]> gcc.gnu.org Git - gcc.git/blame - gcc/regclass.c
trans-io.c (set_string): Use fold_build2 and build_int_cst instead of build2 and...
[gcc.git] / gcc / regclass.c
CommitLineData
54dac99e 1/* Compute register class preferences for pseudo-registers.
517cbe13 2 Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1996
778f72f2 3 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005
e146f815 4 Free Software Foundation, Inc.
54dac99e 5
1322177d 6This file is part of GCC.
54dac99e 7
1322177d
LB
8GCC is free software; you can redistribute it and/or modify it under
9the terms of the GNU General Public License as published by the Free
10Software Foundation; either version 2, or (at your option) any later
11version.
54dac99e 12
1322177d
LB
13GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14WARRANTY; without even the implied warranty of MERCHANTABILITY or
15FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16for more details.
54dac99e
RK
17
18You should have received a copy of the GNU General Public License
1322177d 19along with GCC; see the file COPYING. If not, write to the Free
366ccddb
KC
20Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
2102110-1301, USA. */
54dac99e
RK
22
23
24/* This file contains two passes of the compiler: reg_scan and reg_class.
25 It also defines some tables of information about the hardware registers
26 and a function init_reg_sets to initialize the tables. */
27
28#include "config.h"
670ee920 29#include "system.h"
4977bab6
ZW
30#include "coretypes.h"
31#include "tm.h"
cff9f8d5 32#include "hard-reg-set.h"
54dac99e 33#include "rtl.h"
0829d244 34#include "expr.h"
6baf1cc8 35#include "tm_p.h"
54dac99e
RK
36#include "flags.h"
37#include "basic-block.h"
38#include "regs.h"
c4963a0a 39#include "addresses.h"
49ad7cfa 40#include "function.h"
54dac99e
RK
41#include "insn-config.h"
42#include "recog.h"
e4600702
RK
43#include "reload.h"
44#include "real.h"
10f0ad3d 45#include "toplev.h"
d6f4ec51 46#include "output.h"
8b0212ca 47#include "ggc.h"
0d446150 48#include "timevar.h"
41bf2a8b 49#include "hashtab.h"
8a99f6f9 50#include "target.h"
54dac99e 51
0c20a65f 52static void init_reg_sets_1 (void);
0c20a65f 53static void init_reg_autoinc (void);
24deb20a 54
533d0835
RK
55/* If we have auto-increment or auto-decrement and we can have secondary
56 reloads, we are not allowed to use classes requiring secondary
9faa82d8 57 reloads for pseudos auto-incremented since reload can't handle it. */
8a99f6f9
R
58/* We leave it to target hooks to decide if we have secondary reloads, so
59 assume that we might have them. */
60#if defined(AUTO_INC_DEC) /* */
533d0835
RK
61#define FORBIDDEN_INC_DEC_CLASSES
62#endif
54dac99e
RK
63\f
64/* Register tables used by many passes. */
65
66/* Indexed by hard register number, contains 1 for registers
67 that are fixed use (stack pointer, pc, frame pointer, etc.).
68 These are the registers that cannot be used to allocate
252f342a 69 a pseudo reg for general use. */
54dac99e
RK
70
71char fixed_regs[FIRST_PSEUDO_REGISTER];
72
73/* Same info as a HARD_REG_SET. */
74
75HARD_REG_SET fixed_reg_set;
76
77/* Data for initializing the above. */
78
8b60264b 79static const char initial_fixed_regs[] = FIXED_REGISTERS;
54dac99e
RK
80
81/* Indexed by hard register number, contains 1 for registers
82 that are fixed use or are clobbered by function calls.
83 These are the registers that cannot be used to allocate
252f342a
MH
84 a pseudo reg whose life crosses calls unless we are able
85 to save/restore them across the calls. */
54dac99e
RK
86
87char call_used_regs[FIRST_PSEUDO_REGISTER];
88
89/* Same info as a HARD_REG_SET. */
90
91HARD_REG_SET call_used_reg_set;
92
6cad67d2
JL
93/* HARD_REG_SET of registers we want to avoid caller saving. */
94HARD_REG_SET losing_caller_save_reg_set;
95
54dac99e
RK
96/* Data for initializing the above. */
97
8b60264b 98static const char initial_call_used_regs[] = CALL_USED_REGISTERS;
fc1296b7
AM
99
100/* This is much like call_used_regs, except it doesn't have to
101 be a superset of FIXED_REGISTERS. This vector indicates
a6a2274a 102 what is really call clobbered, and is used when defining
fc1296b7
AM
103 regs_invalidated_by_call. */
104
fc1296b7 105#ifdef CALL_REALLY_USED_REGISTERS
d3259baa 106char call_really_used_regs[] = CALL_REALLY_USED_REGISTERS;
fc1296b7 107#endif
a6a2274a 108
f6ae6c51
RS
109#ifdef CALL_REALLY_USED_REGISTERS
110#define CALL_REALLY_USED_REGNO_P(X) call_really_used_regs[X]
111#else
112#define CALL_REALLY_USED_REGNO_P(X) call_used_regs[X]
113#endif
114
115
54dac99e 116/* Indexed by hard register number, contains 1 for registers that are
252f342a
MH
117 fixed use or call used registers that cannot hold quantities across
118 calls even if we are willing to save and restore them. call fixed
119 registers are a subset of call used registers. */
54dac99e
RK
120
121char call_fixed_regs[FIRST_PSEUDO_REGISTER];
122
123/* The same info as a HARD_REG_SET. */
124
125HARD_REG_SET call_fixed_reg_set;
126
54dac99e
RK
127/* Indexed by hard register number, contains 1 for registers
128 that are being used for global register decls.
129 These must be exempt from ordinary flow analysis
130 and are also considered fixed. */
131
132char global_regs[FIRST_PSEUDO_REGISTER];
4e2db584
RH
133
134/* Contains 1 for registers that are set or clobbered by calls. */
135/* ??? Ideally, this would be just call_used_regs plus global_regs, but
136 for someone's bright idea to have call_used_regs strictly include
137 fixed_regs. Which leaves us guessing as to the set of fixed_regs
138 that are actually preserved. We know for sure that those associated
139 with the local stack frame are safe, but scant others. */
140
141HARD_REG_SET regs_invalidated_by_call;
142
54dac99e
RK
143/* Table of register numbers in the order in which to try to use them. */
144#ifdef REG_ALLOC_ORDER
145int reg_alloc_order[FIRST_PSEUDO_REGISTER] = REG_ALLOC_ORDER;
f5d8c9f4
BS
146
147/* The inverse of reg_alloc_order. */
148int inv_reg_alloc_order[FIRST_PSEUDO_REGISTER];
54dac99e
RK
149#endif
150
151/* For each reg class, a HARD_REG_SET saying which registers are in it. */
152
2e0e2b76
CH
153HARD_REG_SET reg_class_contents[N_REG_CLASSES];
154
089e575b
RS
155/* The same information, but as an array of unsigned ints. We copy from
156 these unsigned ints to the table above. We do this so the tm.h files
d4845339
RH
157 do not have to be aware of the wordsize for machines with <= 64 regs.
158 Note that we hard-code 32 here, not HOST_BITS_PER_INT. */
2e0e2b76
CH
159
160#define N_REG_INTS \
d4845339 161 ((FIRST_PSEUDO_REGISTER + (32 - 1)) / 32)
2e0e2b76 162
a6a2274a 163static const unsigned int_reg_class_contents[N_REG_CLASSES][N_REG_INTS]
2e0e2b76 164 = REG_CLASS_CONTENTS;
54dac99e
RK
165
166/* For each reg class, number of regs it contains. */
167
770ae6cc 168unsigned int reg_class_size[N_REG_CLASSES];
54dac99e
RK
169
170/* For each reg class, table listing all the containing classes. */
171
1b28cd06 172static enum reg_class reg_class_superclasses[N_REG_CLASSES][N_REG_CLASSES];
54dac99e
RK
173
174/* For each reg class, table listing all the classes contained in it. */
175
1b28cd06 176static enum reg_class reg_class_subclasses[N_REG_CLASSES][N_REG_CLASSES];
54dac99e
RK
177
178/* For each pair of reg classes,
179 a largest reg class contained in their union. */
180
181enum reg_class reg_class_subunion[N_REG_CLASSES][N_REG_CLASSES];
182
183/* For each pair of reg classes,
184 the smallest reg class containing their union. */
185
186enum reg_class reg_class_superunion[N_REG_CLASSES][N_REG_CLASSES];
187
94134f42 188/* Array containing all of the register names. */
d05c8ee7 189
e087aeb2 190const char * reg_names[] = REGISTER_NAMES;
d05c8ee7 191
778f72f2
RS
192/* Array containing all of the register class names. */
193
194const char * reg_class_names[] = REG_CLASS_NAMES;
195
ca4aac00
DE
196/* For each hard register, the widest mode object that it can contain.
197 This will be a MODE_INT mode if the register can hold integers. Otherwise
198 it will be a MODE_FLOAT or a MODE_CC mode, whichever is valid for the
199 register. */
200
201enum machine_mode reg_raw_mode[FIRST_PSEUDO_REGISTER];
202
26277d41
PB
203/* 1 if there is a register of given mode. */
204
205bool have_regs_of_mode [MAX_MACHINE_MODE];
206
6df26b8f
JH
207/* 1 if class does contain register of given mode. */
208
209static char contains_reg_of_mode [N_REG_CLASSES] [MAX_MACHINE_MODE];
210
e4600702
RK
211/* Maximum cost of moving from a register in one class to a register in
212 another class. Based on REGISTER_MOVE_COST. */
213
e56b4594 214static int move_cost[MAX_MACHINE_MODE][N_REG_CLASSES][N_REG_CLASSES];
e4600702
RK
215
216/* Similar, but here we don't have to move if the first index is a subset
217 of the second so in that case the cost is zero. */
218
e56b4594 219static int may_move_in_cost[MAX_MACHINE_MODE][N_REG_CLASSES][N_REG_CLASSES];
ee59f29b
JH
220
221/* Similar, but here we don't have to move if the first index is a superset
222 of the second so in that case the cost is zero. */
223
e56b4594 224static int may_move_out_cost[MAX_MACHINE_MODE][N_REG_CLASSES][N_REG_CLASSES];
e4600702 225
533d0835
RK
226#ifdef FORBIDDEN_INC_DEC_CLASSES
227
228/* These are the classes that regs which are auto-incremented or decremented
229 cannot be put in. */
230
231static int forbidden_inc_dec_class[N_REG_CLASSES];
232
40f03658 233/* Indexed by n, is nonzero if (REG n) is used in an auto-inc or auto-dec
533d0835
RK
234 context. */
235
236static char *in_inc_dec;
237
5fcb671c 238#endif /* FORBIDDEN_INC_DEC_CLASSES */
533d0835 239
473fe49b
KR
240/* Sample MEM values for use by memory_move_secondary_cost. */
241
e2500fed 242static GTY(()) rtx top_of_stack[MAX_MACHINE_MODE];
473fe49b 243
6feacd09
MM
244/* Linked list of reg_info structures allocated for reg_n_info array.
245 Grouping all of the allocated structures together in one lump
246 means only one call to bzero to clear them, rather than n smaller
247 calls. */
248struct reg_info_data {
249 struct reg_info_data *next; /* next set of reg_info structures */
250 size_t min_index; /* minimum index # */
251 size_t max_index; /* maximum index # */
40f03658 252 char used_p; /* nonzero if this has been used previously */
6feacd09
MM
253 reg_info data[1]; /* beginning of the reg_info data */
254};
255
256static struct reg_info_data *reg_info_head;
257
c07c7c9d 258/* No more global register variables may be declared; true once
dc297297 259 regclass has been initialized. */
6c85df69
AH
260
261static int no_global_reg_vars = 0;
262
66fd46b6
JH
263/* Specify number of hard registers given machine mode occupy. */
264unsigned char hard_regno_nregs[FIRST_PSEUDO_REGISTER][MAX_MACHINE_MODE];
6feacd09 265
54dac99e
RK
266/* Function called only once to initialize the above data on reg usage.
267 Once this is done, various switches may override. */
268
269void
0c20a65f 270init_reg_sets (void)
54dac99e 271{
b3694847 272 int i, j;
54dac99e 273
2e0e2b76
CH
274 /* First copy the register information from the initial int form into
275 the regsets. */
276
277 for (i = 0; i < N_REG_CLASSES; i++)
278 {
279 CLEAR_HARD_REG_SET (reg_class_contents[i]);
280
b85946fc 281 /* Note that we hard-code 32 here, not HOST_BITS_PER_INT. */
2e0e2b76 282 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
b85946fc
RH
283 if (int_reg_class_contents[i][j / 32]
284 & ((unsigned) 1 << (j % 32)))
2e0e2b76
CH
285 SET_HARD_REG_BIT (reg_class_contents[i], j);
286 }
287
1ee19633
BI
288 /* Sanity check: make sure the target macros FIXED_REGISTERS and
289 CALL_USED_REGISTERS had the right number of initializers. */
41374e13
NS
290 gcc_assert (sizeof fixed_regs == sizeof initial_fixed_regs);
291 gcc_assert (sizeof call_used_regs == sizeof initial_call_used_regs);
1ee19633 292
4e135bdd
KG
293 memcpy (fixed_regs, initial_fixed_regs, sizeof fixed_regs);
294 memcpy (call_used_regs, initial_call_used_regs, sizeof call_used_regs);
961192e1 295 memset (global_regs, 0, sizeof global_regs);
54dac99e 296
f5d8c9f4
BS
297#ifdef REG_ALLOC_ORDER
298 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
299 inv_reg_alloc_order[reg_alloc_order[i]] = i;
300#endif
910bc42d
R
301}
302
303/* After switches have been processed, which perhaps alter
304 `fixed_regs' and `call_used_regs', convert them to HARD_REG_SETs. */
305
306static void
0c20a65f 307init_reg_sets_1 (void)
910bc42d 308{
b3694847
SS
309 unsigned int i, j;
310 unsigned int /* enum machine_mode */ m;
910bc42d
R
311
312 /* This macro allows the fixed or call-used registers
313 and the register classes to depend on target flags. */
314
315#ifdef CONDITIONAL_REGISTER_USAGE
316 CONDITIONAL_REGISTER_USAGE;
317#endif
318
54dac99e
RK
319 /* Compute number of hard regs in each class. */
320
703ad42b 321 memset (reg_class_size, 0, sizeof reg_class_size);
54dac99e
RK
322 for (i = 0; i < N_REG_CLASSES; i++)
323 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
324 if (TEST_HARD_REG_BIT (reg_class_contents[i], j))
325 reg_class_size[i]++;
326
327 /* Initialize the table of subunions.
