]> gcc.gnu.org Git - gcc.git/blame - gcc/regclass.c
builtins.c (expand_builtin_setjmp_receiver): Const-ify.
[gcc.git] / gcc / regclass.c
CommitLineData
54dac99e 1/* Compute register class preferences for pseudo-registers.
517cbe13 2 Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1996
e56b4594 3 1997, 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
54dac99e 4
1322177d 5This file is part of GCC.
54dac99e 6
1322177d
LB
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
9Software Foundation; either version 2, or (at your option) any later
10version.
54dac99e 11
1322177d
LB
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15for more details.
54dac99e
RK
16
17You should have received a copy of the GNU General Public License
1322177d
LB
18along with GCC; see the file COPYING. If not, write to the Free
19Software Foundation, 59 Temple Place - Suite 330, Boston, MA
2002111-1307, USA. */
54dac99e
RK
21
22
23/* This file contains two passes of the compiler: reg_scan and reg_class.
24 It also defines some tables of information about the hardware registers
25 and a function init_reg_sets to initialize the tables. */
26
27#include "config.h"
670ee920 28#include "system.h"
54dac99e 29#include "rtl.h"
0829d244 30#include "expr.h"
6baf1cc8 31#include "tm_p.h"
54dac99e
RK
32#include "hard-reg-set.h"
33#include "flags.h"
34#include "basic-block.h"
35#include "regs.h"
49ad7cfa 36#include "function.h"
54dac99e
RK
37#include "insn-config.h"
38#include "recog.h"
e4600702
RK
39#include "reload.h"
40#include "real.h"
10f0ad3d 41#include "toplev.h"
d6f4ec51 42#include "output.h"
8b0212ca 43#include "ggc.h"
54dac99e
RK
44
45#ifndef REGISTER_MOVE_COST
e56b4594 46#define REGISTER_MOVE_COST(m, x, y) 2
54dac99e
RK
47#endif
48
13536812
KG
49static void init_reg_sets_1 PARAMS ((void));
50static void init_reg_modes PARAMS ((void));
24deb20a 51
533d0835
RK
52/* If we have auto-increment or auto-decrement and we can have secondary
53 reloads, we are not allowed to use classes requiring secondary
9faa82d8 54 reloads for pseudos auto-incremented since reload can't handle it. */
533d0835
RK
55
56#ifdef AUTO_INC_DEC
dd9f0e8f 57#if defined(SECONDARY_INPUT_RELOAD_CLASS) || defined(SECONDARY_OUTPUT_RELOAD_CLASS)
533d0835
RK
58#define FORBIDDEN_INC_DEC_CLASSES
59#endif
60#endif
54dac99e
RK
61\f
62/* Register tables used by many passes. */
63
64/* Indexed by hard register number, contains 1 for registers
65 that are fixed use (stack pointer, pc, frame pointer, etc.).
66 These are the registers that cannot be used to allocate
252f342a 67 a pseudo reg for general use. */
54dac99e
RK
68
69char fixed_regs[FIRST_PSEUDO_REGISTER];
70
71/* Same info as a HARD_REG_SET. */
72
73HARD_REG_SET fixed_reg_set;
74
75/* Data for initializing the above. */
76
8b60264b 77static const char initial_fixed_regs[] = FIXED_REGISTERS;
54dac99e
RK
78
79/* Indexed by hard register number, contains 1 for registers
80 that are fixed use or are clobbered by function calls.
81 These are the registers that cannot be used to allocate
252f342a
MH
82 a pseudo reg whose life crosses calls unless we are able
83 to save/restore them across the calls. */
54dac99e
RK
84
85char call_used_regs[FIRST_PSEUDO_REGISTER];
86
87/* Same info as a HARD_REG_SET. */
88
89HARD_REG_SET call_used_reg_set;
90
6cad67d2
JL
91/* HARD_REG_SET of registers we want to avoid caller saving. */
92HARD_REG_SET losing_caller_save_reg_set;
93
54dac99e
RK
94/* Data for initializing the above. */
95
8b60264b 96static const char initial_call_used_regs[] = CALL_USED_REGISTERS;
fc1296b7
AM
97
98/* This is much like call_used_regs, except it doesn't have to
99 be a superset of FIXED_REGISTERS. This vector indicates
100 what is really call clobbered, and is used when defining
101 regs_invalidated_by_call. */
102
fc1296b7 103#ifdef CALL_REALLY_USED_REGISTERS
d3259baa 104char call_really_used_regs[] = CALL_REALLY_USED_REGISTERS;
fc1296b7 105#endif
54dac99e
RK
106
107/* Indexed by hard register number, contains 1 for registers that are
252f342a
MH
108 fixed use or call used registers that cannot hold quantities across
109 calls even if we are willing to save and restore them. call fixed
110 registers are a subset of call used registers. */
54dac99e
RK
111
112char call_fixed_regs[FIRST_PSEUDO_REGISTER];
113
114/* The same info as a HARD_REG_SET. */
115
116HARD_REG_SET call_fixed_reg_set;
117
118/* Number of non-fixed registers. */
119
120int n_non_fixed_regs;
121
122/* Indexed by hard register number, contains 1 for registers
123 that are being used for global register decls.
124 These must be exempt from ordinary flow analysis
125 and are also considered fixed. */
126
127char global_regs[FIRST_PSEUDO_REGISTER];
4e2db584
RH
128
129/* Contains 1 for registers that are set or clobbered by calls. */
130/* ??? Ideally, this would be just call_used_regs plus global_regs, but
131 for someone's bright idea to have call_used_regs strictly include
132 fixed_regs. Which leaves us guessing as to the set of fixed_regs
133 that are actually preserved. We know for sure that those associated
134 with the local stack frame are safe, but scant others. */
135
136HARD_REG_SET regs_invalidated_by_call;
137
54dac99e
RK
138/* Table of register numbers in the order in which to try to use them. */
139#ifdef REG_ALLOC_ORDER
140int reg_alloc_order[FIRST_PSEUDO_REGISTER] = REG_ALLOC_ORDER;
f5d8c9f4
BS
141
142/* The inverse of reg_alloc_order. */
143int inv_reg_alloc_order[FIRST_PSEUDO_REGISTER];
54dac99e
RK
144#endif
145
146/* For each reg class, a HARD_REG_SET saying which registers are in it. */
147
2e0e2b76
CH
148HARD_REG_SET reg_class_contents[N_REG_CLASSES];
149
089e575b
RS
150/* The same information, but as an array of unsigned ints. We copy from
151 these unsigned ints to the table above. We do this so the tm.h files
d4845339
RH
152 do not have to be aware of the wordsize for machines with <= 64 regs.
153 Note that we hard-code 32 here, not HOST_BITS_PER_INT. */
2e0e2b76
CH
154
155#define N_REG_INTS \
d4845339 156 ((FIRST_PSEUDO_REGISTER + (32 - 1)) / 32)
2e0e2b76 157
089e575b 158static unsigned int_reg_class_contents[N_REG_CLASSES][N_REG_INTS]
2e0e2b76 159 = REG_CLASS_CONTENTS;
54dac99e
RK
160
161/* For each reg class, number of regs it contains. */
162
770ae6cc 163unsigned int reg_class_size[N_REG_CLASSES];
54dac99e
RK
164
165/* For each reg class, table listing all the containing classes. */
166
167enum reg_class reg_class_superclasses[N_REG_CLASSES][N_REG_CLASSES];
168
169/* For each reg class, table listing all the classes contained in it. */
170
171enum reg_class reg_class_subclasses[N_REG_CLASSES][N_REG_CLASSES];
172
173/* For each pair of reg classes,
174 a largest reg class contained in their union. */
175
176enum reg_class reg_class_subunion[N_REG_CLASSES][N_REG_CLASSES];
177
178/* For each pair of reg classes,
179 the smallest reg class containing their union. */
180
181enum reg_class reg_class_superunion[N_REG_CLASSES][N_REG_CLASSES];
182
fbd40359
ZW
183/* Array containing all of the register names. Unless
184 DEBUG_REGISTER_NAMES is defined, use the copy in print-rtl.c. */
d05c8ee7 185
fbd40359 186#ifdef DEBUG_REGISTER_NAMES
e087aeb2 187const char * reg_names[] = REGISTER_NAMES;
fbd40359 188#endif
d05c8ee7 189
ca4aac00
DE
190/* For each hard register, the widest mode object that it can contain.
191 This will be a MODE_INT mode if the register can hold integers. Otherwise
192 it will be a MODE_FLOAT or a MODE_CC mode, whichever is valid for the
193 register. */
194
195enum machine_mode reg_raw_mode[FIRST_PSEUDO_REGISTER];
196
6df26b8f
JH
197/* 1 if class does contain register of given mode. */
198
199static char contains_reg_of_mode [N_REG_CLASSES] [MAX_MACHINE_MODE];
200
e4600702
RK
201/* Maximum cost of moving from a register in one class to a register in
202 another class. Based on REGISTER_MOVE_COST. */
203
e56b4594 204static int move_cost[MAX_MACHINE_MODE][N_REG_CLASSES][N_REG_CLASSES];
e4600702
RK
205
206/* Similar, but here we don't have to move if the first index is a subset
207 of the second so in that case the cost is zero. */
208
e56b4594 209static int may_move_in_cost[MAX_MACHINE_MODE][N_REG_CLASSES][N_REG_CLASSES];
ee59f29b
JH
210
211/* Similar, but here we don't have to move if the first index is a superset
212 of the second so in that case the cost is zero. */
213
e56b4594 214static int may_move_out_cost[MAX_MACHINE_MODE][N_REG_CLASSES][N_REG_CLASSES];
e4600702 215
533d0835
RK
216#ifdef FORBIDDEN_INC_DEC_CLASSES
217
218/* These are the classes that regs which are auto-incremented or decremented
219 cannot be put in. */
220
221static int forbidden_inc_dec_class[N_REG_CLASSES];
222
223/* Indexed by n, is non-zero if (REG n) is used in an auto-inc or auto-dec
224 context. */
225
226static char *in_inc_dec;
227
5fcb671c 228#endif /* FORBIDDEN_INC_DEC_CLASSES */
533d0835 229
02188693 230#ifdef CLASS_CANNOT_CHANGE_MODE
e79f71f7
GK
231
232/* These are the classes containing only registers that can be used in
02188693
RH
233 a SUBREG expression that changes the mode of the register in some
234 way that is illegal. */
e79f71f7 235
02188693 236static int class_can_change_mode[N_REG_CLASSES];
e79f71f7 237
02188693
RH
238/* Registers, including pseudos, which change modes in some way that
239 is illegal. */
e79f71f7 240
02188693 241static regset reg_changes_mode;
e79f71f7 242
02188693 243#endif /* CLASS_CANNOT_CHANGE_MODE */
e79f71f7 244
473fe49b
KR
245#ifdef HAVE_SECONDARY_RELOADS
246
247/* Sample MEM values for use by memory_move_secondary_cost. */
248
249static rtx top_of_stack[MAX_MACHINE_MODE];
250
251#endif /* HAVE_SECONDARY_RELOADS */
252
6feacd09
MM
253/* Linked list of reg_info structures allocated for reg_n_info array.
254 Grouping all of the allocated structures together in one lump
255 means only one call to bzero to clear them, rather than n smaller
256 calls. */
257struct reg_info_data {
258 struct reg_info_data *next; /* next set of reg_info structures */
259 size_t min_index; /* minimum index # */
260 size_t max_index; /* maximum index # */
261 char used_p; /* non-zero if this has been used previously */
262 reg_info data[1]; /* beginning of the reg_info data */
263};
264
265static struct reg_info_data *reg_info_head;
266
c07c7c9d 267/* No more global register variables may be declared; true once
dc297297 268 regclass has been initialized. */
6c85df69
AH
269
270static int no_global_reg_vars = 0;
271
6feacd09 272
54dac99e
RK
273/* Function called only once to initialize the above data on reg usage.
274 Once this is done, various switches may override. */
275
276void
277init_reg_sets ()
278{
279 register int i, j;
280
2e0e2b76
CH
281 /* First copy the register information from the initial int form into
282 the regsets. */
283
284 for (i = 0; i < N_REG_CLASSES; i++)
285 {
286 CLEAR_HARD_REG_SET (reg_class_contents[i]);
287
b85946fc 288 /* Note that we hard-code 32 here, not HOST_BITS_PER_INT. */
2e0e2b76 289 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
b85946fc
RH
290 if (int_reg_class_contents[i][j / 32]
291 & ((unsigned) 1 << (j % 32)))
2e0e2b76
CH
292 SET_HARD_REG_BIT (reg_class_contents[i], j);
293 }
294
4e135bdd
KG
295 memcpy (fixed_regs, initial_fixed_regs, sizeof fixed_regs);
296 memcpy (call_used_regs, initial_call_used_regs, sizeof call_used_regs);
961192e1 297 memset (global_regs, 0, sizeof global_regs);
54dac99e 298
910bc42d
R
299 /* Do any additional initialization regsets may need */
300 INIT_ONCE_REG_SET ();
f5d8c9f4
BS
301
302#ifdef REG_ALLOC_ORDER
303 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
304 inv_reg_alloc_order[reg_alloc_order[i]] = i;
305#endif
910bc42d
R
306}
307
308/* After switches have been processed, which perhaps alter
309 `fixed_regs' and `call_used_regs', convert them to HARD_REG_SETs. */
310
311static void
312init_reg_sets_1 ()
313{
314 register unsigned int i, j;
e56b4594 315 register unsigned int /* enum machine_mode */ m;
6836e024 316 char allocatable_regs_of_mode [MAX_MACHINE_MODE];
910bc42d
R
317
318 /* This macro allows the fixed or call-used registers
319 and the register classes to depend on target flags. */
320
321#ifdef CONDITIONAL_REGISTER_USAGE
322 CONDITIONAL_REGISTER_USAGE;
323#endif
324
54dac99e
RK
325 /* Compute number of hard regs in each class. */
326
961192e1 327 memset ((char *) reg_class_size, 0, sizeof reg_class_size);
54dac99e
RK
328 for (i = 0; i < N_REG_CLASSES; i++)
329 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
330 if (TEST_HARD_REG_BIT (reg_class_contents[i], j))
331 reg_class_size[i]++;
332
333 /* Initialize the table of subunions.
