]> gcc.gnu.org Git - gcc.git/blame - gcc/regclass.c
gcc.texi (Service): Update to reflect current practice and location of the GNU servic...
[gcc.git] / gcc / regclass.c
CommitLineData
54dac99e 1/* Compute register class preferences for pseudo-registers.
517cbe13
JL
2 Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1996
3 1997, 1998, 1999, 2000 Free Software Foundation, Inc.
54dac99e
RK
4
5This file is part of GNU CC.
6
7GNU CC is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
9the Free Software Foundation; either version 2, or (at your option)
10any later version.
11
12GNU CC is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with GNU CC; see the file COPYING. If not, write to
e99215a3
RK
19the Free Software Foundation, 59 Temple Place - Suite 330,
20Boston, MA 02111-1307, USA. */
54dac99e
RK
21
22
23/* This file contains two passes of the compiler: reg_scan and reg_class.
24 It also defines some tables of information about the hardware registers
25 and a function init_reg_sets to initialize the tables. */
26
27#include "config.h"
670ee920 28#include "system.h"
54dac99e 29#include "rtl.h"
6baf1cc8 30#include "tm_p.h"
54dac99e
RK
31#include "hard-reg-set.h"
32#include "flags.h"
33#include "basic-block.h"
34#include "regs.h"
49ad7cfa 35#include "function.h"
54dac99e
RK
36#include "insn-config.h"
37#include "recog.h"
e4600702
RK
38#include "reload.h"
39#include "real.h"
10f0ad3d 40#include "toplev.h"
d6f4ec51 41#include "output.h"
8b0212ca 42#include "ggc.h"
54dac99e
RK
43
44#ifndef REGISTER_MOVE_COST
45#define REGISTER_MOVE_COST(x, y) 2
46#endif
47
13536812
KG
48static void init_reg_sets_1 PARAMS ((void));
49static void init_reg_modes PARAMS ((void));
24deb20a 50
533d0835
RK
51/* If we have auto-increment or auto-decrement and we can have secondary
52 reloads, we are not allowed to use classes requiring secondary
9faa82d8 53 reloads for pseudos auto-incremented since reload can't handle it. */
533d0835
RK
54
55#ifdef AUTO_INC_DEC
dd9f0e8f 56#if defined(SECONDARY_INPUT_RELOAD_CLASS) || defined(SECONDARY_OUTPUT_RELOAD_CLASS)
533d0835
RK
57#define FORBIDDEN_INC_DEC_CLASSES
58#endif
59#endif
54dac99e
RK
60\f
61/* Register tables used by many passes. */
62
63/* Indexed by hard register number, contains 1 for registers
64 that are fixed use (stack pointer, pc, frame pointer, etc.).
65 These are the registers that cannot be used to allocate
252f342a 66 a pseudo reg for general use. */
54dac99e
RK
67
68char fixed_regs[FIRST_PSEUDO_REGISTER];
69
70/* Same info as a HARD_REG_SET. */
71
72HARD_REG_SET fixed_reg_set;
73
74/* Data for initializing the above. */
75
76static char initial_fixed_regs[] = FIXED_REGISTERS;
77
78/* Indexed by hard register number, contains 1 for registers
79 that are fixed use or are clobbered by function calls.
80 These are the registers that cannot be used to allocate
252f342a
MH
81 a pseudo reg whose life crosses calls unless we are able
82 to save/restore them across the calls. */
54dac99e
RK
83
84char call_used_regs[FIRST_PSEUDO_REGISTER];
85
86/* Same info as a HARD_REG_SET. */
87
88HARD_REG_SET call_used_reg_set;
89
6cad67d2
JL
90/* HARD_REG_SET of registers we want to avoid caller saving. */
91HARD_REG_SET losing_caller_save_reg_set;
92
54dac99e
RK
93/* Data for initializing the above. */
94
95static char initial_call_used_regs[] = CALL_USED_REGISTERS;
96
97/* Indexed by hard register number, contains 1 for registers that are
252f342a
MH
98 fixed use or call used registers that cannot hold quantities across
99 calls even if we are willing to save and restore them. call fixed
100 registers are a subset of call used registers. */
54dac99e
RK
101
102char call_fixed_regs[FIRST_PSEUDO_REGISTER];
103
104/* The same info as a HARD_REG_SET. */
105
106HARD_REG_SET call_fixed_reg_set;
107
108/* Number of non-fixed registers. */
109
110int n_non_fixed_regs;
111
112/* Indexed by hard register number, contains 1 for registers
113 that are being used for global register decls.
114 These must be exempt from ordinary flow analysis
115 and are also considered fixed. */
116
117char global_regs[FIRST_PSEUDO_REGISTER];
118
119/* Table of register numbers in the order in which to try to use them. */
120#ifdef REG_ALLOC_ORDER
121int reg_alloc_order[FIRST_PSEUDO_REGISTER] = REG_ALLOC_ORDER;
f5d8c9f4
BS
122
123/* The inverse of reg_alloc_order. */
124int inv_reg_alloc_order[FIRST_PSEUDO_REGISTER];
54dac99e
RK
125#endif
126
127/* For each reg class, a HARD_REG_SET saying which registers are in it. */
128
2e0e2b76
CH
129HARD_REG_SET reg_class_contents[N_REG_CLASSES];
130
089e575b
RS
131/* The same information, but as an array of unsigned ints. We copy from
132 these unsigned ints to the table above. We do this so the tm.h files
133 do not have to be aware of the wordsize for machines with <= 64 regs. */
2e0e2b76
CH
134
135#define N_REG_INTS \
136 ((FIRST_PSEUDO_REGISTER + (HOST_BITS_PER_INT - 1)) / HOST_BITS_PER_INT)
137
089e575b 138static unsigned int_reg_class_contents[N_REG_CLASSES][N_REG_INTS]
2e0e2b76 139 = REG_CLASS_CONTENTS;
54dac99e
RK
140
141/* For each reg class, number of regs it contains. */
142
770ae6cc 143unsigned int reg_class_size[N_REG_CLASSES];
54dac99e
RK
144
145/* For each reg class, table listing all the containing classes. */
146
147enum reg_class reg_class_superclasses[N_REG_CLASSES][N_REG_CLASSES];
148
149/* For each reg class, table listing all the classes contained in it. */
150
151enum reg_class reg_class_subclasses[N_REG_CLASSES][N_REG_CLASSES];
152
153/* For each pair of reg classes,
154 a largest reg class contained in their union. */
155
156enum reg_class reg_class_subunion[N_REG_CLASSES][N_REG_CLASSES];
157
158/* For each pair of reg classes,
159 the smallest reg class containing their union. */
160
161enum reg_class reg_class_superunion[N_REG_CLASSES][N_REG_CLASSES];
162
fbd40359
ZW
163/* Array containing all of the register names. Unless
164 DEBUG_REGISTER_NAMES is defined, use the copy in print-rtl.c. */
d05c8ee7 165
fbd40359 166#ifdef DEBUG_REGISTER_NAMES
e087aeb2 167const char * reg_names[] = REGISTER_NAMES;
fbd40359 168#endif
d05c8ee7 169
ca4aac00
DE
170/* For each hard register, the widest mode object that it can contain.
171 This will be a MODE_INT mode if the register can hold integers. Otherwise
172 it will be a MODE_FLOAT or a MODE_CC mode, whichever is valid for the
173 register. */
174
175enum machine_mode reg_raw_mode[FIRST_PSEUDO_REGISTER];
176
e4600702
RK
177/* Maximum cost of moving from a register in one class to a register in
178 another class. Based on REGISTER_MOVE_COST. */
179
180static int move_cost[N_REG_CLASSES][N_REG_CLASSES];
181
182/* Similar, but here we don't have to move if the first index is a subset
183 of the second so in that case the cost is zero. */
184
ee59f29b
JH
185static int may_move_in_cost[N_REG_CLASSES][N_REG_CLASSES];
186
187/* Similar, but here we don't have to move if the first index is a superset
188 of the second so in that case the cost is zero. */
189
190static int may_move_out_cost[N_REG_CLASSES][N_REG_CLASSES];
e4600702 191
533d0835
RK
192#ifdef FORBIDDEN_INC_DEC_CLASSES
193
194/* These are the classes that regs which are auto-incremented or decremented
195 cannot be put in. */
196
197static int forbidden_inc_dec_class[N_REG_CLASSES];
198
199/* Indexed by n, is non-zero if (REG n) is used in an auto-inc or auto-dec
200 context. */
201
202static char *in_inc_dec;
203
5fcb671c 204#endif /* FORBIDDEN_INC_DEC_CLASSES */
533d0835 205
02188693 206#ifdef CLASS_CANNOT_CHANGE_MODE
e79f71f7
GK
207
208/* These are the classes containing only registers that can be used in
02188693
RH
209 a SUBREG expression that changes the mode of the register in some
210 way that is illegal. */
e79f71f7 211
02188693 212static int class_can_change_mode[N_REG_CLASSES];
e79f71f7 213
02188693
RH
214/* Registers, including pseudos, which change modes in some way that
215 is illegal. */
e79f71f7 216
02188693 217static regset reg_changes_mode;
e79f71f7 218
02188693 219#endif /* CLASS_CANNOT_CHANGE_MODE */
e79f71f7 220
473fe49b
KR
221#ifdef HAVE_SECONDARY_RELOADS
222
223/* Sample MEM values for use by memory_move_secondary_cost. */
224
225static rtx top_of_stack[MAX_MACHINE_MODE];
226
227#endif /* HAVE_SECONDARY_RELOADS */
228
6feacd09
MM
229/* Linked list of reg_info structures allocated for reg_n_info array.
230 Grouping all of the allocated structures together in one lump
231 means only one call to bzero to clear them, rather than n smaller
232 calls. */
233struct reg_info_data {
234 struct reg_info_data *next; /* next set of reg_info structures */
235 size_t min_index; /* minimum index # */
236 size_t max_index; /* maximum index # */
237 char used_p; /* non-zero if this has been used previously */
238 reg_info data[1]; /* beginning of the reg_info data */
239};
240
241static struct reg_info_data *reg_info_head;
242
c07c7c9d 243/* No more global register variables may be declared; true once
6c85df69
AH
244 regclass has been initialized. */
245
246static int no_global_reg_vars = 0;
247
6feacd09 248
54dac99e
RK
249/* Function called only once to initialize the above data on reg usage.
250 Once this is done, various switches may override. */
251
252void
253init_reg_sets ()
254{
255 register int i, j;
256
2e0e2b76
CH
257 /* First copy the register information from the initial int form into
258 the regsets. */
259
260 for (i = 0; i < N_REG_CLASSES; i++)
261 {
262 CLEAR_HARD_REG_SET (reg_class_contents[i]);
263
264 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
265 if (int_reg_class_contents[i][j / HOST_BITS_PER_INT]
089e575b 266 & ((unsigned) 1 << (j % HOST_BITS_PER_INT)))
2e0e2b76
CH
267 SET_HARD_REG_BIT (reg_class_contents[i], j);
268 }
269
54dac99e
RK
270 bcopy (initial_fixed_regs, fixed_regs, sizeof fixed_regs);
271 bcopy (initial_call_used_regs, call_used_regs, sizeof call_used_regs);
961192e1 272 memset (global_regs, 0, sizeof global_regs);
54dac99e 273
910bc42d
R
274 /* Do any additional initialization regsets may need */
275 INIT_ONCE_REG_SET ();
f5d8c9f4
BS
276
277#ifdef REG_ALLOC_ORDER
278 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
279 inv_reg_alloc_order[reg_alloc_order[i]] = i;
280#endif
910bc42d
R
281}
282
283/* After switches have been processed, which perhaps alter
284 `fixed_regs' and `call_used_regs', convert them to HARD_REG_SETs. */
285
286static void
287init_reg_sets_1 ()
288{
289 register unsigned int i, j;
290
291 /* This macro allows the fixed or call-used registers
292 and the register classes to depend on target flags. */
293
294#ifdef CONDITIONAL_REGISTER_USAGE
295 CONDITIONAL_REGISTER_USAGE;
296#endif
297
54dac99e
RK
298 /* Compute number of hard regs in each class. */
299
961192e1 300 memset ((char *) reg_class_size, 0, sizeof reg_class_size);
54dac99e
RK
301 for (i = 0; i < N_REG_CLASSES; i++)
302 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
303 if (TEST_HARD_REG_BIT (reg_class_contents[i], j))
304 reg_class_size[i]++;
305
306 /* Initialize the table of subunions.
