]> gcc.gnu.org Git - gcc.git/blame - gcc/reload.c
(mark_referenced_resources, case TRAP_IF): Set volatil.
[gcc.git] / gcc / reload.c
CommitLineData
eab89b90 1/* Search an insn for pseudo regs that must be in hard regs and are not.
75301d68 2 Copyright (C) 1987, 88, 89, 92, 93, 94, 1995 Free Software Foundation, Inc.
eab89b90
RK
3
4This file is part of GNU CC.
5
6GNU CC is free software; you can redistribute it and/or modify
7it under the terms of the GNU General Public License as published by
8the Free Software Foundation; either version 2, or (at your option)
9any later version.
10
11GNU CC is distributed in the hope that it will be useful,
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14GNU General Public License for more details.
15
16You should have received a copy of the GNU General Public License
17along with GNU CC; see the file COPYING. If not, write to
e99215a3
RK
18the Free Software Foundation, 59 Temple Place - Suite 330,
19Boston, MA 02111-1307, USA. */
eab89b90
RK
20
21
22/* This file contains subroutines used only from the file reload1.c.
23 It knows how to scan one insn for operands and values
24 that need to be copied into registers to make valid code.
25 It also finds other operands and values which are valid
26 but for which equivalent values in registers exist and
27 ought to be used instead.
28
29 Before processing the first insn of the function, call `init_reload'.
30
31 To scan an insn, call `find_reloads'. This does two things:
32 1. sets up tables describing which values must be reloaded
33 for this insn, and what kind of hard regs they must be reloaded into;
34 2. optionally record the locations where those values appear in
35 the data, so they can be replaced properly later.
36 This is done only if the second arg to `find_reloads' is nonzero.
37
38 The third arg to `find_reloads' specifies the number of levels
39 of indirect addressing supported by the machine. If it is zero,
40 indirect addressing is not valid. If it is one, (MEM (REG n))
41 is valid even if (REG n) did not get a hard register; if it is two,
42 (MEM (MEM (REG n))) is also valid even if (REG n) did not get a
43 hard register, and similarly for higher values.
44
45 Then you must choose the hard regs to reload those pseudo regs into,
46 and generate appropriate load insns before this insn and perhaps
47 also store insns after this insn. Set up the array `reload_reg_rtx'
48 to contain the REG rtx's for the registers you used. In some
49 cases `find_reloads' will return a nonzero value in `reload_reg_rtx'
50 for certain reloads. Then that tells you which register to use,
51 so you do not need to allocate one. But you still do need to add extra
52 instructions to copy the value into and out of that register.
53
54 Finally you must call `subst_reloads' to substitute the reload reg rtx's
55 into the locations already recorded.
56
57NOTE SIDE EFFECTS:
58
59 find_reloads can alter the operands of the instruction it is called on.
60
61 1. Two operands of any sort may be interchanged, if they are in a
62 commutative instruction.
63 This happens only if find_reloads thinks the instruction will compile
64 better that way.
65
66 2. Pseudo-registers that are equivalent to constants are replaced
67 with those constants if they are not in hard registers.
68
691 happens every time find_reloads is called.
702 happens only when REPLACE is 1, which is only when
71actually doing the reloads, not when just counting them.
72
73
74Using a reload register for several reloads in one insn:
75
76When an insn has reloads, it is considered as having three parts:
77the input reloads, the insn itself after reloading, and the output reloads.
78Reloads of values used in memory addresses are often needed for only one part.
79
80When this is so, reload_when_needed records which part needs the reload.
81Two reloads for different parts of the insn can share the same reload
82register.
83
84When a reload is used for addresses in multiple parts, or when it is
85an ordinary operand, it is classified as RELOAD_OTHER, and cannot share
86a register with any other reload. */
87
88#define REG_OK_STRICT
89
10bcde0d 90#include <stdio.h>
eab89b90
RK
91#include "config.h"
92#include "rtl.h"
93#include "insn-config.h"
94#include "insn-codes.h"
95#include "recog.h"
96#include "reload.h"
97#include "regs.h"
98#include "hard-reg-set.h"
99#include "flags.h"
100#include "real.h"
8a840ac9 101#include "output.h"
eab89b90
RK
102
103#ifndef REGISTER_MOVE_COST
104#define REGISTER_MOVE_COST(x, y) 2
105#endif
106\f
107/* The variables set up by `find_reloads' are:
108
109 n_reloads number of distinct reloads needed; max reload # + 1
110 tables indexed by reload number
111 reload_in rtx for value to reload from
112 reload_out rtx for where to store reload-reg afterward if nec
113 (often the same as reload_in)
114 reload_reg_class enum reg_class, saying what regs to reload into
115 reload_inmode enum machine_mode; mode this operand should have
116 when reloaded, on input.
117 reload_outmode enum machine_mode; mode this operand should have
118 when reloaded, on output.
eab89b90
RK
119 reload_optional char, nonzero for an optional reload.
120 Optional reloads are ignored unless the
121 value is already sitting in a register.
122 reload_inc int, positive amount to increment or decrement by if
123 reload_in is a PRE_DEC, PRE_INC, POST_DEC, POST_INC.
124 Ignored otherwise (don't assume it is zero).
125 reload_in_reg rtx. A reg for which reload_in is the equivalent.
126 If reload_in is a symbol_ref which came from
127 reg_equiv_constant, then this is the pseudo
128 which has that symbol_ref as equivalent.
129 reload_reg_rtx rtx. This is the register to reload into.
130 If it is zero when `find_reloads' returns,
131 you must find a suitable register in the class
132 specified by reload_reg_class, and store here
133 an rtx for that register with mode from
134 reload_inmode or reload_outmode.
135 reload_nocombine char, nonzero if this reload shouldn't be
136 combined with another reload.
a8c9daeb
RK
137 reload_opnum int, operand number being reloaded. This is
138 used to group related reloads and need not always
139 be equal to the actual operand number in the insn,
140 though it current will be; for in-out operands, it
141 is one of the two operand numbers.
142 reload_when_needed enum, classifies reload as needed either for
eab89b90
RK
143 addressing an input reload, addressing an output,
144 for addressing a non-reloaded mem ref,
145 or for unspecified purposes (i.e., more than one
146 of the above).
eab89b90 147 reload_secondary_p int, 1 if this is a secondary register for one
9ec7078b
RK
148 or more reloads.
149 reload_secondary_in_reload
150 reload_secondary_out_reload
151 int, gives the reload number of a secondary
152 reload, when needed; otherwise -1
153 reload_secondary_in_icode
154 reload_secondary_out_icode
155 enum insn_code, if a secondary reload is required,
eab89b90
RK
156 gives the INSN_CODE that uses the secondary
157 reload as a scratch register, or CODE_FOR_nothing
158 if the secondary reload register is to be an
159 intermediate register. */
160int n_reloads;
161
162rtx reload_in[MAX_RELOADS];
163rtx reload_out[MAX_RELOADS];
164enum reg_class reload_reg_class[MAX_RELOADS];
165enum machine_mode reload_inmode[MAX_RELOADS];
166enum machine_mode reload_outmode[MAX_RELOADS];
eab89b90
RK
167rtx reload_reg_rtx[MAX_RELOADS];
168char reload_optional[MAX_RELOADS];
169int reload_inc[MAX_RELOADS];
170rtx reload_in_reg[MAX_RELOADS];
171char reload_nocombine[MAX_RELOADS];
a8c9daeb
RK
172int reload_opnum[MAX_RELOADS];
173enum reload_type reload_when_needed[MAX_RELOADS];
eab89b90 174int reload_secondary_p[MAX_RELOADS];
9ec7078b
RK
175int reload_secondary_in_reload[MAX_RELOADS];
176int reload_secondary_out_reload[MAX_RELOADS];
177enum insn_code reload_secondary_in_icode[MAX_RELOADS];
178enum insn_code reload_secondary_out_icode[MAX_RELOADS];
eab89b90
RK
179
180/* All the "earlyclobber" operands of the current insn
181 are recorded here. */
182int n_earlyclobbers;
183rtx reload_earlyclobbers[MAX_RECOG_OPERANDS];
184
a8c9daeb
RK
185int reload_n_operands;
186
eab89b90
RK
187/* Replacing reloads.
188
189 If `replace_reloads' is nonzero, then as each reload is recorded
190 an entry is made for it in the table `replacements'.
191 Then later `subst_reloads' can look through that table and
192 perform all the replacements needed. */
193
194/* Nonzero means record the places to replace. */
195static int replace_reloads;
196
197/* Each replacement is recorded with a structure like this. */
198struct replacement
199{
200 rtx *where; /* Location to store in */
201 rtx *subreg_loc; /* Location of SUBREG if WHERE is inside
202 a SUBREG; 0 otherwise. */
203 int what; /* which reload this is for */
204 enum machine_mode mode; /* mode it must have */
205};
206
207static struct replacement replacements[MAX_RECOG_OPERANDS * ((MAX_REGS_PER_ADDRESS * 2) + 1)];
208
209/* Number of replacements currently recorded. */
210static int n_replacements;
211
a8c9daeb
RK
212/* Used to track what is modified by an operand. */
213struct decomposition
214{
215 int reg_flag; /* Nonzero if referencing a register. */
216 int safe; /* Nonzero if this can't conflict with anything. */
9faa82d8 217 rtx base; /* Base address for MEM. */
a8c9daeb 218 HOST_WIDE_INT start; /* Starting offset or register number. */
2a6d5ce0 219 HOST_WIDE_INT end; /* Ending offset or register number. */
a8c9daeb
RK
220};
221
eab89b90
RK
222/* MEM-rtx's created for pseudo-regs in stack slots not directly addressable;
223 (see reg_equiv_address). */
224static rtx memlocs[MAX_RECOG_OPERANDS * ((MAX_REGS_PER_ADDRESS * 2) + 1)];
225static int n_memlocs;
226
0dadecf6
RK
227#ifdef SECONDARY_MEMORY_NEEDED
228
229/* Save MEMs needed to copy from one class of registers to another. One MEM
230 is used per mode, but normally only one or two modes are ever used.
231
a8c9daeb
RK
232 We keep two versions, before and after register elimination. The one
233 after register elimination is record separately for each operand. This
234 is done in case the address is not valid to be sure that we separately
235 reload each. */
0dadecf6
RK
236
237static rtx secondary_memlocs[NUM_MACHINE_MODES];
77545d45 238static rtx secondary_memlocs_elim[NUM_MACHINE_MODES][MAX_RECOG_OPERANDS];
0dadecf6
RK
239#endif
240
eab89b90
RK
241/* The instruction we are doing reloads for;
242 so we can test whether a register dies in it. */
243static rtx this_insn;
244
245/* Nonzero if this instruction is a user-specified asm with operands. */
246static int this_insn_is_asm;
247
248/* If hard_regs_live_known is nonzero,
249 we can tell which hard regs are currently live,
250 at least enough to succeed in choosing dummy reloads. */
251static int hard_regs_live_known;
252
253/* Indexed by hard reg number,
254 element is nonegative if hard reg has been spilled.
255 This vector is passed to `find_reloads' as an argument
256 and is not changed here. */
257static short *static_reload_reg_p;
258
259/* Set to 1 in subst_reg_equivs if it changes anything. */
260static int subst_reg_equivs_changed;
261
262/* On return from push_reload, holds the reload-number for the OUT
263 operand, which can be different for that from the input operand. */
264static int output_reloadnum;
265
9ec7078b
RK
266 /* Compare two RTX's. */
267#define MATCHES(x, y) \
268 (x == y || (x != 0 && (GET_CODE (x) == REG \
269 ? GET_CODE (y) == REG && REGNO (x) == REGNO (y) \
270 : rtx_equal_p (x, y) && ! side_effects_p (x))))
271
272 /* Indicates if two reloads purposes are for similar enough things that we
273 can merge their reloads. */
274#define MERGABLE_RELOADS(when1, when2, op1, op2) \
275 ((when1) == RELOAD_OTHER || (when2) == RELOAD_OTHER \
276 || ((when1) == (when2) && (op1) == (op2)) \
277 || ((when1) == RELOAD_FOR_INPUT && (when2) == RELOAD_FOR_INPUT) \
278 || ((when1) == RELOAD_FOR_OPERAND_ADDRESS \
279 && (when2) == RELOAD_FOR_OPERAND_ADDRESS) \
280 || ((when1) == RELOAD_FOR_OTHER_ADDRESS \
281 && (when2) == RELOAD_FOR_OTHER_ADDRESS))
282
283 /* Nonzero if these two reload purposes produce RELOAD_OTHER when merged. */
284#define MERGE_TO_OTHER(when1, when2, op1, op2) \
285 ((when1) != (when2) \
286 || ! ((op1) == (op2) \
287 || (when1) == RELOAD_FOR_INPUT \
288 || (when1) == RELOAD_FOR_OPERAND_ADDRESS \
289 || (when1) == RELOAD_FOR_OTHER_ADDRESS))
290
291static int push_secondary_reload PROTO((int, rtx, int, int, enum reg_class,
292 enum machine_mode, enum reload_type,
293 enum insn_code *));
c6716840 294static enum reg_class find_valid_class PROTO((enum machine_mode, int));
a8c9daeb
RK
295static int push_reload PROTO((rtx, rtx, rtx *, rtx *, enum reg_class,
296 enum machine_mode, enum machine_mode,
297 int, int, int, enum reload_type));
298static void push_replacement PROTO((rtx *, int, enum machine_mode));
299static void combine_reloads PROTO((void));
300static rtx find_dummy_reload PROTO((rtx, rtx, rtx *, rtx *,
36b50568 301 enum machine_mode, enum machine_mode,
a8c9daeb 302 enum reg_class, int));
4644aad4 303static int earlyclobber_operand_p PROTO((rtx));
a8c9daeb
RK
304static int hard_reg_set_here_p PROTO((int, int, rtx));
305static struct decomposition decompose PROTO((rtx));
306static int immune_p PROTO((rtx, rtx, struct decomposition));
307static int alternative_allows_memconst PROTO((char *, int));
308static rtx find_reloads_toplev PROTO((rtx, int, enum reload_type, int, int));
309static rtx make_memloc PROTO((rtx, int));
310static int find_reloads_address PROTO((enum machine_mode, rtx *, rtx, rtx *,
311 int, enum reload_type, int));
312static rtx subst_reg_equivs PROTO((rtx));
313static rtx subst_indexed_address PROTO((rtx));
314static int find_reloads_address_1 PROTO((rtx, int, rtx *, int,
315 enum reload_type,int));
316static void find_reloads_address_part PROTO((rtx, rtx *, enum reg_class,
317 enum machine_mode, int,
318 enum reload_type, int));
319static int find_inc_amount PROTO((rtx, rtx));
eab89b90
RK
320\f
321#ifdef HAVE_SECONDARY_RELOADS
322
323/* Determine if any secondary reloads are needed for loading (if IN_P is
324 non-zero) or storing (if IN_P is zero) X to or from a reload register of
9ec7078b
RK
325 register class RELOAD_CLASS in mode RELOAD_MODE. If secondary reloads
326 are needed, push them.
327
328 Return the reload number of the secondary reload we made, or -1 if
329 we didn't need one. *PICODE is set to the insn_code to use if we do
330 need a secondary reload. */
331
332static int
333push_secondary_reload (in_p, x, opnum, optional, reload_class, reload_mode,
334 type, picode)
335 int in_p;
eab89b90 336 rtx x;
9ec7078b
RK
337 int opnum;
338 int optional;
eab89b90
RK
339 enum reg_class reload_class;
340 enum machine_mode reload_mode;
9ec7078b 341 enum reload_type type;
eab89b90 342 enum insn_code *picode;
eab89b90
RK
343{
344 enum reg_class class = NO_REGS;
345 enum machine_mode mode = reload_mode;
346 enum insn_code icode = CODE_FOR_nothing;
347 enum reg_class t_class = NO_REGS;
348 enum machine_mode t_mode = VOIDmode;
349 enum insn_code t_icode = CODE_FOR_nothing;
d94d2abc 350 enum reload_type secondary_type;
9ec7078b
RK
351 int i;
352 int s_reload, t_reload = -1;
353
d94d2abc
RK
354 if (type == RELOAD_FOR_INPUT_ADDRESS || type == RELOAD_FOR_OUTPUT_ADDRESS)
355 secondary_type = type;
356 else
357 secondary_type = in_p ? RELOAD_FOR_INPUT_ADDRESS : RELOAD_FOR_OUTPUT_ADDRESS;
358
9ec7078b 359 *picode = CODE_FOR_nothing;
eab89b90 360
67340b03
RK
361 /* If X is a paradoxical SUBREG, use the inner value to determine both the
362 mode and object being reloaded. */
363 if (GET_CODE (x) == SUBREG
4bcdd4d0
RK
364#ifdef CLASS_CANNOT_CHANGE_SIZE
365 && reload_class != CLASS_CANNOT_CHANGE_SIZE
366#endif
67340b03
RK
367 && (GET_MODE_SIZE (GET_MODE (x))
368 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))))
369 {
370 x = SUBREG_REG (x);
371 reload_mode = GET_MODE (x);
372 }
373
d45cf215
RS
374 /* If X is a pseudo-register that has an equivalent MEM (actually, if it
375 is still a pseudo-register by now, it *must* have an equivalent MEM
376 but we don't want to assume that), use that equivalent when seeing if
377 a secondary reload is needed since whether or not a reload is needed
378 might be sensitive to the form of the MEM. */
379
380 if (GET_CODE (x) == REG && REGNO (x) >= FIRST_PSEUDO_REGISTER
381 && reg_equiv_mem[REGNO (x)] != 0)
382 x = reg_equiv_mem[REGNO (x)];
383
eab89b90
RK
384#ifdef SECONDARY_INPUT_RELOAD_CLASS
385 if (in_p)
386 class = SECONDARY_INPUT_RELOAD_CLASS (reload_class, reload_mode, x);
387#endif
388
389#ifdef SECONDARY_OUTPUT_RELOAD_CLASS
390 if (! in_p)
391 class = SECONDARY_OUTPUT_RELOAD_CLASS (reload_class, reload_mode, x);
392#endif
393
9ec7078b 394 /* If we don't need any secondary registers, done. */
eab89b90 395 if (class == NO_REGS)
9ec7078b 396 return -1;
eab89b90
RK
397
398 /* Get a possible insn to use. If the predicate doesn't accept X, don't
399 use the insn. */
400
401 icode = (in_p ? reload_in_optab[(int) reload_mode]
402 : reload_out_optab[(int) reload_mode]);
403
404 if (icode != CODE_FOR_nothing
405 && insn_operand_predicate[(int) icode][in_p]
406 && (! (insn_operand_predicate[(int) icode][in_p]) (x, reload_mode)))
407 icode = CODE_FOR_nothing;
408
409 /* If we will be using an insn, see if it can directly handle the reload
410 register we will be using. If it can, the secondary reload is for a
411 scratch register. If it can't, we will use the secondary reload for
412 an intermediate register and require a tertiary reload for the scratch
413 register. */
414
415 if (icode != CODE_FOR_nothing)
416 {
417 /* If IN_P is non-zero, the reload register will be the output in
418 operand 0. If IN_P is zero, the reload register will be the input
419 in operand 1. Outputs should have an initial "=", which we must
420 skip. */
421
d45cf215 422 char insn_letter = insn_operand_constraint[(int) icode][!in_p][in_p];
eab89b90 423 enum reg_class insn_class
d45cf215
RS
424 = (insn_letter == 'r' ? GENERAL_REGS
425 : REG_CLASS_FROM_LETTER (insn_letter));
eab89b90
RK
426
427 if (insn_class == NO_REGS
428 || (in_p && insn_operand_constraint[(int) icode][!in_p][0] != '=')
429 /* The scratch register's constraint must start with "=&". */
430 || insn_operand_constraint[(int) icode][2][0] != '='
431 || insn_operand_constraint[(int) icode][2][1] != '&')
432 abort ();
433
434 if (reg_class_subset_p (reload_class, insn_class))
435 mode = insn_operand_mode[(int) icode][2];
436 else
437 {
d45cf215 438 char t_letter = insn_operand_constraint[(int) icode][2][2];
eab89b90
RK
439 class = insn_class;
440 t_mode = insn_operand_mode[(int) icode][2];
d45cf215
RS
441 t_class = (t_letter == 'r' ? GENERAL_REGS
442 : REG_CLASS_FROM_LETTER (t_letter));
eab89b90
RK
443 t_icode = icode;
444 icode = CODE_FOR_nothing;
445 }
446 }
447
9ec7078b
RK
448 /* This case isn't valid, so fail. Reload is allowed to use the same
449 register for RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT reloads, but
450 in the case of a secondary register, we actually need two different
451 registers for correct code. We fail here to prevent the possibility of
452 silently generating incorrect code later.
453
454 The convention is that secondary input reloads are valid only if the
455 secondary_class is different from class. If you have such a case, you
456 can not use secondary reloads, you must work around the problem some
457 other way.
458
459 Allow this when MODE is not reload_mode and assume that the generated
460 code handles this case (it does on the Alpha, which is the only place
461 this currently happens). */
462
463 if (in_p && class == reload_class && mode == reload_mode)
464 abort ();
465
466 /* If we need a tertiary reload, see if we have one we can reuse or else
467 make a new one. */
468
469 if (t_class != NO_REGS)
470 {
471 for (t_reload = 0; t_reload < n_reloads; t_reload++)
472 if (reload_secondary_p[t_reload]
473 && (reg_class_subset_p (t_class, reload_reg_class[t_reload])
474 || reg_class_subset_p (reload_reg_class[t_reload], t_class))
475 && ((in_p && reload_inmode[t_reload] == t_mode)
476 || (! in_p && reload_outmode[t_reload] == t_mode))
477 && ((in_p && (reload_secondary_in_icode[t_reload]
478 == CODE_FOR_nothing))
479 || (! in_p &&(reload_secondary_out_icode[t_reload]
480 == CODE_FOR_nothing)))
481 && (reg_class_size[(int) t_class] == 1
482#ifdef SMALL_REGISTER_CLASSES
483 || 1
484#endif
485 )
486 && MERGABLE_RELOADS (secondary_type,
487 reload_when_needed[t_reload],
488 opnum, reload_opnum[t_reload]))
489 {
490 if (in_p)
491 reload_inmode[t_reload] = t_mode;
492 if (! in_p)
493 reload_outmode[t_reload] = t_mode;
494
495 if (reg_class_subset_p (t_class, reload_reg_class[t_reload]))
496 reload_reg_class[t_reload] = t_class;
497
498 reload_opnum[t_reload] = MIN (reload_opnum[t_reload], opnum);
499 reload_optional[t_reload] &= optional;
500 reload_secondary_p[t_reload] = 1;
501 if (MERGE_TO_OTHER (secondary_type, reload_when_needed[t_reload],
502 opnum, reload_opnum[t_reload]))
503 reload_when_needed[t_reload] = RELOAD_OTHER;
504 }
505
506 if (t_reload == n_reloads)
507 {
508 /* We need to make a new tertiary reload for this register class. */
509 reload_in[t_reload] = reload_out[t_reload] = 0;
510 reload_reg_class[t_reload] = t_class;
511 reload_inmode[t_reload] = in_p ? t_mode : VOIDmode;
512 reload_outmode[t_reload] = ! in_p ? t_mode : VOIDmode;
513 reload_reg_rtx[t_reload] = 0;
514 reload_optional[t_reload] = optional;
515 reload_inc[t_reload] = 0;
516 /* Maybe we could combine these, but it seems too tricky. */
517 reload_nocombine[t_reload] = 1;
518 reload_in_reg[t_reload] = 0;
519 reload_opnum[t_reload] = opnum;
520 reload_when_needed[t_reload] = secondary_type;
521 reload_secondary_in_reload[t_reload] = -1;
522 reload_secondary_out_reload[t_reload] = -1;
523 reload_secondary_in_icode[t_reload] = CODE_FOR_nothing;
524 reload_secondary_out_icode[t_reload] = CODE_FOR_nothing;
525 reload_secondary_p[t_reload] = 1;
526
527 n_reloads++;
528 }
529 }
530
531 /* See if we can reuse an existing secondary reload. */
532 for (s_reload = 0; s_reload < n_reloads; s_reload++)
533 if (reload_secondary_p[s_reload]
534 && (reg_class_subset_p (class, reload_reg_class[s_reload])
535 || reg_class_subset_p (reload_reg_class[s_reload], class))
536 && ((in_p && reload_inmode[s_reload] == mode)
537 || (! in_p && reload_outmode[s_reload] == mode))
538 && ((in_p && reload_secondary_in_reload[s_reload] == t_reload)
539 || (! in_p && reload_secondary_out_reload[s_reload] == t_reload))
540 && ((in_p && reload_secondary_in_icode[s_reload] == t_icode)
541 || (! in_p && reload_secondary_out_icode[s_reload] == t_icode))
542 && (reg_class_size[(int) class] == 1
543#ifdef SMALL_REGISTER_CLASSES
544 || 1
545#endif
546 )
547 && MERGABLE_RELOADS (secondary_type, reload_when_needed[s_reload],
548 opnum, reload_opnum[s_reload]))
549 {
550 if (in_p)
551 reload_inmode[s_reload] = mode;
552 if (! in_p)
553 reload_outmode[s_reload] = mode;
554
555 if (reg_class_subset_p (class, reload_reg_class[s_reload]))
556 reload_reg_class[s_reload] = class;
557
558 reload_opnum[s_reload] = MIN (reload_opnum[s_reload], opnum);
559 reload_optional[s_reload] &= optional;
560 reload_secondary_p[s_reload] = 1;
561 if (MERGE_TO_OTHER (secondary_type, reload_when_needed[s_reload],
562 opnum, reload_opnum[s_reload]))
563 reload_when_needed[s_reload] = RELOAD_OTHER;
564 }
eab89b90 565
9ec7078b
RK
566 if (s_reload == n_reloads)
567 {
568 /* We need to make a new secondary reload for this register class. */
569 reload_in[s_reload] = reload_out[s_reload] = 0;
570 reload_reg_class[s_reload] = class;
571
572 reload_inmode[s_reload] = in_p ? mode : VOIDmode;
573 reload_outmode[s_reload] = ! in_p ? mode : VOIDmode;
574 reload_reg_rtx[s_reload] = 0;
575 reload_optional[s_reload] = optional;
576 reload_inc[s_reload] = 0;
577 /* Maybe we could combine these, but it seems too tricky. */
578 reload_nocombine[s_reload] = 1;
579 reload_in_reg[s_reload] = 0;
580 reload_opnum[s_reload] = opnum;
581 reload_when_needed[s_reload] = secondary_type;
582 reload_secondary_in_reload[s_reload] = in_p ? t_reload : -1;
583 reload_secondary_out_reload[s_reload] = ! in_p ? t_reload : -1;
584 reload_secondary_in_icode[s_reload] = in_p ? t_icode : CODE_FOR_nothing;
585 reload_secondary_out_icode[s_reload]
586 = ! in_p ? t_icode : CODE_FOR_nothing;
587 reload_secondary_p[s_reload] = 1;
588
589 n_reloads++;
590
591#ifdef SECONDARY_MEMORY_NEEDED
592 /* If we need a memory location to copy between the two reload regs,
593 set it up now. */
594
595 if (in_p && icode == CODE_FOR_nothing
596 && SECONDARY_MEMORY_NEEDED (class, reload_class, reload_mode))
597 get_secondary_mem (x, reload_mode, opnum, type);
598
599 if (! in_p && icode == CODE_FOR_nothing
600 && SECONDARY_MEMORY_NEEDED (reload_class, class, reload_mode))
601 get_secondary_mem (x, reload_mode, opnum, type);
602#endif
603 }
604
605 *picode = icode;
606 return s_reload;
eab89b90
RK
607}
608#endif /* HAVE_SECONDARY_RELOADS */
609\f
0dadecf6
RK
610#ifdef SECONDARY_MEMORY_NEEDED
611
612/* Return a memory location that will be used to copy X in mode MODE.
613 If we haven't already made a location for this mode in this insn,
614 call find_reloads_address on the location being returned. */
615
616rtx
a8c9daeb 617get_secondary_mem (x, mode, opnum, type)
0dadecf6
RK
618 rtx x;
619 enum machine_mode mode;
a8c9daeb
RK
620 int opnum;
621 enum reload_type type;
0dadecf6
RK
622{
623 rtx loc;
624 int mem_valid;
625
64609742
RK
626 /* By default, if MODE is narrower than a word, widen it to a word.
627 This is required because most machines that require these memory
628 locations do not support short load and stores from all registers
629 (e.g., FP registers). */
630
631#ifdef SECONDARY_MEMORY_NEEDED_MODE
632 mode = SECONDARY_MEMORY_NEEDED_MODE (mode);
633#else
0dadecf6
RK
634 if (GET_MODE_BITSIZE (mode) < BITS_PER_WORD)
635 mode = mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (mode), 0);
64609742 636#endif
0dadecf6 637
77545d45
RK
638 /* If we already have made a MEM for this operand in MODE, return it. */
639 if (secondary_memlocs_elim[(int) mode][opnum] != 0)
640 return secondary_memlocs_elim[(int) mode][opnum];
0dadecf6
RK
641
642 /* If this is the first time we've tried to get a MEM for this mode,
643 allocate a new one. `something_changed' in reload will get set
644 by noticing that the frame size has changed. */
645
646 if (secondary_memlocs[(int) mode] == 0)
b24a53d5
JW
647 {
648#ifdef SECONDARY_MEMORY_NEEDED_RTX
649 secondary_memlocs[(int) mode] = SECONDARY_MEMORY_NEEDED_RTX (mode);
650#else
651 secondary_memlocs[(int) mode]
652 = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
653#endif
654 }
0dadecf6
RK
655
656 /* Get a version of the address doing any eliminations needed. If that
657 didn't give us a new MEM, make a new one if it isn't valid. */
658
a8c9daeb 659 loc = eliminate_regs (secondary_memlocs[(int) mode], VOIDmode, NULL_RTX);
0dadecf6
RK
660 mem_valid = strict_memory_address_p (mode, XEXP (loc, 0));
661
662 if (! mem_valid && loc == secondary_memlocs[(int) mode])
663 loc = copy_rtx (loc);
664
665 /* The only time the call below will do anything is if the stack
666 offset is too large. In that case IND_LEVELS doesn't matter, so we
a8c9daeb
RK
667 can just pass a zero. Adjust the type to be the address of the
668 corresponding object. If the address was valid, save the eliminated
669 address. If it wasn't valid, we need to make a reload each time, so
670 don't save it. */
0dadecf6 671
a8c9daeb
RK
672 if (! mem_valid)
673 {
674 type = (type == RELOAD_FOR_INPUT ? RELOAD_FOR_INPUT_ADDRESS
675 : type == RELOAD_FOR_OUTPUT ? RELOAD_FOR_OUTPUT_ADDRESS
676 : RELOAD_OTHER);
8d618585 677
a8c9daeb
RK
678 find_reloads_address (mode, NULL_PTR, XEXP (loc, 0), &XEXP (loc, 0),
679 opnum, type, 0);
680 }
0dadecf6 681
77545d45 682 secondary_memlocs_elim[(int) mode][opnum] = loc;
0dadecf6
RK
683 return loc;
684}
685
686/* Clear any secondary memory locations we've made. */
687
688void
689clear_secondary_mem ()
690{
4c9a05bc 691 bzero ((char *) secondary_memlocs, sizeof secondary_memlocs);
0dadecf6
RK
692}
693#endif /* SECONDARY_MEMORY_NEEDED */
694\f
c6716840
RK
695/* Find the largest class for which every register number plus N is valid in
696 M1 (if in range). Abort if no such class exists. */
697
698static enum reg_class
699find_valid_class (m1, n)
700 enum machine_mode m1;
701 int n;
702{
703 int class;
704 int regno;
705 enum reg_class best_class;
706 int best_size = 0;
707
708 for (class = 1; class < N_REG_CLASSES; class++)
709 {
710 int bad = 0;
711 for (regno = 0; regno < FIRST_PSEUDO_REGISTER && ! bad; regno++)
712 if (TEST_HARD_REG_BIT (reg_class_contents[class], regno)
713 && TEST_HARD_REG_BIT (reg_class_contents[class], regno + n)
714 && ! HARD_REGNO_MODE_OK (regno + n, m1))
715 bad = 1;
716
717 if (! bad && reg_class_size[class] > best_size)
718 best_class = class, best_size = reg_class_size[class];
719 }
720
721 if (best_size == 0)
722 abort ();
723
724 return best_class;
725}
726\f
a8c9daeb 727/* Record one reload that needs to be performed.
eab89b90
RK
728 IN is an rtx saying where the data are to be found before this instruction.
729 OUT says where they must be stored after the instruction.
730 (IN is zero for data not read, and OUT is zero for data not written.)
