]>
Commit | Line | Data |
---|---|---|
985b6196 | 1 | /* real.c - implementation of REAL_ARITHMETIC, REAL_VALUE_ATOF, |
29e11dab | 2 | and support for XFmode IEEE extended real floating point arithmetic. |
fdf004cf | 3 | Copyright (C) 1993, 94-98, 1999 Free Software Foundation, Inc. |
c764eafd | 4 | Contributed by Stephen L. Moshier (moshier@world.std.com). |
985b6196 RS |
5 | |
6 | This file is part of GNU CC. | |
7 | ||
8 | GNU CC is free software; you can redistribute it and/or modify | |
9 | it under the terms of the GNU General Public License as published by | |
10 | the Free Software Foundation; either version 2, or (at your option) | |
11 | any later version. | |
12 | ||
13 | GNU CC is distributed in the hope that it will be useful, | |
14 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 | GNU General Public License for more details. | |
17 | ||
18 | You should have received a copy of the GNU General Public License | |
19 | along with GNU CC; see the file COPYING. If not, write to | |
e99215a3 RK |
20 | the Free Software Foundation, 59 Temple Place - Suite 330, |
21 | Boston, MA 02111-1307, USA. */ | |
985b6196 | 22 | |
e9a25f70 | 23 | #include "config.h" |
670ee920 | 24 | #include "system.h" |
985b6196 | 25 | #include "tree.h" |
10f0ad3d | 26 | #include "toplev.h" |
985b6196 RS |
27 | |
28 | /* To enable support of XFmode extended real floating point, define | |
29 | LONG_DOUBLE_TYPE_SIZE 96 in the tm.h file (m68k.h or i386.h). | |
30 | ||
842fbaaa | 31 | To support cross compilation between IEEE, VAX and IBM floating |
985b6196 RS |
32 | point formats, define REAL_ARITHMETIC in the tm.h file. |
33 | ||
34 | In either case the machine files (tm.h) must not contain any code | |
35 | that tries to use host floating point arithmetic to convert | |
36 | REAL_VALUE_TYPEs from `double' to `float', pass them to fprintf, | |
37 | etc. In cross-compile situations a REAL_VALUE_TYPE may not | |
38 | be intelligible to the host computer's native arithmetic. | |
39 | ||
40 | The emulator defaults to the host's floating point format so that | |
41 | its decimal conversion functions can be used if desired (see | |
42 | real.h). | |
43 | ||
8c35bbc5 RK |
44 | The first part of this file interfaces gcc to a floating point |
45 | arithmetic suite that was not written with gcc in mind. Avoid | |
46 | changing the low-level arithmetic routines unless you have suitable | |
47 | test programs available. A special version of the PARANOIA floating | |
48 | point arithmetic tester, modified for this purpose, can be found on | |
49 | usc.edu: /pub/C-numanal/ieeetest.zoo. Other tests, and libraries of | |
50 | XFmode and TFmode transcendental functions, can be obtained by ftp from | |
51 | netlib.att.com: netlib/cephes. */ | |
775ba35d | 52 | \f |
985b6196 | 53 | /* Type of computer arithmetic. |
9ec36da5 | 54 | Only one of DEC, IBM, IEEE, C4X, or UNK should get defined. |
f76b9db2 | 55 | |
8c35bbc5 | 56 | `IEEE', when REAL_WORDS_BIG_ENDIAN is non-zero, refers generically |
f76b9db2 ILT |
57 | to big-endian IEEE floating-point data structure. This definition |
58 | should work in SFmode `float' type and DFmode `double' type on | |
59 | virtually all big-endian IEEE machines. If LONG_DOUBLE_TYPE_SIZE | |
60 | has been defined to be 96, then IEEE also invokes the particular | |
61 | XFmode (`long double' type) data structure used by the Motorola | |
62 | 680x0 series processors. | |
63 | ||
8c35bbc5 | 64 | `IEEE', when REAL_WORDS_BIG_ENDIAN is zero, refers generally to |
f76b9db2 ILT |
65 | little-endian IEEE machines. In this case, if LONG_DOUBLE_TYPE_SIZE |
66 | has been defined to be 96, then IEEE also invokes the particular | |
67 | XFmode `long double' data structure used by the Intel 80x86 series | |
68 | processors. | |
66b6d60b RS |
69 | |
70 | `DEC' refers specifically to the Digital Equipment Corp PDP-11 | |
71 | and VAX floating point data structure. This model currently | |
72 | supports no type wider than DFmode. | |
73 | ||
842fbaaa JW |
74 | `IBM' refers specifically to the IBM System/370 and compatible |
75 | floating point data structure. This model currently supports | |
76 | no type wider than DFmode. The IBM conversions were contributed by | |
77 | frank@atom.ansto.gov.au (Frank Crawford). | |
78 | ||
9ec36da5 JL |
79 | `C4X' refers specifically to the floating point format used on |
80 | Texas Instruments TMS320C3x and TMS320C4x digital signal | |
81 | processors. This supports QFmode (32-bit float, double) and HFmode | |
506b012c HB |
82 | (40-bit long double) where BITS_PER_BYTE is 32. Unlike IEEE |
83 | floats, C4x floats are not rounded to be even. The C4x conversions | |
84 | were contributed by m.hayes@elec.canterbury.ac.nz (Michael Hayes) and | |
85 | Haj.Ten.Brugge@net.HCC.nl (Herman ten Brugge). | |
9ec36da5 | 86 | |
66b6d60b RS |
87 | If LONG_DOUBLE_TYPE_SIZE = 64 (the default, unless tm.h defines it) |
88 | then `long double' and `double' are both implemented, but they | |
89 | both mean DFmode. In this case, the software floating-point | |
90 | support available here is activated by writing | |
91 | #define REAL_ARITHMETIC | |
b6ca239d | 92 | in tm.h. |
66b6d60b RS |
93 | |
94 | The case LONG_DOUBLE_TYPE_SIZE = 128 activates TFmode support | |
842fbaaa | 95 | and may deactivate XFmode since `long double' is used to refer |
b51ab098 RK |
96 | to both modes. |
97 | ||
98 | The macros FLOAT_WORDS_BIG_ENDIAN, HOST_FLOAT_WORDS_BIG_ENDIAN, | |
99 | contributed by Richard Earnshaw <Richard.Earnshaw@cl.cam.ac.uk>, | |
100 | separate the floating point unit's endian-ness from that of | |
101 | the integer addressing. This permits one to define a big-endian | |
102 | FPU on a little-endian machine (e.g., ARM). An extension to | |
103 | BYTES_BIG_ENDIAN may be required for some machines in the future. | |
104 | These optional macros may be defined in tm.h. In real.h, they | |
105 | default to WORDS_BIG_ENDIAN, etc., so there is no need to define | |
106 | them for any normal host or target machine on which the floats | |
107 | and the integers have the same endian-ness. */ | |
108 | ||
66b6d60b RS |
109 | |
110 | /* The following converts gcc macros into the ones used by this file. */ | |
111 | ||
985b6196 RS |
112 | /* REAL_ARITHMETIC defined means that macros in real.h are |
113 | defined to call emulator functions. */ | |
114 | #ifdef REAL_ARITHMETIC | |
115 | ||
116 | #if TARGET_FLOAT_FORMAT == VAX_FLOAT_FORMAT | |
117 | /* PDP-11, Pro350, VAX: */ | |
118 | #define DEC 1 | |
119 | #else /* it's not VAX */ | |
842fbaaa JW |
120 | #if TARGET_FLOAT_FORMAT == IBM_FLOAT_FORMAT |
121 | /* IBM System/370 style */ | |
122 | #define IBM 1 | |
123 | #else /* it's also not an IBM */ | |
f5963e61 JL |
124 | #if TARGET_FLOAT_FORMAT == C4X_FLOAT_FORMAT |
125 | /* TMS320C3x/C4x style */ | |
126 | #define C4X 1 | |
127 | #else /* it's also not a C4X */ | |
985b6196 | 128 | #if TARGET_FLOAT_FORMAT == IEEE_FLOAT_FORMAT |
f76b9db2 | 129 | #define IEEE |
985b6196 | 130 | #else /* it's not IEEE either */ |
0f41302f | 131 | /* UNKnown arithmetic. We don't support this and can't go on. */ |
985b6196 RS |
132 | unknown arithmetic type |
133 | #define UNK 1 | |
134 | #endif /* not IEEE */ | |
f5963e61 | 135 | #endif /* not C4X */ |
842fbaaa | 136 | #endif /* not IBM */ |
985b6196 RS |
137 | #endif /* not VAX */ |
138 | ||
8c35bbc5 RK |
139 | #define REAL_WORDS_BIG_ENDIAN FLOAT_WORDS_BIG_ENDIAN |
140 | ||
985b6196 RS |
141 | #else |
142 | /* REAL_ARITHMETIC not defined means that the *host's* data | |
143 | structure will be used. It may differ by endian-ness from the | |
144 | target machine's structure and will get its ends swapped | |
145 | accordingly (but not here). Probably only the decimal <-> binary | |
146 | functions in this file will actually be used in this case. */ | |
defb5dab | 147 | |
985b6196 RS |
148 | #if HOST_FLOAT_FORMAT == VAX_FLOAT_FORMAT |
149 | #define DEC 1 | |
150 | #else /* it's not VAX */ | |
842fbaaa JW |
151 | #if HOST_FLOAT_FORMAT == IBM_FLOAT_FORMAT |
152 | /* IBM System/370 style */ | |
153 | #define IBM 1 | |
154 | #else /* it's also not an IBM */ | |
985b6196 | 155 | #if HOST_FLOAT_FORMAT == IEEE_FLOAT_FORMAT |
f76b9db2 | 156 | #define IEEE |
985b6196 RS |
157 | #else /* it's not IEEE either */ |
158 | unknown arithmetic type | |
159 | #define UNK 1 | |
160 | #endif /* not IEEE */ | |
842fbaaa | 161 | #endif /* not IBM */ |
985b6196 RS |
162 | #endif /* not VAX */ |
163 | ||
8c35bbc5 RK |
164 | #define REAL_WORDS_BIG_ENDIAN HOST_FLOAT_WORDS_BIG_ENDIAN |
165 | ||
985b6196 RS |
166 | #endif /* REAL_ARITHMETIC not defined */ |
167 | ||
66b6d60b RS |
168 | /* Define INFINITY for support of infinity. |
169 | Define NANS for support of Not-a-Number's (NaN's). */ | |
f5963e61 | 170 | #if !defined(DEC) && !defined(IBM) && !defined(C4X) |
985b6196 | 171 | #define INFINITY |
66b6d60b | 172 | #define NANS |
985b6196 RS |
173 | #endif |
174 | ||
0f41302f | 175 | /* Support of NaNs requires support of infinity. */ |
66b6d60b RS |
176 | #ifdef NANS |
177 | #ifndef INFINITY | |
178 | #define INFINITY | |
179 | #endif | |
180 | #endif | |
775ba35d | 181 | \f |
985b6196 | 182 | /* Find a host integer type that is at least 16 bits wide, |
0f41302f | 183 | and another type at least twice whatever that size is. */ |
985b6196 RS |
184 | |
185 | #if HOST_BITS_PER_CHAR >= 16 | |
186 | #define EMUSHORT char | |
187 | #define EMUSHORT_SIZE HOST_BITS_PER_CHAR | |
188 | #define EMULONG_SIZE (2 * HOST_BITS_PER_CHAR) | |
189 | #else | |
190 | #if HOST_BITS_PER_SHORT >= 16 | |
191 | #define EMUSHORT short | |
192 | #define EMUSHORT_SIZE HOST_BITS_PER_SHORT | |
193 | #define EMULONG_SIZE (2 * HOST_BITS_PER_SHORT) | |
194 | #else | |
195 | #if HOST_BITS_PER_INT >= 16 | |
196 | #define EMUSHORT int | |
197 | #define EMUSHORT_SIZE HOST_BITS_PER_INT | |
198 | #define EMULONG_SIZE (2 * HOST_BITS_PER_INT) | |
199 | #else | |
200 | #if HOST_BITS_PER_LONG >= 16 | |
201 | #define EMUSHORT long | |
202 | #define EMUSHORT_SIZE HOST_BITS_PER_LONG | |
203 | #define EMULONG_SIZE (2 * HOST_BITS_PER_LONG) | |
204 | #else | |
0f41302f | 205 | /* You will have to modify this program to have a smaller unit size. */ |
985b6196 RS |
206 | #define EMU_NON_COMPILE |
207 | #endif | |
208 | #endif | |
209 | #endif | |
210 | #endif | |
211 | ||
212 | #if HOST_BITS_PER_SHORT >= EMULONG_SIZE | |
213 | #define EMULONG short | |
214 | #else | |
215 | #if HOST_BITS_PER_INT >= EMULONG_SIZE | |
216 | #define EMULONG int | |
217 | #else | |
218 | #if HOST_BITS_PER_LONG >= EMULONG_SIZE | |
219 | #define EMULONG long | |
220 | #else | |
e9a25f70 | 221 | #if HOST_BITS_PER_LONGLONG >= EMULONG_SIZE |
985b6196 RS |
222 | #define EMULONG long long int |
223 | #else | |
0f41302f | 224 | /* You will have to modify this program to have a smaller unit size. */ |
985b6196 RS |
225 | #define EMU_NON_COMPILE |
226 | #endif | |
227 | #endif | |
228 | #endif | |
229 | #endif | |
230 | ||
231 | ||
0f41302f | 232 | /* The host interface doesn't work if no 16-bit size exists. */ |
985b6196 RS |
233 | #if EMUSHORT_SIZE != 16 |
234 | #define EMU_NON_COMPILE | |
235 | #endif | |
236 | ||
0f41302f | 237 | /* OK to continue compilation. */ |
985b6196 RS |
238 | #ifndef EMU_NON_COMPILE |
239 | ||
240 | /* Construct macros to translate between REAL_VALUE_TYPE and e type. | |
241 | In GET_REAL and PUT_REAL, r and e are pointers. | |
242 | A REAL_VALUE_TYPE is guaranteed to occupy contiguous locations | |
243 | in memory, with no holes. */ | |
244 | ||
245 | #if LONG_DOUBLE_TYPE_SIZE == 96 | |
842fbaaa JW |
246 | /* Number of 16 bit words in external e type format */ |
247 | #define NE 6 | |
248 | #define MAXDECEXP 4932 | |
249 | #define MINDECEXP -4956 | |
4ba46f43 | 250 | #define GET_REAL(r,e) bcopy ((char *) r, (char *) e, 2*NE) |
9691f3a1 DT |
251 | #define PUT_REAL(e,r) \ |
252 | do { \ | |
253 | if (2*NE < sizeof(*r)) \ | |
254 | bzero((char *)r, sizeof(*r)); \ | |
255 | bcopy ((char *) e, (char *) r, 2*NE); \ | |
256 | } while (0) | |
985b6196 | 257 | #else /* no XFmode */ |
842fbaaa JW |
258 | #if LONG_DOUBLE_TYPE_SIZE == 128 |
259 | #define NE 10 | |
260 | #define MAXDECEXP 4932 | |
261 | #define MINDECEXP -4977 | |
4ba46f43 | 262 | #define GET_REAL(r,e) bcopy ((char *) r, (char *) e, 2*NE) |
f634f682 JJ |
263 | #define PUT_REAL(e,r) \ |
264 | do { \ | |
265 | if (2*NE < sizeof(*r)) \ | |
266 | bzero((char *)r, sizeof(*r)); \ | |
267 | bcopy ((char *) e, (char *) r, 2*NE); \ | |
268 | } while (0) | |
842fbaaa JW |
269 | #else |
270 | #define NE 6 | |
271 | #define MAXDECEXP 4932 | |
272 | #define MINDECEXP -4956 | |
985b6196 RS |
273 | #ifdef REAL_ARITHMETIC |
274 | /* Emulator uses target format internally | |
0f41302f | 275 | but host stores it in host endian-ness. */ |
985b6196 | 276 | |
d7afe8ec MM |
277 | #define GET_REAL(r,e) \ |
278 | do { \ | |
279 | if (HOST_FLOAT_WORDS_BIG_ENDIAN == REAL_WORDS_BIG_ENDIAN) \ | |
280 | e53toe ((unsigned EMUSHORT *) (r), (e)); \ | |
281 | else \ | |
282 | { \ | |
283 | unsigned EMUSHORT w[4]; \ | |
eefc2c6e KG |
284 | memcpy (&w[3], ((EMUSHORT *) r), sizeof (EMUSHORT)); \ |
285 | memcpy (&w[2], ((EMUSHORT *) r) + 1, sizeof (EMUSHORT)); \ | |
286 | memcpy (&w[1], ((EMUSHORT *) r) + 2, sizeof (EMUSHORT)); \ | |
287 | memcpy (&w[0], ((EMUSHORT *) r) + 3, sizeof (EMUSHORT)); \ | |
d7afe8ec MM |
288 | e53toe (w, (e)); \ |
289 | } \ | |
f76b9db2 ILT |
290 | } while (0) |
291 | ||
d7afe8ec MM |
292 | #define PUT_REAL(e,r) \ |
293 | do { \ | |
294 | if (HOST_FLOAT_WORDS_BIG_ENDIAN == REAL_WORDS_BIG_ENDIAN) \ | |
295 | etoe53 ((e), (unsigned EMUSHORT *) (r)); \ | |
296 | else \ | |
297 | { \ | |
298 | unsigned EMUSHORT w[4]; \ | |
299 | etoe53 ((e), w); \ | |
eefc2c6e KG |
300 | memcpy (((EMUSHORT *) r), &w[3], sizeof (EMUSHORT)); \ |
301 | memcpy (((EMUSHORT *) r) + 1, &w[2], sizeof (EMUSHORT)); \ | |
302 | memcpy (((EMUSHORT *) r) + 2, &w[1], sizeof (EMUSHORT)); \ | |
303 | memcpy (((EMUSHORT *) r) + 3, &w[0], sizeof (EMUSHORT)); \ | |
d7afe8ec | 304 | } \ |
f76b9db2 | 305 | } while (0) |
985b6196 RS |
306 | |
307 | #else /* not REAL_ARITHMETIC */ | |
308 | ||
309 | /* emulator uses host format */ | |
a0353055 RK |
310 | #define GET_REAL(r,e) e53toe ((unsigned EMUSHORT *) (r), (e)) |
311 | #define PUT_REAL(e,r) etoe53 ((e), (unsigned EMUSHORT *) (r)) | |
985b6196 RS |
312 | |
313 | #endif /* not REAL_ARITHMETIC */ | |
842fbaaa | 314 | #endif /* not TFmode */ |
f5963e61 | 315 | #endif /* not XFmode */ |
985b6196 | 316 | |
842fbaaa JW |
317 | |
318 | /* Number of 16 bit words in internal format */ | |
319 | #define NI (NE+3) | |
320 | ||
321 | /* Array offset to exponent */ | |
322 | #define E 1 | |
323 | ||
324 | /* Array offset to high guard word */ | |
325 | #define M 2 | |
326 | ||
327 | /* Number of bits of precision */ | |
328 | #define NBITS ((NI-4)*16) | |
329 | ||
330 | /* Maximum number of decimal digits in ASCII conversion | |
331 | * = NBITS*log10(2) | |
332 | */ | |
333 | #define NDEC (NBITS*8/27) | |
334 | ||
335 | /* The exponent of 1.0 */ | |
336 | #define EXONE (0x3fff) | |
337 | ||
64685ffa | 338 | extern int extra_warnings; |
9d1bd99c MM |
339 | extern unsigned EMUSHORT ezero[], ehalf[], eone[], etwo[]; |
340 | extern unsigned EMUSHORT elog2[], esqrt2[]; | |
a0353055 RK |
341 | |
342 | static void endian PROTO((unsigned EMUSHORT *, long *, | |
343 | enum machine_mode)); | |
344 | static void eclear PROTO((unsigned EMUSHORT *)); | |
345 | static void emov PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); | |
7a87758d | 346 | #if 0 |
a0353055 | 347 | static void eabs PROTO((unsigned EMUSHORT *)); |
7a87758d | 348 | #endif |
a0353055 RK |
349 | static void eneg PROTO((unsigned EMUSHORT *)); |
350 | static int eisneg PROTO((unsigned EMUSHORT *)); | |
351 | static int eisinf PROTO((unsigned EMUSHORT *)); | |
352 | static int eisnan PROTO((unsigned EMUSHORT *)); | |
353 | static void einfin PROTO((unsigned EMUSHORT *)); | |
354 | static void enan PROTO((unsigned EMUSHORT *, int)); | |
355 | static void emovi PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); | |
356 | static void emovo PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); | |
357 | static void ecleaz PROTO((unsigned EMUSHORT *)); | |
358 | static void ecleazs PROTO((unsigned EMUSHORT *)); | |
359 | static void emovz PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); | |
360 | static void einan PROTO((unsigned EMUSHORT *)); | |
361 | static int eiisnan PROTO((unsigned EMUSHORT *)); | |
362 | static int eiisneg PROTO((unsigned EMUSHORT *)); | |
7a87758d | 363 | #if 0 |
a0353055 | 364 | static void eiinfin PROTO((unsigned EMUSHORT *)); |
7a87758d | 365 | #endif |
a0353055 RK |
366 | static int eiisinf PROTO((unsigned EMUSHORT *)); |
367 | static int ecmpm PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); | |
368 | static void eshdn1 PROTO((unsigned EMUSHORT *)); | |
369 | static void eshup1 PROTO((unsigned EMUSHORT *)); | |
370 | static void eshdn8 PROTO((unsigned EMUSHORT *)); | |
371 | static void eshup8 PROTO((unsigned EMUSHORT *)); | |
372 | static void eshup6 PROTO((unsigned EMUSHORT *)); | |
373 | static void eshdn6 PROTO((unsigned EMUSHORT *)); | |
374 | static void eaddm PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *));\f | |
375 | static void esubm PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); | |
c92d992a | 376 | static void m16m PROTO((unsigned int, unsigned short *, |
a0353055 RK |
377 | unsigned short *)); |
378 | static int edivm PROTO((unsigned short *, unsigned short *)); | |
379 | static int emulm PROTO((unsigned short *, unsigned short *)); | |
380 | static void emdnorm PROTO((unsigned EMUSHORT *, int, int, EMULONG, int)); | |
381 | static void esub PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *, | |
382 | unsigned EMUSHORT *)); | |
383 | static void eadd PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *, | |
384 | unsigned EMUSHORT *)); | |
385 | static void eadd1 PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *, | |
386 | unsigned EMUSHORT *)); | |
387 | static void ediv PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *, | |
388 | unsigned EMUSHORT *)); | |
389 | static void emul PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *, | |
390 | unsigned EMUSHORT *)); | |
391 | static void e53toe PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); | |
392 | static void e64toe PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); | |
393 | static void e113toe PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); | |
394 | static void e24toe PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); | |
395 | static void etoe113 PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); | |
396 | static void toe113 PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); | |
397 | static void etoe64 PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); | |
398 | static void toe64 PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); | |
399 | static void etoe53 PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); | |
400 | static void toe53 PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); | |
401 | static void etoe24 PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); | |
402 | static void toe24 PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); | |
403 | static int ecmp PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); | |
7a87758d | 404 | #if 0 |
a0353055 | 405 | static void eround PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); |
7a87758d | 406 | #endif |
a0353055 RK |
407 | static void ltoe PROTO((HOST_WIDE_INT *, unsigned EMUSHORT *)); |
408 | static void ultoe PROTO((unsigned HOST_WIDE_INT *, unsigned EMUSHORT *)); | |
409 | static void eifrac PROTO((unsigned EMUSHORT *, HOST_WIDE_INT *, | |
410 | unsigned EMUSHORT *)); | |
411 | static void euifrac PROTO((unsigned EMUSHORT *, unsigned HOST_WIDE_INT *, | |
412 | unsigned EMUSHORT *)); | |
413 | static int eshift PROTO((unsigned EMUSHORT *, int)); | |
414 | static int enormlz PROTO((unsigned EMUSHORT *)); | |
7a87758d | 415 | #if 0 |
a0353055 RK |
416 | static void e24toasc PROTO((unsigned EMUSHORT *, char *, int)); |
417 | static void e53toasc PROTO((unsigned EMUSHORT *, char *, int)); | |
418 | static void e64toasc PROTO((unsigned EMUSHORT *, char *, int)); | |
419 | static void e113toasc PROTO((unsigned EMUSHORT *, char *, int)); | |
7a87758d | 420 | #endif /* 0 */ |
a0353055 | 421 | static void etoasc PROTO((unsigned EMUSHORT *, char *, int)); |
dff01034 KG |
422 | static void asctoe24 PROTO((const char *, unsigned EMUSHORT *)); |
423 | static void asctoe53 PROTO((const char *, unsigned EMUSHORT *)); | |
424 | static void asctoe64 PROTO((const char *, unsigned EMUSHORT *)); | |
425 | static void asctoe113 PROTO((const char *, unsigned EMUSHORT *)); | |
426 | static void asctoe PROTO((const char *, unsigned EMUSHORT *)); | |
427 | static void asctoeg PROTO((const char *, unsigned EMUSHORT *, int)); | |
a0353055 | 428 | static void efloor PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); |
8468c4a4 | 429 | #if 0 |
a0353055 RK |
430 | static void efrexp PROTO((unsigned EMUSHORT *, int *, |
431 | unsigned EMUSHORT *)); | |
8468c4a4 | 432 | #endif |
a0353055 | 433 | static void eldexp PROTO((unsigned EMUSHORT *, int, unsigned EMUSHORT *)); |
8468c4a4 | 434 | #if 0 |
a0353055 RK |
435 | static void eremain PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *, |
436 | unsigned EMUSHORT *)); | |
8468c4a4 | 437 | #endif |
a0353055 | 438 | static void eiremain PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); |
dff01034 | 439 | static void mtherr PROTO((const char *, int)); |
e9a25f70 | 440 | #ifdef DEC |
a0353055 RK |
441 | static void dectoe PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); |
442 | static void etodec PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); | |
443 | static void todec PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); | |
e9a25f70 JL |
444 | #endif |
445 | #ifdef IBM | |
a0353055 RK |
446 | static void ibmtoe PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *, |
447 | enum machine_mode)); | |
448 | static void etoibm PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *, | |
449 | enum machine_mode)); | |
450 | static void toibm PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *, | |
451 | enum machine_mode)); | |
e9a25f70 | 452 | #endif |
f5963e61 JL |
453 | #ifdef C4X |
454 | static void c4xtoe PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *, | |
455 | enum machine_mode)); | |
456 | static void etoc4x PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *, | |
457 | enum machine_mode)); | |
458 | static void toc4x PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *, | |
459 | enum machine_mode)); | |
460 | #endif | |
a0353055 | 461 | static void make_nan PROTO((unsigned EMUSHORT *, int, enum machine_mode)); |
8468c4a4 | 462 | #if 0 |
a0353055 RK |
463 | static void uditoe PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); |
464 | static void ditoe PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); | |
465 | static void etoudi PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); | |
466 | static void etodi PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); | |
467 | static void esqrt PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); | |
8468c4a4 | 468 | #endif |
775ba35d | 469 | \f |
b51ab098 RK |
470 | /* Copy 32-bit numbers obtained from array containing 16-bit numbers, |
471 | swapping ends if required, into output array of longs. The | |
472 | result is normally passed to fprintf by the ASM_OUTPUT_ macros. */ | |
a0353055 | 473 | |
b6ca239d | 474 | static void |
985b6196 RS |
475 | endian (e, x, mode) |
476 | unsigned EMUSHORT e[]; | |
477 | long x[]; | |
478 | enum machine_mode mode; | |
479 | { | |
480 | unsigned long th, t; | |
481 | ||
8c35bbc5 | 482 | if (REAL_WORDS_BIG_ENDIAN) |
985b6196 | 483 | { |
f76b9db2 ILT |
484 | switch (mode) |
485 | { | |
f76b9db2 | 486 | case TFmode: |
0f41302f | 487 | /* Swap halfwords in the fourth long. */ |
f76b9db2 ILT |
488 | th = (unsigned long) e[6] & 0xffff; |
489 | t = (unsigned long) e[7] & 0xffff; | |
490 | t |= th << 16; | |
491 | x[3] = (long) t; | |
492 | ||
493 | case XFmode: | |
0f41302f | 494 | /* Swap halfwords in the third long. */ |
f76b9db2 ILT |
495 | th = (unsigned long) e[4] & 0xffff; |
496 | t = (unsigned long) e[5] & 0xffff; | |
497 | t |= th << 16; | |
498 | x[2] = (long) t; | |
499 | /* fall into the double case */ | |
500 | ||
501 | case DFmode: | |
f5963e61 | 502 | /* Swap halfwords in the second word. */ |
f76b9db2 ILT |
503 | th = (unsigned long) e[2] & 0xffff; |
504 | t = (unsigned long) e[3] & 0xffff; | |
505 | t |= th << 16; | |
506 | x[1] = (long) t; | |
507 | /* fall into the float case */ | |
508 | ||
f76b9db2 | 509 | case SFmode: |
f5963e61 JL |
510 | case HFmode: |
511 | /* Swap halfwords in the first word. */ | |
f76b9db2 ILT |
512 | th = (unsigned long) e[0] & 0xffff; |
513 | t = (unsigned long) e[1] & 0xffff; | |
514 | t |= th << 16; | |
f250a0bc | 515 | x[0] = (long) t; |
f76b9db2 | 516 | break; |
985b6196 | 517 | |
f76b9db2 ILT |
518 | default: |
519 | abort (); | |
520 | } | |
985b6196 | 521 | } |
f76b9db2 | 522 | else |
985b6196 | 523 | { |
0f41302f | 524 | /* Pack the output array without swapping. */ |
985b6196 | 525 | |
f76b9db2 ILT |
526 | switch (mode) |
527 | { | |
f76b9db2 | 528 | case TFmode: |
0f41302f | 529 | /* Pack the fourth long. */ |
f76b9db2 ILT |
530 | th = (unsigned long) e[7] & 0xffff; |
531 | t = (unsigned long) e[6] & 0xffff; | |
532 | t |= th << 16; | |
533 | x[3] = (long) t; | |
534 | ||
535 | case XFmode: | |
f76b9db2 ILT |
536 | /* Pack the third long. |
537 | Each element of the input REAL_VALUE_TYPE array has 16 useful bits | |
538 | in it. */ | |
539 | th = (unsigned long) e[5] & 0xffff; | |
540 | t = (unsigned long) e[4] & 0xffff; | |
541 | t |= th << 16; | |
542 | x[2] = (long) t; | |
543 | /* fall into the double case */ | |
544 | ||
545 | case DFmode: | |
f5963e61 | 546 | /* Pack the second long */ |
f76b9db2 ILT |
547 | th = (unsigned long) e[3] & 0xffff; |
548 | t = (unsigned long) e[2] & 0xffff; | |
549 | t |= th << 16; | |
550 | x[1] = (long) t; | |
551 | /* fall into the float case */ | |
552 | ||
f76b9db2 | 553 | case SFmode: |
f5963e61 JL |
554 | case HFmode: |
555 | /* Pack the first long */ | |
f76b9db2 ILT |
556 | th = (unsigned long) e[1] & 0xffff; |
557 | t = (unsigned long) e[0] & 0xffff; | |
558 | t |= th << 16; | |
f250a0bc | 559 | x[0] = (long) t; |
f76b9db2 | 560 | break; |
985b6196 | 561 | |
f76b9db2 ILT |
562 | default: |
563 | abort (); | |
564 | } | |
985b6196 | 565 | } |
985b6196 RS |
566 | } |
567 | ||
568 | ||
defb5dab | 569 | /* This is the implementation of the REAL_ARITHMETIC macro. */ |
a0353055 | 570 | |
b6ca239d | 571 | void |
985b6196 RS |
572 | earith (value, icode, r1, r2) |
573 | REAL_VALUE_TYPE *value; | |
574 | int icode; | |
575 | REAL_VALUE_TYPE *r1; | |
576 | REAL_VALUE_TYPE *r2; | |
577 | { | |
578 | unsigned EMUSHORT d1[NE], d2[NE], v[NE]; | |
579 | enum tree_code code; | |
580 | ||
581 | GET_REAL (r1, d1); | |
582 | GET_REAL (r2, d2); | |
66b6d60b | 583 | #ifdef NANS |
0f41302f | 584 | /* Return NaN input back to the caller. */ |
66b6d60b RS |
585 | if (eisnan (d1)) |
586 | { | |
587 | PUT_REAL (d1, value); | |
588 | return; | |
589 | } | |
590 | if (eisnan (d2)) | |
591 | { | |
592 | PUT_REAL (d2, value); | |
593 | return; | |
594 | } | |