307 reg_class_subunion[I][J] gets the largest-numbered reg-class
308 that is contained in the union of classes I and J. */
309
310 for (i = 0; i < N_REG_CLASSES; i++)
311 {
312 for (j = 0; j < N_REG_CLASSES; j++)
313 {
314#ifdef HARD_REG_SET
315 register /* Declare it register if it's a scalar. */
316#endif
317 HARD_REG_SET c;
318 register int k;
319
320 COPY_HARD_REG_SET (c, reg_class_contents[i]);
321 IOR_HARD_REG_SET (c, reg_class_contents[j]);
322 for (k = 0; k < N_REG_CLASSES; k++)
323 {
324 GO_IF_HARD_REG_SUBSET (reg_class_contents[k], c,
325 subclass1);
326 continue;
327
328 subclass1:
329 /* keep the largest subclass */ /* SPEE 900308 */
330 GO_IF_HARD_REG_SUBSET (reg_class_contents[k],
331 reg_class_contents[(int) reg_class_subunion[i][j]],
332 subclass2);
333 reg_class_subunion[i][j] = (enum reg_class) k;
334 subclass2:
335 ;
336 }
337 }
338 }
339
340 /* Initialize the table of superunions.
341 reg_class_superunion[I][J] gets the smallest-numbered reg-class
342 containing the union of classes I and J. */
343
344 for (i = 0; i < N_REG_CLASSES; i++)
345 {
346 for (j = 0; j < N_REG_CLASSES; j++)
347 {
348#ifdef HARD_REG_SET
349 register /* Declare it register if it's a scalar. */
350#endif
351 HARD_REG_SET c;
352 register int k;
353
354 COPY_HARD_REG_SET (c, reg_class_contents[i]);
355 IOR_HARD_REG_SET (c, reg_class_contents[j]);
356 for (k = 0; k < N_REG_CLASSES; k++)
357 GO_IF_HARD_REG_SUBSET (c, reg_class_contents[k], superclass);
358
359 superclass:
360 reg_class_superunion[i][j] = (enum reg_class) k;
361 }
362 }
363
364 /* Initialize the tables of subclasses and superclasses of each reg class.
365 First clear the whole table, then add the elements as they are found. */
366
367 for (i = 0; i < N_REG_CLASSES; i++)
368 {
369 for (j = 0; j < N_REG_CLASSES; j++)
370 {
371 reg_class_superclasses[i][j] = LIM_REG_CLASSES;
372 reg_class_subclasses[i][j] = LIM_REG_CLASSES;
373 }
374 }
375
376 for (i = 0; i < N_REG_CLASSES; i++)
377 {
378 if (i == (int) NO_REGS)
379 continue;
380
381 for (j = i + 1; j < N_REG_CLASSES; j++)
382 {
383 enum reg_class *p;
384
385 GO_IF_HARD_REG_SUBSET (reg_class_contents[i], reg_class_contents[j],
386 subclass);
387 continue;
388 subclass:
389 /* Reg class I is a subclass of J.
390 Add J to the table of superclasses of I. */
391 p = &reg_class_superclasses[i][0];
392 while (*p != LIM_REG_CLASSES) p++;
393 *p = (enum reg_class) j;
394 /* Add I to the table of superclasses of J. */
395 p = &reg_class_subclasses[j][0];
396 while (*p != LIM_REG_CLASSES) p++;
397 *p = (enum reg_class) i;
398 }
399 }
e4600702 400
54dac99e
RK
401 /* Initialize "constant" tables. */
402
403 CLEAR_HARD_REG_SET (fixed_reg_set);
404 CLEAR_HARD_REG_SET (call_used_reg_set);
405 CLEAR_HARD_REG_SET (call_fixed_reg_set);
406
407 bcopy (fixed_regs, call_fixed_regs, sizeof call_fixed_regs);
54dac99e
RK
408
409 n_non_fixed_regs = 0;
410
411 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
412 {
54dac99e
RK
413 if (fixed_regs[i])
414 SET_HARD_REG_BIT (fixed_reg_set, i);
415 else
416 n_non_fixed_regs++;
417
418 if (call_used_regs[i])
419 SET_HARD_REG_BIT (call_used_reg_set, i);
420 if (call_fixed_regs[i])
421 SET_HARD_REG_BIT (call_fixed_reg_set, i);
6cad67d2
JL
422 if (CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (i)))
423 SET_HARD_REG_BIT (losing_caller_save_reg_set, i);
54dac99e 424 }
acbce667
KR
425
426 /* Initialize the move cost table. Find every subset of each class
427 and take the maximum cost of moving any subset to any other. */
428
429 for (i = 0; i < N_REG_CLASSES; i++)
430 for (j = 0; j < N_REG_CLASSES; j++)
431 {
432 int cost = i == j ? 2 : REGISTER_MOVE_COST (i, j);
433 enum reg_class *p1, *p2;
434
435 for (p2 = &reg_class_subclasses[j][0]; *p2 != LIM_REG_CLASSES; p2++)
436 if (*p2 != i)
437 cost = MAX (cost, REGISTER_MOVE_COST (i, *p2));
438
439 for (p1 = &reg_class_subclasses[i][0]; *p1 != LIM_REG_CLASSES; p1++)
440 {
441 if (*p1 != j)
442 cost = MAX (cost, REGISTER_MOVE_COST (*p1, j));
443
444 for (p2 = &reg_class_subclasses[j][0];
445 *p2 != LIM_REG_CLASSES; p2++)
446 if (*p1 != *p2)
447 cost = MAX (cost, REGISTER_MOVE_COST (*p1, *p2));
448 }
449
450 move_cost[i][j] = cost;
451
452 if (reg_class_subset_p (i, j))
ee59f29b
JH
453 may_move_in_cost[i][j] = 0;
454 else
455 may_move_in_cost[i][j] = cost;
acbce667 456
ee59f29b
JH
457 if (reg_class_subset_p (j, i))
458 may_move_out_cost[i][j] = 0;
459 else
460 may_move_out_cost[i][j] = cost;
acbce667 461 }
e79f71f7 462
02188693 463#ifdef CLASS_CANNOT_CHANGE_MODE
e79f71f7
GK
464 {
465 HARD_REG_SET c;
02188693 466 COMPL_HARD_REG_SET (c, reg_class_contents[CLASS_CANNOT_CHANGE_MODE]);
e79f71f7
GK
467
468 for (i = 0; i < N_REG_CLASSES; i++)
469 {
470 GO_IF_HARD_REG_SUBSET (reg_class_contents[i], c, ok_class);
02188693 471 class_can_change_mode [i] = 0;
e79f71f7
GK
472 continue;
473 ok_class:
02188693 474 class_can_change_mode [i] = 1;
e79f71f7
GK
475 }
476 }
02188693 477#endif /* CLASS_CANNOT_CHANGE_MODE */
c27c5281
DE
478}
479
480/* Compute the table of register modes.
481 These values are used to record death information for individual registers
482 (as opposed to a multi-register mode). */
ca4aac00 483
c27c5281
DE
484static void
485init_reg_modes ()
486{
487 register int i;
ca4aac00
DE
488
489 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
7f21d440
DE
490 {
491 reg_raw_mode[i] = choose_hard_reg_mode (i, 1);
492
066c2fea 493 /* If we couldn't find a valid mode, just use the previous mode.
7f21d440
DE
494 ??? One situation in which we need to do this is on the mips where
495 HARD_REGNO_NREGS (fpreg, [SD]Fmode) returns 2. Ideally we'd like
496 to use DF mode for the even registers and VOIDmode for the odd
9faa82d8 497 (for the cpu models where the odd ones are inaccessible). */
7f21d440 498 if (reg_raw_mode[i] == VOIDmode)
066c2fea 499 reg_raw_mode[i] = i == 0 ? word_mode : reg_raw_mode[i-1];
7f21d440 500 }
ca4aac00
DE
501}
502
c27c5281
DE
503/* Finish initializing the register sets and
504 initialize the register modes. */
505
506void
507init_regs ()
508{
509 /* This finishes what was started by init_reg_sets, but couldn't be done
510 until after register usage was specified. */
b93a436e 511 init_reg_sets_1 ();
c27c5281
DE
512
513 init_reg_modes ();
473fe49b
KR
514
515#ifdef HAVE_SECONDARY_RELOADS
516 {
517 /* Make some fake stack-frame MEM references for use in
518 memory_move_secondary_cost. */
519 int i;
d067e2aa 520
473fe49b 521 for (i = 0; i < MAX_MACHINE_MODE; i++)
9ec36da5 522 top_of_stack[i] = gen_rtx_MEM (i, stack_pointer_rtx);
00d33cb2 523 ggc_add_rtx_root (top_of_stack, MAX_MACHINE_MODE);
473fe49b
KR
524 }
525#endif
c27c5281
DE
526}
527
cbd5b9a2 528#ifdef HAVE_SECONDARY_RELOADS
473fe49b 529
cbd5b9a2
KR
530/* Compute extra cost of moving registers to/from memory due to reloads.
531 Only needed if secondary reloads are required for memory moves. */
473fe49b 532
cbd5b9a2
KR
533int
534memory_move_secondary_cost (mode, class, in)
535 enum machine_mode mode;
536 enum reg_class class;
537 int in;
538{
539 enum reg_class altclass;
540 int partial_cost = 0;
cbd5b9a2 541 /* We need a memory reference to feed to SECONDARY... macros. */
272df862
KG
542 /* mem may be unused even if the SECONDARY_ macros are defined. */
543 rtx mem ATTRIBUTE_UNUSED = top_of_stack[(int) mode];
544
cbd5b9a2
KR
545
546 if (in)
473fe49b 547 {
321c0828 548#ifdef SECONDARY_INPUT_RELOAD_CLASS
473fe49b 549 altclass = SECONDARY_INPUT_RELOAD_CLASS (class, mode, mem);
321c0828 550#else
473fe49b 551 altclass = NO_REGS;
321c0828 552#endif
473fe49b 553 }
cbd5b9a2 554 else
473fe49b 555 {
321c0828 556#ifdef SECONDARY_OUTPUT_RELOAD_CLASS
473fe49b 557 altclass = SECONDARY_OUTPUT_RELOAD_CLASS (class, mode, mem);
321c0828 558#else
473fe49b 559 altclass = NO_REGS;
321c0828 560#endif
473fe49b
KR
561 }
562
cbd5b9a2
KR
563 if (altclass == NO_REGS)
564 return 0;
565
566 if (in)
567 partial_cost = REGISTER_MOVE_COST (altclass, class);
568 else
569 partial_cost = REGISTER_MOVE_COST (class, altclass);
570
571 if (class == altclass)
572 /* This isn't simply a copy-to-temporary situation. Can't guess
573 what it is, so MEMORY_MOVE_COST really ought not to be calling
574 here in that case.
575
576 I'm tempted to put in an abort here, but returning this will
577 probably only give poor estimates, which is what we would've
578 had before this code anyways. */
579 return partial_cost;
580
581 /* Check if the secondary reload register will also need a
582 secondary reload. */
583 return memory_move_secondary_cost (mode, altclass, in) + partial_cost;
584}
585#endif
586
ca4aac00
DE
587/* Return a machine mode that is legitimate for hard reg REGNO and large
588 enough to save nregs. If we can't find one, return VOIDmode. */
589
590enum machine_mode
591choose_hard_reg_mode (regno, nregs)
770ae6cc
RK
592 unsigned int regno ATTRIBUTE_UNUSED;
593 unsigned int nregs;
ca4aac00
DE
594{
595 enum machine_mode found_mode = VOIDmode, mode;
596
597 /* We first look for the largest integer mode that can be validly
598 held in REGNO. If none, we look for the largest floating-point mode.
599 If we still didn't find a valid mode, try CCmode. */
600
601 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
602 mode != VOIDmode;
603 mode = GET_MODE_WIDER_MODE (mode))
604 if (HARD_REGNO_NREGS (regno, mode) == nregs
605 && HARD_REGNO_MODE_OK (regno, mode))
606 found_mode = mode;
607
608 if (found_mode != VOIDmode)
609 return found_mode;
610
611 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
612 mode != VOIDmode;
613 mode = GET_MODE_WIDER_MODE (mode))
614 if (HARD_REGNO_NREGS (regno, mode) == nregs
615 && HARD_REGNO_MODE_OK (regno, mode))
616 found_mode = mode;
617
618 if (found_mode != VOIDmode)
619 return found_mode;
620
0548a9df
RH
621 /* Iterate over all of the CCmodes. */
622 for (mode = CCmode; mode < NUM_MACHINE_MODES; ++mode)
623 if (HARD_REGNO_NREGS (regno, mode) == nregs
624 && HARD_REGNO_MODE_OK (regno, mode))
625 return mode;
ca4aac00
DE
626
627 /* We can't find a mode valid for this register. */
628 return VOIDmode;
54dac99e
RK
629}
630
631/* Specify the usage characteristics of the register named NAME.
