]> gcc.gnu.org Git - gcc.git/blame - gcc/reload.c
a
[gcc.git] / gcc / reload.c
CommitLineData
eab89b90 1/* Search an insn for pseudo regs that must be in hard regs and are not.
2fd0af53 2 Copyright (C) 1987, 88, 89, 92-7, 1998 Free Software Foundation, Inc.
eab89b90
RK
3
4This file is part of GNU CC.
5
6GNU CC is free software; you can redistribute it and/or modify
7it under the terms of the GNU General Public License as published by
8the Free Software Foundation; either version 2, or (at your option)
9any later version.
10
11GNU CC is distributed in the hope that it will be useful,
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14GNU General Public License for more details.
15
16You should have received a copy of the GNU General Public License
17along with GNU CC; see the file COPYING. If not, write to
e99215a3
RK
18the Free Software Foundation, 59 Temple Place - Suite 330,
19Boston, MA 02111-1307, USA. */
eab89b90
RK
20
21
22/* This file contains subroutines used only from the file reload1.c.
23 It knows how to scan one insn for operands and values
24 that need to be copied into registers to make valid code.
25 It also finds other operands and values which are valid
26 but for which equivalent values in registers exist and
27 ought to be used instead.
28
29 Before processing the first insn of the function, call `init_reload'.
30
31 To scan an insn, call `find_reloads'. This does two things:
32 1. sets up tables describing which values must be reloaded
33 for this insn, and what kind of hard regs they must be reloaded into;
34 2. optionally record the locations where those values appear in
35 the data, so they can be replaced properly later.
36 This is done only if the second arg to `find_reloads' is nonzero.
37
38 The third arg to `find_reloads' specifies the number of levels
39 of indirect addressing supported by the machine. If it is zero,
40 indirect addressing is not valid. If it is one, (MEM (REG n))
41 is valid even if (REG n) did not get a hard register; if it is two,
42 (MEM (MEM (REG n))) is also valid even if (REG n) did not get a
43 hard register, and similarly for higher values.
44
45 Then you must choose the hard regs to reload those pseudo regs into,
46 and generate appropriate load insns before this insn and perhaps
47 also store insns after this insn. Set up the array `reload_reg_rtx'
48 to contain the REG rtx's for the registers you used. In some
49 cases `find_reloads' will return a nonzero value in `reload_reg_rtx'
50 for certain reloads. Then that tells you which register to use,
51 so you do not need to allocate one. But you still do need to add extra
52 instructions to copy the value into and out of that register.
53
54 Finally you must call `subst_reloads' to substitute the reload reg rtx's
55 into the locations already recorded.
56
57NOTE SIDE EFFECTS:
58
59 find_reloads can alter the operands of the instruction it is called on.
60
61 1. Two operands of any sort may be interchanged, if they are in a
62 commutative instruction.
63 This happens only if find_reloads thinks the instruction will compile
64 better that way.
65
66 2. Pseudo-registers that are equivalent to constants are replaced
67 with those constants if they are not in hard registers.
68
691 happens every time find_reloads is called.
702 happens only when REPLACE is 1, which is only when
71actually doing the reloads, not when just counting them.
72
73
74Using a reload register for several reloads in one insn:
75
76When an insn has reloads, it is considered as having three parts:
77the input reloads, the insn itself after reloading, and the output reloads.
78Reloads of values used in memory addresses are often needed for only one part.
79
80When this is so, reload_when_needed records which part needs the reload.
81Two reloads for different parts of the insn can share the same reload
82register.
83
84When a reload is used for addresses in multiple parts, or when it is
85an ordinary operand, it is classified as RELOAD_OTHER, and cannot share
86a register with any other reload. */
87
88#define REG_OK_STRICT
89
90#include "config.h"
e9a25f70 91#include <stdio.h>
eab89b90
RK
92#include "rtl.h"
93#include "insn-config.h"
94#include "insn-codes.h"
95#include "recog.h"
96#include "reload.h"
97#include "regs.h"
98#include "hard-reg-set.h"
99#include "flags.h"
100#include "real.h"
8a840ac9 101#include "output.h"
55c22565 102#include "expr.h"
eab89b90
RK
103
104#ifndef REGISTER_MOVE_COST
105#define REGISTER_MOVE_COST(x, y) 2
106#endif
858c3c8c
ILT
107
108#ifndef REGNO_MODE_OK_FOR_BASE_P
109#define REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) REGNO_OK_FOR_BASE_P (REGNO)
110#endif
111
112#ifndef REG_MODE_OK_FOR_BASE_P
113#define REG_MODE_OK_FOR_BASE_P(REGNO, MODE) REG_OK_FOR_BASE_P (REGNO)
114#endif
eab89b90
RK
115\f
116/* The variables set up by `find_reloads' are:
117
118 n_reloads number of distinct reloads needed; max reload # + 1
119 tables indexed by reload number
120 reload_in rtx for value to reload from
121 reload_out rtx for where to store reload-reg afterward if nec
122 (often the same as reload_in)
123 reload_reg_class enum reg_class, saying what regs to reload into
124 reload_inmode enum machine_mode; mode this operand should have
125 when reloaded, on input.
126 reload_outmode enum machine_mode; mode this operand should have
127 when reloaded, on output.
eab89b90
RK
128 reload_optional char, nonzero for an optional reload.
129 Optional reloads are ignored unless the
130 value is already sitting in a register.
131 reload_inc int, positive amount to increment or decrement by if
132 reload_in is a PRE_DEC, PRE_INC, POST_DEC, POST_INC.
133 Ignored otherwise (don't assume it is zero).
134 reload_in_reg rtx. A reg for which reload_in is the equivalent.
135 If reload_in is a symbol_ref which came from
136 reg_equiv_constant, then this is the pseudo
137 which has that symbol_ref as equivalent.
138 reload_reg_rtx rtx. This is the register to reload into.
139 If it is zero when `find_reloads' returns,
140 you must find a suitable register in the class
141 specified by reload_reg_class, and store here
142 an rtx for that register with mode from
143 reload_inmode or reload_outmode.
144 reload_nocombine char, nonzero if this reload shouldn't be
145 combined with another reload.
a8c9daeb
RK
146 reload_opnum int, operand number being reloaded. This is
147 used to group related reloads and need not always
148 be equal to the actual operand number in the insn,
149 though it current will be; for in-out operands, it
150 is one of the two operand numbers.
151 reload_when_needed enum, classifies reload as needed either for
eab89b90
RK
152 addressing an input reload, addressing an output,
153 for addressing a non-reloaded mem ref,
154 or for unspecified purposes (i.e., more than one
155 of the above).
eab89b90 156 reload_secondary_p int, 1 if this is a secondary register for one
9ec7078b
RK
157 or more reloads.
158 reload_secondary_in_reload
159 reload_secondary_out_reload
160 int, gives the reload number of a secondary
161 reload, when needed; otherwise -1
162 reload_secondary_in_icode
163 reload_secondary_out_icode
164 enum insn_code, if a secondary reload is required,
eab89b90
RK
165 gives the INSN_CODE that uses the secondary
166 reload as a scratch register, or CODE_FOR_nothing
167 if the secondary reload register is to be an
168 intermediate register. */
169int n_reloads;
170
171rtx reload_in[MAX_RELOADS];
172rtx reload_out[MAX_RELOADS];
173enum reg_class reload_reg_class[MAX_RELOADS];
174enum machine_mode reload_inmode[MAX_RELOADS];
175enum machine_mode reload_outmode[MAX_RELOADS];
eab89b90
RK
176rtx reload_reg_rtx[MAX_RELOADS];
177char reload_optional[MAX_RELOADS];
178int reload_inc[MAX_RELOADS];
179rtx reload_in_reg[MAX_RELOADS];
180char reload_nocombine[MAX_RELOADS];
a8c9daeb
RK
181int reload_opnum[MAX_RELOADS];
182enum reload_type reload_when_needed[MAX_RELOADS];
eab89b90 183int reload_secondary_p[MAX_RELOADS];
9ec7078b
RK
184int reload_secondary_in_reload[MAX_RELOADS];
185int reload_secondary_out_reload[MAX_RELOADS];
186enum insn_code reload_secondary_in_icode[MAX_RELOADS];
187enum insn_code reload_secondary_out_icode[MAX_RELOADS];
eab89b90
RK
188
189/* All the "earlyclobber" operands of the current insn
190 are recorded here. */
191int n_earlyclobbers;
192rtx reload_earlyclobbers[MAX_RECOG_OPERANDS];
193
a8c9daeb
RK
194int reload_n_operands;
195
eab89b90
RK
196/* Replacing reloads.
197
198 If `replace_reloads' is nonzero, then as each reload is recorded
199 an entry is made for it in the table `replacements'.
200 Then later `subst_reloads' can look through that table and
201 perform all the replacements needed. */
202
203/* Nonzero means record the places to replace. */
204static int replace_reloads;
205
206/* Each replacement is recorded with a structure like this. */
207struct replacement
208{
209 rtx *where; /* Location to store in */
210 rtx *subreg_loc; /* Location of SUBREG if WHERE is inside
211 a SUBREG; 0 otherwise. */
212 int what; /* which reload this is for */
213 enum machine_mode mode; /* mode it must have */
214};
215
216static struct replacement replacements[MAX_RECOG_OPERANDS * ((MAX_REGS_PER_ADDRESS * 2) + 1)];
217
218/* Number of replacements currently recorded. */
219static int n_replacements;
220
a8c9daeb
RK
221/* Used to track what is modified by an operand. */
222struct decomposition
223{
0f41302f
MS
224 int reg_flag; /* Nonzero if referencing a register. */
225 int safe; /* Nonzero if this can't conflict with anything. */
226 rtx base; /* Base address for MEM. */
227 HOST_WIDE_INT start; /* Starting offset or register number. */
2a6d5ce0 228 HOST_WIDE_INT end; /* Ending offset or register number. */
a8c9daeb
RK
229};
230
eab89b90
RK
231/* MEM-rtx's created for pseudo-regs in stack slots not directly addressable;
232 (see reg_equiv_address). */
233static rtx memlocs[MAX_RECOG_OPERANDS * ((MAX_REGS_PER_ADDRESS * 2) + 1)];
234static int n_memlocs;
235
0dadecf6
RK
236#ifdef SECONDARY_MEMORY_NEEDED
237
238/* Save MEMs needed to copy from one class of registers to another. One MEM
239 is used per mode, but normally only one or two modes are ever used.
240
a8c9daeb
RK
241 We keep two versions, before and after register elimination. The one
242 after register elimination is record separately for each operand. This
243 is done in case the address is not valid to be sure that we separately
244 reload each. */
0dadecf6
RK
245
246static rtx secondary_memlocs[NUM_MACHINE_MODES];
77545d45 247static rtx secondary_memlocs_elim[NUM_MACHINE_MODES][MAX_RECOG_OPERANDS];
0dadecf6
RK
248#endif
249
eab89b90
RK
250/* The instruction we are doing reloads for;
251 so we can test whether a register dies in it. */
252static rtx this_insn;
253
254/* Nonzero if this instruction is a user-specified asm with operands. */
255static int this_insn_is_asm;
256
257/* If hard_regs_live_known is nonzero,
258 we can tell which hard regs are currently live,
259 at least enough to succeed in choosing dummy reloads. */
260static int hard_regs_live_known;
261
262/* Indexed by hard reg number,
956d6950 263 element is nonnegative if hard reg has been spilled.
eab89b90
RK
264 This vector is passed to `find_reloads' as an argument
265 and is not changed here. */
266static short *static_reload_reg_p;
267
268/* Set to 1 in subst_reg_equivs if it changes anything. */
269static int subst_reg_equivs_changed;
270
271/* On return from push_reload, holds the reload-number for the OUT
272 operand, which can be different for that from the input operand. */
273static int output_reloadnum;
274
9ec7078b
RK
275 /* Compare two RTX's. */
276#define MATCHES(x, y) \
277 (x == y || (x != 0 && (GET_CODE (x) == REG \
278 ? GET_CODE (y) == REG && REGNO (x) == REGNO (y) \
279 : rtx_equal_p (x, y) && ! side_effects_p (x))))
280
281 /* Indicates if two reloads purposes are for similar enough things that we
282 can merge their reloads. */
283#define MERGABLE_RELOADS(when1, when2, op1, op2) \
284 ((when1) == RELOAD_OTHER || (when2) == RELOAD_OTHER \
285 || ((when1) == (when2) && (op1) == (op2)) \
286 || ((when1) == RELOAD_FOR_INPUT && (when2) == RELOAD_FOR_INPUT) \
287 || ((when1) == RELOAD_FOR_OPERAND_ADDRESS \
288 && (when2) == RELOAD_FOR_OPERAND_ADDRESS) \
289 || ((when1) == RELOAD_FOR_OTHER_ADDRESS \
290 && (when2) == RELOAD_FOR_OTHER_ADDRESS))
291
292 /* Nonzero if these two reload purposes produce RELOAD_OTHER when merged. */
293#define MERGE_TO_OTHER(when1, when2, op1, op2) \
294 ((when1) != (when2) \
295 || ! ((op1) == (op2) \
296 || (when1) == RELOAD_FOR_INPUT \
297 || (when1) == RELOAD_FOR_OPERAND_ADDRESS \
298 || (when1) == RELOAD_FOR_OTHER_ADDRESS))
299
47c8cf91
ILT
300 /* If we are going to reload an address, compute the reload type to
301 use. */
302#define ADDR_TYPE(type) \
303 ((type) == RELOAD_FOR_INPUT_ADDRESS \
304 ? RELOAD_FOR_INPADDR_ADDRESS \
305 : ((type) == RELOAD_FOR_OUTPUT_ADDRESS \
306 ? RELOAD_FOR_OUTADDR_ADDRESS \
307 : (type)))
308
9ec7078b
RK
309static int push_secondary_reload PROTO((int, rtx, int, int, enum reg_class,
310 enum machine_mode, enum reload_type,
311 enum insn_code *));
c6716840 312static enum reg_class find_valid_class PROTO((enum machine_mode, int));
a8c9daeb
RK
313static int push_reload PROTO((rtx, rtx, rtx *, rtx *, enum reg_class,
314 enum machine_mode, enum machine_mode,
315 int, int, int, enum reload_type));
316static void push_replacement PROTO((rtx *, int, enum machine_mode));
317static void combine_reloads PROTO((void));
318static rtx find_dummy_reload PROTO((rtx, rtx, rtx *, rtx *,
36b50568 319 enum machine_mode, enum machine_mode,
189086f9 320 enum reg_class, int, int));
4644aad4 321static int earlyclobber_operand_p PROTO((rtx));
a8c9daeb
RK
322static int hard_reg_set_here_p PROTO((int, int, rtx));
323static struct decomposition decompose PROTO((rtx));
324static int immune_p PROTO((rtx, rtx, struct decomposition));
325static int alternative_allows_memconst PROTO((char *, int));
326static rtx find_reloads_toplev PROTO((rtx, int, enum reload_type, int, int));
327static rtx make_memloc PROTO((rtx, int));
328static int find_reloads_address PROTO((enum machine_mode, rtx *, rtx, rtx *,
55c22565 329 int, enum reload_type, int, rtx));
a8c9daeb
RK
330static rtx subst_reg_equivs PROTO((rtx));
331static rtx subst_indexed_address PROTO((rtx));
858c3c8c 332static int find_reloads_address_1 PROTO((enum machine_mode, rtx, int, rtx *,
55c22565 333 int, enum reload_type,int, rtx));
a8c9daeb
RK
334static void find_reloads_address_part PROTO((rtx, rtx *, enum reg_class,
335 enum machine_mode, int,
336 enum reload_type, int));
337static int find_inc_amount PROTO((rtx, rtx));
eab89b90
RK
338\f
339#ifdef HAVE_SECONDARY_RELOADS
340
341/* Determine if any secondary reloads are needed for loading (if IN_P is
342 non-zero) or storing (if IN_P is zero) X to or from a reload register of
9ec7078b
RK
343 register class RELOAD_CLASS in mode RELOAD_MODE. If secondary reloads
344 are needed, push them.
345
346 Return the reload number of the secondary reload we made, or -1 if
347 we didn't need one. *PICODE is set to the insn_code to use if we do
348 need a secondary reload. */
349
350static int
351push_secondary_reload (in_p, x, opnum, optional, reload_class, reload_mode,
352 type, picode)
353 int in_p;
eab89b90 354 rtx x;
9ec7078b
RK
355 int opnum;
356 int optional;
eab89b90
RK
357 enum reg_class reload_class;
358 enum machine_mode reload_mode;
9ec7078b 359 enum reload_type type;
eab89b90 360 enum insn_code *picode;
eab89b90
RK
361{
362 enum reg_class class = NO_REGS;
363 enum machine_mode mode = reload_mode;
364 enum insn_code icode = CODE_FOR_nothing;
365 enum reg_class t_class = NO_REGS;
366 enum machine_mode t_mode = VOIDmode;
367 enum insn_code t_icode = CODE_FOR_nothing;
d94d2abc 368 enum reload_type secondary_type;
9ec7078b
RK
369 int s_reload, t_reload = -1;
370
47c8cf91
ILT
371 if (type == RELOAD_FOR_INPUT_ADDRESS
372 || type == RELOAD_FOR_OUTPUT_ADDRESS
373 || type == RELOAD_FOR_INPADDR_ADDRESS
374 || type == RELOAD_FOR_OUTADDR_ADDRESS)
d94d2abc
RK
375 secondary_type = type;
376 else
377 secondary_type = in_p ? RELOAD_FOR_INPUT_ADDRESS : RELOAD_FOR_OUTPUT_ADDRESS;
378
9ec7078b 379 *picode = CODE_FOR_nothing;
eab89b90 380
67340b03
RK
381 /* If X is a paradoxical SUBREG, use the inner value to determine both the
382 mode and object being reloaded. */
383 if (GET_CODE (x) == SUBREG
384 && (GET_MODE_SIZE (GET_MODE (x))
385 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))))
386 {
387 x = SUBREG_REG (x);
388 reload_mode = GET_MODE (x);
389 }
390
d45cf215
RS
391 /* If X is a pseudo-register that has an equivalent MEM (actually, if it
392 is still a pseudo-register by now, it *must* have an equivalent MEM
393 but we don't want to assume that), use that equivalent when seeing if
394 a secondary reload is needed since whether or not a reload is needed
395 might be sensitive to the form of the MEM. */
396
397 if (GET_CODE (x) == REG && REGNO (x) >= FIRST_PSEUDO_REGISTER
398 && reg_equiv_mem[REGNO (x)] != 0)
399 x = reg_equiv_mem[REGNO (x)];
400
eab89b90
RK
401#ifdef SECONDARY_INPUT_RELOAD_CLASS
402 if (in_p)
403 class = SECONDARY_INPUT_RELOAD_CLASS (reload_class, reload_mode, x);
404#endif
405
406#ifdef SECONDARY_OUTPUT_RELOAD_CLASS
407 if (! in_p)
408 class = SECONDARY_OUTPUT_RELOAD_CLASS (reload_class, reload_mode, x);
409#endif
410
9ec7078b 411 /* If we don't need any secondary registers, done. */
eab89b90 412 if (class == NO_REGS)
9ec7078b 413 return -1;
eab89b90
RK
414
415 /* Get a possible insn to use. If the predicate doesn't accept X, don't
416 use the insn. */
417
418 icode = (in_p ? reload_in_optab[(int) reload_mode]
419 : reload_out_optab[(int) reload_mode]);
420
421 if (icode != CODE_FOR_nothing
422 && insn_operand_predicate[(int) icode][in_p]
423 && (! (insn_operand_predicate[(int) icode][in_p]) (x, reload_mode)))
424 icode = CODE_FOR_nothing;
425
426 /* If we will be using an insn, see if it can directly handle the reload
427 register we will be using. If it can, the secondary reload is for a
428 scratch register. If it can't, we will use the secondary reload for
429 an intermediate register and require a tertiary reload for the scratch
430 register. */
431
432 if (icode != CODE_FOR_nothing)
433 {
434 /* If IN_P is non-zero, the reload register will be the output in
435 operand 0. If IN_P is zero, the reload register will be the input
436 in operand 1. Outputs should have an initial "=", which we must
437 skip. */
438
d45cf215 439 char insn_letter = insn_operand_constraint[(int) icode][!in_p][in_p];
eab89b90 440 enum reg_class insn_class
d45cf215
RS
441 = (insn_letter == 'r' ? GENERAL_REGS
442 : REG_CLASS_FROM_LETTER (insn_letter));
eab89b90
RK
443
444 if (insn_class == NO_REGS
445 || (in_p && insn_operand_constraint[(int) icode][!in_p][0] != '=')
446 /* The scratch register's constraint must start with "=&". */
447 || insn_operand_constraint[(int) icode][2][0] != '='
448 || insn_operand_constraint[(int) icode][2][1] != '&')
449 abort ();
450
451 if (reg_class_subset_p (reload_class, insn_class))
452 mode = insn_operand_mode[(int) icode][2];
453 else
454 {
d45cf215 455 char t_letter = insn_operand_constraint[(int) icode][2][2];
eab89b90
RK
456 class = insn_class;
457 t_mode = insn_operand_mode[(int) icode][2];
d45cf215
RS
458 t_class = (t_letter == 'r' ? GENERAL_REGS
459 : REG_CLASS_FROM_LETTER (t_letter));
eab89b90
RK
460 t_icode = icode;
461 icode = CODE_FOR_nothing;
462 }
463 }
464
9ec7078b
RK
465 /* This case isn't valid, so fail. Reload is allowed to use the same
466 register for RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT reloads, but
467 in the case of a secondary register, we actually need two different
468 registers for correct code. We fail here to prevent the possibility of
469 silently generating incorrect code later.
470
471 The convention is that secondary input reloads are valid only if the
472 secondary_class is different from class. If you have such a case, you
473 can not use secondary reloads, you must work around the problem some
474 other way.
475
476 Allow this when MODE is not reload_mode and assume that the generated
477 code handles this case (it does on the Alpha, which is the only place
478 this currently happens). */
479
480 if (in_p && class == reload_class && mode == reload_mode)
481 abort ();
482
483 /* If we need a tertiary reload, see if we have one we can reuse or else
484 make a new one. */
485
486 if (t_class != NO_REGS)
487 {
488 for (t_reload = 0; t_reload < n_reloads; t_reload++)
489 if (reload_secondary_p[t_reload]
490 && (reg_class_subset_p (t_class, reload_reg_class[t_reload])
491 || reg_class_subset_p (reload_reg_class[t_reload], t_class))
492 && ((in_p && reload_inmode[t_reload] == t_mode)
493 || (! in_p && reload_outmode[t_reload] == t_mode))
494 && ((in_p && (reload_secondary_in_icode[t_reload]
495 == CODE_FOR_nothing))
496 || (! in_p &&(reload_secondary_out_icode[t_reload]
497 == CODE_FOR_nothing)))
e9a25f70 498 && (reg_class_size[(int) t_class] == 1 || SMALL_REGISTER_CLASSES)
9ec7078b
RK
499 && MERGABLE_RELOADS (secondary_type,
500 reload_when_needed[t_reload],
501 opnum, reload_opnum[t_reload]))
502 {
503 if (in_p)
504 reload_inmode[t_reload] = t_mode;
505 if (! in_p)
506 reload_outmode[t_reload] = t_mode;
507
508 if (reg_class_subset_p (t_class, reload_reg_class[t_reload]))
509 reload_reg_class[t_reload] = t_class;
510
511 reload_opnum[t_reload] = MIN (reload_opnum[t_reload], opnum);
512 reload_optional[t_reload] &= optional;
513 reload_secondary_p[t_reload] = 1;
514 if (MERGE_TO_OTHER (secondary_type, reload_when_needed[t_reload],
515 opnum, reload_opnum[t_reload]))
516 reload_when_needed[t_reload] = RELOAD_OTHER;
517 }
518
519 if (t_reload == n_reloads)
520 {
521 /* We need to make a new tertiary reload for this register class. */
522 reload_in[t_reload] = reload_out[t_reload] = 0;
523 reload_reg_class[t_reload] = t_class;
524 reload_inmode[t_reload] = in_p ? t_mode : VOIDmode;
525 reload_outmode[t_reload] = ! in_p ? t_mode : VOIDmode;
526 reload_reg_rtx[t_reload] = 0;
527 reload_optional[t_reload] = optional;
528 reload_inc[t_reload] = 0;
529 /* Maybe we could combine these, but it seems too tricky. */
530 reload_nocombine[t_reload] = 1;
531 reload_in_reg[t_reload] = 0;
532 reload_opnum[t_reload] = opnum;
533 reload_when_needed[t_reload] = secondary_type;
534 reload_secondary_in_reload[t_reload] = -1;
535 reload_secondary_out_reload[t_reload] = -1;
536 reload_secondary_in_icode[t_reload] = CODE_FOR_nothing;
537 reload_secondary_out_icode[t_reload] = CODE_FOR_nothing;
538 reload_secondary_p[t_reload] = 1;
539
540 n_reloads++;
541 }
542 }
543
544 /* See if we can reuse an existing secondary reload. */
545 for (s_reload = 0; s_reload < n_reloads; s_reload++)
546 if (reload_secondary_p[s_reload]
547 && (reg_class_subset_p (class, reload_reg_class[s_reload])
548 || reg_class_subset_p (reload_reg_class[s_reload], class))
549 && ((in_p && reload_inmode[s_reload] == mode)
550 || (! in_p && reload_outmode[s_reload] == mode))
551 && ((in_p && reload_secondary_in_reload[s_reload] == t_reload)
552 || (! in_p && reload_secondary_out_reload[s_reload] == t_reload))
553 && ((in_p && reload_secondary_in_icode[s_reload] == t_icode)
554 || (! in_p && reload_secondary_out_icode[s_reload] == t_icode))
e9a25f70 555 && (reg_class_size[(int) class] == 1 || SMALL_REGISTER_CLASSES)
9ec7078b
RK
556 && MERGABLE_RELOADS (secondary_type, reload_when_needed[s_reload],
557 opnum, reload_opnum[s_reload]))
558 {
559 if (in_p)
560 reload_inmode[s_reload] = mode;
561 if (! in_p)
562 reload_outmode[s_reload] = mode;
563
564 if (reg_class_subset_p (class, reload_reg_class[s_reload]))
565 reload_reg_class[s_reload] = class;
566
567 reload_opnum[s_reload] = MIN (reload_opnum[s_reload], opnum);
568 reload_optional[s_reload] &= optional;
569 reload_secondary_p[s_reload] = 1;
570 if (MERGE_TO_OTHER (secondary_type, reload_when_needed[s_reload],
571 opnum, reload_opnum[s_reload]))
572 reload_when_needed[s_reload] = RELOAD_OTHER;
573 }
eab89b90 574
9ec7078b
RK
575 if (s_reload == n_reloads)
576 {
e9a25f70
JL
577#ifdef SECONDARY_MEMORY_NEEDED
578 /* If we need a memory location to copy between the two reload regs,
579 set it up now. Note that we do the input case before making
580 the reload and the output case after. This is due to the
581 way reloads are output. */
582
583 if (in_p && icode == CODE_FOR_nothing
584 && SECONDARY_MEMORY_NEEDED (class, reload_class, mode))
585 get_secondary_mem (x, reload_mode, opnum, type);
586#endif
587
9ec7078b
RK
588 /* We need to make a new secondary reload for this register class. */
589 reload_in[s_reload] = reload_out[s_reload] = 0;
590 reload_reg_class[s_reload] = class;
591
592 reload_inmode[s_reload] = in_p ? mode : VOIDmode;
593 reload_outmode[s_reload] = ! in_p ? mode : VOIDmode;
594 reload_reg_rtx[s_reload] = 0;
595 reload_optional[s_reload] = optional;
596 reload_inc[s_reload] = 0;
597 /* Maybe we could combine these, but it seems too tricky. */
598 reload_nocombine[s_reload] = 1;
599 reload_in_reg[s_reload] = 0;
600 reload_opnum[s_reload] = opnum;
601 reload_when_needed[s_reload] = secondary_type;
602 reload_secondary_in_reload[s_reload] = in_p ? t_reload : -1;
603 reload_secondary_out_reload[s_reload] = ! in_p ? t_reload : -1;
604 reload_secondary_in_icode[s_reload] = in_p ? t_icode : CODE_FOR_nothing;
605 reload_secondary_out_icode[s_reload]
606 = ! in_p ? t_icode : CODE_FOR_nothing;
607 reload_secondary_p[s_reload] = 1;
608
609 n_reloads++;
610
611#ifdef SECONDARY_MEMORY_NEEDED
9ec7078b 612 if (! in_p && icode == CODE_FOR_nothing
f49e4127
JW
613 && SECONDARY_MEMORY_NEEDED (reload_class, class, mode))
614 get_secondary_mem (x, mode, opnum, type);
9ec7078b
RK
615#endif
616 }
617
618 *picode = icode;
619 return s_reload;
eab89b90
RK
620}
621#endif /* HAVE_SECONDARY_RELOADS */
622\f
0dadecf6
RK
623#ifdef SECONDARY_MEMORY_NEEDED
624
625/* Return a memory location that will be used to copy X in mode MODE.
626 If we haven't already made a location for this mode in this insn,
627 call find_reloads_address on the location being returned. */
628
629rtx
a8c9daeb 630get_secondary_mem (x, mode, opnum, type)
0dadecf6
RK
631 rtx x;
632 enum machine_mode mode;
a8c9daeb
RK
633 int opnum;
634 enum reload_type type;
0dadecf6
RK
635{
636 rtx loc;
637 int mem_valid;
638
64609742
RK
639 /* By default, if MODE is narrower than a word, widen it to a word.
640 This is required because most machines that require these memory
641 locations do not support short load and stores from all registers
642 (e.g., FP registers). */
643
644#ifdef SECONDARY_MEMORY_NEEDED_MODE
645 mode = SECONDARY_MEMORY_NEEDED_MODE (mode);
646#else
0dadecf6
RK
647 if (GET_MODE_BITSIZE (mode) < BITS_PER_WORD)
648 mode = mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (mode), 0);
64609742 649#endif
0dadecf6 650
77545d45
RK
651 /* If we already have made a MEM for this operand in MODE, return it. */
652 if (secondary_memlocs_elim[(int) mode][opnum] != 0)
653 return secondary_memlocs_elim[(int) mode][opnum];
0dadecf6
RK
654
655 /* If this is the first time we've tried to get a MEM for this mode,
656 allocate a new one. `something_changed' in reload will get set
657 by noticing that the frame size has changed. */
658
659 if (secondary_memlocs[(int) mode] == 0)
b24a53d5
JW
660 {
661#ifdef SECONDARY_MEMORY_NEEDED_RTX
662 secondary_memlocs[(int) mode] = SECONDARY_MEMORY_NEEDED_RTX (mode);
663#else
664 secondary_memlocs[(int) mode]
665 = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
666#endif
667 }
0dadecf6
RK
668
669 /* Get a version of the address doing any eliminations needed. If that
670 didn't give us a new MEM, make a new one if it isn't valid. */
671
1914f5da 672 loc = eliminate_regs (secondary_memlocs[(int) mode], VOIDmode, NULL_RTX);
0dadecf6
RK
673 mem_valid = strict_memory_address_p (mode, XEXP (loc, 0));
674
675 if (! mem_valid && loc == secondary_memlocs[(int) mode])
676 loc = copy_rtx (loc);
677
678 /* The only time the call below will do anything is if the stack
679 offset is too large. In that case IND_LEVELS doesn't matter, so we
a8c9daeb
RK
680 can just pass a zero. Adjust the type to be the address of the
681 corresponding object. If the address was valid, save the eliminated
682 address. If it wasn't valid, we need to make a reload each time, so
683 don't save it. */
0dadecf6 684
a8c9daeb
RK
685 if (! mem_valid)
686 {
687 type = (type == RELOAD_FOR_INPUT ? RELOAD_FOR_INPUT_ADDRESS
688 : type == RELOAD_FOR_OUTPUT ? RELOAD_FOR_OUTPUT_ADDRESS
689 : RELOAD_OTHER);
8d618585 690
a8c9daeb 691 find_reloads_address (mode, NULL_PTR, XEXP (loc, 0), &XEXP (loc, 0),
55c22565 692 opnum, type, 0, 0);
a8c9daeb 693 }
0dadecf6 694
77545d45 695 secondary_memlocs_elim[(int) mode][opnum] = loc;
0dadecf6
RK
696 return loc;
697}
698
699/* Clear any secondary memory locations we've made. */
700
701void
702clear_secondary_mem ()
703{
4c9a05bc 704 bzero ((char *) secondary_memlocs, sizeof secondary_memlocs);
0dadecf6
RK
705}
706#endif /* SECONDARY_MEMORY_NEEDED */
707\f
c6716840
RK
708/* Find the largest class for which every register number plus N is valid in
709 M1 (if in range). Abort if no such class exists. */
710
711static enum reg_class
712find_valid_class (m1, n)
713 enum machine_mode m1;
714 int n;
715{
716 int class;
717 int regno;
718 enum reg_class best_class;
719 int best_size = 0;
720
721 for (class = 1; class < N_REG_CLASSES; class++)
722 {
723 int bad = 0;
724 for (regno = 0; regno < FIRST_PSEUDO_REGISTER && ! bad; regno++)
725 if (TEST_HARD_REG_BIT (reg_class_contents[class], regno)
726 && TEST_HARD_REG_BIT (reg_class_contents[class], regno + n)
727 && ! HARD_REGNO_MODE_OK (regno + n, m1))
728 bad = 1;
729
730 if (! bad && reg_class_size[class] > best_size)
731 best_class = class, best_size = reg_class_size[class];
732 }
733
734 if (best_size == 0)
735 abort ();
736
737 return best_class;
738}
739\f
a8c9daeb 740/* Record one reload that needs to be performed.
eab89b90
RK
741 IN is an rtx saying where the data are to be found before this instruction.
742 OUT says where they must be stored after the instruction.
743 (IN is zero for data not read, and OUT is zero for data not written.)
744 INLOC and OUTLOC point to the places in the instructions where
745 IN and OUT were found.
a8c9daeb
RK
746 If IN and OUT are both non-zero, it means the same register must be used
747 to reload both IN and OUT.
748
eab89b90
RK
749 CLASS is a register class required for the reloaded data.
750 INMODE is the machine mode that the instruction requires
751 for the reg that replaces IN and OUTMODE is likewise for OUT.