334 reg_class_subunion[I][J] gets the largest-numbered reg-class
335 that is contained in the union of classes I and J. */
336
337 for (i = 0; i < N_REG_CLASSES; i++)
338 {
339 for (j = 0; j < N_REG_CLASSES; j++)
340 {
341#ifdef HARD_REG_SET
342 register /* Declare it register if it's a scalar. */
343#endif
344 HARD_REG_SET c;
345 register int k;
346
347 COPY_HARD_REG_SET (c, reg_class_contents[i]);
348 IOR_HARD_REG_SET (c, reg_class_contents[j]);
349 for (k = 0; k < N_REG_CLASSES; k++)
350 {
351 GO_IF_HARD_REG_SUBSET (reg_class_contents[k], c,
352 subclass1);
353 continue;
354
355 subclass1:
356 /* keep the largest subclass */ /* SPEE 900308 */
357 GO_IF_HARD_REG_SUBSET (reg_class_contents[k],
358 reg_class_contents[(int) reg_class_subunion[i][j]],
359 subclass2);
360 reg_class_subunion[i][j] = (enum reg_class) k;
361 subclass2:
362 ;
363 }
364 }
365 }
366
367 /* Initialize the table of superunions.
368 reg_class_superunion[I][J] gets the smallest-numbered reg-class
369 containing the union of classes I and J. */
370
371 for (i = 0; i < N_REG_CLASSES; i++)
372 {
373 for (j = 0; j < N_REG_CLASSES; j++)
374 {
375#ifdef HARD_REG_SET
376 register /* Declare it register if it's a scalar. */
377#endif
378 HARD_REG_SET c;
379 register int k;
380
381 COPY_HARD_REG_SET (c, reg_class_contents[i]);
382 IOR_HARD_REG_SET (c, reg_class_contents[j]);
383 for (k = 0; k < N_REG_CLASSES; k++)
384 GO_IF_HARD_REG_SUBSET (c, reg_class_contents[k], superclass);
385
386 superclass:
387 reg_class_superunion[i][j] = (enum reg_class) k;
388 }
389 }
390
391 /* Initialize the tables of subclasses and superclasses of each reg class.
392 First clear the whole table, then add the elements as they are found. */
393
394 for (i = 0; i < N_REG_CLASSES; i++)
395 {
396 for (j = 0; j < N_REG_CLASSES; j++)
397 {
398 reg_class_superclasses[i][j] = LIM_REG_CLASSES;
399 reg_class_subclasses[i][j] = LIM_REG_CLASSES;
400 }
401 }
402
403 for (i = 0; i < N_REG_CLASSES; i++)
404 {
405 if (i == (int) NO_REGS)
406 continue;
407
408 for (j = i + 1; j < N_REG_CLASSES; j++)
409 {
410 enum reg_class *p;
411
412 GO_IF_HARD_REG_SUBSET (reg_class_contents[i], reg_class_contents[j],
413 subclass);
414 continue;
415 subclass:
416 /* Reg class I is a subclass of J.
417 Add J to the table of superclasses of I. */
418 p = &reg_class_superclasses[i][0];
419 while (*p != LIM_REG_CLASSES) p++;
420 *p = (enum reg_class) j;
421 /* Add I to the table of superclasses of J. */
422 p = &reg_class_subclasses[j][0];
423 while (*p != LIM_REG_CLASSES) p++;
424 *p = (enum reg_class) i;
425 }
426 }
e4600702 427
54dac99e
RK
428 /* Initialize "constant" tables. */
429
430 CLEAR_HARD_REG_SET (fixed_reg_set);
431 CLEAR_HARD_REG_SET (call_used_reg_set);
432 CLEAR_HARD_REG_SET (call_fixed_reg_set);
4e2db584 433 CLEAR_HARD_REG_SET (regs_invalidated_by_call);
54dac99e 434
4e135bdd 435 memcpy (call_fixed_regs, fixed_regs, sizeof call_fixed_regs);
54dac99e
RK
436
437 n_non_fixed_regs = 0;
438
439 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
440 {
54dac99e
RK
441 if (fixed_regs[i])
442 SET_HARD_REG_BIT (fixed_reg_set, i);
443 else
444 n_non_fixed_regs++;
445
446 if (call_used_regs[i])
447 SET_HARD_REG_BIT (call_used_reg_set, i);
448 if (call_fixed_regs[i])
449 SET_HARD_REG_BIT (call_fixed_reg_set, i);
6cad67d2
JL
450 if (CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (i)))
451 SET_HARD_REG_BIT (losing_caller_save_reg_set, i);
4e2db584
RH
452
453 /* There are a couple of fixed registers that we know are safe to
454 exclude from being clobbered by calls:
455
456 The frame pointer is always preserved across calls. The arg pointer
457 is if it is fixed. The stack pointer usually is, unless
458 RETURN_POPS_ARGS, in which case an explicit CLOBBER will be present.
459 If we are generating PIC code, the PIC offset table register is
460 preserved across calls, though the target can override that. */
461
462 if (i == STACK_POINTER_REGNUM || i == FRAME_POINTER_REGNUM)
463 ;
464#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
465 else if (i == HARD_FRAME_POINTER_REGNUM)
466 ;
467#endif
468#if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
469 else if (i == ARG_POINTER_REGNUM && fixed_regs[i])
470 ;
471#endif
472#ifndef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
473 else if (i == PIC_OFFSET_TABLE_REGNUM && flag_pic)
474 ;
475#endif
d3259baa 476 else if (0
6ca3c22f 477#ifdef CALL_REALLY_USED_REGISTERS
d3259baa
RH
478 || call_really_used_regs[i]
479#else
480 || call_used_regs[i]
481#endif
482 || global_regs[i])
4e2db584 483 SET_HARD_REG_BIT (regs_invalidated_by_call, i);
54dac99e 484 }
4e2db584 485
6836e024
JH
486 memset (contains_reg_of_mode, 0, sizeof (contains_reg_of_mode));
487 memset (allocatable_regs_of_mode, 0, sizeof (allocatable_regs_of_mode));
dbbbbf3b 488 for (m = 0; m < (unsigned int) MAX_MACHINE_MODE; m++)
6836e024 489 for (i = 0; i < N_REG_CLASSES; i++)
6df26b8f
JH
490 if (CLASS_MAX_NREGS (i, m) <= reg_class_size[i])
491 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
492 if (!fixed_regs [j] && TEST_HARD_REG_BIT (reg_class_contents[i], j)
493 && HARD_REGNO_MODE_OK (j, m))
494 {
495 contains_reg_of_mode [i][m] = 1;
496 allocatable_regs_of_mode [m] = 1;
497 break;
498 }
acbce667
KR
499
500 /* Initialize the move cost table. Find every subset of each class
501 and take the maximum cost of moving any subset to any other. */
502
dbbbbf3b 503 for (m = 0; m < (unsigned int) MAX_MACHINE_MODE; m++)
6836e024
JH
504 if (allocatable_regs_of_mode [m])
505 {
506 for (i = 0; i < N_REG_CLASSES; i++)
507 if (contains_reg_of_mode [i][m])
508 for (j = 0; j < N_REG_CLASSES; j++)
509 {
510 int cost;
511 enum reg_class *p1, *p2;
512
513 if (!contains_reg_of_mode [j][m])
514 {
515 move_cost[m][i][j] = 65536;
516 may_move_in_cost[m][i][j] = 65536;
517 may_move_out_cost[m][i][j] = 65536;
518 }
519 else
520 {
26a952a8 521 cost = REGISTER_MOVE_COST (m, i, j);
6836e024
JH
522
523 for (p2 = &reg_class_subclasses[j][0];
524 *p2 != LIM_REG_CLASSES;
525 p2++)
526 if (*p2 != i && contains_reg_of_mode [*p2][m])
527 cost = MAX (cost, move_cost [m][i][*p2]);
528
529 for (p1 = &reg_class_subclasses[i][0];
530 *p1 != LIM_REG_CLASSES;
531 p1++)
532 if (*p1 != j && contains_reg_of_mode [*p1][m])
533 cost = MAX (cost, move_cost [m][*p1][j]);
534
535 move_cost[m][i][j] = cost;
536
537 if (reg_class_subset_p (i, j))
538 may_move_in_cost[m][i][j] = 0;
539 else
540 may_move_in_cost[m][i][j] = cost;
541
542 if (reg_class_subset_p (j, i))
543 may_move_out_cost[m][i][j] = 0;
544 else
545 may_move_out_cost[m][i][j] = cost;
546 }
547 }
1464632b 548 else
6836e024
JH
549 for (j = 0; j < N_REG_CLASSES; j++)
550 {
551 move_cost[m][i][j] = 65536;
552 may_move_in_cost[m][i][j] = 65536;
553 may_move_out_cost[m][i][j] = 65536;
554 }
555 }
e79f71f7 556
02188693 557#ifdef CLASS_CANNOT_CHANGE_MODE
e79f71f7
GK
558 {
559 HARD_REG_SET c;
02188693 560 COMPL_HARD_REG_SET (c, reg_class_contents[CLASS_CANNOT_CHANGE_MODE]);
e79f71f7
GK
561
562 for (i = 0; i < N_REG_CLASSES; i++)
563 {
564 GO_IF_HARD_REG_SUBSET (reg_class_contents[i], c, ok_class);
02188693 565 class_can_change_mode [i] = 0;
e79f71f7
GK
566 continue;
567 ok_class:
02188693 568 class_can_change_mode [i] = 1;
e79f71f7
GK
569 }
570 }
02188693 571#endif /* CLASS_CANNOT_CHANGE_MODE */
c27c5281
DE
572}
573
574/* Compute the table of register modes.
575 These values are used to record death information for individual registers
576 (as opposed to a multi-register mode). */
ca4aac00 577
c27c5281
DE
578static void
579init_reg_modes ()
580{
581 register int i;
ca4aac00
DE
582
583 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
7f21d440
DE
584 {
585 reg_raw_mode[i] = choose_hard_reg_mode (i, 1);
586
066c2fea 587 /* If we couldn't find a valid mode, just use the previous mode.
7f21d440
DE
588 ??? One situation in which we need to do this is on the mips where
589 HARD_REGNO_NREGS (fpreg, [SD]Fmode) returns 2. Ideally we'd like
590 to use DF mode for the even registers and VOIDmode for the odd
9faa82d8 591 (for the cpu models where the odd ones are inaccessible). */
7f21d440 592 if (reg_raw_mode[i] == VOIDmode)
066c2fea 593 reg_raw_mode[i] = i == 0 ? word_mode : reg_raw_mode[i-1];
7f21d440 594 }
ca4aac00
DE
595}
596
c27c5281
DE
597/* Finish initializing the register sets and
598 initialize the register modes. */
599
600void
601init_regs ()
602{
603 /* This finishes what was started by init_reg_sets, but couldn't be done
604 until after register usage was specified. */
b93a436e 605 init_reg_sets_1 ();
c27c5281
DE
606
607 init_reg_modes ();
473fe49b
KR
608
609#ifdef HAVE_SECONDARY_RELOADS
610 {
611 /* Make some fake stack-frame MEM references for use in
612 memory_move_secondary_cost. */
613 int i;
d067e2aa 614
473fe49b 615 for (i = 0; i < MAX_MACHINE_MODE; i++)
9ec36da5 616 top_of_stack[i] = gen_rtx_MEM (i, stack_pointer_rtx);
00d33cb2 617 ggc_add_rtx_root (top_of_stack, MAX_MACHINE_MODE);
473fe49b
KR
618 }
619#endif
c27c5281
DE
620}
621
cbd5b9a2 622#ifdef HAVE_SECONDARY_RELOADS
473fe49b 623
cbd5b9a2
KR
624/* Compute extra cost of moving registers to/from memory due to reloads.
625 Only needed if secondary reloads are required for memory moves. */
473fe49b 626
cbd5b9a2
KR
627int
628memory_move_secondary_cost (mode, class, in)
629 enum machine_mode mode;
630 enum reg_class class;
631 int in;
632{
633 enum reg_class altclass;
634 int partial_cost = 0;
cbd5b9a2 635 /* We need a memory reference to feed to SECONDARY... macros. */
dc297297 636 /* mem may be unused even if the SECONDARY_ macros are defined. */
272df862
KG
637 rtx mem ATTRIBUTE_UNUSED = top_of_stack[(int) mode];
638
cbd5b9a2
KR
639
640 if (in)
473fe49b 641 {
321c0828 642#ifdef SECONDARY_INPUT_RELOAD_CLASS
473fe49b 643 altclass = SECONDARY_INPUT_RELOAD_CLASS (class, mode, mem);
321c0828 644#else
473fe49b 645 altclass = NO_REGS;
321c0828 646#endif
473fe49b 647 }
cbd5b9a2 648 else
473fe49b 649 {
321c0828 650#ifdef SECONDARY_OUTPUT_RELOAD_CLASS
473fe49b 651 altclass = SECONDARY_OUTPUT_RELOAD_CLASS (class, mode, mem);
321c0828 652#else
473fe49b 653 altclass = NO_REGS;
321c0828 654#endif
473fe49b
KR
655 }
656
cbd5b9a2
KR
657 if (altclass == NO_REGS)
658 return 0;
659
660 if (in)
e56b4594 661 partial_cost = REGISTER_MOVE_COST (mode, altclass, class);
cbd5b9a2 662 else
e56b4594 663 partial_cost = REGISTER_MOVE_COST (mode, class, altclass);
cbd5b9a2
KR
664
665 if (class == altclass)
666 /* This isn't simply a copy-to-temporary situation. Can't guess
667 what it is, so MEMORY_MOVE_COST really ought not to be calling
668 here in that case.
