferred
3306 or nothing'. We do this because it increases the chance of
3307 reusing our spill register in a later insn and avoiding a pair
3308 of memory stores and loads.
3309
3310 Don't bother with this if this alternative will accept this
3311 operand.
3312
a2d353e5
RK
3313 Don't do this for a multiword operand, since it is only a
3314 small win and has the risk of requiring more spill registers,
3315 which could cause a large loss.
5aa14fee 3316
eab89b90
RK
3317 Don't do this if the preferred class has only one register
3318 because we might otherwise exhaust the class. */
3319
3320
3321 if (! win && this_alternative[i] != (int) NO_REGS
5aa14fee 3322 && GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
eab89b90
RK
3323 && reg_class_size[(int) preferred_class[i]] > 1)
3324 {
3325 if (! reg_class_subset_p (this_alternative[i],
3326 preferred_class[i]))
3327 {
3328 /* Since we don't have a way of forming the intersection,
3329 we just do something special if the preferred class
3330 is a subset of the class we have; that's the most
3331 common case anyway. */
3332 if (reg_class_subset_p (preferred_class[i],
3333 this_alternative[i]))
3334 this_alternative[i] = (int) preferred_class[i];
3335 else
812f2051 3336 reject += (2 + 2 * pref_or_nothing[i]);
eab89b90
RK
3337 }
3338 }
3339 }
3340
3341 /* Now see if any output operands that are marked "earlyclobber"
3342 in this alternative conflict with any input operands
3343 or any memory addresses. */
3344
3345 for (i = 0; i < noperands; i++)
3346 if (this_alternative_earlyclobber[i]
3347 && this_alternative_win[i])
3348 {
3349 struct decomposition early_data;
eab89b90
RK
3350
3351 early_data = decompose (recog_operand[i]);
3352
3353 if (modified[i] == RELOAD_READ)
2a230e9d 3354 abort ();
eab89b90
RK
3355
3356 if (this_alternative[i] == NO_REGS)
3357 {
3358 this_alternative_earlyclobber[i] = 0;
3359 if (this_insn_is_asm)
3360 error_for_asm (this_insn,
3361 "`&' constraint used with no register class");
3362 else
3363 abort ();
3364 }
3365
3366 for (j = 0; j < noperands; j++)
3367 /* Is this an input operand or a memory ref? */
3368 if ((GET_CODE (recog_operand[j]) == MEM
3369 || modified[j] != RELOAD_WRITE)
3370 && j != i
3371 /* Ignore things like match_operator operands. */
3372 && *constraints1[j] != 0
3373 /* Don't count an input operand that is constrained to match
3374 the early clobber operand. */
3375 && ! (this_alternative_matches[j] == i
3376 && rtx_equal_p (recog_operand[i], recog_operand[j]))
3377 /* Is it altered by storing the earlyclobber operand? */
3378 && !immune_p (recog_operand[j], recog_operand[i], early_data))
3379 {
3380 /* If the output is in a single-reg class,
3381 it's costly to reload it, so reload the input instead. */
3382 if (reg_class_size[this_alternative[i]] == 1
3383 && (GET_CODE (recog_operand[j]) == REG
3384 || GET_CODE (recog_operand[j]) == SUBREG))
3385 {
3386 losers++;
3387 this_alternative_win[j] = 0;
3388 }
3389 else
3390 break;
3391 }
3392 /* If an earlyclobber operand conflicts with something,
3393 it must be reloaded, so request this and count the cost. */
3394 if (j != noperands)
3395 {
3396 losers++;
3397 this_alternative_win[i] = 0;
3398 for (j = 0; j < noperands; j++)
3399 if (this_alternative_matches[j] == i
3400 && this_alternative_win[j])
3401 {
3402 this_alternative_win[j] = 0;
3403 losers++;
3404 }
3405 }
3406 }
3407
3408 /* If one alternative accepts all the operands, no reload required,
3409 choose that alternative; don't consider the remaining ones. */
3410 if (losers == 0)
3411 {
3412 /* Unswap these so that they are never swapped at `finish'. */
3413 if (commutative >= 0)
3414 {
3415 recog_operand[commutative] = substed_operand[commutative];
3416 recog_operand[commutative + 1]
3417 = substed_operand[commutative + 1];
3418 }
3419 for (i = 0; i < noperands; i++)
3420 {
3421 goal_alternative_win[i] = 1;
3422 goal_alternative[i] = this_alternative[i];
3423 goal_alternative_offmemok[i] = this_alternative_offmemok[i];
3424 goal_alternative_matches[i] = this_alternative_matches[i];
3425 goal_alternative_earlyclobber[i]
3426 = this_alternative_earlyclobber[i];
3427 }
3428 goal_alternative_number = this_alternative_number;
3429 goal_alternative_swapped = swapped;
3430 goal_earlyclobber = this_earlyclobber;
3431 goto finish;
3432 }
3433
3434 /* REJECT, set by the ! and ? constraint characters and when a register
3435 would be reloaded into a non-preferred class, discourages the use of
812f2051
R
3436 this alternative for a reload goal. REJECT is incremented by six
3437 for each ? and two for each non-preferred class. */
3438 losers = losers * 6 + reject;
eab89b90
RK
3439
3440 /* If this alternative can be made to work by reloading,
3441 and it needs less reloading than the others checked so far,
3442 record it as the chosen goal for reloading. */
3443 if (! bad && best > losers)
3444 {
3445 for (i = 0; i < noperands; i++)
3446 {
3447 goal_alternative[i] = this_alternative[i];
3448 goal_alternative_win[i] = this_alternative_win[i];
3449 goal_alternative_offmemok[i] = this_alternative_offmemok[i];
3450 goal_alternative_matches[i] = this_alternative_matches[i];
3451 goal_alternative_earlyclobber[i]
3452 = this_alternative_earlyclobber[i];
3453 }
3454 goal_alternative_swapped = swapped;
3455 best = losers;
3456 goal_alternative_number = this_alternative_number;
3457 goal_earlyclobber = this_earlyclobber;
3458 }
3459 }
3460
3461 /* If insn is commutative (it's safe to exchange a certain pair of operands)
3462 then we need to try each alternative twice,
3463 the second time matching those two operands
3464 as if we had exchanged them.
3465 To do this, really exchange them in operands.
3466
3467 If we have just tried the alternatives the second time,
3468 return operands to normal and drop through. */
3469
3470 if (commutative >= 0)
3471 {
3472 swapped = !swapped;
3473 if (swapped)
3474 {
3475 register enum reg_class tclass;
3476 register int t;
3477
3478 recog_operand[commutative] = substed_operand[commutative + 1];
3479 recog_operand[commutative + 1] = substed_operand[commutative];
3480
3481 tclass = preferred_class[commutative];
3482 preferred_class[commutative] = preferred_class[commutative + 1];
3483 preferred_class[commutative + 1] = tclass;
3484
3485 t = pref_or_nothing[commutative];
3486 pref_or_nothing[commutative] = pref_or_nothing[commutative + 1];
3487 pref_or_nothing[commutative + 1] = t;
3488
4c9a05bc
RK
3489 bcopy ((char *) constraints1, (char *) constraints,
3490 noperands * sizeof (char *));
eab89b90
RK
3491 goto try_swapped;
3492 }
3493 else
3494 {
3495 recog_operand[commutative] = substed_operand[commutative];
3496 recog_operand[commutative + 1] = substed_operand[commutative + 1];
3497 }
3498 }
3499
3500 /* The operands don't meet the constraints.
3501 goal_alternative describes the alternative
3502 that we could reach by reloading the fewest operands.
3503 Reload so as to fit it. */
3504
c22eaf8a 3505 if (best == MAX_RECOG_OPERANDS * 2 + 600)
eab89b90
RK
3506 {
3507 /* No alternative works with reloads?? */
3508 if (insn_code_number >= 0)
3509 abort ();
3510 error_for_asm (insn, "inconsistent operand constraints in an `asm'");
3511 /* Avoid further trouble with this insn. */
38a448ca 3512 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
eab89b90
RK
3513 n_reloads = 0;
3514 return;
3515 }
3516
3517 /* Jump to `finish' from above if all operands are valid already.
3518 In that case, goal_alternative_win is all 1. */
3519 finish:
3520
3521 /* Right now, for any pair of operands I and J that are required to match,
3522 with I < J,
3523 goal_alternative_matches[J] is I.
3524 Set up goal_alternative_matched as the inverse function:
3525 goal_alternative_matched[I] = J. */
3526
3527 for (i = 0; i < noperands; i++)
3528 goal_alternative_matched[i] = -1;
3529
3530 for (i = 0; i < noperands; i++)
3531 if (! goal_alternative_win[i]
3532 && goal_alternative_matches[i] >= 0)
3533 goal_alternative_matched[goal_alternative_matches[i]] = i;
3534
3535 /* If the best alternative is with operands 1 and 2 swapped,
a8c9daeb
RK
3536 consider them swapped before reporting the reloads. Update the
3537 operand numbers of any reloads already pushed. */
eab89b90
RK
3538
3539 if (goal_alternative_swapped)
3540 {
3541 register rtx tem;
3542
3543 tem = substed_operand[commutative];
3544 substed_operand[commutative] = substed_operand[commutative + 1];
3545 substed_operand[commutative + 1] = tem;
3546 tem = recog_operand[commutative];
3547 recog_operand[commutative] = recog_operand[commutative + 1];
3548 recog_operand[commutative + 1] = tem;
a8c9daeb
RK
3549
3550 for (i = 0; i < n_reloads; i++)
3551 {
3552 if (reload_opnum[i] == commutative)
3553 reload_opnum[i] = commutative + 1;
3554 else if (reload_opnum[i] == commutative + 1)
3555 reload_opnum[i] = commutative;
3556 }
eab89b90
RK
3557 }
3558
3559 /* Perform whatever substitutions on the operands we are supposed
3560 to make due to commutativity or replacement of registers
3561 with equivalent constants or memory slots. */
3562
3563 for (i = 0; i < noperands; i++)
3564 {
3565 *recog_operand_loc[i] = substed_operand[i];
3566 /* While we are looping on operands, initialize this. */
3567 operand_reloadnum[i] = -1;
a8c9daeb
RK
3568
3569 /* If this is an earlyclobber operand, we need to widen the scope.
3570 The reload must remain valid from the start of the insn being
3571 reloaded until after the operand is stored into its destination.
3572 We approximate this with RELOAD_OTHER even though we know that we
3573 do not conflict with RELOAD_FOR_INPUT_ADDRESS reloads.
3574
3575 One special case that is worth checking is when we have an
3576 output that is earlyclobber but isn't used past the insn (typically
3577 a SCRATCH). In this case, we only need have the reload live
3578 through the insn itself, but not for any of our input or output
3579 reloads.
f9df0a1d
R
3580 But we must not accidentally narrow the scope of an existing
3581 RELOAD_OTHER reload - leave these alone.
a8c9daeb
RK
3582
3583 In any case, anything needed to address this operand can remain
3584 however they were previously categorized. */
3585
f9df0a1d 3586 if (goal_alternative_earlyclobber[i] && operand_type[i] != RELOAD_OTHER)
a8c9daeb
RK
3587 operand_type[i]
3588 = (find_reg_note (insn, REG_UNUSED, recog_operand[i])
3589 ? RELOAD_FOR_INSN : RELOAD_OTHER);
eab89b90
RK
3590 }
3591
3592 /* Any constants that aren't allowed and can't be reloaded
3593 into registers are here changed into memory references. */
3594 for (i = 0; i < noperands; i++)
3595 if (! goal_alternative_win[i]
3596 && CONSTANT_P (recog_operand[i])
59f25cf9
RK
3597 /* force_const_mem does not accept HIGH. */
3598 && GET_CODE (recog_operand[i]) != HIGH
e5e809f4 3599 && ((PREFERRED_RELOAD_CLASS (recog_operand[i],
eab89b90 3600 (enum reg_class) goal_alternative[i])
e5e809f4
JL
3601 == NO_REGS)
3602 || no_input_reloads)
eab89b90
RK
3603 && operand_mode[i] != VOIDmode)
3604 {
3605 *recog_operand_loc[i] = recog_operand[i]
3606 = find_reloads_toplev (force_const_mem (operand_mode[i],
3607 recog_operand[i]),
a8c9daeb 3608 i, address_type[i], ind_levels, 0);
eab89b90
RK
3609 if (alternative_allows_memconst (constraints1[i],
3610 goal_alternative_number))
3611 goal_alternative_win[i] = 1;
3612 }
3613
4644aad4
RK
3614 /* Record the values of the earlyclobber operands for the caller. */
3615 if (goal_earlyclobber)
3616 for (i = 0; i < noperands; i++)
3617 if (goal_alternative_earlyclobber[i])
3618 reload_earlyclobbers[n_earlyclobbers++] = recog_operand[i];
3619
eab89b90 3620 /* Now record reloads for all the operands that need them. */
9ec36da5 3621 last_output_reload_regno = -1;
eab89b90
RK
3622 for (i = 0; i < noperands; i++)
3623 if (! goal_alternative_win[i])
3624 {
3625 /* Operands that match previous ones have already been handled. */
3626 if (goal_alternative_matches[i] >= 0)
3627 ;
3628 /* Handle an operand with a nonoffsettable address
3629 appearing where an offsettable address will do
3a322c50
RK
3630 by reloading the address into a base register.
3631
3632 ??? We can also do this when the operand is a register and
3633 reg_equiv_mem is not offsettable, but this is a bit tricky,
3634 so we don't bother with it. It may not be worth doing. */
eab89b90
RK
3635 else if (goal_alternative_matched[i] == -1
3636 && goal_alternative_offmemok[i]
3637 && GET_CODE (recog_operand[i]) == MEM)
3638 {
3639 operand_reloadnum[i]
fb3821f7
CH
3640 = push_reload (XEXP (recog_operand[i], 0), NULL_RTX,
3641 &XEXP (recog_operand[i], 0), NULL_PTR,
eab89b90 3642 BASE_REG_CLASS, GET_MODE (XEXP (recog_operand[i], 0)),
a8c9daeb 3643 VOIDmode, 0, 0, i, RELOAD_FOR_INPUT);
eab89b90
RK
3644 reload_inc[operand_reloadnum[i]]
3645 = GET_MODE_SIZE (GET_MODE (recog_operand[i]));
a8c9daeb
RK
3646
3647 /* If this operand is an output, we will have made any
3648 reloads for its address as RELOAD_FOR_OUTPUT_ADDRESS, but
3649 now we are treating part of the operand as an input, so
3650 we must change these to RELOAD_FOR_INPUT_ADDRESS. */
3651
2d55b7e8 3652 if (modified[i] == RELOAD_WRITE)
47c8cf91
ILT
3653 {
3654 for (j = 0; j < n_reloads; j++)
3655 {
3656 if (reload_opnum[j] == i)
3657 {
3658 if (reload_when_needed[j] == RELOAD_FOR_OUTPUT_ADDRESS)
3659 reload_when_needed[j] = RELOAD_FOR_INPUT_ADDRESS;
3660 else if (reload_when_needed[j]
3661 == RELOAD_FOR_OUTADDR_ADDRESS)
3662 reload_when_needed[j] = RELOAD_FOR_INPADDR_ADDRESS;
3663 }
3664 }
3665 }
eab89b90
RK
3666 }
3667 else if (goal_alternative_matched[i] == -1)
9ec36da5
JL
3668 {
3669 operand_reloadnum[i]
3670 = push_reload ((modified[i] != RELOAD_WRITE
3671 ? recog_operand[i] : 0),
3672 modified[i] != RELOAD_READ ? recog_operand[i] : 0,
3673 (modified[i] != RELOAD_WRITE
3674 ? recog_operand_loc[i] : 0),
3675 (modified[i] != RELOAD_READ
3676 ? recog_operand_loc[i] : 0),
3677 (enum reg_class) goal_alternative[i],
3678 (modified[i] == RELOAD_WRITE
3679 ? VOIDmode : operand_mode[i]),
3680 (modified[i] == RELOAD_READ
3681 ? VOIDmode : operand_mode[i]),
3682 (insn_code_number < 0 ? 0
3683 : insn_operand_strict_low[insn_code_number][i]),
3684 0, i, operand_type[i]);
3685 if (modified[i] != RELOAD_READ
3686 && GET_CODE (recog_operand[i]) == REG)
3687 last_output_reload_regno = REGNO (recog_operand[i]);
3688 }
eab89b90
RK
3689 /* In a matching pair of operands, one must be input only
3690 and the other must be output only.
3691 Pass the input operand as IN and the other as OUT. */
3692 else if (modified[i] == RELOAD_READ
3693 && modified[goal_alternative_matched[i]] == RELOAD_WRITE)
3694 {
3695 operand_reloadnum[i]
3696 = push_reload (recog_operand[i],
3697 recog_operand[goal_alternative_matched[i]],
3698 recog_operand_loc[i],
3699 recog_operand_loc[goal_alternative_matched[i]],
3700 (enum reg_class) goal_alternative[i],
3701 operand_mode[i],
3702 operand_mode[goal_alternative_matched[i]],
a8c9daeb 3703 0, 0, i, RELOAD_OTHER);
eab89b90 3704 operand_reloadnum[goal_alternative_matched[i]] = output_reloadnum;
9ec36da5
JL
3705 if (GET_CODE (recog_operand[goal_alternative_matched[i]]) == REG)
3706 last_output_reload_regno
3707 = REGNO (recog_operand[goal_alternative_matched[i]]);
eab89b90
RK
3708 }
3709 else if (modified[i] == RELOAD_WRITE
3710 && modified[goal_alternative_matched[i]] == RELOAD_READ)
3711 {
3712 operand_reloadnum[goal_alternative_matched[i]]
3713 = push_reload (recog_operand[goal_alternative_matched[i]],
3714 recog_operand[i],
3715 recog_operand_loc[goal_alternative_matched[i]],
3716 recog_operand_loc[i],
3717 (enum reg_class) goal_alternative[i],
3718 operand_mode[goal_alternative_matched[i]],
3719 operand_mode[i],
a8c9daeb 3720 0, 0, i, RELOAD_OTHER);
eab89b90 3721 operand_reloadnum[i] = output_reloadnum;
9ec36da5
JL
3722 if (GET_CODE (recog_operand[i]) == REG)
3723 last_output_reload_regno = REGNO (recog_operand[i]);
eab89b90
RK
3724 }
3725 else if (insn_code_number >= 0)
3726 abort ();
3727 else
3728 {
3729 error_for_asm (insn, "inconsistent operand constraints in an `asm'");
3730 /* Avoid further trouble with this insn. */
38a448ca 3731 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
eab89b90
RK
3732 n_reloads = 0;
3733 return;
3734 }
3735 }
3736 else if (goal_alternative_matched[i] < 0
3737 && goal_alternative_matches[i] < 0
3738 && optimize)
3739 {
a8c9daeb 3740 /* For each non-matching operand that's a MEM or a pseudo-register
eab89b90
RK
3741 that didn't get a hard register, make an optional reload.