731 INLOC and OUTLOC point to the places in the instructions where
732 IN and OUT were found.
a8c9daeb
RK
733 If IN and OUT are both non-zero, it means the same register must be used
734 to reload both IN and OUT.
735
eab89b90
RK
736 CLASS is a register class required for the reloaded data.
737 INMODE is the machine mode that the instruction requires
738 for the reg that replaces IN and OUTMODE is likewise for OUT.
739
740 If IN is zero, then OUT's location and mode should be passed as
741 INLOC and INMODE.
742
743 STRICT_LOW is the 1 if there is a containing STRICT_LOW_PART rtx.
744
745 OPTIONAL nonzero means this reload does not need to be performed:
746 it can be discarded if that is more convenient.
747
a8c9daeb
RK
748 OPNUM and TYPE say what the purpose of this reload is.
749
eab89b90
RK
750 The return value is the reload-number for this reload.
751
752 If both IN and OUT are nonzero, in some rare cases we might
753 want to make two separate reloads. (Actually we never do this now.)
754 Therefore, the reload-number for OUT is stored in
755 output_reloadnum when we return; the return value applies to IN.
756 Usually (presently always), when IN and OUT are nonzero,
757 the two reload-numbers are equal, but the caller should be careful to
758 distinguish them. */
759
760static int
761push_reload (in, out, inloc, outloc, class,
a8c9daeb 762 inmode, outmode, strict_low, optional, opnum, type)
eab89b90
RK
763 register rtx in, out;
764 rtx *inloc, *outloc;
765 enum reg_class class;
766 enum machine_mode inmode, outmode;
767 int strict_low;
768 int optional;
a8c9daeb
RK
769 int opnum;
770 enum reload_type type;
eab89b90
RK
771{
772 register int i;
773 int dont_share = 0;
74347d76 774 int dont_remove_subreg = 0;
eab89b90 775 rtx *in_subreg_loc = 0, *out_subreg_loc = 0;
9ec7078b 776 int secondary_in_reload = -1, secondary_out_reload = -1;
a229128d
RK
777 enum insn_code secondary_in_icode = CODE_FOR_nothing;
778 enum insn_code secondary_out_icode = CODE_FOR_nothing;
a8c9daeb 779
eab89b90
RK
780 /* INMODE and/or OUTMODE could be VOIDmode if no mode
781 has been specified for the operand. In that case,
782 use the operand's mode as the mode to reload. */
783 if (inmode == VOIDmode && in != 0)
784 inmode = GET_MODE (in);
785 if (outmode == VOIDmode && out != 0)
786 outmode = GET_MODE (out);
787
788 /* If IN is a pseudo register everywhere-equivalent to a constant, and
789 it is not in a hard register, reload straight from the constant,
790 since we want to get rid of such pseudo registers.
791 Often this is done earlier, but not always in find_reloads_address. */
792 if (in != 0 && GET_CODE (in) == REG)
793 {
794 register int regno = REGNO (in);
795
796 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
797 && reg_equiv_constant[regno] != 0)
798 in = reg_equiv_constant[regno];
799 }
800
801 /* Likewise for OUT. Of course, OUT will never be equivalent to
802 an actual constant, but it might be equivalent to a memory location
803 (in the case of a parameter). */
804 if (out != 0 && GET_CODE (out) == REG)
805 {
806 register int regno = REGNO (out);
807
808 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
809 && reg_equiv_constant[regno] != 0)
810 out = reg_equiv_constant[regno];
811 }
812
813 /* If we have a read-write operand with an address side-effect,
814 change either IN or OUT so the side-effect happens only once. */
815 if (in != 0 && out != 0 && GET_CODE (in) == MEM && rtx_equal_p (in, out))
816 {
817 if (GET_CODE (XEXP (in, 0)) == POST_INC
818 || GET_CODE (XEXP (in, 0)) == POST_DEC)
819 in = gen_rtx (MEM, GET_MODE (in), XEXP (XEXP (in, 0), 0));
820 if (GET_CODE (XEXP (in, 0)) == PRE_INC
821 || GET_CODE (XEXP (in, 0)) == PRE_DEC)
822 out = gen_rtx (MEM, GET_MODE (out), XEXP (XEXP (out, 0), 0));
823 }
824
a61c98cf 825 /* If we are reloading a (SUBREG constant ...), really reload just the
ca769828 826 inside expression in its own mode. Similarly for (SUBREG (PLUS ...)).
a61c98cf
RK
827 If we have (SUBREG:M1 (MEM:M2 ...) ...) (or an inner REG that is still
828 a pseudo and hence will become a MEM) with M1 wider than M2 and the
829 register is a pseudo, also reload the inside expression.
f72ccbe6 830 For machines that extend byte loads, do this for any SUBREG of a pseudo
486d8509
RK
831 where both M1 and M2 are a word or smaller, M1 is wider than M2, and
832 M2 is an integral mode that gets extended when loaded.
86c31b2d 833 Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
eab89b90
RK
834 either M1 is not valid for R or M2 is wider than a word but we only
835 need one word to store an M2-sized quantity in R.
86c31b2d
RS
836 (However, if OUT is nonzero, we need to reload the reg *and*
837 the subreg, so do nothing here, and let following statement handle it.)
838
eab89b90
RK
839 Note that the case of (SUBREG (CONST_INT...)...) is handled elsewhere;
840 we can't handle it here because CONST_INT does not indicate a mode.
841
842 Similarly, we must reload the inside expression if we have a
df62f951
RK
843 STRICT_LOW_PART (presumably, in == out in the cas).
844
845 Also reload the inner expression if it does not require a secondary
486d8509
RK
846 reload but the SUBREG does.
847
848 Finally, reload the inner expression if it is a register that is in
849 the class whose registers cannot be referenced in a different size
d030f4b2
RK
850 and M1 is not the same size as M2. If SUBREG_WORD is nonzero, we
851 cannot reload just the inside since we might end up with the wrong
852 register class. */
eab89b90 853
d030f4b2 854 if (in != 0 && GET_CODE (in) == SUBREG && SUBREG_WORD (in) == 0
94bafba7
RK
855#ifdef CLASS_CANNOT_CHANGE_SIZE
856 && class != CLASS_CANNOT_CHANGE_SIZE
857#endif
a61c98cf 858 && (CONSTANT_P (SUBREG_REG (in))
ca769828 859 || GET_CODE (SUBREG_REG (in)) == PLUS
eab89b90 860 || strict_low
a61c98cf
RK
861 || (((GET_CODE (SUBREG_REG (in)) == REG
862 && REGNO (SUBREG_REG (in)) >= FIRST_PSEUDO_REGISTER)
863 || GET_CODE (SUBREG_REG (in)) == MEM)
03b72c86
RK
864 && ((GET_MODE_SIZE (inmode)
865 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
09bf0250 866#ifdef LOAD_EXTEND_OP
03b72c86
RK
867 || (GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
868 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
869 <= UNITS_PER_WORD)
870 && (GET_MODE_SIZE (inmode)
486d8509
RK
871 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
872 && INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (in)))
873 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (in))) != NIL)
f72ccbe6 874#endif
03b72c86 875 ))
a61c98cf
RK
876 || (GET_CODE (SUBREG_REG (in)) == REG
877 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
86c31b2d
RS
878 /* The case where out is nonzero
879 is handled differently in the following statement. */
880 && (out == 0 || SUBREG_WORD (in) == 0)
f72ccbe6
RK
881 && ((GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
882 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
883 > UNITS_PER_WORD)
884 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
885 / UNITS_PER_WORD)
886 != HARD_REGNO_NREGS (REGNO (SUBREG_REG (in)),
887 GET_MODE (SUBREG_REG (in)))))
888 || ! HARD_REGNO_MODE_OK ((REGNO (SUBREG_REG (in))
889 + SUBREG_WORD (in)),
890 inmode)))
df62f951
RK
891#ifdef SECONDARY_INPUT_RELOAD_CLASS
892 || (SECONDARY_INPUT_RELOAD_CLASS (class, inmode, in) != NO_REGS
893 && (SECONDARY_INPUT_RELOAD_CLASS (class,
894 GET_MODE (SUBREG_REG (in)),
895 SUBREG_REG (in))
896 == NO_REGS))
486d8509
RK
897#endif
898#ifdef CLASS_CANNOT_CHANGE_SIZE
899 || (GET_CODE (SUBREG_REG (in)) == REG
900 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
901 && (TEST_HARD_REG_BIT
902 (reg_class_contents[(int) CLASS_CANNOT_CHANGE_SIZE],
903 REGNO (SUBREG_REG (in))))
904 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
905 != GET_MODE_SIZE (inmode)))
df62f951
RK
906#endif
907 ))
eab89b90
RK
908 {
909 in_subreg_loc = inloc;
910 inloc = &SUBREG_REG (in);
911 in = *inloc;
09bf0250 912#ifndef LOAD_EXTEND_OP
eab89b90
RK
913 if (GET_CODE (in) == MEM)
914 /* This is supposed to happen only for paradoxical subregs made by
915 combine.c. (SUBREG (MEM)) isn't supposed to occur other ways. */
916 if (GET_MODE_SIZE (GET_MODE (in)) > GET_MODE_SIZE (inmode))
917 abort ();
e05a9da8 918#endif
eab89b90
RK
919 inmode = GET_MODE (in);
920 }
921
86c31b2d
RS
922 /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
923 either M1 is not valid for R or M2 is wider than a word but we only
924 need one word to store an M2-sized quantity in R.
925
926 However, we must reload the inner reg *as well as* the subreg in
927 that case. */
928
929 if (in != 0 && GET_CODE (in) == SUBREG
930 && GET_CODE (SUBREG_REG (in)) == REG
931 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
c6716840
RK
932 && (! HARD_REGNO_MODE_OK (REGNO (SUBREG_REG (in)) + SUBREG_WORD (in),
933 inmode)
86c31b2d
RS
934 || (GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
935 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
936 > UNITS_PER_WORD)
937 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
938 / UNITS_PER_WORD)
939 != HARD_REGNO_NREGS (REGNO (SUBREG_REG (in)),
940 GET_MODE (SUBREG_REG (in)))))))
941 {
c96d01ab
RK
942 /* This relies on the fact that emit_reload_insns outputs the
943 instructions for input reloads of type RELOAD_OTHER in the same
944 order as the reloads. Thus if the outer reload is also of type
945 RELOAD_OTHER, we are guaranteed that this inner reload will be
946 output before the outer reload. */
86c31b2d 947 push_reload (SUBREG_REG (in), NULL_RTX, &SUBREG_REG (in), NULL_PTR,
c6716840
RK
948 find_valid_class (inmode, SUBREG_WORD (in)),
949 VOIDmode, VOIDmode, 0, 0, opnum, type);
74347d76 950 dont_remove_subreg = 1;
86c31b2d
RS
951 }
952
953
eab89b90
RK
954 /* Similarly for paradoxical and problematical SUBREGs on the output.
955 Note that there is no reason we need worry about the previous value
956 of SUBREG_REG (out); even if wider than out,
957 storing in a subreg is entitled to clobber it all
958 (except in the case of STRICT_LOW_PART,
959 and in that case the constraint should label it input-output.) */
d030f4b2 960 if (out != 0 && GET_CODE (out) == SUBREG && SUBREG_WORD (out) == 0
94bafba7
RK
961#ifdef CLASS_CANNOT_CHANGE_SIZE
962 && class != CLASS_CANNOT_CHANGE_SIZE
963#endif
a61c98cf 964 && (CONSTANT_P (SUBREG_REG (out))
eab89b90 965 || strict_low
a61c98cf
RK
966 || (((GET_CODE (SUBREG_REG (out)) == REG
967 && REGNO (SUBREG_REG (out)) >= FIRST_PSEUDO_REGISTER)
968 || GET_CODE (SUBREG_REG (out)) == MEM)
03b72c86 969 && ((GET_MODE_SIZE (outmode)
486d8509 970 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))))
eab89b90
RK
971 || (GET_CODE (SUBREG_REG (out)) == REG
972 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
f72ccbe6
RK
973 && ((GET_MODE_SIZE (outmode) <= UNITS_PER_WORD
974 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
975 > UNITS_PER_WORD)
976 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
977 / UNITS_PER_WORD)
978 != HARD_REGNO_NREGS (REGNO (SUBREG_REG (out)),
979 GET_MODE (SUBREG_REG (out)))))
980 || ! HARD_REGNO_MODE_OK ((REGNO (SUBREG_REG (out))
981 + SUBREG_WORD (out)),
982 outmode)))
df62f951
RK
983#ifdef SECONDARY_OUTPUT_RELOAD_CLASS
984 || (SECONDARY_OUTPUT_RELOAD_CLASS (class, outmode, out) != NO_REGS
985 && (SECONDARY_OUTPUT_RELOAD_CLASS (class,
986 GET_MODE (SUBREG_REG (out)),
987 SUBREG_REG (out))
988 == NO_REGS))
486d8509
RK
989#endif
990#ifdef CLASS_CANNOT_CHANGE_SIZE
991 || (GET_CODE (SUBREG_REG (out)) == REG
992 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
993 && (TEST_HARD_REG_BIT
994 (reg_class_contents[(int) CLASS_CANNOT_CHANGE_SIZE],
995 REGNO (SUBREG_REG (out))))
996 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
997 != GET_MODE_SIZE (outmode)))
df62f951
RK
998#endif
999 ))
eab89b90
RK
1000 {
1001 out_subreg_loc = outloc;
1002 outloc = &SUBREG_REG (out);
e05a9da8 1003 out = *outloc;
09bf0250 1004#ifndef LOAD_EXTEND_OP
e05a9da8 1005 if (GET_CODE (out) == MEM
eab89b90
RK
1006 && GET_MODE_SIZE (GET_MODE (out)) > GET_MODE_SIZE (outmode))
1007 abort ();
e05a9da8 1008#endif
eab89b90
RK
1009 outmode = GET_MODE (out);
1010 }
1011
74347d76
RK
1012 /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
1013 either M1 is not valid for R or M2 is wider than a word but we only
1014 need one word to store an M2-sized quantity in R.
1015
1016 However, we must reload the inner reg *as well as* the subreg in
1017 that case. In this case, the inner reg is an in-out reload. */
1018
1019 if (out != 0 && GET_CODE (out) == SUBREG
1020 && GET_CODE (SUBREG_REG (out)) == REG
1021 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
c6716840
RK
1022 && (! HARD_REGNO_MODE_OK (REGNO (SUBREG_REG (out)) + SUBREG_WORD (out),
1023 outmode)
74347d76
RK
1024 || (GET_MODE_SIZE (outmode) <= UNITS_PER_WORD
1025 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1026 > UNITS_PER_WORD)
1027 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1028 / UNITS_PER_WORD)
1029 != HARD_REGNO_NREGS (REGNO (SUBREG_REG (out)),
1030 GET_MODE (SUBREG_REG (out)))))))
1031 {
c96d01ab
RK
1032 /* This relies on the fact that emit_reload_insns outputs the
1033 instructions for output reloads of type RELOAD_OTHER in reverse
1034 order of the reloads. Thus if the outer reload is also of type
1035 RELOAD_OTHER, we are guaranteed that this inner reload will be
1036 output after the outer reload. */
74347d76
RK
1037 dont_remove_subreg = 1;
1038 push_reload (SUBREG_REG (out), SUBREG_REG (out), &SUBREG_REG (out),
c6716840
RK
1039 &SUBREG_REG (out),
1040 find_valid_class (outmode, SUBREG_WORD (out)),
1041 VOIDmode, VOIDmode, 0, 0,
74347d76
RK
1042 opnum, RELOAD_OTHER);
1043 }
1044
eab89b90
RK
1045 /* If IN appears in OUT, we can't share any input-only reload for IN. */
1046 if (in != 0 && out != 0 && GET_CODE (out) == MEM
1047 && (GET_CODE (in) == REG || GET_CODE (in) == MEM)
bfa30b22 1048 && reg_overlap_mentioned_for_reload_p (in, XEXP (out, 0)))
eab89b90
RK
1049 dont_share = 1;
1050
0dadecf6
RK
1051 /* If IN is a SUBREG of a hard register, make a new REG. This
1052 simplifies some of the cases below. */
1053
1054 if (in != 0 && GET_CODE (in) == SUBREG && GET_CODE (SUBREG_REG (in)) == REG
74347d76
RK
1055 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1056 && ! dont_remove_subreg)
0dadecf6
RK
1057 in = gen_rtx (REG, GET_MODE (in),
1058 REGNO (SUBREG_REG (in)) + SUBREG_WORD (in));
1059
1060 /* Similarly for OUT. */
1061 if (out != 0 && GET_CODE (out) == SUBREG
1062 && GET_CODE (SUBREG_REG (out)) == REG
74347d76
RK
1063 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1064 && ! dont_remove_subreg)
0dadecf6
RK
1065 out = gen_rtx (REG, GET_MODE (out),
1066 REGNO (SUBREG_REG (out)) + SUBREG_WORD (out));
1067
eab89b90
RK
1068 /* Narrow down the class of register wanted if that is
1069 desirable on this machine for efficiency. */
1070 if (in != 0)
1071 class = PREFERRED_RELOAD_CLASS (in, class);
1072
ac2a9454 1073 /* Output reloads may need analogous treatment, different in detail. */
18a53b78
RS
1074#ifdef PREFERRED_OUTPUT_RELOAD_CLASS
1075 if (out != 0)
1076 class = PREFERRED_OUTPUT_RELOAD_CLASS (out, class);
1077#endif
1078
eab89b90
RK
1079 /* Make sure we use a class that can handle the actual pseudo
1080 inside any subreg. For example, on the 386, QImode regs
1081 can appear within SImode subregs. Although GENERAL_REGS
1082 can handle SImode, QImode needs a smaller class. */
1083#ifdef LIMIT_RELOAD_CLASS
1084 if (in_subreg_loc)
1085 class = LIMIT_RELOAD_CLASS (inmode, class);
1086 else if (in != 0 && GET_CODE (in) == SUBREG)
1087 class = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (in)), class);
1088
1089 if (out_subreg_loc)
1090 class = LIMIT_RELOAD_CLASS (outmode, class);
1091 if (out != 0 && GET_CODE (out) == SUBREG)
1092 class = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (out)), class);
1093#endif
1094
eab89b90
RK
1095 /* Verify that this class is at least possible for the mode that
1096 is specified. */
1097 if (this_insn_is_asm)
1098 {
1099 enum machine_mode mode;
1100 if (GET_MODE_SIZE (inmode) > GET_MODE_SIZE (outmode))
1101 mode = inmode;
1102 else
1103 mode = outmode;
5488078f
RS
1104 if (mode == VOIDmode)
1105 {
1106 error_for_asm (this_insn, "cannot reload integer constant operand in `asm'");
1107 mode = word_mode;
1108 if (in != 0)
1109 inmode = word_mode;
1110 if (out != 0)
1111 outmode = word_mode;
1112 }
eab89b90
RK
1113 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1114 if (HARD_REGNO_MODE_OK (i, mode)
1115 && TEST_HARD_REG_BIT (reg_class_contents[(int) class], i))
1116 {
1117 int nregs = HARD_REGNO_NREGS (i, mode);
1118
1119 int j;
1120 for (j = 1; j < nregs; j++)
1121 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class], i + j))
1122 break;
1123 if (j == nregs)
1124 break;
1125 }
1126 if (i == FIRST_PSEUDO_REGISTER)
1127 {
1128 error_for_asm (this_insn, "impossible register constraint in `asm'");
1129 class = ALL_REGS;
1130 }
1131 }
1132
5488078f
RS
1133 if (class == NO_REGS)
1134 abort ();
1135
eab89b90
RK
1136 /* We can use an existing reload if the class is right
1137 and at least one of IN and OUT is a match
1138 and the other is at worst neutral.
a8c9daeb
RK
1139 (A zero compared against anything is neutral.)
1140
1141 If SMALL_REGISTER_CLASSES, don't use existing reloads unless they are
1142 for the same thing since that can cause us to need more reload registers
1143 than we otherwise would. */
1144
eab89b90
RK
1145 for (i = 0; i < n_reloads; i++)
1146 if ((reg_class_subset_p (class, reload_reg_class[i])
1147 || reg_class_subset_p (reload_reg_class[i], class))
eab89b90
RK
1148 /* If the existing reload has a register, it must fit our class. */
1149 && (reload_reg_rtx[i] == 0
1150 || TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1151 true_regnum (reload_reg_rtx[i])))
1152 && ((in != 0 && MATCHES (reload_in[i], in) && ! dont_share
1153 && (out == 0 || reload_out[i] == 0 || MATCHES (reload_out[i], out)))
1154 ||
1155 (out != 0 && MATCHES (reload_out[i], out)
a8c9daeb
RK
1156 && (in == 0 || reload_in[i] == 0 || MATCHES (reload_in[i], in))))
1157 && (reg_class_size[(int) class] == 1
1158#ifdef SMALL_REGISTER_CLASSES
1159 || 1
1160#endif
1161 )
1162 && MERGABLE_RELOADS (type, reload_when_needed[i],
1163 opnum, reload_opnum[i]))
eab89b90
RK
1164 break;
1165
1166 /* Reloading a plain reg for input can match a reload to postincrement
1167 that reg, since the postincrement's value is the right value.
1168 Likewise, it can match a preincrement reload, since we regard
1169 the preincrementation as happening before any ref in this insn
1170 to that register. */
1171 if (i == n_reloads)
1172 for (i = 0; i < n_reloads; i++)
1173 if ((reg_class_subset_p (class, reload_reg_class[i])
1174 || reg_class_subset_p (reload_reg_class[i], class))
1175 /* If the existing reload has a register, it must fit our class. */
1176 && (reload_reg_rtx[i] == 0
1177 || TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1178 true_regnum (reload_reg_rtx[i])))
eab89b90
RK
1179 && out == 0 && reload_out[i] == 0 && reload_in[i] != 0
1180 && ((GET_CODE (in) == REG
1181 && (GET_CODE (reload_in[i]) == POST_INC
1182 || GET_CODE (reload_in[i]) == POST_DEC
1183 || GET_CODE (reload_in[i]) == PRE_INC
1184 || GET_CODE (reload_in[i]) == PRE_DEC)
1185 && MATCHES (XEXP (reload_in[i], 0), in))
1186 ||
1187 (GET_CODE (reload_in[i]) == REG
1188 && (GET_CODE (in) == POST_INC
1189 || GET_CODE (in) == POST_DEC
1190 || GET_CODE (in) == PRE_INC
1191 || GET_CODE (in) == PRE_DEC)
a8c9daeb
RK
1192 && MATCHES (XEXP (in, 0), reload_in[i])))
1193 && (reg_class_size[(int) class] == 1
1194#ifdef SMALL_REGISTER_CLASSES
1195 || 1
1196#endif
1197 )
1198 && MERGABLE_RELOADS (type, reload_when_needed[i],
1199 opnum, reload_opnum[i]))
eab89b90
RK
1200 {
1201 /* Make sure reload_in ultimately has the increment,
1202 not the plain register. */
1203 if (GET_CODE (in) == REG)
1204 in = reload_in[i];
1205 break;
1206 }
1207
1208 if (i == n_reloads)
1209 {
9ec7078b
RK
1210 /* See if we need a secondary reload register to move between CLASS
1211 and IN or CLASS and OUT. Get the icode and push any required reloads
1212 needed for each of them if so. */
eab89b90
RK
1213
1214#ifdef SECONDARY_INPUT_RELOAD_CLASS
1215 if (in != 0)
9ec7078b
RK
1216 secondary_in_reload
1217 = push_secondary_reload (1, in, opnum, optional, class, inmode, type,
1218 &secondary_in_icode);
eab89b90
RK
1219#endif
1220
1221#ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1222 if (out != 0 && GET_CODE (out) != SCRATCH)
9ec7078b
RK
1223 secondary_out_reload
1224 = push_secondary_reload (0, out, opnum, optional, class, outmode,
1225 type, &secondary_out_icode);
eab89b90
RK
1226#endif
1227
1228 /* We found no existing reload suitable for re-use.
1229 So add an additional reload. */
1230
9ec7078b 1231 i = n_reloads;
eab89b90
RK
1232 reload_in[i] = in;
1233 reload_out[i] = out;
1234 reload_reg_class[i] = class;
1235 reload_inmode[i] = inmode;
1236 reload_outmode[i] = outmode;
1237 reload_reg_rtx[i] = 0;
1238 reload_optional[i] = optional;
1239 reload_inc[i] = 0;
eab89b90
RK
1240 reload_nocombine[i] = 0;
1241 reload_in_reg[i] = inloc ? *inloc : 0;
a8c9daeb
RK
1242 reload_opnum[i] = opnum;
1243 reload_when_needed[i] = type;
9ec7078b
RK
1244 reload_secondary_in_reload[i] = secondary_in_reload;
1245 reload_secondary_out_reload[i] = secondary_out_reload;
1246 reload_secondary_in_icode[i] = secondary_in_icode;
1247 reload_secondary_out_icode[i] = secondary_out_icode;
eab89b90
RK
1248 reload_secondary_p[i] = 0;
1249
1250 n_reloads++;
0dadecf6
RK
1251
1252#ifdef SECONDARY_MEMORY_NEEDED
1253 /* If a memory location is needed for the copy, make one. */
1254 if (in != 0 && GET_CODE (in) == REG
1255 && REGNO (in) < FIRST_PSEUDO_REGISTER
1256 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (REGNO (in)),
1257 class, inmode))
a8c9daeb 1258 get_secondary_mem (in, inmode, opnum, type);
0dadecf6
RK
1259
1260 if (out != 0 && GET_CODE (out) == REG
1261 && REGNO (out) < FIRST_PSEUDO_REGISTER
1262 && SECONDARY_MEMORY_NEEDED (class, REGNO_REG_CLASS (REGNO (out)),
1263 outmode))
a8c9daeb 1264 get_secondary_mem (out, outmode, opnum, type);
0dadecf6 1265#endif
eab89b90
RK
1266 }
1267 else
1268 {
1269 /* We are reusing an existing reload,
1270 but we may have additional information for it.
1271 For example, we may now have both IN and OUT
1272 while the old one may have just one of them. */
1273
1274 if (inmode != VOIDmode)
1275 reload_inmode[i] = inmode;
1276 if (outmode != VOIDmode)
1277 reload_outmode[i] = outmode;
1278 if (in != 0)
1279 reload_in[i] = in;
1280 if (out != 0)
1281 reload_out[i] = out;
1282 if (reg_class_subset_p (class, reload_reg_class[i]))
1283 reload_reg_class[i] = class;
1284 reload_optional[i] &= optional;
a8c9daeb
RK
1285 if (MERGE_TO_OTHER (type, reload_when_needed[i],
1286 opnum, reload_opnum[i]))
1287 reload_when_needed[i] = RELOAD_OTHER;
1288 reload_opnum[i] = MIN (reload_opnum[i], opnum);
eab89b90
RK
1289 }
1290
1291 /* If the ostensible rtx being reload differs from the rtx found
1292 in the location to substitute, this reload is not safe to combine
1293 because we cannot reliably tell whether it appears in the insn. */
1294
1295 if (in != 0 && in != *inloc)
1296 reload_nocombine[i] = 1;
1297
1298#if 0
1299 /* This was replaced by changes in find_reloads_address_1 and the new
1300 function inc_for_reload, which go with a new meaning of reload_inc. */
1301
1302 /* If this is an IN/OUT reload in an insn that sets the CC,
1303 it must be for an autoincrement. It doesn't work to store
1304 the incremented value after the insn because that would clobber the CC.
1305 So we must do the increment of the value reloaded from,
1306 increment it, store it back, then decrement again. */
1307 if (out != 0 && sets_cc0_p (PATTERN (this_insn)))
1308 {
1309 out = 0;
1310 reload_out[i] = 0;
1311 reload_inc[i] = find_inc_amount (PATTERN (this_insn), in);
1312 /* If we did not find a nonzero amount-to-increment-by,
1313 that contradicts the belief that IN is being incremented
1314 in an address in this insn. */
1315 if (reload_inc[i] == 0)
1316 abort ();
1317 }
1318#endif
1319
1320 /* If we will replace IN and OUT with the reload-reg,
1321 record where they are located so that substitution need
1322 not do a tree walk. */
1323
1324 if (replace_reloads)
1325 {
1326 if (inloc != 0)
1327 {
1328 register struct replacement *r = &replacements[n_replacements++];
1329 r->what = i;
1330 r->subreg_loc = in_subreg_loc;
1331 r->where = inloc;
1332 r->mode = inmode;
1333 }
1334 if (outloc != 0 && outloc != inloc)
1335 {
1336 register struct replacement *r = &replacements[n_replacements++];
1337 r->what = i;
1338 r->where = outloc;
1339 r->subreg_loc = out_subreg_loc;
1340 r->mode = outmode;
1341 }
1342 }
1343
1344 /* If this reload is just being introduced and it has both
1345 an incoming quantity and an outgoing quantity that are
1346 supposed to be made to match, see if either one of the two
1347 can serve as the place to reload into.
1348
1349 If one of them is acceptable, set reload_reg_rtx[i]
1350 to that one. */
1351
1352 if (in != 0 && out != 0 && in != out && reload_reg_rtx[i] == 0)
1353 {
1354 reload_reg_rtx[i] = find_dummy_reload (in, out, inloc, outloc,
36b50568 1355 inmode, outmode,
eab89b90
RK
1356 reload_reg_class[i], i);
1357
1358 /* If the outgoing register already contains the same value
1359 as the incoming one, we can dispense with loading it.
1360 The easiest way to tell the caller that is to give a phony
1361 value for the incoming operand (same as outgoing one). */
1362 if (reload_reg_rtx[i] == out
1363 && (GET_CODE (in) == REG || CONSTANT_P (in))
1364 && 0 != find_equiv_reg (in, this_insn, 0, REGNO (out),
1365 static_reload_reg_p, i, inmode))
1366 reload_in[i] = out;
1367 }
1368
1369 /* If this is an input reload and the operand contains a register that
1370 dies in this insn and is used nowhere else, see if it is the right class
1371 to be used for this reload. Use it if so. (This occurs most commonly
1372 in the case of paradoxical SUBREGs and in-out reloads). We cannot do
1373 this if it is also an output reload that mentions the register unless
1374 the output is a SUBREG that clobbers an entire register.
1375
1376 Note that the operand might be one of the spill regs, if it is a
1377 pseudo reg and we are in a block where spilling has not taken place.
1378 But if there is no spilling in this block, that is OK.
1379 An explicitly used hard reg cannot be a spill reg. */
1380
1381 if (reload_reg_rtx[i] == 0 && in != 0)
1382 {
1383 rtx note;
1384 int regno;
1385
1386 for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1387 if (REG_NOTE_KIND (note) == REG_DEAD
1388 && GET_CODE (XEXP (note, 0)) == REG
1389 && (regno = REGNO (XEXP (note, 0))) < FIRST_PSEUDO_REGISTER
1390 && reg_mentioned_p (XEXP (note, 0), in)
1391 && ! refers_to_regno_for_reload_p (regno,
1392 (regno
1393 + HARD_REGNO_NREGS (regno,
1394 inmode)),
1395 PATTERN (this_insn), inloc)
05b4ec4f
RS
1396 /* If this is also an output reload, IN cannot be used as
1397 the reload register if it is set in this insn unless IN
1398 is also OUT. */
1399 && (out == 0 || in == out
1400 || ! hard_reg_set_here_p (regno,
1401 (regno
1402 + HARD_REGNO_NREGS (regno,
1403 inmode)),
1404 PATTERN (this_insn)))
1405 /* ??? Why is this code so different from the previous?
