]> gcc.gnu.org Git - gcc.git/blame - gcc/regclass.c
frame.h (ia64_frame_state): Add my_psp.
[gcc.git] / gcc / regclass.c
CommitLineData
54dac99e 1/* Compute register class preferences for pseudo-registers.
517cbe13
JL
2 Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1996
3 1997, 1998, 1999, 2000 Free Software Foundation, Inc.
54dac99e
RK
4
5This file is part of GNU CC.
6
7GNU CC is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
9the Free Software Foundation; either version 2, or (at your option)
10any later version.
11
12GNU CC is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with GNU CC; see the file COPYING. If not, write to
e99215a3
RK
19the Free Software Foundation, 59 Temple Place - Suite 330,
20Boston, MA 02111-1307, USA. */
54dac99e
RK
21
22
23/* This file contains two passes of the compiler: reg_scan and reg_class.
24 It also defines some tables of information about the hardware registers
25 and a function init_reg_sets to initialize the tables. */
26
27#include "config.h"
670ee920 28#include "system.h"
54dac99e 29#include "rtl.h"
6baf1cc8 30#include "tm_p.h"
54dac99e
RK
31#include "hard-reg-set.h"
32#include "flags.h"
33#include "basic-block.h"
34#include "regs.h"
49ad7cfa 35#include "function.h"
54dac99e
RK
36#include "insn-config.h"
37#include "recog.h"
e4600702
RK
38#include "reload.h"
39#include "real.h"
10f0ad3d 40#include "toplev.h"
d6f4ec51 41#include "output.h"
8b0212ca 42#include "ggc.h"
54dac99e
RK
43
44#ifndef REGISTER_MOVE_COST
45#define REGISTER_MOVE_COST(x, y) 2
46#endif
47
13536812
KG
48static void init_reg_sets_1 PARAMS ((void));
49static void init_reg_modes PARAMS ((void));
24deb20a 50
533d0835
RK
51/* If we have auto-increment or auto-decrement and we can have secondary
52 reloads, we are not allowed to use classes requiring secondary
9faa82d8 53 reloads for pseudos auto-incremented since reload can't handle it. */
533d0835
RK
54
55#ifdef AUTO_INC_DEC
dd9f0e8f 56#if defined(SECONDARY_INPUT_RELOAD_CLASS) || defined(SECONDARY_OUTPUT_RELOAD_CLASS)
533d0835
RK
57#define FORBIDDEN_INC_DEC_CLASSES
58#endif
59#endif
54dac99e
RK
60\f
61/* Register tables used by many passes. */
62
63/* Indexed by hard register number, contains 1 for registers
64 that are fixed use (stack pointer, pc, frame pointer, etc.).
65 These are the registers that cannot be used to allocate
252f342a 66 a pseudo reg for general use. */
54dac99e
RK
67
68char fixed_regs[FIRST_PSEUDO_REGISTER];
69
70/* Same info as a HARD_REG_SET. */
71
72HARD_REG_SET fixed_reg_set;
73
74/* Data for initializing the above. */
75
76static char initial_fixed_regs[] = FIXED_REGISTERS;
77
78/* Indexed by hard register number, contains 1 for registers
79 that are fixed use or are clobbered by function calls.
80 These are the registers that cannot be used to allocate
252f342a
MH
81 a pseudo reg whose life crosses calls unless we are able
82 to save/restore them across the calls. */
54dac99e
RK
83
84char call_used_regs[FIRST_PSEUDO_REGISTER];
85
86/* Same info as a HARD_REG_SET. */
87
88HARD_REG_SET call_used_reg_set;
89
6cad67d2
JL
90/* HARD_REG_SET of registers we want to avoid caller saving. */
91HARD_REG_SET losing_caller_save_reg_set;
92
54dac99e
RK
93/* Data for initializing the above. */
94
95static char initial_call_used_regs[] = CALL_USED_REGISTERS;
96
97/* Indexed by hard register number, contains 1 for registers that are
252f342a
MH
98 fixed use or call used registers that cannot hold quantities across
99 calls even if we are willing to save and restore them. call fixed
100 registers are a subset of call used registers. */
54dac99e
RK
101
102char call_fixed_regs[FIRST_PSEUDO_REGISTER];
103
104/* The same info as a HARD_REG_SET. */
105
106HARD_REG_SET call_fixed_reg_set;
107
108/* Number of non-fixed registers. */
109
110int n_non_fixed_regs;
111
112/* Indexed by hard register number, contains 1 for registers
113 that are being used for global register decls.
114 These must be exempt from ordinary flow analysis
115 and are also considered fixed. */
116
117char global_regs[FIRST_PSEUDO_REGISTER];
118
119/* Table of register numbers in the order in which to try to use them. */
120#ifdef REG_ALLOC_ORDER
121int reg_alloc_order[FIRST_PSEUDO_REGISTER] = REG_ALLOC_ORDER;
f5d8c9f4
BS
122
123/* The inverse of reg_alloc_order. */
124int inv_reg_alloc_order[FIRST_PSEUDO_REGISTER];
54dac99e
RK
125#endif
126
127/* For each reg class, a HARD_REG_SET saying which registers are in it. */
128
2e0e2b76
CH
129HARD_REG_SET reg_class_contents[N_REG_CLASSES];
130
089e575b
RS
131/* The same information, but as an array of unsigned ints. We copy from
132 these unsigned ints to the table above. We do this so the tm.h files
133 do not have to be aware of the wordsize for machines with <= 64 regs. */
2e0e2b76
CH
134
135#define N_REG_INTS \
136 ((FIRST_PSEUDO_REGISTER + (HOST_BITS_PER_INT - 1)) / HOST_BITS_PER_INT)
137
089e575b 138static unsigned int_reg_class_contents[N_REG_CLASSES][N_REG_INTS]
2e0e2b76 139 = REG_CLASS_CONTENTS;
54dac99e
RK
140
141/* For each reg class, number of regs it contains. */
142
770ae6cc 143unsigned int reg_class_size[N_REG_CLASSES];
54dac99e
RK
144
145/* For each reg class, table listing all the containing classes. */
146
147enum reg_class reg_class_superclasses[N_REG_CLASSES][N_REG_CLASSES];
148
149/* For each reg class, table listing all the classes contained in it. */
150
151enum reg_class reg_class_subclasses[N_REG_CLASSES][N_REG_CLASSES];
152
153/* For each pair of reg classes,
154 a largest reg class contained in their union. */
155
156enum reg_class reg_class_subunion[N_REG_CLASSES][N_REG_CLASSES];
157
158/* For each pair of reg classes,
159 the smallest reg class containing their union. */
160
161enum reg_class reg_class_superunion[N_REG_CLASSES][N_REG_CLASSES];
162
fbd40359
ZW
163/* Array containing all of the register names. Unless
164 DEBUG_REGISTER_NAMES is defined, use the copy in print-rtl.c. */
d05c8ee7 165
fbd40359 166#ifdef DEBUG_REGISTER_NAMES
e087aeb2 167const char * reg_names[] = REGISTER_NAMES;
fbd40359 168#endif
d05c8ee7 169
ca4aac00
DE
170/* For each hard register, the widest mode object that it can contain.
171 This will be a MODE_INT mode if the register can hold integers. Otherwise
172 it will be a MODE_FLOAT or a MODE_CC mode, whichever is valid for the
173 register. */
174
175enum machine_mode reg_raw_mode[FIRST_PSEUDO_REGISTER];
176
e4600702
RK
177/* Maximum cost of moving from a register in one class to a register in
178 another class. Based on REGISTER_MOVE_COST. */
179
180static int move_cost[N_REG_CLASSES][N_REG_CLASSES];
181
182/* Similar, but here we don't have to move if the first index is a subset
183 of the second so in that case the cost is zero. */
184
ee59f29b
JH
185static int may_move_in_cost[N_REG_CLASSES][N_REG_CLASSES];
186
187/* Similar, but here we don't have to move if the first index is a superset
188 of the second so in that case the cost is zero. */
189
190static int may_move_out_cost[N_REG_CLASSES][N_REG_CLASSES];
e4600702 191
533d0835
RK
192#ifdef FORBIDDEN_INC_DEC_CLASSES
193
194/* These are the classes that regs which are auto-incremented or decremented
195 cannot be put in. */
196
197static int forbidden_inc_dec_class[N_REG_CLASSES];
198
199/* Indexed by n, is non-zero if (REG n) is used in an auto-inc or auto-dec
200 context. */
201
202static char *in_inc_dec;
203
5fcb671c 204#endif /* FORBIDDEN_INC_DEC_CLASSES */
533d0835 205
02188693 206#ifdef CLASS_CANNOT_CHANGE_MODE
e79f71f7
GK
207
208/* These are the classes containing only registers that can be used in
02188693
RH
209 a SUBREG expression that changes the mode of the register in some
210 way that is illegal. */
e79f71f7 211
02188693 212static int class_can_change_mode[N_REG_CLASSES];
e79f71f7 213
02188693
RH
214/* Registers, including pseudos, which change modes in some way that
215 is illegal. */
e79f71f7 216
02188693 217static regset reg_changes_mode;
e79f71f7 218
02188693 219#endif /* CLASS_CANNOT_CHANGE_MODE */
e79f71f7 220
473fe49b
KR
221#ifdef HAVE_SECONDARY_RELOADS
222
223/* Sample MEM values for use by memory_move_secondary_cost. */
224
225static rtx top_of_stack[MAX_MACHINE_MODE];
226
227#endif /* HAVE_SECONDARY_RELOADS */
228
6feacd09
MM
229/* Linked list of reg_info structures allocated for reg_n_info array.
230 Grouping all of the allocated structures together in one lump
231 means only one call to bzero to clear them, rather than n smaller
232 calls. */
233struct reg_info_data {
234 struct reg_info_data *next; /* next set of reg_info structures */
235 size_t min_index; /* minimum index # */
236 size_t max_index; /* maximum index # */
237 char used_p; /* non-zero if this has been used previously */
238 reg_info data[1]; /* beginning of the reg_info data */
239};
240
241static struct reg_info_data *reg_info_head;
242
c07c7c9d 243/* No more global register variables may be declared; true once
6c85df69
AH
244 regclass has been initialized. */
245
246static int no_global_reg_vars = 0;
247
6feacd09 248
54dac99e
RK
249/* Function called only once to initialize the above data on reg usage.
250 Once this is done, various switches may override. */
251
252void
253init_reg_sets ()
254{
255 register int i, j;
256
2e0e2b76
CH
257 /* First copy the register information from the initial int form into
258 the regsets. */
259
260 for (i = 0; i < N_REG_CLASSES; i++)
261 {
262 CLEAR_HARD_REG_SET (reg_class_contents[i]);
263
264 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
265 if (int_reg_class_contents[i][j / HOST_BITS_PER_INT]
089e575b 266 & ((unsigned) 1 << (j % HOST_BITS_PER_INT)))
2e0e2b76
CH
267 SET_HARD_REG_BIT (reg_class_contents[i], j);
268 }
269
54dac99e
RK
270 bcopy (initial_fixed_regs, fixed_regs, sizeof fixed_regs);
271 bcopy (initial_call_used_regs, call_used_regs, sizeof call_used_regs);
272 bzero (global_regs, sizeof global_regs);
273
910bc42d
R
274 /* Do any additional initialization regsets may need */
275 INIT_ONCE_REG_SET ();
f5d8c9f4
BS
276
277#ifdef REG_ALLOC_ORDER
278 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
279 inv_reg_alloc_order[reg_alloc_order[i]] = i;
280#endif
910bc42d
R
281}
282
283/* After switches have been processed, which perhaps alter
284 `fixed_regs' and `call_used_regs', convert them to HARD_REG_SETs. */
285
286static void
287init_reg_sets_1 ()
288{
289 register unsigned int i, j;
290
291 /* This macro allows the fixed or call-used registers
292 and the register classes to depend on target flags. */
293
294#ifdef CONDITIONAL_REGISTER_USAGE
295 CONDITIONAL_REGISTER_USAGE;
296#endif
297
54dac99e
RK
298 /* Compute number of hard regs in each class. */
299
4c9a05bc 300 bzero ((char *) reg_class_size, sizeof reg_class_size);
54dac99e
RK
301 for (i = 0; i < N_REG_CLASSES; i++)
302 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
303 if (TEST_HARD_REG_BIT (reg_class_contents[i], j))
304 reg_class_size[i]++;
305
306 /* Initialize the table of subunions.