3742 This may get done even if the insn needs no reloads otherwise. */
a8c9daeb
RK
3743
3744 rtx operand = recog_operand[i];
3745
eab89b90
RK
3746 while (GET_CODE (operand) == SUBREG)
3747 operand = XEXP (operand, 0);
a8c9daeb
RK
3748 if ((GET_CODE (operand) == MEM
3749 || (GET_CODE (operand) == REG
3750 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
eab89b90 3751 && (enum reg_class) goal_alternative[i] != NO_REGS
a8c9daeb
RK
3752 && ! no_input_reloads
3753 /* Optional output reloads don't do anything and we mustn't
3754 make in-out reloads on insns that are not permitted output
3755 reloads. */
eab89b90 3756 && (modified[i] == RELOAD_READ
a8c9daeb 3757 || (modified[i] == RELOAD_READ_WRITE && ! no_output_reloads)))
eab89b90
RK
3758 operand_reloadnum[i]
3759 = push_reload (modified[i] != RELOAD_WRITE ? recog_operand[i] : 0,
3760 modified[i] != RELOAD_READ ? recog_operand[i] : 0,
a8c9daeb
RK
3761 (modified[i] != RELOAD_WRITE
3762 ? recog_operand_loc[i] : 0),
3763 (modified[i] != RELOAD_READ
3764 ? recog_operand_loc[i] : 0),
eab89b90 3765 (enum reg_class) goal_alternative[i],
a8c9daeb
RK
3766 (modified[i] == RELOAD_WRITE
3767 ? VOIDmode : operand_mode[i]),
3768 (modified[i] == RELOAD_READ
3769 ? VOIDmode : operand_mode[i]),
eab89b90
RK
3770 (insn_code_number < 0 ? 0
3771 : insn_operand_strict_low[insn_code_number][i]),
a8c9daeb 3772 1, i, operand_type[i]);
eab89b90 3773 }
a8c9daeb
RK
3774 else if (goal_alternative_matches[i] >= 0
3775 && goal_alternative_win[goal_alternative_matches[i]]
3776 && modified[i] == RELOAD_READ
3777 && modified[goal_alternative_matches[i]] == RELOAD_WRITE
3778 && ! no_input_reloads && ! no_output_reloads
3779 && optimize)
3780 {
3781 /* Similarly, make an optional reload for a pair of matching
3782 objects that are in MEM or a pseudo that didn't get a hard reg. */
eab89b90 3783
a8c9daeb
RK
3784 rtx operand = recog_operand[i];
3785
3786 while (GET_CODE (operand) == SUBREG)
3787 operand = XEXP (operand, 0);
3788 if ((GET_CODE (operand) == MEM
3789 || (GET_CODE (operand) == REG
3790 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
3791 && ((enum reg_class) goal_alternative[goal_alternative_matches[i]]
3792 != NO_REGS))
3793 operand_reloadnum[i] = operand_reloadnum[goal_alternative_matches[i]]
3794 = push_reload (recog_operand[goal_alternative_matches[i]],
3795 recog_operand[i],
3796 recog_operand_loc[goal_alternative_matches[i]],
3797 recog_operand_loc[i],
3798 (enum reg_class) goal_alternative[goal_alternative_matches[i]],
3799 operand_mode[goal_alternative_matches[i]],
3800 operand_mode[i],
3801 0, 1, goal_alternative_matches[i], RELOAD_OTHER);
3802 }
3803
eab89b90
RK
3804 /* If this insn pattern contains any MATCH_DUP's, make sure that
3805 they will be substituted if the operands they match are substituted.
3806 Also do now any substitutions we already did on the operands.
3807
3808 Don't do this if we aren't making replacements because we might be
3809 propagating things allocated by frame pointer elimination into places
3810 it doesn't expect. */
3811
3812 if (insn_code_number >= 0 && replace)
3813 for (i = insn_n_dups[insn_code_number] - 1; i >= 0; i--)
3814 {
3815 int opno = recog_dup_num[i];
3816 *recog_dup_loc[i] = *recog_operand_loc[opno];
3817 if (operand_reloadnum[opno] >= 0)
3818 push_replacement (recog_dup_loc[i], operand_reloadnum[opno],
3819 insn_operand_mode[insn_code_number][opno]);
3820 }
3821
3822#if 0
3823 /* This loses because reloading of prior insns can invalidate the equivalence
3824 (or at least find_equiv_reg isn't smart enough to find it any more),
3825 causing this insn to need more reload regs than it needed before.
3826 It may be too late to make the reload regs available.
3827 Now this optimization is done safely in choose_reload_regs. */
3828
3829 /* For each reload of a reg into some other class of reg,
3830 search for an existing equivalent reg (same value now) in the right class.
3831 We can use it as long as we don't need to change its contents. */
3832 for (i = 0; i < n_reloads; i++)
3833 if (reload_reg_rtx[i] == 0
3834 && reload_in[i] != 0
3835 && GET_CODE (reload_in[i]) == REG
3836 && reload_out[i] == 0)
3837 {
3838 reload_reg_rtx[i]
3839 = find_equiv_reg (reload_in[i], insn, reload_reg_class[i], -1,
3840 static_reload_reg_p, 0, reload_inmode[i]);
3841 /* Prevent generation of insn to load the value
3842 because the one we found already has the value. */
3843 if (reload_reg_rtx[i])
3844 reload_in[i] = reload_reg_rtx[i];
3845 }
3846#endif
3847
a8c9daeb
RK
3848 /* Perhaps an output reload can be combined with another
3849 to reduce needs by one. */
3850 if (!goal_earlyclobber)
3851 combine_reloads ();
3852
3853 /* If we have a pair of reloads for parts of an address, they are reloading
3854 the same object, the operands themselves were not reloaded, and they
3855 are for two operands that are supposed to match, merge the reloads and
0f41302f 3856 change the type of the surviving reload to RELOAD_FOR_OPERAND_ADDRESS. */
a8c9daeb
RK
3857
3858 for (i = 0; i < n_reloads; i++)
3859 {
3860 int k;
3861
3862 for (j = i + 1; j < n_reloads; j++)
3863 if ((reload_when_needed[i] == RELOAD_FOR_INPUT_ADDRESS
47c8cf91
ILT
3864 || reload_when_needed[i] == RELOAD_FOR_OUTPUT_ADDRESS
3865 || reload_when_needed[i] == RELOAD_FOR_INPADDR_ADDRESS
3866 || reload_when_needed[i] == RELOAD_FOR_OUTADDR_ADDRESS)
a8c9daeb 3867 && (reload_when_needed[j] == RELOAD_FOR_INPUT_ADDRESS
47c8cf91
ILT
3868 || reload_when_needed[j] == RELOAD_FOR_OUTPUT_ADDRESS
3869 || reload_when_needed[j] == RELOAD_FOR_INPADDR_ADDRESS
3870 || reload_when_needed[j] == RELOAD_FOR_OUTADDR_ADDRESS)
a8c9daeb
RK
3871 && rtx_equal_p (reload_in[i], reload_in[j])
3872 && (operand_reloadnum[reload_opnum[i]] < 0
3873 || reload_optional[operand_reloadnum[reload_opnum[i]]])
3874 && (operand_reloadnum[reload_opnum[j]] < 0
3875 || reload_optional[operand_reloadnum[reload_opnum[j]]])
3876 && (goal_alternative_matches[reload_opnum[i]] == reload_opnum[j]
3877 || (goal_alternative_matches[reload_opnum[j]]
3878 == reload_opnum[i])))
3879 {
3880 for (k = 0; k < n_replacements; k++)
3881 if (replacements[k].what == j)
3882 replacements[k].what = i;
3883
47c8cf91
ILT
3884 if (reload_when_needed[i] == RELOAD_FOR_INPADDR_ADDRESS
3885 || reload_when_needed[i] == RELOAD_FOR_OUTADDR_ADDRESS)
3886 reload_when_needed[i] = RELOAD_FOR_OPADDR_ADDR;
3887 else
3888 reload_when_needed[i] = RELOAD_FOR_OPERAND_ADDRESS;
a8c9daeb
RK
3889 reload_in[j] = 0;
3890 }
3891 }
3892
3893 /* Scan all the reloads and update their type.
3894 If a reload is for the address of an operand and we didn't reload
3895 that operand, change the type. Similarly, change the operand number
3896 of a reload when two operands match. If a reload is optional, treat it
3897 as though the operand isn't reloaded.
3898
3899 ??? This latter case is somewhat odd because if we do the optional
3900 reload, it means the object is hanging around. Thus we need only
3901 do the address reload if the optional reload was NOT done.
3902
3903 Change secondary reloads to be the address type of their operand, not
3904 the normal type.
3905
3906 If an operand's reload is now RELOAD_OTHER, change any
3907 RELOAD_FOR_INPUT_ADDRESS reloads of that operand to
3908 RELOAD_FOR_OTHER_ADDRESS. */
3909
3910 for (i = 0; i < n_reloads; i++)
3911 {
3912 if (reload_secondary_p[i]
3913 && reload_when_needed[i] == operand_type[reload_opnum[i]])
3914 reload_when_needed[i] = address_type[reload_opnum[i]];
3915
3916 if ((reload_when_needed[i] == RELOAD_FOR_INPUT_ADDRESS
47c8cf91
ILT
3917 || reload_when_needed[i] == RELOAD_FOR_OUTPUT_ADDRESS
3918 || reload_when_needed[i] == RELOAD_FOR_INPADDR_ADDRESS
3919 || reload_when_needed[i] == RELOAD_FOR_OUTADDR_ADDRESS)
a8c9daeb 3920 && (operand_reloadnum[reload_opnum[i]] < 0
6ded3228 3921 || reload_optional[operand_reloadnum[reload_opnum[i]]]))
f98bb7d3
RK
3922 {
3923 /* If we have a secondary reload to go along with this reload,
0f41302f 3924 change its type to RELOAD_FOR_OPADDR_ADDR. */
f98bb7d3 3925
47c8cf91
ILT
3926 if ((reload_when_needed[i] == RELOAD_FOR_INPUT_ADDRESS
3927 || reload_when_needed[i] == RELOAD_FOR_INPADDR_ADDRESS)
f98bb7d3
RK
3928 && reload_secondary_in_reload[i] != -1)
3929 {
3930 int secondary_in_reload = reload_secondary_in_reload[i];
3931
db3cf6fb
MS
3932 reload_when_needed[secondary_in_reload]
3933 = RELOAD_FOR_OPADDR_ADDR;
f98bb7d3 3934
0f41302f 3935 /* If there's a tertiary reload we have to change it also. */
f98bb7d3
RK
3936 if (secondary_in_reload > 0
3937 && reload_secondary_in_reload[secondary_in_reload] != -1)
3938 reload_when_needed[reload_secondary_in_reload[secondary_in_reload]]
3939 = RELOAD_FOR_OPADDR_ADDR;
3940 }
3941
47c8cf91
ILT
3942 if ((reload_when_needed[i] == RELOAD_FOR_OUTPUT_ADDRESS
3943 || reload_when_needed[i] == RELOAD_FOR_OUTADDR_ADDRESS)
f98bb7d3
RK
3944 && reload_secondary_out_reload[i] != -1)
3945 {
3946 int secondary_out_reload = reload_secondary_out_reload[i];
3947
db3cf6fb
MS
3948 reload_when_needed[secondary_out_reload]
3949 = RELOAD_FOR_OPADDR_ADDR;
f98bb7d3 3950
0f41302f 3951 /* If there's a tertiary reload we have to change it also. */
f98bb7d3
RK
3952 if (secondary_out_reload
3953 && reload_secondary_out_reload[secondary_out_reload] != -1)
3954 reload_when_needed[reload_secondary_out_reload[secondary_out_reload]]
3955 = RELOAD_FOR_OPADDR_ADDR;
3956 }
e5e809f4
JL
3957
3958 reload_when_needed[i] = RELOAD_FOR_OPERAND_ADDRESS;
f98bb7d3 3959 }
a8c9daeb 3960
47c8cf91
ILT
3961 if ((reload_when_needed[i] == RELOAD_FOR_INPUT_ADDRESS
3962 || reload_when_needed[i] == RELOAD_FOR_INPADDR_ADDRESS)
a8c9daeb
RK
3963 && operand_reloadnum[reload_opnum[i]] >= 0
3964 && (reload_when_needed[operand_reloadnum[reload_opnum[i]]]
3965 == RELOAD_OTHER))
3966 reload_when_needed[i] = RELOAD_FOR_OTHER_ADDRESS;
3967
3968 if (goal_alternative_matches[reload_opnum[i]] >= 0)
3969 reload_opnum[i] = goal_alternative_matches[reload_opnum[i]];
3970 }
3971
a94ce333
JW
3972 /* Scan all the reloads, and check for RELOAD_FOR_OPERAND_ADDRESS reloads.
3973 If we have more than one, then convert all RELOAD_FOR_OPADDR_ADDR
3974 reloads to RELOAD_FOR_OPERAND_ADDRESS reloads.
3975
3976 choose_reload_regs assumes that RELOAD_FOR_OPADDR_ADDR reloads never
3977 conflict with RELOAD_FOR_OPERAND_ADDRESS reloads. This is true for a
3978 single pair of RELOAD_FOR_OPADDR_ADDR/RELOAD_FOR_OPERAND_ADDRESS reloads.
3979 However, if there is more than one RELOAD_FOR_OPERAND_ADDRESS reload,
3980 then a RELOAD_FOR_OPADDR_ADDR reload conflicts with all
3981 RELOAD_FOR_OPERAND_ADDRESS reloads other than the one that uses it.
3982 This is complicated by the fact that a single operand can have more
3983 than one RELOAD_FOR_OPERAND_ADDRESS reload. It is very difficult to fix
3984 choose_reload_regs without affecting code quality, and cases that
3985 actually fail are extremely rare, so it turns out to be better to fix
3986 the problem here by not generating cases that choose_reload_regs will
3987 fail for. */
d3adbeea 3988 /* There is a similar problem with RELOAD_FOR_INPUT_ADDRESS /
826e3854
R
3989 RELOAD_FOR_OUTPUT_ADDRESS when there is more than one of a kind for
3990 a single operand.
3991 We can reduce the register pressure by exploiting that a
3992 RELOAD_FOR_X_ADDR_ADDR that precedes all RELOAD_FOR_X_ADDRESS reloads
c10638c9
R
3993 does not conflict with any of them, if it is only used for the first of
3994 the RELOAD_FOR_X_ADDRESS reloads. */
a94ce333 3995 {
826e3854
R
3996 int first_op_addr_num = -2;
3997 int first_inpaddr_num[MAX_RECOG_OPERANDS];
3998 int first_outpaddr_num[MAX_RECOG_OPERANDS];
3999 int need_change= 0;
4000 /* We use last_op_addr_reload and the contents of the above arrays
4001 first as flags - -2 means no instance encountered, -1 means exactly
4002 one instance encountered.