752
753 If IN is zero, then OUT's location and mode should be passed as
754 INLOC and INMODE.
755
756 STRICT_LOW is the 1 if there is a containing STRICT_LOW_PART rtx.
757
758 OPTIONAL nonzero means this reload does not need to be performed:
759 it can be discarded if that is more convenient.
760
a8c9daeb
RK
761 OPNUM and TYPE say what the purpose of this reload is.
762
eab89b90
RK
763 The return value is the reload-number for this reload.
764
765 If both IN and OUT are nonzero, in some rare cases we might
766 want to make two separate reloads. (Actually we never do this now.)
767 Therefore, the reload-number for OUT is stored in
768 output_reloadnum when we return; the return value applies to IN.
769 Usually (presently always), when IN and OUT are nonzero,
770 the two reload-numbers are equal, but the caller should be careful to
771 distinguish them. */
772
773static int
774push_reload (in, out, inloc, outloc, class,
a8c9daeb 775 inmode, outmode, strict_low, optional, opnum, type)
eab89b90
RK
776 register rtx in, out;
777 rtx *inloc, *outloc;
778 enum reg_class class;
779 enum machine_mode inmode, outmode;
780 int strict_low;
781 int optional;
a8c9daeb
RK
782 int opnum;
783 enum reload_type type;
eab89b90
RK
784{
785 register int i;
786 int dont_share = 0;
74347d76 787 int dont_remove_subreg = 0;
eab89b90 788 rtx *in_subreg_loc = 0, *out_subreg_loc = 0;
9ec7078b 789 int secondary_in_reload = -1, secondary_out_reload = -1;
a229128d
RK
790 enum insn_code secondary_in_icode = CODE_FOR_nothing;
791 enum insn_code secondary_out_icode = CODE_FOR_nothing;
a8c9daeb 792
eab89b90
RK
793 /* INMODE and/or OUTMODE could be VOIDmode if no mode
794 has been specified for the operand. In that case,
795 use the operand's mode as the mode to reload. */
796 if (inmode == VOIDmode && in != 0)
797 inmode = GET_MODE (in);
798 if (outmode == VOIDmode && out != 0)
799 outmode = GET_MODE (out);
800
801 /* If IN is a pseudo register everywhere-equivalent to a constant, and
802 it is not in a hard register, reload straight from the constant,
803 since we want to get rid of such pseudo registers.
804 Often this is done earlier, but not always in find_reloads_address. */
805 if (in != 0 && GET_CODE (in) == REG)
806 {
807 register int regno = REGNO (in);
808
809 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
810 && reg_equiv_constant[regno] != 0)
811 in = reg_equiv_constant[regno];
812 }
813
814 /* Likewise for OUT. Of course, OUT will never be equivalent to
815 an actual constant, but it might be equivalent to a memory location
816 (in the case of a parameter). */
817 if (out != 0 && GET_CODE (out) == REG)
818 {
819 register int regno = REGNO (out);
820
821 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
822 && reg_equiv_constant[regno] != 0)
823 out = reg_equiv_constant[regno];
824 }
825
826 /* If we have a read-write operand with an address side-effect,
827 change either IN or OUT so the side-effect happens only once. */
828 if (in != 0 && out != 0 && GET_CODE (in) == MEM && rtx_equal_p (in, out))
829 {
830 if (GET_CODE (XEXP (in, 0)) == POST_INC
831 || GET_CODE (XEXP (in, 0)) == POST_DEC)
38a448ca 832 in = gen_rtx_MEM (GET_MODE (in), XEXP (XEXP (in, 0), 0));
eab89b90
RK
833 if (GET_CODE (XEXP (in, 0)) == PRE_INC
834 || GET_CODE (XEXP (in, 0)) == PRE_DEC)
38a448ca 835 out = gen_rtx_MEM (GET_MODE (out), XEXP (XEXP (out, 0), 0));
eab89b90
RK
836 }
837
a61c98cf 838 /* If we are reloading a (SUBREG constant ...), really reload just the
ca769828 839 inside expression in its own mode. Similarly for (SUBREG (PLUS ...)).
a61c98cf
RK
840 If we have (SUBREG:M1 (MEM:M2 ...) ...) (or an inner REG that is still
841 a pseudo and hence will become a MEM) with M1 wider than M2 and the
842 register is a pseudo, also reload the inside expression.
f72ccbe6 843 For machines that extend byte loads, do this for any SUBREG of a pseudo
486d8509
RK
844 where both M1 and M2 are a word or smaller, M1 is wider than M2, and
845 M2 is an integral mode that gets extended when loaded.
86c31b2d 846 Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
eab89b90
RK
847 either M1 is not valid for R or M2 is wider than a word but we only
848 need one word to store an M2-sized quantity in R.
86c31b2d
RS
849 (However, if OUT is nonzero, we need to reload the reg *and*
850 the subreg, so do nothing here, and let following statement handle it.)
851
eab89b90
RK
852 Note that the case of (SUBREG (CONST_INT...)...) is handled elsewhere;
853 we can't handle it here because CONST_INT does not indicate a mode.
854
855 Similarly, we must reload the inside expression if we have a
df62f951
RK
856 STRICT_LOW_PART (presumably, in == out in the cas).
857
858 Also reload the inner expression if it does not require a secondary
486d8509
RK
859 reload but the SUBREG does.
860
861 Finally, reload the inner expression if it is a register that is in
862 the class whose registers cannot be referenced in a different size
d030f4b2
RK
863 and M1 is not the same size as M2. If SUBREG_WORD is nonzero, we
864 cannot reload just the inside since we might end up with the wrong
0f41302f 865 register class. */
eab89b90 866
d030f4b2 867 if (in != 0 && GET_CODE (in) == SUBREG && SUBREG_WORD (in) == 0
94bafba7
RK
868#ifdef CLASS_CANNOT_CHANGE_SIZE
869 && class != CLASS_CANNOT_CHANGE_SIZE
870#endif
a61c98cf 871 && (CONSTANT_P (SUBREG_REG (in))
ca769828 872 || GET_CODE (SUBREG_REG (in)) == PLUS
eab89b90 873 || strict_low
a61c98cf
RK
874 || (((GET_CODE (SUBREG_REG (in)) == REG
875 && REGNO (SUBREG_REG (in)) >= FIRST_PSEUDO_REGISTER)
876 || GET_CODE (SUBREG_REG (in)) == MEM)
03b72c86
RK
877 && ((GET_MODE_SIZE (inmode)
878 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
09bf0250 879#ifdef LOAD_EXTEND_OP
03b72c86
RK
880 || (GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
881 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
882 <= UNITS_PER_WORD)
883 && (GET_MODE_SIZE (inmode)
486d8509
RK
884 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
885 && INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (in)))
886 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (in))) != NIL)
d2c92f5a
R
887#endif
888#ifdef WORD_REGISTER_OPERATIONS
889 || ((GET_MODE_SIZE (inmode)
890 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
891 && ((GET_MODE_SIZE (inmode) - 1) / UNITS_PER_WORD ==
892 ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))) - 1)
893 / UNITS_PER_WORD)))
f72ccbe6 894#endif
03b72c86 895 ))
a61c98cf
RK
896 || (GET_CODE (SUBREG_REG (in)) == REG
897 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
86c31b2d
RS
898 /* The case where out is nonzero
899 is handled differently in the following statement. */
900 && (out == 0 || SUBREG_WORD (in) == 0)
f72ccbe6
RK
901 && ((GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
902 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
903 > UNITS_PER_WORD)
904 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
905 / UNITS_PER_WORD)
906 != HARD_REGNO_NREGS (REGNO (SUBREG_REG (in)),
907 GET_MODE (SUBREG_REG (in)))))
908 || ! HARD_REGNO_MODE_OK ((REGNO (SUBREG_REG (in))
909 + SUBREG_WORD (in)),
910 inmode)))
df62f951
RK
911#ifdef SECONDARY_INPUT_RELOAD_CLASS
912 || (SECONDARY_INPUT_RELOAD_CLASS (class, inmode, in) != NO_REGS
913 && (SECONDARY_INPUT_RELOAD_CLASS (class,
914 GET_MODE (SUBREG_REG (in)),
915 SUBREG_REG (in))
916 == NO_REGS))
486d8509
RK
917#endif
918#ifdef CLASS_CANNOT_CHANGE_SIZE
919 || (GET_CODE (SUBREG_REG (in)) == REG
920 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
921 && (TEST_HARD_REG_BIT
922 (reg_class_contents[(int) CLASS_CANNOT_CHANGE_SIZE],
923 REGNO (SUBREG_REG (in))))
924 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
925 != GET_MODE_SIZE (inmode)))
df62f951
RK
926#endif
927 ))
eab89b90
RK
928 {
929 in_subreg_loc = inloc;
930 inloc = &SUBREG_REG (in);
931 in = *inloc;
d2c92f5a 932#if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
eab89b90
RK
933 if (GET_CODE (in) == MEM)
934 /* This is supposed to happen only for paradoxical subregs made by
935 combine.c. (SUBREG (MEM)) isn't supposed to occur other ways. */
936 if (GET_MODE_SIZE (GET_MODE (in)) > GET_MODE_SIZE (inmode))
937 abort ();
e05a9da8 938#endif
eab89b90
RK
939 inmode = GET_MODE (in);
940 }
941
86c31b2d
RS
942 /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
943 either M1 is not valid for R or M2 is wider than a word but we only
944 need one word to store an M2-sized quantity in R.
945
946 However, we must reload the inner reg *as well as* the subreg in
947 that case. */
948
6fd5ac08
JW
949 /* Similar issue for (SUBREG constant ...) if it was not handled by the
950 code above. This can happen if SUBREG_WORD != 0. */
951
86c31b2d 952 if (in != 0 && GET_CODE (in) == SUBREG
6fd5ac08
JW
953 && (CONSTANT_P (SUBREG_REG (in))
954 || (GET_CODE (SUBREG_REG (in)) == REG
955 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
956 && (! HARD_REGNO_MODE_OK (REGNO (SUBREG_REG (in))
957 + SUBREG_WORD (in),
958 inmode)
959 || (GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
960 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
961 > UNITS_PER_WORD)
962 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
963 / UNITS_PER_WORD)
964 != HARD_REGNO_NREGS (REGNO (SUBREG_REG (in)),
965 GET_MODE (SUBREG_REG (in)))))))))
86c31b2d 966 {
c96d01ab
RK
967 /* This relies on the fact that emit_reload_insns outputs the
968 instructions for input reloads of type RELOAD_OTHER in the same
969 order as the reloads. Thus if the outer reload is also of type
970 RELOAD_OTHER, we are guaranteed that this inner reload will be
971 output before the outer reload. */
86c31b2d 972 push_reload (SUBREG_REG (in), NULL_RTX, &SUBREG_REG (in), NULL_PTR,
c6716840
RK
973 find_valid_class (inmode, SUBREG_WORD (in)),
974 VOIDmode, VOIDmode, 0, 0, opnum, type);
74347d76 975 dont_remove_subreg = 1;
86c31b2d
RS
976 }
977
eab89b90
RK
978 /* Similarly for paradoxical and problematical SUBREGs on the output.
979 Note that there is no reason we need worry about the previous value
980 of SUBREG_REG (out); even if wider than out,
981 storing in a subreg is entitled to clobber it all
982 (except in the case of STRICT_LOW_PART,
983 and in that case the constraint should label it input-output.) */
d030f4b2 984 if (out != 0 && GET_CODE (out) == SUBREG && SUBREG_WORD (out) == 0
94bafba7
RK
985#ifdef CLASS_CANNOT_CHANGE_SIZE
986 && class != CLASS_CANNOT_CHANGE_SIZE
987#endif
a61c98cf 988 && (CONSTANT_P (SUBREG_REG (out))
eab89b90 989 || strict_low
a61c98cf
RK
990 || (((GET_CODE (SUBREG_REG (out)) == REG
991 && REGNO (SUBREG_REG (out)) >= FIRST_PSEUDO_REGISTER)
992 || GET_CODE (SUBREG_REG (out)) == MEM)
03b72c86 993 && ((GET_MODE_SIZE (outmode)
1914f5da
RH
994 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
995#ifdef WORD_REGISTER_OPERATIONS
6d49a073
JW
996 || ((GET_MODE_SIZE (outmode)
997 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
998 && ((GET_MODE_SIZE (outmode) - 1) / UNITS_PER_WORD ==
999 ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))) - 1)
1000 / UNITS_PER_WORD)))
1914f5da
RH
1001#endif
1002 ))
eab89b90
RK
1003 || (GET_CODE (SUBREG_REG (out)) == REG
1004 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
f72ccbe6
RK
1005 && ((GET_MODE_SIZE (outmode) <= UNITS_PER_WORD
1006 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1007 > UNITS_PER_WORD)
1008 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1009 / UNITS_PER_WORD)
1010 != HARD_REGNO_NREGS (REGNO (SUBREG_REG (out)),
1011 GET_MODE (SUBREG_REG (out)))))
1012 || ! HARD_REGNO_MODE_OK ((REGNO (SUBREG_REG (out))
1013 + SUBREG_WORD (out)),
1014 outmode)))
df62f951
RK
1015#ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1016 || (SECONDARY_OUTPUT_RELOAD_CLASS (class, outmode, out) != NO_REGS
1017 && (SECONDARY_OUTPUT_RELOAD_CLASS (class,
1018 GET_MODE (SUBREG_REG (out)),
1019 SUBREG_REG (out))
1020 == NO_REGS))
486d8509
RK
1021#endif
1022#ifdef CLASS_CANNOT_CHANGE_SIZE
1023 || (GET_CODE (SUBREG_REG (out)) == REG
1024 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1025 && (TEST_HARD_REG_BIT
1026 (reg_class_contents[(int) CLASS_CANNOT_CHANGE_SIZE],
1027 REGNO (SUBREG_REG (out))))
1028 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1029 != GET_MODE_SIZE (outmode)))
df62f951
RK
1030#endif
1031 ))
eab89b90
RK
1032 {
1033 out_subreg_loc = outloc;
1034 outloc = &SUBREG_REG (out);
e05a9da8 1035 out = *outloc;
d2c92f5a 1036#if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
e05a9da8 1037 if (GET_CODE (out) == MEM
eab89b90
RK
1038 && GET_MODE_SIZE (GET_MODE (out)) > GET_MODE_SIZE (outmode))
1039 abort ();
e05a9da8 1040#endif
eab89b90
RK
1041 outmode = GET_MODE (out);
1042 }
1043
74347d76
RK
1044 /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
1045 either M1 is not valid for R or M2 is wider than a word but we only
1046 need one word to store an M2-sized quantity in R.
1047
1048 However, we must reload the inner reg *as well as* the subreg in
1049 that case. In this case, the inner reg is an in-out reload. */
1050
1051 if (out != 0 && GET_CODE (out) == SUBREG
1052 && GET_CODE (SUBREG_REG (out)) == REG
1053 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
c6716840
RK
1054 && (! HARD_REGNO_MODE_OK (REGNO (SUBREG_REG (out)) + SUBREG_WORD (out),
1055 outmode)
74347d76
RK
1056 || (GET_MODE_SIZE (outmode) <= UNITS_PER_WORD
1057 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1058 > UNITS_PER_WORD)
1059 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1060 / UNITS_PER_WORD)
1061 != HARD_REGNO_NREGS (REGNO (SUBREG_REG (out)),
1062 GET_MODE (SUBREG_REG (out)))))))
1063 {
c96d01ab
RK
1064 /* This relies on the fact that emit_reload_insns outputs the
1065 instructions for output reloads of type RELOAD_OTHER in reverse
1066 order of the reloads. Thus if the outer reload is also of type
1067 RELOAD_OTHER, we are guaranteed that this inner reload will be
1068 output after the outer reload. */
74347d76
RK
1069 dont_remove_subreg = 1;
1070 push_reload (SUBREG_REG (out), SUBREG_REG (out), &SUBREG_REG (out),
c6716840
RK
1071 &SUBREG_REG (out),
1072 find_valid_class (outmode, SUBREG_WORD (out)),
1073 VOIDmode, VOIDmode, 0, 0,
74347d76
RK
1074 opnum, RELOAD_OTHER);
1075 }
1076
eab89b90
RK
1077 /* If IN appears in OUT, we can't share any input-only reload for IN. */
1078 if (in != 0 && out != 0 && GET_CODE (out) == MEM
1079 && (GET_CODE (in) == REG || GET_CODE (in) == MEM)
bfa30b22 1080 && reg_overlap_mentioned_for_reload_p (in, XEXP (out, 0)))
eab89b90
RK
1081 dont_share = 1;
1082
0dadecf6
RK
1083 /* If IN is a SUBREG of a hard register, make a new REG. This
1084 simplifies some of the cases below. */
1085
1086 if (in != 0 && GET_CODE (in) == SUBREG && GET_CODE (SUBREG_REG (in)) == REG
74347d76
RK
1087 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1088 && ! dont_remove_subreg)
38a448ca
RH
1089 in = gen_rtx_REG (GET_MODE (in),
1090 REGNO (SUBREG_REG (in)) + SUBREG_WORD (in));
0dadecf6
RK
1091
1092 /* Similarly for OUT. */
1093 if (out != 0 && GET_CODE (out) == SUBREG
1094 && GET_CODE (SUBREG_REG (out)) == REG
74347d76
RK
1095 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1096 && ! dont_remove_subreg)
38a448ca
RH
1097 out = gen_rtx_REG (GET_MODE (out),
1098 REGNO (SUBREG_REG (out)) + SUBREG_WORD (out));
0dadecf6 1099
eab89b90
RK
1100 /* Narrow down the class of register wanted if that is
1101 desirable on this machine for efficiency. */
1102 if (in != 0)
1103 class = PREFERRED_RELOAD_CLASS (in, class);
1104
ac2a9454 1105 /* Output reloads may need analogous treatment, different in detail. */
18a53b78
RS
1106#ifdef PREFERRED_OUTPUT_RELOAD_CLASS
1107 if (out != 0)
1108 class = PREFERRED_OUTPUT_RELOAD_CLASS (out, class);
1109#endif
1110
eab89b90
RK
1111 /* Make sure we use a class that can handle the actual pseudo
1112 inside any subreg. For example, on the 386, QImode regs
1113 can appear within SImode subregs. Although GENERAL_REGS
1114 can handle SImode, QImode needs a smaller class. */
1115#ifdef LIMIT_RELOAD_CLASS
1116 if (in_subreg_loc)
1117 class = LIMIT_RELOAD_CLASS (inmode, class);
1118 else if (in != 0 && GET_CODE (in) == SUBREG)
1119 class = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (in)), class);
1120
1121 if (out_subreg_loc)
1122 class = LIMIT_RELOAD_CLASS (outmode, class);
1123 if (out != 0 && GET_CODE (out) == SUBREG)
1124 class = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (out)), class);
1125#endif
1126
eab89b90
RK
1127 /* Verify that this class is at least possible for the mode that
1128 is specified. */
1129 if (this_insn_is_asm)
1130 {
1131 enum machine_mode mode;
1132 if (GET_MODE_SIZE (inmode) > GET_MODE_SIZE (outmode))
1133 mode = inmode;
1134 else
1135 mode = outmode;
5488078f
RS
1136 if (mode == VOIDmode)
1137 {
1138 error_for_asm (this_insn, "cannot reload integer constant operand in `asm'");
1139 mode = word_mode;
1140 if (in != 0)
1141 inmode = word_mode;
1142 if (out != 0)
1143 outmode = word_mode;
1144 }
eab89b90
RK
1145 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1146 if (HARD_REGNO_MODE_OK (i, mode)
1147 && TEST_HARD_REG_BIT (reg_class_contents[(int) class], i))
1148 {
1149 int nregs = HARD_REGNO_NREGS (i, mode);
1150
1151 int j;
1152 for (j = 1; j < nregs; j++)
1153 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class], i + j))
1154 break;
1155 if (j == nregs)
1156 break;
1157 }
1158 if (i == FIRST_PSEUDO_REGISTER)
1159 {
1160 error_for_asm (this_insn, "impossible register constraint in `asm'");
1161 class = ALL_REGS;
1162 }
1163 }
1164
5488078f
RS
1165 if (class == NO_REGS)
1166 abort ();
1167
eab89b90
RK
1168 /* We can use an existing reload if the class is right
1169 and at least one of IN and OUT is a match
1170 and the other is at worst neutral.
a8c9daeb
RK
1171 (A zero compared against anything is neutral.)
1172
1173 If SMALL_REGISTER_CLASSES, don't use existing reloads unless they are
1174 for the same thing since that can cause us to need more reload registers
1175 than we otherwise would. */
1176
eab89b90
RK
1177 for (i = 0; i < n_reloads; i++)
1178 if ((reg_class_subset_p (class, reload_reg_class[i])
1179 || reg_class_subset_p (reload_reg_class[i], class))
eab89b90
RK
1180 /* If the existing reload has a register, it must fit our class. */
1181 && (reload_reg_rtx[i] == 0
1182 || TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1183 true_regnum (reload_reg_rtx[i])))
1184 && ((in != 0 && MATCHES (reload_in[i], in) && ! dont_share
1185 && (out == 0 || reload_out[i] == 0 || MATCHES (reload_out[i], out)))
1186 ||
1187 (out != 0 && MATCHES (reload_out[i], out)
a8c9daeb 1188 && (in == 0 || reload_in[i] == 0 || MATCHES (reload_in[i], in))))
e9a25f70 1189 && (reg_class_size[(int) class] == 1 || SMALL_REGISTER_CLASSES)
a8c9daeb
RK
1190 && MERGABLE_RELOADS (type, reload_when_needed[i],
1191 opnum, reload_opnum[i]))
eab89b90
RK
1192 break;
1193
1194 /* Reloading a plain reg for input can match a reload to postincrement
1195 that reg, since the postincrement's value is the right value.
1196 Likewise, it can match a preincrement reload, since we regard
1197 the preincrementation as happening before any ref in this insn
1198 to that register. */
1199 if (i == n_reloads)
1200 for (i = 0; i < n_reloads; i++)
1201 if ((reg_class_subset_p (class, reload_reg_class[i])
1202 || reg_class_subset_p (reload_reg_class[i], class))
1203 /* If the existing reload has a register, it must fit our class. */
1204 && (reload_reg_rtx[i] == 0
1205 || TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1206 true_regnum (reload_reg_rtx[i])))
eab89b90
RK
1207 && out == 0 && reload_out[i] == 0 && reload_in[i] != 0
1208 && ((GET_CODE (in) == REG
1209 && (GET_CODE (reload_in[i]) == POST_INC
1210 || GET_CODE (reload_in[i]) == POST_DEC
1211 || GET_CODE (reload_in[i]) == PRE_INC
1212 || GET_CODE (reload_in[i]) == PRE_DEC)
1213 && MATCHES (XEXP (reload_in[i], 0), in))
1214 ||
1215 (GET_CODE (reload_in[i]) == REG
1216 && (GET_CODE (in) == POST_INC
1217 || GET_CODE (in) == POST_DEC
1218 || GET_CODE (in) == PRE_INC
1219 || GET_CODE (in) == PRE_DEC)
a8c9daeb 1220 && MATCHES (XEXP (in, 0), reload_in[i])))
e9a25f70 1221 && (reg_class_size[(int) class] == 1 || SMALL_REGISTER_CLASSES)
a8c9daeb
RK
1222 && MERGABLE_RELOADS (type, reload_when_needed[i],
1223 opnum, reload_opnum[i]))
eab89b90
RK
1224 {
1225 /* Make sure reload_in ultimately has the increment,
1226 not the plain register. */
1227 if (GET_CODE (in) == REG)
1228 in = reload_in[i];
1229 break;
1230 }
1231
1232 if (i == n_reloads)
1233 {
9ec7078b
RK
1234 /* See if we need a secondary reload register to move between CLASS
1235 and IN or CLASS and OUT. Get the icode and push any required reloads
1236 needed for each of them if so. */
eab89b90
RK
1237
1238#ifdef SECONDARY_INPUT_RELOAD_CLASS
1239 if (in != 0)
9ec7078b
RK
1240 secondary_in_reload
1241 = push_secondary_reload (1, in, opnum, optional, class, inmode, type,
1242 &secondary_in_icode);
eab89b90
RK
1243#endif
1244
1245#ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1246 if (out != 0 && GET_CODE (out) != SCRATCH)
9ec7078b
RK
1247 secondary_out_reload
1248 = push_secondary_reload (0, out, opnum, optional, class, outmode,
1249 type, &secondary_out_icode);
eab89b90
RK
1250#endif
1251
1252 /* We found no existing reload suitable for re-use.
1253 So add an additional reload. */
1254
e9a25f70
JL
1255#ifdef SECONDARY_MEMORY_NEEDED
1256 /* If a memory location is needed for the copy, make one. */
1257 if (in != 0 && GET_CODE (in) == REG
1258 && REGNO (in) < FIRST_PSEUDO_REGISTER
1259 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (REGNO (in)),
1260 class, inmode))
1261 get_secondary_mem (in, inmode, opnum, type);
1262#endif
1263
9ec7078b 1264 i = n_reloads;
eab89b90
RK
1265 reload_in[i] = in;
1266 reload_out[i] = out;
1267 reload_reg_class[i] = class;
1268 reload_inmode[i] = inmode;
1269 reload_outmode[i] = outmode;
1270 reload_reg_rtx[i] = 0;
1271 reload_optional[i] = optional;
1272 reload_inc[i] = 0;
eab89b90
RK
1273 reload_nocombine[i] = 0;
1274 reload_in_reg[i] = inloc ? *inloc : 0;
a8c9daeb
RK
1275 reload_opnum[i] = opnum;
1276 reload_when_needed[i] = type;
9ec7078b
RK
1277 reload_secondary_in_reload[i] = secondary_in_reload;
1278 reload_secondary_out_reload[i] = secondary_out_reload;
1279 reload_secondary_in_icode[i] = secondary_in_icode;
1280 reload_secondary_out_icode[i] = secondary_out_icode;
eab89b90
RK
1281 reload_secondary_p[i] = 0;
1282
1283 n_reloads++;
0dadecf6
RK
1284
1285#ifdef SECONDARY_MEMORY_NEEDED
0dadecf6
RK
1286 if (out != 0 && GET_CODE (out) == REG
1287 && REGNO (out) < FIRST_PSEUDO_REGISTER
1288 && SECONDARY_MEMORY_NEEDED (class, REGNO_REG_CLASS (REGNO (out)),
1289 outmode))
a8c9daeb 1290 get_secondary_mem (out, outmode, opnum, type);
0dadecf6 1291#endif
eab89b90
RK
1292 }
1293 else
1294 {
1295 /* We are reusing an existing reload,
1296 but we may have additional information for it.
1297 For example, we may now have both IN and OUT
1298 while the old one may have just one of them. */
1299
6fd5ac08
JW
1300 /* The modes can be different. If they are, we want to reload in
1301 the larger mode, so that the value is valid for both modes. */
1302 if (inmode != VOIDmode
1303 && GET_MODE_SIZE (inmode) > GET_MODE_SIZE (reload_inmode[i]))
eab89b90 1304 reload_inmode[i] = inmode;
6fd5ac08
JW
1305 if (outmode != VOIDmode
1306 && GET_MODE_SIZE (outmode) > GET_MODE_SIZE (reload_outmode[i]))
eab89b90
RK
1307 reload_outmode[i] = outmode;
1308 if (in != 0)
1309 reload_in[i] = in;
1310 if (out != 0)
1311 reload_out[i] = out;
1312 if (reg_class_subset_p (class, reload_reg_class[i]))
1313 reload_reg_class[i] = class;
1314 reload_optional[i] &= optional;
a8c9daeb
RK
1315 if (MERGE_TO_OTHER (type, reload_when_needed[i],
1316 opnum, reload_opnum[i]))
1317 reload_when_needed[i] = RELOAD_OTHER;
1318 reload_opnum[i] = MIN (reload_opnum[i], opnum);
eab89b90
RK
1319 }
1320
1321 /* If the ostensible rtx being reload differs from the rtx found
1322 in the location to substitute, this reload is not safe to combine
1323 because we cannot reliably tell whether it appears in the insn. */
1324
1325 if (in != 0 && in != *inloc)
1326 reload_nocombine[i] = 1;
1327
1328#if 0
1329 /* This was replaced by changes in find_reloads_address_1 and the new
1330 function inc_for_reload, which go with a new meaning of reload_inc. */
1331
1332 /* If this is an IN/OUT reload in an insn that sets the CC,
1333 it must be for an autoincrement. It doesn't work to store
1334 the incremented value after the insn because that would clobber the CC.
1335 So we must do the increment of the value reloaded from,
1336 increment it, store it back, then decrement again. */
1337 if (out != 0 && sets_cc0_p (PATTERN (this_insn)))
1338 {
1339 out = 0;
1340 reload_out[i] = 0;
1341 reload_inc[i] = find_inc_amount (PATTERN (this_insn), in);
1342 /* If we did not find a nonzero amount-to-increment-by,
1343 that contradicts the belief that IN is being incremented
1344 in an address in this insn. */
1345 if (reload_inc[i] == 0)
1346 abort ();
1347 }
1348#endif
1349
1350 /* If we will replace IN and OUT with the reload-reg,
1351 record where they are located so that substitution need
1352 not do a tree walk. */
1353
1354 if (replace_reloads)
1355 {
1356 if (inloc != 0)
1357 {
1358 register struct replacement *r = &replacements[n_replacements++];
1359 r->what = i;
1360 r->subreg_loc = in_subreg_loc;
1361 r->where = inloc;
1362 r->mode = inmode;
1363 }
1364 if (outloc != 0 && outloc != inloc)
1365 {
1366 register struct replacement *r = &replacements[n_replacements++];
1367 r->what = i;
1368 r->where = outloc;
1369 r->subreg_loc = out_subreg_loc;
1370 r->mode = outmode;
1371 }
1372 }
1373
1374 /* If this reload is just being introduced and it has both
1375 an incoming quantity and an outgoing quantity that are
1376 supposed to be made to match, see if either one of the two
1377 can serve as the place to reload into.
1378
1379 If one of them is acceptable, set reload_reg_rtx[i]
1380 to that one. */
1381
1382 if (in != 0 && out != 0 && in != out && reload_reg_rtx[i] == 0)
1383 {
1384 reload_reg_rtx[i] = find_dummy_reload (in, out, inloc, outloc,
36b50568 1385 inmode, outmode,
189086f9 1386 reload_reg_class[i], i,
31c21e0c 1387 earlyclobber_operand_p (out));
eab89b90
RK
1388
1389 /* If the outgoing register already contains the same value
1390 as the incoming one, we can dispense with loading it.
1391 The easiest way to tell the caller that is to give a phony
1392 value for the incoming operand (same as outgoing one). */
1393 if (reload_reg_rtx[i] == out
1394 && (GET_CODE (in) == REG || CONSTANT_P (in))
1395 && 0 != find_equiv_reg (in, this_insn, 0, REGNO (out),
1396 static_reload_reg_p, i, inmode))
1397 reload_in[i] = out;
1398 }
1399
1400 /* If this is an input reload and the operand contains a register that
1401 dies in this insn and is used nowhere else, see if it is the right class
1402 to be used for this reload. Use it if so. (This occurs most commonly
1403 in the case of paradoxical SUBREGs and in-out reloads). We cannot do
1404 this if it is also an output reload that mentions the register unless
1405 the output is a SUBREG that clobbers an entire register.
1406
1407 Note that the operand might be one of the spill regs, if it is a
1408 pseudo reg and we are in a block where spilling has not taken place.
1409 But if there is no spilling in this block, that is OK.
1410 An explicitly used hard reg cannot be a spill reg. */
1411
1412 if (reload_reg_rtx[i] == 0 && in != 0)
1413 {
1414 rtx note;
1415 int regno;
1416
1417 for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1418 if (REG_NOTE_KIND (note) == REG_DEAD
1419 && GET_CODE (XEXP (note, 0)) == REG
1420 && (regno = REGNO (XEXP (note, 0))) < FIRST_PSEUDO_REGISTER
1421 && reg_mentioned_p (XEXP (note, 0), in)
1422 && ! refers_to_regno_for_reload_p (regno,
1423 (regno
1424 + HARD_REGNO_NREGS (regno,
1425 inmode)),
1426 PATTERN (this_insn), inloc)
05b4ec4f
RS
1427 /* If this is also an output reload, IN cannot be used as
1428 the reload register if it is set in this insn unless IN
1429 is also OUT. */
1430 && (out == 0 || in == out
1431 || ! hard_reg_set_here_p (regno,
1432 (regno
1433 + HARD_REGNO_NREGS (regno,
1434 inmode)),
1435 PATTERN (this_insn)))
1436 /* ??? Why is this code so different from the previous?
1437 Is there any simple coherent way to describe the two together?
1438 What's going on here. */
eab89b90
RK
1439 && (in != out
1440 || (GET_CODE (in) == SUBREG
1441 && (((GET_MODE_SIZE (GET_MODE (in)) + (UNITS_PER_WORD - 1))
1442 / UNITS_PER_WORD)
1443 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1444 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
1445 /* Make sure the operand fits in the reg that dies. */
1446 && GET_MODE_SIZE (inmode) <= GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
1447 && HARD_REGNO_MODE_OK (regno, inmode)
1448 && GET_MODE_SIZE (outmode) <= GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
1449 && HARD_REGNO_MODE_OK (regno, outmode)
1450 && TEST_HARD_REG_BIT (reg_class_contents[(int) class], regno)
1451 && !fixed_regs[regno])
1452 {
38a448ca 1453 reload_reg_rtx[i] = gen_rtx_REG (inmode, regno);
eab89b90
RK
1454 break;
1455 }
1456 }
1457
1458 if (out)
1459 output_reloadnum = i;
1460
1461 return i;
1462}
1463
1464/* Record an additional place we must replace a value
1465 for which we have already recorded a reload.
1466 RELOADNUM is the value returned by push_reload
1467 when the reload was recorded.
1468 This is used in insn patterns that use match_dup. */
1469
1470static void
1471push_replacement (loc, reloadnum, mode)
1472 rtx *loc;
1473 int reloadnum;
1474 enum machine_mode mode;
1475{
1476 if (replace_reloads)
1477 {
1478 register struct replacement *r = &replacements[n_replacements++];
1479 r->what = reloadnum;
1480 r->where = loc;
1481 r->subreg_loc = 0;
1482 r->mode = mode;
1483 }
1484}
1485\f
a8c9daeb
RK
1486/* Transfer all replacements that used to be in reload FROM to be in
1487 reload TO. */
1488
1489void
1490transfer_replacements (to, from)
1491 int to, from;
1492{
1493 int i;
1494
1495 for (i = 0; i < n_replacements; i++)
1496 if (replacements[i].what == from)
1497 replacements[i].what = to;
1498}
1499\f
eab89b90
RK
1500/* If there is only one output reload, and it is not for an earlyclobber
1501 operand, try to combine it with a (logically unrelated) input reload
1502 to reduce the number of reload registers needed.