328 reg_class_subunion[I][J] gets the largest-numbered reg-class
329 that is contained in the union of classes I and J. */
330
331 for (i = 0; i < N_REG_CLASSES; i++)
332 {
333 for (j = 0; j < N_REG_CLASSES; j++)
334 {
49a27995 335 HARD_REG_SET c;
b3694847 336 int k;
54dac99e
RK
337
338 COPY_HARD_REG_SET (c, reg_class_contents[i]);
339 IOR_HARD_REG_SET (c, reg_class_contents[j]);
340 for (k = 0; k < N_REG_CLASSES; k++)
341 {
342 GO_IF_HARD_REG_SUBSET (reg_class_contents[k], c,
343 subclass1);
344 continue;
345
346 subclass1:
938d968e 347 /* Keep the largest subclass. */ /* SPEE 900308 */
54dac99e
RK
348 GO_IF_HARD_REG_SUBSET (reg_class_contents[k],
349 reg_class_contents[(int) reg_class_subunion[i][j]],
350 subclass2);
351 reg_class_subunion[i][j] = (enum reg_class) k;
352 subclass2:
353 ;
354 }
355 }
356 }
357
358 /* Initialize the table of superunions.
359 reg_class_superunion[I][J] gets the smallest-numbered reg-class
360 containing the union of classes I and J. */
361
362 for (i = 0; i < N_REG_CLASSES; i++)
363 {
364 for (j = 0; j < N_REG_CLASSES; j++)
365 {
49a27995 366 HARD_REG_SET c;
b3694847 367 int k;
54dac99e
RK
368
369 COPY_HARD_REG_SET (c, reg_class_contents[i]);
370 IOR_HARD_REG_SET (c, reg_class_contents[j]);
371 for (k = 0; k < N_REG_CLASSES; k++)
372 GO_IF_HARD_REG_SUBSET (c, reg_class_contents[k], superclass);
373
374 superclass:
375 reg_class_superunion[i][j] = (enum reg_class) k;
376 }
377 }
378
379 /* Initialize the tables of subclasses and superclasses of each reg class.
380 First clear the whole table, then add the elements as they are found. */
381
382 for (i = 0; i < N_REG_CLASSES; i++)
383 {
384 for (j = 0; j < N_REG_CLASSES; j++)
385 {
386 reg_class_superclasses[i][j] = LIM_REG_CLASSES;
387 reg_class_subclasses[i][j] = LIM_REG_CLASSES;
388 }
389 }
390
391 for (i = 0; i < N_REG_CLASSES; i++)
392 {
393 if (i == (int) NO_REGS)
394 continue;
395
396 for (j = i + 1; j < N_REG_CLASSES; j++)
397 {
398 enum reg_class *p;
399
400 GO_IF_HARD_REG_SUBSET (reg_class_contents[i], reg_class_contents[j],
401 subclass);
402 continue;
403 subclass:
404 /* Reg class I is a subclass of J.
405 Add J to the table of superclasses of I. */
406 p = &reg_class_superclasses[i][0];
407 while (*p != LIM_REG_CLASSES) p++;
408 *p = (enum reg_class) j;
409 /* Add I to the table of superclasses of J. */
410 p = &reg_class_subclasses[j][0];
411 while (*p != LIM_REG_CLASSES) p++;
412 *p = (enum reg_class) i;
413 }
414 }
e4600702 415
54dac99e
RK
416 /* Initialize "constant" tables. */
417
418 CLEAR_HARD_REG_SET (fixed_reg_set);
419 CLEAR_HARD_REG_SET (call_used_reg_set);
420 CLEAR_HARD_REG_SET (call_fixed_reg_set);
4e2db584 421 CLEAR_HARD_REG_SET (regs_invalidated_by_call);
54dac99e 422
4e135bdd 423 memcpy (call_fixed_regs, fixed_regs, sizeof call_fixed_regs);
54dac99e 424
54dac99e
RK
425 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
426 {
e3cadb61 427 /* call_used_regs must include fixed_regs. */
41374e13 428 gcc_assert (!fixed_regs[i] || call_used_regs[i]);
e3cadb61
RS
429#ifdef CALL_REALLY_USED_REGISTERS
430 /* call_used_regs must include call_really_used_regs. */
41374e13 431 gcc_assert (!call_really_used_regs[i] || call_used_regs[i]);
e3cadb61
RS
432#endif
433
54dac99e
RK
434 if (fixed_regs[i])
435 SET_HARD_REG_BIT (fixed_reg_set, i);
54dac99e
RK
436
437 if (call_used_regs[i])
438 SET_HARD_REG_BIT (call_used_reg_set, i);
439 if (call_fixed_regs[i])
440 SET_HARD_REG_BIT (call_fixed_reg_set, i);
6cad67d2
JL
441 if (CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (i)))
442 SET_HARD_REG_BIT (losing_caller_save_reg_set, i);
4e2db584
RH
443
444 /* There are a couple of fixed registers that we know are safe to
445 exclude from being clobbered by calls:
446
447 The frame pointer is always preserved across calls. The arg pointer
448 is if it is fixed. The stack pointer usually is, unless
449 RETURN_POPS_ARGS, in which case an explicit CLOBBER will be present.
450 If we are generating PIC code, the PIC offset table register is
451 preserved across calls, though the target can override that. */
a6a2274a 452
f6ae6c51
RS
453 if (i == STACK_POINTER_REGNUM)
454 ;
455 else if (global_regs[i])
456 SET_HARD_REG_BIT (regs_invalidated_by_call, i);
457 else if (i == FRAME_POINTER_REGNUM)
4e2db584
RH
458 ;
459#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
460 else if (i == HARD_FRAME_POINTER_REGNUM)
461 ;
462#endif
463#if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
464 else if (i == ARG_POINTER_REGNUM && fixed_regs[i])
465 ;
466#endif
467#ifndef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
fc555370 468 else if (i == (unsigned) PIC_OFFSET_TABLE_REGNUM && fixed_regs[i])
4e2db584
RH
469 ;
470#endif
f6ae6c51 471 else if (CALL_REALLY_USED_REGNO_P (i))
4e2db584 472 SET_HARD_REG_BIT (regs_invalidated_by_call, i);
54dac99e 473 }
4e2db584 474
26277d41 475 memset (have_regs_of_mode, 0, sizeof (have_regs_of_mode));
6836e024 476 memset (contains_reg_of_mode, 0, sizeof (contains_reg_of_mode));
dbbbbf3b 477 for (m = 0; m < (unsigned int) MAX_MACHINE_MODE; m++)
6836e024 478 for (i = 0; i < N_REG_CLASSES; i++)
f7043461 479 if ((unsigned) CLASS_MAX_NREGS (i, m) <= reg_class_size[i])
6df26b8f
JH
480 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
481 if (!fixed_regs [j] && TEST_HARD_REG_BIT (reg_class_contents[i], j)
482 && HARD_REGNO_MODE_OK (j, m))
483 {
484 contains_reg_of_mode [i][m] = 1;
26277d41 485 have_regs_of_mode [m] = 1;
6df26b8f
JH
486 break;
487 }
acbce667
KR
488
489 /* Initialize the move cost table. Find every subset of each class
490 and take the maximum cost of moving any subset to any other. */
491
dbbbbf3b 492 for (m = 0; m < (unsigned int) MAX_MACHINE_MODE; m++)
26277d41 493 if (have_regs_of_mode [m])
6836e024
JH
494 {
495 for (i = 0; i < N_REG_CLASSES; i++)
496 if (contains_reg_of_mode [i][m])
497 for (j = 0; j < N_REG_CLASSES; j++)
498 {
499 int cost;
500 enum reg_class *p1, *p2;
501
502 if (!contains_reg_of_mode [j][m])
503 {
504 move_cost[m][i][j] = 65536;
505 may_move_in_cost[m][i][j] = 65536;
506 may_move_out_cost[m][i][j] = 65536;
507 }
508 else
509 {
26a952a8 510 cost = REGISTER_MOVE_COST (m, i, j);
6836e024
JH
511
512 for (p2 = &reg_class_subclasses[j][0];
513 *p2 != LIM_REG_CLASSES;
514 p2++)
515 if (*p2 != i && contains_reg_of_mode [*p2][m])
516 cost = MAX (cost, move_cost [m][i][*p2]);
517
518 for (p1 = &reg_class_subclasses[i][0];
519 *p1 != LIM_REG_CLASSES;
520 p1++)
521 if (*p1 != j && contains_reg_of_mode [*p1][m])
522 cost = MAX (cost, move_cost [m][*p1][j]);
523
524 move_cost[m][i][j] = cost;
525
526 if (reg_class_subset_p (i, j))
527 may_move_in_cost[m][i][j] = 0;
528 else
529 may_move_in_cost[m][i][j] = cost;
530
531 if (reg_class_subset_p (j, i))
532 may_move_out_cost[m][i][j] = 0;
533 else
534 may_move_out_cost[m][i][j] = cost;
535 }
536 }
1464632b 537 else
6836e024
JH
538 for (j = 0; j < N_REG_CLASSES; j++)
539 {
540 move_cost[m][i][j] = 65536;
541 may_move_in_cost[m][i][j] = 65536;
542 may_move_out_cost[m][i][j] = 65536;
543 }
544 }
c27c5281
DE
545}
546
547/* Compute the table of register modes.
548 These values are used to record death information for individual registers
549 (as opposed to a multi-register mode). */
ca4aac00 550
28420116
PB
551void
552init_reg_modes_once (void)
c27c5281 553{
66fd46b6
JH
554 int i, j;
555
556 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
557 for (j = 0; j < MAX_MACHINE_MODE; j++)
558 hard_regno_nregs[i][j] = HARD_REGNO_NREGS(i, (enum machine_mode)j);
ca4aac00
DE
559
560 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
7f21d440 561 {
fee226d2 562 reg_raw_mode[i] = choose_hard_reg_mode (i, 1, false);
7f21d440 563
066c2fea 564 /* If we couldn't find a valid mode, just use the previous mode.
7f21d440
DE
565 ??? One situation in which we need to do this is on the mips where
566 HARD_REGNO_NREGS (fpreg, [SD]Fmode) returns 2. Ideally we'd like
567 to use DF mode for the even registers and VOIDmode for the odd
9faa82d8 568 (for the cpu models where the odd ones are inaccessible). */
7f21d440 569 if (reg_raw_mode[i] == VOIDmode)
066c2fea 570 reg_raw_mode[i] = i == 0 ? word_mode : reg_raw_mode[i-1];
7f21d440 571 }
ca4aac00
DE
572}
573
c27c5281
DE
574/* Finish initializing the register sets and
575 initialize the register modes. */
576
577void
0c20a65f 578init_regs (void)
c27c5281
DE
579{
580 /* This finishes what was started by init_reg_sets, but couldn't be done
581 until after register usage was specified. */
b93a436e 582 init_reg_sets_1 ();
c27c5281 583
1f80c9ef 584 init_reg_autoinc ();
6cde4876
JL
585}
586
587/* Initialize some fake stack-frame MEM references for use in
588 memory_move_secondary_cost. */
473fe49b 589
6cde4876 590void
0c20a65f 591init_fake_stack_mems (void)
6cde4876 592{
473fe49b 593 {
473fe49b 594 int i;
d067e2aa 595
473fe49b 596 for (i = 0; i < MAX_MACHINE_MODE; i++)
9ec36da5 597 top_of_stack[i] = gen_rtx_MEM (i, stack_pointer_rtx);
473fe49b 598 }
c27c5281
DE
599}
600
473fe49b 601
cbd5b9a2
KR
602/* Compute extra cost of moving registers to/from memory due to reloads.
603 Only needed if secondary reloads are required for memory moves. */
473fe49b 604
cbd5b9a2 605int
0c20a65f 606memory_move_secondary_cost (enum machine_mode mode, enum reg_class class, int in)
cbd5b9a2
KR
607{
608 enum reg_class altclass;
609 int partial_cost = 0;
cbd5b9a2 610 /* We need a memory reference to feed to SECONDARY... macros. */
dc297297 611 /* mem may be unused even if the SECONDARY_ macros are defined. */
272df862
KG
612 rtx mem ATTRIBUTE_UNUSED = top_of_stack[(int) mode];
613
cbd5b9a2 614
8a99f6f9 615 altclass = secondary_reload_class (in ? 1 : 0, class, mode, mem);
473fe49b 616
cbd5b9a2
KR
617 if (altclass == NO_REGS)
618 return 0;
619
620 if (in)
e56b4594 621 partial_cost = REGISTER_MOVE_COST (mode, altclass, class);
cbd5b9a2 622 else
e56b4594 623 partial_cost = REGISTER_MOVE_COST (mode, class, altclass);
cbd5b9a2
KR
624
625 if (class == altclass)
626 /* This isn't simply a copy-to-temporary situation. Can't guess
627 what it is, so MEMORY_MOVE_COST really ought not to be calling
628 here in that case.
629
41374e13 630 I'm tempted to put in an assert here, but returning this will
cbd5b9a2
KR
631 probably only give poor estimates, which is what we would've
632 had before this code anyways. */
633 return partial_cost;
634
635 /* Check if the secondary reload register will also need a
636 secondary reload. */
637 return memory_move_secondary_cost (mode, altclass, in) + partial_cost;
638}
cbd5b9a2 639
ca4aac00 640/* Return a machine mode that is legitimate for hard reg REGNO and large
fee226d2
R
641 enough to save nregs. If we can't find one, return VOIDmode.
642 If CALL_SAVED is true, only consider modes that are call saved. */
ca4aac00
DE
643
644enum machine_mode
0c20a65f 645choose_hard_reg_mode (unsigned int regno ATTRIBUTE_UNUSED,
fee226d2 646 unsigned int nregs, bool call_saved)
ca4aac00 647{
dbbbbf3b 648 unsigned int /* enum machine_mode */ m;
ca4aac00
DE
649 enum machine_mode found_mode = VOIDmode, mode;
650
651 /* We first look for the largest integer mode that can be validly
652 held in REGNO. If none, we look for the largest floating-point mode.
653 If we still didn't find a valid mode, try CCmode. */
654
655 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
656 mode != VOIDmode;
657 mode = GET_MODE_WIDER_MODE (mode))
66fd46b6 658 if ((unsigned) hard_regno_nregs[regno][mode] == nregs
fee226d2
R
659 && HARD_REGNO_MODE_OK (regno, mode)
660 && (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
ca4aac00
DE
661 found_mode = mode;
662
663 if (found_mode != VOIDmode)
664 return found_mode;
665
666 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
667 mode != VOIDmode;
668 mode = GET_MODE_WIDER_MODE (mode))
66fd46b6 669 if ((unsigned) hard_regno_nregs[regno][mode] == nregs
fee226d2
R
670 && HARD_REGNO_MODE_OK (regno, mode)
671 && (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
ca4aac00
DE
672 found_mode = mode;
673
674 if (found_mode != VOIDmode)
675 return found_mode;
676
78b583fe
AH
677 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
678 mode != VOIDmode;
679 mode = GET_MODE_WIDER_MODE (mode))
66fd46b6 680 if ((unsigned) hard_regno_nregs[regno][mode] == nregs
fee226d2
R
681 && HARD_REGNO_MODE_OK (regno, mode)
682 && (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
78b583fe
AH
683 found_mode = mode;
684
685 if (found_mode != VOIDmode)
686 return found_mode;
687
688 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
689 mode != VOIDmode;
690 mode = GET_MODE_WIDER_MODE (mode))
66fd46b6 691 if ((unsigned) hard_regno_nregs[regno][mode] == nregs
fee226d2
R
692 && HARD_REGNO_MODE_OK (regno, mode)
693 && (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
78b583fe
AH
694 found_mode = mode;
695
696 if (found_mode != VOIDmode)
697 return found_mode;
698
0548a9df 699 /* Iterate over all of the CCmodes. */
dbbbbf3b
JDA
700 for (m = (unsigned int) CCmode; m < (unsigned int) NUM_MACHINE_MODES; ++m)
701 {
702 mode = (enum machine_mode) m;
66fd46b6 703 if ((unsigned) hard_regno_nregs[regno][mode] == nregs
fee226d2
R
704 && HARD_REGNO_MODE_OK (regno, mode)
705 && (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
dbbbbf3b
JDA
706 return mode;
707 }
ca4aac00
DE
708
709 /* We can't find a mode valid for this register. */
710 return VOIDmode;
54dac99e
RK
711}
712
713/* Specify the usage characteristics of the register named NAME.