4003 If more than one instance has been encountered, we store the reload
4004 number of the first reload of the kind in question; reload numbers
4005 are known to be non-negative. */
4006 for (i = 0; i < noperands; i++)
4007 first_inpaddr_num[i] = first_outpaddr_num[i] = -2;
4008 for (i = n_reloads - 1; i >= 0; i--)
4009 {
4010 switch (reload_when_needed[i])
4011 {
4012 case RELOAD_FOR_OPERAND_ADDRESS:
c10638c9 4013 if (++first_op_addr_num >= 0)
826e3854 4014 {
c10638c9 4015 first_op_addr_num = i;
826e3854
R
4016 need_change = 1;
4017 }
4018 break;
4019 case RELOAD_FOR_INPUT_ADDRESS:
c10638c9 4020 if (++first_inpaddr_num[reload_opnum[i]] >= 0)
826e3854
R
4021 {
4022 first_inpaddr_num[reload_opnum[i]] = i;
4023 need_change = 1;
4024 }
4025 break;
4026 case RELOAD_FOR_OUTPUT_ADDRESS:
c10638c9 4027 if (++first_outpaddr_num[reload_opnum[i]] >= 0)
826e3854
R
4028 {
4029 first_outpaddr_num[reload_opnum[i]] = i;
4030 need_change = 1;
4031 }
4032 break;
4033 default:
4034 break;
4035 }
4036 }
a94ce333 4037
826e3854
R
4038 if (need_change)
4039 {
4040 for (i = 0; i < n_reloads; i++)
4041 {
4042 int first_num, type;
4043
4044 switch (reload_when_needed[i])
4045 {
4046 case RELOAD_FOR_OPADDR_ADDR:
4047 first_num = first_op_addr_num;
4048 type = RELOAD_FOR_OPERAND_ADDRESS;
4049 break;
4050 case RELOAD_FOR_INPADDR_ADDRESS:
4051 first_num = first_inpaddr_num[reload_opnum[i]];
4052 type = RELOAD_FOR_INPUT_ADDRESS;
4053 break;
4054 case RELOAD_FOR_OUTADDR_ADDRESS:
4055 first_num = first_outpaddr_num[reload_opnum[i]];
4056 type = RELOAD_FOR_OUTPUT_ADDRESS;
4057 break;
4058 default:
4059 continue;
4060 }
c10638c9
R
4061 if (first_num < 0)
4062 continue;
4063 else if (i > first_num)
826e3854 4064 reload_when_needed[i] = type;
c10638c9
R
4065 else
4066 {
4067 /* Check if the only TYPE reload that uses reload I is
4068 reload FIRST_NUM. */
4069 for (j = n_reloads - 1; j > first_num; j--)
4070 {
4071 if (reload_when_needed[j] == type
4072 && reg_mentioned_p (reload_in[i], reload_in[j]))
4073 {
4074 reload_when_needed[i] = type;
4075 break;
4076 }
4077 }
4078 }
826e3854
R
4079 }
4080 }
a94ce333
JW
4081 }
4082
a8c9daeb
RK
4083 /* See if we have any reloads that are now allowed to be merged
4084 because we've changed when the reload is needed to
4085 RELOAD_FOR_OPERAND_ADDRESS or RELOAD_FOR_OTHER_ADDRESS. Only
4086 check for the most common cases. */
4087
4088 for (i = 0; i < n_reloads; i++)
4089 if (reload_in[i] != 0 && reload_out[i] == 0
4090 && (reload_when_needed[i] == RELOAD_FOR_OPERAND_ADDRESS
47c8cf91 4091 || reload_when_needed[i] == RELOAD_FOR_OPADDR_ADDR
a8c9daeb
RK
4092 || reload_when_needed[i] == RELOAD_FOR_OTHER_ADDRESS))
4093 for (j = 0; j < n_reloads; j++)
4094 if (i != j && reload_in[j] != 0 && reload_out[j] == 0
4095 && reload_when_needed[j] == reload_when_needed[i]
73f67895
RS
4096 && MATCHES (reload_in[i], reload_in[j])
4097 && reload_reg_class[i] == reload_reg_class[j]
92b37691
RK
4098 && !reload_nocombine[i] && !reload_nocombine[j]
4099 && reload_reg_rtx[i] == reload_reg_rtx[j])
a8c9daeb
RK
4100 {
4101 reload_opnum[i] = MIN (reload_opnum[i], reload_opnum[j]);
4102 transfer_replacements (i, j);
4103 reload_in[j] = 0;
4104 }
4105
f5963e61
JL
4106 /* Set which reloads must use registers not used in any group. Start
4107 with those that conflict with a group and then include ones that
4108 conflict with ones that are already known to conflict with a group. */
4109
4110 changed = 0;
4111 for (i = 0; i < n_reloads; i++)
4112 {
4113 enum machine_mode mode = reload_inmode[i];
4114 enum reg_class class = reload_reg_class[i];
4115 int size;
4116
4117 if (GET_MODE_SIZE (reload_outmode[i]) > GET_MODE_SIZE (mode))
4118 mode = reload_outmode[i];
4119 size = CLASS_MAX_NREGS (class, mode);
4120
4121 if (size == 1)
4122 for (j = 0; j < n_reloads; j++)
4123 if ((CLASS_MAX_NREGS (reload_reg_class[j],
4124 (GET_MODE_SIZE (reload_outmode[j])
4125 > GET_MODE_SIZE (reload_inmode[j]))
4126 ? reload_outmode[j] : reload_inmode[j])
4127 > 1)
4128 && !reload_optional[j]
4129 && (reload_in[j] != 0 || reload_out[j] != 0
4130 || reload_secondary_p[j])
4131 && reloads_conflict (i, j)
4132 && reg_classes_intersect_p (class, reload_reg_class[j]))
4133 {
4134 reload_nongroup[i] = 1;
4135 changed = 1;
4136 break;
4137 }
4138 }
4139
4140 while (changed)
4141 {
4142 changed = 0;
4143
4144 for (i = 0; i < n_reloads; i++)
4145 {
4146 enum machine_mode mode = reload_inmode[i];
4147 enum reg_class class = reload_reg_class[i];
4148 int size;
4149
4150 if (GET_MODE_SIZE (reload_outmode[i]) > GET_MODE_SIZE (mode))
4151 mode = reload_outmode[i];
4152 size = CLASS_MAX_NREGS (class, mode);
4153
4154 if (! reload_nongroup[i] && size == 1)
4155 for (j = 0; j < n_reloads; j++)
4156 if (reload_nongroup[j]
4157 && reloads_conflict (i, j)
4158 && reg_classes_intersect_p (class, reload_reg_class[j]))
4159 {
4160 reload_nongroup[i] = 1;
4161 changed = 1;
4162 break;
4163 }
4164 }
4165 }
4166
eab89b90
RK
4167#else /* no REGISTER_CONSTRAINTS */
4168 int noperands;
4169 int insn_code_number;
4170 int goal_earlyclobber = 0; /* Always 0, to make combine_reloads happen. */
4171 register int i;
4172 rtx body = PATTERN (insn);
4173
4174 n_reloads = 0;
4175 n_replacements = 0;
4176 n_earlyclobbers = 0;
4177 replace_reloads = replace;
4178 this_insn = insn;
4179
4180 /* Find what kind of insn this is. NOPERANDS gets number of operands.
4181 Store the operand values in RECOG_OPERAND and the locations
4182 of the words in the insn that point to them in RECOG_OPERAND_LOC.
4183 Return if the insn needs no reload processing. */
4184
4185 switch (GET_CODE (body))
4186 {
4187 case USE:
4188 case CLOBBER:
4189 case ASM_INPUT:
4190 case ADDR_VEC:
4191 case ADDR_DIFF_VEC:
4192 return;
4193
4194 case PARALLEL:
4195 case SET:
4196 noperands = asm_noperands (body);
4197 if (noperands >= 0)
4198 {
4199 /* This insn is an `asm' with operands.
4200 First, find out how many operands, and allocate space. */
4201
4202 insn_code_number = -1;
4203 /* ??? This is a bug! ???
4204 Give up and delete this insn if it has too many operands. */
4205 if (noperands > MAX_RECOG_OPERANDS)
4206 abort ();
4207
4208 /* Now get the operand values out of the insn. */
4209
fb3821f7
CH
4210 decode_asm_operands (body, recog_operand, recog_operand_loc,
4211 NULL_PTR, NULL_PTR);
eab89b90
RK
4212 break;
4213 }
4214
4215 default:
4216 /* Ordinary insn: recognize it, allocate space for operands and
4217 constraints, and get them out via insn_extract. */
4218
4219 insn_code_number = recog_memoized (insn);
4220 noperands = insn_n_operands[insn_code_number];
4221 insn_extract (insn);
4222 }
4223
4224 if (noperands == 0)
4225 return;
4226
4227 for (i = 0; i < noperands; i++)
4228 {
4229 register RTX_CODE code = GET_CODE (recog_operand[i]);
4230 int is_set_dest = GET_CODE (body) == SET && (i == 0);
4231
4232 if (insn_code_number >= 0)
4233 if (insn_operand_address_p[insn_code_number][i])
fb3821f7 4234 find_reloads_address (VOIDmode, NULL_PTR,
eab89b90 4235 recog_operand[i], recog_operand_loc[i],
55c22565 4236 i, RELOAD_FOR_INPUT, ind_levels, insn);
a8c9daeb
RK
4237
4238 /* In these cases, we can't tell if the operand is an input
4239 or an output, so be conservative. In practice it won't be
4240 problem. */
4241
eab89b90
RK
4242 if (code == MEM)
4243 find_reloads_address (GET_MODE (recog_operand[i]),
4244 recog_operand_loc[i],
4245 XEXP (recog_operand[i], 0),
4246 &XEXP (recog_operand[i], 0),
55c22565 4247 i, RELOAD_OTHER, ind_levels, insn);
eab89b90
RK
4248 if (code == SUBREG)
4249 recog_operand[i] = *recog_operand_loc[i]
a8c9daeb
RK
4250 = find_reloads_toplev (recog_operand[i], i, RELOAD_OTHER,
4251 ind_levels, is_set_dest);
eab89b90
RK
4252 if (code == REG)
4253 {
4254 register int regno = REGNO (recog_operand[i]);
4255 if (reg_equiv_constant[regno] != 0 && !is_set_dest)
4256 recog_operand[i] = *recog_operand_loc[i]
4257 = reg_equiv_constant[regno];
4258#if 0 /* This might screw code in reload1.c to delete prior output-reload
4259 that feeds this insn. */
4260 if (reg_equiv_mem[regno] != 0)
4261 recog_operand[i] = *recog_operand_loc[i]
4262 = reg_equiv_mem[regno];
4263#endif
4264 }
eab89b90
RK
4265 }
4266
4267 /* Perhaps an output reload can be combined with another
4268 to reduce needs by one. */
4269 if (!goal_earlyclobber)
4270 combine_reloads ();
a8c9daeb 4271#endif /* no REGISTER_CONSTRAINTS */
eab89b90
RK
4272}
4273
4274/* Return 1 if alternative number ALTNUM in constraint-string CONSTRAINT
4275 accepts a memory operand with constant address. */
4276
4277static int
4278alternative_allows_memconst (constraint, altnum)
4279 char *constraint;
4280 int altnum;
4281{
4282 register int c;
4283 /* Skip alternatives before the one requested. */
4284 while (altnum > 0)
4285 {
4286 while (*constraint++ != ',');
4287 altnum--;
4288 }
4289 /* Scan the requested alternative for 'm' or 'o'.
4290 If one of them is present, this alternative accepts memory constants. */
4291 while ((c = *constraint++) && c != ',' && c != '#')
4292 if (c == 'm' || c == 'o')
4293 return 1;
4294 return 0;
4295}
4296\f
4297/* Scan X for memory references and scan the addresses for reloading.
4298 Also checks for references to "constant" regs that we want to eliminate
4299 and replaces them with the values they stand for.
6dc42e49 4300 We may alter X destructively if it contains a reference to such.
eab89b90
RK
4301 If X is just a constant reg, we return the equivalent value
4302 instead of X.
4303
4304 IND_LEVELS says how many levels of indirect addressing this machine
4305 supports.
4306
a8c9daeb
RK
4307 OPNUM and TYPE identify the purpose of the reload.
4308
eab89b90
RK
4309 IS_SET_DEST is true if X is the destination of a SET, which is not
4310 appropriate to be replaced by a constant. */
4311
4312static rtx
a8c9daeb 4313find_reloads_toplev (x, opnum, type, ind_levels, is_set_dest)
eab89b90 4314 rtx x;
a8c9daeb
RK
4315 int opnum;
4316 enum reload_type type;
eab89b90
RK
4317 int ind_levels;
4318 int is_set_dest;
4319{
4320 register RTX_CODE code = GET_CODE (x);
4321
4322 register char *fmt = GET_RTX_FORMAT (code);
4323 register int i;
4324
4325 if (code == REG)
4326 {
4327 /* This code is duplicated for speed in find_reloads. */
4328 register int regno = REGNO (x);
4329 if (reg_equiv_constant[regno] != 0 && !is_set_dest)
4330 x = reg_equiv_constant[regno];
4331#if 0
4332/* This creates (subreg (mem...)) which would cause an unnecessary
4333 reload of the mem. */
4334 else if (reg_equiv_mem[regno] != 0)
4335 x = reg_equiv_mem[regno];
4336#endif
4337 else if (reg_equiv_address[regno] != 0)
4338 {
4339 /* If reg_equiv_address varies, it may be shared, so copy it. */
4ffeab02
JW
4340 /* We must rerun eliminate_regs, in case the elimination
4341 offsets have changed. */
4342 rtx addr = XEXP (eliminate_regs (reg_equiv_memory_loc[regno], 0,
1914f5da 4343 NULL_RTX),
4ffeab02 4344 0);
eab89b90
RK
4345
4346 if (rtx_varies_p (addr))
4347 addr = copy_rtx (addr);
4348
38a448ca 4349 x = gen_rtx_MEM (GET_MODE (x), addr);
eab89b90 4350 RTX_UNCHANGING_P (x) = RTX_UNCHANGING_P (regno_reg_rtx[regno]);
fb3821f7 4351 find_reloads_address (GET_MODE (x), NULL_PTR,
eab89b90 4352 XEXP (x, 0),
55c22565 4353 &XEXP (x, 0), opnum, type, ind_levels, 0);
eab89b90
RK
4354 }
4355 return x;
4356 }
4357 if (code == MEM)
4358 {
4359 rtx tem = x;
4360 find_reloads_address (GET_MODE (x), &tem, XEXP (x, 0), &XEXP (x, 0),
55c22565 4361 opnum, type, ind_levels, 0);
eab89b90
RK
4362 return tem;
4363 }
4364
4365 if (code == SUBREG && GET_CODE (SUBREG_REG (x)) == REG)
4366 {
4367 /* Check for SUBREG containing a REG that's equivalent to a constant.
4368 If the constant has a known value, truncate it right now.
4369 Similarly if we are extracting a single-word of a multi-word
4370 constant. If the constant is symbolic, allow it to be substituted
4371 normally. push_reload will strip the subreg later. If the
4372 constant is VOIDmode, abort because we will lose the mode of
4373 the register (this should never happen because one of the cases
4374 above should handle it). */
4375
4376 register int regno = REGNO (SUBREG_REG (x));
4377 rtx tem;
4378
4379 if (subreg_lowpart_p (x)
4380 && regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
4381 && reg_equiv_constant[regno] != 0
4382 && (tem = gen_lowpart_common (GET_MODE (x),
4383 reg_equiv_constant[regno])) != 0)
4384 return tem;
4385
4386 if (GET_MODE_BITSIZE (GET_MODE (x)) == BITS_PER_WORD
4387 && regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
4388 && reg_equiv_constant[regno] != 0
4389 && (tem = operand_subword (reg_equiv_constant[regno],
4390 SUBREG_WORD (x), 0,
4391 GET_MODE (SUBREG_REG (x)))) != 0)
0365438d
JL
4392 {
4393 /* TEM is now a word sized constant for the bits from X that
4394 we wanted. However, TEM may be the wrong representation.
4395
4396 Use gen_lowpart_common to convert a CONST_INT into a
4397 CONST_DOUBLE and vice versa as needed according to by the mode
4398 of the SUBREG. */
4399 tem = gen_lowpart_common (GET_MODE (x), tem);
4400 if (!tem)
4401 abort ();
4402 return tem;
4403 }
eab89b90 4404
2fd0af53
R
4405 /* If the SUBREG is wider than a word, the above test will fail.
4406 For example, we might have a SImode SUBREG of a DImode SUBREG_REG
4407 for a 16 bit target, or a DImode SUBREG of a TImode SUBREG_REG for
4408 a 32 bit target. We still can - and have to - handle this
4409 for non-paradoxical subregs of CONST_INTs. */
4410 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
4411 && reg_equiv_constant[regno] != 0
4412 && GET_CODE (reg_equiv_constant[regno]) == CONST_INT
4413 && (GET_MODE_SIZE (GET_MODE (x))
4414 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))))
4415 {
4416 int shift = SUBREG_WORD (x) * BITS_PER_WORD;
4417 if (WORDS_BIG_ENDIAN)
4418 shift = (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
4419 - GET_MODE_BITSIZE (GET_MODE (x))
4420 - shift);
4421 /* Here we use the knowledge that CONST_INTs have a
4422 HOST_WIDE_INT field. */
4423 if (shift >= HOST_BITS_PER_WIDE_INT)
4424 shift = HOST_BITS_PER_WIDE_INT - 1;
4425 return GEN_INT (INTVAL (reg_equiv_constant[regno]) >> shift);
4426 }
4427
eab89b90
RK
4428 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
4429 && reg_equiv_constant[regno] != 0
4430 && GET_MODE (reg_equiv_constant[regno]) == VOIDmode)
4431 abort ();
4432
4433 /* If the subreg contains a reg that will be converted to a mem,
4434 convert the subreg to a narrower memref now.
4435 Otherwise, we would get (subreg (mem ...) ...),
4436 which would force reload of the mem.
4437
4438 We also need to do this if there is an equivalent MEM that is
4439 not offsettable. In that case, alter_subreg would produce an
4440 invalid address on big-endian machines.
4441
46da6b3a 4442 For machines that extend byte loads, we must not reload using
eab89b90
RK
4443 a wider mode if we have a paradoxical SUBREG. find_reloads will
4444 force a reload in that case. So we should not do anything here. */
4445
4446 else if (regno >= FIRST_PSEUDO_REGISTER
fd72420f 4447#ifdef LOAD_EXTEND_OP
eab89b90
RK
4448 && (GET_MODE_SIZE (GET_MODE (x))
4449 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
4450#endif
4451 && (reg_equiv_address[regno] != 0
4452 || (reg_equiv_mem[regno] != 0
f2fbfe92
JL
4453 && (! strict_memory_address_p (GET_MODE (x),
4454 XEXP (reg_equiv_mem[regno], 0))
4455 || ! offsettable_memref_p (reg_equiv_mem[regno])))))
eab89b90
RK
4456 {
4457 int offset = SUBREG_WORD (x) * UNITS_PER_WORD;
4ffeab02
JW
4458 /* We must rerun eliminate_regs, in case the elimination
4459 offsets have changed. */
4460 rtx addr = XEXP (eliminate_regs (reg_equiv_memory_loc[regno], 0,
1914f5da 4461 NULL_RTX),
4ffeab02 4462 0);
f76b9db2
ILT
4463 if (BYTES_BIG_ENDIAN)
4464 {
4465 int size;
4466 size = GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)));
4467 offset += MIN (size, UNITS_PER_WORD);
4468 size = GET_MODE_SIZE (GET_MODE (x));
4469 offset -= MIN (size, UNITS_PER_WORD);
4470 }
eab89b90 4471 addr = plus_constant (addr, offset);
38a448ca 4472 x = gen_rtx_MEM (GET_MODE (x), addr);
eab89b90 4473 RTX_UNCHANGING_P (x) = RTX_UNCHANGING_P (regno_reg_rtx[regno]);
fb3821f7 4474 find_reloads_address (GET_MODE (x), NULL_PTR,
eab89b90 4475 XEXP (x, 0),
55c22565 4476 &XEXP (x, 0), opnum, type, ind_levels, 0);
eab89b90
RK
4477 }
4478
4479 }
4480
4481 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4482 {
4483 if (fmt[i] == 'e')
a8c9daeb 4484 XEXP (x, i) = find_reloads_toplev (XEXP (x, i), opnum, type,
eab89b90
RK
4485 ind_levels, is_set_dest);
4486 }
4487 return x;
4488}
4489
dbf85761
RS
4490/* Return a mem ref for the memory equivalent of reg REGNO.
