]> gcc.gnu.org Git - gcc.git/blame - gcc/regclass.c
Merge from pch-branch up to tag pch-commit-20020603.
[gcc.git] / gcc / regclass.c
CommitLineData
54dac99e 1/* Compute register class preferences for pseudo-registers.
517cbe13 2 Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1996
f4f4d0f8 3 1997, 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
54dac99e 4
1322177d 5This file is part of GCC.
54dac99e 6
1322177d
LB
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
9Software Foundation; either version 2, or (at your option) any later
10version.
54dac99e 11
1322177d
LB
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15for more details.
54dac99e
RK
16
17You should have received a copy of the GNU General Public License
1322177d
LB
18along with GCC; see the file COPYING. If not, write to the Free
19Software Foundation, 59 Temple Place - Suite 330, Boston, MA
2002111-1307, USA. */
54dac99e
RK
21
22
23/* This file contains two passes of the compiler: reg_scan and reg_class.
24 It also defines some tables of information about the hardware registers
25 and a function init_reg_sets to initialize the tables. */
26
27#include "config.h"
670ee920 28#include "system.h"
54dac99e 29#include "rtl.h"
0829d244 30#include "expr.h"
6baf1cc8 31#include "tm_p.h"
54dac99e
RK
32#include "hard-reg-set.h"
33#include "flags.h"
34#include "basic-block.h"
35#include "regs.h"
49ad7cfa 36#include "function.h"
54dac99e
RK
37#include "insn-config.h"
38#include "recog.h"
e4600702
RK
39#include "reload.h"
40#include "real.h"
10f0ad3d 41#include "toplev.h"
d6f4ec51 42#include "output.h"
8b0212ca 43#include "ggc.h"
54dac99e
RK
44
45#ifndef REGISTER_MOVE_COST
e56b4594 46#define REGISTER_MOVE_COST(m, x, y) 2
54dac99e
RK
47#endif
48
13536812
KG
49static void init_reg_sets_1 PARAMS ((void));
50static void init_reg_modes PARAMS ((void));
24deb20a 51
533d0835
RK
52/* If we have auto-increment or auto-decrement and we can have secondary
53 reloads, we are not allowed to use classes requiring secondary
9faa82d8 54 reloads for pseudos auto-incremented since reload can't handle it. */
533d0835
RK
55
56#ifdef AUTO_INC_DEC
dd9f0e8f 57#if defined(SECONDARY_INPUT_RELOAD_CLASS) || defined(SECONDARY_OUTPUT_RELOAD_CLASS)
533d0835
RK
58#define FORBIDDEN_INC_DEC_CLASSES
59#endif
60#endif
54dac99e
RK
61\f
62/* Register tables used by many passes. */
63
64/* Indexed by hard register number, contains 1 for registers
65 that are fixed use (stack pointer, pc, frame pointer, etc.).
66 These are the registers that cannot be used to allocate
252f342a 67 a pseudo reg for general use. */
54dac99e
RK
68
69char fixed_regs[FIRST_PSEUDO_REGISTER];
70
71/* Same info as a HARD_REG_SET. */
72
73HARD_REG_SET fixed_reg_set;
74
75/* Data for initializing the above. */
76
8b60264b 77static const char initial_fixed_regs[] = FIXED_REGISTERS;
54dac99e
RK
78
79/* Indexed by hard register number, contains 1 for registers
80 that are fixed use or are clobbered by function calls.
81 These are the registers that cannot be used to allocate
252f342a
MH
82 a pseudo reg whose life crosses calls unless we are able
83 to save/restore them across the calls. */
54dac99e
RK
84
85char call_used_regs[FIRST_PSEUDO_REGISTER];
86
87/* Same info as a HARD_REG_SET. */
88
89HARD_REG_SET call_used_reg_set;
90
6cad67d2
JL
91/* HARD_REG_SET of registers we want to avoid caller saving. */
92HARD_REG_SET losing_caller_save_reg_set;
93
54dac99e
RK
94/* Data for initializing the above. */
95
8b60264b 96static const char initial_call_used_regs[] = CALL_USED_REGISTERS;
fc1296b7
AM
97
98/* This is much like call_used_regs, except it doesn't have to
99 be a superset of FIXED_REGISTERS. This vector indicates
a6a2274a 100 what is really call clobbered, and is used when defining
fc1296b7
AM
101 regs_invalidated_by_call. */
102
fc1296b7 103#ifdef CALL_REALLY_USED_REGISTERS
d3259baa 104char call_really_used_regs[] = CALL_REALLY_USED_REGISTERS;
fc1296b7 105#endif
a6a2274a 106
54dac99e 107/* Indexed by hard register number, contains 1 for registers that are
252f342a
MH
108 fixed use or call used registers that cannot hold quantities across
109 calls even if we are willing to save and restore them. call fixed
110 registers are a subset of call used registers. */
54dac99e
RK
111
112char call_fixed_regs[FIRST_PSEUDO_REGISTER];
113
114/* The same info as a HARD_REG_SET. */
115
116HARD_REG_SET call_fixed_reg_set;
117
118/* Number of non-fixed registers. */
119
120int n_non_fixed_regs;
121
122/* Indexed by hard register number, contains 1 for registers
123 that are being used for global register decls.
124 These must be exempt from ordinary flow analysis
125 and are also considered fixed. */
126
127char global_regs[FIRST_PSEUDO_REGISTER];
4e2db584
RH
128
129/* Contains 1 for registers that are set or clobbered by calls. */
130/* ??? Ideally, this would be just call_used_regs plus global_regs, but
131 for someone's bright idea to have call_used_regs strictly include
132 fixed_regs. Which leaves us guessing as to the set of fixed_regs
133 that are actually preserved. We know for sure that those associated
134 with the local stack frame are safe, but scant others. */
135
136HARD_REG_SET regs_invalidated_by_call;
137
54dac99e
RK
138/* Table of register numbers in the order in which to try to use them. */
139#ifdef REG_ALLOC_ORDER
140int reg_alloc_order[FIRST_PSEUDO_REGISTER] = REG_ALLOC_ORDER;
f5d8c9f4
BS
141
142/* The inverse of reg_alloc_order. */
143int inv_reg_alloc_order[FIRST_PSEUDO_REGISTER];
54dac99e
RK
144#endif
145
146/* For each reg class, a HARD_REG_SET saying which registers are in it. */
147
2e0e2b76
CH
148HARD_REG_SET reg_class_contents[N_REG_CLASSES];
149
089e575b
RS
150/* The same information, but as an array of unsigned ints. We copy from
151 these unsigned ints to the table above. We do this so the tm.h files
d4845339
RH
152 do not have to be aware of the wordsize for machines with <= 64 regs.
153 Note that we hard-code 32 here, not HOST_BITS_PER_INT. */
2e0e2b76
CH
154
155#define N_REG_INTS \
d4845339 156 ((FIRST_PSEUDO_REGISTER + (32 - 1)) / 32)
2e0e2b76 157
a6a2274a 158static const unsigned int_reg_class_contents[N_REG_CLASSES][N_REG_INTS]
2e0e2b76 159 = REG_CLASS_CONTENTS;
54dac99e
RK
160
161/* For each reg class, number of regs it contains. */
162
770ae6cc 163unsigned int reg_class_size[N_REG_CLASSES];
54dac99e
RK
164
165/* For each reg class, table listing all the containing classes. */
166
167enum reg_class reg_class_superclasses[N_REG_CLASSES][N_REG_CLASSES];
168
169/* For each reg class, table listing all the classes contained in it. */
170
171enum reg_class reg_class_subclasses[N_REG_CLASSES][N_REG_CLASSES];
172
173/* For each pair of reg classes,
174 a largest reg class contained in their union. */
175
176enum reg_class reg_class_subunion[N_REG_CLASSES][N_REG_CLASSES];
177
178/* For each pair of reg classes,
179 the smallest reg class containing their union. */
180
181enum reg_class reg_class_superunion[N_REG_CLASSES][N_REG_CLASSES];
182
fbd40359
ZW
183/* Array containing all of the register names. Unless
184 DEBUG_REGISTER_NAMES is defined, use the copy in print-rtl.c. */
d05c8ee7 185
fbd40359 186#ifdef DEBUG_REGISTER_NAMES
e087aeb2 187const char * reg_names[] = REGISTER_NAMES;
fbd40359 188#endif
d05c8ee7 189
ca4aac00
DE
190/* For each hard register, the widest mode object that it can contain.
191 This will be a MODE_INT mode if the register can hold integers. Otherwise
192 it will be a MODE_FLOAT or a MODE_CC mode, whichever is valid for the
193 register. */
194
195enum machine_mode reg_raw_mode[FIRST_PSEUDO_REGISTER];
196
6df26b8f
JH
197/* 1 if class does contain register of given mode. */
198
199static char contains_reg_of_mode [N_REG_CLASSES] [MAX_MACHINE_MODE];
200
e4600702
RK
201/* Maximum cost of moving from a register in one class to a register in
202 another class. Based on REGISTER_MOVE_COST. */
203
e56b4594 204static int move_cost[MAX_MACHINE_MODE][N_REG_CLASSES][N_REG_CLASSES];
e4600702
RK
205
206/* Similar, but here we don't have to move if the first index is a subset
207 of the second so in that case the cost is zero. */
208
e56b4594 209static int may_move_in_cost[MAX_MACHINE_MODE][N_REG_CLASSES][N_REG_CLASSES];
ee59f29b
JH
210
211/* Similar, but here we don't have to move if the first index is a superset
212 of the second so in that case the cost is zero. */
213
e56b4594 214static int may_move_out_cost[MAX_MACHINE_MODE][N_REG_CLASSES][N_REG_CLASSES];
e4600702 215
533d0835
RK
216#ifdef FORBIDDEN_INC_DEC_CLASSES
217
218/* These are the classes that regs which are auto-incremented or decremented
219 cannot be put in. */
220
221static int forbidden_inc_dec_class[N_REG_CLASSES];
222
223/* Indexed by n, is non-zero if (REG n) is used in an auto-inc or auto-dec
224 context. */
225
226static char *in_inc_dec;
227
5fcb671c 228#endif /* FORBIDDEN_INC_DEC_CLASSES */
533d0835 229
02188693 230#ifdef CLASS_CANNOT_CHANGE_MODE
e79f71f7
GK
231
232/* These are the classes containing only registers that can be used in
02188693
RH
233 a SUBREG expression that changes the mode of the register in some
234 way that is illegal. */
e79f71f7 235
02188693 236static int class_can_change_mode[N_REG_CLASSES];
e79f71f7 237
02188693
RH
238/* Registers, including pseudos, which change modes in some way that
239 is illegal. */
e79f71f7 240
02188693 241static regset reg_changes_mode;
e79f71f7 242
02188693 243#endif /* CLASS_CANNOT_CHANGE_MODE */
e79f71f7 244
473fe49b
KR
245/* Sample MEM values for use by memory_move_secondary_cost. */
246
e2500fed 247static GTY(()) rtx top_of_stack[MAX_MACHINE_MODE];
473fe49b 248
6feacd09
MM
249/* Linked list of reg_info structures allocated for reg_n_info array.
250 Grouping all of the allocated structures together in one lump
251 means only one call to bzero to clear them, rather than n smaller
252 calls. */
253struct reg_info_data {
254 struct reg_info_data *next; /* next set of reg_info structures */
255 size_t min_index; /* minimum index # */
256 size_t max_index; /* maximum index # */
257 char used_p; /* non-zero if this has been used previously */
258 reg_info data[1]; /* beginning of the reg_info data */
259};
260
261static struct reg_info_data *reg_info_head;
262
c07c7c9d 263/* No more global register variables may be declared; true once
dc297297 264 regclass has been initialized. */
6c85df69
AH
265
266static int no_global_reg_vars = 0;
267
6feacd09 268
54dac99e
RK
269/* Function called only once to initialize the above data on reg usage.
270 Once this is done, various switches may override. */
271
272void
273init_reg_sets ()
274{
b3694847 275 int i, j;
54dac99e 276
2e0e2b76
CH
277 /* First copy the register information from the initial int form into
278 the regsets. */
279
280 for (i = 0; i < N_REG_CLASSES; i++)
281 {
282 CLEAR_HARD_REG_SET (reg_class_contents[i]);
283
b85946fc 284 /* Note that we hard-code 32 here, not HOST_BITS_PER_INT. */
2e0e2b76 285 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
b85946fc
RH
286 if (int_reg_class_contents[i][j / 32]
287 & ((unsigned) 1 << (j % 32)))
2e0e2b76
CH
288 SET_HARD_REG_BIT (reg_class_contents[i], j);
289 }
290
4e135bdd
KG
291 memcpy (fixed_regs, initial_fixed_regs, sizeof fixed_regs);
292 memcpy (call_used_regs, initial_call_used_regs, sizeof call_used_regs);
961192e1 293 memset (global_regs, 0, sizeof global_regs);
54dac99e 294
910bc42d
R
295 /* Do any additional initialization regsets may need */
296 INIT_ONCE_REG_SET ();
f5d8c9f4
BS
297
298#ifdef REG_ALLOC_ORDER
299 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
300 inv_reg_alloc_order[reg_alloc_order[i]] = i;
301#endif
910bc42d
R
302}
303
304/* After switches have been processed, which perhaps alter
305 `fixed_regs' and `call_used_regs', convert them to HARD_REG_SETs. */
306
307static void
308init_reg_sets_1 ()
309{
b3694847
SS
310 unsigned int i, j;
311 unsigned int /* enum machine_mode */ m;
6836e024 312 char allocatable_regs_of_mode [MAX_MACHINE_MODE];
910bc42d
R
313
314 /* This macro allows the fixed or call-used registers
315 and the register classes to depend on target flags. */
316
317#ifdef CONDITIONAL_REGISTER_USAGE
318 CONDITIONAL_REGISTER_USAGE;
319#endif
320
54dac99e
RK
321 /* Compute number of hard regs in each class. */
322
961192e1 323 memset ((char *) reg_class_size, 0, sizeof reg_class_size);
54dac99e
RK
324 for (i = 0; i < N_REG_CLASSES; i++)
325 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
326 if (TEST_HARD_REG_BIT (reg_class_contents[i], j))
327 reg_class_size[i]++;
328
329 /* Initialize the table of subunions.
