]> gcc.gnu.org Git - gcc.git/blame - gcc/regclass.c
make.adb (Add_Switch): Make Generic_Position a procedure.
[gcc.git] / gcc / regclass.c
CommitLineData
54dac99e 1/* Compute register class preferences for pseudo-registers.
517cbe13 2 Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1996
f4f4d0f8 3 1997, 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
54dac99e 4
1322177d 5This file is part of GCC.
54dac99e 6
1322177d
LB
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
9Software Foundation; either version 2, or (at your option) any later
10version.
54dac99e 11
1322177d
LB
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15for more details.
54dac99e
RK
16
17You should have received a copy of the GNU General Public License
1322177d
LB
18along with GCC; see the file COPYING. If not, write to the Free
19Software Foundation, 59 Temple Place - Suite 330, Boston, MA
2002111-1307, USA. */
54dac99e
RK
21
22
23/* This file contains two passes of the compiler: reg_scan and reg_class.
24 It also defines some tables of information about the hardware registers
25 and a function init_reg_sets to initialize the tables. */
26
27#include "config.h"
670ee920 28#include "system.h"
54dac99e 29#include "rtl.h"
0829d244 30#include "expr.h"
6baf1cc8 31#include "tm_p.h"
54dac99e
RK
32#include "hard-reg-set.h"
33#include "flags.h"
34#include "basic-block.h"
35#include "regs.h"
49ad7cfa 36#include "function.h"
54dac99e
RK
37#include "insn-config.h"
38#include "recog.h"
e4600702
RK
39#include "reload.h"
40#include "real.h"
10f0ad3d 41#include "toplev.h"
d6f4ec51 42#include "output.h"
8b0212ca 43#include "ggc.h"
54dac99e
RK
44
45#ifndef REGISTER_MOVE_COST
e56b4594 46#define REGISTER_MOVE_COST(m, x, y) 2
54dac99e
RK
47#endif
48
13536812
KG
49static void init_reg_sets_1 PARAMS ((void));
50static void init_reg_modes PARAMS ((void));
24deb20a 51
533d0835
RK
52/* If we have auto-increment or auto-decrement and we can have secondary
53 reloads, we are not allowed to use classes requiring secondary
9faa82d8 54 reloads for pseudos auto-incremented since reload can't handle it. */
533d0835
RK
55
56#ifdef AUTO_INC_DEC
dd9f0e8f 57#if defined(SECONDARY_INPUT_RELOAD_CLASS) || defined(SECONDARY_OUTPUT_RELOAD_CLASS)
533d0835
RK
58#define FORBIDDEN_INC_DEC_CLASSES
59#endif
60#endif
54dac99e
RK
61\f
62/* Register tables used by many passes. */
63
64/* Indexed by hard register number, contains 1 for registers
65 that are fixed use (stack pointer, pc, frame pointer, etc.).
66 These are the registers that cannot be used to allocate
252f342a 67 a pseudo reg for general use. */
54dac99e
RK
68
69char fixed_regs[FIRST_PSEUDO_REGISTER];
70
71/* Same info as a HARD_REG_SET. */
72
73HARD_REG_SET fixed_reg_set;
74
75/* Data for initializing the above. */
76
8b60264b 77static const char initial_fixed_regs[] = FIXED_REGISTERS;
54dac99e
RK
78
79/* Indexed by hard register number, contains 1 for registers
80 that are fixed use or are clobbered by function calls.
81 These are the registers that cannot be used to allocate
252f342a
MH
82 a pseudo reg whose life crosses calls unless we are able
83 to save/restore them across the calls. */
54dac99e
RK
84
85char call_used_regs[FIRST_PSEUDO_REGISTER];
86
87/* Same info as a HARD_REG_SET. */
88
89HARD_REG_SET call_used_reg_set;
90
6cad67d2
JL
91/* HARD_REG_SET of registers we want to avoid caller saving. */
92HARD_REG_SET losing_caller_save_reg_set;
93
54dac99e
RK
94/* Data for initializing the above. */
95
8b60264b 96static const char initial_call_used_regs[] = CALL_USED_REGISTERS;
fc1296b7
AM
97
98/* This is much like call_used_regs, except it doesn't have to
99 be a superset of FIXED_REGISTERS. This vector indicates
a6a2274a 100 what is really call clobbered, and is used when defining
fc1296b7
AM
101 regs_invalidated_by_call. */
102
fc1296b7 103#ifdef CALL_REALLY_USED_REGISTERS
d3259baa 104char call_really_used_regs[] = CALL_REALLY_USED_REGISTERS;
fc1296b7 105#endif
a6a2274a 106
54dac99e 107/* Indexed by hard register number, contains 1 for registers that are
252f342a
MH
108 fixed use or call used registers that cannot hold quantities across
109 calls even if we are willing to save and restore them. call fixed
110 registers are a subset of call used registers. */
54dac99e
RK
111
112char call_fixed_regs[FIRST_PSEUDO_REGISTER];
113
114/* The same info as a HARD_REG_SET. */
115
116HARD_REG_SET call_fixed_reg_set;
117
118/* Number of non-fixed registers. */
119
120int n_non_fixed_regs;
121
122/* Indexed by hard register number, contains 1 for registers
123 that are being used for global register decls.
124 These must be exempt from ordinary flow analysis
125 and are also considered fixed. */
126
127char global_regs[FIRST_PSEUDO_REGISTER];
4e2db584
RH
128
129/* Contains 1 for registers that are set or clobbered by calls. */
130/* ??? Ideally, this would be just call_used_regs plus global_regs, but
131 for someone's bright idea to have call_used_regs strictly include
132 fixed_regs. Which leaves us guessing as to the set of fixed_regs
133 that are actually preserved. We know for sure that those associated
134 with the local stack frame are safe, but scant others. */
135
136HARD_REG_SET regs_invalidated_by_call;
137
54dac99e
RK
138/* Table of register numbers in the order in which to try to use them. */
139#ifdef REG_ALLOC_ORDER
140int reg_alloc_order[FIRST_PSEUDO_REGISTER] = REG_ALLOC_ORDER;
f5d8c9f4
BS
141
142/* The inverse of reg_alloc_order. */
143int inv_reg_alloc_order[FIRST_PSEUDO_REGISTER];
54dac99e
RK
144#endif
145
146/* For each reg class, a HARD_REG_SET saying which registers are in it. */
147
2e0e2b76
CH
148HARD_REG_SET reg_class_contents[N_REG_CLASSES];
149
089e575b
RS
150/* The same information, but as an array of unsigned ints. We copy from
151 these unsigned ints to the table above. We do this so the tm.h files
d4845339
RH
152 do not have to be aware of the wordsize for machines with <= 64 regs.
153 Note that we hard-code 32 here, not HOST_BITS_PER_INT. */
2e0e2b76
CH
154
155#define N_REG_INTS \
d4845339 156 ((FIRST_PSEUDO_REGISTER + (32 - 1)) / 32)
2e0e2b76 157
a6a2274a 158static const unsigned int_reg_class_contents[N_REG_CLASSES][N_REG_INTS]
2e0e2b76 159 = REG_CLASS_CONTENTS;
54dac99e
RK
160
161/* For each reg class, number of regs it contains. */
162
770ae6cc 163unsigned int reg_class_size[N_REG_CLASSES];
54dac99e
RK
164
165/* For each reg class, table listing all the containing classes. */
166
167enum reg_class reg_class_superclasses[N_REG_CLASSES][N_REG_CLASSES];
168
169/* For each reg class, table listing all the classes contained in it. */
170
171enum reg_class reg_class_subclasses[N_REG_CLASSES][N_REG_CLASSES];
172
173/* For each pair of reg classes,
174 a largest reg class contained in their union. */
175
176enum reg_class reg_class_subunion[N_REG_CLASSES][N_REG_CLASSES];
177
178/* For each pair of reg classes,
179 the smallest reg class containing their union. */
180
181enum reg_class reg_class_superunion[N_REG_CLASSES][N_REG_CLASSES];
182
fbd40359
ZW
183/* Array containing all of the register names. Unless
184 DEBUG_REGISTER_NAMES is defined, use the copy in print-rtl.c. */
d05c8ee7 185
fbd40359 186#ifdef DEBUG_REGISTER_NAMES
e087aeb2 187const char * reg_names[] = REGISTER_NAMES;
fbd40359 188#endif
d05c8ee7 189
ca4aac00
DE
190/* For each hard register, the widest mode object that it can contain.
191 This will be a MODE_INT mode if the register can hold integers. Otherwise
192 it will be a MODE_FLOAT or a MODE_CC mode, whichever is valid for the
193 register. */
194
195enum machine_mode reg_raw_mode[FIRST_PSEUDO_REGISTER];
196
6df26b8f
JH
197/* 1 if class does contain register of given mode. */
198
199static char contains_reg_of_mode [N_REG_CLASSES] [MAX_MACHINE_MODE];
200
e4600702
RK
201/* Maximum cost of moving from a register in one class to a register in
202 another class. Based on REGISTER_MOVE_COST. */
203
e56b4594 204static int move_cost[MAX_MACHINE_MODE][N_REG_CLASSES][N_REG_CLASSES];
e4600702
RK
205
206/* Similar, but here we don't have to move if the first index is a subset
207 of the second so in that case the cost is zero. */
208
e56b4594 209static int may_move_in_cost[MAX_MACHINE_MODE][N_REG_CLASSES][N_REG_CLASSES];
ee59f29b
JH
210
211/* Similar, but here we don't have to move if the first index is a superset
212 of the second so in that case the cost is zero. */
213
e56b4594 214static int may_move_out_cost[MAX_MACHINE_MODE][N_REG_CLASSES][N_REG_CLASSES];
e4600702 215
533d0835
RK
216#ifdef FORBIDDEN_INC_DEC_CLASSES
217
218/* These are the classes that regs which are auto-incremented or decremented
219 cannot be put in. */
220
221static int forbidden_inc_dec_class[N_REG_CLASSES];
222
223/* Indexed by n, is non-zero if (REG n) is used in an auto-inc or auto-dec
224 context. */
225
226static char *in_inc_dec;
227
5fcb671c 228#endif /* FORBIDDEN_INC_DEC_CLASSES */
533d0835 229
02188693 230#ifdef CLASS_CANNOT_CHANGE_MODE
e79f71f7
GK
231
232/* These are the classes containing only registers that can be used in
02188693
RH
233 a SUBREG expression that changes the mode of the register in some
234 way that is illegal. */
e79f71f7 235
02188693 236static int class_can_change_mode[N_REG_CLASSES];
e79f71f7 237
02188693
RH
238/* Registers, including pseudos, which change modes in some way that
239 is illegal. */
e79f71f7 240
02188693 241static regset reg_changes_mode;
e79f71f7 242
02188693 243#endif /* CLASS_CANNOT_CHANGE_MODE */
e79f71f7 244
473fe49b
KR
245/* Sample MEM values for use by memory_move_secondary_cost. */
246
e2500fed 247static GTY(()) rtx top_of_stack[MAX_MACHINE_MODE];
473fe49b 248
6feacd09
MM
249/* Linked list of reg_info structures allocated for reg_n_info array.
250 Grouping all of the allocated structures together in one lump
251 means only one call to bzero to clear them, rather than n smaller
252 calls. */
253struct reg_info_data {
254 struct reg_info_data *next; /* next set of reg_info structures */
255 size_t min_index; /* minimum index # */
256 size_t max_index; /* maximum index # */
257 char used_p; /* non-zero if this has been used previously */
258 reg_info data[1]; /* beginning of the reg_info data */
259};
260
261static struct reg_info_data *reg_info_head;
262
c07c7c9d 263/* No more global register variables may be declared; true once
dc297297 264 regclass has been initialized. */
6c85df69
AH
265
266static int no_global_reg_vars = 0;
267
6feacd09 268
54dac99e
RK
269/* Function called only once to initialize the above data on reg usage.
270 Once this is done, various switches may override. */
271
272void
273init_reg_sets ()
274{
b3694847 275 int i, j;
54dac99e 276
2e0e2b76
CH
277 /* First copy the register information from the initial int form into
278 the regsets. */
279
280 for (i = 0; i < N_REG_CLASSES; i++)
281 {
282 CLEAR_HARD_REG_SET (reg_class_contents[i]);
283
b85946fc 284 /* Note that we hard-code 32 here, not HOST_BITS_PER_INT. */
2e0e2b76 285 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
b85946fc
RH
286 if (int_reg_class_contents[i][j / 32]
287 & ((unsigned) 1 << (j % 32)))
2e0e2b76
CH
288 SET_HARD_REG_BIT (reg_class_contents[i], j);
289 }
290
4e135bdd
KG
291 memcpy (fixed_regs, initial_fixed_regs, sizeof fixed_regs);
292 memcpy (call_used_regs, initial_call_used_regs, sizeof call_used_regs);
961192e1 293 memset (global_regs, 0, sizeof global_regs);
54dac99e 294
910bc42d
R
295 /* Do any additional initialization regsets may need */
296 INIT_ONCE_REG_SET ();
f5d8c9f4
BS
297
298#ifdef REG_ALLOC_ORDER
299 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
300 inv_reg_alloc_order[reg_alloc_order[i]] = i;
301#endif
910bc42d
R
302}
303
304/* After switches have been processed, which perhaps alter
305 `fixed_regs' and `call_used_regs', convert them to HARD_REG_SETs. */
306
307static void
308init_reg_sets_1 ()
309{
b3694847
SS
310 unsigned int i, j;
311 unsigned int /* enum machine_mode */ m;
6836e024 312 char allocatable_regs_of_mode [MAX_MACHINE_MODE];
910bc42d
R
313
314 /* This macro allows the fixed or call-used registers
315 and the register classes to depend on target flags. */
316
317#ifdef CONDITIONAL_REGISTER_USAGE
318 CONDITIONAL_REGISTER_USAGE;
319#endif
320
54dac99e
RK
321 /* Compute number of hard regs in each class. */
322
961192e1 323 memset ((char *) reg_class_size, 0, sizeof reg_class_size);
54dac99e
RK
324 for (i = 0; i < N_REG_CLASSES; i++)
325 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
326 if (TEST_HARD_REG_BIT (reg_class_contents[i], j))
327 reg_class_size[i]++;
328
329 /* Initialize the table of subunions.
