]> gcc.gnu.org Git - gcc.git/blame - gcc/regclass.c
Daily bump.
[gcc.git] / gcc / regclass.c
CommitLineData
54dac99e 1/* Compute register class preferences for pseudo-registers.
517cbe13
JL
2 Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1996
3 1997, 1998, 1999, 2000 Free Software Foundation, Inc.
54dac99e
RK
4
5This file is part of GNU CC.
6
7GNU CC is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
9the Free Software Foundation; either version 2, or (at your option)
10any later version.
11
12GNU CC is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with GNU CC; see the file COPYING. If not, write to
e99215a3
RK
19the Free Software Foundation, 59 Temple Place - Suite 330,
20Boston, MA 02111-1307, USA. */
54dac99e
RK
21
22
23/* This file contains two passes of the compiler: reg_scan and reg_class.
24 It also defines some tables of information about the hardware registers
25 and a function init_reg_sets to initialize the tables. */
26
27#include "config.h"
670ee920 28#include "system.h"
54dac99e 29#include "rtl.h"
6baf1cc8 30#include "tm_p.h"
54dac99e
RK
31#include "hard-reg-set.h"
32#include "flags.h"
33#include "basic-block.h"
34#include "regs.h"
49ad7cfa 35#include "function.h"
54dac99e
RK
36#include "insn-config.h"
37#include "recog.h"
e4600702
RK
38#include "reload.h"
39#include "real.h"
10f0ad3d 40#include "toplev.h"
d6f4ec51 41#include "output.h"
8b0212ca 42#include "ggc.h"
54dac99e
RK
43
44#ifndef REGISTER_MOVE_COST
45#define REGISTER_MOVE_COST(x, y) 2
46#endif
47
13536812
KG
48static void init_reg_sets_1 PARAMS ((void));
49static void init_reg_modes PARAMS ((void));
24deb20a 50
533d0835
RK
51/* If we have auto-increment or auto-decrement and we can have secondary
52 reloads, we are not allowed to use classes requiring secondary
9faa82d8 53 reloads for pseudos auto-incremented since reload can't handle it. */
533d0835
RK
54
55#ifdef AUTO_INC_DEC
dd9f0e8f 56#if defined(SECONDARY_INPUT_RELOAD_CLASS) || defined(SECONDARY_OUTPUT_RELOAD_CLASS)
533d0835
RK
57#define FORBIDDEN_INC_DEC_CLASSES
58#endif
59#endif
54dac99e
RK
60\f
61/* Register tables used by many passes. */
62
63/* Indexed by hard register number, contains 1 for registers
64 that are fixed use (stack pointer, pc, frame pointer, etc.).
65 These are the registers that cannot be used to allocate
252f342a 66 a pseudo reg for general use. */
54dac99e
RK
67
68char fixed_regs[FIRST_PSEUDO_REGISTER];
69
70/* Same info as a HARD_REG_SET. */
71
72HARD_REG_SET fixed_reg_set;
73
74/* Data for initializing the above. */
75
76static char initial_fixed_regs[] = FIXED_REGISTERS;
77
78/* Indexed by hard register number, contains 1 for registers
79 that are fixed use or are clobbered by function calls.
80 These are the registers that cannot be used to allocate
252f342a
MH
81 a pseudo reg whose life crosses calls unless we are able
82 to save/restore them across the calls. */
54dac99e
RK
83
84char call_used_regs[FIRST_PSEUDO_REGISTER];
85
86/* Same info as a HARD_REG_SET. */
87
88HARD_REG_SET call_used_reg_set;
89
6cad67d2
JL
90/* HARD_REG_SET of registers we want to avoid caller saving. */
91HARD_REG_SET losing_caller_save_reg_set;
92
54dac99e
RK
93/* Data for initializing the above. */
94
95static char initial_call_used_regs[] = CALL_USED_REGISTERS;
96
97/* Indexed by hard register number, contains 1 for registers that are
252f342a
MH
98 fixed use or call used registers that cannot hold quantities across
99 calls even if we are willing to save and restore them. call fixed
100 registers are a subset of call used registers. */
54dac99e
RK
101
102char call_fixed_regs[FIRST_PSEUDO_REGISTER];
103
104/* The same info as a HARD_REG_SET. */
105
106HARD_REG_SET call_fixed_reg_set;
107
108/* Number of non-fixed registers. */
109
110int n_non_fixed_regs;
111
112/* Indexed by hard register number, contains 1 for registers
113 that are being used for global register decls.
114 These must be exempt from ordinary flow analysis
115 and are also considered fixed. */
116
117char global_regs[FIRST_PSEUDO_REGISTER];
118
119/* Table of register numbers in the order in which to try to use them. */
120#ifdef REG_ALLOC_ORDER
121int reg_alloc_order[FIRST_PSEUDO_REGISTER] = REG_ALLOC_ORDER;
f5d8c9f4
BS
122
123/* The inverse of reg_alloc_order. */
124int inv_reg_alloc_order[FIRST_PSEUDO_REGISTER];
54dac99e
RK
125#endif
126
127/* For each reg class, a HARD_REG_SET saying which registers are in it. */
128
2e0e2b76
CH
129HARD_REG_SET reg_class_contents[N_REG_CLASSES];
130
089e575b
RS
131/* The same information, but as an array of unsigned ints. We copy from
132 these unsigned ints to the table above. We do this so the tm.h files
133 do not have to be aware of the wordsize for machines with <= 64 regs. */
2e0e2b76
CH
134
135#define N_REG_INTS \
136 ((FIRST_PSEUDO_REGISTER + (HOST_BITS_PER_INT - 1)) / HOST_BITS_PER_INT)
137
089e575b 138static unsigned int_reg_class_contents[N_REG_CLASSES][N_REG_INTS]
2e0e2b76 139 = REG_CLASS_CONTENTS;
54dac99e
RK
140
141/* For each reg class, number of regs it contains. */
142
770ae6cc 143unsigned int reg_class_size[N_REG_CLASSES];
54dac99e
RK
144
145/* For each reg class, table listing all the containing classes. */
146
147enum reg_class reg_class_superclasses[N_REG_CLASSES][N_REG_CLASSES];
148
149/* For each reg class, table listing all the classes contained in it. */
150
151enum reg_class reg_class_subclasses[N_REG_CLASSES][N_REG_CLASSES];
152
153/* For each pair of reg classes,
154 a largest reg class contained in their union. */
155
156enum reg_class reg_class_subunion[N_REG_CLASSES][N_REG_CLASSES];
157
158/* For each pair of reg classes,
159 the smallest reg class containing their union. */
160
161enum reg_class reg_class_superunion[N_REG_CLASSES][N_REG_CLASSES];
162
d05c8ee7
RS
163/* Array containing all of the register names */
164
99f44eba 165const char *reg_names[] = REGISTER_NAMES;
d05c8ee7 166
ca4aac00
DE
167/* For each hard register, the widest mode object that it can contain.
168 This will be a MODE_INT mode if the register can hold integers. Otherwise
169 it will be a MODE_FLOAT or a MODE_CC mode, whichever is valid for the
170 register. */
171
172enum machine_mode reg_raw_mode[FIRST_PSEUDO_REGISTER];
173
e4600702
RK
174/* Maximum cost of moving from a register in one class to a register in
175 another class. Based on REGISTER_MOVE_COST. */
176
177static int move_cost[N_REG_CLASSES][N_REG_CLASSES];
178
179/* Similar, but here we don't have to move if the first index is a subset
180 of the second so in that case the cost is zero. */
181
ee59f29b
JH
182static int may_move_in_cost[N_REG_CLASSES][N_REG_CLASSES];
183
184/* Similar, but here we don't have to move if the first index is a superset
185 of the second so in that case the cost is zero. */
186
187static int may_move_out_cost[N_REG_CLASSES][N_REG_CLASSES];
e4600702 188
533d0835
RK
189#ifdef FORBIDDEN_INC_DEC_CLASSES
190
191/* These are the classes that regs which are auto-incremented or decremented
192 cannot be put in. */
193
194static int forbidden_inc_dec_class[N_REG_CLASSES];
195
196/* Indexed by n, is non-zero if (REG n) is used in an auto-inc or auto-dec
197 context. */
198
199static char *in_inc_dec;
200
5fcb671c 201#endif /* FORBIDDEN_INC_DEC_CLASSES */
533d0835 202
473fe49b
KR
203#ifdef HAVE_SECONDARY_RELOADS
204
205/* Sample MEM values for use by memory_move_secondary_cost. */
206
207static rtx top_of_stack[MAX_MACHINE_MODE];
208
209#endif /* HAVE_SECONDARY_RELOADS */
210
6feacd09
MM
211/* Linked list of reg_info structures allocated for reg_n_info array.
212 Grouping all of the allocated structures together in one lump
213 means only one call to bzero to clear them, rather than n smaller
214 calls. */
215struct reg_info_data {
216 struct reg_info_data *next; /* next set of reg_info structures */
217 size_t min_index; /* minimum index # */
218 size_t max_index; /* maximum index # */
219 char used_p; /* non-zero if this has been used previously */
220 reg_info data[1]; /* beginning of the reg_info data */
221};
222
223static struct reg_info_data *reg_info_head;
224
c07c7c9d 225/* No more global register variables may be declared; true once
6c85df69
AH
226 regclass has been initialized. */
227
228static int no_global_reg_vars = 0;
229
6feacd09 230
54dac99e
RK
231/* Function called only once to initialize the above data on reg usage.
232 Once this is done, various switches may override. */
233
234void
235init_reg_sets ()
236{
237 register int i, j;
238
2e0e2b76
CH
239 /* First copy the register information from the initial int form into
240 the regsets. */
241
242 for (i = 0; i < N_REG_CLASSES; i++)
243 {
244 CLEAR_HARD_REG_SET (reg_class_contents[i]);
245
246 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
247 if (int_reg_class_contents[i][j / HOST_BITS_PER_INT]
089e575b 248 & ((unsigned) 1 << (j % HOST_BITS_PER_INT)))
2e0e2b76
CH
249 SET_HARD_REG_BIT (reg_class_contents[i], j);
250 }
251
54dac99e
RK
252 bcopy (initial_fixed_regs, fixed_regs, sizeof fixed_regs);
253 bcopy (initial_call_used_regs, call_used_regs, sizeof call_used_regs);
254 bzero (global_regs, sizeof global_regs);
255
910bc42d
R
256 /* Do any additional initialization regsets may need */
257 INIT_ONCE_REG_SET ();
f5d8c9f4
BS
258
259#ifdef REG_ALLOC_ORDER
260 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
261 inv_reg_alloc_order[reg_alloc_order[i]] = i;
262#endif
910bc42d
R
263}
264
265/* After switches have been processed, which perhaps alter
266 `fixed_regs' and `call_used_regs', convert them to HARD_REG_SETs. */
267
268static void
269init_reg_sets_1 ()
270{
271 register unsigned int i, j;
272
273 /* This macro allows the fixed or call-used registers
274 and the register classes to depend on target flags. */
275
276#ifdef CONDITIONAL_REGISTER_USAGE
277 CONDITIONAL_REGISTER_USAGE;
278#endif
279
54dac99e
RK
280 /* Compute number of hard regs in each class. */
281
4c9a05bc 282 bzero ((char *) reg_class_size, sizeof reg_class_size);
54dac99e
RK
283 for (i = 0; i < N_REG_CLASSES; i++)
284 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
285 if (TEST_HARD_REG_BIT (reg_class_contents[i], j))
286 reg_class_size[i]++;
287
288 /* Initialize the table of subunions.
289 reg_class_subunion[I][J] gets the largest-numbered reg-class
290 that is contained in the union of classes I and J. */
291
292 for (i = 0; i < N_REG_CLASSES; i++)
293 {
294 for (j = 0; j < N_REG_CLASSES; j++)
295 {
296#ifdef HARD_REG_SET
297 register /* Declare it register if it's a scalar. */
298#endif
299 HARD_REG_SET c;
300 register int k;
301
302 COPY_HARD_REG_SET (c, reg_class_contents[i]);
303 IOR_HARD_REG_SET (c, reg_class_contents[j]);
304 for (k = 0; k < N_REG_CLASSES; k++)
305 {
306 GO_IF_HARD_REG_SUBSET (reg_class_contents[k], c,
307 subclass1);
308 continue;
309
310 subclass1:
311 /* keep the largest subclass */ /* SPEE 900308 */
312 GO_IF_HARD_REG_SUBSET (reg_class_contents[k],
313 reg_class_contents[(int) reg_class_subunion[i][j]],
314 subclass2);
315 reg_class_subunion[i][j] = (enum reg_class) k;
316 subclass2:
317 ;
318 }
319 }
320 }
321
322 /* Initialize the table of superunions.