307 reg_class_subunion[I][J] gets the largest-numbered reg-class
308 that is contained in the union of classes I and J. */
309
310 for (i = 0; i < N_REG_CLASSES; i++)
311 {
312 for (j = 0; j < N_REG_CLASSES; j++)
313 {
314#ifdef HARD_REG_SET
315 register /* Declare it register if it's a scalar. */
316#endif
317 HARD_REG_SET c;
318 register int k;
319
320 COPY_HARD_REG_SET (c, reg_class_contents[i]);
321 IOR_HARD_REG_SET (c, reg_class_contents[j]);
322 for (k = 0; k < N_REG_CLASSES; k++)
323 {
324 GO_IF_HARD_REG_SUBSET (reg_class_contents[k], c,
325 subclass1);
326 continue;
327
328 subclass1:
329 /* keep the largest subclass */ /* SPEE 900308 */
330 GO_IF_HARD_REG_SUBSET (reg_class_contents[k],
331 reg_class_contents[(int) reg_class_subunion[i][j]],
332 subclass2);
333 reg_class_subunion[i][j] = (enum reg_class) k;
334 subclass2:
335 ;
336 }
337 }
338 }
339
340 /* Initialize the table of superunions.
341 reg_class_superunion[I][J] gets the smallest-numbered reg-class
342 containing the union of classes I and J. */
343
344 for (i = 0; i < N_REG_CLASSES; i++)
345 {
346 for (j = 0; j < N_REG_CLASSES; j++)
347 {
348#ifdef HARD_REG_SET
349 register /* Declare it register if it's a scalar. */
350#endif
351 HARD_REG_SET c;
352 register int k;
353
354 COPY_HARD_REG_SET (c, reg_class_contents[i]);
355 IOR_HARD_REG_SET (c, reg_class_contents[j]);
356 for (k = 0; k < N_REG_CLASSES; k++)
357 GO_IF_HARD_REG_SUBSET (c, reg_class_contents[k], superclass);
358
359 superclass:
360 reg_class_superunion[i][j] = (enum reg_class) k;
361 }
362 }
363
364 /* Initialize the tables of subclasses and superclasses of each reg class.
365 First clear the whole table, then add the elements as they are found. */
366
367 for (i = 0; i < N_REG_CLASSES; i++)
368 {
369 for (j = 0; j < N_REG_CLASSES; j++)
370 {
371 reg_class_superclasses[i][j] = LIM_REG_CLASSES;
372 reg_class_subclasses[i][j] = LIM_REG_CLASSES;
373 }
374 }
375
376 for (i = 0; i < N_REG_CLASSES; i++)
377 {
378 if (i == (int) NO_REGS)
379 continue;
380
381 for (j = i + 1; j < N_REG_CLASSES; j++)
382 {
383 enum reg_class *p;
384
385 GO_IF_HARD_REG_SUBSET (reg_class_contents[i], reg_class_contents[j],
386 subclass);
387 continue;
388 subclass:
389 /* Reg class I is a subclass of J.
390 Add J to the table of superclasses of I. */
391 p = &reg_class_superclasses[i][0];
392 while (*p != LIM_REG_CLASSES) p++;
393 *p = (enum reg_class) j;
394 /* Add I to the table of superclasses of J. */
395 p = &reg_class_subclasses[j][0];
396 while (*p != LIM_REG_CLASSES) p++;
397 *p = (enum reg_class) i;
398 }
399 }
e4600702 400
54dac99e
RK
401 /* Initialize "constant" tables. */
402
403 CLEAR_HARD_REG_SET (fixed_reg_set);
404 CLEAR_HARD_REG_SET (call_used_reg_set);
405 CLEAR_HARD_REG_SET (call_fixed_reg_set);
406
407 bcopy (fixed_regs, call_fixed_regs, sizeof call_fixed_regs);
54dac99e
RK
408
409 n_non_fixed_regs = 0;
410
411 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
412 {
54dac99e
RK
413 if (fixed_regs[i])
414 SET_HARD_REG_BIT (fixed_reg_set, i);
415 else
416 n_non_fixed_regs++;
417
418 if (call_used_regs[i])
419 SET_HARD_REG_BIT (call_used_reg_set, i);
420 if (call_fixed_regs[i])
421 SET_HARD_REG_BIT (call_fixed_reg_set, i);
6cad67d2
JL
422 if (CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (i)))
423 SET_HARD_REG_BIT (losing_caller_save_reg_set, i);
54dac99e 424 }
acbce667
KR
425
426 /* Initialize the move cost table. Find every subset of each class
427 and take the maximum cost of moving any subset to any other. */
428
429 for (i = 0; i < N_REG_CLASSES; i++)
430 for (j = 0; j < N_REG_CLASSES; j++)
431 {
432 int cost = i == j ? 2 : REGISTER_MOVE_COST (i, j);
433 enum reg_class *p1, *p2;
434
435 for (p2 = &reg_class_subclasses[j][0]; *p2 != LIM_REG_CLASSES; p2++)
436 if (*p2 != i)
437 cost = MAX (cost, REGISTER_MOVE_COST (i, *p2));
438
439 for (p1 = &reg_class_subclasses[i][0]; *p1 != LIM_REG_CLASSES; p1++)
440 {
441 if (*p1 != j)
442 cost = MAX (cost, REGISTER_MOVE_COST (*p1, j));
443
444 for (p2 = &reg_class_subclasses[j][0];
445 *p2 != LIM_REG_CLASSES; p2++)
446 if (*p1 != *p2)
447 cost = MAX (cost, REGISTER_MOVE_COST (*p1, *p2));
448 }
449
450 move_cost[i][j] = cost;
451
452 if (reg_class_subset_p (i, j))
ee59f29b
JH
453 may_move_in_cost[i][j] = 0;
454 else
455 may_move_in_cost[i][j] = cost;
acbce667 456
ee59f29b
JH
457 if (reg_class_subset_p (j, i))
458 may_move_out_cost[i][j] = 0;
459 else
460 may_move_out_cost[i][j] = cost;
acbce667 461 }
e79f71f7 462
02188693 463#ifdef CLASS_CANNOT_CHANGE_MODE
e79f71f7
GK
464 {
465 HARD_REG_SET c;
02188693 466 COMPL_HARD_REG_SET (c, reg_class_contents[CLASS_CANNOT_CHANGE_MODE]);
e79f71f7
GK
467
468 for (i = 0; i < N_REG_CLASSES; i++)
469 {
470 GO_IF_HARD_REG_SUBSET (reg_class_contents[i], c, ok_class);
02188693 471 class_can_change_mode [i] = 0;
e79f71f7
GK
472 continue;
473 ok_class:
02188693 474 class_can_change_mode [i] = 1;
e79f71f7
GK
475 }
476 }
02188693 477#endif /* CLASS_CANNOT_CHANGE_MODE */
c27c5281
DE
478}
479
480/* Compute the table of register modes.
481 These values are used to record death information for individual registers
482 (as opposed to a multi-register mode). */
ca4aac00 483
c27c5281
DE
484static void
485init_reg_modes ()
486{
487 register int i;
ca4aac00
DE
488
489 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
7f21d440
DE
490 {
491 reg_raw_mode[i] = choose_hard_reg_mode (i, 1);
492
066c2fea 493 /* If we couldn't find a valid mode, just use the previous mode.
7f21d440
DE
494 ??? One situation in which we need to do this is on the mips where
495 HARD_REGNO_NREGS (fpreg, [SD]Fmode) returns 2. Ideally we'd like
496 to use DF mode for the even registers and VOIDmode for the odd
9faa82d8 497 (for the cpu models where the odd ones are inaccessible). */
7f21d440 498 if (reg_raw_mode[i] == VOIDmode)
066c2fea 499 reg_raw_mode[i] = i == 0 ? word_mode : reg_raw_mode[i-1];
7f21d440 500 }
ca4aac00
DE
501}
502
c27c5281
DE
503/* Finish initializing the register sets and
504 initialize the register modes. */
505
506void
507init_regs ()
508{
509 /* This finishes what was started by init_reg_sets, but couldn't be done
510 until after register usage was specified. */
b93a436e 511 init_reg_sets_1 ();
c27c5281
DE
512
513 init_reg_modes ();
473fe49b
KR
514
515#ifdef HAVE_SECONDARY_RELOADS
516 {
517 /* Make some fake stack-frame MEM references for use in
518 memory_move_secondary_cost. */
519 int i;
d067e2aa 520
473fe49b 521 for (i = 0; i < MAX_MACHINE_MODE; i++)
9ec36da5 522 top_of_stack[i] = gen_rtx_MEM (i, stack_pointer_rtx);
00d33cb2 523 ggc_add_rtx_root (top_of_stack, MAX_MACHINE_MODE);
473fe49b
KR
524 }
525#endif
c27c5281
DE
526}
527
cbd5b9a2 528#ifdef HAVE_SECONDARY_RELOADS
473fe49b 529
cbd5b9a2
KR
530/* Compute extra cost of moving registers to/from memory due to reloads.
531 Only needed if secondary reloads are required for memory moves. */
473fe49b 532
cbd5b9a2
KR
533int
534memory_move_secondary_cost (mode, class, in)
535 enum machine_mode mode;
536 enum reg_class class;
537 int in;
538{
539 enum reg_class altclass;
540 int partial_cost = 0;
cbd5b9a2 541 /* We need a memory reference to feed to SECONDARY... macros. */
272df862
KG
542 /* mem may be unused even if the SECONDARY_ macros are defined. */
543 rtx mem ATTRIBUTE_UNUSED = top_of_stack[(int) mode];
544
cbd5b9a2
KR
545
546 if (in)
473fe49b 547 {
321c0828 548#ifdef SECONDARY_INPUT_RELOAD_CLASS
473fe49b 549 altclass = SECONDARY_INPUT_RELOAD_CLASS (class, mode, mem);
321c0828 550#else
473fe49b 551 altclass = NO_REGS;
321c0828 552#endif
473fe49b 553 }
cbd5b9a2 554 else
473fe49b 555 {
321c0828 556#ifdef SECONDARY_OUTPUT_RELOAD_CLASS
473fe49b 557 altclass = SECONDARY_OUTPUT_RELOAD_CLASS (class, mode, mem);
321c0828 558#else
473fe49b 559 altclass = NO_REGS;
321c0828 560#endif
473fe49b
KR
561 }
562
cbd5b9a2
KR
563 if (altclass == NO_REGS)
564 return 0;
565
566 if (in)
567 partial_cost = REGISTER_MOVE_COST (altclass, class);
568 else
569 partial_cost = REGISTER_MOVE_COST (class, altclass);
570
571 if (class == altclass)
572 /* This isn't simply a copy-to-temporary situation. Can't guess
573 what it is, so MEMORY_MOVE_COST really ought not to be calling
574 here in that case.
575
576 I'm tempted to put in an abort here, but returning this will
577 probably only give poor estimates, which is what we would've
578 had before this code anyways. */
579 return partial_cost;
580
581 /* Check if the secondary reload register will also need a
582 secondary reload. */
583 return memory_move_secondary_cost (mode, altclass, in) + partial_cost;
584}
585#endif
586
ca4aac00
DE
587/* Return a machine mode that is legitimate for hard reg REGNO and large
588 enough to save nregs. If we can't find one, return VOIDmode. */
589
590enum machine_mode
591choose_hard_reg_mode (regno, nregs)
770ae6cc
RK
592 unsigned int regno ATTRIBUTE_UNUSED;
593 unsigned int nregs;
ca4aac00
DE
594{
595 enum machine_mode found_mode = VOIDmode, mode;
596
597 /* We first look for the largest integer mode that can be validly
598 held in REGNO. If none, we look for the largest floating-point mode.
599 If we still didn't find a valid mode, try CCmode. */
600
601 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
602 mode != VOIDmode;
603 mode = GET_MODE_WIDER_MODE (mode))
604 if (HARD_REGNO_NREGS (regno, mode) == nregs
605 && HARD_REGNO_MODE_OK (regno, mode))
606 found_mode = mode;
607
608 if (found_mode != VOIDmode)
609 return found_mode;
610
611 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
612 mode != VOIDmode;
613 mode = GET_MODE_WIDER_MODE (mode))
614 if (HARD_REGNO_NREGS (regno, mode) == nregs
615 && HARD_REGNO_MODE_OK (regno, mode))
616 found_mode = mode;
617
618 if (found_mode != VOIDmode)
619 return found_mode;
620
621 if (HARD_REGNO_NREGS (regno, CCmode) == nregs
622 && HARD_REGNO_MODE_OK (regno, CCmode))
623 return CCmode;
624
625 /* We can't find a mode valid for this register. */
626 return VOIDmode;
54dac99e
RK
627}
628
629/* Specify the usage characteristics of the register named NAME.
