]> gcc.gnu.org Git - gcc.git/blame - gcc/reg-stack.c
optabs.h (enum optab_index): Add new OTI_log1p.
[gcc.git] / gcc / reg-stack.c
CommitLineData
48227150 1/* Register to Stack convert for GNU compiler.
1fb54135 2 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
d9221e01 3 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
48227150 4
1322177d 5 This file is part of GCC.
48227150 6
1322177d
LB
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by
a05924f9
JH
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
48227150 11
1322177d
LB
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
48227150 16
a05924f9 17 You should have received a copy of the GNU General Public License
1322177d
LB
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
48227150
JVA
21
22/* This pass converts stack-like registers from the "flat register
23 file" model that gcc uses, to a stack convention that the 387 uses.
24
25 * The form of the input:
26
27 On input, the function consists of insn that have had their
28 registers fully allocated to a set of "virtual" registers. Note that
29 the word "virtual" is used differently here than elsewhere in gcc: for
30 each virtual stack reg, there is a hard reg, but the mapping between
31 them is not known until this pass is run. On output, hard register
32 numbers have been substituted, and various pop and exchange insns have
33 been emitted. The hard register numbers and the virtual register
34 numbers completely overlap - before this pass, all stack register
114cbee6 35 numbers are virtual, and afterward they are all hard.
48227150
JVA
36
37 The virtual registers can be manipulated normally by gcc, and their
38 semantics are the same as for normal registers. After the hard
39 register numbers are substituted, the semantics of an insn containing
40 stack-like regs are not the same as for an insn with normal regs: for
41 instance, it is not safe to delete an insn that appears to be a no-op
42 move. In general, no insn containing hard regs should be changed
43 after this pass is done.
44
45 * The form of the output:
46
47 After this pass, hard register numbers represent the distance from
48 the current top of stack to the desired register. A reference to
49 FIRST_STACK_REG references the top of stack, FIRST_STACK_REG + 1,
50 represents the register just below that, and so forth. Also, REG_DEAD
51 notes indicate whether or not a stack register should be popped.
52
53 A "swap" insn looks like a parallel of two patterns, where each
54 pattern is a SET: one sets A to B, the other B to A.
55
56 A "push" or "load" insn is a SET whose SET_DEST is FIRST_STACK_REG
57 and whose SET_DEST is REG or MEM. Any other SET_DEST, such as PLUS,
58 will replace the existing stack top, not push a new value.
59
60 A store insn is a SET whose SET_DEST is FIRST_STACK_REG, and whose
61 SET_SRC is REG or MEM.
62
3f5cfed6 63 The case where the SET_SRC and SET_DEST are both FIRST_STACK_REG
48227150
JVA
64 appears ambiguous. As a special case, the presence of a REG_DEAD note
65 for FIRST_STACK_REG differentiates between a load insn and a pop.
66
67 If a REG_DEAD is present, the insn represents a "pop" that discards
68 the top of the register stack. If there is no REG_DEAD note, then the
69 insn represents a "dup" or a push of the current top of stack onto the
70 stack.
71
72 * Methodology:
73
74 Existing REG_DEAD and REG_UNUSED notes for stack registers are
75 deleted and recreated from scratch. REG_DEAD is never created for a
76 SET_DEST, only REG_UNUSED.
77
114cbee6 78 * asm_operands:
48227150 79
114cbee6
RS
80 There are several rules on the usage of stack-like regs in
81 asm_operands insns. These rules apply only to the operands that are
82 stack-like regs:
83
84 1. Given a set of input regs that die in an asm_operands, it is
85 necessary to know which are implicitly popped by the asm, and
86 which must be explicitly popped by gcc.
87
88 An input reg that is implicitly popped by the asm must be
89 explicitly clobbered, unless it is constrained to match an
90 output operand.
91
92 2. For any input reg that is implicitly popped by an asm, it is
93 necessary to know how to adjust the stack to compensate for the pop.
94 If any non-popped input is closer to the top of the reg-stack than
95 the implicitly popped reg, it would not be possible to know what the
96 stack looked like - it's not clear how the rest of the stack "slides
97 up".
98
99 All implicitly popped input regs must be closer to the top of
100 the reg-stack than any input that is not implicitly popped.
101
102 3. It is possible that if an input dies in an insn, reload might
103 use the input reg for an output reload. Consider this example:
104
105 asm ("foo" : "=t" (a) : "f" (b));
106
107 This asm says that input B is not popped by the asm, and that
108 the asm pushes a result onto the reg-stack, ie, the stack is one
109 deeper after the asm than it was before. But, it is possible that
110 reload will think that it can use the same reg for both the input and
111 the output, if input B dies in this insn.
112
113 If any input operand uses the "f" constraint, all output reg
114 constraints must use the "&" earlyclobber.
115
116 The asm above would be written as
117
118 asm ("foo" : "=&t" (a) : "f" (b));
119
120 4. Some operands need to be in particular places on the stack. All
121 output operands fall in this category - there is no other way to
122 know which regs the outputs appear in unless the user indicates
123 this in the constraints.
124
125 Output operands must specifically indicate which reg an output
126 appears in after an asm. "=f" is not allowed: the operand
127 constraints must select a class with a single reg.
128
129 5. Output operands may not be "inserted" between existing stack regs.
130 Since no 387 opcode uses a read/write operand, all output operands
131 are dead before the asm_operands, and are pushed by the asm_operands.
132 It makes no sense to push anywhere but the top of the reg-stack.
133
134 Output operands must start at the top of the reg-stack: output
135 operands may not "skip" a reg.
136
137 6. Some asm statements may need extra stack space for internal
138 calculations. This can be guaranteed by clobbering stack registers
139 unrelated to the inputs and outputs.
140
141 Here are a couple of reasonable asms to want to write. This asm
142 takes one input, which is internally popped, and produces two outputs.
143
144 asm ("fsincos" : "=t" (cos), "=u" (sin) : "0" (inp));
145
146 This asm takes two inputs, which are popped by the fyl2xp1 opcode,
147 and replaces them with one output. The user must code the "st(1)"
148 clobber for reg-stack.c to know that fyl2xp1 pops both inputs.
149
150 asm ("fyl2xp1" : "=t" (result) : "0" (x), "u" (y) : "st(1)");
151
a05924f9 152*/
48227150 153\f
48227150 154#include "config.h"
670ee920 155#include "system.h"
4977bab6
ZW
156#include "coretypes.h"
157#include "tm.h"
48227150
JVA
158#include "tree.h"
159#include "rtl.h"
6baf1cc8 160#include "tm_p.h"
49ad7cfa 161#include "function.h"
114cbee6 162#include "insn-config.h"
48227150
JVA
163#include "regs.h"
164#include "hard-reg-set.h"
165#include "flags.h"
10f0ad3d 166#include "toplev.h"
e075ae69 167#include "recog.h"
a05924f9
JH
168#include "output.h"
169#include "basic-block.h"
21b2cd73 170#include "varray.h"
2840aebf 171#include "reload.h"
e2500fed
GK
172#include "ggc.h"
173
174/* We use this array to cache info about insns, because otherwise we
175 spend too much time in stack_regs_mentioned_p.
176
177 Indexed by insn UIDs. A value of zero is uninitialized, one indicates
178 the insn uses stack registers, two indicates the insn does not use
179 stack registers. */
180static GTY(()) varray_type stack_regs_mentioned_data;
48227150
JVA
181
182#ifdef STACK_REGS
183
184#define REG_STACK_SIZE (LAST_STACK_REG - FIRST_STACK_REG + 1)
185
48227150
JVA
186/* This is the basic stack record. TOP is an index into REG[] such
187 that REG[TOP] is the top of stack. If TOP is -1 the stack is empty.
188
eca31501
JVA
189 If TOP is -2, REG[] is not yet initialized. Stack initialization
190 consists of placing each live reg in array `reg' and setting `top'
191 appropriately.
192
193 REG_SET indicates which registers are live. */
48227150
JVA
194
195typedef struct stack_def
196{
197 int top; /* index to top stack element */
198 HARD_REG_SET reg_set; /* set of live registers */
b00b2cc2 199 unsigned char reg[REG_STACK_SIZE];/* register - stack mapping */
48227150
JVA
200} *stack;
201
a6a2274a 202/* This is used to carry information about basic blocks. It is
a05924f9 203 attached to the AUX field of the standard CFG block. */
48227150 204
a05924f9
JH
205typedef struct block_info_def
206{
207 struct stack_def stack_in; /* Input stack configuration. */
0ecf09f9 208 struct stack_def stack_out; /* Output stack configuration. */
a05924f9
JH
209 HARD_REG_SET out_reg_set; /* Stack regs live on output. */
210 int done; /* True if block already converted. */
754d9299 211 int predecessors; /* Number of predecessors that needs
0ecf09f9 212 to be visited. */
a05924f9 213} *block_info;
48227150 214
a05924f9 215#define BLOCK_INFO(B) ((block_info) (B)->aux)
48227150 216
a05924f9
JH
217/* Passed to change_stack to indicate where to emit insns. */
218enum emit_where
219{
220 EMIT_AFTER,
221 EMIT_BEFORE
222};
48227150 223
a05924f9
JH
224/* The block we're currently working on. */
225static basic_block current_block;
226
3eae4643 227/* This is the register file for all register after conversion. */
99a59310
RK
228static rtx
229 FP_mode_reg[LAST_STACK_REG+1-FIRST_STACK_REG][(int) MAX_MACHINE_MODE];
230
231#define FP_MODE_REG(regno,mode) \
f4f4d0f8 232 (FP_mode_reg[(regno)-FIRST_STACK_REG][(int) (mode)])
48227150 233
a05924f9
JH
234/* Used to initialize uninitialized registers. */
235static rtx nan;
48227150 236
48227150
JVA
237/* Forward declarations */
238
0c20a65f
AJ
239static int stack_regs_mentioned_p (rtx pat);
240static void straighten_stack (rtx, stack);
241static void pop_stack (stack, int);
242static rtx *get_true_reg (rtx *);
243
244static int check_asm_stack_operands (rtx);
245static int get_asm_operand_n_inputs (rtx);
246static rtx stack_result (tree);
247static void replace_reg (rtx *, int);
248static void remove_regno_note (rtx, enum reg_note, unsigned int);
249static int get_hard_regnum (stack, rtx);
250static rtx emit_pop_insn (rtx, stack, rtx, enum emit_where);
251static void emit_swap_insn (rtx, stack, rtx);
f964bd29 252static void swap_to_top(rtx, stack, rtx, rtx);
ecb63641 253static bool move_for_stack_reg (rtx, stack, rtx);
0c20a65f
AJ
254static int swap_rtx_condition_1 (rtx);
255static int swap_rtx_condition (rtx);
256static void compare_for_stack_reg (rtx, stack, rtx);
ecb63641 257static bool subst_stack_regs_pat (rtx, stack, rtx);
0c20a65f 258static void subst_asm_stack_regs (rtx, stack);
ecb63641 259static bool subst_stack_regs (rtx, stack);
0c20a65f
AJ
260static void change_stack (rtx, stack, stack, enum emit_where);
261static int convert_regs_entry (void);
262static void convert_regs_exit (void);
263static int convert_regs_1 (FILE *, basic_block);
264static int convert_regs_2 (FILE *, basic_block);
265static int convert_regs (FILE *);
266static void print_stack (FILE *, stack);
267static rtx next_flags_user (rtx);
268static void record_label_references (rtx, rtx);
269static bool compensate_edge (edge, FILE *);
21b2cd73 270\f
40f03658 271/* Return nonzero if any stack register is mentioned somewhere within PAT. */
21b2cd73
JH
272
273static int
0c20a65f 274stack_regs_mentioned_p (rtx pat)
21b2cd73 275{
b3694847
SS
276 const char *fmt;
277 int i;
e075ae69
RH
278
279 if (STACK_REG_P (pat))
280 return 1;
281
282 fmt = GET_RTX_FORMAT (GET_CODE (pat));
283 for (i = GET_RTX_LENGTH (GET_CODE (pat)) - 1; i >= 0; i--)
21b2cd73 284 {
e075ae69
RH
285 if (fmt[i] == 'E')
286 {
b3694847 287 int j;
e075ae69
RH
288
289 for (j = XVECLEN (pat, i) - 1; j >= 0; j--)
290 if (stack_regs_mentioned_p (XVECEXP (pat, i, j)))
291 return 1;
292 }
293 else if (fmt[i] == 'e' && stack_regs_mentioned_p (XEXP (pat, i)))
294 return 1;
21b2cd73 295 }
e075ae69 296
21b2cd73
JH
297 return 0;
298}
299
e075ae69 300/* Return nonzero if INSN mentions stacked registers, else return zero. */
21b2cd73
JH
301
302int
0c20a65f 303stack_regs_mentioned (rtx insn)
21b2cd73 304{
e075ae69
RH
305 unsigned int uid, max;
306 int test;
307
4793dca1 308 if (! INSN_P (insn) || !stack_regs_mentioned_data)
21b2cd73 309 return 0;
e075ae69 310
21b2cd73 311 uid = INSN_UID (insn);
e075ae69
RH
312 max = VARRAY_SIZE (stack_regs_mentioned_data);
313 if (uid >= max)
314 {
315 /* Allocate some extra size to avoid too many reallocs, but
316 do not grow too quickly. */
317 max = uid + uid / 20;
318 VARRAY_GROW (stack_regs_mentioned_data, max);
319 }
320
321 test = VARRAY_CHAR (stack_regs_mentioned_data, uid);
322 if (test == 0)
323 {
324 /* This insn has yet to be examined. Do so now. */
325 test = stack_regs_mentioned_p (PATTERN (insn)) ? 1 : 2;
326 VARRAY_CHAR (stack_regs_mentioned_data, uid) = test;
327 }
328
329 return test == 1;
21b2cd73 330}
e075ae69
RH
331\f
332static rtx ix86_flags_rtx;
21b2cd73 333
e075ae69 334static rtx
0c20a65f 335next_flags_user (rtx insn)
e075ae69 336{
a6a2274a 337 /* Search forward looking for the first use of this value.
e075ae69 338 Stop at block boundaries. */
e075ae69 339
a813c111 340 while (insn != BB_END (current_block))
e075ae69
RH
341 {
342 insn = NEXT_INSN (insn);
e075ae69 343
2c3c49de 344 if (INSN_P (insn) && reg_mentioned_p (ix86_flags_rtx, PATTERN (insn)))
a6a2274a 345 return insn;
e075ae69 346
0eac0e81 347 if (GET_CODE (insn) == CALL_INSN)
e075ae69
RH
348 return NULL_RTX;
349 }
0eac0e81 350 return NULL_RTX;
e075ae69 351}
48227150 352\f
05713b80 353/* Reorganize the stack into ascending numbers,
99a59310
RK
354 after this insn. */
355
356static void
0c20a65f 357straighten_stack (rtx insn, stack regstack)
99a59310
RK
358{
359 struct stack_def temp_stack;
360 int top;
361
8feb7351
JL
362 /* If there is only a single register on the stack, then the stack is
363 already in increasing order and no reorganization is needed.
364
365 Similarly if the stack is empty. */
366 if (regstack->top <= 0)
367 return;
368
d25cf633 369 COPY_HARD_REG_SET (temp_stack.reg_set, regstack->reg_set);
99a59310
RK
370
371 for (top = temp_stack.top = regstack->top; top >= 0; top--)
e075ae69 372 temp_stack.reg[top] = FIRST_STACK_REG + temp_stack.top - top;
a6a2274a 373
a05924f9 374 change_stack (insn, regstack, &temp_stack, EMIT_AFTER);
99a59310 375}
7aa74e4c 376
3eae4643 377/* Pop a register from the stack. */
7aa74e4c
SC
378
379static void
0c20a65f 380pop_stack (stack regstack, int regno)
7aa74e4c
SC
381{
382 int top = regstack->top;
383
384 CLEAR_HARD_REG_BIT (regstack->reg_set, regno);
385 regstack->top--;
3eae4643 386 /* If regno was not at the top of stack then adjust stack. */
7aa74e4c
SC
387 if (regstack->reg [top] != regno)
388 {
389 int i;
390 for (i = regstack->top; i >= 0; i--)
391 if (regstack->reg [i] == regno)
392 {
393 int j;
394 for (j = i; j < top; j++)
395 regstack->reg [j] = regstack->reg [j + 1];
396 break;
397 }
398 }
399}
99a59310 400\f
48227150
JVA
401/* Convert register usage from "flat" register file usage to a "stack
402 register file. FIRST is the first insn in the function, FILE is the
403 dump file, if used.