323 reg_class_superunion[I][J] gets the smallest-numbered reg-class
324 containing the union of classes I and J. */
325
326 for (i = 0; i < N_REG_CLASSES; i++)
327 {
328 for (j = 0; j < N_REG_CLASSES; j++)
329 {
330#ifdef HARD_REG_SET
331 register /* Declare it register if it's a scalar. */
332#endif
333 HARD_REG_SET c;
334 register int k;
335
336 COPY_HARD_REG_SET (c, reg_class_contents[i]);
337 IOR_HARD_REG_SET (c, reg_class_contents[j]);
338 for (k = 0; k < N_REG_CLASSES; k++)
339 GO_IF_HARD_REG_SUBSET (c, reg_class_contents[k], superclass);
340
341 superclass:
342 reg_class_superunion[i][j] = (enum reg_class) k;
343 }
344 }
345
346 /* Initialize the tables of subclasses and superclasses of each reg class.
347 First clear the whole table, then add the elements as they are found. */
348
349 for (i = 0; i < N_REG_CLASSES; i++)
350 {
351 for (j = 0; j < N_REG_CLASSES; j++)
352 {
353 reg_class_superclasses[i][j] = LIM_REG_CLASSES;
354 reg_class_subclasses[i][j] = LIM_REG_CLASSES;
355 }
356 }
357
358 for (i = 0; i < N_REG_CLASSES; i++)
359 {
360 if (i == (int) NO_REGS)
361 continue;
362
363 for (j = i + 1; j < N_REG_CLASSES; j++)
364 {
365 enum reg_class *p;
366
367 GO_IF_HARD_REG_SUBSET (reg_class_contents[i], reg_class_contents[j],
368 subclass);
369 continue;
370 subclass:
371 /* Reg class I is a subclass of J.
372 Add J to the table of superclasses of I. */
373 p = &reg_class_superclasses[i][0];
374 while (*p != LIM_REG_CLASSES) p++;
375 *p = (enum reg_class) j;
376 /* Add I to the table of superclasses of J. */
377 p = &reg_class_subclasses[j][0];
378 while (*p != LIM_REG_CLASSES) p++;
379 *p = (enum reg_class) i;
380 }
381 }
e4600702 382
54dac99e
RK
383 /* Initialize "constant" tables. */
384
385 CLEAR_HARD_REG_SET (fixed_reg_set);
386 CLEAR_HARD_REG_SET (call_used_reg_set);
387 CLEAR_HARD_REG_SET (call_fixed_reg_set);
388
389 bcopy (fixed_regs, call_fixed_regs, sizeof call_fixed_regs);
54dac99e
RK
390
391 n_non_fixed_regs = 0;
392
393 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
394 {
54dac99e
RK
395 if (fixed_regs[i])
396 SET_HARD_REG_BIT (fixed_reg_set, i);
397 else
398 n_non_fixed_regs++;
399
400 if (call_used_regs[i])
401 SET_HARD_REG_BIT (call_used_reg_set, i);
402 if (call_fixed_regs[i])
403 SET_HARD_REG_BIT (call_fixed_reg_set, i);
6cad67d2
JL
404 if (CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (i)))
405 SET_HARD_REG_BIT (losing_caller_save_reg_set, i);
54dac99e 406 }
acbce667
KR
407
408 /* Initialize the move cost table. Find every subset of each class
409 and take the maximum cost of moving any subset to any other. */
410
411 for (i = 0; i < N_REG_CLASSES; i++)
412 for (j = 0; j < N_REG_CLASSES; j++)
413 {
414 int cost = i == j ? 2 : REGISTER_MOVE_COST (i, j);
415 enum reg_class *p1, *p2;
416
417 for (p2 = &reg_class_subclasses[j][0]; *p2 != LIM_REG_CLASSES; p2++)
418 if (*p2 != i)
419 cost = MAX (cost, REGISTER_MOVE_COST (i, *p2));
420
421 for (p1 = &reg_class_subclasses[i][0]; *p1 != LIM_REG_CLASSES; p1++)
422 {
423 if (*p1 != j)
424 cost = MAX (cost, REGISTER_MOVE_COST (*p1, j));
425
426 for (p2 = &reg_class_subclasses[j][0];
427 *p2 != LIM_REG_CLASSES; p2++)
428 if (*p1 != *p2)
429 cost = MAX (cost, REGISTER_MOVE_COST (*p1, *p2));
430 }
431
432 move_cost[i][j] = cost;
433
434 if (reg_class_subset_p (i, j))
ee59f29b
JH
435 may_move_in_cost[i][j] = 0;
436 else
437 may_move_in_cost[i][j] = cost;
acbce667 438
ee59f29b
JH
439 if (reg_class_subset_p (j, i))
440 may_move_out_cost[i][j] = 0;
441 else
442 may_move_out_cost[i][j] = cost;
acbce667 443 }
c27c5281
DE
444}
445
446/* Compute the table of register modes.
447 These values are used to record death information for individual registers
448 (as opposed to a multi-register mode). */
ca4aac00 449
c27c5281
DE
450static void
451init_reg_modes ()
452{
453 register int i;
ca4aac00
DE
454
455 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
7f21d440
DE
456 {
457 reg_raw_mode[i] = choose_hard_reg_mode (i, 1);
458
066c2fea 459 /* If we couldn't find a valid mode, just use the previous mode.
7f21d440
DE
460 ??? One situation in which we need to do this is on the mips where
461 HARD_REGNO_NREGS (fpreg, [SD]Fmode) returns 2. Ideally we'd like
462 to use DF mode for the even registers and VOIDmode for the odd
9faa82d8 463 (for the cpu models where the odd ones are inaccessible). */
7f21d440 464 if (reg_raw_mode[i] == VOIDmode)
066c2fea 465 reg_raw_mode[i] = i == 0 ? word_mode : reg_raw_mode[i-1];
7f21d440 466 }
ca4aac00
DE
467}
468
c27c5281
DE
469/* Finish initializing the register sets and
470 initialize the register modes. */
471
472void
473init_regs ()
474{
475 /* This finishes what was started by init_reg_sets, but couldn't be done
476 until after register usage was specified. */
b93a436e 477 init_reg_sets_1 ();
c27c5281
DE
478
479 init_reg_modes ();
473fe49b
KR
480
481#ifdef HAVE_SECONDARY_RELOADS
482 {
483 /* Make some fake stack-frame MEM references for use in
484 memory_move_secondary_cost. */
485 int i;
486 for (i = 0; i < MAX_MACHINE_MODE; i++)
9ec36da5 487 top_of_stack[i] = gen_rtx_MEM (i, stack_pointer_rtx);
00d33cb2 488 ggc_add_rtx_root (top_of_stack, MAX_MACHINE_MODE);
473fe49b
KR
489 }
490#endif
c27c5281
DE
491}
492
cbd5b9a2 493#ifdef HAVE_SECONDARY_RELOADS
473fe49b 494
cbd5b9a2
KR
495/* Compute extra cost of moving registers to/from memory due to reloads.
496 Only needed if secondary reloads are required for memory moves. */
473fe49b 497
cbd5b9a2
KR
498int
499memory_move_secondary_cost (mode, class, in)
500 enum machine_mode mode;
501 enum reg_class class;
502 int in;
503{
504 enum reg_class altclass;
505 int partial_cost = 0;
cbd5b9a2 506 /* We need a memory reference to feed to SECONDARY... macros. */
272df862
KG
507 /* mem may be unused even if the SECONDARY_ macros are defined. */
508 rtx mem ATTRIBUTE_UNUSED = top_of_stack[(int) mode];
509
cbd5b9a2
KR
510
511 if (in)
473fe49b 512 {
321c0828 513#ifdef SECONDARY_INPUT_RELOAD_CLASS
473fe49b 514 altclass = SECONDARY_INPUT_RELOAD_CLASS (class, mode, mem);
321c0828 515#else
473fe49b 516 altclass = NO_REGS;
321c0828 517#endif
473fe49b 518 }
cbd5b9a2 519 else
473fe49b 520 {
321c0828 521#ifdef SECONDARY_OUTPUT_RELOAD_CLASS
473fe49b 522 altclass = SECONDARY_OUTPUT_RELOAD_CLASS (class, mode, mem);
321c0828 523#else
473fe49b 524 altclass = NO_REGS;
321c0828 525#endif
473fe49b
KR
526 }
527
cbd5b9a2
KR
528 if (altclass == NO_REGS)
529 return 0;
530
531 if (in)
532 partial_cost = REGISTER_MOVE_COST (altclass, class);
533 else
534 partial_cost = REGISTER_MOVE_COST (class, altclass);
535
536 if (class == altclass)
537 /* This isn't simply a copy-to-temporary situation. Can't guess
538 what it is, so MEMORY_MOVE_COST really ought not to be calling
539 here in that case.
540
541 I'm tempted to put in an abort here, but returning this will
542 probably only give poor estimates, which is what we would've
543 had before this code anyways. */
544 return partial_cost;
545
546 /* Check if the secondary reload register will also need a
547 secondary reload. */
548 return memory_move_secondary_cost (mode, altclass, in) + partial_cost;
549}
550#endif
551
ca4aac00
DE
552/* Return a machine mode that is legitimate for hard reg REGNO and large
553 enough to save nregs. If we can't find one, return VOIDmode. */
554
555enum machine_mode
556choose_hard_reg_mode (regno, nregs)
770ae6cc
RK
557 unsigned int regno ATTRIBUTE_UNUSED;
558 unsigned int nregs;
ca4aac00
DE
559{
560 enum machine_mode found_mode = VOIDmode, mode;
561
562 /* We first look for the largest integer mode that can be validly
563 held in REGNO. If none, we look for the largest floating-point mode.
564 If we still didn't find a valid mode, try CCmode. */
565
566 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
567 mode != VOIDmode;
568 mode = GET_MODE_WIDER_MODE (mode))
569 if (HARD_REGNO_NREGS (regno, mode) == nregs
570 && HARD_REGNO_MODE_OK (regno, mode))
571 found_mode = mode;
572
573 if (found_mode != VOIDmode)
574 return found_mode;
575
576 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
577 mode != VOIDmode;
578 mode = GET_MODE_WIDER_MODE (mode))
579 if (HARD_REGNO_NREGS (regno, mode) == nregs
580 && HARD_REGNO_MODE_OK (regno, mode))
581 found_mode = mode;
582
583 if (found_mode != VOIDmode)
584 return found_mode;
585
586 if (HARD_REGNO_NREGS (regno, CCmode) == nregs
587 && HARD_REGNO_MODE_OK (regno, CCmode))
588 return CCmode;
589
590 /* We can't find a mode valid for this register. */
591 return VOIDmode;
54dac99e
RK
592}
593
594/* Specify the usage characteristics of the register named NAME.
595 It should be a fixed register if FIXED and a
596 call-used register if CALL_USED. */
597
598void
599fix_register (name, fixed, call_used)
ec0ce6e2 600 const char *name;
54dac99e
RK
601 int fixed, call_used;
602{
603 int i;
604
605 /* Decode the name and update the primary form of
606 the register info. */
607
e5c90c23
TW
608 if ((i = decode_reg_name (name)) >= 0)
609 {
cb2fdc84
GRK
610 if ((i == STACK_POINTER_REGNUM
611#ifdef HARD_FRAME_POINTER_REGNUM
612 || i == HARD_FRAME_POINTER_REGNUM
613#else
614 || i == FRAME_POINTER_REGNUM
615#endif
616 )
617 && (fixed == 0 || call_used == 0))
618 {
6f7d635c 619 static const char * const what_option[2][2] = {
7f7f8214
KG
620 { "call-saved", "call-used" },
621 { "no-such-option", "fixed" }};
cb2fdc84
GRK
622
623 error ("can't use '%s' as a %s register", name,
624 what_option[fixed][call_used]);
625 }
626 else
627 {
628 fixed_regs[i] = fixed;
629 call_used_regs[i] = call_used;
630 }
e5c90c23
TW
631 }
632 else
54dac99e
RK
633 {
634 warning ("unknown register name: %s", name);
54dac99e
RK
635 }
636}
614f68e2
RK
637
638/* Mark register number I as global. */
639
640void
641globalize_reg (i)
642 int i;
643{
c07c7c9d 644 if (fixed_regs[i] == 0 && no_global_reg_vars)
6c85df69
AH
645 error ("global register variable follows a function definition");
646
614f68e2
RK
647 if (global_regs[i])
648 {
649 warning ("register used for two global register variables");
650 return;
651 }
652
653 if (call_used_regs[i] && ! fixed_regs[i])
654 warning ("call-clobbered register used for global register variable");
655
656 global_regs[i] = 1;
657
658 /* If already fixed, nothing else to do. */
659 if (fixed_regs[i])
660 return;
661
662 fixed_regs[i] = call_used_regs[i] = call_fixed_regs[i] = 1;
663 n_non_fixed_regs--;
664
665 SET_HARD_REG_BIT (fixed_reg_set, i);
666 SET_HARD_REG_BIT (call_used_reg_set, i);
667 SET_HARD_REG_BIT (call_fixed_reg_set, i);
668}
54dac99e
RK
669\f
670/* Now the data and code for the `regclass' pass, which happens
671 just before local-alloc. */
672
e4600702
RK
673/* The `costs' struct records the cost of using a hard register of each class
674 and of using memory for each pseudo. We use this data to set up
675 register class preferences. */
54dac99e 676
e4600702 677struct costs
54dac99e 678{
e4600702
RK
679 int cost[N_REG_CLASSES];
680 int mem_cost;
54dac99e
RK
681};
682
9ffc5a70
JH
683/* Structure used to record preferrences of given pseudo. */
684struct reg_pref
685{
686 /* (enum reg_class) prefclass is the preferred class. */
687 char prefclass;
688
689 /* altclass is a register class that we should use for allocating
690 pseudo if no register in the preferred class is available.