330 reg_class_subunion[I][J] gets the largest-numbered reg-class
331 that is contained in the union of classes I and J. */
332
333 for (i = 0; i < N_REG_CLASSES; i++)
334 {
335 for (j = 0; j < N_REG_CLASSES; j++)
336 {
337#ifdef HARD_REG_SET
338 register /* Declare it register if it's a scalar. */
339#endif
340 HARD_REG_SET c;
b3694847 341 int k;
54dac99e
RK
342
343 COPY_HARD_REG_SET (c, reg_class_contents[i]);
344 IOR_HARD_REG_SET (c, reg_class_contents[j]);
345 for (k = 0; k < N_REG_CLASSES; k++)
346 {
347 GO_IF_HARD_REG_SUBSET (reg_class_contents[k], c,
348 subclass1);
349 continue;
350
351 subclass1:
352 /* keep the largest subclass */ /* SPEE 900308 */
353 GO_IF_HARD_REG_SUBSET (reg_class_contents[k],
354 reg_class_contents[(int) reg_class_subunion[i][j]],
355 subclass2);
356 reg_class_subunion[i][j] = (enum reg_class) k;
357 subclass2:
358 ;
359 }
360 }
361 }
362
363 /* Initialize the table of superunions.
364 reg_class_superunion[I][J] gets the smallest-numbered reg-class
365 containing the union of classes I and J. */
366
367 for (i = 0; i < N_REG_CLASSES; i++)
368 {
369 for (j = 0; j < N_REG_CLASSES; j++)
370 {
371#ifdef HARD_REG_SET
372 register /* Declare it register if it's a scalar. */
373#endif
374 HARD_REG_SET c;
b3694847 375 int k;
54dac99e
RK
376
377 COPY_HARD_REG_SET (c, reg_class_contents[i]);
378 IOR_HARD_REG_SET (c, reg_class_contents[j]);
379 for (k = 0; k < N_REG_CLASSES; k++)
380 GO_IF_HARD_REG_SUBSET (c, reg_class_contents[k], superclass);
381
382 superclass:
383 reg_class_superunion[i][j] = (enum reg_class) k;
384 }
385 }
386
387 /* Initialize the tables of subclasses and superclasses of each reg class.
388 First clear the whole table, then add the elements as they are found. */
389
390 for (i = 0; i < N_REG_CLASSES; i++)
391 {
392 for (j = 0; j < N_REG_CLASSES; j++)
393 {
394 reg_class_superclasses[i][j] = LIM_REG_CLASSES;
395 reg_class_subclasses[i][j] = LIM_REG_CLASSES;
396 }
397 }
398
399 for (i = 0; i < N_REG_CLASSES; i++)
400 {
401 if (i == (int) NO_REGS)
402 continue;
403
404 for (j = i + 1; j < N_REG_CLASSES; j++)
405 {
406 enum reg_class *p;
407
408 GO_IF_HARD_REG_SUBSET (reg_class_contents[i], reg_class_contents[j],
409 subclass);
410 continue;
411 subclass:
412 /* Reg class I is a subclass of J.
413 Add J to the table of superclasses of I. */
414 p = &reg_class_superclasses[i][0];
415 while (*p != LIM_REG_CLASSES) p++;
416 *p = (enum reg_class) j;
417 /* Add I to the table of superclasses of J. */
418 p = &reg_class_subclasses[j][0];
419 while (*p != LIM_REG_CLASSES) p++;
420 *p = (enum reg_class) i;
421 }
422 }
e4600702 423
54dac99e
RK
424 /* Initialize "constant" tables. */
425
426 CLEAR_HARD_REG_SET (fixed_reg_set);
427 CLEAR_HARD_REG_SET (call_used_reg_set);
428 CLEAR_HARD_REG_SET (call_fixed_reg_set);
4e2db584 429 CLEAR_HARD_REG_SET (regs_invalidated_by_call);
54dac99e 430
4e135bdd 431 memcpy (call_fixed_regs, fixed_regs, sizeof call_fixed_regs);
54dac99e
RK
432
433 n_non_fixed_regs = 0;
434
435 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
436 {
54dac99e
RK
437 if (fixed_regs[i])
438 SET_HARD_REG_BIT (fixed_reg_set, i);
439 else
440 n_non_fixed_regs++;
441
442 if (call_used_regs[i])
443 SET_HARD_REG_BIT (call_used_reg_set, i);
444 if (call_fixed_regs[i])
445 SET_HARD_REG_BIT (call_fixed_reg_set, i);
6cad67d2
JL
446 if (CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (i)))
447 SET_HARD_REG_BIT (losing_caller_save_reg_set, i);
4e2db584
RH
448
449 /* There are a couple of fixed registers that we know are safe to
450 exclude from being clobbered by calls:
451
452 The frame pointer is always preserved across calls. The arg pointer
453 is if it is fixed. The stack pointer usually is, unless
454 RETURN_POPS_ARGS, in which case an explicit CLOBBER will be present.
455 If we are generating PIC code, the PIC offset table register is
456 preserved across calls, though the target can override that. */
a6a2274a 457
4e2db584
RH
458 if (i == STACK_POINTER_REGNUM || i == FRAME_POINTER_REGNUM)
459 ;
460#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
461 else if (i == HARD_FRAME_POINTER_REGNUM)
462 ;
463#endif
464#if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
465 else if (i == ARG_POINTER_REGNUM && fixed_regs[i])
466 ;
467#endif
468#ifndef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
12beba6f 469 else if (i == PIC_OFFSET_TABLE_REGNUM && fixed_regs[i])
4e2db584
RH
470 ;
471#endif
d3259baa 472 else if (0
6ca3c22f 473#ifdef CALL_REALLY_USED_REGISTERS
d3259baa
RH
474 || call_really_used_regs[i]
475#else
476 || call_used_regs[i]
477#endif
478 || global_regs[i])
4e2db584 479 SET_HARD_REG_BIT (regs_invalidated_by_call, i);
54dac99e 480 }
4e2db584 481
6836e024
JH
482 memset (contains_reg_of_mode, 0, sizeof (contains_reg_of_mode));
483 memset (allocatable_regs_of_mode, 0, sizeof (allocatable_regs_of_mode));
dbbbbf3b 484 for (m = 0; m < (unsigned int) MAX_MACHINE_MODE; m++)
6836e024 485 for (i = 0; i < N_REG_CLASSES; i++)
6df26b8f
JH
486 if (CLASS_MAX_NREGS (i, m) <= reg_class_size[i])
487 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
488 if (!fixed_regs [j] && TEST_HARD_REG_BIT (reg_class_contents[i], j)
489 && HARD_REGNO_MODE_OK (j, m))
490 {
491 contains_reg_of_mode [i][m] = 1;
492 allocatable_regs_of_mode [m] = 1;
493 break;
494 }
acbce667
KR
495
496 /* Initialize the move cost table. Find every subset of each class
497 and take the maximum cost of moving any subset to any other. */
498
dbbbbf3b 499 for (m = 0; m < (unsigned int) MAX_MACHINE_MODE; m++)
6836e024
JH
500 if (allocatable_regs_of_mode [m])
501 {
502 for (i = 0; i < N_REG_CLASSES; i++)
503 if (contains_reg_of_mode [i][m])
504 for (j = 0; j < N_REG_CLASSES; j++)
505 {
506 int cost;
507 enum reg_class *p1, *p2;
508
509 if (!contains_reg_of_mode [j][m])
510 {
511 move_cost[m][i][j] = 65536;
512 may_move_in_cost[m][i][j] = 65536;
513 may_move_out_cost[m][i][j] = 65536;
514 }
515 else
516 {
26a952a8 517 cost = REGISTER_MOVE_COST (m, i, j);
6836e024
JH
518
519 for (p2 = &reg_class_subclasses[j][0];
520 *p2 != LIM_REG_CLASSES;
521 p2++)
522 if (*p2 != i && contains_reg_of_mode [*p2][m])
523 cost = MAX (cost, move_cost [m][i][*p2]);
524
525 for (p1 = &reg_class_subclasses[i][0];
526 *p1 != LIM_REG_CLASSES;
527 p1++)
528 if (*p1 != j && contains_reg_of_mode [*p1][m])
529 cost = MAX (cost, move_cost [m][*p1][j]);
530
531 move_cost[m][i][j] = cost;
532
533 if (reg_class_subset_p (i, j))
534 may_move_in_cost[m][i][j] = 0;
535 else
536 may_move_in_cost[m][i][j] = cost;
537
538 if (reg_class_subset_p (j, i))
539 may_move_out_cost[m][i][j] = 0;
540 else
541 may_move_out_cost[m][i][j] = cost;
542 }
543 }
1464632b 544 else
6836e024
JH
545 for (j = 0; j < N_REG_CLASSES; j++)
546 {
547 move_cost[m][i][j] = 65536;
548 may_move_in_cost[m][i][j] = 65536;
549 may_move_out_cost[m][i][j] = 65536;
550 }
551 }
e79f71f7 552
02188693 553#ifdef CLASS_CANNOT_CHANGE_MODE
e79f71f7
GK
554 {
555 HARD_REG_SET c;
02188693 556 COMPL_HARD_REG_SET (c, reg_class_contents[CLASS_CANNOT_CHANGE_MODE]);
a6a2274a 557
e79f71f7
GK
558 for (i = 0; i < N_REG_CLASSES; i++)
559 {
560 GO_IF_HARD_REG_SUBSET (reg_class_contents[i], c, ok_class);
02188693 561 class_can_change_mode [i] = 0;
e79f71f7
GK
562 continue;
563 ok_class:
02188693 564 class_can_change_mode [i] = 1;
e79f71f7
GK
565 }
566 }
02188693 567#endif /* CLASS_CANNOT_CHANGE_MODE */
c27c5281
DE
568}
569
570/* Compute the table of register modes.
571 These values are used to record death information for individual registers
572 (as opposed to a multi-register mode). */
ca4aac00 573
c27c5281
DE
574static void
575init_reg_modes ()
576{
b3694847 577 int i;
ca4aac00
DE
578
579 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
7f21d440
DE
580 {
581 reg_raw_mode[i] = choose_hard_reg_mode (i, 1);
582
066c2fea 583 /* If we couldn't find a valid mode, just use the previous mode.
7f21d440
DE
584 ??? One situation in which we need to do this is on the mips where
585 HARD_REGNO_NREGS (fpreg, [SD]Fmode) returns 2. Ideally we'd like
586 to use DF mode for the even registers and VOIDmode for the odd
9faa82d8 587 (for the cpu models where the odd ones are inaccessible). */
7f21d440 588 if (reg_raw_mode[i] == VOIDmode)
066c2fea 589 reg_raw_mode[i] = i == 0 ? word_mode : reg_raw_mode[i-1];
7f21d440 590 }
ca4aac00
DE
591}
592
c27c5281
DE
593/* Finish initializing the register sets and
594 initialize the register modes. */
595
596void
597init_regs ()
598{
599 /* This finishes what was started by init_reg_sets, but couldn't be done
600 until after register usage was specified. */
b93a436e 601 init_reg_sets_1 ();
c27c5281
DE
602
603 init_reg_modes ();
473fe49b
KR
604
605#ifdef HAVE_SECONDARY_RELOADS
606 {
607 /* Make some fake stack-frame MEM references for use in
608 memory_move_secondary_cost. */
609 int i;
d067e2aa 610
473fe49b 611 for (i = 0; i < MAX_MACHINE_MODE; i++)
9ec36da5 612 top_of_stack[i] = gen_rtx_MEM (i, stack_pointer_rtx);
473fe49b
KR
613 }
614#endif
c27c5281
DE
615}
616
cbd5b9a2 617#ifdef HAVE_SECONDARY_RELOADS
473fe49b 618
cbd5b9a2
KR
619/* Compute extra cost of moving registers to/from memory due to reloads.
620 Only needed if secondary reloads are required for memory moves. */
473fe49b 621
cbd5b9a2
KR
622int
623memory_move_secondary_cost (mode, class, in)
624 enum machine_mode mode;
625 enum reg_class class;
626 int in;
627{
628 enum reg_class altclass;
629 int partial_cost = 0;
cbd5b9a2 630 /* We need a memory reference to feed to SECONDARY... macros. */
dc297297 631 /* mem may be unused even if the SECONDARY_ macros are defined. */
272df862
KG
632 rtx mem ATTRIBUTE_UNUSED = top_of_stack[(int) mode];
633
cbd5b9a2
KR
634
635 if (in)
473fe49b 636 {
321c0828 637#ifdef SECONDARY_INPUT_RELOAD_CLASS
473fe49b 638 altclass = SECONDARY_INPUT_RELOAD_CLASS (class, mode, mem);
321c0828 639#else
473fe49b 640 altclass = NO_REGS;
321c0828 641#endif
473fe49b 642 }
cbd5b9a2 643 else
473fe49b 644 {
321c0828 645#ifdef SECONDARY_OUTPUT_RELOAD_CLASS
473fe49b 646 altclass = SECONDARY_OUTPUT_RELOAD_CLASS (class, mode, mem);
321c0828 647#else
473fe49b 648 altclass = NO_REGS;
321c0828 649#endif
473fe49b
KR
650 }
651
cbd5b9a2
KR
652 if (altclass == NO_REGS)
653 return 0;
654
655 if (in)
e56b4594 656 partial_cost = REGISTER_MOVE_COST (mode, altclass, class);
cbd5b9a2 657 else
e56b4594 658 partial_cost = REGISTER_MOVE_COST (mode, class, altclass);
cbd5b9a2
KR
659
660 if (class == altclass)
661 /* This isn't simply a copy-to-temporary situation. Can't guess
662 what it is, so MEMORY_MOVE_COST really ought not to be calling
663 here in that case.
664
665 I'm tempted to put in an abort here, but returning this will
666 probably only give poor estimates, which is what we would've
667 had before this code anyways. */
668 return partial_cost;
669
670 /* Check if the secondary reload register will also need a
671 secondary reload. */
672 return memory_move_secondary_cost (mode, altclass, in) + partial_cost;
673}
674#endif
675
ca4aac00
DE
676/* Return a machine mode that is legitimate for hard reg REGNO and large
677 enough to save nregs. If we can't find one, return VOIDmode. */
678
679enum machine_mode
680choose_hard_reg_mode (regno, nregs)
770ae6cc
RK
681 unsigned int regno ATTRIBUTE_UNUSED;
682 unsigned int nregs;
ca4aac00 683{
dbbbbf3b 684 unsigned int /* enum machine_mode */ m;
ca4aac00
DE
685 enum machine_mode found_mode = VOIDmode, mode;
686
687 /* We first look for the largest integer mode that can be validly
688 held in REGNO. If none, we look for the largest floating-point mode.