1406 Is there any simple coherent way to describe the two together?
1407 What's going on here. */
eab89b90
RK
1408 && (in != out
1409 || (GET_CODE (in) == SUBREG
1410 && (((GET_MODE_SIZE (GET_MODE (in)) + (UNITS_PER_WORD - 1))
1411 / UNITS_PER_WORD)
1412 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1413 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
1414 /* Make sure the operand fits in the reg that dies. */
1415 && GET_MODE_SIZE (inmode) <= GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
1416 && HARD_REGNO_MODE_OK (regno, inmode)
1417 && GET_MODE_SIZE (outmode) <= GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
1418 && HARD_REGNO_MODE_OK (regno, outmode)
1419 && TEST_HARD_REG_BIT (reg_class_contents[(int) class], regno)
1420 && !fixed_regs[regno])
1421 {
1422 reload_reg_rtx[i] = gen_rtx (REG, inmode, regno);
1423 break;
1424 }
1425 }
1426
1427 if (out)
1428 output_reloadnum = i;
1429
1430 return i;
1431}
1432
1433/* Record an additional place we must replace a value
1434 for which we have already recorded a reload.
1435 RELOADNUM is the value returned by push_reload
1436 when the reload was recorded.
1437 This is used in insn patterns that use match_dup. */
1438
1439static void
1440push_replacement (loc, reloadnum, mode)
1441 rtx *loc;
1442 int reloadnum;
1443 enum machine_mode mode;
1444{
1445 if (replace_reloads)
1446 {
1447 register struct replacement *r = &replacements[n_replacements++];
1448 r->what = reloadnum;
1449 r->where = loc;
1450 r->subreg_loc = 0;
1451 r->mode = mode;
1452 }
1453}
1454\f
a8c9daeb
RK
1455/* Transfer all replacements that used to be in reload FROM to be in
1456 reload TO. */
1457
1458void
1459transfer_replacements (to, from)
1460 int to, from;
1461{
1462 int i;
1463
1464 for (i = 0; i < n_replacements; i++)
1465 if (replacements[i].what == from)
1466 replacements[i].what = to;
1467}
1468\f
eab89b90
RK
1469/* If there is only one output reload, and it is not for an earlyclobber
1470 operand, try to combine it with a (logically unrelated) input reload
1471 to reduce the number of reload registers needed.
1472
1473 This is safe if the input reload does not appear in
1474 the value being output-reloaded, because this implies
1475 it is not needed any more once the original insn completes.
1476
1477 If that doesn't work, see we can use any of the registers that
1478 die in this insn as a reload register. We can if it is of the right
1479 class and does not appear in the value being output-reloaded. */
1480
1481static void
1482combine_reloads ()
1483{
1484 int i;
1485 int output_reload = -1;
8922eb5b 1486 int secondary_out = -1;
eab89b90
RK
1487 rtx note;
1488
1489 /* Find the output reload; return unless there is exactly one
1490 and that one is mandatory. */
1491
1492 for (i = 0; i < n_reloads; i++)
1493 if (reload_out[i] != 0)
1494 {
1495 if (output_reload >= 0)
1496 return;
1497 output_reload = i;
1498 }
1499
1500 if (output_reload < 0 || reload_optional[output_reload])
1501 return;
1502
1503 /* An input-output reload isn't combinable. */
1504
1505 if (reload_in[output_reload] != 0)
1506 return;
1507
6dc42e49 1508 /* If this reload is for an earlyclobber operand, we can't do anything. */
4644aad4
RK
1509 if (earlyclobber_operand_p (reload_out[output_reload]))
1510 return;
eab89b90
RK
1511
1512 /* Check each input reload; can we combine it? */
1513
1514 for (i = 0; i < n_reloads; i++)
1515 if (reload_in[i] && ! reload_optional[i] && ! reload_nocombine[i]
1516 /* Life span of this reload must not extend past main insn. */
a8c9daeb
RK
1517 && reload_when_needed[i] != RELOAD_FOR_OUTPUT_ADDRESS
1518 && reload_when_needed[i] != RELOAD_OTHER
1519 && (CLASS_MAX_NREGS (reload_reg_class[i], reload_inmode[i])
1520 == CLASS_MAX_NREGS (reload_reg_class[output_reload],
1521 reload_outmode[output_reload]))
eab89b90
RK
1522 && reload_inc[i] == 0
1523 && reload_reg_rtx[i] == 0
a8c9daeb 1524#ifdef SECONDARY_MEMORY_NEEDED
9ec7078b
RK
1525 /* Don't combine two reloads with different secondary
1526 memory locations. */
77545d45
RK
1527 && (secondary_memlocs_elim[(int) reload_outmode[output_reload]][reload_opnum[i]] == 0
1528 || secondary_memlocs_elim[(int) reload_outmode[output_reload]][reload_opnum[output_reload]] == 0
1529 || rtx_equal_p (secondary_memlocs_elim[(int) reload_outmode[output_reload]][reload_opnum[i]],
1530 secondary_memlocs_elim[(int) reload_outmode[output_reload]][reload_opnum[output_reload]]))
a8c9daeb
RK
1531#endif
1532#ifdef SMALL_REGISTER_CLASSES
1533 && reload_reg_class[i] == reload_reg_class[output_reload]
1534#else
eab89b90
RK
1535 && (reg_class_subset_p (reload_reg_class[i],
1536 reload_reg_class[output_reload])
1537 || reg_class_subset_p (reload_reg_class[output_reload],
1538 reload_reg_class[i]))
a8c9daeb 1539#endif
eab89b90
RK
1540 && (MATCHES (reload_in[i], reload_out[output_reload])
1541 /* Args reversed because the first arg seems to be
1542 the one that we imagine being modified
1543 while the second is the one that might be affected. */
bfa30b22
RK
1544 || (! reg_overlap_mentioned_for_reload_p (reload_out[output_reload],
1545 reload_in[i])
eab89b90
RK
1546 /* However, if the input is a register that appears inside
1547 the output, then we also can't share.
1548 Imagine (set (mem (reg 69)) (plus (reg 69) ...)).
1549 If the same reload reg is used for both reg 69 and the
1550 result to be stored in memory, then that result
1551 will clobber the address of the memory ref. */
1552 && ! (GET_CODE (reload_in[i]) == REG
bfa30b22 1553 && reg_overlap_mentioned_for_reload_p (reload_in[i],
a8c9daeb
RK
1554 reload_out[output_reload]))))
1555 && (reg_class_size[(int) reload_reg_class[i]]
1556#ifdef SMALL_REGISTER_CLASSES
1557 || 1
1558#endif
1559 )
1560 /* We will allow making things slightly worse by combining an
1561 input and an output, but no worse than that. */
1562 && (reload_when_needed[i] == RELOAD_FOR_INPUT
1563 || reload_when_needed[i] == RELOAD_FOR_OUTPUT))
eab89b90
RK
1564 {
1565 int j;
1566
1567 /* We have found a reload to combine with! */
1568 reload_out[i] = reload_out[output_reload];
1569 reload_outmode[i] = reload_outmode[output_reload];
1570 /* Mark the old output reload as inoperative. */
1571 reload_out[output_reload] = 0;
1572 /* The combined reload is needed for the entire insn. */
eab89b90
RK
1573 reload_when_needed[i] = RELOAD_OTHER;
1574 /* If the output reload had a secondary reload, copy it. */
9ec7078b
RK
1575 if (reload_secondary_out_reload[output_reload] != -1)
1576 {
1577 reload_secondary_out_reload[i]
1578 = reload_secondary_out_reload[output_reload];
1579 reload_secondary_out_icode[i]
1580 = reload_secondary_out_icode[output_reload];
1581 }
1582
a8c9daeb
RK
1583#ifdef SECONDARY_MEMORY_NEEDED
1584 /* Copy any secondary MEM. */
77545d45
RK
1585 if (secondary_memlocs_elim[(int) reload_outmode[output_reload]][reload_opnum[output_reload]] != 0)
1586 secondary_memlocs_elim[(int) reload_outmode[output_reload]][reload_opnum[i]]
1587 = secondary_memlocs_elim[(int) reload_outmode[output_reload]][reload_opnum[output_reload]];
a8c9daeb 1588#endif
eab89b90
RK
1589 /* If required, minimize the register class. */
1590 if (reg_class_subset_p (reload_reg_class[output_reload],
1591 reload_reg_class[i]))
1592 reload_reg_class[i] = reload_reg_class[output_reload];
1593
1594 /* Transfer all replacements from the old reload to the combined. */
1595 for (j = 0; j < n_replacements; j++)
1596 if (replacements[j].what == output_reload)
1597 replacements[j].what = i;
1598
1599 return;
1600 }
1601
1602 /* If this insn has only one operand that is modified or written (assumed
1603 to be the first), it must be the one corresponding to this reload. It
1604 is safe to use anything that dies in this insn for that output provided
1605 that it does not occur in the output (we already know it isn't an
1606 earlyclobber. If this is an asm insn, give up. */
1607
1608 if (INSN_CODE (this_insn) == -1)
1609 return;
1610
1611 for (i = 1; i < insn_n_operands[INSN_CODE (this_insn)]; i++)
1612 if (insn_operand_constraint[INSN_CODE (this_insn)][i][0] == '='
1613 || insn_operand_constraint[INSN_CODE (this_insn)][i][0] == '+')
1614 return;
1615
1616 /* See if some hard register that dies in this insn and is not used in
1617 the output is the right class. Only works if the register we pick
1618 up can fully hold our output reload. */
1619 for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1620 if (REG_NOTE_KIND (note) == REG_DEAD
1621 && GET_CODE (XEXP (note, 0)) == REG
bfa30b22
RK
1622 && ! reg_overlap_mentioned_for_reload_p (XEXP (note, 0),
1623 reload_out[output_reload])
eab89b90
RK
1624 && REGNO (XEXP (note, 0)) < FIRST_PSEUDO_REGISTER
1625 && HARD_REGNO_MODE_OK (REGNO (XEXP (note, 0)), reload_outmode[output_reload])
1626 && TEST_HARD_REG_BIT (reg_class_contents[(int) reload_reg_class[output_reload]],
1627 REGNO (XEXP (note, 0)))
1628 && (HARD_REGNO_NREGS (REGNO (XEXP (note, 0)), reload_outmode[output_reload])
1629 <= HARD_REGNO_NREGS (REGNO (XEXP (note, 0)), GET_MODE (XEXP (note, 0))))
8922eb5b
RK
1630 /* Ensure that a secondary or tertiary reload for this output
1631 won't want this register. */
1632 && ((secondary_out = reload_secondary_out_reload[output_reload]) == -1
1633 || (! (TEST_HARD_REG_BIT
1634 (reg_class_contents[(int) reload_reg_class[secondary_out]],
1635 REGNO (XEXP (note, 0))))
1636 && ((secondary_out = reload_secondary_out_reload[secondary_out]) == -1
1637 || ! (TEST_HARD_REG_BIT
1638 (reg_class_contents[(int) reload_reg_class[secondary_out]],
1639 REGNO (XEXP (note, 0)))))))
eab89b90
RK
1640 && ! fixed_regs[REGNO (XEXP (note, 0))])
1641 {
1642 reload_reg_rtx[output_reload] = gen_rtx (REG,
1643 reload_outmode[output_reload],
1644 REGNO (XEXP (note, 0)));
1645 return;
1646 }
1647}
1648\f
1649/* Try to find a reload register for an in-out reload (expressions IN and OUT).
1650 See if one of IN and OUT is a register that may be used;
1651 this is desirable since a spill-register won't be needed.
1652 If so, return the register rtx that proves acceptable.
1653
1654 INLOC and OUTLOC are locations where IN and OUT appear in the insn.
1655 CLASS is the register class required for the reload.
1656
1657 If FOR_REAL is >= 0, it is the number of the reload,
1658 and in some cases when it can be discovered that OUT doesn't need
1659 to be computed, clear out reload_out[FOR_REAL].
1660
1661 If FOR_REAL is -1, this should not be done, because this call
1662 is just to see if a register can be found, not to find and install it. */
1663
1664static rtx
36b50568
RS
1665find_dummy_reload (real_in, real_out, inloc, outloc,
1666 inmode, outmode, class, for_real)
eab89b90
RK
1667 rtx real_in, real_out;
1668 rtx *inloc, *outloc;
36b50568 1669 enum machine_mode inmode, outmode;
eab89b90
RK
1670 enum reg_class class;
1671 int for_real;
1672{
1673 rtx in = real_in;
1674 rtx out = real_out;
1675 int in_offset = 0;
1676 int out_offset = 0;
1677 rtx value = 0;
1678
1679 /* If operands exceed a word, we can't use either of them
1680 unless they have the same size. */
36b50568
RS
1681 if (GET_MODE_SIZE (outmode) != GET_MODE_SIZE (inmode)
1682 && (GET_MODE_SIZE (outmode) > UNITS_PER_WORD
1683 || GET_MODE_SIZE (inmode) > UNITS_PER_WORD))
eab89b90
RK
1684 return 0;
1685
1686 /* Find the inside of any subregs. */
1687 while (GET_CODE (out) == SUBREG)
1688 {
1689 out_offset = SUBREG_WORD (out);
1690 out = SUBREG_REG (out);
1691 }
1692 while (GET_CODE (in) == SUBREG)
1693 {
1694 in_offset = SUBREG_WORD (in);
1695 in = SUBREG_REG (in);
1696 }
1697
1698 /* Narrow down the reg class, the same way push_reload will;
1699 otherwise we might find a dummy now, but push_reload won't. */
1700 class = PREFERRED_RELOAD_CLASS (in, class);
1701
1702 /* See if OUT will do. */
1703 if (GET_CODE (out) == REG
1704 && REGNO (out) < FIRST_PSEUDO_REGISTER)
1705 {
1706 register int regno = REGNO (out) + out_offset;
36b50568 1707 int nwords = HARD_REGNO_NREGS (regno, outmode);
d3b9996a 1708 rtx saved_rtx;
eab89b90
RK
1709
1710 /* When we consider whether the insn uses OUT,
1711 ignore references within IN. They don't prevent us
1712 from copying IN into OUT, because those refs would
1713 move into the insn that reloads IN.
1714
1715 However, we only ignore IN in its role as this reload.
1716 If the insn uses IN elsewhere and it contains OUT,
1717 that counts. We can't be sure it's the "same" operand
1718 so it might not go through this reload. */
d3b9996a 1719 saved_rtx = *inloc;
eab89b90
RK
1720 *inloc = const0_rtx;
1721
1722 if (regno < FIRST_PSEUDO_REGISTER
1723 /* A fixed reg that can overlap other regs better not be used
1724 for reloading in any way. */
1725#ifdef OVERLAPPING_REGNO_P
1726 && ! (fixed_regs[regno] && OVERLAPPING_REGNO_P (regno))
1727#endif
1728 && ! refers_to_regno_for_reload_p (regno, regno + nwords,
1729 PATTERN (this_insn), outloc))
1730 {
1731 int i;
1732 for (i = 0; i < nwords; i++)
1733 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1734 regno + i))
1735 break;
1736
1737 if (i == nwords)
1738 {
1739 if (GET_CODE (real_out) == REG)
1740 value = real_out;
1741 else
36b50568 1742 value = gen_rtx (REG, outmode, regno);
eab89b90
RK
1743 }
1744 }
1745
d3b9996a 1746 *inloc = saved_rtx;
eab89b90
RK
1747 }
1748
1749 /* Consider using IN if OUT was not acceptable
1750 or if OUT dies in this insn (like the quotient in a divmod insn).
1751 We can't use IN unless it is dies in this insn,
1752 which means we must know accurately which hard regs are live.
1753 Also, the result can't go in IN if IN is used within OUT. */
1754 if (hard_regs_live_known
1755 && GET_CODE (in) == REG
1756 && REGNO (in) < FIRST_PSEUDO_REGISTER
1757 && (value == 0
1758 || find_reg_note (this_insn, REG_UNUSED, real_out))
1759 && find_reg_note (this_insn, REG_DEAD, real_in)
1760 && !fixed_regs[REGNO (in)]
36b50568
RS
1761 && HARD_REGNO_MODE_OK (REGNO (in),
1762 /* The only case where out and real_out might
1763 have different modes is where real_out
1764 is a subreg, and in that case, out
1765 has a real mode. */
1766 (GET_MODE (out) != VOIDmode
1767 ? GET_MODE (out) : outmode)))
eab89b90
RK
1768 {
1769 register int regno = REGNO (in) + in_offset;
36b50568 1770 int nwords = HARD_REGNO_NREGS (regno, inmode);
eab89b90 1771
fb3821f7 1772 if (! refers_to_regno_for_reload_p (regno, regno + nwords, out, NULL_PTR)
eab89b90
RK
1773 && ! hard_reg_set_here_p (regno, regno + nwords,
1774 PATTERN (this_insn)))
1775 {
1776 int i;
1777 for (i = 0; i < nwords; i++)
1778 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1779 regno + i))
1780 break;
1781
1782 if (i == nwords)
1783 {
1784 /* If we were going to use OUT as the reload reg
1785 and changed our mind, it means OUT is a dummy that
1786 dies here. So don't bother copying value to it. */
1787 if (for_real >= 0 && value == real_out)
1788 reload_out[for_real] = 0;
1789 if (GET_CODE (real_in) == REG)
1790 value = real_in;
1791 else
36b50568 1792 value = gen_rtx (REG, inmode, regno);
eab89b90
RK
1793 }
1794 }
1795 }
1796
1797 return value;
1798}
1799\f
1800/* This page contains subroutines used mainly for determining
1801 whether the IN or an OUT of a reload can serve as the
1802 reload register. */
1803
4644aad4
RK
1804/* Return 1 if X is an operand of an insn that is being earlyclobbered. */
1805
1806static int
1807earlyclobber_operand_p (x)
1808 rtx x;
1809{
1810 int i;
1811
1812 for (i = 0; i < n_earlyclobbers; i++)
1813 if (reload_earlyclobbers[i] == x)
1814 return 1;
1815
1816 return 0;
1817}
1818
eab89b90
RK
1819/* Return 1 if expression X alters a hard reg in the range
1820 from BEG_REGNO (inclusive) to END_REGNO (exclusive),
1821 either explicitly or in the guise of a pseudo-reg allocated to REGNO.
1822 X should be the body of an instruction. */
1823
1824static int
1825hard_reg_set_here_p (beg_regno, end_regno, x)
1826 register int beg_regno, end_regno;
1827 rtx x;
1828{
1829 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
1830 {
1831 register rtx op0 = SET_DEST (x);
1832 while (GET_CODE (op0) == SUBREG)
1833 op0 = SUBREG_REG (op0);
1834 if (GET_CODE (op0) == REG)
1835 {
1836 register int r = REGNO (op0);
1837 /* See if this reg overlaps range under consideration. */
1838 if (r < end_regno
1839 && r + HARD_REGNO_NREGS (r, GET_MODE (op0)) > beg_regno)
1840 return 1;
1841 }
1842 }
1843 else if (GET_CODE (x) == PARALLEL)
1844 {
1845 register int i = XVECLEN (x, 0) - 1;
1846 for (; i >= 0; i--)
1847 if (hard_reg_set_here_p (beg_regno, end_regno, XVECEXP (x, 0, i)))
1848 return 1;
1849 }
1850
1851 return 0;
1852}
1853
1854/* Return 1 if ADDR is a valid memory address for mode MODE,
1855 and check that each pseudo reg has the proper kind of
1856 hard reg. */
1857
1858int
1859strict_memory_address_p (mode, addr)
1860 enum machine_mode mode;
1861 register rtx addr;
1862{
1863 GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
1864 return 0;
1865
1866 win:
1867 return 1;
1868}
eab89b90
RK
1869\f
1870/* Like rtx_equal_p except that it allows a REG and a SUBREG to match
1871 if they are the same hard reg, and has special hacks for
1872 autoincrement and autodecrement.
1873 This is specifically intended for find_reloads to use
1874 in determining whether two operands match.
1875 X is the operand whose number is the lower of the two.
1876
1877 The value is 2 if Y contains a pre-increment that matches
1878 a non-incrementing address in X. */
1879
1880/* ??? To be completely correct, we should arrange to pass
1881 for X the output operand and for Y the input operand.
1882 For now, we assume that the output operand has the lower number
1883 because that is natural in (SET output (... input ...)). */
1884
1885int
1886operands_match_p (x, y)
1887 register rtx x, y;
1888{
1889 register int i;
1890 register RTX_CODE code = GET_CODE (x);
1891 register char *fmt;
1892 int success_2;
1893
1894 if (x == y)
1895 return 1;
1896 if ((code == REG || (code == SUBREG && GET_CODE (SUBREG_REG (x)) == REG))
1897 && (GET_CODE (y) == REG || (GET_CODE (y) == SUBREG
1898 && GET_CODE (SUBREG_REG (y)) == REG)))
1899 {
1900 register int j;
1901
1902 if (code == SUBREG)
1903 {
1904 i = REGNO (SUBREG_REG (x));
1905 if (i >= FIRST_PSEUDO_REGISTER)
1906 goto slow;
1907 i += SUBREG_WORD (x);
1908 }
1909 else
1910 i = REGNO (x);
1911
1912 if (GET_CODE (y) == SUBREG)
1913 {
1914 j = REGNO (SUBREG_REG (y));
1915 if (j >= FIRST_PSEUDO_REGISTER)
1916 goto slow;
1917 j += SUBREG_WORD (y);
1918 }
1919 else
1920 j = REGNO (y);
1921
dca52d80
JW
1922 /* On a WORDS_BIG_ENDIAN machine, point to the last register of a
1923 multiple hard register group, so that for example (reg:DI 0) and
1924 (reg:SI 1) will be considered the same register. */
1925 if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD
1926 && i < FIRST_PSEUDO_REGISTER)
1927 i += (GET_MODE_SIZE (GET_MODE (x)) / UNITS_PER_WORD) - 1;
1928 if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (y)) > UNITS_PER_WORD
1929 && j < FIRST_PSEUDO_REGISTER)
1930 j += (GET_MODE_SIZE (GET_MODE (y)) / UNITS_PER_WORD) - 1;
1931
eab89b90
RK
1932 return i == j;
1933 }
1934 /* If two operands must match, because they are really a single
1935 operand of an assembler insn, then two postincrements are invalid
1936 because the assembler insn would increment only once.
1937 On the other hand, an postincrement matches ordinary indexing
1938 if the postincrement is the output operand. */
1939 if (code == POST_DEC || code == POST_INC)
1940 return operands_match_p (XEXP (x, 0), y);
1941 /* Two preincrements are invalid
1942 because the assembler insn would increment only once.
1943 On the other hand, an preincrement matches ordinary indexing
1944 if the preincrement is the input operand.
1945 In this case, return 2, since some callers need to do special
1946 things when this happens. */
1947 if (GET_CODE (y) == PRE_DEC || GET_CODE (y) == PRE_INC)
1948 return operands_match_p (x, XEXP (y, 0)) ? 2 : 0;
1949
1950 slow:
1951
1952 /* Now we have disposed of all the cases
1953 in which different rtx codes can match. */
1954 if (code != GET_CODE (y))
1955 return 0;
1956 if (code == LABEL_REF)
1957 return XEXP (x, 0) == XEXP (y, 0);
1958 if (code == SYMBOL_REF)
1959 return XSTR (x, 0) == XSTR (y, 0);
1960
1961 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
1962
1963 if (GET_MODE (x) != GET_MODE (y))
1964 return 0;
1965
1966 /* Compare the elements. If any pair of corresponding elements
1967 fail to match, return 0 for the whole things. */
1968
1969 success_2 = 0;
1970 fmt = GET_RTX_FORMAT (code);
1971 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1972 {
1973 int val;
1974 switch (fmt[i])
1975 {
fb3821f7
CH
1976 case 'w':
1977 if (XWINT (x, i) != XWINT (y, i))
1978 return 0;
1979 break;
1980
eab89b90
RK
1981 case 'i':
1982 if (XINT (x, i) != XINT (y, i))
1983 return 0;
1984 break;
1985
1986 case 'e':
1987 val = operands_match_p (XEXP (x, i), XEXP (y, i));
1988 if (val == 0)
1989 return 0;
1990 /* If any subexpression returns 2,
1991 we should return 2 if we are successful. */
1992 if (val == 2)
1993 success_2 = 1;
1994 break;
1995
1996 case '0':
1997 break;
1998
1999 /* It is believed that rtx's at this level will never
2000 contain anything but integers and other rtx's,
2001 except for within LABEL_REFs and SYMBOL_REFs. */
2002 default:
2003 abort ();
2004 }
2005 }
2006 return 1 + success_2;
2007}
2008\f
2009/* Return the number of times character C occurs in string S. */
2010
e4600702 2011int
eab89b90 2012n_occurrences (c, s)
d149d5f5 2013 int c;
eab89b90
RK
2014 char *s;
2015{
2016 int n = 0;
2017 while (*s)
2018 n += (*s++ == c);
2019 return n;
2020}
2021\f
eab89b90
RK
2022/* Describe the range of registers or memory referenced by X.
2023 If X is a register, set REG_FLAG and put the first register
2024 number into START and the last plus one into END.
2025 If X is a memory reference, put a base address into BASE
2026 and a range of integer offsets into START and END.
2027 If X is pushing on the stack, we can assume it causes no trouble,
2028 so we set the SAFE field. */
2029
2030static struct decomposition
2031decompose (x)
2032 rtx x;
2033{
2034 struct decomposition val;
2035 int all_const = 0;
2036
2037 val.reg_flag = 0;
2038 val.safe = 0;
2039 if (GET_CODE (x) == MEM)
2040 {
2041 rtx base, offset = 0;
2042 rtx addr = XEXP (x, 0);
2043
2044 if (GET_CODE (addr) == PRE_DEC || GET_CODE (addr) == PRE_INC
2045 || GET_CODE (addr) == POST_DEC || GET_CODE (addr) == POST_INC)
2046 {
2047 val.base = XEXP (addr, 0);
2048 val.start = - GET_MODE_SIZE (GET_MODE (x));
2049 val.end = GET_MODE_SIZE (GET_MODE (x));
2050 val.safe = REGNO (val.base) == STACK_POINTER_REGNUM;
2051 return val;
2052 }
2053
2054 if (GET_CODE (addr) == CONST)
2055 {
2056 addr = XEXP (addr, 0);
2057 all_const = 1;
2058 }
2059 if (GET_CODE (addr) == PLUS)
2060 {
2061 if (CONSTANT_P (XEXP (addr, 0)))
2062 {
2063 base = XEXP (addr, 1);
2064 offset = XEXP (addr, 0);
2065 }
2066 else if (CONSTANT_P (XEXP (addr, 1)))
2067 {
2068 base = XEXP (addr, 0);
2069 offset = XEXP (addr, 1);
2070 }
2071 }
2072
2073 if (offset == 0)
2074 {
2075 base = addr;
2076 offset = const0_rtx;
2077 }
2078 if (GET_CODE (offset) == CONST)
2079 offset = XEXP (offset, 0);
2080 if (GET_CODE (offset) == PLUS)
2081 {
2082 if (GET_CODE (XEXP (offset, 0)) == CONST_INT)
2083 {
2084 base = gen_rtx (PLUS, GET_MODE (base), base, XEXP (offset, 1));
2085 offset = XEXP (offset, 0);
2086 }
2087 else if (GET_CODE (XEXP (offset, 1)) == CONST_INT)
2088 {
2089 base = gen_rtx (PLUS, GET_MODE (base), base, XEXP (offset, 0));
2090 offset = XEXP (offset, 1);
2091 }
2092 else
2093 {
2094 base = gen_rtx (PLUS, GET_MODE (base), base, offset);
2095 offset = const0_rtx;
2096 }
2097 }
2098 else if (GET_CODE (offset) != CONST_INT)
2099 {
2100 base = gen_rtx (PLUS, GET_MODE (base), base, offset);
2101 offset = const0_rtx;
2102 }
2103
2104 if (all_const && GET_CODE (base) == PLUS)
2105 base = gen_rtx (CONST, GET_MODE (base), base);
2106
2107 if (GET_CODE (offset) != CONST_INT)
2108 abort ();
2109
2110 val.start = INTVAL (offset);
2111 val.end = val.start + GET_MODE_SIZE (GET_MODE (x));
2112 val.base = base;
2113 return val;
2114 }
2115 else if (GET_CODE (x) == REG)
2116 {
2117 val.reg_flag = 1;
2118 val.start = true_regnum (x);
2119 if (val.start < 0)
2120 {
2121 /* A pseudo with no hard reg. */
2122 val.start = REGNO (x);
2123 val.end = val.start + 1;
2124 }
2125 else
2126 /* A hard reg. */
2127 val.end = val.start + HARD_REGNO_NREGS (val.start, GET_MODE (x));
2128 }
2129 else if (GET_CODE (x) == SUBREG)
2130 {
2131 if (GET_CODE (SUBREG_REG (x)) != REG)
2132 /* This could be more precise, but it's good enough. */
2133 return decompose (SUBREG_REG (x));
2134 val.reg_flag = 1;
2135 val.start = true_regnum (x);
2136 if (val.start < 0)
2137 return decompose (SUBREG_REG (x));
2138 else
2139 /* A hard reg. */
2140 val.end = val.start + HARD_REGNO_NREGS (val.start, GET_MODE (x));
2141 }
2142 else if (CONSTANT_P (x)
2143 /* This hasn't been assigned yet, so it can't conflict yet. */
2144 || GET_CODE (x) == SCRATCH)
2145 val.safe = 1;
2146 else
2147 abort ();
2148 return val;
2149}
2150
2151/* Return 1 if altering Y will not modify the value of X.
2152 Y is also described by YDATA, which should be decompose (Y). */
2153
2154static int
2155immune_p (x, y, ydata)
2156 rtx x, y;
2157 struct decomposition ydata;
2158{
2159 struct decomposition xdata;
2160
2161 if (ydata.reg_flag)
fb3821f7 2162 return !refers_to_regno_for_reload_p (ydata.start, ydata.end, x, NULL_PTR);
eab89b90
RK
2163 if (ydata.safe)
2164 return 1;
2165
2166 if (GET_CODE (y) != MEM)
2167 abort ();
2168 /* If Y is memory and X is not, Y can't affect X. */
2169 if (GET_CODE (x) != MEM)
2170 return 1;
2171
2172 xdata = decompose (x);
2173
2174 if (! rtx_equal_p (xdata.base, ydata.base))
2175 {
2176 /* If bases are distinct symbolic constants, there is no overlap. */
2177 if (CONSTANT_P (xdata.base) && CONSTANT_P (ydata.base))
2178 return 1;
2179 /* Constants and stack slots never overlap. */
2180 if (CONSTANT_P (xdata.base)
2181 && (ydata.base == frame_pointer_rtx
a36d4c62 2182 || ydata.base == hard_frame_pointer_rtx
eab89b90
RK
2183 || ydata.base == stack_pointer_rtx))
2184 return 1;
2185 if (CONSTANT_P (ydata.base)
2186 && (xdata.base == frame_pointer_rtx
a36d4c62 2187 || xdata.base == hard_frame_pointer_rtx
eab89b90
RK
2188 || xdata.base == stack_pointer_rtx))
2189 return 1;
2190 /* If either base is variable, we don't know anything. */
2191 return 0;
2192 }
2193
2194
2195 return (xdata.start >= ydata.end || ydata.start >= xdata.end);
2196}
44ace968 2197
f72aed24 2198/* Similar, but calls decompose. */
44ace968
JW
2199
2200int
2201safe_from_earlyclobber (op, clobber)
2202 rtx op, clobber;
2203{
2204 struct decomposition early_data;
2205
2206 early_data = decompose (clobber);
2207 return immune_p (op, clobber, early_data);
2208}
eab89b90
RK
2209\f
2210/* Main entry point of this file: search the body of INSN
2211 for values that need reloading and record them with push_reload.
2212 REPLACE nonzero means record also where the values occur
2213 so that subst_reloads can be used.
2214
2215 IND_LEVELS says how many levels of indirection are supported by this
2216 machine; a value of zero means that a memory reference is not a valid
2217 memory address.
2218
2219 LIVE_KNOWN says we have valid information about which hard
2220 regs are live at each point in the program; this is true when
2221 we are called from global_alloc but false when stupid register
2222 allocation has been done.