4491 This mem ref is not shared with anything. */
4492
eab89b90
RK
4493static rtx
4494make_memloc (ad, regno)
4495 rtx ad;
4496 int regno;
4497{
29a82058 4498#if 0
eab89b90 4499 register int i;
29a82058 4500#endif
4ffeab02
JW
4501 /* We must rerun eliminate_regs, in case the elimination
4502 offsets have changed. */
1914f5da 4503 rtx tem = XEXP (eliminate_regs (reg_equiv_memory_loc[regno], 0, NULL_RTX), 0);
dbf85761
RS
4504
4505#if 0 /* We cannot safely reuse a memloc made here;
4506 if the pseudo appears twice, and its mem needs a reload,
4507 it gets two separate reloads assigned, but it only
4508 gets substituted with the second of them;
4509 then it can get used before that reload reg gets loaded up. */
eab89b90
RK
4510 for (i = 0; i < n_memlocs; i++)
4511 if (rtx_equal_p (tem, XEXP (memlocs[i], 0)))
4512 return memlocs[i];
dbf85761 4513#endif
eab89b90
RK
4514
4515 /* If TEM might contain a pseudo, we must copy it to avoid
4516 modifying it when we do the substitution for the reload. */
4517 if (rtx_varies_p (tem))
4518 tem = copy_rtx (tem);
4519
38a448ca 4520 tem = gen_rtx_MEM (GET_MODE (ad), tem);
eab89b90
RK
4521 RTX_UNCHANGING_P (tem) = RTX_UNCHANGING_P (regno_reg_rtx[regno]);
4522 memlocs[n_memlocs++] = tem;
4523 return tem;
4524}
4525
4526/* Record all reloads needed for handling memory address AD
4527 which appears in *LOC in a memory reference to mode MODE
4528 which itself is found in location *MEMREFLOC.
4529 Note that we take shortcuts assuming that no multi-reg machine mode
4530 occurs as part of an address.
4531
a8c9daeb 4532 OPNUM and TYPE specify the purpose of this reload.
eab89b90
RK
4533
4534 IND_LEVELS says how many levels of indirect addressing this machine
4535 supports.
4536
55c22565
RK
4537 INSN, if nonzero, is the insn in which we do the reload. It is used
4538 to determine if we may generate output reloads.
4539
eab89b90
RK
4540 Value is nonzero if this address is reloaded or replaced as a whole.
4541 This is interesting to the caller if the address is an autoincrement.
4542
4543 Note that there is no verification that the address will be valid after
4544 this routine does its work. Instead, we rely on the fact that the address
4545 was valid when reload started. So we need only undo things that reload
4546 could have broken. These are wrong register types, pseudos not allocated
4547 to a hard register, and frame pointer elimination. */
4548
4549static int
55c22565 4550find_reloads_address (mode, memrefloc, ad, loc, opnum, type, ind_levels, insn)
eab89b90
RK
4551 enum machine_mode mode;
4552 rtx *memrefloc;
4553 rtx ad;
4554 rtx *loc;
a8c9daeb
RK
4555 int opnum;
4556 enum reload_type type;
eab89b90 4557 int ind_levels;
55c22565 4558 rtx insn;
eab89b90
RK
4559{
4560 register int regno;
4561 rtx tem;
4562
4563 /* If the address is a register, see if it is a legitimate address and
4564 reload if not. We first handle the cases where we need not reload
4565 or where we must reload in a non-standard way. */
4566
4567 if (GET_CODE (ad) == REG)
4568 {
4569 regno = REGNO (ad);
4570
4571 if (reg_equiv_constant[regno] != 0
4572 && strict_memory_address_p (mode, reg_equiv_constant[regno]))
4573 {
4574 *loc = ad = reg_equiv_constant[regno];
4575 return 1;
4576 }
4577
4578 else if (reg_equiv_address[regno] != 0)
4579 {
4580 tem = make_memloc (ad, regno);
fb3821f7 4581 find_reloads_address (GET_MODE (tem), NULL_PTR, XEXP (tem, 0),
47c8cf91 4582 &XEXP (tem, 0), opnum, ADDR_TYPE (type),
55c22565 4583 ind_levels, insn);
1ba61f4e
ILT
4584 push_reload (tem, NULL_RTX, loc, NULL_PTR,
4585 reload_address_base_reg_class,
eab89b90 4586 GET_MODE (ad), VOIDmode, 0, 0,
a8c9daeb 4587 opnum, type);
eab89b90
RK
4588 return 1;
4589 }
4590
b39555b4 4591 /* We can avoid a reload if the register's equivalent memory expression
c1875d66
RS
4592 is valid as an indirect memory address.
4593 But not all addresses are valid in a mem used as an indirect address:
4594 only reg or reg+constant. */
b39555b4
RS
4595
4596 else if (reg_equiv_mem[regno] != 0 && ind_levels > 0
c1875d66
RS
4597 && strict_memory_address_p (mode, reg_equiv_mem[regno])
4598 && (GET_CODE (XEXP (reg_equiv_mem[regno], 0)) == REG
4599 || (GET_CODE (XEXP (reg_equiv_mem[regno], 0)) == PLUS
4600 && GET_CODE (XEXP (XEXP (reg_equiv_mem[regno], 0), 0)) == REG
75301d68 4601 && CONSTANT_P (XEXP (XEXP (reg_equiv_mem[regno], 0), 1)))))
b39555b4 4602 return 0;
eab89b90
RK
4603
4604 /* The only remaining case where we can avoid a reload is if this is a
4605 hard register that is valid as a base register and which is not the
4606 subject of a CLOBBER in this insn. */
4607
858c3c8c
ILT
4608 else if (regno < FIRST_PSEUDO_REGISTER
4609 && REGNO_MODE_OK_FOR_BASE_P (regno, mode)
eab89b90
RK
4610 && ! regno_clobbered_p (regno, this_insn))
4611 return 0;
4612
4613 /* If we do not have one of the cases above, we must do the reload. */
1ba61f4e 4614 push_reload (ad, NULL_RTX, loc, NULL_PTR, reload_address_base_reg_class,
a8c9daeb 4615 GET_MODE (ad), VOIDmode, 0, 0, opnum, type);
eab89b90
RK
4616 return 1;
4617 }
4618
4619 if (strict_memory_address_p (mode, ad))
4620 {
4621 /* The address appears valid, so reloads are not needed.
4622 But the address may contain an eliminable register.
4623 This can happen because a machine with indirect addressing
4624 may consider a pseudo register by itself a valid address even when
4625 it has failed to get a hard reg.
4626 So do a tree-walk to find and eliminate all such regs. */
4627
4628 /* But first quickly dispose of a common case. */
4629 if (GET_CODE (ad) == PLUS
4630 && GET_CODE (XEXP (ad, 1)) == CONST_INT
4631 && GET_CODE (XEXP (ad, 0)) == REG
4632 && reg_equiv_constant[REGNO (XEXP (ad, 0))] == 0)
4633 return 0;
4634
4635 subst_reg_equivs_changed = 0;
4636 *loc = subst_reg_equivs (ad);
4637
4638 if (! subst_reg_equivs_changed)
4639 return 0;
4640
4641 /* Check result for validity after substitution. */
4642 if (strict_memory_address_p (mode, ad))
4643 return 0;
4644 }
4645
a9a2595b
JR
4646#ifdef LEGITIMIZE_RELOAD_ADDRESS
4647 do
4648 {
4649 if (memrefloc)
4650 {
4651 LEGITIMIZE_RELOAD_ADDRESS (ad, GET_MODE (*memrefloc), opnum, type,
4652 ind_levels, win);
4653 }
4654 break;
4655 win:
4656 *memrefloc = copy_rtx (*memrefloc);
4657 XEXP (*memrefloc, 0) = ad;
4658 move_replacements (&ad, &XEXP (*memrefloc, 0));
4659 return 1;
4660 }
4661 while (0);
4662#endif
4663
eab89b90
RK
4664 /* The address is not valid. We have to figure out why. One possibility
4665 is that it is itself a MEM. This can happen when the frame pointer is
4666 being eliminated, a pseudo is not allocated to a hard register, and the
4667 offset between the frame and stack pointers is not its initial value.
d45cf215 4668 In that case the pseudo will have been replaced by a MEM referring to
eab89b90
RK
4669 the stack pointer. */
4670 if (GET_CODE (ad) == MEM)
4671 {
4672 /* First ensure that the address in this MEM is valid. Then, unless
4673 indirect addresses are valid, reload the MEM into a register. */
4674 tem = ad;
4675 find_reloads_address (GET_MODE (ad), &tem, XEXP (ad, 0), &XEXP (ad, 0),
47c8cf91 4676 opnum, ADDR_TYPE (type),
55c22565 4677 ind_levels == 0 ? 0 : ind_levels - 1, insn);
d2555454
RS
4678
4679 /* If tem was changed, then we must create a new memory reference to
4680 hold it and store it back into memrefloc. */
4681 if (tem != ad && memrefloc)
ca3e4a2f 4682 {
ca3e4a2f 4683 *memrefloc = copy_rtx (*memrefloc);
3c80f7ed 4684 copy_replacements (tem, XEXP (*memrefloc, 0));
ca3e4a2f 4685 loc = &XEXP (*memrefloc, 0);
ca3e4a2f 4686 }
d2555454 4687
eab89b90
RK
4688 /* Check similar cases as for indirect addresses as above except
4689 that we can allow pseudos and a MEM since they should have been
4690 taken care of above. */
4691
4692 if (ind_levels == 0
4693 || (GET_CODE (XEXP (tem, 0)) == SYMBOL_REF && ! indirect_symref_ok)
4694 || GET_CODE (XEXP (tem, 0)) == MEM
4695 || ! (GET_CODE (XEXP (tem, 0)) == REG
4696 || (GET_CODE (XEXP (tem, 0)) == PLUS
4697 && GET_CODE (XEXP (XEXP (tem, 0), 0)) == REG
4698 && GET_CODE (XEXP (XEXP (tem, 0), 1)) == CONST_INT)))
4699 {
4700 /* Must use TEM here, not AD, since it is the one that will
4701 have any subexpressions reloaded, if needed. */
fb3821f7 4702 push_reload (tem, NULL_RTX, loc, NULL_PTR,
1ba61f4e
ILT
4703 reload_address_base_reg_class, GET_MODE (tem),
4704 VOIDmode, 0,
a8c9daeb 4705 0, opnum, type);
eab89b90
RK
4706 return 1;
4707 }
4708 else
4709 return 0;
4710 }
4711
1b4d2764
RK
4712 /* If we have address of a stack slot but it's not valid because the
4713 displacement is too large, compute the sum in a register.
4714 Handle all base registers here, not just fp/ap/sp, because on some
4715 targets (namely SH) we can also get too large displacements from
4716 big-endian corrections. */
eab89b90 4717 else if (GET_CODE (ad) == PLUS
1b4d2764
RK
4718 && GET_CODE (XEXP (ad, 0)) == REG
4719 && REGNO (XEXP (ad, 0)) < FIRST_PSEUDO_REGISTER
858c3c8c 4720 && REG_MODE_OK_FOR_BASE_P (XEXP (ad, 0), mode)
eab89b90
RK
4721 && GET_CODE (XEXP (ad, 1)) == CONST_INT)
4722 {
4723 /* Unshare the MEM rtx so we can safely alter it. */
4724 if (memrefloc)
4725 {
eab89b90
RK
4726 *memrefloc = copy_rtx (*memrefloc);
4727 loc = &XEXP (*memrefloc, 0);
eab89b90
RK
4728 }
4729 if (double_reg_address_ok)
4730 {
4731 /* Unshare the sum as well. */
4732 *loc = ad = copy_rtx (ad);
4733 /* Reload the displacement into an index reg.
4734 We assume the frame pointer or arg pointer is a base reg. */
4735 find_reloads_address_part (XEXP (ad, 1), &XEXP (ad, 1),
1ba61f4e
ILT
4736 reload_address_index_reg_class,
4737 GET_MODE (ad), opnum, type, ind_levels);
eab89b90
RK
4738 }
4739 else
4740 {
4741 /* If the sum of two regs is not necessarily valid,
4742 reload the sum into a base reg.
4743 That will at least work. */
1ba61f4e
ILT
4744 find_reloads_address_part (ad, loc, reload_address_base_reg_class,
4745 Pmode, opnum, type, ind_levels);
eab89b90
RK
4746 }
4747 return 1;
4748 }
4749
4750 /* If we have an indexed stack slot, there are three possible reasons why
4751 it might be invalid: The index might need to be reloaded, the address
4752 might have been made by frame pointer elimination and hence have a
f302eea3 4753 constant out of range, or both reasons might apply.
eab89b90
RK
4754
4755 We can easily check for an index needing reload, but even if that is the
4756 case, we might also have an invalid constant. To avoid making the
4757 conservative assumption and requiring two reloads, we see if this address
4758 is valid when not interpreted strictly. If it is, the only problem is
4759 that the index needs a reload and find_reloads_address_1 will take care
4760 of it.
4761
4762 There is still a case when we might generate an extra reload,
4763 however. In certain cases eliminate_regs will return a MEM for a REG
4764 (see the code there for details). In those cases, memory_address_p
4765 applied to our address will return 0 so we will think that our offset
4766 must be too large. But it might indeed be valid and the only problem
4767 is that a MEM is present where a REG should be. This case should be
4768 very rare and there doesn't seem to be any way to avoid it.
4769
4770 If we decide to do something here, it must be that
4771 `double_reg_address_ok' is true and that this address rtl was made by
4772 eliminate_regs. We generate a reload of the fp/sp/ap + constant and
4773 rework the sum so that the reload register will be added to the index.
4774 This is safe because we know the address isn't shared.
4775
4776 We check for fp/ap/sp as both the first and second operand of the
4777 innermost PLUS. */
4778
4779 else if (GET_CODE (ad) == PLUS && GET_CODE (XEXP (ad, 1)) == CONST_INT
f302eea3 4780 && GET_CODE (XEXP (ad, 0)) == PLUS
eab89b90 4781 && (XEXP (XEXP (ad, 0), 0) == frame_pointer_rtx
a36d4c62
DE
4782#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
4783 || XEXP (XEXP (ad, 0), 0) == hard_frame_pointer_rtx
4784#endif
eab89b90
RK
4785#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
4786 || XEXP (XEXP (ad, 0), 0) == arg_pointer_rtx
4787#endif
4788 || XEXP (XEXP (ad, 0), 0) == stack_pointer_rtx)
4789 && ! memory_address_p (mode, ad))
4790 {
38a448ca
RH
4791 *loc = ad = gen_rtx_PLUS (GET_MODE (ad),
4792 plus_constant (XEXP (XEXP (ad, 0), 0),
4793 INTVAL (XEXP (ad, 1))),
eab89b90 4794 XEXP (XEXP (ad, 0), 1));
1ba61f4e
ILT
4795 find_reloads_address_part (XEXP (ad, 0), &XEXP (ad, 0),
4796 reload_address_base_reg_class,
a8c9daeb 4797 GET_MODE (ad), opnum, type, ind_levels);
858c3c8c 4798 find_reloads_address_1 (mode, XEXP (ad, 1), 1, &XEXP (ad, 1), opnum,
55c22565 4799 type, 0, insn);
eab89b90
RK
4800
4801 return 1;
4802 }
4803
4804 else if (GET_CODE (ad) == PLUS && GET_CODE (XEXP (ad, 1)) == CONST_INT
4805 && GET_CODE (XEXP (ad, 0)) == PLUS
4806 && (XEXP (XEXP (ad, 0), 1) == frame_pointer_rtx
a36d4c62
DE
4807#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
4808 || XEXP (XEXP (ad, 0), 1) == hard_frame_pointer_rtx
4809#endif
eab89b90
RK
4810#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
4811 || XEXP (XEXP (ad, 0), 1) == arg_pointer_rtx
4812#endif
4813 || XEXP (XEXP (ad, 0), 1) == stack_pointer_rtx)
4814 && ! memory_address_p (mode, ad))
4815 {
38a448ca
RH
4816 *loc = ad = gen_rtx_PLUS (GET_MODE (ad),
4817 XEXP (XEXP (ad, 0), 0),
4818 plus_constant (XEXP (XEXP (ad, 0), 1),
4819 INTVAL (XEXP (ad, 1))));
1ba61f4e
ILT
4820 find_reloads_address_part (XEXP (ad, 1), &XEXP (ad, 1),
4821 reload_address_base_reg_class,
a8c9daeb 4822 GET_MODE (ad), opnum, type, ind_levels);
858c3c8c 4823 find_reloads_address_1 (mode, XEXP (ad, 0), 1, &XEXP (ad, 0), opnum,
55c22565 4824 type, 0, insn);
eab89b90
RK
4825
4826 return 1;
4827 }
4828
4829 /* See if address becomes valid when an eliminable register
4830 in a sum is replaced. */
4831
4832 tem = ad;
4833 if (GET_CODE (ad) == PLUS)
4834 tem = subst_indexed_address (ad);
4835 if (tem != ad && strict_memory_address_p (mode, tem))
4836 {
4837 /* Ok, we win that way. Replace any additional eliminable
4838 registers. */
4839
4840 subst_reg_equivs_changed = 0;
4841 tem = subst_reg_equivs (tem);
4842
4843 /* Make sure that didn't make the address invalid again. */
4844
4845 if (! subst_reg_equivs_changed || strict_memory_address_p (mode, tem))
4846 {
4847 *loc = tem;
4848 return 0;
4849 }
4850 }
4851
4852 /* If constants aren't valid addresses, reload the constant address
4853 into a register. */
191b18e9 4854 if (CONSTANT_P (ad) && ! strict_memory_address_p (mode, ad))
eab89b90
RK
4855 {
4856 /* If AD is in address in the constant pool, the MEM rtx may be shared.