714 It should be a fixed register if FIXED and a
715 call-used register if CALL_USED. */
716
717void
0c20a65f 718fix_register (const char *name, int fixed, int call_used)
54dac99e
RK
719{
720 int i;
721
722 /* Decode the name and update the primary form of
723 the register info. */
724
e5c90c23
TW
725 if ((i = decode_reg_name (name)) >= 0)
726 {
cb2fdc84
GRK
727 if ((i == STACK_POINTER_REGNUM
728#ifdef HARD_FRAME_POINTER_REGNUM
729 || i == HARD_FRAME_POINTER_REGNUM
730#else
731 || i == FRAME_POINTER_REGNUM
732#endif
733 )
734 && (fixed == 0 || call_used == 0))
735 {
6f7d635c 736 static const char * const what_option[2][2] = {
7f7f8214
KG
737 { "call-saved", "call-used" },
738 { "no-such-option", "fixed" }};
a6a2274a
KH
739
740 error ("can't use '%s' as a %s register", name,
cb2fdc84
GRK
741 what_option[fixed][call_used]);
742 }
743 else
744 {
745 fixed_regs[i] = fixed;
746 call_used_regs[i] = call_used;
ec523c2f 747#ifdef CALL_REALLY_USED_REGISTERS
fc1296b7
AM
748 if (fixed == 0)
749 call_really_used_regs[i] = call_used;
d3259baa 750#endif
cb2fdc84 751 }
e5c90c23
TW
752 }
753 else
54dac99e 754 {
d4ee4d25 755 warning (0, "unknown register name: %s", name);
54dac99e
RK
756 }
757}
614f68e2
RK
758
759/* Mark register number I as global. */
760
761void
0c20a65f 762globalize_reg (int i)
614f68e2 763{
c07c7c9d 764 if (fixed_regs[i] == 0 && no_global_reg_vars)
6c85df69
AH
765 error ("global register variable follows a function definition");
766
614f68e2
RK
767 if (global_regs[i])
768 {
d4ee4d25 769 warning (0, "register used for two global register variables");
614f68e2
RK
770 return;
771 }
772
773 if (call_used_regs[i] && ! fixed_regs[i])
d4ee4d25 774 warning (0, "call-clobbered register used for global register variable");
614f68e2
RK
775
776 global_regs[i] = 1;
777
f6ae6c51
RS
778 /* If we're globalizing the frame pointer, we need to set the
779 appropriate regs_invalidated_by_call bit, even if it's already
780 set in fixed_regs. */
781 if (i != STACK_POINTER_REGNUM)
782 SET_HARD_REG_BIT (regs_invalidated_by_call, i);
783
614f68e2
RK
784 /* If already fixed, nothing else to do. */
785 if (fixed_regs[i])
786 return;
787
788 fixed_regs[i] = call_used_regs[i] = call_fixed_regs[i] = 1;
74ae207d
R
789#ifdef CALL_REALLY_USED_REGISTERS
790 call_really_used_regs[i] = 1;
791#endif
614f68e2
RK
792
793 SET_HARD_REG_BIT (fixed_reg_set, i);
794 SET_HARD_REG_BIT (call_used_reg_set, i);
795 SET_HARD_REG_BIT (call_fixed_reg_set, i);
796}
54dac99e
RK
797\f
798/* Now the data and code for the `regclass' pass, which happens
799 just before local-alloc. */
800
e4600702
RK
801/* The `costs' struct records the cost of using a hard register of each class
802 and of using memory for each pseudo. We use this data to set up
803 register class preferences. */
54dac99e 804
e4600702 805struct costs
54dac99e 806{
e4600702
RK
807 int cost[N_REG_CLASSES];
808 int mem_cost;
54dac99e
RK
809};
810
d55d8fc7 811/* Structure used to record preferences of given pseudo. */
9ffc5a70
JH
812struct reg_pref
813{
b5c82fa1
PB
814 /* (enum reg_class) prefclass is the preferred class. May be
815 NO_REGS if no class is better than memory. */
9ffc5a70
JH
816 char prefclass;
817
818 /* altclass is a register class that we should use for allocating
819 pseudo if no register in the preferred class is available.
820 If no register in this class is available, memory is preferred.
821
822 It might appear to be more general to have a bitmask of classes here,
823 but since it is recommended that there be a class corresponding to the
824 union of most major pair of classes, that generality is not required. */
825 char altclass;
826};
827
e4600702
RK
828/* Record the cost of each class for each pseudo. */
829
830static struct costs *costs;
831
61719ba7
BS
832/* Initialized once, and used to initialize cost values for each insn. */
833
834static struct costs init_cost;
835
d55d8fc7 836/* Record preferences of each pseudo.
54dac99e
RK
837 This is available after `regclass' is run. */
838
9ffc5a70 839static struct reg_pref *reg_pref;
54d23420 840
dc297297 841/* Allocated buffers for reg_pref. */
54dac99e 842
9ffc5a70 843static struct reg_pref *reg_pref_buffer;
6feacd09 844
9401afe3 845/* Frequency of executions of current insn. */
54d23420 846
9401afe3 847static int frequency;
54d23420 848
0c20a65f
AJ
849static rtx scan_one_insn (rtx, int);
850static void record_operand_costs (rtx, struct costs *, struct reg_pref *);
851static void dump_regclass (FILE *);
852static void record_reg_classes (int, int, rtx *, enum machine_mode *,
853 const char **, rtx, struct costs *,
854 struct reg_pref *);
8a99f6f9
R
855static int copy_cost (rtx, enum machine_mode, enum reg_class, int,
856 secondary_reload_info *);
c4963a0a
BS
857static void record_address_regs (enum machine_mode, rtx, int, enum rtx_code,
858 enum rtx_code, int);
1d300e19 859#ifdef FORBIDDEN_INC_DEC_CLASSES
0c20a65f 860static int auto_inc_dec_reg_p (rtx, enum machine_mode);
1d300e19 861#endif
3c491cab 862static void reg_scan_mark_refs (rtx, rtx, int);
54dac99e 863
c4963a0a
BS
864/* Wrapper around REGNO_OK_FOR_INDEX_P, to allow pseudo registers. */
865
866static inline bool
867ok_for_index_p_nonstrict (rtx reg)
868{
869 unsigned regno = REGNO (reg);
870 return regno >= FIRST_PSEUDO_REGISTER || REGNO_OK_FOR_INDEX_P (regno);
871}
872
873/* A version of regno_ok_for_base_p for use during regclass, when all pseudos
874 should count as OK. Arguments as for regno_ok_for_base_p. */
875
876static inline bool
877ok_for_base_p_nonstrict (rtx reg, enum machine_mode mode,
878 enum rtx_code outer_code, enum rtx_code index_code)
879{
880 unsigned regno = REGNO (reg);
881 if (regno >= FIRST_PSEUDO_REGISTER)
882 return true;
883
884 return ok_for_base_p_1 (regno, mode, outer_code, index_code);
885}
886
54dac99e
RK
887/* Return the reg_class in which pseudo reg number REGNO is best allocated.
888 This function is sometimes called before the info has been computed.
889 When that happens, just return GENERAL_REGS, which is innocuous. */
890
891enum reg_class
0c20a65f 892reg_preferred_class (int regno)
54dac99e 893{
9ffc5a70 894 if (reg_pref == 0)
54dac99e 895 return GENERAL_REGS;
9ffc5a70 896 return (enum reg_class) reg_pref[regno].prefclass;
54dac99e
RK
897}
898
e4600702 899enum reg_class
0c20a65f 900reg_alternate_class (int regno)
54dac99e 901{
9ffc5a70 902 if (reg_pref == 0)
e4600702
RK
903 return ALL_REGS;
904
9ffc5a70 905 return (enum reg_class) reg_pref[regno].altclass;
54dac99e
RK
906}
907
61719ba7 908/* Initialize some global data for this pass. */
54dac99e
RK
909
910void
0c20a65f 911regclass_init (void)
54dac99e 912{
61719ba7
BS
913 int i;
914
915 init_cost.mem_cost = 10000;
916 for (i = 0; i < N_REG_CLASSES; i++)
917 init_cost.cost[i] = 10000;
918
919 /* This prevents dump_flow_info from losing if called
920 before regclass is run. */
9ffc5a70 921 reg_pref = NULL;
6c85df69 922
dc297297 923 /* No more global register variables may be declared. */
6c85df69 924 no_global_reg_vars = 1;
54dac99e 925}
246fd41f
JH
926\f
927/* Dump register costs. */
915b80ed 928static void
0c20a65f 929dump_regclass (FILE *dump)
246fd41f 930{
246fd41f
JH
931 int i;
932 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
933 {
dbbbbf3b 934 int /* enum reg_class */ class;
246fd41f
JH
935 if (REG_N_REFS (i))
936 {
f741a71c 937 fprintf (dump, " Register %i costs:", i);
dbbbbf3b
JDA
938 for (class = 0; class < (int) N_REG_CLASSES; class++)
939 if (contains_reg_of_mode [(enum reg_class) class][PSEUDO_REGNO_MODE (i)]
6df26b8f 940#ifdef FORBIDDEN_INC_DEC_CLASSES
dbbbbf3b
JDA
941 && (!in_inc_dec[i]
942 || !forbidden_inc_dec_class[(enum reg_class) class])
6df26b8f 943#endif
cff9f8d5
AH
944#ifdef CANNOT_CHANGE_MODE_CLASS
945 && ! invalid_mode_change_p (i, (enum reg_class) class,
946 PSEUDO_REGNO_MODE (i))
6df26b8f
JH
947#endif
948 )
dbbbbf3b
JDA
949 fprintf (dump, " %s:%i", reg_class_names[class],
950 costs[i].cost[(enum reg_class) class]);
f741a71c 951 fprintf (dump, " MEM:%i\n", costs[i].mem_cost);
246fd41f
JH
952 }
953 }
954}
f741a71c
JH
955\f
956
957/* Calculate the costs of insn operands. */
958
959static void
0c20a65f
AJ
960record_operand_costs (rtx insn, struct costs *op_costs,
961 struct reg_pref *reg_pref)
f741a71c
JH
962{
963 const char *constraints[MAX_RECOG_OPERANDS];
964 enum machine_mode modes[MAX_RECOG_OPERANDS];
f741a71c
JH
965 int i;
966
967 for (i = 0; i < recog_data.n_operands; i++)
968 {
969 constraints[i] = recog_data.constraints[i];
970 modes[i] = recog_data.operand_mode[i];
971 }
f741a71c
JH
972
973 /* If we get here, we are set up to record the costs of all the
974 operands for this insn. Start by initializing the costs.
975 Then handle any address registers. Finally record the desired
976 classes for any pseudos, doing it twice if some pair of
977 operands are commutative. */
a6a2274a 978
f741a71c
JH
979 for (i = 0; i < recog_data.n_operands; i++)
980 {
981 op_costs[i] = init_cost;
982
983 if (GET_CODE (recog_data.operand[i]) == SUBREG)
cff9f8d5 984 recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
f741a71c 985
3c0cb5de 986 if (MEM_P (recog_data.operand[i]))
c4963a0a
BS
987 record_address_regs (GET_MODE (recog_data.operand[i]),
988 XEXP (recog_data.operand[i], 0),
989 0, MEM, SCRATCH, frequency * 2);
ccfc6cc8 990 else if (constraints[i][0] == 'p'
97488870 991 || EXTRA_ADDRESS_CONSTRAINT (constraints[i][0], constraints[i]))
c4963a0a
BS
992 record_address_regs (VOIDmode, recog_data.operand[i], 0, ADDRESS,
993 SCRATCH, frequency * 2);
f741a71c
JH
994 }
995
996 /* Check for commutative in a separate loop so everything will
997 have been initialized. We must do this even if one operand
998 is a constant--see addsi3 in m68k.md. */
999
1000 for (i = 0; i < (int) recog_data.n_operands - 1; i++)
1001 if (constraints[i][0] == '%')
1002 {
1003 const char *xconstraints[MAX_RECOG_OPERANDS];
1004 int j;
246fd41f 1005
f741a71c
JH
1006 /* Handle commutative operands by swapping the constraints.
1007 We assume the modes are the same. */
1008
1009 for (j = 0; j < recog_data.n_operands; j++)
1010 xconstraints[j] = constraints[j];
1011
1012 xconstraints[i] = constraints[i+1];
1013 xconstraints[i+1] = constraints[i];
1014 record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
a6a2274a 1015 recog_data.operand, modes,
f741a71c
JH
1016 xconstraints, insn, op_costs, reg_pref);
1017 }
1018
1019 record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
a6a2274a 1020 recog_data.operand, modes,
f741a71c
JH
1021 constraints, insn, op_costs, reg_pref);
1022}
54dac99e 1023\f
61719ba7
BS
1024/* Subroutine of regclass, processes one insn INSN. Scan it and record each
1025 time it would save code to put a certain register in a certain class.
1026 PASS, when nonzero, inhibits some optimizations which need only be done
1027 once.