1503
1504 This is safe if the input reload does not appear in
1505 the value being output-reloaded, because this implies
1506 it is not needed any more once the original insn completes.
1507
1508 If that doesn't work, see we can use any of the registers that
1509 die in this insn as a reload register. We can if it is of the right
1510 class and does not appear in the value being output-reloaded. */
1511
1512static void
1513combine_reloads ()
1514{
1515 int i;
1516 int output_reload = -1;
8922eb5b 1517 int secondary_out = -1;
eab89b90
RK
1518 rtx note;
1519
1520 /* Find the output reload; return unless there is exactly one
1521 and that one is mandatory. */
1522
1523 for (i = 0; i < n_reloads; i++)
1524 if (reload_out[i] != 0)
1525 {
1526 if (output_reload >= 0)
1527 return;
1528 output_reload = i;
1529 }
1530
1531 if (output_reload < 0 || reload_optional[output_reload])
1532 return;
1533
1534 /* An input-output reload isn't combinable. */
1535
1536 if (reload_in[output_reload] != 0)
1537 return;
1538
6dc42e49 1539 /* If this reload is for an earlyclobber operand, we can't do anything. */
4644aad4
RK
1540 if (earlyclobber_operand_p (reload_out[output_reload]))
1541 return;
eab89b90
RK
1542
1543 /* Check each input reload; can we combine it? */
1544
1545 for (i = 0; i < n_reloads; i++)
1546 if (reload_in[i] && ! reload_optional[i] && ! reload_nocombine[i]
1547 /* Life span of this reload must not extend past main insn. */
a8c9daeb 1548 && reload_when_needed[i] != RELOAD_FOR_OUTPUT_ADDRESS
47c8cf91 1549 && reload_when_needed[i] != RELOAD_FOR_OUTADDR_ADDRESS
a8c9daeb
RK
1550 && reload_when_needed[i] != RELOAD_OTHER
1551 && (CLASS_MAX_NREGS (reload_reg_class[i], reload_inmode[i])
1552 == CLASS_MAX_NREGS (reload_reg_class[output_reload],
1553 reload_outmode[output_reload]))
eab89b90
RK
1554 && reload_inc[i] == 0
1555 && reload_reg_rtx[i] == 0
a8c9daeb 1556#ifdef SECONDARY_MEMORY_NEEDED
9ec7078b
RK
1557 /* Don't combine two reloads with different secondary
1558 memory locations. */
77545d45
RK
1559 && (secondary_memlocs_elim[(int) reload_outmode[output_reload]][reload_opnum[i]] == 0
1560 || secondary_memlocs_elim[(int) reload_outmode[output_reload]][reload_opnum[output_reload]] == 0
1561 || rtx_equal_p (secondary_memlocs_elim[(int) reload_outmode[output_reload]][reload_opnum[i]],
1562 secondary_memlocs_elim[(int) reload_outmode[output_reload]][reload_opnum[output_reload]]))
a8c9daeb 1563#endif
e9a25f70
JL
1564 && (SMALL_REGISTER_CLASSES
1565 ? (reload_reg_class[i] == reload_reg_class[output_reload])
1566 : (reg_class_subset_p (reload_reg_class[i],
1567 reload_reg_class[output_reload])
1568 || reg_class_subset_p (reload_reg_class[output_reload],
1569 reload_reg_class[i])))
eab89b90
RK
1570 && (MATCHES (reload_in[i], reload_out[output_reload])
1571 /* Args reversed because the first arg seems to be
1572 the one that we imagine being modified
1573 while the second is the one that might be affected. */
bfa30b22
RK
1574 || (! reg_overlap_mentioned_for_reload_p (reload_out[output_reload],
1575 reload_in[i])
eab89b90
RK
1576 /* However, if the input is a register that appears inside
1577 the output, then we also can't share.
1578 Imagine (set (mem (reg 69)) (plus (reg 69) ...)).
1579 If the same reload reg is used for both reg 69 and the
1580 result to be stored in memory, then that result
1581 will clobber the address of the memory ref. */
1582 && ! (GET_CODE (reload_in[i]) == REG
bfa30b22 1583 && reg_overlap_mentioned_for_reload_p (reload_in[i],
a8c9daeb
RK
1584 reload_out[output_reload]))))
1585 && (reg_class_size[(int) reload_reg_class[i]]
e9a25f70 1586 || SMALL_REGISTER_CLASSES)
a8c9daeb
RK
1587 /* We will allow making things slightly worse by combining an
1588 input and an output, but no worse than that. */
1589 && (reload_when_needed[i] == RELOAD_FOR_INPUT
1590 || reload_when_needed[i] == RELOAD_FOR_OUTPUT))
eab89b90
RK
1591 {
1592 int j;
1593
1594 /* We have found a reload to combine with! */
1595 reload_out[i] = reload_out[output_reload];
1596 reload_outmode[i] = reload_outmode[output_reload];
1597 /* Mark the old output reload as inoperative. */
1598 reload_out[output_reload] = 0;
1599 /* The combined reload is needed for the entire insn. */
eab89b90 1600 reload_when_needed[i] = RELOAD_OTHER;
0f41302f 1601 /* If the output reload had a secondary reload, copy it. */
9ec7078b
RK
1602 if (reload_secondary_out_reload[output_reload] != -1)
1603 {
1604 reload_secondary_out_reload[i]
1605 = reload_secondary_out_reload[output_reload];
1606 reload_secondary_out_icode[i]
1607 = reload_secondary_out_icode[output_reload];
1608 }
1609
a8c9daeb
RK
1610#ifdef SECONDARY_MEMORY_NEEDED
1611 /* Copy any secondary MEM. */
77545d45
RK
1612 if (secondary_memlocs_elim[(int) reload_outmode[output_reload]][reload_opnum[output_reload]] != 0)
1613 secondary_memlocs_elim[(int) reload_outmode[output_reload]][reload_opnum[i]]
1614 = secondary_memlocs_elim[(int) reload_outmode[output_reload]][reload_opnum[output_reload]];
a8c9daeb 1615#endif
0f41302f 1616 /* If required, minimize the register class. */
eab89b90
RK
1617 if (reg_class_subset_p (reload_reg_class[output_reload],
1618 reload_reg_class[i]))
1619 reload_reg_class[i] = reload_reg_class[output_reload];
1620
1621 /* Transfer all replacements from the old reload to the combined. */
1622 for (j = 0; j < n_replacements; j++)
1623 if (replacements[j].what == output_reload)
1624 replacements[j].what = i;
1625
1626 return;
1627 }
1628
1629 /* If this insn has only one operand that is modified or written (assumed
1630 to be the first), it must be the one corresponding to this reload. It
1631 is safe to use anything that dies in this insn for that output provided
1632 that it does not occur in the output (we already know it isn't an
1633 earlyclobber. If this is an asm insn, give up. */
1634
1635 if (INSN_CODE (this_insn) == -1)
1636 return;
1637
1638 for (i = 1; i < insn_n_operands[INSN_CODE (this_insn)]; i++)
1639 if (insn_operand_constraint[INSN_CODE (this_insn)][i][0] == '='
1640 || insn_operand_constraint[INSN_CODE (this_insn)][i][0] == '+')
1641 return;
1642
1643 /* See if some hard register that dies in this insn and is not used in
1644 the output is the right class. Only works if the register we pick
1645 up can fully hold our output reload. */
1646 for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1647 if (REG_NOTE_KIND (note) == REG_DEAD
1648 && GET_CODE (XEXP (note, 0)) == REG
bfa30b22
RK
1649 && ! reg_overlap_mentioned_for_reload_p (XEXP (note, 0),
1650 reload_out[output_reload])
eab89b90
RK
1651 && REGNO (XEXP (note, 0)) < FIRST_PSEUDO_REGISTER
1652 && HARD_REGNO_MODE_OK (REGNO (XEXP (note, 0)), reload_outmode[output_reload])
1653 && TEST_HARD_REG_BIT (reg_class_contents[(int) reload_reg_class[output_reload]],
1654 REGNO (XEXP (note, 0)))
1655 && (HARD_REGNO_NREGS (REGNO (XEXP (note, 0)), reload_outmode[output_reload])
1656 <= HARD_REGNO_NREGS (REGNO (XEXP (note, 0)), GET_MODE (XEXP (note, 0))))
8922eb5b
RK
1657 /* Ensure that a secondary or tertiary reload for this output
1658 won't want this register. */
1659 && ((secondary_out = reload_secondary_out_reload[output_reload]) == -1
1660 || (! (TEST_HARD_REG_BIT
1661 (reg_class_contents[(int) reload_reg_class[secondary_out]],
1662 REGNO (XEXP (note, 0))))
1663 && ((secondary_out = reload_secondary_out_reload[secondary_out]) == -1
1664 || ! (TEST_HARD_REG_BIT
1665 (reg_class_contents[(int) reload_reg_class[secondary_out]],
1666 REGNO (XEXP (note, 0)))))))
eab89b90
RK
1667 && ! fixed_regs[REGNO (XEXP (note, 0))])
1668 {
38a448ca
RH
1669 reload_reg_rtx[output_reload]
1670 = gen_rtx_REG (reload_outmode[output_reload],
1671 REGNO (XEXP (note, 0)));
eab89b90
RK
1672 return;
1673 }
1674}
1675\f
1676/* Try to find a reload register for an in-out reload (expressions IN and OUT).
1677 See if one of IN and OUT is a register that may be used;
1678 this is desirable since a spill-register won't be needed.
1679 If so, return the register rtx that proves acceptable.
1680
1681 INLOC and OUTLOC are locations where IN and OUT appear in the insn.
1682 CLASS is the register class required for the reload.
1683
1684 If FOR_REAL is >= 0, it is the number of the reload,
1685 and in some cases when it can be discovered that OUT doesn't need
1686 to be computed, clear out reload_out[FOR_REAL].
1687
1688 If FOR_REAL is -1, this should not be done, because this call
189086f9
RK
1689 is just to see if a register can be found, not to find and install it.
1690
1691 EARLYCLOBBER is non-zero if OUT is an earlyclobber operand. This
1692 puts an additional constraint on being able to use IN for OUT since
1693 IN must not appear elsewhere in the insn (it is assumed that IN itself
1694 is safe from the earlyclobber). */
eab89b90
RK
1695
1696static rtx
36b50568 1697find_dummy_reload (real_in, real_out, inloc, outloc,
189086f9 1698 inmode, outmode, class, for_real, earlyclobber)
eab89b90
RK
1699 rtx real_in, real_out;
1700 rtx *inloc, *outloc;
36b50568 1701 enum machine_mode inmode, outmode;
eab89b90
RK
1702 enum reg_class class;
1703 int for_real;
189086f9 1704 int earlyclobber;
eab89b90
RK
1705{
1706 rtx in = real_in;
1707 rtx out = real_out;
1708 int in_offset = 0;
1709 int out_offset = 0;
1710 rtx value = 0;
1711
1712 /* If operands exceed a word, we can't use either of them
1713 unless they have the same size. */
36b50568
RS
1714 if (GET_MODE_SIZE (outmode) != GET_MODE_SIZE (inmode)
1715 && (GET_MODE_SIZE (outmode) > UNITS_PER_WORD
1716 || GET_MODE_SIZE (inmode) > UNITS_PER_WORD))
eab89b90
RK
1717 return 0;
1718
1719 /* Find the inside of any subregs. */
1720 while (GET_CODE (out) == SUBREG)
1721 {
1722 out_offset = SUBREG_WORD (out);
1723 out = SUBREG_REG (out);
1724 }
1725 while (GET_CODE (in) == SUBREG)
1726 {
1727 in_offset = SUBREG_WORD (in);
1728 in = SUBREG_REG (in);
1729 }
1730
1731 /* Narrow down the reg class, the same way push_reload will;
1732 otherwise we might find a dummy now, but push_reload won't. */
1733 class = PREFERRED_RELOAD_CLASS (in, class);
1734
1735 /* See if OUT will do. */
1736 if (GET_CODE (out) == REG
1737 && REGNO (out) < FIRST_PSEUDO_REGISTER)
1738 {
1739 register int regno = REGNO (out) + out_offset;
36b50568 1740 int nwords = HARD_REGNO_NREGS (regno, outmode);
d3b9996a 1741 rtx saved_rtx;
eab89b90
RK
1742
1743 /* When we consider whether the insn uses OUT,
1744 ignore references within IN. They don't prevent us
1745 from copying IN into OUT, because those refs would
1746 move into the insn that reloads IN.
1747
1748 However, we only ignore IN in its role as this reload.
1749 If the insn uses IN elsewhere and it contains OUT,
1750 that counts. We can't be sure it's the "same" operand
1751 so it might not go through this reload. */
d3b9996a 1752 saved_rtx = *inloc;
eab89b90
RK
1753 *inloc = const0_rtx;
1754
1755 if (regno < FIRST_PSEUDO_REGISTER
1756 /* A fixed reg that can overlap other regs better not be used
1757 for reloading in any way. */
1758#ifdef OVERLAPPING_REGNO_P
1759 && ! (fixed_regs[regno] && OVERLAPPING_REGNO_P (regno))
1760#endif
1761 && ! refers_to_regno_for_reload_p (regno, regno + nwords,
1762 PATTERN (this_insn), outloc))
1763 {
1764 int i;
1765 for (i = 0; i < nwords; i++)
1766 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1767 regno + i))
1768 break;
1769
1770 if (i == nwords)
1771 {
1772 if (GET_CODE (real_out) == REG)
1773 value = real_out;
1774 else
38a448ca 1775 value = gen_rtx_REG (outmode, regno);
eab89b90
RK
1776 }
1777 }
1778
d3b9996a 1779 *inloc = saved_rtx;
eab89b90
RK
1780 }
1781
1782 /* Consider using IN if OUT was not acceptable
1783 or if OUT dies in this insn (like the quotient in a divmod insn).
1784 We can't use IN unless it is dies in this insn,
1785 which means we must know accurately which hard regs are live.
189086f9
RK
1786 Also, the result can't go in IN if IN is used within OUT,
1787 or if OUT is an earlyclobber and IN appears elsewhere in the insn. */
eab89b90
RK
1788 if (hard_regs_live_known
1789 && GET_CODE (in) == REG
1790 && REGNO (in) < FIRST_PSEUDO_REGISTER
1791 && (value == 0
1792 || find_reg_note (this_insn, REG_UNUSED, real_out))
1793 && find_reg_note (this_insn, REG_DEAD, real_in)
1794 && !fixed_regs[REGNO (in)]
36b50568
RS
1795 && HARD_REGNO_MODE_OK (REGNO (in),
1796 /* The only case where out and real_out might
1797 have different modes is where real_out
1798 is a subreg, and in that case, out
1799 has a real mode. */
1800 (GET_MODE (out) != VOIDmode
1801 ? GET_MODE (out) : outmode)))
eab89b90
RK
1802 {
1803 register int regno = REGNO (in) + in_offset;
36b50568 1804 int nwords = HARD_REGNO_NREGS (regno, inmode);
eab89b90 1805
fb3821f7 1806 if (! refers_to_regno_for_reload_p (regno, regno + nwords, out, NULL_PTR)
eab89b90 1807 && ! hard_reg_set_here_p (regno, regno + nwords,
189086f9
RK
1808 PATTERN (this_insn))
1809 && (! earlyclobber
1810 || ! refers_to_regno_for_reload_p (regno, regno + nwords,
1811 PATTERN (this_insn), inloc)))
eab89b90
RK
1812 {
1813 int i;
1814 for (i = 0; i < nwords; i++)
1815 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1816 regno + i))
1817 break;
1818
1819 if (i == nwords)
1820 {
1821 /* If we were going to use OUT as the reload reg
1822 and changed our mind, it means OUT is a dummy that
1823 dies here. So don't bother copying value to it. */
1824 if (for_real >= 0 && value == real_out)
1825 reload_out[for_real] = 0;
1826 if (GET_CODE (real_in) == REG)
1827 value = real_in;
1828 else
38a448ca 1829 value = gen_rtx_REG (inmode, regno);
eab89b90
RK
1830 }
1831 }
1832 }
1833
1834 return value;
1835}
1836\f
1837/* This page contains subroutines used mainly for determining
1838 whether the IN or an OUT of a reload can serve as the
1839 reload register. */
1840
4644aad4
RK
1841/* Return 1 if X is an operand of an insn that is being earlyclobbered. */
1842
1843static int
1844earlyclobber_operand_p (x)
1845 rtx x;
1846{
1847 int i;
1848
1849 for (i = 0; i < n_earlyclobbers; i++)
1850 if (reload_earlyclobbers[i] == x)
1851 return 1;
1852
1853 return 0;
1854}
1855
eab89b90
RK
1856/* Return 1 if expression X alters a hard reg in the range
1857 from BEG_REGNO (inclusive) to END_REGNO (exclusive),
1858 either explicitly or in the guise of a pseudo-reg allocated to REGNO.
1859 X should be the body of an instruction. */
1860
1861static int
1862hard_reg_set_here_p (beg_regno, end_regno, x)
1863 register int beg_regno, end_regno;
1864 rtx x;
1865{
1866 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
1867 {
1868 register rtx op0 = SET_DEST (x);
1869 while (GET_CODE (op0) == SUBREG)
1870 op0 = SUBREG_REG (op0);
1871 if (GET_CODE (op0) == REG)
1872 {
1873 register int r = REGNO (op0);
1874 /* See if this reg overlaps range under consideration. */
1875 if (r < end_regno
1876 && r + HARD_REGNO_NREGS (r, GET_MODE (op0)) > beg_regno)
1877 return 1;
1878 }
1879 }
1880 else if (GET_CODE (x) == PARALLEL)
1881 {
1882 register int i = XVECLEN (x, 0) - 1;
1883 for (; i >= 0; i--)
1884 if (hard_reg_set_here_p (beg_regno, end_regno, XVECEXP (x, 0, i)))
1885 return 1;
1886 }
1887
1888 return 0;
1889}
1890
1891/* Return 1 if ADDR is a valid memory address for mode MODE,
1892 and check that each pseudo reg has the proper kind of
1893 hard reg. */
1894
1895int
1896strict_memory_address_p (mode, addr)
1897 enum machine_mode mode;
1898 register rtx addr;
1899{
1900 GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
1901 return 0;
1902
1903 win:
1904 return 1;
1905}
eab89b90
RK
1906\f
1907/* Like rtx_equal_p except that it allows a REG and a SUBREG to match
1908 if they are the same hard reg, and has special hacks for
1909 autoincrement and autodecrement.
1910 This is specifically intended for find_reloads to use
1911 in determining whether two operands match.
1912 X is the operand whose number is the lower of the two.
1913
1914 The value is 2 if Y contains a pre-increment that matches
1915 a non-incrementing address in X. */
1916
1917/* ??? To be completely correct, we should arrange to pass
1918 for X the output operand and for Y the input operand.
1919 For now, we assume that the output operand has the lower number
1920 because that is natural in (SET output (... input ...)). */
1921
1922int
1923operands_match_p (x, y)
1924 register rtx x, y;
1925{
1926 register int i;
1927 register RTX_CODE code = GET_CODE (x);
1928 register char *fmt;
1929 int success_2;
1930
1931 if (x == y)
1932 return 1;
1933 if ((code == REG || (code == SUBREG && GET_CODE (SUBREG_REG (x)) == REG))
1934 && (GET_CODE (y) == REG || (GET_CODE (y) == SUBREG
1935 && GET_CODE (SUBREG_REG (y)) == REG)))
1936 {
1937 register int j;
1938
1939 if (code == SUBREG)
1940 {
1941 i = REGNO (SUBREG_REG (x));
1942 if (i >= FIRST_PSEUDO_REGISTER)
1943 goto slow;
1944 i += SUBREG_WORD (x);
1945 }
1946 else
1947 i = REGNO (x);
1948
1949 if (GET_CODE (y) == SUBREG)
1950 {
1951 j = REGNO (SUBREG_REG (y));
1952 if (j >= FIRST_PSEUDO_REGISTER)
1953 goto slow;
1954 j += SUBREG_WORD (y);
1955 }
1956 else
1957 j = REGNO (y);
1958
dca52d80
JW
1959 /* On a WORDS_BIG_ENDIAN machine, point to the last register of a
1960 multiple hard register group, so that for example (reg:DI 0) and
1961 (reg:SI 1) will be considered the same register. */
1962 if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD
1963 && i < FIRST_PSEUDO_REGISTER)
1964 i += (GET_MODE_SIZE (GET_MODE (x)) / UNITS_PER_WORD) - 1;
1965 if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (y)) > UNITS_PER_WORD
1966 && j < FIRST_PSEUDO_REGISTER)
1967 j += (GET_MODE_SIZE (GET_MODE (y)) / UNITS_PER_WORD) - 1;
1968
eab89b90
RK
1969 return i == j;
1970 }
1971 /* If two operands must match, because they are really a single
1972 operand of an assembler insn, then two postincrements are invalid
1973 because the assembler insn would increment only once.
1974 On the other hand, an postincrement matches ordinary indexing
1975 if the postincrement is the output operand. */
1976 if (code == POST_DEC || code == POST_INC)
1977 return operands_match_p (XEXP (x, 0), y);
1978 /* Two preincrements are invalid
1979 because the assembler insn would increment only once.
1980 On the other hand, an preincrement matches ordinary indexing
1981 if the preincrement is the input operand.
1982 In this case, return 2, since some callers need to do special
1983 things when this happens. */
1984 if (GET_CODE (y) == PRE_DEC || GET_CODE (y) == PRE_INC)
1985 return operands_match_p (x, XEXP (y, 0)) ? 2 : 0;
1986
1987 slow:
1988
1989 /* Now we have disposed of all the cases
1990 in which different rtx codes can match. */
1991 if (code != GET_CODE (y))
1992 return 0;
1993 if (code == LABEL_REF)
1994 return XEXP (x, 0) == XEXP (y, 0);
1995 if (code == SYMBOL_REF)
1996 return XSTR (x, 0) == XSTR (y, 0);
1997
1998 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
1999
2000 if (GET_MODE (x) != GET_MODE (y))
2001 return 0;
2002
2003 /* Compare the elements. If any pair of corresponding elements
2004 fail to match, return 0 for the whole things. */
2005
2006 success_2 = 0;
2007 fmt = GET_RTX_FORMAT (code);
2008 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2009 {
2010 int val;
2011 switch (fmt[i])
2012 {
fb3821f7
CH
2013 case 'w':
2014 if (XWINT (x, i) != XWINT (y, i))
2015 return 0;
2016 break;
2017
eab89b90
RK
2018 case 'i':
2019 if (XINT (x, i) != XINT (y, i))
2020 return 0;
2021 break;
2022
2023 case 'e':
2024 val = operands_match_p (XEXP (x, i), XEXP (y, i));
2025 if (val == 0)
2026 return 0;
2027 /* If any subexpression returns 2,
2028 we should return 2 if we are successful. */
2029 if (val == 2)
2030 success_2 = 1;
2031 break;
2032
2033 case '0':
2034 break;
2035
2036 /* It is believed that rtx's at this level will never
2037 contain anything but integers and other rtx's,
2038 except for within LABEL_REFs and SYMBOL_REFs. */
2039 default:
2040 abort ();
2041 }
2042 }
2043 return 1 + success_2;
2044}
2045\f
2046/* Return the number of times character C occurs in string S. */
2047
e4600702 2048int
eab89b90 2049n_occurrences (c, s)
d149d5f5 2050 int c;
eab89b90
RK
2051 char *s;
2052{
2053 int n = 0;
2054 while (*s)
2055 n += (*s++ == c);
2056 return n;
2057}
2058\f
eab89b90
RK
2059/* Describe the range of registers or memory referenced by X.
2060 If X is a register, set REG_FLAG and put the first register
2061 number into START and the last plus one into END.
2062 If X is a memory reference, put a base address into BASE
2063 and a range of integer offsets into START and END.
2064 If X is pushing on the stack, we can assume it causes no trouble,
2065 so we set the SAFE field. */
2066
2067static struct decomposition
2068decompose (x)
2069 rtx x;
2070{
2071 struct decomposition val;
2072 int all_const = 0;
2073
2074 val.reg_flag = 0;
2075 val.safe = 0;
43984e29 2076 val.base = 0;
eab89b90
RK
2077 if (GET_CODE (x) == MEM)
2078 {
2079 rtx base, offset = 0;
2080 rtx addr = XEXP (x, 0);
2081
2082 if (GET_CODE (addr) == PRE_DEC || GET_CODE (addr) == PRE_INC
2083 || GET_CODE (addr) == POST_DEC || GET_CODE (addr) == POST_INC)
2084 {
2085 val.base = XEXP (addr, 0);
2086 val.start = - GET_MODE_SIZE (GET_MODE (x));
2087 val.end = GET_MODE_SIZE (GET_MODE (x));
2088 val.safe = REGNO (val.base) == STACK_POINTER_REGNUM;
2089 return val;
2090 }
2091
2092 if (GET_CODE (addr) == CONST)
2093 {
2094 addr = XEXP (addr, 0);
2095 all_const = 1;
2096 }
2097 if (GET_CODE (addr) == PLUS)
2098 {
2099 if (CONSTANT_P (XEXP (addr, 0)))
2100 {
2101 base = XEXP (addr, 1);
2102 offset = XEXP (addr, 0);
2103 }
2104 else if (CONSTANT_P (XEXP (addr, 1)))
2105 {
2106 base = XEXP (addr, 0);
2107 offset = XEXP (addr, 1);
2108 }
2109 }
2110
2111 if (offset == 0)
2112 {
2113 base = addr;
2114 offset = const0_rtx;
2115 }
2116 if (GET_CODE (offset) == CONST)
2117 offset = XEXP (offset, 0);
2118 if (GET_CODE (offset) == PLUS)
2119 {
2120 if (GET_CODE (XEXP (offset, 0)) == CONST_INT)
2121 {
38a448ca 2122 base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 1));
eab89b90
RK
2123 offset = XEXP (offset, 0);
2124 }
2125 else if (GET_CODE (XEXP (offset, 1)) == CONST_INT)
2126 {
38a448ca 2127 base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 0));
eab89b90
RK
2128 offset = XEXP (offset, 1);
2129 }
2130 else
2131 {
38a448ca 2132 base = gen_rtx_PLUS (GET_MODE (base), base, offset);
eab89b90
RK
2133 offset = const0_rtx;
2134 }
2135 }
2136 else if (GET_CODE (offset) != CONST_INT)
2137 {
38a448ca 2138 base = gen_rtx_PLUS (GET_MODE (base), base, offset);
eab89b90
RK
2139 offset = const0_rtx;
2140 }
2141
2142 if (all_const && GET_CODE (base) == PLUS)
38a448ca 2143 base = gen_rtx_CONST (GET_MODE (base), base);
eab89b90
RK
2144
2145 if (GET_CODE (offset) != CONST_INT)
2146 abort ();
2147
2148 val.start = INTVAL (offset);
2149 val.end = val.start + GET_MODE_SIZE (GET_MODE (x));
2150 val.base = base;
2151 return val;
2152 }
2153 else if (GET_CODE (x) == REG)
2154 {
2155 val.reg_flag = 1;
2156 val.start = true_regnum (x);
2157 if (val.start < 0)
2158 {
2159 /* A pseudo with no hard reg. */
2160 val.start = REGNO (x);
2161 val.end = val.start + 1;
2162 }
2163 else
2164 /* A hard reg. */
2165 val.end = val.start + HARD_REGNO_NREGS (val.start, GET_MODE (x));
2166 }
2167 else if (GET_CODE (x) == SUBREG)
2168 {
2169 if (GET_CODE (SUBREG_REG (x)) != REG)
2170 /* This could be more precise, but it's good enough. */
2171 return decompose (SUBREG_REG (x));
2172 val.reg_flag = 1;
2173 val.start = true_regnum (x);
2174 if (val.start < 0)
2175 return decompose (SUBREG_REG (x));
2176 else
2177 /* A hard reg. */
2178 val.end = val.start + HARD_REGNO_NREGS (val.start, GET_MODE (x));
2179 }
2180 else if (CONSTANT_P (x)
2181 /* This hasn't been assigned yet, so it can't conflict yet. */
2182 || GET_CODE (x) == SCRATCH)
2183 val.safe = 1;
2184 else
2185 abort ();
2186 return val;
2187}
2188
2189/* Return 1 if altering Y will not modify the value of X.
2190 Y is also described by YDATA, which should be decompose (Y). */
2191
2192static int
2193immune_p (x, y, ydata)
2194 rtx x, y;
2195 struct decomposition ydata;
2196{
2197 struct decomposition xdata;
2198
2199 if (ydata.reg_flag)
fb3821f7 2200 return !refers_to_regno_for_reload_p (ydata.start, ydata.end, x, NULL_PTR);
eab89b90
RK
2201 if (ydata.safe)
2202 return 1;
2203
2204 if (GET_CODE (y) != MEM)
2205 abort ();
2206 /* If Y is memory and X is not, Y can't affect X. */
2207 if (GET_CODE (x) != MEM)
2208 return 1;
2209
2210 xdata = decompose (x);
2211
2212 if (! rtx_equal_p (xdata.base, ydata.base))
2213 {
2214 /* If bases are distinct symbolic constants, there is no overlap. */
2215 if (CONSTANT_P (xdata.base) && CONSTANT_P (ydata.base))
2216 return 1;
2217 /* Constants and stack slots never overlap. */
2218 if (CONSTANT_P (xdata.base)
2219 && (ydata.base == frame_pointer_rtx
a36d4c62 2220 || ydata.base == hard_frame_pointer_rtx
eab89b90
RK
2221 || ydata.base == stack_pointer_rtx))
2222 return 1;
2223 if (CONSTANT_P (ydata.base)
2224 && (xdata.base == frame_pointer_rtx
a36d4c62 2225 || xdata.base == hard_frame_pointer_rtx
eab89b90
RK
2226 || xdata.base == stack_pointer_rtx))
2227 return 1;
2228 /* If either base is variable, we don't know anything. */
2229 return 0;
2230 }
2231
2232
2233 return (xdata.start >= ydata.end || ydata.start >= xdata.end);
2234}
44ace968 2235
f72aed24 2236/* Similar, but calls decompose. */
44ace968
JW
2237
2238int
2239safe_from_earlyclobber (op, clobber)
2240 rtx op, clobber;
2241{
2242 struct decomposition early_data;
2243
2244 early_data = decompose (clobber);
2245 return immune_p (op, clobber, early_data);
2246}
eab89b90
RK
2247\f
2248/* Main entry point of this file: search the body of INSN
2249 for values that need reloading and record them with push_reload.
2250 REPLACE nonzero means record also where the values occur
2251 so that subst_reloads can be used.
2252
2253 IND_LEVELS says how many levels of indirection are supported by this
2254 machine; a value of zero means that a memory reference is not a valid
2255 memory address.
2256
2257 LIVE_KNOWN says we have valid information about which hard
2258 regs are live at each point in the program; this is true when
2259 we are called from global_alloc but false when stupid register
2260 allocation has been done.
2261
2262 RELOAD_REG_P if nonzero is a vector indexed by hard reg number
2263 which is nonnegative if the reg has been commandeered for reloading into.
2264 It is copied into STATIC_RELOAD_REG_P and referenced from there
2265 by various subroutines. */
2266
2267void
2268find_reloads (insn, replace, ind_levels, live_known, reload_reg_p)
2269 rtx insn;
2270 int replace, ind_levels;
2271 int live_known;
2272 short *reload_reg_p;
2273{
eab89b90
RK
2274#ifdef REGISTER_CONSTRAINTS
2275
eab89b90 2276 register int insn_code_number;
a8c9daeb 2277 register int i, j;
eab89b90
RK
2278 int noperands;
2279 /* These are the constraints for the insn. We don't change them. */
2280 char *constraints1[MAX_RECOG_OPERANDS];
2281 /* These start out as the constraints for the insn
2282 and they are chewed up as we consider alternatives. */
2283 char *constraints[MAX_RECOG_OPERANDS];
2284 /* These are the preferred classes for an operand, or NO_REGS if it isn't
2285 a register. */
2286 enum reg_class preferred_class[MAX_RECOG_OPERANDS];
2287 char pref_or_nothing[MAX_RECOG_OPERANDS];
2288 /* Nonzero for a MEM operand whose entire address needs a reload. */
2289 int address_reloaded[MAX_RECOG_OPERANDS];
a8c9daeb
RK
2290 /* Value of enum reload_type to use for operand. */
2291 enum reload_type operand_type[MAX_RECOG_OPERANDS];
2292 /* Value of enum reload_type to use within address of operand. */
2293 enum reload_type address_type[MAX_RECOG_OPERANDS];
2294 /* Save the usage of each operand. */
2295 enum reload_usage { RELOAD_READ, RELOAD_READ_WRITE, RELOAD_WRITE } modified[MAX_RECOG_OPERANDS];
eab89b90
RK
2296 int no_input_reloads = 0, no_output_reloads = 0;
2297 int n_alternatives;
2298 int this_alternative[MAX_RECOG_OPERANDS];
2299 char this_alternative_win[MAX_RECOG_OPERANDS];
2300 char this_alternative_offmemok[MAX_RECOG_OPERANDS];
2301 char this_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2302 int this_alternative_matches[MAX_RECOG_OPERANDS];
2303 int swapped;
2304 int goal_alternative[MAX_RECOG_OPERANDS];
2305 int this_alternative_number;
2306 int goal_alternative_number;
2307 int operand_reloadnum[MAX_RECOG_OPERANDS];
2308 int goal_alternative_matches[MAX_RECOG_OPERANDS];
2309 int goal_alternative_matched[MAX_RECOG_OPERANDS];
2310 char goal_alternative_win[MAX_RECOG_OPERANDS];
2311 char goal_alternative_offmemok[MAX_RECOG_OPERANDS];
2312 char goal_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2313 int goal_alternative_swapped;
eab89b90
RK
2314 int best;
2315 int commutative;
2316 char operands_match[MAX_RECOG_OPERANDS][MAX_RECOG_OPERANDS];
2317 rtx substed_operand[MAX_RECOG_OPERANDS];
2318 rtx body = PATTERN (insn);
2319 rtx set = single_set (insn);
2320 int goal_earlyclobber, this_earlyclobber;
2321 enum machine_mode operand_mode[MAX_RECOG_OPERANDS];
2322
2323 this_insn = insn;
2324 this_insn_is_asm = 0; /* Tentative. */
2325 n_reloads = 0;
2326 n_replacements = 0;
2327 n_memlocs = 0;
2328 n_earlyclobbers = 0;
2329 replace_reloads = replace;
2330 hard_regs_live_known = live_known;
2331 static_reload_reg_p = reload_reg_p;
2332
2333 /* JUMP_INSNs and CALL_INSNs are not allowed to have any output reloads;
2334 neither are insns that SET cc0. Insns that use CC0 are not allowed
2335 to have any input reloads. */
2336 if (GET_CODE (insn) == JUMP_INSN || GET_CODE (insn) == CALL_INSN)
2337 no_output_reloads = 1;
2338
2339#ifdef HAVE_cc0
2340 if (reg_referenced_p (cc0_rtx, PATTERN (insn)))
2341 no_input_reloads = 1;
2342 if (reg_set_p (cc0_rtx, PATTERN (insn)))
2343 no_output_reloads = 1;
2344#endif
2345
0dadecf6
RK
2346#ifdef SECONDARY_MEMORY_NEEDED
2347 /* The eliminated forms of any secondary memory locations are per-insn, so
2348 clear them out here. */
2349
4c9a05bc 2350 bzero ((char *) secondary_memlocs_elim, sizeof secondary_memlocs_elim);
0dadecf6
RK
2351#endif
2352
eab89b90
RK
2353 /* Find what kind of insn this is. NOPERANDS gets number of operands.