330 reg_class_subunion[I][J] gets the largest-numbered reg-class
331 that is contained in the union of classes I and J. */
332
333 for (i = 0; i < N_REG_CLASSES; i++)
334 {
335 for (j = 0; j < N_REG_CLASSES; j++)
336 {
337#ifdef HARD_REG_SET
338 register /* Declare it register if it's a scalar. */
339#endif
340 HARD_REG_SET c;
b3694847 341 int k;
54dac99e
RK
342
343 COPY_HARD_REG_SET (c, reg_class_contents[i]);
344 IOR_HARD_REG_SET (c, reg_class_contents[j]);
345 for (k = 0; k < N_REG_CLASSES; k++)
346 {
347 GO_IF_HARD_REG_SUBSET (reg_class_contents[k], c,
348 subclass1);
349 continue;
350
351 subclass1:
352 /* keep the largest subclass */ /* SPEE 900308 */
353 GO_IF_HARD_REG_SUBSET (reg_class_contents[k],
354 reg_class_contents[(int) reg_class_subunion[i][j]],
355 subclass2);
356 reg_class_subunion[i][j] = (enum reg_class) k;
357 subclass2:
358 ;
359 }
360 }
361 }
362
363 /* Initialize the table of superunions.
364 reg_class_superunion[I][J] gets the smallest-numbered reg-class
365 containing the union of classes I and J. */
366
367 for (i = 0; i < N_REG_CLASSES; i++)
368 {
369 for (j = 0; j < N_REG_CLASSES; j++)
370 {
371#ifdef HARD_REG_SET
372 register /* Declare it register if it's a scalar. */
373#endif
374 HARD_REG_SET c;
b3694847 375 int k;
54dac99e
RK
376
377 COPY_HARD_REG_SET (c, reg_class_contents[i]);
378 IOR_HARD_REG_SET (c, reg_class_contents[j]);
379 for (k = 0; k < N_REG_CLASSES; k++)
380 GO_IF_HARD_REG_SUBSET (c, reg_class_contents[k], superclass);
381
382 superclass:
383 reg_class_superunion[i][j] = (enum reg_class) k;
384 }
385 }
386
387 /* Initialize the tables of subclasses and superclasses of each reg class.
388 First clear the whole table, then add the elements as they are found. */
389
390 for (i = 0; i < N_REG_CLASSES; i++)
391 {
392 for (j = 0; j < N_REG_CLASSES; j++)
393 {
394 reg_class_superclasses[i][j] = LIM_REG_CLASSES;
395 reg_class_subclasses[i][j] = LIM_REG_CLASSES;
396 }
397 }
398
399 for (i = 0; i < N_REG_CLASSES; i++)
400 {
401 if (i == (int) NO_REGS)
402 continue;
403
404 for (j = i + 1; j < N_REG_CLASSES; j++)
405 {
406 enum reg_class *p;
407
408 GO_IF_HARD_REG_SUBSET (reg_class_contents[i], reg_class_contents[j],
409 subclass);
410 continue;
411 subclass:
412 /* Reg class I is a subclass of J.
413 Add J to the table of superclasses of I. */
414 p = &reg_class_superclasses[i][0];
415 while (*p != LIM_REG_CLASSES) p++;
416 *p = (enum reg_class) j;
417 /* Add I to the table of superclasses of J. */
418 p = &reg_class_subclasses[j][0];
419 while (*p != LIM_REG_CLASSES) p++;
420 *p = (enum reg_class) i;
421 }
422 }
e4600702 423
54dac99e
RK
424 /* Initialize "constant" tables. */
425
426 CLEAR_HARD_REG_SET (fixed_reg_set);
427 CLEAR_HARD_REG_SET (call_used_reg_set);
428 CLEAR_HARD_REG_SET (call_fixed_reg_set);
4e2db584 429 CLEAR_HARD_REG_SET (regs_invalidated_by_call);
54dac99e 430
4e135bdd 431 memcpy (call_fixed_regs, fixed_regs, sizeof call_fixed_regs);
54dac99e
RK
432
433 n_non_fixed_regs = 0;
434
435 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
436 {
54dac99e
RK
437 if (fixed_regs[i])
438 SET_HARD_REG_BIT (fixed_reg_set, i);
439 else
440 n_non_fixed_regs++;
441
442 if (call_used_regs[i])
443 SET_HARD_REG_BIT (call_used_reg_set, i);
444 if (call_fixed_regs[i])
445 SET_HARD_REG_BIT (call_fixed_reg_set, i);
6cad67d2
JL
446 if (CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (i)))
447 SET_HARD_REG_BIT (losing_caller_save_reg_set, i);
4e2db584
RH
448
449 /* There are a couple of fixed registers that we know are safe to
450 exclude from being clobbered by calls:
451
452 The frame pointer is always preserved across calls. The arg pointer
453 is if it is fixed. The stack pointer usually is, unless
454 RETURN_POPS_ARGS, in which case an explicit CLOBBER will be present.
455 If we are generating PIC code, the PIC offset table register is
456 preserved across calls, though the target can override that. */
a6a2274a 457
4e2db584
RH
458 if (i == STACK_POINTER_REGNUM || i == FRAME_POINTER_REGNUM)
459 ;
460#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
461 else if (i == HARD_FRAME_POINTER_REGNUM)
462 ;
463#endif
464#if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
465 else if (i == ARG_POINTER_REGNUM && fixed_regs[i])
466 ;
467#endif
468#ifndef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
12beba6f 469 else if (i == PIC_OFFSET_TABLE_REGNUM && fixed_regs[i])
4e2db584
RH
470 ;
471#endif
d3259baa 472 else if (0
6ca3c22f 473#ifdef CALL_REALLY_USED_REGISTERS
d3259baa
RH
474 || call_really_used_regs[i]
475#else
476 || call_used_regs[i]
477#endif
478 || global_regs[i])
4e2db584 479 SET_HARD_REG_BIT (regs_invalidated_by_call, i);
54dac99e 480 }
4e2db584 481
6836e024
JH
482 memset (contains_reg_of_mode, 0, sizeof (contains_reg_of_mode));
483 memset (allocatable_regs_of_mode, 0, sizeof (allocatable_regs_of_mode));
dbbbbf3b 484 for (m = 0; m < (unsigned int) MAX_MACHINE_MODE; m++)
6836e024 485 for (i = 0; i < N_REG_CLASSES; i++)
6df26b8f
JH
486 if (CLASS_MAX_NREGS (i, m) <= reg_class_size[i])
487 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
488 if (!fixed_regs [j] && TEST_HARD_REG_BIT (reg_class_contents[i], j)
489 && HARD_REGNO_MODE_OK (j, m))
490 {
491 contains_reg_of_mode [i][m] = 1;
492 allocatable_regs_of_mode [m] = 1;
493 break;
494 }
acbce667
KR
495
496 /* Initialize the move cost table. Find every subset of each class
497 and take the maximum cost of moving any subset to any other. */
498
dbbbbf3b 499 for (m = 0; m < (unsigned int) MAX_MACHINE_MODE; m++)
6836e024
JH
500 if (allocatable_regs_of_mode [m])
501 {
502 for (i = 0; i < N_REG_CLASSES; i++)
503 if (contains_reg_of_mode [i][m])
504 for (j = 0; j < N_REG_CLASSES; j++)
505 {
506 int cost;
507 enum reg_class *p1, *p2;
508
509 if (!contains_reg_of_mode [j][m])
510 {
511 move_cost[m][i][j] = 65536;
512 may_move_in_cost[m][i][j] = 65536;
513 may_move_out_cost[m][i][j] = 65536;
514 }
515 else
516 {
26a952a8 517 cost = REGISTER_MOVE_COST (m, i, j);
6836e024
JH
518
519 for (p2 = &reg_class_subclasses[j][0];
520 *p2 != LIM_REG_CLASSES;
521 p2++)
522 if (*p2 != i && contains_reg_of_mode [*p2][m])
523 cost = MAX (cost, move_cost [m][i][*p2]);
524
525 for (p1 = &reg_class_subclasses[i][0];
526 *p1 != LIM_REG_CLASSES;
527 p1++)
528 if (*p1 != j && contains_reg_of_mode [*p1][m])
529 cost = MAX (cost, move_cost [m][*p1][j]);
530
531 move_cost[m][i][j] = cost;
532
533 if (reg_class_subset_p (i, j))
534 may_move_in_cost[m][i][j] = 0;
535 else
536 may_move_in_cost[m][i][j] = cost;
537
538 if (reg_class_subset_p (j, i))
539 may_move_out_cost[m][i][j] = 0;
540 else
541 may_move_out_cost[m][i][j] = cost;
542 }
543 }
1464632b 544 else
6836e024
JH
545 for (j = 0; j < N_REG_CLASSES; j++)
546 {
547 move_cost[m][i][j] = 65536;
548 may_move_in_cost[m][i][j] = 65536;
549 may_move_out_cost[m][i][j] = 65536;
550 }
551 }
e79f71f7 552
02188693 553#ifdef CLASS_CANNOT_CHANGE_MODE
e79f71f7
GK
554 {
555 HARD_REG_SET c;
02188693 556 COMPL_HARD_REG_SET (c, reg_class_contents[CLASS_CANNOT_CHANGE_MODE]);
a6a2274a 557
e79f71f7
GK
558 for (i = 0; i < N_REG_CLASSES; i++)
559 {
560 GO_IF_HARD_REG_SUBSET (reg_class_contents[i], c, ok_class);
02188693 561 class_can_change_mode [i] = 0;
e79f71f7
GK
562 continue;
563 ok_class:
02188693 564 class_can_change_mode [i] = 1;
e79f71f7
GK
565 }
566 }
02188693 567#endif /* CLASS_CANNOT_CHANGE_MODE */
c27c5281
DE
568}
569
570/* Compute the table of register modes.
571 These values are used to record death information for individual registers
572 (as opposed to a multi-register mode). */
ca4aac00 573
c27c5281
DE
574static void
575init_reg_modes ()
576{
b3694847 577 int i;
ca4aac00
DE
578
579 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
7f21d440
DE
580 {
581 reg_raw_mode[i] = choose_hard_reg_mode (i, 1);
582
066c2fea 583 /* If we couldn't find a valid mode, just use the previous mode.
7f21d440
DE
584 ??? One situation in which we need to do this is on the mips where
585 HARD_REGNO_NREGS (fpreg, [SD]Fmode) returns 2. Ideally we'd like
586 to use DF mode for the even registers and VOIDmode for the odd
9faa82d8 587 (for the cpu models where the odd ones are inaccessible). */
7f21d440 588 if (reg_raw_mode[i] == VOIDmode)
066c2fea 589 reg_raw_mode[i] = i == 0 ? word_mode : reg_raw_mode[i-1];
7f21d440 590 }
ca4aac00
DE
591}
592
c27c5281
DE
593/* Finish initializing the register sets and
594 initialize the register modes. */
595
596void
597init_regs ()
598{
599 /* This finishes what was started by init_reg_sets, but couldn't be done
600 until after register usage was specified. */
b93a436e 601 init_reg_sets_1 ();
c27c5281
DE
602
603 init_reg_modes ();
6cde4876
JL
604}
605
606/* Initialize some fake stack-frame MEM references for use in
607 memory_move_secondary_cost. */
473fe49b 608
6cde4876
JL
609void
610init_fake_stack_mems ()
611{
473fe49b
KR
612#ifdef HAVE_SECONDARY_RELOADS
613 {
473fe49b 614 int i;
d067e2aa 615
473fe49b 616 for (i = 0; i < MAX_MACHINE_MODE; i++)
9ec36da5 617 top_of_stack[i] = gen_rtx_MEM (i, stack_pointer_rtx);
473fe49b
KR
618 }
619#endif
c27c5281
DE
620}
621
cbd5b9a2 622#ifdef HAVE_SECONDARY_RELOADS
473fe49b 623
cbd5b9a2
KR
624/* Compute extra cost of moving registers to/from memory due to reloads.
625 Only needed if secondary reloads are required for memory moves. */
473fe49b 626
cbd5b9a2
KR
627int
628memory_move_secondary_cost (mode, class, in)
629 enum machine_mode mode;
630 enum reg_class class;
631 int in;
632{
633 enum reg_class altclass;
634 int partial_cost = 0;
cbd5b9a2 635 /* We need a memory reference to feed to SECONDARY... macros. */
dc297297 636 /* mem may be unused even if the SECONDARY_ macros are defined. */
272df862
KG
637 rtx mem ATTRIBUTE_UNUSED = top_of_stack[(int) mode];
638
cbd5b9a2
KR
639
640 if (in)
473fe49b 641 {
321c0828 642#ifdef SECONDARY_INPUT_RELOAD_CLASS
473fe49b 643 altclass = SECONDARY_INPUT_RELOAD_CLASS (class, mode, mem);
321c0828 644#else
473fe49b 645 altclass = NO_REGS;
321c0828 646#endif
473fe49b 647 }
cbd5b9a2 648 else
473fe49b 649 {
321c0828 650#ifdef SECONDARY_OUTPUT_RELOAD_CLASS
473fe49b 651 altclass = SECONDARY_OUTPUT_RELOAD_CLASS (class, mode, mem);
321c0828 652#else
473fe49b 653 altclass = NO_REGS;
321c0828 654#endif
473fe49b
KR
655 }
656
cbd5b9a2
KR
657 if (altclass == NO_REGS)
658 return 0;
659
660 if (in)
e56b4594 661 partial_cost = REGISTER_MOVE_COST (mode, altclass, class);
cbd5b9a2 662 else
e56b4594 663 partial_cost = REGISTER_MOVE_COST (mode, class, altclass);
cbd5b9a2
KR
664
665 if (class == altclass)
666 /* This isn't simply a copy-to-temporary situation. Can't guess
667 what it is, so MEMORY_MOVE_COST really ought not to be calling
668 here in that case.
669
670 I'm tempted to put in an abort here, but returning this will
671 probably only give poor estimates, which is what we would've
672 had before this code anyways. */
673 return partial_cost;
674
675 /* Check if the secondary reload register will also need a
676 secondary reload. */
677 return memory_move_secondary_cost (mode, altclass, in) + partial_cost;
678}
679#endif
680
ca4aac00
DE
681/* Return a machine mode that is legitimate for hard reg REGNO and large
682 enough to save nregs. If we can't find one, return VOIDmode. */
683
684enum machine_mode
685choose_hard_reg_mode (regno, nregs)
770ae6cc
RK
686 unsigned int regno ATTRIBUTE_UNUSED;
687 unsigned int nregs;
ca4aac00 688{
dbbbbf3b 689 unsigned int /* enum machine_mode */ m;
ca4aac00
DE
690 enum machine_mode found_mode = VOIDmode, mode;
691
692 /* We first look for the largest integer mode that can be validly
693 held in REGNO. If none, we look for the largest floating-point mode.
