]> gcc.gnu.org Git - gcc.git/blame - gcc/regclass.c
emit-rtl.c (reg_attrs_htab): New static variable.
[gcc.git] / gcc / regclass.c
CommitLineData
54dac99e 1/* Compute register class preferences for pseudo-registers.
517cbe13 2 Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1996
58b23af8 3 1997, 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
54dac99e 4
1322177d 5This file is part of GCC.
54dac99e 6
1322177d
LB
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
9Software Foundation; either version 2, or (at your option) any later
10version.
54dac99e 11
1322177d
LB
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15for more details.
54dac99e
RK
16
17You should have received a copy of the GNU General Public License
1322177d
LB
18along with GCC; see the file COPYING. If not, write to the Free
19Software Foundation, 59 Temple Place - Suite 330, Boston, MA
2002111-1307, USA. */
54dac99e
RK
21
22
23/* This file contains two passes of the compiler: reg_scan and reg_class.
24 It also defines some tables of information about the hardware registers
25 and a function init_reg_sets to initialize the tables. */
26
27#include "config.h"
670ee920 28#include "system.h"
4977bab6
ZW
29#include "coretypes.h"
30#include "tm.h"
cff9f8d5 31#include "hard-reg-set.h"
54dac99e 32#include "rtl.h"
0829d244 33#include "expr.h"
6baf1cc8 34#include "tm_p.h"
54dac99e
RK
35#include "flags.h"
36#include "basic-block.h"
37#include "regs.h"
49ad7cfa 38#include "function.h"
54dac99e
RK
39#include "insn-config.h"
40#include "recog.h"
e4600702
RK
41#include "reload.h"
42#include "real.h"
10f0ad3d 43#include "toplev.h"
d6f4ec51 44#include "output.h"
8b0212ca 45#include "ggc.h"
54dac99e
RK
46
47#ifndef REGISTER_MOVE_COST
e56b4594 48#define REGISTER_MOVE_COST(m, x, y) 2
54dac99e
RK
49#endif
50
13536812
KG
51static void init_reg_sets_1 PARAMS ((void));
52static void init_reg_modes PARAMS ((void));
24deb20a 53
533d0835
RK
54/* If we have auto-increment or auto-decrement and we can have secondary
55 reloads, we are not allowed to use classes requiring secondary
9faa82d8 56 reloads for pseudos auto-incremented since reload can't handle it. */
533d0835
RK
57
58#ifdef AUTO_INC_DEC
dd9f0e8f 59#if defined(SECONDARY_INPUT_RELOAD_CLASS) || defined(SECONDARY_OUTPUT_RELOAD_CLASS)
533d0835
RK
60#define FORBIDDEN_INC_DEC_CLASSES
61#endif
62#endif
54dac99e
RK
63\f
64/* Register tables used by many passes. */
65
66/* Indexed by hard register number, contains 1 for registers
67 that are fixed use (stack pointer, pc, frame pointer, etc.).
68 These are the registers that cannot be used to allocate
252f342a 69 a pseudo reg for general use. */
54dac99e
RK
70
71char fixed_regs[FIRST_PSEUDO_REGISTER];
72
73/* Same info as a HARD_REG_SET. */
74
75HARD_REG_SET fixed_reg_set;
76
77/* Data for initializing the above. */
78
8b60264b 79static const char initial_fixed_regs[] = FIXED_REGISTERS;
54dac99e
RK
80
81/* Indexed by hard register number, contains 1 for registers
82 that are fixed use or are clobbered by function calls.
83 These are the registers that cannot be used to allocate
252f342a
MH
84 a pseudo reg whose life crosses calls unless we are able
85 to save/restore them across the calls. */
54dac99e
RK
86
87char call_used_regs[FIRST_PSEUDO_REGISTER];
88
89/* Same info as a HARD_REG_SET. */
90
91HARD_REG_SET call_used_reg_set;
92
6cad67d2
JL
93/* HARD_REG_SET of registers we want to avoid caller saving. */
94HARD_REG_SET losing_caller_save_reg_set;
95
54dac99e
RK
96/* Data for initializing the above. */
97
8b60264b 98static const char initial_call_used_regs[] = CALL_USED_REGISTERS;
fc1296b7
AM
99
100/* This is much like call_used_regs, except it doesn't have to
101 be a superset of FIXED_REGISTERS. This vector indicates
a6a2274a 102 what is really call clobbered, and is used when defining
fc1296b7
AM
103 regs_invalidated_by_call. */
104
fc1296b7 105#ifdef CALL_REALLY_USED_REGISTERS
d3259baa 106char call_really_used_regs[] = CALL_REALLY_USED_REGISTERS;
fc1296b7 107#endif
a6a2274a 108
54dac99e 109/* Indexed by hard register number, contains 1 for registers that are
252f342a
MH
110 fixed use or call used registers that cannot hold quantities across
111 calls even if we are willing to save and restore them. call fixed
112 registers are a subset of call used registers. */
54dac99e
RK
113
114char call_fixed_regs[FIRST_PSEUDO_REGISTER];
115
116/* The same info as a HARD_REG_SET. */
117
118HARD_REG_SET call_fixed_reg_set;
119
120/* Number of non-fixed registers. */
121
122int n_non_fixed_regs;
123
124/* Indexed by hard register number, contains 1 for registers
125 that are being used for global register decls.
126 These must be exempt from ordinary flow analysis
127 and are also considered fixed. */
128
129char global_regs[FIRST_PSEUDO_REGISTER];
4e2db584
RH
130
131/* Contains 1 for registers that are set or clobbered by calls. */
132/* ??? Ideally, this would be just call_used_regs plus global_regs, but
133 for someone's bright idea to have call_used_regs strictly include
134 fixed_regs. Which leaves us guessing as to the set of fixed_regs
135 that are actually preserved. We know for sure that those associated
136 with the local stack frame are safe, but scant others. */
137
138HARD_REG_SET regs_invalidated_by_call;
139
54dac99e
RK
140/* Table of register numbers in the order in which to try to use them. */
141#ifdef REG_ALLOC_ORDER
142int reg_alloc_order[FIRST_PSEUDO_REGISTER] = REG_ALLOC_ORDER;
f5d8c9f4
BS
143
144/* The inverse of reg_alloc_order. */
145int inv_reg_alloc_order[FIRST_PSEUDO_REGISTER];
54dac99e
RK
146#endif
147
148/* For each reg class, a HARD_REG_SET saying which registers are in it. */
149
2e0e2b76
CH
150HARD_REG_SET reg_class_contents[N_REG_CLASSES];
151
089e575b
RS
152/* The same information, but as an array of unsigned ints. We copy from
153 these unsigned ints to the table above. We do this so the tm.h files
d4845339
RH
154 do not have to be aware of the wordsize for machines with <= 64 regs.
155 Note that we hard-code 32 here, not HOST_BITS_PER_INT. */
2e0e2b76
CH
156
157#define N_REG_INTS \
d4845339 158 ((FIRST_PSEUDO_REGISTER + (32 - 1)) / 32)
2e0e2b76 159
a6a2274a 160static const unsigned int_reg_class_contents[N_REG_CLASSES][N_REG_INTS]
2e0e2b76 161 = REG_CLASS_CONTENTS;
54dac99e
RK
162
163/* For each reg class, number of regs it contains. */
164
770ae6cc 165unsigned int reg_class_size[N_REG_CLASSES];
54dac99e
RK
166
167/* For each reg class, table listing all the containing classes. */
168
169enum reg_class reg_class_superclasses[N_REG_CLASSES][N_REG_CLASSES];
170
171/* For each reg class, table listing all the classes contained in it. */
172
173enum reg_class reg_class_subclasses[N_REG_CLASSES][N_REG_CLASSES];
174
175/* For each pair of reg classes,
176 a largest reg class contained in their union. */
177
178enum reg_class reg_class_subunion[N_REG_CLASSES][N_REG_CLASSES];
179
180/* For each pair of reg classes,
181 the smallest reg class containing their union. */
182
183enum reg_class reg_class_superunion[N_REG_CLASSES][N_REG_CLASSES];
184
fbd40359
ZW
185/* Array containing all of the register names. Unless
186 DEBUG_REGISTER_NAMES is defined, use the copy in print-rtl.c. */
d05c8ee7 187
fbd40359 188#ifdef DEBUG_REGISTER_NAMES
e087aeb2 189const char * reg_names[] = REGISTER_NAMES;
fbd40359 190#endif
d05c8ee7 191
ca4aac00
DE
192/* For each hard register, the widest mode object that it can contain.
193 This will be a MODE_INT mode if the register can hold integers. Otherwise
194 it will be a MODE_FLOAT or a MODE_CC mode, whichever is valid for the
195 register. */
196
197enum machine_mode reg_raw_mode[FIRST_PSEUDO_REGISTER];
198
6df26b8f
JH
199/* 1 if class does contain register of given mode. */
200
201static char contains_reg_of_mode [N_REG_CLASSES] [MAX_MACHINE_MODE];
202
e4600702
RK
203/* Maximum cost of moving from a register in one class to a register in
204 another class. Based on REGISTER_MOVE_COST. */
205
e56b4594 206static int move_cost[MAX_MACHINE_MODE][N_REG_CLASSES][N_REG_CLASSES];
e4600702
RK
207
208/* Similar, but here we don't have to move if the first index is a subset
209 of the second so in that case the cost is zero. */
210
e56b4594 211static int may_move_in_cost[MAX_MACHINE_MODE][N_REG_CLASSES][N_REG_CLASSES];
ee59f29b
JH
212
213/* Similar, but here we don't have to move if the first index is a superset
214 of the second so in that case the cost is zero. */
215
e56b4594 216static int may_move_out_cost[MAX_MACHINE_MODE][N_REG_CLASSES][N_REG_CLASSES];
e4600702 217
533d0835
RK
218#ifdef FORBIDDEN_INC_DEC_CLASSES
219
220/* These are the classes that regs which are auto-incremented or decremented
221 cannot be put in. */
222
223static int forbidden_inc_dec_class[N_REG_CLASSES];
224
40f03658 225/* Indexed by n, is nonzero if (REG n) is used in an auto-inc or auto-dec
533d0835
RK
226 context. */
227
228static char *in_inc_dec;
229
5fcb671c 230#endif /* FORBIDDEN_INC_DEC_CLASSES */
533d0835 231
cff9f8d5
AH
232#ifdef CANNOT_CHANGE_MODE_CLASS
233/* All registers that have been subreged. Indexed by mode, where each
234 entry is a regset of registers. */
235regset_head subregs_of_mode [NUM_MACHINE_MODES];
236#endif
e79f71f7 237
473fe49b
KR
238/* Sample MEM values for use by memory_move_secondary_cost. */
239
e2500fed 240static GTY(()) rtx top_of_stack[MAX_MACHINE_MODE];
473fe49b 241
6feacd09
MM
242/* Linked list of reg_info structures allocated for reg_n_info array.
243 Grouping all of the allocated structures together in one lump
244 means only one call to bzero to clear them, rather than n smaller
245 calls. */
246struct reg_info_data {
247 struct reg_info_data *next; /* next set of reg_info structures */
248 size_t min_index; /* minimum index # */
249 size_t max_index; /* maximum index # */
40f03658 250 char used_p; /* nonzero if this has been used previously */
6feacd09
MM
251 reg_info data[1]; /* beginning of the reg_info data */
252};
253
254static struct reg_info_data *reg_info_head;
255
c07c7c9d 256/* No more global register variables may be declared; true once
dc297297 257 regclass has been initialized. */
6c85df69
AH
258
259static int no_global_reg_vars = 0;
260
6feacd09 261
54dac99e
RK
262/* Function called only once to initialize the above data on reg usage.
263 Once this is done, various switches may override. */
264
265void
266init_reg_sets ()
267{
b3694847 268 int i, j;
54dac99e 269
2e0e2b76
CH
270 /* First copy the register information from the initial int form into
271 the regsets. */
272
273 for (i = 0; i < N_REG_CLASSES; i++)
274 {
275 CLEAR_HARD_REG_SET (reg_class_contents[i]);
276
b85946fc 277 /* Note that we hard-code 32 here, not HOST_BITS_PER_INT. */
2e0e2b76 278 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
b85946fc
RH
279 if (int_reg_class_contents[i][j / 32]
280 & ((unsigned) 1 << (j % 32)))
2e0e2b76
CH
281 SET_HARD_REG_BIT (reg_class_contents[i], j);
282 }
283
4e135bdd
KG
284 memcpy (fixed_regs, initial_fixed_regs, sizeof fixed_regs);
285 memcpy (call_used_regs, initial_call_used_regs, sizeof call_used_regs);
961192e1 286 memset (global_regs, 0, sizeof global_regs);
54dac99e 287
3eae4643 288 /* Do any additional initialization regsets may need. */
910bc42d 289 INIT_ONCE_REG_SET ();
f5d8c9f4
BS
290
291#ifdef REG_ALLOC_ORDER
292 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
293 inv_reg_alloc_order[reg_alloc_order[i]] = i;
294#endif
910bc42d
R
295}
296
297/* After switches have been processed, which perhaps alter
298 `fixed_regs' and `call_used_regs', convert them to HARD_REG_SETs. */
299
300static void
301init_reg_sets_1 ()
302{
b3694847
SS
303 unsigned int i, j;
304 unsigned int /* enum machine_mode */ m;
6836e024 305 char allocatable_regs_of_mode [MAX_MACHINE_MODE];
910bc42d
R
306
307 /* This macro allows the fixed or call-used registers
308 and the register classes to depend on target flags. */
309
310#ifdef CONDITIONAL_REGISTER_USAGE
311 CONDITIONAL_REGISTER_USAGE;
312#endif
313
54dac99e
RK
314 /* Compute number of hard regs in each class. */
315
961192e1 316 memset ((char *) reg_class_size, 0, sizeof reg_class_size);
54dac99e
RK
317 for (i = 0; i < N_REG_CLASSES; i++)
318 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
319 if (TEST_HARD_REG_BIT (reg_class_contents[i], j))
320 reg_class_size[i]++;
321
322 /* Initialize the table of subunions.