2354 Make OPERANDS point to a vector of operand values.
2355 Make OPERAND_LOCS point to a vector of pointers to
2356 where the operands were found.
2357 Fill CONSTRAINTS and CONSTRAINTS1 with pointers to the
2358 constraint-strings for this insn.
2359 Return if the insn needs no reload processing. */
2360
2361 switch (GET_CODE (body))
2362 {
2363 case USE:
2364 case CLOBBER:
2365 case ASM_INPUT:
2366 case ADDR_VEC:
2367 case ADDR_DIFF_VEC:
2368 return;
2369
2370 case SET:
2371 /* Dispose quickly of (set (reg..) (reg..)) if both have hard regs and it
2372 is cheap to move between them. If it is not, there may not be an insn
2373 to do the copy, so we may need a reload. */
2374 if (GET_CODE (SET_DEST (body)) == REG
2375 && REGNO (SET_DEST (body)) < FIRST_PSEUDO_REGISTER
2376 && GET_CODE (SET_SRC (body)) == REG
2377 && REGNO (SET_SRC (body)) < FIRST_PSEUDO_REGISTER
2378 && REGISTER_MOVE_COST (REGNO_REG_CLASS (REGNO (SET_SRC (body))),
2379 REGNO_REG_CLASS (REGNO (SET_DEST (body)))) == 2)
2380 return;
2381 case PARALLEL:
2382 case ASM_OPERANDS:
a8c9daeb 2383 reload_n_operands = noperands = asm_noperands (body);
eab89b90
RK
2384 if (noperands >= 0)
2385 {
2386 /* This insn is an `asm' with operands. */
2387
2388 insn_code_number = -1;
2389 this_insn_is_asm = 1;
2390
2391 /* expand_asm_operands makes sure there aren't too many operands. */
2392 if (noperands > MAX_RECOG_OPERANDS)
2393 abort ();
2394
2395 /* Now get the operand values and constraints out of the insn. */
2396
2397 decode_asm_operands (body, recog_operand, recog_operand_loc,
2398 constraints, operand_mode);
2399 if (noperands > 0)
2400 {
4c9a05bc
RK
2401 bcopy ((char *) constraints, (char *) constraints1,
2402 noperands * sizeof (char *));
eab89b90
RK
2403 n_alternatives = n_occurrences (',', constraints[0]) + 1;
2404 for (i = 1; i < noperands; i++)
d45cf215 2405 if (n_alternatives != n_occurrences (',', constraints[i]) + 1)
eab89b90
RK
2406 {
2407 error_for_asm (insn, "operand constraints differ in number of alternatives");
2408 /* Avoid further trouble with this insn. */
38a448ca 2409 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
eab89b90
RK
2410 n_reloads = 0;
2411 return;
2412 }
2413 }
2414 break;
2415 }
2416
2417 default:
2418 /* Ordinary insn: recognize it, get the operands via insn_extract
2419 and get the constraints. */
2420
2421 insn_code_number = recog_memoized (insn);
2422 if (insn_code_number < 0)
2423 fatal_insn_not_found (insn);
2424
a8c9daeb 2425 reload_n_operands = noperands = insn_n_operands[insn_code_number];
eab89b90
RK
2426 n_alternatives = insn_n_alternatives[insn_code_number];
2427 /* Just return "no reloads" if insn has no operands with constraints. */
2428 if (n_alternatives == 0)
2429 return;
2430 insn_extract (insn);
2431 for (i = 0; i < noperands; i++)
2432 {
2433 constraints[i] = constraints1[i]
2434 = insn_operand_constraint[insn_code_number][i];
2435 operand_mode[i] = insn_operand_mode[insn_code_number][i];
2436 }
2437 }
2438
2439 if (noperands == 0)
2440 return;
2441
2442 commutative = -1;
2443
2444 /* If we will need to know, later, whether some pair of operands
2445 are the same, we must compare them now and save the result.
2446 Reloading the base and index registers will clobber them
2447 and afterward they will fail to match. */
2448
2449 for (i = 0; i < noperands; i++)
2450 {
2451 register char *p;
2452 register int c;
2453
2454 substed_operand[i] = recog_operand[i];
2455 p = constraints[i];
2456
a8c9daeb
RK
2457 modified[i] = RELOAD_READ;
2458
2459 /* Scan this operand's constraint to see if it is an output operand,
2460 an in-out operand, is commutative, or should match another. */
eab89b90 2461
51723711 2462 while ((c = *p++))
a8c9daeb
RK
2463 {
2464 if (c == '=')
2465 modified[i] = RELOAD_WRITE;
2466 else if (c == '+')
2467 modified[i] = RELOAD_READ_WRITE;
2468 else if (c == '%')
2469 {
2470 /* The last operand should not be marked commutative. */
2471 if (i == noperands - 1)
2472 {
2473 if (this_insn_is_asm)
2474 warning_for_asm (this_insn,
2475 "`%%' constraint used with last operand");
2476 else
2477 abort ();
2478 }
2479 else
2480 commutative = i;
2481 }
2482 else if (c >= '0' && c <= '9')
2483 {
2484 c -= '0';
2485 operands_match[c][i]
2486 = operands_match_p (recog_operand[c], recog_operand[i]);
ea9c5b9e 2487
a8c9daeb
RK
2488 /* An operand may not match itself. */
2489 if (c == i)
2490 {
2491 if (this_insn_is_asm)
2492 warning_for_asm (this_insn,
2493 "operand %d has constraint %d", i, c);
2494 else
2495 abort ();
2496 }
ea9c5b9e 2497
a8c9daeb
RK
2498 /* If C can be commuted with C+1, and C might need to match I,
2499 then C+1 might also need to match I. */
2500 if (commutative >= 0)
2501 {
2502 if (c == commutative || c == commutative + 1)
2503 {
2504 int other = c + (c == commutative ? 1 : -1);
2505 operands_match[other][i]
2506 = operands_match_p (recog_operand[other], recog_operand[i]);
2507 }
2508 if (i == commutative || i == commutative + 1)
2509 {
2510 int other = i + (i == commutative ? 1 : -1);
2511 operands_match[c][other]
2512 = operands_match_p (recog_operand[c], recog_operand[other]);
2513 }
2514 /* Note that C is supposed to be less than I.
2515 No need to consider altering both C and I because in
2516 that case we would alter one into the other. */
2517 }
2518 }
2519 }
eab89b90
RK
2520 }
2521
2522 /* Examine each operand that is a memory reference or memory address
2523 and reload parts of the addresses into index registers.
eab89b90
RK
2524 Also here any references to pseudo regs that didn't get hard regs
2525 but are equivalent to constants get replaced in the insn itself
2526 with those constants. Nobody will ever see them again.
2527
2528 Finally, set up the preferred classes of each operand. */
2529
2530 for (i = 0; i < noperands; i++)
2531 {
2532 register RTX_CODE code = GET_CODE (recog_operand[i]);
a8c9daeb 2533
eab89b90 2534 address_reloaded[i] = 0;
a8c9daeb
RK
2535 operand_type[i] = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT
2536 : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT
2537 : RELOAD_OTHER);
2538 address_type[i]
2539 = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT_ADDRESS
2540 : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT_ADDRESS
2541 : RELOAD_OTHER);
eab89b90 2542
0d38001f
RS
2543 if (*constraints[i] == 0)
2544 /* Ignore things like match_operator operands. */
2545 ;
2546 else if (constraints[i][0] == 'p')
eab89b90 2547 {
fb3821f7 2548 find_reloads_address (VOIDmode, NULL_PTR,
eab89b90 2549 recog_operand[i], recog_operand_loc[i],
55c22565 2550 i, operand_type[i], ind_levels, insn);
b685dbae
RK
2551
2552 /* If we now have a simple operand where we used to have a
2553 PLUS or MULT, re-recognize and try again. */
2554 if ((GET_RTX_CLASS (GET_CODE (*recog_operand_loc[i])) == 'o'
2555 || GET_CODE (*recog_operand_loc[i]) == SUBREG)
2556 && (GET_CODE (recog_operand[i]) == MULT
2557 || GET_CODE (recog_operand[i]) == PLUS))
2558 {
2559 INSN_CODE (insn) = -1;
2560 find_reloads (insn, replace, ind_levels, live_known,
2561 reload_reg_p);
2562 return;
2563 }
2564
eab89b90
RK
2565 substed_operand[i] = recog_operand[i] = *recog_operand_loc[i];
2566 }
2567 else if (code == MEM)
2568 {
2569 if (find_reloads_address (GET_MODE (recog_operand[i]),
2570 recog_operand_loc[i],
2571 XEXP (recog_operand[i], 0),
2572 &XEXP (recog_operand[i], 0),
55c22565 2573 i, address_type[i], ind_levels, insn))
eab89b90
RK
2574 address_reloaded[i] = 1;
2575 substed_operand[i] = recog_operand[i] = *recog_operand_loc[i];
2576 }
2577 else if (code == SUBREG)
2578 substed_operand[i] = recog_operand[i] = *recog_operand_loc[i]
a8c9daeb
RK
2579 = find_reloads_toplev (recog_operand[i], i, address_type[i],
2580 ind_levels,
eab89b90
RK
2581 set != 0
2582 && &SET_DEST (set) == recog_operand_loc[i]);
ff428c90
ILT
2583 else if (code == PLUS || GET_RTX_CLASS (code) == '1')
2584 /* We can get a PLUS as an "operand" as a result of register
2585 elimination. See eliminate_regs and gen_reload. We handle
2586 a unary operator by reloading the operand. */
944d7b14
RS
2587 substed_operand[i] = recog_operand[i] = *recog_operand_loc[i]
2588 = find_reloads_toplev (recog_operand[i], i, address_type[i],
2589 ind_levels, 0);
eab89b90
RK
2590 else if (code == REG)
2591 {
2592 /* This is equivalent to calling find_reloads_toplev.
2593 The code is duplicated for speed.
2594 When we find a pseudo always equivalent to a constant,
2595 we replace it by the constant. We must be sure, however,
2596 that we don't try to replace it in the insn in which it
2597 is being set. */
2598 register int regno = REGNO (recog_operand[i]);
2599 if (reg_equiv_constant[regno] != 0
2600 && (set == 0 || &SET_DEST (set) != recog_operand_loc[i]))
2601 substed_operand[i] = recog_operand[i]
2602 = reg_equiv_constant[regno];
2603#if 0 /* This might screw code in reload1.c to delete prior output-reload
2604 that feeds this insn. */
2605 if (reg_equiv_mem[regno] != 0)
2606 substed_operand[i] = recog_operand[i]
2607 = reg_equiv_mem[regno];
2608#endif
2609 if (reg_equiv_address[regno] != 0)
2610 {
2611 /* If reg_equiv_address is not a constant address, copy it,
2612 since it may be shared. */
4ffeab02
JW
2613 /* We must rerun eliminate_regs, in case the elimination
2614 offsets have changed. */
2615 rtx address = XEXP (eliminate_regs (reg_equiv_memory_loc[regno],
1914f5da 2616 0, NULL_RTX),
4ffeab02 2617 0);
eab89b90
RK
2618
2619 if (rtx_varies_p (address))
2620 address = copy_rtx (address);
2621
2622 /* If this is an output operand, we must output a CLOBBER
a8c9daeb
RK
2623 after INSN so find_equiv_reg knows REGNO is being written.
2624 Mark this insn specially, do we can put our output reloads
2625 after it. */
2626
2627 if (modified[i] != RELOAD_READ)
38a448ca
RH
2628 PUT_MODE (emit_insn_after (gen_rtx_CLOBBER (VOIDmode,
2629 recog_operand[i]),
a8c9daeb
RK
2630 insn),
2631 DImode);
eab89b90
RK
2632
2633 *recog_operand_loc[i] = recog_operand[i]
38a448ca 2634 = gen_rtx_MEM (GET_MODE (recog_operand[i]), address);
eab89b90
RK
2635 RTX_UNCHANGING_P (recog_operand[i])
2636 = RTX_UNCHANGING_P (regno_reg_rtx[regno]);
2637 find_reloads_address (GET_MODE (recog_operand[i]),
130659a4 2638 recog_operand_loc[i],
eab89b90
RK
2639 XEXP (recog_operand[i], 0),
2640 &XEXP (recog_operand[i], 0),
55c22565 2641 i, address_type[i], ind_levels, insn);
eab89b90
RK
2642 substed_operand[i] = recog_operand[i] = *recog_operand_loc[i];
2643 }
2644 }
aaf9712e
RS
2645 /* If the operand is still a register (we didn't replace it with an
2646 equivalent), get the preferred class to reload it into. */
2647 code = GET_CODE (recog_operand[i]);
2648 preferred_class[i]
91f9a6ed 2649 = ((code == REG && REGNO (recog_operand[i]) >= FIRST_PSEUDO_REGISTER)
aaf9712e
RS
2650 ? reg_preferred_class (REGNO (recog_operand[i])) : NO_REGS);
2651 pref_or_nothing[i]
91f9a6ed 2652 = (code == REG && REGNO (recog_operand[i]) >= FIRST_PSEUDO_REGISTER
e4600702 2653 && reg_alternate_class (REGNO (recog_operand[i])) == NO_REGS);
eab89b90
RK
2654 }
2655
2656 /* If this is simply a copy from operand 1 to operand 0, merge the
2657 preferred classes for the operands. */
2658 if (set != 0 && noperands >= 2 && recog_operand[0] == SET_DEST (set)
2659 && recog_operand[1] == SET_SRC (set))
2660 {
2661 preferred_class[0] = preferred_class[1]
2662 = reg_class_subunion[(int) preferred_class[0]][(int) preferred_class[1]];
2663 pref_or_nothing[0] |= pref_or_nothing[1];
2664 pref_or_nothing[1] |= pref_or_nothing[0];
2665 }
2666
2667 /* Now see what we need for pseudo-regs that didn't get hard regs
2668 or got the wrong kind of hard reg. For this, we must consider
2669 all the operands together against the register constraints. */
2670
2671 best = MAX_RECOG_OPERANDS + 300;
2672
2673 swapped = 0;
2674 goal_alternative_swapped = 0;
2675 try_swapped:
2676
2677 /* The constraints are made of several alternatives.
2678 Each operand's constraint looks like foo,bar,... with commas
2679 separating the alternatives. The first alternatives for all
2680 operands go together, the second alternatives go together, etc.
2681
2682 First loop over alternatives. */
2683
2684 for (this_alternative_number = 0;
2685 this_alternative_number < n_alternatives;
2686 this_alternative_number++)
2687 {
2688 /* Loop over operands for one constraint alternative. */
2689 /* LOSERS counts those that don't fit this alternative
2690 and would require loading. */
2691 int losers = 0;
2692 /* BAD is set to 1 if it some operand can't fit this alternative
2693 even after reloading. */
2694 int bad = 0;
2695 /* REJECT is a count of how undesirable this alternative says it is
2696 if any reloading is required. If the alternative matches exactly
2697 then REJECT is ignored, but otherwise it gets this much
2698 counted against it in addition to the reloading needed. Each
2699 ? counts three times here since we want the disparaging caused by
2700 a bad register class to only count 1/3 as much. */
2701 int reject = 0;
2702
2703 this_earlyclobber = 0;
2704
2705 for (i = 0; i < noperands; i++)
2706 {
2707 register char *p = constraints[i];
2708 register int win = 0;
2709 /* 0 => this operand can be reloaded somehow for this alternative */
2710 int badop = 1;
2711 /* 0 => this operand can be reloaded if the alternative allows regs. */
2712 int winreg = 0;
2713 int c;
2714 register rtx operand = recog_operand[i];
2715 int offset = 0;
2716 /* Nonzero means this is a MEM that must be reloaded into a reg
2717 regardless of what the constraint says. */
2718 int force_reload = 0;
2719 int offmemok = 0;
9d926da5
RK
2720 /* Nonzero if a constant forced into memory would be OK for this
2721 operand. */
2722 int constmemok = 0;
eab89b90
RK
2723 int earlyclobber = 0;
2724
ff428c90
ILT
2725 /* If the predicate accepts a unary operator, it means that
2726 we need to reload the operand. */
2727 if (GET_RTX_CLASS (GET_CODE (operand)) == '1')
2728 operand = XEXP (operand, 0);
2729
eab89b90
RK
2730 /* If the operand is a SUBREG, extract
2731 the REG or MEM (or maybe even a constant) within.
2732 (Constants can occur as a result of reg_equiv_constant.) */
2733
2734 while (GET_CODE (operand) == SUBREG)
2735 {
2736 offset += SUBREG_WORD (operand);
2737 operand = SUBREG_REG (operand);
ca769828 2738 /* Force reload if this is a constant or PLUS or if there may may
a61c98cf
RK
2739 be a problem accessing OPERAND in the outer mode. */
2740 if (CONSTANT_P (operand)
ca769828 2741 || GET_CODE (operand) == PLUS
03b72c86
RK
2742 /* We must force a reload of paradoxical SUBREGs
2743 of a MEM because the alignment of the inner value
beb5a9b8
RK
2744 may not be enough to do the outer reference. On
2745 big-endian machines, it may also reference outside
2746 the object.
03b72c86
RK
2747
2748 On machines that extend byte operations and we have a
486d8509
RK
2749 SUBREG where both the inner and outer modes are no wider
2750 than a word and the inner mode is narrower, is integral,
2751 and gets extended when loaded from memory, combine.c has
2752 made assumptions about the behavior of the machine in such
03b72c86
RK
2753 register access. If the data is, in fact, in memory we
2754 must always load using the size assumed to be in the
2755 register and let the insn do the different-sized
5ec105cd
RH
2756 accesses.
2757
2758 This is doubly true if WORD_REGISTER_OPERATIONS. In
2759 this case eliminate_regs has left non-paradoxical
2760 subregs for push_reloads to see. Make sure it does
2761 by forcing the reload.
2762
2763 ??? When is it right at this stage to have a subreg
2764 of a mem that is _not_ to be handled specialy? IMO
2765 those should have been reduced to just a mem. */
a61c98cf
RK
2766 || ((GET_CODE (operand) == MEM
2767 || (GET_CODE (operand)== REG
2768 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
5ec105cd 2769#ifndef WORD_REGISTER_OPERATIONS
03b72c86
RK
2770 && (((GET_MODE_BITSIZE (GET_MODE (operand))
2771 < BIGGEST_ALIGNMENT)
2772 && (GET_MODE_SIZE (operand_mode[i])
2773 > GET_MODE_SIZE (GET_MODE (operand))))
beb5a9b8 2774 || (GET_CODE (operand) == MEM && BYTES_BIG_ENDIAN)
03b72c86
RK
2775#ifdef LOAD_EXTEND_OP
2776 || (GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
2777 && (GET_MODE_SIZE (GET_MODE (operand))
2778 <= UNITS_PER_WORD)
2779 && (GET_MODE_SIZE (operand_mode[i])
486d8509
RK
2780 > GET_MODE_SIZE (GET_MODE (operand)))
2781 && INTEGRAL_MODE_P (GET_MODE (operand))
2782 && LOAD_EXTEND_OP (GET_MODE (operand)) != NIL)
46da6b3a 2783#endif
5ec105cd
RH
2784 )
2785#endif
2786 )
eab89b90
RK
2787 /* Subreg of a hard reg which can't handle the subreg's mode
2788 or which would handle that mode in the wrong number of
2789 registers for subregging to work. */
a61c98cf
RK
2790 || (GET_CODE (operand) == REG
2791 && REGNO (operand) < FIRST_PSEUDO_REGISTER
f72ccbe6
RK
2792 && ((GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
2793 && (GET_MODE_SIZE (GET_MODE (operand))
2794 > UNITS_PER_WORD)
2795 && ((GET_MODE_SIZE (GET_MODE (operand))
2796 / UNITS_PER_WORD)
2797 != HARD_REGNO_NREGS (REGNO (operand),
2798 GET_MODE (operand))))
2799 || ! HARD_REGNO_MODE_OK (REGNO (operand) + offset,
2800 operand_mode[i]))))
eab89b90
RK
2801 force_reload = 1;
2802 }
2803
2804 this_alternative[i] = (int) NO_REGS;
2805 this_alternative_win[i] = 0;
2806 this_alternative_offmemok[i] = 0;
2807 this_alternative_earlyclobber[i] = 0;
2808 this_alternative_matches[i] = -1;
2809
2810 /* An empty constraint or empty alternative
2811 allows anything which matched the pattern. */
2812 if (*p == 0 || *p == ',')
2813 win = 1, badop = 0;
2814
2815 /* Scan this alternative's specs for this operand;
2816 set WIN if the operand fits any letter in this alternative.
2817 Otherwise, clear BADOP if this operand could
2818 fit some letter after reloads,
2819 or set WINREG if this operand could fit after reloads
2820 provided the constraint allows some registers. */
2821
2822 while (*p && (c = *p++) != ',')
2823 switch (c)
2824 {
2825 case '=':
eab89b90 2826 case '+':
eab89b90
RK
2827 case '*':
2828 break;
2829
2830 case '%':
42add480
TW
2831 /* The last operand should not be marked commutative. */
2832 if (i != noperands - 1)
2833 commutative = i;
eab89b90
RK
2834 break;
2835
2836 case '?':
2837 reject += 3;
2838 break;
2839
2840 case '!':
2841 reject = 300;
2842 break;
2843
2844 case '#':
2845 /* Ignore rest of this alternative as far as
2846 reloading is concerned. */
2847 while (*p && *p != ',') p++;
2848 break;
2849
2850 case '0':
2851 case '1':
2852 case '2':
2853 case '3':
2854 case '4':
2855 c -= '0';
2856 this_alternative_matches[i] = c;
2857 /* We are supposed to match a previous operand.
2858 If we do, we win if that one did.
2859 If we do not, count both of the operands as losers.
2860 (This is too conservative, since most of the time
2861 only a single reload insn will be needed to make
2862 the two operands win. As a result, this alternative
2863 may be rejected when it is actually desirable.) */
2864 if ((swapped && (c != commutative || i != commutative + 1))
2865 /* If we are matching as if two operands were swapped,
2866 also pretend that operands_match had been computed
2867 with swapped.
2868 But if I is the second of those and C is the first,
2869 don't exchange them, because operands_match is valid
2870 only on one side of its diagonal. */
2871 ? (operands_match
2872 [(c == commutative || c == commutative + 1)
2873 ? 2*commutative + 1 - c : c]
2874 [(i == commutative || i == commutative + 1)
2875 ? 2*commutative + 1 - i : i])
2876 : operands_match[c][i])
fc79eafe
JW
2877 {
2878 /* If we are matching a non-offsettable address where an
2879 offsettable address was expected, then we must reject
2880 this combination, because we can't reload it. */
2881 if (this_alternative_offmemok[c]
2882 && GET_CODE (recog_operand[c]) == MEM
2883 && this_alternative[c] == (int) NO_REGS
2884 && ! this_alternative_win[c])
2885 bad = 1;
2886
2887 win = this_alternative_win[c];
2888 }
eab89b90
RK
2889 else
2890 {
2891 /* Operands don't match. */
2892 rtx value;
2893 /* Retroactively mark the operand we had to match
2894 as a loser, if it wasn't already. */
2895 if (this_alternative_win[c])
2896 losers++;
2897 this_alternative_win[c] = 0;
2898 if (this_alternative[c] == (int) NO_REGS)
2899 bad = 1;
2900 /* But count the pair only once in the total badness of
2901 this alternative, if the pair can be a dummy reload. */
2902 value
2903 = find_dummy_reload (recog_operand[i], recog_operand[c],
2904 recog_operand_loc[i], recog_operand_loc[c],
adb44af8 2905 operand_mode[i], operand_mode[c],
189086f9
RK
2906 this_alternative[c], -1,
2907 this_alternative_earlyclobber[c]);
eab89b90
RK
2908
2909 if (value != 0)
2910 losers--;
2911 }
2912 /* This can be fixed with reloads if the operand
2913 we are supposed to match can be fixed with reloads. */
2914 badop = 0;
2915 this_alternative[i] = this_alternative[c];
e64c4f9e
RK
2916
2917 /* If we have to reload this operand and some previous
2918 operand also had to match the same thing as this
2919 operand, we don't know how to do that. So reject this
2920 alternative. */
2921 if (! win || force_reload)
2922 for (j = 0; j < i; j++)
2923 if (this_alternative_matches[j]
2924 == this_alternative_matches[i])
2925 badop = 1;
2926
eab89b90
RK
2927 break;
2928
2929 case 'p':
2930 /* All necessary reloads for an address_operand
2931 were handled in find_reloads_address. */
5c73e847 2932 this_alternative[i] = (int) BASE_REG_CLASS;
eab89b90
RK
2933 win = 1;
2934 break;
2935
2936 case 'm':
2937 if (force_reload)
2938 break;
2939 if (GET_CODE (operand) == MEM
2940 || (GET_CODE (operand) == REG
2941 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
2942 && reg_renumber[REGNO (operand)] < 0))
2943 win = 1;
3feffdfe
JW
2944 if (CONSTANT_P (operand)
2945 /* force_const_mem does not accept HIGH. */
2946 && GET_CODE (operand) != HIGH)
eab89b90 2947 badop = 0;
9d926da5 2948 constmemok = 1;
eab89b90
RK
2949 break;
2950
2951 case '<':
2952 if (GET_CODE (operand) == MEM
2953 && ! address_reloaded[i]
2954 && (GET_CODE (XEXP (operand, 0)) == PRE_DEC
2955 || GET_CODE (XEXP (operand, 0)) == POST_DEC))
2956 win = 1;
2957 break;
2958
2959 case '>':
2960 if (GET_CODE (operand) == MEM
2961 && ! address_reloaded[i]
2962 && (GET_CODE (XEXP (operand, 0)) == PRE_INC
2963 || GET_CODE (XEXP (operand, 0)) == POST_INC))
2964 win = 1;
2965 break;
2966
2967 /* Memory operand whose address is not offsettable. */
2968 case 'V':
2969 if (force_reload)
2970 break;
2971 if (GET_CODE (operand) == MEM
2972 && ! (ind_levels ? offsettable_memref_p (operand)
2973 : offsettable_nonstrict_memref_p (operand))
2974 /* Certain mem addresses will become offsettable
2975 after they themselves are reloaded. This is important;
2976 we don't want our own handling of unoffsettables
2977 to override the handling of reg_equiv_address. */
2978 && !(GET_CODE (XEXP (operand, 0)) == REG
2979 && (ind_levels == 0
2980 || reg_equiv_address[REGNO (XEXP (operand, 0))] != 0)))
2981 win = 1;
2982 break;
2983
2984 /* Memory operand whose address is offsettable. */
2985 case 'o':
2986 if (force_reload)
2987 break;
2988 if ((GET_CODE (operand) == MEM
2989 /* If IND_LEVELS, find_reloads_address won't reload a
2990 pseudo that didn't get a hard reg, so we have to
2991 reject that case. */
2992 && (ind_levels ? offsettable_memref_p (operand)
2993 : offsettable_nonstrict_memref_p (operand)))
26ba4aee
JW
2994 /* A reloaded auto-increment address is offsettable,
2995 because it is now just a simple register indirect. */
2996 || (GET_CODE (operand) == MEM
2997 && address_reloaded[i]
2998 && (GET_CODE (XEXP (operand, 0)) == PRE_INC
2999 || GET_CODE (XEXP (operand, 0)) == PRE_DEC
3000 || GET_CODE (XEXP (operand, 0)) == POST_INC
3001 || GET_CODE (XEXP (operand, 0)) == POST_DEC))
eab89b90
RK
3002 /* Certain mem addresses will become offsettable
3003 after they themselves are reloaded. This is important;
3004 we don't want our own handling of unoffsettables
3005 to override the handling of reg_equiv_address. */
3006 || (GET_CODE (operand) == MEM
3007 && GET_CODE (XEXP (operand, 0)) == REG
3008 && (ind_levels == 0
3009 || reg_equiv_address[REGNO (XEXP (operand, 0))] != 0))
3010 || (GET_CODE (operand) == REG
3011 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3a322c50
RK
3012 && reg_renumber[REGNO (operand)] < 0
3013 /* If reg_equiv_address is nonzero, we will be
3014 loading it into a register; hence it will be
3015 offsettable, but we cannot say that reg_equiv_mem
3016 is offsettable without checking. */
3017 && ((reg_equiv_mem[REGNO (operand)] != 0
3018 && offsettable_memref_p (reg_equiv_mem[REGNO (operand)]))
3019 || (reg_equiv_address[REGNO (operand)] != 0))))
eab89b90 3020 win = 1;
3feffdfe
JW
3021 /* force_const_mem does not accept HIGH. */
3022 if ((CONSTANT_P (operand) && GET_CODE (operand) != HIGH)
3023 || GET_CODE (operand) == MEM)
eab89b90 3024 badop = 0;
9d926da5 3025 constmemok = 1;
eab89b90
RK
3026 offmemok = 1;
3027 break;
3028
3029 case '&':
3030 /* Output operand that is stored before the need for the
3031 input operands (and their index registers) is over. */
3032 earlyclobber = 1, this_earlyclobber = 1;
3033 break;
3034
3035 case 'E':
293166be 3036#ifndef REAL_ARITHMETIC
eab89b90
RK
3037 /* Match any floating double constant, but only if
3038 we can examine the bits of it reliably. */
3039 if ((HOST_FLOAT_FORMAT != TARGET_FLOAT_FORMAT
fb3821f7 3040 || HOST_BITS_PER_WIDE_INT != BITS_PER_WORD)
eab89b90
RK
3041 && GET_MODE (operand) != VOIDmode && ! flag_pretend_float)
3042 break;
293166be 3043#endif
eab89b90
RK
3044 if (GET_CODE (operand) == CONST_DOUBLE)
3045 win = 1;
3046 break;
3047
3048 case 'F':
3049 if (GET_CODE (operand) == CONST_DOUBLE)
3050 win = 1;
3051 break;
3052
3053 case 'G':
3054 case 'H':
3055 if (GET_CODE (operand) == CONST_DOUBLE
3056 && CONST_DOUBLE_OK_FOR_LETTER_P (operand, c))
3057 win = 1;
3058 break;
3059
3060 case 's':
3061 if (GET_CODE (operand) == CONST_INT
3062 || (GET_CODE (operand) == CONST_DOUBLE
3063 && GET_MODE (operand) == VOIDmode))
3064 break;
3065 case 'i':
3066 if (CONSTANT_P (operand)
3067#ifdef LEGITIMATE_PIC_OPERAND_P
3068 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (operand))
3069#endif
3070 )
3071 win = 1;
3072 break;
3073
3074 case 'n':
3075 if (GET_CODE (operand) == CONST_INT
3076 || (GET_CODE (operand) == CONST_DOUBLE
3077 && GET_MODE (operand) == VOIDmode))
3078 win = 1;
3079 break;
3080
3081 case 'I':
3082 case 'J':
3083 case 'K':
3084 case 'L':
3085 case 'M':
3086 case 'N':
3087 case 'O':
3088 case 'P':
3089 if (GET_CODE (operand) == CONST_INT
3090 && CONST_OK_FOR_LETTER_P (INTVAL (operand), c))
3091 win = 1;
3092 break;
3093
3094 case 'X':
3095 win = 1;
3096 break;
3097
3098 case 'g':
3099 if (! force_reload
3100 /* A PLUS is never a valid operand, but reload can make
3101 it from a register when eliminating registers. */
3102 && GET_CODE (operand) != PLUS
3103 /* A SCRATCH is not a valid operand. */
3104 && GET_CODE (operand) != SCRATCH
3105#ifdef LEGITIMATE_PIC_OPERAND_P
3106 && (! CONSTANT_P (operand)
3107 || ! flag_pic
3108 || LEGITIMATE_PIC_OPERAND_P (operand))
3109#endif
3110 && (GENERAL_REGS == ALL_REGS
3111 || GET_CODE (operand) != REG
3112 || (REGNO (operand) >= FIRST_PSEUDO_REGISTER
3113 && reg_renumber[REGNO (operand)] < 0)))
3114 win = 1;
3115 /* Drop through into 'r' case */
3116
3117 case 'r':
3118 this_alternative[i]
3119 = (int) reg_class_subunion[this_alternative[i]][(int) GENERAL_REGS];
3120 goto reg;
3121
3122#ifdef EXTRA_CONSTRAINT
3123 case 'Q':
3124 case 'R':
3125 case 'S':
3126 case 'T':
3127 case 'U':
3128 if (EXTRA_CONSTRAINT (operand, c))
3129 win = 1;
3130 break;
3131#endif
3132
3133 default:
3134 this_alternative[i]
3135 = (int) reg_class_subunion[this_alternative[i]][(int) REG_CLASS_FROM_LETTER (c)];
3136
3137 reg:
3138 if (GET_MODE (operand) == BLKmode)
3139 break;
3140 winreg = 1;
3141 if (GET_CODE (operand) == REG
3142 && reg_fits_class_p (operand, this_alternative[i],
3143 offset, GET_MODE (recog_operand[i])))
3144 win = 1;
3145 break;
3146 }
3147
3148 constraints[i] = p;
3149
3150 /* If this operand could be handled with a reg,
3151 and some reg is allowed, then this operand can be handled. */
3152 if (winreg && this_alternative[i] != (int) NO_REGS)
3153 badop = 0;
3154
3155 /* Record which operands fit this alternative. */
3156 this_alternative_earlyclobber[i] = earlyclobber;
3157 if (win && ! force_reload)
3158 this_alternative_win[i] = 1;
3159 else
3160 {
9d926da5
RK
3161 int const_to_mem = 0;
3162
eab89b90
RK
3163 this_alternative_offmemok[i] = offmemok;
3164 losers++;
3165 if (badop)
3166 bad = 1;
3167 /* Alternative loses if it has no regs for a reg operand. */
3168 if (GET_CODE (operand) == REG
3169 && this_alternative[i] == (int) NO_REGS
3170 && this_alternative_matches[i] < 0)
3171 bad = 1;
3172
3173 /* Alternative loses if it requires a type of reload not
3174 permitted for this insn. We can always reload SCRATCH
3175 and objects with a REG_UNUSED note. */
a8c9daeb
RK
3176 if (GET_CODE (operand) != SCRATCH
3177 && modified[i] != RELOAD_READ && no_output_reloads
eab89b90
RK
3178 && ! find_reg_note (insn, REG_UNUSED, operand))
3179 bad = 1;
3180 else if (modified[i] != RELOAD_WRITE && no_input_reloads)
3181 bad = 1;
3182
3a322c50
RK
3183 /* If this is a constant that is reloaded into the desired
3184 class by copying it to memory first, count that as another
3185 reload. This is consistent with other code and is
293166be 3186 required to avoid choosing another alternative when
3a322c50
RK
3187 the constant is moved into memory by this function on
3188 an early reload pass. Note that the test here is
3189 precisely the same as in the code below that calls
3190 force_const_mem. */
3191 if (CONSTANT_P (operand)
59f25cf9
RK
3192 /* force_const_mem does not accept HIGH. */
3193 && GET_CODE (operand) != HIGH
3a322c50
RK
3194 && (PREFERRED_RELOAD_CLASS (operand,
3195 (enum reg_class) this_alternative[i])
3196 == NO_REGS)
3a322c50 3197 && operand_mode[i] != VOIDmode)
9d926da5
RK
3198 {
3199 const_to_mem = 1;
3200 if (this_alternative[i] != (int) NO_REGS)
3201 losers++;
3202 }
3a322c50 3203
5e6aa513
RK
3204 /* If we can't reload this value at all, reject this
3205 alternative. Note that we could also lose due to
3206 LIMIT_RELOAD_RELOAD_CLASS, but we don't check that
3207 here. */
3208
3209 if (! CONSTANT_P (operand)
73b236b5 3210 && (enum reg_class) this_alternative[i] != NO_REGS
5e6aa513
RK
3211 && (PREFERRED_RELOAD_CLASS (operand,
3212 (enum reg_class) this_alternative[i])
3213 == NO_REGS))
3214 bad = 1;
3215
eab89b90
RK
3216 /* We prefer to reload pseudos over reloading other things,
3217 since such reloads may be able to be eliminated later.
