]> gcc.gnu.org Git - gcc.git/blame - gcc/reg-stack.c
Fix copyrights.
[gcc.git] / gcc / reg-stack.c
CommitLineData
48227150 1/* Register to Stack convert for GNU compiler.
af841dbd
JL
2 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000 Free Software Foundation, Inc.
48227150 4
a05924f9 5 This file is part of GNU CC.
48227150 6
a05924f9
JH
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
48227150 11
a05924f9
JH
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
48227150 16
a05924f9
JH
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
48227150
JVA
21
22/* This pass converts stack-like registers from the "flat register
23 file" model that gcc uses, to a stack convention that the 387 uses.
24
25 * The form of the input:
26
27 On input, the function consists of insn that have had their
28 registers fully allocated to a set of "virtual" registers. Note that
29 the word "virtual" is used differently here than elsewhere in gcc: for
30 each virtual stack reg, there is a hard reg, but the mapping between
31 them is not known until this pass is run. On output, hard register
32 numbers have been substituted, and various pop and exchange insns have
33 been emitted. The hard register numbers and the virtual register
34 numbers completely overlap - before this pass, all stack register
114cbee6 35 numbers are virtual, and afterward they are all hard.
48227150
JVA
36
37 The virtual registers can be manipulated normally by gcc, and their
38 semantics are the same as for normal registers. After the hard
39 register numbers are substituted, the semantics of an insn containing
40 stack-like regs are not the same as for an insn with normal regs: for
41 instance, it is not safe to delete an insn that appears to be a no-op
42 move. In general, no insn containing hard regs should be changed
43 after this pass is done.
44
45 * The form of the output:
46
47 After this pass, hard register numbers represent the distance from
48 the current top of stack to the desired register. A reference to
49 FIRST_STACK_REG references the top of stack, FIRST_STACK_REG + 1,
50 represents the register just below that, and so forth. Also, REG_DEAD
51 notes indicate whether or not a stack register should be popped.
52
53 A "swap" insn looks like a parallel of two patterns, where each
54 pattern is a SET: one sets A to B, the other B to A.
55
56 A "push" or "load" insn is a SET whose SET_DEST is FIRST_STACK_REG
57 and whose SET_DEST is REG or MEM. Any other SET_DEST, such as PLUS,
58 will replace the existing stack top, not push a new value.
59
60 A store insn is a SET whose SET_DEST is FIRST_STACK_REG, and whose
61 SET_SRC is REG or MEM.
62
3f5cfed6 63 The case where the SET_SRC and SET_DEST are both FIRST_STACK_REG
48227150
JVA
64 appears ambiguous. As a special case, the presence of a REG_DEAD note
65 for FIRST_STACK_REG differentiates between a load insn and a pop.
66
67 If a REG_DEAD is present, the insn represents a "pop" that discards
68 the top of the register stack. If there is no REG_DEAD note, then the
69 insn represents a "dup" or a push of the current top of stack onto the
70 stack.
71
72 * Methodology:
73
74 Existing REG_DEAD and REG_UNUSED notes for stack registers are
75 deleted and recreated from scratch. REG_DEAD is never created for a
76 SET_DEST, only REG_UNUSED.
77
114cbee6 78 * asm_operands:
48227150 79
114cbee6
RS
80 There are several rules on the usage of stack-like regs in
81 asm_operands insns. These rules apply only to the operands that are
82 stack-like regs:
83
84 1. Given a set of input regs that die in an asm_operands, it is
85 necessary to know which are implicitly popped by the asm, and
86 which must be explicitly popped by gcc.
87
88 An input reg that is implicitly popped by the asm must be
89 explicitly clobbered, unless it is constrained to match an
90 output operand.
91
92 2. For any input reg that is implicitly popped by an asm, it is
93 necessary to know how to adjust the stack to compensate for the pop.
94 If any non-popped input is closer to the top of the reg-stack than
95 the implicitly popped reg, it would not be possible to know what the
96 stack looked like - it's not clear how the rest of the stack "slides
97 up".
98
99 All implicitly popped input regs must be closer to the top of
100 the reg-stack than any input that is not implicitly popped.
101
102 3. It is possible that if an input dies in an insn, reload might
103 use the input reg for an output reload. Consider this example:
104
105 asm ("foo" : "=t" (a) : "f" (b));
106
107 This asm says that input B is not popped by the asm, and that
108 the asm pushes a result onto the reg-stack, ie, the stack is one
109 deeper after the asm than it was before. But, it is possible that
110 reload will think that it can use the same reg for both the input and
111 the output, if input B dies in this insn.
112
113 If any input operand uses the "f" constraint, all output reg
114 constraints must use the "&" earlyclobber.
115
116 The asm above would be written as
117
118 asm ("foo" : "=&t" (a) : "f" (b));
119
120 4. Some operands need to be in particular places on the stack. All
121 output operands fall in this category - there is no other way to
122 know which regs the outputs appear in unless the user indicates
123 this in the constraints.
124
125 Output operands must specifically indicate which reg an output
126 appears in after an asm. "=f" is not allowed: the operand
127 constraints must select a class with a single reg.
128
129 5. Output operands may not be "inserted" between existing stack regs.
130 Since no 387 opcode uses a read/write operand, all output operands
131 are dead before the asm_operands, and are pushed by the asm_operands.
132 It makes no sense to push anywhere but the top of the reg-stack.
133
134 Output operands must start at the top of the reg-stack: output
135 operands may not "skip" a reg.
136
137 6. Some asm statements may need extra stack space for internal
138 calculations. This can be guaranteed by clobbering stack registers
139 unrelated to the inputs and outputs.
140
141 Here are a couple of reasonable asms to want to write. This asm
142 takes one input, which is internally popped, and produces two outputs.
143
144 asm ("fsincos" : "=t" (cos), "=u" (sin) : "0" (inp));
145
146 This asm takes two inputs, which are popped by the fyl2xp1 opcode,
147 and replaces them with one output. The user must code the "st(1)"
148 clobber for reg-stack.c to know that fyl2xp1 pops both inputs.
149
150 asm ("fyl2xp1" : "=t" (result) : "0" (x), "u" (y) : "st(1)");
151
a05924f9 152*/
48227150 153\f
48227150 154#include "config.h"
670ee920 155#include "system.h"
48227150
JVA
156#include "tree.h"
157#include "rtl.h"
6baf1cc8 158#include "tm_p.h"
49ad7cfa 159#include "function.h"
114cbee6 160#include "insn-config.h"
48227150
JVA
161#include "regs.h"
162#include "hard-reg-set.h"
163#include "flags.h"
841fc5a1 164#include "insn-flags.h"
10f0ad3d 165#include "toplev.h"
e075ae69 166#include "recog.h"
a05924f9
JH
167#include "output.h"
168#include "basic-block.h"
21b2cd73 169#include "varray.h"
48227150
JVA
170
171#ifdef STACK_REGS
172
173#define REG_STACK_SIZE (LAST_STACK_REG - FIRST_STACK_REG + 1)
174
48227150
JVA
175/* This is the basic stack record. TOP is an index into REG[] such
176 that REG[TOP] is the top of stack. If TOP is -1 the stack is empty.
177
eca31501
JVA
178 If TOP is -2, REG[] is not yet initialized. Stack initialization
179 consists of placing each live reg in array `reg' and setting `top'
180 appropriately.
181
182 REG_SET indicates which registers are live. */
48227150
JVA
183
184typedef struct stack_def
185{
186 int top; /* index to top stack element */
187 HARD_REG_SET reg_set; /* set of live registers */
188 char reg[REG_STACK_SIZE]; /* register - stack mapping */
189} *stack;
190
a05924f9
JH
191/* This is used to carry information about basic blocks. It is
192 attached to the AUX field of the standard CFG block. */
48227150 193
a05924f9
JH
194typedef struct block_info_def
195{
196 struct stack_def stack_in; /* Input stack configuration. */
197 HARD_REG_SET out_reg_set; /* Stack regs live on output. */
198 int done; /* True if block already converted. */
199} *block_info;
48227150 200
a05924f9 201#define BLOCK_INFO(B) ((block_info) (B)->aux)
48227150 202
a05924f9
JH
203/* Passed to change_stack to indicate where to emit insns. */
204enum emit_where
205{
206 EMIT_AFTER,
207 EMIT_BEFORE
208};
48227150 209
21b2cd73
JH
210/* We use this array to cache info about insns, because otherwise we
211 spend too much time in stack_regs_mentioned_p.
212
213 Indexed by insn UIDs. A value of zero is uninitialized, one indicates
214 the insn uses stack registers, two indicates the insn does not use
215 stack registers. */
216static varray_type stack_regs_mentioned_data;
217
a05924f9
JH
218/* The block we're currently working on. */
219static basic_block current_block;
220
48227150 221/* This is the register file for all register after conversion */
99a59310
RK
222static rtx
223 FP_mode_reg[LAST_STACK_REG+1-FIRST_STACK_REG][(int) MAX_MACHINE_MODE];
224
225#define FP_MODE_REG(regno,mode) \
226 (FP_mode_reg[(regno)-FIRST_STACK_REG][(int)(mode)])
48227150 227
a05924f9
JH
228/* Used to initialize uninitialized registers. */
229static rtx nan;
48227150 230
48227150
JVA
231/* Forward declarations */
232
957e4763
KG
233static int stack_regs_mentioned_p PARAMS ((rtx pat));
234static void straighten_stack PARAMS ((rtx, stack));
235static void pop_stack PARAMS ((stack, int));
236static rtx *get_true_reg PARAMS ((rtx *));
237
238static int check_asm_stack_operands PARAMS ((rtx));
239static int get_asm_operand_n_inputs PARAMS ((rtx));
240static rtx stack_result PARAMS ((tree));
241static void replace_reg PARAMS ((rtx *, int));
242static void remove_regno_note PARAMS ((rtx, enum reg_note, int));
243static int get_hard_regnum PARAMS ((stack, rtx));
244static void delete_insn_for_stacker PARAMS ((rtx));
245static rtx emit_pop_insn PARAMS ((rtx, stack, rtx,
a05924f9 246 enum emit_where));
957e4763
KG
247static void emit_swap_insn PARAMS ((rtx, stack, rtx));
248static void move_for_stack_reg PARAMS ((rtx, stack, rtx));
249static int swap_rtx_condition_1 PARAMS ((rtx));
250static int swap_rtx_condition PARAMS ((rtx));
251static void compare_for_stack_reg PARAMS ((rtx, stack, rtx));
252static void subst_stack_regs_pat PARAMS ((rtx, stack, rtx));
253static void subst_asm_stack_regs PARAMS ((rtx, stack));
254static void subst_stack_regs PARAMS ((rtx, stack));
255static void change_stack PARAMS ((rtx, stack, stack,
a05924f9 256 enum emit_where));
957e4763
KG
257static int convert_regs_entry PARAMS ((void));
258static void convert_regs_exit PARAMS ((void));
259static int convert_regs_1 PARAMS ((FILE *, basic_block));
260static int convert_regs_2 PARAMS ((FILE *, basic_block));
261static int convert_regs PARAMS ((FILE *));
262static void print_stack PARAMS ((FILE *, stack));
c6991660
KG
263static rtx next_flags_user PARAMS ((rtx));
264static void record_label_references PARAMS ((rtx, rtx));
21b2cd73 265\f
e075ae69 266/* Return non-zero if any stack register is mentioned somewhere within PAT. */
21b2cd73
JH
267
268static int
e075ae69
RH
269stack_regs_mentioned_p (pat)
270 rtx pat;
21b2cd73 271{
e075ae69
RH
272 register const char *fmt;
273 register int i;
274
275 if (STACK_REG_P (pat))
276 return 1;
277
278 fmt = GET_RTX_FORMAT (GET_CODE (pat));
279 for (i = GET_RTX_LENGTH (GET_CODE (pat)) - 1; i >= 0; i--)
21b2cd73 280 {
e075ae69
RH
281 if (fmt[i] == 'E')
282 {
283 register int j;
284
285 for (j = XVECLEN (pat, i) - 1; j >= 0; j--)
286 if (stack_regs_mentioned_p (XVECEXP (pat, i, j)))
287 return 1;
288 }
289 else if (fmt[i] == 'e' && stack_regs_mentioned_p (XEXP (pat, i)))
290 return 1;
21b2cd73 291 }
e075ae69 292
21b2cd73
JH
293 return 0;
294}
295
e075ae69 296/* Return nonzero if INSN mentions stacked registers, else return zero. */
21b2cd73
JH
297
298int
299stack_regs_mentioned (insn)
300 rtx insn;
301{
e075ae69
RH
302 unsigned int uid, max;
303 int test;
304
21b2cd73
JH
305 if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
306 return 0;
e075ae69 307
21b2cd73 308 uid = INSN_UID (insn);
e075ae69
RH
309 max = VARRAY_SIZE (stack_regs_mentioned_data);
310 if (uid >= max)
311 {
312 /* Allocate some extra size to avoid too many reallocs, but
313 do not grow too quickly. */
314 max = uid + uid / 20;
315 VARRAY_GROW (stack_regs_mentioned_data, max);
316 }
317
318 test = VARRAY_CHAR (stack_regs_mentioned_data, uid);
319 if (test == 0)
320 {
321 /* This insn has yet to be examined. Do so now. */
322 test = stack_regs_mentioned_p (PATTERN (insn)) ? 1 : 2;
323 VARRAY_CHAR (stack_regs_mentioned_data, uid) = test;
324 }
325
326 return test == 1;
21b2cd73 327}
e075ae69
RH
328\f
329static rtx ix86_flags_rtx;
21b2cd73 330
e075ae69
RH
331static rtx
332next_flags_user (insn)
333 rtx insn;
334{
335 /* Search forward looking for the first use of this value.
