]>
Commit | Line | Data |
---|---|---|
985b6196 RS |
1 | /* real.c - implementation of REAL_ARITHMETIC, REAL_VALUE_ATOF, |
2 | and support for XFmode IEEE extended real floating point arithmetic. | |
3 | Contributed by Stephen L. Moshier (moshier@world.std.com). | |
4 | ||
5 | Copyright (C) 1993 Free Software Foundation, Inc. | |
6 | ||
7 | This file is part of GNU CC. | |
8 | ||
9 | GNU CC is free software; you can redistribute it and/or modify | |
10 | it under the terms of the GNU General Public License as published by | |
11 | the Free Software Foundation; either version 2, or (at your option) | |
12 | any later version. | |
13 | ||
14 | GNU CC is distributed in the hope that it will be useful, | |
15 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
16 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
17 | GNU General Public License for more details. | |
18 | ||
19 | You should have received a copy of the GNU General Public License | |
20 | along with GNU CC; see the file COPYING. If not, write to | |
21 | the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */ | |
22 | ||
23 | #include <stdio.h> | |
64685ffa | 24 | #include <errno.h> |
985b6196 | 25 | #include "config.h" |
985b6196 RS |
26 | #include "tree.h" |
27 | ||
64685ffa RS |
28 | #ifndef errno |
29 | extern int errno; | |
30 | #endif | |
31 | ||
985b6196 RS |
32 | /* To enable support of XFmode extended real floating point, define |
33 | LONG_DOUBLE_TYPE_SIZE 96 in the tm.h file (m68k.h or i386.h). | |
34 | ||
842fbaaa | 35 | To support cross compilation between IEEE, VAX and IBM floating |
985b6196 RS |
36 | point formats, define REAL_ARITHMETIC in the tm.h file. |
37 | ||
38 | In either case the machine files (tm.h) must not contain any code | |
39 | that tries to use host floating point arithmetic to convert | |
40 | REAL_VALUE_TYPEs from `double' to `float', pass them to fprintf, | |
41 | etc. In cross-compile situations a REAL_VALUE_TYPE may not | |
42 | be intelligible to the host computer's native arithmetic. | |
43 | ||
44 | The emulator defaults to the host's floating point format so that | |
45 | its decimal conversion functions can be used if desired (see | |
46 | real.h). | |
47 | ||
48 | The first part of this file interfaces gcc to ieee.c, which is a | |
49 | floating point arithmetic suite that was not written with gcc in | |
50 | mind. The interface is followed by ieee.c itself and related | |
51 | items. Avoid changing ieee.c unless you have suitable test | |
52 | programs available. A special version of the PARANOIA floating | |
53 | point arithmetic tester, modified for this purpose, can be found | |
54 | on usc.edu : /pub/C-numanal/ieeetest.zoo. Some tutorial | |
55 | information on ieee.c is given in my book: S. L. Moshier, | |
56 | _Methods and Programs for Mathematical Functions_, Prentice-Hall | |
57 | or Simon & Schuster Int'l, 1989. A library of XFmode elementary | |
58 | transcendental functions can be obtained by ftp from | |
59 | research.att.com: netlib/cephes/ldouble.shar.Z */ | |
60 | ||
61 | /* Type of computer arithmetic. | |
842fbaaa | 62 | * Only one of DEC, IBM, MIEEE, IBMPC, or UNK should get defined. |
985b6196 RS |
63 | */ |
64 | ||
66b6d60b RS |
65 | /* `MIEEE' refers generically to big-endian IEEE floating-point data |
66 | structure. This definition should work in SFmode `float' type and | |
67 | DFmode `double' type on virtually all big-endian IEEE machines. | |
68 | If LONG_DOUBLE_TYPE_SIZE has been defined to be 96, then MIEEE | |
69 | also invokes the particular XFmode (`long double' type) data | |
70 | structure used by the Motorola 680x0 series processors. | |
71 | ||
72 | `IBMPC' refers generally to little-endian IEEE machines. In this | |
73 | case, if LONG_DOUBLE_TYPE_SIZE has been defined to be 96, then | |
74 | IBMPC also invokes the particular XFmode `long double' data | |
75 | structure used by the Intel 80x86 series processors. | |
76 | ||
77 | `DEC' refers specifically to the Digital Equipment Corp PDP-11 | |
78 | and VAX floating point data structure. This model currently | |
79 | supports no type wider than DFmode. | |
80 | ||
842fbaaa JW |
81 | `IBM' refers specifically to the IBM System/370 and compatible |
82 | floating point data structure. This model currently supports | |
83 | no type wider than DFmode. The IBM conversions were contributed by | |
84 | frank@atom.ansto.gov.au (Frank Crawford). | |
85 | ||
66b6d60b RS |
86 | If LONG_DOUBLE_TYPE_SIZE = 64 (the default, unless tm.h defines it) |
87 | then `long double' and `double' are both implemented, but they | |
88 | both mean DFmode. In this case, the software floating-point | |
89 | support available here is activated by writing | |
90 | #define REAL_ARITHMETIC | |
91 | in tm.h. | |
92 | ||
93 | The case LONG_DOUBLE_TYPE_SIZE = 128 activates TFmode support | |
842fbaaa JW |
94 | and may deactivate XFmode since `long double' is used to refer |
95 | to both modes. */ | |
66b6d60b RS |
96 | |
97 | /* The following converts gcc macros into the ones used by this file. */ | |
98 | ||
985b6196 RS |
99 | /* REAL_ARITHMETIC defined means that macros in real.h are |
100 | defined to call emulator functions. */ | |
101 | #ifdef REAL_ARITHMETIC | |
102 | ||
103 | #if TARGET_FLOAT_FORMAT == VAX_FLOAT_FORMAT | |
104 | /* PDP-11, Pro350, VAX: */ | |
105 | #define DEC 1 | |
106 | #else /* it's not VAX */ | |
842fbaaa JW |
107 | #if TARGET_FLOAT_FORMAT == IBM_FLOAT_FORMAT |
108 | /* IBM System/370 style */ | |
109 | #define IBM 1 | |
110 | #else /* it's also not an IBM */ | |
985b6196 RS |
111 | #if TARGET_FLOAT_FORMAT == IEEE_FLOAT_FORMAT |
112 | #if WORDS_BIG_ENDIAN | |
113 | /* Motorola IEEE, high order words come first (Sun workstation): */ | |
114 | #define MIEEE 1 | |
115 | #else /* not big-endian */ | |
116 | /* Intel IEEE, low order words come first: | |
117 | */ | |
118 | #define IBMPC 1 | |
119 | #endif /* big-endian */ | |
120 | #else /* it's not IEEE either */ | |
121 | /* UNKnown arithmetic. We don't support this and can't go on. */ | |
122 | unknown arithmetic type | |
123 | #define UNK 1 | |
124 | #endif /* not IEEE */ | |
842fbaaa | 125 | #endif /* not IBM */ |
985b6196 RS |
126 | #endif /* not VAX */ |
127 | ||
128 | #else | |
129 | /* REAL_ARITHMETIC not defined means that the *host's* data | |
130 | structure will be used. It may differ by endian-ness from the | |
131 | target machine's structure and will get its ends swapped | |
132 | accordingly (but not here). Probably only the decimal <-> binary | |
133 | functions in this file will actually be used in this case. */ | |
134 | #if HOST_FLOAT_FORMAT == VAX_FLOAT_FORMAT | |
135 | #define DEC 1 | |
136 | #else /* it's not VAX */ | |
842fbaaa JW |
137 | #if HOST_FLOAT_FORMAT == IBM_FLOAT_FORMAT |
138 | /* IBM System/370 style */ | |
139 | #define IBM 1 | |
140 | #else /* it's also not an IBM */ | |
985b6196 RS |
141 | #if HOST_FLOAT_FORMAT == IEEE_FLOAT_FORMAT |
142 | #ifdef HOST_WORDS_BIG_ENDIAN | |
143 | #define MIEEE 1 | |
144 | #else /* not big-endian */ | |
145 | #define IBMPC 1 | |
146 | #endif /* big-endian */ | |
147 | #else /* it's not IEEE either */ | |
148 | unknown arithmetic type | |
149 | #define UNK 1 | |
150 | #endif /* not IEEE */ | |
842fbaaa | 151 | #endif /* not IBM */ |
985b6196 RS |
152 | #endif /* not VAX */ |
153 | ||
154 | #endif /* REAL_ARITHMETIC not defined */ | |
155 | ||
66b6d60b RS |
156 | /* Define INFINITY for support of infinity. |
157 | Define NANS for support of Not-a-Number's (NaN's). */ | |
842fbaaa | 158 | #if !defined(DEC) && !defined(IBM) |
985b6196 | 159 | #define INFINITY |
66b6d60b | 160 | #define NANS |
985b6196 RS |
161 | #endif |
162 | ||
66b6d60b RS |
163 | /* Support of NaNs requires support of infinity. */ |
164 | #ifdef NANS | |
165 | #ifndef INFINITY | |
166 | #define INFINITY | |
167 | #endif | |
168 | #endif | |
985b6196 | 169 | |
985b6196 RS |
170 | /* Find a host integer type that is at least 16 bits wide, |
171 | and another type at least twice whatever that size is. */ | |
172 | ||
173 | #if HOST_BITS_PER_CHAR >= 16 | |
174 | #define EMUSHORT char | |
175 | #define EMUSHORT_SIZE HOST_BITS_PER_CHAR | |
176 | #define EMULONG_SIZE (2 * HOST_BITS_PER_CHAR) | |
177 | #else | |
178 | #if HOST_BITS_PER_SHORT >= 16 | |
179 | #define EMUSHORT short | |
180 | #define EMUSHORT_SIZE HOST_BITS_PER_SHORT | |
181 | #define EMULONG_SIZE (2 * HOST_BITS_PER_SHORT) | |
182 | #else | |
183 | #if HOST_BITS_PER_INT >= 16 | |
184 | #define EMUSHORT int | |
185 | #define EMUSHORT_SIZE HOST_BITS_PER_INT | |
186 | #define EMULONG_SIZE (2 * HOST_BITS_PER_INT) | |
187 | #else | |
188 | #if HOST_BITS_PER_LONG >= 16 | |
189 | #define EMUSHORT long | |
190 | #define EMUSHORT_SIZE HOST_BITS_PER_LONG | |
191 | #define EMULONG_SIZE (2 * HOST_BITS_PER_LONG) | |
192 | #else | |
193 | /* You will have to modify this program to have a smaller unit size. */ | |
194 | #define EMU_NON_COMPILE | |
195 | #endif | |
196 | #endif | |
197 | #endif | |
198 | #endif | |
199 | ||
200 | #if HOST_BITS_PER_SHORT >= EMULONG_SIZE | |
201 | #define EMULONG short | |
202 | #else | |
203 | #if HOST_BITS_PER_INT >= EMULONG_SIZE | |
204 | #define EMULONG int | |
205 | #else | |
206 | #if HOST_BITS_PER_LONG >= EMULONG_SIZE | |
207 | #define EMULONG long | |
208 | #else | |
209 | #if HOST_BITS_PER_LONG_LONG >= EMULONG_SIZE | |
210 | #define EMULONG long long int | |
211 | #else | |
212 | /* You will have to modify this program to have a smaller unit size. */ | |
213 | #define EMU_NON_COMPILE | |
214 | #endif | |
215 | #endif | |
216 | #endif | |
217 | #endif | |
218 | ||
219 | ||
220 | /* The host interface doesn't work if no 16-bit size exists. */ | |
221 | #if EMUSHORT_SIZE != 16 | |
222 | #define EMU_NON_COMPILE | |
223 | #endif | |
224 | ||
225 | /* OK to continue compilation. */ | |
226 | #ifndef EMU_NON_COMPILE | |
227 | ||
228 | /* Construct macros to translate between REAL_VALUE_TYPE and e type. | |
229 | In GET_REAL and PUT_REAL, r and e are pointers. | |
230 | A REAL_VALUE_TYPE is guaranteed to occupy contiguous locations | |
231 | in memory, with no holes. */ | |
232 | ||
233 | #if LONG_DOUBLE_TYPE_SIZE == 96 | |
842fbaaa JW |
234 | /* Number of 16 bit words in external e type format */ |
235 | #define NE 6 | |
236 | #define MAXDECEXP 4932 | |
237 | #define MINDECEXP -4956 | |
985b6196 RS |
238 | #define GET_REAL(r,e) bcopy (r, e, 2*NE) |
239 | #define PUT_REAL(e,r) bcopy (e, r, 2*NE) | |
240 | #else /* no XFmode */ | |
842fbaaa JW |
241 | #if LONG_DOUBLE_TYPE_SIZE == 128 |
242 | #define NE 10 | |
243 | #define MAXDECEXP 4932 | |
244 | #define MINDECEXP -4977 | |
245 | #define GET_REAL(r,e) bcopy (r, e, 2*NE) | |
246 | #define PUT_REAL(e,r) bcopy (e, r, 2*NE) | |
247 | #else | |
248 | #define NE 6 | |
249 | #define MAXDECEXP 4932 | |
250 | #define MINDECEXP -4956 | |
985b6196 RS |
251 | #ifdef REAL_ARITHMETIC |
252 | /* Emulator uses target format internally | |
253 | but host stores it in host endian-ness. */ | |
254 | ||
255 | #if defined (HOST_WORDS_BIG_ENDIAN) == WORDS_BIG_ENDIAN | |
256 | #define GET_REAL(r,e) e53toe ((r), (e)) | |
257 | #define PUT_REAL(e,r) etoe53 ((e), (r)) | |
258 | ||
259 | #else /* endian-ness differs */ | |
260 | /* emulator uses target endian-ness internally */ | |
261 | #define GET_REAL(r,e) \ | |
262 | do { EMUSHORT w[4]; \ | |
263 | w[3] = ((EMUSHORT *) r)[0]; \ | |
264 | w[2] = ((EMUSHORT *) r)[1]; \ | |
265 | w[1] = ((EMUSHORT *) r)[2]; \ | |
266 | w[0] = ((EMUSHORT *) r)[3]; \ | |
267 | e53toe (w, (e)); } while (0) | |
268 | ||
269 | #define PUT_REAL(e,r) \ | |
270 | do { EMUSHORT w[4]; \ | |
271 | etoe53 ((e), w); \ | |
272 | *((EMUSHORT *) r) = w[3]; \ | |
273 | *((EMUSHORT *) r + 1) = w[2]; \ | |
274 | *((EMUSHORT *) r + 2) = w[1]; \ | |
275 | *((EMUSHORT *) r + 3) = w[0]; } while (0) | |
276 | ||
277 | #endif /* endian-ness differs */ | |
278 | ||
279 | #else /* not REAL_ARITHMETIC */ | |
280 | ||
281 | /* emulator uses host format */ | |
282 | #define GET_REAL(r,e) e53toe ((r), (e)) | |
283 | #define PUT_REAL(e,r) etoe53 ((e), (r)) | |
284 | ||
285 | #endif /* not REAL_ARITHMETIC */ | |
842fbaaa | 286 | #endif /* not TFmode */ |
985b6196 RS |
287 | #endif /* no XFmode */ |
288 | ||
842fbaaa JW |
289 | |
290 | /* Number of 16 bit words in internal format */ | |
291 | #define NI (NE+3) | |
292 | ||
293 | /* Array offset to exponent */ | |
294 | #define E 1 | |
295 | ||
296 | /* Array offset to high guard word */ | |
297 | #define M 2 | |
298 | ||
299 | /* Number of bits of precision */ | |
300 | #define NBITS ((NI-4)*16) | |
301 | ||
302 | /* Maximum number of decimal digits in ASCII conversion | |
303 | * = NBITS*log10(2) | |
304 | */ | |
305 | #define NDEC (NBITS*8/27) | |
306 | ||
307 | /* The exponent of 1.0 */ | |
308 | #define EXONE (0x3fff) | |
309 | ||
64685ffa RS |
310 | void warning (); |
311 | extern int extra_warnings; | |
66b6d60b RS |
312 | int ecmp (), enormlz (), eshift (); |
313 | int eisneg (), eisinf (), eisnan (), eiisinf (), eiisnan (); | |
985b6196 RS |
314 | void eadd (), esub (), emul (), ediv (); |
315 | void eshup1 (), eshup8 (), eshup6 (), eshdn1 (), eshdn8 (), eshdn6 (); | |
316 | void eabs (), eneg (), emov (), eclear (), einfin (), efloor (); | |
317 | void eldexp (), efrexp (), eifrac (), euifrac (), ltoe (), ultoe (); | |
842fbaaa | 318 | void ereal_to_decimal (), eiinfin (), einan (); |
985b6196 | 319 | void esqrt (), elog (), eexp (), etanh (), epow (); |
842fbaaa JW |
320 | void asctoe (), asctoe24 (), asctoe53 (), asctoe64 (), asctoe113 (); |
321 | void etoasc (), e24toasc (), e53toasc (), e64toasc (), e113toasc (); | |
985b6196 | 322 | void etoe64 (), etoe53 (), etoe24 (), e64toe (), e53toe (), e24toe (); |
842fbaaa | 323 | void etoe113 (), e113toe (); |
66b6d60b | 324 | void mtherr (), make_nan (); |
5f6771ba | 325 | void enan (); |
9d1bd99c MM |
326 | extern unsigned EMUSHORT ezero[], ehalf[], eone[], etwo[]; |
327 | extern unsigned EMUSHORT elog2[], esqrt2[]; | |
985b6196 RS |
328 | |
329 | /* Pack output array with 32-bit numbers obtained from | |
330 | array containing 16-bit numbers, swapping ends if required. */ | |
331 | void | |
332 | endian (e, x, mode) | |
333 | unsigned EMUSHORT e[]; | |
334 | long x[]; | |
335 | enum machine_mode mode; | |
336 | { | |
337 | unsigned long th, t; | |
338 | ||
339 | #if WORDS_BIG_ENDIAN | |
340 | switch (mode) | |
341 | { | |
342 | ||
842fbaaa JW |
343 | case TFmode: |
344 | /* Swap halfwords in the fourth long. */ | |
345 | th = (unsigned long) e[6] & 0xffff; | |
346 | t = (unsigned long) e[7] & 0xffff; | |
347 | t |= th << 16; | |
348 | x[3] = (long) t; | |
349 | ||
985b6196 RS |
350 | case XFmode: |
351 | ||
352 | /* Swap halfwords in the third long. */ | |
353 | th = (unsigned long) e[4] & 0xffff; | |
354 | t = (unsigned long) e[5] & 0xffff; | |
355 | t |= th << 16; | |
356 | x[2] = (long) t; | |
357 | /* fall into the double case */ | |
358 | ||
359 | case DFmode: | |
360 | ||
361 | /* swap halfwords in the second word */ | |
362 | th = (unsigned long) e[2] & 0xffff; | |
363 | t = (unsigned long) e[3] & 0xffff; | |
364 | t |= th << 16; | |
365 | x[1] = (long) t; | |
366 | /* fall into the float case */ | |
367 | ||
368 | case SFmode: | |
369 | ||
370 | /* swap halfwords in the first word */ | |
371 | th = (unsigned long) e[0] & 0xffff; | |
372 | t = (unsigned long) e[1] & 0xffff; | |
373 | t |= th << 16; | |
374 | x[0] = t; | |
375 | break; | |
376 | ||
377 | default: | |
378 | abort (); | |
379 | } | |
380 | ||
381 | #else | |
382 | ||
383 | /* Pack the output array without swapping. */ | |
384 | ||
385 | switch (mode) | |
386 | { | |
387 | ||
842fbaaa JW |
388 | case TFmode: |
389 | ||
390 | /* Pack the fourth long. */ | |
391 | th = (unsigned long) e[7] & 0xffff; | |
392 | t = (unsigned long) e[6] & 0xffff; | |
393 | t |= th << 16; | |
394 | x[3] = (long) t; | |
395 | ||
985b6196 RS |
396 | case XFmode: |
397 | ||
398 | /* Pack the third long. | |
842fbaaa | 399 | Each element of the input REAL_VALUE_TYPE array has 16 useful bits |
985b6196 RS |
400 | in it. */ |
401 | th = (unsigned long) e[5] & 0xffff; | |
402 | t = (unsigned long) e[4] & 0xffff; | |
403 | t |= th << 16; | |
404 | x[2] = (long) t; | |
405 | /* fall into the double case */ | |
406 | ||
407 | case DFmode: | |
408 | ||
409 | /* pack the second long */ | |
410 | th = (unsigned long) e[3] & 0xffff; | |
411 | t = (unsigned long) e[2] & 0xffff; | |
412 | t |= th << 16; | |
413 | x[1] = (long) t; | |
414 | /* fall into the float case */ | |
415 | ||
416 | case SFmode: | |
417 | ||
418 | /* pack the first long */ | |
419 | th = (unsigned long) e[1] & 0xffff; | |
420 | t = (unsigned long) e[0] & 0xffff; | |
421 | t |= th << 16; | |
422 | x[0] = t; | |
423 | break; | |
424 | ||
425 | default: | |
426 | abort (); | |
427 | } | |
428 | ||
429 | #endif | |
430 | } | |
431 | ||
432 | ||
433 | /* This is the implementation of the REAL_ARITHMETIC macro. | |
434 | */ | |
435 | void | |
436 | earith (value, icode, r1, r2) | |
437 | REAL_VALUE_TYPE *value; | |
438 | int icode; | |
439 | REAL_VALUE_TYPE *r1; | |
440 | REAL_VALUE_TYPE *r2; | |
441 | { | |
442 | unsigned EMUSHORT d1[NE], d2[NE], v[NE]; | |
443 | enum tree_code code; | |
444 | ||
445 | GET_REAL (r1, d1); | |
446 | GET_REAL (r2, d2); | |
66b6d60b RS |
447 | #ifdef NANS |
448 | /* Return NaN input back to the caller. */ | |
449 | if (eisnan (d1)) | |
450 | { | |
451 | PUT_REAL (d1, value); | |
452 | return; | |
453 | } | |
454 | if (eisnan (d2)) | |