689 If we still didn't find a valid mode, try CCmode. */
690
691 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
692 mode != VOIDmode;
693 mode = GET_MODE_WIDER_MODE (mode))
694 if (HARD_REGNO_NREGS (regno, mode) == nregs
695 && HARD_REGNO_MODE_OK (regno, mode))
696 found_mode = mode;
697
698 if (found_mode != VOIDmode)
699 return found_mode;
700
701 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
702 mode != VOIDmode;
703 mode = GET_MODE_WIDER_MODE (mode))
704 if (HARD_REGNO_NREGS (regno, mode) == nregs
705 && HARD_REGNO_MODE_OK (regno, mode))
706 found_mode = mode;
707
708 if (found_mode != VOIDmode)
709 return found_mode;
710
78b583fe
AH
711 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
712 mode != VOIDmode;
713 mode = GET_MODE_WIDER_MODE (mode))
714 if (HARD_REGNO_NREGS (regno, mode) == nregs
715 && HARD_REGNO_MODE_OK (regno, mode))
716 found_mode = mode;
717
718 if (found_mode != VOIDmode)
719 return found_mode;
720
721 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
722 mode != VOIDmode;
723 mode = GET_MODE_WIDER_MODE (mode))
724 if (HARD_REGNO_NREGS (regno, mode) == nregs
725 && HARD_REGNO_MODE_OK (regno, mode))
726 found_mode = mode;
727
728 if (found_mode != VOIDmode)
729 return found_mode;
730
0548a9df 731 /* Iterate over all of the CCmodes. */
dbbbbf3b
JDA
732 for (m = (unsigned int) CCmode; m < (unsigned int) NUM_MACHINE_MODES; ++m)
733 {
734 mode = (enum machine_mode) m;
735 if (HARD_REGNO_NREGS (regno, mode) == nregs
736 && HARD_REGNO_MODE_OK (regno, mode))
737 return mode;
738 }
ca4aac00
DE
739
740 /* We can't find a mode valid for this register. */
741 return VOIDmode;
54dac99e
RK
742}
743
744/* Specify the usage characteristics of the register named NAME.
745 It should be a fixed register if FIXED and a
746 call-used register if CALL_USED. */
747
748void
749fix_register (name, fixed, call_used)
ec0ce6e2 750 const char *name;
54dac99e
RK
751 int fixed, call_used;
752{
753 int i;
754
755 /* Decode the name and update the primary form of
756 the register info. */
757
e5c90c23
TW
758 if ((i = decode_reg_name (name)) >= 0)
759 {
cb2fdc84
GRK
760 if ((i == STACK_POINTER_REGNUM
761#ifdef HARD_FRAME_POINTER_REGNUM
762 || i == HARD_FRAME_POINTER_REGNUM
763#else
764 || i == FRAME_POINTER_REGNUM
765#endif
766 )
767 && (fixed == 0 || call_used == 0))
768 {
6f7d635c 769 static const char * const what_option[2][2] = {
7f7f8214
KG
770 { "call-saved", "call-used" },
771 { "no-such-option", "fixed" }};
a6a2274a
KH
772
773 error ("can't use '%s' as a %s register", name,
cb2fdc84
GRK
774 what_option[fixed][call_used]);
775 }
776 else
777 {
778 fixed_regs[i] = fixed;
779 call_used_regs[i] = call_used;
ec523c2f 780#ifdef CALL_REALLY_USED_REGISTERS
fc1296b7
AM
781 if (fixed == 0)
782 call_really_used_regs[i] = call_used;
d3259baa 783#endif
cb2fdc84 784 }
e5c90c23
TW
785 }
786 else
54dac99e
RK
787 {
788 warning ("unknown register name: %s", name);
54dac99e
RK
789 }
790}
614f68e2
RK
791
792/* Mark register number I as global. */
793
794void
795globalize_reg (i)
796 int i;
797{
c07c7c9d 798 if (fixed_regs[i] == 0 && no_global_reg_vars)
6c85df69
AH
799 error ("global register variable follows a function definition");
800
614f68e2
RK
801 if (global_regs[i])
802 {
803 warning ("register used for two global register variables");
804 return;
805 }
806
807 if (call_used_regs[i] && ! fixed_regs[i])
808 warning ("call-clobbered register used for global register variable");
809
810 global_regs[i] = 1;
811
812 /* If already fixed, nothing else to do. */
813 if (fixed_regs[i])
814 return;
815
816 fixed_regs[i] = call_used_regs[i] = call_fixed_regs[i] = 1;
817 n_non_fixed_regs--;
818
819 SET_HARD_REG_BIT (fixed_reg_set, i);
820 SET_HARD_REG_BIT (call_used_reg_set, i);
821 SET_HARD_REG_BIT (call_fixed_reg_set, i);
822}
54dac99e
RK
823\f
824/* Now the data and code for the `regclass' pass, which happens
825 just before local-alloc. */
826
e4600702
RK
827/* The `costs' struct records the cost of using a hard register of each class
828 and of using memory for each pseudo. We use this data to set up
829 register class preferences. */
54dac99e 830
e4600702 831struct costs
54dac99e 832{
e4600702
RK
833 int cost[N_REG_CLASSES];
834 int mem_cost;
54dac99e
RK
835};
836
9ffc5a70
JH
837/* Structure used to record preferrences of given pseudo. */
838struct reg_pref
839{
840 /* (enum reg_class) prefclass is the preferred class. */
841 char prefclass;
842
843 /* altclass is a register class that we should use for allocating
844 pseudo if no register in the preferred class is available.
845 If no register in this class is available, memory is preferred.
846
847 It might appear to be more general to have a bitmask of classes here,
848 but since it is recommended that there be a class corresponding to the
849 union of most major pair of classes, that generality is not required. */
850 char altclass;
851};
852
e4600702
RK
853/* Record the cost of each class for each pseudo. */
854
855static struct costs *costs;
856
61719ba7
BS
857/* Initialized once, and used to initialize cost values for each insn. */
858
859static struct costs init_cost;
860
9ffc5a70 861/* Record preferrences of each pseudo.
54dac99e
RK
862 This is available after `regclass' is run. */
863
9ffc5a70 864static struct reg_pref *reg_pref;
54d23420 865
dc297297 866/* Allocated buffers for reg_pref. */
54dac99e 867
9ffc5a70 868static struct reg_pref *reg_pref_buffer;
6feacd09 869
9401afe3 870/* Frequency of executions of current insn. */
54d23420 871
9401afe3 872static int frequency;
54d23420 873
13536812
KG
874static rtx scan_one_insn PARAMS ((rtx, int));
875static void record_operand_costs PARAMS ((rtx, struct costs *, struct reg_pref *));
876static void dump_regclass PARAMS ((FILE *));
877static void record_reg_classes PARAMS ((int, int, rtx *, enum machine_mode *,
e79f71f7 878 const char **, rtx,
f741a71c 879 struct costs *, struct reg_pref *));
a6a2274a 880static int copy_cost PARAMS ((rtx, enum machine_mode,
08d95f91 881 enum reg_class, int));
13536812 882static void record_address_regs PARAMS ((rtx, enum reg_class, int));
1d300e19 883#ifdef FORBIDDEN_INC_DEC_CLASSES
13536812 884static int auto_inc_dec_reg_p PARAMS ((rtx, enum machine_mode));
1d300e19 885#endif
770ae6cc 886static void reg_scan_mark_refs PARAMS ((rtx, rtx, int, unsigned int));
54dac99e
RK
887
888/* Return the reg_class in which pseudo reg number REGNO is best allocated.
889 This function is sometimes called before the info has been computed.
890 When that happens, just return GENERAL_REGS, which is innocuous. */
891
892enum reg_class
893reg_preferred_class (regno)
894 int regno;
895{
9ffc5a70 896 if (reg_pref == 0)
54dac99e 897 return GENERAL_REGS;
9ffc5a70 898 return (enum reg_class) reg_pref[regno].prefclass;
54dac99e
RK
899}
900
e4600702
RK
901enum reg_class
902reg_alternate_class (regno)
b729186a 903 int regno;
54dac99e 904{
9ffc5a70 905 if (reg_pref == 0)
e4600702
RK
906 return ALL_REGS;
907
9ffc5a70 908 return (enum reg_class) reg_pref[regno].altclass;
54dac99e
RK
909}
910
61719ba7 911/* Initialize some global data for this pass. */
54dac99e
RK
912
913void
914regclass_init ()
915{
61719ba7
BS
916 int i;
917
918 init_cost.mem_cost = 10000;
919 for (i = 0; i < N_REG_CLASSES; i++)
920 init_cost.cost[i] = 10000;
921
922 /* This prevents dump_flow_info from losing if called
923 before regclass is run. */
9ffc5a70 924 reg_pref = NULL;
6c85df69 925
dc297297 926 /* No more global register variables may be declared. */
6c85df69 927 no_global_reg_vars = 1;
54dac99e 928}
246fd41f
JH
929\f
930/* Dump register costs. */
915b80ed 931static void
246fd41f
JH
932dump_regclass (dump)
933 FILE *dump;
934{
935 static const char *const reg_class_names[] = REG_CLASS_NAMES;
936 int i;
937 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
938 {
dbbbbf3b 939 int /* enum reg_class */ class;
246fd41f
JH
940 if (REG_N_REFS (i))
941 {
f741a71c 942 fprintf (dump, " Register %i costs:", i);
dbbbbf3b
JDA
943 for (class = 0; class < (int) N_REG_CLASSES; class++)
944 if (contains_reg_of_mode [(enum reg_class) class][PSEUDO_REGNO_MODE (i)]
6df26b8f 945#ifdef FORBIDDEN_INC_DEC_CLASSES
dbbbbf3b
JDA
946 && (!in_inc_dec[i]
947 || !forbidden_inc_dec_class[(enum reg_class) class])
6df26b8f
JH
948#endif
949#ifdef CLASS_CANNOT_CHANGE_MODE
950 && (!REGNO_REG_SET_P (reg_changes_mode, i)
dbbbbf3b 951 || class_can_change_mode [(enum reg_class) class])
6df26b8f
JH
952#endif
953 )
dbbbbf3b
JDA
954 fprintf (dump, " %s:%i", reg_class_names[class],
955 costs[i].cost[(enum reg_class) class]);
f741a71c 956 fprintf (dump, " MEM:%i\n", costs[i].mem_cost);
246fd41f
JH
957 }
958 }
959}
f741a71c
JH
960\f
961
962/* Calculate the costs of insn operands. */
963
964static void
965record_operand_costs (insn, op_costs, reg_pref)
966 rtx insn;
967 struct costs *op_costs;
968 struct reg_pref *reg_pref;
969{
970 const char *constraints[MAX_RECOG_OPERANDS];
971 enum machine_mode modes[MAX_RECOG_OPERANDS];
f741a71c
JH
972 int i;
973
974 for (i = 0; i < recog_data.n_operands; i++)
975 {
976 constraints[i] = recog_data.constraints[i];
977 modes[i] = recog_data.operand_mode[i];
978 }
f741a71c
JH
979
980 /* If we get here, we are set up to record the costs of all the
981 operands for this insn. Start by initializing the costs.
982 Then handle any address registers. Finally record the desired
983 classes for any pseudos, doing it twice if some pair of
984 operands are commutative. */
a6a2274a 985
f741a71c
JH
986 for (i = 0; i < recog_data.n_operands; i++)
987 {
988 op_costs[i] = init_cost;
989
990 if (GET_CODE (recog_data.operand[i]) == SUBREG)
991 {
992 rtx inner = SUBREG_REG (recog_data.operand[i]);
02188693
RH
993#ifdef CLASS_CANNOT_CHANGE_MODE
994 if (GET_CODE (inner) == REG
995 && CLASS_CANNOT_CHANGE_MODE_P (modes[i], GET_MODE (inner)))
996 SET_REGNO_REG_SET (reg_changes_mode, REGNO (inner));
9ef07cf1 997#endif
f741a71c
JH
998 recog_data.operand[i] = inner;
999 }
1000
1001 if (GET_CODE (recog_data.operand[i]) == MEM)
1002 record_address_regs (XEXP (recog_data.operand[i], 0),
3dcc68a4 1003 MODE_BASE_REG_CLASS (modes[i]), frequency * 2);
f741a71c
JH
1004 else if (constraints[i][0] == 'p')
1005 record_address_regs (recog_data.operand[i],
3dcc68a4 1006 MODE_BASE_REG_CLASS (modes[i]), frequency * 2);
f741a71c
JH
1007 }
1008
1009 /* Check for commutative in a separate loop so everything will
1010 have been initialized. We must do this even if one operand
1011 is a constant--see addsi3 in m68k.md. */
1012
1013 for (i = 0; i < (int) recog_data.n_operands - 1; i++)
1014 if (constraints[i][0] == '%')
1015 {
1016 const char *xconstraints[MAX_RECOG_OPERANDS];
1017 int j;
246fd41f 1018
f741a71c
JH
1019 /* Handle commutative operands by swapping the constraints.
1020 We assume the modes are the same. */
1021
1022 for (j = 0; j < recog_data.n_operands; j++)
1023 xconstraints[j] = constraints[j];
1024
1025 xconstraints[i] = constraints[i+1];
1026 xconstraints[i+1] = constraints[i];
1027 record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
a6a2274a 1028 recog_data.operand, modes,
f741a71c
JH
1029 xconstraints, insn, op_costs, reg_pref);
1030 }
1031
1032 record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
a6a2274a 1033 recog_data.operand, modes,
f741a71c
JH
1034 constraints, insn, op_costs, reg_pref);
1035}
54dac99e 1036\f
61719ba7
BS
1037/* Subroutine of regclass, processes one insn INSN. Scan it and record each
1038 time it would save code to put a certain register in a certain class.
1039 PASS, when nonzero, inhibits some optimizations which need only be done
1040 once.
