]>
Commit | Line | Data |
---|---|---|
985b6196 RS |
1 | /* real.c - implementation of REAL_ARITHMETIC, REAL_VALUE_ATOF, |
2 | and support for XFmode IEEE extended real floating point arithmetic. | |
3 | Contributed by Stephen L. Moshier (moshier@world.std.com). | |
4 | ||
5 | Copyright (C) 1993 Free Software Foundation, Inc. | |
6 | ||
7 | This file is part of GNU CC. | |
8 | ||
9 | GNU CC is free software; you can redistribute it and/or modify | |
10 | it under the terms of the GNU General Public License as published by | |
11 | the Free Software Foundation; either version 2, or (at your option) | |
12 | any later version. | |
13 | ||
14 | GNU CC is distributed in the hope that it will be useful, | |
15 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
16 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
17 | GNU General Public License for more details. | |
18 | ||
19 | You should have received a copy of the GNU General Public License | |
20 | along with GNU CC; see the file COPYING. If not, write to | |
21 | the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */ | |
22 | ||
23 | #include <stdio.h> | |
64685ffa | 24 | #include <errno.h> |
985b6196 | 25 | #include "config.h" |
985b6196 RS |
26 | #include "tree.h" |
27 | ||
64685ffa RS |
28 | #ifndef errno |
29 | extern int errno; | |
30 | #endif | |
31 | ||
985b6196 RS |
32 | /* To enable support of XFmode extended real floating point, define |
33 | LONG_DOUBLE_TYPE_SIZE 96 in the tm.h file (m68k.h or i386.h). | |
34 | ||
35 | To support cross compilation between IEEE and VAX floating | |
36 | point formats, define REAL_ARITHMETIC in the tm.h file. | |
37 | ||
38 | In either case the machine files (tm.h) must not contain any code | |
39 | that tries to use host floating point arithmetic to convert | |
40 | REAL_VALUE_TYPEs from `double' to `float', pass them to fprintf, | |
41 | etc. In cross-compile situations a REAL_VALUE_TYPE may not | |
42 | be intelligible to the host computer's native arithmetic. | |
43 | ||
44 | The emulator defaults to the host's floating point format so that | |
45 | its decimal conversion functions can be used if desired (see | |
46 | real.h). | |
47 | ||
48 | The first part of this file interfaces gcc to ieee.c, which is a | |
49 | floating point arithmetic suite that was not written with gcc in | |
50 | mind. The interface is followed by ieee.c itself and related | |
51 | items. Avoid changing ieee.c unless you have suitable test | |
52 | programs available. A special version of the PARANOIA floating | |
53 | point arithmetic tester, modified for this purpose, can be found | |
54 | on usc.edu : /pub/C-numanal/ieeetest.zoo. Some tutorial | |
55 | information on ieee.c is given in my book: S. L. Moshier, | |
56 | _Methods and Programs for Mathematical Functions_, Prentice-Hall | |
57 | or Simon & Schuster Int'l, 1989. A library of XFmode elementary | |
58 | transcendental functions can be obtained by ftp from | |
59 | research.att.com: netlib/cephes/ldouble.shar.Z */ | |
60 | ||
61 | /* Type of computer arithmetic. | |
62 | * Only one of DEC, MIEEE, IBMPC, or UNK should get defined. | |
985b6196 RS |
63 | */ |
64 | ||
66b6d60b RS |
65 | /* `MIEEE' refers generically to big-endian IEEE floating-point data |
66 | structure. This definition should work in SFmode `float' type and | |
67 | DFmode `double' type on virtually all big-endian IEEE machines. | |
68 | If LONG_DOUBLE_TYPE_SIZE has been defined to be 96, then MIEEE | |
69 | also invokes the particular XFmode (`long double' type) data | |
70 | structure used by the Motorola 680x0 series processors. | |
71 | ||
72 | `IBMPC' refers generally to little-endian IEEE machines. In this | |
73 | case, if LONG_DOUBLE_TYPE_SIZE has been defined to be 96, then | |
74 | IBMPC also invokes the particular XFmode `long double' data | |
75 | structure used by the Intel 80x86 series processors. | |
76 | ||
77 | `DEC' refers specifically to the Digital Equipment Corp PDP-11 | |
78 | and VAX floating point data structure. This model currently | |
79 | supports no type wider than DFmode. | |
80 | ||
81 | If LONG_DOUBLE_TYPE_SIZE = 64 (the default, unless tm.h defines it) | |
82 | then `long double' and `double' are both implemented, but they | |
83 | both mean DFmode. In this case, the software floating-point | |
84 | support available here is activated by writing | |
85 | #define REAL_ARITHMETIC | |
86 | in tm.h. | |
87 | ||
88 | The case LONG_DOUBLE_TYPE_SIZE = 128 activates TFmode support | |
89 | (Not Yet Implemented) and may deactivate XFmode since | |
90 | `long double' is used to refer to both modes. */ | |
91 | ||
92 | /* The following converts gcc macros into the ones used by this file. */ | |
93 | ||
985b6196 RS |
94 | /* REAL_ARITHMETIC defined means that macros in real.h are |
95 | defined to call emulator functions. */ | |
96 | #ifdef REAL_ARITHMETIC | |
97 | ||
98 | #if TARGET_FLOAT_FORMAT == VAX_FLOAT_FORMAT | |
99 | /* PDP-11, Pro350, VAX: */ | |
100 | #define DEC 1 | |
101 | #else /* it's not VAX */ | |
102 | #if TARGET_FLOAT_FORMAT == IEEE_FLOAT_FORMAT | |
103 | #if WORDS_BIG_ENDIAN | |
104 | /* Motorola IEEE, high order words come first (Sun workstation): */ | |
105 | #define MIEEE 1 | |
106 | #else /* not big-endian */ | |
107 | /* Intel IEEE, low order words come first: | |
108 | */ | |
109 | #define IBMPC 1 | |
110 | #endif /* big-endian */ | |
111 | #else /* it's not IEEE either */ | |
112 | /* UNKnown arithmetic. We don't support this and can't go on. */ | |
113 | unknown arithmetic type | |
114 | #define UNK 1 | |
115 | #endif /* not IEEE */ | |
116 | #endif /* not VAX */ | |
117 | ||
118 | #else | |
119 | /* REAL_ARITHMETIC not defined means that the *host's* data | |
120 | structure will be used. It may differ by endian-ness from the | |
121 | target machine's structure and will get its ends swapped | |
122 | accordingly (but not here). Probably only the decimal <-> binary | |
123 | functions in this file will actually be used in this case. */ | |
124 | #if HOST_FLOAT_FORMAT == VAX_FLOAT_FORMAT | |
125 | #define DEC 1 | |
126 | #else /* it's not VAX */ | |
127 | #if HOST_FLOAT_FORMAT == IEEE_FLOAT_FORMAT | |
128 | #ifdef HOST_WORDS_BIG_ENDIAN | |
129 | #define MIEEE 1 | |
130 | #else /* not big-endian */ | |
131 | #define IBMPC 1 | |
132 | #endif /* big-endian */ | |
133 | #else /* it's not IEEE either */ | |
134 | unknown arithmetic type | |
135 | #define UNK 1 | |
136 | #endif /* not IEEE */ | |
137 | #endif /* not VAX */ | |
138 | ||
139 | #endif /* REAL_ARITHMETIC not defined */ | |
140 | ||
66b6d60b RS |
141 | /* Define INFINITY for support of infinity. |
142 | Define NANS for support of Not-a-Number's (NaN's). */ | |
985b6196 RS |
143 | #ifndef DEC |
144 | #define INFINITY | |
66b6d60b | 145 | #define NANS |
985b6196 RS |
146 | #endif |
147 | ||
66b6d60b RS |
148 | /* Support of NaNs requires support of infinity. */ |
149 | #ifdef NANS | |
150 | #ifndef INFINITY | |
151 | #define INFINITY | |
152 | #endif | |
153 | #endif | |
985b6196 RS |
154 | |
155 | /* ehead.h | |
156 | * | |
157 | * Include file for extended precision arithmetic programs. | |
158 | */ | |
159 | ||
160 | /* Number of 16 bit words in external e type format */ | |
161 | #define NE 6 | |
162 | ||
163 | /* Number of 16 bit words in internal format */ | |
164 | #define NI (NE+3) | |
165 | ||
166 | /* Array offset to exponent */ | |
167 | #define E 1 | |
168 | ||
169 | /* Array offset to high guard word */ | |
170 | #define M 2 | |
171 | ||
172 | /* Number of bits of precision */ | |
173 | #define NBITS ((NI-4)*16) | |
174 | ||
175 | /* Maximum number of decimal digits in ASCII conversion | |
176 | * = NBITS*log10(2) | |
177 | */ | |
178 | #define NDEC (NBITS*8/27) | |
179 | ||
180 | /* The exponent of 1.0 */ | |
181 | #define EXONE (0x3fff) | |
182 | ||
183 | /* Find a host integer type that is at least 16 bits wide, | |
184 | and another type at least twice whatever that size is. */ | |
185 | ||
186 | #if HOST_BITS_PER_CHAR >= 16 | |
187 | #define EMUSHORT char | |
188 | #define EMUSHORT_SIZE HOST_BITS_PER_CHAR | |
189 | #define EMULONG_SIZE (2 * HOST_BITS_PER_CHAR) | |
190 | #else | |
191 | #if HOST_BITS_PER_SHORT >= 16 | |
192 | #define EMUSHORT short | |
193 | #define EMUSHORT_SIZE HOST_BITS_PER_SHORT | |
194 | #define EMULONG_SIZE (2 * HOST_BITS_PER_SHORT) | |
195 | #else | |
196 | #if HOST_BITS_PER_INT >= 16 | |
197 | #define EMUSHORT int | |
198 | #define EMUSHORT_SIZE HOST_BITS_PER_INT | |
199 | #define EMULONG_SIZE (2 * HOST_BITS_PER_INT) | |
200 | #else | |
201 | #if HOST_BITS_PER_LONG >= 16 | |
202 | #define EMUSHORT long | |
203 | #define EMUSHORT_SIZE HOST_BITS_PER_LONG | |
204 | #define EMULONG_SIZE (2 * HOST_BITS_PER_LONG) | |
205 | #else | |
206 | /* You will have to modify this program to have a smaller unit size. */ | |
207 | #define EMU_NON_COMPILE | |
208 | #endif | |
209 | #endif | |
210 | #endif | |
211 | #endif | |
212 | ||
213 | #if HOST_BITS_PER_SHORT >= EMULONG_SIZE | |
214 | #define EMULONG short | |
215 | #else | |
216 | #if HOST_BITS_PER_INT >= EMULONG_SIZE | |
217 | #define EMULONG int | |
218 | #else | |
219 | #if HOST_BITS_PER_LONG >= EMULONG_SIZE | |
220 | #define EMULONG long | |
221 | #else | |
222 | #if HOST_BITS_PER_LONG_LONG >= EMULONG_SIZE | |
223 | #define EMULONG long long int | |
224 | #else | |
225 | /* You will have to modify this program to have a smaller unit size. */ | |
226 | #define EMU_NON_COMPILE | |
227 | #endif | |
228 | #endif | |
229 | #endif | |
230 | #endif | |
231 | ||
232 | ||
233 | /* The host interface doesn't work if no 16-bit size exists. */ | |
234 | #if EMUSHORT_SIZE != 16 | |
235 | #define EMU_NON_COMPILE | |
236 | #endif | |
237 | ||
238 | /* OK to continue compilation. */ | |
239 | #ifndef EMU_NON_COMPILE | |
240 | ||
241 | /* Construct macros to translate between REAL_VALUE_TYPE and e type. | |
242 | In GET_REAL and PUT_REAL, r and e are pointers. | |
243 | A REAL_VALUE_TYPE is guaranteed to occupy contiguous locations | |
244 | in memory, with no holes. */ | |
245 | ||
246 | #if LONG_DOUBLE_TYPE_SIZE == 96 | |
247 | #define GET_REAL(r,e) bcopy (r, e, 2*NE) | |
248 | #define PUT_REAL(e,r) bcopy (e, r, 2*NE) | |
249 | #else /* no XFmode */ | |
250 | ||
251 | #ifdef REAL_ARITHMETIC | |
252 | /* Emulator uses target format internally | |
253 | but host stores it in host endian-ness. */ | |
254 | ||
255 | #if defined (HOST_WORDS_BIG_ENDIAN) == WORDS_BIG_ENDIAN | |
256 | #define GET_REAL(r,e) e53toe ((r), (e)) | |
257 | #define PUT_REAL(e,r) etoe53 ((e), (r)) | |
258 | ||
259 | #else /* endian-ness differs */ | |
260 | /* emulator uses target endian-ness internally */ | |
261 | #define GET_REAL(r,e) \ | |
262 | do { EMUSHORT w[4]; \ | |
263 | w[3] = ((EMUSHORT *) r)[0]; \ | |
264 | w[2] = ((EMUSHORT *) r)[1]; \ | |
265 | w[1] = ((EMUSHORT *) r)[2]; \ | |
266 | w[0] = ((EMUSHORT *) r)[3]; \ | |
267 | e53toe (w, (e)); } while (0) | |
268 | ||
269 | #define PUT_REAL(e,r) \ | |
270 | do { EMUSHORT w[4]; \ | |
271 | etoe53 ((e), w); \ | |
272 | *((EMUSHORT *) r) = w[3]; \ | |
273 | *((EMUSHORT *) r + 1) = w[2]; \ | |
274 | *((EMUSHORT *) r + 2) = w[1]; \ | |
275 | *((EMUSHORT *) r + 3) = w[0]; } while (0) | |
276 | ||
277 | #endif /* endian-ness differs */ | |
278 | ||
279 | #else /* not REAL_ARITHMETIC */ | |
280 | ||
281 | /* emulator uses host format */ | |
282 | #define GET_REAL(r,e) e53toe ((r), (e)) | |
283 | #define PUT_REAL(e,r) etoe53 ((e), (r)) | |
284 | ||
285 | #endif /* not REAL_ARITHMETIC */ | |
286 | #endif /* no XFmode */ | |
287 | ||
64685ffa RS |
288 | void warning (); |
289 | extern int extra_warnings; | |
66b6d60b RS |
290 | int ecmp (), enormlz (), eshift (); |
291 | int eisneg (), eisinf (), eisnan (), eiisinf (), eiisnan (); | |
985b6196 RS |
292 | void eadd (), esub (), emul (), ediv (); |
293 | void eshup1 (), eshup8 (), eshup6 (), eshdn1 (), eshdn8 (), eshdn6 (); | |
294 | void eabs (), eneg (), emov (), eclear (), einfin (), efloor (); | |
295 | void eldexp (), efrexp (), eifrac (), euifrac (), ltoe (), ultoe (); | |
66b6d60b | 296 | void eround (), ereal_to_decimal (), eiinfin (), einan (); |
985b6196 RS |
297 | void esqrt (), elog (), eexp (), etanh (), epow (); |
298 | void asctoe (), asctoe24 (), asctoe53 (), asctoe64 (); | |
299 | void etoasc (), e24toasc (), e53toasc (), e64toasc (); | |
300 | void etoe64 (), etoe53 (), etoe24 (), e64toe (), e53toe (), e24toe (); | |
66b6d60b | 301 | void mtherr (), make_nan (); |
5f6771ba | 302 | void enan (); |
9d1bd99c MM |
303 | extern unsigned EMUSHORT ezero[], ehalf[], eone[], etwo[]; |
304 | extern unsigned EMUSHORT elog2[], esqrt2[]; | |
985b6196 RS |
305 | |
306 | /* Pack output array with 32-bit numbers obtained from | |
307 | array containing 16-bit numbers, swapping ends if required. */ | |
308 | void | |
309 | endian (e, x, mode) | |
310 | unsigned EMUSHORT e[]; | |
311 | long x[]; | |
312 | enum machine_mode mode; | |
313 | { | |
314 | unsigned long th, t; | |
315 | ||
316 | #if WORDS_BIG_ENDIAN | |
317 | switch (mode) | |
318 | { | |
319 | ||
320 | case XFmode: | |
321 | ||
322 | /* Swap halfwords in the third long. */ | |
323 | th = (unsigned long) e[4] & 0xffff; | |
324 | t = (unsigned long) e[5] & 0xffff; | |
325 | t |= th << 16; | |
326 | x[2] = (long) t; | |
327 | /* fall into the double case */ | |
328 | ||
329 | case DFmode: | |
330 | ||
331 | /* swap halfwords in the second word */ | |
332 | th = (unsigned long) e[2] & 0xffff; | |
333 | t = (unsigned long) e[3] & 0xffff; | |
334 | t |= th << 16; | |
335 | x[1] = (long) t; | |
336 | /* fall into the float case */ | |
337 | ||
338 | case SFmode: | |
339 | ||
340 | /* swap halfwords in the first word */ | |
341 | th = (unsigned long) e[0] & 0xffff; | |
342 | t = (unsigned long) e[1] & 0xffff; | |
343 | t |= th << 16; | |
344 | x[0] = t; | |
345 | break; | |
346 | ||
347 | default: | |
348 | abort (); | |
349 | } | |
350 | ||
351 | #else | |
352 | ||
353 | /* Pack the output array without swapping. */ | |
354 | ||
355 | switch (mode) | |
356 | { | |
357 | ||
358 | case XFmode: | |
359 | ||
360 | /* Pack the third long. | |
361 | Each element of the input REAL_VALUE_TYPE array has 16 bit useful bits | |
362 | in it. */ | |
363 | th = (unsigned long) e[5] & 0xffff; | |
364 | t = (unsigned long) e[4] & 0xffff; | |
365 | t |= th << 16; | |
366 | x[2] = (long) t; | |
367 | /* fall into the double case */ | |
368 | ||
369 | case DFmode: | |
370 | ||
371 | /* pack the second long */ | |
372 | th = (unsigned long) e[3] & 0xffff; | |
373 | t = (unsigned long) e[2] & 0xffff; | |
374 | t |= th << 16; | |
375 | x[1] = (long) t; | |
376 | /* fall into the float case */ | |
377 | ||
378 | case SFmode: | |
379 | ||
380 | /* pack the first long */ | |
381 | th = (unsigned long) e[1] & 0xffff; | |
382 | t = (unsigned long) e[0] & 0xffff; | |
383 | t |= th << 16; | |
384 | x[0] = t; | |
385 | break; | |
386 | ||
387 | default: | |
388 | abort (); | |
389 | } | |
390 | ||
391 | #endif | |
392 | } | |
393 | ||
394 | ||
395 | /* This is the implementation of the REAL_ARITHMETIC macro. | |
396 | */ | |
397 | void | |
398 | earith (value, icode, r1, r2) | |
399 | REAL_VALUE_TYPE *value; | |
400 | int icode; | |
401 | REAL_VALUE_TYPE *r1; | |
402 | REAL_VALUE_TYPE *r2; | |
403 | { | |
404 | unsigned EMUSHORT d1[NE], d2[NE], v[NE]; | |
405 | enum tree_code code; | |
406 | ||
407 | GET_REAL (r1, d1); | |
408 | GET_REAL (r2, d2); | |
66b6d60b RS |
409 | #ifdef NANS |
410 | /* Return NaN input back to the caller. */ | |
411 | if (eisnan (d1)) | |
412 | { | |
413 | PUT_REAL (d1, value); | |
414 | return; | |
415 | } | |
416 | if (eisnan (d2)) | |
417 | { | |
418 | PUT_REAL (d2, value); | |
419 | return; | |
420 | } | |
421 | #endif | |
985b6196 RS |
422 | code = (enum tree_code) icode; |
423 | switch (code) | |
424 | { | |
425 | case PLUS_EXPR: | |
426 | eadd (d2, d1, v); | |
427 | break; | |
428 | ||
429 | case MINUS_EXPR: | |
430 | esub (d2, d1, v); /* d1 - d2 */ | |
431 | break; | |
432 | ||
433 | case MULT_EXPR: | |
434 | emul (d2, d1, v); | |
435 | break; | |
436 | ||
437 | case RDIV_EXPR: | |
438 | #ifndef REAL_INFINITY | |
439 | if (ecmp (d2, ezero) == 0) | |
66b6d60b RS |
440 | { |
441 | #ifdef NANS | |
442 | enan (v); | |
443 | break; | |
444 | #else | |
985b6196 | 445 | abort (); |
66b6d60b RS |
446 | #endif |
447 | } | |
985b6196 RS |
448 | #endif |
449 | ediv (d2, d1, v); /* d1/d2 */ | |
450 | break; | |
451 | ||
452 | case MIN_EXPR: /* min (d1,d2) */ | |
453 | if (ecmp (d1, d2) < 0) | |
454 | emov (d1, v); | |
455 | else | |
456 | emov (d2, v); | |
457 | break; | |
458 | ||
459 | case MAX_EXPR: /* max (d1,d2) */ | |
460 | if (ecmp (d1, d2) > 0) | |
461 | emov (d1, v); | |
462 | else | |
463 | emov (d2, v); | |
464 | break; | |
465 | default: | |
466 | emov (ezero, v); | |
467 | break; | |
468 | } | |
469 | PUT_REAL (v, value); | |
470 | } | |
471 | ||
472 | ||
473 | /* Truncate REAL_VALUE_TYPE toward zero to signed HOST_WIDE_INT | |
66b6d60b | 474 | * implements REAL_VALUE_RNDZINT (x) (etrunci (x)) |
985b6196 RS |
475 | */ |
476 | REAL_VALUE_TYPE | |
477 | etrunci (x) | |
478 | REAL_VALUE_TYPE x; | |
479 | { | |
480 | unsigned EMUSHORT f[NE], g[NE]; | |
481 | REAL_VALUE_TYPE r; | |