630 It should be a fixed register if FIXED and a
631 call-used register if CALL_USED. */
632
633void
634fix_register (name, fixed, call_used)
ec0ce6e2 635 const char *name;
54dac99e
RK
636 int fixed, call_used;
637{
638 int i;
639
640 /* Decode the name and update the primary form of
641 the register info. */
642
e5c90c23
TW
643 if ((i = decode_reg_name (name)) >= 0)
644 {
cb2fdc84
GRK
645 if ((i == STACK_POINTER_REGNUM
646#ifdef HARD_FRAME_POINTER_REGNUM
647 || i == HARD_FRAME_POINTER_REGNUM
648#else
649 || i == FRAME_POINTER_REGNUM
650#endif
651 )
652 && (fixed == 0 || call_used == 0))
653 {
6f7d635c 654 static const char * const what_option[2][2] = {
7f7f8214
KG
655 { "call-saved", "call-used" },
656 { "no-such-option", "fixed" }};
cb2fdc84
GRK
657
658 error ("can't use '%s' as a %s register", name,
659 what_option[fixed][call_used]);
660 }
661 else
662 {
663 fixed_regs[i] = fixed;
664 call_used_regs[i] = call_used;
665 }
e5c90c23
TW
666 }
667 else
54dac99e
RK
668 {
669 warning ("unknown register name: %s", name);
54dac99e
RK
670 }
671}
614f68e2
RK
672
673/* Mark register number I as global. */
674
675void
676globalize_reg (i)
677 int i;
678{
c07c7c9d 679 if (fixed_regs[i] == 0 && no_global_reg_vars)
6c85df69
AH
680 error ("global register variable follows a function definition");
681
614f68e2
RK
682 if (global_regs[i])
683 {
684 warning ("register used for two global register variables");
685 return;
686 }
687
688 if (call_used_regs[i] && ! fixed_regs[i])
689 warning ("call-clobbered register used for global register variable");
690
691 global_regs[i] = 1;
692
693 /* If already fixed, nothing else to do. */
694 if (fixed_regs[i])
695 return;
696
697 fixed_regs[i] = call_used_regs[i] = call_fixed_regs[i] = 1;
698 n_non_fixed_regs--;
699
700 SET_HARD_REG_BIT (fixed_reg_set, i);
701 SET_HARD_REG_BIT (call_used_reg_set, i);
702 SET_HARD_REG_BIT (call_fixed_reg_set, i);
703}
54dac99e
RK
704\f
705/* Now the data and code for the `regclass' pass, which happens
706 just before local-alloc. */
707
e4600702
RK
708/* The `costs' struct records the cost of using a hard register of each class
709 and of using memory for each pseudo. We use this data to set up
710 register class preferences. */
54dac99e 711
e4600702 712struct costs
54dac99e 713{
e4600702
RK
714 int cost[N_REG_CLASSES];
715 int mem_cost;
54dac99e
RK
716};
717
9ffc5a70
JH
718/* Structure used to record preferrences of given pseudo. */
719struct reg_pref
720{
721 /* (enum reg_class) prefclass is the preferred class. */
722 char prefclass;
723
724 /* altclass is a register class that we should use for allocating
725 pseudo if no register in the preferred class is available.
726 If no register in this class is available, memory is preferred.
727
728 It might appear to be more general to have a bitmask of classes here,
729 but since it is recommended that there be a class corresponding to the
730 union of most major pair of classes, that generality is not required. */
731 char altclass;
732};
733
e4600702
RK
734/* Record the cost of each class for each pseudo. */
735
736static struct costs *costs;
737
61719ba7
BS
738/* Initialized once, and used to initialize cost values for each insn. */
739
740static struct costs init_cost;
741
9ffc5a70 742/* Record preferrences of each pseudo.
54dac99e
RK
743 This is available after `regclass' is run. */
744
9ffc5a70 745static struct reg_pref *reg_pref;
54d23420 746
9ffc5a70 747/* Allocated buffers for reg_pref. */
54dac99e 748
9ffc5a70 749static struct reg_pref *reg_pref_buffer;
6feacd09 750
54d23420
RK
751/* Account for the fact that insns within a loop are executed very commonly,
752 but don't keep doing this as loops go too deep. */
753
754static int loop_cost;
755
13536812
KG
756static rtx scan_one_insn PARAMS ((rtx, int));
757static void record_operand_costs PARAMS ((rtx, struct costs *, struct reg_pref *));
758static void dump_regclass PARAMS ((FILE *));
759static void record_reg_classes PARAMS ((int, int, rtx *, enum machine_mode *,
e79f71f7 760 const char **, rtx,
f741a71c 761 struct costs *, struct reg_pref *));
13536812 762static int copy_cost PARAMS ((rtx, enum machine_mode,
08d95f91 763 enum reg_class, int));
13536812 764static void record_address_regs PARAMS ((rtx, enum reg_class, int));
1d300e19 765#ifdef FORBIDDEN_INC_DEC_CLASSES
13536812 766static int auto_inc_dec_reg_p PARAMS ((rtx, enum machine_mode));
1d300e19 767#endif
770ae6cc 768static void reg_scan_mark_refs PARAMS ((rtx, rtx, int, unsigned int));
54dac99e
RK
769
770/* Return the reg_class in which pseudo reg number REGNO is best allocated.
771 This function is sometimes called before the info has been computed.
772 When that happens, just return GENERAL_REGS, which is innocuous. */
773
774enum reg_class
775reg_preferred_class (regno)
776 int regno;
777{
9ffc5a70 778 if (reg_pref == 0)
54dac99e 779 return GENERAL_REGS;
9ffc5a70 780 return (enum reg_class) reg_pref[regno].prefclass;
54dac99e
RK
781}
782
e4600702
RK
783enum reg_class
784reg_alternate_class (regno)
b729186a 785 int regno;
54dac99e 786{
9ffc5a70 787 if (reg_pref == 0)
e4600702
RK
788 return ALL_REGS;
789
9ffc5a70 790 return (enum reg_class) reg_pref[regno].altclass;
54dac99e
RK
791}
792
61719ba7 793/* Initialize some global data for this pass. */
54dac99e
RK
794
795void
796regclass_init ()
797{
61719ba7
BS
798 int i;
799
800 init_cost.mem_cost = 10000;
801 for (i = 0; i < N_REG_CLASSES; i++)
802 init_cost.cost[i] = 10000;
803
804 /* This prevents dump_flow_info from losing if called
805 before regclass is run. */
9ffc5a70 806 reg_pref = NULL;
6c85df69 807
c07c7c9d 808 /* No more global register variables may be declared. */
6c85df69 809 no_global_reg_vars = 1;
54dac99e 810}
246fd41f
JH
811\f
812/* Dump register costs. */
915b80ed 813static void
246fd41f
JH
814dump_regclass (dump)
815 FILE *dump;
816{
817 static const char *const reg_class_names[] = REG_CLASS_NAMES;
818 int i;
819 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
820 {
821 enum reg_class class;
822 if (REG_N_REFS (i))
823 {
f741a71c 824 fprintf (dump, " Register %i costs:", i);
246fd41f
JH
825 for (class = 0; class < N_REG_CLASSES; class++)
826 fprintf (dump, " %s:%i", reg_class_names[(int) class],
827 costs[i].cost[class]);
f741a71c 828 fprintf (dump, " MEM:%i\n", costs[i].mem_cost);
246fd41f
JH
829 }
830 }
831}
f741a71c
JH
832\f
833
834/* Calculate the costs of insn operands. */
835
836static void
837record_operand_costs (insn, op_costs, reg_pref)
838 rtx insn;
839 struct costs *op_costs;
840 struct reg_pref *reg_pref;
841{
842 const char *constraints[MAX_RECOG_OPERANDS];
843 enum machine_mode modes[MAX_RECOG_OPERANDS];
f741a71c
JH
844 int i;
845
846 for (i = 0; i < recog_data.n_operands; i++)
847 {
848 constraints[i] = recog_data.constraints[i];
849 modes[i] = recog_data.operand_mode[i];
850 }
f741a71c
JH
851
852 /* If we get here, we are set up to record the costs of all the
853 operands for this insn. Start by initializing the costs.
854 Then handle any address registers. Finally record the desired
855 classes for any pseudos, doing it twice if some pair of
856 operands are commutative. */
857
858 for (i = 0; i < recog_data.n_operands; i++)
859 {
860 op_costs[i] = init_cost;
861
862 if (GET_CODE (recog_data.operand[i]) == SUBREG)
863 {
864 rtx inner = SUBREG_REG (recog_data.operand[i]);
02188693
RH
865#ifdef CLASS_CANNOT_CHANGE_MODE
866 if (GET_CODE (inner) == REG
867 && CLASS_CANNOT_CHANGE_MODE_P (modes[i], GET_MODE (inner)))
868 SET_REGNO_REG_SET (reg_changes_mode, REGNO (inner));
9ef07cf1 869#endif
f741a71c
JH
870 recog_data.operand[i] = inner;
871 }
872
873 if (GET_CODE (recog_data.operand[i]) == MEM)
874 record_address_regs (XEXP (recog_data.operand[i], 0),
875 BASE_REG_CLASS, loop_cost * 2);
876 else if (constraints[i][0] == 'p')
877 record_address_regs (recog_data.operand[i],
878 BASE_REG_CLASS, loop_cost * 2);
879 }
880
881 /* Check for commutative in a separate loop so everything will
882 have been initialized. We must do this even if one operand
883 is a constant--see addsi3 in m68k.md. */
884
885 for (i = 0; i < (int) recog_data.n_operands - 1; i++)
886 if (constraints[i][0] == '%')
887 {
888 const char *xconstraints[MAX_RECOG_OPERANDS];
889 int j;
246fd41f 890
f741a71c
JH
891 /* Handle commutative operands by swapping the constraints.
892 We assume the modes are the same. */
893
894 for (j = 0; j < recog_data.n_operands; j++)
895 xconstraints[j] = constraints[j];
896
897 xconstraints[i] = constraints[i+1];
898 xconstraints[i+1] = constraints[i];
899 record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
e79f71f7 900 recog_data.operand, modes,
f741a71c
JH
901 xconstraints, insn, op_costs, reg_pref);
902 }
903
904 record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
e79f71f7 905 recog_data.operand, modes,
f741a71c
JH
906 constraints, insn, op_costs, reg_pref);
907}
54dac99e 908\f
61719ba7
BS
909/* Subroutine of regclass, processes one insn INSN. Scan it and record each
910 time it would save code to put a certain register in a certain class.
911 PASS, when nonzero, inhibits some optimizations which need only be done
912 once.
913 Return the last insn processed, so that the scan can be continued from
914 there. */
915
916static rtx
917scan_one_insn (insn, pass)
918 rtx insn;
919 int pass;
920{
921 enum rtx_code code = GET_CODE (insn);
922 enum rtx_code pat_code;
0eadeb15 923 rtx set, note;
61719ba7 924 int i, j;
f741a71c 925 struct costs op_costs[MAX_RECOG_OPERANDS];
61719ba7 926
61719ba7
BS
927 if (GET_RTX_CLASS (code) != 'i')
928 return insn;
929
930 pat_code = GET_CODE (PATTERN (insn));
931 if (pat_code == USE
932 || pat_code == CLOBBER
933 || pat_code == ASM_INPUT
934 || pat_code == ADDR_VEC
935 || pat_code == ADDR_DIFF_VEC)
936 return insn;
937
0eadeb15
BS
938 set = single_set (insn);
939 extract_insn (insn);
940
0eadeb15
BS
941 /* If this insn loads a parameter from its stack slot, then
942 it represents a savings, rather than a cost, if the
943 parameter is stored in memory. Record this fact. */
61719ba7 944
0eadeb15
BS
945 if (set != 0 && GET_CODE (SET_DEST (set)) == REG
946 && GET_CODE (SET_SRC (set)) == MEM
947 && (note = find_reg_note (insn, REG_EQUIV,
948 NULL_RTX)) != 0
949 && GET_CODE (XEXP (note, 0)) == MEM)
950 {
951 costs[REGNO (SET_DEST (set))].mem_cost
952 -= (MEMORY_MOVE_COST (GET_MODE (SET_DEST (set)),
953 GENERAL_REGS, 1)
954 * loop_cost);
955 record_address_regs (XEXP (SET_SRC (set), 0),
956 BASE_REG_CLASS, loop_cost * 2);
957 return insn;
958 }
61719ba7 959
0eadeb15
BS
960 /* Improve handling of two-address insns such as
961 (set X (ashift CONST Y)) where CONST must be made to
962 match X. Change it into two insns: (set X CONST)
963 (set X (ashift X Y)). If we left this for reloading, it
964 would probably get three insns because X and Y might go
965 in the same place. This prevents X and Y from receiving
966 the same hard reg.
967
968 We can only do this if the modes of operands 0 and 1
969 (which might not be the same) are tieable and we only need
970 do this during our first pass. */
971
972 if (pass == 0 && optimize
1ccbefce
RH
973 && recog_data.n_operands >= 3
974 && recog_data.constraints[1][0] == '0'
975 && recog_data.constraints[1][1] == 0
976 && CONSTANT_P (recog_data.operand[1])
977 && ! rtx_equal_p (recog_data.operand[0], recog_data.operand[1])
978 && ! rtx_equal_p (recog_data.operand[0], recog_data.operand[2])
979 && GET_CODE (recog_data.operand[0]) == REG
980 && MODES_TIEABLE_P (GET_MODE (recog_data.operand[0]),
981 recog_data.operand_mode[1]))
0eadeb15
BS
982 {
983 rtx previnsn = prev_real_insn (insn);
984 rtx dest
1ccbefce
RH
985 = gen_lowpart (recog_data.operand_mode[1],
986 recog_data.operand[0]);
0eadeb15 987 rtx newinsn
1ccbefce 988 = emit_insn_before (gen_move_insn (dest, recog_data.operand[1]), insn);
61719ba7 989
0eadeb15
BS
990 /* If this insn was the start of a basic block,
991 include the new insn in that block.
