]> gcc.gnu.org Git - gcc.git/blame - gcc/regclass.c
Major cutover to using system.h:
[gcc.git] / gcc / regclass.c
CommitLineData
54dac99e 1/* Compute register class preferences for pseudo-registers.
29a82058 2 Copyright (C) 1987, 88, 91-97, 1998 Free Software Foundation, Inc.
54dac99e
RK
3
4This file is part of GNU CC.
5
6GNU CC is free software; you can redistribute it and/or modify
7it under the terms of the GNU General Public License as published by
8the Free Software Foundation; either version 2, or (at your option)
9any later version.
10
11GNU CC is distributed in the hope that it will be useful,
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14GNU General Public License for more details.
15
16You should have received a copy of the GNU General Public License
17along with GNU CC; see the file COPYING. If not, write to
e99215a3
RK
18the Free Software Foundation, 59 Temple Place - Suite 330,
19Boston, MA 02111-1307, USA. */
54dac99e
RK
20
21
22/* This file contains two passes of the compiler: reg_scan and reg_class.
23 It also defines some tables of information about the hardware registers
24 and a function init_reg_sets to initialize the tables. */
25
26#include "config.h"
670ee920 27#include "system.h"
54dac99e
RK
28#include "rtl.h"
29#include "hard-reg-set.h"
30#include "flags.h"
31#include "basic-block.h"
32#include "regs.h"
33#include "insn-config.h"
34#include "recog.h"
e4600702
RK
35#include "reload.h"
36#include "real.h"
54dac99e
RK
37
38#ifndef REGISTER_MOVE_COST
39#define REGISTER_MOVE_COST(x, y) 2
40#endif
41
533d0835
RK
42/* If we have auto-increment or auto-decrement and we can have secondary
43 reloads, we are not allowed to use classes requiring secondary
9faa82d8 44 reloads for pseudos auto-incremented since reload can't handle it. */
533d0835
RK
45
46#ifdef AUTO_INC_DEC
dd9f0e8f 47#if defined(SECONDARY_INPUT_RELOAD_CLASS) || defined(SECONDARY_OUTPUT_RELOAD_CLASS)
533d0835
RK
48#define FORBIDDEN_INC_DEC_CLASSES
49#endif
50#endif
54dac99e
RK
51\f
52/* Register tables used by many passes. */
53
54/* Indexed by hard register number, contains 1 for registers
55 that are fixed use (stack pointer, pc, frame pointer, etc.).
56 These are the registers that cannot be used to allocate
57 a pseudo reg whose life does not cross calls. */
58
59char fixed_regs[FIRST_PSEUDO_REGISTER];
60
61/* Same info as a HARD_REG_SET. */
62
63HARD_REG_SET fixed_reg_set;
64
65/* Data for initializing the above. */
66
67static char initial_fixed_regs[] = FIXED_REGISTERS;
68
69/* Indexed by hard register number, contains 1 for registers
70 that are fixed use or are clobbered by function calls.
71 These are the registers that cannot be used to allocate
72 a pseudo reg whose life crosses calls. */
73
74char call_used_regs[FIRST_PSEUDO_REGISTER];
75
76/* Same info as a HARD_REG_SET. */
77
78HARD_REG_SET call_used_reg_set;
79
6cad67d2
JL
80/* HARD_REG_SET of registers we want to avoid caller saving. */
81HARD_REG_SET losing_caller_save_reg_set;
82
54dac99e
RK
83/* Data for initializing the above. */
84
85static char initial_call_used_regs[] = CALL_USED_REGISTERS;
86
87/* Indexed by hard register number, contains 1 for registers that are
88 fixed use -- i.e. in fixed_regs -- or a function value return register
89 or STRUCT_VALUE_REGNUM or STATIC_CHAIN_REGNUM. These are the
90 registers that cannot hold quantities across calls even if we are
91 willing to save and restore them. */
92
93char call_fixed_regs[FIRST_PSEUDO_REGISTER];
94
95/* The same info as a HARD_REG_SET. */
96
97HARD_REG_SET call_fixed_reg_set;
98
99/* Number of non-fixed registers. */
100
101int n_non_fixed_regs;
102
103/* Indexed by hard register number, contains 1 for registers
104 that are being used for global register decls.
105 These must be exempt from ordinary flow analysis
106 and are also considered fixed. */
107
108char global_regs[FIRST_PSEUDO_REGISTER];
109
110/* Table of register numbers in the order in which to try to use them. */
111#ifdef REG_ALLOC_ORDER
112int reg_alloc_order[FIRST_PSEUDO_REGISTER] = REG_ALLOC_ORDER;
113#endif
114
115/* For each reg class, a HARD_REG_SET saying which registers are in it. */
116
2e0e2b76
CH
117HARD_REG_SET reg_class_contents[N_REG_CLASSES];
118
089e575b
RS
119/* The same information, but as an array of unsigned ints. We copy from
120 these unsigned ints to the table above. We do this so the tm.h files
121 do not have to be aware of the wordsize for machines with <= 64 regs. */
2e0e2b76
CH
122
123#define N_REG_INTS \
124 ((FIRST_PSEUDO_REGISTER + (HOST_BITS_PER_INT - 1)) / HOST_BITS_PER_INT)
125
089e575b 126static unsigned int_reg_class_contents[N_REG_CLASSES][N_REG_INTS]
2e0e2b76 127 = REG_CLASS_CONTENTS;
54dac99e
RK
128
129/* For each reg class, number of regs it contains. */
130
131int reg_class_size[N_REG_CLASSES];
132
133/* For each reg class, table listing all the containing classes. */
134
135enum reg_class reg_class_superclasses[N_REG_CLASSES][N_REG_CLASSES];
136
137/* For each reg class, table listing all the classes contained in it. */
138
139enum reg_class reg_class_subclasses[N_REG_CLASSES][N_REG_CLASSES];
140
141/* For each pair of reg classes,
142 a largest reg class contained in their union. */
143
144enum reg_class reg_class_subunion[N_REG_CLASSES][N_REG_CLASSES];
145
146/* For each pair of reg classes,
147 the smallest reg class containing their union. */
148
149enum reg_class reg_class_superunion[N_REG_CLASSES][N_REG_CLASSES];
150
d05c8ee7
RS
151/* Array containing all of the register names */
152
153char *reg_names[] = REGISTER_NAMES;
154
ca4aac00
DE
155/* For each hard register, the widest mode object that it can contain.
156 This will be a MODE_INT mode if the register can hold integers. Otherwise
157 it will be a MODE_FLOAT or a MODE_CC mode, whichever is valid for the
158 register. */
159
160enum machine_mode reg_raw_mode[FIRST_PSEUDO_REGISTER];
161
e4600702
RK
162/* Maximum cost of moving from a register in one class to a register in
163 another class. Based on REGISTER_MOVE_COST. */
164
165static int move_cost[N_REG_CLASSES][N_REG_CLASSES];
166
167/* Similar, but here we don't have to move if the first index is a subset
168 of the second so in that case the cost is zero. */
169
170static int may_move_cost[N_REG_CLASSES][N_REG_CLASSES];
171
533d0835
RK
172#ifdef FORBIDDEN_INC_DEC_CLASSES
173
174/* These are the classes that regs which are auto-incremented or decremented
175 cannot be put in. */
176
177static int forbidden_inc_dec_class[N_REG_CLASSES];
178
179/* Indexed by n, is non-zero if (REG n) is used in an auto-inc or auto-dec
180 context. */
181
182static char *in_inc_dec;
183
5fcb671c 184#endif /* FORBIDDEN_INC_DEC_CLASSES */
533d0835 185
54dac99e
RK
186/* Function called only once to initialize the above data on reg usage.
187 Once this is done, various switches may override. */
188
189void
190init_reg_sets ()
191{
192 register int i, j;
193
2e0e2b76
CH
194 /* First copy the register information from the initial int form into
195 the regsets. */
196
197 for (i = 0; i < N_REG_CLASSES; i++)
198 {
199 CLEAR_HARD_REG_SET (reg_class_contents[i]);
200
201 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
202 if (int_reg_class_contents[i][j / HOST_BITS_PER_INT]
089e575b 203 & ((unsigned) 1 << (j % HOST_BITS_PER_INT)))
2e0e2b76
CH
204 SET_HARD_REG_BIT (reg_class_contents[i], j);
205 }
206
54dac99e
RK
207 bcopy (initial_fixed_regs, fixed_regs, sizeof fixed_regs);
208 bcopy (initial_call_used_regs, call_used_regs, sizeof call_used_regs);
209 bzero (global_regs, sizeof global_regs);
210
211 /* Compute number of hard regs in each class. */
212
4c9a05bc 213 bzero ((char *) reg_class_size, sizeof reg_class_size);
54dac99e
RK
214 for (i = 0; i < N_REG_CLASSES; i++)
215 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
216 if (TEST_HARD_REG_BIT (reg_class_contents[i], j))
217 reg_class_size[i]++;
218
219 /* Initialize the table of subunions.
220 reg_class_subunion[I][J] gets the largest-numbered reg-class
221 that is contained in the union of classes I and J. */
222
223 for (i = 0; i < N_REG_CLASSES; i++)
224 {
225 for (j = 0; j < N_REG_CLASSES; j++)
226 {
227#ifdef HARD_REG_SET
228 register /* Declare it register if it's a scalar. */
229#endif
230 HARD_REG_SET c;
231 register int k;
232
233 COPY_HARD_REG_SET (c, reg_class_contents[i]);
234 IOR_HARD_REG_SET (c, reg_class_contents[j]);
235 for (k = 0; k < N_REG_CLASSES; k++)
236 {
237 GO_IF_HARD_REG_SUBSET (reg_class_contents[k], c,
238 subclass1);
239 continue;
240
241 subclass1:
242 /* keep the largest subclass */ /* SPEE 900308 */
243 GO_IF_HARD_REG_SUBSET (reg_class_contents[k],
244 reg_class_contents[(int) reg_class_subunion[i][j]],
245 subclass2);
246 reg_class_subunion[i][j] = (enum reg_class) k;
247 subclass2:
248 ;
249 }
250 }
251 }
252
253 /* Initialize the table of superunions.