1028 Return the last insn processed, so that the scan can be continued from
1029 there. */
1030
1031static rtx
0c20a65f 1032scan_one_insn (rtx insn, int pass)
61719ba7 1033{
61719ba7 1034 enum rtx_code pat_code;
0eadeb15 1035 rtx set, note;
61719ba7 1036 int i, j;
f741a71c 1037 struct costs op_costs[MAX_RECOG_OPERANDS];
61719ba7 1038
ec8e098d 1039 if (!INSN_P (insn))
61719ba7
BS
1040 return insn;
1041
1042 pat_code = GET_CODE (PATTERN (insn));
1043 if (pat_code == USE
1044 || pat_code == CLOBBER
1045 || pat_code == ASM_INPUT
1046 || pat_code == ADDR_VEC
1047 || pat_code == ADDR_DIFF_VEC)
1048 return insn;
1049
0eadeb15
BS
1050 set = single_set (insn);
1051 extract_insn (insn);
1052
0eadeb15
BS
1053 /* If this insn loads a parameter from its stack slot, then
1054 it represents a savings, rather than a cost, if the
1055 parameter is stored in memory. Record this fact. */
61719ba7 1056
f8cfc6aa 1057 if (set != 0 && REG_P (SET_DEST (set))
3c0cb5de 1058 && MEM_P (SET_SRC (set))
0eadeb15
BS
1059 && (note = find_reg_note (insn, REG_EQUIV,
1060 NULL_RTX)) != 0
3c0cb5de 1061 && MEM_P (XEXP (note, 0)))
0eadeb15
BS
1062 {
1063 costs[REGNO (SET_DEST (set))].mem_cost
1064 -= (MEMORY_MOVE_COST (GET_MODE (SET_DEST (set)),
1065 GENERAL_REGS, 1)
9401afe3 1066 * frequency);
c4963a0a
BS
1067 record_address_regs (GET_MODE (SET_SRC (set)), XEXP (SET_SRC (set), 0),
1068 0, MEM, SCRATCH, frequency * 2);
0eadeb15
BS
1069 return insn;
1070 }
61719ba7 1071
0eadeb15
BS
1072 /* Improve handling of two-address insns such as
1073 (set X (ashift CONST Y)) where CONST must be made to
1074 match X. Change it into two insns: (set X CONST)
1075 (set X (ashift X Y)). If we left this for reloading, it
1076 would probably get three insns because X and Y might go
1077 in the same place. This prevents X and Y from receiving
1078 the same hard reg.
1079
1080 We can only do this if the modes of operands 0 and 1
1081 (which might not be the same) are tieable and we only need
1082 do this during our first pass. */
1083
1084 if (pass == 0 && optimize
1ccbefce
RH
1085 && recog_data.n_operands >= 3
1086 && recog_data.constraints[1][0] == '0'
1087 && recog_data.constraints[1][1] == 0
1088 && CONSTANT_P (recog_data.operand[1])
1089 && ! rtx_equal_p (recog_data.operand[0], recog_data.operand[1])
1090 && ! rtx_equal_p (recog_data.operand[0], recog_data.operand[2])
f8cfc6aa 1091 && REG_P (recog_data.operand[0])
1ccbefce
RH
1092 && MODES_TIEABLE_P (GET_MODE (recog_data.operand[0]),
1093 recog_data.operand_mode[1]))
0eadeb15
BS
1094 {
1095 rtx previnsn = prev_real_insn (insn);
1096 rtx dest
1ccbefce
RH
1097 = gen_lowpart (recog_data.operand_mode[1],
1098 recog_data.operand[0]);
0eadeb15 1099 rtx newinsn
1ccbefce 1100 = emit_insn_before (gen_move_insn (dest, recog_data.operand[1]), insn);
61719ba7 1101
0eadeb15
BS
1102 /* If this insn was the start of a basic block,
1103 include the new insn in that block.
1104 We need not check for code_label here;
1105 while a basic block can start with a code_label,
1106 INSN could not be at the beginning of that block. */
4b4bf941 1107 if (previnsn == 0 || JUMP_P (previnsn))
61719ba7 1108 {
e0082a72
ZD
1109 basic_block b;
1110 FOR_EACH_BB (b)
a813c111
SB
1111 if (insn == BB_HEAD (b))
1112 BB_HEAD (b) = newinsn;
61719ba7
BS
1113 }
1114
0eadeb15 1115 /* This makes one more setting of new insns's dest. */
1ccbefce 1116 REG_N_SETS (REGNO (recog_data.operand[0]))++;
d3c7d45e 1117 REG_N_REFS (REGNO (recog_data.operand[0]))++;
9401afe3 1118 REG_FREQ (REGNO (recog_data.operand[0])) += frequency;
61719ba7 1119
1ccbefce 1120 *recog_data.operand_loc[1] = recog_data.operand[0];
d3c7d45e 1121 REG_N_REFS (REGNO (recog_data.operand[0]))++;
9401afe3 1122 REG_FREQ (REGNO (recog_data.operand[0])) += frequency;
1ccbefce
RH
1123 for (i = recog_data.n_dups - 1; i >= 0; i--)
1124 if (recog_data.dup_num[i] == 1)
d3c7d45e
AO
1125 {
1126 *recog_data.dup_loc[i] = recog_data.operand[0];
1127 REG_N_REFS (REGNO (recog_data.operand[0]))++;
9401afe3 1128 REG_FREQ (REGNO (recog_data.operand[0])) += frequency;
d3c7d45e 1129 }
61719ba7 1130
0eadeb15 1131 return PREV_INSN (newinsn);
61719ba7
BS
1132 }
1133
4963c995 1134 record_operand_costs (insn, op_costs, reg_pref);
61719ba7
BS
1135
1136 /* Now add the cost for each operand to the total costs for
1137 its register. */
1138
1ccbefce 1139 for (i = 0; i < recog_data.n_operands; i++)
f8cfc6aa 1140 if (REG_P (recog_data.operand[i])
1ccbefce 1141 && REGNO (recog_data.operand[i]) >= FIRST_PSEUDO_REGISTER)
61719ba7 1142 {
1ccbefce 1143 int regno = REGNO (recog_data.operand[i]);
61719ba7
BS
1144 struct costs *p = &costs[regno], *q = &op_costs[i];
1145
9401afe3 1146 p->mem_cost += q->mem_cost * frequency;
61719ba7 1147 for (j = 0; j < N_REG_CLASSES; j++)
9401afe3 1148 p->cost[j] += q->cost[j] * frequency;
61719ba7
BS
1149 }
1150
1151 return insn;
1152}
1153
1f80c9ef
MS
1154/* Initialize information about which register classes can be used for
1155 pseudos that are auto-incremented or auto-decremented. */
54dac99e 1156
1f80c9ef 1157static void
0c20a65f 1158init_reg_autoinc (void)
54dac99e 1159{
533d0835 1160#ifdef FORBIDDEN_INC_DEC_CLASSES
1f80c9ef 1161 int i;
533d0835
RK
1162
1163 for (i = 0; i < N_REG_CLASSES; i++)
1164 {
1f80c9ef 1165 rtx r = gen_rtx_raw_REG (VOIDmode, 0);
533d0835 1166 enum machine_mode m;
b3694847 1167 int j;
533d0835
RK
1168
1169 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
1170 if (TEST_HARD_REG_BIT (reg_class_contents[i], j))
1171 {
1172 REGNO (r) = j;
1173
1174 for (m = VOIDmode; (int) m < (int) MAX_MACHINE_MODE;
808043ed 1175 m = (enum machine_mode) ((int) m + 1))
533d0835
RK
1176 if (HARD_REGNO_MODE_OK (j, m))
1177 {
c4963a0a
BS
1178 /* ??? There are two assumptions here; that the base class does not
1179 depend on the exact outer code (POST_INC vs. PRE_INC etc.), and
1180 that it does not depend on the machine mode of the memory
1181 reference. */
1182 enum reg_class base_class
1183 = base_reg_class (VOIDmode, POST_INC, SCRATCH);
8a99f6f9 1184
533d0835 1185 PUT_MODE (r, m);
08d95f91
RK
1186
1187 /* If a register is not directly suitable for an
1188 auto-increment or decrement addressing mode and
1189 requires secondary reloads, disallow its class from
1190 being used in such addresses. */
1191
8a99f6f9
R
1192 if ((secondary_reload_class (1, base_class, m, r)
1193 || secondary_reload_class (1, base_class, m, r))
08d95f91 1194 && ! auto_inc_dec_reg_p (r, m))
533d0835
RK
1195 forbidden_inc_dec_class[i] = 1;
1196 }
1197 }
1198 }
1f80c9ef
MS
1199#endif /* FORBIDDEN_INC_DEC_CLASSES */
1200}
1201
1202/* This is a pass of the compiler that scans all instructions
1203 and calculates the preferred class for each pseudo-register.
1204 This information can be accessed later by calling `reg_preferred_class'.
1205 This pass comes just before local register allocation. */
1206
1207void
10d22567 1208regclass (rtx f, int nregs)
1f80c9ef
MS
1209{
1210 rtx insn;
1211 int i;
1212 int pass;
1213
1214 init_recog ();
1215
5ed6ace5 1216 costs = XNEWVEC (struct costs, nregs);
1f80c9ef
MS
1217
1218#ifdef FORBIDDEN_INC_DEC_CLASSES
1219
5ed6ace5 1220 in_inc_dec = XNEWVEC (char, nregs);
1f80c9ef 1221
533d0835
RK
1222#endif /* FORBIDDEN_INC_DEC_CLASSES */
1223
e4600702
RK
1224 /* Normally we scan the insns once and determine the best class to use for
1225 each register. However, if -fexpensive_optimizations are on, we do so
1226 twice, the second time using the tentative best classes to guide the
1227 selection. */
54dac99e 1228
e4600702
RK
1229 for (pass = 0; pass <= flag_expensive_optimizations; pass++)
1230 {
e0082a72 1231 basic_block bb;
f741a71c 1232
10d22567
ZD
1233 if (dump_file)
1234 fprintf (dump_file, "\n\nPass %i\n\n",pass);
e4600702 1235 /* Zero out our accumulation of the cost of each class for each reg. */
54dac99e 1236
703ad42b 1237 memset (costs, 0, nregs * sizeof (struct costs));
54dac99e 1238
533d0835 1239#ifdef FORBIDDEN_INC_DEC_CLASSES
961192e1 1240 memset (in_inc_dec, 0, nregs);
533d0835
RK
1241#endif
1242
e4600702
RK
1243 /* Scan the instructions and record each time it would
1244 save code to put a certain register in a certain class. */
1245
1f01879e 1246 if (!optimize)
54dac99e 1247 {
a08b2604 1248 frequency = REG_FREQ_MAX;
1f01879e
JH
1249 for (insn = f; insn; insn = NEXT_INSN (insn))
1250 insn = scan_one_insn (insn, pass);
54dac99e 1251 }
1f01879e 1252 else
e0082a72 1253 FOR_EACH_BB (bb)
1f01879e 1254 {
1f01879e 1255 /* Show that an insn inside a loop is likely to be executed three
9b15c17f
RH
1256 times more than insns outside a loop. This is much more
1257 aggressive than the assumptions made elsewhere and is being
1258 tried as an experiment. */
a08b2604 1259 frequency = REG_FREQ_FROM_BB (bb);
a813c111 1260 for (insn = BB_HEAD (bb); ; insn = NEXT_INSN (insn))
1f01879e
JH
1261 {
1262 insn = scan_one_insn (insn, pass);
a813c111 1263 if (insn == BB_END (bb))
1f01879e
JH
1264 break;
1265 }
1266 }
a6a2274a 1267
e4600702
RK
1268 /* Now for each register look at how desirable each class is
1269 and find which class is preferred. Store that in
9ffc5a70 1270 `prefclass'. Record in `altclass' the largest register
e4600702 1271 class any of whose registers is better than memory. */
a6a2274a 1272
e4600702 1273 if (pass == 0)
9ffc5a70 1274 reg_pref = reg_pref_buffer;
54dac99e 1275
10d22567 1276 if (dump_file)
a6a2274a 1277 {
10d22567
ZD
1278 dump_regclass (dump_file);
1279 fprintf (dump_file,"\n");
f741a71c 1280 }
e4600702 1281 for (i = FIRST_PSEUDO_REGISTER; i < nregs; i++)
54dac99e 1282 {
b3694847 1283 int best_cost = (1 << (HOST_BITS_PER_INT - 2)) - 1;
e4600702
RK
1284 enum reg_class best = ALL_REGS, alt = NO_REGS;
1285 /* This is an enum reg_class, but we call it an int
1286 to save lots of casts. */
b3694847
SS
1287 int class;
1288 struct costs *p = &costs[i];
e4600702 1289
64615302
JH
1290 /* In non-optimizing compilation REG_N_REFS is not initialized
1291 yet. */
ed8d2920 1292 if (optimize && !REG_N_REFS (i) && !REG_N_SETS (i))
f741a71c
JH
1293 continue;
1294
e4600702 1295 for (class = (int) ALL_REGS - 1; class > 0; class--)
54dac99e 1296 {
533d0835 1297 /* Ignore classes that are too small for this operand or
4fe9b91c 1298 invalid for an operand that was auto-incremented. */
6df26b8f 1299 if (!contains_reg_of_mode [class][PSEUDO_REGNO_MODE (i)]
533d0835
RK
1300#ifdef FORBIDDEN_INC_DEC_CLASSES
1301 || (in_inc_dec[i] && forbidden_inc_dec_class[class])
e79f71f7 1302#endif
cff9f8d5
AH
1303#ifdef CANNOT_CHANGE_MODE_CLASS
1304 || invalid_mode_change_p (i, (enum reg_class) class,
1305 PSEUDO_REGNO_MODE (i))
533d0835
RK
1306#endif
1307 )
e4600702
RK
1308 ;
1309 else if (p->cost[class] < best_cost)
1310 {
1311 best_cost = p->cost[class];
1312 best = (enum reg_class) class;
1313 }
1314 else if (p->cost[class] == best_cost)
8e2e89f7 1315 best = reg_class_subunion[(int) best][class];
54dac99e 1316 }
54dac99e 1317
b5c82fa1
PB
1318 /* If no register class is better than memory, use memory. */
1319 if (p->mem_cost < best_cost)
1320 best = NO_REGS;
1321
e4600702
RK
1322 /* Record the alternate register class; i.e., a class for which
1323 every register in it is better than using memory. If adding a
1324 class would make a smaller class (i.e., no union of just those
1325 classes exists), skip that class. The major unions of classes
1326 should be provided as a register class. Don't do this if we
1327 will be doing it again later. */
1328
10d22567 1329 if ((pass == 1 || dump_file) || ! flag_expensive_optimizations)
e4600702
RK
1330 for (class = 0; class < N_REG_CLASSES; class++)
1331 if (p->cost[class] < p->mem_cost
77edb222 1332 && (reg_class_size[(int) reg_class_subunion[(int) alt][class]]
533d0835
RK
1333 > reg_class_size[(int) alt])
1334#ifdef FORBIDDEN_INC_DEC_CLASSES
1335 && ! (in_inc_dec[i] && forbidden_inc_dec_class[class])
e79f71f7 1336#endif
cff9f8d5
AH
1337#ifdef CANNOT_CHANGE_MODE_CLASS
1338 && ! invalid_mode_change_p (i, (enum reg_class) class,
1339 PSEUDO_REGNO_MODE (i))
533d0835
RK
1340#endif
1341 )
e4600702 1342 alt = reg_class_subunion[(int) alt][class];
a6a2274a 1343
e4600702
RK
1344 /* If we don't add any classes, nothing to try. */
1345 if (alt == best)
995d54dd 1346 alt = NO_REGS;
e4600702 1347
10d22567 1348 if (dump_file
f741a71c
JH
1349 && (reg_pref[i].prefclass != (int) best
1350 || reg_pref[i].altclass != (int) alt))
1351 {
10d22567 1352 fprintf (dump_file, " Register %i", i);
f741a71c 1353 if (alt == ALL_REGS || best == ALL_REGS)
10d22567 1354 fprintf (dump_file, " pref %s\n", reg_class_names[(int) best]);
f741a71c 1355 else if (alt == NO_REGS)
10d22567 1356 fprintf (dump_file, " pref %s or none\n", reg_class_names[(int) best]);
f741a71c 1357 else
10d22567 1358 fprintf (dump_file, " pref %s, else %s\n",
f741a71c
JH
1359 reg_class_names[(int) best],
1360 reg_class_names[(int) alt]);
1361 }
1362
e4600702 1363 /* We cast to (int) because (char) hits bugs in some compilers. */
9ffc5a70
JH
1364 reg_pref[i].prefclass = (int) best;
1365 reg_pref[i].altclass = (int) alt;
e4600702 1366 }
54dac99e 1367 }
56a65848 1368
4da896b2
MM
1369#ifdef FORBIDDEN_INC_DEC_CLASSES
1370 free (in_inc_dec);
1371#endif
56a65848 1372 free (costs);
54dac99e
RK
1373}
1374\f
e4600702
RK
1375/* Record the cost of using memory or registers of various classes for
1376 the operands in INSN.
