]> gcc.gnu.org Git - gcc.git/blame - gcc/reload.c
Initial revision
[gcc.git] / gcc / reload.c
CommitLineData
eab89b90 1/* Search an insn for pseudo regs that must be in hard regs and are not.
b685dbae 2 Copyright (C) 1987, 88, 89, 92-6, 1997 Free Software Foundation, Inc.
eab89b90
RK
3
4This file is part of GNU CC.
5
6GNU CC is free software; you can redistribute it and/or modify
7it under the terms of the GNU General Public License as published by
8the Free Software Foundation; either version 2, or (at your option)
9any later version.
10
11GNU CC is distributed in the hope that it will be useful,
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14GNU General Public License for more details.
15
16You should have received a copy of the GNU General Public License
17along with GNU CC; see the file COPYING. If not, write to
e99215a3
RK
18the Free Software Foundation, 59 Temple Place - Suite 330,
19Boston, MA 02111-1307, USA. */
eab89b90
RK
20
21
22/* This file contains subroutines used only from the file reload1.c.
23 It knows how to scan one insn for operands and values
24 that need to be copied into registers to make valid code.
25 It also finds other operands and values which are valid
26 but for which equivalent values in registers exist and
27 ought to be used instead.
28
29 Before processing the first insn of the function, call `init_reload'.
30
31 To scan an insn, call `find_reloads'. This does two things:
32 1. sets up tables describing which values must be reloaded
33 for this insn, and what kind of hard regs they must be reloaded into;
34 2. optionally record the locations where those values appear in
35 the data, so they can be replaced properly later.
36 This is done only if the second arg to `find_reloads' is nonzero.
37
38 The third arg to `find_reloads' specifies the number of levels
39 of indirect addressing supported by the machine. If it is zero,
40 indirect addressing is not valid. If it is one, (MEM (REG n))
41 is valid even if (REG n) did not get a hard register; if it is two,
42 (MEM (MEM (REG n))) is also valid even if (REG n) did not get a
43 hard register, and similarly for higher values.
44
45 Then you must choose the hard regs to reload those pseudo regs into,
46 and generate appropriate load insns before this insn and perhaps
47 also store insns after this insn. Set up the array `reload_reg_rtx'
48 to contain the REG rtx's for the registers you used. In some
49 cases `find_reloads' will return a nonzero value in `reload_reg_rtx'
50 for certain reloads. Then that tells you which register to use,
51 so you do not need to allocate one. But you still do need to add extra
52 instructions to copy the value into and out of that register.
53
54 Finally you must call `subst_reloads' to substitute the reload reg rtx's
55 into the locations already recorded.
56
57NOTE SIDE EFFECTS:
58
59 find_reloads can alter the operands of the instruction it is called on.
60
61 1. Two operands of any sort may be interchanged, if they are in a
62 commutative instruction.
63 This happens only if find_reloads thinks the instruction will compile
64 better that way.
65
66 2. Pseudo-registers that are equivalent to constants are replaced
67 with those constants if they are not in hard registers.
68
691 happens every time find_reloads is called.
702 happens only when REPLACE is 1, which is only when
71actually doing the reloads, not when just counting them.
72
73
74Using a reload register for several reloads in one insn:
75
76When an insn has reloads, it is considered as having three parts:
77the input reloads, the insn itself after reloading, and the output reloads.
78Reloads of values used in memory addresses are often needed for only one part.
79
80When this is so, reload_when_needed records which part needs the reload.
81Two reloads for different parts of the insn can share the same reload
82register.
83
84When a reload is used for addresses in multiple parts, or when it is
85an ordinary operand, it is classified as RELOAD_OTHER, and cannot share
86a register with any other reload. */
87
88#define REG_OK_STRICT
89
10bcde0d 90#include <stdio.h>
eab89b90
RK
91#include "config.h"
92#include "rtl.h"
93#include "insn-config.h"
94#include "insn-codes.h"
95#include "recog.h"
96#include "reload.h"
97#include "regs.h"
98#include "hard-reg-set.h"
99#include "flags.h"
100#include "real.h"
8a840ac9 101#include "output.h"
55c22565 102#include "expr.h"
eab89b90
RK
103
104#ifndef REGISTER_MOVE_COST
105#define REGISTER_MOVE_COST(x, y) 2
106#endif
858c3c8c
ILT
107
108#ifndef REGNO_MODE_OK_FOR_BASE_P
109#define REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) REGNO_OK_FOR_BASE_P (REGNO)
110#endif
111
112#ifndef REG_MODE_OK_FOR_BASE_P
113#define REG_MODE_OK_FOR_BASE_P(REGNO, MODE) REG_OK_FOR_BASE_P (REGNO)
114#endif
eab89b90
RK
115\f
116/* The variables set up by `find_reloads' are:
117
118 n_reloads number of distinct reloads needed; max reload # + 1
119 tables indexed by reload number
120 reload_in rtx for value to reload from
121 reload_out rtx for where to store reload-reg afterward if nec
122 (often the same as reload_in)
123 reload_reg_class enum reg_class, saying what regs to reload into
124 reload_inmode enum machine_mode; mode this operand should have
125 when reloaded, on input.
126 reload_outmode enum machine_mode; mode this operand should have
127 when reloaded, on output.
eab89b90
RK
128 reload_optional char, nonzero for an optional reload.
129 Optional reloads are ignored unless the
130 value is already sitting in a register.
131 reload_inc int, positive amount to increment or decrement by if
132 reload_in is a PRE_DEC, PRE_INC, POST_DEC, POST_INC.
133 Ignored otherwise (don't assume it is zero).
134 reload_in_reg rtx. A reg for which reload_in is the equivalent.
135 If reload_in is a symbol_ref which came from
136 reg_equiv_constant, then this is the pseudo
137 which has that symbol_ref as equivalent.
138 reload_reg_rtx rtx. This is the register to reload into.
139 If it is zero when `find_reloads' returns,
140 you must find a suitable register in the class
141 specified by reload_reg_class, and store here
142 an rtx for that register with mode from
143 reload_inmode or reload_outmode.
144 reload_nocombine char, nonzero if this reload shouldn't be
145 combined with another reload.
a8c9daeb
RK
146 reload_opnum int, operand number being reloaded. This is
147 used to group related reloads and need not always
148 be equal to the actual operand number in the insn,
149 though it current will be; for in-out operands, it
150 is one of the two operand numbers.
151 reload_when_needed enum, classifies reload as needed either for
eab89b90
RK
152 addressing an input reload, addressing an output,
153 for addressing a non-reloaded mem ref,
154 or for unspecified purposes (i.e., more than one
155 of the above).
eab89b90 156 reload_secondary_p int, 1 if this is a secondary register for one
9ec7078b
RK
157 or more reloads.
158 reload_secondary_in_reload
159 reload_secondary_out_reload
160 int, gives the reload number of a secondary
161 reload, when needed; otherwise -1
162 reload_secondary_in_icode
163 reload_secondary_out_icode
164 enum insn_code, if a secondary reload is required,
eab89b90
RK
165 gives the INSN_CODE that uses the secondary
166 reload as a scratch register, or CODE_FOR_nothing
167 if the secondary reload register is to be an
168 intermediate register. */
169int n_reloads;
170
171rtx reload_in[MAX_RELOADS];
172rtx reload_out[MAX_RELOADS];
173enum reg_class reload_reg_class[MAX_RELOADS];
174enum machine_mode reload_inmode[MAX_RELOADS];
175enum machine_mode reload_outmode[MAX_RELOADS];
eab89b90
RK
176rtx reload_reg_rtx[MAX_RELOADS];
177char reload_optional[MAX_RELOADS];
178int reload_inc[MAX_RELOADS];
179rtx reload_in_reg[MAX_RELOADS];
180char reload_nocombine[MAX_RELOADS];
a8c9daeb
RK
181int reload_opnum[MAX_RELOADS];
182enum reload_type reload_when_needed[MAX_RELOADS];
eab89b90 183int reload_secondary_p[MAX_RELOADS];
9ec7078b
RK
184int reload_secondary_in_reload[MAX_RELOADS];
185int reload_secondary_out_reload[MAX_RELOADS];
186enum insn_code reload_secondary_in_icode[MAX_RELOADS];
187enum insn_code reload_secondary_out_icode[MAX_RELOADS];
eab89b90
RK
188
189/* All the "earlyclobber" operands of the current insn
190 are recorded here. */
191int n_earlyclobbers;
192rtx reload_earlyclobbers[MAX_RECOG_OPERANDS];
193
a8c9daeb
RK
194int reload_n_operands;
195
eab89b90
RK
196/* Replacing reloads.
197
198 If `replace_reloads' is nonzero, then as each reload is recorded
199 an entry is made for it in the table `replacements'.
200 Then later `subst_reloads' can look through that table and
201 perform all the replacements needed. */
202
203/* Nonzero means record the places to replace. */
204static int replace_reloads;
205
206/* Each replacement is recorded with a structure like this. */
207struct replacement
208{
209 rtx *where; /* Location to store in */
210 rtx *subreg_loc; /* Location of SUBREG if WHERE is inside
211 a SUBREG; 0 otherwise. */
212 int what; /* which reload this is for */
213 enum machine_mode mode; /* mode it must have */
214};
215
216static struct replacement replacements[MAX_RECOG_OPERANDS * ((MAX_REGS_PER_ADDRESS * 2) + 1)];
217
218/* Number of replacements currently recorded. */
219static int n_replacements;
220
a8c9daeb
RK
221/* Used to track what is modified by an operand. */
222struct decomposition
223{
0f41302f
MS
224 int reg_flag; /* Nonzero if referencing a register. */
225 int safe; /* Nonzero if this can't conflict with anything. */
226 rtx base; /* Base address for MEM. */
227 HOST_WIDE_INT start; /* Starting offset or register number. */
2a6d5ce0 228 HOST_WIDE_INT end; /* Ending offset or register number. */
a8c9daeb
RK
229};
230
eab89b90
RK
231/* MEM-rtx's created for pseudo-regs in stack slots not directly addressable;
232 (see reg_equiv_address). */
233static rtx memlocs[MAX_RECOG_OPERANDS * ((MAX_REGS_PER_ADDRESS * 2) + 1)];
234static int n_memlocs;
235
0dadecf6
RK
236#ifdef SECONDARY_MEMORY_NEEDED
237
238/* Save MEMs needed to copy from one class of registers to another. One MEM
239 is used per mode, but normally only one or two modes are ever used.
240
a8c9daeb
RK
241 We keep two versions, before and after register elimination. The one
242 after register elimination is record separately for each operand. This
243 is done in case the address is not valid to be sure that we separately
244 reload each. */
0dadecf6
RK
245
246static rtx secondary_memlocs[NUM_MACHINE_MODES];
77545d45 247static rtx secondary_memlocs_elim[NUM_MACHINE_MODES][MAX_RECOG_OPERANDS];
0dadecf6
RK
248#endif
249
eab89b90
RK
250/* The instruction we are doing reloads for;
251 so we can test whether a register dies in it. */
252static rtx this_insn;
253
254/* Nonzero if this instruction is a user-specified asm with operands. */
255static int this_insn_is_asm;
256
257/* If hard_regs_live_known is nonzero,
258 we can tell which hard regs are currently live,
259 at least enough to succeed in choosing dummy reloads. */
260static int hard_regs_live_known;
261
262/* Indexed by hard reg number,
263 element is nonegative if hard reg has been spilled.
264 This vector is passed to `find_reloads' as an argument
265 and is not changed here. */
266static short *static_reload_reg_p;
267
268/* Set to 1 in subst_reg_equivs if it changes anything. */
269static int subst_reg_equivs_changed;
270
271/* On return from push_reload, holds the reload-number for the OUT
272 operand, which can be different for that from the input operand. */
273static int output_reloadnum;
274
9ec7078b
RK
275 /* Compare two RTX's. */
276#define MATCHES(x, y) \
277 (x == y || (x != 0 && (GET_CODE (x) == REG \
278 ? GET_CODE (y) == REG && REGNO (x) == REGNO (y) \
279 : rtx_equal_p (x, y) && ! side_effects_p (x))))
280
281 /* Indicates if two reloads purposes are for similar enough things that we
282 can merge their reloads. */
283#define MERGABLE_RELOADS(when1, when2, op1, op2) \
284 ((when1) == RELOAD_OTHER || (when2) == RELOAD_OTHER \
285 || ((when1) == (when2) && (op1) == (op2)) \
286 || ((when1) == RELOAD_FOR_INPUT && (when2) == RELOAD_FOR_INPUT) \
287 || ((when1) == RELOAD_FOR_OPERAND_ADDRESS \
288 && (when2) == RELOAD_FOR_OPERAND_ADDRESS) \
289 || ((when1) == RELOAD_FOR_OTHER_ADDRESS \
290 && (when2) == RELOAD_FOR_OTHER_ADDRESS))
291
292 /* Nonzero if these two reload purposes produce RELOAD_OTHER when merged. */
293#define MERGE_TO_OTHER(when1, when2, op1, op2) \
294 ((when1) != (when2) \
295 || ! ((op1) == (op2) \
296 || (when1) == RELOAD_FOR_INPUT \
297 || (when1) == RELOAD_FOR_OPERAND_ADDRESS \
298 || (when1) == RELOAD_FOR_OTHER_ADDRESS))
299
47c8cf91
ILT
300 /* If we are going to reload an address, compute the reload type to
301 use. */
302#define ADDR_TYPE(type) \
303 ((type) == RELOAD_FOR_INPUT_ADDRESS \
304 ? RELOAD_FOR_INPADDR_ADDRESS \
305 : ((type) == RELOAD_FOR_OUTPUT_ADDRESS \
306 ? RELOAD_FOR_OUTADDR_ADDRESS \
307 : (type)))
308
9ec7078b
RK
309static int push_secondary_reload PROTO((int, rtx, int, int, enum reg_class,
310 enum machine_mode, enum reload_type,
311 enum insn_code *));
c6716840 312static enum reg_class find_valid_class PROTO((enum machine_mode, int));
a8c9daeb
RK
313static int push_reload PROTO((rtx, rtx, rtx *, rtx *, enum reg_class,
314 enum machine_mode, enum machine_mode,
315 int, int, int, enum reload_type));
316static void push_replacement PROTO((rtx *, int, enum machine_mode));
317static void combine_reloads PROTO((void));
318static rtx find_dummy_reload PROTO((rtx, rtx, rtx *, rtx *,
36b50568 319 enum machine_mode, enum machine_mode,
a8c9daeb 320 enum reg_class, int));
4644aad4 321static int earlyclobber_operand_p PROTO((rtx));
a8c9daeb
RK
322static int hard_reg_set_here_p PROTO((int, int, rtx));
323static struct decomposition decompose PROTO((rtx));
324static int immune_p PROTO((rtx, rtx, struct decomposition));
325static int alternative_allows_memconst PROTO((char *, int));
326static rtx find_reloads_toplev PROTO((rtx, int, enum reload_type, int, int));
327static rtx make_memloc PROTO((rtx, int));
328static int find_reloads_address PROTO((enum machine_mode, rtx *, rtx, rtx *,
55c22565 329 int, enum reload_type, int, rtx));
a8c9daeb
RK
330static rtx subst_reg_equivs PROTO((rtx));
331static rtx subst_indexed_address PROTO((rtx));
858c3c8c 332static int find_reloads_address_1 PROTO((enum machine_mode, rtx, int, rtx *,
55c22565 333 int, enum reload_type,int, rtx));
a8c9daeb
RK
334static void find_reloads_address_part PROTO((rtx, rtx *, enum reg_class,
335 enum machine_mode, int,
336 enum reload_type, int));
337static int find_inc_amount PROTO((rtx, rtx));
eab89b90
RK
338\f
339#ifdef HAVE_SECONDARY_RELOADS
340
341/* Determine if any secondary reloads are needed for loading (if IN_P is
342 non-zero) or storing (if IN_P is zero) X to or from a reload register of
9ec7078b
RK
343 register class RELOAD_CLASS in mode RELOAD_MODE. If secondary reloads
344 are needed, push them.
345
346 Return the reload number of the secondary reload we made, or -1 if
347 we didn't need one. *PICODE is set to the insn_code to use if we do
348 need a secondary reload. */
349
350static int
351push_secondary_reload (in_p, x, opnum, optional, reload_class, reload_mode,
352 type, picode)
353 int in_p;
eab89b90 354 rtx x;
9ec7078b
RK
355 int opnum;
356 int optional;
eab89b90
RK
357 enum reg_class reload_class;
358 enum machine_mode reload_mode;
9ec7078b 359 enum reload_type type;
eab89b90 360 enum insn_code *picode;
eab89b90
RK
361{
362 enum reg_class class = NO_REGS;
363 enum machine_mode mode = reload_mode;
364 enum insn_code icode = CODE_FOR_nothing;
365 enum reg_class t_class = NO_REGS;
366 enum machine_mode t_mode = VOIDmode;
367 enum insn_code t_icode = CODE_FOR_nothing;
d94d2abc 368 enum reload_type secondary_type;
9ec7078b
RK
369 int i;
370 int s_reload, t_reload = -1;
371
47c8cf91
ILT
372 if (type == RELOAD_FOR_INPUT_ADDRESS
373 || type == RELOAD_FOR_OUTPUT_ADDRESS
374 || type == RELOAD_FOR_INPADDR_ADDRESS
375 || type == RELOAD_FOR_OUTADDR_ADDRESS)
d94d2abc
RK
376 secondary_type = type;
377 else
378 secondary_type = in_p ? RELOAD_FOR_INPUT_ADDRESS : RELOAD_FOR_OUTPUT_ADDRESS;
379
9ec7078b 380 *picode = CODE_FOR_nothing;
eab89b90 381
67340b03
RK
382 /* If X is a paradoxical SUBREG, use the inner value to determine both the
383 mode and object being reloaded. */
384 if (GET_CODE (x) == SUBREG
385 && (GET_MODE_SIZE (GET_MODE (x))
386 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))))
387 {
388 x = SUBREG_REG (x);
389 reload_mode = GET_MODE (x);
390 }
391
d45cf215
RS
392 /* If X is a pseudo-register that has an equivalent MEM (actually, if it
393 is still a pseudo-register by now, it *must* have an equivalent MEM
394 but we don't want to assume that), use that equivalent when seeing if
395 a secondary reload is needed since whether or not a reload is needed
396 might be sensitive to the form of the MEM. */
397
398 if (GET_CODE (x) == REG && REGNO (x) >= FIRST_PSEUDO_REGISTER
399 && reg_equiv_mem[REGNO (x)] != 0)
400 x = reg_equiv_mem[REGNO (x)];
401
eab89b90
RK
402#ifdef SECONDARY_INPUT_RELOAD_CLASS
403 if (in_p)
404 class = SECONDARY_INPUT_RELOAD_CLASS (reload_class, reload_mode, x);
405#endif
406
407#ifdef SECONDARY_OUTPUT_RELOAD_CLASS
408 if (! in_p)
409 class = SECONDARY_OUTPUT_RELOAD_CLASS (reload_class, reload_mode, x);
410#endif
411
9ec7078b 412 /* If we don't need any secondary registers, done. */
eab89b90 413 if (class == NO_REGS)
9ec7078b 414 return -1;
eab89b90
RK
415
416 /* Get a possible insn to use. If the predicate doesn't accept X, don't
417 use the insn. */
418
419 icode = (in_p ? reload_in_optab[(int) reload_mode]
420 : reload_out_optab[(int) reload_mode]);
421
422 if (icode != CODE_FOR_nothing
423 && insn_operand_predicate[(int) icode][in_p]
424 && (! (insn_operand_predicate[(int) icode][in_p]) (x, reload_mode)))
425 icode = CODE_FOR_nothing;
426
427 /* If we will be using an insn, see if it can directly handle the reload
428 register we will be using. If it can, the secondary reload is for a
429 scratch register. If it can't, we will use the secondary reload for
430 an intermediate register and require a tertiary reload for the scratch
431 register. */
432
433 if (icode != CODE_FOR_nothing)
434 {
435 /* If IN_P is non-zero, the reload register will be the output in
436 operand 0. If IN_P is zero, the reload register will be the input
437 in operand 1. Outputs should have an initial "=", which we must
438 skip. */
439
d45cf215 440 char insn_letter = insn_operand_constraint[(int) icode][!in_p][in_p];
eab89b90 441 enum reg_class insn_class
d45cf215
RS
442 = (insn_letter == 'r' ? GENERAL_REGS
443 : REG_CLASS_FROM_LETTER (insn_letter));
eab89b90
RK
444
445 if (insn_class == NO_REGS
446 || (in_p && insn_operand_constraint[(int) icode][!in_p][0] != '=')
447 /* The scratch register's constraint must start with "=&". */
448 || insn_operand_constraint[(int) icode][2][0] != '='
449 || insn_operand_constraint[(int) icode][2][1] != '&')
450 abort ();
451
452 if (reg_class_subset_p (reload_class, insn_class))
453 mode = insn_operand_mode[(int) icode][2];
454 else
455 {
d45cf215 456 char t_letter = insn_operand_constraint[(int) icode][2][2];
eab89b90
RK
457 class = insn_class;
458 t_mode = insn_operand_mode[(int) icode][2];
d45cf215
RS
459 t_class = (t_letter == 'r' ? GENERAL_REGS
460 : REG_CLASS_FROM_LETTER (t_letter));
eab89b90
RK
461 t_icode = icode;
462 icode = CODE_FOR_nothing;
463 }
464 }
465
9ec7078b
RK
466 /* This case isn't valid, so fail. Reload is allowed to use the same
467 register for RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT reloads, but
468 in the case of a secondary register, we actually need two different
469 registers for correct code. We fail here to prevent the possibility of
470 silently generating incorrect code later.
471
472 The convention is that secondary input reloads are valid only if the
473 secondary_class is different from class. If you have such a case, you
474 can not use secondary reloads, you must work around the problem some
475 other way.
476
477 Allow this when MODE is not reload_mode and assume that the generated
478 code handles this case (it does on the Alpha, which is the only place
479 this currently happens). */
480
481 if (in_p && class == reload_class && mode == reload_mode)
482 abort ();
483
484 /* If we need a tertiary reload, see if we have one we can reuse or else
485 make a new one. */
486
487 if (t_class != NO_REGS)
488 {
489 for (t_reload = 0; t_reload < n_reloads; t_reload++)
490 if (reload_secondary_p[t_reload]
491 && (reg_class_subset_p (t_class, reload_reg_class[t_reload])
492 || reg_class_subset_p (reload_reg_class[t_reload], t_class))
493 && ((in_p && reload_inmode[t_reload] == t_mode)
494 || (! in_p && reload_outmode[t_reload] == t_mode))
495 && ((in_p && (reload_secondary_in_icode[t_reload]
496 == CODE_FOR_nothing))
497 || (! in_p &&(reload_secondary_out_icode[t_reload]
498 == CODE_FOR_nothing)))
499 && (reg_class_size[(int) t_class] == 1
500#ifdef SMALL_REGISTER_CLASSES
f95182a4 501 || SMALL_REGISTER_CLASSES
9ec7078b
RK
502#endif
503 )
504 && MERGABLE_RELOADS (secondary_type,
505 reload_when_needed[t_reload],
506 opnum, reload_opnum[t_reload]))
507 {
508 if (in_p)
509 reload_inmode[t_reload] = t_mode;
510 if (! in_p)
511 reload_outmode[t_reload] = t_mode;
512
513 if (reg_class_subset_p (t_class, reload_reg_class[t_reload]))
514 reload_reg_class[t_reload] = t_class;
515
516 reload_opnum[t_reload] = MIN (reload_opnum[t_reload], opnum);
517 reload_optional[t_reload] &= optional;
518 reload_secondary_p[t_reload] = 1;
519 if (MERGE_TO_OTHER (secondary_type, reload_when_needed[t_reload],
520 opnum, reload_opnum[t_reload]))
521 reload_when_needed[t_reload] = RELOAD_OTHER;
522 }
523
524 if (t_reload == n_reloads)
525 {
526 /* We need to make a new tertiary reload for this register class. */
527 reload_in[t_reload] = reload_out[t_reload] = 0;
528 reload_reg_class[t_reload] = t_class;
529 reload_inmode[t_reload] = in_p ? t_mode : VOIDmode;
530 reload_outmode[t_reload] = ! in_p ? t_mode : VOIDmode;
531 reload_reg_rtx[t_reload] = 0;
532 reload_optional[t_reload] = optional;
533 reload_inc[t_reload] = 0;
534 /* Maybe we could combine these, but it seems too tricky. */
535 reload_nocombine[t_reload] = 1;
536 reload_in_reg[t_reload] = 0;
537 reload_opnum[t_reload] = opnum;
538 reload_when_needed[t_reload] = secondary_type;
539 reload_secondary_in_reload[t_reload] = -1;
540 reload_secondary_out_reload[t_reload] = -1;
541 reload_secondary_in_icode[t_reload] = CODE_FOR_nothing;
542 reload_secondary_out_icode[t_reload] = CODE_FOR_nothing;
543 reload_secondary_p[t_reload] = 1;
544
545 n_reloads++;
546 }
547 }
548
549 /* See if we can reuse an existing secondary reload. */
550 for (s_reload = 0; s_reload < n_reloads; s_reload++)
551 if (reload_secondary_p[s_reload]
552 && (reg_class_subset_p (class, reload_reg_class[s_reload])
553 || reg_class_subset_p (reload_reg_class[s_reload], class))
554 && ((in_p && reload_inmode[s_reload] == mode)
555 || (! in_p && reload_outmode[s_reload] == mode))
556 && ((in_p && reload_secondary_in_reload[s_reload] == t_reload)
557 || (! in_p && reload_secondary_out_reload[s_reload] == t_reload))
558 && ((in_p && reload_secondary_in_icode[s_reload] == t_icode)
559 || (! in_p && reload_secondary_out_icode[s_reload] == t_icode))
560 && (reg_class_size[(int) class] == 1
561#ifdef SMALL_REGISTER_CLASSES
f95182a4 562 || SMALL_REGISTER_CLASSES
9ec7078b
RK
563#endif
564 )
565 && MERGABLE_RELOADS (secondary_type, reload_when_needed[s_reload],
566 opnum, reload_opnum[s_reload]))
567 {
568 if (in_p)
569 reload_inmode[s_reload] = mode;
570 if (! in_p)
571 reload_outmode[s_reload] = mode;
572
573 if (reg_class_subset_p (class, reload_reg_class[s_reload]))
574 reload_reg_class[s_reload] = class;
575
576 reload_opnum[s_reload] = MIN (reload_opnum[s_reload], opnum);
577 reload_optional[s_reload] &= optional;
578 reload_secondary_p[s_reload] = 1;
579 if (MERGE_TO_OTHER (secondary_type, reload_when_needed[s_reload],
580 opnum, reload_opnum[s_reload]))
581 reload_when_needed[s_reload] = RELOAD_OTHER;
582 }
eab89b90 583
9ec7078b
RK
584 if (s_reload == n_reloads)
585 {
586 /* We need to make a new secondary reload for this register class. */
587 reload_in[s_reload] = reload_out[s_reload] = 0;
588 reload_reg_class[s_reload] = class;
589
590 reload_inmode[s_reload] = in_p ? mode : VOIDmode;
591 reload_outmode[s_reload] = ! in_p ? mode : VOIDmode;
592 reload_reg_rtx[s_reload] = 0;
593 reload_optional[s_reload] = optional;
594 reload_inc[s_reload] = 0;
595 /* Maybe we could combine these, but it seems too tricky. */
596 reload_nocombine[s_reload] = 1;
597 reload_in_reg[s_reload] = 0;
598 reload_opnum[s_reload] = opnum;
599 reload_when_needed[s_reload] = secondary_type;
600 reload_secondary_in_reload[s_reload] = in_p ? t_reload : -1;
601 reload_secondary_out_reload[s_reload] = ! in_p ? t_reload : -1;
602 reload_secondary_in_icode[s_reload] = in_p ? t_icode : CODE_FOR_nothing;
603 reload_secondary_out_icode[s_reload]
604 = ! in_p ? t_icode : CODE_FOR_nothing;
605 reload_secondary_p[s_reload] = 1;
606
607 n_reloads++;
608
609#ifdef SECONDARY_MEMORY_NEEDED
610 /* If we need a memory location to copy between the two reload regs,
611 set it up now. */
612
613 if (in_p && icode == CODE_FOR_nothing
f49e4127
JW
614 && SECONDARY_MEMORY_NEEDED (class, reload_class, mode))
615 get_secondary_mem (x, mode, opnum, type);
9ec7078b
RK
616
617 if (! in_p && icode == CODE_FOR_nothing
f49e4127
JW
618 && SECONDARY_MEMORY_NEEDED (reload_class, class, mode))
619 get_secondary_mem (x, mode, opnum, type);
9ec7078b
RK
620#endif
621 }
622
623 *picode = icode;
624 return s_reload;
eab89b90
RK
625}
626#endif /* HAVE_SECONDARY_RELOADS */
627\f
0dadecf6
RK
628#ifdef SECONDARY_MEMORY_NEEDED
629
630/* Return a memory location that will be used to copy X in mode MODE.
631 If we haven't already made a location for this mode in this insn,
632 call find_reloads_address on the location being returned. */
633
634rtx
a8c9daeb 635get_secondary_mem (x, mode, opnum, type)
0dadecf6
RK
636 rtx x;
637 enum machine_mode mode;
a8c9daeb
RK
638 int opnum;
639 enum reload_type type;
0dadecf6
RK
640{
641 rtx loc;
642 int mem_valid;
643
64609742
RK
644 /* By default, if MODE is narrower than a word, widen it to a word.
645 This is required because most machines that require these memory
646 locations do not support short load and stores from all registers
647 (e.g., FP registers). */
648
649#ifdef SECONDARY_MEMORY_NEEDED_MODE
650 mode = SECONDARY_MEMORY_NEEDED_MODE (mode);
651#else
0dadecf6
RK
652 if (GET_MODE_BITSIZE (mode) < BITS_PER_WORD)
653 mode = mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (mode), 0);
64609742 654#endif
0dadecf6 655
77545d45
RK
656 /* If we already have made a MEM for this operand in MODE, return it. */
657 if (secondary_memlocs_elim[(int) mode][opnum] != 0)
658 return secondary_memlocs_elim[(int) mode][opnum];
0dadecf6
RK
659
660 /* If this is the first time we've tried to get a MEM for this mode,
661 allocate a new one. `something_changed' in reload will get set
662 by noticing that the frame size has changed. */
663
664 if (secondary_memlocs[(int) mode] == 0)
b24a53d5
JW
665 {
666#ifdef SECONDARY_MEMORY_NEEDED_RTX
667 secondary_memlocs[(int) mode] = SECONDARY_MEMORY_NEEDED_RTX (mode);
668#else
669 secondary_memlocs[(int) mode]
670 = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
671#endif
672 }
0dadecf6
RK
673
674 /* Get a version of the address doing any eliminations needed. If that
675 didn't give us a new MEM, make a new one if it isn't valid. */
676
fa1610e9 677 loc = eliminate_regs (secondary_memlocs[(int) mode], VOIDmode, NULL_RTX, 0);
0dadecf6
RK
678 mem_valid = strict_memory_address_p (mode, XEXP (loc, 0));
679
680 if (! mem_valid && loc == secondary_memlocs[(int) mode])
681 loc = copy_rtx (loc);
682
683 /* The only time the call below will do anything is if the stack
684 offset is too large. In that case IND_LEVELS doesn't matter, so we
a8c9daeb
RK
685 can just pass a zero. Adjust the type to be the address of the
686 corresponding object. If the address was valid, save the eliminated
687 address. If it wasn't valid, we need to make a reload each time, so
688 don't save it. */
0dadecf6 689
a8c9daeb
RK
690 if (! mem_valid)
691 {
692 type = (type == RELOAD_FOR_INPUT ? RELOAD_FOR_INPUT_ADDRESS
693 : type == RELOAD_FOR_OUTPUT ? RELOAD_FOR_OUTPUT_ADDRESS
694 : RELOAD_OTHER);
8d618585 695
a8c9daeb 696 find_reloads_address (mode, NULL_PTR, XEXP (loc, 0), &XEXP (loc, 0),
55c22565 697 opnum, type, 0, 0);
a8c9daeb 698 }
0dadecf6 699
77545d45 700 secondary_memlocs_elim[(int) mode][opnum] = loc;
0dadecf6
RK
701 return loc;
702}
703
704/* Clear any secondary memory locations we've made. */
705
706void
707clear_secondary_mem ()
708{
4c9a05bc 709 bzero ((char *) secondary_memlocs, sizeof secondary_memlocs);
0dadecf6
RK
710}
711#endif /* SECONDARY_MEMORY_NEEDED */
712\f
c6716840
RK
713/* Find the largest class for which every register number plus N is valid in
714 M1 (if in range). Abort if no such class exists. */
715
716static enum reg_class
717find_valid_class (m1, n)
718 enum machine_mode m1;
719 int n;
720{
721 int class;
722 int regno;
723 enum reg_class best_class;
724 int best_size = 0;
725
726 for (class = 1; class < N_REG_CLASSES; class++)
727 {
728 int bad = 0;
729 for (regno = 0; regno < FIRST_PSEUDO_REGISTER && ! bad; regno++)
730 if (TEST_HARD_REG_BIT (reg_class_contents[class], regno)
731 && TEST_HARD_REG_BIT (reg_class_contents[class], regno + n)
732 && ! HARD_REGNO_MODE_OK (regno + n, m1))
733 bad = 1;
734
735 if (! bad && reg_class_size[class] > best_size)
736 best_class = class, best_size = reg_class_size[class];
737 }
738
739 if (best_size == 0)
740 abort ();
741
742 return best_class;
743}
744\f
a8c9daeb 745/* Record one reload that needs to be performed.
eab89b90
RK
746 IN is an rtx saying where the data are to be found before this instruction.
747 OUT says where they must be stored after the instruction.
748 (IN is zero for data not read, and OUT is zero for data not written.)