691 If no register in this class is available, memory is preferred.
692
693 It might appear to be more general to have a bitmask of classes here,
694 but since it is recommended that there be a class corresponding to the
695 union of most major pair of classes, that generality is not required. */
696 char altclass;
697};
698
e4600702
RK
699/* Record the cost of each class for each pseudo. */
700
701static struct costs *costs;
702
61719ba7
BS
703/* Initialized once, and used to initialize cost values for each insn. */
704
705static struct costs init_cost;
706
9ffc5a70 707/* Record preferrences of each pseudo.
54dac99e
RK
708 This is available after `regclass' is run. */
709
9ffc5a70 710static struct reg_pref *reg_pref;
54d23420 711
9ffc5a70 712/* Allocated buffers for reg_pref. */
54dac99e 713
9ffc5a70 714static struct reg_pref *reg_pref_buffer;
6feacd09 715
54d23420
RK
716/* Account for the fact that insns within a loop are executed very commonly,
717 but don't keep doing this as loops go too deep. */
718
719static int loop_cost;
720
13536812
KG
721static rtx scan_one_insn PARAMS ((rtx, int));
722static void record_operand_costs PARAMS ((rtx, struct costs *, struct reg_pref *));
723static void dump_regclass PARAMS ((FILE *));
724static void record_reg_classes PARAMS ((int, int, rtx *, enum machine_mode *,
f741a71c
JH
725 char *, const char **, rtx,
726 struct costs *, struct reg_pref *));
13536812 727static int copy_cost PARAMS ((rtx, enum machine_mode,
08d95f91 728 enum reg_class, int));
13536812 729static void record_address_regs PARAMS ((rtx, enum reg_class, int));
1d300e19 730#ifdef FORBIDDEN_INC_DEC_CLASSES
13536812 731static int auto_inc_dec_reg_p PARAMS ((rtx, enum machine_mode));
1d300e19 732#endif
770ae6cc 733static void reg_scan_mark_refs PARAMS ((rtx, rtx, int, unsigned int));
54dac99e
RK
734
735/* Return the reg_class in which pseudo reg number REGNO is best allocated.
736 This function is sometimes called before the info has been computed.
737 When that happens, just return GENERAL_REGS, which is innocuous. */
738
739enum reg_class
740reg_preferred_class (regno)
741 int regno;
742{
9ffc5a70 743 if (reg_pref == 0)
54dac99e 744 return GENERAL_REGS;
9ffc5a70 745 return (enum reg_class) reg_pref[regno].prefclass;
54dac99e
RK
746}
747
e4600702
RK
748enum reg_class
749reg_alternate_class (regno)
b729186a 750 int regno;
54dac99e 751{
9ffc5a70 752 if (reg_pref == 0)
e4600702
RK
753 return ALL_REGS;
754
9ffc5a70 755 return (enum reg_class) reg_pref[regno].altclass;
54dac99e
RK
756}
757
61719ba7 758/* Initialize some global data for this pass. */
54dac99e
RK
759
760void
761regclass_init ()
762{
61719ba7
BS
763 int i;
764
765 init_cost.mem_cost = 10000;
766 for (i = 0; i < N_REG_CLASSES; i++)
767 init_cost.cost[i] = 10000;
768
769 /* This prevents dump_flow_info from losing if called
770 before regclass is run. */
9ffc5a70 771 reg_pref = NULL;
6c85df69 772
c07c7c9d 773 /* No more global register variables may be declared. */
6c85df69 774 no_global_reg_vars = 1;
54dac99e 775}
246fd41f
JH
776\f
777/* Dump register costs. */
915b80ed 778static void
246fd41f
JH
779dump_regclass (dump)
780 FILE *dump;
781{
782 static const char *const reg_class_names[] = REG_CLASS_NAMES;
783 int i;
784 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
785 {
786 enum reg_class class;
787 if (REG_N_REFS (i))
788 {
f741a71c 789 fprintf (dump, " Register %i costs:", i);
246fd41f
JH
790 for (class = 0; class < N_REG_CLASSES; class++)
791 fprintf (dump, " %s:%i", reg_class_names[(int) class],
792 costs[i].cost[class]);
f741a71c 793 fprintf (dump, " MEM:%i\n", costs[i].mem_cost);
246fd41f
JH
794 }
795 }
796}
f741a71c
JH
797\f
798
799/* Calculate the costs of insn operands. */
800
801static void
802record_operand_costs (insn, op_costs, reg_pref)
803 rtx insn;
804 struct costs *op_costs;
805 struct reg_pref *reg_pref;
806{
807 const char *constraints[MAX_RECOG_OPERANDS];
808 enum machine_mode modes[MAX_RECOG_OPERANDS];
809 char subreg_changes_size[MAX_RECOG_OPERANDS];
810 int i;
811
812 for (i = 0; i < recog_data.n_operands; i++)
813 {
814 constraints[i] = recog_data.constraints[i];
815 modes[i] = recog_data.operand_mode[i];
816 }
817 memset (subreg_changes_size, 0, sizeof (subreg_changes_size));
818
819 /* If we get here, we are set up to record the costs of all the
820 operands for this insn. Start by initializing the costs.
821 Then handle any address registers. Finally record the desired
822 classes for any pseudos, doing it twice if some pair of
823 operands are commutative. */
824
825 for (i = 0; i < recog_data.n_operands; i++)
826 {
827 op_costs[i] = init_cost;
828
829 if (GET_CODE (recog_data.operand[i]) == SUBREG)
830 {
831 rtx inner = SUBREG_REG (recog_data.operand[i]);
832 if (GET_MODE_SIZE (modes[i]) != GET_MODE_SIZE (GET_MODE (inner)))
833 subreg_changes_size[i] = 1;
834 recog_data.operand[i] = inner;
835 }
836
837 if (GET_CODE (recog_data.operand[i]) == MEM)
838 record_address_regs (XEXP (recog_data.operand[i], 0),
839 BASE_REG_CLASS, loop_cost * 2);
840 else if (constraints[i][0] == 'p')
841 record_address_regs (recog_data.operand[i],
842 BASE_REG_CLASS, loop_cost * 2);
843 }
844
845 /* Check for commutative in a separate loop so everything will
846 have been initialized. We must do this even if one operand
847 is a constant--see addsi3 in m68k.md. */
848
849 for (i = 0; i < (int) recog_data.n_operands - 1; i++)
850 if (constraints[i][0] == '%')
851 {
852 const char *xconstraints[MAX_RECOG_OPERANDS];
853 int j;
246fd41f 854
f741a71c
JH
855 /* Handle commutative operands by swapping the constraints.
856 We assume the modes are the same. */
857
858 for (j = 0; j < recog_data.n_operands; j++)
859 xconstraints[j] = constraints[j];
860
861 xconstraints[i] = constraints[i+1];
862 xconstraints[i+1] = constraints[i];
863 record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
864 recog_data.operand, modes, subreg_changes_size,
865 xconstraints, insn, op_costs, reg_pref);
866 }
867
868 record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
869 recog_data.operand, modes, subreg_changes_size,
870 constraints, insn, op_costs, reg_pref);
871}
54dac99e 872\f
61719ba7
BS
873/* Subroutine of regclass, processes one insn INSN. Scan it and record each
874 time it would save code to put a certain register in a certain class.
875 PASS, when nonzero, inhibits some optimizations which need only be done
876 once.
877 Return the last insn processed, so that the scan can be continued from
878 there. */
879
880static rtx
881scan_one_insn (insn, pass)
882 rtx insn;
883 int pass;
884{
885 enum rtx_code code = GET_CODE (insn);
886 enum rtx_code pat_code;
0eadeb15 887 rtx set, note;
61719ba7 888 int i, j;
f741a71c 889 struct costs op_costs[MAX_RECOG_OPERANDS];
61719ba7 890
61719ba7
BS
891 if (GET_RTX_CLASS (code) != 'i')
892 return insn;
893
894 pat_code = GET_CODE (PATTERN (insn));
895 if (pat_code == USE
896 || pat_code == CLOBBER
897 || pat_code == ASM_INPUT
898 || pat_code == ADDR_VEC
899 || pat_code == ADDR_DIFF_VEC)
900 return insn;
901
0eadeb15
BS
902 set = single_set (insn);
903 extract_insn (insn);
904
0eadeb15
BS
905 /* If this insn loads a parameter from its stack slot, then
906 it represents a savings, rather than a cost, if the
907 parameter is stored in memory. Record this fact. */
61719ba7 908
0eadeb15
BS
909 if (set != 0 && GET_CODE (SET_DEST (set)) == REG
910 && GET_CODE (SET_SRC (set)) == MEM
911 && (note = find_reg_note (insn, REG_EQUIV,
912 NULL_RTX)) != 0
913 && GET_CODE (XEXP (note, 0)) == MEM)
914 {
915 costs[REGNO (SET_DEST (set))].mem_cost
916 -= (MEMORY_MOVE_COST (GET_MODE (SET_DEST (set)),
917 GENERAL_REGS, 1)
918 * loop_cost);
919 record_address_regs (XEXP (SET_SRC (set), 0),
920 BASE_REG_CLASS, loop_cost * 2);
921 return insn;
922 }
61719ba7 923
0eadeb15
BS
924 /* Improve handling of two-address insns such as
925 (set X (ashift CONST Y)) where CONST must be made to
926 match X. Change it into two insns: (set X CONST)
927 (set X (ashift X Y)). If we left this for reloading, it
928 would probably get three insns because X and Y might go
929 in the same place. This prevents X and Y from receiving
930 the same hard reg.
931
932 We can only do this if the modes of operands 0 and 1
933 (which might not be the same) are tieable and we only need
934 do this during our first pass. */
935
936 if (pass == 0 && optimize
1ccbefce
RH
937 && recog_data.n_operands >= 3
938 && recog_data.constraints[1][0] == '0'
939 && recog_data.constraints[1][1] == 0
940 && CONSTANT_P (recog_data.operand[1])
941 && ! rtx_equal_p (recog_data.operand[0], recog_data.operand[1])
942 && ! rtx_equal_p (recog_data.operand[0], recog_data.operand[2])
943 && GET_CODE (recog_data.operand[0]) == REG
944 && MODES_TIEABLE_P (GET_MODE (recog_data.operand[0]),
945 recog_data.operand_mode[1]))
0eadeb15
BS
946 {
947 rtx previnsn = prev_real_insn (insn);
948 rtx dest
1ccbefce
RH
949 = gen_lowpart (recog_data.operand_mode[1],
950 recog_data.operand[0]);
0eadeb15 951 rtx newinsn
1ccbefce 952 = emit_insn_before (gen_move_insn (dest, recog_data.operand[1]), insn);
61719ba7 953
0eadeb15
BS
954 /* If this insn was the start of a basic block,
955 include the new insn in that block.