323 reg_class_subunion[I][J] gets the largest-numbered reg-class
324 that is contained in the union of classes I and J. */
325
326 for (i = 0; i < N_REG_CLASSES; i++)
327 {
328 for (j = 0; j < N_REG_CLASSES; j++)
329 {
330#ifdef HARD_REG_SET
331 register /* Declare it register if it's a scalar. */
332#endif
333 HARD_REG_SET c;
b3694847 334 int k;
54dac99e
RK
335
336 COPY_HARD_REG_SET (c, reg_class_contents[i]);
337 IOR_HARD_REG_SET (c, reg_class_contents[j]);
338 for (k = 0; k < N_REG_CLASSES; k++)
339 {
340 GO_IF_HARD_REG_SUBSET (reg_class_contents[k], c,
341 subclass1);
342 continue;
343
344 subclass1:
345 /* keep the largest subclass */ /* SPEE 900308 */
346 GO_IF_HARD_REG_SUBSET (reg_class_contents[k],
347 reg_class_contents[(int) reg_class_subunion[i][j]],
348 subclass2);
349 reg_class_subunion[i][j] = (enum reg_class) k;
350 subclass2:
351 ;
352 }
353 }
354 }
355
356 /* Initialize the table of superunions.
357 reg_class_superunion[I][J] gets the smallest-numbered reg-class
358 containing the union of classes I and J. */
359
360 for (i = 0; i < N_REG_CLASSES; i++)
361 {
362 for (j = 0; j < N_REG_CLASSES; j++)
363 {
364#ifdef HARD_REG_SET
365 register /* Declare it register if it's a scalar. */
366#endif
367 HARD_REG_SET c;
b3694847 368 int k;
54dac99e
RK
369
370 COPY_HARD_REG_SET (c, reg_class_contents[i]);
371 IOR_HARD_REG_SET (c, reg_class_contents[j]);
372 for (k = 0; k < N_REG_CLASSES; k++)
373 GO_IF_HARD_REG_SUBSET (c, reg_class_contents[k], superclass);
374
375 superclass:
376 reg_class_superunion[i][j] = (enum reg_class) k;
377 }
378 }
379
380 /* Initialize the tables of subclasses and superclasses of each reg class.
381 First clear the whole table, then add the elements as they are found. */
382
383 for (i = 0; i < N_REG_CLASSES; i++)
384 {
385 for (j = 0; j < N_REG_CLASSES; j++)
386 {
387 reg_class_superclasses[i][j] = LIM_REG_CLASSES;
388 reg_class_subclasses[i][j] = LIM_REG_CLASSES;
389 }
390 }
391
392 for (i = 0; i < N_REG_CLASSES; i++)
393 {
394 if (i == (int) NO_REGS)
395 continue;
396
397 for (j = i + 1; j < N_REG_CLASSES; j++)
398 {
399 enum reg_class *p;
400
401 GO_IF_HARD_REG_SUBSET (reg_class_contents[i], reg_class_contents[j],
402 subclass);
403 continue;
404 subclass:
405 /* Reg class I is a subclass of J.
406 Add J to the table of superclasses of I. */
407 p = &reg_class_superclasses[i][0];
408 while (*p != LIM_REG_CLASSES) p++;
409 *p = (enum reg_class) j;
410 /* Add I to the table of superclasses of J. */
411 p = &reg_class_subclasses[j][0];
412 while (*p != LIM_REG_CLASSES) p++;
413 *p = (enum reg_class) i;
414 }
415 }
e4600702 416
54dac99e
RK
417 /* Initialize "constant" tables. */
418
419 CLEAR_HARD_REG_SET (fixed_reg_set);
420 CLEAR_HARD_REG_SET (call_used_reg_set);
421 CLEAR_HARD_REG_SET (call_fixed_reg_set);
4e2db584 422 CLEAR_HARD_REG_SET (regs_invalidated_by_call);
54dac99e 423
4e135bdd 424 memcpy (call_fixed_regs, fixed_regs, sizeof call_fixed_regs);
54dac99e
RK
425
426 n_non_fixed_regs = 0;
427
428 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
429 {
54dac99e
RK
430 if (fixed_regs[i])
431 SET_HARD_REG_BIT (fixed_reg_set, i);
432 else
433 n_non_fixed_regs++;
434
435 if (call_used_regs[i])
436 SET_HARD_REG_BIT (call_used_reg_set, i);
437 if (call_fixed_regs[i])
438 SET_HARD_REG_BIT (call_fixed_reg_set, i);
6cad67d2
JL
439 if (CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (i)))
440 SET_HARD_REG_BIT (losing_caller_save_reg_set, i);
4e2db584
RH
441
442 /* There are a couple of fixed registers that we know are safe to
443 exclude from being clobbered by calls:
444
445 The frame pointer is always preserved across calls. The arg pointer
446 is if it is fixed. The stack pointer usually is, unless
447 RETURN_POPS_ARGS, in which case an explicit CLOBBER will be present.
448 If we are generating PIC code, the PIC offset table register is
449 preserved across calls, though the target can override that. */
a6a2274a 450
4e2db584
RH
451 if (i == STACK_POINTER_REGNUM || i == FRAME_POINTER_REGNUM)
452 ;
453#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
454 else if (i == HARD_FRAME_POINTER_REGNUM)
455 ;
456#endif
457#if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
458 else if (i == ARG_POINTER_REGNUM && fixed_regs[i])
459 ;
460#endif
461#ifndef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
fc555370 462 else if (i == (unsigned) PIC_OFFSET_TABLE_REGNUM && fixed_regs[i])
4e2db584
RH
463 ;
464#endif
d3259baa 465 else if (0
6ca3c22f 466#ifdef CALL_REALLY_USED_REGISTERS
d3259baa
RH
467 || call_really_used_regs[i]
468#else
469 || call_used_regs[i]
470#endif
471 || global_regs[i])
4e2db584 472 SET_HARD_REG_BIT (regs_invalidated_by_call, i);
54dac99e 473 }
4e2db584 474
6836e024
JH
475 memset (contains_reg_of_mode, 0, sizeof (contains_reg_of_mode));
476 memset (allocatable_regs_of_mode, 0, sizeof (allocatable_regs_of_mode));
dbbbbf3b 477 for (m = 0; m < (unsigned int) MAX_MACHINE_MODE; m++)
6836e024 478 for (i = 0; i < N_REG_CLASSES; i++)
f7043461 479 if ((unsigned) CLASS_MAX_NREGS (i, m) <= reg_class_size[i])
6df26b8f
JH
480 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
481 if (!fixed_regs [j] && TEST_HARD_REG_BIT (reg_class_contents[i], j)
482 && HARD_REGNO_MODE_OK (j, m))
483 {
484 contains_reg_of_mode [i][m] = 1;
485 allocatable_regs_of_mode [m] = 1;
486 break;
487 }
acbce667
KR
488
489 /* Initialize the move cost table. Find every subset of each class
490 and take the maximum cost of moving any subset to any other. */
491
dbbbbf3b 492 for (m = 0; m < (unsigned int) MAX_MACHINE_MODE; m++)
6836e024
JH
493 if (allocatable_regs_of_mode [m])
494 {
495 for (i = 0; i < N_REG_CLASSES; i++)
496 if (contains_reg_of_mode [i][m])
497 for (j = 0; j < N_REG_CLASSES; j++)
498 {
499 int cost;
500 enum reg_class *p1, *p2;
501
502 if (!contains_reg_of_mode [j][m])
503 {
504 move_cost[m][i][j] = 65536;
505 may_move_in_cost[m][i][j] = 65536;
506 may_move_out_cost[m][i][j] = 65536;
507 }
508 else
509 {
26a952a8 510 cost = REGISTER_MOVE_COST (m, i, j);
6836e024
JH
511
512 for (p2 = &reg_class_subclasses[j][0];
513 *p2 != LIM_REG_CLASSES;
514 p2++)
515 if (*p2 != i && contains_reg_of_mode [*p2][m])
516 cost = MAX (cost, move_cost [m][i][*p2]);
517
518 for (p1 = &reg_class_subclasses[i][0];
519 *p1 != LIM_REG_CLASSES;
520 p1++)
521 if (*p1 != j && contains_reg_of_mode [*p1][m])
522 cost = MAX (cost, move_cost [m][*p1][j]);
523
524 move_cost[m][i][j] = cost;
525
526 if (reg_class_subset_p (i, j))
527 may_move_in_cost[m][i][j] = 0;
528 else
529 may_move_in_cost[m][i][j] = cost;
530
531 if (reg_class_subset_p (j, i))
532 may_move_out_cost[m][i][j] = 0;
533 else
534 may_move_out_cost[m][i][j] = cost;
535 }
536 }
1464632b 537 else
6836e024
JH
538 for (j = 0; j < N_REG_CLASSES; j++)
539 {
540 move_cost[m][i][j] = 65536;
541 may_move_in_cost[m][i][j] = 65536;
542 may_move_out_cost[m][i][j] = 65536;
543 }
544 }
c27c5281
DE
545}
546
547/* Compute the table of register modes.
548 These values are used to record death information for individual registers
549 (as opposed to a multi-register mode). */
ca4aac00 550
c27c5281
DE
551static void
552init_reg_modes ()
553{
b3694847 554 int i;
ca4aac00
DE
555
556 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
7f21d440
DE
557 {
558 reg_raw_mode[i] = choose_hard_reg_mode (i, 1);
559
066c2fea 560 /* If we couldn't find a valid mode, just use the previous mode.
7f21d440
DE
561 ??? One situation in which we need to do this is on the mips where
562 HARD_REGNO_NREGS (fpreg, [SD]Fmode) returns 2. Ideally we'd like
563 to use DF mode for the even registers and VOIDmode for the odd
9faa82d8 564 (for the cpu models where the odd ones are inaccessible). */
7f21d440 565 if (reg_raw_mode[i] == VOIDmode)
066c2fea 566 reg_raw_mode[i] = i == 0 ? word_mode : reg_raw_mode[i-1];
7f21d440 567 }
ca4aac00
DE
568}
569
c27c5281
DE
570/* Finish initializing the register sets and
571 initialize the register modes. */
572
573void
574init_regs ()
575{
576 /* This finishes what was started by init_reg_sets, but couldn't be done
577 until after register usage was specified. */
b93a436e 578 init_reg_sets_1 ();
c27c5281
DE
579
580 init_reg_modes ();
6cde4876
JL
581}
582
583/* Initialize some fake stack-frame MEM references for use in
584 memory_move_secondary_cost. */
473fe49b 585
6cde4876
JL
586void
587init_fake_stack_mems ()
588{
473fe49b
KR
589#ifdef HAVE_SECONDARY_RELOADS
590 {
473fe49b 591 int i;
d067e2aa 592
473fe49b 593 for (i = 0; i < MAX_MACHINE_MODE; i++)
9ec36da5 594 top_of_stack[i] = gen_rtx_MEM (i, stack_pointer_rtx);
473fe49b
KR
595 }
596#endif
c27c5281
DE
597}
598
cbd5b9a2 599#ifdef HAVE_SECONDARY_RELOADS
473fe49b 600
cbd5b9a2
KR
601/* Compute extra cost of moving registers to/from memory due to reloads.
602 Only needed if secondary reloads are required for memory moves. */
473fe49b 603
cbd5b9a2
KR
604int
605memory_move_secondary_cost (mode, class, in)
606 enum machine_mode mode;
607 enum reg_class class;
608 int in;
609{
610 enum reg_class altclass;
611 int partial_cost = 0;
cbd5b9a2 612 /* We need a memory reference to feed to SECONDARY... macros. */
dc297297 613 /* mem may be unused even if the SECONDARY_ macros are defined. */
272df862
KG
614 rtx mem ATTRIBUTE_UNUSED = top_of_stack[(int) mode];
615
cbd5b9a2
KR
616
617 if (in)
473fe49b 618 {
321c0828 619#ifdef SECONDARY_INPUT_RELOAD_CLASS
473fe49b 620 altclass = SECONDARY_INPUT_RELOAD_CLASS (class, mode, mem);
321c0828 621#else
473fe49b 622 altclass = NO_REGS;
321c0828 623#endif
473fe49b 624 }
cbd5b9a2 625 else
473fe49b 626 {
321c0828 627#ifdef SECONDARY_OUTPUT_RELOAD_CLASS
473fe49b 628 altclass = SECONDARY_OUTPUT_RELOAD_CLASS (class, mode, mem);
321c0828 629#else
473fe49b 630 altclass = NO_REGS;
321c0828 631#endif
473fe49b
KR
632 }
633
cbd5b9a2
KR
634 if (altclass == NO_REGS)
635 return 0;
636
637 if (in)
e56b4594 638 partial_cost = REGISTER_MOVE_COST (mode, altclass, class);
cbd5b9a2 639 else
e56b4594 640 partial_cost = REGISTER_MOVE_COST (mode, class, altclass);
cbd5b9a2
KR
641
642 if (class == altclass)
643 /* This isn't simply a copy-to-temporary situation. Can't guess
644 what it is, so MEMORY_MOVE_COST really ought not to be calling
645 here in that case.
646
647 I'm tempted to put in an abort here, but returning this will
648 probably only give poor estimates, which is what we would've
649 had before this code anyways. */
650 return partial_cost;
651
652 /* Check if the secondary reload register will also need a
653 secondary reload. */
654 return memory_move_secondary_cost (mode, altclass, in) + partial_cost;
655}
656#endif
657
ca4aac00
DE
658/* Return a machine mode that is legitimate for hard reg REGNO and large
659 enough to save nregs. If we can't find one, return VOIDmode. */
660
661enum machine_mode
662choose_hard_reg_mode (regno, nregs)
770ae6cc
RK
663 unsigned int regno ATTRIBUTE_UNUSED;
664 unsigned int nregs;
ca4aac00 665{
dbbbbf3b 666 unsigned int /* enum machine_mode */ m;
ca4aac00
DE
667 enum machine_mode found_mode = VOIDmode, mode;
668
669 /* We first look for the largest integer mode that can be validly
670 held in REGNO. If none, we look for the largest floating-point mode.