749 INLOC and OUTLOC point to the places in the instructions where
750 IN and OUT were found.
a8c9daeb
RK
751 If IN and OUT are both non-zero, it means the same register must be used
752 to reload both IN and OUT.
753
eab89b90
RK
754 CLASS is a register class required for the reloaded data.
755 INMODE is the machine mode that the instruction requires
756 for the reg that replaces IN and OUTMODE is likewise for OUT.
757
758 If IN is zero, then OUT's location and mode should be passed as
759 INLOC and INMODE.
760
761 STRICT_LOW is the 1 if there is a containing STRICT_LOW_PART rtx.
762
763 OPTIONAL nonzero means this reload does not need to be performed:
764 it can be discarded if that is more convenient.
765
a8c9daeb
RK
766 OPNUM and TYPE say what the purpose of this reload is.
767
eab89b90
RK
768 The return value is the reload-number for this reload.
769
770 If both IN and OUT are nonzero, in some rare cases we might
771 want to make two separate reloads. (Actually we never do this now.)
772 Therefore, the reload-number for OUT is stored in
773 output_reloadnum when we return; the return value applies to IN.
774 Usually (presently always), when IN and OUT are nonzero,
775 the two reload-numbers are equal, but the caller should be careful to
776 distinguish them. */
777
778static int
779push_reload (in, out, inloc, outloc, class,
a8c9daeb 780 inmode, outmode, strict_low, optional, opnum, type)
eab89b90
RK
781 register rtx in, out;
782 rtx *inloc, *outloc;
783 enum reg_class class;
784 enum machine_mode inmode, outmode;
785 int strict_low;
786 int optional;
a8c9daeb
RK
787 int opnum;
788 enum reload_type type;
eab89b90
RK
789{
790 register int i;
791 int dont_share = 0;
74347d76 792 int dont_remove_subreg = 0;
eab89b90 793 rtx *in_subreg_loc = 0, *out_subreg_loc = 0;
9ec7078b 794 int secondary_in_reload = -1, secondary_out_reload = -1;
a229128d
RK
795 enum insn_code secondary_in_icode = CODE_FOR_nothing;
796 enum insn_code secondary_out_icode = CODE_FOR_nothing;
a8c9daeb 797
eab89b90
RK
798 /* INMODE and/or OUTMODE could be VOIDmode if no mode
799 has been specified for the operand. In that case,
800 use the operand's mode as the mode to reload. */
801 if (inmode == VOIDmode && in != 0)
802 inmode = GET_MODE (in);
803 if (outmode == VOIDmode && out != 0)
804 outmode = GET_MODE (out);
805
806 /* If IN is a pseudo register everywhere-equivalent to a constant, and
807 it is not in a hard register, reload straight from the constant,
808 since we want to get rid of such pseudo registers.
809 Often this is done earlier, but not always in find_reloads_address. */
810 if (in != 0 && GET_CODE (in) == REG)
811 {
812 register int regno = REGNO (in);
813
814 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
815 && reg_equiv_constant[regno] != 0)
816 in = reg_equiv_constant[regno];
817 }
818
819 /* Likewise for OUT. Of course, OUT will never be equivalent to
820 an actual constant, but it might be equivalent to a memory location
821 (in the case of a parameter). */
822 if (out != 0 && GET_CODE (out) == REG)
823 {
824 register int regno = REGNO (out);
825
826 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
827 && reg_equiv_constant[regno] != 0)
828 out = reg_equiv_constant[regno];
829 }
830
831 /* If we have a read-write operand with an address side-effect,
832 change either IN or OUT so the side-effect happens only once. */
833 if (in != 0 && out != 0 && GET_CODE (in) == MEM && rtx_equal_p (in, out))
834 {
835 if (GET_CODE (XEXP (in, 0)) == POST_INC
836 || GET_CODE (XEXP (in, 0)) == POST_DEC)
837 in = gen_rtx (MEM, GET_MODE (in), XEXP (XEXP (in, 0), 0));
838 if (GET_CODE (XEXP (in, 0)) == PRE_INC
839 || GET_CODE (XEXP (in, 0)) == PRE_DEC)
840 out = gen_rtx (MEM, GET_MODE (out), XEXP (XEXP (out, 0), 0));
841 }
842
a61c98cf 843 /* If we are reloading a (SUBREG constant ...), really reload just the
ca769828 844 inside expression in its own mode. Similarly for (SUBREG (PLUS ...)).
a61c98cf
RK
845 If we have (SUBREG:M1 (MEM:M2 ...) ...) (or an inner REG that is still
846 a pseudo and hence will become a MEM) with M1 wider than M2 and the
847 register is a pseudo, also reload the inside expression.
f72ccbe6 848 For machines that extend byte loads, do this for any SUBREG of a pseudo
486d8509
RK
849 where both M1 and M2 are a word or smaller, M1 is wider than M2, and
850 M2 is an integral mode that gets extended when loaded.
86c31b2d 851 Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
eab89b90
RK
852 either M1 is not valid for R or M2 is wider than a word but we only
853 need one word to store an M2-sized quantity in R.
86c31b2d
RS
854 (However, if OUT is nonzero, we need to reload the reg *and*
855 the subreg, so do nothing here, and let following statement handle it.)
856
eab89b90
RK
857 Note that the case of (SUBREG (CONST_INT...)...) is handled elsewhere;
858 we can't handle it here because CONST_INT does not indicate a mode.
859
860 Similarly, we must reload the inside expression if we have a
df62f951
RK
861 STRICT_LOW_PART (presumably, in == out in the cas).
862
863 Also reload the inner expression if it does not require a secondary
486d8509
RK
864 reload but the SUBREG does.
865
866 Finally, reload the inner expression if it is a register that is in
867 the class whose registers cannot be referenced in a different size
d030f4b2
RK
868 and M1 is not the same size as M2. If SUBREG_WORD is nonzero, we
869 cannot reload just the inside since we might end up with the wrong
0f41302f 870 register class. */
eab89b90 871
d030f4b2 872 if (in != 0 && GET_CODE (in) == SUBREG && SUBREG_WORD (in) == 0
94bafba7
RK
873#ifdef CLASS_CANNOT_CHANGE_SIZE
874 && class != CLASS_CANNOT_CHANGE_SIZE
875#endif
a61c98cf 876 && (CONSTANT_P (SUBREG_REG (in))
ca769828 877 || GET_CODE (SUBREG_REG (in)) == PLUS
eab89b90 878 || strict_low
a61c98cf
RK
879 || (((GET_CODE (SUBREG_REG (in)) == REG
880 && REGNO (SUBREG_REG (in)) >= FIRST_PSEUDO_REGISTER)
881 || GET_CODE (SUBREG_REG (in)) == MEM)
03b72c86
RK
882 && ((GET_MODE_SIZE (inmode)
883 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
09bf0250 884#ifdef LOAD_EXTEND_OP
03b72c86
RK
885 || (GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
886 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
887 <= UNITS_PER_WORD)
888 && (GET_MODE_SIZE (inmode)
486d8509
RK
889 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
890 && INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (in)))
891 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (in))) != NIL)
f72ccbe6 892#endif
03b72c86 893 ))
a61c98cf
RK
894 || (GET_CODE (SUBREG_REG (in)) == REG
895 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
86c31b2d
RS
896 /* The case where out is nonzero
897 is handled differently in the following statement. */
898 && (out == 0 || SUBREG_WORD (in) == 0)
f72ccbe6
RK
899 && ((GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
900 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
901 > UNITS_PER_WORD)
902 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
903 / UNITS_PER_WORD)
904 != HARD_REGNO_NREGS (REGNO (SUBREG_REG (in)),
905 GET_MODE (SUBREG_REG (in)))))
906 || ! HARD_REGNO_MODE_OK ((REGNO (SUBREG_REG (in))
907 + SUBREG_WORD (in)),
908 inmode)))
df62f951
RK
909#ifdef SECONDARY_INPUT_RELOAD_CLASS
910 || (SECONDARY_INPUT_RELOAD_CLASS (class, inmode, in) != NO_REGS
911 && (SECONDARY_INPUT_RELOAD_CLASS (class,
912 GET_MODE (SUBREG_REG (in)),
913 SUBREG_REG (in))
914 == NO_REGS))
486d8509
RK
915#endif
916#ifdef CLASS_CANNOT_CHANGE_SIZE
917 || (GET_CODE (SUBREG_REG (in)) == REG
918 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
919 && (TEST_HARD_REG_BIT
920 (reg_class_contents[(int) CLASS_CANNOT_CHANGE_SIZE],
921 REGNO (SUBREG_REG (in))))
922 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
923 != GET_MODE_SIZE (inmode)))
df62f951
RK
924#endif
925 ))
eab89b90
RK
926 {
927 in_subreg_loc = inloc;
928 inloc = &SUBREG_REG (in);
929 in = *inloc;
09bf0250 930#ifndef LOAD_EXTEND_OP
eab89b90
RK
931 if (GET_CODE (in) == MEM)
932 /* This is supposed to happen only for paradoxical subregs made by
933 combine.c. (SUBREG (MEM)) isn't supposed to occur other ways. */
934 if (GET_MODE_SIZE (GET_MODE (in)) > GET_MODE_SIZE (inmode))
935 abort ();
e05a9da8 936#endif
eab89b90
RK
937 inmode = GET_MODE (in);
938 }
939
86c31b2d
RS
940 /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
941 either M1 is not valid for R or M2 is wider than a word but we only
942 need one word to store an M2-sized quantity in R.
943
944 However, we must reload the inner reg *as well as* the subreg in
945 that case. */
946
6fd5ac08
JW
947 /* Similar issue for (SUBREG constant ...) if it was not handled by the
948 code above. This can happen if SUBREG_WORD != 0. */
949
86c31b2d 950 if (in != 0 && GET_CODE (in) == SUBREG
6fd5ac08
JW
951 && (CONSTANT_P (SUBREG_REG (in))
952 || (GET_CODE (SUBREG_REG (in)) == REG
953 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
954 && (! HARD_REGNO_MODE_OK (REGNO (SUBREG_REG (in))
955 + SUBREG_WORD (in),
956 inmode)
957 || (GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
958 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
959 > UNITS_PER_WORD)
960 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
961 / UNITS_PER_WORD)
962 != HARD_REGNO_NREGS (REGNO (SUBREG_REG (in)),
963 GET_MODE (SUBREG_REG (in)))))))))
86c31b2d 964 {
c96d01ab
RK
965 /* This relies on the fact that emit_reload_insns outputs the
966 instructions for input reloads of type RELOAD_OTHER in the same
967 order as the reloads. Thus if the outer reload is also of type
968 RELOAD_OTHER, we are guaranteed that this inner reload will be
969 output before the outer reload. */
86c31b2d 970 push_reload (SUBREG_REG (in), NULL_RTX, &SUBREG_REG (in), NULL_PTR,
c6716840
RK
971 find_valid_class (inmode, SUBREG_WORD (in)),
972 VOIDmode, VOIDmode, 0, 0, opnum, type);
74347d76 973 dont_remove_subreg = 1;
86c31b2d
RS
974 }
975
eab89b90
RK
976 /* Similarly for paradoxical and problematical SUBREGs on the output.
977 Note that there is no reason we need worry about the previous value
978 of SUBREG_REG (out); even if wider than out,
979 storing in a subreg is entitled to clobber it all
980 (except in the case of STRICT_LOW_PART,
981 and in that case the constraint should label it input-output.) */
d030f4b2 982 if (out != 0 && GET_CODE (out) == SUBREG && SUBREG_WORD (out) == 0
94bafba7
RK
983#ifdef CLASS_CANNOT_CHANGE_SIZE
984 && class != CLASS_CANNOT_CHANGE_SIZE
985#endif
a61c98cf 986 && (CONSTANT_P (SUBREG_REG (out))
eab89b90 987 || strict_low
a61c98cf
RK
988 || (((GET_CODE (SUBREG_REG (out)) == REG
989 && REGNO (SUBREG_REG (out)) >= FIRST_PSEUDO_REGISTER)
990 || GET_CODE (SUBREG_REG (out)) == MEM)
03b72c86 991 && ((GET_MODE_SIZE (outmode)
486d8509 992 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))))
eab89b90
RK
993 || (GET_CODE (SUBREG_REG (out)) == REG
994 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
f72ccbe6
RK
995 && ((GET_MODE_SIZE (outmode) <= UNITS_PER_WORD
996 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
997 > UNITS_PER_WORD)
998 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
999 / UNITS_PER_WORD)
1000 != HARD_REGNO_NREGS (REGNO (SUBREG_REG (out)),
1001 GET_MODE (SUBREG_REG (out)))))
1002 || ! HARD_REGNO_MODE_OK ((REGNO (SUBREG_REG (out))
1003 + SUBREG_WORD (out)),
1004 outmode)))
df62f951
RK
1005#ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1006 || (SECONDARY_OUTPUT_RELOAD_CLASS (class, outmode, out) != NO_REGS
1007 && (SECONDARY_OUTPUT_RELOAD_CLASS (class,
1008 GET_MODE (SUBREG_REG (out)),
1009 SUBREG_REG (out))
1010 == NO_REGS))
486d8509
RK
1011#endif
1012#ifdef CLASS_CANNOT_CHANGE_SIZE
1013 || (GET_CODE (SUBREG_REG (out)) == REG
1014 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1015 && (TEST_HARD_REG_BIT
1016 (reg_class_contents[(int) CLASS_CANNOT_CHANGE_SIZE],
1017 REGNO (SUBREG_REG (out))))
1018 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1019 != GET_MODE_SIZE (outmode)))
df62f951
RK
1020#endif
1021 ))
eab89b90
RK
1022 {
1023 out_subreg_loc = outloc;
1024 outloc = &SUBREG_REG (out);
e05a9da8 1025 out = *outloc;
09bf0250 1026#ifndef LOAD_EXTEND_OP
e05a9da8 1027 if (GET_CODE (out) == MEM
eab89b90
RK
1028 && GET_MODE_SIZE (GET_MODE (out)) > GET_MODE_SIZE (outmode))
1029 abort ();
e05a9da8 1030#endif
eab89b90
RK
1031 outmode = GET_MODE (out);
1032 }
1033
74347d76
RK
1034 /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
1035 either M1 is not valid for R or M2 is wider than a word but we only
1036 need one word to store an M2-sized quantity in R.
1037
1038 However, we must reload the inner reg *as well as* the subreg in
1039 that case. In this case, the inner reg is an in-out reload. */
1040
1041 if (out != 0 && GET_CODE (out) == SUBREG
1042 && GET_CODE (SUBREG_REG (out)) == REG
1043 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
c6716840
RK
1044 && (! HARD_REGNO_MODE_OK (REGNO (SUBREG_REG (out)) + SUBREG_WORD (out),
1045 outmode)
74347d76
RK
1046 || (GET_MODE_SIZE (outmode) <= UNITS_PER_WORD
1047 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1048 > UNITS_PER_WORD)
1049 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1050 / UNITS_PER_WORD)
1051 != HARD_REGNO_NREGS (REGNO (SUBREG_REG (out)),
1052 GET_MODE (SUBREG_REG (out)))))))
1053 {
c96d01ab
RK
1054 /* This relies on the fact that emit_reload_insns outputs the
1055 instructions for output reloads of type RELOAD_OTHER in reverse
1056 order of the reloads. Thus if the outer reload is also of type
1057 RELOAD_OTHER, we are guaranteed that this inner reload will be
1058 output after the outer reload. */
74347d76
RK
1059 dont_remove_subreg = 1;
1060 push_reload (SUBREG_REG (out), SUBREG_REG (out), &SUBREG_REG (out),
c6716840
RK
1061 &SUBREG_REG (out),
1062 find_valid_class (outmode, SUBREG_WORD (out)),
1063 VOIDmode, VOIDmode, 0, 0,
74347d76
RK
1064 opnum, RELOAD_OTHER);
1065 }
1066
eab89b90
RK
1067 /* If IN appears in OUT, we can't share any input-only reload for IN. */
1068 if (in != 0 && out != 0 && GET_CODE (out) == MEM
1069 && (GET_CODE (in) == REG || GET_CODE (in) == MEM)
bfa30b22 1070 && reg_overlap_mentioned_for_reload_p (in, XEXP (out, 0)))
eab89b90
RK
1071 dont_share = 1;
1072
0dadecf6
RK
1073 /* If IN is a SUBREG of a hard register, make a new REG. This
1074 simplifies some of the cases below. */
1075
1076 if (in != 0 && GET_CODE (in) == SUBREG && GET_CODE (SUBREG_REG (in)) == REG
74347d76
RK
1077 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1078 && ! dont_remove_subreg)
0dadecf6
RK
1079 in = gen_rtx (REG, GET_MODE (in),
1080 REGNO (SUBREG_REG (in)) + SUBREG_WORD (in));
1081
1082 /* Similarly for OUT. */
1083 if (out != 0 && GET_CODE (out) == SUBREG
1084 && GET_CODE (SUBREG_REG (out)) == REG
74347d76
RK
1085 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1086 && ! dont_remove_subreg)
0dadecf6
RK
1087 out = gen_rtx (REG, GET_MODE (out),
1088 REGNO (SUBREG_REG (out)) + SUBREG_WORD (out));
1089
eab89b90
RK
1090 /* Narrow down the class of register wanted if that is
1091 desirable on this machine for efficiency. */
1092 if (in != 0)
1093 class = PREFERRED_RELOAD_CLASS (in, class);
1094
ac2a9454 1095 /* Output reloads may need analogous treatment, different in detail. */
18a53b78
RS
1096#ifdef PREFERRED_OUTPUT_RELOAD_CLASS
1097 if (out != 0)
1098 class = PREFERRED_OUTPUT_RELOAD_CLASS (out, class);
1099#endif
1100
eab89b90
RK
1101 /* Make sure we use a class that can handle the actual pseudo
1102 inside any subreg. For example, on the 386, QImode regs
1103 can appear within SImode subregs. Although GENERAL_REGS
1104 can handle SImode, QImode needs a smaller class. */
1105#ifdef LIMIT_RELOAD_CLASS
1106 if (in_subreg_loc)
1107 class = LIMIT_RELOAD_CLASS (inmode, class);
1108 else if (in != 0 && GET_CODE (in) == SUBREG)
1109 class = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (in)), class);
1110
1111 if (out_subreg_loc)
1112 class = LIMIT_RELOAD_CLASS (outmode, class);
1113 if (out != 0 && GET_CODE (out) == SUBREG)
1114 class = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (out)), class);
1115#endif
1116
eab89b90
RK
1117 /* Verify that this class is at least possible for the mode that
1118 is specified. */
1119 if (this_insn_is_asm)
1120 {
1121 enum machine_mode mode;
1122 if (GET_MODE_SIZE (inmode) > GET_MODE_SIZE (outmode))
1123 mode = inmode;
1124 else
1125 mode = outmode;
5488078f
RS
1126 if (mode == VOIDmode)
1127 {
1128 error_for_asm (this_insn, "cannot reload integer constant operand in `asm'");
1129 mode = word_mode;
1130 if (in != 0)
1131 inmode = word_mode;
1132 if (out != 0)
1133 outmode = word_mode;
1134 }
eab89b90
RK
1135 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1136 if (HARD_REGNO_MODE_OK (i, mode)
1137 && TEST_HARD_REG_BIT (reg_class_contents[(int) class], i))
1138 {
1139 int nregs = HARD_REGNO_NREGS (i, mode);
1140
1141 int j;
1142 for (j = 1; j < nregs; j++)
1143 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class], i + j))
1144 break;
1145 if (j == nregs)
1146 break;
1147 }
1148 if (i == FIRST_PSEUDO_REGISTER)
1149 {
1150 error_for_asm (this_insn, "impossible register constraint in `asm'");
1151 class = ALL_REGS;
1152 }
1153 }
1154
5488078f
RS
1155 if (class == NO_REGS)
1156 abort ();
1157
eab89b90
RK
1158 /* We can use an existing reload if the class is right
1159 and at least one of IN and OUT is a match
1160 and the other is at worst neutral.
a8c9daeb
RK
1161 (A zero compared against anything is neutral.)
1162
1163 If SMALL_REGISTER_CLASSES, don't use existing reloads unless they are
1164 for the same thing since that can cause us to need more reload registers
1165 than we otherwise would. */
1166
eab89b90
RK
1167 for (i = 0; i < n_reloads; i++)
1168 if ((reg_class_subset_p (class, reload_reg_class[i])
1169 || reg_class_subset_p (reload_reg_class[i], class))
eab89b90
RK
1170 /* If the existing reload has a register, it must fit our class. */
1171 && (reload_reg_rtx[i] == 0
1172 || TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1173 true_regnum (reload_reg_rtx[i])))
1174 && ((in != 0 && MATCHES (reload_in[i], in) && ! dont_share
1175 && (out == 0 || reload_out[i] == 0 || MATCHES (reload_out[i], out)))
1176 ||
1177 (out != 0 && MATCHES (reload_out[i], out)
a8c9daeb
RK
1178 && (in == 0 || reload_in[i] == 0 || MATCHES (reload_in[i], in))))
1179 && (reg_class_size[(int) class] == 1
1180#ifdef SMALL_REGISTER_CLASSES
f95182a4 1181 || SMALL_REGISTER_CLASSES
a8c9daeb
RK
1182#endif
1183 )
1184 && MERGABLE_RELOADS (type, reload_when_needed[i],
1185 opnum, reload_opnum[i]))
eab89b90
RK
1186 break;
1187
1188 /* Reloading a plain reg for input can match a reload to postincrement
1189 that reg, since the postincrement's value is the right value.
1190 Likewise, it can match a preincrement reload, since we regard
1191 the preincrementation as happening before any ref in this insn
1192 to that register. */
1193 if (i == n_reloads)
1194 for (i = 0; i < n_reloads; i++)
1195 if ((reg_class_subset_p (class, reload_reg_class[i])
1196 || reg_class_subset_p (reload_reg_class[i], class))
1197 /* If the existing reload has a register, it must fit our class. */
1198 && (reload_reg_rtx[i] == 0
1199 || TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1200 true_regnum (reload_reg_rtx[i])))
eab89b90
RK
1201 && out == 0 && reload_out[i] == 0 && reload_in[i] != 0
1202 && ((GET_CODE (in) == REG
1203 && (GET_CODE (reload_in[i]) == POST_INC
1204 || GET_CODE (reload_in[i]) == POST_DEC
1205 || GET_CODE (reload_in[i]) == PRE_INC
1206 || GET_CODE (reload_in[i]) == PRE_DEC)
1207 && MATCHES (XEXP (reload_in[i], 0), in))
1208 ||
1209 (GET_CODE (reload_in[i]) == REG
1210 && (GET_CODE (in) == POST_INC
1211 || GET_CODE (in) == POST_DEC
1212 || GET_CODE (in) == PRE_INC
1213 || GET_CODE (in) == PRE_DEC)
a8c9daeb
RK
1214 && MATCHES (XEXP (in, 0), reload_in[i])))
1215 && (reg_class_size[(int) class] == 1
1216#ifdef SMALL_REGISTER_CLASSES
f95182a4 1217 || SMALL_REGISTER_CLASSES
a8c9daeb
RK
1218#endif
1219 )
1220 && MERGABLE_RELOADS (type, reload_when_needed[i],
1221 opnum, reload_opnum[i]))
eab89b90
RK
1222 {
1223 /* Make sure reload_in ultimately has the increment,
1224 not the plain register. */
1225 if (GET_CODE (in) == REG)
1226 in = reload_in[i];
1227 break;
1228 }
1229
1230 if (i == n_reloads)
1231 {
9ec7078b
RK
1232 /* See if we need a secondary reload register to move between CLASS
1233 and IN or CLASS and OUT. Get the icode and push any required reloads
1234 needed for each of them if so. */
eab89b90
RK
1235
1236#ifdef SECONDARY_INPUT_RELOAD_CLASS
1237 if (in != 0)
9ec7078b
RK
1238 secondary_in_reload
1239 = push_secondary_reload (1, in, opnum, optional, class, inmode, type,
1240 &secondary_in_icode);
eab89b90
RK
1241#endif
1242
1243#ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1244 if (out != 0 && GET_CODE (out) != SCRATCH)
9ec7078b
RK
1245 secondary_out_reload
1246 = push_secondary_reload (0, out, opnum, optional, class, outmode,
1247 type, &secondary_out_icode);
eab89b90
RK
1248#endif
1249
1250 /* We found no existing reload suitable for re-use.
1251 So add an additional reload. */
1252
9ec7078b 1253 i = n_reloads;
eab89b90
RK
1254 reload_in[i] = in;
1255 reload_out[i] = out;
1256 reload_reg_class[i] = class;
1257 reload_inmode[i] = inmode;
1258 reload_outmode[i] = outmode;
1259 reload_reg_rtx[i] = 0;
1260 reload_optional[i] = optional;
1261 reload_inc[i] = 0;
eab89b90
RK
1262 reload_nocombine[i] = 0;
1263 reload_in_reg[i] = inloc ? *inloc : 0;
a8c9daeb
RK
1264 reload_opnum[i] = opnum;
1265 reload_when_needed[i] = type;
9ec7078b
RK
1266 reload_secondary_in_reload[i] = secondary_in_reload;
1267 reload_secondary_out_reload[i] = secondary_out_reload;
1268 reload_secondary_in_icode[i] = secondary_in_icode;
1269 reload_secondary_out_icode[i] = secondary_out_icode;
eab89b90
RK
1270 reload_secondary_p[i] = 0;
1271
1272 n_reloads++;
0dadecf6
RK
1273
1274#ifdef SECONDARY_MEMORY_NEEDED
1275 /* If a memory location is needed for the copy, make one. */
1276 if (in != 0 && GET_CODE (in) == REG
1277 && REGNO (in) < FIRST_PSEUDO_REGISTER
1278 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (REGNO (in)),
1279 class, inmode))
a8c9daeb 1280 get_secondary_mem (in, inmode, opnum, type);
0dadecf6
RK
1281
1282 if (out != 0 && GET_CODE (out) == REG
1283 && REGNO (out) < FIRST_PSEUDO_REGISTER
1284 && SECONDARY_MEMORY_NEEDED (class, REGNO_REG_CLASS (REGNO (out)),
1285 outmode))
a8c9daeb 1286 get_secondary_mem (out, outmode, opnum, type);
0dadecf6 1287#endif
eab89b90
RK
1288 }
1289 else
1290 {
1291 /* We are reusing an existing reload,
1292 but we may have additional information for it.
1293 For example, we may now have both IN and OUT
1294 while the old one may have just one of them. */
1295
6fd5ac08
JW
1296 /* The modes can be different. If they are, we want to reload in
1297 the larger mode, so that the value is valid for both modes. */
1298 if (inmode != VOIDmode
1299 && GET_MODE_SIZE (inmode) > GET_MODE_SIZE (reload_inmode[i]))
eab89b90 1300 reload_inmode[i] = inmode;
6fd5ac08
JW
1301 if (outmode != VOIDmode
1302 && GET_MODE_SIZE (outmode) > GET_MODE_SIZE (reload_outmode[i]))
eab89b90
RK
1303 reload_outmode[i] = outmode;
1304 if (in != 0)
1305 reload_in[i] = in;
1306 if (out != 0)
1307 reload_out[i] = out;
1308 if (reg_class_subset_p (class, reload_reg_class[i]))
1309 reload_reg_class[i] = class;
1310 reload_optional[i] &= optional;
a8c9daeb
RK
1311 if (MERGE_TO_OTHER (type, reload_when_needed[i],
1312 opnum, reload_opnum[i]))
1313 reload_when_needed[i] = RELOAD_OTHER;
1314 reload_opnum[i] = MIN (reload_opnum[i], opnum);
eab89b90
RK
1315 }
1316
1317 /* If the ostensible rtx being reload differs from the rtx found
1318 in the location to substitute, this reload is not safe to combine
1319 because we cannot reliably tell whether it appears in the insn. */
1320
1321 if (in != 0 && in != *inloc)
1322 reload_nocombine[i] = 1;
1323
1324#if 0
1325 /* This was replaced by changes in find_reloads_address_1 and the new
1326 function inc_for_reload, which go with a new meaning of reload_inc. */
1327
1328 /* If this is an IN/OUT reload in an insn that sets the CC,
1329 it must be for an autoincrement. It doesn't work to store
1330 the incremented value after the insn because that would clobber the CC.
1331 So we must do the increment of the value reloaded from,
1332 increment it, store it back, then decrement again. */
1333 if (out != 0 && sets_cc0_p (PATTERN (this_insn)))
1334 {
1335 out = 0;
1336 reload_out[i] = 0;
1337 reload_inc[i] = find_inc_amount (PATTERN (this_insn), in);
1338 /* If we did not find a nonzero amount-to-increment-by,
1339 that contradicts the belief that IN is being incremented
1340 in an address in this insn. */
1341 if (reload_inc[i] == 0)
1342 abort ();
1343 }
1344#endif
1345
1346 /* If we will replace IN and OUT with the reload-reg,
1347 record where they are located so that substitution need
1348 not do a tree walk. */
1349
1350 if (replace_reloads)
1351 {
1352 if (inloc != 0)
1353 {
1354 register struct replacement *r = &replacements[n_replacements++];
1355 r->what = i;
1356 r->subreg_loc = in_subreg_loc;
1357 r->where = inloc;
1358 r->mode = inmode;
1359 }
1360 if (outloc != 0 && outloc != inloc)
1361 {
1362 register struct replacement *r = &replacements[n_replacements++];
1363 r->what = i;
1364 r->where = outloc;
1365 r->subreg_loc = out_subreg_loc;
1366 r->mode = outmode;
1367 }
1368 }
1369
1370 /* If this reload is just being introduced and it has both
1371 an incoming quantity and an outgoing quantity that are
1372 supposed to be made to match, see if either one of the two
1373 can serve as the place to reload into.
1374
1375 If one of them is acceptable, set reload_reg_rtx[i]
1376 to that one. */
1377
1378 if (in != 0 && out != 0 && in != out && reload_reg_rtx[i] == 0)
1379 {
1380 reload_reg_rtx[i] = find_dummy_reload (in, out, inloc, outloc,
36b50568 1381 inmode, outmode,
eab89b90
RK
1382 reload_reg_class[i], i);
1383
1384 /* If the outgoing register already contains the same value
1385 as the incoming one, we can dispense with loading it.
1386 The easiest way to tell the caller that is to give a phony
1387 value for the incoming operand (same as outgoing one). */
1388 if (reload_reg_rtx[i] == out
1389 && (GET_CODE (in) == REG || CONSTANT_P (in))
1390 && 0 != find_equiv_reg (in, this_insn, 0, REGNO (out),
1391 static_reload_reg_p, i, inmode))
1392 reload_in[i] = out;
1393 }
1394
1395 /* If this is an input reload and the operand contains a register that
1396 dies in this insn and is used nowhere else, see if it is the right class
1397 to be used for this reload. Use it if so. (This occurs most commonly
1398 in the case of paradoxical SUBREGs and in-out reloads). We cannot do
1399 this if it is also an output reload that mentions the register unless
1400 the output is a SUBREG that clobbers an entire register.
1401
1402 Note that the operand might be one of the spill regs, if it is a
1403 pseudo reg and we are in a block where spilling has not taken place.
1404 But if there is no spilling in this block, that is OK.
1405 An explicitly used hard reg cannot be a spill reg. */
1406
1407 if (reload_reg_rtx[i] == 0 && in != 0)
1408 {
1409 rtx note;
1410 int regno;
1411
1412 for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1413 if (REG_NOTE_KIND (note) == REG_DEAD
1414 && GET_CODE (XEXP (note, 0)) == REG
1415 && (regno = REGNO (XEXP (note, 0))) < FIRST_PSEUDO_REGISTER
1416 && reg_mentioned_p (XEXP (note, 0), in)
1417 && ! refers_to_regno_for_reload_p (regno,
1418 (regno
1419 + HARD_REGNO_NREGS (regno,
1420 inmode)),
1421 PATTERN (this_insn), inloc)
05b4ec4f
RS
1422 /* If this is also an output reload, IN cannot be used as
1423 the reload register if it is set in this insn unless IN
1424 is also OUT. */
1425 && (out == 0 || in == out
1426 || ! hard_reg_set_here_p (regno,
1427 (regno
1428 + HARD_REGNO_NREGS (regno,
1429 inmode)),
1430 PATTERN (this_insn)))
1431 /* ??? Why is this code so different from the previous?