956 We need not check for code_label here;
957 while a basic block can start with a code_label,
958 INSN could not be at the beginning of that block. */
959 if (previnsn == 0 || GET_CODE (previnsn) == JUMP_INSN)
61719ba7 960 {
0eadeb15
BS
961 int b;
962 for (b = 0; b < n_basic_blocks; b++)
3b413743
RH
963 if (insn == BLOCK_HEAD (b))
964 BLOCK_HEAD (b) = newinsn;
61719ba7
BS
965 }
966
0eadeb15 967 /* This makes one more setting of new insns's dest. */
1ccbefce 968 REG_N_SETS (REGNO (recog_data.operand[0]))++;
61719ba7 969
1ccbefce
RH
970 *recog_data.operand_loc[1] = recog_data.operand[0];
971 for (i = recog_data.n_dups - 1; i >= 0; i--)
972 if (recog_data.dup_num[i] == 1)
973 *recog_data.dup_loc[i] = recog_data.operand[0];
61719ba7 974
0eadeb15 975 return PREV_INSN (newinsn);
61719ba7
BS
976 }
977
4963c995 978 record_operand_costs (insn, op_costs, reg_pref);
61719ba7
BS
979
980 /* Now add the cost for each operand to the total costs for
981 its register. */
982
1ccbefce
RH
983 for (i = 0; i < recog_data.n_operands; i++)
984 if (GET_CODE (recog_data.operand[i]) == REG
985 && REGNO (recog_data.operand[i]) >= FIRST_PSEUDO_REGISTER)
61719ba7 986 {
1ccbefce 987 int regno = REGNO (recog_data.operand[i]);
61719ba7
BS
988 struct costs *p = &costs[regno], *q = &op_costs[i];
989
990 p->mem_cost += q->mem_cost * loop_cost;
991 for (j = 0; j < N_REG_CLASSES; j++)
992 p->cost[j] += q->cost[j] * loop_cost;
993 }
994
995 return insn;
996}
997
54dac99e
RK
998/* This is a pass of the compiler that scans all instructions
999 and calculates the preferred class for each pseudo-register.
1000 This information can be accessed later by calling `reg_preferred_class'.
1001 This pass comes just before local register allocation. */
1002
1003void
246fd41f 1004regclass (f, nregs, dump)
54dac99e
RK
1005 rtx f;
1006 int nregs;
246fd41f 1007 FILE *dump;
54dac99e 1008{
54dac99e 1009 register rtx insn;
61719ba7 1010 register int i;
e4600702 1011 int pass;
54dac99e
RK
1012
1013 init_recog ();
1014
56a65848 1015 costs = (struct costs *) xmalloc (nregs * sizeof (struct costs));
533d0835
RK
1016
1017#ifdef FORBIDDEN_INC_DEC_CLASSES
1018
4da896b2 1019 in_inc_dec = (char *) xmalloc (nregs);
533d0835
RK
1020
1021 /* Initialize information about which register classes can be used for
1022 pseudos that are auto-incremented or auto-decremented. It would
1023 seem better to put this in init_reg_sets, but we need to be able
1024 to allocate rtx, which we can't do that early. */
1025
1026 for (i = 0; i < N_REG_CLASSES; i++)
1027 {
38a448ca 1028 rtx r = gen_rtx_REG (VOIDmode, 0);
533d0835 1029 enum machine_mode m;
8c368ee2 1030 register int j;
533d0835
RK
1031
1032 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
1033 if (TEST_HARD_REG_BIT (reg_class_contents[i], j))
1034 {
1035 REGNO (r) = j;
1036
1037 for (m = VOIDmode; (int) m < (int) MAX_MACHINE_MODE;
808043ed 1038 m = (enum machine_mode) ((int) m + 1))
533d0835
RK
1039 if (HARD_REGNO_MODE_OK (j, m))
1040 {
1041 PUT_MODE (r, m);
08d95f91
RK
1042
1043 /* If a register is not directly suitable for an
1044 auto-increment or decrement addressing mode and
1045 requires secondary reloads, disallow its class from
1046 being used in such addresses. */
1047
1048 if ((0
041d7180
JL
1049#ifdef SECONDARY_RELOAD_CLASS
1050 || (SECONDARY_RELOAD_CLASS (BASE_REG_CLASS, m, r)
1051 != NO_REGS)
1052#else
533d0835 1053#ifdef SECONDARY_INPUT_RELOAD_CLASS
08d95f91
RK
1054 || (SECONDARY_INPUT_RELOAD_CLASS (BASE_REG_CLASS, m, r)
1055 != NO_REGS)
533d0835
RK
1056#endif
1057#ifdef SECONDARY_OUTPUT_RELOAD_CLASS
08d95f91
RK
1058 || (SECONDARY_OUTPUT_RELOAD_CLASS (BASE_REG_CLASS, m, r)
1059 != NO_REGS)
041d7180 1060#endif
533d0835 1061#endif
08d95f91
RK
1062 )
1063 && ! auto_inc_dec_reg_p (r, m))
533d0835
RK
1064 forbidden_inc_dec_class[i] = 1;
1065 }
1066 }
1067 }
1068#endif /* FORBIDDEN_INC_DEC_CLASSES */
1069
e4600702
RK
1070 /* Normally we scan the insns once and determine the best class to use for
1071 each register. However, if -fexpensive_optimizations are on, we do so
1072 twice, the second time using the tentative best classes to guide the
1073 selection. */
54dac99e 1074
e4600702
RK
1075 for (pass = 0; pass <= flag_expensive_optimizations; pass++)
1076 {
954d8e99 1077 int index;
f741a71c
JH
1078
1079 if (dump)
1080 fprintf (dump, "\n\nPass %i\n\n",pass);
e4600702 1081 /* Zero out our accumulation of the cost of each class for each reg. */
54dac99e 1082
4c9a05bc 1083 bzero ((char *) costs, nregs * sizeof (struct costs));
54dac99e 1084
533d0835
RK
1085#ifdef FORBIDDEN_INC_DEC_CLASSES
1086 bzero (in_inc_dec, nregs);
1087#endif
1088
e4600702
RK
1089 /* Scan the instructions and record each time it would
1090 save code to put a certain register in a certain class. */
1091
1f01879e 1092 if (!optimize)
54dac99e 1093 {
1f01879e
JH
1094 loop_cost = 1;
1095 for (insn = f; insn; insn = NEXT_INSN (insn))
1096 insn = scan_one_insn (insn, pass);
54dac99e 1097 }
1f01879e
JH
1098 else
1099 for (index = 0; index < n_basic_blocks; index++)
1100 {
1101 basic_block bb = BASIC_BLOCK (index);
1102
1103 /* Show that an insn inside a loop is likely to be executed three
9b15c17f
RH
1104 times more than insns outside a loop. This is much more
1105 aggressive than the assumptions made elsewhere and is being
1106 tried as an experiment. */
1f01879e
JH
1107 if (optimize_size)
1108 loop_cost = 1;
1109 else
9b15c17f 1110 loop_cost = 1 << (2 * MIN (bb->loop_depth, 5));
1f01879e
JH
1111 for (insn = bb->head; ; insn = NEXT_INSN (insn))
1112 {
1113 insn = scan_one_insn (insn, pass);
1114 if (insn == bb->end)
1115 break;
1116 }
1117 }
61719ba7 1118
e4600702
RK
1119 /* Now for each register look at how desirable each class is
1120 and find which class is preferred. Store that in
9ffc5a70 1121 `prefclass'. Record in `altclass' the largest register
e4600702 1122 class any of whose registers is better than memory. */
54dac99e 1123
e4600702 1124 if (pass == 0)
9ffc5a70 1125 reg_pref = reg_pref_buffer;
54dac99e 1126
f741a71c
JH
1127 if (dump)
1128 {
1129 dump_regclass (dump);
4963c995 1130 fprintf (dump,"\n");
f741a71c 1131 }
e4600702 1132 for (i = FIRST_PSEUDO_REGISTER; i < nregs; i++)
54dac99e 1133 {
ca3c6eae 1134 register int best_cost = (1 << (HOST_BITS_PER_INT - 2)) - 1;
e4600702
RK
1135 enum reg_class best = ALL_REGS, alt = NO_REGS;
1136 /* This is an enum reg_class, but we call it an int
1137 to save lots of casts. */
1138 register int class;
1139 register struct costs *p = &costs[i];
1140
64615302
JH
1141 /* In non-optimizing compilation REG_N_REFS is not initialized
1142 yet. */
1143 if (optimize && !REG_N_REFS (i))
f741a71c
JH
1144 continue;
1145
e4600702 1146 for (class = (int) ALL_REGS - 1; class > 0; class--)
54dac99e 1147 {
533d0835
RK
1148 /* Ignore classes that are too small for this operand or
1149 invalid for a operand that was auto-incremented. */
e4600702 1150 if (CLASS_MAX_NREGS (class, PSEUDO_REGNO_MODE (i))
533d0835
RK
1151 > reg_class_size[class]
1152#ifdef FORBIDDEN_INC_DEC_CLASSES
1153 || (in_inc_dec[i] && forbidden_inc_dec_class[class])
1154#endif
1155 )
e4600702
RK
1156 ;
1157 else if (p->cost[class] < best_cost)
1158 {
1159 best_cost = p->cost[class];
1160 best = (enum reg_class) class;
1161 }
1162 else if (p->cost[class] == best_cost)
1163 best = reg_class_subunion[(int)best][class];
54dac99e 1164 }
54dac99e 1165
e4600702
RK
1166 /* Record the alternate register class; i.e., a class for which
1167 every register in it is better than using memory. If adding a
1168 class would make a smaller class (i.e., no union of just those
1169 classes exists), skip that class. The major unions of classes
1170 should be provided as a register class. Don't do this if we
1171 will be doing it again later. */
1172
f741a71c 1173 if ((pass == 1 || dump) || ! flag_expensive_optimizations)
e4600702
RK
1174 for (class = 0; class < N_REG_CLASSES; class++)
1175 if (p->cost[class] < p->mem_cost
77edb222 1176 && (reg_class_size[(int) reg_class_subunion[(int) alt][class]]
533d0835
RK
1177 > reg_class_size[(int) alt])
1178#ifdef FORBIDDEN_INC_DEC_CLASSES
1179 && ! (in_inc_dec[i] && forbidden_inc_dec_class[class])
1180#endif
1181 )
e4600702
RK
1182 alt = reg_class_subunion[(int) alt][class];
1183
1184 /* If we don't add any classes, nothing to try. */
1185 if (alt == best)
995d54dd 1186 alt = NO_REGS;
e4600702 1187
f741a71c
JH
1188 if (dump
1189 && (reg_pref[i].prefclass != (int) best
1190 || reg_pref[i].altclass != (int) alt))
1191 {
1192 static const char *const reg_class_names[] = REG_CLASS_NAMES;
4963c995 1193 fprintf (dump, " Register %i", i);
f741a71c
JH
1194 if (alt == ALL_REGS || best == ALL_REGS)
1195 fprintf (dump, " pref %s\n", reg_class_names[(int) best]);
1196 else if (alt == NO_REGS)
1197 fprintf (dump, " pref %s or none\n", reg_class_names[(int) best]);
1198 else
1199 fprintf (dump, " pref %s, else %s\n",
1200 reg_class_names[(int) best],
1201 reg_class_names[(int) alt]);
1202 }
1203
e4600702 1204 /* We cast to (int) because (char) hits bugs in some compilers. */
9ffc5a70
JH
1205 reg_pref[i].prefclass = (int) best;
1206 reg_pref[i].altclass = (int) alt;
e4600702 1207 }
54dac99e 1208 }
56a65848 1209
4da896b2
MM
1210#ifdef FORBIDDEN_INC_DEC_CLASSES
1211 free (in_inc_dec);
1212#endif
56a65848 1213 free (costs);
54dac99e
RK
1214}
1215\f
e4600702
RK
1216/* Record the cost of using memory or registers of various classes for
1217 the operands in INSN.
54dac99e 1218
e4600702 1219 N_ALTS is the number of alternatives.
54dac99e 1220
e4600702
RK
1221 N_OPS is the number of operands.
1222
1223 OPS is an array of the operands.
1224
1225 MODES are the modes of the operands, in case any are VOIDmode.
1226
1227 CONSTRAINTS are the constraints to use for the operands. This array
1228 is modified by this procedure.
1229
1230 This procedure works alternative by alternative. For each alternative
1231 we assume that we will be able to allocate all pseudos to their ideal
1232 register class and calculate the cost of using that alternative. Then
1233 we compute for each operand that is a pseudo-register, the cost of
1234 having the pseudo allocated to each register class and using it in that
1235 alternative. To this cost is added the cost of the alternative.