595 | #endif | |
985b6196 RS |
596 | code = (enum tree_code) icode; |
597 | switch (code) | |
598 | { | |
599 | case PLUS_EXPR: | |
600 | eadd (d2, d1, v); | |
601 | break; | |
602 | ||
603 | case MINUS_EXPR: | |
604 | esub (d2, d1, v); /* d1 - d2 */ | |
605 | break; | |
606 | ||
607 | case MULT_EXPR: | |
608 | emul (d2, d1, v); | |
609 | break; | |
610 | ||
611 | case RDIV_EXPR: | |
612 | #ifndef REAL_INFINITY | |
613 | if (ecmp (d2, ezero) == 0) | |
66b6d60b RS |
614 | { |
615 | #ifdef NANS | |
29e11dab | 616 | enan (v, eisneg (d1) ^ eisneg (d2)); |
66b6d60b RS |
617 | break; |
618 | #else | |
985b6196 | 619 | abort (); |
66b6d60b RS |
620 | #endif |
621 | } | |
985b6196 RS |
622 | #endif |
623 | ediv (d2, d1, v); /* d1/d2 */ | |
624 | break; | |
625 | ||
626 | case MIN_EXPR: /* min (d1,d2) */ | |
627 | if (ecmp (d1, d2) < 0) | |
628 | emov (d1, v); | |
629 | else | |
630 | emov (d2, v); | |
631 | break; | |
632 | ||
633 | case MAX_EXPR: /* max (d1,d2) */ | |
634 | if (ecmp (d1, d2) > 0) | |
635 | emov (d1, v); | |
636 | else | |
637 | emov (d2, v); | |
638 | break; | |
639 | default: | |
640 | emov (ezero, v); | |
641 | break; | |
642 | } | |
643 | PUT_REAL (v, value); | |
644 | } | |
645 | ||
646 | ||
defb5dab RK |
647 | /* Truncate REAL_VALUE_TYPE toward zero to signed HOST_WIDE_INT. |
648 | implements REAL_VALUE_RNDZINT (x) (etrunci (x)). */ | |
649 | ||
b6ca239d | 650 | REAL_VALUE_TYPE |
985b6196 RS |
651 | etrunci (x) |
652 | REAL_VALUE_TYPE x; | |
653 | { | |
654 | unsigned EMUSHORT f[NE], g[NE]; | |
655 | REAL_VALUE_TYPE r; | |
b51ab098 | 656 | HOST_WIDE_INT l; |
985b6196 RS |
657 | |
658 | GET_REAL (&x, g); | |
66b6d60b RS |
659 | #ifdef NANS |
660 | if (eisnan (g)) | |
661 | return (x); | |
662 | #endif | |
985b6196 RS |
663 | eifrac (g, &l, f); |
664 | ltoe (&l, g); | |
665 | PUT_REAL (g, &r); | |
666 | return (r); | |
667 | } | |
668 | ||
669 | ||
defb5dab RK |
670 | /* Truncate REAL_VALUE_TYPE toward zero to unsigned HOST_WIDE_INT; |
671 | implements REAL_VALUE_UNSIGNED_RNDZINT (x) (etruncui (x)). */ | |
672 | ||
b6ca239d | 673 | REAL_VALUE_TYPE |
985b6196 RS |
674 | etruncui (x) |
675 | REAL_VALUE_TYPE x; | |
676 | { | |
677 | unsigned EMUSHORT f[NE], g[NE]; | |
678 | REAL_VALUE_TYPE r; | |
b51ab098 | 679 | unsigned HOST_WIDE_INT l; |
985b6196 RS |
680 | |
681 | GET_REAL (&x, g); | |
66b6d60b RS |
682 | #ifdef NANS |
683 | if (eisnan (g)) | |
684 | return (x); | |
685 | #endif | |
985b6196 RS |
686 | euifrac (g, &l, f); |
687 | ultoe (&l, g); | |
688 | PUT_REAL (g, &r); | |
689 | return (r); | |
690 | } | |
691 | ||
692 | ||
6f4d7222 UD |
693 | /* This is the REAL_VALUE_ATOF function. It converts a decimal or hexadecimal |
694 | string to binary, rounding off as indicated by the machine_mode argument. | |
695 | Then it promotes the rounded value to REAL_VALUE_TYPE. */ | |
defb5dab | 696 | |
b6ca239d | 697 | REAL_VALUE_TYPE |
985b6196 | 698 | ereal_atof (s, t) |
dff01034 | 699 | const char *s; |
985b6196 RS |
700 | enum machine_mode t; |
701 | { | |
702 | unsigned EMUSHORT tem[NE], e[NE]; | |
703 | REAL_VALUE_TYPE r; | |
704 | ||
705 | switch (t) | |
706 | { | |
9ec36da5 JL |
707 | #ifdef C4X |
708 | case QFmode: | |
bfbc6416 | 709 | case HFmode: |
9ec36da5 JL |
710 | asctoe53 (s, tem); |
711 | e53toe (tem, e); | |
712 | break; | |
713 | #else | |
714 | case HFmode: | |
715 | #endif | |
716 | ||
985b6196 RS |
717 | case SFmode: |
718 | asctoe24 (s, tem); | |
719 | e24toe (tem, e); | |
720 | break; | |
f5963e61 | 721 | |
985b6196 RS |
722 | case DFmode: |
723 | asctoe53 (s, tem); | |
724 | e53toe (tem, e); | |
725 | break; | |
f5963e61 | 726 | |
985b6196 RS |
727 | case XFmode: |
728 | asctoe64 (s, tem); | |
729 | e64toe (tem, e); | |
730 | break; | |
f5963e61 | 731 | |
842fbaaa JW |
732 | case TFmode: |
733 | asctoe113 (s, tem); | |
734 | e113toe (tem, e); | |
735 | break; | |
f5963e61 | 736 | |
985b6196 RS |
737 | default: |
738 | asctoe (s, e); | |
739 | } | |
740 | PUT_REAL (e, &r); | |
741 | return (r); | |
742 | } | |
743 | ||
744 | ||
defb5dab RK |
745 | /* Expansion of REAL_NEGATE. */ |
746 | ||
b6ca239d | 747 | REAL_VALUE_TYPE |
985b6196 RS |
748 | ereal_negate (x) |
749 | REAL_VALUE_TYPE x; | |
750 | { | |
751 | unsigned EMUSHORT e[NE]; | |
752 | REAL_VALUE_TYPE r; | |
753 | ||
754 | GET_REAL (&x, e); | |
755 | eneg (e); | |
756 | PUT_REAL (e, &r); | |
757 | return (r); | |
758 | } | |
759 | ||
760 | ||
defb5dab RK |
761 | /* Round real toward zero to HOST_WIDE_INT; |
762 | implements REAL_VALUE_FIX (x). */ | |
763 | ||
b51ab098 | 764 | HOST_WIDE_INT |
842fbaaa | 765 | efixi (x) |
985b6196 RS |
766 | REAL_VALUE_TYPE x; |
767 | { | |
768 | unsigned EMUSHORT f[NE], g[NE]; | |
b51ab098 | 769 | HOST_WIDE_INT l; |
985b6196 RS |
770 | |
771 | GET_REAL (&x, f); | |
66b6d60b RS |
772 | #ifdef NANS |
773 | if (eisnan (f)) | |
774 | { | |
775 | warning ("conversion from NaN to int"); | |
776 | return (-1); | |
777 | } | |
778 | #endif | |
842fbaaa JW |
779 | eifrac (f, &l, g); |
780 | return l; | |
985b6196 RS |
781 | } |
782 | ||
842fbaaa | 783 | /* Round real toward zero to unsigned HOST_WIDE_INT |
defb5dab RK |
784 | implements REAL_VALUE_UNSIGNED_FIX (x). |
785 | Negative input returns zero. */ | |
786 | ||
b51ab098 | 787 | unsigned HOST_WIDE_INT |
842fbaaa | 788 | efixui (x) |
985b6196 RS |
789 | REAL_VALUE_TYPE x; |
790 | { | |
791 | unsigned EMUSHORT f[NE], g[NE]; | |
b51ab098 | 792 | unsigned HOST_WIDE_INT l; |
985b6196 RS |
793 | |
794 | GET_REAL (&x, f); | |
66b6d60b RS |
795 | #ifdef NANS |
796 | if (eisnan (f)) | |
797 | { | |
798 | warning ("conversion from NaN to unsigned int"); | |
799 | return (-1); | |
800 | } | |
801 | #endif | |
842fbaaa JW |
802 | euifrac (f, &l, g); |
803 | return l; | |
985b6196 RS |
804 | } |
805 | ||
806 | ||
defb5dab RK |
807 | /* REAL_VALUE_FROM_INT macro. */ |
808 | ||
b6ca239d | 809 | void |
48e73d63 | 810 | ereal_from_int (d, i, j, mode) |
985b6196 | 811 | REAL_VALUE_TYPE *d; |
b51ab098 | 812 | HOST_WIDE_INT i, j; |
48e73d63 | 813 | enum machine_mode mode; |
985b6196 RS |
814 | { |
815 | unsigned EMUSHORT df[NE], dg[NE]; | |
b51ab098 | 816 | HOST_WIDE_INT low, high; |
985b6196 RS |
817 | int sign; |
818 | ||
48e73d63 RK |
819 | if (GET_MODE_CLASS (mode) != MODE_FLOAT) |
820 | abort (); | |
985b6196 RS |
821 | sign = 0; |
822 | low = i; | |
823 | if ((high = j) < 0) | |
824 | { | |
825 | sign = 1; | |
826 | /* complement and add 1 */ | |
827 | high = ~high; | |
828 | if (low) | |
829 | low = -low; | |
830 | else | |
831 | high += 1; | |
832 | } | |
b51ab098 | 833 | eldexp (eone, HOST_BITS_PER_WIDE_INT, df); |
60e61165 | 834 | ultoe ((unsigned HOST_WIDE_INT *) &high, dg); |
985b6196 | 835 | emul (dg, df, dg); |
60e61165 | 836 | ultoe ((unsigned HOST_WIDE_INT *) &low, df); |
985b6196 RS |
837 | eadd (df, dg, dg); |
838 | if (sign) | |
839 | eneg (dg); | |
48e73d63 RK |
840 | |
841 | /* A REAL_VALUE_TYPE may not be wide enough to hold the two HOST_WIDE_INTS. | |
842 | Avoid double-rounding errors later by rounding off now from the | |
843 | extra-wide internal format to the requested precision. */ | |
844 | switch (GET_MODE_BITSIZE (mode)) | |
845 | { | |
846 | case 32: | |
847 | etoe24 (dg, df); | |
848 | e24toe (df, dg); | |
849 | break; | |
850 | ||
851 | case 64: | |
852 | etoe53 (dg, df); | |
853 | e53toe (df, dg); | |
854 | break; | |
855 | ||
856 | case 96: | |
857 | etoe64 (dg, df); | |
858 | e64toe (df, dg); | |
859 | break; | |
860 | ||
861 | case 128: | |
862 | etoe113 (dg, df); | |
863 | e113toe (df, dg); | |
864 | break; | |
865 | ||
866 | default: | |
867 | abort (); | |
868 | } | |
869 | ||
985b6196 RS |
870 | PUT_REAL (dg, d); |
871 | } | |
872 | ||
873 | ||
defb5dab | 874 | /* REAL_VALUE_FROM_UNSIGNED_INT macro. */ |
a0353055 | 875 | |
b6ca239d | 876 | void |
48e73d63 | 877 | ereal_from_uint (d, i, j, mode) |
985b6196 | 878 | REAL_VALUE_TYPE *d; |
b51ab098 | 879 | unsigned HOST_WIDE_INT i, j; |
48e73d63 | 880 | enum machine_mode mode; |
985b6196 RS |
881 | { |
882 | unsigned EMUSHORT df[NE], dg[NE]; | |
b51ab098 | 883 | unsigned HOST_WIDE_INT low, high; |
985b6196 | 884 | |
48e73d63 RK |
885 | if (GET_MODE_CLASS (mode) != MODE_FLOAT) |
886 | abort (); | |
985b6196 RS |
887 | low = i; |
888 | high = j; | |
b51ab098 | 889 | eldexp (eone, HOST_BITS_PER_WIDE_INT, df); |
985b6196 RS |
890 | ultoe (&high, dg); |
891 | emul (dg, df, dg); | |
892 | ultoe (&low, df); | |
893 | eadd (df, dg, dg); | |
48e73d63 RK |
894 | |
895 | /* A REAL_VALUE_TYPE may not be wide enough to hold the two HOST_WIDE_INTS. | |
896 | Avoid double-rounding errors later by rounding off now from the | |
897 | extra-wide internal format to the requested precision. */ | |
898 | switch (GET_MODE_BITSIZE (mode)) | |
899 | { | |
900 | case 32: | |
901 | etoe24 (dg, df); | |
902 | e24toe (df, dg); | |
903 | break; | |
904 | ||
905 | case 64: | |
906 | etoe53 (dg, df); | |
907 | e53toe (df, dg); | |
908 | break; | |
909 | ||
910 | case 96: | |
911 | etoe64 (dg, df); | |
912 | e64toe (df, dg); | |
913 | break; | |
914 | ||
915 | case 128: | |
916 | etoe113 (dg, df); | |
917 | e113toe (df, dg); | |
918 | break; | |
919 | ||
920 | default: | |
921 | abort (); | |
922 | } | |
923 | ||
985b6196 RS |
924 | PUT_REAL (dg, d); |
925 | } | |
926 | ||
927 | ||
defb5dab RK |
928 | /* REAL_VALUE_TO_INT macro. */ |
929 | ||
b6ca239d | 930 | void |
985b6196 | 931 | ereal_to_int (low, high, rr) |
b51ab098 | 932 | HOST_WIDE_INT *low, *high; |
985b6196 RS |
933 | REAL_VALUE_TYPE rr; |
934 | { | |
935 | unsigned EMUSHORT d[NE], df[NE], dg[NE], dh[NE]; | |
936 | int s; | |
937 | ||
938 | GET_REAL (&rr, d); | |
66b6d60b | 939 | #ifdef NANS |
970491df | 940 | if (eisnan (d)) |
66b6d60b RS |
941 | { |
942 | warning ("conversion from NaN to int"); | |
943 | *low = -1; | |
944 | *high = -1; | |
945 | return; | |
946 | } | |
947 | #endif | |
985b6196 RS |
948 | /* convert positive value */ |
949 | s = 0; | |
950 | if (eisneg (d)) | |
951 | { | |
952 | eneg (d); | |
953 | s = 1; | |
954 | } | |
b51ab098 | 955 | eldexp (eone, HOST_BITS_PER_WIDE_INT, df); |
985b6196 | 956 | ediv (df, d, dg); /* dg = d / 2^32 is the high word */ |
60e61165 | 957 | euifrac (dg, (unsigned HOST_WIDE_INT *) high, dh); |
985b6196 | 958 | emul (df, dh, dg); /* fractional part is the low word */ |
60e61165 | 959 | euifrac (dg, (unsigned HOST_WIDE_INT *)low, dh); |
985b6196 RS |
960 | if (s) |
961 | { | |
962 | /* complement and add 1 */ | |
963 | *high = ~(*high); | |
964 | if (*low) | |
965 | *low = -(*low); | |
966 | else | |
967 | *high += 1; | |
968 | } | |
969 | } | |
970 | ||
971 | ||
defb5dab RK |
972 | /* REAL_VALUE_LDEXP macro. */ |
973 | ||
985b6196 RS |
974 | REAL_VALUE_TYPE |
975 | ereal_ldexp (x, n) | |
976 | REAL_VALUE_TYPE x; | |
977 | int n; | |
978 | { | |
979 | unsigned EMUSHORT e[NE], y[NE]; | |
980 | REAL_VALUE_TYPE r; | |
981 | ||
982 | GET_REAL (&x, e); | |
66b6d60b RS |
983 | #ifdef NANS |
984 | if (eisnan (e)) | |
985 | return (x); | |
986 | #endif | |
985b6196 RS |
987 | eldexp (e, n, y); |
988 | PUT_REAL (y, &r); | |
989 | return (r); | |
990 | } | |
991 | ||
992 | /* These routines are conditionally compiled because functions | |
defb5dab RK |
993 | of the same names may be defined in fold-const.c. */ |
994 | ||
985b6196 RS |
995 | #ifdef REAL_ARITHMETIC |
996 | ||
0f41302f | 997 | /* Check for infinity in a REAL_VALUE_TYPE. */ |
defb5dab | 998 | |
985b6196 RS |
999 | int |
1000 | target_isinf (x) | |
1001 | REAL_VALUE_TYPE x; | |
1002 | { | |
1003 | unsigned EMUSHORT e[NE]; | |
1004 | ||
1005 | #ifdef INFINITY | |
1006 | GET_REAL (&x, e); | |
1007 | return (eisinf (e)); | |
1008 | #else | |
1009 | return 0; | |
1010 | #endif | |
1011 | } | |
1012 | ||
0f41302f | 1013 | /* Check whether a REAL_VALUE_TYPE item is a NaN. */ |
985b6196 RS |
1014 | |
1015 | int | |
1016 | target_isnan (x) | |
1017 | REAL_VALUE_TYPE x; | |
1018 | { | |
9d72da33 RS |
1019 | unsigned EMUSHORT e[NE]; |
1020 | ||
66b6d60b | 1021 | #ifdef NANS |
9d72da33 RS |
1022 | GET_REAL (&x, e); |
1023 | return (eisnan (e)); | |
66b6d60b | 1024 | #else |
985b6196 | 1025 | return (0); |
66b6d60b | 1026 | #endif |
985b6196 RS |
1027 | } |
1028 | ||
1029 | ||
66b6d60b | 1030 | /* Check for a negative REAL_VALUE_TYPE number. |
0f41302f | 1031 | This just checks the sign bit, so that -0 counts as negative. */ |
985b6196 RS |
1032 | |
1033 | int | |
1034 | target_negative (x) | |
1035 | REAL_VALUE_TYPE x; | |
1036 | { | |
281bb5e4 | 1037 | return ereal_isneg (x); |
985b6196 RS |
1038 | } |
1039 | ||
1040 | /* Expansion of REAL_VALUE_TRUNCATE. | |
defb5dab RK |
1041 | The result is in floating point, rounded to nearest or even. */ |
1042 | ||
985b6196 RS |
1043 | REAL_VALUE_TYPE |
1044 | real_value_truncate (mode, arg) | |
1045 | enum machine_mode mode; | |
1046 | REAL_VALUE_TYPE arg; | |
1047 | { | |
1048 | unsigned EMUSHORT e[NE], t[NE]; | |
1049 | REAL_VALUE_TYPE r; | |
1050 | ||
1051 | GET_REAL (&arg, e); | |
66b6d60b RS |
1052 | #ifdef NANS |
1053 | if (eisnan (e)) | |
1054 | return (arg); | |
1055 | #endif | |
985b6196 RS |
1056 | eclear (t); |
1057 | switch (mode) | |
1058 | { | |
842fbaaa JW |
1059 | case TFmode: |
1060 | etoe113 (e, t); | |
1061 | e113toe (t, t); | |
1062 | break; | |
1063 | ||
985b6196 RS |
1064 | case XFmode: |
1065 | etoe64 (e, t); | |
1066 | e64toe (t, t); | |
1067 | break; | |
1068 | ||
1069 | case DFmode: | |
1070 | etoe53 (e, t); | |
1071 | e53toe (t, t); | |
1072 | break; | |
1073 | ||
1074 | case SFmode: | |
9ec36da5 | 1075 | #ifndef C4X |
f5963e61 | 1076 | case HFmode: |
9ec36da5 | 1077 | #endif |
985b6196 RS |
1078 | etoe24 (e, t); |
1079 | e24toe (t, t); | |
1080 | break; | |
1081 | ||
9ec36da5 JL |
1082 | #ifdef C4X |
1083 | case HFmode: | |
1084 | case QFmode: | |
1085 | etoe53 (e, t); | |
1086 | e53toe (t, t); | |
1087 | break; | |
1088 | #endif | |
1089 | ||
985b6196 | 1090 | case SImode: |
f8ece317 | 1091 | r = etrunci (arg); |
985b6196 RS |
1092 | return (r); |
1093 | ||
0de689b7 RK |
1094 | /* If an unsupported type was requested, presume that |
1095 | the machine files know something useful to do with | |
1096 | the unmodified value. */ | |
defb5dab | 1097 | |
985b6196 | 1098 | default: |
0de689b7 | 1099 | return (arg); |
985b6196 RS |
1100 | } |
1101 | PUT_REAL (t, &r); | |
1102 | return (r); | |
1103 | } | |
1104 | ||
cccc8091 RK |
1105 | /* Try to change R into its exact multiplicative inverse in machine mode |
1106 | MODE. Return nonzero function value if successful. */ | |
1107 | ||
1108 | int | |
1109 | exact_real_inverse (mode, r) | |
1110 | enum machine_mode mode; | |
1111 | REAL_VALUE_TYPE *r; | |
1112 | { | |
1113 | unsigned EMUSHORT e[NE], einv[NE]; | |
1114 | REAL_VALUE_TYPE rinv; | |
1115 | int i; | |
1116 | ||
1117 | GET_REAL (r, e); | |
1118 | ||
1119 | /* Test for input in range. Don't transform IEEE special values. */ | |
1120 | if (eisinf (e) || eisnan (e) || (ecmp (e, ezero) == 0)) | |
1121 | return 0; | |
1122 | ||
1123 | /* Test for a power of 2: all significand bits zero except the MSB. | |
1124 | We are assuming the target has binary (or hex) arithmetic. */ | |
1125 | if (e[NE - 2] != 0x8000) | |
1126 | return 0; | |
1127 | ||
1128 | for (i = 0; i < NE - 2; i++) | |
1129 | { | |
1130 | if (e[i] != 0) | |
1131 | return 0; | |
1132 | } | |
1133 | ||
1134 | /* Compute the inverse and truncate it to the required mode. */ | |
1135 | ediv (e, eone, einv); | |
1136 | PUT_REAL (einv, &rinv); | |
1137 | rinv = real_value_truncate (mode, rinv); | |
1138 | ||
1139 | #ifdef CHECK_FLOAT_VALUE | |
1140 | /* This check is not redundant. It may, for example, flush | |
1141 | a supposedly IEEE denormal value to zero. */ | |
1142 | i = 0; | |
1143 | if (CHECK_FLOAT_VALUE (mode, rinv, i)) | |
1144 | return 0; | |
1145 | #endif | |
1146 | GET_REAL (&rinv, einv); | |
1147 | ||
1148 | /* Check the bits again, because the truncation might have | |
1149 | generated an arbitrary saturation value on overflow. */ | |
1150 | if (einv[NE - 2] != 0x8000) | |
1151 | return 0; | |
1152 | ||
1153 | for (i = 0; i < NE - 2; i++) | |
1154 | { | |
1155 | if (einv[i] != 0) | |
1156 | return 0; | |
1157 | } | |
1158 | ||
1159 | /* Fail if the computed inverse is out of range. */ | |
1160 | if (eisinf (einv) || eisnan (einv) || (ecmp (einv, ezero) == 0)) | |
1161 | return 0; | |
1162 | ||
1163 | /* Output the reciprocal and return success flag. */ | |
1164 | PUT_REAL (einv, r); | |
1165 | return 1; | |
1166 | } | |
985b6196 RS |
1167 | #endif /* REAL_ARITHMETIC defined */ |
1168 | ||
775ba35d RS |
1169 | /* Used for debugging--print the value of R in human-readable format |
1170 | on stderr. */ | |
1171 | ||
1172 | void | |
1173 | debug_real (r) | |
1174 | REAL_VALUE_TYPE r; | |
1175 | { | |
1176 | char dstr[30]; | |
1177 | ||
1178 | REAL_VALUE_TO_DECIMAL (r, "%.20g", dstr); | |
1179 | fprintf (stderr, "%s", dstr); | |
b6ca239d | 1180 | } |
775ba35d RS |
1181 | |
1182 | \f | |
8c35bbc5 RK |
1183 | /* The following routines convert REAL_VALUE_TYPE to the various floating |
1184 | point formats that are meaningful to supported computers. | |
1185 | ||
b6ca239d | 1186 | The results are returned in 32-bit pieces, each piece stored in a `long'. |
8c35bbc5 | 1187 | This is so they can be printed by statements like |
b6ca239d | 1188 | |
8c35bbc5 RK |
1189 | fprintf (file, "%lx, %lx", L[0], L[1]); |
1190 | ||
1191 | that will work on both narrow- and wide-word host computers. */ | |
842fbaaa | 1192 | |
8c35bbc5 RK |
1193 | /* Convert R to a 128-bit long double precision value. The output array L |
1194 | contains four 32-bit pieces of the result, in the order they would appear | |
1195 | in memory. */ | |
defb5dab | 1196 | |
b6ca239d | 1197 | void |
842fbaaa JW |
1198 | etartdouble (r, l) |
1199 | REAL_VALUE_TYPE r; | |
1200 | long l[]; | |
1201 | { | |
1202 | unsigned EMUSHORT e[NE]; | |
1203 | ||
1204 | GET_REAL (&r, e); | |
1205 | etoe113 (e, e); | |
1206 | endian (e, l, TFmode); | |
1207 | } | |
1208 | ||
8c35bbc5 RK |
1209 | /* Convert R to a double extended precision value. The output array L |
1210 | contains three 32-bit pieces of the result, in the order they would | |
1211 | appear in memory. */ | |
defb5dab | 1212 | |
b6ca239d | 1213 | void |
985b6196 RS |
1214 | etarldouble (r, l) |
1215 | REAL_VALUE_TYPE r; | |
1216 | long l[]; | |
1217 | { | |
1218 | unsigned EMUSHORT e[NE]; | |
1219 | ||
1220 | GET_REAL (&r, e); | |
1221 | etoe64 (e, e); | |
1222 | endian (e, l, XFmode); | |
1223 | } | |
1224 | ||
8c35bbc5 RK |
1225 | /* Convert R to a double precision value. The output array L contains two |
1226 | 32-bit pieces of the result, in the order they would appear in memory. */ | |
1227 | ||
b6ca239d | 1228 | void |
985b6196 RS |
1229 | etardouble (r, l) |
1230 | REAL_VALUE_TYPE r; | |
1231 | long l[]; | |
1232 | { | |
1233 | unsigned EMUSHORT e[NE]; | |
1234 | ||
1235 | GET_REAL (&r, e); | |
1236 | etoe53 (e, e); | |
1237 | endian (e, l, DFmode); | |
1238 | } | |
1239 | ||
8c35bbc5 RK |
1240 | /* Convert R to a single precision float value stored in the least-significant |
1241 | bits of a `long'. */ | |
1242 | ||
985b6196 RS |
1243 | long |
1244 | etarsingle (r) | |
1245 | REAL_VALUE_TYPE r; | |
1246 | { | |
1247 | unsigned EMUSHORT e[NE]; | |
60e61165 | 1248 | long l; |
985b6196 RS |
1249 | |
1250 | GET_REAL (&r, e); | |
1251 | etoe24 (e, e); | |
1252 | endian (e, &l, SFmode); | |
1253 | return ((long) l); | |
1254 | } | |
1255 | ||
8c35bbc5 RK |
1256 | /* Convert X to a decimal ASCII string S for output to an assembly |
1257 | language file. Note, there is no standard way to spell infinity or | |
1258 | a NaN, so these values may require special treatment in the tm.h | |
1259 | macros. */ | |
1260 | ||
985b6196 RS |
1261 | void |
1262 | ereal_to_decimal (x, s) | |
1263 | REAL_VALUE_TYPE x; | |
1264 | char *s; | |
1265 | { | |
1266 | unsigned EMUSHORT e[NE]; | |
1267 | ||
1268 | GET_REAL (&x, e); | |
1269 | etoasc (e, s, 20); | |
1270 | } | |
1271 | ||
8c35bbc5 RK |
1272 | /* Compare X and Y. Return 1 if X > Y, 0 if X == Y, -1 if X < Y, |
1273 | or -2 if either is a NaN. */ | |
1274 | ||
985b6196 RS |
1275 | int |
1276 | ereal_cmp (x, y) | |
1277 | REAL_VALUE_TYPE x, y; | |
1278 | { | |
1279 | unsigned EMUSHORT ex[NE], ey[NE]; | |
1280 | ||
1281 | GET_REAL (&x, ex); | |
1282 | GET_REAL (&y, ey); | |
1283 | return (ecmp (ex, ey)); | |
1284 | } | |
1285 | ||
8c35bbc5 RK |
1286 | /* Return 1 if the sign bit of X is set, else return 0. */ |
1287 | ||
985b6196 RS |
1288 | int |
1289 | ereal_isneg (x) | |
1290 | REAL_VALUE_TYPE x; | |
1291 | { | |
1292 | unsigned EMUSHORT ex[NE]; | |
1293 | ||
1294 | GET_REAL (&x, ex); | |
1295 | return (eisneg (ex)); | |
1296 | } | |
1297 | ||
1298 | /* End of REAL_ARITHMETIC interface */ | |
775ba35d | 1299 | \f |
defb5dab RK |
1300 | /* |
1301 | Extended precision IEEE binary floating point arithmetic routines | |
1302 | ||
1303 | Numbers are stored in C language as arrays of 16-bit unsigned | |
1304 | short integers. The arguments of the routines are pointers to | |
1305 | the arrays. | |
1306 | ||
8c35bbc5 | 1307 | External e type data structure, similar to Intel 8087 chip |
defb5dab RK |
1308 | temporary real format but possibly with a larger significand: |
1309 | ||
1310 | NE-1 significand words (least significant word first, | |
1311 | most significant bit is normally set) | |
1312 | exponent (value = EXONE for 1.0, | |
1313 | top bit is the sign) | |
1314 | ||
1315 | ||
8c35bbc5 | 1316 | Internal exploded e-type data structure of a number (a "word" is 16 bits): |
defb5dab RK |
1317 | |
1318 | ei[0] sign word (0 for positive, 0xffff for negative) | |
1319 | ei[1] biased exponent (value = EXONE for the number 1.0) | |
1320 | ei[2] high guard word (always zero after normalization) | |
1321 | ei[3] | |
1322 | to ei[NI-2] significand (NI-4 significand words, | |
1323 | most significant word first, | |
1324 | most significant bit is set) | |
1325 | ei[NI-1] low guard word (0x8000 bit is rounding place) | |
b6ca239d UD |
1326 | |
1327 | ||
1328 | ||
8c35bbc5 | 1329 | Routines for external format e-type numbers |
b6ca239d | 1330 | |
defb5dab RK |
1331 | asctoe (string, e) ASCII string to extended double e type |
1332 | asctoe64 (string, &d) ASCII string to long double | |
1333 | asctoe53 (string, &d) ASCII string to double | |
1334 | asctoe24 (string, &f) ASCII string to single | |
1335 | asctoeg (string, e, prec) ASCII string to specified precision | |
1336 | e24toe (&f, e) IEEE single precision to e type | |
1337 | e53toe (&d, e) IEEE double precision to e type | |
1338 | e64toe (&d, e) IEEE long double precision to e type | |
1339 | e113toe (&d, e) 128-bit long double precision to e type | |
7a87758d | 1340 | #if 0 |
defb5dab | 1341 | eabs (e) absolute value |
7a87758d | 1342 | #endif |
defb5dab RK |
1343 | eadd (a, b, c) c = b + a |
1344 | eclear (e) e = 0 | |
1345 | ecmp (a, b) Returns 1 if a > b, 0 if a == b, | |
1346 | -1 if a < b, -2 if either a or b is a NaN. | |
1347 | ediv (a, b, c) c = b / a | |
1348 | efloor (a, b) truncate to integer, toward -infinity | |
1349 | efrexp (a, exp, s) extract exponent and significand | |
1350 | eifrac (e, &l, frac) e to HOST_WIDE_INT and e type fraction | |
1351 | euifrac (e, &l, frac) e to unsigned HOST_WIDE_INT and e type fraction | |
1352 | einfin (e) set e to infinity, leaving its sign alone | |
1353 | eldexp (a, n, b) multiply by 2**n | |
1354 | emov (a, b) b = a | |
1355 | emul (a, b, c) c = b * a | |
1356 | eneg (e) e = -e | |
7a87758d | 1357 | #if 0 |
defb5dab | 1358 | eround (a, b) b = nearest integer value to a |
7a87758d | 1359 | #endif |
defb5dab | 1360 | esub (a, b, c) c = b - a |
7a87758d | 1361 | #if 0 |
defb5dab RK |
1362 | e24toasc (&f, str, n) single to ASCII string, n digits after decimal |
1363 | e53toasc (&d, str, n) double to ASCII string, n digits after decimal | |
1364 | e64toasc (&d, str, n) 80-bit long double to ASCII string | |
1365 | e113toasc (&d, str, n) 128-bit long double to ASCII string | |
7a87758d | 1366 | #endif |
defb5dab RK |
1367 | etoasc (e, str, n) e to ASCII string, n digits after decimal |
1368 | etoe24 (e, &f) convert e type to IEEE single precision | |
1369 | etoe53 (e, &d) convert e type to IEEE double precision | |
1370 | etoe64 (e, &d) convert e type to IEEE long double precision | |
1371 | ltoe (&l, e) HOST_WIDE_INT to e type | |
1372 | ultoe (&l, e) unsigned HOST_WIDE_INT to e type | |
1373 | eisneg (e) 1 if sign bit of e != 0, else 0 | |
1374 | eisinf (e) 1 if e has maximum exponent (non-IEEE) | |
1375 | or is infinite (IEEE) | |
1376 | eisnan (e) 1 if e is a NaN | |
b6ca239d | 1377 | |
defb5dab | 1378 | |
8c35bbc5 | 1379 | Routines for internal format exploded e-type numbers |
b6ca239d | 1380 | |
defb5dab RK |
1381 | eaddm (ai, bi) add significands, bi = bi + ai |
1382 | ecleaz (ei) ei = 0 | |
1383 | ecleazs (ei) set ei = 0 but leave its sign alone | |
1384 | ecmpm (ai, bi) compare significands, return 1, 0, or -1 | |
1385 | edivm (ai, bi) divide significands, bi = bi / ai | |
1386 | emdnorm (ai,l,s,exp) normalize and round off | |
1387 | emovi (a, ai) convert external a to internal ai | |
1388 | emovo (ai, a) convert internal ai to external a | |
1389 | emovz (ai, bi) bi = ai, low guard word of bi = 0 | |
1390 | emulm (ai, bi) multiply significands, bi = bi * ai | |
1391 | enormlz (ei) left-justify the significand | |
1392 | eshdn1 (ai) shift significand and guards down 1 bit | |
1393 | eshdn8 (ai) shift down 8 bits | |
1394 | eshdn6 (ai) shift down 16 bits | |
1395 | eshift (ai, n) shift ai n bits up (or down if n < 0) | |
1396 | eshup1 (ai) shift significand and guards up 1 bit | |
1397 | eshup8 (ai) shift up 8 bits | |
1398 | eshup6 (ai) shift up 16 bits | |
1399 | esubm (ai, bi) subtract significands, bi = bi - ai | |
1400 | eiisinf (ai) 1 if infinite | |
1401 | eiisnan (ai) 1 if a NaN | |
1402 | eiisneg (ai) 1 if sign bit of ai != 0, else 0 | |
1403 | einan (ai) set ai = NaN | |
7a87758d | 1404 | #if 0 |
defb5dab | 1405 | eiinfin (ai) set ai = infinity |
7a87758d | 1406 | #endif |
defb5dab RK |
1407 | |
1408 | The result is always normalized and rounded to NI-4 word precision | |
1409 | after each arithmetic operation. | |
1410 | ||
1411 | Exception flags are NOT fully supported. | |
b6ca239d | 1412 | |
defb5dab RK |
1413 | Signaling NaN's are NOT supported; they are treated the same |
1414 | as quiet NaN's. | |
b6ca239d | 1415 | |
defb5dab RK |
1416 | Define INFINITY for support of infinity; otherwise a |
1417 | saturation arithmetic is implemented. | |
b6ca239d | 1418 | |
defb5dab RK |
1419 | Define NANS for support of Not-a-Number items; otherwise the |
1420 | arithmetic will never produce a NaN output, and might be confused | |
1421 | by a NaN input. | |
1422 | If NaN's are supported, the output of `ecmp (a,b)' is -2 if | |
1423 | either a or b is a NaN. This means asking `if (ecmp (a,b) < 0)' | |
1424 | may not be legitimate. Use `if (ecmp (a,b) == -1)' for `less than' | |
1425 | if in doubt. | |
b6ca239d | 1426 | |
defb5dab RK |
1427 | Denormals are always supported here where appropriate (e.g., not |
1428 | for conversion to DEC numbers). */ | |
1429 | ||
1430 | /* Definitions for error codes that are passed to the common error handling | |
1431 | routine mtherr. | |
1432 | ||
1433 | For Digital Equipment PDP-11 and VAX computers, certain | |
1434 | IBM systems, and others that use numbers with a 56-bit | |
1435 | significand, the symbol DEC should be defined. In this | |
1436 | mode, most floating point constants are given as arrays | |