1432 Is there any simple coherent way to describe the two together?
1433 What's going on here. */
eab89b90
RK
1434 && (in != out
1435 || (GET_CODE (in) == SUBREG
1436 && (((GET_MODE_SIZE (GET_MODE (in)) + (UNITS_PER_WORD - 1))
1437 / UNITS_PER_WORD)
1438 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1439 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
1440 /* Make sure the operand fits in the reg that dies. */
1441 && GET_MODE_SIZE (inmode) <= GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
1442 && HARD_REGNO_MODE_OK (regno, inmode)
1443 && GET_MODE_SIZE (outmode) <= GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
1444 && HARD_REGNO_MODE_OK (regno, outmode)
1445 && TEST_HARD_REG_BIT (reg_class_contents[(int) class], regno)
1446 && !fixed_regs[regno])
1447 {
1448 reload_reg_rtx[i] = gen_rtx (REG, inmode, regno);
1449 break;
1450 }
1451 }
1452
1453 if (out)
1454 output_reloadnum = i;
1455
1456 return i;
1457}
1458
1459/* Record an additional place we must replace a value
1460 for which we have already recorded a reload.
1461 RELOADNUM is the value returned by push_reload
1462 when the reload was recorded.
1463 This is used in insn patterns that use match_dup. */
1464
1465static void
1466push_replacement (loc, reloadnum, mode)
1467 rtx *loc;
1468 int reloadnum;
1469 enum machine_mode mode;
1470{
1471 if (replace_reloads)
1472 {
1473 register struct replacement *r = &replacements[n_replacements++];
1474 r->what = reloadnum;
1475 r->where = loc;
1476 r->subreg_loc = 0;
1477 r->mode = mode;
1478 }
1479}
1480\f
a8c9daeb
RK
1481/* Transfer all replacements that used to be in reload FROM to be in
1482 reload TO. */
1483
1484void
1485transfer_replacements (to, from)
1486 int to, from;
1487{
1488 int i;
1489
1490 for (i = 0; i < n_replacements; i++)
1491 if (replacements[i].what == from)
1492 replacements[i].what = to;
1493}
1494\f
eab89b90
RK
1495/* If there is only one output reload, and it is not for an earlyclobber
1496 operand, try to combine it with a (logically unrelated) input reload
1497 to reduce the number of reload registers needed.
1498
1499 This is safe if the input reload does not appear in
1500 the value being output-reloaded, because this implies
1501 it is not needed any more once the original insn completes.
1502
1503 If that doesn't work, see we can use any of the registers that
1504 die in this insn as a reload register. We can if it is of the right
1505 class and does not appear in the value being output-reloaded. */
1506
1507static void
1508combine_reloads ()
1509{
1510 int i;
1511 int output_reload = -1;
8922eb5b 1512 int secondary_out = -1;
eab89b90
RK
1513 rtx note;
1514
1515 /* Find the output reload; return unless there is exactly one
1516 and that one is mandatory. */
1517
1518 for (i = 0; i < n_reloads; i++)
1519 if (reload_out[i] != 0)
1520 {
1521 if (output_reload >= 0)
1522 return;
1523 output_reload = i;
1524 }
1525
1526 if (output_reload < 0 || reload_optional[output_reload])
1527 return;
1528
1529 /* An input-output reload isn't combinable. */
1530
1531 if (reload_in[output_reload] != 0)
1532 return;
1533
6dc42e49 1534 /* If this reload is for an earlyclobber operand, we can't do anything. */
4644aad4
RK
1535 if (earlyclobber_operand_p (reload_out[output_reload]))
1536 return;
eab89b90
RK
1537
1538 /* Check each input reload; can we combine it? */
1539
1540 for (i = 0; i < n_reloads; i++)
1541 if (reload_in[i] && ! reload_optional[i] && ! reload_nocombine[i]
1542 /* Life span of this reload must not extend past main insn. */
a8c9daeb 1543 && reload_when_needed[i] != RELOAD_FOR_OUTPUT_ADDRESS
47c8cf91 1544 && reload_when_needed[i] != RELOAD_FOR_OUTADDR_ADDRESS
a8c9daeb
RK
1545 && reload_when_needed[i] != RELOAD_OTHER
1546 && (CLASS_MAX_NREGS (reload_reg_class[i], reload_inmode[i])
1547 == CLASS_MAX_NREGS (reload_reg_class[output_reload],
1548 reload_outmode[output_reload]))
eab89b90
RK
1549 && reload_inc[i] == 0
1550 && reload_reg_rtx[i] == 0
a8c9daeb 1551#ifdef SECONDARY_MEMORY_NEEDED
9ec7078b
RK
1552 /* Don't combine two reloads with different secondary
1553 memory locations. */
77545d45
RK
1554 && (secondary_memlocs_elim[(int) reload_outmode[output_reload]][reload_opnum[i]] == 0
1555 || secondary_memlocs_elim[(int) reload_outmode[output_reload]][reload_opnum[output_reload]] == 0
1556 || rtx_equal_p (secondary_memlocs_elim[(int) reload_outmode[output_reload]][reload_opnum[i]],
1557 secondary_memlocs_elim[(int) reload_outmode[output_reload]][reload_opnum[output_reload]]))
a8c9daeb 1558#endif
f95182a4 1559 && (
a8c9daeb 1560#ifdef SMALL_REGISTER_CLASSES
f95182a4 1561 SMALL_REGISTER_CLASSES
a8c9daeb 1562#else
f95182a4 1563 0
a8c9daeb 1564#endif
f95182a4
ILT
1565 ? reload_reg_class[i] == reload_reg_class[output_reload]
1566 : (reg_class_subset_p (reload_reg_class[i],
1567 reload_reg_class[output_reload])
1568 || reg_class_subset_p (reload_reg_class[output_reload],
1569 reload_reg_class[i])))
eab89b90
RK
1570 && (MATCHES (reload_in[i], reload_out[output_reload])
1571 /* Args reversed because the first arg seems to be
1572 the one that we imagine being modified
1573 while the second is the one that might be affected. */
bfa30b22
RK
1574 || (! reg_overlap_mentioned_for_reload_p (reload_out[output_reload],
1575 reload_in[i])
eab89b90
RK
1576 /* However, if the input is a register that appears inside
1577 the output, then we also can't share.
1578 Imagine (set (mem (reg 69)) (plus (reg 69) ...)).
1579 If the same reload reg is used for both reg 69 and the
1580 result to be stored in memory, then that result
1581 will clobber the address of the memory ref. */
1582 && ! (GET_CODE (reload_in[i]) == REG
bfa30b22 1583 && reg_overlap_mentioned_for_reload_p (reload_in[i],
a8c9daeb
RK
1584 reload_out[output_reload]))))
1585 && (reg_class_size[(int) reload_reg_class[i]]
1586#ifdef SMALL_REGISTER_CLASSES
f95182a4 1587 || SMALL_REGISTER_CLASSES
a8c9daeb
RK
1588#endif
1589 )
1590 /* We will allow making things slightly worse by combining an
1591 input and an output, but no worse than that. */
1592 && (reload_when_needed[i] == RELOAD_FOR_INPUT
1593 || reload_when_needed[i] == RELOAD_FOR_OUTPUT))
eab89b90
RK
1594 {
1595 int j;
1596
1597 /* We have found a reload to combine with! */
1598 reload_out[i] = reload_out[output_reload];
1599 reload_outmode[i] = reload_outmode[output_reload];
1600 /* Mark the old output reload as inoperative. */
1601 reload_out[output_reload] = 0;
1602 /* The combined reload is needed for the entire insn. */
eab89b90 1603 reload_when_needed[i] = RELOAD_OTHER;
0f41302f 1604 /* If the output reload had a secondary reload, copy it. */
9ec7078b
RK
1605 if (reload_secondary_out_reload[output_reload] != -1)
1606 {
1607 reload_secondary_out_reload[i]
1608 = reload_secondary_out_reload[output_reload];
1609 reload_secondary_out_icode[i]
1610 = reload_secondary_out_icode[output_reload];
1611 }
1612
a8c9daeb
RK
1613#ifdef SECONDARY_MEMORY_NEEDED
1614 /* Copy any secondary MEM. */
77545d45
RK
1615 if (secondary_memlocs_elim[(int) reload_outmode[output_reload]][reload_opnum[output_reload]] != 0)
1616 secondary_memlocs_elim[(int) reload_outmode[output_reload]][reload_opnum[i]]
1617 = secondary_memlocs_elim[(int) reload_outmode[output_reload]][reload_opnum[output_reload]];
a8c9daeb 1618#endif
0f41302f 1619 /* If required, minimize the register class. */
eab89b90
RK
1620 if (reg_class_subset_p (reload_reg_class[output_reload],
1621 reload_reg_class[i]))
1622 reload_reg_class[i] = reload_reg_class[output_reload];
1623
1624 /* Transfer all replacements from the old reload to the combined. */
1625 for (j = 0; j < n_replacements; j++)
1626 if (replacements[j].what == output_reload)
1627 replacements[j].what = i;
1628
1629 return;
1630 }
1631
1632 /* If this insn has only one operand that is modified or written (assumed
1633 to be the first), it must be the one corresponding to this reload. It
1634 is safe to use anything that dies in this insn for that output provided
1635 that it does not occur in the output (we already know it isn't an
1636 earlyclobber. If this is an asm insn, give up. */
1637
1638 if (INSN_CODE (this_insn) == -1)
1639 return;
1640
1641 for (i = 1; i < insn_n_operands[INSN_CODE (this_insn)]; i++)
1642 if (insn_operand_constraint[INSN_CODE (this_insn)][i][0] == '='
1643 || insn_operand_constraint[INSN_CODE (this_insn)][i][0] == '+')
1644 return;
1645
1646 /* See if some hard register that dies in this insn and is not used in
1647 the output is the right class. Only works if the register we pick
1648 up can fully hold our output reload. */
1649 for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1650 if (REG_NOTE_KIND (note) == REG_DEAD
1651 && GET_CODE (XEXP (note, 0)) == REG
bfa30b22
RK
1652 && ! reg_overlap_mentioned_for_reload_p (XEXP (note, 0),
1653 reload_out[output_reload])
eab89b90
RK
1654 && REGNO (XEXP (note, 0)) < FIRST_PSEUDO_REGISTER
1655 && HARD_REGNO_MODE_OK (REGNO (XEXP (note, 0)), reload_outmode[output_reload])
1656 && TEST_HARD_REG_BIT (reg_class_contents[(int) reload_reg_class[output_reload]],
1657 REGNO (XEXP (note, 0)))
1658 && (HARD_REGNO_NREGS (REGNO (XEXP (note, 0)), reload_outmode[output_reload])
1659 <= HARD_REGNO_NREGS (REGNO (XEXP (note, 0)), GET_MODE (XEXP (note, 0))))
8922eb5b
RK
1660 /* Ensure that a secondary or tertiary reload for this output
1661 won't want this register. */
1662 && ((secondary_out = reload_secondary_out_reload[output_reload]) == -1
1663 || (! (TEST_HARD_REG_BIT
1664 (reg_class_contents[(int) reload_reg_class[secondary_out]],
1665 REGNO (XEXP (note, 0))))
1666 && ((secondary_out = reload_secondary_out_reload[secondary_out]) == -1
1667 || ! (TEST_HARD_REG_BIT
1668 (reg_class_contents[(int) reload_reg_class[secondary_out]],
1669 REGNO (XEXP (note, 0)))))))
eab89b90
RK
1670 && ! fixed_regs[REGNO (XEXP (note, 0))])
1671 {
1672 reload_reg_rtx[output_reload] = gen_rtx (REG,
1673 reload_outmode[output_reload],
1674 REGNO (XEXP (note, 0)));
1675 return;
1676 }
1677}
1678\f
1679/* Try to find a reload register for an in-out reload (expressions IN and OUT).
1680 See if one of IN and OUT is a register that may be used;
1681 this is desirable since a spill-register won't be needed.
1682 If so, return the register rtx that proves acceptable.
1683
1684 INLOC and OUTLOC are locations where IN and OUT appear in the insn.
1685 CLASS is the register class required for the reload.
1686
1687 If FOR_REAL is >= 0, it is the number of the reload,
1688 and in some cases when it can be discovered that OUT doesn't need
1689 to be computed, clear out reload_out[FOR_REAL].
1690
1691 If FOR_REAL is -1, this should not be done, because this call
1692 is just to see if a register can be found, not to find and install it. */
1693
1694static rtx
36b50568
RS
1695find_dummy_reload (real_in, real_out, inloc, outloc,
1696 inmode, outmode, class, for_real)
eab89b90
RK
1697 rtx real_in, real_out;
1698 rtx *inloc, *outloc;
36b50568 1699 enum machine_mode inmode, outmode;
eab89b90
RK
1700 enum reg_class class;
1701 int for_real;
1702{
1703 rtx in = real_in;
1704 rtx out = real_out;
1705 int in_offset = 0;
1706 int out_offset = 0;
1707 rtx value = 0;
1708
1709 /* If operands exceed a word, we can't use either of them
1710 unless they have the same size. */
36b50568
RS
1711 if (GET_MODE_SIZE (outmode) != GET_MODE_SIZE (inmode)
1712 && (GET_MODE_SIZE (outmode) > UNITS_PER_WORD
1713 || GET_MODE_SIZE (inmode) > UNITS_PER_WORD))
eab89b90
RK
1714 return 0;
1715
1716 /* Find the inside of any subregs. */
1717 while (GET_CODE (out) == SUBREG)
1718 {
1719 out_offset = SUBREG_WORD (out);
1720 out = SUBREG_REG (out);
1721 }
1722 while (GET_CODE (in) == SUBREG)
1723 {
1724 in_offset = SUBREG_WORD (in);
1725 in = SUBREG_REG (in);
1726 }
1727
1728 /* Narrow down the reg class, the same way push_reload will;
1729 otherwise we might find a dummy now, but push_reload won't. */
1730 class = PREFERRED_RELOAD_CLASS (in, class);
1731
1732 /* See if OUT will do. */
1733 if (GET_CODE (out) == REG
1734 && REGNO (out) < FIRST_PSEUDO_REGISTER)
1735 {
1736 register int regno = REGNO (out) + out_offset;
36b50568 1737 int nwords = HARD_REGNO_NREGS (regno, outmode);
d3b9996a 1738 rtx saved_rtx;
eab89b90
RK
1739
1740 /* When we consider whether the insn uses OUT,
1741 ignore references within IN. They don't prevent us
1742 from copying IN into OUT, because those refs would
1743 move into the insn that reloads IN.
1744
1745 However, we only ignore IN in its role as this reload.
1746 If the insn uses IN elsewhere and it contains OUT,
1747 that counts. We can't be sure it's the "same" operand
1748 so it might not go through this reload. */
d3b9996a 1749 saved_rtx = *inloc;
eab89b90
RK
1750 *inloc = const0_rtx;
1751
1752 if (regno < FIRST_PSEUDO_REGISTER
1753 /* A fixed reg that can overlap other regs better not be used
1754 for reloading in any way. */
1755#ifdef OVERLAPPING_REGNO_P
1756 && ! (fixed_regs[regno] && OVERLAPPING_REGNO_P (regno))
1757#endif
1758 && ! refers_to_regno_for_reload_p (regno, regno + nwords,
1759 PATTERN (this_insn), outloc))
1760 {
1761 int i;
1762 for (i = 0; i < nwords; i++)
1763 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1764 regno + i))
1765 break;
1766
1767 if (i == nwords)
1768 {
1769 if (GET_CODE (real_out) == REG)
1770 value = real_out;
1771 else
36b50568 1772 value = gen_rtx (REG, outmode, regno);
eab89b90
RK
1773 }
1774 }
1775
d3b9996a 1776 *inloc = saved_rtx;
eab89b90
RK
1777 }
1778
1779 /* Consider using IN if OUT was not acceptable
1780 or if OUT dies in this insn (like the quotient in a divmod insn).
1781 We can't use IN unless it is dies in this insn,
1782 which means we must know accurately which hard regs are live.
1783 Also, the result can't go in IN if IN is used within OUT. */
1784 if (hard_regs_live_known
1785 && GET_CODE (in) == REG
1786 && REGNO (in) < FIRST_PSEUDO_REGISTER
1787 && (value == 0
1788 || find_reg_note (this_insn, REG_UNUSED, real_out))
1789 && find_reg_note (this_insn, REG_DEAD, real_in)
1790 && !fixed_regs[REGNO (in)]
36b50568
RS
1791 && HARD_REGNO_MODE_OK (REGNO (in),
1792 /* The only case where out and real_out might
1793 have different modes is where real_out
1794 is a subreg, and in that case, out
1795 has a real mode. */
1796 (GET_MODE (out) != VOIDmode
1797 ? GET_MODE (out) : outmode)))
eab89b90
RK
1798 {
1799 register int regno = REGNO (in) + in_offset;
36b50568 1800 int nwords = HARD_REGNO_NREGS (regno, inmode);
eab89b90 1801
fb3821f7 1802 if (! refers_to_regno_for_reload_p (regno, regno + nwords, out, NULL_PTR)
eab89b90
RK
1803 && ! hard_reg_set_here_p (regno, regno + nwords,
1804 PATTERN (this_insn)))
1805 {
1806 int i;
1807 for (i = 0; i < nwords; i++)
1808 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1809 regno + i))
1810 break;
1811
1812 if (i == nwords)
1813 {
1814 /* If we were going to use OUT as the reload reg
1815 and changed our mind, it means OUT is a dummy that
1816 dies here. So don't bother copying value to it. */
1817 if (for_real >= 0 && value == real_out)
1818 reload_out[for_real] = 0;
1819 if (GET_CODE (real_in) == REG)
1820 value = real_in;
1821 else
36b50568 1822 value = gen_rtx (REG, inmode, regno);
eab89b90
RK
1823 }
1824 }
1825 }
1826
1827 return value;
1828}
1829\f
1830/* This page contains subroutines used mainly for determining
1831 whether the IN or an OUT of a reload can serve as the
1832 reload register. */
1833
4644aad4
RK
1834/* Return 1 if X is an operand of an insn that is being earlyclobbered. */
1835
1836static int
1837earlyclobber_operand_p (x)
1838 rtx x;
1839{
1840 int i;
1841
1842 for (i = 0; i < n_earlyclobbers; i++)
1843 if (reload_earlyclobbers[i] == x)
1844 return 1;
1845
1846 return 0;
1847}
1848
eab89b90
RK
1849/* Return 1 if expression X alters a hard reg in the range
1850 from BEG_REGNO (inclusive) to END_REGNO (exclusive),
1851 either explicitly or in the guise of a pseudo-reg allocated to REGNO.
1852 X should be the body of an instruction. */
1853
1854static int
1855hard_reg_set_here_p (beg_regno, end_regno, x)
1856 register int beg_regno, end_regno;
1857 rtx x;
1858{
1859 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
1860 {
1861 register rtx op0 = SET_DEST (x);
1862 while (GET_CODE (op0) == SUBREG)
1863 op0 = SUBREG_REG (op0);
1864 if (GET_CODE (op0) == REG)
1865 {
1866 register int r = REGNO (op0);
1867 /* See if this reg overlaps range under consideration. */
1868 if (r < end_regno
1869 && r + HARD_REGNO_NREGS (r, GET_MODE (op0)) > beg_regno)
1870 return 1;
1871 }
1872 }
1873 else if (GET_CODE (x) == PARALLEL)
1874 {
1875 register int i = XVECLEN (x, 0) - 1;
1876 for (; i >= 0; i--)
1877 if (hard_reg_set_here_p (beg_regno, end_regno, XVECEXP (x, 0, i)))
1878 return 1;
1879 }
1880
1881 return 0;
1882}
1883
1884/* Return 1 if ADDR is a valid memory address for mode MODE,
1885 and check that each pseudo reg has the proper kind of
1886 hard reg. */
1887
1888int
1889strict_memory_address_p (mode, addr)
1890 enum machine_mode mode;
1891 register rtx addr;
1892{
1893 GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
1894 return 0;
1895
1896 win:
1897 return 1;
1898}
eab89b90
RK
1899\f
1900/* Like rtx_equal_p except that it allows a REG and a SUBREG to match
1901 if they are the same hard reg, and has special hacks for
1902 autoincrement and autodecrement.
1903 This is specifically intended for find_reloads to use
1904 in determining whether two operands match.
1905 X is the operand whose number is the lower of the two.
1906
1907 The value is 2 if Y contains a pre-increment that matches
1908 a non-incrementing address in X. */
1909
1910/* ??? To be completely correct, we should arrange to pass
1911 for X the output operand and for Y the input operand.
1912 For now, we assume that the output operand has the lower number
1913 because that is natural in (SET output (... input ...)). */
1914
1915int
1916operands_match_p (x, y)
1917 register rtx x, y;
1918{
1919 register int i;
1920 register RTX_CODE code = GET_CODE (x);
1921 register char *fmt;
1922 int success_2;
1923
1924 if (x == y)
1925 return 1;
1926 if ((code == REG || (code == SUBREG && GET_CODE (SUBREG_REG (x)) == REG))
1927 && (GET_CODE (y) == REG || (GET_CODE (y) == SUBREG
1928 && GET_CODE (SUBREG_REG (y)) == REG)))
1929 {
1930 register int j;
1931
1932 if (code == SUBREG)
1933 {
1934 i = REGNO (SUBREG_REG (x));
1935 if (i >= FIRST_PSEUDO_REGISTER)
1936 goto slow;
1937 i += SUBREG_WORD (x);
1938 }
1939 else
1940 i = REGNO (x);
1941
1942 if (GET_CODE (y) == SUBREG)
1943 {
1944 j = REGNO (SUBREG_REG (y));
1945 if (j >= FIRST_PSEUDO_REGISTER)
1946 goto slow;
1947 j += SUBREG_WORD (y);
1948 }
1949 else
1950 j = REGNO (y);
1951
dca52d80
JW
1952 /* On a WORDS_BIG_ENDIAN machine, point to the last register of a
1953 multiple hard register group, so that for example (reg:DI 0) and
1954 (reg:SI 1) will be considered the same register. */
1955 if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD
1956 && i < FIRST_PSEUDO_REGISTER)
1957 i += (GET_MODE_SIZE (GET_MODE (x)) / UNITS_PER_WORD) - 1;
1958 if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (y)) > UNITS_PER_WORD
1959 && j < FIRST_PSEUDO_REGISTER)
1960 j += (GET_MODE_SIZE (GET_MODE (y)) / UNITS_PER_WORD) - 1;
1961
eab89b90
RK
1962 return i == j;
1963 }
1964 /* If two operands must match, because they are really a single
1965 operand of an assembler insn, then two postincrements are invalid
1966 because the assembler insn would increment only once.
1967 On the other hand, an postincrement matches ordinary indexing
1968 if the postincrement is the output operand. */
1969 if (code == POST_DEC || code == POST_INC)
1970 return operands_match_p (XEXP (x, 0), y);
1971 /* Two preincrements are invalid
1972 because the assembler insn would increment only once.
1973 On the other hand, an preincrement matches ordinary indexing
1974 if the preincrement is the input operand.
1975 In this case, return 2, since some callers need to do special
1976 things when this happens. */
1977 if (GET_CODE (y) == PRE_DEC || GET_CODE (y) == PRE_INC)
1978 return operands_match_p (x, XEXP (y, 0)) ? 2 : 0;
1979
1980 slow:
1981
1982 /* Now we have disposed of all the cases
1983 in which different rtx codes can match. */
1984 if (code != GET_CODE (y))
1985 return 0;
1986 if (code == LABEL_REF)
1987 return XEXP (x, 0) == XEXP (y, 0);
1988 if (code == SYMBOL_REF)
1989 return XSTR (x, 0) == XSTR (y, 0);
1990
1991 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
1992
1993 if (GET_MODE (x) != GET_MODE (y))
1994 return 0;
1995
1996 /* Compare the elements. If any pair of corresponding elements
1997 fail to match, return 0 for the whole things. */
1998
1999 success_2 = 0;
2000 fmt = GET_RTX_FORMAT (code);
2001 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2002 {
2003 int val;
2004 switch (fmt[i])
2005 {
fb3821f7
CH
2006 case 'w':
2007 if (XWINT (x, i) != XWINT (y, i))
2008 return 0;
2009 break;
2010
eab89b90
RK
2011 case 'i':
2012 if (XINT (x, i) != XINT (y, i))
2013 return 0;
2014 break;
2015
2016 case 'e':
2017 val = operands_match_p (XEXP (x, i), XEXP (y, i));
2018 if (val == 0)
2019 return 0;
2020 /* If any subexpression returns 2,
2021 we should return 2 if we are successful. */
2022 if (val == 2)
2023 success_2 = 1;
2024 break;
2025
2026 case '0':
2027 break;
2028
2029 /* It is believed that rtx's at this level will never
2030 contain anything but integers and other rtx's,
2031 except for within LABEL_REFs and SYMBOL_REFs. */
2032 default:
2033 abort ();
2034 }
2035 }
2036 return 1 + success_2;
2037}
2038\f
2039/* Return the number of times character C occurs in string S. */
2040
e4600702 2041int
eab89b90 2042n_occurrences (c, s)
d149d5f5 2043 int c;
eab89b90
RK
2044 char *s;
2045{
2046 int n = 0;
2047 while (*s)
2048 n += (*s++ == c);
2049 return n;
2050}
2051\f
eab89b90
RK
2052/* Describe the range of registers or memory referenced by X.
2053 If X is a register, set REG_FLAG and put the first register
2054 number into START and the last plus one into END.
2055 If X is a memory reference, put a base address into BASE
2056 and a range of integer offsets into START and END.
2057 If X is pushing on the stack, we can assume it causes no trouble,
2058 so we set the SAFE field. */
2059
2060static struct decomposition
2061decompose (x)
2062 rtx x;
2063{
2064 struct decomposition val;
2065 int all_const = 0;
2066
2067 val.reg_flag = 0;
2068 val.safe = 0;
2069 if (GET_CODE (x) == MEM)
2070 {
2071 rtx base, offset = 0;
2072 rtx addr = XEXP (x, 0);
2073
2074 if (GET_CODE (addr) == PRE_DEC || GET_CODE (addr) == PRE_INC
2075 || GET_CODE (addr) == POST_DEC || GET_CODE (addr) == POST_INC)
2076 {
2077 val.base = XEXP (addr, 0);
2078 val.start = - GET_MODE_SIZE (GET_MODE (x));
2079 val.end = GET_MODE_SIZE (GET_MODE (x));
2080 val.safe = REGNO (val.base) == STACK_POINTER_REGNUM;
2081 return val;
2082 }
2083
2084 if (GET_CODE (addr) == CONST)
2085 {
2086 addr = XEXP (addr, 0);
2087 all_const = 1;
2088 }
2089 if (GET_CODE (addr) == PLUS)
2090 {
2091 if (CONSTANT_P (XEXP (addr, 0)))
2092 {
2093 base = XEXP (addr, 1);
2094 offset = XEXP (addr, 0);
2095 }
2096 else if (CONSTANT_P (XEXP (addr, 1)))
2097 {
2098 base = XEXP (addr, 0);
2099 offset = XEXP (addr, 1);
2100 }
2101 }
2102
2103 if (offset == 0)
2104 {
2105 base = addr;
2106 offset = const0_rtx;
2107 }
2108 if (GET_CODE (offset) == CONST)
2109 offset = XEXP (offset, 0);
2110 if (GET_CODE (offset) == PLUS)
2111 {
2112 if (GET_CODE (XEXP (offset, 0)) == CONST_INT)
2113 {
2114 base = gen_rtx (PLUS, GET_MODE (base), base, XEXP (offset, 1));
2115 offset = XEXP (offset, 0);
2116 }
2117 else if (GET_CODE (XEXP (offset, 1)) == CONST_INT)
2118 {
2119 base = gen_rtx (PLUS, GET_MODE (base), base, XEXP (offset, 0));
2120 offset = XEXP (offset, 1);
2121 }
2122 else
2123 {
2124 base = gen_rtx (PLUS, GET_MODE (base), base, offset);
2125 offset = const0_rtx;
2126 }
2127 }
2128 else if (GET_CODE (offset) != CONST_INT)
2129 {
2130 base = gen_rtx (PLUS, GET_MODE (base), base, offset);
2131 offset = const0_rtx;
2132 }
2133
2134 if (all_const && GET_CODE (base) == PLUS)
2135 base = gen_rtx (CONST, GET_MODE (base), base);
2136
2137 if (GET_CODE (offset) != CONST_INT)
2138 abort ();
2139
2140 val.start = INTVAL (offset);
2141 val.end = val.start + GET_MODE_SIZE (GET_MODE (x));
2142 val.base = base;
2143 return val;
2144 }
2145 else if (GET_CODE (x) == REG)
2146 {
2147 val.reg_flag = 1;
2148 val.start = true_regnum (x);
2149 if (val.start < 0)
2150 {
2151 /* A pseudo with no hard reg. */
2152 val.start = REGNO (x);
2153 val.end = val.start + 1;
2154 }
2155 else
2156 /* A hard reg. */
2157 val.end = val.start + HARD_REGNO_NREGS (val.start, GET_MODE (x));
2158 }
2159 else if (GET_CODE (x) == SUBREG)
2160 {
2161 if (GET_CODE (SUBREG_REG (x)) != REG)
2162 /* This could be more precise, but it's good enough. */
2163 return decompose (SUBREG_REG (x));
2164 val.reg_flag = 1;
2165 val.start = true_regnum (x);
2166 if (val.start < 0)
2167 return decompose (SUBREG_REG (x));
2168 else
2169 /* A hard reg. */
2170 val.end = val.start + HARD_REGNO_NREGS (val.start, GET_MODE (x));
2171 }
2172 else if (CONSTANT_P (x)
2173 /* This hasn't been assigned yet, so it can't conflict yet. */
2174 || GET_CODE (x) == SCRATCH)
2175 val.safe = 1;
2176 else
2177 abort ();
2178 return val;
2179}
2180
2181/* Return 1 if altering Y will not modify the value of X.
2182 Y is also described by YDATA, which should be decompose (Y). */
2183
2184static int
2185immune_p (x, y, ydata)
2186 rtx x, y;
2187 struct decomposition ydata;
2188{
2189 struct decomposition xdata;
2190
2191 if (ydata.reg_flag)
fb3821f7 2192 return !refers_to_regno_for_reload_p (ydata.start, ydata.end, x, NULL_PTR);
eab89b90
RK
2193 if (ydata.safe)
2194 return 1;
2195
2196 if (GET_CODE (y) != MEM)
2197 abort ();
2198 /* If Y is memory and X is not, Y can't affect X. */
2199 if (GET_CODE (x) != MEM)
2200 return 1;
2201
2202 xdata = decompose (x);
2203
2204 if (! rtx_equal_p (xdata.base, ydata.base))
2205 {
2206 /* If bases are distinct symbolic constants, there is no overlap. */
2207 if (CONSTANT_P (xdata.base) && CONSTANT_P (ydata.base))
2208 return 1;
2209 /* Constants and stack slots never overlap. */
2210 if (CONSTANT_P (xdata.base)
2211 && (ydata.base == frame_pointer_rtx
a36d4c62 2212 || ydata.base == hard_frame_pointer_rtx
eab89b90
RK
2213 || ydata.base == stack_pointer_rtx))
2214 return 1;
2215 if (CONSTANT_P (ydata.base)
2216 && (xdata.base == frame_pointer_rtx
a36d4c62 2217 || xdata.base == hard_frame_pointer_rtx
eab89b90
RK
2218 || xdata.base == stack_pointer_rtx))
2219 return 1;
2220 /* If either base is variable, we don't know anything. */
2221 return 0;
2222 }
2223
2224
2225 return (xdata.start >= ydata.end || ydata.start >= xdata.end);
2226}
44ace968 2227
f72aed24 2228/* Similar, but calls decompose. */
44ace968
JW
2229
2230int
2231safe_from_earlyclobber (op, clobber)
2232 rtx op, clobber;
2233{
2234 struct decomposition early_data;
2235
2236 early_data = decompose (clobber);
2237 return immune_p (op, clobber, early_data);
2238}
eab89b90
RK
2239\f
2240/* Main entry point of this file: search the body of INSN
2241 for values that need reloading and record them with push_reload.
2242 REPLACE nonzero means record also where the values occur
2243 so that subst_reloads can be used.
2244
2245 IND_LEVELS says how many levels of indirection are supported by this
2246 machine; a value of zero means that a memory reference is not a valid
2247 memory address.
2248
2249 LIVE_KNOWN says we have valid information about which hard
2250 regs are live at each point in the program; this is true when
2251 we are called from global_alloc but false when stupid register
2252 allocation has been done.
2253
2254 RELOAD_REG_P if nonzero is a vector indexed by hard reg number
2255 which is nonnegative if the reg has been commandeered for reloading into.