632 It should be a fixed register if FIXED and a
633 call-used register if CALL_USED. */
634
635void
636fix_register (name, fixed, call_used)
ec0ce6e2 637 const char *name;
54dac99e
RK
638 int fixed, call_used;
639{
640 int i;
641
642 /* Decode the name and update the primary form of
643 the register info. */
644
e5c90c23
TW
645 if ((i = decode_reg_name (name)) >= 0)
646 {
cb2fdc84
GRK
647 if ((i == STACK_POINTER_REGNUM
648#ifdef HARD_FRAME_POINTER_REGNUM
649 || i == HARD_FRAME_POINTER_REGNUM
650#else
651 || i == FRAME_POINTER_REGNUM
652#endif
653 )
654 && (fixed == 0 || call_used == 0))
655 {
6f7d635c 656 static const char * const what_option[2][2] = {
7f7f8214
KG
657 { "call-saved", "call-used" },
658 { "no-such-option", "fixed" }};
cb2fdc84
GRK
659
660 error ("can't use '%s' as a %s register", name,
661 what_option[fixed][call_used]);
662 }
663 else
664 {
665 fixed_regs[i] = fixed;
666 call_used_regs[i] = call_used;
667 }
e5c90c23
TW
668 }
669 else
54dac99e
RK
670 {
671 warning ("unknown register name: %s", name);
54dac99e
RK
672 }
673}
614f68e2
RK
674
675/* Mark register number I as global. */
676
677void
678globalize_reg (i)
679 int i;
680{
c07c7c9d 681 if (fixed_regs[i] == 0 && no_global_reg_vars)
6c85df69
AH
682 error ("global register variable follows a function definition");
683
614f68e2
RK
684 if (global_regs[i])
685 {
686 warning ("register used for two global register variables");
687 return;
688 }
689
690 if (call_used_regs[i] && ! fixed_regs[i])
691 warning ("call-clobbered register used for global register variable");
692
693 global_regs[i] = 1;
694
695 /* If already fixed, nothing else to do. */
696 if (fixed_regs[i])
697 return;
698
699 fixed_regs[i] = call_used_regs[i] = call_fixed_regs[i] = 1;
700 n_non_fixed_regs--;
701
702 SET_HARD_REG_BIT (fixed_reg_set, i);
703 SET_HARD_REG_BIT (call_used_reg_set, i);
704 SET_HARD_REG_BIT (call_fixed_reg_set, i);
705}
54dac99e
RK
706\f
707/* Now the data and code for the `regclass' pass, which happens
708 just before local-alloc. */
709
e4600702
RK
710/* The `costs' struct records the cost of using a hard register of each class
711 and of using memory for each pseudo. We use this data to set up
712 register class preferences. */
54dac99e 713
e4600702 714struct costs
54dac99e 715{
e4600702
RK
716 int cost[N_REG_CLASSES];
717 int mem_cost;
54dac99e
RK
718};
719
9ffc5a70
JH
720/* Structure used to record preferrences of given pseudo. */
721struct reg_pref
722{
723 /* (enum reg_class) prefclass is the preferred class. */
724 char prefclass;
725
726 /* altclass is a register class that we should use for allocating
727 pseudo if no register in the preferred class is available.
728 If no register in this class is available, memory is preferred.
729
730 It might appear to be more general to have a bitmask of classes here,
731 but since it is recommended that there be a class corresponding to the
732 union of most major pair of classes, that generality is not required. */
733 char altclass;
734};
735
e4600702
RK
736/* Record the cost of each class for each pseudo. */
737
738static struct costs *costs;
739
61719ba7
BS
740/* Initialized once, and used to initialize cost values for each insn. */
741
742static struct costs init_cost;
743
9ffc5a70 744/* Record preferrences of each pseudo.
54dac99e
RK
745 This is available after `regclass' is run. */
746
9ffc5a70 747static struct reg_pref *reg_pref;
54d23420 748
9ffc5a70 749/* Allocated buffers for reg_pref. */
54dac99e 750
9ffc5a70 751static struct reg_pref *reg_pref_buffer;
6feacd09 752
54d23420
RK
753/* Account for the fact that insns within a loop are executed very commonly,
754 but don't keep doing this as loops go too deep. */
755
756static int loop_cost;
757
13536812
KG
758static rtx scan_one_insn PARAMS ((rtx, int));
759static void record_operand_costs PARAMS ((rtx, struct costs *, struct reg_pref *));
760static void dump_regclass PARAMS ((FILE *));
761static void record_reg_classes PARAMS ((int, int, rtx *, enum machine_mode *,
e79f71f7 762 const char **, rtx,
f741a71c 763 struct costs *, struct reg_pref *));
13536812 764static int copy_cost PARAMS ((rtx, enum machine_mode,
08d95f91 765 enum reg_class, int));
13536812 766static void record_address_regs PARAMS ((rtx, enum reg_class, int));
1d300e19 767#ifdef FORBIDDEN_INC_DEC_CLASSES
13536812 768static int auto_inc_dec_reg_p PARAMS ((rtx, enum machine_mode));
1d300e19 769#endif
770ae6cc 770static void reg_scan_mark_refs PARAMS ((rtx, rtx, int, unsigned int));
54dac99e
RK
771
772/* Return the reg_class in which pseudo reg number REGNO is best allocated.
773 This function is sometimes called before the info has been computed.
774 When that happens, just return GENERAL_REGS, which is innocuous. */
775
776enum reg_class
777reg_preferred_class (regno)
778 int regno;
779{
9ffc5a70 780 if (reg_pref == 0)
54dac99e 781 return GENERAL_REGS;
9ffc5a70 782 return (enum reg_class) reg_pref[regno].prefclass;
54dac99e
RK
783}
784
e4600702
RK
785enum reg_class
786reg_alternate_class (regno)
b729186a 787 int regno;
54dac99e 788{
9ffc5a70 789 if (reg_pref == 0)
e4600702
RK
790 return ALL_REGS;
791
9ffc5a70 792 return (enum reg_class) reg_pref[regno].altclass;
54dac99e
RK
793}
794
61719ba7 795/* Initialize some global data for this pass. */
54dac99e
RK
796
797void
798regclass_init ()
799{
61719ba7
BS
800 int i;
801
802 init_cost.mem_cost = 10000;
803 for (i = 0; i < N_REG_CLASSES; i++)
804 init_cost.cost[i] = 10000;
805
806 /* This prevents dump_flow_info from losing if called
807 before regclass is run. */
9ffc5a70 808 reg_pref = NULL;
6c85df69 809
c07c7c9d 810 /* No more global register variables may be declared. */
6c85df69 811 no_global_reg_vars = 1;
54dac99e 812}
246fd41f
JH
813\f
814/* Dump register costs. */
915b80ed 815static void
246fd41f
JH
816dump_regclass (dump)
817 FILE *dump;
818{
819 static const char *const reg_class_names[] = REG_CLASS_NAMES;
820 int i;
821 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
822 {
823 enum reg_class class;
824 if (REG_N_REFS (i))
825 {
f741a71c 826 fprintf (dump, " Register %i costs:", i);
246fd41f
JH
827 for (class = 0; class < N_REG_CLASSES; class++)
828 fprintf (dump, " %s:%i", reg_class_names[(int) class],
829 costs[i].cost[class]);
f741a71c 830 fprintf (dump, " MEM:%i\n", costs[i].mem_cost);
246fd41f
JH
831 }
832 }
833}
f741a71c
JH
834\f
835
836/* Calculate the costs of insn operands. */
837
838static void
839record_operand_costs (insn, op_costs, reg_pref)
840 rtx insn;
841 struct costs *op_costs;
842 struct reg_pref *reg_pref;
843{
844 const char *constraints[MAX_RECOG_OPERANDS];
845 enum machine_mode modes[MAX_RECOG_OPERANDS];
f741a71c
JH
846 int i;
847
848 for (i = 0; i < recog_data.n_operands; i++)
849 {
850 constraints[i] = recog_data.constraints[i];
851 modes[i] = recog_data.operand_mode[i];
852 }
f741a71c
JH
853
854 /* If we get here, we are set up to record the costs of all the
855 operands for this insn. Start by initializing the costs.
856 Then handle any address registers. Finally record the desired
857 classes for any pseudos, doing it twice if some pair of
858 operands are commutative. */
859
860 for (i = 0; i < recog_data.n_operands; i++)
861 {
862 op_costs[i] = init_cost;
863
864 if (GET_CODE (recog_data.operand[i]) == SUBREG)
865 {
866 rtx inner = SUBREG_REG (recog_data.operand[i]);
02188693
RH
867#ifdef CLASS_CANNOT_CHANGE_MODE
868 if (GET_CODE (inner) == REG
869 && CLASS_CANNOT_CHANGE_MODE_P (modes[i], GET_MODE (inner)))
870 SET_REGNO_REG_SET (reg_changes_mode, REGNO (inner));
9ef07cf1 871#endif
f741a71c
JH
872 recog_data.operand[i] = inner;
873 }
874
875 if (GET_CODE (recog_data.operand[i]) == MEM)
876 record_address_regs (XEXP (recog_data.operand[i], 0),
877 BASE_REG_CLASS, loop_cost * 2);
878 else if (constraints[i][0] == 'p')
879 record_address_regs (recog_data.operand[i],
880 BASE_REG_CLASS, loop_cost * 2);
881 }
882
883 /* Check for commutative in a separate loop so everything will
884 have been initialized. We must do this even if one operand
885 is a constant--see addsi3 in m68k.md. */
886
887 for (i = 0; i < (int) recog_data.n_operands - 1; i++)
888 if (constraints[i][0] == '%')
889 {
890 const char *xconstraints[MAX_RECOG_OPERANDS];
891 int j;
246fd41f 892
f741a71c
JH
893 /* Handle commutative operands by swapping the constraints.
894 We assume the modes are the same. */
895
896 for (j = 0; j < recog_data.n_operands; j++)
897 xconstraints[j] = constraints[j];
898
899 xconstraints[i] = constraints[i+1];
900 xconstraints[i+1] = constraints[i];
901 record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
e79f71f7 902 recog_data.operand, modes,
f741a71c
JH
903 xconstraints, insn, op_costs, reg_pref);
904 }
905
906 record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
e79f71f7 907 recog_data.operand, modes,
f741a71c
JH
908 constraints, insn, op_costs, reg_pref);
909}
54dac99e 910\f
61719ba7
BS
911/* Subroutine of regclass, processes one insn INSN. Scan it and record each
912 time it would save code to put a certain register in a certain class.
913 PASS, when nonzero, inhibits some optimizations which need only be done
914 once.
915 Return the last insn processed, so that the scan can be continued from
916 there. */
917
918static rtx
919scan_one_insn (insn, pass)
920 rtx insn;
921 int pass;
922{
923 enum rtx_code code = GET_CODE (insn);
924 enum rtx_code pat_code;
0eadeb15 925 rtx set, note;
61719ba7 926 int i, j;
f741a71c 927 struct costs op_costs[MAX_RECOG_OPERANDS];
61719ba7 928
61719ba7
BS
929 if (GET_RTX_CLASS (code) != 'i')
930 return insn;
931
932 pat_code = GET_CODE (PATTERN (insn));
933 if (pat_code == USE
934 || pat_code == CLOBBER
935 || pat_code == ASM_INPUT
936 || pat_code == ADDR_VEC
937 || pat_code == ADDR_DIFF_VEC)
938 return insn;
939
0eadeb15
BS
940 set = single_set (insn);
941 extract_insn (insn);
942
0eadeb15
BS
943 /* If this insn loads a parameter from its stack slot, then
944 it represents a savings, rather than a cost, if the
945 parameter is stored in memory. Record this fact. */
61719ba7 946
0eadeb15
BS
947 if (set != 0 && GET_CODE (SET_DEST (set)) == REG
948 && GET_CODE (SET_SRC (set)) == MEM
949 && (note = find_reg_note (insn, REG_EQUIV,
950 NULL_RTX)) != 0
951 && GET_CODE (XEXP (note, 0)) == MEM)
952 {
953 costs[REGNO (SET_DEST (set))].mem_cost
954 -= (MEMORY_MOVE_COST (GET_MODE (SET_DEST (set)),
955 GENERAL_REGS, 1)
956 * loop_cost);
957 record_address_regs (XEXP (SET_SRC (set), 0),
958 BASE_REG_CLASS, loop_cost * 2);
959 return insn;
960 }
61719ba7 961
0eadeb15
BS
962 /* Improve handling of two-address insns such as
963 (set X (ashift CONST Y)) where CONST must be made to
964 match X. Change it into two insns: (set X CONST)
965 (set X (ashift X Y)). If we left this for reloading, it
966 would probably get three insns because X and Y might go
967 in the same place. This prevents X and Y from receiving
968 the same hard reg.
969
970 We can only do this if the modes of operands 0 and 1
971 (which might not be the same) are tieable and we only need
972 do this during our first pass. */
973
974 if (pass == 0 && optimize
1ccbefce
RH
975 && recog_data.n_operands >= 3
976 && recog_data.constraints[1][0] == '0'
977 && recog_data.constraints[1][1] == 0
978 && CONSTANT_P (recog_data.operand[1])
979 && ! rtx_equal_p (recog_data.operand[0], recog_data.operand[1])
980 && ! rtx_equal_p (recog_data.operand[0], recog_data.operand[2])
981 && GET_CODE (recog_data.operand[0]) == REG
982 && MODES_TIEABLE_P (GET_MODE (recog_data.operand[0]),
983 recog_data.operand_mode[1]))
0eadeb15
BS
984 {
985 rtx previnsn = prev_real_insn (insn);
986 rtx dest
1ccbefce
RH
987 = gen_lowpart (recog_data.operand_mode[1],
988 recog_data.operand[0]);
0eadeb15 989 rtx newinsn
1ccbefce 990 = emit_insn_before (gen_move_insn (dest, recog_data.operand[1]), insn);
61719ba7 991
0eadeb15
BS
992 /* If this insn was the start of a basic block,
993 include the new insn in that block.