1437 | of octal integers to eliminate decimal to binary conversion | |
1438 | errors that might be introduced by the compiler. | |
b6ca239d | 1439 | |
defb5dab RK |
1440 | For computers, such as IBM PC, that follow the IEEE |
1441 | Standard for Binary Floating Point Arithmetic (ANSI/IEEE | |
8c35bbc5 | 1442 | Std 754-1985), the symbol IEEE should be defined. |
defb5dab RK |
1443 | These numbers have 53-bit significands. In this mode, constants |
1444 | are provided as arrays of hexadecimal 16 bit integers. | |
8c35bbc5 RK |
1445 | The endian-ness of generated values is controlled by |
1446 | REAL_WORDS_BIG_ENDIAN. | |
b6ca239d | 1447 | |
defb5dab RK |
1448 | To accommodate other types of computer arithmetic, all |
1449 | constants are also provided in a normal decimal radix | |
1450 | which one can hope are correctly converted to a suitable | |
1451 | format by the available C language compiler. To invoke | |
1452 | this mode, the symbol UNK is defined. | |
b6ca239d | 1453 | |
defb5dab RK |
1454 | An important difference among these modes is a predefined |
1455 | set of machine arithmetic constants for each. The numbers | |
1456 | MACHEP (the machine roundoff error), MAXNUM (largest number | |
1457 | represented), and several other parameters are preset by | |
1458 | the configuration symbol. Check the file const.c to | |
1459 | ensure that these values are correct for your computer. | |
b6ca239d | 1460 | |
defb5dab | 1461 | For ANSI C compatibility, define ANSIC equal to 1. Currently |
0f41302f | 1462 | this affects only the atan2 function and others that use it. */ |
985b6196 | 1463 | |
e8650b8f | 1464 | /* Constant definitions for math error conditions. */ |
985b6196 RS |
1465 | |
1466 | #define DOMAIN 1 /* argument domain error */ | |
1467 | #define SING 2 /* argument singularity */ | |
1468 | #define OVERFLOW 3 /* overflow range error */ | |
1469 | #define UNDERFLOW 4 /* underflow range error */ | |
1470 | #define TLOSS 5 /* total loss of precision */ | |
1471 | #define PLOSS 6 /* partial loss of precision */ | |
66b6d60b | 1472 | #define INVALID 7 /* NaN-producing operation */ |
985b6196 | 1473 | |
985b6196 RS |
1474 | /* e type constants used by high precision check routines */ |
1475 | ||
842fbaaa | 1476 | #if LONG_DOUBLE_TYPE_SIZE == 128 |
985b6196 RS |
1477 | /* 0.0 */ |
1478 | unsigned EMUSHORT ezero[NE] = | |
842fbaaa JW |
1479 | {0x0000, 0x0000, 0x0000, 0x0000, |
1480 | 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,}; | |
985b6196 RS |
1481 | extern unsigned EMUSHORT ezero[]; |
1482 | ||
1483 | /* 5.0E-1 */ | |
1484 | unsigned EMUSHORT ehalf[NE] = | |
842fbaaa JW |
1485 | {0x0000, 0x0000, 0x0000, 0x0000, |
1486 | 0x0000, 0x0000, 0x0000, 0x0000, 0x8000, 0x3ffe,}; | |
985b6196 RS |
1487 | extern unsigned EMUSHORT ehalf[]; |
1488 | ||
1489 | /* 1.0E0 */ | |
1490 | unsigned EMUSHORT eone[NE] = | |
842fbaaa JW |
1491 | {0x0000, 0x0000, 0x0000, 0x0000, |
1492 | 0x0000, 0x0000, 0x0000, 0x0000, 0x8000, 0x3fff,}; | |
985b6196 RS |
1493 | extern unsigned EMUSHORT eone[]; |
1494 | ||
1495 | /* 2.0E0 */ | |
1496 | unsigned EMUSHORT etwo[NE] = | |
842fbaaa JW |
1497 | {0x0000, 0x0000, 0x0000, 0x0000, |
1498 | 0x0000, 0x0000, 0x0000, 0x0000, 0x8000, 0x4000,}; | |
985b6196 RS |
1499 | extern unsigned EMUSHORT etwo[]; |
1500 | ||
1501 | /* 3.2E1 */ | |
1502 | unsigned EMUSHORT e32[NE] = | |
842fbaaa JW |
1503 | {0x0000, 0x0000, 0x0000, 0x0000, |
1504 | 0x0000, 0x0000, 0x0000, 0x0000, 0x8000, 0x4004,}; | |
985b6196 RS |
1505 | extern unsigned EMUSHORT e32[]; |
1506 | ||
1507 | /* 6.93147180559945309417232121458176568075500134360255E-1 */ | |
1508 | unsigned EMUSHORT elog2[NE] = | |
842fbaaa JW |
1509 | {0x40f3, 0xf6af, 0x03f2, 0xb398, |
1510 | 0xc9e3, 0x79ab, 0150717, 0013767, 0130562, 0x3ffe,}; | |
985b6196 RS |
1511 | extern unsigned EMUSHORT elog2[]; |
1512 | ||
1513 | /* 1.41421356237309504880168872420969807856967187537695E0 */ | |
1514 | unsigned EMUSHORT esqrt2[NE] = | |
842fbaaa JW |
1515 | {0x1d6f, 0xbe9f, 0x754a, 0x89b3, |
1516 | 0x597d, 0x6484, 0174736, 0171463, 0132404, 0x3fff,}; | |
985b6196 RS |
1517 | extern unsigned EMUSHORT esqrt2[]; |
1518 | ||
985b6196 RS |
1519 | /* 3.14159265358979323846264338327950288419716939937511E0 */ |
1520 | unsigned EMUSHORT epi[NE] = | |
842fbaaa | 1521 | {0x2902, 0x1cd1, 0x80dc, 0x628b, |
985b6196 RS |
1522 | 0xc4c6, 0xc234, 0020550, 0155242, 0144417, 0040000,}; |
1523 | extern unsigned EMUSHORT epi[]; | |
1524 | ||
842fbaaa JW |
1525 | #else |
1526 | /* LONG_DOUBLE_TYPE_SIZE is other than 128 */ | |
1527 | unsigned EMUSHORT ezero[NE] = | |
1528 | {0, 0000000, 0000000, 0000000, 0000000, 0000000,}; | |
1529 | unsigned EMUSHORT ehalf[NE] = | |
1530 | {0, 0000000, 0000000, 0000000, 0100000, 0x3ffe,}; | |
1531 | unsigned EMUSHORT eone[NE] = | |
1532 | {0, 0000000, 0000000, 0000000, 0100000, 0x3fff,}; | |
1533 | unsigned EMUSHORT etwo[NE] = | |
1534 | {0, 0000000, 0000000, 0000000, 0100000, 0040000,}; | |
1535 | unsigned EMUSHORT e32[NE] = | |
1536 | {0, 0000000, 0000000, 0000000, 0100000, 0040004,}; | |
1537 | unsigned EMUSHORT elog2[NE] = | |
1538 | {0xc9e4, 0x79ab, 0150717, 0013767, 0130562, 0x3ffe,}; | |
1539 | unsigned EMUSHORT esqrt2[NE] = | |
1540 | {0x597e, 0x6484, 0174736, 0171463, 0132404, 0x3fff,}; | |
1541 | unsigned EMUSHORT epi[NE] = | |
1542 | {0xc4c6, 0xc234, 0020550, 0155242, 0144417, 0040000,}; | |
1543 | #endif | |
985b6196 | 1544 | |
985b6196 | 1545 | /* Control register for rounding precision. |
defb5dab RK |
1546 | This can be set to 113 (if NE=10), 80 (if NE=6), 64, 56, 53, or 24 bits. */ |
1547 | ||
985b6196 RS |
1548 | int rndprc = NBITS; |
1549 | extern int rndprc; | |
1550 | ||
8c35bbc5 | 1551 | /* Clear out entire e-type number X. */ |
985b6196 | 1552 | |
b6ca239d | 1553 | static void |
985b6196 RS |
1554 | eclear (x) |
1555 | register unsigned EMUSHORT *x; | |
1556 | { | |
1557 | register int i; | |
1558 | ||
1559 | for (i = 0; i < NE; i++) | |
1560 | *x++ = 0; | |
1561 | } | |
1562 | ||
8c35bbc5 | 1563 | /* Move e-type number from A to B. */ |
985b6196 | 1564 | |
b6ca239d | 1565 | static void |
985b6196 RS |
1566 | emov (a, b) |
1567 | register unsigned EMUSHORT *a, *b; | |
1568 | { | |
1569 | register int i; | |
1570 | ||
1571 | for (i = 0; i < NE; i++) | |
1572 | *b++ = *a++; | |
1573 | } | |
1574 | ||
1575 | ||
7a87758d | 1576 | #if 0 |
8c35bbc5 | 1577 | /* Absolute value of e-type X. */ |
985b6196 | 1578 | |
b6ca239d | 1579 | static void |
985b6196 | 1580 | eabs (x) |
a0353055 | 1581 | unsigned EMUSHORT x[]; |
985b6196 | 1582 | { |
a0353055 | 1583 | /* sign is top bit of last word of external format */ |
b6ca239d | 1584 | x[NE - 1] &= 0x7fff; |
985b6196 | 1585 | } |
7a87758d | 1586 | #endif /* 0 */ |
985b6196 | 1587 | |
8c35bbc5 | 1588 | /* Negate the e-type number X. */ |
985b6196 | 1589 | |
b6ca239d | 1590 | static void |
985b6196 RS |
1591 | eneg (x) |
1592 | unsigned EMUSHORT x[]; | |
1593 | { | |
1594 | ||
1595 | x[NE - 1] ^= 0x8000; /* Toggle the sign bit */ | |
1596 | } | |
1597 | ||
8c35bbc5 | 1598 | /* Return 1 if sign bit of e-type number X is nonzero, else zero. */ |
defb5dab | 1599 | |
b6ca239d | 1600 | static int |
985b6196 RS |
1601 | eisneg (x) |
1602 | unsigned EMUSHORT x[]; | |
1603 | { | |
1604 | ||
1605 | if (x[NE - 1] & 0x8000) | |
1606 | return (1); | |
1607 | else | |
1608 | return (0); | |
1609 | } | |
1610 | ||
8c35bbc5 | 1611 | /* Return 1 if e-type number X is infinity, else return zero. */ |
a0353055 | 1612 | |
b6ca239d | 1613 | static int |
985b6196 RS |
1614 | eisinf (x) |
1615 | unsigned EMUSHORT x[]; | |
1616 | { | |
1617 | ||
66b6d60b RS |
1618 | #ifdef NANS |
1619 | if (eisnan (x)) | |
1620 | return (0); | |
1621 | #endif | |
985b6196 RS |
1622 | if ((x[NE - 1] & 0x7fff) == 0x7fff) |
1623 | return (1); | |
1624 | else | |
1625 | return (0); | |
1626 | } | |
1627 | ||
defb5dab RK |
1628 | /* Check if e-type number is not a number. The bit pattern is one that we |
1629 | defined, so we know for sure how to detect it. */ | |
66b6d60b | 1630 | |
b6ca239d | 1631 | static int |
66b6d60b RS |
1632 | eisnan (x) |
1633 | unsigned EMUSHORT x[]; | |
1634 | { | |
66b6d60b RS |
1635 | #ifdef NANS |
1636 | int i; | |
defb5dab RK |
1637 | |
1638 | /* NaN has maximum exponent */ | |
66b6d60b RS |
1639 | if ((x[NE - 1] & 0x7fff) != 0x7fff) |
1640 | return (0); | |
0f41302f | 1641 | /* ... and non-zero significand field. */ |
66b6d60b RS |
1642 | for (i = 0; i < NE - 1; i++) |
1643 | { | |
1644 | if (*x++ != 0) | |
1645 | return (1); | |
1646 | } | |
1647 | #endif | |
defb5dab | 1648 | |
66b6d60b RS |
1649 | return (0); |
1650 | } | |
1651 | ||
8c35bbc5 | 1652 | /* Fill e-type number X with infinity pattern (IEEE) |
0f41302f | 1653 | or largest possible number (non-IEEE). */ |
985b6196 | 1654 | |
b6ca239d | 1655 | static void |
985b6196 RS |
1656 | einfin (x) |
1657 | register unsigned EMUSHORT *x; | |
1658 | { | |
1659 | register int i; | |
1660 | ||
1661 | #ifdef INFINITY | |
1662 | for (i = 0; i < NE - 1; i++) | |
1663 | *x++ = 0; | |
1664 | *x |= 32767; | |
1665 | #else | |
1666 | for (i = 0; i < NE - 1; i++) | |
1667 | *x++ = 0xffff; | |
1668 | *x |= 32766; | |
1669 | if (rndprc < NBITS) | |
1670 | { | |
842fbaaa JW |
1671 | if (rndprc == 113) |
1672 | { | |
1673 | *(x - 9) = 0; | |
1674 | *(x - 8) = 0; | |
1675 | } | |
985b6196 RS |
1676 | if (rndprc == 64) |
1677 | { | |
1678 | *(x - 5) = 0; | |
1679 | } | |
1680 | if (rndprc == 53) | |
1681 | { | |
1682 | *(x - 4) = 0xf800; | |
1683 | } | |
1684 | else | |
1685 | { | |
1686 | *(x - 4) = 0; | |
1687 | *(x - 3) = 0; | |
1688 | *(x - 2) = 0xff00; | |
1689 | } | |
1690 | } | |
1691 | #endif | |
1692 | } | |
1693 | ||
66b6d60b RS |
1694 | /* Output an e-type NaN. |
1695 | This generates Intel's quiet NaN pattern for extended real. | |
1696 | The exponent is 7fff, the leading mantissa word is c000. */ | |
1697 | ||
b6ca239d | 1698 | static void |
29e11dab | 1699 | enan (x, sign) |
66b6d60b | 1700 | register unsigned EMUSHORT *x; |
29e11dab | 1701 | int sign; |
66b6d60b RS |
1702 | { |
1703 | register int i; | |
1704 | ||
1705 | for (i = 0; i < NE - 2; i++) | |
1706 | *x++ = 0; | |
1707 | *x++ = 0xc000; | |
29e11dab | 1708 | *x = (sign << 15) | 0x7fff; |
66b6d60b RS |
1709 | } |
1710 | ||
8c35bbc5 | 1711 | /* Move in an e-type number A, converting it to exploded e-type B. */ |
defb5dab | 1712 | |
b6ca239d | 1713 | static void |
985b6196 RS |
1714 | emovi (a, b) |
1715 | unsigned EMUSHORT *a, *b; | |
1716 | { | |
1717 | register unsigned EMUSHORT *p, *q; | |
1718 | int i; | |
1719 | ||
1720 | q = b; | |
1721 | p = a + (NE - 1); /* point to last word of external number */ | |
1722 | /* get the sign bit */ | |
1723 | if (*p & 0x8000) | |
1724 | *q++ = 0xffff; | |
1725 | else | |
1726 | *q++ = 0; | |
1727 | /* get the exponent */ | |
1728 | *q = *p--; | |
1729 | *q++ &= 0x7fff; /* delete the sign bit */ | |
1730 | #ifdef INFINITY | |
1731 | if ((*(q - 1) & 0x7fff) == 0x7fff) | |
1732 | { | |
66b6d60b RS |
1733 | #ifdef NANS |
1734 | if (eisnan (a)) | |
1735 | { | |
1736 | *q++ = 0; | |
1737 | for (i = 3; i < NI; i++) | |
1738 | *q++ = *p--; | |
1739 | return; | |
1740 | } | |
1741 | #endif | |
defb5dab | 1742 | |
985b6196 RS |
1743 | for (i = 2; i < NI; i++) |
1744 | *q++ = 0; | |
1745 | return; | |
1746 | } | |
1747 | #endif | |
defb5dab | 1748 | |
985b6196 RS |
1749 | /* clear high guard word */ |
1750 | *q++ = 0; | |
1751 | /* move in the significand */ | |
1752 | for (i = 0; i < NE - 1; i++) | |
1753 | *q++ = *p--; | |
1754 | /* clear low guard word */ | |
1755 | *q = 0; | |
1756 | } | |
1757 | ||
8c35bbc5 | 1758 | /* Move out exploded e-type number A, converting it to e type B. */ |
defb5dab | 1759 | |
b6ca239d | 1760 | static void |
985b6196 RS |
1761 | emovo (a, b) |
1762 | unsigned EMUSHORT *a, *b; | |
1763 | { | |
1764 | register unsigned EMUSHORT *p, *q; | |
1765 | unsigned EMUSHORT i; | |
239b043b | 1766 | int j; |
985b6196 RS |
1767 | |
1768 | p = a; | |
1769 | q = b + (NE - 1); /* point to output exponent */ | |
1770 | /* combine sign and exponent */ | |
1771 | i = *p++; | |
1772 | if (i) | |
1773 | *q-- = *p++ | 0x8000; | |
1774 | else | |
1775 | *q-- = *p++; | |
1776 | #ifdef INFINITY | |
1777 | if (*(p - 1) == 0x7fff) | |
1778 | { | |
66b6d60b RS |
1779 | #ifdef NANS |
1780 | if (eiisnan (a)) | |
1781 | { | |
29e11dab | 1782 | enan (b, eiisneg (a)); |
66b6d60b RS |
1783 | return; |
1784 | } | |
1785 | #endif | |
985b6196 | 1786 | einfin (b); |
842fbaaa | 1787 | return; |
985b6196 RS |
1788 | } |
1789 | #endif | |
1790 | /* skip over guard word */ | |
1791 | ++p; | |
1792 | /* move the significand */ | |
239b043b | 1793 | for (j = 0; j < NE - 1; j++) |
985b6196 RS |
1794 | *q-- = *p++; |
1795 | } | |
1796 | ||
8c35bbc5 | 1797 | /* Clear out exploded e-type number XI. */ |
985b6196 | 1798 | |
b6ca239d | 1799 | static void |
985b6196 RS |
1800 | ecleaz (xi) |
1801 | register unsigned EMUSHORT *xi; | |
1802 | { | |
1803 | register int i; | |
1804 | ||
1805 | for (i = 0; i < NI; i++) | |
1806 | *xi++ = 0; | |
1807 | } | |
1808 | ||
0f41302f | 1809 | /* Clear out exploded e-type XI, but don't touch the sign. */ |
985b6196 | 1810 | |
b6ca239d | 1811 | static void |
985b6196 RS |
1812 | ecleazs (xi) |
1813 | register unsigned EMUSHORT *xi; | |
1814 | { | |
1815 | register int i; | |
1816 | ||
1817 | ++xi; | |
1818 | for (i = 0; i < NI - 1; i++) | |
1819 | *xi++ = 0; | |
1820 | } | |
1821 | ||
8c35bbc5 | 1822 | /* Move exploded e-type number from A to B. */ |
a0353055 | 1823 | |
b6ca239d | 1824 | static void |
985b6196 RS |
1825 | emovz (a, b) |
1826 | register unsigned EMUSHORT *a, *b; | |
1827 | { | |
1828 | register int i; | |
1829 | ||
1830 | for (i = 0; i < NI - 1; i++) | |
1831 | *b++ = *a++; | |
1832 | /* clear low guard word */ | |
1833 | *b = 0; | |
1834 | } | |
1835 | ||
8c35bbc5 | 1836 | /* Generate exploded e-type NaN. |
66b6d60b | 1837 | The explicit pattern for this is maximum exponent and |
defb5dab | 1838 | top two significant bits set. */ |
66b6d60b | 1839 | |
a0353055 | 1840 | static void |
66b6d60b RS |
1841 | einan (x) |
1842 | unsigned EMUSHORT x[]; | |
1843 | { | |
1844 | ||
1845 | ecleaz (x); | |
1846 | x[E] = 0x7fff; | |
1847 | x[M + 1] = 0xc000; | |
1848 | } | |
1849 | ||
0f41302f | 1850 | /* Return nonzero if exploded e-type X is a NaN. */ |
66b6d60b | 1851 | |
b6ca239d | 1852 | static int |
66b6d60b RS |
1853 | eiisnan (x) |
1854 | unsigned EMUSHORT x[]; | |
1855 | { | |
1856 | int i; | |
1857 | ||
1858 | if ((x[E] & 0x7fff) == 0x7fff) | |
1859 | { | |
1860 | for (i = M + 1; i < NI; i++) | |
1861 | { | |
1862 | if (x[i] != 0) | |
1863 | return (1); | |
1864 | } | |
1865 | } | |
1866 | return (0); | |
1867 | } | |
1868 | ||
8c35bbc5 | 1869 | /* Return nonzero if sign of exploded e-type X is nonzero. */ |
29e11dab | 1870 | |
b6ca239d | 1871 | static int |
29e11dab RK |
1872 | eiisneg (x) |
1873 | unsigned EMUSHORT x[]; | |
1874 | { | |
1875 | ||
1876 | return x[0] != 0; | |
1877 | } | |
1878 | ||
7a87758d | 1879 | #if 0 |
8c35bbc5 | 1880 | /* Fill exploded e-type X with infinity pattern. |
66b6d60b RS |
1881 | This has maximum exponent and significand all zeros. */ |
1882 | ||
a0353055 | 1883 | static void |
66b6d60b RS |
1884 | eiinfin (x) |
1885 | unsigned EMUSHORT x[]; | |
1886 | { | |
1887 | ||
1888 | ecleaz (x); | |
1889 | x[E] = 0x7fff; | |
1890 | } | |
7a87758d | 1891 | #endif /* 0 */ |
66b6d60b | 1892 | |
0f41302f | 1893 | /* Return nonzero if exploded e-type X is infinite. */ |
66b6d60b | 1894 | |
b6ca239d | 1895 | static int |
66b6d60b RS |
1896 | eiisinf (x) |
1897 | unsigned EMUSHORT x[]; | |
1898 | { | |
1899 | ||
1900 | #ifdef NANS | |
1901 | if (eiisnan (x)) | |
1902 | return (0); | |
1903 | #endif | |
1904 | if ((x[E] & 0x7fff) == 0x7fff) | |
1905 | return (1); | |
1906 | return (0); | |
1907 | } | |
1908 | ||
985b6196 | 1909 | |
8c35bbc5 | 1910 | /* Compare significands of numbers in internal exploded e-type format. |
defb5dab RK |
1911 | Guard words are included in the comparison. |
1912 | ||
1913 | Returns +1 if a > b | |
1914 | 0 if a == b | |
1915 | -1 if a < b */ | |
a0353055 RK |
1916 | |
1917 | static int | |
985b6196 RS |
1918 | ecmpm (a, b) |
1919 | register unsigned EMUSHORT *a, *b; | |
1920 | { | |
1921 | int i; | |
1922 | ||
1923 | a += M; /* skip up to significand area */ | |
1924 | b += M; | |
1925 | for (i = M; i < NI; i++) | |
1926 | { | |
1927 | if (*a++ != *b++) | |
1928 | goto difrnt; | |
1929 | } | |
1930 | return (0); | |
1931 | ||
1932 | difrnt: | |
1933 | if (*(--a) > *(--b)) | |
1934 | return (1); | |
1935 | else | |
1936 | return (-1); | |
1937 | } | |
1938 | ||
8c35bbc5 | 1939 | /* Shift significand of exploded e-type X down by 1 bit. */ |
985b6196 | 1940 | |
b6ca239d | 1941 | static void |
985b6196 RS |
1942 | eshdn1 (x) |
1943 | register unsigned EMUSHORT *x; | |
1944 | { | |
1945 | register unsigned EMUSHORT bits; | |
1946 | int i; | |
1947 | ||
1948 | x += M; /* point to significand area */ | |
1949 | ||
1950 | bits = 0; | |
1951 | for (i = M; i < NI; i++) | |
1952 | { | |
1953 | if (*x & 1) | |
1954 | bits |= 1; | |
1955 | *x >>= 1; | |
1956 | if (bits & 2) | |
1957 | *x |= 0x8000; | |
1958 | bits <<= 1; | |
1959 | ++x; | |
1960 | } | |
1961 | } | |
1962 | ||
8c35bbc5 | 1963 | /* Shift significand of exploded e-type X up by 1 bit. */ |
985b6196 | 1964 | |
b6ca239d | 1965 | static void |
985b6196 RS |
1966 | eshup1 (x) |
1967 | register unsigned EMUSHORT *x; | |
1968 | { | |
1969 | register unsigned EMUSHORT bits; | |
1970 | int i; | |
1971 | ||
1972 | x += NI - 1; | |
1973 | bits = 0; | |
1974 | ||
1975 | for (i = M; i < NI; i++) | |
1976 | { | |
1977 | if (*x & 0x8000) | |
1978 | bits |= 1; | |
1979 | *x <<= 1; | |
1980 | if (bits & 2) | |
1981 | *x |= 1; | |
1982 | bits <<= 1; | |
1983 | --x; | |
1984 | } | |
1985 | } | |
1986 | ||
1987 | ||
8c35bbc5 | 1988 | /* Shift significand of exploded e-type X down by 8 bits. */ |
985b6196 | 1989 | |
b6ca239d | 1990 | static void |
985b6196 RS |
1991 | eshdn8 (x) |
1992 | register unsigned EMUSHORT *x; | |
1993 | { | |
1994 | register unsigned EMUSHORT newbyt, oldbyt; | |
1995 | int i; | |
1996 | ||
1997 | x += M; | |
1998 | oldbyt = 0; | |
1999 | for (i = M; i < NI; i++) | |
2000 | { | |
2001 | newbyt = *x << 8; | |
2002 | *x >>= 8; | |
2003 | *x |= oldbyt; | |
2004 | oldbyt = newbyt; | |
2005 | ++x; | |
2006 | } | |
2007 | } | |
2008 | ||
8c35bbc5 | 2009 | /* Shift significand of exploded e-type X up by 8 bits. */ |
985b6196 | 2010 | |
b6ca239d | 2011 | static void |
985b6196 RS |
2012 | eshup8 (x) |
2013 | register unsigned EMUSHORT *x; | |
2014 | { | |
2015 | int i; | |
2016 | register unsigned EMUSHORT newbyt, oldbyt; | |
2017 | ||
2018 | x += NI - 1; | |
2019 | oldbyt = 0; | |
2020 | ||
2021 | for (i = M; i < NI; i++) | |
2022 | { | |
2023 | newbyt = *x >> 8; | |
2024 | *x <<= 8; | |
2025 | *x |= oldbyt; | |
2026 | oldbyt = newbyt; | |
2027 | --x; | |
2028 | } | |
2029 | } | |
2030 | ||
8c35bbc5 | 2031 | /* Shift significand of exploded e-type X up by 16 bits. */ |
985b6196 | 2032 | |
b6ca239d | 2033 | static void |
985b6196 RS |
2034 | eshup6 (x) |
2035 | register unsigned EMUSHORT *x; | |
2036 | { | |
2037 | int i; | |
2038 | register unsigned EMUSHORT *p; | |
2039 | ||
2040 | p = x + M; | |
2041 | x += M + 1; | |
2042 | ||
2043 | for (i = M; i < NI - 1; i++) | |
2044 | *p++ = *x++; | |
2045 | ||
2046 | *p = 0; | |
2047 | } | |
2048 | ||
8c35bbc5 | 2049 | /* Shift significand of exploded e-type X down by 16 bits. */ |
985b6196 | 2050 | |
b6ca239d | 2051 | static void |
985b6196 RS |
2052 | eshdn6 (x) |
2053 | register unsigned EMUSHORT *x; | |
2054 | { | |
2055 | int i; | |
2056 | register unsigned EMUSHORT *p; | |
2057 | ||
2058 | x += NI - 1; | |
2059 | p = x + 1; | |
2060 | ||
2061 | for (i = M; i < NI - 1; i++) | |
2062 | *(--p) = *(--x); | |
2063 | ||
2064 | *(--p) = 0; | |
2065 | } | |
8c35bbc5 RK |
2066 | |
2067 | /* Add significands of exploded e-type X and Y. X + Y replaces Y. */ | |
985b6196 | 2068 | |
b6ca239d | 2069 | static void |
985b6196 RS |
2070 | eaddm (x, y) |
2071 | unsigned EMUSHORT *x, *y; | |
2072 | { | |
2073 | register unsigned EMULONG a; | |
2074 | int i; | |
2075 | unsigned int carry; | |
2076 | ||
2077 | x += NI - 1; | |
2078 | y += NI - 1; | |
2079 | carry = 0; | |
2080 | for (i = M; i < NI; i++) | |
2081 | { | |
2082 | a = (unsigned EMULONG) (*x) + (unsigned EMULONG) (*y) + carry; | |
2083 | if (a & 0x10000) | |
2084 | carry = 1; | |
2085 | else | |
2086 | carry = 0; | |
2087 | *y = (unsigned EMUSHORT) a; | |
2088 | --x; | |
2089 | --y; | |
2090 | } | |
2091 | } | |
2092 | ||
8c35bbc5 | 2093 | /* Subtract significands of exploded e-type X and Y. Y - X replaces Y. */ |
985b6196 | 2094 | |
b6ca239d | 2095 | static void |
985b6196 RS |
2096 | esubm (x, y) |
2097 | unsigned EMUSHORT *x, *y; | |
2098 | { | |
2099 | unsigned EMULONG a; | |
2100 | int i; | |
2101 | unsigned int carry; | |
2102 | ||
2103 | x += NI - 1; | |
2104 | y += NI - 1; | |
2105 | carry = 0; | |
2106 | for (i = M; i < NI; i++) | |
2107 | { | |
2108 | a = (unsigned EMULONG) (*y) - (unsigned EMULONG) (*x) - carry; | |
2109 | if (a & 0x10000) | |
2110 | carry = 1; | |
2111 | else | |
2112 | carry = 0; | |
2113 | *y = (unsigned EMUSHORT) a; | |
2114 | --x; | |
2115 | --y; | |
2116 | } | |
2117 | } | |
2118 | ||
2119 | ||
985b6196 RS |
2120 | static unsigned EMUSHORT equot[NI]; |
2121 | ||
842fbaaa JW |
2122 | |
2123 | #if 0 | |
2124 | /* Radix 2 shift-and-add versions of multiply and divide */ | |
2125 | ||
2126 | ||
2127 | /* Divide significands */ | |
2128 | ||
b6ca239d | 2129 | int |
985b6196 RS |
2130 | edivm (den, num) |
2131 | unsigned EMUSHORT den[], num[]; | |
2132 | { | |
2133 | int i; | |
2134 | register unsigned EMUSHORT *p, *q; | |
2135 | unsigned EMUSHORT j; | |
2136 | ||
2137 | p = &equot[0]; | |
2138 | *p++ = num[0]; | |
2139 | *p++ = num[1]; | |
2140 | ||
2141 | for (i = M; i < NI; i++) | |
2142 | { | |
2143 | *p++ = 0; | |
2144 | } | |
2145 | ||
defb5dab RK |
2146 | /* Use faster compare and subtraction if denominator has only 15 bits of |
2147 | significance. */ | |
2148 | ||
985b6196 RS |
2149 | p = &den[M + 2]; |
2150 | if (*p++ == 0) | |
2151 | { | |
2152 | for (i = M + 3; i < NI; i++) | |
2153 | { | |
2154 | if (*p++ != 0) | |
2155 | goto fulldiv; | |
2156 | } | |
2157 | if ((den[M + 1] & 1) != 0) | |
2158 | goto fulldiv; | |
2159 | eshdn1 (num); | |
2160 | eshdn1 (den); | |
2161 | ||
2162 | p = &den[M + 1]; | |
2163 | q = &num[M + 1]; | |
2164 | ||
2165 | for (i = 0; i < NBITS + 2; i++) | |
2166 | { | |
2167 | if (*p <= *q) | |
2168 | { | |
2169 | *q -= *p; | |
2170 | j = 1; | |
2171 | } | |
2172 | else | |
2173 | { | |
2174 | j = 0; | |
2175 | } | |
2176 | eshup1 (equot); | |
2177 | equot[NI - 2] |= j; | |
2178 | eshup1 (num); | |
2179 | } | |
2180 | goto divdon; | |
2181 | } | |
2182 | ||
defb5dab RK |
2183 | /* The number of quotient bits to calculate is NBITS + 1 scaling guard |
2184 | bit + 1 roundoff bit. */ | |
2185 | ||
985b6196 RS |
2186 | fulldiv: |
2187 | ||
2188 | p = &equot[NI - 2]; | |
2189 | for (i = 0; i < NBITS + 2; i++) | |
2190 | { | |
2191 | if (ecmpm (den, num) <= 0) | |
2192 | { | |
2193 | esubm (den, num); | |
2194 | j = 1; /* quotient bit = 1 */ | |
2195 | } | |
2196 | else | |
2197 | j = 0; | |
2198 | eshup1 (equot); | |
2199 | *p |= j; | |
2200 | eshup1 (num); | |
2201 | } | |
2202 | ||
2203 | divdon: | |
2204 | ||
2205 | eshdn1 (equot); | |
2206 | eshdn1 (equot); | |
2207 | ||
2208 | /* test for nonzero remainder after roundoff bit */ | |
2209 | p = &num[M]; | |
2210 | j = 0; | |
2211 | for (i = M; i < NI; i++) | |
2212 | { | |
2213 | j |= *p++; | |
2214 | } | |
2215 | if (j) | |
2216 | j = 1; | |
2217 | ||
2218 | ||
2219 | for (i = 0; i < NI; i++) | |
2220 | num[i] = equot[i]; | |
2221 | return ((int) j); | |
2222 | } | |
2223 | ||
2224 | ||
2225 | /* Multiply significands */ | |
0f41302f | 2226 | |
b6ca239d | 2227 | int |
985b6196 RS |
2228 | emulm (a, b) |
2229 | unsigned EMUSHORT a[], b[]; | |
2230 | { | |
2231 | unsigned EMUSHORT *p, *q; | |
2232 | int i, j, k; | |
2233 | ||
2234 | equot[0] = b[0]; | |
2235 | equot[1] = b[1]; | |
2236 | for (i = M; i < NI; i++) | |
2237 | equot[i] = 0; | |
2238 | ||
2239 | p = &a[NI - 2]; | |
2240 | k = NBITS; | |
defb5dab | 2241 | while (*p == 0) /* significand is not supposed to be zero */ |
985b6196 RS |
2242 | { |
2243 | eshdn6 (a); | |
2244 | k -= 16; | |
2245 | } | |
2246 | if ((*p & 0xff) == 0) | |
2247 | { | |
2248 | eshdn8 (a); | |
2249 | k -= 8; | |
2250 | } | |
2251 | ||
2252 | q = &equot[NI - 1]; | |
2253 | j = 0; | |
2254 | for (i = 0; i < k; i++) | |
2255 | { | |
2256 | if (*p & 1) | |
2257 | eaddm (b, equot); | |
2258 | /* remember if there were any nonzero bits shifted out */ | |
2259 | if (*q & 1) | |
2260 | j |= 1; | |
2261 | eshdn1 (a); | |
2262 | eshdn1 (equot); | |
2263 | } | |
2264 | ||
2265 | for (i = 0; i < NI; i++) | |
2266 | b[i] = equot[i]; | |
2267 | ||
2268 | /* return flag for lost nonzero bits */ | |
2269 | return (j); | |
2270 | } | |
2271 | ||
842fbaaa JW |
2272 | #else |
2273 | ||
8c35bbc5 | 2274 | /* Radix 65536 versions of multiply and divide. */ |
842fbaaa | 2275 | |
8c35bbc5 | 2276 | /* Multiply significand of e-type number B |
0f41302f | 2277 | by 16-bit quantity A, return e-type result to C. */ |
842fbaaa | 2278 | |
a0353055 | 2279 | static void |
242cef1e | 2280 | m16m (a, b, c) |
c92d992a | 2281 | unsigned int a; |
8c35bbc5 | 2282 | unsigned EMUSHORT b[], c[]; |
842fbaaa | 2283 | { |
8c35bbc5 RK |
2284 | register unsigned EMUSHORT *pp; |
2285 | register unsigned EMULONG carry; | |
2286 | unsigned EMUSHORT *ps; | |
2287 | unsigned EMUSHORT p[NI]; | |
2288 | unsigned EMULONG aa, m; | |
242cef1e RS |
2289 | int i; |
2290 | ||
2291 | aa = a; | |
2292 | pp = &p[NI-2]; | |
2293 | *pp++ = 0; | |
2294 | *pp = 0; | |
2295 | ps = &b[NI-1]; | |
2296 | ||
2297 | for (i=M+1; i<NI; i++) | |
2298 | { | |
2299 | if (*ps == 0) | |
842fbaaa | 2300 | { |
242cef1e RS |
2301 | --ps; |
2302 | --pp; | |
2303 | *(pp-1) = 0; | |
842fbaaa | 2304 | } |
242cef1e RS |
2305 | else |
2306 | { | |
8c35bbc5 | 2307 | m = (unsigned EMULONG) aa * *ps--; |
242cef1e | 2308 | carry = (m & 0xffff) + *pp; |
8c35bbc5 | 2309 | *pp-- = (unsigned EMUSHORT)carry; |
242cef1e | 2310 | carry = (carry >> 16) + (m >> 16) + *pp; |
8c35bbc5 | 2311 | *pp = (unsigned EMUSHORT)carry; |
242cef1e RS |
2312 | *(pp-1) = carry >> 16; |
2313 | } | |
2314 | } | |
2315 | for (i=M; i<NI; i++) | |
2316 | c[i] = p[i]; | |
842fbaaa JW |
2317 | } |
2318 | ||
8c35bbc5 RK |
2319 | /* Divide significands of exploded e-types NUM / DEN. Neither the |
2320 | numerator NUM nor the denominator DEN is permitted to have its high guard | |
2321 | word nonzero. */ | |
842fbaaa | 2322 | |
a0353055 | 2323 | static int |
242cef1e | 2324 | edivm (den, num) |
8c35bbc5 | 2325 | unsigned EMUSHORT den[], num[]; |
842fbaaa | 2326 | { |
242cef1e | 2327 | int i; |
8c35bbc5 RK |
2328 | register unsigned EMUSHORT *p; |
2329 | unsigned EMULONG tnum; | |
2330 | unsigned EMUSHORT j, tdenm, tquot; | |
2331 | unsigned EMUSHORT tprod[NI+1]; | |
842fbaaa | 2332 | |
242cef1e RS |
2333 | p = &equot[0]; |
2334 | *p++ = num[0]; | |
2335 | *p++ = num[1]; | |
842fbaaa | 2336 | |
242cef1e RS |
2337 | for (i=M; i<NI; i++) |
2338 | { | |
2339 | *p++ = 0; | |
2340 | } | |
2341 | eshdn1 (num); | |
2342 | tdenm = den[M+1]; | |
2343 | for (i=M; i<NI; i++) | |
2344 | { | |
0f41302f | 2345 | /* Find trial quotient digit (the radix is 65536). */ |