2256 It is copied into STATIC_RELOAD_REG_P and referenced from there
2257 by various subroutines. */
2258
2259void
2260find_reloads (insn, replace, ind_levels, live_known, reload_reg_p)
2261 rtx insn;
2262 int replace, ind_levels;
2263 int live_known;
2264 short *reload_reg_p;
2265{
eab89b90
RK
2266#ifdef REGISTER_CONSTRAINTS
2267
eab89b90 2268 register int insn_code_number;
a8c9daeb 2269 register int i, j;
eab89b90
RK
2270 int noperands;
2271 /* These are the constraints for the insn. We don't change them. */
2272 char *constraints1[MAX_RECOG_OPERANDS];
2273 /* These start out as the constraints for the insn
2274 and they are chewed up as we consider alternatives. */
2275 char *constraints[MAX_RECOG_OPERANDS];
2276 /* These are the preferred classes for an operand, or NO_REGS if it isn't
2277 a register. */
2278 enum reg_class preferred_class[MAX_RECOG_OPERANDS];
2279 char pref_or_nothing[MAX_RECOG_OPERANDS];
2280 /* Nonzero for a MEM operand whose entire address needs a reload. */
2281 int address_reloaded[MAX_RECOG_OPERANDS];
a8c9daeb
RK
2282 /* Value of enum reload_type to use for operand. */
2283 enum reload_type operand_type[MAX_RECOG_OPERANDS];
2284 /* Value of enum reload_type to use within address of operand. */
2285 enum reload_type address_type[MAX_RECOG_OPERANDS];
2286 /* Save the usage of each operand. */
2287 enum reload_usage { RELOAD_READ, RELOAD_READ_WRITE, RELOAD_WRITE } modified[MAX_RECOG_OPERANDS];
eab89b90
RK
2288 int no_input_reloads = 0, no_output_reloads = 0;
2289 int n_alternatives;
2290 int this_alternative[MAX_RECOG_OPERANDS];
2291 char this_alternative_win[MAX_RECOG_OPERANDS];
2292 char this_alternative_offmemok[MAX_RECOG_OPERANDS];
2293 char this_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2294 int this_alternative_matches[MAX_RECOG_OPERANDS];
2295 int swapped;
2296 int goal_alternative[MAX_RECOG_OPERANDS];
2297 int this_alternative_number;
2298 int goal_alternative_number;
2299 int operand_reloadnum[MAX_RECOG_OPERANDS];
2300 int goal_alternative_matches[MAX_RECOG_OPERANDS];
2301 int goal_alternative_matched[MAX_RECOG_OPERANDS];
2302 char goal_alternative_win[MAX_RECOG_OPERANDS];
2303 char goal_alternative_offmemok[MAX_RECOG_OPERANDS];
2304 char goal_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2305 int goal_alternative_swapped;
eab89b90
RK
2306 int best;
2307 int commutative;
2308 char operands_match[MAX_RECOG_OPERANDS][MAX_RECOG_OPERANDS];
2309 rtx substed_operand[MAX_RECOG_OPERANDS];
2310 rtx body = PATTERN (insn);
2311 rtx set = single_set (insn);
2312 int goal_earlyclobber, this_earlyclobber;
2313 enum machine_mode operand_mode[MAX_RECOG_OPERANDS];
2314
2315 this_insn = insn;
2316 this_insn_is_asm = 0; /* Tentative. */
2317 n_reloads = 0;
2318 n_replacements = 0;
2319 n_memlocs = 0;
2320 n_earlyclobbers = 0;
2321 replace_reloads = replace;
2322 hard_regs_live_known = live_known;
2323 static_reload_reg_p = reload_reg_p;
2324
2325 /* JUMP_INSNs and CALL_INSNs are not allowed to have any output reloads;
2326 neither are insns that SET cc0. Insns that use CC0 are not allowed
2327 to have any input reloads. */
2328 if (GET_CODE (insn) == JUMP_INSN || GET_CODE (insn) == CALL_INSN)
2329 no_output_reloads = 1;
2330
2331#ifdef HAVE_cc0
2332 if (reg_referenced_p (cc0_rtx, PATTERN (insn)))
2333 no_input_reloads = 1;
2334 if (reg_set_p (cc0_rtx, PATTERN (insn)))
2335 no_output_reloads = 1;
2336#endif
2337
0dadecf6
RK
2338#ifdef SECONDARY_MEMORY_NEEDED
2339 /* The eliminated forms of any secondary memory locations are per-insn, so
2340 clear them out here. */
2341
4c9a05bc 2342 bzero ((char *) secondary_memlocs_elim, sizeof secondary_memlocs_elim);
0dadecf6
RK
2343#endif
2344
eab89b90
RK
2345 /* Find what kind of insn this is. NOPERANDS gets number of operands.
2346 Make OPERANDS point to a vector of operand values.
2347 Make OPERAND_LOCS point to a vector of pointers to
2348 where the operands were found.
2349 Fill CONSTRAINTS and CONSTRAINTS1 with pointers to the
2350 constraint-strings for this insn.
2351 Return if the insn needs no reload processing. */
2352
2353 switch (GET_CODE (body))
2354 {
2355 case USE:
2356 case CLOBBER:
2357 case ASM_INPUT:
2358 case ADDR_VEC:
2359 case ADDR_DIFF_VEC:
2360 return;
2361
2362 case SET:
2363 /* Dispose quickly of (set (reg..) (reg..)) if both have hard regs and it
2364 is cheap to move between them. If it is not, there may not be an insn
2365 to do the copy, so we may need a reload. */
2366 if (GET_CODE (SET_DEST (body)) == REG
2367 && REGNO (SET_DEST (body)) < FIRST_PSEUDO_REGISTER
2368 && GET_CODE (SET_SRC (body)) == REG
2369 && REGNO (SET_SRC (body)) < FIRST_PSEUDO_REGISTER
2370 && REGISTER_MOVE_COST (REGNO_REG_CLASS (REGNO (SET_SRC (body))),
2371 REGNO_REG_CLASS (REGNO (SET_DEST (body)))) == 2)
2372 return;
2373 case PARALLEL:
2374 case ASM_OPERANDS:
a8c9daeb 2375 reload_n_operands = noperands = asm_noperands (body);
eab89b90
RK
2376 if (noperands >= 0)
2377 {
2378 /* This insn is an `asm' with operands. */
2379
2380 insn_code_number = -1;
2381 this_insn_is_asm = 1;
2382
2383 /* expand_asm_operands makes sure there aren't too many operands. */
2384 if (noperands > MAX_RECOG_OPERANDS)
2385 abort ();
2386
2387 /* Now get the operand values and constraints out of the insn. */
2388
2389 decode_asm_operands (body, recog_operand, recog_operand_loc,
2390 constraints, operand_mode);
2391 if (noperands > 0)
2392 {
4c9a05bc
RK
2393 bcopy ((char *) constraints, (char *) constraints1,
2394 noperands * sizeof (char *));
eab89b90
RK
2395 n_alternatives = n_occurrences (',', constraints[0]) + 1;
2396 for (i = 1; i < noperands; i++)
d45cf215 2397 if (n_alternatives != n_occurrences (',', constraints[i]) + 1)
eab89b90
RK
2398 {
2399 error_for_asm (insn, "operand constraints differ in number of alternatives");
2400 /* Avoid further trouble with this insn. */
2401 PATTERN (insn) = gen_rtx (USE, VOIDmode, const0_rtx);
2402 n_reloads = 0;
2403 return;
2404 }
2405 }
2406 break;
2407 }
2408
2409 default:
2410 /* Ordinary insn: recognize it, get the operands via insn_extract
2411 and get the constraints. */
2412
2413 insn_code_number = recog_memoized (insn);
2414 if (insn_code_number < 0)
2415 fatal_insn_not_found (insn);
2416
a8c9daeb 2417 reload_n_operands = noperands = insn_n_operands[insn_code_number];
eab89b90
RK
2418 n_alternatives = insn_n_alternatives[insn_code_number];
2419 /* Just return "no reloads" if insn has no operands with constraints. */
2420 if (n_alternatives == 0)
2421 return;
2422 insn_extract (insn);
2423 for (i = 0; i < noperands; i++)
2424 {
2425 constraints[i] = constraints1[i]
2426 = insn_operand_constraint[insn_code_number][i];
2427 operand_mode[i] = insn_operand_mode[insn_code_number][i];
2428 }
2429 }
2430
2431 if (noperands == 0)
2432 return;
2433
2434 commutative = -1;
2435
2436 /* If we will need to know, later, whether some pair of operands
2437 are the same, we must compare them now and save the result.
2438 Reloading the base and index registers will clobber them
2439 and afterward they will fail to match. */
2440
2441 for (i = 0; i < noperands; i++)
2442 {
2443 register char *p;
2444 register int c;
2445
2446 substed_operand[i] = recog_operand[i];
2447 p = constraints[i];
2448
a8c9daeb
RK
2449 modified[i] = RELOAD_READ;
2450
2451 /* Scan this operand's constraint to see if it is an output operand,
2452 an in-out operand, is commutative, or should match another. */
eab89b90
RK
2453
2454 while (c = *p++)
a8c9daeb
RK
2455 {
2456 if (c == '=')
2457 modified[i] = RELOAD_WRITE;
2458 else if (c == '+')
2459 modified[i] = RELOAD_READ_WRITE;
2460 else if (c == '%')
2461 {
2462 /* The last operand should not be marked commutative. */
2463 if (i == noperands - 1)
2464 {
2465 if (this_insn_is_asm)
2466 warning_for_asm (this_insn,
2467 "`%%' constraint used with last operand");
2468 else
2469 abort ();
2470 }
2471 else
2472 commutative = i;
2473 }
2474 else if (c >= '0' && c <= '9')
2475 {
2476 c -= '0';
2477 operands_match[c][i]
2478 = operands_match_p (recog_operand[c], recog_operand[i]);
ea9c5b9e 2479
a8c9daeb
RK
2480 /* An operand may not match itself. */
2481 if (c == i)
2482 {
2483 if (this_insn_is_asm)
2484 warning_for_asm (this_insn,
2485 "operand %d has constraint %d", i, c);
2486 else
2487 abort ();
2488 }
ea9c5b9e 2489
a8c9daeb
RK
2490 /* If C can be commuted with C+1, and C might need to match I,
2491 then C+1 might also need to match I. */
2492 if (commutative >= 0)
2493 {
2494 if (c == commutative || c == commutative + 1)
2495 {
2496 int other = c + (c == commutative ? 1 : -1);
2497 operands_match[other][i]
2498 = operands_match_p (recog_operand[other], recog_operand[i]);
2499 }
2500 if (i == commutative || i == commutative + 1)
2501 {
2502 int other = i + (i == commutative ? 1 : -1);
2503 operands_match[c][other]
2504 = operands_match_p (recog_operand[c], recog_operand[other]);
2505 }
2506 /* Note that C is supposed to be less than I.
2507 No need to consider altering both C and I because in
2508 that case we would alter one into the other. */
2509 }
2510 }
2511 }
eab89b90
RK
2512 }
2513
2514 /* Examine each operand that is a memory reference or memory address
2515 and reload parts of the addresses into index registers.
eab89b90
RK
2516 Also here any references to pseudo regs that didn't get hard regs
2517 but are equivalent to constants get replaced in the insn itself
2518 with those constants. Nobody will ever see them again.
2519
2520 Finally, set up the preferred classes of each operand. */
2521
2522 for (i = 0; i < noperands; i++)
2523 {
2524 register RTX_CODE code = GET_CODE (recog_operand[i]);
a8c9daeb 2525
eab89b90 2526 address_reloaded[i] = 0;
a8c9daeb
RK
2527 operand_type[i] = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT
2528 : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT
2529 : RELOAD_OTHER);
2530 address_type[i]
2531 = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT_ADDRESS
2532 : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT_ADDRESS
2533 : RELOAD_OTHER);
eab89b90 2534
0d38001f
RS
2535 if (*constraints[i] == 0)
2536 /* Ignore things like match_operator operands. */
2537 ;
2538 else if (constraints[i][0] == 'p')
eab89b90 2539 {
fb3821f7 2540 find_reloads_address (VOIDmode, NULL_PTR,
eab89b90 2541 recog_operand[i], recog_operand_loc[i],
55c22565 2542 i, operand_type[i], ind_levels, insn);
b685dbae
RK
2543
2544 /* If we now have a simple operand where we used to have a
2545 PLUS or MULT, re-recognize and try again. */
2546 if ((GET_RTX_CLASS (GET_CODE (*recog_operand_loc[i])) == 'o'
2547 || GET_CODE (*recog_operand_loc[i]) == SUBREG)
2548 && (GET_CODE (recog_operand[i]) == MULT
2549 || GET_CODE (recog_operand[i]) == PLUS))
2550 {
2551 INSN_CODE (insn) = -1;
2552 find_reloads (insn, replace, ind_levels, live_known,
2553 reload_reg_p);
2554 return;
2555 }
2556
eab89b90
RK
2557 substed_operand[i] = recog_operand[i] = *recog_operand_loc[i];
2558 }
2559 else if (code == MEM)
2560 {
2561 if (find_reloads_address (GET_MODE (recog_operand[i]),
2562 recog_operand_loc[i],
2563 XEXP (recog_operand[i], 0),
2564 &XEXP (recog_operand[i], 0),
55c22565 2565 i, address_type[i], ind_levels, insn))
eab89b90
RK
2566 address_reloaded[i] = 1;
2567 substed_operand[i] = recog_operand[i] = *recog_operand_loc[i];
2568 }
2569 else if (code == SUBREG)
2570 substed_operand[i] = recog_operand[i] = *recog_operand_loc[i]
a8c9daeb
RK
2571 = find_reloads_toplev (recog_operand[i], i, address_type[i],
2572 ind_levels,
eab89b90
RK
2573 set != 0
2574 && &SET_DEST (set) == recog_operand_loc[i]);
ff428c90
ILT
2575 else if (code == PLUS || GET_RTX_CLASS (code) == '1')
2576 /* We can get a PLUS as an "operand" as a result of register
2577 elimination. See eliminate_regs and gen_reload. We handle
2578 a unary operator by reloading the operand. */
944d7b14
RS
2579 substed_operand[i] = recog_operand[i] = *recog_operand_loc[i]
2580 = find_reloads_toplev (recog_operand[i], i, address_type[i],
2581 ind_levels, 0);
eab89b90
RK
2582 else if (code == REG)
2583 {
2584 /* This is equivalent to calling find_reloads_toplev.
2585 The code is duplicated for speed.
2586 When we find a pseudo always equivalent to a constant,
2587 we replace it by the constant. We must be sure, however,
2588 that we don't try to replace it in the insn in which it
2589 is being set. */
2590 register int regno = REGNO (recog_operand[i]);
2591 if (reg_equiv_constant[regno] != 0
2592 && (set == 0 || &SET_DEST (set) != recog_operand_loc[i]))
2593 substed_operand[i] = recog_operand[i]
2594 = reg_equiv_constant[regno];
2595#if 0 /* This might screw code in reload1.c to delete prior output-reload
2596 that feeds this insn. */
2597 if (reg_equiv_mem[regno] != 0)
2598 substed_operand[i] = recog_operand[i]
2599 = reg_equiv_mem[regno];
2600#endif
2601 if (reg_equiv_address[regno] != 0)
2602 {
2603 /* If reg_equiv_address is not a constant address, copy it,
2604 since it may be shared. */
4ffeab02
JW
2605 /* We must rerun eliminate_regs, in case the elimination
2606 offsets have changed. */
2607 rtx address = XEXP (eliminate_regs (reg_equiv_memory_loc[regno],
fa1610e9 2608 0, NULL_RTX, 0),
4ffeab02 2609 0);
eab89b90
RK
2610
2611 if (rtx_varies_p (address))
2612 address = copy_rtx (address);
2613
2614 /* If this is an output operand, we must output a CLOBBER
a8c9daeb
RK
2615 after INSN so find_equiv_reg knows REGNO is being written.
2616 Mark this insn specially, do we can put our output reloads
2617 after it. */
2618
2619 if (modified[i] != RELOAD_READ)
2620 PUT_MODE (emit_insn_after (gen_rtx (CLOBBER, VOIDmode,
2621 recog_operand[i]),
2622 insn),
2623 DImode);
eab89b90
RK
2624
2625 *recog_operand_loc[i] = recog_operand[i]
2626 = gen_rtx (MEM, GET_MODE (recog_operand[i]), address);
2627 RTX_UNCHANGING_P (recog_operand[i])
2628 = RTX_UNCHANGING_P (regno_reg_rtx[regno]);
2629 find_reloads_address (GET_MODE (recog_operand[i]),
130659a4 2630 recog_operand_loc[i],
eab89b90
RK
2631 XEXP (recog_operand[i], 0),
2632 &XEXP (recog_operand[i], 0),
55c22565 2633 i, address_type[i], ind_levels, insn);
eab89b90
RK
2634 substed_operand[i] = recog_operand[i] = *recog_operand_loc[i];
2635 }
2636 }
aaf9712e
RS
2637 /* If the operand is still a register (we didn't replace it with an
2638 equivalent), get the preferred class to reload it into. */
2639 code = GET_CODE (recog_operand[i]);
2640 preferred_class[i]
91f9a6ed 2641 = ((code == REG && REGNO (recog_operand[i]) >= FIRST_PSEUDO_REGISTER)
aaf9712e
RS
2642 ? reg_preferred_class (REGNO (recog_operand[i])) : NO_REGS);
2643 pref_or_nothing[i]
91f9a6ed 2644 = (code == REG && REGNO (recog_operand[i]) >= FIRST_PSEUDO_REGISTER
e4600702 2645 && reg_alternate_class (REGNO (recog_operand[i])) == NO_REGS);
eab89b90
RK
2646 }
2647
2648 /* If this is simply a copy from operand 1 to operand 0, merge the
2649 preferred classes for the operands. */
2650 if (set != 0 && noperands >= 2 && recog_operand[0] == SET_DEST (set)
2651 && recog_operand[1] == SET_SRC (set))
2652 {
2653 preferred_class[0] = preferred_class[1]
2654 = reg_class_subunion[(int) preferred_class[0]][(int) preferred_class[1]];
2655 pref_or_nothing[0] |= pref_or_nothing[1];
2656 pref_or_nothing[1] |= pref_or_nothing[0];
2657 }
2658
2659 /* Now see what we need for pseudo-regs that didn't get hard regs
2660 or got the wrong kind of hard reg. For this, we must consider
2661 all the operands together against the register constraints. */
2662
2663 best = MAX_RECOG_OPERANDS + 300;
2664
2665 swapped = 0;
2666 goal_alternative_swapped = 0;
2667 try_swapped:
2668
2669 /* The constraints are made of several alternatives.
2670 Each operand's constraint looks like foo,bar,... with commas
2671 separating the alternatives. The first alternatives for all
2672 operands go together, the second alternatives go together, etc.
2673
2674 First loop over alternatives. */
2675
2676 for (this_alternative_number = 0;
2677 this_alternative_number < n_alternatives;
2678 this_alternative_number++)
2679 {
2680 /* Loop over operands for one constraint alternative. */
2681 /* LOSERS counts those that don't fit this alternative
2682 and would require loading. */
2683 int losers = 0;
2684 /* BAD is set to 1 if it some operand can't fit this alternative
2685 even after reloading. */
2686 int bad = 0;
2687 /* REJECT is a count of how undesirable this alternative says it is
2688 if any reloading is required. If the alternative matches exactly
2689 then REJECT is ignored, but otherwise it gets this much
2690 counted against it in addition to the reloading needed. Each
2691 ? counts three times here since we want the disparaging caused by
2692 a bad register class to only count 1/3 as much. */
2693 int reject = 0;
2694
2695 this_earlyclobber = 0;
2696
2697 for (i = 0; i < noperands; i++)
2698 {
2699 register char *p = constraints[i];
2700 register int win = 0;
2701 /* 0 => this operand can be reloaded somehow for this alternative */
2702 int badop = 1;
2703 /* 0 => this operand can be reloaded if the alternative allows regs. */
2704 int winreg = 0;
2705 int c;
2706 register rtx operand = recog_operand[i];
2707 int offset = 0;
2708 /* Nonzero means this is a MEM that must be reloaded into a reg
2709 regardless of what the constraint says. */
2710 int force_reload = 0;
2711 int offmemok = 0;
9d926da5
RK
2712 /* Nonzero if a constant forced into memory would be OK for this
2713 operand. */
2714 int constmemok = 0;
eab89b90
RK
2715 int earlyclobber = 0;
2716
ff428c90
ILT
2717 /* If the predicate accepts a unary operator, it means that
2718 we need to reload the operand. */
2719 if (GET_RTX_CLASS (GET_CODE (operand)) == '1')
2720 operand = XEXP (operand, 0);
2721
eab89b90
RK
2722 /* If the operand is a SUBREG, extract
2723 the REG or MEM (or maybe even a constant) within.
2724 (Constants can occur as a result of reg_equiv_constant.) */
2725
2726 while (GET_CODE (operand) == SUBREG)
2727 {
2728 offset += SUBREG_WORD (operand);
2729 operand = SUBREG_REG (operand);
ca769828 2730 /* Force reload if this is a constant or PLUS or if there may may
a61c98cf
RK
2731 be a problem accessing OPERAND in the outer mode. */
2732 if (CONSTANT_P (operand)
ca769828 2733 || GET_CODE (operand) == PLUS
03b72c86
RK
2734 /* We must force a reload of paradoxical SUBREGs
2735 of a MEM because the alignment of the inner value
beb5a9b8
RK
2736 may not be enough to do the outer reference. On
2737 big-endian machines, it may also reference outside
2738 the object.
03b72c86
RK
2739
2740 On machines that extend byte operations and we have a
486d8509
RK
2741 SUBREG where both the inner and outer modes are no wider
2742 than a word and the inner mode is narrower, is integral,
2743 and gets extended when loaded from memory, combine.c has
2744 made assumptions about the behavior of the machine in such
03b72c86
RK
2745 register access. If the data is, in fact, in memory we
2746 must always load using the size assumed to be in the
2747 register and let the insn do the different-sized
2748 accesses. */
a61c98cf
RK
2749 || ((GET_CODE (operand) == MEM
2750 || (GET_CODE (operand)== REG
2751 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
03b72c86
RK
2752 && (((GET_MODE_BITSIZE (GET_MODE (operand))
2753 < BIGGEST_ALIGNMENT)
2754 && (GET_MODE_SIZE (operand_mode[i])
2755 > GET_MODE_SIZE (GET_MODE (operand))))
beb5a9b8 2756 || (GET_CODE (operand) == MEM && BYTES_BIG_ENDIAN)
03b72c86
RK
2757#ifdef LOAD_EXTEND_OP
2758 || (GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
2759 && (GET_MODE_SIZE (GET_MODE (operand))
2760 <= UNITS_PER_WORD)
2761 && (GET_MODE_SIZE (operand_mode[i])
486d8509
RK
2762 > GET_MODE_SIZE (GET_MODE (operand)))
2763 && INTEGRAL_MODE_P (GET_MODE (operand))
2764 && LOAD_EXTEND_OP (GET_MODE (operand)) != NIL)
46da6b3a 2765#endif
03b72c86 2766 ))
eab89b90
RK
2767 /* Subreg of a hard reg which can't handle the subreg's mode
2768 or which would handle that mode in the wrong number of
2769 registers for subregging to work. */
a61c98cf
RK
2770 || (GET_CODE (operand) == REG
2771 && REGNO (operand) < FIRST_PSEUDO_REGISTER
f72ccbe6
RK
2772 && ((GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
2773 && (GET_MODE_SIZE (GET_MODE (operand))
2774 > UNITS_PER_WORD)
2775 && ((GET_MODE_SIZE (GET_MODE (operand))
2776 / UNITS_PER_WORD)
2777 != HARD_REGNO_NREGS (REGNO (operand),
2778 GET_MODE (operand))))
2779 || ! HARD_REGNO_MODE_OK (REGNO (operand) + offset,
2780 operand_mode[i]))))
eab89b90
RK
2781 force_reload = 1;
2782 }
2783
2784 this_alternative[i] = (int) NO_REGS;
2785 this_alternative_win[i] = 0;
2786 this_alternative_offmemok[i] = 0;
2787 this_alternative_earlyclobber[i] = 0;
2788 this_alternative_matches[i] = -1;
2789
2790 /* An empty constraint or empty alternative
2791 allows anything which matched the pattern. */
2792 if (*p == 0 || *p == ',')
2793 win = 1, badop = 0;
2794
2795 /* Scan this alternative's specs for this operand;
2796 set WIN if the operand fits any letter in this alternative.
2797 Otherwise, clear BADOP if this operand could
2798 fit some letter after reloads,
2799 or set WINREG if this operand could fit after reloads
2800 provided the constraint allows some registers. */
2801
2802 while (*p && (c = *p++) != ',')
2803 switch (c)
2804 {
2805 case '=':
eab89b90 2806 case '+':
eab89b90
RK
2807 case '*':
2808 break;
2809
2810 case '%':
42add480
TW
2811 /* The last operand should not be marked commutative. */
2812 if (i != noperands - 1)
2813 commutative = i;
eab89b90
RK
2814 break;
2815
2816 case '?':
2817 reject += 3;
2818 break;
2819
2820 case '!':
2821 reject = 300;
2822 break;
2823
2824 case '#':
2825 /* Ignore rest of this alternative as far as
2826 reloading is concerned. */
2827 while (*p && *p != ',') p++;
2828 break;
2829
2830 case '0':
2831 case '1':
2832 case '2':
2833 case '3':
2834 case '4':
2835 c -= '0';
2836 this_alternative_matches[i] = c;
2837 /* We are supposed to match a previous operand.
2838 If we do, we win if that one did.
2839 If we do not, count both of the operands as losers.
2840 (This is too conservative, since most of the time
2841 only a single reload insn will be needed to make
2842 the two operands win. As a result, this alternative
2843 may be rejected when it is actually desirable.) */
2844 if ((swapped && (c != commutative || i != commutative + 1))
2845 /* If we are matching as if two operands were swapped,
2846 also pretend that operands_match had been computed
2847 with swapped.
2848 But if I is the second of those and C is the first,
2849 don't exchange them, because operands_match is valid
2850 only on one side of its diagonal. */
2851 ? (operands_match
2852 [(c == commutative || c == commutative + 1)
2853 ? 2*commutative + 1 - c : c]
2854 [(i == commutative || i == commutative + 1)
2855 ? 2*commutative + 1 - i : i])
2856 : operands_match[c][i])
2857 win = this_alternative_win[c];
2858 else
2859 {
2860 /* Operands don't match. */
2861 rtx value;
2862 /* Retroactively mark the operand we had to match
2863 as a loser, if it wasn't already. */
2864 if (this_alternative_win[c])
2865 losers++;
2866 this_alternative_win[c] = 0;
2867 if (this_alternative[c] == (int) NO_REGS)
2868 bad = 1;
2869 /* But count the pair only once in the total badness of
2870 this alternative, if the pair can be a dummy reload. */
2871 value
2872 = find_dummy_reload (recog_operand[i], recog_operand[c],
2873 recog_operand_loc[i], recog_operand_loc[c],
adb44af8 2874 operand_mode[i], operand_mode[c],
eab89b90
RK
2875 this_alternative[c], -1);
2876
2877 if (value != 0)
2878 losers--;
2879 }
2880 /* This can be fixed with reloads if the operand
2881 we are supposed to match can be fixed with reloads. */
2882 badop = 0;
2883 this_alternative[i] = this_alternative[c];
e64c4f9e
RK
2884
2885 /* If we have to reload this operand and some previous
2886 operand also had to match the same thing as this
2887 operand, we don't know how to do that. So reject this
2888 alternative. */
2889 if (! win || force_reload)
2890 for (j = 0; j < i; j++)
2891 if (this_alternative_matches[j]
2892 == this_alternative_matches[i])
2893 badop = 1;
2894
eab89b90
RK
2895 break;
2896
2897 case 'p':
2898 /* All necessary reloads for an address_operand
2899 were handled in find_reloads_address. */
5c73e847 2900 this_alternative[i] = (int) BASE_REG_CLASS;
eab89b90
RK
2901 win = 1;
2902 break;
2903
2904 case 'm':
2905 if (force_reload)
2906 break;
2907 if (GET_CODE (operand) == MEM
2908 || (GET_CODE (operand) == REG
2909 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
2910 && reg_renumber[REGNO (operand)] < 0))
2911 win = 1;
2912 if (CONSTANT_P (operand))
2913 badop = 0;
9d926da5 2914 constmemok = 1;
eab89b90
RK
2915 break;
2916
2917 case '<':
2918 if (GET_CODE (operand) == MEM
2919 && ! address_reloaded[i]
2920 && (GET_CODE (XEXP (operand, 0)) == PRE_DEC
2921 || GET_CODE (XEXP (operand, 0)) == POST_DEC))
2922 win = 1;
2923 break;
2924
2925 case '>':
2926 if (GET_CODE (operand) == MEM
2927 && ! address_reloaded[i]
2928 && (GET_CODE (XEXP (operand, 0)) == PRE_INC
2929 || GET_CODE (XEXP (operand, 0)) == POST_INC))
2930 win = 1;
2931 break;
2932
2933 /* Memory operand whose address is not offsettable. */
2934 case 'V':
2935 if (force_reload)
2936 break;
2937 if (GET_CODE (operand) == MEM
2938 && ! (ind_levels ? offsettable_memref_p (operand)
2939 : offsettable_nonstrict_memref_p (operand))
2940 /* Certain mem addresses will become offsettable
2941 after they themselves are reloaded. This is important;
2942 we don't want our own handling of unoffsettables
2943 to override the handling of reg_equiv_address. */
2944 && !(GET_CODE (XEXP (operand, 0)) == REG
2945 && (ind_levels == 0
2946 || reg_equiv_address[REGNO (XEXP (operand, 0))] != 0)))
2947 win = 1;
2948 break;
2949
2950 /* Memory operand whose address is offsettable. */
2951 case 'o':
2952 if (force_reload)
2953 break;
2954 if ((GET_CODE (operand) == MEM
2955 /* If IND_LEVELS, find_reloads_address won't reload a
2956 pseudo that didn't get a hard reg, so we have to
2957 reject that case. */
2958 && (ind_levels ? offsettable_memref_p (operand)
2959 : offsettable_nonstrict_memref_p (operand)))
26ba4aee
JW
2960 /* A reloaded auto-increment address is offsettable,
2961 because it is now just a simple register indirect. */
2962 || (GET_CODE (operand) == MEM
2963 && address_reloaded[i]
2964 && (GET_CODE (XEXP (operand, 0)) == PRE_INC
2965 || GET_CODE (XEXP (operand, 0)) == PRE_DEC
2966 || GET_CODE (XEXP (operand, 0)) == POST_INC
2967 || GET_CODE (XEXP (operand, 0)) == POST_DEC))
eab89b90
RK
2968 /* Certain mem addresses will become offsettable
2969 after they themselves are reloaded. This is important;
2970 we don't want our own handling of unoffsettables
2971 to override the handling of reg_equiv_address. */
2972 || (GET_CODE (operand) == MEM
2973 && GET_CODE (XEXP (operand, 0)) == REG
2974 && (ind_levels == 0
2975 || reg_equiv_address[REGNO (XEXP (operand, 0))] != 0))
2976 || (GET_CODE (operand) == REG
2977 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3a322c50
RK
2978 && reg_renumber[REGNO (operand)] < 0
2979 /* If reg_equiv_address is nonzero, we will be
2980 loading it into a register; hence it will be
2981 offsettable, but we cannot say that reg_equiv_mem
2982 is offsettable without checking. */
2983 && ((reg_equiv_mem[REGNO (operand)] != 0
2984 && offsettable_memref_p (reg_equiv_mem[REGNO (operand)]))
2985 || (reg_equiv_address[REGNO (operand)] != 0))))
eab89b90
RK
2986 win = 1;
2987 if (CONSTANT_P (operand) || GET_CODE (operand) == MEM)
2988 badop = 0;
9d926da5 2989 constmemok = 1;
eab89b90
RK
2990 offmemok = 1;
2991 break;
2992
2993 case '&':
2994 /* Output operand that is stored before the need for the
2995 input operands (and their index registers) is over. */
2996 earlyclobber = 1, this_earlyclobber = 1;
2997 break;
2998
2999 case 'E':
293166be 3000#ifndef REAL_ARITHMETIC
eab89b90
RK
3001 /* Match any floating double constant, but only if
3002 we can examine the bits of it reliably. */
3003 if ((HOST_FLOAT_FORMAT != TARGET_FLOAT_FORMAT
fb3821f7 3004 || HOST_BITS_PER_WIDE_INT != BITS_PER_WORD)
eab89b90
RK
3005 && GET_MODE (operand) != VOIDmode && ! flag_pretend_float)
3006 break;
293166be 3007#endif
eab89b90
RK
3008 if (GET_CODE (operand) == CONST_DOUBLE)
3009 win = 1;
3010 break;
3011
3012 case 'F':
3013 if (GET_CODE (operand) == CONST_DOUBLE)
3014 win = 1;
3015 break;
3016
3017 case 'G':
3018 case 'H':
3019 if (GET_CODE (operand) == CONST_DOUBLE
3020 && CONST_DOUBLE_OK_FOR_LETTER_P (operand, c))
3021 win = 1;
3022 break;
3023
3024 case 's':
3025 if (GET_CODE (operand) == CONST_INT
3026 || (GET_CODE (operand) == CONST_DOUBLE
3027 && GET_MODE (operand) == VOIDmode))
3028 break;
3029 case 'i':
3030 if (CONSTANT_P (operand)
3031#ifdef LEGITIMATE_PIC_OPERAND_P
3032 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (operand))
3033#endif
3034 )
3035 win = 1;
3036 break;
3037
3038 case 'n':
3039 if (GET_CODE (operand) == CONST_INT
3040 || (GET_CODE (operand) == CONST_DOUBLE
3041 && GET_MODE (operand) == VOIDmode))
3042 win = 1;
3043 break;
3044
3045 case 'I':
3046 case 'J':
3047 case 'K':
3048 case 'L':
3049 case 'M':
3050 case 'N':
3051 case 'O':
3052 case 'P':
3053 if (GET_CODE (operand) == CONST_INT
3054 && CONST_OK_FOR_LETTER_P (INTVAL (operand), c))
3055 win = 1;
3056 break;
3057
3058 case 'X':
3059 win = 1;
3060 break;
3061
3062 case 'g':
3063 if (! force_reload
3064 /* A PLUS is never a valid operand, but reload can make
3065 it from a register when eliminating registers. */
3066 && GET_CODE (operand) != PLUS
3067 /* A SCRATCH is not a valid operand. */
3068 && GET_CODE (operand) != SCRATCH
3069#ifdef LEGITIMATE_PIC_OPERAND_P
3070 && (! CONSTANT_P (operand)
3071 || ! flag_pic
3072 || LEGITIMATE_PIC_OPERAND_P (operand))
3073#endif
3074 && (GENERAL_REGS == ALL_REGS
3075 || GET_CODE (operand) != REG
3076 || (REGNO (operand) >= FIRST_PSEUDO_REGISTER
3077 && reg_renumber[REGNO (operand)] < 0)))
3078 win = 1;
3079 /* Drop through into 'r' case */
3080
3081 case 'r':
3082 this_alternative[i]
3083 = (int) reg_class_subunion[this_alternative[i]][(int) GENERAL_REGS];
3084 goto reg;
3085
3086#ifdef EXTRA_CONSTRAINT
3087 case 'Q':
3088 case 'R':
3089 case 'S':
3090 case 'T':
3091 case 'U':
3092 if (EXTRA_CONSTRAINT (operand, c))
3093 win = 1;
3094 break;
3095#endif
3096
3097 default:
3098 this_alternative[i]
3099 = (int) reg_class_subunion[this_alternative[i]][(int) REG_CLASS_FROM_LETTER (c)];
3100
3101 reg:
3102 if (GET_MODE (operand) == BLKmode)
3103 break;
3104 winreg = 1;
3105 if (GET_CODE (operand) == REG
3106 && reg_fits_class_p (operand, this_alternative[i],
3107 offset, GET_MODE (recog_operand[i])))
3108 win = 1;
3109 break;
3110 }
3111
3112 constraints[i] = p;
3113
3114 /* If this operand could be handled with a reg,
3115 and some reg is allowed, then this operand can be handled. */
3116 if (winreg && this_alternative[i] != (int) NO_REGS)
3117 badop = 0;
3118
3119 /* Record which operands fit this alternative. */
3120 this_alternative_earlyclobber[i] = earlyclobber;
3121 if (win && ! force_reload)
3122 this_alternative_win[i] = 1;
3123 else
3124 {
9d926da5
RK
3125 int const_to_mem = 0;
3126
eab89b90
RK
3127 this_alternative_offmemok[i] = offmemok;
3128 losers++;
3129 if (badop)
3130 bad = 1;
3131 /* Alternative loses if it has no regs for a reg operand. */
3132 if (GET_CODE (operand) == REG
3133 && this_alternative[i] == (int) NO_REGS
3134 && this_alternative_matches[i] < 0)
3135 bad = 1;
3136
3137 /* Alternative loses if it requires a type of reload not
3138 permitted for this insn. We can always reload SCRATCH
3139 and objects with a REG_UNUSED note. */
a8c9daeb
RK
3140 if (GET_CODE (operand) != SCRATCH
3141 && modified[i] != RELOAD_READ && no_output_reloads
eab89b90
RK
3142 && ! find_reg_note (insn, REG_UNUSED, operand))
3143 bad = 1;
3144 else if (modified[i] != RELOAD_WRITE && no_input_reloads)
3145 bad = 1;
3146
3a322c50
RK
3147 /* If this is a constant that is reloaded into the desired
3148 class by copying it to memory first, count that as another
3149 reload. This is consistent with other code and is
293166be 3150 required to avoid choosing another alternative when
3a322c50
RK
3151 the constant is moved into memory by this function on
3152 an early reload pass. Note that the test here is
3153 precisely the same as in the code below that calls
3154 force_const_mem. */
3155 if (CONSTANT_P (operand)
59f25cf9
RK
3156 /* force_const_mem does not accept HIGH. */
3157 && GET_CODE (operand) != HIGH
3a322c50
RK
3158 && (PREFERRED_RELOAD_CLASS (operand,
3159 (enum reg_class) this_alternative[i])
3160 == NO_REGS)
3a322c50 3161 && operand_mode[i] != VOIDmode)
9d926da5
RK
3162 {
3163 const_to_mem = 1;
3164 if (this_alternative[i] != (int) NO_REGS)
3165 losers++;
3166 }
3a322c50 3167
5e6aa513
RK
3168 /* If we can't reload this value at all, reject this
3169 alternative. Note that we could also lose due to
3170 LIMIT_RELOAD_RELOAD_CLASS, but we don't check that
3171 here. */
3172
3173 if (! CONSTANT_P (operand)
73b236b5 3174 && (enum reg_class) this_alternative[i] != NO_REGS
5e6aa513
RK
3175 && (PREFERRED_RELOAD_CLASS (operand,
3176 (enum reg_class) this_alternative[i])
3177 == NO_REGS))
3178 bad = 1;
3179
eab89b90
RK
3180 /* We prefer to reload pseudos over reloading other things,
3181 since such reloads may be able to be eliminated later.