694 If we still didn't find a valid mode, try CCmode. */
695
696 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
697 mode != VOIDmode;
698 mode = GET_MODE_WIDER_MODE (mode))
699 if (HARD_REGNO_NREGS (regno, mode) == nregs
700 && HARD_REGNO_MODE_OK (regno, mode))
701 found_mode = mode;
702
703 if (found_mode != VOIDmode)
704 return found_mode;
705
706 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
707 mode != VOIDmode;
708 mode = GET_MODE_WIDER_MODE (mode))
709 if (HARD_REGNO_NREGS (regno, mode) == nregs
710 && HARD_REGNO_MODE_OK (regno, mode))
711 found_mode = mode;
712
713 if (found_mode != VOIDmode)
714 return found_mode;
715
78b583fe
AH
716 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
717 mode != VOIDmode;
718 mode = GET_MODE_WIDER_MODE (mode))
719 if (HARD_REGNO_NREGS (regno, mode) == nregs
720 && HARD_REGNO_MODE_OK (regno, mode))
721 found_mode = mode;
722
723 if (found_mode != VOIDmode)
724 return found_mode;
725
726 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
727 mode != VOIDmode;
728 mode = GET_MODE_WIDER_MODE (mode))
729 if (HARD_REGNO_NREGS (regno, mode) == nregs
730 && HARD_REGNO_MODE_OK (regno, mode))
731 found_mode = mode;
732
733 if (found_mode != VOIDmode)
734 return found_mode;
735
0548a9df 736 /* Iterate over all of the CCmodes. */
dbbbbf3b
JDA
737 for (m = (unsigned int) CCmode; m < (unsigned int) NUM_MACHINE_MODES; ++m)
738 {
739 mode = (enum machine_mode) m;
740 if (HARD_REGNO_NREGS (regno, mode) == nregs
741 && HARD_REGNO_MODE_OK (regno, mode))
742 return mode;
743 }
ca4aac00
DE
744
745 /* We can't find a mode valid for this register. */
746 return VOIDmode;
54dac99e
RK
747}
748
749/* Specify the usage characteristics of the register named NAME.
750 It should be a fixed register if FIXED and a
751 call-used register if CALL_USED. */
752
753void
754fix_register (name, fixed, call_used)
ec0ce6e2 755 const char *name;
54dac99e
RK
756 int fixed, call_used;
757{
758 int i;
759
760 /* Decode the name and update the primary form of
761 the register info. */
762
e5c90c23
TW
763 if ((i = decode_reg_name (name)) >= 0)
764 {
cb2fdc84
GRK
765 if ((i == STACK_POINTER_REGNUM
766#ifdef HARD_FRAME_POINTER_REGNUM
767 || i == HARD_FRAME_POINTER_REGNUM
768#else
769 || i == FRAME_POINTER_REGNUM
770#endif
771 )
772 && (fixed == 0 || call_used == 0))
773 {
6f7d635c 774 static const char * const what_option[2][2] = {
7f7f8214
KG
775 { "call-saved", "call-used" },
776 { "no-such-option", "fixed" }};
a6a2274a
KH
777
778 error ("can't use '%s' as a %s register", name,
cb2fdc84
GRK
779 what_option[fixed][call_used]);
780 }
781 else
782 {
783 fixed_regs[i] = fixed;
784 call_used_regs[i] = call_used;
ec523c2f 785#ifdef CALL_REALLY_USED_REGISTERS
fc1296b7
AM
786 if (fixed == 0)
787 call_really_used_regs[i] = call_used;
d3259baa 788#endif
cb2fdc84 789 }
e5c90c23
TW
790 }
791 else
54dac99e
RK
792 {
793 warning ("unknown register name: %s", name);
54dac99e
RK
794 }
795}
614f68e2
RK
796
797/* Mark register number I as global. */
798
799void
800globalize_reg (i)
801 int i;
802{
c07c7c9d 803 if (fixed_regs[i] == 0 && no_global_reg_vars)
6c85df69
AH
804 error ("global register variable follows a function definition");
805
614f68e2
RK
806 if (global_regs[i])
807 {
808 warning ("register used for two global register variables");
809 return;
810 }
811
812 if (call_used_regs[i] && ! fixed_regs[i])
813 warning ("call-clobbered register used for global register variable");
814
815 global_regs[i] = 1;
816
817 /* If already fixed, nothing else to do. */
818 if (fixed_regs[i])
819 return;
820
821 fixed_regs[i] = call_used_regs[i] = call_fixed_regs[i] = 1;
822 n_non_fixed_regs--;
823
824 SET_HARD_REG_BIT (fixed_reg_set, i);
825 SET_HARD_REG_BIT (call_used_reg_set, i);
826 SET_HARD_REG_BIT (call_fixed_reg_set, i);
caecc099 827 SET_HARD_REG_BIT (regs_invalidated_by_call, i);
614f68e2 828}
54dac99e
RK
829\f
830/* Now the data and code for the `regclass' pass, which happens
831 just before local-alloc. */
832
e4600702
RK
833/* The `costs' struct records the cost of using a hard register of each class
834 and of using memory for each pseudo. We use this data to set up
835 register class preferences. */
54dac99e 836
e4600702 837struct costs
54dac99e 838{
e4600702
RK
839 int cost[N_REG_CLASSES];
840 int mem_cost;
54dac99e
RK
841};
842
9ffc5a70
JH
843/* Structure used to record preferrences of given pseudo. */
844struct reg_pref
845{
846 /* (enum reg_class) prefclass is the preferred class. */
847 char prefclass;
848
849 /* altclass is a register class that we should use for allocating
850 pseudo if no register in the preferred class is available.
851 If no register in this class is available, memory is preferred.
852
853 It might appear to be more general to have a bitmask of classes here,
854 but since it is recommended that there be a class corresponding to the
855 union of most major pair of classes, that generality is not required. */
856 char altclass;
857};
858
e4600702
RK
859/* Record the cost of each class for each pseudo. */
860
861static struct costs *costs;
862
61719ba7
BS
863/* Initialized once, and used to initialize cost values for each insn. */
864
865static struct costs init_cost;
866
9ffc5a70 867/* Record preferrences of each pseudo.
54dac99e
RK
868 This is available after `regclass' is run. */
869
9ffc5a70 870static struct reg_pref *reg_pref;
54d23420 871
dc297297 872/* Allocated buffers for reg_pref. */
54dac99e 873
9ffc5a70 874static struct reg_pref *reg_pref_buffer;
6feacd09 875
9401afe3 876/* Frequency of executions of current insn. */
54d23420 877
9401afe3 878static int frequency;
54d23420 879
13536812
KG
880static rtx scan_one_insn PARAMS ((rtx, int));
881static void record_operand_costs PARAMS ((rtx, struct costs *, struct reg_pref *));
882static void dump_regclass PARAMS ((FILE *));
883static void record_reg_classes PARAMS ((int, int, rtx *, enum machine_mode *,
e79f71f7 884 const char **, rtx,
f741a71c 885 struct costs *, struct reg_pref *));
a6a2274a 886static int copy_cost PARAMS ((rtx, enum machine_mode,
08d95f91 887 enum reg_class, int));
13536812 888static void record_address_regs PARAMS ((rtx, enum reg_class, int));
1d300e19 889#ifdef FORBIDDEN_INC_DEC_CLASSES
13536812 890static int auto_inc_dec_reg_p PARAMS ((rtx, enum machine_mode));
1d300e19 891#endif
770ae6cc 892static void reg_scan_mark_refs PARAMS ((rtx, rtx, int, unsigned int));
54dac99e
RK
893
894/* Return the reg_class in which pseudo reg number REGNO is best allocated.
895 This function is sometimes called before the info has been computed.
896 When that happens, just return GENERAL_REGS, which is innocuous. */
897
898enum reg_class
899reg_preferred_class (regno)
900 int regno;
901{
9ffc5a70 902 if (reg_pref == 0)
54dac99e 903 return GENERAL_REGS;
9ffc5a70 904 return (enum reg_class) reg_pref[regno].prefclass;
54dac99e
RK
905}
906
e4600702
RK
907enum reg_class
908reg_alternate_class (regno)
b729186a 909 int regno;
54dac99e 910{
9ffc5a70 911 if (reg_pref == 0)
e4600702
RK
912 return ALL_REGS;
913
9ffc5a70 914 return (enum reg_class) reg_pref[regno].altclass;
54dac99e
RK
915}
916
61719ba7 917/* Initialize some global data for this pass. */
54dac99e
RK
918
919void
920regclass_init ()
921{
61719ba7
BS
922 int i;
923
924 init_cost.mem_cost = 10000;
925 for (i = 0; i < N_REG_CLASSES; i++)
926 init_cost.cost[i] = 10000;
927
928 /* This prevents dump_flow_info from losing if called
929 before regclass is run. */
9ffc5a70 930 reg_pref = NULL;
6c85df69 931
dc297297 932 /* No more global register variables may be declared. */
6c85df69 933 no_global_reg_vars = 1;
54dac99e 934}
246fd41f
JH
935\f
936/* Dump register costs. */
915b80ed 937static void
246fd41f
JH
938dump_regclass (dump)
939 FILE *dump;
940{
941 static const char *const reg_class_names[] = REG_CLASS_NAMES;
942 int i;
943 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
944 {
dbbbbf3b 945 int /* enum reg_class */ class;
246fd41f
JH
946 if (REG_N_REFS (i))
947 {
f741a71c 948 fprintf (dump, " Register %i costs:", i);
dbbbbf3b
JDA
949 for (class = 0; class < (int) N_REG_CLASSES; class++)
950 if (contains_reg_of_mode [(enum reg_class) class][PSEUDO_REGNO_MODE (i)]
6df26b8f 951#ifdef FORBIDDEN_INC_DEC_CLASSES
dbbbbf3b
JDA
952 && (!in_inc_dec[i]
953 || !forbidden_inc_dec_class[(enum reg_class) class])
6df26b8f
JH
954#endif
955#ifdef CLASS_CANNOT_CHANGE_MODE
956 && (!REGNO_REG_SET_P (reg_changes_mode, i)
dbbbbf3b 957 || class_can_change_mode [(enum reg_class) class])
6df26b8f
JH
958#endif
959 )
dbbbbf3b
JDA
960 fprintf (dump, " %s:%i", reg_class_names[class],
961 costs[i].cost[(enum reg_class) class]);
f741a71c 962 fprintf (dump, " MEM:%i\n", costs[i].mem_cost);
246fd41f
JH
963 }
964 }
965}
f741a71c
JH
966\f
967
968/* Calculate the costs of insn operands. */
969
970static void
971record_operand_costs (insn, op_costs, reg_pref)
972 rtx insn;
973 struct costs *op_costs;
974 struct reg_pref *reg_pref;
975{
976 const char *constraints[MAX_RECOG_OPERANDS];
977 enum machine_mode modes[MAX_RECOG_OPERANDS];
f741a71c
JH
978 int i;
979
980 for (i = 0; i < recog_data.n_operands; i++)
981 {
982 constraints[i] = recog_data.constraints[i];
983 modes[i] = recog_data.operand_mode[i];
984 }
f741a71c
JH
985
986 /* If we get here, we are set up to record the costs of all the
987 operands for this insn. Start by initializing the costs.
988 Then handle any address registers. Finally record the desired
989 classes for any pseudos, doing it twice if some pair of
990 operands are commutative. */
a6a2274a 991
f741a71c
JH
992 for (i = 0; i < recog_data.n_operands; i++)
993 {
994 op_costs[i] = init_cost;
995
996 if (GET_CODE (recog_data.operand[i]) == SUBREG)
997 {
998 rtx inner = SUBREG_REG (recog_data.operand[i]);
02188693
RH
999#ifdef CLASS_CANNOT_CHANGE_MODE
1000 if (GET_CODE (inner) == REG
1001 && CLASS_CANNOT_CHANGE_MODE_P (modes[i], GET_MODE (inner)))
1002 SET_REGNO_REG_SET (reg_changes_mode, REGNO (inner));
9ef07cf1 1003#endif
f741a71c
JH
1004 recog_data.operand[i] = inner;
1005 }
1006
1007 if (GET_CODE (recog_data.operand[i]) == MEM)
1008 record_address_regs (XEXP (recog_data.operand[i], 0),
3dcc68a4 1009 MODE_BASE_REG_CLASS (modes[i]), frequency * 2);
f741a71c
JH
1010 else if (constraints[i][0] == 'p')
1011 record_address_regs (recog_data.operand[i],
3dcc68a4 1012 MODE_BASE_REG_CLASS (modes[i]), frequency * 2);
f741a71c
JH
1013 }
1014
1015 /* Check for commutative in a separate loop so everything will
1016 have been initialized. We must do this even if one operand
1017 is a constant--see addsi3 in m68k.md. */
1018
1019 for (i = 0; i < (int) recog_data.n_operands - 1; i++)
1020 if (constraints[i][0] == '%')
1021 {
1022 const char *xconstraints[MAX_RECOG_OPERANDS];
1023 int j;
246fd41f 1024
f741a71c
JH
1025 /* Handle commutative operands by swapping the constraints.
1026 We assume the modes are the same. */
1027
1028 for (j = 0; j < recog_data.n_operands; j++)
1029 xconstraints[j] = constraints[j];
1030
1031 xconstraints[i] = constraints[i+1];
1032 xconstraints[i+1] = constraints[i];
1033 record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
a6a2274a 1034 recog_data.operand, modes,
f741a71c
JH
1035 xconstraints, insn, op_costs, reg_pref);
1036 }
1037
1038 record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
a6a2274a 1039 recog_data.operand, modes,
f741a71c
JH
1040 constraints, insn, op_costs, reg_pref);
1041}
54dac99e 1042\f
61719ba7
BS
1043/* Subroutine of regclass, processes one insn INSN. Scan it and record each
1044 time it would save code to put a certain register in a certain class.
1045 PASS, when nonzero, inhibits some optimizations which need only be done
1046 once.