994 We need not check for code_label here;
995 while a basic block can start with a code_label,
996 INSN could not be at the beginning of that block. */
997 if (previnsn == 0 || GET_CODE (previnsn) == JUMP_INSN)
61719ba7 998 {
0eadeb15
BS
999 int b;
1000 for (b = 0; b < n_basic_blocks; b++)
3b413743
RH
1001 if (insn == BLOCK_HEAD (b))
1002 BLOCK_HEAD (b) = newinsn;
61719ba7
BS
1003 }
1004
0eadeb15 1005 /* This makes one more setting of new insns's dest. */
1ccbefce 1006 REG_N_SETS (REGNO (recog_data.operand[0]))++;
61719ba7 1007
1ccbefce
RH
1008 *recog_data.operand_loc[1] = recog_data.operand[0];
1009 for (i = recog_data.n_dups - 1; i >= 0; i--)
1010 if (recog_data.dup_num[i] == 1)
1011 *recog_data.dup_loc[i] = recog_data.operand[0];
61719ba7 1012
0eadeb15 1013 return PREV_INSN (newinsn);
61719ba7
BS
1014 }
1015
4963c995 1016 record_operand_costs (insn, op_costs, reg_pref);
61719ba7
BS
1017
1018 /* Now add the cost for each operand to the total costs for
1019 its register. */
1020
1ccbefce
RH
1021 for (i = 0; i < recog_data.n_operands; i++)
1022 if (GET_CODE (recog_data.operand[i]) == REG
1023 && REGNO (recog_data.operand[i]) >= FIRST_PSEUDO_REGISTER)
61719ba7 1024 {
1ccbefce 1025 int regno = REGNO (recog_data.operand[i]);
61719ba7
BS
1026 struct costs *p = &costs[regno], *q = &op_costs[i];
1027
1028 p->mem_cost += q->mem_cost * loop_cost;
1029 for (j = 0; j < N_REG_CLASSES; j++)
1030 p->cost[j] += q->cost[j] * loop_cost;
1031 }
1032
1033 return insn;
1034}
1035
54dac99e
RK
1036/* This is a pass of the compiler that scans all instructions
1037 and calculates the preferred class for each pseudo-register.
1038 This information can be accessed later by calling `reg_preferred_class'.
1039 This pass comes just before local register allocation. */
1040
1041void
246fd41f 1042regclass (f, nregs, dump)
54dac99e
RK
1043 rtx f;
1044 int nregs;
246fd41f 1045 FILE *dump;
54dac99e 1046{
54dac99e 1047 register rtx insn;
61719ba7 1048 register int i;
e4600702 1049 int pass;
54dac99e
RK
1050
1051 init_recog ();
1052
56a65848 1053 costs = (struct costs *) xmalloc (nregs * sizeof (struct costs));
533d0835 1054
02188693
RH
1055#ifdef CLASS_CANNOT_CHANGE_MODE
1056 reg_changes_mode = BITMAP_XMALLOC();
e79f71f7
GK
1057#endif
1058
533d0835
RK
1059#ifdef FORBIDDEN_INC_DEC_CLASSES
1060
4da896b2 1061 in_inc_dec = (char *) xmalloc (nregs);
533d0835
RK
1062
1063 /* Initialize information about which register classes can be used for
1064 pseudos that are auto-incremented or auto-decremented. It would
1065 seem better to put this in init_reg_sets, but we need to be able
1066 to allocate rtx, which we can't do that early. */
1067
1068 for (i = 0; i < N_REG_CLASSES; i++)
1069 {
38a448ca 1070 rtx r = gen_rtx_REG (VOIDmode, 0);
533d0835 1071 enum machine_mode m;
8c368ee2 1072 register int j;
533d0835
RK
1073
1074 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
1075 if (TEST_HARD_REG_BIT (reg_class_contents[i], j))
1076 {
1077 REGNO (r) = j;
1078
1079 for (m = VOIDmode; (int) m < (int) MAX_MACHINE_MODE;
808043ed 1080 m = (enum machine_mode) ((int) m + 1))
533d0835
RK
1081 if (HARD_REGNO_MODE_OK (j, m))
1082 {
1083 PUT_MODE (r, m);
08d95f91
RK
1084
1085 /* If a register is not directly suitable for an
1086 auto-increment or decrement addressing mode and
1087 requires secondary reloads, disallow its class from
1088 being used in such addresses. */
1089
1090 if ((0
041d7180
JL
1091#ifdef SECONDARY_RELOAD_CLASS
1092 || (SECONDARY_RELOAD_CLASS (BASE_REG_CLASS, m, r)
1093 != NO_REGS)
1094#else
533d0835 1095#ifdef SECONDARY_INPUT_RELOAD_CLASS
08d95f91
RK
1096 || (SECONDARY_INPUT_RELOAD_CLASS (BASE_REG_CLASS, m, r)
1097 != NO_REGS)
533d0835
RK
1098#endif
1099#ifdef SECONDARY_OUTPUT_RELOAD_CLASS
08d95f91
RK
1100 || (SECONDARY_OUTPUT_RELOAD_CLASS (BASE_REG_CLASS, m, r)
1101 != NO_REGS)
041d7180 1102#endif
533d0835 1103#endif
08d95f91
RK
1104 )
1105 && ! auto_inc_dec_reg_p (r, m))
533d0835
RK
1106 forbidden_inc_dec_class[i] = 1;
1107 }
1108 }
1109 }
1110#endif /* FORBIDDEN_INC_DEC_CLASSES */
1111
e4600702
RK
1112 /* Normally we scan the insns once and determine the best class to use for
1113 each register. However, if -fexpensive_optimizations are on, we do so
1114 twice, the second time using the tentative best classes to guide the
1115 selection. */
54dac99e 1116
e4600702
RK
1117 for (pass = 0; pass <= flag_expensive_optimizations; pass++)
1118 {
954d8e99 1119 int index;
f741a71c
JH
1120
1121 if (dump)
1122 fprintf (dump, "\n\nPass %i\n\n",pass);
e4600702 1123 /* Zero out our accumulation of the cost of each class for each reg. */
54dac99e 1124
961192e1 1125 memset ((char *) costs, 0, nregs * sizeof (struct costs));
54dac99e 1126
533d0835 1127#ifdef FORBIDDEN_INC_DEC_CLASSES
961192e1 1128 memset (in_inc_dec, 0, nregs);
533d0835
RK
1129#endif
1130
e4600702
RK
1131 /* Scan the instructions and record each time it would
1132 save code to put a certain register in a certain class. */
1133
1f01879e 1134 if (!optimize)
54dac99e 1135 {
1f01879e
JH
1136 loop_cost = 1;
1137 for (insn = f; insn; insn = NEXT_INSN (insn))
1138 insn = scan_one_insn (insn, pass);
54dac99e 1139 }
1f01879e
JH
1140 else
1141 for (index = 0; index < n_basic_blocks; index++)
1142 {
1143 basic_block bb = BASIC_BLOCK (index);
1144
1145 /* Show that an insn inside a loop is likely to be executed three
9b15c17f
RH
1146 times more than insns outside a loop. This is much more
1147 aggressive than the assumptions made elsewhere and is being
1148 tried as an experiment. */
1f01879e
JH
1149 if (optimize_size)
1150 loop_cost = 1;
1151 else
9b15c17f 1152 loop_cost = 1 << (2 * MIN (bb->loop_depth, 5));
1f01879e
JH
1153 for (insn = bb->head; ; insn = NEXT_INSN (insn))
1154 {
1155 insn = scan_one_insn (insn, pass);
1156 if (insn == bb->end)
1157 break;
1158 }
1159 }
61719ba7 1160
e4600702
RK
1161 /* Now for each register look at how desirable each class is
1162 and find which class is preferred. Store that in
9ffc5a70 1163 `prefclass'. Record in `altclass' the largest register
e4600702 1164 class any of whose registers is better than memory. */
54dac99e 1165
e4600702 1166 if (pass == 0)
9ffc5a70 1167 reg_pref = reg_pref_buffer;
54dac99e 1168
f741a71c
JH
1169 if (dump)
1170 {
1171 dump_regclass (dump);
4963c995 1172 fprintf (dump,"\n");
f741a71c 1173 }
e4600702 1174 for (i = FIRST_PSEUDO_REGISTER; i < nregs; i++)
54dac99e 1175 {
ca3c6eae 1176 register int best_cost = (1 << (HOST_BITS_PER_INT - 2)) - 1;
e4600702
RK
1177 enum reg_class best = ALL_REGS, alt = NO_REGS;
1178 /* This is an enum reg_class, but we call it an int
1179 to save lots of casts. */
1180 register int class;
1181 register struct costs *p = &costs[i];
1182
64615302
JH
1183 /* In non-optimizing compilation REG_N_REFS is not initialized
1184 yet. */
1185 if (optimize && !REG_N_REFS (i))
f741a71c
JH
1186 continue;
1187
e4600702 1188 for (class = (int) ALL_REGS - 1; class > 0; class--)
54dac99e 1189 {
533d0835
RK
1190 /* Ignore classes that are too small for this operand or
1191 invalid for a operand that was auto-incremented. */
e4600702 1192 if (CLASS_MAX_NREGS (class, PSEUDO_REGNO_MODE (i))
533d0835
RK
1193 > reg_class_size[class]
1194#ifdef FORBIDDEN_INC_DEC_CLASSES
1195 || (in_inc_dec[i] && forbidden_inc_dec_class[class])
e79f71f7 1196#endif
02188693
RH
1197#ifdef CLASS_CANNOT_CHANGE_MODE
1198 || (REGNO_REG_SET_P (reg_changes_mode, i)
1199 && ! class_can_change_mode [class])
533d0835
RK
1200#endif
1201 )
e4600702
RK
1202 ;
1203 else if (p->cost[class] < best_cost)
1204 {
1205 best_cost = p->cost[class];
1206 best = (enum reg_class) class;
1207 }
1208 else if (p->cost[class] == best_cost)
1209 best = reg_class_subunion[(int)best][class];
54dac99e 1210 }
54dac99e 1211
e4600702
RK
1212 /* Record the alternate register class; i.e., a class for which
1213 every register in it is better than using memory. If adding a
1214 class would make a smaller class (i.e., no union of just those
1215 classes exists), skip that class. The major unions of classes
1216 should be provided as a register class. Don't do this if we
1217 will be doing it again later. */
1218
f741a71c 1219 if ((pass == 1 || dump) || ! flag_expensive_optimizations)
e4600702
RK
1220 for (class = 0; class < N_REG_CLASSES; class++)
1221 if (p->cost[class] < p->mem_cost
77edb222 1222 && (reg_class_size[(int) reg_class_subunion[(int) alt][class]]
533d0835
RK
1223 > reg_class_size[(int) alt])
1224#ifdef FORBIDDEN_INC_DEC_CLASSES
1225 && ! (in_inc_dec[i] && forbidden_inc_dec_class[class])
e79f71f7 1226#endif
02188693
RH
1227#ifdef CLASS_CANNOT_CHANGE_MODE
1228 && ! (REGNO_REG_SET_P (reg_changes_mode, i)
1229 && ! class_can_change_mode [class])
533d0835
RK
1230#endif
1231 )
e4600702
RK
1232 alt = reg_class_subunion[(int) alt][class];
1233
1234 /* If we don't add any classes, nothing to try. */
1235 if (alt == best)
995d54dd 1236 alt = NO_REGS;
e4600702 1237
f741a71c
JH
1238 if (dump
1239 && (reg_pref[i].prefclass != (int) best
1240 || reg_pref[i].altclass != (int) alt))
1241 {
1242 static const char *const reg_class_names[] = REG_CLASS_NAMES;
4963c995 1243 fprintf (dump, " Register %i", i);
f741a71c
JH
1244 if (alt == ALL_REGS || best == ALL_REGS)
1245 fprintf (dump, " pref %s\n", reg_class_names[(int) best]);
1246 else if (alt == NO_REGS)
1247 fprintf (dump, " pref %s or none\n", reg_class_names[(int) best]);
1248 else
1249 fprintf (dump, " pref %s, else %s\n",
1250 reg_class_names[(int) best],
1251 reg_class_names[(int) alt]);
1252 }
1253
e4600702 1254 /* We cast to (int) because (char) hits bugs in some compilers. */
9ffc5a70
JH
1255 reg_pref[i].prefclass = (int) best;
1256 reg_pref[i].altclass = (int) alt;
e4600702 1257 }
54dac99e 1258 }
56a65848 1259
4da896b2
MM
1260#ifdef FORBIDDEN_INC_DEC_CLASSES
1261 free (in_inc_dec);
e79f71f7 1262#endif
02188693
RH
1263#ifdef CLASS_CANNOT_CHANGE_MODE
1264 BITMAP_XFREE (reg_changes_mode);
4da896b2 1265#endif
56a65848 1266 free (costs);
54dac99e
RK
1267}
1268\f
e4600702
RK
1269/* Record the cost of using memory or registers of various classes for
1270 the operands in INSN.