404
e218fc41 405 Construct a CFG and run life analysis. Then convert each insn one
0045d504 406 by one. Run a last cleanup_cfg pass, if optimizing, to eliminate
a05924f9
JH
407 code duplication created when the converter inserts pop insns on
408 the edges. */
48227150 409
b9422b69 410bool
0c20a65f 411reg_to_stack (rtx first, FILE *file)
48227150 412{
e0082a72 413 basic_block bb;
0b17ab2f
RH
414 int i;
415 int max_uid;
a05924f9 416
4793dca1 417 /* Clean up previous run. */
e2500fed 418 stack_regs_mentioned_data = 0;
4793dca1 419
a05924f9
JH
420 /* See if there is something to do. Flow analysis is quite
421 expensive so we might save some compilation time. */
422 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
423 if (regs_ever_live[i])
424 break;
425 if (i > LAST_STACK_REG)
b9422b69 426 return false;
99a59310 427
a6a2274a 428 /* Ok, floating point instructions exist. If not optimizing,
0c20a65f 429 build the CFG and run life analysis.
b9422b69
JH
430 Also need to rebuild life when superblock scheduling is done
431 as it don't update liveness yet. */
432 if (!optimize
433 || (flag_sched2_use_superblocks
434 && flag_schedule_insns_after_reload))
73991d6a 435 {
73991d6a
JH
436 count_or_remove_death_notes (NULL, 1);
437 life_analysis (first, file, PROP_DEATH_NOTES);
438 }
0ecf09f9 439 mark_dfs_back_edges ();
48227150 440
a05924f9 441 /* Set up block info for each basic block. */
ca6c03ca 442 alloc_aux_for_blocks (sizeof (struct block_info_def));
e0082a72 443 FOR_EACH_BB_REVERSE (bb)
0ecf09f9
JH
444 {
445 edge e;
6a87d634 446 for (e = bb->pred; e; e = e->pred_next)
0ecf09f9
JH
447 if (!(e->flags & EDGE_DFS_BACK)
448 && e->src != ENTRY_BLOCK_PTR)
754d9299 449 BLOCK_INFO (bb)->predecessors++;
0ecf09f9 450 }
48227150 451
a05924f9
JH
452 /* Create the replacement registers up front. */
453 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
21b2cd73 454 {
a05924f9
JH
455 enum machine_mode mode;
456 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
457 mode != VOIDmode;
458 mode = GET_MODE_WIDER_MODE (mode))
459 FP_MODE_REG (i, mode) = gen_rtx_REG (mode, i);
460 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT);
461 mode != VOIDmode;
462 mode = GET_MODE_WIDER_MODE (mode))
463 FP_MODE_REG (i, mode) = gen_rtx_REG (mode, i);
21b2cd73 464 }
48227150 465
a05924f9 466 ix86_flags_rtx = gen_rtx_REG (CCmode, FLAGS_REG);
48227150 467
a6a2274a 468 /* A QNaN for initializing uninitialized variables.
48227150 469
a05924f9 470 ??? We can't load from constant memory in PIC mode, because
d55d8fc7 471 we're inserting these instructions before the prologue and
a05924f9
JH
472 the PIC register hasn't been set up. In that case, fall back
473 on zero, which we can get from `ldz'. */
48227150 474
a05924f9
JH
475 if (flag_pic)
476 nan = CONST0_RTX (SFmode);
477 else
478 {
479 nan = gen_lowpart (SFmode, GEN_INT (0x7fc00000));
480 nan = force_const_mem (SFmode, nan);
481 }
48227150 482
a05924f9
JH
483 /* Allocate a cache for stack_regs_mentioned. */
484 max_uid = get_max_uid ();
485 VARRAY_CHAR_INIT (stack_regs_mentioned_data, max_uid + 1,
486 "stack_regs_mentioned cache");
48227150 487
4793dca1 488 convert_regs (file);
21b2cd73 489
ca6c03ca 490 free_aux_for_blocks ();
b9422b69 491 return true;
48227150
JVA
492}
493\f
494/* Check PAT, which is in INSN, for LABEL_REFs. Add INSN to the
495 label's chain of references, and note which insn contains each
0f41302f 496 reference. */
48227150
JVA
497
498static void
0c20a65f 499record_label_references (rtx insn, rtx pat)
48227150 500{
b3694847
SS
501 enum rtx_code code = GET_CODE (pat);
502 int i;
503 const char *fmt;
48227150
JVA
504
505 if (code == LABEL_REF)
506 {
b3694847
SS
507 rtx label = XEXP (pat, 0);
508 rtx ref;
48227150
JVA
509
510 if (GET_CODE (label) != CODE_LABEL)
511 abort ();
512
0f41302f
MS
513 /* If this is an undefined label, LABEL_REFS (label) contains
514 garbage. */
13684373
RK
515 if (INSN_UID (label) == 0)
516 return;
517
0f41302f 518 /* Don't make a duplicate in the code_label's chain. */
48227150 519
9f5cad05
JVA
520 for (ref = LABEL_REFS (label);
521 ref && ref != label;
522 ref = LABEL_NEXTREF (ref))
48227150
JVA
523 if (CONTAINING_INSN (ref) == insn)
524 return;
525
526 CONTAINING_INSN (pat) = insn;
527 LABEL_NEXTREF (pat) = LABEL_REFS (label);
528 LABEL_REFS (label) = pat;
529
530 return;
531 }
532
533 fmt = GET_RTX_FORMAT (code);
534 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
535 {
536 if (fmt[i] == 'e')
537 record_label_references (insn, XEXP (pat, i));
538 if (fmt[i] == 'E')
539 {
b3694847 540 int j;
48227150
JVA
541 for (j = 0; j < XVECLEN (pat, i); j++)
542 record_label_references (insn, XVECEXP (pat, i, j));
543 }
544 }
545}
546\f
547/* Return a pointer to the REG expression within PAT. If PAT is not a
548 REG, possible enclosed by a conversion rtx, return the inner part of
0f41302f 549 PAT that stopped the search. */
48227150
JVA
550
551static rtx *
0c20a65f 552get_true_reg (rtx *pat)
48227150 553{
99a59310 554 for (;;)
e075ae69 555 switch (GET_CODE (*pat))
99a59310 556 {
e075ae69 557 case SUBREG:
8d9afc4e 558 /* Eliminate FP subregister accesses in favor of the
e075ae69
RH
559 actual FP register in use. */
560 {
561 rtx subreg;
562 if (FP_REG_P (subreg = SUBREG_REG (*pat)))
99a59310 563 {
ddef6bc7
JJ
564 int regno_off = subreg_regno_offset (REGNO (subreg),
565 GET_MODE (subreg),
566 SUBREG_BYTE (*pat),
567 GET_MODE (*pat));
568 *pat = FP_MODE_REG (REGNO (subreg) + regno_off,
99a59310 569 GET_MODE (subreg));
e075ae69 570 default:
99a59310
RK
571 return pat;
572 }
e075ae69
RH
573 }
574 case FLOAT:
575 case FIX:
576 case FLOAT_EXTEND:
577 pat = & XEXP (*pat, 0);
0c5faf29
RS
578 break;
579
580 case FLOAT_TRUNCATE:
581 if (!flag_unsafe_math_optimizations)
582 return pat;
583 pat = & XEXP (*pat, 0);
584 break;
99a59310 585 }
48227150 586}
48227150 587\f
d6fc0492
RH
588/* Set if we find any malformed asms in a block. */
589static bool any_malformed_asm;
590
a05924f9 591/* There are many rules that an asm statement for stack-like regs must
114cbee6 592 follow. Those rules are explained at the top of this file: the rule
0f41302f 593 numbers below refer to that explanation. */
114cbee6 594
a05924f9 595static int
0c20a65f 596check_asm_stack_operands (rtx insn)
114cbee6
RS
597{
598 int i;
114cbee6
RS
599 int n_clobbers;
600 int malformed_asm = 0;
601 rtx body = PATTERN (insn);
602
a05924f9
JH
603 char reg_used_as_output[FIRST_PSEUDO_REGISTER];
604 char implicitly_dies[FIRST_PSEUDO_REGISTER];
f62a15e3 605 int alt;
114cbee6 606
a544cfd2 607 rtx *clobber_reg = 0;
f62a15e3 608 int n_inputs, n_outputs;
114cbee6 609
0e7d0eb9 610 /* Find out what the constraints require. If no constraint
854dfdff 611 alternative matches, this asm is malformed. */
f62a15e3
BS
612 extract_insn (insn);
613 constrain_operands (1);
614 alt = which_alternative;
615
616 preprocess_constraints ();
617
618 n_inputs = get_asm_operand_n_inputs (body);
1ccbefce 619 n_outputs = recog_data.n_operands - n_inputs;
f62a15e3
BS
620
621 if (alt < 0)
622 {
623 malformed_asm = 1;
624 /* Avoid further trouble with this insn. */
625 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
a05924f9 626 return 0;
f62a15e3 627 }
114cbee6 628
0f41302f 629 /* Strip SUBREGs here to make the following code simpler. */
1ccbefce
RH
630 for (i = 0; i < recog_data.n_operands; i++)
631 if (GET_CODE (recog_data.operand[i]) == SUBREG
632 && GET_CODE (SUBREG_REG (recog_data.operand[i])) == REG)
633 recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
114cbee6
RS
634
635 /* Set up CLOBBER_REG. */
636
637 n_clobbers = 0;
114cbee6
RS
638
639 if (GET_CODE (body) == PARALLEL)
3f5cfed6 640 {
703ad42b 641 clobber_reg = alloca (XVECLEN (body, 0) * sizeof (rtx));
114cbee6 642
3f5cfed6
JVA
643 for (i = 0; i < XVECLEN (body, 0); i++)
644 if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
645 {
646 rtx clobber = XVECEXP (body, 0, i);
647 rtx reg = XEXP (clobber, 0);
114cbee6 648
3f5cfed6
JVA
649 if (GET_CODE (reg) == SUBREG && GET_CODE (SUBREG_REG (reg)) == REG)
650 reg = SUBREG_REG (reg);
651
652 if (STACK_REG_P (reg))
653 {
654 clobber_reg[n_clobbers] = reg;
655 n_clobbers++;
656 }
657 }
658 }
114cbee6
RS
659
660 /* Enforce rule #4: Output operands must specifically indicate which
661 reg an output appears in after an asm. "=f" is not allowed: the
662 operand constraints must select a class with a single reg.
663
664 Also enforce rule #5: Output operands must start at the top of
0f41302f 665 the reg-stack: output operands may not "skip" a reg. */
114cbee6 666
a05924f9 667 memset (reg_used_as_output, 0, sizeof (reg_used_as_output));
114cbee6 668 for (i = 0; i < n_outputs; i++)
1ccbefce 669 if (STACK_REG_P (recog_data.operand[i]))
9c318306 670 {
f62a15e3 671 if (reg_class_size[(int) recog_op_alt[i][alt].class] != 1)
9c318306 672 {
1f978f5f 673 error_for_asm (insn, "output constraint %d must specify a single register", i);
9c318306
MH
674 malformed_asm = 1;
675 }
a6a2274a 676 else
d40cd80a
JJ
677 {
678 int j;
679
680 for (j = 0; j < n_clobbers; j++)
681 if (REGNO (recog_data.operand[i]) == REGNO (clobber_reg[j]))
682 {
1f978f5f 683 error_for_asm (insn, "output constraint %d cannot be specified together with \"%s\" clobber",
d40cd80a
JJ
684 i, reg_names [REGNO (clobber_reg[j])]);
685 malformed_asm = 1;
686 break;
687 }
688 if (j == n_clobbers)
689 reg_used_as_output[REGNO (recog_data.operand[i])] = 1;
690 }
9c318306 691 }
114cbee6
RS
692
693
694 /* Search for first non-popped reg. */
695 for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
696 if (! reg_used_as_output[i])
697 break;
698
699 /* If there are any other popped regs, that's an error. */
700 for (; i < LAST_STACK_REG + 1; i++)
701 if (reg_used_as_output[i])
702 break;
703
704 if (i != LAST_STACK_REG + 1)
705 {
1f978f5f 706 error_for_asm (insn, "output regs must be grouped at top of stack");
114cbee6
RS
707 malformed_asm = 1;
708 }
709
710 /* Enforce rule #2: All implicitly popped input regs must be closer
711 to the top of the reg-stack than any input that is not implicitly
0f41302f 712 popped. */
114cbee6 713
a05924f9 714 memset (implicitly_dies, 0, sizeof (implicitly_dies));
f62a15e3 715 for (i = n_outputs; i < n_outputs + n_inputs; i++)
1ccbefce 716 if (STACK_REG_P (recog_data.operand[i]))
114cbee6
RS
717 {
718 /* An input reg is implicitly popped if it is tied to an
0f41302f 719 output, or if there is a CLOBBER for it. */
114cbee6
RS
720 int j;
721
722 for (j = 0; j < n_clobbers; j++)
1ccbefce 723 if (operands_match_p (clobber_reg[j], recog_data.operand[i]))
114cbee6
RS
724 break;
725
f62a15e3 726 if (j < n_clobbers || recog_op_alt[i][alt].matches >= 0)
1ccbefce 727 implicitly_dies[REGNO (recog_data.operand[i])] = 1;
114cbee6
RS
728 }
729
730 /* Search for first non-popped reg. */
731 for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
732 if (! implicitly_dies[i])
733 break;
734
735 /* If there are any other popped regs, that's an error. */
736 for (; i < LAST_STACK_REG + 1; i++)
737 if (implicitly_dies[i])
738 break;
739
740 if (i != LAST_STACK_REG + 1)
741 {
742 error_for_asm (insn,
1f978f5f 743 "implicitly popped regs must be grouped at top of stack");
114cbee6
RS
744 malformed_asm = 1;
745 }
746
06d42c22 747 /* Enforce rule #3: If any input operand uses the "f" constraint, all
114cbee6
RS
748 output constraints must use the "&" earlyclobber.
749
a05924f9 750 ??? Detect this more deterministically by having constrain_asm_operands
0f41302f 751 record any earlyclobber. */
114cbee6 752
f62a15e3
BS
753 for (i = n_outputs; i < n_outputs + n_inputs; i++)
754 if (recog_op_alt[i][alt].matches == -1)
114cbee6
RS
755 {
756 int j;
757
758 for (j = 0; j < n_outputs; j++)
1ccbefce 759 if (operands_match_p (recog_data.operand[j], recog_data.operand[i]))
114cbee6
RS
760 {
761 error_for_asm (insn,
1f978f5f 762 "output operand %d must use `&' constraint", j);
114cbee6
RS
763 malformed_asm = 1;
764 }
765 }
766
767 if (malformed_asm)
768 {
769 /* Avoid further trouble with this insn. */
38a448ca 770 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
d6fc0492 771 any_malformed_asm = true;
a05924f9 772 return 0;
0e7d0eb9 773 }
48227150 774
a05924f9 775 return 1;
48227150
JVA
776}
777\f
114cbee6
RS
778/* Calculate the number of inputs and outputs in BODY, an
779 asm_operands. N_OPERANDS is the total number of operands, and
780 N_INPUTS and N_OUTPUTS are pointers to ints into which the results are
0f41302f 781 placed. */
114cbee6 782
f62a15e3 783static int
0c20a65f 784get_asm_operand_n_inputs (rtx body)
114cbee6
RS
785{
786 if (GET_CODE (body) == SET && GET_CODE (SET_SRC (body)) == ASM_OPERANDS)
f62a15e3 787 return ASM_OPERANDS_INPUT_LENGTH (SET_SRC (body));
114cbee6
RS
788
789 else if (GET_CODE (body) == ASM_OPERANDS)
f62a15e3 790 return ASM_OPERANDS_INPUT_LENGTH (body);
114cbee6
RS
791
792 else if (GET_CODE (body) == PARALLEL
793 && GET_CODE (XVECEXP (body, 0, 0)) == SET)
f62a15e3 794 return ASM_OPERANDS_INPUT_LENGTH (SET_SRC (XVECEXP (body, 0, 0)));
114cbee6
RS
795
796 else if (GET_CODE (body) == PARALLEL
797 && GET_CODE (XVECEXP (body, 0, 0)) == ASM_OPERANDS)
f62a15e3 798 return ASM_OPERANDS_INPUT_LENGTH (XVECEXP (body, 0, 0));
114cbee6 799
f62a15e3 800 abort ();
114cbee6 801}
0ab759e4 802
96237362 803/* If current function returns its result in an fp stack register,
9f9ed50a 804 return the REG. Otherwise, return 0. */
96237362 805
99a59310 806static rtx
0c20a65f 807stack_result (tree decl)
96237362 808{
f099b1c9 809 rtx result;
96237362 810
f099b1c9
JL
811 /* If the value is supposed to be returned in memory, then clearly
812 it is not returned in a stack register. */
61f71b34 813 if (aggregate_value_p (DECL_RESULT (decl), decl))
f099b1c9
JL
814 return 0;
815
19e7881c 816 result = DECL_RTL_IF_SET (DECL_RESULT (decl));
9cf218a3 817 if (result != 0)
96237362
RS
818 {
819#ifdef FUNCTION_OUTGOING_VALUE
820 result
a6a2274a 821 = FUNCTION_OUTGOING_VALUE (TREE_TYPE (DECL_RESULT (decl)), decl);
96237362
RS
822#else
823 result = FUNCTION_VALUE (TREE_TYPE (DECL_RESULT (decl)), decl);
824#endif
825 }
826
9f9ed50a 827 return result != 0 && STACK_REG_P (result) ? result : 0;
96237362 828}
48227150 829\f
48227150 830
e075ae69
RH
831/*
832 * This section deals with stack register substitution, and forms the second
833 * pass over the RTL.