1047 Return the last insn processed, so that the scan can be continued from
1048 there. */
1049
1050static rtx
1051scan_one_insn (insn, pass)
1052 rtx insn;
1053 int pass;
1054{
1055 enum rtx_code code = GET_CODE (insn);
1056 enum rtx_code pat_code;
0eadeb15 1057 rtx set, note;
61719ba7 1058 int i, j;
f741a71c 1059 struct costs op_costs[MAX_RECOG_OPERANDS];
61719ba7 1060
61719ba7
BS
1061 if (GET_RTX_CLASS (code) != 'i')
1062 return insn;
1063
1064 pat_code = GET_CODE (PATTERN (insn));
1065 if (pat_code == USE
1066 || pat_code == CLOBBER
1067 || pat_code == ASM_INPUT
1068 || pat_code == ADDR_VEC
1069 || pat_code == ADDR_DIFF_VEC)
1070 return insn;
1071
0eadeb15
BS
1072 set = single_set (insn);
1073 extract_insn (insn);
1074
0eadeb15
BS
1075 /* If this insn loads a parameter from its stack slot, then
1076 it represents a savings, rather than a cost, if the
1077 parameter is stored in memory. Record this fact. */
61719ba7 1078
0eadeb15
BS
1079 if (set != 0 && GET_CODE (SET_DEST (set)) == REG
1080 && GET_CODE (SET_SRC (set)) == MEM
1081 && (note = find_reg_note (insn, REG_EQUIV,
1082 NULL_RTX)) != 0
1083 && GET_CODE (XEXP (note, 0)) == MEM)
1084 {
1085 costs[REGNO (SET_DEST (set))].mem_cost
1086 -= (MEMORY_MOVE_COST (GET_MODE (SET_DEST (set)),
1087 GENERAL_REGS, 1)
9401afe3 1088 * frequency);
0eadeb15 1089 record_address_regs (XEXP (SET_SRC (set), 0),
3dcc68a4 1090 MODE_BASE_REG_CLASS (VOIDmode), frequency * 2);
0eadeb15
BS
1091 return insn;
1092 }
61719ba7 1093
0eadeb15
BS
1094 /* Improve handling of two-address insns such as
1095 (set X (ashift CONST Y)) where CONST must be made to
1096 match X. Change it into two insns: (set X CONST)
1097 (set X (ashift X Y)). If we left this for reloading, it
1098 would probably get three insns because X and Y might go
1099 in the same place. This prevents X and Y from receiving
1100 the same hard reg.
1101
1102 We can only do this if the modes of operands 0 and 1
1103 (which might not be the same) are tieable and we only need
1104 do this during our first pass. */
1105
1106 if (pass == 0 && optimize
1ccbefce
RH
1107 && recog_data.n_operands >= 3
1108 && recog_data.constraints[1][0] == '0'
1109 && recog_data.constraints[1][1] == 0
1110 && CONSTANT_P (recog_data.operand[1])
1111 && ! rtx_equal_p (recog_data.operand[0], recog_data.operand[1])
1112 && ! rtx_equal_p (recog_data.operand[0], recog_data.operand[2])
1113 && GET_CODE (recog_data.operand[0]) == REG
1114 && MODES_TIEABLE_P (GET_MODE (recog_data.operand[0]),
1115 recog_data.operand_mode[1]))
0eadeb15
BS
1116 {
1117 rtx previnsn = prev_real_insn (insn);
1118 rtx dest
1ccbefce
RH
1119 = gen_lowpart (recog_data.operand_mode[1],
1120 recog_data.operand[0]);
0eadeb15 1121 rtx newinsn
1ccbefce 1122 = emit_insn_before (gen_move_insn (dest, recog_data.operand[1]), insn);
61719ba7 1123
0eadeb15
BS
1124 /* If this insn was the start of a basic block,
1125 include the new insn in that block.
1126 We need not check for code_label here;
1127 while a basic block can start with a code_label,
1128 INSN could not be at the beginning of that block. */
1129 if (previnsn == 0 || GET_CODE (previnsn) == JUMP_INSN)
61719ba7 1130 {
e0082a72
ZD
1131 basic_block b;
1132 FOR_EACH_BB (b)
1133 if (insn == b->head)
1134 b->head = newinsn;
61719ba7
BS
1135 }
1136
0eadeb15 1137 /* This makes one more setting of new insns's dest. */
1ccbefce 1138 REG_N_SETS (REGNO (recog_data.operand[0]))++;
d3c7d45e 1139 REG_N_REFS (REGNO (recog_data.operand[0]))++;
9401afe3 1140 REG_FREQ (REGNO (recog_data.operand[0])) += frequency;
61719ba7 1141
1ccbefce 1142 *recog_data.operand_loc[1] = recog_data.operand[0];
d3c7d45e 1143 REG_N_REFS (REGNO (recog_data.operand[0]))++;
9401afe3 1144 REG_FREQ (REGNO (recog_data.operand[0])) += frequency;
1ccbefce
RH
1145 for (i = recog_data.n_dups - 1; i >= 0; i--)
1146 if (recog_data.dup_num[i] == 1)
d3c7d45e
AO
1147 {
1148 *recog_data.dup_loc[i] = recog_data.operand[0];
1149 REG_N_REFS (REGNO (recog_data.operand[0]))++;
9401afe3 1150 REG_FREQ (REGNO (recog_data.operand[0])) += frequency;
d3c7d45e 1151 }
61719ba7 1152
0eadeb15 1153 return PREV_INSN (newinsn);
61719ba7
BS
1154 }
1155
4963c995 1156 record_operand_costs (insn, op_costs, reg_pref);
61719ba7
BS
1157
1158 /* Now add the cost for each operand to the total costs for
1159 its register. */
1160
1ccbefce
RH
1161 for (i = 0; i < recog_data.n_operands; i++)
1162 if (GET_CODE (recog_data.operand[i]) == REG
1163 && REGNO (recog_data.operand[i]) >= FIRST_PSEUDO_REGISTER)
61719ba7 1164 {
1ccbefce 1165 int regno = REGNO (recog_data.operand[i]);
61719ba7
BS
1166 struct costs *p = &costs[regno], *q = &op_costs[i];
1167
9401afe3 1168 p->mem_cost += q->mem_cost * frequency;
61719ba7 1169 for (j = 0; j < N_REG_CLASSES; j++)
9401afe3 1170 p->cost[j] += q->cost[j] * frequency;
61719ba7
BS
1171 }
1172
1173 return insn;
1174}
1175
54dac99e
RK
1176/* This is a pass of the compiler that scans all instructions
1177 and calculates the preferred class for each pseudo-register.
1178 This information can be accessed later by calling `reg_preferred_class'.
1179 This pass comes just before local register allocation. */
1180
1181void
246fd41f 1182regclass (f, nregs, dump)
54dac99e
RK
1183 rtx f;
1184 int nregs;
246fd41f 1185 FILE *dump;
54dac99e 1186{
b3694847
SS
1187 rtx insn;
1188 int i;
e4600702 1189 int pass;
54dac99e
RK
1190
1191 init_recog ();
1192
56a65848 1193 costs = (struct costs *) xmalloc (nregs * sizeof (struct costs));
533d0835 1194
02188693 1195#ifdef CLASS_CANNOT_CHANGE_MODE
8e2e89f7 1196 reg_changes_mode = BITMAP_XMALLOC ();
a6a2274a 1197#endif
e79f71f7 1198
533d0835
RK
1199#ifdef FORBIDDEN_INC_DEC_CLASSES
1200
4da896b2 1201 in_inc_dec = (char *) xmalloc (nregs);
533d0835
RK
1202
1203 /* Initialize information about which register classes can be used for
1204 pseudos that are auto-incremented or auto-decremented. It would
1205 seem better to put this in init_reg_sets, but we need to be able
1206 to allocate rtx, which we can't do that early. */
1207
1208 for (i = 0; i < N_REG_CLASSES; i++)
1209 {
38a448ca 1210 rtx r = gen_rtx_REG (VOIDmode, 0);
533d0835 1211 enum machine_mode m;
b3694847 1212 int j;
533d0835
RK
1213
1214 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
1215 if (TEST_HARD_REG_BIT (reg_class_contents[i], j))
1216 {
1217 REGNO (r) = j;
1218
1219 for (m = VOIDmode; (int) m < (int) MAX_MACHINE_MODE;
808043ed 1220 m = (enum machine_mode) ((int) m + 1))
533d0835
RK
1221 if (HARD_REGNO_MODE_OK (j, m))
1222 {
1223 PUT_MODE (r, m);
08d95f91
RK
1224
1225 /* If a register is not directly suitable for an
1226 auto-increment or decrement addressing mode and
1227 requires secondary reloads, disallow its class from
1228 being used in such addresses. */
1229
1230 if ((0
041d7180 1231#ifdef SECONDARY_RELOAD_CLASS
3dcc68a4 1232 || (SECONDARY_RELOAD_CLASS (MODE_BASE_REG_CLASS (VOIDmode), m, r)
041d7180
JL
1233 != NO_REGS)
1234#else
533d0835 1235#ifdef SECONDARY_INPUT_RELOAD_CLASS
3dcc68a4 1236 || (SECONDARY_INPUT_RELOAD_CLASS (MODE_BASE_REG_CLASS (VOIDmode), m, r)
08d95f91 1237 != NO_REGS)
533d0835
RK
1238#endif
1239#ifdef SECONDARY_OUTPUT_RELOAD_CLASS
3dcc68a4 1240 || (SECONDARY_OUTPUT_RELOAD_CLASS (MODE_BASE_REG_CLASS (VOIDmode), m, r)
08d95f91 1241 != NO_REGS)
041d7180 1242#endif
533d0835 1243#endif
08d95f91
RK
1244 )
1245 && ! auto_inc_dec_reg_p (r, m))
533d0835
RK
1246 forbidden_inc_dec_class[i] = 1;
1247 }
1248 }
1249 }
1250#endif /* FORBIDDEN_INC_DEC_CLASSES */
1251
e4600702
RK
1252 /* Normally we scan the insns once and determine the best class to use for
1253 each register. However, if -fexpensive_optimizations are on, we do so
1254 twice, the second time using the tentative best classes to guide the
1255 selection. */
54dac99e 1256
e4600702
RK
1257 for (pass = 0; pass <= flag_expensive_optimizations; pass++)
1258 {
e0082a72 1259 basic_block bb;
f741a71c
JH
1260
1261 if (dump)
a6a2274a 1262 fprintf (dump, "\n\nPass %i\n\n",pass);
e4600702 1263 /* Zero out our accumulation of the cost of each class for each reg. */
54dac99e 1264
961192e1 1265 memset ((char *) costs, 0, nregs * sizeof (struct costs));
54dac99e 1266
533d0835 1267#ifdef FORBIDDEN_INC_DEC_CLASSES
961192e1 1268 memset (in_inc_dec, 0, nregs);
533d0835
RK
1269#endif
1270
e4600702
RK
1271 /* Scan the instructions and record each time it would
1272 save code to put a certain register in a certain class. */
1273
1f01879e 1274 if (!optimize)
54dac99e 1275 {
a08b2604 1276 frequency = REG_FREQ_MAX;
1f01879e
JH
1277 for (insn = f; insn; insn = NEXT_INSN (insn))
1278 insn = scan_one_insn (insn, pass);
54dac99e 1279 }
1f01879e 1280 else
e0082a72 1281 FOR_EACH_BB (bb)
1f01879e 1282 {
1f01879e 1283 /* Show that an insn inside a loop is likely to be executed three
9b15c17f
RH
1284 times more than insns outside a loop. This is much more
1285 aggressive than the assumptions made elsewhere and is being
1286 tried as an experiment. */
a08b2604 1287 frequency = REG_FREQ_FROM_BB (bb);
1f01879e
JH
1288 for (insn = bb->head; ; insn = NEXT_INSN (insn))
1289 {
1290 insn = scan_one_insn (insn, pass);
1291 if (insn == bb->end)
1292 break;
1293 }
1294 }
a6a2274a 1295
e4600702
RK
1296 /* Now for each register look at how desirable each class is
1297 and find which class is preferred. Store that in
9ffc5a70 1298 `prefclass'. Record in `altclass' the largest register
e4600702 1299 class any of whose registers is better than memory. */
a6a2274a 1300
e4600702 1301 if (pass == 0)
9ffc5a70 1302 reg_pref = reg_pref_buffer;
54dac99e 1303
f741a71c 1304 if (dump)
a6a2274a 1305 {
f741a71c 1306 dump_regclass (dump);
4963c995 1307 fprintf (dump,"\n");
f741a71c 1308 }
e4600702 1309 for (i = FIRST_PSEUDO_REGISTER; i < nregs; i++)
54dac99e 1310 {
b3694847 1311 int best_cost = (1 << (HOST_BITS_PER_INT - 2)) - 1;
e4600702
RK
1312 enum reg_class best = ALL_REGS, alt = NO_REGS;
1313 /* This is an enum reg_class, but we call it an int
1314 to save lots of casts. */
b3694847
SS
1315 int class;
1316 struct costs *p = &costs[i];
e4600702 1317
64615302
JH
1318 /* In non-optimizing compilation REG_N_REFS is not initialized
1319 yet. */
1320 if (optimize && !REG_N_REFS (i))
f741a71c
JH
1321 continue;
1322
e4600702 1323 for (class = (int) ALL_REGS - 1; class > 0; class--)
54dac99e 1324 {
533d0835 1325 /* Ignore classes that are too small for this operand or
4fe9b91c 1326 invalid for an operand that was auto-incremented. */
6df26b8f 1327 if (!contains_reg_of_mode [class][PSEUDO_REGNO_MODE (i)]
533d0835
RK
1328#ifdef FORBIDDEN_INC_DEC_CLASSES
1329 || (in_inc_dec[i] && forbidden_inc_dec_class[class])
e79f71f7 1330#endif
02188693
RH
1331#ifdef CLASS_CANNOT_CHANGE_MODE
1332 || (REGNO_REG_SET_P (reg_changes_mode, i)
1333 && ! class_can_change_mode [class])
533d0835
RK
1334#endif
1335 )
e4600702
RK
1336 ;
1337 else if (p->cost[class] < best_cost)
1338 {
1339 best_cost = p->cost[class];
1340 best = (enum reg_class) class;
1341 }
1342 else if (p->cost[class] == best_cost)
8e2e89f7 1343 best = reg_class_subunion[(int) best][class];
54dac99e 1344 }
54dac99e 1345
e4600702
RK
1346 /* Record the alternate register class; i.e., a class for which
1347 every register in it is better than using memory. If adding a
1348 class would make a smaller class (i.e., no union of just those
1349 classes exists), skip that class. The major unions of classes
1350 should be provided as a register class. Don't do this if we
1351 will be doing it again later. */
1352
f741a71c 1353 if ((pass == 1 || dump) || ! flag_expensive_optimizations)
e4600702
RK
1354 for (class = 0; class < N_REG_CLASSES; class++)
1355 if (p->cost[class] < p->mem_cost
77edb222 1356 && (reg_class_size[(int) reg_class_subunion[(int) alt][class]]
533d0835
RK
1357 > reg_class_size[(int) alt])
1358#ifdef FORBIDDEN_INC_DEC_CLASSES
1359 && ! (in_inc_dec[i] && forbidden_inc_dec_class[class])
e79f71f7 1360#endif
02188693
RH
1361#ifdef CLASS_CANNOT_CHANGE_MODE
1362 && ! (REGNO_REG_SET_P (reg_changes_mode, i)
1363 && ! class_can_change_mode [class])
533d0835
RK
1364#endif
1365 )
e4600702 1366 alt = reg_class_subunion[(int) alt][class];
a6a2274a 1367
e4600702
RK
1368 /* If we don't add any classes, nothing to try. */
1369 if (alt == best)
995d54dd 1370 alt = NO_REGS;
e4600702 1371
a6a2274a 1372 if (dump
f741a71c
JH
1373 && (reg_pref[i].prefclass != (int) best
1374 || reg_pref[i].altclass != (int) alt))
1375 {
1376 static const char *const reg_class_names[] = REG_CLASS_NAMES;
4963c995 1377 fprintf (dump, " Register %i", i);
f741a71c
JH
1378 if (alt == ALL_REGS || best == ALL_REGS)
1379 fprintf (dump, " pref %s\n", reg_class_names[(int) best]);
1380 else if (alt == NO_REGS)
1381 fprintf (dump, " pref %s or none\n", reg_class_names[(int) best]);
1382 else
1383 fprintf (dump, " pref %s, else %s\n",
1384 reg_class_names[(int) best],
1385 reg_class_names[(int) alt]);
1386 }
1387
e4600702 1388 /* We cast to (int) because (char) hits bugs in some compilers. */
9ffc5a70
JH
1389 reg_pref[i].prefclass = (int) best;
1390 reg_pref[i].altclass = (int) alt;
e4600702 1391 }
54dac99e 1392 }
56a65848 1393
4da896b2
MM
1394#ifdef FORBIDDEN_INC_DEC_CLASSES
1395 free (in_inc_dec);
e79f71f7 1396#endif
02188693
RH
1397#ifdef CLASS_CANNOT_CHANGE_MODE
1398 BITMAP_XFREE (reg_changes_mode);
4da896b2 1399#endif
56a65848 1400 free (costs);
54dac99e
RK
1401}
1402\f
e4600702
RK
1403/* Record the cost of using memory or registers of various classes for
1404 the operands in INSN.