54dac99e 1271
e4600702 1272 N_ALTS is the number of alternatives.
54dac99e 1273
e4600702
RK
1274 N_OPS is the number of operands.
1275
1276 OPS is an array of the operands.
1277
1278 MODES are the modes of the operands, in case any are VOIDmode.
1279
1280 CONSTRAINTS are the constraints to use for the operands. This array
1281 is modified by this procedure.
1282
1283 This procedure works alternative by alternative. For each alternative
1284 we assume that we will be able to allocate all pseudos to their ideal
1285 register class and calculate the cost of using that alternative. Then
1286 we compute for each operand that is a pseudo-register, the cost of
1287 having the pseudo allocated to each register class and using it in that
1288 alternative. To this cost is added the cost of the alternative.
1289
1290 The cost of each class for this insn is its lowest cost among all the
1291 alternatives. */
1292
1293static void
e79f71f7 1294record_reg_classes (n_alts, n_ops, ops, modes,
f741a71c 1295 constraints, insn, op_costs, reg_pref)
e4600702
RK
1296 int n_alts;
1297 int n_ops;
1298 rtx *ops;
1299 enum machine_mode *modes;
9b3142b3 1300 const char **constraints;
e4600702 1301 rtx insn;
f741a71c
JH
1302 struct costs *op_costs;
1303 struct reg_pref *reg_pref;
54dac99e 1304{
e4600702 1305 int alt;
e4600702 1306 int i, j;
ec2d92af 1307 rtx set;
e4600702 1308
e4600702
RK
1309 /* Process each alternative, each time minimizing an operand's cost with
1310 the cost for each operand in that alternative. */
54dac99e 1311
e4600702 1312 for (alt = 0; alt < n_alts; alt++)
54dac99e 1313 {
e4600702
RK
1314 struct costs this_op_costs[MAX_RECOG_OPERANDS];
1315 int alt_fail = 0;
1316 int alt_cost = 0;
1317 enum reg_class classes[MAX_RECOG_OPERANDS];
da2c0219 1318 int allows_mem[MAX_RECOG_OPERANDS];
e4600702 1319 int class;
54dac99e 1320
e4600702
RK
1321 for (i = 0; i < n_ops; i++)
1322 {
9b3142b3 1323 const char *p = constraints[i];
e4600702
RK
1324 rtx op = ops[i];
1325 enum machine_mode mode = modes[i];
94e6f783 1326 int allows_addr = 0;
e4600702 1327 int win = 0;
e51712db 1328 unsigned char c;
54dac99e 1329
7405d9a1
DE
1330 /* Initially show we know nothing about the register class. */
1331 classes[i] = NO_REGS;
da2c0219 1332 allows_mem[i] = 0;
7405d9a1 1333
e4600702
RK
1334 /* If this operand has no constraints at all, we can conclude
1335 nothing about it since anything is valid. */
54dac99e 1336
e4600702
RK
1337 if (*p == 0)
1338 {
1339 if (GET_CODE (op) == REG && REGNO (op) >= FIRST_PSEUDO_REGISTER)
961192e1 1340 memset ((char *) &this_op_costs[i], 0, sizeof this_op_costs[i]);
54dac99e 1341
e4600702
RK
1342 continue;
1343 }
54dac99e 1344
7405d9a1
DE
1345 /* If this alternative is only relevant when this operand
1346 matches a previous operand, we do different things depending
1347 on whether this operand is a pseudo-reg or not. We must process
1348 any modifiers for the operand before we can make this test. */
1349
8c368ee2 1350 while (*p == '%' || *p == '=' || *p == '+' || *p == '&')
0eadeb15 1351 p++;
8c368ee2 1352
e4600702
RK
1353 if (p[0] >= '0' && p[0] <= '0' + i && (p[1] == ',' || p[1] == 0))
1354 {
da2c0219
RK
1355 /* Copy class and whether memory is allowed from the matching
1356 alternative. Then perform any needed cost computations
1357 and/or adjustments. */
e4600702
RK
1358 j = p[0] - '0';
1359 classes[i] = classes[j];
da2c0219 1360 allows_mem[i] = allows_mem[j];
e4600702
RK
1361
1362 if (GET_CODE (op) != REG || REGNO (op) < FIRST_PSEUDO_REGISTER)
1363 {
1364 /* If this matches the other operand, we have no added
dc903608 1365 cost and we win. */
e4600702 1366 if (rtx_equal_p (ops[j], op))
dc903608 1367 win = 1;
e4600702 1368
77e67eac
RK
1369 /* If we can put the other operand into a register, add to
1370 the cost of this alternative the cost to copy this
1371 operand to the register used for the other operand. */
e4600702 1372
dc903608 1373 else if (classes[j] != NO_REGS)
77e67eac 1374 alt_cost += copy_cost (op, mode, classes[j], 1), win = 1;
e4600702 1375 }
07d8ca2d
RS
1376 else if (GET_CODE (ops[j]) != REG
1377 || REGNO (ops[j]) < FIRST_PSEUDO_REGISTER)
1378 {
1379 /* This op is a pseudo but the one it matches is not. */
1380
1381 /* If we can't put the other operand into a register, this
1382 alternative can't be used. */
1383
1384 if (classes[j] == NO_REGS)
1385 alt_fail = 1;
e4600702 1386
07d8ca2d
RS
1387 /* Otherwise, add to the cost of this alternative the cost
1388 to copy the other operand to the register used for this
1389 operand. */
1390
1391 else
1392 alt_cost += copy_cost (ops[j], mode, classes[j], 1);
1393 }
e4600702
RK
1394 else
1395 {
da2c0219
RK
1396 /* The costs of this operand are not the same as the other
1397 operand since move costs are not symmetric. Moreover,
1398 if we cannot tie them, this alternative needs to do a
1399 copy, which is one instruction. */
1400
1401 struct costs *pp = &this_op_costs[i];
1402
1403 for (class = 0; class < N_REG_CLASSES; class++)
1404 pp->cost[class]
d5e2075d
JH
1405 = ((recog_data.operand_type[i] != OP_OUT
1406 ? may_move_in_cost[class][(int) classes[i]]
1407 : 0)
1408 + (recog_data.operand_type[i] != OP_IN
1409 ? may_move_out_cost[(int) classes[i]][class]
1410 : 0));
da2c0219
RK
1411
1412 /* If the alternative actually allows memory, make things
1413 a bit cheaper since we won't need an extra insn to
1414 load it. */
1415
1416 pp->mem_cost
d5e2075d
JH
1417 = ((recog_data.operand_type[i] != OP_IN
1418 ? MEMORY_MOVE_COST (mode, classes[i], 0)
1419 : 0)
1420 + (recog_data.operand_type[i] != OP_OUT
1421 ? MEMORY_MOVE_COST (mode, classes[i], 1)
1422 : 0) - allows_mem[i]);
da2c0219
RK
1423
1424 /* If we have assigned a class to this register in our
1425 first pass, add a cost to this alternative corresponding
1426 to what we would add if this register were not in the
1427 appropriate class. */
1428
9ffc5a70 1429 if (reg_pref)
da2c0219 1430 alt_cost
9ffc5a70 1431 += (may_move_in_cost[(unsigned char) reg_pref[REGNO (op)].prefclass]
da2c0219 1432 [(int) classes[i]]);
e4600702 1433
37747c82
RK
1434 if (REGNO (ops[i]) != REGNO (ops[j])
1435 && ! find_reg_note (insn, REG_DEAD, op))
1436 alt_cost += 2;
e4600702 1437
347099d6 1438 /* This is in place of ordinary cost computation
1ddb342a
RK
1439 for this operand, so skip to the end of the
1440 alternative (should be just one character). */
1441 while (*p && *p++ != ',')
1442 ;
1443
1444 constraints[i] = p;
347099d6
RS
1445 continue;
1446 }
e4600702
RK
1447 }
1448
1449 /* Scan all the constraint letters. See if the operand matches
1450 any of the constraints. Collect the valid register classes
1451 and see if this operand accepts memory. */
1452
e4600702
RK
1453 while (*p && (c = *p++) != ',')
1454 switch (c)
1455 {
e4600702
RK
1456 case '*':
1457 /* Ignore the next letter for this pass. */
1458 p++;
1459 break;
1460
812f2051
R
1461 case '?':
1462 alt_cost += 2;
8c368ee2 1463 case '!': case '#': case '&':
e4600702 1464 case '0': case '1': case '2': case '3': case '4':
8c368ee2 1465 case '5': case '6': case '7': case '8': case '9':
94e6f783
DE
1466 break;
1467
e4600702 1468 case 'p':
94e6f783
DE
1469 allows_addr = 1;
1470 win = address_operand (op, GET_MODE (op));
46f40127
JL
1471 /* We know this operand is an address, so we want it to be
1472 allocated to a register that can be the base of an
1473 address, ie BASE_REG_CLASS. */
1474 classes[i]
1475 = reg_class_subunion[(int) classes[i]]
1476 [(int) BASE_REG_CLASS];
e4600702
RK
1477 break;
1478
1479 case 'm': case 'o': case 'V':
ac2a9454 1480 /* It doesn't seem worth distinguishing between offsettable
e4600702 1481 and non-offsettable addresses here. */
da2c0219 1482 allows_mem[i] = 1;
e4600702
RK
1483 if (GET_CODE (op) == MEM)
1484 win = 1;
1485 break;
1486
1487 case '<':
1488 if (GET_CODE (op) == MEM
1489 && (GET_CODE (XEXP (op, 0)) == PRE_DEC
1490 || GET_CODE (XEXP (op, 0)) == POST_DEC))
1491 win = 1;
1492 break;
1493
1494 case '>':
1495 if (GET_CODE (op) == MEM
1496 && (GET_CODE (XEXP (op, 0)) == PRE_INC
1497 || GET_CODE (XEXP (op, 0)) == POST_INC))
1498 win = 1;
1499 break;
1500
1501 case 'E':
7ac2547f 1502#ifndef REAL_ARITHMETIC
e4600702
RK
1503 /* Match any floating double constant, but only if
1504 we can examine the bits of it reliably. */
1505 if ((HOST_FLOAT_FORMAT != TARGET_FLOAT_FORMAT
37366632 1506 || HOST_BITS_PER_WIDE_INT != BITS_PER_WORD)
e4600702
RK
1507 && GET_MODE (op) != VOIDmode && ! flag_pretend_float)
1508 break;
7ac2547f 1509#endif
e4600702
RK
1510 if (GET_CODE (op) == CONST_DOUBLE)
1511 win = 1;
1512 break;
1513
1514 case 'F':
1515 if (GET_CODE (op) == CONST_DOUBLE)
1516 win = 1;
1517 break;
1518
1519 case 'G':
1520 case 'H':
1521 if (GET_CODE (op) == CONST_DOUBLE
1522 && CONST_DOUBLE_OK_FOR_LETTER_P (op, c))
1523 win = 1;
1524 break;
1525
1526 case 's':
1527 if (GET_CODE (op) == CONST_INT
1528 || (GET_CODE (op) == CONST_DOUBLE
1529 && GET_MODE (op) == VOIDmode))
1530 break;
1531 case 'i':
1532 if (CONSTANT_P (op)
1533#ifdef LEGITIMATE_PIC_OPERAND_P
1534 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
1535#endif
1536 )
1537 win = 1;
1538 break;
1539
1540 case 'n':
1541 if (GET_CODE (op) == CONST_INT
1542 || (GET_CODE (op) == CONST_DOUBLE
1543 && GET_MODE (op) == VOIDmode))
1544 win = 1;
1545 break;
1546
1547 case 'I':
1548 case 'J':
1549 case 'K':
1550 case 'L':
1551 case 'M':
1552 case 'N':
1553 case 'O':
1554 case 'P':
1555 if (GET_CODE (op) == CONST_INT
1556 && CONST_OK_FOR_LETTER_P (INTVAL (op), c))
1557 win = 1;
1558 break;
1559
1560 case 'X':
1561 win = 1;
1562 break;
54dac99e 1563
e4600702
RK
1564 case 'g':
1565 if (GET_CODE (op) == MEM
1566 || (CONSTANT_P (op)
1567#ifdef LEGITIMATE_PIC_OPERAND_P
1568 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
54dac99e 1569#endif
e4600702
RK
1570 ))
1571 win = 1;
da2c0219 1572 allows_mem[i] = 1;
e4600702
RK
1573 case 'r':
1574 classes[i]
1575 = reg_class_subunion[(int) classes[i]][(int) GENERAL_REGS];
1576 break;
1577
1578 default:
c2cba7a9
RH
1579 if (REG_CLASS_FROM_LETTER (c) != NO_REGS)
1580 classes[i]
1581 = reg_class_subunion[(int) classes[i]]
1582 [(int) REG_CLASS_FROM_LETTER (c)];
1583#ifdef EXTRA_CONSTRAINT
1584 else if (EXTRA_CONSTRAINT (op, c))
1585 win = 1;
1586#endif
1587 break;
e4600702
RK
1588 }
1589
1590 constraints[i] = p;
1591
1592 /* How we account for this operand now depends on whether it is a
1593 pseudo register or not. If it is, we first check if any
1594 register classes are valid. If not, we ignore this alternative,
1595 since we want to assume that all pseudos get allocated for
1596 register preferencing. If some register class is valid, compute
1597 the costs of moving the pseudo into that class. */
1598
1599 if (GET_CODE (op) == REG && REGNO (op) >= FIRST_PSEUDO_REGISTER)
4db18574 1600 {
e4600702 1601 if (classes[i] == NO_REGS)
94e6f783 1602 {
e79f71f7
GK
1603 /* We must always fail if the operand is a REG, but
1604 we did not find a suitable class.