482 | long l; | |
483 | ||
484 | GET_REAL (&x, g); | |
66b6d60b RS |
485 | #ifdef NANS |
486 | if (eisnan (g)) | |
487 | return (x); | |
488 | #endif | |
985b6196 RS |
489 | eifrac (g, &l, f); |
490 | ltoe (&l, g); | |
491 | PUT_REAL (g, &r); | |
492 | return (r); | |
493 | } | |
494 | ||
495 | ||
496 | /* Truncate REAL_VALUE_TYPE toward zero to unsigned HOST_WIDE_INT | |
66b6d60b | 497 | * implements REAL_VALUE_UNSIGNED_RNDZINT (x) (etruncui (x)) |
985b6196 RS |
498 | */ |
499 | REAL_VALUE_TYPE | |
500 | etruncui (x) | |
501 | REAL_VALUE_TYPE x; | |
502 | { | |
503 | unsigned EMUSHORT f[NE], g[NE]; | |
504 | REAL_VALUE_TYPE r; | |
505 | unsigned long l; | |
506 | ||
507 | GET_REAL (&x, g); | |
66b6d60b RS |
508 | #ifdef NANS |
509 | if (eisnan (g)) | |
510 | return (x); | |
511 | #endif | |
985b6196 RS |
512 | euifrac (g, &l, f); |
513 | ultoe (&l, g); | |
514 | PUT_REAL (g, &r); | |
515 | return (r); | |
516 | } | |
517 | ||
518 | ||
519 | /* This is the REAL_VALUE_ATOF function. | |
520 | * It converts a decimal string to binary, rounding off | |
521 | * as indicated by the machine_mode argument. Then it | |
522 | * promotes the rounded value to REAL_VALUE_TYPE. | |
523 | */ | |
524 | REAL_VALUE_TYPE | |
525 | ereal_atof (s, t) | |
526 | char *s; | |
527 | enum machine_mode t; | |
528 | { | |
529 | unsigned EMUSHORT tem[NE], e[NE]; | |
530 | REAL_VALUE_TYPE r; | |
531 | ||
532 | switch (t) | |
533 | { | |
534 | case SFmode: | |
535 | asctoe24 (s, tem); | |
536 | e24toe (tem, e); | |
537 | break; | |
538 | case DFmode: | |
539 | asctoe53 (s, tem); | |
540 | e53toe (tem, e); | |
541 | break; | |
542 | case XFmode: | |
543 | asctoe64 (s, tem); | |
544 | e64toe (tem, e); | |
545 | break; | |
546 | default: | |
547 | asctoe (s, e); | |
548 | } | |
549 | PUT_REAL (e, &r); | |
550 | return (r); | |
551 | } | |
552 | ||
553 | ||
554 | /* Expansion of REAL_NEGATE. | |
555 | */ | |
556 | REAL_VALUE_TYPE | |
557 | ereal_negate (x) | |
558 | REAL_VALUE_TYPE x; | |
559 | { | |
560 | unsigned EMUSHORT e[NE]; | |
561 | REAL_VALUE_TYPE r; | |
562 | ||
563 | GET_REAL (&x, e); | |
66b6d60b RS |
564 | #ifdef NANS |
565 | if (eisnan (e)) | |
566 | return (x); | |
567 | #endif | |
985b6196 RS |
568 | eneg (e); |
569 | PUT_REAL (e, &r); | |
570 | return (r); | |
571 | } | |
572 | ||
573 | ||
574 | /* Round real to int | |
575 | * implements REAL_VALUE_FIX (x) (eroundi (x)) | |
576 | * The type of rounding is left unspecified by real.h. | |
577 | * It is implemented here as round to nearest (add .5 and chop). | |
578 | */ | |
579 | int | |
580 | eroundi (x) | |
581 | REAL_VALUE_TYPE x; | |
582 | { | |
583 | unsigned EMUSHORT f[NE], g[NE]; | |
584 | EMULONG l; | |
585 | ||
586 | GET_REAL (&x, f); | |
66b6d60b RS |
587 | #ifdef NANS |
588 | if (eisnan (f)) | |
589 | { | |
590 | warning ("conversion from NaN to int"); | |
591 | return (-1); | |
592 | } | |
593 | #endif | |
985b6196 RS |
594 | eround (f, g); |
595 | eifrac (g, &l, f); | |
596 | return ((int) l); | |
597 | } | |
598 | ||
599 | /* Round real to nearest unsigned int | |
600 | * implements REAL_VALUE_UNSIGNED_FIX (x) ((unsigned int) eroundi (x)) | |
601 | * Negative input returns zero. | |
602 | * The type of rounding is left unspecified by real.h. | |
603 | * It is implemented here as round to nearest (add .5 and chop). | |
604 | */ | |
605 | unsigned int | |
606 | eroundui (x) | |
607 | REAL_VALUE_TYPE x; | |
608 | { | |
609 | unsigned EMUSHORT f[NE], g[NE]; | |
610 | unsigned EMULONG l; | |
611 | ||
612 | GET_REAL (&x, f); | |
66b6d60b RS |
613 | #ifdef NANS |
614 | if (eisnan (f)) | |
615 | { | |
616 | warning ("conversion from NaN to unsigned int"); | |
617 | return (-1); | |
618 | } | |
619 | #endif | |
985b6196 RS |
620 | eround (f, g); |
621 | euifrac (g, &l, f); | |
622 | return ((unsigned int)l); | |
623 | } | |
624 | ||
625 | ||
626 | /* REAL_VALUE_FROM_INT macro. | |
627 | */ | |
628 | void | |
629 | ereal_from_int (d, i, j) | |
630 | REAL_VALUE_TYPE *d; | |
631 | long i, j; | |
632 | { | |
633 | unsigned EMUSHORT df[NE], dg[NE]; | |
634 | long low, high; | |
635 | int sign; | |
636 | ||
637 | sign = 0; | |
638 | low = i; | |
639 | if ((high = j) < 0) | |
640 | { | |
641 | sign = 1; | |
642 | /* complement and add 1 */ | |
643 | high = ~high; | |
644 | if (low) | |
645 | low = -low; | |
646 | else | |
647 | high += 1; | |
648 | } | |
649 | eldexp (eone, HOST_BITS_PER_LONG, df); | |
650 | ultoe (&high, dg); | |
651 | emul (dg, df, dg); | |
652 | ultoe (&low, df); | |
653 | eadd (df, dg, dg); | |
654 | if (sign) | |
655 | eneg (dg); | |
656 | PUT_REAL (dg, d); | |
657 | } | |
658 | ||
659 | ||
660 | /* REAL_VALUE_FROM_UNSIGNED_INT macro. | |
661 | */ | |
662 | void | |
663 | ereal_from_uint (d, i, j) | |
664 | REAL_VALUE_TYPE *d; | |
665 | unsigned long i, j; | |
666 | { | |
667 | unsigned EMUSHORT df[NE], dg[NE]; | |
668 | unsigned long low, high; | |
669 | ||
670 | low = i; | |
671 | high = j; | |
672 | eldexp (eone, HOST_BITS_PER_LONG, df); | |
673 | ultoe (&high, dg); | |
674 | emul (dg, df, dg); | |
675 | ultoe (&low, df); | |
676 | eadd (df, dg, dg); | |
677 | PUT_REAL (dg, d); | |
678 | } | |
679 | ||
680 | ||
681 | /* REAL_VALUE_TO_INT macro | |
682 | */ | |
683 | void | |
684 | ereal_to_int (low, high, rr) | |
685 | long *low, *high; | |
686 | REAL_VALUE_TYPE rr; | |
687 | { | |
688 | unsigned EMUSHORT d[NE], df[NE], dg[NE], dh[NE]; | |
689 | int s; | |
690 | ||
691 | GET_REAL (&rr, d); | |
66b6d60b RS |
692 | #ifdef NANS |
693 | if (eisnan (&rr)) | |
694 | { | |
695 | warning ("conversion from NaN to int"); | |
696 | *low = -1; | |
697 | *high = -1; | |
698 | return; | |
699 | } | |
700 | #endif | |
985b6196 RS |
701 | /* convert positive value */ |
702 | s = 0; | |
703 | if (eisneg (d)) | |
704 | { | |
705 | eneg (d); | |
706 | s = 1; | |
707 | } | |
708 | eldexp (eone, HOST_BITS_PER_LONG, df); | |
709 | ediv (df, d, dg); /* dg = d / 2^32 is the high word */ | |
710 | euifrac (dg, high, dh); | |
711 | emul (df, dh, dg); /* fractional part is the low word */ | |
712 | euifrac (dg, low, dh); | |
713 | if (s) | |
714 | { | |
715 | /* complement and add 1 */ | |
716 | *high = ~(*high); | |
717 | if (*low) | |
718 | *low = -(*low); | |
719 | else | |
720 | *high += 1; | |
721 | } | |
722 | } | |
723 | ||
724 | ||
725 | /* REAL_VALUE_LDEXP macro. | |
726 | */ | |
727 | REAL_VALUE_TYPE | |
728 | ereal_ldexp (x, n) | |
729 | REAL_VALUE_TYPE x; | |
730 | int n; | |
731 | { | |
732 | unsigned EMUSHORT e[NE], y[NE]; | |
733 | REAL_VALUE_TYPE r; | |
734 | ||
735 | GET_REAL (&x, e); | |
66b6d60b RS |
736 | #ifdef NANS |
737 | if (eisnan (e)) | |
738 | return (x); | |
739 | #endif | |
985b6196 RS |
740 | eldexp (e, n, y); |
741 | PUT_REAL (y, &r); | |
742 | return (r); | |
743 | } | |
744 | ||
745 | /* These routines are conditionally compiled because functions | |
746 | * of the same names may be defined in fold-const.c. */ | |
747 | #ifdef REAL_ARITHMETIC | |
748 | ||
749 | /* Check for infinity in a REAL_VALUE_TYPE. */ | |
750 | int | |
751 | target_isinf (x) | |
752 | REAL_VALUE_TYPE x; | |
753 | { | |
754 | unsigned EMUSHORT e[NE]; | |
755 | ||
756 | #ifdef INFINITY | |
757 | GET_REAL (&x, e); | |
758 | return (eisinf (e)); | |
759 | #else | |
760 | return 0; | |
761 | #endif | |
762 | } | |
763 | ||
764 | ||
66b6d60b | 765 | /* Check whether a REAL_VALUE_TYPE item is a NaN. */ |
985b6196 RS |
766 | |
767 | int | |
768 | target_isnan (x) | |
769 | REAL_VALUE_TYPE x; | |
770 | { | |
66b6d60b RS |
771 | #ifdef NANS |
772 | return (eisnan (&x)); | |
773 | #else | |
985b6196 | 774 | return (0); |
66b6d60b | 775 | #endif |
985b6196 RS |
776 | } |
777 | ||
778 | ||
66b6d60b | 779 | /* Check for a negative REAL_VALUE_TYPE number. |
985b6196 RS |
780 | * this means strictly less than zero, not -0. |
781 | */ | |
782 | ||
783 | int | |
784 | target_negative (x) | |
785 | REAL_VALUE_TYPE x; | |
786 | { | |
787 | unsigned EMUSHORT e[NE]; | |
788 | ||
789 | GET_REAL (&x, e); | |
66b6d60b | 790 | if (ecmp (e, ezero) == -1) |
985b6196 RS |
791 | return (1); |
792 | return (0); | |
793 | } | |
794 | ||
795 | /* Expansion of REAL_VALUE_TRUNCATE. | |
796 | * The result is in floating point, rounded to nearest or even. | |
797 | */ | |
798 | REAL_VALUE_TYPE | |
799 | real_value_truncate (mode, arg) | |
800 | enum machine_mode mode; | |
801 | REAL_VALUE_TYPE arg; | |
802 | { | |
803 | unsigned EMUSHORT e[NE], t[NE]; | |
804 | REAL_VALUE_TYPE r; | |
805 | ||
806 | GET_REAL (&arg, e); | |
66b6d60b RS |
807 | #ifdef NANS |
808 | if (eisnan (e)) | |
809 | return (arg); | |
810 | #endif | |
985b6196 RS |
811 | eclear (t); |
812 | switch (mode) | |
813 | { | |
814 | case XFmode: | |
815 | etoe64 (e, t); | |
816 | e64toe (t, t); | |
817 | break; | |
818 | ||
819 | case DFmode: | |
820 | etoe53 (e, t); | |
821 | e53toe (t, t); | |
822 | break; | |
823 | ||
824 | case SFmode: | |
825 | etoe24 (e, t); | |
826 | e24toe (t, t); | |
827 | break; | |
828 | ||
829 | case SImode: | |
830 | r = etrunci (e); | |
831 | return (r); | |
832 | ||
833 | default: | |
834 | abort (); | |
835 | } | |
836 | PUT_REAL (t, &r); | |
837 | return (r); | |
838 | } | |
839 | ||
840 | #endif /* REAL_ARITHMETIC defined */ | |
841 | ||
842 | /* Target values are arrays of host longs. A long is guaranteed | |
843 | to be at least 32 bits wide. */ | |
844 | void | |
845 | etarldouble (r, l) | |
846 | REAL_VALUE_TYPE r; | |
847 | long l[]; | |
848 | { | |
849 | unsigned EMUSHORT e[NE]; | |
850 | ||
851 | GET_REAL (&r, e); | |
852 | etoe64 (e, e); | |
853 | endian (e, l, XFmode); | |
854 | } | |
855 | ||
856 | void | |
857 | etardouble (r, l) | |
858 | REAL_VALUE_TYPE r; | |
859 | long l[]; | |
860 | { | |
861 | unsigned EMUSHORT e[NE]; | |
862 | ||
863 | GET_REAL (&r, e); | |
864 | etoe53 (e, e); | |
865 | endian (e, l, DFmode); | |
866 | } | |
867 | ||
868 | long | |
869 | etarsingle (r) | |
870 | REAL_VALUE_TYPE r; | |
871 | { | |
872 | unsigned EMUSHORT e[NE]; | |
873 | unsigned long l; | |
874 | ||
875 | GET_REAL (&r, e); | |
876 | etoe24 (e, e); | |
877 | endian (e, &l, SFmode); | |
878 | return ((long) l); | |
879 | } | |
880 | ||
881 | void | |
882 | ereal_to_decimal (x, s) | |
883 | REAL_VALUE_TYPE x; | |
884 | char *s; | |
885 | { | |
886 | unsigned EMUSHORT e[NE]; | |
887 | ||
888 | GET_REAL (&x, e); | |
889 | etoasc (e, s, 20); | |
890 | } | |
891 | ||
892 | int | |
893 | ereal_cmp (x, y) | |
894 | REAL_VALUE_TYPE x, y; | |
895 | { | |
896 | unsigned EMUSHORT ex[NE], ey[NE]; | |
897 | ||
898 | GET_REAL (&x, ex); | |
899 | GET_REAL (&y, ey); | |
900 | return (ecmp (ex, ey)); | |
901 | } | |
902 | ||
903 | int | |
904 | ereal_isneg (x) | |
905 | REAL_VALUE_TYPE x; | |
906 | { | |
907 | unsigned EMUSHORT ex[NE]; | |
908 | ||
909 | GET_REAL (&x, ex); | |
910 | return (eisneg (ex)); | |
911 | } | |
912 | ||
913 | /* End of REAL_ARITHMETIC interface */ | |
914 | ||
915 | /* ieee.c | |
916 | * | |
917 | * Extended precision IEEE binary floating point arithmetic routines | |
918 | * | |
919 | * Numbers are stored in C language as arrays of 16-bit unsigned | |
920 | * short integers. The arguments of the routines are pointers to | |
921 | * the arrays. | |
922 | * | |
923 | * | |
924 | * External e type data structure, simulates Intel 8087 chip | |
925 | * temporary real format but possibly with a larger significand: | |
926 | * | |
927 | * NE-1 significand words (least significant word first, | |
928 | * most significant bit is normally set) | |
929 | * exponent (value = EXONE for 1.0, | |
930 | * top bit is the sign) | |
931 | * | |
932 | * | |
933 | * Internal data structure of a number (a "word" is 16 bits): | |
934 | * | |
935 | * ei[0] sign word (0 for positive, 0xffff for negative) | |
936 | * ei[1] biased exponent (value = EXONE for the number 1.0) | |
937 | * ei[2] high guard word (always zero after normalization) | |
938 | * ei[3] | |
939 | * to ei[NI-2] significand (NI-4 significand words, | |
940 | * most significant word first, | |
941 | * most significant bit is set) | |
942 | * ei[NI-1] low guard word (0x8000 bit is rounding place) | |
943 | * | |
944 | * | |
945 | * | |
946 | * Routines for external format numbers | |
947 | * | |
948 | * asctoe (string, e) ASCII string to extended double e type | |
949 | * asctoe64 (string, &d) ASCII string to long double | |
950 | * asctoe53 (string, &d) ASCII string to double | |
951 | * asctoe24 (string, &f) ASCII string to single | |
952 | * asctoeg (string, e, prec) ASCII string to specified precision | |
953 | * e24toe (&f, e) IEEE single precision to e type | |
954 | * e53toe (&d, e) IEEE double precision to e type | |
955 | * e64toe (&d, e) IEEE long double precision to e type | |
956 | * eabs (e) absolute value | |
957 | * eadd (a, b, c) c = b + a | |
958 | * eclear (e) e = 0 | |
66b6d60b RS |
959 | * ecmp (a, b) Returns 1 if a > b, 0 if a == b, |
960 | * -1 if a < b, -2 if either a or b is a NaN. | |
985b6196 RS |
961 | * ediv (a, b, c) c = b / a |
962 | * efloor (a, b) truncate to integer, toward -infinity | |
963 | * efrexp (a, exp, s) extract exponent and significand | |
964 | * eifrac (e, &l, frac) e to long integer and e type fraction | |
965 | * euifrac (e, &l, frac) e to unsigned long integer and e type fraction | |
966 | * einfin (e) set e to infinity, leaving its sign alone | |
967 | * eldexp (a, n, b) multiply by 2**n | |
968 | * emov (a, b) b = a | |
969 | * emul (a, b, c) c = b * a | |
970 | * eneg (e) e = -e | |
971 | * eround (a, b) b = nearest integer value to a | |
972 | * esub (a, b, c) c = b - a | |
973 | * e24toasc (&f, str, n) single to ASCII string, n digits after decimal | |
974 | * e53toasc (&d, str, n) double to ASCII string, n digits after decimal | |
975 | * e64toasc (&d, str, n) long double to ASCII string | |
976 | * etoasc (e, str, n) e to ASCII string, n digits after decimal | |
977 | * etoe24 (e, &f) convert e type to IEEE single precision | |
978 | * etoe53 (e, &d) convert e type to IEEE double precision | |
979 | * etoe64 (e, &d) convert e type to IEEE long double precision | |
980 | * ltoe (&l, e) long (32 bit) integer to e type | |
981 | * ultoe (&l, e) unsigned long (32 bit) integer to e type | |
982 | * eisneg (e) 1 if sign bit of e != 0, else 0 | |
66b6d60b RS |
983 | * eisinf (e) 1 if e has maximum exponent (non-IEEE) |
984 | * or is infinite (IEEE) | |
985 | * eisnan (e) 1 if e is a NaN | |
985b6196 RS |
986 | * |
987 | * | |
988 | * Routines for internal format numbers | |
989 | * | |
990 | * eaddm (ai, bi) add significands, bi = bi + ai | |
991 | * ecleaz (ei) ei = 0 | |
992 | * ecleazs (ei) set ei = 0 but leave its sign alone | |
993 | * ecmpm (ai, bi) compare significands, return 1, 0, or -1 | |
994 | * edivm (ai, bi) divide significands, bi = bi / ai | |
995 | * emdnorm (ai,l,s,exp) normalize and round off | |
996 | * emovi (a, ai) convert external a to internal ai | |
997 | * emovo (ai, a) convert internal ai to external a | |
998 | * emovz (ai, bi) bi = ai, low guard word of bi = 0 | |
999 | * emulm (ai, bi) multiply significands, bi = bi * ai | |
1000 | * enormlz (ei) left-justify the significand | |
1001 | * eshdn1 (ai) shift significand and guards down 1 bit | |
1002 | * eshdn8 (ai) shift down 8 bits | |
1003 | * eshdn6 (ai) shift down 16 bits | |
1004 | * eshift (ai, n) shift ai n bits up (or down if n < 0) | |
1005 | * eshup1 (ai) shift significand and guards up 1 bit | |
1006 | * eshup8 (ai) shift up 8 bits | |
1007 | * eshup6 (ai) shift up 16 bits | |
1008 | * esubm (ai, bi) subtract significands, bi = bi - ai | |
66b6d60b RS |
1009 | * eiisinf (ai) 1 if infinite |
1010 | * eiisnan (ai) 1 if a NaN | |
1011 | * einan (ai) set ai = NaN | |
1012 | * eiinfin (ai) set ai = infinity | |
985b6196 RS |
1013 | * |
1014 | * | |
1015 | * The result is always normalized and rounded to NI-4 word precision | |
1016 | * after each arithmetic operation. | |
1017 | * | |
66b6d60b RS |
1018 | * Exception flags are NOT fully supported. |
1019 | * | |
1020 | * Signaling NaN's are NOT supported; they are treated the same | |
1021 | * as quiet NaN's. | |
1022 | * | |
1023 | * Define INFINITY for support of infinity; otherwise a | |
985b6196 | 1024 | * saturation arithmetic is implemented. |
985b6196 | 1025 | * |
66b6d60b RS |
1026 | * Define NANS for support of Not-a-Number items; otherwise the |
1027 | * arithmetic will never produce a NaN output, and might be confused | |
1028 | * by a NaN input. | |
1029 | * If NaN's are supported, the output of `ecmp (a,b)' is -2 if | |
1030 | * either a or b is a NaN. This means asking `if (ecmp (a,b) < 0)' | |
1031 | * may not be legitimate. Use `if (ecmp (a,b) == -1)' for `less than' | |
1032 | * if in doubt. | |
985b6196 | 1033 | * |
66b6d60b RS |
1034 | * Denormals are always supported here where appropriate (e.g., not |
1035 | * for conversion to DEC numbers). | |
985b6196 | 1036 | * |
985b6196 RS |
1037 | */ |
1038 | ||
1039 | ||
1040 | /* mconf.h | |
1041 | * | |
1042 | * Common include file for math routines | |
1043 | * | |
1044 | * | |
1045 | * | |
1046 | * SYNOPSIS: | |
1047 | * | |
1048 | * #include "mconf.h" | |
1049 | * | |
1050 | * | |
1051 | * | |
1052 | * DESCRIPTION: | |
1053 | * | |
1054 | * This file contains definitions for error codes that are | |