54dac99e 1405
e4600702 1406 N_ALTS is the number of alternatives.
54dac99e 1407
e4600702
RK
1408 N_OPS is the number of operands.
1409
1410 OPS is an array of the operands.
1411
1412 MODES are the modes of the operands, in case any are VOIDmode.
1413
1414 CONSTRAINTS are the constraints to use for the operands. This array
1415 is modified by this procedure.
1416
1417 This procedure works alternative by alternative. For each alternative
1418 we assume that we will be able to allocate all pseudos to their ideal
1419 register class and calculate the cost of using that alternative. Then
a6a2274a 1420 we compute for each operand that is a pseudo-register, the cost of
e4600702
RK
1421 having the pseudo allocated to each register class and using it in that
1422 alternative. To this cost is added the cost of the alternative.
1423
1424 The cost of each class for this insn is its lowest cost among all the
1425 alternatives. */
1426
1427static void
e79f71f7 1428record_reg_classes (n_alts, n_ops, ops, modes,
f741a71c 1429 constraints, insn, op_costs, reg_pref)
e4600702
RK
1430 int n_alts;
1431 int n_ops;
1432 rtx *ops;
1433 enum machine_mode *modes;
9b3142b3 1434 const char **constraints;
e4600702 1435 rtx insn;
f741a71c
JH
1436 struct costs *op_costs;
1437 struct reg_pref *reg_pref;
54dac99e 1438{
e4600702 1439 int alt;
e4600702 1440 int i, j;
ec2d92af 1441 rtx set;
e4600702 1442
e4600702
RK
1443 /* Process each alternative, each time minimizing an operand's cost with
1444 the cost for each operand in that alternative. */
54dac99e 1445
e4600702 1446 for (alt = 0; alt < n_alts; alt++)
54dac99e 1447 {
e4600702
RK
1448 struct costs this_op_costs[MAX_RECOG_OPERANDS];
1449 int alt_fail = 0;
1450 int alt_cost = 0;
1451 enum reg_class classes[MAX_RECOG_OPERANDS];
da2c0219 1452 int allows_mem[MAX_RECOG_OPERANDS];
e4600702 1453 int class;
54dac99e 1454
e4600702
RK
1455 for (i = 0; i < n_ops; i++)
1456 {
9b3142b3 1457 const char *p = constraints[i];
e4600702
RK
1458 rtx op = ops[i];
1459 enum machine_mode mode = modes[i];
94e6f783 1460 int allows_addr = 0;
e4600702 1461 int win = 0;
e51712db 1462 unsigned char c;
54dac99e 1463
7405d9a1
DE
1464 /* Initially show we know nothing about the register class. */
1465 classes[i] = NO_REGS;
da2c0219 1466 allows_mem[i] = 0;
7405d9a1 1467
a6a2274a 1468 /* If this operand has no constraints at all, we can conclude
e4600702 1469 nothing about it since anything is valid. */
54dac99e 1470
e4600702
RK
1471 if (*p == 0)
1472 {
1473 if (GET_CODE (op) == REG && REGNO (op) >= FIRST_PSEUDO_REGISTER)
961192e1 1474 memset ((char *) &this_op_costs[i], 0, sizeof this_op_costs[i]);
54dac99e 1475
e4600702
RK
1476 continue;
1477 }
54dac99e 1478
7405d9a1
DE
1479 /* If this alternative is only relevant when this operand
1480 matches a previous operand, we do different things depending
1481 on whether this operand is a pseudo-reg or not. We must process
1482 any modifiers for the operand before we can make this test. */
1483
8c368ee2 1484 while (*p == '%' || *p == '=' || *p == '+' || *p == '&')
0eadeb15 1485 p++;
8c368ee2 1486
e4600702
RK
1487 if (p[0] >= '0' && p[0] <= '0' + i && (p[1] == ',' || p[1] == 0))
1488 {
da2c0219
RK
1489 /* Copy class and whether memory is allowed from the matching
1490 alternative. Then perform any needed cost computations
1491 and/or adjustments. */
e4600702
RK
1492 j = p[0] - '0';
1493 classes[i] = classes[j];
da2c0219 1494 allows_mem[i] = allows_mem[j];
e4600702
RK
1495
1496 if (GET_CODE (op) != REG || REGNO (op) < FIRST_PSEUDO_REGISTER)
1497 {
1498 /* If this matches the other operand, we have no added
dc903608 1499 cost and we win. */
e4600702 1500 if (rtx_equal_p (ops[j], op))
dc903608 1501 win = 1;
e4600702 1502
77e67eac
RK
1503 /* If we can put the other operand into a register, add to
1504 the cost of this alternative the cost to copy this
1505 operand to the register used for the other operand. */
e4600702 1506
dc903608 1507 else if (classes[j] != NO_REGS)
77e67eac 1508 alt_cost += copy_cost (op, mode, classes[j], 1), win = 1;
e4600702 1509 }
07d8ca2d
RS
1510 else if (GET_CODE (ops[j]) != REG
1511 || REGNO (ops[j]) < FIRST_PSEUDO_REGISTER)
1512 {
1513 /* This op is a pseudo but the one it matches is not. */
a6a2274a 1514
07d8ca2d
RS
1515 /* If we can't put the other operand into a register, this
1516 alternative can't be used. */
1517
1518 if (classes[j] == NO_REGS)
1519 alt_fail = 1;
e4600702 1520
07d8ca2d
RS
1521 /* Otherwise, add to the cost of this alternative the cost
1522 to copy the other operand to the register used for this
1523 operand. */
1524
1525 else
1526 alt_cost += copy_cost (ops[j], mode, classes[j], 1);
1527 }
e4600702
RK
1528 else
1529 {
da2c0219
RK
1530 /* The costs of this operand are not the same as the other
1531 operand since move costs are not symmetric. Moreover,
1532 if we cannot tie them, this alternative needs to do a
1533 copy, which is one instruction. */
1534
1535 struct costs *pp = &this_op_costs[i];
1536
1537 for (class = 0; class < N_REG_CLASSES; class++)
1538 pp->cost[class]
d5e2075d 1539 = ((recog_data.operand_type[i] != OP_OUT
e56b4594 1540 ? may_move_in_cost[mode][class][(int) classes[i]]
d5e2075d
JH
1541 : 0)
1542 + (recog_data.operand_type[i] != OP_IN
e56b4594 1543 ? may_move_out_cost[mode][(int) classes[i]][class]
d5e2075d 1544 : 0));
a6a2274a 1545
da2c0219
RK
1546 /* If the alternative actually allows memory, make things
1547 a bit cheaper since we won't need an extra insn to
1548 load it. */
1549
1550 pp->mem_cost
d5e2075d
JH
1551 = ((recog_data.operand_type[i] != OP_IN
1552 ? MEMORY_MOVE_COST (mode, classes[i], 0)
1553 : 0)
1554 + (recog_data.operand_type[i] != OP_OUT
1555 ? MEMORY_MOVE_COST (mode, classes[i], 1)
1556 : 0) - allows_mem[i]);
da2c0219
RK
1557
1558 /* If we have assigned a class to this register in our
1559 first pass, add a cost to this alternative corresponding
1560 to what we would add if this register were not in the
1561 appropriate class. */
1562
9ffc5a70 1563 if (reg_pref)
da2c0219 1564 alt_cost
e56b4594
AO
1565 += (may_move_in_cost[mode]
1566 [(unsigned char) reg_pref[REGNO (op)].prefclass]
da2c0219 1567 [(int) classes[i]]);
e4600702 1568
37747c82
RK
1569 if (REGNO (ops[i]) != REGNO (ops[j])
1570 && ! find_reg_note (insn, REG_DEAD, op))
1571 alt_cost += 2;
e4600702 1572
347099d6 1573 /* This is in place of ordinary cost computation
1ddb342a
RK
1574 for this operand, so skip to the end of the
1575 alternative (should be just one character). */
1576 while (*p && *p++ != ',')
1577 ;
1578
1579 constraints[i] = p;
347099d6
RS
1580 continue;
1581 }
e4600702
RK
1582 }
1583
1584 /* Scan all the constraint letters. See if the operand matches
1585 any of the constraints. Collect the valid register classes
1586 and see if this operand accepts memory. */
1587
e4600702
RK
1588 while (*p && (c = *p++) != ',')
1589 switch (c)
1590 {
e4600702
RK
1591 case '*':
1592 /* Ignore the next letter for this pass. */
1593 p++;
1594 break;
1595
812f2051
R
1596 case '?':
1597 alt_cost += 2;
8c368ee2 1598 case '!': case '#': case '&':
e4600702 1599 case '0': case '1': case '2': case '3': case '4':
8c368ee2 1600 case '5': case '6': case '7': case '8': case '9':
94e6f783
DE
1601 break;
1602
e4600702 1603 case 'p':
94e6f783
DE
1604 allows_addr = 1;
1605 win = address_operand (op, GET_MODE (op));
46f40127
JL
1606 /* We know this operand is an address, so we want it to be
1607 allocated to a register that can be the base of an
1608 address, ie BASE_REG_CLASS. */
1609 classes[i]
1610 = reg_class_subunion[(int) classes[i]]
3dcc68a4 1611 [(int) MODE_BASE_REG_CLASS (VOIDmode)];
e4600702
RK
1612 break;
1613
1614 case 'm': case 'o': case 'V':
ac2a9454 1615 /* It doesn't seem worth distinguishing between offsettable
e4600702 1616 and non-offsettable addresses here. */
da2c0219 1617 allows_mem[i] = 1;
e4600702
RK
1618 if (GET_CODE (op) == MEM)
1619 win = 1;
1620 break;
1621
1622 case '<':
1623 if (GET_CODE (op) == MEM
1624 && (GET_CODE (XEXP (op, 0)) == PRE_DEC
1625 || GET_CODE (XEXP (op, 0)) == POST_DEC))
1626 win = 1;
1627 break;
1628
1629 case '>':
1630 if (GET_CODE (op) == MEM
1631 && (GET_CODE (XEXP (op, 0)) == PRE_INC
1632 || GET_CODE (XEXP (op, 0)) == POST_INC))
1633 win = 1;
1634 break;
1635
1636 case 'E':
e4600702
RK
1637 case 'F':
1638 if (GET_CODE (op) == CONST_DOUBLE)
1639 win = 1;
1640 break;
1641
1642 case 'G':
1643 case 'H':
1644 if (GET_CODE (op) == CONST_DOUBLE
1645 && CONST_DOUBLE_OK_FOR_LETTER_P (op, c))
1646 win = 1;
1647 break;
1648
1649 case 's':
1650 if (GET_CODE (op) == CONST_INT
1651 || (GET_CODE (op) == CONST_DOUBLE
1652 && GET_MODE (op) == VOIDmode))
1653 break;
1654 case 'i':
1655 if (CONSTANT_P (op)
1656#ifdef LEGITIMATE_PIC_OPERAND_P
1657 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
1658#endif
1659 )
1660 win = 1;
1661 break;
1662
1663 case 'n':
1664 if (GET_CODE (op) == CONST_INT
1665 || (GET_CODE (op) == CONST_DOUBLE
1666 && GET_MODE (op) == VOIDmode))
1667 win = 1;
1668 break;
1669
1670 case 'I':
1671 case 'J':
1672 case 'K':
1673 case 'L':
1674 case 'M':
1675 case 'N':
1676 case 'O':
1677 case 'P':
1678 if (GET_CODE (op) == CONST_INT
1679 && CONST_OK_FOR_LETTER_P (INTVAL (op), c))
1680 win = 1;
1681 break;
1682
1683 case 'X':
1684 win = 1;
1685 break;
54dac99e 1686
e4600702
RK
1687 case 'g':
1688 if (GET_CODE (op) == MEM
1689 || (CONSTANT_P (op)
1690#ifdef LEGITIMATE_PIC_OPERAND_P
1691 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
54dac99e 1692#endif
e4600702
RK
1693 ))
1694 win = 1;
da2c0219 1695 allows_mem[i] = 1;
e4600702
RK
1696 case 'r':
1697 classes[i]
1698 = reg_class_subunion[(int) classes[i]][(int) GENERAL_REGS];
1699 break;
1700
1701 default:
c2cba7a9
RH
1702 if (REG_CLASS_FROM_LETTER (c) != NO_REGS)
1703 classes[i]
1704 = reg_class_subunion[(int) classes[i]]
1705 [(int) REG_CLASS_FROM_LETTER (c)];
1706#ifdef EXTRA_CONSTRAINT
1707 else if (EXTRA_CONSTRAINT (op, c))
1708 win = 1;
1709#endif
1710 break;
e4600702
RK
1711 }
1712
1713 constraints[i] = p;
1714
1715 /* How we account for this operand now depends on whether it is a
1716 pseudo register or not. If it is, we first check if any
1717 register classes are valid. If not, we ignore this alternative,
1718 since we want to assume that all pseudos get allocated for
1719 register preferencing. If some register class is valid, compute
1720 the costs of moving the pseudo into that class. */
1721
1722 if (GET_CODE (op) == REG && REGNO (op) >= FIRST_PSEUDO_REGISTER)
4db18574 1723 {
e4600702 1724 if (classes[i] == NO_REGS)
94e6f783 1725 {
e79f71f7
GK
1726 /* We must always fail if the operand is a REG, but
1727 we did not find a suitable class.