834 */
48227150
JVA
835
836/* Replace REG, which is a pointer to a stack reg RTX, with an RTX for
0f41302f 837 the desired hard REGNO. */
48227150
JVA
838
839static void
0c20a65f 840replace_reg (rtx *reg, int regno)
48227150
JVA
841{
842 if (regno < FIRST_STACK_REG || regno > LAST_STACK_REG
843 || ! STACK_REG_P (*reg))
844 abort ();
845
99a59310 846 switch (GET_MODE_CLASS (GET_MODE (*reg)))
e075ae69
RH
847 {
848 default: abort ();
849 case MODE_FLOAT:
850 case MODE_COMPLEX_FLOAT:;
851 }
7d0e3dd4 852
99a59310 853 *reg = FP_MODE_REG (regno, GET_MODE (*reg));
48227150
JVA
854}
855
856/* Remove a note of type NOTE, which must be found, for register
0f41302f 857 number REGNO from INSN. Remove only one such note. */
48227150
JVA
858
859static void
0c20a65f 860remove_regno_note (rtx insn, enum reg_note note, unsigned int regno)
48227150 861{
b3694847 862 rtx *note_link, this;
48227150 863
8e2e89f7 864 note_link = &REG_NOTES (insn);
48227150
JVA
865 for (this = *note_link; this; this = XEXP (this, 1))
866 if (REG_NOTE_KIND (this) == note
867 && REG_P (XEXP (this, 0)) && REGNO (XEXP (this, 0)) == regno)
868 {
869 *note_link = XEXP (this, 1);
870 return;
871 }
872 else
873 note_link = &XEXP (this, 1);
874
875 abort ();
876}
877
878/* Find the hard register number of virtual register REG in REGSTACK.
879 The hard register number is relative to the top of the stack. -1 is
0f41302f 880 returned if the register is not found. */
48227150
JVA
881
882static int
0c20a65f 883get_hard_regnum (stack regstack, rtx reg)
48227150
JVA
884{
885 int i;
886
887 if (! STACK_REG_P (reg))
888 abort ();
889
890 for (i = regstack->top; i >= 0; i--)
891 if (regstack->reg[i] == REGNO (reg))
892 break;
893
894 return i >= 0 ? (FIRST_STACK_REG + regstack->top - i) : -1;
895}
48227150
JVA
896\f
897/* Emit an insn to pop virtual register REG before or after INSN.
898 REGSTACK is the stack state after INSN and is updated to reflect this
e075ae69
RH
899 pop. WHEN is either emit_insn_before or emit_insn_after. A pop insn
900 is represented as a SET whose destination is the register to be popped
901 and source is the top of stack. A death note for the top of stack
0f41302f 902 cases the movdf pattern to pop. */
48227150
JVA
903
904static rtx
0c20a65f 905emit_pop_insn (rtx insn, stack regstack, rtx reg, enum emit_where where)
48227150
JVA
906{
907 rtx pop_insn, pop_rtx;
908 int hard_regno;
909
037f20f1
JH
910 /* For complex types take care to pop both halves. These may survive in
911 CLOBBER and USE expressions. */
912 if (COMPLEX_MODE_P (GET_MODE (reg)))
913 {
914 rtx reg1 = FP_MODE_REG (REGNO (reg), DFmode);
915 rtx reg2 = FP_MODE_REG (REGNO (reg) + 1, DFmode);
916
917 pop_insn = NULL_RTX;
918 if (get_hard_regnum (regstack, reg1) >= 0)
a6a2274a 919 pop_insn = emit_pop_insn (insn, regstack, reg1, where);
037f20f1 920 if (get_hard_regnum (regstack, reg2) >= 0)
a6a2274a 921 pop_insn = emit_pop_insn (insn, regstack, reg2, where);
037f20f1
JH
922 if (!pop_insn)
923 abort ();
924 return pop_insn;
925 }
926
48227150
JVA
927 hard_regno = get_hard_regnum (regstack, reg);
928
929 if (hard_regno < FIRST_STACK_REG)
930 abort ();
931
e075ae69
RH
932 pop_rtx = gen_rtx_SET (VOIDmode, FP_MODE_REG (hard_regno, DFmode),
933 FP_MODE_REG (FIRST_STACK_REG, DFmode));
48227150 934
a05924f9 935 if (where == EMIT_AFTER)
3c030e88 936 pop_insn = emit_insn_after (pop_rtx, insn);
a05924f9 937 else
3c030e88 938 pop_insn = emit_insn_before (pop_rtx, insn);
48227150 939
c5c76735
JL
940 REG_NOTES (pop_insn)
941 = gen_rtx_EXPR_LIST (REG_DEAD, FP_MODE_REG (FIRST_STACK_REG, DFmode),
942 REG_NOTES (pop_insn));
48227150
JVA
943
944 regstack->reg[regstack->top - (hard_regno - FIRST_STACK_REG)]
945 = regstack->reg[regstack->top];
946 regstack->top -= 1;
947 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (reg));
948
949 return pop_insn;
950}
951\f
a05924f9
JH
952/* Emit an insn before or after INSN to swap virtual register REG with
953 the top of stack. REGSTACK is the stack state before the swap, and
954 is updated to reflect the swap. A swap insn is represented as a
955 PARALLEL of two patterns: each pattern moves one reg to the other.
48227150 956
0f41302f 957 If REG is already at the top of the stack, no insn is emitted. */
48227150
JVA
958
959static void
0c20a65f 960emit_swap_insn (rtx insn, stack regstack, rtx reg)
48227150 961{
eca31501 962 int hard_regno;
a05924f9 963 rtx swap_rtx;
eca31501
JVA
964 int tmp, other_reg; /* swap regno temps */
965 rtx i1; /* the stack-reg insn prior to INSN */
966 rtx i1set = NULL_RTX; /* the SET rtx within I1 */
48227150 967
eca31501
JVA
968 hard_regno = get_hard_regnum (regstack, reg);
969
970 if (hard_regno < FIRST_STACK_REG)
971 abort ();
48227150
JVA
972 if (hard_regno == FIRST_STACK_REG)
973 return;
974
eca31501 975 other_reg = regstack->top - (hard_regno - FIRST_STACK_REG);
48227150 976
eca31501
JVA
977 tmp = regstack->reg[other_reg];
978 regstack->reg[other_reg] = regstack->reg[regstack->top];
48227150 979 regstack->reg[regstack->top] = tmp;
48227150 980
a05924f9
JH
981 /* Find the previous insn involving stack regs, but don't pass a
982 block boundary. */
983 i1 = NULL;
a813c111 984 if (current_block && insn != BB_HEAD (current_block))
eca31501 985 {
a05924f9 986 rtx tmp = PREV_INSN (insn);
a813c111 987 rtx limit = PREV_INSN (BB_HEAD (current_block));
3a6cc978 988 while (tmp != limit)
a05924f9
JH
989 {
990 if (GET_CODE (tmp) == CODE_LABEL
35433587 991 || GET_CODE (tmp) == CALL_INSN
589ca5cb 992 || NOTE_INSN_BASIC_BLOCK_P (tmp)
a05924f9
JH
993 || (GET_CODE (tmp) == INSN
994 && stack_regs_mentioned (tmp)))
995 {
996 i1 = tmp;
997 break;
998 }
999 tmp = PREV_INSN (tmp);
1000 }
1001 }
1002
1003 if (i1 != NULL_RTX
1004 && (i1set = single_set (i1)) != NULL_RTX)
1005 {
1006 rtx i1src = *get_true_reg (&SET_SRC (i1set));
eca31501 1007 rtx i1dest = *get_true_reg (&SET_DEST (i1set));
48227150 1008
eca31501 1009 /* If the previous register stack push was from the reg we are to
0f41302f 1010 swap with, omit the swap. */
eca31501
JVA
1011
1012 if (GET_CODE (i1dest) == REG && REGNO (i1dest) == FIRST_STACK_REG
ae0ed63a
JM
1013 && GET_CODE (i1src) == REG
1014 && REGNO (i1src) == (unsigned) hard_regno - 1
eca31501
JVA
1015 && find_regno_note (i1, REG_DEAD, FIRST_STACK_REG) == NULL_RTX)
1016 return;
1017
1018 /* If the previous insn wrote to the reg we are to swap with,
1019 omit the swap. */
1020
ae0ed63a 1021 if (GET_CODE (i1dest) == REG && REGNO (i1dest) == (unsigned) hard_regno
eca31501
JVA
1022 && GET_CODE (i1src) == REG && REGNO (i1src) == FIRST_STACK_REG
1023 && find_regno_note (i1, REG_DEAD, FIRST_STACK_REG) == NULL_RTX)
1024 return;
1025 }
1026
e075ae69
RH
1027 swap_rtx = gen_swapxf (FP_MODE_REG (hard_regno, XFmode),
1028 FP_MODE_REG (FIRST_STACK_REG, XFmode));
a05924f9
JH
1029
1030 if (i1)
3c030e88 1031 emit_insn_after (swap_rtx, i1);
a05924f9 1032 else if (current_block)
a813c111 1033 emit_insn_before (swap_rtx, BB_HEAD (current_block));
a05924f9
JH
1034 else
1035 emit_insn_before (swap_rtx, insn);
48227150
JVA
1036}
1037\f
f964bd29
UB
1038/* Emit an insns before INSN to swap virtual register SRC1 with
1039 the top of stack and virtual register SRC2 with second stack
1040 slot. REGSTACK is the stack state before the swaps, and
1041 is updated to reflect the swaps. A swap insn is represented as a
1042 PARALLEL of two patterns: each pattern moves one reg to the other.
1043
1044 If SRC1 and/or SRC2 are already at the right place, no swap insn
1045 is emitted. */
1046
1047static void
1048swap_to_top (rtx insn, stack regstack, rtx src1, rtx src2)
1049{
1050 struct stack_def temp_stack;
1051 int regno, j, k, temp;
1052
1053 temp_stack = *regstack;
1054
1055 /* Place operand 1 at the top of stack. */
1056 regno = get_hard_regnum (&temp_stack, src1);
1057 if (regno < 0)
1058 abort ();
1059 if (regno != FIRST_STACK_REG)
1060 {
1061 k = temp_stack.top - (regno - FIRST_STACK_REG);
1062 j = temp_stack.top;
1063
1064 temp = temp_stack.reg[k];
1065 temp_stack.reg[k] = temp_stack.reg[j];
1066 temp_stack.reg[j] = temp;
1067 }
1068
1069 /* Place operand 2 next on the stack. */
1070 regno = get_hard_regnum (&temp_stack, src2);
1071 if (regno < 0)
1072 abort ();
1073 if (regno != FIRST_STACK_REG + 1)
1074 {
1075 k = temp_stack.top - (regno - FIRST_STACK_REG);
1076 j = temp_stack.top - 1;
1077
1078 temp = temp_stack.reg[k];
1079 temp_stack.reg[k] = temp_stack.reg[j];
1080 temp_stack.reg[j] = temp;
1081 }
1082
1083 change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
1084}
1085\f
48227150 1086/* Handle a move to or from a stack register in PAT, which is in INSN.
ecb63641
EB
1087 REGSTACK is the current stack. Return whether a control flow insn
1088 was deleted in the process. */
48227150 1089
ecb63641 1090static bool
0c20a65f 1091move_for_stack_reg (rtx insn, stack regstack, rtx pat)
48227150 1092{
99a59310
RK
1093 rtx *psrc = get_true_reg (&SET_SRC (pat));
1094 rtx *pdest = get_true_reg (&SET_DEST (pat));
1095 rtx src, dest;
48227150 1096 rtx note;
ecb63641 1097 bool control_flow_insn_deleted = false;
48227150 1098
99a59310
RK
1099 src = *psrc; dest = *pdest;
1100
1101 if (STACK_REG_P (src) && STACK_REG_P (dest))
48227150
JVA
1102 {
1103 /* Write from one stack reg to another. If SRC dies here, then
0f41302f 1104 just change the register mapping and delete the insn. */
48227150 1105
99a59310 1106 note = find_regno_note (insn, REG_DEAD, REGNO (src));
48227150
JVA
1107 if (note)
1108 {
1109 int i;
1110
0f41302f 1111 /* If this is a no-op move, there must not be a REG_DEAD note. */
99a59310 1112 if (REGNO (src) == REGNO (dest))
48227150
JVA
1113 abort ();
1114
1115 for (i = regstack->top; i >= 0; i--)
99a59310 1116 if (regstack->reg[i] == REGNO (src))
48227150
JVA
1117 break;
1118
0f41302f 1119 /* The source must be live, and the dest must be dead. */
99a59310 1120 if (i < 0 || get_hard_regnum (regstack, dest) >= FIRST_STACK_REG)
48227150
JVA
1121 abort ();
1122
1123 /* It is possible that the dest is unused after this insn.
0f41302f 1124 If so, just pop the src. */
48227150 1125
99a59310 1126 if (find_regno_note (insn, REG_UNUSED, REGNO (dest)))
ecb63641
EB
1127 emit_pop_insn (insn, regstack, src, EMIT_AFTER);
1128 else
48227150 1129 {
ecb63641
EB
1130 regstack->reg[i] = REGNO (dest);
1131 SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1132 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (src));
48227150
JVA
1133 }
1134
ecb63641 1135 control_flow_insn_deleted |= control_flow_insn_p (insn);
53c17031 1136 delete_insn (insn);
ecb63641 1137 return control_flow_insn_deleted;
48227150
JVA
1138 }
1139
0f41302f 1140 /* The source reg does not die. */
48227150
JVA
1141
1142 /* If this appears to be a no-op move, delete it, or else it
1143 will confuse the machine description output patterns. But if
1144 it is REG_UNUSED, we must pop the reg now, as per-insn processing
0f41302f 1145 for REG_UNUSED will not work for deleted insns. */
48227150 1146
99a59310 1147 if (REGNO (src) == REGNO (dest))
48227150 1148 {
99a59310 1149 if (find_regno_note (insn, REG_UNUSED, REGNO (dest)))
a05924f9 1150 emit_pop_insn (insn, regstack, dest, EMIT_AFTER);
48227150 1151
ecb63641 1152 control_flow_insn_deleted |= control_flow_insn_p (insn);
53c17031 1153 delete_insn (insn);
ecb63641 1154 return control_flow_insn_deleted;
48227150
JVA
1155 }
1156
3eae4643 1157 /* The destination ought to be dead. */
99a59310 1158 if (get_hard_regnum (regstack, dest) >= FIRST_STACK_REG)
48227150
JVA
1159 abort ();
1160
99a59310 1161 replace_reg (psrc, get_hard_regnum (regstack, src));
48227150 1162
99a59310
RK
1163 regstack->reg[++regstack->top] = REGNO (dest);
1164 SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1165 replace_reg (pdest, FIRST_STACK_REG);
48227150 1166 }
99a59310 1167 else if (STACK_REG_P (src))
48227150
JVA
1168 {
1169 /* Save from a stack reg to MEM, or possibly integer reg. Since
1170 only top of stack may be saved, emit an exchange first if
0f41302f 1171 needs be. */
48227150 1172
99a59310 1173 emit_swap_insn (insn, regstack, src);
48227150 1174
99a59310 1175 note = find_regno_note (insn, REG_DEAD, REGNO (src));
48227150
JVA
1176 if (note)
1177 {
1178 replace_reg (&XEXP (note, 0), FIRST_STACK_REG);
1179 regstack->top--;
99a59310 1180 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (src));
48227150 1181 }
f8a1ebc6 1182 else if ((GET_MODE (src) == XFmode)
cadcffb3 1183 && regstack->top < REG_STACK_SIZE - 1)
b40b8b06
JVA
1184 {
1185 /* A 387 cannot write an XFmode value to a MEM without
1186 clobbering the source reg. The output code can handle
1187 this by reading back the value from the MEM.