4857 Unshare it so we can safely alter it. */
4858 if (memrefloc && GET_CODE (ad) == SYMBOL_REF
4859 && CONSTANT_POOL_ADDRESS_P (ad))
4860 {
eab89b90
RK
4861 *memrefloc = copy_rtx (*memrefloc);
4862 loc = &XEXP (*memrefloc, 0);
eab89b90
RK
4863 }
4864
1ba61f4e
ILT
4865 find_reloads_address_part (ad, loc, reload_address_base_reg_class,
4866 Pmode, opnum, type,
eab89b90
RK
4867 ind_levels);
4868 return 1;
4869 }
4870
55c22565
RK
4871 return find_reloads_address_1 (mode, ad, 0, loc, opnum, type, ind_levels,
4872 insn);
eab89b90
RK
4873}
4874\f
4875/* Find all pseudo regs appearing in AD
4876 that are eliminable in favor of equivalent values
4877 and do not have hard regs; replace them by their equivalents. */
4878
4879static rtx
4880subst_reg_equivs (ad)
4881 rtx ad;
4882{
4883 register RTX_CODE code = GET_CODE (ad);
4884 register int i;
4885 register char *fmt;
4886
4887 switch (code)
4888 {
4889 case HIGH:
4890 case CONST_INT:
4891 case CONST:
4892 case CONST_DOUBLE:
4893 case SYMBOL_REF:
4894 case LABEL_REF:
4895 case PC:
4896 case CC0:
4897 return ad;
4898
4899 case REG:
4900 {
4901 register int regno = REGNO (ad);
4902
4903 if (reg_equiv_constant[regno] != 0)
4904 {
4905 subst_reg_equivs_changed = 1;
4906 return reg_equiv_constant[regno];
4907 }
4908 }
4909 return ad;
4910
4911 case PLUS:
4912 /* Quickly dispose of a common case. */
4913 if (XEXP (ad, 0) == frame_pointer_rtx
4914 && GET_CODE (XEXP (ad, 1)) == CONST_INT)
4915 return ad;
e9a25f70
JL
4916 break;
4917
4918 default:
4919 break;
eab89b90
RK
4920 }
4921
4922 fmt = GET_RTX_FORMAT (code);
4923 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4924 if (fmt[i] == 'e')
4925 XEXP (ad, i) = subst_reg_equivs (XEXP (ad, i));
4926 return ad;
4927}
4928\f
4929/* Compute the sum of X and Y, making canonicalizations assumed in an
4930 address, namely: sum constant integers, surround the sum of two
4931 constants with a CONST, put the constant as the second operand, and
4932 group the constant on the outermost sum.
4933
4934 This routine assumes both inputs are already in canonical form. */
4935
4936rtx
4937form_sum (x, y)
4938 rtx x, y;
4939{
4940 rtx tem;
2c0623e8
RK
4941 enum machine_mode mode = GET_MODE (x);
4942
4943 if (mode == VOIDmode)
4944 mode = GET_MODE (y);
4945
4946 if (mode == VOIDmode)
4947 mode = Pmode;
eab89b90
RK
4948
4949 if (GET_CODE (x) == CONST_INT)
4950 return plus_constant (y, INTVAL (x));
4951 else if (GET_CODE (y) == CONST_INT)
4952 return plus_constant (x, INTVAL (y));
4953 else if (CONSTANT_P (x))
4954 tem = x, x = y, y = tem;
4955
4956 if (GET_CODE (x) == PLUS && CONSTANT_P (XEXP (x, 1)))
4957 return form_sum (XEXP (x, 0), form_sum (XEXP (x, 1), y));
4958
4959 /* Note that if the operands of Y are specified in the opposite
4960 order in the recursive calls below, infinite recursion will occur. */
d9771f62 4961 if (GET_CODE (y) == PLUS && CONSTANT_P (XEXP (y, 1)))
eab89b90
RK
4962 return form_sum (form_sum (x, XEXP (y, 0)), XEXP (y, 1));
4963
4964 /* If both constant, encapsulate sum. Otherwise, just form sum. A
4965 constant will have been placed second. */
4966 if (CONSTANT_P (x) && CONSTANT_P (y))
4967 {
4968 if (GET_CODE (x) == CONST)
4969 x = XEXP (x, 0);
4970 if (GET_CODE (y) == CONST)
4971 y = XEXP (y, 0);
4972
38a448ca 4973 return gen_rtx_CONST (VOIDmode, gen_rtx_PLUS (mode, x, y));
eab89b90
RK
4974 }
4975
38a448ca 4976 return gen_rtx_PLUS (mode, x, y);
eab89b90
RK
4977}
4978\f
4979/* If ADDR is a sum containing a pseudo register that should be
4980 replaced with a constant (from reg_equiv_constant),
4981 return the result of doing so, and also apply the associative
4982 law so that the result is more likely to be a valid address.
4983 (But it is not guaranteed to be one.)
4984
4985 Note that at most one register is replaced, even if more are
4986 replaceable. Also, we try to put the result into a canonical form
4987 so it is more likely to be a valid address.
4988
4989 In all other cases, return ADDR. */
4990
4991static rtx
4992subst_indexed_address (addr)
4993 rtx addr;
4994{
4995 rtx op0 = 0, op1 = 0, op2 = 0;
4996 rtx tem;
4997 int regno;
4998
4999 if (GET_CODE (addr) == PLUS)
5000 {
5001 /* Try to find a register to replace. */
5002 op0 = XEXP (addr, 0), op1 = XEXP (addr, 1), op2 = 0;
5003 if (GET_CODE (op0) == REG
5004 && (regno = REGNO (op0)) >= FIRST_PSEUDO_REGISTER
5005 && reg_renumber[regno] < 0
5006 && reg_equiv_constant[regno] != 0)
5007 op0 = reg_equiv_constant[regno];
5008 else if (GET_CODE (op1) == REG
5009 && (regno = REGNO (op1)) >= FIRST_PSEUDO_REGISTER
5010 && reg_renumber[regno] < 0
5011 && reg_equiv_constant[regno] != 0)
5012 op1 = reg_equiv_constant[regno];
5013 else if (GET_CODE (op0) == PLUS
5014 && (tem = subst_indexed_address (op0)) != op0)
5015 op0 = tem;
5016 else if (GET_CODE (op1) == PLUS
5017 && (tem = subst_indexed_address (op1)) != op1)
5018 op1 = tem;
5019 else
5020 return addr;
5021
5022 /* Pick out up to three things to add. */
5023 if (GET_CODE (op1) == PLUS)
5024 op2 = XEXP (op1, 1), op1 = XEXP (op1, 0);
5025 else if (GET_CODE (op0) == PLUS)
5026 op2 = op1, op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
5027
5028 /* Compute the sum. */
5029 if (op2 != 0)
5030 op1 = form_sum (op1, op2);
5031 if (op1 != 0)
5032 op0 = form_sum (op0, op1);
5033
5034 return op0;
5035 }
5036 return addr;
5037}
5038\f
858c3c8c
ILT
5039/* Record the pseudo registers we must reload into hard registers in a
5040 subexpression of a would-be memory address, X referring to a value
5041 in mode MODE. (This function is not called if the address we find
5042 is strictly valid.)
5043
eab89b90
RK
5044 CONTEXT = 1 means we are considering regs as index regs,
5045 = 0 means we are considering them as base regs.
5046
a8c9daeb 5047 OPNUM and TYPE specify the purpose of any reloads made.
eab89b90
RK
5048
5049 IND_LEVELS says how many levels of indirect addressing are
5050 supported at this point in the address.
5051
55c22565
RK
5052 INSN, if nonzero, is the insn in which we do the reload. It is used
5053 to determine if we may generate output reloads.
5054
eab89b90
RK
5055 We return nonzero if X, as a whole, is reloaded or replaced. */
5056
5057/* Note that we take shortcuts assuming that no multi-reg machine mode
5058 occurs as part of an address.
5059 Also, this is not fully machine-customizable; it works for machines
5060 such as vaxes and 68000's and 32000's, but other possible machines
5061 could have addressing modes that this does not handle right. */
5062
5063static int
55c22565 5064find_reloads_address_1 (mode, x, context, loc, opnum, type, ind_levels, insn)
858c3c8c 5065 enum machine_mode mode;
eab89b90
RK
5066 rtx x;
5067 int context;
5068 rtx *loc;
a8c9daeb
RK
5069 int opnum;
5070 enum reload_type type;
eab89b90 5071 int ind_levels;
55c22565 5072 rtx insn;
eab89b90
RK
5073{
5074 register RTX_CODE code = GET_CODE (x);
5075
a2d353e5 5076 switch (code)
eab89b90 5077 {
a2d353e5
RK
5078 case PLUS:
5079 {
5080 register rtx orig_op0 = XEXP (x, 0);
5081 register rtx orig_op1 = XEXP (x, 1);
5082 register RTX_CODE code0 = GET_CODE (orig_op0);
5083 register RTX_CODE code1 = GET_CODE (orig_op1);
5084 register rtx op0 = orig_op0;
5085 register rtx op1 = orig_op1;
5086
5087 if (GET_CODE (op0) == SUBREG)
5088 {
5089 op0 = SUBREG_REG (op0);
5090 code0 = GET_CODE (op0);
922db4bb 5091 if (code0 == REG && REGNO (op0) < FIRST_PSEUDO_REGISTER)
38a448ca
RH
5092 op0 = gen_rtx_REG (word_mode,
5093 REGNO (op0) + SUBREG_WORD (orig_op0));
a2d353e5 5094 }
87935f60 5095
a2d353e5
RK
5096 if (GET_CODE (op1) == SUBREG)
5097 {
5098 op1 = SUBREG_REG (op1);
5099 code1 = GET_CODE (op1);
922db4bb 5100 if (code1 == REG && REGNO (op1) < FIRST_PSEUDO_REGISTER)
38a448ca
RH
5101 op1 = gen_rtx_REG (GET_MODE (op1),
5102 REGNO (op1) + SUBREG_WORD (orig_op1));
a2d353e5
RK
5103 }
5104
5f8997b9
SC
5105 if (code0 == MULT || code0 == SIGN_EXTEND || code0 == TRUNCATE
5106 || code0 == ZERO_EXTEND || code1 == MEM)
a2d353e5 5107 {
858c3c8c 5108 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
55c22565 5109 type, ind_levels, insn);
858c3c8c 5110 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
55c22565 5111 type, ind_levels, insn);
a2d353e5
RK
5112 }
5113
5f8997b9
SC
5114 else if (code1 == MULT || code1 == SIGN_EXTEND || code1 == TRUNCATE
5115 || code1 == ZERO_EXTEND || code0 == MEM)
a2d353e5 5116 {
858c3c8c 5117 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
55c22565 5118 type, ind_levels, insn);
858c3c8c 5119 find_reloads_address_1 (mode, orig_op1, 1, &XEXP (x, 1), opnum,
55c22565 5120 type, ind_levels, insn);
a2d353e5
RK
5121 }
5122
5123 else if (code0 == CONST_INT || code0 == CONST
5124 || code0 == SYMBOL_REF || code0 == LABEL_REF)
858c3c8c 5125 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
55c22565 5126 type, ind_levels, insn);
a2d353e5
RK
5127
5128 else if (code1 == CONST_INT || code1 == CONST
5129 || code1 == SYMBOL_REF || code1 == LABEL_REF)
858c3c8c 5130 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
55c22565 5131 type, ind_levels, insn);
a2d353e5
RK
5132
5133 else if (code0 == REG && code1 == REG)
5134 {
5135 if (REG_OK_FOR_INDEX_P (op0)
858c3c8c 5136 && REG_MODE_OK_FOR_BASE_P (op1, mode))
a2d353e5
RK
5137 return 0;
5138 else if (REG_OK_FOR_INDEX_P (op1)
858c3c8c 5139 && REG_MODE_OK_FOR_BASE_P (op0, mode))
a2d353e5 5140 return 0;
858c3c8c
ILT
5141 else if (REG_MODE_OK_FOR_BASE_P (op1, mode))
5142 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
55c22565 5143 type, ind_levels, insn);
858c3c8c
ILT
5144 else if (REG_MODE_OK_FOR_BASE_P (op0, mode))
5145 find_reloads_address_1 (mode, orig_op1, 1, &XEXP (x, 1), opnum,
55c22565 5146 type, ind_levels, insn);
a2d353e5 5147 else if (REG_OK_FOR_INDEX_P (op1))
858c3c8c 5148 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
55c22565 5149 type, ind_levels, insn);
a2d353e5 5150 else if (REG_OK_FOR_INDEX_P (op0))
858c3c8c 5151 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
55c22565 5152 type, ind_levels, insn);
a2d353e5
RK
5153 else
5154 {
858c3c8c 5155 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
55c22565 5156 type, ind_levels, insn);
858c3c8c 5157 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
55c22565 5158 type, ind_levels, insn);
a2d353e5
RK
5159 }
5160 }
5161
5162 else if (code0 == REG)
5163 {
858c3c8c 5164 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
55c22565 5165 type, ind_levels, insn);
858c3c8c 5166 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
55c22565 5167 type, ind_levels, insn);
a2d353e5
RK
5168 }
5169
5170 else if (code1 == REG)
5171 {
858c3c8c 5172 find_reloads_address_1 (mode, orig_op1, 1, &XEXP (x, 1), opnum,
55c22565 5173 type, ind_levels, insn);
858c3c8c 5174 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
55c22565 5175 type, ind_levels, insn);
a2d353e5
RK
5176 }
5177 }
5178
5179 return 0;
5180
5181 case POST_INC:
5182 case POST_DEC:
5183 case PRE_INC:
5184 case PRE_DEC:
eab89b90
RK
5185 if (GET_CODE (XEXP (x, 0)) == REG)
5186 {
5187 register int regno = REGNO (XEXP (x, 0));
5188 int value = 0;
5189 rtx x_orig = x;
5190
5191 /* A register that is incremented cannot be constant! */
5192 if (regno >= FIRST_PSEUDO_REGISTER
5193 && reg_equiv_constant[regno] != 0)
5194 abort ();
5195
5196 /* Handle a register that is equivalent to a memory location
5197 which cannot be addressed directly. */
5198 if (reg_equiv_address[regno] != 0)
5199 {
5200 rtx tem = make_memloc (XEXP (x, 0), regno);
4757e6a4
JW
5201 /* First reload the memory location's address.
5202 We can't use ADDR_TYPE (type) here, because we need to
5203 write back the value after reading it, hence we actually
5204 need two registers. */
eab89b90 5205 find_reloads_address (GET_MODE (tem), 0, XEXP (tem, 0),
4757e6a4 5206 &XEXP (tem, 0), opnum, type,
55c22565 5207 ind_levels, insn);
eab89b90 5208 /* Put this inside a new increment-expression. */
38a448ca 5209 x = gen_rtx_fmt_e (GET_CODE (x), GET_MODE (x), tem);
eab89b90
RK
5210 /* Proceed to reload that, as if it contained a register. */
5211 }
5212
5213 /* If we have a hard register that is ok as an index,
5214 don't make a reload. If an autoincrement of a nice register
5215 isn't "valid", it must be that no autoincrement is "valid".
5216 If that is true and something made an autoincrement anyway,
5217 this must be a special context where one is allowed.
5218 (For example, a "push" instruction.)
5219 We can't improve this address, so leave it alone. */
5220
5221 /* Otherwise, reload the autoincrement into a suitable hard reg
5222 and record how much to increment by. */
5223
5224 if (reg_renumber[regno] >= 0)
5225 regno = reg_renumber[regno];
5226 if ((regno >= FIRST_PSEUDO_REGISTER
5227 || !(context ? REGNO_OK_FOR_INDEX_P (regno)
858c3c8c 5228 : REGNO_MODE_OK_FOR_BASE_P (regno, mode))))
eab89b90 5229 {
29a82058 5230#ifdef AUTO_INC_DEC
eab89b90 5231 register rtx link;
29a82058 5232#endif
55c22565
RK
5233 int reloadnum;
5234
5235 /* If we can output the register afterwards, do so, this
5236 saves the extra update.
5237 We can do so if we have an INSN - i.e. no JUMP_INSN nor
5238 CALL_INSN - and it does not set CC0.
5239 But don't do this if we cannot directly address the
5240 memory location, since this will make it harder to
956d6950 5241 reuse address reloads, and increases register pressure.