669
670 I'm tempted to put in an abort here, but returning this will
671 probably only give poor estimates, which is what we would've
672 had before this code anyways. */
673 return partial_cost;
674
675 /* Check if the secondary reload register will also need a
676 secondary reload. */
677 return memory_move_secondary_cost (mode, altclass, in) + partial_cost;
678}
679#endif
680
ca4aac00
DE
681/* Return a machine mode that is legitimate for hard reg REGNO and large
682 enough to save nregs. If we can't find one, return VOIDmode. */
683
684enum machine_mode
685choose_hard_reg_mode (regno, nregs)
770ae6cc
RK
686 unsigned int regno ATTRIBUTE_UNUSED;
687 unsigned int nregs;
ca4aac00 688{
dbbbbf3b 689 unsigned int /* enum machine_mode */ m;
ca4aac00
DE
690 enum machine_mode found_mode = VOIDmode, mode;
691
692 /* We first look for the largest integer mode that can be validly
693 held in REGNO. If none, we look for the largest floating-point mode.
694 If we still didn't find a valid mode, try CCmode. */
695
696 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
697 mode != VOIDmode;
698 mode = GET_MODE_WIDER_MODE (mode))
699 if (HARD_REGNO_NREGS (regno, mode) == nregs
700 && HARD_REGNO_MODE_OK (regno, mode))
701 found_mode = mode;
702
703 if (found_mode != VOIDmode)
704 return found_mode;
705
706 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
707 mode != VOIDmode;
708 mode = GET_MODE_WIDER_MODE (mode))
709 if (HARD_REGNO_NREGS (regno, mode) == nregs
710 && HARD_REGNO_MODE_OK (regno, mode))
711 found_mode = mode;
712
713 if (found_mode != VOIDmode)
714 return found_mode;
715
0548a9df 716 /* Iterate over all of the CCmodes. */
dbbbbf3b
JDA
717 for (m = (unsigned int) CCmode; m < (unsigned int) NUM_MACHINE_MODES; ++m)
718 {
719 mode = (enum machine_mode) m;
720 if (HARD_REGNO_NREGS (regno, mode) == nregs
721 && HARD_REGNO_MODE_OK (regno, mode))
722 return mode;
723 }
ca4aac00
DE
724
725 /* We can't find a mode valid for this register. */
726 return VOIDmode;
54dac99e
RK
727}
728
729/* Specify the usage characteristics of the register named NAME.
730 It should be a fixed register if FIXED and a
731 call-used register if CALL_USED. */
732
733void
734fix_register (name, fixed, call_used)
ec0ce6e2 735 const char *name;
54dac99e
RK
736 int fixed, call_used;
737{
738 int i;
739
740 /* Decode the name and update the primary form of
741 the register info. */
742
e5c90c23
TW
743 if ((i = decode_reg_name (name)) >= 0)
744 {
cb2fdc84
GRK
745 if ((i == STACK_POINTER_REGNUM
746#ifdef HARD_FRAME_POINTER_REGNUM
747 || i == HARD_FRAME_POINTER_REGNUM
748#else
749 || i == FRAME_POINTER_REGNUM
750#endif
751 )
752 && (fixed == 0 || call_used == 0))
753 {
6f7d635c 754 static const char * const what_option[2][2] = {
7f7f8214
KG
755 { "call-saved", "call-used" },
756 { "no-such-option", "fixed" }};
cb2fdc84
GRK
757
758 error ("can't use '%s' as a %s register", name,
759 what_option[fixed][call_used]);
760 }
761 else
762 {
763 fixed_regs[i] = fixed;
764 call_used_regs[i] = call_used;
ec523c2f 765#ifdef CALL_REALLY_USED_REGISTERS
fc1296b7
AM
766 if (fixed == 0)
767 call_really_used_regs[i] = call_used;
d3259baa 768#endif
cb2fdc84 769 }
e5c90c23
TW
770 }
771 else
54dac99e
RK
772 {
773 warning ("unknown register name: %s", name);
54dac99e
RK
774 }
775}
614f68e2
RK
776
777/* Mark register number I as global. */
778
779void
780globalize_reg (i)
781 int i;
782{
c07c7c9d 783 if (fixed_regs[i] == 0 && no_global_reg_vars)
6c85df69
AH
784 error ("global register variable follows a function definition");
785
614f68e2
RK
786 if (global_regs[i])
787 {
788 warning ("register used for two global register variables");
789 return;
790 }
791
792 if (call_used_regs[i] && ! fixed_regs[i])
793 warning ("call-clobbered register used for global register variable");
794
795 global_regs[i] = 1;
796
797 /* If already fixed, nothing else to do. */
798 if (fixed_regs[i])
799 return;
800
801 fixed_regs[i] = call_used_regs[i] = call_fixed_regs[i] = 1;
802 n_non_fixed_regs--;
803
804 SET_HARD_REG_BIT (fixed_reg_set, i);
805 SET_HARD_REG_BIT (call_used_reg_set, i);
806 SET_HARD_REG_BIT (call_fixed_reg_set, i);
807}
54dac99e
RK
808\f
809/* Now the data and code for the `regclass' pass, which happens
810 just before local-alloc. */
811
e4600702
RK
812/* The `costs' struct records the cost of using a hard register of each class
813 and of using memory for each pseudo. We use this data to set up
814 register class preferences. */
54dac99e 815
e4600702 816struct costs
54dac99e 817{
e4600702
RK
818 int cost[N_REG_CLASSES];
819 int mem_cost;
54dac99e
RK
820};
821
9ffc5a70
JH
822/* Structure used to record preferrences of given pseudo. */
823struct reg_pref
824{
825 /* (enum reg_class) prefclass is the preferred class. */
826 char prefclass;
827
828 /* altclass is a register class that we should use for allocating
829 pseudo if no register in the preferred class is available.
830 If no register in this class is available, memory is preferred.
831
832 It might appear to be more general to have a bitmask of classes here,
833 but since it is recommended that there be a class corresponding to the
834 union of most major pair of classes, that generality is not required. */
835 char altclass;
836};
837
e4600702
RK
838/* Record the cost of each class for each pseudo. */
839
840static struct costs *costs;
841
61719ba7
BS
842/* Initialized once, and used to initialize cost values for each insn. */
843
844static struct costs init_cost;
845
9ffc5a70 846/* Record preferrences of each pseudo.
54dac99e
RK
847 This is available after `regclass' is run. */
848
9ffc5a70 849static struct reg_pref *reg_pref;
54d23420 850
dc297297 851/* Allocated buffers for reg_pref. */
54dac99e 852
9ffc5a70 853static struct reg_pref *reg_pref_buffer;
6feacd09 854
9401afe3 855/* Frequency of executions of current insn. */
54d23420 856
9401afe3 857static int frequency;
54d23420 858
13536812
KG
859static rtx scan_one_insn PARAMS ((rtx, int));
860static void record_operand_costs PARAMS ((rtx, struct costs *, struct reg_pref *));
861static void dump_regclass PARAMS ((FILE *));
862static void record_reg_classes PARAMS ((int, int, rtx *, enum machine_mode *,
e79f71f7 863 const char **, rtx,
f741a71c 864 struct costs *, struct reg_pref *));
13536812 865static int copy_cost PARAMS ((rtx, enum machine_mode,
08d95f91 866 enum reg_class, int));
13536812 867static void record_address_regs PARAMS ((rtx, enum reg_class, int));
1d300e19 868#ifdef FORBIDDEN_INC_DEC_CLASSES
13536812 869static int auto_inc_dec_reg_p PARAMS ((rtx, enum machine_mode));
1d300e19 870#endif
770ae6cc 871static void reg_scan_mark_refs PARAMS ((rtx, rtx, int, unsigned int));
54dac99e
RK
872
873/* Return the reg_class in which pseudo reg number REGNO is best allocated.
874 This function is sometimes called before the info has been computed.
875 When that happens, just return GENERAL_REGS, which is innocuous. */
876
877enum reg_class
878reg_preferred_class (regno)
879 int regno;
880{
9ffc5a70 881 if (reg_pref == 0)
54dac99e 882 return GENERAL_REGS;
9ffc5a70 883 return (enum reg_class) reg_pref[regno].prefclass;
54dac99e
RK
884}
885
e4600702
RK
886enum reg_class
887reg_alternate_class (regno)
b729186a 888 int regno;
54dac99e 889{
9ffc5a70 890 if (reg_pref == 0)
e4600702
RK
891 return ALL_REGS;
892
9ffc5a70 893 return (enum reg_class) reg_pref[regno].altclass;
54dac99e
RK
894}
895
61719ba7 896/* Initialize some global data for this pass. */
54dac99e
RK
897
898void
899regclass_init ()
900{
61719ba7
BS
901 int i;
902
903 init_cost.mem_cost = 10000;
904 for (i = 0; i < N_REG_CLASSES; i++)
905 init_cost.cost[i] = 10000;
906
907 /* This prevents dump_flow_info from losing if called
908 before regclass is run. */
9ffc5a70 909 reg_pref = NULL;
6c85df69 910
dc297297 911 /* No more global register variables may be declared. */
6c85df69 912 no_global_reg_vars = 1;
54dac99e 913}
246fd41f
JH
914\f
915/* Dump register costs. */
915b80ed 916static void
246fd41f
JH
917dump_regclass (dump)
918 FILE *dump;
919{
920 static const char *const reg_class_names[] = REG_CLASS_NAMES;
921 int i;
922 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
923 {
dbbbbf3b 924 int /* enum reg_class */ class;
246fd41f
JH
925 if (REG_N_REFS (i))
926 {
f741a71c 927 fprintf (dump, " Register %i costs:", i);
dbbbbf3b
JDA
928 for (class = 0; class < (int) N_REG_CLASSES; class++)
929 if (contains_reg_of_mode [(enum reg_class) class][PSEUDO_REGNO_MODE (i)]
6df26b8f 930#ifdef FORBIDDEN_INC_DEC_CLASSES
dbbbbf3b
JDA
931 && (!in_inc_dec[i]
932 || !forbidden_inc_dec_class[(enum reg_class) class])
6df26b8f
JH
933#endif
934#ifdef CLASS_CANNOT_CHANGE_MODE
935 && (!REGNO_REG_SET_P (reg_changes_mode, i)
dbbbbf3b 936 || class_can_change_mode [(enum reg_class) class])
6df26b8f
JH
937#endif
938 )
dbbbbf3b
JDA
939 fprintf (dump, " %s:%i", reg_class_names[class],
940 costs[i].cost[(enum reg_class) class]);
f741a71c 941 fprintf (dump, " MEM:%i\n", costs[i].mem_cost);
246fd41f
JH
942 }
943 }
944}
f741a71c
JH
945\f
946
947/* Calculate the costs of insn operands. */
948
949static void
950record_operand_costs (insn, op_costs, reg_pref)
951 rtx insn;
952 struct costs *op_costs;
953 struct reg_pref *reg_pref;
954{
955 const char *constraints[MAX_RECOG_OPERANDS];
956 enum machine_mode modes[MAX_RECOG_OPERANDS];
f741a71c
JH
957 int i;
958
959 for (i = 0; i < recog_data.n_operands; i++)
960 {
961 constraints[i] = recog_data.constraints[i];
962 modes[i] = recog_data.operand_mode[i];
963 }
f741a71c
JH
964
965 /* If we get here, we are set up to record the costs of all the
966 operands for this insn. Start by initializing the costs.
967 Then handle any address registers. Finally record the desired
968 classes for any pseudos, doing it twice if some pair of
969 operands are commutative. */
970
971 for (i = 0; i < recog_data.n_operands; i++)
972 {
973 op_costs[i] = init_cost;
974
975 if (GET_CODE (recog_data.operand[i]) == SUBREG)
976 {
977 rtx inner = SUBREG_REG (recog_data.operand[i]);
02188693
RH
978#ifdef CLASS_CANNOT_CHANGE_MODE
979 if (GET_CODE (inner) == REG
980 && CLASS_CANNOT_CHANGE_MODE_P (modes[i], GET_MODE (inner)))
981 SET_REGNO_REG_SET (reg_changes_mode, REGNO (inner));
9ef07cf1 982#endif
f741a71c
JH
983 recog_data.operand[i] = inner;
984 }
985
986 if (GET_CODE (recog_data.operand[i]) == MEM)
987 record_address_regs (XEXP (recog_data.operand[i], 0),
9401afe3 988 BASE_REG_CLASS, frequency * 2);
f741a71c
JH
989 else if (constraints[i][0] == 'p')
990 record_address_regs (recog_data.operand[i],
9401afe3 991 BASE_REG_CLASS, frequency * 2);
f741a71c
JH
992 }
993
994 /* Check for commutative in a separate loop so everything will
995 have been initialized. We must do this even if one operand
996 is a constant--see addsi3 in m68k.md. */
997
998 for (i = 0; i < (int) recog_data.n_operands - 1; i++)
999 if (constraints[i][0] == '%')
1000 {
1001 const char *xconstraints[MAX_RECOG_OPERANDS];
1002 int j;
246fd41f 1003
f741a71c
JH
1004 /* Handle commutative operands by swapping the constraints.
1005 We assume the modes are the same. */
1006
1007 for (j = 0; j < recog_data.n_operands; j++)
1008 xconstraints[j] = constraints[j];
1009
1010 xconstraints[i] = constraints[i+1];
1011 xconstraints[i+1] = constraints[i];
1012 record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
e79f71f7 1013 recog_data.operand, modes,
f741a71c
JH
1014 xconstraints, insn, op_costs, reg_pref);
1015 }
1016
1017 record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
e79f71f7 1018 recog_data.operand, modes,
f741a71c
JH
1019 constraints, insn, op_costs, reg_pref);
1020}
54dac99e 1021\f
61719ba7
BS
1022/* Subroutine of regclass, processes one insn INSN. Scan it and record each
1023 time it would save code to put a certain register in a certain class.
1024 PASS, when nonzero, inhibits some optimizations which need only be done
1025 once.