1188 But it is more efficient to use a temp register if one is
1189 available. Push the source value here if the register
1190 stack is not full, and then write the value to memory via
1191 a pop. */
1192 rtx push_rtx, push_insn;
037f20f1 1193 rtx top_stack_reg = FP_MODE_REG (FIRST_STACK_REG, GET_MODE (src));
b40b8b06 1194
f8a1ebc6 1195 push_rtx = gen_movxf (top_stack_reg, top_stack_reg);
b40b8b06 1196 push_insn = emit_insn_before (push_rtx, insn);
38a448ca
RH
1197 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_DEAD, top_stack_reg,
1198 REG_NOTES (insn));
b40b8b06 1199 }
48227150 1200
99a59310 1201 replace_reg (psrc, FIRST_STACK_REG);
48227150 1202 }
99a59310 1203 else if (STACK_REG_P (dest))
48227150
JVA
1204 {
1205 /* Load from MEM, or possibly integer REG or constant, into the
1206 stack regs. The actual target is always the top of the
1207 stack. The stack mapping is changed to reflect that DEST is
1208 now at top of stack. */
1209
3eae4643 1210 /* The destination ought to be dead. */
99a59310 1211 if (get_hard_regnum (regstack, dest) >= FIRST_STACK_REG)
48227150
JVA
1212 abort ();
1213
1214 if (regstack->top >= REG_STACK_SIZE)
1215 abort ();
1216
99a59310
RK
1217 regstack->reg[++regstack->top] = REGNO (dest);
1218 SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1219 replace_reg (pdest, FIRST_STACK_REG);
48227150
JVA
1220 }
1221 else
1222 abort ();
ecb63641
EB
1223
1224 return control_flow_insn_deleted;
48227150
JVA
1225}
1226\f
e075ae69
RH
1227/* Swap the condition on a branch, if there is one. Return true if we
1228 found a condition to swap. False if the condition was not used as
dc297297 1229 such. */
e075ae69
RH
1230
1231static int
0c20a65f 1232swap_rtx_condition_1 (rtx pat)
eca31501 1233{
b3694847
SS
1234 const char *fmt;
1235 int i, r = 0;
eca31501 1236
ec8e098d 1237 if (COMPARISON_P (pat))
eca31501
JVA
1238 {
1239 PUT_CODE (pat, swap_condition (GET_CODE (pat)));
e075ae69 1240 r = 1;
eca31501 1241 }
e075ae69 1242 else
eca31501 1243 {
e075ae69
RH
1244 fmt = GET_RTX_FORMAT (GET_CODE (pat));
1245 for (i = GET_RTX_LENGTH (GET_CODE (pat)) - 1; i >= 0; i--)
eca31501 1246 {
e075ae69
RH
1247 if (fmt[i] == 'E')
1248 {
b3694847 1249 int j;
eca31501 1250
e075ae69
RH
1251 for (j = XVECLEN (pat, i) - 1; j >= 0; j--)
1252 r |= swap_rtx_condition_1 (XVECEXP (pat, i, j));
1253 }
1254 else if (fmt[i] == 'e')
1255 r |= swap_rtx_condition_1 (XEXP (pat, i));
eca31501 1256 }
eca31501 1257 }
e075ae69
RH
1258
1259 return r;
1260}
1261
1262static int
0c20a65f 1263swap_rtx_condition (rtx insn)
e075ae69
RH
1264{
1265 rtx pat = PATTERN (insn);
1266
1267 /* We're looking for a single set to cc0 or an HImode temporary. */
1268
1269 if (GET_CODE (pat) == SET
1270 && GET_CODE (SET_DEST (pat)) == REG
1271 && REGNO (SET_DEST (pat)) == FLAGS_REG)
1272 {
1273 insn = next_flags_user (insn);
1274 if (insn == NULL_RTX)
1275 return 0;
1276 pat = PATTERN (insn);
1277 }
1278
1279 /* See if this is, or ends in, a fnstsw, aka unspec 9. If so, we're
1280 not doing anything with the cc value right now. We may be able to
1281 search for one though. */
1282
1283 if (GET_CODE (pat) == SET
1284 && GET_CODE (SET_SRC (pat)) == UNSPEC
35a76aac 1285 && XINT (SET_SRC (pat), 1) == UNSPEC_FNSTSW)
e075ae69
RH
1286 {
1287 rtx dest = SET_DEST (pat);
1288
a6a2274a 1289 /* Search forward looking for the first use of this value.
e075ae69 1290 Stop at block boundaries. */
a813c111 1291 while (insn != BB_END (current_block))
e075ae69
RH
1292 {
1293 insn = NEXT_INSN (insn);
2c3c49de 1294 if (INSN_P (insn) && reg_mentioned_p (dest, insn))
e075ae69 1295 break;
0eac0e81 1296 if (GET_CODE (insn) == CALL_INSN)
e075ae69
RH
1297 return 0;
1298 }
1299
1300 /* So we've found the insn using this value. If it is anything
1301 other than sahf, aka unspec 10, or the value does not die
1302 (meaning we'd have to search further), then we must give up. */
1303 pat = PATTERN (insn);
1304 if (GET_CODE (pat) != SET
1305 || GET_CODE (SET_SRC (pat)) != UNSPEC
35a76aac 1306 || XINT (SET_SRC (pat), 1) != UNSPEC_SAHF
e075ae69
RH
1307 || ! dead_or_set_p (insn, dest))
1308 return 0;
1309
1310 /* Now we are prepared to handle this as a normal cc0 setter. */
1311 insn = next_flags_user (insn);
1312 if (insn == NULL_RTX)
1313 return 0;
1314 pat = PATTERN (insn);
1315 }
1316
90a74703
JH
1317 if (swap_rtx_condition_1 (pat))
1318 {
0eac0e81 1319 int fail = 0;
90a74703
JH
1320 INSN_CODE (insn) = -1;
1321 if (recog_memoized (insn) == -1)
0eac0e81
JH
1322 fail = 1;
1323 /* In case the flags don't die here, recurse to try fix
1324 following user too. */
1325 else if (! dead_or_set_p (insn, ix86_flags_rtx))
1326 {
1327 insn = next_flags_user (insn);
1328 if (!insn || !swap_rtx_condition (insn))
1329 fail = 1;
1330 }
1331 if (fail)
90a74703
JH
1332 {
1333 swap_rtx_condition_1 (pat);
1334 return 0;
1335 }
1336 return 1;
1337 }
1338 return 0;
eca31501
JVA
1339}
1340
48227150
JVA
1341/* Handle a comparison. Special care needs to be taken to avoid
1342 causing comparisons that a 387 cannot do correctly, such as EQ.
1343
e075ae69 1344 Also, a pop insn may need to be emitted. The 387 does have an
48227150
JVA
1345 `fcompp' insn that can pop two regs, but it is sometimes too expensive
1346 to do this - a `fcomp' followed by a `fstpl %st(0)' may be easier to
e075ae69 1347 set up. */
48227150
JVA
1348
1349static void
0c20a65f 1350compare_for_stack_reg (rtx insn, stack regstack, rtx pat_src)
48227150
JVA
1351{
1352 rtx *src1, *src2;
1353 rtx src1_note, src2_note;
e075ae69 1354 rtx flags_user;
914ec131 1355
e075ae69
RH
1356 src1 = get_true_reg (&XEXP (pat_src, 0));
1357 src2 = get_true_reg (&XEXP (pat_src, 1));
1358 flags_user = next_flags_user (insn);
48227150 1359
eca31501 1360 /* ??? If fxch turns out to be cheaper than fstp, give priority to
0f41302f 1361 registers that die in this insn - move those to stack top first. */
e075ae69
RH
1362 if ((! STACK_REG_P (*src1)
1363 || (STACK_REG_P (*src2)
1364 && get_hard_regnum (regstack, *src2) == FIRST_STACK_REG))
1365 && swap_rtx_condition (insn))
eca31501 1366 {
e075ae69
RH
1367 rtx temp;
1368 temp = XEXP (pat_src, 0);
1369 XEXP (pat_src, 0) = XEXP (pat_src, 1);
1370 XEXP (pat_src, 1) = temp;
48227150 1371
e075ae69
RH
1372 src1 = get_true_reg (&XEXP (pat_src, 0));
1373 src2 = get_true_reg (&XEXP (pat_src, 1));
dc78213e 1374
b9342cdf 1375 INSN_CODE (insn) = -1;
eca31501 1376 }
48227150 1377
0f41302f 1378 /* We will fix any death note later. */
48227150
JVA
1379
1380 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1381
1382 if (STACK_REG_P (*src2))
1383 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1384 else
eca31501 1385 src2_note = NULL_RTX;
48227150 1386
e075ae69 1387 emit_swap_insn (insn, regstack, *src1);
48227150
JVA
1388
1389 replace_reg (src1, FIRST_STACK_REG);
1390
1391 if (STACK_REG_P (*src2))
e075ae69 1392 replace_reg (src2, get_hard_regnum (regstack, *src2));
48227150
JVA
1393
1394 if (src1_note)
1395 {
7aa74e4c 1396 pop_stack (regstack, REGNO (XEXP (src1_note, 0)));
48227150 1397 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
48227150
JVA
1398 }
1399
1400 /* If the second operand dies, handle that. But if the operands are
1401 the same stack register, don't bother, because only one death is
0f41302f 1402 needed, and it was just handled. */
48227150
JVA
1403
1404 if (src2_note
eca31501 1405 && ! (STACK_REG_P (*src1) && STACK_REG_P (*src2)
48227150
JVA
1406 && REGNO (*src1) == REGNO (*src2)))
1407 {
1408 /* As a special case, two regs may die in this insn if src2 is
1409 next to top of stack and the top of stack also dies. Since
1410 we have already popped src1, "next to top of stack" is really
0f41302f 1411 at top (FIRST_STACK_REG) now. */
48227150
JVA
1412
1413 if (get_hard_regnum (regstack, XEXP (src2_note, 0)) == FIRST_STACK_REG
1414 && src1_note)
1415 {
7aa74e4c 1416 pop_stack (regstack, REGNO (XEXP (src2_note, 0)));
48227150 1417 replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG + 1);
48227150
JVA
1418 }
1419 else
1420 {
e075ae69
RH
1421 /* The 386 can only represent death of the first operand in
1422 the case handled above. In all other cases, emit a separate
1423 pop and remove the death note from here. */
1424
1425 /* link_cc0_insns (insn); */
1426
1427 remove_regno_note (insn, REG_DEAD, REGNO (XEXP (src2_note, 0)));
48227150 1428
e075ae69 1429 emit_pop_insn (insn, regstack, XEXP (src2_note, 0),
a05924f9 1430 EMIT_AFTER);
48227150
JVA
1431 }
1432 }
1433}
1434\f
1435/* Substitute new registers in PAT, which is part of INSN. REGSTACK
ecb63641
EB
1436 is the current register layout. Return whether a control flow insn
1437 was deleted in the process. */
48227150 1438
ecb63641 1439static bool
0c20a65f 1440subst_stack_regs_pat (rtx insn, stack regstack, rtx pat)
48227150
JVA
1441{
1442 rtx *dest, *src;
ecb63641 1443 bool control_flow_insn_deleted = false;
48227150 1444
a05924f9
JH
1445 switch (GET_CODE (pat))
1446 {
1447 case USE:
1448 /* Deaths in USE insns can happen in non optimizing compilation.
1449 Handle them by popping the dying register. */
1450 src = get_true_reg (&XEXP (pat, 0));
a6a2274a
KH
1451 if (STACK_REG_P (*src)
1452 && find_regno_note (insn, REG_DEAD, REGNO (*src)))
1453 {
1454 emit_pop_insn (insn, regstack, *src, EMIT_AFTER);
ecb63641 1455 return control_flow_insn_deleted;
a6a2274a 1456 }
eedf2f55 1457 /* ??? Uninitialized USE should not happen. */
a05924f9 1458 else if (get_hard_regnum (regstack, *src) == -1)
f4f4d0f8 1459 abort ();
a05924f9 1460 break;
48227150 1461
a05924f9
JH
1462 case CLOBBER:
1463 {
1464 rtx note;
48227150 1465
a05924f9
JH
1466 dest = get_true_reg (&XEXP (pat, 0));
1467 if (STACK_REG_P (*dest))
1468 {
1469 note = find_reg_note (insn, REG_DEAD, *dest);
bd695e1e
RH
1470
1471 if (pat != PATTERN (insn))
1472 {
1473 /* The fix_truncdi_1 pattern wants to be able to allocate
1474 it's own scratch register. It does this by clobbering
1475 an fp reg so that it is assured of an empty reg-stack
a6a2274a 1476 register. If the register is live, kill it now.