992 We need not check for code_label here;
993 while a basic block can start with a code_label,
994 INSN could not be at the beginning of that block. */
995 if (previnsn == 0 || GET_CODE (previnsn) == JUMP_INSN)
61719ba7 996 {
0eadeb15
BS
997 int b;
998 for (b = 0; b < n_basic_blocks; b++)
3b413743
RH
999 if (insn == BLOCK_HEAD (b))
1000 BLOCK_HEAD (b) = newinsn;
61719ba7
BS
1001 }
1002
0eadeb15 1003 /* This makes one more setting of new insns's dest. */
1ccbefce 1004 REG_N_SETS (REGNO (recog_data.operand[0]))++;
61719ba7 1005
1ccbefce
RH
1006 *recog_data.operand_loc[1] = recog_data.operand[0];
1007 for (i = recog_data.n_dups - 1; i >= 0; i--)
1008 if (recog_data.dup_num[i] == 1)
1009 *recog_data.dup_loc[i] = recog_data.operand[0];
61719ba7 1010
0eadeb15 1011 return PREV_INSN (newinsn);
61719ba7
BS
1012 }
1013
4963c995 1014 record_operand_costs (insn, op_costs, reg_pref);
61719ba7
BS
1015
1016 /* Now add the cost for each operand to the total costs for
1017 its register. */
1018
1ccbefce
RH
1019 for (i = 0; i < recog_data.n_operands; i++)
1020 if (GET_CODE (recog_data.operand[i]) == REG
1021 && REGNO (recog_data.operand[i]) >= FIRST_PSEUDO_REGISTER)
61719ba7 1022 {
1ccbefce 1023 int regno = REGNO (recog_data.operand[i]);
61719ba7
BS
1024 struct costs *p = &costs[regno], *q = &op_costs[i];
1025
1026 p->mem_cost += q->mem_cost * loop_cost;
1027 for (j = 0; j < N_REG_CLASSES; j++)
1028 p->cost[j] += q->cost[j] * loop_cost;
1029 }
1030
1031 return insn;
1032}
1033
54dac99e
RK
1034/* This is a pass of the compiler that scans all instructions
1035 and calculates the preferred class for each pseudo-register.
1036 This information can be accessed later by calling `reg_preferred_class'.
1037 This pass comes just before local register allocation. */
1038
1039void
246fd41f 1040regclass (f, nregs, dump)
54dac99e
RK
1041 rtx f;
1042 int nregs;
246fd41f 1043 FILE *dump;
54dac99e 1044{
54dac99e 1045 register rtx insn;
61719ba7 1046 register int i;
e4600702 1047 int pass;
54dac99e
RK
1048
1049 init_recog ();
1050
56a65848 1051 costs = (struct costs *) xmalloc (nregs * sizeof (struct costs));
533d0835 1052
02188693
RH
1053#ifdef CLASS_CANNOT_CHANGE_MODE
1054 reg_changes_mode = BITMAP_XMALLOC();
e79f71f7
GK
1055#endif
1056
533d0835
RK
1057#ifdef FORBIDDEN_INC_DEC_CLASSES
1058
4da896b2 1059 in_inc_dec = (char *) xmalloc (nregs);
533d0835
RK
1060
1061 /* Initialize information about which register classes can be used for
1062 pseudos that are auto-incremented or auto-decremented. It would
1063 seem better to put this in init_reg_sets, but we need to be able
1064 to allocate rtx, which we can't do that early. */
1065
1066 for (i = 0; i < N_REG_CLASSES; i++)
1067 {
38a448ca 1068 rtx r = gen_rtx_REG (VOIDmode, 0);
533d0835 1069 enum machine_mode m;
8c368ee2 1070 register int j;
533d0835
RK
1071
1072 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
1073 if (TEST_HARD_REG_BIT (reg_class_contents[i], j))
1074 {
1075 REGNO (r) = j;
1076
1077 for (m = VOIDmode; (int) m < (int) MAX_MACHINE_MODE;
808043ed 1078 m = (enum machine_mode) ((int) m + 1))
533d0835
RK
1079 if (HARD_REGNO_MODE_OK (j, m))
1080 {
1081 PUT_MODE (r, m);
08d95f91
RK
1082
1083 /* If a register is not directly suitable for an
1084 auto-increment or decrement addressing mode and
1085 requires secondary reloads, disallow its class from
1086 being used in such addresses. */
1087
1088 if ((0
041d7180
JL
1089#ifdef SECONDARY_RELOAD_CLASS
1090 || (SECONDARY_RELOAD_CLASS (BASE_REG_CLASS, m, r)
1091 != NO_REGS)
1092#else
533d0835 1093#ifdef SECONDARY_INPUT_RELOAD_CLASS
08d95f91
RK
1094 || (SECONDARY_INPUT_RELOAD_CLASS (BASE_REG_CLASS, m, r)
1095 != NO_REGS)
533d0835
RK
1096#endif
1097#ifdef SECONDARY_OUTPUT_RELOAD_CLASS
08d95f91
RK
1098 || (SECONDARY_OUTPUT_RELOAD_CLASS (BASE_REG_CLASS, m, r)
1099 != NO_REGS)
041d7180 1100#endif
533d0835 1101#endif
08d95f91
RK
1102 )
1103 && ! auto_inc_dec_reg_p (r, m))
533d0835
RK
1104 forbidden_inc_dec_class[i] = 1;
1105 }
1106 }
1107 }
1108#endif /* FORBIDDEN_INC_DEC_CLASSES */
1109
e4600702
RK
1110 /* Normally we scan the insns once and determine the best class to use for
1111 each register. However, if -fexpensive_optimizations are on, we do so
1112 twice, the second time using the tentative best classes to guide the
1113 selection. */
54dac99e 1114
e4600702
RK
1115 for (pass = 0; pass <= flag_expensive_optimizations; pass++)
1116 {
954d8e99 1117 int index;
f741a71c
JH
1118
1119 if (dump)
1120 fprintf (dump, "\n\nPass %i\n\n",pass);
e4600702 1121 /* Zero out our accumulation of the cost of each class for each reg. */
54dac99e 1122
4c9a05bc 1123 bzero ((char *) costs, nregs * sizeof (struct costs));
54dac99e 1124
533d0835
RK
1125#ifdef FORBIDDEN_INC_DEC_CLASSES
1126 bzero (in_inc_dec, nregs);
1127#endif
1128
e4600702
RK
1129 /* Scan the instructions and record each time it would
1130 save code to put a certain register in a certain class. */
1131
1f01879e 1132 if (!optimize)
54dac99e 1133 {
1f01879e
JH
1134 loop_cost = 1;
1135 for (insn = f; insn; insn = NEXT_INSN (insn))
1136 insn = scan_one_insn (insn, pass);
54dac99e 1137 }
1f01879e
JH
1138 else
1139 for (index = 0; index < n_basic_blocks; index++)
1140 {
1141 basic_block bb = BASIC_BLOCK (index);
1142
1143 /* Show that an insn inside a loop is likely to be executed three
9b15c17f
RH
1144 times more than insns outside a loop. This is much more
1145 aggressive than the assumptions made elsewhere and is being
1146 tried as an experiment. */
1f01879e
JH
1147 if (optimize_size)
1148 loop_cost = 1;
1149 else
9b15c17f 1150 loop_cost = 1 << (2 * MIN (bb->loop_depth, 5));
1f01879e
JH
1151 for (insn = bb->head; ; insn = NEXT_INSN (insn))
1152 {
1153 insn = scan_one_insn (insn, pass);
1154 if (insn == bb->end)
1155 break;
1156 }
1157 }
61719ba7 1158
e4600702
RK
1159 /* Now for each register look at how desirable each class is
1160 and find which class is preferred. Store that in
9ffc5a70 1161 `prefclass'. Record in `altclass' the largest register
e4600702 1162 class any of whose registers is better than memory. */
54dac99e 1163
e4600702 1164 if (pass == 0)
9ffc5a70 1165 reg_pref = reg_pref_buffer;
54dac99e 1166
f741a71c
JH
1167 if (dump)
1168 {
1169 dump_regclass (dump);
4963c995 1170 fprintf (dump,"\n");
f741a71c 1171 }
e4600702 1172 for (i = FIRST_PSEUDO_REGISTER; i < nregs; i++)
54dac99e 1173 {
ca3c6eae 1174 register int best_cost = (1 << (HOST_BITS_PER_INT - 2)) - 1;
e4600702
RK
1175 enum reg_class best = ALL_REGS, alt = NO_REGS;
1176 /* This is an enum reg_class, but we call it an int
1177 to save lots of casts. */
1178 register int class;
1179 register struct costs *p = &costs[i];
1180
64615302
JH
1181 /* In non-optimizing compilation REG_N_REFS is not initialized
1182 yet. */
1183 if (optimize && !REG_N_REFS (i))
f741a71c
JH
1184 continue;
1185
e4600702 1186 for (class = (int) ALL_REGS - 1; class > 0; class--)
54dac99e 1187 {
533d0835
RK
1188 /* Ignore classes that are too small for this operand or
1189 invalid for a operand that was auto-incremented. */
e4600702 1190 if (CLASS_MAX_NREGS (class, PSEUDO_REGNO_MODE (i))
533d0835
RK
1191 > reg_class_size[class]
1192#ifdef FORBIDDEN_INC_DEC_CLASSES
1193 || (in_inc_dec[i] && forbidden_inc_dec_class[class])
e79f71f7 1194#endif
02188693
RH
1195#ifdef CLASS_CANNOT_CHANGE_MODE
1196 || (REGNO_REG_SET_P (reg_changes_mode, i)
1197 && ! class_can_change_mode [class])
533d0835
RK
1198#endif
1199 )
e4600702
RK
1200 ;
1201 else if (p->cost[class] < best_cost)
1202 {
1203 best_cost = p->cost[class];
1204 best = (enum reg_class) class;
1205 }
1206 else if (p->cost[class] == best_cost)
1207 best = reg_class_subunion[(int)best][class];
54dac99e 1208 }
54dac99e 1209
e4600702
RK
1210 /* Record the alternate register class; i.e., a class for which
1211 every register in it is better than using memory. If adding a
1212 class would make a smaller class (i.e., no union of just those
1213 classes exists), skip that class. The major unions of classes
1214 should be provided as a register class. Don't do this if we
1215 will be doing it again later. */
1216
f741a71c 1217 if ((pass == 1 || dump) || ! flag_expensive_optimizations)
e4600702
RK
1218 for (class = 0; class < N_REG_CLASSES; class++)
1219 if (p->cost[class] < p->mem_cost
77edb222 1220 && (reg_class_size[(int) reg_class_subunion[(int) alt][class]]
533d0835
RK
1221 > reg_class_size[(int) alt])
1222#ifdef FORBIDDEN_INC_DEC_CLASSES
1223 && ! (in_inc_dec[i] && forbidden_inc_dec_class[class])
e79f71f7 1224#endif
02188693
RH
1225#ifdef CLASS_CANNOT_CHANGE_MODE
1226 && ! (REGNO_REG_SET_P (reg_changes_mode, i)
1227 && ! class_can_change_mode [class])
533d0835
RK
1228#endif
1229 )
e4600702
RK
1230 alt = reg_class_subunion[(int) alt][class];
1231
1232 /* If we don't add any classes, nothing to try. */
1233 if (alt == best)
995d54dd 1234 alt = NO_REGS;
e4600702 1235
f741a71c
JH
1236 if (dump
1237 && (reg_pref[i].prefclass != (int) best
1238 || reg_pref[i].altclass != (int) alt))
1239 {
1240 static const char *const reg_class_names[] = REG_CLASS_NAMES;
4963c995 1241 fprintf (dump, " Register %i", i);
f741a71c
JH
1242 if (alt == ALL_REGS || best == ALL_REGS)
1243 fprintf (dump, " pref %s\n", reg_class_names[(int) best]);
1244 else if (alt == NO_REGS)
1245 fprintf (dump, " pref %s or none\n", reg_class_names[(int) best]);
1246 else
1247 fprintf (dump, " pref %s, else %s\n",
1248 reg_class_names[(int) best],
1249 reg_class_names[(int) alt]);
1250 }
1251
e4600702 1252 /* We cast to (int) because (char) hits bugs in some compilers. */
9ffc5a70
JH
1253 reg_pref[i].prefclass = (int) best;
1254 reg_pref[i].altclass = (int) alt;
e4600702 1255 }
54dac99e 1256 }
56a65848 1257
4da896b2
MM
1258#ifdef FORBIDDEN_INC_DEC_CLASSES
1259 free (in_inc_dec);
e79f71f7 1260#endif
02188693
RH
1261#ifdef CLASS_CANNOT_CHANGE_MODE
1262 BITMAP_XFREE (reg_changes_mode);
4da896b2 1263#endif
56a65848 1264 free (costs);
54dac99e
RK
1265}
1266\f
e4600702
RK
1267/* Record the cost of using memory or registers of various classes for
1268 the operands in INSN.