1026 Return the last insn processed, so that the scan can be continued from
1027 there. */
1028
1029static rtx
1030scan_one_insn (insn, pass)
1031 rtx insn;
1032 int pass;
1033{
1034 enum rtx_code code = GET_CODE (insn);
1035 enum rtx_code pat_code;
0eadeb15 1036 rtx set, note;
61719ba7 1037 int i, j;
f741a71c 1038 struct costs op_costs[MAX_RECOG_OPERANDS];
61719ba7 1039
61719ba7
BS
1040 if (GET_RTX_CLASS (code) != 'i')
1041 return insn;
1042
1043 pat_code = GET_CODE (PATTERN (insn));
1044 if (pat_code == USE
1045 || pat_code == CLOBBER
1046 || pat_code == ASM_INPUT
1047 || pat_code == ADDR_VEC
1048 || pat_code == ADDR_DIFF_VEC)
1049 return insn;
1050
0eadeb15
BS
1051 set = single_set (insn);
1052 extract_insn (insn);
1053
0eadeb15
BS
1054 /* If this insn loads a parameter from its stack slot, then
1055 it represents a savings, rather than a cost, if the
1056 parameter is stored in memory. Record this fact. */
61719ba7 1057
0eadeb15
BS
1058 if (set != 0 && GET_CODE (SET_DEST (set)) == REG
1059 && GET_CODE (SET_SRC (set)) == MEM
1060 && (note = find_reg_note (insn, REG_EQUIV,
1061 NULL_RTX)) != 0
1062 && GET_CODE (XEXP (note, 0)) == MEM)
1063 {
1064 costs[REGNO (SET_DEST (set))].mem_cost
1065 -= (MEMORY_MOVE_COST (GET_MODE (SET_DEST (set)),
1066 GENERAL_REGS, 1)
9401afe3 1067 * frequency);
0eadeb15 1068 record_address_regs (XEXP (SET_SRC (set), 0),
9401afe3 1069 BASE_REG_CLASS, frequency * 2);
0eadeb15
BS
1070 return insn;
1071 }
61719ba7 1072
0eadeb15
BS
1073 /* Improve handling of two-address insns such as
1074 (set X (ashift CONST Y)) where CONST must be made to
1075 match X. Change it into two insns: (set X CONST)
1076 (set X (ashift X Y)). If we left this for reloading, it
1077 would probably get three insns because X and Y might go
1078 in the same place. This prevents X and Y from receiving
1079 the same hard reg.
1080
1081 We can only do this if the modes of operands 0 and 1
1082 (which might not be the same) are tieable and we only need
1083 do this during our first pass. */
1084
1085 if (pass == 0 && optimize
1ccbefce
RH
1086 && recog_data.n_operands >= 3
1087 && recog_data.constraints[1][0] == '0'
1088 && recog_data.constraints[1][1] == 0
1089 && CONSTANT_P (recog_data.operand[1])
1090 && ! rtx_equal_p (recog_data.operand[0], recog_data.operand[1])
1091 && ! rtx_equal_p (recog_data.operand[0], recog_data.operand[2])
1092 && GET_CODE (recog_data.operand[0]) == REG
1093 && MODES_TIEABLE_P (GET_MODE (recog_data.operand[0]),
1094 recog_data.operand_mode[1]))
0eadeb15
BS
1095 {
1096 rtx previnsn = prev_real_insn (insn);
1097 rtx dest
1ccbefce
RH
1098 = gen_lowpart (recog_data.operand_mode[1],
1099 recog_data.operand[0]);
0eadeb15 1100 rtx newinsn
1ccbefce 1101 = emit_insn_before (gen_move_insn (dest, recog_data.operand[1]), insn);
61719ba7 1102
0eadeb15
BS
1103 /* If this insn was the start of a basic block,
1104 include the new insn in that block.
1105 We need not check for code_label here;
1106 while a basic block can start with a code_label,
1107 INSN could not be at the beginning of that block. */
1108 if (previnsn == 0 || GET_CODE (previnsn) == JUMP_INSN)
61719ba7 1109 {
0eadeb15
BS
1110 int b;
1111 for (b = 0; b < n_basic_blocks; b++)
3b413743
RH
1112 if (insn == BLOCK_HEAD (b))
1113 BLOCK_HEAD (b) = newinsn;
61719ba7
BS
1114 }
1115
0eadeb15 1116 /* This makes one more setting of new insns's dest. */
1ccbefce 1117 REG_N_SETS (REGNO (recog_data.operand[0]))++;
d3c7d45e 1118 REG_N_REFS (REGNO (recog_data.operand[0]))++;
9401afe3 1119 REG_FREQ (REGNO (recog_data.operand[0])) += frequency;
61719ba7 1120
1ccbefce 1121 *recog_data.operand_loc[1] = recog_data.operand[0];
d3c7d45e 1122 REG_N_REFS (REGNO (recog_data.operand[0]))++;
9401afe3 1123 REG_FREQ (REGNO (recog_data.operand[0])) += frequency;
1ccbefce
RH
1124 for (i = recog_data.n_dups - 1; i >= 0; i--)
1125 if (recog_data.dup_num[i] == 1)
d3c7d45e
AO
1126 {
1127 *recog_data.dup_loc[i] = recog_data.operand[0];
1128 REG_N_REFS (REGNO (recog_data.operand[0]))++;
9401afe3 1129 REG_FREQ (REGNO (recog_data.operand[0])) += frequency;
d3c7d45e 1130 }
61719ba7 1131
0eadeb15 1132 return PREV_INSN (newinsn);
61719ba7
BS
1133 }
1134
4963c995 1135 record_operand_costs (insn, op_costs, reg_pref);
61719ba7
BS
1136
1137 /* Now add the cost for each operand to the total costs for
1138 its register. */
1139
1ccbefce
RH
1140 for (i = 0; i < recog_data.n_operands; i++)
1141 if (GET_CODE (recog_data.operand[i]) == REG
1142 && REGNO (recog_data.operand[i]) >= FIRST_PSEUDO_REGISTER)
61719ba7 1143 {
1ccbefce 1144 int regno = REGNO (recog_data.operand[i]);
61719ba7
BS
1145 struct costs *p = &costs[regno], *q = &op_costs[i];
1146
9401afe3 1147 p->mem_cost += q->mem_cost * frequency;
61719ba7 1148 for (j = 0; j < N_REG_CLASSES; j++)
9401afe3 1149 p->cost[j] += q->cost[j] * frequency;
61719ba7
BS
1150 }
1151
1152 return insn;
1153}
1154
54dac99e
RK
1155/* This is a pass of the compiler that scans all instructions
1156 and calculates the preferred class for each pseudo-register.
1157 This information can be accessed later by calling `reg_preferred_class'.
1158 This pass comes just before local register allocation. */
1159
1160void
246fd41f 1161regclass (f, nregs, dump)
54dac99e
RK
1162 rtx f;
1163 int nregs;
246fd41f 1164 FILE *dump;
54dac99e 1165{
54dac99e 1166 register rtx insn;
61719ba7 1167 register int i;
e4600702 1168 int pass;
54dac99e
RK
1169
1170 init_recog ();
1171
56a65848 1172 costs = (struct costs *) xmalloc (nregs * sizeof (struct costs));
533d0835 1173
02188693
RH
1174#ifdef CLASS_CANNOT_CHANGE_MODE
1175 reg_changes_mode = BITMAP_XMALLOC();
e79f71f7
GK
1176#endif
1177
533d0835
RK
1178#ifdef FORBIDDEN_INC_DEC_CLASSES
1179
4da896b2 1180 in_inc_dec = (char *) xmalloc (nregs);
533d0835
RK
1181
1182 /* Initialize information about which register classes can be used for
1183 pseudos that are auto-incremented or auto-decremented. It would
1184 seem better to put this in init_reg_sets, but we need to be able
1185 to allocate rtx, which we can't do that early. */
1186
1187 for (i = 0; i < N_REG_CLASSES; i++)
1188 {
38a448ca 1189 rtx r = gen_rtx_REG (VOIDmode, 0);
533d0835 1190 enum machine_mode m;
8c368ee2 1191 register int j;
533d0835
RK
1192
1193 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
1194 if (TEST_HARD_REG_BIT (reg_class_contents[i], j))
1195 {
1196 REGNO (r) = j;
1197
1198 for (m = VOIDmode; (int) m < (int) MAX_MACHINE_MODE;
808043ed 1199 m = (enum machine_mode) ((int) m + 1))
533d0835
RK
1200 if (HARD_REGNO_MODE_OK (j, m))
1201 {
1202 PUT_MODE (r, m);
08d95f91
RK
1203
1204 /* If a register is not directly suitable for an
1205 auto-increment or decrement addressing mode and
1206 requires secondary reloads, disallow its class from
1207 being used in such addresses. */
1208
1209 if ((0
041d7180
JL
1210#ifdef SECONDARY_RELOAD_CLASS
1211 || (SECONDARY_RELOAD_CLASS (BASE_REG_CLASS, m, r)
1212 != NO_REGS)
1213#else
533d0835 1214#ifdef SECONDARY_INPUT_RELOAD_CLASS
08d95f91
RK
1215 || (SECONDARY_INPUT_RELOAD_CLASS (BASE_REG_CLASS, m, r)
1216 != NO_REGS)
533d0835
RK
1217#endif
1218#ifdef SECONDARY_OUTPUT_RELOAD_CLASS
08d95f91
RK
1219 || (SECONDARY_OUTPUT_RELOAD_CLASS (BASE_REG_CLASS, m, r)
1220 != NO_REGS)
041d7180 1221#endif
533d0835 1222#endif
08d95f91
RK
1223 )
1224 && ! auto_inc_dec_reg_p (r, m))
533d0835
RK
1225 forbidden_inc_dec_class[i] = 1;
1226 }
1227 }
1228 }
1229#endif /* FORBIDDEN_INC_DEC_CLASSES */
1230
e4600702
RK
1231 /* Normally we scan the insns once and determine the best class to use for
1232 each register. However, if -fexpensive_optimizations are on, we do so
1233 twice, the second time using the tentative best classes to guide the
1234 selection. */
54dac99e 1235
e4600702
RK
1236 for (pass = 0; pass <= flag_expensive_optimizations; pass++)
1237 {
954d8e99 1238 int index;
f741a71c
JH
1239
1240 if (dump)
1241 fprintf (dump, "\n\nPass %i\n\n",pass);
e4600702 1242 /* Zero out our accumulation of the cost of each class for each reg. */
54dac99e 1243
961192e1 1244 memset ((char *) costs, 0, nregs * sizeof (struct costs));
54dac99e 1245
533d0835 1246#ifdef FORBIDDEN_INC_DEC_CLASSES
961192e1 1247 memset (in_inc_dec, 0, nregs);
533d0835
RK
1248#endif
1249
e4600702
RK
1250 /* Scan the instructions and record each time it would
1251 save code to put a certain register in a certain class. */
1252
1f01879e 1253 if (!optimize)
54dac99e 1254 {
a08b2604 1255 frequency = REG_FREQ_MAX;
1f01879e
JH
1256 for (insn = f; insn; insn = NEXT_INSN (insn))
1257 insn = scan_one_insn (insn, pass);
54dac99e 1258 }
1f01879e
JH
1259 else
1260 for (index = 0; index < n_basic_blocks; index++)
1261 {
1262 basic_block bb = BASIC_BLOCK (index);
1263
1264 /* Show that an insn inside a loop is likely to be executed three
9b15c17f
RH
1265 times more than insns outside a loop. This is much more
1266 aggressive than the assumptions made elsewhere and is being
1267 tried as an experiment. */
a08b2604 1268 frequency = REG_FREQ_FROM_BB (bb);
1f01879e
JH
1269 for (insn = bb->head; ; insn = NEXT_INSN (insn))
1270 {
1271 insn = scan_one_insn (insn, pass);
1272 if (insn == bb->end)
1273 break;
1274 }
1275 }
61719ba7 1276
e4600702
RK
1277 /* Now for each register look at how desirable each class is
1278 and find which class is preferred. Store that in
9ffc5a70 1279 `prefclass'. Record in `altclass' the largest register
e4600702 1280 class any of whose registers is better than memory. */
54dac99e 1281
e4600702 1282 if (pass == 0)
9ffc5a70 1283 reg_pref = reg_pref_buffer;
54dac99e 1284
f741a71c
JH
1285 if (dump)
1286 {
1287 dump_regclass (dump);
4963c995 1288 fprintf (dump,"\n");
f741a71c 1289 }
e4600702 1290 for (i = FIRST_PSEUDO_REGISTER; i < nregs; i++)
54dac99e 1291 {
ca3c6eae 1292 register int best_cost = (1 << (HOST_BITS_PER_INT - 2)) - 1;
e4600702
RK
1293 enum reg_class best = ALL_REGS, alt = NO_REGS;
1294 /* This is an enum reg_class, but we call it an int
1295 to save lots of casts. */
1296 register int class;
1297 register struct costs *p = &costs[i];
1298
64615302
JH
1299 /* In non-optimizing compilation REG_N_REFS is not initialized
1300 yet. */
1301 if (optimize && !REG_N_REFS (i))
f741a71c
JH
1302 continue;
1303
e4600702 1304 for (class = (int) ALL_REGS - 1; class > 0; class--)
54dac99e 1305 {
533d0835
RK
1306 /* Ignore classes that are too small for this operand or
1307 invalid for a operand that was auto-incremented. */
6df26b8f 1308 if (!contains_reg_of_mode [class][PSEUDO_REGNO_MODE (i)]
533d0835
RK
1309#ifdef FORBIDDEN_INC_DEC_CLASSES
1310 || (in_inc_dec[i] && forbidden_inc_dec_class[class])
e79f71f7 1311#endif
02188693
RH
1312#ifdef CLASS_CANNOT_CHANGE_MODE
1313 || (REGNO_REG_SET_P (reg_changes_mode, i)
1314 && ! class_can_change_mode [class])
533d0835
RK
1315#endif
1316 )
e4600702
RK
1317 ;
1318 else if (p->cost[class] < best_cost)
1319 {
1320 best_cost = p->cost[class];
1321 best = (enum reg_class) class;
1322 }
1323 else if (p->cost[class] == best_cost)
1324 best = reg_class_subunion[(int)best][class];
54dac99e 1325 }
54dac99e 1326
e4600702
RK
1327 /* Record the alternate register class; i.e., a class for which
1328 every register in it is better than using memory. If adding a
1329 class would make a smaller class (i.e., no union of just those
1330 classes exists), skip that class. The major unions of classes
1331 should be provided as a register class. Don't do this if we
1332 will be doing it again later. */
1333
f741a71c 1334 if ((pass == 1 || dump) || ! flag_expensive_optimizations)
e4600702
RK
1335 for (class = 0; class < N_REG_CLASSES; class++)
1336 if (p->cost[class] < p->mem_cost
77edb222 1337 && (reg_class_size[(int) reg_class_subunion[(int) alt][class]]
533d0835
RK
1338 > reg_class_size[(int) alt])
1339#ifdef FORBIDDEN_INC_DEC_CLASSES
1340 && ! (in_inc_dec[i] && forbidden_inc_dec_class[class])
e79f71f7 1341#endif
02188693
RH
1342#ifdef CLASS_CANNOT_CHANGE_MODE
1343 && ! (REGNO_REG_SET_P (reg_changes_mode, i)
1344 && ! class_can_change_mode [class])
533d0835
RK
1345#endif
1346 )
e4600702
RK
1347 alt = reg_class_subunion[(int) alt][class];
1348
1349 /* If we don't add any classes, nothing to try. */
1350 if (alt == best)
995d54dd 1351 alt = NO_REGS;
e4600702 1352
f741a71c
JH
1353 if (dump
1354 && (reg_pref[i].prefclass != (int) best
1355 || reg_pref[i].altclass != (int) alt))
1356 {
1357 static const char *const reg_class_names[] = REG_CLASS_NAMES;
4963c995 1358 fprintf (dump, " Register %i", i);
f741a71c
JH
1359 if (alt == ALL_REGS || best == ALL_REGS)
1360 fprintf (dump, " pref %s\n", reg_class_names[(int) best]);
1361 else if (alt == NO_REGS)
1362 fprintf (dump, " pref %s or none\n", reg_class_names[(int) best]);
1363 else
1364 fprintf (dump, " pref %s, else %s\n",
1365 reg_class_names[(int) best],
1366 reg_class_names[(int) alt]);
1367 }
1368
e4600702 1369 /* We cast to (int) because (char) hits bugs in some compilers. */
9ffc5a70
JH
1370 reg_pref[i].prefclass = (int) best;
1371 reg_pref[i].altclass = (int) alt;
e4600702 1372 }
54dac99e 1373 }
56a65848 1374
4da896b2
MM
1375#ifdef FORBIDDEN_INC_DEC_CLASSES
1376 free (in_inc_dec);
e79f71f7 1377#endif
02188693
RH
1378#ifdef CLASS_CANNOT_CHANGE_MODE
1379 BITMAP_XFREE (reg_changes_mode);
4da896b2 1380#endif
56a65848 1381 free (costs);
54dac99e
RK
1382}
1383\f
e4600702
RK
1384/* Record the cost of using memory or registers of various classes for
1385 the operands in INSN.