1055 | * passed to the common error handling routine mtherr | |
1056 | * (which see). | |
1057 | * | |
1058 | * The file also includes a conditional assembly definition | |
1059 | * for the type of computer arithmetic (Intel IEEE, DEC, Motorola | |
1060 | * IEEE, or UNKnown). | |
1061 | * | |
1062 | * For Digital Equipment PDP-11 and VAX computers, certain | |
1063 | * IBM systems, and others that use numbers with a 56-bit | |
1064 | * significand, the symbol DEC should be defined. In this | |
1065 | * mode, most floating point constants are given as arrays | |
1066 | * of octal integers to eliminate decimal to binary conversion | |
1067 | * errors that might be introduced by the compiler. | |
1068 | * | |
1069 | * For computers, such as IBM PC, that follow the IEEE | |
1070 | * Standard for Binary Floating Point Arithmetic (ANSI/IEEE | |
1071 | * Std 754-1985), the symbol IBMPC or MIEEE should be defined. | |
1072 | * These numbers have 53-bit significands. In this mode, constants | |
1073 | * are provided as arrays of hexadecimal 16 bit integers. | |
1074 | * | |
1075 | * To accommodate other types of computer arithmetic, all | |
1076 | * constants are also provided in a normal decimal radix | |
1077 | * which one can hope are correctly converted to a suitable | |
1078 | * format by the available C language compiler. To invoke | |
1079 | * this mode, the symbol UNK is defined. | |
1080 | * | |
1081 | * An important difference among these modes is a predefined | |
1082 | * set of machine arithmetic constants for each. The numbers | |
1083 | * MACHEP (the machine roundoff error), MAXNUM (largest number | |
1084 | * represented), and several other parameters are preset by | |
1085 | * the configuration symbol. Check the file const.c to | |
1086 | * ensure that these values are correct for your computer. | |
1087 | * | |
1088 | * For ANSI C compatibility, define ANSIC equal to 1. Currently | |
1089 | * this affects only the atan2 function and others that use it. | |
1090 | */ | |
1091 | \f | |
e8650b8f | 1092 | /* Constant definitions for math error conditions. */ |
985b6196 RS |
1093 | |
1094 | #define DOMAIN 1 /* argument domain error */ | |
1095 | #define SING 2 /* argument singularity */ | |
1096 | #define OVERFLOW 3 /* overflow range error */ | |
1097 | #define UNDERFLOW 4 /* underflow range error */ | |
1098 | #define TLOSS 5 /* total loss of precision */ | |
1099 | #define PLOSS 6 /* partial loss of precision */ | |
66b6d60b | 1100 | #define INVALID 7 /* NaN-producing operation */ |
985b6196 | 1101 | |
985b6196 RS |
1102 | /* e type constants used by high precision check routines */ |
1103 | ||
1104 | /*include "ehead.h"*/ | |
1105 | /* 0.0 */ | |
1106 | unsigned EMUSHORT ezero[NE] = | |
1107 | { | |
1108 | 0, 0000000, 0000000, 0000000, 0000000, 0000000,}; | |
1109 | extern unsigned EMUSHORT ezero[]; | |
1110 | ||
1111 | /* 5.0E-1 */ | |
1112 | unsigned EMUSHORT ehalf[NE] = | |
1113 | { | |
1114 | 0, 0000000, 0000000, 0000000, 0100000, 0x3ffe,}; | |
1115 | extern unsigned EMUSHORT ehalf[]; | |
1116 | ||
1117 | /* 1.0E0 */ | |
1118 | unsigned EMUSHORT eone[NE] = | |
1119 | { | |
1120 | 0, 0000000, 0000000, 0000000, 0100000, 0x3fff,}; | |
1121 | extern unsigned EMUSHORT eone[]; | |
1122 | ||
1123 | /* 2.0E0 */ | |
1124 | unsigned EMUSHORT etwo[NE] = | |
1125 | { | |
1126 | 0, 0000000, 0000000, 0000000, 0100000, 0040000,}; | |
1127 | extern unsigned EMUSHORT etwo[]; | |
1128 | ||
1129 | /* 3.2E1 */ | |
1130 | unsigned EMUSHORT e32[NE] = | |
1131 | { | |
1132 | 0, 0000000, 0000000, 0000000, 0100000, 0040004,}; | |
1133 | extern unsigned EMUSHORT e32[]; | |
1134 | ||
1135 | /* 6.93147180559945309417232121458176568075500134360255E-1 */ | |
1136 | unsigned EMUSHORT elog2[NE] = | |
1137 | { | |
1138 | 0xc9e4, 0x79ab, 0150717, 0013767, 0130562, 0x3ffe,}; | |
1139 | extern unsigned EMUSHORT elog2[]; | |
1140 | ||
1141 | /* 1.41421356237309504880168872420969807856967187537695E0 */ | |
1142 | unsigned EMUSHORT esqrt2[NE] = | |
1143 | { | |
1144 | 0x597e, 0x6484, 0174736, 0171463, 0132404, 0x3fff,}; | |
1145 | extern unsigned EMUSHORT esqrt2[]; | |
1146 | ||
1147 | /* 2/sqrt (PI) = | |
1148 | * 1.12837916709551257389615890312154517168810125865800E0 */ | |
1149 | unsigned EMUSHORT eoneopi[NE] = | |
1150 | { | |
1151 | 0x71d5, 0x688d, 0012333, 0135202, 0110156, 0x3fff,}; | |
1152 | extern unsigned EMUSHORT eoneopi[]; | |
1153 | ||
1154 | /* 3.14159265358979323846264338327950288419716939937511E0 */ | |
1155 | unsigned EMUSHORT epi[NE] = | |
1156 | { | |
1157 | 0xc4c6, 0xc234, 0020550, 0155242, 0144417, 0040000,}; | |
1158 | extern unsigned EMUSHORT epi[]; | |
1159 | ||
1160 | /* 5.7721566490153286060651209008240243104215933593992E-1 */ | |
1161 | unsigned EMUSHORT eeul[NE] = | |
1162 | { | |
1163 | 0xd1be, 0xc7a4, 0076660, 0063743, 0111704, 0x3ffe,}; | |
1164 | extern unsigned EMUSHORT eeul[]; | |
1165 | ||
1166 | /* | |
1167 | include "ehead.h" | |
1168 | include "mconf.h" | |
1169 | */ | |
1170 | ||
1171 | ||
1172 | ||
1173 | /* Control register for rounding precision. | |
1174 | * This can be set to 80 (if NE=6), 64, 56, 53, or 24 bits. | |
1175 | */ | |
1176 | int rndprc = NBITS; | |
1177 | extern int rndprc; | |
1178 | ||
1179 | void eaddm (), esubm (), emdnorm (), asctoeg (); | |
1180 | static void toe24 (), toe53 (), toe64 (); | |
1181 | void eremain (), einit (), eiremain (); | |
1182 | int ecmpm (), edivm (), emulm (); | |
1183 | void emovi (), emovo (), emovz (), ecleaz (), ecleazs (), eadd1 (); | |
1184 | void etodec (), todec (), dectoe (); | |
1185 | ||
1186 | ||
1187 | ||
1188 | ||
1189 | void | |
1190 | einit () | |
1191 | { | |
1192 | } | |
1193 | ||
1194 | /* | |
1195 | ; Clear out entire external format number. | |
1196 | ; | |
1197 | ; unsigned EMUSHORT x[]; | |
1198 | ; eclear (x); | |
1199 | */ | |
1200 | ||
1201 | void | |
1202 | eclear (x) | |
1203 | register unsigned EMUSHORT *x; | |
1204 | { | |
1205 | register int i; | |
1206 | ||
1207 | for (i = 0; i < NE; i++) | |
1208 | *x++ = 0; | |
1209 | } | |
1210 | ||
1211 | ||
1212 | ||
1213 | /* Move external format number from a to b. | |
1214 | * | |
1215 | * emov (a, b); | |
1216 | */ | |
1217 | ||
1218 | void | |
1219 | emov (a, b) | |
1220 | register unsigned EMUSHORT *a, *b; | |
1221 | { | |
1222 | register int i; | |
1223 | ||
1224 | for (i = 0; i < NE; i++) | |
1225 | *b++ = *a++; | |
1226 | } | |
1227 | ||
1228 | ||
1229 | /* | |
1230 | ; Absolute value of external format number | |
1231 | ; | |
1232 | ; EMUSHORT x[NE]; | |
1233 | ; eabs (x); | |
1234 | */ | |
1235 | ||
1236 | void | |
1237 | eabs (x) | |
1238 | unsigned EMUSHORT x[]; /* x is the memory address of a short */ | |
1239 | { | |
1240 | ||
1241 | x[NE - 1] &= 0x7fff; /* sign is top bit of last word of external format */ | |
1242 | } | |
1243 | ||
1244 | ||
1245 | ||
1246 | ||
1247 | /* | |
1248 | ; Negate external format number | |
1249 | ; | |
1250 | ; unsigned EMUSHORT x[NE]; | |
1251 | ; eneg (x); | |
1252 | */ | |
1253 | ||
1254 | void | |
1255 | eneg (x) | |
1256 | unsigned EMUSHORT x[]; | |
1257 | { | |
1258 | ||
66b6d60b RS |
1259 | #ifdef NANS |
1260 | if (eisnan (x)) | |
1261 | return; | |
1262 | #endif | |
985b6196 RS |
1263 | x[NE - 1] ^= 0x8000; /* Toggle the sign bit */ |
1264 | } | |
1265 | ||
1266 | ||
1267 | ||
1268 | /* Return 1 if external format number is negative, | |
66b6d60b | 1269 | * else return zero, including when it is a NaN. |
985b6196 RS |
1270 | */ |
1271 | int | |
1272 | eisneg (x) | |
1273 | unsigned EMUSHORT x[]; | |
1274 | { | |
1275 | ||
66b6d60b RS |
1276 | #ifdef NANS |
1277 | if (eisnan (x)) | |
1278 | return (0); | |
1279 | #endif | |
985b6196 RS |
1280 | if (x[NE - 1] & 0x8000) |
1281 | return (1); | |
1282 | else | |
1283 | return (0); | |
1284 | } | |
1285 | ||
1286 | ||
66b6d60b | 1287 | /* Return 1 if external format number is infinity. |
985b6196 RS |
1288 | * else return zero. |
1289 | */ | |
1290 | int | |
1291 | eisinf (x) | |
1292 | unsigned EMUSHORT x[]; | |
1293 | { | |
1294 | ||
66b6d60b RS |
1295 | #ifdef NANS |
1296 | if (eisnan (x)) | |
1297 | return (0); | |
1298 | #endif | |
985b6196 RS |
1299 | if ((x[NE - 1] & 0x7fff) == 0x7fff) |
1300 | return (1); | |
1301 | else | |
1302 | return (0); | |
1303 | } | |
1304 | ||
1305 | ||
66b6d60b RS |
1306 | /* Check if e-type number is not a number. |
1307 | The bit pattern is one that we defined, so we know for sure how to | |
1308 | detect it. */ | |
1309 | ||
1310 | int | |
1311 | eisnan (x) | |
1312 | unsigned EMUSHORT x[]; | |
1313 | { | |
1314 | ||
1315 | #ifdef NANS | |
1316 | int i; | |
1317 | /* NaN has maximum exponent */ | |
1318 | if ((x[NE - 1] & 0x7fff) != 0x7fff) | |
1319 | return (0); | |
1320 | /* ... and non-zero significand field. */ | |
1321 | for (i = 0; i < NE - 1; i++) | |
1322 | { | |
1323 | if (*x++ != 0) | |
1324 | return (1); | |
1325 | } | |
1326 | #endif | |
1327 | return (0); | |
1328 | } | |
1329 | ||
1330 | /* Fill external format number with infinity pattern (IEEE) | |
dca821e1 RS |
1331 | or largest possible number (non-IEEE). |
1332 | Before calling einfin, you should either call eclear | |
1333 | or set up the sign bit by hand. */ | |
985b6196 RS |
1334 | |
1335 | void | |
1336 | einfin (x) | |
1337 | register unsigned EMUSHORT *x; | |
1338 | { | |
1339 | register int i; | |
1340 | ||
1341 | #ifdef INFINITY | |
1342 | for (i = 0; i < NE - 1; i++) | |
1343 | *x++ = 0; | |
1344 | *x |= 32767; | |
1345 | #else | |
1346 | for (i = 0; i < NE - 1; i++) | |
1347 | *x++ = 0xffff; | |
1348 | *x |= 32766; | |
1349 | if (rndprc < NBITS) | |
1350 | { | |
1351 | if (rndprc == 64) | |
1352 | { | |
1353 | *(x - 5) = 0; | |
1354 | } | |
1355 | if (rndprc == 53) | |
1356 | { | |
1357 | *(x - 4) = 0xf800; | |
1358 | } | |
1359 | else | |
1360 | { | |
1361 | *(x - 4) = 0; | |
1362 | *(x - 3) = 0; | |
1363 | *(x - 2) = 0xff00; | |
1364 | } | |
1365 | } | |
1366 | #endif | |
1367 | } | |
1368 | ||
1369 | ||
66b6d60b RS |
1370 | /* Output an e-type NaN. |
1371 | This generates Intel's quiet NaN pattern for extended real. | |
1372 | The exponent is 7fff, the leading mantissa word is c000. */ | |
1373 | ||
1374 | void | |
1375 | enan (x) | |
1376 | register unsigned EMUSHORT *x; | |
1377 | { | |
1378 | register int i; | |
1379 | ||
1380 | for (i = 0; i < NE - 2; i++) | |
1381 | *x++ = 0; | |
1382 | *x++ = 0xc000; | |
1383 | *x = 0x7fff; | |
1384 | } | |
1385 | ||
985b6196 RS |
1386 | |
1387 | /* Move in external format number, | |
1388 | * converting it to internal format. | |
1389 | */ | |
1390 | void | |
1391 | emovi (a, b) | |
1392 | unsigned EMUSHORT *a, *b; | |
1393 | { | |
1394 | register unsigned EMUSHORT *p, *q; | |
1395 | int i; | |
1396 | ||
1397 | q = b; | |
1398 | p = a + (NE - 1); /* point to last word of external number */ | |
1399 | /* get the sign bit */ | |
1400 | if (*p & 0x8000) | |
1401 | *q++ = 0xffff; | |
1402 | else | |
1403 | *q++ = 0; | |
1404 | /* get the exponent */ | |
1405 | *q = *p--; | |
1406 | *q++ &= 0x7fff; /* delete the sign bit */ | |
1407 | #ifdef INFINITY | |
1408 | if ((*(q - 1) & 0x7fff) == 0x7fff) | |
1409 | { | |
66b6d60b RS |
1410 | #ifdef NANS |
1411 | if (eisnan (a)) | |
1412 | { | |
1413 | *q++ = 0; | |
1414 | for (i = 3; i < NI; i++) | |
1415 | *q++ = *p--; | |
1416 | return; | |
1417 | } | |
1418 | #endif | |
985b6196 RS |
1419 | for (i = 2; i < NI; i++) |
1420 | *q++ = 0; | |
1421 | return; | |
1422 | } | |
1423 | #endif | |
1424 | /* clear high guard word */ | |
1425 | *q++ = 0; | |
1426 | /* move in the significand */ | |
1427 | for (i = 0; i < NE - 1; i++) | |
1428 | *q++ = *p--; | |
1429 | /* clear low guard word */ | |
1430 | *q = 0; | |
1431 | } | |
1432 | ||
1433 | ||
1434 | /* Move internal format number out, | |
1435 | * converting it to external format. | |
1436 | */ | |
1437 | void | |
1438 | emovo (a, b) | |
1439 | unsigned EMUSHORT *a, *b; | |
1440 | { | |
1441 | register unsigned EMUSHORT *p, *q; | |
1442 | unsigned EMUSHORT i; | |
1443 | ||
1444 | p = a; | |
1445 | q = b + (NE - 1); /* point to output exponent */ | |
1446 | /* combine sign and exponent */ | |
1447 | i = *p++; | |
1448 | if (i) | |
1449 | *q-- = *p++ | 0x8000; | |
1450 | else | |
1451 | *q-- = *p++; | |
1452 | #ifdef INFINITY | |
1453 | if (*(p - 1) == 0x7fff) | |
1454 | { | |
66b6d60b RS |
1455 | #ifdef NANS |
1456 | if (eiisnan (a)) | |
1457 | { | |
1458 | enan (b); | |
1459 | return; | |
1460 | } | |
1461 | #endif | |
985b6196 | 1462 | einfin (b); |
dca821e1 | 1463 | return; |
985b6196 RS |
1464 | } |
1465 | #endif | |
1466 | /* skip over guard word */ | |
1467 | ++p; | |
1468 | /* move the significand */ | |
1469 | for (i = 0; i < NE - 1; i++) | |
1470 | *q-- = *p++; | |
1471 | } | |
1472 | ||
1473 | ||
1474 | ||
1475 | ||
1476 | /* Clear out internal format number. | |
1477 | */ | |
1478 | ||
1479 | void | |
1480 | ecleaz (xi) | |
1481 | register unsigned EMUSHORT *xi; | |
1482 | { | |
1483 | register int i; | |
1484 | ||
1485 | for (i = 0; i < NI; i++) | |
1486 | *xi++ = 0; | |
1487 | } | |
1488 | ||
1489 | ||
1490 | /* same, but don't touch the sign. */ | |
1491 | ||
1492 | void | |
1493 | ecleazs (xi) | |
1494 | register unsigned EMUSHORT *xi; | |
1495 | { | |
1496 | register int i; | |
1497 | ||
1498 | ++xi; | |
1499 | for (i = 0; i < NI - 1; i++) | |
1500 | *xi++ = 0; | |
1501 | } | |
1502 | ||
1503 | ||
1504 | ||
1505 | /* Move internal format number from a to b. | |
1506 | */ | |
1507 | void | |
1508 | emovz (a, b) | |
1509 | register unsigned EMUSHORT *a, *b; | |
1510 | { | |
1511 | register int i; | |
1512 | ||
1513 | for (i = 0; i < NI - 1; i++) | |
1514 | *b++ = *a++; | |
1515 | /* clear low guard word */ | |
1516 | *b = 0; | |
1517 | } | |
1518 | ||
66b6d60b RS |
1519 | /* Generate internal format NaN. |
1520 | The explicit pattern for this is maximum exponent and | |
1521 | top two significand bits set. */ | |
1522 | ||
1523 | void | |
1524 | einan (x) | |
1525 | unsigned EMUSHORT x[]; | |
1526 | { | |
1527 | ||
1528 | ecleaz (x); | |
1529 | x[E] = 0x7fff; | |
1530 | x[M + 1] = 0xc000; | |
1531 | } | |
1532 | ||
1533 | /* Return nonzero if internal format number is a NaN. */ | |
1534 | ||
1535 | int | |
1536 | eiisnan (x) | |
1537 | unsigned EMUSHORT x[]; | |
1538 | { | |
1539 | int i; | |
1540 | ||
1541 | if ((x[E] & 0x7fff) == 0x7fff) | |
1542 | { | |
1543 | for (i = M + 1; i < NI; i++) | |
1544 | { | |
1545 | if (x[i] != 0) | |
1546 | return (1); | |
1547 | } | |
1548 | } | |
1549 | return (0); | |
1550 | } | |
1551 | ||
1552 | /* Fill internal format number with infinity pattern. | |
1553 | This has maximum exponent and significand all zeros. */ | |
1554 | ||
1555 | void | |
1556 | eiinfin (x) | |
1557 | unsigned EMUSHORT x[]; | |
1558 | { | |
1559 | ||
1560 | ecleaz (x); | |
1561 | x[E] = 0x7fff; | |
1562 | } | |
1563 | ||
1564 | /* Return nonzero if internal format number is infinite. */ | |
1565 | ||
1566 | int | |
1567 | eiisinf (x) | |
1568 | unsigned EMUSHORT x[]; | |
1569 | { | |
1570 | ||
1571 | #ifdef NANS | |
1572 | if (eiisnan (x)) | |
1573 | return (0); | |
1574 | #endif | |
1575 | if ((x[E] & 0x7fff) == 0x7fff) | |
1576 | return (1); | |
1577 | return (0); | |
1578 | } | |
1579 | ||
985b6196 RS |
1580 | |
1581 | /* | |
1582 | ; Compare significands of numbers in internal format. | |
1583 | ; Guard words are included in the comparison. | |
1584 | ; | |
1585 | ; unsigned EMUSHORT a[NI], b[NI]; | |
1586 | ; cmpm (a, b); | |
1587 | ; | |
1588 | ; for the significands: | |
1589 | ; returns +1 if a > b | |
1590 | ; 0 if a == b | |
1591 | ; -1 if a < b | |
1592 | */ | |
1593 | int | |
1594 | ecmpm (a, b) | |
1595 | register unsigned EMUSHORT *a, *b; | |
1596 | { | |
1597 | int i; | |
1598 | ||
1599 | a += M; /* skip up to significand area */ | |
1600 | b += M; | |
1601 | for (i = M; i < NI; i++) | |
1602 | { | |
1603 | if (*a++ != *b++) | |
1604 | goto difrnt; | |
1605 | } | |
1606 | return (0); | |
1607 | ||
1608 | difrnt: | |
1609 | if (*(--a) > *(--b)) | |
1610 | return (1); | |
1611 | else | |
1612 | return (-1); | |
1613 | } | |
1614 | ||
1615 | ||
1616 | /* | |
1617 | ; Shift significand down by 1 bit | |
1618 | */ | |
1619 | ||
1620 | void | |
1621 | eshdn1 (x) | |
1622 | register unsigned EMUSHORT *x; | |
1623 | { | |
1624 | register unsigned EMUSHORT bits; | |
1625 | int i; | |
1626 | ||
1627 | x += M; /* point to significand area */ | |
1628 | ||
1629 | bits = 0; | |
1630 | for (i = M; i < NI; i++) | |
1631 | { | |
1632 | if (*x & 1) | |
1633 | bits |= 1; | |
1634 | *x >>= 1; | |
1635 | if (bits & 2) | |
1636 | *x |= 0x8000; | |
1637 | bits <<= 1; | |
1638 | ++x; | |
1639 | } | |
1640 | } | |
1641 | ||
1642 | ||
1643 | ||
1644 | /* | |
1645 | ; Shift significand up by 1 bit | |
1646 | */ | |
1647 | ||
1648 | void | |
1649 | eshup1 (x) | |
1650 | register unsigned EMUSHORT *x; | |
1651 | { | |
1652 | register unsigned EMUSHORT bits; | |
1653 | int i; | |
1654 | ||
1655 | x += NI - 1; | |
1656 | bits = 0; | |
1657 | ||
1658 | for (i = M; i < NI; i++) | |
1659 | { | |
1660 | if (*x & 0x8000) | |
1661 | bits |= 1; | |
1662 | *x <<= 1; | |
1663 | if (bits & 2) | |
1664 | *x |= 1; | |
1665 | bits <<= 1; | |
1666 | --x; | |
1667 | } | |
1668 | } | |
1669 | ||
1670 | ||
1671 | ||