bd695e1e
RH
1477 Remove the DEAD/UNUSED note so we don't try to kill it
1478 later too. */
1479
1480 if (note)
1481 emit_pop_insn (insn, regstack, *dest, EMIT_BEFORE);
1482 else
1483 {
1484 note = find_reg_note (insn, REG_UNUSED, *dest);
1485 if (!note)
1486 abort ();
1487 }
1488 remove_note (insn, note);
cb0bc263 1489 replace_reg (dest, FIRST_STACK_REG + 1);
bd695e1e 1490 }
a05924f9
JH
1491 else
1492 {
bd695e1e
RH
1493 /* A top-level clobber with no REG_DEAD, and no hard-regnum
1494 indicates an uninitialized value. Because reload removed
a6a2274a 1495 all other clobbers, this must be due to a function
bd695e1e
RH
1496 returning without a value. Load up a NaN. */
1497
1498 if (! note
1499 && get_hard_regnum (regstack, *dest) == -1)
1500 {
1501 pat = gen_rtx_SET (VOIDmode,
1502 FP_MODE_REG (REGNO (*dest), SFmode),
1503 nan);
1504 PATTERN (insn) = pat;
ecb63641 1505 control_flow_insn_deleted |= move_for_stack_reg (insn, regstack, pat);
bd695e1e 1506 }
037f20f1
JH
1507 if (! note && COMPLEX_MODE_P (GET_MODE (*dest))
1508 && get_hard_regnum (regstack, FP_MODE_REG (REGNO (*dest), DFmode)) == -1)
1509 {
1510 pat = gen_rtx_SET (VOIDmode,
1511 FP_MODE_REG (REGNO (*dest) + 1, SFmode),
1512 nan);
1513 PATTERN (insn) = pat;
ecb63641 1514 control_flow_insn_deleted |= move_for_stack_reg (insn, regstack, pat);
037f20f1 1515 }
a05924f9 1516 }
a05924f9 1517 }
48227150 1518 break;
a05924f9 1519 }
48227150 1520
a05924f9
JH
1521 case SET:
1522 {
6496a589 1523 rtx *src1 = (rtx *) 0, *src2;
a05924f9
JH
1524 rtx src1_note, src2_note;
1525 rtx pat_src;
1526
1527 dest = get_true_reg (&SET_DEST (pat));
1528 src = get_true_reg (&SET_SRC (pat));
1529 pat_src = SET_SRC (pat);
1530
1531 /* See if this is a `movM' pattern, and handle elsewhere if so. */
1532 if (STACK_REG_P (*src)
1533 || (STACK_REG_P (*dest)
1534 && (GET_CODE (*src) == REG || GET_CODE (*src) == MEM
1535 || GET_CODE (*src) == CONST_DOUBLE)))
1536 {
ecb63641 1537 control_flow_insn_deleted |= move_for_stack_reg (insn, regstack, pat);
a05924f9
JH
1538 break;
1539 }
48227150 1540
a05924f9
JH
1541 switch (GET_CODE (pat_src))
1542 {
1543 case COMPARE:
1544 compare_for_stack_reg (insn, regstack, pat_src);
1545 break;
48227150 1546
a05924f9
JH
1547 case CALL:
1548 {
1549 int count;
66fd46b6 1550 for (count = hard_regno_nregs[REGNO (*dest)][GET_MODE (*dest)];
a05924f9
JH
1551 --count >= 0;)
1552 {
1553 regstack->reg[++regstack->top] = REGNO (*dest) + count;
1554 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest) + count);
1555 }
1556 }
1557 replace_reg (dest, FIRST_STACK_REG);
1558 break;
48227150 1559
a05924f9
JH
1560 case REG:
1561 /* This is a `tstM2' case. */
1562 if (*dest != cc0_rtx)
1563 abort ();
1564 src1 = src;
48227150 1565
a05924f9 1566 /* Fall through. */
48227150 1567
a05924f9
JH
1568 case FLOAT_TRUNCATE:
1569 case SQRT:
1570 case ABS:
1571 case NEG:
1572 /* These insns only operate on the top of the stack. DEST might
1573 be cc0_rtx if we're processing a tstM pattern. Also, it's
1574 possible that the tstM case results in a REG_DEAD note on the
1575 source. */
48227150 1576
a05924f9
JH
1577 if (src1 == 0)
1578 src1 = get_true_reg (&XEXP (pat_src, 0));
48227150 1579
a05924f9 1580 emit_swap_insn (insn, regstack, *src1);
48227150 1581
a05924f9 1582 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
48227150 1583
a05924f9
JH
1584 if (STACK_REG_P (*dest))
1585 replace_reg (dest, FIRST_STACK_REG);
48227150 1586
a05924f9
JH
1587 if (src1_note)
1588 {
1589 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1590 regstack->top--;
1591 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (*src1));
1592 }
48227150 1593
a05924f9
JH
1594 replace_reg (src1, FIRST_STACK_REG);
1595 break;
48227150 1596
a05924f9
JH
1597 case MINUS:
1598 case DIV:
1599 /* On i386, reversed forms of subM3 and divM3 exist for
1600 MODE_FLOAT, so the same code that works for addM3 and mulM3
1601 can be used. */
1602 case MULT:
1603 case PLUS:
1604 /* These insns can accept the top of stack as a destination
1605 from a stack reg or mem, or can use the top of stack as a
1606 source and some other stack register (possibly top of stack)
1607 as a destination. */
1608
1609 src1 = get_true_reg (&XEXP (pat_src, 0));
1610 src2 = get_true_reg (&XEXP (pat_src, 1));
1611
1612 /* We will fix any death note later. */
1613
1614 if (STACK_REG_P (*src1))
1615 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1616 else
1617 src1_note = NULL_RTX;
1618 if (STACK_REG_P (*src2))
1619 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1620 else
1621 src2_note = NULL_RTX;
48227150 1622
a05924f9
JH
1623 /* If either operand is not a stack register, then the dest
1624 must be top of stack. */
48227150 1625
a05924f9 1626 if (! STACK_REG_P (*src1) || ! STACK_REG_P (*src2))
eca31501 1627 emit_swap_insn (insn, regstack, *dest);
a05924f9
JH
1628 else
1629 {
1630 /* Both operands are REG. If neither operand is already
1631 at the top of stack, choose to make the one that is the dest
1632 the new top of stack. */
48227150 1633
a05924f9 1634 int src1_hard_regnum, src2_hard_regnum;
48227150 1635
a05924f9
JH
1636 src1_hard_regnum = get_hard_regnum (regstack, *src1);
1637 src2_hard_regnum = get_hard_regnum (regstack, *src2);
1638 if (src1_hard_regnum == -1 || src2_hard_regnum == -1)
1639 abort ();
48227150 1640
a05924f9
JH
1641 if (src1_hard_regnum != FIRST_STACK_REG
1642 && src2_hard_regnum != FIRST_STACK_REG)
1643 emit_swap_insn (insn, regstack, *dest);
48227150 1644 }
a05924f9
JH
1645
1646 if (STACK_REG_P (*src1))
1647 replace_reg (src1, get_hard_regnum (regstack, *src1));
1648 if (STACK_REG_P (*src2))
1649 replace_reg (src2, get_hard_regnum (regstack, *src2));
1650
1651 if (src1_note)
48227150 1652 {
a05924f9 1653 rtx src1_reg = XEXP (src1_note, 0);
48227150 1654
a05924f9
JH
1655 /* If the register that dies is at the top of stack, then
1656 the destination is somewhere else - merely substitute it.
1657 But if the reg that dies is not at top of stack, then
1658 move the top of stack to the dead reg, as though we had
1659 done the insn and then a store-with-pop. */
48227150 1660
a05924f9
JH
1661 if (REGNO (src1_reg) == regstack->reg[regstack->top])
1662 {
1663 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1664 replace_reg (dest, get_hard_regnum (regstack, *dest));
1665 }
1666 else
1667 {
1668 int regno = get_hard_regnum (regstack, src1_reg);
48227150 1669
a05924f9
JH
1670 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1671 replace_reg (dest, regno);
1672
1673 regstack->reg[regstack->top - (regno - FIRST_STACK_REG)]
1674 = regstack->reg[regstack->top];
1675 }
1676
1677 CLEAR_HARD_REG_BIT (regstack->reg_set,
1678 REGNO (XEXP (src1_note, 0)));
1679 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1680 regstack->top--;
1681 }
1682 else if (src2_note)
48227150 1683 {
a05924f9
JH
1684 rtx src2_reg = XEXP (src2_note, 0);
1685 if (REGNO (src2_reg) == regstack->reg[regstack->top])
1686 {
1687 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1688 replace_reg (dest, get_hard_regnum (regstack, *dest));
1689 }
1690 else
1691 {
1692 int regno = get_hard_regnum (regstack, src2_reg);
1693
1694 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1695 replace_reg (dest, regno);
1696
1697 regstack->reg[regstack->top - (regno - FIRST_STACK_REG)]
1698 = regstack->reg[regstack->top];
1699 }
1700
1701 CLEAR_HARD_REG_BIT (regstack->reg_set,
1702 REGNO (XEXP (src2_note, 0)));
1703 replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG);
1704 regstack->top--;
48227150
JVA
1705 }
1706 else
1707 {
48227150 1708 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
a05924f9 1709 replace_reg (dest, get_hard_regnum (regstack, *dest));
48227150 1710 }
caa6ec8d 1711
d55d8fc7 1712 /* Keep operand 1 matching with destination. */
ec8e098d 1713 if (COMMUTATIVE_ARITH_P (pat_src)
caa6ec8d
JH
1714 && REG_P (*src1) && REG_P (*src2)
1715 && REGNO (*src1) != REGNO (*dest))
1716 {
0b9aaeee
JH
1717 int tmp = REGNO (*src1);
1718 replace_reg (src1, REGNO (*src2));
1719 replace_reg (src2, tmp);
caa6ec8d 1720 }
a05924f9 1721 break;
48227150 1722
a05924f9
JH
1723 case UNSPEC:
1724 switch (XINT (pat_src, 1))
1725 {
35a76aac
RH
1726 case UNSPEC_SIN:
1727 case UNSPEC_COS:
9d5b9dae
RS
1728 case UNSPEC_FRNDINT:
1729 case UNSPEC_F2XM1:
a05924f9 1730 /* These insns only operate on the top of the stack. */
0e7d0eb9 1731
a05924f9 1732 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
0e7d0eb9 1733
a05924f9 1734 emit_swap_insn (insn, regstack, *src1);
0e7d0eb9 1735
6862f97f
UB
1736 /* Input should never die, it is
1737 replaced with output. */
a05924f9 1738 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
6862f97f
UB
1739 if (src1_note)
1740 abort();
0e7d0eb9 1741
a05924f9
JH
1742 if (STACK_REG_P (*dest))
1743 replace_reg (dest, FIRST_STACK_REG);
0e7d0eb9 1744
a05924f9
JH
1745 replace_reg (src1, FIRST_STACK_REG);
1746 break;
0e7d0eb9 1747
1fb54135 1748 case UNSPEC_FPATAN:
358997e2 1749 case UNSPEC_FYL2X:
c2fcfa4f 1750 case UNSPEC_FYL2XP1:
1fb54135
RS
1751 /* These insns operate on the top two stack slots. */
1752
1753 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1754 src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1755
1756 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1757 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1758
f964bd29 1759 swap_to_top (insn, regstack, *src1, *src2);
1fb54135
RS
1760
1761 replace_reg (src1, FIRST_STACK_REG);
1762 replace_reg (src2, FIRST_STACK_REG + 1);
1763
1764 if (src1_note)
1765 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1766 if (src2_note)
1767 replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG + 1);
1768
1769 /* Pop both input operands from the stack. */
1770 CLEAR_HARD_REG_BIT (regstack->reg_set,
1771 regstack->reg[regstack->top]);
1772 CLEAR_HARD_REG_BIT (regstack->reg_set,
1773 regstack->reg[regstack->top - 1]);
1774 regstack->top -= 2;
1775
1776 /* Push the result back onto the stack. */
1777 regstack->reg[++regstack->top] = REGNO (*dest);
1778 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1779 replace_reg (dest, FIRST_STACK_REG);
1780 break;
1781
f964bd29 1782 case UNSPEC_FSCALE_FRACT:
5ae27cfa
UB
1783 case UNSPEC_FPREM_F:
1784 case UNSPEC_FPREM1_F:
f964bd29
UB
1785 /* These insns operate on the top two stack slots.
1786 first part of double input, double output insn. */
1787
1788 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1789 src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1790
1791 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1792 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1793
1794 /* Inputs should never die, they are
1795 replaced with outputs. */
1796 if ((src1_note) || (src2_note))
1797 abort();
1798
1799 swap_to_top (insn, regstack, *src1, *src2);
1800
1801 /* Push the result back onto stack. Empty stack slot
1802 will be filled in second part of insn. */
1803 if (STACK_REG_P (*dest)) {
1804 regstack->reg[regstack->top] = REGNO (*dest);
1805 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1806 replace_reg (dest, FIRST_STACK_REG);
1807 }
1808
1809 replace_reg (src1, FIRST_STACK_REG);
1810 replace_reg (src2, FIRST_STACK_REG + 1);
1811 break;
1812
1813 case UNSPEC_FSCALE_EXP:
5ae27cfa
UB
1814 case UNSPEC_FPREM_U:
1815 case UNSPEC_FPREM1_U:
f964bd29
UB
1816 /* These insns operate on the top two stack slots./
1817 second part of double input, double output insn. */
1818
1819 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1820 src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1821
1822 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1823 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1824
1825 /* Inputs should never die, they are
1826 replaced with outputs. */
1827 if ((src1_note) || (src2_note))
1828 abort();
1829
1830 swap_to_top (insn, regstack, *src1, *src2);
1831
1832 /* Push the result back onto stack. Fill empty slot from
1833 first part of insn and fix top of stack pointer. */
1834 if (STACK_REG_P (*dest)) {
1835 regstack->reg[regstack->top - 1] = REGNO (*dest);
1836 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1837 replace_reg (dest, FIRST_STACK_REG + 1);
1838 }
1839
1840 replace_reg (src1, FIRST_STACK_REG);
1841 replace_reg (src2, FIRST_STACK_REG + 1);
1842 break;
1843
6c7cf1f0 1844 case UNSPEC_SINCOS_COS:
a072d43b 1845 case UNSPEC_TAN_ONE:
88b28a31 1846 case UNSPEC_XTRACT_FRACT:
6c7cf1f0
UB
1847 /* These insns operate on the top two stack slots,
1848 first part of one input, double output insn. */
1849
1850 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1851
1852 emit_swap_insn (insn, regstack, *src1);
1853
6862f97f
UB
1854 /* Input should never die, it is
1855 replaced with output. */
6c7cf1f0 1856 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
6862f97f
UB
1857 if (src1_note)
1858 abort();
6c7cf1f0
UB
1859
1860 /* Push the result back onto stack. Empty stack slot
1861 will be filled in second part of insn. */
1862 if (STACK_REG_P (*dest)) {
1863 regstack->reg[regstack->top + 1] = REGNO (*dest);
1864 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1865 replace_reg (dest, FIRST_STACK_REG);
1866 }
1867
6c7cf1f0
UB
1868 replace_reg (src1, FIRST_STACK_REG);
1869 break;
1870
1871 case UNSPEC_SINCOS_SIN:
a072d43b 1872 case UNSPEC_TAN_TAN:
88b28a31 1873 case UNSPEC_XTRACT_EXP:
a072d43b
UB
1874 /* These insns operate on the top two stack slots,
1875 second part of one input, double output insn. */
1876
6c7cf1f0
UB
1877 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1878
1879 emit_swap_insn (insn, regstack, *src1);
1880
6862f97f
UB
1881 /* Input should never die, it is
1882 replaced with output. */
6c7cf1f0 1883 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
6862f97f
UB
1884 if (src1_note)
1885 abort();
6c7cf1f0
UB
1886
1887 /* Push the result back onto stack. Fill empty slot from
1888 first part of insn and fix top of stack pointer. */
1889 if (STACK_REG_P (*dest)) {
1890 regstack->reg[regstack->top] = REGNO (*dest);
1891 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1892 replace_reg (dest, FIRST_STACK_REG + 1);
1893
1894 regstack->top++;
1895 }
1896
6c7cf1f0
UB
1897 replace_reg (src1, FIRST_STACK_REG);
1898 break;
1899
35a76aac
RH
1900 case UNSPEC_SAHF:
1901 /* (unspec [(unspec [(compare)] UNSPEC_FNSTSW)] UNSPEC_SAHF)
1902 The combination matches the PPRO fcomi instruction. */
0e7d0eb9 1903
a05924f9
JH
1904 pat_src = XVECEXP (pat_src, 0, 0);
1905 if (GET_CODE (pat_src) != UNSPEC
35a76aac 1906 || XINT (pat_src, 1) != UNSPEC_FNSTSW)
a05924f9 1907 abort ();
5d3cc252 1908 /* Fall through. */
e075ae69 1909
35a76aac 1910 case UNSPEC_FNSTSW:
a05924f9
JH
1911 /* Combined fcomp+fnstsw generated for doing well with
1912 CSE. When optimizing this would have been broken
1913 up before now. */
e075ae69 1914
a05924f9
JH
1915 pat_src = XVECEXP (pat_src, 0, 0);
1916 if (GET_CODE (pat_src) != COMPARE)
1917 abort ();
e075ae69 1918
a05924f9
JH
1919 compare_for_stack_reg (insn, regstack, pat_src);
1920 break;
e075ae69 1921
a05924f9
JH
1922 default:
1923 abort ();
1924 }
e075ae69
RH
1925 break;
1926
a05924f9 1927 case IF_THEN_ELSE:
dc297297 1928 /* This insn requires the top of stack to be the destination. */
0e7d0eb9 1929
2ab0437e
JH
1930 src1 = get_true_reg (&XEXP (pat_src, 1));
1931 src2 = get_true_reg (&XEXP (pat_src, 2));
1932
1933 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1934 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1935
a05924f9
JH
1936 /* If the comparison operator is an FP comparison operator,
1937 it is handled correctly by compare_for_stack_reg () who
1938 will move the destination to the top of stack. But if the
1939 comparison operator is not an FP comparison operator, we
dc297297 1940 have to handle it here. */
a05924f9
JH
1941 if (get_hard_regnum (regstack, *dest) >= FIRST_STACK_REG
1942 && REGNO (*dest) != regstack->reg[regstack->top])
2ab0437e
JH
1943 {
1944 /* In case one of operands is the top of stack and the operands
35a76aac
RH
1945 dies, it is safe to make it the destination operand by
1946 reversing the direction of cmove and avoid fxch. */
2ab0437e
JH
1947 if ((REGNO (*src1) == regstack->reg[regstack->top]
1948 && src1_note)
1949 || (REGNO (*src2) == regstack->reg[regstack->top]
1950 && src2_note))
1951 {
b74cf1ce
JH
1952 int idx1 = (get_hard_regnum (regstack, *src1)
1953 - FIRST_STACK_REG);
1954 int idx2 = (get_hard_regnum (regstack, *src2)
1955 - FIRST_STACK_REG);
1956
1957 /* Make reg-stack believe that the operands are already
1958 swapped on the stack */
1959 regstack->reg[regstack->top - idx1] = REGNO (*src2);
1960 regstack->reg[regstack->top - idx2] = REGNO (*src1);
1961
1962 /* Reverse condition to compensate the operand swap.