671 If we still didn't find a valid mode, try CCmode. */
672
673 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
674 mode != VOIDmode;
675 mode = GET_MODE_WIDER_MODE (mode))
f7043461 676 if ((unsigned) HARD_REGNO_NREGS (regno, mode) == nregs
ca4aac00
DE
677 && HARD_REGNO_MODE_OK (regno, mode))
678 found_mode = mode;
679
680 if (found_mode != VOIDmode)
681 return found_mode;
682
683 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
684 mode != VOIDmode;
685 mode = GET_MODE_WIDER_MODE (mode))
f7043461 686 if ((unsigned) HARD_REGNO_NREGS (regno, mode) == nregs
ca4aac00
DE
687 && HARD_REGNO_MODE_OK (regno, mode))
688 found_mode = mode;
689
690 if (found_mode != VOIDmode)
691 return found_mode;
692
78b583fe
AH
693 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
694 mode != VOIDmode;
695 mode = GET_MODE_WIDER_MODE (mode))
f7043461 696 if ((unsigned) HARD_REGNO_NREGS (regno, mode) == nregs
78b583fe
AH
697 && HARD_REGNO_MODE_OK (regno, mode))
698 found_mode = mode;
699
700 if (found_mode != VOIDmode)
701 return found_mode;
702
703 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
704 mode != VOIDmode;
705 mode = GET_MODE_WIDER_MODE (mode))
f7043461 706 if ((unsigned) HARD_REGNO_NREGS (regno, mode) == nregs
78b583fe
AH
707 && HARD_REGNO_MODE_OK (regno, mode))
708 found_mode = mode;
709
710 if (found_mode != VOIDmode)
711 return found_mode;
712
0548a9df 713 /* Iterate over all of the CCmodes. */
dbbbbf3b
JDA
714 for (m = (unsigned int) CCmode; m < (unsigned int) NUM_MACHINE_MODES; ++m)
715 {
716 mode = (enum machine_mode) m;
f7043461 717 if ((unsigned) HARD_REGNO_NREGS (regno, mode) == nregs
dbbbbf3b
JDA
718 && HARD_REGNO_MODE_OK (regno, mode))
719 return mode;
720 }
ca4aac00
DE
721
722 /* We can't find a mode valid for this register. */
723 return VOIDmode;
54dac99e
RK
724}
725
726/* Specify the usage characteristics of the register named NAME.
727 It should be a fixed register if FIXED and a
728 call-used register if CALL_USED. */
729
730void
731fix_register (name, fixed, call_used)
ec0ce6e2 732 const char *name;
54dac99e
RK
733 int fixed, call_used;
734{
735 int i;
736
737 /* Decode the name and update the primary form of
738 the register info. */
739
e5c90c23
TW
740 if ((i = decode_reg_name (name)) >= 0)
741 {
cb2fdc84
GRK
742 if ((i == STACK_POINTER_REGNUM
743#ifdef HARD_FRAME_POINTER_REGNUM
744 || i == HARD_FRAME_POINTER_REGNUM
745#else
746 || i == FRAME_POINTER_REGNUM
747#endif
748 )
749 && (fixed == 0 || call_used == 0))
750 {
6f7d635c 751 static const char * const what_option[2][2] = {
7f7f8214
KG
752 { "call-saved", "call-used" },
753 { "no-such-option", "fixed" }};
a6a2274a
KH
754
755 error ("can't use '%s' as a %s register", name,
cb2fdc84
GRK
756 what_option[fixed][call_used]);
757 }
758 else
759 {
760 fixed_regs[i] = fixed;
761 call_used_regs[i] = call_used;
ec523c2f 762#ifdef CALL_REALLY_USED_REGISTERS
fc1296b7
AM
763 if (fixed == 0)
764 call_really_used_regs[i] = call_used;
d3259baa 765#endif
cb2fdc84 766 }
e5c90c23
TW
767 }
768 else
54dac99e
RK
769 {
770 warning ("unknown register name: %s", name);
54dac99e
RK
771 }
772}
614f68e2
RK
773
774/* Mark register number I as global. */
775
776void
777globalize_reg (i)
778 int i;
779{
c07c7c9d 780 if (fixed_regs[i] == 0 && no_global_reg_vars)
6c85df69
AH
781 error ("global register variable follows a function definition");
782
614f68e2
RK
783 if (global_regs[i])
784 {
785 warning ("register used for two global register variables");
786 return;
787 }
788
789 if (call_used_regs[i] && ! fixed_regs[i])
790 warning ("call-clobbered register used for global register variable");
791
792 global_regs[i] = 1;
793
794 /* If already fixed, nothing else to do. */
795 if (fixed_regs[i])
796 return;
797
798 fixed_regs[i] = call_used_regs[i] = call_fixed_regs[i] = 1;
799 n_non_fixed_regs--;
800
801 SET_HARD_REG_BIT (fixed_reg_set, i);
802 SET_HARD_REG_BIT (call_used_reg_set, i);
803 SET_HARD_REG_BIT (call_fixed_reg_set, i);
caecc099 804 SET_HARD_REG_BIT (regs_invalidated_by_call, i);
614f68e2 805}
54dac99e
RK
806\f
807/* Now the data and code for the `regclass' pass, which happens
808 just before local-alloc. */
809
e4600702
RK
810/* The `costs' struct records the cost of using a hard register of each class
811 and of using memory for each pseudo. We use this data to set up
812 register class preferences. */
54dac99e 813
e4600702 814struct costs
54dac99e 815{
e4600702
RK
816 int cost[N_REG_CLASSES];
817 int mem_cost;
54dac99e
RK
818};
819
d55d8fc7 820/* Structure used to record preferences of given pseudo. */
9ffc5a70
JH
821struct reg_pref
822{
823 /* (enum reg_class) prefclass is the preferred class. */
824 char prefclass;
825
826 /* altclass is a register class that we should use for allocating
827 pseudo if no register in the preferred class is available.
828 If no register in this class is available, memory is preferred.
829
830 It might appear to be more general to have a bitmask of classes here,
831 but since it is recommended that there be a class corresponding to the
832 union of most major pair of classes, that generality is not required. */
833 char altclass;
834};
835
e4600702
RK
836/* Record the cost of each class for each pseudo. */
837
838static struct costs *costs;
839
61719ba7
BS
840/* Initialized once, and used to initialize cost values for each insn. */
841
842static struct costs init_cost;
843
d55d8fc7 844/* Record preferences of each pseudo.
54dac99e
RK
845 This is available after `regclass' is run. */
846
9ffc5a70 847static struct reg_pref *reg_pref;
54d23420 848
dc297297 849/* Allocated buffers for reg_pref. */
54dac99e 850
9ffc5a70 851static struct reg_pref *reg_pref_buffer;
6feacd09 852
9401afe3 853/* Frequency of executions of current insn. */
54d23420 854
9401afe3 855static int frequency;
54d23420 856
13536812
KG
857static rtx scan_one_insn PARAMS ((rtx, int));
858static void record_operand_costs PARAMS ((rtx, struct costs *, struct reg_pref *));
859static void dump_regclass PARAMS ((FILE *));
860static void record_reg_classes PARAMS ((int, int, rtx *, enum machine_mode *,
e79f71f7 861 const char **, rtx,
f741a71c 862 struct costs *, struct reg_pref *));
a6a2274a 863static int copy_cost PARAMS ((rtx, enum machine_mode,
08d95f91 864 enum reg_class, int));
13536812 865static void record_address_regs PARAMS ((rtx, enum reg_class, int));
1d300e19 866#ifdef FORBIDDEN_INC_DEC_CLASSES
13536812 867static int auto_inc_dec_reg_p PARAMS ((rtx, enum machine_mode));
1d300e19 868#endif
770ae6cc 869static void reg_scan_mark_refs PARAMS ((rtx, rtx, int, unsigned int));
54dac99e
RK
870
871/* Return the reg_class in which pseudo reg number REGNO is best allocated.
872 This function is sometimes called before the info has been computed.
873 When that happens, just return GENERAL_REGS, which is innocuous. */
874
875enum reg_class
876reg_preferred_class (regno)
877 int regno;
878{
9ffc5a70 879 if (reg_pref == 0)
54dac99e 880 return GENERAL_REGS;
9ffc5a70 881 return (enum reg_class) reg_pref[regno].prefclass;
54dac99e
RK
882}
883
e4600702
RK
884enum reg_class
885reg_alternate_class (regno)
b729186a 886 int regno;
54dac99e 887{
9ffc5a70 888 if (reg_pref == 0)
e4600702
RK
889 return ALL_REGS;
890
9ffc5a70 891 return (enum reg_class) reg_pref[regno].altclass;
54dac99e
RK
892}
893
61719ba7 894/* Initialize some global data for this pass. */
54dac99e
RK
895
896void
897regclass_init ()
898{
61719ba7
BS
899 int i;
900
901 init_cost.mem_cost = 10000;
902 for (i = 0; i < N_REG_CLASSES; i++)
903 init_cost.cost[i] = 10000;
904
905 /* This prevents dump_flow_info from losing if called
906 before regclass is run. */
9ffc5a70 907 reg_pref = NULL;
6c85df69 908
dc297297 909 /* No more global register variables may be declared. */
6c85df69 910 no_global_reg_vars = 1;
54dac99e 911}
246fd41f
JH
912\f
913/* Dump register costs. */
915b80ed 914static void
246fd41f
JH
915dump_regclass (dump)
916 FILE *dump;
917{
918 static const char *const reg_class_names[] = REG_CLASS_NAMES;
919 int i;
920 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
921 {
dbbbbf3b 922 int /* enum reg_class */ class;
246fd41f
JH
923 if (REG_N_REFS (i))
924 {
f741a71c 925 fprintf (dump, " Register %i costs:", i);
dbbbbf3b
JDA
926 for (class = 0; class < (int) N_REG_CLASSES; class++)
927 if (contains_reg_of_mode [(enum reg_class) class][PSEUDO_REGNO_MODE (i)]
6df26b8f 928#ifdef FORBIDDEN_INC_DEC_CLASSES
dbbbbf3b
JDA
929 && (!in_inc_dec[i]
930 || !forbidden_inc_dec_class[(enum reg_class) class])
6df26b8f 931#endif
cff9f8d5
AH
932#ifdef CANNOT_CHANGE_MODE_CLASS
933 && ! invalid_mode_change_p (i, (enum reg_class) class,
934 PSEUDO_REGNO_MODE (i))
6df26b8f
JH
935#endif
936 )
dbbbbf3b
JDA
937 fprintf (dump, " %s:%i", reg_class_names[class],
938 costs[i].cost[(enum reg_class) class]);
f741a71c 939 fprintf (dump, " MEM:%i\n", costs[i].mem_cost);
246fd41f
JH
940 }
941 }
942}
f741a71c
JH
943\f
944
945/* Calculate the costs of insn operands. */
946
947static void
948record_operand_costs (insn, op_costs, reg_pref)
949 rtx insn;
950 struct costs *op_costs;
951 struct reg_pref *reg_pref;
952{
953 const char *constraints[MAX_RECOG_OPERANDS];
954 enum machine_mode modes[MAX_RECOG_OPERANDS];
f741a71c
JH
955 int i;
956
957 for (i = 0; i < recog_data.n_operands; i++)
958 {
959 constraints[i] = recog_data.constraints[i];
960 modes[i] = recog_data.operand_mode[i];
961 }
f741a71c
JH
962
963 /* If we get here, we are set up to record the costs of all the
964 operands for this insn. Start by initializing the costs.
965 Then handle any address registers. Finally record the desired
966 classes for any pseudos, doing it twice if some pair of
967 operands are commutative. */
a6a2274a 968
f741a71c
JH
969 for (i = 0; i < recog_data.n_operands; i++)
970 {
971 op_costs[i] = init_cost;
972
973 if (GET_CODE (recog_data.operand[i]) == SUBREG)
cff9f8d5 974 recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
f741a71c
JH
975
976 if (GET_CODE (recog_data.operand[i]) == MEM)
977 record_address_regs (XEXP (recog_data.operand[i], 0),
3dcc68a4 978 MODE_BASE_REG_CLASS (modes[i]), frequency * 2);
ccfc6cc8 979 else if (constraints[i][0] == 'p'
97488870 980 || EXTRA_ADDRESS_CONSTRAINT (constraints[i][0], constraints[i]))
f741a71c 981 record_address_regs (recog_data.operand[i],
3dcc68a4 982 MODE_BASE_REG_CLASS (modes[i]), frequency * 2);
f741a71c
JH
983 }
984
985 /* Check for commutative in a separate loop so everything will
986 have been initialized. We must do this even if one operand
987 is a constant--see addsi3 in m68k.md. */
988
989 for (i = 0; i < (int) recog_data.n_operands - 1; i++)
990 if (constraints[i][0] == '%')
991 {
992 const char *xconstraints[MAX_RECOG_OPERANDS];
993 int j;
246fd41f 994
f741a71c
JH
995 /* Handle commutative operands by swapping the constraints.
996 We assume the modes are the same. */
997
998 for (j = 0; j < recog_data.n_operands; j++)
999 xconstraints[j] = constraints[j];
1000
1001 xconstraints[i] = constraints[i+1];
1002 xconstraints[i+1] = constraints[i];
1003 record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
a6a2274a 1004 recog_data.operand, modes,
f741a71c
JH
1005 xconstraints, insn, op_costs, reg_pref);
1006 }
1007
1008 record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
a6a2274a 1009 recog_data.operand, modes,
f741a71c
JH
1010 constraints, insn, op_costs, reg_pref);
1011}
54dac99e 1012\f
61719ba7
BS
1013/* Subroutine of regclass, processes one insn INSN. Scan it and record each
1014 time it would save code to put a certain register in a certain class.
1015 PASS, when nonzero, inhibits some optimizations which need only be done
1016 once.
1017 Return the last insn processed, so that the scan can be continued from
1018 there. */
1019
1020static rtx
1021scan_one_insn (insn, pass)
1022 rtx insn;
1023 int pass;
1024{
1025 enum rtx_code code = GET_CODE (insn);
1026 enum rtx_code pat_code;
0eadeb15 1027 rtx set, note;
61719ba7 1028 int i, j;
f741a71c 1029 struct costs op_costs[MAX_RECOG_OPERANDS];
61719ba7 1030
61719ba7
BS
1031 if (GET_RTX_CLASS (code) != 'i')
1032 return insn;
1033
1034 pat_code = GET_CODE (PATTERN (insn));
1035 if (pat_code == USE
1036 || pat_code == CLOBBER
1037 || pat_code == ASM_INPUT
1038 || pat_code == ADDR_VEC
1039 || pat_code == ADDR_DIFF_VEC)
1040 return insn;
1041
0eadeb15
BS
1042 set = single_set (insn);
1043 extract_insn (insn);
1044
0eadeb15
BS
1045 /* If this insn loads a parameter from its stack slot, then
1046 it represents a savings, rather than a cost, if the
1047 parameter is stored in memory. Record this fact. */
61719ba7 1048
0eadeb15
BS
1049 if (set != 0 && GET_CODE (SET_DEST (set)) == REG
1050 && GET_CODE (SET_SRC (set)) == MEM
1051 && (note = find_reg_note (insn, REG_EQUIV,
1052 NULL_RTX)) != 0
1053 && GET_CODE (XEXP (note, 0)) == MEM)
1054 {
1055 costs[REGNO (SET_DEST (set))].mem_cost
1056 -= (MEMORY_MOVE_COST (GET_MODE (SET_DEST (set)),
1057 GENERAL_REGS, 1)
9401afe3 1058 * frequency);
0eadeb15 1059 record_address_regs (XEXP (SET_SRC (set), 0),
3dcc68a4 1060 MODE_BASE_REG_CLASS (VOIDmode), frequency * 2);
0eadeb15
BS
1061 return insn;
1062 }
61719ba7 1063
0eadeb15
BS
1064 /* Improve handling of two-address insns such as
1065 (set X (ashift CONST Y)) where CONST must be made to
1066 match X. Change it into two insns: (set X CONST)
1067 (set X (ashift X Y)). If we left this for reloading, it
1068 would probably get three insns because X and Y might go
1069 in the same place. This prevents X and Y from receiving
1070 the same hard reg.