1672 | /* | |
1673 | ; Shift significand down by 8 bits | |
1674 | */ | |
1675 | ||
1676 | void | |
1677 | eshdn8 (x) | |
1678 | register unsigned EMUSHORT *x; | |
1679 | { | |
1680 | register unsigned EMUSHORT newbyt, oldbyt; | |
1681 | int i; | |
1682 | ||
1683 | x += M; | |
1684 | oldbyt = 0; | |
1685 | for (i = M; i < NI; i++) | |
1686 | { | |
1687 | newbyt = *x << 8; | |
1688 | *x >>= 8; | |
1689 | *x |= oldbyt; | |
1690 | oldbyt = newbyt; | |
1691 | ++x; | |
1692 | } | |
1693 | } | |
1694 | ||
1695 | /* | |
1696 | ; Shift significand up by 8 bits | |
1697 | */ | |
1698 | ||
1699 | void | |
1700 | eshup8 (x) | |
1701 | register unsigned EMUSHORT *x; | |
1702 | { | |
1703 | int i; | |
1704 | register unsigned EMUSHORT newbyt, oldbyt; | |
1705 | ||
1706 | x += NI - 1; | |
1707 | oldbyt = 0; | |
1708 | ||
1709 | for (i = M; i < NI; i++) | |
1710 | { | |
1711 | newbyt = *x >> 8; | |
1712 | *x <<= 8; | |
1713 | *x |= oldbyt; | |
1714 | oldbyt = newbyt; | |
1715 | --x; | |
1716 | } | |
1717 | } | |
1718 | ||
1719 | /* | |
1720 | ; Shift significand up by 16 bits | |
1721 | */ | |
1722 | ||
1723 | void | |
1724 | eshup6 (x) | |
1725 | register unsigned EMUSHORT *x; | |
1726 | { | |
1727 | int i; | |
1728 | register unsigned EMUSHORT *p; | |
1729 | ||
1730 | p = x + M; | |
1731 | x += M + 1; | |
1732 | ||
1733 | for (i = M; i < NI - 1; i++) | |
1734 | *p++ = *x++; | |
1735 | ||
1736 | *p = 0; | |
1737 | } | |
1738 | ||
1739 | /* | |
1740 | ; Shift significand down by 16 bits | |
1741 | */ | |
1742 | ||
1743 | void | |
1744 | eshdn6 (x) | |
1745 | register unsigned EMUSHORT *x; | |
1746 | { | |
1747 | int i; | |
1748 | register unsigned EMUSHORT *p; | |
1749 | ||
1750 | x += NI - 1; | |
1751 | p = x + 1; | |
1752 | ||
1753 | for (i = M; i < NI - 1; i++) | |
1754 | *(--p) = *(--x); | |
1755 | ||
1756 | *(--p) = 0; | |
1757 | } | |
1758 | \f | |
1759 | /* | |
1760 | ; Add significands | |
1761 | ; x + y replaces y | |
1762 | */ | |
1763 | ||
1764 | void | |
1765 | eaddm (x, y) | |
1766 | unsigned EMUSHORT *x, *y; | |
1767 | { | |
1768 | register unsigned EMULONG a; | |
1769 | int i; | |
1770 | unsigned int carry; | |
1771 | ||
1772 | x += NI - 1; | |
1773 | y += NI - 1; | |
1774 | carry = 0; | |
1775 | for (i = M; i < NI; i++) | |
1776 | { | |
1777 | a = (unsigned EMULONG) (*x) + (unsigned EMULONG) (*y) + carry; | |
1778 | if (a & 0x10000) | |
1779 | carry = 1; | |
1780 | else | |
1781 | carry = 0; | |
1782 | *y = (unsigned EMUSHORT) a; | |
1783 | --x; | |
1784 | --y; | |
1785 | } | |
1786 | } | |
1787 | ||
1788 | /* | |
1789 | ; Subtract significands | |
1790 | ; y - x replaces y | |
1791 | */ | |
1792 | ||
1793 | void | |
1794 | esubm (x, y) | |
1795 | unsigned EMUSHORT *x, *y; | |
1796 | { | |
1797 | unsigned EMULONG a; | |
1798 | int i; | |
1799 | unsigned int carry; | |
1800 | ||
1801 | x += NI - 1; | |
1802 | y += NI - 1; | |
1803 | carry = 0; | |
1804 | for (i = M; i < NI; i++) | |
1805 | { | |
1806 | a = (unsigned EMULONG) (*y) - (unsigned EMULONG) (*x) - carry; | |
1807 | if (a & 0x10000) | |
1808 | carry = 1; | |
1809 | else | |
1810 | carry = 0; | |
1811 | *y = (unsigned EMUSHORT) a; | |
1812 | --x; | |
1813 | --y; | |
1814 | } | |
1815 | } | |
1816 | ||
1817 | ||
1818 | /* Divide significands */ | |
1819 | ||
1820 | static unsigned EMUSHORT equot[NI]; | |
1821 | ||
1822 | int | |
1823 | edivm (den, num) | |
1824 | unsigned EMUSHORT den[], num[]; | |
1825 | { | |
1826 | int i; | |
1827 | register unsigned EMUSHORT *p, *q; | |
1828 | unsigned EMUSHORT j; | |
1829 | ||
1830 | p = &equot[0]; | |
1831 | *p++ = num[0]; | |
1832 | *p++ = num[1]; | |
1833 | ||
1834 | for (i = M; i < NI; i++) | |
1835 | { | |
1836 | *p++ = 0; | |
1837 | } | |
1838 | ||
1839 | /* Use faster compare and subtraction if denominator | |
1840 | * has only 15 bits of significance. | |
1841 | */ | |
1842 | p = &den[M + 2]; | |
1843 | if (*p++ == 0) | |
1844 | { | |
1845 | for (i = M + 3; i < NI; i++) | |
1846 | { | |
1847 | if (*p++ != 0) | |
1848 | goto fulldiv; | |
1849 | } | |
1850 | if ((den[M + 1] & 1) != 0) | |
1851 | goto fulldiv; | |
1852 | eshdn1 (num); | |
1853 | eshdn1 (den); | |
1854 | ||
1855 | p = &den[M + 1]; | |
1856 | q = &num[M + 1]; | |
1857 | ||
1858 | for (i = 0; i < NBITS + 2; i++) | |
1859 | { | |
1860 | if (*p <= *q) | |
1861 | { | |
1862 | *q -= *p; | |
1863 | j = 1; | |
1864 | } | |
1865 | else | |
1866 | { | |
1867 | j = 0; | |
1868 | } | |
1869 | eshup1 (equot); | |
1870 | equot[NI - 2] |= j; | |
1871 | eshup1 (num); | |
1872 | } | |
1873 | goto divdon; | |
1874 | } | |
1875 | ||
1876 | /* The number of quotient bits to calculate is | |
1877 | * NBITS + 1 scaling guard bit + 1 roundoff bit. | |
1878 | */ | |
1879 | fulldiv: | |
1880 | ||
1881 | p = &equot[NI - 2]; | |
1882 | for (i = 0; i < NBITS + 2; i++) | |
1883 | { | |
1884 | if (ecmpm (den, num) <= 0) | |
1885 | { | |
1886 | esubm (den, num); | |
1887 | j = 1; /* quotient bit = 1 */ | |
1888 | } | |
1889 | else | |
1890 | j = 0; | |
1891 | eshup1 (equot); | |
1892 | *p |= j; | |
1893 | eshup1 (num); | |
1894 | } | |
1895 | ||
1896 | divdon: | |
1897 | ||
1898 | eshdn1 (equot); | |
1899 | eshdn1 (equot); | |
1900 | ||
1901 | /* test for nonzero remainder after roundoff bit */ | |
1902 | p = &num[M]; | |
1903 | j = 0; | |
1904 | for (i = M; i < NI; i++) | |
1905 | { | |
1906 | j |= *p++; | |
1907 | } | |
1908 | if (j) | |
1909 | j = 1; | |
1910 | ||
1911 | ||
1912 | for (i = 0; i < NI; i++) | |
1913 | num[i] = equot[i]; | |
1914 | return ((int) j); | |
1915 | } | |
1916 | ||
1917 | ||
1918 | /* Multiply significands */ | |
1919 | int | |
1920 | emulm (a, b) | |
1921 | unsigned EMUSHORT a[], b[]; | |
1922 | { | |
1923 | unsigned EMUSHORT *p, *q; | |
1924 | int i, j, k; | |
1925 | ||
1926 | equot[0] = b[0]; | |
1927 | equot[1] = b[1]; | |
1928 | for (i = M; i < NI; i++) | |
1929 | equot[i] = 0; | |
1930 | ||
1931 | p = &a[NI - 2]; | |
1932 | k = NBITS; | |
1933 | while (*p == 0) /* significand is not supposed to be all zero */ | |
1934 | { | |
1935 | eshdn6 (a); | |
1936 | k -= 16; | |
1937 | } | |
1938 | if ((*p & 0xff) == 0) | |
1939 | { | |
1940 | eshdn8 (a); | |
1941 | k -= 8; | |
1942 | } | |
1943 | ||
1944 | q = &equot[NI - 1]; | |
1945 | j = 0; | |
1946 | for (i = 0; i < k; i++) | |
1947 | { | |
1948 | if (*p & 1) | |
1949 | eaddm (b, equot); | |
1950 | /* remember if there were any nonzero bits shifted out */ | |
1951 | if (*q & 1) | |
1952 | j |= 1; | |
1953 | eshdn1 (a); | |
1954 | eshdn1 (equot); | |
1955 | } | |
1956 | ||
1957 | for (i = 0; i < NI; i++) | |
1958 | b[i] = equot[i]; | |
1959 | ||
1960 | /* return flag for lost nonzero bits */ | |
1961 | return (j); | |
1962 | } | |
1963 | ||
1964 | ||
1965 | ||
1966 | /* | |
1967 | * Normalize and round off. | |
1968 | * | |
1969 | * The internal format number to be rounded is "s". | |
1970 | * Input "lost" indicates whether or not the number is exact. | |
1971 | * This is the so-called sticky bit. | |
1972 | * | |
1973 | * Input "subflg" indicates whether the number was obtained | |
1974 | * by a subtraction operation. In that case if lost is nonzero | |
1975 | * then the number is slightly smaller than indicated. | |
1976 | * | |
1977 | * Input "exp" is the biased exponent, which may be negative. | |
1978 | * the exponent field of "s" is ignored but is replaced by | |
1979 | * "exp" as adjusted by normalization and rounding. | |
1980 | * | |
1981 | * Input "rcntrl" is the rounding control. | |
1982 | */ | |
1983 | ||
1984 | static int rlast = -1; | |
1985 | static int rw = 0; | |
1986 | static unsigned EMUSHORT rmsk = 0; | |
1987 | static unsigned EMUSHORT rmbit = 0; | |
1988 | static unsigned EMUSHORT rebit = 0; | |
1989 | static int re = 0; | |
1990 | static unsigned EMUSHORT rbit[NI]; | |
1991 | ||
1992 | void | |
1993 | emdnorm (s, lost, subflg, exp, rcntrl) | |
1994 | unsigned EMUSHORT s[]; | |
1995 | int lost; | |
1996 | int subflg; | |
1997 | EMULONG exp; | |
1998 | int rcntrl; | |
1999 | { | |
2000 | int i, j; | |
2001 | unsigned EMUSHORT r; | |
2002 | ||
2003 | /* Normalize */ | |
2004 | j = enormlz (s); | |
2005 | ||
2006 | /* a blank significand could mean either zero or infinity. */ | |
2007 | #ifndef INFINITY | |
2008 | if (j > NBITS) | |
2009 | { | |
2010 | ecleazs (s); | |
2011 | return; | |
2012 | } | |
2013 | #endif | |
2014 | exp -= j; | |
2015 | #ifndef INFINITY | |
2016 | if (exp >= 32767L) | |
2017 | goto overf; | |
2018 | #else | |
2019 | if ((j > NBITS) && (exp < 32767)) | |
2020 | { | |
2021 | ecleazs (s); | |
2022 | return; | |
2023 | } | |
2024 | #endif | |
2025 | if (exp < 0L) | |
2026 | { | |
2027 | if (exp > (EMULONG) (-NBITS - 1)) | |
2028 | { | |
2029 | j = (int) exp; | |
2030 | i = eshift (s, j); | |
2031 | if (i) | |
2032 | lost = 1; | |
2033 | } | |
2034 | else | |
2035 | { | |
2036 | ecleazs (s); | |
2037 | return; | |
2038 | } | |
2039 | } | |
2040 | /* Round off, unless told not to by rcntrl. */ | |
2041 | if (rcntrl == 0) | |
2042 | goto mdfin; | |
2043 | /* Set up rounding parameters if the control register changed. */ | |
2044 | if (rndprc != rlast) | |
2045 | { | |
2046 | ecleaz (rbit); | |
2047 | switch (rndprc) | |
2048 | { | |
2049 | default: | |
2050 | case NBITS: | |
2051 | rw = NI - 1; /* low guard word */ | |
2052 | rmsk = 0xffff; | |
2053 | rmbit = 0x8000; | |
2054 | rbit[rw - 1] = 1; | |
2055 | re = NI - 2; | |
2056 | rebit = 1; | |
2057 | break; | |
2058 | case 64: | |
2059 | rw = 7; | |
2060 | rmsk = 0xffff; | |
2061 | rmbit = 0x8000; | |
2062 | rbit[rw - 1] = 1; | |
2063 | re = rw - 1; | |
2064 | rebit = 1; | |
2065 | break; | |
2066 | /* For DEC arithmetic */ | |
2067 | case 56: | |
2068 | rw = 6; | |
2069 | rmsk = 0xff; | |
2070 | rmbit = 0x80; | |
2071 | rbit[rw] = 0x100; | |
2072 | re = rw; | |
2073 | rebit = 0x100; | |
2074 | break; | |
2075 | case 53: | |
2076 | rw = 6; | |
2077 | rmsk = 0x7ff; | |
2078 | rmbit = 0x0400; | |
2079 | rbit[rw] = 0x800; | |
2080 | re = rw; | |
2081 | rebit = 0x800; | |
2082 | break; | |
2083 | case 24: | |
2084 | rw = 4; | |
2085 | rmsk = 0xff; | |
2086 | rmbit = 0x80; | |
2087 | rbit[rw] = 0x100; | |
2088 | re = rw; | |
2089 | rebit = 0x100; | |
2090 | break; | |
2091 | } | |
2092 | rlast = rndprc; | |
2093 | } | |
2094 | ||
2095 | if (rndprc >= 64) | |
2096 | { | |
2097 | r = s[rw] & rmsk; | |
2098 | if (rndprc == 64) | |
2099 | { | |
2100 | i = rw + 1; | |
2101 | while (i < NI) | |
2102 | { | |
2103 | if (s[i]) | |
2104 | r |= 1; | |
2105 | s[i] = 0; | |
2106 | ++i; | |
2107 | } | |
2108 | } | |
2109 | } | |
2110 | else | |
2111 | { | |
2112 | if (exp <= 0) | |
2113 | eshdn1 (s); | |
2114 | r = s[rw] & rmsk; | |
2115 | /* These tests assume NI = 8 */ | |
2116 | i = rw + 1; | |
2117 | while (i < NI) | |
2118 | { | |
2119 | if (s[i]) | |
2120 | r |= 1; | |
2121 | s[i] = 0; | |
2122 | ++i; | |
2123 | } | |
2124 | /* | |
2125 | if (rndprc == 24) | |
2126 | { | |
2127 | if (s[5] || s[6]) | |
2128 | r |= 1; | |
2129 | s[5] = 0; | |
2130 | s[6] = 0; | |
2131 | } | |
2132 | */ | |
2133 | s[rw] &= ~rmsk; | |
2134 | } | |
2135 | if ((r & rmbit) != 0) | |
2136 | { | |
2137 | if (r == rmbit) | |
2138 | { | |
2139 | if (lost == 0) | |
2140 | { /* round to even */ | |
2141 | if ((s[re] & rebit) == 0) | |
2142 | goto mddone; | |
2143 | } | |
2144 | else | |
2145 | { | |
2146 | if (subflg != 0) | |
2147 | goto mddone; | |
2148 | } | |
2149 | } | |
2150 | eaddm (rbit, s); | |
2151 | } | |
2152 | mddone: | |
2153 | if ((rndprc < 64) && (exp <= 0)) | |
2154 | { | |
2155 | eshup1 (s); | |
2156 | } | |
2157 | if (s[2] != 0) | |
2158 | { /* overflow on roundoff */ | |
2159 | eshdn1 (s); | |
2160 | exp += 1; | |
2161 | } | |
2162 | mdfin: | |
2163 | s[NI - 1] = 0; | |
2164 | if (exp >= 32767L) | |
2165 | { | |
2166 | #ifndef INFINITY | |
2167 | overf: | |
2168 | #endif | |
2169 | #ifdef INFINITY | |
2170 | s[1] = 32767; | |
2171 | for (i = 2; i < NI - 1; i++) | |
2172 | s[i] = 0; | |
64685ffa RS |
2173 | if (extra_warnings) |
2174 | warning ("floating point overflow"); | |
985b6196 RS |
2175 | #else |
2176 | s[1] = 32766; | |
2177 | s[2] = 0; | |
2178 | for (i = M + 1; i < NI - 1; i++) | |
2179 | s[i] = 0xffff; | |
2180 | s[NI - 1] = 0; | |
2181 | if (rndprc < 64) | |
2182 | { | |
2183 | s[rw] &= ~rmsk; | |
2184 | if (rndprc == 24) | |
2185 | { | |
2186 | s[5] = 0; | |
2187 | s[6] = 0; | |
2188 | } | |
2189 | } | |
2190 | #endif | |
2191 | return; | |
2192 | } | |
2193 | if (exp < 0) | |
2194 | s[1] = 0; | |
2195 | else | |
2196 | s[1] = (unsigned EMUSHORT) exp; | |
2197 | } | |
2198 | ||
2199 | ||
2200 | ||
2201 | /* | |
2202 | ; Subtract external format numbers. | |
2203 | ; | |
2204 | ; unsigned EMUSHORT a[NE], b[NE], c[NE]; | |
2205 | ; esub (a, b, c); c = b - a | |
2206 | */ | |
2207 | ||
2208 | static int subflg = 0; | |
2209 | ||
2210 | void | |
2211 | esub (a, b, c) | |
2212 | unsigned EMUSHORT *a, *b, *c; | |
2213 | { | |
2214 | ||
66b6d60b RS |
2215 | #ifdef NANS |
2216 | if (eisnan (a)) | |
2217 | { | |
2218 | emov (a, c); | |
2219 | return; | |
2220 | } | |
2221 | if (eisnan (b)) | |
2222 | { | |
2223 | emov (b, c); | |
2224 | return; | |
2225 | } | |
2226 | /* Infinity minus infinity is a NaN. | |
2227 | Test for subtracting infinities of the same sign. */ | |
2228 | if (eisinf (a) && eisinf (b) | |
2229 | && ((eisneg (a) ^ eisneg (b)) == 0)) | |
2230 | { | |
2231 | mtherr ("esub", INVALID); | |
2232 | enan (c); | |
2233 | return; | |
2234 | } | |
2235 | #endif | |
985b6196 RS |
2236 | subflg = 1; |
2237 | eadd1 (a, b, c); | |
2238 | } | |
2239 | ||
2240 | ||
2241 | /* | |
2242 | ; Add. | |
2243 | ; | |
2244 | ; unsigned EMUSHORT a[NE], b[NE], c[NE]; | |
2245 | ; eadd (a, b, c); c = b + a | |
2246 | */ | |
2247 | void | |
2248 | eadd (a, b, c) | |
2249 | unsigned EMUSHORT *a, *b, *c; | |
2250 | { | |
2251 | ||
66b6d60b RS |
2252 | #ifdef NANS |
2253 | /* NaN plus anything is a NaN. */ | |
2254 | if (eisnan (a)) | |
2255 | { | |
2256 | emov (a, c); | |
2257 | return; | |
2258 | } | |
2259 | if (eisnan (b)) | |
2260 | { | |
2261 | emov (b, c); | |
2262 | return; | |
2263 | } | |
2264 | /* Infinity minus infinity is a NaN. | |
2265 | Test for adding infinities of opposite signs. */ | |
2266 | if (eisinf (a) && eisinf (b) | |
2267 | && ((eisneg (a) ^ eisneg (b)) != 0)) | |
2268 | { | |
2269 | mtherr ("esub", INVALID); | |
2270 | enan (c); | |
2271 | return; | |
2272 | } | |
2273 | #endif | |
985b6196 RS |
2274 | subflg = 0; |
2275 | eadd1 (a, b, c); | |
2276 | } | |
2277 | ||
2278 | void | |
2279 | eadd1 (a, b, c) | |
2280 | unsigned EMUSHORT *a, *b, *c; | |
2281 | { | |
2282 | unsigned EMUSHORT ai[NI], bi[NI], ci[NI]; | |
2283 | int i, lost, j, k; | |
2284 | EMULONG lt, lta, ltb; | |
2285 | ||
2286 | #ifdef INFINITY | |
2287 | if (eisinf (a)) | |
2288 | { | |
2289 | emov (a, c); | |
2290 | if (subflg) | |
2291 | eneg (c); | |
2292 | return; | |
2293 | } | |
2294 | if (eisinf (b)) | |
2295 | { | |
2296 | emov (b, c); | |
2297 | return; | |
2298 | } | |
2299 | #endif | |
2300 | emovi (a, ai); | |
2301 | emovi (b, bi); | |
2302 | if (subflg) | |
2303 | ai[0] = ~ai[0]; | |
2304 | ||
2305 | /* compare exponents */ | |
2306 | lta = ai[E]; | |
2307 | ltb = bi[E]; | |
2308 | lt = lta - ltb; | |
2309 | if (lt > 0L) | |
2310 | { /* put the larger number in bi */ | |
2311 | emovz (bi, ci); | |
2312 | emovz (ai, bi); | |
2313 | emovz (ci, ai); | |
2314 | ltb = bi[E]; | |
2315 | lt = -lt; | |
2316 | } | |
2317 | lost = 0; | |
2318 | if (lt != 0L) | |
2319 | { | |
2320 | if (lt < (EMULONG) (-NBITS - 1)) | |
2321 | goto done; /* answer same as larger addend */ | |
2322 | k = (int) lt; | |
2323 | lost = eshift (ai, k); /* shift the smaller number down */ | |
2324 | } | |
2325 | else | |
2326 | { | |
2327 | /* exponents were the same, so must compare significands */ | |
2328 | i = ecmpm (ai, bi); | |
2329 | if (i == 0) | |
2330 | { /* the numbers are identical in magnitude */ | |
2331 | /* if different signs, result is zero */ | |
2332 | if (ai[0] != bi[0]) | |
2333 | { | |
2334 | eclear (c); | |
2335 | return; | |
2336 | } | |
2337 | /* if same sign, result is double */ | |
2338 | /* double denomalized tiny number */ | |
2339 | if ((bi[E] == 0) && ((bi[3] & 0x8000) == 0)) | |
2340 | { | |
2341 | eshup1 (bi); | |
2342 | goto done; | |
2343 | } | |
2344 | /* add 1 to exponent unless both are zero! */ | |
2345 | for (j = 1; j < NI - 1; j++) | |
2346 | { | |
2347 | if (bi[j] != 0) | |
2348 | { | |
2349 | /* This could overflow, but let emovo take care of that. */ | |
2350 | ltb += 1; | |
2351 | break; | |
2352 | } | |
2353 | } | |
2354 | bi[E] = (unsigned EMUSHORT) ltb; | |
2355 | goto done; | |
2356 | } | |
2357 | if (i > 0) | |
2358 | { /* put the larger number in bi */ | |
2359 | emovz (bi, ci); | |
2360 | emovz (ai, bi); | |
2361 | emovz (ci, ai); | |
2362 | } | |
2363 | } | |
2364 | if (ai[0] == bi[0]) | |
2365 | { | |
2366 | eaddm (ai, bi); | |
2367 | subflg = 0; | |
2368 | } | |
2369 | else | |
2370 | { | |
2371 | esubm (ai, bi); | |
2372 | subflg = 1; | |
2373 | } | |
2374 | emdnorm (bi, lost, subflg, ltb, 64); | |
2375 | ||
2376 | done: | |
2377 | emovo (bi, c); | |
2378 | } | |
2379 | ||
2380 | ||
2381 | ||
2382 | /* | |
2383 | ; Divide. | |
2384 | ; | |
2385 | ; unsigned EMUSHORT a[NE], b[NE], c[NE]; | |