3218 If we are reloading a SCRATCH, we won't be generating any
3219 insns, just using a register, so it is also preferred.
9d926da5
RK
3220 So bump REJECT in other cases. Don't do this in the
3221 case where we are forcing a constant into memory and
3222 it will then win since we don't want to have a different
3223 alternative match then. */
915bb763
RK
3224 if (! (GET_CODE (operand) == REG
3225 && REGNO (operand) >= FIRST_PSEUDO_REGISTER)
9d926da5
RK
3226 && GET_CODE (operand) != SCRATCH
3227 && ! (const_to_mem && constmemok))
eab89b90
RK
3228 reject++;
3229 }
3230
3231 /* If this operand is a pseudo register that didn't get a hard
3232 reg and this alternative accepts some register, see if the
3233 class that we want is a subset of the preferred class for this
3234 register. If not, but it intersects that class, use the
3235 preferred class instead. If it does not intersect the preferred
3236 class, show that usage of this alternative should be discouraged;
3237 it will be discouraged more still if the register is `preferred
3238 or nothing'. We do this because it increases the chance of
3239 reusing our spill register in a later insn and avoiding a pair
3240 of memory stores and loads.
3241
3242 Don't bother with this if this alternative will accept this
3243 operand.
3244
a2d353e5
RK
3245 Don't do this for a multiword operand, since it is only a
3246 small win and has the risk of requiring more spill registers,
3247 which could cause a large loss.
5aa14fee 3248
eab89b90
RK
3249 Don't do this if the preferred class has only one register
3250 because we might otherwise exhaust the class. */
3251
3252
3253 if (! win && this_alternative[i] != (int) NO_REGS
5aa14fee 3254 && GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
eab89b90
RK
3255 && reg_class_size[(int) preferred_class[i]] > 1)
3256 {
3257 if (! reg_class_subset_p (this_alternative[i],
3258 preferred_class[i]))
3259 {
3260 /* Since we don't have a way of forming the intersection,
3261 we just do something special if the preferred class
3262 is a subset of the class we have; that's the most
3263 common case anyway. */
3264 if (reg_class_subset_p (preferred_class[i],
3265 this_alternative[i]))
3266 this_alternative[i] = (int) preferred_class[i];
3267 else
3268 reject += (1 + pref_or_nothing[i]);
3269 }
3270 }
3271 }
3272
3273 /* Now see if any output operands that are marked "earlyclobber"
3274 in this alternative conflict with any input operands
3275 or any memory addresses. */
3276
3277 for (i = 0; i < noperands; i++)
3278 if (this_alternative_earlyclobber[i]
3279 && this_alternative_win[i])
3280 {
3281 struct decomposition early_data;
eab89b90
RK
3282
3283 early_data = decompose (recog_operand[i]);
3284
3285 if (modified[i] == RELOAD_READ)
3286 {
3287 if (this_insn_is_asm)
3288 warning_for_asm (this_insn,
3289 "`&' constraint used with input operand");
3290 else
3291 abort ();
3292 continue;
3293 }
3294
3295 if (this_alternative[i] == NO_REGS)
3296 {
3297 this_alternative_earlyclobber[i] = 0;
3298 if (this_insn_is_asm)
3299 error_for_asm (this_insn,
3300 "`&' constraint used with no register class");
3301 else
3302 abort ();
3303 }
3304
3305 for (j = 0; j < noperands; j++)
3306 /* Is this an input operand or a memory ref? */
3307 if ((GET_CODE (recog_operand[j]) == MEM
3308 || modified[j] != RELOAD_WRITE)
3309 && j != i
3310 /* Ignore things like match_operator operands. */
3311 && *constraints1[j] != 0
3312 /* Don't count an input operand that is constrained to match
3313 the early clobber operand. */
3314 && ! (this_alternative_matches[j] == i
3315 && rtx_equal_p (recog_operand[i], recog_operand[j]))
3316 /* Is it altered by storing the earlyclobber operand? */
3317 && !immune_p (recog_operand[j], recog_operand[i], early_data))
3318 {
3319 /* If the output is in a single-reg class,
3320 it's costly to reload it, so reload the input instead. */
3321 if (reg_class_size[this_alternative[i]] == 1
3322 && (GET_CODE (recog_operand[j]) == REG
3323 || GET_CODE (recog_operand[j]) == SUBREG))
3324 {
3325 losers++;
3326 this_alternative_win[j] = 0;
3327 }
3328 else
3329 break;
3330 }
3331 /* If an earlyclobber operand conflicts with something,
3332 it must be reloaded, so request this and count the cost. */
3333 if (j != noperands)
3334 {
3335 losers++;
3336 this_alternative_win[i] = 0;
3337 for (j = 0; j < noperands; j++)
3338 if (this_alternative_matches[j] == i
3339 && this_alternative_win[j])
3340 {
3341 this_alternative_win[j] = 0;
3342 losers++;
3343 }
3344 }
3345 }
3346
3347 /* If one alternative accepts all the operands, no reload required,
3348 choose that alternative; don't consider the remaining ones. */
3349 if (losers == 0)
3350 {
3351 /* Unswap these so that they are never swapped at `finish'. */
3352 if (commutative >= 0)
3353 {
3354 recog_operand[commutative] = substed_operand[commutative];
3355 recog_operand[commutative + 1]
3356 = substed_operand[commutative + 1];
3357 }
3358 for (i = 0; i < noperands; i++)
3359 {
3360 goal_alternative_win[i] = 1;
3361 goal_alternative[i] = this_alternative[i];
3362 goal_alternative_offmemok[i] = this_alternative_offmemok[i];
3363 goal_alternative_matches[i] = this_alternative_matches[i];
3364 goal_alternative_earlyclobber[i]
3365 = this_alternative_earlyclobber[i];
3366 }
3367 goal_alternative_number = this_alternative_number;
3368 goal_alternative_swapped = swapped;
3369 goal_earlyclobber = this_earlyclobber;
3370 goto finish;
3371 }
3372
3373 /* REJECT, set by the ! and ? constraint characters and when a register
3374 would be reloaded into a non-preferred class, discourages the use of
3375 this alternative for a reload goal. REJECT is incremented by three
3376 for each ? and one for each non-preferred class. */
3377 losers = losers * 3 + reject;
3378
3379 /* If this alternative can be made to work by reloading,
3380 and it needs less reloading than the others checked so far,
3381 record it as the chosen goal for reloading. */
3382 if (! bad && best > losers)
3383 {
3384 for (i = 0; i < noperands; i++)
3385 {
3386 goal_alternative[i] = this_alternative[i];
3387 goal_alternative_win[i] = this_alternative_win[i];
3388 goal_alternative_offmemok[i] = this_alternative_offmemok[i];
3389 goal_alternative_matches[i] = this_alternative_matches[i];
3390 goal_alternative_earlyclobber[i]
3391 = this_alternative_earlyclobber[i];
3392 }
3393 goal_alternative_swapped = swapped;
3394 best = losers;
3395 goal_alternative_number = this_alternative_number;
3396 goal_earlyclobber = this_earlyclobber;
3397 }
3398 }
3399
3400 /* If insn is commutative (it's safe to exchange a certain pair of operands)
3401 then we need to try each alternative twice,
3402 the second time matching those two operands
3403 as if we had exchanged them.
3404 To do this, really exchange them in operands.
3405
3406 If we have just tried the alternatives the second time,
3407 return operands to normal and drop through. */
3408
3409 if (commutative >= 0)
3410 {
3411 swapped = !swapped;
3412 if (swapped)
3413 {
3414 register enum reg_class tclass;
3415 register int t;
3416
3417 recog_operand[commutative] = substed_operand[commutative + 1];
3418 recog_operand[commutative + 1] = substed_operand[commutative];
3419
3420 tclass = preferred_class[commutative];
3421 preferred_class[commutative] = preferred_class[commutative + 1];
3422 preferred_class[commutative + 1] = tclass;
3423
3424 t = pref_or_nothing[commutative];
3425 pref_or_nothing[commutative] = pref_or_nothing[commutative + 1];
3426 pref_or_nothing[commutative + 1] = t;
3427
4c9a05bc
RK
3428 bcopy ((char *) constraints1, (char *) constraints,
3429 noperands * sizeof (char *));
eab89b90
RK
3430 goto try_swapped;
3431 }
3432 else
3433 {
3434 recog_operand[commutative] = substed_operand[commutative];
3435 recog_operand[commutative + 1] = substed_operand[commutative + 1];
3436 }
3437 }
3438
3439 /* The operands don't meet the constraints.
3440 goal_alternative describes the alternative
3441 that we could reach by reloading the fewest operands.
3442 Reload so as to fit it. */
3443
3444 if (best == MAX_RECOG_OPERANDS + 300)
3445 {
3446 /* No alternative works with reloads?? */
3447 if (insn_code_number >= 0)
3448 abort ();
3449 error_for_asm (insn, "inconsistent operand constraints in an `asm'");
3450 /* Avoid further trouble with this insn. */
38a448ca 3451 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
eab89b90
RK
3452 n_reloads = 0;
3453 return;
3454 }
3455
3456 /* Jump to `finish' from above if all operands are valid already.
3457 In that case, goal_alternative_win is all 1. */
3458 finish:
3459
3460 /* Right now, for any pair of operands I and J that are required to match,
3461 with I < J,
3462 goal_alternative_matches[J] is I.
3463 Set up goal_alternative_matched as the inverse function:
3464 goal_alternative_matched[I] = J. */
3465
3466 for (i = 0; i < noperands; i++)
3467 goal_alternative_matched[i] = -1;
3468
3469 for (i = 0; i < noperands; i++)
3470 if (! goal_alternative_win[i]
3471 && goal_alternative_matches[i] >= 0)
3472 goal_alternative_matched[goal_alternative_matches[i]] = i;
3473
3474 /* If the best alternative is with operands 1 and 2 swapped,
a8c9daeb
RK
3475 consider them swapped before reporting the reloads. Update the
3476 operand numbers of any reloads already pushed. */
eab89b90
RK
3477
3478 if (goal_alternative_swapped)
3479 {
3480 register rtx tem;
3481
3482 tem = substed_operand[commutative];
3483 substed_operand[commutative] = substed_operand[commutative + 1];
3484 substed_operand[commutative + 1] = tem;
3485 tem = recog_operand[commutative];
3486 recog_operand[commutative] = recog_operand[commutative + 1];
3487 recog_operand[commutative + 1] = tem;
a8c9daeb
RK
3488
3489 for (i = 0; i < n_reloads; i++)
3490 {
3491 if (reload_opnum[i] == commutative)
3492 reload_opnum[i] = commutative + 1;
3493 else if (reload_opnum[i] == commutative + 1)
3494 reload_opnum[i] = commutative;
3495 }
eab89b90
RK
3496 }
3497
3498 /* Perform whatever substitutions on the operands we are supposed
3499 to make due to commutativity or replacement of registers
3500 with equivalent constants or memory slots. */
3501
3502 for (i = 0; i < noperands; i++)
3503 {
3504 *recog_operand_loc[i] = substed_operand[i];
3505 /* While we are looping on operands, initialize this. */
3506 operand_reloadnum[i] = -1;
a8c9daeb
RK
3507
3508 /* If this is an earlyclobber operand, we need to widen the scope.
3509 The reload must remain valid from the start of the insn being
3510 reloaded until after the operand is stored into its destination.
3511 We approximate this with RELOAD_OTHER even though we know that we
3512 do not conflict with RELOAD_FOR_INPUT_ADDRESS reloads.
3513
3514 One special case that is worth checking is when we have an
3515 output that is earlyclobber but isn't used past the insn (typically
3516 a SCRATCH). In this case, we only need have the reload live
3517 through the insn itself, but not for any of our input or output
3518 reloads.
3519
3520 In any case, anything needed to address this operand can remain
3521 however they were previously categorized. */
3522
3523 if (goal_alternative_earlyclobber[i])
3524 operand_type[i]
3525 = (find_reg_note (insn, REG_UNUSED, recog_operand[i])
3526 ? RELOAD_FOR_INSN : RELOAD_OTHER);
eab89b90
RK
3527 }
3528
3529 /* Any constants that aren't allowed and can't be reloaded
3530 into registers are here changed into memory references. */
3531 for (i = 0; i < noperands; i++)
3532 if (! goal_alternative_win[i]
3533 && CONSTANT_P (recog_operand[i])
59f25cf9
RK
3534 /* force_const_mem does not accept HIGH. */
3535 && GET_CODE (recog_operand[i]) != HIGH
eab89b90
RK
3536 && (PREFERRED_RELOAD_CLASS (recog_operand[i],
3537 (enum reg_class) goal_alternative[i])
3538 == NO_REGS)
3539 && operand_mode[i] != VOIDmode)
3540 {
3541 *recog_operand_loc[i] = recog_operand[i]
3542 = find_reloads_toplev (force_const_mem (operand_mode[i],
3543 recog_operand[i]),
a8c9daeb 3544 i, address_type[i], ind_levels, 0);
eab89b90
RK
3545 if (alternative_allows_memconst (constraints1[i],
3546 goal_alternative_number))
3547 goal_alternative_win[i] = 1;
3548 }
3549
4644aad4
RK
3550 /* Record the values of the earlyclobber operands for the caller. */
3551 if (goal_earlyclobber)
3552 for (i = 0; i < noperands; i++)
3553 if (goal_alternative_earlyclobber[i])
3554 reload_earlyclobbers[n_earlyclobbers++] = recog_operand[i];
3555
eab89b90
RK
3556 /* Now record reloads for all the operands that need them. */
3557 for (i = 0; i < noperands; i++)
3558 if (! goal_alternative_win[i])
3559 {
3560 /* Operands that match previous ones have already been handled. */
3561 if (goal_alternative_matches[i] >= 0)
3562 ;
3563 /* Handle an operand with a nonoffsettable address
3564 appearing where an offsettable address will do
3a322c50
RK
3565 by reloading the address into a base register.
3566
3567 ??? We can also do this when the operand is a register and
3568 reg_equiv_mem is not offsettable, but this is a bit tricky,
3569 so we don't bother with it. It may not be worth doing. */
eab89b90
RK
3570 else if (goal_alternative_matched[i] == -1
3571 && goal_alternative_offmemok[i]
3572 && GET_CODE (recog_operand[i]) == MEM)
3573 {
3574 operand_reloadnum[i]
fb3821f7
CH
3575 = push_reload (XEXP (recog_operand[i], 0), NULL_RTX,
3576 &XEXP (recog_operand[i], 0), NULL_PTR,
eab89b90 3577 BASE_REG_CLASS, GET_MODE (XEXP (recog_operand[i], 0)),
a8c9daeb 3578 VOIDmode, 0, 0, i, RELOAD_FOR_INPUT);
eab89b90
RK
3579 reload_inc[operand_reloadnum[i]]
3580 = GET_MODE_SIZE (GET_MODE (recog_operand[i]));
a8c9daeb
RK
3581
3582 /* If this operand is an output, we will have made any
3583 reloads for its address as RELOAD_FOR_OUTPUT_ADDRESS, but
3584 now we are treating part of the operand as an input, so
3585 we must change these to RELOAD_FOR_INPUT_ADDRESS. */
3586
2d55b7e8 3587 if (modified[i] == RELOAD_WRITE)
47c8cf91
ILT
3588 {
3589 for (j = 0; j < n_reloads; j++)
3590 {
3591 if (reload_opnum[j] == i)
3592 {
3593 if (reload_when_needed[j] == RELOAD_FOR_OUTPUT_ADDRESS)
3594 reload_when_needed[j] = RELOAD_FOR_INPUT_ADDRESS;
3595 else if (reload_when_needed[j]
3596 == RELOAD_FOR_OUTADDR_ADDRESS)
3597 reload_when_needed[j] = RELOAD_FOR_INPADDR_ADDRESS;
3598 }
3599 }
3600 }
eab89b90
RK
3601 }
3602 else if (goal_alternative_matched[i] == -1)
db3cf6fb
MS
3603 operand_reloadnum[i]
3604 = push_reload (modified[i] != RELOAD_WRITE ? recog_operand[i] : 0,
3605 modified[i] != RELOAD_READ ? recog_operand[i] : 0,
3606 (modified[i] != RELOAD_WRITE
3607 ? recog_operand_loc[i] : 0),
3608 modified[i] != RELOAD_READ ? recog_operand_loc[i] : 0,
3609 (enum reg_class) goal_alternative[i],
3610 (modified[i] == RELOAD_WRITE
3611 ? VOIDmode : operand_mode[i]),
3612 (modified[i] == RELOAD_READ
3613 ? VOIDmode : operand_mode[i]),
3614 (insn_code_number < 0 ? 0
3615 : insn_operand_strict_low[insn_code_number][i]),
3616 0, i, operand_type[i]);
eab89b90
RK
3617 /* In a matching pair of operands, one must be input only
3618 and the other must be output only.
3619 Pass the input operand as IN and the other as OUT. */
3620 else if (modified[i] == RELOAD_READ
3621 && modified[goal_alternative_matched[i]] == RELOAD_WRITE)
3622 {
3623 operand_reloadnum[i]
3624 = push_reload (recog_operand[i],
3625 recog_operand[goal_alternative_matched[i]],
3626 recog_operand_loc[i],
3627 recog_operand_loc[goal_alternative_matched[i]],
3628 (enum reg_class) goal_alternative[i],
3629 operand_mode[i],
3630 operand_mode[goal_alternative_matched[i]],
a8c9daeb 3631 0, 0, i, RELOAD_OTHER);
eab89b90
RK
3632 operand_reloadnum[goal_alternative_matched[i]] = output_reloadnum;
3633 }
3634 else if (modified[i] == RELOAD_WRITE
3635 && modified[goal_alternative_matched[i]] == RELOAD_READ)
3636 {
3637 operand_reloadnum[goal_alternative_matched[i]]
3638 = push_reload (recog_operand[goal_alternative_matched[i]],
3639 recog_operand[i],
3640 recog_operand_loc[goal_alternative_matched[i]],
3641 recog_operand_loc[i],
3642 (enum reg_class) goal_alternative[i],
3643 operand_mode[goal_alternative_matched[i]],
3644 operand_mode[i],
a8c9daeb 3645 0, 0, i, RELOAD_OTHER);
eab89b90
RK
3646 operand_reloadnum[i] = output_reloadnum;
3647 }
3648 else if (insn_code_number >= 0)
3649 abort ();
3650 else
3651 {
3652 error_for_asm (insn, "inconsistent operand constraints in an `asm'");
3653 /* Avoid further trouble with this insn. */
38a448ca 3654 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
eab89b90
RK
3655 n_reloads = 0;
3656 return;
3657 }
3658 }
3659 else if (goal_alternative_matched[i] < 0
3660 && goal_alternative_matches[i] < 0
3661 && optimize)
3662 {
a8c9daeb 3663 /* For each non-matching operand that's a MEM or a pseudo-register
eab89b90
RK
3664 that didn't get a hard register, make an optional reload.
3665 This may get done even if the insn needs no reloads otherwise. */
a8c9daeb
RK
3666
3667 rtx operand = recog_operand[i];
3668
eab89b90
RK
3669 while (GET_CODE (operand) == SUBREG)
3670 operand = XEXP (operand, 0);
a8c9daeb
RK
3671 if ((GET_CODE (operand) == MEM
3672 || (GET_CODE (operand) == REG
3673 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
eab89b90 3674 && (enum reg_class) goal_alternative[i] != NO_REGS
a8c9daeb
RK
3675 && ! no_input_reloads
3676 /* Optional output reloads don't do anything and we mustn't
3677 make in-out reloads on insns that are not permitted output
3678 reloads. */
eab89b90 3679 && (modified[i] == RELOAD_READ
a8c9daeb 3680 || (modified[i] == RELOAD_READ_WRITE && ! no_output_reloads)))
eab89b90
RK
3681 operand_reloadnum[i]
3682 = push_reload (modified[i] != RELOAD_WRITE ? recog_operand[i] : 0,
3683 modified[i] != RELOAD_READ ? recog_operand[i] : 0,
a8c9daeb
RK
3684 (modified[i] != RELOAD_WRITE
3685 ? recog_operand_loc[i] : 0),
3686 (modified[i] != RELOAD_READ
3687 ? recog_operand_loc[i] : 0),
eab89b90 3688 (enum reg_class) goal_alternative[i],
a8c9daeb
RK
3689 (modified[i] == RELOAD_WRITE
3690 ? VOIDmode : operand_mode[i]),
3691 (modified[i] == RELOAD_READ
3692 ? VOIDmode : operand_mode[i]),
eab89b90
RK
3693 (insn_code_number < 0 ? 0
3694 : insn_operand_strict_low[insn_code_number][i]),
a8c9daeb 3695 1, i, operand_type[i]);
eab89b90 3696 }
a8c9daeb
RK
3697 else if (goal_alternative_matches[i] >= 0
3698 && goal_alternative_win[goal_alternative_matches[i]]
3699 && modified[i] == RELOAD_READ
3700 && modified[goal_alternative_matches[i]] == RELOAD_WRITE
3701 && ! no_input_reloads && ! no_output_reloads
3702 && optimize)
3703 {
3704 /* Similarly, make an optional reload for a pair of matching
3705 objects that are in MEM or a pseudo that didn't get a hard reg. */
eab89b90 3706
a8c9daeb
RK
3707 rtx operand = recog_operand[i];
3708
3709 while (GET_CODE (operand) == SUBREG)
3710 operand = XEXP (operand, 0);
3711 if ((GET_CODE (operand) == MEM
3712 || (GET_CODE (operand) == REG
3713 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
3714 && ((enum reg_class) goal_alternative[goal_alternative_matches[i]]
3715 != NO_REGS))
3716 operand_reloadnum[i] = operand_reloadnum[goal_alternative_matches[i]]
3717 = push_reload (recog_operand[goal_alternative_matches[i]],
3718 recog_operand[i],
3719 recog_operand_loc[goal_alternative_matches[i]],
3720 recog_operand_loc[i],
3721 (enum reg_class) goal_alternative[goal_alternative_matches[i]],
3722 operand_mode[goal_alternative_matches[i]],
3723 operand_mode[i],
3724 0, 1, goal_alternative_matches[i], RELOAD_OTHER);
3725 }
3726
eab89b90
RK
3727 /* If this insn pattern contains any MATCH_DUP's, make sure that
3728 they will be substituted if the operands they match are substituted.
3729 Also do now any substitutions we already did on the operands.
3730
3731 Don't do this if we aren't making replacements because we might be
3732 propagating things allocated by frame pointer elimination into places
3733 it doesn't expect. */
3734
3735 if (insn_code_number >= 0 && replace)
3736 for (i = insn_n_dups[insn_code_number] - 1; i >= 0; i--)
3737 {
3738 int opno = recog_dup_num[i];
3739 *recog_dup_loc[i] = *recog_operand_loc[opno];
3740 if (operand_reloadnum[opno] >= 0)
3741 push_replacement (recog_dup_loc[i], operand_reloadnum[opno],
3742 insn_operand_mode[insn_code_number][opno]);
3743 }
3744
3745#if 0
3746 /* This loses because reloading of prior insns can invalidate the equivalence
3747 (or at least find_equiv_reg isn't smart enough to find it any more),
3748 causing this insn to need more reload regs than it needed before.
3749 It may be too late to make the reload regs available.
3750 Now this optimization is done safely in choose_reload_regs. */
3751
3752 /* For each reload of a reg into some other class of reg,
3753 search for an existing equivalent reg (same value now) in the right class.
3754 We can use it as long as we don't need to change its contents. */
3755 for (i = 0; i < n_reloads; i++)
3756 if (reload_reg_rtx[i] == 0
3757 && reload_in[i] != 0
3758 && GET_CODE (reload_in[i]) == REG
3759 && reload_out[i] == 0)
3760 {
3761 reload_reg_rtx[i]
3762 = find_equiv_reg (reload_in[i], insn, reload_reg_class[i], -1,
3763 static_reload_reg_p, 0, reload_inmode[i]);
3764 /* Prevent generation of insn to load the value
3765 because the one we found already has the value. */
3766 if (reload_reg_rtx[i])
3767 reload_in[i] = reload_reg_rtx[i];
3768 }
3769#endif
3770
a8c9daeb
RK
3771 /* Perhaps an output reload can be combined with another
3772 to reduce needs by one. */
3773 if (!goal_earlyclobber)
3774 combine_reloads ();
3775
3776 /* If we have a pair of reloads for parts of an address, they are reloading
3777 the same object, the operands themselves were not reloaded, and they
3778 are for two operands that are supposed to match, merge the reloads and
0f41302f 3779 change the type of the surviving reload to RELOAD_FOR_OPERAND_ADDRESS. */
a8c9daeb
RK
3780
3781 for (i = 0; i < n_reloads; i++)
3782 {
3783 int k;
3784
3785 for (j = i + 1; j < n_reloads; j++)
3786 if ((reload_when_needed[i] == RELOAD_FOR_INPUT_ADDRESS
47c8cf91
ILT
3787 || reload_when_needed[i] == RELOAD_FOR_OUTPUT_ADDRESS
3788 || reload_when_needed[i] == RELOAD_FOR_INPADDR_ADDRESS
3789 || reload_when_needed[i] == RELOAD_FOR_OUTADDR_ADDRESS)
a8c9daeb 3790 && (reload_when_needed[j] == RELOAD_FOR_INPUT_ADDRESS
47c8cf91
ILT
3791 || reload_when_needed[j] == RELOAD_FOR_OUTPUT_ADDRESS
3792 || reload_when_needed[j] == RELOAD_FOR_INPADDR_ADDRESS
3793 || reload_when_needed[j] == RELOAD_FOR_OUTADDR_ADDRESS)
a8c9daeb
RK
3794 && rtx_equal_p (reload_in[i], reload_in[j])
3795 && (operand_reloadnum[reload_opnum[i]] < 0
3796 || reload_optional[operand_reloadnum[reload_opnum[i]]])
3797 && (operand_reloadnum[reload_opnum[j]] < 0
3798 || reload_optional[operand_reloadnum[reload_opnum[j]]])
3799 && (goal_alternative_matches[reload_opnum[i]] == reload_opnum[j]
3800 || (goal_alternative_matches[reload_opnum[j]]
3801 == reload_opnum[i])))
3802 {
3803 for (k = 0; k < n_replacements; k++)
3804 if (replacements[k].what == j)
3805 replacements[k].what = i;
3806
47c8cf91
ILT
3807 if (reload_when_needed[i] == RELOAD_FOR_INPADDR_ADDRESS
3808 || reload_when_needed[i] == RELOAD_FOR_OUTADDR_ADDRESS)
3809 reload_when_needed[i] = RELOAD_FOR_OPADDR_ADDR;
3810 else
3811 reload_when_needed[i] = RELOAD_FOR_OPERAND_ADDRESS;
a8c9daeb
RK
3812 reload_in[j] = 0;
3813 }
3814 }
3815
3816 /* Scan all the reloads and update their type.
3817 If a reload is for the address of an operand and we didn't reload
3818 that operand, change the type. Similarly, change the operand number
3819 of a reload when two operands match. If a reload is optional, treat it
3820 as though the operand isn't reloaded.
3821
3822 ??? This latter case is somewhat odd because if we do the optional
3823 reload, it means the object is hanging around. Thus we need only
3824 do the address reload if the optional reload was NOT done.
3825
3826 Change secondary reloads to be the address type of their operand, not
3827 the normal type.
3828
3829 If an operand's reload is now RELOAD_OTHER, change any
3830 RELOAD_FOR_INPUT_ADDRESS reloads of that operand to
3831 RELOAD_FOR_OTHER_ADDRESS. */
3832
3833 for (i = 0; i < n_reloads; i++)
3834 {
3835 if (reload_secondary_p[i]
3836 && reload_when_needed[i] == operand_type[reload_opnum[i]])
3837 reload_when_needed[i] = address_type[reload_opnum[i]];
3838
3839 if ((reload_when_needed[i] == RELOAD_FOR_INPUT_ADDRESS
47c8cf91
ILT
3840 || reload_when_needed[i] == RELOAD_FOR_OUTPUT_ADDRESS
3841 || reload_when_needed[i] == RELOAD_FOR_INPADDR_ADDRESS
3842 || reload_when_needed[i] == RELOAD_FOR_OUTADDR_ADDRESS)
a8c9daeb 3843 && (operand_reloadnum[reload_opnum[i]] < 0
6ded3228 3844 || reload_optional[operand_reloadnum[reload_opnum[i]]]))
f98bb7d3
RK
3845 {
3846 /* If we have a secondary reload to go along with this reload,
0f41302f 3847 change its type to RELOAD_FOR_OPADDR_ADDR. */
f98bb7d3 3848
47c8cf91
ILT
3849 if ((reload_when_needed[i] == RELOAD_FOR_INPUT_ADDRESS
3850 || reload_when_needed[i] == RELOAD_FOR_INPADDR_ADDRESS)
f98bb7d3
RK
3851 && reload_secondary_in_reload[i] != -1)
3852 {
3853 int secondary_in_reload = reload_secondary_in_reload[i];
3854
db3cf6fb
MS
3855 reload_when_needed[secondary_in_reload]
3856 = RELOAD_FOR_OPADDR_ADDR;
f98bb7d3 3857
0f41302f 3858 /* If there's a tertiary reload we have to change it also. */
f98bb7d3
RK
3859 if (secondary_in_reload > 0
3860 && reload_secondary_in_reload[secondary_in_reload] != -1)
3861 reload_when_needed[reload_secondary_in_reload[secondary_in_reload]]
3862 = RELOAD_FOR_OPADDR_ADDR;
3863 }
3864
47c8cf91
ILT
3865 if ((reload_when_needed[i] == RELOAD_FOR_OUTPUT_ADDRESS
3866 || reload_when_needed[i] == RELOAD_FOR_OUTADDR_ADDRESS)
f98bb7d3
RK
3867 && reload_secondary_out_reload[i] != -1)
3868 {
3869 int secondary_out_reload = reload_secondary_out_reload[i];
3870
db3cf6fb
MS
3871 reload_when_needed[secondary_out_reload]
3872 = RELOAD_FOR_OPADDR_ADDR;
f98bb7d3 3873
0f41302f 3874 /* If there's a tertiary reload we have to change it also. */
f98bb7d3
RK
3875 if (secondary_out_reload
3876 && reload_secondary_out_reload[secondary_out_reload] != -1)
3877 reload_when_needed[reload_secondary_out_reload[secondary_out_reload]]
3878 = RELOAD_FOR_OPADDR_ADDR;
3879 }
47c8cf91
ILT
3880 if (reload_when_needed[i] == RELOAD_FOR_INPADDR_ADDRESS
3881 || reload_when_needed[i] == RELOAD_FOR_OUTADDR_ADDRESS)
3882 reload_when_needed[i] = RELOAD_FOR_OPADDR_ADDR;
3883 else
3884 reload_when_needed[i] = RELOAD_FOR_OPERAND_ADDRESS;
f98bb7d3 3885 }
a8c9daeb 3886
47c8cf91
ILT
3887 if ((reload_when_needed[i] == RELOAD_FOR_INPUT_ADDRESS
3888 || reload_when_needed[i] == RELOAD_FOR_INPADDR_ADDRESS)
a8c9daeb
RK
3889 && operand_reloadnum[reload_opnum[i]] >= 0
3890 && (reload_when_needed[operand_reloadnum[reload_opnum[i]]]
3891 == RELOAD_OTHER))
3892 reload_when_needed[i] = RELOAD_FOR_OTHER_ADDRESS;
3893
3894 if (goal_alternative_matches[reload_opnum[i]] >= 0)
3895 reload_opnum[i] = goal_alternative_matches[reload_opnum[i]];
3896 }
3897
a94ce333
JW
3898 /* Scan all the reloads, and check for RELOAD_FOR_OPERAND_ADDRESS reloads.