8c35bbc5 | 2346 | tnum = (((unsigned EMULONG) num[M]) << 16) + num[M+1]; |
242cef1e | 2347 | |
0f41302f | 2348 | /* Do not execute the divide instruction if it will overflow. */ |
c84e2712 | 2349 | if ((tdenm * (unsigned long)0xffff) < tnum) |
242cef1e RS |
2350 | tquot = 0xffff; |
2351 | else | |
2352 | tquot = tnum / tdenm; | |
0f41302f | 2353 | /* Multiply denominator by trial quotient digit. */ |
c92d992a | 2354 | m16m ((unsigned int)tquot, den, tprod); |
0f41302f | 2355 | /* The quotient digit may have been overestimated. */ |
242cef1e | 2356 | if (ecmpm (tprod, num) > 0) |
842fbaaa | 2357 | { |
242cef1e RS |
2358 | tquot -= 1; |
2359 | esubm (den, tprod); | |
2360 | if (ecmpm (tprod, num) > 0) | |
2361 | { | |
2362 | tquot -= 1; | |
2363 | esubm (den, tprod); | |
2364 | } | |
842fbaaa | 2365 | } |
242cef1e RS |
2366 | esubm (tprod, num); |
2367 | equot[i] = tquot; | |
2368 | eshup6(num); | |
2369 | } | |
2370 | /* test for nonzero remainder after roundoff bit */ | |
2371 | p = &num[M]; | |
2372 | j = 0; | |
2373 | for (i=M; i<NI; i++) | |
2374 | { | |
2375 | j |= *p++; | |
2376 | } | |
2377 | if (j) | |
2378 | j = 1; | |
842fbaaa | 2379 | |
242cef1e RS |
2380 | for (i=0; i<NI; i++) |
2381 | num[i] = equot[i]; | |
842fbaaa | 2382 | |
242cef1e | 2383 | return ((int)j); |
842fbaaa JW |
2384 | } |
2385 | ||
8c35bbc5 | 2386 | /* Multiply significands of exploded e-type A and B, result in B. */ |
842fbaaa | 2387 | |
a0353055 | 2388 | static int |
242cef1e | 2389 | emulm (a, b) |
8c35bbc5 | 2390 | unsigned EMUSHORT a[], b[]; |
842fbaaa | 2391 | { |
8c35bbc5 RK |
2392 | unsigned EMUSHORT *p, *q; |
2393 | unsigned EMUSHORT pprod[NI]; | |
2394 | unsigned EMUSHORT j; | |
242cef1e RS |
2395 | int i; |
2396 | ||
2397 | equot[0] = b[0]; | |
2398 | equot[1] = b[1]; | |
2399 | for (i=M; i<NI; i++) | |
2400 | equot[i] = 0; | |
2401 | ||
2402 | j = 0; | |
2403 | p = &a[NI-1]; | |
2404 | q = &equot[NI-1]; | |
2405 | for (i=M+1; i<NI; i++) | |
2406 | { | |
2407 | if (*p == 0) | |
842fbaaa | 2408 | { |
242cef1e RS |
2409 | --p; |
2410 | } | |
2411 | else | |
2412 | { | |
c92d992a | 2413 | m16m ((unsigned int) *p--, b, pprod); |
242cef1e | 2414 | eaddm(pprod, equot); |
842fbaaa | 2415 | } |
242cef1e RS |
2416 | j |= *q; |
2417 | eshdn6(equot); | |
2418 | } | |
842fbaaa | 2419 | |
242cef1e RS |
2420 | for (i=0; i<NI; i++) |
2421 | b[i] = equot[i]; | |
842fbaaa | 2422 | |
242cef1e RS |
2423 | /* return flag for lost nonzero bits */ |
2424 | return ((int)j); | |
842fbaaa JW |
2425 | } |
2426 | #endif | |
985b6196 RS |
2427 | |
2428 | ||
defb5dab | 2429 | /* Normalize and round off. |
985b6196 | 2430 | |
8c35bbc5 RK |
2431 | The internal format number to be rounded is S. |
2432 | Input LOST is 0 if the value is exact. This is the so-called sticky bit. | |
b6ca239d | 2433 | |
8c35bbc5 RK |
2434 | Input SUBFLG indicates whether the number was obtained |
2435 | by a subtraction operation. In that case if LOST is nonzero | |
defb5dab | 2436 | then the number is slightly smaller than indicated. |
b6ca239d | 2437 | |
8c35bbc5 RK |
2438 | Input EXP is the biased exponent, which may be negative. |
2439 | the exponent field of S is ignored but is replaced by | |
2440 | EXP as adjusted by normalization and rounding. | |
b6ca239d | 2441 | |
8c35bbc5 RK |
2442 | Input RCNTRL is the rounding control. If it is nonzero, the |
2443 | returned value will be rounded to RNDPRC bits. | |
defb5dab RK |
2444 | |
2445 | For future reference: In order for emdnorm to round off denormal | |
842fbaaa JW |
2446 | significands at the right point, the input exponent must be |
2447 | adjusted to be the actual value it would have after conversion to | |
2448 | the final floating point type. This adjustment has been | |
2449 | implemented for all type conversions (etoe53, etc.) and decimal | |
b6ca239d | 2450 | conversions, but not for the arithmetic functions (eadd, etc.). |
842fbaaa JW |
2451 | Data types having standard 15-bit exponents are not affected by |
2452 | this, but SFmode and DFmode are affected. For example, ediv with | |
2453 | rndprc = 24 will not round correctly to 24-bit precision if the | |
2454 | result is denormal. */ | |
2455 | ||
985b6196 RS |
2456 | static int rlast = -1; |
2457 | static int rw = 0; | |
2458 | static unsigned EMUSHORT rmsk = 0; | |
2459 | static unsigned EMUSHORT rmbit = 0; | |
2460 | static unsigned EMUSHORT rebit = 0; | |
2461 | static int re = 0; | |
2462 | static unsigned EMUSHORT rbit[NI]; | |
2463 | ||
b6ca239d | 2464 | static void |
985b6196 RS |
2465 | emdnorm (s, lost, subflg, exp, rcntrl) |
2466 | unsigned EMUSHORT s[]; | |
2467 | int lost; | |
2468 | int subflg; | |
2469 | EMULONG exp; | |
2470 | int rcntrl; | |
2471 | { | |
2472 | int i, j; | |
2473 | unsigned EMUSHORT r; | |
2474 | ||
2475 | /* Normalize */ | |
2476 | j = enormlz (s); | |
2477 | ||
0f41302f | 2478 | /* a blank significand could mean either zero or infinity. */ |
985b6196 RS |
2479 | #ifndef INFINITY |
2480 | if (j > NBITS) | |
2481 | { | |
2482 | ecleazs (s); | |
2483 | return; | |
2484 | } | |
2485 | #endif | |
2486 | exp -= j; | |
2487 | #ifndef INFINITY | |
2488 | if (exp >= 32767L) | |
2489 | goto overf; | |
2490 | #else | |
2491 | if ((j > NBITS) && (exp < 32767)) | |
2492 | { | |
2493 | ecleazs (s); | |
2494 | return; | |
2495 | } | |
2496 | #endif | |
2497 | if (exp < 0L) | |
2498 | { | |
2499 | if (exp > (EMULONG) (-NBITS - 1)) | |
2500 | { | |
2501 | j = (int) exp; | |
2502 | i = eshift (s, j); | |
2503 | if (i) | |
2504 | lost = 1; | |
2505 | } | |
2506 | else | |
2507 | { | |
2508 | ecleazs (s); | |
2509 | return; | |
2510 | } | |
2511 | } | |
0f41302f | 2512 | /* Round off, unless told not to by rcntrl. */ |
985b6196 RS |
2513 | if (rcntrl == 0) |
2514 | goto mdfin; | |
0f41302f | 2515 | /* Set up rounding parameters if the control register changed. */ |
985b6196 RS |
2516 | if (rndprc != rlast) |
2517 | { | |
2518 | ecleaz (rbit); | |
2519 | switch (rndprc) | |
2520 | { | |
2521 | default: | |
2522 | case NBITS: | |
2523 | rw = NI - 1; /* low guard word */ | |
2524 | rmsk = 0xffff; | |
2525 | rmbit = 0x8000; | |
842fbaaa | 2526 | re = rw - 1; |
985b6196 RS |
2527 | rebit = 1; |
2528 | break; | |
f5963e61 | 2529 | |
842fbaaa JW |
2530 | case 113: |
2531 | rw = 10; | |
2532 | rmsk = 0x7fff; | |
2533 | rmbit = 0x4000; | |
2534 | rebit = 0x8000; | |
2535 | re = rw; | |
2536 | break; | |
f5963e61 | 2537 | |
985b6196 RS |
2538 | case 64: |
2539 | rw = 7; | |
2540 | rmsk = 0xffff; | |
2541 | rmbit = 0x8000; | |
985b6196 RS |
2542 | re = rw - 1; |
2543 | rebit = 1; | |
2544 | break; | |
f5963e61 | 2545 | |
842fbaaa | 2546 | /* For DEC or IBM arithmetic */ |
985b6196 RS |
2547 | case 56: |
2548 | rw = 6; | |
2549 | rmsk = 0xff; | |
2550 | rmbit = 0x80; | |
985b6196 | 2551 | rebit = 0x100; |
842fbaaa | 2552 | re = rw; |
985b6196 | 2553 | break; |
f5963e61 | 2554 | |
985b6196 RS |
2555 | case 53: |
2556 | rw = 6; | |
2557 | rmsk = 0x7ff; | |
2558 | rmbit = 0x0400; | |
985b6196 | 2559 | rebit = 0x800; |
842fbaaa | 2560 | re = rw; |
985b6196 | 2561 | break; |
f5963e61 JL |
2562 | |
2563 | /* For C4x arithmetic */ | |
2564 | case 32: | |
2565 | rw = 5; | |
2566 | rmsk = 0xffff; | |
2567 | rmbit = 0x8000; | |
2568 | rebit = 1; | |
2569 | re = rw - 1; | |
2570 | break; | |
2571 | ||
985b6196 RS |
2572 | case 24: |
2573 | rw = 4; | |
2574 | rmsk = 0xff; | |
2575 | rmbit = 0x80; | |
985b6196 | 2576 | rebit = 0x100; |
842fbaaa | 2577 | re = rw; |
985b6196 RS |
2578 | break; |
2579 | } | |
842fbaaa | 2580 | rbit[re] = rebit; |
985b6196 RS |
2581 | rlast = rndprc; |
2582 | } | |
2583 | ||
842fbaaa | 2584 | /* Shift down 1 temporarily if the data structure has an implied |
d730ef29 RK |
2585 | most significant bit and the number is denormal. |
2586 | Intel long double denormals also lose one bit of precision. */ | |
2587 | if ((exp <= 0) && (rndprc != NBITS) | |
2588 | && ((rndprc != 64) || ((rndprc == 64) && ! REAL_WORDS_BIG_ENDIAN))) | |
985b6196 | 2589 | { |
842fbaaa JW |
2590 | lost |= s[NI - 1] & 1; |
2591 | eshdn1 (s); | |
985b6196 | 2592 | } |
842fbaaa JW |
2593 | /* Clear out all bits below the rounding bit, |
2594 | remembering in r if any were nonzero. */ | |
2595 | r = s[rw] & rmsk; | |
2596 | if (rndprc < NBITS) | |
985b6196 | 2597 | { |
985b6196 RS |
2598 | i = rw + 1; |
2599 | while (i < NI) | |
2600 | { | |
2601 | if (s[i]) | |
2602 | r |= 1; | |
2603 | s[i] = 0; | |
2604 | ++i; | |
2605 | } | |
985b6196 | 2606 | } |
afb817fd | 2607 | s[rw] &= ~rmsk; |
985b6196 RS |
2608 | if ((r & rmbit) != 0) |
2609 | { | |
506b012c | 2610 | #ifndef C4X |
985b6196 RS |
2611 | if (r == rmbit) |
2612 | { | |
2613 | if (lost == 0) | |
2614 | { /* round to even */ | |
2615 | if ((s[re] & rebit) == 0) | |
2616 | goto mddone; | |
2617 | } | |
2618 | else | |
2619 | { | |
2620 | if (subflg != 0) | |
2621 | goto mddone; | |
2622 | } | |
2623 | } | |
506b012c | 2624 | #endif |
985b6196 RS |
2625 | eaddm (rbit, s); |
2626 | } | |
2627 | mddone: | |
0f41302f | 2628 | /* Undo the temporary shift for denormal values. */ |
d730ef29 RK |
2629 | if ((exp <= 0) && (rndprc != NBITS) |
2630 | && ((rndprc != 64) || ((rndprc == 64) && ! REAL_WORDS_BIG_ENDIAN))) | |
985b6196 RS |
2631 | { |
2632 | eshup1 (s); | |
2633 | } | |
2634 | if (s[2] != 0) | |
2635 | { /* overflow on roundoff */ | |
2636 | eshdn1 (s); | |
2637 | exp += 1; | |
2638 | } | |
2639 | mdfin: | |
2640 | s[NI - 1] = 0; | |
2641 | if (exp >= 32767L) | |
2642 | { | |
2643 | #ifndef INFINITY | |
2644 | overf: | |
2645 | #endif | |
2646 | #ifdef INFINITY | |
2647 | s[1] = 32767; | |
2648 | for (i = 2; i < NI - 1; i++) | |
2649 | s[i] = 0; | |
64685ffa RS |
2650 | if (extra_warnings) |
2651 | warning ("floating point overflow"); | |
985b6196 RS |
2652 | #else |
2653 | s[1] = 32766; | |
2654 | s[2] = 0; | |
2655 | for (i = M + 1; i < NI - 1; i++) | |
2656 | s[i] = 0xffff; | |
2657 | s[NI - 1] = 0; | |
842fbaaa | 2658 | if ((rndprc < 64) || (rndprc == 113)) |
985b6196 RS |
2659 | { |
2660 | s[rw] &= ~rmsk; | |
2661 | if (rndprc == 24) | |
2662 | { | |
2663 | s[5] = 0; | |
2664 | s[6] = 0; | |
2665 | } | |
2666 | } | |
2667 | #endif | |
2668 | return; | |
2669 | } | |
2670 | if (exp < 0) | |
2671 | s[1] = 0; | |
2672 | else | |
2673 | s[1] = (unsigned EMUSHORT) exp; | |
2674 | } | |
2675 | ||
8c35bbc5 | 2676 | /* Subtract. C = B - A, all e type numbers. */ |
985b6196 RS |
2677 | |
2678 | static int subflg = 0; | |
2679 | ||
b6ca239d | 2680 | static void |
985b6196 RS |
2681 | esub (a, b, c) |
2682 | unsigned EMUSHORT *a, *b, *c; | |
2683 | { | |
2684 | ||
66b6d60b RS |
2685 | #ifdef NANS |
2686 | if (eisnan (a)) | |
2687 | { | |
2688 | emov (a, c); | |
2689 | return; | |
2690 | } | |
2691 | if (eisnan (b)) | |
2692 | { | |
2693 | emov (b, c); | |
2694 | return; | |
2695 | } | |
2696 | /* Infinity minus infinity is a NaN. | |
0f41302f | 2697 | Test for subtracting infinities of the same sign. */ |
66b6d60b RS |
2698 | if (eisinf (a) && eisinf (b) |
2699 | && ((eisneg (a) ^ eisneg (b)) == 0)) | |
2700 | { | |
2701 | mtherr ("esub", INVALID); | |
29e11dab | 2702 | enan (c, 0); |
66b6d60b RS |
2703 | return; |
2704 | } | |
2705 | #endif | |
985b6196 RS |
2706 | subflg = 1; |
2707 | eadd1 (a, b, c); | |
2708 | } | |
2709 | ||
0f41302f | 2710 | /* Add. C = A + B, all e type. */ |
a0353055 | 2711 | |
b6ca239d | 2712 | static void |
985b6196 RS |
2713 | eadd (a, b, c) |
2714 | unsigned EMUSHORT *a, *b, *c; | |
2715 | { | |
2716 | ||
66b6d60b | 2717 | #ifdef NANS |
0f41302f | 2718 | /* NaN plus anything is a NaN. */ |
66b6d60b RS |
2719 | if (eisnan (a)) |
2720 | { | |
2721 | emov (a, c); | |
2722 | return; | |
2723 | } | |
2724 | if (eisnan (b)) | |
2725 | { | |
2726 | emov (b, c); | |
2727 | return; | |
2728 | } | |
2729 | /* Infinity minus infinity is a NaN. | |
0f41302f | 2730 | Test for adding infinities of opposite signs. */ |
66b6d60b RS |
2731 | if (eisinf (a) && eisinf (b) |
2732 | && ((eisneg (a) ^ eisneg (b)) != 0)) | |
2733 | { | |
2734 | mtherr ("esub", INVALID); | |
29e11dab | 2735 | enan (c, 0); |
66b6d60b RS |
2736 | return; |
2737 | } | |
2738 | #endif | |
985b6196 RS |
2739 | subflg = 0; |
2740 | eadd1 (a, b, c); | |
2741 | } | |
2742 | ||
8c35bbc5 RK |
2743 | /* Arithmetic common to both addition and subtraction. */ |
2744 | ||
b6ca239d | 2745 | static void |
985b6196 RS |
2746 | eadd1 (a, b, c) |
2747 | unsigned EMUSHORT *a, *b, *c; | |
2748 | { | |
2749 | unsigned EMUSHORT ai[NI], bi[NI], ci[NI]; | |
2750 | int i, lost, j, k; | |
2751 | EMULONG lt, lta, ltb; | |
2752 | ||
2753 | #ifdef INFINITY | |
2754 | if (eisinf (a)) | |
2755 | { | |
2756 | emov (a, c); | |
2757 | if (subflg) | |
2758 | eneg (c); | |
2759 | return; | |
2760 | } | |
2761 | if (eisinf (b)) | |
2762 | { | |
2763 | emov (b, c); | |
2764 | return; | |
2765 | } | |
2766 | #endif | |
2767 | emovi (a, ai); | |
2768 | emovi (b, bi); | |
2769 | if (subflg) | |
2770 | ai[0] = ~ai[0]; | |
2771 | ||
2772 | /* compare exponents */ | |
2773 | lta = ai[E]; | |
2774 | ltb = bi[E]; | |
2775 | lt = lta - ltb; | |
2776 | if (lt > 0L) | |
2777 | { /* put the larger number in bi */ | |
2778 | emovz (bi, ci); | |
2779 | emovz (ai, bi); | |
2780 | emovz (ci, ai); | |
2781 | ltb = bi[E]; | |
2782 | lt = -lt; | |
2783 | } | |
2784 | lost = 0; | |
2785 | if (lt != 0L) | |
2786 | { | |
2787 | if (lt < (EMULONG) (-NBITS - 1)) | |
2788 | goto done; /* answer same as larger addend */ | |
2789 | k = (int) lt; | |
2790 | lost = eshift (ai, k); /* shift the smaller number down */ | |
2791 | } | |
2792 | else | |
2793 | { | |
2794 | /* exponents were the same, so must compare significands */ | |
2795 | i = ecmpm (ai, bi); | |
2796 | if (i == 0) | |
2797 | { /* the numbers are identical in magnitude */ | |
2798 | /* if different signs, result is zero */ | |
2799 | if (ai[0] != bi[0]) | |
2800 | { | |
2801 | eclear (c); | |
2802 | return; | |
2803 | } | |
2804 | /* if same sign, result is double */ | |
9faa82d8 | 2805 | /* double denormalized tiny number */ |
985b6196 RS |
2806 | if ((bi[E] == 0) && ((bi[3] & 0x8000) == 0)) |
2807 | { | |
2808 | eshup1 (bi); | |
2809 | goto done; | |
2810 | } | |
2811 | /* add 1 to exponent unless both are zero! */ | |
2812 | for (j = 1; j < NI - 1; j++) | |
2813 | { | |
2814 | if (bi[j] != 0) | |
2815 | { | |
985b6196 | 2816 | ltb += 1; |
2dedbe1f RK |
2817 | if (ltb >= 0x7fff) |
2818 | { | |
2819 | eclear (c); | |
2820 | if (ai[0] != 0) | |
2821 | eneg (c); | |
2822 | einfin (c); | |
2823 | return; | |
2824 | } | |
985b6196 RS |
2825 | break; |
2826 | } | |
2827 | } | |
2828 | bi[E] = (unsigned EMUSHORT) ltb; | |
2829 | goto done; | |
2830 | } | |
2831 | if (i > 0) | |
2832 | { /* put the larger number in bi */ | |
2833 | emovz (bi, ci); | |
2834 | emovz (ai, bi); | |
2835 | emovz (ci, ai); | |
2836 | } | |
2837 | } | |
2838 | if (ai[0] == bi[0]) | |
2839 | { | |
2840 | eaddm (ai, bi); | |
2841 | subflg = 0; | |
2842 | } | |
2843 | else | |
2844 | { | |
2845 | esubm (ai, bi); | |
2846 | subflg = 1; | |
2847 | } | |
2848 | emdnorm (bi, lost, subflg, ltb, 64); | |
2849 | ||
2850 | done: | |
2851 | emovo (bi, c); | |
2852 | } | |
2853 | ||
8c35bbc5 | 2854 | /* Divide: C = B/A, all e type. */ |
a0353055 | 2855 | |
b6ca239d | 2856 | static void |
985b6196 RS |
2857 | ediv (a, b, c) |
2858 | unsigned EMUSHORT *a, *b, *c; | |
2859 | { | |
2860 | unsigned EMUSHORT ai[NI], bi[NI]; | |
d56390c4 | 2861 | int i, sign; |
985b6196 RS |
2862 | EMULONG lt, lta, ltb; |
2863 | ||
d56390c4 RK |
2864 | /* IEEE says if result is not a NaN, the sign is "-" if and only if |
2865 | operands have opposite signs -- but flush -0 to 0 later if not IEEE. */ | |
2866 | sign = eisneg(a) ^ eisneg(b); | |
2867 | ||
66b6d60b | 2868 | #ifdef NANS |
0f41302f | 2869 | /* Return any NaN input. */ |
66b6d60b RS |
2870 | if (eisnan (a)) |
2871 | { | |
2872 | emov (a, c); | |
2873 | return; | |
2874 | } | |
2875 | if (eisnan (b)) | |
2876 | { | |
2877 | emov (b, c); | |
2878 | return; | |
2879 | } | |
0f41302f | 2880 | /* Zero over zero, or infinity over infinity, is a NaN. */ |
66b6d60b RS |
2881 | if (((ecmp (a, ezero) == 0) && (ecmp (b, ezero) == 0)) |
2882 | || (eisinf (a) && eisinf (b))) | |
2883 | { | |
2884 | mtherr ("ediv", INVALID); | |
d56390c4 | 2885 | enan (c, sign); |
66b6d60b RS |
2886 | return; |
2887 | } | |
2888 | #endif | |
0f41302f | 2889 | /* Infinity over anything else is infinity. */ |
985b6196 RS |
2890 | #ifdef INFINITY |
2891 | if (eisinf (b)) | |
2892 | { | |
985b6196 | 2893 | einfin (c); |
d56390c4 | 2894 | goto divsign; |
985b6196 | 2895 | } |
0f41302f | 2896 | /* Anything else over infinity is zero. */ |
985b6196 RS |
2897 | if (eisinf (a)) |
2898 | { | |
2899 | eclear (c); | |
d56390c4 | 2900 | goto divsign; |
985b6196 RS |
2901 | } |
2902 | #endif | |
2903 | emovi (a, ai); | |
2904 | emovi (b, bi); | |
2905 | lta = ai[E]; | |
2906 | ltb = bi[E]; | |
2907 | if (bi[E] == 0) | |
0f41302f | 2908 | { /* See if numerator is zero. */ |
985b6196 RS |
2909 | for (i = 1; i < NI - 1; i++) |
2910 | { | |
2911 | if (bi[i] != 0) | |
2912 | { | |
2913 | ltb -= enormlz (bi); | |
2914 | goto dnzro1; | |
2915 | } | |
2916 | } | |
2917 | eclear (c); | |
d56390c4 | 2918 | goto divsign; |
985b6196 RS |
2919 | } |
2920 | dnzro1: | |
2921 | ||
2922 | if (ai[E] == 0) | |
2923 | { /* possible divide by zero */ | |
2924 | for (i = 1; i < NI - 1; i++) | |
2925 | { | |
2926 | if (ai[i] != 0) | |
2927 | { | |
2928 | lta -= enormlz (ai); | |
2929 | goto dnzro2; | |
2930 | } | |
2931 | } | |
66b6d60b RS |
2932 | /* Divide by zero is not an invalid operation. |
2933 | It is a divide-by-zero operation! */ | |
985b6196 RS |
2934 | einfin (c); |
2935 | mtherr ("ediv", SING); | |
d56390c4 | 2936 | goto divsign; |
985b6196 RS |
2937 | } |
2938 | dnzro2: | |
2939 | ||
2940 | i = edivm (ai, bi); | |
2941 | /* calculate exponent */ | |
2942 | lt = ltb - lta + EXONE; | |
2943 | emdnorm (bi, i, 0, lt, 64); | |
985b6196 | 2944 | emovo (bi, c); |
d56390c4 RK |
2945 | |
2946 | divsign: | |
2947 | ||
2948 | if (sign | |
2949 | #ifndef IEEE | |
2950 | && (ecmp (c, ezero) != 0) | |
2951 | #endif | |
2952 | ) | |
2953 | *(c+(NE-1)) |= 0x8000; | |
2954 | else | |
2955 | *(c+(NE-1)) &= ~0x8000; | |
985b6196 RS |
2956 | } |
2957 | ||
8c35bbc5 | 2958 | /* Multiply e-types A and B, return e-type product C. */ |
a0353055 | 2959 | |
b6ca239d | 2960 | static void |
985b6196 RS |
2961 | emul (a, b, c) |
2962 | unsigned EMUSHORT *a, *b, *c; | |
2963 | { | |
2964 | unsigned EMUSHORT ai[NI], bi[NI]; | |
d56390c4 | 2965 | int i, j, sign; |
985b6196 RS |
2966 | EMULONG lt, lta, ltb; |
2967 | ||
d56390c4 RK |
2968 | /* IEEE says if result is not a NaN, the sign is "-" if and only if |
2969 | operands have opposite signs -- but flush -0 to 0 later if not IEEE. */ | |
2970 | sign = eisneg(a) ^ eisneg(b); | |
2971 | ||
66b6d60b | 2972 | #ifdef NANS |
0f41302f | 2973 | /* NaN times anything is the same NaN. */ |
66b6d60b RS |
2974 | if (eisnan (a)) |
2975 | { | |
2976 | emov (a, c); | |
2977 | return; | |
2978 | } | |
2979 | if (eisnan (b)) | |
2980 | { | |
2981 | emov (b, c); | |
2982 | return; | |
2983 | } | |
0f41302f | 2984 | /* Zero times infinity is a NaN. */ |
66b6d60b RS |
2985 | if ((eisinf (a) && (ecmp (b, ezero) == 0)) |
2986 | || (eisinf (b) && (ecmp (a, ezero) == 0))) | |
2987 | { | |
2988 | mtherr ("emul", INVALID); | |
d56390c4 | 2989 | enan (c, sign); |
66b6d60b RS |
2990 | return; |
2991 | } | |
2992 | #endif | |
0f41302f | 2993 | /* Infinity times anything else is infinity. */ |
985b6196 RS |
2994 | #ifdef INFINITY |
2995 | if (eisinf (a) || eisinf (b)) | |
2996 | { | |
985b6196 | 2997 | einfin (c); |
d56390c4 | 2998 | goto mulsign; |
985b6196 RS |
2999 | } |
3000 | #endif | |
3001 | emovi (a, ai); | |
3002 | emovi (b, bi); | |
3003 | lta = ai[E]; | |
3004 | ltb = bi[E]; | |
3005 | if (ai[E] == 0) | |
3006 | { | |
3007 | for (i = 1; i < NI - 1; i++) | |
3008 | { | |
3009 | if (ai[i] != 0) | |
3010 | { | |
3011 | lta -= enormlz (ai); | |
3012 | goto mnzer1; | |
3013 | } | |
3014 | } | |
3015 | eclear (c); | |
d56390c4 | 3016 | goto mulsign; |
985b6196 RS |
3017 | } |
3018 | mnzer1: | |
3019 | ||
3020 | if (bi[E] == 0) | |
3021 | { | |
3022 | for (i = 1; i < NI - 1; i++) | |
3023 | { | |
3024 | if (bi[i] != 0) | |
3025 | { | |
3026 | ltb -= enormlz (bi); | |
3027 | goto mnzer2; | |
3028 | } | |
3029 | } | |
3030 | eclear (c); | |
d56390c4 | 3031 | goto mulsign; |
985b6196 RS |
3032 | } |
3033 | mnzer2: | |
3034 | ||
3035 | /* Multiply significands */ | |
3036 | j = emulm (ai, bi); | |
3037 | /* calculate exponent */ | |
3038 | lt = lta + ltb - (EXONE - 1); | |
3039 | emdnorm (bi, j, 0, lt, 64); | |
985b6196 | 3040 | emovo (bi, c); |
d56390c4 RK |
3041 | |
3042 | mulsign: | |
3043 | ||
3044 | if (sign | |
3045 | #ifndef IEEE | |
3046 | && (ecmp (c, ezero) != 0) | |
3047 | #endif | |
3048 | ) | |
3049 | *(c+(NE-1)) |= 0x8000; | |
3050 | else | |
3051 | *(c+(NE-1)) &= ~0x8000; | |
985b6196 RS |
3052 | } |
3053 | ||
8c35bbc5 | 3054 | /* Convert double precision PE to e-type Y. */ |
a0353055 RK |
3055 | |
3056 | static void | |
66b6d60b RS |
3057 | e53toe (pe, y) |
3058 | unsigned EMUSHORT *pe, *y; | |
985b6196 RS |
3059 | { |
3060 | #ifdef DEC | |
3061 | ||
8c35bbc5 | 3062 | dectoe (pe, y); |
985b6196 RS |
3063 | |
3064 | #else | |
842fbaaa JW |
3065 | #ifdef IBM |
3066 | ||
3067 | ibmtoe (pe, y, DFmode); | |
985b6196 | 3068 | |
f5963e61 JL |
3069 | #else |
3070 | #ifdef C4X | |
3071 | ||
3072 | c4xtoe (pe, y, HFmode); | |
3073 | ||
842fbaaa | 3074 | #else |
985b6196 | 3075 | register unsigned EMUSHORT r; |
66b6d60b | 3076 | register unsigned EMUSHORT *e, *p; |
985b6196 RS |
3077 | unsigned EMUSHORT yy[NI]; |
3078 | int denorm, k; | |
3079 | ||
66b6d60b | 3080 | e = pe; |
985b6196 RS |
3081 | denorm = 0; /* flag if denormalized number */ |
3082 | ecleaz (yy); | |
8c35bbc5 | 3083 | if (! REAL_WORDS_BIG_ENDIAN) |
f76b9db2 | 3084 | e += 3; |
985b6196 RS |
3085 | r = *e; |
3086 | yy[0] = 0; | |
3087 | if (r & 0x8000) | |
3088 | yy[0] = 0xffff; | |
3089 | yy[M] = (r & 0x0f) | 0x10; | |
3090 | r &= ~0x800f; /* strip sign and 4 significand bits */ | |
3091 | #ifdef INFINITY | |
3092 | if (r == 0x7ff0) | |
3093 | { | |
66b6d60b | 3094 | #ifdef NANS |
8c35bbc5 | 3095 | if (! REAL_WORDS_BIG_ENDIAN) |
66b6d60b | 3096 | { |
f76b9db2 ILT |
3097 | if (((pe[3] & 0xf) != 0) || (pe[2] != 0) |
3098 | || (pe[1] != 0) || (pe[0] != 0)) | |
3099 | { | |
3100 | enan (y, yy[0] != 0); | |
3101 | return; | |
3102 | } | |
66b6d60b | 3103 | } |
f76b9db2 | 3104 | else |
66b6d60b | 3105 | { |
f76b9db2 ILT |
3106 | if (((pe[0] & 0xf) != 0) || (pe[1] != 0) |
3107 | || (pe[2] != 0) || (pe[3] != 0)) | |
3108 | { | |
3109 | enan (y, yy[0] != 0); | |
3110 | return; | |
3111 | } | |
66b6d60b | 3112 | } |
66b6d60b | 3113 | #endif /* NANS */ |
dca821e1 | 3114 | eclear (y); |
985b6196 | 3115 | einfin (y); |
dca821e1 | 3116 | if (yy[0]) |
985b6196 RS |
3117 | eneg (y); |
3118 | return; | |
3119 | } | |
66b6d60b | 3120 | #endif /* INFINITY */ |
985b6196 RS |
3121 | r >>= 4; |
3122 | /* If zero exponent, then the significand is denormalized. | |
0f41302f | 3123 | So take back the understood high significand bit. */ |
defb5dab | 3124 | |
985b6196 RS |
3125 | if (r == 0) |
3126 | { | |
3127 | denorm = 1; | |
3128 | yy[M] &= ~0x10; | |
3129 | } | |
3130 | r += EXONE - 01777; | |
3131 | yy[E] = r; | |
3132 | p = &yy[M + 1]; | |
f76b9db2 | 3133 | #ifdef IEEE |
8c35bbc5 | 3134 | if (! REAL_WORDS_BIG_ENDIAN) |
f76b9db2 ILT |
3135 | { |
3136 | *p++ = *(--e); | |
3137 | *p++ = *(--e); | |
3138 | *p++ = *(--e); | |
3139 | } | |
3140 | else | |
3141 | { | |
3142 | ++e; | |
3143 | *p++ = *e++; | |
3144 | *p++ = *e++; | |
3145 | *p++ = *e++; | |
3146 | } | |
985b6196 | 3147 | #endif |
64685ffa | 3148 | eshift (yy, -5); |
985b6196 | 3149 | if (denorm) |
b6ca239d | 3150 | { |
f5963e61 | 3151 | /* If zero exponent, then normalize the significand. */ |
985b6196 RS |
3152 | if ((k = enormlz (yy)) > NBITS) |
3153 | ecleazs (yy); | |
3154 | else | |
3155 | yy[E] -= (unsigned EMUSHORT) (k - 1); | |
3156 | } | |
3157 | emovo (yy, y); | |
f5963e61 | 3158 | #endif /* not C4X */ |
842fbaaa | 3159 | #endif /* not IBM */ |
985b6196 RS |
3160 | #endif /* not DEC */ |
3161 | } | |
3162 | ||
8c35bbc5 RK |
3163 | /* Convert double extended precision float PE to e type Y. */ |
3164 | ||
b6ca239d | 3165 | static void |
66b6d60b RS |
3166 | e64toe (pe, y) |
3167 | unsigned EMUSHORT *pe, *y; | |
985b6196 RS |
3168 | { |
3169 | unsigned EMUSHORT yy[NI]; | |
66b6d60b | 3170 | unsigned EMUSHORT *e, *p, *q; |
985b6196 RS |
3171 | int i; |
3172 | ||
66b6d60b | 3173 | e = pe; |
985b6196 RS |
3174 | p = yy; |
3175 | for (i = 0; i < NE - 5; i++) | |
3176 | *p++ = 0; | |
0f41302f | 3177 | /* This precision is not ordinarily supported on DEC or IBM. */ |
985b6196 RS |
3178 | #ifdef DEC |
3179 | for (i = 0; i < 5; i++) | |
3180 | *p++ = *e++; | |
3181 | #endif | |
842fbaaa JW |
3182 | #ifdef IBM |
3183 | p = &yy[0] + (NE - 1); | |
3184 | *p-- = *e++; | |
3185 | ++e; | |
3186 | for (i = 0; i < 5; i++) | |
3187 | *p-- = *e++; | |
3188 | #endif | |
f76b9db2 | 3189 | #ifdef IEEE |
8c35bbc5 | 3190 | if (! REAL_WORDS_BIG_ENDIAN) |
f76b9db2 ILT |
3191 | { |
3192 | for (i = 0; i < 5; i++) | |
3193 | *p++ = *e++; | |
d730ef29 RK |
3194 | |
3195 | /* For denormal long double Intel format, shift significand up one | |
3196 | -- but only if the top significand bit is zero. A top bit of 1 | |
3197 | is "pseudodenormal" when the exponent is zero. */ | |
3198 | if((yy[NE-1] & 0x7fff) == 0 && (yy[NE-2] & 0x8000) == 0) | |
3199 | { | |
3200 | unsigned EMUSHORT temp[NI]; | |
3201 | ||
3202 | emovi(yy, temp); | |
3203 | eshup1(temp); | |
3204 | emovo(temp,y); | |
3205 | return; | |
3206 | } | |
f76b9db2 ILT |
3207 | } |
3208 | else | |
3209 | { | |
3210 | p = &yy[0] + (NE - 1); | |
f250a0bc RK |
3211 | #ifdef ARM_EXTENDED_IEEE_FORMAT |
3212 | /* For ARMs, the exponent is in the lowest 15 bits of the word. */ | |
3213 | *p-- = (e[0] & 0x8000) | (e[1] & 0x7ffff); | |
3214 | e += 2; | |
3215 | #else | |
f76b9db2 ILT |
3216 | *p-- = *e++; |
3217 | ++e; | |
f250a0bc | 3218 | #endif |
f76b9db2 ILT |
3219 | for (i = 0; i < 4; i++) |
3220 | *p-- = *e++; | |
3221 | } | |
985b6196 | 3222 | #endif |
985b6196 | 3223 | #ifdef INFINITY |
82e974d4 RK |
3224 | /* Point to the exponent field and check max exponent cases. */ |
3225 | p = &yy[NE - 1]; | |
f250a0bc | 3226 | if ((*p & 0x7fff) == 0x7fff) |
985b6196 | 3227 | { |
66b6d60b | 3228 | #ifdef NANS |
8c35bbc5 | 3229 | if (! REAL_WORDS_BIG_ENDIAN) |
66b6d60b | 3230 | { |
f76b9db2 | 3231 | for (i = 0; i < 4; i++) |
66b6d60b | 3232 | { |
82e974d4 RK |
3233 | if ((i != 3 && pe[i] != 0) |
3234 | /* Anything but 0x8000 here, including 0, is a NaN. */ | |
3235 | || (i == 3 && pe[i] != 0x8000)) | |
f76b9db2 ILT |
3236 | { |
3237 | enan (y, (*p & 0x8000) != 0); | |
3238 | return; | |
3239 | } | |
66b6d60b RS |
3240 | } |
3241 | } | |
f76b9db2 | 3242 | else |
66b6d60b | 3243 | { |
f250a0bc RK |
3244 | #ifdef ARM_EXTENDED_IEEE_FORMAT |
3245 | for (i = 2; i <= 5; i++) | |
66b6d60b | 3246 | { |
f76b9db2 ILT |
3247 | if (pe[i] != 0) |
3248 | { | |
3249 | enan (y, (*p & 0x8000) != 0); | |
3250 | return; | |
3251 | } | |
66b6d60b | 3252 | } |
f250a0bc RK |
3253 | #else /* not ARM */ |
3254 | /* In Motorola extended precision format, the most significant | |
3255 | bit of an infinity mantissa could be either 1 or 0. It is | |
3256 | the lower order bits that tell whether the value is a NaN. */ | |
3257 | if ((pe[2] & 0x7fff) != 0) | |