254 reg_class_superunion[I][J] gets the smallest-numbered reg-class
255 containing the union of classes I and J. */
256
257 for (i = 0; i < N_REG_CLASSES; i++)
258 {
259 for (j = 0; j < N_REG_CLASSES; j++)
260 {
261#ifdef HARD_REG_SET
262 register /* Declare it register if it's a scalar. */
263#endif
264 HARD_REG_SET c;
265 register int k;
266
267 COPY_HARD_REG_SET (c, reg_class_contents[i]);
268 IOR_HARD_REG_SET (c, reg_class_contents[j]);
269 for (k = 0; k < N_REG_CLASSES; k++)
270 GO_IF_HARD_REG_SUBSET (c, reg_class_contents[k], superclass);
271
272 superclass:
273 reg_class_superunion[i][j] = (enum reg_class) k;
274 }
275 }
276
277 /* Initialize the tables of subclasses and superclasses of each reg class.
278 First clear the whole table, then add the elements as they are found. */
279
280 for (i = 0; i < N_REG_CLASSES; i++)
281 {
282 for (j = 0; j < N_REG_CLASSES; j++)
283 {
284 reg_class_superclasses[i][j] = LIM_REG_CLASSES;
285 reg_class_subclasses[i][j] = LIM_REG_CLASSES;
286 }
287 }
288
289 for (i = 0; i < N_REG_CLASSES; i++)
290 {
291 if (i == (int) NO_REGS)
292 continue;
293
294 for (j = i + 1; j < N_REG_CLASSES; j++)
295 {
296 enum reg_class *p;
297
298 GO_IF_HARD_REG_SUBSET (reg_class_contents[i], reg_class_contents[j],
299 subclass);
300 continue;
301 subclass:
302 /* Reg class I is a subclass of J.
303 Add J to the table of superclasses of I. */
304 p = &reg_class_superclasses[i][0];
305 while (*p != LIM_REG_CLASSES) p++;
306 *p = (enum reg_class) j;
307 /* Add I to the table of superclasses of J. */
308 p = &reg_class_subclasses[j][0];
309 while (*p != LIM_REG_CLASSES) p++;
310 *p = (enum reg_class) i;
311 }
312 }
e4600702 313
73b76448
RK
314 /* Do any additional initialization regsets may need */
315 INIT_ONCE_REG_SET ();
54dac99e
RK
316}
317
318/* After switches have been processed, which perhaps alter
319 `fixed_regs' and `call_used_regs', convert them to HARD_REG_SETs. */
320
c27c5281 321static void
54dac99e
RK
322init_reg_sets_1 ()
323{
f8344bea 324 register unsigned int i, j;
54dac99e
RK
325
326 /* This macro allows the fixed or call-used registers
327 to depend on target flags. */
328
329#ifdef CONDITIONAL_REGISTER_USAGE
330 CONDITIONAL_REGISTER_USAGE;
331#endif
332
54dac99e
RK
333 /* Initialize "constant" tables. */
334
335 CLEAR_HARD_REG_SET (fixed_reg_set);
336 CLEAR_HARD_REG_SET (call_used_reg_set);
337 CLEAR_HARD_REG_SET (call_fixed_reg_set);
338
339 bcopy (fixed_regs, call_fixed_regs, sizeof call_fixed_regs);
54dac99e
RK
340
341 n_non_fixed_regs = 0;
342
343 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
344 {
54dac99e
RK
345 if (fixed_regs[i])
346 SET_HARD_REG_BIT (fixed_reg_set, i);
347 else
348 n_non_fixed_regs++;
349
350 if (call_used_regs[i])
351 SET_HARD_REG_BIT (call_used_reg_set, i);
352 if (call_fixed_regs[i])
353 SET_HARD_REG_BIT (call_fixed_reg_set, i);
6cad67d2
JL
354 if (CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (i)))
355 SET_HARD_REG_BIT (losing_caller_save_reg_set, i);
54dac99e 356 }
acbce667
KR
357
358 /* Initialize the move cost table. Find every subset of each class
359 and take the maximum cost of moving any subset to any other. */
360
361 for (i = 0; i < N_REG_CLASSES; i++)
362 for (j = 0; j < N_REG_CLASSES; j++)
363 {
364 int cost = i == j ? 2 : REGISTER_MOVE_COST (i, j);
365 enum reg_class *p1, *p2;
366
367 for (p2 = &reg_class_subclasses[j][0]; *p2 != LIM_REG_CLASSES; p2++)
368 if (*p2 != i)
369 cost = MAX (cost, REGISTER_MOVE_COST (i, *p2));
370
371 for (p1 = &reg_class_subclasses[i][0]; *p1 != LIM_REG_CLASSES; p1++)
372 {
373 if (*p1 != j)
374 cost = MAX (cost, REGISTER_MOVE_COST (*p1, j));
375
376 for (p2 = &reg_class_subclasses[j][0];
377 *p2 != LIM_REG_CLASSES; p2++)
378 if (*p1 != *p2)
379 cost = MAX (cost, REGISTER_MOVE_COST (*p1, *p2));
380 }
381
382 move_cost[i][j] = cost;
383
384 if (reg_class_subset_p (i, j))
385 cost = 0;
386
387 may_move_cost[i][j] = cost;
388 }
c27c5281
DE
389}
390
391/* Compute the table of register modes.
392 These values are used to record death information for individual registers
393 (as opposed to a multi-register mode). */
ca4aac00 394
c27c5281
DE
395static void
396init_reg_modes ()
397{
398 register int i;
ca4aac00
DE
399
400 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
7f21d440
DE
401 {
402 reg_raw_mode[i] = choose_hard_reg_mode (i, 1);
403
066c2fea 404 /* If we couldn't find a valid mode, just use the previous mode.
7f21d440
DE
405 ??? One situation in which we need to do this is on the mips where
406 HARD_REGNO_NREGS (fpreg, [SD]Fmode) returns 2. Ideally we'd like
407 to use DF mode for the even registers and VOIDmode for the odd
9faa82d8 408 (for the cpu models where the odd ones are inaccessible). */
7f21d440 409 if (reg_raw_mode[i] == VOIDmode)
066c2fea 410 reg_raw_mode[i] = i == 0 ? word_mode : reg_raw_mode[i-1];
7f21d440 411 }
ca4aac00
DE
412}
413
c27c5281
DE
414/* Finish initializing the register sets and
415 initialize the register modes. */
416
417void
418init_regs ()
419{
420 /* This finishes what was started by init_reg_sets, but couldn't be done
421 until after register usage was specified. */
b93a436e 422 init_reg_sets_1 ();
c27c5281
DE
423
424 init_reg_modes ();
425}
426
cbd5b9a2
KR
427#ifdef HAVE_SECONDARY_RELOADS
428/* Compute extra cost of moving registers to/from memory due to reloads.
429 Only needed if secondary reloads are required for memory moves. */
430int
431memory_move_secondary_cost (mode, class, in)
432 enum machine_mode mode;
433 enum reg_class class;
434 int in;
435{
436 enum reg_class altclass;
437 int partial_cost = 0;
438 rtx mem;
439
440 /* We need a memory reference to feed to SECONDARY... macros. */
441 mem = gen_rtx (MEM, mode, stack_pointer_rtx);
442
443 if (in)
321c0828 444#ifdef SECONDARY_INPUT_RELOAD_CLASS
cbd5b9a2 445 altclass = SECONDARY_INPUT_RELOAD_CLASS (class, mode, mem);
321c0828
MH
446#else
447 altclass = NO_REGS;
448#endif
cbd5b9a2 449 else
321c0828 450#ifdef SECONDARY_OUTPUT_RELOAD_CLASS
cbd5b9a2 451 altclass = SECONDARY_OUTPUT_RELOAD_CLASS (class, mode, mem);
321c0828
MH
452#else
453 altclass = NO_REGS;
454#endif
cbd5b9a2
KR
455 if (altclass == NO_REGS)
456 return 0;
457
458 if (in)
459 partial_cost = REGISTER_MOVE_COST (altclass, class);
460 else
461 partial_cost = REGISTER_MOVE_COST (class, altclass);
462
463 if (class == altclass)
464 /* This isn't simply a copy-to-temporary situation. Can't guess
465 what it is, so MEMORY_MOVE_COST really ought not to be calling
466 here in that case.
467
468 I'm tempted to put in an abort here, but returning this will
469 probably only give poor estimates, which is what we would've
470 had before this code anyways. */
471 return partial_cost;
472
473 /* Check if the secondary reload register will also need a
474 secondary reload. */
475 return memory_move_secondary_cost (mode, altclass, in) + partial_cost;
476}
477#endif
478
ca4aac00
DE
479/* Return a machine mode that is legitimate for hard reg REGNO and large
480 enough to save nregs. If we can't find one, return VOIDmode. */
481
482enum machine_mode
483choose_hard_reg_mode (regno, nregs)
484 int regno;
485 int nregs;
486{
487 enum machine_mode found_mode = VOIDmode, mode;
488
489 /* We first look for the largest integer mode that can be validly
490 held in REGNO. If none, we look for the largest floating-point mode.
491 If we still didn't find a valid mode, try CCmode. */
492
493 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
494 mode != VOIDmode;
495 mode = GET_MODE_WIDER_MODE (mode))
496 if (HARD_REGNO_NREGS (regno, mode) == nregs
497 && HARD_REGNO_MODE_OK (regno, mode))
498 found_mode = mode;
499
500 if (found_mode != VOIDmode)
501 return found_mode;
502
503 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
504 mode != VOIDmode;
505 mode = GET_MODE_WIDER_MODE (mode))
506 if (HARD_REGNO_NREGS (regno, mode) == nregs
507 && HARD_REGNO_MODE_OK (regno, mode))
508 found_mode = mode;
509
510 if (found_mode != VOIDmode)
511 return found_mode;
512
513 if (HARD_REGNO_NREGS (regno, CCmode) == nregs
514 && HARD_REGNO_MODE_OK (regno, CCmode))
515 return CCmode;
516
517 /* We can't find a mode valid for this register. */
518 return VOIDmode;
54dac99e
RK
519}
520
521/* Specify the usage characteristics of the register named NAME.