1963 i386 do have comparison always reversible. */
2ab0437e
JH
1964 PUT_CODE (XEXP (pat_src, 0),
1965 reversed_comparison_code (XEXP (pat_src, 0), insn));
1966 }
1967 else
a6a2274a 1968 emit_swap_insn (insn, regstack, *dest);
2ab0437e 1969 }
4e97601f 1970
a05924f9
JH
1971 {
1972 rtx src_note [3];
1973 int i;
4e97601f 1974
a05924f9
JH
1975 src_note[0] = 0;
1976 src_note[1] = src1_note;
1977 src_note[2] = src2_note;
54552651 1978
a05924f9
JH
1979 if (STACK_REG_P (*src1))
1980 replace_reg (src1, get_hard_regnum (regstack, *src1));
1981 if (STACK_REG_P (*src2))
1982 replace_reg (src2, get_hard_regnum (regstack, *src2));
4e97601f 1983
a05924f9
JH
1984 for (i = 1; i <= 2; i++)
1985 if (src_note [i])
4e97601f 1986 {
a05924f9
JH
1987 int regno = REGNO (XEXP (src_note[i], 0));
1988
1989 /* If the register that dies is not at the top of
1990 stack, then move the top of stack to the dead reg */
1991 if (regno != regstack->reg[regstack->top])
1992 {
1993 remove_regno_note (insn, REG_DEAD, regno);
1994 emit_pop_insn (insn, regstack, XEXP (src_note[i], 0),
1995 EMIT_AFTER);
1996 }
1997 else
b74cf1ce
JH
1998 /* Top of stack never dies, as it is the
1999 destination. */
2000 abort ();
4e97601f 2001 }
a05924f9 2002 }
4e97601f 2003
a05924f9 2004 /* Make dest the top of stack. Add dest to regstack if
dc297297 2005 not present. */
a05924f9 2006 if (get_hard_regnum (regstack, *dest) < FIRST_STACK_REG)
a6a2274a 2007 regstack->reg[++regstack->top] = REGNO (*dest);
a05924f9
JH
2008 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
2009 replace_reg (dest, FIRST_STACK_REG);
2010 break;
914ec131 2011
a05924f9
JH
2012 default:
2013 abort ();
2014 }
4e97601f 2015 break;
48227150 2016 }
a05924f9
JH
2017
2018 default:
2019 break;
2020 }
ecb63641
EB
2021
2022 return control_flow_insn_deleted;
48227150
JVA
2023}
2024\f
114cbee6
RS
2025/* Substitute hard regnums for any stack regs in INSN, which has
2026 N_INPUTS inputs and N_OUTPUTS outputs. REGSTACK is the stack info
f62a15e3 2027 before the insn, and is updated with changes made here.
114cbee6
RS
2028
2029 There are several requirements and assumptions about the use of
2030 stack-like regs in asm statements. These rules are enforced by
2031 record_asm_stack_regs; see comments there for details. Any
2032 asm_operands left in the RTL at this point may be assume to meet the
561cf7b1 2033 requirements, since record_asm_stack_regs removes any problem asm. */
114cbee6 2034
561cf7b1 2035static void
0c20a65f 2036subst_asm_stack_regs (rtx insn, stack regstack)
114cbee6 2037{
114cbee6 2038 rtx body = PATTERN (insn);
f62a15e3 2039 int alt;
114cbee6
RS
2040
2041 rtx *note_reg; /* Array of note contents */
2042 rtx **note_loc; /* Address of REG field of each note */
2043 enum reg_note *note_kind; /* The type of each note */
2044
a544cfd2
KG
2045 rtx *clobber_reg = 0;
2046 rtx **clobber_loc = 0;
114cbee6
RS
2047
2048 struct stack_def temp_stack;
2049 int n_notes;
2050 int n_clobbers;
2051 rtx note;
2052 int i;
f62a15e3 2053 int n_inputs, n_outputs;
114cbee6 2054
a05924f9
JH
2055 if (! check_asm_stack_operands (insn))
2056 return;
2057
114cbee6
RS
2058 /* Find out what the constraints required. If no constraint
2059 alternative matches, that is a compiler bug: we should have caught
a05924f9 2060 such an insn in check_asm_stack_operands. */
f62a15e3
BS
2061 extract_insn (insn);
2062 constrain_operands (1);
2063 alt = which_alternative;
2064
2065 preprocess_constraints ();
114cbee6 2066
f62a15e3 2067 n_inputs = get_asm_operand_n_inputs (body);
1ccbefce 2068 n_outputs = recog_data.n_operands - n_inputs;
a6a2274a 2069
f62a15e3 2070 if (alt < 0)
114cbee6
RS
2071 abort ();
2072
0f41302f 2073 /* Strip SUBREGs here to make the following code simpler. */
1ccbefce
RH
2074 for (i = 0; i < recog_data.n_operands; i++)
2075 if (GET_CODE (recog_data.operand[i]) == SUBREG
2076 && GET_CODE (SUBREG_REG (recog_data.operand[i])) == REG)
114cbee6 2077 {
1ccbefce
RH
2078 recog_data.operand_loc[i] = & SUBREG_REG (recog_data.operand[i]);
2079 recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
114cbee6
RS
2080 }
2081
2082 /* Set up NOTE_REG, NOTE_LOC and NOTE_KIND. */
2083
2084 for (i = 0, note = REG_NOTES (insn); note; note = XEXP (note, 1))
2085 i++;
2086
703ad42b
KG
2087 note_reg = alloca (i * sizeof (rtx));
2088 note_loc = alloca (i * sizeof (rtx *));
2089 note_kind = alloca (i * sizeof (enum reg_note));
114cbee6
RS
2090
2091 n_notes = 0;
2092 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2093 {
2094 rtx reg = XEXP (note, 0);
2095 rtx *loc = & XEXP (note, 0);
2096
2097 if (GET_CODE (reg) == SUBREG && GET_CODE (SUBREG_REG (reg)) == REG)
2098 {
2099 loc = & SUBREG_REG (reg);
2100 reg = SUBREG_REG (reg);
2101 }
2102
2103 if (STACK_REG_P (reg)
2104 && (REG_NOTE_KIND (note) == REG_DEAD
2105 || REG_NOTE_KIND (note) == REG_UNUSED))
2106 {
2107 note_reg[n_notes] = reg;
2108 note_loc[n_notes] = loc;
2109 note_kind[n_notes] = REG_NOTE_KIND (note);
2110 n_notes++;
2111 }
2112 }
2113
2114 /* Set up CLOBBER_REG and CLOBBER_LOC. */
2115
2116 n_clobbers = 0;
114cbee6
RS
2117
2118 if (GET_CODE (body) == PARALLEL)
3f5cfed6 2119 {
703ad42b
KG
2120 clobber_reg = alloca (XVECLEN (body, 0) * sizeof (rtx));
2121 clobber_loc = alloca (XVECLEN (body, 0) * sizeof (rtx *));
114cbee6 2122
3f5cfed6
JVA
2123 for (i = 0; i < XVECLEN (body, 0); i++)
2124 if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
2125 {
2126 rtx clobber = XVECEXP (body, 0, i);
2127 rtx reg = XEXP (clobber, 0);
2128 rtx *loc = & XEXP (clobber, 0);
114cbee6 2129
3f5cfed6
JVA
2130 if (GET_CODE (reg) == SUBREG && GET_CODE (SUBREG_REG (reg)) == REG)
2131 {
2132 loc = & SUBREG_REG (reg);
2133 reg = SUBREG_REG (reg);
2134 }
2135
2136 if (STACK_REG_P (reg))
2137 {
2138 clobber_reg[n_clobbers] = reg;
2139 clobber_loc[n_clobbers] = loc;
2140 n_clobbers++;
2141 }
2142 }
2143 }
114cbee6 2144
a05924f9 2145 temp_stack = *regstack;
114cbee6
RS
2146
2147 /* Put the input regs into the desired place in TEMP_STACK. */
2148
f62a15e3 2149 for (i = n_outputs; i < n_outputs + n_inputs; i++)
1ccbefce 2150 if (STACK_REG_P (recog_data.operand[i])
f62a15e3
BS
2151 && reg_class_subset_p (recog_op_alt[i][alt].class,
2152 FLOAT_REGS)
2153 && recog_op_alt[i][alt].class != FLOAT_REGS)
114cbee6
RS
2154 {
2155 /* If an operand needs to be in a particular reg in
2156 FLOAT_REGS, the constraint was either 't' or 'u'. Since
1ccbefce
RH
2157 these constraints are for single register classes, and
2158 reload guaranteed that operand[i] is already in that class,
2159 we can just use REGNO (recog_data.operand[i]) to know which
2160 actual reg this operand needs to be in. */
114cbee6 2161
1ccbefce 2162 int regno = get_hard_regnum (&temp_stack, recog_data.operand[i]);
114cbee6
RS
2163
2164 if (regno < 0)
2165 abort ();
2166
ae0ed63a 2167 if ((unsigned int) regno != REGNO (recog_data.operand[i]))
114cbee6 2168 {
1ccbefce
RH
2169 /* recog_data.operand[i] is not in the right place. Find
2170 it and swap it with whatever is already in I's place.
2171 K is where recog_data.operand[i] is now. J is where it
2172 should be. */
114cbee6
RS
2173 int j, k, temp;
2174
2175 k = temp_stack.top - (regno - FIRST_STACK_REG);
2176 j = (temp_stack.top
1ccbefce 2177 - (REGNO (recog_data.operand[i]) - FIRST_STACK_REG));
114cbee6
RS
2178
2179 temp = temp_stack.reg[k];
2180 temp_stack.reg[k] = temp_stack.reg[j];
2181 temp_stack.reg[j] = temp;
2182 }
2183 }
2184
a05924f9 2185 /* Emit insns before INSN to make sure the reg-stack is in the right
114cbee6
RS
2186 order. */
2187
a05924f9 2188 change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
114cbee6
RS
2189
2190 /* Make the needed input register substitutions. Do death notes and
0f41302f 2191 clobbers too, because these are for inputs, not outputs. */
114cbee6 2192
f62a15e3 2193 for (i = n_outputs; i < n_outputs + n_inputs; i++)
1ccbefce 2194 if (STACK_REG_P (recog_data.operand[i]))
114cbee6 2195 {
1ccbefce 2196 int regnum = get_hard_regnum (regstack, recog_data.operand[i]);
114cbee6
RS
2197
2198 if (regnum < 0)
2199 abort ();
2200
1ccbefce 2201 replace_reg (recog_data.operand_loc[i], regnum);
114cbee6
RS
2202 }
2203
2204 for (i = 0; i < n_notes; i++)
2205 if (note_kind[i] == REG_DEAD)
2206 {
2207 int regnum = get_hard_regnum (regstack, note_reg[i]);
2208
2209 if (regnum < 0)
2210 abort ();
2211
2212 replace_reg (note_loc[i], regnum);
2213 }
2214
2215 for (i = 0; i < n_clobbers; i++)
2216 {
2217 /* It's OK for a CLOBBER to reference a reg that is not live.
2218 Don't try to replace it in that case. */
2219 int regnum = get_hard_regnum (regstack, clobber_reg[i]);
2220
2221 if (regnum >= 0)
2222 {
2223 /* Sigh - clobbers always have QImode. But replace_reg knows
2224 that these regs can't be MODE_INT and will abort. Just put
2225 the right reg there without calling replace_reg. */
2226
99a59310 2227 *clobber_loc[i] = FP_MODE_REG (regnum, DFmode);
114cbee6
RS
2228 }
2229 }
2230
0f41302f 2231 /* Now remove from REGSTACK any inputs that the asm implicitly popped. */
114cbee6 2232
f62a15e3 2233 for (i = n_outputs; i < n_outputs + n_inputs; i++)
1ccbefce 2234 if (STACK_REG_P (recog_data.operand[i]))
114cbee6
RS
2235 {
2236 /* An input reg is implicitly popped if it is tied to an
0f41302f 2237 output, or if there is a CLOBBER for it. */
114cbee6
RS
2238 int j;
2239
2240 for (j = 0; j < n_clobbers; j++)
1ccbefce 2241 if (operands_match_p (clobber_reg[j], recog_data.operand[i]))
114cbee6
RS
2242 break;
2243
f62a15e3 2244 if (j < n_clobbers || recog_op_alt[i][alt].matches >= 0)
114cbee6 2245 {
1ccbefce
RH
2246 /* recog_data.operand[i] might not be at the top of stack.
2247 But that's OK, because all we need to do is pop the
2248 right number of regs off of the top of the reg-stack.
2249 record_asm_stack_regs guaranteed that all implicitly
2250 popped regs were grouped at the top of the reg-stack. */
114cbee6
RS
2251
2252 CLEAR_HARD_REG_BIT (regstack->reg_set,
2253 regstack->reg[regstack->top]);
2254 regstack->top--;
2255 }
2256 }
2257
2258 /* Now add to REGSTACK any outputs that the asm implicitly pushed.
2259 Note that there isn't any need to substitute register numbers.
0f41302f 2260 ??? Explain why this is true. */
114cbee6
RS
2261
2262 for (i = LAST_STACK_REG; i >= FIRST_STACK_REG; i--)
2263 {
2264 /* See if there is an output for this hard reg. */
2265 int j;
2266
2267 for (j = 0; j < n_outputs; j++)
1ccbefce 2268 if (STACK_REG_P (recog_data.operand[j])
ae0ed63a 2269 && REGNO (recog_data.operand[j]) == (unsigned) i)
114cbee6
RS
2270 {
2271 regstack->reg[++regstack->top] = i;
2272 SET_HARD_REG_BIT (regstack->reg_set, i);
2273 break;
2274 }
2275 }
2276
2277 /* Now emit a pop insn for any REG_UNUSED output, or any REG_DEAD
2278 input that the asm didn't implicitly pop. If the asm didn't
3f5cfed6 2279 implicitly pop an input reg, that reg will still be live.
114cbee6
RS
2280
2281 Note that we can't use find_regno_note here: the register numbers
2282 in the death notes have already been substituted. */
2283
3f5cfed6 2284 for (i = 0; i < n_outputs; i++)
1ccbefce 2285 if (STACK_REG_P (recog_data.operand[i]))
3f5cfed6
JVA
2286 {
2287 int j;
2288
2289 for (j = 0; j < n_notes; j++)
1ccbefce 2290 if (REGNO (recog_data.operand[i]) == REGNO (note_reg[j])
3f5cfed6
JVA
2291 && note_kind[j] == REG_UNUSED)
2292 {
1ccbefce 2293 insn = emit_pop_insn (insn, regstack, recog_data.operand[i],
a05924f9 2294 EMIT_AFTER);
3f5cfed6
JVA
2295 break;
2296 }
2297 }
2298
f62a15e3 2299 for (i = n_outputs; i < n_outputs + n_inputs; i++)
1ccbefce 2300 if (STACK_REG_P (recog_data.operand[i]))
114cbee6
RS
2301 {
2302 int j;
2303
2304 for (j = 0; j < n_notes; j++)
1ccbefce 2305 if (REGNO (recog_data.operand[i]) == REGNO (note_reg[j])
3f5cfed6 2306 && note_kind[j] == REG_DEAD
f62a15e3 2307 && TEST_HARD_REG_BIT (regstack->reg_set,
1ccbefce 2308 REGNO (recog_data.operand[i])))
114cbee6 2309 {
1ccbefce 2310 insn = emit_pop_insn (insn, regstack, recog_data.operand[i],
a05924f9 2311 EMIT_AFTER);
114cbee6
RS
2312 break;
2313 }
2314 }
2315}
2316\f
48227150
JVA
2317/* Substitute stack hard reg numbers for stack virtual registers in
2318 INSN. Non-stack register numbers are not changed. REGSTACK is the
2319 current stack content. Insns may be emitted as needed to arrange the
ecb63641
EB
2320 stack for the 387 based on the contents of the insn. Return whether
2321 a control flow insn was deleted in the process. */
f37eb5cb 2322
ecb63641 2323static bool
0c20a65f 2324subst_stack_regs (rtx insn, stack regstack)
48227150 2325{
b3694847 2326 rtx *note_link, note;
ecb63641 2327 bool control_flow_insn_deleted = false;
b3694847 2328 int i;
48227150 2329
99a59310 2330 if (GET_CODE (insn) == CALL_INSN)
e075ae69
RH
2331 {
2332 int top = regstack->top;
48227150 2333
e075ae69
RH
2334 /* If there are any floating point parameters to be passed in
2335 registers for this call, make sure they are in the right
2336 order. */
48227150 2337
e075ae69
RH
2338 if (top >= 0)
2339 {
2340 straighten_stack (PREV_INSN (insn), regstack);
99a59310 2341
e075ae69 2342 /* Now mark the arguments as dead after the call. */
99a59310 2343
e075ae69
RH
2344 while (regstack->top >= 0)
2345 {
2346 CLEAR_HARD_REG_BIT (regstack->reg_set, FIRST_STACK_REG + regstack->top);
2347 regstack->top--;
2348 }
2349 }
2350 }
48227150
JVA
2351
2352 /* Do the actual substitution if any stack regs are mentioned.