2386 | ; ediv (a, b, c); c = b / a | |
2387 | */ | |
2388 | void | |
2389 | ediv (a, b, c) | |
2390 | unsigned EMUSHORT *a, *b, *c; | |
2391 | { | |
2392 | unsigned EMUSHORT ai[NI], bi[NI]; | |
2393 | int i; | |
2394 | EMULONG lt, lta, ltb; | |
2395 | ||
66b6d60b RS |
2396 | #ifdef NANS |
2397 | /* Return any NaN input. */ | |
2398 | if (eisnan (a)) | |
2399 | { | |
2400 | emov (a, c); | |
2401 | return; | |
2402 | } | |
2403 | if (eisnan (b)) | |
2404 | { | |
2405 | emov (b, c); | |
2406 | return; | |
2407 | } | |
2408 | /* Zero over zero, or infinity over infinity, is a NaN. */ | |
2409 | if (((ecmp (a, ezero) == 0) && (ecmp (b, ezero) == 0)) | |
2410 | || (eisinf (a) && eisinf (b))) | |
2411 | { | |
2412 | mtherr ("ediv", INVALID); | |
2413 | enan (c); | |
2414 | return; | |
2415 | } | |
2416 | #endif | |
2417 | /* Infinity over anything else is infinity. */ | |
985b6196 RS |
2418 | #ifdef INFINITY |
2419 | if (eisinf (b)) | |
2420 | { | |
2421 | if (eisneg (a) ^ eisneg (b)) | |
2422 | *(c + (NE - 1)) = 0x8000; | |
2423 | else | |
2424 | *(c + (NE - 1)) = 0; | |
2425 | einfin (c); | |
2426 | return; | |
2427 | } | |
66b6d60b | 2428 | /* Anything else over infinity is zero. */ |
985b6196 RS |
2429 | if (eisinf (a)) |
2430 | { | |
2431 | eclear (c); | |
2432 | return; | |
2433 | } | |
2434 | #endif | |
2435 | emovi (a, ai); | |
2436 | emovi (b, bi); | |
2437 | lta = ai[E]; | |
2438 | ltb = bi[E]; | |
2439 | if (bi[E] == 0) | |
2440 | { /* See if numerator is zero. */ | |
2441 | for (i = 1; i < NI - 1; i++) | |
2442 | { | |
2443 | if (bi[i] != 0) | |
2444 | { | |
2445 | ltb -= enormlz (bi); | |
2446 | goto dnzro1; | |
2447 | } | |
2448 | } | |
2449 | eclear (c); | |
2450 | return; | |
2451 | } | |
2452 | dnzro1: | |
2453 | ||
2454 | if (ai[E] == 0) | |
2455 | { /* possible divide by zero */ | |
2456 | for (i = 1; i < NI - 1; i++) | |
2457 | { | |
2458 | if (ai[i] != 0) | |
2459 | { | |
2460 | lta -= enormlz (ai); | |
2461 | goto dnzro2; | |
2462 | } | |
2463 | } | |
2464 | if (ai[0] == bi[0]) | |
2465 | *(c + (NE - 1)) = 0; | |
2466 | else | |
2467 | *(c + (NE - 1)) = 0x8000; | |
66b6d60b RS |
2468 | /* Divide by zero is not an invalid operation. |
2469 | It is a divide-by-zero operation! */ | |
985b6196 RS |
2470 | einfin (c); |
2471 | mtherr ("ediv", SING); | |
2472 | return; | |
2473 | } | |
2474 | dnzro2: | |
2475 | ||
2476 | i = edivm (ai, bi); | |
2477 | /* calculate exponent */ | |
2478 | lt = ltb - lta + EXONE; | |
2479 | emdnorm (bi, i, 0, lt, 64); | |
2480 | /* set the sign */ | |
2481 | if (ai[0] == bi[0]) | |
2482 | bi[0] = 0; | |
2483 | else | |
2484 | bi[0] = 0Xffff; | |
2485 | emovo (bi, c); | |
2486 | } | |
2487 | ||
2488 | ||
2489 | ||
2490 | /* | |
2491 | ; Multiply. | |
2492 | ; | |
2493 | ; unsigned EMUSHORT a[NE], b[NE], c[NE]; | |
2494 | ; emul (a, b, c); c = b * a | |
2495 | */ | |
2496 | void | |
2497 | emul (a, b, c) | |
2498 | unsigned EMUSHORT *a, *b, *c; | |
2499 | { | |
2500 | unsigned EMUSHORT ai[NI], bi[NI]; | |
2501 | int i, j; | |
2502 | EMULONG lt, lta, ltb; | |
2503 | ||
66b6d60b RS |
2504 | #ifdef NANS |
2505 | /* NaN times anything is the same NaN. */ | |
2506 | if (eisnan (a)) | |
2507 | { | |
2508 | emov (a, c); | |
2509 | return; | |
2510 | } | |
2511 | if (eisnan (b)) | |
2512 | { | |
2513 | emov (b, c); | |
2514 | return; | |
2515 | } | |
2516 | /* Zero times infinity is a NaN. */ | |
2517 | if ((eisinf (a) && (ecmp (b, ezero) == 0)) | |
2518 | || (eisinf (b) && (ecmp (a, ezero) == 0))) | |
2519 | { | |
2520 | mtherr ("emul", INVALID); | |
2521 | enan (c); | |
2522 | return; | |
2523 | } | |
2524 | #endif | |
2525 | /* Infinity times anything else is infinity. */ | |
985b6196 RS |
2526 | #ifdef INFINITY |
2527 | if (eisinf (a) || eisinf (b)) | |
2528 | { | |
2529 | if (eisneg (a) ^ eisneg (b)) | |
2530 | *(c + (NE - 1)) = 0x8000; | |
2531 | else | |
2532 | *(c + (NE - 1)) = 0; | |
2533 | einfin (c); | |
2534 | return; | |
2535 | } | |
2536 | #endif | |
2537 | emovi (a, ai); | |
2538 | emovi (b, bi); | |
2539 | lta = ai[E]; | |
2540 | ltb = bi[E]; | |
2541 | if (ai[E] == 0) | |
2542 | { | |
2543 | for (i = 1; i < NI - 1; i++) | |
2544 | { | |
2545 | if (ai[i] != 0) | |
2546 | { | |
2547 | lta -= enormlz (ai); | |
2548 | goto mnzer1; | |
2549 | } | |
2550 | } | |
2551 | eclear (c); | |
2552 | return; | |
2553 | } | |
2554 | mnzer1: | |
2555 | ||
2556 | if (bi[E] == 0) | |
2557 | { | |
2558 | for (i = 1; i < NI - 1; i++) | |
2559 | { | |
2560 | if (bi[i] != 0) | |
2561 | { | |
2562 | ltb -= enormlz (bi); | |
2563 | goto mnzer2; | |
2564 | } | |
2565 | } | |
2566 | eclear (c); | |
2567 | return; | |
2568 | } | |
2569 | mnzer2: | |
2570 | ||
2571 | /* Multiply significands */ | |
2572 | j = emulm (ai, bi); | |
2573 | /* calculate exponent */ | |
2574 | lt = lta + ltb - (EXONE - 1); | |
2575 | emdnorm (bi, j, 0, lt, 64); | |
2576 | /* calculate sign of product */ | |
2577 | if (ai[0] == bi[0]) | |
2578 | bi[0] = 0; | |
2579 | else | |
2580 | bi[0] = 0xffff; | |
2581 | emovo (bi, c); | |
2582 | } | |
2583 | ||
2584 | ||
2585 | ||
2586 | ||
2587 | /* | |
2588 | ; Convert IEEE double precision to e type | |
2589 | ; double d; | |
2590 | ; unsigned EMUSHORT x[N+2]; | |
2591 | ; e53toe (&d, x); | |
2592 | */ | |
2593 | void | |
66b6d60b RS |
2594 | e53toe (pe, y) |
2595 | unsigned EMUSHORT *pe, *y; | |
985b6196 RS |
2596 | { |
2597 | #ifdef DEC | |
2598 | ||
66b6d60b | 2599 | dectoe (pe, y); /* see etodec.c */ |
985b6196 RS |
2600 | |
2601 | #else | |
2602 | ||
2603 | register unsigned EMUSHORT r; | |
66b6d60b | 2604 | register unsigned EMUSHORT *e, *p; |
985b6196 RS |
2605 | unsigned EMUSHORT yy[NI]; |
2606 | int denorm, k; | |
2607 | ||
66b6d60b | 2608 | e = pe; |
985b6196 RS |
2609 | denorm = 0; /* flag if denormalized number */ |
2610 | ecleaz (yy); | |
2611 | #ifdef IBMPC | |
2612 | e += 3; | |
2613 | #endif | |
2614 | r = *e; | |
2615 | yy[0] = 0; | |
2616 | if (r & 0x8000) | |
2617 | yy[0] = 0xffff; | |
2618 | yy[M] = (r & 0x0f) | 0x10; | |
2619 | r &= ~0x800f; /* strip sign and 4 significand bits */ | |
2620 | #ifdef INFINITY | |
2621 | if (r == 0x7ff0) | |
2622 | { | |
66b6d60b RS |
2623 | #ifdef NANS |
2624 | #ifdef IBMPC | |
2625 | if (((pe[3] & 0xf) != 0) || (pe[2] != 0) | |
2626 | || (pe[1] != 0) || (pe[0] != 0)) | |
2627 | { | |
2628 | enan (y); | |
2629 | return; | |
2630 | } | |
2631 | #else | |
2632 | if (((pe[0] & 0xf) != 0) || (pe[1] != 0) | |
2633 | || (pe[2] != 0) || (pe[3] != 0)) | |
2634 | { | |
2635 | enan (y); | |
2636 | return; | |
2637 | } | |
2638 | #endif | |
2639 | #endif /* NANS */ | |
dca821e1 | 2640 | eclear (y); |
985b6196 | 2641 | einfin (y); |
dca821e1 | 2642 | if (yy[0]) |
985b6196 RS |
2643 | eneg (y); |
2644 | return; | |
2645 | } | |
66b6d60b | 2646 | #endif /* INFINITY */ |
985b6196 RS |
2647 | r >>= 4; |
2648 | /* If zero exponent, then the significand is denormalized. | |
2649 | * So, take back the understood high significand bit. */ | |
2650 | if (r == 0) | |
2651 | { | |
2652 | denorm = 1; | |
2653 | yy[M] &= ~0x10; | |
2654 | } | |
2655 | r += EXONE - 01777; | |
2656 | yy[E] = r; | |
2657 | p = &yy[M + 1]; | |
2658 | #ifdef IBMPC | |
2659 | *p++ = *(--e); | |
2660 | *p++ = *(--e); | |
2661 | *p++ = *(--e); | |
2662 | #endif | |
2663 | #ifdef MIEEE | |
2664 | ++e; | |
2665 | *p++ = *e++; | |
2666 | *p++ = *e++; | |
2667 | *p++ = *e++; | |
2668 | #endif | |
64685ffa | 2669 | eshift (yy, -5); |
985b6196 RS |
2670 | if (denorm) |
2671 | { /* if zero exponent, then normalize the significand */ | |
2672 | if ((k = enormlz (yy)) > NBITS) | |
2673 | ecleazs (yy); | |
2674 | else | |
2675 | yy[E] -= (unsigned EMUSHORT) (k - 1); | |
2676 | } | |
2677 | emovo (yy, y); | |
2678 | #endif /* not DEC */ | |
2679 | } | |
2680 | ||
2681 | void | |
66b6d60b RS |
2682 | e64toe (pe, y) |
2683 | unsigned EMUSHORT *pe, *y; | |
985b6196 RS |
2684 | { |
2685 | unsigned EMUSHORT yy[NI]; | |
66b6d60b | 2686 | unsigned EMUSHORT *e, *p, *q; |
985b6196 RS |
2687 | int i; |
2688 | ||
66b6d60b | 2689 | e = pe; |
985b6196 RS |
2690 | p = yy; |
2691 | for (i = 0; i < NE - 5; i++) | |
2692 | *p++ = 0; | |
2693 | #ifdef IBMPC | |
2694 | for (i = 0; i < 5; i++) | |
2695 | *p++ = *e++; | |
2696 | #endif | |
2697 | #ifdef DEC | |
2698 | for (i = 0; i < 5; i++) | |
2699 | *p++ = *e++; | |
2700 | #endif | |
2701 | #ifdef MIEEE | |
2702 | p = &yy[0] + (NE - 1); | |
2703 | *p-- = *e++; | |
2704 | ++e; | |
2705 | for (i = 0; i < 4; i++) | |
2706 | *p-- = *e++; | |
2707 | #endif | |
2708 | p = yy; | |
2709 | q = y; | |
2710 | #ifdef INFINITY | |
2711 | if (*p == 0x7fff) | |
2712 | { | |
66b6d60b RS |
2713 | #ifdef NANS |
2714 | #ifdef IBMPC | |
2715 | for (i = 0; i < 4; i++) | |
2716 | { | |
2717 | if (pe[i] != 0) | |
2718 | { | |
2719 | enan (y); | |
2720 | return; | |
2721 | } | |
2722 | } | |
2723 | #else | |
2724 | for (i = 1; i <= 4; i++) | |
2725 | { | |
2726 | if (pe[i] != 0) | |
2727 | { | |
2728 | enan (y); | |
2729 | return; | |
2730 | } | |
2731 | } | |
2732 | #endif | |
2733 | #endif /* NANS */ | |
dca821e1 | 2734 | eclear (y); |
985b6196 RS |
2735 | einfin (y); |
2736 | if (*p & 0x8000) | |
2737 | eneg (y); | |
2738 | return; | |
2739 | } | |
66b6d60b | 2740 | #endif /* INFINITY */ |
985b6196 RS |
2741 | for (i = 0; i < NE; i++) |
2742 | *q++ = *p++; | |
2743 | } | |
2744 | ||
2745 | ||
2746 | /* | |
2747 | ; Convert IEEE single precision to e type | |
2748 | ; float d; | |
2749 | ; unsigned EMUSHORT x[N+2]; | |
2750 | ; dtox (&d, x); | |
2751 | */ | |
2752 | void | |
66b6d60b RS |
2753 | e24toe (pe, y) |
2754 | unsigned EMUSHORT *pe, *y; | |
985b6196 RS |
2755 | { |
2756 | register unsigned EMUSHORT r; | |
66b6d60b | 2757 | register unsigned EMUSHORT *e, *p; |
985b6196 RS |
2758 | unsigned EMUSHORT yy[NI]; |
2759 | int denorm, k; | |
2760 | ||
66b6d60b | 2761 | e = pe; |
985b6196 RS |
2762 | denorm = 0; /* flag if denormalized number */ |
2763 | ecleaz (yy); | |
2764 | #ifdef IBMPC | |
2765 | e += 1; | |
2766 | #endif | |
2767 | #ifdef DEC | |
2768 | e += 1; | |
2769 | #endif | |
2770 | r = *e; | |
2771 | yy[0] = 0; | |
2772 | if (r & 0x8000) | |
2773 | yy[0] = 0xffff; | |
2774 | yy[M] = (r & 0x7f) | 0200; | |
2775 | r &= ~0x807f; /* strip sign and 7 significand bits */ | |
2776 | #ifdef INFINITY | |
2777 | if (r == 0x7f80) | |
2778 | { | |
66b6d60b RS |
2779 | #ifdef NANS |
2780 | #ifdef MIEEE | |
2781 | if (((pe[0] & 0x7f) != 0) || (pe[1] != 0)) | |
2782 | { | |
2783 | enan (y); | |
2784 | return; | |
2785 | } | |
2786 | #else | |
2787 | if (((pe[1] & 0x7f) != 0) || (pe[0] != 0)) | |
2788 | { | |
2789 | enan (y); | |
2790 | return; | |
2791 | } | |
2792 | #endif | |
2793 | #endif /* NANS */ | |
dca821e1 | 2794 | eclear (y); |
985b6196 | 2795 | einfin (y); |
dca821e1 | 2796 | if (yy[0]) |
985b6196 RS |
2797 | eneg (y); |
2798 | return; | |
2799 | } | |
66b6d60b | 2800 | #endif /* INFINITY */ |
985b6196 RS |
2801 | r >>= 7; |
2802 | /* If zero exponent, then the significand is denormalized. | |
2803 | * So, take back the understood high significand bit. */ | |
2804 | if (r == 0) | |
2805 | { | |
2806 | denorm = 1; | |
2807 | yy[M] &= ~0200; | |
2808 | } | |
2809 | r += EXONE - 0177; | |
2810 | yy[E] = r; | |
2811 | p = &yy[M + 1]; | |
2812 | #ifdef IBMPC | |
2813 | *p++ = *(--e); | |
2814 | #endif | |
2815 | #ifdef DEC | |
2816 | *p++ = *(--e); | |
2817 | #endif | |
2818 | #ifdef MIEEE | |
2819 | ++e; | |
2820 | *p++ = *e++; | |
2821 | #endif | |
64685ffa | 2822 | eshift (yy, -8); |
985b6196 RS |
2823 | if (denorm) |
2824 | { /* if zero exponent, then normalize the significand */ | |
2825 | if ((k = enormlz (yy)) > NBITS) | |
2826 | ecleazs (yy); | |
2827 | else | |
2828 | yy[E] -= (unsigned EMUSHORT) (k - 1); | |
2829 | } | |
2830 | emovo (yy, y); | |
2831 | } | |
2832 | ||
2833 | ||
2834 | void | |
2835 | etoe64 (x, e) | |
2836 | unsigned EMUSHORT *x, *e; | |
2837 | { | |
2838 | unsigned EMUSHORT xi[NI]; | |
2839 | EMULONG exp; | |
2840 | int rndsav; | |
2841 | ||
66b6d60b RS |
2842 | #ifdef NANS |
2843 | if (eisnan (x)) | |
2844 | { | |
2845 | make_nan (e, XFmode); | |
2846 | return; | |
2847 | } | |
2848 | #endif | |
985b6196 RS |
2849 | emovi (x, xi); |
2850 | /* adjust exponent for offset */ | |
2851 | exp = (EMULONG) xi[E]; | |
2852 | #ifdef INFINITY | |
2853 | if (eisinf (x)) | |
2854 | goto nonorm; | |
2855 | #endif | |
2856 | /* round off to nearest or even */ | |
2857 | rndsav = rndprc; | |
2858 | rndprc = 64; | |
2859 | emdnorm (xi, 0, 0, exp, 64); | |
2860 | rndprc = rndsav; | |
2861 | nonorm: | |
2862 | toe64 (xi, e); | |
2863 | } | |
2864 | ||
2865 | /* move out internal format to ieee long double */ | |
2866 | static void | |
2867 | toe64 (a, b) | |
2868 | unsigned EMUSHORT *a, *b; | |
2869 | { | |
2870 | register unsigned EMUSHORT *p, *q; | |
2871 | unsigned EMUSHORT i; | |
2872 | ||
66b6d60b RS |
2873 | #ifdef NANS |
2874 | if (eiisnan (a)) | |
2875 | { | |
2876 | make_nan (b, XFmode); | |
2877 | return; | |
2878 | } | |
2879 | #endif | |
985b6196 RS |
2880 | p = a; |
2881 | #ifdef MIEEE | |
2882 | q = b; | |
2883 | #else | |
2884 | q = b + 4; /* point to output exponent */ | |
2885 | #if LONG_DOUBLE_TYPE_SIZE == 96 | |
2886 | /* Clear the last two bytes of 12-byte Intel format */ | |
2887 | *(q+1) = 0; | |
2888 | #endif | |
2889 | #endif | |
2890 | ||
2891 | /* combine sign and exponent */ | |
2892 | i = *p++; | |
2893 | #ifdef MIEEE | |
2894 | if (i) | |
2895 | *q++ = *p++ | 0x8000; | |
2896 | else | |
2897 | *q++ = *p++; | |
2898 | *q++ = 0; | |
2899 | #else | |
2900 | if (i) | |
2901 | *q-- = *p++ | 0x8000; | |
2902 | else | |
2903 | *q-- = *p++; | |
2904 | #endif | |
2905 | /* skip over guard word */ | |
2906 | ++p; | |
2907 | /* move the significand */ | |
2908 | #ifdef MIEEE | |
2909 | for (i = 0; i < 4; i++) | |
2910 | *q++ = *p++; | |
2911 | #else | |
2912 | for (i = 0; i < 4; i++) | |
2913 | *q-- = *p++; | |
2914 | #endif | |
2915 | } | |
2916 | ||
2917 | ||
2918 | /* | |
2919 | ; e type to IEEE double precision | |
2920 | ; double d; | |
2921 | ; unsigned EMUSHORT x[NE]; | |
2922 | ; etoe53 (x, &d); | |
2923 | */ | |
2924 | ||
2925 | #ifdef DEC | |
2926 | ||
2927 | void | |
2928 | etoe53 (x, e) | |
2929 | unsigned EMUSHORT *x, *e; | |
2930 | { | |
2931 | etodec (x, e); /* see etodec.c */ | |
2932 | } | |
2933 | ||
2934 | static void | |
2935 | toe53 (x, y) | |
2936 | unsigned EMUSHORT *x, *y; | |
2937 | { | |
2938 | todec (x, y); | |
2939 | } | |
2940 | ||
2941 | #else | |
2942 | ||
2943 | void | |
2944 | etoe53 (x, e) | |
2945 | unsigned EMUSHORT *x, *e; | |
2946 | { | |
2947 | unsigned EMUSHORT xi[NI]; | |
2948 | EMULONG exp; | |
2949 | int rndsav; | |
2950 | ||
66b6d60b RS |
2951 | #ifdef NANS |
2952 | if (eisnan (x)) | |
2953 | { | |
2954 | make_nan (e, DFmode); | |
2955 | return; | |
2956 | } | |
2957 | #endif | |
985b6196 RS |
2958 | emovi (x, xi); |
2959 | /* adjust exponent for offsets */ | |
2960 | exp = (EMULONG) xi[E] - (EXONE - 0x3ff); | |
2961 | #ifdef INFINITY | |
2962 | if (eisinf (x)) | |
2963 | goto nonorm; | |
2964 | #endif | |
2965 | /* round off to nearest or even */ | |
2966 | rndsav = rndprc; | |
2967 | rndprc = 53; | |
2968 | emdnorm (xi, 0, 0, exp, 64); | |
2969 | rndprc = rndsav; | |
2970 | nonorm: | |
2971 | toe53 (xi, e); | |
2972 | } | |
2973 | ||
2974 | ||
2975 | static void | |
2976 | toe53 (x, y) | |
2977 | unsigned EMUSHORT *x, *y; | |
2978 | { | |
2979 | unsigned EMUSHORT i; | |
2980 | unsigned EMUSHORT *p; | |
2981 | ||
66b6d60b RS |
2982 | #ifdef NANS |
2983 | if (eiisnan (x)) | |
2984 | { | |
2985 | make_nan (y, DFmode); | |
2986 | return; | |
2987 | } | |
2988 | #endif | |
985b6196 RS |
2989 | p = &x[0]; |
2990 | #ifdef IBMPC | |
2991 | y += 3; | |
2992 | #endif | |
2993 | *y = 0; /* output high order */ | |
2994 | if (*p++) | |
2995 | *y = 0x8000; /* output sign bit */ | |
2996 | ||
2997 | i = *p++; | |
2998 | if (i >= (unsigned int) 2047) | |
2999 | { /* Saturate at largest number less than infinity. */ | |
3000 | #ifdef INFINITY | |
3001 | *y |= 0x7ff0; | |
3002 | #ifdef IBMPC | |
3003 | *(--y) = 0; | |
3004 | *(--y) = 0; | |
3005 | *(--y) = 0; | |
3006 | #endif | |
3007 | #ifdef MIEEE | |
3008 | ++y; | |
3009 | *y++ = 0; | |
3010 | *y++ = 0; | |
3011 | *y++ = 0; | |
3012 | #endif | |
3013 | #else | |
3014 | *y |= (unsigned EMUSHORT) 0x7fef; | |
3015 | #ifdef IBMPC | |
3016 | *(--y) = 0xffff; | |
3017 | *(--y) = 0xffff; | |
3018 | *(--y) = 0xffff; | |
3019 | #endif | |
3020 | #ifdef MIEEE | |
3021 | ++y; | |
3022 | *y++ = 0xffff; | |
3023 | *y++ = 0xffff; | |
3024 | *y++ = 0xffff; | |
3025 | #endif | |
3026 | #endif | |
3027 | return; | |
3028 | } | |
3029 | if (i == 0) | |
3030 | { | |
64685ffa | 3031 | eshift (x, 4); |
985b6196 RS |
3032 | } |
3033 | else | |
3034 | { | |
3035 | i <<= 4; | |
64685ffa | 3036 | eshift (x, 5); |
985b6196 RS |
3037 | } |
3038 | i |= *p++ & (unsigned EMUSHORT) 0x0f; /* *p = xi[M] */ | |
3039 | *y |= (unsigned EMUSHORT) i; /* high order output already has sign bit set */ | |
3040 | #ifdef IBMPC | |
3041 | *(--y) = *p++; | |
3042 | *(--y) = *p++; | |
3043 | *(--y) = *p; | |
3044 | #endif | |
3045 | #ifdef MIEEE | |
3046 | ++y; | |
3047 | *y++ = *p++; | |
3048 | *y++ = *p++; | |
3049 | *y++ = *p++; | |
3050 | #endif | |
3051 | } | |
3052 | ||