336 Stop at block boundaries. */
337 /* ??? This really cries for BLOCK_END! */
338
339 while (1)
340 {
341 insn = NEXT_INSN (insn);
342 if (!insn)
343 return NULL_RTX;
344
345 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
346 && reg_mentioned_p (ix86_flags_rtx, PATTERN (insn)))
347 return insn;
348
349 if (GET_CODE (insn) == JUMP_INSN
350 || GET_CODE (insn) == CODE_LABEL
351 || GET_CODE (insn) == CALL_INSN)
352 return NULL_RTX;
353 }
354}
48227150 355\f
99a59310
RK
356/* Reorganise the stack into ascending numbers,
357 after this insn. */
358
359static void
360straighten_stack (insn, regstack)
361 rtx insn;
362 stack regstack;
363{
364 struct stack_def temp_stack;
365 int top;
366
8feb7351
JL
367 /* If there is only a single register on the stack, then the stack is
368 already in increasing order and no reorganization is needed.
369
370 Similarly if the stack is empty. */
371 if (regstack->top <= 0)
372 return;
373
d25cf633 374 COPY_HARD_REG_SET (temp_stack.reg_set, regstack->reg_set);
99a59310
RK
375
376 for (top = temp_stack.top = regstack->top; top >= 0; top--)
e075ae69 377 temp_stack.reg[top] = FIRST_STACK_REG + temp_stack.top - top;
99a59310 378
a05924f9 379 change_stack (insn, regstack, &temp_stack, EMIT_AFTER);
99a59310 380}
7aa74e4c
SC
381
382/* Pop a register from the stack */
383
384static void
385pop_stack (regstack, regno)
386 stack regstack;
387 int regno;
388{
389 int top = regstack->top;
390
391 CLEAR_HARD_REG_BIT (regstack->reg_set, regno);
392 regstack->top--;
393 /* If regno was not at the top of stack then adjust stack */
394 if (regstack->reg [top] != regno)
395 {
396 int i;
397 for (i = regstack->top; i >= 0; i--)
398 if (regstack->reg [i] == regno)
399 {
400 int j;
401 for (j = i; j < top; j++)
402 regstack->reg [j] = regstack->reg [j + 1];
403 break;
404 }
405 }
406}
99a59310 407\f
48227150
JVA
408/* Convert register usage from "flat" register file usage to a "stack
409 register file. FIRST is the first insn in the function, FILE is the
410 dump file, if used.
411
e218fc41 412 Construct a CFG and run life analysis. Then convert each insn one
a05924f9
JH
413 by one. Run a last jump_optimize pass, if optimizing, to eliminate
414 code duplication created when the converter inserts pop insns on
415 the edges. */
48227150
JVA
416
417void
418reg_to_stack (first, file)
419 rtx first;
420 FILE *file;
421{
a05924f9
JH
422 int i;
423 int max_uid;
a05924f9
JH
424 block_info bi;
425
426 /* See if there is something to do. Flow analysis is quite
427 expensive so we might save some compilation time. */
428 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
429 if (regs_ever_live[i])
430 break;
431 if (i > LAST_STACK_REG)
432 return;
99a59310 433
e218fc41
RH
434 /* Ok, floating point instructions exist. If not optimizing,
435 build the CFG and run life analysis. */
19d3c25c 436 find_basic_blocks (first, max_reg_num (), file);
dcc6c741
RH
437 count_or_remove_death_notes (NULL, 1);
438 life_analysis (first, max_reg_num (), file, 0);
48227150 439
a05924f9 440 /* Set up block info for each basic block. */
ff154f78 441 bi = (block_info) xcalloc ((n_basic_blocks + 1), sizeof (*bi));
a05924f9
JH
442 for (i = n_basic_blocks - 1; i >= 0; --i)
443 BASIC_BLOCK (i)->aux = bi + i;
444 EXIT_BLOCK_PTR->aux = bi + n_basic_blocks;
48227150 445
a05924f9
JH
446 /* Create the replacement registers up front. */
447 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
21b2cd73 448 {
a05924f9
JH
449 enum machine_mode mode;
450 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
451 mode != VOIDmode;
452 mode = GET_MODE_WIDER_MODE (mode))
453 FP_MODE_REG (i, mode) = gen_rtx_REG (mode, i);
454 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT);
455 mode != VOIDmode;
456 mode = GET_MODE_WIDER_MODE (mode))
457 FP_MODE_REG (i, mode) = gen_rtx_REG (mode, i);
21b2cd73 458 }
48227150 459
a05924f9 460 ix86_flags_rtx = gen_rtx_REG (CCmode, FLAGS_REG);
48227150 461
a05924f9 462 /* A QNaN for initializing uninitialized variables.
48227150 463
a05924f9
JH
464 ??? We can't load from constant memory in PIC mode, because
465 we're insertting these instructions before the prologue and
466 the PIC register hasn't been set up. In that case, fall back
467 on zero, which we can get from `ldz'. */
48227150 468
a05924f9
JH
469 if (flag_pic)
470 nan = CONST0_RTX (SFmode);
471 else
472 {
473 nan = gen_lowpart (SFmode, GEN_INT (0x7fc00000));
474 nan = force_const_mem (SFmode, nan);
475 }
48227150 476
a05924f9
JH
477 /* Allocate a cache for stack_regs_mentioned. */
478 max_uid = get_max_uid ();
479 VARRAY_CHAR_INIT (stack_regs_mentioned_data, max_uid + 1,
480 "stack_regs_mentioned cache");
48227150 481
a05924f9
JH
482 if (convert_regs (file) && optimize)
483 {
484 jump_optimize (first, JUMP_CROSS_JUMP_DEATH_MATTERS,
485 !JUMP_NOOP_MOVES, !JUMP_AFTER_REGSCAN);
a05924f9 486 }
21b2cd73 487
ff154f78 488 /* Clean up. */
21b2cd73 489 VARRAY_FREE (stack_regs_mentioned_data);
ff154f78 490 free (bi);
48227150
JVA
491}
492\f
493/* Check PAT, which is in INSN, for LABEL_REFs. Add INSN to the
494 label's chain of references, and note which insn contains each
0f41302f 495 reference. */
48227150
JVA
496
497static void
498record_label_references (insn, pat)
499 rtx insn, pat;
500{
501 register enum rtx_code code = GET_CODE (pat);
502 register int i;
6f7d635c 503 register const char *fmt;
48227150
JVA
504
505 if (code == LABEL_REF)
506 {
507 register rtx label = XEXP (pat, 0);
508 register rtx ref;
509
510 if (GET_CODE (label) != CODE_LABEL)
511 abort ();
512
0f41302f
MS
513 /* If this is an undefined label, LABEL_REFS (label) contains
514 garbage. */
13684373
RK
515 if (INSN_UID (label) == 0)
516 return;
517
0f41302f 518 /* Don't make a duplicate in the code_label's chain. */
48227150 519
9f5cad05
JVA
520 for (ref = LABEL_REFS (label);
521 ref && ref != label;
522 ref = LABEL_NEXTREF (ref))
48227150
JVA
523 if (CONTAINING_INSN (ref) == insn)
524 return;
525
526 CONTAINING_INSN (pat) = insn;
527 LABEL_NEXTREF (pat) = LABEL_REFS (label);
528 LABEL_REFS (label) = pat;
529
530 return;
531 }
532
533 fmt = GET_RTX_FORMAT (code);
534 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
535 {
536 if (fmt[i] == 'e')
537 record_label_references (insn, XEXP (pat, i));
538 if (fmt[i] == 'E')
539 {
540 register int j;
541 for (j = 0; j < XVECLEN (pat, i); j++)
542 record_label_references (insn, XVECEXP (pat, i, j));
543 }
544 }
545}
546\f
547/* Return a pointer to the REG expression within PAT. If PAT is not a
548 REG, possible enclosed by a conversion rtx, return the inner part of
0f41302f 549 PAT that stopped the search. */
48227150
JVA
550
551static rtx *
552get_true_reg (pat)
553 rtx *pat;
554{
99a59310 555 for (;;)
e075ae69 556 switch (GET_CODE (*pat))
99a59310 557 {
e075ae69
RH
558 case SUBREG:
559 /* Eliminate FP subregister accesses in favour of the
560 actual FP register in use. */
561 {
562 rtx subreg;
563 if (FP_REG_P (subreg = SUBREG_REG (*pat)))
99a59310
RK
564 {
565 *pat = FP_MODE_REG (REGNO (subreg) + SUBREG_WORD (*pat),
566 GET_MODE (subreg));
e075ae69 567 default:
99a59310
RK
568 return pat;
569 }
e075ae69
RH
570 }
571 case FLOAT:
572 case FIX:
573 case FLOAT_EXTEND:
574 pat = & XEXP (*pat, 0);
99a59310 575 }
48227150 576}
48227150 577\f
a05924f9 578/* There are many rules that an asm statement for stack-like regs must
114cbee6 579 follow. Those rules are explained at the top of this file: the rule
0f41302f 580 numbers below refer to that explanation. */
114cbee6 581
a05924f9
JH
582static int
583check_asm_stack_operands (insn)
114cbee6 584 rtx insn;
114cbee6
RS
585{
586 int i;
114cbee6
RS
587 int n_clobbers;
588 int malformed_asm = 0;
589 rtx body = PATTERN (insn);
590
a05924f9
JH
591 char reg_used_as_output[FIRST_PSEUDO_REGISTER];
592 char implicitly_dies[FIRST_PSEUDO_REGISTER];
f62a15e3 593 int alt;
114cbee6 594
a544cfd2 595 rtx *clobber_reg = 0;
f62a15e3 596 int n_inputs, n_outputs;
114cbee6 597
0e7d0eb9 598 /* Find out what the constraints require. If no constraint
854dfdff 599 alternative matches, this asm is malformed. */
f62a15e3
BS
600 extract_insn (insn);
601 constrain_operands (1);
602 alt = which_alternative;
603
604 preprocess_constraints ();
605
606 n_inputs = get_asm_operand_n_inputs (body);
1ccbefce 607 n_outputs = recog_data.n_operands - n_inputs;
f62a15e3
BS
608
609 if (alt < 0)
610 {
611 malformed_asm = 1;
612 /* Avoid further trouble with this insn. */
613 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
a05924f9 614 return 0;
f62a15e3 615 }
114cbee6 616
0f41302f 617 /* Strip SUBREGs here to make the following code simpler. */
1ccbefce
RH
618 for (i = 0; i < recog_data.n_operands; i++)
619 if (GET_CODE (recog_data.operand[i]) == SUBREG
620 && GET_CODE (SUBREG_REG (recog_data.operand[i])) == REG)
621 recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
114cbee6
RS
622
623 /* Set up CLOBBER_REG. */
624
625 n_clobbers = 0;
114cbee6
RS
626
627 if (GET_CODE (body) == PARALLEL)
3f5cfed6 628 {
2a92c071 629 clobber_reg = (rtx *) alloca (XVECLEN (body, 0) * sizeof (rtx));
114cbee6 630
3f5cfed6
JVA
631 for (i = 0; i < XVECLEN (body, 0); i++)
632 if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
633 {
634 rtx clobber = XVECEXP (body, 0, i);
635 rtx reg = XEXP (clobber, 0);
114cbee6 636
3f5cfed6
JVA
637 if (GET_CODE (reg) == SUBREG && GET_CODE (SUBREG_REG (reg)) == REG)
638 reg = SUBREG_REG (reg);
639
640 if (STACK_REG_P (reg))
641 {
642 clobber_reg[n_clobbers] = reg;
643 n_clobbers++;
644 }
645 }
646 }
114cbee6
RS
647
648 /* Enforce rule #4: Output operands must specifically indicate which
649 reg an output appears in after an asm. "=f" is not allowed: the
650 operand constraints must select a class with a single reg.
651
652 Also enforce rule #5: Output operands must start at the top of
0f41302f 653 the reg-stack: output operands may not "skip" a reg. */
114cbee6 654
a05924f9 655 memset (reg_used_as_output, 0, sizeof (reg_used_as_output));
114cbee6 656 for (i = 0; i < n_outputs; i++)
1ccbefce 657 if (STACK_REG_P (recog_data.operand[i]))
9c318306 658 {
f62a15e3 659 if (reg_class_size[(int) recog_op_alt[i][alt].class] != 1)
9c318306
MH
660 {
661 error_for_asm (insn, "Output constraint %d must specify a single register", i);
662 malformed_asm = 1;
663 }
664 else
1ccbefce 665 reg_used_as_output[REGNO (recog_data.operand[i])] = 1;
9c318306 666 }
114cbee6
RS
667
668
669 /* Search for first non-popped reg. */
670 for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
671 if (! reg_used_as_output[i])
672 break;
673
674 /* If there are any other popped regs, that's an error. */
675 for (; i < LAST_STACK_REG + 1; i++)
676 if (reg_used_as_output[i])
677 break;
678
679 if (i != LAST_STACK_REG + 1)
680 {
681 error_for_asm (insn, "Output regs must be grouped at top of stack");
682 malformed_asm = 1;
683 }
684
685 /* Enforce rule #2: All implicitly popped input regs must be closer
686 to the top of the reg-stack than any input that is not implicitly
0f41302f 687 popped. */
114cbee6 688
a05924f9 689 memset (implicitly_dies, 0, sizeof (implicitly_dies));
f62a15e3 690 for (i = n_outputs; i < n_outputs + n_inputs; i++)
1ccbefce 691 if (STACK_REG_P (recog_data.operand[i]))
114cbee6
RS
692 {
693 /* An input reg is implicitly popped if it is tied to an
0f41302f 694 output, or if there is a CLOBBER for it. */
114cbee6
RS
695 int j;
696
697 for (j = 0; j < n_clobbers; j++)
1ccbefce 698 if (operands_match_p (clobber_reg[j], recog_data.operand[i]))
114cbee6
RS
699 break;
700
f62a15e3 701 if (j < n_clobbers || recog_op_alt[i][alt].matches >= 0)
1ccbefce 702 implicitly_dies[REGNO (recog_data.operand[i])] = 1;
114cbee6
RS
703 }
704
705 /* Search for first non-popped reg. */
706 for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
707 if (! implicitly_dies[i])
708 break;
709
710 /* If there are any other popped regs, that's an error. */
711 for (; i < LAST_STACK_REG + 1; i++)
712 if (implicitly_dies[i])
713 break;
714
715 if (i != LAST_STACK_REG + 1)
716 {
717 error_for_asm (insn,
718 "Implicitly popped regs must be grouped at top of stack");
719 malformed_asm = 1;
720 }
721
722 /* Enfore rule #3: If any input operand uses the "f" constraint, all
723 output constraints must use the "&" earlyclobber.