455 | { | |
456 | PUT_REAL (d2, value); | |
457 | return; | |
458 | } | |
459 | #endif | |
985b6196 RS |
460 | code = (enum tree_code) icode; |
461 | switch (code) | |
462 | { | |
463 | case PLUS_EXPR: | |
464 | eadd (d2, d1, v); | |
465 | break; | |
466 | ||
467 | case MINUS_EXPR: | |
468 | esub (d2, d1, v); /* d1 - d2 */ | |
469 | break; | |
470 | ||
471 | case MULT_EXPR: | |
472 | emul (d2, d1, v); | |
473 | break; | |
474 | ||
475 | case RDIV_EXPR: | |
476 | #ifndef REAL_INFINITY | |
477 | if (ecmp (d2, ezero) == 0) | |
66b6d60b RS |
478 | { |
479 | #ifdef NANS | |
480 | enan (v); | |
481 | break; | |
482 | #else | |
985b6196 | 483 | abort (); |
66b6d60b RS |
484 | #endif |
485 | } | |
985b6196 RS |
486 | #endif |
487 | ediv (d2, d1, v); /* d1/d2 */ | |
488 | break; | |
489 | ||
490 | case MIN_EXPR: /* min (d1,d2) */ | |
491 | if (ecmp (d1, d2) < 0) | |
492 | emov (d1, v); | |
493 | else | |
494 | emov (d2, v); | |
495 | break; | |
496 | ||
497 | case MAX_EXPR: /* max (d1,d2) */ | |
498 | if (ecmp (d1, d2) > 0) | |
499 | emov (d1, v); | |
500 | else | |
501 | emov (d2, v); | |
502 | break; | |
503 | default: | |
504 | emov (ezero, v); | |
505 | break; | |
506 | } | |
507 | PUT_REAL (v, value); | |
508 | } | |
509 | ||
510 | ||
511 | /* Truncate REAL_VALUE_TYPE toward zero to signed HOST_WIDE_INT | |
66b6d60b | 512 | * implements REAL_VALUE_RNDZINT (x) (etrunci (x)) |
985b6196 RS |
513 | */ |
514 | REAL_VALUE_TYPE | |
515 | etrunci (x) | |
516 | REAL_VALUE_TYPE x; | |
517 | { | |
518 | unsigned EMUSHORT f[NE], g[NE]; | |
519 | REAL_VALUE_TYPE r; | |
520 | long l; | |
521 | ||
522 | GET_REAL (&x, g); | |
66b6d60b RS |
523 | #ifdef NANS |
524 | if (eisnan (g)) | |
525 | return (x); | |
526 | #endif | |
985b6196 RS |
527 | eifrac (g, &l, f); |
528 | ltoe (&l, g); | |
529 | PUT_REAL (g, &r); | |
530 | return (r); | |
531 | } | |
532 | ||
533 | ||
534 | /* Truncate REAL_VALUE_TYPE toward zero to unsigned HOST_WIDE_INT | |
66b6d60b | 535 | * implements REAL_VALUE_UNSIGNED_RNDZINT (x) (etruncui (x)) |
985b6196 RS |
536 | */ |
537 | REAL_VALUE_TYPE | |
538 | etruncui (x) | |
539 | REAL_VALUE_TYPE x; | |
540 | { | |
541 | unsigned EMUSHORT f[NE], g[NE]; | |
542 | REAL_VALUE_TYPE r; | |
543 | unsigned long l; | |
544 | ||
545 | GET_REAL (&x, g); | |
66b6d60b RS |
546 | #ifdef NANS |
547 | if (eisnan (g)) | |
548 | return (x); | |
549 | #endif | |
985b6196 RS |
550 | euifrac (g, &l, f); |
551 | ultoe (&l, g); | |
552 | PUT_REAL (g, &r); | |
553 | return (r); | |
554 | } | |
555 | ||
556 | ||
557 | /* This is the REAL_VALUE_ATOF function. | |
558 | * It converts a decimal string to binary, rounding off | |
559 | * as indicated by the machine_mode argument. Then it | |
560 | * promotes the rounded value to REAL_VALUE_TYPE. | |
561 | */ | |
562 | REAL_VALUE_TYPE | |
563 | ereal_atof (s, t) | |
564 | char *s; | |
565 | enum machine_mode t; | |
566 | { | |
567 | unsigned EMUSHORT tem[NE], e[NE]; | |
568 | REAL_VALUE_TYPE r; | |
569 | ||
570 | switch (t) | |
571 | { | |
572 | case SFmode: | |
573 | asctoe24 (s, tem); | |
574 | e24toe (tem, e); | |
575 | break; | |
576 | case DFmode: | |
577 | asctoe53 (s, tem); | |
578 | e53toe (tem, e); | |
579 | break; | |
580 | case XFmode: | |
581 | asctoe64 (s, tem); | |
582 | e64toe (tem, e); | |
583 | break; | |
842fbaaa JW |
584 | case TFmode: |
585 | asctoe113 (s, tem); | |
586 | e113toe (tem, e); | |
587 | break; | |
985b6196 RS |
588 | default: |
589 | asctoe (s, e); | |
590 | } | |
591 | PUT_REAL (e, &r); | |
592 | return (r); | |
593 | } | |
594 | ||
595 | ||
596 | /* Expansion of REAL_NEGATE. | |
597 | */ | |
598 | REAL_VALUE_TYPE | |
599 | ereal_negate (x) | |
600 | REAL_VALUE_TYPE x; | |
601 | { | |
602 | unsigned EMUSHORT e[NE]; | |
603 | REAL_VALUE_TYPE r; | |
604 | ||
605 | GET_REAL (&x, e); | |
66b6d60b RS |
606 | #ifdef NANS |
607 | if (eisnan (e)) | |
608 | return (x); | |
609 | #endif | |
985b6196 RS |
610 | eneg (e); |
611 | PUT_REAL (e, &r); | |
612 | return (r); | |
613 | } | |
614 | ||
615 | ||
842fbaaa JW |
616 | /* Round real toward zero to HOST_WIDE_INT |
617 | * implements REAL_VALUE_FIX (x). | |
985b6196 | 618 | */ |
842fbaaa JW |
619 | long |
620 | efixi (x) | |
985b6196 RS |
621 | REAL_VALUE_TYPE x; |
622 | { | |
623 | unsigned EMUSHORT f[NE], g[NE]; | |
842fbaaa | 624 | long l; |
985b6196 RS |
625 | |
626 | GET_REAL (&x, f); | |
66b6d60b RS |
627 | #ifdef NANS |
628 | if (eisnan (f)) | |
629 | { | |
630 | warning ("conversion from NaN to int"); | |
631 | return (-1); | |
632 | } | |
633 | #endif | |
842fbaaa JW |
634 | eifrac (f, &l, g); |
635 | return l; | |
985b6196 RS |
636 | } |
637 | ||
842fbaaa JW |
638 | /* Round real toward zero to unsigned HOST_WIDE_INT |
639 | * implements REAL_VALUE_UNSIGNED_FIX (x). | |
985b6196 | 640 | * Negative input returns zero. |
985b6196 | 641 | */ |
842fbaaa JW |
642 | unsigned long |
643 | efixui (x) | |
985b6196 RS |
644 | REAL_VALUE_TYPE x; |
645 | { | |
646 | unsigned EMUSHORT f[NE], g[NE]; | |
842fbaaa | 647 | unsigned long l; |
985b6196 RS |
648 | |
649 | GET_REAL (&x, f); | |
66b6d60b RS |
650 | #ifdef NANS |
651 | if (eisnan (f)) | |
652 | { | |
653 | warning ("conversion from NaN to unsigned int"); | |
654 | return (-1); | |
655 | } | |
656 | #endif | |
842fbaaa JW |
657 | euifrac (f, &l, g); |
658 | return l; | |
985b6196 RS |
659 | } |
660 | ||
661 | ||
662 | /* REAL_VALUE_FROM_INT macro. | |
663 | */ | |
664 | void | |
665 | ereal_from_int (d, i, j) | |
666 | REAL_VALUE_TYPE *d; | |
667 | long i, j; | |
668 | { | |
669 | unsigned EMUSHORT df[NE], dg[NE]; | |
670 | long low, high; | |
671 | int sign; | |
672 | ||
673 | sign = 0; | |
674 | low = i; | |
675 | if ((high = j) < 0) | |
676 | { | |
677 | sign = 1; | |
678 | /* complement and add 1 */ | |
679 | high = ~high; | |
680 | if (low) | |
681 | low = -low; | |
682 | else | |
683 | high += 1; | |
684 | } | |
685 | eldexp (eone, HOST_BITS_PER_LONG, df); | |
686 | ultoe (&high, dg); | |
687 | emul (dg, df, dg); | |
688 | ultoe (&low, df); | |
689 | eadd (df, dg, dg); | |
690 | if (sign) | |
691 | eneg (dg); | |
692 | PUT_REAL (dg, d); | |
693 | } | |
694 | ||
695 | ||
696 | /* REAL_VALUE_FROM_UNSIGNED_INT macro. | |
697 | */ | |
698 | void | |
699 | ereal_from_uint (d, i, j) | |
700 | REAL_VALUE_TYPE *d; | |
701 | unsigned long i, j; | |
702 | { | |
703 | unsigned EMUSHORT df[NE], dg[NE]; | |
704 | unsigned long low, high; | |
705 | ||
706 | low = i; | |
707 | high = j; | |
708 | eldexp (eone, HOST_BITS_PER_LONG, df); | |
709 | ultoe (&high, dg); | |
710 | emul (dg, df, dg); | |
711 | ultoe (&low, df); | |
712 | eadd (df, dg, dg); | |
713 | PUT_REAL (dg, d); | |
714 | } | |
715 | ||
716 | ||
717 | /* REAL_VALUE_TO_INT macro | |
718 | */ | |
719 | void | |
720 | ereal_to_int (low, high, rr) | |
721 | long *low, *high; | |
722 | REAL_VALUE_TYPE rr; | |
723 | { | |
724 | unsigned EMUSHORT d[NE], df[NE], dg[NE], dh[NE]; | |
725 | int s; | |
726 | ||
727 | GET_REAL (&rr, d); | |
66b6d60b | 728 | #ifdef NANS |
970491df | 729 | if (eisnan (d)) |
66b6d60b RS |
730 | { |
731 | warning ("conversion from NaN to int"); | |
732 | *low = -1; | |
733 | *high = -1; | |
734 | return; | |
735 | } | |
736 | #endif | |
985b6196 RS |
737 | /* convert positive value */ |
738 | s = 0; | |
739 | if (eisneg (d)) | |
740 | { | |
741 | eneg (d); | |
742 | s = 1; | |
743 | } | |
744 | eldexp (eone, HOST_BITS_PER_LONG, df); | |
745 | ediv (df, d, dg); /* dg = d / 2^32 is the high word */ | |
746 | euifrac (dg, high, dh); | |
747 | emul (df, dh, dg); /* fractional part is the low word */ | |
748 | euifrac (dg, low, dh); | |
749 | if (s) | |
750 | { | |
751 | /* complement and add 1 */ | |
752 | *high = ~(*high); | |
753 | if (*low) | |
754 | *low = -(*low); | |
755 | else | |
756 | *high += 1; | |
757 | } | |
758 | } | |
759 | ||
760 | ||
761 | /* REAL_VALUE_LDEXP macro. | |
762 | */ | |
763 | REAL_VALUE_TYPE | |
764 | ereal_ldexp (x, n) | |
765 | REAL_VALUE_TYPE x; | |
766 | int n; | |
767 | { | |
768 | unsigned EMUSHORT e[NE], y[NE]; | |
769 | REAL_VALUE_TYPE r; | |
770 | ||
771 | GET_REAL (&x, e); | |
66b6d60b RS |
772 | #ifdef NANS |
773 | if (eisnan (e)) | |
774 | return (x); | |
775 | #endif | |
985b6196 RS |
776 | eldexp (e, n, y); |
777 | PUT_REAL (y, &r); | |
778 | return (r); | |
779 | } | |
780 | ||
781 | /* These routines are conditionally compiled because functions | |
782 | * of the same names may be defined in fold-const.c. */ | |
783 | #ifdef REAL_ARITHMETIC | |
784 | ||
785 | /* Check for infinity in a REAL_VALUE_TYPE. */ | |
786 | int | |
787 | target_isinf (x) | |
788 | REAL_VALUE_TYPE x; | |
789 | { | |
790 | unsigned EMUSHORT e[NE]; | |
791 | ||
792 | #ifdef INFINITY | |
793 | GET_REAL (&x, e); | |
794 | return (eisinf (e)); | |
795 | #else | |
796 | return 0; | |
797 | #endif | |
798 | } | |
799 | ||
800 | ||
66b6d60b | 801 | /* Check whether a REAL_VALUE_TYPE item is a NaN. */ |
985b6196 RS |
802 | |
803 | int | |
804 | target_isnan (x) | |
805 | REAL_VALUE_TYPE x; | |
806 | { | |
9d72da33 RS |
807 | unsigned EMUSHORT e[NE]; |
808 | ||
66b6d60b | 809 | #ifdef NANS |
9d72da33 RS |
810 | GET_REAL (&x, e); |
811 | return (eisnan (e)); | |
66b6d60b | 812 | #else |
985b6196 | 813 | return (0); |
66b6d60b | 814 | #endif |
985b6196 RS |
815 | } |
816 | ||
817 | ||
66b6d60b | 818 | /* Check for a negative REAL_VALUE_TYPE number. |
985b6196 RS |
819 | * this means strictly less than zero, not -0. |
820 | */ | |
821 | ||
822 | int | |
823 | target_negative (x) | |
824 | REAL_VALUE_TYPE x; | |
825 | { | |
826 | unsigned EMUSHORT e[NE]; | |
827 | ||
828 | GET_REAL (&x, e); | |
66b6d60b | 829 | if (ecmp (e, ezero) == -1) |
985b6196 RS |
830 | return (1); |
831 | return (0); | |
832 | } | |
833 | ||
834 | /* Expansion of REAL_VALUE_TRUNCATE. | |
835 | * The result is in floating point, rounded to nearest or even. | |
836 | */ | |
837 | REAL_VALUE_TYPE | |
838 | real_value_truncate (mode, arg) | |
839 | enum machine_mode mode; | |
840 | REAL_VALUE_TYPE arg; | |
841 | { | |
842 | unsigned EMUSHORT e[NE], t[NE]; | |
843 | REAL_VALUE_TYPE r; | |
844 | ||
845 | GET_REAL (&arg, e); | |
66b6d60b RS |
846 | #ifdef NANS |
847 | if (eisnan (e)) | |
848 | return (arg); | |
849 | #endif | |
985b6196 RS |
850 | eclear (t); |
851 | switch (mode) | |
852 | { | |
842fbaaa JW |
853 | case TFmode: |
854 | etoe113 (e, t); | |
855 | e113toe (t, t); | |
856 | break; | |
857 | ||
985b6196 RS |
858 | case XFmode: |
859 | etoe64 (e, t); | |
860 | e64toe (t, t); | |
861 | break; | |
862 | ||
863 | case DFmode: | |
864 | etoe53 (e, t); | |
865 | e53toe (t, t); | |
866 | break; | |
867 | ||
868 | case SFmode: | |
869 | etoe24 (e, t); | |
870 | e24toe (t, t); | |
871 | break; | |
872 | ||
873 | case SImode: | |
874 | r = etrunci (e); | |
875 | return (r); | |
876 | ||
877 | default: | |
878 | abort (); | |
879 | } | |
880 | PUT_REAL (t, &r); | |
881 | return (r); | |
882 | } | |
883 | ||
884 | #endif /* REAL_ARITHMETIC defined */ | |
885 | ||
886 | /* Target values are arrays of host longs. A long is guaranteed | |
887 | to be at least 32 bits wide. */ | |
842fbaaa JW |
888 | |
889 | /* 128-bit long double */ | |
890 | void | |
891 | etartdouble (r, l) | |
892 | REAL_VALUE_TYPE r; | |
893 | long l[]; | |
894 | { | |
895 | unsigned EMUSHORT e[NE]; | |
896 | ||
897 | GET_REAL (&r, e); | |
898 | etoe113 (e, e); | |
899 | endian (e, l, TFmode); | |
900 | } | |
901 | ||
902 | /* 80-bit long double */ | |
985b6196 RS |
903 | void |
904 | etarldouble (r, l) | |
905 | REAL_VALUE_TYPE r; | |
906 | long l[]; | |
907 | { | |
908 | unsigned EMUSHORT e[NE]; | |
909 | ||
910 | GET_REAL (&r, e); | |
911 | etoe64 (e, e); | |
912 | endian (e, l, XFmode); | |
913 | } | |
914 | ||
915 | void | |
916 | etardouble (r, l) | |
917 | REAL_VALUE_TYPE r; | |
918 | long l[]; | |
919 | { | |
920 | unsigned EMUSHORT e[NE]; | |
921 | ||
922 | GET_REAL (&r, e); | |
923 | etoe53 (e, e); | |
924 | endian (e, l, DFmode); | |
925 | } | |
926 | ||
927 | long | |
928 | etarsingle (r) | |
929 | REAL_VALUE_TYPE r; | |
930 | { | |
931 | unsigned EMUSHORT e[NE]; | |
932 | unsigned long l; | |
933 | ||
934 | GET_REAL (&r, e); | |
935 | etoe24 (e, e); | |
936 | endian (e, &l, SFmode); | |
937 | return ((long) l); | |
938 | } | |
939 | ||
940 | void | |
941 | ereal_to_decimal (x, s) | |
942 | REAL_VALUE_TYPE x; | |
943 | char *s; | |
944 | { | |
945 | unsigned EMUSHORT e[NE]; | |
946 | ||
947 | GET_REAL (&x, e); | |
948 | etoasc (e, s, 20); | |
949 | } | |
950 | ||
951 | int | |
952 | ereal_cmp (x, y) | |
953 | REAL_VALUE_TYPE x, y; | |
954 | { | |
955 | unsigned EMUSHORT ex[NE], ey[NE]; | |
956 | ||
957 | GET_REAL (&x, ex); | |
958 | GET_REAL (&y, ey); | |
959 | return (ecmp (ex, ey)); | |
960 | } | |
961 | ||
962 | int | |
963 | ereal_isneg (x) | |
964 | REAL_VALUE_TYPE x; | |
965 | { | |
966 | unsigned EMUSHORT ex[NE]; | |
967 | ||
968 | GET_REAL (&x, ex); | |
969 | return (eisneg (ex)); | |
970 | } | |
971 | ||
972 | /* End of REAL_ARITHMETIC interface */ | |
973 | ||
974 | /* ieee.c | |
975 | * | |
976 | * Extended precision IEEE binary floating point arithmetic routines | |
977 | * | |
978 | * Numbers are stored in C language as arrays of 16-bit unsigned | |
979 | * short integers. The arguments of the routines are pointers to | |
980 | * the arrays. | |
981 | * | |
982 | * | |
983 | * External e type data structure, simulates Intel 8087 chip | |
984 | * temporary real format but possibly with a larger significand: | |
985 | * | |
986 | * NE-1 significand words (least significant word first, | |
987 | * most significant bit is normally set) | |
988 | * exponent (value = EXONE for 1.0, | |
989 | * top bit is the sign) | |
990 | * | |
991 | * | |
992 | * Internal data structure of a number (a "word" is 16 bits): | |
993 | * | |
994 | * ei[0] sign word (0 for positive, 0xffff for negative) | |
995 | * ei[1] biased exponent (value = EXONE for the number 1.0) | |
996 | * ei[2] high guard word (always zero after normalization) | |
997 | * ei[3] | |
998 | * to ei[NI-2] significand (NI-4 significand words, | |
999 | * most significant word first, | |
1000 | * most significant bit is set) | |
1001 | * ei[NI-1] low guard word (0x8000 bit is rounding place) | |
1002 | * | |
1003 | * | |
1004 | * | |
1005 | * Routines for external format numbers | |
1006 | * | |
1007 | * asctoe (string, e) ASCII string to extended double e type | |
1008 | * asctoe64 (string, &d) ASCII string to long double | |
1009 | * asctoe53 (string, &d) ASCII string to double | |
1010 | * asctoe24 (string, &f) ASCII string to single | |
1011 | * asctoeg (string, e, prec) ASCII string to specified precision | |
1012 | * e24toe (&f, e) IEEE single precision to e type | |
1013 | * e53toe (&d, e) IEEE double precision to e type | |
1014 | * e64toe (&d, e) IEEE long double precision to e type | |
842fbaaa | 1015 | * e113toe (&d, e) 128-bit long double precision to e type |
985b6196 RS |
1016 | * eabs (e) absolute value |
1017 | * eadd (a, b, c) c = b + a | |
1018 | * eclear (e) e = 0 | |
66b6d60b RS |
1019 | * ecmp (a, b) Returns 1 if a > b, 0 if a == b, |
1020 | * -1 if a < b, -2 if either a or b is a NaN. | |
985b6196 RS |
1021 | * ediv (a, b, c) c = b / a |
1022 | * efloor (a, b) truncate to integer, toward -infinity | |
1023 | * efrexp (a, exp, s) extract exponent and significand | |
1024 | * eifrac (e, &l, frac) e to long integer and e type fraction | |
1025 | * euifrac (e, &l, frac) e to unsigned long integer and e type fraction | |
1026 | * einfin (e) set e to infinity, leaving its sign alone | |
1027 | * eldexp (a, n, b) multiply by 2**n | |
1028 | * emov (a, b) b = a | |
1029 | * emul (a, b, c) c = b * a | |
1030 | * eneg (e) e = -e | |
1031 | * eround (a, b) b = nearest integer value to a | |
1032 | * esub (a, b, c) c = b - a | |
1033 | * e24toasc (&f, str, n) single to ASCII string, n digits after decimal | |
1034 | * e53toasc (&d, str, n) double to ASCII string, n digits after decimal | |
842fbaaa JW |
1035 | * e64toasc (&d, str, n) 80-bit long double to ASCII string |
1036 | * e113toasc (&d, str, n) 128-bit long double to ASCII string | |
985b6196 RS |
1037 | * etoasc (e, str, n) e to ASCII string, n digits after decimal |
1038 | * etoe24 (e, &f) convert e type to IEEE single precision | |
1039 | * etoe53 (e, &d) convert e type to IEEE double precision | |
1040 | * etoe64 (e, &d) convert e type to IEEE long double precision | |
1041 | * ltoe (&l, e) long (32 bit) integer to e type | |
1042 | * ultoe (&l, e) unsigned long (32 bit) integer to e type | |
1043 | * eisneg (e) 1 if sign bit of e != 0, else 0 | |
66b6d60b RS |
1044 | * eisinf (e) 1 if e has maximum exponent (non-IEEE) |
1045 | * or is infinite (IEEE) | |
1046 | * eisnan (e) 1 if e is a NaN | |
985b6196 RS |
1047 | * |
1048 | * | |
1049 | * Routines for internal format numbers | |
1050 | * | |
1051 | * eaddm (ai, bi) add significands, bi = bi + ai | |
1052 | * ecleaz (ei) ei = 0 | |
1053 | * ecleazs (ei) set ei = 0 but leave its sign alone | |
1054 | * ecmpm (ai, bi) compare significands, return 1, 0, or -1 | |
1055 | * edivm (ai, bi) divide significands, bi = bi / ai | |
1056 | * emdnorm (ai,l,s,exp) normalize and round off | |
1057 | * emovi (a, ai) convert external a to internal ai | |
1058 | * emovo (ai, a) convert internal ai to external a | |
1059 | * emovz (ai, bi) bi = ai, low guard word of bi = 0 | |
1060 | * emulm (ai, bi) multiply significands, bi = bi * ai | |
1061 | * enormlz (ei) left-justify the significand | |