54dac99e 1377
e4600702 1378 N_ALTS is the number of alternatives.
54dac99e 1379
e4600702
RK
1380 N_OPS is the number of operands.
1381
1382 OPS is an array of the operands.
1383
1384 MODES are the modes of the operands, in case any are VOIDmode.
1385
1386 CONSTRAINTS are the constraints to use for the operands. This array
1387 is modified by this procedure.
1388
1389 This procedure works alternative by alternative. For each alternative
1390 we assume that we will be able to allocate all pseudos to their ideal
1391 register class and calculate the cost of using that alternative. Then
a6a2274a 1392 we compute for each operand that is a pseudo-register, the cost of
e4600702
RK
1393 having the pseudo allocated to each register class and using it in that
1394 alternative. To this cost is added the cost of the alternative.
1395
1396 The cost of each class for this insn is its lowest cost among all the
1397 alternatives. */
1398
1399static void
0c20a65f
AJ
1400record_reg_classes (int n_alts, int n_ops, rtx *ops,
1401 enum machine_mode *modes, const char **constraints,
1402 rtx insn, struct costs *op_costs,
1403 struct reg_pref *reg_pref)
54dac99e 1404{
e4600702 1405 int alt;
e4600702 1406 int i, j;
ec2d92af 1407 rtx set;
e4600702 1408
e4600702
RK
1409 /* Process each alternative, each time minimizing an operand's cost with
1410 the cost for each operand in that alternative. */
54dac99e 1411
e4600702 1412 for (alt = 0; alt < n_alts; alt++)
54dac99e 1413 {
e4600702
RK
1414 struct costs this_op_costs[MAX_RECOG_OPERANDS];
1415 int alt_fail = 0;
1416 int alt_cost = 0;
1417 enum reg_class classes[MAX_RECOG_OPERANDS];
da2c0219 1418 int allows_mem[MAX_RECOG_OPERANDS];
e4600702 1419 int class;
54dac99e 1420
e4600702
RK
1421 for (i = 0; i < n_ops; i++)
1422 {
9b3142b3 1423 const char *p = constraints[i];
e4600702
RK
1424 rtx op = ops[i];
1425 enum machine_mode mode = modes[i];
94e6f783 1426 int allows_addr = 0;
e4600702 1427 int win = 0;
e51712db 1428 unsigned char c;
54dac99e 1429
7405d9a1
DE
1430 /* Initially show we know nothing about the register class. */
1431 classes[i] = NO_REGS;
da2c0219 1432 allows_mem[i] = 0;
7405d9a1 1433
a6a2274a 1434 /* If this operand has no constraints at all, we can conclude
e4600702 1435 nothing about it since anything is valid. */
54dac99e 1436
e4600702
RK
1437 if (*p == 0)
1438 {
f8cfc6aa 1439 if (REG_P (op) && REGNO (op) >= FIRST_PSEUDO_REGISTER)
703ad42b 1440 memset (&this_op_costs[i], 0, sizeof this_op_costs[i]);
54dac99e 1441
e4600702
RK
1442 continue;
1443 }
54dac99e 1444
7405d9a1
DE
1445 /* If this alternative is only relevant when this operand
1446 matches a previous operand, we do different things depending
1447 on whether this operand is a pseudo-reg or not. We must process
1448 any modifiers for the operand before we can make this test. */
1449
8c368ee2 1450 while (*p == '%' || *p == '=' || *p == '+' || *p == '&')
0eadeb15 1451 p++;
8c368ee2 1452
e4600702
RK
1453 if (p[0] >= '0' && p[0] <= '0' + i && (p[1] == ',' || p[1] == 0))
1454 {
da2c0219
RK
1455 /* Copy class and whether memory is allowed from the matching
1456 alternative. Then perform any needed cost computations
1457 and/or adjustments. */
e4600702
RK
1458 j = p[0] - '0';
1459 classes[i] = classes[j];
da2c0219 1460 allows_mem[i] = allows_mem[j];
e4600702 1461
f8cfc6aa 1462 if (!REG_P (op) || REGNO (op) < FIRST_PSEUDO_REGISTER)
e4600702
RK
1463 {
1464 /* If this matches the other operand, we have no added
dc903608 1465 cost and we win. */
e4600702 1466 if (rtx_equal_p (ops[j], op))
dc903608 1467 win = 1;
e4600702 1468
77e67eac
RK
1469 /* If we can put the other operand into a register, add to
1470 the cost of this alternative the cost to copy this
1471 operand to the register used for the other operand. */
e4600702 1472
dc903608 1473 else if (classes[j] != NO_REGS)
8a99f6f9
R
1474 {
1475 alt_cost += copy_cost (op, mode, classes[j], 1, NULL);
1476 win = 1;
1477 }
e4600702 1478 }
f8cfc6aa 1479 else if (!REG_P (ops[j])
07d8ca2d
RS
1480 || REGNO (ops[j]) < FIRST_PSEUDO_REGISTER)
1481 {
1482 /* This op is a pseudo but the one it matches is not. */
a6a2274a 1483
07d8ca2d
RS
1484 /* If we can't put the other operand into a register, this
1485 alternative can't be used. */
1486
1487 if (classes[j] == NO_REGS)
1488 alt_fail = 1;
e4600702 1489
07d8ca2d
RS
1490 /* Otherwise, add to the cost of this alternative the cost
1491 to copy the other operand to the register used for this
1492 operand. */
1493
1494 else
8a99f6f9 1495 alt_cost += copy_cost (ops[j], mode, classes[j], 1, NULL);
07d8ca2d 1496 }
e4600702
RK
1497 else
1498 {
da2c0219
RK
1499 /* The costs of this operand are not the same as the other
1500 operand since move costs are not symmetric. Moreover,
1501 if we cannot tie them, this alternative needs to do a
1502 copy, which is one instruction. */
1503
1504 struct costs *pp = &this_op_costs[i];
1505
1506 for (class = 0; class < N_REG_CLASSES; class++)
1507 pp->cost[class]
d5e2075d 1508 = ((recog_data.operand_type[i] != OP_OUT
e56b4594 1509 ? may_move_in_cost[mode][class][(int) classes[i]]
d5e2075d
JH
1510 : 0)
1511 + (recog_data.operand_type[i] != OP_IN
e56b4594 1512 ? may_move_out_cost[mode][(int) classes[i]][class]
d5e2075d 1513 : 0));
a6a2274a 1514
da2c0219
RK
1515 /* If the alternative actually allows memory, make things
1516 a bit cheaper since we won't need an extra insn to
1517 load it. */
1518
1519 pp->mem_cost
d5e2075d
JH
1520 = ((recog_data.operand_type[i] != OP_IN
1521 ? MEMORY_MOVE_COST (mode, classes[i], 0)
1522 : 0)
1523 + (recog_data.operand_type[i] != OP_OUT
1524 ? MEMORY_MOVE_COST (mode, classes[i], 1)
1525 : 0) - allows_mem[i]);
da2c0219
RK
1526
1527 /* If we have assigned a class to this register in our
1528 first pass, add a cost to this alternative corresponding
1529 to what we would add if this register were not in the
1530 appropriate class. */
1531
b5c82fa1 1532 if (reg_pref && reg_pref[REGNO (op)].prefclass != NO_REGS)
da2c0219 1533 alt_cost
e56b4594
AO
1534 += (may_move_in_cost[mode]
1535 [(unsigned char) reg_pref[REGNO (op)].prefclass]
da2c0219 1536 [(int) classes[i]]);
e4600702 1537
37747c82
RK
1538 if (REGNO (ops[i]) != REGNO (ops[j])
1539 && ! find_reg_note (insn, REG_DEAD, op))
1540 alt_cost += 2;
e4600702 1541
347099d6 1542 /* This is in place of ordinary cost computation
1ddb342a
RK
1543 for this operand, so skip to the end of the
1544 alternative (should be just one character). */
1545 while (*p && *p++ != ',')
1546 ;
1547
1548 constraints[i] = p;
347099d6
RS
1549 continue;
1550 }
e4600702
RK
1551 }
1552
1553 /* Scan all the constraint letters. See if the operand matches
1554 any of the constraints. Collect the valid register classes
1555 and see if this operand accepts memory. */
1556
97488870
R
1557 while ((c = *p))
1558 {
1559 switch (c)
1560 {
1561 case ',':
1562 break;
1563 case '*':
1564 /* Ignore the next letter for this pass. */
1565 c = *++p;
1566 break;
94e6f783 1567
97488870
R
1568 case '?':
1569 alt_cost += 2;
1570 case '!': case '#': case '&':
1571 case '0': case '1': case '2': case '3': case '4':
1572 case '5': case '6': case '7': case '8': case '9':
1573 break;
e4600702 1574
97488870
R
1575 case 'p':
1576 allows_addr = 1;
1577 win = address_operand (op, GET_MODE (op));
1578 /* We know this operand is an address, so we want it to be
1579 allocated to a register that can be the base of an
454ff5cb 1580 address, i.e. BASE_REG_CLASS. */
97488870
R
1581 classes[i]
1582 = reg_class_subunion[(int) classes[i]]
c4963a0a 1583 [(int) base_reg_class (VOIDmode, ADDRESS, SCRATCH)];
97488870 1584 break;
e4600702 1585
97488870
R
1586 case 'm': case 'o': case 'V':
1587 /* It doesn't seem worth distinguishing between offsettable
1588 and non-offsettable addresses here. */
1589 allows_mem[i] = 1;
3c0cb5de 1590 if (MEM_P (op))
97488870
R
1591 win = 1;
1592 break;
e4600702 1593
97488870 1594 case '<':
3c0cb5de 1595 if (MEM_P (op)
97488870
R
1596 && (GET_CODE (XEXP (op, 0)) == PRE_DEC
1597 || GET_CODE (XEXP (op, 0)) == POST_DEC))
1598 win = 1;
1599 break;
e4600702 1600
97488870 1601 case '>':
3c0cb5de 1602 if (MEM_P (op)
97488870
R
1603 && (GET_CODE (XEXP (op, 0)) == PRE_INC
1604 || GET_CODE (XEXP (op, 0)) == POST_INC))
1605 win = 1;
1606 break;
e4600702 1607
97488870
R
1608 case 'E':
1609 case 'F':
1610 if (GET_CODE (op) == CONST_DOUBLE
1611 || (GET_CODE (op) == CONST_VECTOR
1612 && (GET_MODE_CLASS (GET_MODE (op))
1613 == MODE_VECTOR_FLOAT)))
1614 win = 1;
1615 break;
e4600702 1616
97488870
R
1617 case 'G':
1618 case 'H':
1619 if (GET_CODE (op) == CONST_DOUBLE
1620 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, c, p))
1621 win = 1;
e4600702 1622 break;
97488870
R
1623
1624 case 's':
1625 if (GET_CODE (op) == CONST_INT
1626 || (GET_CODE (op) == CONST_DOUBLE
1627 && GET_MODE (op) == VOIDmode))
1628 break;
1629 case 'i':
1630 if (CONSTANT_P (op)
2e4e72b1 1631 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op)))
97488870
R
1632 win = 1;
1633 break;
e4600702 1634
97488870
R
1635 case 'n':
1636 if (GET_CODE (op) == CONST_INT
1637 || (GET_CODE (op) == CONST_DOUBLE
1638 && GET_MODE (op) == VOIDmode))
1639 win = 1;
1640 break;
e4600702 1641
97488870
R
1642 case 'I':
1643 case 'J':
1644 case 'K':
1645 case 'L':
1646 case 'M':
1647 case 'N':
1648 case 'O':
1649 case 'P':
1650 if (GET_CODE (op) == CONST_INT
1651 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), c, p))
1652 win = 1;
1653 break;
e4600702 1654
97488870
R
1655 case 'X':
1656 win = 1;
1657 break;
54dac99e 1658
97488870 1659 case 'g':
3c0cb5de 1660 if (MEM_P (op)
97488870 1661 || (CONSTANT_P (op)
2e4e72b1 1662 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))))
97488870
R
1663 win = 1;
1664 allows_mem[i] = 1;
1665 case 'r':
c2cba7a9 1666 classes[i]
97488870
R
1667 = reg_class_subunion[(int) classes[i]][(int) GENERAL_REGS];
1668 break;
ccfc6cc8 1669
97488870
R
1670 default:
1671 if (REG_CLASS_FROM_CONSTRAINT (c, p) != NO_REGS)
ccfc6cc8
UW
1672 classes[i]
1673 = reg_class_subunion[(int) classes[i]]
97488870
R
1674 [(int) REG_CLASS_FROM_CONSTRAINT (c, p)];
1675#ifdef EXTRA_CONSTRAINT_STR
1676 else if (EXTRA_CONSTRAINT_STR (op, c, p))
1677 win = 1;
1678
1679 if (EXTRA_MEMORY_CONSTRAINT (c, p))
1680 {
1681 /* Every MEM can be reloaded to fit. */
1682 allows_mem[i] = 1;
3c0cb5de 1683 if (MEM_P (op))
97488870
R
1684 win = 1;
1685 }
1686 if (EXTRA_ADDRESS_CONSTRAINT (c, p))
1687 {
1688 /* Every address can be reloaded to fit. */
1689 allows_addr = 1;
1690 if (address_operand (op, GET_MODE (op)))
1691 win = 1;
1692 /* We know this operand is an address, so we want it to
1693 be allocated to a register that can be the base of an
454ff5cb 1694 address, i.e. BASE_REG_CLASS. */
97488870
R
1695 classes[i]
1696 = reg_class_subunion[(int) classes[i]]
c4963a0a 1697 [(int) base_reg_class (VOIDmode, ADDRESS, SCRATCH)];
97488870 1698 }
c2cba7a9 1699#endif
97488870
R
1700 break;
1701 }
1702 p += CONSTRAINT_LEN (c, p);
1703 if (c == ',')
c2cba7a9 1704 break;
97488870 1705 }
e4600702
RK
1706
1707 constraints[i] = p;
1708
1709 /* How we account for this operand now depends on whether it is a
1710 pseudo register or not. If it is, we first check if any
1711 register classes are valid. If not, we ignore this alternative,
1712 since we want to assume that all pseudos get allocated for
1713 register preferencing. If some register class is valid, compute
1714 the costs of moving the pseudo into that class. */
1715
f8cfc6aa 1716 if (REG_P (op) && REGNO (op) >= FIRST_PSEUDO_REGISTER)
4db18574 1717 {
e4600702 1718 if (classes[i] == NO_REGS)
94e6f783 1719 {
e79f71f7
GK
1720 /* We must always fail if the operand is a REG, but
1721 we did not find a suitable class.