3899 If we have more than one, then convert all RELOAD_FOR_OPADDR_ADDR
3900 reloads to RELOAD_FOR_OPERAND_ADDRESS reloads.
3901
3902 choose_reload_regs assumes that RELOAD_FOR_OPADDR_ADDR reloads never
3903 conflict with RELOAD_FOR_OPERAND_ADDRESS reloads. This is true for a
3904 single pair of RELOAD_FOR_OPADDR_ADDR/RELOAD_FOR_OPERAND_ADDRESS reloads.
3905 However, if there is more than one RELOAD_FOR_OPERAND_ADDRESS reload,
3906 then a RELOAD_FOR_OPADDR_ADDR reload conflicts with all
3907 RELOAD_FOR_OPERAND_ADDRESS reloads other than the one that uses it.
3908 This is complicated by the fact that a single operand can have more
3909 than one RELOAD_FOR_OPERAND_ADDRESS reload. It is very difficult to fix
3910 choose_reload_regs without affecting code quality, and cases that
3911 actually fail are extremely rare, so it turns out to be better to fix
3912 the problem here by not generating cases that choose_reload_regs will
3913 fail for. */
3914
3915 {
3916 int op_addr_reloads = 0;
3917 for (i = 0; i < n_reloads; i++)
3918 if (reload_when_needed[i] == RELOAD_FOR_OPERAND_ADDRESS)
3919 op_addr_reloads++;
3920
3921 if (op_addr_reloads > 1)
3922 for (i = 0; i < n_reloads; i++)
3923 if (reload_when_needed[i] == RELOAD_FOR_OPADDR_ADDR)
3924 reload_when_needed[i] = RELOAD_FOR_OPERAND_ADDRESS;
3925 }
3926
a8c9daeb
RK
3927 /* See if we have any reloads that are now allowed to be merged
3928 because we've changed when the reload is needed to
3929 RELOAD_FOR_OPERAND_ADDRESS or RELOAD_FOR_OTHER_ADDRESS. Only
3930 check for the most common cases. */
3931
3932 for (i = 0; i < n_reloads; i++)
3933 if (reload_in[i] != 0 && reload_out[i] == 0
3934 && (reload_when_needed[i] == RELOAD_FOR_OPERAND_ADDRESS
47c8cf91 3935 || reload_when_needed[i] == RELOAD_FOR_OPADDR_ADDR
a8c9daeb
RK
3936 || reload_when_needed[i] == RELOAD_FOR_OTHER_ADDRESS))
3937 for (j = 0; j < n_reloads; j++)
3938 if (i != j && reload_in[j] != 0 && reload_out[j] == 0
3939 && reload_when_needed[j] == reload_when_needed[i]
73f67895
RS
3940 && MATCHES (reload_in[i], reload_in[j])
3941 && reload_reg_class[i] == reload_reg_class[j]
92b37691
RK
3942 && !reload_nocombine[i] && !reload_nocombine[j]
3943 && reload_reg_rtx[i] == reload_reg_rtx[j])
a8c9daeb
RK
3944 {
3945 reload_opnum[i] = MIN (reload_opnum[i], reload_opnum[j]);
3946 transfer_replacements (i, j);
3947 reload_in[j] = 0;
3948 }
3949
eab89b90
RK
3950#else /* no REGISTER_CONSTRAINTS */
3951 int noperands;
3952 int insn_code_number;
3953 int goal_earlyclobber = 0; /* Always 0, to make combine_reloads happen. */
3954 register int i;
3955 rtx body = PATTERN (insn);
3956
3957 n_reloads = 0;
3958 n_replacements = 0;
3959 n_earlyclobbers = 0;
3960 replace_reloads = replace;
3961 this_insn = insn;
3962
3963 /* Find what kind of insn this is. NOPERANDS gets number of operands.
3964 Store the operand values in RECOG_OPERAND and the locations
3965 of the words in the insn that point to them in RECOG_OPERAND_LOC.
3966 Return if the insn needs no reload processing. */
3967
3968 switch (GET_CODE (body))
3969 {
3970 case USE:
3971 case CLOBBER:
3972 case ASM_INPUT:
3973 case ADDR_VEC:
3974 case ADDR_DIFF_VEC:
3975 return;
3976
3977 case PARALLEL:
3978 case SET:
3979 noperands = asm_noperands (body);
3980 if (noperands >= 0)
3981 {
3982 /* This insn is an `asm' with operands.
3983 First, find out how many operands, and allocate space. */
3984
3985 insn_code_number = -1;
3986 /* ??? This is a bug! ???
3987 Give up and delete this insn if it has too many operands. */
3988 if (noperands > MAX_RECOG_OPERANDS)
3989 abort ();
3990
3991 /* Now get the operand values out of the insn. */
3992
fb3821f7
CH
3993 decode_asm_operands (body, recog_operand, recog_operand_loc,
3994 NULL_PTR, NULL_PTR);
eab89b90
RK
3995 break;
3996 }
3997
3998 default:
3999 /* Ordinary insn: recognize it, allocate space for operands and
4000 constraints, and get them out via insn_extract. */
4001
4002 insn_code_number = recog_memoized (insn);
4003 noperands = insn_n_operands[insn_code_number];
4004 insn_extract (insn);
4005 }
4006
4007 if (noperands == 0)
4008 return;
4009
4010 for (i = 0; i < noperands; i++)
4011 {
4012 register RTX_CODE code = GET_CODE (recog_operand[i]);
4013 int is_set_dest = GET_CODE (body) == SET && (i == 0);
4014
4015 if (insn_code_number >= 0)
4016 if (insn_operand_address_p[insn_code_number][i])
fb3821f7 4017 find_reloads_address (VOIDmode, NULL_PTR,
eab89b90 4018 recog_operand[i], recog_operand_loc[i],
55c22565 4019 i, RELOAD_FOR_INPUT, ind_levels, insn);
a8c9daeb
RK
4020
4021 /* In these cases, we can't tell if the operand is an input
4022 or an output, so be conservative. In practice it won't be
4023 problem. */
4024
eab89b90
RK
4025 if (code == MEM)
4026 find_reloads_address (GET_MODE (recog_operand[i]),
4027 recog_operand_loc[i],
4028 XEXP (recog_operand[i], 0),
4029 &XEXP (recog_operand[i], 0),
55c22565 4030 i, RELOAD_OTHER, ind_levels, insn);
eab89b90
RK
4031 if (code == SUBREG)
4032 recog_operand[i] = *recog_operand_loc[i]
a8c9daeb
RK
4033 = find_reloads_toplev (recog_operand[i], i, RELOAD_OTHER,
4034 ind_levels, is_set_dest);
eab89b90
RK
4035 if (code == REG)
4036 {
4037 register int regno = REGNO (recog_operand[i]);
4038 if (reg_equiv_constant[regno] != 0 && !is_set_dest)
4039 recog_operand[i] = *recog_operand_loc[i]
4040 = reg_equiv_constant[regno];
4041#if 0 /* This might screw code in reload1.c to delete prior output-reload
4042 that feeds this insn. */
4043 if (reg_equiv_mem[regno] != 0)
4044 recog_operand[i] = *recog_operand_loc[i]
4045 = reg_equiv_mem[regno];
4046#endif
4047 }
eab89b90
RK
4048 }
4049
4050 /* Perhaps an output reload can be combined with another
4051 to reduce needs by one. */
4052 if (!goal_earlyclobber)
4053 combine_reloads ();
a8c9daeb 4054#endif /* no REGISTER_CONSTRAINTS */
eab89b90
RK
4055}
4056
4057/* Return 1 if alternative number ALTNUM in constraint-string CONSTRAINT
4058 accepts a memory operand with constant address. */
4059
4060static int
4061alternative_allows_memconst (constraint, altnum)
4062 char *constraint;
4063 int altnum;
4064{
4065 register int c;
4066 /* Skip alternatives before the one requested. */
4067 while (altnum > 0)
4068 {
4069 while (*constraint++ != ',');
4070 altnum--;
4071 }
4072 /* Scan the requested alternative for 'm' or 'o'.
4073 If one of them is present, this alternative accepts memory constants. */
4074 while ((c = *constraint++) && c != ',' && c != '#')
4075 if (c == 'm' || c == 'o')
4076 return 1;
4077 return 0;
4078}
4079\f
4080/* Scan X for memory references and scan the addresses for reloading.
4081 Also checks for references to "constant" regs that we want to eliminate
4082 and replaces them with the values they stand for.
6dc42e49 4083 We may alter X destructively if it contains a reference to such.
eab89b90
RK
4084 If X is just a constant reg, we return the equivalent value
4085 instead of X.
4086
4087 IND_LEVELS says how many levels of indirect addressing this machine
4088 supports.
4089
a8c9daeb
RK
4090 OPNUM and TYPE identify the purpose of the reload.
4091
eab89b90
RK
4092 IS_SET_DEST is true if X is the destination of a SET, which is not
4093 appropriate to be replaced by a constant. */
4094
4095static rtx
a8c9daeb 4096find_reloads_toplev (x, opnum, type, ind_levels, is_set_dest)
eab89b90 4097 rtx x;
a8c9daeb
RK
4098 int opnum;
4099 enum reload_type type;
eab89b90
RK
4100 int ind_levels;
4101 int is_set_dest;
4102{
4103 register RTX_CODE code = GET_CODE (x);
4104
4105 register char *fmt = GET_RTX_FORMAT (code);
4106 register int i;
4107
4108 if (code == REG)
4109 {
4110 /* This code is duplicated for speed in find_reloads. */
4111 register int regno = REGNO (x);
4112 if (reg_equiv_constant[regno] != 0 && !is_set_dest)
4113 x = reg_equiv_constant[regno];
4114#if 0
4115/* This creates (subreg (mem...)) which would cause an unnecessary
4116 reload of the mem. */
4117 else if (reg_equiv_mem[regno] != 0)
4118 x = reg_equiv_mem[regno];
4119#endif
4120 else if (reg_equiv_address[regno] != 0)
4121 {
4122 /* If reg_equiv_address varies, it may be shared, so copy it. */
4ffeab02
JW
4123 /* We must rerun eliminate_regs, in case the elimination
4124 offsets have changed. */
4125 rtx addr = XEXP (eliminate_regs (reg_equiv_memory_loc[regno], 0,
1914f5da 4126 NULL_RTX),
4ffeab02 4127 0);
eab89b90
RK
4128
4129 if (rtx_varies_p (addr))
4130 addr = copy_rtx (addr);
4131
38a448ca 4132 x = gen_rtx_MEM (GET_MODE (x), addr);
eab89b90 4133 RTX_UNCHANGING_P (x) = RTX_UNCHANGING_P (regno_reg_rtx[regno]);
fb3821f7 4134 find_reloads_address (GET_MODE (x), NULL_PTR,
eab89b90 4135 XEXP (x, 0),
55c22565 4136 &XEXP (x, 0), opnum, type, ind_levels, 0);
eab89b90
RK
4137 }
4138 return x;
4139 }
4140 if (code == MEM)
4141 {
4142 rtx tem = x;
4143 find_reloads_address (GET_MODE (x), &tem, XEXP (x, 0), &XEXP (x, 0),
55c22565 4144 opnum, type, ind_levels, 0);
eab89b90
RK
4145 return tem;
4146 }
4147
4148 if (code == SUBREG && GET_CODE (SUBREG_REG (x)) == REG)
4149 {
4150 /* Check for SUBREG containing a REG that's equivalent to a constant.
4151 If the constant has a known value, truncate it right now.
4152 Similarly if we are extracting a single-word of a multi-word
4153 constant. If the constant is symbolic, allow it to be substituted
4154 normally. push_reload will strip the subreg later. If the
4155 constant is VOIDmode, abort because we will lose the mode of
4156 the register (this should never happen because one of the cases
4157 above should handle it). */
4158
4159 register int regno = REGNO (SUBREG_REG (x));
4160 rtx tem;
4161
4162 if (subreg_lowpart_p (x)
4163 && regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
4164 && reg_equiv_constant[regno] != 0
4165 && (tem = gen_lowpart_common (GET_MODE (x),
4166 reg_equiv_constant[regno])) != 0)
4167 return tem;
4168
4169 if (GET_MODE_BITSIZE (GET_MODE (x)) == BITS_PER_WORD
4170 && regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
4171 && reg_equiv_constant[regno] != 0
4172 && (tem = operand_subword (reg_equiv_constant[regno],
4173 SUBREG_WORD (x), 0,
4174 GET_MODE (SUBREG_REG (x)))) != 0)
4175 return tem;
4176
2fd0af53
R
4177 /* If the SUBREG is wider than a word, the above test will fail.
4178 For example, we might have a SImode SUBREG of a DImode SUBREG_REG
4179 for a 16 bit target, or a DImode SUBREG of a TImode SUBREG_REG for
4180 a 32 bit target. We still can - and have to - handle this
4181 for non-paradoxical subregs of CONST_INTs. */
4182 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
4183 && reg_equiv_constant[regno] != 0
4184 && GET_CODE (reg_equiv_constant[regno]) == CONST_INT
4185 && (GET_MODE_SIZE (GET_MODE (x))
4186 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))))
4187 {
4188 int shift = SUBREG_WORD (x) * BITS_PER_WORD;
4189 if (WORDS_BIG_ENDIAN)
4190 shift = (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
4191 - GET_MODE_BITSIZE (GET_MODE (x))
4192 - shift);
4193 /* Here we use the knowledge that CONST_INTs have a
4194 HOST_WIDE_INT field. */
4195 if (shift >= HOST_BITS_PER_WIDE_INT)
4196 shift = HOST_BITS_PER_WIDE_INT - 1;
4197 return GEN_INT (INTVAL (reg_equiv_constant[regno]) >> shift);
4198 }
4199
eab89b90
RK
4200 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
4201 && reg_equiv_constant[regno] != 0
4202 && GET_MODE (reg_equiv_constant[regno]) == VOIDmode)
4203 abort ();
4204
4205 /* If the subreg contains a reg that will be converted to a mem,
4206 convert the subreg to a narrower memref now.
4207 Otherwise, we would get (subreg (mem ...) ...),
4208 which would force reload of the mem.
4209
4210 We also need to do this if there is an equivalent MEM that is
4211 not offsettable. In that case, alter_subreg would produce an
4212 invalid address on big-endian machines.
4213
46da6b3a 4214 For machines that extend byte loads, we must not reload using
eab89b90
RK
4215 a wider mode if we have a paradoxical SUBREG. find_reloads will
4216 force a reload in that case. So we should not do anything here. */
4217
4218 else if (regno >= FIRST_PSEUDO_REGISTER
fd72420f 4219#ifdef LOAD_EXTEND_OP
eab89b90
RK
4220 && (GET_MODE_SIZE (GET_MODE (x))
4221 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
4222#endif
4223 && (reg_equiv_address[regno] != 0
4224 || (reg_equiv_mem[regno] != 0
f2fbfe92
JL
4225 && (! strict_memory_address_p (GET_MODE (x),
4226 XEXP (reg_equiv_mem[regno], 0))
4227 || ! offsettable_memref_p (reg_equiv_mem[regno])))))
eab89b90
RK
4228 {
4229 int offset = SUBREG_WORD (x) * UNITS_PER_WORD;
4ffeab02
JW
4230 /* We must rerun eliminate_regs, in case the elimination
4231 offsets have changed. */
4232 rtx addr = XEXP (eliminate_regs (reg_equiv_memory_loc[regno], 0,
1914f5da 4233 NULL_RTX),
4ffeab02 4234 0);
f76b9db2
ILT
4235 if (BYTES_BIG_ENDIAN)
4236 {
4237 int size;
4238 size = GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)));
4239 offset += MIN (size, UNITS_PER_WORD);
4240 size = GET_MODE_SIZE (GET_MODE (x));
4241 offset -= MIN (size, UNITS_PER_WORD);
4242 }
eab89b90 4243 addr = plus_constant (addr, offset);
38a448ca 4244 x = gen_rtx_MEM (GET_MODE (x), addr);
eab89b90 4245 RTX_UNCHANGING_P (x) = RTX_UNCHANGING_P (regno_reg_rtx[regno]);
fb3821f7 4246 find_reloads_address (GET_MODE (x), NULL_PTR,
eab89b90 4247 XEXP (x, 0),
55c22565 4248 &XEXP (x, 0), opnum, type, ind_levels, 0);
eab89b90
RK
4249 }
4250
4251 }
4252
4253 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4254 {
4255 if (fmt[i] == 'e')
a8c9daeb 4256 XEXP (x, i) = find_reloads_toplev (XEXP (x, i), opnum, type,
eab89b90
RK
4257 ind_levels, is_set_dest);
4258 }
4259 return x;
4260}
4261
dbf85761
RS
4262/* Return a mem ref for the memory equivalent of reg REGNO.
4263 This mem ref is not shared with anything. */
4264
eab89b90
RK
4265static rtx
4266make_memloc (ad, regno)
4267 rtx ad;
4268 int regno;
4269{
29a82058 4270#if 0
eab89b90 4271 register int i;
29a82058 4272#endif
4ffeab02
JW
4273 /* We must rerun eliminate_regs, in case the elimination
4274 offsets have changed. */
1914f5da 4275 rtx tem = XEXP (eliminate_regs (reg_equiv_memory_loc[regno], 0, NULL_RTX), 0);
dbf85761
RS
4276
4277#if 0 /* We cannot safely reuse a memloc made here;
4278 if the pseudo appears twice, and its mem needs a reload,
4279 it gets two separate reloads assigned, but it only
4280 gets substituted with the second of them;
4281 then it can get used before that reload reg gets loaded up. */
eab89b90
RK
4282 for (i = 0; i < n_memlocs; i++)
4283 if (rtx_equal_p (tem, XEXP (memlocs[i], 0)))
4284 return memlocs[i];
dbf85761 4285#endif
eab89b90
RK
4286
4287 /* If TEM might contain a pseudo, we must copy it to avoid
4288 modifying it when we do the substitution for the reload. */
4289 if (rtx_varies_p (tem))
4290 tem = copy_rtx (tem);
4291
38a448ca 4292 tem = gen_rtx_MEM (GET_MODE (ad), tem);
eab89b90
RK
4293 RTX_UNCHANGING_P (tem) = RTX_UNCHANGING_P (regno_reg_rtx[regno]);
4294 memlocs[n_memlocs++] = tem;
4295 return tem;
4296}
4297
4298/* Record all reloads needed for handling memory address AD
4299 which appears in *LOC in a memory reference to mode MODE
4300 which itself is found in location *MEMREFLOC.
4301 Note that we take shortcuts assuming that no multi-reg machine mode
4302 occurs as part of an address.
4303
a8c9daeb 4304 OPNUM and TYPE specify the purpose of this reload.
eab89b90
RK
4305
4306 IND_LEVELS says how many levels of indirect addressing this machine
4307 supports.
4308
55c22565
RK
4309 INSN, if nonzero, is the insn in which we do the reload. It is used
4310 to determine if we may generate output reloads.
4311
eab89b90
RK
4312 Value is nonzero if this address is reloaded or replaced as a whole.
4313 This is interesting to the caller if the address is an autoincrement.
4314
4315 Note that there is no verification that the address will be valid after
4316 this routine does its work. Instead, we rely on the fact that the address
4317 was valid when reload started. So we need only undo things that reload
4318 could have broken. These are wrong register types, pseudos not allocated
4319 to a hard register, and frame pointer elimination. */
4320
4321static int
55c22565 4322find_reloads_address (mode, memrefloc, ad, loc, opnum, type, ind_levels, insn)
eab89b90
RK
4323 enum machine_mode mode;
4324 rtx *memrefloc;
4325 rtx ad;
4326 rtx *loc;
a8c9daeb
RK
4327 int opnum;
4328 enum reload_type type;
eab89b90 4329 int ind_levels;
55c22565 4330 rtx insn;
eab89b90
RK
4331{
4332 register int regno;
4333 rtx tem;
4334
4335 /* If the address is a register, see if it is a legitimate address and
4336 reload if not. We first handle the cases where we need not reload
4337 or where we must reload in a non-standard way. */
4338
4339 if (GET_CODE (ad) == REG)
4340 {
4341 regno = REGNO (ad);
4342
4343 if (reg_equiv_constant[regno] != 0
4344 && strict_memory_address_p (mode, reg_equiv_constant[regno]))
4345 {
4346 *loc = ad = reg_equiv_constant[regno];
4347 return 1;
4348 }
4349
4350 else if (reg_equiv_address[regno] != 0)
4351 {
4352 tem = make_memloc (ad, regno);
fb3821f7 4353 find_reloads_address (GET_MODE (tem), NULL_PTR, XEXP (tem, 0),
47c8cf91 4354 &XEXP (tem, 0), opnum, ADDR_TYPE (type),
55c22565 4355 ind_levels, insn);
1ba61f4e
ILT
4356 push_reload (tem, NULL_RTX, loc, NULL_PTR,
4357 reload_address_base_reg_class,
eab89b90 4358 GET_MODE (ad), VOIDmode, 0, 0,
a8c9daeb 4359 opnum, type);
eab89b90
RK
4360 return 1;
4361 }
4362
b39555b4 4363 /* We can avoid a reload if the register's equivalent memory expression
c1875d66
RS
4364 is valid as an indirect memory address.
4365 But not all addresses are valid in a mem used as an indirect address:
4366 only reg or reg+constant. */
b39555b4
RS
4367
4368 else if (reg_equiv_mem[regno] != 0 && ind_levels > 0
c1875d66
RS
4369 && strict_memory_address_p (mode, reg_equiv_mem[regno])
4370 && (GET_CODE (XEXP (reg_equiv_mem[regno], 0)) == REG
4371 || (GET_CODE (XEXP (reg_equiv_mem[regno], 0)) == PLUS
4372 && GET_CODE (XEXP (XEXP (reg_equiv_mem[regno], 0), 0)) == REG
75301d68 4373 && CONSTANT_P (XEXP (XEXP (reg_equiv_mem[regno], 0), 1)))))
b39555b4 4374 return 0;
eab89b90
RK
4375
4376 /* The only remaining case where we can avoid a reload is if this is a
4377 hard register that is valid as a base register and which is not the
4378 subject of a CLOBBER in this insn. */
4379
858c3c8c
ILT
4380 else if (regno < FIRST_PSEUDO_REGISTER
4381 && REGNO_MODE_OK_FOR_BASE_P (regno, mode)
eab89b90
RK
4382 && ! regno_clobbered_p (regno, this_insn))
4383 return 0;
4384
4385 /* If we do not have one of the cases above, we must do the reload. */
1ba61f4e 4386 push_reload (ad, NULL_RTX, loc, NULL_PTR, reload_address_base_reg_class,
a8c9daeb 4387 GET_MODE (ad), VOIDmode, 0, 0, opnum, type);
eab89b90
RK
4388 return 1;
4389 }
4390
4391 if (strict_memory_address_p (mode, ad))
4392 {
4393 /* The address appears valid, so reloads are not needed.
4394 But the address may contain an eliminable register.
4395 This can happen because a machine with indirect addressing
4396 may consider a pseudo register by itself a valid address even when
4397 it has failed to get a hard reg.
4398 So do a tree-walk to find and eliminate all such regs. */
4399
4400 /* But first quickly dispose of a common case. */
4401 if (GET_CODE (ad) == PLUS
4402 && GET_CODE (XEXP (ad, 1)) == CONST_INT
4403 && GET_CODE (XEXP (ad, 0)) == REG
4404 && reg_equiv_constant[REGNO (XEXP (ad, 0))] == 0)
4405 return 0;
4406
4407 subst_reg_equivs_changed = 0;
4408 *loc = subst_reg_equivs (ad);
4409
4410 if (! subst_reg_equivs_changed)
4411 return 0;
4412
4413 /* Check result for validity after substitution. */
4414 if (strict_memory_address_p (mode, ad))
4415 return 0;
4416 }
4417
4418 /* The address is not valid. We have to figure out why. One possibility
4419 is that it is itself a MEM. This can happen when the frame pointer is
4420 being eliminated, a pseudo is not allocated to a hard register, and the
4421 offset between the frame and stack pointers is not its initial value.
d45cf215 4422 In that case the pseudo will have been replaced by a MEM referring to
eab89b90
RK
4423 the stack pointer. */
4424 if (GET_CODE (ad) == MEM)
4425 {
4426 /* First ensure that the address in this MEM is valid. Then, unless
4427 indirect addresses are valid, reload the MEM into a register. */
4428 tem = ad;
4429 find_reloads_address (GET_MODE (ad), &tem, XEXP (ad, 0), &XEXP (ad, 0),
47c8cf91 4430 opnum, ADDR_TYPE (type),
55c22565 4431 ind_levels == 0 ? 0 : ind_levels - 1, insn);
d2555454
RS
4432
4433 /* If tem was changed, then we must create a new memory reference to
4434 hold it and store it back into memrefloc. */
4435 if (tem != ad && memrefloc)
ca3e4a2f 4436 {
ca3e4a2f 4437 *memrefloc = copy_rtx (*memrefloc);
3c80f7ed 4438 copy_replacements (tem, XEXP (*memrefloc, 0));
ca3e4a2f 4439 loc = &XEXP (*memrefloc, 0);
ca3e4a2f 4440 }
d2555454 4441
eab89b90
RK
4442 /* Check similar cases as for indirect addresses as above except
4443 that we can allow pseudos and a MEM since they should have been
4444 taken care of above. */
4445
4446 if (ind_levels == 0
4447 || (GET_CODE (XEXP (tem, 0)) == SYMBOL_REF && ! indirect_symref_ok)
4448 || GET_CODE (XEXP (tem, 0)) == MEM
4449 || ! (GET_CODE (XEXP (tem, 0)) == REG
4450 || (GET_CODE (XEXP (tem, 0)) == PLUS
4451 && GET_CODE (XEXP (XEXP (tem, 0), 0)) == REG
4452 && GET_CODE (XEXP (XEXP (tem, 0), 1)) == CONST_INT)))
4453 {
4454 /* Must use TEM here, not AD, since it is the one that will
4455 have any subexpressions reloaded, if needed. */
fb3821f7 4456 push_reload (tem, NULL_RTX, loc, NULL_PTR,
1ba61f4e
ILT
4457 reload_address_base_reg_class, GET_MODE (tem),
4458 VOIDmode, 0,
a8c9daeb 4459 0, opnum, type);
eab89b90
RK
4460 return 1;
4461 }
4462 else
4463 return 0;
4464 }
4465
1b4d2764
RK
4466 /* If we have address of a stack slot but it's not valid because the
4467 displacement is too large, compute the sum in a register.
4468 Handle all base registers here, not just fp/ap/sp, because on some
4469 targets (namely SH) we can also get too large displacements from
4470 big-endian corrections. */
eab89b90 4471 else if (GET_CODE (ad) == PLUS
1b4d2764
RK
4472 && GET_CODE (XEXP (ad, 0)) == REG
4473 && REGNO (XEXP (ad, 0)) < FIRST_PSEUDO_REGISTER
858c3c8c 4474 && REG_MODE_OK_FOR_BASE_P (XEXP (ad, 0), mode)
eab89b90
RK
4475 && GET_CODE (XEXP (ad, 1)) == CONST_INT)
4476 {
4477 /* Unshare the MEM rtx so we can safely alter it. */
4478 if (memrefloc)
4479 {
eab89b90
RK
4480 *memrefloc = copy_rtx (*memrefloc);
4481 loc = &XEXP (*memrefloc, 0);
eab89b90
RK
4482 }
4483 if (double_reg_address_ok)
4484 {
4485 /* Unshare the sum as well. */
4486 *loc = ad = copy_rtx (ad);
4487 /* Reload the displacement into an index reg.
4488 We assume the frame pointer or arg pointer is a base reg. */
4489 find_reloads_address_part (XEXP (ad, 1), &XEXP (ad, 1),
1ba61f4e
ILT
4490 reload_address_index_reg_class,
4491 GET_MODE (ad), opnum, type, ind_levels);
eab89b90
RK
4492 }
4493 else
4494 {
4495 /* If the sum of two regs is not necessarily valid,
4496 reload the sum into a base reg.
4497 That will at least work. */
1ba61f4e
ILT
4498 find_reloads_address_part (ad, loc, reload_address_base_reg_class,
4499 Pmode, opnum, type, ind_levels);
eab89b90
RK
4500 }
4501 return 1;
4502 }
4503
4504 /* If we have an indexed stack slot, there are three possible reasons why
4505 it might be invalid: The index might need to be reloaded, the address
4506 might have been made by frame pointer elimination and hence have a
f302eea3 4507 constant out of range, or both reasons might apply.
eab89b90
RK
4508
4509 We can easily check for an index needing reload, but even if that is the
4510 case, we might also have an invalid constant. To avoid making the
4511 conservative assumption and requiring two reloads, we see if this address
4512 is valid when not interpreted strictly. If it is, the only problem is
4513 that the index needs a reload and find_reloads_address_1 will take care
4514 of it.
4515
4516 There is still a case when we might generate an extra reload,
4517 however. In certain cases eliminate_regs will return a MEM for a REG
4518 (see the code there for details). In those cases, memory_address_p
4519 applied to our address will return 0 so we will think that our offset
4520 must be too large. But it might indeed be valid and the only problem
4521 is that a MEM is present where a REG should be. This case should be
4522 very rare and there doesn't seem to be any way to avoid it.
4523
4524 If we decide to do something here, it must be that
4525 `double_reg_address_ok' is true and that this address rtl was made by
4526 eliminate_regs. We generate a reload of the fp/sp/ap + constant and
4527 rework the sum so that the reload register will be added to the index.
4528 This is safe because we know the address isn't shared.
4529
4530 We check for fp/ap/sp as both the first and second operand of the
4531 innermost PLUS. */
4532
4533 else if (GET_CODE (ad) == PLUS && GET_CODE (XEXP (ad, 1)) == CONST_INT
f302eea3 4534 && GET_CODE (XEXP (ad, 0)) == PLUS
eab89b90 4535 && (XEXP (XEXP (ad, 0), 0) == frame_pointer_rtx
a36d4c62
DE
4536#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
4537 || XEXP (XEXP (ad, 0), 0) == hard_frame_pointer_rtx
4538#endif
eab89b90
RK
4539#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
4540 || XEXP (XEXP (ad, 0), 0) == arg_pointer_rtx
4541#endif
4542 || XEXP (XEXP (ad, 0), 0) == stack_pointer_rtx)
4543 && ! memory_address_p (mode, ad))
4544 {
38a448ca
RH
4545 *loc = ad = gen_rtx_PLUS (GET_MODE (ad),
4546 plus_constant (XEXP (XEXP (ad, 0), 0),
4547 INTVAL (XEXP (ad, 1))),
eab89b90 4548 XEXP (XEXP (ad, 0), 1));
1ba61f4e
ILT
4549 find_reloads_address_part (XEXP (ad, 0), &XEXP (ad, 0),
4550 reload_address_base_reg_class,
a8c9daeb 4551 GET_MODE (ad), opnum, type, ind_levels);
858c3c8c 4552 find_reloads_address_1 (mode, XEXP (ad, 1), 1, &XEXP (ad, 1), opnum,
55c22565 4553 type, 0, insn);
eab89b90
RK
4554
4555 return 1;
4556 }
4557
4558 else if (GET_CODE (ad) == PLUS && GET_CODE (XEXP (ad, 1)) == CONST_INT
4559 && GET_CODE (XEXP (ad, 0)) == PLUS
4560 && (XEXP (XEXP (ad, 0), 1) == frame_pointer_rtx
a36d4c62
DE
4561#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
4562 || XEXP (XEXP (ad, 0), 1) == hard_frame_pointer_rtx
4563#endif
eab89b90
RK
4564#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
4565 || XEXP (XEXP (ad, 0), 1) == arg_pointer_rtx
4566#endif
4567 || XEXP (XEXP (ad, 0), 1) == stack_pointer_rtx)
4568 && ! memory_address_p (mode, ad))
4569 {
38a448ca
RH
4570 *loc = ad = gen_rtx_PLUS (GET_MODE (ad),
4571 XEXP (XEXP (ad, 0), 0),
4572 plus_constant (XEXP (XEXP (ad, 0), 1),
4573 INTVAL (XEXP (ad, 1))));
1ba61f4e
ILT
4574 find_reloads_address_part (XEXP (ad, 1), &XEXP (ad, 1),
4575 reload_address_base_reg_class,
a8c9daeb 4576 GET_MODE (ad), opnum, type, ind_levels);
858c3c8c 4577 find_reloads_address_1 (mode, XEXP (ad, 0), 1, &XEXP (ad, 0), opnum,
55c22565 4578 type, 0, insn);
eab89b90
RK
4579
4580 return 1;
4581 }
4582
4583 /* See if address becomes valid when an eliminable register
4584 in a sum is replaced. */
4585
4586 tem = ad;
4587 if (GET_CODE (ad) == PLUS)
4588 tem = subst_indexed_address (ad);
4589 if (tem != ad && strict_memory_address_p (mode, tem))
4590 {
4591 /* Ok, we win that way. Replace any additional eliminable
4592 registers. */
4593
4594 subst_reg_equivs_changed = 0;
4595 tem = subst_reg_equivs (tem);
4596
4597 /* Make sure that didn't make the address invalid again. */
4598
4599 if (! subst_reg_equivs_changed || strict_memory_address_p (mode, tem))
4600 {
4601 *loc = tem;
4602 return 0;
4603 }
4604 }
4605
4606 /* If constants aren't valid addresses, reload the constant address
4607 into a register. */
191b18e9 4608 if (CONSTANT_P (ad) && ! strict_memory_address_p (mode, ad))
eab89b90
RK
4609 {
4610 /* If AD is in address in the constant pool, the MEM rtx may be shared.