522 It should be a fixed register if FIXED and a
523 call-used register if CALL_USED. */
524
525void
526fix_register (name, fixed, call_used)
527 char *name;
528 int fixed, call_used;
529{
530 int i;
531
532 /* Decode the name and update the primary form of
533 the register info. */
534
e5c90c23
TW
535 if ((i = decode_reg_name (name)) >= 0)
536 {
537 fixed_regs[i] = fixed;
538 call_used_regs[i] = call_used;
539 }
540 else
54dac99e
RK
541 {
542 warning ("unknown register name: %s", name);
54dac99e
RK
543 }
544}
614f68e2
RK
545
546/* Mark register number I as global. */
547
548void
549globalize_reg (i)
550 int i;
551{
552 if (global_regs[i])
553 {
554 warning ("register used for two global register variables");
555 return;
556 }
557
558 if (call_used_regs[i] && ! fixed_regs[i])
559 warning ("call-clobbered register used for global register variable");
560
561 global_regs[i] = 1;
562
563 /* If already fixed, nothing else to do. */
564 if (fixed_regs[i])
565 return;
566
567 fixed_regs[i] = call_used_regs[i] = call_fixed_regs[i] = 1;
568 n_non_fixed_regs--;
569
570 SET_HARD_REG_BIT (fixed_reg_set, i);
571 SET_HARD_REG_BIT (call_used_reg_set, i);
572 SET_HARD_REG_BIT (call_fixed_reg_set, i);
573}
54dac99e
RK
574\f
575/* Now the data and code for the `regclass' pass, which happens
576 just before local-alloc. */
577
e4600702
RK
578/* The `costs' struct records the cost of using a hard register of each class
579 and of using memory for each pseudo. We use this data to set up
580 register class preferences. */
54dac99e 581
e4600702 582struct costs
54dac99e 583{
e4600702
RK
584 int cost[N_REG_CLASSES];
585 int mem_cost;
54dac99e
RK
586};
587
e4600702
RK
588/* Record the cost of each class for each pseudo. */
589
590static struct costs *costs;
591
592/* Record the same data by operand number, accumulated for each alternative
593 in an insn. The contribution to a pseudo is that of the minimum-cost
594 alternative. */
595
596static struct costs op_costs[MAX_RECOG_OPERANDS];
54dac99e
RK
597
598/* (enum reg_class) prefclass[R] is the preferred class for pseudo number R.
599 This is available after `regclass' is run. */
600
601static char *prefclass;
602
54d23420
RK
603/* altclass[R] is a register class that we should use for allocating
604 pseudo number R if no register in the preferred class is available.
605 If no register in this class is available, memory is preferred.
606
607 It might appear to be more general to have a bitmask of classes here,
608 but since it is recommended that there be a class corresponding to the
609 union of most major pair of classes, that generality is not required.
610
54dac99e
RK
611 This is available after `regclass' is run. */
612
54d23420 613static char *altclass;
54dac99e 614
54d23420 615/* Record the depth of loops that we are in. */
54dac99e
RK
616
617static int loop_depth;
618
54d23420
RK
619/* Account for the fact that insns within a loop are executed very commonly,
620 but don't keep doing this as loops go too deep. */
621
622static int loop_cost;
623
08d95f91
RK
624static void record_reg_classes PROTO((int, int, rtx *, enum machine_mode *,
625 char **, rtx));
626static int copy_cost PROTO((rtx, enum machine_mode,
627 enum reg_class, int));
628static void record_address_regs PROTO((rtx, enum reg_class, int));
1d300e19
KG
629#ifdef FORBIDDEN_INC_DEC_CLASSES
630static int auto_inc_dec_reg_p PROTO((rtx, enum machine_mode));
631#endif
08d95f91 632static void reg_scan_mark_refs PROTO((rtx, rtx, int));
54dac99e
RK
633
634/* Return the reg_class in which pseudo reg number REGNO is best allocated.
635 This function is sometimes called before the info has been computed.
636 When that happens, just return GENERAL_REGS, which is innocuous. */
637
638enum reg_class
639reg_preferred_class (regno)
640 int regno;
641{
642 if (prefclass == 0)
643 return GENERAL_REGS;
644 return (enum reg_class) prefclass[regno];
645}
646
e4600702
RK
647enum reg_class
648reg_alternate_class (regno)
b729186a 649 int regno;
54dac99e
RK
650{
651 if (prefclass == 0)
e4600702
RK
652 return ALL_REGS;
653
654 return (enum reg_class) altclass[regno];
54dac99e
RK
655}
656
657/* This prevents dump_flow_info from losing if called
658 before regclass is run. */
659
660void
661regclass_init ()
662{
663 prefclass = 0;
664}
665\f
666/* This is a pass of the compiler that scans all instructions
667 and calculates the preferred class for each pseudo-register.
668 This information can be accessed later by calling `reg_preferred_class'.
669 This pass comes just before local register allocation. */
670
671void
672regclass (f, nregs)
673 rtx f;
674 int nregs;
675{
676#ifdef REGISTER_CONSTRAINTS
677 register rtx insn;
e4600702
RK
678 register int i, j;
679 struct costs init_cost;
680 rtx set;
681 int pass;
54dac99e
RK
682
683 init_recog ();
684
533d0835
RK
685 costs = (struct costs *) alloca (nregs * sizeof (struct costs));
686
687#ifdef FORBIDDEN_INC_DEC_CLASSES
688
689 in_inc_dec = (char *) alloca (nregs);
690
691 /* Initialize information about which register classes can be used for
692 pseudos that are auto-incremented or auto-decremented. It would
693 seem better to put this in init_reg_sets, but we need to be able
694 to allocate rtx, which we can't do that early. */
695
696 for (i = 0; i < N_REG_CLASSES; i++)
697 {
38a448ca 698 rtx r = gen_rtx_REG (VOIDmode, 0);
533d0835
RK
699 enum machine_mode m;
700
701 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
702 if (TEST_HARD_REG_BIT (reg_class_contents[i], j))
703 {
704 REGNO (r) = j;
705
706 for (m = VOIDmode; (int) m < (int) MAX_MACHINE_MODE;
808043ed 707 m = (enum machine_mode) ((int) m + 1))
533d0835
RK
708 if (HARD_REGNO_MODE_OK (j, m))
709 {
710 PUT_MODE (r, m);
08d95f91
RK
711
712 /* If a register is not directly suitable for an
713 auto-increment or decrement addressing mode and
714 requires secondary reloads, disallow its class from
715 being used in such addresses. */
716
717 if ((0
041d7180
JL
718#ifdef SECONDARY_RELOAD_CLASS
719 || (SECONDARY_RELOAD_CLASS (BASE_REG_CLASS, m, r)
720 != NO_REGS)
721#else
533d0835 722#ifdef SECONDARY_INPUT_RELOAD_CLASS
08d95f91
RK
723 || (SECONDARY_INPUT_RELOAD_CLASS (BASE_REG_CLASS, m, r)
724 != NO_REGS)
533d0835
RK
725#endif
726#ifdef SECONDARY_OUTPUT_RELOAD_CLASS
08d95f91
RK
727 || (SECONDARY_OUTPUT_RELOAD_CLASS (BASE_REG_CLASS, m, r)
728 != NO_REGS)
041d7180 729#endif
533d0835 730#endif
08d95f91
RK
731 )
732 && ! auto_inc_dec_reg_p (r, m))
533d0835
RK
733 forbidden_inc_dec_class[i] = 1;
734 }
735 }
736 }
737#endif /* FORBIDDEN_INC_DEC_CLASSES */
738
e4600702
RK
739 init_cost.mem_cost = 10000;
740 for (i = 0; i < N_REG_CLASSES; i++)
741 init_cost.cost[i] = 10000;
54dac99e 742
e4600702
RK
743 /* Normally we scan the insns once and determine the best class to use for
744 each register. However, if -fexpensive_optimizations are on, we do so
745 twice, the second time using the tentative best classes to guide the
746 selection. */
54dac99e 747
e4600702
RK
748 for (pass = 0; pass <= flag_expensive_optimizations; pass++)
749 {
750 /* Zero out our accumulation of the cost of each class for each reg. */
54dac99e 751
4c9a05bc 752 bzero ((char *) costs, nregs * sizeof (struct costs));
54dac99e 753
533d0835
RK
754#ifdef FORBIDDEN_INC_DEC_CLASSES
755 bzero (in_inc_dec, nregs);
756#endif
757
e4600702
RK
758 loop_depth = 0, loop_cost = 1;
759
760 /* Scan the instructions and record each time it would
761 save code to put a certain register in a certain class. */
762
763 for (insn = f; insn; insn = NEXT_INSN (insn))
54dac99e 764 {
e4600702
RK
765 char *constraints[MAX_RECOG_OPERANDS];
766 enum machine_mode modes[MAX_RECOG_OPERANDS];
767 int nalternatives;
768 int noperands;
769
770 /* Show that an insn inside a loop is likely to be executed three
ac2a9454 771 times more than insns outside a loop. This is much more aggressive
e4600702
RK
772 than the assumptions made elsewhere and is being tried as an
773 experiment. */
774
775 if (GET_CODE (insn) == NOTE
776 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
777 loop_depth++, loop_cost = 1 << (2 * MIN (loop_depth, 5));
778 else if (GET_CODE (insn) == NOTE
779 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
780 loop_depth--, loop_cost = 1 << (2 * MIN (loop_depth, 5));
781
782 else if ((GET_CODE (insn) == INSN
783 && GET_CODE (PATTERN (insn)) != USE
784 && GET_CODE (PATTERN (insn)) != CLOBBER
785 && GET_CODE (PATTERN (insn)) != ASM_INPUT)
786 || (GET_CODE (insn) == JUMP_INSN
787 && GET_CODE (PATTERN (insn)) != ADDR_VEC
788 && GET_CODE (PATTERN (insn)) != ADDR_DIFF_VEC)
789 || GET_CODE (insn) == CALL_INSN)
54dac99e 790 {
e4600702
RK
791 if (GET_CODE (insn) == INSN
792 && (noperands = asm_noperands (PATTERN (insn))) >= 0)
793 {
37366632 794 decode_asm_operands (PATTERN (insn), recog_operand, NULL_PTR,
e4600702 795 constraints, modes);
e5ed2155
TW
796 nalternatives = (noperands == 0 ? 0
797 : n_occurrences (',', constraints[0]) + 1);
e4600702
RK
798 }
799 else
800 {
801 int insn_code_number = recog_memoized (insn);
802 rtx note;
54dac99e 803
e4600702
RK
804 set = single_set (insn);
805 insn_extract (insn);
54dac99e 806
e4600702
RK
807 nalternatives = insn_n_alternatives[insn_code_number];
808 noperands = insn_n_operands[insn_code_number];
54dac99e 809
e4600702
RK
810 /* If this insn loads a parameter from its stack slot, then
811 it represents a savings, rather than a cost, if the
812 parameter is stored in memory. Record this fact. */
54dac99e 813
e4600702
RK
814 if (set != 0 && GET_CODE (SET_DEST (set)) == REG
815 && GET_CODE (SET_SRC (set)) == MEM
37366632
RK
816 && (note = find_reg_note (insn, REG_EQUIV,
817 NULL_RTX)) != 0
e4600702
RK
818 && GET_CODE (XEXP (note, 0)) == MEM)
819 {
820 costs[REGNO (SET_DEST (set))].mem_cost
cbd5b9a2
KR
821 -= (MEMORY_MOVE_COST (GET_MODE (SET_DEST (set)),
822 GENERAL_REGS, 1)
e4600702
RK
823 * loop_cost);
824 record_address_regs (XEXP (SET_SRC (set), 0),
825 BASE_REG_CLASS, loop_cost * 2);
826 continue;
827 }
828
829 /* Improve handling of two-address insns such as
830 (set X (ashift CONST Y)) where CONST must be made to
831 match X. Change it into two insns: (set X CONST)
832 (set X (ashift X Y)). If we left this for reloading, it
833 would probably get three insns because X and Y might go
834 in the same place. This prevents X and Y from receiving
835 the same hard reg.