55c22565
RK
5242 Also don't do this if we can probably update x directly. */
5243 rtx equiv = reg_equiv_mem[regno];
5244 int icode = (int) add_optab->handlers[(int) Pmode].insn_code;
5245 if (insn && GET_CODE (insn) == INSN && equiv
5246#ifdef HAVE_cc0
5247 && ! sets_cc0_p (PATTERN (insn))
5248#endif
5249 && ! (icode != CODE_FOR_nothing
5250 && (*insn_operand_predicate[icode][0]) (equiv, Pmode)
5251 && (*insn_operand_predicate[icode][1]) (equiv, Pmode)))
5252 {
5253 loc = &XEXP (x, 0);
5254 x = XEXP (x, 0);
5255 reloadnum
5256 = push_reload (x, x, loc, loc,
5257 (context
5258 ? reload_address_index_reg_class
5259 : reload_address_base_reg_class),
e9a25f70 5260 GET_MODE (x), GET_MODE (x), 0, 0,
55c22565
RK
5261 opnum, RELOAD_OTHER);
5262 }
5263 else
5264 {
5265 reloadnum
5266 = push_reload (x, NULL_RTX, loc, NULL_PTR,
5267 (context
5268 ? reload_address_index_reg_class
5269 : reload_address_base_reg_class),
e9a25f70 5270 GET_MODE (x), GET_MODE (x), 0, 0,
55c22565
RK
5271 opnum, type);
5272 reload_inc[reloadnum]
5273 = find_inc_amount (PATTERN (this_insn), XEXP (x_orig, 0));
5274
5275 value = 1;
5276 }
eab89b90
RK
5277
5278#ifdef AUTO_INC_DEC
5279 /* Update the REG_INC notes. */
5280
5281 for (link = REG_NOTES (this_insn);
5282 link; link = XEXP (link, 1))
5283 if (REG_NOTE_KIND (link) == REG_INC
5284 && REGNO (XEXP (link, 0)) == REGNO (XEXP (x_orig, 0)))
5285 push_replacement (&XEXP (link, 0), reloadnum, VOIDmode);
5286#endif
5287 }
5288 return value;
5289 }
a2d353e5 5290
eab89b90
RK
5291 else if (GET_CODE (XEXP (x, 0)) == MEM)
5292 {
5293 /* This is probably the result of a substitution, by eliminate_regs,
5294 of an equivalent address for a pseudo that was not allocated to a
5295 hard register. Verify that the specified address is valid and
5296 reload it into a register. */
5297 rtx tem = XEXP (x, 0);
5298 register rtx link;
5299 int reloadnum;
5300
5301 /* Since we know we are going to reload this item, don't decrement
5302 for the indirection level.
5303
5304 Note that this is actually conservative: it would be slightly
5305 more efficient to use the value of SPILL_INDIRECT_LEVELS from
5306 reload1.c here. */
4757e6a4
JW
5307 /* We can't use ADDR_TYPE (type) here, because we need to
5308 write back the value after reading it, hence we actually
5309 need two registers. */
eab89b90
RK
5310 find_reloads_address (GET_MODE (x), &XEXP (x, 0),
5311 XEXP (XEXP (x, 0), 0), &XEXP (XEXP (x, 0), 0),
55c22565 5312 opnum, type, ind_levels, insn);
eab89b90 5313
fb3821f7 5314 reloadnum = push_reload (x, NULL_RTX, loc, NULL_PTR,
1ba61f4e
ILT
5315 (context
5316 ? reload_address_index_reg_class
5317 : reload_address_base_reg_class),
a8c9daeb 5318 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
eab89b90
RK
5319 reload_inc[reloadnum]
5320 = find_inc_amount (PATTERN (this_insn), XEXP (x, 0));
5321
5322 link = FIND_REG_INC_NOTE (this_insn, tem);
5323 if (link != 0)
5324 push_replacement (&XEXP (link, 0), reloadnum, VOIDmode);
5325
5326 return 1;
5327 }
a2d353e5
RK
5328 return 0;
5329
5330 case MEM:
5331 /* This is probably the result of a substitution, by eliminate_regs, of
5332 an equivalent address for a pseudo that was not allocated to a hard
5333 register. Verify that the specified address is valid and reload it
5334 into a register.
eab89b90 5335
a2d353e5
RK
5336 Since we know we are going to reload this item, don't decrement for
5337 the indirection level.
eab89b90
RK
5338
5339 Note that this is actually conservative: it would be slightly more
5340 efficient to use the value of SPILL_INDIRECT_LEVELS from
5341 reload1.c here. */
5342
5343 find_reloads_address (GET_MODE (x), loc, XEXP (x, 0), &XEXP (x, 0),
55c22565 5344 opnum, ADDR_TYPE (type), ind_levels, insn);
fb3821f7 5345 push_reload (*loc, NULL_RTX, loc, NULL_PTR,
1ba61f4e
ILT
5346 (context ? reload_address_index_reg_class
5347 : reload_address_base_reg_class),
a8c9daeb 5348 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
eab89b90 5349 return 1;
eab89b90 5350
a2d353e5
RK
5351 case REG:
5352 {
5353 register int regno = REGNO (x);
5354
5355 if (reg_equiv_constant[regno] != 0)
5356 {
5357 find_reloads_address_part (reg_equiv_constant[regno], loc,
1ba61f4e
ILT
5358 (context
5359 ? reload_address_index_reg_class
5360 : reload_address_base_reg_class),
a2d353e5
RK
5361 GET_MODE (x), opnum, type, ind_levels);
5362 return 1;
5363 }
eab89b90
RK
5364
5365#if 0 /* This might screw code in reload1.c to delete prior output-reload
5366 that feeds this insn. */
a2d353e5
RK
5367 if (reg_equiv_mem[regno] != 0)
5368 {
5369 push_reload (reg_equiv_mem[regno], NULL_RTX, loc, NULL_PTR,
1ba61f4e
ILT
5370 (context
5371 ? reload_address_index_reg_class
5372 : reload_address_base_reg_class),
a2d353e5
RK
5373 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5374 return 1;
5375 }
eab89b90 5376#endif
eab89b90 5377
a2d353e5
RK
5378 if (reg_equiv_address[regno] != 0)
5379 {
5380 x = make_memloc (x, regno);
5381 find_reloads_address (GET_MODE (x), 0, XEXP (x, 0), &XEXP (x, 0),
55c22565 5382 opnum, ADDR_TYPE (type), ind_levels, insn);
a2d353e5 5383 }
eab89b90 5384
a2d353e5
RK
5385 if (reg_renumber[regno] >= 0)
5386 regno = reg_renumber[regno];
5387
5388 if ((regno >= FIRST_PSEUDO_REGISTER
5389 || !(context ? REGNO_OK_FOR_INDEX_P (regno)
858c3c8c 5390 : REGNO_MODE_OK_FOR_BASE_P (regno, mode))))
a2d353e5
RK
5391 {
5392 push_reload (x, NULL_RTX, loc, NULL_PTR,
1ba61f4e
ILT
5393 (context
5394 ? reload_address_index_reg_class
5395 : reload_address_base_reg_class),
a2d353e5
RK
5396 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5397 return 1;
5398 }
5399
5400 /* If a register appearing in an address is the subject of a CLOBBER
5401 in this insn, reload it into some other register to be safe.
5402 The CLOBBER is supposed to make the register unavailable
5403 from before this insn to after it. */
5404 if (regno_clobbered_p (regno, this_insn))
5405 {
5406 push_reload (x, NULL_RTX, loc, NULL_PTR,
1ba61f4e
ILT
5407 (context
5408 ? reload_address_index_reg_class
5409 : reload_address_base_reg_class),
a2d353e5
RK
5410 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5411 return 1;
5412 }
5413 }
5414 return 0;
5415
5416 case SUBREG:
922db4bb 5417 if (GET_CODE (SUBREG_REG (x)) == REG)
eab89b90 5418 {
922db4bb
RK
5419 /* If this is a SUBREG of a hard register and the resulting register
5420 is of the wrong class, reload the whole SUBREG. This avoids
5421 needless copies if SUBREG_REG is multi-word. */
5422 if (REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
5423 {
5424 int regno = REGNO (SUBREG_REG (x)) + SUBREG_WORD (x);
a2d353e5 5425
922db4bb 5426 if (! (context ? REGNO_OK_FOR_INDEX_P (regno)
858c3c8c 5427 : REGNO_MODE_OK_FOR_BASE_P (regno, mode)))
922db4bb
RK
5428 {
5429 push_reload (x, NULL_RTX, loc, NULL_PTR,
1ba61f4e
ILT
5430 (context
5431 ? reload_address_index_reg_class
5432 : reload_address_base_reg_class),
922db4bb
RK
5433 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5434 return 1;
5435 }
5436 }
abc95ed3 5437 /* If this is a SUBREG of a pseudo-register, and the pseudo-register
922db4bb
RK
5438 is larger than the class size, then reload the whole SUBREG. */
5439 else
a2d353e5 5440 {
922db4bb 5441 enum reg_class class = (context
1ba61f4e
ILT
5442 ? reload_address_index_reg_class
5443 : reload_address_base_reg_class);
922db4bb
RK
5444 if (CLASS_MAX_NREGS (class, GET_MODE (SUBREG_REG (x)))
5445 > reg_class_size[class])
5446 {
5447 push_reload (x, NULL_RTX, loc, NULL_PTR, class,
5448 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5449 return 1;
5450 }
a2d353e5 5451 }
eab89b90 5452 }
a2d353e5 5453 break;
e9a25f70
JL
5454
5455 default:
5456 break;
eab89b90
RK
5457 }
5458
a2d353e5
RK
5459 {
5460 register char *fmt = GET_RTX_FORMAT (code);
5461 register int i;
5462
5463 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5464 {
5465 if (fmt[i] == 'e')
858c3c8c 5466 find_reloads_address_1 (mode, XEXP (x, i), context, &XEXP (x, i),
55c22565 5467 opnum, type, ind_levels, insn);
a2d353e5
RK
5468 }
5469 }
5470
eab89b90
RK
5471 return 0;
5472}
5473\f
5474/* X, which is found at *LOC, is a part of an address that needs to be
5475 reloaded into a register of class CLASS. If X is a constant, or if
5476 X is a PLUS that contains a constant, check that the constant is a
5477 legitimate operand and that we are supposed to be able to load
5478 it into the register.
5479
5480 If not, force the constant into memory and reload the MEM instead.
5481
5482 MODE is the mode to use, in case X is an integer constant.
5483
a8c9daeb 5484 OPNUM and TYPE describe the purpose of any reloads made.
eab89b90
RK
5485
5486 IND_LEVELS says how many levels of indirect addressing this machine
5487 supports. */
5488
5489static void
a8c9daeb 5490find_reloads_address_part (x, loc, class, mode, opnum, type, ind_levels)
eab89b90
RK
5491 rtx x;
5492 rtx *loc;
5493 enum reg_class class;
5494 enum machine_mode mode;
a8c9daeb
RK
5495 int opnum;
5496 enum reload_type type;
eab89b90
RK
5497 int ind_levels;
5498{
5499 if (CONSTANT_P (x)
5500 && (! LEGITIMATE_CONSTANT_P (x)
5501 || PREFERRED_RELOAD_CLASS (x, class) == NO_REGS))
5502 {
5503 rtx tem = x = force_const_mem (mode, x);
5504 find_reloads_address (mode, &tem, XEXP (tem, 0), &XEXP (tem, 0),
55c22565 5505 opnum, type, ind_levels, 0);
eab89b90
RK
5506 }
5507
5508 else if (GET_CODE (x) == PLUS
5509 && CONSTANT_P (XEXP (x, 1))
5510 && (! LEGITIMATE_CONSTANT_P (XEXP (x, 1))
5511 || PREFERRED_RELOAD_CLASS (XEXP (x, 1), class) == NO_REGS))
5512 {
5513 rtx tem = force_const_mem (GET_MODE (x), XEXP (x, 1));
5514
38a448ca 5515 x = gen_rtx_PLUS (GET_MODE (x), XEXP (x, 0), tem);
eab89b90 5516 find_reloads_address (mode, &tem, XEXP (tem, 0), &XEXP (tem, 0),
55c22565 5517 opnum, type, ind_levels, 0);
eab89b90
RK
5518 }
5519
fb3821f7 5520 push_reload (x, NULL_RTX, loc, NULL_PTR, class,
a8c9daeb 5521 mode, VOIDmode, 0, 0, opnum, type);
eab89b90
RK
5522}
5523\f
a8c9daeb 5524/* Substitute into the current INSN the registers into which we have reloaded
eab89b90
RK
5525 the things that need reloading. The array `replacements'
5526 says contains the locations of all pointers that must be changed
5527 and says what to replace them with.
5528
5529 Return the rtx that X translates into; usually X, but modified. */
5530
5531void
5532subst_reloads ()
5533{
5534 register int i;
5535
5536 for (i = 0; i < n_replacements; i++)
5537 {
5538 register struct replacement *r = &replacements[i];
5539 register rtx reloadreg = reload_reg_rtx[r->what];
5540 if (reloadreg)
5541 {
5542 /* Encapsulate RELOADREG so its machine mode matches what
26f1a00e
RK
5543 used to be there. Note that gen_lowpart_common will
5544 do the wrong thing if RELOADREG is multi-word. RELOADREG
5545 will always be a REG here. */
eab89b90 5546 if (GET_MODE (reloadreg) != r->mode && r->mode != VOIDmode)
38a448ca 5547 reloadreg = gen_rtx_REG (r->mode, REGNO (reloadreg));
eab89b90
RK
5548
5549 /* If we are putting this into a SUBREG and RELOADREG is a
5550 SUBREG, we would be making nested SUBREGs, so we have to fix
5551 this up. Note that r->where == &SUBREG_REG (*r->subreg_loc). */
5552
5553 if (r->subreg_loc != 0 && GET_CODE (reloadreg) == SUBREG)
5554 {
5555 if (GET_MODE (*r->subreg_loc)
5556 == GET_MODE (SUBREG_REG (reloadreg)))
5557 *r->subreg_loc = SUBREG_REG (reloadreg);
5558 else
5559 {
5560 *r->where = SUBREG_REG (reloadreg);
5561 SUBREG_WORD (*r->subreg_loc) += SUBREG_WORD (reloadreg);
5562 }
5563 }
5564 else
5565 *r->where = reloadreg;
5566 }
5567 /* If reload got no reg and isn't optional, something's wrong. */
5568 else if (! reload_optional[r->what])
5569 abort ();
5570 }
5571}
5572\f
5573/* Make a copy of any replacements being done into X and move those copies
5574 to locations in Y, a copy of X. We only look at the highest level of
5575 the RTL. */
5576
5577void
5578copy_replacements (x, y)
5579 rtx x;
5580 rtx y;
5581{
5582 int i, j;
5583 enum rtx_code code = GET_CODE (x);
5584 char *fmt = GET_RTX_FORMAT (code);
5585 struct replacement *r;
5586
5587 /* We can't support X being a SUBREG because we might then need to know its
5588 location if something inside it was replaced. */
5589 if (code == SUBREG)
5590 abort ();
5591
5592 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5593 if (fmt[i] == 'e')
5594 for (j = 0; j < n_replacements; j++)
5595 {
5596 if (replacements[j].subreg_loc == &XEXP (x, i))
5597 {
5598 r = &replacements[n_replacements++];
5599 r->where = replacements[j].where;
5600 r->subreg_loc = &XEXP (y, i);
5601 r->what = replacements[j].what;
5602 r->mode = replacements[j].mode;
5603 }
5604 else if (replacements[j].where == &XEXP (x, i))
5605 {
5606 r = &replacements[n_replacements++];
5607 r->where = &XEXP (y, i);
5608 r->subreg_loc = 0;
5609 r->what = replacements[j].what;
5610 r->mode = replacements[j].mode;
5611 }
5612 }
5613}
a9a2595b
JR
5614
5615/* Change any replacements being done to *X to be done to *Y */
5616
5617void
5618move_replacements (x, y)
5619 rtx *x;
5620 rtx *y;
5621{
5622 int i;
5623
5624 for (i = 0; i < n_replacements; i++)
5625 if (replacements[i].subreg_loc == x)
5626 replacements[i].subreg_loc = y;
5627 else if (replacements[i].where == x)
5628 {
5629 replacements[i].where = y;
5630 replacements[i].subreg_loc = 0;
5631 }
5632}
eab89b90 5633\f
af929c62
RK
5634/* If LOC was scheduled to be replaced by something, return the replacement.
5635 Otherwise, return *LOC. */
5636
5637rtx
5638find_replacement (loc)
5639 rtx *loc;
5640{
5641 struct replacement *r;
5642
5643 for (r = &replacements[0]; r < &replacements[n_replacements]; r++)
5644 {
5645 rtx reloadreg = reload_reg_rtx[r->what];
5646
5647 if (reloadreg && r->where == loc)
5648 {
5649 if (r->mode != VOIDmode && GET_MODE (reloadreg) != r->mode)
38a448ca 5650 reloadreg = gen_rtx_REG (r->mode, REGNO (reloadreg));
af929c62
RK
5651
5652 return reloadreg;
5653 }
5654 else if (reloadreg && r->subreg_loc == loc)
5655 {
5656 /* RELOADREG must be either a REG or a SUBREG.
5657
5658 ??? Is it actually still ever a SUBREG? If so, why? */
5659
5660 if (GET_CODE (reloadreg) == REG)
38a448ca
RH
5661 return gen_rtx_REG (GET_MODE (*loc),
5662 REGNO (reloadreg) + SUBREG_WORD (*loc));
af929c62
RK
5663 else if (GET_MODE (reloadreg) == GET_MODE (*loc))
5664 return reloadreg;
5665 else
38a448ca
RH
5666 return gen_rtx_SUBREG (GET_MODE (*loc), SUBREG_REG (reloadreg),
5667 SUBREG_WORD (reloadreg) + SUBREG_WORD (*loc));
af929c62
RK
5668 }
5669 }
5670
956d6950
JL
5671 /* If *LOC is a PLUS, MINUS, or MULT, see if a replacement is scheduled for
5672 what's inside and make a new rtl if so. */
5673 if (GET_CODE (*loc) == PLUS || GET_CODE (*loc) == MINUS
5674 || GET_CODE (*loc) == MULT)
5675 {
5676 rtx x = find_replacement (&XEXP (*loc, 0));
5677 rtx y = find_replacement (&XEXP (*loc, 1));
5678
5679 if (x != XEXP (*loc, 0) || y != XEXP (*loc, 1))
38a448ca 5680 return gen_rtx_fmt_ee (GET_CODE (*loc), GET_MODE (*loc), x, y);
956d6950
JL
5681 }
5682
af929c62
RK
5683 return *loc;
5684}
5685\f
eab89b90
RK
5686/* Return nonzero if register in range [REGNO, ENDREGNO)
5687 appears either explicitly or implicitly in X
4644aad4 5688 other than being stored into (except for earlyclobber operands).
eab89b90
RK
5689
5690 References contained within the substructure at LOC do not count.
5691 LOC may be zero, meaning don't ignore anything.
5692
5693 This is similar to refers_to_regno_p in rtlanal.c except that we
5694 look at equivalences for pseudos that didn't get hard registers. */
5695
5696int
5697refers_to_regno_for_reload_p (regno, endregno, x, loc)
5698 int regno, endregno;
5699 rtx x;
5700 rtx *loc;
5701{
5702 register int i;
5703 register RTX_CODE code;
5704 register char *fmt;
5705
5706 if (x == 0)
5707 return 0;
5708
5709 repeat:
5710 code = GET_CODE (x);
5711
5712 switch (code)
5713 {
5714 case REG:
5715 i = REGNO (x);
5716
4803a34a
RK
5717 /* If this is a pseudo, a hard register must not have been allocated.