4611 Unshare it so we can safely alter it. */
4612 if (memrefloc && GET_CODE (ad) == SYMBOL_REF
4613 && CONSTANT_POOL_ADDRESS_P (ad))
4614 {
eab89b90
RK
4615 *memrefloc = copy_rtx (*memrefloc);
4616 loc = &XEXP (*memrefloc, 0);
eab89b90
RK
4617 }
4618
1ba61f4e
ILT
4619 find_reloads_address_part (ad, loc, reload_address_base_reg_class,
4620 Pmode, opnum, type,
eab89b90
RK
4621 ind_levels);
4622 return 1;
4623 }
4624
55c22565
RK
4625 return find_reloads_address_1 (mode, ad, 0, loc, opnum, type, ind_levels,
4626 insn);
eab89b90
RK
4627}
4628\f
4629/* Find all pseudo regs appearing in AD
4630 that are eliminable in favor of equivalent values
4631 and do not have hard regs; replace them by their equivalents. */
4632
4633static rtx
4634subst_reg_equivs (ad)
4635 rtx ad;
4636{
4637 register RTX_CODE code = GET_CODE (ad);
4638 register int i;
4639 register char *fmt;
4640
4641 switch (code)
4642 {
4643 case HIGH:
4644 case CONST_INT:
4645 case CONST:
4646 case CONST_DOUBLE:
4647 case SYMBOL_REF:
4648 case LABEL_REF:
4649 case PC:
4650 case CC0:
4651 return ad;
4652
4653 case REG:
4654 {
4655 register int regno = REGNO (ad);
4656
4657 if (reg_equiv_constant[regno] != 0)
4658 {
4659 subst_reg_equivs_changed = 1;
4660 return reg_equiv_constant[regno];
4661 }
4662 }
4663 return ad;
4664
4665 case PLUS:
4666 /* Quickly dispose of a common case. */
4667 if (XEXP (ad, 0) == frame_pointer_rtx
4668 && GET_CODE (XEXP (ad, 1)) == CONST_INT)
4669 return ad;
e9a25f70
JL
4670 break;
4671
4672 default:
4673 break;
eab89b90
RK
4674 }
4675
4676 fmt = GET_RTX_FORMAT (code);
4677 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4678 if (fmt[i] == 'e')
4679 XEXP (ad, i) = subst_reg_equivs (XEXP (ad, i));
4680 return ad;
4681}
4682\f
4683/* Compute the sum of X and Y, making canonicalizations assumed in an
4684 address, namely: sum constant integers, surround the sum of two
4685 constants with a CONST, put the constant as the second operand, and
4686 group the constant on the outermost sum.
4687
4688 This routine assumes both inputs are already in canonical form. */
4689
4690rtx
4691form_sum (x, y)
4692 rtx x, y;
4693{
4694 rtx tem;
2c0623e8
RK
4695 enum machine_mode mode = GET_MODE (x);
4696
4697 if (mode == VOIDmode)
4698 mode = GET_MODE (y);
4699
4700 if (mode == VOIDmode)
4701 mode = Pmode;
eab89b90
RK
4702
4703 if (GET_CODE (x) == CONST_INT)
4704 return plus_constant (y, INTVAL (x));
4705 else if (GET_CODE (y) == CONST_INT)
4706 return plus_constant (x, INTVAL (y));
4707 else if (CONSTANT_P (x))
4708 tem = x, x = y, y = tem;
4709
4710 if (GET_CODE (x) == PLUS && CONSTANT_P (XEXP (x, 1)))
4711 return form_sum (XEXP (x, 0), form_sum (XEXP (x, 1), y));
4712
4713 /* Note that if the operands of Y are specified in the opposite
4714 order in the recursive calls below, infinite recursion will occur. */
d9771f62 4715 if (GET_CODE (y) == PLUS && CONSTANT_P (XEXP (y, 1)))
eab89b90
RK
4716 return form_sum (form_sum (x, XEXP (y, 0)), XEXP (y, 1));
4717
4718 /* If both constant, encapsulate sum. Otherwise, just form sum. A
4719 constant will have been placed second. */
4720 if (CONSTANT_P (x) && CONSTANT_P (y))
4721 {
4722 if (GET_CODE (x) == CONST)
4723 x = XEXP (x, 0);
4724 if (GET_CODE (y) == CONST)
4725 y = XEXP (y, 0);
4726
38a448ca 4727 return gen_rtx_CONST (VOIDmode, gen_rtx_PLUS (mode, x, y));
eab89b90
RK
4728 }
4729
38a448ca 4730 return gen_rtx_PLUS (mode, x, y);
eab89b90
RK
4731}
4732\f
4733/* If ADDR is a sum containing a pseudo register that should be
4734 replaced with a constant (from reg_equiv_constant),
4735 return the result of doing so, and also apply the associative
4736 law so that the result is more likely to be a valid address.
4737 (But it is not guaranteed to be one.)
4738
4739 Note that at most one register is replaced, even if more are
4740 replaceable. Also, we try to put the result into a canonical form
4741 so it is more likely to be a valid address.
4742
4743 In all other cases, return ADDR. */
4744
4745static rtx
4746subst_indexed_address (addr)
4747 rtx addr;
4748{
4749 rtx op0 = 0, op1 = 0, op2 = 0;
4750 rtx tem;
4751 int regno;
4752
4753 if (GET_CODE (addr) == PLUS)
4754 {
4755 /* Try to find a register to replace. */
4756 op0 = XEXP (addr, 0), op1 = XEXP (addr, 1), op2 = 0;
4757 if (GET_CODE (op0) == REG
4758 && (regno = REGNO (op0)) >= FIRST_PSEUDO_REGISTER
4759 && reg_renumber[regno] < 0
4760 && reg_equiv_constant[regno] != 0)
4761 op0 = reg_equiv_constant[regno];
4762 else if (GET_CODE (op1) == REG
4763 && (regno = REGNO (op1)) >= FIRST_PSEUDO_REGISTER
4764 && reg_renumber[regno] < 0
4765 && reg_equiv_constant[regno] != 0)
4766 op1 = reg_equiv_constant[regno];
4767 else if (GET_CODE (op0) == PLUS
4768 && (tem = subst_indexed_address (op0)) != op0)
4769 op0 = tem;
4770 else if (GET_CODE (op1) == PLUS
4771 && (tem = subst_indexed_address (op1)) != op1)
4772 op1 = tem;
4773 else
4774 return addr;
4775
4776 /* Pick out up to three things to add. */
4777 if (GET_CODE (op1) == PLUS)
4778 op2 = XEXP (op1, 1), op1 = XEXP (op1, 0);
4779 else if (GET_CODE (op0) == PLUS)
4780 op2 = op1, op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
4781
4782 /* Compute the sum. */
4783 if (op2 != 0)
4784 op1 = form_sum (op1, op2);
4785 if (op1 != 0)
4786 op0 = form_sum (op0, op1);
4787
4788 return op0;
4789 }
4790 return addr;
4791}
4792\f
858c3c8c
ILT
4793/* Record the pseudo registers we must reload into hard registers in a
4794 subexpression of a would-be memory address, X referring to a value
4795 in mode MODE. (This function is not called if the address we find
4796 is strictly valid.)
4797
eab89b90
RK
4798 CONTEXT = 1 means we are considering regs as index regs,
4799 = 0 means we are considering them as base regs.
4800
a8c9daeb 4801 OPNUM and TYPE specify the purpose of any reloads made.
eab89b90
RK
4802
4803 IND_LEVELS says how many levels of indirect addressing are
4804 supported at this point in the address.
4805
55c22565
RK
4806 INSN, if nonzero, is the insn in which we do the reload. It is used
4807 to determine if we may generate output reloads.
4808
eab89b90
RK
4809 We return nonzero if X, as a whole, is reloaded or replaced. */
4810
4811/* Note that we take shortcuts assuming that no multi-reg machine mode
4812 occurs as part of an address.
4813 Also, this is not fully machine-customizable; it works for machines
4814 such as vaxes and 68000's and 32000's, but other possible machines
4815 could have addressing modes that this does not handle right. */
4816
4817static int
55c22565 4818find_reloads_address_1 (mode, x, context, loc, opnum, type, ind_levels, insn)
858c3c8c 4819 enum machine_mode mode;
eab89b90
RK
4820 rtx x;
4821 int context;
4822 rtx *loc;
a8c9daeb
RK
4823 int opnum;
4824 enum reload_type type;
eab89b90 4825 int ind_levels;
55c22565 4826 rtx insn;
eab89b90
RK
4827{
4828 register RTX_CODE code = GET_CODE (x);
4829
a2d353e5 4830 switch (code)
eab89b90 4831 {
a2d353e5
RK
4832 case PLUS:
4833 {
4834 register rtx orig_op0 = XEXP (x, 0);
4835 register rtx orig_op1 = XEXP (x, 1);
4836 register RTX_CODE code0 = GET_CODE (orig_op0);
4837 register RTX_CODE code1 = GET_CODE (orig_op1);
4838 register rtx op0 = orig_op0;
4839 register rtx op1 = orig_op1;
4840
4841 if (GET_CODE (op0) == SUBREG)
4842 {
4843 op0 = SUBREG_REG (op0);
4844 code0 = GET_CODE (op0);
922db4bb 4845 if (code0 == REG && REGNO (op0) < FIRST_PSEUDO_REGISTER)
38a448ca
RH
4846 op0 = gen_rtx_REG (word_mode,
4847 REGNO (op0) + SUBREG_WORD (orig_op0));
a2d353e5 4848 }
87935f60 4849
a2d353e5
RK
4850 if (GET_CODE (op1) == SUBREG)
4851 {
4852 op1 = SUBREG_REG (op1);
4853 code1 = GET_CODE (op1);
922db4bb 4854 if (code1 == REG && REGNO (op1) < FIRST_PSEUDO_REGISTER)
38a448ca
RH
4855 op1 = gen_rtx_REG (GET_MODE (op1),
4856 REGNO (op1) + SUBREG_WORD (orig_op1));
a2d353e5
RK
4857 }
4858
5f8997b9
SC
4859 if (code0 == MULT || code0 == SIGN_EXTEND || code0 == TRUNCATE
4860 || code0 == ZERO_EXTEND || code1 == MEM)
a2d353e5 4861 {
858c3c8c 4862 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
55c22565 4863 type, ind_levels, insn);
858c3c8c 4864 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
55c22565 4865 type, ind_levels, insn);
a2d353e5
RK
4866 }
4867
5f8997b9
SC
4868 else if (code1 == MULT || code1 == SIGN_EXTEND || code1 == TRUNCATE
4869 || code1 == ZERO_EXTEND || code0 == MEM)
a2d353e5 4870 {
858c3c8c 4871 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
55c22565 4872 type, ind_levels, insn);
858c3c8c 4873 find_reloads_address_1 (mode, orig_op1, 1, &XEXP (x, 1), opnum,
55c22565 4874 type, ind_levels, insn);
a2d353e5
RK
4875 }
4876
4877 else if (code0 == CONST_INT || code0 == CONST
4878 || code0 == SYMBOL_REF || code0 == LABEL_REF)
858c3c8c 4879 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
55c22565 4880 type, ind_levels, insn);
a2d353e5
RK
4881
4882 else if (code1 == CONST_INT || code1 == CONST
4883 || code1 == SYMBOL_REF || code1 == LABEL_REF)
858c3c8c 4884 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
55c22565 4885 type, ind_levels, insn);
a2d353e5
RK
4886
4887 else if (code0 == REG && code1 == REG)
4888 {
4889 if (REG_OK_FOR_INDEX_P (op0)
858c3c8c 4890 && REG_MODE_OK_FOR_BASE_P (op1, mode))
a2d353e5
RK
4891 return 0;
4892 else if (REG_OK_FOR_INDEX_P (op1)
858c3c8c 4893 && REG_MODE_OK_FOR_BASE_P (op0, mode))
a2d353e5 4894 return 0;
858c3c8c
ILT
4895 else if (REG_MODE_OK_FOR_BASE_P (op1, mode))
4896 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
55c22565 4897 type, ind_levels, insn);
858c3c8c
ILT
4898 else if (REG_MODE_OK_FOR_BASE_P (op0, mode))
4899 find_reloads_address_1 (mode, orig_op1, 1, &XEXP (x, 1), opnum,
55c22565 4900 type, ind_levels, insn);
a2d353e5 4901 else if (REG_OK_FOR_INDEX_P (op1))
858c3c8c 4902 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
55c22565 4903 type, ind_levels, insn);
a2d353e5 4904 else if (REG_OK_FOR_INDEX_P (op0))
858c3c8c 4905 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
55c22565 4906 type, ind_levels, insn);
a2d353e5
RK
4907 else
4908 {
858c3c8c 4909 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
55c22565 4910 type, ind_levels, insn);
858c3c8c 4911 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
55c22565 4912 type, ind_levels, insn);
a2d353e5
RK
4913 }
4914 }
4915
4916 else if (code0 == REG)
4917 {
858c3c8c 4918 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
55c22565 4919 type, ind_levels, insn);
858c3c8c 4920 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
55c22565 4921 type, ind_levels, insn);
a2d353e5
RK
4922 }
4923
4924 else if (code1 == REG)
4925 {
858c3c8c 4926 find_reloads_address_1 (mode, orig_op1, 1, &XEXP (x, 1), opnum,
55c22565 4927 type, ind_levels, insn);
858c3c8c 4928 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
55c22565 4929 type, ind_levels, insn);
a2d353e5
RK
4930 }
4931 }
4932
4933 return 0;
4934
4935 case POST_INC:
4936 case POST_DEC:
4937 case PRE_INC:
4938 case PRE_DEC:
eab89b90
RK
4939 if (GET_CODE (XEXP (x, 0)) == REG)
4940 {
4941 register int regno = REGNO (XEXP (x, 0));
4942 int value = 0;
4943 rtx x_orig = x;
4944
4945 /* A register that is incremented cannot be constant! */
4946 if (regno >= FIRST_PSEUDO_REGISTER
4947 && reg_equiv_constant[regno] != 0)
4948 abort ();
4949
4950 /* Handle a register that is equivalent to a memory location
4951 which cannot be addressed directly. */
4952 if (reg_equiv_address[regno] != 0)
4953 {
4954 rtx tem = make_memloc (XEXP (x, 0), regno);
4757e6a4
JW
4955 /* First reload the memory location's address.
4956 We can't use ADDR_TYPE (type) here, because we need to
4957 write back the value after reading it, hence we actually
4958 need two registers. */
eab89b90 4959 find_reloads_address (GET_MODE (tem), 0, XEXP (tem, 0),
4757e6a4 4960 &XEXP (tem, 0), opnum, type,
55c22565 4961 ind_levels, insn);
eab89b90 4962 /* Put this inside a new increment-expression. */
38a448ca 4963 x = gen_rtx_fmt_e (GET_CODE (x), GET_MODE (x), tem);
eab89b90
RK
4964 /* Proceed to reload that, as if it contained a register. */
4965 }
4966
4967 /* If we have a hard register that is ok as an index,
4968 don't make a reload. If an autoincrement of a nice register
4969 isn't "valid", it must be that no autoincrement is "valid".
4970 If that is true and something made an autoincrement anyway,
4971 this must be a special context where one is allowed.
4972 (For example, a "push" instruction.)
4973 We can't improve this address, so leave it alone. */
4974
4975 /* Otherwise, reload the autoincrement into a suitable hard reg
4976 and record how much to increment by. */
4977
4978 if (reg_renumber[regno] >= 0)
4979 regno = reg_renumber[regno];
4980 if ((regno >= FIRST_PSEUDO_REGISTER
4981 || !(context ? REGNO_OK_FOR_INDEX_P (regno)
858c3c8c 4982 : REGNO_MODE_OK_FOR_BASE_P (regno, mode))))
eab89b90 4983 {
29a82058 4984#ifdef AUTO_INC_DEC
eab89b90 4985 register rtx link;
29a82058 4986#endif
55c22565
RK
4987 int reloadnum;
4988
4989 /* If we can output the register afterwards, do so, this
4990 saves the extra update.
4991 We can do so if we have an INSN - i.e. no JUMP_INSN nor
4992 CALL_INSN - and it does not set CC0.
4993 But don't do this if we cannot directly address the
4994 memory location, since this will make it harder to
956d6950 4995 reuse address reloads, and increases register pressure.
55c22565
RK
4996 Also don't do this if we can probably update x directly. */
4997 rtx equiv = reg_equiv_mem[regno];
4998 int icode = (int) add_optab->handlers[(int) Pmode].insn_code;
4999 if (insn && GET_CODE (insn) == INSN && equiv
5000#ifdef HAVE_cc0
5001 && ! sets_cc0_p (PATTERN (insn))
5002#endif
5003 && ! (icode != CODE_FOR_nothing
5004 && (*insn_operand_predicate[icode][0]) (equiv, Pmode)
5005 && (*insn_operand_predicate[icode][1]) (equiv, Pmode)))
5006 {
5007 loc = &XEXP (x, 0);
5008 x = XEXP (x, 0);
5009 reloadnum
5010 = push_reload (x, x, loc, loc,
5011 (context
5012 ? reload_address_index_reg_class
5013 : reload_address_base_reg_class),
e9a25f70 5014 GET_MODE (x), GET_MODE (x), 0, 0,
55c22565
RK
5015 opnum, RELOAD_OTHER);
5016 }
5017 else
5018 {
5019 reloadnum
5020 = push_reload (x, NULL_RTX, loc, NULL_PTR,
5021 (context
5022 ? reload_address_index_reg_class
5023 : reload_address_base_reg_class),
e9a25f70 5024 GET_MODE (x), GET_MODE (x), 0, 0,
55c22565
RK
5025 opnum, type);
5026 reload_inc[reloadnum]
5027 = find_inc_amount (PATTERN (this_insn), XEXP (x_orig, 0));
5028
5029 value = 1;
5030 }
eab89b90
RK
5031
5032#ifdef AUTO_INC_DEC
5033 /* Update the REG_INC notes. */
5034
5035 for (link = REG_NOTES (this_insn);
5036 link; link = XEXP (link, 1))
5037 if (REG_NOTE_KIND (link) == REG_INC
5038 && REGNO (XEXP (link, 0)) == REGNO (XEXP (x_orig, 0)))
5039 push_replacement (&XEXP (link, 0), reloadnum, VOIDmode);
5040#endif
5041 }
5042 return value;
5043 }
a2d353e5 5044
eab89b90
RK
5045 else if (GET_CODE (XEXP (x, 0)) == MEM)
5046 {
5047 /* This is probably the result of a substitution, by eliminate_regs,
5048 of an equivalent address for a pseudo that was not allocated to a
5049 hard register. Verify that the specified address is valid and
5050 reload it into a register. */
5051 rtx tem = XEXP (x, 0);
5052 register rtx link;
5053 int reloadnum;
5054
5055 /* Since we know we are going to reload this item, don't decrement
5056 for the indirection level.
5057
5058 Note that this is actually conservative: it would be slightly
5059 more efficient to use the value of SPILL_INDIRECT_LEVELS from
5060 reload1.c here. */
4757e6a4
JW
5061 /* We can't use ADDR_TYPE (type) here, because we need to
5062 write back the value after reading it, hence we actually
5063 need two registers. */
eab89b90
RK
5064 find_reloads_address (GET_MODE (x), &XEXP (x, 0),
5065 XEXP (XEXP (x, 0), 0), &XEXP (XEXP (x, 0), 0),
55c22565 5066 opnum, type, ind_levels, insn);
eab89b90 5067
fb3821f7 5068 reloadnum = push_reload (x, NULL_RTX, loc, NULL_PTR,
1ba61f4e
ILT
5069 (context
5070 ? reload_address_index_reg_class
5071 : reload_address_base_reg_class),
a8c9daeb 5072 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
eab89b90
RK
5073 reload_inc[reloadnum]
5074 = find_inc_amount (PATTERN (this_insn), XEXP (x, 0));
5075
5076 link = FIND_REG_INC_NOTE (this_insn, tem);
5077 if (link != 0)
5078 push_replacement (&XEXP (link, 0), reloadnum, VOIDmode);
5079
5080 return 1;
5081 }
a2d353e5
RK
5082 return 0;
5083
5084 case MEM:
5085 /* This is probably the result of a substitution, by eliminate_regs, of
5086 an equivalent address for a pseudo that was not allocated to a hard
5087 register. Verify that the specified address is valid and reload it
5088 into a register.
eab89b90 5089
a2d353e5
RK
5090 Since we know we are going to reload this item, don't decrement for
5091 the indirection level.
eab89b90
RK
5092
5093 Note that this is actually conservative: it would be slightly more
5094 efficient to use the value of SPILL_INDIRECT_LEVELS from
5095 reload1.c here. */
5096
5097 find_reloads_address (GET_MODE (x), loc, XEXP (x, 0), &XEXP (x, 0),
55c22565 5098 opnum, ADDR_TYPE (type), ind_levels, insn);
fb3821f7 5099 push_reload (*loc, NULL_RTX, loc, NULL_PTR,
1ba61f4e
ILT
5100 (context ? reload_address_index_reg_class
5101 : reload_address_base_reg_class),
a8c9daeb 5102 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
eab89b90 5103 return 1;
eab89b90 5104
a2d353e5
RK
5105 case REG:
5106 {
5107 register int regno = REGNO (x);
5108
5109 if (reg_equiv_constant[regno] != 0)
5110 {
5111 find_reloads_address_part (reg_equiv_constant[regno], loc,
1ba61f4e
ILT
5112 (context
5113 ? reload_address_index_reg_class
5114 : reload_address_base_reg_class),
a2d353e5
RK
5115 GET_MODE (x), opnum, type, ind_levels);
5116 return 1;
5117 }
eab89b90
RK
5118
5119#if 0 /* This might screw code in reload1.c to delete prior output-reload
5120 that feeds this insn. */
a2d353e5
RK
5121 if (reg_equiv_mem[regno] != 0)
5122 {
5123 push_reload (reg_equiv_mem[regno], NULL_RTX, loc, NULL_PTR,
1ba61f4e
ILT
5124 (context
5125 ? reload_address_index_reg_class
5126 : reload_address_base_reg_class),
a2d353e5
RK
5127 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5128 return 1;
5129 }
eab89b90 5130#endif
eab89b90 5131
a2d353e5
RK
5132 if (reg_equiv_address[regno] != 0)
5133 {
5134 x = make_memloc (x, regno);
5135 find_reloads_address (GET_MODE (x), 0, XEXP (x, 0), &XEXP (x, 0),
55c22565 5136 opnum, ADDR_TYPE (type), ind_levels, insn);
a2d353e5 5137 }
eab89b90 5138
a2d353e5
RK
5139 if (reg_renumber[regno] >= 0)
5140 regno = reg_renumber[regno];
5141
5142 if ((regno >= FIRST_PSEUDO_REGISTER
5143 || !(context ? REGNO_OK_FOR_INDEX_P (regno)
858c3c8c 5144 : REGNO_MODE_OK_FOR_BASE_P (regno, mode))))
a2d353e5
RK
5145 {
5146 push_reload (x, NULL_RTX, loc, NULL_PTR,
1ba61f4e
ILT
5147 (context
5148 ? reload_address_index_reg_class
5149 : reload_address_base_reg_class),
a2d353e5
RK
5150 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5151 return 1;
5152 }
5153
5154 /* If a register appearing in an address is the subject of a CLOBBER
5155 in this insn, reload it into some other register to be safe.
5156 The CLOBBER is supposed to make the register unavailable
5157 from before this insn to after it. */
5158 if (regno_clobbered_p (regno, this_insn))
5159 {
5160 push_reload (x, NULL_RTX, loc, NULL_PTR,
1ba61f4e
ILT
5161 (context
5162 ? reload_address_index_reg_class
5163 : reload_address_base_reg_class),
a2d353e5
RK
5164 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5165 return 1;
5166 }
5167 }
5168 return 0;
5169
5170 case SUBREG:
922db4bb 5171 if (GET_CODE (SUBREG_REG (x)) == REG)
eab89b90 5172 {
922db4bb
RK
5173 /* If this is a SUBREG of a hard register and the resulting register
5174 is of the wrong class, reload the whole SUBREG. This avoids
5175 needless copies if SUBREG_REG is multi-word. */
5176 if (REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
5177 {
5178 int regno = REGNO (SUBREG_REG (x)) + SUBREG_WORD (x);
a2d353e5 5179
922db4bb 5180 if (! (context ? REGNO_OK_FOR_INDEX_P (regno)
858c3c8c 5181 : REGNO_MODE_OK_FOR_BASE_P (regno, mode)))
922db4bb
RK
5182 {
5183 push_reload (x, NULL_RTX, loc, NULL_PTR,
1ba61f4e
ILT
5184 (context
5185 ? reload_address_index_reg_class
5186 : reload_address_base_reg_class),
922db4bb
RK
5187 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5188 return 1;
5189 }
5190 }
abc95ed3 5191 /* If this is a SUBREG of a pseudo-register, and the pseudo-register
922db4bb
RK
5192 is larger than the class size, then reload the whole SUBREG. */
5193 else
a2d353e5 5194 {
922db4bb 5195 enum reg_class class = (context
1ba61f4e
ILT
5196 ? reload_address_index_reg_class
5197 : reload_address_base_reg_class);
922db4bb
RK
5198 if (CLASS_MAX_NREGS (class, GET_MODE (SUBREG_REG (x)))
5199 > reg_class_size[class])
5200 {
5201 push_reload (x, NULL_RTX, loc, NULL_PTR, class,
5202 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5203 return 1;
5204 }
a2d353e5 5205 }
eab89b90 5206 }
a2d353e5 5207 break;
e9a25f70
JL
5208
5209 default:
5210 break;
eab89b90
RK
5211 }
5212
a2d353e5
RK
5213 {
5214 register char *fmt = GET_RTX_FORMAT (code);
5215 register int i;
5216
5217 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5218 {
5219 if (fmt[i] == 'e')
858c3c8c 5220 find_reloads_address_1 (mode, XEXP (x, i), context, &XEXP (x, i),
55c22565 5221 opnum, type, ind_levels, insn);
a2d353e5
RK
5222 }
5223 }
5224
eab89b90
RK
5225 return 0;
5226}
5227\f
5228/* X, which is found at *LOC, is a part of an address that needs to be
5229 reloaded into a register of class CLASS. If X is a constant, or if
5230 X is a PLUS that contains a constant, check that the constant is a
5231 legitimate operand and that we are supposed to be able to load
5232 it into the register.
5233
5234 If not, force the constant into memory and reload the MEM instead.
5235
5236 MODE is the mode to use, in case X is an integer constant.
5237
a8c9daeb 5238 OPNUM and TYPE describe the purpose of any reloads made.
eab89b90
RK
5239
5240 IND_LEVELS says how many levels of indirect addressing this machine
5241 supports. */
5242
5243static void
a8c9daeb 5244find_reloads_address_part (x, loc, class, mode, opnum, type, ind_levels)
eab89b90
RK
5245 rtx x;
5246 rtx *loc;
5247 enum reg_class class;
5248 enum machine_mode mode;
a8c9daeb
RK
5249 int opnum;
5250 enum reload_type type;
eab89b90
RK
5251 int ind_levels;
5252{
5253 if (CONSTANT_P (x)
5254 && (! LEGITIMATE_CONSTANT_P (x)
5255 || PREFERRED_RELOAD_CLASS (x, class) == NO_REGS))
5256 {
5257 rtx tem = x = force_const_mem (mode, x);
5258 find_reloads_address (mode, &tem, XEXP (tem, 0), &XEXP (tem, 0),
55c22565 5259 opnum, type, ind_levels, 0);
eab89b90
RK
5260 }
5261
5262 else if (GET_CODE (x) == PLUS
5263 && CONSTANT_P (XEXP (x, 1))
5264 && (! LEGITIMATE_CONSTANT_P (XEXP (x, 1))
5265 || PREFERRED_RELOAD_CLASS (XEXP (x, 1), class) == NO_REGS))
5266 {
5267 rtx tem = force_const_mem (GET_MODE (x), XEXP (x, 1));
5268
38a448ca 5269 x = gen_rtx_PLUS (GET_MODE (x), XEXP (x, 0), tem);
eab89b90 5270 find_reloads_address (mode, &tem, XEXP (tem, 0), &XEXP (tem, 0),
55c22565 5271 opnum, type, ind_levels, 0);
eab89b90
RK
5272 }
5273
fb3821f7 5274 push_reload (x, NULL_RTX, loc, NULL_PTR, class,
a8c9daeb 5275 mode, VOIDmode, 0, 0, opnum, type);
eab89b90
RK
5276}
5277\f
a8c9daeb 5278/* Substitute into the current INSN the registers into which we have reloaded
eab89b90
RK
5279 the things that need reloading. The array `replacements'
5280 says contains the locations of all pointers that must be changed
5281 and says what to replace them with.
5282
5283 Return the rtx that X translates into; usually X, but modified. */
5284
5285void
5286subst_reloads ()
5287{
5288 register int i;
5289
5290 for (i = 0; i < n_replacements; i++)
5291 {
5292 register struct replacement *r = &replacements[i];
5293 register rtx reloadreg = reload_reg_rtx[r->what];
5294 if (reloadreg)
5295 {
5296 /* Encapsulate RELOADREG so its machine mode matches what
26f1a00e
RK
5297 used to be there. Note that gen_lowpart_common will
5298 do the wrong thing if RELOADREG is multi-word. RELOADREG
5299 will always be a REG here. */
eab89b90 5300 if (GET_MODE (reloadreg) != r->mode && r->mode != VOIDmode)
38a448ca 5301 reloadreg = gen_rtx_REG (r->mode, REGNO (reloadreg));
eab89b90
RK
5302
5303 /* If we are putting this into a SUBREG and RELOADREG is a
5304 SUBREG, we would be making nested SUBREGs, so we have to fix
5305 this up. Note that r->where == &SUBREG_REG (*r->subreg_loc). */
5306
5307 if (r->subreg_loc != 0 && GET_CODE (reloadreg) == SUBREG)
5308 {
5309 if (GET_MODE (*r->subreg_loc)
5310 == GET_MODE (SUBREG_REG (reloadreg)))
5311 *r->subreg_loc = SUBREG_REG (reloadreg);
5312 else
5313 {
5314 *r->where = SUBREG_REG (reloadreg);
5315 SUBREG_WORD (*r->subreg_loc) += SUBREG_WORD (reloadreg);
5316 }
5317 }
5318 else
5319 *r->where = reloadreg;
5320 }
5321 /* If reload got no reg and isn't optional, something's wrong. */
5322 else if (! reload_optional[r->what])
5323 abort ();
5324 }
5325}
5326\f
5327/* Make a copy of any replacements being done into X and move those copies
5328 to locations in Y, a copy of X. We only look at the highest level of
5329 the RTL. */
5330
5331void
5332copy_replacements (x, y)
5333 rtx x;
5334 rtx y;
5335{
5336 int i, j;
5337 enum rtx_code code = GET_CODE (x);
5338 char *fmt = GET_RTX_FORMAT (code);
5339 struct replacement *r;
5340
5341 /* We can't support X being a SUBREG because we might then need to know its
5342 location if something inside it was replaced. */
5343 if (code == SUBREG)
5344 abort ();
5345
5346 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5347 if (fmt[i] == 'e')
5348 for (j = 0; j < n_replacements; j++)
5349 {
5350 if (replacements[j].subreg_loc == &XEXP (x, i))
5351 {
5352 r = &replacements[n_replacements++];
5353 r->where = replacements[j].where;
5354 r->subreg_loc = &XEXP (y, i);
5355 r->what = replacements[j].what;
5356 r->mode = replacements[j].mode;
5357 }
5358 else if (replacements[j].where == &XEXP (x, i))
5359 {
5360 r = &replacements[n_replacements++];
5361 r->where = &XEXP (y, i);
5362 r->subreg_loc = 0;
5363 r->what = replacements[j].what;
5364 r->mode = replacements[j].mode;
5365 }
5366 }
5367}
5368\f
af929c62
RK
5369/* If LOC was scheduled to be replaced by something, return the replacement.
5370 Otherwise, return *LOC. */
5371
5372rtx
5373find_replacement (loc)
5374 rtx *loc;
5375{
5376 struct replacement *r;
5377
5378 for (r = &replacements[0]; r < &replacements[n_replacements]; r++)
5379 {
5380 rtx reloadreg = reload_reg_rtx[r->what];
5381
5382 if (reloadreg && r->where == loc)
5383 {
5384 if (r->mode != VOIDmode && GET_MODE (reloadreg) != r->mode)
38a448ca 5385 reloadreg = gen_rtx_REG (r->mode, REGNO (reloadreg));
af929c62
RK
5386
5387 return reloadreg;
5388 }
5389 else if (reloadreg && r->subreg_loc == loc)
5390 {
5391 /* RELOADREG must be either a REG or a SUBREG.
5392
5393 ??? Is it actually still ever a SUBREG? If so, why? */
5394
5395 if (GET_CODE (reloadreg) == REG)
38a448ca
RH
5396 return gen_rtx_REG (GET_MODE (*loc),
5397 REGNO (reloadreg) + SUBREG_WORD (*loc));
af929c62
RK
5398 else if (GET_MODE (reloadreg) == GET_MODE (*loc))
5399 return reloadreg;
5400 else
38a448ca
RH
5401 return gen_rtx_SUBREG (GET_MODE (*loc), SUBREG_REG (reloadreg),
5402 SUBREG_WORD (reloadreg) + SUBREG_WORD (*loc));
af929c62
RK
5403 }
5404 }
5405
956d6950
JL
5406 /* If *LOC is a PLUS, MINUS, or MULT, see if a replacement is scheduled for
5407 what's inside and make a new rtl if so. */
5408 if (GET_CODE (*loc) == PLUS || GET_CODE (*loc) == MINUS
5409 || GET_CODE (*loc) == MULT)
5410 {
5411 rtx x = find_replacement (&XEXP (*loc, 0));
5412 rtx y = find_replacement (&XEXP (*loc, 1));
5413
5414 if (x != XEXP (*loc, 0) || y != XEXP (*loc, 1))
38a448ca 5415 return gen_rtx_fmt_ee (GET_CODE (*loc), GET_MODE (*loc), x, y);
956d6950
JL
5416 }
5417
af929c62
RK
5418 return *loc;
5419}
5420\f
eab89b90
RK
5421/* Return nonzero if register in range [REGNO, ENDREGNO)
5422 appears either explicitly or implicitly in X
4644aad4 5423 other than being stored into (except for earlyclobber operands).
eab89b90
RK
5424
5425 References contained within the substructure at LOC do not count.
5426 LOC may be zero, meaning don't ignore anything.
5427
5428 This is similar to refers_to_regno_p in rtlanal.c except that we
5429 look at equivalences for pseudos that didn't get hard registers. */
5430
5431int
5432refers_to_regno_for_reload_p (regno, endregno, x, loc)
5433 int regno, endregno;
5434 rtx x;
5435 rtx *loc;
5436{
5437 register int i;
5438 register RTX_CODE code;
5439 register char *fmt;
5440
5441 if (x == 0)
5442 return 0;
5443
5444 repeat:
5445 code = GET_CODE (x);
5446
5447 switch (code)
5448 {
5449 case REG:
5450 i = REGNO (x);
5451
4803a34a
RK
5452 /* If this is a pseudo, a hard register must not have been allocated.