1062 | * eshdn1 (ai) shift significand and guards down 1 bit | |
1063 | * eshdn8 (ai) shift down 8 bits | |
1064 | * eshdn6 (ai) shift down 16 bits | |
1065 | * eshift (ai, n) shift ai n bits up (or down if n < 0) | |
1066 | * eshup1 (ai) shift significand and guards up 1 bit | |
1067 | * eshup8 (ai) shift up 8 bits | |
1068 | * eshup6 (ai) shift up 16 bits | |
1069 | * esubm (ai, bi) subtract significands, bi = bi - ai | |
66b6d60b RS |
1070 | * eiisinf (ai) 1 if infinite |
1071 | * eiisnan (ai) 1 if a NaN | |
1072 | * einan (ai) set ai = NaN | |
1073 | * eiinfin (ai) set ai = infinity | |
985b6196 RS |
1074 | * |
1075 | * | |
1076 | * The result is always normalized and rounded to NI-4 word precision | |
1077 | * after each arithmetic operation. | |
1078 | * | |
66b6d60b RS |
1079 | * Exception flags are NOT fully supported. |
1080 | * | |
1081 | * Signaling NaN's are NOT supported; they are treated the same | |
1082 | * as quiet NaN's. | |
1083 | * | |
1084 | * Define INFINITY for support of infinity; otherwise a | |
985b6196 | 1085 | * saturation arithmetic is implemented. |
985b6196 | 1086 | * |
66b6d60b RS |
1087 | * Define NANS for support of Not-a-Number items; otherwise the |
1088 | * arithmetic will never produce a NaN output, and might be confused | |
1089 | * by a NaN input. | |
1090 | * If NaN's are supported, the output of `ecmp (a,b)' is -2 if | |
1091 | * either a or b is a NaN. This means asking `if (ecmp (a,b) < 0)' | |
1092 | * may not be legitimate. Use `if (ecmp (a,b) == -1)' for `less than' | |
1093 | * if in doubt. | |
985b6196 | 1094 | * |
66b6d60b RS |
1095 | * Denormals are always supported here where appropriate (e.g., not |
1096 | * for conversion to DEC numbers). | |
985b6196 | 1097 | * |
985b6196 RS |
1098 | */ |
1099 | ||
1100 | ||
1101 | /* mconf.h | |
1102 | * | |
1103 | * Common include file for math routines | |
1104 | * | |
1105 | * | |
1106 | * | |
1107 | * SYNOPSIS: | |
1108 | * | |
1109 | * #include "mconf.h" | |
1110 | * | |
1111 | * | |
1112 | * | |
1113 | * DESCRIPTION: | |
1114 | * | |
1115 | * This file contains definitions for error codes that are | |
1116 | * passed to the common error handling routine mtherr | |
1117 | * (which see). | |
1118 | * | |
1119 | * The file also includes a conditional assembly definition | |
1120 | * for the type of computer arithmetic (Intel IEEE, DEC, Motorola | |
1121 | * IEEE, or UNKnown). | |
1122 | * | |
1123 | * For Digital Equipment PDP-11 and VAX computers, certain | |
1124 | * IBM systems, and others that use numbers with a 56-bit | |
1125 | * significand, the symbol DEC should be defined. In this | |
1126 | * mode, most floating point constants are given as arrays | |
1127 | * of octal integers to eliminate decimal to binary conversion | |
1128 | * errors that might be introduced by the compiler. | |
1129 | * | |
1130 | * For computers, such as IBM PC, that follow the IEEE | |
1131 | * Standard for Binary Floating Point Arithmetic (ANSI/IEEE | |
1132 | * Std 754-1985), the symbol IBMPC or MIEEE should be defined. | |
1133 | * These numbers have 53-bit significands. In this mode, constants | |
1134 | * are provided as arrays of hexadecimal 16 bit integers. | |
1135 | * | |
1136 | * To accommodate other types of computer arithmetic, all | |
1137 | * constants are also provided in a normal decimal radix | |
1138 | * which one can hope are correctly converted to a suitable | |
1139 | * format by the available C language compiler. To invoke | |
1140 | * this mode, the symbol UNK is defined. | |
1141 | * | |
1142 | * An important difference among these modes is a predefined | |
1143 | * set of machine arithmetic constants for each. The numbers | |
1144 | * MACHEP (the machine roundoff error), MAXNUM (largest number | |
1145 | * represented), and several other parameters are preset by | |
1146 | * the configuration symbol. Check the file const.c to | |
1147 | * ensure that these values are correct for your computer. | |
1148 | * | |
1149 | * For ANSI C compatibility, define ANSIC equal to 1. Currently | |
1150 | * this affects only the atan2 function and others that use it. | |
1151 | */ | |
1152 | \f | |
e8650b8f | 1153 | /* Constant definitions for math error conditions. */ |
985b6196 RS |
1154 | |
1155 | #define DOMAIN 1 /* argument domain error */ | |
1156 | #define SING 2 /* argument singularity */ | |
1157 | #define OVERFLOW 3 /* overflow range error */ | |
1158 | #define UNDERFLOW 4 /* underflow range error */ | |
1159 | #define TLOSS 5 /* total loss of precision */ | |
1160 | #define PLOSS 6 /* partial loss of precision */ | |
66b6d60b | 1161 | #define INVALID 7 /* NaN-producing operation */ |
985b6196 | 1162 | |
985b6196 RS |
1163 | /* e type constants used by high precision check routines */ |
1164 | ||
842fbaaa | 1165 | #if LONG_DOUBLE_TYPE_SIZE == 128 |
985b6196 RS |
1166 | /* 0.0 */ |
1167 | unsigned EMUSHORT ezero[NE] = | |
842fbaaa JW |
1168 | {0x0000, 0x0000, 0x0000, 0x0000, |
1169 | 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,}; | |
985b6196 RS |
1170 | extern unsigned EMUSHORT ezero[]; |
1171 | ||
1172 | /* 5.0E-1 */ | |
1173 | unsigned EMUSHORT ehalf[NE] = | |
842fbaaa JW |
1174 | {0x0000, 0x0000, 0x0000, 0x0000, |
1175 | 0x0000, 0x0000, 0x0000, 0x0000, 0x8000, 0x3ffe,}; | |
985b6196 RS |
1176 | extern unsigned EMUSHORT ehalf[]; |
1177 | ||
1178 | /* 1.0E0 */ | |
1179 | unsigned EMUSHORT eone[NE] = | |
842fbaaa JW |
1180 | {0x0000, 0x0000, 0x0000, 0x0000, |
1181 | 0x0000, 0x0000, 0x0000, 0x0000, 0x8000, 0x3fff,}; | |
985b6196 RS |
1182 | extern unsigned EMUSHORT eone[]; |
1183 | ||
1184 | /* 2.0E0 */ | |
1185 | unsigned EMUSHORT etwo[NE] = | |
842fbaaa JW |
1186 | {0x0000, 0x0000, 0x0000, 0x0000, |
1187 | 0x0000, 0x0000, 0x0000, 0x0000, 0x8000, 0x4000,}; | |
985b6196 RS |
1188 | extern unsigned EMUSHORT etwo[]; |
1189 | ||
1190 | /* 3.2E1 */ | |
1191 | unsigned EMUSHORT e32[NE] = | |
842fbaaa JW |
1192 | {0x0000, 0x0000, 0x0000, 0x0000, |
1193 | 0x0000, 0x0000, 0x0000, 0x0000, 0x8000, 0x4004,}; | |
985b6196 RS |
1194 | extern unsigned EMUSHORT e32[]; |
1195 | ||
1196 | /* 6.93147180559945309417232121458176568075500134360255E-1 */ | |
1197 | unsigned EMUSHORT elog2[NE] = | |
842fbaaa JW |
1198 | {0x40f3, 0xf6af, 0x03f2, 0xb398, |
1199 | 0xc9e3, 0x79ab, 0150717, 0013767, 0130562, 0x3ffe,}; | |
985b6196 RS |
1200 | extern unsigned EMUSHORT elog2[]; |
1201 | ||
1202 | /* 1.41421356237309504880168872420969807856967187537695E0 */ | |
1203 | unsigned EMUSHORT esqrt2[NE] = | |
842fbaaa JW |
1204 | {0x1d6f, 0xbe9f, 0x754a, 0x89b3, |
1205 | 0x597d, 0x6484, 0174736, 0171463, 0132404, 0x3fff,}; | |
985b6196 RS |
1206 | extern unsigned EMUSHORT esqrt2[]; |
1207 | ||
985b6196 RS |
1208 | /* 3.14159265358979323846264338327950288419716939937511E0 */ |
1209 | unsigned EMUSHORT epi[NE] = | |
842fbaaa | 1210 | {0x2902, 0x1cd1, 0x80dc, 0x628b, |
985b6196 RS |
1211 | 0xc4c6, 0xc234, 0020550, 0155242, 0144417, 0040000,}; |
1212 | extern unsigned EMUSHORT epi[]; | |
1213 | ||
842fbaaa JW |
1214 | #else |
1215 | /* LONG_DOUBLE_TYPE_SIZE is other than 128 */ | |
1216 | unsigned EMUSHORT ezero[NE] = | |
1217 | {0, 0000000, 0000000, 0000000, 0000000, 0000000,}; | |
1218 | unsigned EMUSHORT ehalf[NE] = | |
1219 | {0, 0000000, 0000000, 0000000, 0100000, 0x3ffe,}; | |
1220 | unsigned EMUSHORT eone[NE] = | |
1221 | {0, 0000000, 0000000, 0000000, 0100000, 0x3fff,}; | |
1222 | unsigned EMUSHORT etwo[NE] = | |
1223 | {0, 0000000, 0000000, 0000000, 0100000, 0040000,}; | |
1224 | unsigned EMUSHORT e32[NE] = | |
1225 | {0, 0000000, 0000000, 0000000, 0100000, 0040004,}; | |
1226 | unsigned EMUSHORT elog2[NE] = | |
1227 | {0xc9e4, 0x79ab, 0150717, 0013767, 0130562, 0x3ffe,}; | |
1228 | unsigned EMUSHORT esqrt2[NE] = | |
1229 | {0x597e, 0x6484, 0174736, 0171463, 0132404, 0x3fff,}; | |
1230 | unsigned EMUSHORT epi[NE] = | |
1231 | {0xc4c6, 0xc234, 0020550, 0155242, 0144417, 0040000,}; | |
1232 | #endif | |
985b6196 RS |
1233 | |
1234 | ||
1235 | ||
1236 | /* Control register for rounding precision. | |
842fbaaa | 1237 | * This can be set to 113 (if NE=10), 80 (if NE=6), 64, 56, 53, or 24 bits. |
985b6196 RS |
1238 | */ |
1239 | int rndprc = NBITS; | |
1240 | extern int rndprc; | |
1241 | ||
1242 | void eaddm (), esubm (), emdnorm (), asctoeg (); | |
842fbaaa | 1243 | static void toe24 (), toe53 (), toe64 (), toe113 (); |
985b6196 RS |
1244 | void eremain (), einit (), eiremain (); |
1245 | int ecmpm (), edivm (), emulm (); | |
1246 | void emovi (), emovo (), emovz (), ecleaz (), ecleazs (), eadd1 (); | |
842fbaaa | 1247 | #ifdef DEC |
985b6196 | 1248 | void etodec (), todec (), dectoe (); |
842fbaaa JW |
1249 | #endif |
1250 | #ifdef IBM | |
1251 | void etoibm (), toibm (), ibmtoe (); | |
1252 | #endif | |
985b6196 RS |
1253 | |
1254 | ||
1255 | void | |
1256 | einit () | |
1257 | { | |
1258 | } | |
1259 | ||
1260 | /* | |
1261 | ; Clear out entire external format number. | |
1262 | ; | |
1263 | ; unsigned EMUSHORT x[]; | |
1264 | ; eclear (x); | |
1265 | */ | |
1266 | ||
1267 | void | |
1268 | eclear (x) | |
1269 | register unsigned EMUSHORT *x; | |
1270 | { | |
1271 | register int i; | |
1272 | ||
1273 | for (i = 0; i < NE; i++) | |
1274 | *x++ = 0; | |
1275 | } | |
1276 | ||
1277 | ||
1278 | ||
1279 | /* Move external format number from a to b. | |
1280 | * | |
1281 | * emov (a, b); | |
1282 | */ | |
1283 | ||
1284 | void | |
1285 | emov (a, b) | |
1286 | register unsigned EMUSHORT *a, *b; | |
1287 | { | |
1288 | register int i; | |
1289 | ||
1290 | for (i = 0; i < NE; i++) | |
1291 | *b++ = *a++; | |
1292 | } | |
1293 | ||
1294 | ||
1295 | /* | |
1296 | ; Absolute value of external format number | |
1297 | ; | |
1298 | ; EMUSHORT x[NE]; | |
1299 | ; eabs (x); | |
1300 | */ | |
1301 | ||
1302 | void | |
1303 | eabs (x) | |
1304 | unsigned EMUSHORT x[]; /* x is the memory address of a short */ | |
1305 | { | |
1306 | ||
1307 | x[NE - 1] &= 0x7fff; /* sign is top bit of last word of external format */ | |
1308 | } | |
1309 | ||
1310 | ||
1311 | ||
1312 | ||
1313 | /* | |
1314 | ; Negate external format number | |
1315 | ; | |
1316 | ; unsigned EMUSHORT x[NE]; | |
1317 | ; eneg (x); | |
1318 | */ | |
1319 | ||
1320 | void | |
1321 | eneg (x) | |
1322 | unsigned EMUSHORT x[]; | |
1323 | { | |
1324 | ||
66b6d60b RS |
1325 | #ifdef NANS |
1326 | if (eisnan (x)) | |
1327 | return; | |
1328 | #endif | |
985b6196 RS |
1329 | x[NE - 1] ^= 0x8000; /* Toggle the sign bit */ |
1330 | } | |
1331 | ||
1332 | ||
1333 | ||
1334 | /* Return 1 if external format number is negative, | |
66b6d60b | 1335 | * else return zero, including when it is a NaN. |
985b6196 RS |
1336 | */ |
1337 | int | |
1338 | eisneg (x) | |
1339 | unsigned EMUSHORT x[]; | |
1340 | { | |
1341 | ||
66b6d60b RS |
1342 | #ifdef NANS |
1343 | if (eisnan (x)) | |
1344 | return (0); | |
1345 | #endif | |
985b6196 RS |
1346 | if (x[NE - 1] & 0x8000) |
1347 | return (1); | |
1348 | else | |
1349 | return (0); | |
1350 | } | |
1351 | ||
1352 | ||
66b6d60b | 1353 | /* Return 1 if external format number is infinity. |
985b6196 RS |
1354 | * else return zero. |
1355 | */ | |
1356 | int | |
1357 | eisinf (x) | |
1358 | unsigned EMUSHORT x[]; | |
1359 | { | |
1360 | ||
66b6d60b RS |
1361 | #ifdef NANS |
1362 | if (eisnan (x)) | |
1363 | return (0); | |
1364 | #endif | |
985b6196 RS |
1365 | if ((x[NE - 1] & 0x7fff) == 0x7fff) |
1366 | return (1); | |
1367 | else | |
1368 | return (0); | |
1369 | } | |
1370 | ||
1371 | ||
66b6d60b RS |
1372 | /* Check if e-type number is not a number. |
1373 | The bit pattern is one that we defined, so we know for sure how to | |
1374 | detect it. */ | |
1375 | ||
1376 | int | |
1377 | eisnan (x) | |
1378 | unsigned EMUSHORT x[]; | |
1379 | { | |
1380 | ||
1381 | #ifdef NANS | |
1382 | int i; | |
1383 | /* NaN has maximum exponent */ | |
1384 | if ((x[NE - 1] & 0x7fff) != 0x7fff) | |
1385 | return (0); | |
1386 | /* ... and non-zero significand field. */ | |
1387 | for (i = 0; i < NE - 1; i++) | |
1388 | { | |
1389 | if (*x++ != 0) | |
1390 | return (1); | |
1391 | } | |
1392 | #endif | |
1393 | return (0); | |
1394 | } | |
1395 | ||
1396 | /* Fill external format number with infinity pattern (IEEE) | |
842fbaaa | 1397 | or largest possible number (non-IEEE). */ |
985b6196 RS |
1398 | |
1399 | void | |
1400 | einfin (x) | |
1401 | register unsigned EMUSHORT *x; | |
1402 | { | |
1403 | register int i; | |
1404 | ||
1405 | #ifdef INFINITY | |
1406 | for (i = 0; i < NE - 1; i++) | |
1407 | *x++ = 0; | |
1408 | *x |= 32767; | |
1409 | #else | |
1410 | for (i = 0; i < NE - 1; i++) | |
1411 | *x++ = 0xffff; | |
1412 | *x |= 32766; | |
1413 | if (rndprc < NBITS) | |
1414 | { | |
842fbaaa JW |
1415 | if (rndprc == 113) |
1416 | { | |
1417 | *(x - 9) = 0; | |
1418 | *(x - 8) = 0; | |
1419 | } | |
985b6196 RS |
1420 | if (rndprc == 64) |
1421 | { | |
1422 | *(x - 5) = 0; | |
1423 | } | |
1424 | if (rndprc == 53) | |
1425 | { | |
1426 | *(x - 4) = 0xf800; | |
1427 | } | |
1428 | else | |
1429 | { | |
1430 | *(x - 4) = 0; | |
1431 | *(x - 3) = 0; | |
1432 | *(x - 2) = 0xff00; | |
1433 | } | |
1434 | } | |
1435 | #endif | |
1436 | } | |
1437 | ||
1438 | ||
66b6d60b RS |
1439 | /* Output an e-type NaN. |
1440 | This generates Intel's quiet NaN pattern for extended real. | |
1441 | The exponent is 7fff, the leading mantissa word is c000. */ | |
1442 | ||
1443 | void | |
1444 | enan (x) | |
1445 | register unsigned EMUSHORT *x; | |
1446 | { | |
1447 | register int i; | |
1448 | ||
1449 | for (i = 0; i < NE - 2; i++) | |
1450 | *x++ = 0; | |
1451 | *x++ = 0xc000; | |
1452 | *x = 0x7fff; | |
1453 | } | |
1454 | ||
985b6196 RS |
1455 | |
1456 | /* Move in external format number, | |
1457 | * converting it to internal format. | |
1458 | */ | |
1459 | void | |
1460 | emovi (a, b) | |
1461 | unsigned EMUSHORT *a, *b; | |
1462 | { | |
1463 | register unsigned EMUSHORT *p, *q; | |
1464 | int i; | |
1465 | ||
1466 | q = b; | |
1467 | p = a + (NE - 1); /* point to last word of external number */ | |
1468 | /* get the sign bit */ | |
1469 | if (*p & 0x8000) | |
1470 | *q++ = 0xffff; | |
1471 | else | |
1472 | *q++ = 0; | |
1473 | /* get the exponent */ | |
1474 | *q = *p--; | |
1475 | *q++ &= 0x7fff; /* delete the sign bit */ | |
1476 | #ifdef INFINITY | |
1477 | if ((*(q - 1) & 0x7fff) == 0x7fff) | |
1478 | { | |
66b6d60b RS |
1479 | #ifdef NANS |
1480 | if (eisnan (a)) | |
1481 | { | |
1482 | *q++ = 0; | |
1483 | for (i = 3; i < NI; i++) | |
1484 | *q++ = *p--; | |
1485 | return; | |
1486 | } | |
1487 | #endif | |
985b6196 RS |
1488 | for (i = 2; i < NI; i++) |
1489 | *q++ = 0; | |
1490 | return; | |
1491 | } | |
1492 | #endif | |
1493 | /* clear high guard word */ | |
1494 | *q++ = 0; | |
1495 | /* move in the significand */ | |
1496 | for (i = 0; i < NE - 1; i++) | |
1497 | *q++ = *p--; | |
1498 | /* clear low guard word */ | |
1499 | *q = 0; | |
1500 | } | |
1501 | ||
1502 | ||
1503 | /* Move internal format number out, | |
1504 | * converting it to external format. | |
1505 | */ | |
1506 | void | |
1507 | emovo (a, b) | |
1508 | unsigned EMUSHORT *a, *b; | |
1509 | { | |
1510 | register unsigned EMUSHORT *p, *q; | |
1511 | unsigned EMUSHORT i; | |
1512 | ||
1513 | p = a; | |
1514 | q = b + (NE - 1); /* point to output exponent */ | |
1515 | /* combine sign and exponent */ | |
1516 | i = *p++; | |
1517 | if (i) | |
1518 | *q-- = *p++ | 0x8000; | |
1519 | else | |
1520 | *q-- = *p++; | |
1521 | #ifdef INFINITY | |
1522 | if (*(p - 1) == 0x7fff) | |
1523 | { | |
66b6d60b RS |
1524 | #ifdef NANS |
1525 | if (eiisnan (a)) | |
1526 | { | |
1527 | enan (b); | |
1528 | return; | |
1529 | } | |
1530 | #endif | |
985b6196 | 1531 | einfin (b); |
842fbaaa | 1532 | return; |
985b6196 RS |
1533 | } |
1534 | #endif | |
1535 | /* skip over guard word */ | |
1536 | ++p; | |
1537 | /* move the significand */ | |
1538 | for (i = 0; i < NE - 1; i++) | |
1539 | *q-- = *p++; | |
1540 | } | |
1541 | ||
1542 | ||
1543 | ||
1544 | ||
1545 | /* Clear out internal format number. | |
1546 | */ | |
1547 | ||
1548 | void | |
1549 | ecleaz (xi) | |
1550 | register unsigned EMUSHORT *xi; | |
1551 | { | |
1552 | register int i; | |
1553 | ||
1554 | for (i = 0; i < NI; i++) | |
1555 | *xi++ = 0; | |
1556 | } | |
1557 | ||
1558 | ||
1559 | /* same, but don't touch the sign. */ | |
1560 | ||
1561 | void | |
1562 | ecleazs (xi) | |
1563 | register unsigned EMUSHORT *xi; | |
1564 | { | |
1565 | register int i; | |
1566 | ||
1567 | ++xi; | |
1568 | for (i = 0; i < NI - 1; i++) | |
1569 | *xi++ = 0; | |
1570 | } | |
1571 | ||
1572 | ||
1573 | ||
1574 | /* Move internal format number from a to b. | |
1575 | */ | |
1576 | void | |
1577 | emovz (a, b) | |
1578 | register unsigned EMUSHORT *a, *b; | |
1579 | { | |
1580 | register int i; | |
1581 | ||
1582 | for (i = 0; i < NI - 1; i++) | |
1583 | *b++ = *a++; | |
1584 | /* clear low guard word */ | |
1585 | *b = 0; | |
1586 | } | |
1587 | ||
66b6d60b RS |
1588 | /* Generate internal format NaN. |
1589 | The explicit pattern for this is maximum exponent and | |
1590 | top two significand bits set. */ | |
1591 | ||
1592 | void | |
1593 | einan (x) | |
1594 | unsigned EMUSHORT x[]; | |
1595 | { | |
1596 | ||
1597 | ecleaz (x); | |
1598 | x[E] = 0x7fff; | |
1599 | x[M + 1] = 0xc000; | |
1600 | } | |
1601 | ||
1602 | /* Return nonzero if internal format number is a NaN. */ | |
1603 | ||
1604 | int | |
1605 | eiisnan (x) | |
1606 | unsigned EMUSHORT x[]; | |
1607 | { | |
1608 | int i; | |
1609 | ||
1610 | if ((x[E] & 0x7fff) == 0x7fff) | |