54dac99e 1386
e4600702 1387 N_ALTS is the number of alternatives.
54dac99e 1388
e4600702
RK
1389 N_OPS is the number of operands.
1390
1391 OPS is an array of the operands.
1392
1393 MODES are the modes of the operands, in case any are VOIDmode.
1394
1395 CONSTRAINTS are the constraints to use for the operands. This array
1396 is modified by this procedure.
1397
1398 This procedure works alternative by alternative. For each alternative
1399 we assume that we will be able to allocate all pseudos to their ideal
1400 register class and calculate the cost of using that alternative. Then
1401 we compute for each operand that is a pseudo-register, the cost of
1402 having the pseudo allocated to each register class and using it in that
1403 alternative. To this cost is added the cost of the alternative.
1404
1405 The cost of each class for this insn is its lowest cost among all the
1406 alternatives. */
1407
1408static void
e79f71f7 1409record_reg_classes (n_alts, n_ops, ops, modes,
f741a71c 1410 constraints, insn, op_costs, reg_pref)
e4600702
RK
1411 int n_alts;
1412 int n_ops;
1413 rtx *ops;
1414 enum machine_mode *modes;
9b3142b3 1415 const char **constraints;
e4600702 1416 rtx insn;
f741a71c
JH
1417 struct costs *op_costs;
1418 struct reg_pref *reg_pref;
54dac99e 1419{
e4600702 1420 int alt;
e4600702 1421 int i, j;
ec2d92af 1422 rtx set;
e4600702 1423
e4600702
RK
1424 /* Process each alternative, each time minimizing an operand's cost with
1425 the cost for each operand in that alternative. */
54dac99e 1426
e4600702 1427 for (alt = 0; alt < n_alts; alt++)
54dac99e 1428 {
e4600702
RK
1429 struct costs this_op_costs[MAX_RECOG_OPERANDS];
1430 int alt_fail = 0;
1431 int alt_cost = 0;
1432 enum reg_class classes[MAX_RECOG_OPERANDS];
da2c0219 1433 int allows_mem[MAX_RECOG_OPERANDS];
e4600702 1434 int class;
54dac99e 1435
e4600702
RK
1436 for (i = 0; i < n_ops; i++)
1437 {
9b3142b3 1438 const char *p = constraints[i];
e4600702
RK
1439 rtx op = ops[i];
1440 enum machine_mode mode = modes[i];
94e6f783 1441 int allows_addr = 0;
e4600702 1442 int win = 0;
e51712db 1443 unsigned char c;
54dac99e 1444
7405d9a1
DE
1445 /* Initially show we know nothing about the register class. */
1446 classes[i] = NO_REGS;
da2c0219 1447 allows_mem[i] = 0;
7405d9a1 1448
e4600702
RK
1449 /* If this operand has no constraints at all, we can conclude
1450 nothing about it since anything is valid. */
54dac99e 1451
e4600702
RK
1452 if (*p == 0)
1453 {
1454 if (GET_CODE (op) == REG && REGNO (op) >= FIRST_PSEUDO_REGISTER)
961192e1 1455 memset ((char *) &this_op_costs[i], 0, sizeof this_op_costs[i]);
54dac99e 1456
e4600702
RK
1457 continue;
1458 }
54dac99e 1459
7405d9a1
DE
1460 /* If this alternative is only relevant when this operand
1461 matches a previous operand, we do different things depending
1462 on whether this operand is a pseudo-reg or not. We must process
1463 any modifiers for the operand before we can make this test. */
1464
8c368ee2 1465 while (*p == '%' || *p == '=' || *p == '+' || *p == '&')
0eadeb15 1466 p++;
8c368ee2 1467
e4600702
RK
1468 if (p[0] >= '0' && p[0] <= '0' + i && (p[1] == ',' || p[1] == 0))
1469 {
da2c0219
RK
1470 /* Copy class and whether memory is allowed from the matching
1471 alternative. Then perform any needed cost computations
1472 and/or adjustments. */
e4600702
RK
1473 j = p[0] - '0';
1474 classes[i] = classes[j];
da2c0219 1475 allows_mem[i] = allows_mem[j];
e4600702
RK
1476
1477 if (GET_CODE (op) != REG || REGNO (op) < FIRST_PSEUDO_REGISTER)
1478 {
1479 /* If this matches the other operand, we have no added
dc903608 1480 cost and we win. */
e4600702 1481 if (rtx_equal_p (ops[j], op))
dc903608 1482 win = 1;
e4600702 1483
77e67eac
RK
1484 /* If we can put the other operand into a register, add to
1485 the cost of this alternative the cost to copy this
1486 operand to the register used for the other operand. */
e4600702 1487
dc903608 1488 else if (classes[j] != NO_REGS)
77e67eac 1489 alt_cost += copy_cost (op, mode, classes[j], 1), win = 1;
e4600702 1490 }
07d8ca2d
RS
1491 else if (GET_CODE (ops[j]) != REG
1492 || REGNO (ops[j]) < FIRST_PSEUDO_REGISTER)
1493 {
1494 /* This op is a pseudo but the one it matches is not. */
1495
1496 /* If we can't put the other operand into a register, this
1497 alternative can't be used. */
1498
1499 if (classes[j] == NO_REGS)
1500 alt_fail = 1;
e4600702 1501
07d8ca2d
RS
1502 /* Otherwise, add to the cost of this alternative the cost
1503 to copy the other operand to the register used for this
1504 operand. */
1505
1506 else
1507 alt_cost += copy_cost (ops[j], mode, classes[j], 1);
1508 }
e4600702
RK
1509 else
1510 {
da2c0219
RK
1511 /* The costs of this operand are not the same as the other
1512 operand since move costs are not symmetric. Moreover,
1513 if we cannot tie them, this alternative needs to do a
1514 copy, which is one instruction. */
1515
1516 struct costs *pp = &this_op_costs[i];
1517
1518 for (class = 0; class < N_REG_CLASSES; class++)
1519 pp->cost[class]
d5e2075d 1520 = ((recog_data.operand_type[i] != OP_OUT
e56b4594 1521 ? may_move_in_cost[mode][class][(int) classes[i]]
d5e2075d
JH
1522 : 0)
1523 + (recog_data.operand_type[i] != OP_IN
e56b4594 1524 ? may_move_out_cost[mode][(int) classes[i]][class]
d5e2075d 1525 : 0));
da2c0219
RK
1526
1527 /* If the alternative actually allows memory, make things
1528 a bit cheaper since we won't need an extra insn to
1529 load it. */
1530
1531 pp->mem_cost
d5e2075d
JH
1532 = ((recog_data.operand_type[i] != OP_IN
1533 ? MEMORY_MOVE_COST (mode, classes[i], 0)
1534 : 0)
1535 + (recog_data.operand_type[i] != OP_OUT
1536 ? MEMORY_MOVE_COST (mode, classes[i], 1)
1537 : 0) - allows_mem[i]);
da2c0219
RK
1538
1539 /* If we have assigned a class to this register in our
1540 first pass, add a cost to this alternative corresponding
1541 to what we would add if this register were not in the
1542 appropriate class. */
1543
9ffc5a70 1544 if (reg_pref)
da2c0219 1545 alt_cost
e56b4594
AO
1546 += (may_move_in_cost[mode]
1547 [(unsigned char) reg_pref[REGNO (op)].prefclass]
da2c0219 1548 [(int) classes[i]]);
e4600702 1549
37747c82
RK
1550 if (REGNO (ops[i]) != REGNO (ops[j])
1551 && ! find_reg_note (insn, REG_DEAD, op))
1552 alt_cost += 2;
e4600702 1553
347099d6 1554 /* This is in place of ordinary cost computation
1ddb342a
RK
1555 for this operand, so skip to the end of the
1556 alternative (should be just one character). */
1557 while (*p && *p++ != ',')
1558 ;
1559
1560 constraints[i] = p;
347099d6
RS
1561 continue;
1562 }
e4600702
RK
1563 }
1564
1565 /* Scan all the constraint letters. See if the operand matches
1566 any of the constraints. Collect the valid register classes
1567 and see if this operand accepts memory. */
1568
e4600702
RK
1569 while (*p && (c = *p++) != ',')
1570 switch (c)
1571 {
e4600702
RK
1572 case '*':
1573 /* Ignore the next letter for this pass. */
1574 p++;
1575 break;
1576
812f2051
R
1577 case '?':
1578 alt_cost += 2;
8c368ee2 1579 case '!': case '#': case '&':
e4600702 1580 case '0': case '1': case '2': case '3': case '4':
8c368ee2 1581 case '5': case '6': case '7': case '8': case '9':
94e6f783
DE
1582 break;
1583
e4600702 1584 case 'p':
94e6f783
DE
1585 allows_addr = 1;
1586 win = address_operand (op, GET_MODE (op));
46f40127
JL
1587 /* We know this operand is an address, so we want it to be
1588 allocated to a register that can be the base of an
1589 address, ie BASE_REG_CLASS. */
1590 classes[i]
1591 = reg_class_subunion[(int) classes[i]]
1592 [(int) BASE_REG_CLASS];
e4600702
RK
1593 break;
1594
1595 case 'm': case 'o': case 'V':
ac2a9454 1596 /* It doesn't seem worth distinguishing between offsettable
e4600702 1597 and non-offsettable addresses here. */
da2c0219 1598 allows_mem[i] = 1;
e4600702
RK
1599 if (GET_CODE (op) == MEM)
1600 win = 1;
1601 break;
1602
1603 case '<':
1604 if (GET_CODE (op) == MEM
1605 && (GET_CODE (XEXP (op, 0)) == PRE_DEC
1606 || GET_CODE (XEXP (op, 0)) == POST_DEC))
1607 win = 1;
1608 break;
1609
1610 case '>':
1611 if (GET_CODE (op) == MEM
1612 && (GET_CODE (XEXP (op, 0)) == PRE_INC
1613 || GET_CODE (XEXP (op, 0)) == POST_INC))
1614 win = 1;
1615 break;
1616
1617 case 'E':
7ac2547f 1618#ifndef REAL_ARITHMETIC
e4600702
RK
1619 /* Match any floating double constant, but only if
1620 we can examine the bits of it reliably. */
1621 if ((HOST_FLOAT_FORMAT != TARGET_FLOAT_FORMAT
37366632 1622 || HOST_BITS_PER_WIDE_INT != BITS_PER_WORD)
e4600702
RK
1623 && GET_MODE (op) != VOIDmode && ! flag_pretend_float)
1624 break;
7ac2547f 1625#endif
e4600702
RK
1626 if (GET_CODE (op) == CONST_DOUBLE)
1627 win = 1;
1628 break;
1629
1630 case 'F':
1631 if (GET_CODE (op) == CONST_DOUBLE)
1632 win = 1;
1633 break;
1634
1635 case 'G':
1636 case 'H':
1637 if (GET_CODE (op) == CONST_DOUBLE
1638 && CONST_DOUBLE_OK_FOR_LETTER_P (op, c))
1639 win = 1;
1640 break;
1641
1642 case 's':
1643 if (GET_CODE (op) == CONST_INT
1644 || (GET_CODE (op) == CONST_DOUBLE
1645 && GET_MODE (op) == VOIDmode))
1646 break;
1647 case 'i':
1648 if (CONSTANT_P (op)
1649#ifdef LEGITIMATE_PIC_OPERAND_P
1650 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
1651#endif
1652 )
1653 win = 1;
1654 break;
1655
1656 case 'n':
1657 if (GET_CODE (op) == CONST_INT
1658 || (GET_CODE (op) == CONST_DOUBLE
1659 && GET_MODE (op) == VOIDmode))
1660 win = 1;
1661 break;
1662
1663 case 'I':
1664 case 'J':
1665 case 'K':
1666 case 'L':
1667 case 'M':
1668 case 'N':
1669 case 'O':
1670 case 'P':
1671 if (GET_CODE (op) == CONST_INT
1672 && CONST_OK_FOR_LETTER_P (INTVAL (op), c))
1673 win = 1;
1674 break;
1675
1676 case 'X':
1677 win = 1;
1678 break;
54dac99e 1679
e4600702
RK
1680 case 'g':
1681 if (GET_CODE (op) == MEM
1682 || (CONSTANT_P (op)
1683#ifdef LEGITIMATE_PIC_OPERAND_P
1684 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
54dac99e 1685#endif
e4600702
RK
1686 ))
1687 win = 1;
da2c0219 1688 allows_mem[i] = 1;
e4600702
RK
1689 case 'r':
1690 classes[i]
1691 = reg_class_subunion[(int) classes[i]][(int) GENERAL_REGS];
1692 break;
1693
1694 default:
c2cba7a9
RH
1695 if (REG_CLASS_FROM_LETTER (c) != NO_REGS)
1696 classes[i]
1697 = reg_class_subunion[(int) classes[i]]
1698 [(int) REG_CLASS_FROM_LETTER (c)];
1699#ifdef EXTRA_CONSTRAINT
1700 else if (EXTRA_CONSTRAINT (op, c))
1701 win = 1;
1702#endif
1703 break;
e4600702
RK
1704 }
1705
1706 constraints[i] = p;
1707
1708 /* How we account for this operand now depends on whether it is a
1709 pseudo register or not. If it is, we first check if any
1710 register classes are valid. If not, we ignore this alternative,
1711 since we want to assume that all pseudos get allocated for
1712 register preferencing. If some register class is valid, compute
1713 the costs of moving the pseudo into that class. */
1714
1715 if (GET_CODE (op) == REG && REGNO (op) >= FIRST_PSEUDO_REGISTER)
4db18574 1716 {
e4600702 1717 if (classes[i] == NO_REGS)
94e6f783 1718 {
e79f71f7
GK
1719 /* We must always fail if the operand is a REG, but
1720 we did not find a suitable class.