1236
1237 The cost of each class for this insn is its lowest cost among all the
1238 alternatives. */
1239
1240static void
7e7b6c19 1241record_reg_classes (n_alts, n_ops, ops, modes, subreg_changes_size,
f741a71c 1242 constraints, insn, op_costs, reg_pref)
e4600702
RK
1243 int n_alts;
1244 int n_ops;
1245 rtx *ops;
1246 enum machine_mode *modes;
272df862 1247 char *subreg_changes_size ATTRIBUTE_UNUSED;
9b3142b3 1248 const char **constraints;
e4600702 1249 rtx insn;
f741a71c
JH
1250 struct costs *op_costs;
1251 struct reg_pref *reg_pref;
54dac99e 1252{
e4600702 1253 int alt;
e4600702 1254 int i, j;
ec2d92af 1255 rtx set;
e4600702 1256
e4600702
RK
1257 /* Process each alternative, each time minimizing an operand's cost with
1258 the cost for each operand in that alternative. */
54dac99e 1259
e4600702 1260 for (alt = 0; alt < n_alts; alt++)
54dac99e 1261 {
e4600702
RK
1262 struct costs this_op_costs[MAX_RECOG_OPERANDS];
1263 int alt_fail = 0;
1264 int alt_cost = 0;
1265 enum reg_class classes[MAX_RECOG_OPERANDS];
da2c0219 1266 int allows_mem[MAX_RECOG_OPERANDS];
e4600702 1267 int class;
54dac99e 1268
e4600702
RK
1269 for (i = 0; i < n_ops; i++)
1270 {
9b3142b3 1271 const char *p = constraints[i];
e4600702
RK
1272 rtx op = ops[i];
1273 enum machine_mode mode = modes[i];
94e6f783 1274 int allows_addr = 0;
e4600702 1275 int win = 0;
e51712db 1276 unsigned char c;
54dac99e 1277
7405d9a1
DE
1278 /* Initially show we know nothing about the register class. */
1279 classes[i] = NO_REGS;
da2c0219 1280 allows_mem[i] = 0;
7405d9a1 1281
e4600702
RK
1282 /* If this operand has no constraints at all, we can conclude
1283 nothing about it since anything is valid. */
54dac99e 1284
e4600702
RK
1285 if (*p == 0)
1286 {
1287 if (GET_CODE (op) == REG && REGNO (op) >= FIRST_PSEUDO_REGISTER)
1288 bzero ((char *) &this_op_costs[i], sizeof this_op_costs[i]);
54dac99e 1289
e4600702
RK
1290 continue;
1291 }
54dac99e 1292
7405d9a1
DE
1293 /* If this alternative is only relevant when this operand
1294 matches a previous operand, we do different things depending
1295 on whether this operand is a pseudo-reg or not. We must process
1296 any modifiers for the operand before we can make this test. */
1297
8c368ee2 1298 while (*p == '%' || *p == '=' || *p == '+' || *p == '&')
0eadeb15 1299 p++;
8c368ee2 1300
e4600702
RK
1301 if (p[0] >= '0' && p[0] <= '0' + i && (p[1] == ',' || p[1] == 0))
1302 {
da2c0219
RK
1303 /* Copy class and whether memory is allowed from the matching
1304 alternative. Then perform any needed cost computations
1305 and/or adjustments. */
e4600702
RK
1306 j = p[0] - '0';
1307 classes[i] = classes[j];
da2c0219 1308 allows_mem[i] = allows_mem[j];
e4600702
RK
1309
1310 if (GET_CODE (op) != REG || REGNO (op) < FIRST_PSEUDO_REGISTER)
1311 {
1312 /* If this matches the other operand, we have no added
dc903608 1313 cost and we win. */
e4600702 1314 if (rtx_equal_p (ops[j], op))
dc903608 1315 win = 1;
e4600702 1316
77e67eac
RK
1317 /* If we can put the other operand into a register, add to
1318 the cost of this alternative the cost to copy this
1319 operand to the register used for the other operand. */
e4600702 1320
dc903608 1321 else if (classes[j] != NO_REGS)
77e67eac 1322 alt_cost += copy_cost (op, mode, classes[j], 1), win = 1;
e4600702 1323 }
07d8ca2d
RS
1324 else if (GET_CODE (ops[j]) != REG
1325 || REGNO (ops[j]) < FIRST_PSEUDO_REGISTER)
1326 {
1327 /* This op is a pseudo but the one it matches is not. */
1328
1329 /* If we can't put the other operand into a register, this
1330 alternative can't be used. */
1331
1332 if (classes[j] == NO_REGS)
1333 alt_fail = 1;
e4600702 1334
07d8ca2d
RS
1335 /* Otherwise, add to the cost of this alternative the cost
1336 to copy the other operand to the register used for this
1337 operand. */
1338
1339 else
1340 alt_cost += copy_cost (ops[j], mode, classes[j], 1);
1341 }
e4600702
RK
1342 else
1343 {
da2c0219
RK
1344 /* The costs of this operand are not the same as the other
1345 operand since move costs are not symmetric. Moreover,
1346 if we cannot tie them, this alternative needs to do a
1347 copy, which is one instruction. */
1348
1349 struct costs *pp = &this_op_costs[i];
1350
1351 for (class = 0; class < N_REG_CLASSES; class++)
1352 pp->cost[class]
d5e2075d
JH
1353 = ((recog_data.operand_type[i] != OP_OUT
1354 ? may_move_in_cost[class][(int) classes[i]]
1355 : 0)
1356 + (recog_data.operand_type[i] != OP_IN
1357 ? may_move_out_cost[(int) classes[i]][class]
1358 : 0));
da2c0219
RK
1359
1360 /* If the alternative actually allows memory, make things
1361 a bit cheaper since we won't need an extra insn to
1362 load it. */
1363
1364 pp->mem_cost
d5e2075d
JH
1365 = ((recog_data.operand_type[i] != OP_IN
1366 ? MEMORY_MOVE_COST (mode, classes[i], 0)
1367 : 0)
1368 + (recog_data.operand_type[i] != OP_OUT
1369 ? MEMORY_MOVE_COST (mode, classes[i], 1)
1370 : 0) - allows_mem[i]);
da2c0219
RK
1371
1372 /* If we have assigned a class to this register in our
1373 first pass, add a cost to this alternative corresponding
1374 to what we would add if this register were not in the
1375 appropriate class. */
1376
9ffc5a70 1377 if (reg_pref)
da2c0219 1378 alt_cost
9ffc5a70 1379 += (may_move_in_cost[(unsigned char) reg_pref[REGNO (op)].prefclass]
da2c0219 1380 [(int) classes[i]]);
e4600702 1381
37747c82
RK
1382 if (REGNO (ops[i]) != REGNO (ops[j])
1383 && ! find_reg_note (insn, REG_DEAD, op))
1384 alt_cost += 2;
e4600702 1385
347099d6 1386 /* This is in place of ordinary cost computation
1ddb342a
RK
1387 for this operand, so skip to the end of the
1388 alternative (should be just one character). */
1389 while (*p && *p++ != ',')
1390 ;
1391
1392 constraints[i] = p;
347099d6
RS
1393 continue;
1394 }
e4600702
RK
1395 }
1396
1397 /* Scan all the constraint letters. See if the operand matches
1398 any of the constraints. Collect the valid register classes
1399 and see if this operand accepts memory. */
1400
e4600702
RK
1401 while (*p && (c = *p++) != ',')
1402 switch (c)
1403 {
e4600702
RK
1404 case '*':
1405 /* Ignore the next letter for this pass. */
1406 p++;
1407 break;
1408
812f2051
R
1409 case '?':
1410 alt_cost += 2;
8c368ee2 1411 case '!': case '#': case '&':
e4600702 1412 case '0': case '1': case '2': case '3': case '4':
8c368ee2 1413 case '5': case '6': case '7': case '8': case '9':
94e6f783
DE
1414 break;
1415
e4600702 1416 case 'p':
94e6f783
DE
1417 allows_addr = 1;
1418 win = address_operand (op, GET_MODE (op));
46f40127
JL
1419 /* We know this operand is an address, so we want it to be
1420 allocated to a register that can be the base of an
1421 address, ie BASE_REG_CLASS. */
1422 classes[i]
1423 = reg_class_subunion[(int) classes[i]]
1424 [(int) BASE_REG_CLASS];
e4600702
RK
1425 break;
1426
1427 case 'm': case 'o': case 'V':
ac2a9454 1428 /* It doesn't seem worth distinguishing between offsettable
e4600702 1429 and non-offsettable addresses here. */
da2c0219 1430 allows_mem[i] = 1;
e4600702
RK
1431 if (GET_CODE (op) == MEM)
1432 win = 1;
1433 break;
1434
1435 case '<':
1436 if (GET_CODE (op) == MEM
1437 && (GET_CODE (XEXP (op, 0)) == PRE_DEC
1438 || GET_CODE (XEXP (op, 0)) == POST_DEC))
1439 win = 1;
1440 break;
1441
1442 case '>':
1443 if (GET_CODE (op) == MEM
1444 && (GET_CODE (XEXP (op, 0)) == PRE_INC
1445 || GET_CODE (XEXP (op, 0)) == POST_INC))
1446 win = 1;
1447 break;
1448
1449 case 'E':
7ac2547f 1450#ifndef REAL_ARITHMETIC
e4600702
RK
1451 /* Match any floating double constant, but only if
1452 we can examine the bits of it reliably. */
1453 if ((HOST_FLOAT_FORMAT != TARGET_FLOAT_FORMAT
37366632 1454 || HOST_BITS_PER_WIDE_INT != BITS_PER_WORD)
e4600702
RK
1455 && GET_MODE (op) != VOIDmode && ! flag_pretend_float)
1456 break;
7ac2547f 1457#endif
e4600702
RK
1458 if (GET_CODE (op) == CONST_DOUBLE)
1459 win = 1;
1460 break;
1461
1462 case 'F':
1463 if (GET_CODE (op) == CONST_DOUBLE)
1464 win = 1;
1465 break;
1466
1467 case 'G':
1468 case 'H':
1469 if (GET_CODE (op) == CONST_DOUBLE
1470 && CONST_DOUBLE_OK_FOR_LETTER_P (op, c))
1471 win = 1;
1472 break;
1473
1474 case 's':
1475 if (GET_CODE (op) == CONST_INT
1476 || (GET_CODE (op) == CONST_DOUBLE
1477 && GET_MODE (op) == VOIDmode))
1478 break;
1479 case 'i':
1480 if (CONSTANT_P (op)
1481#ifdef LEGITIMATE_PIC_OPERAND_P
1482 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
1483#endif
1484 )
1485 win = 1;
1486 break;
1487
1488 case 'n':
1489 if (GET_CODE (op) == CONST_INT
1490 || (GET_CODE (op) == CONST_DOUBLE
1491 && GET_MODE (op) == VOIDmode))
1492 win = 1;
1493 break;
1494
1495 case 'I':
1496 case 'J':
1497 case 'K':
1498 case 'L':
1499 case 'M':
1500 case 'N':
1501 case 'O':
1502 case 'P':
1503 if (GET_CODE (op) == CONST_INT
1504 && CONST_OK_FOR_LETTER_P (INTVAL (op), c))
1505 win = 1;
1506 break;
1507
1508 case 'X':
1509 win = 1;
1510 break;
54dac99e 1511
54dac99e 1512#ifdef EXTRA_CONSTRAINT
e4600702
RK
1513 case 'Q':
1514 case 'R':
1515 case 'S':
1516 case 'T':
1517 case 'U':
1518 if (EXTRA_CONSTRAINT (op, c))
1519 win = 1;
1520 break;
1521#endif
1522
1523 case 'g':
1524 if (GET_CODE (op) == MEM
1525 || (CONSTANT_P (op)
1526#ifdef LEGITIMATE_PIC_OPERAND_P
1527 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
54dac99e 1528#endif
e4600702
RK
1529 ))
1530 win = 1;
da2c0219 1531 allows_mem[i] = 1;
e4600702
RK
1532 case 'r':
1533 classes[i]
1534 = reg_class_subunion[(int) classes[i]][(int) GENERAL_REGS];
1535 break;
1536
1537 default:
1538 classes[i]
1539 = reg_class_subunion[(int) classes[i]]
1540 [(int) REG_CLASS_FROM_LETTER (c)];
1541 }
1542
1543 constraints[i] = p;
1544
7e7b6c19
RH
1545#ifdef CLASS_CANNOT_CHANGE_SIZE
1546 /* If we noted a subreg earlier, and the selected class is a
1547 subclass of CLASS_CANNOT_CHANGE_SIZE, zap it. */
1548 if (subreg_changes_size[i]
1549 && (reg_class_subunion[(int) CLASS_CANNOT_CHANGE_SIZE]
1550 [(int) classes[i]]
1551 == CLASS_CANNOT_CHANGE_SIZE))
1552 classes[i] = NO_REGS;
1553#endif
1554
e4600702
RK
1555 /* How we account for this operand now depends on whether it is a
1556 pseudo register or not. If it is, we first check if any
1557 register classes are valid. If not, we ignore this alternative,
1558 since we want to assume that all pseudos get allocated for
1559 register preferencing. If some register class is valid, compute
1560 the costs of moving the pseudo into that class. */
1561
1562 if (GET_CODE (op) == REG && REGNO (op) >= FIRST_PSEUDO_REGISTER)
4db18574 1563 {
e4600702 1564 if (classes[i] == NO_REGS)
94e6f783 1565 {
46f40127
JL
1566 /* We must always fail if the operand is a REG, but
1567 we did not find a suitable class.