1071
1072 We can only do this if the modes of operands 0 and 1
1073 (which might not be the same) are tieable and we only need
1074 do this during our first pass. */
1075
1076 if (pass == 0 && optimize
1ccbefce
RH
1077 && recog_data.n_operands >= 3
1078 && recog_data.constraints[1][0] == '0'
1079 && recog_data.constraints[1][1] == 0
1080 && CONSTANT_P (recog_data.operand[1])
1081 && ! rtx_equal_p (recog_data.operand[0], recog_data.operand[1])
1082 && ! rtx_equal_p (recog_data.operand[0], recog_data.operand[2])
1083 && GET_CODE (recog_data.operand[0]) == REG
1084 && MODES_TIEABLE_P (GET_MODE (recog_data.operand[0]),
1085 recog_data.operand_mode[1]))
0eadeb15
BS
1086 {
1087 rtx previnsn = prev_real_insn (insn);
1088 rtx dest
1ccbefce
RH
1089 = gen_lowpart (recog_data.operand_mode[1],
1090 recog_data.operand[0]);
0eadeb15 1091 rtx newinsn
1ccbefce 1092 = emit_insn_before (gen_move_insn (dest, recog_data.operand[1]), insn);
61719ba7 1093
0eadeb15
BS
1094 /* If this insn was the start of a basic block,
1095 include the new insn in that block.
1096 We need not check for code_label here;
1097 while a basic block can start with a code_label,
1098 INSN could not be at the beginning of that block. */
1099 if (previnsn == 0 || GET_CODE (previnsn) == JUMP_INSN)
61719ba7 1100 {
e0082a72
ZD
1101 basic_block b;
1102 FOR_EACH_BB (b)
1103 if (insn == b->head)
1104 b->head = newinsn;
61719ba7
BS
1105 }
1106
0eadeb15 1107 /* This makes one more setting of new insns's dest. */
1ccbefce 1108 REG_N_SETS (REGNO (recog_data.operand[0]))++;
d3c7d45e 1109 REG_N_REFS (REGNO (recog_data.operand[0]))++;
9401afe3 1110 REG_FREQ (REGNO (recog_data.operand[0])) += frequency;
61719ba7 1111
1ccbefce 1112 *recog_data.operand_loc[1] = recog_data.operand[0];
d3c7d45e 1113 REG_N_REFS (REGNO (recog_data.operand[0]))++;
9401afe3 1114 REG_FREQ (REGNO (recog_data.operand[0])) += frequency;
1ccbefce
RH
1115 for (i = recog_data.n_dups - 1; i >= 0; i--)
1116 if (recog_data.dup_num[i] == 1)
d3c7d45e
AO
1117 {
1118 *recog_data.dup_loc[i] = recog_data.operand[0];
1119 REG_N_REFS (REGNO (recog_data.operand[0]))++;
9401afe3 1120 REG_FREQ (REGNO (recog_data.operand[0])) += frequency;
d3c7d45e 1121 }
61719ba7 1122
0eadeb15 1123 return PREV_INSN (newinsn);
61719ba7
BS
1124 }
1125
4963c995 1126 record_operand_costs (insn, op_costs, reg_pref);
61719ba7
BS
1127
1128 /* Now add the cost for each operand to the total costs for
1129 its register. */
1130
1ccbefce
RH
1131 for (i = 0; i < recog_data.n_operands; i++)
1132 if (GET_CODE (recog_data.operand[i]) == REG
1133 && REGNO (recog_data.operand[i]) >= FIRST_PSEUDO_REGISTER)
61719ba7 1134 {
1ccbefce 1135 int regno = REGNO (recog_data.operand[i]);
61719ba7
BS
1136 struct costs *p = &costs[regno], *q = &op_costs[i];
1137
9401afe3 1138 p->mem_cost += q->mem_cost * frequency;
61719ba7 1139 for (j = 0; j < N_REG_CLASSES; j++)
9401afe3 1140 p->cost[j] += q->cost[j] * frequency;
61719ba7
BS
1141 }
1142
1143 return insn;
1144}
1145
54dac99e
RK
1146/* This is a pass of the compiler that scans all instructions
1147 and calculates the preferred class for each pseudo-register.
1148 This information can be accessed later by calling `reg_preferred_class'.
1149 This pass comes just before local register allocation. */
1150
1151void
246fd41f 1152regclass (f, nregs, dump)
54dac99e
RK
1153 rtx f;
1154 int nregs;
246fd41f 1155 FILE *dump;
54dac99e 1156{
b3694847
SS
1157 rtx insn;
1158 int i;
e4600702 1159 int pass;
54dac99e
RK
1160
1161 init_recog ();
1162
56a65848 1163 costs = (struct costs *) xmalloc (nregs * sizeof (struct costs));
533d0835
RK
1164
1165#ifdef FORBIDDEN_INC_DEC_CLASSES
1166
4da896b2 1167 in_inc_dec = (char *) xmalloc (nregs);
533d0835
RK
1168
1169 /* Initialize information about which register classes can be used for
1170 pseudos that are auto-incremented or auto-decremented. It would
1171 seem better to put this in init_reg_sets, but we need to be able
1172 to allocate rtx, which we can't do that early. */
1173
1174 for (i = 0; i < N_REG_CLASSES; i++)
1175 {
38a448ca 1176 rtx r = gen_rtx_REG (VOIDmode, 0);
533d0835 1177 enum machine_mode m;
b3694847 1178 int j;
533d0835
RK
1179
1180 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
1181 if (TEST_HARD_REG_BIT (reg_class_contents[i], j))
1182 {
1183 REGNO (r) = j;
1184
1185 for (m = VOIDmode; (int) m < (int) MAX_MACHINE_MODE;
808043ed 1186 m = (enum machine_mode) ((int) m + 1))
533d0835
RK
1187 if (HARD_REGNO_MODE_OK (j, m))
1188 {
1189 PUT_MODE (r, m);
08d95f91
RK
1190
1191 /* If a register is not directly suitable for an
1192 auto-increment or decrement addressing mode and
1193 requires secondary reloads, disallow its class from
1194 being used in such addresses. */
1195
1196 if ((0
041d7180 1197#ifdef SECONDARY_RELOAD_CLASS
3dcc68a4 1198 || (SECONDARY_RELOAD_CLASS (MODE_BASE_REG_CLASS (VOIDmode), m, r)
041d7180
JL
1199 != NO_REGS)
1200#else
533d0835 1201#ifdef SECONDARY_INPUT_RELOAD_CLASS
3dcc68a4 1202 || (SECONDARY_INPUT_RELOAD_CLASS (MODE_BASE_REG_CLASS (VOIDmode), m, r)
08d95f91 1203 != NO_REGS)
533d0835
RK
1204#endif
1205#ifdef SECONDARY_OUTPUT_RELOAD_CLASS
3dcc68a4 1206 || (SECONDARY_OUTPUT_RELOAD_CLASS (MODE_BASE_REG_CLASS (VOIDmode), m, r)
08d95f91 1207 != NO_REGS)
041d7180 1208#endif
533d0835 1209#endif
08d95f91
RK
1210 )
1211 && ! auto_inc_dec_reg_p (r, m))
533d0835
RK
1212 forbidden_inc_dec_class[i] = 1;
1213 }
1214 }
1215 }
1216#endif /* FORBIDDEN_INC_DEC_CLASSES */
1217
e4600702
RK
1218 /* Normally we scan the insns once and determine the best class to use for
1219 each register. However, if -fexpensive_optimizations are on, we do so
1220 twice, the second time using the tentative best classes to guide the
1221 selection. */
54dac99e 1222
e4600702
RK
1223 for (pass = 0; pass <= flag_expensive_optimizations; pass++)
1224 {
e0082a72 1225 basic_block bb;
f741a71c
JH
1226
1227 if (dump)
a6a2274a 1228 fprintf (dump, "\n\nPass %i\n\n",pass);
e4600702 1229 /* Zero out our accumulation of the cost of each class for each reg. */
54dac99e 1230
961192e1 1231 memset ((char *) costs, 0, nregs * sizeof (struct costs));
54dac99e 1232
533d0835 1233#ifdef FORBIDDEN_INC_DEC_CLASSES
961192e1 1234 memset (in_inc_dec, 0, nregs);
533d0835
RK
1235#endif
1236
e4600702
RK
1237 /* Scan the instructions and record each time it would
1238 save code to put a certain register in a certain class. */
1239
1f01879e 1240 if (!optimize)
54dac99e 1241 {
a08b2604 1242 frequency = REG_FREQ_MAX;
1f01879e
JH
1243 for (insn = f; insn; insn = NEXT_INSN (insn))
1244 insn = scan_one_insn (insn, pass);
54dac99e 1245 }
1f01879e 1246 else
e0082a72 1247 FOR_EACH_BB (bb)
1f01879e 1248 {
1f01879e 1249 /* Show that an insn inside a loop is likely to be executed three
9b15c17f
RH
1250 times more than insns outside a loop. This is much more
1251 aggressive than the assumptions made elsewhere and is being
1252 tried as an experiment. */
a08b2604 1253 frequency = REG_FREQ_FROM_BB (bb);
1f01879e
JH
1254 for (insn = bb->head; ; insn = NEXT_INSN (insn))
1255 {
1256 insn = scan_one_insn (insn, pass);
1257 if (insn == bb->end)
1258 break;
1259 }
1260 }
a6a2274a 1261
e4600702
RK
1262 /* Now for each register look at how desirable each class is
1263 and find which class is preferred. Store that in
9ffc5a70 1264 `prefclass'. Record in `altclass' the largest register
e4600702 1265 class any of whose registers is better than memory. */
a6a2274a 1266
e4600702 1267 if (pass == 0)
9ffc5a70 1268 reg_pref = reg_pref_buffer;
54dac99e 1269
f741a71c 1270 if (dump)
a6a2274a 1271 {
f741a71c 1272 dump_regclass (dump);
4963c995 1273 fprintf (dump,"\n");
f741a71c 1274 }
e4600702 1275 for (i = FIRST_PSEUDO_REGISTER; i < nregs; i++)
54dac99e 1276 {
b3694847 1277 int best_cost = (1 << (HOST_BITS_PER_INT - 2)) - 1;
e4600702
RK
1278 enum reg_class best = ALL_REGS, alt = NO_REGS;
1279 /* This is an enum reg_class, but we call it an int
1280 to save lots of casts. */
b3694847
SS
1281 int class;
1282 struct costs *p = &costs[i];
e4600702 1283
64615302
JH
1284 /* In non-optimizing compilation REG_N_REFS is not initialized
1285 yet. */
ed8d2920 1286 if (optimize && !REG_N_REFS (i) && !REG_N_SETS (i))
f741a71c
JH
1287 continue;
1288
e4600702 1289 for (class = (int) ALL_REGS - 1; class > 0; class--)
54dac99e 1290 {
533d0835 1291 /* Ignore classes that are too small for this operand or
4fe9b91c 1292 invalid for an operand that was auto-incremented. */
6df26b8f 1293 if (!contains_reg_of_mode [class][PSEUDO_REGNO_MODE (i)]
533d0835
RK
1294#ifdef FORBIDDEN_INC_DEC_CLASSES
1295 || (in_inc_dec[i] && forbidden_inc_dec_class[class])
e79f71f7 1296#endif
cff9f8d5
AH
1297#ifdef CANNOT_CHANGE_MODE_CLASS
1298 || invalid_mode_change_p (i, (enum reg_class) class,
1299 PSEUDO_REGNO_MODE (i))
533d0835
RK
1300#endif
1301 )
e4600702
RK
1302 ;
1303 else if (p->cost[class] < best_cost)
1304 {
1305 best_cost = p->cost[class];
1306 best = (enum reg_class) class;
1307 }
1308 else if (p->cost[class] == best_cost)
8e2e89f7 1309 best = reg_class_subunion[(int) best][class];
54dac99e 1310 }
54dac99e 1311
e4600702
RK
1312 /* Record the alternate register class; i.e., a class for which
1313 every register in it is better than using memory. If adding a
1314 class would make a smaller class (i.e., no union of just those
1315 classes exists), skip that class. The major unions of classes
1316 should be provided as a register class. Don't do this if we
1317 will be doing it again later. */
1318
f741a71c 1319 if ((pass == 1 || dump) || ! flag_expensive_optimizations)
e4600702
RK
1320 for (class = 0; class < N_REG_CLASSES; class++)
1321 if (p->cost[class] < p->mem_cost
77edb222 1322 && (reg_class_size[(int) reg_class_subunion[(int) alt][class]]
533d0835
RK
1323 > reg_class_size[(int) alt])
1324#ifdef FORBIDDEN_INC_DEC_CLASSES
1325 && ! (in_inc_dec[i] && forbidden_inc_dec_class[class])
e79f71f7 1326#endif
cff9f8d5
AH
1327#ifdef CANNOT_CHANGE_MODE_CLASS
1328 && ! invalid_mode_change_p (i, (enum reg_class) class,
1329 PSEUDO_REGNO_MODE (i))
533d0835
RK
1330#endif
1331 )
e4600702 1332 alt = reg_class_subunion[(int) alt][class];
a6a2274a 1333
e4600702
RK
1334 /* If we don't add any classes, nothing to try. */
1335 if (alt == best)
995d54dd 1336 alt = NO_REGS;
e4600702 1337
a6a2274a 1338 if (dump
f741a71c
JH
1339 && (reg_pref[i].prefclass != (int) best
1340 || reg_pref[i].altclass != (int) alt))
1341 {
1342 static const char *const reg_class_names[] = REG_CLASS_NAMES;
4963c995 1343 fprintf (dump, " Register %i", i);
f741a71c
JH
1344 if (alt == ALL_REGS || best == ALL_REGS)
1345 fprintf (dump, " pref %s\n", reg_class_names[(int) best]);
1346 else if (alt == NO_REGS)
1347 fprintf (dump, " pref %s or none\n", reg_class_names[(int) best]);
1348 else
1349 fprintf (dump, " pref %s, else %s\n",
1350 reg_class_names[(int) best],
1351 reg_class_names[(int) alt]);
1352 }
1353
e4600702 1354 /* We cast to (int) because (char) hits bugs in some compilers. */
9ffc5a70
JH
1355 reg_pref[i].prefclass = (int) best;
1356 reg_pref[i].altclass = (int) alt;
e4600702 1357 }
54dac99e 1358 }
56a65848 1359
4da896b2
MM
1360#ifdef FORBIDDEN_INC_DEC_CLASSES
1361 free (in_inc_dec);
1362#endif
56a65848 1363 free (costs);
54dac99e
RK
1364}
1365\f
e4600702
RK
1366/* Record the cost of using memory or registers of various classes for
1367 the operands in INSN.