2223
2224 RELOAD_REG_P if nonzero is a vector indexed by hard reg number
2225 which is nonnegative if the reg has been commandeered for reloading into.
2226 It is copied into STATIC_RELOAD_REG_P and referenced from there
2227 by various subroutines. */
2228
2229void
2230find_reloads (insn, replace, ind_levels, live_known, reload_reg_p)
2231 rtx insn;
2232 int replace, ind_levels;
2233 int live_known;
2234 short *reload_reg_p;
2235{
eab89b90
RK
2236#ifdef REGISTER_CONSTRAINTS
2237
eab89b90 2238 register int insn_code_number;
a8c9daeb 2239 register int i, j;
eab89b90
RK
2240 int noperands;
2241 /* These are the constraints for the insn. We don't change them. */
2242 char *constraints1[MAX_RECOG_OPERANDS];
2243 /* These start out as the constraints for the insn
2244 and they are chewed up as we consider alternatives. */
2245 char *constraints[MAX_RECOG_OPERANDS];
2246 /* These are the preferred classes for an operand, or NO_REGS if it isn't
2247 a register. */
2248 enum reg_class preferred_class[MAX_RECOG_OPERANDS];
2249 char pref_or_nothing[MAX_RECOG_OPERANDS];
2250 /* Nonzero for a MEM operand whose entire address needs a reload. */
2251 int address_reloaded[MAX_RECOG_OPERANDS];
a8c9daeb
RK
2252 /* Value of enum reload_type to use for operand. */
2253 enum reload_type operand_type[MAX_RECOG_OPERANDS];
2254 /* Value of enum reload_type to use within address of operand. */
2255 enum reload_type address_type[MAX_RECOG_OPERANDS];
2256 /* Save the usage of each operand. */
2257 enum reload_usage { RELOAD_READ, RELOAD_READ_WRITE, RELOAD_WRITE } modified[MAX_RECOG_OPERANDS];
eab89b90
RK
2258 int no_input_reloads = 0, no_output_reloads = 0;
2259 int n_alternatives;
2260 int this_alternative[MAX_RECOG_OPERANDS];
2261 char this_alternative_win[MAX_RECOG_OPERANDS];
2262 char this_alternative_offmemok[MAX_RECOG_OPERANDS];
2263 char this_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2264 int this_alternative_matches[MAX_RECOG_OPERANDS];
2265 int swapped;
2266 int goal_alternative[MAX_RECOG_OPERANDS];
2267 int this_alternative_number;
2268 int goal_alternative_number;
2269 int operand_reloadnum[MAX_RECOG_OPERANDS];
2270 int goal_alternative_matches[MAX_RECOG_OPERANDS];
2271 int goal_alternative_matched[MAX_RECOG_OPERANDS];
2272 char goal_alternative_win[MAX_RECOG_OPERANDS];
2273 char goal_alternative_offmemok[MAX_RECOG_OPERANDS];
2274 char goal_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2275 int goal_alternative_swapped;
eab89b90
RK
2276 int best;
2277 int commutative;
2278 char operands_match[MAX_RECOG_OPERANDS][MAX_RECOG_OPERANDS];
2279 rtx substed_operand[MAX_RECOG_OPERANDS];
2280 rtx body = PATTERN (insn);
2281 rtx set = single_set (insn);
2282 int goal_earlyclobber, this_earlyclobber;
2283 enum machine_mode operand_mode[MAX_RECOG_OPERANDS];
2284
2285 this_insn = insn;
2286 this_insn_is_asm = 0; /* Tentative. */
2287 n_reloads = 0;
2288 n_replacements = 0;
2289 n_memlocs = 0;
2290 n_earlyclobbers = 0;
2291 replace_reloads = replace;
2292 hard_regs_live_known = live_known;
2293 static_reload_reg_p = reload_reg_p;
2294
2295 /* JUMP_INSNs and CALL_INSNs are not allowed to have any output reloads;
2296 neither are insns that SET cc0. Insns that use CC0 are not allowed
2297 to have any input reloads. */
2298 if (GET_CODE (insn) == JUMP_INSN || GET_CODE (insn) == CALL_INSN)
2299 no_output_reloads = 1;
2300
2301#ifdef HAVE_cc0
2302 if (reg_referenced_p (cc0_rtx, PATTERN (insn)))
2303 no_input_reloads = 1;
2304 if (reg_set_p (cc0_rtx, PATTERN (insn)))
2305 no_output_reloads = 1;
2306#endif
2307
0dadecf6
RK
2308#ifdef SECONDARY_MEMORY_NEEDED
2309 /* The eliminated forms of any secondary memory locations are per-insn, so
2310 clear them out here. */
2311
4c9a05bc 2312 bzero ((char *) secondary_memlocs_elim, sizeof secondary_memlocs_elim);
0dadecf6
RK
2313#endif
2314
eab89b90
RK
2315 /* Find what kind of insn this is. NOPERANDS gets number of operands.
2316 Make OPERANDS point to a vector of operand values.
2317 Make OPERAND_LOCS point to a vector of pointers to
2318 where the operands were found.
2319 Fill CONSTRAINTS and CONSTRAINTS1 with pointers to the
2320 constraint-strings for this insn.
2321 Return if the insn needs no reload processing. */
2322
2323 switch (GET_CODE (body))
2324 {
2325 case USE:
2326 case CLOBBER:
2327 case ASM_INPUT:
2328 case ADDR_VEC:
2329 case ADDR_DIFF_VEC:
2330 return;
2331
2332 case SET:
2333 /* Dispose quickly of (set (reg..) (reg..)) if both have hard regs and it
2334 is cheap to move between them. If it is not, there may not be an insn
2335 to do the copy, so we may need a reload. */
2336 if (GET_CODE (SET_DEST (body)) == REG
2337 && REGNO (SET_DEST (body)) < FIRST_PSEUDO_REGISTER
2338 && GET_CODE (SET_SRC (body)) == REG
2339 && REGNO (SET_SRC (body)) < FIRST_PSEUDO_REGISTER
2340 && REGISTER_MOVE_COST (REGNO_REG_CLASS (REGNO (SET_SRC (body))),
2341 REGNO_REG_CLASS (REGNO (SET_DEST (body)))) == 2)
2342 return;
2343 case PARALLEL:
2344 case ASM_OPERANDS:
a8c9daeb 2345 reload_n_operands = noperands = asm_noperands (body);
eab89b90
RK
2346 if (noperands >= 0)
2347 {
2348 /* This insn is an `asm' with operands. */
2349
2350 insn_code_number = -1;
2351 this_insn_is_asm = 1;
2352
2353 /* expand_asm_operands makes sure there aren't too many operands. */
2354 if (noperands > MAX_RECOG_OPERANDS)
2355 abort ();
2356
2357 /* Now get the operand values and constraints out of the insn. */
2358
2359 decode_asm_operands (body, recog_operand, recog_operand_loc,
2360 constraints, operand_mode);
2361 if (noperands > 0)
2362 {
4c9a05bc
RK
2363 bcopy ((char *) constraints, (char *) constraints1,
2364 noperands * sizeof (char *));
eab89b90
RK
2365 n_alternatives = n_occurrences (',', constraints[0]) + 1;
2366 for (i = 1; i < noperands; i++)
d45cf215 2367 if (n_alternatives != n_occurrences (',', constraints[i]) + 1)
eab89b90
RK
2368 {
2369 error_for_asm (insn, "operand constraints differ in number of alternatives");
2370 /* Avoid further trouble with this insn. */
2371 PATTERN (insn) = gen_rtx (USE, VOIDmode, const0_rtx);
2372 n_reloads = 0;
2373 return;
2374 }
2375 }
2376 break;
2377 }
2378
2379 default:
2380 /* Ordinary insn: recognize it, get the operands via insn_extract
2381 and get the constraints. */
2382
2383 insn_code_number = recog_memoized (insn);
2384 if (insn_code_number < 0)
2385 fatal_insn_not_found (insn);
2386
a8c9daeb 2387 reload_n_operands = noperands = insn_n_operands[insn_code_number];
eab89b90
RK
2388 n_alternatives = insn_n_alternatives[insn_code_number];
2389 /* Just return "no reloads" if insn has no operands with constraints. */
2390 if (n_alternatives == 0)
2391 return;
2392 insn_extract (insn);
2393 for (i = 0; i < noperands; i++)
2394 {
2395 constraints[i] = constraints1[i]
2396 = insn_operand_constraint[insn_code_number][i];
2397 operand_mode[i] = insn_operand_mode[insn_code_number][i];
2398 }
2399 }
2400
2401 if (noperands == 0)
2402 return;
2403
2404 commutative = -1;
2405
2406 /* If we will need to know, later, whether some pair of operands
2407 are the same, we must compare them now and save the result.
2408 Reloading the base and index registers will clobber them
2409 and afterward they will fail to match. */
2410
2411 for (i = 0; i < noperands; i++)
2412 {
2413 register char *p;
2414 register int c;
2415
2416 substed_operand[i] = recog_operand[i];
2417 p = constraints[i];
2418
a8c9daeb
RK
2419 modified[i] = RELOAD_READ;
2420
2421 /* Scan this operand's constraint to see if it is an output operand,
2422 an in-out operand, is commutative, or should match another. */
eab89b90
RK
2423
2424 while (c = *p++)
a8c9daeb
RK
2425 {
2426 if (c == '=')
2427 modified[i] = RELOAD_WRITE;
2428 else if (c == '+')
2429 modified[i] = RELOAD_READ_WRITE;
2430 else if (c == '%')
2431 {
2432 /* The last operand should not be marked commutative. */
2433 if (i == noperands - 1)
2434 {
2435 if (this_insn_is_asm)
2436 warning_for_asm (this_insn,
2437 "`%%' constraint used with last operand");
2438 else
2439 abort ();
2440 }
2441 else
2442 commutative = i;
2443 }
2444 else if (c >= '0' && c <= '9')
2445 {
2446 c -= '0';
2447 operands_match[c][i]
2448 = operands_match_p (recog_operand[c], recog_operand[i]);
ea9c5b9e 2449
a8c9daeb
RK
2450 /* An operand may not match itself. */
2451 if (c == i)
2452 {
2453 if (this_insn_is_asm)
2454 warning_for_asm (this_insn,
2455 "operand %d has constraint %d", i, c);
2456 else
2457 abort ();
2458 }
ea9c5b9e 2459
a8c9daeb
RK
2460 /* If C can be commuted with C+1, and C might need to match I,
2461 then C+1 might also need to match I. */
2462 if (commutative >= 0)
2463 {
2464 if (c == commutative || c == commutative + 1)
2465 {
2466 int other = c + (c == commutative ? 1 : -1);
2467 operands_match[other][i]
2468 = operands_match_p (recog_operand[other], recog_operand[i]);
2469 }
2470 if (i == commutative || i == commutative + 1)
2471 {
2472 int other = i + (i == commutative ? 1 : -1);
2473 operands_match[c][other]
2474 = operands_match_p (recog_operand[c], recog_operand[other]);
2475 }
2476 /* Note that C is supposed to be less than I.
2477 No need to consider altering both C and I because in
2478 that case we would alter one into the other. */
2479 }
2480 }
2481 }
eab89b90
RK
2482 }
2483
2484 /* Examine each operand that is a memory reference or memory address
2485 and reload parts of the addresses into index registers.
eab89b90
RK
2486 Also here any references to pseudo regs that didn't get hard regs
2487 but are equivalent to constants get replaced in the insn itself
2488 with those constants. Nobody will ever see them again.
2489
2490 Finally, set up the preferred classes of each operand. */
2491
2492 for (i = 0; i < noperands; i++)
2493 {
2494 register RTX_CODE code = GET_CODE (recog_operand[i]);
a8c9daeb 2495
eab89b90 2496 address_reloaded[i] = 0;
a8c9daeb
RK
2497 operand_type[i] = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT
2498 : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT
2499 : RELOAD_OTHER);
2500 address_type[i]
2501 = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT_ADDRESS
2502 : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT_ADDRESS
2503 : RELOAD_OTHER);
eab89b90 2504
0d38001f
RS
2505 if (*constraints[i] == 0)
2506 /* Ignore things like match_operator operands. */
2507 ;
2508 else if (constraints[i][0] == 'p')
eab89b90 2509 {
fb3821f7 2510 find_reloads_address (VOIDmode, NULL_PTR,
eab89b90 2511 recog_operand[i], recog_operand_loc[i],
a8c9daeb 2512 i, operand_type[i], ind_levels);
eab89b90
RK
2513 substed_operand[i] = recog_operand[i] = *recog_operand_loc[i];
2514 }
2515 else if (code == MEM)
2516 {
2517 if (find_reloads_address (GET_MODE (recog_operand[i]),
2518 recog_operand_loc[i],
2519 XEXP (recog_operand[i], 0),
2520 &XEXP (recog_operand[i], 0),
a8c9daeb 2521 i, address_type[i], ind_levels))
eab89b90
RK
2522 address_reloaded[i] = 1;
2523 substed_operand[i] = recog_operand[i] = *recog_operand_loc[i];
2524 }
2525 else if (code == SUBREG)
2526 substed_operand[i] = recog_operand[i] = *recog_operand_loc[i]
a8c9daeb
RK
2527 = find_reloads_toplev (recog_operand[i], i, address_type[i],
2528 ind_levels,
eab89b90
RK
2529 set != 0
2530 && &SET_DEST (set) == recog_operand_loc[i]);
944d7b14
RS
2531 else if (code == PLUS)
2532 /* We can get a PLUS as an "operand" as a result of
a8647766 2533 register elimination. See eliminate_regs and gen_reload. */
944d7b14
RS
2534 substed_operand[i] = recog_operand[i] = *recog_operand_loc[i]
2535 = find_reloads_toplev (recog_operand[i], i, address_type[i],
2536 ind_levels, 0);
eab89b90
RK
2537 else if (code == REG)
2538 {
2539 /* This is equivalent to calling find_reloads_toplev.
2540 The code is duplicated for speed.
2541 When we find a pseudo always equivalent to a constant,
2542 we replace it by the constant. We must be sure, however,
2543 that we don't try to replace it in the insn in which it
2544 is being set. */
2545 register int regno = REGNO (recog_operand[i]);
2546 if (reg_equiv_constant[regno] != 0
2547 && (set == 0 || &SET_DEST (set) != recog_operand_loc[i]))
2548 substed_operand[i] = recog_operand[i]
2549 = reg_equiv_constant[regno];
2550#if 0 /* This might screw code in reload1.c to delete prior output-reload
2551 that feeds this insn. */
2552 if (reg_equiv_mem[regno] != 0)
2553 substed_operand[i] = recog_operand[i]
2554 = reg_equiv_mem[regno];
2555#endif
2556 if (reg_equiv_address[regno] != 0)
2557 {
2558 /* If reg_equiv_address is not a constant address, copy it,
2559 since it may be shared. */
4ffeab02
JW
2560 /* We must rerun eliminate_regs, in case the elimination
2561 offsets have changed. */
2562 rtx address = XEXP (eliminate_regs (reg_equiv_memory_loc[regno],
2563 0, NULL_RTX),
2564 0);
eab89b90
RK
2565
2566 if (rtx_varies_p (address))
2567 address = copy_rtx (address);
2568
2569 /* If this is an output operand, we must output a CLOBBER
a8c9daeb
RK
2570 after INSN so find_equiv_reg knows REGNO is being written.
2571 Mark this insn specially, do we can put our output reloads
2572 after it. */
2573
2574 if (modified[i] != RELOAD_READ)
2575 PUT_MODE (emit_insn_after (gen_rtx (CLOBBER, VOIDmode,
2576 recog_operand[i]),
2577 insn),
2578 DImode);
eab89b90
RK
2579
2580 *recog_operand_loc[i] = recog_operand[i]
2581 = gen_rtx (MEM, GET_MODE (recog_operand[i]), address);
2582 RTX_UNCHANGING_P (recog_operand[i])
2583 = RTX_UNCHANGING_P (regno_reg_rtx[regno]);
2584 find_reloads_address (GET_MODE (recog_operand[i]),
130659a4 2585 recog_operand_loc[i],
eab89b90
RK
2586 XEXP (recog_operand[i], 0),
2587 &XEXP (recog_operand[i], 0),
a8c9daeb 2588 i, address_type[i], ind_levels);
eab89b90
RK
2589 substed_operand[i] = recog_operand[i] = *recog_operand_loc[i];
2590 }
2591 }
aaf9712e
RS
2592 /* If the operand is still a register (we didn't replace it with an
2593 equivalent), get the preferred class to reload it into. */
2594 code = GET_CODE (recog_operand[i]);
2595 preferred_class[i]
91f9a6ed 2596 = ((code == REG && REGNO (recog_operand[i]) >= FIRST_PSEUDO_REGISTER)
aaf9712e
RS
2597 ? reg_preferred_class (REGNO (recog_operand[i])) : NO_REGS);
2598 pref_or_nothing[i]
91f9a6ed 2599 = (code == REG && REGNO (recog_operand[i]) >= FIRST_PSEUDO_REGISTER
e4600702 2600 && reg_alternate_class (REGNO (recog_operand[i])) == NO_REGS);
eab89b90
RK
2601 }
2602
2603 /* If this is simply a copy from operand 1 to operand 0, merge the
2604 preferred classes for the operands. */
2605 if (set != 0 && noperands >= 2 && recog_operand[0] == SET_DEST (set)
2606 && recog_operand[1] == SET_SRC (set))
2607 {
2608 preferred_class[0] = preferred_class[1]
2609 = reg_class_subunion[(int) preferred_class[0]][(int) preferred_class[1]];
2610 pref_or_nothing[0] |= pref_or_nothing[1];
2611 pref_or_nothing[1] |= pref_or_nothing[0];
2612 }
2613
2614 /* Now see what we need for pseudo-regs that didn't get hard regs
2615 or got the wrong kind of hard reg. For this, we must consider
2616 all the operands together against the register constraints. */
2617
2618 best = MAX_RECOG_OPERANDS + 300;
2619
2620 swapped = 0;
2621 goal_alternative_swapped = 0;
2622 try_swapped:
2623
2624 /* The constraints are made of several alternatives.
2625 Each operand's constraint looks like foo,bar,... with commas
2626 separating the alternatives. The first alternatives for all
2627 operands go together, the second alternatives go together, etc.
2628
2629 First loop over alternatives. */
2630
2631 for (this_alternative_number = 0;
2632 this_alternative_number < n_alternatives;
2633 this_alternative_number++)
2634 {
2635 /* Loop over operands for one constraint alternative. */
2636 /* LOSERS counts those that don't fit this alternative
2637 and would require loading. */
2638 int losers = 0;
2639 /* BAD is set to 1 if it some operand can't fit this alternative
2640 even after reloading. */
2641 int bad = 0;
2642 /* REJECT is a count of how undesirable this alternative says it is
2643 if any reloading is required. If the alternative matches exactly
2644 then REJECT is ignored, but otherwise it gets this much
2645 counted against it in addition to the reloading needed. Each
2646 ? counts three times here since we want the disparaging caused by
2647 a bad register class to only count 1/3 as much. */
2648 int reject = 0;
2649
2650 this_earlyclobber = 0;
2651
2652 for (i = 0; i < noperands; i++)
2653 {
2654 register char *p = constraints[i];
2655 register int win = 0;
2656 /* 0 => this operand can be reloaded somehow for this alternative */
2657 int badop = 1;
2658 /* 0 => this operand can be reloaded if the alternative allows regs. */
2659 int winreg = 0;
2660 int c;
2661 register rtx operand = recog_operand[i];
2662 int offset = 0;
2663 /* Nonzero means this is a MEM that must be reloaded into a reg
2664 regardless of what the constraint says. */
2665 int force_reload = 0;
2666 int offmemok = 0;
9d926da5
RK
2667 /* Nonzero if a constant forced into memory would be OK for this
2668 operand. */
2669 int constmemok = 0;
eab89b90
RK
2670 int earlyclobber = 0;
2671
2672 /* If the operand is a SUBREG, extract
2673 the REG or MEM (or maybe even a constant) within.
2674 (Constants can occur as a result of reg_equiv_constant.) */
2675
2676 while (GET_CODE (operand) == SUBREG)
2677 {
2678 offset += SUBREG_WORD (operand);
2679 operand = SUBREG_REG (operand);
ca769828 2680 /* Force reload if this is a constant or PLUS or if there may may
a61c98cf
RK
2681 be a problem accessing OPERAND in the outer mode. */
2682 if (CONSTANT_P (operand)
ca769828 2683 || GET_CODE (operand) == PLUS
03b72c86
RK
2684 /* We must force a reload of paradoxical SUBREGs
2685 of a MEM because the alignment of the inner value
beb5a9b8
RK
2686 may not be enough to do the outer reference. On
2687 big-endian machines, it may also reference outside
2688 the object.
03b72c86
RK
2689
2690 On machines that extend byte operations and we have a
486d8509
RK
2691 SUBREG where both the inner and outer modes are no wider
2692 than a word and the inner mode is narrower, is integral,
2693 and gets extended when loaded from memory, combine.c has
2694 made assumptions about the behavior of the machine in such
03b72c86
RK
2695 register access. If the data is, in fact, in memory we
2696 must always load using the size assumed to be in the
2697 register and let the insn do the different-sized
2698 accesses. */
a61c98cf
RK
2699 || ((GET_CODE (operand) == MEM
2700 || (GET_CODE (operand)== REG
2701 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
03b72c86
RK
2702 && (((GET_MODE_BITSIZE (GET_MODE (operand))
2703 < BIGGEST_ALIGNMENT)
2704 && (GET_MODE_SIZE (operand_mode[i])
2705 > GET_MODE_SIZE (GET_MODE (operand))))
beb5a9b8 2706 || (GET_CODE (operand) == MEM && BYTES_BIG_ENDIAN)
03b72c86
RK
2707#ifdef LOAD_EXTEND_OP
2708 || (GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
2709 && (GET_MODE_SIZE (GET_MODE (operand))
2710 <= UNITS_PER_WORD)
2711 && (GET_MODE_SIZE (operand_mode[i])
486d8509
RK
2712 > GET_MODE_SIZE (GET_MODE (operand)))
2713 && INTEGRAL_MODE_P (GET_MODE (operand))
2714 && LOAD_EXTEND_OP (GET_MODE (operand)) != NIL)
46da6b3a 2715#endif
03b72c86 2716 ))
eab89b90
RK
2717 /* Subreg of a hard reg which can't handle the subreg's mode
2718 or which would handle that mode in the wrong number of
2719 registers for subregging to work. */
a61c98cf
RK
2720 || (GET_CODE (operand) == REG
2721 && REGNO (operand) < FIRST_PSEUDO_REGISTER
f72ccbe6
RK
2722 && ((GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
2723 && (GET_MODE_SIZE (GET_MODE (operand))
2724 > UNITS_PER_WORD)
2725 && ((GET_MODE_SIZE (GET_MODE (operand))
2726 / UNITS_PER_WORD)
2727 != HARD_REGNO_NREGS (REGNO (operand),
2728 GET_MODE (operand))))
2729 || ! HARD_REGNO_MODE_OK (REGNO (operand) + offset,
2730 operand_mode[i]))))
eab89b90
RK
2731 force_reload = 1;
2732 }
2733
2734 this_alternative[i] = (int) NO_REGS;
2735 this_alternative_win[i] = 0;
2736 this_alternative_offmemok[i] = 0;
2737 this_alternative_earlyclobber[i] = 0;
2738 this_alternative_matches[i] = -1;
2739
2740 /* An empty constraint or empty alternative
2741 allows anything which matched the pattern. */
2742 if (*p == 0 || *p == ',')
2743 win = 1, badop = 0;
2744
2745 /* Scan this alternative's specs for this operand;
2746 set WIN if the operand fits any letter in this alternative.
2747 Otherwise, clear BADOP if this operand could
2748 fit some letter after reloads,
2749 or set WINREG if this operand could fit after reloads
2750 provided the constraint allows some registers. */
2751
2752 while (*p && (c = *p++) != ',')
2753 switch (c)
2754 {
2755 case '=':
eab89b90 2756 case '+':
eab89b90
RK
2757 case '*':
2758 break;
2759
2760 case '%':
42add480
TW
2761 /* The last operand should not be marked commutative. */
2762 if (i != noperands - 1)
2763 commutative = i;
eab89b90
RK
2764 break;
2765
2766 case '?':
2767 reject += 3;
2768 break;
2769
2770 case '!':
2771 reject = 300;
2772 break;
2773
2774 case '#':
2775 /* Ignore rest of this alternative as far as
2776 reloading is concerned. */
2777 while (*p && *p != ',') p++;
2778 break;
2779
2780 case '0':
2781 case '1':
2782 case '2':
2783 case '3':
2784 case '4':
2785 c -= '0';
2786 this_alternative_matches[i] = c;
2787 /* We are supposed to match a previous operand.
2788 If we do, we win if that one did.
2789 If we do not, count both of the operands as losers.
2790 (This is too conservative, since most of the time
2791 only a single reload insn will be needed to make
2792 the two operands win. As a result, this alternative
2793 may be rejected when it is actually desirable.) */
2794 if ((swapped && (c != commutative || i != commutative + 1))
2795 /* If we are matching as if two operands were swapped,
2796 also pretend that operands_match had been computed
2797 with swapped.
2798 But if I is the second of those and C is the first,
2799 don't exchange them, because operands_match is valid
2800 only on one side of its diagonal. */
2801 ? (operands_match
2802 [(c == commutative || c == commutative + 1)
2803 ? 2*commutative + 1 - c : c]
2804 [(i == commutative || i == commutative + 1)
2805 ? 2*commutative + 1 - i : i])
2806 : operands_match[c][i])
2807 win = this_alternative_win[c];
2808 else
2809 {
2810 /* Operands don't match. */
2811 rtx value;
2812 /* Retroactively mark the operand we had to match
2813 as a loser, if it wasn't already. */
2814 if (this_alternative_win[c])
2815 losers++;
2816 this_alternative_win[c] = 0;
2817 if (this_alternative[c] == (int) NO_REGS)
2818 bad = 1;
2819 /* But count the pair only once in the total badness of
2820 this alternative, if the pair can be a dummy reload. */
2821 value
2822 = find_dummy_reload (recog_operand[i], recog_operand[c],
2823 recog_operand_loc[i], recog_operand_loc[c],
adb44af8 2824 operand_mode[i], operand_mode[c],
eab89b90
RK
2825 this_alternative[c], -1);
2826
2827 if (value != 0)
2828 losers--;
2829 }
2830 /* This can be fixed with reloads if the operand
2831 we are supposed to match can be fixed with reloads. */
2832 badop = 0;
2833 this_alternative[i] = this_alternative[c];
e64c4f9e
RK
2834
2835 /* If we have to reload this operand and some previous
2836 operand also had to match the same thing as this
2837 operand, we don't know how to do that. So reject this
2838 alternative. */
2839 if (! win || force_reload)
2840 for (j = 0; j < i; j++)
2841 if (this_alternative_matches[j]
2842 == this_alternative_matches[i])
2843 badop = 1;
2844
eab89b90
RK
2845 break;
2846
2847 case 'p':
2848 /* All necessary reloads for an address_operand
2849 were handled in find_reloads_address. */
5c73e847 2850 this_alternative[i] = (int) BASE_REG_CLASS;
eab89b90
RK
2851 win = 1;
2852 break;
2853
2854 case 'm':
2855 if (force_reload)
2856 break;
2857 if (GET_CODE (operand) == MEM
2858 || (GET_CODE (operand) == REG
2859 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
2860 && reg_renumber[REGNO (operand)] < 0))
2861 win = 1;
2862 if (CONSTANT_P (operand))
2863 badop = 0;
9d926da5 2864 constmemok = 1;
eab89b90
RK
2865 break;
2866
2867 case '<':
2868 if (GET_CODE (operand) == MEM
2869 && ! address_reloaded[i]
2870 && (GET_CODE (XEXP (operand, 0)) == PRE_DEC
2871 || GET_CODE (XEXP (operand, 0)) == POST_DEC))
2872 win = 1;
2873 break;
2874
2875 case '>':
2876 if (GET_CODE (operand) == MEM
2877 && ! address_reloaded[i]
2878 && (GET_CODE (XEXP (operand, 0)) == PRE_INC
2879 || GET_CODE (XEXP (operand, 0)) == POST_INC))
2880 win = 1;
2881 break;
2882
2883 /* Memory operand whose address is not offsettable. */
2884 case 'V':
2885 if (force_reload)
2886 break;
2887 if (GET_CODE (operand) == MEM
2888 && ! (ind_levels ? offsettable_memref_p (operand)
2889 : offsettable_nonstrict_memref_p (operand))
2890 /* Certain mem addresses will become offsettable
2891 after they themselves are reloaded. This is important;
2892 we don't want our own handling of unoffsettables
2893 to override the handling of reg_equiv_address. */
2894 && !(GET_CODE (XEXP (operand, 0)) == REG
2895 && (ind_levels == 0
2896 || reg_equiv_address[REGNO (XEXP (operand, 0))] != 0)))
2897 win = 1;
2898 break;
2899
2900 /* Memory operand whose address is offsettable. */
2901 case 'o':
2902 if (force_reload)
2903 break;
2904 if ((GET_CODE (operand) == MEM
2905 /* If IND_LEVELS, find_reloads_address won't reload a
2906 pseudo that didn't get a hard reg, so we have to
2907 reject that case. */
2908 && (ind_levels ? offsettable_memref_p (operand)
2909 : offsettable_nonstrict_memref_p (operand)))
26ba4aee
JW
2910 /* A reloaded auto-increment address is offsettable,
2911 because it is now just a simple register indirect. */
2912 || (GET_CODE (operand) == MEM
2913 && address_reloaded[i]
2914 && (GET_CODE (XEXP (operand, 0)) == PRE_INC
2915 || GET_CODE (XEXP (operand, 0)) == PRE_DEC
2916 || GET_CODE (XEXP (operand, 0)) == POST_INC
2917 || GET_CODE (XEXP (operand, 0)) == POST_DEC))
eab89b90
RK
2918 /* Certain mem addresses will become offsettable
2919 after they themselves are reloaded. This is important;
2920 we don't want our own handling of unoffsettables
2921 to override the handling of reg_equiv_address. */
2922 || (GET_CODE (operand) == MEM
2923 && GET_CODE (XEXP (operand, 0)) == REG
2924 && (ind_levels == 0
2925 || reg_equiv_address[REGNO (XEXP (operand, 0))] != 0))
2926 || (GET_CODE (operand) == REG
2927 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3a322c50
RK
2928 && reg_renumber[REGNO (operand)] < 0
2929 /* If reg_equiv_address is nonzero, we will be
2930 loading it into a register; hence it will be
2931 offsettable, but we cannot say that reg_equiv_mem
2932 is offsettable without checking. */
2933 && ((reg_equiv_mem[REGNO (operand)] != 0
2934 && offsettable_memref_p (reg_equiv_mem[REGNO (operand)]))
2935 || (reg_equiv_address[REGNO (operand)] != 0))))
eab89b90
RK
2936 win = 1;
2937 if (CONSTANT_P (operand) || GET_CODE (operand) == MEM)
2938 badop = 0;
9d926da5 2939 constmemok = 1;
eab89b90
RK
2940 offmemok = 1;
2941 break;
2942
2943 case '&':
2944 /* Output operand that is stored before the need for the
2945 input operands (and their index registers) is over. */
2946 earlyclobber = 1, this_earlyclobber = 1;
2947 break;
2948
2949 case 'E':
293166be 2950#ifndef REAL_ARITHMETIC
eab89b90
RK
2951 /* Match any floating double constant, but only if
2952 we can examine the bits of it reliably. */
2953 if ((HOST_FLOAT_FORMAT != TARGET_FLOAT_FORMAT
fb3821f7 2954 || HOST_BITS_PER_WIDE_INT != BITS_PER_WORD)
eab89b90
RK
2955 && GET_MODE (operand) != VOIDmode && ! flag_pretend_float)
2956 break;
293166be 2957#endif
eab89b90
RK
2958 if (GET_CODE (operand) == CONST_DOUBLE)
2959 win = 1;
2960 break;
2961
2962 case 'F':
2963 if (GET_CODE (operand) == CONST_DOUBLE)
2964 win = 1;
2965 break;
2966
2967 case 'G':
2968 case 'H':
2969 if (GET_CODE (operand) == CONST_DOUBLE
2970 && CONST_DOUBLE_OK_FOR_LETTER_P (operand, c))
2971 win = 1;
2972 break;
2973
2974 case 's':
2975 if (GET_CODE (operand) == CONST_INT
2976 || (GET_CODE (operand) == CONST_DOUBLE
2977 && GET_MODE (operand) == VOIDmode))
2978 break;
2979 case 'i':
2980 if (CONSTANT_P (operand)
2981#ifdef LEGITIMATE_PIC_OPERAND_P
2982 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (operand))
2983#endif
2984 )
2985 win = 1;
2986 break;
2987
2988 case 'n':
2989 if (GET_CODE (operand) == CONST_INT
2990 || (GET_CODE (operand) == CONST_DOUBLE
2991 && GET_MODE (operand) == VOIDmode))
2992 win = 1;
2993 break;
2994
2995 case 'I':
2996 case 'J':
2997 case 'K':
2998 case 'L':
2999 case 'M':
3000 case 'N':
3001 case 'O':
3002 case 'P':
3003 if (GET_CODE (operand) == CONST_INT
3004 && CONST_OK_FOR_LETTER_P (INTVAL (operand), c))
3005 win = 1;
3006 break;
3007
3008 case 'X':
3009 win = 1;
3010 break;
3011
3012 case 'g':
3013 if (! force_reload
3014 /* A PLUS is never a valid operand, but reload can make
3015 it from a register when eliminating registers. */
3016 && GET_CODE (operand) != PLUS
3017 /* A SCRATCH is not a valid operand. */
3018 && GET_CODE (operand) != SCRATCH
3019#ifdef LEGITIMATE_PIC_OPERAND_P
3020 && (! CONSTANT_P (operand)
3021 || ! flag_pic
3022 || LEGITIMATE_PIC_OPERAND_P (operand))
3023#endif
3024 && (GENERAL_REGS == ALL_REGS
3025 || GET_CODE (operand) != REG
3026 || (REGNO (operand) >= FIRST_PSEUDO_REGISTER
3027 && reg_renumber[REGNO (operand)] < 0)))
3028 win = 1;
3029 /* Drop through into 'r' case */
3030
3031 case 'r':
3032 this_alternative[i]
3033 = (int) reg_class_subunion[this_alternative[i]][(int) GENERAL_REGS];
3034 goto reg;
3035
3036#ifdef EXTRA_CONSTRAINT
3037 case 'Q':
3038 case 'R':
3039 case 'S':
3040 case 'T':
3041 case 'U':
3042 if (EXTRA_CONSTRAINT (operand, c))
3043 win = 1;
3044 break;
3045#endif
3046
3047 default:
3048 this_alternative[i]
3049 = (int) reg_class_subunion[this_alternative[i]][(int) REG_CLASS_FROM_LETTER (c)];
3050
3051 reg:
3052 if (GET_MODE (operand) == BLKmode)
3053 break;
3054 winreg = 1;
3055 if (GET_CODE (operand) == REG
3056 && reg_fits_class_p (operand, this_alternative[i],
3057 offset, GET_MODE (recog_operand[i])))
3058 win = 1;
3059 break;
3060 }
3061
3062 constraints[i] = p;
3063
3064 /* If this operand could be handled with a reg,
3065 and some reg is allowed, then this operand can be handled. */
3066 if (winreg && this_alternative[i] != (int) NO_REGS)
3067 badop = 0;
3068
3069 /* Record which operands fit this alternative. */
3070 this_alternative_earlyclobber[i] = earlyclobber;
3071 if (win && ! force_reload)
3072 this_alternative_win[i] = 1;
3073 else
3074 {
9d926da5
RK
3075 int const_to_mem = 0;
3076
eab89b90
RK
3077 this_alternative_offmemok[i] = offmemok;
3078 losers++;
3079 if (badop)
3080 bad = 1;
3081 /* Alternative loses if it has no regs for a reg operand. */
3082 if (GET_CODE (operand) == REG
3083 && this_alternative[i] == (int) NO_REGS
3084 && this_alternative_matches[i] < 0)
3085 bad = 1;
3086
3087 /* Alternative loses if it requires a type of reload not
3088 permitted for this insn. We can always reload SCRATCH
3089 and objects with a REG_UNUSED note. */
a8c9daeb
RK
3090 if (GET_CODE (operand) != SCRATCH
3091 && modified[i] != RELOAD_READ && no_output_reloads
eab89b90
RK
3092 && ! find_reg_note (insn, REG_UNUSED, operand))
3093 bad = 1;
3094 else if (modified[i] != RELOAD_WRITE && no_input_reloads)
3095 bad = 1;
3096
3a322c50
RK
3097 /* If this is a constant that is reloaded into the desired
3098 class by copying it to memory first, count that as another
3099 reload. This is consistent with other code and is
293166be 3100 required to avoid choosing another alternative when
3a322c50
RK
3101 the constant is moved into memory by this function on
3102 an early reload pass. Note that the test here is
3103 precisely the same as in the code below that calls
3104 force_const_mem. */
3105 if (CONSTANT_P (operand)
59f25cf9
RK
3106 /* force_const_mem does not accept HIGH. */
3107 && GET_CODE (operand) != HIGH
3a322c50
RK
3108 && (PREFERRED_RELOAD_CLASS (operand,
3109 (enum reg_class) this_alternative[i])
3110 == NO_REGS)
3a322c50 3111 && operand_mode[i] != VOIDmode)
9d926da5
RK
3112 {
3113 const_to_mem = 1;
3114 if (this_alternative[i] != (int) NO_REGS)
3115 losers++;
3116 }
3a322c50 3117
5e6aa513
RK
3118 /* If we can't reload this value at all, reject this
3119 alternative. Note that we could also lose due to
3120 LIMIT_RELOAD_RELOAD_CLASS, but we don't check that
3121 here. */
3122
3123 if (! CONSTANT_P (operand)
73b236b5 3124 && (enum reg_class) this_alternative[i] != NO_REGS
5e6aa513
RK
3125 && (PREFERRED_RELOAD_CLASS (operand,
3126 (enum reg_class) this_alternative[i])
3127 == NO_REGS))
3128 bad = 1;
3129
eab89b90
RK
3130 /* We prefer to reload pseudos over reloading other things,
3131 since such reloads may be able to be eliminated later.