1611 | { | |
1612 | for (i = M + 1; i < NI; i++) | |
1613 | { | |
1614 | if (x[i] != 0) | |
1615 | return (1); | |
1616 | } | |
1617 | } | |
1618 | return (0); | |
1619 | } | |
1620 | ||
1621 | /* Fill internal format number with infinity pattern. | |
1622 | This has maximum exponent and significand all zeros. */ | |
1623 | ||
1624 | void | |
1625 | eiinfin (x) | |
1626 | unsigned EMUSHORT x[]; | |
1627 | { | |
1628 | ||
1629 | ecleaz (x); | |
1630 | x[E] = 0x7fff; | |
1631 | } | |
1632 | ||
1633 | /* Return nonzero if internal format number is infinite. */ | |
1634 | ||
1635 | int | |
1636 | eiisinf (x) | |
1637 | unsigned EMUSHORT x[]; | |
1638 | { | |
1639 | ||
1640 | #ifdef NANS | |
1641 | if (eiisnan (x)) | |
1642 | return (0); | |
1643 | #endif | |
1644 | if ((x[E] & 0x7fff) == 0x7fff) | |
1645 | return (1); | |
1646 | return (0); | |
1647 | } | |
1648 | ||
985b6196 RS |
1649 | |
1650 | /* | |
1651 | ; Compare significands of numbers in internal format. | |
1652 | ; Guard words are included in the comparison. | |
1653 | ; | |
1654 | ; unsigned EMUSHORT a[NI], b[NI]; | |
1655 | ; cmpm (a, b); | |
1656 | ; | |
1657 | ; for the significands: | |
1658 | ; returns +1 if a > b | |
1659 | ; 0 if a == b | |
1660 | ; -1 if a < b | |
1661 | */ | |
1662 | int | |
1663 | ecmpm (a, b) | |
1664 | register unsigned EMUSHORT *a, *b; | |
1665 | { | |
1666 | int i; | |
1667 | ||
1668 | a += M; /* skip up to significand area */ | |
1669 | b += M; | |
1670 | for (i = M; i < NI; i++) | |
1671 | { | |
1672 | if (*a++ != *b++) | |
1673 | goto difrnt; | |
1674 | } | |
1675 | return (0); | |
1676 | ||
1677 | difrnt: | |
1678 | if (*(--a) > *(--b)) | |
1679 | return (1); | |
1680 | else | |
1681 | return (-1); | |
1682 | } | |
1683 | ||
1684 | ||
1685 | /* | |
1686 | ; Shift significand down by 1 bit | |
1687 | */ | |
1688 | ||
1689 | void | |
1690 | eshdn1 (x) | |
1691 | register unsigned EMUSHORT *x; | |
1692 | { | |
1693 | register unsigned EMUSHORT bits; | |
1694 | int i; | |
1695 | ||
1696 | x += M; /* point to significand area */ | |
1697 | ||
1698 | bits = 0; | |
1699 | for (i = M; i < NI; i++) | |
1700 | { | |
1701 | if (*x & 1) | |
1702 | bits |= 1; | |
1703 | *x >>= 1; | |
1704 | if (bits & 2) | |
1705 | *x |= 0x8000; | |
1706 | bits <<= 1; | |
1707 | ++x; | |
1708 | } | |
1709 | } | |
1710 | ||
1711 | ||
1712 | ||
1713 | /* | |
1714 | ; Shift significand up by 1 bit | |
1715 | */ | |
1716 | ||
1717 | void | |
1718 | eshup1 (x) | |
1719 | register unsigned EMUSHORT *x; | |
1720 | { | |
1721 | register unsigned EMUSHORT bits; | |
1722 | int i; | |
1723 | ||
1724 | x += NI - 1; | |
1725 | bits = 0; | |
1726 | ||
1727 | for (i = M; i < NI; i++) | |
1728 | { | |
1729 | if (*x & 0x8000) | |
1730 | bits |= 1; | |
1731 | *x <<= 1; | |
1732 | if (bits & 2) | |
1733 | *x |= 1; | |
1734 | bits <<= 1; | |
1735 | --x; | |
1736 | } | |
1737 | } | |
1738 | ||
1739 | ||
1740 | ||
1741 | /* | |
1742 | ; Shift significand down by 8 bits | |
1743 | */ | |
1744 | ||
1745 | void | |
1746 | eshdn8 (x) | |
1747 | register unsigned EMUSHORT *x; | |
1748 | { | |
1749 | register unsigned EMUSHORT newbyt, oldbyt; | |
1750 | int i; | |
1751 | ||
1752 | x += M; | |
1753 | oldbyt = 0; | |
1754 | for (i = M; i < NI; i++) | |
1755 | { | |
1756 | newbyt = *x << 8; | |
1757 | *x >>= 8; | |
1758 | *x |= oldbyt; | |
1759 | oldbyt = newbyt; | |
1760 | ++x; | |
1761 | } | |
1762 | } | |
1763 | ||
1764 | /* | |
1765 | ; Shift significand up by 8 bits | |
1766 | */ | |
1767 | ||
1768 | void | |
1769 | eshup8 (x) | |
1770 | register unsigned EMUSHORT *x; | |
1771 | { | |
1772 | int i; | |
1773 | register unsigned EMUSHORT newbyt, oldbyt; | |
1774 | ||
1775 | x += NI - 1; | |
1776 | oldbyt = 0; | |
1777 | ||
1778 | for (i = M; i < NI; i++) | |
1779 | { | |
1780 | newbyt = *x >> 8; | |
1781 | *x <<= 8; | |
1782 | *x |= oldbyt; | |
1783 | oldbyt = newbyt; | |
1784 | --x; | |
1785 | } | |
1786 | } | |
1787 | ||
1788 | /* | |
1789 | ; Shift significand up by 16 bits | |
1790 | */ | |
1791 | ||
1792 | void | |
1793 | eshup6 (x) | |
1794 | register unsigned EMUSHORT *x; | |
1795 | { | |
1796 | int i; | |
1797 | register unsigned EMUSHORT *p; | |
1798 | ||
1799 | p = x + M; | |
1800 | x += M + 1; | |
1801 | ||
1802 | for (i = M; i < NI - 1; i++) | |
1803 | *p++ = *x++; | |
1804 | ||
1805 | *p = 0; | |
1806 | } | |
1807 | ||
1808 | /* | |
1809 | ; Shift significand down by 16 bits | |
1810 | */ | |
1811 | ||
1812 | void | |
1813 | eshdn6 (x) | |
1814 | register unsigned EMUSHORT *x; | |
1815 | { | |
1816 | int i; | |
1817 | register unsigned EMUSHORT *p; | |
1818 | ||
1819 | x += NI - 1; | |
1820 | p = x + 1; | |
1821 | ||
1822 | for (i = M; i < NI - 1; i++) | |
1823 | *(--p) = *(--x); | |
1824 | ||
1825 | *(--p) = 0; | |
1826 | } | |
1827 | \f | |
1828 | /* | |
1829 | ; Add significands | |
1830 | ; x + y replaces y | |
1831 | */ | |
1832 | ||
1833 | void | |
1834 | eaddm (x, y) | |
1835 | unsigned EMUSHORT *x, *y; | |
1836 | { | |
1837 | register unsigned EMULONG a; | |
1838 | int i; | |
1839 | unsigned int carry; | |
1840 | ||
1841 | x += NI - 1; | |
1842 | y += NI - 1; | |
1843 | carry = 0; | |
1844 | for (i = M; i < NI; i++) | |
1845 | { | |
1846 | a = (unsigned EMULONG) (*x) + (unsigned EMULONG) (*y) + carry; | |
1847 | if (a & 0x10000) | |
1848 | carry = 1; | |
1849 | else | |
1850 | carry = 0; | |
1851 | *y = (unsigned EMUSHORT) a; | |
1852 | --x; | |
1853 | --y; | |
1854 | } | |
1855 | } | |
1856 | ||
1857 | /* | |
1858 | ; Subtract significands | |
1859 | ; y - x replaces y | |
1860 | */ | |
1861 | ||
1862 | void | |
1863 | esubm (x, y) | |
1864 | unsigned EMUSHORT *x, *y; | |
1865 | { | |
1866 | unsigned EMULONG a; | |
1867 | int i; | |
1868 | unsigned int carry; | |
1869 | ||
1870 | x += NI - 1; | |
1871 | y += NI - 1; | |
1872 | carry = 0; | |
1873 | for (i = M; i < NI; i++) | |
1874 | { | |
1875 | a = (unsigned EMULONG) (*y) - (unsigned EMULONG) (*x) - carry; | |
1876 | if (a & 0x10000) | |
1877 | carry = 1; | |
1878 | else | |
1879 | carry = 0; | |
1880 | *y = (unsigned EMUSHORT) a; | |
1881 | --x; | |
1882 | --y; | |
1883 | } | |
1884 | } | |
1885 | ||
1886 | ||
985b6196 RS |
1887 | static unsigned EMUSHORT equot[NI]; |
1888 | ||
842fbaaa JW |
1889 | |
1890 | #if 0 | |
1891 | /* Radix 2 shift-and-add versions of multiply and divide */ | |
1892 | ||
1893 | ||
1894 | /* Divide significands */ | |
1895 | ||
985b6196 RS |
1896 | int |
1897 | edivm (den, num) | |
1898 | unsigned EMUSHORT den[], num[]; | |
1899 | { | |
1900 | int i; | |
1901 | register unsigned EMUSHORT *p, *q; | |
1902 | unsigned EMUSHORT j; | |
1903 | ||
1904 | p = &equot[0]; | |
1905 | *p++ = num[0]; | |
1906 | *p++ = num[1]; | |
1907 | ||
1908 | for (i = M; i < NI; i++) | |
1909 | { | |
1910 | *p++ = 0; | |
1911 | } | |
1912 | ||
1913 | /* Use faster compare and subtraction if denominator | |
1914 | * has only 15 bits of significance. | |
1915 | */ | |
1916 | p = &den[M + 2]; | |
1917 | if (*p++ == 0) | |
1918 | { | |
1919 | for (i = M + 3; i < NI; i++) | |
1920 | { | |
1921 | if (*p++ != 0) | |
1922 | goto fulldiv; | |
1923 | } | |
1924 | if ((den[M + 1] & 1) != 0) | |
1925 | goto fulldiv; | |
1926 | eshdn1 (num); | |
1927 | eshdn1 (den); | |
1928 | ||
1929 | p = &den[M + 1]; | |
1930 | q = &num[M + 1]; | |
1931 | ||
1932 | for (i = 0; i < NBITS + 2; i++) | |
1933 | { | |
1934 | if (*p <= *q) | |
1935 | { | |
1936 | *q -= *p; | |
1937 | j = 1; | |
1938 | } | |
1939 | else | |
1940 | { | |
1941 | j = 0; | |
1942 | } | |
1943 | eshup1 (equot); | |
1944 | equot[NI - 2] |= j; | |
1945 | eshup1 (num); | |
1946 | } | |
1947 | goto divdon; | |
1948 | } | |
1949 | ||
1950 | /* The number of quotient bits to calculate is | |
1951 | * NBITS + 1 scaling guard bit + 1 roundoff bit. | |
1952 | */ | |
1953 | fulldiv: | |
1954 | ||
1955 | p = &equot[NI - 2]; | |
1956 | for (i = 0; i < NBITS + 2; i++) | |
1957 | { | |
1958 | if (ecmpm (den, num) <= 0) | |
1959 | { | |
1960 | esubm (den, num); | |
1961 | j = 1; /* quotient bit = 1 */ | |
1962 | } | |
1963 | else | |
1964 | j = 0; | |
1965 | eshup1 (equot); | |
1966 | *p |= j; | |
1967 | eshup1 (num); | |
1968 | } | |
1969 | ||
1970 | divdon: | |
1971 | ||
1972 | eshdn1 (equot); | |
1973 | eshdn1 (equot); | |
1974 | ||
1975 | /* test for nonzero remainder after roundoff bit */ | |
1976 | p = &num[M]; | |
1977 | j = 0; | |
1978 | for (i = M; i < NI; i++) | |
1979 | { | |
1980 | j |= *p++; | |
1981 | } | |
1982 | if (j) | |
1983 | j = 1; | |
1984 | ||
1985 | ||
1986 | for (i = 0; i < NI; i++) | |
1987 | num[i] = equot[i]; | |
1988 | return ((int) j); | |
1989 | } | |
1990 | ||
1991 | ||
1992 | /* Multiply significands */ | |
1993 | int | |
1994 | emulm (a, b) | |
1995 | unsigned EMUSHORT a[], b[]; | |
1996 | { | |
1997 | unsigned EMUSHORT *p, *q; | |
1998 | int i, j, k; | |
1999 | ||
2000 | equot[0] = b[0]; | |
2001 | equot[1] = b[1]; | |
2002 | for (i = M; i < NI; i++) | |
2003 | equot[i] = 0; | |
2004 | ||
2005 | p = &a[NI - 2]; | |
2006 | k = NBITS; | |
2007 | while (*p == 0) /* significand is not supposed to be all zero */ | |
2008 | { | |
2009 | eshdn6 (a); | |
2010 | k -= 16; | |
2011 | } | |
2012 | if ((*p & 0xff) == 0) | |
2013 | { | |
2014 | eshdn8 (a); | |
2015 | k -= 8; | |
2016 | } | |
2017 | ||
2018 | q = &equot[NI - 1]; | |
2019 | j = 0; | |
2020 | for (i = 0; i < k; i++) | |
2021 | { | |
2022 | if (*p & 1) | |
2023 | eaddm (b, equot); | |
2024 | /* remember if there were any nonzero bits shifted out */ | |
2025 | if (*q & 1) | |
2026 | j |= 1; | |
2027 | eshdn1 (a); | |
2028 | eshdn1 (equot); | |
2029 | } | |
2030 | ||
2031 | for (i = 0; i < NI; i++) | |
2032 | b[i] = equot[i]; | |
2033 | ||
2034 | /* return flag for lost nonzero bits */ | |
2035 | return (j); | |
2036 | } | |
2037 | ||
842fbaaa JW |
2038 | #else |
2039 | ||
2040 | /* Radix 65536 versions of multiply and divide */ | |
2041 | ||
2042 | ||
2043 | /* Multiply significand of e-type number b | |
2044 | by 16-bit quantity a, e-type result to c. */ | |
2045 | ||
2046 | void m16m( a, b, c ) | |
2047 | unsigned short a; | |
2048 | unsigned short b[], c[]; | |
2049 | { | |
2050 | register unsigned short *pp; | |
2051 | register unsigned long carry; | |
2052 | unsigned short *ps; | |
2053 | unsigned short p[NI]; | |
2054 | unsigned long aa, m; | |
2055 | int i; | |
2056 | ||
2057 | aa = a; | |
2058 | pp = &p[NI-2]; | |
2059 | *pp++ = 0; | |
2060 | *pp = 0; | |
2061 | ps = &b[NI-1]; | |
2062 | ||
2063 | for( i=M+1; i<NI; i++ ) | |
2064 | { | |
2065 | if( *ps == 0 ) | |
2066 | { | |
2067 | --ps; | |
2068 | --pp; | |
2069 | *(pp-1) = 0; | |
2070 | } | |
2071 | else | |
2072 | { | |
2073 | m = (unsigned long) aa * *ps--; | |
2074 | carry = (m & 0xffff) + *pp; | |
2075 | *pp-- = (unsigned short )carry; | |
2076 | carry = (carry >> 16) + (m >> 16) + *pp; | |
2077 | *pp = (unsigned short )carry; | |
2078 | *(pp-1) = carry >> 16; | |
2079 | } | |
2080 | } | |
2081 | for( i=M; i<NI; i++ ) | |
2082 | c[i] = p[i]; | |
2083 | } | |
2084 | ||
2085 | ||
2086 | /* Divide significands. Neither the numerator nor the denominator | |
2087 | is permitted to have its high guard word nonzero. */ | |
2088 | ||
2089 | ||
2090 | int edivm( den, num ) | |
2091 | unsigned short den[], num[]; | |
2092 | { | |
2093 | int i; | |
2094 | register unsigned short *p; | |
2095 | unsigned long tnum; | |
2096 | unsigned short j, tdenm, tquot; | |
2097 | unsigned short tprod[NI+1]; | |
2098 | ||
2099 | p = &equot[0]; | |
2100 | *p++ = num[0]; | |
2101 | *p++ = num[1]; | |
2102 | ||
2103 | for( i=M; i<NI; i++ ) | |
2104 | { | |
2105 | *p++ = 0; | |
2106 | } | |
2107 | eshdn1( num ); | |
2108 | tdenm = den[M+1]; | |
2109 | for( i=M; i<NI; i++ ) | |
2110 | { | |
2111 | /* Find trial quotient digit (the radix is 65536). */ | |
2112 | tnum = (((unsigned long) num[M]) << 16) + num[M+1]; | |
2113 | ||
2114 | /* Do not execute the divide instruction if it will overflow. */ | |
2115 | if( (tdenm * 0xffffL) < tnum ) | |
2116 | tquot = 0xffff; | |
2117 | else | |
2118 | tquot = tnum / tdenm; | |
2119 | /* Multiply denominator by trial quotient digit. */ | |
2120 | m16m( tquot, den, tprod ); | |
2121 | /* The quotient digit may have been overestimated. */ | |
2122 | if( ecmpm( tprod, num ) > 0 ) | |
2123 | { | |
2124 | tquot -= 1; | |
2125 | esubm( den, tprod ); | |
2126 | if( ecmpm( tprod, num ) > 0 ) | |
2127 | { | |
2128 | tquot -= 1; | |
2129 | esubm( den, tprod ); | |
2130 | } | |
2131 | } | |
2132 | esubm( tprod, num ); | |
2133 | equot[i] = tquot; | |
2134 | eshup6(num); | |
2135 | } | |
2136 | /* test for nonzero remainder after roundoff bit */ | |
2137 | p = &num[M]; | |
2138 | j = 0; | |
2139 | for( i=M; i<NI; i++ ) | |
2140 | { | |
2141 | j |= *p++; | |
2142 | } | |
2143 | if( j ) | |
2144 | j = 1; | |
2145 | ||
2146 | for( i=0; i<NI; i++ ) | |
2147 | num[i] = equot[i]; | |
2148 | ||
2149 | return( (int )j ); | |
2150 | } | |
2151 | ||
2152 | ||
2153 | ||
2154 | /* Multiply significands */ | |
2155 | int emulm( a, b ) | |
2156 | unsigned short a[], b[]; | |
2157 | { | |
2158 | unsigned short *p, *q; | |
2159 | unsigned short pprod[NI]; | |
2160 | unsigned short j; | |
2161 | int i; | |
2162 | ||
2163 | equot[0] = b[0]; | |
2164 | equot[1] = b[1]; | |
2165 | for( i=M; i<NI; i++ ) | |
2166 | equot[i] = 0; | |
2167 | ||
2168 | j = 0; | |
2169 | p = &a[NI-1]; | |
2170 | q = &equot[NI-1]; | |
2171 | for( i=M+1; i<NI; i++ ) | |
2172 | { | |
2173 | if( *p == 0 ) | |
2174 | { | |
2175 | --p; | |
2176 | } | |
2177 | else | |
2178 | { | |
2179 | m16m( *p--, b, pprod ); | |
2180 | eaddm(pprod, equot); | |
2181 | } | |
2182 | j |= *q; | |
2183 | eshdn6(equot); | |
2184 | } | |
2185 | ||
2186 | for( i=0; i<NI; i++ ) | |
2187 | b[i] = equot[i]; | |
2188 | ||
2189 | /* return flag for lost nonzero bits */ | |
2190 | return( (int)j ); | |
2191 | } | |
2192 | #endif | |
985b6196 RS |
2193 | |
2194 | ||
2195 | /* | |
2196 | * Normalize and round off. | |
2197 | * | |
2198 | * The internal format number to be rounded is "s". | |
2199 | * Input "lost" indicates whether or not the number is exact. | |
2200 | * This is the so-called sticky bit. | |
2201 | * | |
2202 | * Input "subflg" indicates whether the number was obtained | |
2203 | * by a subtraction operation. In that case if lost is nonzero | |
2204 | * then the number is slightly smaller than indicated. | |
2205 | * | |
2206 | * Input "exp" is the biased exponent, which may be negative. | |
2207 | * the exponent field of "s" is ignored but is replaced by | |
2208 | * "exp" as adjusted by normalization and rounding. | |
2209 | * | |
2210 | * Input "rcntrl" is the rounding control. | |
2211 | */ | |
2212 | ||
842fbaaa JW |
2213 | /* For future reference: In order for emdnorm to round off denormal |
2214 | significands at the right point, the input exponent must be | |
2215 | adjusted to be the actual value it would have after conversion to | |
2216 | the final floating point type. This adjustment has been | |
2217 | implemented for all type conversions (etoe53, etc.) and decimal | |
2218 | conversions, but not for the arithmetic functions (eadd, etc.). | |
2219 | Data types having standard 15-bit exponents are not affected by | |
2220 | this, but SFmode and DFmode are affected. For example, ediv with | |
2221 | rndprc = 24 will not round correctly to 24-bit precision if the | |
2222 | result is denormal. */ | |
2223 | ||
985b6196 RS |
2224 | static int rlast = -1; |
2225 | static int rw = 0; | |
2226 | static unsigned EMUSHORT rmsk = 0; | |
2227 | static unsigned EMUSHORT rmbit = 0; | |
2228 | static unsigned EMUSHORT rebit = 0; | |
2229 | static int re = 0; | |
2230 | static unsigned EMUSHORT rbit[NI]; | |
2231 | ||
2232 | void | |
2233 | emdnorm (s, lost, subflg, exp, rcntrl) | |
2234 | unsigned EMUSHORT s[]; | |
2235 | int lost; | |
2236 | int subflg; | |
2237 | EMULONG exp; | |
2238 | int rcntrl; | |
2239 | { | |
2240 | int i, j; | |
2241 | unsigned EMUSHORT r; | |
2242 | ||
2243 | /* Normalize */ | |
2244 | j = enormlz (s); | |
2245 | ||
2246 | /* a blank significand could mean either zero or infinity. */ | |
2247 | #ifndef INFINITY | |
2248 | if (j > NBITS) | |
2249 | { | |
2250 | ecleazs (s); | |
2251 | return; | |
2252 | } | |
2253 | #endif | |
2254 | exp -= j; | |
2255 | #ifndef INFINITY | |
2256 | if (exp >= 32767L) | |
2257 | goto overf; | |
2258 | #else | |
2259 | if ((j > NBITS) && (exp < 32767)) | |
2260 | { | |
2261 | ecleazs (s); | |
2262 | return; | |
2263 | } | |
2264 | #endif | |
2265 | if (exp < 0L) | |
2266 | { | |
2267 | if (exp > (EMULONG) (-NBITS - 1)) | |
2268 | { | |
2269 | j = (int) exp; | |
2270 | i = eshift (s, j); | |
2271 | if (i) | |
2272 | lost = 1; | |
2273 | } | |
2274 | else | |
2275 | { | |
2276 | ecleazs (s); | |
2277 | return; | |
2278 | } | |
2279 | } | |
2280 | /* Round off, unless told not to by rcntrl. */ | |
2281 | if (rcntrl == 0) | |
2282 | goto mdfin; | |
2283 | /* Set up rounding parameters if the control register changed. */ | |
2284 | if (rndprc != rlast) | |
2285 | { | |
2286 | ecleaz (rbit); | |
2287 | switch (rndprc) | |
2288 | { | |
2289 | default: | |
2290 | case NBITS: | |
2291 | rw = NI - 1; /* low guard word */ | |
2292 | rmsk = 0xffff; | |
2293 | rmbit = 0x8000; | |
842fbaaa | 2294 | re = rw - 1; |
985b6196 RS |
2295 | rebit = 1; |
2296 | break; | |
842fbaaa JW |
2297 | case 113: |
2298 | rw = 10; | |
2299 | rmsk = 0x7fff; | |
2300 | rmbit = 0x4000; | |
2301 | rebit = 0x8000; | |
2302 | re = rw; | |
2303 | break; | |
985b6196 RS |
2304 | case 64: |
2305 | rw = 7; | |