3053 | #endif /* not DEC */ | |
3054 | ||
3055 | ||
3056 | ||
3057 | /* | |
3058 | ; e type to IEEE single precision | |
3059 | ; float d; | |
3060 | ; unsigned EMUSHORT x[N+2]; | |
3061 | ; xtod (x, &d); | |
3062 | */ | |
3063 | void | |
3064 | etoe24 (x, e) | |
3065 | unsigned EMUSHORT *x, *e; | |
3066 | { | |
3067 | EMULONG exp; | |
3068 | unsigned EMUSHORT xi[NI]; | |
3069 | int rndsav; | |
3070 | ||
66b6d60b RS |
3071 | #ifdef NANS |
3072 | if (eisnan (x)) | |
3073 | { | |
3074 | make_nan (e, SFmode); | |
3075 | return; | |
3076 | } | |
3077 | #endif | |
985b6196 RS |
3078 | emovi (x, xi); |
3079 | /* adjust exponent for offsets */ | |
3080 | exp = (EMULONG) xi[E] - (EXONE - 0177); | |
3081 | #ifdef INFINITY | |
3082 | if (eisinf (x)) | |
3083 | goto nonorm; | |
3084 | #endif | |
3085 | /* round off to nearest or even */ | |
3086 | rndsav = rndprc; | |
3087 | rndprc = 24; | |
3088 | emdnorm (xi, 0, 0, exp, 64); | |
3089 | rndprc = rndsav; | |
3090 | nonorm: | |
3091 | toe24 (xi, e); | |
3092 | } | |
3093 | ||
3094 | static void | |
3095 | toe24 (x, y) | |
3096 | unsigned EMUSHORT *x, *y; | |
3097 | { | |
3098 | unsigned EMUSHORT i; | |
3099 | unsigned EMUSHORT *p; | |
3100 | ||
66b6d60b RS |
3101 | #ifdef NANS |
3102 | if (eiisnan (x)) | |
3103 | { | |
3104 | make_nan (y, SFmode); | |
3105 | return; | |
3106 | } | |
3107 | #endif | |
985b6196 RS |
3108 | p = &x[0]; |
3109 | #ifdef IBMPC | |
3110 | y += 1; | |
3111 | #endif | |
3112 | #ifdef DEC | |
3113 | y += 1; | |
3114 | #endif | |
3115 | *y = 0; /* output high order */ | |
3116 | if (*p++) | |
3117 | *y = 0x8000; /* output sign bit */ | |
3118 | ||
3119 | i = *p++; | |
64685ffa | 3120 | /* Handle overflow cases. */ |
985b6196 | 3121 | if (i >= 255) |
64685ffa | 3122 | { |
985b6196 RS |
3123 | #ifdef INFINITY |
3124 | *y |= (unsigned EMUSHORT) 0x7f80; | |
3125 | #ifdef IBMPC | |
3126 | *(--y) = 0; | |
3127 | #endif | |
3128 | #ifdef DEC | |
3129 | *(--y) = 0; | |
3130 | #endif | |
3131 | #ifdef MIEEE | |
3132 | ++y; | |
3133 | *y = 0; | |
3134 | #endif | |
64685ffa | 3135 | #else /* no INFINITY */ |
985b6196 RS |
3136 | *y |= (unsigned EMUSHORT) 0x7f7f; |
3137 | #ifdef IBMPC | |
3138 | *(--y) = 0xffff; | |
3139 | #endif | |
3140 | #ifdef DEC | |
3141 | *(--y) = 0xffff; | |
3142 | #endif | |
3143 | #ifdef MIEEE | |
3144 | ++y; | |
3145 | *y = 0xffff; | |
3146 | #endif | |
64685ffa RS |
3147 | #ifdef ERANGE |
3148 | errno = ERANGE; | |
985b6196 | 3149 | #endif |
64685ffa | 3150 | #endif /* no INFINITY */ |
985b6196 RS |
3151 | return; |
3152 | } | |
3153 | if (i == 0) | |
3154 | { | |
64685ffa | 3155 | eshift (x, 7); |
985b6196 RS |
3156 | } |
3157 | else | |
3158 | { | |
3159 | i <<= 7; | |
64685ffa | 3160 | eshift (x, 8); |
985b6196 RS |
3161 | } |
3162 | i |= *p++ & (unsigned EMUSHORT) 0x7f; /* *p = xi[M] */ | |
3163 | *y |= i; /* high order output already has sign bit set */ | |
3164 | #ifdef IBMPC | |
3165 | *(--y) = *p; | |
3166 | #endif | |
3167 | #ifdef DEC | |
3168 | *(--y) = *p; | |
3169 | #endif | |
3170 | #ifdef MIEEE | |
3171 | ++y; | |
3172 | *y = *p; | |
3173 | #endif | |
3174 | } | |
3175 | ||
3176 | ||
3177 | /* Compare two e type numbers. | |
3178 | * | |
3179 | * unsigned EMUSHORT a[NE], b[NE]; | |
3180 | * ecmp (a, b); | |
3181 | * | |
3182 | * returns +1 if a > b | |
3183 | * 0 if a == b | |
3184 | * -1 if a < b | |
66b6d60b | 3185 | * -2 if either a or b is a NaN. |
985b6196 RS |
3186 | */ |
3187 | int | |
3188 | ecmp (a, b) | |
3189 | unsigned EMUSHORT *a, *b; | |
3190 | { | |
3191 | unsigned EMUSHORT ai[NI], bi[NI]; | |
3192 | register unsigned EMUSHORT *p, *q; | |
3193 | register int i; | |
3194 | int msign; | |
3195 | ||
66b6d60b RS |
3196 | #ifdef NANS |
3197 | if (eisnan (a) || eisnan (b)) | |
3198 | return (-2); | |
3199 | #endif | |
985b6196 RS |
3200 | emovi (a, ai); |
3201 | p = ai; | |
3202 | emovi (b, bi); | |
3203 | q = bi; | |
3204 | ||
3205 | if (*p != *q) | |
3206 | { /* the signs are different */ | |
3207 | /* -0 equals + 0 */ | |
3208 | for (i = 1; i < NI - 1; i++) | |
3209 | { | |
3210 | if (ai[i] != 0) | |
3211 | goto nzro; | |
3212 | if (bi[i] != 0) | |
3213 | goto nzro; | |
3214 | } | |
3215 | return (0); | |
3216 | nzro: | |
3217 | if (*p == 0) | |
3218 | return (1); | |
3219 | else | |
3220 | return (-1); | |
3221 | } | |
3222 | /* both are the same sign */ | |
3223 | if (*p == 0) | |
3224 | msign = 1; | |
3225 | else | |
3226 | msign = -1; | |
3227 | i = NI - 1; | |
3228 | do | |
3229 | { | |
3230 | if (*p++ != *q++) | |
3231 | { | |
3232 | goto diff; | |
3233 | } | |
3234 | } | |
3235 | while (--i > 0); | |
3236 | ||
3237 | return (0); /* equality */ | |
3238 | ||
3239 | ||
3240 | ||
3241 | diff: | |
3242 | ||
3243 | if (*(--p) > *(--q)) | |
3244 | return (msign); /* p is bigger */ | |
3245 | else | |
3246 | return (-msign); /* p is littler */ | |
3247 | } | |
3248 | ||
3249 | ||
3250 | ||
3251 | ||
3252 | /* Find nearest integer to x = floor (x + 0.5) | |
3253 | * | |
3254 | * unsigned EMUSHORT x[NE], y[NE] | |
3255 | * eround (x, y); | |
3256 | */ | |
3257 | void | |
3258 | eround (x, y) | |
3259 | unsigned EMUSHORT *x, *y; | |
3260 | { | |
3261 | eadd (ehalf, x, y); | |
3262 | efloor (y, y); | |
3263 | } | |
3264 | ||
3265 | ||
3266 | ||
3267 | ||
3268 | /* | |
3269 | ; convert long integer to e type | |
3270 | ; | |
3271 | ; long l; | |
3272 | ; unsigned EMUSHORT x[NE]; | |
3273 | ; ltoe (&l, x); | |
3274 | ; note &l is the memory address of l | |
3275 | */ | |
3276 | void | |
3277 | ltoe (lp, y) | |
3278 | long *lp; /* lp is the memory address of a long integer */ | |
3279 | unsigned EMUSHORT *y; /* y is the address of a short */ | |
3280 | { | |
3281 | unsigned EMUSHORT yi[NI]; | |
3282 | unsigned long ll; | |
3283 | int k; | |
3284 | ||
3285 | ecleaz (yi); | |
3286 | if (*lp < 0) | |
3287 | { | |
3288 | /* make it positive */ | |
3289 | ll = (unsigned long) (-(*lp)); | |
3290 | yi[0] = 0xffff; /* put correct sign in the e type number */ | |
3291 | } | |
3292 | else | |
3293 | { | |
3294 | ll = (unsigned long) (*lp); | |
3295 | } | |
3296 | /* move the long integer to yi significand area */ | |
3297 | yi[M] = (unsigned EMUSHORT) (ll >> 16); | |
3298 | yi[M + 1] = (unsigned EMUSHORT) ll; | |
3299 | ||
3300 | yi[E] = EXONE + 15; /* exponent if normalize shift count were 0 */ | |
3301 | if ((k = enormlz (yi)) > NBITS)/* normalize the significand */ | |
3302 | ecleaz (yi); /* it was zero */ | |
3303 | else | |
3304 | yi[E] -= (unsigned EMUSHORT) k;/* subtract shift count from exponent */ | |
3305 | emovo (yi, y); /* output the answer */ | |
3306 | } | |
3307 | ||
3308 | /* | |
3309 | ; convert unsigned long integer to e type | |
3310 | ; | |
3311 | ; unsigned long l; | |
3312 | ; unsigned EMUSHORT x[NE]; | |
3313 | ; ltox (&l, x); | |
3314 | ; note &l is the memory address of l | |
3315 | */ | |
3316 | void | |
3317 | ultoe (lp, y) | |
3318 | unsigned long *lp; /* lp is the memory address of a long integer */ | |
3319 | unsigned EMUSHORT *y; /* y is the address of a short */ | |
3320 | { | |
3321 | unsigned EMUSHORT yi[NI]; | |
3322 | unsigned long ll; | |
3323 | int k; | |
3324 | ||
3325 | ecleaz (yi); | |
3326 | ll = *lp; | |
3327 | ||
3328 | /* move the long integer to ayi significand area */ | |
3329 | yi[M] = (unsigned EMUSHORT) (ll >> 16); | |
3330 | yi[M + 1] = (unsigned EMUSHORT) ll; | |
3331 | ||
3332 | yi[E] = EXONE + 15; /* exponent if normalize shift count were 0 */ | |
3333 | if ((k = enormlz (yi)) > NBITS)/* normalize the significand */ | |
3334 | ecleaz (yi); /* it was zero */ | |
3335 | else | |
3336 | yi[E] -= (unsigned EMUSHORT) k; /* subtract shift count from exponent */ | |
3337 | emovo (yi, y); /* output the answer */ | |
3338 | } | |
3339 | ||
3340 | ||
3341 | /* | |
3342 | ; Find long integer and fractional parts | |
3343 | ||
3344 | ; long i; | |
3345 | ; unsigned EMUSHORT x[NE], frac[NE]; | |
3346 | ; xifrac (x, &i, frac); | |
3347 | ||
3348 | The integer output has the sign of the input. The fraction is | |
3349 | the positive fractional part of abs (x). | |
3350 | */ | |
3351 | void | |
3352 | eifrac (x, i, frac) | |
3353 | unsigned EMUSHORT *x; | |
3354 | long *i; | |
3355 | unsigned EMUSHORT *frac; | |
3356 | { | |
3357 | unsigned EMUSHORT xi[NI]; | |
3358 | int k; | |
3359 | ||
3360 | emovi (x, xi); | |
3361 | k = (int) xi[E] - (EXONE - 1); | |
3362 | if (k <= 0) | |
3363 | { | |
3364 | /* if exponent <= 0, integer = 0 and real output is fraction */ | |
3365 | *i = 0L; | |
3366 | emovo (xi, frac); | |
3367 | return; | |
3368 | } | |
3369 | if (k > (HOST_BITS_PER_LONG - 1)) | |
3370 | { | |
3371 | /* | |
3372 | ; long integer overflow: output large integer | |
3373 | ; and correct fraction | |
3374 | */ | |
3375 | if (xi[0]) | |
3376 | *i = ((unsigned long) 1) << (HOST_BITS_PER_LONG - 1); | |
3377 | else | |
3378 | *i = (((unsigned long) 1) << (HOST_BITS_PER_LONG - 1)) - 1; | |
64685ffa RS |
3379 | eshift (xi, k); |
3380 | if (extra_warnings) | |
3381 | warning ("overflow on truncation to integer"); | |
985b6196 RS |
3382 | goto lab11; |
3383 | } | |
3384 | ||
3385 | if (k > 16) | |
3386 | { | |
3387 | /* | |
3388 | ; shift more than 16 bits: shift up k-16, output the integer, | |
3389 | ; then complete the shift to get the fraction. | |
3390 | */ | |
3391 | k -= 16; | |
64685ffa | 3392 | eshift (xi, k); |
985b6196 RS |
3393 | |
3394 | *i = (long) (((unsigned long) xi[M] << 16) | xi[M + 1]); | |
3395 | eshup6 (xi); | |
3396 | goto lab10; | |
3397 | } | |
3398 | ||
3399 | /* shift not more than 16 bits */ | |
64685ffa | 3400 | eshift (xi, k); |
985b6196 RS |
3401 | *i = (long) xi[M] & 0xffff; |
3402 | ||
3403 | lab10: | |
3404 | ||
3405 | if (xi[0]) | |
3406 | *i = -(*i); | |
3407 | lab11: | |
3408 | ||
3409 | xi[0] = 0; | |
3410 | xi[E] = EXONE - 1; | |
3411 | xi[M] = 0; | |
3412 | if ((k = enormlz (xi)) > NBITS) | |
3413 | ecleaz (xi); | |
3414 | else | |
3415 | xi[E] -= (unsigned EMUSHORT) k; | |
3416 | ||
3417 | emovo (xi, frac); | |
3418 | } | |
3419 | ||
3420 | ||
3421 | /* | |
3422 | ; Find unsigned long integer and fractional parts | |
3423 | ||
3424 | ; unsigned long i; | |
3425 | ; unsigned EMUSHORT x[NE], frac[NE]; | |
3426 | ; xifrac (x, &i, frac); | |
3427 | ||
3428 | A negative e type input yields integer output = 0 | |
3429 | but correct fraction. | |
3430 | */ | |
3431 | void | |
3432 | euifrac (x, i, frac) | |
3433 | unsigned EMUSHORT *x; | |
3434 | long *i; | |
3435 | unsigned EMUSHORT *frac; | |
3436 | { | |
3437 | unsigned EMUSHORT xi[NI]; | |
3438 | int k; | |
3439 | ||
3440 | emovi (x, xi); | |
3441 | k = (int) xi[E] - (EXONE - 1); | |
3442 | if (k <= 0) | |
3443 | { | |
3444 | /* if exponent <= 0, integer = 0 and argument is fraction */ | |
3445 | *i = 0L; | |
3446 | emovo (xi, frac); | |
3447 | return; | |
3448 | } | |
3449 | if (k > 32) | |
3450 | { | |
3451 | /* | |
3452 | ; long integer overflow: output large integer | |
3453 | ; and correct fraction | |
3454 | */ | |
3455 | *i = ~(0L); | |
64685ffa RS |
3456 | eshift (xi, k); |
3457 | if (extra_warnings) | |
3458 | warning ("overflow on truncation to unsigned integer"); | |
985b6196 RS |
3459 | goto lab10; |
3460 | } | |
3461 | ||
3462 | if (k > 16) | |
3463 | { | |
3464 | /* | |
3465 | ; shift more than 16 bits: shift up k-16, output the integer, | |
3466 | ; then complete the shift to get the fraction. | |
3467 | */ | |
3468 | k -= 16; | |
64685ffa | 3469 | eshift (xi, k); |
985b6196 RS |
3470 | |
3471 | *i = (long) (((unsigned long) xi[M] << 16) | xi[M + 1]); | |
3472 | eshup6 (xi); | |
3473 | goto lab10; | |
3474 | } | |
3475 | ||
3476 | /* shift not more than 16 bits */ | |
64685ffa | 3477 | eshift (xi, k); |
985b6196 RS |
3478 | *i = (long) xi[M] & 0xffff; |
3479 | ||
3480 | lab10: | |
3481 | ||
3482 | if (xi[0]) | |
3483 | *i = 0L; | |
3484 | ||
3485 | xi[0] = 0; | |
3486 | xi[E] = EXONE - 1; | |
3487 | xi[M] = 0; | |
3488 | if ((k = enormlz (xi)) > NBITS) | |
3489 | ecleaz (xi); | |
3490 | else | |
3491 | xi[E] -= (unsigned EMUSHORT) k; | |
3492 | ||
3493 | emovo (xi, frac); | |
3494 | } | |
3495 | ||
3496 | ||
3497 | ||
3498 | /* | |
3499 | ; Shift significand | |
3500 | ; | |
3501 | ; Shifts significand area up or down by the number of bits | |
3502 | ; given by the variable sc. | |
3503 | */ | |
3504 | int | |
3505 | eshift (x, sc) | |
3506 | unsigned EMUSHORT *x; | |
3507 | int sc; | |
3508 | { | |
3509 | unsigned EMUSHORT lost; | |
3510 | unsigned EMUSHORT *p; | |
3511 | ||
3512 | if (sc == 0) | |
3513 | return (0); | |
3514 | ||
3515 | lost = 0; | |
3516 | p = x + NI - 1; | |
3517 | ||
3518 | if (sc < 0) | |
3519 | { | |
3520 | sc = -sc; | |
3521 | while (sc >= 16) | |
3522 | { | |
3523 | lost |= *p; /* remember lost bits */ | |
3524 | eshdn6 (x); | |
3525 | sc -= 16; | |
3526 | } | |
3527 | ||
3528 | while (sc >= 8) | |
3529 | { | |
3530 | lost |= *p & 0xff; | |
3531 | eshdn8 (x); | |
3532 | sc -= 8; | |
3533 | } | |
3534 | ||
3535 | while (sc > 0) | |
3536 | { | |
3537 | lost |= *p & 1; | |
3538 | eshdn1 (x); | |
3539 | sc -= 1; | |
3540 | } | |
3541 | } | |
3542 | else | |
3543 | { | |
3544 | while (sc >= 16) | |
3545 | { | |
3546 | eshup6 (x); | |
3547 | sc -= 16; | |
3548 | } | |
3549 | ||
3550 | while (sc >= 8) | |
3551 | { | |
3552 | eshup8 (x); | |
3553 | sc -= 8; | |
3554 | } | |
3555 | ||
3556 | while (sc > 0) | |
3557 | { | |
3558 | eshup1 (x); | |
3559 | sc -= 1; | |
3560 | } | |
3561 | } | |
3562 | if (lost) | |
3563 | lost = 1; | |
3564 | return ((int) lost); | |
3565 | } | |
3566 | ||
3567 | ||
3568 | ||
3569 | /* | |
3570 | ; normalize | |
3571 | ; | |
3572 | ; Shift normalizes the significand area pointed to by argument | |
3573 | ; shift count (up = positive) is returned. | |
3574 | */ | |
3575 | int | |
3576 | enormlz (x) | |
3577 | unsigned EMUSHORT x[]; | |
3578 | { | |
3579 | register unsigned EMUSHORT *p; | |
3580 | int sc; | |
3581 | ||
3582 | sc = 0; | |
3583 | p = &x[M]; | |
3584 | if (*p != 0) | |
3585 | goto normdn; | |
3586 | ++p; | |
3587 | if (*p & 0x8000) | |
3588 | return (0); /* already normalized */ | |
3589 | while (*p == 0) | |
3590 | { | |
3591 | eshup6 (x); | |
3592 | sc += 16; | |
3593 | /* With guard word, there are NBITS+16 bits available. | |
3594 | * return true if all are zero. | |
3595 | */ | |
3596 | if (sc > NBITS) | |
3597 | return (sc); | |
3598 | } | |
3599 | /* see if high byte is zero */ | |
3600 | while ((*p & 0xff00) == 0) | |
3601 | { | |
3602 | eshup8 (x); | |
3603 | sc += 8; | |
3604 | } | |
3605 | /* now shift 1 bit at a time */ | |
3606 | while ((*p & 0x8000) == 0) | |
3607 | { | |
3608 | eshup1 (x); | |
3609 | sc += 1; | |
3610 | if (sc > NBITS) | |
3611 | { | |
3612 | mtherr ("enormlz", UNDERFLOW); | |
3613 | return (sc); | |
3614 | } | |
3615 | } | |
3616 | return (sc); | |
3617 | ||
3618 | /* Normalize by shifting down out of the high guard word | |
3619 | of the significand */ | |
3620 | normdn: | |
3621 | ||
3622 | if (*p & 0xff00) | |
3623 | { | |
3624 | eshdn8 (x); | |
3625 | sc -= 8; | |
3626 | } | |
3627 | while (*p != 0) | |
3628 | { | |
3629 | eshdn1 (x); | |
3630 | sc -= 1; | |
3631 | ||
3632 | if (sc < -NBITS) | |
3633 | { | |
3634 | mtherr ("enormlz", OVERFLOW); | |
3635 | return (sc); | |
3636 | } | |
3637 | } | |
3638 | return (sc); | |
3639 | } | |
3640 | ||
3641 | ||
3642 | ||
3643 | ||
3644 | /* Convert e type number to decimal format ASCII string. | |
3645 | * The constants are for 64 bit precision. | |
3646 | */ | |
3647 | ||
3648 | #define NTEN 12 | |
3649 | #define MAXP 4096 | |
3650 | ||
3651 | static unsigned EMUSHORT etens[NTEN + 1][NE] = | |
3652 | { | |
3653 | {0xc94c, 0x979a, 0x8a20, 0x5202, 0xc460, 0x7525,}, /* 10**4096 */ | |
3654 | {0xa74d, 0x5de4, 0xc53d, 0x3b5d, 0x9e8b, 0x5a92,}, /* 10**2048 */ | |
3655 | {0x650d, 0x0c17, 0x8175, 0x7586, 0xc976, 0x4d48,}, | |
3656 | {0xcc65, 0x91c6, 0xa60e, 0xa0ae, 0xe319, 0x46a3,}, | |
3657 | {0xddbc, 0xde8d, 0x9df9, 0xebfb, 0xaa7e, 0x4351,}, | |
3658 | {0xc66f, 0x8cdf, 0x80e9, 0x47c9, 0x93ba, 0x41a8,}, | |
3659 | {0x3cbf, 0xa6d5, 0xffcf, 0x1f49, 0xc278, 0x40d3,}, | |
3660 | {0xf020, 0xb59d, 0x2b70, 0xada8, 0x9dc5, 0x4069,}, | |
3661 | {0x0000, 0x0000, 0x0400, 0xc9bf, 0x8e1b, 0x4034,}, | |
3662 | {0x0000, 0x0000, 0x0000, 0x2000, 0xbebc, 0x4019,}, | |
3663 | {0x0000, 0x0000, 0x0000, 0x0000, 0x9c40, 0x400c,}, | |
3664 | {0x0000, 0x0000, 0x0000, 0x0000, 0xc800, 0x4005,}, | |
3665 | {0x0000, 0x0000, 0x0000, 0x0000, 0xa000, 0x4002,}, /* 10**1 */ | |
3666 | }; | |
3667 | ||
3668 | static unsigned EMUSHORT emtens[NTEN + 1][NE] = | |
3669 | { | |
3670 | {0x2de4, 0x9fde, 0xd2ce, 0x04c8, 0xa6dd, 0x0ad8,}, /* 10**-4096 */ | |
3671 | {0x4925, 0x2de4, 0x3436, 0x534f, 0xceae, 0x256b,}, /* 10**-2048 */ | |
3672 | {0x87a6, 0xc0bd, 0xda57, 0x82a5, 0xa2a6, 0x32b5,}, | |
3673 | {0x7133, 0xd21c, 0xdb23, 0xee32, 0x9049, 0x395a,}, | |
3674 | {0xfa91, 0x1939, 0x637a, 0x4325, 0xc031, 0x3cac,}, | |
3675 | {0xac7d, 0xe4a0, 0x64bc, 0x467c, 0xddd0, 0x3e55,}, | |
3676 | {0x3f24, 0xe9a5, 0xa539, 0xea27, 0xa87f, 0x3f2a,}, | |
3677 | {0x67de, 0x94ba, 0x4539, 0x1ead, 0xcfb1, 0x3f94,}, | |
3678 | {0x4c2f, 0xe15b, 0xc44d, 0x94be, 0xe695, 0x3fc9,}, | |
3679 | {0xfdc2, 0xcefc, 0x8461, 0x7711, 0xabcc, 0x3fe4,}, | |
3680 | {0xd3c3, 0x652b, 0xe219, 0x1758, 0xd1b7, 0x3ff1,}, | |