1721
1722 Otherwise we may perform an uninitialized read
1723 from this_op_costs after the `continue' statement
1724 below. */
1725 alt_fail = 1;
94e6f783 1726 }
e4600702
RK
1727 else
1728 {
1729 struct costs *pp = &this_op_costs[i];
1730
1731 for (class = 0; class < N_REG_CLASSES; class++)
14a774a9 1732 pp->cost[class]
d5e2075d 1733 = ((recog_data.operand_type[i] != OP_OUT
e56b4594 1734 ? may_move_in_cost[mode][class][(int) classes[i]]
d5e2075d
JH
1735 : 0)
1736 + (recog_data.operand_type[i] != OP_IN
e56b4594 1737 ? may_move_out_cost[mode][(int) classes[i]][class]
d5e2075d 1738 : 0));
e4600702
RK
1739
1740 /* If the alternative actually allows memory, make things
1741 a bit cheaper since we won't need an extra insn to
1742 load it. */
1743
14a774a9 1744 pp->mem_cost
d5e2075d
JH
1745 = ((recog_data.operand_type[i] != OP_IN
1746 ? MEMORY_MOVE_COST (mode, classes[i], 0)
1747 : 0)
1748 + (recog_data.operand_type[i] != OP_OUT
1749 ? MEMORY_MOVE_COST (mode, classes[i], 1)
1750 : 0) - allows_mem[i]);
e4600702
RK
1751
1752 /* If we have assigned a class to this register in our
1753 first pass, add a cost to this alternative corresponding
1754 to what we would add if this register were not in the
1755 appropriate class. */
1756
9ffc5a70 1757 if (reg_pref)
e4600702 1758 alt_cost
e56b4594
AO
1759 += (may_move_in_cost[mode]
1760 [(unsigned char) reg_pref[REGNO (op)].prefclass]
14a774a9 1761 [(int) classes[i]]);
e4600702 1762 }
4db18574 1763 }
54dac99e 1764
e4600702
RK
1765 /* Otherwise, if this alternative wins, either because we
1766 have already determined that or if we have a hard register of
1767 the proper class, there is no cost for this alternative. */
54dac99e 1768
e4600702
RK
1769 else if (win
1770 || (GET_CODE (op) == REG
6f654776 1771 && reg_fits_class_p (op, classes[i], 0, GET_MODE (op))))
e4600702 1772 ;
54dac99e 1773
e4600702
RK
1774 /* If registers are valid, the cost of this alternative includes
1775 copying the object to and/or from a register. */
54dac99e 1776
e4600702
RK
1777 else if (classes[i] != NO_REGS)
1778 {
1ccbefce 1779 if (recog_data.operand_type[i] != OP_OUT)
e4600702 1780 alt_cost += copy_cost (op, mode, classes[i], 1);
54dac99e 1781
1ccbefce 1782 if (recog_data.operand_type[i] != OP_IN)
e4600702
RK
1783 alt_cost += copy_cost (op, mode, classes[i], 0);
1784 }
54dac99e 1785
e4600702
RK
1786 /* The only other way this alternative can be used is if this is a
1787 constant that could be placed into memory. */
1788
da2c0219 1789 else if (CONSTANT_P (op) && (allows_addr || allows_mem[i]))
cbd5b9a2 1790 alt_cost += MEMORY_MOVE_COST (mode, classes[i], 1);
e4600702
RK
1791 else
1792 alt_fail = 1;
1793 }
1794
1795 if (alt_fail)
1796 continue;
1797
1798 /* Finally, update the costs with the information we've calculated
1799 about this alternative. */
1800
1801 for (i = 0; i < n_ops; i++)
1802 if (GET_CODE (ops[i]) == REG
1803 && REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER)
54dac99e 1804 {
e4600702 1805 struct costs *pp = &op_costs[i], *qq = &this_op_costs[i];
1ccbefce 1806 int scale = 1 + (recog_data.operand_type[i] == OP_INOUT);
54dac99e 1807
e4600702
RK
1808 pp->mem_cost = MIN (pp->mem_cost,
1809 (qq->mem_cost + alt_cost) * scale);
54dac99e 1810
e4600702
RK
1811 for (class = 0; class < N_REG_CLASSES; class++)
1812 pp->cost[class] = MIN (pp->cost[class],
1813 (qq->cost[class] + alt_cost) * scale);
1814 }
1815 }
ec2d92af
RK
1816
1817 /* If this insn is a single set copying operand 1 to operand 0
accef103
JL
1818 and one operand is a pseudo with the other a hard reg or a pseudo
1819 that prefers a register that is in its own register class then
1820 we may want to adjust the cost of that register class to -1.
1821
1822 Avoid the adjustment if the source does not die to avoid stressing of
1823 register allocator by preferrencing two coliding registers into single
1824 class.
1825
1826 Also avoid the adjustment if a copy between registers of the class
1827 is expensive (ten times the cost of a default copy is considered
1828 arbitrarily expensive). This avoids losing when the preferred class
1829 is very expensive as the source of a copy instruction. */
ec2d92af
RK
1830
1831 if ((set = single_set (insn)) != 0
1832 && ops[0] == SET_DEST (set) && ops[1] == SET_SRC (set)
0dc0641b
JH
1833 && GET_CODE (ops[0]) == REG && GET_CODE (ops[1]) == REG
1834 && find_regno_note (insn, REG_DEAD, REGNO (ops[1])))
ec2d92af
RK
1835 for (i = 0; i <= 1; i++)
1836 if (REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER)
1837 {
770ae6cc 1838 unsigned int regno = REGNO (ops[!i]);
ec2d92af
RK
1839 enum machine_mode mode = GET_MODE (ops[!i]);
1840 int class;
770ae6cc 1841 unsigned int nr;
ec2d92af 1842
accef103
JL
1843 if (regno >= FIRST_PSEUDO_REGISTER && reg_pref != 0)
1844 {
1845 enum reg_class pref = reg_pref[regno].prefclass;
1846
1847 if ((reg_class_size[(unsigned char) pref]
1848 == CLASS_MAX_NREGS (pref, mode))
e56b4594 1849 && REGISTER_MOVE_COST (mode, pref, pref) < 10 * 2)
accef103
JL
1850 op_costs[i].cost[(unsigned char) pref] = -1;
1851 }
ec2d92af
RK
1852 else if (regno < FIRST_PSEUDO_REGISTER)
1853 for (class = 0; class < N_REG_CLASSES; class++)
1854 if (TEST_HARD_REG_BIT (reg_class_contents[class], regno)
1855 && reg_class_size[class] == CLASS_MAX_NREGS (class, mode))
4841ba4b
RK
1856 {
1857 if (reg_class_size[class] == 1)
1858 op_costs[i].cost[class] = -1;
1859 else
1860 {
770ae6cc 1861 for (nr = 0; nr < HARD_REGNO_NREGS (regno, mode); nr++)
4841ba4b 1862 {
770ae6cc
RK
1863 if (! TEST_HARD_REG_BIT (reg_class_contents[class],
1864 regno + nr))
4841ba4b
RK
1865 break;
1866 }
1867
770ae6cc 1868 if (nr == HARD_REGNO_NREGS (regno,mode))
4841ba4b
RK
1869 op_costs[i].cost[class] = -1;
1870 }
1871 }
ec2d92af 1872 }
54dac99e 1873}
e4600702
RK
1874\f
1875/* Compute the cost of loading X into (if TO_P is non-zero) or from (if
1876 TO_P is zero) a register of class CLASS in mode MODE.
1877
1878 X must not be a pseudo. */
1879
1880static int
1881copy_cost (x, mode, class, to_p)
1882 rtx x;
d0af450d 1883 enum machine_mode mode ATTRIBUTE_UNUSED;
e4600702 1884 enum reg_class class;
d0af450d 1885 int to_p ATTRIBUTE_UNUSED;
e4600702 1886{
29a82058 1887#ifdef HAVE_SECONDARY_RELOADS
e4600702 1888 enum reg_class secondary_class = NO_REGS;
29a82058 1889#endif
e4600702
RK
1890
1891 /* If X is a SCRATCH, there is actually nothing to move since we are
1892 assuming optimal allocation. */
1893
1894 if (GET_CODE (x) == SCRATCH)
1895 return 0;
1896
1897 /* Get the class we will actually use for a reload. */
1898 class = PREFERRED_RELOAD_CLASS (x, class);
1899
1900#ifdef HAVE_SECONDARY_RELOADS
1901 /* If we need a secondary reload (we assume here that we are using
1902 the secondary reload as an intermediate, not a scratch register), the
1903 cost is that to load the input into the intermediate register, then
1904 to copy them. We use a special value of TO_P to avoid recursion. */
1905
1906#ifdef SECONDARY_INPUT_RELOAD_CLASS
1907 if (to_p == 1)
1908 secondary_class = SECONDARY_INPUT_RELOAD_CLASS (class, mode, x);
1909#endif
1910
dd9f0e8f 1911#ifdef SECONDARY_OUTPUT_RELOAD_CLASS
e4600702
RK
1912 if (! to_p)
1913 secondary_class = SECONDARY_OUTPUT_RELOAD_CLASS (class, mode, x);
1914#endif
1915
1916 if (secondary_class != NO_REGS)
e56b4594 1917 return (move_cost[mode][(int) secondary_class][(int) class]
e4600702 1918 + copy_cost (x, mode, secondary_class, 2));
dd9f0e8f 1919#endif /* HAVE_SECONDARY_RELOADS */
e4600702
RK
1920
1921 /* For memory, use the memory move cost, for (hard) registers, use the
1922 cost to move between the register classes, and use 2 for everything
1923 else (constants). */
1924
1925 if (GET_CODE (x) == MEM || class == NO_REGS)
cbd5b9a2 1926 return MEMORY_MOVE_COST (mode, class, to_p);
54dac99e 1927
e4600702 1928 else if (GET_CODE (x) == REG)
e56b4594 1929 return move_cost[mode][(int) REGNO_REG_CLASS (REGNO (x))][(int) class];
e4600702
RK
1930
1931 else
1932 /* If this is a constant, we may eventually want to call rtx_cost here. */
b437f1a7 1933 return COSTS_N_INSNS (1);
e4600702
RK
1934}
1935\f
54dac99e
RK
1936/* Record the pseudo registers we must reload into hard registers
1937 in a subexpression of a memory address, X.
e4600702
RK
1938
1939 CLASS is the class that the register needs to be in and is either
1940 BASE_REG_CLASS or INDEX_REG_CLASS.
1941
1942 SCALE is twice the amount to multiply the cost by (it is twice so we
1943 can represent half-cost adjustments). */
54dac99e 1944
197d6480 1945static void
e4600702 1946record_address_regs (x, class, scale)
54dac99e 1947 rtx x;
e4600702
RK
1948 enum reg_class class;
1949 int scale;
54dac99e
RK
1950{
1951 register enum rtx_code code = GET_CODE (x);
1952
1953 switch (code)
1954 {
1955 case CONST_INT:
1956 case CONST:
1957 case CC0:
1958 case PC:
1959 case SYMBOL_REF:
1960 case LABEL_REF:
1961 return;
1962
1963 case PLUS:
1964 /* When we have an address that is a sum,
1965 we must determine whether registers are "base" or "index" regs.