1041 Return the last insn processed, so that the scan can be continued from
1042 there. */
1043
1044static rtx
1045scan_one_insn (insn, pass)
1046 rtx insn;
1047 int pass;
1048{
1049 enum rtx_code code = GET_CODE (insn);
1050 enum rtx_code pat_code;
0eadeb15 1051 rtx set, note;
61719ba7 1052 int i, j;
f741a71c 1053 struct costs op_costs[MAX_RECOG_OPERANDS];
61719ba7 1054
61719ba7
BS
1055 if (GET_RTX_CLASS (code) != 'i')
1056 return insn;
1057
1058 pat_code = GET_CODE (PATTERN (insn));
1059 if (pat_code == USE
1060 || pat_code == CLOBBER
1061 || pat_code == ASM_INPUT
1062 || pat_code == ADDR_VEC
1063 || pat_code == ADDR_DIFF_VEC)
1064 return insn;
1065
0eadeb15
BS
1066 set = single_set (insn);
1067 extract_insn (insn);
1068
0eadeb15
BS
1069 /* If this insn loads a parameter from its stack slot, then
1070 it represents a savings, rather than a cost, if the
1071 parameter is stored in memory. Record this fact. */
61719ba7 1072
0eadeb15
BS
1073 if (set != 0 && GET_CODE (SET_DEST (set)) == REG
1074 && GET_CODE (SET_SRC (set)) == MEM
1075 && (note = find_reg_note (insn, REG_EQUIV,
1076 NULL_RTX)) != 0
1077 && GET_CODE (XEXP (note, 0)) == MEM)
1078 {
1079 costs[REGNO (SET_DEST (set))].mem_cost
1080 -= (MEMORY_MOVE_COST (GET_MODE (SET_DEST (set)),
1081 GENERAL_REGS, 1)
9401afe3 1082 * frequency);
0eadeb15 1083 record_address_regs (XEXP (SET_SRC (set), 0),
3dcc68a4 1084 MODE_BASE_REG_CLASS (VOIDmode), frequency * 2);
0eadeb15
BS
1085 return insn;
1086 }
61719ba7 1087
0eadeb15
BS
1088 /* Improve handling of two-address insns such as
1089 (set X (ashift CONST Y)) where CONST must be made to
1090 match X. Change it into two insns: (set X CONST)
1091 (set X (ashift X Y)). If we left this for reloading, it
1092 would probably get three insns because X and Y might go
1093 in the same place. This prevents X and Y from receiving
1094 the same hard reg.
1095
1096 We can only do this if the modes of operands 0 and 1
1097 (which might not be the same) are tieable and we only need
1098 do this during our first pass. */
1099
1100 if (pass == 0 && optimize
1ccbefce
RH
1101 && recog_data.n_operands >= 3
1102 && recog_data.constraints[1][0] == '0'
1103 && recog_data.constraints[1][1] == 0
1104 && CONSTANT_P (recog_data.operand[1])
1105 && ! rtx_equal_p (recog_data.operand[0], recog_data.operand[1])
1106 && ! rtx_equal_p (recog_data.operand[0], recog_data.operand[2])
1107 && GET_CODE (recog_data.operand[0]) == REG
1108 && MODES_TIEABLE_P (GET_MODE (recog_data.operand[0]),
1109 recog_data.operand_mode[1]))
0eadeb15
BS
1110 {
1111 rtx previnsn = prev_real_insn (insn);
1112 rtx dest
1ccbefce
RH
1113 = gen_lowpart (recog_data.operand_mode[1],
1114 recog_data.operand[0]);
0eadeb15 1115 rtx newinsn
1ccbefce 1116 = emit_insn_before (gen_move_insn (dest, recog_data.operand[1]), insn);
61719ba7 1117
0eadeb15
BS
1118 /* If this insn was the start of a basic block,
1119 include the new insn in that block.
1120 We need not check for code_label here;
1121 while a basic block can start with a code_label,
1122 INSN could not be at the beginning of that block. */
1123 if (previnsn == 0 || GET_CODE (previnsn) == JUMP_INSN)
61719ba7 1124 {
e0082a72
ZD
1125 basic_block b;
1126 FOR_EACH_BB (b)
1127 if (insn == b->head)
1128 b->head = newinsn;
61719ba7
BS
1129 }
1130
0eadeb15 1131 /* This makes one more setting of new insns's dest. */
1ccbefce 1132 REG_N_SETS (REGNO (recog_data.operand[0]))++;
d3c7d45e 1133 REG_N_REFS (REGNO (recog_data.operand[0]))++;
9401afe3 1134 REG_FREQ (REGNO (recog_data.operand[0])) += frequency;
61719ba7 1135
1ccbefce 1136 *recog_data.operand_loc[1] = recog_data.operand[0];
d3c7d45e 1137 REG_N_REFS (REGNO (recog_data.operand[0]))++;
9401afe3 1138 REG_FREQ (REGNO (recog_data.operand[0])) += frequency;
1ccbefce
RH
1139 for (i = recog_data.n_dups - 1; i >= 0; i--)
1140 if (recog_data.dup_num[i] == 1)
d3c7d45e
AO
1141 {
1142 *recog_data.dup_loc[i] = recog_data.operand[0];
1143 REG_N_REFS (REGNO (recog_data.operand[0]))++;
9401afe3 1144 REG_FREQ (REGNO (recog_data.operand[0])) += frequency;
d3c7d45e 1145 }
61719ba7 1146
0eadeb15 1147 return PREV_INSN (newinsn);
61719ba7
BS
1148 }
1149
4963c995 1150 record_operand_costs (insn, op_costs, reg_pref);
61719ba7
BS
1151
1152 /* Now add the cost for each operand to the total costs for
1153 its register. */
1154
1ccbefce
RH
1155 for (i = 0; i < recog_data.n_operands; i++)
1156 if (GET_CODE (recog_data.operand[i]) == REG
1157 && REGNO (recog_data.operand[i]) >= FIRST_PSEUDO_REGISTER)
61719ba7 1158 {
1ccbefce 1159 int regno = REGNO (recog_data.operand[i]);
61719ba7
BS
1160 struct costs *p = &costs[regno], *q = &op_costs[i];
1161
9401afe3 1162 p->mem_cost += q->mem_cost * frequency;
61719ba7 1163 for (j = 0; j < N_REG_CLASSES; j++)
9401afe3 1164 p->cost[j] += q->cost[j] * frequency;
61719ba7
BS
1165 }
1166
1167 return insn;
1168}
1169
54dac99e
RK
1170/* This is a pass of the compiler that scans all instructions
1171 and calculates the preferred class for each pseudo-register.
1172 This information can be accessed later by calling `reg_preferred_class'.
1173 This pass comes just before local register allocation. */
1174
1175void
246fd41f 1176regclass (f, nregs, dump)
54dac99e
RK
1177 rtx f;
1178 int nregs;
246fd41f 1179 FILE *dump;
54dac99e 1180{
b3694847
SS
1181 rtx insn;
1182 int i;
e4600702 1183 int pass;
54dac99e
RK
1184
1185 init_recog ();
1186
56a65848 1187 costs = (struct costs *) xmalloc (nregs * sizeof (struct costs));
533d0835 1188
02188693 1189#ifdef CLASS_CANNOT_CHANGE_MODE
8e2e89f7 1190 reg_changes_mode = BITMAP_XMALLOC ();
a6a2274a 1191#endif
e79f71f7 1192
533d0835
RK
1193#ifdef FORBIDDEN_INC_DEC_CLASSES
1194
4da896b2 1195 in_inc_dec = (char *) xmalloc (nregs);
533d0835
RK
1196
1197 /* Initialize information about which register classes can be used for
1198 pseudos that are auto-incremented or auto-decremented. It would
1199 seem better to put this in init_reg_sets, but we need to be able
1200 to allocate rtx, which we can't do that early. */
1201
1202 for (i = 0; i < N_REG_CLASSES; i++)
1203 {
38a448ca 1204 rtx r = gen_rtx_REG (VOIDmode, 0);
533d0835 1205 enum machine_mode m;
b3694847 1206 int j;
533d0835
RK
1207
1208 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
1209 if (TEST_HARD_REG_BIT (reg_class_contents[i], j))
1210 {
1211 REGNO (r) = j;
1212
1213 for (m = VOIDmode; (int) m < (int) MAX_MACHINE_MODE;
808043ed 1214 m = (enum machine_mode) ((int) m + 1))
533d0835
RK
1215 if (HARD_REGNO_MODE_OK (j, m))
1216 {
1217 PUT_MODE (r, m);
08d95f91
RK
1218
1219 /* If a register is not directly suitable for an
1220 auto-increment or decrement addressing mode and
1221 requires secondary reloads, disallow its class from
1222 being used in such addresses. */
1223
1224 if ((0
041d7180 1225#ifdef SECONDARY_RELOAD_CLASS
3dcc68a4 1226 || (SECONDARY_RELOAD_CLASS (MODE_BASE_REG_CLASS (VOIDmode), m, r)
041d7180
JL
1227 != NO_REGS)
1228#else
533d0835 1229#ifdef SECONDARY_INPUT_RELOAD_CLASS
3dcc68a4 1230 || (SECONDARY_INPUT_RELOAD_CLASS (MODE_BASE_REG_CLASS (VOIDmode), m, r)
08d95f91 1231 != NO_REGS)
533d0835
RK
1232#endif
1233#ifdef SECONDARY_OUTPUT_RELOAD_CLASS
3dcc68a4 1234 || (SECONDARY_OUTPUT_RELOAD_CLASS (MODE_BASE_REG_CLASS (VOIDmode), m, r)
08d95f91 1235 != NO_REGS)
041d7180 1236#endif
533d0835 1237#endif
08d95f91
RK
1238 )
1239 && ! auto_inc_dec_reg_p (r, m))
533d0835
RK
1240 forbidden_inc_dec_class[i] = 1;
1241 }
1242 }
1243 }
1244#endif /* FORBIDDEN_INC_DEC_CLASSES */
1245
e4600702
RK
1246 /* Normally we scan the insns once and determine the best class to use for
1247 each register. However, if -fexpensive_optimizations are on, we do so
1248 twice, the second time using the tentative best classes to guide the
1249 selection. */
54dac99e 1250
e4600702
RK
1251 for (pass = 0; pass <= flag_expensive_optimizations; pass++)
1252 {
e0082a72 1253 basic_block bb;
f741a71c
JH
1254
1255 if (dump)
a6a2274a 1256 fprintf (dump, "\n\nPass %i\n\n",pass);
e4600702 1257 /* Zero out our accumulation of the cost of each class for each reg. */
54dac99e 1258
961192e1 1259 memset ((char *) costs, 0, nregs * sizeof (struct costs));
54dac99e 1260
533d0835 1261#ifdef FORBIDDEN_INC_DEC_CLASSES
961192e1 1262 memset (in_inc_dec, 0, nregs);
533d0835
RK
1263#endif
1264
e4600702
RK
1265 /* Scan the instructions and record each time it would
1266 save code to put a certain register in a certain class. */
1267
1f01879e 1268 if (!optimize)
54dac99e 1269 {
a08b2604 1270 frequency = REG_FREQ_MAX;
1f01879e
JH
1271 for (insn = f; insn; insn = NEXT_INSN (insn))
1272 insn = scan_one_insn (insn, pass);
54dac99e 1273 }
1f01879e 1274 else
e0082a72 1275 FOR_EACH_BB (bb)
1f01879e 1276 {
1f01879e 1277 /* Show that an insn inside a loop is likely to be executed three
9b15c17f
RH
1278 times more than insns outside a loop. This is much more
1279 aggressive than the assumptions made elsewhere and is being
1280 tried as an experiment. */
a08b2604 1281 frequency = REG_FREQ_FROM_BB (bb);
1f01879e
JH
1282 for (insn = bb->head; ; insn = NEXT_INSN (insn))
1283 {
1284 insn = scan_one_insn (insn, pass);
1285 if (insn == bb->end)
1286 break;
1287 }
1288 }
a6a2274a 1289
e4600702
RK
1290 /* Now for each register look at how desirable each class is
1291 and find which class is preferred. Store that in
9ffc5a70 1292 `prefclass'. Record in `altclass' the largest register
e4600702 1293 class any of whose registers is better than memory. */
a6a2274a 1294
e4600702 1295 if (pass == 0)
9ffc5a70 1296 reg_pref = reg_pref_buffer;
54dac99e 1297
f741a71c 1298 if (dump)
a6a2274a 1299 {
f741a71c 1300 dump_regclass (dump);
4963c995 1301 fprintf (dump,"\n");
f741a71c 1302 }
e4600702 1303 for (i = FIRST_PSEUDO_REGISTER; i < nregs; i++)
54dac99e 1304 {
b3694847 1305 int best_cost = (1 << (HOST_BITS_PER_INT - 2)) - 1;
e4600702
RK
1306 enum reg_class best = ALL_REGS, alt = NO_REGS;
1307 /* This is an enum reg_class, but we call it an int
1308 to save lots of casts. */
b3694847
SS
1309 int class;
1310 struct costs *p = &costs[i];
e4600702 1311
64615302
JH
1312 /* In non-optimizing compilation REG_N_REFS is not initialized
1313 yet. */
1314 if (optimize && !REG_N_REFS (i))
f741a71c
JH
1315 continue;
1316
e4600702 1317 for (class = (int) ALL_REGS - 1; class > 0; class--)
54dac99e 1318 {
533d0835 1319 /* Ignore classes that are too small for this operand or
4fe9b91c 1320 invalid for an operand that was auto-incremented. */
6df26b8f 1321 if (!contains_reg_of_mode [class][PSEUDO_REGNO_MODE (i)]
533d0835
RK
1322#ifdef FORBIDDEN_INC_DEC_CLASSES
1323 || (in_inc_dec[i] && forbidden_inc_dec_class[class])
e79f71f7 1324#endif
02188693
RH
1325#ifdef CLASS_CANNOT_CHANGE_MODE
1326 || (REGNO_REG_SET_P (reg_changes_mode, i)
1327 && ! class_can_change_mode [class])
533d0835
RK
1328#endif
1329 )
e4600702
RK
1330 ;
1331 else if (p->cost[class] < best_cost)
1332 {
1333 best_cost = p->cost[class];
1334 best = (enum reg_class) class;
1335 }
1336 else if (p->cost[class] == best_cost)
8e2e89f7 1337 best = reg_class_subunion[(int) best][class];
54dac99e 1338 }
54dac99e 1339
e4600702
RK
1340 /* Record the alternate register class; i.e., a class for which
1341 every register in it is better than using memory. If adding a
1342 class would make a smaller class (i.e., no union of just those
1343 classes exists), skip that class. The major unions of classes
1344 should be provided as a register class. Don't do this if we
1345 will be doing it again later. */
1346
f741a71c 1347 if ((pass == 1 || dump) || ! flag_expensive_optimizations)
e4600702
RK
1348 for (class = 0; class < N_REG_CLASSES; class++)
1349 if (p->cost[class] < p->mem_cost
77edb222 1350 && (reg_class_size[(int) reg_class_subunion[(int) alt][class]]
533d0835
RK
1351 > reg_class_size[(int) alt])
1352#ifdef FORBIDDEN_INC_DEC_CLASSES
1353 && ! (in_inc_dec[i] && forbidden_inc_dec_class[class])
e79f71f7 1354#endif
02188693
RH
1355#ifdef CLASS_CANNOT_CHANGE_MODE
1356 && ! (REGNO_REG_SET_P (reg_changes_mode, i)
1357 && ! class_can_change_mode [class])
533d0835
RK
1358#endif
1359 )
e4600702 1360 alt = reg_class_subunion[(int) alt][class];
a6a2274a 1361
e4600702
RK
1362 /* If we don't add any classes, nothing to try. */
1363 if (alt == best)
995d54dd 1364 alt = NO_REGS;
e4600702 1365
a6a2274a 1366 if (dump
f741a71c
JH
1367 && (reg_pref[i].prefclass != (int) best
1368 || reg_pref[i].altclass != (int) alt))
1369 {
1370 static const char *const reg_class_names[] = REG_CLASS_NAMES;
4963c995 1371 fprintf (dump, " Register %i", i);
f741a71c
JH
1372 if (alt == ALL_REGS || best == ALL_REGS)
1373 fprintf (dump, " pref %s\n", reg_class_names[(int) best]);
1374 else if (alt == NO_REGS)
1375 fprintf (dump, " pref %s or none\n", reg_class_names[(int) best]);
1376 else
1377 fprintf (dump, " pref %s, else %s\n",
1378 reg_class_names[(int) best],
1379 reg_class_names[(int) alt]);
1380 }
1381
e4600702 1382 /* We cast to (int) because (char) hits bugs in some compilers. */
9ffc5a70
JH
1383 reg_pref[i].prefclass = (int) best;
1384 reg_pref[i].altclass = (int) alt;
e4600702 1385 }
54dac99e 1386 }
56a65848 1387
4da896b2
MM
1388#ifdef FORBIDDEN_INC_DEC_CLASSES
1389 free (in_inc_dec);
e79f71f7 1390#endif
02188693
RH
1391#ifdef CLASS_CANNOT_CHANGE_MODE
1392 BITMAP_XFREE (reg_changes_mode);
4da896b2 1393#endif
56a65848 1394 free (costs);
54dac99e
RK
1395}
1396\f
e4600702
RK
1397/* Record the cost of using memory or registers of various classes for
1398 the operands in INSN.