1605
1606 Otherwise we may perform an uninitialized read
1607 from this_op_costs after the `continue' statement
1608 below. */
1609 alt_fail = 1;
94e6f783 1610 }
e4600702
RK
1611 else
1612 {
1613 struct costs *pp = &this_op_costs[i];
1614
1615 for (class = 0; class < N_REG_CLASSES; class++)
14a774a9 1616 pp->cost[class]
d5e2075d
JH
1617 = ((recog_data.operand_type[i] != OP_OUT
1618 ? may_move_in_cost[class][(int) classes[i]]
1619 : 0)
1620 + (recog_data.operand_type[i] != OP_IN
1621 ? may_move_out_cost[(int) classes[i]][class]
1622 : 0));
e4600702
RK
1623
1624 /* If the alternative actually allows memory, make things
1625 a bit cheaper since we won't need an extra insn to
1626 load it. */
1627
14a774a9 1628 pp->mem_cost
d5e2075d
JH
1629 = ((recog_data.operand_type[i] != OP_IN
1630 ? MEMORY_MOVE_COST (mode, classes[i], 0)
1631 : 0)
1632 + (recog_data.operand_type[i] != OP_OUT
1633 ? MEMORY_MOVE_COST (mode, classes[i], 1)
1634 : 0) - allows_mem[i]);
e4600702
RK
1635
1636 /* If we have assigned a class to this register in our
1637 first pass, add a cost to this alternative corresponding
1638 to what we would add if this register were not in the
1639 appropriate class. */
1640
9ffc5a70 1641 if (reg_pref)
e4600702 1642 alt_cost
9ffc5a70 1643 += (may_move_in_cost[(unsigned char) reg_pref[REGNO (op)].prefclass]
14a774a9 1644 [(int) classes[i]]);
e4600702 1645 }
4db18574 1646 }
54dac99e 1647
e4600702
RK
1648 /* Otherwise, if this alternative wins, either because we
1649 have already determined that or if we have a hard register of
1650 the proper class, there is no cost for this alternative. */
54dac99e 1651
e4600702
RK
1652 else if (win
1653 || (GET_CODE (op) == REG
6f654776 1654 && reg_fits_class_p (op, classes[i], 0, GET_MODE (op))))
e4600702 1655 ;
54dac99e 1656
e4600702
RK
1657 /* If registers are valid, the cost of this alternative includes
1658 copying the object to and/or from a register. */
54dac99e 1659
e4600702
RK
1660 else if (classes[i] != NO_REGS)
1661 {
1ccbefce 1662 if (recog_data.operand_type[i] != OP_OUT)
e4600702 1663 alt_cost += copy_cost (op, mode, classes[i], 1);
54dac99e 1664
1ccbefce 1665 if (recog_data.operand_type[i] != OP_IN)
e4600702
RK
1666 alt_cost += copy_cost (op, mode, classes[i], 0);
1667 }
54dac99e 1668
e4600702
RK
1669 /* The only other way this alternative can be used is if this is a
1670 constant that could be placed into memory. */
1671
da2c0219 1672 else if (CONSTANT_P (op) && (allows_addr || allows_mem[i]))
cbd5b9a2 1673 alt_cost += MEMORY_MOVE_COST (mode, classes[i], 1);
e4600702
RK
1674 else
1675 alt_fail = 1;
1676 }
1677
1678 if (alt_fail)
1679 continue;
1680
1681 /* Finally, update the costs with the information we've calculated
1682 about this alternative. */
1683
1684 for (i = 0; i < n_ops; i++)
1685 if (GET_CODE (ops[i]) == REG
1686 && REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER)
54dac99e 1687 {
e4600702 1688 struct costs *pp = &op_costs[i], *qq = &this_op_costs[i];
1ccbefce 1689 int scale = 1 + (recog_data.operand_type[i] == OP_INOUT);
54dac99e 1690
e4600702
RK
1691 pp->mem_cost = MIN (pp->mem_cost,
1692 (qq->mem_cost + alt_cost) * scale);
54dac99e 1693
e4600702
RK
1694 for (class = 0; class < N_REG_CLASSES; class++)
1695 pp->cost[class] = MIN (pp->cost[class],
1696 (qq->cost[class] + alt_cost) * scale);
1697 }
1698 }
ec2d92af
RK
1699
1700 /* If this insn is a single set copying operand 1 to operand 0
accef103
JL
1701 and one operand is a pseudo with the other a hard reg or a pseudo
1702 that prefers a register that is in its own register class then
1703 we may want to adjust the cost of that register class to -1.
1704
1705 Avoid the adjustment if the source does not die to avoid stressing of
1706 register allocator by preferrencing two coliding registers into single
1707 class.
1708
1709 Also avoid the adjustment if a copy between registers of the class
1710 is expensive (ten times the cost of a default copy is considered
1711 arbitrarily expensive). This avoids losing when the preferred class
1712 is very expensive as the source of a copy instruction. */
ec2d92af
RK
1713
1714 if ((set = single_set (insn)) != 0
1715 && ops[0] == SET_DEST (set) && ops[1] == SET_SRC (set)
0dc0641b
JH
1716 && GET_CODE (ops[0]) == REG && GET_CODE (ops[1]) == REG
1717 && find_regno_note (insn, REG_DEAD, REGNO (ops[1])))
ec2d92af
RK
1718 for (i = 0; i <= 1; i++)
1719 if (REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER)
1720 {
770ae6cc 1721 unsigned int regno = REGNO (ops[!i]);
ec2d92af
RK
1722 enum machine_mode mode = GET_MODE (ops[!i]);
1723 int class;
770ae6cc 1724 unsigned int nr;
ec2d92af 1725
accef103
JL
1726 if (regno >= FIRST_PSEUDO_REGISTER && reg_pref != 0)
1727 {
1728 enum reg_class pref = reg_pref[regno].prefclass;
1729
1730 if ((reg_class_size[(unsigned char) pref]
1731 == CLASS_MAX_NREGS (pref, mode))
1732 && REGISTER_MOVE_COST (pref, pref) < 10 * 2)
1733 op_costs[i].cost[(unsigned char) pref] = -1;
1734 }
ec2d92af
RK
1735 else if (regno < FIRST_PSEUDO_REGISTER)
1736 for (class = 0; class < N_REG_CLASSES; class++)
1737 if (TEST_HARD_REG_BIT (reg_class_contents[class], regno)
1738 && reg_class_size[class] == CLASS_MAX_NREGS (class, mode))
4841ba4b
RK
1739 {
1740 if (reg_class_size[class] == 1)
1741 op_costs[i].cost[class] = -1;
1742 else
1743 {
770ae6cc 1744 for (nr = 0; nr < HARD_REGNO_NREGS (regno, mode); nr++)
4841ba4b 1745 {
770ae6cc
RK
1746 if (! TEST_HARD_REG_BIT (reg_class_contents[class],
1747 regno + nr))
4841ba4b
RK
1748 break;
1749 }
1750
770ae6cc 1751 if (nr == HARD_REGNO_NREGS (regno,mode))
4841ba4b
RK
1752 op_costs[i].cost[class] = -1;
1753 }
1754 }
ec2d92af 1755 }
54dac99e 1756}
e4600702
RK
1757\f
1758/* Compute the cost of loading X into (if TO_P is non-zero) or from (if
1759 TO_P is zero) a register of class CLASS in mode MODE.
1760
1761 X must not be a pseudo. */
1762
1763static int
1764copy_cost (x, mode, class, to_p)
1765 rtx x;
d0af450d 1766 enum machine_mode mode ATTRIBUTE_UNUSED;
e4600702 1767 enum reg_class class;
d0af450d 1768 int to_p ATTRIBUTE_UNUSED;
e4600702 1769{
29a82058 1770#ifdef HAVE_SECONDARY_RELOADS
e4600702 1771 enum reg_class secondary_class = NO_REGS;
29a82058 1772#endif
e4600702
RK
1773
1774 /* If X is a SCRATCH, there is actually nothing to move since we are
1775 assuming optimal allocation. */
1776
1777 if (GET_CODE (x) == SCRATCH)
1778 return 0;
1779
1780 /* Get the class we will actually use for a reload. */
1781 class = PREFERRED_RELOAD_CLASS (x, class);
1782
1783#ifdef HAVE_SECONDARY_RELOADS
1784 /* If we need a secondary reload (we assume here that we are using
1785 the secondary reload as an intermediate, not a scratch register), the
1786 cost is that to load the input into the intermediate register, then
1787 to copy them. We use a special value of TO_P to avoid recursion. */
1788
1789#ifdef SECONDARY_INPUT_RELOAD_CLASS
1790 if (to_p == 1)
1791 secondary_class = SECONDARY_INPUT_RELOAD_CLASS (class, mode, x);
1792#endif
1793
dd9f0e8f 1794#ifdef SECONDARY_OUTPUT_RELOAD_CLASS
e4600702
RK
1795 if (! to_p)
1796 secondary_class = SECONDARY_OUTPUT_RELOAD_CLASS (class, mode, x);
1797#endif
1798
1799 if (secondary_class != NO_REGS)
1800 return (move_cost[(int) secondary_class][(int) class]
1801 + copy_cost (x, mode, secondary_class, 2));
dd9f0e8f 1802#endif /* HAVE_SECONDARY_RELOADS */
e4600702
RK
1803
1804 /* For memory, use the memory move cost, for (hard) registers, use the
1805 cost to move between the register classes, and use 2 for everything
1806 else (constants). */
1807
1808 if (GET_CODE (x) == MEM || class == NO_REGS)
cbd5b9a2 1809 return MEMORY_MOVE_COST (mode, class, to_p);
54dac99e 1810
e4600702
RK
1811 else if (GET_CODE (x) == REG)
1812 return move_cost[(int) REGNO_REG_CLASS (REGNO (x))][(int) class];
1813
1814 else
1815 /* If this is a constant, we may eventually want to call rtx_cost here. */
b437f1a7 1816 return COSTS_N_INSNS (1);
e4600702
RK
1817}
1818\f
54dac99e
RK
1819/* Record the pseudo registers we must reload into hard registers
1820 in a subexpression of a memory address, X.
e4600702
RK
1821
1822 CLASS is the class that the register needs to be in and is either
1823 BASE_REG_CLASS or INDEX_REG_CLASS.
1824
1825 SCALE is twice the amount to multiply the cost by (it is twice so we
1826 can represent half-cost adjustments). */
54dac99e 1827
197d6480 1828static void
e4600702 1829record_address_regs (x, class, scale)
54dac99e 1830 rtx x;
e4600702
RK
1831 enum reg_class class;
1832 int scale;
54dac99e
RK
1833{
1834 register enum rtx_code code = GET_CODE (x);
1835
1836 switch (code)
1837 {
1838 case CONST_INT:
1839 case CONST:
1840 case CC0:
1841 case PC:
1842 case SYMBOL_REF:
1843 case LABEL_REF:
1844 return;
1845
1846 case PLUS:
1847 /* When we have an address that is a sum,
1848 we must determine whether registers are "base" or "index" regs.
1849 If there is a sum of two registers, we must choose one to be
1850 the "base". Luckily, we can use the REGNO_POINTER_FLAG
e4600702
RK
1851 to make a good choice most of the time. We only need to do this
1852 on machines that can have two registers in an address and where
1853 the base and index register classes are different.