836
837 We can only do this if the modes of operands 0 and 1
838 (which might not be the same) are tieable and we only need
839 do this during our first pass. */
840
841 if (pass == 0 && optimize
842 && noperands >= 3
843 && insn_operand_constraint[insn_code_number][1][0] == '0'
844 && insn_operand_constraint[insn_code_number][1][1] == 0
845 && CONSTANT_P (recog_operand[1])
846 && ! rtx_equal_p (recog_operand[0], recog_operand[1])
847 && ! rtx_equal_p (recog_operand[0], recog_operand[2])
848 && GET_CODE (recog_operand[0]) == REG
849 && MODES_TIEABLE_P (GET_MODE (recog_operand[0]),
850 insn_operand_mode[insn_code_number][1]))
851 {
852 rtx previnsn = prev_real_insn (insn);
853 rtx dest
854 = gen_lowpart (insn_operand_mode[insn_code_number][1],
855 recog_operand[0]);
856 rtx newinsn
857 = emit_insn_before (gen_move_insn (dest,
858 recog_operand[1]),
859 insn);
860
861 /* If this insn was the start of a basic block,
61b01243
RS
862 include the new insn in that block.
863 We need not check for code_label here;
864 while a basic block can start with a code_label,
865 INSN could not be at the beginning of that block. */
e4600702
RK
866 if (previnsn == 0 || GET_CODE (previnsn) == JUMP_INSN)
867 {
868 int b;
869 for (b = 0; b < n_basic_blocks; b++)
870 if (insn == basic_block_head[b])
871 basic_block_head[b] = newinsn;
872 }
873
0f41302f 874 /* This makes one more setting of new insns's dest. */
b1f21e0a 875 REG_N_SETS (REGNO (recog_operand[0]))++;
e4600702 876
20912ad0
RK
877 *recog_operand_loc[1] = recog_operand[0];
878 for (i = insn_n_dups[insn_code_number] - 1; i >= 0; i--)
879 if (recog_dup_num[i] == 1)
880 *recog_dup_loc[i] = recog_operand[0];
881
e4600702
RK
882 insn = PREV_INSN (newinsn);
883 continue;
884 }
54dac99e 885
e4600702
RK
886 for (i = 0; i < noperands; i++)
887 {
888 constraints[i]
889 = insn_operand_constraint[insn_code_number][i];
890 modes[i] = insn_operand_mode[insn_code_number][i];
891 }
892 }
54dac99e 893
e4600702
RK
894 /* If we get here, we are set up to record the costs of all the
895 operands for this insn. Start by initializing the costs.
896 Then handle any address registers. Finally record the desired
897 classes for any pseudos, doing it twice if some pair of
898 operands are commutative. */
899
900 for (i = 0; i < noperands; i++)
54dac99e 901 {
e4600702
RK
902 op_costs[i] = init_cost;
903
904 if (GET_CODE (recog_operand[i]) == SUBREG)
905 recog_operand[i] = SUBREG_REG (recog_operand[i]);
906
907 if (GET_CODE (recog_operand[i]) == MEM)
908 record_address_regs (XEXP (recog_operand[i], 0),
909 BASE_REG_CLASS, loop_cost * 2);
910 else if (constraints[i][0] == 'p')
911 record_address_regs (recog_operand[i],
912 BASE_REG_CLASS, loop_cost * 2);
54dac99e 913 }
e4600702
RK
914
915 /* Check for commutative in a separate loop so everything will
cc4c133a
RS
916 have been initialized. We must do this even if one operand
917 is a constant--see addsi3 in m68k.md. */
54dac99e 918
e5ed2155 919 for (i = 0; i < noperands - 1; i++)
cc4c133a 920 if (constraints[i][0] == '%')
e4600702
RK
921 {
922 char *xconstraints[MAX_RECOG_OPERANDS];
923 int j;
924
925 /* Handle commutative operands by swapping the constraints.
926 We assume the modes are the same. */
927
928 for (j = 0; j < noperands; j++)
929 xconstraints[j] = constraints[j];
930
931 xconstraints[i] = constraints[i+1];
932 xconstraints[i+1] = constraints[i];
933 record_reg_classes (nalternatives, noperands,
934 recog_operand, modes, xconstraints,
54dac99e 935 insn);
e4600702 936 }
54dac99e 937
e4600702
RK
938 record_reg_classes (nalternatives, noperands, recog_operand,
939 modes, constraints, insn);
54dac99e 940
e4600702
RK
941 /* Now add the cost for each operand to the total costs for
942 its register. */
54dac99e 943
e4600702
RK
944 for (i = 0; i < noperands; i++)
945 if (GET_CODE (recog_operand[i]) == REG
946 && REGNO (recog_operand[i]) >= FIRST_PSEUDO_REGISTER)
947 {
948 int regno = REGNO (recog_operand[i]);
949 struct costs *p = &costs[regno], *q = &op_costs[i];
950
951 p->mem_cost += q->mem_cost * loop_cost;
952 for (j = 0; j < N_REG_CLASSES; j++)
953 p->cost[j] += q->cost[j] * loop_cost;
954 }
54dac99e
RK
955 }
956 }
54dac99e 957
e4600702
RK
958 /* Now for each register look at how desirable each class is
959 and find which class is preferred. Store that in
960 `prefclass[REGNO]'. Record in `altclass[REGNO]' the largest register
961 class any of whose registers is better than memory. */
54dac99e 962
e4600702
RK
963 if (pass == 0)
964 {
965 prefclass = (char *) oballoc (nregs);
966 altclass = (char *) oballoc (nregs);
967 }
54dac99e 968
e4600702 969 for (i = FIRST_PSEUDO_REGISTER; i < nregs; i++)
54dac99e 970 {
ca3c6eae 971 register int best_cost = (1 << (HOST_BITS_PER_INT - 2)) - 1;
e4600702
RK
972 enum reg_class best = ALL_REGS, alt = NO_REGS;
973 /* This is an enum reg_class, but we call it an int
974 to save lots of casts. */
975 register int class;
976 register struct costs *p = &costs[i];
977
978 for (class = (int) ALL_REGS - 1; class > 0; class--)
54dac99e 979 {
533d0835
RK
980 /* Ignore classes that are too small for this operand or
981 invalid for a operand that was auto-incremented. */
e4600702 982 if (CLASS_MAX_NREGS (class, PSEUDO_REGNO_MODE (i))
533d0835
RK
983 > reg_class_size[class]
984#ifdef FORBIDDEN_INC_DEC_CLASSES
985 || (in_inc_dec[i] && forbidden_inc_dec_class[class])
986#endif
987 )
e4600702
RK
988 ;
989 else if (p->cost[class] < best_cost)
990 {
991 best_cost = p->cost[class];
992 best = (enum reg_class) class;
993 }
994 else if (p->cost[class] == best_cost)
995 best = reg_class_subunion[(int)best][class];
54dac99e 996 }
54dac99e 997
e4600702
RK
998 /* Record the alternate register class; i.e., a class for which
999 every register in it is better than using memory. If adding a
1000 class would make a smaller class (i.e., no union of just those
1001 classes exists), skip that class. The major unions of classes
1002 should be provided as a register class. Don't do this if we
1003 will be doing it again later. */
1004
1005 if (pass == 1 || ! flag_expensive_optimizations)
1006 for (class = 0; class < N_REG_CLASSES; class++)
1007 if (p->cost[class] < p->mem_cost
77edb222 1008 && (reg_class_size[(int) reg_class_subunion[(int) alt][class]]
533d0835
RK
1009 > reg_class_size[(int) alt])
1010#ifdef FORBIDDEN_INC_DEC_CLASSES
1011 && ! (in_inc_dec[i] && forbidden_inc_dec_class[class])
1012#endif
1013 )
e4600702
RK
1014 alt = reg_class_subunion[(int) alt][class];
1015
1016 /* If we don't add any classes, nothing to try. */
1017 if (alt == best)
995d54dd 1018 alt = NO_REGS;
e4600702
RK
1019
1020 /* We cast to (int) because (char) hits bugs in some compilers. */
1021 prefclass[i] = (int) best;
1022 altclass[i] = (int) alt;
1023 }
54dac99e
RK
1024 }
1025#endif /* REGISTER_CONSTRAINTS */
1026}
1027\f
1028#ifdef REGISTER_CONSTRAINTS
1029
e4600702
RK
1030/* Record the cost of using memory or registers of various classes for
1031 the operands in INSN.
54dac99e 1032
e4600702 1033 N_ALTS is the number of alternatives.