1568
1569 Otherwise we may perform an uninitialized read
1570 from this_op_costs after the `continue' statement
1571 below. */
94e6f783
DE
1572 alt_fail = 1;
1573 }
e4600702
RK
1574 else
1575 {
1576 struct costs *pp = &this_op_costs[i];
1577
1578 for (class = 0; class < N_REG_CLASSES; class++)
14a774a9 1579 pp->cost[class]
d5e2075d
JH
1580 = ((recog_data.operand_type[i] != OP_OUT
1581 ? may_move_in_cost[class][(int) classes[i]]
1582 : 0)
1583 + (recog_data.operand_type[i] != OP_IN
1584 ? may_move_out_cost[(int) classes[i]][class]
1585 : 0));
e4600702
RK
1586
1587 /* If the alternative actually allows memory, make things
1588 a bit cheaper since we won't need an extra insn to
1589 load it. */
1590
14a774a9 1591 pp->mem_cost
d5e2075d
JH
1592 = ((recog_data.operand_type[i] != OP_IN
1593 ? MEMORY_MOVE_COST (mode, classes[i], 0)
1594 : 0)
1595 + (recog_data.operand_type[i] != OP_OUT
1596 ? MEMORY_MOVE_COST (mode, classes[i], 1)
1597 : 0) - allows_mem[i]);
e4600702
RK
1598
1599 /* If we have assigned a class to this register in our
1600 first pass, add a cost to this alternative corresponding
1601 to what we would add if this register were not in the
1602 appropriate class. */
1603
9ffc5a70 1604 if (reg_pref)
e4600702 1605 alt_cost
9ffc5a70 1606 += (may_move_in_cost[(unsigned char) reg_pref[REGNO (op)].prefclass]
14a774a9 1607 [(int) classes[i]]);
e4600702 1608 }
4db18574 1609 }
54dac99e 1610
e4600702
RK
1611 /* Otherwise, if this alternative wins, either because we
1612 have already determined that or if we have a hard register of
1613 the proper class, there is no cost for this alternative. */
54dac99e 1614
e4600702
RK
1615 else if (win
1616 || (GET_CODE (op) == REG
6f654776 1617 && reg_fits_class_p (op, classes[i], 0, GET_MODE (op))))
e4600702 1618 ;
54dac99e 1619
e4600702
RK
1620 /* If registers are valid, the cost of this alternative includes
1621 copying the object to and/or from a register. */
54dac99e 1622
e4600702
RK
1623 else if (classes[i] != NO_REGS)
1624 {
1ccbefce 1625 if (recog_data.operand_type[i] != OP_OUT)
e4600702 1626 alt_cost += copy_cost (op, mode, classes[i], 1);
54dac99e 1627
1ccbefce 1628 if (recog_data.operand_type[i] != OP_IN)
e4600702
RK
1629 alt_cost += copy_cost (op, mode, classes[i], 0);
1630 }
54dac99e 1631
e4600702
RK
1632 /* The only other way this alternative can be used is if this is a
1633 constant that could be placed into memory. */
1634
da2c0219 1635 else if (CONSTANT_P (op) && (allows_addr || allows_mem[i]))
cbd5b9a2 1636 alt_cost += MEMORY_MOVE_COST (mode, classes[i], 1);
e4600702
RK
1637 else
1638 alt_fail = 1;
1639 }
1640
1641 if (alt_fail)
1642 continue;
1643
1644 /* Finally, update the costs with the information we've calculated
1645 about this alternative. */
1646
1647 for (i = 0; i < n_ops; i++)
1648 if (GET_CODE (ops[i]) == REG
1649 && REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER)
54dac99e 1650 {
e4600702 1651 struct costs *pp = &op_costs[i], *qq = &this_op_costs[i];
1ccbefce 1652 int scale = 1 + (recog_data.operand_type[i] == OP_INOUT);
54dac99e 1653
e4600702
RK
1654 pp->mem_cost = MIN (pp->mem_cost,
1655 (qq->mem_cost + alt_cost) * scale);
54dac99e 1656
e4600702
RK
1657 for (class = 0; class < N_REG_CLASSES; class++)
1658 pp->cost[class] = MIN (pp->cost[class],
1659 (qq->cost[class] + alt_cost) * scale);
1660 }
1661 }
ec2d92af
RK
1662
1663 /* If this insn is a single set copying operand 1 to operand 0
accef103
JL
1664 and one operand is a pseudo with the other a hard reg or a pseudo
1665 that prefers a register that is in its own register class then
1666 we may want to adjust the cost of that register class to -1.
1667
1668 Avoid the adjustment if the source does not die to avoid stressing of
1669 register allocator by preferrencing two coliding registers into single
1670 class.
1671
1672 Also avoid the adjustment if a copy between registers of the class
1673 is expensive (ten times the cost of a default copy is considered
1674 arbitrarily expensive). This avoids losing when the preferred class
1675 is very expensive as the source of a copy instruction. */
ec2d92af
RK
1676
1677 if ((set = single_set (insn)) != 0
1678 && ops[0] == SET_DEST (set) && ops[1] == SET_SRC (set)
0dc0641b
JH
1679 && GET_CODE (ops[0]) == REG && GET_CODE (ops[1]) == REG
1680 && find_regno_note (insn, REG_DEAD, REGNO (ops[1])))
ec2d92af
RK
1681 for (i = 0; i <= 1; i++)
1682 if (REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER)
1683 {
770ae6cc 1684 unsigned int regno = REGNO (ops[!i]);
ec2d92af
RK
1685 enum machine_mode mode = GET_MODE (ops[!i]);
1686 int class;
770ae6cc 1687 unsigned int nr;
ec2d92af 1688
accef103
JL
1689 if (regno >= FIRST_PSEUDO_REGISTER && reg_pref != 0)
1690 {
1691 enum reg_class pref = reg_pref[regno].prefclass;
1692
1693 if ((reg_class_size[(unsigned char) pref]
1694 == CLASS_MAX_NREGS (pref, mode))
1695 && REGISTER_MOVE_COST (pref, pref) < 10 * 2)
1696 op_costs[i].cost[(unsigned char) pref] = -1;
1697 }
ec2d92af
RK
1698 else if (regno < FIRST_PSEUDO_REGISTER)
1699 for (class = 0; class < N_REG_CLASSES; class++)
1700 if (TEST_HARD_REG_BIT (reg_class_contents[class], regno)
1701 && reg_class_size[class] == CLASS_MAX_NREGS (class, mode))
4841ba4b
RK
1702 {
1703 if (reg_class_size[class] == 1)
1704 op_costs[i].cost[class] = -1;
1705 else
1706 {
770ae6cc 1707 for (nr = 0; nr < HARD_REGNO_NREGS (regno, mode); nr++)
4841ba4b 1708 {
770ae6cc
RK
1709 if (! TEST_HARD_REG_BIT (reg_class_contents[class],
1710 regno + nr))
4841ba4b
RK
1711 break;
1712 }
1713
770ae6cc 1714 if (nr == HARD_REGNO_NREGS (regno,mode))
4841ba4b
RK
1715 op_costs[i].cost[class] = -1;
1716 }
1717 }
ec2d92af 1718 }
54dac99e 1719}
e4600702
RK
1720\f
1721/* Compute the cost of loading X into (if TO_P is non-zero) or from (if
1722 TO_P is zero) a register of class CLASS in mode MODE.
1723
1724 X must not be a pseudo. */
1725
1726static int
1727copy_cost (x, mode, class, to_p)
1728 rtx x;
d0af450d 1729 enum machine_mode mode ATTRIBUTE_UNUSED;
e4600702 1730 enum reg_class class;
d0af450d 1731 int to_p ATTRIBUTE_UNUSED;
e4600702 1732{
29a82058 1733#ifdef HAVE_SECONDARY_RELOADS
e4600702 1734 enum reg_class secondary_class = NO_REGS;
29a82058 1735#endif
e4600702
RK
1736
1737 /* If X is a SCRATCH, there is actually nothing to move since we are
1738 assuming optimal allocation. */
1739
1740 if (GET_CODE (x) == SCRATCH)
1741 return 0;
1742
1743 /* Get the class we will actually use for a reload. */
1744 class = PREFERRED_RELOAD_CLASS (x, class);
1745
1746#ifdef HAVE_SECONDARY_RELOADS
1747 /* If we need a secondary reload (we assume here that we are using
1748 the secondary reload as an intermediate, not a scratch register), the
1749 cost is that to load the input into the intermediate register, then
1750 to copy them. We use a special value of TO_P to avoid recursion. */
1751
1752#ifdef SECONDARY_INPUT_RELOAD_CLASS
1753 if (to_p == 1)
1754 secondary_class = SECONDARY_INPUT_RELOAD_CLASS (class, mode, x);
1755#endif
1756
dd9f0e8f 1757#ifdef SECONDARY_OUTPUT_RELOAD_CLASS
e4600702
RK
1758 if (! to_p)
1759 secondary_class = SECONDARY_OUTPUT_RELOAD_CLASS (class, mode, x);
1760#endif
1761
1762 if (secondary_class != NO_REGS)
1763 return (move_cost[(int) secondary_class][(int) class]
1764 + copy_cost (x, mode, secondary_class, 2));
dd9f0e8f 1765#endif /* HAVE_SECONDARY_RELOADS */
e4600702
RK
1766
1767 /* For memory, use the memory move cost, for (hard) registers, use the
1768 cost to move between the register classes, and use 2 for everything
1769 else (constants). */
1770
1771 if (GET_CODE (x) == MEM || class == NO_REGS)
cbd5b9a2 1772 return MEMORY_MOVE_COST (mode, class, to_p);
54dac99e 1773
e4600702
RK
1774 else if (GET_CODE (x) == REG)
1775 return move_cost[(int) REGNO_REG_CLASS (REGNO (x))][(int) class];
1776
1777 else
1778 /* If this is a constant, we may eventually want to call rtx_cost here. */
1779 return 2;
1780}
1781\f
54dac99e
RK
1782/* Record the pseudo registers we must reload into hard registers
1783 in a subexpression of a memory address, X.
e4600702
RK
1784
1785 CLASS is the class that the register needs to be in and is either
1786 BASE_REG_CLASS or INDEX_REG_CLASS.
1787
1788 SCALE is twice the amount to multiply the cost by (it is twice so we
1789 can represent half-cost adjustments). */
54dac99e 1790
197d6480 1791static void
e4600702 1792record_address_regs (x, class, scale)
54dac99e 1793 rtx x;
e4600702
RK
1794 enum reg_class class;
1795 int scale;
54dac99e
RK
1796{
1797 register enum rtx_code code = GET_CODE (x);
1798
1799 switch (code)
1800 {
1801 case CONST_INT:
1802 case CONST:
1803 case CC0:
1804 case PC:
1805 case SYMBOL_REF:
1806 case LABEL_REF:
1807 return;
1808
1809 case PLUS:
1810 /* When we have an address that is a sum,
1811 we must determine whether registers are "base" or "index" regs.
1812 If there is a sum of two registers, we must choose one to be
1813 the "base". Luckily, we can use the REGNO_POINTER_FLAG
e4600702
RK
1814 to make a good choice most of the time. We only need to do this
1815 on machines that can have two registers in an address and where
1816 the base and index register classes are different.