1854
1855 ??? This code used to set REGNO_POINTER_FLAG in some cases, but
1856 that seems bogus since it should only be set when we are sure
1857 the register is being used as a pointer. */
1858
54dac99e
RK
1859 {
1860 rtx arg0 = XEXP (x, 0);
1861 rtx arg1 = XEXP (x, 1);
1862 register enum rtx_code code0 = GET_CODE (arg0);
1863 register enum rtx_code code1 = GET_CODE (arg1);
54dac99e
RK
1864
1865 /* Look inside subregs. */
e4600702 1866 if (code0 == SUBREG)
54dac99e 1867 arg0 = SUBREG_REG (arg0), code0 = GET_CODE (arg0);
e4600702 1868 if (code1 == SUBREG)
54dac99e
RK
1869 arg1 = SUBREG_REG (arg1), code1 = GET_CODE (arg1);
1870
e4600702
RK
1871 /* If this machine only allows one register per address, it must
1872 be in the first operand. */
1873
1874 if (MAX_REGS_PER_ADDRESS == 1)
1875 record_address_regs (arg0, class, scale);
1876
1877 /* If index and base registers are the same on this machine, just
1878 record registers in any non-constant operands. We assume here,
1879 as well as in the tests below, that all addresses are in
1880 canonical form. */
1881
1882 else if (INDEX_REG_CLASS == BASE_REG_CLASS)
54dac99e 1883 {
e4600702
RK
1884 record_address_regs (arg0, class, scale);
1885 if (! CONSTANT_P (arg1))
1886 record_address_regs (arg1, class, scale);
54dac99e 1887 }
e4600702
RK
1888
1889 /* If the second operand is a constant integer, it doesn't change
1890 what class the first operand must be. */
1891
1892 else if (code1 == CONST_INT || code1 == CONST_DOUBLE)
1893 record_address_regs (arg0, class, scale);
1894
1895 /* If the second operand is a symbolic constant, the first operand
1896 must be an index register. */
1897
1898 else if (code1 == SYMBOL_REF || code1 == CONST || code1 == LABEL_REF)
1899 record_address_regs (arg0, INDEX_REG_CLASS, scale);
1900
956d6950
JL
1901 /* If both operands are registers but one is already a hard register
1902 of index or base class, give the other the class that the hard
1903 register is not. */
1904
3f9e9508 1905#ifdef REG_OK_FOR_BASE_P
956d6950
JL
1906 else if (code0 == REG && code1 == REG
1907 && REGNO (arg0) < FIRST_PSEUDO_REGISTER
1908 && (REG_OK_FOR_BASE_P (arg0) || REG_OK_FOR_INDEX_P (arg0)))
1909 record_address_regs (arg1,
1910 REG_OK_FOR_BASE_P (arg0)
1911 ? INDEX_REG_CLASS : BASE_REG_CLASS,
1912 scale);
1913 else if (code0 == REG && code1 == REG
1914 && REGNO (arg1) < FIRST_PSEUDO_REGISTER
1915 && (REG_OK_FOR_BASE_P (arg1) || REG_OK_FOR_INDEX_P (arg1)))
1916 record_address_regs (arg0,
1917 REG_OK_FOR_BASE_P (arg1)
1918 ? INDEX_REG_CLASS : BASE_REG_CLASS,
1919 scale);
3f9e9508 1920#endif
956d6950 1921
e9a25f70
JL
1922 /* If one operand is known to be a pointer, it must be the base
1923 with the other operand the index. Likewise if the other operand
1924 is a MULT. */
f22376c7 1925
e9a25f70
JL
1926 else if ((code0 == REG && REGNO_POINTER_FLAG (REGNO (arg0)))
1927 || code1 == MULT)
f22376c7
CI
1928 {
1929 record_address_regs (arg0, BASE_REG_CLASS, scale);
1930 record_address_regs (arg1, INDEX_REG_CLASS, scale);
1931 }
e9a25f70
JL
1932 else if ((code1 == REG && REGNO_POINTER_FLAG (REGNO (arg1)))
1933 || code0 == MULT)
f22376c7
CI
1934 {
1935 record_address_regs (arg0, INDEX_REG_CLASS, scale);
1936 record_address_regs (arg1, BASE_REG_CLASS, scale);
1937 }
1938
e9a25f70 1939 /* Otherwise, count equal chances that each might be a base
e4600702
RK
1940 or index register. This case should be rare. */
1941
e9a25f70 1942 else
54dac99e 1943 {
e4600702
RK
1944 record_address_regs (arg0, BASE_REG_CLASS, scale / 2);
1945 record_address_regs (arg0, INDEX_REG_CLASS, scale / 2);
1946 record_address_regs (arg1, BASE_REG_CLASS, scale / 2);
1947 record_address_regs (arg1, INDEX_REG_CLASS, scale / 2);
54dac99e 1948 }
54dac99e
RK
1949 }
1950 break;
1951
4b983fdc
RH
1952 /* Double the importance of a pseudo register that is incremented
1953 or decremented, since it would take two extra insns
1954 if it ends up in the wrong place. */
1955 case POST_MODIFY:
1956 case PRE_MODIFY:
1957 record_address_regs (XEXP (x, 0), BASE_REG_CLASS, 2 * scale);
1958 if (REG_P (XEXP (XEXP (x, 1), 1)))
1959 record_address_regs (XEXP (XEXP (x, 1), 1),
1960 INDEX_REG_CLASS, 2 * scale);
1961 break;
1962
54dac99e
RK
1963 case POST_INC:
1964 case PRE_INC:
1965 case POST_DEC:
1966 case PRE_DEC:
1967 /* Double the importance of a pseudo register that is incremented
1968 or decremented, since it would take two extra insns
533d0835
RK
1969 if it ends up in the wrong place. If the operand is a pseudo,
1970 show it is being used in an INC_DEC context. */
1971
1972#ifdef FORBIDDEN_INC_DEC_CLASSES
1973 if (GET_CODE (XEXP (x, 0)) == REG
1974 && REGNO (XEXP (x, 0)) >= FIRST_PSEUDO_REGISTER)
1975 in_inc_dec[REGNO (XEXP (x, 0))] = 1;
1976#endif
e4600702
RK
1977
1978 record_address_regs (XEXP (x, 0), class, 2 * scale);
54dac99e
RK
1979 break;
1980
1981 case REG:
1982 {
e4600702
RK
1983 register struct costs *pp = &costs[REGNO (x)];
1984 register int i;
54dac99e 1985
cbd5b9a2 1986 pp->mem_cost += (MEMORY_MOVE_COST (Pmode, class, 1) * scale) / 2;
54dac99e 1987
e4600702 1988 for (i = 0; i < N_REG_CLASSES; i++)
ee59f29b 1989 pp->cost[i] += (may_move_in_cost[i][(int) class] * scale) / 2;
54dac99e
RK
1990 }
1991 break;
1992
1993 default:
1994 {
6f7d635c 1995 register const char *fmt = GET_RTX_FORMAT (code);
54dac99e
RK
1996 register int i;
1997 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1998 if (fmt[i] == 'e')
e4600702 1999 record_address_regs (XEXP (x, i), class, scale);
54dac99e
RK
2000 }
2001 }
2002}
08d95f91
RK
2003\f
2004#ifdef FORBIDDEN_INC_DEC_CLASSES
2005
2006/* Return 1 if REG is valid as an auto-increment memory reference
2007 to an object of MODE. */
2008
1d300e19 2009static int
08d95f91
RK
2010auto_inc_dec_reg_p (reg, mode)
2011 rtx reg;
2012 enum machine_mode mode;
2013{
940da324
JL
2014 if (HAVE_POST_INCREMENT
2015 && memory_address_p (mode, gen_rtx_POST_INC (Pmode, reg)))
08d95f91 2016 return 1;
08d95f91 2017
940da324
JL
2018 if (HAVE_POST_DECREMENT
2019 && memory_address_p (mode, gen_rtx_POST_DEC (Pmode, reg)))
08d95f91 2020 return 1;
08d95f91 2021
940da324
JL
2022 if (HAVE_PRE_INCREMENT
2023 && memory_address_p (mode, gen_rtx_PRE_INC (Pmode, reg)))
08d95f91 2024 return 1;
08d95f91 2025
940da324
JL
2026 if (HAVE_PRE_DECREMENT
2027 && memory_address_p (mode, gen_rtx_PRE_DEC (Pmode, reg)))
08d95f91 2028 return 1;
08d95f91
RK
2029
2030 return 0;
2031}
2032#endif
b1f21e0a 2033\f
da668e9c
MM
2034static short *renumber;
2035static size_t regno_allocated;
2036static unsigned int reg_n_max;
ed396e68 2037
b1f21e0a
MM
2038/* Allocate enough space to hold NUM_REGS registers for the tables used for
2039 reg_scan and flow_analysis that are indexed by the register number. If
39379e67
MM
2040 NEW_P is non zero, initialize all of the registers, otherwise only
2041 initialize the new registers allocated. The same table is kept from
2042 function to function, only reallocating it when we need more room. If
2043 RENUMBER_P is non zero, allocate the reg_renumber array also. */
b1f21e0a
MM
2044
2045void
39379e67 2046allocate_reg_info (num_regs, new_p, renumber_p)
6feacd09 2047 size_t num_regs;
b1f21e0a 2048 int new_p;
39379e67 2049 int renumber_p;
b1f21e0a 2050{
6feacd09
MM
2051 size_t size_info;
2052 size_t size_renumber;
2053 size_t min = (new_p) ? 0 : reg_n_max;
2054 struct reg_info_data *reg_data;
39379e67 2055
b1f21e0a
MM
2056 if (num_regs > regno_allocated)
2057 {
6feacd09
MM
2058 size_t old_allocated = regno_allocated;
2059
b1f21e0a 2060 regno_allocated = num_regs + (num_regs / 20); /* add some slop space */
39379e67
MM
2061 size_renumber = regno_allocated * sizeof (short);
2062
2063 if (!reg_n_info)
2064 {
6feacd09 2065 VARRAY_REG_INIT (reg_n_info, regno_allocated, "reg_n_info");
39379e67 2066 renumber = (short *) xmalloc (size_renumber);
9ffc5a70
JH
2067 reg_pref_buffer = (struct reg_pref *) xmalloc (regno_allocated
2068 * sizeof (struct reg_pref));
39379e67
MM
2069 }
2070
2071 else
2072 {
6feacd09
MM
2073 VARRAY_GROW (reg_n_info, regno_allocated);
2074
2075 if (new_p) /* if we're zapping everything, no need to realloc */
2076 {
2077 free ((char *)renumber);
9ffc5a70 2078 free ((char *)reg_pref);
6feacd09 2079 renumber = (short *) xmalloc (size_renumber);
9ffc5a70
JH
2080 reg_pref_buffer = (struct reg_pref *) xmalloc (regno_allocated
2081 * sizeof (struct reg_pref));
6feacd09
MM
2082 }
2083
2084 else
2085 {
2086 renumber = (short *) xrealloc ((char *)renumber, size_renumber);
9ffc5a70
JH
2087 reg_pref_buffer = (struct reg_pref *) xrealloc ((char *)reg_pref_buffer,
2088 regno_allocated
2089 * sizeof (struct reg_pref));
6feacd09 2090 }
39379e67 2091 }
6feacd09
MM
2092
2093 size_info = (regno_allocated - old_allocated) * sizeof (reg_info)
2094 + sizeof (struct reg_info_data) - sizeof (reg_info);
2095 reg_data = (struct reg_info_data *) xcalloc (size_info, 1);
2096 reg_data->min_index = old_allocated;
2097 reg_data->max_index = regno_allocated - 1;
2098 reg_data->next = reg_info_head;
2099 reg_info_head = reg_data;
b1f21e0a
MM
2100 }
2101
6feacd09 2102 reg_n_max = num_regs;
b1f21e0a
MM
2103 if (min < num_regs)
2104 {
6feacd09
MM
2105 /* Loop through each of the segments allocated for the actual
2106 reg_info pages, and set up the pointers, zero the pages, etc. */
da668e9c
MM
2107 for (reg_data = reg_info_head;
2108 reg_data && reg_data->max_index >= min;
2109 reg_data = reg_data->next)
39379e67 2110 {
6feacd09
MM
2111 size_t min_index = reg_data->min_index;
2112 size_t max_index = reg_data->max_index;
da668e9c
MM
2113 size_t max = MIN (max_index, num_regs);
2114 size_t local_min = min - min_index;
2115 size_t i;
6feacd09 2116
da668e9c
MM
2117 if (reg_data->min_index > num_regs)
2118 continue;
6feacd09 2119
da668e9c
MM
2120 if (min < min_index)
2121 local_min = 0;
2122 if (!reg_data->used_p) /* page just allocated with calloc */
2123 reg_data->used_p = 1; /* no need to zero */
2124 else
961192e1 2125 memset ((char *) &reg_data->data[local_min], 0,
da668e9c
MM
2126 sizeof (reg_info) * (max - min_index - local_min + 1));
2127
2128 for (i = min_index+local_min; i <= max; i++)
2129 {
2130 VARRAY_REG (reg_n_info, i) = &reg_data->data[i-min_index];
2131 REG_BASIC_BLOCK (i) = REG_BLOCK_UNKNOWN;
2132 renumber[i] = -1;
2133 reg_pref_buffer[i].prefclass = (char) NO_REGS;
2134 reg_pref_buffer[i].altclass = (char) NO_REGS;
6feacd09 2135 }
39379e67 2136 }
b1f21e0a
MM
2137 }
2138
6feacd09
MM
2139 /* If {pref,alt}class have already been allocated, update the pointers to
2140 the newly realloced ones. */
9ffc5a70
JH
2141 if (reg_pref)
2142 reg_pref = reg_pref_buffer;
6feacd09 2143
39379e67
MM
2144 if (renumber_p)
2145 reg_renumber = renumber;
2146
73b76448
RK
2147 /* Tell the regset code about the new number of registers */
2148 MAX_REGNO_REG_SET (num_regs, new_p, renumber_p);
b1f21e0a
MM
2149}
2150
ed396e68
BS
2151/* Free up the space allocated by allocate_reg_info. */
2152void
2153free_reg_info ()
2154{
2155 if (reg_n_info)
2156 {
2157 struct reg_info_data *reg_data;
2158 struct reg_info_data *reg_next;
2159
2160 VARRAY_FREE (reg_n_info);
2161 for (reg_data = reg_info_head; reg_data; reg_data = reg_next)
2162 {
2163 reg_next = reg_data->next;
2164 free ((char *)reg_data);
2165 }
2166
9ffc5a70
JH
2167 free (reg_pref_buffer);
2168 reg_pref_buffer = (struct reg_pref *)0;
ed396e68
BS
2169 reg_info_head = (struct reg_info_data *)0;
2170 renumber = (short *)0;
2171 }
2172 regno_allocated = 0;
2173 reg_n_max = 0;
2174}
54dac99e
RK
2175\f
2176/* This is the `regscan' pass of the compiler, run just before cse
2177 and again just before loop.