54dac99e 1034
e4600702
RK
1035 N_OPS is the number of operands.
1036
1037 OPS is an array of the operands.
1038
1039 MODES are the modes of the operands, in case any are VOIDmode.
1040
1041 CONSTRAINTS are the constraints to use for the operands. This array
1042 is modified by this procedure.
1043
1044 This procedure works alternative by alternative. For each alternative
1045 we assume that we will be able to allocate all pseudos to their ideal
1046 register class and calculate the cost of using that alternative. Then
1047 we compute for each operand that is a pseudo-register, the cost of
1048 having the pseudo allocated to each register class and using it in that
1049 alternative. To this cost is added the cost of the alternative.
1050
1051 The cost of each class for this insn is its lowest cost among all the
1052 alternatives. */
1053
1054static void
1055record_reg_classes (n_alts, n_ops, ops, modes, constraints, insn)
1056 int n_alts;
1057 int n_ops;
1058 rtx *ops;
1059 enum machine_mode *modes;
54dac99e 1060 char **constraints;
e4600702 1061 rtx insn;
54dac99e 1062{
e4600702
RK
1063 int alt;
1064 enum op_type {OP_READ, OP_WRITE, OP_READ_WRITE} op_types[MAX_RECOG_OPERANDS];
1065 int i, j;
ec2d92af 1066 rtx set;
e4600702
RK
1067
1068 /* By default, each operand is an input operand. */
1069
1070 for (i = 0; i < n_ops; i++)
1071 op_types[i] = OP_READ;
54dac99e 1072
e4600702
RK
1073 /* Process each alternative, each time minimizing an operand's cost with
1074 the cost for each operand in that alternative. */
54dac99e 1075
e4600702 1076 for (alt = 0; alt < n_alts; alt++)
54dac99e 1077 {
e4600702
RK
1078 struct costs this_op_costs[MAX_RECOG_OPERANDS];
1079 int alt_fail = 0;
1080 int alt_cost = 0;
1081 enum reg_class classes[MAX_RECOG_OPERANDS];
1082 int class;
54dac99e 1083
e4600702
RK
1084 for (i = 0; i < n_ops; i++)
1085 {
1086 char *p = constraints[i];
1087 rtx op = ops[i];
1088 enum machine_mode mode = modes[i];
1089 int allows_mem = 0;
1090 int win = 0;
1091 char c;
54dac99e 1092
e4600702
RK
1093 /* If this operand has no constraints at all, we can conclude
1094 nothing about it since anything is valid. */
54dac99e 1095
e4600702
RK
1096 if (*p == 0)
1097 {
1098 if (GET_CODE (op) == REG && REGNO (op) >= FIRST_PSEUDO_REGISTER)
1099 bzero ((char *) &this_op_costs[i], sizeof this_op_costs[i]);
54dac99e 1100
e4600702
RK
1101 continue;
1102 }
54dac99e 1103
347099d6
RS
1104 if (*p == '%')
1105 p++;
1106
e4600702
RK
1107 /* If this alternative is only relevant when this operand
1108 matches a previous operand, we do different things depending
1109 on whether this operand is a pseudo-reg or not. */
54dac99e 1110
e4600702
RK
1111 if (p[0] >= '0' && p[0] <= '0' + i && (p[1] == ',' || p[1] == 0))
1112 {
1113 j = p[0] - '0';
1114 classes[i] = classes[j];
1115
1116 if (GET_CODE (op) != REG || REGNO (op) < FIRST_PSEUDO_REGISTER)
1117 {
1118 /* If this matches the other operand, we have no added
dc903608 1119 cost and we win. */
e4600702 1120 if (rtx_equal_p (ops[j], op))
dc903608 1121 win = 1;
e4600702 1122
77e67eac
RK
1123 /* If we can put the other operand into a register, add to
1124 the cost of this alternative the cost to copy this
1125 operand to the register used for the other operand. */
e4600702 1126
dc903608 1127 else if (classes[j] != NO_REGS)
77e67eac 1128 alt_cost += copy_cost (op, mode, classes[j], 1), win = 1;
e4600702 1129 }
07d8ca2d
RS
1130 else if (GET_CODE (ops[j]) != REG
1131 || REGNO (ops[j]) < FIRST_PSEUDO_REGISTER)
1132 {
1133 /* This op is a pseudo but the one it matches is not. */
1134
1135 /* If we can't put the other operand into a register, this
1136 alternative can't be used. */
1137
1138 if (classes[j] == NO_REGS)
1139 alt_fail = 1;
e4600702 1140
07d8ca2d
RS
1141 /* Otherwise, add to the cost of this alternative the cost
1142 to copy the other operand to the register used for this
1143 operand. */
1144
1145 else
1146 alt_cost += copy_cost (ops[j], mode, classes[j], 1);
1147 }
e4600702
RK
1148 else
1149 {
1150 /* The costs of this operand are the same as that of the
1151 other operand. However, if we cannot tie them, this
1152 alternative needs to do a copy, which is one
1153 instruction. */
1154
1155 this_op_costs[i] = this_op_costs[j];
37747c82
RK
1156 if (REGNO (ops[i]) != REGNO (ops[j])
1157 && ! find_reg_note (insn, REG_DEAD, op))
1158 alt_cost += 2;
e4600702 1159
347099d6 1160 /* This is in place of ordinary cost computation
1ddb342a
RK
1161 for this operand, so skip to the end of the
1162 alternative (should be just one character). */
1163 while (*p && *p++ != ',')
1164 ;
1165
1166 constraints[i] = p;
347099d6
RS
1167 continue;
1168 }
e4600702
RK
1169 }
1170
1171 /* Scan all the constraint letters. See if the operand matches
1172 any of the constraints. Collect the valid register classes
1173 and see if this operand accepts memory. */
1174
1175 classes[i] = NO_REGS;
1176 while (*p && (c = *p++) != ',')
1177 switch (c)
1178 {
1179 case '=':
1180 op_types[i] = OP_WRITE;
1181 break;
1182
1183 case '+':
1184 op_types[i] = OP_READ_WRITE;
1185 break;
1186
1187 case '*':
1188 /* Ignore the next letter for this pass. */
1189 p++;
1190 break;
1191
1192 case '%':
1193 case '?': case '!': case '#':
1194 case '&':
1195 case '0': case '1': case '2': case '3': case '4':
1196 case 'p':
1197 break;
1198
1199 case 'm': case 'o': case 'V':
ac2a9454 1200 /* It doesn't seem worth distinguishing between offsettable
e4600702
RK
1201 and non-offsettable addresses here. */
1202 allows_mem = 1;
1203 if (GET_CODE (op) == MEM)
1204 win = 1;
1205 break;
1206
1207 case '<':
1208 if (GET_CODE (op) == MEM
1209 && (GET_CODE (XEXP (op, 0)) == PRE_DEC
1210 || GET_CODE (XEXP (op, 0)) == POST_DEC))
1211 win = 1;
1212 break;
1213
1214 case '>':
1215 if (GET_CODE (op) == MEM
1216 && (GET_CODE (XEXP (op, 0)) == PRE_INC
1217 || GET_CODE (XEXP (op, 0)) == POST_INC))
1218 win = 1;
1219 break;
1220
1221 case 'E':
7ac2547f 1222#ifndef REAL_ARITHMETIC
e4600702
RK
1223 /* Match any floating double constant, but only if
1224 we can examine the bits of it reliably. */
1225 if ((HOST_FLOAT_FORMAT != TARGET_FLOAT_FORMAT
37366632 1226 || HOST_BITS_PER_WIDE_INT != BITS_PER_WORD)
e4600702
RK
1227 && GET_MODE (op) != VOIDmode && ! flag_pretend_float)
1228 break;
7ac2547f 1229#endif
e4600702
RK
1230 if (GET_CODE (op) == CONST_DOUBLE)
1231 win = 1;
1232 break;
1233
1234 case 'F':
1235 if (GET_CODE (op) == CONST_DOUBLE)
1236 win = 1;
1237 break;
1238
1239 case 'G':
1240 case 'H':
1241 if (GET_CODE (op) == CONST_DOUBLE
1242 && CONST_DOUBLE_OK_FOR_LETTER_P (op, c))
1243 win = 1;
1244 break;
1245
1246 case 's':
1247 if (GET_CODE (op) == CONST_INT
1248 || (GET_CODE (op) == CONST_DOUBLE
1249 && GET_MODE (op) == VOIDmode))
1250 break;
1251 case 'i':
1252 if (CONSTANT_P (op)
1253#ifdef LEGITIMATE_PIC_OPERAND_P
1254 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
1255#endif
1256 )
1257 win = 1;
1258 break;
1259
1260 case 'n':
1261 if (GET_CODE (op) == CONST_INT
1262 || (GET_CODE (op) == CONST_DOUBLE
1263 && GET_MODE (op) == VOIDmode))
1264 win = 1;
1265 break;
1266
1267 case 'I':
1268 case 'J':
1269 case 'K':
1270 case 'L':
1271 case 'M':
1272 case 'N':
1273 case 'O':
1274 case 'P':
1275 if (GET_CODE (op) == CONST_INT
1276 && CONST_OK_FOR_LETTER_P (INTVAL (op), c))
1277 win = 1;
1278 break;
1279
1280 case 'X':
1281 win = 1;
1282 break;
54dac99e 1283
54dac99e 1284#ifdef EXTRA_CONSTRAINT
e4600702
RK
1285 case 'Q':
1286 case 'R':
1287 case 'S':
1288 case 'T':
1289 case 'U':
1290 if (EXTRA_CONSTRAINT (op, c))
1291 win = 1;
1292 break;
1293#endif
1294
1295 case 'g':
1296 if (GET_CODE (op) == MEM
1297 || (CONSTANT_P (op)
1298#ifdef LEGITIMATE_PIC_OPERAND_P
1299 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
54dac99e 1300#endif
e4600702
RK
1301 ))
1302 win = 1;
1303 allows_mem = 1;
1304 case 'r':
1305 classes[i]
1306 = reg_class_subunion[(int) classes[i]][(int) GENERAL_REGS];
1307 break;
1308
1309 default:
1310 classes[i]
1311 = reg_class_subunion[(int) classes[i]]
1312 [(int) REG_CLASS_FROM_LETTER (c)];
1313 }