54dac99e 1399
e4600702 1400 N_ALTS is the number of alternatives.
54dac99e 1401
e4600702
RK
1402 N_OPS is the number of operands.
1403
1404 OPS is an array of the operands.
1405
1406 MODES are the modes of the operands, in case any are VOIDmode.
1407
1408 CONSTRAINTS are the constraints to use for the operands. This array
1409 is modified by this procedure.
1410
1411 This procedure works alternative by alternative. For each alternative
1412 we assume that we will be able to allocate all pseudos to their ideal
1413 register class and calculate the cost of using that alternative. Then
a6a2274a 1414 we compute for each operand that is a pseudo-register, the cost of
e4600702
RK
1415 having the pseudo allocated to each register class and using it in that
1416 alternative. To this cost is added the cost of the alternative.
1417
1418 The cost of each class for this insn is its lowest cost among all the
1419 alternatives. */
1420
1421static void
e79f71f7 1422record_reg_classes (n_alts, n_ops, ops, modes,
f741a71c 1423 constraints, insn, op_costs, reg_pref)
e4600702
RK
1424 int n_alts;
1425 int n_ops;
1426 rtx *ops;
1427 enum machine_mode *modes;
9b3142b3 1428 const char **constraints;
e4600702 1429 rtx insn;
f741a71c
JH
1430 struct costs *op_costs;
1431 struct reg_pref *reg_pref;
54dac99e 1432{
e4600702 1433 int alt;
e4600702 1434 int i, j;
ec2d92af 1435 rtx set;
e4600702 1436
e4600702
RK
1437 /* Process each alternative, each time minimizing an operand's cost with
1438 the cost for each operand in that alternative. */
54dac99e 1439
e4600702 1440 for (alt = 0; alt < n_alts; alt++)
54dac99e 1441 {
e4600702
RK
1442 struct costs this_op_costs[MAX_RECOG_OPERANDS];
1443 int alt_fail = 0;
1444 int alt_cost = 0;
1445 enum reg_class classes[MAX_RECOG_OPERANDS];
da2c0219 1446 int allows_mem[MAX_RECOG_OPERANDS];
e4600702 1447 int class;
54dac99e 1448
e4600702
RK
1449 for (i = 0; i < n_ops; i++)
1450 {
9b3142b3 1451 const char *p = constraints[i];
e4600702
RK
1452 rtx op = ops[i];
1453 enum machine_mode mode = modes[i];
94e6f783 1454 int allows_addr = 0;
e4600702 1455 int win = 0;
e51712db 1456 unsigned char c;
54dac99e 1457
7405d9a1
DE
1458 /* Initially show we know nothing about the register class. */
1459 classes[i] = NO_REGS;
da2c0219 1460 allows_mem[i] = 0;
7405d9a1 1461
a6a2274a 1462 /* If this operand has no constraints at all, we can conclude
e4600702 1463 nothing about it since anything is valid. */
54dac99e 1464
e4600702
RK
1465 if (*p == 0)
1466 {
1467 if (GET_CODE (op) == REG && REGNO (op) >= FIRST_PSEUDO_REGISTER)
961192e1 1468 memset ((char *) &this_op_costs[i], 0, sizeof this_op_costs[i]);
54dac99e 1469
e4600702
RK
1470 continue;
1471 }
54dac99e 1472
7405d9a1
DE
1473 /* If this alternative is only relevant when this operand
1474 matches a previous operand, we do different things depending
1475 on whether this operand is a pseudo-reg or not. We must process
1476 any modifiers for the operand before we can make this test. */
1477
8c368ee2 1478 while (*p == '%' || *p == '=' || *p == '+' || *p == '&')
0eadeb15 1479 p++;
8c368ee2 1480
e4600702
RK
1481 if (p[0] >= '0' && p[0] <= '0' + i && (p[1] == ',' || p[1] == 0))
1482 {
da2c0219
RK
1483 /* Copy class and whether memory is allowed from the matching
1484 alternative. Then perform any needed cost computations
1485 and/or adjustments. */
e4600702
RK
1486 j = p[0] - '0';
1487 classes[i] = classes[j];
da2c0219 1488 allows_mem[i] = allows_mem[j];
e4600702
RK
1489
1490 if (GET_CODE (op) != REG || REGNO (op) < FIRST_PSEUDO_REGISTER)
1491 {
1492 /* If this matches the other operand, we have no added
dc903608 1493 cost and we win. */
e4600702 1494 if (rtx_equal_p (ops[j], op))
dc903608 1495 win = 1;
e4600702 1496
77e67eac
RK
1497 /* If we can put the other operand into a register, add to
1498 the cost of this alternative the cost to copy this
1499 operand to the register used for the other operand. */
e4600702 1500
dc903608 1501 else if (classes[j] != NO_REGS)
77e67eac 1502 alt_cost += copy_cost (op, mode, classes[j], 1), win = 1;
e4600702 1503 }
07d8ca2d
RS
1504 else if (GET_CODE (ops[j]) != REG
1505 || REGNO (ops[j]) < FIRST_PSEUDO_REGISTER)
1506 {
1507 /* This op is a pseudo but the one it matches is not. */
a6a2274a 1508
07d8ca2d
RS
1509 /* If we can't put the other operand into a register, this
1510 alternative can't be used. */
1511
1512 if (classes[j] == NO_REGS)
1513 alt_fail = 1;
e4600702 1514
07d8ca2d
RS
1515 /* Otherwise, add to the cost of this alternative the cost
1516 to copy the other operand to the register used for this
1517 operand. */
1518
1519 else
1520 alt_cost += copy_cost (ops[j], mode, classes[j], 1);
1521 }
e4600702
RK
1522 else
1523 {
da2c0219
RK
1524 /* The costs of this operand are not the same as the other
1525 operand since move costs are not symmetric. Moreover,
1526 if we cannot tie them, this alternative needs to do a
1527 copy, which is one instruction. */
1528
1529 struct costs *pp = &this_op_costs[i];
1530
1531 for (class = 0; class < N_REG_CLASSES; class++)
1532 pp->cost[class]
d5e2075d 1533 = ((recog_data.operand_type[i] != OP_OUT
e56b4594 1534 ? may_move_in_cost[mode][class][(int) classes[i]]
d5e2075d
JH
1535 : 0)
1536 + (recog_data.operand_type[i] != OP_IN
e56b4594 1537 ? may_move_out_cost[mode][(int) classes[i]][class]
d5e2075d 1538 : 0));
a6a2274a 1539
da2c0219
RK
1540 /* If the alternative actually allows memory, make things
1541 a bit cheaper since we won't need an extra insn to
1542 load it. */
1543
1544 pp->mem_cost
d5e2075d
JH
1545 = ((recog_data.operand_type[i] != OP_IN
1546 ? MEMORY_MOVE_COST (mode, classes[i], 0)
1547 : 0)
1548 + (recog_data.operand_type[i] != OP_OUT
1549 ? MEMORY_MOVE_COST (mode, classes[i], 1)
1550 : 0) - allows_mem[i]);
da2c0219
RK
1551
1552 /* If we have assigned a class to this register in our
1553 first pass, add a cost to this alternative corresponding
1554 to what we would add if this register were not in the
1555 appropriate class. */
1556
9ffc5a70 1557 if (reg_pref)
da2c0219 1558 alt_cost
e56b4594
AO
1559 += (may_move_in_cost[mode]
1560 [(unsigned char) reg_pref[REGNO (op)].prefclass]
da2c0219 1561 [(int) classes[i]]);
e4600702 1562
37747c82
RK
1563 if (REGNO (ops[i]) != REGNO (ops[j])
1564 && ! find_reg_note (insn, REG_DEAD, op))
1565 alt_cost += 2;
e4600702 1566
347099d6 1567 /* This is in place of ordinary cost computation
1ddb342a
RK
1568 for this operand, so skip to the end of the
1569 alternative (should be just one character). */
1570 while (*p && *p++ != ',')
1571 ;
1572
1573 constraints[i] = p;
347099d6
RS
1574 continue;
1575 }
e4600702
RK
1576 }
1577
1578 /* Scan all the constraint letters. See if the operand matches
1579 any of the constraints. Collect the valid register classes
1580 and see if this operand accepts memory. */
1581
e4600702
RK
1582 while (*p && (c = *p++) != ',')
1583 switch (c)
1584 {
e4600702
RK
1585 case '*':
1586 /* Ignore the next letter for this pass. */
1587 p++;
1588 break;
1589
812f2051
R
1590 case '?':
1591 alt_cost += 2;
8c368ee2 1592 case '!': case '#': case '&':
e4600702 1593 case '0': case '1': case '2': case '3': case '4':
8c368ee2 1594 case '5': case '6': case '7': case '8': case '9':
94e6f783
DE
1595 break;
1596
e4600702 1597 case 'p':
94e6f783
DE
1598 allows_addr = 1;
1599 win = address_operand (op, GET_MODE (op));
46f40127
JL
1600 /* We know this operand is an address, so we want it to be
1601 allocated to a register that can be the base of an
1602 address, ie BASE_REG_CLASS. */
1603 classes[i]
1604 = reg_class_subunion[(int) classes[i]]
3dcc68a4 1605 [(int) MODE_BASE_REG_CLASS (VOIDmode)];
e4600702
RK
1606 break;
1607
1608 case 'm': case 'o': case 'V':
ac2a9454 1609 /* It doesn't seem worth distinguishing between offsettable
e4600702 1610 and non-offsettable addresses here. */
da2c0219 1611 allows_mem[i] = 1;
e4600702
RK
1612 if (GET_CODE (op) == MEM)
1613 win = 1;
1614 break;
1615
1616 case '<':
1617 if (GET_CODE (op) == MEM
1618 && (GET_CODE (XEXP (op, 0)) == PRE_DEC
1619 || GET_CODE (XEXP (op, 0)) == POST_DEC))
1620 win = 1;
1621 break;
1622
1623 case '>':
1624 if (GET_CODE (op) == MEM
1625 && (GET_CODE (XEXP (op, 0)) == PRE_INC
1626 || GET_CODE (XEXP (op, 0)) == POST_INC))
1627 win = 1;
1628 break;
1629
1630 case 'E':
e4600702
RK
1631 case 'F':
1632 if (GET_CODE (op) == CONST_DOUBLE)
1633 win = 1;
1634 break;
1635
1636 case 'G':
1637 case 'H':
1638 if (GET_CODE (op) == CONST_DOUBLE
1639 && CONST_DOUBLE_OK_FOR_LETTER_P (op, c))
1640 win = 1;
1641 break;
1642
1643 case 's':
1644 if (GET_CODE (op) == CONST_INT
1645 || (GET_CODE (op) == CONST_DOUBLE
1646 && GET_MODE (op) == VOIDmode))
1647 break;
1648 case 'i':
1649 if (CONSTANT_P (op)
1650#ifdef LEGITIMATE_PIC_OPERAND_P
1651 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
1652#endif
1653 )
1654 win = 1;
1655 break;
1656
1657 case 'n':
1658 if (GET_CODE (op) == CONST_INT
1659 || (GET_CODE (op) == CONST_DOUBLE
1660 && GET_MODE (op) == VOIDmode))
1661 win = 1;
1662 break;
1663
1664 case 'I':
1665 case 'J':
1666 case 'K':
1667 case 'L':
1668 case 'M':
1669 case 'N':
1670 case 'O':
1671 case 'P':
1672 if (GET_CODE (op) == CONST_INT
1673 && CONST_OK_FOR_LETTER_P (INTVAL (op), c))
1674 win = 1;
1675 break;
1676
1677 case 'X':
1678 win = 1;
1679 break;
54dac99e 1680
e4600702
RK
1681 case 'g':
1682 if (GET_CODE (op) == MEM
1683 || (CONSTANT_P (op)
1684#ifdef LEGITIMATE_PIC_OPERAND_P
1685 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
54dac99e 1686#endif
e4600702
RK
1687 ))
1688 win = 1;
da2c0219 1689 allows_mem[i] = 1;
e4600702
RK
1690 case 'r':
1691 classes[i]
1692 = reg_class_subunion[(int) classes[i]][(int) GENERAL_REGS];
1693 break;
1694
1695 default:
c2cba7a9
RH
1696 if (REG_CLASS_FROM_LETTER (c) != NO_REGS)
1697 classes[i]
1698 = reg_class_subunion[(int) classes[i]]
1699 [(int) REG_CLASS_FROM_LETTER (c)];
1700#ifdef EXTRA_CONSTRAINT
1701 else if (EXTRA_CONSTRAINT (op, c))
1702 win = 1;
1703#endif
1704 break;
e4600702
RK
1705 }
1706
1707 constraints[i] = p;
1708
1709 /* How we account for this operand now depends on whether it is a
1710 pseudo register or not. If it is, we first check if any
1711 register classes are valid. If not, we ignore this alternative,
1712 since we want to assume that all pseudos get allocated for
1713 register preferencing. If some register class is valid, compute
1714 the costs of moving the pseudo into that class. */
1715
1716 if (GET_CODE (op) == REG && REGNO (op) >= FIRST_PSEUDO_REGISTER)
4db18574 1717 {
e4600702 1718 if (classes[i] == NO_REGS)
94e6f783 1719 {
e79f71f7
GK
1720 /* We must always fail if the operand is a REG, but
1721 we did not find a suitable class.