a6a2274a 1728
e79f71f7
GK
1729 Otherwise we may perform an uninitialized read
1730 from this_op_costs after the `continue' statement
1731 below. */
1732 alt_fail = 1;
94e6f783 1733 }
e4600702
RK
1734 else
1735 {
1736 struct costs *pp = &this_op_costs[i];
1737
1738 for (class = 0; class < N_REG_CLASSES; class++)
14a774a9 1739 pp->cost[class]
d5e2075d 1740 = ((recog_data.operand_type[i] != OP_OUT
e56b4594 1741 ? may_move_in_cost[mode][class][(int) classes[i]]
d5e2075d
JH
1742 : 0)
1743 + (recog_data.operand_type[i] != OP_IN
e56b4594 1744 ? may_move_out_cost[mode][(int) classes[i]][class]
d5e2075d 1745 : 0));
e4600702
RK
1746
1747 /* If the alternative actually allows memory, make things
1748 a bit cheaper since we won't need an extra insn to
1749 load it. */
1750
14a774a9 1751 pp->mem_cost
d5e2075d
JH
1752 = ((recog_data.operand_type[i] != OP_IN
1753 ? MEMORY_MOVE_COST (mode, classes[i], 0)
1754 : 0)
1755 + (recog_data.operand_type[i] != OP_OUT
1756 ? MEMORY_MOVE_COST (mode, classes[i], 1)
1757 : 0) - allows_mem[i]);
e4600702
RK
1758
1759 /* If we have assigned a class to this register in our
1760 first pass, add a cost to this alternative corresponding
1761 to what we would add if this register were not in the
1762 appropriate class. */
1763
9ffc5a70 1764 if (reg_pref)
e4600702 1765 alt_cost
e56b4594
AO
1766 += (may_move_in_cost[mode]
1767 [(unsigned char) reg_pref[REGNO (op)].prefclass]
14a774a9 1768 [(int) classes[i]]);
e4600702 1769 }
4db18574 1770 }
54dac99e 1771
e4600702
RK
1772 /* Otherwise, if this alternative wins, either because we
1773 have already determined that or if we have a hard register of
1774 the proper class, there is no cost for this alternative. */
54dac99e 1775
e4600702
RK
1776 else if (win
1777 || (GET_CODE (op) == REG
6f654776 1778 && reg_fits_class_p (op, classes[i], 0, GET_MODE (op))))
e4600702 1779 ;
54dac99e 1780
e4600702
RK
1781 /* If registers are valid, the cost of this alternative includes
1782 copying the object to and/or from a register. */
54dac99e 1783
e4600702
RK
1784 else if (classes[i] != NO_REGS)
1785 {
1ccbefce 1786 if (recog_data.operand_type[i] != OP_OUT)
e4600702 1787 alt_cost += copy_cost (op, mode, classes[i], 1);
54dac99e 1788
1ccbefce 1789 if (recog_data.operand_type[i] != OP_IN)
e4600702
RK
1790 alt_cost += copy_cost (op, mode, classes[i], 0);
1791 }
54dac99e 1792
e4600702
RK
1793 /* The only other way this alternative can be used is if this is a
1794 constant that could be placed into memory. */
1795
da2c0219 1796 else if (CONSTANT_P (op) && (allows_addr || allows_mem[i]))
cbd5b9a2 1797 alt_cost += MEMORY_MOVE_COST (mode, classes[i], 1);
e4600702
RK
1798 else
1799 alt_fail = 1;
1800 }
1801
1802 if (alt_fail)
1803 continue;
1804
1805 /* Finally, update the costs with the information we've calculated
1806 about this alternative. */
1807
1808 for (i = 0; i < n_ops; i++)
1809 if (GET_CODE (ops[i]) == REG
1810 && REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER)
54dac99e 1811 {
e4600702 1812 struct costs *pp = &op_costs[i], *qq = &this_op_costs[i];
1ccbefce 1813 int scale = 1 + (recog_data.operand_type[i] == OP_INOUT);
54dac99e 1814
e4600702
RK
1815 pp->mem_cost = MIN (pp->mem_cost,
1816 (qq->mem_cost + alt_cost) * scale);
54dac99e 1817
e4600702
RK
1818 for (class = 0; class < N_REG_CLASSES; class++)
1819 pp->cost[class] = MIN (pp->cost[class],
1820 (qq->cost[class] + alt_cost) * scale);
1821 }
1822 }
ec2d92af
RK
1823
1824 /* If this insn is a single set copying operand 1 to operand 0
accef103
JL
1825 and one operand is a pseudo with the other a hard reg or a pseudo
1826 that prefers a register that is in its own register class then
1827 we may want to adjust the cost of that register class to -1.
a6a2274a 1828
accef103
JL
1829 Avoid the adjustment if the source does not die to avoid stressing of
1830 register allocator by preferrencing two coliding registers into single
1831 class.
1832
1833 Also avoid the adjustment if a copy between registers of the class
1834 is expensive (ten times the cost of a default copy is considered
1835 arbitrarily expensive). This avoids losing when the preferred class
1836 is very expensive as the source of a copy instruction. */
ec2d92af
RK
1837
1838 if ((set = single_set (insn)) != 0
1839 && ops[0] == SET_DEST (set) && ops[1] == SET_SRC (set)
0dc0641b
JH
1840 && GET_CODE (ops[0]) == REG && GET_CODE (ops[1]) == REG
1841 && find_regno_note (insn, REG_DEAD, REGNO (ops[1])))
ec2d92af
RK
1842 for (i = 0; i <= 1; i++)
1843 if (REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER)
1844 {
770ae6cc 1845 unsigned int regno = REGNO (ops[!i]);
ec2d92af
RK
1846 enum machine_mode mode = GET_MODE (ops[!i]);
1847 int class;
770ae6cc 1848 unsigned int nr;
ec2d92af 1849
accef103
JL
1850 if (regno >= FIRST_PSEUDO_REGISTER && reg_pref != 0)
1851 {
1852 enum reg_class pref = reg_pref[regno].prefclass;
1853
1854 if ((reg_class_size[(unsigned char) pref]
1855 == CLASS_MAX_NREGS (pref, mode))
e56b4594 1856 && REGISTER_MOVE_COST (mode, pref, pref) < 10 * 2)
accef103
JL
1857 op_costs[i].cost[(unsigned char) pref] = -1;
1858 }
ec2d92af
RK
1859 else if (regno < FIRST_PSEUDO_REGISTER)
1860 for (class = 0; class < N_REG_CLASSES; class++)
1861 if (TEST_HARD_REG_BIT (reg_class_contents[class], regno)
1862 && reg_class_size[class] == CLASS_MAX_NREGS (class, mode))
4841ba4b
RK
1863 {
1864 if (reg_class_size[class] == 1)
1865 op_costs[i].cost[class] = -1;
1866 else
1867 {
770ae6cc 1868 for (nr = 0; nr < HARD_REGNO_NREGS (regno, mode); nr++)
4841ba4b 1869 {
770ae6cc
RK
1870 if (! TEST_HARD_REG_BIT (reg_class_contents[class],
1871 regno + nr))
4841ba4b
RK
1872 break;
1873 }
1874
770ae6cc 1875 if (nr == HARD_REGNO_NREGS (regno,mode))
4841ba4b
RK
1876 op_costs[i].cost[class] = -1;
1877 }
1878 }
ec2d92af 1879 }
54dac99e 1880}
e4600702
RK
1881\f
1882/* Compute the cost of loading X into (if TO_P is non-zero) or from (if
1883 TO_P is zero) a register of class CLASS in mode MODE.
1884
1885 X must not be a pseudo. */
1886
1887static int
1888copy_cost (x, mode, class, to_p)
1889 rtx x;
d0af450d 1890 enum machine_mode mode ATTRIBUTE_UNUSED;
e4600702 1891 enum reg_class class;
d0af450d 1892 int to_p ATTRIBUTE_UNUSED;
e4600702 1893{
29a82058 1894#ifdef HAVE_SECONDARY_RELOADS
e4600702 1895 enum reg_class secondary_class = NO_REGS;
29a82058 1896#endif
e4600702
RK
1897
1898 /* If X is a SCRATCH, there is actually nothing to move since we are
1899 assuming optimal allocation. */
1900
1901 if (GET_CODE (x) == SCRATCH)
1902 return 0;
1903
1904 /* Get the class we will actually use for a reload. */
1905 class = PREFERRED_RELOAD_CLASS (x, class);
1906
1907#ifdef HAVE_SECONDARY_RELOADS
a6a2274a 1908 /* If we need a secondary reload (we assume here that we are using
e4600702
RK
1909 the secondary reload as an intermediate, not a scratch register), the
1910 cost is that to load the input into the intermediate register, then
1911 to copy them. We use a special value of TO_P to avoid recursion. */
1912
1913#ifdef SECONDARY_INPUT_RELOAD_CLASS
1914 if (to_p == 1)
1915 secondary_class = SECONDARY_INPUT_RELOAD_CLASS (class, mode, x);
1916#endif
1917
dd9f0e8f 1918#ifdef SECONDARY_OUTPUT_RELOAD_CLASS
e4600702
RK
1919 if (! to_p)
1920 secondary_class = SECONDARY_OUTPUT_RELOAD_CLASS (class, mode, x);
1921#endif
1922
1923 if (secondary_class != NO_REGS)
e56b4594 1924 return (move_cost[mode][(int) secondary_class][(int) class]
e4600702 1925 + copy_cost (x, mode, secondary_class, 2));
dd9f0e8f 1926#endif /* HAVE_SECONDARY_RELOADS */
e4600702
RK
1927
1928 /* For memory, use the memory move cost, for (hard) registers, use the
1929 cost to move between the register classes, and use 2 for everything
1930 else (constants). */
1931
1932 if (GET_CODE (x) == MEM || class == NO_REGS)
cbd5b9a2 1933 return MEMORY_MOVE_COST (mode, class, to_p);
54dac99e 1934
e4600702 1935 else if (GET_CODE (x) == REG)
e56b4594 1936 return move_cost[mode][(int) REGNO_REG_CLASS (REGNO (x))][(int) class];
e4600702
RK
1937
1938 else
1939 /* If this is a constant, we may eventually want to call rtx_cost here. */
b437f1a7 1940 return COSTS_N_INSNS (1);
e4600702
RK
1941}
1942\f
54dac99e
RK
1943/* Record the pseudo registers we must reload into hard registers
1944 in a subexpression of a memory address, X.
e4600702
RK
1945
1946 CLASS is the class that the register needs to be in and is either
1947 BASE_REG_CLASS or INDEX_REG_CLASS.
1948
1949 SCALE is twice the amount to multiply the cost by (it is twice so we
1950 can represent half-cost adjustments). */
54dac99e 1951
197d6480 1952static void
e4600702 1953record_address_regs (x, class, scale)
54dac99e 1954 rtx x;
e4600702
RK
1955 enum reg_class class;
1956 int scale;
54dac99e 1957{
b3694847 1958 enum rtx_code code = GET_CODE (x);
54dac99e
RK
1959
1960 switch (code)
1961 {
1962 case CONST_INT:
1963 case CONST:
1964 case CC0:
1965 case PC:
1966 case SYMBOL_REF:
1967 case LABEL_REF:
1968 return;
1969
1970 case PLUS:
1971 /* When we have an address that is a sum,
1972 we must determine whether registers are "base" or "index" regs.