2306 | rmsk = 0xffff; | |
2307 | rmbit = 0x8000; | |
985b6196 RS |
2308 | re = rw - 1; |
2309 | rebit = 1; | |
2310 | break; | |
842fbaaa | 2311 | /* For DEC or IBM arithmetic */ |
985b6196 RS |
2312 | case 56: |
2313 | rw = 6; | |
2314 | rmsk = 0xff; | |
2315 | rmbit = 0x80; | |
985b6196 | 2316 | rebit = 0x100; |
842fbaaa | 2317 | re = rw; |
985b6196 RS |
2318 | break; |
2319 | case 53: | |
2320 | rw = 6; | |
2321 | rmsk = 0x7ff; | |
2322 | rmbit = 0x0400; | |
985b6196 | 2323 | rebit = 0x800; |
842fbaaa | 2324 | re = rw; |
985b6196 RS |
2325 | break; |
2326 | case 24: | |
2327 | rw = 4; | |
2328 | rmsk = 0xff; | |
2329 | rmbit = 0x80; | |
985b6196 | 2330 | rebit = 0x100; |
842fbaaa | 2331 | re = rw; |
985b6196 RS |
2332 | break; |
2333 | } | |
842fbaaa | 2334 | rbit[re] = rebit; |
985b6196 RS |
2335 | rlast = rndprc; |
2336 | } | |
2337 | ||
842fbaaa JW |
2338 | /* Shift down 1 temporarily if the data structure has an implied |
2339 | most significant bit and the number is denormal. */ | |
2340 | if ((exp <= 0) && (rndprc != 64) && (rndprc != NBITS)) | |
985b6196 | 2341 | { |
842fbaaa JW |
2342 | lost |= s[NI - 1] & 1; |
2343 | eshdn1 (s); | |
985b6196 | 2344 | } |
842fbaaa JW |
2345 | /* Clear out all bits below the rounding bit, |
2346 | remembering in r if any were nonzero. */ | |
2347 | r = s[rw] & rmsk; | |
2348 | if (rndprc < NBITS) | |
985b6196 | 2349 | { |
985b6196 RS |
2350 | i = rw + 1; |
2351 | while (i < NI) | |
2352 | { | |
2353 | if (s[i]) | |
2354 | r |= 1; | |
2355 | s[i] = 0; | |
2356 | ++i; | |
2357 | } | |
985b6196 | 2358 | } |
afb817fd | 2359 | s[rw] &= ~rmsk; |
985b6196 RS |
2360 | if ((r & rmbit) != 0) |
2361 | { | |
2362 | if (r == rmbit) | |
2363 | { | |
2364 | if (lost == 0) | |
2365 | { /* round to even */ | |
2366 | if ((s[re] & rebit) == 0) | |
2367 | goto mddone; | |
2368 | } | |
2369 | else | |
2370 | { | |
2371 | if (subflg != 0) | |
2372 | goto mddone; | |
2373 | } | |
2374 | } | |
2375 | eaddm (rbit, s); | |
2376 | } | |
2377 | mddone: | |
842fbaaa | 2378 | if ((exp <= 0) && (rndprc != 64) && (rndprc != NBITS)) |
985b6196 RS |
2379 | { |
2380 | eshup1 (s); | |
2381 | } | |
2382 | if (s[2] != 0) | |
2383 | { /* overflow on roundoff */ | |
2384 | eshdn1 (s); | |
2385 | exp += 1; | |
2386 | } | |
2387 | mdfin: | |
2388 | s[NI - 1] = 0; | |
2389 | if (exp >= 32767L) | |
2390 | { | |
2391 | #ifndef INFINITY | |
2392 | overf: | |
2393 | #endif | |
2394 | #ifdef INFINITY | |
2395 | s[1] = 32767; | |
2396 | for (i = 2; i < NI - 1; i++) | |
2397 | s[i] = 0; | |
64685ffa RS |
2398 | if (extra_warnings) |
2399 | warning ("floating point overflow"); | |
985b6196 RS |
2400 | #else |
2401 | s[1] = 32766; | |
2402 | s[2] = 0; | |
2403 | for (i = M + 1; i < NI - 1; i++) | |
2404 | s[i] = 0xffff; | |
2405 | s[NI - 1] = 0; | |
842fbaaa | 2406 | if ((rndprc < 64) || (rndprc == 113)) |
985b6196 RS |
2407 | { |
2408 | s[rw] &= ~rmsk; | |
2409 | if (rndprc == 24) | |
2410 | { | |
2411 | s[5] = 0; | |
2412 | s[6] = 0; | |
2413 | } | |
2414 | } | |
2415 | #endif | |
2416 | return; | |
2417 | } | |
2418 | if (exp < 0) | |
2419 | s[1] = 0; | |
2420 | else | |
2421 | s[1] = (unsigned EMUSHORT) exp; | |
2422 | } | |
2423 | ||
2424 | ||
2425 | ||
2426 | /* | |
2427 | ; Subtract external format numbers. | |
2428 | ; | |
2429 | ; unsigned EMUSHORT a[NE], b[NE], c[NE]; | |
2430 | ; esub (a, b, c); c = b - a | |
2431 | */ | |
2432 | ||
2433 | static int subflg = 0; | |
2434 | ||
2435 | void | |
2436 | esub (a, b, c) | |
2437 | unsigned EMUSHORT *a, *b, *c; | |
2438 | { | |
2439 | ||
66b6d60b RS |
2440 | #ifdef NANS |
2441 | if (eisnan (a)) | |
2442 | { | |
2443 | emov (a, c); | |
2444 | return; | |
2445 | } | |
2446 | if (eisnan (b)) | |
2447 | { | |
2448 | emov (b, c); | |
2449 | return; | |
2450 | } | |
2451 | /* Infinity minus infinity is a NaN. | |
2452 | Test for subtracting infinities of the same sign. */ | |
2453 | if (eisinf (a) && eisinf (b) | |
2454 | && ((eisneg (a) ^ eisneg (b)) == 0)) | |
2455 | { | |
2456 | mtherr ("esub", INVALID); | |
2457 | enan (c); | |
2458 | return; | |
2459 | } | |
2460 | #endif | |
985b6196 RS |
2461 | subflg = 1; |
2462 | eadd1 (a, b, c); | |
2463 | } | |
2464 | ||
2465 | ||
2466 | /* | |
2467 | ; Add. | |
2468 | ; | |
2469 | ; unsigned EMUSHORT a[NE], b[NE], c[NE]; | |
2470 | ; eadd (a, b, c); c = b + a | |
2471 | */ | |
2472 | void | |
2473 | eadd (a, b, c) | |
2474 | unsigned EMUSHORT *a, *b, *c; | |
2475 | { | |
2476 | ||
66b6d60b RS |
2477 | #ifdef NANS |
2478 | /* NaN plus anything is a NaN. */ | |
2479 | if (eisnan (a)) | |
2480 | { | |
2481 | emov (a, c); | |
2482 | return; | |
2483 | } | |
2484 | if (eisnan (b)) | |
2485 | { | |
2486 | emov (b, c); | |
2487 | return; | |
2488 | } | |
2489 | /* Infinity minus infinity is a NaN. | |
2490 | Test for adding infinities of opposite signs. */ | |
2491 | if (eisinf (a) && eisinf (b) | |
2492 | && ((eisneg (a) ^ eisneg (b)) != 0)) | |
2493 | { | |
2494 | mtherr ("esub", INVALID); | |
2495 | enan (c); | |
2496 | return; | |
2497 | } | |
2498 | #endif | |
985b6196 RS |
2499 | subflg = 0; |
2500 | eadd1 (a, b, c); | |
2501 | } | |
2502 | ||
2503 | void | |
2504 | eadd1 (a, b, c) | |
2505 | unsigned EMUSHORT *a, *b, *c; | |
2506 | { | |
2507 | unsigned EMUSHORT ai[NI], bi[NI], ci[NI]; | |
2508 | int i, lost, j, k; | |
2509 | EMULONG lt, lta, ltb; | |
2510 | ||
2511 | #ifdef INFINITY | |
2512 | if (eisinf (a)) | |
2513 | { | |
2514 | emov (a, c); | |
2515 | if (subflg) | |
2516 | eneg (c); | |
2517 | return; | |
2518 | } | |
2519 | if (eisinf (b)) | |
2520 | { | |
2521 | emov (b, c); | |
2522 | return; | |
2523 | } | |
2524 | #endif | |
2525 | emovi (a, ai); | |
2526 | emovi (b, bi); | |
2527 | if (subflg) | |
2528 | ai[0] = ~ai[0]; | |
2529 | ||
2530 | /* compare exponents */ | |
2531 | lta = ai[E]; | |
2532 | ltb = bi[E]; | |
2533 | lt = lta - ltb; | |
2534 | if (lt > 0L) | |
2535 | { /* put the larger number in bi */ | |
2536 | emovz (bi, ci); | |
2537 | emovz (ai, bi); | |
2538 | emovz (ci, ai); | |
2539 | ltb = bi[E]; | |
2540 | lt = -lt; | |
2541 | } | |
2542 | lost = 0; | |
2543 | if (lt != 0L) | |
2544 | { | |
2545 | if (lt < (EMULONG) (-NBITS - 1)) | |
2546 | goto done; /* answer same as larger addend */ | |
2547 | k = (int) lt; | |
2548 | lost = eshift (ai, k); /* shift the smaller number down */ | |
2549 | } | |
2550 | else | |
2551 | { | |
2552 | /* exponents were the same, so must compare significands */ | |
2553 | i = ecmpm (ai, bi); | |
2554 | if (i == 0) | |
2555 | { /* the numbers are identical in magnitude */ | |
2556 | /* if different signs, result is zero */ | |
2557 | if (ai[0] != bi[0]) | |
2558 | { | |
2559 | eclear (c); | |
2560 | return; | |
2561 | } | |
2562 | /* if same sign, result is double */ | |
2563 | /* double denomalized tiny number */ | |
2564 | if ((bi[E] == 0) && ((bi[3] & 0x8000) == 0)) | |
2565 | { | |
2566 | eshup1 (bi); | |
2567 | goto done; | |
2568 | } | |
2569 | /* add 1 to exponent unless both are zero! */ | |
2570 | for (j = 1; j < NI - 1; j++) | |
2571 | { | |
2572 | if (bi[j] != 0) | |
2573 | { | |
2574 | /* This could overflow, but let emovo take care of that. */ | |
2575 | ltb += 1; | |
2576 | break; | |
2577 | } | |
2578 | } | |
2579 | bi[E] = (unsigned EMUSHORT) ltb; | |
2580 | goto done; | |
2581 | } | |
2582 | if (i > 0) | |
2583 | { /* put the larger number in bi */ | |
2584 | emovz (bi, ci); | |
2585 | emovz (ai, bi); | |
2586 | emovz (ci, ai); | |
2587 | } | |
2588 | } | |
2589 | if (ai[0] == bi[0]) | |
2590 | { | |
2591 | eaddm (ai, bi); | |
2592 | subflg = 0; | |
2593 | } | |
2594 | else | |
2595 | { | |
2596 | esubm (ai, bi); | |
2597 | subflg = 1; | |
2598 | } | |
2599 | emdnorm (bi, lost, subflg, ltb, 64); | |
2600 | ||
2601 | done: | |
2602 | emovo (bi, c); | |
2603 | } | |
2604 | ||
2605 | ||
2606 | ||
2607 | /* | |
2608 | ; Divide. | |
2609 | ; | |
2610 | ; unsigned EMUSHORT a[NE], b[NE], c[NE]; | |
2611 | ; ediv (a, b, c); c = b / a | |
2612 | */ | |
2613 | void | |
2614 | ediv (a, b, c) | |
2615 | unsigned EMUSHORT *a, *b, *c; | |
2616 | { | |
2617 | unsigned EMUSHORT ai[NI], bi[NI]; | |
2618 | int i; | |
2619 | EMULONG lt, lta, ltb; | |
2620 | ||
66b6d60b RS |
2621 | #ifdef NANS |
2622 | /* Return any NaN input. */ | |
2623 | if (eisnan (a)) | |
2624 | { | |
2625 | emov (a, c); | |
2626 | return; | |
2627 | } | |
2628 | if (eisnan (b)) | |
2629 | { | |
2630 | emov (b, c); | |
2631 | return; | |
2632 | } | |
2633 | /* Zero over zero, or infinity over infinity, is a NaN. */ | |
2634 | if (((ecmp (a, ezero) == 0) && (ecmp (b, ezero) == 0)) | |
2635 | || (eisinf (a) && eisinf (b))) | |
2636 | { | |
2637 | mtherr ("ediv", INVALID); | |
2638 | enan (c); | |
2639 | return; | |
2640 | } | |
2641 | #endif | |
2642 | /* Infinity over anything else is infinity. */ | |
985b6196 RS |
2643 | #ifdef INFINITY |
2644 | if (eisinf (b)) | |
2645 | { | |
2646 | if (eisneg (a) ^ eisneg (b)) | |
2647 | *(c + (NE - 1)) = 0x8000; | |
2648 | else | |
2649 | *(c + (NE - 1)) = 0; | |
2650 | einfin (c); | |
2651 | return; | |
2652 | } | |
66b6d60b | 2653 | /* Anything else over infinity is zero. */ |
985b6196 RS |
2654 | if (eisinf (a)) |
2655 | { | |
2656 | eclear (c); | |
2657 | return; | |
2658 | } | |
2659 | #endif | |
2660 | emovi (a, ai); | |
2661 | emovi (b, bi); | |
2662 | lta = ai[E]; | |
2663 | ltb = bi[E]; | |
2664 | if (bi[E] == 0) | |
2665 | { /* See if numerator is zero. */ | |
2666 | for (i = 1; i < NI - 1; i++) | |
2667 | { | |
2668 | if (bi[i] != 0) | |
2669 | { | |
2670 | ltb -= enormlz (bi); | |
2671 | goto dnzro1; | |
2672 | } | |
2673 | } | |
2674 | eclear (c); | |
2675 | return; | |
2676 | } | |
2677 | dnzro1: | |
2678 | ||
2679 | if (ai[E] == 0) | |
2680 | { /* possible divide by zero */ | |
2681 | for (i = 1; i < NI - 1; i++) | |
2682 | { | |
2683 | if (ai[i] != 0) | |
2684 | { | |
2685 | lta -= enormlz (ai); | |
2686 | goto dnzro2; | |
2687 | } | |
2688 | } | |
2689 | if (ai[0] == bi[0]) | |
2690 | *(c + (NE - 1)) = 0; | |
2691 | else | |
2692 | *(c + (NE - 1)) = 0x8000; | |
66b6d60b RS |
2693 | /* Divide by zero is not an invalid operation. |
2694 | It is a divide-by-zero operation! */ | |
985b6196 RS |
2695 | einfin (c); |
2696 | mtherr ("ediv", SING); | |
2697 | return; | |
2698 | } | |
2699 | dnzro2: | |
2700 | ||
2701 | i = edivm (ai, bi); | |
2702 | /* calculate exponent */ | |
2703 | lt = ltb - lta + EXONE; | |
2704 | emdnorm (bi, i, 0, lt, 64); | |
2705 | /* set the sign */ | |
2706 | if (ai[0] == bi[0]) | |
2707 | bi[0] = 0; | |
2708 | else | |
2709 | bi[0] = 0Xffff; | |
2710 | emovo (bi, c); | |
2711 | } | |
2712 | ||
2713 | ||
2714 | ||
2715 | /* | |
2716 | ; Multiply. | |
2717 | ; | |
2718 | ; unsigned EMUSHORT a[NE], b[NE], c[NE]; | |
2719 | ; emul (a, b, c); c = b * a | |
2720 | */ | |
2721 | void | |
2722 | emul (a, b, c) | |
2723 | unsigned EMUSHORT *a, *b, *c; | |
2724 | { | |
2725 | unsigned EMUSHORT ai[NI], bi[NI]; | |
2726 | int i, j; | |
2727 | EMULONG lt, lta, ltb; | |
2728 | ||
66b6d60b RS |
2729 | #ifdef NANS |
2730 | /* NaN times anything is the same NaN. */ | |
2731 | if (eisnan (a)) | |
2732 | { | |
2733 | emov (a, c); | |
2734 | return; | |
2735 | } | |
2736 | if (eisnan (b)) | |
2737 | { | |
2738 | emov (b, c); | |
2739 | return; | |
2740 | } | |
2741 | /* Zero times infinity is a NaN. */ | |
2742 | if ((eisinf (a) && (ecmp (b, ezero) == 0)) | |
2743 | || (eisinf (b) && (ecmp (a, ezero) == 0))) | |
2744 | { | |
2745 | mtherr ("emul", INVALID); | |
2746 | enan (c); | |
2747 | return; | |
2748 | } | |
2749 | #endif | |
2750 | /* Infinity times anything else is infinity. */ | |
985b6196 RS |
2751 | #ifdef INFINITY |
2752 | if (eisinf (a) || eisinf (b)) | |
2753 | { | |
2754 | if (eisneg (a) ^ eisneg (b)) | |
2755 | *(c + (NE - 1)) = 0x8000; | |
2756 | else | |
2757 | *(c + (NE - 1)) = 0; | |
2758 | einfin (c); | |
2759 | return; | |
2760 | } | |
2761 | #endif | |
2762 | emovi (a, ai); | |
2763 | emovi (b, bi); | |
2764 | lta = ai[E]; | |
2765 | ltb = bi[E]; | |
2766 | if (ai[E] == 0) | |
2767 | { | |
2768 | for (i = 1; i < NI - 1; i++) | |
2769 | { | |
2770 | if (ai[i] != 0) | |
2771 | { | |
2772 | lta -= enormlz (ai); | |
2773 | goto mnzer1; | |
2774 | } | |
2775 | } | |
2776 | eclear (c); | |
2777 | return; | |
2778 | } | |
2779 | mnzer1: | |
2780 | ||
2781 | if (bi[E] == 0) | |
2782 | { | |
2783 | for (i = 1; i < NI - 1; i++) | |
2784 | { | |
2785 | if (bi[i] != 0) | |
2786 | { | |
2787 | ltb -= enormlz (bi); | |
2788 | goto mnzer2; | |
2789 | } | |
2790 | } | |
2791 | eclear (c); | |
2792 | return; | |
2793 | } | |
2794 | mnzer2: | |
2795 | ||
2796 | /* Multiply significands */ | |
2797 | j = emulm (ai, bi); | |
2798 | /* calculate exponent */ | |
2799 | lt = lta + ltb - (EXONE - 1); | |
2800 | emdnorm (bi, j, 0, lt, 64); | |
2801 | /* calculate sign of product */ | |
2802 | if (ai[0] == bi[0]) | |
2803 | bi[0] = 0; | |
2804 | else | |
2805 | bi[0] = 0xffff; | |
2806 | emovo (bi, c); | |
2807 | } | |
2808 | ||
2809 | ||
2810 | ||
2811 | ||
2812 | /* | |
2813 | ; Convert IEEE double precision to e type | |
2814 | ; double d; | |
2815 | ; unsigned EMUSHORT x[N+2]; | |
2816 | ; e53toe (&d, x); | |
2817 | */ | |
2818 | void | |
66b6d60b RS |
2819 | e53toe (pe, y) |
2820 | unsigned EMUSHORT *pe, *y; | |
985b6196 RS |
2821 | { |
2822 | #ifdef DEC | |
2823 | ||
66b6d60b | 2824 | dectoe (pe, y); /* see etodec.c */ |
985b6196 RS |
2825 | |
2826 | #else | |
842fbaaa JW |
2827 | #ifdef IBM |
2828 | ||
2829 | ibmtoe (pe, y, DFmode); | |
985b6196 | 2830 | |
842fbaaa | 2831 | #else |
985b6196 | 2832 | register unsigned EMUSHORT r; |
66b6d60b | 2833 | register unsigned EMUSHORT *e, *p; |
985b6196 RS |
2834 | unsigned EMUSHORT yy[NI]; |
2835 | int denorm, k; | |
2836 | ||
66b6d60b | 2837 | e = pe; |
985b6196 RS |
2838 | denorm = 0; /* flag if denormalized number */ |
2839 | ecleaz (yy); | |
2840 | #ifdef IBMPC | |
2841 | e += 3; | |
2842 | #endif | |
2843 | r = *e; | |
2844 | yy[0] = 0; | |
2845 | if (r & 0x8000) | |
2846 | yy[0] = 0xffff; | |
2847 | yy[M] = (r & 0x0f) | 0x10; | |
2848 | r &= ~0x800f; /* strip sign and 4 significand bits */ | |
2849 | #ifdef INFINITY | |
2850 | if (r == 0x7ff0) | |
2851 | { | |
66b6d60b RS |
2852 | #ifdef NANS |
2853 | #ifdef IBMPC | |
2854 | if (((pe[3] & 0xf) != 0) || (pe[2] != 0) | |
2855 | || (pe[1] != 0) || (pe[0] != 0)) | |
2856 | { | |
2857 | enan (y); | |
2858 | return; | |
2859 | } | |
2860 | #else | |
2861 | if (((pe[0] & 0xf) != 0) || (pe[1] != 0) | |
2862 | || (pe[2] != 0) || (pe[3] != 0)) | |
2863 | { | |
2864 | enan (y); | |
2865 | return; | |
2866 | } | |
2867 | #endif | |
2868 | #endif /* NANS */ | |
dca821e1 | 2869 | eclear (y); |
985b6196 | 2870 | einfin (y); |
dca821e1 | 2871 | if (yy[0]) |
985b6196 RS |
2872 | eneg (y); |
2873 | return; | |
2874 | } | |
66b6d60b | 2875 | #endif /* INFINITY */ |
985b6196 RS |
2876 | r >>= 4; |
2877 | /* If zero exponent, then the significand is denormalized. | |
2878 | * So, take back the understood high significand bit. */ | |
2879 | if (r == 0) | |
2880 | { | |
2881 | denorm = 1; | |
2882 | yy[M] &= ~0x10; | |
2883 | } | |
2884 | r += EXONE - 01777; | |
2885 | yy[E] = r; | |
2886 | p = &yy[M + 1]; | |
2887 | #ifdef IBMPC | |
2888 | *p++ = *(--e); | |
2889 | *p++ = *(--e); | |
2890 | *p++ = *(--e); | |
2891 | #endif | |
2892 | #ifdef MIEEE | |
2893 | ++e; | |
2894 | *p++ = *e++; | |
2895 | *p++ = *e++; | |
2896 | *p++ = *e++; | |
2897 | #endif | |
64685ffa | 2898 | eshift (yy, -5); |
985b6196 RS |
2899 | if (denorm) |
2900 | { /* if zero exponent, then normalize the significand */ | |
2901 | if ((k = enormlz (yy)) > NBITS) | |
2902 | ecleazs (yy); | |
2903 | else | |
2904 | yy[E] -= (unsigned EMUSHORT) (k - 1); | |
2905 | } | |
2906 | emovo (yy, y); | |
842fbaaa | 2907 | #endif /* not IBM */ |
985b6196 RS |
2908 | #endif /* not DEC */ |
2909 | } | |
2910 | ||
2911 | void | |
66b6d60b RS |
2912 | e64toe (pe, y) |
2913 | unsigned EMUSHORT *pe, *y; | |
985b6196 RS |
2914 | { |
2915 | unsigned EMUSHORT yy[NI]; | |
66b6d60b | 2916 | unsigned EMUSHORT *e, *p, *q; |
985b6196 RS |
2917 | int i; |
2918 | ||
66b6d60b | 2919 | e = pe; |
985b6196 RS |
2920 | p = yy; |
2921 | for (i = 0; i < NE - 5; i++) | |
2922 | *p++ = 0; | |
2923 | #ifdef IBMPC | |
2924 | for (i = 0; i < 5; i++) | |
2925 | *p++ = *e++; | |
2926 | #endif | |
842fbaaa | 2927 | /* This precision is not ordinarily supported on DEC or IBM. */ |
985b6196 RS |
2928 | #ifdef DEC |
2929 | for (i = 0; i < 5; i++) | |
2930 | *p++ = *e++; | |
2931 | #endif | |
842fbaaa JW |
2932 | #ifdef IBM |
2933 | p = &yy[0] + (NE - 1); | |
2934 | *p-- = *e++; | |
2935 | ++e; | |
2936 | for (i = 0; i < 5; i++) | |
2937 | *p-- = *e++; | |
2938 | #endif | |
985b6196 RS |
2939 | #ifdef MIEEE |
2940 | p = &yy[0] + (NE - 1); | |
2941 | *p-- = *e++; | |
2942 | ++e; | |
2943 | for (i = 0; i < 4; i++) | |
2944 | *p-- = *e++; | |
2945 | #endif | |
2946 | p = yy; | |
2947 | q = y; | |
2948 | #ifdef INFINITY | |
2949 | if (*p == 0x7fff) | |
2950 | { | |
66b6d60b RS |
2951 | #ifdef NANS |
2952 | #ifdef IBMPC | |
2953 | for (i = 0; i < 4; i++) | |
2954 | { | |
2955 | if (pe[i] != 0) | |
2956 | { | |
2957 | enan (y); | |
2958 | return; | |
2959 | } | |
2960 | } | |
2961 | #else | |
2962 | for (i = 1; i <= 4; i++) | |
2963 | { | |
2964 | if (pe[i] != 0) | |
2965 | { | |
2966 | enan (y); | |
2967 | return; | |
2968 | } | |
2969 | } | |
2970 | #endif | |
2971 | #endif /* NANS */ | |
dca821e1 | 2972 | eclear (y); |
985b6196 RS |
2973 | einfin (y); |
2974 | if (*p & 0x8000) | |