3132 If we are reloading a SCRATCH, we won't be generating any
3133 insns, just using a register, so it is also preferred.
9d926da5
RK
3134 So bump REJECT in other cases. Don't do this in the
3135 case where we are forcing a constant into memory and
3136 it will then win since we don't want to have a different
3137 alternative match then. */
915bb763
RK
3138 if (! (GET_CODE (operand) == REG
3139 && REGNO (operand) >= FIRST_PSEUDO_REGISTER)
9d926da5
RK
3140 && GET_CODE (operand) != SCRATCH
3141 && ! (const_to_mem && constmemok))
eab89b90
RK
3142 reject++;
3143 }
3144
3145 /* If this operand is a pseudo register that didn't get a hard
3146 reg and this alternative accepts some register, see if the
3147 class that we want is a subset of the preferred class for this
3148 register. If not, but it intersects that class, use the
3149 preferred class instead. If it does not intersect the preferred
3150 class, show that usage of this alternative should be discouraged;
3151 it will be discouraged more still if the register is `preferred
3152 or nothing'. We do this because it increases the chance of
3153 reusing our spill register in a later insn and avoiding a pair
3154 of memory stores and loads.
3155
3156 Don't bother with this if this alternative will accept this
3157 operand.
3158
a2d353e5
RK
3159 Don't do this for a multiword operand, since it is only a
3160 small win and has the risk of requiring more spill registers,
3161 which could cause a large loss.
5aa14fee 3162
eab89b90
RK
3163 Don't do this if the preferred class has only one register
3164 because we might otherwise exhaust the class. */
3165
3166
3167 if (! win && this_alternative[i] != (int) NO_REGS
5aa14fee 3168 && GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
eab89b90
RK
3169 && reg_class_size[(int) preferred_class[i]] > 1)
3170 {
3171 if (! reg_class_subset_p (this_alternative[i],
3172 preferred_class[i]))
3173 {
3174 /* Since we don't have a way of forming the intersection,
3175 we just do something special if the preferred class
3176 is a subset of the class we have; that's the most
3177 common case anyway. */
3178 if (reg_class_subset_p (preferred_class[i],
3179 this_alternative[i]))
3180 this_alternative[i] = (int) preferred_class[i];
3181 else
3182 reject += (1 + pref_or_nothing[i]);
3183 }
3184 }
3185 }
3186
3187 /* Now see if any output operands that are marked "earlyclobber"
3188 in this alternative conflict with any input operands
3189 or any memory addresses. */
3190
3191 for (i = 0; i < noperands; i++)
3192 if (this_alternative_earlyclobber[i]
3193 && this_alternative_win[i])
3194 {
3195 struct decomposition early_data;
eab89b90
RK
3196
3197 early_data = decompose (recog_operand[i]);
3198
3199 if (modified[i] == RELOAD_READ)
3200 {
3201 if (this_insn_is_asm)
3202 warning_for_asm (this_insn,
3203 "`&' constraint used with input operand");
3204 else
3205 abort ();
3206 continue;
3207 }
3208
3209 if (this_alternative[i] == NO_REGS)
3210 {
3211 this_alternative_earlyclobber[i] = 0;
3212 if (this_insn_is_asm)
3213 error_for_asm (this_insn,
3214 "`&' constraint used with no register class");
3215 else
3216 abort ();
3217 }
3218
3219 for (j = 0; j < noperands; j++)
3220 /* Is this an input operand or a memory ref? */
3221 if ((GET_CODE (recog_operand[j]) == MEM
3222 || modified[j] != RELOAD_WRITE)
3223 && j != i
3224 /* Ignore things like match_operator operands. */
3225 && *constraints1[j] != 0
3226 /* Don't count an input operand that is constrained to match
3227 the early clobber operand. */
3228 && ! (this_alternative_matches[j] == i
3229 && rtx_equal_p (recog_operand[i], recog_operand[j]))
3230 /* Is it altered by storing the earlyclobber operand? */
3231 && !immune_p (recog_operand[j], recog_operand[i], early_data))
3232 {
3233 /* If the output is in a single-reg class,
3234 it's costly to reload it, so reload the input instead. */
3235 if (reg_class_size[this_alternative[i]] == 1
3236 && (GET_CODE (recog_operand[j]) == REG
3237 || GET_CODE (recog_operand[j]) == SUBREG))
3238 {
3239 losers++;
3240 this_alternative_win[j] = 0;
3241 }
3242 else
3243 break;
3244 }
3245 /* If an earlyclobber operand conflicts with something,
3246 it must be reloaded, so request this and count the cost. */
3247 if (j != noperands)
3248 {
3249 losers++;
3250 this_alternative_win[i] = 0;
3251 for (j = 0; j < noperands; j++)
3252 if (this_alternative_matches[j] == i
3253 && this_alternative_win[j])
3254 {
3255 this_alternative_win[j] = 0;
3256 losers++;
3257 }
3258 }
3259 }
3260
3261 /* If one alternative accepts all the operands, no reload required,
3262 choose that alternative; don't consider the remaining ones. */
3263 if (losers == 0)
3264 {
3265 /* Unswap these so that they are never swapped at `finish'. */
3266 if (commutative >= 0)
3267 {
3268 recog_operand[commutative] = substed_operand[commutative];
3269 recog_operand[commutative + 1]
3270 = substed_operand[commutative + 1];
3271 }
3272 for (i = 0; i < noperands; i++)
3273 {
3274 goal_alternative_win[i] = 1;
3275 goal_alternative[i] = this_alternative[i];
3276 goal_alternative_offmemok[i] = this_alternative_offmemok[i];
3277 goal_alternative_matches[i] = this_alternative_matches[i];
3278 goal_alternative_earlyclobber[i]
3279 = this_alternative_earlyclobber[i];
3280 }
3281 goal_alternative_number = this_alternative_number;
3282 goal_alternative_swapped = swapped;
3283 goal_earlyclobber = this_earlyclobber;
3284 goto finish;
3285 }
3286
3287 /* REJECT, set by the ! and ? constraint characters and when a register
3288 would be reloaded into a non-preferred class, discourages the use of
3289 this alternative for a reload goal. REJECT is incremented by three
3290 for each ? and one for each non-preferred class. */
3291 losers = losers * 3 + reject;
3292
3293 /* If this alternative can be made to work by reloading,
3294 and it needs less reloading than the others checked so far,
3295 record it as the chosen goal for reloading. */
3296 if (! bad && best > losers)
3297 {
3298 for (i = 0; i < noperands; i++)
3299 {
3300 goal_alternative[i] = this_alternative[i];
3301 goal_alternative_win[i] = this_alternative_win[i];
3302 goal_alternative_offmemok[i] = this_alternative_offmemok[i];
3303 goal_alternative_matches[i] = this_alternative_matches[i];
3304 goal_alternative_earlyclobber[i]
3305 = this_alternative_earlyclobber[i];
3306 }
3307 goal_alternative_swapped = swapped;
3308 best = losers;
3309 goal_alternative_number = this_alternative_number;
3310 goal_earlyclobber = this_earlyclobber;
3311 }
3312 }
3313
3314 /* If insn is commutative (it's safe to exchange a certain pair of operands)
3315 then we need to try each alternative twice,
3316 the second time matching those two operands
3317 as if we had exchanged them.
3318 To do this, really exchange them in operands.
3319
3320 If we have just tried the alternatives the second time,
3321 return operands to normal and drop through. */
3322
3323 if (commutative >= 0)
3324 {
3325 swapped = !swapped;
3326 if (swapped)
3327 {
3328 register enum reg_class tclass;
3329 register int t;
3330
3331 recog_operand[commutative] = substed_operand[commutative + 1];
3332 recog_operand[commutative + 1] = substed_operand[commutative];
3333
3334 tclass = preferred_class[commutative];
3335 preferred_class[commutative] = preferred_class[commutative + 1];
3336 preferred_class[commutative + 1] = tclass;
3337
3338 t = pref_or_nothing[commutative];
3339 pref_or_nothing[commutative] = pref_or_nothing[commutative + 1];
3340 pref_or_nothing[commutative + 1] = t;
3341
4c9a05bc
RK
3342 bcopy ((char *) constraints1, (char *) constraints,
3343 noperands * sizeof (char *));
eab89b90
RK
3344 goto try_swapped;
3345 }
3346 else
3347 {
3348 recog_operand[commutative] = substed_operand[commutative];
3349 recog_operand[commutative + 1] = substed_operand[commutative + 1];
3350 }
3351 }
3352
3353 /* The operands don't meet the constraints.
3354 goal_alternative describes the alternative
3355 that we could reach by reloading the fewest operands.
3356 Reload so as to fit it. */
3357
3358 if (best == MAX_RECOG_OPERANDS + 300)
3359 {
3360 /* No alternative works with reloads?? */
3361 if (insn_code_number >= 0)
3362 abort ();
3363 error_for_asm (insn, "inconsistent operand constraints in an `asm'");
3364 /* Avoid further trouble with this insn. */
3365 PATTERN (insn) = gen_rtx (USE, VOIDmode, const0_rtx);
3366 n_reloads = 0;
3367 return;
3368 }
3369
3370 /* Jump to `finish' from above if all operands are valid already.
3371 In that case, goal_alternative_win is all 1. */
3372 finish:
3373
3374 /* Right now, for any pair of operands I and J that are required to match,
3375 with I < J,
3376 goal_alternative_matches[J] is I.
3377 Set up goal_alternative_matched as the inverse function:
3378 goal_alternative_matched[I] = J. */
3379
3380 for (i = 0; i < noperands; i++)
3381 goal_alternative_matched[i] = -1;
3382
3383 for (i = 0; i < noperands; i++)
3384 if (! goal_alternative_win[i]
3385 && goal_alternative_matches[i] >= 0)
3386 goal_alternative_matched[goal_alternative_matches[i]] = i;
3387
3388 /* If the best alternative is with operands 1 and 2 swapped,
a8c9daeb
RK
3389 consider them swapped before reporting the reloads. Update the
3390 operand numbers of any reloads already pushed. */
eab89b90
RK
3391
3392 if (goal_alternative_swapped)
3393 {
3394 register rtx tem;
3395
3396 tem = substed_operand[commutative];
3397 substed_operand[commutative] = substed_operand[commutative + 1];
3398 substed_operand[commutative + 1] = tem;
3399 tem = recog_operand[commutative];
3400 recog_operand[commutative] = recog_operand[commutative + 1];
3401 recog_operand[commutative + 1] = tem;
a8c9daeb
RK
3402
3403 for (i = 0; i < n_reloads; i++)
3404 {
3405 if (reload_opnum[i] == commutative)
3406 reload_opnum[i] = commutative + 1;
3407 else if (reload_opnum[i] == commutative + 1)
3408 reload_opnum[i] = commutative;
3409 }
eab89b90
RK
3410 }
3411
3412 /* Perform whatever substitutions on the operands we are supposed
3413 to make due to commutativity or replacement of registers
3414 with equivalent constants or memory slots. */
3415
3416 for (i = 0; i < noperands; i++)
3417 {
3418 *recog_operand_loc[i] = substed_operand[i];
3419 /* While we are looping on operands, initialize this. */
3420 operand_reloadnum[i] = -1;
a8c9daeb
RK
3421
3422 /* If this is an earlyclobber operand, we need to widen the scope.
3423 The reload must remain valid from the start of the insn being
3424 reloaded until after the operand is stored into its destination.
3425 We approximate this with RELOAD_OTHER even though we know that we
3426 do not conflict with RELOAD_FOR_INPUT_ADDRESS reloads.
3427
3428 One special case that is worth checking is when we have an
3429 output that is earlyclobber but isn't used past the insn (typically
3430 a SCRATCH). In this case, we only need have the reload live
3431 through the insn itself, but not for any of our input or output
3432 reloads.
3433
3434 In any case, anything needed to address this operand can remain
3435 however they were previously categorized. */
3436
3437 if (goal_alternative_earlyclobber[i])
3438 operand_type[i]
3439 = (find_reg_note (insn, REG_UNUSED, recog_operand[i])
3440 ? RELOAD_FOR_INSN : RELOAD_OTHER);
eab89b90
RK
3441 }
3442
3443 /* Any constants that aren't allowed and can't be reloaded
3444 into registers are here changed into memory references. */
3445 for (i = 0; i < noperands; i++)
3446 if (! goal_alternative_win[i]
3447 && CONSTANT_P (recog_operand[i])
59f25cf9
RK
3448 /* force_const_mem does not accept HIGH. */
3449 && GET_CODE (recog_operand[i]) != HIGH
eab89b90
RK
3450 && (PREFERRED_RELOAD_CLASS (recog_operand[i],
3451 (enum reg_class) goal_alternative[i])
3452 == NO_REGS)
3453 && operand_mode[i] != VOIDmode)
3454 {
3455 *recog_operand_loc[i] = recog_operand[i]
3456 = find_reloads_toplev (force_const_mem (operand_mode[i],
3457 recog_operand[i]),
a8c9daeb 3458 i, address_type[i], ind_levels, 0);
eab89b90
RK
3459 if (alternative_allows_memconst (constraints1[i],
3460 goal_alternative_number))
3461 goal_alternative_win[i] = 1;
3462 }
3463
4644aad4
RK
3464 /* Record the values of the earlyclobber operands for the caller. */
3465 if (goal_earlyclobber)
3466 for (i = 0; i < noperands; i++)
3467 if (goal_alternative_earlyclobber[i])
3468 reload_earlyclobbers[n_earlyclobbers++] = recog_operand[i];
3469
eab89b90
RK
3470 /* Now record reloads for all the operands that need them. */
3471 for (i = 0; i < noperands; i++)
3472 if (! goal_alternative_win[i])
3473 {
3474 /* Operands that match previous ones have already been handled. */
3475 if (goal_alternative_matches[i] >= 0)
3476 ;
3477 /* Handle an operand with a nonoffsettable address
3478 appearing where an offsettable address will do
3a322c50
RK
3479 by reloading the address into a base register.
3480
3481 ??? We can also do this when the operand is a register and
3482 reg_equiv_mem is not offsettable, but this is a bit tricky,
3483 so we don't bother with it. It may not be worth doing. */
eab89b90
RK
3484 else if (goal_alternative_matched[i] == -1
3485 && goal_alternative_offmemok[i]
3486 && GET_CODE (recog_operand[i]) == MEM)
3487 {
3488 operand_reloadnum[i]
fb3821f7
CH
3489 = push_reload (XEXP (recog_operand[i], 0), NULL_RTX,
3490 &XEXP (recog_operand[i], 0), NULL_PTR,
eab89b90 3491 BASE_REG_CLASS, GET_MODE (XEXP (recog_operand[i], 0)),
a8c9daeb 3492 VOIDmode, 0, 0, i, RELOAD_FOR_INPUT);
eab89b90
RK
3493 reload_inc[operand_reloadnum[i]]
3494 = GET_MODE_SIZE (GET_MODE (recog_operand[i]));
a8c9daeb
RK
3495
3496 /* If this operand is an output, we will have made any
3497 reloads for its address as RELOAD_FOR_OUTPUT_ADDRESS, but
3498 now we are treating part of the operand as an input, so
3499 we must change these to RELOAD_FOR_INPUT_ADDRESS. */
3500
2d55b7e8 3501 if (modified[i] == RELOAD_WRITE)
a8c9daeb
RK
3502 for (j = 0; j < n_reloads; j++)
3503 if (reload_opnum[j] == i
3504 && reload_when_needed[j] == RELOAD_FOR_OUTPUT_ADDRESS)
3505 reload_when_needed[j] = RELOAD_FOR_INPUT_ADDRESS;
eab89b90
RK
3506 }
3507 else if (goal_alternative_matched[i] == -1)
3508 operand_reloadnum[i] =
3509 push_reload (modified[i] != RELOAD_WRITE ? recog_operand[i] : 0,
3510 modified[i] != RELOAD_READ ? recog_operand[i] : 0,
a8c9daeb
RK
3511 (modified[i] != RELOAD_WRITE ?
3512 recog_operand_loc[i] : 0),
eab89b90
RK
3513 modified[i] != RELOAD_READ ? recog_operand_loc[i] : 0,
3514 (enum reg_class) goal_alternative[i],
a8c9daeb
RK
3515 (modified[i] == RELOAD_WRITE
3516 ? VOIDmode : operand_mode[i]),
3517 (modified[i] == RELOAD_READ
3518 ? VOIDmode : operand_mode[i]),
eab89b90
RK
3519 (insn_code_number < 0 ? 0
3520 : insn_operand_strict_low[insn_code_number][i]),
a8c9daeb 3521 0, i, operand_type[i]);
eab89b90
RK
3522 /* In a matching pair of operands, one must be input only
3523 and the other must be output only.
3524 Pass the input operand as IN and the other as OUT. */
3525 else if (modified[i] == RELOAD_READ
3526 && modified[goal_alternative_matched[i]] == RELOAD_WRITE)
3527 {
3528 operand_reloadnum[i]
3529 = push_reload (recog_operand[i],
3530 recog_operand[goal_alternative_matched[i]],
3531 recog_operand_loc[i],
3532 recog_operand_loc[goal_alternative_matched[i]],
3533 (enum reg_class) goal_alternative[i],
3534 operand_mode[i],
3535 operand_mode[goal_alternative_matched[i]],
a8c9daeb 3536 0, 0, i, RELOAD_OTHER);
eab89b90
RK
3537 operand_reloadnum[goal_alternative_matched[i]] = output_reloadnum;
3538 }
3539 else if (modified[i] == RELOAD_WRITE
3540 && modified[goal_alternative_matched[i]] == RELOAD_READ)
3541 {
3542 operand_reloadnum[goal_alternative_matched[i]]
3543 = push_reload (recog_operand[goal_alternative_matched[i]],
3544 recog_operand[i],
3545 recog_operand_loc[goal_alternative_matched[i]],
3546 recog_operand_loc[i],
3547 (enum reg_class) goal_alternative[i],
3548 operand_mode[goal_alternative_matched[i]],
3549 operand_mode[i],
a8c9daeb 3550 0, 0, i, RELOAD_OTHER);
eab89b90
RK
3551 operand_reloadnum[i] = output_reloadnum;
3552 }
3553 else if (insn_code_number >= 0)
3554 abort ();
3555 else
3556 {
3557 error_for_asm (insn, "inconsistent operand constraints in an `asm'");
3558 /* Avoid further trouble with this insn. */
3559 PATTERN (insn) = gen_rtx (USE, VOIDmode, const0_rtx);
3560 n_reloads = 0;
3561 return;
3562 }
3563 }
3564 else if (goal_alternative_matched[i] < 0
3565 && goal_alternative_matches[i] < 0
3566 && optimize)
3567 {
a8c9daeb 3568 /* For each non-matching operand that's a MEM or a pseudo-register
eab89b90
RK
3569 that didn't get a hard register, make an optional reload.
3570 This may get done even if the insn needs no reloads otherwise. */
a8c9daeb
RK
3571
3572 rtx operand = recog_operand[i];
3573
eab89b90
RK
3574 while (GET_CODE (operand) == SUBREG)
3575 operand = XEXP (operand, 0);
a8c9daeb
RK
3576 if ((GET_CODE (operand) == MEM
3577 || (GET_CODE (operand) == REG
3578 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
eab89b90 3579 && (enum reg_class) goal_alternative[i] != NO_REGS
a8c9daeb
RK
3580 && ! no_input_reloads
3581 /* Optional output reloads don't do anything and we mustn't
3582 make in-out reloads on insns that are not permitted output
3583 reloads. */
eab89b90 3584 && (modified[i] == RELOAD_READ
a8c9daeb 3585 || (modified[i] == RELOAD_READ_WRITE && ! no_output_reloads)))
eab89b90
RK
3586 operand_reloadnum[i]
3587 = push_reload (modified[i] != RELOAD_WRITE ? recog_operand[i] : 0,
3588 modified[i] != RELOAD_READ ? recog_operand[i] : 0,
a8c9daeb
RK
3589 (modified[i] != RELOAD_WRITE
3590 ? recog_operand_loc[i] : 0),
3591 (modified[i] != RELOAD_READ
3592 ? recog_operand_loc[i] : 0),
eab89b90 3593 (enum reg_class) goal_alternative[i],
a8c9daeb
RK
3594 (modified[i] == RELOAD_WRITE
3595 ? VOIDmode : operand_mode[i]),
3596 (modified[i] == RELOAD_READ
3597 ? VOIDmode : operand_mode[i]),
eab89b90
RK
3598 (insn_code_number < 0 ? 0
3599 : insn_operand_strict_low[insn_code_number][i]),
a8c9daeb 3600 1, i, operand_type[i]);
eab89b90 3601 }
a8c9daeb
RK
3602 else if (goal_alternative_matches[i] >= 0
3603 && goal_alternative_win[goal_alternative_matches[i]]
3604 && modified[i] == RELOAD_READ
3605 && modified[goal_alternative_matches[i]] == RELOAD_WRITE
3606 && ! no_input_reloads && ! no_output_reloads
3607 && optimize)
3608 {
3609 /* Similarly, make an optional reload for a pair of matching
3610 objects that are in MEM or a pseudo that didn't get a hard reg. */
eab89b90 3611
a8c9daeb
RK
3612 rtx operand = recog_operand[i];
3613
3614 while (GET_CODE (operand) == SUBREG)
3615 operand = XEXP (operand, 0);
3616 if ((GET_CODE (operand) == MEM
3617 || (GET_CODE (operand) == REG
3618 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
3619 && ((enum reg_class) goal_alternative[goal_alternative_matches[i]]
3620 != NO_REGS))
3621 operand_reloadnum[i] = operand_reloadnum[goal_alternative_matches[i]]
3622 = push_reload (recog_operand[goal_alternative_matches[i]],
3623 recog_operand[i],
3624 recog_operand_loc[goal_alternative_matches[i]],
3625 recog_operand_loc[i],
3626 (enum reg_class) goal_alternative[goal_alternative_matches[i]],
3627 operand_mode[goal_alternative_matches[i]],
3628 operand_mode[i],
3629 0, 1, goal_alternative_matches[i], RELOAD_OTHER);
3630 }
3631
eab89b90
RK
3632 /* If this insn pattern contains any MATCH_DUP's, make sure that
3633 they will be substituted if the operands they match are substituted.
3634 Also do now any substitutions we already did on the operands.
3635
3636 Don't do this if we aren't making replacements because we might be
3637 propagating things allocated by frame pointer elimination into places
3638 it doesn't expect. */
3639
3640 if (insn_code_number >= 0 && replace)
3641 for (i = insn_n_dups[insn_code_number] - 1; i >= 0; i--)
3642 {
3643 int opno = recog_dup_num[i];
3644 *recog_dup_loc[i] = *recog_operand_loc[opno];
3645 if (operand_reloadnum[opno] >= 0)
3646 push_replacement (recog_dup_loc[i], operand_reloadnum[opno],
3647 insn_operand_mode[insn_code_number][opno]);
3648 }
3649
3650#if 0
3651 /* This loses because reloading of prior insns can invalidate the equivalence
3652 (or at least find_equiv_reg isn't smart enough to find it any more),
3653 causing this insn to need more reload regs than it needed before.
3654 It may be too late to make the reload regs available.
3655 Now this optimization is done safely in choose_reload_regs. */
3656
3657 /* For each reload of a reg into some other class of reg,
3658 search for an existing equivalent reg (same value now) in the right class.
3659 We can use it as long as we don't need to change its contents. */
3660 for (i = 0; i < n_reloads; i++)
3661 if (reload_reg_rtx[i] == 0
3662 && reload_in[i] != 0
3663 && GET_CODE (reload_in[i]) == REG
3664 && reload_out[i] == 0)
3665 {
3666 reload_reg_rtx[i]
3667 = find_equiv_reg (reload_in[i], insn, reload_reg_class[i], -1,
3668 static_reload_reg_p, 0, reload_inmode[i]);
3669 /* Prevent generation of insn to load the value
3670 because the one we found already has the value. */
3671 if (reload_reg_rtx[i])
3672 reload_in[i] = reload_reg_rtx[i];
3673 }
3674#endif
3675
a8c9daeb
RK
3676 /* Perhaps an output reload can be combined with another
3677 to reduce needs by one. */
3678 if (!goal_earlyclobber)
3679 combine_reloads ();
3680
3681 /* If we have a pair of reloads for parts of an address, they are reloading
3682 the same object, the operands themselves were not reloaded, and they
3683 are for two operands that are supposed to match, merge the reloads and
3684 change the type of the surviving reload to RELOAD_FOR_OPERAND_ADDRESS. */
3685
3686 for (i = 0; i < n_reloads; i++)
3687 {
3688 int k;
3689
3690 for (j = i + 1; j < n_reloads; j++)
3691 if ((reload_when_needed[i] == RELOAD_FOR_INPUT_ADDRESS
3692 || reload_when_needed[i] == RELOAD_FOR_OUTPUT_ADDRESS)
3693 && (reload_when_needed[j] == RELOAD_FOR_INPUT_ADDRESS
3694 || reload_when_needed[j] == RELOAD_FOR_OUTPUT_ADDRESS)
3695 && rtx_equal_p (reload_in[i], reload_in[j])
3696 && (operand_reloadnum[reload_opnum[i]] < 0
3697 || reload_optional[operand_reloadnum[reload_opnum[i]]])
3698 && (operand_reloadnum[reload_opnum[j]] < 0
3699 || reload_optional[operand_reloadnum[reload_opnum[j]]])
3700 && (goal_alternative_matches[reload_opnum[i]] == reload_opnum[j]
3701 || (goal_alternative_matches[reload_opnum[j]]
3702 == reload_opnum[i])))
3703 {
3704 for (k = 0; k < n_replacements; k++)
3705 if (replacements[k].what == j)
3706 replacements[k].what = i;
3707
3708 reload_when_needed[i] = RELOAD_FOR_OPERAND_ADDRESS;
3709 reload_in[j] = 0;
3710 }
3711 }
3712
3713 /* Scan all the reloads and update their type.