54dac99e 1269
e4600702 1270 N_ALTS is the number of alternatives.
54dac99e 1271
e4600702
RK
1272 N_OPS is the number of operands.
1273
1274 OPS is an array of the operands.
1275
1276 MODES are the modes of the operands, in case any are VOIDmode.
1277
1278 CONSTRAINTS are the constraints to use for the operands. This array
1279 is modified by this procedure.
1280
1281 This procedure works alternative by alternative. For each alternative
1282 we assume that we will be able to allocate all pseudos to their ideal
1283 register class and calculate the cost of using that alternative. Then
1284 we compute for each operand that is a pseudo-register, the cost of
1285 having the pseudo allocated to each register class and using it in that
1286 alternative. To this cost is added the cost of the alternative.
1287
1288 The cost of each class for this insn is its lowest cost among all the
1289 alternatives. */
1290
1291static void
e79f71f7 1292record_reg_classes (n_alts, n_ops, ops, modes,
f741a71c 1293 constraints, insn, op_costs, reg_pref)
e4600702
RK
1294 int n_alts;
1295 int n_ops;
1296 rtx *ops;
1297 enum machine_mode *modes;
9b3142b3 1298 const char **constraints;
e4600702 1299 rtx insn;
f741a71c
JH
1300 struct costs *op_costs;
1301 struct reg_pref *reg_pref;
54dac99e 1302{
e4600702 1303 int alt;
e4600702 1304 int i, j;
ec2d92af 1305 rtx set;
e4600702 1306
e4600702
RK
1307 /* Process each alternative, each time minimizing an operand's cost with
1308 the cost for each operand in that alternative. */
54dac99e 1309
e4600702 1310 for (alt = 0; alt < n_alts; alt++)
54dac99e 1311 {
e4600702
RK
1312 struct costs this_op_costs[MAX_RECOG_OPERANDS];
1313 int alt_fail = 0;
1314 int alt_cost = 0;
1315 enum reg_class classes[MAX_RECOG_OPERANDS];
da2c0219 1316 int allows_mem[MAX_RECOG_OPERANDS];
e4600702 1317 int class;
54dac99e 1318
e4600702
RK
1319 for (i = 0; i < n_ops; i++)
1320 {
9b3142b3 1321 const char *p = constraints[i];
e4600702
RK
1322 rtx op = ops[i];
1323 enum machine_mode mode = modes[i];
94e6f783 1324 int allows_addr = 0;
e4600702 1325 int win = 0;
e51712db 1326 unsigned char c;
54dac99e 1327
7405d9a1
DE
1328 /* Initially show we know nothing about the register class. */
1329 classes[i] = NO_REGS;
da2c0219 1330 allows_mem[i] = 0;
7405d9a1 1331
e4600702
RK
1332 /* If this operand has no constraints at all, we can conclude
1333 nothing about it since anything is valid. */
54dac99e 1334
e4600702
RK
1335 if (*p == 0)
1336 {
1337 if (GET_CODE (op) == REG && REGNO (op) >= FIRST_PSEUDO_REGISTER)
1338 bzero ((char *) &this_op_costs[i], sizeof this_op_costs[i]);
54dac99e 1339
e4600702
RK
1340 continue;
1341 }
54dac99e 1342
7405d9a1
DE
1343 /* If this alternative is only relevant when this operand
1344 matches a previous operand, we do different things depending
1345 on whether this operand is a pseudo-reg or not. We must process
1346 any modifiers for the operand before we can make this test. */
1347
8c368ee2 1348 while (*p == '%' || *p == '=' || *p == '+' || *p == '&')
0eadeb15 1349 p++;
8c368ee2 1350
e4600702
RK
1351 if (p[0] >= '0' && p[0] <= '0' + i && (p[1] == ',' || p[1] == 0))
1352 {
da2c0219
RK
1353 /* Copy class and whether memory is allowed from the matching
1354 alternative. Then perform any needed cost computations
1355 and/or adjustments. */
e4600702
RK
1356 j = p[0] - '0';
1357 classes[i] = classes[j];
da2c0219 1358 allows_mem[i] = allows_mem[j];
e4600702
RK
1359
1360 if (GET_CODE (op) != REG || REGNO (op) < FIRST_PSEUDO_REGISTER)
1361 {
1362 /* If this matches the other operand, we have no added
dc903608 1363 cost and we win. */
e4600702 1364 if (rtx_equal_p (ops[j], op))
dc903608 1365 win = 1;
e4600702 1366
77e67eac
RK
1367 /* If we can put the other operand into a register, add to
1368 the cost of this alternative the cost to copy this
1369 operand to the register used for the other operand. */
e4600702 1370
dc903608 1371 else if (classes[j] != NO_REGS)
77e67eac 1372 alt_cost += copy_cost (op, mode, classes[j], 1), win = 1;
e4600702 1373 }
07d8ca2d
RS
1374 else if (GET_CODE (ops[j]) != REG
1375 || REGNO (ops[j]) < FIRST_PSEUDO_REGISTER)
1376 {
1377 /* This op is a pseudo but the one it matches is not. */
1378
1379 /* If we can't put the other operand into a register, this
1380 alternative can't be used. */
1381
1382 if (classes[j] == NO_REGS)
1383 alt_fail = 1;
e4600702 1384
07d8ca2d
RS
1385 /* Otherwise, add to the cost of this alternative the cost
1386 to copy the other operand to the register used for this
1387 operand. */
1388
1389 else
1390 alt_cost += copy_cost (ops[j], mode, classes[j], 1);
1391 }
e4600702
RK
1392 else
1393 {
da2c0219
RK
1394 /* The costs of this operand are not the same as the other
1395 operand since move costs are not symmetric. Moreover,
1396 if we cannot tie them, this alternative needs to do a
1397 copy, which is one instruction. */
1398
1399 struct costs *pp = &this_op_costs[i];
1400
1401 for (class = 0; class < N_REG_CLASSES; class++)
1402 pp->cost[class]
d5e2075d
JH
1403 = ((recog_data.operand_type[i] != OP_OUT
1404 ? may_move_in_cost[class][(int) classes[i]]
1405 : 0)
1406 + (recog_data.operand_type[i] != OP_IN
1407 ? may_move_out_cost[(int) classes[i]][class]
1408 : 0));
da2c0219
RK
1409
1410 /* If the alternative actually allows memory, make things
1411 a bit cheaper since we won't need an extra insn to
1412 load it. */
1413
1414 pp->mem_cost
d5e2075d
JH
1415 = ((recog_data.operand_type[i] != OP_IN
1416 ? MEMORY_MOVE_COST (mode, classes[i], 0)
1417 : 0)
1418 + (recog_data.operand_type[i] != OP_OUT
1419 ? MEMORY_MOVE_COST (mode, classes[i], 1)
1420 : 0) - allows_mem[i]);
da2c0219
RK
1421
1422 /* If we have assigned a class to this register in our
1423 first pass, add a cost to this alternative corresponding
1424 to what we would add if this register were not in the
1425 appropriate class. */
1426
9ffc5a70 1427 if (reg_pref)
da2c0219 1428 alt_cost
9ffc5a70 1429 += (may_move_in_cost[(unsigned char) reg_pref[REGNO (op)].prefclass]
da2c0219 1430 [(int) classes[i]]);
e4600702 1431
37747c82
RK
1432 if (REGNO (ops[i]) != REGNO (ops[j])
1433 && ! find_reg_note (insn, REG_DEAD, op))
1434 alt_cost += 2;
e4600702 1435
347099d6 1436 /* This is in place of ordinary cost computation
1ddb342a
RK
1437 for this operand, so skip to the end of the
1438 alternative (should be just one character). */
1439 while (*p && *p++ != ',')
1440 ;
1441
1442 constraints[i] = p;
347099d6
RS
1443 continue;
1444 }
e4600702
RK
1445 }
1446
1447 /* Scan all the constraint letters. See if the operand matches
1448 any of the constraints. Collect the valid register classes
1449 and see if this operand accepts memory. */
1450
e4600702
RK
1451 while (*p && (c = *p++) != ',')
1452 switch (c)
1453 {
e4600702
RK
1454 case '*':
1455 /* Ignore the next letter for this pass. */
1456 p++;
1457 break;
1458
812f2051
R
1459 case '?':
1460 alt_cost += 2;
8c368ee2 1461 case '!': case '#': case '&':
e4600702 1462 case '0': case '1': case '2': case '3': case '4':
8c368ee2 1463 case '5': case '6': case '7': case '8': case '9':
94e6f783
DE
1464 break;
1465
e4600702 1466 case 'p':
94e6f783
DE
1467 allows_addr = 1;
1468 win = address_operand (op, GET_MODE (op));
46f40127
JL
1469 /* We know this operand is an address, so we want it to be
1470 allocated to a register that can be the base of an
1471 address, ie BASE_REG_CLASS. */
1472 classes[i]
1473 = reg_class_subunion[(int) classes[i]]
1474 [(int) BASE_REG_CLASS];
e4600702
RK
1475 break;
1476
1477 case 'm': case 'o': case 'V':
ac2a9454 1478 /* It doesn't seem worth distinguishing between offsettable
e4600702 1479 and non-offsettable addresses here. */
da2c0219 1480 allows_mem[i] = 1;
e4600702
RK
1481 if (GET_CODE (op) == MEM)
1482 win = 1;
1483 break;
1484
1485 case '<':
1486 if (GET_CODE (op) == MEM
1487 && (GET_CODE (XEXP (op, 0)) == PRE_DEC
1488 || GET_CODE (XEXP (op, 0)) == POST_DEC))
1489 win = 1;
1490 break;
1491
1492 case '>':
1493 if (GET_CODE (op) == MEM
1494 && (GET_CODE (XEXP (op, 0)) == PRE_INC
1495 || GET_CODE (XEXP (op, 0)) == POST_INC))
1496 win = 1;
1497 break;
1498
1499 case 'E':
7ac2547f 1500#ifndef REAL_ARITHMETIC
e4600702
RK
1501 /* Match any floating double constant, but only if
1502 we can examine the bits of it reliably. */
1503 if ((HOST_FLOAT_FORMAT != TARGET_FLOAT_FORMAT
37366632 1504 || HOST_BITS_PER_WIDE_INT != BITS_PER_WORD)
e4600702
RK
1505 && GET_MODE (op) != VOIDmode && ! flag_pretend_float)
1506 break;
7ac2547f 1507#endif
e4600702
RK
1508 if (GET_CODE (op) == CONST_DOUBLE)
1509 win = 1;
1510 break;
1511
1512 case 'F':
1513 if (GET_CODE (op) == CONST_DOUBLE)
1514 win = 1;
1515 break;
1516
1517 case 'G':
1518 case 'H':
1519 if (GET_CODE (op) == CONST_DOUBLE
1520 && CONST_DOUBLE_OK_FOR_LETTER_P (op, c))
1521 win = 1;
1522 break;
1523
1524 case 's':
1525 if (GET_CODE (op) == CONST_INT
1526 || (GET_CODE (op) == CONST_DOUBLE
1527 && GET_MODE (op) == VOIDmode))
1528 break;
1529 case 'i':
1530 if (CONSTANT_P (op)
1531#ifdef LEGITIMATE_PIC_OPERAND_P
1532 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
1533#endif
1534 )
1535 win = 1;
1536 break;
1537
1538 case 'n':
1539 if (GET_CODE (op) == CONST_INT
1540 || (GET_CODE (op) == CONST_DOUBLE
1541 && GET_MODE (op) == VOIDmode))
1542 win = 1;
1543 break;
1544
1545 case 'I':
1546 case 'J':
1547 case 'K':
1548 case 'L':
1549 case 'M':
1550 case 'N':
1551 case 'O':
1552 case 'P':
1553 if (GET_CODE (op) == CONST_INT
1554 && CONST_OK_FOR_LETTER_P (INTVAL (op), c))
1555 win = 1;
1556 break;
1557
1558 case 'X':
1559 win = 1;
1560 break;
54dac99e 1561
54dac99e 1562#ifdef EXTRA_CONSTRAINT
e4600702
RK
1563 case 'Q':
1564 case 'R':
1565 case 'S':
1566 case 'T':
1567 case 'U':
1568 if (EXTRA_CONSTRAINT (op, c))
1569 win = 1;
1570 break;
1571#endif
1572
1573 case 'g':
1574 if (GET_CODE (op) == MEM
1575 || (CONSTANT_P (op)
1576#ifdef LEGITIMATE_PIC_OPERAND_P
1577 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
54dac99e 1578#endif
e4600702
RK
1579 ))
1580 win = 1;
da2c0219 1581 allows_mem[i] = 1;
e4600702
RK
1582 case 'r':
1583 classes[i]
1584 = reg_class_subunion[(int) classes[i]][(int) GENERAL_REGS];
1585 break;
1586
1587 default:
1588 classes[i]
1589 = reg_class_subunion[(int) classes[i]]
1590 [(int) REG_CLASS_FROM_LETTER (c)];
1591 }
1592
1593 constraints[i] = p;
1594
1595 /* How we account for this operand now depends on whether it is a
1596 pseudo register or not. If it is, we first check if any
1597 register classes are valid. If not, we ignore this alternative,
1598 since we want to assume that all pseudos get allocated for
1599 register preferencing. If some register class is valid, compute
1600 the costs of moving the pseudo into that class. */
1601
1602 if (GET_CODE (op) == REG && REGNO (op) >= FIRST_PSEUDO_REGISTER)
4db18574 1603 {
e4600702 1604 if (classes[i] == NO_REGS)
94e6f783 1605 {
e79f71f7
GK
1606 /* We must always fail if the operand is a REG, but
1607 we did not find a suitable class.