54dac99e 1368
e4600702 1369 N_ALTS is the number of alternatives.
54dac99e 1370
e4600702
RK
1371 N_OPS is the number of operands.
1372
1373 OPS is an array of the operands.
1374
1375 MODES are the modes of the operands, in case any are VOIDmode.
1376
1377 CONSTRAINTS are the constraints to use for the operands. This array
1378 is modified by this procedure.
1379
1380 This procedure works alternative by alternative. For each alternative
1381 we assume that we will be able to allocate all pseudos to their ideal
1382 register class and calculate the cost of using that alternative. Then
a6a2274a 1383 we compute for each operand that is a pseudo-register, the cost of
e4600702
RK
1384 having the pseudo allocated to each register class and using it in that
1385 alternative. To this cost is added the cost of the alternative.
1386
1387 The cost of each class for this insn is its lowest cost among all the
1388 alternatives. */
1389
1390static void
e79f71f7 1391record_reg_classes (n_alts, n_ops, ops, modes,
f741a71c 1392 constraints, insn, op_costs, reg_pref)
e4600702
RK
1393 int n_alts;
1394 int n_ops;
1395 rtx *ops;
1396 enum machine_mode *modes;
9b3142b3 1397 const char **constraints;
e4600702 1398 rtx insn;
f741a71c
JH
1399 struct costs *op_costs;
1400 struct reg_pref *reg_pref;
54dac99e 1401{
e4600702 1402 int alt;
e4600702 1403 int i, j;
ec2d92af 1404 rtx set;
e4600702 1405
e4600702
RK
1406 /* Process each alternative, each time minimizing an operand's cost with
1407 the cost for each operand in that alternative. */
54dac99e 1408
e4600702 1409 for (alt = 0; alt < n_alts; alt++)
54dac99e 1410 {
e4600702
RK
1411 struct costs this_op_costs[MAX_RECOG_OPERANDS];
1412 int alt_fail = 0;
1413 int alt_cost = 0;
1414 enum reg_class classes[MAX_RECOG_OPERANDS];
da2c0219 1415 int allows_mem[MAX_RECOG_OPERANDS];
e4600702 1416 int class;
54dac99e 1417
e4600702
RK
1418 for (i = 0; i < n_ops; i++)
1419 {
9b3142b3 1420 const char *p = constraints[i];
e4600702
RK
1421 rtx op = ops[i];
1422 enum machine_mode mode = modes[i];
94e6f783 1423 int allows_addr = 0;
e4600702 1424 int win = 0;
e51712db 1425 unsigned char c;
54dac99e 1426
7405d9a1
DE
1427 /* Initially show we know nothing about the register class. */
1428 classes[i] = NO_REGS;
da2c0219 1429 allows_mem[i] = 0;
7405d9a1 1430
a6a2274a 1431 /* If this operand has no constraints at all, we can conclude
e4600702 1432 nothing about it since anything is valid. */
54dac99e 1433
e4600702
RK
1434 if (*p == 0)
1435 {
1436 if (GET_CODE (op) == REG && REGNO (op) >= FIRST_PSEUDO_REGISTER)
961192e1 1437 memset ((char *) &this_op_costs[i], 0, sizeof this_op_costs[i]);
54dac99e 1438
e4600702
RK
1439 continue;
1440 }
54dac99e 1441
7405d9a1
DE
1442 /* If this alternative is only relevant when this operand
1443 matches a previous operand, we do different things depending
1444 on whether this operand is a pseudo-reg or not. We must process
1445 any modifiers for the operand before we can make this test. */
1446
8c368ee2 1447 while (*p == '%' || *p == '=' || *p == '+' || *p == '&')
0eadeb15 1448 p++;
8c368ee2 1449
e4600702
RK
1450 if (p[0] >= '0' && p[0] <= '0' + i && (p[1] == ',' || p[1] == 0))
1451 {
da2c0219
RK
1452 /* Copy class and whether memory is allowed from the matching
1453 alternative. Then perform any needed cost computations
1454 and/or adjustments. */
e4600702
RK
1455 j = p[0] - '0';
1456 classes[i] = classes[j];
da2c0219 1457 allows_mem[i] = allows_mem[j];
e4600702
RK
1458
1459 if (GET_CODE (op) != REG || REGNO (op) < FIRST_PSEUDO_REGISTER)
1460 {
1461 /* If this matches the other operand, we have no added
dc903608 1462 cost and we win. */
e4600702 1463 if (rtx_equal_p (ops[j], op))
dc903608 1464 win = 1;
e4600702 1465
77e67eac
RK
1466 /* If we can put the other operand into a register, add to
1467 the cost of this alternative the cost to copy this
1468 operand to the register used for the other operand. */
e4600702 1469
dc903608 1470 else if (classes[j] != NO_REGS)
77e67eac 1471 alt_cost += copy_cost (op, mode, classes[j], 1), win = 1;
e4600702 1472 }
07d8ca2d
RS
1473 else if (GET_CODE (ops[j]) != REG
1474 || REGNO (ops[j]) < FIRST_PSEUDO_REGISTER)
1475 {
1476 /* This op is a pseudo but the one it matches is not. */
a6a2274a 1477
07d8ca2d
RS
1478 /* If we can't put the other operand into a register, this
1479 alternative can't be used. */
1480
1481 if (classes[j] == NO_REGS)
1482 alt_fail = 1;
e4600702 1483
07d8ca2d
RS
1484 /* Otherwise, add to the cost of this alternative the cost
1485 to copy the other operand to the register used for this
1486 operand. */
1487
1488 else
1489 alt_cost += copy_cost (ops[j], mode, classes[j], 1);
1490 }
e4600702
RK
1491 else
1492 {
da2c0219
RK
1493 /* The costs of this operand are not the same as the other
1494 operand since move costs are not symmetric. Moreover,
1495 if we cannot tie them, this alternative needs to do a
1496 copy, which is one instruction. */
1497
1498 struct costs *pp = &this_op_costs[i];
1499
1500 for (class = 0; class < N_REG_CLASSES; class++)
1501 pp->cost[class]
d5e2075d 1502 = ((recog_data.operand_type[i] != OP_OUT
e56b4594 1503 ? may_move_in_cost[mode][class][(int) classes[i]]
d5e2075d
JH
1504 : 0)
1505 + (recog_data.operand_type[i] != OP_IN
e56b4594 1506 ? may_move_out_cost[mode][(int) classes[i]][class]
d5e2075d 1507 : 0));
a6a2274a 1508
da2c0219
RK
1509 /* If the alternative actually allows memory, make things
1510 a bit cheaper since we won't need an extra insn to
1511 load it. */
1512
1513 pp->mem_cost
d5e2075d
JH
1514 = ((recog_data.operand_type[i] != OP_IN
1515 ? MEMORY_MOVE_COST (mode, classes[i], 0)
1516 : 0)
1517 + (recog_data.operand_type[i] != OP_OUT
1518 ? MEMORY_MOVE_COST (mode, classes[i], 1)
1519 : 0) - allows_mem[i]);
da2c0219
RK
1520
1521 /* If we have assigned a class to this register in our
1522 first pass, add a cost to this alternative corresponding
1523 to what we would add if this register were not in the
1524 appropriate class. */
1525
9ffc5a70 1526 if (reg_pref)
da2c0219 1527 alt_cost
e56b4594
AO
1528 += (may_move_in_cost[mode]
1529 [(unsigned char) reg_pref[REGNO (op)].prefclass]
da2c0219 1530 [(int) classes[i]]);
e4600702 1531
37747c82
RK
1532 if (REGNO (ops[i]) != REGNO (ops[j])
1533 && ! find_reg_note (insn, REG_DEAD, op))
1534 alt_cost += 2;
e4600702 1535
347099d6 1536 /* This is in place of ordinary cost computation
1ddb342a
RK
1537 for this operand, so skip to the end of the
1538 alternative (should be just one character). */
1539 while (*p && *p++ != ',')
1540 ;
1541
1542 constraints[i] = p;
347099d6
RS
1543 continue;
1544 }
e4600702
RK
1545 }
1546
1547 /* Scan all the constraint letters. See if the operand matches
1548 any of the constraints. Collect the valid register classes
1549 and see if this operand accepts memory. */
1550
97488870
R
1551 while ((c = *p))
1552 {
1553 switch (c)
1554 {
1555 case ',':
1556 break;
1557 case '*':
1558 /* Ignore the next letter for this pass. */
1559 c = *++p;
1560 break;
94e6f783 1561
97488870
R
1562 case '?':
1563 alt_cost += 2;
1564 case '!': case '#': case '&':
1565 case '0': case '1': case '2': case '3': case '4':
1566 case '5': case '6': case '7': case '8': case '9':
1567 break;
e4600702 1568
97488870
R
1569 case 'p':
1570 allows_addr = 1;
1571 win = address_operand (op, GET_MODE (op));
1572 /* We know this operand is an address, so we want it to be
1573 allocated to a register that can be the base of an
1574 address, ie BASE_REG_CLASS. */
1575 classes[i]
1576 = reg_class_subunion[(int) classes[i]]
1577 [(int) MODE_BASE_REG_CLASS (VOIDmode)];
1578 break;
e4600702 1579
97488870
R
1580 case 'm': case 'o': case 'V':
1581 /* It doesn't seem worth distinguishing between offsettable
1582 and non-offsettable addresses here. */
1583 allows_mem[i] = 1;
1584 if (GET_CODE (op) == MEM)
1585 win = 1;
1586 break;
e4600702 1587
97488870
R
1588 case '<':
1589 if (GET_CODE (op) == MEM
1590 && (GET_CODE (XEXP (op, 0)) == PRE_DEC
1591 || GET_CODE (XEXP (op, 0)) == POST_DEC))
1592 win = 1;
1593 break;
e4600702 1594
97488870
R
1595 case '>':
1596 if (GET_CODE (op) == MEM
1597 && (GET_CODE (XEXP (op, 0)) == PRE_INC
1598 || GET_CODE (XEXP (op, 0)) == POST_INC))
1599 win = 1;
1600 break;
e4600702 1601
97488870
R
1602 case 'E':
1603 case 'F':
1604 if (GET_CODE (op) == CONST_DOUBLE
1605 || (GET_CODE (op) == CONST_VECTOR
1606 && (GET_MODE_CLASS (GET_MODE (op))
1607 == MODE_VECTOR_FLOAT)))
1608 win = 1;
1609 break;
e4600702 1610
97488870
R
1611 case 'G':
1612 case 'H':
1613 if (GET_CODE (op) == CONST_DOUBLE
1614 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, c, p))
1615 win = 1;
e4600702 1616 break;
97488870
R
1617
1618 case 's':
1619 if (GET_CODE (op) == CONST_INT
1620 || (GET_CODE (op) == CONST_DOUBLE
1621 && GET_MODE (op) == VOIDmode))
1622 break;
1623 case 'i':
1624 if (CONSTANT_P (op)
e4600702 1625#ifdef LEGITIMATE_PIC_OPERAND_P
97488870 1626 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
e4600702 1627#endif
97488870
R
1628 )
1629 win = 1;
1630 break;
e4600702 1631
97488870
R
1632 case 'n':
1633 if (GET_CODE (op) == CONST_INT
1634 || (GET_CODE (op) == CONST_DOUBLE
1635 && GET_MODE (op) == VOIDmode))
1636 win = 1;
1637 break;
e4600702 1638
97488870
R
1639 case 'I':
1640 case 'J':
1641 case 'K':
1642 case 'L':
1643 case 'M':
1644 case 'N':
1645 case 'O':
1646 case 'P':
1647 if (GET_CODE (op) == CONST_INT
1648 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), c, p))
1649 win = 1;
1650 break;
e4600702 1651
97488870
R
1652 case 'X':
1653 win = 1;
1654 break;
54dac99e 1655
97488870
R
1656 case 'g':
1657 if (GET_CODE (op) == MEM
1658 || (CONSTANT_P (op)
e4600702 1659#ifdef LEGITIMATE_PIC_OPERAND_P
97488870 1660 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
54dac99e 1661#endif
97488870
R
1662 ))
1663 win = 1;
1664 allows_mem[i] = 1;
1665 case 'r':
c2cba7a9 1666 classes[i]
97488870
R
1667 = reg_class_subunion[(int) classes[i]][(int) GENERAL_REGS];
1668 break;
ccfc6cc8 1669
97488870
R
1670 default:
1671 if (REG_CLASS_FROM_CONSTRAINT (c, p) != NO_REGS)
ccfc6cc8
UW
1672 classes[i]
1673 = reg_class_subunion[(int) classes[i]]
97488870
R
1674 [(int) REG_CLASS_FROM_CONSTRAINT (c, p)];
1675#ifdef EXTRA_CONSTRAINT_STR
1676 else if (EXTRA_CONSTRAINT_STR (op, c, p))
1677 win = 1;
1678
1679 if (EXTRA_MEMORY_CONSTRAINT (c, p))
1680 {
1681 /* Every MEM can be reloaded to fit. */
1682 allows_mem[i] = 1;
1683 if (GET_CODE (op) == MEM)
1684 win = 1;
1685 }
1686 if (EXTRA_ADDRESS_CONSTRAINT (c, p))
1687 {
1688 /* Every address can be reloaded to fit. */
1689 allows_addr = 1;
1690 if (address_operand (op, GET_MODE (op)))
1691 win = 1;
1692 /* We know this operand is an address, so we want it to
1693 be allocated to a register that can be the base of an
1694 address, ie BASE_REG_CLASS. */
1695 classes[i]
1696 = reg_class_subunion[(int) classes[i]]
1697 [(int) MODE_BASE_REG_CLASS (VOIDmode)];
1698 }
c2cba7a9 1699#endif
97488870
R
1700 break;
1701 }
1702 p += CONSTRAINT_LEN (c, p);
1703 if (c == ',')
c2cba7a9 1704 break;
97488870 1705 }
e4600702
RK
1706
1707 constraints[i] = p;
1708
1709 /* How we account for this operand now depends on whether it is a
1710 pseudo register or not. If it is, we first check if any
1711 register classes are valid. If not, we ignore this alternative,
1712 since we want to assume that all pseudos get allocated for
1713 register preferencing. If some register class is valid, compute
1714 the costs of moving the pseudo into that class. */
1715
1716 if (GET_CODE (op) == REG && REGNO (op) >= FIRST_PSEUDO_REGISTER)
4db18574 1717 {
e4600702 1718 if (classes[i] == NO_REGS)
94e6f783 1719 {
e79f71f7
GK
1720 /* We must always fail if the operand is a REG, but
1721 we did not find a suitable class.