2353 Since we only record whether entire insn mentions stack regs, and
2354 subst_stack_regs_pat only works for patterns that contain stack regs,
2355 we must check each pattern in a parallel here. A call_value_pop could
0f41302f 2356 fail otherwise. */
48227150 2357
21b2cd73 2358 if (stack_regs_mentioned (insn))
48227150 2359 {
f62a15e3 2360 int n_operands = asm_noperands (PATTERN (insn));
114cbee6
RS
2361 if (n_operands >= 0)
2362 {
2363 /* This insn is an `asm' with operands. Decode the operands,
2364 decide how many are inputs, and do register substitution.
0f41302f 2365 Any REG_UNUSED notes will be handled by subst_asm_stack_regs. */
114cbee6 2366
f62a15e3 2367 subst_asm_stack_regs (insn, regstack);
ecb63641 2368 return control_flow_insn_deleted;
114cbee6
RS
2369 }
2370
48227150 2371 if (GET_CODE (PATTERN (insn)) == PARALLEL)
c166a311 2372 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
48227150
JVA
2373 {
2374 if (stack_regs_mentioned_p (XVECEXP (PATTERN (insn), 0, i)))
736b64dd
JH
2375 {
2376 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == CLOBBER)
2377 XVECEXP (PATTERN (insn), 0, i)
2378 = shallow_copy_rtx (XVECEXP (PATTERN (insn), 0, i));
2379 control_flow_insn_deleted
2380 |= subst_stack_regs_pat (insn, regstack,
2381 XVECEXP (PATTERN (insn), 0, i));
2382 }
48227150
JVA
2383 }
2384 else
ecb63641
EB
2385 control_flow_insn_deleted
2386 |= subst_stack_regs_pat (insn, regstack, PATTERN (insn));
48227150
JVA
2387 }
2388
2389 /* subst_stack_regs_pat may have deleted a no-op insn. If so, any
0f41302f 2390 REG_UNUSED will already have been dealt with, so just return. */
48227150 2391
cbafacd1 2392 if (GET_CODE (insn) == NOTE || INSN_DELETED_P (insn))
ecb63641 2393 return control_flow_insn_deleted;
48227150
JVA
2394
2395 /* If there is a REG_UNUSED note on a stack register on this insn,
2396 the indicated reg must be popped. The REG_UNUSED note is removed,
2397 since the form of the newly emitted pop insn references the reg,
0f41302f 2398 making it no longer `unset'. */
48227150 2399
8e2e89f7 2400 note_link = &REG_NOTES (insn);
48227150
JVA
2401 for (note = *note_link; note; note = XEXP (note, 1))
2402 if (REG_NOTE_KIND (note) == REG_UNUSED && STACK_REG_P (XEXP (note, 0)))
2403 {
2404 *note_link = XEXP (note, 1);
a05924f9 2405 insn = emit_pop_insn (insn, regstack, XEXP (note, 0), EMIT_AFTER);
48227150
JVA
2406 }
2407 else
2408 note_link = &XEXP (note, 1);
ecb63641
EB
2409
2410 return control_flow_insn_deleted;
48227150
JVA
2411}
2412\f
2413/* Change the organization of the stack so that it fits a new basic
2414 block. Some registers might have to be popped, but there can never be
2415 a register live in the new block that is not now live.
2416
a05924f9
JH
2417 Insert any needed insns before or after INSN, as indicated by
2418 WHERE. OLD is the original stack layout, and NEW is the desired
2419 form. OLD is updated to reflect the code emitted, ie, it will be
2420 the same as NEW upon return.
48227150
JVA
2421
2422 This function will not preserve block_end[]. But that information
0f41302f 2423 is no longer needed once this has executed. */
48227150
JVA
2424
2425static void
0c20a65f 2426change_stack (rtx insn, stack old, stack new, enum emit_where where)
48227150
JVA
2427{
2428 int reg;
a05924f9 2429 int update_end = 0;
48227150 2430
a05924f9
JH
2431 /* We will be inserting new insns "backwards". If we are to insert
2432 after INSN, find the next insn, and insert before it. */
48227150 2433
a05924f9
JH
2434 if (where == EMIT_AFTER)
2435 {
a813c111 2436 if (current_block && BB_END (current_block) == insn)
a05924f9
JH
2437 update_end = 1;
2438 insn = NEXT_INSN (insn);
2439 }
48227150 2440
0f41302f 2441 /* Pop any registers that are not needed in the new block. */
48227150
JVA
2442
2443 for (reg = old->top; reg >= 0; reg--)
2444 if (! TEST_HARD_REG_BIT (new->reg_set, old->reg[reg]))
99a59310 2445 emit_pop_insn (insn, old, FP_MODE_REG (old->reg[reg], DFmode),
a05924f9 2446 EMIT_BEFORE);
48227150
JVA
2447
2448 if (new->top == -2)
2449 {
2450 /* If the new block has never been processed, then it can inherit
0f41302f 2451 the old stack order. */
48227150
JVA
2452
2453 new->top = old->top;
a05924f9 2454 memcpy (new->reg, old->reg, sizeof (new->reg));
48227150
JVA
2455 }
2456 else
2457 {
2458 /* This block has been entered before, and we must match the
0f41302f 2459 previously selected stack order. */
48227150
JVA
2460
2461 /* By now, the only difference should be the order of the stack,
0f41302f 2462 not their depth or liveliness. */
48227150
JVA
2463
2464 GO_IF_HARD_REG_EQUAL (old->reg_set, new->reg_set, win);
48227150 2465 abort ();
48227150 2466 win:
48227150
JVA
2467 if (old->top != new->top)
2468 abort ();
2469
80832cf2 2470 /* If the stack is not empty (new->top != -1), loop here emitting
a6a2274a 2471 swaps until the stack is correct.
80832cf2
HB
2472
2473 The worst case number of swaps emitted is N + 2, where N is the
48227150
JVA
2474 depth of the stack. In some cases, the reg at the top of
2475 stack may be correct, but swapped anyway in order to fix
2476 other regs. But since we never swap any other reg away from
0f41302f 2477 its correct slot, this algorithm will converge. */
48227150 2478
80832cf2
HB
2479 if (new->top != -1)
2480 do
2481 {
2482 /* Swap the reg at top of stack into the position it is
2483 supposed to be in, until the correct top of stack appears. */
48227150 2484
80832cf2
HB
2485 while (old->reg[old->top] != new->reg[new->top])
2486 {
2487 for (reg = new->top; reg >= 0; reg--)
2488 if (new->reg[reg] == old->reg[old->top])
2489 break;
48227150 2490
80832cf2
HB
2491 if (reg == -1)
2492 abort ();
48227150 2493
80832cf2
HB
2494 emit_swap_insn (insn, old,
2495 FP_MODE_REG (old->reg[reg], DFmode));
2496 }
48227150 2497
80832cf2 2498 /* See if any regs remain incorrect. If so, bring an
48227150 2499 incorrect reg to the top of stack, and let the while loop
0f41302f 2500 above fix it. */
48227150 2501
80832cf2
HB
2502 for (reg = new->top; reg >= 0; reg--)
2503 if (new->reg[reg] != old->reg[reg])
2504 {
2505 emit_swap_insn (insn, old,
2506 FP_MODE_REG (old->reg[reg], DFmode));
2507 break;
2508 }
2509 } while (reg >= 0);
48227150 2510
0f41302f 2511 /* At this point there must be no differences. */
48227150
JVA
2512
2513 for (reg = old->top; reg >= 0; reg--)
2514 if (old->reg[reg] != new->reg[reg])
2515 abort ();
2516 }
a05924f9
JH
2517
2518 if (update_end)
a813c111 2519 BB_END (current_block) = PREV_INSN (insn);
48227150
JVA
2520}
2521\f
a05924f9 2522/* Print stack configuration. */
48227150
JVA
2523
2524static void
0c20a65f 2525print_stack (FILE *file, stack s)
48227150 2526{
a05924f9
JH
2527 if (! file)
2528 return;
48227150 2529
a05924f9
JH
2530 if (s->top == -2)
2531 fprintf (file, "uninitialized\n");
2532 else if (s->top == -1)
2533 fprintf (file, "empty\n");
2534 else
e075ae69 2535 {
a05924f9
JH
2536 int i;
2537 fputs ("[ ", file);
2538 for (i = 0; i <= s->top; ++i)
2539 fprintf (file, "%d ", s->reg[i]);
2540 fputs ("]\n", file);
e075ae69 2541 }
a05924f9
JH
2542}
2543\f
2544/* This function was doing life analysis. We now let the regular live
a6a2274a 2545 code do it's job, so we only need to check some extra invariants
a05924f9
JH
2546 that reg-stack expects. Primary among these being that all registers
2547 are initialized before use.
48227150 2548
a05924f9
JH
2549 The function returns true when code was emitted to CFG edges and
2550 commit_edge_insertions needs to be called. */
48227150 2551
a05924f9 2552static int
0c20a65f 2553convert_regs_entry (void)
a05924f9 2554{
e0082a72 2555 int inserted = 0;
a05924f9 2556 edge e;
e0082a72 2557 basic_block block;
48227150 2558
e0082a72 2559 FOR_EACH_BB_REVERSE (block)
48227150 2560 {
a05924f9
JH
2561 block_info bi = BLOCK_INFO (block);
2562 int reg;
a6a2274a 2563
a05924f9
JH
2564 /* Set current register status at last instruction `uninitialized'. */
2565 bi->stack_in.top = -2;
a6a2274a 2566
a05924f9
JH
2567 /* Copy live_at_end and live_at_start into temporaries. */
2568 for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; reg++)
48227150 2569 {
a05924f9
JH
2570 if (REGNO_REG_SET_P (block->global_live_at_end, reg))
2571 SET_HARD_REG_BIT (bi->out_reg_set, reg);
2572 if (REGNO_REG_SET_P (block->global_live_at_start, reg))
2573 SET_HARD_REG_BIT (bi->stack_in.reg_set, reg);
48227150
JVA
2574 }
2575 }
48227150 2576
a6a2274a 2577 /* Load something into each stack register live at function entry.
a05924f9 2578 Such live registers can be caused by uninitialized variables or
a6a2274a 2579 functions not returning values on all paths. In order to keep
a05924f9 2580 the push/pop code happy, and to not scrog the register stack, we
a6a2274a 2581 must put something in these registers. Use a QNaN.
48227150 2582
d55d8fc7 2583 Note that we are inserting converted code here. This code is
a05924f9 2584 never seen by the convert_regs pass. */
48227150 2585
a05924f9
JH
2586 for (e = ENTRY_BLOCK_PTR->succ; e ; e = e->succ_next)
2587 {
2588 basic_block block = e->dest;
2589 block_info bi = BLOCK_INFO (block);
2590 int reg, top = -1;
48227150 2591
a05924f9
JH
2592 for (reg = LAST_STACK_REG; reg >= FIRST_STACK_REG; --reg)
2593 if (TEST_HARD_REG_BIT (bi->stack_in.reg_set, reg))
2594 {
2595 rtx init;
48227150 2596
a05924f9 2597 bi->stack_in.reg[++top] = reg;
48227150 2598
a05924f9
JH
2599 init = gen_rtx_SET (VOIDmode,
2600 FP_MODE_REG (FIRST_STACK_REG, SFmode),
2601 nan);
2602 insert_insn_on_edge (init, e);
2603 inserted = 1;
2604 }
48227150 2605
a05924f9
JH
2606 bi->stack_in.top = top;
2607 }
48227150 2608
a05924f9
JH
2609 return inserted;
2610}
48227150 2611
a05924f9
JH
2612/* Construct the desired stack for function exit. This will either
2613 be `empty', or the function return value at top-of-stack. */
48227150 2614
a05924f9 2615static void
0c20a65f 2616convert_regs_exit (void)
a05924f9
JH
2617{
2618 int value_reg_low, value_reg_high;
2619 stack output_stack;
2620 rtx retvalue;
48227150 2621
a05924f9
JH
2622 retvalue = stack_result (current_function_decl);
2623 value_reg_low = value_reg_high = -1;
2624 if (retvalue)
2625 {
2626 value_reg_low = REGNO (retvalue);
2627 value_reg_high = value_reg_low
66fd46b6 2628 + hard_regno_nregs[value_reg_low][GET_MODE (retvalue)] - 1;
a05924f9 2629 }
48227150 2630
a05924f9
JH
2631 output_stack = &BLOCK_INFO (EXIT_BLOCK_PTR)->stack_in;
2632 if (value_reg_low == -1)
2633 output_stack->top = -1;
2634 else
2635 {
2636 int reg;
48227150 2637
a05924f9
JH
2638 output_stack->top = value_reg_high - value_reg_low;
2639 for (reg = value_reg_low; reg <= value_reg_high; ++reg)
2640 {
bc9c2952 2641 output_stack->reg[value_reg_high - reg] = reg;
a05924f9
JH
2642 SET_HARD_REG_BIT (output_stack->reg_set, reg);
2643 }
2644 }
48227150 2645}
48227150 2646
0ecf09f9
JH
2647/* Adjust the stack of this block on exit to match the stack of the
2648 target block, or copy stack info into the stack of the successor
2649 of the successor hasn't been processed yet. */
2650static bool
0c20a65f 2651compensate_edge (edge e, FILE *file)
0ecf09f9
JH
2652{
2653 basic_block block = e->src, target = e->dest;
2654 block_info bi = BLOCK_INFO (block);
2655 struct stack_def regstack, tmpstack;
2656 stack target_stack = &BLOCK_INFO (target)->stack_in;
2657 int reg;
2658
2659 current_block = block;
2660 regstack = bi->stack_out;
2661 if (file)
0b17ab2f 2662 fprintf (file, "Edge %d->%d: ", block->index, target->index);
0ecf09f9
JH
2663
2664 if (target_stack->top == -2)
2665 {
2666 /* The target block hasn't had a stack order selected.
2667 We need merely ensure that no pops are needed. */
2668 for (reg = regstack.top; reg >= 0; --reg)
2669 if (!TEST_HARD_REG_BIT (target_stack->reg_set, regstack.reg[reg]))
2670 break;
2671
2672 if (reg == -1)
2673 {
2674 if (file)
2675 fprintf (file, "new block; copying stack position\n");
2676
2677 /* change_stack kills values in regstack. */
2678 tmpstack = regstack;
2679
a813c111 2680 change_stack (BB_END (block), &tmpstack, target_stack, EMIT_AFTER);
a6a2274a 2681 return false;
0ecf09f9
JH
2682 }
2683
2684 if (file)
2685 fprintf (file, "new block; pops needed\n");
2686 }
2687 else
2688 {
2689 if (target_stack->top == regstack.top)
2690 {
2691 for (reg = target_stack->top; reg >= 0; --reg)
2692 if (target_stack->reg[reg] != regstack.reg[reg])
2693 break;
2694
2695 if (reg == -1)
2696 {
2697 if (file)
2698 fprintf (file, "no changes needed\n");
2699 return false;
2700 }
2701 }
2702
2703 if (file)
2704 {
2705 fprintf (file, "correcting stack to ");
2706 print_stack (file, target_stack);
2707 }
2708 }
2709
2710 /* Care for non-call EH edges specially. The normal return path have
2711 values in registers. These will be popped en masse by the unwind
2712 library. */
2713 if ((e->flags & (EDGE_EH | EDGE_ABNORMAL_CALL)) == EDGE_EH)
2714 target_stack->top = -1;
2715
2716 /* Other calls may appear to have values live in st(0), but the
2717 abnormal return path will not have actually loaded the values. */
2718 else if (e->flags & EDGE_ABNORMAL_CALL)
2719 {
2720 /* Assert that the lifetimes are as we expect -- one value
2721 live at st(0) on the end of the source block, and no
2722 values live at the beginning of the destination block. */
2723 HARD_REG_SET tmp;
2724
2725 CLEAR_HARD_REG_SET (tmp);
2726 GO_IF_HARD_REG_EQUAL (target_stack->reg_set, tmp, eh1);
2727 abort ();
2728 eh1:
2729
04989d15
JH
2730 /* We are sure that there is st(0) live, otherwise we won't compensate.