1608
1609 Otherwise we may perform an uninitialized read
1610 from this_op_costs after the `continue' statement
1611 below. */
1612 alt_fail = 1;
94e6f783 1613 }
e4600702
RK
1614 else
1615 {
1616 struct costs *pp = &this_op_costs[i];
1617
1618 for (class = 0; class < N_REG_CLASSES; class++)
14a774a9 1619 pp->cost[class]
d5e2075d
JH
1620 = ((recog_data.operand_type[i] != OP_OUT
1621 ? may_move_in_cost[class][(int) classes[i]]
1622 : 0)
1623 + (recog_data.operand_type[i] != OP_IN
1624 ? may_move_out_cost[(int) classes[i]][class]
1625 : 0));
e4600702
RK
1626
1627 /* If the alternative actually allows memory, make things
1628 a bit cheaper since we won't need an extra insn to
1629 load it. */
1630
14a774a9 1631 pp->mem_cost
d5e2075d
JH
1632 = ((recog_data.operand_type[i] != OP_IN
1633 ? MEMORY_MOVE_COST (mode, classes[i], 0)
1634 : 0)
1635 + (recog_data.operand_type[i] != OP_OUT
1636 ? MEMORY_MOVE_COST (mode, classes[i], 1)
1637 : 0) - allows_mem[i]);
e4600702
RK
1638
1639 /* If we have assigned a class to this register in our
1640 first pass, add a cost to this alternative corresponding
1641 to what we would add if this register were not in the
1642 appropriate class. */
1643
9ffc5a70 1644 if (reg_pref)
e4600702 1645 alt_cost
9ffc5a70 1646 += (may_move_in_cost[(unsigned char) reg_pref[REGNO (op)].prefclass]
14a774a9 1647 [(int) classes[i]]);
e4600702 1648 }
4db18574 1649 }
54dac99e 1650
e4600702
RK
1651 /* Otherwise, if this alternative wins, either because we
1652 have already determined that or if we have a hard register of
1653 the proper class, there is no cost for this alternative. */
54dac99e 1654
e4600702
RK
1655 else if (win
1656 || (GET_CODE (op) == REG
6f654776 1657 && reg_fits_class_p (op, classes[i], 0, GET_MODE (op))))
e4600702 1658 ;
54dac99e 1659
e4600702
RK
1660 /* If registers are valid, the cost of this alternative includes
1661 copying the object to and/or from a register. */
54dac99e 1662
e4600702
RK
1663 else if (classes[i] != NO_REGS)
1664 {
1ccbefce 1665 if (recog_data.operand_type[i] != OP_OUT)
e4600702 1666 alt_cost += copy_cost (op, mode, classes[i], 1);
54dac99e 1667
1ccbefce 1668 if (recog_data.operand_type[i] != OP_IN)
e4600702
RK
1669 alt_cost += copy_cost (op, mode, classes[i], 0);
1670 }
54dac99e 1671
e4600702
RK
1672 /* The only other way this alternative can be used is if this is a
1673 constant that could be placed into memory. */
1674
da2c0219 1675 else if (CONSTANT_P (op) && (allows_addr || allows_mem[i]))
cbd5b9a2 1676 alt_cost += MEMORY_MOVE_COST (mode, classes[i], 1);
e4600702
RK
1677 else
1678 alt_fail = 1;
1679 }
1680
1681 if (alt_fail)
1682 continue;
1683
1684 /* Finally, update the costs with the information we've calculated
1685 about this alternative. */
1686
1687 for (i = 0; i < n_ops; i++)
1688 if (GET_CODE (ops[i]) == REG
1689 && REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER)
54dac99e 1690 {
e4600702 1691 struct costs *pp = &op_costs[i], *qq = &this_op_costs[i];
1ccbefce 1692 int scale = 1 + (recog_data.operand_type[i] == OP_INOUT);
54dac99e 1693
e4600702
RK
1694 pp->mem_cost = MIN (pp->mem_cost,
1695 (qq->mem_cost + alt_cost) * scale);
54dac99e 1696
e4600702
RK
1697 for (class = 0; class < N_REG_CLASSES; class++)
1698 pp->cost[class] = MIN (pp->cost[class],
1699 (qq->cost[class] + alt_cost) * scale);
1700 }
1701 }
ec2d92af
RK
1702
1703 /* If this insn is a single set copying operand 1 to operand 0
accef103
JL
1704 and one operand is a pseudo with the other a hard reg or a pseudo
1705 that prefers a register that is in its own register class then
1706 we may want to adjust the cost of that register class to -1.
1707
1708 Avoid the adjustment if the source does not die to avoid stressing of
1709 register allocator by preferrencing two coliding registers into single
1710 class.
1711
1712 Also avoid the adjustment if a copy between registers of the class
1713 is expensive (ten times the cost of a default copy is considered
1714 arbitrarily expensive). This avoids losing when the preferred class
1715 is very expensive as the source of a copy instruction. */
ec2d92af
RK
1716
1717 if ((set = single_set (insn)) != 0
1718 && ops[0] == SET_DEST (set) && ops[1] == SET_SRC (set)
0dc0641b
JH
1719 && GET_CODE (ops[0]) == REG && GET_CODE (ops[1]) == REG
1720 && find_regno_note (insn, REG_DEAD, REGNO (ops[1])))
ec2d92af
RK
1721 for (i = 0; i <= 1; i++)
1722 if (REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER)
1723 {
770ae6cc 1724 unsigned int regno = REGNO (ops[!i]);
ec2d92af
RK
1725 enum machine_mode mode = GET_MODE (ops[!i]);
1726 int class;
770ae6cc 1727 unsigned int nr;
ec2d92af 1728
accef103
JL
1729 if (regno >= FIRST_PSEUDO_REGISTER && reg_pref != 0)
1730 {
1731 enum reg_class pref = reg_pref[regno].prefclass;
1732
1733 if ((reg_class_size[(unsigned char) pref]
1734 == CLASS_MAX_NREGS (pref, mode))
1735 && REGISTER_MOVE_COST (pref, pref) < 10 * 2)
1736 op_costs[i].cost[(unsigned char) pref] = -1;
1737 }
ec2d92af
RK
1738 else if (regno < FIRST_PSEUDO_REGISTER)
1739 for (class = 0; class < N_REG_CLASSES; class++)
1740 if (TEST_HARD_REG_BIT (reg_class_contents[class], regno)
1741 && reg_class_size[class] == CLASS_MAX_NREGS (class, mode))
4841ba4b
RK
1742 {
1743 if (reg_class_size[class] == 1)
1744 op_costs[i].cost[class] = -1;
1745 else
1746 {
770ae6cc 1747 for (nr = 0; nr < HARD_REGNO_NREGS (regno, mode); nr++)
4841ba4b 1748 {
770ae6cc
RK
1749 if (! TEST_HARD_REG_BIT (reg_class_contents[class],
1750 regno + nr))
4841ba4b
RK
1751 break;
1752 }
1753
770ae6cc 1754 if (nr == HARD_REGNO_NREGS (regno,mode))
4841ba4b
RK
1755 op_costs[i].cost[class] = -1;
1756 }
1757 }
ec2d92af 1758 }
54dac99e 1759}
e4600702
RK
1760\f
1761/* Compute the cost of loading X into (if TO_P is non-zero) or from (if
1762 TO_P is zero) a register of class CLASS in mode MODE.
1763
1764 X must not be a pseudo. */
1765
1766static int
1767copy_cost (x, mode, class, to_p)
1768 rtx x;
d0af450d 1769 enum machine_mode mode ATTRIBUTE_UNUSED;
e4600702 1770 enum reg_class class;
d0af450d 1771 int to_p ATTRIBUTE_UNUSED;
e4600702 1772{
29a82058 1773#ifdef HAVE_SECONDARY_RELOADS
e4600702 1774 enum reg_class secondary_class = NO_REGS;
29a82058 1775#endif
e4600702
RK
1776
1777 /* If X is a SCRATCH, there is actually nothing to move since we are
1778 assuming optimal allocation. */
1779
1780 if (GET_CODE (x) == SCRATCH)
1781 return 0;
1782
1783 /* Get the class we will actually use for a reload. */
1784 class = PREFERRED_RELOAD_CLASS (x, class);
1785
1786#ifdef HAVE_SECONDARY_RELOADS
1787 /* If we need a secondary reload (we assume here that we are using
1788 the secondary reload as an intermediate, not a scratch register), the
1789 cost is that to load the input into the intermediate register, then
1790 to copy them. We use a special value of TO_P to avoid recursion. */
1791
1792#ifdef SECONDARY_INPUT_RELOAD_CLASS
1793 if (to_p == 1)
1794 secondary_class = SECONDARY_INPUT_RELOAD_CLASS (class, mode, x);
1795#endif
1796
dd9f0e8f 1797#ifdef SECONDARY_OUTPUT_RELOAD_CLASS
e4600702
RK
1798 if (! to_p)
1799 secondary_class = SECONDARY_OUTPUT_RELOAD_CLASS (class, mode, x);
1800#endif
1801
1802 if (secondary_class != NO_REGS)
1803 return (move_cost[(int) secondary_class][(int) class]
1804 + copy_cost (x, mode, secondary_class, 2));
dd9f0e8f 1805#endif /* HAVE_SECONDARY_RELOADS */
e4600702
RK
1806
1807 /* For memory, use the memory move cost, for (hard) registers, use the
1808 cost to move between the register classes, and use 2 for everything
1809 else (constants). */
1810
1811 if (GET_CODE (x) == MEM || class == NO_REGS)
cbd5b9a2 1812 return MEMORY_MOVE_COST (mode, class, to_p);
54dac99e 1813
e4600702
RK
1814 else if (GET_CODE (x) == REG)
1815 return move_cost[(int) REGNO_REG_CLASS (REGNO (x))][(int) class];
1816
1817 else
1818 /* If this is a constant, we may eventually want to call rtx_cost here. */
1819 return 2;
1820}
1821\f
54dac99e
RK
1822/* Record the pseudo registers we must reload into hard registers
1823 in a subexpression of a memory address, X.
e4600702
RK
1824
1825 CLASS is the class that the register needs to be in and is either
1826 BASE_REG_CLASS or INDEX_REG_CLASS.
1827
1828 SCALE is twice the amount to multiply the cost by (it is twice so we
1829 can represent half-cost adjustments). */
54dac99e 1830
197d6480 1831static void
e4600702 1832record_address_regs (x, class, scale)
54dac99e 1833 rtx x;
e4600702
RK
1834 enum reg_class class;
1835 int scale;
54dac99e
RK
1836{
1837 register enum rtx_code code = GET_CODE (x);
1838
1839 switch (code)
1840 {
1841 case CONST_INT:
1842 case CONST:
1843 case CC0:
1844 case PC:
1845 case SYMBOL_REF:
1846 case LABEL_REF:
1847 return;
1848
1849 case PLUS:
1850 /* When we have an address that is a sum,
1851 we must determine whether registers are "base" or "index" regs.
1852 If there is a sum of two registers, we must choose one to be
1853 the "base". Luckily, we can use the REGNO_POINTER_FLAG
e4600702
RK
1854 to make a good choice most of the time. We only need to do this
1855 on machines that can have two registers in an address and where
1856 the base and index register classes are different.