3681 | {0x3d71, 0xd70a, 0x70a3, 0x0a3d, 0xa3d7, 0x3ff8,}, | |
3682 | {0xcccd, 0xcccc, 0xcccc, 0xcccc, 0xcccc, 0x3ffb,}, /* 10**-1 */ | |
3683 | }; | |
3684 | ||
3685 | void | |
3686 | e24toasc (x, string, ndigs) | |
3687 | unsigned EMUSHORT x[]; | |
3688 | char *string; | |
3689 | int ndigs; | |
3690 | { | |
3691 | unsigned EMUSHORT w[NI]; | |
3692 | ||
985b6196 RS |
3693 | e24toe (x, w); |
3694 | etoasc (w, string, ndigs); | |
3695 | } | |
3696 | ||
3697 | ||
3698 | void | |
3699 | e53toasc (x, string, ndigs) | |
3700 | unsigned EMUSHORT x[]; | |
3701 | char *string; | |
3702 | int ndigs; | |
3703 | { | |
3704 | unsigned EMUSHORT w[NI]; | |
3705 | ||
985b6196 RS |
3706 | e53toe (x, w); |
3707 | etoasc (w, string, ndigs); | |
3708 | } | |
3709 | ||
3710 | ||
3711 | void | |
3712 | e64toasc (x, string, ndigs) | |
3713 | unsigned EMUSHORT x[]; | |
3714 | char *string; | |
3715 | int ndigs; | |
3716 | { | |
3717 | unsigned EMUSHORT w[NI]; | |
3718 | ||
985b6196 RS |
3719 | e64toe (x, w); |
3720 | etoasc (w, string, ndigs); | |
3721 | } | |
3722 | ||
3723 | ||
3724 | static char wstring[80]; /* working storage for ASCII output */ | |
3725 | ||
3726 | void | |
3727 | etoasc (x, string, ndigs) | |
3728 | unsigned EMUSHORT x[]; | |
3729 | char *string; | |
3730 | int ndigs; | |
3731 | { | |
3732 | EMUSHORT digit; | |
3733 | unsigned EMUSHORT y[NI], t[NI], u[NI], w[NI]; | |
3734 | unsigned EMUSHORT *p, *r, *ten; | |
3735 | unsigned EMUSHORT sign; | |
3736 | int i, j, k, expon, rndsav; | |
3737 | char *s, *ss; | |
3738 | unsigned EMUSHORT m; | |
3739 | ||
66b6d60b RS |
3740 | |
3741 | rndsav = rndprc; | |
985b6196 RS |
3742 | ss = string; |
3743 | s = wstring; | |
66b6d60b RS |
3744 | *ss = '\0'; |
3745 | *s = '\0'; | |
3746 | #ifdef NANS | |
3747 | if (eisnan (x)) | |
3748 | { | |
3749 | sprintf (wstring, " NaN "); | |
3750 | goto bxit; | |
3751 | } | |
3752 | #endif | |
985b6196 RS |
3753 | rndprc = NBITS; /* set to full precision */ |
3754 | emov (x, y); /* retain external format */ | |
3755 | if (y[NE - 1] & 0x8000) | |
3756 | { | |
3757 | sign = 0xffff; | |
3758 | y[NE - 1] &= 0x7fff; | |
3759 | } | |
3760 | else | |
3761 | { | |
3762 | sign = 0; | |
3763 | } | |
3764 | expon = 0; | |
3765 | ten = &etens[NTEN][0]; | |
3766 | emov (eone, t); | |
3767 | /* Test for zero exponent */ | |
3768 | if (y[NE - 1] == 0) | |
3769 | { | |
3770 | for (k = 0; k < NE - 1; k++) | |
3771 | { | |
3772 | if (y[k] != 0) | |
3773 | goto tnzro; /* denormalized number */ | |
3774 | } | |
3775 | goto isone; /* legal all zeros */ | |
3776 | } | |
3777 | tnzro: | |
3778 | ||
66b6d60b | 3779 | /* Test for infinity. */ |
985b6196 RS |
3780 | if (y[NE - 1] == 0x7fff) |
3781 | { | |
3782 | if (sign) | |
3783 | sprintf (wstring, " -Infinity "); | |
3784 | else | |
3785 | sprintf (wstring, " Infinity "); | |
3786 | goto bxit; | |
3787 | } | |
3788 | ||
3789 | /* Test for exponent nonzero but significand denormalized. | |
3790 | * This is an error condition. | |
3791 | */ | |
3792 | if ((y[NE - 1] != 0) && ((y[NE - 2] & 0x8000) == 0)) | |
3793 | { | |
3794 | mtherr ("etoasc", DOMAIN); | |
3795 | sprintf (wstring, "NaN"); | |
3796 | goto bxit; | |
3797 | } | |
3798 | ||
3799 | /* Compare to 1.0 */ | |
3800 | i = ecmp (eone, y); | |
3801 | if (i == 0) | |
3802 | goto isone; | |
3803 | ||
66b6d60b RS |
3804 | if (i == -2) |
3805 | abort (); | |
3806 | ||
985b6196 RS |
3807 | if (i < 0) |
3808 | { /* Number is greater than 1 */ | |
3809 | /* Convert significand to an integer and strip trailing decimal zeros. */ | |
3810 | emov (y, u); | |
3811 | u[NE - 1] = EXONE + NBITS - 1; | |
3812 | ||
3813 | p = &etens[NTEN - 4][0]; | |
3814 | m = 16; | |
3815 | do | |
3816 | { | |
3817 | ediv (p, u, t); | |
3818 | efloor (t, w); | |
3819 | for (j = 0; j < NE - 1; j++) | |
3820 | { | |
3821 | if (t[j] != w[j]) | |
3822 | goto noint; | |
3823 | } | |
3824 | emov (t, u); | |
3825 | expon += (int) m; | |
3826 | noint: | |
3827 | p += NE; | |
3828 | m >>= 1; | |
3829 | } | |
3830 | while (m != 0); | |
3831 | ||
3832 | /* Rescale from integer significand */ | |
3833 | u[NE - 1] += y[NE - 1] - (unsigned int) (EXONE + NBITS - 1); | |
3834 | emov (u, y); | |
3835 | /* Find power of 10 */ | |
3836 | emov (eone, t); | |
3837 | m = MAXP; | |
3838 | p = &etens[0][0]; | |
66b6d60b | 3839 | /* An unordered compare result shouldn't happen here. */ |
985b6196 RS |
3840 | while (ecmp (ten, u) <= 0) |
3841 | { | |
3842 | if (ecmp (p, u) <= 0) | |
3843 | { | |
3844 | ediv (p, u, u); | |
3845 | emul (p, t, t); | |
3846 | expon += (int) m; | |
3847 | } | |
3848 | m >>= 1; | |
3849 | if (m == 0) | |
3850 | break; | |
3851 | p += NE; | |
3852 | } | |
3853 | } | |
3854 | else | |
3855 | { /* Number is less than 1.0 */ | |
3856 | /* Pad significand with trailing decimal zeros. */ | |
3857 | if (y[NE - 1] == 0) | |
3858 | { | |
3859 | while ((y[NE - 2] & 0x8000) == 0) | |
3860 | { | |
3861 | emul (ten, y, y); | |
3862 | expon -= 1; | |
3863 | } | |
3864 | } | |
3865 | else | |
3866 | { | |
3867 | emovi (y, w); | |
3868 | for (i = 0; i < NDEC + 1; i++) | |
3869 | { | |
3870 | if ((w[NI - 1] & 0x7) != 0) | |
3871 | break; | |
3872 | /* multiply by 10 */ | |
3873 | emovz (w, u); | |
3874 | eshdn1 (u); | |
3875 | eshdn1 (u); | |
3876 | eaddm (w, u); | |
3877 | u[1] += 3; | |
3878 | while (u[2] != 0) | |
3879 | { | |
3880 | eshdn1 (u); | |
3881 | u[1] += 1; | |
3882 | } | |
3883 | if (u[NI - 1] != 0) | |
3884 | break; | |
3885 | if (eone[NE - 1] <= u[1]) | |
3886 | break; | |
3887 | emovz (u, w); | |
3888 | expon -= 1; | |
3889 | } | |
3890 | emovo (w, y); | |
3891 | } | |
3892 | k = -MAXP; | |
3893 | p = &emtens[0][0]; | |
3894 | r = &etens[0][0]; | |
3895 | emov (y, w); | |
3896 | emov (eone, t); | |
3897 | while (ecmp (eone, w) > 0) | |
3898 | { | |
3899 | if (ecmp (p, w) >= 0) | |
3900 | { | |
3901 | emul (r, w, w); | |
3902 | emul (r, t, t); | |
3903 | expon += k; | |
3904 | } | |
3905 | k /= 2; | |
3906 | if (k == 0) | |
3907 | break; | |
3908 | p += NE; | |
3909 | r += NE; | |
3910 | } | |
3911 | ediv (t, eone, t); | |
3912 | } | |
3913 | isone: | |
3914 | /* Find the first (leading) digit. */ | |
3915 | emovi (t, w); | |
3916 | emovz (w, t); | |
3917 | emovi (y, w); | |
3918 | emovz (w, y); | |
3919 | eiremain (t, y); | |
3920 | digit = equot[NI - 1]; | |
3921 | while ((digit == 0) && (ecmp (y, ezero) != 0)) | |
3922 | { | |
3923 | eshup1 (y); | |
3924 | emovz (y, u); | |
3925 | eshup1 (u); | |
3926 | eshup1 (u); | |
3927 | eaddm (u, y); | |
3928 | eiremain (t, y); | |
3929 | digit = equot[NI - 1]; | |
3930 | expon -= 1; | |
3931 | } | |
3932 | s = wstring; | |
3933 | if (sign) | |
3934 | *s++ = '-'; | |
3935 | else | |
3936 | *s++ = ' '; | |
985b6196 RS |
3937 | /* Examine number of digits requested by caller. */ |
3938 | if (ndigs < 0) | |
3939 | ndigs = 0; | |
3940 | if (ndigs > NDEC) | |
3941 | ndigs = NDEC; | |
64685ffa RS |
3942 | if (digit == 10) |
3943 | { | |
3944 | *s++ = '1'; | |
3945 | *s++ = '.'; | |
3946 | if (ndigs > 0) | |
3947 | { | |
3948 | *s++ = '0'; | |
3949 | ndigs -= 1; | |
3950 | } | |
3951 | expon += 1; | |
3952 | } | |
3953 | else | |
3954 | { | |
3955 | *s++ = (char )digit + '0'; | |
3956 | *s++ = '.'; | |
3957 | } | |
985b6196 RS |
3958 | /* Generate digits after the decimal point. */ |
3959 | for (k = 0; k <= ndigs; k++) | |
3960 | { | |
3961 | /* multiply current number by 10, without normalizing */ | |
3962 | eshup1 (y); | |
3963 | emovz (y, u); | |
3964 | eshup1 (u); | |
3965 | eshup1 (u); | |
3966 | eaddm (u, y); | |
3967 | eiremain (t, y); | |
3968 | *s++ = (char) equot[NI - 1] + '0'; | |
3969 | } | |
3970 | digit = equot[NI - 1]; | |
3971 | --s; | |
3972 | ss = s; | |
3973 | /* round off the ASCII string */ | |
3974 | if (digit > 4) | |
3975 | { | |
3976 | /* Test for critical rounding case in ASCII output. */ | |
3977 | if (digit == 5) | |
3978 | { | |
3979 | emovo (y, t); | |
3980 | if (ecmp (t, ezero) != 0) | |
3981 | goto roun; /* round to nearest */ | |
3982 | if ((*(s - 1) & 1) == 0) | |
3983 | goto doexp; /* round to even */ | |
3984 | } | |
3985 | /* Round up and propagate carry-outs */ | |
3986 | roun: | |
3987 | --s; | |
3988 | k = *s & 0x7f; | |
3989 | /* Carry out to most significant digit? */ | |
3990 | if (k == '.') | |
3991 | { | |
3992 | --s; | |
3993 | k = *s; | |
3994 | k += 1; | |
3995 | *s = (char) k; | |
3996 | /* Most significant digit carries to 10? */ | |
3997 | if (k > '9') | |
3998 | { | |
3999 | expon += 1; | |
4000 | *s = '1'; | |
4001 | } | |
4002 | goto doexp; | |
4003 | } | |
4004 | /* Round up and carry out from less significant digits */ | |
4005 | k += 1; | |
4006 | *s = (char) k; | |
4007 | if (k > '9') | |
4008 | { | |
4009 | *s = '0'; | |
4010 | goto roun; | |
4011 | } | |
4012 | } | |
4013 | doexp: | |
4014 | /* | |
4015 | if (expon >= 0) | |
4016 | sprintf (ss, "e+%d", expon); | |
4017 | else | |
4018 | sprintf (ss, "e%d", expon); | |
4019 | */ | |
4020 | sprintf (ss, "e%d", expon); | |
4021 | bxit: | |
4022 | rndprc = rndsav; | |
4023 | /* copy out the working string */ | |
4024 | s = string; | |
4025 | ss = wstring; | |
4026 | while (*ss == ' ') /* strip possible leading space */ | |
4027 | ++ss; | |
4028 | while ((*s++ = *ss++) != '\0') | |
4029 | ; | |
4030 | } | |
4031 | ||
4032 | ||
4033 | ||
4034 | ||
4035 | /* | |
4036 | ; ASCTOQ | |
4037 | ; ASCTOQ.MAC LATEST REV: 11 JAN 84 | |
4038 | ; SLM, 3 JAN 78 | |
4039 | ; | |
4040 | ; Convert ASCII string to quadruple precision floating point | |
4041 | ; | |
4042 | ; Numeric input is free field decimal number | |
4043 | ; with max of 15 digits with or without | |
4044 | ; decimal point entered as ASCII from teletype. | |
4045 | ; Entering E after the number followed by a second | |
4046 | ; number causes the second number to be interpreted | |
4047 | ; as a power of 10 to be multiplied by the first number | |
4048 | ; (i.e., "scientific" notation). | |
4049 | ; | |
4050 | ; Usage: | |
4051 | ; asctoq (string, q); | |
4052 | */ | |
4053 | ||
4054 | /* ASCII to single */ | |
4055 | void | |
4056 | asctoe24 (s, y) | |
4057 | char *s; | |
4058 | unsigned EMUSHORT *y; | |
4059 | { | |
4060 | asctoeg (s, y, 24); | |
4061 | } | |
4062 | ||
4063 | ||
4064 | /* ASCII to double */ | |
4065 | void | |
4066 | asctoe53 (s, y) | |
4067 | char *s; | |
4068 | unsigned EMUSHORT *y; | |
4069 | { | |
4070 | #ifdef DEC | |
4071 | asctoeg (s, y, 56); | |
4072 | #else | |
4073 | asctoeg (s, y, 53); | |
4074 | #endif | |
4075 | } | |
4076 | ||
4077 | ||
4078 | /* ASCII to long double */ | |
4079 | void | |
4080 | asctoe64 (s, y) | |
4081 | char *s; | |
4082 | unsigned EMUSHORT *y; | |
4083 | { | |
4084 | asctoeg (s, y, 64); | |
4085 | } | |
4086 | ||
4087 | /* ASCII to super double */ | |
4088 | void | |
4089 | asctoe (s, y) | |
4090 | char *s; | |
4091 | unsigned EMUSHORT *y; | |
4092 | { | |
4093 | asctoeg (s, y, NBITS); | |
4094 | } | |
4095 | ||
4096 | /* Space to make a copy of the input string: */ | |
4097 | static char lstr[82]; | |
4098 | ||
4099 | void | |
4100 | asctoeg (ss, y, oprec) | |
4101 | char *ss; | |
4102 | unsigned EMUSHORT *y; | |
4103 | int oprec; | |
4104 | { | |
4105 | unsigned EMUSHORT yy[NI], xt[NI], tt[NI]; | |
4106 | int esign, decflg, sgnflg, nexp, exp, prec, lost; | |
4107 | int k, trail, c, rndsav; | |
4108 | EMULONG lexp; | |
4109 | unsigned EMUSHORT nsign, *p; | |
4110 | char *sp, *s; | |
4111 | ||
4112 | /* Copy the input string. */ | |
4113 | s = ss; | |
4114 | while (*s == ' ') /* skip leading spaces */ | |
4115 | ++s; | |
4116 | sp = lstr; | |
4117 | for (k = 0; k < 79; k++) | |
4118 | { | |
4119 | if ((*sp++ = *s++) == '\0') | |
4120 | break; | |
4121 | } | |
4122 | *sp = '\0'; | |
4123 | s = lstr; | |
4124 | ||
4125 | rndsav = rndprc; | |
4126 | rndprc = NBITS; /* Set to full precision */ | |
4127 | lost = 0; | |
4128 | nsign = 0; | |
4129 | decflg = 0; | |
4130 | sgnflg = 0; | |
4131 | nexp = 0; | |
4132 | exp = 0; | |
4133 | prec = 0; | |
4134 | ecleaz (yy); | |
4135 | trail = 0; | |
4136 | ||
4137 | nxtcom: | |
4138 | k = *s - '0'; | |
4139 | if ((k >= 0) && (k <= 9)) | |
4140 | { | |
4141 | /* Ignore leading zeros */ | |
4142 | if ((prec == 0) && (decflg == 0) && (k == 0)) | |
4143 | goto donchr; | |
4144 | /* Identify and strip trailing zeros after the decimal point. */ | |
4145 | if ((trail == 0) && (decflg != 0)) | |
4146 | { | |
4147 | sp = s; | |
4148 | while ((*sp >= '0') && (*sp <= '9')) | |
4149 | ++sp; | |
4150 | /* Check for syntax error */ | |
4151 | c = *sp & 0x7f; | |
4152 | if ((c != 'e') && (c != 'E') && (c != '\0') | |
4153 | && (c != '\n') && (c != '\r') && (c != ' ') | |
4154 | && (c != ',')) | |
4155 | goto error; | |
4156 | --sp; | |
4157 | while (*sp == '0') | |
4158 | *sp-- = 'z'; | |
4159 | trail = 1; | |
4160 | if (*s == 'z') | |
4161 | goto donchr; | |
4162 | } | |
4163 | /* If enough digits were given to more than fill up the yy register, | |
4164 | * continuing until overflow into the high guard word yy[2] | |
4165 | * guarantees that there will be a roundoff bit at the top | |
4166 | * of the low guard word after normalization. | |
4167 | */ | |
4168 | if (yy[2] == 0) | |
4169 | { | |
4170 | if (decflg) | |
4171 | nexp += 1; /* count digits after decimal point */ | |
4172 | eshup1 (yy); /* multiply current number by 10 */ | |
4173 | emovz (yy, xt); | |
4174 | eshup1 (xt); | |
4175 | eshup1 (xt); | |
4176 | eaddm (xt, yy); | |
4177 | ecleaz (xt); | |
4178 | xt[NI - 2] = (unsigned EMUSHORT) k; | |
4179 | eaddm (xt, yy); | |
4180 | } | |
4181 | else | |
4182 | { | |
4183 | lost |= k; | |
4184 | } | |
4185 | prec += 1; | |
4186 | goto donchr; | |
4187 | } | |
4188 | ||
4189 | switch (*s) | |
4190 | { | |
4191 | case 'z': | |
4192 | break; | |
4193 | case 'E': | |
4194 | case 'e': | |
4195 | goto expnt; | |
4196 | case '.': /* decimal point */ | |
4197 | if (decflg) | |
4198 | goto error; | |
4199 | ++decflg; | |
4200 | break; | |
4201 | case '-': | |
4202 | nsign = 0xffff; | |
4203 | if (sgnflg) | |
4204 | goto error; | |
4205 | ++sgnflg; | |
4206 | break; | |
4207 | case '+': | |
4208 | if (sgnflg) | |
4209 | goto error; | |
4210 | ++sgnflg; | |
4211 | break; | |
4212 | case ',': | |
4213 | case ' ': | |
4214 | case '\0': | |
4215 | case '\n': | |
4216 | case '\r': | |
4217 | goto daldone; | |
4218 | case 'i': | |
4219 | case 'I': | |
64685ffa | 4220 | goto infinite; |
985b6196 RS |
4221 | default: |
4222 | error: | |
66b6d60b RS |
4223 | #ifdef NANS |
4224 | einan (yy); | |
4225 | #else | |
985b6196 | 4226 | mtherr ("asctoe", DOMAIN); |
66b6d60b RS |
4227 | eclear (yy); |
4228 | #endif | |
985b6196 RS |
4229 | goto aexit; |
4230 | } | |
4231 | donchr: | |
4232 | ++s; | |
4233 | goto nxtcom; | |
4234 | ||
4235 | /* Exponent interpretation */ | |
4236 | expnt: | |
4237 | ||
4238 | esign = 1; | |
4239 | exp = 0; | |
4240 | ++s; | |
4241 | /* check for + or - */ | |
4242 | if (*s == '-') | |
4243 | { | |
4244 | esign = -1; | |
4245 | ++s; | |
4246 | } | |
4247 | if (*s == '+') | |
4248 | ++s; | |
4249 | while ((*s >= '0') && (*s <= '9')) | |
4250 | { | |
4251 | exp *= 10; | |
4252 | exp += *s++ - '0'; | |
64685ffa RS |
4253 | if (exp > 4956) |
4254 | { | |
4255 | if (esign < 0) | |
4256 | goto zero; | |
4257 | else | |
4258 | goto infinite; | |
4259 | } | |
985b6196 RS |
4260 | } |
4261 | if (esign < 0) | |
4262 | exp = -exp; | |
64685ffa RS |
4263 | if (exp > 4932) |
4264 | { | |
4265 | infinite: | |
4266 | ecleaz (yy); | |
4267 | yy[E] = 0x7fff; /* infinity */ | |
4268 | goto aexit; | |
4269 | } | |
4270 | if (exp < -4956) | |
4271 | { | |
4272 | zero: | |
4273 | ecleaz (yy); | |
4274 | goto aexit; | |
4275 | } | |
985b6196 RS |
4276 | |
4277 | daldone: | |
4278 | nexp = exp - nexp; | |
4279 | /* Pad trailing zeros to minimize power of 10, per IEEE spec. */ | |
4280 | while ((nexp > 0) && (yy[2] == 0)) | |
4281 | { | |
4282 | emovz (yy, xt); | |
4283 | eshup1 (xt); | |
4284 | eshup1 (xt); | |
4285 | eaddm (yy, xt); | |
4286 | eshup1 (xt); | |
4287 | if (xt[2] != 0) | |
4288 | break; | |
4289 | nexp -= 1; | |
4290 | emovz (xt, yy); | |
4291 | } | |
4292 | if ((k = enormlz (yy)) > NBITS) | |
4293 | { | |
4294 | ecleaz (yy); | |
4295 | goto aexit; | |
4296 | } | |
4297 | lexp = (EXONE - 1 + NBITS) - k; | |
4298 | emdnorm (yy, lost, 0, lexp, 64); | |
4299 | /* convert to external format */ | |
4300 | ||
4301 | ||
4302 | /* Multiply by 10**nexp. If precision is 64 bits, | |
4303 | * the maximum relative error incurred in forming 10**n | |
4304 | * for 0 <= n <= 324 is 8.2e-20, at 10**180. | |
4305 | * For 0 <= n <= 999, the peak relative error is 1.4e-19 at 10**947. | |
4306 | * For 0 >= n >= -999, it is -1.55e-19 at 10**-435. | |
4307 | */ | |
4308 | lexp = yy[E]; | |
4309 | if (nexp == 0) | |
4310 | { | |
4311 | k = 0; | |
4312 | goto expdon; | |
4313 | } | |
4314 | esign = 1; | |
4315 | if (nexp < 0) | |
4316 | { | |
4317 | nexp = -nexp; | |
4318 | esign = -1; | |
4319 | if (nexp > 4096) | |
4320 | { /* Punt. Can't handle this without 2 divides. */ | |
4321 | emovi (etens[0], tt); | |
4322 | lexp -= tt[E]; | |
4323 | k = edivm (tt, yy); | |
4324 | lexp += EXONE; | |
4325 | nexp -= 4096; | |
4326 | } | |
4327 | } | |
4328 | p = &etens[NTEN][0]; | |
4329 | emov (eone, xt); | |
4330 | exp = 1; | |