a6a2274a 1722
e79f71f7
GK
1723 Otherwise we may perform an uninitialized read
1724 from this_op_costs after the `continue' statement
1725 below. */
1726 alt_fail = 1;
94e6f783 1727 }
e4600702
RK
1728 else
1729 {
1730 struct costs *pp = &this_op_costs[i];
1731
1732 for (class = 0; class < N_REG_CLASSES; class++)
14a774a9 1733 pp->cost[class]
d5e2075d 1734 = ((recog_data.operand_type[i] != OP_OUT
e56b4594 1735 ? may_move_in_cost[mode][class][(int) classes[i]]
d5e2075d
JH
1736 : 0)
1737 + (recog_data.operand_type[i] != OP_IN
e56b4594 1738 ? may_move_out_cost[mode][(int) classes[i]][class]
d5e2075d 1739 : 0));
e4600702
RK
1740
1741 /* If the alternative actually allows memory, make things
1742 a bit cheaper since we won't need an extra insn to
1743 load it. */
1744
14a774a9 1745 pp->mem_cost
d5e2075d
JH
1746 = ((recog_data.operand_type[i] != OP_IN
1747 ? MEMORY_MOVE_COST (mode, classes[i], 0)
1748 : 0)
1749 + (recog_data.operand_type[i] != OP_OUT
1750 ? MEMORY_MOVE_COST (mode, classes[i], 1)
1751 : 0) - allows_mem[i]);
e4600702
RK
1752
1753 /* If we have assigned a class to this register in our
1754 first pass, add a cost to this alternative corresponding
1755 to what we would add if this register were not in the
1756 appropriate class. */
1757
9ffc5a70 1758 if (reg_pref)
e4600702 1759 alt_cost
e56b4594
AO
1760 += (may_move_in_cost[mode]
1761 [(unsigned char) reg_pref[REGNO (op)].prefclass]
14a774a9 1762 [(int) classes[i]]);
e4600702 1763 }
4db18574 1764 }
54dac99e 1765
e4600702
RK
1766 /* Otherwise, if this alternative wins, either because we
1767 have already determined that or if we have a hard register of
1768 the proper class, there is no cost for this alternative. */
54dac99e 1769
e4600702
RK
1770 else if (win
1771 || (GET_CODE (op) == REG
6f654776 1772 && reg_fits_class_p (op, classes[i], 0, GET_MODE (op))))
e4600702 1773 ;
54dac99e 1774
e4600702
RK
1775 /* If registers are valid, the cost of this alternative includes
1776 copying the object to and/or from a register. */
54dac99e 1777
e4600702
RK
1778 else if (classes[i] != NO_REGS)
1779 {
1ccbefce 1780 if (recog_data.operand_type[i] != OP_OUT)
e4600702 1781 alt_cost += copy_cost (op, mode, classes[i], 1);
54dac99e 1782
1ccbefce 1783 if (recog_data.operand_type[i] != OP_IN)
e4600702
RK
1784 alt_cost += copy_cost (op, mode, classes[i], 0);
1785 }
54dac99e 1786
e4600702
RK
1787 /* The only other way this alternative can be used is if this is a
1788 constant that could be placed into memory. */
1789
da2c0219 1790 else if (CONSTANT_P (op) && (allows_addr || allows_mem[i]))
cbd5b9a2 1791 alt_cost += MEMORY_MOVE_COST (mode, classes[i], 1);
e4600702
RK
1792 else
1793 alt_fail = 1;
1794 }
1795
1796 if (alt_fail)
1797 continue;
1798
1799 /* Finally, update the costs with the information we've calculated
1800 about this alternative. */
1801
1802 for (i = 0; i < n_ops; i++)
1803 if (GET_CODE (ops[i]) == REG
1804 && REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER)
54dac99e 1805 {
e4600702 1806 struct costs *pp = &op_costs[i], *qq = &this_op_costs[i];
1ccbefce 1807 int scale = 1 + (recog_data.operand_type[i] == OP_INOUT);
54dac99e 1808
e4600702
RK
1809 pp->mem_cost = MIN (pp->mem_cost,
1810 (qq->mem_cost + alt_cost) * scale);
54dac99e 1811
e4600702
RK
1812 for (class = 0; class < N_REG_CLASSES; class++)
1813 pp->cost[class] = MIN (pp->cost[class],
1814 (qq->cost[class] + alt_cost) * scale);
1815 }
1816 }
ec2d92af
RK
1817
1818 /* If this insn is a single set copying operand 1 to operand 0
accef103
JL
1819 and one operand is a pseudo with the other a hard reg or a pseudo
1820 that prefers a register that is in its own register class then
1821 we may want to adjust the cost of that register class to -1.
a6a2274a 1822
accef103
JL
1823 Avoid the adjustment if the source does not die to avoid stressing of
1824 register allocator by preferrencing two coliding registers into single
1825 class.
1826
1827 Also avoid the adjustment if a copy between registers of the class
1828 is expensive (ten times the cost of a default copy is considered
1829 arbitrarily expensive). This avoids losing when the preferred class
1830 is very expensive as the source of a copy instruction. */
ec2d92af
RK
1831
1832 if ((set = single_set (insn)) != 0
1833 && ops[0] == SET_DEST (set) && ops[1] == SET_SRC (set)
0dc0641b
JH
1834 && GET_CODE (ops[0]) == REG && GET_CODE (ops[1]) == REG
1835 && find_regno_note (insn, REG_DEAD, REGNO (ops[1])))
ec2d92af
RK
1836 for (i = 0; i <= 1; i++)
1837 if (REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER)
1838 {
770ae6cc 1839 unsigned int regno = REGNO (ops[!i]);
ec2d92af
RK
1840 enum machine_mode mode = GET_MODE (ops[!i]);
1841 int class;
770ae6cc 1842 unsigned int nr;
ec2d92af 1843
accef103
JL
1844 if (regno >= FIRST_PSEUDO_REGISTER && reg_pref != 0)
1845 {
1846 enum reg_class pref = reg_pref[regno].prefclass;
1847
1848 if ((reg_class_size[(unsigned char) pref]
f7043461 1849 == (unsigned) CLASS_MAX_NREGS (pref, mode))
e56b4594 1850 && REGISTER_MOVE_COST (mode, pref, pref) < 10 * 2)
accef103
JL
1851 op_costs[i].cost[(unsigned char) pref] = -1;
1852 }
ec2d92af
RK
1853 else if (regno < FIRST_PSEUDO_REGISTER)
1854 for (class = 0; class < N_REG_CLASSES; class++)
1855 if (TEST_HARD_REG_BIT (reg_class_contents[class], regno)
f7043461 1856 && reg_class_size[class] == (unsigned) CLASS_MAX_NREGS (class, mode))
4841ba4b
RK
1857 {
1858 if (reg_class_size[class] == 1)
1859 op_costs[i].cost[class] = -1;
1860 else
1861 {
f7043461 1862 for (nr = 0; nr < (unsigned) HARD_REGNO_NREGS (regno, mode); nr++)
4841ba4b 1863 {
770ae6cc
RK
1864 if (! TEST_HARD_REG_BIT (reg_class_contents[class],
1865 regno + nr))
4841ba4b
RK
1866 break;
1867 }
1868
f7043461 1869 if (nr == (unsigned) HARD_REGNO_NREGS (regno,mode))
4841ba4b
RK
1870 op_costs[i].cost[class] = -1;
1871 }
1872 }
ec2d92af 1873 }
54dac99e 1874}
e4600702 1875\f
40f03658 1876/* Compute the cost of loading X into (if TO_P is nonzero) or from (if
e4600702
RK
1877 TO_P is zero) a register of class CLASS in mode MODE.
1878
1879 X must not be a pseudo. */
1880
1881static int
1882copy_cost (x, mode, class, to_p)
1883 rtx x;
d0af450d 1884 enum machine_mode mode ATTRIBUTE_UNUSED;
e4600702 1885 enum reg_class class;
d0af450d 1886 int to_p ATTRIBUTE_UNUSED;
e4600702 1887{
29a82058 1888#ifdef HAVE_SECONDARY_RELOADS
e4600702 1889 enum reg_class secondary_class = NO_REGS;
29a82058 1890#endif
e4600702
RK
1891
1892 /* If X is a SCRATCH, there is actually nothing to move since we are
1893 assuming optimal allocation. */
1894
1895 if (GET_CODE (x) == SCRATCH)
1896 return 0;
1897
1898 /* Get the class we will actually use for a reload. */
1899 class = PREFERRED_RELOAD_CLASS (x, class);
1900
1901#ifdef HAVE_SECONDARY_RELOADS
a6a2274a 1902 /* If we need a secondary reload (we assume here that we are using
e4600702
RK
1903 the secondary reload as an intermediate, not a scratch register), the
1904 cost is that to load the input into the intermediate register, then
1905 to copy them. We use a special value of TO_P to avoid recursion. */
1906
1907#ifdef SECONDARY_INPUT_RELOAD_CLASS
1908 if (to_p == 1)
1909 secondary_class = SECONDARY_INPUT_RELOAD_CLASS (class, mode, x);
1910#endif
1911
dd9f0e8f 1912#ifdef SECONDARY_OUTPUT_RELOAD_CLASS
e4600702
RK
1913 if (! to_p)
1914 secondary_class = SECONDARY_OUTPUT_RELOAD_CLASS (class, mode, x);
1915#endif
1916
1917 if (secondary_class != NO_REGS)
e56b4594 1918 return (move_cost[mode][(int) secondary_class][(int) class]
e4600702 1919 + copy_cost (x, mode, secondary_class, 2));
dd9f0e8f 1920#endif /* HAVE_SECONDARY_RELOADS */
e4600702
RK
1921
1922 /* For memory, use the memory move cost, for (hard) registers, use the
1923 cost to move between the register classes, and use 2 for everything
1924 else (constants). */
1925
1926 if (GET_CODE (x) == MEM || class == NO_REGS)
cbd5b9a2 1927 return MEMORY_MOVE_COST (mode, class, to_p);
54dac99e 1928
e4600702 1929 else if (GET_CODE (x) == REG)
e56b4594 1930 return move_cost[mode][(int) REGNO_REG_CLASS (REGNO (x))][(int) class];
e4600702
RK
1931
1932 else
1933 /* If this is a constant, we may eventually want to call rtx_cost here. */
b437f1a7 1934 return COSTS_N_INSNS (1);
e4600702
RK
1935}
1936\f
54dac99e
RK
1937/* Record the pseudo registers we must reload into hard registers
1938 in a subexpression of a memory address, X.
e4600702
RK
1939
1940 CLASS is the class that the register needs to be in and is either
1941 BASE_REG_CLASS or INDEX_REG_CLASS.
1942
1943 SCALE is twice the amount to multiply the cost by (it is twice so we
1944 can represent half-cost adjustments). */
54dac99e 1945
197d6480 1946static void
e4600702 1947record_address_regs (x, class, scale)
54dac99e 1948 rtx x;
e4600702
RK
1949 enum reg_class class;
1950 int scale;
54dac99e 1951{
b3694847 1952 enum rtx_code code = GET_CODE (x);
54dac99e
RK
1953
1954 switch (code)
1955 {
1956 case CONST_INT:
1957 case CONST:
1958 case CC0:
1959 case PC:
1960 case SYMBOL_REF:
1961 case LABEL_REF:
1962 return;
1963
1964 case PLUS:
1965 /* When we have an address that is a sum,
1966 we must determine whether registers are "base" or "index" regs.
1967 If there is a sum of two registers, we must choose one to be
3502dc9c
JDA
1968 the "base". Luckily, we can use the REG_POINTER to make a good
1969 choice most of the time. We only need to do this on machines
1970 that can have two registers in an address and where the base
1971 and index register classes are different.