1857
1858 ??? This code used to set REGNO_POINTER_FLAG in some cases, but
1859 that seems bogus since it should only be set when we are sure
1860 the register is being used as a pointer. */
1861
54dac99e
RK
1862 {
1863 rtx arg0 = XEXP (x, 0);
1864 rtx arg1 = XEXP (x, 1);
1865 register enum rtx_code code0 = GET_CODE (arg0);
1866 register enum rtx_code code1 = GET_CODE (arg1);
54dac99e
RK
1867
1868 /* Look inside subregs. */
e4600702 1869 if (code0 == SUBREG)
54dac99e 1870 arg0 = SUBREG_REG (arg0), code0 = GET_CODE (arg0);
e4600702 1871 if (code1 == SUBREG)
54dac99e
RK
1872 arg1 = SUBREG_REG (arg1), code1 = GET_CODE (arg1);
1873
e4600702
RK
1874 /* If this machine only allows one register per address, it must
1875 be in the first operand. */
1876
1877 if (MAX_REGS_PER_ADDRESS == 1)
1878 record_address_regs (arg0, class, scale);
1879
1880 /* If index and base registers are the same on this machine, just
1881 record registers in any non-constant operands. We assume here,
1882 as well as in the tests below, that all addresses are in
1883 canonical form. */
1884
1885 else if (INDEX_REG_CLASS == BASE_REG_CLASS)
54dac99e 1886 {
e4600702
RK
1887 record_address_regs (arg0, class, scale);
1888 if (! CONSTANT_P (arg1))
1889 record_address_regs (arg1, class, scale);
54dac99e 1890 }
e4600702
RK
1891
1892 /* If the second operand is a constant integer, it doesn't change
1893 what class the first operand must be. */
1894
1895 else if (code1 == CONST_INT || code1 == CONST_DOUBLE)
1896 record_address_regs (arg0, class, scale);
1897
1898 /* If the second operand is a symbolic constant, the first operand
1899 must be an index register. */
1900
1901 else if (code1 == SYMBOL_REF || code1 == CONST || code1 == LABEL_REF)
1902 record_address_regs (arg0, INDEX_REG_CLASS, scale);
1903
956d6950
JL
1904 /* If both operands are registers but one is already a hard register
1905 of index or base class, give the other the class that the hard
1906 register is not. */
1907
3f9e9508 1908#ifdef REG_OK_FOR_BASE_P
956d6950
JL
1909 else if (code0 == REG && code1 == REG
1910 && REGNO (arg0) < FIRST_PSEUDO_REGISTER
1911 && (REG_OK_FOR_BASE_P (arg0) || REG_OK_FOR_INDEX_P (arg0)))
1912 record_address_regs (arg1,
1913 REG_OK_FOR_BASE_P (arg0)
1914 ? INDEX_REG_CLASS : BASE_REG_CLASS,
1915 scale);
1916 else if (code0 == REG && code1 == REG
1917 && REGNO (arg1) < FIRST_PSEUDO_REGISTER
1918 && (REG_OK_FOR_BASE_P (arg1) || REG_OK_FOR_INDEX_P (arg1)))
1919 record_address_regs (arg0,
1920 REG_OK_FOR_BASE_P (arg1)
1921 ? INDEX_REG_CLASS : BASE_REG_CLASS,
1922 scale);
3f9e9508 1923#endif
956d6950 1924
e9a25f70
JL
1925 /* If one operand is known to be a pointer, it must be the base
1926 with the other operand the index. Likewise if the other operand
1927 is a MULT. */
f22376c7 1928
e9a25f70
JL
1929 else if ((code0 == REG && REGNO_POINTER_FLAG (REGNO (arg0)))
1930 || code1 == MULT)
f22376c7
CI
1931 {
1932 record_address_regs (arg0, BASE_REG_CLASS, scale);
1933 record_address_regs (arg1, INDEX_REG_CLASS, scale);
1934 }
e9a25f70
JL
1935 else if ((code1 == REG && REGNO_POINTER_FLAG (REGNO (arg1)))
1936 || code0 == MULT)
f22376c7
CI
1937 {
1938 record_address_regs (arg0, INDEX_REG_CLASS, scale);
1939 record_address_regs (arg1, BASE_REG_CLASS, scale);
1940 }
1941
e9a25f70 1942 /* Otherwise, count equal chances that each might be a base
e4600702
RK
1943 or index register. This case should be rare. */
1944
e9a25f70 1945 else
54dac99e 1946 {
e4600702
RK
1947 record_address_regs (arg0, BASE_REG_CLASS, scale / 2);
1948 record_address_regs (arg0, INDEX_REG_CLASS, scale / 2);
1949 record_address_regs (arg1, BASE_REG_CLASS, scale / 2);
1950 record_address_regs (arg1, INDEX_REG_CLASS, scale / 2);
54dac99e 1951 }
54dac99e
RK
1952 }
1953 break;
1954
4b983fdc
RH
1955 /* Double the importance of a pseudo register that is incremented
1956 or decremented, since it would take two extra insns
1957 if it ends up in the wrong place. */
1958 case POST_MODIFY:
1959 case PRE_MODIFY:
1960 record_address_regs (XEXP (x, 0), BASE_REG_CLASS, 2 * scale);
1961 if (REG_P (XEXP (XEXP (x, 1), 1)))
1962 record_address_regs (XEXP (XEXP (x, 1), 1),
1963 INDEX_REG_CLASS, 2 * scale);
1964 break;
1965
54dac99e
RK
1966 case POST_INC:
1967 case PRE_INC:
1968 case POST_DEC:
1969 case PRE_DEC:
1970 /* Double the importance of a pseudo register that is incremented
1971 or decremented, since it would take two extra insns
533d0835
RK
1972 if it ends up in the wrong place. If the operand is a pseudo,
1973 show it is being used in an INC_DEC context. */
1974
1975#ifdef FORBIDDEN_INC_DEC_CLASSES
1976 if (GET_CODE (XEXP (x, 0)) == REG
1977 && REGNO (XEXP (x, 0)) >= FIRST_PSEUDO_REGISTER)
1978 in_inc_dec[REGNO (XEXP (x, 0))] = 1;
1979#endif
e4600702
RK
1980
1981 record_address_regs (XEXP (x, 0), class, 2 * scale);
54dac99e
RK
1982 break;
1983
1984 case REG:
1985 {
e4600702
RK
1986 register struct costs *pp = &costs[REGNO (x)];
1987 register int i;
54dac99e 1988
cbd5b9a2 1989 pp->mem_cost += (MEMORY_MOVE_COST (Pmode, class, 1) * scale) / 2;
54dac99e 1990
e4600702 1991 for (i = 0; i < N_REG_CLASSES; i++)
ee59f29b 1992 pp->cost[i] += (may_move_in_cost[i][(int) class] * scale) / 2;
54dac99e
RK
1993 }
1994 break;
1995
1996 default:
1997 {
6f7d635c 1998 register const char *fmt = GET_RTX_FORMAT (code);
54dac99e
RK
1999 register int i;
2000 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2001 if (fmt[i] == 'e')
e4600702 2002 record_address_regs (XEXP (x, i), class, scale);
54dac99e
RK
2003 }
2004 }
2005}
08d95f91
RK
2006\f
2007#ifdef FORBIDDEN_INC_DEC_CLASSES
2008
2009/* Return 1 if REG is valid as an auto-increment memory reference
2010 to an object of MODE. */
2011
1d300e19 2012static int
08d95f91
RK
2013auto_inc_dec_reg_p (reg, mode)
2014 rtx reg;
2015 enum machine_mode mode;
2016{
940da324
JL
2017 if (HAVE_POST_INCREMENT
2018 && memory_address_p (mode, gen_rtx_POST_INC (Pmode, reg)))
08d95f91 2019 return 1;
08d95f91 2020
940da324
JL
2021 if (HAVE_POST_DECREMENT
2022 && memory_address_p (mode, gen_rtx_POST_DEC (Pmode, reg)))
08d95f91 2023 return 1;
08d95f91 2024
940da324
JL
2025 if (HAVE_PRE_INCREMENT
2026 && memory_address_p (mode, gen_rtx_PRE_INC (Pmode, reg)))
08d95f91 2027 return 1;
08d95f91 2028
940da324
JL
2029 if (HAVE_PRE_DECREMENT
2030 && memory_address_p (mode, gen_rtx_PRE_DEC (Pmode, reg)))
08d95f91 2031 return 1;
08d95f91
RK
2032
2033 return 0;
2034}
2035#endif
b1f21e0a 2036\f
da668e9c
MM
2037static short *renumber;
2038static size_t regno_allocated;
2039static unsigned int reg_n_max;
ed396e68 2040
b1f21e0a
MM
2041/* Allocate enough space to hold NUM_REGS registers for the tables used for
2042 reg_scan and flow_analysis that are indexed by the register number. If
39379e67
MM
2043 NEW_P is non zero, initialize all of the registers, otherwise only
2044 initialize the new registers allocated. The same table is kept from
2045 function to function, only reallocating it when we need more room. If
2046 RENUMBER_P is non zero, allocate the reg_renumber array also. */
b1f21e0a
MM
2047
2048void
39379e67 2049allocate_reg_info (num_regs, new_p, renumber_p)
6feacd09 2050 size_t num_regs;
b1f21e0a 2051 int new_p;
39379e67 2052 int renumber_p;
b1f21e0a 2053{
6feacd09
MM
2054 size_t size_info;
2055 size_t size_renumber;
2056 size_t min = (new_p) ? 0 : reg_n_max;
2057 struct reg_info_data *reg_data;
39379e67 2058
b1f21e0a
MM
2059 if (num_regs > regno_allocated)
2060 {
6feacd09
MM
2061 size_t old_allocated = regno_allocated;
2062
b1f21e0a 2063 regno_allocated = num_regs + (num_regs / 20); /* add some slop space */
39379e67
MM
2064 size_renumber = regno_allocated * sizeof (short);
2065
2066 if (!reg_n_info)
2067 {
6feacd09 2068 VARRAY_REG_INIT (reg_n_info, regno_allocated, "reg_n_info");
39379e67 2069 renumber = (short *) xmalloc (size_renumber);
9ffc5a70
JH
2070 reg_pref_buffer = (struct reg_pref *) xmalloc (regno_allocated
2071 * sizeof (struct reg_pref));
39379e67
MM
2072 }
2073
2074 else
2075 {
6feacd09
MM
2076 VARRAY_GROW (reg_n_info, regno_allocated);
2077
2078 if (new_p) /* if we're zapping everything, no need to realloc */
2079 {
2080 free ((char *)renumber);
9ffc5a70 2081 free ((char *)reg_pref);
6feacd09 2082 renumber = (short *) xmalloc (size_renumber);
9ffc5a70
JH
2083 reg_pref_buffer = (struct reg_pref *) xmalloc (regno_allocated
2084 * sizeof (struct reg_pref));
6feacd09
MM
2085 }
2086
2087 else
2088 {
2089 renumber = (short *) xrealloc ((char *)renumber, size_renumber);
9ffc5a70
JH
2090 reg_pref_buffer = (struct reg_pref *) xrealloc ((char *)reg_pref_buffer,
2091 regno_allocated
2092 * sizeof (struct reg_pref));
6feacd09 2093 }
39379e67 2094 }
6feacd09
MM
2095
2096 size_info = (regno_allocated - old_allocated) * sizeof (reg_info)
2097 + sizeof (struct reg_info_data) - sizeof (reg_info);
2098 reg_data = (struct reg_info_data *) xcalloc (size_info, 1);
2099 reg_data->min_index = old_allocated;
2100 reg_data->max_index = regno_allocated - 1;
2101 reg_data->next = reg_info_head;
2102 reg_info_head = reg_data;
b1f21e0a
MM
2103 }
2104
6feacd09 2105 reg_n_max = num_regs;
b1f21e0a
MM
2106 if (min < num_regs)
2107 {
6feacd09
MM
2108 /* Loop through each of the segments allocated for the actual
2109 reg_info pages, and set up the pointers, zero the pages, etc. */
da668e9c
MM
2110 for (reg_data = reg_info_head;
2111 reg_data && reg_data->max_index >= min;
2112 reg_data = reg_data->next)
39379e67 2113 {
6feacd09
MM
2114 size_t min_index = reg_data->min_index;
2115 size_t max_index = reg_data->max_index;
da668e9c
MM
2116 size_t max = MIN (max_index, num_regs);
2117 size_t local_min = min - min_index;
2118 size_t i;
6feacd09 2119
da668e9c
MM
2120 if (reg_data->min_index > num_regs)
2121 continue;
6feacd09 2122
da668e9c
MM
2123 if (min < min_index)
2124 local_min = 0;
2125 if (!reg_data->used_p) /* page just allocated with calloc */
2126 reg_data->used_p = 1; /* no need to zero */
2127 else
2128 bzero ((char *) &reg_data->data[local_min],
2129 sizeof (reg_info) * (max - min_index - local_min + 1));
2130
2131 for (i = min_index+local_min; i <= max; i++)
2132 {
2133 VARRAY_REG (reg_n_info, i) = &reg_data->data[i-min_index];
2134 REG_BASIC_BLOCK (i) = REG_BLOCK_UNKNOWN;
2135 renumber[i] = -1;
2136 reg_pref_buffer[i].prefclass = (char) NO_REGS;
2137 reg_pref_buffer[i].altclass = (char) NO_REGS;
6feacd09 2138 }
39379e67 2139 }
b1f21e0a
MM
2140 }
2141
6feacd09
MM
2142 /* If {pref,alt}class have already been allocated, update the pointers to
2143 the newly realloced ones. */
9ffc5a70
JH
2144 if (reg_pref)
2145 reg_pref = reg_pref_buffer;
6feacd09 2146
39379e67
MM
2147 if (renumber_p)
2148 reg_renumber = renumber;
2149
73b76448
RK
2150 /* Tell the regset code about the new number of registers */
2151 MAX_REGNO_REG_SET (num_regs, new_p, renumber_p);
b1f21e0a
MM
2152}
2153
ed396e68
BS
2154/* Free up the space allocated by allocate_reg_info. */
2155void
2156free_reg_info ()
2157{
2158 if (reg_n_info)
2159 {
2160 struct reg_info_data *reg_data;
2161 struct reg_info_data *reg_next;
2162
2163 VARRAY_FREE (reg_n_info);
2164 for (reg_data = reg_info_head; reg_data; reg_data = reg_next)
2165 {
2166 reg_next = reg_data->next;
2167 free ((char *)reg_data);
2168 }
2169
9ffc5a70
JH
2170 free (reg_pref_buffer);
2171 reg_pref_buffer = (struct reg_pref *)0;
ed396e68
BS
2172 reg_info_head = (struct reg_info_data *)0;
2173 renumber = (short *)0;
2174 }
2175 regno_allocated = 0;
2176 reg_n_max = 0;
2177}
54dac99e
RK
2178\f
2179/* This is the `regscan' pass of the compiler, run just before cse
2180 and again just before loop.