3182 If we are reloading a SCRATCH, we won't be generating any
3183 insns, just using a register, so it is also preferred.
9d926da5
RK
3184 So bump REJECT in other cases. Don't do this in the
3185 case where we are forcing a constant into memory and
3186 it will then win since we don't want to have a different
3187 alternative match then. */
915bb763
RK
3188 if (! (GET_CODE (operand) == REG
3189 && REGNO (operand) >= FIRST_PSEUDO_REGISTER)
9d926da5
RK
3190 && GET_CODE (operand) != SCRATCH
3191 && ! (const_to_mem && constmemok))
eab89b90
RK
3192 reject++;
3193 }
3194
3195 /* If this operand is a pseudo register that didn't get a hard
3196 reg and this alternative accepts some register, see if the
3197 class that we want is a subset of the preferred class for this
3198 register. If not, but it intersects that class, use the
3199 preferred class instead. If it does not intersect the preferred
3200 class, show that usage of this alternative should be discouraged;
3201 it will be discouraged more still if the register is `preferred
3202 or nothing'. We do this because it increases the chance of
3203 reusing our spill register in a later insn and avoiding a pair
3204 of memory stores and loads.
3205
3206 Don't bother with this if this alternative will accept this
3207 operand.
3208
a2d353e5
RK
3209 Don't do this for a multiword operand, since it is only a
3210 small win and has the risk of requiring more spill registers,
3211 which could cause a large loss.
5aa14fee 3212
eab89b90
RK
3213 Don't do this if the preferred class has only one register
3214 because we might otherwise exhaust the class. */
3215
3216
3217 if (! win && this_alternative[i] != (int) NO_REGS
5aa14fee 3218 && GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
eab89b90
RK
3219 && reg_class_size[(int) preferred_class[i]] > 1)
3220 {
3221 if (! reg_class_subset_p (this_alternative[i],
3222 preferred_class[i]))
3223 {
3224 /* Since we don't have a way of forming the intersection,
3225 we just do something special if the preferred class
3226 is a subset of the class we have; that's the most
3227 common case anyway. */
3228 if (reg_class_subset_p (preferred_class[i],
3229 this_alternative[i]))
3230 this_alternative[i] = (int) preferred_class[i];
3231 else
3232 reject += (1 + pref_or_nothing[i]);
3233 }
3234 }
3235 }
3236
3237 /* Now see if any output operands that are marked "earlyclobber"
3238 in this alternative conflict with any input operands
3239 or any memory addresses. */
3240
3241 for (i = 0; i < noperands; i++)
3242 if (this_alternative_earlyclobber[i]
3243 && this_alternative_win[i])
3244 {
3245 struct decomposition early_data;
eab89b90
RK
3246
3247 early_data = decompose (recog_operand[i]);
3248
3249 if (modified[i] == RELOAD_READ)
3250 {
3251 if (this_insn_is_asm)
3252 warning_for_asm (this_insn,
3253 "`&' constraint used with input operand");
3254 else
3255 abort ();
3256 continue;
3257 }
3258
3259 if (this_alternative[i] == NO_REGS)
3260 {
3261 this_alternative_earlyclobber[i] = 0;
3262 if (this_insn_is_asm)
3263 error_for_asm (this_insn,
3264 "`&' constraint used with no register class");
3265 else
3266 abort ();
3267 }
3268
3269 for (j = 0; j < noperands; j++)
3270 /* Is this an input operand or a memory ref? */
3271 if ((GET_CODE (recog_operand[j]) == MEM
3272 || modified[j] != RELOAD_WRITE)
3273 && j != i
3274 /* Ignore things like match_operator operands. */
3275 && *constraints1[j] != 0
3276 /* Don't count an input operand that is constrained to match
3277 the early clobber operand. */
3278 && ! (this_alternative_matches[j] == i
3279 && rtx_equal_p (recog_operand[i], recog_operand[j]))
3280 /* Is it altered by storing the earlyclobber operand? */
3281 && !immune_p (recog_operand[j], recog_operand[i], early_data))
3282 {
3283 /* If the output is in a single-reg class,
3284 it's costly to reload it, so reload the input instead. */
3285 if (reg_class_size[this_alternative[i]] == 1
3286 && (GET_CODE (recog_operand[j]) == REG
3287 || GET_CODE (recog_operand[j]) == SUBREG))
3288 {
3289 losers++;
3290 this_alternative_win[j] = 0;
3291 }
3292 else
3293 break;
3294 }
3295 /* If an earlyclobber operand conflicts with something,
3296 it must be reloaded, so request this and count the cost. */
3297 if (j != noperands)
3298 {
3299 losers++;
3300 this_alternative_win[i] = 0;
3301 for (j = 0; j < noperands; j++)
3302 if (this_alternative_matches[j] == i
3303 && this_alternative_win[j])
3304 {
3305 this_alternative_win[j] = 0;
3306 losers++;
3307 }
3308 }
3309 }
3310
3311 /* If one alternative accepts all the operands, no reload required,
3312 choose that alternative; don't consider the remaining ones. */
3313 if (losers == 0)
3314 {
3315 /* Unswap these so that they are never swapped at `finish'. */
3316 if (commutative >= 0)
3317 {
3318 recog_operand[commutative] = substed_operand[commutative];
3319 recog_operand[commutative + 1]
3320 = substed_operand[commutative + 1];
3321 }
3322 for (i = 0; i < noperands; i++)
3323 {
3324 goal_alternative_win[i] = 1;
3325 goal_alternative[i] = this_alternative[i];
3326 goal_alternative_offmemok[i] = this_alternative_offmemok[i];
3327 goal_alternative_matches[i] = this_alternative_matches[i];
3328 goal_alternative_earlyclobber[i]
3329 = this_alternative_earlyclobber[i];
3330 }
3331 goal_alternative_number = this_alternative_number;
3332 goal_alternative_swapped = swapped;
3333 goal_earlyclobber = this_earlyclobber;
3334 goto finish;
3335 }
3336
3337 /* REJECT, set by the ! and ? constraint characters and when a register
3338 would be reloaded into a non-preferred class, discourages the use of
3339 this alternative for a reload goal. REJECT is incremented by three
3340 for each ? and one for each non-preferred class. */
3341 losers = losers * 3 + reject;
3342
3343 /* If this alternative can be made to work by reloading,
3344 and it needs less reloading than the others checked so far,
3345 record it as the chosen goal for reloading. */
3346 if (! bad && best > losers)
3347 {
3348 for (i = 0; i < noperands; i++)
3349 {
3350 goal_alternative[i] = this_alternative[i];
3351 goal_alternative_win[i] = this_alternative_win[i];
3352 goal_alternative_offmemok[i] = this_alternative_offmemok[i];
3353 goal_alternative_matches[i] = this_alternative_matches[i];
3354 goal_alternative_earlyclobber[i]
3355 = this_alternative_earlyclobber[i];
3356 }
3357 goal_alternative_swapped = swapped;
3358 best = losers;
3359 goal_alternative_number = this_alternative_number;
3360 goal_earlyclobber = this_earlyclobber;
3361 }
3362 }
3363
3364 /* If insn is commutative (it's safe to exchange a certain pair of operands)
3365 then we need to try each alternative twice,
3366 the second time matching those two operands
3367 as if we had exchanged them.
3368 To do this, really exchange them in operands.
3369
3370 If we have just tried the alternatives the second time,
3371 return operands to normal and drop through. */
3372
3373 if (commutative >= 0)
3374 {
3375 swapped = !swapped;
3376 if (swapped)
3377 {
3378 register enum reg_class tclass;
3379 register int t;
3380
3381 recog_operand[commutative] = substed_operand[commutative + 1];
3382 recog_operand[commutative + 1] = substed_operand[commutative];
3383
3384 tclass = preferred_class[commutative];
3385 preferred_class[commutative] = preferred_class[commutative + 1];
3386 preferred_class[commutative + 1] = tclass;
3387
3388 t = pref_or_nothing[commutative];
3389 pref_or_nothing[commutative] = pref_or_nothing[commutative + 1];
3390 pref_or_nothing[commutative + 1] = t;
3391
4c9a05bc
RK
3392 bcopy ((char *) constraints1, (char *) constraints,
3393 noperands * sizeof (char *));
eab89b90
RK
3394 goto try_swapped;
3395 }
3396 else
3397 {
3398 recog_operand[commutative] = substed_operand[commutative];
3399 recog_operand[commutative + 1] = substed_operand[commutative + 1];
3400 }
3401 }
3402
3403 /* The operands don't meet the constraints.
3404 goal_alternative describes the alternative
3405 that we could reach by reloading the fewest operands.
3406 Reload so as to fit it. */
3407
3408 if (best == MAX_RECOG_OPERANDS + 300)
3409 {
3410 /* No alternative works with reloads?? */
3411 if (insn_code_number >= 0)
3412 abort ();
3413 error_for_asm (insn, "inconsistent operand constraints in an `asm'");
3414 /* Avoid further trouble with this insn. */
3415 PATTERN (insn) = gen_rtx (USE, VOIDmode, const0_rtx);
3416 n_reloads = 0;
3417 return;
3418 }
3419
3420 /* Jump to `finish' from above if all operands are valid already.
3421 In that case, goal_alternative_win is all 1. */
3422 finish:
3423
3424 /* Right now, for any pair of operands I and J that are required to match,
3425 with I < J,
3426 goal_alternative_matches[J] is I.
3427 Set up goal_alternative_matched as the inverse function:
3428 goal_alternative_matched[I] = J. */
3429
3430 for (i = 0; i < noperands; i++)
3431 goal_alternative_matched[i] = -1;
3432
3433 for (i = 0; i < noperands; i++)
3434 if (! goal_alternative_win[i]
3435 && goal_alternative_matches[i] >= 0)
3436 goal_alternative_matched[goal_alternative_matches[i]] = i;
3437
3438 /* If the best alternative is with operands 1 and 2 swapped,
a8c9daeb
RK
3439 consider them swapped before reporting the reloads. Update the
3440 operand numbers of any reloads already pushed. */
eab89b90
RK
3441
3442 if (goal_alternative_swapped)
3443 {
3444 register rtx tem;
3445
3446 tem = substed_operand[commutative];
3447 substed_operand[commutative] = substed_operand[commutative + 1];
3448 substed_operand[commutative + 1] = tem;
3449 tem = recog_operand[commutative];
3450 recog_operand[commutative] = recog_operand[commutative + 1];
3451 recog_operand[commutative + 1] = tem;
a8c9daeb
RK
3452
3453 for (i = 0; i < n_reloads; i++)
3454 {
3455 if (reload_opnum[i] == commutative)
3456 reload_opnum[i] = commutative + 1;
3457 else if (reload_opnum[i] == commutative + 1)
3458 reload_opnum[i] = commutative;
3459 }
eab89b90
RK
3460 }
3461
3462 /* Perform whatever substitutions on the operands we are supposed
3463 to make due to commutativity or replacement of registers
3464 with equivalent constants or memory slots. */
3465
3466 for (i = 0; i < noperands; i++)
3467 {
3468 *recog_operand_loc[i] = substed_operand[i];
3469 /* While we are looping on operands, initialize this. */
3470 operand_reloadnum[i] = -1;
a8c9daeb
RK
3471
3472 /* If this is an earlyclobber operand, we need to widen the scope.
3473 The reload must remain valid from the start of the insn being
3474 reloaded until after the operand is stored into its destination.
3475 We approximate this with RELOAD_OTHER even though we know that we
3476 do not conflict with RELOAD_FOR_INPUT_ADDRESS reloads.
3477
3478 One special case that is worth checking is when we have an
3479 output that is earlyclobber but isn't used past the insn (typically
3480 a SCRATCH). In this case, we only need have the reload live
3481 through the insn itself, but not for any of our input or output
3482 reloads.
3483
3484 In any case, anything needed to address this operand can remain
3485 however they were previously categorized. */
3486
3487 if (goal_alternative_earlyclobber[i])
3488 operand_type[i]
3489 = (find_reg_note (insn, REG_UNUSED, recog_operand[i])
3490 ? RELOAD_FOR_INSN : RELOAD_OTHER);
eab89b90
RK
3491 }
3492
3493 /* Any constants that aren't allowed and can't be reloaded
3494 into registers are here changed into memory references. */
3495 for (i = 0; i < noperands; i++)
3496 if (! goal_alternative_win[i]
3497 && CONSTANT_P (recog_operand[i])
59f25cf9
RK
3498 /* force_const_mem does not accept HIGH. */
3499 && GET_CODE (recog_operand[i]) != HIGH
eab89b90
RK
3500 && (PREFERRED_RELOAD_CLASS (recog_operand[i],
3501 (enum reg_class) goal_alternative[i])
3502 == NO_REGS)
3503 && operand_mode[i] != VOIDmode)
3504 {
3505 *recog_operand_loc[i] = recog_operand[i]
3506 = find_reloads_toplev (force_const_mem (operand_mode[i],
3507 recog_operand[i]),
a8c9daeb 3508 i, address_type[i], ind_levels, 0);
eab89b90
RK
3509 if (alternative_allows_memconst (constraints1[i],
3510 goal_alternative_number))
3511 goal_alternative_win[i] = 1;
3512 }
3513
4644aad4
RK
3514 /* Record the values of the earlyclobber operands for the caller. */
3515 if (goal_earlyclobber)
3516 for (i = 0; i < noperands; i++)
3517 if (goal_alternative_earlyclobber[i])
3518 reload_earlyclobbers[n_earlyclobbers++] = recog_operand[i];
3519
eab89b90
RK
3520 /* Now record reloads for all the operands that need them. */
3521 for (i = 0; i < noperands; i++)
3522 if (! goal_alternative_win[i])
3523 {
3524 /* Operands that match previous ones have already been handled. */
3525 if (goal_alternative_matches[i] >= 0)
3526 ;
3527 /* Handle an operand with a nonoffsettable address
3528 appearing where an offsettable address will do
3a322c50
RK
3529 by reloading the address into a base register.
3530
3531 ??? We can also do this when the operand is a register and
3532 reg_equiv_mem is not offsettable, but this is a bit tricky,
3533 so we don't bother with it. It may not be worth doing. */
eab89b90
RK
3534 else if (goal_alternative_matched[i] == -1
3535 && goal_alternative_offmemok[i]
3536 && GET_CODE (recog_operand[i]) == MEM)
3537 {
3538 operand_reloadnum[i]
fb3821f7
CH
3539 = push_reload (XEXP (recog_operand[i], 0), NULL_RTX,
3540 &XEXP (recog_operand[i], 0), NULL_PTR,
eab89b90 3541 BASE_REG_CLASS, GET_MODE (XEXP (recog_operand[i], 0)),
a8c9daeb 3542 VOIDmode, 0, 0, i, RELOAD_FOR_INPUT);
eab89b90
RK
3543 reload_inc[operand_reloadnum[i]]
3544 = GET_MODE_SIZE (GET_MODE (recog_operand[i]));
a8c9daeb
RK
3545
3546 /* If this operand is an output, we will have made any
3547 reloads for its address as RELOAD_FOR_OUTPUT_ADDRESS, but
3548 now we are treating part of the operand as an input, so
3549 we must change these to RELOAD_FOR_INPUT_ADDRESS. */
3550
2d55b7e8 3551 if (modified[i] == RELOAD_WRITE)
47c8cf91
ILT
3552 {
3553 for (j = 0; j < n_reloads; j++)
3554 {
3555 if (reload_opnum[j] == i)
3556 {
3557 if (reload_when_needed[j] == RELOAD_FOR_OUTPUT_ADDRESS)
3558 reload_when_needed[j] = RELOAD_FOR_INPUT_ADDRESS;
3559 else if (reload_when_needed[j]
3560 == RELOAD_FOR_OUTADDR_ADDRESS)
3561 reload_when_needed[j] = RELOAD_FOR_INPADDR_ADDRESS;
3562 }
3563 }
3564 }
eab89b90
RK
3565 }
3566 else if (goal_alternative_matched[i] == -1)
3567 operand_reloadnum[i] =
3568 push_reload (modified[i] != RELOAD_WRITE ? recog_operand[i] : 0,
3569 modified[i] != RELOAD_READ ? recog_operand[i] : 0,
a8c9daeb
RK
3570 (modified[i] != RELOAD_WRITE ?
3571 recog_operand_loc[i] : 0),
eab89b90
RK
3572 modified[i] != RELOAD_READ ? recog_operand_loc[i] : 0,
3573 (enum reg_class) goal_alternative[i],
a8c9daeb
RK
3574 (modified[i] == RELOAD_WRITE
3575 ? VOIDmode : operand_mode[i]),
3576 (modified[i] == RELOAD_READ
3577 ? VOIDmode : operand_mode[i]),
eab89b90
RK
3578 (insn_code_number < 0 ? 0
3579 : insn_operand_strict_low[insn_code_number][i]),
a8c9daeb 3580 0, i, operand_type[i]);
eab89b90
RK
3581 /* In a matching pair of operands, one must be input only
3582 and the other must be output only.
3583 Pass the input operand as IN and the other as OUT. */
3584 else if (modified[i] == RELOAD_READ
3585 && modified[goal_alternative_matched[i]] == RELOAD_WRITE)
3586 {
3587 operand_reloadnum[i]
3588 = push_reload (recog_operand[i],
3589 recog_operand[goal_alternative_matched[i]],
3590 recog_operand_loc[i],
3591 recog_operand_loc[goal_alternative_matched[i]],
3592 (enum reg_class) goal_alternative[i],
3593 operand_mode[i],
3594 operand_mode[goal_alternative_matched[i]],
a8c9daeb 3595 0, 0, i, RELOAD_OTHER);
eab89b90
RK
3596 operand_reloadnum[goal_alternative_matched[i]] = output_reloadnum;
3597 }
3598 else if (modified[i] == RELOAD_WRITE
3599 && modified[goal_alternative_matched[i]] == RELOAD_READ)
3600 {
3601 operand_reloadnum[goal_alternative_matched[i]]
3602 = push_reload (recog_operand[goal_alternative_matched[i]],
3603 recog_operand[i],
3604 recog_operand_loc[goal_alternative_matched[i]],
3605 recog_operand_loc[i],
3606 (enum reg_class) goal_alternative[i],
3607 operand_mode[goal_alternative_matched[i]],
3608 operand_mode[i],
a8c9daeb 3609 0, 0, i, RELOAD_OTHER);
eab89b90
RK
3610 operand_reloadnum[i] = output_reloadnum;
3611 }
3612 else if (insn_code_number >= 0)
3613 abort ();
3614 else
3615 {
3616 error_for_asm (insn, "inconsistent operand constraints in an `asm'");
3617 /* Avoid further trouble with this insn. */
3618 PATTERN (insn) = gen_rtx (USE, VOIDmode, const0_rtx);
3619 n_reloads = 0;
3620 return;
3621 }
3622 }
3623 else if (goal_alternative_matched[i] < 0
3624 && goal_alternative_matches[i] < 0
3625 && optimize)
3626 {
a8c9daeb 3627 /* For each non-matching operand that's a MEM or a pseudo-register
eab89b90
RK
3628 that didn't get a hard register, make an optional reload.
3629 This may get done even if the insn needs no reloads otherwise. */
a8c9daeb
RK
3630
3631 rtx operand = recog_operand[i];
3632
eab89b90
RK
3633 while (GET_CODE (operand) == SUBREG)
3634 operand = XEXP (operand, 0);
a8c9daeb
RK
3635 if ((GET_CODE (operand) == MEM
3636 || (GET_CODE (operand) == REG
3637 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
eab89b90 3638 && (enum reg_class) goal_alternative[i] != NO_REGS
a8c9daeb
RK
3639 && ! no_input_reloads
3640 /* Optional output reloads don't do anything and we mustn't
3641 make in-out reloads on insns that are not permitted output
3642 reloads. */
eab89b90 3643 && (modified[i] == RELOAD_READ
a8c9daeb 3644 || (modified[i] == RELOAD_READ_WRITE && ! no_output_reloads)))
eab89b90
RK
3645 operand_reloadnum[i]
3646 = push_reload (modified[i] != RELOAD_WRITE ? recog_operand[i] : 0,
3647 modified[i] != RELOAD_READ ? recog_operand[i] : 0,
a8c9daeb
RK
3648 (modified[i] != RELOAD_WRITE
3649 ? recog_operand_loc[i] : 0),
3650 (modified[i] != RELOAD_READ
3651 ? recog_operand_loc[i] : 0),
eab89b90 3652 (enum reg_class) goal_alternative[i],
a8c9daeb
RK
3653 (modified[i] == RELOAD_WRITE
3654 ? VOIDmode : operand_mode[i]),
3655 (modified[i] == RELOAD_READ
3656 ? VOIDmode : operand_mode[i]),
eab89b90
RK
3657 (insn_code_number < 0 ? 0
3658 : insn_operand_strict_low[insn_code_number][i]),
a8c9daeb 3659 1, i, operand_type[i]);
eab89b90 3660 }
a8c9daeb
RK
3661 else if (goal_alternative_matches[i] >= 0
3662 && goal_alternative_win[goal_alternative_matches[i]]
3663 && modified[i] == RELOAD_READ
3664 && modified[goal_alternative_matches[i]] == RELOAD_WRITE
3665 && ! no_input_reloads && ! no_output_reloads
3666 && optimize)
3667 {
3668 /* Similarly, make an optional reload for a pair of matching
3669 objects that are in MEM or a pseudo that didn't get a hard reg. */
eab89b90 3670
a8c9daeb
RK
3671 rtx operand = recog_operand[i];
3672
3673 while (GET_CODE (operand) == SUBREG)
3674 operand = XEXP (operand, 0);
3675 if ((GET_CODE (operand) == MEM
3676 || (GET_CODE (operand) == REG
3677 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
3678 && ((enum reg_class) goal_alternative[goal_alternative_matches[i]]
3679 != NO_REGS))
3680 operand_reloadnum[i] = operand_reloadnum[goal_alternative_matches[i]]
3681 = push_reload (recog_operand[goal_alternative_matches[i]],
3682 recog_operand[i],
3683 recog_operand_loc[goal_alternative_matches[i]],
3684 recog_operand_loc[i],
3685 (enum reg_class) goal_alternative[goal_alternative_matches[i]],
3686 operand_mode[goal_alternative_matches[i]],
3687 operand_mode[i],
3688 0, 1, goal_alternative_matches[i], RELOAD_OTHER);
3689 }
3690
eab89b90
RK
3691 /* If this insn pattern contains any MATCH_DUP's, make sure that
3692 they will be substituted if the operands they match are substituted.
3693 Also do now any substitutions we already did on the operands.
3694
3695 Don't do this if we aren't making replacements because we might be
3696 propagating things allocated by frame pointer elimination into places
3697 it doesn't expect. */
3698
3699 if (insn_code_number >= 0 && replace)
3700 for (i = insn_n_dups[insn_code_number] - 1; i >= 0; i--)
3701 {
3702 int opno = recog_dup_num[i];
3703 *recog_dup_loc[i] = *recog_operand_loc[opno];
3704 if (operand_reloadnum[opno] >= 0)
3705 push_replacement (recog_dup_loc[i], operand_reloadnum[opno],
3706 insn_operand_mode[insn_code_number][opno]);
3707 }
3708
3709#if 0
3710 /* This loses because reloading of prior insns can invalidate the equivalence
3711 (or at least find_equiv_reg isn't smart enough to find it any more),
3712 causing this insn to need more reload regs than it needed before.
3713 It may be too late to make the reload regs available.
3714 Now this optimization is done safely in choose_reload_regs. */
3715
3716 /* For each reload of a reg into some other class of reg,
3717 search for an existing equivalent reg (same value now) in the right class.
3718 We can use it as long as we don't need to change its contents. */
3719 for (i = 0; i < n_reloads; i++)
3720 if (reload_reg_rtx[i] == 0
3721 && reload_in[i] != 0
3722 && GET_CODE (reload_in[i]) == REG
3723 && reload_out[i] == 0)
3724 {
3725 reload_reg_rtx[i]
3726 = find_equiv_reg (reload_in[i], insn, reload_reg_class[i], -1,
3727 static_reload_reg_p, 0, reload_inmode[i]);
3728 /* Prevent generation of insn to load the value
3729 because the one we found already has the value. */
3730 if (reload_reg_rtx[i])
3731 reload_in[i] = reload_reg_rtx[i];
3732 }
3733#endif
3734
a8c9daeb
RK
3735 /* Perhaps an output reload can be combined with another
3736 to reduce needs by one. */
3737 if (!goal_earlyclobber)
3738 combine_reloads ();
3739
3740 /* If we have a pair of reloads for parts of an address, they are reloading
3741 the same object, the operands themselves were not reloaded, and they
3742 are for two operands that are supposed to match, merge the reloads and
0f41302f 3743 change the type of the surviving reload to RELOAD_FOR_OPERAND_ADDRESS. */
a8c9daeb
RK
3744
3745 for (i = 0; i < n_reloads; i++)
3746 {
3747 int k;
3748
3749 for (j = i + 1; j < n_reloads; j++)
3750 if ((reload_when_needed[i] == RELOAD_FOR_INPUT_ADDRESS
47c8cf91
ILT
3751 || reload_when_needed[i] == RELOAD_FOR_OUTPUT_ADDRESS
3752 || reload_when_needed[i] == RELOAD_FOR_INPADDR_ADDRESS
3753 || reload_when_needed[i] == RELOAD_FOR_OUTADDR_ADDRESS)
a8c9daeb 3754 && (reload_when_needed[j] == RELOAD_FOR_INPUT_ADDRESS
47c8cf91
ILT
3755 || reload_when_needed[j] == RELOAD_FOR_OUTPUT_ADDRESS
3756 || reload_when_needed[j] == RELOAD_FOR_INPADDR_ADDRESS
3757 || reload_when_needed[j] == RELOAD_FOR_OUTADDR_ADDRESS)
a8c9daeb
RK
3758 && rtx_equal_p (reload_in[i], reload_in[j])
3759 && (operand_reloadnum[reload_opnum[i]] < 0
3760 || reload_optional[operand_reloadnum[reload_opnum[i]]])
3761 && (operand_reloadnum[reload_opnum[j]] < 0
3762 || reload_optional[operand_reloadnum[reload_opnum[j]]])
3763 && (goal_alternative_matches[reload_opnum[i]] == reload_opnum[j]
3764 || (goal_alternative_matches[reload_opnum[j]]
3765 == reload_opnum[i])))
3766 {
3767 for (k = 0; k < n_replacements; k++)
3768 if (replacements[k].what == j)
3769 replacements[k].what = i;
3770
47c8cf91
ILT
3771 if (reload_when_needed[i] == RELOAD_FOR_INPADDR_ADDRESS
3772 || reload_when_needed[i] == RELOAD_FOR_OUTADDR_ADDRESS)
3773 reload_when_needed[i] = RELOAD_FOR_OPADDR_ADDR;
3774 else
3775 reload_when_needed[i] = RELOAD_FOR_OPERAND_ADDRESS;
a8c9daeb
RK
3776 reload_in[j] = 0;
3777 }
3778 }
3779
3780 /* Scan all the reloads and update their type.
3781 If a reload is for the address of an operand and we didn't reload
3782 that operand, change the type. Similarly, change the operand number
3783 of a reload when two operands match. If a reload is optional, treat it
3784 as though the operand isn't reloaded.
3785
3786 ??? This latter case is somewhat odd because if we do the optional
3787 reload, it means the object is hanging around. Thus we need only
3788 do the address reload if the optional reload was NOT done.
3789
3790 Change secondary reloads to be the address type of their operand, not
3791 the normal type.