2975 | eneg (y); | |
2976 | return; | |
2977 | } | |
66b6d60b | 2978 | #endif /* INFINITY */ |
985b6196 RS |
2979 | for (i = 0; i < NE; i++) |
2980 | *q++ = *p++; | |
2981 | } | |
2982 | ||
2983 | ||
985b6196 | 2984 | void |
842fbaaa | 2985 | e113toe (pe, y) |
66b6d60b | 2986 | unsigned EMUSHORT *pe, *y; |
985b6196 RS |
2987 | { |
2988 | register unsigned EMUSHORT r; | |
842fbaaa | 2989 | unsigned EMUSHORT *e, *p; |
985b6196 | 2990 | unsigned EMUSHORT yy[NI]; |
842fbaaa | 2991 | int denorm, i; |
985b6196 | 2992 | |
66b6d60b | 2993 | e = pe; |
842fbaaa | 2994 | denorm = 0; |
985b6196 RS |
2995 | ecleaz (yy); |
2996 | #ifdef IBMPC | |
842fbaaa | 2997 | e += 7; |
985b6196 RS |
2998 | #endif |
2999 | r = *e; | |
3000 | yy[0] = 0; | |
3001 | if (r & 0x8000) | |
3002 | yy[0] = 0xffff; | |
842fbaaa | 3003 | r &= 0x7fff; |
985b6196 | 3004 | #ifdef INFINITY |
842fbaaa | 3005 | if (r == 0x7fff) |
985b6196 | 3006 | { |
66b6d60b | 3007 | #ifdef NANS |
842fbaaa JW |
3008 | #ifdef IBMPC |
3009 | for (i = 0; i < 7; i++) | |
66b6d60b | 3010 | { |
842fbaaa JW |
3011 | if (pe[i] != 0) |
3012 | { | |
3013 | enan (y); | |
3014 | return; | |
3015 | } | |
66b6d60b RS |
3016 | } |
3017 | #else | |
842fbaaa | 3018 | for (i = 1; i < 8; i++) |
66b6d60b | 3019 | { |
842fbaaa JW |
3020 | if (pe[i] != 0) |
3021 | { | |
3022 | enan (y); | |
3023 | return; | |
3024 | } | |
66b6d60b RS |
3025 | } |
3026 | #endif | |
842fbaaa | 3027 | #endif /* NANS */ |
dca821e1 | 3028 | eclear (y); |
985b6196 | 3029 | einfin (y); |
dca821e1 | 3030 | if (yy[0]) |
985b6196 RS |
3031 | eneg (y); |
3032 | return; | |
3033 | } | |
66b6d60b | 3034 | #endif /* INFINITY */ |
985b6196 RS |
3035 | yy[E] = r; |
3036 | p = &yy[M + 1]; | |
3037 | #ifdef IBMPC | |
842fbaaa JW |
3038 | for (i = 0; i < 7; i++) |
3039 | *p++ = *(--e); | |
985b6196 RS |
3040 | #endif |
3041 | #ifdef MIEEE | |
3042 | ++e; | |
842fbaaa JW |
3043 | for (i = 0; i < 7; i++) |
3044 | *p++ = *e++; | |
985b6196 | 3045 | #endif |
842fbaaa JW |
3046 | /* If denormal, remove the implied bit; else shift down 1. */ |
3047 | if (r == 0) | |
3048 | { | |
3049 | yy[M] = 0; | |
3050 | } | |
3051 | else | |
3052 | { | |
3053 | yy[M] = 1; | |
3054 | eshift (yy, -1); | |
3055 | } | |
3056 | emovo (yy, y); | |
3057 | } | |
3058 | ||
3059 | ||
3060 | /* | |
3061 | ; Convert IEEE single precision to e type | |
3062 | ; float d; | |
3063 | ; unsigned EMUSHORT x[N+2]; | |
3064 | ; dtox (&d, x); | |
3065 | */ | |
3066 | void | |
3067 | e24toe (pe, y) | |
3068 | unsigned EMUSHORT *pe, *y; | |
3069 | { | |
3070 | #ifdef IBM | |
3071 | ||
3072 | ibmtoe (pe, y, SFmode); | |
3073 | ||
3074 | #else | |
3075 | register unsigned EMUSHORT r; | |
3076 | register unsigned EMUSHORT *e, *p; | |
3077 | unsigned EMUSHORT yy[NI]; | |
3078 | int denorm, k; | |
3079 | ||
3080 | e = pe; | |
3081 | denorm = 0; /* flag if denormalized number */ | |
3082 | ecleaz (yy); | |
3083 | #ifdef IBMPC | |
3084 | e += 1; | |
3085 | #endif | |
3086 | #ifdef DEC | |
3087 | e += 1; | |
3088 | #endif | |
3089 | r = *e; | |
3090 | yy[0] = 0; | |
3091 | if (r & 0x8000) | |
3092 | yy[0] = 0xffff; | |
3093 | yy[M] = (r & 0x7f) | 0200; | |
3094 | r &= ~0x807f; /* strip sign and 7 significand bits */ | |
3095 | #ifdef INFINITY | |
3096 | if (r == 0x7f80) | |
3097 | { | |
3098 | #ifdef NANS | |
3099 | #ifdef MIEEE | |
3100 | if (((pe[0] & 0x7f) != 0) || (pe[1] != 0)) | |
3101 | { | |
3102 | enan (y); | |
3103 | return; | |
3104 | } | |
3105 | #else | |
3106 | if (((pe[1] & 0x7f) != 0) || (pe[0] != 0)) | |
3107 | { | |
3108 | enan (y); | |
3109 | return; | |
3110 | } | |
3111 | #endif | |
3112 | #endif /* NANS */ | |
3113 | eclear (y); | |
3114 | einfin (y); | |
3115 | if (yy[0]) | |
3116 | eneg (y); | |
3117 | return; | |
3118 | } | |
3119 | #endif /* INFINITY */ | |
3120 | r >>= 7; | |
3121 | /* If zero exponent, then the significand is denormalized. | |
3122 | * So, take back the understood high significand bit. */ | |
3123 | if (r == 0) | |
3124 | { | |
3125 | denorm = 1; | |
3126 | yy[M] &= ~0200; | |
3127 | } | |
3128 | r += EXONE - 0177; | |
3129 | yy[E] = r; | |
3130 | p = &yy[M + 1]; | |
3131 | #ifdef IBMPC | |
3132 | *p++ = *(--e); | |
3133 | #endif | |
3134 | #ifdef DEC | |
3135 | *p++ = *(--e); | |
3136 | #endif | |
3137 | #ifdef MIEEE | |
3138 | ++e; | |
3139 | *p++ = *e++; | |
3140 | #endif | |
3141 | eshift (yy, -8); | |
3142 | if (denorm) | |
3143 | { /* if zero exponent, then normalize the significand */ | |
3144 | if ((k = enormlz (yy)) > NBITS) | |
3145 | ecleazs (yy); | |
3146 | else | |
3147 | yy[E] -= (unsigned EMUSHORT) (k - 1); | |
985b6196 RS |
3148 | } |
3149 | emovo (yy, y); | |
842fbaaa JW |
3150 | #endif /* not IBM */ |
3151 | } | |
3152 | ||
3153 | ||
3154 | void | |
3155 | etoe113 (x, e) | |
3156 | unsigned EMUSHORT *x, *e; | |
3157 | { | |
3158 | unsigned EMUSHORT xi[NI]; | |
3159 | EMULONG exp; | |
3160 | int rndsav; | |
3161 | ||
3162 | #ifdef NANS | |
3163 | if (eisnan (x)) | |
3164 | { | |
3165 | make_nan (e, TFmode); | |
3166 | return; | |
3167 | } | |
3168 | #endif | |
3169 | emovi (x, xi); | |
3170 | exp = (EMULONG) xi[E]; | |
3171 | #ifdef INFINITY | |
3172 | if (eisinf (x)) | |
3173 | goto nonorm; | |
3174 | #endif | |
3175 | /* round off to nearest or even */ | |
3176 | rndsav = rndprc; | |
3177 | rndprc = 113; | |
3178 | emdnorm (xi, 0, 0, exp, 64); | |
3179 | rndprc = rndsav; | |
3180 | nonorm: | |
3181 | toe113 (xi, e); | |
985b6196 RS |
3182 | } |
3183 | ||
842fbaaa JW |
3184 | /* move out internal format to ieee long double */ |
3185 | static void | |
3186 | toe113 (a, b) | |
3187 | unsigned EMUSHORT *a, *b; | |
3188 | { | |
3189 | register unsigned EMUSHORT *p, *q; | |
3190 | unsigned EMUSHORT i; | |
3191 | ||
3192 | #ifdef NANS | |
3193 | if (eiisnan (a)) | |
3194 | { | |
3195 | make_nan (b, TFmode); | |
3196 | return; | |
3197 | } | |
3198 | #endif | |
3199 | p = a; | |
3200 | #ifdef MIEEE | |
3201 | q = b; | |
3202 | #else | |
3203 | q = b + 7; /* point to output exponent */ | |
3204 | #endif | |
3205 | ||
3206 | /* If not denormal, delete the implied bit. */ | |
3207 | if (a[E] != 0) | |
3208 | { | |
3209 | eshup1 (a); | |
3210 | } | |
3211 | /* combine sign and exponent */ | |
3212 | i = *p++; | |
3213 | #ifdef MIEEE | |
3214 | if (i) | |
3215 | *q++ = *p++ | 0x8000; | |
3216 | else | |
3217 | *q++ = *p++; | |
3218 | #else | |
3219 | if (i) | |
3220 | *q-- = *p++ | 0x8000; | |
3221 | else | |
3222 | *q-- = *p++; | |
3223 | #endif | |
3224 | /* skip over guard word */ | |
3225 | ++p; | |
3226 | /* move the significand */ | |
3227 | #ifdef MIEEE | |
3228 | for (i = 0; i < 7; i++) | |
3229 | *q++ = *p++; | |
3230 | #else | |
3231 | for (i = 0; i < 7; i++) | |
3232 | *q-- = *p++; | |
3233 | #endif | |
3234 | } | |
985b6196 RS |
3235 | |
3236 | void | |
3237 | etoe64 (x, e) | |
3238 | unsigned EMUSHORT *x, *e; | |
3239 | { | |
3240 | unsigned EMUSHORT xi[NI]; | |
3241 | EMULONG exp; | |
3242 | int rndsav; | |
3243 | ||
66b6d60b RS |
3244 | #ifdef NANS |
3245 | if (eisnan (x)) | |
3246 | { | |
3247 | make_nan (e, XFmode); | |
3248 | return; | |
3249 | } | |
3250 | #endif | |
985b6196 RS |
3251 | emovi (x, xi); |
3252 | /* adjust exponent for offset */ | |
3253 | exp = (EMULONG) xi[E]; | |
3254 | #ifdef INFINITY | |
3255 | if (eisinf (x)) | |
3256 | goto nonorm; | |
3257 | #endif | |
3258 | /* round off to nearest or even */ | |
3259 | rndsav = rndprc; | |
3260 | rndprc = 64; | |
3261 | emdnorm (xi, 0, 0, exp, 64); | |
3262 | rndprc = rndsav; | |
3263 | nonorm: | |
3264 | toe64 (xi, e); | |
3265 | } | |
3266 | ||
3267 | /* move out internal format to ieee long double */ | |
3268 | static void | |
3269 | toe64 (a, b) | |
3270 | unsigned EMUSHORT *a, *b; | |
3271 | { | |
3272 | register unsigned EMUSHORT *p, *q; | |
3273 | unsigned EMUSHORT i; | |
3274 | ||
66b6d60b RS |
3275 | #ifdef NANS |
3276 | if (eiisnan (a)) | |
3277 | { | |
3278 | make_nan (b, XFmode); | |
3279 | return; | |
3280 | } | |
3281 | #endif | |
985b6196 | 3282 | p = a; |
842fbaaa | 3283 | #if defined(MIEEE) || defined(IBM) |
985b6196 RS |
3284 | q = b; |
3285 | #else | |
3286 | q = b + 4; /* point to output exponent */ | |
3287 | #if LONG_DOUBLE_TYPE_SIZE == 96 | |
3288 | /* Clear the last two bytes of 12-byte Intel format */ | |
3289 | *(q+1) = 0; | |
3290 | #endif | |
3291 | #endif | |
3292 | ||
3293 | /* combine sign and exponent */ | |
3294 | i = *p++; | |
842fbaaa | 3295 | #if defined(MIEEE) || defined(IBM) |
985b6196 RS |
3296 | if (i) |
3297 | *q++ = *p++ | 0x8000; | |
3298 | else | |
3299 | *q++ = *p++; | |
3300 | *q++ = 0; | |
3301 | #else | |
3302 | if (i) | |
3303 | *q-- = *p++ | 0x8000; | |
3304 | else | |
3305 | *q-- = *p++; | |
3306 | #endif | |
3307 | /* skip over guard word */ | |
3308 | ++p; | |
3309 | /* move the significand */ | |
842fbaaa | 3310 | #if defined(MIEEE) || defined(IBM) |
985b6196 RS |
3311 | for (i = 0; i < 4; i++) |
3312 | *q++ = *p++; | |
3313 | #else | |
3314 | for (i = 0; i < 4; i++) | |
3315 | *q-- = *p++; | |
3316 | #endif | |
3317 | } | |
3318 | ||
3319 | ||
3320 | /* | |
3321 | ; e type to IEEE double precision | |
3322 | ; double d; | |
3323 | ; unsigned EMUSHORT x[NE]; | |
3324 | ; etoe53 (x, &d); | |
3325 | */ | |
3326 | ||
3327 | #ifdef DEC | |
3328 | ||
3329 | void | |
3330 | etoe53 (x, e) | |
3331 | unsigned EMUSHORT *x, *e; | |
3332 | { | |
3333 | etodec (x, e); /* see etodec.c */ | |
3334 | } | |
3335 | ||
3336 | static void | |
3337 | toe53 (x, y) | |
3338 | unsigned EMUSHORT *x, *y; | |
3339 | { | |
3340 | todec (x, y); | |
3341 | } | |
3342 | ||
3343 | #else | |
842fbaaa JW |
3344 | #ifdef IBM |
3345 | ||
3346 | void | |
3347 | etoe53 (x, e) | |
3348 | unsigned EMUSHORT *x, *e; | |
3349 | { | |
3350 | etoibm (x, e, DFmode); | |
3351 | } | |
3352 | ||
3353 | static void | |
3354 | toe53 (x, y) | |
3355 | unsigned EMUSHORT *x, *y; | |
3356 | { | |
3357 | toibm (x, y, DFmode); | |
3358 | } | |
3359 | ||
3360 | #else /* it's neither DEC nor IBM */ | |
985b6196 RS |
3361 | |
3362 | void | |
3363 | etoe53 (x, e) | |
3364 | unsigned EMUSHORT *x, *e; | |
3365 | { | |
3366 | unsigned EMUSHORT xi[NI]; | |
3367 | EMULONG exp; | |
3368 | int rndsav; | |
3369 | ||
66b6d60b RS |
3370 | #ifdef NANS |
3371 | if (eisnan (x)) | |
3372 | { | |
3373 | make_nan (e, DFmode); | |
3374 | return; | |
3375 | } | |
3376 | #endif | |
985b6196 RS |
3377 | emovi (x, xi); |
3378 | /* adjust exponent for offsets */ | |
3379 | exp = (EMULONG) xi[E] - (EXONE - 0x3ff); | |
3380 | #ifdef INFINITY | |
3381 | if (eisinf (x)) | |
3382 | goto nonorm; | |
3383 | #endif | |
3384 | /* round off to nearest or even */ | |
3385 | rndsav = rndprc; | |
3386 | rndprc = 53; | |
3387 | emdnorm (xi, 0, 0, exp, 64); | |
3388 | rndprc = rndsav; | |
3389 | nonorm: | |
3390 | toe53 (xi, e); | |
3391 | } | |
3392 | ||
3393 | ||
3394 | static void | |
3395 | toe53 (x, y) | |
3396 | unsigned EMUSHORT *x, *y; | |
3397 | { | |
3398 | unsigned EMUSHORT i; | |
3399 | unsigned EMUSHORT *p; | |
3400 | ||
66b6d60b RS |
3401 | #ifdef NANS |
3402 | if (eiisnan (x)) | |
3403 | { | |
3404 | make_nan (y, DFmode); | |
3405 | return; | |
3406 | } | |
3407 | #endif | |
985b6196 RS |
3408 | p = &x[0]; |
3409 | #ifdef IBMPC | |
3410 | y += 3; | |
3411 | #endif | |
3412 | *y = 0; /* output high order */ | |
3413 | if (*p++) | |
3414 | *y = 0x8000; /* output sign bit */ | |
3415 | ||
3416 | i = *p++; | |
3417 | if (i >= (unsigned int) 2047) | |
3418 | { /* Saturate at largest number less than infinity. */ | |
3419 | #ifdef INFINITY | |
3420 | *y |= 0x7ff0; | |
3421 | #ifdef IBMPC | |
3422 | *(--y) = 0; | |
3423 | *(--y) = 0; | |
3424 | *(--y) = 0; | |
3425 | #endif | |
3426 | #ifdef MIEEE | |
3427 | ++y; | |
3428 | *y++ = 0; | |
3429 | *y++ = 0; | |
3430 | *y++ = 0; | |
3431 | #endif | |
3432 | #else | |
3433 | *y |= (unsigned EMUSHORT) 0x7fef; | |
3434 | #ifdef IBMPC | |
3435 | *(--y) = 0xffff; | |
3436 | *(--y) = 0xffff; | |
3437 | *(--y) = 0xffff; | |
3438 | #endif | |
3439 | #ifdef MIEEE | |
3440 | ++y; | |
3441 | *y++ = 0xffff; | |
3442 | *y++ = 0xffff; | |
3443 | *y++ = 0xffff; | |
3444 | #endif | |
3445 | #endif | |
3446 | return; | |
3447 | } | |
3448 | if (i == 0) | |
3449 | { | |
64685ffa | 3450 | eshift (x, 4); |
985b6196 RS |
3451 | } |
3452 | else | |
3453 | { | |
3454 | i <<= 4; | |
64685ffa | 3455 | eshift (x, 5); |
985b6196 RS |
3456 | } |
3457 | i |= *p++ & (unsigned EMUSHORT) 0x0f; /* *p = xi[M] */ | |
3458 | *y |= (unsigned EMUSHORT) i; /* high order output already has sign bit set */ | |
3459 | #ifdef IBMPC | |
3460 | *(--y) = *p++; | |
3461 | *(--y) = *p++; | |
3462 | *(--y) = *p; | |
3463 | #endif | |
3464 | #ifdef MIEEE | |
3465 | ++y; | |
3466 | *y++ = *p++; | |
3467 | *y++ = *p++; | |
3468 | *y++ = *p++; | |
3469 | #endif | |
3470 | } | |
3471 | ||
842fbaaa | 3472 | #endif /* not IBM */ |
985b6196 RS |
3473 | #endif /* not DEC */ |
3474 | ||
3475 | ||
3476 | ||
3477 | /* | |
3478 | ; e type to IEEE single precision | |
3479 | ; float d; | |
3480 | ; unsigned EMUSHORT x[N+2]; | |
3481 | ; xtod (x, &d); | |
3482 | */ | |
842fbaaa JW |
3483 | #ifdef IBM |
3484 | ||
3485 | void | |
3486 | etoe24 (x, e) | |
3487 | unsigned EMUSHORT *x, *e; | |
3488 | { | |
3489 | etoibm (x, e, SFmode); | |
3490 | } | |
3491 | ||
3492 | static void | |
3493 | toe24 (x, y) | |
3494 | unsigned EMUSHORT *x, *y; | |
3495 | { | |
3496 | toibm (x, y, SFmode); | |
3497 | } | |
3498 | ||
3499 | #else | |
3500 | ||
985b6196 RS |
3501 | void |
3502 | etoe24 (x, e) | |
3503 | unsigned EMUSHORT *x, *e; | |
3504 | { | |
3505 | EMULONG exp; | |
3506 | unsigned EMUSHORT xi[NI]; | |
3507 | int rndsav; | |
3508 | ||
66b6d60b RS |
3509 | #ifdef NANS |
3510 | if (eisnan (x)) | |
3511 | { | |
3512 | make_nan (e, SFmode); | |
3513 | return; | |
3514 | } | |
3515 | #endif | |
985b6196 RS |
3516 | emovi (x, xi); |
3517 | /* adjust exponent for offsets */ | |
3518 | exp = (EMULONG) xi[E] - (EXONE - 0177); | |
3519 | #ifdef INFINITY | |
3520 | if (eisinf (x)) | |
3521 | goto nonorm; | |
3522 | #endif | |
3523 | /* round off to nearest or even */ | |
3524 | rndsav = rndprc; | |
3525 | rndprc = 24; | |
3526 | emdnorm (xi, 0, 0, exp, 64); | |
3527 | rndprc = rndsav; | |
3528 | nonorm: | |
3529 | toe24 (xi, e); | |
3530 | } | |
3531 | ||
3532 | static void | |
3533 | toe24 (x, y) | |
3534 | unsigned EMUSHORT *x, *y; | |
3535 | { | |
3536 | unsigned EMUSHORT i; | |
3537 | unsigned EMUSHORT *p; | |
3538 | ||
66b6d60b RS |
3539 | #ifdef NANS |
3540 | if (eiisnan (x)) | |
3541 | { | |
3542 | make_nan (y, SFmode); | |
3543 | return; | |
3544 | } | |
3545 | #endif | |
985b6196 RS |
3546 | p = &x[0]; |
3547 | #ifdef IBMPC | |
3548 | y += 1; | |
3549 | #endif | |
3550 | #ifdef DEC | |
3551 | y += 1; | |
3552 | #endif | |
3553 | *y = 0; /* output high order */ | |
3554 | if (*p++) | |
3555 | *y = 0x8000; /* output sign bit */ | |
3556 | ||
3557 | i = *p++; | |
64685ffa | 3558 | /* Handle overflow cases. */ |
985b6196 | 3559 | if (i >= 255) |
64685ffa | 3560 | { |
985b6196 RS |
3561 | #ifdef INFINITY |
3562 | *y |= (unsigned EMUSHORT) 0x7f80; | |
3563 | #ifdef IBMPC | |
3564 | *(--y) = 0; | |
3565 | #endif | |
3566 | #ifdef DEC | |
3567 | *(--y) = 0; | |
3568 | #endif | |
3569 | #ifdef MIEEE | |
3570 | ++y; | |
3571 | *y = 0; | |
3572 | #endif | |
64685ffa | 3573 | #else /* no INFINITY */ |
985b6196 RS |
3574 | *y |= (unsigned EMUSHORT) 0x7f7f; |
3575 | #ifdef IBMPC | |
3576 | *(--y) = 0xffff; | |
3577 | #endif | |
3578 | #ifdef DEC | |
3579 | *(--y) = 0xffff; | |
3580 | #endif | |
3581 | #ifdef MIEEE | |
3582 | ++y; | |
3583 | *y = 0xffff; | |
3584 | #endif | |
64685ffa RS |
3585 | #ifdef ERANGE |
3586 | errno = ERANGE; | |
985b6196 | 3587 | #endif |
64685ffa | 3588 | #endif /* no INFINITY */ |
985b6196 RS |
3589 | return; |
3590 | } | |
3591 | if (i == 0) | |
3592 | { | |
64685ffa | 3593 | eshift (x, 7); |
985b6196 RS |
3594 | } |
3595 | else | |
3596 | { | |
3597 | i <<= 7; | |
64685ffa | 3598 | eshift (x, 8); |
985b6196 RS |
3599 | } |
3600 | i |= *p++ & (unsigned EMUSHORT) 0x7f; /* *p = xi[M] */ | |
3601 | *y |= i; /* high order output already has sign bit set */ | |
3602 | #ifdef IBMPC | |
3603 | *(--y) = *p; | |
3604 | #endif | |
3605 | #ifdef DEC | |
3606 | *(--y) = *p; | |
3607 | #endif | |
3608 | #ifdef MIEEE | |
3609 | ++y; | |
3610 | *y = *p; | |
3611 | #endif | |
3612 | } | |
842fbaaa | 3613 | #endif /* not IBM */ |
985b6196 RS |
3614 | |
3615 | /* Compare two e type numbers. | |
3616 | * | |
3617 | * unsigned EMUSHORT a[NE], b[NE]; | |
3618 | * ecmp (a, b); | |
3619 | * | |
3620 | * returns +1 if a > b | |
3621 | * 0 if a == b | |
3622 | * -1 if a < b | |
66b6d60b | 3623 | * -2 if either a or b is a NaN. |
985b6196 RS |
3624 | */ |
3625 | int | |
3626 | ecmp (a, b) | |
3627 | unsigned EMUSHORT *a, *b; | |
3628 | { | |
3629 | unsigned EMUSHORT ai[NI], bi[NI]; | |
3630 | register unsigned EMUSHORT *p, *q; | |
3631 | register int i; | |
3632 | int msign; | |
3633 | ||
66b6d60b RS |
3634 | #ifdef NANS |
3635 | if (eisnan (a) || eisnan (b)) | |
3636 | return (-2); | |
3637 | #endif | |
985b6196 RS |
3638 | emovi (a, ai); |
3639 | p = ai; | |
3640 | emovi (b, bi); | |
3641 | q = bi; | |
3642 | ||
3643 | if (*p != *q) | |
3644 | { /* the signs are different */ | |
3645 | /* -0 equals + 0 */ | |
3646 | for (i = 1; i < NI - 1; i++) | |
3647 | { | |
3648 | if (ai[i] != 0) | |
3649 | goto nzro; | |
3650 | if (bi[i] != 0) | |
3651 | goto nzro; | |
3652 | } | |
3653 | return (0); | |
3654 | nzro: | |
3655 | if (*p == 0) | |