1966 If there is a sum of two registers, we must choose one to be
3502dc9c
JDA
1967 the "base". Luckily, we can use the REG_POINTER to make a good
1968 choice most of the time. We only need to do this on machines
1969 that can have two registers in an address and where the base
1970 and index register classes are different.
e4600702
RK
1971
1972 ??? This code used to set REGNO_POINTER_FLAG in some cases, but
1973 that seems bogus since it should only be set when we are sure
1974 the register is being used as a pointer. */
1975
54dac99e
RK
1976 {
1977 rtx arg0 = XEXP (x, 0);
1978 rtx arg1 = XEXP (x, 1);
1979 register enum rtx_code code0 = GET_CODE (arg0);
1980 register enum rtx_code code1 = GET_CODE (arg1);
54dac99e
RK
1981
1982 /* Look inside subregs. */
e4600702 1983 if (code0 == SUBREG)
54dac99e 1984 arg0 = SUBREG_REG (arg0), code0 = GET_CODE (arg0);
e4600702 1985 if (code1 == SUBREG)
54dac99e
RK
1986 arg1 = SUBREG_REG (arg1), code1 = GET_CODE (arg1);
1987
e4600702
RK
1988 /* If this machine only allows one register per address, it must
1989 be in the first operand. */
1990
1991 if (MAX_REGS_PER_ADDRESS == 1)
1992 record_address_regs (arg0, class, scale);
1993
1994 /* If index and base registers are the same on this machine, just
1995 record registers in any non-constant operands. We assume here,
1996 as well as in the tests below, that all addresses are in
1997 canonical form. */
1998
1999 else if (INDEX_REG_CLASS == BASE_REG_CLASS)
54dac99e 2000 {
e4600702
RK
2001 record_address_regs (arg0, class, scale);
2002 if (! CONSTANT_P (arg1))
2003 record_address_regs (arg1, class, scale);
54dac99e 2004 }
e4600702
RK
2005
2006 /* If the second operand is a constant integer, it doesn't change
2007 what class the first operand must be. */
2008
2009 else if (code1 == CONST_INT || code1 == CONST_DOUBLE)
2010 record_address_regs (arg0, class, scale);
2011
2012 /* If the second operand is a symbolic constant, the first operand
2013 must be an index register. */
2014
2015 else if (code1 == SYMBOL_REF || code1 == CONST || code1 == LABEL_REF)
2016 record_address_regs (arg0, INDEX_REG_CLASS, scale);
2017
956d6950
JL
2018 /* If both operands are registers but one is already a hard register
2019 of index or base class, give the other the class that the hard
2020 register is not. */
2021
3f9e9508 2022#ifdef REG_OK_FOR_BASE_P
956d6950
JL
2023 else if (code0 == REG && code1 == REG
2024 && REGNO (arg0) < FIRST_PSEUDO_REGISTER
2025 && (REG_OK_FOR_BASE_P (arg0) || REG_OK_FOR_INDEX_P (arg0)))
2026 record_address_regs (arg1,
2027 REG_OK_FOR_BASE_P (arg0)
2028 ? INDEX_REG_CLASS : BASE_REG_CLASS,
2029 scale);
2030 else if (code0 == REG && code1 == REG
2031 && REGNO (arg1) < FIRST_PSEUDO_REGISTER
2032 && (REG_OK_FOR_BASE_P (arg1) || REG_OK_FOR_INDEX_P (arg1)))
2033 record_address_regs (arg0,
2034 REG_OK_FOR_BASE_P (arg1)
2035 ? INDEX_REG_CLASS : BASE_REG_CLASS,
2036 scale);
3f9e9508 2037#endif
956d6950 2038
e9a25f70
JL
2039 /* If one operand is known to be a pointer, it must be the base
2040 with the other operand the index. Likewise if the other operand
2041 is a MULT. */
f22376c7 2042
3502dc9c 2043 else if ((code0 == REG && REG_POINTER (arg0))
e9a25f70 2044 || code1 == MULT)
f22376c7
CI
2045 {
2046 record_address_regs (arg0, BASE_REG_CLASS, scale);
2047 record_address_regs (arg1, INDEX_REG_CLASS, scale);
2048 }
3502dc9c 2049 else if ((code1 == REG && REG_POINTER (arg1))
e9a25f70 2050 || code0 == MULT)
f22376c7
CI
2051 {
2052 record_address_regs (arg0, INDEX_REG_CLASS, scale);
2053 record_address_regs (arg1, BASE_REG_CLASS, scale);
2054 }
2055
e9a25f70 2056 /* Otherwise, count equal chances that each might be a base
e4600702
RK
2057 or index register. This case should be rare. */
2058
e9a25f70 2059 else
54dac99e 2060 {
e4600702
RK
2061 record_address_regs (arg0, BASE_REG_CLASS, scale / 2);
2062 record_address_regs (arg0, INDEX_REG_CLASS, scale / 2);
2063 record_address_regs (arg1, BASE_REG_CLASS, scale / 2);
2064 record_address_regs (arg1, INDEX_REG_CLASS, scale / 2);
54dac99e 2065 }
54dac99e
RK
2066 }
2067 break;
2068
4b983fdc
RH
2069 /* Double the importance of a pseudo register that is incremented
2070 or decremented, since it would take two extra insns
2071 if it ends up in the wrong place. */
2072 case POST_MODIFY:
2073 case PRE_MODIFY:
2074 record_address_regs (XEXP (x, 0), BASE_REG_CLASS, 2 * scale);
2075 if (REG_P (XEXP (XEXP (x, 1), 1)))
2076 record_address_regs (XEXP (XEXP (x, 1), 1),
2077 INDEX_REG_CLASS, 2 * scale);
2078 break;
2079
54dac99e
RK
2080 case POST_INC:
2081 case PRE_INC:
2082 case POST_DEC:
2083 case PRE_DEC:
2084 /* Double the importance of a pseudo register that is incremented
2085 or decremented, since it would take two extra insns
533d0835
RK
2086 if it ends up in the wrong place. If the operand is a pseudo,
2087 show it is being used in an INC_DEC context. */
2088
2089#ifdef FORBIDDEN_INC_DEC_CLASSES
2090 if (GET_CODE (XEXP (x, 0)) == REG
2091 && REGNO (XEXP (x, 0)) >= FIRST_PSEUDO_REGISTER)
2092 in_inc_dec[REGNO (XEXP (x, 0))] = 1;
2093#endif
e4600702
RK
2094
2095 record_address_regs (XEXP (x, 0), class, 2 * scale);
54dac99e
RK
2096 break;
2097
2098 case REG:
2099 {
e4600702
RK
2100 register struct costs *pp = &costs[REGNO (x)];
2101 register int i;
54dac99e 2102
cbd5b9a2 2103 pp->mem_cost += (MEMORY_MOVE_COST (Pmode, class, 1) * scale) / 2;
54dac99e 2104
e4600702 2105 for (i = 0; i < N_REG_CLASSES; i++)
e56b4594 2106 pp->cost[i] += (may_move_in_cost[Pmode][i][(int) class] * scale) / 2;
54dac99e
RK
2107 }
2108 break;
2109
2110 default:
2111 {
6f7d635c 2112 register const char *fmt = GET_RTX_FORMAT (code);
54dac99e
RK
2113 register int i;
2114 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2115 if (fmt[i] == 'e')
e4600702 2116 record_address_regs (XEXP (x, i), class, scale);
54dac99e
RK
2117 }
2118 }
2119}
08d95f91
RK
2120\f
2121#ifdef FORBIDDEN_INC_DEC_CLASSES
2122
2123/* Return 1 if REG is valid as an auto-increment memory reference
2124 to an object of MODE. */
2125
1d300e19 2126static int
08d95f91
RK
2127auto_inc_dec_reg_p (reg, mode)
2128 rtx reg;
2129 enum machine_mode mode;
2130{
940da324
JL
2131 if (HAVE_POST_INCREMENT
2132 && memory_address_p (mode, gen_rtx_POST_INC (Pmode, reg)))
08d95f91 2133 return 1;
08d95f91 2134
940da324
JL
2135 if (HAVE_POST_DECREMENT
2136 && memory_address_p (mode, gen_rtx_POST_DEC (Pmode, reg)))
08d95f91 2137 return 1;
08d95f91 2138
940da324
JL
2139 if (HAVE_PRE_INCREMENT
2140 && memory_address_p (mode, gen_rtx_PRE_INC (Pmode, reg)))
08d95f91 2141 return 1;
08d95f91 2142
940da324
JL
2143 if (HAVE_PRE_DECREMENT
2144 && memory_address_p (mode, gen_rtx_PRE_DEC (Pmode, reg)))
08d95f91 2145 return 1;
08d95f91
RK
2146
2147 return 0;
2148}
2149#endif
b1f21e0a 2150\f
da668e9c
MM
2151static short *renumber;
2152static size_t regno_allocated;
2153static unsigned int reg_n_max;
ed396e68 2154
b1f21e0a
MM
2155/* Allocate enough space to hold NUM_REGS registers for the tables used for
2156 reg_scan and flow_analysis that are indexed by the register number. If
39379e67
MM
2157 NEW_P is non zero, initialize all of the registers, otherwise only
2158 initialize the new registers allocated. The same table is kept from
2159 function to function, only reallocating it when we need more room. If
2160 RENUMBER_P is non zero, allocate the reg_renumber array also. */
b1f21e0a
MM
2161
2162void
39379e67 2163allocate_reg_info (num_regs, new_p, renumber_p)
6feacd09 2164 size_t num_regs;
b1f21e0a 2165 int new_p;
39379e67 2166 int renumber_p;
b1f21e0a 2167{
6feacd09
MM
2168 size_t size_info;
2169 size_t size_renumber;
2170 size_t min = (new_p) ? 0 : reg_n_max;
2171 struct reg_info_data *reg_data;
39379e67 2172
b1f21e0a
MM
2173 if (num_regs > regno_allocated)
2174 {
6feacd09
MM
2175 size_t old_allocated = regno_allocated;
2176
b1f21e0a 2177 regno_allocated = num_regs + (num_regs / 20); /* add some slop space */
39379e67
MM
2178 size_renumber = regno_allocated * sizeof (short);
2179
2180 if (!reg_n_info)
2181 {
6feacd09 2182 VARRAY_REG_INIT (reg_n_info, regno_allocated, "reg_n_info");
39379e67 2183 renumber = (short *) xmalloc (size_renumber);
9ffc5a70
JH
2184 reg_pref_buffer = (struct reg_pref *) xmalloc (regno_allocated
2185 * sizeof (struct reg_pref));
39379e67
MM
2186 }
2187
2188 else
2189 {
6feacd09
MM
2190 VARRAY_GROW (reg_n_info, regno_allocated);
2191
2192 if (new_p) /* if we're zapping everything, no need to realloc */
2193 {
2194 free ((char *)renumber);
9ffc5a70 2195 free ((char *)reg_pref);
6feacd09 2196 renumber = (short *) xmalloc (size_renumber);
9ffc5a70
JH
2197 reg_pref_buffer = (struct reg_pref *) xmalloc (regno_allocated
2198 * sizeof (struct reg_pref));
6feacd09
MM
2199 }
2200
2201 else
2202 {
2203 renumber = (short *) xrealloc ((char *)renumber, size_renumber);
9ffc5a70
JH
2204 reg_pref_buffer = (struct reg_pref *) xrealloc ((char *)reg_pref_buffer,
2205 regno_allocated
2206 * sizeof (struct reg_pref));
6feacd09 2207 }
39379e67 2208 }
6feacd09
MM
2209
2210 size_info = (regno_allocated - old_allocated) * sizeof (reg_info)
2211 + sizeof (struct reg_info_data) - sizeof (reg_info);
2212 reg_data = (struct reg_info_data *) xcalloc (size_info, 1);
2213 reg_data->min_index = old_allocated;
2214 reg_data->max_index = regno_allocated - 1;
2215 reg_data->next = reg_info_head;
2216 reg_info_head = reg_data;
b1f21e0a
MM
2217 }
2218
6feacd09 2219 reg_n_max = num_regs;
b1f21e0a
MM
2220 if (min < num_regs)
2221 {
6feacd09
MM
2222 /* Loop through each of the segments allocated for the actual
2223 reg_info pages, and set up the pointers, zero the pages, etc. */
da668e9c
MM
2224 for (reg_data = reg_info_head;
2225 reg_data && reg_data->max_index >= min;
2226 reg_data = reg_data->next)
39379e67 2227 {
6feacd09
MM
2228 size_t min_index = reg_data->min_index;
2229 size_t max_index = reg_data->max_index;
da668e9c
MM
2230 size_t max = MIN (max_index, num_regs);
2231 size_t local_min = min - min_index;
2232 size_t i;
6feacd09 2233
da668e9c
MM
2234 if (reg_data->min_index > num_regs)
2235 continue;
6feacd09 2236
da668e9c
MM
2237 if (min < min_index)
2238 local_min = 0;
2239 if (!reg_data->used_p) /* page just allocated with calloc */
2240 reg_data->used_p = 1; /* no need to zero */
2241 else
961192e1 2242 memset ((char *) &reg_data->data[local_min], 0,
da668e9c
MM
2243 sizeof (reg_info) * (max - min_index - local_min + 1));
2244
2245 for (i = min_index+local_min; i <= max; i++)
2246 {
2247 VARRAY_REG (reg_n_info, i) = &reg_data->data[i-min_index];
2248 REG_BASIC_BLOCK (i) = REG_BLOCK_UNKNOWN;
2249 renumber[i] = -1;
2250 reg_pref_buffer[i].prefclass = (char) NO_REGS;
2251 reg_pref_buffer[i].altclass = (char) NO_REGS;
6feacd09 2252 }
39379e67 2253 }
b1f21e0a
MM
2254 }
2255
6feacd09
MM
2256 /* If {pref,alt}class have already been allocated, update the pointers to
2257 the newly realloced ones. */
9ffc5a70
JH
2258 if (reg_pref)
2259 reg_pref = reg_pref_buffer;
6feacd09 2260
39379e67
MM
2261 if (renumber_p)
2262 reg_renumber = renumber;
2263
73b76448
RK
2264 /* Tell the regset code about the new number of registers */
2265 MAX_REGNO_REG_SET (num_regs, new_p, renumber_p);
b1f21e0a
MM
2266}
2267
ed396e68
BS
2268/* Free up the space allocated by allocate_reg_info. */
2269void
2270free_reg_info ()
2271{
2272 if (reg_n_info)
2273 {
2274 struct reg_info_data *reg_data;
2275 struct reg_info_data *reg_next;
2276
2277 VARRAY_FREE (reg_n_info);
2278 for (reg_data = reg_info_head; reg_data; reg_data = reg_next)
2279 {
2280 reg_next = reg_data->next;
2281 free ((char *)reg_data);
2282 }
2283
9ffc5a70
JH
2284 free (reg_pref_buffer);
2285 reg_pref_buffer = (struct reg_pref *)0;
ed396e68
BS
2286 reg_info_head = (struct reg_info_data *)0;
2287 renumber = (short *)0;
2288 }
2289 regno_allocated = 0;
2290 reg_n_max = 0;
2291}
54dac99e
RK
2292\f
2293/* This is the `regscan' pass of the compiler, run just before cse
2294 and again just before loop.