1973 If there is a sum of two registers, we must choose one to be
3502dc9c
JDA
1974 the "base". Luckily, we can use the REG_POINTER to make a good
1975 choice most of the time. We only need to do this on machines
1976 that can have two registers in an address and where the base
1977 and index register classes are different.
e4600702
RK
1978
1979 ??? This code used to set REGNO_POINTER_FLAG in some cases, but
1980 that seems bogus since it should only be set when we are sure
1981 the register is being used as a pointer. */
1982
54dac99e
RK
1983 {
1984 rtx arg0 = XEXP (x, 0);
1985 rtx arg1 = XEXP (x, 1);
b3694847
SS
1986 enum rtx_code code0 = GET_CODE (arg0);
1987 enum rtx_code code1 = GET_CODE (arg1);
54dac99e
RK
1988
1989 /* Look inside subregs. */
e4600702 1990 if (code0 == SUBREG)
54dac99e 1991 arg0 = SUBREG_REG (arg0), code0 = GET_CODE (arg0);
e4600702 1992 if (code1 == SUBREG)
54dac99e
RK
1993 arg1 = SUBREG_REG (arg1), code1 = GET_CODE (arg1);
1994
e4600702
RK
1995 /* If this machine only allows one register per address, it must
1996 be in the first operand. */
1997
1998 if (MAX_REGS_PER_ADDRESS == 1)
1999 record_address_regs (arg0, class, scale);
2000
2001 /* If index and base registers are the same on this machine, just
2002 record registers in any non-constant operands. We assume here,
a6a2274a 2003 as well as in the tests below, that all addresses are in
e4600702
RK
2004 canonical form. */
2005
3dcc68a4 2006 else if (INDEX_REG_CLASS == MODE_BASE_REG_CLASS (VOIDmode))
54dac99e 2007 {
e4600702
RK
2008 record_address_regs (arg0, class, scale);
2009 if (! CONSTANT_P (arg1))
2010 record_address_regs (arg1, class, scale);
54dac99e 2011 }
e4600702
RK
2012
2013 /* If the second operand is a constant integer, it doesn't change
2014 what class the first operand must be. */
2015
2016 else if (code1 == CONST_INT || code1 == CONST_DOUBLE)
2017 record_address_regs (arg0, class, scale);
2018
2019 /* If the second operand is a symbolic constant, the first operand
2020 must be an index register. */
2021
2022 else if (code1 == SYMBOL_REF || code1 == CONST || code1 == LABEL_REF)
2023 record_address_regs (arg0, INDEX_REG_CLASS, scale);
2024
956d6950
JL
2025 /* If both operands are registers but one is already a hard register
2026 of index or base class, give the other the class that the hard
2027 register is not. */
2028
3f9e9508 2029#ifdef REG_OK_FOR_BASE_P
956d6950
JL
2030 else if (code0 == REG && code1 == REG
2031 && REGNO (arg0) < FIRST_PSEUDO_REGISTER
2032 && (REG_OK_FOR_BASE_P (arg0) || REG_OK_FOR_INDEX_P (arg0)))
2033 record_address_regs (arg1,
2034 REG_OK_FOR_BASE_P (arg0)
3dcc68a4 2035 ? INDEX_REG_CLASS : MODE_BASE_REG_CLASS (VOIDmode),
956d6950
JL
2036 scale);
2037 else if (code0 == REG && code1 == REG
2038 && REGNO (arg1) < FIRST_PSEUDO_REGISTER
2039 && (REG_OK_FOR_BASE_P (arg1) || REG_OK_FOR_INDEX_P (arg1)))
2040 record_address_regs (arg0,
2041 REG_OK_FOR_BASE_P (arg1)
3dcc68a4 2042 ? INDEX_REG_CLASS : MODE_BASE_REG_CLASS (VOIDmode),
956d6950 2043 scale);
3f9e9508 2044#endif
956d6950 2045
e9a25f70
JL
2046 /* If one operand is known to be a pointer, it must be the base
2047 with the other operand the index. Likewise if the other operand
2048 is a MULT. */
f22376c7 2049
3502dc9c 2050 else if ((code0 == REG && REG_POINTER (arg0))
e9a25f70 2051 || code1 == MULT)
f22376c7 2052 {
3dcc68a4 2053 record_address_regs (arg0, MODE_BASE_REG_CLASS (VOIDmode), scale);
f22376c7
CI
2054 record_address_regs (arg1, INDEX_REG_CLASS, scale);
2055 }
3502dc9c 2056 else if ((code1 == REG && REG_POINTER (arg1))
e9a25f70 2057 || code0 == MULT)
f22376c7
CI
2058 {
2059 record_address_regs (arg0, INDEX_REG_CLASS, scale);
3dcc68a4 2060 record_address_regs (arg1, MODE_BASE_REG_CLASS (VOIDmode), scale);
f22376c7
CI
2061 }
2062
e9a25f70 2063 /* Otherwise, count equal chances that each might be a base
e4600702
RK
2064 or index register. This case should be rare. */
2065
e9a25f70 2066 else
54dac99e 2067 {
3dcc68a4
NC
2068 record_address_regs (arg0, MODE_BASE_REG_CLASS (VOIDmode),
2069 scale / 2);
e4600702 2070 record_address_regs (arg0, INDEX_REG_CLASS, scale / 2);
3dcc68a4
NC
2071 record_address_regs (arg1, MODE_BASE_REG_CLASS (VOIDmode),
2072 scale / 2);
e4600702 2073 record_address_regs (arg1, INDEX_REG_CLASS, scale / 2);
54dac99e 2074 }
54dac99e
RK
2075 }
2076 break;
2077
4b983fdc
RH
2078 /* Double the importance of a pseudo register that is incremented
2079 or decremented, since it would take two extra insns
2080 if it ends up in the wrong place. */
2081 case POST_MODIFY:
2082 case PRE_MODIFY:
3dcc68a4
NC
2083 record_address_regs (XEXP (x, 0), MODE_BASE_REG_CLASS (VOIDmode),
2084 2 * scale);
4b983fdc
RH
2085 if (REG_P (XEXP (XEXP (x, 1), 1)))
2086 record_address_regs (XEXP (XEXP (x, 1), 1),
2087 INDEX_REG_CLASS, 2 * scale);
2088 break;
2089
54dac99e
RK
2090 case POST_INC:
2091 case PRE_INC:
2092 case POST_DEC:
2093 case PRE_DEC:
2094 /* Double the importance of a pseudo register that is incremented
2095 or decremented, since it would take two extra insns
533d0835
RK
2096 if it ends up in the wrong place. If the operand is a pseudo,
2097 show it is being used in an INC_DEC context. */
2098
2099#ifdef FORBIDDEN_INC_DEC_CLASSES
2100 if (GET_CODE (XEXP (x, 0)) == REG
2101 && REGNO (XEXP (x, 0)) >= FIRST_PSEUDO_REGISTER)
2102 in_inc_dec[REGNO (XEXP (x, 0))] = 1;
2103#endif
e4600702
RK
2104
2105 record_address_regs (XEXP (x, 0), class, 2 * scale);
54dac99e
RK
2106 break;
2107
2108 case REG:
2109 {
b3694847
SS
2110 struct costs *pp = &costs[REGNO (x)];
2111 int i;
54dac99e 2112
cbd5b9a2 2113 pp->mem_cost += (MEMORY_MOVE_COST (Pmode, class, 1) * scale) / 2;
54dac99e 2114
e4600702 2115 for (i = 0; i < N_REG_CLASSES; i++)
e56b4594 2116 pp->cost[i] += (may_move_in_cost[Pmode][i][(int) class] * scale) / 2;
54dac99e
RK
2117 }
2118 break;
2119
2120 default:
2121 {
b3694847
SS
2122 const char *fmt = GET_RTX_FORMAT (code);
2123 int i;
54dac99e
RK
2124 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2125 if (fmt[i] == 'e')
e4600702 2126 record_address_regs (XEXP (x, i), class, scale);
54dac99e
RK
2127 }
2128 }
2129}
08d95f91
RK
2130\f
2131#ifdef FORBIDDEN_INC_DEC_CLASSES
2132
2133/* Return 1 if REG is valid as an auto-increment memory reference
2134 to an object of MODE. */
2135
1d300e19 2136static int
08d95f91
RK
2137auto_inc_dec_reg_p (reg, mode)
2138 rtx reg;
2139 enum machine_mode mode;
2140{
940da324
JL
2141 if (HAVE_POST_INCREMENT
2142 && memory_address_p (mode, gen_rtx_POST_INC (Pmode, reg)))
08d95f91 2143 return 1;
08d95f91 2144
940da324
JL
2145 if (HAVE_POST_DECREMENT
2146 && memory_address_p (mode, gen_rtx_POST_DEC (Pmode, reg)))
08d95f91 2147 return 1;
08d95f91 2148
940da324
JL
2149 if (HAVE_PRE_INCREMENT
2150 && memory_address_p (mode, gen_rtx_PRE_INC (Pmode, reg)))
08d95f91 2151 return 1;
08d95f91 2152
940da324
JL
2153 if (HAVE_PRE_DECREMENT
2154 && memory_address_p (mode, gen_rtx_PRE_DEC (Pmode, reg)))
08d95f91 2155 return 1;
08d95f91
RK
2156
2157 return 0;
2158}
2159#endif
b1f21e0a 2160\f
da668e9c
MM
2161static short *renumber;
2162static size_t regno_allocated;
2163static unsigned int reg_n_max;
ed396e68 2164
b1f21e0a
MM
2165/* Allocate enough space to hold NUM_REGS registers for the tables used for
2166 reg_scan and flow_analysis that are indexed by the register number. If
39379e67
MM
2167 NEW_P is non zero, initialize all of the registers, otherwise only
2168 initialize the new registers allocated. The same table is kept from
2169 function to function, only reallocating it when we need more room. If
2170 RENUMBER_P is non zero, allocate the reg_renumber array also. */
b1f21e0a
MM
2171
2172void
39379e67 2173allocate_reg_info (num_regs, new_p, renumber_p)
6feacd09 2174 size_t num_regs;
b1f21e0a 2175 int new_p;
39379e67 2176 int renumber_p;
b1f21e0a 2177{
6feacd09
MM
2178 size_t size_info;
2179 size_t size_renumber;
2180 size_t min = (new_p) ? 0 : reg_n_max;
2181 struct reg_info_data *reg_data;
39379e67 2182
b1f21e0a
MM
2183 if (num_regs > regno_allocated)
2184 {
6feacd09
MM
2185 size_t old_allocated = regno_allocated;
2186
b1f21e0a 2187 regno_allocated = num_regs + (num_regs / 20); /* add some slop space */
39379e67
MM
2188 size_renumber = regno_allocated * sizeof (short);
2189
2190 if (!reg_n_info)
2191 {
6feacd09 2192 VARRAY_REG_INIT (reg_n_info, regno_allocated, "reg_n_info");
39379e67 2193 renumber = (short *) xmalloc (size_renumber);
a6a2274a 2194 reg_pref_buffer = (struct reg_pref *) xmalloc (regno_allocated
9ffc5a70 2195 * sizeof (struct reg_pref));
39379e67
MM
2196 }
2197
2198 else
2199 {
6feacd09
MM
2200 VARRAY_GROW (reg_n_info, regno_allocated);
2201
2202 if (new_p) /* if we're zapping everything, no need to realloc */
2203 {
8e2e89f7
KH
2204 free ((char *) renumber);
2205 free ((char *) reg_pref);
6feacd09 2206 renumber = (short *) xmalloc (size_renumber);
a6a2274a 2207 reg_pref_buffer = (struct reg_pref *) xmalloc (regno_allocated
9ffc5a70 2208 * sizeof (struct reg_pref));
6feacd09
MM
2209 }
2210
2211 else
2212 {
8e2e89f7
KH
2213 renumber = (short *) xrealloc ((char *) renumber, size_renumber);
2214 reg_pref_buffer = (struct reg_pref *) xrealloc ((char *) reg_pref_buffer,
a6a2274a 2215 regno_allocated
9ffc5a70 2216 * sizeof (struct reg_pref));
6feacd09 2217 }
39379e67 2218 }
6feacd09
MM
2219
2220 size_info = (regno_allocated - old_allocated) * sizeof (reg_info)
2221 + sizeof (struct reg_info_data) - sizeof (reg_info);
2222 reg_data = (struct reg_info_data *) xcalloc (size_info, 1);
2223 reg_data->min_index = old_allocated;
2224 reg_data->max_index = regno_allocated - 1;
2225 reg_data->next = reg_info_head;
2226 reg_info_head = reg_data;
b1f21e0a
MM
2227 }
2228
6feacd09 2229 reg_n_max = num_regs;
b1f21e0a
MM
2230 if (min < num_regs)
2231 {
6feacd09
MM
2232 /* Loop through each of the segments allocated for the actual
2233 reg_info pages, and set up the pointers, zero the pages, etc. */
a6a2274a 2234 for (reg_data = reg_info_head;
da668e9c
MM
2235 reg_data && reg_data->max_index >= min;
2236 reg_data = reg_data->next)
39379e67 2237 {
6feacd09
MM
2238 size_t min_index = reg_data->min_index;
2239 size_t max_index = reg_data->max_index;
da668e9c
MM
2240 size_t max = MIN (max_index, num_regs);
2241 size_t local_min = min - min_index;
2242 size_t i;
6feacd09 2243
da668e9c
MM
2244 if (reg_data->min_index > num_regs)
2245 continue;
6feacd09 2246
da668e9c
MM
2247 if (min < min_index)
2248 local_min = 0;
2249 if (!reg_data->used_p) /* page just allocated with calloc */
2250 reg_data->used_p = 1; /* no need to zero */
2251 else
961192e1 2252 memset ((char *) &reg_data->data[local_min], 0,
da668e9c
MM
2253 sizeof (reg_info) * (max - min_index - local_min + 1));
2254
2255 for (i = min_index+local_min; i <= max; i++)
2256 {
2257 VARRAY_REG (reg_n_info, i) = &reg_data->data[i-min_index];
2258 REG_BASIC_BLOCK (i) = REG_BLOCK_UNKNOWN;
2259 renumber[i] = -1;
2260 reg_pref_buffer[i].prefclass = (char) NO_REGS;
2261 reg_pref_buffer[i].altclass = (char) NO_REGS;
6feacd09 2262 }
39379e67 2263 }
b1f21e0a
MM
2264 }
2265
6feacd09
MM
2266 /* If {pref,alt}class have already been allocated, update the pointers to
2267 the newly realloced ones. */
9ffc5a70
JH
2268 if (reg_pref)
2269 reg_pref = reg_pref_buffer;
6feacd09 2270
39379e67
MM
2271 if (renumber_p)
2272 reg_renumber = renumber;
2273
73b76448
RK
2274 /* Tell the regset code about the new number of registers */
2275 MAX_REGNO_REG_SET (num_regs, new_p, renumber_p);
b1f21e0a
MM
2276}
2277
ed396e68
BS
2278/* Free up the space allocated by allocate_reg_info. */
2279void
2280free_reg_info ()
2281{
2282 if (reg_n_info)
2283 {
2284 struct reg_info_data *reg_data;
2285 struct reg_info_data *reg_next;
2286
2287 VARRAY_FREE (reg_n_info);
2288 for (reg_data = reg_info_head; reg_data; reg_data = reg_next)
2289 {
2290 reg_next = reg_data->next;
8e2e89f7 2291 free ((char *) reg_data);
ed396e68
BS
2292 }
2293
9ffc5a70 2294 free (reg_pref_buffer);
f4f4d0f8
KH
2295 reg_pref_buffer = (struct reg_pref *) 0;
2296 reg_info_head = (struct reg_info_data *) 0;
2297 renumber = (short *) 0;
ed396e68
BS
2298 }
2299 regno_allocated = 0;
2300 reg_n_max = 0;
2301}
54dac99e
RK
2302\f
2303/* This is the `regscan' pass of the compiler, run just before cse
2304 and again just before loop.