3258 | goto bigend_nan; | |
3259 | ||
3260 | for (i = 3; i <= 5; i++) | |
3261 | { | |
3262 | if (pe[i] != 0) | |
3263 | { | |
3264 | bigend_nan: | |
3265 | enan (y, (*p & 0x8000) != 0); | |
3266 | return; | |
3267 | } | |
3268 | } | |
3269 | #endif /* not ARM */ | |
66b6d60b | 3270 | } |
66b6d60b | 3271 | #endif /* NANS */ |
dca821e1 | 3272 | eclear (y); |
985b6196 RS |
3273 | einfin (y); |
3274 | if (*p & 0x8000) | |
3275 | eneg (y); | |
3276 | return; | |
3277 | } | |
66b6d60b | 3278 | #endif /* INFINITY */ |
82e974d4 RK |
3279 | p = yy; |
3280 | q = y; | |
985b6196 RS |
3281 | for (i = 0; i < NE; i++) |
3282 | *q++ = *p++; | |
3283 | } | |
3284 | ||
8c35bbc5 | 3285 | /* Convert 128-bit long double precision float PE to e type Y. */ |
985b6196 | 3286 | |
b6ca239d | 3287 | static void |
842fbaaa | 3288 | e113toe (pe, y) |
66b6d60b | 3289 | unsigned EMUSHORT *pe, *y; |
985b6196 RS |
3290 | { |
3291 | register unsigned EMUSHORT r; | |
842fbaaa | 3292 | unsigned EMUSHORT *e, *p; |
985b6196 | 3293 | unsigned EMUSHORT yy[NI]; |
842fbaaa | 3294 | int denorm, i; |
985b6196 | 3295 | |
66b6d60b | 3296 | e = pe; |
842fbaaa | 3297 | denorm = 0; |
985b6196 | 3298 | ecleaz (yy); |
f76b9db2 | 3299 | #ifdef IEEE |
8c35bbc5 | 3300 | if (! REAL_WORDS_BIG_ENDIAN) |
f76b9db2 | 3301 | e += 7; |
985b6196 RS |
3302 | #endif |
3303 | r = *e; | |
3304 | yy[0] = 0; | |
3305 | if (r & 0x8000) | |
3306 | yy[0] = 0xffff; | |
842fbaaa | 3307 | r &= 0x7fff; |
985b6196 | 3308 | #ifdef INFINITY |
842fbaaa | 3309 | if (r == 0x7fff) |
985b6196 | 3310 | { |
66b6d60b | 3311 | #ifdef NANS |
8c35bbc5 | 3312 | if (! REAL_WORDS_BIG_ENDIAN) |
66b6d60b | 3313 | { |
f76b9db2 | 3314 | for (i = 0; i < 7; i++) |
842fbaaa | 3315 | { |
f76b9db2 ILT |
3316 | if (pe[i] != 0) |
3317 | { | |
3318 | enan (y, yy[0] != 0); | |
3319 | return; | |
3320 | } | |
842fbaaa | 3321 | } |
66b6d60b | 3322 | } |
f76b9db2 | 3323 | else |
66b6d60b | 3324 | { |
f76b9db2 | 3325 | for (i = 1; i < 8; i++) |
842fbaaa | 3326 | { |
f76b9db2 ILT |
3327 | if (pe[i] != 0) |
3328 | { | |
3329 | enan (y, yy[0] != 0); | |
3330 | return; | |
3331 | } | |
842fbaaa | 3332 | } |
66b6d60b | 3333 | } |
842fbaaa | 3334 | #endif /* NANS */ |
dca821e1 | 3335 | eclear (y); |
985b6196 | 3336 | einfin (y); |
dca821e1 | 3337 | if (yy[0]) |
985b6196 RS |
3338 | eneg (y); |
3339 | return; | |
3340 | } | |
66b6d60b | 3341 | #endif /* INFINITY */ |
985b6196 RS |
3342 | yy[E] = r; |
3343 | p = &yy[M + 1]; | |
f76b9db2 | 3344 | #ifdef IEEE |
8c35bbc5 | 3345 | if (! REAL_WORDS_BIG_ENDIAN) |
f76b9db2 ILT |
3346 | { |
3347 | for (i = 0; i < 7; i++) | |
3348 | *p++ = *(--e); | |
3349 | } | |
3350 | else | |
3351 | { | |
3352 | ++e; | |
3353 | for (i = 0; i < 7; i++) | |
3354 | *p++ = *e++; | |
3355 | } | |
985b6196 | 3356 | #endif |
0f41302f | 3357 | /* If denormal, remove the implied bit; else shift down 1. */ |
842fbaaa JW |
3358 | if (r == 0) |
3359 | { | |
3360 | yy[M] = 0; | |
3361 | } | |
3362 | else | |
3363 | { | |
3364 | yy[M] = 1; | |
3365 | eshift (yy, -1); | |
3366 | } | |
3367 | emovo (yy, y); | |
3368 | } | |
3369 | ||
8c35bbc5 | 3370 | /* Convert single precision float PE to e type Y. */ |
a0353055 | 3371 | |
b6ca239d | 3372 | static void |
842fbaaa JW |
3373 | e24toe (pe, y) |
3374 | unsigned EMUSHORT *pe, *y; | |
3375 | { | |
3376 | #ifdef IBM | |
3377 | ||
3378 | ibmtoe (pe, y, SFmode); | |
3379 | ||
3380 | #else | |
f5963e61 JL |
3381 | |
3382 | #ifdef C4X | |
3383 | ||
3384 | c4xtoe (pe, y, QFmode); | |
3385 | ||
3386 | #else | |
3387 | ||
842fbaaa JW |
3388 | register unsigned EMUSHORT r; |
3389 | register unsigned EMUSHORT *e, *p; | |
3390 | unsigned EMUSHORT yy[NI]; | |
3391 | int denorm, k; | |
3392 | ||
3393 | e = pe; | |
3394 | denorm = 0; /* flag if denormalized number */ | |
3395 | ecleaz (yy); | |
f76b9db2 | 3396 | #ifdef IEEE |
8c35bbc5 | 3397 | if (! REAL_WORDS_BIG_ENDIAN) |
f76b9db2 | 3398 | e += 1; |
842fbaaa JW |
3399 | #endif |
3400 | #ifdef DEC | |
3401 | e += 1; | |
3402 | #endif | |
3403 | r = *e; | |
3404 | yy[0] = 0; | |
3405 | if (r & 0x8000) | |
3406 | yy[0] = 0xffff; | |
3407 | yy[M] = (r & 0x7f) | 0200; | |
3408 | r &= ~0x807f; /* strip sign and 7 significand bits */ | |
3409 | #ifdef INFINITY | |
3410 | if (r == 0x7f80) | |
3411 | { | |
3412 | #ifdef NANS | |
8c35bbc5 | 3413 | if (REAL_WORDS_BIG_ENDIAN) |
842fbaaa | 3414 | { |
f76b9db2 ILT |
3415 | if (((pe[0] & 0x7f) != 0) || (pe[1] != 0)) |
3416 | { | |
3417 | enan (y, yy[0] != 0); | |
3418 | return; | |
3419 | } | |
842fbaaa | 3420 | } |
f76b9db2 | 3421 | else |
842fbaaa | 3422 | { |
f76b9db2 ILT |
3423 | if (((pe[1] & 0x7f) != 0) || (pe[0] != 0)) |
3424 | { | |
3425 | enan (y, yy[0] != 0); | |
3426 | return; | |
3427 | } | |
842fbaaa | 3428 | } |
842fbaaa JW |
3429 | #endif /* NANS */ |
3430 | eclear (y); | |
3431 | einfin (y); | |
3432 | if (yy[0]) | |
3433 | eneg (y); | |
3434 | return; | |
3435 | } | |
3436 | #endif /* INFINITY */ | |
3437 | r >>= 7; | |
3438 | /* If zero exponent, then the significand is denormalized. | |
0f41302f | 3439 | So take back the understood high significand bit. */ |
842fbaaa JW |
3440 | if (r == 0) |
3441 | { | |
3442 | denorm = 1; | |
3443 | yy[M] &= ~0200; | |
3444 | } | |
3445 | r += EXONE - 0177; | |
3446 | yy[E] = r; | |
3447 | p = &yy[M + 1]; | |
842fbaaa JW |
3448 | #ifdef DEC |
3449 | *p++ = *(--e); | |
3450 | #endif | |
f76b9db2 | 3451 | #ifdef IEEE |
8c35bbc5 | 3452 | if (! REAL_WORDS_BIG_ENDIAN) |
f76b9db2 ILT |
3453 | *p++ = *(--e); |
3454 | else | |
3455 | { | |
3456 | ++e; | |
3457 | *p++ = *e++; | |
3458 | } | |
842fbaaa JW |
3459 | #endif |
3460 | eshift (yy, -8); | |
3461 | if (denorm) | |
3462 | { /* if zero exponent, then normalize the significand */ | |
3463 | if ((k = enormlz (yy)) > NBITS) | |
3464 | ecleazs (yy); | |
3465 | else | |
3466 | yy[E] -= (unsigned EMUSHORT) (k - 1); | |
985b6196 RS |
3467 | } |
3468 | emovo (yy, y); | |
f5963e61 | 3469 | #endif /* not C4X */ |
842fbaaa JW |
3470 | #endif /* not IBM */ |
3471 | } | |
3472 | ||
8c35bbc5 | 3473 | /* Convert e-type X to IEEE 128-bit long double format E. */ |
842fbaaa | 3474 | |
b6ca239d | 3475 | static void |
842fbaaa JW |
3476 | etoe113 (x, e) |
3477 | unsigned EMUSHORT *x, *e; | |
3478 | { | |
3479 | unsigned EMUSHORT xi[NI]; | |
3480 | EMULONG exp; | |
3481 | int rndsav; | |
3482 | ||
3483 | #ifdef NANS | |
3484 | if (eisnan (x)) | |
3485 | { | |
29e11dab | 3486 | make_nan (e, eisneg (x), TFmode); |
842fbaaa JW |
3487 | return; |
3488 | } | |
3489 | #endif | |
3490 | emovi (x, xi); | |
3491 | exp = (EMULONG) xi[E]; | |
3492 | #ifdef INFINITY | |
3493 | if (eisinf (x)) | |
3494 | goto nonorm; | |
3495 | #endif | |
3496 | /* round off to nearest or even */ | |
3497 | rndsav = rndprc; | |
3498 | rndprc = 113; | |
3499 | emdnorm (xi, 0, 0, exp, 64); | |
3500 | rndprc = rndsav; | |
3501 | nonorm: | |
3502 | toe113 (xi, e); | |
985b6196 RS |
3503 | } |
3504 | ||
8c35bbc5 RK |
3505 | /* Convert exploded e-type X, that has already been rounded to |
3506 | 113-bit precision, to IEEE 128-bit long double format Y. */ | |
a0353055 | 3507 | |
b6ca239d | 3508 | static void |
842fbaaa JW |
3509 | toe113 (a, b) |
3510 | unsigned EMUSHORT *a, *b; | |
3511 | { | |
3512 | register unsigned EMUSHORT *p, *q; | |
3513 | unsigned EMUSHORT i; | |
3514 | ||
3515 | #ifdef NANS | |
3516 | if (eiisnan (a)) | |
3517 | { | |
29e11dab | 3518 | make_nan (b, eiisneg (a), TFmode); |
842fbaaa JW |
3519 | return; |
3520 | } | |
3521 | #endif | |
3522 | p = a; | |
8c35bbc5 | 3523 | if (REAL_WORDS_BIG_ENDIAN) |
f76b9db2 ILT |
3524 | q = b; |
3525 | else | |
3526 | q = b + 7; /* point to output exponent */ | |
842fbaaa | 3527 | |
0f41302f | 3528 | /* If not denormal, delete the implied bit. */ |
842fbaaa JW |
3529 | if (a[E] != 0) |
3530 | { | |
3531 | eshup1 (a); | |
3532 | } | |
3533 | /* combine sign and exponent */ | |
3534 | i = *p++; | |
8c35bbc5 | 3535 | if (REAL_WORDS_BIG_ENDIAN) |
f76b9db2 ILT |
3536 | { |
3537 | if (i) | |
3538 | *q++ = *p++ | 0x8000; | |
3539 | else | |
3540 | *q++ = *p++; | |
3541 | } | |
842fbaaa | 3542 | else |
f76b9db2 ILT |
3543 | { |
3544 | if (i) | |
3545 | *q-- = *p++ | 0x8000; | |
3546 | else | |
3547 | *q-- = *p++; | |
3548 | } | |
842fbaaa JW |
3549 | /* skip over guard word */ |
3550 | ++p; | |
3551 | /* move the significand */ | |
8c35bbc5 | 3552 | if (REAL_WORDS_BIG_ENDIAN) |
f76b9db2 ILT |
3553 | { |
3554 | for (i = 0; i < 7; i++) | |
3555 | *q++ = *p++; | |
3556 | } | |
3557 | else | |
3558 | { | |
3559 | for (i = 0; i < 7; i++) | |
3560 | *q-- = *p++; | |
3561 | } | |
842fbaaa | 3562 | } |
985b6196 | 3563 | |
8c35bbc5 RK |
3564 | /* Convert e-type X to IEEE double extended format E. */ |
3565 | ||
b6ca239d | 3566 | static void |
985b6196 RS |
3567 | etoe64 (x, e) |
3568 | unsigned EMUSHORT *x, *e; | |
3569 | { | |
3570 | unsigned EMUSHORT xi[NI]; | |
3571 | EMULONG exp; | |
3572 | int rndsav; | |
3573 | ||
66b6d60b RS |
3574 | #ifdef NANS |
3575 | if (eisnan (x)) | |
3576 | { | |
29e11dab | 3577 | make_nan (e, eisneg (x), XFmode); |
66b6d60b RS |
3578 | return; |
3579 | } | |
3580 | #endif | |
985b6196 RS |
3581 | emovi (x, xi); |
3582 | /* adjust exponent for offset */ | |
3583 | exp = (EMULONG) xi[E]; | |
3584 | #ifdef INFINITY | |
3585 | if (eisinf (x)) | |
3586 | goto nonorm; | |
3587 | #endif | |
3588 | /* round off to nearest or even */ | |
3589 | rndsav = rndprc; | |
3590 | rndprc = 64; | |
3591 | emdnorm (xi, 0, 0, exp, 64); | |
3592 | rndprc = rndsav; | |
3593 | nonorm: | |
3594 | toe64 (xi, e); | |
3595 | } | |
3596 | ||
8c35bbc5 RK |
3597 | /* Convert exploded e-type X, that has already been rounded to |
3598 | 64-bit precision, to IEEE double extended format Y. */ | |
defb5dab | 3599 | |
b6ca239d | 3600 | static void |
985b6196 RS |
3601 | toe64 (a, b) |
3602 | unsigned EMUSHORT *a, *b; | |
3603 | { | |
3604 | register unsigned EMUSHORT *p, *q; | |
3605 | unsigned EMUSHORT i; | |
3606 | ||
66b6d60b RS |
3607 | #ifdef NANS |
3608 | if (eiisnan (a)) | |
3609 | { | |
29e11dab | 3610 | make_nan (b, eiisneg (a), XFmode); |
66b6d60b RS |
3611 | return; |
3612 | } | |
3613 | #endif | |
d730ef29 RK |
3614 | /* Shift denormal long double Intel format significand down one bit. */ |
3615 | if ((a[E] == 0) && ! REAL_WORDS_BIG_ENDIAN) | |
3616 | eshdn1 (a); | |
985b6196 | 3617 | p = a; |
f76b9db2 | 3618 | #ifdef IBM |
985b6196 | 3619 | q = b; |
f76b9db2 ILT |
3620 | #endif |
3621 | #ifdef DEC | |
3622 | q = b + 4; | |
3623 | #endif | |
3624 | #ifdef IEEE | |
8c35bbc5 | 3625 | if (REAL_WORDS_BIG_ENDIAN) |
f76b9db2 ILT |
3626 | q = b; |
3627 | else | |
3628 | { | |
3629 | q = b + 4; /* point to output exponent */ | |
985b6196 | 3630 | #if LONG_DOUBLE_TYPE_SIZE == 96 |
f76b9db2 ILT |
3631 | /* Clear the last two bytes of 12-byte Intel format */ |
3632 | *(q+1) = 0; | |
985b6196 | 3633 | #endif |
f76b9db2 | 3634 | } |
985b6196 RS |
3635 | #endif |
3636 | ||
3637 | /* combine sign and exponent */ | |
3638 | i = *p++; | |
f76b9db2 | 3639 | #ifdef IBM |
985b6196 RS |
3640 | if (i) |
3641 | *q++ = *p++ | 0x8000; | |
3642 | else | |
3643 | *q++ = *p++; | |
3644 | *q++ = 0; | |
f76b9db2 ILT |
3645 | #endif |
3646 | #ifdef DEC | |
985b6196 RS |
3647 | if (i) |
3648 | *q-- = *p++ | 0x8000; | |
3649 | else | |
3650 | *q-- = *p++; | |
f76b9db2 ILT |
3651 | #endif |
3652 | #ifdef IEEE | |
8c35bbc5 | 3653 | if (REAL_WORDS_BIG_ENDIAN) |
f76b9db2 | 3654 | { |
f250a0bc RK |
3655 | #ifdef ARM_EXTENDED_IEEE_FORMAT |
3656 | /* The exponent is in the lowest 15 bits of the first word. */ | |
3657 | *q++ = i ? 0x8000 : 0; | |
3658 | *q++ = *p++; | |
3659 | #else | |
f76b9db2 ILT |
3660 | if (i) |
3661 | *q++ = *p++ | 0x8000; | |
3662 | else | |
3663 | *q++ = *p++; | |
3664 | *q++ = 0; | |
f250a0bc | 3665 | #endif |
f76b9db2 ILT |
3666 | } |
3667 | else | |
3668 | { | |
3669 | if (i) | |
3670 | *q-- = *p++ | 0x8000; | |
3671 | else | |
3672 | *q-- = *p++; | |
3673 | } | |
985b6196 RS |
3674 | #endif |
3675 | /* skip over guard word */ | |
3676 | ++p; | |
3677 | /* move the significand */ | |
f76b9db2 | 3678 | #ifdef IBM |
985b6196 RS |
3679 | for (i = 0; i < 4; i++) |
3680 | *q++ = *p++; | |
f76b9db2 ILT |
3681 | #endif |
3682 | #ifdef DEC | |
985b6196 RS |
3683 | for (i = 0; i < 4; i++) |
3684 | *q-- = *p++; | |
3685 | #endif | |
f76b9db2 | 3686 | #ifdef IEEE |
8c35bbc5 | 3687 | if (REAL_WORDS_BIG_ENDIAN) |
f76b9db2 ILT |
3688 | { |
3689 | for (i = 0; i < 4; i++) | |
3690 | *q++ = *p++; | |
3691 | } | |
3692 | else | |
3693 | { | |
82e974d4 RK |
3694 | #ifdef INFINITY |
3695 | if (eiisinf (a)) | |
3696 | { | |
3697 | /* Intel long double infinity significand. */ | |
3698 | *q-- = 0x8000; | |
3699 | *q-- = 0; | |
3700 | *q-- = 0; | |
3701 | *q = 0; | |
3702 | return; | |
3703 | } | |
3704 | #endif | |
f76b9db2 ILT |
3705 | for (i = 0; i < 4; i++) |
3706 | *q-- = *p++; | |
3707 | } | |
3708 | #endif | |
985b6196 RS |
3709 | } |
3710 | ||
8c35bbc5 | 3711 | /* e type to double precision. */ |
985b6196 RS |
3712 | |
3713 | #ifdef DEC | |
8c35bbc5 | 3714 | /* Convert e-type X to DEC-format double E. */ |
985b6196 | 3715 | |
b6ca239d | 3716 | static void |
985b6196 RS |
3717 | etoe53 (x, e) |
3718 | unsigned EMUSHORT *x, *e; | |
3719 | { | |
3720 | etodec (x, e); /* see etodec.c */ | |
3721 | } | |
3722 | ||
8c35bbc5 RK |
3723 | /* Convert exploded e-type X, that has already been rounded to |
3724 | 56-bit double precision, to DEC double Y. */ | |
3725 | ||
b6ca239d | 3726 | static void |
985b6196 RS |
3727 | toe53 (x, y) |
3728 | unsigned EMUSHORT *x, *y; | |
3729 | { | |
3730 | todec (x, y); | |
3731 | } | |
3732 | ||
3733 | #else | |
842fbaaa | 3734 | #ifdef IBM |
8c35bbc5 | 3735 | /* Convert e-type X to IBM 370-format double E. */ |
842fbaaa | 3736 | |
b6ca239d | 3737 | static void |
842fbaaa JW |
3738 | etoe53 (x, e) |
3739 | unsigned EMUSHORT *x, *e; | |
3740 | { | |
3741 | etoibm (x, e, DFmode); | |
3742 | } | |
3743 | ||
8c35bbc5 RK |
3744 | /* Convert exploded e-type X, that has already been rounded to |
3745 | 56-bit precision, to IBM 370 double Y. */ | |
3746 | ||
b6ca239d | 3747 | static void |
842fbaaa JW |
3748 | toe53 (x, y) |
3749 | unsigned EMUSHORT *x, *y; | |
3750 | { | |
3751 | toibm (x, y, DFmode); | |
3752 | } | |
3753 | ||
f5963e61 JL |
3754 | #else /* it's neither DEC nor IBM */ |
3755 | #ifdef C4X | |
9ec36da5 | 3756 | /* Convert e-type X to C4X-format long double E. */ |
f5963e61 | 3757 | |
b6ca239d | 3758 | static void |
f5963e61 JL |
3759 | etoe53 (x, e) |
3760 | unsigned EMUSHORT *x, *e; | |
3761 | { | |
3762 | etoc4x (x, e, HFmode); | |
3763 | } | |
3764 | ||
3765 | /* Convert exploded e-type X, that has already been rounded to | |
3766 | 56-bit precision, to IBM 370 double Y. */ | |
3767 | ||
b6ca239d | 3768 | static void |
f5963e61 JL |
3769 | toe53 (x, y) |
3770 | unsigned EMUSHORT *x, *y; | |
3771 | { | |
3772 | toc4x (x, y, HFmode); | |
3773 | } | |
3774 | ||
3775 | #else /* it's neither DEC nor IBM nor C4X */ | |
985b6196 | 3776 | |
8c35bbc5 RK |
3777 | /* Convert e-type X to IEEE double E. */ |
3778 | ||
b6ca239d | 3779 | static void |
985b6196 RS |
3780 | etoe53 (x, e) |
3781 | unsigned EMUSHORT *x, *e; | |
3782 | { | |
3783 | unsigned EMUSHORT xi[NI]; | |
3784 | EMULONG exp; | |
3785 | int rndsav; | |
3786 | ||
66b6d60b RS |
3787 | #ifdef NANS |
3788 | if (eisnan (x)) | |
3789 | { | |
29e11dab | 3790 | make_nan (e, eisneg (x), DFmode); |
66b6d60b RS |
3791 | return; |
3792 | } | |
3793 | #endif | |
985b6196 RS |
3794 | emovi (x, xi); |
3795 | /* adjust exponent for offsets */ | |
3796 | exp = (EMULONG) xi[E] - (EXONE - 0x3ff); | |
3797 | #ifdef INFINITY | |
3798 | if (eisinf (x)) | |
3799 | goto nonorm; | |
3800 | #endif | |
3801 | /* round off to nearest or even */ | |
3802 | rndsav = rndprc; | |
3803 | rndprc = 53; | |
3804 | emdnorm (xi, 0, 0, exp, 64); | |
3805 | rndprc = rndsav; | |
3806 | nonorm: | |
3807 | toe53 (xi, e); | |
3808 | } | |
3809 | ||
8c35bbc5 RK |
3810 | /* Convert exploded e-type X, that has already been rounded to |
3811 | 53-bit precision, to IEEE double Y. */ | |
985b6196 | 3812 | |
b6ca239d | 3813 | static void |
985b6196 RS |
3814 | toe53 (x, y) |
3815 | unsigned EMUSHORT *x, *y; | |
3816 | { | |
3817 | unsigned EMUSHORT i; | |
3818 | unsigned EMUSHORT *p; | |
3819 | ||
66b6d60b RS |
3820 | #ifdef NANS |
3821 | if (eiisnan (x)) | |
3822 | { | |
29e11dab | 3823 | make_nan (y, eiisneg (x), DFmode); |
66b6d60b RS |
3824 | return; |
3825 | } | |
3826 | #endif | |
985b6196 | 3827 | p = &x[0]; |
f76b9db2 | 3828 | #ifdef IEEE |
8c35bbc5 | 3829 | if (! REAL_WORDS_BIG_ENDIAN) |
f76b9db2 | 3830 | y += 3; |
985b6196 RS |
3831 | #endif |
3832 | *y = 0; /* output high order */ | |
3833 | if (*p++) | |
3834 | *y = 0x8000; /* output sign bit */ | |
3835 | ||
3836 | i = *p++; | |
3837 | if (i >= (unsigned int) 2047) | |
0f41302f MS |
3838 | { |
3839 | /* Saturate at largest number less than infinity. */ | |
985b6196 RS |
3840 | #ifdef INFINITY |
3841 | *y |= 0x7ff0; | |
8c35bbc5 | 3842 | if (! REAL_WORDS_BIG_ENDIAN) |
f76b9db2 ILT |
3843 | { |
3844 | *(--y) = 0; | |
3845 | *(--y) = 0; | |
3846 | *(--y) = 0; | |
3847 | } | |
3848 | else | |
3849 | { | |
3850 | ++y; | |
3851 | *y++ = 0; | |
3852 | *y++ = 0; | |
3853 | *y++ = 0; | |
3854 | } | |
985b6196 RS |
3855 | #else |
3856 | *y |= (unsigned EMUSHORT) 0x7fef; | |
8c35bbc5 | 3857 | if (! REAL_WORDS_BIG_ENDIAN) |
f76b9db2 ILT |
3858 | { |
3859 | *(--y) = 0xffff; | |
3860 | *(--y) = 0xffff; | |
3861 | *(--y) = 0xffff; | |
3862 | } | |
3863 | else | |
3864 | { | |
3865 | ++y; | |
3866 | *y++ = 0xffff; | |
3867 | *y++ = 0xffff; | |
3868 | *y++ = 0xffff; | |
3869 | } | |
985b6196 RS |
3870 | #endif |
3871 | return; | |
3872 | } | |
3873 | if (i == 0) | |
3874 | { | |
64685ffa | 3875 | eshift (x, 4); |
985b6196 RS |
3876 | } |
3877 | else | |
3878 | { | |
3879 | i <<= 4; | |
64685ffa | 3880 | eshift (x, 5); |
985b6196 RS |
3881 | } |
3882 | i |= *p++ & (unsigned EMUSHORT) 0x0f; /* *p = xi[M] */ | |
3883 | *y |= (unsigned EMUSHORT) i; /* high order output already has sign bit set */ | |
8c35bbc5 | 3884 | if (! REAL_WORDS_BIG_ENDIAN) |
f76b9db2 ILT |
3885 | { |
3886 | *(--y) = *p++; | |
3887 | *(--y) = *p++; | |
3888 | *(--y) = *p; | |
3889 | } | |
3890 | else | |
3891 | { | |
3892 | ++y; | |
3893 | *y++ = *p++; | |
3894 | *y++ = *p++; | |
3895 | *y++ = *p++; | |
3896 | } | |
985b6196 RS |
3897 | } |
3898 | ||
f5963e61 | 3899 | #endif /* not C4X */ |
842fbaaa | 3900 | #endif /* not IBM */ |
985b6196 RS |
3901 | #endif /* not DEC */ |
3902 | ||
3903 | ||
3904 | ||
8c35bbc5 | 3905 | /* e type to single precision. */ |
defb5dab | 3906 | |
842fbaaa | 3907 | #ifdef IBM |
8c35bbc5 | 3908 | /* Convert e-type X to IBM 370 float E. */ |
842fbaaa | 3909 | |
b6ca239d | 3910 | static void |
842fbaaa JW |
3911 | etoe24 (x, e) |
3912 | unsigned EMUSHORT *x, *e; | |
3913 | { | |
3914 | etoibm (x, e, SFmode); | |
3915 | } | |
3916 | ||
8c35bbc5 RK |
3917 | /* Convert exploded e-type X, that has already been rounded to |
3918 | float precision, to IBM 370 float Y. */ | |
3919 | ||
b6ca239d | 3920 | static void |
842fbaaa JW |
3921 | toe24 (x, y) |
3922 | unsigned EMUSHORT *x, *y; | |
3923 | { | |
3924 | toibm (x, y, SFmode); | |
3925 | } | |
3926 | ||
3927 | #else | |
f5963e61 JL |
3928 | |
3929 | #ifdef C4X | |
3930 | /* Convert e-type X to C4X float E. */ | |
3931 | ||
b6ca239d | 3932 | static void |
f5963e61 JL |
3933 | etoe24 (x, e) |
3934 | unsigned EMUSHORT *x, *e; | |
3935 | { | |
3936 | etoc4x (x, e, QFmode); | |
3937 | } | |
3938 | ||
3939 | /* Convert exploded e-type X, that has already been rounded to | |
3940 | float precision, to IBM 370 float Y. */ | |
3941 | ||
b6ca239d | 3942 | static void |
f5963e61 JL |
3943 | toe24 (x, y) |
3944 | unsigned EMUSHORT *x, *y; | |
3945 | { | |
3946 | toc4x (x, y, QFmode); | |
3947 | } | |
3948 | ||
3949 | #else | |
3950 | ||
8c35bbc5 | 3951 | /* Convert e-type X to IEEE float E. DEC float is the same as IEEE float. */ |
842fbaaa | 3952 | |
b6ca239d | 3953 | static void |
985b6196 RS |
3954 | etoe24 (x, e) |
3955 | unsigned EMUSHORT *x, *e; | |
3956 | { | |
3957 | EMULONG exp; | |
3958 | unsigned EMUSHORT xi[NI]; | |
3959 | int rndsav; | |
3960 | ||
66b6d60b RS |
3961 | #ifdef NANS |
3962 | if (eisnan (x)) | |
3963 | { | |
29e11dab | 3964 | make_nan (e, eisneg (x), SFmode); |
66b6d60b RS |
3965 | return; |
3966 | } | |
3967 | #endif | |
985b6196 RS |
3968 | emovi (x, xi); |
3969 | /* adjust exponent for offsets */ | |
3970 | exp = (EMULONG) xi[E] - (EXONE - 0177); | |
3971 | #ifdef INFINITY | |
3972 | if (eisinf (x)) | |
3973 | goto nonorm; | |
3974 | #endif | |
3975 | /* round off to nearest or even */ | |
3976 | rndsav = rndprc; | |
3977 | rndprc = 24; | |
3978 | emdnorm (xi, 0, 0, exp, 64); | |
3979 | rndprc = rndsav; | |
3980 | nonorm: | |
3981 | toe24 (xi, e); | |
3982 | } | |
3983 | ||
8c35bbc5 RK |
3984 | /* Convert exploded e-type X, that has already been rounded to |
3985 | float precision, to IEEE float Y. */ | |
3986 | ||
b6ca239d | 3987 | static void |
985b6196 RS |
3988 | toe24 (x, y) |
3989 | unsigned EMUSHORT *x, *y; | |
3990 | { | |
3991 | unsigned EMUSHORT i; | |
3992 | unsigned EMUSHORT *p; | |
3993 | ||
66b6d60b RS |
3994 | #ifdef NANS |
3995 | if (eiisnan (x)) | |
3996 | { | |
29e11dab | 3997 | make_nan (y, eiisneg (x), SFmode); |
66b6d60b RS |
3998 | return; |
3999 | } | |
4000 | #endif | |
985b6196 | 4001 | p = &x[0]; |
f76b9db2 | 4002 | #ifdef IEEE |
8c35bbc5 | 4003 | if (! REAL_WORDS_BIG_ENDIAN) |
f76b9db2 | 4004 | y += 1; |
985b6196 RS |
4005 | #endif |
4006 | #ifdef DEC | |
4007 | y += 1; | |
4008 | #endif | |
4009 | *y = 0; /* output high order */ | |
4010 | if (*p++) | |
4011 | *y = 0x8000; /* output sign bit */ | |
4012 | ||
4013 | i = *p++; | |
0f41302f | 4014 | /* Handle overflow cases. */ |
985b6196 | 4015 | if (i >= 255) |
64685ffa | 4016 | { |
985b6196 RS |
4017 | #ifdef INFINITY |
4018 | *y |= (unsigned EMUSHORT) 0x7f80; | |
985b6196 RS |
4019 | #ifdef DEC |
4020 | *(--y) = 0; | |
4021 | #endif | |
f76b9db2 | 4022 | #ifdef IEEE |
8c35bbc5 | 4023 | if (! REAL_WORDS_BIG_ENDIAN) |
f76b9db2 ILT |
4024 | *(--y) = 0; |
4025 | else | |
4026 | { | |
4027 | ++y; | |
4028 | *y = 0; | |
4029 | } | |
985b6196 | 4030 | #endif |
64685ffa | 4031 | #else /* no INFINITY */ |
985b6196 | 4032 | *y |= (unsigned EMUSHORT) 0x7f7f; |
985b6196 RS |
4033 | #ifdef DEC |
4034 | *(--y) = 0xffff; | |
4035 | #endif | |
f76b9db2 | 4036 | #ifdef IEEE |
8c35bbc5 | 4037 | if (! REAL_WORDS_BIG_ENDIAN) |
f76b9db2 ILT |
4038 | *(--y) = 0xffff; |
4039 | else | |
4040 | { | |
4041 | ++y; | |
4042 | *y = 0xffff; | |
4043 | } | |
985b6196 | 4044 | #endif |
64685ffa RS |
4045 | #ifdef ERANGE |
4046 | errno = ERANGE; | |
985b6196 | 4047 | #endif |
64685ffa | 4048 | #endif /* no INFINITY */ |
985b6196 RS |
4049 | return; |
4050 | } | |
4051 | if (i == 0) | |
4052 | { | |
64685ffa | 4053 | eshift (x, 7); |
985b6196 RS |
4054 | } |
4055 | else | |
4056 | { | |
4057 | i <<= 7; | |
64685ffa | 4058 | eshift (x, 8); |
985b6196 RS |
4059 | } |
4060 | i |= *p++ & (unsigned EMUSHORT) 0x7f; /* *p = xi[M] */ | |
8c35bbc5 RK |
4061 | /* High order output already has sign bit set. */ |
4062 | *y |= i; | |
985b6196 RS |
4063 | #ifdef DEC |
4064 | *(--y) = *p; | |
4065 | #endif | |
f76b9db2 | 4066 | #ifdef IEEE |
8c35bbc5 | 4067 | if (! REAL_WORDS_BIG_ENDIAN) |
f76b9db2 ILT |
4068 | *(--y) = *p; |
4069 | else | |
4070 | { | |
4071 | ++y; | |
4072 | *y = *p; | |
4073 | } | |
985b6196 RS |
4074 | #endif |
4075 | } | |
f5963e61 | 4076 | #endif /* not C4X */ |
842fbaaa | 4077 | #endif /* not IBM */ |
985b6196 | 4078 | |
b6ca239d | 4079 | /* Compare two e type numbers. |
defb5dab RK |
4080 | Return +1 if a > b |
4081 | 0 if a == b | |
4082 | -1 if a < b | |
4083 | -2 if either a or b is a NaN. */ | |
a0353055 | 4084 | |
b6ca239d | 4085 | static int |
985b6196 RS |
4086 | ecmp (a, b) |
4087 | unsigned EMUSHORT *a, *b; | |
4088 | { | |
4089 | unsigned EMUSHORT ai[NI], bi[NI]; | |
4090 | register unsigned EMUSHORT *p, *q; | |
4091 | register int i; | |
4092 | int msign; | |
4093 | ||
66b6d60b RS |
4094 | #ifdef NANS |
4095 | if (eisnan (a) || eisnan (b)) | |
4096 | return (-2); | |
4097 | #endif | |
985b6196 RS |
4098 | emovi (a, ai); |
4099 | p = ai; | |
4100 | emovi (b, bi); | |
4101 | q = bi; | |
4102 | ||
4103 | if (*p != *q) | |
4104 | { /* the signs are different */ | |
4105 | /* -0 equals + 0 */ | |
4106 | for (i = 1; i < NI - 1; i++) | |
4107 | { | |
4108 | if (ai[i] != 0) | |
4109 | goto nzro; | |
4110 | if (bi[i] != 0) | |
4111 | goto nzro; | |
4112 | } | |
4113 | return (0); | |
4114 | nzro: | |
4115 | if (*p == 0) | |
4116 | return (1); | |
4117 | else | |
4118 | return (-1); | |
4119 | } | |
4120 | /* both are the same sign */ | |
4121 | if (*p == 0) | |
4122 | msign = 1; | |
4123 | else | |
4124 | msign = -1; | |
4125 | i = NI - 1; | |
4126 | do | |
4127 | { | |
4128 | if (*p++ != *q++) | |
4129 | { | |
4130 | goto diff; | |
4131 | } | |
4132 | } | |
4133 | while (--i > 0); | |
4134 | ||
4135 | return (0); /* equality */ | |
4136 | ||
985b6196 RS |
4137 | diff: |
4138 | ||
4139 | if (*(--p) > *(--q)) | |
4140 | return (msign); /* p is bigger */ | |
4141 | else | |
4142 | return (-msign); /* p is littler */ | |
4143 | } | |
4144 | ||
7a87758d | 4145 | #if 0 |
8c35bbc5 | 4146 | /* Find e-type nearest integer to X, as floor (X + 0.5). */ |
a0353055 | 4147 | |
b6ca239d | 4148 | static void |
985b6196 RS |
4149 | eround (x, y) |
4150 | unsigned EMUSHORT *x, *y; | |
4151 | { | |
4152 | eadd (ehalf, x, y); | |
4153 | efloor (y, y); | |
4154 | } | |
7a87758d | 4155 | #endif /* 0 */ |
985b6196 | 4156 | |
8c35bbc5 | 4157 | /* Convert HOST_WIDE_INT LP to e type Y. */ |
a0353055 | 4158 | |
b6ca239d | 4159 | static void |
985b6196 | 4160 | ltoe (lp, y) |
b51ab098 RK |
4161 | HOST_WIDE_INT *lp; |
4162 | unsigned EMUSHORT *y; | |
985b6196 RS |
4163 | { |
4164 | unsigned EMUSHORT yi[NI]; | |
b51ab098 | 4165 | unsigned HOST_WIDE_INT ll; |
985b6196 RS |
4166 | int k; |
4167 | ||
4168 | ecleaz (yi); | |
4169 | if (*lp < 0) | |
4170 | { | |
4171 | /* make it positive */ | |
b51ab098 | 4172 | ll = (unsigned HOST_WIDE_INT) (-(*lp)); |
985b6196 RS |
4173 | yi[0] = 0xffff; /* put correct sign in the e type number */ |
4174 | } | |
4175 | else | |
4176 | { | |
b51ab098 | 4177 | ll = (unsigned HOST_WIDE_INT) (*lp); |
985b6196 RS |
4178 | } |
4179 | /* move the long integer to yi significand area */ | |
b51ab098 | 4180 | #if HOST_BITS_PER_WIDE_INT == 64 |
7729f1ca RS |
4181 | yi[M] = (unsigned EMUSHORT) (ll >> 48); |
4182 | yi[M + 1] = (unsigned EMUSHORT) (ll >> 32); | |
4183 | yi[M + 2] = (unsigned EMUSHORT) (ll >> 16); | |
4184 | yi[M + 3] = (unsigned EMUSHORT) ll; | |
4185 | yi[E] = EXONE + 47; /* exponent if normalize shift count were 0 */ | |
4186 | #else | |
985b6196 RS |
4187 | yi[M] = (unsigned EMUSHORT) (ll >> 16); |
4188 | yi[M + 1] = (unsigned EMUSHORT) ll; | |
985b6196 | 4189 | yi[E] = EXONE + 15; /* exponent if normalize shift count were 0 */ |
7729f1ca RS |
4190 | #endif |
4191 | ||
985b6196 RS |
4192 | if ((k = enormlz (yi)) > NBITS)/* normalize the significand */ |
4193 | ecleaz (yi); /* it was zero */ | |
4194 | else | |
4195 | yi[E] -= (unsigned EMUSHORT) k;/* subtract shift count from exponent */ | |
4196 | emovo (yi, y); /* output the answer */ | |
4197 | } | |
4198 | ||
8c35bbc5 | 4199 | /* Convert unsigned HOST_WIDE_INT LP to e type Y. */ |
a0353055 | 4200 | |
b6ca239d | 4201 | static void |
985b6196 | 4202 | ultoe (lp, y) |
b51ab098 RK |
4203 | unsigned HOST_WIDE_INT *lp; |