3714 If a reload is for the address of an operand and we didn't reload
3715 that operand, change the type. Similarly, change the operand number
3716 of a reload when two operands match. If a reload is optional, treat it
3717 as though the operand isn't reloaded.
3718
3719 ??? This latter case is somewhat odd because if we do the optional
3720 reload, it means the object is hanging around. Thus we need only
3721 do the address reload if the optional reload was NOT done.
3722
3723 Change secondary reloads to be the address type of their operand, not
3724 the normal type.
3725
3726 If an operand's reload is now RELOAD_OTHER, change any
3727 RELOAD_FOR_INPUT_ADDRESS reloads of that operand to
3728 RELOAD_FOR_OTHER_ADDRESS. */
3729
3730 for (i = 0; i < n_reloads; i++)
3731 {
3732 if (reload_secondary_p[i]
3733 && reload_when_needed[i] == operand_type[reload_opnum[i]])
3734 reload_when_needed[i] = address_type[reload_opnum[i]];
3735
3736 if ((reload_when_needed[i] == RELOAD_FOR_INPUT_ADDRESS
3737 || reload_when_needed[i] == RELOAD_FOR_OUTPUT_ADDRESS)
3738 && (operand_reloadnum[reload_opnum[i]] < 0
6ded3228 3739 || reload_optional[operand_reloadnum[reload_opnum[i]]]))
f98bb7d3
RK
3740 {
3741 /* If we have a secondary reload to go along with this reload,
3742 change its type to RELOAD_FOR_OPADDR_ADDR. */
3743
3744 if (reload_when_needed[i] == RELOAD_FOR_INPUT_ADDRESS
3745 && reload_secondary_in_reload[i] != -1)
3746 {
3747 int secondary_in_reload = reload_secondary_in_reload[i];
3748
3749 reload_when_needed[secondary_in_reload] =
3750 RELOAD_FOR_OPADDR_ADDR;
3751
3752 /* If there's a tertiary reload we have to change it also. */
3753 if (secondary_in_reload > 0
3754 && reload_secondary_in_reload[secondary_in_reload] != -1)
3755 reload_when_needed[reload_secondary_in_reload[secondary_in_reload]]
3756 = RELOAD_FOR_OPADDR_ADDR;
3757 }
3758
3759 if (reload_when_needed[i] == RELOAD_FOR_OUTPUT_ADDRESS
3760 && reload_secondary_out_reload[i] != -1)
3761 {
3762 int secondary_out_reload = reload_secondary_out_reload[i];
3763
3764 reload_when_needed[secondary_out_reload] =
3765 RELOAD_FOR_OPADDR_ADDR;
3766
3767 /* If there's a tertiary reload we have to change it also. */
3768 if (secondary_out_reload
3769 && reload_secondary_out_reload[secondary_out_reload] != -1)
3770 reload_when_needed[reload_secondary_out_reload[secondary_out_reload]]
3771 = RELOAD_FOR_OPADDR_ADDR;
3772 }
3773 reload_when_needed[i] = RELOAD_FOR_OPERAND_ADDRESS;
3774 }
a8c9daeb
RK
3775
3776 if (reload_when_needed[i] == RELOAD_FOR_INPUT_ADDRESS
3777 && operand_reloadnum[reload_opnum[i]] >= 0
3778 && (reload_when_needed[operand_reloadnum[reload_opnum[i]]]
3779 == RELOAD_OTHER))
3780 reload_when_needed[i] = RELOAD_FOR_OTHER_ADDRESS;
3781
3782 if (goal_alternative_matches[reload_opnum[i]] >= 0)
3783 reload_opnum[i] = goal_alternative_matches[reload_opnum[i]];
3784 }
3785
3786 /* See if we have any reloads that are now allowed to be merged
3787 because we've changed when the reload is needed to
3788 RELOAD_FOR_OPERAND_ADDRESS or RELOAD_FOR_OTHER_ADDRESS. Only
3789 check for the most common cases. */
3790
3791 for (i = 0; i < n_reloads; i++)
3792 if (reload_in[i] != 0 && reload_out[i] == 0
3793 && (reload_when_needed[i] == RELOAD_FOR_OPERAND_ADDRESS
3794 || reload_when_needed[i] == RELOAD_FOR_OTHER_ADDRESS))
3795 for (j = 0; j < n_reloads; j++)
3796 if (i != j && reload_in[j] != 0 && reload_out[j] == 0
3797 && reload_when_needed[j] == reload_when_needed[i]
73f67895
RS
3798 && MATCHES (reload_in[i], reload_in[j])
3799 && reload_reg_class[i] == reload_reg_class[j]
92b37691
RK
3800 && !reload_nocombine[i] && !reload_nocombine[j]
3801 && reload_reg_rtx[i] == reload_reg_rtx[j])
a8c9daeb
RK
3802 {
3803 reload_opnum[i] = MIN (reload_opnum[i], reload_opnum[j]);
3804 transfer_replacements (i, j);
3805 reload_in[j] = 0;
3806 }
3807
eab89b90
RK
3808#else /* no REGISTER_CONSTRAINTS */
3809 int noperands;
3810 int insn_code_number;
3811 int goal_earlyclobber = 0; /* Always 0, to make combine_reloads happen. */
3812 register int i;
3813 rtx body = PATTERN (insn);
3814
3815 n_reloads = 0;
3816 n_replacements = 0;
3817 n_earlyclobbers = 0;
3818 replace_reloads = replace;
3819 this_insn = insn;
3820
3821 /* Find what kind of insn this is. NOPERANDS gets number of operands.
3822 Store the operand values in RECOG_OPERAND and the locations
3823 of the words in the insn that point to them in RECOG_OPERAND_LOC.
3824 Return if the insn needs no reload processing. */
3825
3826 switch (GET_CODE (body))
3827 {
3828 case USE:
3829 case CLOBBER:
3830 case ASM_INPUT:
3831 case ADDR_VEC:
3832 case ADDR_DIFF_VEC:
3833 return;
3834
3835 case PARALLEL:
3836 case SET:
3837 noperands = asm_noperands (body);
3838 if (noperands >= 0)
3839 {
3840 /* This insn is an `asm' with operands.
3841 First, find out how many operands, and allocate space. */
3842
3843 insn_code_number = -1;
3844 /* ??? This is a bug! ???
3845 Give up and delete this insn if it has too many operands. */
3846 if (noperands > MAX_RECOG_OPERANDS)
3847 abort ();
3848
3849 /* Now get the operand values out of the insn. */
3850
fb3821f7
CH
3851 decode_asm_operands (body, recog_operand, recog_operand_loc,
3852 NULL_PTR, NULL_PTR);
eab89b90
RK
3853 break;
3854 }
3855
3856 default:
3857 /* Ordinary insn: recognize it, allocate space for operands and
3858 constraints, and get them out via insn_extract. */
3859
3860 insn_code_number = recog_memoized (insn);
3861 noperands = insn_n_operands[insn_code_number];
3862 insn_extract (insn);
3863 }
3864
3865 if (noperands == 0)
3866 return;
3867
3868 for (i = 0; i < noperands; i++)
3869 {
3870 register RTX_CODE code = GET_CODE (recog_operand[i]);
3871 int is_set_dest = GET_CODE (body) == SET && (i == 0);
3872
3873 if (insn_code_number >= 0)
3874 if (insn_operand_address_p[insn_code_number][i])
fb3821f7 3875 find_reloads_address (VOIDmode, NULL_PTR,
eab89b90 3876 recog_operand[i], recog_operand_loc[i],
a8c9daeb
RK
3877 i, RELOAD_FOR_INPUT, ind_levels);
3878
3879 /* In these cases, we can't tell if the operand is an input
3880 or an output, so be conservative. In practice it won't be
3881 problem. */
3882
eab89b90
RK
3883 if (code == MEM)
3884 find_reloads_address (GET_MODE (recog_operand[i]),
3885 recog_operand_loc[i],
3886 XEXP (recog_operand[i], 0),
3887 &XEXP (recog_operand[i], 0),
a8c9daeb 3888 i, RELOAD_OTHER, ind_levels);
eab89b90
RK
3889 if (code == SUBREG)
3890 recog_operand[i] = *recog_operand_loc[i]
a8c9daeb
RK
3891 = find_reloads_toplev (recog_operand[i], i, RELOAD_OTHER,
3892 ind_levels, is_set_dest);
eab89b90
RK
3893 if (code == REG)
3894 {
3895 register int regno = REGNO (recog_operand[i]);
3896 if (reg_equiv_constant[regno] != 0 && !is_set_dest)
3897 recog_operand[i] = *recog_operand_loc[i]
3898 = reg_equiv_constant[regno];
3899#if 0 /* This might screw code in reload1.c to delete prior output-reload
3900 that feeds this insn. */
3901 if (reg_equiv_mem[regno] != 0)
3902 recog_operand[i] = *recog_operand_loc[i]
3903 = reg_equiv_mem[regno];
3904#endif
3905 }
eab89b90
RK
3906 }
3907
3908 /* Perhaps an output reload can be combined with another
3909 to reduce needs by one. */
3910 if (!goal_earlyclobber)
3911 combine_reloads ();
a8c9daeb 3912#endif /* no REGISTER_CONSTRAINTS */
eab89b90
RK
3913}
3914
3915/* Return 1 if alternative number ALTNUM in constraint-string CONSTRAINT
3916 accepts a memory operand with constant address. */
3917
3918static int
3919alternative_allows_memconst (constraint, altnum)
3920 char *constraint;
3921 int altnum;
3922{
3923 register int c;
3924 /* Skip alternatives before the one requested. */
3925 while (altnum > 0)
3926 {
3927 while (*constraint++ != ',');
3928 altnum--;
3929 }
3930 /* Scan the requested alternative for 'm' or 'o'.
3931 If one of them is present, this alternative accepts memory constants. */
3932 while ((c = *constraint++) && c != ',' && c != '#')
3933 if (c == 'm' || c == 'o')
3934 return 1;
3935 return 0;
3936}
3937\f
3938/* Scan X for memory references and scan the addresses for reloading.
3939 Also checks for references to "constant" regs that we want to eliminate
3940 and replaces them with the values they stand for.
6dc42e49 3941 We may alter X destructively if it contains a reference to such.
eab89b90
RK
3942 If X is just a constant reg, we return the equivalent value
3943 instead of X.
3944
3945 IND_LEVELS says how many levels of indirect addressing this machine
3946 supports.
3947
a8c9daeb
RK
3948 OPNUM and TYPE identify the purpose of the reload.
3949
eab89b90
RK
3950 IS_SET_DEST is true if X is the destination of a SET, which is not
3951 appropriate to be replaced by a constant. */
3952
3953static rtx
a8c9daeb 3954find_reloads_toplev (x, opnum, type, ind_levels, is_set_dest)
eab89b90 3955 rtx x;
a8c9daeb
RK
3956 int opnum;
3957 enum reload_type type;
eab89b90
RK
3958 int ind_levels;
3959 int is_set_dest;
3960{
3961 register RTX_CODE code = GET_CODE (x);
3962
3963 register char *fmt = GET_RTX_FORMAT (code);
3964 register int i;
3965
3966 if (code == REG)
3967 {
3968 /* This code is duplicated for speed in find_reloads. */
3969 register int regno = REGNO (x);
3970 if (reg_equiv_constant[regno] != 0 && !is_set_dest)
3971 x = reg_equiv_constant[regno];
3972#if 0
3973/* This creates (subreg (mem...)) which would cause an unnecessary
3974 reload of the mem. */
3975 else if (reg_equiv_mem[regno] != 0)
3976 x = reg_equiv_mem[regno];
3977#endif
3978 else if (reg_equiv_address[regno] != 0)
3979 {
3980 /* If reg_equiv_address varies, it may be shared, so copy it. */
4ffeab02
JW
3981 /* We must rerun eliminate_regs, in case the elimination
3982 offsets have changed. */
3983 rtx addr = XEXP (eliminate_regs (reg_equiv_memory_loc[regno], 0,
3984 NULL_RTX),
3985 0);
eab89b90
RK
3986
3987 if (rtx_varies_p (addr))
3988 addr = copy_rtx (addr);
3989
3990 x = gen_rtx (MEM, GET_MODE (x), addr);
3991 RTX_UNCHANGING_P (x) = RTX_UNCHANGING_P (regno_reg_rtx[regno]);
fb3821f7 3992 find_reloads_address (GET_MODE (x), NULL_PTR,
eab89b90 3993 XEXP (x, 0),
a8c9daeb 3994 &XEXP (x, 0), opnum, type, ind_levels);
eab89b90
RK
3995 }
3996 return x;
3997 }
3998 if (code == MEM)
3999 {
4000 rtx tem = x;
4001 find_reloads_address (GET_MODE (x), &tem, XEXP (x, 0), &XEXP (x, 0),
a8c9daeb 4002 opnum, type, ind_levels);
eab89b90
RK
4003 return tem;
4004 }
4005
4006 if (code == SUBREG && GET_CODE (SUBREG_REG (x)) == REG)
4007 {
4008 /* Check for SUBREG containing a REG that's equivalent to a constant.
4009 If the constant has a known value, truncate it right now.
4010 Similarly if we are extracting a single-word of a multi-word
4011 constant. If the constant is symbolic, allow it to be substituted
4012 normally. push_reload will strip the subreg later. If the
4013 constant is VOIDmode, abort because we will lose the mode of
4014 the register (this should never happen because one of the cases
4015 above should handle it). */
4016
4017 register int regno = REGNO (SUBREG_REG (x));
4018 rtx tem;
4019
4020 if (subreg_lowpart_p (x)
4021 && regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
4022 && reg_equiv_constant[regno] != 0
4023 && (tem = gen_lowpart_common (GET_MODE (x),
4024 reg_equiv_constant[regno])) != 0)
4025 return tem;
4026
4027 if (GET_MODE_BITSIZE (GET_MODE (x)) == BITS_PER_WORD
4028 && regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
4029 && reg_equiv_constant[regno] != 0
4030 && (tem = operand_subword (reg_equiv_constant[regno],
4031 SUBREG_WORD (x), 0,
4032 GET_MODE (SUBREG_REG (x)))) != 0)
4033 return tem;
4034
4035 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
4036 && reg_equiv_constant[regno] != 0
4037 && GET_MODE (reg_equiv_constant[regno]) == VOIDmode)
4038 abort ();
4039
4040 /* If the subreg contains a reg that will be converted to a mem,
4041 convert the subreg to a narrower memref now.
4042 Otherwise, we would get (subreg (mem ...) ...),
4043 which would force reload of the mem.
4044
4045 We also need to do this if there is an equivalent MEM that is
4046 not offsettable. In that case, alter_subreg would produce an
4047 invalid address on big-endian machines.
4048
46da6b3a 4049 For machines that extend byte loads, we must not reload using
eab89b90
RK
4050 a wider mode if we have a paradoxical SUBREG. find_reloads will
4051 force a reload in that case. So we should not do anything here. */
4052
4053 else if (regno >= FIRST_PSEUDO_REGISTER
fd72420f 4054#ifdef LOAD_EXTEND_OP
eab89b90
RK
4055 && (GET_MODE_SIZE (GET_MODE (x))
4056 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
4057#endif
4058 && (reg_equiv_address[regno] != 0
4059 || (reg_equiv_mem[regno] != 0
f2fbfe92
JL
4060 && (! strict_memory_address_p (GET_MODE (x),
4061 XEXP (reg_equiv_mem[regno], 0))
4062 || ! offsettable_memref_p (reg_equiv_mem[regno])))))
eab89b90
RK
4063 {
4064 int offset = SUBREG_WORD (x) * UNITS_PER_WORD;
4ffeab02
JW
4065 /* We must rerun eliminate_regs, in case the elimination
4066 offsets have changed. */
4067 rtx addr = XEXP (eliminate_regs (reg_equiv_memory_loc[regno], 0,
4068 NULL_RTX),
4069 0);
f76b9db2
ILT
4070 if (BYTES_BIG_ENDIAN)
4071 {
4072 int size;
4073 size = GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)));
4074 offset += MIN (size, UNITS_PER_WORD);
4075 size = GET_MODE_SIZE (GET_MODE (x));
4076 offset -= MIN (size, UNITS_PER_WORD);
4077 }
eab89b90
RK
4078 addr = plus_constant (addr, offset);
4079 x = gen_rtx (MEM, GET_MODE (x), addr);
4080 RTX_UNCHANGING_P (x) = RTX_UNCHANGING_P (regno_reg_rtx[regno]);
fb3821f7 4081 find_reloads_address (GET_MODE (x), NULL_PTR,
eab89b90 4082 XEXP (x, 0),
a8c9daeb 4083 &XEXP (x, 0), opnum, type, ind_levels);
eab89b90
RK
4084 }
4085
4086 }
4087
4088 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4089 {
4090 if (fmt[i] == 'e')
a8c9daeb 4091 XEXP (x, i) = find_reloads_toplev (XEXP (x, i), opnum, type,
eab89b90
RK
4092 ind_levels, is_set_dest);
4093 }
4094 return x;
4095}
4096
dbf85761
RS
4097/* Return a mem ref for the memory equivalent of reg REGNO.
4098 This mem ref is not shared with anything. */
4099
eab89b90
RK
4100static rtx
4101make_memloc (ad, regno)
4102 rtx ad;
4103 int regno;
4104{
4105 register int i;
4ffeab02
JW
4106 /* We must rerun eliminate_regs, in case the elimination
4107 offsets have changed. */
4108 rtx tem = XEXP (eliminate_regs (reg_equiv_memory_loc[regno], 0, NULL_RTX),
4109 0);
dbf85761
RS
4110
4111#if 0 /* We cannot safely reuse a memloc made here;
4112 if the pseudo appears twice, and its mem needs a reload,
4113 it gets two separate reloads assigned, but it only
4114 gets substituted with the second of them;
4115 then it can get used before that reload reg gets loaded up. */
eab89b90
RK
4116 for (i = 0; i < n_memlocs; i++)
4117 if (rtx_equal_p (tem, XEXP (memlocs[i], 0)))
4118 return memlocs[i];
dbf85761 4119#endif
eab89b90
RK
4120
4121 /* If TEM might contain a pseudo, we must copy it to avoid
4122 modifying it when we do the substitution for the reload. */
4123 if (rtx_varies_p (tem))
4124 tem = copy_rtx (tem);
4125
4126 tem = gen_rtx (MEM, GET_MODE (ad), tem);
4127 RTX_UNCHANGING_P (tem) = RTX_UNCHANGING_P (regno_reg_rtx[regno]);
4128 memlocs[n_memlocs++] = tem;
4129 return tem;
4130}
4131
4132/* Record all reloads needed for handling memory address AD
4133 which appears in *LOC in a memory reference to mode MODE
4134 which itself is found in location *MEMREFLOC.
4135 Note that we take shortcuts assuming that no multi-reg machine mode
4136 occurs as part of an address.
4137
a8c9daeb 4138 OPNUM and TYPE specify the purpose of this reload.
eab89b90
RK
4139
4140 IND_LEVELS says how many levels of indirect addressing this machine
4141 supports.
4142
4143 Value is nonzero if this address is reloaded or replaced as a whole.
4144 This is interesting to the caller if the address is an autoincrement.
4145
4146 Note that there is no verification that the address will be valid after
4147 this routine does its work. Instead, we rely on the fact that the address
4148 was valid when reload started. So we need only undo things that reload
4149 could have broken. These are wrong register types, pseudos not allocated
4150 to a hard register, and frame pointer elimination. */
4151
4152static int
a8c9daeb 4153find_reloads_address (mode, memrefloc, ad, loc, opnum, type, ind_levels)
eab89b90
RK
4154 enum machine_mode mode;
4155 rtx *memrefloc;
4156 rtx ad;
4157 rtx *loc;
a8c9daeb
RK
4158 int opnum;
4159 enum reload_type type;
eab89b90
RK
4160 int ind_levels;
4161{
4162 register int regno;
4163 rtx tem;
4164
4165 /* If the address is a register, see if it is a legitimate address and
4166 reload if not. We first handle the cases where we need not reload
4167 or where we must reload in a non-standard way. */
4168
4169 if (GET_CODE (ad) == REG)
4170 {
4171 regno = REGNO (ad);
4172
4173 if (reg_equiv_constant[regno] != 0
4174 && strict_memory_address_p (mode, reg_equiv_constant[regno]))
4175 {
4176 *loc = ad = reg_equiv_constant[regno];
4177 return 1;
4178 }
4179
4180 else if (reg_equiv_address[regno] != 0)
4181 {
4182 tem = make_memloc (ad, regno);
fb3821f7 4183 find_reloads_address (GET_MODE (tem), NULL_PTR, XEXP (tem, 0),
a8c9daeb 4184 &XEXP (tem, 0), opnum, type, ind_levels);
fb3821f7 4185 push_reload (tem, NULL_RTX, loc, NULL_PTR, BASE_REG_CLASS,
eab89b90 4186 GET_MODE (ad), VOIDmode, 0, 0,
a8c9daeb 4187 opnum, type);
eab89b90
RK
4188 return 1;
4189 }
4190
b39555b4 4191 /* We can avoid a reload if the register's equivalent memory expression
c1875d66
RS
4192 is valid as an indirect memory address.
4193 But not all addresses are valid in a mem used as an indirect address:
4194 only reg or reg+constant. */
b39555b4
RS
4195
4196 else if (reg_equiv_mem[regno] != 0 && ind_levels > 0
c1875d66
RS
4197 && strict_memory_address_p (mode, reg_equiv_mem[regno])
4198 && (GET_CODE (XEXP (reg_equiv_mem[regno], 0)) == REG
4199 || (GET_CODE (XEXP (reg_equiv_mem[regno], 0)) == PLUS
4200 && GET_CODE (XEXP (XEXP (reg_equiv_mem[regno], 0), 0)) == REG
75301d68 4201 && CONSTANT_P (XEXP (XEXP (reg_equiv_mem[regno], 0), 1)))))
b39555b4 4202 return 0;
eab89b90
RK
4203
4204 /* The only remaining case where we can avoid a reload is if this is a
4205 hard register that is valid as a base register and which is not the
4206 subject of a CLOBBER in this insn. */
4207
4208 else if (regno < FIRST_PSEUDO_REGISTER && REGNO_OK_FOR_BASE_P (regno)
4209 && ! regno_clobbered_p (regno, this_insn))
4210 return 0;
4211
4212 /* If we do not have one of the cases above, we must do the reload. */
fb3821f7 4213 push_reload (ad, NULL_RTX, loc, NULL_PTR, BASE_REG_CLASS,
a8c9daeb 4214 GET_MODE (ad), VOIDmode, 0, 0, opnum, type);
eab89b90
RK
4215 return 1;
4216 }
4217
4218 if (strict_memory_address_p (mode, ad))
4219 {
4220 /* The address appears valid, so reloads are not needed.
4221 But the address may contain an eliminable register.
4222 This can happen because a machine with indirect addressing
4223 may consider a pseudo register by itself a valid address even when
4224 it has failed to get a hard reg.
4225 So do a tree-walk to find and eliminate all such regs. */
4226
4227 /* But first quickly dispose of a common case. */
4228 if (GET_CODE (ad) == PLUS
4229 && GET_CODE (XEXP (ad, 1)) == CONST_INT
4230 && GET_CODE (XEXP (ad, 0)) == REG
4231 && reg_equiv_constant[REGNO (XEXP (ad, 0))] == 0)
4232 return 0;
4233
4234 subst_reg_equivs_changed = 0;
4235 *loc = subst_reg_equivs (ad);
4236
4237 if (! subst_reg_equivs_changed)
4238 return 0;
4239
4240 /* Check result for validity after substitution. */
4241 if (strict_memory_address_p (mode, ad))
4242 return 0;
4243 }
4244
4245 /* The address is not valid. We have to figure out why. One possibility
4246 is that it is itself a MEM. This can happen when the frame pointer is
4247 being eliminated, a pseudo is not allocated to a hard register, and the
4248 offset between the frame and stack pointers is not its initial value.
d45cf215 4249 In that case the pseudo will have been replaced by a MEM referring to
eab89b90
RK
4250 the stack pointer. */
4251 if (GET_CODE (ad) == MEM)
4252 {
4253 /* First ensure that the address in this MEM is valid. Then, unless
4254 indirect addresses are valid, reload the MEM into a register. */
4255 tem = ad;
4256 find_reloads_address (GET_MODE (ad), &tem, XEXP (ad, 0), &XEXP (ad, 0),
a8c9daeb 4257 opnum, type, ind_levels == 0 ? 0 : ind_levels - 1);
d2555454
RS
4258
4259 /* If tem was changed, then we must create a new memory reference to
4260 hold it and store it back into memrefloc. */
4261 if (tem != ad && memrefloc)
ca3e4a2f 4262 {
ca3e4a2f 4263 *memrefloc = copy_rtx (*memrefloc);
3c80f7ed 4264 copy_replacements (tem, XEXP (*memrefloc, 0));
ca3e4a2f 4265 loc = &XEXP (*memrefloc, 0);
ca3e4a2f 4266 }
d2555454 4267
eab89b90
RK
4268 /* Check similar cases as for indirect addresses as above except
4269 that we can allow pseudos and a MEM since they should have been
4270 taken care of above. */
4271
4272 if (ind_levels == 0
4273 || (GET_CODE (XEXP (tem, 0)) == SYMBOL_REF && ! indirect_symref_ok)
4274 || GET_CODE (XEXP (tem, 0)) == MEM
4275 || ! (GET_CODE (XEXP (tem, 0)) == REG
4276 || (GET_CODE (XEXP (tem, 0)) == PLUS
4277 && GET_CODE (XEXP (XEXP (tem, 0), 0)) == REG
4278 && GET_CODE (XEXP (XEXP (tem, 0), 1)) == CONST_INT)))
4279 {
4280 /* Must use TEM here, not AD, since it is the one that will
4281 have any subexpressions reloaded, if needed. */
fb3821f7 4282 push_reload (tem, NULL_RTX, loc, NULL_PTR,
eab89b90 4283 BASE_REG_CLASS, GET_MODE (tem), VOIDmode, 0,
a8c9daeb 4284 0, opnum, type);
eab89b90
RK
4285 return 1;
4286 }
4287 else
4288 return 0;
4289 }
4290
1b4d2764
RK
4291 /* If we have address of a stack slot but it's not valid because the
4292 displacement is too large, compute the sum in a register.
4293 Handle all base registers here, not just fp/ap/sp, because on some
4294 targets (namely SH) we can also get too large displacements from
4295 big-endian corrections. */
eab89b90 4296 else if (GET_CODE (ad) == PLUS
1b4d2764
RK
4297 && GET_CODE (XEXP (ad, 0)) == REG
4298 && REGNO (XEXP (ad, 0)) < FIRST_PSEUDO_REGISTER
4299 && REG_OK_FOR_BASE_P (XEXP (ad, 0))
eab89b90
RK
4300 && GET_CODE (XEXP (ad, 1)) == CONST_INT)
4301 {
4302 /* Unshare the MEM rtx so we can safely alter it. */
4303 if (memrefloc)
4304 {
eab89b90
RK
4305 *memrefloc = copy_rtx (*memrefloc);
4306 loc = &XEXP (*memrefloc, 0);
eab89b90
RK
4307 }
4308 if (double_reg_address_ok)
4309 {
4310 /* Unshare the sum as well. */
4311 *loc = ad = copy_rtx (ad);
4312 /* Reload the displacement into an index reg.
4313 We assume the frame pointer or arg pointer is a base reg. */
4314 find_reloads_address_part (XEXP (ad, 1), &XEXP (ad, 1),
a8c9daeb
RK
4315 INDEX_REG_CLASS, GET_MODE (ad), opnum,
4316 type, ind_levels);
eab89b90
RK
4317 }
4318 else
4319 {
4320 /* If the sum of two regs is not necessarily valid,
4321 reload the sum into a base reg.
4322 That will at least work. */
4323 find_reloads_address_part (ad, loc, BASE_REG_CLASS, Pmode,
a8c9daeb 4324 opnum, type, ind_levels);
eab89b90
RK
4325 }
4326 return 1;
4327 }
4328
4329 /* If we have an indexed stack slot, there are three possible reasons why
4330 it might be invalid: The index might need to be reloaded, the address
4331 might have been made by frame pointer elimination and hence have a
4332 constant out of range, or both reasons might apply.
4333
4334 We can easily check for an index needing reload, but even if that is the
4335 case, we might also have an invalid constant. To avoid making the
4336 conservative assumption and requiring two reloads, we see if this address
4337 is valid when not interpreted strictly. If it is, the only problem is
4338 that the index needs a reload and find_reloads_address_1 will take care
4339 of it.
4340
4341 There is still a case when we might generate an extra reload,
4342 however. In certain cases eliminate_regs will return a MEM for a REG
4343 (see the code there for details). In those cases, memory_address_p
4344 applied to our address will return 0 so we will think that our offset
4345 must be too large. But it might indeed be valid and the only problem
4346 is that a MEM is present where a REG should be. This case should be
4347 very rare and there doesn't seem to be any way to avoid it.
4348
4349 If we decide to do something here, it must be that
4350 `double_reg_address_ok' is true and that this address rtl was made by
4351 eliminate_regs. We generate a reload of the fp/sp/ap + constant and
4352 rework the sum so that the reload register will be added to the index.
4353 This is safe because we know the address isn't shared.
4354
4355 We check for fp/ap/sp as both the first and second operand of the
4356 innermost PLUS. */
4357
4358 else if (GET_CODE (ad) == PLUS && GET_CODE (XEXP (ad, 1)) == CONST_INT
4359 && GET_CODE (XEXP (ad, 0)) == PLUS
4360 && (XEXP (XEXP (ad, 0), 0) == frame_pointer_rtx
a36d4c62
DE
4361#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
4362 || XEXP (XEXP (ad, 0), 0) == hard_frame_pointer_rtx
4363#endif
eab89b90
RK
4364#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
4365 || XEXP (XEXP (ad, 0), 0) == arg_pointer_rtx
4366#endif
4367 || XEXP (XEXP (ad, 0), 0) == stack_pointer_rtx)
4368 && ! memory_address_p (mode, ad))
4369 {
4370 *loc = ad = gen_rtx (PLUS, GET_MODE (ad),
4371 plus_constant (XEXP (XEXP (ad, 0), 0),
4372 INTVAL (XEXP (ad, 1))),
4373 XEXP (XEXP (ad, 0), 1));
4374 find_reloads_address_part (XEXP (ad, 0), &XEXP (ad, 0), BASE_REG_CLASS,
a8c9daeb
RK
4375 GET_MODE (ad), opnum, type, ind_levels);
4376 find_reloads_address_1 (XEXP (ad, 1), 1, &XEXP (ad, 1), opnum, type, 0);
eab89b90
RK
4377
4378 return 1;
4379 }
4380
4381 else if (GET_CODE (ad) == PLUS && GET_CODE (XEXP (ad, 1)) == CONST_INT
4382 && GET_CODE (XEXP (ad, 0)) == PLUS
4383 && (XEXP (XEXP (ad, 0), 1) == frame_pointer_rtx
a36d4c62
DE
4384#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
4385 || XEXP (XEXP (ad, 0), 1) == hard_frame_pointer_rtx
4386#endif
eab89b90
RK
4387#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
4388 || XEXP (XEXP (ad, 0), 1) == arg_pointer_rtx
4389#endif
4390 || XEXP (XEXP (ad, 0), 1) == stack_pointer_rtx)
4391 && ! memory_address_p (mode, ad))
4392 {
4393 *loc = ad = gen_rtx (PLUS, GET_MODE (ad),
ace53910 4394 XEXP (XEXP (ad, 0), 0),
eab89b90 4395 plus_constant (XEXP (XEXP (ad, 0), 1),
ace53910
RK
4396 INTVAL (XEXP (ad, 1))));
4397 find_reloads_address_part (XEXP (ad, 1), &XEXP (ad, 1), BASE_REG_CLASS,
a8c9daeb 4398 GET_MODE (ad), opnum, type, ind_levels);
ace53910 4399 find_reloads_address_1 (XEXP (ad, 0), 1, &XEXP (ad, 0), opnum, type, 0);
eab89b90
RK
4400
4401 return 1;
4402 }
4403
4404 /* See if address becomes valid when an eliminable register
4405 in a sum is replaced. */
4406
4407 tem = ad;
4408 if (GET_CODE (ad) == PLUS)
4409 tem = subst_indexed_address (ad);
4410 if (tem != ad && strict_memory_address_p (mode, tem))
4411 {
4412 /* Ok, we win that way. Replace any additional eliminable
4413 registers. */
4414
4415 subst_reg_equivs_changed = 0;
4416 tem = subst_reg_equivs (tem);
4417
4418 /* Make sure that didn't make the address invalid again. */
4419
4420 if (! subst_reg_equivs_changed || strict_memory_address_p (mode, tem))
4421 {
4422 *loc = tem;
4423 return 0;
4424 }
4425 }
4426
4427 /* If constants aren't valid addresses, reload the constant address
4428 into a register. */
191b18e9 4429 if (CONSTANT_P (ad) && ! strict_memory_address_p (mode, ad))
eab89b90
RK
4430 {
4431 /* If AD is in address in the constant pool, the MEM rtx may be shared.