3656 | return (1); | |
3657 | else | |
3658 | return (-1); | |
3659 | } | |
3660 | /* both are the same sign */ | |
3661 | if (*p == 0) | |
3662 | msign = 1; | |
3663 | else | |
3664 | msign = -1; | |
3665 | i = NI - 1; | |
3666 | do | |
3667 | { | |
3668 | if (*p++ != *q++) | |
3669 | { | |
3670 | goto diff; | |
3671 | } | |
3672 | } | |
3673 | while (--i > 0); | |
3674 | ||
3675 | return (0); /* equality */ | |
3676 | ||
3677 | ||
3678 | ||
3679 | diff: | |
3680 | ||
3681 | if (*(--p) > *(--q)) | |
3682 | return (msign); /* p is bigger */ | |
3683 | else | |
3684 | return (-msign); /* p is littler */ | |
3685 | } | |
3686 | ||
3687 | ||
3688 | ||
3689 | ||
3690 | /* Find nearest integer to x = floor (x + 0.5) | |
3691 | * | |
3692 | * unsigned EMUSHORT x[NE], y[NE] | |
3693 | * eround (x, y); | |
3694 | */ | |
3695 | void | |
3696 | eround (x, y) | |
3697 | unsigned EMUSHORT *x, *y; | |
3698 | { | |
3699 | eadd (ehalf, x, y); | |
3700 | efloor (y, y); | |
3701 | } | |
3702 | ||
3703 | ||
3704 | ||
3705 | ||
3706 | /* | |
3707 | ; convert long integer to e type | |
3708 | ; | |
3709 | ; long l; | |
3710 | ; unsigned EMUSHORT x[NE]; | |
3711 | ; ltoe (&l, x); | |
3712 | ; note &l is the memory address of l | |
3713 | */ | |
3714 | void | |
3715 | ltoe (lp, y) | |
3716 | long *lp; /* lp is the memory address of a long integer */ | |
3717 | unsigned EMUSHORT *y; /* y is the address of a short */ | |
3718 | { | |
3719 | unsigned EMUSHORT yi[NI]; | |
3720 | unsigned long ll; | |
3721 | int k; | |
3722 | ||
3723 | ecleaz (yi); | |
3724 | if (*lp < 0) | |
3725 | { | |
3726 | /* make it positive */ | |
3727 | ll = (unsigned long) (-(*lp)); | |
3728 | yi[0] = 0xffff; /* put correct sign in the e type number */ | |
3729 | } | |
3730 | else | |
3731 | { | |
3732 | ll = (unsigned long) (*lp); | |
3733 | } | |
3734 | /* move the long integer to yi significand area */ | |
7729f1ca RS |
3735 | #if HOST_BITS_PER_LONG == 64 |
3736 | yi[M] = (unsigned EMUSHORT) (ll >> 48); | |
3737 | yi[M + 1] = (unsigned EMUSHORT) (ll >> 32); | |
3738 | yi[M + 2] = (unsigned EMUSHORT) (ll >> 16); | |
3739 | yi[M + 3] = (unsigned EMUSHORT) ll; | |
3740 | yi[E] = EXONE + 47; /* exponent if normalize shift count were 0 */ | |
3741 | #else | |
985b6196 RS |
3742 | yi[M] = (unsigned EMUSHORT) (ll >> 16); |
3743 | yi[M + 1] = (unsigned EMUSHORT) ll; | |
985b6196 | 3744 | yi[E] = EXONE + 15; /* exponent if normalize shift count were 0 */ |
7729f1ca RS |
3745 | #endif |
3746 | ||
985b6196 RS |
3747 | if ((k = enormlz (yi)) > NBITS)/* normalize the significand */ |
3748 | ecleaz (yi); /* it was zero */ | |
3749 | else | |
3750 | yi[E] -= (unsigned EMUSHORT) k;/* subtract shift count from exponent */ | |
3751 | emovo (yi, y); /* output the answer */ | |
3752 | } | |
3753 | ||
3754 | /* | |
3755 | ; convert unsigned long integer to e type | |
3756 | ; | |
3757 | ; unsigned long l; | |
3758 | ; unsigned EMUSHORT x[NE]; | |
3759 | ; ltox (&l, x); | |
3760 | ; note &l is the memory address of l | |
3761 | */ | |
3762 | void | |
3763 | ultoe (lp, y) | |
3764 | unsigned long *lp; /* lp is the memory address of a long integer */ | |
3765 | unsigned EMUSHORT *y; /* y is the address of a short */ | |
3766 | { | |
3767 | unsigned EMUSHORT yi[NI]; | |
3768 | unsigned long ll; | |
3769 | int k; | |
3770 | ||
3771 | ecleaz (yi); | |
3772 | ll = *lp; | |
3773 | ||
3774 | /* move the long integer to ayi significand area */ | |
7729f1ca RS |
3775 | #if HOST_BITS_PER_LONG == 64 |
3776 | yi[M] = (unsigned EMUSHORT) (ll >> 48); | |
3777 | yi[M + 1] = (unsigned EMUSHORT) (ll >> 32); | |
3778 | yi[M + 2] = (unsigned EMUSHORT) (ll >> 16); | |
3779 | yi[M + 3] = (unsigned EMUSHORT) ll; | |
3780 | yi[E] = EXONE + 47; /* exponent if normalize shift count were 0 */ | |
3781 | #else | |
985b6196 RS |
3782 | yi[M] = (unsigned EMUSHORT) (ll >> 16); |
3783 | yi[M + 1] = (unsigned EMUSHORT) ll; | |
985b6196 | 3784 | yi[E] = EXONE + 15; /* exponent if normalize shift count were 0 */ |
7729f1ca RS |
3785 | #endif |
3786 | ||
985b6196 RS |
3787 | if ((k = enormlz (yi)) > NBITS)/* normalize the significand */ |
3788 | ecleaz (yi); /* it was zero */ | |
3789 | else | |
3790 | yi[E] -= (unsigned EMUSHORT) k; /* subtract shift count from exponent */ | |
3791 | emovo (yi, y); /* output the answer */ | |
3792 | } | |
3793 | ||
3794 | ||
3795 | /* | |
3796 | ; Find long integer and fractional parts | |
3797 | ||
3798 | ; long i; | |
3799 | ; unsigned EMUSHORT x[NE], frac[NE]; | |
3800 | ; xifrac (x, &i, frac); | |
3801 | ||
3802 | The integer output has the sign of the input. The fraction is | |
3803 | the positive fractional part of abs (x). | |
3804 | */ | |
3805 | void | |
3806 | eifrac (x, i, frac) | |
3807 | unsigned EMUSHORT *x; | |
3808 | long *i; | |
3809 | unsigned EMUSHORT *frac; | |
3810 | { | |
3811 | unsigned EMUSHORT xi[NI]; | |
7729f1ca RS |
3812 | int j, k; |
3813 | unsigned long ll; | |
985b6196 RS |
3814 | |
3815 | emovi (x, xi); | |
3816 | k = (int) xi[E] - (EXONE - 1); | |
3817 | if (k <= 0) | |
3818 | { | |
3819 | /* if exponent <= 0, integer = 0 and real output is fraction */ | |
3820 | *i = 0L; | |
3821 | emovo (xi, frac); | |
3822 | return; | |
3823 | } | |
3824 | if (k > (HOST_BITS_PER_LONG - 1)) | |
3825 | { | |
7729f1ca RS |
3826 | /* long integer overflow: output large integer |
3827 | and correct fraction */ | |
985b6196 RS |
3828 | if (xi[0]) |
3829 | *i = ((unsigned long) 1) << (HOST_BITS_PER_LONG - 1); | |
3830 | else | |
3831 | *i = (((unsigned long) 1) << (HOST_BITS_PER_LONG - 1)) - 1; | |
64685ffa RS |
3832 | eshift (xi, k); |
3833 | if (extra_warnings) | |
3834 | warning ("overflow on truncation to integer"); | |
985b6196 | 3835 | } |
7729f1ca | 3836 | else if (k > 16) |
985b6196 | 3837 | { |
7729f1ca RS |
3838 | /* Shift more than 16 bits: first shift up k-16 mod 16, |
3839 | then shift up by 16's. */ | |
3840 | j = k - ((k >> 4) << 4); | |
3841 | eshift (xi, j); | |
3842 | ll = xi[M]; | |
3843 | k -= j; | |
3844 | do | |
3845 | { | |
3846 | eshup6 (xi); | |
3847 | ll = (ll << 16) | xi[M]; | |
3848 | } | |
3849 | while ((k -= 16) > 0); | |
3850 | *i = ll; | |
3851 | if (xi[0]) | |
3852 | *i = -(*i); | |
3853 | } | |
3854 | else | |
842fbaaa JW |
3855 | { |
3856 | /* shift not more than 16 bits */ | |
3857 | eshift (xi, k); | |
3858 | *i = (long) xi[M] & 0xffff; | |
3859 | if (xi[0]) | |
3860 | *i = -(*i); | |
3861 | } | |
985b6196 RS |
3862 | xi[0] = 0; |
3863 | xi[E] = EXONE - 1; | |
3864 | xi[M] = 0; | |
3865 | if ((k = enormlz (xi)) > NBITS) | |
3866 | ecleaz (xi); | |
3867 | else | |
3868 | xi[E] -= (unsigned EMUSHORT) k; | |
3869 | ||
3870 | emovo (xi, frac); | |
3871 | } | |
3872 | ||
3873 | ||
7729f1ca RS |
3874 | /* Find unsigned long integer and fractional parts. |
3875 | A negative e type input yields integer output = 0 | |
3876 | but correct fraction. */ | |
985b6196 | 3877 | |
985b6196 RS |
3878 | void |
3879 | euifrac (x, i, frac) | |
3880 | unsigned EMUSHORT *x; | |
7729f1ca | 3881 | unsigned long *i; |
985b6196 RS |
3882 | unsigned EMUSHORT *frac; |
3883 | { | |
7729f1ca | 3884 | unsigned long ll; |
985b6196 | 3885 | unsigned EMUSHORT xi[NI]; |
7729f1ca | 3886 | int j, k; |
985b6196 RS |
3887 | |
3888 | emovi (x, xi); | |
3889 | k = (int) xi[E] - (EXONE - 1); | |
3890 | if (k <= 0) | |
3891 | { | |
3892 | /* if exponent <= 0, integer = 0 and argument is fraction */ | |
3893 | *i = 0L; | |
3894 | emovo (xi, frac); | |
3895 | return; | |
3896 | } | |
7729f1ca | 3897 | if (k > HOST_BITS_PER_LONG) |
985b6196 | 3898 | { |
7729f1ca RS |
3899 | /* Long integer overflow: output large integer |
3900 | and correct fraction. | |
3901 | Note, the BSD microvax compiler says that ~(0UL) | |
3902 | is a syntax error. */ | |
985b6196 | 3903 | *i = ~(0L); |
64685ffa RS |
3904 | eshift (xi, k); |
3905 | if (extra_warnings) | |
3906 | warning ("overflow on truncation to unsigned integer"); | |
985b6196 | 3907 | } |
7729f1ca | 3908 | else if (k > 16) |
985b6196 | 3909 | { |
7729f1ca RS |
3910 | /* Shift more than 16 bits: first shift up k-16 mod 16, |
3911 | then shift up by 16's. */ | |
3912 | j = k - ((k >> 4) << 4); | |
3913 | eshift (xi, j); | |
3914 | ll = xi[M]; | |
3915 | k -= j; | |
3916 | do | |
3917 | { | |
3918 | eshup6 (xi); | |
3919 | ll = (ll << 16) | xi[M]; | |
3920 | } | |
3921 | while ((k -= 16) > 0); | |
3922 | *i = ll; | |
3923 | } | |
3924 | else | |
3925 | { | |
3926 | /* shift not more than 16 bits */ | |
64685ffa | 3927 | eshift (xi, k); |
7729f1ca | 3928 | *i = (long) xi[M] & 0xffff; |
985b6196 RS |
3929 | } |
3930 | ||
7729f1ca | 3931 | if (xi[0]) /* A negative value yields unsigned integer 0. */ |
985b6196 | 3932 | *i = 0L; |
842fbaaa | 3933 | |
985b6196 RS |
3934 | xi[0] = 0; |
3935 | xi[E] = EXONE - 1; | |
3936 | xi[M] = 0; | |
3937 | if ((k = enormlz (xi)) > NBITS) | |
3938 | ecleaz (xi); | |
3939 | else | |
3940 | xi[E] -= (unsigned EMUSHORT) k; | |
3941 | ||
3942 | emovo (xi, frac); | |
3943 | } | |
3944 | ||
3945 | ||
3946 | ||
3947 | /* | |
3948 | ; Shift significand | |
3949 | ; | |
3950 | ; Shifts significand area up or down by the number of bits | |
3951 | ; given by the variable sc. | |
3952 | */ | |
3953 | int | |
3954 | eshift (x, sc) | |
3955 | unsigned EMUSHORT *x; | |
3956 | int sc; | |
3957 | { | |
3958 | unsigned EMUSHORT lost; | |
3959 | unsigned EMUSHORT *p; | |
3960 | ||
3961 | if (sc == 0) | |
3962 | return (0); | |
3963 | ||
3964 | lost = 0; | |
3965 | p = x + NI - 1; | |
3966 | ||
3967 | if (sc < 0) | |
3968 | { | |
3969 | sc = -sc; | |
3970 | while (sc >= 16) | |
3971 | { | |
3972 | lost |= *p; /* remember lost bits */ | |
3973 | eshdn6 (x); | |
3974 | sc -= 16; | |
3975 | } | |
3976 | ||
3977 | while (sc >= 8) | |
3978 | { | |
3979 | lost |= *p & 0xff; | |
3980 | eshdn8 (x); | |
3981 | sc -= 8; | |
3982 | } | |
3983 | ||
3984 | while (sc > 0) | |
3985 | { | |
3986 | lost |= *p & 1; | |
3987 | eshdn1 (x); | |
3988 | sc -= 1; | |
3989 | } | |
3990 | } | |
3991 | else | |
3992 | { | |
3993 | while (sc >= 16) | |
3994 | { | |
3995 | eshup6 (x); | |
3996 | sc -= 16; | |
3997 | } | |
3998 | ||
3999 | while (sc >= 8) | |
4000 | { | |
4001 | eshup8 (x); | |
4002 | sc -= 8; | |
4003 | } | |
4004 | ||
4005 | while (sc > 0) | |
4006 | { | |
4007 | eshup1 (x); | |
4008 | sc -= 1; | |
4009 | } | |
4010 | } | |
4011 | if (lost) | |
4012 | lost = 1; | |
4013 | return ((int) lost); | |
4014 | } | |
4015 | ||
4016 | ||
4017 | ||
4018 | /* | |
4019 | ; normalize | |
4020 | ; | |
4021 | ; Shift normalizes the significand area pointed to by argument | |
4022 | ; shift count (up = positive) is returned. | |
4023 | */ | |
4024 | int | |
4025 | enormlz (x) | |
4026 | unsigned EMUSHORT x[]; | |
4027 | { | |
4028 | register unsigned EMUSHORT *p; | |
4029 | int sc; | |
4030 | ||
4031 | sc = 0; | |
4032 | p = &x[M]; | |
4033 | if (*p != 0) | |
4034 | goto normdn; | |
4035 | ++p; | |
4036 | if (*p & 0x8000) | |
4037 | return (0); /* already normalized */ | |
4038 | while (*p == 0) | |
4039 | { | |
4040 | eshup6 (x); | |
4041 | sc += 16; | |
4042 | /* With guard word, there are NBITS+16 bits available. | |
4043 | * return true if all are zero. | |
4044 | */ | |
4045 | if (sc > NBITS) | |
4046 | return (sc); | |
4047 | } | |
4048 | /* see if high byte is zero */ | |
4049 | while ((*p & 0xff00) == 0) | |
4050 | { | |
4051 | eshup8 (x); | |
4052 | sc += 8; | |
4053 | } | |
4054 | /* now shift 1 bit at a time */ | |
4055 | while ((*p & 0x8000) == 0) | |
4056 | { | |
4057 | eshup1 (x); | |
4058 | sc += 1; | |
4059 | if (sc > NBITS) | |
4060 | { | |
4061 | mtherr ("enormlz", UNDERFLOW); | |
4062 | return (sc); | |
4063 | } | |
4064 | } | |
4065 | return (sc); | |
4066 | ||
4067 | /* Normalize by shifting down out of the high guard word | |
4068 | of the significand */ | |
4069 | normdn: | |
4070 | ||
4071 | if (*p & 0xff00) | |
4072 | { | |
4073 | eshdn8 (x); | |
4074 | sc -= 8; | |
4075 | } | |
4076 | while (*p != 0) | |
4077 | { | |
4078 | eshdn1 (x); | |
4079 | sc -= 1; | |
4080 | ||
4081 | if (sc < -NBITS) | |
4082 | { | |
4083 | mtherr ("enormlz", OVERFLOW); | |
4084 | return (sc); | |
4085 | } | |
4086 | } | |
4087 | return (sc); | |
4088 | } | |
4089 | ||
4090 | ||
4091 | ||
4092 | ||
4093 | /* Convert e type number to decimal format ASCII string. | |
4094 | * The constants are for 64 bit precision. | |
4095 | */ | |
4096 | ||
4097 | #define NTEN 12 | |
4098 | #define MAXP 4096 | |
4099 | ||
842fbaaa JW |
4100 | #if LONG_DOUBLE_TYPE_SIZE == 128 |
4101 | static unsigned EMUSHORT etens[NTEN + 1][NE] = | |
4102 | { | |
4103 | {0x6576, 0x4a92, 0x804a, 0x153f, | |
4104 | 0xc94c, 0x979a, 0x8a20, 0x5202, 0xc460, 0x7525,}, /* 10**4096 */ | |
4105 | {0x6a32, 0xce52, 0x329a, 0x28ce, | |
4106 | 0xa74d, 0x5de4, 0xc53d, 0x3b5d, 0x9e8b, 0x5a92,}, /* 10**2048 */ | |
4107 | {0x526c, 0x50ce, 0xf18b, 0x3d28, | |
4108 | 0x650d, 0x0c17, 0x8175, 0x7586, 0xc976, 0x4d48,}, | |
4109 | {0x9c66, 0x58f8, 0xbc50, 0x5c54, | |
4110 | 0xcc65, 0x91c6, 0xa60e, 0xa0ae, 0xe319, 0x46a3,}, | |
4111 | {0x851e, 0xeab7, 0x98fe, 0x901b, | |
4112 | 0xddbb, 0xde8d, 0x9df9, 0xebfb, 0xaa7e, 0x4351,}, | |
4113 | {0x0235, 0x0137, 0x36b1, 0x336c, | |
4114 | 0xc66f, 0x8cdf, 0x80e9, 0x47c9, 0x93ba, 0x41a8,}, | |
4115 | {0x50f8, 0x25fb, 0xc76b, 0x6b71, | |
4116 | 0x3cbf, 0xa6d5, 0xffcf, 0x1f49, 0xc278, 0x40d3,}, | |
4117 | {0x0000, 0x0000, 0x0000, 0x0000, | |
4118 | 0xf020, 0xb59d, 0x2b70, 0xada8, 0x9dc5, 0x4069,}, | |
4119 | {0x0000, 0x0000, 0x0000, 0x0000, | |
4120 | 0x0000, 0x0000, 0x0400, 0xc9bf, 0x8e1b, 0x4034,}, | |
4121 | {0x0000, 0x0000, 0x0000, 0x0000, | |
4122 | 0x0000, 0x0000, 0x0000, 0x2000, 0xbebc, 0x4019,}, | |
4123 | {0x0000, 0x0000, 0x0000, 0x0000, | |
4124 | 0x0000, 0x0000, 0x0000, 0x0000, 0x9c40, 0x400c,}, | |
4125 | {0x0000, 0x0000, 0x0000, 0x0000, | |
4126 | 0x0000, 0x0000, 0x0000, 0x0000, 0xc800, 0x4005,}, | |
4127 | {0x0000, 0x0000, 0x0000, 0x0000, | |
4128 | 0x0000, 0x0000, 0x0000, 0x0000, 0xa000, 0x4002,}, /* 10**1 */ | |
4129 | }; | |
4130 | ||
4131 | static unsigned EMUSHORT emtens[NTEN + 1][NE] = | |
4132 | { | |
4133 | {0x2030, 0xcffc, 0xa1c3, 0x8123, | |
4134 | 0x2de3, 0x9fde, 0xd2ce, 0x04c8, 0xa6dd, 0x0ad8,}, /* 10**-4096 */ | |
4135 | {0x8264, 0xd2cb, 0xf2ea, 0x12d4, | |
4136 | 0x4925, 0x2de4, 0x3436, 0x534f, 0xceae, 0x256b,}, /* 10**-2048 */ | |
4137 | {0xf53f, 0xf698, 0x6bd3, 0x0158, | |
4138 | 0x87a6, 0xc0bd, 0xda57, 0x82a5, 0xa2a6, 0x32b5,}, | |
4139 | {0xe731, 0x04d4, 0xe3f2, 0xd332, | |
4140 | 0x7132, 0xd21c, 0xdb23, 0xee32, 0x9049, 0x395a,}, | |
4141 | {0xa23e, 0x5308, 0xfefb, 0x1155, | |
4142 | 0xfa91, 0x1939, 0x637a, 0x4325, 0xc031, 0x3cac,}, | |
4143 | {0xe26d, 0xdbde, 0xd05d, 0xb3f6, | |
4144 | 0xac7c, 0xe4a0, 0x64bc, 0x467c, 0xddd0, 0x3e55,}, | |
4145 | {0x2a20, 0x6224, 0x47b3, 0x98d7, | |
4146 | 0x3f23, 0xe9a5, 0xa539, 0xea27, 0xa87f, 0x3f2a,}, | |
4147 | {0x0b5b, 0x4af2, 0xa581, 0x18ed, | |
4148 | 0x67de, 0x94ba, 0x4539, 0x1ead, 0xcfb1, 0x3f94,}, | |
4149 | {0xbf71, 0xa9b3, 0x7989, 0xbe68, | |
4150 | 0x4c2e, 0xe15b, 0xc44d, 0x94be, 0xe695, 0x3fc9,}, | |
4151 | {0x3d4d, 0x7c3d, 0x36ba, 0x0d2b, | |
4152 | 0xfdc2, 0xcefc, 0x8461, 0x7711, 0xabcc, 0x3fe4,}, | |
4153 | {0xc155, 0xa4a8, 0x404e, 0x6113, | |
4154 | 0xd3c3, 0x652b, 0xe219, 0x1758, 0xd1b7, 0x3ff1,}, | |
4155 | {0xd70a, 0x70a3, 0x0a3d, 0xa3d7, | |
4156 | 0x3d70, 0xd70a, 0x70a3, 0x0a3d, 0xa3d7, 0x3ff8,}, | |
4157 | {0xcccd, 0xcccc, 0xcccc, 0xcccc, | |
4158 | 0xcccc, 0xcccc, 0xcccc, 0xcccc, 0xcccc, 0x3ffb,}, /* 10**-1 */ | |
4159 | }; | |
4160 | #else | |
4161 | /* LONG_DOUBLE_TYPE_SIZE is other than 128 */ | |
985b6196 RS |
4162 | static unsigned EMUSHORT etens[NTEN + 1][NE] = |
4163 | { | |
4164 | {0xc94c, 0x979a, 0x8a20, 0x5202, 0xc460, 0x7525,}, /* 10**4096 */ | |
4165 | {0xa74d, 0x5de4, 0xc53d, 0x3b5d, 0x9e8b, 0x5a92,}, /* 10**2048 */ | |
4166 | {0x650d, 0x0c17, 0x8175, 0x7586, 0xc976, 0x4d48,}, | |
4167 | {0xcc65, 0x91c6, 0xa60e, 0xa0ae, 0xe319, 0x46a3,}, | |
4168 | {0xddbc, 0xde8d, 0x9df9, 0xebfb, 0xaa7e, 0x4351,}, | |
4169 | {0xc66f, 0x8cdf, 0x80e9, 0x47c9, 0x93ba, 0x41a8,}, | |
4170 | {0x3cbf, 0xa6d5, 0xffcf, 0x1f49, 0xc278, 0x40d3,}, | |
4171 | {0xf020, 0xb59d, 0x2b70, 0xada8, 0x9dc5, 0x4069,}, | |
4172 | {0x0000, 0x0000, 0x0400, 0xc9bf, 0x8e1b, 0x4034,}, | |
4173 | {0x0000, 0x0000, 0x0000, 0x2000, 0xbebc, 0x4019,}, | |
4174 | {0x0000, 0x0000, 0x0000, 0x0000, 0x9c40, 0x400c,}, | |
4175 | {0x0000, 0x0000, 0x0000, 0x0000, 0xc800, 0x4005,}, | |
4176 | {0x0000, 0x0000, 0x0000, 0x0000, 0xa000, 0x4002,}, /* 10**1 */ | |
4177 | }; | |
4178 | ||
4179 | static unsigned EMUSHORT emtens[NTEN + 1][NE] = | |
4180 | { | |
4181 | {0x2de4, 0x9fde, 0xd2ce, 0x04c8, 0xa6dd, 0x0ad8,}, /* 10**-4096 */ | |
4182 | {0x4925, 0x2de4, 0x3436, 0x534f, 0xceae, 0x256b,}, /* 10**-2048 */ | |
4183 | {0x87a6, 0xc0bd, 0xda57, 0x82a5, 0xa2a6, 0x32b5,}, | |
4184 | {0x7133, 0xd21c, 0xdb23, 0xee32, 0x9049, 0x395a,}, | |
4185 | {0xfa91, 0x1939, 0x637a, 0x4325, 0xc031, 0x3cac,}, | |
4186 | {0xac7d, 0xe4a0, 0x64bc, 0x467c, 0xddd0, 0x3e55,}, | |
4187 | {0x3f24, 0xe9a5, 0xa539, 0xea27, 0xa87f, 0x3f2a,}, | |
4188 | {0x67de, 0x94ba, 0x4539, 0x1ead, 0xcfb1, 0x3f94,}, | |
4189 | {0x4c2f, 0xe15b, 0xc44d, 0x94be, 0xe695, 0x3fc9,}, | |
4190 | {0xfdc2, 0xcefc, 0x8461, 0x7711, 0xabcc, 0x3fe4,}, | |
4191 | {0xd3c3, 0x652b, 0xe219, 0x1758, 0xd1b7, 0x3ff1,}, | |
4192 | {0x3d71, 0xd70a, 0x70a3, 0x0a3d, 0xa3d7, 0x3ff8,}, | |
4193 | {0xcccd, 0xcccc, 0xcccc, 0xcccc, 0xcccc, 0x3ffb,}, /* 10**-1 */ | |
4194 | }; | |
842fbaaa | 4195 | #endif |
985b6196 RS |
4196 | |