4204 | unsigned EMUSHORT *y; | |
985b6196 RS |
4205 | { |
4206 | unsigned EMUSHORT yi[NI]; | |
b51ab098 | 4207 | unsigned HOST_WIDE_INT ll; |
985b6196 RS |
4208 | int k; |
4209 | ||
4210 | ecleaz (yi); | |
4211 | ll = *lp; | |
4212 | ||
4213 | /* move the long integer to ayi significand area */ | |
b51ab098 | 4214 | #if HOST_BITS_PER_WIDE_INT == 64 |
7729f1ca RS |
4215 | yi[M] = (unsigned EMUSHORT) (ll >> 48); |
4216 | yi[M + 1] = (unsigned EMUSHORT) (ll >> 32); | |
4217 | yi[M + 2] = (unsigned EMUSHORT) (ll >> 16); | |
4218 | yi[M + 3] = (unsigned EMUSHORT) ll; | |
4219 | yi[E] = EXONE + 47; /* exponent if normalize shift count were 0 */ | |
4220 | #else | |
985b6196 RS |
4221 | yi[M] = (unsigned EMUSHORT) (ll >> 16); |
4222 | yi[M + 1] = (unsigned EMUSHORT) ll; | |
985b6196 | 4223 | yi[E] = EXONE + 15; /* exponent if normalize shift count were 0 */ |
7729f1ca RS |
4224 | #endif |
4225 | ||
985b6196 RS |
4226 | if ((k = enormlz (yi)) > NBITS)/* normalize the significand */ |
4227 | ecleaz (yi); /* it was zero */ | |
4228 | else | |
4229 | yi[E] -= (unsigned EMUSHORT) k; /* subtract shift count from exponent */ | |
4230 | emovo (yi, y); /* output the answer */ | |
4231 | } | |
4232 | ||
4233 | ||
8c35bbc5 RK |
4234 | /* Find signed HOST_WIDE_INT integer I and floating point fractional |
4235 | part FRAC of e-type (packed internal format) floating point input X. | |
c764eafd RK |
4236 | The integer output I has the sign of the input, except that |
4237 | positive overflow is permitted if FIXUNS_TRUNC_LIKE_FIX_TRUNC. | |
4238 | The output e-type fraction FRAC is the positive fractional | |
4239 | part of abs (X). */ | |
985b6196 | 4240 | |
b6ca239d | 4241 | static void |
985b6196 RS |
4242 | eifrac (x, i, frac) |
4243 | unsigned EMUSHORT *x; | |
b51ab098 | 4244 | HOST_WIDE_INT *i; |
985b6196 RS |
4245 | unsigned EMUSHORT *frac; |
4246 | { | |
4247 | unsigned EMUSHORT xi[NI]; | |
7729f1ca | 4248 | int j, k; |
b51ab098 | 4249 | unsigned HOST_WIDE_INT ll; |
985b6196 RS |
4250 | |
4251 | emovi (x, xi); | |
4252 | k = (int) xi[E] - (EXONE - 1); | |
4253 | if (k <= 0) | |
4254 | { | |
4255 | /* if exponent <= 0, integer = 0 and real output is fraction */ | |
4256 | *i = 0L; | |
4257 | emovo (xi, frac); | |
4258 | return; | |
4259 | } | |
b51ab098 | 4260 | if (k > (HOST_BITS_PER_WIDE_INT - 1)) |
985b6196 | 4261 | { |
7729f1ca RS |
4262 | /* long integer overflow: output large integer |
4263 | and correct fraction */ | |
985b6196 | 4264 | if (xi[0]) |
b51ab098 | 4265 | *i = ((unsigned HOST_WIDE_INT) 1) << (HOST_BITS_PER_WIDE_INT - 1); |
985b6196 | 4266 | else |
c764eafd RK |
4267 | { |
4268 | #ifdef FIXUNS_TRUNC_LIKE_FIX_TRUNC | |
4269 | /* In this case, let it overflow and convert as if unsigned. */ | |
4270 | euifrac (x, &ll, frac); | |
4271 | *i = (HOST_WIDE_INT) ll; | |
4272 | return; | |
4273 | #else | |
4274 | /* In other cases, return the largest positive integer. */ | |
4275 | *i = (((unsigned HOST_WIDE_INT) 1) << (HOST_BITS_PER_WIDE_INT - 1)) - 1; | |
4276 | #endif | |
4277 | } | |
64685ffa RS |
4278 | eshift (xi, k); |
4279 | if (extra_warnings) | |
4280 | warning ("overflow on truncation to integer"); | |
985b6196 | 4281 | } |
7729f1ca | 4282 | else if (k > 16) |
985b6196 | 4283 | { |
7729f1ca RS |
4284 | /* Shift more than 16 bits: first shift up k-16 mod 16, |
4285 | then shift up by 16's. */ | |
4286 | j = k - ((k >> 4) << 4); | |
4287 | eshift (xi, j); | |
4288 | ll = xi[M]; | |
4289 | k -= j; | |
4290 | do | |
4291 | { | |
4292 | eshup6 (xi); | |
4293 | ll = (ll << 16) | xi[M]; | |
4294 | } | |
4295 | while ((k -= 16) > 0); | |
4296 | *i = ll; | |
4297 | if (xi[0]) | |
4298 | *i = -(*i); | |
4299 | } | |
4300 | else | |
842fbaaa JW |
4301 | { |
4302 | /* shift not more than 16 bits */ | |
4303 | eshift (xi, k); | |
b51ab098 | 4304 | *i = (HOST_WIDE_INT) xi[M] & 0xffff; |
842fbaaa JW |
4305 | if (xi[0]) |
4306 | *i = -(*i); | |
4307 | } | |
985b6196 RS |
4308 | xi[0] = 0; |
4309 | xi[E] = EXONE - 1; | |
4310 | xi[M] = 0; | |
4311 | if ((k = enormlz (xi)) > NBITS) | |
4312 | ecleaz (xi); | |
4313 | else | |
4314 | xi[E] -= (unsigned EMUSHORT) k; | |
4315 | ||
4316 | emovo (xi, frac); | |
4317 | } | |
4318 | ||
4319 | ||
8c35bbc5 RK |
4320 | /* Find unsigned HOST_WIDE_INT integer I and floating point fractional part |
4321 | FRAC of e-type X. A negative input yields integer output = 0 but | |
4322 | correct fraction. */ | |
985b6196 | 4323 | |
b6ca239d | 4324 | static void |
985b6196 RS |
4325 | euifrac (x, i, frac) |
4326 | unsigned EMUSHORT *x; | |
b51ab098 | 4327 | unsigned HOST_WIDE_INT *i; |
985b6196 RS |
4328 | unsigned EMUSHORT *frac; |
4329 | { | |
b51ab098 | 4330 | unsigned HOST_WIDE_INT ll; |
985b6196 | 4331 | unsigned EMUSHORT xi[NI]; |
7729f1ca | 4332 | int j, k; |
985b6196 RS |
4333 | |
4334 | emovi (x, xi); | |
4335 | k = (int) xi[E] - (EXONE - 1); | |
4336 | if (k <= 0) | |
4337 | { | |
4338 | /* if exponent <= 0, integer = 0 and argument is fraction */ | |
4339 | *i = 0L; | |
4340 | emovo (xi, frac); | |
4341 | return; | |
4342 | } | |
b51ab098 | 4343 | if (k > HOST_BITS_PER_WIDE_INT) |
985b6196 | 4344 | { |
7729f1ca RS |
4345 | /* Long integer overflow: output large integer |
4346 | and correct fraction. | |
4347 | Note, the BSD microvax compiler says that ~(0UL) | |
4348 | is a syntax error. */ | |
985b6196 | 4349 | *i = ~(0L); |
64685ffa RS |
4350 | eshift (xi, k); |
4351 | if (extra_warnings) | |
4352 | warning ("overflow on truncation to unsigned integer"); | |
985b6196 | 4353 | } |
7729f1ca | 4354 | else if (k > 16) |
985b6196 | 4355 | { |
7729f1ca RS |
4356 | /* Shift more than 16 bits: first shift up k-16 mod 16, |
4357 | then shift up by 16's. */ | |
4358 | j = k - ((k >> 4) << 4); | |
4359 | eshift (xi, j); | |
4360 | ll = xi[M]; | |
4361 | k -= j; | |
4362 | do | |
4363 | { | |
4364 | eshup6 (xi); | |
4365 | ll = (ll << 16) | xi[M]; | |
4366 | } | |
4367 | while ((k -= 16) > 0); | |
4368 | *i = ll; | |
4369 | } | |
4370 | else | |
4371 | { | |
4372 | /* shift not more than 16 bits */ | |
64685ffa | 4373 | eshift (xi, k); |
b51ab098 | 4374 | *i = (HOST_WIDE_INT) xi[M] & 0xffff; |
985b6196 RS |
4375 | } |
4376 | ||
0f41302f | 4377 | if (xi[0]) /* A negative value yields unsigned integer 0. */ |
985b6196 | 4378 | *i = 0L; |
842fbaaa | 4379 | |
985b6196 RS |
4380 | xi[0] = 0; |
4381 | xi[E] = EXONE - 1; | |
4382 | xi[M] = 0; | |
4383 | if ((k = enormlz (xi)) > NBITS) | |
4384 | ecleaz (xi); | |
4385 | else | |
4386 | xi[E] -= (unsigned EMUSHORT) k; | |
4387 | ||
4388 | emovo (xi, frac); | |
4389 | } | |
4390 | ||
8c35bbc5 | 4391 | /* Shift the significand of exploded e-type X up or down by SC bits. */ |
a0353055 | 4392 | |
b6ca239d | 4393 | static int |
985b6196 RS |
4394 | eshift (x, sc) |
4395 | unsigned EMUSHORT *x; | |
4396 | int sc; | |
4397 | { | |
4398 | unsigned EMUSHORT lost; | |
4399 | unsigned EMUSHORT *p; | |
4400 | ||
4401 | if (sc == 0) | |
4402 | return (0); | |
4403 | ||
4404 | lost = 0; | |
4405 | p = x + NI - 1; | |
4406 | ||
4407 | if (sc < 0) | |
4408 | { | |
4409 | sc = -sc; | |
4410 | while (sc >= 16) | |
4411 | { | |
4412 | lost |= *p; /* remember lost bits */ | |
4413 | eshdn6 (x); | |
4414 | sc -= 16; | |
4415 | } | |
4416 | ||
4417 | while (sc >= 8) | |
4418 | { | |
4419 | lost |= *p & 0xff; | |
4420 | eshdn8 (x); | |
4421 | sc -= 8; | |
4422 | } | |
4423 | ||
4424 | while (sc > 0) | |
4425 | { | |
4426 | lost |= *p & 1; | |
4427 | eshdn1 (x); | |
4428 | sc -= 1; | |
4429 | } | |
4430 | } | |
4431 | else | |
4432 | { | |
4433 | while (sc >= 16) | |
4434 | { | |
4435 | eshup6 (x); | |
4436 | sc -= 16; | |
4437 | } | |
4438 | ||
4439 | while (sc >= 8) | |
4440 | { | |
4441 | eshup8 (x); | |
4442 | sc -= 8; | |
4443 | } | |
4444 | ||
4445 | while (sc > 0) | |
4446 | { | |
4447 | eshup1 (x); | |
4448 | sc -= 1; | |
4449 | } | |
4450 | } | |
4451 | if (lost) | |
4452 | lost = 1; | |
4453 | return ((int) lost); | |
4454 | } | |
4455 | ||
8c35bbc5 RK |
4456 | /* Shift normalize the significand area of exploded e-type X. |
4457 | Return the shift count (up = positive). */ | |
a0353055 | 4458 | |
b6ca239d | 4459 | static int |
985b6196 RS |
4460 | enormlz (x) |
4461 | unsigned EMUSHORT x[]; | |
4462 | { | |
4463 | register unsigned EMUSHORT *p; | |
4464 | int sc; | |
4465 | ||
4466 | sc = 0; | |
4467 | p = &x[M]; | |
4468 | if (*p != 0) | |
4469 | goto normdn; | |
4470 | ++p; | |
4471 | if (*p & 0x8000) | |
4472 | return (0); /* already normalized */ | |
4473 | while (*p == 0) | |
4474 | { | |
4475 | eshup6 (x); | |
4476 | sc += 16; | |
defb5dab | 4477 | |
985b6196 | 4478 | /* With guard word, there are NBITS+16 bits available. |
defb5dab | 4479 | Return true if all are zero. */ |
985b6196 RS |
4480 | if (sc > NBITS) |
4481 | return (sc); | |
4482 | } | |
4483 | /* see if high byte is zero */ | |
4484 | while ((*p & 0xff00) == 0) | |
4485 | { | |
4486 | eshup8 (x); | |
4487 | sc += 8; | |
4488 | } | |
4489 | /* now shift 1 bit at a time */ | |
4490 | while ((*p & 0x8000) == 0) | |
4491 | { | |
4492 | eshup1 (x); | |
4493 | sc += 1; | |
4494 | if (sc > NBITS) | |
4495 | { | |
4496 | mtherr ("enormlz", UNDERFLOW); | |
4497 | return (sc); | |
4498 | } | |
4499 | } | |
4500 | return (sc); | |
4501 | ||
4502 | /* Normalize by shifting down out of the high guard word | |
4503 | of the significand */ | |
4504 | normdn: | |
4505 | ||
4506 | if (*p & 0xff00) | |
4507 | { | |
4508 | eshdn8 (x); | |
4509 | sc -= 8; | |
4510 | } | |
4511 | while (*p != 0) | |
4512 | { | |
4513 | eshdn1 (x); | |
4514 | sc -= 1; | |
4515 | ||
4516 | if (sc < -NBITS) | |
4517 | { | |
4518 | mtherr ("enormlz", OVERFLOW); | |
4519 | return (sc); | |
4520 | } | |
4521 | } | |
4522 | return (sc); | |
4523 | } | |
4524 | ||
8c35bbc5 | 4525 | /* Powers of ten used in decimal <-> binary conversions. */ |
985b6196 RS |
4526 | |
4527 | #define NTEN 12 | |
4528 | #define MAXP 4096 | |
4529 | ||
842fbaaa JW |
4530 | #if LONG_DOUBLE_TYPE_SIZE == 128 |
4531 | static unsigned EMUSHORT etens[NTEN + 1][NE] = | |
4532 | { | |
4533 | {0x6576, 0x4a92, 0x804a, 0x153f, | |
4534 | 0xc94c, 0x979a, 0x8a20, 0x5202, 0xc460, 0x7525,}, /* 10**4096 */ | |
4535 | {0x6a32, 0xce52, 0x329a, 0x28ce, | |
4536 | 0xa74d, 0x5de4, 0xc53d, 0x3b5d, 0x9e8b, 0x5a92,}, /* 10**2048 */ | |
4537 | {0x526c, 0x50ce, 0xf18b, 0x3d28, | |
4538 | 0x650d, 0x0c17, 0x8175, 0x7586, 0xc976, 0x4d48,}, | |
4539 | {0x9c66, 0x58f8, 0xbc50, 0x5c54, | |
4540 | 0xcc65, 0x91c6, 0xa60e, 0xa0ae, 0xe319, 0x46a3,}, | |
4541 | {0x851e, 0xeab7, 0x98fe, 0x901b, | |
4542 | 0xddbb, 0xde8d, 0x9df9, 0xebfb, 0xaa7e, 0x4351,}, | |
4543 | {0x0235, 0x0137, 0x36b1, 0x336c, | |
4544 | 0xc66f, 0x8cdf, 0x80e9, 0x47c9, 0x93ba, 0x41a8,}, | |
4545 | {0x50f8, 0x25fb, 0xc76b, 0x6b71, | |
4546 | 0x3cbf, 0xa6d5, 0xffcf, 0x1f49, 0xc278, 0x40d3,}, | |
4547 | {0x0000, 0x0000, 0x0000, 0x0000, | |
4548 | 0xf020, 0xb59d, 0x2b70, 0xada8, 0x9dc5, 0x4069,}, | |
4549 | {0x0000, 0x0000, 0x0000, 0x0000, | |
4550 | 0x0000, 0x0000, 0x0400, 0xc9bf, 0x8e1b, 0x4034,}, | |
4551 | {0x0000, 0x0000, 0x0000, 0x0000, | |
4552 | 0x0000, 0x0000, 0x0000, 0x2000, 0xbebc, 0x4019,}, | |
4553 | {0x0000, 0x0000, 0x0000, 0x0000, | |
4554 | 0x0000, 0x0000, 0x0000, 0x0000, 0x9c40, 0x400c,}, | |
4555 | {0x0000, 0x0000, 0x0000, 0x0000, | |
4556 | 0x0000, 0x0000, 0x0000, 0x0000, 0xc800, 0x4005,}, | |
4557 | {0x0000, 0x0000, 0x0000, 0x0000, | |
4558 | 0x0000, 0x0000, 0x0000, 0x0000, 0xa000, 0x4002,}, /* 10**1 */ | |
4559 | }; | |
4560 | ||
4561 | static unsigned EMUSHORT emtens[NTEN + 1][NE] = | |
4562 | { | |
4563 | {0x2030, 0xcffc, 0xa1c3, 0x8123, | |
4564 | 0x2de3, 0x9fde, 0xd2ce, 0x04c8, 0xa6dd, 0x0ad8,}, /* 10**-4096 */ | |
4565 | {0x8264, 0xd2cb, 0xf2ea, 0x12d4, | |
4566 | 0x4925, 0x2de4, 0x3436, 0x534f, 0xceae, 0x256b,}, /* 10**-2048 */ | |
4567 | {0xf53f, 0xf698, 0x6bd3, 0x0158, | |
4568 | 0x87a6, 0xc0bd, 0xda57, 0x82a5, 0xa2a6, 0x32b5,}, | |
4569 | {0xe731, 0x04d4, 0xe3f2, 0xd332, | |
4570 | 0x7132, 0xd21c, 0xdb23, 0xee32, 0x9049, 0x395a,}, | |
4571 | {0xa23e, 0x5308, 0xfefb, 0x1155, | |
4572 | 0xfa91, 0x1939, 0x637a, 0x4325, 0xc031, 0x3cac,}, | |
4573 | {0xe26d, 0xdbde, 0xd05d, 0xb3f6, | |
4574 | 0xac7c, 0xe4a0, 0x64bc, 0x467c, 0xddd0, 0x3e55,}, | |
4575 | {0x2a20, 0x6224, 0x47b3, 0x98d7, | |
4576 | 0x3f23, 0xe9a5, 0xa539, 0xea27, 0xa87f, 0x3f2a,}, | |
4577 | {0x0b5b, 0x4af2, 0xa581, 0x18ed, | |
4578 | 0x67de, 0x94ba, 0x4539, 0x1ead, 0xcfb1, 0x3f94,}, | |
4579 | {0xbf71, 0xa9b3, 0x7989, 0xbe68, | |
4580 | 0x4c2e, 0xe15b, 0xc44d, 0x94be, 0xe695, 0x3fc9,}, | |
4581 | {0x3d4d, 0x7c3d, 0x36ba, 0x0d2b, | |
4582 | 0xfdc2, 0xcefc, 0x8461, 0x7711, 0xabcc, 0x3fe4,}, | |
4583 | {0xc155, 0xa4a8, 0x404e, 0x6113, | |
4584 | 0xd3c3, 0x652b, 0xe219, 0x1758, 0xd1b7, 0x3ff1,}, | |
4585 | {0xd70a, 0x70a3, 0x0a3d, 0xa3d7, | |
4586 | 0x3d70, 0xd70a, 0x70a3, 0x0a3d, 0xa3d7, 0x3ff8,}, | |
4587 | {0xcccd, 0xcccc, 0xcccc, 0xcccc, | |
4588 | 0xcccc, 0xcccc, 0xcccc, 0xcccc, 0xcccc, 0x3ffb,}, /* 10**-1 */ | |
4589 | }; | |
4590 | #else | |
4591 | /* LONG_DOUBLE_TYPE_SIZE is other than 128 */ | |
985b6196 RS |
4592 | static unsigned EMUSHORT etens[NTEN + 1][NE] = |
4593 | { | |
4594 | {0xc94c, 0x979a, 0x8a20, 0x5202, 0xc460, 0x7525,}, /* 10**4096 */ | |
4595 | {0xa74d, 0x5de4, 0xc53d, 0x3b5d, 0x9e8b, 0x5a92,}, /* 10**2048 */ | |
4596 | {0x650d, 0x0c17, 0x8175, 0x7586, 0xc976, 0x4d48,}, | |
4597 | {0xcc65, 0x91c6, 0xa60e, 0xa0ae, 0xe319, 0x46a3,}, | |
4598 | {0xddbc, 0xde8d, 0x9df9, 0xebfb, 0xaa7e, 0x4351,}, | |
4599 | {0xc66f, 0x8cdf, 0x80e9, 0x47c9, 0x93ba, 0x41a8,}, | |
4600 | {0x3cbf, 0xa6d5, 0xffcf, 0x1f49, 0xc278, 0x40d3,}, | |
4601 | {0xf020, 0xb59d, 0x2b70, 0xada8, 0x9dc5, 0x4069,}, | |
4602 | {0x0000, 0x0000, 0x0400, 0xc9bf, 0x8e1b, 0x4034,}, | |
4603 | {0x0000, 0x0000, 0x0000, 0x2000, 0xbebc, 0x4019,}, | |
4604 | {0x0000, 0x0000, 0x0000, 0x0000, 0x9c40, 0x400c,}, | |
4605 | {0x0000, 0x0000, 0x0000, 0x0000, 0xc800, 0x4005,}, | |
4606 | {0x0000, 0x0000, 0x0000, 0x0000, 0xa000, 0x4002,}, /* 10**1 */ | |
4607 | }; | |
4608 | ||
4609 | static unsigned EMUSHORT emtens[NTEN + 1][NE] = | |
4610 | { | |
4611 | {0x2de4, 0x9fde, 0xd2ce, 0x04c8, 0xa6dd, 0x0ad8,}, /* 10**-4096 */ | |
4612 | {0x4925, 0x2de4, 0x3436, 0x534f, 0xceae, 0x256b,}, /* 10**-2048 */ | |
4613 | {0x87a6, 0xc0bd, 0xda57, 0x82a5, 0xa2a6, 0x32b5,}, | |
4614 | {0x7133, 0xd21c, 0xdb23, 0xee32, 0x9049, 0x395a,}, | |
4615 | {0xfa91, 0x1939, 0x637a, 0x4325, 0xc031, 0x3cac,}, | |
4616 | {0xac7d, 0xe4a0, 0x64bc, 0x467c, 0xddd0, 0x3e55,}, | |
4617 | {0x3f24, 0xe9a5, 0xa539, 0xea27, 0xa87f, 0x3f2a,}, | |
4618 | {0x67de, 0x94ba, 0x4539, 0x1ead, 0xcfb1, 0x3f94,}, | |
4619 | {0x4c2f, 0xe15b, 0xc44d, 0x94be, 0xe695, 0x3fc9,}, | |
4620 | {0xfdc2, 0xcefc, 0x8461, 0x7711, 0xabcc, 0x3fe4,}, | |
4621 | {0xd3c3, 0x652b, 0xe219, 0x1758, 0xd1b7, 0x3ff1,}, | |
4622 | {0x3d71, 0xd70a, 0x70a3, 0x0a3d, 0xa3d7, 0x3ff8,}, | |
4623 | {0xcccd, 0xcccc, 0xcccc, 0xcccc, 0xcccc, 0x3ffb,}, /* 10**-1 */ | |
4624 | }; | |
842fbaaa | 4625 | #endif |
985b6196 | 4626 | |
7a87758d | 4627 | #if 0 |
8c35bbc5 RK |
4628 | /* Convert float value X to ASCII string STRING with NDIG digits after |
4629 | the decimal point. */ | |
4630 | ||
b6ca239d | 4631 | static void |
985b6196 RS |
4632 | e24toasc (x, string, ndigs) |
4633 | unsigned EMUSHORT x[]; | |
4634 | char *string; | |
4635 | int ndigs; | |
4636 | { | |
4637 | unsigned EMUSHORT w[NI]; | |
4638 | ||
985b6196 RS |
4639 | e24toe (x, w); |
4640 | etoasc (w, string, ndigs); | |
4641 | } | |
4642 | ||
8c35bbc5 RK |
4643 | /* Convert double value X to ASCII string STRING with NDIG digits after |
4644 | the decimal point. */ | |
985b6196 | 4645 | |
b6ca239d | 4646 | static void |
985b6196 RS |
4647 | e53toasc (x, string, ndigs) |
4648 | unsigned EMUSHORT x[]; | |
4649 | char *string; | |
4650 | int ndigs; | |
4651 | { | |
4652 | unsigned EMUSHORT w[NI]; | |
4653 | ||
985b6196 RS |
4654 | e53toe (x, w); |
4655 | etoasc (w, string, ndigs); | |
4656 | } | |
4657 | ||
8c35bbc5 RK |
4658 | /* Convert double extended value X to ASCII string STRING with NDIG digits |
4659 | after the decimal point. */ | |
985b6196 | 4660 | |
b6ca239d | 4661 | static void |
985b6196 RS |
4662 | e64toasc (x, string, ndigs) |
4663 | unsigned EMUSHORT x[]; | |
4664 | char *string; | |
4665 | int ndigs; | |
4666 | { | |
4667 | unsigned EMUSHORT w[NI]; | |
4668 | ||
985b6196 RS |
4669 | e64toe (x, w); |
4670 | etoasc (w, string, ndigs); | |
4671 | } | |
4672 | ||
8c35bbc5 RK |
4673 | /* Convert 128-bit long double value X to ASCII string STRING with NDIG digits |
4674 | after the decimal point. */ | |
4675 | ||
b6ca239d | 4676 | static void |
842fbaaa JW |
4677 | e113toasc (x, string, ndigs) |
4678 | unsigned EMUSHORT x[]; | |
4679 | char *string; | |
4680 | int ndigs; | |
4681 | { | |
4682 | unsigned EMUSHORT w[NI]; | |
4683 | ||
4684 | e113toe (x, w); | |
4685 | etoasc (w, string, ndigs); | |
4686 | } | |
7a87758d | 4687 | #endif /* 0 */ |
842fbaaa | 4688 | |
8c35bbc5 RK |
4689 | /* Convert e-type X to ASCII string STRING with NDIGS digits after |
4690 | the decimal point. */ | |
985b6196 RS |
4691 | |
4692 | static char wstring[80]; /* working storage for ASCII output */ | |
4693 | ||
b6ca239d | 4694 | static void |
985b6196 RS |
4695 | etoasc (x, string, ndigs) |
4696 | unsigned EMUSHORT x[]; | |
4697 | char *string; | |
4698 | int ndigs; | |
4699 | { | |
4700 | EMUSHORT digit; | |
4701 | unsigned EMUSHORT y[NI], t[NI], u[NI], w[NI]; | |
4702 | unsigned EMUSHORT *p, *r, *ten; | |
4703 | unsigned EMUSHORT sign; | |
4704 | int i, j, k, expon, rndsav; | |
4705 | char *s, *ss; | |
4706 | unsigned EMUSHORT m; | |
4707 | ||
66b6d60b RS |
4708 | |
4709 | rndsav = rndprc; | |
985b6196 RS |
4710 | ss = string; |
4711 | s = wstring; | |
66b6d60b RS |
4712 | *ss = '\0'; |
4713 | *s = '\0'; | |
4714 | #ifdef NANS | |
4715 | if (eisnan (x)) | |
4716 | { | |
4717 | sprintf (wstring, " NaN "); | |
4718 | goto bxit; | |
4719 | } | |
4720 | #endif | |
985b6196 RS |
4721 | rndprc = NBITS; /* set to full precision */ |
4722 | emov (x, y); /* retain external format */ | |
4723 | if (y[NE - 1] & 0x8000) | |
4724 | { | |
4725 | sign = 0xffff; | |
4726 | y[NE - 1] &= 0x7fff; | |
4727 | } | |
4728 | else | |
4729 | { | |
4730 | sign = 0; | |
4731 | } | |
4732 | expon = 0; | |
4733 | ten = &etens[NTEN][0]; | |
4734 | emov (eone, t); | |
4735 | /* Test for zero exponent */ | |
4736 | if (y[NE - 1] == 0) | |
4737 | { | |
4738 | for (k = 0; k < NE - 1; k++) | |
4739 | { | |
4740 | if (y[k] != 0) | |
4741 | goto tnzro; /* denormalized number */ | |
4742 | } | |
43b55a67 | 4743 | goto isone; /* valid all zeros */ |
985b6196 RS |
4744 | } |
4745 | tnzro: | |
4746 | ||
0f41302f | 4747 | /* Test for infinity. */ |
985b6196 RS |
4748 | if (y[NE - 1] == 0x7fff) |
4749 | { | |
4750 | if (sign) | |
4751 | sprintf (wstring, " -Infinity "); | |
4752 | else | |
4753 | sprintf (wstring, " Infinity "); | |
4754 | goto bxit; | |
4755 | } | |
4756 | ||
4757 | /* Test for exponent nonzero but significand denormalized. | |
4758 | * This is an error condition. | |
4759 | */ | |
4760 | if ((y[NE - 1] != 0) && ((y[NE - 2] & 0x8000) == 0)) | |
4761 | { | |
4762 | mtherr ("etoasc", DOMAIN); | |
4763 | sprintf (wstring, "NaN"); | |
4764 | goto bxit; | |
4765 | } | |
4766 | ||
4767 | /* Compare to 1.0 */ | |
4768 | i = ecmp (eone, y); | |
4769 | if (i == 0) | |
4770 | goto isone; | |
4771 | ||
66b6d60b RS |
4772 | if (i == -2) |
4773 | abort (); | |
4774 | ||
985b6196 RS |
4775 | if (i < 0) |
4776 | { /* Number is greater than 1 */ | |
0f41302f | 4777 | /* Convert significand to an integer and strip trailing decimal zeros. */ |
985b6196 RS |
4778 | emov (y, u); |
4779 | u[NE - 1] = EXONE + NBITS - 1; | |
4780 | ||
4781 | p = &etens[NTEN - 4][0]; | |
4782 | m = 16; | |
4783 | do | |
4784 | { | |
4785 | ediv (p, u, t); | |
4786 | efloor (t, w); | |
4787 | for (j = 0; j < NE - 1; j++) | |
4788 | { | |
4789 | if (t[j] != w[j]) | |
4790 | goto noint; | |
4791 | } | |
4792 | emov (t, u); | |
4793 | expon += (int) m; | |
4794 | noint: | |
4795 | p += NE; | |
4796 | m >>= 1; | |
4797 | } | |
4798 | while (m != 0); | |
4799 | ||
4800 | /* Rescale from integer significand */ | |
4801 | u[NE - 1] += y[NE - 1] - (unsigned int) (EXONE + NBITS - 1); | |
4802 | emov (u, y); | |
4803 | /* Find power of 10 */ | |
4804 | emov (eone, t); | |
4805 | m = MAXP; | |
4806 | p = &etens[0][0]; | |
0f41302f | 4807 | /* An unordered compare result shouldn't happen here. */ |
985b6196 RS |
4808 | while (ecmp (ten, u) <= 0) |
4809 | { | |
4810 | if (ecmp (p, u) <= 0) | |
4811 | { | |
4812 | ediv (p, u, u); | |
4813 | emul (p, t, t); | |
4814 | expon += (int) m; | |
4815 | } | |
4816 | m >>= 1; | |
4817 | if (m == 0) | |
4818 | break; | |
4819 | p += NE; | |
4820 | } | |
4821 | } | |
4822 | else | |
4823 | { /* Number is less than 1.0 */ | |
0f41302f | 4824 | /* Pad significand with trailing decimal zeros. */ |
985b6196 RS |
4825 | if (y[NE - 1] == 0) |
4826 | { | |
4827 | while ((y[NE - 2] & 0x8000) == 0) | |
4828 | { | |
4829 | emul (ten, y, y); | |
4830 | expon -= 1; | |
4831 | } | |
4832 | } | |
4833 | else | |
4834 | { | |
4835 | emovi (y, w); | |
4836 | for (i = 0; i < NDEC + 1; i++) | |
4837 | { | |
4838 | if ((w[NI - 1] & 0x7) != 0) | |
4839 | break; | |
4840 | /* multiply by 10 */ | |
4841 | emovz (w, u); | |
4842 | eshdn1 (u); | |
4843 | eshdn1 (u); | |
4844 | eaddm (w, u); | |
4845 | u[1] += 3; | |
4846 | while (u[2] != 0) | |
4847 | { | |
4848 | eshdn1 (u); | |
4849 | u[1] += 1; | |
4850 | } | |
4851 | if (u[NI - 1] != 0) | |
4852 | break; | |
4853 | if (eone[NE - 1] <= u[1]) | |
4854 | break; | |
4855 | emovz (u, w); | |
4856 | expon -= 1; | |
4857 | } | |
4858 | emovo (w, y); | |
4859 | } | |
4860 | k = -MAXP; | |
4861 | p = &emtens[0][0]; | |
4862 | r = &etens[0][0]; | |
4863 | emov (y, w); | |
4864 | emov (eone, t); | |
4865 | while (ecmp (eone, w) > 0) | |
4866 | { | |
4867 | if (ecmp (p, w) >= 0) | |
4868 | { | |
4869 | emul (r, w, w); | |
4870 | emul (r, t, t); | |
4871 | expon += k; | |
4872 | } | |
4873 | k /= 2; | |
4874 | if (k == 0) | |
4875 | break; | |
4876 | p += NE; | |
4877 | r += NE; | |
4878 | } | |
4879 | ediv (t, eone, t); | |
4880 | } | |
4881 | isone: | |
0f41302f | 4882 | /* Find the first (leading) digit. */ |
985b6196 RS |
4883 | emovi (t, w); |
4884 | emovz (w, t); | |
4885 | emovi (y, w); | |
4886 | emovz (w, y); | |
4887 | eiremain (t, y); | |
4888 | digit = equot[NI - 1]; | |
4889 | while ((digit == 0) && (ecmp (y, ezero) != 0)) | |
4890 | { | |
4891 | eshup1 (y); | |
4892 | emovz (y, u); | |
4893 | eshup1 (u); | |
4894 | eshup1 (u); | |
4895 | eaddm (u, y); | |
4896 | eiremain (t, y); | |
4897 | digit = equot[NI - 1]; | |
4898 | expon -= 1; | |
4899 | } | |
4900 | s = wstring; | |
4901 | if (sign) | |
4902 | *s++ = '-'; | |
4903 | else | |
4904 | *s++ = ' '; | |
0f41302f | 4905 | /* Examine number of digits requested by caller. */ |
985b6196 RS |
4906 | if (ndigs < 0) |
4907 | ndigs = 0; | |
4908 | if (ndigs > NDEC) | |
4909 | ndigs = NDEC; | |
64685ffa RS |
4910 | if (digit == 10) |
4911 | { | |
4912 | *s++ = '1'; | |
4913 | *s++ = '.'; | |
4914 | if (ndigs > 0) | |
4915 | { | |
4916 | *s++ = '0'; | |
4917 | ndigs -= 1; | |
4918 | } | |
4919 | expon += 1; | |
4920 | } | |
4921 | else | |
4922 | { | |
242cef1e | 4923 | *s++ = (char)digit + '0'; |
64685ffa RS |
4924 | *s++ = '.'; |
4925 | } | |
0f41302f | 4926 | /* Generate digits after the decimal point. */ |
985b6196 RS |
4927 | for (k = 0; k <= ndigs; k++) |
4928 | { | |
4929 | /* multiply current number by 10, without normalizing */ | |
4930 | eshup1 (y); | |
4931 | emovz (y, u); | |
4932 | eshup1 (u); | |
4933 | eshup1 (u); | |
4934 | eaddm (u, y); | |
4935 | eiremain (t, y); | |
4936 | *s++ = (char) equot[NI - 1] + '0'; | |
4937 | } | |
4938 | digit = equot[NI - 1]; | |
4939 | --s; | |
4940 | ss = s; | |
4941 | /* round off the ASCII string */ | |
4942 | if (digit > 4) | |
4943 | { | |
0f41302f | 4944 | /* Test for critical rounding case in ASCII output. */ |
985b6196 RS |
4945 | if (digit == 5) |
4946 | { | |
4947 | emovo (y, t); | |
4948 | if (ecmp (t, ezero) != 0) | |
4949 | goto roun; /* round to nearest */ | |
506b012c | 4950 | #ifndef C4X |
985b6196 RS |
4951 | if ((*(s - 1) & 1) == 0) |
4952 | goto doexp; /* round to even */ | |
506b012c | 4953 | #endif |
985b6196 RS |
4954 | } |
4955 | /* Round up and propagate carry-outs */ | |
4956 | roun: | |
4957 | --s; | |
4958 | k = *s & 0x7f; | |
4959 | /* Carry out to most significant digit? */ | |
4960 | if (k == '.') | |
4961 | { | |
4962 | --s; | |
4963 | k = *s; | |
4964 | k += 1; | |
4965 | *s = (char) k; | |
4966 | /* Most significant digit carries to 10? */ | |
4967 | if (k > '9') | |
4968 | { | |
4969 | expon += 1; | |
4970 | *s = '1'; | |
4971 | } | |
4972 | goto doexp; | |
4973 | } | |
4974 | /* Round up and carry out from less significant digits */ | |
4975 | k += 1; | |
4976 | *s = (char) k; | |
4977 | if (k > '9') | |
4978 | { | |
4979 | *s = '0'; | |
4980 | goto roun; | |
4981 | } | |
4982 | } | |
4983 | doexp: | |
4984 | /* | |
4985 | if (expon >= 0) | |
4986 | sprintf (ss, "e+%d", expon); | |
4987 | else | |
4988 | sprintf (ss, "e%d", expon); | |
4989 | */ | |
4990 | sprintf (ss, "e%d", expon); | |
4991 | bxit: | |
4992 | rndprc = rndsav; | |
4993 | /* copy out the working string */ | |
4994 | s = string; | |
4995 | ss = wstring; | |
4996 | while (*ss == ' ') /* strip possible leading space */ | |
4997 | ++ss; | |
4998 | while ((*s++ = *ss++) != '\0') | |
4999 | ; | |
5000 | } | |
5001 | ||
5002 | ||
8c35bbc5 | 5003 | /* Convert ASCII string to floating point. |
985b6196 | 5004 | |
8c35bbc5 RK |
5005 | Numeric input is a free format decimal number of any length, with |
5006 | or without decimal point. Entering E after the number followed by an | |
5007 | integer number causes the second number to be interpreted as a power of | |
5008 | 10 to be multiplied by the first number (i.e., "scientific" notation). */ | |
985b6196 | 5009 | |
8c35bbc5 | 5010 | /* Convert ASCII string S to single precision float value Y. */ |
a0353055 | 5011 | |
b6ca239d | 5012 | static void |
985b6196 | 5013 | asctoe24 (s, y) |
dff01034 | 5014 | const char *s; |
985b6196 RS |
5015 | unsigned EMUSHORT *y; |
5016 | { | |
5017 | asctoeg (s, y, 24); | |
5018 | } | |
5019 | ||
5020 | ||
8c35bbc5 | 5021 | /* Convert ASCII string S to double precision value Y. */ |
a0353055 | 5022 | |
b6ca239d | 5023 | static void |
985b6196 | 5024 | asctoe53 (s, y) |
dff01034 | 5025 | const char *s; |
985b6196 RS |
5026 | unsigned EMUSHORT *y; |
5027 | { | |
842fbaaa | 5028 | #if defined(DEC) || defined(IBM) |
985b6196 | 5029 | asctoeg (s, y, 56); |
f5963e61 JL |
5030 | #else |
5031 | #if defined(C4X) | |
5032 | asctoeg (s, y, 32); | |
985b6196 RS |
5033 | #else |
5034 | asctoeg (s, y, 53); | |
5035 | #endif | |
f5963e61 | 5036 | #endif |
985b6196 RS |
5037 | } |
5038 | ||
5039 | ||
8c35bbc5 | 5040 | /* Convert ASCII string S to double extended value Y. */ |
a0353055 | 5041 | |
b6ca239d | 5042 | static void |
985b6196 | 5043 | asctoe64 (s, y) |
dff01034 | 5044 | const char *s; |
985b6196 RS |
5045 | unsigned EMUSHORT *y; |
5046 | { | |
5047 | asctoeg (s, y, 64); | |
5048 | } | |
5049 | ||
8c35bbc5 | 5050 | /* Convert ASCII string S to 128-bit long double Y. */ |
a0353055 | 5051 | |
b6ca239d | 5052 | static void |
842fbaaa | 5053 | asctoe113 (s, y) |
dff01034 | 5054 | const char *s; |
842fbaaa JW |
5055 | unsigned EMUSHORT *y; |
5056 | { | |
5057 | asctoeg (s, y, 113); | |
5058 | } | |
5059 | ||