2295
2296 It finds the first and last use of each pseudo-register
2297 and records them in the vectors regno_first_uid, regno_last_uid
2298 and counts the number of sets in the vector reg_n_sets.
2299
2300 REPEAT is nonzero the second time this is called. */
2301
54dac99e 2302/* Maximum number of parallel sets and clobbers in any insn in this fn.
d22d5f34 2303 Always at least 3, since the combiner could put that many together
79b9ec0d
RK
2304 and we want this to remain correct for all the remaining passes.
2305 This corresponds to the maximum number of times note_stores will call
2306 a function for any insn. */
54dac99e
RK
2307
2308int max_parallel;
2309
79b9ec0d
RK
2310/* Used as a temporary to record the largest number of registers in
2311 PARALLEL in a SET_DEST. This is added to max_parallel. */
2312
2313static int max_set_parallel;
2314
54dac99e
RK
2315void
2316reg_scan (f, nregs, repeat)
2317 rtx f;
770ae6cc 2318 unsigned int nregs;
272df862 2319 int repeat ATTRIBUTE_UNUSED;
54dac99e
RK
2320{
2321 register rtx insn;
2322
39379e67 2323 allocate_reg_info (nregs, TRUE, FALSE);
54dac99e 2324 max_parallel = 3;
79b9ec0d 2325 max_set_parallel = 0;
54dac99e
RK
2326
2327 for (insn = f; insn; insn = NEXT_INSN (insn))
2328 if (GET_CODE (insn) == INSN
2329 || GET_CODE (insn) == CALL_INSN
2330 || GET_CODE (insn) == JUMP_INSN)
2331 {
2332 if (GET_CODE (PATTERN (insn)) == PARALLEL
2333 && XVECLEN (PATTERN (insn), 0) > max_parallel)
2334 max_parallel = XVECLEN (PATTERN (insn), 0);
f903b91f 2335 reg_scan_mark_refs (PATTERN (insn), insn, 0, 0);
01565a55
RK
2336
2337 if (REG_NOTES (insn))
f903b91f
DM
2338 reg_scan_mark_refs (REG_NOTES (insn), insn, 1, 0);
2339 }
79b9ec0d
RK
2340
2341 max_parallel += max_set_parallel;
f903b91f
DM
2342}
2343
2344/* Update 'regscan' information by looking at the insns
2345 from FIRST to LAST. Some new REGs have been created,
2346 and any REG with number greater than OLD_MAX_REGNO is
2347 such a REG. We only update information for those. */
2348
2349void
770ae6cc 2350reg_scan_update (first, last, old_max_regno)
f903b91f
DM
2351 rtx first;
2352 rtx last;
770ae6cc 2353 unsigned int old_max_regno;
f903b91f
DM
2354{
2355 register rtx insn;
2356
2357 allocate_reg_info (max_reg_num (), FALSE, FALSE);
2358
2359 for (insn = first; insn != last; insn = NEXT_INSN (insn))
2360 if (GET_CODE (insn) == INSN
2361 || GET_CODE (insn) == CALL_INSN
2362 || GET_CODE (insn) == JUMP_INSN)
2363 {
2364 if (GET_CODE (PATTERN (insn)) == PARALLEL
2365 && XVECLEN (PATTERN (insn), 0) > max_parallel)
2366 max_parallel = XVECLEN (PATTERN (insn), 0);
2367 reg_scan_mark_refs (PATTERN (insn), insn, 0, old_max_regno);
2368
2369 if (REG_NOTES (insn))
2370 reg_scan_mark_refs (REG_NOTES (insn), insn, 1, old_max_regno);
54dac99e
RK
2371 }
2372}
2373
1ebecb64 2374/* X is the expression to scan. INSN is the insn it appears in.
f903b91f
DM
2375 NOTE_FLAG is nonzero if X is from INSN's notes rather than its body.
2376 We should only record information for REGs with numbers
2377 greater than or equal to MIN_REGNO. */
1ebecb64 2378
08d95f91 2379static void
f903b91f 2380reg_scan_mark_refs (x, insn, note_flag, min_regno)
54dac99e 2381 rtx x;
be8dcd74 2382 rtx insn;
1ebecb64 2383 int note_flag;
770ae6cc 2384 unsigned int min_regno;
54dac99e 2385{
fa23c636 2386 register enum rtx_code code;
54dac99e 2387 register rtx dest;
be8dcd74 2388 register rtx note;
54dac99e 2389
fa23c636 2390 code = GET_CODE (x);
54dac99e
RK
2391 switch (code)
2392 {
54dac99e 2393 case CONST:
185ebd6c 2394 case CONST_INT:
54dac99e
RK
2395 case CONST_DOUBLE:
2396 case CC0:
2397 case PC:
2398 case SYMBOL_REF:
2399 case LABEL_REF:
2400 case ADDR_VEC:
2401 case ADDR_DIFF_VEC:
2402 return;
2403
2404 case REG:
2405 {
770ae6cc 2406 unsigned int regno = REGNO (x);
54dac99e 2407
f903b91f
DM
2408 if (regno >= min_regno)
2409 {
2410 REGNO_LAST_NOTE_UID (regno) = INSN_UID (insn);
2411 if (!note_flag)
2412 REGNO_LAST_UID (regno) = INSN_UID (insn);
2413 if (REGNO_FIRST_UID (regno) == 0)
2414 REGNO_FIRST_UID (regno) = INSN_UID (insn);
2415 }
54dac99e
RK
2416 }
2417 break;
2418
01565a55 2419 case EXPR_LIST:
7b18c3db 2420 if (XEXP (x, 0))
f903b91f 2421 reg_scan_mark_refs (XEXP (x, 0), insn, note_flag, min_regno);
01565a55 2422 if (XEXP (x, 1))
f903b91f 2423 reg_scan_mark_refs (XEXP (x, 1), insn, note_flag, min_regno);
01565a55
RK
2424 break;
2425
2426 case INSN_LIST:
2427 if (XEXP (x, 1))
f903b91f 2428 reg_scan_mark_refs (XEXP (x, 1), insn, note_flag, min_regno);
01565a55
RK
2429 break;
2430
54dac99e
RK
2431 case SET:
2432 /* Count a set of the destination if it is a register. */
2433 for (dest = SET_DEST (x);
2434 GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART
2435 || GET_CODE (dest) == ZERO_EXTEND;
2436 dest = XEXP (dest, 0))
2437 ;
2438
79b9ec0d
RK
2439 /* For a PARALLEL, record the number of things (less the usual one for a
2440 SET) that are set. */
2441 if (GET_CODE (dest) == PARALLEL)
2442 max_set_parallel = MAX (max_set_parallel, XVECLEN (dest, 0) - 1);
2443
f903b91f
DM
2444 if (GET_CODE (dest) == REG
2445 && REGNO (dest) >= min_regno)
b2d57793
DB
2446 {
2447 REG_N_SETS (REGNO (dest))++;
2448 REG_N_REFS (REGNO (dest))++;
2449 }
54dac99e 2450
be8dcd74
RK
2451 /* If this is setting a pseudo from another pseudo or the sum of a
2452 pseudo and a constant integer and the other pseudo is known to be
2453 a pointer, set the destination to be a pointer as well.
2454
2455 Likewise if it is setting the destination from an address or from a
2456 value equivalent to an address or to the sum of an address and
2457 something else.
2458
2459 But don't do any of this if the pseudo corresponds to a user
2460 variable since it should have already been set as a pointer based
2461 on the type. */
2462
2463 if (GET_CODE (SET_DEST (x)) == REG
2464 && REGNO (SET_DEST (x)) >= FIRST_PSEUDO_REGISTER
f903b91f 2465 && REGNO (SET_DEST (x)) >= min_regno
64d3b4ca
JL
2466 /* If the destination pseudo is set more than once, then other
2467 sets might not be to a pointer value (consider access to a
2468 union in two threads of control in the presense of global
3502dc9c 2469 optimizations). So only set REG_POINTER on the destination
64d3b4ca
JL
2470 pseudo if this is the only set of that pseudo. */
2471 && REG_N_SETS (REGNO (SET_DEST (x))) == 1
be8dcd74 2472 && ! REG_USERVAR_P (SET_DEST (x))
3502dc9c 2473 && ! REG_POINTER (SET_DEST (x))
be8dcd74 2474 && ((GET_CODE (SET_SRC (x)) == REG
3502dc9c 2475 && REG_POINTER (SET_SRC (x)))
be8dcd74
RK
2476 || ((GET_CODE (SET_SRC (x)) == PLUS
2477 || GET_CODE (SET_SRC (x)) == LO_SUM)
2478 && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
2479 && GET_CODE (XEXP (SET_SRC (x), 0)) == REG
3502dc9c 2480 && REG_POINTER (XEXP (SET_SRC (x), 0)))
be8dcd74
RK
2481 || GET_CODE (SET_SRC (x)) == CONST
2482 || GET_CODE (SET_SRC (x)) == SYMBOL_REF
2483 || GET_CODE (SET_SRC (x)) == LABEL_REF
2484 || (GET_CODE (SET_SRC (x)) == HIGH
2485 && (GET_CODE (XEXP (SET_SRC (x), 0)) == CONST
2486 || GET_CODE (XEXP (SET_SRC (x), 0)) == SYMBOL_REF
2487 || GET_CODE (XEXP (SET_SRC (x), 0)) == LABEL_REF))
2488 || ((GET_CODE (SET_SRC (x)) == PLUS
2489 || GET_CODE (SET_SRC (x)) == LO_SUM)
2490 && (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST
2491 || GET_CODE (XEXP (SET_SRC (x), 1)) == SYMBOL_REF
2492 || GET_CODE (XEXP (SET_SRC (x), 1)) == LABEL_REF))
2493 || ((note = find_reg_note (insn, REG_EQUAL, 0)) != 0
2494 && (GET_CODE (XEXP (note, 0)) == CONST
2495 || GET_CODE (XEXP (note, 0)) == SYMBOL_REF
2496 || GET_CODE (XEXP (note, 0)) == LABEL_REF))))
3502dc9c 2497 REG_POINTER (SET_DEST (x)) = 1;
be8dcd74 2498
0f41302f 2499 /* ... fall through ... */
54dac99e
RK
2500
2501 default:
2502 {
6f7d635c 2503 register const char *fmt = GET_RTX_FORMAT (code);
54dac99e
RK
2504 register int i;
2505 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2506 {
2507 if (fmt[i] == 'e')
f903b91f 2508 reg_scan_mark_refs (XEXP (x, i), insn, note_flag, min_regno);
54dac99e
RK
2509 else if (fmt[i] == 'E' && XVEC (x, i) != 0)
2510 {
2511 register int j;
2512 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
f903b91f 2513 reg_scan_mark_refs (XVECEXP (x, i, j), insn, note_flag, min_regno);
54dac99e
RK
2514 }
2515 }
2516 }
2517 }
2518}
2519\f
2520/* Return nonzero if C1 is a subset of C2, i.e., if every register in C1
2521 is also in C2. */
2522
2523int
2524reg_class_subset_p (c1, c2)
2525 register enum reg_class c1;
2526 register enum reg_class c2;
2527{
2528 if (c1 == c2) return 1;
2529
2530 if (c2 == ALL_REGS)
2531 win:
2532 return 1;
2533 GO_IF_HARD_REG_SUBSET (reg_class_contents[(int)c1],
2534 reg_class_contents[(int)c2],
2535 win);
2536 return 0;
2537}
2538
2539/* Return nonzero if there is a register that is in both C1 and C2. */
2540
2541int
2542reg_classes_intersect_p (c1, c2)
2543 register enum reg_class c1;
2544 register enum reg_class c2;
2545{
2546#ifdef HARD_REG_SET
2547 register
2548#endif
2549 HARD_REG_SET c;
2550
2551 if (c1 == c2) return 1;
2552
2553 if (c1 == ALL_REGS || c2 == ALL_REGS)
2554 return 1;
2555
2556 COPY_HARD_REG_SET (c, reg_class_contents[(int) c1]);
2557 AND_HARD_REG_SET (c, reg_class_contents[(int) c2]);
2558
2559 GO_IF_HARD_REG_SUBSET (c, reg_class_contents[(int) NO_REGS], lose);
2560 return 1;
2561
2562 lose:
2563 return 0;
2564}
2565
73b76448
RK
2566/* Release any memory allocated by register sets. */
2567
2568void
2569regset_release_memory ()
2570{
73b76448
RK
2571 bitmap_release_memory ();
2572}
This page took 1.895072 seconds and 5 git commands to generate.