a6a2274a 1722
e79f71f7
GK
1723 Otherwise we may perform an uninitialized read
1724 from this_op_costs after the `continue' statement
1725 below. */
1726 alt_fail = 1;
94e6f783 1727 }
e4600702
RK
1728 else
1729 {
1730 struct costs *pp = &this_op_costs[i];
1731
1732 for (class = 0; class < N_REG_CLASSES; class++)
14a774a9 1733 pp->cost[class]
d5e2075d 1734 = ((recog_data.operand_type[i] != OP_OUT
e56b4594 1735 ? may_move_in_cost[mode][class][(int) classes[i]]
d5e2075d
JH
1736 : 0)
1737 + (recog_data.operand_type[i] != OP_IN
e56b4594 1738 ? may_move_out_cost[mode][(int) classes[i]][class]
d5e2075d 1739 : 0));
e4600702
RK
1740
1741 /* If the alternative actually allows memory, make things
1742 a bit cheaper since we won't need an extra insn to
1743 load it. */
1744
14a774a9 1745 pp->mem_cost
d5e2075d
JH
1746 = ((recog_data.operand_type[i] != OP_IN
1747 ? MEMORY_MOVE_COST (mode, classes[i], 0)
1748 : 0)
1749 + (recog_data.operand_type[i] != OP_OUT
1750 ? MEMORY_MOVE_COST (mode, classes[i], 1)
1751 : 0) - allows_mem[i]);
e4600702
RK
1752
1753 /* If we have assigned a class to this register in our
1754 first pass, add a cost to this alternative corresponding
1755 to what we would add if this register were not in the
1756 appropriate class. */
1757
b5c82fa1 1758 if (reg_pref && reg_pref[REGNO (op)].prefclass != NO_REGS)
e4600702 1759 alt_cost
e56b4594
AO
1760 += (may_move_in_cost[mode]
1761 [(unsigned char) reg_pref[REGNO (op)].prefclass]
14a774a9 1762 [(int) classes[i]]);
e4600702 1763 }
4db18574 1764 }
54dac99e 1765
e4600702
RK
1766 /* Otherwise, if this alternative wins, either because we
1767 have already determined that or if we have a hard register of
1768 the proper class, there is no cost for this alternative. */
54dac99e 1769
e4600702 1770 else if (win
f8cfc6aa 1771 || (REG_P (op)
6f654776 1772 && reg_fits_class_p (op, classes[i], 0, GET_MODE (op))))
e4600702 1773 ;
54dac99e 1774
e4600702
RK
1775 /* If registers are valid, the cost of this alternative includes
1776 copying the object to and/or from a register. */
54dac99e 1777
e4600702
RK
1778 else if (classes[i] != NO_REGS)
1779 {
1ccbefce 1780 if (recog_data.operand_type[i] != OP_OUT)
8a99f6f9 1781 alt_cost += copy_cost (op, mode, classes[i], 1, NULL);
54dac99e 1782
1ccbefce 1783 if (recog_data.operand_type[i] != OP_IN)
8a99f6f9 1784 alt_cost += copy_cost (op, mode, classes[i], 0, NULL);
e4600702 1785 }
54dac99e 1786
e4600702
RK
1787 /* The only other way this alternative can be used is if this is a
1788 constant that could be placed into memory. */
1789
da2c0219 1790 else if (CONSTANT_P (op) && (allows_addr || allows_mem[i]))
cbd5b9a2 1791 alt_cost += MEMORY_MOVE_COST (mode, classes[i], 1);
e4600702
RK
1792 else
1793 alt_fail = 1;
1794 }
1795
1796 if (alt_fail)
1797 continue;
1798
1799 /* Finally, update the costs with the information we've calculated
1800 about this alternative. */
1801
1802 for (i = 0; i < n_ops; i++)
f8cfc6aa 1803 if (REG_P (ops[i])
e4600702 1804 && REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER)
54dac99e 1805 {
e4600702 1806 struct costs *pp = &op_costs[i], *qq = &this_op_costs[i];
1ccbefce 1807 int scale = 1 + (recog_data.operand_type[i] == OP_INOUT);
54dac99e 1808
e4600702
RK
1809 pp->mem_cost = MIN (pp->mem_cost,
1810 (qq->mem_cost + alt_cost) * scale);
54dac99e 1811
e4600702
RK
1812 for (class = 0; class < N_REG_CLASSES; class++)
1813 pp->cost[class] = MIN (pp->cost[class],
1814 (qq->cost[class] + alt_cost) * scale);
1815 }
1816 }
ec2d92af
RK
1817
1818 /* If this insn is a single set copying operand 1 to operand 0
accef103
JL
1819 and one operand is a pseudo with the other a hard reg or a pseudo
1820 that prefers a register that is in its own register class then
1821 we may want to adjust the cost of that register class to -1.
a6a2274a 1822
accef103 1823 Avoid the adjustment if the source does not die to avoid stressing of
4d6922ee 1824 register allocator by preferrencing two colliding registers into single
accef103
JL
1825 class.
1826
1827 Also avoid the adjustment if a copy between registers of the class
1828 is expensive (ten times the cost of a default copy is considered
1829 arbitrarily expensive). This avoids losing when the preferred class
1830 is very expensive as the source of a copy instruction. */
ec2d92af
RK
1831
1832 if ((set = single_set (insn)) != 0
1833 && ops[0] == SET_DEST (set) && ops[1] == SET_SRC (set)
f8cfc6aa 1834 && REG_P (ops[0]) && REG_P (ops[1])
0dc0641b 1835 && find_regno_note (insn, REG_DEAD, REGNO (ops[1])))
ec2d92af
RK
1836 for (i = 0; i <= 1; i++)
1837 if (REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER)
1838 {
770ae6cc 1839 unsigned int regno = REGNO (ops[!i]);
ec2d92af
RK
1840 enum machine_mode mode = GET_MODE (ops[!i]);
1841 int class;
770ae6cc 1842 unsigned int nr;
ec2d92af 1843
b5c82fa1
PB
1844 if (regno >= FIRST_PSEUDO_REGISTER && reg_pref != 0
1845 && reg_pref[regno].prefclass != NO_REGS)
accef103
JL
1846 {
1847 enum reg_class pref = reg_pref[regno].prefclass;
1848
1849 if ((reg_class_size[(unsigned char) pref]
f7043461 1850 == (unsigned) CLASS_MAX_NREGS (pref, mode))
e56b4594 1851 && REGISTER_MOVE_COST (mode, pref, pref) < 10 * 2)
accef103
JL
1852 op_costs[i].cost[(unsigned char) pref] = -1;
1853 }
ec2d92af
RK
1854 else if (regno < FIRST_PSEUDO_REGISTER)
1855 for (class = 0; class < N_REG_CLASSES; class++)
1856 if (TEST_HARD_REG_BIT (reg_class_contents[class], regno)
f7043461 1857 && reg_class_size[class] == (unsigned) CLASS_MAX_NREGS (class, mode))
4841ba4b
RK
1858 {
1859 if (reg_class_size[class] == 1)
1860 op_costs[i].cost[class] = -1;
1861 else
1862 {
66fd46b6 1863 for (nr = 0; nr < (unsigned) hard_regno_nregs[regno][mode]; nr++)
4841ba4b 1864 {
770ae6cc
RK
1865 if (! TEST_HARD_REG_BIT (reg_class_contents[class],
1866 regno + nr))
4841ba4b
RK
1867 break;
1868 }
1869
66fd46b6 1870 if (nr == (unsigned) hard_regno_nregs[regno][mode])
4841ba4b
RK
1871 op_costs[i].cost[class] = -1;
1872 }
1873 }
ec2d92af 1874 }
54dac99e 1875}
e4600702 1876\f
40f03658 1877/* Compute the cost of loading X into (if TO_P is nonzero) or from (if
e4600702
RK
1878 TO_P is zero) a register of class CLASS in mode MODE.
1879
1880 X must not be a pseudo. */
1881
1882static int
8a99f6f9
R
1883copy_cost (rtx x, enum machine_mode mode, enum reg_class class, int to_p,
1884 secondary_reload_info *prev_sri)
e4600702
RK
1885{
1886 enum reg_class secondary_class = NO_REGS;
8a99f6f9 1887 secondary_reload_info sri;
e4600702
RK
1888
1889 /* If X is a SCRATCH, there is actually nothing to move since we are
1890 assuming optimal allocation. */
1891
1892 if (GET_CODE (x) == SCRATCH)
1893 return 0;
1894
1895 /* Get the class we will actually use for a reload. */
1896 class = PREFERRED_RELOAD_CLASS (x, class);
1897
8a99f6f9 1898 /* If we need a secondary reload for an intermediate, the
e4600702 1899 cost is that to load the input into the intermediate register, then
8a99f6f9 1900 to copy it. */
e4600702 1901
8a99f6f9
R
1902 sri.prev_sri = prev_sri;
1903 sri.extra_cost = 0;
1904 secondary_class = targetm.secondary_reload (to_p, x, class, mode, &sri);
e4600702
RK
1905
1906 if (secondary_class != NO_REGS)
e56b4594 1907 return (move_cost[mode][(int) secondary_class][(int) class]
8a99f6f9
R
1908 + sri.extra_cost
1909 + copy_cost (x, mode, secondary_class, to_p, &sri));
e4600702
RK
1910
1911 /* For memory, use the memory move cost, for (hard) registers, use the
1912 cost to move between the register classes, and use 2 for everything
1913 else (constants). */
1914
3c0cb5de 1915 if (MEM_P (x) || class == NO_REGS)
8a99f6f9 1916 return sri.extra_cost + MEMORY_MOVE_COST (mode, class, to_p);
54dac99e 1917
f8cfc6aa 1918 else if (REG_P (x))
8a99f6f9
R
1919 return (sri.extra_cost
1920 + move_cost[mode][(int) REGNO_REG_CLASS (REGNO (x))][(int) class]);
e4600702
RK
1921
1922 else
1923 /* If this is a constant, we may eventually want to call rtx_cost here. */
8a99f6f9 1924 return sri.extra_cost + COSTS_N_INSNS (1);
e4600702
RK
1925}
1926\f
54dac99e
RK
1927/* Record the pseudo registers we must reload into hard registers
1928 in a subexpression of a memory address, X.
e4600702 1929
c4963a0a
BS
1930 If CONTEXT is 0, we are looking at the base part of an address, otherwise we
1931 are looking at the index part.
1932
1933 MODE is the mode of the memory reference; OUTER_CODE and INDEX_CODE
1934 give the context that the rtx appears in. These three arguments are
1935 passed down to base_reg_class.
e4600702
RK
1936
1937 SCALE is twice the amount to multiply the cost by (it is twice so we
1938 can represent half-cost adjustments). */
54dac99e 1939
197d6480 1940static void
c4963a0a
BS
1941record_address_regs (enum machine_mode mode, rtx x, int context,
1942 enum rtx_code outer_code, enum rtx_code index_code,
1943 int scale)
54dac99e 1944{
b3694847 1945 enum rtx_code code = GET_CODE (x);
c4963a0a
BS
1946 enum reg_class class;
1947
1948 if (context == 1)
1949 class = INDEX_REG_CLASS;
1950 else
1951 class = base_reg_class (mode, outer_code, index_code);
54dac99e
RK
1952
1953 switch (code)
1954 {
1955 case CONST_INT:
1956 case CONST:
1957 case CC0:
1958 case PC:
1959 case SYMBOL_REF:
1960 case LABEL_REF:
1961 return;
1962
1963 case PLUS:
1964 /* When we have an address that is a sum,
1965 we must determine whether registers are "base" or "index" regs.
1966 If there is a sum of two registers, we must choose one to be
3502dc9c
JDA
1967 the "base". Luckily, we can use the REG_POINTER to make a good
1968 choice most of the time. We only need to do this on machines
1969 that can have two registers in an address and where the base
1970 and index register classes are different.