e4600702
RK
1972
1973 ??? This code used to set REGNO_POINTER_FLAG in some cases, but
1974 that seems bogus since it should only be set when we are sure
1975 the register is being used as a pointer. */
1976
54dac99e
RK
1977 {
1978 rtx arg0 = XEXP (x, 0);
1979 rtx arg1 = XEXP (x, 1);
b3694847
SS
1980 enum rtx_code code0 = GET_CODE (arg0);
1981 enum rtx_code code1 = GET_CODE (arg1);
54dac99e
RK
1982
1983 /* Look inside subregs. */
e4600702 1984 if (code0 == SUBREG)
54dac99e 1985 arg0 = SUBREG_REG (arg0), code0 = GET_CODE (arg0);
e4600702 1986 if (code1 == SUBREG)
54dac99e
RK
1987 arg1 = SUBREG_REG (arg1), code1 = GET_CODE (arg1);
1988
e4600702
RK
1989 /* If this machine only allows one register per address, it must
1990 be in the first operand. */
1991
1992 if (MAX_REGS_PER_ADDRESS == 1)
1993 record_address_regs (arg0, class, scale);
1994
1995 /* If index and base registers are the same on this machine, just
1996 record registers in any non-constant operands. We assume here,
a6a2274a 1997 as well as in the tests below, that all addresses are in
e4600702
RK
1998 canonical form. */
1999
3dcc68a4 2000 else if (INDEX_REG_CLASS == MODE_BASE_REG_CLASS (VOIDmode))
54dac99e 2001 {
e4600702
RK
2002 record_address_regs (arg0, class, scale);
2003 if (! CONSTANT_P (arg1))
2004 record_address_regs (arg1, class, scale);
54dac99e 2005 }
e4600702
RK
2006
2007 /* If the second operand is a constant integer, it doesn't change
2008 what class the first operand must be. */
2009
2010 else if (code1 == CONST_INT || code1 == CONST_DOUBLE)
2011 record_address_regs (arg0, class, scale);
2012
2013 /* If the second operand is a symbolic constant, the first operand
2014 must be an index register. */
2015
2016 else if (code1 == SYMBOL_REF || code1 == CONST || code1 == LABEL_REF)
2017 record_address_regs (arg0, INDEX_REG_CLASS, scale);
2018
956d6950
JL
2019 /* If both operands are registers but one is already a hard register
2020 of index or base class, give the other the class that the hard
2021 register is not. */
2022
3f9e9508 2023#ifdef REG_OK_FOR_BASE_P
956d6950
JL
2024 else if (code0 == REG && code1 == REG
2025 && REGNO (arg0) < FIRST_PSEUDO_REGISTER
2026 && (REG_OK_FOR_BASE_P (arg0) || REG_OK_FOR_INDEX_P (arg0)))
2027 record_address_regs (arg1,
2028 REG_OK_FOR_BASE_P (arg0)
3dcc68a4 2029 ? INDEX_REG_CLASS : MODE_BASE_REG_CLASS (VOIDmode),
956d6950
JL
2030 scale);
2031 else if (code0 == REG && code1 == REG
2032 && REGNO (arg1) < FIRST_PSEUDO_REGISTER
2033 && (REG_OK_FOR_BASE_P (arg1) || REG_OK_FOR_INDEX_P (arg1)))
2034 record_address_regs (arg0,
2035 REG_OK_FOR_BASE_P (arg1)
3dcc68a4 2036 ? INDEX_REG_CLASS : MODE_BASE_REG_CLASS (VOIDmode),
956d6950 2037 scale);
3f9e9508 2038#endif
956d6950 2039
e9a25f70
JL
2040 /* If one operand is known to be a pointer, it must be the base
2041 with the other operand the index. Likewise if the other operand
2042 is a MULT. */
f22376c7 2043
3502dc9c 2044 else if ((code0 == REG && REG_POINTER (arg0))
e9a25f70 2045 || code1 == MULT)
f22376c7 2046 {
3dcc68a4 2047 record_address_regs (arg0, MODE_BASE_REG_CLASS (VOIDmode), scale);
f22376c7
CI
2048 record_address_regs (arg1, INDEX_REG_CLASS, scale);
2049 }
3502dc9c 2050 else if ((code1 == REG && REG_POINTER (arg1))
e9a25f70 2051 || code0 == MULT)
f22376c7
CI
2052 {
2053 record_address_regs (arg0, INDEX_REG_CLASS, scale);
3dcc68a4 2054 record_address_regs (arg1, MODE_BASE_REG_CLASS (VOIDmode), scale);
f22376c7
CI
2055 }
2056
e9a25f70 2057 /* Otherwise, count equal chances that each might be a base
e4600702
RK
2058 or index register. This case should be rare. */
2059
e9a25f70 2060 else
54dac99e 2061 {
3dcc68a4
NC
2062 record_address_regs (arg0, MODE_BASE_REG_CLASS (VOIDmode),
2063 scale / 2);
e4600702 2064 record_address_regs (arg0, INDEX_REG_CLASS, scale / 2);
3dcc68a4
NC
2065 record_address_regs (arg1, MODE_BASE_REG_CLASS (VOIDmode),
2066 scale / 2);
e4600702 2067 record_address_regs (arg1, INDEX_REG_CLASS, scale / 2);
54dac99e 2068 }
54dac99e
RK
2069 }
2070 break;
2071
4b983fdc
RH
2072 /* Double the importance of a pseudo register that is incremented
2073 or decremented, since it would take two extra insns
2074 if it ends up in the wrong place. */
2075 case POST_MODIFY:
2076 case PRE_MODIFY:
3dcc68a4
NC
2077 record_address_regs (XEXP (x, 0), MODE_BASE_REG_CLASS (VOIDmode),
2078 2 * scale);
4b983fdc
RH
2079 if (REG_P (XEXP (XEXP (x, 1), 1)))
2080 record_address_regs (XEXP (XEXP (x, 1), 1),
2081 INDEX_REG_CLASS, 2 * scale);
2082 break;
2083
54dac99e
RK
2084 case POST_INC:
2085 case PRE_INC:
2086 case POST_DEC:
2087 case PRE_DEC:
2088 /* Double the importance of a pseudo register that is incremented
2089 or decremented, since it would take two extra insns
533d0835
RK
2090 if it ends up in the wrong place. If the operand is a pseudo,
2091 show it is being used in an INC_DEC context. */
2092
2093#ifdef FORBIDDEN_INC_DEC_CLASSES
2094 if (GET_CODE (XEXP (x, 0)) == REG
2095 && REGNO (XEXP (x, 0)) >= FIRST_PSEUDO_REGISTER)
2096 in_inc_dec[REGNO (XEXP (x, 0))] = 1;
2097#endif
e4600702
RK
2098
2099 record_address_regs (XEXP (x, 0), class, 2 * scale);
54dac99e
RK
2100 break;
2101
2102 case REG:
2103 {
b3694847
SS
2104 struct costs *pp = &costs[REGNO (x)];
2105 int i;
54dac99e 2106
cbd5b9a2 2107 pp->mem_cost += (MEMORY_MOVE_COST (Pmode, class, 1) * scale) / 2;
54dac99e 2108
e4600702 2109 for (i = 0; i < N_REG_CLASSES; i++)
e56b4594 2110 pp->cost[i] += (may_move_in_cost[Pmode][i][(int) class] * scale) / 2;
54dac99e
RK
2111 }
2112 break;
2113
2114 default:
2115 {
b3694847
SS
2116 const char *fmt = GET_RTX_FORMAT (code);
2117 int i;
54dac99e
RK
2118 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2119 if (fmt[i] == 'e')
e4600702 2120 record_address_regs (XEXP (x, i), class, scale);
54dac99e
RK
2121 }
2122 }
2123}
08d95f91
RK
2124\f
2125#ifdef FORBIDDEN_INC_DEC_CLASSES
2126
2127/* Return 1 if REG is valid as an auto-increment memory reference
2128 to an object of MODE. */
2129
1d300e19 2130static int
08d95f91
RK
2131auto_inc_dec_reg_p (reg, mode)
2132 rtx reg;
2133 enum machine_mode mode;
2134{
940da324
JL
2135 if (HAVE_POST_INCREMENT
2136 && memory_address_p (mode, gen_rtx_POST_INC (Pmode, reg)))
08d95f91 2137 return 1;
08d95f91 2138
940da324
JL
2139 if (HAVE_POST_DECREMENT
2140 && memory_address_p (mode, gen_rtx_POST_DEC (Pmode, reg)))
08d95f91 2141 return 1;
08d95f91 2142
940da324
JL
2143 if (HAVE_PRE_INCREMENT
2144 && memory_address_p (mode, gen_rtx_PRE_INC (Pmode, reg)))
08d95f91 2145 return 1;
08d95f91 2146
940da324
JL
2147 if (HAVE_PRE_DECREMENT
2148 && memory_address_p (mode, gen_rtx_PRE_DEC (Pmode, reg)))
08d95f91 2149 return 1;
08d95f91
RK
2150
2151 return 0;
2152}
2153#endif
b1f21e0a 2154\f
da668e9c
MM
2155static short *renumber;
2156static size_t regno_allocated;
2157static unsigned int reg_n_max;
ed396e68 2158
b1f21e0a
MM
2159/* Allocate enough space to hold NUM_REGS registers for the tables used for
2160 reg_scan and flow_analysis that are indexed by the register number. If
88cad84b 2161 NEW_P is nonzero, initialize all of the registers, otherwise only
39379e67
MM
2162 initialize the new registers allocated. The same table is kept from
2163 function to function, only reallocating it when we need more room. If
88cad84b 2164 RENUMBER_P is nonzero, allocate the reg_renumber array also. */
b1f21e0a
MM
2165
2166void
39379e67 2167allocate_reg_info (num_regs, new_p, renumber_p)
6feacd09 2168 size_t num_regs;
b1f21e0a 2169 int new_p;
39379e67 2170 int renumber_p;
b1f21e0a 2171{
6feacd09
MM
2172 size_t size_info;
2173 size_t size_renumber;
2174 size_t min = (new_p) ? 0 : reg_n_max;
2175 struct reg_info_data *reg_data;
39379e67 2176
b1f21e0a
MM
2177 if (num_regs > regno_allocated)
2178 {
6feacd09
MM
2179 size_t old_allocated = regno_allocated;
2180
b1f21e0a 2181 regno_allocated = num_regs + (num_regs / 20); /* add some slop space */
39379e67
MM
2182 size_renumber = regno_allocated * sizeof (short);
2183
2184 if (!reg_n_info)
2185 {
6feacd09 2186 VARRAY_REG_INIT (reg_n_info, regno_allocated, "reg_n_info");
39379e67 2187 renumber = (short *) xmalloc (size_renumber);
a6a2274a 2188 reg_pref_buffer = (struct reg_pref *) xmalloc (regno_allocated
9ffc5a70 2189 * sizeof (struct reg_pref));
39379e67
MM
2190 }
2191
2192 else
2193 {
6feacd09
MM
2194 VARRAY_GROW (reg_n_info, regno_allocated);
2195
2196 if (new_p) /* if we're zapping everything, no need to realloc */
2197 {
8e2e89f7
KH
2198 free ((char *) renumber);
2199 free ((char *) reg_pref);
6feacd09 2200 renumber = (short *) xmalloc (size_renumber);
a6a2274a 2201 reg_pref_buffer = (struct reg_pref *) xmalloc (regno_allocated
9ffc5a70 2202 * sizeof (struct reg_pref));
6feacd09
MM
2203 }
2204
2205 else
2206 {
8e2e89f7
KH
2207 renumber = (short *) xrealloc ((char *) renumber, size_renumber);
2208 reg_pref_buffer = (struct reg_pref *) xrealloc ((char *) reg_pref_buffer,
a6a2274a 2209 regno_allocated
9ffc5a70 2210 * sizeof (struct reg_pref));
6feacd09 2211 }
39379e67 2212 }
6feacd09
MM
2213
2214 size_info = (regno_allocated - old_allocated) * sizeof (reg_info)
2215 + sizeof (struct reg_info_data) - sizeof (reg_info);
2216 reg_data = (struct reg_info_data *) xcalloc (size_info, 1);
2217 reg_data->min_index = old_allocated;
2218 reg_data->max_index = regno_allocated - 1;
2219 reg_data->next = reg_info_head;
2220 reg_info_head = reg_data;
b1f21e0a
MM
2221 }
2222
6feacd09 2223 reg_n_max = num_regs;
b1f21e0a
MM
2224 if (min < num_regs)
2225 {
6feacd09
MM
2226 /* Loop through each of the segments allocated for the actual
2227 reg_info pages, and set up the pointers, zero the pages, etc. */
a6a2274a 2228 for (reg_data = reg_info_head;
da668e9c
MM
2229 reg_data && reg_data->max_index >= min;
2230 reg_data = reg_data->next)
39379e67 2231 {
6feacd09
MM
2232 size_t min_index = reg_data->min_index;
2233 size_t max_index = reg_data->max_index;
da668e9c
MM
2234 size_t max = MIN (max_index, num_regs);
2235 size_t local_min = min - min_index;
2236 size_t i;
6feacd09 2237
da668e9c
MM
2238 if (reg_data->min_index > num_regs)
2239 continue;
6feacd09 2240
da668e9c
MM
2241 if (min < min_index)
2242 local_min = 0;
2243 if (!reg_data->used_p) /* page just allocated with calloc */
2244 reg_data->used_p = 1; /* no need to zero */
2245 else
961192e1 2246 memset ((char *) &reg_data->data[local_min], 0,
da668e9c
MM
2247 sizeof (reg_info) * (max - min_index - local_min + 1));
2248
2249 for (i = min_index+local_min; i <= max; i++)
2250 {
2251 VARRAY_REG (reg_n_info, i) = &reg_data->data[i-min_index];
2252 REG_BASIC_BLOCK (i) = REG_BLOCK_UNKNOWN;
2253 renumber[i] = -1;
2254 reg_pref_buffer[i].prefclass = (char) NO_REGS;
2255 reg_pref_buffer[i].altclass = (char) NO_REGS;
6feacd09 2256 }
39379e67 2257 }
b1f21e0a
MM
2258 }
2259
6feacd09
MM
2260 /* If {pref,alt}class have already been allocated, update the pointers to
2261 the newly realloced ones. */
9ffc5a70
JH
2262 if (reg_pref)
2263 reg_pref = reg_pref_buffer;
6feacd09 2264
39379e67
MM
2265 if (renumber_p)
2266 reg_renumber = renumber;
2267
3eae4643 2268 /* Tell the regset code about the new number of registers. */
73b76448 2269 MAX_REGNO_REG_SET (num_regs, new_p, renumber_p);
b1f21e0a
MM
2270}
2271
ed396e68
BS
2272/* Free up the space allocated by allocate_reg_info. */
2273void
2274free_reg_info ()
2275{
2276 if (reg_n_info)
2277 {
2278 struct reg_info_data *reg_data;
2279 struct reg_info_data *reg_next;
2280
2281 VARRAY_FREE (reg_n_info);
2282 for (reg_data = reg_info_head; reg_data; reg_data = reg_next)
2283 {
2284 reg_next = reg_data->next;
8e2e89f7 2285 free ((char *) reg_data);
ed396e68
BS
2286 }
2287
9ffc5a70 2288 free (reg_pref_buffer);
f4f4d0f8
KH
2289 reg_pref_buffer = (struct reg_pref *) 0;
2290 reg_info_head = (struct reg_info_data *) 0;
2291 renumber = (short *) 0;
ed396e68
BS
2292 }
2293 regno_allocated = 0;
2294 reg_n_max = 0;
2295}
54dac99e
RK
2296\f
2297/* This is the `regscan' pass of the compiler, run just before cse
2298 and again just before loop.
2299
2300 It finds the first and last use of each pseudo-register
2301 and records them in the vectors regno_first_uid, regno_last_uid
2302 and counts the number of sets in the vector reg_n_sets.
2303
2304 REPEAT is nonzero the second time this is called. */
2305
54dac99e 2306/* Maximum number of parallel sets and clobbers in any insn in this fn.
d22d5f34 2307 Always at least 3, since the combiner could put that many together
79b9ec0d
RK
2308 and we want this to remain correct for all the remaining passes.