1314
1315 constraints[i] = p;
1316
1317 /* How we account for this operand now depends on whether it is a
1318 pseudo register or not. If it is, we first check if any
1319 register classes are valid. If not, we ignore this alternative,
1320 since we want to assume that all pseudos get allocated for
1321 register preferencing. If some register class is valid, compute
1322 the costs of moving the pseudo into that class. */
1323
1324 if (GET_CODE (op) == REG && REGNO (op) >= FIRST_PSEUDO_REGISTER)
4db18574 1325 {
e4600702
RK
1326 if (classes[i] == NO_REGS)
1327 alt_fail = 1;
1328 else
1329 {
1330 struct costs *pp = &this_op_costs[i];
1331
1332 for (class = 0; class < N_REG_CLASSES; class++)
1333 pp->cost[class] = may_move_cost[class][(int) classes[i]];
1334
1335 /* If the alternative actually allows memory, make things
1336 a bit cheaper since we won't need an extra insn to
1337 load it. */
1338
cbd5b9a2
KR
1339 pp->mem_cost = (MEMORY_MOVE_COST (mode, classes[i], 1)
1340 - allows_mem);
e4600702
RK
1341
1342 /* If we have assigned a class to this register in our
1343 first pass, add a cost to this alternative corresponding
1344 to what we would add if this register were not in the
1345 appropriate class. */
1346
1347 if (prefclass)
1348 alt_cost
1349 += may_move_cost[prefclass[REGNO (op)]][(int) classes[i]];
1350 }
4db18574 1351 }
54dac99e 1352
e4600702
RK
1353 /* Otherwise, if this alternative wins, either because we
1354 have already determined that or if we have a hard register of
1355 the proper class, there is no cost for this alternative. */
54dac99e 1356
e4600702
RK
1357 else if (win
1358 || (GET_CODE (op) == REG
6f654776 1359 && reg_fits_class_p (op, classes[i], 0, GET_MODE (op))))
e4600702 1360 ;
54dac99e 1361
e4600702
RK
1362 /* If registers are valid, the cost of this alternative includes
1363 copying the object to and/or from a register. */
54dac99e 1364
e4600702
RK
1365 else if (classes[i] != NO_REGS)
1366 {
1367 if (op_types[i] != OP_WRITE)
1368 alt_cost += copy_cost (op, mode, classes[i], 1);
54dac99e 1369
e4600702
RK
1370 if (op_types[i] != OP_READ)
1371 alt_cost += copy_cost (op, mode, classes[i], 0);
1372 }
54dac99e 1373
e4600702
RK
1374 /* The only other way this alternative can be used is if this is a
1375 constant that could be placed into memory. */
1376
1377 else if (CONSTANT_P (op) && allows_mem)
cbd5b9a2 1378 alt_cost += MEMORY_MOVE_COST (mode, classes[i], 1);
e4600702
RK
1379 else
1380 alt_fail = 1;
1381 }
1382
1383 if (alt_fail)
1384 continue;
1385
1386 /* Finally, update the costs with the information we've calculated
1387 about this alternative. */
1388
1389 for (i = 0; i < n_ops; i++)
1390 if (GET_CODE (ops[i]) == REG
1391 && REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER)
54dac99e 1392 {
e4600702
RK
1393 struct costs *pp = &op_costs[i], *qq = &this_op_costs[i];
1394 int scale = 1 + (op_types[i] == OP_READ_WRITE);
54dac99e 1395
e4600702
RK
1396 pp->mem_cost = MIN (pp->mem_cost,
1397 (qq->mem_cost + alt_cost) * scale);
54dac99e 1398
e4600702
RK
1399 for (class = 0; class < N_REG_CLASSES; class++)
1400 pp->cost[class] = MIN (pp->cost[class],
1401 (qq->cost[class] + alt_cost) * scale);
1402 }
1403 }
ec2d92af
RK
1404
1405 /* If this insn is a single set copying operand 1 to operand 0
1406 and one is a pseudo with the other a hard reg that is in its
1407 own register class, set the cost of that register class to -1. */
1408
1409 if ((set = single_set (insn)) != 0
1410 && ops[0] == SET_DEST (set) && ops[1] == SET_SRC (set)
1411 && GET_CODE (ops[0]) == REG && GET_CODE (ops[1]) == REG)
1412 for (i = 0; i <= 1; i++)
1413 if (REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER)
1414 {
1415 int regno = REGNO (ops[!i]);
1416 enum machine_mode mode = GET_MODE (ops[!i]);
1417 int class;
4841ba4b 1418 int nr;
ec2d92af
RK
1419
1420 if (regno >= FIRST_PSEUDO_REGISTER && prefclass != 0
1421 && (reg_class_size[prefclass[regno]]
1422 == CLASS_MAX_NREGS (prefclass[regno], mode)))
1423 op_costs[i].cost[prefclass[regno]] = -1;
1424 else if (regno < FIRST_PSEUDO_REGISTER)
1425 for (class = 0; class < N_REG_CLASSES; class++)
1426 if (TEST_HARD_REG_BIT (reg_class_contents[class], regno)
1427 && reg_class_size[class] == CLASS_MAX_NREGS (class, mode))
4841ba4b
RK
1428 {
1429 if (reg_class_size[class] == 1)
1430 op_costs[i].cost[class] = -1;
1431 else
1432 {
1433 for (nr = 0; nr < HARD_REGNO_NREGS(regno, mode); nr++)
1434 {
1435 if (!TEST_HARD_REG_BIT (reg_class_contents[class], regno + nr))
1436 break;
1437 }
1438
1439 if (nr == HARD_REGNO_NREGS(regno,mode))
1440 op_costs[i].cost[class] = -1;
1441 }
1442 }
ec2d92af 1443 }
54dac99e 1444}
e4600702
RK
1445\f
1446/* Compute the cost of loading X into (if TO_P is non-zero) or from (if
1447 TO_P is zero) a register of class CLASS in mode MODE.
1448
1449 X must not be a pseudo. */
1450
1451static int
1452copy_cost (x, mode, class, to_p)
1453 rtx x;
1454 enum machine_mode mode;
1455 enum reg_class class;
1456 int to_p;
1457{
29a82058 1458#ifdef HAVE_SECONDARY_RELOADS
e4600702 1459 enum reg_class secondary_class = NO_REGS;
29a82058 1460#endif
e4600702
RK
1461
1462 /* If X is a SCRATCH, there is actually nothing to move since we are
1463 assuming optimal allocation. */
1464
1465 if (GET_CODE (x) == SCRATCH)
1466 return 0;
1467
1468 /* Get the class we will actually use for a reload. */
1469 class = PREFERRED_RELOAD_CLASS (x, class);
1470
1471#ifdef HAVE_SECONDARY_RELOADS
1472 /* If we need a secondary reload (we assume here that we are using
1473 the secondary reload as an intermediate, not a scratch register), the
1474 cost is that to load the input into the intermediate register, then
1475 to copy them. We use a special value of TO_P to avoid recursion. */
1476
1477#ifdef SECONDARY_INPUT_RELOAD_CLASS
1478 if (to_p == 1)
1479 secondary_class = SECONDARY_INPUT_RELOAD_CLASS (class, mode, x);
1480#endif
1481
dd9f0e8f 1482#ifdef SECONDARY_OUTPUT_RELOAD_CLASS
e4600702
RK
1483 if (! to_p)
1484 secondary_class = SECONDARY_OUTPUT_RELOAD_CLASS (class, mode, x);
1485#endif
1486
1487 if (secondary_class != NO_REGS)
1488 return (move_cost[(int) secondary_class][(int) class]
1489 + copy_cost (x, mode, secondary_class, 2));
dd9f0e8f 1490#endif /* HAVE_SECONDARY_RELOADS */
e4600702
RK
1491
1492 /* For memory, use the memory move cost, for (hard) registers, use the
1493 cost to move between the register classes, and use 2 for everything
1494 else (constants). */
1495
1496 if (GET_CODE (x) == MEM || class == NO_REGS)
cbd5b9a2 1497 return MEMORY_MOVE_COST (mode, class, to_p);
54dac99e 1498
e4600702
RK
1499 else if (GET_CODE (x) == REG)
1500 return move_cost[(int) REGNO_REG_CLASS (REGNO (x))][(int) class];
1501
1502 else
1503 /* If this is a constant, we may eventually want to call rtx_cost here. */
1504 return 2;
1505}
1506\f
54dac99e
RK
1507/* Record the pseudo registers we must reload into hard registers
1508 in a subexpression of a memory address, X.
e4600702
RK
1509
1510 CLASS is the class that the register needs to be in and is either
1511 BASE_REG_CLASS or INDEX_REG_CLASS.
1512
1513 SCALE is twice the amount to multiply the cost by (it is twice so we
1514 can represent half-cost adjustments). */
54dac99e 1515
197d6480 1516static void
e4600702 1517record_address_regs (x, class, scale)
54dac99e 1518 rtx x;
e4600702
RK
1519 enum reg_class class;
1520 int scale;
54dac99e
RK
1521{
1522 register enum rtx_code code = GET_CODE (x);
1523
1524 switch (code)
1525 {
1526 case CONST_INT:
1527 case CONST:
1528 case CC0:
1529 case PC:
1530 case SYMBOL_REF:
1531 case LABEL_REF:
1532 return;
1533
1534 case PLUS:
1535 /* When we have an address that is a sum,
1536 we must determine whether registers are "base" or "index" regs.
1537 If there is a sum of two registers, we must choose one to be
1538 the "base". Luckily, we can use the REGNO_POINTER_FLAG
e4600702
RK
1539 to make a good choice most of the time. We only need to do this
1540 on machines that can have two registers in an address and where
1541 the base and index register classes are different.