1817
1818 ??? This code used to set REGNO_POINTER_FLAG in some cases, but
1819 that seems bogus since it should only be set when we are sure
1820 the register is being used as a pointer. */
1821
54dac99e
RK
1822 {
1823 rtx arg0 = XEXP (x, 0);
1824 rtx arg1 = XEXP (x, 1);
1825 register enum rtx_code code0 = GET_CODE (arg0);
1826 register enum rtx_code code1 = GET_CODE (arg1);
54dac99e
RK
1827
1828 /* Look inside subregs. */
e4600702 1829 if (code0 == SUBREG)
54dac99e 1830 arg0 = SUBREG_REG (arg0), code0 = GET_CODE (arg0);
e4600702 1831 if (code1 == SUBREG)
54dac99e
RK
1832 arg1 = SUBREG_REG (arg1), code1 = GET_CODE (arg1);
1833
e4600702
RK
1834 /* If this machine only allows one register per address, it must
1835 be in the first operand. */
1836
1837 if (MAX_REGS_PER_ADDRESS == 1)
1838 record_address_regs (arg0, class, scale);
1839
1840 /* If index and base registers are the same on this machine, just
1841 record registers in any non-constant operands. We assume here,
1842 as well as in the tests below, that all addresses are in
1843 canonical form. */
1844
1845 else if (INDEX_REG_CLASS == BASE_REG_CLASS)
54dac99e 1846 {
e4600702
RK
1847 record_address_regs (arg0, class, scale);
1848 if (! CONSTANT_P (arg1))
1849 record_address_regs (arg1, class, scale);
54dac99e 1850 }
e4600702
RK
1851
1852 /* If the second operand is a constant integer, it doesn't change
1853 what class the first operand must be. */
1854
1855 else if (code1 == CONST_INT || code1 == CONST_DOUBLE)
1856 record_address_regs (arg0, class, scale);
1857
1858 /* If the second operand is a symbolic constant, the first operand
1859 must be an index register. */
1860
1861 else if (code1 == SYMBOL_REF || code1 == CONST || code1 == LABEL_REF)
1862 record_address_regs (arg0, INDEX_REG_CLASS, scale);
1863
956d6950
JL
1864 /* If both operands are registers but one is already a hard register
1865 of index or base class, give the other the class that the hard
1866 register is not. */
1867
3f9e9508 1868#ifdef REG_OK_FOR_BASE_P
956d6950
JL
1869 else if (code0 == REG && code1 == REG
1870 && REGNO (arg0) < FIRST_PSEUDO_REGISTER
1871 && (REG_OK_FOR_BASE_P (arg0) || REG_OK_FOR_INDEX_P (arg0)))
1872 record_address_regs (arg1,
1873 REG_OK_FOR_BASE_P (arg0)
1874 ? INDEX_REG_CLASS : BASE_REG_CLASS,
1875 scale);
1876 else if (code0 == REG && code1 == REG
1877 && REGNO (arg1) < FIRST_PSEUDO_REGISTER
1878 && (REG_OK_FOR_BASE_P (arg1) || REG_OK_FOR_INDEX_P (arg1)))
1879 record_address_regs (arg0,
1880 REG_OK_FOR_BASE_P (arg1)
1881 ? INDEX_REG_CLASS : BASE_REG_CLASS,
1882 scale);
3f9e9508 1883#endif
956d6950 1884
e9a25f70
JL
1885 /* If one operand is known to be a pointer, it must be the base
1886 with the other operand the index. Likewise if the other operand
1887 is a MULT. */
f22376c7 1888
e9a25f70
JL
1889 else if ((code0 == REG && REGNO_POINTER_FLAG (REGNO (arg0)))
1890 || code1 == MULT)
f22376c7
CI
1891 {
1892 record_address_regs (arg0, BASE_REG_CLASS, scale);
1893 record_address_regs (arg1, INDEX_REG_CLASS, scale);
1894 }
e9a25f70
JL
1895 else if ((code1 == REG && REGNO_POINTER_FLAG (REGNO (arg1)))
1896 || code0 == MULT)
f22376c7
CI
1897 {
1898 record_address_regs (arg0, INDEX_REG_CLASS, scale);
1899 record_address_regs (arg1, BASE_REG_CLASS, scale);
1900 }
1901
e9a25f70 1902 /* Otherwise, count equal chances that each might be a base
e4600702
RK
1903 or index register. This case should be rare. */
1904
e9a25f70 1905 else
54dac99e 1906 {
e4600702
RK
1907 record_address_regs (arg0, BASE_REG_CLASS, scale / 2);
1908 record_address_regs (arg0, INDEX_REG_CLASS, scale / 2);
1909 record_address_regs (arg1, BASE_REG_CLASS, scale / 2);
1910 record_address_regs (arg1, INDEX_REG_CLASS, scale / 2);
54dac99e 1911 }
54dac99e
RK
1912 }
1913 break;
1914
1915 case POST_INC:
1916 case PRE_INC:
1917 case POST_DEC:
1918 case PRE_DEC:
1919 /* Double the importance of a pseudo register that is incremented
1920 or decremented, since it would take two extra insns
533d0835
RK
1921 if it ends up in the wrong place. If the operand is a pseudo,
1922 show it is being used in an INC_DEC context. */
1923
1924#ifdef FORBIDDEN_INC_DEC_CLASSES
1925 if (GET_CODE (XEXP (x, 0)) == REG
1926 && REGNO (XEXP (x, 0)) >= FIRST_PSEUDO_REGISTER)
1927 in_inc_dec[REGNO (XEXP (x, 0))] = 1;
1928#endif
e4600702
RK
1929
1930 record_address_regs (XEXP (x, 0), class, 2 * scale);
54dac99e
RK
1931 break;
1932
1933 case REG:
1934 {
e4600702
RK
1935 register struct costs *pp = &costs[REGNO (x)];
1936 register int i;
54dac99e 1937
cbd5b9a2 1938 pp->mem_cost += (MEMORY_MOVE_COST (Pmode, class, 1) * scale) / 2;
54dac99e 1939
e4600702 1940 for (i = 0; i < N_REG_CLASSES; i++)
ee59f29b 1941 pp->cost[i] += (may_move_in_cost[i][(int) class] * scale) / 2;
54dac99e
RK
1942 }
1943 break;
1944
1945 default:
1946 {
6f7d635c 1947 register const char *fmt = GET_RTX_FORMAT (code);
54dac99e
RK
1948 register int i;
1949 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1950 if (fmt[i] == 'e')
e4600702 1951 record_address_regs (XEXP (x, i), class, scale);
54dac99e
RK
1952 }
1953 }
1954}
08d95f91
RK
1955\f
1956#ifdef FORBIDDEN_INC_DEC_CLASSES
1957
1958/* Return 1 if REG is valid as an auto-increment memory reference
1959 to an object of MODE. */
1960
1d300e19 1961static int
08d95f91
RK
1962auto_inc_dec_reg_p (reg, mode)
1963 rtx reg;
1964 enum machine_mode mode;
1965{
940da324
JL
1966 if (HAVE_POST_INCREMENT
1967 && memory_address_p (mode, gen_rtx_POST_INC (Pmode, reg)))
08d95f91 1968 return 1;
08d95f91 1969
940da324
JL
1970 if (HAVE_POST_DECREMENT
1971 && memory_address_p (mode, gen_rtx_POST_DEC (Pmode, reg)))
08d95f91 1972 return 1;
08d95f91 1973
940da324
JL
1974 if (HAVE_PRE_INCREMENT
1975 && memory_address_p (mode, gen_rtx_PRE_INC (Pmode, reg)))
08d95f91 1976 return 1;
08d95f91 1977
940da324
JL
1978 if (HAVE_PRE_DECREMENT
1979 && memory_address_p (mode, gen_rtx_PRE_DEC (Pmode, reg)))
08d95f91 1980 return 1;
08d95f91
RK
1981
1982 return 0;
1983}
1984#endif
b1f21e0a 1985\f
ed396e68
BS
1986static short *renumber = (short *)0;
1987static size_t regno_allocated = 0;
1988
b1f21e0a
MM
1989/* Allocate enough space to hold NUM_REGS registers for the tables used for
1990 reg_scan and flow_analysis that are indexed by the register number. If
39379e67
MM
1991 NEW_P is non zero, initialize all of the registers, otherwise only
1992 initialize the new registers allocated. The same table is kept from
1993 function to function, only reallocating it when we need more room. If
1994 RENUMBER_P is non zero, allocate the reg_renumber array also. */
b1f21e0a
MM
1995
1996void
39379e67 1997allocate_reg_info (num_regs, new_p, renumber_p)
6feacd09 1998 size_t num_regs;
b1f21e0a 1999 int new_p;
39379e67 2000 int renumber_p;
b1f21e0a 2001{
6feacd09
MM
2002 size_t size_info;
2003 size_t size_renumber;
2004 size_t min = (new_p) ? 0 : reg_n_max;
2005 struct reg_info_data *reg_data;
2006 struct reg_info_data *reg_next;
39379e67 2007
b1f21e0a
MM
2008 if (num_regs > regno_allocated)
2009 {
6feacd09
MM
2010 size_t old_allocated = regno_allocated;
2011
b1f21e0a 2012 regno_allocated = num_regs + (num_regs / 20); /* add some slop space */
39379e67
MM
2013 size_renumber = regno_allocated * sizeof (short);
2014
2015 if (!reg_n_info)
2016 {
6feacd09 2017 VARRAY_REG_INIT (reg_n_info, regno_allocated, "reg_n_info");
39379e67 2018 renumber = (short *) xmalloc (size_renumber);
9ffc5a70
JH
2019 reg_pref_buffer = (struct reg_pref *) xmalloc (regno_allocated
2020 * sizeof (struct reg_pref));
39379e67
MM
2021 }
2022
2023 else
2024 {
6feacd09
MM
2025 VARRAY_GROW (reg_n_info, regno_allocated);
2026
2027 if (new_p) /* if we're zapping everything, no need to realloc */
2028 {
2029 free ((char *)renumber);
9ffc5a70 2030 free ((char *)reg_pref);
6feacd09 2031 renumber = (short *) xmalloc (size_renumber);
9ffc5a70
JH
2032 reg_pref_buffer = (struct reg_pref *) xmalloc (regno_allocated
2033 * sizeof (struct reg_pref));
6feacd09
MM
2034 }
2035
2036 else
2037 {
2038 renumber = (short *) xrealloc ((char *)renumber, size_renumber);
9ffc5a70
JH
2039 reg_pref_buffer = (struct reg_pref *) xrealloc ((char *)reg_pref_buffer,
2040 regno_allocated
2041 * sizeof (struct reg_pref));
6feacd09 2042 }
39379e67 2043 }
6feacd09
MM
2044
2045 size_info = (regno_allocated - old_allocated) * sizeof (reg_info)
2046 + sizeof (struct reg_info_data) - sizeof (reg_info);
2047 reg_data = (struct reg_info_data *) xcalloc (size_info, 1);
2048 reg_data->min_index = old_allocated;
2049 reg_data->max_index = regno_allocated - 1;
2050 reg_data->next = reg_info_head;
2051 reg_info_head = reg_data;
b1f21e0a
MM
2052 }
2053
6feacd09 2054 reg_n_max = num_regs;
b1f21e0a
MM
2055 if (min < num_regs)
2056 {
6feacd09
MM
2057 /* Loop through each of the segments allocated for the actual
2058 reg_info pages, and set up the pointers, zero the pages, etc. */
2059 for (reg_data = reg_info_head; reg_data; reg_data = reg_next)
39379e67 2060 {
6feacd09
MM
2061 size_t min_index = reg_data->min_index;
2062 size_t max_index = reg_data->max_index;
2063
2064 reg_next = reg_data->next;
29f63881 2065 if (min <= max_index)
6feacd09 2066 {
eafdfea8 2067 size_t max = max_index;
29f63881 2068 size_t local_min = min - min_index;
7f7f8214
KG
2069 size_t i;
2070
29f63881
RH
2071 if (min < min_index)
2072 local_min = 0;
6feacd09
MM
2073 if (!reg_data->used_p) /* page just allocated with calloc */
2074 reg_data->used_p = 1; /* no need to zero */
2075 else
29f63881
RH
2076 bzero ((char *) &reg_data->data[local_min],
2077 sizeof (reg_info) * (max - min_index - local_min + 1));
6feacd09 2078
29f63881 2079 for (i = min_index+local_min; i <= max; i++)
6feacd09
MM
2080 {
2081 VARRAY_REG (reg_n_info, i) = &reg_data->data[i-min_index];
2082 REG_BASIC_BLOCK (i) = REG_BLOCK_UNKNOWN;
2083 renumber[i] = -1;
9ffc5a70
JH
2084 reg_pref_buffer[i].prefclass = (char) NO_REGS;
2085 reg_pref_buffer[i].altclass = (char) NO_REGS;
6feacd09
MM
2086 }
2087 }
39379e67 2088 }
b1f21e0a
MM
2089 }
2090
6feacd09
MM
2091 /* If {pref,alt}class have already been allocated, update the pointers to
2092 the newly realloced ones. */
9ffc5a70
JH
2093 if (reg_pref)
2094 reg_pref = reg_pref_buffer;
6feacd09 2095
39379e67
MM
2096 if (renumber_p)
2097 reg_renumber = renumber;
2098
73b76448
RK
2099 /* Tell the regset code about the new number of registers */
2100 MAX_REGNO_REG_SET (num_regs, new_p, renumber_p);
b1f21e0a
MM
2101}
2102
ed396e68
BS
2103/* Free up the space allocated by allocate_reg_info. */
2104void
2105free_reg_info ()
2106{
2107 if (reg_n_info)
2108 {
2109 struct reg_info_data *reg_data;
2110 struct reg_info_data *reg_next;
2111
2112 VARRAY_FREE (reg_n_info);
2113 for (reg_data = reg_info_head; reg_data; reg_data = reg_next)
2114 {
2115 reg_next = reg_data->next;
2116 free ((char *)reg_data);
2117 }
2118
9ffc5a70
JH
2119 free (reg_pref_buffer);
2120 reg_pref_buffer = (struct reg_pref *)0;
ed396e68
BS
2121 reg_info_head = (struct reg_info_data *)0;
2122 renumber = (short *)0;
2123 }
2124 regno_allocated = 0;
2125 reg_n_max = 0;
2126}
54dac99e
RK
2127\f
2128/* This is the `regscan' pass of the compiler, run just before cse
2129 and again just before loop.