e4600702
RK
1971
1972 ??? This code used to set REGNO_POINTER_FLAG in some cases, but
1973 that seems bogus since it should only be set when we are sure
1974 the register is being used as a pointer. */
1975
54dac99e
RK
1976 {
1977 rtx arg0 = XEXP (x, 0);
1978 rtx arg1 = XEXP (x, 1);
b3694847
SS
1979 enum rtx_code code0 = GET_CODE (arg0);
1980 enum rtx_code code1 = GET_CODE (arg1);
54dac99e
RK
1981
1982 /* Look inside subregs. */
e4600702 1983 if (code0 == SUBREG)
54dac99e 1984 arg0 = SUBREG_REG (arg0), code0 = GET_CODE (arg0);
e4600702 1985 if (code1 == SUBREG)
54dac99e
RK
1986 arg1 = SUBREG_REG (arg1), code1 = GET_CODE (arg1);
1987
e4600702
RK
1988 /* If this machine only allows one register per address, it must
1989 be in the first operand. */
1990
1991 if (MAX_REGS_PER_ADDRESS == 1)
c4963a0a 1992 record_address_regs (mode, arg0, 0, PLUS, code1, scale);
e4600702
RK
1993
1994 /* If index and base registers are the same on this machine, just
1995 record registers in any non-constant operands. We assume here,
a6a2274a 1996 as well as in the tests below, that all addresses are in
e4600702
RK
1997 canonical form. */
1998
c4963a0a 1999 else if (INDEX_REG_CLASS == base_reg_class (VOIDmode, PLUS, SCRATCH))
54dac99e 2000 {
c4963a0a 2001 record_address_regs (mode, arg0, context, PLUS, code1, scale);
e4600702 2002 if (! CONSTANT_P (arg1))
c4963a0a 2003 record_address_regs (mode, arg1, context, PLUS, code0, scale);
54dac99e 2004 }
e4600702
RK
2005
2006 /* If the second operand is a constant integer, it doesn't change
2007 what class the first operand must be. */
2008
2009 else if (code1 == CONST_INT || code1 == CONST_DOUBLE)
c4963a0a 2010 record_address_regs (mode, arg0, context, PLUS, code1, scale);
e4600702
RK
2011
2012 /* If the second operand is a symbolic constant, the first operand
2013 must be an index register. */
2014
2015 else if (code1 == SYMBOL_REF || code1 == CONST || code1 == LABEL_REF)
c4963a0a 2016 record_address_regs (mode, arg0, 1, PLUS, code1, scale);
e4600702 2017
956d6950 2018 /* If both operands are registers but one is already a hard register
888d2cd6
DJ
2019 of index or reg-base class, give the other the class that the
2020 hard register is not. */
956d6950
JL
2021
2022 else if (code0 == REG && code1 == REG
2023 && REGNO (arg0) < FIRST_PSEUDO_REGISTER
c4963a0a
BS
2024 && (ok_for_base_p_nonstrict (arg0, mode, PLUS, REG)
2025 || ok_for_index_p_nonstrict (arg0)))
2026 record_address_regs (mode, arg1,
2027 ok_for_base_p_nonstrict (arg0, mode, PLUS, REG)
2028 ? 1 : 0,
2029 PLUS, REG, scale);
956d6950
JL
2030 else if (code0 == REG && code1 == REG
2031 && REGNO (arg1) < FIRST_PSEUDO_REGISTER
c4963a0a
BS
2032 && (ok_for_base_p_nonstrict (arg1, mode, PLUS, REG)
2033 || ok_for_index_p_nonstrict (arg1)))
2034 record_address_regs (mode, arg0,
2035 ok_for_base_p_nonstrict (arg1, mode, PLUS, REG)
2036 ? 1 : 0,
2037 PLUS, REG, scale);
956d6950 2038
e9a25f70
JL
2039 /* If one operand is known to be a pointer, it must be the base
2040 with the other operand the index. Likewise if the other operand
2041 is a MULT. */
f22376c7 2042
3502dc9c 2043 else if ((code0 == REG && REG_POINTER (arg0))
e9a25f70 2044 || code1 == MULT)
f22376c7 2045 {
c4963a0a
BS
2046 record_address_regs (mode, arg0, 0, PLUS, code1, scale);
2047 record_address_regs (mode, arg1, 1, PLUS, code0, scale);
f22376c7 2048 }
3502dc9c 2049 else if ((code1 == REG && REG_POINTER (arg1))
e9a25f70 2050 || code0 == MULT)
f22376c7 2051 {
c4963a0a
BS
2052 record_address_regs (mode, arg0, 1, PLUS, code1, scale);
2053 record_address_regs (mode, arg1, 0, PLUS, code0, scale);
f22376c7
CI
2054 }
2055
e9a25f70 2056 /* Otherwise, count equal chances that each might be a base
e4600702
RK
2057 or index register. This case should be rare. */
2058
e9a25f70 2059 else
54dac99e 2060 {
c4963a0a
BS
2061 record_address_regs (mode, arg0, 0, PLUS, code1, scale / 2);
2062 record_address_regs (mode, arg0, 1, PLUS, code1, scale / 2);
2063 record_address_regs (mode, arg1, 0, PLUS, code0, scale / 2);
2064 record_address_regs (mode, arg1, 1, PLUS, code0, scale / 2);
54dac99e 2065 }
54dac99e
RK
2066 }
2067 break;
2068
4b983fdc
RH
2069 /* Double the importance of a pseudo register that is incremented
2070 or decremented, since it would take two extra insns
2071 if it ends up in the wrong place. */
2072 case POST_MODIFY:
2073 case PRE_MODIFY:
c4963a0a
BS
2074 record_address_regs (mode, XEXP (x, 0), 0, code,
2075 GET_CODE (XEXP (XEXP (x, 1), 1)), 2 * scale);
4b983fdc 2076 if (REG_P (XEXP (XEXP (x, 1), 1)))
c4963a0a
BS
2077 record_address_regs (mode, XEXP (XEXP (x, 1), 1), 1, code, REG,
2078 2 * scale);
4b983fdc
RH
2079 break;
2080
54dac99e
RK
2081 case POST_INC:
2082 case PRE_INC:
2083 case POST_DEC:
2084 case PRE_DEC:
2085 /* Double the importance of a pseudo register that is incremented
2086 or decremented, since it would take two extra insns
533d0835
RK
2087 if it ends up in the wrong place. If the operand is a pseudo,
2088 show it is being used in an INC_DEC context. */
2089
2090#ifdef FORBIDDEN_INC_DEC_CLASSES
f8cfc6aa 2091 if (REG_P (XEXP (x, 0))
533d0835
RK
2092 && REGNO (XEXP (x, 0)) >= FIRST_PSEUDO_REGISTER)
2093 in_inc_dec[REGNO (XEXP (x, 0))] = 1;
2094#endif
e4600702 2095
c4963a0a 2096 record_address_regs (mode, XEXP (x, 0), 0, code, SCRATCH, 2 * scale);
54dac99e
RK
2097 break;
2098
2099 case REG:
2100 {
b3694847
SS
2101 struct costs *pp = &costs[REGNO (x)];
2102 int i;
54dac99e 2103
cbd5b9a2 2104 pp->mem_cost += (MEMORY_MOVE_COST (Pmode, class, 1) * scale) / 2;
54dac99e 2105
e4600702 2106 for (i = 0; i < N_REG_CLASSES; i++)
e56b4594 2107 pp->cost[i] += (may_move_in_cost[Pmode][i][(int) class] * scale) / 2;
54dac99e
RK
2108 }
2109 break;
2110
2111 default:
2112 {
b3694847
SS
2113 const char *fmt = GET_RTX_FORMAT (code);
2114 int i;
54dac99e
RK
2115 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2116 if (fmt[i] == 'e')
c4963a0a
BS
2117 record_address_regs (mode, XEXP (x, i), context, code, SCRATCH,
2118 scale);
54dac99e
RK
2119 }
2120 }
2121}
08d95f91
RK
2122\f
2123#ifdef FORBIDDEN_INC_DEC_CLASSES
2124
2125/* Return 1 if REG is valid as an auto-increment memory reference
2126 to an object of MODE. */
2127
1d300e19 2128static int
0c20a65f 2129auto_inc_dec_reg_p (rtx reg, enum machine_mode mode)
08d95f91 2130{
940da324
JL
2131 if (HAVE_POST_INCREMENT
2132 && memory_address_p (mode, gen_rtx_POST_INC (Pmode, reg)))
08d95f91 2133 return 1;
08d95f91 2134
940da324
JL
2135 if (HAVE_POST_DECREMENT
2136 && memory_address_p (mode, gen_rtx_POST_DEC (Pmode, reg)))
08d95f91 2137 return 1;
08d95f91 2138
940da324
JL
2139 if (HAVE_PRE_INCREMENT
2140 && memory_address_p (mode, gen_rtx_PRE_INC (Pmode, reg)))
08d95f91 2141 return 1;
08d95f91 2142
940da324
JL
2143 if (HAVE_PRE_DECREMENT
2144 && memory_address_p (mode, gen_rtx_PRE_DEC (Pmode, reg)))
08d95f91 2145 return 1;
08d95f91
RK
2146
2147 return 0;
2148}
2149#endif
b1f21e0a 2150\f
da668e9c
MM
2151static short *renumber;
2152static size_t regno_allocated;
2153static unsigned int reg_n_max;
ed396e68 2154
b1f21e0a
MM
2155/* Allocate enough space to hold NUM_REGS registers for the tables used for
2156 reg_scan and flow_analysis that are indexed by the register number. If
88cad84b 2157 NEW_P is nonzero, initialize all of the registers, otherwise only
39379e67
MM
2158 initialize the new registers allocated. The same table is kept from
2159 function to function, only reallocating it when we need more room. If
88cad84b 2160 RENUMBER_P is nonzero, allocate the reg_renumber array also. */
b1f21e0a
MM
2161
2162void
0c20a65f 2163allocate_reg_info (size_t num_regs, int new_p, int renumber_p)
b1f21e0a 2164{
6feacd09
MM
2165 size_t size_info;
2166 size_t size_renumber;
2167 size_t min = (new_p) ? 0 : reg_n_max;
2168 struct reg_info_data *reg_data;
39379e67 2169
b1f21e0a
MM
2170 if (num_regs > regno_allocated)
2171 {
6feacd09
MM
2172 size_t old_allocated = regno_allocated;
2173
938d968e 2174 regno_allocated = num_regs + (num_regs / 20); /* Add some slop space. */
39379e67
MM
2175 size_renumber = regno_allocated * sizeof (short);
2176
2177 if (!reg_n_info)
2178 {
1935e8a8
KH
2179 reg_n_info = VEC_alloc (reg_info_p, heap, regno_allocated);
2180 VEC_safe_grow (reg_info_p, heap, reg_n_info, regno_allocated);
2181 memset (VEC_address (reg_info_p, reg_n_info), 0,
2182 sizeof (reg_info_p) * regno_allocated);
703ad42b 2183 renumber = xmalloc (size_renumber);
5ed6ace5 2184 reg_pref_buffer = XNEWVEC (struct reg_pref, regno_allocated);
39379e67 2185 }
39379e67
MM
2186 else
2187 {
1935e8a8
KH
2188 size_t old_length = VEC_length (reg_info_p, reg_n_info);
2189 if (old_length < regno_allocated)
2190 {
2191 reg_info_p *addr;
2192 VEC_safe_grow (reg_info_p, heap, reg_n_info, regno_allocated);
2193 addr = VEC_address (reg_info_p, reg_n_info);
2194 memset (&addr[old_length], 0,
2195 sizeof (reg_info_p) * (regno_allocated - old_length));
2196 }
2197 else if (regno_allocated < old_length)
2198 {
2199 VEC_truncate (reg_info_p, reg_n_info, regno_allocated);
2200 }
6feacd09 2201
938d968e 2202 if (new_p) /* If we're zapping everything, no need to realloc. */
6feacd09 2203 {
8e2e89f7
KH
2204 free ((char *) renumber);
2205 free ((char *) reg_pref);
703ad42b 2206 renumber = xmalloc (size_renumber);
5ed6ace5 2207 reg_pref_buffer = XNEWVEC (struct reg_pref, regno_allocated);
6feacd09
MM
2208 }
2209
2210 else
2211 {
703ad42b 2212 renumber = xrealloc (renumber, size_renumber);
5ed6ace5 2213 reg_pref_buffer = (struct reg_pref *) xrealloc (reg_pref_buffer,
703ad42b
KG
2214 regno_allocated
2215 * sizeof (struct reg_pref));
6feacd09 2216 }
39379e67 2217 }
6feacd09
MM
2218
2219 size_info = (regno_allocated - old_allocated) * sizeof (reg_info)
2220 + sizeof (struct reg_info_data) - sizeof (reg_info);
703ad42b 2221 reg_data = xcalloc (size_info, 1);
6feacd09
MM
2222 reg_data->min_index = old_allocated;
2223 reg_data->max_index = regno_allocated - 1;
2224 reg_data->next = reg_info_head;
2225 reg_info_head = reg_data;
b1f21e0a
MM
2226 }
2227
6feacd09 2228 reg_n_max = num_regs;
b1f21e0a
MM
2229 if (min < num_regs)
2230 {
6feacd09
MM
2231 /* Loop through each of the segments allocated for the actual
2232 reg_info pages, and set up the pointers, zero the pages, etc. */
a6a2274a 2233 for (reg_data = reg_info_head;
da668e9c
MM
2234 reg_data && reg_data->max_index >= min;
2235 reg_data = reg_data->next)
39379e67 2236 {
6feacd09
MM
2237 size_t min_index = reg_data->min_index;
2238 size_t max_index = reg_data->max_index;
da668e9c
MM
2239 size_t max = MIN (max_index, num_regs);
2240 size_t local_min = min - min_index;
2241 size_t i;
6feacd09 2242
da668e9c
MM
2243 if (reg_data->min_index > num_regs)
2244 continue;
6feacd09 2245
da668e9c
MM
2246 if (min < min_index)
2247 local_min = 0;
2248 if (!reg_data->used_p) /* page just allocated with calloc */
2249 reg_data->used_p = 1; /* no need to zero */
2250 else
703ad42b
KG
2251 memset (&reg_data->data[local_min], 0,
2252 sizeof (reg_info) * (max - min_index - local_min + 1));
da668e9c
MM
2253
2254 for (i = min_index+local_min; i <= max; i++)
2255 {
1935e8a8
KH
2256 VEC_replace (reg_info_p, reg_n_info, i,
2257 &reg_data->data[i-min_index]);
da668e9c
MM
2258 REG_BASIC_BLOCK (i) = REG_BLOCK_UNKNOWN;
2259 renumber[i] = -1;
2260 reg_pref_buffer[i].prefclass = (char) NO_REGS;
2261 reg_pref_buffer[i].altclass = (char) NO_REGS;
6feacd09 2262 }
39379e67 2263 }
b1f21e0a
MM
2264 }
2265
6feacd09
MM
2266 /* If {pref,alt}class have already been allocated, update the pointers to
2267 the newly realloced ones. */
9ffc5a70
JH
2268 if (reg_pref)
2269 reg_pref = reg_pref_buffer;
6feacd09 2270
39379e67
MM
2271 if (renumber_p)
2272 reg_renumber = renumber;
b1f21e0a
MM
2273}
2274
ed396e68
BS
2275/* Free up the space allocated by allocate_reg_info. */
2276void
0c20a65f 2277free_reg_info (void)
ed396e68
BS
2278{
2279 if (reg_n_info)
2280 {
2281 struct reg_info_data *reg_data;
2282 struct reg_info_data *reg_next;
2283
1935e8a8 2284 VEC_free (reg_info_p, heap, reg_n_info);
ed396e68
BS
2285 for (reg_data = reg_info_head; reg_data; reg_data = reg_next)
2286 {
2287 reg_next = reg_data->next;
8e2e89f7 2288 free ((char *) reg_data);
ed396e68
BS
2289 }
2290
9ffc5a70 2291 free (reg_pref_buffer);
f4f4d0f8
KH
2292 reg_pref_buffer = (struct reg_pref *) 0;
2293 reg_info_head = (struct reg_info_data *) 0;
2294 renumber = (short *) 0;
ed396e68
BS
2295 }
2296 regno_allocated = 0;
2297 reg_n_max = 0;
2298}
54dac99e
RK
2299\f
2300/* This is the `regscan' pass of the compiler, run just before cse
2301 and again just before loop.
2302
2303 It finds the first and last use of each pseudo-register
2304 and records them in the vectors regno_first_uid, regno_last_uid
2305 and counts the number of sets in the vector reg_n_sets.
2306
2307 REPEAT is nonzero the second time this is called. */
2308
54dac99e 2309/* Maximum number of parallel sets and clobbers in any insn in this fn.
d22d5f34 2310 Always at least 3, since the combiner could put that many together
79b9ec0d
RK
2311 and we want this to remain correct for all the remaining passes.