1542
1543 ??? This code used to set REGNO_POINTER_FLAG in some cases, but
1544 that seems bogus since it should only be set when we are sure
1545 the register is being used as a pointer. */
1546
54dac99e
RK
1547 {
1548 rtx arg0 = XEXP (x, 0);
1549 rtx arg1 = XEXP (x, 1);
1550 register enum rtx_code code0 = GET_CODE (arg0);
1551 register enum rtx_code code1 = GET_CODE (arg1);
54dac99e
RK
1552
1553 /* Look inside subregs. */
e4600702 1554 if (code0 == SUBREG)
54dac99e 1555 arg0 = SUBREG_REG (arg0), code0 = GET_CODE (arg0);
e4600702 1556 if (code1 == SUBREG)
54dac99e
RK
1557 arg1 = SUBREG_REG (arg1), code1 = GET_CODE (arg1);
1558
e4600702
RK
1559 /* If this machine only allows one register per address, it must
1560 be in the first operand. */
1561
1562 if (MAX_REGS_PER_ADDRESS == 1)
1563 record_address_regs (arg0, class, scale);
1564
1565 /* If index and base registers are the same on this machine, just
1566 record registers in any non-constant operands. We assume here,
1567 as well as in the tests below, that all addresses are in
1568 canonical form. */
1569
1570 else if (INDEX_REG_CLASS == BASE_REG_CLASS)
54dac99e 1571 {
e4600702
RK
1572 record_address_regs (arg0, class, scale);
1573 if (! CONSTANT_P (arg1))
1574 record_address_regs (arg1, class, scale);
54dac99e 1575 }
e4600702
RK
1576
1577 /* If the second operand is a constant integer, it doesn't change
1578 what class the first operand must be. */
1579
1580 else if (code1 == CONST_INT || code1 == CONST_DOUBLE)
1581 record_address_regs (arg0, class, scale);
1582
1583 /* If the second operand is a symbolic constant, the first operand
1584 must be an index register. */
1585
1586 else if (code1 == SYMBOL_REF || code1 == CONST || code1 == LABEL_REF)
1587 record_address_regs (arg0, INDEX_REG_CLASS, scale);
1588
956d6950
JL
1589 /* If both operands are registers but one is already a hard register
1590 of index or base class, give the other the class that the hard
1591 register is not. */
1592
3f9e9508 1593#ifdef REG_OK_FOR_BASE_P
956d6950
JL
1594 else if (code0 == REG && code1 == REG
1595 && REGNO (arg0) < FIRST_PSEUDO_REGISTER
1596 && (REG_OK_FOR_BASE_P (arg0) || REG_OK_FOR_INDEX_P (arg0)))
1597 record_address_regs (arg1,
1598 REG_OK_FOR_BASE_P (arg0)
1599 ? INDEX_REG_CLASS : BASE_REG_CLASS,
1600 scale);
1601 else if (code0 == REG && code1 == REG
1602 && REGNO (arg1) < FIRST_PSEUDO_REGISTER
1603 && (REG_OK_FOR_BASE_P (arg1) || REG_OK_FOR_INDEX_P (arg1)))
1604 record_address_regs (arg0,
1605 REG_OK_FOR_BASE_P (arg1)
1606 ? INDEX_REG_CLASS : BASE_REG_CLASS,
1607 scale);
3f9e9508 1608#endif
956d6950 1609
e9a25f70
JL
1610 /* If one operand is known to be a pointer, it must be the base
1611 with the other operand the index. Likewise if the other operand
1612 is a MULT. */
f22376c7 1613
e9a25f70
JL
1614 else if ((code0 == REG && REGNO_POINTER_FLAG (REGNO (arg0)))
1615 || code1 == MULT)
f22376c7
CI
1616 {
1617 record_address_regs (arg0, BASE_REG_CLASS, scale);
1618 record_address_regs (arg1, INDEX_REG_CLASS, scale);
1619 }
e9a25f70
JL
1620 else if ((code1 == REG && REGNO_POINTER_FLAG (REGNO (arg1)))
1621 || code0 == MULT)
f22376c7
CI
1622 {
1623 record_address_regs (arg0, INDEX_REG_CLASS, scale);
1624 record_address_regs (arg1, BASE_REG_CLASS, scale);
1625 }
1626
e9a25f70 1627 /* Otherwise, count equal chances that each might be a base
e4600702
RK
1628 or index register. This case should be rare. */
1629
e9a25f70 1630 else
54dac99e 1631 {
e4600702
RK
1632 record_address_regs (arg0, BASE_REG_CLASS, scale / 2);
1633 record_address_regs (arg0, INDEX_REG_CLASS, scale / 2);
1634 record_address_regs (arg1, BASE_REG_CLASS, scale / 2);
1635 record_address_regs (arg1, INDEX_REG_CLASS, scale / 2);
54dac99e 1636 }
54dac99e
RK
1637 }
1638 break;
1639
1640 case POST_INC:
1641 case PRE_INC:
1642 case POST_DEC:
1643 case PRE_DEC:
1644 /* Double the importance of a pseudo register that is incremented
1645 or decremented, since it would take two extra insns
533d0835
RK
1646 if it ends up in the wrong place. If the operand is a pseudo,
1647 show it is being used in an INC_DEC context. */
1648
1649#ifdef FORBIDDEN_INC_DEC_CLASSES
1650 if (GET_CODE (XEXP (x, 0)) == REG
1651 && REGNO (XEXP (x, 0)) >= FIRST_PSEUDO_REGISTER)
1652 in_inc_dec[REGNO (XEXP (x, 0))] = 1;
1653#endif
e4600702
RK
1654
1655 record_address_regs (XEXP (x, 0), class, 2 * scale);
54dac99e
RK
1656 break;
1657
1658 case REG:
1659 {
e4600702
RK
1660 register struct costs *pp = &costs[REGNO (x)];
1661 register int i;
54dac99e 1662
cbd5b9a2 1663 pp->mem_cost += (MEMORY_MOVE_COST (Pmode, class, 1) * scale) / 2;
54dac99e 1664
e4600702
RK
1665 for (i = 0; i < N_REG_CLASSES; i++)
1666 pp->cost[i] += (may_move_cost[i][(int) class] * scale) / 2;
54dac99e
RK
1667 }
1668 break;
1669
1670 default:
1671 {
1672 register char *fmt = GET_RTX_FORMAT (code);
1673 register int i;
1674 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1675 if (fmt[i] == 'e')
e4600702 1676 record_address_regs (XEXP (x, i), class, scale);
54dac99e
RK
1677 }
1678 }
1679}
08d95f91
RK
1680\f
1681#ifdef FORBIDDEN_INC_DEC_CLASSES
1682
1683/* Return 1 if REG is valid as an auto-increment memory reference
1684 to an object of MODE. */
1685
1d300e19 1686static int
08d95f91
RK
1687auto_inc_dec_reg_p (reg, mode)
1688 rtx reg;
1689 enum machine_mode mode;
1690{
1691#ifdef HAVE_POST_INCREMENT
38a448ca 1692 if (memory_address_p (mode, gen_rtx_POST_INC (Pmode, reg)))
08d95f91
RK
1693 return 1;
1694#endif
1695
1696#ifdef HAVE_POST_DECREMENT
38a448ca 1697 if (memory_address_p (mode, gen_rtx_POST_DEC (Pmode, reg)))
08d95f91
RK
1698 return 1;
1699#endif
1700
1701#ifdef HAVE_PRE_INCREMENT
38a448ca 1702 if (memory_address_p (mode, gen_rtx_PRE_INC (Pmode, reg)))
08d95f91
RK
1703 return 1;
1704#endif
1705
1706#ifdef HAVE_PRE_DECREMENT
38a448ca 1707 if (memory_address_p (mode, gen_rtx_PRE_DEC (Pmode, reg)))
08d95f91
RK
1708 return 1;
1709#endif
1710
1711 return 0;
1712}
1713#endif
1714
54dac99e 1715#endif /* REGISTER_CONSTRAINTS */
b1f21e0a
MM
1716\f
1717/* Allocate enough space to hold NUM_REGS registers for the tables used for
1718 reg_scan and flow_analysis that are indexed by the register number. If
39379e67
MM
1719 NEW_P is non zero, initialize all of the registers, otherwise only
1720 initialize the new registers allocated. The same table is kept from
1721 function to function, only reallocating it when we need more room. If
1722 RENUMBER_P is non zero, allocate the reg_renumber array also. */
b1f21e0a
MM
1723
1724void
39379e67 1725allocate_reg_info (num_regs, new_p, renumber_p)
b1f21e0a
MM
1726 int num_regs;
1727 int new_p;
39379e67 1728 int renumber_p;
b1f21e0a
MM
1729{
1730 static int regno_allocated = 0;
1731 static int regno_max = 0;
39379e67 1732 static short *renumber = (short *)0;
b1f21e0a 1733 int i;
39379e67
MM
1734 int size_info;
1735 int size_renumber;
7ec189f2 1736 int min = (new_p) ? 0 : regno_max;
b1f21e0a 1737
39379e67
MM
1738 /* If this message come up, and you want to fix it, then all of the tables
1739 like reg_renumber, etc. that use short will have to be found and lengthed
1740 to int or HOST_WIDE_INT. */
1741
1742 /* Free up all storage allocated */
1743 if (num_regs < 0)
1744 {
1745 if (reg_n_info)
1746 {
1747 free ((char *)reg_n_info);
1748 free ((char *)renumber);
1749 reg_n_info = (reg_info *)0;
1750 renumber = (short *)0;
1751 }
1752 regno_allocated = 0;
1753 regno_max = 0;
1754 return;
1755 }
1756
b1f21e0a
MM
1757 if (num_regs > regno_allocated)
1758 {
1759 regno_allocated = num_regs + (num_regs / 20); /* add some slop space */
39379e67
MM
1760 size_info = regno_allocated * sizeof (reg_info);
1761 size_renumber = regno_allocated * sizeof (short);
1762
1763 if (!reg_n_info)
1764 {
1765 reg_n_info = (reg_info *) xmalloc (size_info);
1766 renumber = (short *) xmalloc (size_renumber);
1767 }
1768
1769 else if (new_p) /* if we're zapping everything, no need to realloc */
1770 {
1771 free ((char *)reg_n_info);
1772 free ((char *)renumber);
1773 reg_n_info = (reg_info *) xmalloc (size_info);
1774 renumber = (short *) xmalloc (size_renumber);
1775 }
1776
1777 else
1778 {
1779 reg_n_info = (reg_info *) xrealloc ((char *)reg_n_info, size_info);
1780 renumber = (short *) xrealloc ((char *)renumber, size_renumber);
1781 }
b1f21e0a
MM
1782 }
1783
1784 if (min < num_regs)
1785 {
1786 bzero ((char *) &reg_n_info[min], (num_regs - min) * sizeof (reg_info));
1787 for (i = min; i < num_regs; i++)
39379e67
MM
1788 {
1789 REG_BASIC_BLOCK (i) = REG_BLOCK_UNKNOWN;
1790 renumber[i] = -1;
1791 }
b1f21e0a
MM
1792 }
1793
39379e67
MM
1794 if (renumber_p)
1795 reg_renumber = renumber;
1796
73b76448
RK
1797 /* Tell the regset code about the new number of registers */
1798 MAX_REGNO_REG_SET (num_regs, new_p, renumber_p);
1799
b1f21e0a
MM
1800 regno_max = num_regs;
1801}
1802
54dac99e
RK
1803\f
1804/* This is the `regscan' pass of the compiler, run just before cse
1805 and again just before loop.