3792
3793 If an operand's reload is now RELOAD_OTHER, change any
3794 RELOAD_FOR_INPUT_ADDRESS reloads of that operand to
3795 RELOAD_FOR_OTHER_ADDRESS. */
3796
3797 for (i = 0; i < n_reloads; i++)
3798 {
3799 if (reload_secondary_p[i]
3800 && reload_when_needed[i] == operand_type[reload_opnum[i]])
3801 reload_when_needed[i] = address_type[reload_opnum[i]];
3802
3803 if ((reload_when_needed[i] == RELOAD_FOR_INPUT_ADDRESS
47c8cf91
ILT
3804 || reload_when_needed[i] == RELOAD_FOR_OUTPUT_ADDRESS
3805 || reload_when_needed[i] == RELOAD_FOR_INPADDR_ADDRESS
3806 || reload_when_needed[i] == RELOAD_FOR_OUTADDR_ADDRESS)
a8c9daeb 3807 && (operand_reloadnum[reload_opnum[i]] < 0
6ded3228 3808 || reload_optional[operand_reloadnum[reload_opnum[i]]]))
f98bb7d3
RK
3809 {
3810 /* If we have a secondary reload to go along with this reload,
0f41302f 3811 change its type to RELOAD_FOR_OPADDR_ADDR. */
f98bb7d3 3812
47c8cf91
ILT
3813 if ((reload_when_needed[i] == RELOAD_FOR_INPUT_ADDRESS
3814 || reload_when_needed[i] == RELOAD_FOR_INPADDR_ADDRESS)
f98bb7d3
RK
3815 && reload_secondary_in_reload[i] != -1)
3816 {
3817 int secondary_in_reload = reload_secondary_in_reload[i];
3818
3819 reload_when_needed[secondary_in_reload] =
3820 RELOAD_FOR_OPADDR_ADDR;
3821
0f41302f 3822 /* If there's a tertiary reload we have to change it also. */
f98bb7d3
RK
3823 if (secondary_in_reload > 0
3824 && reload_secondary_in_reload[secondary_in_reload] != -1)
3825 reload_when_needed[reload_secondary_in_reload[secondary_in_reload]]
3826 = RELOAD_FOR_OPADDR_ADDR;
3827 }
3828
47c8cf91
ILT
3829 if ((reload_when_needed[i] == RELOAD_FOR_OUTPUT_ADDRESS
3830 || reload_when_needed[i] == RELOAD_FOR_OUTADDR_ADDRESS)
f98bb7d3
RK
3831 && reload_secondary_out_reload[i] != -1)
3832 {
3833 int secondary_out_reload = reload_secondary_out_reload[i];
3834
3835 reload_when_needed[secondary_out_reload] =
3836 RELOAD_FOR_OPADDR_ADDR;
3837
0f41302f 3838 /* If there's a tertiary reload we have to change it also. */
f98bb7d3
RK
3839 if (secondary_out_reload
3840 && reload_secondary_out_reload[secondary_out_reload] != -1)
3841 reload_when_needed[reload_secondary_out_reload[secondary_out_reload]]
3842 = RELOAD_FOR_OPADDR_ADDR;
3843 }
47c8cf91
ILT
3844 if (reload_when_needed[i] == RELOAD_FOR_INPADDR_ADDRESS
3845 || reload_when_needed[i] == RELOAD_FOR_OUTADDR_ADDRESS)
3846 reload_when_needed[i] = RELOAD_FOR_OPADDR_ADDR;
3847 else
3848 reload_when_needed[i] = RELOAD_FOR_OPERAND_ADDRESS;
f98bb7d3 3849 }
a8c9daeb 3850
47c8cf91
ILT
3851 if ((reload_when_needed[i] == RELOAD_FOR_INPUT_ADDRESS
3852 || reload_when_needed[i] == RELOAD_FOR_INPADDR_ADDRESS)
a8c9daeb
RK
3853 && operand_reloadnum[reload_opnum[i]] >= 0
3854 && (reload_when_needed[operand_reloadnum[reload_opnum[i]]]
3855 == RELOAD_OTHER))
3856 reload_when_needed[i] = RELOAD_FOR_OTHER_ADDRESS;
3857
3858 if (goal_alternative_matches[reload_opnum[i]] >= 0)
3859 reload_opnum[i] = goal_alternative_matches[reload_opnum[i]];
3860 }
3861
3862 /* See if we have any reloads that are now allowed to be merged
3863 because we've changed when the reload is needed to
3864 RELOAD_FOR_OPERAND_ADDRESS or RELOAD_FOR_OTHER_ADDRESS. Only
3865 check for the most common cases. */
3866
3867 for (i = 0; i < n_reloads; i++)
3868 if (reload_in[i] != 0 && reload_out[i] == 0
3869 && (reload_when_needed[i] == RELOAD_FOR_OPERAND_ADDRESS
47c8cf91 3870 || reload_when_needed[i] == RELOAD_FOR_OPADDR_ADDR
a8c9daeb
RK
3871 || reload_when_needed[i] == RELOAD_FOR_OTHER_ADDRESS))
3872 for (j = 0; j < n_reloads; j++)
3873 if (i != j && reload_in[j] != 0 && reload_out[j] == 0
3874 && reload_when_needed[j] == reload_when_needed[i]
73f67895
RS
3875 && MATCHES (reload_in[i], reload_in[j])
3876 && reload_reg_class[i] == reload_reg_class[j]
92b37691
RK
3877 && !reload_nocombine[i] && !reload_nocombine[j]
3878 && reload_reg_rtx[i] == reload_reg_rtx[j])
a8c9daeb
RK
3879 {
3880 reload_opnum[i] = MIN (reload_opnum[i], reload_opnum[j]);
3881 transfer_replacements (i, j);
3882 reload_in[j] = 0;
3883 }
3884
eab89b90
RK
3885#else /* no REGISTER_CONSTRAINTS */
3886 int noperands;
3887 int insn_code_number;
3888 int goal_earlyclobber = 0; /* Always 0, to make combine_reloads happen. */
3889 register int i;
3890 rtx body = PATTERN (insn);
3891
3892 n_reloads = 0;
3893 n_replacements = 0;
3894 n_earlyclobbers = 0;
3895 replace_reloads = replace;
3896 this_insn = insn;
3897
3898 /* Find what kind of insn this is. NOPERANDS gets number of operands.
3899 Store the operand values in RECOG_OPERAND and the locations
3900 of the words in the insn that point to them in RECOG_OPERAND_LOC.
3901 Return if the insn needs no reload processing. */
3902
3903 switch (GET_CODE (body))
3904 {
3905 case USE:
3906 case CLOBBER:
3907 case ASM_INPUT:
3908 case ADDR_VEC:
3909 case ADDR_DIFF_VEC:
3910 return;
3911
3912 case PARALLEL:
3913 case SET:
3914 noperands = asm_noperands (body);
3915 if (noperands >= 0)
3916 {
3917 /* This insn is an `asm' with operands.
3918 First, find out how many operands, and allocate space. */
3919
3920 insn_code_number = -1;
3921 /* ??? This is a bug! ???
3922 Give up and delete this insn if it has too many operands. */
3923 if (noperands > MAX_RECOG_OPERANDS)
3924 abort ();
3925
3926 /* Now get the operand values out of the insn. */
3927
fb3821f7
CH
3928 decode_asm_operands (body, recog_operand, recog_operand_loc,
3929 NULL_PTR, NULL_PTR);
eab89b90
RK
3930 break;
3931 }
3932
3933 default:
3934 /* Ordinary insn: recognize it, allocate space for operands and
3935 constraints, and get them out via insn_extract. */
3936
3937 insn_code_number = recog_memoized (insn);
3938 noperands = insn_n_operands[insn_code_number];
3939 insn_extract (insn);
3940 }
3941
3942 if (noperands == 0)
3943 return;
3944
3945 for (i = 0; i < noperands; i++)
3946 {
3947 register RTX_CODE code = GET_CODE (recog_operand[i]);
3948 int is_set_dest = GET_CODE (body) == SET && (i == 0);
3949
3950 if (insn_code_number >= 0)
3951 if (insn_operand_address_p[insn_code_number][i])
fb3821f7 3952 find_reloads_address (VOIDmode, NULL_PTR,
eab89b90 3953 recog_operand[i], recog_operand_loc[i],
55c22565 3954 i, RELOAD_FOR_INPUT, ind_levels, insn);
a8c9daeb
RK
3955
3956 /* In these cases, we can't tell if the operand is an input
3957 or an output, so be conservative. In practice it won't be
3958 problem. */
3959
eab89b90
RK
3960 if (code == MEM)
3961 find_reloads_address (GET_MODE (recog_operand[i]),
3962 recog_operand_loc[i],
3963 XEXP (recog_operand[i], 0),
3964 &XEXP (recog_operand[i], 0),
55c22565 3965 i, RELOAD_OTHER, ind_levels, insn);
eab89b90
RK
3966 if (code == SUBREG)
3967 recog_operand[i] = *recog_operand_loc[i]
a8c9daeb
RK
3968 = find_reloads_toplev (recog_operand[i], i, RELOAD_OTHER,
3969 ind_levels, is_set_dest);
eab89b90
RK
3970 if (code == REG)
3971 {
3972 register int regno = REGNO (recog_operand[i]);
3973 if (reg_equiv_constant[regno] != 0 && !is_set_dest)
3974 recog_operand[i] = *recog_operand_loc[i]
3975 = reg_equiv_constant[regno];
3976#if 0 /* This might screw code in reload1.c to delete prior output-reload
3977 that feeds this insn. */
3978 if (reg_equiv_mem[regno] != 0)
3979 recog_operand[i] = *recog_operand_loc[i]
3980 = reg_equiv_mem[regno];
3981#endif
3982 }
eab89b90
RK
3983 }
3984
3985 /* Perhaps an output reload can be combined with another
3986 to reduce needs by one. */
3987 if (!goal_earlyclobber)
3988 combine_reloads ();
a8c9daeb 3989#endif /* no REGISTER_CONSTRAINTS */
eab89b90
RK
3990}
3991
3992/* Return 1 if alternative number ALTNUM in constraint-string CONSTRAINT
3993 accepts a memory operand with constant address. */
3994
3995static int
3996alternative_allows_memconst (constraint, altnum)
3997 char *constraint;
3998 int altnum;
3999{
4000 register int c;
4001 /* Skip alternatives before the one requested. */
4002 while (altnum > 0)
4003 {
4004 while (*constraint++ != ',');
4005 altnum--;
4006 }
4007 /* Scan the requested alternative for 'm' or 'o'.
4008 If one of them is present, this alternative accepts memory constants. */
4009 while ((c = *constraint++) && c != ',' && c != '#')
4010 if (c == 'm' || c == 'o')
4011 return 1;
4012 return 0;
4013}
4014\f
4015/* Scan X for memory references and scan the addresses for reloading.
4016 Also checks for references to "constant" regs that we want to eliminate
4017 and replaces them with the values they stand for.
6dc42e49 4018 We may alter X destructively if it contains a reference to such.
eab89b90
RK
4019 If X is just a constant reg, we return the equivalent value
4020 instead of X.
4021
4022 IND_LEVELS says how many levels of indirect addressing this machine
4023 supports.
4024
a8c9daeb
RK
4025 OPNUM and TYPE identify the purpose of the reload.
4026
eab89b90
RK
4027 IS_SET_DEST is true if X is the destination of a SET, which is not
4028 appropriate to be replaced by a constant. */
4029
4030static rtx
a8c9daeb 4031find_reloads_toplev (x, opnum, type, ind_levels, is_set_dest)
eab89b90 4032 rtx x;
a8c9daeb
RK
4033 int opnum;
4034 enum reload_type type;
eab89b90
RK
4035 int ind_levels;
4036 int is_set_dest;
4037{
4038 register RTX_CODE code = GET_CODE (x);
4039
4040 register char *fmt = GET_RTX_FORMAT (code);
4041 register int i;
4042
4043 if (code == REG)
4044 {
4045 /* This code is duplicated for speed in find_reloads. */
4046 register int regno = REGNO (x);
4047 if (reg_equiv_constant[regno] != 0 && !is_set_dest)
4048 x = reg_equiv_constant[regno];
4049#if 0
4050/* This creates (subreg (mem...)) which would cause an unnecessary
4051 reload of the mem. */
4052 else if (reg_equiv_mem[regno] != 0)
4053 x = reg_equiv_mem[regno];
4054#endif
4055 else if (reg_equiv_address[regno] != 0)
4056 {
4057 /* If reg_equiv_address varies, it may be shared, so copy it. */
4ffeab02
JW
4058 /* We must rerun eliminate_regs, in case the elimination
4059 offsets have changed. */
4060 rtx addr = XEXP (eliminate_regs (reg_equiv_memory_loc[regno], 0,
fa1610e9 4061 NULL_RTX, 0),
4ffeab02 4062 0);
eab89b90
RK
4063
4064 if (rtx_varies_p (addr))
4065 addr = copy_rtx (addr);
4066
4067 x = gen_rtx (MEM, GET_MODE (x), addr);
4068 RTX_UNCHANGING_P (x) = RTX_UNCHANGING_P (regno_reg_rtx[regno]);
fb3821f7 4069 find_reloads_address (GET_MODE (x), NULL_PTR,
eab89b90 4070 XEXP (x, 0),
55c22565 4071 &XEXP (x, 0), opnum, type, ind_levels, 0);
eab89b90
RK
4072 }
4073 return x;
4074 }
4075 if (code == MEM)
4076 {
4077 rtx tem = x;
4078 find_reloads_address (GET_MODE (x), &tem, XEXP (x, 0), &XEXP (x, 0),
55c22565 4079 opnum, type, ind_levels, 0);
eab89b90
RK
4080 return tem;
4081 }
4082
4083 if (code == SUBREG && GET_CODE (SUBREG_REG (x)) == REG)
4084 {
4085 /* Check for SUBREG containing a REG that's equivalent to a constant.
4086 If the constant has a known value, truncate it right now.
4087 Similarly if we are extracting a single-word of a multi-word
4088 constant. If the constant is symbolic, allow it to be substituted
4089 normally. push_reload will strip the subreg later. If the
4090 constant is VOIDmode, abort because we will lose the mode of
4091 the register (this should never happen because one of the cases
4092 above should handle it). */
4093
4094 register int regno = REGNO (SUBREG_REG (x));
4095 rtx tem;
4096
4097 if (subreg_lowpart_p (x)
4098 && regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
4099 && reg_equiv_constant[regno] != 0
4100 && (tem = gen_lowpart_common (GET_MODE (x),
4101 reg_equiv_constant[regno])) != 0)
4102 return tem;
4103
4104 if (GET_MODE_BITSIZE (GET_MODE (x)) == BITS_PER_WORD
4105 && regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
4106 && reg_equiv_constant[regno] != 0
4107 && (tem = operand_subword (reg_equiv_constant[regno],
4108 SUBREG_WORD (x), 0,
4109 GET_MODE (SUBREG_REG (x)))) != 0)
4110 return tem;
4111
4112 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
4113 && reg_equiv_constant[regno] != 0
4114 && GET_MODE (reg_equiv_constant[regno]) == VOIDmode)
4115 abort ();
4116
4117 /* If the subreg contains a reg that will be converted to a mem,
4118 convert the subreg to a narrower memref now.
4119 Otherwise, we would get (subreg (mem ...) ...),
4120 which would force reload of the mem.
4121
4122 We also need to do this if there is an equivalent MEM that is
4123 not offsettable. In that case, alter_subreg would produce an
4124 invalid address on big-endian machines.
4125
46da6b3a 4126 For machines that extend byte loads, we must not reload using
eab89b90
RK
4127 a wider mode if we have a paradoxical SUBREG. find_reloads will
4128 force a reload in that case. So we should not do anything here. */
4129
4130 else if (regno >= FIRST_PSEUDO_REGISTER
fd72420f 4131#ifdef LOAD_EXTEND_OP
eab89b90
RK
4132 && (GET_MODE_SIZE (GET_MODE (x))
4133 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
4134#endif
4135 && (reg_equiv_address[regno] != 0
4136 || (reg_equiv_mem[regno] != 0
f2fbfe92
JL
4137 && (! strict_memory_address_p (GET_MODE (x),
4138 XEXP (reg_equiv_mem[regno], 0))
4139 || ! offsettable_memref_p (reg_equiv_mem[regno])))))
eab89b90
RK
4140 {
4141 int offset = SUBREG_WORD (x) * UNITS_PER_WORD;
4ffeab02
JW
4142 /* We must rerun eliminate_regs, in case the elimination
4143 offsets have changed. */
4144 rtx addr = XEXP (eliminate_regs (reg_equiv_memory_loc[regno], 0,
fa1610e9 4145 NULL_RTX, 0),
4ffeab02 4146 0);
f76b9db2
ILT
4147 if (BYTES_BIG_ENDIAN)
4148 {
4149 int size;
4150 size = GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)));
4151 offset += MIN (size, UNITS_PER_WORD);
4152 size = GET_MODE_SIZE (GET_MODE (x));
4153 offset -= MIN (size, UNITS_PER_WORD);
4154 }
eab89b90
RK
4155 addr = plus_constant (addr, offset);
4156 x = gen_rtx (MEM, GET_MODE (x), addr);
4157 RTX_UNCHANGING_P (x) = RTX_UNCHANGING_P (regno_reg_rtx[regno]);
fb3821f7 4158 find_reloads_address (GET_MODE (x), NULL_PTR,
eab89b90 4159 XEXP (x, 0),
55c22565 4160 &XEXP (x, 0), opnum, type, ind_levels, 0);
eab89b90
RK
4161 }
4162
4163 }
4164
4165 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4166 {
4167 if (fmt[i] == 'e')
a8c9daeb 4168 XEXP (x, i) = find_reloads_toplev (XEXP (x, i), opnum, type,
eab89b90
RK
4169 ind_levels, is_set_dest);
4170 }
4171 return x;
4172}
4173
dbf85761
RS
4174/* Return a mem ref for the memory equivalent of reg REGNO.
4175 This mem ref is not shared with anything. */
4176
eab89b90
RK
4177static rtx
4178make_memloc (ad, regno)
4179 rtx ad;
4180 int regno;
4181{
4182 register int i;
4ffeab02
JW
4183 /* We must rerun eliminate_regs, in case the elimination
4184 offsets have changed. */
fa1610e9 4185 rtx tem = XEXP (eliminate_regs (reg_equiv_memory_loc[regno], 0, NULL_RTX, 0),
4ffeab02 4186 0);
dbf85761
RS
4187
4188#if 0 /* We cannot safely reuse a memloc made here;
4189 if the pseudo appears twice, and its mem needs a reload,
4190 it gets two separate reloads assigned, but it only
4191 gets substituted with the second of them;
4192 then it can get used before that reload reg gets loaded up. */
eab89b90
RK
4193 for (i = 0; i < n_memlocs; i++)
4194 if (rtx_equal_p (tem, XEXP (memlocs[i], 0)))
4195 return memlocs[i];
dbf85761 4196#endif
eab89b90
RK
4197
4198 /* If TEM might contain a pseudo, we must copy it to avoid
4199 modifying it when we do the substitution for the reload. */
4200 if (rtx_varies_p (tem))
4201 tem = copy_rtx (tem);
4202
4203 tem = gen_rtx (MEM, GET_MODE (ad), tem);
4204 RTX_UNCHANGING_P (tem) = RTX_UNCHANGING_P (regno_reg_rtx[regno]);
4205 memlocs[n_memlocs++] = tem;
4206 return tem;
4207}
4208
4209/* Record all reloads needed for handling memory address AD
4210 which appears in *LOC in a memory reference to mode MODE
4211 which itself is found in location *MEMREFLOC.
4212 Note that we take shortcuts assuming that no multi-reg machine mode
4213 occurs as part of an address.
4214
a8c9daeb 4215 OPNUM and TYPE specify the purpose of this reload.
eab89b90
RK
4216
4217 IND_LEVELS says how many levels of indirect addressing this machine
4218 supports.
4219
55c22565
RK
4220 INSN, if nonzero, is the insn in which we do the reload. It is used
4221 to determine if we may generate output reloads.
4222
eab89b90
RK
4223 Value is nonzero if this address is reloaded or replaced as a whole.
4224 This is interesting to the caller if the address is an autoincrement.
4225
4226 Note that there is no verification that the address will be valid after
4227 this routine does its work. Instead, we rely on the fact that the address
4228 was valid when reload started. So we need only undo things that reload
4229 could have broken. These are wrong register types, pseudos not allocated
4230 to a hard register, and frame pointer elimination. */
4231
4232static int
55c22565 4233find_reloads_address (mode, memrefloc, ad, loc, opnum, type, ind_levels, insn)
eab89b90
RK
4234 enum machine_mode mode;
4235 rtx *memrefloc;
4236 rtx ad;
4237 rtx *loc;
a8c9daeb
RK
4238 int opnum;
4239 enum reload_type type;
eab89b90 4240 int ind_levels;
55c22565 4241 rtx insn;
eab89b90
RK
4242{
4243 register int regno;
4244 rtx tem;
4245
4246 /* If the address is a register, see if it is a legitimate address and
4247 reload if not. We first handle the cases where we need not reload
4248 or where we must reload in a non-standard way. */
4249
4250 if (GET_CODE (ad) == REG)
4251 {
4252 regno = REGNO (ad);
4253
4254 if (reg_equiv_constant[regno] != 0
4255 && strict_memory_address_p (mode, reg_equiv_constant[regno]))
4256 {
4257 *loc = ad = reg_equiv_constant[regno];
4258 return 1;
4259 }
4260
4261 else if (reg_equiv_address[regno] != 0)
4262 {
4263 tem = make_memloc (ad, regno);
fb3821f7 4264 find_reloads_address (GET_MODE (tem), NULL_PTR, XEXP (tem, 0),
47c8cf91 4265 &XEXP (tem, 0), opnum, ADDR_TYPE (type),
55c22565 4266 ind_levels, insn);
1ba61f4e
ILT
4267 push_reload (tem, NULL_RTX, loc, NULL_PTR,
4268 reload_address_base_reg_class,
eab89b90 4269 GET_MODE (ad), VOIDmode, 0, 0,
a8c9daeb 4270 opnum, type);
eab89b90
RK
4271 return 1;
4272 }
4273
b39555b4 4274 /* We can avoid a reload if the register's equivalent memory expression
c1875d66
RS
4275 is valid as an indirect memory address.
4276 But not all addresses are valid in a mem used as an indirect address:
4277 only reg or reg+constant. */
b39555b4
RS
4278
4279 else if (reg_equiv_mem[regno] != 0 && ind_levels > 0
c1875d66
RS
4280 && strict_memory_address_p (mode, reg_equiv_mem[regno])
4281 && (GET_CODE (XEXP (reg_equiv_mem[regno], 0)) == REG
4282 || (GET_CODE (XEXP (reg_equiv_mem[regno], 0)) == PLUS
4283 && GET_CODE (XEXP (XEXP (reg_equiv_mem[regno], 0), 0)) == REG
75301d68 4284 && CONSTANT_P (XEXP (XEXP (reg_equiv_mem[regno], 0), 1)))))
b39555b4 4285 return 0;
eab89b90
RK
4286
4287 /* The only remaining case where we can avoid a reload is if this is a
4288 hard register that is valid as a base register and which is not the
4289 subject of a CLOBBER in this insn. */
4290
858c3c8c
ILT
4291 else if (regno < FIRST_PSEUDO_REGISTER
4292 && REGNO_MODE_OK_FOR_BASE_P (regno, mode)
eab89b90
RK
4293 && ! regno_clobbered_p (regno, this_insn))
4294 return 0;
4295
4296 /* If we do not have one of the cases above, we must do the reload. */
1ba61f4e 4297 push_reload (ad, NULL_RTX, loc, NULL_PTR, reload_address_base_reg_class,
a8c9daeb 4298 GET_MODE (ad), VOIDmode, 0, 0, opnum, type);
eab89b90
RK
4299 return 1;
4300 }
4301
4302 if (strict_memory_address_p (mode, ad))
4303 {
4304 /* The address appears valid, so reloads are not needed.
4305 But the address may contain an eliminable register.
4306 This can happen because a machine with indirect addressing
4307 may consider a pseudo register by itself a valid address even when
4308 it has failed to get a hard reg.
4309 So do a tree-walk to find and eliminate all such regs. */
4310
4311 /* But first quickly dispose of a common case. */
4312 if (GET_CODE (ad) == PLUS
4313 && GET_CODE (XEXP (ad, 1)) == CONST_INT
4314 && GET_CODE (XEXP (ad, 0)) == REG
4315 && reg_equiv_constant[REGNO (XEXP (ad, 0))] == 0)
4316 return 0;
4317
4318 subst_reg_equivs_changed = 0;
4319 *loc = subst_reg_equivs (ad);
4320
4321 if (! subst_reg_equivs_changed)
4322 return 0;
4323
4324 /* Check result for validity after substitution. */
4325 if (strict_memory_address_p (mode, ad))
4326 return 0;
4327 }
4328
4329 /* The address is not valid. We have to figure out why. One possibility
4330 is that it is itself a MEM. This can happen when the frame pointer is
4331 being eliminated, a pseudo is not allocated to a hard register, and the
4332 offset between the frame and stack pointers is not its initial value.
d45cf215 4333 In that case the pseudo will have been replaced by a MEM referring to
eab89b90
RK
4334 the stack pointer. */
4335 if (GET_CODE (ad) == MEM)
4336 {
4337 /* First ensure that the address in this MEM is valid. Then, unless
4338 indirect addresses are valid, reload the MEM into a register. */
4339 tem = ad;
4340 find_reloads_address (GET_MODE (ad), &tem, XEXP (ad, 0), &XEXP (ad, 0),
47c8cf91 4341 opnum, ADDR_TYPE (type),
55c22565 4342 ind_levels == 0 ? 0 : ind_levels - 1, insn);
d2555454
RS
4343
4344 /* If tem was changed, then we must create a new memory reference to
4345 hold it and store it back into memrefloc. */
4346 if (tem != ad && memrefloc)
ca3e4a2f 4347 {
ca3e4a2f 4348 *memrefloc = copy_rtx (*memrefloc);
3c80f7ed 4349 copy_replacements (tem, XEXP (*memrefloc, 0));
ca3e4a2f 4350 loc = &XEXP (*memrefloc, 0);
ca3e4a2f 4351 }
d2555454 4352
eab89b90
RK
4353 /* Check similar cases as for indirect addresses as above except
4354 that we can allow pseudos and a MEM since they should have been
4355 taken care of above. */
4356
4357 if (ind_levels == 0
4358 || (GET_CODE (XEXP (tem, 0)) == SYMBOL_REF && ! indirect_symref_ok)
4359 || GET_CODE (XEXP (tem, 0)) == MEM
4360 || ! (GET_CODE (XEXP (tem, 0)) == REG
4361 || (GET_CODE (XEXP (tem, 0)) == PLUS
4362 && GET_CODE (XEXP (XEXP (tem, 0), 0)) == REG
4363 && GET_CODE (XEXP (XEXP (tem, 0), 1)) == CONST_INT)))
4364 {
4365 /* Must use TEM here, not AD, since it is the one that will
4366 have any subexpressions reloaded, if needed. */
fb3821f7 4367 push_reload (tem, NULL_RTX, loc, NULL_PTR,
1ba61f4e
ILT
4368 reload_address_base_reg_class, GET_MODE (tem),
4369 VOIDmode, 0,
a8c9daeb 4370 0, opnum, type);
eab89b90
RK
4371 return 1;
4372 }
4373 else
4374 return 0;
4375 }
4376
1b4d2764
RK
4377 /* If we have address of a stack slot but it's not valid because the
4378 displacement is too large, compute the sum in a register.
4379 Handle all base registers here, not just fp/ap/sp, because on some
4380 targets (namely SH) we can also get too large displacements from
4381 big-endian corrections. */
eab89b90 4382 else if (GET_CODE (ad) == PLUS
1b4d2764
RK
4383 && GET_CODE (XEXP (ad, 0)) == REG
4384 && REGNO (XEXP (ad, 0)) < FIRST_PSEUDO_REGISTER
858c3c8c 4385 && REG_MODE_OK_FOR_BASE_P (XEXP (ad, 0), mode)
eab89b90
RK
4386 && GET_CODE (XEXP (ad, 1)) == CONST_INT)
4387 {
4388 /* Unshare the MEM rtx so we can safely alter it. */
4389 if (memrefloc)
4390 {
eab89b90
RK
4391 *memrefloc = copy_rtx (*memrefloc);
4392 loc = &XEXP (*memrefloc, 0);
eab89b90
RK
4393 }
4394 if (double_reg_address_ok)
4395 {
4396 /* Unshare the sum as well. */
4397 *loc = ad = copy_rtx (ad);
4398 /* Reload the displacement into an index reg.
4399 We assume the frame pointer or arg pointer is a base reg. */
4400 find_reloads_address_part (XEXP (ad, 1), &XEXP (ad, 1),
1ba61f4e
ILT
4401 reload_address_index_reg_class,
4402 GET_MODE (ad), opnum, type, ind_levels);
eab89b90
RK
4403 }
4404 else
4405 {
4406 /* If the sum of two regs is not necessarily valid,
4407 reload the sum into a base reg.
4408 That will at least work. */
1ba61f4e
ILT
4409 find_reloads_address_part (ad, loc, reload_address_base_reg_class,
4410 Pmode, opnum, type, ind_levels);
eab89b90
RK
4411 }
4412 return 1;
4413 }
4414
4415 /* If we have an indexed stack slot, there are three possible reasons why
4416 it might be invalid: The index might need to be reloaded, the address
4417 might have been made by frame pointer elimination and hence have a
f302eea3 4418 constant out of range, or both reasons might apply.
eab89b90
RK
4419
4420 We can easily check for an index needing reload, but even if that is the
4421 case, we might also have an invalid constant. To avoid making the
4422 conservative assumption and requiring two reloads, we see if this address
4423 is valid when not interpreted strictly. If it is, the only problem is
4424 that the index needs a reload and find_reloads_address_1 will take care
4425 of it.
4426
4427 There is still a case when we might generate an extra reload,
4428 however. In certain cases eliminate_regs will return a MEM for a REG
4429 (see the code there for details). In those cases, memory_address_p
4430 applied to our address will return 0 so we will think that our offset
4431 must be too large. But it might indeed be valid and the only problem
4432 is that a MEM is present where a REG should be. This case should be
4433 very rare and there doesn't seem to be any way to avoid it.
4434
4435 If we decide to do something here, it must be that
4436 `double_reg_address_ok' is true and that this address rtl was made by
4437 eliminate_regs. We generate a reload of the fp/sp/ap + constant and
4438 rework the sum so that the reload register will be added to the index.
4439 This is safe because we know the address isn't shared.
4440
4441 We check for fp/ap/sp as both the first and second operand of the
4442 innermost PLUS. */
4443
4444 else if (GET_CODE (ad) == PLUS && GET_CODE (XEXP (ad, 1)) == CONST_INT
f302eea3 4445 && GET_CODE (XEXP (ad, 0)) == PLUS
eab89b90 4446 && (XEXP (XEXP (ad, 0), 0) == frame_pointer_rtx
a36d4c62
DE
4447#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
4448 || XEXP (XEXP (ad, 0), 0) == hard_frame_pointer_rtx
4449#endif
eab89b90
RK
4450#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
4451 || XEXP (XEXP (ad, 0), 0) == arg_pointer_rtx
4452#endif
4453 || XEXP (XEXP (ad, 0), 0) == stack_pointer_rtx)
4454 && ! memory_address_p (mode, ad))
4455 {
f302eea3 4456 *loc = ad = gen_rtx (PLUS, GET_MODE (ad),
eab89b90
RK
4457 plus_constant (XEXP (XEXP (ad, 0), 0),
4458 INTVAL (XEXP (ad, 1))),
4459 XEXP (XEXP (ad, 0), 1));
1ba61f4e
ILT
4460 find_reloads_address_part (XEXP (ad, 0), &XEXP (ad, 0),
4461 reload_address_base_reg_class,
a8c9daeb 4462 GET_MODE (ad), opnum, type, ind_levels);
858c3c8c 4463 find_reloads_address_1 (mode, XEXP (ad, 1), 1, &XEXP (ad, 1), opnum,
55c22565 4464 type, 0, insn);
eab89b90
RK
4465
4466 return 1;
4467 }
4468
4469 else if (GET_CODE (ad) == PLUS && GET_CODE (XEXP (ad, 1)) == CONST_INT
4470 && GET_CODE (XEXP (ad, 0)) == PLUS
4471 && (XEXP (XEXP (ad, 0), 1) == frame_pointer_rtx
a36d4c62
DE
4472#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
4473 || XEXP (XEXP (ad, 0), 1) == hard_frame_pointer_rtx
4474#endif
eab89b90
RK
4475#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
4476 || XEXP (XEXP (ad, 0), 1) == arg_pointer_rtx
4477#endif
4478 || XEXP (XEXP (ad, 0), 1) == stack_pointer_rtx)
4479 && ! memory_address_p (mode, ad))
4480 {
4481 *loc = ad = gen_rtx (PLUS, GET_MODE (ad),
ace53910 4482 XEXP (XEXP (ad, 0), 0),
eab89b90 4483 plus_constant (XEXP (XEXP (ad, 0), 1),
ace53910 4484 INTVAL (XEXP (ad, 1))));
1ba61f4e
ILT
4485 find_reloads_address_part (XEXP (ad, 1), &XEXP (ad, 1),
4486 reload_address_base_reg_class,
a8c9daeb 4487 GET_MODE (ad), opnum, type, ind_levels);
858c3c8c 4488 find_reloads_address_1 (mode, XEXP (ad, 0), 1, &XEXP (ad, 0), opnum,
55c22565 4489 type, 0, insn);
eab89b90
RK
4490
4491 return 1;
4492 }
4493
4494 /* See if address becomes valid when an eliminable register
4495 in a sum is replaced. */
4496
4497 tem = ad;
4498 if (GET_CODE (ad) == PLUS)
4499 tem = subst_indexed_address (ad);
4500 if (tem != ad && strict_memory_address_p (mode, tem))
4501 {
4502 /* Ok, we win that way. Replace any additional eliminable
4503 registers. */
4504
4505 subst_reg_equivs_changed = 0;
4506 tem = subst_reg_equivs (tem);
4507
4508 /* Make sure that didn't make the address invalid again. */
4509
4510 if (! subst_reg_equivs_changed || strict_memory_address_p (mode, tem))
4511 {
4512 *loc = tem;
4513 return 0;
4514 }
4515 }
4516
4517 /* If constants aren't valid addresses, reload the constant address
4518 into a register. */
191b18e9 4519 if (CONSTANT_P (ad) && ! strict_memory_address_p (mode, ad))
eab89b90
RK
4520 {
4521 /* If AD is in address in the constant pool, the MEM rtx may be shared.