4432 Unshare it so we can safely alter it. */
4433 if (memrefloc && GET_CODE (ad) == SYMBOL_REF
4434 && CONSTANT_POOL_ADDRESS_P (ad))
4435 {
eab89b90
RK
4436 *memrefloc = copy_rtx (*memrefloc);
4437 loc = &XEXP (*memrefloc, 0);
eab89b90
RK
4438 }
4439
a8c9daeb 4440 find_reloads_address_part (ad, loc, BASE_REG_CLASS, Pmode, opnum, type,
eab89b90
RK
4441 ind_levels);
4442 return 1;
4443 }
4444
a8c9daeb 4445 return find_reloads_address_1 (ad, 0, loc, opnum, type, ind_levels);
eab89b90
RK
4446}
4447\f
4448/* Find all pseudo regs appearing in AD
4449 that are eliminable in favor of equivalent values
4450 and do not have hard regs; replace them by their equivalents. */
4451
4452static rtx
4453subst_reg_equivs (ad)
4454 rtx ad;
4455{
4456 register RTX_CODE code = GET_CODE (ad);
4457 register int i;
4458 register char *fmt;
4459
4460 switch (code)
4461 {
4462 case HIGH:
4463 case CONST_INT:
4464 case CONST:
4465 case CONST_DOUBLE:
4466 case SYMBOL_REF:
4467 case LABEL_REF:
4468 case PC:
4469 case CC0:
4470 return ad;
4471
4472 case REG:
4473 {
4474 register int regno = REGNO (ad);
4475
4476 if (reg_equiv_constant[regno] != 0)
4477 {
4478 subst_reg_equivs_changed = 1;
4479 return reg_equiv_constant[regno];
4480 }
4481 }
4482 return ad;
4483
4484 case PLUS:
4485 /* Quickly dispose of a common case. */
4486 if (XEXP (ad, 0) == frame_pointer_rtx
4487 && GET_CODE (XEXP (ad, 1)) == CONST_INT)
4488 return ad;
4489 }
4490
4491 fmt = GET_RTX_FORMAT (code);
4492 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4493 if (fmt[i] == 'e')
4494 XEXP (ad, i) = subst_reg_equivs (XEXP (ad, i));
4495 return ad;
4496}
4497\f
4498/* Compute the sum of X and Y, making canonicalizations assumed in an
4499 address, namely: sum constant integers, surround the sum of two
4500 constants with a CONST, put the constant as the second operand, and
4501 group the constant on the outermost sum.
4502
4503 This routine assumes both inputs are already in canonical form. */
4504
4505rtx
4506form_sum (x, y)
4507 rtx x, y;
4508{
4509 rtx tem;
2c0623e8
RK
4510 enum machine_mode mode = GET_MODE (x);
4511
4512 if (mode == VOIDmode)
4513 mode = GET_MODE (y);
4514
4515 if (mode == VOIDmode)
4516 mode = Pmode;
eab89b90
RK
4517
4518 if (GET_CODE (x) == CONST_INT)
4519 return plus_constant (y, INTVAL (x));
4520 else if (GET_CODE (y) == CONST_INT)
4521 return plus_constant (x, INTVAL (y));
4522 else if (CONSTANT_P (x))
4523 tem = x, x = y, y = tem;
4524
4525 if (GET_CODE (x) == PLUS && CONSTANT_P (XEXP (x, 1)))
4526 return form_sum (XEXP (x, 0), form_sum (XEXP (x, 1), y));
4527
4528 /* Note that if the operands of Y are specified in the opposite
4529 order in the recursive calls below, infinite recursion will occur. */
d9771f62 4530 if (GET_CODE (y) == PLUS && CONSTANT_P (XEXP (y, 1)))
eab89b90
RK
4531 return form_sum (form_sum (x, XEXP (y, 0)), XEXP (y, 1));
4532
4533 /* If both constant, encapsulate sum. Otherwise, just form sum. A
4534 constant will have been placed second. */
4535 if (CONSTANT_P (x) && CONSTANT_P (y))
4536 {
4537 if (GET_CODE (x) == CONST)
4538 x = XEXP (x, 0);
4539 if (GET_CODE (y) == CONST)
4540 y = XEXP (y, 0);
4541
2c0623e8 4542 return gen_rtx (CONST, VOIDmode, gen_rtx (PLUS, mode, x, y));
eab89b90
RK
4543 }
4544
2c0623e8 4545 return gen_rtx (PLUS, mode, x, y);
eab89b90
RK
4546}
4547\f
4548/* If ADDR is a sum containing a pseudo register that should be
4549 replaced with a constant (from reg_equiv_constant),
4550 return the result of doing so, and also apply the associative
4551 law so that the result is more likely to be a valid address.
4552 (But it is not guaranteed to be one.)
4553
4554 Note that at most one register is replaced, even if more are
4555 replaceable. Also, we try to put the result into a canonical form
4556 so it is more likely to be a valid address.
4557
4558 In all other cases, return ADDR. */
4559
4560static rtx
4561subst_indexed_address (addr)
4562 rtx addr;
4563{
4564 rtx op0 = 0, op1 = 0, op2 = 0;
4565 rtx tem;
4566 int regno;
4567
4568 if (GET_CODE (addr) == PLUS)
4569 {
4570 /* Try to find a register to replace. */
4571 op0 = XEXP (addr, 0), op1 = XEXP (addr, 1), op2 = 0;
4572 if (GET_CODE (op0) == REG
4573 && (regno = REGNO (op0)) >= FIRST_PSEUDO_REGISTER
4574 && reg_renumber[regno] < 0
4575 && reg_equiv_constant[regno] != 0)
4576 op0 = reg_equiv_constant[regno];
4577 else if (GET_CODE (op1) == REG
4578 && (regno = REGNO (op1)) >= FIRST_PSEUDO_REGISTER
4579 && reg_renumber[regno] < 0
4580 && reg_equiv_constant[regno] != 0)
4581 op1 = reg_equiv_constant[regno];
4582 else if (GET_CODE (op0) == PLUS
4583 && (tem = subst_indexed_address (op0)) != op0)
4584 op0 = tem;
4585 else if (GET_CODE (op1) == PLUS
4586 && (tem = subst_indexed_address (op1)) != op1)
4587 op1 = tem;
4588 else
4589 return addr;
4590
4591 /* Pick out up to three things to add. */
4592 if (GET_CODE (op1) == PLUS)
4593 op2 = XEXP (op1, 1), op1 = XEXP (op1, 0);
4594 else if (GET_CODE (op0) == PLUS)
4595 op2 = op1, op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
4596
4597 /* Compute the sum. */
4598 if (op2 != 0)
4599 op1 = form_sum (op1, op2);
4600 if (op1 != 0)
4601 op0 = form_sum (op0, op1);
4602
4603 return op0;
4604 }
4605 return addr;
4606}
4607\f
4608/* Record the pseudo registers we must reload into hard registers
4609 in a subexpression of a would-be memory address, X.
4610 (This function is not called if the address we find is strictly valid.)
4611 CONTEXT = 1 means we are considering regs as index regs,
4612 = 0 means we are considering them as base regs.
4613
a8c9daeb 4614 OPNUM and TYPE specify the purpose of any reloads made.
eab89b90
RK
4615
4616 IND_LEVELS says how many levels of indirect addressing are
4617 supported at this point in the address.
4618
4619 We return nonzero if X, as a whole, is reloaded or replaced. */
4620
4621/* Note that we take shortcuts assuming that no multi-reg machine mode
4622 occurs as part of an address.
4623 Also, this is not fully machine-customizable; it works for machines
4624 such as vaxes and 68000's and 32000's, but other possible machines
4625 could have addressing modes that this does not handle right. */
4626
4627static int
a8c9daeb 4628find_reloads_address_1 (x, context, loc, opnum, type, ind_levels)
eab89b90
RK
4629 rtx x;
4630 int context;
4631 rtx *loc;
a8c9daeb
RK
4632 int opnum;
4633 enum reload_type type;
eab89b90
RK
4634 int ind_levels;
4635{
4636 register RTX_CODE code = GET_CODE (x);
4637
a2d353e5 4638 switch (code)
eab89b90 4639 {
a2d353e5
RK
4640 case PLUS:
4641 {
4642 register rtx orig_op0 = XEXP (x, 0);
4643 register rtx orig_op1 = XEXP (x, 1);
4644 register RTX_CODE code0 = GET_CODE (orig_op0);
4645 register RTX_CODE code1 = GET_CODE (orig_op1);
4646 register rtx op0 = orig_op0;
4647 register rtx op1 = orig_op1;
4648
4649 if (GET_CODE (op0) == SUBREG)
4650 {
4651 op0 = SUBREG_REG (op0);
4652 code0 = GET_CODE (op0);
922db4bb
RK
4653 if (code0 == REG && REGNO (op0) < FIRST_PSEUDO_REGISTER)
4654 op0 = gen_rtx (REG, word_mode,
4655 REGNO (op0) + SUBREG_WORD (orig_op0));
a2d353e5 4656 }
87935f60 4657
a2d353e5
RK
4658 if (GET_CODE (op1) == SUBREG)
4659 {
4660 op1 = SUBREG_REG (op1);
4661 code1 = GET_CODE (op1);
922db4bb
RK
4662 if (code1 == REG && REGNO (op1) < FIRST_PSEUDO_REGISTER)
4663 op1 = gen_rtx (REG, GET_MODE (op1),
4664 REGNO (op1) + SUBREG_WORD (orig_op1));
a2d353e5
RK
4665 }
4666
5f8997b9
SC
4667 if (code0 == MULT || code0 == SIGN_EXTEND || code0 == TRUNCATE
4668 || code0 == ZERO_EXTEND || code1 == MEM)
a2d353e5
RK
4669 {
4670 find_reloads_address_1 (orig_op0, 1, &XEXP (x, 0), opnum, type,
a8c9daeb 4671 ind_levels);
a2d353e5 4672 find_reloads_address_1 (orig_op1, 0, &XEXP (x, 1), opnum, type,
a8c9daeb 4673 ind_levels);
a2d353e5
RK
4674 }
4675
5f8997b9
SC
4676 else if (code1 == MULT || code1 == SIGN_EXTEND || code1 == TRUNCATE
4677 || code1 == ZERO_EXTEND || code0 == MEM)
a2d353e5 4678 {
87935f60 4679 find_reloads_address_1 (orig_op0, 0, &XEXP (x, 0), opnum, type,
a8c9daeb 4680 ind_levels);
a2d353e5 4681 find_reloads_address_1 (orig_op1, 1, &XEXP (x, 1), opnum, type,
a8c9daeb 4682 ind_levels);
a2d353e5
RK
4683 }
4684
4685 else if (code0 == CONST_INT || code0 == CONST
4686 || code0 == SYMBOL_REF || code0 == LABEL_REF)
87935f60 4687 find_reloads_address_1 (orig_op1, 0, &XEXP (x, 1), opnum, type,
a8c9daeb 4688 ind_levels);
a2d353e5
RK
4689
4690 else if (code1 == CONST_INT || code1 == CONST
4691 || code1 == SYMBOL_REF || code1 == LABEL_REF)
87935f60 4692 find_reloads_address_1 (orig_op0, 0, &XEXP (x, 0), opnum, type,
a8c9daeb 4693 ind_levels);
a2d353e5
RK
4694
4695 else if (code0 == REG && code1 == REG)
4696 {
4697 if (REG_OK_FOR_INDEX_P (op0)
4698 && REG_OK_FOR_BASE_P (op1))
4699 return 0;
4700 else if (REG_OK_FOR_INDEX_P (op1)
4701 && REG_OK_FOR_BASE_P (op0))
4702 return 0;
4703 else if (REG_OK_FOR_BASE_P (op1))
4704 find_reloads_address_1 (orig_op0, 1, &XEXP (x, 0), opnum, type,
4705 ind_levels);
4706 else if (REG_OK_FOR_BASE_P (op0))
4707 find_reloads_address_1 (orig_op1, 1, &XEXP (x, 1), opnum, type,
4708 ind_levels);
4709 else if (REG_OK_FOR_INDEX_P (op1))
4710 find_reloads_address_1 (orig_op0, 0, &XEXP (x, 0), opnum, type,
4711 ind_levels);
4712 else if (REG_OK_FOR_INDEX_P (op0))
4713 find_reloads_address_1 (orig_op1, 0, &XEXP (x, 1), opnum, type,
4714 ind_levels);
4715 else
4716 {
4717 find_reloads_address_1 (orig_op0, 1, &XEXP (x, 0), opnum, type,
4718 ind_levels);
4719 find_reloads_address_1 (orig_op1, 0, &XEXP (x, 1), opnum, type,
4720 ind_levels);
4721 }
4722 }
4723
4724 else if (code0 == REG)
4725 {
4726 find_reloads_address_1 (orig_op0, 1, &XEXP (x, 0), opnum, type,
4727 ind_levels);
4728 find_reloads_address_1 (orig_op1, 0, &XEXP (x, 1), opnum, type,
4729 ind_levels);
4730 }
4731
4732 else if (code1 == REG)
4733 {
4734 find_reloads_address_1 (orig_op1, 1, &XEXP (x, 1), opnum, type,
4735 ind_levels);
4736 find_reloads_address_1 (orig_op0, 0, &XEXP (x, 0), opnum, type,
4737 ind_levels);
4738 }
4739 }
4740
4741 return 0;
4742
4743 case POST_INC:
4744 case POST_DEC:
4745 case PRE_INC:
4746 case PRE_DEC:
eab89b90
RK
4747 if (GET_CODE (XEXP (x, 0)) == REG)
4748 {
4749 register int regno = REGNO (XEXP (x, 0));
4750 int value = 0;
4751 rtx x_orig = x;
4752
4753 /* A register that is incremented cannot be constant! */
4754 if (regno >= FIRST_PSEUDO_REGISTER
4755 && reg_equiv_constant[regno] != 0)
4756 abort ();
4757
4758 /* Handle a register that is equivalent to a memory location
4759 which cannot be addressed directly. */
4760 if (reg_equiv_address[regno] != 0)
4761 {
4762 rtx tem = make_memloc (XEXP (x, 0), regno);
4763 /* First reload the memory location's address. */
4764 find_reloads_address (GET_MODE (tem), 0, XEXP (tem, 0),
a8c9daeb 4765 &XEXP (tem, 0), opnum, type, ind_levels);
eab89b90
RK
4766 /* Put this inside a new increment-expression. */
4767 x = gen_rtx (GET_CODE (x), GET_MODE (x), tem);
4768 /* Proceed to reload that, as if it contained a register. */
4769 }
4770
4771 /* If we have a hard register that is ok as an index,
4772 don't make a reload. If an autoincrement of a nice register
4773 isn't "valid", it must be that no autoincrement is "valid".
4774 If that is true and something made an autoincrement anyway,
4775 this must be a special context where one is allowed.
4776 (For example, a "push" instruction.)
4777 We can't improve this address, so leave it alone. */
4778
4779 /* Otherwise, reload the autoincrement into a suitable hard reg
4780 and record how much to increment by. */
4781
4782 if (reg_renumber[regno] >= 0)
4783 regno = reg_renumber[regno];
4784 if ((regno >= FIRST_PSEUDO_REGISTER
4785 || !(context ? REGNO_OK_FOR_INDEX_P (regno)
4786 : REGNO_OK_FOR_BASE_P (regno))))
4787 {
4788 register rtx link;
4789
4790 int reloadnum
fb3821f7 4791 = push_reload (x, NULL_RTX, loc, NULL_PTR,
eab89b90 4792 context ? INDEX_REG_CLASS : BASE_REG_CLASS,
a8c9daeb
RK
4793 GET_MODE (x), GET_MODE (x), VOIDmode, 0,
4794 opnum, type);
eab89b90
RK
4795 reload_inc[reloadnum]
4796 = find_inc_amount (PATTERN (this_insn), XEXP (x_orig, 0));
4797
4798 value = 1;
4799
4800#ifdef AUTO_INC_DEC
4801 /* Update the REG_INC notes. */
4802
4803 for (link = REG_NOTES (this_insn);
4804 link; link = XEXP (link, 1))
4805 if (REG_NOTE_KIND (link) == REG_INC
4806 && REGNO (XEXP (link, 0)) == REGNO (XEXP (x_orig, 0)))
4807 push_replacement (&XEXP (link, 0), reloadnum, VOIDmode);
4808#endif
4809 }
4810 return value;
4811 }
a2d353e5 4812
eab89b90
RK
4813 else if (GET_CODE (XEXP (x, 0)) == MEM)
4814 {
4815 /* This is probably the result of a substitution, by eliminate_regs,
4816 of an equivalent address for a pseudo that was not allocated to a
4817 hard register. Verify that the specified address is valid and
4818 reload it into a register. */
4819 rtx tem = XEXP (x, 0);
4820 register rtx link;
4821 int reloadnum;
4822
4823 /* Since we know we are going to reload this item, don't decrement
4824 for the indirection level.
4825
4826 Note that this is actually conservative: it would be slightly
4827 more efficient to use the value of SPILL_INDIRECT_LEVELS from
4828 reload1.c here. */
4829 find_reloads_address (GET_MODE (x), &XEXP (x, 0),
4830 XEXP (XEXP (x, 0), 0), &XEXP (XEXP (x, 0), 0),
a8c9daeb 4831 opnum, type, ind_levels);
eab89b90 4832
fb3821f7 4833 reloadnum = push_reload (x, NULL_RTX, loc, NULL_PTR,
eab89b90 4834 context ? INDEX_REG_CLASS : BASE_REG_CLASS,
a8c9daeb 4835 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
eab89b90
RK
4836 reload_inc[reloadnum]
4837 = find_inc_amount (PATTERN (this_insn), XEXP (x, 0));
4838
4839 link = FIND_REG_INC_NOTE (this_insn, tem);
4840 if (link != 0)
4841 push_replacement (&XEXP (link, 0), reloadnum, VOIDmode);
4842
4843 return 1;
4844 }
a2d353e5
RK
4845 return 0;
4846
4847 case MEM:
4848 /* This is probably the result of a substitution, by eliminate_regs, of
4849 an equivalent address for a pseudo that was not allocated to a hard
4850 register. Verify that the specified address is valid and reload it
4851 into a register.
eab89b90 4852
a2d353e5
RK
4853 Since we know we are going to reload this item, don't decrement for
4854 the indirection level.
eab89b90
RK
4855
4856 Note that this is actually conservative: it would be slightly more
4857 efficient to use the value of SPILL_INDIRECT_LEVELS from
4858 reload1.c here. */
4859
4860 find_reloads_address (GET_MODE (x), loc, XEXP (x, 0), &XEXP (x, 0),
a8c9daeb 4861 opnum, type, ind_levels);
fb3821f7 4862 push_reload (*loc, NULL_RTX, loc, NULL_PTR,
eab89b90 4863 context ? INDEX_REG_CLASS : BASE_REG_CLASS,
a8c9daeb 4864 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
eab89b90 4865 return 1;
eab89b90 4866
a2d353e5
RK
4867 case REG:
4868 {
4869 register int regno = REGNO (x);
4870
4871 if (reg_equiv_constant[regno] != 0)
4872 {
4873 find_reloads_address_part (reg_equiv_constant[regno], loc,
4874 (context ? INDEX_REG_CLASS
4875 : BASE_REG_CLASS),
4876 GET_MODE (x), opnum, type, ind_levels);
4877 return 1;
4878 }
eab89b90
RK
4879
4880#if 0 /* This might screw code in reload1.c to delete prior output-reload
4881 that feeds this insn. */
a2d353e5
RK
4882 if (reg_equiv_mem[regno] != 0)
4883 {
4884 push_reload (reg_equiv_mem[regno], NULL_RTX, loc, NULL_PTR,
4885 context ? INDEX_REG_CLASS : BASE_REG_CLASS,
4886 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
4887 return 1;
4888 }
eab89b90 4889#endif
eab89b90 4890
a2d353e5
RK
4891 if (reg_equiv_address[regno] != 0)
4892 {
4893 x = make_memloc (x, regno);
4894 find_reloads_address (GET_MODE (x), 0, XEXP (x, 0), &XEXP (x, 0),
4895 opnum, type, ind_levels);
4896 }
eab89b90 4897
a2d353e5
RK
4898 if (reg_renumber[regno] >= 0)
4899 regno = reg_renumber[regno];
4900
4901 if ((regno >= FIRST_PSEUDO_REGISTER
4902 || !(context ? REGNO_OK_FOR_INDEX_P (regno)
4903 : REGNO_OK_FOR_BASE_P (regno))))
4904 {
4905 push_reload (x, NULL_RTX, loc, NULL_PTR,
4906 context ? INDEX_REG_CLASS : BASE_REG_CLASS,
4907 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
4908 return 1;
4909 }
4910
4911 /* If a register appearing in an address is the subject of a CLOBBER
4912 in this insn, reload it into some other register to be safe.
4913 The CLOBBER is supposed to make the register unavailable
4914 from before this insn to after it. */
4915 if (regno_clobbered_p (regno, this_insn))
4916 {
4917 push_reload (x, NULL_RTX, loc, NULL_PTR,
4918 context ? INDEX_REG_CLASS : BASE_REG_CLASS,
4919 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
4920 return 1;
4921 }
4922 }
4923 return 0;
4924
4925 case SUBREG:
922db4bb 4926 if (GET_CODE (SUBREG_REG (x)) == REG)
eab89b90 4927 {
922db4bb
RK
4928 /* If this is a SUBREG of a hard register and the resulting register
4929 is of the wrong class, reload the whole SUBREG. This avoids
4930 needless copies if SUBREG_REG is multi-word. */
4931 if (REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
4932 {
4933 int regno = REGNO (SUBREG_REG (x)) + SUBREG_WORD (x);
a2d353e5 4934
922db4bb
RK
4935 if (! (context ? REGNO_OK_FOR_INDEX_P (regno)
4936 : REGNO_OK_FOR_BASE_P (regno)))
4937 {
4938 push_reload (x, NULL_RTX, loc, NULL_PTR,
4939 context ? INDEX_REG_CLASS : BASE_REG_CLASS,
4940 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
4941 return 1;
4942 }
4943 }
abc95ed3 4944 /* If this is a SUBREG of a pseudo-register, and the pseudo-register
922db4bb
RK
4945 is larger than the class size, then reload the whole SUBREG. */
4946 else
a2d353e5 4947 {
922db4bb
RK
4948 enum reg_class class = (context
4949 ? INDEX_REG_CLASS : BASE_REG_CLASS);
4950 if (CLASS_MAX_NREGS (class, GET_MODE (SUBREG_REG (x)))
4951 > reg_class_size[class])
4952 {
4953 push_reload (x, NULL_RTX, loc, NULL_PTR, class,
4954 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
4955 return 1;
4956 }
a2d353e5 4957 }
eab89b90 4958 }
a2d353e5 4959 break;
eab89b90
RK
4960 }
4961
a2d353e5
RK
4962 {
4963 register char *fmt = GET_RTX_FORMAT (code);
4964 register int i;
4965
4966 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4967 {
4968 if (fmt[i] == 'e')
4969 find_reloads_address_1 (XEXP (x, i), context, &XEXP (x, i),
4970 opnum, type, ind_levels);
4971 }
4972 }
4973
eab89b90
RK
4974 return 0;
4975}
4976\f
4977/* X, which is found at *LOC, is a part of an address that needs to be
4978 reloaded into a register of class CLASS. If X is a constant, or if
4979 X is a PLUS that contains a constant, check that the constant is a
4980 legitimate operand and that we are supposed to be able to load
4981 it into the register.
4982
4983 If not, force the constant into memory and reload the MEM instead.
4984
4985 MODE is the mode to use, in case X is an integer constant.
4986
a8c9daeb 4987 OPNUM and TYPE describe the purpose of any reloads made.
eab89b90
RK
4988
4989 IND_LEVELS says how many levels of indirect addressing this machine
4990 supports. */
4991
4992static void
a8c9daeb 4993find_reloads_address_part (x, loc, class, mode, opnum, type, ind_levels)
eab89b90
RK
4994 rtx x;
4995 rtx *loc;
4996 enum reg_class class;
4997 enum machine_mode mode;
a8c9daeb
RK
4998 int opnum;
4999 enum reload_type type;
eab89b90
RK
5000 int ind_levels;
5001{
5002 if (CONSTANT_P (x)
5003 && (! LEGITIMATE_CONSTANT_P (x)
5004 || PREFERRED_RELOAD_CLASS (x, class) == NO_REGS))
5005 {
5006 rtx tem = x = force_const_mem (mode, x);
5007 find_reloads_address (mode, &tem, XEXP (tem, 0), &XEXP (tem, 0),
a8c9daeb 5008 opnum, type, ind_levels);
eab89b90
RK
5009 }
5010
5011 else if (GET_CODE (x) == PLUS
5012 && CONSTANT_P (XEXP (x, 1))
5013 && (! LEGITIMATE_CONSTANT_P (XEXP (x, 1))
5014 || PREFERRED_RELOAD_CLASS (XEXP (x, 1), class) == NO_REGS))
5015 {
5016 rtx tem = force_const_mem (GET_MODE (x), XEXP (x, 1));
5017
5018 x = gen_rtx (PLUS, GET_MODE (x), XEXP (x, 0), tem);
5019 find_reloads_address (mode, &tem, XEXP (tem, 0), &XEXP (tem, 0),
a8c9daeb 5020 opnum, type, ind_levels);
eab89b90
RK
5021 }
5022
fb3821f7 5023 push_reload (x, NULL_RTX, loc, NULL_PTR, class,
a8c9daeb 5024 mode, VOIDmode, 0, 0, opnum, type);
eab89b90
RK
5025}
5026\f
a8c9daeb 5027/* Substitute into the current INSN the registers into which we have reloaded
eab89b90
RK
5028 the things that need reloading. The array `replacements'
5029 says contains the locations of all pointers that must be changed
5030 and says what to replace them with.
5031
5032 Return the rtx that X translates into; usually X, but modified. */
5033
5034void
5035subst_reloads ()
5036{
5037 register int i;
5038
5039 for (i = 0; i < n_replacements; i++)
5040 {
5041 register struct replacement *r = &replacements[i];
5042 register rtx reloadreg = reload_reg_rtx[r->what];
5043 if (reloadreg)
5044 {
5045 /* Encapsulate RELOADREG so its machine mode matches what
26f1a00e
RK
5046 used to be there. Note that gen_lowpart_common will
5047 do the wrong thing if RELOADREG is multi-word. RELOADREG
5048 will always be a REG here. */
eab89b90 5049 if (GET_MODE (reloadreg) != r->mode && r->mode != VOIDmode)
26f1a00e 5050 reloadreg = gen_rtx (REG, r->mode, REGNO (reloadreg));
eab89b90
RK
5051
5052 /* If we are putting this into a SUBREG and RELOADREG is a
5053 SUBREG, we would be making nested SUBREGs, so we have to fix
5054 this up. Note that r->where == &SUBREG_REG (*r->subreg_loc). */
5055
5056 if (r->subreg_loc != 0 && GET_CODE (reloadreg) == SUBREG)
5057 {
5058 if (GET_MODE (*r->subreg_loc)
5059 == GET_MODE (SUBREG_REG (reloadreg)))
5060 *r->subreg_loc = SUBREG_REG (reloadreg);
5061 else
5062 {
5063 *r->where = SUBREG_REG (reloadreg);
5064 SUBREG_WORD (*r->subreg_loc) += SUBREG_WORD (reloadreg);
5065 }
5066 }
5067 else
5068 *r->where = reloadreg;
5069 }
5070 /* If reload got no reg and isn't optional, something's wrong. */
5071 else if (! reload_optional[r->what])
5072 abort ();
5073 }
5074}
5075\f
5076/* Make a copy of any replacements being done into X and move those copies
5077 to locations in Y, a copy of X. We only look at the highest level of
5078 the RTL. */
5079
5080void
5081copy_replacements (x, y)
5082 rtx x;
5083 rtx y;
5084{
5085 int i, j;
5086 enum rtx_code code = GET_CODE (x);
5087 char *fmt = GET_RTX_FORMAT (code);
5088 struct replacement *r;
5089
5090 /* We can't support X being a SUBREG because we might then need to know its
5091 location if something inside it was replaced. */
5092 if (code == SUBREG)
5093 abort ();
5094
5095 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5096 if (fmt[i] == 'e')
5097 for (j = 0; j < n_replacements; j++)
5098 {
5099 if (replacements[j].subreg_loc == &XEXP (x, i))
5100 {
5101 r = &replacements[n_replacements++];
5102 r->where = replacements[j].where;
5103 r->subreg_loc = &XEXP (y, i);
5104 r->what = replacements[j].what;
5105 r->mode = replacements[j].mode;
5106 }
5107 else if (replacements[j].where == &XEXP (x, i))
5108 {
5109 r = &replacements[n_replacements++];
5110 r->where = &XEXP (y, i);
5111 r->subreg_loc = 0;
5112 r->what = replacements[j].what;
5113 r->mode = replacements[j].mode;
5114 }
5115 }
5116}
5117\f
af929c62
RK
5118/* If LOC was scheduled to be replaced by something, return the replacement.
5119 Otherwise, return *LOC. */
5120
5121rtx
5122find_replacement (loc)
5123 rtx *loc;
5124{
5125 struct replacement *r;
5126
5127 for (r = &replacements[0]; r < &replacements[n_replacements]; r++)
5128 {
5129 rtx reloadreg = reload_reg_rtx[r->what];
5130
5131 if (reloadreg && r->where == loc)
5132 {
5133 if (r->mode != VOIDmode && GET_MODE (reloadreg) != r->mode)
5134 reloadreg = gen_rtx (REG, r->mode, REGNO (reloadreg));
5135
5136 return reloadreg;
5137 }
5138 else if (reloadreg && r->subreg_loc == loc)
5139 {
5140 /* RELOADREG must be either a REG or a SUBREG.
5141
5142 ??? Is it actually still ever a SUBREG? If so, why? */
5143
5144 if (GET_CODE (reloadreg) == REG)
5145 return gen_rtx (REG, GET_MODE (*loc),
5146 REGNO (reloadreg) + SUBREG_WORD (*loc));
5147 else if (GET_MODE (reloadreg) == GET_MODE (*loc))
5148 return reloadreg;
5149 else
5150 return gen_rtx (SUBREG, GET_MODE (*loc), SUBREG_REG (reloadreg),
5151 SUBREG_WORD (reloadreg) + SUBREG_WORD (*loc));
5152 }
5153 }
5154
5155 return *loc;
5156}
5157\f
eab89b90
RK
5158/* Return nonzero if register in range [REGNO, ENDREGNO)
5159 appears either explicitly or implicitly in X
4644aad4 5160 other than being stored into (except for earlyclobber operands).
eab89b90
RK
5161
5162 References contained within the substructure at LOC do not count.
5163 LOC may be zero, meaning don't ignore anything.
5164
5165 This is similar to refers_to_regno_p in rtlanal.c except that we
5166 look at equivalences for pseudos that didn't get hard registers. */
5167
5168int
5169refers_to_regno_for_reload_p (regno, endregno, x, loc)
5170 int regno, endregno;
5171 rtx x;
5172 rtx *loc;
5173{
5174 register int i;
5175 register RTX_CODE code;
5176 register char *fmt;
5177
5178 if (x == 0)
5179 return 0;
5180
5181 repeat:
5182 code = GET_CODE (x);
5183
5184 switch (code)
5185 {
5186 case REG:
5187 i = REGNO (x);
5188
4803a34a
RK
5189 /* If this is a pseudo, a hard register must not have been allocated.