8c35bbc5 | 5060 | /* Convert ASCII string S to e type Y. */ |
defb5dab | 5061 | |
b6ca239d | 5062 | static void |
985b6196 | 5063 | asctoe (s, y) |
dff01034 | 5064 | const char *s; |
985b6196 RS |
5065 | unsigned EMUSHORT *y; |
5066 | { | |
5067 | asctoeg (s, y, NBITS); | |
5068 | } | |
5069 | ||
8c35bbc5 | 5070 | /* Convert ASCII string SS to e type Y, with a specified rounding precision |
6f4d7222 | 5071 | of OPREC bits. BASE is 16 for C9X hexadecimal floating constants. */ |
defb5dab | 5072 | |
b6ca239d | 5073 | static void |
985b6196 | 5074 | asctoeg (ss, y, oprec) |
dff01034 | 5075 | const char *ss; |
985b6196 RS |
5076 | unsigned EMUSHORT *y; |
5077 | int oprec; | |
5078 | { | |
5079 | unsigned EMUSHORT yy[NI], xt[NI], tt[NI]; | |
5080 | int esign, decflg, sgnflg, nexp, exp, prec, lost; | |
5081 | int k, trail, c, rndsav; | |
5082 | EMULONG lexp; | |
5083 | unsigned EMUSHORT nsign, *p; | |
d73e9b8d | 5084 | char *sp, *s, *lstr; |
6f4d7222 | 5085 | int base = 10; |
985b6196 | 5086 | |
0f41302f | 5087 | /* Copy the input string. */ |
d73e9b8d | 5088 | lstr = (char *) alloca (strlen (ss) + 1); |
6f4d7222 | 5089 | |
dff01034 KG |
5090 | while (*ss == ' ') /* skip leading spaces */ |
5091 | ++ss; | |
6f4d7222 | 5092 | |
985b6196 | 5093 | sp = lstr; |
dff01034 | 5094 | while ((*sp++ = *ss++) != '\0') |
a9456cd3 | 5095 | ; |
985b6196 RS |
5096 | s = lstr; |
5097 | ||
6f4d7222 UD |
5098 | if (s[0] == '0' && (s[1] == 'x' || s[1] == 'X')) |
5099 | { | |
5100 | base = 16; | |
5101 | s += 2; | |
5102 | } | |
5103 | ||
985b6196 RS |
5104 | rndsav = rndprc; |
5105 | rndprc = NBITS; /* Set to full precision */ | |
5106 | lost = 0; | |
5107 | nsign = 0; | |
5108 | decflg = 0; | |
5109 | sgnflg = 0; | |
5110 | nexp = 0; | |
5111 | exp = 0; | |
5112 | prec = 0; | |
5113 | ecleaz (yy); | |
5114 | trail = 0; | |
5115 | ||
5116 | nxtcom: | |
6f4d7222 | 5117 | if (*s >= '0' && *s <= '9') |
b6ca239d | 5118 | k = *s - '0'; |
6f4d7222 UD |
5119 | else if (*s >= 'a') |
5120 | k = 10 + *s - 'a'; | |
5121 | else | |
5122 | k = 10 + *s - 'A'; | |
5123 | if ((k >= 0) && (k < base)) | |
985b6196 RS |
5124 | { |
5125 | /* Ignore leading zeros */ | |
5126 | if ((prec == 0) && (decflg == 0) && (k == 0)) | |
5127 | goto donchr; | |
0f41302f | 5128 | /* Identify and strip trailing zeros after the decimal point. */ |
985b6196 RS |
5129 | if ((trail == 0) && (decflg != 0)) |
5130 | { | |
5131 | sp = s; | |
6f4d7222 UD |
5132 | while ((*sp >= '0' && *sp <= '9') |
5133 | || (base == 16 && ((*sp >= 'a' && *sp <= 'f') | |
5134 | || (*sp >= 'A' && *sp <= 'F')))) | |
985b6196 RS |
5135 | ++sp; |
5136 | /* Check for syntax error */ | |
5137 | c = *sp & 0x7f; | |
6f4d7222 UD |
5138 | if ((base != 10 || ((c != 'e') && (c != 'E'))) |
5139 | && (base != 16 || ((c != 'p') && (c != 'P'))) | |
5140 | && (c != '\0') | |
985b6196 RS |
5141 | && (c != '\n') && (c != '\r') && (c != ' ') |
5142 | && (c != ',')) | |
5143 | goto error; | |
5144 | --sp; | |
5145 | while (*sp == '0') | |
5146 | *sp-- = 'z'; | |
5147 | trail = 1; | |
5148 | if (*s == 'z') | |
5149 | goto donchr; | |
5150 | } | |
defb5dab | 5151 | |
985b6196 | 5152 | /* If enough digits were given to more than fill up the yy register, |
defb5dab RK |
5153 | continuing until overflow into the high guard word yy[2] |
5154 | guarantees that there will be a roundoff bit at the top | |
5155 | of the low guard word after normalization. */ | |
5156 | ||
985b6196 RS |
5157 | if (yy[2] == 0) |
5158 | { | |
6f4d7222 UD |
5159 | if (base == 16) |
5160 | { | |
b6ca239d | 5161 | if (decflg) |
6f4d7222 UD |
5162 | nexp += 4; /* count digits after decimal point */ |
5163 | ||
5164 | eshup1 (yy); /* multiply current number by 16 */ | |
5165 | eshup1 (yy); | |
5166 | eshup1 (yy); | |
5167 | eshup1 (yy); | |
5168 | } | |
5169 | else | |
5170 | { | |
5171 | if (decflg) | |
c5c76735 | 5172 | nexp += 1; /* count digits after decimal point */ |
6f4d7222 | 5173 | |
c5c76735 | 5174 | eshup1 (yy); /* multiply current number by 10 */ |
b6ca239d UD |
5175 | emovz (yy, xt); |
5176 | eshup1 (xt); | |
5177 | eshup1 (xt); | |
5178 | eaddm (xt, yy); | |
6f4d7222 UD |
5179 | } |
5180 | /* Insert the current digit. */ | |
985b6196 RS |
5181 | ecleaz (xt); |
5182 | xt[NI - 2] = (unsigned EMUSHORT) k; | |
5183 | eaddm (xt, yy); | |
5184 | } | |
5185 | else | |
5186 | { | |
d73e9b8d | 5187 | /* Mark any lost non-zero digit. */ |
985b6196 | 5188 | lost |= k; |
d73e9b8d RS |
5189 | /* Count lost digits before the decimal point. */ |
5190 | if (decflg == 0) | |
6f4d7222 UD |
5191 | { |
5192 | if (base == 10) | |
b6ca239d | 5193 | nexp -= 1; |
6f4d7222 UD |
5194 | else |
5195 | nexp -= 4; | |
b6ca239d | 5196 | } |
985b6196 RS |
5197 | } |
5198 | prec += 1; | |
5199 | goto donchr; | |
5200 | } | |
5201 | ||
5202 | switch (*s) | |
5203 | { | |
5204 | case 'z': | |
5205 | break; | |
5206 | case 'E': | |
5207 | case 'e': | |
6f4d7222 UD |
5208 | case 'P': |
5209 | case 'p': | |
985b6196 RS |
5210 | goto expnt; |
5211 | case '.': /* decimal point */ | |
5212 | if (decflg) | |
5213 | goto error; | |
5214 | ++decflg; | |
5215 | break; | |
5216 | case '-': | |
5217 | nsign = 0xffff; | |
5218 | if (sgnflg) | |
5219 | goto error; | |
5220 | ++sgnflg; | |
5221 | break; | |
5222 | case '+': | |
5223 | if (sgnflg) | |
5224 | goto error; | |
5225 | ++sgnflg; | |
5226 | break; | |
5227 | case ',': | |
5228 | case ' ': | |
5229 | case '\0': | |
5230 | case '\n': | |
5231 | case '\r': | |
5232 | goto daldone; | |
5233 | case 'i': | |
5234 | case 'I': | |
64685ffa | 5235 | goto infinite; |
985b6196 RS |
5236 | default: |
5237 | error: | |
66b6d60b RS |
5238 | #ifdef NANS |
5239 | einan (yy); | |
5240 | #else | |
985b6196 | 5241 | mtherr ("asctoe", DOMAIN); |
66b6d60b RS |
5242 | eclear (yy); |
5243 | #endif | |
985b6196 RS |
5244 | goto aexit; |
5245 | } | |
5246 | donchr: | |
5247 | ++s; | |
5248 | goto nxtcom; | |
5249 | ||
5250 | /* Exponent interpretation */ | |
5251 | expnt: | |
25a00742 RK |
5252 | /* 0.0eXXX is zero, regardless of XXX. Check for the 0.0. */ |
5253 | for (k = 0; k < NI; k++) | |
5254 | { | |
5255 | if (yy[k] != 0) | |
5256 | goto read_expnt; | |
5257 | } | |
5258 | goto aexit; | |
985b6196 | 5259 | |
25a00742 | 5260 | read_expnt: |
985b6196 RS |
5261 | esign = 1; |
5262 | exp = 0; | |
5263 | ++s; | |
5264 | /* check for + or - */ | |
5265 | if (*s == '-') | |
5266 | { | |
5267 | esign = -1; | |
5268 | ++s; | |
5269 | } | |
5270 | if (*s == '+') | |
5271 | ++s; | |
5272 | while ((*s >= '0') && (*s <= '9')) | |
5273 | { | |
5274 | exp *= 10; | |
5275 | exp += *s++ - '0'; | |
6f4d7222 | 5276 | if (exp > 999999) |
c5c76735 | 5277 | break; |
985b6196 RS |
5278 | } |
5279 | if (esign < 0) | |
5280 | exp = -exp; | |
6f4d7222 | 5281 | if ((exp > MAXDECEXP) && (base == 10)) |
64685ffa RS |
5282 | { |
5283 | infinite: | |
5284 | ecleaz (yy); | |
5285 | yy[E] = 0x7fff; /* infinity */ | |
5286 | goto aexit; | |
5287 | } | |
6f4d7222 | 5288 | if ((exp < MINDECEXP) && (base == 10)) |
64685ffa RS |
5289 | { |
5290 | zero: | |
5291 | ecleaz (yy); | |
5292 | goto aexit; | |
5293 | } | |
985b6196 RS |
5294 | |
5295 | daldone: | |
6f4d7222 UD |
5296 | if (base == 16) |
5297 | { | |
5298 | /* Base 16 hexadecimal floating constant. */ | |
5299 | if ((k = enormlz (yy)) > NBITS) | |
5300 | { | |
5301 | ecleaz (yy); | |
5302 | goto aexit; | |
5303 | } | |
5304 | /* Adjust the exponent. NEXP is the number of hex digits, | |
5305 | EXP is a power of 2. */ | |
5306 | lexp = (EXONE - 1 + NBITS) - k + yy[E] + exp - nexp; | |
5307 | if (lexp > 0x7fff) | |
5308 | goto infinite; | |
5309 | if (lexp < 0) | |
5310 | goto zero; | |
5311 | yy[E] = lexp; | |
5312 | goto expdon; | |
5313 | } | |
5314 | ||
985b6196 | 5315 | nexp = exp - nexp; |
0f41302f | 5316 | /* Pad trailing zeros to minimize power of 10, per IEEE spec. */ |
985b6196 RS |
5317 | while ((nexp > 0) && (yy[2] == 0)) |
5318 | { | |
5319 | emovz (yy, xt); | |
5320 | eshup1 (xt); | |
5321 | eshup1 (xt); | |
5322 | eaddm (yy, xt); | |
5323 | eshup1 (xt); | |
5324 | if (xt[2] != 0) | |
5325 | break; | |
5326 | nexp -= 1; | |
5327 | emovz (xt, yy); | |
5328 | } | |
5329 | if ((k = enormlz (yy)) > NBITS) | |
5330 | { | |
5331 | ecleaz (yy); | |
5332 | goto aexit; | |
5333 | } | |
5334 | lexp = (EXONE - 1 + NBITS) - k; | |
5335 | emdnorm (yy, lost, 0, lexp, 64); | |
6f4d7222 | 5336 | lost = 0; |
985b6196 | 5337 | |
defb5dab RK |
5338 | /* Convert to external format: |
5339 | ||
5340 | Multiply by 10**nexp. If precision is 64 bits, | |
5341 | the maximum relative error incurred in forming 10**n | |
5342 | for 0 <= n <= 324 is 8.2e-20, at 10**180. | |
5343 | For 0 <= n <= 999, the peak relative error is 1.4e-19 at 10**947. | |
5344 | For 0 >= n >= -999, it is -1.55e-19 at 10**-435. */ | |
985b6196 | 5345 | |
985b6196 RS |
5346 | lexp = yy[E]; |
5347 | if (nexp == 0) | |
5348 | { | |
5349 | k = 0; | |
5350 | goto expdon; | |
5351 | } | |
5352 | esign = 1; | |
5353 | if (nexp < 0) | |
5354 | { | |
5355 | nexp = -nexp; | |
5356 | esign = -1; | |
5357 | if (nexp > 4096) | |
defb5dab | 5358 | { |
0f41302f | 5359 | /* Punt. Can't handle this without 2 divides. */ |
985b6196 RS |
5360 | emovi (etens[0], tt); |
5361 | lexp -= tt[E]; | |
5362 | k = edivm (tt, yy); | |
5363 | lexp += EXONE; | |
5364 | nexp -= 4096; | |
5365 | } | |
5366 | } | |
5367 | p = &etens[NTEN][0]; | |
5368 | emov (eone, xt); | |
5369 | exp = 1; | |
5370 | do | |
5371 | { | |
5372 | if (exp & nexp) | |
5373 | emul (p, xt, xt); | |
5374 | p -= NE; | |
5375 | exp = exp + exp; | |
5376 | } | |
5377 | while (exp <= MAXP); | |
5378 | ||
5379 | emovi (xt, tt); | |
5380 | if (esign < 0) | |
5381 | { | |
5382 | lexp -= tt[E]; | |
5383 | k = edivm (tt, yy); | |
5384 | lexp += EXONE; | |
5385 | } | |
5386 | else | |
5387 | { | |
5388 | lexp += tt[E]; | |
5389 | k = emulm (tt, yy); | |
5390 | lexp -= EXONE - 1; | |
5391 | } | |
6f4d7222 | 5392 | lost = k; |
985b6196 RS |
5393 | |
5394 | expdon: | |
5395 | ||
5396 | /* Round and convert directly to the destination type */ | |
5397 | if (oprec == 53) | |
5398 | lexp -= EXONE - 0x3ff; | |
f5963e61 JL |
5399 | #ifdef C4X |
5400 | else if (oprec == 24 || oprec == 32) | |
5401 | lexp -= (EXONE - 0x7f); | |
5402 | #else | |
842fbaaa JW |
5403 | #ifdef IBM |
5404 | else if (oprec == 24 || oprec == 56) | |
5405 | lexp -= EXONE - (0x41 << 2); | |
5406 | #else | |
985b6196 RS |
5407 | else if (oprec == 24) |
5408 | lexp -= EXONE - 0177; | |
f5963e61 JL |
5409 | #endif /* IBM */ |
5410 | #endif /* C4X */ | |
985b6196 RS |
5411 | #ifdef DEC |
5412 | else if (oprec == 56) | |
5413 | lexp -= EXONE - 0201; | |
5414 | #endif | |
5415 | rndprc = oprec; | |
6f4d7222 | 5416 | emdnorm (yy, lost, 0, lexp, 64); |
985b6196 RS |
5417 | |
5418 | aexit: | |
5419 | ||
5420 | rndprc = rndsav; | |
5421 | yy[0] = nsign; | |
5422 | switch (oprec) | |
5423 | { | |
5424 | #ifdef DEC | |
5425 | case 56: | |
5426 | todec (yy, y); /* see etodec.c */ | |
5427 | break; | |
842fbaaa JW |
5428 | #endif |
5429 | #ifdef IBM | |
5430 | case 56: | |
5431 | toibm (yy, y, DFmode); | |
5432 | break; | |
985b6196 | 5433 | #endif |
f5963e61 JL |
5434 | #ifdef C4X |
5435 | case 32: | |
5436 | toc4x (yy, y, HFmode); | |
5437 | break; | |
5438 | #endif | |
5439 | ||
985b6196 RS |
5440 | case 53: |
5441 | toe53 (yy, y); | |
5442 | break; | |
5443 | case 24: | |
5444 | toe24 (yy, y); | |
5445 | break; | |
5446 | case 64: | |
5447 | toe64 (yy, y); | |
5448 | break; | |
842fbaaa JW |
5449 | case 113: |
5450 | toe113 (yy, y); | |
5451 | break; | |
985b6196 RS |
5452 | case NBITS: |
5453 | emovo (yy, y); | |
5454 | break; | |
5455 | } | |
5456 | } | |
5457 | ||
5458 | ||
5459 | ||
8c35bbc5 RK |
5460 | /* Return Y = largest integer not greater than X (truncated toward minus |
5461 | infinity). */ | |
defb5dab | 5462 | |
985b6196 RS |
5463 | static unsigned EMUSHORT bmask[] = |
5464 | { | |
5465 | 0xffff, | |
5466 | 0xfffe, | |
5467 | 0xfffc, | |
5468 | 0xfff8, | |
5469 | 0xfff0, | |
5470 | 0xffe0, | |
5471 | 0xffc0, | |
5472 | 0xff80, | |
5473 | 0xff00, | |
5474 | 0xfe00, | |
5475 | 0xfc00, | |
5476 | 0xf800, | |
5477 | 0xf000, | |
5478 | 0xe000, | |
5479 | 0xc000, | |
5480 | 0x8000, | |
5481 | 0x0000, | |
5482 | }; | |
5483 | ||
b6ca239d | 5484 | static void |
985b6196 RS |
5485 | efloor (x, y) |
5486 | unsigned EMUSHORT x[], y[]; | |
5487 | { | |
5488 | register unsigned EMUSHORT *p; | |
5489 | int e, expon, i; | |
5490 | unsigned EMUSHORT f[NE]; | |
5491 | ||
5492 | emov (x, f); /* leave in external format */ | |
5493 | expon = (int) f[NE - 1]; | |
5494 | e = (expon & 0x7fff) - (EXONE - 1); | |
5495 | if (e <= 0) | |
5496 | { | |
5497 | eclear (y); | |
5498 | goto isitneg; | |
5499 | } | |
5500 | /* number of bits to clear out */ | |
5501 | e = NBITS - e; | |
5502 | emov (f, y); | |
5503 | if (e <= 0) | |
5504 | return; | |
5505 | ||
5506 | p = &y[0]; | |
5507 | while (e >= 16) | |
5508 | { | |
5509 | *p++ = 0; | |
5510 | e -= 16; | |
5511 | } | |
5512 | /* clear the remaining bits */ | |
5513 | *p &= bmask[e]; | |
5514 | /* truncate negatives toward minus infinity */ | |
5515 | isitneg: | |
5516 | ||
5517 | if ((unsigned EMUSHORT) expon & (unsigned EMUSHORT) 0x8000) | |
5518 | { | |
5519 | for (i = 0; i < NE - 1; i++) | |
5520 | { | |
5521 | if (f[i] != y[i]) | |
5522 | { | |
5523 | esub (eone, y, y); | |
5524 | break; | |
5525 | } | |
5526 | } | |
5527 | } | |
5528 | } | |
5529 | ||
5530 | ||
8468c4a4 | 5531 | #if 0 |
8c35bbc5 RK |
5532 | /* Return S and EXP such that S * 2^EXP = X and .5 <= S < 1. |
5533 | For example, 1.1 = 0.55 * 2^1. */ | |
a0353055 | 5534 | |
b6ca239d | 5535 | static void |
985b6196 RS |
5536 | efrexp (x, exp, s) |
5537 | unsigned EMUSHORT x[]; | |
5538 | int *exp; | |
5539 | unsigned EMUSHORT s[]; | |
5540 | { | |
5541 | unsigned EMUSHORT xi[NI]; | |
5542 | EMULONG li; | |
5543 | ||
5544 | emovi (x, xi); | |
8c35bbc5 | 5545 | /* Handle denormalized numbers properly using long integer exponent. */ |
985b6196 RS |
5546 | li = (EMULONG) ((EMUSHORT) xi[1]); |
5547 | ||
5548 | if (li == 0) | |
5549 | { | |
5550 | li -= enormlz (xi); | |
5551 | } | |
5552 | xi[1] = 0x3ffe; | |
5553 | emovo (xi, s); | |
5554 | *exp = (int) (li - 0x3ffe); | |
5555 | } | |
8468c4a4 | 5556 | #endif |
985b6196 | 5557 | |
8c35bbc5 | 5558 | /* Return e type Y = X * 2^PWR2. */ |
a0353055 | 5559 | |
b6ca239d | 5560 | static void |
985b6196 RS |
5561 | eldexp (x, pwr2, y) |
5562 | unsigned EMUSHORT x[]; | |
5563 | int pwr2; | |
5564 | unsigned EMUSHORT y[]; | |
5565 | { | |
5566 | unsigned EMUSHORT xi[NI]; | |
5567 | EMULONG li; | |
5568 | int i; | |
5569 | ||
5570 | emovi (x, xi); | |
5571 | li = xi[1]; | |
5572 | li += pwr2; | |
5573 | i = 0; | |
5574 | emdnorm (xi, i, i, li, 64); | |
5575 | emovo (xi, y); | |
5576 | } | |
5577 | ||
5578 | ||
8468c4a4 | 5579 | #if 0 |
8c35bbc5 RK |
5580 | /* C = remainder after dividing B by A, all e type values. |
5581 | Least significant integer quotient bits left in EQUOT. */ | |
a0353055 | 5582 | |
b6ca239d | 5583 | static void |
985b6196 RS |
5584 | eremain (a, b, c) |
5585 | unsigned EMUSHORT a[], b[], c[]; | |
5586 | { | |
5587 | unsigned EMUSHORT den[NI], num[NI]; | |
5588 | ||
66b6d60b | 5589 | #ifdef NANS |
242cef1e RS |
5590 | if (eisinf (b) |
5591 | || (ecmp (a, ezero) == 0) | |
5592 | || eisnan (a) | |
5593 | || eisnan (b)) | |
66b6d60b | 5594 | { |
29e11dab | 5595 | enan (c, 0); |
66b6d60b RS |
5596 | return; |
5597 | } | |
5598 | #endif | |
985b6196 RS |
5599 | if (ecmp (a, ezero) == 0) |
5600 | { | |
5601 | mtherr ("eremain", SING); | |
5602 | eclear (c); | |
5603 | return; | |
5604 | } | |
5605 | emovi (a, den); | |
5606 | emovi (b, num); | |
5607 | eiremain (den, num); | |
5608 | /* Sign of remainder = sign of quotient */ | |
5609 | if (a[0] == b[0]) | |
5610 | num[0] = 0; | |
5611 | else | |
5612 | num[0] = 0xffff; | |
5613 | emovo (num, c); | |
5614 | } | |
8468c4a4 | 5615 | #endif |
985b6196 | 5616 | |
8c35bbc5 RK |
5617 | /* Return quotient of exploded e-types NUM / DEN in EQUOT, |
5618 | remainder in NUM. */ | |
5619 | ||
b6ca239d | 5620 | static void |
985b6196 RS |
5621 | eiremain (den, num) |
5622 | unsigned EMUSHORT den[], num[]; | |
5623 | { | |
5624 | EMULONG ld, ln; | |
5625 | unsigned EMUSHORT j; | |
5626 | ||
5627 | ld = den[E]; | |
5628 | ld -= enormlz (den); | |
5629 | ln = num[E]; | |
5630 | ln -= enormlz (num); | |
5631 | ecleaz (equot); | |
5632 | while (ln >= ld) | |
5633 | { | |
5634 | if (ecmpm (den, num) <= 0) | |
5635 | { | |
5636 | esubm (den, num); | |
5637 | j = 1; | |
5638 | } | |
5639 | else | |
985b6196 | 5640 | j = 0; |
985b6196 RS |
5641 | eshup1 (equot); |
5642 | equot[NI - 1] |= j; | |
5643 | eshup1 (num); | |
5644 | ln -= 1; | |
5645 | } | |
5646 | emdnorm (num, 0, 0, ln, 0); | |
5647 | } | |
5648 | ||
8c35bbc5 | 5649 | /* Report an error condition CODE encountered in function NAME. |
defb5dab RK |
5650 | |
5651 | Mnemonic Value Significance | |
b6ca239d | 5652 | |
defb5dab RK |
5653 | DOMAIN 1 argument domain error |
5654 | SING 2 function singularity | |
5655 | OVERFLOW 3 overflow range error | |
5656 | UNDERFLOW 4 underflow range error | |
5657 | TLOSS 5 total loss of precision | |
5658 | PLOSS 6 partial loss of precision | |
5659 | INVALID 7 NaN - producing operation | |
5660 | EDOM 33 Unix domain error code | |
5661 | ERANGE 34 Unix range error code | |
b6ca239d | 5662 | |
8c35bbc5 | 5663 | The order of appearance of the following messages is bound to the |
defb5dab | 5664 | error codes defined above. */ |
985b6196 | 5665 | |
985b6196 RS |
5666 | int merror = 0; |
5667 | extern int merror; | |
5668 | ||
b6ca239d | 5669 | static void |
985b6196 | 5670 | mtherr (name, code) |
dff01034 | 5671 | const char *name; |
985b6196 RS |
5672 | int code; |
5673 | { | |
8c35bbc5 | 5674 | /* The string passed by the calling program is supposed to be the |
defb5dab | 5675 | name of the function in which the error occurred. |
8c35bbc5 | 5676 | The code argument selects which error message string will be printed. */ |
985b6196 | 5677 | |
7735516c GK |
5678 | if (strcmp (name, "esub") == 0) |
5679 | name = "subtraction"; | |
5680 | else if (strcmp (name, "ediv") == 0) | |
5681 | name = "division"; | |
5682 | else if (strcmp (name, "emul") == 0) | |
5683 | name = "multiplication"; | |
5684 | else if (strcmp (name, "enormlz") == 0) | |
5685 | name = "normalization"; | |
5686 | else if (strcmp (name, "etoasc") == 0) | |
5687 | name = "conversion to text"; | |
5688 | else if (strcmp (name, "asctoe") == 0) | |
5689 | name = "parsing"; | |
5690 | else if (strcmp (name, "eremain") == 0) | |
5691 | name = "modulus"; | |
5692 | else if (strcmp (name, "esqrt") == 0) | |
5693 | name = "square root"; | |
64685ffa | 5694 | if (extra_warnings) |
ab87f8c8 JL |
5695 | { |
5696 | switch (code) | |
5697 | { | |
5698 | case DOMAIN: warning ("%s: argument domain error" , name); break; | |
5699 | case SING: warning ("%s: function singularity" , name); break; | |
5700 | case OVERFLOW: warning ("%s: overflow range error" , name); break; | |
5701 | case UNDERFLOW: warning ("%s: underflow range error" , name); break; | |
5702 | case TLOSS: warning ("%s: total loss of precision" , name); break; | |
5703 | case PLOSS: warning ("%s: partial loss of precision", name); break; | |
5704 | case INVALID: warning ("%s: NaN - producing operation", name); break; | |
5705 | default: abort (); | |
5706 | } | |
5707 | } | |
5708 | ||
985b6196 RS |
5709 | /* Set global error message word */ |
5710 | merror = code + 1; | |
985b6196 RS |
5711 | } |
5712 | ||
842fbaaa | 5713 | #ifdef DEC |
8c35bbc5 | 5714 | /* Convert DEC double precision D to e type E. */ |
a0353055 | 5715 | |
b6ca239d | 5716 | static void |
985b6196 RS |
5717 | dectoe (d, e) |
5718 | unsigned EMUSHORT *d; | |
5719 | unsigned EMUSHORT *e; | |
5720 | { | |
5721 | unsigned EMUSHORT y[NI]; | |
5722 | register unsigned EMUSHORT r, *p; | |
5723 | ||
5724 | ecleaz (y); /* start with a zero */ | |
5725 | p = y; /* point to our number */ | |
5726 | r = *d; /* get DEC exponent word */ | |
5727 | if (*d & (unsigned int) 0x8000) | |
5728 | *p = 0xffff; /* fill in our sign */ | |
5729 | ++p; /* bump pointer to our exponent word */ | |
5730 | r &= 0x7fff; /* strip the sign bit */ | |
5731 | if (r == 0) /* answer = 0 if high order DEC word = 0 */ | |
5732 | goto done; | |
5733 | ||
5734 | ||
5735 | r >>= 7; /* shift exponent word down 7 bits */ | |
5736 | r += EXONE - 0201; /* subtract DEC exponent offset */ | |
5737 | /* add our e type exponent offset */ | |
5738 | *p++ = r; /* to form our exponent */ | |
5739 | ||
5740 | r = *d++; /* now do the high order mantissa */ | |
5741 | r &= 0177; /* strip off the DEC exponent and sign bits */ | |
5742 | r |= 0200; /* the DEC understood high order mantissa bit */ | |
5743 | *p++ = r; /* put result in our high guard word */ | |
5744 | ||
5745 | *p++ = *d++; /* fill in the rest of our mantissa */ | |
5746 | *p++ = *d++; | |
5747 | *p = *d; | |
5748 | ||
5749 | eshdn8 (y); /* shift our mantissa down 8 bits */ | |
5750 | done: | |
5751 | emovo (y, e); | |
5752 | } | |
5753 | ||
8c35bbc5 | 5754 | /* Convert e type X to DEC double precision D. */ |
985b6196 | 5755 | |
b6ca239d | 5756 | static void |
985b6196 RS |
5757 | etodec (x, d) |
5758 | unsigned EMUSHORT *x, *d; | |
5759 | { | |
5760 | unsigned EMUSHORT xi[NI]; | |
842fbaaa JW |
5761 | EMULONG exp; |
5762 | int rndsav; | |
985b6196 RS |
5763 | |
5764 | emovi (x, xi); | |
8c35bbc5 RK |
5765 | /* Adjust exponent for offsets. */ |
5766 | exp = (EMULONG) xi[E] - (EXONE - 0201); | |
5767 | /* Round off to nearest or even. */ | |
985b6196 RS |
5768 | rndsav = rndprc; |
5769 | rndprc = 56; | |
5770 | emdnorm (xi, 0, 0, exp, 64); | |
5771 | rndprc = rndsav; | |
5772 | todec (xi, d); | |
5773 | } | |
5774 | ||
8c35bbc5 RK |
5775 | /* Convert exploded e-type X, that has already been rounded to |
5776 | 56-bit precision, to DEC format double Y. */ | |
5777 | ||
b6ca239d | 5778 | static void |
985b6196 RS |
5779 | todec (x, y) |
5780 | unsigned EMUSHORT *x, *y; | |
5781 | { | |
5782 | unsigned EMUSHORT i; | |
5783 | unsigned EMUSHORT *p; | |
5784 | ||
5785 | p = x; | |
5786 | *y = 0; | |
5787 | if (*p++) | |
5788 | *y = 0100000; | |
5789 | i = *p++; | |
5790 | if (i == 0) | |
5791 | { | |
5792 | *y++ = 0; | |
5793 | *y++ = 0; | |
5794 | *y++ = 0; | |
5795 | *y++ = 0; | |
5796 | return; | |
5797 | } | |
5798 | if (i > 0377) | |
5799 | { | |
5800 | *y++ |= 077777; | |
5801 | *y++ = 0xffff; | |
5802 | *y++ = 0xffff; | |
5803 | *y++ = 0xffff; | |
64685ffa RS |
5804 | #ifdef ERANGE |
5805 | errno = ERANGE; | |
5806 | #endif | |
985b6196 RS |
5807 | return; |
5808 | } | |
5809 | i &= 0377; | |
5810 | i <<= 7; | |
5811 | eshup8 (x); | |
5812 | x[M] &= 0177; | |
5813 | i |= x[M]; | |
5814 | *y++ |= i; | |
5815 | *y++ = x[M + 1]; | |
5816 | *y++ = x[M + 2]; | |
5817 | *y++ = x[M + 3]; | |
5818 | } | |
842fbaaa JW |
5819 | #endif /* DEC */ |
5820 | ||
5821 | #ifdef IBM | |
defb5dab | 5822 | /* Convert IBM single/double precision to e type. */ |
a0353055 | 5823 | |
b6ca239d | 5824 | static void |
842fbaaa JW |
5825 | ibmtoe (d, e, mode) |
5826 | unsigned EMUSHORT *d; | |
5827 | unsigned EMUSHORT *e; | |
5828 | enum machine_mode mode; | |
5829 | { | |
5830 | unsigned EMUSHORT y[NI]; | |
5831 | register unsigned EMUSHORT r, *p; | |
5832 | int rndsav; | |
5833 | ||
5834 | ecleaz (y); /* start with a zero */ | |
5835 | p = y; /* point to our number */ | |
5836 | r = *d; /* get IBM exponent word */ | |
5837 | if (*d & (unsigned int) 0x8000) | |
5838 | *p = 0xffff; /* fill in our sign */ | |
5839 | ++p; /* bump pointer to our exponent word */ | |
5840 | r &= 0x7f00; /* strip the sign bit */ | |
5841 | r >>= 6; /* shift exponent word down 6 bits */ | |
5842 | /* in fact shift by 8 right and 2 left */ | |
5843 | r += EXONE - (0x41 << 2); /* subtract IBM exponent offset */ | |
5844 | /* add our e type exponent offset */ | |
5845 | *p++ = r; /* to form our exponent */ | |
5846 | ||
5847 | *p++ = *d++ & 0xff; /* now do the high order mantissa */ | |
5848 | /* strip off the IBM exponent and sign bits */ | |
5849 | if (mode != SFmode) /* there are only 2 words in SFmode */ | |
5850 | { | |
5851 | *p++ = *d++; /* fill in the rest of our mantissa */ | |
5852 | *p++ = *d++; | |
5853 | } | |
5854 | *p = *d; | |
5855 | ||
5856 | if (y[M] == 0 && y[M+1] == 0 && y[M+2] == 0 && y[M+3] == 0) | |
5857 | y[0] = y[E] = 0; | |
5858 | else | |
5859 | y[E] -= 5 + enormlz (y); /* now normalise the mantissa */ | |
5860 | /* handle change in RADIX */ | |
5861 | emovo (y, e); | |
5862 | } | |
5863 | ||
985b6196 | 5864 | |
985b6196 | 5865 | |
defb5dab | 5866 | /* Convert e type to IBM single/double precision. */ |
842fbaaa | 5867 | |
b6ca239d | 5868 | static void |
842fbaaa JW |
5869 | etoibm (x, d, mode) |
5870 | unsigned EMUSHORT *x, *d; | |
5871 | enum machine_mode mode; | |
5872 | { | |
5873 | unsigned EMUSHORT xi[NI]; | |
5874 | EMULONG exp; | |
5875 | int rndsav; | |
5876 | ||
5877 | emovi (x, xi); | |
5878 | exp = (EMULONG) xi[E] - (EXONE - (0x41 << 2)); /* adjust exponent for offsets */ | |
5879 | /* round off to nearest or even */ | |
5880 | rndsav = rndprc; | |
5881 | rndprc = 56; | |
5882 | emdnorm (xi, 0, 0, exp, 64); | |
5883 | rndprc = rndsav; | |
5884 | toibm (xi, d, mode); | |
5885 | } | |
5886 | ||
b6ca239d | 5887 | static void |
842fbaaa JW |
5888 | toibm (x, y, mode) |
5889 | unsigned EMUSHORT *x, *y; | |
5890 | enum machine_mode mode; | |
5891 | { | |
5892 | unsigned EMUSHORT i; | |
5893 | unsigned EMUSHORT *p; | |
5894 | int r; | |
5895 | ||
5896 | p = x; | |
5897 | *y = 0; | |
5898 | if (*p++) | |
5899 | *y = 0x8000; | |
5900 | i = *p++; | |
5901 | if (i == 0) | |
5902 | { | |
5903 | *y++ = 0; | |
5904 | *y++ = 0; | |
5905 | if (mode != SFmode) | |
5906 | { | |
5907 | *y++ = 0; | |
5908 | *y++ = 0; | |
5909 | } | |
5910 | return; | |
5911 | } | |
5912 | r = i & 0x3; | |
5913 | i >>= 2; | |
5914 | if (i > 0x7f) | |
5915 | { | |
5916 | *y++ |= 0x7fff; | |
5917 | *y++ = 0xffff; | |
5918 | if (mode != SFmode) | |
5919 | { | |
5920 | *y++ = 0xffff; | |
5921 | *y++ = 0xffff; | |
5922 | } | |
5923 | #ifdef ERANGE | |
5924 | errno = ERANGE; | |
5925 | #endif | |
5926 | return; | |
5927 | } | |
5928 | i &= 0x7f; | |
5929 | *y |= (i << 8); | |
5930 | eshift (x, r + 5); | |
5931 | *y++ |= x[M]; | |
5932 | *y++ = x[M + 1]; | |
5933 | if (mode != SFmode) | |
5934 | { | |
5935 | *y++ = x[M + 2]; | |
5936 | *y++ = x[M + 3]; | |
5937 | } | |
5938 | } | |
5939 | #endif /* IBM */ | |
66b6d60b | 5940 | |
f5963e61 JL |
5941 | |
5942 | #ifdef C4X | |
5943 | /* Convert C4X single/double precision to e type. */ | |
5944 | ||
b6ca239d | 5945 | static void |
f5963e61 JL |
5946 | c4xtoe (d, e, mode) |
5947 | unsigned EMUSHORT *d; | |
5948 | unsigned EMUSHORT *e; | |
5949 | enum machine_mode mode; | |
5950 | { | |
5951 | unsigned EMUSHORT y[NI]; | |
5952 | int r; | |
f5963e61 JL |
5953 | int isnegative; |
5954 | int size; | |
5955 | int i; | |
5956 | int carry; | |
5957 | ||
5958 | /* Short-circuit the zero case. */ | |
5959 | if ((d[0] == 0x8000) | |
5960 | && (d[1] == 0x0000) | |
5961 | && ((mode == QFmode) || ((d[2] == 0x0000) && (d[3] == 0x0000)))) | |
5962 | { | |
5963 | e[0] = 0; | |
5964 | e[1] = 0; | |
5965 | e[2] = 0; | |
5966 | e[3] = 0; | |
5967 | e[4] = 0; | |
5968 | e[5] = 0; | |
5969 | return; | |
5970 | } | |
5971 | ||
5972 | ecleaz (y); /* start with a zero */ | |
5973 | r = d[0]; /* get sign/exponent part */ | |
5974 | if (r & (unsigned int) 0x0080) | |
5975 | { | |
5976 | y[0] = 0xffff; /* fill in our sign */ | |