1806
1807 It finds the first and last use of each pseudo-register
1808 and records them in the vectors regno_first_uid, regno_last_uid
1809 and counts the number of sets in the vector reg_n_sets.
1810
1811 REPEAT is nonzero the second time this is called. */
1812
54dac99e 1813/* Maximum number of parallel sets and clobbers in any insn in this fn.
d22d5f34 1814 Always at least 3, since the combiner could put that many together
54dac99e
RK
1815 and we want this to remain correct for all the remaining passes. */
1816
1817int max_parallel;
1818
54dac99e
RK
1819void
1820reg_scan (f, nregs, repeat)
1821 rtx f;
1822 int nregs;
1823 int repeat;
1824{
1825 register rtx insn;
1826
39379e67 1827 allocate_reg_info (nregs, TRUE, FALSE);
54dac99e
RK
1828 max_parallel = 3;
1829
1830 for (insn = f; insn; insn = NEXT_INSN (insn))
1831 if (GET_CODE (insn) == INSN
1832 || GET_CODE (insn) == CALL_INSN
1833 || GET_CODE (insn) == JUMP_INSN)
1834 {
1835 if (GET_CODE (PATTERN (insn)) == PARALLEL
1836 && XVECLEN (PATTERN (insn), 0) > max_parallel)
1837 max_parallel = XVECLEN (PATTERN (insn), 0);
1ebecb64 1838 reg_scan_mark_refs (PATTERN (insn), insn, 0);
01565a55
RK
1839
1840 if (REG_NOTES (insn))
1841 reg_scan_mark_refs (REG_NOTES (insn), insn, 1);
54dac99e
RK
1842 }
1843}
1844
1ebecb64
RS
1845/* X is the expression to scan. INSN is the insn it appears in.
1846 NOTE_FLAG is nonzero if X is from INSN's notes rather than its body. */
1847
08d95f91 1848static void
1ebecb64 1849reg_scan_mark_refs (x, insn, note_flag)
54dac99e 1850 rtx x;
be8dcd74 1851 rtx insn;
1ebecb64 1852 int note_flag;
54dac99e
RK
1853{
1854 register enum rtx_code code = GET_CODE (x);
1855 register rtx dest;
be8dcd74 1856 register rtx note;
54dac99e
RK
1857
1858 switch (code)
1859 {
1860 case CONST_INT:
1861 case CONST:
1862 case CONST_DOUBLE:
1863 case CC0:
1864 case PC:
1865 case SYMBOL_REF:
1866 case LABEL_REF:
1867 case ADDR_VEC:
1868 case ADDR_DIFF_VEC:
1869 return;
1870
1871 case REG:
1872 {
1873 register int regno = REGNO (x);
1874
b1f21e0a 1875 REGNO_LAST_NOTE_UID (regno) = INSN_UID (insn);
1ebecb64 1876 if (!note_flag)
b1f21e0a
MM
1877 REGNO_LAST_UID (regno) = INSN_UID (insn);
1878 if (REGNO_FIRST_UID (regno) == 0)
1879 REGNO_FIRST_UID (regno) = INSN_UID (insn);
54dac99e
RK
1880 }
1881 break;
1882
01565a55 1883 case EXPR_LIST:
7b18c3db
RS
1884 if (XEXP (x, 0))
1885 reg_scan_mark_refs (XEXP (x, 0), insn, note_flag);
01565a55
RK
1886 if (XEXP (x, 1))
1887 reg_scan_mark_refs (XEXP (x, 1), insn, note_flag);
1888 break;
1889
1890 case INSN_LIST:
1891 if (XEXP (x, 1))
1892 reg_scan_mark_refs (XEXP (x, 1), insn, note_flag);
1893 break;
1894
54dac99e
RK
1895 case SET:
1896 /* Count a set of the destination if it is a register. */
1897 for (dest = SET_DEST (x);
1898 GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART
1899 || GET_CODE (dest) == ZERO_EXTEND;
1900 dest = XEXP (dest, 0))
1901 ;
1902
1903 if (GET_CODE (dest) == REG)
b1f21e0a 1904 REG_N_SETS (REGNO (dest))++;
54dac99e 1905
be8dcd74
RK
1906 /* If this is setting a pseudo from another pseudo or the sum of a
1907 pseudo and a constant integer and the other pseudo is known to be
1908 a pointer, set the destination to be a pointer as well.
1909
1910 Likewise if it is setting the destination from an address or from a
1911 value equivalent to an address or to the sum of an address and
1912 something else.
1913
1914 But don't do any of this if the pseudo corresponds to a user
1915 variable since it should have already been set as a pointer based
1916 on the type. */
1917
1918 if (GET_CODE (SET_DEST (x)) == REG
1919 && REGNO (SET_DEST (x)) >= FIRST_PSEUDO_REGISTER
1920 && ! REG_USERVAR_P (SET_DEST (x))
1921 && ! REGNO_POINTER_FLAG (REGNO (SET_DEST (x)))
1922 && ((GET_CODE (SET_SRC (x)) == REG
1923 && REGNO_POINTER_FLAG (REGNO (SET_SRC (x))))
1924 || ((GET_CODE (SET_SRC (x)) == PLUS
1925 || GET_CODE (SET_SRC (x)) == LO_SUM)
1926 && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
1927 && GET_CODE (XEXP (SET_SRC (x), 0)) == REG
1928 && REGNO_POINTER_FLAG (REGNO (XEXP (SET_SRC (x), 0))))
1929 || GET_CODE (SET_SRC (x)) == CONST
1930 || GET_CODE (SET_SRC (x)) == SYMBOL_REF
1931 || GET_CODE (SET_SRC (x)) == LABEL_REF
1932 || (GET_CODE (SET_SRC (x)) == HIGH
1933 && (GET_CODE (XEXP (SET_SRC (x), 0)) == CONST
1934 || GET_CODE (XEXP (SET_SRC (x), 0)) == SYMBOL_REF
1935 || GET_CODE (XEXP (SET_SRC (x), 0)) == LABEL_REF))
1936 || ((GET_CODE (SET_SRC (x)) == PLUS
1937 || GET_CODE (SET_SRC (x)) == LO_SUM)
1938 && (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST
1939 || GET_CODE (XEXP (SET_SRC (x), 1)) == SYMBOL_REF
1940 || GET_CODE (XEXP (SET_SRC (x), 1)) == LABEL_REF))
1941 || ((note = find_reg_note (insn, REG_EQUAL, 0)) != 0
1942 && (GET_CODE (XEXP (note, 0)) == CONST
1943 || GET_CODE (XEXP (note, 0)) == SYMBOL_REF
1944 || GET_CODE (XEXP (note, 0)) == LABEL_REF))))
1945 REGNO_POINTER_FLAG (REGNO (SET_DEST (x))) = 1;
1946
0f41302f 1947 /* ... fall through ... */
54dac99e
RK
1948
1949 default:
1950 {
1951 register char *fmt = GET_RTX_FORMAT (code);
1952 register int i;
1953 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1954 {
1955 if (fmt[i] == 'e')
1ebecb64 1956 reg_scan_mark_refs (XEXP (x, i), insn, note_flag);
54dac99e
RK
1957 else if (fmt[i] == 'E' && XVEC (x, i) != 0)
1958 {
1959 register int j;
1960 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1ebecb64 1961 reg_scan_mark_refs (XVECEXP (x, i, j), insn, note_flag);
54dac99e
RK
1962 }
1963 }
1964 }
1965 }
1966}
1967\f
1968/* Return nonzero if C1 is a subset of C2, i.e., if every register in C1
1969 is also in C2. */
1970
1971int
1972reg_class_subset_p (c1, c2)
1973 register enum reg_class c1;
1974 register enum reg_class c2;
1975{
1976 if (c1 == c2) return 1;
1977
1978 if (c2 == ALL_REGS)
1979 win:
1980 return 1;
1981 GO_IF_HARD_REG_SUBSET (reg_class_contents[(int)c1],
1982 reg_class_contents[(int)c2],
1983 win);
1984 return 0;
1985}
1986
1987/* Return nonzero if there is a register that is in both C1 and C2. */
1988
1989int
1990reg_classes_intersect_p (c1, c2)
1991 register enum reg_class c1;
1992 register enum reg_class c2;
1993{
1994#ifdef HARD_REG_SET
1995 register
1996#endif
1997 HARD_REG_SET c;
1998
1999 if (c1 == c2) return 1;
2000
2001 if (c1 == ALL_REGS || c2 == ALL_REGS)
2002 return 1;
2003
2004 COPY_HARD_REG_SET (c, reg_class_contents[(int) c1]);
2005 AND_HARD_REG_SET (c, reg_class_contents[(int) c2]);
2006
2007 GO_IF_HARD_REG_SUBSET (c, reg_class_contents[(int) NO_REGS], lose);
2008 return 1;
2009
2010 lose:
2011 return 0;
2012}
2013
73b76448
RK
2014/* Release any memory allocated by register sets. */
2015
2016void
2017regset_release_memory ()
2018{
2019 if (basic_block_live_at_start)
2020 {
2021 free_regset_vector (basic_block_live_at_start, n_basic_blocks);
2022 basic_block_live_at_start = 0;
2023 }
2024
2025 FREE_REG_SET (regs_live_at_setjmp);
2026 bitmap_release_memory ();
2027}
This page took 0.878668 seconds and 5 git commands to generate.