4522 Unshare it so we can safely alter it. */
4523 if (memrefloc && GET_CODE (ad) == SYMBOL_REF
4524 && CONSTANT_POOL_ADDRESS_P (ad))
4525 {
eab89b90
RK
4526 *memrefloc = copy_rtx (*memrefloc);
4527 loc = &XEXP (*memrefloc, 0);
eab89b90
RK
4528 }
4529
1ba61f4e
ILT
4530 find_reloads_address_part (ad, loc, reload_address_base_reg_class,
4531 Pmode, opnum, type,
eab89b90
RK
4532 ind_levels);
4533 return 1;
4534 }
4535
55c22565
RK
4536 return find_reloads_address_1 (mode, ad, 0, loc, opnum, type, ind_levels,
4537 insn);
eab89b90
RK
4538}
4539\f
4540/* Find all pseudo regs appearing in AD
4541 that are eliminable in favor of equivalent values
4542 and do not have hard regs; replace them by their equivalents. */
4543
4544static rtx
4545subst_reg_equivs (ad)
4546 rtx ad;
4547{
4548 register RTX_CODE code = GET_CODE (ad);
4549 register int i;
4550 register char *fmt;
4551
4552 switch (code)
4553 {
4554 case HIGH:
4555 case CONST_INT:
4556 case CONST:
4557 case CONST_DOUBLE:
4558 case SYMBOL_REF:
4559 case LABEL_REF:
4560 case PC:
4561 case CC0:
4562 return ad;
4563
4564 case REG:
4565 {
4566 register int regno = REGNO (ad);
4567
4568 if (reg_equiv_constant[regno] != 0)
4569 {
4570 subst_reg_equivs_changed = 1;
4571 return reg_equiv_constant[regno];
4572 }
4573 }
4574 return ad;
4575
4576 case PLUS:
4577 /* Quickly dispose of a common case. */
4578 if (XEXP (ad, 0) == frame_pointer_rtx
4579 && GET_CODE (XEXP (ad, 1)) == CONST_INT)
4580 return ad;
4581 }
4582
4583 fmt = GET_RTX_FORMAT (code);
4584 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4585 if (fmt[i] == 'e')
4586 XEXP (ad, i) = subst_reg_equivs (XEXP (ad, i));
4587 return ad;
4588}
4589\f
4590/* Compute the sum of X and Y, making canonicalizations assumed in an
4591 address, namely: sum constant integers, surround the sum of two
4592 constants with a CONST, put the constant as the second operand, and
4593 group the constant on the outermost sum.
4594
4595 This routine assumes both inputs are already in canonical form. */
4596
4597rtx
4598form_sum (x, y)
4599 rtx x, y;
4600{
4601 rtx tem;
2c0623e8
RK
4602 enum machine_mode mode = GET_MODE (x);
4603
4604 if (mode == VOIDmode)
4605 mode = GET_MODE (y);
4606
4607 if (mode == VOIDmode)
4608 mode = Pmode;
eab89b90
RK
4609
4610 if (GET_CODE (x) == CONST_INT)
4611 return plus_constant (y, INTVAL (x));
4612 else if (GET_CODE (y) == CONST_INT)
4613 return plus_constant (x, INTVAL (y));
4614 else if (CONSTANT_P (x))
4615 tem = x, x = y, y = tem;
4616
4617 if (GET_CODE (x) == PLUS && CONSTANT_P (XEXP (x, 1)))
4618 return form_sum (XEXP (x, 0), form_sum (XEXP (x, 1), y));
4619
4620 /* Note that if the operands of Y are specified in the opposite
4621 order in the recursive calls below, infinite recursion will occur. */
d9771f62 4622 if (GET_CODE (y) == PLUS && CONSTANT_P (XEXP (y, 1)))
eab89b90
RK
4623 return form_sum (form_sum (x, XEXP (y, 0)), XEXP (y, 1));
4624
4625 /* If both constant, encapsulate sum. Otherwise, just form sum. A
4626 constant will have been placed second. */
4627 if (CONSTANT_P (x) && CONSTANT_P (y))
4628 {
4629 if (GET_CODE (x) == CONST)
4630 x = XEXP (x, 0);
4631 if (GET_CODE (y) == CONST)
4632 y = XEXP (y, 0);
4633
2c0623e8 4634 return gen_rtx (CONST, VOIDmode, gen_rtx (PLUS, mode, x, y));
eab89b90
RK
4635 }
4636
2c0623e8 4637 return gen_rtx (PLUS, mode, x, y);
eab89b90
RK
4638}
4639\f
4640/* If ADDR is a sum containing a pseudo register that should be
4641 replaced with a constant (from reg_equiv_constant),
4642 return the result of doing so, and also apply the associative
4643 law so that the result is more likely to be a valid address.
4644 (But it is not guaranteed to be one.)
4645
4646 Note that at most one register is replaced, even if more are
4647 replaceable. Also, we try to put the result into a canonical form
4648 so it is more likely to be a valid address.
4649
4650 In all other cases, return ADDR. */
4651
4652static rtx
4653subst_indexed_address (addr)
4654 rtx addr;
4655{
4656 rtx op0 = 0, op1 = 0, op2 = 0;
4657 rtx tem;
4658 int regno;
4659
4660 if (GET_CODE (addr) == PLUS)
4661 {
4662 /* Try to find a register to replace. */
4663 op0 = XEXP (addr, 0), op1 = XEXP (addr, 1), op2 = 0;
4664 if (GET_CODE (op0) == REG
4665 && (regno = REGNO (op0)) >= FIRST_PSEUDO_REGISTER
4666 && reg_renumber[regno] < 0
4667 && reg_equiv_constant[regno] != 0)
4668 op0 = reg_equiv_constant[regno];
4669 else if (GET_CODE (op1) == REG
4670 && (regno = REGNO (op1)) >= FIRST_PSEUDO_REGISTER
4671 && reg_renumber[regno] < 0
4672 && reg_equiv_constant[regno] != 0)
4673 op1 = reg_equiv_constant[regno];
4674 else if (GET_CODE (op0) == PLUS
4675 && (tem = subst_indexed_address (op0)) != op0)
4676 op0 = tem;
4677 else if (GET_CODE (op1) == PLUS
4678 && (tem = subst_indexed_address (op1)) != op1)
4679 op1 = tem;
4680 else
4681 return addr;
4682
4683 /* Pick out up to three things to add. */
4684 if (GET_CODE (op1) == PLUS)
4685 op2 = XEXP (op1, 1), op1 = XEXP (op1, 0);
4686 else if (GET_CODE (op0) == PLUS)
4687 op2 = op1, op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
4688
4689 /* Compute the sum. */
4690 if (op2 != 0)
4691 op1 = form_sum (op1, op2);
4692 if (op1 != 0)
4693 op0 = form_sum (op0, op1);
4694
4695 return op0;
4696 }
4697 return addr;
4698}
4699\f
858c3c8c
ILT
4700/* Record the pseudo registers we must reload into hard registers in a
4701 subexpression of a would-be memory address, X referring to a value
4702 in mode MODE. (This function is not called if the address we find
4703 is strictly valid.)
4704
eab89b90
RK
4705 CONTEXT = 1 means we are considering regs as index regs,
4706 = 0 means we are considering them as base regs.
4707
a8c9daeb 4708 OPNUM and TYPE specify the purpose of any reloads made.
eab89b90
RK
4709
4710 IND_LEVELS says how many levels of indirect addressing are
4711 supported at this point in the address.
4712
55c22565
RK
4713 INSN, if nonzero, is the insn in which we do the reload. It is used
4714 to determine if we may generate output reloads.
4715
eab89b90
RK
4716 We return nonzero if X, as a whole, is reloaded or replaced. */
4717
4718/* Note that we take shortcuts assuming that no multi-reg machine mode
4719 occurs as part of an address.
4720 Also, this is not fully machine-customizable; it works for machines
4721 such as vaxes and 68000's and 32000's, but other possible machines
4722 could have addressing modes that this does not handle right. */
4723
4724static int
55c22565 4725find_reloads_address_1 (mode, x, context, loc, opnum, type, ind_levels, insn)
858c3c8c 4726 enum machine_mode mode;
eab89b90
RK
4727 rtx x;
4728 int context;
4729 rtx *loc;
a8c9daeb
RK
4730 int opnum;
4731 enum reload_type type;
eab89b90 4732 int ind_levels;
55c22565 4733 rtx insn;
eab89b90
RK
4734{
4735 register RTX_CODE code = GET_CODE (x);
4736
a2d353e5 4737 switch (code)
eab89b90 4738 {
a2d353e5
RK
4739 case PLUS:
4740 {
4741 register rtx orig_op0 = XEXP (x, 0);
4742 register rtx orig_op1 = XEXP (x, 1);
4743 register RTX_CODE code0 = GET_CODE (orig_op0);
4744 register RTX_CODE code1 = GET_CODE (orig_op1);
4745 register rtx op0 = orig_op0;
4746 register rtx op1 = orig_op1;
4747
4748 if (GET_CODE (op0) == SUBREG)
4749 {
4750 op0 = SUBREG_REG (op0);
4751 code0 = GET_CODE (op0);
922db4bb
RK
4752 if (code0 == REG && REGNO (op0) < FIRST_PSEUDO_REGISTER)
4753 op0 = gen_rtx (REG, word_mode,
4754 REGNO (op0) + SUBREG_WORD (orig_op0));
a2d353e5 4755 }
87935f60 4756
a2d353e5
RK
4757 if (GET_CODE (op1) == SUBREG)
4758 {
4759 op1 = SUBREG_REG (op1);
4760 code1 = GET_CODE (op1);
922db4bb
RK
4761 if (code1 == REG && REGNO (op1) < FIRST_PSEUDO_REGISTER)
4762 op1 = gen_rtx (REG, GET_MODE (op1),
4763 REGNO (op1) + SUBREG_WORD (orig_op1));
a2d353e5
RK
4764 }
4765
5f8997b9
SC
4766 if (code0 == MULT || code0 == SIGN_EXTEND || code0 == TRUNCATE
4767 || code0 == ZERO_EXTEND || code1 == MEM)
a2d353e5 4768 {
858c3c8c 4769 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
55c22565 4770 type, ind_levels, insn);
858c3c8c 4771 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
55c22565 4772 type, ind_levels, insn);
a2d353e5
RK
4773 }
4774
5f8997b9
SC
4775 else if (code1 == MULT || code1 == SIGN_EXTEND || code1 == TRUNCATE
4776 || code1 == ZERO_EXTEND || code0 == MEM)
a2d353e5 4777 {
858c3c8c 4778 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
55c22565 4779 type, ind_levels, insn);
858c3c8c 4780 find_reloads_address_1 (mode, orig_op1, 1, &XEXP (x, 1), opnum,
55c22565 4781 type, ind_levels, insn);
a2d353e5
RK
4782 }
4783
4784 else if (code0 == CONST_INT || code0 == CONST
4785 || code0 == SYMBOL_REF || code0 == LABEL_REF)
858c3c8c 4786 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
55c22565 4787 type, ind_levels, insn);
a2d353e5
RK
4788
4789 else if (code1 == CONST_INT || code1 == CONST
4790 || code1 == SYMBOL_REF || code1 == LABEL_REF)
858c3c8c 4791 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
55c22565 4792 type, ind_levels, insn);
a2d353e5
RK
4793
4794 else if (code0 == REG && code1 == REG)
4795 {
4796 if (REG_OK_FOR_INDEX_P (op0)
858c3c8c 4797 && REG_MODE_OK_FOR_BASE_P (op1, mode))
a2d353e5
RK
4798 return 0;
4799 else if (REG_OK_FOR_INDEX_P (op1)
858c3c8c 4800 && REG_MODE_OK_FOR_BASE_P (op0, mode))
a2d353e5 4801 return 0;
858c3c8c
ILT
4802 else if (REG_MODE_OK_FOR_BASE_P (op1, mode))
4803 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
55c22565 4804 type, ind_levels, insn);
858c3c8c
ILT
4805 else if (REG_MODE_OK_FOR_BASE_P (op0, mode))
4806 find_reloads_address_1 (mode, orig_op1, 1, &XEXP (x, 1), opnum,
55c22565 4807 type, ind_levels, insn);
a2d353e5 4808 else if (REG_OK_FOR_INDEX_P (op1))
858c3c8c 4809 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
55c22565 4810 type, ind_levels, insn);
a2d353e5 4811 else if (REG_OK_FOR_INDEX_P (op0))
858c3c8c 4812 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
55c22565 4813 type, ind_levels, insn);
a2d353e5
RK
4814 else
4815 {
858c3c8c 4816 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
55c22565 4817 type, ind_levels, insn);
858c3c8c 4818 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
55c22565 4819 type, ind_levels, insn);
a2d353e5
RK
4820 }
4821 }
4822
4823 else if (code0 == REG)
4824 {
858c3c8c 4825 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
55c22565 4826 type, ind_levels, insn);
858c3c8c 4827 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
55c22565 4828 type, ind_levels, insn);
a2d353e5
RK
4829 }
4830
4831 else if (code1 == REG)
4832 {
858c3c8c 4833 find_reloads_address_1 (mode, orig_op1, 1, &XEXP (x, 1), opnum,
55c22565 4834 type, ind_levels, insn);
858c3c8c 4835 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
55c22565 4836 type, ind_levels, insn);
a2d353e5
RK
4837 }
4838 }
4839
4840 return 0;
4841
4842 case POST_INC:
4843 case POST_DEC:
4844 case PRE_INC:
4845 case PRE_DEC:
eab89b90
RK
4846 if (GET_CODE (XEXP (x, 0)) == REG)
4847 {
4848 register int regno = REGNO (XEXP (x, 0));
4849 int value = 0;
4850 rtx x_orig = x;
4851
4852 /* A register that is incremented cannot be constant! */
4853 if (regno >= FIRST_PSEUDO_REGISTER
4854 && reg_equiv_constant[regno] != 0)
4855 abort ();
4856
4857 /* Handle a register that is equivalent to a memory location
4858 which cannot be addressed directly. */
4859 if (reg_equiv_address[regno] != 0)
4860 {
4861 rtx tem = make_memloc (XEXP (x, 0), regno);
4757e6a4
JW
4862 /* First reload the memory location's address.
4863 We can't use ADDR_TYPE (type) here, because we need to
4864 write back the value after reading it, hence we actually
4865 need two registers. */
eab89b90 4866 find_reloads_address (GET_MODE (tem), 0, XEXP (tem, 0),
4757e6a4 4867 &XEXP (tem, 0), opnum, type,
55c22565 4868 ind_levels, insn);
eab89b90
RK
4869 /* Put this inside a new increment-expression. */
4870 x = gen_rtx (GET_CODE (x), GET_MODE (x), tem);
4871 /* Proceed to reload that, as if it contained a register. */
4872 }
4873
4874 /* If we have a hard register that is ok as an index,
4875 don't make a reload. If an autoincrement of a nice register
4876 isn't "valid", it must be that no autoincrement is "valid".
4877 If that is true and something made an autoincrement anyway,
4878 this must be a special context where one is allowed.
4879 (For example, a "push" instruction.)
4880 We can't improve this address, so leave it alone. */
4881
4882 /* Otherwise, reload the autoincrement into a suitable hard reg
4883 and record how much to increment by. */
4884
4885 if (reg_renumber[regno] >= 0)
4886 regno = reg_renumber[regno];
4887 if ((regno >= FIRST_PSEUDO_REGISTER
4888 || !(context ? REGNO_OK_FOR_INDEX_P (regno)
858c3c8c 4889 : REGNO_MODE_OK_FOR_BASE_P (regno, mode))))
eab89b90
RK
4890 {
4891 register rtx link;
55c22565
RK
4892 int reloadnum;
4893
4894 /* If we can output the register afterwards, do so, this
4895 saves the extra update.
4896 We can do so if we have an INSN - i.e. no JUMP_INSN nor
4897 CALL_INSN - and it does not set CC0.
4898 But don't do this if we cannot directly address the
4899 memory location, since this will make it harder to
4900 reuse address reloads, and increses register pressure.
4901 Also don't do this if we can probably update x directly. */
4902 rtx equiv = reg_equiv_mem[regno];
4903 int icode = (int) add_optab->handlers[(int) Pmode].insn_code;
4904 if (insn && GET_CODE (insn) == INSN && equiv
4905#ifdef HAVE_cc0
4906 && ! sets_cc0_p (PATTERN (insn))
4907#endif
4908 && ! (icode != CODE_FOR_nothing
4909 && (*insn_operand_predicate[icode][0]) (equiv, Pmode)
4910 && (*insn_operand_predicate[icode][1]) (equiv, Pmode)))
4911 {
4912 loc = &XEXP (x, 0);
4913 x = XEXP (x, 0);
4914 reloadnum
4915 = push_reload (x, x, loc, loc,
4916 (context
4917 ? reload_address_index_reg_class
4918 : reload_address_base_reg_class),
4919 GET_MODE (x), GET_MODE (x), VOIDmode, 0,
4920 opnum, RELOAD_OTHER);
4921 }
4922 else
4923 {
4924 reloadnum
4925 = push_reload (x, NULL_RTX, loc, NULL_PTR,
4926 (context
4927 ? reload_address_index_reg_class
4928 : reload_address_base_reg_class),
4929 GET_MODE (x), GET_MODE (x), VOIDmode, 0,
4930 opnum, type);
4931 reload_inc[reloadnum]
4932 = find_inc_amount (PATTERN (this_insn), XEXP (x_orig, 0));
4933
4934 value = 1;
4935 }
eab89b90
RK
4936
4937#ifdef AUTO_INC_DEC
4938 /* Update the REG_INC notes. */
4939
4940 for (link = REG_NOTES (this_insn);
4941 link; link = XEXP (link, 1))
4942 if (REG_NOTE_KIND (link) == REG_INC
4943 && REGNO (XEXP (link, 0)) == REGNO (XEXP (x_orig, 0)))
4944 push_replacement (&XEXP (link, 0), reloadnum, VOIDmode);
4945#endif
4946 }
4947 return value;
4948 }
a2d353e5 4949
eab89b90
RK
4950 else if (GET_CODE (XEXP (x, 0)) == MEM)
4951 {
4952 /* This is probably the result of a substitution, by eliminate_regs,
4953 of an equivalent address for a pseudo that was not allocated to a
4954 hard register. Verify that the specified address is valid and
4955 reload it into a register. */
4956 rtx tem = XEXP (x, 0);
4957 register rtx link;
4958 int reloadnum;
4959
4960 /* Since we know we are going to reload this item, don't decrement
4961 for the indirection level.
4962
4963 Note that this is actually conservative: it would be slightly
4964 more efficient to use the value of SPILL_INDIRECT_LEVELS from
4965 reload1.c here. */
4757e6a4
JW
4966 /* We can't use ADDR_TYPE (type) here, because we need to
4967 write back the value after reading it, hence we actually
4968 need two registers. */
eab89b90
RK
4969 find_reloads_address (GET_MODE (x), &XEXP (x, 0),
4970 XEXP (XEXP (x, 0), 0), &XEXP (XEXP (x, 0), 0),
55c22565 4971 opnum, type, ind_levels, insn);
eab89b90 4972
fb3821f7 4973 reloadnum = push_reload (x, NULL_RTX, loc, NULL_PTR,
1ba61f4e
ILT
4974 (context
4975 ? reload_address_index_reg_class
4976 : reload_address_base_reg_class),
a8c9daeb 4977 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
eab89b90
RK
4978 reload_inc[reloadnum]
4979 = find_inc_amount (PATTERN (this_insn), XEXP (x, 0));
4980
4981 link = FIND_REG_INC_NOTE (this_insn, tem);
4982 if (link != 0)
4983 push_replacement (&XEXP (link, 0), reloadnum, VOIDmode);
4984
4985 return 1;
4986 }
a2d353e5
RK
4987 return 0;
4988
4989 case MEM:
4990 /* This is probably the result of a substitution, by eliminate_regs, of
4991 an equivalent address for a pseudo that was not allocated to a hard
4992 register. Verify that the specified address is valid and reload it
4993 into a register.
eab89b90 4994
a2d353e5
RK
4995 Since we know we are going to reload this item, don't decrement for
4996 the indirection level.
eab89b90
RK
4997
4998 Note that this is actually conservative: it would be slightly more
4999 efficient to use the value of SPILL_INDIRECT_LEVELS from
5000 reload1.c here. */
5001
5002 find_reloads_address (GET_MODE (x), loc, XEXP (x, 0), &XEXP (x, 0),
55c22565 5003 opnum, ADDR_TYPE (type), ind_levels, insn);
fb3821f7 5004 push_reload (*loc, NULL_RTX, loc, NULL_PTR,
1ba61f4e
ILT
5005 (context ? reload_address_index_reg_class
5006 : reload_address_base_reg_class),
a8c9daeb 5007 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
eab89b90 5008 return 1;
eab89b90 5009
a2d353e5
RK
5010 case REG:
5011 {
5012 register int regno = REGNO (x);
5013
5014 if (reg_equiv_constant[regno] != 0)
5015 {
5016 find_reloads_address_part (reg_equiv_constant[regno], loc,
1ba61f4e
ILT
5017 (context
5018 ? reload_address_index_reg_class
5019 : reload_address_base_reg_class),
a2d353e5
RK
5020 GET_MODE (x), opnum, type, ind_levels);
5021 return 1;
5022 }
eab89b90
RK
5023
5024#if 0 /* This might screw code in reload1.c to delete prior output-reload
5025 that feeds this insn. */
a2d353e5
RK
5026 if (reg_equiv_mem[regno] != 0)
5027 {
5028 push_reload (reg_equiv_mem[regno], NULL_RTX, loc, NULL_PTR,
1ba61f4e
ILT
5029 (context
5030 ? reload_address_index_reg_class
5031 : reload_address_base_reg_class),
a2d353e5
RK
5032 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5033 return 1;
5034 }
eab89b90 5035#endif
eab89b90 5036
a2d353e5
RK
5037 if (reg_equiv_address[regno] != 0)
5038 {
5039 x = make_memloc (x, regno);
5040 find_reloads_address (GET_MODE (x), 0, XEXP (x, 0), &XEXP (x, 0),
55c22565 5041 opnum, ADDR_TYPE (type), ind_levels, insn);
a2d353e5 5042 }
eab89b90 5043
a2d353e5
RK
5044 if (reg_renumber[regno] >= 0)
5045 regno = reg_renumber[regno];
5046
5047 if ((regno >= FIRST_PSEUDO_REGISTER
5048 || !(context ? REGNO_OK_FOR_INDEX_P (regno)
858c3c8c 5049 : REGNO_MODE_OK_FOR_BASE_P (regno, mode))))
a2d353e5
RK
5050 {
5051 push_reload (x, NULL_RTX, loc, NULL_PTR,
1ba61f4e
ILT
5052 (context
5053 ? reload_address_index_reg_class
5054 : reload_address_base_reg_class),
a2d353e5
RK
5055 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5056 return 1;
5057 }
5058
5059 /* If a register appearing in an address is the subject of a CLOBBER
5060 in this insn, reload it into some other register to be safe.
5061 The CLOBBER is supposed to make the register unavailable
5062 from before this insn to after it. */
5063 if (regno_clobbered_p (regno, this_insn))
5064 {
5065 push_reload (x, NULL_RTX, loc, NULL_PTR,
1ba61f4e
ILT
5066 (context
5067 ? reload_address_index_reg_class
5068 : reload_address_base_reg_class),
a2d353e5
RK
5069 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5070 return 1;
5071 }
5072 }
5073 return 0;
5074
5075 case SUBREG:
922db4bb 5076 if (GET_CODE (SUBREG_REG (x)) == REG)
eab89b90 5077 {
922db4bb
RK
5078 /* If this is a SUBREG of a hard register and the resulting register
5079 is of the wrong class, reload the whole SUBREG. This avoids
5080 needless copies if SUBREG_REG is multi-word. */
5081 if (REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
5082 {
5083 int regno = REGNO (SUBREG_REG (x)) + SUBREG_WORD (x);
a2d353e5 5084
922db4bb 5085 if (! (context ? REGNO_OK_FOR_INDEX_P (regno)
858c3c8c 5086 : REGNO_MODE_OK_FOR_BASE_P (regno, mode)))
922db4bb
RK
5087 {
5088 push_reload (x, NULL_RTX, loc, NULL_PTR,
1ba61f4e
ILT
5089 (context
5090 ? reload_address_index_reg_class
5091 : reload_address_base_reg_class),
922db4bb
RK
5092 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5093 return 1;
5094 }
5095 }
abc95ed3 5096 /* If this is a SUBREG of a pseudo-register, and the pseudo-register
922db4bb
RK
5097 is larger than the class size, then reload the whole SUBREG. */
5098 else
a2d353e5 5099 {
922db4bb 5100 enum reg_class class = (context
1ba61f4e
ILT
5101 ? reload_address_index_reg_class
5102 : reload_address_base_reg_class);
922db4bb
RK
5103 if (CLASS_MAX_NREGS (class, GET_MODE (SUBREG_REG (x)))
5104 > reg_class_size[class])
5105 {
5106 push_reload (x, NULL_RTX, loc, NULL_PTR, class,
5107 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5108 return 1;
5109 }
a2d353e5 5110 }
eab89b90 5111 }
a2d353e5 5112 break;
eab89b90
RK
5113 }
5114
a2d353e5
RK
5115 {
5116 register char *fmt = GET_RTX_FORMAT (code);
5117 register int i;
5118
5119 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5120 {
5121 if (fmt[i] == 'e')
858c3c8c 5122 find_reloads_address_1 (mode, XEXP (x, i), context, &XEXP (x, i),
55c22565 5123 opnum, type, ind_levels, insn);
a2d353e5
RK
5124 }
5125 }
5126
eab89b90
RK
5127 return 0;
5128}
5129\f
5130/* X, which is found at *LOC, is a part of an address that needs to be
5131 reloaded into a register of class CLASS. If X is a constant, or if
5132 X is a PLUS that contains a constant, check that the constant is a
5133 legitimate operand and that we are supposed to be able to load
5134 it into the register.
5135
5136 If not, force the constant into memory and reload the MEM instead.
5137
5138 MODE is the mode to use, in case X is an integer constant.
5139
a8c9daeb 5140 OPNUM and TYPE describe the purpose of any reloads made.
eab89b90
RK
5141
5142 IND_LEVELS says how many levels of indirect addressing this machine
5143 supports. */
5144
5145static void
a8c9daeb 5146find_reloads_address_part (x, loc, class, mode, opnum, type, ind_levels)
eab89b90
RK
5147 rtx x;
5148 rtx *loc;
5149 enum reg_class class;
5150 enum machine_mode mode;
a8c9daeb
RK
5151 int opnum;
5152 enum reload_type type;
eab89b90
RK
5153 int ind_levels;
5154{
5155 if (CONSTANT_P (x)
5156 && (! LEGITIMATE_CONSTANT_P (x)
5157 || PREFERRED_RELOAD_CLASS (x, class) == NO_REGS))
5158 {
5159 rtx tem = x = force_const_mem (mode, x);
5160 find_reloads_address (mode, &tem, XEXP (tem, 0), &XEXP (tem, 0),
55c22565 5161 opnum, type, ind_levels, 0);
eab89b90
RK
5162 }
5163
5164 else if (GET_CODE (x) == PLUS
5165 && CONSTANT_P (XEXP (x, 1))
5166 && (! LEGITIMATE_CONSTANT_P (XEXP (x, 1))
5167 || PREFERRED_RELOAD_CLASS (XEXP (x, 1), class) == NO_REGS))
5168 {
5169 rtx tem = force_const_mem (GET_MODE (x), XEXP (x, 1));
5170
5171 x = gen_rtx (PLUS, GET_MODE (x), XEXP (x, 0), tem);
5172 find_reloads_address (mode, &tem, XEXP (tem, 0), &XEXP (tem, 0),
55c22565 5173 opnum, type, ind_levels, 0);
eab89b90
RK
5174 }
5175
fb3821f7 5176 push_reload (x, NULL_RTX, loc, NULL_PTR, class,
a8c9daeb 5177 mode, VOIDmode, 0, 0, opnum, type);
eab89b90
RK
5178}
5179\f
a8c9daeb 5180/* Substitute into the current INSN the registers into which we have reloaded
eab89b90
RK
5181 the things that need reloading. The array `replacements'
5182 says contains the locations of all pointers that must be changed
5183 and says what to replace them with.
5184
5185 Return the rtx that X translates into; usually X, but modified. */
5186
5187void
5188subst_reloads ()
5189{
5190 register int i;
5191
5192 for (i = 0; i < n_replacements; i++)
5193 {
5194 register struct replacement *r = &replacements[i];
5195 register rtx reloadreg = reload_reg_rtx[r->what];
5196 if (reloadreg)
5197 {
5198 /* Encapsulate RELOADREG so its machine mode matches what
26f1a00e
RK
5199 used to be there. Note that gen_lowpart_common will
5200 do the wrong thing if RELOADREG is multi-word. RELOADREG
5201 will always be a REG here. */
eab89b90 5202 if (GET_MODE (reloadreg) != r->mode && r->mode != VOIDmode)
26f1a00e 5203 reloadreg = gen_rtx (REG, r->mode, REGNO (reloadreg));
eab89b90
RK
5204
5205 /* If we are putting this into a SUBREG and RELOADREG is a
5206 SUBREG, we would be making nested SUBREGs, so we have to fix
5207 this up. Note that r->where == &SUBREG_REG (*r->subreg_loc). */
5208
5209 if (r->subreg_loc != 0 && GET_CODE (reloadreg) == SUBREG)
5210 {
5211 if (GET_MODE (*r->subreg_loc)
5212 == GET_MODE (SUBREG_REG (reloadreg)))
5213 *r->subreg_loc = SUBREG_REG (reloadreg);
5214 else
5215 {
5216 *r->where = SUBREG_REG (reloadreg);
5217 SUBREG_WORD (*r->subreg_loc) += SUBREG_WORD (reloadreg);
5218 }
5219 }
5220 else
5221 *r->where = reloadreg;
5222 }
5223 /* If reload got no reg and isn't optional, something's wrong. */
5224 else if (! reload_optional[r->what])
5225 abort ();
5226 }
5227}
5228\f
5229/* Make a copy of any replacements being done into X and move those copies
5230 to locations in Y, a copy of X. We only look at the highest level of
5231 the RTL. */
5232
5233void
5234copy_replacements (x, y)
5235 rtx x;
5236 rtx y;
5237{
5238 int i, j;
5239 enum rtx_code code = GET_CODE (x);
5240 char *fmt = GET_RTX_FORMAT (code);
5241 struct replacement *r;
5242
5243 /* We can't support X being a SUBREG because we might then need to know its
5244 location if something inside it was replaced. */
5245 if (code == SUBREG)
5246 abort ();
5247
5248 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5249 if (fmt[i] == 'e')
5250 for (j = 0; j < n_replacements; j++)
5251 {
5252 if (replacements[j].subreg_loc == &XEXP (x, i))
5253 {
5254 r = &replacements[n_replacements++];
5255 r->where = replacements[j].where;
5256 r->subreg_loc = &XEXP (y, i);
5257 r->what = replacements[j].what;
5258 r->mode = replacements[j].mode;
5259 }
5260 else if (replacements[j].where == &XEXP (x, i))
5261 {
5262 r = &replacements[n_replacements++];
5263 r->where = &XEXP (y, i);
5264 r->subreg_loc = 0;
5265 r->what = replacements[j].what;
5266 r->mode = replacements[j].mode;
5267 }
5268 }
5269}
5270\f
af929c62
RK
5271/* If LOC was scheduled to be replaced by something, return the replacement.
5272 Otherwise, return *LOC. */
5273
5274rtx
5275find_replacement (loc)
5276 rtx *loc;
5277{
5278 struct replacement *r;
5279
5280 for (r = &replacements[0]; r < &replacements[n_replacements]; r++)
5281 {
5282 rtx reloadreg = reload_reg_rtx[r->what];
5283
5284 if (reloadreg && r->where == loc)
5285 {
5286 if (r->mode != VOIDmode && GET_MODE (reloadreg) != r->mode)
5287 reloadreg = gen_rtx (REG, r->mode, REGNO (reloadreg));
5288
5289 return reloadreg;
5290 }
5291 else if (reloadreg && r->subreg_loc == loc)
5292 {
5293 /* RELOADREG must be either a REG or a SUBREG.