2181
2182 It finds the first and last use of each pseudo-register
2183 and records them in the vectors regno_first_uid, regno_last_uid
2184 and counts the number of sets in the vector reg_n_sets.
2185
2186 REPEAT is nonzero the second time this is called. */
2187
54dac99e 2188/* Maximum number of parallel sets and clobbers in any insn in this fn.
d22d5f34 2189 Always at least 3, since the combiner could put that many together
54dac99e
RK
2190 and we want this to remain correct for all the remaining passes. */
2191
2192int max_parallel;
2193
54dac99e
RK
2194void
2195reg_scan (f, nregs, repeat)
2196 rtx f;
770ae6cc 2197 unsigned int nregs;
272df862 2198 int repeat ATTRIBUTE_UNUSED;
54dac99e
RK
2199{
2200 register rtx insn;
2201
39379e67 2202 allocate_reg_info (nregs, TRUE, FALSE);
54dac99e
RK
2203 max_parallel = 3;
2204
2205 for (insn = f; insn; insn = NEXT_INSN (insn))
2206 if (GET_CODE (insn) == INSN
2207 || GET_CODE (insn) == CALL_INSN
2208 || GET_CODE (insn) == JUMP_INSN)
2209 {
2210 if (GET_CODE (PATTERN (insn)) == PARALLEL
2211 && XVECLEN (PATTERN (insn), 0) > max_parallel)
2212 max_parallel = XVECLEN (PATTERN (insn), 0);
f903b91f 2213 reg_scan_mark_refs (PATTERN (insn), insn, 0, 0);
01565a55
RK
2214
2215 if (REG_NOTES (insn))
f903b91f
DM
2216 reg_scan_mark_refs (REG_NOTES (insn), insn, 1, 0);
2217 }
2218}
2219
2220/* Update 'regscan' information by looking at the insns
2221 from FIRST to LAST. Some new REGs have been created,
2222 and any REG with number greater than OLD_MAX_REGNO is
2223 such a REG. We only update information for those. */
2224
2225void
770ae6cc 2226reg_scan_update (first, last, old_max_regno)
f903b91f
DM
2227 rtx first;
2228 rtx last;
770ae6cc 2229 unsigned int old_max_regno;
f903b91f
DM
2230{
2231 register rtx insn;
2232
2233 allocate_reg_info (max_reg_num (), FALSE, FALSE);
2234
2235 for (insn = first; insn != last; insn = NEXT_INSN (insn))
2236 if (GET_CODE (insn) == INSN
2237 || GET_CODE (insn) == CALL_INSN
2238 || GET_CODE (insn) == JUMP_INSN)
2239 {
2240 if (GET_CODE (PATTERN (insn)) == PARALLEL
2241 && XVECLEN (PATTERN (insn), 0) > max_parallel)
2242 max_parallel = XVECLEN (PATTERN (insn), 0);
2243 reg_scan_mark_refs (PATTERN (insn), insn, 0, old_max_regno);
2244
2245 if (REG_NOTES (insn))
2246 reg_scan_mark_refs (REG_NOTES (insn), insn, 1, old_max_regno);
54dac99e
RK
2247 }
2248}
2249
1ebecb64 2250/* X is the expression to scan. INSN is the insn it appears in.
f903b91f
DM
2251 NOTE_FLAG is nonzero if X is from INSN's notes rather than its body.
2252 We should only record information for REGs with numbers
2253 greater than or equal to MIN_REGNO. */
1ebecb64 2254
08d95f91 2255static void
f903b91f 2256reg_scan_mark_refs (x, insn, note_flag, min_regno)
54dac99e 2257 rtx x;
be8dcd74 2258 rtx insn;
1ebecb64 2259 int note_flag;
770ae6cc 2260 unsigned int min_regno;
54dac99e 2261{
fa23c636 2262 register enum rtx_code code;
54dac99e 2263 register rtx dest;
be8dcd74 2264 register rtx note;
54dac99e 2265
fa23c636 2266 code = GET_CODE (x);
54dac99e
RK
2267 switch (code)
2268 {
54dac99e 2269 case CONST:
185ebd6c 2270 case CONST_INT:
54dac99e
RK
2271 case CONST_DOUBLE:
2272 case CC0:
2273 case PC:
2274 case SYMBOL_REF:
2275 case LABEL_REF:
2276 case ADDR_VEC:
2277 case ADDR_DIFF_VEC:
2278 return;
2279
2280 case REG:
2281 {
770ae6cc 2282 unsigned int regno = REGNO (x);
54dac99e 2283
f903b91f
DM
2284 if (regno >= min_regno)
2285 {
2286 REGNO_LAST_NOTE_UID (regno) = INSN_UID (insn);
2287 if (!note_flag)
2288 REGNO_LAST_UID (regno) = INSN_UID (insn);
2289 if (REGNO_FIRST_UID (regno) == 0)
2290 REGNO_FIRST_UID (regno) = INSN_UID (insn);
2291 }
54dac99e
RK
2292 }
2293 break;
2294
01565a55 2295 case EXPR_LIST:
7b18c3db 2296 if (XEXP (x, 0))
f903b91f 2297 reg_scan_mark_refs (XEXP (x, 0), insn, note_flag, min_regno);
01565a55 2298 if (XEXP (x, 1))
f903b91f 2299 reg_scan_mark_refs (XEXP (x, 1), insn, note_flag, min_regno);
01565a55
RK
2300 break;
2301
2302 case INSN_LIST:
2303 if (XEXP (x, 1))
f903b91f 2304 reg_scan_mark_refs (XEXP (x, 1), insn, note_flag, min_regno);
01565a55
RK
2305 break;
2306
54dac99e
RK
2307 case SET:
2308 /* Count a set of the destination if it is a register. */
2309 for (dest = SET_DEST (x);
2310 GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART
2311 || GET_CODE (dest) == ZERO_EXTEND;
2312 dest = XEXP (dest, 0))
2313 ;
2314
f903b91f
DM
2315 if (GET_CODE (dest) == REG
2316 && REGNO (dest) >= min_regno)
b1f21e0a 2317 REG_N_SETS (REGNO (dest))++;
54dac99e 2318
be8dcd74
RK
2319 /* If this is setting a pseudo from another pseudo or the sum of a
2320 pseudo and a constant integer and the other pseudo is known to be
2321 a pointer, set the destination to be a pointer as well.
2322
2323 Likewise if it is setting the destination from an address or from a
2324 value equivalent to an address or to the sum of an address and
2325 something else.
2326
2327 But don't do any of this if the pseudo corresponds to a user
2328 variable since it should have already been set as a pointer based
2329 on the type. */
2330
2331 if (GET_CODE (SET_DEST (x)) == REG
2332 && REGNO (SET_DEST (x)) >= FIRST_PSEUDO_REGISTER
f903b91f 2333 && REGNO (SET_DEST (x)) >= min_regno
64d3b4ca
JL
2334 /* If the destination pseudo is set more than once, then other
2335 sets might not be to a pointer value (consider access to a
2336 union in two threads of control in the presense of global
2337 optimizations). So only set REGNO_POINTER_FLAG on the destination
2338 pseudo if this is the only set of that pseudo. */
2339 && REG_N_SETS (REGNO (SET_DEST (x))) == 1
be8dcd74
RK
2340 && ! REG_USERVAR_P (SET_DEST (x))
2341 && ! REGNO_POINTER_FLAG (REGNO (SET_DEST (x)))
2342 && ((GET_CODE (SET_SRC (x)) == REG
2343 && REGNO_POINTER_FLAG (REGNO (SET_SRC (x))))
2344 || ((GET_CODE (SET_SRC (x)) == PLUS
2345 || GET_CODE (SET_SRC (x)) == LO_SUM)
2346 && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
2347 && GET_CODE (XEXP (SET_SRC (x), 0)) == REG
2348 && REGNO_POINTER_FLAG (REGNO (XEXP (SET_SRC (x), 0))))
2349 || GET_CODE (SET_SRC (x)) == CONST
2350 || GET_CODE (SET_SRC (x)) == SYMBOL_REF
2351 || GET_CODE (SET_SRC (x)) == LABEL_REF
2352 || (GET_CODE (SET_SRC (x)) == HIGH
2353 && (GET_CODE (XEXP (SET_SRC (x), 0)) == CONST
2354 || GET_CODE (XEXP (SET_SRC (x), 0)) == SYMBOL_REF
2355 || GET_CODE (XEXP (SET_SRC (x), 0)) == LABEL_REF))
2356 || ((GET_CODE (SET_SRC (x)) == PLUS
2357 || GET_CODE (SET_SRC (x)) == LO_SUM)
2358 && (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST
2359 || GET_CODE (XEXP (SET_SRC (x), 1)) == SYMBOL_REF
2360 || GET_CODE (XEXP (SET_SRC (x), 1)) == LABEL_REF))
2361 || ((note = find_reg_note (insn, REG_EQUAL, 0)) != 0
2362 && (GET_CODE (XEXP (note, 0)) == CONST
2363 || GET_CODE (XEXP (note, 0)) == SYMBOL_REF
2364 || GET_CODE (XEXP (note, 0)) == LABEL_REF))))
2365 REGNO_POINTER_FLAG (REGNO (SET_DEST (x))) = 1;
2366
0f41302f 2367 /* ... fall through ... */
54dac99e
RK
2368
2369 default:
2370 {
6f7d635c 2371 register const char *fmt = GET_RTX_FORMAT (code);
54dac99e
RK
2372 register int i;
2373 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2374 {
2375 if (fmt[i] == 'e')
f903b91f 2376 reg_scan_mark_refs (XEXP (x, i), insn, note_flag, min_regno);
54dac99e
RK
2377 else if (fmt[i] == 'E' && XVEC (x, i) != 0)
2378 {
2379 register int j;
2380 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
f903b91f 2381 reg_scan_mark_refs (XVECEXP (x, i, j), insn, note_flag, min_regno);
54dac99e
RK
2382 }
2383 }
2384 }
2385 }
2386}
2387\f
2388/* Return nonzero if C1 is a subset of C2, i.e., if every register in C1
2389 is also in C2. */
2390
2391int
2392reg_class_subset_p (c1, c2)
2393 register enum reg_class c1;
2394 register enum reg_class c2;
2395{
2396 if (c1 == c2) return 1;
2397
2398 if (c2 == ALL_REGS)
2399 win:
2400 return 1;
2401 GO_IF_HARD_REG_SUBSET (reg_class_contents[(int)c1],
2402 reg_class_contents[(int)c2],
2403 win);
2404 return 0;
2405}
2406
2407/* Return nonzero if there is a register that is in both C1 and C2. */
2408
2409int
2410reg_classes_intersect_p (c1, c2)
2411 register enum reg_class c1;
2412 register enum reg_class c2;
2413{
2414#ifdef HARD_REG_SET
2415 register
2416#endif
2417 HARD_REG_SET c;
2418
2419 if (c1 == c2) return 1;
2420
2421 if (c1 == ALL_REGS || c2 == ALL_REGS)
2422 return 1;
2423
2424 COPY_HARD_REG_SET (c, reg_class_contents[(int) c1]);
2425 AND_HARD_REG_SET (c, reg_class_contents[(int) c2]);
2426
2427 GO_IF_HARD_REG_SUBSET (c, reg_class_contents[(int) NO_REGS], lose);
2428 return 1;
2429
2430 lose:
2431 return 0;
2432}
2433
73b76448
RK
2434/* Release any memory allocated by register sets. */
2435
2436void
2437regset_release_memory ()
2438{
73b76448
RK
2439 bitmap_release_memory ();
2440}
This page took 1.609309 seconds and 5 git commands to generate.