a6a2274a 1722
e79f71f7
GK
1723 Otherwise we may perform an uninitialized read
1724 from this_op_costs after the `continue' statement
1725 below. */
1726 alt_fail = 1;
94e6f783 1727 }
e4600702
RK
1728 else
1729 {
1730 struct costs *pp = &this_op_costs[i];
1731
1732 for (class = 0; class < N_REG_CLASSES; class++)
14a774a9 1733 pp->cost[class]
d5e2075d 1734 = ((recog_data.operand_type[i] != OP_OUT
e56b4594 1735 ? may_move_in_cost[mode][class][(int) classes[i]]
d5e2075d
JH
1736 : 0)
1737 + (recog_data.operand_type[i] != OP_IN
e56b4594 1738 ? may_move_out_cost[mode][(int) classes[i]][class]
d5e2075d 1739 : 0));
e4600702
RK
1740
1741 /* If the alternative actually allows memory, make things
1742 a bit cheaper since we won't need an extra insn to
1743 load it. */
1744
14a774a9 1745 pp->mem_cost
d5e2075d
JH
1746 = ((recog_data.operand_type[i] != OP_IN
1747 ? MEMORY_MOVE_COST (mode, classes[i], 0)
1748 : 0)
1749 + (recog_data.operand_type[i] != OP_OUT
1750 ? MEMORY_MOVE_COST (mode, classes[i], 1)
1751 : 0) - allows_mem[i]);
e4600702
RK
1752
1753 /* If we have assigned a class to this register in our
1754 first pass, add a cost to this alternative corresponding
1755 to what we would add if this register were not in the
1756 appropriate class. */
1757
9ffc5a70 1758 if (reg_pref)
e4600702 1759 alt_cost
e56b4594
AO
1760 += (may_move_in_cost[mode]
1761 [(unsigned char) reg_pref[REGNO (op)].prefclass]
14a774a9 1762 [(int) classes[i]]);
e4600702 1763 }
4db18574 1764 }
54dac99e 1765
e4600702
RK
1766 /* Otherwise, if this alternative wins, either because we
1767 have already determined that or if we have a hard register of
1768 the proper class, there is no cost for this alternative. */
54dac99e 1769
e4600702
RK
1770 else if (win
1771 || (GET_CODE (op) == REG
6f654776 1772 && reg_fits_class_p (op, classes[i], 0, GET_MODE (op))))
e4600702 1773 ;
54dac99e 1774
e4600702
RK
1775 /* If registers are valid, the cost of this alternative includes
1776 copying the object to and/or from a register. */
54dac99e 1777
e4600702
RK
1778 else if (classes[i] != NO_REGS)
1779 {
1ccbefce 1780 if (recog_data.operand_type[i] != OP_OUT)
e4600702 1781 alt_cost += copy_cost (op, mode, classes[i], 1);
54dac99e 1782
1ccbefce 1783 if (recog_data.operand_type[i] != OP_IN)
e4600702
RK
1784 alt_cost += copy_cost (op, mode, classes[i], 0);
1785 }
54dac99e 1786
e4600702
RK
1787 /* The only other way this alternative can be used is if this is a
1788 constant that could be placed into memory. */
1789
da2c0219 1790 else if (CONSTANT_P (op) && (allows_addr || allows_mem[i]))
cbd5b9a2 1791 alt_cost += MEMORY_MOVE_COST (mode, classes[i], 1);
e4600702
RK
1792 else
1793 alt_fail = 1;
1794 }
1795
1796 if (alt_fail)
1797 continue;
1798
1799 /* Finally, update the costs with the information we've calculated
1800 about this alternative. */
1801
1802 for (i = 0; i < n_ops; i++)
1803 if (GET_CODE (ops[i]) == REG
1804 && REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER)
54dac99e 1805 {
e4600702 1806 struct costs *pp = &op_costs[i], *qq = &this_op_costs[i];
1ccbefce 1807 int scale = 1 + (recog_data.operand_type[i] == OP_INOUT);
54dac99e 1808
e4600702
RK
1809 pp->mem_cost = MIN (pp->mem_cost,
1810 (qq->mem_cost + alt_cost) * scale);
54dac99e 1811
e4600702
RK
1812 for (class = 0; class < N_REG_CLASSES; class++)
1813 pp->cost[class] = MIN (pp->cost[class],
1814 (qq->cost[class] + alt_cost) * scale);
1815 }
1816 }
ec2d92af
RK
1817
1818 /* If this insn is a single set copying operand 1 to operand 0
accef103
JL
1819 and one operand is a pseudo with the other a hard reg or a pseudo
1820 that prefers a register that is in its own register class then
1821 we may want to adjust the cost of that register class to -1.
a6a2274a 1822
accef103
JL
1823 Avoid the adjustment if the source does not die to avoid stressing of
1824 register allocator by preferrencing two coliding registers into single
1825 class.
1826
1827 Also avoid the adjustment if a copy between registers of the class
1828 is expensive (ten times the cost of a default copy is considered
1829 arbitrarily expensive). This avoids losing when the preferred class
1830 is very expensive as the source of a copy instruction. */
ec2d92af
RK
1831
1832 if ((set = single_set (insn)) != 0
1833 && ops[0] == SET_DEST (set) && ops[1] == SET_SRC (set)
0dc0641b
JH
1834 && GET_CODE (ops[0]) == REG && GET_CODE (ops[1]) == REG
1835 && find_regno_note (insn, REG_DEAD, REGNO (ops[1])))
ec2d92af
RK
1836 for (i = 0; i <= 1; i++)
1837 if (REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER)
1838 {
770ae6cc 1839 unsigned int regno = REGNO (ops[!i]);
ec2d92af
RK
1840 enum machine_mode mode = GET_MODE (ops[!i]);
1841 int class;
770ae6cc 1842 unsigned int nr;
ec2d92af 1843
accef103
JL
1844 if (regno >= FIRST_PSEUDO_REGISTER && reg_pref != 0)
1845 {
1846 enum reg_class pref = reg_pref[regno].prefclass;
1847
1848 if ((reg_class_size[(unsigned char) pref]
1849 == CLASS_MAX_NREGS (pref, mode))
e56b4594 1850 && REGISTER_MOVE_COST (mode, pref, pref) < 10 * 2)
accef103
JL
1851 op_costs[i].cost[(unsigned char) pref] = -1;
1852 }
ec2d92af
RK
1853 else if (regno < FIRST_PSEUDO_REGISTER)
1854 for (class = 0; class < N_REG_CLASSES; class++)
1855 if (TEST_HARD_REG_BIT (reg_class_contents[class], regno)
1856 && reg_class_size[class] == CLASS_MAX_NREGS (class, mode))
4841ba4b
RK
1857 {
1858 if (reg_class_size[class] == 1)
1859 op_costs[i].cost[class] = -1;
1860 else
1861 {
770ae6cc 1862 for (nr = 0; nr < HARD_REGNO_NREGS (regno, mode); nr++)
4841ba4b 1863 {
770ae6cc
RK
1864 if (! TEST_HARD_REG_BIT (reg_class_contents[class],
1865 regno + nr))
4841ba4b
RK
1866 break;
1867 }
1868
770ae6cc 1869 if (nr == HARD_REGNO_NREGS (regno,mode))
4841ba4b
RK
1870 op_costs[i].cost[class] = -1;
1871 }
1872 }
ec2d92af 1873 }
54dac99e 1874}
e4600702
RK
1875\f
1876/* Compute the cost of loading X into (if TO_P is non-zero) or from (if
1877 TO_P is zero) a register of class CLASS in mode MODE.
1878
1879 X must not be a pseudo. */
1880
1881static int
1882copy_cost (x, mode, class, to_p)
1883 rtx x;
d0af450d 1884 enum machine_mode mode ATTRIBUTE_UNUSED;
e4600702 1885 enum reg_class class;
d0af450d 1886 int to_p ATTRIBUTE_UNUSED;
e4600702 1887{
29a82058 1888#ifdef HAVE_SECONDARY_RELOADS
e4600702 1889 enum reg_class secondary_class = NO_REGS;
29a82058 1890#endif
e4600702
RK
1891
1892 /* If X is a SCRATCH, there is actually nothing to move since we are
1893 assuming optimal allocation. */
1894
1895 if (GET_CODE (x) == SCRATCH)
1896 return 0;
1897
1898 /* Get the class we will actually use for a reload. */
1899 class = PREFERRED_RELOAD_CLASS (x, class);
1900
1901#ifdef HAVE_SECONDARY_RELOADS
a6a2274a 1902 /* If we need a secondary reload (we assume here that we are using
e4600702
RK
1903 the secondary reload as an intermediate, not a scratch register), the
1904 cost is that to load the input into the intermediate register, then
1905 to copy them. We use a special value of TO_P to avoid recursion. */
1906
1907#ifdef SECONDARY_INPUT_RELOAD_CLASS
1908 if (to_p == 1)
1909 secondary_class = SECONDARY_INPUT_RELOAD_CLASS (class, mode, x);
1910#endif
1911
dd9f0e8f 1912#ifdef SECONDARY_OUTPUT_RELOAD_CLASS
e4600702
RK
1913 if (! to_p)
1914 secondary_class = SECONDARY_OUTPUT_RELOAD_CLASS (class, mode, x);
1915#endif
1916
1917 if (secondary_class != NO_REGS)
e56b4594 1918 return (move_cost[mode][(int) secondary_class][(int) class]
e4600702 1919 + copy_cost (x, mode, secondary_class, 2));
dd9f0e8f 1920#endif /* HAVE_SECONDARY_RELOADS */
e4600702
RK
1921
1922 /* For memory, use the memory move cost, for (hard) registers, use the
1923 cost to move between the register classes, and use 2 for everything
1924 else (constants). */
1925
1926 if (GET_CODE (x) == MEM || class == NO_REGS)
cbd5b9a2 1927 return MEMORY_MOVE_COST (mode, class, to_p);
54dac99e 1928
e4600702 1929 else if (GET_CODE (x) == REG)
e56b4594 1930 return move_cost[mode][(int) REGNO_REG_CLASS (REGNO (x))][(int) class];
e4600702
RK
1931
1932 else
1933 /* If this is a constant, we may eventually want to call rtx_cost here. */
b437f1a7 1934 return COSTS_N_INSNS (1);
e4600702
RK
1935}
1936\f
54dac99e
RK
1937/* Record the pseudo registers we must reload into hard registers
1938 in a subexpression of a memory address, X.
e4600702
RK
1939
1940 CLASS is the class that the register needs to be in and is either
1941 BASE_REG_CLASS or INDEX_REG_CLASS.
1942
1943 SCALE is twice the amount to multiply the cost by (it is twice so we
1944 can represent half-cost adjustments). */
54dac99e 1945
197d6480 1946static void
e4600702 1947record_address_regs (x, class, scale)
54dac99e 1948 rtx x;
e4600702
RK
1949 enum reg_class class;
1950 int scale;
54dac99e 1951{
b3694847 1952 enum rtx_code code = GET_CODE (x);
54dac99e
RK
1953
1954 switch (code)
1955 {
1956 case CONST_INT:
1957 case CONST:
1958 case CC0:
1959 case PC:
1960 case SYMBOL_REF:
1961 case LABEL_REF:
1962 return;
1963
1964 case PLUS:
1965 /* When we have an address that is a sum,
1966 we must determine whether registers are "base" or "index" regs.