724
a05924f9 725 ??? Detect this more deterministically by having constrain_asm_operands
0f41302f 726 record any earlyclobber. */
114cbee6 727
f62a15e3
BS
728 for (i = n_outputs; i < n_outputs + n_inputs; i++)
729 if (recog_op_alt[i][alt].matches == -1)
114cbee6
RS
730 {
731 int j;
732
733 for (j = 0; j < n_outputs; j++)
1ccbefce 734 if (operands_match_p (recog_data.operand[j], recog_data.operand[i]))
114cbee6
RS
735 {
736 error_for_asm (insn,
737 "Output operand %d must use `&' constraint", j);
738 malformed_asm = 1;
739 }
740 }
741
742 if (malformed_asm)
743 {
744 /* Avoid further trouble with this insn. */
38a448ca 745 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
a05924f9 746 return 0;
0e7d0eb9 747 }
48227150 748
a05924f9 749 return 1;
48227150
JVA
750}
751\f
114cbee6
RS
752/* Calculate the number of inputs and outputs in BODY, an
753 asm_operands. N_OPERANDS is the total number of operands, and
754 N_INPUTS and N_OUTPUTS are pointers to ints into which the results are
0f41302f 755 placed. */
114cbee6 756
f62a15e3
BS
757static int
758get_asm_operand_n_inputs (body)
114cbee6 759 rtx body;
114cbee6
RS
760{
761 if (GET_CODE (body) == SET && GET_CODE (SET_SRC (body)) == ASM_OPERANDS)
f62a15e3 762 return ASM_OPERANDS_INPUT_LENGTH (SET_SRC (body));
114cbee6
RS
763
764 else if (GET_CODE (body) == ASM_OPERANDS)
f62a15e3 765 return ASM_OPERANDS_INPUT_LENGTH (body);
114cbee6
RS
766
767 else if (GET_CODE (body) == PARALLEL
768 && GET_CODE (XVECEXP (body, 0, 0)) == SET)
f62a15e3 769 return ASM_OPERANDS_INPUT_LENGTH (SET_SRC (XVECEXP (body, 0, 0)));
114cbee6
RS
770
771 else if (GET_CODE (body) == PARALLEL
772 && GET_CODE (XVECEXP (body, 0, 0)) == ASM_OPERANDS)
f62a15e3 773 return ASM_OPERANDS_INPUT_LENGTH (XVECEXP (body, 0, 0));
114cbee6 774
f62a15e3 775 abort ();
114cbee6 776}
0ab759e4 777
96237362 778/* If current function returns its result in an fp stack register,
9f9ed50a 779 return the REG. Otherwise, return 0. */
96237362 780
99a59310
RK
781static rtx
782stack_result (decl)
96237362
RS
783 tree decl;
784{
f099b1c9 785 rtx result;
96237362 786
f099b1c9
JL
787 /* If the value is supposed to be returned in memory, then clearly
788 it is not returned in a stack register. */
789 if (aggregate_value_p (DECL_RESULT (decl)))
790 return 0;
791
792 result = DECL_RTL (DECL_RESULT (decl));
793 /* ?!? What is this code supposed to do? Can this code actually
794 trigger if we kick out aggregates above? */
96237362 795 if (result != 0
9f9ed50a
RK
796 && ! (GET_CODE (result) == REG
797 && REGNO (result) < FIRST_PSEUDO_REGISTER))
96237362
RS
798 {
799#ifdef FUNCTION_OUTGOING_VALUE
800 result
801 = FUNCTION_OUTGOING_VALUE (TREE_TYPE (DECL_RESULT (decl)), decl);
802#else
803 result = FUNCTION_VALUE (TREE_TYPE (DECL_RESULT (decl)), decl);
804#endif
805 }
806
9f9ed50a 807 return result != 0 && STACK_REG_P (result) ? result : 0;
96237362 808}
48227150 809\f
48227150 810
e075ae69
RH
811/*
812 * This section deals with stack register substitution, and forms the second
813 * pass over the RTL.
814 */
48227150
JVA
815
816/* Replace REG, which is a pointer to a stack reg RTX, with an RTX for
0f41302f 817 the desired hard REGNO. */
48227150
JVA
818
819static void
820replace_reg (reg, regno)
821 rtx *reg;
822 int regno;
823{
824 if (regno < FIRST_STACK_REG || regno > LAST_STACK_REG
825 || ! STACK_REG_P (*reg))
826 abort ();
827
99a59310 828 switch (GET_MODE_CLASS (GET_MODE (*reg)))
e075ae69
RH
829 {
830 default: abort ();
831 case MODE_FLOAT:
832 case MODE_COMPLEX_FLOAT:;
833 }
7d0e3dd4 834
99a59310 835 *reg = FP_MODE_REG (regno, GET_MODE (*reg));
48227150
JVA
836}
837
838/* Remove a note of type NOTE, which must be found, for register
0f41302f 839 number REGNO from INSN. Remove only one such note. */
48227150
JVA
840
841static void
842remove_regno_note (insn, note, regno)
843 rtx insn;
844 enum reg_note note;
845 int regno;
846{
847 register rtx *note_link, this;
848
849 note_link = &REG_NOTES(insn);
850 for (this = *note_link; this; this = XEXP (this, 1))
851 if (REG_NOTE_KIND (this) == note
852 && REG_P (XEXP (this, 0)) && REGNO (XEXP (this, 0)) == regno)
853 {
854 *note_link = XEXP (this, 1);
855 return;
856 }
857 else
858 note_link = &XEXP (this, 1);
859
860 abort ();
861}
862
863/* Find the hard register number of virtual register REG in REGSTACK.
864 The hard register number is relative to the top of the stack. -1 is
0f41302f 865 returned if the register is not found. */
48227150
JVA
866
867static int
868get_hard_regnum (regstack, reg)
869 stack regstack;
870 rtx reg;
871{
872 int i;
873
874 if (! STACK_REG_P (reg))
875 abort ();
876
877 for (i = regstack->top; i >= 0; i--)
878 if (regstack->reg[i] == REGNO (reg))
879 break;
880
881 return i >= 0 ? (FIRST_STACK_REG + regstack->top - i) : -1;
882}
883
884/* Delete INSN from the RTL. Mark the insn, but don't remove it from
885 the chain of insns. Doing so could confuse block_begin and block_end
0f41302f 886 if this were the only insn in the block. */
48227150
JVA
887
888static void
889delete_insn_for_stacker (insn)
890 rtx insn;
891{
892 PUT_CODE (insn, NOTE);
893 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
894 NOTE_SOURCE_FILE (insn) = 0;
48227150
JVA
895}
896\f
897/* Emit an insn to pop virtual register REG before or after INSN.
898 REGSTACK is the stack state after INSN and is updated to reflect this
e075ae69
RH
899 pop. WHEN is either emit_insn_before or emit_insn_after. A pop insn
900 is represented as a SET whose destination is the register to be popped
901 and source is the top of stack. A death note for the top of stack
0f41302f 902 cases the movdf pattern to pop. */
48227150
JVA
903
904static rtx
a05924f9 905emit_pop_insn (insn, regstack, reg, where)
48227150
JVA
906 rtx insn;
907 stack regstack;
908 rtx reg;
a05924f9 909 enum emit_where where;
48227150
JVA
910{
911 rtx pop_insn, pop_rtx;
912 int hard_regno;
913
914 hard_regno = get_hard_regnum (regstack, reg);
915
916 if (hard_regno < FIRST_STACK_REG)
917 abort ();
918
e075ae69
RH
919 pop_rtx = gen_rtx_SET (VOIDmode, FP_MODE_REG (hard_regno, DFmode),
920 FP_MODE_REG (FIRST_STACK_REG, DFmode));
48227150 921
a05924f9
JH
922 if (where == EMIT_AFTER)
923 pop_insn = emit_block_insn_after (pop_rtx, insn, current_block);
924 else
925 pop_insn = emit_block_insn_before (pop_rtx, insn, current_block);
48227150 926
c5c76735
JL
927 REG_NOTES (pop_insn)
928 = gen_rtx_EXPR_LIST (REG_DEAD, FP_MODE_REG (FIRST_STACK_REG, DFmode),
929 REG_NOTES (pop_insn));
48227150
JVA
930
931 regstack->reg[regstack->top - (hard_regno - FIRST_STACK_REG)]
932 = regstack->reg[regstack->top];
933 regstack->top -= 1;
934 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (reg));
935
936 return pop_insn;
937}
938\f
a05924f9
JH
939/* Emit an insn before or after INSN to swap virtual register REG with
940 the top of stack. REGSTACK is the stack state before the swap, and
941 is updated to reflect the swap. A swap insn is represented as a
942 PARALLEL of two patterns: each pattern moves one reg to the other.
48227150 943
0f41302f 944 If REG is already at the top of the stack, no insn is emitted. */
48227150
JVA
945
946static void
eca31501 947emit_swap_insn (insn, regstack, reg)
48227150
JVA
948 rtx insn;
949 stack regstack;
eca31501 950 rtx reg;
48227150 951{
eca31501 952 int hard_regno;
a05924f9 953 rtx swap_rtx;
eca31501
JVA
954 int tmp, other_reg; /* swap regno temps */
955 rtx i1; /* the stack-reg insn prior to INSN */
956 rtx i1set = NULL_RTX; /* the SET rtx within I1 */
48227150 957
eca31501
JVA
958 hard_regno = get_hard_regnum (regstack, reg);
959
960 if (hard_regno < FIRST_STACK_REG)
961 abort ();
48227150
JVA
962 if (hard_regno == FIRST_STACK_REG)
963 return;
964
eca31501 965 other_reg = regstack->top - (hard_regno - FIRST_STACK_REG);
48227150 966
eca31501
JVA
967 tmp = regstack->reg[other_reg];
968 regstack->reg[other_reg] = regstack->reg[regstack->top];
48227150 969 regstack->reg[regstack->top] = tmp;
48227150 970
a05924f9
JH
971 /* Find the previous insn involving stack regs, but don't pass a
972 block boundary. */
973 i1 = NULL;
974 if (current_block && insn != current_block->head)
eca31501 975 {
a05924f9 976 rtx tmp = PREV_INSN (insn);
3a6cc978
ZW
977 rtx limit = PREV_INSN (current_block->head);
978 while (tmp != limit)
a05924f9
JH
979 {
980 if (GET_CODE (tmp) == CODE_LABEL
981 || (GET_CODE (tmp) == NOTE
982 && NOTE_LINE_NUMBER (tmp) == NOTE_INSN_BASIC_BLOCK)
983 || (GET_CODE (tmp) == INSN
984 && stack_regs_mentioned (tmp)))
985 {
986 i1 = tmp;
987 break;
988 }
989 tmp = PREV_INSN (tmp);
990 }
991 }
992
993 if (i1 != NULL_RTX
994 && (i1set = single_set (i1)) != NULL_RTX)
995 {
996 rtx i1src = *get_true_reg (&SET_SRC (i1set));
eca31501 997 rtx i1dest = *get_true_reg (&SET_DEST (i1set));
48227150 998
eca31501 999 /* If the previous register stack push was from the reg we are to
0f41302f 1000 swap with, omit the swap. */
eca31501
JVA
1001
1002 if (GET_CODE (i1dest) == REG && REGNO (i1dest) == FIRST_STACK_REG
1003 && GET_CODE (i1src) == REG && REGNO (i1src) == hard_regno - 1
1004 && find_regno_note (i1, REG_DEAD, FIRST_STACK_REG) == NULL_RTX)
1005 return;
1006
1007 /* If the previous insn wrote to the reg we are to swap with,
1008 omit the swap. */
1009
1010 if (GET_CODE (i1dest) == REG && REGNO (i1dest) == hard_regno
1011 && GET_CODE (i1src) == REG && REGNO (i1src) == FIRST_STACK_REG
1012 && find_regno_note (i1, REG_DEAD, FIRST_STACK_REG) == NULL_RTX)
1013 return;
1014 }
1015
e075ae69
RH
1016 swap_rtx = gen_swapxf (FP_MODE_REG (hard_regno, XFmode),
1017 FP_MODE_REG (FIRST_STACK_REG, XFmode));
a05924f9
JH
1018
1019 if (i1)
1020 emit_block_insn_after (swap_rtx, i1, current_block);
1021 else if (current_block)
3a6cc978 1022 emit_block_insn_before (swap_rtx, current_block->head, current_block);
a05924f9
JH
1023 else
1024 emit_insn_before (swap_rtx, insn);
48227150
JVA
1025}
1026\f
1027/* Handle a move to or from a stack register in PAT, which is in INSN.