2305
2306 It finds the first and last use of each pseudo-register
2307 and records them in the vectors regno_first_uid, regno_last_uid
2308 and counts the number of sets in the vector reg_n_sets.
2309
2310 REPEAT is nonzero the second time this is called. */
2311
54dac99e 2312/* Maximum number of parallel sets and clobbers in any insn in this fn.
d22d5f34 2313 Always at least 3, since the combiner could put that many together
79b9ec0d
RK
2314 and we want this to remain correct for all the remaining passes.
2315 This corresponds to the maximum number of times note_stores will call
2316 a function for any insn. */
54dac99e
RK
2317
2318int max_parallel;
2319
a6a2274a 2320/* Used as a temporary to record the largest number of registers in
79b9ec0d
RK
2321 PARALLEL in a SET_DEST. This is added to max_parallel. */
2322
2323static int max_set_parallel;
2324
54dac99e
RK
2325void
2326reg_scan (f, nregs, repeat)
2327 rtx f;
770ae6cc 2328 unsigned int nregs;
272df862 2329 int repeat ATTRIBUTE_UNUSED;
54dac99e 2330{
b3694847 2331 rtx insn;
54dac99e 2332
39379e67 2333 allocate_reg_info (nregs, TRUE, FALSE);
54dac99e 2334 max_parallel = 3;
79b9ec0d 2335 max_set_parallel = 0;
54dac99e
RK
2336
2337 for (insn = f; insn; insn = NEXT_INSN (insn))
2338 if (GET_CODE (insn) == INSN
2339 || GET_CODE (insn) == CALL_INSN
2340 || GET_CODE (insn) == JUMP_INSN)
2341 {
2342 if (GET_CODE (PATTERN (insn)) == PARALLEL
2343 && XVECLEN (PATTERN (insn), 0) > max_parallel)
2344 max_parallel = XVECLEN (PATTERN (insn), 0);
f903b91f 2345 reg_scan_mark_refs (PATTERN (insn), insn, 0, 0);
01565a55
RK
2346
2347 if (REG_NOTES (insn))
f903b91f
DM
2348 reg_scan_mark_refs (REG_NOTES (insn), insn, 1, 0);
2349 }
79b9ec0d
RK
2350
2351 max_parallel += max_set_parallel;
f903b91f
DM
2352}
2353
2354/* Update 'regscan' information by looking at the insns
2355 from FIRST to LAST. Some new REGs have been created,
2356 and any REG with number greater than OLD_MAX_REGNO is
2357 such a REG. We only update information for those. */
2358
2359void
770ae6cc 2360reg_scan_update (first, last, old_max_regno)
f903b91f
DM
2361 rtx first;
2362 rtx last;
770ae6cc 2363 unsigned int old_max_regno;
f903b91f 2364{
b3694847 2365 rtx insn;
f903b91f
DM
2366
2367 allocate_reg_info (max_reg_num (), FALSE, FALSE);
2368
2369 for (insn = first; insn != last; insn = NEXT_INSN (insn))
2370 if (GET_CODE (insn) == INSN
2371 || GET_CODE (insn) == CALL_INSN
2372 || GET_CODE (insn) == JUMP_INSN)
2373 {
2374 if (GET_CODE (PATTERN (insn)) == PARALLEL
2375 && XVECLEN (PATTERN (insn), 0) > max_parallel)
2376 max_parallel = XVECLEN (PATTERN (insn), 0);
2377 reg_scan_mark_refs (PATTERN (insn), insn, 0, old_max_regno);
2378
2379 if (REG_NOTES (insn))
2380 reg_scan_mark_refs (REG_NOTES (insn), insn, 1, old_max_regno);
54dac99e
RK
2381 }
2382}
2383
1ebecb64 2384/* X is the expression to scan. INSN is the insn it appears in.
f903b91f
DM
2385 NOTE_FLAG is nonzero if X is from INSN's notes rather than its body.
2386 We should only record information for REGs with numbers
2387 greater than or equal to MIN_REGNO. */
1ebecb64 2388
08d95f91 2389static void
f903b91f 2390reg_scan_mark_refs (x, insn, note_flag, min_regno)
54dac99e 2391 rtx x;
be8dcd74 2392 rtx insn;
1ebecb64 2393 int note_flag;
770ae6cc 2394 unsigned int min_regno;
54dac99e 2395{
b3694847
SS
2396 enum rtx_code code;
2397 rtx dest;
2398 rtx note;
54dac99e 2399
fa23c636 2400 code = GET_CODE (x);
54dac99e
RK
2401 switch (code)
2402 {
54dac99e 2403 case CONST:
185ebd6c 2404 case CONST_INT:
54dac99e 2405 case CONST_DOUBLE:
69ef87e2 2406 case CONST_VECTOR:
54dac99e
RK
2407 case CC0:
2408 case PC:
2409 case SYMBOL_REF:
2410 case LABEL_REF:
2411 case ADDR_VEC:
2412 case ADDR_DIFF_VEC:
2413 return;
2414
2415 case REG:
2416 {
770ae6cc 2417 unsigned int regno = REGNO (x);
54dac99e 2418
f903b91f
DM
2419 if (regno >= min_regno)
2420 {
2421 REGNO_LAST_NOTE_UID (regno) = INSN_UID (insn);
2422 if (!note_flag)
2423 REGNO_LAST_UID (regno) = INSN_UID (insn);
2424 if (REGNO_FIRST_UID (regno) == 0)
2425 REGNO_FIRST_UID (regno) = INSN_UID (insn);
2426 }
54dac99e
RK
2427 }
2428 break;
2429
01565a55 2430 case EXPR_LIST:
7b18c3db 2431 if (XEXP (x, 0))
f903b91f 2432 reg_scan_mark_refs (XEXP (x, 0), insn, note_flag, min_regno);
01565a55 2433 if (XEXP (x, 1))
f903b91f 2434 reg_scan_mark_refs (XEXP (x, 1), insn, note_flag, min_regno);
01565a55
RK
2435 break;
2436
2437 case INSN_LIST:
2438 if (XEXP (x, 1))
f903b91f 2439 reg_scan_mark_refs (XEXP (x, 1), insn, note_flag, min_regno);
01565a55
RK
2440 break;
2441
54dac99e
RK
2442 case SET:
2443 /* Count a set of the destination if it is a register. */
2444 for (dest = SET_DEST (x);
2445 GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART
2446 || GET_CODE (dest) == ZERO_EXTEND;
2447 dest = XEXP (dest, 0))
2448 ;
2449
79b9ec0d
RK
2450 /* For a PARALLEL, record the number of things (less the usual one for a
2451 SET) that are set. */
2452 if (GET_CODE (dest) == PARALLEL)
2453 max_set_parallel = MAX (max_set_parallel, XVECLEN (dest, 0) - 1);
2454
f903b91f
DM
2455 if (GET_CODE (dest) == REG
2456 && REGNO (dest) >= min_regno)
b2d57793
DB
2457 {
2458 REG_N_SETS (REGNO (dest))++;
2459 REG_N_REFS (REGNO (dest))++;
2460 }
54dac99e 2461
be8dcd74
RK
2462 /* If this is setting a pseudo from another pseudo or the sum of a
2463 pseudo and a constant integer and the other pseudo is known to be
2464 a pointer, set the destination to be a pointer as well.
2465
2466 Likewise if it is setting the destination from an address or from a
2467 value equivalent to an address or to the sum of an address and
2468 something else.
a6a2274a 2469
be8dcd74
RK
2470 But don't do any of this if the pseudo corresponds to a user
2471 variable since it should have already been set as a pointer based
2472 on the type. */
2473
2474 if (GET_CODE (SET_DEST (x)) == REG
2475 && REGNO (SET_DEST (x)) >= FIRST_PSEUDO_REGISTER
f903b91f 2476 && REGNO (SET_DEST (x)) >= min_regno
64d3b4ca
JL
2477 /* If the destination pseudo is set more than once, then other
2478 sets might not be to a pointer value (consider access to a
2479 union in two threads of control in the presense of global
3502dc9c 2480 optimizations). So only set REG_POINTER on the destination
64d3b4ca
JL
2481 pseudo if this is the only set of that pseudo. */
2482 && REG_N_SETS (REGNO (SET_DEST (x))) == 1
be8dcd74 2483 && ! REG_USERVAR_P (SET_DEST (x))
3502dc9c 2484 && ! REG_POINTER (SET_DEST (x))
be8dcd74 2485 && ((GET_CODE (SET_SRC (x)) == REG
3502dc9c 2486 && REG_POINTER (SET_SRC (x)))
be8dcd74
RK
2487 || ((GET_CODE (SET_SRC (x)) == PLUS
2488 || GET_CODE (SET_SRC (x)) == LO_SUM)
2489 && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
2490 && GET_CODE (XEXP (SET_SRC (x), 0)) == REG
3502dc9c 2491 && REG_POINTER (XEXP (SET_SRC (x), 0)))
be8dcd74
RK
2492 || GET_CODE (SET_SRC (x)) == CONST
2493 || GET_CODE (SET_SRC (x)) == SYMBOL_REF
2494 || GET_CODE (SET_SRC (x)) == LABEL_REF
2495 || (GET_CODE (SET_SRC (x)) == HIGH
2496 && (GET_CODE (XEXP (SET_SRC (x), 0)) == CONST
2497 || GET_CODE (XEXP (SET_SRC (x), 0)) == SYMBOL_REF
2498 || GET_CODE (XEXP (SET_SRC (x), 0)) == LABEL_REF))
2499 || ((GET_CODE (SET_SRC (x)) == PLUS
2500 || GET_CODE (SET_SRC (x)) == LO_SUM)
2501 && (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST
2502 || GET_CODE (XEXP (SET_SRC (x), 1)) == SYMBOL_REF
2503 || GET_CODE (XEXP (SET_SRC (x), 1)) == LABEL_REF))
2504 || ((note = find_reg_note (insn, REG_EQUAL, 0)) != 0
2505 && (GET_CODE (XEXP (note, 0)) == CONST
2506 || GET_CODE (XEXP (note, 0)) == SYMBOL_REF
2507 || GET_CODE (XEXP (note, 0)) == LABEL_REF))))
3502dc9c 2508 REG_POINTER (SET_DEST (x)) = 1;
be8dcd74 2509
0d4903b8
RK
2510 /* If this is setting a register from a register or from a simple
2511 conversion of a register, propagate REG_DECL. */
2512 if (GET_CODE (dest) == REG)
2513 {
2514 rtx src = SET_SRC (x);
2515
2516 while (GET_CODE (src) == SIGN_EXTEND
2517 || GET_CODE (src) == ZERO_EXTEND
2518 || GET_CODE (src) == TRUNCATE
2519 || (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)))
2520 src = XEXP (src, 0);
2521
2522 if (GET_CODE (src) == REG && REGNO_DECL (REGNO (src)) == 0)
2523 REGNO_DECL (REGNO (src)) = REGNO_DECL (REGNO (dest));
2524 else if (GET_CODE (src) == REG && REGNO_DECL (REGNO (dest)) == 0)
2525 REGNO_DECL (REGNO (dest)) = REGNO_DECL (REGNO (src));
2526 }
2527
0f41302f 2528 /* ... fall through ... */
54dac99e
RK
2529
2530 default:
2531 {
b3694847
SS
2532 const char *fmt = GET_RTX_FORMAT (code);
2533 int i;
54dac99e
RK
2534 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2535 {
2536 if (fmt[i] == 'e')
f903b91f 2537 reg_scan_mark_refs (XEXP (x, i), insn, note_flag, min_regno);
54dac99e
RK
2538 else if (fmt[i] == 'E' && XVEC (x, i) != 0)
2539 {
b3694847 2540 int j;
54dac99e 2541 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
f903b91f 2542 reg_scan_mark_refs (XVECEXP (x, i, j), insn, note_flag, min_regno);
54dac99e
RK
2543 }
2544 }
2545 }
2546 }
2547}
2548\f
2549/* Return nonzero if C1 is a subset of C2, i.e., if every register in C1
2550 is also in C2. */
2551
2552int
2553reg_class_subset_p (c1, c2)
b3694847
SS
2554 enum reg_class c1;
2555 enum reg_class c2;
54dac99e
RK
2556{
2557 if (c1 == c2) return 1;
2558
2559 if (c2 == ALL_REGS)
2560 win:
2561 return 1;
8e2e89f7
KH
2562 GO_IF_HARD_REG_SUBSET (reg_class_contents[(int) c1],
2563 reg_class_contents[(int) c2],
54dac99e
RK
2564 win);
2565 return 0;
2566}
2567
2568/* Return nonzero if there is a register that is in both C1 and C2. */
2569
2570int
2571reg_classes_intersect_p (c1, c2)
b3694847
SS
2572 enum reg_class c1;
2573 enum reg_class c2;
54dac99e
RK
2574{
2575#ifdef HARD_REG_SET
2576 register
2577#endif
2578 HARD_REG_SET c;
2579
2580 if (c1 == c2) return 1;
2581
2582 if (c1 == ALL_REGS || c2 == ALL_REGS)
2583 return 1;
2584
2585 COPY_HARD_REG_SET (c, reg_class_contents[(int) c1]);
2586 AND_HARD_REG_SET (c, reg_class_contents[(int) c2]);
2587
2588 GO_IF_HARD_REG_SUBSET (c, reg_class_contents[(int) NO_REGS], lose);
2589 return 1;
2590
2591 lose:
2592 return 0;
2593}
2594
73b76448
RK
2595/* Release any memory allocated by register sets. */
2596
2597void
2598regset_release_memory ()
2599{
73b76448
RK
2600 bitmap_release_memory ();
2601}
e2500fed
GK
2602
2603#include "gt-regclass.h"
This page took 1.967109 seconds and 5 git commands to generate.