5977 | isnegative = TRUE; | |
5978 | } | |
5979 | else | |
5980 | { | |
5981 | isnegative = FALSE; | |
5982 | } | |
b6ca239d | 5983 | |
f5963e61 JL |
5984 | r >>= 8; /* Shift exponent word down 8 bits. */ |
5985 | if (r & 0x80) /* Make the exponent negative if it is. */ | |
5986 | { | |
5987 | r = r | (~0 & ~0xff); | |
5988 | } | |
5989 | ||
5990 | if (isnegative) | |
5991 | { | |
5992 | /* Now do the high order mantissa. We don't "or" on the high bit | |
5993 | because it is 2 (not 1) and is handled a little differently | |
5994 | below. */ | |
b6ca239d | 5995 | y[M] = d[0] & 0x7f; |
f5963e61 JL |
5996 | |
5997 | y[M+1] = d[1]; | |
5998 | if (mode != QFmode) /* There are only 2 words in QFmode. */ | |
5999 | { | |
6000 | y[M+2] = d[2]; /* Fill in the rest of our mantissa. */ | |
6001 | y[M+3] = d[3]; | |
6002 | size = 4; | |
6003 | } | |
6004 | else | |
6005 | { | |
6006 | size = 2; | |
6007 | } | |
6008 | eshift(y, -8); | |
6009 | ||
6010 | /* Now do the two's complement on the data. */ | |
6011 | ||
6012 | carry = 1; /* Initially add 1 for the two's complement. */ | |
6013 | for (i=size + M; i > M; i--) | |
6014 | { | |
6015 | if (carry && (y[i] == 0x0000)) | |
6016 | { | |
6017 | /* We overflowed into the next word, carry is the same. */ | |
6018 | y[i] = carry ? 0x0000 : 0xffff; | |
6019 | } | |
6020 | else | |
6021 | { | |
6022 | /* No overflow, just invert and add carry. */ | |
6023 | y[i] = ((~y[i]) + carry) & 0xffff; | |
6024 | carry = 0; | |
6025 | } | |
6026 | } | |
6027 | ||
6028 | if (carry) | |
6029 | { | |
6030 | eshift(y, -1); | |
6031 | y[M+1] |= 0x8000; | |
6032 | r++; | |
6033 | } | |
6034 | y[1] = r + EXONE; | |
6035 | } | |
6036 | else | |
6037 | { | |
6038 | /* Add our e type exponent offset to form our exponent. */ | |
6039 | r += EXONE; | |
b6ca239d | 6040 | y[1] = r; |
f5963e61 JL |
6041 | |
6042 | /* Now do the high order mantissa strip off the exponent and sign | |
6043 | bits and add the high 1 bit. */ | |
b6ca239d | 6044 | y[M] = (d[0] & 0x7f) | 0x80; |
f5963e61 JL |
6045 | |
6046 | y[M+1] = d[1]; | |
6047 | if (mode != QFmode) /* There are only 2 words in QFmode. */ | |
6048 | { | |
6049 | y[M+2] = d[2]; /* Fill in the rest of our mantissa. */ | |
6050 | y[M+3] = d[3]; | |
6051 | } | |
6052 | eshift(y, -8); | |
6053 | } | |
6054 | ||
6055 | emovo (y, e); | |
6056 | } | |
6057 | ||
6058 | ||
6059 | /* Convert e type to C4X single/double precision. */ | |
6060 | ||
b6ca239d | 6061 | static void |
f5963e61 JL |
6062 | etoc4x (x, d, mode) |
6063 | unsigned EMUSHORT *x, *d; | |
6064 | enum machine_mode mode; | |
6065 | { | |
6066 | unsigned EMUSHORT xi[NI]; | |
6067 | EMULONG exp; | |
6068 | int rndsav; | |
6069 | ||
6070 | emovi (x, xi); | |
6071 | ||
6072 | /* Adjust exponent for offsets. */ | |
6073 | exp = (EMULONG) xi[E] - (EXONE - 0x7f); | |
6074 | ||
6075 | /* Round off to nearest or even. */ | |
6076 | rndsav = rndprc; | |
6077 | rndprc = mode == QFmode ? 24 : 32; | |
6078 | emdnorm (xi, 0, 0, exp, 64); | |
6079 | rndprc = rndsav; | |
6080 | toc4x (xi, d, mode); | |
6081 | } | |
6082 | ||
b6ca239d | 6083 | static void |
f5963e61 JL |
6084 | toc4x (x, y, mode) |
6085 | unsigned EMUSHORT *x, *y; | |
6086 | enum machine_mode mode; | |
6087 | { | |
6088 | int i; | |
f5963e61 JL |
6089 | int v; |
6090 | int carry; | |
b6ca239d | 6091 | |
f5963e61 JL |
6092 | /* Short-circuit the zero case */ |
6093 | if ((x[0] == 0) /* Zero exponent and sign */ | |
6094 | && (x[1] == 0) | |
6095 | && (x[M] == 0) /* The rest is for zero mantissa */ | |
6096 | && (x[M+1] == 0) | |
6097 | /* Only check for double if necessary */ | |
6098 | && ((mode == QFmode) || ((x[M+2] == 0) && (x[M+3] == 0)))) | |
6099 | { | |
6100 | /* We have a zero. Put it into the output and return. */ | |
6101 | *y++ = 0x8000; | |
6102 | *y++ = 0x0000; | |
6103 | if (mode != QFmode) | |
6104 | { | |
6105 | *y++ = 0x0000; | |
6106 | *y++ = 0x0000; | |
6107 | } | |
6108 | return; | |
6109 | } | |
b6ca239d | 6110 | |
f5963e61 | 6111 | *y = 0; |
b6ca239d | 6112 | |
f5963e61 JL |
6113 | /* Negative number require a two's complement conversion of the |
6114 | mantissa. */ | |
6115 | if (x[0]) | |
6116 | { | |
6117 | *y = 0x0080; | |
b6ca239d | 6118 | |
f5963e61 | 6119 | i = ((int) x[1]) - 0x7f; |
b6ca239d | 6120 | |
f5963e61 JL |
6121 | /* Now add 1 to the inverted data to do the two's complement. */ |
6122 | if (mode != QFmode) | |
6123 | v = 4 + M; | |
6124 | else | |
6125 | v = 2 + M; | |
6126 | carry = 1; | |
6127 | while (v > M) | |
6128 | { | |
6129 | if (x[v] == 0x0000) | |
6130 | { | |
6131 | x[v] = carry ? 0x0000 : 0xffff; | |
6132 | } | |
6133 | else | |
6134 | { | |
6135 | x[v] = ((~x[v]) + carry) & 0xffff; | |
6136 | carry = 0; | |
6137 | } | |
6138 | v--; | |
6139 | } | |
b6ca239d | 6140 | |
f5963e61 JL |
6141 | /* The following is a special case. The C4X negative float requires |
6142 | a zero in the high bit (because the format is (2 - x) x 2^m), so | |
6143 | if a one is in that bit, we have to shift left one to get rid | |
6144 | of it. This only occurs if the number is -1 x 2^m. */ | |
6145 | if (x[M+1] & 0x8000) | |
6146 | { | |
6147 | /* This is the case of -1 x 2^m, we have to rid ourselves of the | |
6148 | high sign bit and shift the exponent. */ | |
6149 | eshift(x, 1); | |
6150 | i--; | |
6151 | } | |
6152 | } | |
6153 | else | |
6154 | { | |
6155 | i = ((int) x[1]) - 0x7f; | |
6156 | } | |
6157 | ||
6158 | if ((i < -128) || (i > 127)) | |
6159 | { | |
6160 | y[0] |= 0xff7f; | |
6161 | y[1] = 0xffff; | |
6162 | if (mode != QFmode) | |
6163 | { | |
6164 | y[2] = 0xffff; | |
6165 | y[3] = 0xffff; | |
6166 | } | |
6167 | #ifdef ERANGE | |
6168 | errno = ERANGE; | |
6169 | #endif | |
6170 | return; | |
6171 | } | |
b6ca239d | 6172 | |
f5963e61 | 6173 | y[0] |= ((i & 0xff) << 8); |
b6ca239d | 6174 | |
f5963e61 | 6175 | eshift (x, 8); |
b6ca239d | 6176 | |
f5963e61 JL |
6177 | y[0] |= x[M] & 0x7f; |
6178 | y[1] = x[M + 1]; | |
6179 | if (mode != QFmode) | |
6180 | { | |
6181 | y[2] = x[M + 2]; | |
6182 | y[3] = x[M + 3]; | |
6183 | } | |
6184 | } | |
6185 | #endif /* C4X */ | |
6186 | ||
66b6d60b RS |
6187 | /* Output a binary NaN bit pattern in the target machine's format. */ |
6188 | ||
6189 | /* If special NaN bit patterns are required, define them in tm.h | |
6190 | as arrays of unsigned 16-bit shorts. Otherwise, use the default | |
0f41302f | 6191 | patterns here. */ |
7729f1ca RS |
6192 | #ifdef TFMODE_NAN |
6193 | TFMODE_NAN; | |
6194 | #else | |
f76b9db2 ILT |
6195 | #ifdef IEEE |
6196 | unsigned EMUSHORT TFbignan[8] = | |
66b6d60b | 6197 | {0x7fff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff}; |
f76b9db2 | 6198 | unsigned EMUSHORT TFlittlenan[8] = {0, 0, 0, 0, 0, 0, 0x8000, 0xffff}; |
66b6d60b RS |
6199 | #endif |
6200 | #endif | |
6201 | ||
7729f1ca RS |
6202 | #ifdef XFMODE_NAN |
6203 | XFMODE_NAN; | |
6204 | #else | |
f76b9db2 ILT |
6205 | #ifdef IEEE |
6206 | unsigned EMUSHORT XFbignan[6] = | |
6207 | {0x7fff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff}; | |
6208 | unsigned EMUSHORT XFlittlenan[6] = {0, 0, 0, 0xc000, 0xffff, 0}; | |
66b6d60b RS |
6209 | #endif |
6210 | #endif | |
6211 | ||
7729f1ca RS |
6212 | #ifdef DFMODE_NAN |
6213 | DFMODE_NAN; | |
6214 | #else | |
f76b9db2 ILT |
6215 | #ifdef IEEE |
6216 | unsigned EMUSHORT DFbignan[4] = {0x7fff, 0xffff, 0xffff, 0xffff}; | |
6217 | unsigned EMUSHORT DFlittlenan[4] = {0, 0, 0, 0xfff8}; | |
66b6d60b RS |
6218 | #endif |
6219 | #endif | |
6220 | ||
7729f1ca RS |
6221 | #ifdef SFMODE_NAN |
6222 | SFMODE_NAN; | |
6223 | #else | |
f76b9db2 ILT |
6224 | #ifdef IEEE |
6225 | unsigned EMUSHORT SFbignan[2] = {0x7fff, 0xffff}; | |
6226 | unsigned EMUSHORT SFlittlenan[2] = {0, 0xffc0}; | |
66b6d60b RS |
6227 | #endif |
6228 | #endif | |
6229 | ||
6230 | ||
a0353055 | 6231 | static void |
29e11dab | 6232 | make_nan (nan, sign, mode) |
a0353055 RK |
6233 | unsigned EMUSHORT *nan; |
6234 | int sign; | |
6235 | enum machine_mode mode; | |
66b6d60b | 6236 | { |
29e11dab | 6237 | int n; |
66b6d60b RS |
6238 | unsigned EMUSHORT *p; |
6239 | ||
6240 | switch (mode) | |
6241 | { | |
6242 | /* Possibly the `reserved operand' patterns on a VAX can be | |
0f41302f | 6243 | used like NaN's, but probably not in the same way as IEEE. */ |
f5963e61 | 6244 | #if !defined(DEC) && !defined(IBM) && !defined(C4X) |
66b6d60b RS |
6245 | case TFmode: |
6246 | n = 8; | |
8c35bbc5 | 6247 | if (REAL_WORDS_BIG_ENDIAN) |
f76b9db2 ILT |
6248 | p = TFbignan; |
6249 | else | |
6250 | p = TFlittlenan; | |
66b6d60b | 6251 | break; |
f5963e61 | 6252 | |
66b6d60b RS |
6253 | case XFmode: |
6254 | n = 6; | |
8c35bbc5 | 6255 | if (REAL_WORDS_BIG_ENDIAN) |
f76b9db2 ILT |
6256 | p = XFbignan; |
6257 | else | |
6258 | p = XFlittlenan; | |
66b6d60b | 6259 | break; |
f5963e61 | 6260 | |
66b6d60b RS |
6261 | case DFmode: |
6262 | n = 4; | |
8c35bbc5 | 6263 | if (REAL_WORDS_BIG_ENDIAN) |
f76b9db2 ILT |
6264 | p = DFbignan; |
6265 | else | |
6266 | p = DFlittlenan; | |
66b6d60b | 6267 | break; |
f5963e61 | 6268 | |
66b6d60b | 6269 | case SFmode: |
f5963e61 | 6270 | case HFmode: |
66b6d60b | 6271 | n = 2; |
8c35bbc5 | 6272 | if (REAL_WORDS_BIG_ENDIAN) |
f76b9db2 ILT |
6273 | p = SFbignan; |
6274 | else | |
6275 | p = SFlittlenan; | |
66b6d60b RS |
6276 | break; |
6277 | #endif | |
f5963e61 | 6278 | |
66b6d60b RS |
6279 | default: |
6280 | abort (); | |
6281 | } | |
8c35bbc5 | 6282 | if (REAL_WORDS_BIG_ENDIAN) |
a46f03ea | 6283 | *nan++ = (sign << 15) | (*p++ & 0x7fff); |
29e11dab | 6284 | while (--n != 0) |
66b6d60b | 6285 | *nan++ = *p++; |
8c35bbc5 | 6286 | if (! REAL_WORDS_BIG_ENDIAN) |
a46f03ea | 6287 | *nan = (sign << 15) | (*p & 0x7fff); |
66b6d60b RS |
6288 | } |
6289 | ||
7bb6fbd1 | 6290 | /* This is the inverse of the function `etarsingle' invoked by |
b31c244f RS |
6291 | REAL_VALUE_TO_TARGET_SINGLE. */ |
6292 | ||
7bb6fbd1 JL |
6293 | REAL_VALUE_TYPE |
6294 | ereal_unto_float (f) | |
6295 | long f; | |
6296 | { | |
6297 | REAL_VALUE_TYPE r; | |
6298 | unsigned EMUSHORT s[2]; | |
6299 | unsigned EMUSHORT e[NE]; | |
6300 | ||
6301 | /* Convert 32 bit integer to array of 16 bit pieces in target machine order. | |
6302 | This is the inverse operation to what the function `endian' does. */ | |
6303 | if (REAL_WORDS_BIG_ENDIAN) | |
6304 | { | |
6305 | s[0] = (unsigned EMUSHORT) (f >> 16); | |
6306 | s[1] = (unsigned EMUSHORT) f; | |
6307 | } | |
6308 | else | |
6309 | { | |
6310 | s[0] = (unsigned EMUSHORT) f; | |
6311 | s[1] = (unsigned EMUSHORT) (f >> 16); | |
6312 | } | |
6313 | /* Convert and promote the target float to E-type. */ | |
6314 | e24toe (s, e); | |
6315 | /* Output E-type to REAL_VALUE_TYPE. */ | |
6316 | PUT_REAL (e, &r); | |
6317 | return r; | |
6318 | } | |
6319 | ||
6320 | ||
6321 | /* This is the inverse of the function `etardouble' invoked by | |
6322 | REAL_VALUE_TO_TARGET_DOUBLE. */ | |
6323 | ||
6324 | REAL_VALUE_TYPE | |
6325 | ereal_unto_double (d) | |
6326 | long d[]; | |
6327 | { | |
6328 | REAL_VALUE_TYPE r; | |
6329 | unsigned EMUSHORT s[4]; | |
6330 | unsigned EMUSHORT e[NE]; | |
6331 | ||
6332 | /* Convert array of HOST_WIDE_INT to equivalent array of 16-bit pieces. */ | |
6333 | if (REAL_WORDS_BIG_ENDIAN) | |
6334 | { | |
6335 | s[0] = (unsigned EMUSHORT) (d[0] >> 16); | |
6336 | s[1] = (unsigned EMUSHORT) d[0]; | |
6337 | s[2] = (unsigned EMUSHORT) (d[1] >> 16); | |
6338 | s[3] = (unsigned EMUSHORT) d[1]; | |
6339 | } | |
6340 | else | |
6341 | { | |
6342 | /* Target float words are little-endian. */ | |
6343 | s[0] = (unsigned EMUSHORT) d[0]; | |
6344 | s[1] = (unsigned EMUSHORT) (d[0] >> 16); | |
6345 | s[2] = (unsigned EMUSHORT) d[1]; | |
6346 | s[3] = (unsigned EMUSHORT) (d[1] >> 16); | |
6347 | } | |
6348 | /* Convert target double to E-type. */ | |
6349 | e53toe (s, e); | |
6350 | /* Output E-type to REAL_VALUE_TYPE. */ | |
6351 | PUT_REAL (e, &r); | |
6352 | return r; | |
6353 | } | |
6354 | ||
6355 | ||
6356 | /* Convert an SFmode target `float' value to a REAL_VALUE_TYPE. | |
6357 | This is somewhat like ereal_unto_float, but the input types | |
6358 | for these are different. */ | |
6359 | ||
b31c244f RS |
6360 | REAL_VALUE_TYPE |
6361 | ereal_from_float (f) | |
04ae9e4c | 6362 | HOST_WIDE_INT f; |
b31c244f RS |
6363 | { |
6364 | REAL_VALUE_TYPE r; | |
6365 | unsigned EMUSHORT s[2]; | |
6366 | unsigned EMUSHORT e[NE]; | |
6367 | ||
6368 | /* Convert 32 bit integer to array of 16 bit pieces in target machine order. | |
6369 | This is the inverse operation to what the function `endian' does. */ | |
8c35bbc5 | 6370 | if (REAL_WORDS_BIG_ENDIAN) |
f76b9db2 ILT |
6371 | { |
6372 | s[0] = (unsigned EMUSHORT) (f >> 16); | |
6373 | s[1] = (unsigned EMUSHORT) f; | |
6374 | } | |
6375 | else | |
6376 | { | |
6377 | s[0] = (unsigned EMUSHORT) f; | |
6378 | s[1] = (unsigned EMUSHORT) (f >> 16); | |
6379 | } | |
0f41302f | 6380 | /* Convert and promote the target float to E-type. */ |
b31c244f | 6381 | e24toe (s, e); |
0f41302f | 6382 | /* Output E-type to REAL_VALUE_TYPE. */ |
b31c244f RS |
6383 | PUT_REAL (e, &r); |
6384 | return r; | |
6385 | } | |
6386 | ||
842fbaaa | 6387 | |
b31c244f | 6388 | /* Convert a DFmode target `double' value to a REAL_VALUE_TYPE. |
7bb6fbd1 JL |
6389 | This is somewhat like ereal_unto_double, but the input types |
6390 | for these are different. | |
b31c244f | 6391 | |
04ae9e4c RK |
6392 | The DFmode is stored as an array of HOST_WIDE_INT in the target's |
6393 | data format, with no holes in the bit packing. The first element | |
b31c244f RS |
6394 | of the input array holds the bits that would come first in the |
6395 | target computer's memory. */ | |
6396 | ||
6397 | REAL_VALUE_TYPE | |
6398 | ereal_from_double (d) | |
04ae9e4c | 6399 | HOST_WIDE_INT d[]; |
b31c244f RS |
6400 | { |
6401 | REAL_VALUE_TYPE r; | |
6402 | unsigned EMUSHORT s[4]; | |
6403 | unsigned EMUSHORT e[NE]; | |
6404 | ||
04ae9e4c | 6405 | /* Convert array of HOST_WIDE_INT to equivalent array of 16-bit pieces. */ |
8c35bbc5 | 6406 | if (REAL_WORDS_BIG_ENDIAN) |
f76b9db2 | 6407 | { |
8fc4af0f | 6408 | #if HOST_BITS_PER_WIDE_INT == 32 |
f76b9db2 ILT |
6409 | s[0] = (unsigned EMUSHORT) (d[0] >> 16); |
6410 | s[1] = (unsigned EMUSHORT) d[0]; | |
f76b9db2 ILT |
6411 | s[2] = (unsigned EMUSHORT) (d[1] >> 16); |
6412 | s[3] = (unsigned EMUSHORT) d[1]; | |
60e61165 | 6413 | #else |
f76b9db2 ILT |
6414 | /* In this case the entire target double is contained in the |
6415 | first array element. The second element of the input is | |
6416 | ignored. */ | |
8fc4af0f JJ |
6417 | s[0] = (unsigned EMUSHORT) (d[0] >> 48); |
6418 | s[1] = (unsigned EMUSHORT) (d[0] >> 32); | |
6419 | s[2] = (unsigned EMUSHORT) (d[0] >> 16); | |
6420 | s[3] = (unsigned EMUSHORT) d[0]; | |
60e61165 | 6421 | #endif |
f76b9db2 ILT |
6422 | } |
6423 | else | |
6424 | { | |
6425 | /* Target float words are little-endian. */ | |
6426 | s[0] = (unsigned EMUSHORT) d[0]; | |
6427 | s[1] = (unsigned EMUSHORT) (d[0] >> 16); | |
60e61165 | 6428 | #if HOST_BITS_PER_WIDE_INT == 32 |
f76b9db2 ILT |
6429 | s[2] = (unsigned EMUSHORT) d[1]; |
6430 | s[3] = (unsigned EMUSHORT) (d[1] >> 16); | |
60e61165 | 6431 | #else |
f76b9db2 ILT |
6432 | s[2] = (unsigned EMUSHORT) (d[0] >> 32); |
6433 | s[3] = (unsigned EMUSHORT) (d[0] >> 48); | |
b31c244f | 6434 | #endif |
f76b9db2 | 6435 | } |
0f41302f | 6436 | /* Convert target double to E-type. */ |
b31c244f | 6437 | e53toe (s, e); |
0f41302f | 6438 | /* Output E-type to REAL_VALUE_TYPE. */ |
b31c244f RS |
6439 | PUT_REAL (e, &r); |
6440 | return r; | |
6441 | } | |
842fbaaa JW |
6442 | |
6443 | ||
8468c4a4 | 6444 | #if 0 |
b51ab098 RK |
6445 | /* Convert target computer unsigned 64-bit integer to e-type. |
6446 | The endian-ness of DImode follows the convention for integers, | |
8c35bbc5 | 6447 | so we use WORDS_BIG_ENDIAN here, not REAL_WORDS_BIG_ENDIAN. */ |
842fbaaa | 6448 | |
a0353055 | 6449 | static void |
842fbaaa | 6450 | uditoe (di, e) |
0f41302f | 6451 | unsigned EMUSHORT *di; /* Address of the 64-bit int. */ |
842fbaaa JW |
6452 | unsigned EMUSHORT *e; |
6453 | { | |
6454 | unsigned EMUSHORT yi[NI]; | |
6455 | int k; | |
6456 | ||
6457 | ecleaz (yi); | |
f76b9db2 ILT |
6458 | if (WORDS_BIG_ENDIAN) |
6459 | { | |
6460 | for (k = M; k < M + 4; k++) | |
6461 | yi[k] = *di++; | |
6462 | } | |
6463 | else | |
6464 | { | |
6465 | for (k = M + 3; k >= M; k--) | |
6466 | yi[k] = *di++; | |
6467 | } | |
842fbaaa JW |
6468 | yi[E] = EXONE + 47; /* exponent if normalize shift count were 0 */ |
6469 | if ((k = enormlz (yi)) > NBITS)/* normalize the significand */ | |
6470 | ecleaz (yi); /* it was zero */ | |
6471 | else | |
6472 | yi[E] -= (unsigned EMUSHORT) k;/* subtract shift count from exponent */ | |
6473 | emovo (yi, e); | |
6474 | } | |
6475 | ||
0f41302f | 6476 | /* Convert target computer signed 64-bit integer to e-type. */ |
842fbaaa | 6477 | |
a0353055 | 6478 | static void |
842fbaaa | 6479 | ditoe (di, e) |
0f41302f | 6480 | unsigned EMUSHORT *di; /* Address of the 64-bit int. */ |
842fbaaa JW |
6481 | unsigned EMUSHORT *e; |
6482 | { | |
6483 | unsigned EMULONG acc; | |
6484 | unsigned EMUSHORT yi[NI]; | |
6485 | unsigned EMUSHORT carry; | |
6486 | int k, sign; | |
6487 | ||
6488 | ecleaz (yi); | |
f76b9db2 ILT |
6489 | if (WORDS_BIG_ENDIAN) |
6490 | { | |
6491 | for (k = M; k < M + 4; k++) | |
6492 | yi[k] = *di++; | |
6493 | } | |
6494 | else | |
6495 | { | |
6496 | for (k = M + 3; k >= M; k--) | |
6497 | yi[k] = *di++; | |
6498 | } | |
842fbaaa JW |
6499 | /* Take absolute value */ |
6500 | sign = 0; | |
6501 | if (yi[M] & 0x8000) | |
6502 | { | |
6503 | sign = 1; | |
6504 | carry = 0; | |
6505 | for (k = M + 3; k >= M; k--) | |
6506 | { | |
6507 | acc = (unsigned EMULONG) (~yi[k] & 0xffff) + carry; | |
6508 | yi[k] = acc; | |
6509 | carry = 0; | |
6510 | if (acc & 0x10000) | |
6511 | carry = 1; | |
6512 | } | |
6513 | } | |
6514 | yi[E] = EXONE + 47; /* exponent if normalize shift count were 0 */ | |
6515 | if ((k = enormlz (yi)) > NBITS)/* normalize the significand */ | |
6516 | ecleaz (yi); /* it was zero */ | |
6517 | else | |
6518 | yi[E] -= (unsigned EMUSHORT) k;/* subtract shift count from exponent */ | |
6519 | emovo (yi, e); | |
6520 | if (sign) | |
6521 | eneg (e); | |
6522 | } | |
6523 | ||
6524 | ||
0f41302f | 6525 | /* Convert e-type to unsigned 64-bit int. */ |
842fbaaa | 6526 | |
b6ca239d | 6527 | static void |
008f0d36 | 6528 | etoudi (x, i) |
842fbaaa JW |
6529 | unsigned EMUSHORT *x; |
6530 | unsigned EMUSHORT *i; | |
6531 | { | |
6532 | unsigned EMUSHORT xi[NI]; | |
6533 | int j, k; | |
6534 | ||
6535 | emovi (x, xi); | |
6536 | if (xi[0]) | |
6537 | { | |
6538 | xi[M] = 0; | |
6539 | goto noshift; | |
6540 | } | |
6541 | k = (int) xi[E] - (EXONE - 1); | |
6542 | if (k <= 0) | |
6543 | { | |
6544 | for (j = 0; j < 4; j++) | |
6545 | *i++ = 0; | |
6546 | return; | |
6547 | } | |
6548 | if (k > 64) | |
6549 | { | |
6550 | for (j = 0; j < 4; j++) | |
6551 | *i++ = 0xffff; | |
6552 | if (extra_warnings) | |
6553 | warning ("overflow on truncation to integer"); | |
6554 | return; | |
6555 | } | |
6556 | if (k > 16) | |
6557 | { | |
6558 | /* Shift more than 16 bits: first shift up k-16 mod 16, | |
6559 | then shift up by 16's. */ | |
6560 | j = k - ((k >> 4) << 4); | |
6561 | if (j == 0) | |
6562 | j = 16; | |
6563 | eshift (xi, j); | |
f76b9db2 ILT |
6564 | if (WORDS_BIG_ENDIAN) |
6565 | *i++ = xi[M]; | |
6566 | else | |
6567 | { | |
6568 | i += 3; | |
6569 | *i-- = xi[M]; | |
6570 | } | |
842fbaaa JW |
6571 | k -= j; |
6572 | do | |
6573 | { | |
6574 | eshup6 (xi); | |
f76b9db2 ILT |
6575 | if (WORDS_BIG_ENDIAN) |
6576 | *i++ = xi[M]; | |
6577 | else | |
6578 | *i-- = xi[M]; | |
842fbaaa JW |
6579 | } |
6580 | while ((k -= 16) > 0); | |
6581 | } | |
6582 | else | |
6583 | { | |
6584 | /* shift not more than 16 bits */ | |
6585 | eshift (xi, k); | |
6586 | ||
6587 | noshift: | |
6588 | ||
f76b9db2 ILT |
6589 | if (WORDS_BIG_ENDIAN) |
6590 | { | |
6591 | i += 3; | |
6592 | *i-- = xi[M]; | |
6593 | *i-- = 0; | |
6594 | *i-- = 0; | |
6595 | *i = 0; | |
6596 | } | |
6597 | else | |
6598 | { | |
6599 | *i++ = xi[M]; | |
6600 | *i++ = 0; | |
6601 | *i++ = 0; | |
6602 | *i = 0; | |
6603 | } | |
842fbaaa JW |
6604 | } |
6605 | } | |
6606 | ||
6607 | ||
0f41302f | 6608 | /* Convert e-type to signed 64-bit int. */ |
842fbaaa | 6609 | |
b6ca239d | 6610 | static void |
842fbaaa JW |
6611 | etodi (x, i) |
6612 | unsigned EMUSHORT *x; | |
6613 | unsigned EMUSHORT *i; | |
6614 | { | |
6615 | unsigned EMULONG acc; | |
6616 | unsigned EMUSHORT xi[NI]; | |
6617 | unsigned EMUSHORT carry; | |
6618 | unsigned EMUSHORT *isave; | |
6619 | int j, k; | |
6620 | ||
6621 | emovi (x, xi); | |
6622 | k = (int) xi[E] - (EXONE - 1); | |
6623 | if (k <= 0) | |
6624 | { | |
6625 | for (j = 0; j < 4; j++) | |
6626 | *i++ = 0; | |
6627 | return; | |
6628 | } | |
6629 | if (k > 64) | |
6630 | { | |
6631 | for (j = 0; j < 4; j++) | |
6632 | *i++ = 0xffff; | |
6633 | if (extra_warnings) | |
6634 | warning ("overflow on truncation to integer"); | |
6635 | return; | |
6636 | } | |
6637 | isave = i; | |
6638 | if (k > 16) | |
6639 | { | |
6640 | /* Shift more than 16 bits: first shift up k-16 mod 16, | |
6641 | then shift up by 16's. */ | |
6642 | j = k - ((k >> 4) << 4); | |
6643 | if (j == 0) | |
6644 | j = 16; | |
6645 | eshift (xi, j); | |
f76b9db2 ILT |
6646 | if (WORDS_BIG_ENDIAN) |
6647 | *i++ = xi[M]; | |
6648 | else | |
6649 | { | |
6650 | i += 3; | |
6651 | *i-- = xi[M]; | |
6652 | } | |
842fbaaa JW |
6653 | k -= j; |
6654 | do | |
6655 | { | |
6656 | eshup6 (xi); | |
f76b9db2 ILT |
6657 | if (WORDS_BIG_ENDIAN) |
6658 | *i++ = xi[M]; | |
6659 | else | |
6660 | *i-- = xi[M]; | |
842fbaaa JW |
6661 | } |
6662 | while ((k -= 16) > 0); | |
6663 | } | |
6664 | else | |
6665 | { | |
6666 | /* shift not more than 16 bits */ | |
6667 | eshift (xi, k); | |
6668 | ||
f76b9db2 ILT |
6669 | if (WORDS_BIG_ENDIAN) |
6670 | { | |
6671 | i += 3; | |
6672 | *i = xi[M]; | |
6673 | *i-- = 0; | |
6674 | *i-- = 0; | |
6675 | *i = 0; | |
6676 | } | |
6677 | else | |
6678 | { | |
6679 | *i++ = xi[M]; | |
6680 | *i++ = 0; | |
6681 | *i++ = 0; | |
6682 | *i = 0; | |
6683 | } | |
842fbaaa JW |
6684 | } |
6685 | /* Negate if negative */ | |
6686 | if (xi[0]) | |
6687 | { | |
6688 | carry = 0; | |
f76b9db2 ILT |
6689 | if (WORDS_BIG_ENDIAN) |
6690 | isave += 3; | |
842fbaaa JW |
6691 | for (k = 0; k < 4; k++) |
6692 | { | |
6693 | acc = (unsigned EMULONG) (~(*isave) & 0xffff) + carry; | |
f76b9db2 ILT |
6694 | if (WORDS_BIG_ENDIAN) |
6695 | *isave-- = acc; | |
6696 | else | |
6697 | *isave++ = acc; | |
842fbaaa JW |
6698 | carry = 0; |
6699 | if (acc & 0x10000) | |
6700 | carry = 1; | |
6701 | } | |
6702 | } | |
6703 | } | |
6704 | ||
6705 | ||
0f41302f | 6706 | /* Longhand square root routine. */ |
842fbaaa JW |
6707 | |
6708 | ||
6709 | static int esqinited = 0; | |
6710 | static unsigned short sqrndbit[NI]; | |
6711 | ||
b6ca239d | 6712 | static void |
842fbaaa JW |
6713 | esqrt (x, y) |
6714 | unsigned EMUSHORT *x, *y; | |
6715 | { | |
6716 | unsigned EMUSHORT temp[NI], num[NI], sq[NI], xx[NI]; | |
6717 | EMULONG m, exp; | |
6718 | int i, j, k, n, nlups; | |
6719 | ||
6720 | if (esqinited == 0) | |
6721 | { | |
6722 | ecleaz (sqrndbit); | |
6723 | sqrndbit[NI - 2] = 1; | |
6724 | esqinited = 1; | |
6725 | } | |
6726 | /* Check for arg <= 0 */ | |
6727 | i = ecmp (x, ezero); | |
6728 | if (i <= 0) | |
6729 | { | |
29e11dab | 6730 | if (i == -1) |
842fbaaa | 6731 | { |
29e11dab RK |
6732 | mtherr ("esqrt", DOMAIN); |
6733 | eclear (y); | |
842fbaaa | 6734 | } |
29e11dab RK |
6735 | else |
6736 | emov (x, y); | |
842fbaaa JW |
6737 | return; |
6738 | } | |
6739 | ||
6740 | #ifdef INFINITY | |
6741 | if (eisinf (x)) | |
6742 | { | |
6743 | eclear (y); | |
6744 | einfin (y); | |
6745 | return; | |
6746 | } | |
6747 | #endif | |
0f41302f | 6748 | /* Bring in the arg and renormalize if it is denormal. */ |
842fbaaa JW |
6749 | emovi (x, xx); |
6750 | m = (EMULONG) xx[1]; /* local long word exponent */ | |
6751 | if (m == 0) | |
6752 | m -= enormlz (xx); | |
6753 | ||
6754 | /* Divide exponent by 2 */ | |
6755 | m -= 0x3ffe; | |
6756 | exp = (unsigned short) ((m / 2) + 0x3ffe); | |
6757 | ||
6758 | /* Adjust if exponent odd */ | |
6759 | if ((m & 1) != 0) | |
6760 | { | |
6761 | if (m > 0) | |
6762 | exp += 1; | |
6763 | eshdn1 (xx); | |
6764 | } | |
6765 | ||
6766 | ecleaz (sq); | |
6767 | ecleaz (num); | |
6768 | n = 8; /* get 8 bits of result per inner loop */ | |
6769 | nlups = rndprc; | |
6770 | j = 0; | |
6771 | ||
6772 | while (nlups > 0) | |
6773 | { | |
6774 | /* bring in next word of arg */ | |
6775 | if (j < NE) | |
6776 | num[NI - 1] = xx[j + 3]; | |
0f41302f | 6777 | /* Do additional bit on last outer loop, for roundoff. */ |
842fbaaa JW |
6778 | if (nlups <= 8) |
6779 | n = nlups + 1; | |
6780 | for (i = 0; i < n; i++) | |
6781 | { | |
6782 | /* Next 2 bits of arg */ | |
6783 | eshup1 (num); | |
6784 | eshup1 (num); | |
6785 | /* Shift up answer */ | |
6786 | eshup1 (sq); | |
6787 | /* Make trial divisor */ | |
6788 | for (k = 0; k < NI; k++) | |
6789 | temp[k] = sq[k]; | |
6790 | eshup1 (temp); | |
6791 | eaddm (sqrndbit, temp); | |
6792 | /* Subtract and insert answer bit if it goes in */ | |
6793 | if (ecmpm (temp, num) <= 0) | |
6794 | { | |
6795 | esubm (temp, num); | |
6796 | sq[NI - 2] |= 1; | |
6797 | } | |
6798 | } | |
6799 | nlups -= n; | |
6800 | j += 1; | |
6801 | } | |
6802 | ||
0f41302f | 6803 | /* Adjust for extra, roundoff loop done. */ |
842fbaaa JW |
6804 | exp += (NBITS - 1) - rndprc; |
6805 | ||
0f41302f | 6806 | /* Sticky bit = 1 if the remainder is nonzero. */ |
842fbaaa JW |
6807 | k = 0; |
6808 | for (i = 3; i < NI; i++) | |
6809 | k |= (int) num[i]; | |
6810 | ||
0f41302f | 6811 | /* Renormalize and round off. */ |
842fbaaa JW |
6812 | emdnorm (sq, k, 0, exp, 64); |
6813 | emovo (sq, y); | |
6814 | } | |
8468c4a4 | 6815 | #endif |
985b6196 | 6816 | #endif /* EMU_NON_COMPILE not defined */ |
8ddae348 RK |
6817 | \f |
6818 | /* Return the binary precision of the significand for a given | |
6819 | floating point mode. The mode can hold an integer value | |
6820 | that many bits wide, without losing any bits. */ | |
6821 | ||
6822 | int | |
6823 | significand_size (mode) | |
6824 | enum machine_mode mode; | |
6825 | { | |
6826 | ||
de3a68a1 RK |
6827 | /* Don't test the modes, but their sizes, lest this |
6828 | code won't work for BITS_PER_UNIT != 8 . */ | |
6829 | ||
6830 | switch (GET_MODE_BITSIZE (mode)) | |
8ddae348 | 6831 | { |
de3a68a1 | 6832 | case 32: |
b6ca239d | 6833 | |
f5963e61 JL |
6834 | #if TARGET_FLOAT_FORMAT == C4X_FLOAT_FORMAT |
6835 | return 56; | |
6836 | #endif | |
6837 | ||
8ddae348 RK |
6838 | return 24; |
6839 | ||
de3a68a1 | 6840 | case 64: |
8ddae348 RK |
6841 | #if TARGET_FLOAT_FORMAT == IEEE_FLOAT_FORMAT |
6842 | return 53; | |
6843 | #else | |
6844 | #if TARGET_FLOAT_FORMAT == IBM_FLOAT_FORMAT | |
6845 | return 56; | |
6846 | #else | |
6847 | #if TARGET_FLOAT_FORMAT == VAX_FLOAT_FORMAT | |
6848 | return 56; | |
f5963e61 JL |
6849 | #else |
6850 | #if TARGET_FLOAT_FORMAT == C4X_FLOAT_FORMAT | |
6851 | return 56; | |
8ddae348 RK |
6852 | #else |
6853 | abort (); | |
6854 | #endif | |
6855 | #endif | |
f5963e61 | 6856 | #endif |
8ddae348 RK |
6857 | #endif |
6858 | ||
de3a68a1 | 6859 | case 96: |
8ddae348 | 6860 | return 64; |
de3a68a1 | 6861 | case 128: |
8ddae348 RK |
6862 | return 113; |
6863 | ||
6864 | default: | |
6865 | abort (); | |
6866 | } | |
6867 | } |