0f41302f 1028 REGSTACK is the current stack. */
48227150
JVA
1029
1030static void
1031move_for_stack_reg (insn, regstack, pat)
1032 rtx insn;
1033 stack regstack;
1034 rtx pat;
1035{
99a59310
RK
1036 rtx *psrc = get_true_reg (&SET_SRC (pat));
1037 rtx *pdest = get_true_reg (&SET_DEST (pat));
1038 rtx src, dest;
48227150
JVA
1039 rtx note;
1040
99a59310
RK
1041 src = *psrc; dest = *pdest;
1042
1043 if (STACK_REG_P (src) && STACK_REG_P (dest))
48227150
JVA
1044 {
1045 /* Write from one stack reg to another. If SRC dies here, then
0f41302f 1046 just change the register mapping and delete the insn. */
48227150 1047
99a59310 1048 note = find_regno_note (insn, REG_DEAD, REGNO (src));
48227150
JVA
1049 if (note)
1050 {
1051 int i;
1052
0f41302f 1053 /* If this is a no-op move, there must not be a REG_DEAD note. */
99a59310 1054 if (REGNO (src) == REGNO (dest))
48227150
JVA
1055 abort ();
1056
1057 for (i = regstack->top; i >= 0; i--)
99a59310 1058 if (regstack->reg[i] == REGNO (src))
48227150
JVA
1059 break;
1060
0f41302f 1061 /* The source must be live, and the dest must be dead. */
99a59310 1062 if (i < 0 || get_hard_regnum (regstack, dest) >= FIRST_STACK_REG)
48227150
JVA
1063 abort ();
1064
1065 /* It is possible that the dest is unused after this insn.
0f41302f 1066 If so, just pop the src. */
48227150 1067
99a59310 1068 if (find_regno_note (insn, REG_UNUSED, REGNO (dest)))
48227150 1069 {
a05924f9 1070 emit_pop_insn (insn, regstack, src, EMIT_AFTER);
48227150
JVA
1071
1072 delete_insn_for_stacker (insn);
1073 return;
1074 }
1075
99a59310 1076 regstack->reg[i] = REGNO (dest);
48227150 1077
99a59310
RK
1078 SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1079 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (src));
48227150
JVA
1080
1081 delete_insn_for_stacker (insn);
1082
1083 return;
1084 }
1085
0f41302f 1086 /* The source reg does not die. */
48227150
JVA
1087
1088 /* If this appears to be a no-op move, delete it, or else it
1089 will confuse the machine description output patterns. But if
1090 it is REG_UNUSED, we must pop the reg now, as per-insn processing
0f41302f 1091 for REG_UNUSED will not work for deleted insns. */
48227150 1092
99a59310 1093 if (REGNO (src) == REGNO (dest))
48227150 1094 {
99a59310 1095 if (find_regno_note (insn, REG_UNUSED, REGNO (dest)))
a05924f9 1096 emit_pop_insn (insn, regstack, dest, EMIT_AFTER);
48227150
JVA
1097
1098 delete_insn_for_stacker (insn);
1099 return;
1100 }
1101
1102 /* The destination ought to be dead */
99a59310 1103 if (get_hard_regnum (regstack, dest) >= FIRST_STACK_REG)
48227150
JVA
1104 abort ();
1105
99a59310 1106 replace_reg (psrc, get_hard_regnum (regstack, src));
48227150 1107
99a59310
RK
1108 regstack->reg[++regstack->top] = REGNO (dest);
1109 SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1110 replace_reg (pdest, FIRST_STACK_REG);
48227150 1111 }
99a59310 1112 else if (STACK_REG_P (src))
48227150
JVA
1113 {
1114 /* Save from a stack reg to MEM, or possibly integer reg. Since
1115 only top of stack may be saved, emit an exchange first if
0f41302f 1116 needs be. */
48227150 1117
99a59310 1118 emit_swap_insn (insn, regstack, src);
48227150 1119
99a59310 1120 note = find_regno_note (insn, REG_DEAD, REGNO (src));
48227150
JVA
1121 if (note)
1122 {
1123 replace_reg (&XEXP (note, 0), FIRST_STACK_REG);
1124 regstack->top--;
99a59310 1125 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (src));
48227150 1126 }
314d1f3c 1127 else if (GET_MODE (src) == XFmode && regstack->top < REG_STACK_SIZE - 1)
b40b8b06
JVA
1128 {
1129 /* A 387 cannot write an XFmode value to a MEM without
1130 clobbering the source reg. The output code can handle
1131 this by reading back the value from the MEM.
1132 But it is more efficient to use a temp register if one is
1133 available. Push the source value here if the register
1134 stack is not full, and then write the value to memory via
1135 a pop. */
1136 rtx push_rtx, push_insn;
99a59310 1137 rtx top_stack_reg = FP_MODE_REG (FIRST_STACK_REG, XFmode);
b40b8b06
JVA
1138
1139 push_rtx = gen_movxf (top_stack_reg, top_stack_reg);
1140 push_insn = emit_insn_before (push_rtx, insn);
38a448ca
RH
1141 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_DEAD, top_stack_reg,
1142 REG_NOTES (insn));
b40b8b06 1143 }
48227150 1144
99a59310 1145 replace_reg (psrc, FIRST_STACK_REG);
48227150 1146 }
99a59310 1147 else if (STACK_REG_P (dest))
48227150
JVA
1148 {
1149 /* Load from MEM, or possibly integer REG or constant, into the
1150 stack regs. The actual target is always the top of the
1151 stack. The stack mapping is changed to reflect that DEST is
1152 now at top of stack. */
1153
1154 /* The destination ought to be dead */
99a59310 1155 if (get_hard_regnum (regstack, dest) >= FIRST_STACK_REG)
48227150
JVA
1156 abort ();
1157
1158 if (regstack->top >= REG_STACK_SIZE)
1159 abort ();
1160
99a59310
RK
1161 regstack->reg[++regstack->top] = REGNO (dest);
1162 SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1163 replace_reg (pdest, FIRST_STACK_REG);
48227150
JVA
1164 }
1165 else
1166 abort ();
1167}
1168\f
e075ae69
RH
1169/* Swap the condition on a branch, if there is one. Return true if we
1170 found a condition to swap. False if the condition was not used as
1171 such. */
1172
1173static int
1174swap_rtx_condition_1 (pat)
eca31501
JVA
1175 rtx pat;
1176{
6f7d635c 1177 register const char *fmt;
e075ae69 1178 register int i, r = 0;
eca31501
JVA
1179
1180 if (GET_RTX_CLASS (GET_CODE (pat)) == '<')
1181 {
1182 PUT_CODE (pat, swap_condition (GET_CODE (pat)));
e075ae69 1183 r = 1;
eca31501 1184 }
e075ae69 1185 else
eca31501 1186 {
e075ae69
RH
1187 fmt = GET_RTX_FORMAT (GET_CODE (pat));
1188 for (i = GET_RTX_LENGTH (GET_CODE (pat)) - 1; i >= 0; i--)
eca31501 1189 {
e075ae69
RH
1190 if (fmt[i] == 'E')
1191 {
1192 register int j;
eca31501 1193
e075ae69
RH
1194 for (j = XVECLEN (pat, i) - 1; j >= 0; j--)
1195 r |= swap_rtx_condition_1 (XVECEXP (pat, i, j));
1196 }
1197 else if (fmt[i] == 'e')
1198 r |= swap_rtx_condition_1 (XEXP (pat, i));
eca31501 1199 }
eca31501 1200 }
e075ae69
RH
1201
1202 return r;
1203}
1204
1205static int
1206swap_rtx_condition (insn)
1207 rtx insn;
1208{
1209 rtx pat = PATTERN (insn);
1210
1211 /* We're looking for a single set to cc0 or an HImode temporary. */
1212
1213 if (GET_CODE (pat) == SET
1214 && GET_CODE (SET_DEST (pat)) == REG
1215 && REGNO (SET_DEST (pat)) == FLAGS_REG)
1216 {
1217 insn = next_flags_user (insn);
1218 if (insn == NULL_RTX)
1219 return 0;
1220 pat = PATTERN (insn);
1221 }
1222
1223 /* See if this is, or ends in, a fnstsw, aka unspec 9. If so, we're
1224 not doing anything with the cc value right now. We may be able to
1225 search for one though. */
1226
1227 if (GET_CODE (pat) == SET
1228 && GET_CODE (SET_SRC (pat)) == UNSPEC
1229 && XINT (SET_SRC (pat), 1) == 9)
1230 {
1231 rtx dest = SET_DEST (pat);
1232
1233 /* Search forward looking for the first use of this value.
1234 Stop at block boundaries. */
1235 /* ??? This really cries for BLOCK_END! */
1236 while (1)
1237 {
1238 insn = NEXT_INSN (insn);
1239 if (insn == NULL_RTX)
1240 return 0;
1241 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
1242 && reg_mentioned_p (dest, insn))
1243 break;
1244 if (GET_CODE (insn) == JUMP_INSN)
1245 return 0;
1246 if (GET_CODE (insn) == CODE_LABEL)
1247 return 0;
1248 }
1249
1250 /* So we've found the insn using this value. If it is anything
1251 other than sahf, aka unspec 10, or the value does not die
1252 (meaning we'd have to search further), then we must give up. */
1253 pat = PATTERN (insn);
1254 if (GET_CODE (pat) != SET
1255 || GET_CODE (SET_SRC (pat)) != UNSPEC
1256 || XINT (SET_SRC (pat), 1) != 10
1257 || ! dead_or_set_p (insn, dest))
1258 return 0;
1259
1260 /* Now we are prepared to handle this as a normal cc0 setter. */
1261 insn = next_flags_user (insn);
1262 if (insn == NULL_RTX)
1263 return 0;
1264 pat = PATTERN (insn);
1265 }
1266
1267 return swap_rtx_condition_1 (pat);
eca31501
JVA
1268}
1269
48227150
JVA
1270/* Handle a comparison. Special care needs to be taken to avoid
1271 causing comparisons that a 387 cannot do correctly, such as EQ.
1272
e075ae69 1273 Also, a pop insn may need to be emitted. The 387 does have an
48227150
JVA
1274 `fcompp' insn that can pop two regs, but it is sometimes too expensive
1275 to do this - a `fcomp' followed by a `fstpl %st(0)' may be easier to
e075ae69 1276 set up. */
48227150
JVA
1277
1278static void
e075ae69 1279compare_for_stack_reg (insn, regstack, pat_src)
48227150
JVA
1280 rtx insn;
1281 stack regstack;
e075ae69 1282 rtx pat_src;
48227150
JVA
1283{
1284 rtx *src1, *src2;
1285 rtx src1_note, src2_note;
e075ae69 1286 rtx flags_user;
914ec131 1287
e075ae69
RH
1288 src1 = get_true_reg (&XEXP (pat_src, 0));
1289 src2 = get_true_reg (&XEXP (pat_src, 1));
1290 flags_user = next_flags_user (insn);
48227150 1291
eca31501 1292 /* ??? If fxch turns out to be cheaper than fstp, give priority to
0f41302f 1293 registers that die in this insn - move those to stack top first. */
e075ae69
RH
1294 if ((! STACK_REG_P (*src1)
1295 || (STACK_REG_P (*src2)
1296 && get_hard_regnum (regstack, *src2) == FIRST_STACK_REG))
1297 && swap_rtx_condition (insn))
eca31501 1298 {
e075ae69
RH
1299 rtx temp;
1300 temp = XEXP (pat_src, 0);
1301 XEXP (pat_src, 0) = XEXP (pat_src, 1);
1302 XEXP (pat_src, 1) = temp;
48227150 1303
e075ae69
RH
1304 src1 = get_true_reg (&XEXP (pat_src, 0));
1305 src2 = get_true_reg (&XEXP (pat_src, 1));
dc78213e 1306
b9342cdf 1307 INSN_CODE (insn) = -1;
eca31501 1308 }
48227150 1309
0f41302f 1310 /* We will fix any death note later. */
48227150
JVA
1311
1312 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1313
1314 if (STACK_REG_P (*src2))
1315 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1316 else
eca31501 1317 src2_note = NULL_RTX;
48227150 1318
e075ae69 1319 emit_swap_insn (insn, regstack, *src1);
48227150
JVA
1320
1321 replace_reg (src1, FIRST_STACK_REG);
1322
1323 if (STACK_REG_P (*src2))
e075ae69 1324 replace_reg (src2, get_hard_regnum (regstack, *src2));
48227150
JVA
1325
1326 if (src1_note)
1327 {
7aa74e4c 1328 pop_stack (regstack, REGNO (XEXP (src1_note, 0)));
48227150 1329 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
48227150
JVA
1330 }
1331
1332 /* If the second operand dies, handle that. But if the operands are
1333 the same stack register, don't bother, because only one death is
0f41302f 1334 needed, and it was just handled. */
48227150
JVA
1335
1336 if (src2_note
eca31501 1337 && ! (STACK_REG_P (*src1) && STACK_REG_P (*src2)
48227150
JVA
1338 && REGNO (*src1) == REGNO (*src2)))
1339 {
1340 /* As a special case, two regs may die in this insn if src2 is
1341 next to top of stack and the top of stack also dies. Since
1342 we have already popped src1, "next to top of stack" is really
0f41302f 1343 at top (FIRST_STACK_REG) now. */
48227150
JVA
1344
1345 if (get_hard_regnum (regstack, XEXP (src2_note, 0)) == FIRST_STACK_REG
1346 && src1_note)
1347 {
7aa74e4c 1348 pop_stack (regstack, REGNO (XEXP (src2_note, 0)));
48227150 1349 replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG + 1);
48227150
JVA
1350 }
1351 else
1352 {
e075ae69
RH
1353 /* The 386 can only represent death of the first operand in
1354 the case handled above. In all other cases, emit a separate
1355 pop and remove the death note from here. */
1356
1357 /* link_cc0_insns (insn); */
1358
1359 remove_regno_note (insn, REG_DEAD, REGNO (XEXP (src2_note, 0)));
48227150 1360
e075ae69 1361 emit_pop_insn (insn, regstack, XEXP (src2_note, 0),
a05924f9 1362 EMIT_AFTER);
48227150
JVA
1363 }
1364 }
1365}
1366\f
1367/* Substitute new registers in PAT, which is part of INSN. REGSTACK
0f41302f 1368 is the current register layout. */
48227150
JVA
1369
1370static void
1371subst_stack_regs_pat (insn, regstack, pat)
1372 rtx insn;
1373 stack regstack;
1374 rtx pat;
1375{
1376 rtx *dest, *src;
48227150 1377
a05924f9
JH
1378 switch (GET_CODE (pat))
1379 {
1380 case USE:
1381 /* Deaths in USE insns can happen in non optimizing compilation.