2309 This corresponds to the maximum number of times note_stores will call
2310 a function for any insn. */
54dac99e
RK
2311
2312int max_parallel;
2313
a6a2274a 2314/* Used as a temporary to record the largest number of registers in
79b9ec0d
RK
2315 PARALLEL in a SET_DEST. This is added to max_parallel. */
2316
2317static int max_set_parallel;
2318
54dac99e
RK
2319void
2320reg_scan (f, nregs, repeat)
2321 rtx f;
770ae6cc 2322 unsigned int nregs;
272df862 2323 int repeat ATTRIBUTE_UNUSED;
54dac99e 2324{
b3694847 2325 rtx insn;
54dac99e 2326
39379e67 2327 allocate_reg_info (nregs, TRUE, FALSE);
54dac99e 2328 max_parallel = 3;
79b9ec0d 2329 max_set_parallel = 0;
54dac99e
RK
2330
2331 for (insn = f; insn; insn = NEXT_INSN (insn))
2332 if (GET_CODE (insn) == INSN
2333 || GET_CODE (insn) == CALL_INSN
2334 || GET_CODE (insn) == JUMP_INSN)
2335 {
2336 if (GET_CODE (PATTERN (insn)) == PARALLEL
2337 && XVECLEN (PATTERN (insn), 0) > max_parallel)
2338 max_parallel = XVECLEN (PATTERN (insn), 0);
f903b91f 2339 reg_scan_mark_refs (PATTERN (insn), insn, 0, 0);
01565a55
RK
2340
2341 if (REG_NOTES (insn))
f903b91f
DM
2342 reg_scan_mark_refs (REG_NOTES (insn), insn, 1, 0);
2343 }
79b9ec0d
RK
2344
2345 max_parallel += max_set_parallel;
f903b91f
DM
2346}
2347
2348/* Update 'regscan' information by looking at the insns
2349 from FIRST to LAST. Some new REGs have been created,
2350 and any REG with number greater than OLD_MAX_REGNO is
2351 such a REG. We only update information for those. */
2352
2353void
770ae6cc 2354reg_scan_update (first, last, old_max_regno)
f903b91f
DM
2355 rtx first;
2356 rtx last;
770ae6cc 2357 unsigned int old_max_regno;
f903b91f 2358{
b3694847 2359 rtx insn;
f903b91f
DM
2360
2361 allocate_reg_info (max_reg_num (), FALSE, FALSE);
2362
2363 for (insn = first; insn != last; insn = NEXT_INSN (insn))
2364 if (GET_CODE (insn) == INSN
2365 || GET_CODE (insn) == CALL_INSN
2366 || GET_CODE (insn) == JUMP_INSN)
2367 {
2368 if (GET_CODE (PATTERN (insn)) == PARALLEL
2369 && XVECLEN (PATTERN (insn), 0) > max_parallel)
2370 max_parallel = XVECLEN (PATTERN (insn), 0);
2371 reg_scan_mark_refs (PATTERN (insn), insn, 0, old_max_regno);
2372
2373 if (REG_NOTES (insn))
2374 reg_scan_mark_refs (REG_NOTES (insn), insn, 1, old_max_regno);
54dac99e
RK
2375 }
2376}
2377
1ebecb64 2378/* X is the expression to scan. INSN is the insn it appears in.
f903b91f
DM
2379 NOTE_FLAG is nonzero if X is from INSN's notes rather than its body.
2380 We should only record information for REGs with numbers
2381 greater than or equal to MIN_REGNO. */
1ebecb64 2382
08d95f91 2383static void
f903b91f 2384reg_scan_mark_refs (x, insn, note_flag, min_regno)
54dac99e 2385 rtx x;
be8dcd74 2386 rtx insn;
1ebecb64 2387 int note_flag;
770ae6cc 2388 unsigned int min_regno;
54dac99e 2389{
b3694847
SS
2390 enum rtx_code code;
2391 rtx dest;
2392 rtx note;
54dac99e 2393
ed8d2920
MM
2394 if (!x)
2395 return;
fa23c636 2396 code = GET_CODE (x);
54dac99e
RK
2397 switch (code)
2398 {
54dac99e 2399 case CONST:
185ebd6c 2400 case CONST_INT:
54dac99e 2401 case CONST_DOUBLE:
69ef87e2 2402 case CONST_VECTOR:
54dac99e
RK
2403 case CC0:
2404 case PC:
2405 case SYMBOL_REF:
2406 case LABEL_REF:
2407 case ADDR_VEC:
2408 case ADDR_DIFF_VEC:
2409 return;
2410
2411 case REG:
2412 {
770ae6cc 2413 unsigned int regno = REGNO (x);
54dac99e 2414
f903b91f
DM
2415 if (regno >= min_regno)
2416 {
2417 REGNO_LAST_NOTE_UID (regno) = INSN_UID (insn);
2418 if (!note_flag)
2419 REGNO_LAST_UID (regno) = INSN_UID (insn);
2420 if (REGNO_FIRST_UID (regno) == 0)
2421 REGNO_FIRST_UID (regno) = INSN_UID (insn);
ed8d2920
MM
2422 /* If we are called by reg_scan_update() (indicated by min_regno
2423 being set), we also need to update the reference count. */
2424 if (min_regno)
2425 REG_N_REFS (regno)++;
f903b91f 2426 }
54dac99e
RK
2427 }
2428 break;
2429
01565a55 2430 case EXPR_LIST:
7b18c3db 2431 if (XEXP (x, 0))
f903b91f 2432 reg_scan_mark_refs (XEXP (x, 0), insn, note_flag, min_regno);
01565a55 2433 if (XEXP (x, 1))
f903b91f 2434 reg_scan_mark_refs (XEXP (x, 1), insn, note_flag, min_regno);
01565a55
RK
2435 break;
2436
2437 case INSN_LIST:
2438 if (XEXP (x, 1))
f903b91f 2439 reg_scan_mark_refs (XEXP (x, 1), insn, note_flag, min_regno);
01565a55
RK
2440 break;
2441
ed8d2920
MM
2442 case CLOBBER:
2443 {
2444 rtx reg = XEXP (x, 0);
2445 if (REG_P (reg)
2446 && REGNO (reg) >= min_regno)
2447 {
2448 REG_N_SETS (REGNO (reg))++;
2449 REG_N_REFS (REGNO (reg))++;
2450 }
2451 }
2452 break;
2453
54dac99e
RK
2454 case SET:
2455 /* Count a set of the destination if it is a register. */
2456 for (dest = SET_DEST (x);
2457 GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART
2458 || GET_CODE (dest) == ZERO_EXTEND;
2459 dest = XEXP (dest, 0))
2460 ;
2461
79b9ec0d
RK
2462 /* For a PARALLEL, record the number of things (less the usual one for a
2463 SET) that are set. */
2464 if (GET_CODE (dest) == PARALLEL)
2465 max_set_parallel = MAX (max_set_parallel, XVECLEN (dest, 0) - 1);
2466
f903b91f
DM
2467 if (GET_CODE (dest) == REG
2468 && REGNO (dest) >= min_regno)
b2d57793
DB
2469 {
2470 REG_N_SETS (REGNO (dest))++;
2471 REG_N_REFS (REGNO (dest))++;
2472 }
54dac99e 2473
be8dcd74
RK
2474 /* If this is setting a pseudo from another pseudo or the sum of a
2475 pseudo and a constant integer and the other pseudo is known to be
2476 a pointer, set the destination to be a pointer as well.
2477
2478 Likewise if it is setting the destination from an address or from a
2479 value equivalent to an address or to the sum of an address and
2480 something else.
a6a2274a 2481
be8dcd74
RK
2482 But don't do any of this if the pseudo corresponds to a user
2483 variable since it should have already been set as a pointer based
2484 on the type. */
2485
2486 if (GET_CODE (SET_DEST (x)) == REG
2487 && REGNO (SET_DEST (x)) >= FIRST_PSEUDO_REGISTER
f903b91f 2488 && REGNO (SET_DEST (x)) >= min_regno
64d3b4ca
JL
2489 /* If the destination pseudo is set more than once, then other
2490 sets might not be to a pointer value (consider access to a
d55d8fc7 2491 union in two threads of control in the presence of global
3502dc9c 2492 optimizations). So only set REG_POINTER on the destination
64d3b4ca
JL
2493 pseudo if this is the only set of that pseudo. */
2494 && REG_N_SETS (REGNO (SET_DEST (x))) == 1
be8dcd74 2495 && ! REG_USERVAR_P (SET_DEST (x))
3502dc9c 2496 && ! REG_POINTER (SET_DEST (x))
be8dcd74 2497 && ((GET_CODE (SET_SRC (x)) == REG
3502dc9c 2498 && REG_POINTER (SET_SRC (x)))
be8dcd74
RK
2499 || ((GET_CODE (SET_SRC (x)) == PLUS
2500 || GET_CODE (SET_SRC (x)) == LO_SUM)
2501 && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
2502 && GET_CODE (XEXP (SET_SRC (x), 0)) == REG
3502dc9c 2503 && REG_POINTER (XEXP (SET_SRC (x), 0)))
be8dcd74
RK
2504 || GET_CODE (SET_SRC (x)) == CONST
2505 || GET_CODE (SET_SRC (x)) == SYMBOL_REF
2506 || GET_CODE (SET_SRC (x)) == LABEL_REF
2507 || (GET_CODE (SET_SRC (x)) == HIGH
2508 && (GET_CODE (XEXP (SET_SRC (x), 0)) == CONST
2509 || GET_CODE (XEXP (SET_SRC (x), 0)) == SYMBOL_REF
2510 || GET_CODE (XEXP (SET_SRC (x), 0)) == LABEL_REF))
2511 || ((GET_CODE (SET_SRC (x)) == PLUS
2512 || GET_CODE (SET_SRC (x)) == LO_SUM)
2513 && (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST
2514 || GET_CODE (XEXP (SET_SRC (x), 1)) == SYMBOL_REF
2515 || GET_CODE (XEXP (SET_SRC (x), 1)) == LABEL_REF))
2516 || ((note = find_reg_note (insn, REG_EQUAL, 0)) != 0
2517 && (GET_CODE (XEXP (note, 0)) == CONST
2518 || GET_CODE (XEXP (note, 0)) == SYMBOL_REF
2519 || GET_CODE (XEXP (note, 0)) == LABEL_REF))))
3502dc9c 2520 REG_POINTER (SET_DEST (x)) = 1;
be8dcd74 2521
0d4903b8 2522 /* If this is setting a register from a register or from a simple
a560d4d4 2523 conversion of a register, propagate REG_EXPR. */
0d4903b8
RK
2524 if (GET_CODE (dest) == REG)
2525 {
2526 rtx src = SET_SRC (x);
2527
2528 while (GET_CODE (src) == SIGN_EXTEND
2529 || GET_CODE (src) == ZERO_EXTEND
2530 || GET_CODE (src) == TRUNCATE
2531 || (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)))
2532 src = XEXP (src, 0);
2533
a560d4d4
JH
2534 if (!REG_ATTRS (dest) && REG_P (src))
2535 REG_ATTRS (dest) = REG_ATTRS (src);
2536 if (!REG_ATTRS (dest) && GET_CODE (src) == MEM)
2537 set_reg_attrs_from_mem (dest, src);
0d4903b8
RK
2538 }
2539
0f41302f 2540 /* ... fall through ... */
54dac99e
RK
2541
2542 default:
2543 {
b3694847
SS
2544 const char *fmt = GET_RTX_FORMAT (code);
2545 int i;
54dac99e
RK
2546 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2547 {
2548 if (fmt[i] == 'e')
f903b91f 2549 reg_scan_mark_refs (XEXP (x, i), insn, note_flag, min_regno);
54dac99e
RK
2550 else if (fmt[i] == 'E' && XVEC (x, i) != 0)
2551 {
b3694847 2552 int j;
54dac99e 2553 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
f903b91f 2554 reg_scan_mark_refs (XVECEXP (x, i, j), insn, note_flag, min_regno);
54dac99e
RK
2555 }
2556 }
2557 }
2558 }
2559}
2560\f
2561/* Return nonzero if C1 is a subset of C2, i.e., if every register in C1
2562 is also in C2. */
2563
2564int
2565reg_class_subset_p (c1, c2)
b3694847
SS
2566 enum reg_class c1;
2567 enum reg_class c2;
54dac99e
RK
2568{
2569 if (c1 == c2) return 1;
2570
2571 if (c2 == ALL_REGS)
2572 win:
2573 return 1;
8e2e89f7
KH
2574 GO_IF_HARD_REG_SUBSET (reg_class_contents[(int) c1],
2575 reg_class_contents[(int) c2],
54dac99e
RK
2576 win);
2577 return 0;
2578}
2579
2580/* Return nonzero if there is a register that is in both C1 and C2. */
2581
2582int
2583reg_classes_intersect_p (c1, c2)
b3694847
SS
2584 enum reg_class c1;
2585 enum reg_class c2;
54dac99e
RK
2586{
2587#ifdef HARD_REG_SET
2588 register
2589#endif
2590 HARD_REG_SET c;
2591
2592 if (c1 == c2) return 1;
2593
2594 if (c1 == ALL_REGS || c2 == ALL_REGS)
2595 return 1;
2596
2597 COPY_HARD_REG_SET (c, reg_class_contents[(int) c1]);
2598 AND_HARD_REG_SET (c, reg_class_contents[(int) c2]);
2599
2600 GO_IF_HARD_REG_SUBSET (c, reg_class_contents[(int) NO_REGS], lose);
2601 return 1;
2602
2603 lose:
2604 return 0;
2605}
2606
73b76448
RK
2607/* Release any memory allocated by register sets. */
2608
2609void
2610regset_release_memory ()
2611{
73b76448
RK
2612 bitmap_release_memory ();
2613}
e2500fed 2614
cff9f8d5
AH
2615#ifdef CANNOT_CHANGE_MODE_CLASS
2616/* Set bits in *USED which correspond to registers which can't change
2617 their mode from FROM to any mode in which REGNO was encountered. */
2618
2619void
2620cannot_change_mode_set_regs (used, from, regno)
2621 HARD_REG_SET *used;
2622 enum machine_mode from;
2623 unsigned int regno;
2624{
2625 enum machine_mode to;
2626 enum reg_class class;
2627
2628 for (to = VOIDmode; to < MAX_MACHINE_MODE; ++to)
2629 if (REGNO_REG_SET_P (&subregs_of_mode[to], regno))
2630 {
2631 class = CANNOT_CHANGE_MODE_CLASS (from, to);
2632 if (class != NO_REGS)
2633 IOR_HARD_REG_SET (*used, reg_class_contents [(int) class]);
2634 }
2635}
2636
2637/* Return 1 if REGNO has had an invalid mode change in CLASS from FROM
2638 mode. */
2639
2640bool
2641invalid_mode_change_p (regno, class, from_mode)
2642 unsigned int regno;
2643 enum reg_class class;
2644 enum machine_mode from_mode;
2645{
2646 enum machine_mode to_mode;
2647
2648 for (to_mode = 0; to_mode < NUM_MACHINE_MODES; ++to_mode)
2649 if (REGNO_REG_SET_P (&subregs_of_mode[(int) to_mode], regno)
2650 && reg_classes_intersect_p
2651 (class, CANNOT_CHANGE_MODE_CLASS (from_mode, to_mode)))
2652 return 1;
2653 return 0;
2654}
2655#endif /* CANNOT_CHANGE_MODE_CLASS */
2656
e2500fed 2657#include "gt-regclass.h"
This page took 2.311759 seconds and 5 git commands to generate.