5718 X must therefore either be a constant or be in memory. */
5719 if (i >= FIRST_PSEUDO_REGISTER)
5720 {
5721 if (reg_equiv_memory_loc[i])
5722 return refers_to_regno_for_reload_p (regno, endregno,
fb3821f7
CH
5723 reg_equiv_memory_loc[i],
5724 NULL_PTR);
4803a34a
RK
5725
5726 if (reg_equiv_constant[i])
5727 return 0;
5728
5729 abort ();
5730 }
eab89b90
RK
5731
5732 return (endregno > i
5733 && regno < i + (i < FIRST_PSEUDO_REGISTER
5734 ? HARD_REGNO_NREGS (i, GET_MODE (x))
5735 : 1));
5736
5737 case SUBREG:
5738 /* If this is a SUBREG of a hard reg, we can see exactly which
5739 registers are being modified. Otherwise, handle normally. */
5740 if (GET_CODE (SUBREG_REG (x)) == REG
5741 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
5742 {
5743 int inner_regno = REGNO (SUBREG_REG (x)) + SUBREG_WORD (x);
5744 int inner_endregno
5745 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
5746 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
5747
5748 return endregno > inner_regno && regno < inner_endregno;
5749 }
5750 break;
5751
5752 case CLOBBER:
5753 case SET:
5754 if (&SET_DEST (x) != loc
5755 /* Note setting a SUBREG counts as referring to the REG it is in for
5756 a pseudo but not for hard registers since we can
5757 treat each word individually. */
5758 && ((GET_CODE (SET_DEST (x)) == SUBREG
5759 && loc != &SUBREG_REG (SET_DEST (x))
5760 && GET_CODE (SUBREG_REG (SET_DEST (x))) == REG
5761 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
5762 && refers_to_regno_for_reload_p (regno, endregno,
5763 SUBREG_REG (SET_DEST (x)),
5764 loc))
abc95ed3 5765 /* If the output is an earlyclobber operand, this is
4644aad4
RK
5766 a conflict. */
5767 || ((GET_CODE (SET_DEST (x)) != REG
5768 || earlyclobber_operand_p (SET_DEST (x)))
eab89b90
RK
5769 && refers_to_regno_for_reload_p (regno, endregno,
5770 SET_DEST (x), loc))))
5771 return 1;
5772
5773 if (code == CLOBBER || loc == &SET_SRC (x))
5774 return 0;
5775 x = SET_SRC (x);
5776 goto repeat;
e9a25f70
JL
5777
5778 default:
5779 break;
eab89b90
RK
5780 }
5781
5782 /* X does not match, so try its subexpressions. */
5783
5784 fmt = GET_RTX_FORMAT (code);
5785 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5786 {
5787 if (fmt[i] == 'e' && loc != &XEXP (x, i))
5788 {
5789 if (i == 0)
5790 {
5791 x = XEXP (x, 0);
5792 goto repeat;
5793 }
5794 else
5795 if (refers_to_regno_for_reload_p (regno, endregno,
5796 XEXP (x, i), loc))
5797 return 1;
5798 }
5799 else if (fmt[i] == 'E')
5800 {
5801 register int j;
5802 for (j = XVECLEN (x, i) - 1; j >=0; j--)
5803 if (loc != &XVECEXP (x, i, j)
5804 && refers_to_regno_for_reload_p (regno, endregno,
5805 XVECEXP (x, i, j), loc))
5806 return 1;
5807 }
5808 }
5809 return 0;
5810}
bfa30b22
RK
5811
5812/* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
5813 we check if any register number in X conflicts with the relevant register
5814 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
5815 contains a MEM (we don't bother checking for memory addresses that can't
5816 conflict because we expect this to be a rare case.
5817
5818 This function is similar to reg_overlap_mention_p in rtlanal.c except
5819 that we look at equivalences for pseudos that didn't get hard registers. */
5820
5821int
5822reg_overlap_mentioned_for_reload_p (x, in)
5823 rtx x, in;
5824{
5825 int regno, endregno;
5826
b98b49ac
JL
5827 /* Overly conservative. */
5828 if (GET_CODE (x) == STRICT_LOW_PART)
5829 x = XEXP (x, 0);
5830
5831 /* If either argument is a constant, then modifying X can not affect IN. */
5832 if (CONSTANT_P (x) || CONSTANT_P (in))
5833 return 0;
5834 else if (GET_CODE (x) == SUBREG)
bfa30b22
RK
5835 {
5836 regno = REGNO (SUBREG_REG (x));
5837 if (regno < FIRST_PSEUDO_REGISTER)
5838 regno += SUBREG_WORD (x);
5839 }
5840 else if (GET_CODE (x) == REG)
5841 {
5842 regno = REGNO (x);
4803a34a
RK
5843
5844 /* If this is a pseudo, it must not have been assigned a hard register.
5845 Therefore, it must either be in memory or be a constant. */
5846
5847 if (regno >= FIRST_PSEUDO_REGISTER)
5848 {
5849 if (reg_equiv_memory_loc[regno])
5850 return refers_to_mem_for_reload_p (in);
5851 else if (reg_equiv_constant[regno])
5852 return 0;
5853 abort ();
5854 }
bfa30b22 5855 }
bfa30b22 5856 else if (GET_CODE (x) == MEM)
4803a34a 5857 return refers_to_mem_for_reload_p (in);
bfa30b22
RK
5858 else if (GET_CODE (x) == SCRATCH || GET_CODE (x) == PC
5859 || GET_CODE (x) == CC0)
5860 return reg_mentioned_p (x, in);
5861 else
5862 abort ();
5863
5864 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
5865 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
5866
fb3821f7 5867 return refers_to_regno_for_reload_p (regno, endregno, in, NULL_PTR);
bfa30b22 5868}
4803a34a
RK
5869
5870/* Return nonzero if anything in X contains a MEM. Look also for pseudo
5871 registers. */
5872
5873int
5874refers_to_mem_for_reload_p (x)
5875 rtx x;
5876{
5877 char *fmt;
5878 int i;
5879
5880 if (GET_CODE (x) == MEM)
5881 return 1;
5882
5883 if (GET_CODE (x) == REG)
5884 return (REGNO (x) >= FIRST_PSEUDO_REGISTER
5885 && reg_equiv_memory_loc[REGNO (x)]);
5886
5887 fmt = GET_RTX_FORMAT (GET_CODE (x));
5888 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
5889 if (fmt[i] == 'e'
5890 && (GET_CODE (XEXP (x, i)) == MEM
5891 || refers_to_mem_for_reload_p (XEXP (x, i))))
5892 return 1;
5893
5894 return 0;
5895}
eab89b90 5896\f
eab89b90
RK
5897/* Check the insns before INSN to see if there is a suitable register
5898 containing the same value as GOAL.
5899 If OTHER is -1, look for a register in class CLASS.
5900 Otherwise, just see if register number OTHER shares GOAL's value.
5901
5902 Return an rtx for the register found, or zero if none is found.
5903
5904 If RELOAD_REG_P is (short *)1,
5905 we reject any hard reg that appears in reload_reg_rtx
5906 because such a hard reg is also needed coming into this insn.
5907
5908 If RELOAD_REG_P is any other nonzero value,
5909 it is a vector indexed by hard reg number
5910 and we reject any hard reg whose element in the vector is nonnegative
5911 as well as any that appears in reload_reg_rtx.
5912
5913 If GOAL is zero, then GOALREG is a register number; we look
5914 for an equivalent for that register.
5915
5916 MODE is the machine mode of the value we want an equivalence for.
5917 If GOAL is nonzero and not VOIDmode, then it must have mode MODE.
5918
5919 This function is used by jump.c as well as in the reload pass.
5920
5921 If GOAL is the sum of the stack pointer and a constant, we treat it
5922 as if it were a constant except that sp is required to be unchanging. */
5923
5924rtx
5925find_equiv_reg (goal, insn, class, other, reload_reg_p, goalreg, mode)
5926 register rtx goal;
5927 rtx insn;
5928 enum reg_class class;
5929 register int other;
5930 short *reload_reg_p;
5931 int goalreg;
5932 enum machine_mode mode;
5933{
5934 register rtx p = insn;
f55b1d97 5935 rtx goaltry, valtry, value, where;
eab89b90
RK
5936 register rtx pat;
5937 register int regno = -1;
5938 int valueno;
5939 int goal_mem = 0;
5940 int goal_const = 0;
5941 int goal_mem_addr_varies = 0;
5942 int need_stable_sp = 0;
5943 int nregs;
5944 int valuenregs;
5945
5946 if (goal == 0)
5947 regno = goalreg;
5948 else if (GET_CODE (goal) == REG)
5949 regno = REGNO (goal);
5950 else if (GET_CODE (goal) == MEM)
5951 {
5952 enum rtx_code code = GET_CODE (XEXP (goal, 0));
5953 if (MEM_VOLATILE_P (goal))
5954 return 0;
5955 if (flag_float_store && GET_MODE_CLASS (GET_MODE (goal)) == MODE_FLOAT)
5956 return 0;
5957 /* An address with side effects must be reexecuted. */
5958 switch (code)
5959 {
5960 case POST_INC:
5961 case PRE_INC:
5962 case POST_DEC:
5963 case PRE_DEC:
5964 return 0;
e9a25f70
JL
5965 default:
5966 break;
eab89b90
RK
5967 }
5968 goal_mem = 1;
5969 }
5970 else if (CONSTANT_P (goal))
5971 goal_const = 1;
5972 else if (GET_CODE (goal) == PLUS
5973 && XEXP (goal, 0) == stack_pointer_rtx
5974 && CONSTANT_P (XEXP (goal, 1)))
5975 goal_const = need_stable_sp = 1;
812f2051
R
5976 else if (GET_CODE (goal) == PLUS
5977 && XEXP (goal, 0) == frame_pointer_rtx
5978 && CONSTANT_P (XEXP (goal, 1)))
5979 goal_const = 1;
eab89b90
RK
5980 else
5981 return 0;
5982
5983 /* On some machines, certain regs must always be rejected
5984 because they don't behave the way ordinary registers do. */
5985
5986#ifdef OVERLAPPING_REGNO_P
5987 if (regno >= 0 && regno < FIRST_PSEUDO_REGISTER
5988 && OVERLAPPING_REGNO_P (regno))
5989 return 0;
5990#endif
5991
5992 /* Scan insns back from INSN, looking for one that copies
5993 a value into or out of GOAL.
5994 Stop and give up if we reach a label. */
5995
5996 while (1)
5997 {
5998 p = PREV_INSN (p);
5999 if (p == 0 || GET_CODE (p) == CODE_LABEL)
6000 return 0;
6001 if (GET_CODE (p) == INSN
0f41302f 6002 /* If we don't want spill regs ... */
a8c9daeb
RK
6003 && (! (reload_reg_p != 0
6004 && reload_reg_p != (short *) (HOST_WIDE_INT) 1)
eab89b90
RK
6005 /* ... then ignore insns introduced by reload; they aren't useful
6006 and can cause results in reload_as_needed to be different
6007 from what they were when calculating the need for spills.
6008 If we notice an input-reload insn here, we will reject it below,
6009 but it might hide a usable equivalent. That makes bad code.
6010 It may even abort: perhaps no reg was spilled for this insn
6011 because it was assumed we would find that equivalent. */
6012 || INSN_UID (p) < reload_first_uid))
6013 {
e8094962 6014 rtx tem;
eab89b90
RK
6015 pat = single_set (p);
6016 /* First check for something that sets some reg equal to GOAL. */
6017 if (pat != 0
6018 && ((regno >= 0
6019 && true_regnum (SET_SRC (pat)) == regno
6020 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
6021 ||
6022 (regno >= 0
6023 && true_regnum (SET_DEST (pat)) == regno
6024 && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0)
6025 ||
6026 (goal_const && rtx_equal_p (SET_SRC (pat), goal)
a5546290
R
6027 /* When looking for stack pointer + const,
6028 make sure we don't use a stack adjust. */
6029 && !reg_overlap_mentioned_for_reload_p (SET_DEST (pat), goal)
eab89b90
RK
6030 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
6031 || (goal_mem
6032 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0
6033 && rtx_renumbered_equal_p (goal, SET_SRC (pat)))
6034 || (goal_mem
6035 && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0
e8094962
RK
6036 && rtx_renumbered_equal_p (goal, SET_DEST (pat)))
6037 /* If we are looking for a constant,
6038 and something equivalent to that constant was copied
6039 into a reg, we can use that reg. */
fb3821f7
CH
6040 || (goal_const && (tem = find_reg_note (p, REG_EQUIV,
6041 NULL_RTX))
e8094962 6042 && rtx_equal_p (XEXP (tem, 0), goal)
95d3562b 6043 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
fb3821f7
CH
6044 || (goal_const && (tem = find_reg_note (p, REG_EQUIV,
6045 NULL_RTX))
e8094962
RK
6046 && GET_CODE (SET_DEST (pat)) == REG
6047 && GET_CODE (XEXP (tem, 0)) == CONST_DOUBLE
6048 && GET_MODE_CLASS (GET_MODE (XEXP (tem, 0))) == MODE_FLOAT
6049 && GET_CODE (goal) == CONST_INT
f55b1d97
RK
6050 && 0 != (goaltry = operand_subword (XEXP (tem, 0), 0, 0,
6051 VOIDmode))
6052 && rtx_equal_p (goal, goaltry)
e8094962
RK
6053 && (valtry = operand_subword (SET_DEST (pat), 0, 0,
6054 VOIDmode))
95d3562b 6055 && (valueno = true_regnum (valtry)) >= 0)
fb3821f7
CH
6056 || (goal_const && (tem = find_reg_note (p, REG_EQUIV,
6057 NULL_RTX))
e8094962
RK
6058 && GET_CODE (SET_DEST (pat)) == REG
6059 && GET_CODE (XEXP (tem, 0)) == CONST_DOUBLE
6060 && GET_MODE_CLASS (GET_MODE (XEXP (tem, 0))) == MODE_FLOAT
6061 && GET_CODE (goal) == CONST_INT
f55b1d97
RK
6062 && 0 != (goaltry = operand_subword (XEXP (tem, 0), 1, 0,
6063 VOIDmode))
6064 && rtx_equal_p (goal, goaltry)
e8094962
RK
6065 && (valtry
6066 = operand_subword (SET_DEST (pat), 1, 0, VOIDmode))
95d3562b 6067 && (valueno = true_regnum (valtry)) >= 0)))
eab89b90
RK
6068 if (other >= 0
6069 ? valueno == other
6070 : ((unsigned) valueno < FIRST_PSEUDO_REGISTER
6071 && TEST_HARD_REG_BIT (reg_class_contents[(int) class],
6072 valueno)))
6073 {
6074 value = valtry;
6075 where = p;
6076 break;
6077 }
6078 }
6079 }
6080
6081 /* We found a previous insn copying GOAL into a suitable other reg VALUE
6082 (or copying VALUE into GOAL, if GOAL is also a register).
6083 Now verify that VALUE is really valid. */
6084
6085 /* VALUENO is the register number of VALUE; a hard register. */
6086
6087 /* Don't try to re-use something that is killed in this insn. We want
6088 to be able to trust REG_UNUSED notes. */
6089 if (find_reg_note (where, REG_UNUSED, value))
6090 return 0;
6091
6092 /* If we propose to get the value from the stack pointer or if GOAL is
6093 a MEM based on the stack pointer, we need a stable SP. */
d5a1d1c7 6094 if (valueno == STACK_POINTER_REGNUM || regno == STACK_POINTER_REGNUM
bfa30b22
RK
6095 || (goal_mem && reg_overlap_mentioned_for_reload_p (stack_pointer_rtx,
6096 goal)))
eab89b90
RK
6097 need_stable_sp = 1;
6098
6099 /* Reject VALUE if the copy-insn moved the wrong sort of datum. */
6100 if (GET_MODE (value) != mode)
6101 return 0;
6102
6103 /* Reject VALUE if it was loaded from GOAL
6104 and is also a register that appears in the address of GOAL. */
6105
bd5f6d44 6106 if (goal_mem && value == SET_DEST (single_set (where))
bfa30b22
RK
6107 && refers_to_regno_for_reload_p (valueno,
6108 (valueno
6109 + HARD_REGNO_NREGS (valueno, mode)),
fb3821f7 6110 goal, NULL_PTR))
eab89b90
RK
6111 return 0;
6112
6113 /* Reject registers that overlap GOAL. */
6114
6115 if (!goal_mem && !goal_const
6116 && regno + HARD_REGNO_NREGS (regno, mode) > valueno
6117 && regno < valueno + HARD_REGNO_NREGS (valueno, mode))
6118 return 0;
6119
6120 /* Reject VALUE if it is one of the regs reserved for reloads.
6121 Reload1 knows how to reuse them anyway, and it would get
6122 confused if we allocated one without its knowledge.