2178
2179 It finds the first and last use of each pseudo-register
2180 and records them in the vectors regno_first_uid, regno_last_uid
2181 and counts the number of sets in the vector reg_n_sets.
2182
2183 REPEAT is nonzero the second time this is called. */
2184
54dac99e 2185/* Maximum number of parallel sets and clobbers in any insn in this fn.
d22d5f34 2186 Always at least 3, since the combiner could put that many together
54dac99e
RK
2187 and we want this to remain correct for all the remaining passes. */
2188
2189int max_parallel;
2190
54dac99e
RK
2191void
2192reg_scan (f, nregs, repeat)
2193 rtx f;
770ae6cc 2194 unsigned int nregs;
272df862 2195 int repeat ATTRIBUTE_UNUSED;
54dac99e
RK
2196{
2197 register rtx insn;
2198
39379e67 2199 allocate_reg_info (nregs, TRUE, FALSE);
54dac99e
RK
2200 max_parallel = 3;
2201
2202 for (insn = f; insn; insn = NEXT_INSN (insn))
2203 if (GET_CODE (insn) == INSN
2204 || GET_CODE (insn) == CALL_INSN
2205 || GET_CODE (insn) == JUMP_INSN)
2206 {
2207 if (GET_CODE (PATTERN (insn)) == PARALLEL
2208 && XVECLEN (PATTERN (insn), 0) > max_parallel)
2209 max_parallel = XVECLEN (PATTERN (insn), 0);
f903b91f 2210 reg_scan_mark_refs (PATTERN (insn), insn, 0, 0);
01565a55
RK
2211
2212 if (REG_NOTES (insn))
f903b91f
DM
2213 reg_scan_mark_refs (REG_NOTES (insn), insn, 1, 0);
2214 }
2215}
2216
2217/* Update 'regscan' information by looking at the insns
2218 from FIRST to LAST. Some new REGs have been created,
2219 and any REG with number greater than OLD_MAX_REGNO is
2220 such a REG. We only update information for those. */
2221
2222void
770ae6cc 2223reg_scan_update (first, last, old_max_regno)
f903b91f
DM
2224 rtx first;
2225 rtx last;
770ae6cc 2226 unsigned int old_max_regno;
f903b91f
DM
2227{
2228 register rtx insn;
2229
2230 allocate_reg_info (max_reg_num (), FALSE, FALSE);
2231
2232 for (insn = first; insn != last; insn = NEXT_INSN (insn))
2233 if (GET_CODE (insn) == INSN
2234 || GET_CODE (insn) == CALL_INSN
2235 || GET_CODE (insn) == JUMP_INSN)
2236 {
2237 if (GET_CODE (PATTERN (insn)) == PARALLEL
2238 && XVECLEN (PATTERN (insn), 0) > max_parallel)
2239 max_parallel = XVECLEN (PATTERN (insn), 0);
2240 reg_scan_mark_refs (PATTERN (insn), insn, 0, old_max_regno);
2241
2242 if (REG_NOTES (insn))
2243 reg_scan_mark_refs (REG_NOTES (insn), insn, 1, old_max_regno);
54dac99e
RK
2244 }
2245}
2246
1ebecb64 2247/* X is the expression to scan. INSN is the insn it appears in.
f903b91f
DM
2248 NOTE_FLAG is nonzero if X is from INSN's notes rather than its body.
2249 We should only record information for REGs with numbers
2250 greater than or equal to MIN_REGNO. */
1ebecb64 2251
08d95f91 2252static void
f903b91f 2253reg_scan_mark_refs (x, insn, note_flag, min_regno)
54dac99e 2254 rtx x;
be8dcd74 2255 rtx insn;
1ebecb64 2256 int note_flag;
770ae6cc 2257 unsigned int min_regno;
54dac99e 2258{
fa23c636 2259 register enum rtx_code code;
54dac99e 2260 register rtx dest;
be8dcd74 2261 register rtx note;
54dac99e 2262
fa23c636 2263 code = GET_CODE (x);
54dac99e
RK
2264 switch (code)
2265 {
54dac99e 2266 case CONST:
185ebd6c 2267 case CONST_INT:
54dac99e
RK
2268 case CONST_DOUBLE:
2269 case CC0:
2270 case PC:
2271 case SYMBOL_REF:
2272 case LABEL_REF:
2273 case ADDR_VEC:
2274 case ADDR_DIFF_VEC:
2275 return;
2276
2277 case REG:
2278 {
770ae6cc 2279 unsigned int regno = REGNO (x);
54dac99e 2280
f903b91f
DM
2281 if (regno >= min_regno)
2282 {
2283 REGNO_LAST_NOTE_UID (regno) = INSN_UID (insn);
2284 if (!note_flag)
2285 REGNO_LAST_UID (regno) = INSN_UID (insn);
2286 if (REGNO_FIRST_UID (regno) == 0)
2287 REGNO_FIRST_UID (regno) = INSN_UID (insn);
2288 }
54dac99e
RK
2289 }
2290 break;
2291
01565a55 2292 case EXPR_LIST:
7b18c3db 2293 if (XEXP (x, 0))
f903b91f 2294 reg_scan_mark_refs (XEXP (x, 0), insn, note_flag, min_regno);
01565a55 2295 if (XEXP (x, 1))
f903b91f 2296 reg_scan_mark_refs (XEXP (x, 1), insn, note_flag, min_regno);
01565a55
RK
2297 break;
2298
2299 case INSN_LIST:
2300 if (XEXP (x, 1))
f903b91f 2301 reg_scan_mark_refs (XEXP (x, 1), insn, note_flag, min_regno);
01565a55
RK
2302 break;
2303
54dac99e
RK
2304 case SET:
2305 /* Count a set of the destination if it is a register. */
2306 for (dest = SET_DEST (x);
2307 GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART
2308 || GET_CODE (dest) == ZERO_EXTEND;
2309 dest = XEXP (dest, 0))
2310 ;
2311
f903b91f
DM
2312 if (GET_CODE (dest) == REG
2313 && REGNO (dest) >= min_regno)
b1f21e0a 2314 REG_N_SETS (REGNO (dest))++;
54dac99e 2315
be8dcd74
RK
2316 /* If this is setting a pseudo from another pseudo or the sum of a
2317 pseudo and a constant integer and the other pseudo is known to be
2318 a pointer, set the destination to be a pointer as well.
2319
2320 Likewise if it is setting the destination from an address or from a
2321 value equivalent to an address or to the sum of an address and
2322 something else.
2323
2324 But don't do any of this if the pseudo corresponds to a user
2325 variable since it should have already been set as a pointer based
2326 on the type. */
2327
2328 if (GET_CODE (SET_DEST (x)) == REG
2329 && REGNO (SET_DEST (x)) >= FIRST_PSEUDO_REGISTER
f903b91f 2330 && REGNO (SET_DEST (x)) >= min_regno
64d3b4ca
JL
2331 /* If the destination pseudo is set more than once, then other
2332 sets might not be to a pointer value (consider access to a
2333 union in two threads of control in the presense of global
2334 optimizations). So only set REGNO_POINTER_FLAG on the destination
2335 pseudo if this is the only set of that pseudo. */
2336 && REG_N_SETS (REGNO (SET_DEST (x))) == 1
be8dcd74
RK
2337 && ! REG_USERVAR_P (SET_DEST (x))
2338 && ! REGNO_POINTER_FLAG (REGNO (SET_DEST (x)))
2339 && ((GET_CODE (SET_SRC (x)) == REG
2340 && REGNO_POINTER_FLAG (REGNO (SET_SRC (x))))
2341 || ((GET_CODE (SET_SRC (x)) == PLUS
2342 || GET_CODE (SET_SRC (x)) == LO_SUM)
2343 && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
2344 && GET_CODE (XEXP (SET_SRC (x), 0)) == REG
2345 && REGNO_POINTER_FLAG (REGNO (XEXP (SET_SRC (x), 0))))
2346 || GET_CODE (SET_SRC (x)) == CONST
2347 || GET_CODE (SET_SRC (x)) == SYMBOL_REF
2348 || GET_CODE (SET_SRC (x)) == LABEL_REF
2349 || (GET_CODE (SET_SRC (x)) == HIGH
2350 && (GET_CODE (XEXP (SET_SRC (x), 0)) == CONST
2351 || GET_CODE (XEXP (SET_SRC (x), 0)) == SYMBOL_REF
2352 || GET_CODE (XEXP (SET_SRC (x), 0)) == LABEL_REF))
2353 || ((GET_CODE (SET_SRC (x)) == PLUS
2354 || GET_CODE (SET_SRC (x)) == LO_SUM)
2355 && (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST
2356 || GET_CODE (XEXP (SET_SRC (x), 1)) == SYMBOL_REF
2357 || GET_CODE (XEXP (SET_SRC (x), 1)) == LABEL_REF))
2358 || ((note = find_reg_note (insn, REG_EQUAL, 0)) != 0
2359 && (GET_CODE (XEXP (note, 0)) == CONST
2360 || GET_CODE (XEXP (note, 0)) == SYMBOL_REF
2361 || GET_CODE (XEXP (note, 0)) == LABEL_REF))))
2362 REGNO_POINTER_FLAG (REGNO (SET_DEST (x))) = 1;
2363
0f41302f 2364 /* ... fall through ... */
54dac99e
RK
2365
2366 default:
2367 {
6f7d635c 2368 register const char *fmt = GET_RTX_FORMAT (code);
54dac99e
RK
2369 register int i;
2370 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2371 {
2372 if (fmt[i] == 'e')
f903b91f 2373 reg_scan_mark_refs (XEXP (x, i), insn, note_flag, min_regno);
54dac99e
RK
2374 else if (fmt[i] == 'E' && XVEC (x, i) != 0)
2375 {
2376 register int j;
2377 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
f903b91f 2378 reg_scan_mark_refs (XVECEXP (x, i, j), insn, note_flag, min_regno);
54dac99e
RK
2379 }
2380 }
2381 }
2382 }
2383}
2384\f
2385/* Return nonzero if C1 is a subset of C2, i.e., if every register in C1
2386 is also in C2. */
2387
2388int
2389reg_class_subset_p (c1, c2)
2390 register enum reg_class c1;
2391 register enum reg_class c2;
2392{
2393 if (c1 == c2) return 1;
2394
2395 if (c2 == ALL_REGS)
2396 win:
2397 return 1;
2398 GO_IF_HARD_REG_SUBSET (reg_class_contents[(int)c1],
2399 reg_class_contents[(int)c2],
2400 win);
2401 return 0;
2402}
2403
2404/* Return nonzero if there is a register that is in both C1 and C2. */
2405
2406int
2407reg_classes_intersect_p (c1, c2)
2408 register enum reg_class c1;
2409 register enum reg_class c2;
2410{
2411#ifdef HARD_REG_SET
2412 register
2413#endif
2414 HARD_REG_SET c;
2415
2416 if (c1 == c2) return 1;
2417
2418 if (c1 == ALL_REGS || c2 == ALL_REGS)
2419 return 1;
2420
2421 COPY_HARD_REG_SET (c, reg_class_contents[(int) c1]);
2422 AND_HARD_REG_SET (c, reg_class_contents[(int) c2]);
2423
2424 GO_IF_HARD_REG_SUBSET (c, reg_class_contents[(int) NO_REGS], lose);
2425 return 1;
2426
2427 lose:
2428 return 0;
2429}
2430
73b76448
RK
2431/* Release any memory allocated by register sets. */
2432
2433void
2434regset_release_memory ()
2435{
73b76448
RK
2436 bitmap_release_memory ();
2437}
This page took 1.686091 seconds and 5 git commands to generate.