5453 X must therefore either be a constant or be in memory. */
5454 if (i >= FIRST_PSEUDO_REGISTER)
5455 {
5456 if (reg_equiv_memory_loc[i])
5457 return refers_to_regno_for_reload_p (regno, endregno,
fb3821f7
CH
5458 reg_equiv_memory_loc[i],
5459 NULL_PTR);
4803a34a
RK
5460
5461 if (reg_equiv_constant[i])
5462 return 0;
5463
5464 abort ();
5465 }
eab89b90
RK
5466
5467 return (endregno > i
5468 && regno < i + (i < FIRST_PSEUDO_REGISTER
5469 ? HARD_REGNO_NREGS (i, GET_MODE (x))
5470 : 1));
5471
5472 case SUBREG:
5473 /* If this is a SUBREG of a hard reg, we can see exactly which
5474 registers are being modified. Otherwise, handle normally. */
5475 if (GET_CODE (SUBREG_REG (x)) == REG
5476 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
5477 {
5478 int inner_regno = REGNO (SUBREG_REG (x)) + SUBREG_WORD (x);
5479 int inner_endregno
5480 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
5481 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
5482
5483 return endregno > inner_regno && regno < inner_endregno;
5484 }
5485 break;
5486
5487 case CLOBBER:
5488 case SET:
5489 if (&SET_DEST (x) != loc
5490 /* Note setting a SUBREG counts as referring to the REG it is in for
5491 a pseudo but not for hard registers since we can
5492 treat each word individually. */
5493 && ((GET_CODE (SET_DEST (x)) == SUBREG
5494 && loc != &SUBREG_REG (SET_DEST (x))
5495 && GET_CODE (SUBREG_REG (SET_DEST (x))) == REG
5496 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
5497 && refers_to_regno_for_reload_p (regno, endregno,
5498 SUBREG_REG (SET_DEST (x)),
5499 loc))
abc95ed3 5500 /* If the output is an earlyclobber operand, this is
4644aad4
RK
5501 a conflict. */
5502 || ((GET_CODE (SET_DEST (x)) != REG
5503 || earlyclobber_operand_p (SET_DEST (x)))
eab89b90
RK
5504 && refers_to_regno_for_reload_p (regno, endregno,
5505 SET_DEST (x), loc))))
5506 return 1;
5507
5508 if (code == CLOBBER || loc == &SET_SRC (x))
5509 return 0;
5510 x = SET_SRC (x);
5511 goto repeat;
e9a25f70
JL
5512
5513 default:
5514 break;
eab89b90
RK
5515 }
5516
5517 /* X does not match, so try its subexpressions. */
5518
5519 fmt = GET_RTX_FORMAT (code);
5520 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5521 {
5522 if (fmt[i] == 'e' && loc != &XEXP (x, i))
5523 {
5524 if (i == 0)
5525 {
5526 x = XEXP (x, 0);
5527 goto repeat;
5528 }
5529 else
5530 if (refers_to_regno_for_reload_p (regno, endregno,
5531 XEXP (x, i), loc))
5532 return 1;
5533 }
5534 else if (fmt[i] == 'E')
5535 {
5536 register int j;
5537 for (j = XVECLEN (x, i) - 1; j >=0; j--)
5538 if (loc != &XVECEXP (x, i, j)
5539 && refers_to_regno_for_reload_p (regno, endregno,
5540 XVECEXP (x, i, j), loc))
5541 return 1;
5542 }
5543 }
5544 return 0;
5545}
bfa30b22
RK
5546
5547/* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
5548 we check if any register number in X conflicts with the relevant register
5549 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
5550 contains a MEM (we don't bother checking for memory addresses that can't
5551 conflict because we expect this to be a rare case.
5552
5553 This function is similar to reg_overlap_mention_p in rtlanal.c except
5554 that we look at equivalences for pseudos that didn't get hard registers. */
5555
5556int
5557reg_overlap_mentioned_for_reload_p (x, in)
5558 rtx x, in;
5559{
5560 int regno, endregno;
5561
5562 if (GET_CODE (x) == SUBREG)
5563 {
5564 regno = REGNO (SUBREG_REG (x));
5565 if (regno < FIRST_PSEUDO_REGISTER)
5566 regno += SUBREG_WORD (x);
5567 }
5568 else if (GET_CODE (x) == REG)
5569 {
5570 regno = REGNO (x);
4803a34a
RK
5571
5572 /* If this is a pseudo, it must not have been assigned a hard register.
5573 Therefore, it must either be in memory or be a constant. */
5574
5575 if (regno >= FIRST_PSEUDO_REGISTER)
5576 {
5577 if (reg_equiv_memory_loc[regno])
5578 return refers_to_mem_for_reload_p (in);
5579 else if (reg_equiv_constant[regno])
5580 return 0;
5581 abort ();
5582 }
bfa30b22
RK
5583 }
5584 else if (CONSTANT_P (x))
5585 return 0;
5586 else if (GET_CODE (x) == MEM)
4803a34a 5587 return refers_to_mem_for_reload_p (in);
bfa30b22
RK
5588 else if (GET_CODE (x) == SCRATCH || GET_CODE (x) == PC
5589 || GET_CODE (x) == CC0)
5590 return reg_mentioned_p (x, in);
5591 else
5592 abort ();
5593
5594 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
5595 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
5596
fb3821f7 5597 return refers_to_regno_for_reload_p (regno, endregno, in, NULL_PTR);
bfa30b22 5598}
4803a34a
RK
5599
5600/* Return nonzero if anything in X contains a MEM. Look also for pseudo
5601 registers. */
5602
5603int
5604refers_to_mem_for_reload_p (x)
5605 rtx x;
5606{
5607 char *fmt;
5608 int i;
5609
5610 if (GET_CODE (x) == MEM)
5611 return 1;
5612
5613 if (GET_CODE (x) == REG)
5614 return (REGNO (x) >= FIRST_PSEUDO_REGISTER
5615 && reg_equiv_memory_loc[REGNO (x)]);
5616
5617 fmt = GET_RTX_FORMAT (GET_CODE (x));
5618 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
5619 if (fmt[i] == 'e'
5620 && (GET_CODE (XEXP (x, i)) == MEM
5621 || refers_to_mem_for_reload_p (XEXP (x, i))))
5622 return 1;
5623
5624 return 0;
5625}
eab89b90 5626\f
eab89b90
RK
5627/* Check the insns before INSN to see if there is a suitable register
5628 containing the same value as GOAL.
5629 If OTHER is -1, look for a register in class CLASS.
5630 Otherwise, just see if register number OTHER shares GOAL's value.
5631
5632 Return an rtx for the register found, or zero if none is found.
5633
5634 If RELOAD_REG_P is (short *)1,
5635 we reject any hard reg that appears in reload_reg_rtx
5636 because such a hard reg is also needed coming into this insn.
5637
5638 If RELOAD_REG_P is any other nonzero value,
5639 it is a vector indexed by hard reg number
5640 and we reject any hard reg whose element in the vector is nonnegative
5641 as well as any that appears in reload_reg_rtx.
5642
5643 If GOAL is zero, then GOALREG is a register number; we look
5644 for an equivalent for that register.
5645
5646 MODE is the machine mode of the value we want an equivalence for.
5647 If GOAL is nonzero and not VOIDmode, then it must have mode MODE.
5648
5649 This function is used by jump.c as well as in the reload pass.
5650
5651 If GOAL is the sum of the stack pointer and a constant, we treat it
5652 as if it were a constant except that sp is required to be unchanging. */
5653
5654rtx
5655find_equiv_reg (goal, insn, class, other, reload_reg_p, goalreg, mode)
5656 register rtx goal;
5657 rtx insn;
5658 enum reg_class class;
5659 register int other;
5660 short *reload_reg_p;
5661 int goalreg;
5662 enum machine_mode mode;
5663{
5664 register rtx p = insn;
f55b1d97 5665 rtx goaltry, valtry, value, where;
eab89b90
RK
5666 register rtx pat;
5667 register int regno = -1;
5668 int valueno;
5669 int goal_mem = 0;
5670 int goal_const = 0;
5671 int goal_mem_addr_varies = 0;
5672 int need_stable_sp = 0;
5673 int nregs;
5674 int valuenregs;
5675
5676 if (goal == 0)
5677 regno = goalreg;
5678 else if (GET_CODE (goal) == REG)
5679 regno = REGNO (goal);
5680 else if (GET_CODE (goal) == MEM)
5681 {
5682 enum rtx_code code = GET_CODE (XEXP (goal, 0));
5683 if (MEM_VOLATILE_P (goal))
5684 return 0;
5685 if (flag_float_store && GET_MODE_CLASS (GET_MODE (goal)) == MODE_FLOAT)
5686 return 0;
5687 /* An address with side effects must be reexecuted. */
5688 switch (code)
5689 {
5690 case POST_INC:
5691 case PRE_INC:
5692 case POST_DEC:
5693 case PRE_DEC:
5694 return 0;
e9a25f70
JL
5695 default:
5696 break;
eab89b90
RK
5697 }
5698 goal_mem = 1;
5699 }
5700 else if (CONSTANT_P (goal))
5701 goal_const = 1;
5702 else if (GET_CODE (goal) == PLUS
5703 && XEXP (goal, 0) == stack_pointer_rtx
5704 && CONSTANT_P (XEXP (goal, 1)))
5705 goal_const = need_stable_sp = 1;
5706 else
5707 return 0;
5708
5709 /* On some machines, certain regs must always be rejected
5710 because they don't behave the way ordinary registers do. */
5711
5712#ifdef OVERLAPPING_REGNO_P
5713 if (regno >= 0 && regno < FIRST_PSEUDO_REGISTER
5714 && OVERLAPPING_REGNO_P (regno))
5715 return 0;
5716#endif
5717
5718 /* Scan insns back from INSN, looking for one that copies
5719 a value into or out of GOAL.
5720 Stop and give up if we reach a label. */
5721
5722 while (1)
5723 {
5724 p = PREV_INSN (p);
5725 if (p == 0 || GET_CODE (p) == CODE_LABEL)
5726 return 0;
5727 if (GET_CODE (p) == INSN
0f41302f 5728 /* If we don't want spill regs ... */
a8c9daeb
RK
5729 && (! (reload_reg_p != 0
5730 && reload_reg_p != (short *) (HOST_WIDE_INT) 1)
eab89b90
RK
5731 /* ... then ignore insns introduced by reload; they aren't useful
5732 and can cause results in reload_as_needed to be different
5733 from what they were when calculating the need for spills.
5734 If we notice an input-reload insn here, we will reject it below,
5735 but it might hide a usable equivalent. That makes bad code.
5736 It may even abort: perhaps no reg was spilled for this insn
5737 because it was assumed we would find that equivalent. */
5738 || INSN_UID (p) < reload_first_uid))
5739 {
e8094962 5740 rtx tem;
eab89b90
RK
5741 pat = single_set (p);
5742 /* First check for something that sets some reg equal to GOAL. */
5743 if (pat != 0
5744 && ((regno >= 0
5745 && true_regnum (SET_SRC (pat)) == regno
5746 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
5747 ||
5748 (regno >= 0
5749 && true_regnum (SET_DEST (pat)) == regno
5750 && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0)
5751 ||
5752 (goal_const && rtx_equal_p (SET_SRC (pat), goal)
5753 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
5754 || (goal_mem
5755 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0
5756 && rtx_renumbered_equal_p (goal, SET_SRC (pat)))
5757 || (goal_mem
5758 && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0
e8094962
RK
5759 && rtx_renumbered_equal_p (goal, SET_DEST (pat)))
5760 /* If we are looking for a constant,
5761 and something equivalent to that constant was copied
5762 into a reg, we can use that reg. */
fb3821f7
CH
5763 || (goal_const && (tem = find_reg_note (p, REG_EQUIV,
5764 NULL_RTX))
e8094962 5765 && rtx_equal_p (XEXP (tem, 0), goal)
95d3562b 5766 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
fb3821f7
CH
5767 || (goal_const && (tem = find_reg_note (p, REG_EQUIV,
5768 NULL_RTX))
e8094962
RK
5769 && GET_CODE (SET_DEST (pat)) == REG
5770 && GET_CODE (XEXP (tem, 0)) == CONST_DOUBLE
5771 && GET_MODE_CLASS (GET_MODE (XEXP (tem, 0))) == MODE_FLOAT
5772 && GET_CODE (goal) == CONST_INT
f55b1d97
RK
5773 && 0 != (goaltry = operand_subword (XEXP (tem, 0), 0, 0,
5774 VOIDmode))
5775 && rtx_equal_p (goal, goaltry)
e8094962
RK
5776 && (valtry = operand_subword (SET_DEST (pat), 0, 0,
5777 VOIDmode))
95d3562b 5778 && (valueno = true_regnum (valtry)) >= 0)
fb3821f7
CH
5779 || (goal_const && (tem = find_reg_note (p, REG_EQUIV,
5780 NULL_RTX))
e8094962
RK
5781 && GET_CODE (SET_DEST (pat)) == REG
5782 && GET_CODE (XEXP (tem, 0)) == CONST_DOUBLE
5783 && GET_MODE_CLASS (GET_MODE (XEXP (tem, 0))) == MODE_FLOAT
5784 && GET_CODE (goal) == CONST_INT
f55b1d97
RK
5785 && 0 != (goaltry = operand_subword (XEXP (tem, 0), 1, 0,
5786 VOIDmode))
5787 && rtx_equal_p (goal, goaltry)
e8094962
RK
5788 && (valtry
5789 = operand_subword (SET_DEST (pat), 1, 0, VOIDmode))
95d3562b 5790 && (valueno = true_regnum (valtry)) >= 0)))
eab89b90
RK
5791 if (other >= 0
5792 ? valueno == other
5793 : ((unsigned) valueno < FIRST_PSEUDO_REGISTER
5794 && TEST_HARD_REG_BIT (reg_class_contents[(int) class],
5795 valueno)))
5796 {
5797 value = valtry;
5798 where = p;
5799 break;
5800 }
5801 }
5802 }
5803
5804 /* We found a previous insn copying GOAL into a suitable other reg VALUE
5805 (or copying VALUE into GOAL, if GOAL is also a register).
5806 Now verify that VALUE is really valid. */
5807
5808 /* VALUENO is the register number of VALUE; a hard register. */
5809
5810 /* Don't try to re-use something that is killed in this insn. We want
5811 to be able to trust REG_UNUSED notes. */
5812 if (find_reg_note (where, REG_UNUSED, value))
5813 return 0;
5814
5815 /* If we propose to get the value from the stack pointer or if GOAL is
5816 a MEM based on the stack pointer, we need a stable SP. */
d5a1d1c7 5817 if (valueno == STACK_POINTER_REGNUM || regno == STACK_POINTER_REGNUM
bfa30b22
RK
5818 || (goal_mem && reg_overlap_mentioned_for_reload_p (stack_pointer_rtx,
5819 goal)))
eab89b90
RK
5820 need_stable_sp = 1;
5821
5822 /* Reject VALUE if the copy-insn moved the wrong sort of datum. */
5823 if (GET_MODE (value) != mode)
5824 return 0;
5825
5826 /* Reject VALUE if it was loaded from GOAL
5827 and is also a register that appears in the address of GOAL. */
5828
bd5f6d44 5829 if (goal_mem && value == SET_DEST (single_set (where))
bfa30b22
RK
5830 && refers_to_regno_for_reload_p (valueno,
5831 (valueno
5832 + HARD_REGNO_NREGS (valueno, mode)),
fb3821f7 5833 goal, NULL_PTR))
eab89b90
RK
5834 return 0;
5835
5836 /* Reject registers that overlap GOAL. */
5837
5838 if (!goal_mem && !goal_const
5839 && regno + HARD_REGNO_NREGS (regno, mode) > valueno
5840 && regno < valueno + HARD_REGNO_NREGS (valueno, mode))
5841 return 0;
5842
5843 /* Reject VALUE if it is one of the regs reserved for reloads.
5844 Reload1 knows how to reuse them anyway, and it would get
5845 confused if we allocated one without its knowledge.
5846 (Now that insns introduced by reload are ignored above,
5847 this case shouldn't happen, but I'm not positive.) */
5848
a8c9daeb 5849 if (reload_reg_p != 0 && reload_reg_p != (short *) (HOST_WIDE_INT) 1
eab89b90
RK
5850 && reload_reg_p[valueno] >= 0)
5851 return 0;
5852
5853 /* On some machines, certain regs must always be rejected
5854 because they don't behave the way ordinary registers do. */
5855
5856#ifdef OVERLAPPING_REGNO_P
5857 if (OVERLAPPING_REGNO_P (valueno))
5858 return 0;
5859#endif
5860
5861 nregs = HARD_REGNO_NREGS (regno, mode);
5862 valuenregs = HARD_REGNO_NREGS (valueno, mode);
5863
5864 /* Reject VALUE if it is a register being used for an input reload
5865 even if it is not one of those reserved. */
5866
5867 if (reload_reg_p != 0)
5868 {
5869 int i;
5870 for (i = 0; i < n_reloads; i++)
5871 if (reload_reg_rtx[i] != 0 && reload_in[i])
5872 {
5873 int regno1 = REGNO (reload_reg_rtx[i]);
5874 int nregs1 = HARD_REGNO_NREGS (regno1,
5875 GET_MODE (reload_reg_rtx[i]));
5876 if (regno1 < valueno + valuenregs
5877 && regno1 + nregs1 > valueno)
5878 return 0;
5879 }
5880 }
5881
5882 if (goal_mem)
54b5ffe9
RS
5883 /* We must treat frame pointer as varying here,
5884 since it can vary--in a nonlocal goto as generated by expand_goto. */
5885 goal_mem_addr_varies = !CONSTANT_ADDRESS_P (XEXP (goal, 0));
eab89b90
RK
5886
5887 /* Now verify that the values of GOAL and VALUE remain unaltered
5888 until INSN is reached. */
5889
5890 p = insn;
5891 while (1)
5892 {
5893 p = PREV_INSN (p);
5894 if (p == where)
5895 return value;
5896
5897 /* Don't trust the conversion past a function call
5898 if either of the two is in a call-clobbered register, or memory. */
5899 if (GET_CODE (p) == CALL_INSN
5900 && ((regno >= 0 && regno < FIRST_PSEUDO_REGISTER
5901 && call_used_regs[regno])
5902 ||
5903 (valueno >= 0 && valueno < FIRST_PSEUDO_REGISTER
5904 && call_used_regs[valueno])
5905 ||
5906 goal_mem
5907 || need_stable_sp))
5908 return 0;
5909
41fe17ab
RK
5910#ifdef NON_SAVING_SETJMP
5911 if (NON_SAVING_SETJMP && GET_CODE (p) == NOTE
5912 && NOTE_LINE_NUMBER (p) == NOTE_INSN_SETJMP)
5913 return 0;
5914#endif
5915
eab89b90
RK
5916#ifdef INSN_CLOBBERS_REGNO_P
5917 if ((valueno >= 0 && valueno < FIRST_PSEUDO_REGISTER
5918 && INSN_CLOBBERS_REGNO_P (p, valueno))
5919 || (regno >= 0 && regno < FIRST_PSEUDO_REGISTER
5920 && INSN_CLOBBERS_REGNO_P (p, regno)))
5921 return 0;
5922#endif
5923
5924 if (GET_RTX_CLASS (GET_CODE (p)) == 'i')
5925 {
5926 /* If this insn P stores in either GOAL or VALUE, return 0.
5927 If GOAL is a memory ref and this insn writes memory, return 0.
5928 If GOAL is a memory ref and its address is not constant,
5929 and this insn P changes a register used in GOAL, return 0. */
5930
5931 pat = PATTERN (p);
5932 if (GET_CODE (pat) == SET || GET_CODE (pat) == CLOBBER)
5933 {
5934 register rtx dest = SET_DEST (pat);
5935 while (GET_CODE (dest) == SUBREG
5936 || GET_CODE (dest) == ZERO_EXTRACT
5937 || GET_CODE (dest) == SIGN_EXTRACT
5938 || GET_CODE (dest) == STRICT_LOW_PART)
5939 dest = XEXP (dest, 0);
5940 if (GET_CODE (dest) == REG)
5941 {
5942 register int xregno = REGNO (dest);
5943 int xnregs;
5944 if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
5945 xnregs = HARD_REGNO_NREGS (xregno, GET_MODE (dest));
5946 else
5947 xnregs = 1;
5948 if (xregno < regno + nregs && xregno + xnregs > regno)
5949 return 0;
5950 if (xregno < valueno + valuenregs
5951 && xregno + xnregs > valueno)
5952 return 0;
5953 if (goal_mem_addr_varies
bfa30b22 5954 && reg_overlap_mentioned_for_reload_p (dest, goal))
eab89b90
RK
5955 return 0;
5956 }
5957 else if (goal_mem && GET_CODE (dest) == MEM
5958 && ! push_operand (dest, GET_MODE (dest)))
5959 return 0;
9fac9680
RK
5960 else if (GET_CODE (dest) == MEM && regno >= FIRST_PSEUDO_REGISTER
5961 && reg_equiv_memory_loc[regno] != 0)
5962 return 0;
eab89b90
RK
5963 else if (need_stable_sp && push_operand (dest, GET_MODE (dest)))
5964 return 0;
5965 }
5966 else if (GET_CODE (pat) == PARALLEL)
5967 {
5968 register int i;
5969 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
5970 {
5971 register rtx v1 = XVECEXP (pat, 0, i);
5972 if (GET_CODE (v1) == SET || GET_CODE (v1) == CLOBBER)
5973 {
5974 register rtx dest = SET_DEST (v1);
5975 while (GET_CODE (dest) == SUBREG
5976 || GET_CODE (dest) == ZERO_EXTRACT
5977 || GET_CODE (dest) == SIGN_EXTRACT
5978 || GET_CODE (dest) == STRICT_LOW_PART)
5979 dest = XEXP (dest, 0);
5980 if (GET_CODE (dest) == REG)
5981 {
5982 register int xregno = REGNO (dest);
5983 int xnregs;
5984 if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
5985 xnregs = HARD_REGNO_NREGS (xregno, GET_MODE (dest));
5986 else
5987 xnregs = 1;
5988 if (xregno < regno + nregs
5989 && xregno + xnregs > regno)
5990 return 0;
5991 if (xregno < valueno + valuenregs
5992 && xregno + xnregs > valueno)
5993 return 0;
5994 if (goal_mem_addr_varies
bfa30b22
RK
5995 && reg_overlap_mentioned_for_reload_p (dest,
5996 goal))
eab89b90
RK
5997 return 0;
5998 }
5999 else if (goal_mem && GET_CODE (dest) == MEM
6000 && ! push_operand (dest, GET_MODE (dest)))
6001 return 0;
e9a25f70
JL
6002 else if (GET_CODE (dest) == MEM && regno >= FIRST_PSEUDO_REGISTER
6003 && reg_equiv_memory_loc[regno] != 0)
6004 return 0;
369c7ab6
JW
6005 else if (need_stable_sp
6006 && push_operand (dest, GET_MODE (dest)))
6007 return 0;
6008 }
6009 }
6010 }
6011
6012 if (GET_CODE (p) == CALL_INSN && CALL_INSN_FUNCTION_USAGE (p))
6013 {
6014 rtx link;
6015
6016 for (link = CALL_INSN_FUNCTION_USAGE (p); XEXP (link, 1) != 0;
6017 link = XEXP (link, 1))
6018 {
6019 pat = XEXP (link, 0);
6020 if (GET_CODE (pat) == CLOBBER)
6021 {
6022 register rtx dest = SET_DEST (pat);
6023 while (GET_CODE (dest) == SUBREG
6024 || GET_CODE (dest) == ZERO_EXTRACT
6025 || GET_CODE (dest) == SIGN_EXTRACT
6026 || GET_CODE (dest) == STRICT_LOW_PART)
6027 dest = XEXP (dest, 0);
6028 if (GET_CODE (dest) == REG)
6029 {
6030 register int xregno = REGNO (dest);
6031 int xnregs;
6032 if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
6033 xnregs = HARD_REGNO_NREGS (xregno, GET_MODE (dest));
6034 else
6035 xnregs = 1;
6036 if (xregno < regno + nregs
6037 && xregno + xnregs > regno)
6038 return 0;
6039 if (xregno < valueno + valuenregs
6040 && xregno + xnregs > valueno)
6041 return 0;
6042 if (goal_mem_addr_varies
6043 && reg_overlap_mentioned_for_reload_p (dest,
6044 goal))
6045 return 0;
6046 }
6047 else if (goal_mem && GET_CODE (dest) == MEM
6048 && ! push_operand (dest, GET_MODE (dest)))
6049 return 0;
eab89b90
RK
6050 else if (need_stable_sp
6051 && push_operand (dest, GET_MODE (dest)))
6052 return 0;
6053 }
6054 }
6055 }
6056
6057#ifdef AUTO_INC_DEC
6058 /* If this insn auto-increments or auto-decrements
6059 either regno or valueno, return 0 now.
6060 If GOAL is a memory ref and its address is not constant,
6061 and this insn P increments a register used in GOAL, return 0. */
6062 {
6063 register rtx link;
6064
6065 for (link = REG_NOTES (p); link; link = XEXP (link, 1))
6066 if (REG_NOTE_KIND (link) == REG_INC
6067 && GET_CODE (XEXP (link, 0)) == REG)
6068 {
6069 register int incno = REGNO (XEXP (link, 0));
6070 if (incno < regno + nregs && incno >= regno)
6071 return 0;
6072 if (incno < valueno + valuenregs && incno >= valueno)
6073 return 0;
6074 if (goal_mem_addr_varies
bfa30b22
RK
6075 && reg_overlap_mentioned_for_reload_p (XEXP (link, 0),
6076 goal))
eab89b90
RK
6077 return 0;
6078 }
6079 }
6080#endif
6081 }
6082 }
6083}
6084\f
6085/* Find a place where INCED appears in an increment or decrement operator
6086 within X, and return the amount INCED is incremented or decremented by.
6087 The value is always positive. */
6088
6089static int
6090find_inc_amount (x, inced)
6091 rtx x, inced;
6092{
6093 register enum rtx_code code = GET_CODE (x);
6094 register char *fmt;
6095 register int i;
6096
6097 if (code == MEM)
6098 {
6099 register rtx addr = XEXP (x, 0);
6100 if ((GET_CODE (addr) == PRE_DEC
6101 || GET_CODE (addr) == POST_DEC
6102 || GET_CODE (addr) == PRE_INC
6103 || GET_CODE (addr) == POST_INC)
6104 && XEXP (addr, 0) == inced)
6105 return GET_MODE_SIZE (GET_MODE (x));
6106 }
6107
6108 fmt = GET_RTX_FORMAT (code);
6109 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6110 {
6111 if (fmt[i] == 'e')
6112 {
6113 register int tem = find_inc_amount (XEXP (x, i), inced);
6114 if (tem != 0)
6115 return tem;
6116 }
6117 if (fmt[i] == 'E')
6118 {
6119 register int j;
6120 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6121 {
6122 register int tem = find_inc_amount (XVECEXP (x, i, j), inced);
6123 if (tem != 0)
6124 return tem;
6125 }
6126 }
6127 }
6128
6129 return 0;
6130}
6131\f
6132/* Return 1 if register REGNO is the subject of a clobber in insn INSN. */
6133
6134int
6135regno_clobbered_p (regno, insn)
6136 int regno;
6137 rtx insn;
6138{
6139 if (GET_CODE (PATTERN (insn)) == CLOBBER
6140 && GET_CODE (XEXP (PATTERN (insn), 0)) == REG)
6141 return REGNO (XEXP (PATTERN (insn), 0)) == regno;
6142
6143 if (GET_CODE (PATTERN (insn)) == PARALLEL)
6144 {
6145 int i = XVECLEN (PATTERN (insn), 0) - 1;
6146
6147 for (; i >= 0; i--)
6148 {
6149 rtx elt = XVECEXP (PATTERN (insn), 0, i);
6150 if (GET_CODE (elt) == CLOBBER && GET_CODE (XEXP (elt, 0)) == REG
6151 && REGNO (XEXP (elt, 0)) == regno)
6152 return 1;
6153 }
6154 }
6155
6156 return 0;
6157}
10bcde0d
RK
6158
6159static char *reload_when_needed_name[] =
6160{
6161 "RELOAD_FOR_INPUT",
6162 "RELOAD_FOR_OUTPUT",
6163 "RELOAD_FOR_INSN",
47c8cf91
ILT
6164 "RELOAD_FOR_INPUT_ADDRESS",
6165 "RELOAD_FOR_INPADDR_ADDRESS",
10bcde0d 6166 "RELOAD_FOR_OUTPUT_ADDRESS",
47c8cf91 6167 "RELOAD_FOR_OUTADDR_ADDRESS",
10bcde0d
RK
6168 "RELOAD_FOR_OPERAND_ADDRESS",
6169 "RELOAD_FOR_OPADDR_ADDR",
6170 "RELOAD_OTHER",
6171 "RELOAD_FOR_OTHER_ADDRESS"
6172};
6173
6174static char *reg_class_names[] = REG_CLASS_NAMES;
6175
b8fb2d72 6176/* These functions are used to print the variables set by 'find_reloads' */
10bcde0d
RK
6177
6178void
b8fb2d72
CI
6179debug_reload_to_stream (f)
6180 FILE *f;
10bcde0d
RK
6181{
6182 int r;
505923a0 6183 char *prefix;
10bcde0d 6184
b8fb2d72
CI
6185 if (! f)
6186 f = stderr;
10bcde0d
RK
6187 for (r = 0; r < n_reloads; r++)
6188 {
b8fb2d72 6189 fprintf (f, "Reload %d: ", r);
10bcde0d 6190
505923a0 6191 if (reload_in[r] != 0)
10bcde0d 6192 {
b8fb2d72 6193 fprintf (f, "reload_in (%s) = ",
f7393e85 6194 GET_MODE_NAME (reload_inmode[r]));
b8fb2d72
CI
6195 print_inline_rtx (f, reload_in[r], 24);
6196 fprintf (f, "\n\t");
10bcde0d
RK
6197 }
6198
505923a0 6199 if (reload_out[r] != 0)
10bcde0d 6200 {
b8fb2d72 6201 fprintf (f, "reload_out (%s) = ",
f7393e85 6202 GET_MODE_NAME (reload_outmode[r]));
b8fb2d72
CI
6203 print_inline_rtx (f, reload_out[r], 24);
6204 fprintf (f, "\n\t");
10bcde0d
RK
6205 }
6206
b8fb2d72 6207 fprintf (f, "%s, ", reg_class_names[(int) reload_reg_class[r]]);
10bcde0d 6208
b8fb2d72 6209 fprintf (f, "%s (opnum = %d)",
505923a0 6210 reload_when_needed_name[(int) reload_when_needed[r]],
10bcde0d
RK
6211 reload_opnum[r]);
6212
6213 if (reload_optional[r])
b8fb2d72 6214 fprintf (f, ", optional");
10bcde0d 6215
505923a0 6216 if (reload_inc[r] != 0)
b8fb2d72 6217 fprintf (f, ", inc by %d", reload_inc[r]);
10bcde0d
RK
6218
6219 if (reload_nocombine[r])
b8fb2d72 6220 fprintf (f, ", can't combine");
10bcde0d
RK
6221
6222 if (reload_secondary_p[r])
b8fb2d72 6223 fprintf (f, ", secondary_reload_p");
10bcde0d 6224
505923a0 6225 if (reload_in_reg[r] != 0)
10bcde0d 6226 {
b8fb2d72
CI
6227 fprintf (f, "\n\treload_in_reg: ");
6228 print_inline_rtx (f, reload_in_reg[r], 24);
10bcde0d
RK
6229 }
6230
505923a0 6231 if (reload_reg_rtx[r] != 0)
10bcde0d 6232 {
b8fb2d72
CI
6233 fprintf (f, "\n\treload_reg_rtx: ");
6234 print_inline_rtx (f, reload_reg_rtx[r], 24);
10bcde0d
RK
6235 }
6236
505923a0 6237 prefix = "\n\t";
10bcde0d
RK
6238 if (reload_secondary_in_reload[r] != -1)
6239 {
b8fb2d72 6240 fprintf (f, "%ssecondary_in_reload = %d",
505923a0
RK
6241 prefix, reload_secondary_in_reload[r]);
6242 prefix = ", ";
10bcde0d
RK
6243 }
6244
6245 if (reload_secondary_out_reload[r] != -1)
b8fb2d72 6246 fprintf (f, "%ssecondary_out_reload = %d\n",
505923a0 6247 prefix, reload_secondary_out_reload[r]);
10bcde0d 6248
505923a0 6249 prefix = "\n\t";
10bcde0d
RK
6250 if (reload_secondary_in_icode[r] != CODE_FOR_nothing)
6251 {
b8fb2d72 6252 fprintf (f, "%ssecondary_in_icode = %s", prefix, insn_name[r]);
505923a0 6253 prefix = ", ";
10bcde0d
RK
6254 }
6255
6256 if (reload_secondary_out_icode[r] != CODE_FOR_nothing)
b8fb2d72 6257 fprintf (f, "%ssecondary_out_icode = %s", prefix, insn_name[r]);
10bcde0d 6258
b8fb2d72 6259 fprintf (f, "\n");
10bcde0d 6260 }
10bcde0d 6261}
b8fb2d72
CI
6262
6263void
6264debug_reload ()
6265{
6266 debug_reload_to_stream (stderr);
6267}
This page took 1.222641 seconds and 5 git commands to generate.