1382 Handle them by popping the dying register. */
1383 src = get_true_reg (&XEXP (pat, 0));
1384 if (STACK_REG_P (*src)
1385 && find_regno_note (insn, REG_DEAD, REGNO (*src)))
1386 {
eedf2f55 1387 emit_pop_insn (insn, regstack, *src, EMIT_AFTER);
a05924f9
JH
1388 return;
1389 }
eedf2f55 1390 /* ??? Uninitialized USE should not happen. */
a05924f9 1391 else if (get_hard_regnum (regstack, *src) == -1)
eedf2f55 1392 abort();
a05924f9 1393 break;
48227150 1394
a05924f9
JH
1395 case CLOBBER:
1396 {
1397 rtx note;
48227150 1398
a05924f9
JH
1399 dest = get_true_reg (&XEXP (pat, 0));
1400 if (STACK_REG_P (*dest))
1401 {
1402 note = find_reg_note (insn, REG_DEAD, *dest);
bd695e1e
RH
1403
1404 if (pat != PATTERN (insn))
1405 {
1406 /* The fix_truncdi_1 pattern wants to be able to allocate
1407 it's own scratch register. It does this by clobbering
1408 an fp reg so that it is assured of an empty reg-stack
1409 register. If the register is live, kill it now.
1410 Remove the DEAD/UNUSED note so we don't try to kill it
1411 later too. */
1412
1413 if (note)
1414 emit_pop_insn (insn, regstack, *dest, EMIT_BEFORE);
1415 else
1416 {
1417 note = find_reg_note (insn, REG_UNUSED, *dest);
1418 if (!note)
1419 abort ();
1420 }
1421 remove_note (insn, note);
1422 replace_reg (dest, LAST_STACK_REG);
1423 }
a05924f9
JH
1424 else
1425 {
bd695e1e
RH
1426 /* A top-level clobber with no REG_DEAD, and no hard-regnum
1427 indicates an uninitialized value. Because reload removed
1428 all other clobbers, this must be due to a function
1429 returning without a value. Load up a NaN. */
1430
1431 if (! note
1432 && get_hard_regnum (regstack, *dest) == -1)
1433 {
1434 pat = gen_rtx_SET (VOIDmode,
1435 FP_MODE_REG (REGNO (*dest), SFmode),
1436 nan);
1437 PATTERN (insn) = pat;
1438 move_for_stack_reg (insn, regstack, pat);
1439 }
a05924f9 1440 }
a05924f9 1441 }
48227150 1442 break;
a05924f9 1443 }
48227150 1444
a05924f9
JH
1445 case SET:
1446 {
1447 rtx *src1 = (rtx *) NULL_PTR, *src2;
1448 rtx src1_note, src2_note;
1449 rtx pat_src;
1450
1451 dest = get_true_reg (&SET_DEST (pat));
1452 src = get_true_reg (&SET_SRC (pat));
1453 pat_src = SET_SRC (pat);
1454
1455 /* See if this is a `movM' pattern, and handle elsewhere if so. */
1456 if (STACK_REG_P (*src)
1457 || (STACK_REG_P (*dest)
1458 && (GET_CODE (*src) == REG || GET_CODE (*src) == MEM
1459 || GET_CODE (*src) == CONST_DOUBLE)))
1460 {
1461 move_for_stack_reg (insn, regstack, pat);
1462 break;
1463 }
48227150 1464
a05924f9
JH
1465 switch (GET_CODE (pat_src))
1466 {
1467 case COMPARE:
1468 compare_for_stack_reg (insn, regstack, pat_src);
1469 break;
48227150 1470
a05924f9
JH
1471 case CALL:
1472 {
1473 int count;
1474 for (count = HARD_REGNO_NREGS (REGNO (*dest), GET_MODE (*dest));
1475 --count >= 0;)
1476 {
1477 regstack->reg[++regstack->top] = REGNO (*dest) + count;
1478 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest) + count);
1479 }
1480 }
1481 replace_reg (dest, FIRST_STACK_REG);
1482 break;
48227150 1483
a05924f9
JH
1484 case REG:
1485 /* This is a `tstM2' case. */
1486 if (*dest != cc0_rtx)
1487 abort ();
1488 src1 = src;
48227150 1489
a05924f9 1490 /* Fall through. */
48227150 1491
a05924f9
JH
1492 case FLOAT_TRUNCATE:
1493 case SQRT:
1494 case ABS:
1495 case NEG:
1496 /* These insns only operate on the top of the stack. DEST might
1497 be cc0_rtx if we're processing a tstM pattern. Also, it's
1498 possible that the tstM case results in a REG_DEAD note on the
1499 source. */
48227150 1500
a05924f9
JH
1501 if (src1 == 0)
1502 src1 = get_true_reg (&XEXP (pat_src, 0));
48227150 1503
a05924f9 1504 emit_swap_insn (insn, regstack, *src1);
48227150 1505
a05924f9 1506 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
48227150 1507
a05924f9
JH
1508 if (STACK_REG_P (*dest))
1509 replace_reg (dest, FIRST_STACK_REG);
48227150 1510
a05924f9
JH
1511 if (src1_note)
1512 {
1513 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1514 regstack->top--;
1515 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (*src1));
1516 }
48227150 1517
a05924f9
JH
1518 replace_reg (src1, FIRST_STACK_REG);
1519 break;
48227150 1520
a05924f9
JH
1521 case MINUS:
1522 case DIV:
1523 /* On i386, reversed forms of subM3 and divM3 exist for
1524 MODE_FLOAT, so the same code that works for addM3 and mulM3
1525 can be used. */
1526 case MULT:
1527 case PLUS:
1528 /* These insns can accept the top of stack as a destination
1529 from a stack reg or mem, or can use the top of stack as a
1530 source and some other stack register (possibly top of stack)
1531 as a destination. */
1532
1533 src1 = get_true_reg (&XEXP (pat_src, 0));
1534 src2 = get_true_reg (&XEXP (pat_src, 1));
1535
1536 /* We will fix any death note later. */
1537
1538 if (STACK_REG_P (*src1))
1539 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1540 else
1541 src1_note = NULL_RTX;
1542 if (STACK_REG_P (*src2))
1543 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1544 else
1545 src2_note = NULL_RTX;
48227150 1546
a05924f9
JH
1547 /* If either operand is not a stack register, then the dest
1548 must be top of stack. */
48227150 1549
a05924f9 1550 if (! STACK_REG_P (*src1) || ! STACK_REG_P (*src2))
eca31501 1551 emit_swap_insn (insn, regstack, *dest);
a05924f9
JH
1552 else
1553 {
1554 /* Both operands are REG. If neither operand is already
1555 at the top of stack, choose to make the one that is the dest
1556 the new top of stack. */
48227150 1557
a05924f9 1558 int src1_hard_regnum, src2_hard_regnum;
48227150 1559
a05924f9
JH
1560 src1_hard_regnum = get_hard_regnum (regstack, *src1);
1561 src2_hard_regnum = get_hard_regnum (regstack, *src2);
1562 if (src1_hard_regnum == -1 || src2_hard_regnum == -1)
1563 abort ();
48227150 1564
a05924f9
JH
1565 if (src1_hard_regnum != FIRST_STACK_REG
1566 && src2_hard_regnum != FIRST_STACK_REG)
1567 emit_swap_insn (insn, regstack, *dest);
48227150 1568 }
a05924f9
JH
1569
1570 if (STACK_REG_P (*src1))
1571 replace_reg (src1, get_hard_regnum (regstack, *src1));
1572 if (STACK_REG_P (*src2))
1573 replace_reg (src2, get_hard_regnum (regstack, *src2));
1574
1575 if (src1_note)
48227150 1576 {
a05924f9 1577 rtx src1_reg = XEXP (src1_note, 0);
48227150 1578
a05924f9
JH
1579 /* If the register that dies is at the top of stack, then
1580 the destination is somewhere else - merely substitute it.
1581 But if the reg that dies is not at top of stack, then
1582 move the top of stack to the dead reg, as though we had
1583 done the insn and then a store-with-pop. */
48227150 1584
a05924f9
JH
1585 if (REGNO (src1_reg) == regstack->reg[regstack->top])
1586 {
1587 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1588 replace_reg (dest, get_hard_regnum (regstack, *dest));
1589 }
1590 else
1591 {
1592 int regno = get_hard_regnum (regstack, src1_reg);
48227150 1593
a05924f9
JH
1594 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1595 replace_reg (dest, regno);
1596
1597 regstack->reg[regstack->top - (regno - FIRST_STACK_REG)]
1598 = regstack->reg[regstack->top];
1599 }
1600
1601 CLEAR_HARD_REG_BIT (regstack->reg_set,
1602 REGNO (XEXP (src1_note, 0)));
1603 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1604 regstack->top--;
1605 }
1606 else if (src2_note)
48227150 1607 {
a05924f9
JH
1608 rtx src2_reg = XEXP (src2_note, 0);
1609 if (REGNO (src2_reg) == regstack->reg[regstack->top])
1610 {
1611 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1612 replace_reg (dest, get_hard_regnum (regstack, *dest));
1613 }
1614 else
1615 {
1616 int regno = get_hard_regnum (regstack, src2_reg);
1617
1618 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1619 replace_reg (dest, regno);
1620
1621 regstack->reg[regstack->top - (regno - FIRST_STACK_REG)]
1622 = regstack->reg[regstack->top];
1623 }
1624
1625 CLEAR_HARD_REG_BIT (regstack->reg_set,
1626 REGNO (XEXP (src2_note, 0)));
1627 replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG);
1628 regstack->top--;
48227150
JVA
1629 }
1630 else
1631 {
48227150 1632 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
a05924f9 1633 replace_reg (dest, get_hard_regnum (regstack, *dest));
48227150 1634 }
caa6ec8d
JH
1635
1636 /* Keep operand 1 maching with destination. */
1637 if (GET_RTX_CLASS (GET_CODE (pat_src)) == 'c'
1638 && REG_P (*src1) && REG_P (*src2)
1639 && REGNO (*src1) != REGNO (*dest))
1640 {
1641 rtx tmp = *src1;
1642 *src1 = *src2;
1643 *src2 = tmp;
1644 }
a05924f9 1645 break;
48227150 1646
a05924f9
JH
1647 case UNSPEC:
1648 switch (XINT (pat_src, 1))
1649 {
1650 case 1: /* sin */
1651 case 2: /* cos */
1652 /* These insns only operate on the top of the stack. */
0e7d0eb9 1653
a05924f9 1654 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
0e7d0eb9 1655
a05924f9 1656 emit_swap_insn (insn, regstack, *src1);
0e7d0eb9 1657
a05924f9 1658 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
0e7d0eb9 1659
a05924f9
JH
1660 if (STACK_REG_P (*dest))
1661 replace_reg (dest, FIRST_STACK_REG);
0e7d0eb9 1662
a05924f9
JH
1663 if (src1_note)
1664 {
1665 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1666 regstack->top--;
1667 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (*src1));
1668 }
0e7d0eb9 1669
a05924f9
JH
1670 replace_reg (src1, FIRST_STACK_REG);
1671 break;
0e7d0eb9 1672
a05924f9
JH
1673 case 10:
1674 /* (unspec [(unspec [(compare ..)] 9)] 10)
1675 Unspec 9 is fnstsw; unspec 10 is sahf. The combination
1676 matches the PPRO fcomi instruction. */
0e7d0eb9 1677
a05924f9
JH
1678 pat_src = XVECEXP (pat_src, 0, 0);
1679 if (GET_CODE (pat_src) != UNSPEC
1680 || XINT (pat_src, 1) != 9)
1681 abort ();
1682 /* FALLTHRU */
e075ae69 1683
a05924f9
JH
1684 case 9:
1685 /* (unspec [(compare ..)] 9) */
1686 /* Combined fcomp+fnstsw generated for doing well with
1687 CSE. When optimizing this would have been broken
1688 up before now. */
e075ae69 1689
a05924f9
JH
1690 pat_src = XVECEXP (pat_src, 0, 0);
1691 if (GET_CODE (pat_src) != COMPARE)
1692 abort ();
e075ae69 1693
a05924f9
JH
1694 compare_for_stack_reg (insn, regstack, pat_src);
1695 break;
e075ae69 1696
a05924f9
JH
1697 default:
1698 abort ();
1699 }
e075ae69
RH
1700 break;
1701
a05924f9
JH
1702 case IF_THEN_ELSE:
1703 /* This insn requires the top of stack to be the destination. */
0e7d0eb9 1704
a05924f9
JH
1705 /* If the comparison operator is an FP comparison operator,
1706 it is handled correctly by compare_for_stack_reg () who
1707 will move the destination to the top of stack. But if the
1708 comparison operator is not an FP comparison operator, we
1709 have to handle it here. */
1710 if (get_hard_regnum (regstack, *dest) >= FIRST_STACK_REG
1711 && REGNO (*dest) != regstack->reg[regstack->top])
1712 emit_swap_insn (insn, regstack, *dest);
4e97601f 1713
a05924f9
JH
1714 src1 = get_true_reg (&XEXP (pat_src, 1));
1715 src2 = get_true_reg (&XEXP (pat_src, 2));
49fa02d9 1716
a05924f9
JH
1717 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1718 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
4e97601f 1719
a05924f9
JH
1720 {
1721 rtx src_note [3];
1722 int i;
4e97601f 1723
a05924f9
JH
1724 src_note[0] = 0;
1725 src_note[1] = src1_note;
1726 src_note[2] = src2_note;
54552651 1727
a05924f9
JH
1728 if (STACK_REG_P (*src1))
1729 replace_reg (src1, get_hard_regnum (regstack, *src1));
1730 if (STACK_REG_P (*src2))
1731 replace_reg (src2, get_hard_regnum (regstack, *src2));
4e97601f 1732
a05924f9
JH
1733 for (i = 1; i <= 2; i++)
1734 if (src_note [i])
4e97601f 1735 {
a05924f9
JH
1736 int regno = REGNO (XEXP (src_note[i], 0));
1737
1738 /* If the register that dies is not at the top of
1739 stack, then move the top of stack to the dead reg */
1740 if (regno != regstack->reg[regstack->top])
1741 {
1742 remove_regno_note (insn, REG_DEAD, regno);
1743 emit_pop_insn (insn, regstack, XEXP (src_note[i], 0),
1744 EMIT_AFTER);
1745 }
1746 else
1747 {
1748 CLEAR_HARD_REG_BIT (regstack->reg_set, regno);
1749 replace_reg (&XEXP (src_note[i], 0), FIRST_STACK_REG);
1750 regstack->top--;
1751 }
4e97601f 1752 }
a05924f9 1753 }
4e97601f 1754
a05924f9
JH
1755 /* Make dest the top of stack. Add dest to regstack if
1756 not present. */
1757 if (get_hard_regnum (regstack, *dest) < FIRST_STACK_REG)
1758 regstack->reg[++regstack->top] = REGNO (*dest);
1759 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1760 replace_reg (dest, FIRST_STACK_REG);
1761 break;
914ec131 1762
a05924f9
JH
1763 default:
1764 abort ();
1765 }
4e97601f 1766 break;
48227150 1767 }
a05924f9
JH
1768
1769 default:
1770 break;
1771 }
48227150
JVA
1772}
1773\f
114cbee6
RS
1774/* Substitute hard regnums for any stack regs in INSN, which has
1775 N_INPUTS inputs and N_OUTPUTS outputs. REGSTACK is the stack info
f62a15e3 1776 before the insn, and is updated with changes made here.