2731 For complex return values, we may have st(1) live as well. */
0ecf09f9 2732 SET_HARD_REG_BIT (tmp, FIRST_STACK_REG);
04989d15
JH
2733 if (TEST_HARD_REG_BIT (regstack.reg_set, FIRST_STACK_REG + 1))
2734 SET_HARD_REG_BIT (tmp, FIRST_STACK_REG + 1);
0ecf09f9
JH
2735 GO_IF_HARD_REG_EQUAL (regstack.reg_set, tmp, eh2);
2736 abort ();
2737 eh2:
2738
2739 target_stack->top = -1;
2740 }
2741
2742 /* It is better to output directly to the end of the block
2743 instead of to the edge, because emit_swap can do minimal
2744 insn scheduling. We can do this when there is only one
2745 edge out, and it is not abnormal. */
2746 else if (block->succ->succ_next == NULL && !(e->flags & EDGE_ABNORMAL))
2747 {
2748 /* change_stack kills values in regstack. */
2749 tmpstack = regstack;
2750
a813c111
SB
2751 change_stack (BB_END (block), &tmpstack, target_stack,
2752 (GET_CODE (BB_END (block)) == JUMP_INSN
0ecf09f9
JH
2753 ? EMIT_BEFORE : EMIT_AFTER));
2754 }
2755 else
2756 {
2757 rtx seq, after;
2758
2759 /* We don't support abnormal edges. Global takes care to
2760 avoid any live register across them, so we should never
2761 have to insert instructions on such edges. */
2762 if (e->flags & EDGE_ABNORMAL)
2763 abort ();
2764
2765 current_block = NULL;
2766 start_sequence ();
2767
2f937369 2768 /* ??? change_stack needs some point to emit insns after. */
2e040219 2769 after = emit_note (NOTE_INSN_DELETED);
0ecf09f9
JH
2770
2771 tmpstack = regstack;
2772 change_stack (after, &tmpstack, target_stack, EMIT_BEFORE);
2773
2f937369 2774 seq = get_insns ();
0ecf09f9
JH
2775 end_sequence ();
2776
2777 insert_insn_on_edge (seq, e);
2778 return true;
2779 }
2780 return false;
2781}
2782
a05924f9
JH
2783/* Convert stack register references in one block. */
2784
2785static int
0c20a65f 2786convert_regs_1 (FILE *file, basic_block block)
48227150 2787{
0ecf09f9 2788 struct stack_def regstack;
a05924f9 2789 block_info bi = BLOCK_INFO (block);
de582cfb 2790 int deleted, inserted, reg;
a05924f9 2791 rtx insn, next;
0ecf09f9 2792 edge e, beste = NULL;
ecb63641 2793 bool control_flow_insn_deleted = false;
48227150 2794
0ecf09f9 2795 inserted = 0;
de582cfb 2796 deleted = 0;
d6fc0492 2797 any_malformed_asm = false;
0ecf09f9
JH
2798
2799 /* Find the edge we will copy stack from. It should be the most frequent
2800 one as it will get cheapest after compensation code is generated,
ff7cc307 2801 if multiple such exists, take one with largest count, prefer critical
0ecf09f9
JH
2802 one (as splitting critical edges is more expensive), or one with lowest
2803 index, to avoid random changes with different orders of the edges. */
2804 for (e = block->pred; e ; e = e->pred_next)
2805 {
2806 if (e->flags & EDGE_DFS_BACK)
2807 ;
2808 else if (! beste)
2809 beste = e;
2810 else if (EDGE_FREQUENCY (beste) < EDGE_FREQUENCY (e))
2811 beste = e;
3e42ccd2
JH
2812 else if (EDGE_FREQUENCY (beste) > EDGE_FREQUENCY (e))
2813 ;
0ecf09f9
JH
2814 else if (beste->count < e->count)
2815 beste = e;
2816 else if (beste->count > e->count)
2817 ;
4262e623
JH
2818 else if ((EDGE_CRITICAL_P (e) != 0)
2819 != (EDGE_CRITICAL_P (beste) != 0))
0ecf09f9 2820 {
4262e623 2821 if (EDGE_CRITICAL_P (e))
0ecf09f9
JH
2822 beste = e;
2823 }
0b17ab2f 2824 else if (e->src->index < beste->src->index)
0ecf09f9
JH
2825 beste = e;
2826 }
2827
b3cd99cd 2828 /* Initialize stack at block entry. */
0ecf09f9 2829 if (bi->stack_in.top == -2)
b3cd99cd
EB
2830 {
2831 if (beste)
2832 inserted |= compensate_edge (beste, file);
2833 else
2834 {
2835 /* No predecessors. Create an arbitrary input stack. */
2836 int reg;
2837
2838 bi->stack_in.top = -1;
2839 for (reg = LAST_STACK_REG; reg >= FIRST_STACK_REG; --reg)
2840 if (TEST_HARD_REG_BIT (bi->stack_in.reg_set, reg))
2841 bi->stack_in.reg[++bi->stack_in.top] = reg;
2842 }
2843 }
0ecf09f9 2844 else
b3cd99cd 2845 /* Entry blocks do have stack already initialized. */
0ecf09f9 2846 beste = NULL;
a6a2274a 2847
0ecf09f9
JH
2848 current_block = block;
2849
a05924f9 2850 if (file)
48227150 2851 {
0b17ab2f 2852 fprintf (file, "\nBasic block %d\nInput stack: ", block->index);
a05924f9
JH
2853 print_stack (file, &bi->stack_in);
2854 }
48227150 2855
a05924f9
JH
2856 /* Process all insns in this block. Keep track of NEXT so that we
2857 don't process insns emitted while substituting in INSN. */
a813c111 2858 next = BB_HEAD (block);
a05924f9
JH
2859 regstack = bi->stack_in;
2860 do
2861 {
2862 insn = next;
2863 next = NEXT_INSN (insn);
48227150 2864
a05924f9
JH
2865 /* Ensure we have not missed a block boundary. */
2866 if (next == NULL)
2867 abort ();
a813c111 2868 if (insn == BB_END (block))
a05924f9
JH
2869 next = NULL;
2870
2871 /* Don't bother processing unless there is a stack reg
2872 mentioned or if it's a CALL_INSN. */
2873 if (stack_regs_mentioned (insn)
2874 || GET_CODE (insn) == CALL_INSN)
2875 {
2876 if (file)
2877 {
2878 fprintf (file, " insn %d input stack: ",
2879 INSN_UID (insn));
2880 print_stack (file, &regstack);
2881 }
ecb63641 2882 control_flow_insn_deleted |= subst_stack_regs (insn, &regstack);
48227150 2883 }
a05924f9
JH
2884 }
2885 while (next);
48227150 2886
a05924f9
JH
2887 if (file)
2888 {
2889 fprintf (file, "Expected live registers [");
2890 for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; ++reg)
2891 if (TEST_HARD_REG_BIT (bi->out_reg_set, reg))
2892 fprintf (file, " %d", reg);
2893 fprintf (file, " ]\nOutput stack: ");
2894 print_stack (file, &regstack);
2895 }
48227150 2896
a813c111 2897 insn = BB_END (block);
a05924f9
JH
2898 if (GET_CODE (insn) == JUMP_INSN)
2899 insn = PREV_INSN (insn);
2900
2901 /* If the function is declared to return a value, but it returns one
2902 in only some cases, some registers might come live here. Emit
2903 necessary moves for them. */
2904
2905 for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; ++reg)
2906 {
2907 if (TEST_HARD_REG_BIT (bi->out_reg_set, reg)
2908 && ! TEST_HARD_REG_BIT (regstack.reg_set, reg))
48227150 2909 {
a05924f9 2910 rtx set;
48227150 2911
a05924f9
JH
2912 if (file)
2913 {
2914 fprintf (file, "Emitting insn initializing reg %d\n",
2915 reg);
2916 }
48227150 2917
a05924f9
JH
2918 set = gen_rtx_SET (VOIDmode, FP_MODE_REG (reg, SFmode),
2919 nan);
3c030e88 2920 insn = emit_insn_after (set, insn);
ecb63641 2921 control_flow_insn_deleted |= subst_stack_regs (insn, &regstack);
a05924f9
JH
2922 }
2923 }
de582cfb
EB
2924
2925 /* Amongst the insns possibly deleted during the substitution process above,
2926 might have been the only trapping insn in the block. We purge the now
2927 possibly dead EH edges here to avoid an ICE from fixup_abnormal_edges,
2928 called at the end of convert_regs. The order in which we process the
2929 blocks ensures that we never delete an already processed edge.
2930
ecb63641
EB
2931 Note that, at this point, the CFG may have been damaged by the emission
2932 of instructions after an abnormal call, which moves the basic block end
2933 (and is the reason why we call fixup_abnormal_edges later). So we must
2934 be sure that the trapping insn has been deleted before trying to purge
2935 dead edges, otherwise we risk purging valid edges.
2936
de582cfb
EB
2937 ??? We are normally supposed not to delete trapping insns, so we pretend
2938 that the insns deleted above don't actually trap. It would have been
2939 better to detect this earlier and avoid creating the EH edge in the first
2940 place, still, but we don't have enough information at that time. */
2941
ecb63641 2942 if (control_flow_insn_deleted)
de582cfb 2943 purge_dead_edges (block);
48227150 2944
d6fc0492
RH
2945 /* Something failed if the stack lives don't match. If we had malformed
2946 asms, we zapped the instruction itself, but that didn't produce the
2947 same pattern of register kills as before. */
a05924f9 2948 GO_IF_HARD_REG_EQUAL (regstack.reg_set, bi->out_reg_set, win);
d6fc0492
RH
2949 if (!any_malformed_asm)
2950 abort ();
a05924f9 2951 win:
0ecf09f9 2952 bi->stack_out = regstack;
48227150 2953
0ecf09f9 2954 /* Compensate the back edges, as those wasn't visited yet. */
a05924f9
JH
2955 for (e = block->succ; e ; e = e->succ_next)
2956 {
0ecf09f9
JH
2957 if (e->flags & EDGE_DFS_BACK
2958 || (e->dest == EXIT_BLOCK_PTR))
a05924f9 2959 {
0ecf09f9
JH
2960 if (!BLOCK_INFO (e->dest)->done
2961 && e->dest != block)
2962 abort ();
a6a2274a 2963 inserted |= compensate_edge (e, file);
e075ae69 2964 }
0ecf09f9
JH
2965 }
2966 for (e = block->pred; e ; e = e->pred_next)
2967 {
2968 if (e != beste && !(e->flags & EDGE_DFS_BACK)
2969 && e->src != ENTRY_BLOCK_PTR)
a05924f9 2970 {
0ecf09f9 2971 if (!BLOCK_INFO (e->src)->done)
a05924f9 2972 abort ();
a6a2274a 2973 inserted |= compensate_edge (e, file);
a05924f9 2974 }
e075ae69 2975 }
a05924f9
JH
2976
2977 return inserted;
48227150 2978}
48227150 2979
a05924f9
JH
2980/* Convert registers in all blocks reachable from BLOCK. */
2981
2982static int
0c20a65f 2983convert_regs_2 (FILE *file, basic_block block)
48227150 2984{
a05924f9
JH
2985 basic_block *stack, *sp;
2986 int inserted;
48227150 2987
de582cfb
EB
2988 /* We process the blocks in a top-down manner, in a way such that one block
2989 is only processed after all its predecessors. The number of predecessors
2990 of every block has already been computed. */
2991
703ad42b 2992 stack = xmalloc (sizeof (*stack) * n_basic_blocks);
a05924f9 2993 sp = stack;
48227150 2994
a05924f9 2995 *sp++ = block;
48227150 2996
a05924f9
JH
2997 inserted = 0;
2998 do
2999 {
3000 edge e;
48227150 3001
a05924f9 3002 block = *--sp;
48227150 3003
b3cd99cd
EB
3004 /* Processing BLOCK is achieved by convert_regs_1, which may purge
3005 some dead EH outgoing edge after the deletion of the trapping
3006 insn inside the block. Since the number of predecessors of
3007 BLOCK's successors was computed based on the initial edge set,
3008 we check the necessity to process some of these successors
3009 before such an edge deletion may happen. However, there is
3010 a pitfall: if BLOCK is the only predecessor of a successor and
3011 the edge between them happens to be deleted, the successor
3012 becomes unreachable and should not be processed. The problem
3013 is that there is no way to preventively detect this case so we
3014 stack the successor in all cases and hand over the task of
3015 fixing up the discrepancy to convert_regs_1. */
3016
a05924f9 3017 for (e = block->succ; e ; e = e->succ_next)
0ecf09f9 3018 if (! (e->flags & EDGE_DFS_BACK))
a05924f9 3019 {
754d9299
JM
3020 BLOCK_INFO (e->dest)->predecessors--;
3021 if (!BLOCK_INFO (e->dest)->predecessors)
0ecf09f9 3022 *sp++ = e->dest;
a05924f9 3023 }
de582cfb
EB
3024
3025 inserted |= convert_regs_1 (file, block);
3026 BLOCK_INFO (block)->done = 1;
48227150 3027 }
a05924f9
JH
3028 while (sp != stack);
3029
3030 return inserted;
48227150 3031}
841fc5a1 3032
a05924f9
JH
3033/* Traverse all basic blocks in a function, converting the register
3034 references in each insn from the "flat" register file that gcc uses,
3035 to the stack-like registers the 387 uses. */
3036
3037static int
0c20a65f 3038convert_regs (FILE *file)
48227150 3039{
e0082a72
ZD
3040 int inserted;
3041 basic_block b;
a05924f9 3042 edge e;
48227150 3043
a05924f9
JH
3044 /* Initialize uninitialized registers on function entry. */
3045 inserted = convert_regs_entry ();
48227150 3046
a05924f9
JH
3047 /* Construct the desired stack for function exit. */
3048 convert_regs_exit ();
3049 BLOCK_INFO (EXIT_BLOCK_PTR)->done = 1;
48227150 3050
a05924f9
JH
3051 /* ??? Future: process inner loops first, and give them arbitrary
3052 initial stacks which emit_swap_insn can modify. This ought to
1ae58c30 3053 prevent double fxch that often appears at the head of a loop. */
48227150 3054
a05924f9
JH
3055 /* Process all blocks reachable from all entry points. */
3056 for (e = ENTRY_BLOCK_PTR->succ; e ; e = e->succ_next)
3057 inserted |= convert_regs_2 (file, e->dest);
a6a2274a
KH
3058
3059 /* ??? Process all unreachable blocks. Though there's no excuse
a05924f9 3060 for keeping these even when not optimizing. */
e0082a72 3061 FOR_EACH_BB (b)
a05924f9 3062 {
a05924f9 3063 block_info bi = BLOCK_INFO (b);
48227150 3064
a05924f9 3065 if (! bi->done)
b3cd99cd 3066 inserted |= convert_regs_2 (file, b);
a05924f9 3067 }
9dca2ad5 3068 clear_aux_for_blocks ();
48227150 3069
068473ec 3070 fixup_abnormal_edges ();
a05924f9
JH
3071 if (inserted)
3072 commit_edge_insertions ();
48227150 3073
a05924f9
JH
3074 if (file)
3075 fputc ('\n', file);
48227150 3076
a05924f9 3077 return inserted;
48227150 3078}
48227150 3079#endif /* STACK_REGS */
e2500fed
GK
3080
3081#include "gt-reg-stack.h"
This page took 3.860623 seconds and 5 git commands to generate.