1967 If there is a sum of two registers, we must choose one to be
3502dc9c
JDA
1968 the "base". Luckily, we can use the REG_POINTER to make a good
1969 choice most of the time. We only need to do this on machines
1970 that can have two registers in an address and where the base
1971 and index register classes are different.
e4600702
RK
1972
1973 ??? This code used to set REGNO_POINTER_FLAG in some cases, but
1974 that seems bogus since it should only be set when we are sure
1975 the register is being used as a pointer. */
1976
54dac99e
RK
1977 {
1978 rtx arg0 = XEXP (x, 0);
1979 rtx arg1 = XEXP (x, 1);
b3694847
SS
1980 enum rtx_code code0 = GET_CODE (arg0);
1981 enum rtx_code code1 = GET_CODE (arg1);
54dac99e
RK
1982
1983 /* Look inside subregs. */
e4600702 1984 if (code0 == SUBREG)
54dac99e 1985 arg0 = SUBREG_REG (arg0), code0 = GET_CODE (arg0);
e4600702 1986 if (code1 == SUBREG)
54dac99e
RK
1987 arg1 = SUBREG_REG (arg1), code1 = GET_CODE (arg1);
1988
e4600702
RK
1989 /* If this machine only allows one register per address, it must
1990 be in the first operand. */
1991
1992 if (MAX_REGS_PER_ADDRESS == 1)
1993 record_address_regs (arg0, class, scale);
1994
1995 /* If index and base registers are the same on this machine, just
1996 record registers in any non-constant operands. We assume here,
a6a2274a 1997 as well as in the tests below, that all addresses are in
e4600702
RK
1998 canonical form. */
1999
3dcc68a4 2000 else if (INDEX_REG_CLASS == MODE_BASE_REG_CLASS (VOIDmode))
54dac99e 2001 {
e4600702
RK
2002 record_address_regs (arg0, class, scale);
2003 if (! CONSTANT_P (arg1))
2004 record_address_regs (arg1, class, scale);
54dac99e 2005 }
e4600702
RK
2006
2007 /* If the second operand is a constant integer, it doesn't change
2008 what class the first operand must be. */
2009
2010 else if (code1 == CONST_INT || code1 == CONST_DOUBLE)
2011 record_address_regs (arg0, class, scale);
2012
2013 /* If the second operand is a symbolic constant, the first operand
2014 must be an index register. */
2015
2016 else if (code1 == SYMBOL_REF || code1 == CONST || code1 == LABEL_REF)
2017 record_address_regs (arg0, INDEX_REG_CLASS, scale);
2018
956d6950
JL
2019 /* If both operands are registers but one is already a hard register
2020 of index or base class, give the other the class that the hard
2021 register is not. */
2022
3f9e9508 2023#ifdef REG_OK_FOR_BASE_P
956d6950
JL
2024 else if (code0 == REG && code1 == REG
2025 && REGNO (arg0) < FIRST_PSEUDO_REGISTER
2026 && (REG_OK_FOR_BASE_P (arg0) || REG_OK_FOR_INDEX_P (arg0)))
2027 record_address_regs (arg1,
2028 REG_OK_FOR_BASE_P (arg0)
3dcc68a4 2029 ? INDEX_REG_CLASS : MODE_BASE_REG_CLASS (VOIDmode),
956d6950
JL
2030 scale);
2031 else if (code0 == REG && code1 == REG
2032 && REGNO (arg1) < FIRST_PSEUDO_REGISTER
2033 && (REG_OK_FOR_BASE_P (arg1) || REG_OK_FOR_INDEX_P (arg1)))
2034 record_address_regs (arg0,
2035 REG_OK_FOR_BASE_P (arg1)
3dcc68a4 2036 ? INDEX_REG_CLASS : MODE_BASE_REG_CLASS (VOIDmode),
956d6950 2037 scale);
3f9e9508 2038#endif
956d6950 2039
e9a25f70
JL
2040 /* If one operand is known to be a pointer, it must be the base
2041 with the other operand the index. Likewise if the other operand
2042 is a MULT. */
f22376c7 2043
3502dc9c 2044 else if ((code0 == REG && REG_POINTER (arg0))
e9a25f70 2045 || code1 == MULT)
f22376c7 2046 {
3dcc68a4 2047 record_address_regs (arg0, MODE_BASE_REG_CLASS (VOIDmode), scale);
f22376c7
CI
2048 record_address_regs (arg1, INDEX_REG_CLASS, scale);
2049 }
3502dc9c 2050 else if ((code1 == REG && REG_POINTER (arg1))
e9a25f70 2051 || code0 == MULT)
f22376c7
CI
2052 {
2053 record_address_regs (arg0, INDEX_REG_CLASS, scale);
3dcc68a4 2054 record_address_regs (arg1, MODE_BASE_REG_CLASS (VOIDmode), scale);
f22376c7
CI
2055 }
2056
e9a25f70 2057 /* Otherwise, count equal chances that each might be a base
e4600702
RK
2058 or index register. This case should be rare. */
2059
e9a25f70 2060 else
54dac99e 2061 {
3dcc68a4
NC
2062 record_address_regs (arg0, MODE_BASE_REG_CLASS (VOIDmode),
2063 scale / 2);
e4600702 2064 record_address_regs (arg0, INDEX_REG_CLASS, scale / 2);
3dcc68a4
NC
2065 record_address_regs (arg1, MODE_BASE_REG_CLASS (VOIDmode),
2066 scale / 2);
e4600702 2067 record_address_regs (arg1, INDEX_REG_CLASS, scale / 2);
54dac99e 2068 }
54dac99e
RK
2069 }
2070 break;
2071
4b983fdc
RH
2072 /* Double the importance of a pseudo register that is incremented
2073 or decremented, since it would take two extra insns
2074 if it ends up in the wrong place. */
2075 case POST_MODIFY:
2076 case PRE_MODIFY:
3dcc68a4
NC
2077 record_address_regs (XEXP (x, 0), MODE_BASE_REG_CLASS (VOIDmode),
2078 2 * scale);
4b983fdc
RH
2079 if (REG_P (XEXP (XEXP (x, 1), 1)))
2080 record_address_regs (XEXP (XEXP (x, 1), 1),
2081 INDEX_REG_CLASS, 2 * scale);
2082 break;
2083
54dac99e
RK
2084 case POST_INC:
2085 case PRE_INC:
2086 case POST_DEC:
2087 case PRE_DEC:
2088 /* Double the importance of a pseudo register that is incremented
2089 or decremented, since it would take two extra insns
533d0835
RK
2090 if it ends up in the wrong place. If the operand is a pseudo,
2091 show it is being used in an INC_DEC context. */
2092
2093#ifdef FORBIDDEN_INC_DEC_CLASSES
2094 if (GET_CODE (XEXP (x, 0)) == REG
2095 && REGNO (XEXP (x, 0)) >= FIRST_PSEUDO_REGISTER)
2096 in_inc_dec[REGNO (XEXP (x, 0))] = 1;
2097#endif
e4600702
RK
2098
2099 record_address_regs (XEXP (x, 0), class, 2 * scale);
54dac99e
RK
2100 break;
2101
2102 case REG:
2103 {
b3694847
SS
2104 struct costs *pp = &costs[REGNO (x)];
2105 int i;
54dac99e 2106
cbd5b9a2 2107 pp->mem_cost += (MEMORY_MOVE_COST (Pmode, class, 1) * scale) / 2;
54dac99e 2108
e4600702 2109 for (i = 0; i < N_REG_CLASSES; i++)
e56b4594 2110 pp->cost[i] += (may_move_in_cost[Pmode][i][(int) class] * scale) / 2;
54dac99e
RK
2111 }
2112 break;
2113
2114 default:
2115 {
b3694847
SS
2116 const char *fmt = GET_RTX_FORMAT (code);
2117 int i;
54dac99e
RK
2118 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2119 if (fmt[i] == 'e')
e4600702 2120 record_address_regs (XEXP (x, i), class, scale);
54dac99e
RK
2121 }
2122 }
2123}
08d95f91
RK
2124\f
2125#ifdef FORBIDDEN_INC_DEC_CLASSES
2126
2127/* Return 1 if REG is valid as an auto-increment memory reference
2128 to an object of MODE. */
2129
1d300e19 2130static int
08d95f91
RK
2131auto_inc_dec_reg_p (reg, mode)
2132 rtx reg;
2133 enum machine_mode mode;
2134{
940da324
JL
2135 if (HAVE_POST_INCREMENT
2136 && memory_address_p (mode, gen_rtx_POST_INC (Pmode, reg)))
08d95f91 2137 return 1;
08d95f91 2138
940da324
JL
2139 if (HAVE_POST_DECREMENT
2140 && memory_address_p (mode, gen_rtx_POST_DEC (Pmode, reg)))
08d95f91 2141 return 1;
08d95f91 2142
940da324
JL
2143 if (HAVE_PRE_INCREMENT
2144 && memory_address_p (mode, gen_rtx_PRE_INC (Pmode, reg)))
08d95f91 2145 return 1;
08d95f91 2146
940da324
JL
2147 if (HAVE_PRE_DECREMENT
2148 && memory_address_p (mode, gen_rtx_PRE_DEC (Pmode, reg)))
08d95f91 2149 return 1;
08d95f91
RK
2150
2151 return 0;
2152}
2153#endif
b1f21e0a 2154\f
da668e9c
MM
2155static short *renumber;
2156static size_t regno_allocated;
2157static unsigned int reg_n_max;
ed396e68 2158
b1f21e0a
MM
2159/* Allocate enough space to hold NUM_REGS registers for the tables used for
2160 reg_scan and flow_analysis that are indexed by the register number. If
39379e67
MM
2161 NEW_P is non zero, initialize all of the registers, otherwise only
2162 initialize the new registers allocated. The same table is kept from
2163 function to function, only reallocating it when we need more room. If
2164 RENUMBER_P is non zero, allocate the reg_renumber array also. */
b1f21e0a
MM
2165
2166void
39379e67 2167allocate_reg_info (num_regs, new_p, renumber_p)
6feacd09 2168 size_t num_regs;
b1f21e0a 2169 int new_p;
39379e67 2170 int renumber_p;
b1f21e0a 2171{
6feacd09
MM
2172 size_t size_info;
2173 size_t size_renumber;
2174 size_t min = (new_p) ? 0 : reg_n_max;
2175 struct reg_info_data *reg_data;
39379e67 2176
b1f21e0a
MM
2177 if (num_regs > regno_allocated)
2178 {
6feacd09
MM
2179 size_t old_allocated = regno_allocated;
2180
b1f21e0a 2181 regno_allocated = num_regs + (num_regs / 20); /* add some slop space */
39379e67
MM
2182 size_renumber = regno_allocated * sizeof (short);
2183
2184 if (!reg_n_info)
2185 {
6feacd09 2186 VARRAY_REG_INIT (reg_n_info, regno_allocated, "reg_n_info");
39379e67 2187 renumber = (short *) xmalloc (size_renumber);
a6a2274a 2188 reg_pref_buffer = (struct reg_pref *) xmalloc (regno_allocated
9ffc5a70 2189 * sizeof (struct reg_pref));
39379e67
MM
2190 }
2191
2192 else
2193 {
6feacd09
MM
2194 VARRAY_GROW (reg_n_info, regno_allocated);
2195
2196 if (new_p) /* if we're zapping everything, no need to realloc */
2197 {
8e2e89f7
KH
2198 free ((char *) renumber);
2199 free ((char *) reg_pref);
6feacd09 2200 renumber = (short *) xmalloc (size_renumber);
a6a2274a 2201 reg_pref_buffer = (struct reg_pref *) xmalloc (regno_allocated
9ffc5a70 2202 * sizeof (struct reg_pref));
6feacd09
MM
2203 }
2204
2205 else
2206 {
8e2e89f7
KH
2207 renumber = (short *) xrealloc ((char *) renumber, size_renumber);
2208 reg_pref_buffer = (struct reg_pref *) xrealloc ((char *) reg_pref_buffer,
a6a2274a 2209 regno_allocated
9ffc5a70 2210 * sizeof (struct reg_pref));
6feacd09 2211 }
39379e67 2212 }
6feacd09
MM
2213
2214 size_info = (regno_allocated - old_allocated) * sizeof (reg_info)
2215 + sizeof (struct reg_info_data) - sizeof (reg_info);
2216 reg_data = (struct reg_info_data *) xcalloc (size_info, 1);
2217 reg_data->min_index = old_allocated;
2218 reg_data->max_index = regno_allocated - 1;
2219 reg_data->next = reg_info_head;
2220 reg_info_head = reg_data;
b1f21e0a
MM
2221 }
2222
6feacd09 2223 reg_n_max = num_regs;
b1f21e0a
MM
2224 if (min < num_regs)
2225 {
6feacd09
MM
2226 /* Loop through each of the segments allocated for the actual
2227 reg_info pages, and set up the pointers, zero the pages, etc. */
a6a2274a 2228 for (reg_data = reg_info_head;
da668e9c
MM
2229 reg_data && reg_data->max_index >= min;
2230 reg_data = reg_data->next)
39379e67 2231 {
6feacd09
MM
2232 size_t min_index = reg_data->min_index;
2233 size_t max_index = reg_data->max_index;
da668e9c
MM
2234 size_t max = MIN (max_index, num_regs);
2235 size_t local_min = min - min_index;
2236 size_t i;
6feacd09 2237
da668e9c
MM
2238 if (reg_data->min_index > num_regs)
2239 continue;
6feacd09 2240
da668e9c
MM
2241 if (min < min_index)
2242 local_min = 0;
2243 if (!reg_data->used_p) /* page just allocated with calloc */
2244 reg_data->used_p = 1; /* no need to zero */
2245 else
961192e1 2246 memset ((char *) &reg_data->data[local_min], 0,
da668e9c
MM
2247 sizeof (reg_info) * (max - min_index - local_min + 1));
2248
2249 for (i = min_index+local_min; i <= max; i++)
2250 {
2251 VARRAY_REG (reg_n_info, i) = &reg_data->data[i-min_index];
2252 REG_BASIC_BLOCK (i) = REG_BLOCK_UNKNOWN;
2253 renumber[i] = -1;
2254 reg_pref_buffer[i].prefclass = (char) NO_REGS;
2255 reg_pref_buffer[i].altclass = (char) NO_REGS;
6feacd09 2256 }
39379e67 2257 }
b1f21e0a
MM
2258 }
2259
6feacd09
MM
2260 /* If {pref,alt}class have already been allocated, update the pointers to
2261 the newly realloced ones. */
9ffc5a70
JH
2262 if (reg_pref)
2263 reg_pref = reg_pref_buffer;
6feacd09 2264
39379e67
MM
2265 if (renumber_p)
2266 reg_renumber = renumber;
2267
73b76448
RK
2268 /* Tell the regset code about the new number of registers */
2269 MAX_REGNO_REG_SET (num_regs, new_p, renumber_p);
b1f21e0a
MM
2270}
2271
ed396e68
BS
2272/* Free up the space allocated by allocate_reg_info. */
2273void
2274free_reg_info ()
2275{
2276 if (reg_n_info)
2277 {
2278 struct reg_info_data *reg_data;
2279 struct reg_info_data *reg_next;
2280
2281 VARRAY_FREE (reg_n_info);
2282 for (reg_data = reg_info_head; reg_data; reg_data = reg_next)
2283 {
2284 reg_next = reg_data->next;
8e2e89f7 2285 free ((char *) reg_data);
ed396e68
BS
2286 }
2287
9ffc5a70 2288 free (reg_pref_buffer);
f4f4d0f8
KH
2289 reg_pref_buffer = (struct reg_pref *) 0;
2290 reg_info_head = (struct reg_info_data *) 0;
2291 renumber = (short *) 0;
ed396e68
BS
2292 }
2293 regno_allocated = 0;
2294 reg_n_max = 0;
2295}
54dac99e
RK
2296\f
2297/* This is the `regscan' pass of the compiler, run just before cse
2298 and again just before loop.