114cbee6
RS
1777
1778 There are several requirements and assumptions about the use of
1779 stack-like regs in asm statements. These rules are enforced by
1780 record_asm_stack_regs; see comments there for details. Any
1781 asm_operands left in the RTL at this point may be assume to meet the
561cf7b1 1782 requirements, since record_asm_stack_regs removes any problem asm. */
114cbee6 1783
561cf7b1 1784static void
f62a15e3 1785subst_asm_stack_regs (insn, regstack)
114cbee6
RS
1786 rtx insn;
1787 stack regstack;
114cbee6 1788{
114cbee6 1789 rtx body = PATTERN (insn);
f62a15e3 1790 int alt;
114cbee6
RS
1791
1792 rtx *note_reg; /* Array of note contents */
1793 rtx **note_loc; /* Address of REG field of each note */
1794 enum reg_note *note_kind; /* The type of each note */
1795
a544cfd2
KG
1796 rtx *clobber_reg = 0;
1797 rtx **clobber_loc = 0;
114cbee6
RS
1798
1799 struct stack_def temp_stack;
1800 int n_notes;
1801 int n_clobbers;
1802 rtx note;
1803 int i;
f62a15e3 1804 int n_inputs, n_outputs;
114cbee6 1805
a05924f9
JH
1806 if (! check_asm_stack_operands (insn))
1807 return;
1808
114cbee6
RS
1809 /* Find out what the constraints required. If no constraint
1810 alternative matches, that is a compiler bug: we should have caught
a05924f9 1811 such an insn in check_asm_stack_operands. */
f62a15e3
BS
1812 extract_insn (insn);
1813 constrain_operands (1);
1814 alt = which_alternative;
1815
1816 preprocess_constraints ();
114cbee6 1817
f62a15e3 1818 n_inputs = get_asm_operand_n_inputs (body);
1ccbefce 1819 n_outputs = recog_data.n_operands - n_inputs;
f62a15e3
BS
1820
1821 if (alt < 0)
114cbee6
RS
1822 abort ();
1823
0f41302f 1824 /* Strip SUBREGs here to make the following code simpler. */
1ccbefce
RH
1825 for (i = 0; i < recog_data.n_operands; i++)
1826 if (GET_CODE (recog_data.operand[i]) == SUBREG
1827 && GET_CODE (SUBREG_REG (recog_data.operand[i])) == REG)
114cbee6 1828 {
1ccbefce
RH
1829 recog_data.operand_loc[i] = & SUBREG_REG (recog_data.operand[i]);
1830 recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
114cbee6
RS
1831 }
1832
1833 /* Set up NOTE_REG, NOTE_LOC and NOTE_KIND. */
1834
1835 for (i = 0, note = REG_NOTES (insn); note; note = XEXP (note, 1))
1836 i++;
1837
1838 note_reg = (rtx *) alloca (i * sizeof (rtx));
1839 note_loc = (rtx **) alloca (i * sizeof (rtx *));
1840 note_kind = (enum reg_note *) alloca (i * sizeof (enum reg_note));
1841
1842 n_notes = 0;
1843 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1844 {
1845 rtx reg = XEXP (note, 0);
1846 rtx *loc = & XEXP (note, 0);
1847
1848 if (GET_CODE (reg) == SUBREG && GET_CODE (SUBREG_REG (reg)) == REG)
1849 {
1850 loc = & SUBREG_REG (reg);
1851 reg = SUBREG_REG (reg);
1852 }
1853
1854 if (STACK_REG_P (reg)
1855 && (REG_NOTE_KIND (note) == REG_DEAD
1856 || REG_NOTE_KIND (note) == REG_UNUSED))
1857 {
1858 note_reg[n_notes] = reg;
1859 note_loc[n_notes] = loc;
1860 note_kind[n_notes] = REG_NOTE_KIND (note);
1861 n_notes++;
1862 }
1863 }
1864
1865 /* Set up CLOBBER_REG and CLOBBER_LOC. */
1866
1867 n_clobbers = 0;
114cbee6
RS
1868
1869 if (GET_CODE (body) == PARALLEL)
3f5cfed6 1870 {
2a92c071
GS
1871 clobber_reg = (rtx *) alloca (XVECLEN (body, 0) * sizeof (rtx));
1872 clobber_loc = (rtx **) alloca (XVECLEN (body, 0) * sizeof (rtx *));
114cbee6 1873
3f5cfed6
JVA
1874 for (i = 0; i < XVECLEN (body, 0); i++)
1875 if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
1876 {
1877 rtx clobber = XVECEXP (body, 0, i);
1878 rtx reg = XEXP (clobber, 0);
1879 rtx *loc = & XEXP (clobber, 0);
114cbee6 1880
3f5cfed6
JVA
1881 if (GET_CODE (reg) == SUBREG && GET_CODE (SUBREG_REG (reg)) == REG)
1882 {
1883 loc = & SUBREG_REG (reg);
1884 reg = SUBREG_REG (reg);
1885 }
1886
1887 if (STACK_REG_P (reg))
1888 {
1889 clobber_reg[n_clobbers] = reg;
1890 clobber_loc[n_clobbers] = loc;
1891 n_clobbers++;
1892 }
1893 }
1894 }
114cbee6 1895
a05924f9 1896 temp_stack = *regstack;
114cbee6
RS
1897
1898 /* Put the input regs into the desired place in TEMP_STACK. */
1899
f62a15e3 1900 for (i = n_outputs; i < n_outputs + n_inputs; i++)
1ccbefce 1901 if (STACK_REG_P (recog_data.operand[i])
f62a15e3
BS
1902 && reg_class_subset_p (recog_op_alt[i][alt].class,
1903 FLOAT_REGS)
1904 && recog_op_alt[i][alt].class != FLOAT_REGS)
114cbee6
RS
1905 {
1906 /* If an operand needs to be in a particular reg in
1907 FLOAT_REGS, the constraint was either 't' or 'u'. Since
1ccbefce
RH
1908 these constraints are for single register classes, and
1909 reload guaranteed that operand[i] is already in that class,
1910 we can just use REGNO (recog_data.operand[i]) to know which
1911 actual reg this operand needs to be in. */
114cbee6 1912
1ccbefce 1913 int regno = get_hard_regnum (&temp_stack, recog_data.operand[i]);
114cbee6
RS
1914
1915 if (regno < 0)
1916 abort ();
1917
1ccbefce 1918 if (regno != REGNO (recog_data.operand[i]))
114cbee6 1919 {
1ccbefce
RH
1920 /* recog_data.operand[i] is not in the right place. Find
1921 it and swap it with whatever is already in I's place.
1922 K is where recog_data.operand[i] is now. J is where it
1923 should be. */
114cbee6
RS
1924 int j, k, temp;
1925
1926 k = temp_stack.top - (regno - FIRST_STACK_REG);
1927 j = (temp_stack.top
1ccbefce 1928 - (REGNO (recog_data.operand[i]) - FIRST_STACK_REG));
114cbee6
RS
1929
1930 temp = temp_stack.reg[k];
1931 temp_stack.reg[k] = temp_stack.reg[j];
1932 temp_stack.reg[j] = temp;
1933 }
1934 }
1935
a05924f9 1936 /* Emit insns before INSN to make sure the reg-stack is in the right
114cbee6
RS
1937 order. */
1938
a05924f9 1939 change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
114cbee6
RS
1940
1941 /* Make the needed input register substitutions. Do death notes and
0f41302f 1942 clobbers too, because these are for inputs, not outputs. */
114cbee6 1943
f62a15e3 1944 for (i = n_outputs; i < n_outputs + n_inputs; i++)
1ccbefce 1945 if (STACK_REG_P (recog_data.operand[i]))
114cbee6 1946 {
1ccbefce 1947 int regnum = get_hard_regnum (regstack, recog_data.operand[i]);
114cbee6
RS
1948
1949 if (regnum < 0)
1950 abort ();
1951
1ccbefce 1952 replace_reg (recog_data.operand_loc[i], regnum);
114cbee6
RS
1953 }
1954
1955 for (i = 0; i < n_notes; i++)
1956 if (note_kind[i] == REG_DEAD)
1957 {
1958 int regnum = get_hard_regnum (regstack, note_reg[i]);
1959
1960 if (regnum < 0)
1961 abort ();
1962
1963 replace_reg (note_loc[i], regnum);
1964 }
1965
1966 for (i = 0; i < n_clobbers; i++)
1967 {
1968 /* It's OK for a CLOBBER to reference a reg that is not live.
1969 Don't try to replace it in that case. */
1970 int regnum = get_hard_regnum (regstack, clobber_reg[i]);
1971
1972 if (regnum >= 0)
1973 {
1974 /* Sigh - clobbers always have QImode. But replace_reg knows
1975 that these regs can't be MODE_INT and will abort. Just put
1976 the right reg there without calling replace_reg. */
1977
99a59310 1978 *clobber_loc[i] = FP_MODE_REG (regnum, DFmode);
114cbee6
RS
1979 }
1980 }
1981
0f41302f 1982 /* Now remove from REGSTACK any inputs that the asm implicitly popped. */
114cbee6 1983
f62a15e3 1984 for (i = n_outputs; i < n_outputs + n_inputs; i++)
1ccbefce 1985 if (STACK_REG_P (recog_data.operand[i]))
114cbee6
RS
1986 {
1987 /* An input reg is implicitly popped if it is tied to an
0f41302f 1988 output, or if there is a CLOBBER for it. */
114cbee6
RS
1989 int j;
1990
1991 for (j = 0; j < n_clobbers; j++)
1ccbefce 1992 if (operands_match_p (clobber_reg[j], recog_data.operand[i]))
114cbee6
RS
1993 break;
1994
f62a15e3 1995 if (j < n_clobbers || recog_op_alt[i][alt].matches >= 0)
114cbee6 1996 {
1ccbefce
RH
1997 /* recog_data.operand[i] might not be at the top of stack.
1998 But that's OK, because all we need to do is pop the
1999 right number of regs off of the top of the reg-stack.
2000 record_asm_stack_regs guaranteed that all implicitly
2001 popped regs were grouped at the top of the reg-stack. */
114cbee6
RS
2002
2003 CLEAR_HARD_REG_BIT (regstack->reg_set,
2004 regstack->reg[regstack->top]);
2005 regstack->top--;
2006 }
2007 }
2008
2009 /* Now add to REGSTACK any outputs that the asm implicitly pushed.
2010 Note that there isn't any need to substitute register numbers.
0f41302f 2011 ??? Explain why this is true. */
114cbee6
RS
2012
2013 for (i = LAST_STACK_REG; i >= FIRST_STACK_REG; i--)
2014 {
2015 /* See if there is an output for this hard reg. */
2016 int j;
2017
2018 for (j = 0; j < n_outputs; j++)
1ccbefce
RH
2019 if (STACK_REG_P (recog_data.operand[j])
2020 && REGNO (recog_data.operand[j]) == i)
114cbee6
RS
2021 {
2022 regstack->reg[++regstack->top] = i;
2023 SET_HARD_REG_BIT (regstack->reg_set, i);
2024 break;
2025 }
2026 }
2027
2028 /* Now emit a pop insn for any REG_UNUSED output, or any REG_DEAD
2029 input that the asm didn't implicitly pop. If the asm didn't
3f5cfed6 2030 implicitly pop an input reg, that reg will still be live.