4331 | do | |
4332 | { | |
4333 | if (exp & nexp) | |
4334 | emul (p, xt, xt); | |
4335 | p -= NE; | |
4336 | exp = exp + exp; | |
4337 | } | |
4338 | while (exp <= MAXP); | |
4339 | ||
4340 | emovi (xt, tt); | |
4341 | if (esign < 0) | |
4342 | { | |
4343 | lexp -= tt[E]; | |
4344 | k = edivm (tt, yy); | |
4345 | lexp += EXONE; | |
4346 | } | |
4347 | else | |
4348 | { | |
4349 | lexp += tt[E]; | |
4350 | k = emulm (tt, yy); | |
4351 | lexp -= EXONE - 1; | |
4352 | } | |
4353 | ||
4354 | expdon: | |
4355 | ||
4356 | /* Round and convert directly to the destination type */ | |
4357 | if (oprec == 53) | |
4358 | lexp -= EXONE - 0x3ff; | |
4359 | else if (oprec == 24) | |
4360 | lexp -= EXONE - 0177; | |
4361 | #ifdef DEC | |
4362 | else if (oprec == 56) | |
4363 | lexp -= EXONE - 0201; | |
4364 | #endif | |
4365 | rndprc = oprec; | |
4366 | emdnorm (yy, k, 0, lexp, 64); | |
4367 | ||
4368 | aexit: | |
4369 | ||
4370 | rndprc = rndsav; | |
4371 | yy[0] = nsign; | |
4372 | switch (oprec) | |
4373 | { | |
4374 | #ifdef DEC | |
4375 | case 56: | |
4376 | todec (yy, y); /* see etodec.c */ | |
4377 | break; | |
4378 | #endif | |
4379 | case 53: | |
4380 | toe53 (yy, y); | |
4381 | break; | |
4382 | case 24: | |
4383 | toe24 (yy, y); | |
4384 | break; | |
4385 | case 64: | |
4386 | toe64 (yy, y); | |
4387 | break; | |
4388 | case NBITS: | |
4389 | emovo (yy, y); | |
4390 | break; | |
4391 | } | |
4392 | } | |
4393 | ||
4394 | ||
4395 | ||
4396 | /* y = largest integer not greater than x | |
4397 | * (truncated toward minus infinity) | |
4398 | * | |
4399 | * unsigned EMUSHORT x[NE], y[NE] | |
4400 | * | |
4401 | * efloor (x, y); | |
4402 | */ | |
4403 | static unsigned EMUSHORT bmask[] = | |
4404 | { | |
4405 | 0xffff, | |
4406 | 0xfffe, | |
4407 | 0xfffc, | |
4408 | 0xfff8, | |
4409 | 0xfff0, | |
4410 | 0xffe0, | |
4411 | 0xffc0, | |
4412 | 0xff80, | |
4413 | 0xff00, | |
4414 | 0xfe00, | |
4415 | 0xfc00, | |
4416 | 0xf800, | |
4417 | 0xf000, | |
4418 | 0xe000, | |
4419 | 0xc000, | |
4420 | 0x8000, | |
4421 | 0x0000, | |
4422 | }; | |
4423 | ||
4424 | void | |
4425 | efloor (x, y) | |
4426 | unsigned EMUSHORT x[], y[]; | |
4427 | { | |
4428 | register unsigned EMUSHORT *p; | |
4429 | int e, expon, i; | |
4430 | unsigned EMUSHORT f[NE]; | |
4431 | ||
4432 | emov (x, f); /* leave in external format */ | |
4433 | expon = (int) f[NE - 1]; | |
4434 | e = (expon & 0x7fff) - (EXONE - 1); | |
4435 | if (e <= 0) | |
4436 | { | |
4437 | eclear (y); | |
4438 | goto isitneg; | |
4439 | } | |
4440 | /* number of bits to clear out */ | |
4441 | e = NBITS - e; | |
4442 | emov (f, y); | |
4443 | if (e <= 0) | |
4444 | return; | |
4445 | ||
4446 | p = &y[0]; | |
4447 | while (e >= 16) | |
4448 | { | |
4449 | *p++ = 0; | |
4450 | e -= 16; | |
4451 | } | |
4452 | /* clear the remaining bits */ | |
4453 | *p &= bmask[e]; | |
4454 | /* truncate negatives toward minus infinity */ | |
4455 | isitneg: | |
4456 | ||
4457 | if ((unsigned EMUSHORT) expon & (unsigned EMUSHORT) 0x8000) | |
4458 | { | |
4459 | for (i = 0; i < NE - 1; i++) | |
4460 | { | |
4461 | if (f[i] != y[i]) | |
4462 | { | |
4463 | esub (eone, y, y); | |
4464 | break; | |
4465 | } | |
4466 | } | |
4467 | } | |
4468 | } | |
4469 | ||
4470 | ||
4471 | /* unsigned EMUSHORT x[], s[]; | |
4472 | * int *exp; | |
4473 | * | |
4474 | * efrexp (x, exp, s); | |
4475 | * | |
4476 | * Returns s and exp such that s * 2**exp = x and .5 <= s < 1. | |
4477 | * For example, 1.1 = 0.55 * 2**1 | |
4478 | * Handles denormalized numbers properly using long integer exp. | |
4479 | */ | |
4480 | void | |
4481 | efrexp (x, exp, s) | |
4482 | unsigned EMUSHORT x[]; | |
4483 | int *exp; | |
4484 | unsigned EMUSHORT s[]; | |
4485 | { | |
4486 | unsigned EMUSHORT xi[NI]; | |
4487 | EMULONG li; | |
4488 | ||
4489 | emovi (x, xi); | |
4490 | li = (EMULONG) ((EMUSHORT) xi[1]); | |
4491 | ||
4492 | if (li == 0) | |
4493 | { | |
4494 | li -= enormlz (xi); | |
4495 | } | |
4496 | xi[1] = 0x3ffe; | |
4497 | emovo (xi, s); | |
4498 | *exp = (int) (li - 0x3ffe); | |
4499 | } | |
4500 | ||
4501 | ||
4502 | ||
4503 | /* unsigned EMUSHORT x[], y[]; | |
4504 | * long pwr2; | |
4505 | * | |
4506 | * eldexp (x, pwr2, y); | |
4507 | * | |
4508 | * Returns y = x * 2**pwr2. | |
4509 | */ | |
4510 | void | |
4511 | eldexp (x, pwr2, y) | |
4512 | unsigned EMUSHORT x[]; | |
4513 | int pwr2; | |
4514 | unsigned EMUSHORT y[]; | |
4515 | { | |
4516 | unsigned EMUSHORT xi[NI]; | |
4517 | EMULONG li; | |
4518 | int i; | |
4519 | ||
4520 | emovi (x, xi); | |
4521 | li = xi[1]; | |
4522 | li += pwr2; | |
4523 | i = 0; | |
4524 | emdnorm (xi, i, i, li, 64); | |
4525 | emovo (xi, y); | |
4526 | } | |
4527 | ||
4528 | ||
4529 | /* c = remainder after dividing b by a | |
4530 | * Least significant integer quotient bits left in equot[]. | |
4531 | */ | |
4532 | void | |
4533 | eremain (a, b, c) | |
4534 | unsigned EMUSHORT a[], b[], c[]; | |
4535 | { | |
4536 | unsigned EMUSHORT den[NI], num[NI]; | |
4537 | ||
66b6d60b RS |
4538 | #ifdef NANS |
4539 | if ( eisinf (b) | |
4540 | || (ecmp (a, ezero) == 0) | |
4541 | || eisnan (a) | |
4542 | || eisnan (b)) | |
4543 | { | |
4544 | enan (c); | |
4545 | return; | |
4546 | } | |
4547 | #endif | |
985b6196 RS |
4548 | if (ecmp (a, ezero) == 0) |
4549 | { | |
4550 | mtherr ("eremain", SING); | |
4551 | eclear (c); | |
4552 | return; | |
4553 | } | |
4554 | emovi (a, den); | |
4555 | emovi (b, num); | |
4556 | eiremain (den, num); | |
4557 | /* Sign of remainder = sign of quotient */ | |
4558 | if (a[0] == b[0]) | |
4559 | num[0] = 0; | |
4560 | else | |
4561 | num[0] = 0xffff; | |
4562 | emovo (num, c); | |
4563 | } | |
4564 | ||
4565 | void | |
4566 | eiremain (den, num) | |
4567 | unsigned EMUSHORT den[], num[]; | |
4568 | { | |
4569 | EMULONG ld, ln; | |
4570 | unsigned EMUSHORT j; | |
4571 | ||
4572 | ld = den[E]; | |
4573 | ld -= enormlz (den); | |
4574 | ln = num[E]; | |
4575 | ln -= enormlz (num); | |
4576 | ecleaz (equot); | |
4577 | while (ln >= ld) | |
4578 | { | |
4579 | if (ecmpm (den, num) <= 0) | |
4580 | { | |
4581 | esubm (den, num); | |
4582 | j = 1; | |
4583 | } | |
4584 | else | |
4585 | { | |
4586 | j = 0; | |
4587 | } | |
4588 | eshup1 (equot); | |
4589 | equot[NI - 1] |= j; | |
4590 | eshup1 (num); | |
4591 | ln -= 1; | |
4592 | } | |
4593 | emdnorm (num, 0, 0, ln, 0); | |
4594 | } | |
4595 | ||
4596 | /* mtherr.c | |
4597 | * | |
4598 | * Library common error handling routine | |
4599 | * | |
4600 | * | |
4601 | * | |
4602 | * SYNOPSIS: | |
4603 | * | |
4604 | * char *fctnam; | |
4605 | * int code; | |
4606 | * void mtherr (); | |
4607 | * | |
4608 | * mtherr (fctnam, code); | |
4609 | * | |
4610 | * | |
4611 | * | |
4612 | * DESCRIPTION: | |
4613 | * | |
4614 | * This routine may be called to report one of the following | |
4615 | * error conditions (in the include file mconf.h). | |
4616 | * | |
4617 | * Mnemonic Value Significance | |
4618 | * | |
4619 | * DOMAIN 1 argument domain error | |
4620 | * SING 2 function singularity | |
4621 | * OVERFLOW 3 overflow range error | |
4622 | * UNDERFLOW 4 underflow range error | |
4623 | * TLOSS 5 total loss of precision | |
4624 | * PLOSS 6 partial loss of precision | |
66b6d60b | 4625 | * INVALID 7 NaN - producing operation |
985b6196 RS |
4626 | * EDOM 33 Unix domain error code |
4627 | * ERANGE 34 Unix range error code | |
4628 | * | |
4629 | * The default version of the file prints the function name, | |
4630 | * passed to it by the pointer fctnam, followed by the | |
4631 | * error condition. The display is directed to the standard | |
4632 | * output device. The routine then returns to the calling | |
4633 | * program. Users may wish to modify the program to abort by | |
4634 | * calling exit under severe error conditions such as domain | |
4635 | * errors. | |
4636 | * | |
4637 | * Since all error conditions pass control to this function, | |
4638 | * the display may be easily changed, eliminated, or directed | |
4639 | * to an error logging device. | |
4640 | * | |
4641 | * SEE ALSO: | |
4642 | * | |
4643 | * mconf.h | |
4644 | * | |
4645 | */ | |
4646 | \f | |
4647 | /* | |
4648 | Cephes Math Library Release 2.0: April, 1987 | |
4649 | Copyright 1984, 1987 by Stephen L. Moshier | |
4650 | Direct inquiries to 30 Frost Street, Cambridge, MA 02140 | |
4651 | */ | |
4652 | ||
4653 | /* include "mconf.h" */ | |
4654 | ||
4655 | /* Notice: the order of appearance of the following | |
4656 | * messages is bound to the error codes defined | |
4657 | * in mconf.h. | |
4658 | */ | |
66b6d60b RS |
4659 | #define NMSGS 8 |
4660 | static char *ermsg[NMSGS] = | |
985b6196 RS |
4661 | { |
4662 | "unknown", /* error code 0 */ | |
4663 | "domain", /* error code 1 */ | |
4664 | "singularity", /* et seq. */ | |
4665 | "overflow", | |
4666 | "underflow", | |
4667 | "total loss of precision", | |
66b6d60b RS |
4668 | "partial loss of precision", |
4669 | "invalid operation" | |
985b6196 RS |
4670 | }; |
4671 | ||
4672 | int merror = 0; | |
4673 | extern int merror; | |
4674 | ||
4675 | void | |
4676 | mtherr (name, code) | |
4677 | char *name; | |
4678 | int code; | |
4679 | { | |
4680 | char errstr[80]; | |
4681 | ||
4682 | /* Display string passed by calling program, | |
4683 | * which is supposed to be the name of the | |
4684 | * function in which the error occurred. | |
4685 | */ | |
4686 | ||
4687 | /* Display error message defined | |
4688 | * by the code argument. | |
4689 | */ | |
66b6d60b | 4690 | if ((code <= 0) || (code >= NMSGS)) |
985b6196 | 4691 | code = 0; |
a8d78514 | 4692 | sprintf (errstr, " %s %s error", name, ermsg[code]); |
64685ffa RS |
4693 | if (extra_warnings) |
4694 | warning (errstr); | |
985b6196 RS |
4695 | /* Set global error message word */ |
4696 | merror = code + 1; | |
4697 | ||
4698 | /* Return to calling | |
4699 | * program | |
4700 | */ | |
4701 | } | |
4702 | ||
4703 | /* Here is etodec.c . | |
4704 | * | |
4705 | */ | |
4706 | ||
4707 | /* | |
4708 | ; convert DEC double precision to e type | |
4709 | ; double d; | |
4710 | ; EMUSHORT e[NE]; | |
4711 | ; dectoe (&d, e); | |
4712 | */ | |
4713 | void | |
4714 | dectoe (d, e) | |
4715 | unsigned EMUSHORT *d; | |
4716 | unsigned EMUSHORT *e; | |
4717 | { | |
4718 | unsigned EMUSHORT y[NI]; | |
4719 | register unsigned EMUSHORT r, *p; | |
4720 | ||
4721 | ecleaz (y); /* start with a zero */ | |
4722 | p = y; /* point to our number */ | |
4723 | r = *d; /* get DEC exponent word */ | |
4724 | if (*d & (unsigned int) 0x8000) | |
4725 | *p = 0xffff; /* fill in our sign */ | |
4726 | ++p; /* bump pointer to our exponent word */ | |
4727 | r &= 0x7fff; /* strip the sign bit */ | |
4728 | if (r == 0) /* answer = 0 if high order DEC word = 0 */ | |
4729 | goto done; | |
4730 | ||
4731 | ||
4732 | r >>= 7; /* shift exponent word down 7 bits */ | |
4733 | r += EXONE - 0201; /* subtract DEC exponent offset */ | |
4734 | /* add our e type exponent offset */ | |
4735 | *p++ = r; /* to form our exponent */ | |
4736 | ||
4737 | r = *d++; /* now do the high order mantissa */ | |
4738 | r &= 0177; /* strip off the DEC exponent and sign bits */ | |
4739 | r |= 0200; /* the DEC understood high order mantissa bit */ | |
4740 | *p++ = r; /* put result in our high guard word */ | |
4741 | ||
4742 | *p++ = *d++; /* fill in the rest of our mantissa */ | |
4743 | *p++ = *d++; | |
4744 | *p = *d; | |
4745 | ||
4746 | eshdn8 (y); /* shift our mantissa down 8 bits */ | |
4747 | done: | |
4748 | emovo (y, e); | |
4749 | } | |
4750 | ||
4751 | ||
4752 | ||
4753 | /* | |
4754 | ; convert e type to DEC double precision | |
4755 | ; double d; | |
4756 | ; EMUSHORT e[NE]; | |
4757 | ; etodec (e, &d); | |
4758 | */ | |
4759 | #if 0 | |
4760 | static unsigned EMUSHORT decbit[NI] = {0, 0, 0, 0, 0, 0, 0200, 0}; | |
4761 | ||
4762 | void | |
4763 | etodec (x, d) | |
4764 | unsigned EMUSHORT *x, *d; | |
4765 | { | |
4766 | unsigned EMUSHORT xi[NI]; | |
4767 | register unsigned EMUSHORT r; | |
4768 | int i, j; | |
4769 | ||
4770 | emovi (x, xi); | |
4771 | *d = 0; | |
4772 | if (xi[0] != 0) | |
4773 | *d = 0100000; | |
4774 | r = xi[E]; | |
4775 | if (r < (EXONE - 128)) | |
4776 | goto zout; | |
4777 | i = xi[M + 4]; | |
4778 | if ((i & 0200) != 0) | |
4779 | { | |
4780 | if ((i & 0377) == 0200) | |
4781 | { | |
4782 | if ((i & 0400) != 0) | |
4783 | { | |
4784 | /* check all less significant bits */ | |
4785 | for (j = M + 5; j < NI; j++) | |
4786 | { | |
4787 | if (xi[j] != 0) | |
4788 | goto yesrnd; | |
4789 | } | |
4790 | } | |
4791 | goto nornd; | |
4792 | } | |
4793 | yesrnd: | |
4794 | eaddm (decbit, xi); | |
4795 | r -= enormlz (xi); | |
4796 | } | |
4797 | ||
4798 | nornd: | |
4799 | ||
4800 | r -= EXONE; | |
4801 | r += 0201; | |
4802 | if (r < 0) | |
4803 | { | |
4804 | zout: | |
4805 | *d++ = 0; | |
4806 | *d++ = 0; | |
4807 | *d++ = 0; | |
4808 | *d++ = 0; | |
4809 | return; | |
4810 | } | |
4811 | if (r >= 0377) | |
4812 | { | |
4813 | *d++ = 077777; | |
4814 | *d++ = -1; | |
4815 | *d++ = -1; | |
4816 | *d++ = -1; | |
4817 | return; | |
4818 | } | |
4819 | r &= 0377; | |
4820 | r <<= 7; | |
4821 | eshup8 (xi); | |
4822 | xi[M] &= 0177; | |
4823 | r |= xi[M]; | |
4824 | *d++ |= r; | |
4825 | *d++ = xi[M + 1]; | |
4826 | *d++ = xi[M + 2]; | |
4827 | *d++ = xi[M + 3]; | |
4828 | } | |
4829 | ||
4830 | #else | |
4831 | ||
4832 | void | |
4833 | etodec (x, d) | |
4834 | unsigned EMUSHORT *x, *d; | |
4835 | { | |
4836 | unsigned EMUSHORT xi[NI]; | |
4837 | EMULONG exp; | |
4838 | int rndsav; | |
4839 | ||
4840 | emovi (x, xi); | |
4841 | exp = (EMULONG) xi[E] - (EXONE - 0201); /* adjust exponent for offsets */ | |
4842 | /* round off to nearest or even */ | |
4843 | rndsav = rndprc; | |
4844 | rndprc = 56; | |
4845 | emdnorm (xi, 0, 0, exp, 64); | |
4846 | rndprc = rndsav; | |
4847 | todec (xi, d); | |
4848 | } | |
4849 | ||
4850 | void | |
4851 | todec (x, y) | |
4852 | unsigned EMUSHORT *x, *y; | |
4853 | { | |
4854 | unsigned EMUSHORT i; | |
4855 | unsigned EMUSHORT *p; | |
4856 | ||
4857 | p = x; | |
4858 | *y = 0; | |
4859 | if (*p++) | |
4860 | *y = 0100000; | |
4861 | i = *p++; | |
4862 | if (i == 0) | |
4863 | { | |
4864 | *y++ = 0; | |
4865 | *y++ = 0; | |
4866 | *y++ = 0; | |
4867 | *y++ = 0; | |
4868 | return; | |
4869 | } | |
4870 | if (i > 0377) | |
4871 | { | |
4872 | *y++ |= 077777; | |
4873 | *y++ = 0xffff; | |
4874 | *y++ = 0xffff; | |
4875 | *y++ = 0xffff; | |
64685ffa RS |
4876 | #ifdef ERANGE |
4877 | errno = ERANGE; | |
4878 | #endif | |
985b6196 RS |
4879 | return; |
4880 | } | |
4881 | i &= 0377; | |
4882 | i <<= 7; | |
4883 | eshup8 (x); | |
4884 | x[M] &= 0177; | |
4885 | i |= x[M]; | |
4886 | *y++ |= i; | |
4887 | *y++ = x[M + 1]; | |
4888 | *y++ = x[M + 2]; | |
4889 | *y++ = x[M + 3]; | |
4890 | } | |
4891 | ||
4892 | #endif /* not 0 */ | |
4893 | ||
66b6d60b RS |
4894 | |
4895 | /* Output a binary NaN bit pattern in the target machine's format. */ | |
4896 | ||
4897 | /* If special NaN bit patterns are required, define them in tm.h | |
4898 | as arrays of unsigned 16-bit shorts. Otherwise, use the default | |
4899 | patterns here. */ | |
4900 | #ifndef TFMODE_NAN | |
4901 | #ifdef MIEEE | |
4902 | unsigned EMUSHORT TFnan[8] = | |
4903 | {0x7fff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff}; | |
4904 | #endif | |
4905 | #ifdef IBMPC | |
4906 | unsigned EMUSHORT TFnan[8] = {0, 0, 0, 0, 0, 0, 0x8000, 0xffff}; | |
4907 | #endif | |
4908 | #endif | |
4909 | ||
4910 | #ifndef XFMODE_NAN | |
4911 | #ifdef MIEEE | |
4912 | unsigned EMUSHORT XFnan[6] = {0x7fff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff}; | |
4913 | #endif | |
4914 | #ifdef IBMPC | |
4915 | unsigned EMUSHORT XFnan[6] = {0, 0, 0, 0xc000, 0xffff, 0}; | |
4916 | #endif | |
4917 | #endif | |
4918 | ||
4919 | #ifndef DFMODE_NAN | |
4920 | #ifdef MIEEE | |
4921 | unsigned EMUSHORT DFnan[4] = {0x7fff, 0xffff, 0xffff, 0xffff}; | |
4922 | #endif | |
4923 | #ifdef IBMPC | |
4924 | unsigned EMUSHORT DFnan[4] = {0, 0, 0, 0xfff8}; | |
4925 | #endif | |
4926 | #endif | |
4927 | ||
4928 | #ifndef SFMODE_NAN | |
4929 | #ifdef MIEEE | |
4930 | unsigned EMUSHORT SFnan[2] = {0x7fff, 0xffff}; | |
4931 | #endif | |
4932 | #ifdef IBMPC | |
4933 | unsigned EMUSHORT SFnan[2] = {0, 0xffc0}; | |
4934 | #endif | |
4935 | #endif | |
4936 | ||
4937 | ||
4938 | void | |
4939 | make_nan (nan, mode) | |
4940 | unsigned EMUSHORT *nan; | |
4941 | enum machine_mode mode; | |
4942 | { | |
4943 | int i, n; | |
4944 | unsigned EMUSHORT *p; | |
4945 | ||
4946 | switch (mode) | |
4947 | { | |
4948 | /* Possibly the `reserved operand' patterns on a VAX can be | |
4949 | used like NaN's, but probably not in the same way as IEEE. */ | |
4950 | #ifndef DEC | |
4951 | case TFmode: | |
4952 | n = 8; | |
4953 | p = TFnan; | |
4954 | break; | |
4955 | case XFmode: | |
4956 | n = 6; | |
4957 | p = XFnan; | |
4958 | break; | |
4959 | case DFmode: | |
4960 | n = 4; | |
4961 | p = DFnan; | |
4962 | break; | |
4963 | case SFmode: | |
4964 | n = 2; | |
4965 | p = SFnan; | |
4966 | break; | |
4967 | #endif | |
4968 | default: | |
4969 | abort (); | |
4970 | } | |
4971 | for (i=0; i < n; i++) | |
4972 | *nan++ = *p++; | |
4973 | } | |
4974 | ||
985b6196 | 4975 | #endif /* EMU_NON_COMPILE not defined */ |