2299
2300 It finds the first and last use of each pseudo-register
2301 and records them in the vectors regno_first_uid, regno_last_uid
2302 and counts the number of sets in the vector reg_n_sets.
2303
2304 REPEAT is nonzero the second time this is called. */
2305
54dac99e 2306/* Maximum number of parallel sets and clobbers in any insn in this fn.
d22d5f34 2307 Always at least 3, since the combiner could put that many together
79b9ec0d
RK
2308 and we want this to remain correct for all the remaining passes.
2309 This corresponds to the maximum number of times note_stores will call
2310 a function for any insn. */
54dac99e
RK
2311
2312int max_parallel;
2313
a6a2274a 2314/* Used as a temporary to record the largest number of registers in
79b9ec0d
RK
2315 PARALLEL in a SET_DEST. This is added to max_parallel. */
2316
2317static int max_set_parallel;
2318
54dac99e
RK
2319void
2320reg_scan (f, nregs, repeat)
2321 rtx f;
770ae6cc 2322 unsigned int nregs;
272df862 2323 int repeat ATTRIBUTE_UNUSED;
54dac99e 2324{
b3694847 2325 rtx insn;
54dac99e 2326
39379e67 2327 allocate_reg_info (nregs, TRUE, FALSE);
54dac99e 2328 max_parallel = 3;
79b9ec0d 2329 max_set_parallel = 0;
54dac99e
RK
2330
2331 for (insn = f; insn; insn = NEXT_INSN (insn))
2332 if (GET_CODE (insn) == INSN
2333 || GET_CODE (insn) == CALL_INSN
2334 || GET_CODE (insn) == JUMP_INSN)
2335 {
2336 if (GET_CODE (PATTERN (insn)) == PARALLEL
2337 && XVECLEN (PATTERN (insn), 0) > max_parallel)
2338 max_parallel = XVECLEN (PATTERN (insn), 0);
f903b91f 2339 reg_scan_mark_refs (PATTERN (insn), insn, 0, 0);
01565a55
RK
2340
2341 if (REG_NOTES (insn))
f903b91f
DM
2342 reg_scan_mark_refs (REG_NOTES (insn), insn, 1, 0);
2343 }
79b9ec0d
RK
2344
2345 max_parallel += max_set_parallel;
f903b91f
DM
2346}
2347
2348/* Update 'regscan' information by looking at the insns
2349 from FIRST to LAST. Some new REGs have been created,
2350 and any REG with number greater than OLD_MAX_REGNO is
2351 such a REG. We only update information for those. */
2352
2353void
770ae6cc 2354reg_scan_update (first, last, old_max_regno)
f903b91f
DM
2355 rtx first;
2356 rtx last;
770ae6cc 2357 unsigned int old_max_regno;
f903b91f 2358{
b3694847 2359 rtx insn;
f903b91f
DM
2360
2361 allocate_reg_info (max_reg_num (), FALSE, FALSE);
2362
2363 for (insn = first; insn != last; insn = NEXT_INSN (insn))
2364 if (GET_CODE (insn) == INSN
2365 || GET_CODE (insn) == CALL_INSN
2366 || GET_CODE (insn) == JUMP_INSN)
2367 {
2368 if (GET_CODE (PATTERN (insn)) == PARALLEL
2369 && XVECLEN (PATTERN (insn), 0) > max_parallel)
2370 max_parallel = XVECLEN (PATTERN (insn), 0);
2371 reg_scan_mark_refs (PATTERN (insn), insn, 0, old_max_regno);
2372
2373 if (REG_NOTES (insn))
2374 reg_scan_mark_refs (REG_NOTES (insn), insn, 1, old_max_regno);
54dac99e
RK
2375 }
2376}
2377
1ebecb64 2378/* X is the expression to scan. INSN is the insn it appears in.
f903b91f
DM
2379 NOTE_FLAG is nonzero if X is from INSN's notes rather than its body.
2380 We should only record information for REGs with numbers
2381 greater than or equal to MIN_REGNO. */
1ebecb64 2382
08d95f91 2383static void
f903b91f 2384reg_scan_mark_refs (x, insn, note_flag, min_regno)
54dac99e 2385 rtx x;
be8dcd74 2386 rtx insn;
1ebecb64 2387 int note_flag;
770ae6cc 2388 unsigned int min_regno;
54dac99e 2389{
b3694847
SS
2390 enum rtx_code code;
2391 rtx dest;
2392 rtx note;
54dac99e 2393
fa23c636 2394 code = GET_CODE (x);
54dac99e
RK
2395 switch (code)
2396 {
54dac99e 2397 case CONST:
185ebd6c 2398 case CONST_INT:
54dac99e 2399 case CONST_DOUBLE:
69ef87e2 2400 case CONST_VECTOR:
54dac99e
RK
2401 case CC0:
2402 case PC:
2403 case SYMBOL_REF:
2404 case LABEL_REF:
2405 case ADDR_VEC:
2406 case ADDR_DIFF_VEC:
2407 return;
2408
2409 case REG:
2410 {
770ae6cc 2411 unsigned int regno = REGNO (x);
54dac99e 2412
f903b91f
DM
2413 if (regno >= min_regno)
2414 {
2415 REGNO_LAST_NOTE_UID (regno) = INSN_UID (insn);
2416 if (!note_flag)
2417 REGNO_LAST_UID (regno) = INSN_UID (insn);
2418 if (REGNO_FIRST_UID (regno) == 0)
2419 REGNO_FIRST_UID (regno) = INSN_UID (insn);
2420 }
54dac99e
RK
2421 }
2422 break;
2423
01565a55 2424 case EXPR_LIST:
7b18c3db 2425 if (XEXP (x, 0))
f903b91f 2426 reg_scan_mark_refs (XEXP (x, 0), insn, note_flag, min_regno);
01565a55 2427 if (XEXP (x, 1))
f903b91f 2428 reg_scan_mark_refs (XEXP (x, 1), insn, note_flag, min_regno);
01565a55
RK
2429 break;
2430
2431 case INSN_LIST:
2432 if (XEXP (x, 1))
f903b91f 2433 reg_scan_mark_refs (XEXP (x, 1), insn, note_flag, min_regno);
01565a55
RK
2434 break;
2435
54dac99e
RK
2436 case SET:
2437 /* Count a set of the destination if it is a register. */
2438 for (dest = SET_DEST (x);
2439 GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART
2440 || GET_CODE (dest) == ZERO_EXTEND;
2441 dest = XEXP (dest, 0))
2442 ;
2443
79b9ec0d
RK
2444 /* For a PARALLEL, record the number of things (less the usual one for a
2445 SET) that are set. */
2446 if (GET_CODE (dest) == PARALLEL)
2447 max_set_parallel = MAX (max_set_parallel, XVECLEN (dest, 0) - 1);
2448
f903b91f
DM
2449 if (GET_CODE (dest) == REG
2450 && REGNO (dest) >= min_regno)
b2d57793
DB
2451 {
2452 REG_N_SETS (REGNO (dest))++;
2453 REG_N_REFS (REGNO (dest))++;
2454 }
54dac99e 2455
be8dcd74
RK
2456 /* If this is setting a pseudo from another pseudo or the sum of a
2457 pseudo and a constant integer and the other pseudo is known to be
2458 a pointer, set the destination to be a pointer as well.
2459
2460 Likewise if it is setting the destination from an address or from a
2461 value equivalent to an address or to the sum of an address and
2462 something else.
a6a2274a 2463
be8dcd74
RK
2464 But don't do any of this if the pseudo corresponds to a user
2465 variable since it should have already been set as a pointer based
2466 on the type. */
2467
2468 if (GET_CODE (SET_DEST (x)) == REG
2469 && REGNO (SET_DEST (x)) >= FIRST_PSEUDO_REGISTER
f903b91f 2470 && REGNO (SET_DEST (x)) >= min_regno
64d3b4ca
JL
2471 /* If the destination pseudo is set more than once, then other
2472 sets might not be to a pointer value (consider access to a
2473 union in two threads of control in the presense of global
3502dc9c 2474 optimizations). So only set REG_POINTER on the destination
64d3b4ca
JL
2475 pseudo if this is the only set of that pseudo. */
2476 && REG_N_SETS (REGNO (SET_DEST (x))) == 1
be8dcd74 2477 && ! REG_USERVAR_P (SET_DEST (x))
3502dc9c 2478 && ! REG_POINTER (SET_DEST (x))
be8dcd74 2479 && ((GET_CODE (SET_SRC (x)) == REG
3502dc9c 2480 && REG_POINTER (SET_SRC (x)))
be8dcd74
RK
2481 || ((GET_CODE (SET_SRC (x)) == PLUS
2482 || GET_CODE (SET_SRC (x)) == LO_SUM)
2483 && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
2484 && GET_CODE (XEXP (SET_SRC (x), 0)) == REG
3502dc9c 2485 && REG_POINTER (XEXP (SET_SRC (x), 0)))
be8dcd74
RK
2486 || GET_CODE (SET_SRC (x)) == CONST
2487 || GET_CODE (SET_SRC (x)) == SYMBOL_REF
2488 || GET_CODE (SET_SRC (x)) == LABEL_REF
2489 || (GET_CODE (SET_SRC (x)) == HIGH
2490 && (GET_CODE (XEXP (SET_SRC (x), 0)) == CONST
2491 || GET_CODE (XEXP (SET_SRC (x), 0)) == SYMBOL_REF
2492 || GET_CODE (XEXP (SET_SRC (x), 0)) == LABEL_REF))
2493 || ((GET_CODE (SET_SRC (x)) == PLUS
2494 || GET_CODE (SET_SRC (x)) == LO_SUM)
2495 && (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST
2496 || GET_CODE (XEXP (SET_SRC (x), 1)) == SYMBOL_REF
2497 || GET_CODE (XEXP (SET_SRC (x), 1)) == LABEL_REF))
2498 || ((note = find_reg_note (insn, REG_EQUAL, 0)) != 0
2499 && (GET_CODE (XEXP (note, 0)) == CONST
2500 || GET_CODE (XEXP (note, 0)) == SYMBOL_REF
2501 || GET_CODE (XEXP (note, 0)) == LABEL_REF))))
3502dc9c 2502 REG_POINTER (SET_DEST (x)) = 1;
be8dcd74 2503
0d4903b8
RK
2504 /* If this is setting a register from a register or from a simple
2505 conversion of a register, propagate REG_DECL. */
2506 if (GET_CODE (dest) == REG)
2507 {
2508 rtx src = SET_SRC (x);
2509
2510 while (GET_CODE (src) == SIGN_EXTEND
2511 || GET_CODE (src) == ZERO_EXTEND
2512 || GET_CODE (src) == TRUNCATE
2513 || (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)))
2514 src = XEXP (src, 0);
2515
2516 if (GET_CODE (src) == REG && REGNO_DECL (REGNO (src)) == 0)
2517 REGNO_DECL (REGNO (src)) = REGNO_DECL (REGNO (dest));
2518 else if (GET_CODE (src) == REG && REGNO_DECL (REGNO (dest)) == 0)
2519 REGNO_DECL (REGNO (dest)) = REGNO_DECL (REGNO (src));
2520 }
2521
0f41302f 2522 /* ... fall through ... */
54dac99e
RK
2523
2524 default:
2525 {
b3694847
SS
2526 const char *fmt = GET_RTX_FORMAT (code);
2527 int i;
54dac99e
RK
2528 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2529 {
2530 if (fmt[i] == 'e')
f903b91f 2531 reg_scan_mark_refs (XEXP (x, i), insn, note_flag, min_regno);
54dac99e
RK
2532 else if (fmt[i] == 'E' && XVEC (x, i) != 0)
2533 {
b3694847 2534 int j;
54dac99e 2535 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
f903b91f 2536 reg_scan_mark_refs (XVECEXP (x, i, j), insn, note_flag, min_regno);
54dac99e
RK
2537 }
2538 }
2539 }
2540 }
2541}
2542\f
2543/* Return nonzero if C1 is a subset of C2, i.e., if every register in C1
2544 is also in C2. */
2545
2546int
2547reg_class_subset_p (c1, c2)
b3694847
SS
2548 enum reg_class c1;
2549 enum reg_class c2;
54dac99e
RK
2550{
2551 if (c1 == c2) return 1;
2552
2553 if (c2 == ALL_REGS)
2554 win:
2555 return 1;
8e2e89f7
KH
2556 GO_IF_HARD_REG_SUBSET (reg_class_contents[(int) c1],
2557 reg_class_contents[(int) c2],
54dac99e
RK
2558 win);
2559 return 0;
2560}
2561
2562/* Return nonzero if there is a register that is in both C1 and C2. */
2563
2564int
2565reg_classes_intersect_p (c1, c2)
b3694847
SS
2566 enum reg_class c1;
2567 enum reg_class c2;
54dac99e
RK
2568{
2569#ifdef HARD_REG_SET
2570 register
2571#endif
2572 HARD_REG_SET c;
2573
2574 if (c1 == c2) return 1;
2575
2576 if (c1 == ALL_REGS || c2 == ALL_REGS)
2577 return 1;
2578
2579 COPY_HARD_REG_SET (c, reg_class_contents[(int) c1]);
2580 AND_HARD_REG_SET (c, reg_class_contents[(int) c2]);
2581
2582 GO_IF_HARD_REG_SUBSET (c, reg_class_contents[(int) NO_REGS], lose);
2583 return 1;
2584
2585 lose:
2586 return 0;
2587}
2588
73b76448
RK
2589/* Release any memory allocated by register sets. */
2590
2591void
2592regset_release_memory ()
2593{
73b76448
RK
2594 bitmap_release_memory ();
2595}
e2500fed
GK
2596
2597#include "gt-regclass.h"
This page took 2.2752 seconds and 5 git commands to generate.