114cbee6
RS
2031
2032 Note that we can't use find_regno_note here: the register numbers
2033 in the death notes have already been substituted. */
2034
3f5cfed6 2035 for (i = 0; i < n_outputs; i++)
1ccbefce 2036 if (STACK_REG_P (recog_data.operand[i]))
3f5cfed6
JVA
2037 {
2038 int j;
2039
2040 for (j = 0; j < n_notes; j++)
1ccbefce 2041 if (REGNO (recog_data.operand[i]) == REGNO (note_reg[j])
3f5cfed6
JVA
2042 && note_kind[j] == REG_UNUSED)
2043 {
1ccbefce 2044 insn = emit_pop_insn (insn, regstack, recog_data.operand[i],
a05924f9 2045 EMIT_AFTER);
3f5cfed6
JVA
2046 break;
2047 }
2048 }
2049
f62a15e3 2050 for (i = n_outputs; i < n_outputs + n_inputs; i++)
1ccbefce 2051 if (STACK_REG_P (recog_data.operand[i]))
114cbee6
RS
2052 {
2053 int j;
2054
2055 for (j = 0; j < n_notes; j++)
1ccbefce 2056 if (REGNO (recog_data.operand[i]) == REGNO (note_reg[j])
3f5cfed6 2057 && note_kind[j] == REG_DEAD
f62a15e3 2058 && TEST_HARD_REG_BIT (regstack->reg_set,
1ccbefce 2059 REGNO (recog_data.operand[i])))
114cbee6 2060 {
1ccbefce 2061 insn = emit_pop_insn (insn, regstack, recog_data.operand[i],
a05924f9 2062 EMIT_AFTER);
114cbee6
RS
2063 break;
2064 }
2065 }
2066}
2067\f
48227150
JVA
2068/* Substitute stack hard reg numbers for stack virtual registers in
2069 INSN. Non-stack register numbers are not changed. REGSTACK is the
2070 current stack content. Insns may be emitted as needed to arrange the
561cf7b1 2071 stack for the 387 based on the contents of the insn. */
f37eb5cb 2072
561cf7b1 2073static void
48227150
JVA
2074subst_stack_regs (insn, regstack)
2075 rtx insn;
2076 stack regstack;
2077{
2078 register rtx *note_link, note;
2079 register int i;
2080
99a59310 2081 if (GET_CODE (insn) == CALL_INSN)
e075ae69
RH
2082 {
2083 int top = regstack->top;
48227150 2084
e075ae69
RH
2085 /* If there are any floating point parameters to be passed in
2086 registers for this call, make sure they are in the right
2087 order. */
48227150 2088
e075ae69
RH
2089 if (top >= 0)
2090 {
2091 straighten_stack (PREV_INSN (insn), regstack);
99a59310 2092
e075ae69 2093 /* Now mark the arguments as dead after the call. */
99a59310 2094
e075ae69
RH
2095 while (regstack->top >= 0)
2096 {
2097 CLEAR_HARD_REG_BIT (regstack->reg_set, FIRST_STACK_REG + regstack->top);
2098 regstack->top--;
2099 }
2100 }
2101 }
48227150
JVA
2102
2103 /* Do the actual substitution if any stack regs are mentioned.
2104 Since we only record whether entire insn mentions stack regs, and
2105 subst_stack_regs_pat only works for patterns that contain stack regs,
2106 we must check each pattern in a parallel here. A call_value_pop could
0f41302f 2107 fail otherwise. */
48227150 2108
21b2cd73 2109 if (stack_regs_mentioned (insn))
48227150 2110 {
f62a15e3 2111 int n_operands = asm_noperands (PATTERN (insn));
114cbee6
RS
2112 if (n_operands >= 0)
2113 {
2114 /* This insn is an `asm' with operands. Decode the operands,
2115 decide how many are inputs, and do register substitution.
0f41302f 2116 Any REG_UNUSED notes will be handled by subst_asm_stack_regs. */
114cbee6 2117
f62a15e3 2118 subst_asm_stack_regs (insn, regstack);
561cf7b1 2119 return;
114cbee6
RS
2120 }
2121
48227150 2122 if (GET_CODE (PATTERN (insn)) == PARALLEL)
c166a311 2123 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
48227150
JVA
2124 {
2125 if (stack_regs_mentioned_p (XVECEXP (PATTERN (insn), 0, i)))
e075ae69
RH
2126 subst_stack_regs_pat (insn, regstack,
2127 XVECEXP (PATTERN (insn), 0, i));
48227150
JVA
2128 }
2129 else
2130 subst_stack_regs_pat (insn, regstack, PATTERN (insn));
2131 }
2132
2133 /* subst_stack_regs_pat may have deleted a no-op insn. If so, any
0f41302f 2134 REG_UNUSED will already have been dealt with, so just return. */
48227150 2135
2289ec9d 2136 if (GET_CODE (insn) == NOTE)
561cf7b1 2137 return;
48227150
JVA
2138
2139 /* If there is a REG_UNUSED note on a stack register on this insn,
2140 the indicated reg must be popped. The REG_UNUSED note is removed,
2141 since the form of the newly emitted pop insn references the reg,
0f41302f 2142 making it no longer `unset'. */
48227150
JVA
2143
2144 note_link = &REG_NOTES(insn);
2145 for (note = *note_link; note; note = XEXP (note, 1))
2146 if (REG_NOTE_KIND (note) == REG_UNUSED && STACK_REG_P (XEXP (note, 0)))
2147 {
2148 *note_link = XEXP (note, 1);
a05924f9 2149 insn = emit_pop_insn (insn, regstack, XEXP (note, 0), EMIT_AFTER);
48227150
JVA
2150 }
2151 else
2152 note_link = &XEXP (note, 1);
2153}
2154\f
2155/* Change the organization of the stack so that it fits a new basic
2156 block. Some registers might have to be popped, but there can never be
2157 a register live in the new block that is not now live.
2158
a05924f9
JH
2159 Insert any needed insns before or after INSN, as indicated by
2160 WHERE. OLD is the original stack layout, and NEW is the desired
2161 form. OLD is updated to reflect the code emitted, ie, it will be
2162 the same as NEW upon return.
48227150
JVA
2163
2164 This function will not preserve block_end[]. But that information
0f41302f 2165 is no longer needed once this has executed. */
48227150
JVA
2166
2167static void
a05924f9 2168change_stack (insn, old, new, where)
48227150
JVA
2169 rtx insn;
2170 stack old;
2171 stack new;
a05924f9 2172 enum emit_where where;
48227150
JVA
2173{
2174 int reg;
a05924f9 2175 int update_end = 0;
48227150 2176
a05924f9
JH
2177 /* We will be inserting new insns "backwards". If we are to insert
2178 after INSN, find the next insn, and insert before it. */
48227150 2179
a05924f9
JH
2180 if (where == EMIT_AFTER)
2181 {
2182 if (current_block && current_block->end == insn)
2183 update_end = 1;
2184 insn = NEXT_INSN (insn);
2185 }
48227150 2186
0f41302f 2187 /* Pop any registers that are not needed in the new block. */
48227150
JVA
2188
2189 for (reg = old->top; reg >= 0; reg--)
2190 if (! TEST_HARD_REG_BIT (new->reg_set, old->reg[reg]))
99a59310 2191 emit_pop_insn (insn, old, FP_MODE_REG (old->reg[reg], DFmode),
a05924f9 2192 EMIT_BEFORE);
48227150
JVA
2193
2194 if (new->top == -2)
2195 {
2196 /* If the new block has never been processed, then it can inherit
0f41302f 2197 the old stack order. */
48227150
JVA
2198
2199 new->top = old->top;
a05924f9 2200 memcpy (new->reg, old->reg, sizeof (new->reg));
48227150
JVA
2201 }
2202 else
2203 {
2204 /* This block has been entered before, and we must match the
0f41302f 2205 previously selected stack order. */
48227150
JVA
2206
2207 /* By now, the only difference should be the order of the stack,
0f41302f 2208 not their depth or liveliness. */
48227150
JVA
2209
2210 GO_IF_HARD_REG_EQUAL (old->reg_set, new->reg_set, win);
48227150 2211 abort ();
48227150 2212 win:
48227150
JVA
2213 if (old->top != new->top)
2214 abort ();
2215
80832cf2
HB
2216 /* If the stack is not empty (new->top != -1), loop here emitting
2217 swaps until the stack is correct.
2218
2219 The worst case number of swaps emitted is N + 2, where N is the
48227150
JVA
2220 depth of the stack. In some cases, the reg at the top of
2221 stack may be correct, but swapped anyway in order to fix
2222 other regs. But since we never swap any other reg away from
0f41302f 2223 its correct slot, this algorithm will converge. */
48227150 2224
80832cf2
HB
2225 if (new->top != -1)
2226 do
2227 {
2228 /* Swap the reg at top of stack into the position it is
2229 supposed to be in, until the correct top of stack appears. */
48227150 2230
80832cf2
HB
2231 while (old->reg[old->top] != new->reg[new->top])
2232 {
2233 for (reg = new->top; reg >= 0; reg--)
2234 if (new->reg[reg] == old->reg[old->top])
2235 break;
48227150 2236
80832cf2
HB
2237 if (reg == -1)
2238 abort ();
48227150 2239
80832cf2
HB
2240 emit_swap_insn (insn, old,
2241 FP_MODE_REG (old->reg[reg], DFmode));
2242 }
48227150 2243
80832cf2 2244 /* See if any regs remain incorrect. If so, bring an
48227150 2245 incorrect reg to the top of stack, and let the while loop
0f41302f 2246 above fix it. */
48227150 2247
80832cf2
HB
2248 for (reg = new->top; reg >= 0; reg--)
2249 if (new->reg[reg] != old->reg[reg])
2250 {
2251 emit_swap_insn (insn, old,
2252 FP_MODE_REG (old->reg[reg], DFmode));
2253 break;
2254 }
2255 } while (reg >= 0);
48227150 2256
0f41302f 2257 /* At this point there must be no differences. */
48227150
JVA
2258
2259 for (reg = old->top; reg >= 0; reg--)
2260 if (old->reg[reg] != new->reg[reg])
2261 abort ();
2262 }
a05924f9
JH
2263
2264 if (update_end)
2265 current_block->end = PREV_INSN (insn);
48227150
JVA
2266}
2267\f
a05924f9 2268/* Print stack configuration. */
48227150
JVA
2269
2270static void
a05924f9
JH
2271print_stack (file, s)
2272 FILE *file;
2273 stack s;
48227150 2274{
a05924f9
JH
2275 if (! file)
2276 return;
48227150 2277
a05924f9
JH
2278 if (s->top == -2)
2279 fprintf (file, "uninitialized\n");
2280 else if (s->top == -1)
2281 fprintf (file, "empty\n");
2282 else
e075ae69 2283 {
a05924f9
JH
2284 int i;
2285 fputs ("[ ", file);
2286 for (i = 0; i <= s->top; ++i)
2287 fprintf (file, "%d ", s->reg[i]);
2288 fputs ("]\n", file);
e075ae69 2289 }
a05924f9
JH
2290}
2291\f
2292/* This function was doing life analysis. We now let the regular live
2293 code do it's job, so we only need to check some extra invariants
2294 that reg-stack expects. Primary among these being that all registers
2295 are initialized before use.
48227150 2296
a05924f9
JH
2297 The function returns true when code was emitted to CFG edges and
2298 commit_edge_insertions needs to be called. */
48227150 2299
a05924f9
JH
2300static int
2301convert_regs_entry ()
2302{
2303 int inserted = 0, i;
2304 edge e;
48227150 2305
a05924f9 2306 for (i = n_basic_blocks - 1; i >= 0; --i)
48227150 2307 {
a05924f9
JH
2308 basic_block block = BASIC_BLOCK (i);
2309 block_info bi = BLOCK_INFO (block);
2310 int reg;
2311
2312 /* Set current register status at last instruction `uninitialized'. */
2313 bi->stack_in.top = -2;
2314
2315 /* Copy live_at_end and live_at_start into temporaries. */
2316 for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; reg++)
48227150 2317 {
a05924f9
JH
2318 if (REGNO_REG_SET_P (block->global_live_at_end, reg))
2319 SET_HARD_REG_BIT (bi->out_reg_set, reg);
2320 if (REGNO_REG_SET_P (block->global_live_at_start, reg))
2321 SET_HARD_REG_BIT (bi->stack_in.reg_set, reg);
48227150
JVA
2322 }
2323 }
48227150 2324
a05924f9
JH
2325 /* Load something into each stack register live at function entry.
2326 Such live registers can be caused by uninitialized variables or
2327 functions not returning values on all paths. In order to keep
2328 the push/pop code happy, and to not scrog the register stack, we
2329 must put something in these registers. Use a QNaN.