2130
2131 It finds the first and last use of each pseudo-register
2132 and records them in the vectors regno_first_uid, regno_last_uid
2133 and counts the number of sets in the vector reg_n_sets.
2134
2135 REPEAT is nonzero the second time this is called. */
2136
54dac99e 2137/* Maximum number of parallel sets and clobbers in any insn in this fn.
d22d5f34 2138 Always at least 3, since the combiner could put that many together
54dac99e
RK
2139 and we want this to remain correct for all the remaining passes. */
2140
2141int max_parallel;
2142
54dac99e
RK
2143void
2144reg_scan (f, nregs, repeat)
2145 rtx f;
770ae6cc 2146 unsigned int nregs;
272df862 2147 int repeat ATTRIBUTE_UNUSED;
54dac99e
RK
2148{
2149 register rtx insn;
2150
39379e67 2151 allocate_reg_info (nregs, TRUE, FALSE);
54dac99e
RK
2152 max_parallel = 3;
2153
2154 for (insn = f; insn; insn = NEXT_INSN (insn))
2155 if (GET_CODE (insn) == INSN
2156 || GET_CODE (insn) == CALL_INSN
2157 || GET_CODE (insn) == JUMP_INSN)
2158 {
2159 if (GET_CODE (PATTERN (insn)) == PARALLEL
2160 && XVECLEN (PATTERN (insn), 0) > max_parallel)
2161 max_parallel = XVECLEN (PATTERN (insn), 0);
f903b91f 2162 reg_scan_mark_refs (PATTERN (insn), insn, 0, 0);
01565a55
RK
2163
2164 if (REG_NOTES (insn))
f903b91f
DM
2165 reg_scan_mark_refs (REG_NOTES (insn), insn, 1, 0);
2166 }
2167}
2168
2169/* Update 'regscan' information by looking at the insns
2170 from FIRST to LAST. Some new REGs have been created,
2171 and any REG with number greater than OLD_MAX_REGNO is
2172 such a REG. We only update information for those. */
2173
2174void
770ae6cc 2175reg_scan_update (first, last, old_max_regno)
f903b91f
DM
2176 rtx first;
2177 rtx last;
770ae6cc 2178 unsigned int old_max_regno;
f903b91f
DM
2179{
2180 register rtx insn;
2181
2182 allocate_reg_info (max_reg_num (), FALSE, FALSE);
2183
2184 for (insn = first; insn != last; insn = NEXT_INSN (insn))
2185 if (GET_CODE (insn) == INSN
2186 || GET_CODE (insn) == CALL_INSN
2187 || GET_CODE (insn) == JUMP_INSN)
2188 {
2189 if (GET_CODE (PATTERN (insn)) == PARALLEL
2190 && XVECLEN (PATTERN (insn), 0) > max_parallel)
2191 max_parallel = XVECLEN (PATTERN (insn), 0);
2192 reg_scan_mark_refs (PATTERN (insn), insn, 0, old_max_regno);
2193
2194 if (REG_NOTES (insn))
2195 reg_scan_mark_refs (REG_NOTES (insn), insn, 1, old_max_regno);
54dac99e
RK
2196 }
2197}
2198
1ebecb64 2199/* X is the expression to scan. INSN is the insn it appears in.
f903b91f
DM
2200 NOTE_FLAG is nonzero if X is from INSN's notes rather than its body.
2201 We should only record information for REGs with numbers
2202 greater than or equal to MIN_REGNO. */
1ebecb64 2203
08d95f91 2204static void
f903b91f 2205reg_scan_mark_refs (x, insn, note_flag, min_regno)
54dac99e 2206 rtx x;
be8dcd74 2207 rtx insn;
1ebecb64 2208 int note_flag;
770ae6cc 2209 unsigned int min_regno;
54dac99e 2210{
fa23c636 2211 register enum rtx_code code;
54dac99e 2212 register rtx dest;
be8dcd74 2213 register rtx note;
54dac99e 2214
fa23c636 2215 code = GET_CODE (x);
54dac99e
RK
2216 switch (code)
2217 {
54dac99e 2218 case CONST:
185ebd6c 2219 case CONST_INT:
54dac99e
RK
2220 case CONST_DOUBLE:
2221 case CC0:
2222 case PC:
2223 case SYMBOL_REF:
2224 case LABEL_REF:
2225 case ADDR_VEC:
2226 case ADDR_DIFF_VEC:
2227 return;
2228
2229 case REG:
2230 {
770ae6cc 2231 unsigned int regno = REGNO (x);
54dac99e 2232
f903b91f
DM
2233 if (regno >= min_regno)
2234 {
2235 REGNO_LAST_NOTE_UID (regno) = INSN_UID (insn);
2236 if (!note_flag)
2237 REGNO_LAST_UID (regno) = INSN_UID (insn);
2238 if (REGNO_FIRST_UID (regno) == 0)
2239 REGNO_FIRST_UID (regno) = INSN_UID (insn);
2240 }
54dac99e
RK
2241 }
2242 break;
2243
01565a55 2244 case EXPR_LIST:
7b18c3db 2245 if (XEXP (x, 0))
f903b91f 2246 reg_scan_mark_refs (XEXP (x, 0), insn, note_flag, min_regno);
01565a55 2247 if (XEXP (x, 1))
f903b91f 2248 reg_scan_mark_refs (XEXP (x, 1), insn, note_flag, min_regno);
01565a55
RK
2249 break;
2250
2251 case INSN_LIST:
2252 if (XEXP (x, 1))
f903b91f 2253 reg_scan_mark_refs (XEXP (x, 1), insn, note_flag, min_regno);
01565a55
RK
2254 break;
2255
54dac99e
RK
2256 case SET:
2257 /* Count a set of the destination if it is a register. */
2258 for (dest = SET_DEST (x);
2259 GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART
2260 || GET_CODE (dest) == ZERO_EXTEND;
2261 dest = XEXP (dest, 0))
2262 ;
2263
f903b91f
DM
2264 if (GET_CODE (dest) == REG
2265 && REGNO (dest) >= min_regno)
b1f21e0a 2266 REG_N_SETS (REGNO (dest))++;
54dac99e 2267
be8dcd74
RK
2268 /* If this is setting a pseudo from another pseudo or the sum of a
2269 pseudo and a constant integer and the other pseudo is known to be
2270 a pointer, set the destination to be a pointer as well.
2271
2272 Likewise if it is setting the destination from an address or from a
2273 value equivalent to an address or to the sum of an address and
2274 something else.
2275
2276 But don't do any of this if the pseudo corresponds to a user
2277 variable since it should have already been set as a pointer based
2278 on the type. */
2279
2280 if (GET_CODE (SET_DEST (x)) == REG
2281 && REGNO (SET_DEST (x)) >= FIRST_PSEUDO_REGISTER
f903b91f 2282 && REGNO (SET_DEST (x)) >= min_regno
64d3b4ca
JL
2283 /* If the destination pseudo is set more than once, then other
2284 sets might not be to a pointer value (consider access to a
2285 union in two threads of control in the presense of global
2286 optimizations). So only set REGNO_POINTER_FLAG on the destination
2287 pseudo if this is the only set of that pseudo. */
2288 && REG_N_SETS (REGNO (SET_DEST (x))) == 1
be8dcd74
RK
2289 && ! REG_USERVAR_P (SET_DEST (x))
2290 && ! REGNO_POINTER_FLAG (REGNO (SET_DEST (x)))
2291 && ((GET_CODE (SET_SRC (x)) == REG
2292 && REGNO_POINTER_FLAG (REGNO (SET_SRC (x))))
2293 || ((GET_CODE (SET_SRC (x)) == PLUS
2294 || GET_CODE (SET_SRC (x)) == LO_SUM)
2295 && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
2296 && GET_CODE (XEXP (SET_SRC (x), 0)) == REG
2297 && REGNO_POINTER_FLAG (REGNO (XEXP (SET_SRC (x), 0))))
2298 || GET_CODE (SET_SRC (x)) == CONST
2299 || GET_CODE (SET_SRC (x)) == SYMBOL_REF
2300 || GET_CODE (SET_SRC (x)) == LABEL_REF
2301 || (GET_CODE (SET_SRC (x)) == HIGH
2302 && (GET_CODE (XEXP (SET_SRC (x), 0)) == CONST
2303 || GET_CODE (XEXP (SET_SRC (x), 0)) == SYMBOL_REF
2304 || GET_CODE (XEXP (SET_SRC (x), 0)) == LABEL_REF))
2305 || ((GET_CODE (SET_SRC (x)) == PLUS
2306 || GET_CODE (SET_SRC (x)) == LO_SUM)
2307 && (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST
2308 || GET_CODE (XEXP (SET_SRC (x), 1)) == SYMBOL_REF
2309 || GET_CODE (XEXP (SET_SRC (x), 1)) == LABEL_REF))
2310 || ((note = find_reg_note (insn, REG_EQUAL, 0)) != 0
2311 && (GET_CODE (XEXP (note, 0)) == CONST
2312 || GET_CODE (XEXP (note, 0)) == SYMBOL_REF
2313 || GET_CODE (XEXP (note, 0)) == LABEL_REF))))
2314 REGNO_POINTER_FLAG (REGNO (SET_DEST (x))) = 1;
2315
0f41302f 2316 /* ... fall through ... */
54dac99e
RK
2317
2318 default:
2319 {
6f7d635c 2320 register const char *fmt = GET_RTX_FORMAT (code);
54dac99e
RK
2321 register int i;
2322 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2323 {
2324 if (fmt[i] == 'e')
f903b91f 2325 reg_scan_mark_refs (XEXP (x, i), insn, note_flag, min_regno);
54dac99e
RK
2326 else if (fmt[i] == 'E' && XVEC (x, i) != 0)
2327 {
2328 register int j;
2329 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
f903b91f 2330 reg_scan_mark_refs (XVECEXP (x, i, j), insn, note_flag, min_regno);
54dac99e
RK
2331 }
2332 }
2333 }
2334 }
2335}
2336\f
2337/* Return nonzero if C1 is a subset of C2, i.e., if every register in C1
2338 is also in C2. */
2339
2340int
2341reg_class_subset_p (c1, c2)
2342 register enum reg_class c1;
2343 register enum reg_class c2;
2344{
2345 if (c1 == c2) return 1;
2346
2347 if (c2 == ALL_REGS)
2348 win:
2349 return 1;
2350 GO_IF_HARD_REG_SUBSET (reg_class_contents[(int)c1],
2351 reg_class_contents[(int)c2],
2352 win);
2353 return 0;
2354}
2355
2356/* Return nonzero if there is a register that is in both C1 and C2. */
2357
2358int
2359reg_classes_intersect_p (c1, c2)
2360 register enum reg_class c1;
2361 register enum reg_class c2;
2362{
2363#ifdef HARD_REG_SET
2364 register
2365#endif
2366 HARD_REG_SET c;
2367
2368 if (c1 == c2) return 1;
2369
2370 if (c1 == ALL_REGS || c2 == ALL_REGS)
2371 return 1;
2372
2373 COPY_HARD_REG_SET (c, reg_class_contents[(int) c1]);
2374 AND_HARD_REG_SET (c, reg_class_contents[(int) c2]);
2375
2376 GO_IF_HARD_REG_SUBSET (c, reg_class_contents[(int) NO_REGS], lose);
2377 return 1;
2378
2379 lose:
2380 return 0;
2381}
2382
73b76448
RK
2383/* Release any memory allocated by register sets. */
2384
2385void
2386regset_release_memory ()
2387{
73b76448
RK
2388 bitmap_release_memory ();
2389}
This page took 1.385931 seconds and 5 git commands to generate.