5190 X must therefore either be a constant or be in memory. */
5191 if (i >= FIRST_PSEUDO_REGISTER)
5192 {
5193 if (reg_equiv_memory_loc[i])
5194 return refers_to_regno_for_reload_p (regno, endregno,
fb3821f7
CH
5195 reg_equiv_memory_loc[i],
5196 NULL_PTR);
4803a34a
RK
5197
5198 if (reg_equiv_constant[i])
5199 return 0;
5200
5201 abort ();
5202 }
eab89b90
RK
5203
5204 return (endregno > i
5205 && regno < i + (i < FIRST_PSEUDO_REGISTER
5206 ? HARD_REGNO_NREGS (i, GET_MODE (x))
5207 : 1));
5208
5209 case SUBREG:
5210 /* If this is a SUBREG of a hard reg, we can see exactly which
5211 registers are being modified. Otherwise, handle normally. */
5212 if (GET_CODE (SUBREG_REG (x)) == REG
5213 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
5214 {
5215 int inner_regno = REGNO (SUBREG_REG (x)) + SUBREG_WORD (x);
5216 int inner_endregno
5217 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
5218 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
5219
5220 return endregno > inner_regno && regno < inner_endregno;
5221 }
5222 break;
5223
5224 case CLOBBER:
5225 case SET:
5226 if (&SET_DEST (x) != loc
5227 /* Note setting a SUBREG counts as referring to the REG it is in for
5228 a pseudo but not for hard registers since we can
5229 treat each word individually. */
5230 && ((GET_CODE (SET_DEST (x)) == SUBREG
5231 && loc != &SUBREG_REG (SET_DEST (x))
5232 && GET_CODE (SUBREG_REG (SET_DEST (x))) == REG
5233 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
5234 && refers_to_regno_for_reload_p (regno, endregno,
5235 SUBREG_REG (SET_DEST (x)),
5236 loc))
abc95ed3 5237 /* If the output is an earlyclobber operand, this is
4644aad4
RK
5238 a conflict. */
5239 || ((GET_CODE (SET_DEST (x)) != REG
5240 || earlyclobber_operand_p (SET_DEST (x)))
eab89b90
RK
5241 && refers_to_regno_for_reload_p (regno, endregno,
5242 SET_DEST (x), loc))))
5243 return 1;
5244
5245 if (code == CLOBBER || loc == &SET_SRC (x))
5246 return 0;
5247 x = SET_SRC (x);
5248 goto repeat;
5249 }
5250
5251 /* X does not match, so try its subexpressions. */
5252
5253 fmt = GET_RTX_FORMAT (code);
5254 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5255 {
5256 if (fmt[i] == 'e' && loc != &XEXP (x, i))
5257 {
5258 if (i == 0)
5259 {
5260 x = XEXP (x, 0);
5261 goto repeat;
5262 }
5263 else
5264 if (refers_to_regno_for_reload_p (regno, endregno,
5265 XEXP (x, i), loc))
5266 return 1;
5267 }
5268 else if (fmt[i] == 'E')
5269 {
5270 register int j;
5271 for (j = XVECLEN (x, i) - 1; j >=0; j--)
5272 if (loc != &XVECEXP (x, i, j)
5273 && refers_to_regno_for_reload_p (regno, endregno,
5274 XVECEXP (x, i, j), loc))
5275 return 1;
5276 }
5277 }
5278 return 0;
5279}
bfa30b22
RK
5280
5281/* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
5282 we check if any register number in X conflicts with the relevant register
5283 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
5284 contains a MEM (we don't bother checking for memory addresses that can't
5285 conflict because we expect this to be a rare case.
5286
5287 This function is similar to reg_overlap_mention_p in rtlanal.c except
5288 that we look at equivalences for pseudos that didn't get hard registers. */
5289
5290int
5291reg_overlap_mentioned_for_reload_p (x, in)
5292 rtx x, in;
5293{
5294 int regno, endregno;
5295
5296 if (GET_CODE (x) == SUBREG)
5297 {
5298 regno = REGNO (SUBREG_REG (x));
5299 if (regno < FIRST_PSEUDO_REGISTER)
5300 regno += SUBREG_WORD (x);
5301 }
5302 else if (GET_CODE (x) == REG)
5303 {
5304 regno = REGNO (x);
4803a34a
RK
5305
5306 /* If this is a pseudo, it must not have been assigned a hard register.
5307 Therefore, it must either be in memory or be a constant. */
5308
5309 if (regno >= FIRST_PSEUDO_REGISTER)
5310 {
5311 if (reg_equiv_memory_loc[regno])
5312 return refers_to_mem_for_reload_p (in);
5313 else if (reg_equiv_constant[regno])
5314 return 0;
5315 abort ();
5316 }
bfa30b22
RK
5317 }
5318 else if (CONSTANT_P (x))
5319 return 0;
5320 else if (GET_CODE (x) == MEM)
4803a34a 5321 return refers_to_mem_for_reload_p (in);
bfa30b22
RK
5322 else if (GET_CODE (x) == SCRATCH || GET_CODE (x) == PC
5323 || GET_CODE (x) == CC0)
5324 return reg_mentioned_p (x, in);
5325 else
5326 abort ();
5327
5328 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
5329 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
5330
fb3821f7 5331 return refers_to_regno_for_reload_p (regno, endregno, in, NULL_PTR);
bfa30b22 5332}
4803a34a
RK
5333
5334/* Return nonzero if anything in X contains a MEM. Look also for pseudo
5335 registers. */
5336
5337int
5338refers_to_mem_for_reload_p (x)
5339 rtx x;
5340{
5341 char *fmt;
5342 int i;
5343
5344 if (GET_CODE (x) == MEM)
5345 return 1;
5346
5347 if (GET_CODE (x) == REG)
5348 return (REGNO (x) >= FIRST_PSEUDO_REGISTER
5349 && reg_equiv_memory_loc[REGNO (x)]);
5350
5351 fmt = GET_RTX_FORMAT (GET_CODE (x));
5352 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
5353 if (fmt[i] == 'e'
5354 && (GET_CODE (XEXP (x, i)) == MEM
5355 || refers_to_mem_for_reload_p (XEXP (x, i))))
5356 return 1;
5357
5358 return 0;
5359}
eab89b90 5360\f
eab89b90
RK
5361/* Check the insns before INSN to see if there is a suitable register
5362 containing the same value as GOAL.
5363 If OTHER is -1, look for a register in class CLASS.
5364 Otherwise, just see if register number OTHER shares GOAL's value.
5365
5366 Return an rtx for the register found, or zero if none is found.
5367
5368 If RELOAD_REG_P is (short *)1,
5369 we reject any hard reg that appears in reload_reg_rtx
5370 because such a hard reg is also needed coming into this insn.
5371
5372 If RELOAD_REG_P is any other nonzero value,
5373 it is a vector indexed by hard reg number
5374 and we reject any hard reg whose element in the vector is nonnegative
5375 as well as any that appears in reload_reg_rtx.
5376
5377 If GOAL is zero, then GOALREG is a register number; we look
5378 for an equivalent for that register.
5379
5380 MODE is the machine mode of the value we want an equivalence for.
5381 If GOAL is nonzero and not VOIDmode, then it must have mode MODE.
5382
5383 This function is used by jump.c as well as in the reload pass.
5384
5385 If GOAL is the sum of the stack pointer and a constant, we treat it
5386 as if it were a constant except that sp is required to be unchanging. */
5387
5388rtx
5389find_equiv_reg (goal, insn, class, other, reload_reg_p, goalreg, mode)
5390 register rtx goal;
5391 rtx insn;
5392 enum reg_class class;
5393 register int other;
5394 short *reload_reg_p;
5395 int goalreg;
5396 enum machine_mode mode;
5397{
5398 register rtx p = insn;
f55b1d97 5399 rtx goaltry, valtry, value, where;
eab89b90
RK
5400 register rtx pat;
5401 register int regno = -1;
5402 int valueno;
5403 int goal_mem = 0;
5404 int goal_const = 0;
5405 int goal_mem_addr_varies = 0;
5406 int need_stable_sp = 0;
5407 int nregs;
5408 int valuenregs;
5409
5410 if (goal == 0)
5411 regno = goalreg;
5412 else if (GET_CODE (goal) == REG)
5413 regno = REGNO (goal);
5414 else if (GET_CODE (goal) == MEM)
5415 {
5416 enum rtx_code code = GET_CODE (XEXP (goal, 0));
5417 if (MEM_VOLATILE_P (goal))
5418 return 0;
5419 if (flag_float_store && GET_MODE_CLASS (GET_MODE (goal)) == MODE_FLOAT)
5420 return 0;
5421 /* An address with side effects must be reexecuted. */
5422 switch (code)
5423 {
5424 case POST_INC:
5425 case PRE_INC:
5426 case POST_DEC:
5427 case PRE_DEC:
5428 return 0;
5429 }
5430 goal_mem = 1;
5431 }
5432 else if (CONSTANT_P (goal))
5433 goal_const = 1;
5434 else if (GET_CODE (goal) == PLUS
5435 && XEXP (goal, 0) == stack_pointer_rtx
5436 && CONSTANT_P (XEXP (goal, 1)))
5437 goal_const = need_stable_sp = 1;
5438 else
5439 return 0;
5440
5441 /* On some machines, certain regs must always be rejected
5442 because they don't behave the way ordinary registers do. */
5443
5444#ifdef OVERLAPPING_REGNO_P
5445 if (regno >= 0 && regno < FIRST_PSEUDO_REGISTER
5446 && OVERLAPPING_REGNO_P (regno))
5447 return 0;
5448#endif
5449
5450 /* Scan insns back from INSN, looking for one that copies
5451 a value into or out of GOAL.
5452 Stop and give up if we reach a label. */
5453
5454 while (1)
5455 {
5456 p = PREV_INSN (p);
5457 if (p == 0 || GET_CODE (p) == CODE_LABEL)
5458 return 0;
5459 if (GET_CODE (p) == INSN
5460 /* If we don't want spill regs ... */
a8c9daeb
RK
5461 && (! (reload_reg_p != 0
5462 && reload_reg_p != (short *) (HOST_WIDE_INT) 1)
eab89b90
RK
5463 /* ... then ignore insns introduced by reload; they aren't useful
5464 and can cause results in reload_as_needed to be different
5465 from what they were when calculating the need for spills.
5466 If we notice an input-reload insn here, we will reject it below,
5467 but it might hide a usable equivalent. That makes bad code.
5468 It may even abort: perhaps no reg was spilled for this insn
5469 because it was assumed we would find that equivalent. */
5470 || INSN_UID (p) < reload_first_uid))
5471 {
e8094962 5472 rtx tem;
eab89b90
RK
5473 pat = single_set (p);
5474 /* First check for something that sets some reg equal to GOAL. */
5475 if (pat != 0
5476 && ((regno >= 0
5477 && true_regnum (SET_SRC (pat)) == regno
5478 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
5479 ||
5480 (regno >= 0
5481 && true_regnum (SET_DEST (pat)) == regno
5482 && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0)
5483 ||
5484 (goal_const && rtx_equal_p (SET_SRC (pat), goal)
5485 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
5486 || (goal_mem
5487 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0
5488 && rtx_renumbered_equal_p (goal, SET_SRC (pat)))
5489 || (goal_mem
5490 && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0
e8094962
RK
5491 && rtx_renumbered_equal_p (goal, SET_DEST (pat)))
5492 /* If we are looking for a constant,
5493 and something equivalent to that constant was copied
5494 into a reg, we can use that reg. */
fb3821f7
CH
5495 || (goal_const && (tem = find_reg_note (p, REG_EQUIV,
5496 NULL_RTX))
e8094962 5497 && rtx_equal_p (XEXP (tem, 0), goal)
95d3562b 5498 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
fb3821f7
CH
5499 || (goal_const && (tem = find_reg_note (p, REG_EQUIV,
5500 NULL_RTX))
e8094962
RK
5501 && GET_CODE (SET_DEST (pat)) == REG
5502 && GET_CODE (XEXP (tem, 0)) == CONST_DOUBLE
5503 && GET_MODE_CLASS (GET_MODE (XEXP (tem, 0))) == MODE_FLOAT
5504 && GET_CODE (goal) == CONST_INT
f55b1d97
RK
5505 && 0 != (goaltry = operand_subword (XEXP (tem, 0), 0, 0,
5506 VOIDmode))
5507 && rtx_equal_p (goal, goaltry)
e8094962
RK
5508 && (valtry = operand_subword (SET_DEST (pat), 0, 0,
5509 VOIDmode))
95d3562b 5510 && (valueno = true_regnum (valtry)) >= 0)
fb3821f7
CH
5511 || (goal_const && (tem = find_reg_note (p, REG_EQUIV,
5512 NULL_RTX))
e8094962
RK
5513 && GET_CODE (SET_DEST (pat)) == REG
5514 && GET_CODE (XEXP (tem, 0)) == CONST_DOUBLE
5515 && GET_MODE_CLASS (GET_MODE (XEXP (tem, 0))) == MODE_FLOAT
5516 && GET_CODE (goal) == CONST_INT
f55b1d97
RK
5517 && 0 != (goaltry = operand_subword (XEXP (tem, 0), 1, 0,
5518 VOIDmode))
5519 && rtx_equal_p (goal, goaltry)
e8094962
RK
5520 && (valtry
5521 = operand_subword (SET_DEST (pat), 1, 0, VOIDmode))
95d3562b 5522 && (valueno = true_regnum (valtry)) >= 0)))
eab89b90
RK
5523 if (other >= 0
5524 ? valueno == other
5525 : ((unsigned) valueno < FIRST_PSEUDO_REGISTER
5526 && TEST_HARD_REG_BIT (reg_class_contents[(int) class],
5527 valueno)))
5528 {
5529 value = valtry;
5530 where = p;
5531 break;
5532 }
5533 }
5534 }
5535
5536 /* We found a previous insn copying GOAL into a suitable other reg VALUE
5537 (or copying VALUE into GOAL, if GOAL is also a register).
5538 Now verify that VALUE is really valid. */
5539
5540 /* VALUENO is the register number of VALUE; a hard register. */
5541
5542 /* Don't try to re-use something that is killed in this insn. We want
5543 to be able to trust REG_UNUSED notes. */
5544 if (find_reg_note (where, REG_UNUSED, value))
5545 return 0;
5546
5547 /* If we propose to get the value from the stack pointer or if GOAL is
5548 a MEM based on the stack pointer, we need a stable SP. */
5549 if (valueno == STACK_POINTER_REGNUM
bfa30b22
RK
5550 || (goal_mem && reg_overlap_mentioned_for_reload_p (stack_pointer_rtx,
5551 goal)))
eab89b90
RK
5552 need_stable_sp = 1;
5553
5554 /* Reject VALUE if the copy-insn moved the wrong sort of datum. */
5555 if (GET_MODE (value) != mode)
5556 return 0;
5557
5558 /* Reject VALUE if it was loaded from GOAL
5559 and is also a register that appears in the address of GOAL. */
5560
5561 if (goal_mem && value == SET_DEST (PATTERN (where))
bfa30b22
RK
5562 && refers_to_regno_for_reload_p (valueno,
5563 (valueno
5564 + HARD_REGNO_NREGS (valueno, mode)),
fb3821f7 5565 goal, NULL_PTR))
eab89b90
RK
5566 return 0;
5567
5568 /* Reject registers that overlap GOAL. */
5569
5570 if (!goal_mem && !goal_const
5571 && regno + HARD_REGNO_NREGS (regno, mode) > valueno
5572 && regno < valueno + HARD_REGNO_NREGS (valueno, mode))
5573 return 0;
5574
5575 /* Reject VALUE if it is one of the regs reserved for reloads.
5576 Reload1 knows how to reuse them anyway, and it would get
5577 confused if we allocated one without its knowledge.
5578 (Now that insns introduced by reload are ignored above,
5579 this case shouldn't happen, but I'm not positive.) */
5580
a8c9daeb 5581 if (reload_reg_p != 0 && reload_reg_p != (short *) (HOST_WIDE_INT) 1
eab89b90
RK
5582 && reload_reg_p[valueno] >= 0)
5583 return 0;
5584
5585 /* On some machines, certain regs must always be rejected
5586 because they don't behave the way ordinary registers do. */
5587
5588#ifdef OVERLAPPING_REGNO_P
5589 if (OVERLAPPING_REGNO_P (valueno))
5590 return 0;
5591#endif
5592
5593 nregs = HARD_REGNO_NREGS (regno, mode);
5594 valuenregs = HARD_REGNO_NREGS (valueno, mode);
5595
5596 /* Reject VALUE if it is a register being used for an input reload
5597 even if it is not one of those reserved. */
5598
5599 if (reload_reg_p != 0)
5600 {
5601 int i;
5602 for (i = 0; i < n_reloads; i++)
5603 if (reload_reg_rtx[i] != 0 && reload_in[i])
5604 {
5605 int regno1 = REGNO (reload_reg_rtx[i]);
5606 int nregs1 = HARD_REGNO_NREGS (regno1,
5607 GET_MODE (reload_reg_rtx[i]));
5608 if (regno1 < valueno + valuenregs
5609 && regno1 + nregs1 > valueno)
5610 return 0;
5611 }
5612 }
5613
5614 if (goal_mem)
54b5ffe9
RS
5615 /* We must treat frame pointer as varying here,
5616 since it can vary--in a nonlocal goto as generated by expand_goto. */
5617 goal_mem_addr_varies = !CONSTANT_ADDRESS_P (XEXP (goal, 0));
eab89b90
RK
5618
5619 /* Now verify that the values of GOAL and VALUE remain unaltered
5620 until INSN is reached. */
5621
5622 p = insn;
5623 while (1)
5624 {
5625 p = PREV_INSN (p);
5626 if (p == where)
5627 return value;
5628
5629 /* Don't trust the conversion past a function call
5630 if either of the two is in a call-clobbered register, or memory. */
5631 if (GET_CODE (p) == CALL_INSN
5632 && ((regno >= 0 && regno < FIRST_PSEUDO_REGISTER
5633 && call_used_regs[regno])
5634 ||
5635 (valueno >= 0 && valueno < FIRST_PSEUDO_REGISTER
5636 && call_used_regs[valueno])
5637 ||
5638 goal_mem
5639 || need_stable_sp))
5640 return 0;
5641
41fe17ab
RK
5642#ifdef NON_SAVING_SETJMP
5643 if (NON_SAVING_SETJMP && GET_CODE (p) == NOTE
5644 && NOTE_LINE_NUMBER (p) == NOTE_INSN_SETJMP)
5645 return 0;
5646#endif
5647
eab89b90
RK
5648#ifdef INSN_CLOBBERS_REGNO_P
5649 if ((valueno >= 0 && valueno < FIRST_PSEUDO_REGISTER
5650 && INSN_CLOBBERS_REGNO_P (p, valueno))
5651 || (regno >= 0 && regno < FIRST_PSEUDO_REGISTER
5652 && INSN_CLOBBERS_REGNO_P (p, regno)))
5653 return 0;
5654#endif
5655
5656 if (GET_RTX_CLASS (GET_CODE (p)) == 'i')
5657 {
5658 /* If this insn P stores in either GOAL or VALUE, return 0.
5659 If GOAL is a memory ref and this insn writes memory, return 0.
5660 If GOAL is a memory ref and its address is not constant,
5661 and this insn P changes a register used in GOAL, return 0. */
5662
5663 pat = PATTERN (p);
5664 if (GET_CODE (pat) == SET || GET_CODE (pat) == CLOBBER)
5665 {
5666 register rtx dest = SET_DEST (pat);
5667 while (GET_CODE (dest) == SUBREG
5668 || GET_CODE (dest) == ZERO_EXTRACT
5669 || GET_CODE (dest) == SIGN_EXTRACT
5670 || GET_CODE (dest) == STRICT_LOW_PART)
5671 dest = XEXP (dest, 0);
5672 if (GET_CODE (dest) == REG)
5673 {
5674 register int xregno = REGNO (dest);
5675 int xnregs;
5676 if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
5677 xnregs = HARD_REGNO_NREGS (xregno, GET_MODE (dest));
5678 else
5679 xnregs = 1;
5680 if (xregno < regno + nregs && xregno + xnregs > regno)
5681 return 0;
5682 if (xregno < valueno + valuenregs
5683 && xregno + xnregs > valueno)
5684 return 0;
5685 if (goal_mem_addr_varies
bfa30b22 5686 && reg_overlap_mentioned_for_reload_p (dest, goal))
eab89b90
RK
5687 return 0;
5688 }
5689 else if (goal_mem && GET_CODE (dest) == MEM
5690 && ! push_operand (dest, GET_MODE (dest)))
5691 return 0;
9fac9680
RK
5692 else if (GET_CODE (dest) == MEM && regno >= FIRST_PSEUDO_REGISTER
5693 && reg_equiv_memory_loc[regno] != 0)
5694 return 0;
eab89b90
RK
5695 else if (need_stable_sp && push_operand (dest, GET_MODE (dest)))
5696 return 0;
5697 }
5698 else if (GET_CODE (pat) == PARALLEL)
5699 {
5700 register int i;
5701 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
5702 {
5703 register rtx v1 = XVECEXP (pat, 0, i);
5704 if (GET_CODE (v1) == SET || GET_CODE (v1) == CLOBBER)
5705 {
5706 register rtx dest = SET_DEST (v1);
5707 while (GET_CODE (dest) == SUBREG
5708 || GET_CODE (dest) == ZERO_EXTRACT
5709 || GET_CODE (dest) == SIGN_EXTRACT
5710 || GET_CODE (dest) == STRICT_LOW_PART)
5711 dest = XEXP (dest, 0);
5712 if (GET_CODE (dest) == REG)
5713 {
5714 register int xregno = REGNO (dest);
5715 int xnregs;
5716 if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
5717 xnregs = HARD_REGNO_NREGS (xregno, GET_MODE (dest));
5718 else
5719 xnregs = 1;
5720 if (xregno < regno + nregs
5721 && xregno + xnregs > regno)
5722 return 0;
5723 if (xregno < valueno + valuenregs
5724 && xregno + xnregs > valueno)
5725 return 0;
5726 if (goal_mem_addr_varies
bfa30b22
RK
5727 && reg_overlap_mentioned_for_reload_p (dest,
5728 goal))
eab89b90
RK
5729 return 0;
5730 }
5731 else if (goal_mem && GET_CODE (dest) == MEM
5732 && ! push_operand (dest, GET_MODE (dest)))
5733 return 0;
369c7ab6
JW
5734 else if (need_stable_sp
5735 && push_operand (dest, GET_MODE (dest)))
5736 return 0;
5737 }
5738 }
5739 }
5740
5741 if (GET_CODE (p) == CALL_INSN && CALL_INSN_FUNCTION_USAGE (p))
5742 {
5743 rtx link;
5744
5745 for (link = CALL_INSN_FUNCTION_USAGE (p); XEXP (link, 1) != 0;
5746 link = XEXP (link, 1))
5747 {
5748 pat = XEXP (link, 0);
5749 if (GET_CODE (pat) == CLOBBER)
5750 {
5751 register rtx dest = SET_DEST (pat);
5752 while (GET_CODE (dest) == SUBREG
5753 || GET_CODE (dest) == ZERO_EXTRACT
5754 || GET_CODE (dest) == SIGN_EXTRACT
5755 || GET_CODE (dest) == STRICT_LOW_PART)
5756 dest = XEXP (dest, 0);
5757 if (GET_CODE (dest) == REG)
5758 {
5759 register int xregno = REGNO (dest);
5760 int xnregs;
5761 if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
5762 xnregs = HARD_REGNO_NREGS (xregno, GET_MODE (dest));
5763 else
5764 xnregs = 1;
5765 if (xregno < regno + nregs
5766 && xregno + xnregs > regno)
5767 return 0;
5768 if (xregno < valueno + valuenregs
5769 && xregno + xnregs > valueno)
5770 return 0;
5771 if (goal_mem_addr_varies
5772 && reg_overlap_mentioned_for_reload_p (dest,
5773 goal))
5774 return 0;
5775 }
5776 else if (goal_mem && GET_CODE (dest) == MEM
5777 && ! push_operand (dest, GET_MODE (dest)))
5778 return 0;
eab89b90
RK
5779 else if (need_stable_sp
5780 && push_operand (dest, GET_MODE (dest)))
5781 return 0;
5782 }
5783 }
5784 }
5785
5786#ifdef AUTO_INC_DEC
5787 /* If this insn auto-increments or auto-decrements
5788 either regno or valueno, return 0 now.
5789 If GOAL is a memory ref and its address is not constant,
5790 and this insn P increments a register used in GOAL, return 0. */
5791 {
5792 register rtx link;
5793
5794 for (link = REG_NOTES (p); link; link = XEXP (link, 1))
5795 if (REG_NOTE_KIND (link) == REG_INC
5796 && GET_CODE (XEXP (link, 0)) == REG)
5797 {
5798 register int incno = REGNO (XEXP (link, 0));
5799 if (incno < regno + nregs && incno >= regno)
5800 return 0;
5801 if (incno < valueno + valuenregs && incno >= valueno)
5802 return 0;
5803 if (goal_mem_addr_varies
bfa30b22
RK
5804 && reg_overlap_mentioned_for_reload_p (XEXP (link, 0),
5805 goal))
eab89b90
RK
5806 return 0;
5807 }
5808 }
5809#endif
5810 }
5811 }
5812}
5813\f
5814/* Find a place where INCED appears in an increment or decrement operator
5815 within X, and return the amount INCED is incremented or decremented by.
5816 The value is always positive. */
5817
5818static int
5819find_inc_amount (x, inced)
5820 rtx x, inced;
5821{
5822 register enum rtx_code code = GET_CODE (x);
5823 register char *fmt;
5824 register int i;
5825
5826 if (code == MEM)
5827 {
5828 register rtx addr = XEXP (x, 0);
5829 if ((GET_CODE (addr) == PRE_DEC
5830 || GET_CODE (addr) == POST_DEC
5831 || GET_CODE (addr) == PRE_INC
5832 || GET_CODE (addr) == POST_INC)
5833 && XEXP (addr, 0) == inced)
5834 return GET_MODE_SIZE (GET_MODE (x));
5835 }
5836
5837 fmt = GET_RTX_FORMAT (code);
5838 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5839 {
5840 if (fmt[i] == 'e')
5841 {
5842 register int tem = find_inc_amount (XEXP (x, i), inced);
5843 if (tem != 0)
5844 return tem;
5845 }
5846 if (fmt[i] == 'E')
5847 {
5848 register int j;
5849 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
5850 {
5851 register int tem = find_inc_amount (XVECEXP (x, i, j), inced);
5852 if (tem != 0)
5853 return tem;
5854 }
5855 }
5856 }
5857
5858 return 0;
5859}
5860\f
5861/* Return 1 if register REGNO is the subject of a clobber in insn INSN. */
5862
5863int
5864regno_clobbered_p (regno, insn)
5865 int regno;
5866 rtx insn;
5867{
5868 if (GET_CODE (PATTERN (insn)) == CLOBBER
5869 && GET_CODE (XEXP (PATTERN (insn), 0)) == REG)
5870 return REGNO (XEXP (PATTERN (insn), 0)) == regno;
5871
5872 if (GET_CODE (PATTERN (insn)) == PARALLEL)
5873 {
5874 int i = XVECLEN (PATTERN (insn), 0) - 1;
5875
5876 for (; i >= 0; i--)
5877 {
5878 rtx elt = XVECEXP (PATTERN (insn), 0, i);
5879 if (GET_CODE (elt) == CLOBBER && GET_CODE (XEXP (elt, 0)) == REG
5880 && REGNO (XEXP (elt, 0)) == regno)
5881 return 1;
5882 }
5883 }
5884
5885 return 0;
5886}
10bcde0d
RK
5887
5888static char *reload_when_needed_name[] =
5889{
5890 "RELOAD_FOR_INPUT",
5891 "RELOAD_FOR_OUTPUT",
5892 "RELOAD_FOR_INSN",
5893 "RELOAD_FOR_INPUT_ADDRESS",
5894 "RELOAD_FOR_OUTPUT_ADDRESS",
5895 "RELOAD_FOR_OPERAND_ADDRESS",
5896 "RELOAD_FOR_OPADDR_ADDR",
5897 "RELOAD_OTHER",
5898 "RELOAD_FOR_OTHER_ADDRESS"
5899};
5900
5901static char *reg_class_names[] = REG_CLASS_NAMES;
5902
5903/* This function is used to print the variables set by 'find_reloads' */
5904
5905void
5906debug_reload()
5907{
5908 int r;
5909
5910 fprintf (stderr, "\nn_reloads = %d\n", n_reloads);
5911
5912 for (r = 0; r < n_reloads; r++)
5913 {
5914 fprintf (stderr, "\nRELOAD %d\n", r);
5915
5916 if (reload_in[r])
5917 {
f7393e85
RK
5918 fprintf (stderr, "\nreload_in (%s) = ",
5919 GET_MODE_NAME (reload_inmode[r]));
10bcde0d
RK
5920 debug_rtx (reload_in[r]);
5921 }
5922
5923 if (reload_out[r])
5924 {
f7393e85
RK
5925 fprintf (stderr, "\nreload_out (%s) = ",
5926 GET_MODE_NAME (reload_outmode[r]));
10bcde0d
RK
5927 debug_rtx (reload_out[r]);
5928 }
5929
5930 fprintf (stderr, "%s, ", reg_class_names[(int) reload_reg_class[r]]);
5931
f7393e85
RK
5932 fprintf (stderr, "%s (opnum = %d)",
5933 reload_when_needed_name[(int)reload_when_needed[r]],
10bcde0d
RK
5934 reload_opnum[r]);
5935
5936 if (reload_optional[r])
5937 fprintf (stderr, ", optional");
5938
5939 if (reload_in[r])
5940 fprintf (stderr, ", inc by %d\n", reload_inc[r]);
5941
5942 if (reload_nocombine[r])
5943 fprintf (stderr, ", can combine", reload_nocombine[r]);
5944
5945 if (reload_secondary_p[r])
5946 fprintf (stderr, ", secondary_reload_p");
5947
5948 if (reload_in_reg[r])
5949 {
5950 fprintf (stderr, "\nreload_in_reg:\t\t\t");
5951 debug_rtx (reload_in_reg[r]);
5952 }
5953
5954 if (reload_reg_rtx[r])
5955 {
5956 fprintf (stderr, "\nreload_reg_rtx:\t\t\t");
5957 debug_rtx (reload_reg_rtx[r]);
5958 }
5959
5960 if (reload_secondary_in_reload[r] != -1)
5961 {
5962 fprintf (stderr, "\nsecondary_in_reload = ");
5963 fprintf (stderr, "%d ", reload_secondary_in_reload[r]);
5964 }
5965
5966 if (reload_secondary_out_reload[r] != -1)
5967 {
5968 if (reload_secondary_in_reload[r] != -1)
5969 fprintf (stderr, ", secondary_out_reload = ");
5970 else
5971 fprintf (stderr, "\nsecondary_out_reload = ");
5972
5973 fprintf (stderr, "%d", reload_secondary_out_reload[r]);
5974 }
5975
5976
5977 if (reload_secondary_in_icode[r] != CODE_FOR_nothing)
5978 {
5979 fprintf (stderr, "\nsecondary_in_icode = ");
5980 fprintf (stderr, "%s", insn_name[r]);
5981 }
5982
5983 if (reload_secondary_out_icode[r] != CODE_FOR_nothing)
5984 {
5985 if (reload_secondary_in_icode[r] != CODE_FOR_nothing)
5986 fprintf (stderr, ", secondary_out_icode = ");
5987 else
5988 fprintf (stderr, "\nsecondary_out_icode = ");
5989
5990 fprintf (stderr, "%s ", insn_name[r]);
5991 }
5992 fprintf (stderr, "\n");
5993 }
5994
5995 fprintf (stderr, "\n");
5996}
This page took 0.995447 seconds and 5 git commands to generate.