48227150 2330
a05924f9
JH
2331 Note that we are insertting converted code here. This code is
2332 never seen by the convert_regs pass. */
48227150 2333
a05924f9
JH
2334 for (e = ENTRY_BLOCK_PTR->succ; e ; e = e->succ_next)
2335 {
2336 basic_block block = e->dest;
2337 block_info bi = BLOCK_INFO (block);
2338 int reg, top = -1;
48227150 2339
a05924f9
JH
2340 for (reg = LAST_STACK_REG; reg >= FIRST_STACK_REG; --reg)
2341 if (TEST_HARD_REG_BIT (bi->stack_in.reg_set, reg))
2342 {
2343 rtx init;
48227150 2344
a05924f9 2345 bi->stack_in.reg[++top] = reg;
48227150 2346
a05924f9
JH
2347 init = gen_rtx_SET (VOIDmode,
2348 FP_MODE_REG (FIRST_STACK_REG, SFmode),
2349 nan);
2350 insert_insn_on_edge (init, e);
2351 inserted = 1;
2352 }
48227150 2353
a05924f9
JH
2354 bi->stack_in.top = top;
2355 }
48227150 2356
a05924f9
JH
2357 return inserted;
2358}
48227150 2359
a05924f9
JH
2360/* Construct the desired stack for function exit. This will either
2361 be `empty', or the function return value at top-of-stack. */
48227150 2362
a05924f9
JH
2363static void
2364convert_regs_exit ()
2365{
2366 int value_reg_low, value_reg_high;
2367 stack output_stack;
2368 rtx retvalue;
48227150 2369
a05924f9
JH
2370 retvalue = stack_result (current_function_decl);
2371 value_reg_low = value_reg_high = -1;
2372 if (retvalue)
2373 {
2374 value_reg_low = REGNO (retvalue);
2375 value_reg_high = value_reg_low
2376 + HARD_REGNO_NREGS (value_reg_low, GET_MODE (retvalue)) - 1;
2377 }
48227150 2378
a05924f9
JH
2379 output_stack = &BLOCK_INFO (EXIT_BLOCK_PTR)->stack_in;
2380 if (value_reg_low == -1)
2381 output_stack->top = -1;
2382 else
2383 {
2384 int reg;
48227150 2385
a05924f9
JH
2386 output_stack->top = value_reg_high - value_reg_low;
2387 for (reg = value_reg_low; reg <= value_reg_high; ++reg)
2388 {
2389 output_stack->reg[reg - value_reg_low] = reg;
2390 SET_HARD_REG_BIT (output_stack->reg_set, reg);
2391 }
2392 }
48227150 2393}
48227150 2394
a05924f9
JH
2395/* Convert stack register references in one block. */
2396
2397static int
2398convert_regs_1 (file, block)
2399 FILE *file;
2400 basic_block block;
48227150 2401{
a05924f9
JH
2402 struct stack_def regstack, tmpstack;
2403 block_info bi = BLOCK_INFO (block);
2404 int inserted, reg;
2405 rtx insn, next;
2406 edge e;
48227150 2407
a05924f9
JH
2408 current_block = block;
2409
2410 if (file)
48227150 2411 {
a05924f9
JH
2412 fprintf (file, "\nBasic block %d\nInput stack: ", block->index);
2413 print_stack (file, &bi->stack_in);
2414 }
48227150 2415
a05924f9
JH
2416 /* Process all insns in this block. Keep track of NEXT so that we
2417 don't process insns emitted while substituting in INSN. */
2418 next = block->head;
2419 regstack = bi->stack_in;
2420 do
2421 {
2422 insn = next;
2423 next = NEXT_INSN (insn);
48227150 2424
a05924f9
JH
2425 /* Ensure we have not missed a block boundary. */
2426 if (next == NULL)
2427 abort ();
2428 if (insn == block->end)
2429 next = NULL;
2430
2431 /* Don't bother processing unless there is a stack reg
2432 mentioned or if it's a CALL_INSN. */
2433 if (stack_regs_mentioned (insn)
2434 || GET_CODE (insn) == CALL_INSN)
2435 {
2436 if (file)
2437 {
2438 fprintf (file, " insn %d input stack: ",
2439 INSN_UID (insn));
2440 print_stack (file, &regstack);
2441 }
2442 subst_stack_regs (insn, &regstack);
48227150 2443 }
a05924f9
JH
2444 }
2445 while (next);
48227150 2446
a05924f9
JH
2447 if (file)
2448 {
2449 fprintf (file, "Expected live registers [");
2450 for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; ++reg)
2451 if (TEST_HARD_REG_BIT (bi->out_reg_set, reg))
2452 fprintf (file, " %d", reg);
2453 fprintf (file, " ]\nOutput stack: ");
2454 print_stack (file, &regstack);
2455 }
48227150 2456
a05924f9
JH
2457 insn = block->end;
2458 if (GET_CODE (insn) == JUMP_INSN)
2459 insn = PREV_INSN (insn);
2460
2461 /* If the function is declared to return a value, but it returns one
2462 in only some cases, some registers might come live here. Emit
2463 necessary moves for them. */
2464
2465 for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; ++reg)
2466 {
2467 if (TEST_HARD_REG_BIT (bi->out_reg_set, reg)
2468 && ! TEST_HARD_REG_BIT (regstack.reg_set, reg))
48227150 2469 {
a05924f9 2470 rtx set;
48227150 2471
a05924f9
JH
2472 if (file)
2473 {
2474 fprintf (file, "Emitting insn initializing reg %d\n",
2475 reg);
2476 }
48227150 2477
a05924f9
JH
2478 set = gen_rtx_SET (VOIDmode, FP_MODE_REG (reg, SFmode),
2479 nan);
2480 insn = emit_block_insn_after (set, insn, block);
2481 subst_stack_regs (insn, &regstack);
2482 }
2483 }
48227150 2484
a05924f9
JH
2485 /* Something failed if the stack lives don't match. */
2486 GO_IF_HARD_REG_EQUAL (regstack.reg_set, bi->out_reg_set, win);
2487 abort ();
2488 win:
48227150 2489
a05924f9
JH
2490 /* Adjust the stack of this block on exit to match the stack of the
2491 target block, or copy stack info into the stack of the successor
2492 of the successor hasn't been processed yet. */
2493 inserted = 0;
2494 for (e = block->succ; e ; e = e->succ_next)
2495 {
2496 basic_block target = e->dest;
2497 stack target_stack = &BLOCK_INFO (target)->stack_in;
48227150 2498
a05924f9
JH
2499 if (file)
2500 fprintf (file, "Edge to block %d: ", target->index);
48227150 2501
a05924f9
JH
2502 if (target_stack->top == -2)
2503 {
2504 /* The target block hasn't had a stack order selected.
2505 We need merely ensure that no pops are needed. */
2506 for (reg = regstack.top; reg >= 0; --reg)
2507 if (! TEST_HARD_REG_BIT (target_stack->reg_set,
2508 regstack.reg[reg]))
2509 break;
48227150 2510
a05924f9
JH
2511 if (reg == -1)
2512 {
2513 if (file)
2514 fprintf (file, "new block; copying stack position\n");
48227150 2515
a05924f9
JH
2516 /* change_stack kills values in regstack. */
2517 tmpstack = regstack;
48227150 2518
a05924f9
JH
2519 change_stack (block->end, &tmpstack,
2520 target_stack, EMIT_AFTER);
2521 continue;
2522 }
48227150 2523
a05924f9
JH
2524 if (file)
2525 fprintf (file, "new block; pops needed\n");
2526 }
2527 else
2528 {
2529 if (target_stack->top == regstack.top)
2530 {
2531 for (reg = target_stack->top; reg >= 0; --reg)
2532 if (target_stack->reg[reg] != regstack.reg[reg])
2533 break;
48227150 2534
a05924f9
JH
2535 if (reg == -1)
2536 {
2537 if (file)
2538 fprintf (file, "no changes needed\n");
2539 continue;
2540 }
2541 }
48227150 2542
a05924f9
JH
2543 if (file)
2544 {
2545 fprintf (file, "correcting stack to ");
2546 print_stack (file, target_stack);
2547 }
2548 }
48227150 2549
f6d20486
RH
2550 /* Care for EH edges specially. The normal return path may return
2551 a value in st(0), but the EH path will not, and there's no need
2552 to add popping code to the edge. */
2553 if (e->flags & EDGE_EH)
2554 {
2555 /* Assert that the lifetimes are as we expect -- one value
2556 live at st(0) on the end of the source block, and no
2557 values live at the beginning of the destination block. */
2558 HARD_REG_SET tmp;
2559
2560 CLEAR_HARD_REG_SET (tmp);
a6028d44 2561 GO_IF_HARD_REG_EQUAL (target_stack->reg_set, tmp, eh1);
f6d20486
RH
2562 abort();
2563 eh1:
2564
2565 SET_HARD_REG_BIT (tmp, FIRST_STACK_REG);
a6028d44 2566 GO_IF_HARD_REG_EQUAL (regstack.reg_set, tmp, eh2);
f6d20486 2567 abort();
a6028d44
RH
2568 eh2:
2569
2570 target_stack->top = -1;
f6d20486
RH
2571 }
2572
a05924f9
JH
2573 /* It is better to output directly to the end of the block
2574 instead of to the edge, because emit_swap can do minimal
2575 insn scheduling. We can do this when there is only one
2576 edge out, and it is not abnormal. */
f6d20486
RH
2577 else if (block->succ->succ_next == NULL
2578 && ! (e->flags & EDGE_ABNORMAL))
e075ae69 2579 {
a05924f9
JH
2580 /* change_stack kills values in regstack. */
2581 tmpstack = regstack;
2582
2583 change_stack (block->end, &tmpstack, target_stack,
2584 (GET_CODE (block->end) == JUMP_INSN
2585 ? EMIT_BEFORE : EMIT_AFTER));
e075ae69 2586 }
a05924f9
JH
2587 else
2588 {
2589 rtx seq, after;
2590
f6d20486
RH
2591 /* We don't support abnormal edges. Global takes care to
2592 avoid any live register across them, so we should never
2593 have to insert instructions on such edges. */
a05924f9
JH
2594 if (e->flags & EDGE_ABNORMAL)
2595 abort ();
2596
2597 current_block = NULL;
2598 start_sequence ();
2599
2600 /* ??? change_stack needs some point to emit insns after.
2601 Also needed to keep gen_sequence from returning a
2602 pattern as opposed to a sequence, which would lose
2603 REG_DEAD notes. */
2604 after = emit_note (NULL, NOTE_INSN_DELETED);
2605
2606 tmpstack = regstack;
2607 change_stack (after, &tmpstack, target_stack, EMIT_BEFORE);
99a59310 2608
a05924f9
JH
2609 seq = gen_sequence ();
2610 end_sequence ();
2611
2612 insert_insn_on_edge (seq, e);
2613 inserted = 1;
2614 current_block = block;
2615 }
e075ae69 2616 }
a05924f9
JH
2617
2618 return inserted;
48227150 2619}
48227150 2620
a05924f9
JH
2621/* Convert registers in all blocks reachable from BLOCK. */
2622
2623static int
2624convert_regs_2 (file, block)
48227150 2625 FILE *file;
a05924f9 2626 basic_block block;
48227150 2627{
a05924f9
JH
2628 basic_block *stack, *sp;
2629 int inserted;
48227150 2630
ff154f78 2631 stack = (basic_block *) xmalloc (sizeof (*stack) * n_basic_blocks);
a05924f9 2632 sp = stack;
48227150 2633
a05924f9
JH
2634 *sp++ = block;
2635 BLOCK_INFO (block)->done = 1;
48227150 2636
a05924f9
JH
2637 inserted = 0;
2638 do
2639 {
2640 edge e;
48227150 2641
a05924f9
JH
2642 block = *--sp;
2643 inserted |= convert_regs_1 (file, block);
48227150 2644
a05924f9
JH
2645 for (e = block->succ; e ; e = e->succ_next)
2646 if (! BLOCK_INFO (e->dest)->done)
2647 {
2648 *sp++ = e->dest;
2649 BLOCK_INFO (e->dest)->done = 1;
2650 }
48227150 2651 }
a05924f9
JH
2652 while (sp != stack);
2653
2654 return inserted;
48227150 2655}
841fc5a1 2656
a05924f9
JH
2657/* Traverse all basic blocks in a function, converting the register
2658 references in each insn from the "flat" register file that gcc uses,
2659 to the stack-like registers the 387 uses. */
2660
2661static int
2662convert_regs (file)
48227150
JVA
2663 FILE *file;
2664{
a05924f9
JH
2665 int inserted, i;
2666 edge e;
48227150 2667
a05924f9
JH
2668 /* Initialize uninitialized registers on function entry. */
2669 inserted = convert_regs_entry ();
48227150 2670
a05924f9
JH
2671 /* Construct the desired stack for function exit. */
2672 convert_regs_exit ();
2673 BLOCK_INFO (EXIT_BLOCK_PTR)->done = 1;
48227150 2674
a05924f9
JH
2675 /* ??? Future: process inner loops first, and give them arbitrary
2676 initial stacks which emit_swap_insn can modify. This ought to
2677 prevent double fxch that aften appears at the head of a loop. */
48227150 2678
a05924f9
JH
2679 /* Process all blocks reachable from all entry points. */
2680 for (e = ENTRY_BLOCK_PTR->succ; e ; e = e->succ_next)
2681 inserted |= convert_regs_2 (file, e->dest);
2682
2683 /* ??? Process all unreachable blocks. Though there's no excuse
2684 for keeping these even when not optimizing. */
2685 for (i = 0; i < n_basic_blocks; ++i)
2686 {
2687 basic_block b = BASIC_BLOCK (i);
2688 block_info bi = BLOCK_INFO (b);
48227150 2689
a05924f9 2690 if (! bi->done)
48227150 2691 {
a05924f9 2692 int reg;
48227150 2693
a05924f9
JH
2694 /* Create an arbitrary input stack. */
2695 bi->stack_in.top = -1;
2696 for (reg = LAST_STACK_REG; reg >= FIRST_STACK_REG; --reg)
2697 if (TEST_HARD_REG_BIT (bi->stack_in.reg_set, reg))
2698 bi->stack_in.reg[++bi->stack_in.top] = reg;
48227150 2699
a05924f9
JH
2700 inserted |= convert_regs_2 (file, b);
2701 }
2702 }
48227150 2703
a05924f9
JH
2704 if (inserted)
2705 commit_edge_insertions ();
48227150 2706
a05924f9
JH
2707 if (file)
2708 fputc ('\n', file);
48227150 2709
a05924f9 2710 return inserted;
48227150 2711}
48227150 2712#endif /* STACK_REGS */
This page took 1.244208 seconds and 5 git commands to generate.