6123 (Now that insns introduced by reload are ignored above,
6124 this case shouldn't happen, but I'm not positive.) */
6125
a8c9daeb 6126 if (reload_reg_p != 0 && reload_reg_p != (short *) (HOST_WIDE_INT) 1
eab89b90
RK
6127 && reload_reg_p[valueno] >= 0)
6128 return 0;
6129
6130 /* On some machines, certain regs must always be rejected
6131 because they don't behave the way ordinary registers do. */
6132
6133#ifdef OVERLAPPING_REGNO_P
6134 if (OVERLAPPING_REGNO_P (valueno))
6135 return 0;
6136#endif
6137
6138 nregs = HARD_REGNO_NREGS (regno, mode);
6139 valuenregs = HARD_REGNO_NREGS (valueno, mode);
6140
6141 /* Reject VALUE if it is a register being used for an input reload
6142 even if it is not one of those reserved. */
6143
6144 if (reload_reg_p != 0)
6145 {
6146 int i;
6147 for (i = 0; i < n_reloads; i++)
6148 if (reload_reg_rtx[i] != 0 && reload_in[i])
6149 {
6150 int regno1 = REGNO (reload_reg_rtx[i]);
6151 int nregs1 = HARD_REGNO_NREGS (regno1,
6152 GET_MODE (reload_reg_rtx[i]));
6153 if (regno1 < valueno + valuenregs
6154 && regno1 + nregs1 > valueno)
6155 return 0;
6156 }
6157 }
6158
6159 if (goal_mem)
54b5ffe9
RS
6160 /* We must treat frame pointer as varying here,
6161 since it can vary--in a nonlocal goto as generated by expand_goto. */
6162 goal_mem_addr_varies = !CONSTANT_ADDRESS_P (XEXP (goal, 0));
eab89b90
RK
6163
6164 /* Now verify that the values of GOAL and VALUE remain unaltered
6165 until INSN is reached. */
6166
6167 p = insn;
6168 while (1)
6169 {
6170 p = PREV_INSN (p);
6171 if (p == where)
6172 return value;
6173
6174 /* Don't trust the conversion past a function call
6175 if either of the two is in a call-clobbered register, or memory. */
6176 if (GET_CODE (p) == CALL_INSN
6177 && ((regno >= 0 && regno < FIRST_PSEUDO_REGISTER
6178 && call_used_regs[regno])
6179 ||
6180 (valueno >= 0 && valueno < FIRST_PSEUDO_REGISTER
6181 && call_used_regs[valueno])
6182 ||
6183 goal_mem
6184 || need_stable_sp))
6185 return 0;
6186
41fe17ab
RK
6187#ifdef NON_SAVING_SETJMP
6188 if (NON_SAVING_SETJMP && GET_CODE (p) == NOTE
6189 && NOTE_LINE_NUMBER (p) == NOTE_INSN_SETJMP)
6190 return 0;
6191#endif
6192
eab89b90
RK
6193#ifdef INSN_CLOBBERS_REGNO_P
6194 if ((valueno >= 0 && valueno < FIRST_PSEUDO_REGISTER
6195 && INSN_CLOBBERS_REGNO_P (p, valueno))
6196 || (regno >= 0 && regno < FIRST_PSEUDO_REGISTER
6197 && INSN_CLOBBERS_REGNO_P (p, regno)))
6198 return 0;
6199#endif
6200
6201 if (GET_RTX_CLASS (GET_CODE (p)) == 'i')
6202 {
8ec82f87
RH
6203 pat = PATTERN (p);
6204
6205 /* Watch out for unspec_volatile, and volatile asms. */
6206 if (volatile_insn_p (pat))
6207 return 0;
6208
eab89b90
RK
6209 /* If this insn P stores in either GOAL or VALUE, return 0.
6210 If GOAL is a memory ref and this insn writes memory, return 0.
6211 If GOAL is a memory ref and its address is not constant,
6212 and this insn P changes a register used in GOAL, return 0. */
6213
eab89b90
RK
6214 if (GET_CODE (pat) == SET || GET_CODE (pat) == CLOBBER)
6215 {
6216 register rtx dest = SET_DEST (pat);
6217 while (GET_CODE (dest) == SUBREG
6218 || GET_CODE (dest) == ZERO_EXTRACT
6219 || GET_CODE (dest) == SIGN_EXTRACT
6220 || GET_CODE (dest) == STRICT_LOW_PART)
6221 dest = XEXP (dest, 0);
6222 if (GET_CODE (dest) == REG)
6223 {
6224 register int xregno = REGNO (dest);
6225 int xnregs;
6226 if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
6227 xnregs = HARD_REGNO_NREGS (xregno, GET_MODE (dest));
6228 else
6229 xnregs = 1;
6230 if (xregno < regno + nregs && xregno + xnregs > regno)
6231 return 0;
6232 if (xregno < valueno + valuenregs
6233 && xregno + xnregs > valueno)
6234 return 0;
6235 if (goal_mem_addr_varies
bfa30b22 6236 && reg_overlap_mentioned_for_reload_p (dest, goal))
eab89b90 6237 return 0;
1b4d8b2b
R
6238 if (xregno == STACK_POINTER_REGNUM && need_stable_sp)
6239 return 0;
eab89b90
RK
6240 }
6241 else if (goal_mem && GET_CODE (dest) == MEM
6242 && ! push_operand (dest, GET_MODE (dest)))
6243 return 0;
9fac9680
RK
6244 else if (GET_CODE (dest) == MEM && regno >= FIRST_PSEUDO_REGISTER
6245 && reg_equiv_memory_loc[regno] != 0)
6246 return 0;
eab89b90
RK
6247 else if (need_stable_sp && push_operand (dest, GET_MODE (dest)))
6248 return 0;
6249 }
6250 else if (GET_CODE (pat) == PARALLEL)
6251 {
6252 register int i;
6253 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
6254 {
6255 register rtx v1 = XVECEXP (pat, 0, i);
6256 if (GET_CODE (v1) == SET || GET_CODE (v1) == CLOBBER)
6257 {
6258 register rtx dest = SET_DEST (v1);
6259 while (GET_CODE (dest) == SUBREG
6260 || GET_CODE (dest) == ZERO_EXTRACT
6261 || GET_CODE (dest) == SIGN_EXTRACT
6262 || GET_CODE (dest) == STRICT_LOW_PART)
6263 dest = XEXP (dest, 0);
6264 if (GET_CODE (dest) == REG)
6265 {
6266 register int xregno = REGNO (dest);
6267 int xnregs;
6268 if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
6269 xnregs = HARD_REGNO_NREGS (xregno, GET_MODE (dest));
6270 else
6271 xnregs = 1;
6272 if (xregno < regno + nregs
6273 && xregno + xnregs > regno)
6274 return 0;
6275 if (xregno < valueno + valuenregs
6276 && xregno + xnregs > valueno)
6277 return 0;
6278 if (goal_mem_addr_varies
bfa30b22
RK
6279 && reg_overlap_mentioned_for_reload_p (dest,
6280 goal))
eab89b90 6281 return 0;
930176e7
R
6282 if (xregno == STACK_POINTER_REGNUM && need_stable_sp)
6283 return 0;
eab89b90
RK
6284 }
6285 else if (goal_mem && GET_CODE (dest) == MEM
6286 && ! push_operand (dest, GET_MODE (dest)))
6287 return 0;
e9a25f70
JL
6288 else if (GET_CODE (dest) == MEM && regno >= FIRST_PSEUDO_REGISTER
6289 && reg_equiv_memory_loc[regno] != 0)
6290 return 0;
369c7ab6
JW
6291 else if (need_stable_sp
6292 && push_operand (dest, GET_MODE (dest)))
6293 return 0;
6294 }
6295 }
6296 }
6297
6298 if (GET_CODE (p) == CALL_INSN && CALL_INSN_FUNCTION_USAGE (p))
6299 {
6300 rtx link;
6301
6302 for (link = CALL_INSN_FUNCTION_USAGE (p); XEXP (link, 1) != 0;
6303 link = XEXP (link, 1))
6304 {
6305 pat = XEXP (link, 0);
6306 if (GET_CODE (pat) == CLOBBER)
6307 {
6308 register rtx dest = SET_DEST (pat);
6309 while (GET_CODE (dest) == SUBREG
6310 || GET_CODE (dest) == ZERO_EXTRACT
6311 || GET_CODE (dest) == SIGN_EXTRACT
6312 || GET_CODE (dest) == STRICT_LOW_PART)
6313 dest = XEXP (dest, 0);
6314 if (GET_CODE (dest) == REG)
6315 {
6316 register int xregno = REGNO (dest);
6317 int xnregs;
6318 if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
6319 xnregs = HARD_REGNO_NREGS (xregno, GET_MODE (dest));
6320 else
6321 xnregs = 1;
6322 if (xregno < regno + nregs
6323 && xregno + xnregs > regno)
6324 return 0;
6325 if (xregno < valueno + valuenregs
6326 && xregno + xnregs > valueno)
6327 return 0;
6328 if (goal_mem_addr_varies
6329 && reg_overlap_mentioned_for_reload_p (dest,
6330 goal))
6331 return 0;
6332 }
6333 else if (goal_mem && GET_CODE (dest) == MEM
6334 && ! push_operand (dest, GET_MODE (dest)))
6335 return 0;
eab89b90
RK
6336 else if (need_stable_sp
6337 && push_operand (dest, GET_MODE (dest)))
6338 return 0;
6339 }
6340 }
6341 }
6342
6343#ifdef AUTO_INC_DEC
6344 /* If this insn auto-increments or auto-decrements
6345 either regno or valueno, return 0 now.
6346 If GOAL is a memory ref and its address is not constant,
6347 and this insn P increments a register used in GOAL, return 0. */
6348 {
6349 register rtx link;
6350
6351 for (link = REG_NOTES (p); link; link = XEXP (link, 1))
6352 if (REG_NOTE_KIND (link) == REG_INC
6353 && GET_CODE (XEXP (link, 0)) == REG)
6354 {
6355 register int incno = REGNO (XEXP (link, 0));
6356 if (incno < regno + nregs && incno >= regno)
6357 return 0;
6358 if (incno < valueno + valuenregs && incno >= valueno)
6359 return 0;
6360 if (goal_mem_addr_varies
bfa30b22
RK
6361 && reg_overlap_mentioned_for_reload_p (XEXP (link, 0),
6362 goal))
eab89b90
RK
6363 return 0;
6364 }
6365 }
6366#endif
6367 }
6368 }
6369}
6370\f
6371/* Find a place where INCED appears in an increment or decrement operator
6372 within X, and return the amount INCED is incremented or decremented by.
6373 The value is always positive. */
6374
6375static int
6376find_inc_amount (x, inced)
6377 rtx x, inced;
6378{
6379 register enum rtx_code code = GET_CODE (x);
6380 register char *fmt;
6381 register int i;
6382
6383 if (code == MEM)
6384 {
6385 register rtx addr = XEXP (x, 0);
6386 if ((GET_CODE (addr) == PRE_DEC
6387 || GET_CODE (addr) == POST_DEC
6388 || GET_CODE (addr) == PRE_INC
6389 || GET_CODE (addr) == POST_INC)
6390 && XEXP (addr, 0) == inced)
6391 return GET_MODE_SIZE (GET_MODE (x));
6392 }
6393
6394 fmt = GET_RTX_FORMAT (code);
6395 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6396 {
6397 if (fmt[i] == 'e')
6398 {
6399 register int tem = find_inc_amount (XEXP (x, i), inced);
6400 if (tem != 0)
6401 return tem;
6402 }
6403 if (fmt[i] == 'E')
6404 {
6405 register int j;
6406 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6407 {
6408 register int tem = find_inc_amount (XVECEXP (x, i, j), inced);
6409 if (tem != 0)
6410 return tem;
6411 }
6412 }
6413 }
6414
6415 return 0;
6416}
6417\f
6418/* Return 1 if register REGNO is the subject of a clobber in insn INSN. */
6419
6420int
6421regno_clobbered_p (regno, insn)
6422 int regno;
6423 rtx insn;
6424{
6425 if (GET_CODE (PATTERN (insn)) == CLOBBER
6426 && GET_CODE (XEXP (PATTERN (insn), 0)) == REG)
6427 return REGNO (XEXP (PATTERN (insn), 0)) == regno;
6428
6429 if (GET_CODE (PATTERN (insn)) == PARALLEL)
6430 {
6431 int i = XVECLEN (PATTERN (insn), 0) - 1;
6432
6433 for (; i >= 0; i--)
6434 {
6435 rtx elt = XVECEXP (PATTERN (insn), 0, i);
6436 if (GET_CODE (elt) == CLOBBER && GET_CODE (XEXP (elt, 0)) == REG
6437 && REGNO (XEXP (elt, 0)) == regno)
6438 return 1;
6439 }
6440 }
6441
6442 return 0;
6443}
10bcde0d
RK
6444
6445static char *reload_when_needed_name[] =
6446{
6447 "RELOAD_FOR_INPUT",
6448 "RELOAD_FOR_OUTPUT",
6449 "RELOAD_FOR_INSN",
47c8cf91
ILT
6450 "RELOAD_FOR_INPUT_ADDRESS",
6451 "RELOAD_FOR_INPADDR_ADDRESS",
10bcde0d 6452 "RELOAD_FOR_OUTPUT_ADDRESS",
47c8cf91 6453 "RELOAD_FOR_OUTADDR_ADDRESS",
10bcde0d
RK
6454 "RELOAD_FOR_OPERAND_ADDRESS",
6455 "RELOAD_FOR_OPADDR_ADDR",
6456 "RELOAD_OTHER",
6457 "RELOAD_FOR_OTHER_ADDRESS"
6458};
6459
6460static char *reg_class_names[] = REG_CLASS_NAMES;
6461
b8fb2d72 6462/* These functions are used to print the variables set by 'find_reloads' */
10bcde0d
RK
6463
6464void
b8fb2d72
CI
6465debug_reload_to_stream (f)
6466 FILE *f;
10bcde0d
RK
6467{
6468 int r;
505923a0 6469 char *prefix;
10bcde0d 6470
b8fb2d72
CI
6471 if (! f)
6472 f = stderr;
10bcde0d
RK
6473 for (r = 0; r < n_reloads; r++)
6474 {
b8fb2d72 6475 fprintf (f, "Reload %d: ", r);
10bcde0d 6476
505923a0 6477 if (reload_in[r] != 0)
10bcde0d 6478 {
b8fb2d72 6479 fprintf (f, "reload_in (%s) = ",
f7393e85 6480 GET_MODE_NAME (reload_inmode[r]));
b8fb2d72
CI
6481 print_inline_rtx (f, reload_in[r], 24);
6482 fprintf (f, "\n\t");
10bcde0d
RK
6483 }
6484
505923a0 6485 if (reload_out[r] != 0)
10bcde0d 6486 {
b8fb2d72 6487 fprintf (f, "reload_out (%s) = ",
f7393e85 6488 GET_MODE_NAME (reload_outmode[r]));
b8fb2d72
CI
6489 print_inline_rtx (f, reload_out[r], 24);
6490 fprintf (f, "\n\t");
10bcde0d
RK
6491 }
6492
b8fb2d72 6493 fprintf (f, "%s, ", reg_class_names[(int) reload_reg_class[r]]);
10bcde0d 6494
b8fb2d72 6495 fprintf (f, "%s (opnum = %d)",
505923a0 6496 reload_when_needed_name[(int) reload_when_needed[r]],
10bcde0d
RK
6497 reload_opnum[r]);
6498
6499 if (reload_optional[r])
b8fb2d72 6500 fprintf (f, ", optional");
10bcde0d 6501
f5963e61
JL
6502 if (reload_nongroup[r])
6503 fprintf (stderr, ", nongroup");
6504
505923a0 6505 if (reload_inc[r] != 0)
b8fb2d72 6506 fprintf (f, ", inc by %d", reload_inc[r]);
10bcde0d
RK
6507
6508 if (reload_nocombine[r])
b8fb2d72 6509 fprintf (f, ", can't combine");
10bcde0d
RK
6510
6511 if (reload_secondary_p[r])
b8fb2d72 6512 fprintf (f, ", secondary_reload_p");
10bcde0d 6513
505923a0 6514 if (reload_in_reg[r] != 0)
10bcde0d 6515 {
b8fb2d72
CI
6516 fprintf (f, "\n\treload_in_reg: ");
6517 print_inline_rtx (f, reload_in_reg[r], 24);
10bcde0d
RK
6518 }
6519
505923a0 6520 if (reload_reg_rtx[r] != 0)
10bcde0d 6521 {
b8fb2d72
CI
6522 fprintf (f, "\n\treload_reg_rtx: ");
6523 print_inline_rtx (f, reload_reg_rtx[r], 24);
10bcde0d
RK
6524 }
6525
505923a0 6526 prefix = "\n\t";
10bcde0d
RK
6527 if (reload_secondary_in_reload[r] != -1)
6528 {
b8fb2d72 6529 fprintf (f, "%ssecondary_in_reload = %d",
505923a0
RK
6530 prefix, reload_secondary_in_reload[r]);
6531 prefix = ", ";
10bcde0d
RK
6532 }
6533
6534 if (reload_secondary_out_reload[r] != -1)
b8fb2d72 6535 fprintf (f, "%ssecondary_out_reload = %d\n",
505923a0 6536 prefix, reload_secondary_out_reload[r]);
10bcde0d 6537
505923a0 6538 prefix = "\n\t";
10bcde0d
RK
6539 if (reload_secondary_in_icode[r] != CODE_FOR_nothing)
6540 {
e5e809f4
JL
6541 fprintf (stderr, "%ssecondary_in_icode = %s", prefix,
6542 insn_name[reload_secondary_in_icode[r]]);
505923a0 6543 prefix = ", ";
10bcde0d
RK
6544 }
6545
6546 if (reload_secondary_out_icode[r] != CODE_FOR_nothing)
e5e809f4
JL
6547 fprintf (stderr, "%ssecondary_out_icode = %s", prefix,
6548 insn_name[reload_secondary_out_icode[r]]);
10bcde0d 6549
b8fb2d72 6550 fprintf (f, "\n");
10bcde0d 6551 }
10bcde0d 6552}
b8fb2d72
CI
6553
6554void
6555debug_reload ()
6556{
6557 debug_reload_to_stream (stderr);
6558}
This page took 1.971854 seconds and 5 git commands to generate.