5294
5295 ??? Is it actually still ever a SUBREG? If so, why? */
5296
5297 if (GET_CODE (reloadreg) == REG)
5298 return gen_rtx (REG, GET_MODE (*loc),
5299 REGNO (reloadreg) + SUBREG_WORD (*loc));
5300 else if (GET_MODE (reloadreg) == GET_MODE (*loc))
5301 return reloadreg;
5302 else
5303 return gen_rtx (SUBREG, GET_MODE (*loc), SUBREG_REG (reloadreg),
5304 SUBREG_WORD (reloadreg) + SUBREG_WORD (*loc));
5305 }
5306 }
5307
5308 return *loc;
5309}
5310\f
eab89b90
RK
5311/* Return nonzero if register in range [REGNO, ENDREGNO)
5312 appears either explicitly or implicitly in X
4644aad4 5313 other than being stored into (except for earlyclobber operands).
eab89b90
RK
5314
5315 References contained within the substructure at LOC do not count.
5316 LOC may be zero, meaning don't ignore anything.
5317
5318 This is similar to refers_to_regno_p in rtlanal.c except that we
5319 look at equivalences for pseudos that didn't get hard registers. */
5320
5321int
5322refers_to_regno_for_reload_p (regno, endregno, x, loc)
5323 int regno, endregno;
5324 rtx x;
5325 rtx *loc;
5326{
5327 register int i;
5328 register RTX_CODE code;
5329 register char *fmt;
5330
5331 if (x == 0)
5332 return 0;
5333
5334 repeat:
5335 code = GET_CODE (x);
5336
5337 switch (code)
5338 {
5339 case REG:
5340 i = REGNO (x);
5341
4803a34a
RK
5342 /* If this is a pseudo, a hard register must not have been allocated.
5343 X must therefore either be a constant or be in memory. */
5344 if (i >= FIRST_PSEUDO_REGISTER)
5345 {
5346 if (reg_equiv_memory_loc[i])
5347 return refers_to_regno_for_reload_p (regno, endregno,
fb3821f7
CH
5348 reg_equiv_memory_loc[i],
5349 NULL_PTR);
4803a34a
RK
5350
5351 if (reg_equiv_constant[i])
5352 return 0;
5353
5354 abort ();
5355 }
eab89b90
RK
5356
5357 return (endregno > i
5358 && regno < i + (i < FIRST_PSEUDO_REGISTER
5359 ? HARD_REGNO_NREGS (i, GET_MODE (x))
5360 : 1));
5361
5362 case SUBREG:
5363 /* If this is a SUBREG of a hard reg, we can see exactly which
5364 registers are being modified. Otherwise, handle normally. */
5365 if (GET_CODE (SUBREG_REG (x)) == REG
5366 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
5367 {
5368 int inner_regno = REGNO (SUBREG_REG (x)) + SUBREG_WORD (x);
5369 int inner_endregno
5370 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
5371 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
5372
5373 return endregno > inner_regno && regno < inner_endregno;
5374 }
5375 break;
5376
5377 case CLOBBER:
5378 case SET:
5379 if (&SET_DEST (x) != loc
5380 /* Note setting a SUBREG counts as referring to the REG it is in for
5381 a pseudo but not for hard registers since we can
5382 treat each word individually. */
5383 && ((GET_CODE (SET_DEST (x)) == SUBREG
5384 && loc != &SUBREG_REG (SET_DEST (x))
5385 && GET_CODE (SUBREG_REG (SET_DEST (x))) == REG
5386 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
5387 && refers_to_regno_for_reload_p (regno, endregno,
5388 SUBREG_REG (SET_DEST (x)),
5389 loc))
abc95ed3 5390 /* If the output is an earlyclobber operand, this is
4644aad4
RK
5391 a conflict. */
5392 || ((GET_CODE (SET_DEST (x)) != REG
5393 || earlyclobber_operand_p (SET_DEST (x)))
eab89b90
RK
5394 && refers_to_regno_for_reload_p (regno, endregno,
5395 SET_DEST (x), loc))))
5396 return 1;
5397
5398 if (code == CLOBBER || loc == &SET_SRC (x))
5399 return 0;
5400 x = SET_SRC (x);
5401 goto repeat;
5402 }
5403
5404 /* X does not match, so try its subexpressions. */
5405
5406 fmt = GET_RTX_FORMAT (code);
5407 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5408 {
5409 if (fmt[i] == 'e' && loc != &XEXP (x, i))
5410 {
5411 if (i == 0)
5412 {
5413 x = XEXP (x, 0);
5414 goto repeat;
5415 }
5416 else
5417 if (refers_to_regno_for_reload_p (regno, endregno,
5418 XEXP (x, i), loc))
5419 return 1;
5420 }
5421 else if (fmt[i] == 'E')
5422 {
5423 register int j;
5424 for (j = XVECLEN (x, i) - 1; j >=0; j--)
5425 if (loc != &XVECEXP (x, i, j)
5426 && refers_to_regno_for_reload_p (regno, endregno,
5427 XVECEXP (x, i, j), loc))
5428 return 1;
5429 }
5430 }
5431 return 0;
5432}
bfa30b22
RK
5433
5434/* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
5435 we check if any register number in X conflicts with the relevant register
5436 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
5437 contains a MEM (we don't bother checking for memory addresses that can't
5438 conflict because we expect this to be a rare case.
5439
5440 This function is similar to reg_overlap_mention_p in rtlanal.c except
5441 that we look at equivalences for pseudos that didn't get hard registers. */
5442
5443int
5444reg_overlap_mentioned_for_reload_p (x, in)
5445 rtx x, in;
5446{
5447 int regno, endregno;
5448
5449 if (GET_CODE (x) == SUBREG)
5450 {
5451 regno = REGNO (SUBREG_REG (x));
5452 if (regno < FIRST_PSEUDO_REGISTER)
5453 regno += SUBREG_WORD (x);
5454 }
5455 else if (GET_CODE (x) == REG)
5456 {
5457 regno = REGNO (x);
4803a34a
RK
5458
5459 /* If this is a pseudo, it must not have been assigned a hard register.
5460 Therefore, it must either be in memory or be a constant. */
5461
5462 if (regno >= FIRST_PSEUDO_REGISTER)
5463 {
5464 if (reg_equiv_memory_loc[regno])
5465 return refers_to_mem_for_reload_p (in);
5466 else if (reg_equiv_constant[regno])
5467 return 0;
5468 abort ();
5469 }
bfa30b22
RK
5470 }
5471 else if (CONSTANT_P (x))
5472 return 0;
5473 else if (GET_CODE (x) == MEM)
4803a34a 5474 return refers_to_mem_for_reload_p (in);
bfa30b22
RK
5475 else if (GET_CODE (x) == SCRATCH || GET_CODE (x) == PC
5476 || GET_CODE (x) == CC0)
5477 return reg_mentioned_p (x, in);
5478 else
5479 abort ();
5480
5481 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
5482 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
5483
fb3821f7 5484 return refers_to_regno_for_reload_p (regno, endregno, in, NULL_PTR);
bfa30b22 5485}
4803a34a
RK
5486
5487/* Return nonzero if anything in X contains a MEM. Look also for pseudo
5488 registers. */
5489
5490int
5491refers_to_mem_for_reload_p (x)
5492 rtx x;
5493{
5494 char *fmt;
5495 int i;
5496
5497 if (GET_CODE (x) == MEM)
5498 return 1;
5499
5500 if (GET_CODE (x) == REG)
5501 return (REGNO (x) >= FIRST_PSEUDO_REGISTER
5502 && reg_equiv_memory_loc[REGNO (x)]);
5503
5504 fmt = GET_RTX_FORMAT (GET_CODE (x));
5505 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
5506 if (fmt[i] == 'e'
5507 && (GET_CODE (XEXP (x, i)) == MEM
5508 || refers_to_mem_for_reload_p (XEXP (x, i))))
5509 return 1;
5510
5511 return 0;
5512}
eab89b90 5513\f
eab89b90
RK
5514/* Check the insns before INSN to see if there is a suitable register
5515 containing the same value as GOAL.
5516 If OTHER is -1, look for a register in class CLASS.
5517 Otherwise, just see if register number OTHER shares GOAL's value.
5518
5519 Return an rtx for the register found, or zero if none is found.
5520
5521 If RELOAD_REG_P is (short *)1,
5522 we reject any hard reg that appears in reload_reg_rtx
5523 because such a hard reg is also needed coming into this insn.
5524
5525 If RELOAD_REG_P is any other nonzero value,
5526 it is a vector indexed by hard reg number
5527 and we reject any hard reg whose element in the vector is nonnegative
5528 as well as any that appears in reload_reg_rtx.
5529
5530 If GOAL is zero, then GOALREG is a register number; we look
5531 for an equivalent for that register.
5532
5533 MODE is the machine mode of the value we want an equivalence for.
5534 If GOAL is nonzero and not VOIDmode, then it must have mode MODE.
5535
5536 This function is used by jump.c as well as in the reload pass.
5537
5538 If GOAL is the sum of the stack pointer and a constant, we treat it
5539 as if it were a constant except that sp is required to be unchanging. */
5540
5541rtx
5542find_equiv_reg (goal, insn, class, other, reload_reg_p, goalreg, mode)
5543 register rtx goal;
5544 rtx insn;
5545 enum reg_class class;
5546 register int other;
5547 short *reload_reg_p;
5548 int goalreg;
5549 enum machine_mode mode;
5550{
5551 register rtx p = insn;
f55b1d97 5552 rtx goaltry, valtry, value, where;
eab89b90
RK
5553 register rtx pat;
5554 register int regno = -1;
5555 int valueno;
5556 int goal_mem = 0;
5557 int goal_const = 0;
5558 int goal_mem_addr_varies = 0;
5559 int need_stable_sp = 0;
5560 int nregs;
5561 int valuenregs;
5562
5563 if (goal == 0)
5564 regno = goalreg;
5565 else if (GET_CODE (goal) == REG)
5566 regno = REGNO (goal);
5567 else if (GET_CODE (goal) == MEM)
5568 {
5569 enum rtx_code code = GET_CODE (XEXP (goal, 0));
5570 if (MEM_VOLATILE_P (goal))
5571 return 0;
5572 if (flag_float_store && GET_MODE_CLASS (GET_MODE (goal)) == MODE_FLOAT)
5573 return 0;
5574 /* An address with side effects must be reexecuted. */
5575 switch (code)
5576 {
5577 case POST_INC:
5578 case PRE_INC:
5579 case POST_DEC:
5580 case PRE_DEC:
5581 return 0;
5582 }
5583 goal_mem = 1;
5584 }
5585 else if (CONSTANT_P (goal))
5586 goal_const = 1;
5587 else if (GET_CODE (goal) == PLUS
5588 && XEXP (goal, 0) == stack_pointer_rtx
5589 && CONSTANT_P (XEXP (goal, 1)))
5590 goal_const = need_stable_sp = 1;
5591 else
5592 return 0;
5593
5594 /* On some machines, certain regs must always be rejected
5595 because they don't behave the way ordinary registers do. */
5596
5597#ifdef OVERLAPPING_REGNO_P
5598 if (regno >= 0 && regno < FIRST_PSEUDO_REGISTER
5599 && OVERLAPPING_REGNO_P (regno))
5600 return 0;
5601#endif
5602
5603 /* Scan insns back from INSN, looking for one that copies
5604 a value into or out of GOAL.
5605 Stop and give up if we reach a label. */
5606
5607 while (1)
5608 {
5609 p = PREV_INSN (p);
5610 if (p == 0 || GET_CODE (p) == CODE_LABEL)
5611 return 0;
5612 if (GET_CODE (p) == INSN
0f41302f 5613 /* If we don't want spill regs ... */
a8c9daeb
RK
5614 && (! (reload_reg_p != 0
5615 && reload_reg_p != (short *) (HOST_WIDE_INT) 1)
eab89b90
RK
5616 /* ... then ignore insns introduced by reload; they aren't useful
5617 and can cause results in reload_as_needed to be different
5618 from what they were when calculating the need for spills.
5619 If we notice an input-reload insn here, we will reject it below,
5620 but it might hide a usable equivalent. That makes bad code.
5621 It may even abort: perhaps no reg was spilled for this insn
5622 because it was assumed we would find that equivalent. */
5623 || INSN_UID (p) < reload_first_uid))
5624 {
e8094962 5625 rtx tem;
eab89b90
RK
5626 pat = single_set (p);
5627 /* First check for something that sets some reg equal to GOAL. */
5628 if (pat != 0
5629 && ((regno >= 0
5630 && true_regnum (SET_SRC (pat)) == regno
5631 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
5632 ||
5633 (regno >= 0
5634 && true_regnum (SET_DEST (pat)) == regno
5635 && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0)
5636 ||
5637 (goal_const && rtx_equal_p (SET_SRC (pat), goal)
5638 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
5639 || (goal_mem
5640 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0
5641 && rtx_renumbered_equal_p (goal, SET_SRC (pat)))
5642 || (goal_mem
5643 && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0
e8094962
RK
5644 && rtx_renumbered_equal_p (goal, SET_DEST (pat)))
5645 /* If we are looking for a constant,
5646 and something equivalent to that constant was copied
5647 into a reg, we can use that reg. */
fb3821f7
CH
5648 || (goal_const && (tem = find_reg_note (p, REG_EQUIV,
5649 NULL_RTX))
e8094962 5650 && rtx_equal_p (XEXP (tem, 0), goal)
95d3562b 5651 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
fb3821f7
CH
5652 || (goal_const && (tem = find_reg_note (p, REG_EQUIV,
5653 NULL_RTX))
e8094962
RK
5654 && GET_CODE (SET_DEST (pat)) == REG
5655 && GET_CODE (XEXP (tem, 0)) == CONST_DOUBLE
5656 && GET_MODE_CLASS (GET_MODE (XEXP (tem, 0))) == MODE_FLOAT
5657 && GET_CODE (goal) == CONST_INT
f55b1d97
RK
5658 && 0 != (goaltry = operand_subword (XEXP (tem, 0), 0, 0,
5659 VOIDmode))
5660 && rtx_equal_p (goal, goaltry)
e8094962
RK
5661 && (valtry = operand_subword (SET_DEST (pat), 0, 0,
5662 VOIDmode))
95d3562b 5663 && (valueno = true_regnum (valtry)) >= 0)
fb3821f7
CH
5664 || (goal_const && (tem = find_reg_note (p, REG_EQUIV,
5665 NULL_RTX))
e8094962
RK
5666 && GET_CODE (SET_DEST (pat)) == REG
5667 && GET_CODE (XEXP (tem, 0)) == CONST_DOUBLE
5668 && GET_MODE_CLASS (GET_MODE (XEXP (tem, 0))) == MODE_FLOAT
5669 && GET_CODE (goal) == CONST_INT
f55b1d97
RK
5670 && 0 != (goaltry = operand_subword (XEXP (tem, 0), 1, 0,
5671 VOIDmode))
5672 && rtx_equal_p (goal, goaltry)
e8094962
RK
5673 && (valtry
5674 = operand_subword (SET_DEST (pat), 1, 0, VOIDmode))
95d3562b 5675 && (valueno = true_regnum (valtry)) >= 0)))
eab89b90
RK
5676 if (other >= 0
5677 ? valueno == other
5678 : ((unsigned) valueno < FIRST_PSEUDO_REGISTER
5679 && TEST_HARD_REG_BIT (reg_class_contents[(int) class],
5680 valueno)))
5681 {
5682 value = valtry;
5683 where = p;
5684 break;
5685 }
5686 }
5687 }
5688
5689 /* We found a previous insn copying GOAL into a suitable other reg VALUE
5690 (or copying VALUE into GOAL, if GOAL is also a register).
5691 Now verify that VALUE is really valid. */
5692
5693 /* VALUENO is the register number of VALUE; a hard register. */
5694
5695 /* Don't try to re-use something that is killed in this insn. We want
5696 to be able to trust REG_UNUSED notes. */
5697 if (find_reg_note (where, REG_UNUSED, value))
5698 return 0;
5699
5700 /* If we propose to get the value from the stack pointer or if GOAL is
5701 a MEM based on the stack pointer, we need a stable SP. */
d5a1d1c7 5702 if (valueno == STACK_POINTER_REGNUM || regno == STACK_POINTER_REGNUM
bfa30b22
RK
5703 || (goal_mem && reg_overlap_mentioned_for_reload_p (stack_pointer_rtx,
5704 goal)))
eab89b90
RK
5705 need_stable_sp = 1;
5706
5707 /* Reject VALUE if the copy-insn moved the wrong sort of datum. */
5708 if (GET_MODE (value) != mode)
5709 return 0;
5710
5711 /* Reject VALUE if it was loaded from GOAL
5712 and is also a register that appears in the address of GOAL. */
5713
bd5f6d44 5714 if (goal_mem && value == SET_DEST (single_set (where))
bfa30b22
RK
5715 && refers_to_regno_for_reload_p (valueno,
5716 (valueno
5717 + HARD_REGNO_NREGS (valueno, mode)),
fb3821f7 5718 goal, NULL_PTR))
eab89b90
RK
5719 return 0;
5720
5721 /* Reject registers that overlap GOAL. */
5722
5723 if (!goal_mem && !goal_const
5724 && regno + HARD_REGNO_NREGS (regno, mode) > valueno
5725 && regno < valueno + HARD_REGNO_NREGS (valueno, mode))
5726 return 0;
5727
5728 /* Reject VALUE if it is one of the regs reserved for reloads.
5729 Reload1 knows how to reuse them anyway, and it would get
5730 confused if we allocated one without its knowledge.
5731 (Now that insns introduced by reload are ignored above,
5732 this case shouldn't happen, but I'm not positive.) */
5733
a8c9daeb 5734 if (reload_reg_p != 0 && reload_reg_p != (short *) (HOST_WIDE_INT) 1
eab89b90
RK
5735 && reload_reg_p[valueno] >= 0)
5736 return 0;
5737
5738 /* On some machines, certain regs must always be rejected
5739 because they don't behave the way ordinary registers do. */
5740
5741#ifdef OVERLAPPING_REGNO_P
5742 if (OVERLAPPING_REGNO_P (valueno))
5743 return 0;
5744#endif
5745
5746 nregs = HARD_REGNO_NREGS (regno, mode);
5747 valuenregs = HARD_REGNO_NREGS (valueno, mode);
5748
5749 /* Reject VALUE if it is a register being used for an input reload
5750 even if it is not one of those reserved. */
5751
5752 if (reload_reg_p != 0)
5753 {
5754 int i;
5755 for (i = 0; i < n_reloads; i++)
5756 if (reload_reg_rtx[i] != 0 && reload_in[i])
5757 {
5758 int regno1 = REGNO (reload_reg_rtx[i]);
5759 int nregs1 = HARD_REGNO_NREGS (regno1,
5760 GET_MODE (reload_reg_rtx[i]));
5761 if (regno1 < valueno + valuenregs
5762 && regno1 + nregs1 > valueno)
5763 return 0;
5764 }
5765 }
5766
5767 if (goal_mem)
54b5ffe9
RS
5768 /* We must treat frame pointer as varying here,
5769 since it can vary--in a nonlocal goto as generated by expand_goto. */
5770 goal_mem_addr_varies = !CONSTANT_ADDRESS_P (XEXP (goal, 0));
eab89b90
RK
5771
5772 /* Now verify that the values of GOAL and VALUE remain unaltered
5773 until INSN is reached. */
5774
5775 p = insn;
5776 while (1)
5777 {
5778 p = PREV_INSN (p);
5779 if (p == where)
5780 return value;
5781
5782 /* Don't trust the conversion past a function call
5783 if either of the two is in a call-clobbered register, or memory. */
5784 if (GET_CODE (p) == CALL_INSN
5785 && ((regno >= 0 && regno < FIRST_PSEUDO_REGISTER
5786 && call_used_regs[regno])
5787 ||
5788 (valueno >= 0 && valueno < FIRST_PSEUDO_REGISTER
5789 && call_used_regs[valueno])
5790 ||
5791 goal_mem
5792 || need_stable_sp))
5793 return 0;
5794
41fe17ab
RK
5795#ifdef NON_SAVING_SETJMP
5796 if (NON_SAVING_SETJMP && GET_CODE (p) == NOTE
5797 && NOTE_LINE_NUMBER (p) == NOTE_INSN_SETJMP)
5798 return 0;
5799#endif
5800
eab89b90
RK
5801#ifdef INSN_CLOBBERS_REGNO_P
5802 if ((valueno >= 0 && valueno < FIRST_PSEUDO_REGISTER
5803 && INSN_CLOBBERS_REGNO_P (p, valueno))
5804 || (regno >= 0 && regno < FIRST_PSEUDO_REGISTER
5805 && INSN_CLOBBERS_REGNO_P (p, regno)))
5806 return 0;
5807#endif
5808
5809 if (GET_RTX_CLASS (GET_CODE (p)) == 'i')
5810 {
5811 /* If this insn P stores in either GOAL or VALUE, return 0.
5812 If GOAL is a memory ref and this insn writes memory, return 0.
5813 If GOAL is a memory ref and its address is not constant,
5814 and this insn P changes a register used in GOAL, return 0. */
5815
5816 pat = PATTERN (p);
5817 if (GET_CODE (pat) == SET || GET_CODE (pat) == CLOBBER)
5818 {
5819 register rtx dest = SET_DEST (pat);
5820 while (GET_CODE (dest) == SUBREG
5821 || GET_CODE (dest) == ZERO_EXTRACT
5822 || GET_CODE (dest) == SIGN_EXTRACT
5823 || GET_CODE (dest) == STRICT_LOW_PART)
5824 dest = XEXP (dest, 0);
5825 if (GET_CODE (dest) == REG)
5826 {
5827 register int xregno = REGNO (dest);
5828 int xnregs;
5829 if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
5830 xnregs = HARD_REGNO_NREGS (xregno, GET_MODE (dest));
5831 else
5832 xnregs = 1;
5833 if (xregno < regno + nregs && xregno + xnregs > regno)
5834 return 0;
5835 if (xregno < valueno + valuenregs
5836 && xregno + xnregs > valueno)
5837 return 0;
5838 if (goal_mem_addr_varies
bfa30b22 5839 && reg_overlap_mentioned_for_reload_p (dest, goal))
eab89b90
RK
5840 return 0;
5841 }
5842 else if (goal_mem && GET_CODE (dest) == MEM
5843 && ! push_operand (dest, GET_MODE (dest)))
5844 return 0;
9fac9680
RK
5845 else if (GET_CODE (dest) == MEM && regno >= FIRST_PSEUDO_REGISTER
5846 && reg_equiv_memory_loc[regno] != 0)
5847 return 0;
eab89b90
RK
5848 else if (need_stable_sp && push_operand (dest, GET_MODE (dest)))
5849 return 0;
5850 }
5851 else if (GET_CODE (pat) == PARALLEL)
5852 {
5853 register int i;
5854 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
5855 {
5856 register rtx v1 = XVECEXP (pat, 0, i);
5857 if (GET_CODE (v1) == SET || GET_CODE (v1) == CLOBBER)
5858 {
5859 register rtx dest = SET_DEST (v1);
5860 while (GET_CODE (dest) == SUBREG
5861 || GET_CODE (dest) == ZERO_EXTRACT
5862 || GET_CODE (dest) == SIGN_EXTRACT
5863 || GET_CODE (dest) == STRICT_LOW_PART)
5864 dest = XEXP (dest, 0);
5865 if (GET_CODE (dest) == REG)
5866 {
5867 register int xregno = REGNO (dest);
5868 int xnregs;
5869 if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
5870 xnregs = HARD_REGNO_NREGS (xregno, GET_MODE (dest));
5871 else
5872 xnregs = 1;
5873 if (xregno < regno + nregs
5874 && xregno + xnregs > regno)
5875 return 0;
5876 if (xregno < valueno + valuenregs
5877 && xregno + xnregs > valueno)
5878 return 0;
5879 if (goal_mem_addr_varies
bfa30b22
RK
5880 && reg_overlap_mentioned_for_reload_p (dest,
5881 goal))
eab89b90
RK
5882 return 0;
5883 }
5884 else if (goal_mem && GET_CODE (dest) == MEM
5885 && ! push_operand (dest, GET_MODE (dest)))
5886 return 0;
369c7ab6
JW
5887 else if (need_stable_sp
5888 && push_operand (dest, GET_MODE (dest)))
5889 return 0;
5890 }
5891 }
5892 }
5893
5894 if (GET_CODE (p) == CALL_INSN && CALL_INSN_FUNCTION_USAGE (p))
5895 {
5896 rtx link;
5897
5898 for (link = CALL_INSN_FUNCTION_USAGE (p); XEXP (link, 1) != 0;
5899 link = XEXP (link, 1))
5900 {
5901 pat = XEXP (link, 0);
5902 if (GET_CODE (pat) == CLOBBER)
5903 {
5904 register rtx dest = SET_DEST (pat);
5905 while (GET_CODE (dest) == SUBREG
5906 || GET_CODE (dest) == ZERO_EXTRACT
5907 || GET_CODE (dest) == SIGN_EXTRACT
5908 || GET_CODE (dest) == STRICT_LOW_PART)
5909 dest = XEXP (dest, 0);
5910 if (GET_CODE (dest) == REG)
5911 {
5912 register int xregno = REGNO (dest);
5913 int xnregs;
5914 if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
5915 xnregs = HARD_REGNO_NREGS (xregno, GET_MODE (dest));
5916 else
5917 xnregs = 1;
5918 if (xregno < regno + nregs
5919 && xregno + xnregs > regno)
5920 return 0;
5921 if (xregno < valueno + valuenregs
5922 && xregno + xnregs > valueno)
5923 return 0;
5924 if (goal_mem_addr_varies
5925 && reg_overlap_mentioned_for_reload_p (dest,
5926 goal))
5927 return 0;
5928 }
5929 else if (goal_mem && GET_CODE (dest) == MEM
5930 && ! push_operand (dest, GET_MODE (dest)))
5931 return 0;
eab89b90
RK
5932 else if (need_stable_sp
5933 && push_operand (dest, GET_MODE (dest)))
5934 return 0;
5935 }
5936 }
5937 }
5938
5939#ifdef AUTO_INC_DEC
5940 /* If this insn auto-increments or auto-decrements
5941 either regno or valueno, return 0 now.
5942 If GOAL is a memory ref and its address is not constant,
5943 and this insn P increments a register used in GOAL, return 0. */
5944 {
5945 register rtx link;
5946
5947 for (link = REG_NOTES (p); link; link = XEXP (link, 1))
5948 if (REG_NOTE_KIND (link) == REG_INC
5949 && GET_CODE (XEXP (link, 0)) == REG)
5950 {
5951 register int incno = REGNO (XEXP (link, 0));
5952 if (incno < regno + nregs && incno >= regno)
5953 return 0;
5954 if (incno < valueno + valuenregs && incno >= valueno)
5955 return 0;
5956 if (goal_mem_addr_varies
bfa30b22
RK
5957 && reg_overlap_mentioned_for_reload_p (XEXP (link, 0),
5958 goal))
eab89b90
RK
5959 return 0;
5960 }
5961 }
5962#endif
5963 }
5964 }
5965}
5966\f
5967/* Find a place where INCED appears in an increment or decrement operator
5968 within X, and return the amount INCED is incremented or decremented by.
5969 The value is always positive. */
5970
5971static int
5972find_inc_amount (x, inced)
5973 rtx x, inced;
5974{
5975 register enum rtx_code code = GET_CODE (x);
5976 register char *fmt;
5977 register int i;
5978
5979 if (code == MEM)
5980 {
5981 register rtx addr = XEXP (x, 0);
5982 if ((GET_CODE (addr) == PRE_DEC
5983 || GET_CODE (addr) == POST_DEC
5984 || GET_CODE (addr) == PRE_INC
5985 || GET_CODE (addr) == POST_INC)
5986 && XEXP (addr, 0) == inced)
5987 return GET_MODE_SIZE (GET_MODE (x));
5988 }
5989
5990 fmt = GET_RTX_FORMAT (code);
5991 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5992 {
5993 if (fmt[i] == 'e')
5994 {
5995 register int tem = find_inc_amount (XEXP (x, i), inced);
5996 if (tem != 0)
5997 return tem;
5998 }
5999 if (fmt[i] == 'E')
6000 {
6001 register int j;
6002 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6003 {
6004 register int tem = find_inc_amount (XVECEXP (x, i, j), inced);
6005 if (tem != 0)
6006 return tem;
6007 }
6008 }
6009 }
6010
6011 return 0;
6012}
6013\f
6014/* Return 1 if register REGNO is the subject of a clobber in insn INSN. */
6015
6016int
6017regno_clobbered_p (regno, insn)
6018 int regno;
6019 rtx insn;
6020{
6021 if (GET_CODE (PATTERN (insn)) == CLOBBER
6022 && GET_CODE (XEXP (PATTERN (insn), 0)) == REG)
6023 return REGNO (XEXP (PATTERN (insn), 0)) == regno;
6024
6025 if (GET_CODE (PATTERN (insn)) == PARALLEL)
6026 {
6027 int i = XVECLEN (PATTERN (insn), 0) - 1;
6028
6029 for (; i >= 0; i--)
6030 {
6031 rtx elt = XVECEXP (PATTERN (insn), 0, i);
6032 if (GET_CODE (elt) == CLOBBER && GET_CODE (XEXP (elt, 0)) == REG
6033 && REGNO (XEXP (elt, 0)) == regno)
6034 return 1;
6035 }
6036 }
6037
6038 return 0;
6039}
10bcde0d
RK
6040
6041static char *reload_when_needed_name[] =
6042{
6043 "RELOAD_FOR_INPUT",
6044 "RELOAD_FOR_OUTPUT",
6045 "RELOAD_FOR_INSN",
47c8cf91
ILT
6046 "RELOAD_FOR_INPUT_ADDRESS",
6047 "RELOAD_FOR_INPADDR_ADDRESS",
10bcde0d 6048 "RELOAD_FOR_OUTPUT_ADDRESS",
47c8cf91 6049 "RELOAD_FOR_OUTADDR_ADDRESS",
10bcde0d
RK
6050 "RELOAD_FOR_OPERAND_ADDRESS",
6051 "RELOAD_FOR_OPADDR_ADDR",
6052 "RELOAD_OTHER",
6053 "RELOAD_FOR_OTHER_ADDRESS"
6054};
6055
6056static char *reg_class_names[] = REG_CLASS_NAMES;
6057
6058/* This function is used to print the variables set by 'find_reloads' */
6059
6060void
6061debug_reload()
6062{
6063 int r;
6064
6065 fprintf (stderr, "\nn_reloads = %d\n", n_reloads);
6066
6067 for (r = 0; r < n_reloads; r++)
6068 {
6069 fprintf (stderr, "\nRELOAD %d\n", r);
6070
6071 if (reload_in[r])
6072 {
f7393e85
RK
6073 fprintf (stderr, "\nreload_in (%s) = ",
6074 GET_MODE_NAME (reload_inmode[r]));
10bcde0d
RK
6075 debug_rtx (reload_in[r]);
6076 }
6077
6078 if (reload_out[r])
6079 {
f7393e85
RK
6080 fprintf (stderr, "\nreload_out (%s) = ",
6081 GET_MODE_NAME (reload_outmode[r]));
10bcde0d
RK
6082 debug_rtx (reload_out[r]);
6083 }
6084
6085 fprintf (stderr, "%s, ", reg_class_names[(int) reload_reg_class[r]]);
6086
f7393e85
RK
6087 fprintf (stderr, "%s (opnum = %d)",
6088 reload_when_needed_name[(int)reload_when_needed[r]],
10bcde0d
RK
6089 reload_opnum[r]);
6090
6091 if (reload_optional[r])
6092 fprintf (stderr, ", optional");
6093
6094 if (reload_in[r])
6095 fprintf (stderr, ", inc by %d\n", reload_inc[r]);
6096
6097 if (reload_nocombine[r])
b32221da 6098 fprintf (stderr, ", can't combine");
10bcde0d
RK
6099
6100 if (reload_secondary_p[r])
6101 fprintf (stderr, ", secondary_reload_p");
6102
6103 if (reload_in_reg[r])
6104 {
6105 fprintf (stderr, "\nreload_in_reg:\t\t\t");
6106 debug_rtx (reload_in_reg[r]);
6107 }
6108
6109 if (reload_reg_rtx[r])
6110 {
6111 fprintf (stderr, "\nreload_reg_rtx:\t\t\t");
6112 debug_rtx (reload_reg_rtx[r]);
6113 }
6114
6115 if (reload_secondary_in_reload[r] != -1)
6116 {
6117 fprintf (stderr, "\nsecondary_in_reload = ");
6118 fprintf (stderr, "%d ", reload_secondary_in_reload[r]);
6119 }
6120
6121 if (reload_secondary_out_reload[r] != -1)
6122 {
6123 if (reload_secondary_in_reload[r] != -1)
6124 fprintf (stderr, ", secondary_out_reload = ");
6125 else
6126 fprintf (stderr, "\nsecondary_out_reload = ");
6127
6128 fprintf (stderr, "%d", reload_secondary_out_reload[r]);
6129 }
6130
6131
6132 if (reload_secondary_in_icode[r] != CODE_FOR_nothing)
6133 {
6134 fprintf (stderr, "\nsecondary_in_icode = ");
6135 fprintf (stderr, "%s", insn_name[r]);
6136 }
6137
6138 if (reload_secondary_out_icode[r] != CODE_FOR_nothing)
6139 {
6140 if (reload_secondary_in_icode[r] != CODE_FOR_nothing)
6141 fprintf (stderr, ", secondary_out_icode = ");
6142 else
6143 fprintf (stderr, "\nsecondary_out_icode = ");
6144
6145 fprintf (stderr, "%s ", insn_name[r]);
6146 }
6147 fprintf (stderr, "\n");
6148 }
6149
6150 fprintf (stderr, "\n");
6151}
This page took 1.183228 seconds and 5 git commands to generate.