2312 This corresponds to the maximum number of times note_stores will call
2313 a function for any insn. */
54dac99e
RK
2314
2315int max_parallel;
2316
a6a2274a 2317/* Used as a temporary to record the largest number of registers in
79b9ec0d
RK
2318 PARALLEL in a SET_DEST. This is added to max_parallel. */
2319
2320static int max_set_parallel;
2321
54dac99e 2322void
c80a0f26 2323reg_scan (rtx f, unsigned int nregs)
54dac99e 2324{
b3694847 2325 rtx insn;
54dac99e 2326
28cb2b14
RS
2327 timevar_push (TV_REG_SCAN);
2328
39379e67 2329 allocate_reg_info (nregs, TRUE, FALSE);
54dac99e 2330 max_parallel = 3;
79b9ec0d 2331 max_set_parallel = 0;
54dac99e
RK
2332
2333 for (insn = f; insn; insn = NEXT_INSN (insn))
28cb2b14 2334 if (INSN_P (insn))
54dac99e 2335 {
28cb2b14
RS
2336 rtx pat = PATTERN (insn);
2337 if (GET_CODE (pat) == PARALLEL
2338 && XVECLEN (pat, 0) > max_parallel)
2339 max_parallel = XVECLEN (pat, 0);
3c491cab 2340 reg_scan_mark_refs (pat, insn, 0);
01565a55
RK
2341
2342 if (REG_NOTES (insn))
3c491cab 2343 reg_scan_mark_refs (REG_NOTES (insn), insn, 1);
f903b91f 2344 }
79b9ec0d
RK
2345
2346 max_parallel += max_set_parallel;
0d446150
JH
2347
2348 timevar_pop (TV_REG_SCAN);
f903b91f
DM
2349}
2350
1ebecb64 2351/* X is the expression to scan. INSN is the insn it appears in.
3c491cab 2352 NOTE_FLAG is nonzero if X is from INSN's notes rather than its body. */
1ebecb64 2353
08d95f91 2354static void
3c491cab 2355reg_scan_mark_refs (rtx x, rtx insn, int note_flag)
54dac99e 2356{
b3694847
SS
2357 enum rtx_code code;
2358 rtx dest;
2359 rtx note;
54dac99e 2360
ed8d2920
MM
2361 if (!x)
2362 return;
fa23c636 2363 code = GET_CODE (x);
54dac99e
RK
2364 switch (code)
2365 {
54dac99e 2366 case CONST:
185ebd6c 2367 case CONST_INT:
54dac99e 2368 case CONST_DOUBLE:
69ef87e2 2369 case CONST_VECTOR:
54dac99e
RK
2370 case CC0:
2371 case PC:
2372 case SYMBOL_REF:
2373 case LABEL_REF:
2374 case ADDR_VEC:
2375 case ADDR_DIFF_VEC:
2376 return;
2377
2378 case REG:
2379 {
770ae6cc 2380 unsigned int regno = REGNO (x);
54dac99e 2381
3c491cab
KH
2382 if (!note_flag)
2383 REGNO_LAST_UID (regno) = INSN_UID (insn);
2384 if (REGNO_FIRST_UID (regno) == 0)
2385 REGNO_FIRST_UID (regno) = INSN_UID (insn);
54dac99e
RK
2386 }
2387 break;
2388
01565a55 2389 case EXPR_LIST:
7b18c3db 2390 if (XEXP (x, 0))
3c491cab 2391 reg_scan_mark_refs (XEXP (x, 0), insn, note_flag);
01565a55 2392 if (XEXP (x, 1))
3c491cab 2393 reg_scan_mark_refs (XEXP (x, 1), insn, note_flag);
01565a55
RK
2394 break;
2395
2396 case INSN_LIST:
2397 if (XEXP (x, 1))
3c491cab 2398 reg_scan_mark_refs (XEXP (x, 1), insn, note_flag);
01565a55
RK
2399 break;
2400
ed8d2920
MM
2401 case CLOBBER:
2402 {
2403 rtx reg = XEXP (x, 0);
3c491cab 2404 if (REG_P (reg))
ed8d2920
MM
2405 {
2406 REG_N_SETS (REGNO (reg))++;
2407 REG_N_REFS (REGNO (reg))++;
2408 }
3c0cb5de 2409 else if (MEM_P (reg))
3c491cab 2410 reg_scan_mark_refs (XEXP (reg, 0), insn, note_flag);
ed8d2920
MM
2411 }
2412 break;
2413
54dac99e
RK
2414 case SET:
2415 /* Count a set of the destination if it is a register. */
2416 for (dest = SET_DEST (x);
2417 GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART
2418 || GET_CODE (dest) == ZERO_EXTEND;
2419 dest = XEXP (dest, 0))
2420 ;
2421
79b9ec0d
RK
2422 /* For a PARALLEL, record the number of things (less the usual one for a
2423 SET) that are set. */
2424 if (GET_CODE (dest) == PARALLEL)
2425 max_set_parallel = MAX (max_set_parallel, XVECLEN (dest, 0) - 1);
2426
3c491cab 2427 if (REG_P (dest))
b2d57793
DB
2428 {
2429 REG_N_SETS (REGNO (dest))++;
2430 REG_N_REFS (REGNO (dest))++;
2431 }
54dac99e 2432
be8dcd74
RK
2433 /* If this is setting a pseudo from another pseudo or the sum of a
2434 pseudo and a constant integer and the other pseudo is known to be
2435 a pointer, set the destination to be a pointer as well.
2436
2437 Likewise if it is setting the destination from an address or from a
2438 value equivalent to an address or to the sum of an address and
2439 something else.
a6a2274a 2440
be8dcd74
RK
2441 But don't do any of this if the pseudo corresponds to a user
2442 variable since it should have already been set as a pointer based
2443 on the type. */
2444
f8cfc6aa 2445 if (REG_P (SET_DEST (x))
be8dcd74 2446 && REGNO (SET_DEST (x)) >= FIRST_PSEUDO_REGISTER
64d3b4ca
JL
2447 /* If the destination pseudo is set more than once, then other
2448 sets might not be to a pointer value (consider access to a
d55d8fc7 2449 union in two threads of control in the presence of global
3502dc9c 2450 optimizations). So only set REG_POINTER on the destination
64d3b4ca
JL
2451 pseudo if this is the only set of that pseudo. */
2452 && REG_N_SETS (REGNO (SET_DEST (x))) == 1
be8dcd74 2453 && ! REG_USERVAR_P (SET_DEST (x))
3502dc9c 2454 && ! REG_POINTER (SET_DEST (x))
f8cfc6aa 2455 && ((REG_P (SET_SRC (x))
3502dc9c 2456 && REG_POINTER (SET_SRC (x)))
be8dcd74
RK
2457 || ((GET_CODE (SET_SRC (x)) == PLUS
2458 || GET_CODE (SET_SRC (x)) == LO_SUM)
2459 && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
f8cfc6aa 2460 && REG_P (XEXP (SET_SRC (x), 0))
3502dc9c 2461 && REG_POINTER (XEXP (SET_SRC (x), 0)))
be8dcd74
RK
2462 || GET_CODE (SET_SRC (x)) == CONST
2463 || GET_CODE (SET_SRC (x)) == SYMBOL_REF
2464 || GET_CODE (SET_SRC (x)) == LABEL_REF
2465 || (GET_CODE (SET_SRC (x)) == HIGH
2466 && (GET_CODE (XEXP (SET_SRC (x), 0)) == CONST
2467 || GET_CODE (XEXP (SET_SRC (x), 0)) == SYMBOL_REF
2468 || GET_CODE (XEXP (SET_SRC (x), 0)) == LABEL_REF))
2469 || ((GET_CODE (SET_SRC (x)) == PLUS
2470 || GET_CODE (SET_SRC (x)) == LO_SUM)
2471 && (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST
2472 || GET_CODE (XEXP (SET_SRC (x), 1)) == SYMBOL_REF
2473 || GET_CODE (XEXP (SET_SRC (x), 1)) == LABEL_REF))
2474 || ((note = find_reg_note (insn, REG_EQUAL, 0)) != 0
2475 && (GET_CODE (XEXP (note, 0)) == CONST
2476 || GET_CODE (XEXP (note, 0)) == SYMBOL_REF
2477 || GET_CODE (XEXP (note, 0)) == LABEL_REF))))
3502dc9c 2478 REG_POINTER (SET_DEST (x)) = 1;
be8dcd74 2479
0d4903b8 2480 /* If this is setting a register from a register or from a simple
a560d4d4 2481 conversion of a register, propagate REG_EXPR. */
f8cfc6aa 2482 if (REG_P (dest))
0d4903b8
RK
2483 {
2484 rtx src = SET_SRC (x);
2485
2486 while (GET_CODE (src) == SIGN_EXTEND
2487 || GET_CODE (src) == ZERO_EXTEND
2488 || GET_CODE (src) == TRUNCATE
2489 || (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)))
2490 src = XEXP (src, 0);
2491
a560d4d4
JH
2492 if (!REG_ATTRS (dest) && REG_P (src))
2493 REG_ATTRS (dest) = REG_ATTRS (src);
3c0cb5de 2494 if (!REG_ATTRS (dest) && MEM_P (src))
a560d4d4 2495 set_reg_attrs_from_mem (dest, src);
0d4903b8
RK
2496 }
2497
0f41302f 2498 /* ... fall through ... */
54dac99e
RK
2499
2500 default:
2501 {
b3694847
SS
2502 const char *fmt = GET_RTX_FORMAT (code);
2503 int i;
54dac99e
RK
2504 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2505 {
2506 if (fmt[i] == 'e')
3c491cab 2507 reg_scan_mark_refs (XEXP (x, i), insn, note_flag);
54dac99e
RK
2508 else if (fmt[i] == 'E' && XVEC (x, i) != 0)
2509 {
b3694847 2510 int j;
54dac99e 2511 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3c491cab 2512 reg_scan_mark_refs (XVECEXP (x, i, j), insn, note_flag);
54dac99e
RK
2513 }
2514 }
2515 }
2516 }
2517}
2518\f
2519/* Return nonzero if C1 is a subset of C2, i.e., if every register in C1
2520 is also in C2. */
2521
2522int
0c20a65f 2523reg_class_subset_p (enum reg_class c1, enum reg_class c2)
54dac99e
RK
2524{
2525 if (c1 == c2) return 1;
2526
2527 if (c2 == ALL_REGS)
2528 win:
2529 return 1;
8e2e89f7
KH
2530 GO_IF_HARD_REG_SUBSET (reg_class_contents[(int) c1],
2531 reg_class_contents[(int) c2],
54dac99e
RK
2532 win);
2533 return 0;
2534}
2535
2536/* Return nonzero if there is a register that is in both C1 and C2. */
2537
2538int
0c20a65f 2539reg_classes_intersect_p (enum reg_class c1, enum reg_class c2)
54dac99e 2540{
49a27995 2541 HARD_REG_SET c;
54dac99e
RK
2542
2543 if (c1 == c2) return 1;
2544
2545 if (c1 == ALL_REGS || c2 == ALL_REGS)
2546 return 1;
2547
2548 COPY_HARD_REG_SET (c, reg_class_contents[(int) c1]);
2549 AND_HARD_REG_SET (c, reg_class_contents[(int) c2]);
2550
2551 GO_IF_HARD_REG_SUBSET (c, reg_class_contents[(int) NO_REGS], lose);
2552 return 1;
2553
2554 lose:
2555 return 0;
2556}
2557
cff9f8d5 2558#ifdef CANNOT_CHANGE_MODE_CLASS
41bf2a8b
RH
2559
2560struct subregs_of_mode_node
2561{
2562 unsigned int block;
2563 unsigned char modes[MAX_MACHINE_MODE];
2564};
2565
2566static htab_t subregs_of_mode;
2567
2568static hashval_t
2569som_hash (const void *x)
2570{
2571 const struct subregs_of_mode_node *a = x;
2572 return a->block;
2573}
2574
2575static int
2576som_eq (const void *x, const void *y)
2577{
2578 const struct subregs_of_mode_node *a = x;
2579 const struct subregs_of_mode_node *b = y;
2580 return a->block == b->block;
2581}
2582
2583void
2584init_subregs_of_mode (void)
2585{
2586 if (subregs_of_mode)
2587 htab_empty (subregs_of_mode);
2588 else
2589 subregs_of_mode = htab_create (100, som_hash, som_eq, free);
2590}
2591
2592void
2593record_subregs_of_mode (rtx subreg)
2594{
2595 struct subregs_of_mode_node dummy, *node;
2596 enum machine_mode mode;
2597 unsigned int regno;
2598 void **slot;
2599
2600 if (!REG_P (SUBREG_REG (subreg)))
2601 return;
2602
2603 regno = REGNO (SUBREG_REG (subreg));
2604 mode = GET_MODE (subreg);
2605
2606 if (regno < FIRST_PSEUDO_REGISTER)
2607 return;
2608
2609 dummy.block = regno & -8;
2610 slot = htab_find_slot_with_hash (subregs_of_mode, &dummy,
2611 dummy.block, INSERT);
2612 node = *slot;
2613 if (node == NULL)
2614 {
5ed6ace5 2615 node = XCNEW (struct subregs_of_mode_node);
41bf2a8b
RH
2616 node->block = regno & -8;
2617 *slot = node;
2618 }
2619
2620 node->modes[mode] |= 1 << (regno & 7);
2621}
2622
cff9f8d5
AH
2623/* Set bits in *USED which correspond to registers which can't change
2624 their mode from FROM to any mode in which REGNO was encountered. */
2625
2626void
0c20a65f
AJ
2627cannot_change_mode_set_regs (HARD_REG_SET *used, enum machine_mode from,
2628 unsigned int regno)
cff9f8d5 2629{
41bf2a8b 2630 struct subregs_of_mode_node dummy, *node;
cff9f8d5 2631 enum machine_mode to;
41bf2a8b
RH
2632 unsigned char mask;
2633 unsigned int i;
cff9f8d5 2634
41bf2a8b
RH
2635 dummy.block = regno & -8;
2636 node = htab_find_with_hash (subregs_of_mode, &dummy, dummy.block);
2637 if (node == NULL)
2638 return;
2639
2640 mask = 1 << (regno & 7);
2641 for (to = VOIDmode; to < NUM_MACHINE_MODES; to++)
2642 if (node->modes[to] & mask)
2643 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2644 if (!TEST_HARD_REG_BIT (*used, i)
2645 && REG_CANNOT_CHANGE_MODE_P (i, from, to))
2646 SET_HARD_REG_BIT (*used, i);
cff9f8d5
AH
2647}
2648
2649/* Return 1 if REGNO has had an invalid mode change in CLASS from FROM
2650 mode. */
2651
2652bool
0c20a65f 2653invalid_mode_change_p (unsigned int regno, enum reg_class class,
41bf2a8b 2654 enum machine_mode from)
cff9f8d5 2655{
41bf2a8b
RH
2656 struct subregs_of_mode_node dummy, *node;
2657 enum machine_mode to;
2658 unsigned char mask;
2659
2660 dummy.block = regno & -8;
2661 node = htab_find_with_hash (subregs_of_mode, &dummy, dummy.block);
2662 if (node == NULL)
2663 return false;
2664
2665 mask = 1 << (regno & 7);
2666 for (to = VOIDmode; to < NUM_MACHINE_MODES; to++)
2667 if (node->modes[to] & mask)
2668 if (CANNOT_CHANGE_MODE_CLASS (from, to, class))
2669 return true;
2670
2671 return false;
cff9f8d5
AH
2672}
2673#endif /* CANNOT_CHANGE_MODE_CLASS */
2674
e2500fed 2675#include "gt-regclass.h"
This page took 3.62733 seconds and 5 git commands to generate.