4197 | void | |
4198 | e24toasc (x, string, ndigs) | |
4199 | unsigned EMUSHORT x[]; | |
4200 | char *string; | |
4201 | int ndigs; | |
4202 | { | |
4203 | unsigned EMUSHORT w[NI]; | |
4204 | ||
985b6196 RS |
4205 | e24toe (x, w); |
4206 | etoasc (w, string, ndigs); | |
4207 | } | |
4208 | ||
4209 | ||
4210 | void | |
4211 | e53toasc (x, string, ndigs) | |
4212 | unsigned EMUSHORT x[]; | |
4213 | char *string; | |
4214 | int ndigs; | |
4215 | { | |
4216 | unsigned EMUSHORT w[NI]; | |
4217 | ||
985b6196 RS |
4218 | e53toe (x, w); |
4219 | etoasc (w, string, ndigs); | |
4220 | } | |
4221 | ||
4222 | ||
4223 | void | |
4224 | e64toasc (x, string, ndigs) | |
4225 | unsigned EMUSHORT x[]; | |
4226 | char *string; | |
4227 | int ndigs; | |
4228 | { | |
4229 | unsigned EMUSHORT w[NI]; | |
4230 | ||
985b6196 RS |
4231 | e64toe (x, w); |
4232 | etoasc (w, string, ndigs); | |
4233 | } | |
4234 | ||
842fbaaa JW |
4235 | void |
4236 | e113toasc (x, string, ndigs) | |
4237 | unsigned EMUSHORT x[]; | |
4238 | char *string; | |
4239 | int ndigs; | |
4240 | { | |
4241 | unsigned EMUSHORT w[NI]; | |
4242 | ||
4243 | e113toe (x, w); | |
4244 | etoasc (w, string, ndigs); | |
4245 | } | |
4246 | ||
985b6196 RS |
4247 | |
4248 | static char wstring[80]; /* working storage for ASCII output */ | |
4249 | ||
4250 | void | |
4251 | etoasc (x, string, ndigs) | |
4252 | unsigned EMUSHORT x[]; | |
4253 | char *string; | |
4254 | int ndigs; | |
4255 | { | |
4256 | EMUSHORT digit; | |
4257 | unsigned EMUSHORT y[NI], t[NI], u[NI], w[NI]; | |
4258 | unsigned EMUSHORT *p, *r, *ten; | |
4259 | unsigned EMUSHORT sign; | |
4260 | int i, j, k, expon, rndsav; | |
4261 | char *s, *ss; | |
4262 | unsigned EMUSHORT m; | |
4263 | ||
66b6d60b RS |
4264 | |
4265 | rndsav = rndprc; | |
985b6196 RS |
4266 | ss = string; |
4267 | s = wstring; | |
66b6d60b RS |
4268 | *ss = '\0'; |
4269 | *s = '\0'; | |
4270 | #ifdef NANS | |
4271 | if (eisnan (x)) | |
4272 | { | |
4273 | sprintf (wstring, " NaN "); | |
4274 | goto bxit; | |
4275 | } | |
4276 | #endif | |
985b6196 RS |
4277 | rndprc = NBITS; /* set to full precision */ |
4278 | emov (x, y); /* retain external format */ | |
4279 | if (y[NE - 1] & 0x8000) | |
4280 | { | |
4281 | sign = 0xffff; | |
4282 | y[NE - 1] &= 0x7fff; | |
4283 | } | |
4284 | else | |
4285 | { | |
4286 | sign = 0; | |
4287 | } | |
4288 | expon = 0; | |
4289 | ten = &etens[NTEN][0]; | |
4290 | emov (eone, t); | |
4291 | /* Test for zero exponent */ | |
4292 | if (y[NE - 1] == 0) | |
4293 | { | |
4294 | for (k = 0; k < NE - 1; k++) | |
4295 | { | |
4296 | if (y[k] != 0) | |
4297 | goto tnzro; /* denormalized number */ | |
4298 | } | |
4299 | goto isone; /* legal all zeros */ | |
4300 | } | |
4301 | tnzro: | |
4302 | ||
66b6d60b | 4303 | /* Test for infinity. */ |
985b6196 RS |
4304 | if (y[NE - 1] == 0x7fff) |
4305 | { | |
4306 | if (sign) | |
4307 | sprintf (wstring, " -Infinity "); | |
4308 | else | |
4309 | sprintf (wstring, " Infinity "); | |
4310 | goto bxit; | |
4311 | } | |
4312 | ||
4313 | /* Test for exponent nonzero but significand denormalized. | |
4314 | * This is an error condition. | |
4315 | */ | |
4316 | if ((y[NE - 1] != 0) && ((y[NE - 2] & 0x8000) == 0)) | |
4317 | { | |
4318 | mtherr ("etoasc", DOMAIN); | |
4319 | sprintf (wstring, "NaN"); | |
4320 | goto bxit; | |
4321 | } | |
4322 | ||
4323 | /* Compare to 1.0 */ | |
4324 | i = ecmp (eone, y); | |
4325 | if (i == 0) | |
4326 | goto isone; | |
4327 | ||
66b6d60b RS |
4328 | if (i == -2) |
4329 | abort (); | |
4330 | ||
985b6196 RS |
4331 | if (i < 0) |
4332 | { /* Number is greater than 1 */ | |
4333 | /* Convert significand to an integer and strip trailing decimal zeros. */ | |
4334 | emov (y, u); | |
4335 | u[NE - 1] = EXONE + NBITS - 1; | |
4336 | ||
4337 | p = &etens[NTEN - 4][0]; | |
4338 | m = 16; | |
4339 | do | |
4340 | { | |
4341 | ediv (p, u, t); | |
4342 | efloor (t, w); | |
4343 | for (j = 0; j < NE - 1; j++) | |
4344 | { | |
4345 | if (t[j] != w[j]) | |
4346 | goto noint; | |
4347 | } | |
4348 | emov (t, u); | |
4349 | expon += (int) m; | |
4350 | noint: | |
4351 | p += NE; | |
4352 | m >>= 1; | |
4353 | } | |
4354 | while (m != 0); | |
4355 | ||
4356 | /* Rescale from integer significand */ | |
4357 | u[NE - 1] += y[NE - 1] - (unsigned int) (EXONE + NBITS - 1); | |
4358 | emov (u, y); | |
4359 | /* Find power of 10 */ | |
4360 | emov (eone, t); | |
4361 | m = MAXP; | |
4362 | p = &etens[0][0]; | |
66b6d60b | 4363 | /* An unordered compare result shouldn't happen here. */ |
985b6196 RS |
4364 | while (ecmp (ten, u) <= 0) |
4365 | { | |
4366 | if (ecmp (p, u) <= 0) | |
4367 | { | |
4368 | ediv (p, u, u); | |
4369 | emul (p, t, t); | |
4370 | expon += (int) m; | |
4371 | } | |
4372 | m >>= 1; | |
4373 | if (m == 0) | |
4374 | break; | |
4375 | p += NE; | |
4376 | } | |
4377 | } | |
4378 | else | |
4379 | { /* Number is less than 1.0 */ | |
4380 | /* Pad significand with trailing decimal zeros. */ | |
4381 | if (y[NE - 1] == 0) | |
4382 | { | |
4383 | while ((y[NE - 2] & 0x8000) == 0) | |
4384 | { | |
4385 | emul (ten, y, y); | |
4386 | expon -= 1; | |
4387 | } | |
4388 | } | |
4389 | else | |
4390 | { | |
4391 | emovi (y, w); | |
4392 | for (i = 0; i < NDEC + 1; i++) | |
4393 | { | |
4394 | if ((w[NI - 1] & 0x7) != 0) | |
4395 | break; | |
4396 | /* multiply by 10 */ | |
4397 | emovz (w, u); | |
4398 | eshdn1 (u); | |
4399 | eshdn1 (u); | |
4400 | eaddm (w, u); | |
4401 | u[1] += 3; | |
4402 | while (u[2] != 0) | |
4403 | { | |
4404 | eshdn1 (u); | |
4405 | u[1] += 1; | |
4406 | } | |
4407 | if (u[NI - 1] != 0) | |
4408 | break; | |
4409 | if (eone[NE - 1] <= u[1]) | |
4410 | break; | |
4411 | emovz (u, w); | |
4412 | expon -= 1; | |
4413 | } | |
4414 | emovo (w, y); | |
4415 | } | |
4416 | k = -MAXP; | |
4417 | p = &emtens[0][0]; | |
4418 | r = &etens[0][0]; | |
4419 | emov (y, w); | |
4420 | emov (eone, t); | |
4421 | while (ecmp (eone, w) > 0) | |
4422 | { | |
4423 | if (ecmp (p, w) >= 0) | |
4424 | { | |
4425 | emul (r, w, w); | |
4426 | emul (r, t, t); | |
4427 | expon += k; | |
4428 | } | |
4429 | k /= 2; | |
4430 | if (k == 0) | |
4431 | break; | |
4432 | p += NE; | |
4433 | r += NE; | |
4434 | } | |
4435 | ediv (t, eone, t); | |
4436 | } | |
4437 | isone: | |
4438 | /* Find the first (leading) digit. */ | |
4439 | emovi (t, w); | |
4440 | emovz (w, t); | |
4441 | emovi (y, w); | |
4442 | emovz (w, y); | |
4443 | eiremain (t, y); | |
4444 | digit = equot[NI - 1]; | |
4445 | while ((digit == 0) && (ecmp (y, ezero) != 0)) | |
4446 | { | |
4447 | eshup1 (y); | |
4448 | emovz (y, u); | |
4449 | eshup1 (u); | |
4450 | eshup1 (u); | |
4451 | eaddm (u, y); | |
4452 | eiremain (t, y); | |
4453 | digit = equot[NI - 1]; | |
4454 | expon -= 1; | |
4455 | } | |
4456 | s = wstring; | |
4457 | if (sign) | |
4458 | *s++ = '-'; | |
4459 | else | |
4460 | *s++ = ' '; | |
985b6196 RS |
4461 | /* Examine number of digits requested by caller. */ |
4462 | if (ndigs < 0) | |
4463 | ndigs = 0; | |
4464 | if (ndigs > NDEC) | |
4465 | ndigs = NDEC; | |
64685ffa RS |
4466 | if (digit == 10) |
4467 | { | |
4468 | *s++ = '1'; | |
4469 | *s++ = '.'; | |
4470 | if (ndigs > 0) | |
4471 | { | |
4472 | *s++ = '0'; | |
4473 | ndigs -= 1; | |
4474 | } | |
4475 | expon += 1; | |
4476 | } | |
4477 | else | |
4478 | { | |
4479 | *s++ = (char )digit + '0'; | |
4480 | *s++ = '.'; | |
4481 | } | |
985b6196 RS |
4482 | /* Generate digits after the decimal point. */ |
4483 | for (k = 0; k <= ndigs; k++) | |
4484 | { | |
4485 | /* multiply current number by 10, without normalizing */ | |
4486 | eshup1 (y); | |
4487 | emovz (y, u); | |
4488 | eshup1 (u); | |
4489 | eshup1 (u); | |
4490 | eaddm (u, y); | |
4491 | eiremain (t, y); | |
4492 | *s++ = (char) equot[NI - 1] + '0'; | |
4493 | } | |
4494 | digit = equot[NI - 1]; | |
4495 | --s; | |
4496 | ss = s; | |
4497 | /* round off the ASCII string */ | |
4498 | if (digit > 4) | |
4499 | { | |
4500 | /* Test for critical rounding case in ASCII output. */ | |
4501 | if (digit == 5) | |
4502 | { | |
4503 | emovo (y, t); | |
4504 | if (ecmp (t, ezero) != 0) | |
4505 | goto roun; /* round to nearest */ | |
4506 | if ((*(s - 1) & 1) == 0) | |
4507 | goto doexp; /* round to even */ | |
4508 | } | |
4509 | /* Round up and propagate carry-outs */ | |
4510 | roun: | |
4511 | --s; | |
4512 | k = *s & 0x7f; | |
4513 | /* Carry out to most significant digit? */ | |
4514 | if (k == '.') | |
4515 | { | |
4516 | --s; | |
4517 | k = *s; | |
4518 | k += 1; | |
4519 | *s = (char) k; | |
4520 | /* Most significant digit carries to 10? */ | |
4521 | if (k > '9') | |
4522 | { | |
4523 | expon += 1; | |
4524 | *s = '1'; | |
4525 | } | |
4526 | goto doexp; | |
4527 | } | |
4528 | /* Round up and carry out from less significant digits */ | |
4529 | k += 1; | |
4530 | *s = (char) k; | |
4531 | if (k > '9') | |
4532 | { | |
4533 | *s = '0'; | |
4534 | goto roun; | |
4535 | } | |
4536 | } | |
4537 | doexp: | |
4538 | /* | |
4539 | if (expon >= 0) | |
4540 | sprintf (ss, "e+%d", expon); | |
4541 | else | |
4542 | sprintf (ss, "e%d", expon); | |
4543 | */ | |
4544 | sprintf (ss, "e%d", expon); | |
4545 | bxit: | |
4546 | rndprc = rndsav; | |
4547 | /* copy out the working string */ | |
4548 | s = string; | |
4549 | ss = wstring; | |
4550 | while (*ss == ' ') /* strip possible leading space */ | |
4551 | ++ss; | |
4552 | while ((*s++ = *ss++) != '\0') | |
4553 | ; | |
4554 | } | |
4555 | ||
4556 | ||
4557 | ||
4558 | ||
4559 | /* | |
4560 | ; ASCTOQ | |
4561 | ; ASCTOQ.MAC LATEST REV: 11 JAN 84 | |
4562 | ; SLM, 3 JAN 78 | |
4563 | ; | |
4564 | ; Convert ASCII string to quadruple precision floating point | |
4565 | ; | |
4566 | ; Numeric input is free field decimal number | |
4567 | ; with max of 15 digits with or without | |
4568 | ; decimal point entered as ASCII from teletype. | |
4569 | ; Entering E after the number followed by a second | |
4570 | ; number causes the second number to be interpreted | |
4571 | ; as a power of 10 to be multiplied by the first number | |
4572 | ; (i.e., "scientific" notation). | |
4573 | ; | |
4574 | ; Usage: | |
4575 | ; asctoq (string, q); | |
4576 | */ | |
4577 | ||
4578 | /* ASCII to single */ | |
4579 | void | |
4580 | asctoe24 (s, y) | |
4581 | char *s; | |
4582 | unsigned EMUSHORT *y; | |
4583 | { | |
4584 | asctoeg (s, y, 24); | |
4585 | } | |
4586 | ||
4587 | ||
4588 | /* ASCII to double */ | |
4589 | void | |
4590 | asctoe53 (s, y) | |
4591 | char *s; | |
4592 | unsigned EMUSHORT *y; | |
4593 | { | |
842fbaaa | 4594 | #if defined(DEC) || defined(IBM) |
985b6196 RS |
4595 | asctoeg (s, y, 56); |
4596 | #else | |
4597 | asctoeg (s, y, 53); | |
4598 | #endif | |
4599 | } | |
4600 | ||
4601 | ||
4602 | /* ASCII to long double */ | |
4603 | void | |
4604 | asctoe64 (s, y) | |
4605 | char *s; | |
4606 | unsigned EMUSHORT *y; | |
4607 | { | |
4608 | asctoeg (s, y, 64); | |
4609 | } | |
4610 | ||
842fbaaa JW |
4611 | /* ASCII to 128-bit long double */ |
4612 | void | |
4613 | asctoe113 (s, y) | |
4614 | char *s; | |
4615 | unsigned EMUSHORT *y; | |
4616 | { | |
4617 | asctoeg (s, y, 113); | |
4618 | } | |
4619 | ||
985b6196 RS |
4620 | /* ASCII to super double */ |
4621 | void | |
4622 | asctoe (s, y) | |
4623 | char *s; | |
4624 | unsigned EMUSHORT *y; | |
4625 | { | |
4626 | asctoeg (s, y, NBITS); | |
4627 | } | |
4628 | ||
4629 | /* Space to make a copy of the input string: */ | |
4630 | static char lstr[82]; | |
4631 | ||
4632 | void | |
4633 | asctoeg (ss, y, oprec) | |
4634 | char *ss; | |
4635 | unsigned EMUSHORT *y; | |
4636 | int oprec; | |
4637 | { | |
4638 | unsigned EMUSHORT yy[NI], xt[NI], tt[NI]; | |
4639 | int esign, decflg, sgnflg, nexp, exp, prec, lost; | |
4640 | int k, trail, c, rndsav; | |
4641 | EMULONG lexp; | |
4642 | unsigned EMUSHORT nsign, *p; | |
4643 | char *sp, *s; | |
4644 | ||
4645 | /* Copy the input string. */ | |
4646 | s = ss; | |
4647 | while (*s == ' ') /* skip leading spaces */ | |
4648 | ++s; | |
4649 | sp = lstr; | |
4650 | for (k = 0; k < 79; k++) | |
4651 | { | |
4652 | if ((*sp++ = *s++) == '\0') | |
4653 | break; | |
4654 | } | |
4655 | *sp = '\0'; | |
4656 | s = lstr; | |
4657 | ||
4658 | rndsav = rndprc; | |
4659 | rndprc = NBITS; /* Set to full precision */ | |
4660 | lost = 0; | |
4661 | nsign = 0; | |
4662 | decflg = 0; | |
4663 | sgnflg = 0; | |
4664 | nexp = 0; | |
4665 | exp = 0; | |
4666 | prec = 0; | |
4667 | ecleaz (yy); | |
4668 | trail = 0; | |
4669 | ||
4670 | nxtcom: | |
4671 | k = *s - '0'; | |
4672 | if ((k >= 0) && (k <= 9)) | |
4673 | { | |
4674 | /* Ignore leading zeros */ | |
4675 | if ((prec == 0) && (decflg == 0) && (k == 0)) | |
4676 | goto donchr; | |
4677 | /* Identify and strip trailing zeros after the decimal point. */ | |
4678 | if ((trail == 0) && (decflg != 0)) | |
4679 | { | |
4680 | sp = s; | |
4681 | while ((*sp >= '0') && (*sp <= '9')) | |
4682 | ++sp; | |
4683 | /* Check for syntax error */ | |
4684 | c = *sp & 0x7f; | |
4685 | if ((c != 'e') && (c != 'E') && (c != '\0') | |
4686 | && (c != '\n') && (c != '\r') && (c != ' ') | |
4687 | && (c != ',')) | |
4688 | goto error; | |
4689 | --sp; | |
4690 | while (*sp == '0') | |
4691 | *sp-- = 'z'; | |
4692 | trail = 1; | |
4693 | if (*s == 'z') | |
4694 | goto donchr; | |
4695 | } | |
4696 | /* If enough digits were given to more than fill up the yy register, | |
4697 | * continuing until overflow into the high guard word yy[2] | |
4698 | * guarantees that there will be a roundoff bit at the top | |
4699 | * of the low guard word after normalization. | |
4700 | */ | |
4701 | if (yy[2] == 0) | |
4702 | { | |
4703 | if (decflg) | |
4704 | nexp += 1; /* count digits after decimal point */ | |
4705 | eshup1 (yy); /* multiply current number by 10 */ | |
4706 | emovz (yy, xt); | |
4707 | eshup1 (xt); | |
4708 | eshup1 (xt); | |
4709 | eaddm (xt, yy); | |
4710 | ecleaz (xt); | |
4711 | xt[NI - 2] = (unsigned EMUSHORT) k; | |
4712 | eaddm (xt, yy); | |
4713 | } | |
4714 | else | |
4715 | { | |
4716 | lost |= k; | |
4717 | } | |
4718 | prec += 1; | |
4719 | goto donchr; | |
4720 | } | |
4721 | ||
4722 | switch (*s) | |
4723 | { | |
4724 | case 'z': | |
4725 | break; | |
4726 | case 'E': | |
4727 | case 'e': | |
4728 | goto expnt; | |
4729 | case '.': /* decimal point */ | |
4730 | if (decflg) | |
4731 | goto error; | |
4732 | ++decflg; | |
4733 | break; | |
4734 | case '-': | |
4735 | nsign = 0xffff; | |
4736 | if (sgnflg) | |
4737 | goto error; | |
4738 | ++sgnflg; | |
4739 | break; | |
4740 | case '+': | |
4741 | if (sgnflg) | |
4742 | goto error; | |
4743 | ++sgnflg; | |
4744 | break; | |
4745 | case ',': | |
4746 | case ' ': | |
4747 | case '\0': | |
4748 | case '\n': | |
4749 | case '\r': | |
4750 | goto daldone; | |
4751 | case 'i': | |
4752 | case 'I': | |
64685ffa | 4753 | goto infinite; |
985b6196 RS |
4754 | default: |
4755 | error: | |
66b6d60b RS |
4756 | #ifdef NANS |
4757 | einan (yy); | |
4758 | #else | |
985b6196 | 4759 | mtherr ("asctoe", DOMAIN); |
66b6d60b RS |
4760 | eclear (yy); |
4761 | #endif | |
985b6196 RS |
4762 | goto aexit; |
4763 | } | |
4764 | donchr: | |
4765 | ++s; | |
4766 | goto nxtcom; | |
4767 | ||
4768 | /* Exponent interpretation */ | |
4769 | expnt: | |
4770 | ||
4771 | esign = 1; | |
4772 | exp = 0; | |
4773 | ++s; | |
4774 | /* check for + or - */ | |
4775 | if (*s == '-') | |
4776 | { | |
4777 | esign = -1; | |
4778 | ++s; | |
4779 | } | |
4780 | if (*s == '+') | |
4781 | ++s; | |
4782 | while ((*s >= '0') && (*s <= '9')) | |
4783 | { | |
4784 | exp *= 10; | |
4785 | exp += *s++ - '0'; | |
842fbaaa | 4786 | if (exp > -(MINDECEXP)) |
64685ffa RS |
4787 | { |
4788 | if (esign < 0) | |
4789 | goto zero; | |
4790 | else | |
4791 | goto infinite; | |
4792 | } | |
985b6196 RS |
4793 | } |
4794 | if (esign < 0) | |
4795 | exp = -exp; | |
842fbaaa | 4796 | if (exp > MAXDECEXP) |
64685ffa RS |
4797 | { |
4798 | infinite: | |
4799 | ecleaz (yy); | |
4800 | yy[E] = 0x7fff; /* infinity */ | |
4801 | goto aexit; | |
4802 | } | |
842fbaaa | 4803 | if (exp < MINDECEXP) |
64685ffa RS |
4804 | { |
4805 | zero: | |
4806 | ecleaz (yy); | |
4807 | goto aexit; | |
4808 | } | |
985b6196 RS |
4809 | |
4810 | daldone: | |
4811 | nexp = exp - nexp; | |
4812 | /* Pad trailing zeros to minimize power of 10, per IEEE spec. */ | |
4813 | while ((nexp > 0) && (yy[2] == 0)) | |
4814 | { | |
4815 | emovz (yy, xt); | |
4816 | eshup1 (xt); | |
4817 | eshup1 (xt); | |
4818 | eaddm (yy, xt); | |
4819 | eshup1 (xt); | |
4820 | if (xt[2] != 0) | |
4821 | break; | |
4822 | nexp -= 1; | |
4823 | emovz (xt, yy); | |
4824 | } | |
4825 | if ((k = enormlz (yy)) > NBITS) | |
4826 | { | |
4827 | ecleaz (yy); | |
4828 | goto aexit; | |
4829 | } | |
4830 | lexp = (EXONE - 1 + NBITS) - k; | |
4831 | emdnorm (yy, lost, 0, lexp, 64); | |
4832 | /* convert to external format */ | |
4833 | ||
4834 | ||
4835 | /* Multiply by 10**nexp. If precision is 64 bits, | |
4836 | * the maximum relative error incurred in forming 10**n | |
4837 | * for 0 <= n <= 324 is 8.2e-20, at 10**180. | |
4838 | * For 0 <= n <= 999, the peak relative error is 1.4e-19 at 10**947. | |
4839 | * For 0 >= n >= -999, it is -1.55e-19 at 10**-435. | |
4840 | */ | |
4841 | lexp = yy[E]; | |
4842 | if (nexp == 0) | |
4843 | { | |
4844 | k = 0; | |
4845 | goto expdon; | |
4846 | } | |
4847 | esign = 1; | |
4848 | if (nexp < 0) | |
4849 | { | |
4850 | nexp = -nexp; | |
4851 | esign = -1; | |
4852 | if (nexp > 4096) | |
4853 | { /* Punt. Can't handle this without 2 divides. */ | |
4854 | emovi (etens[0], tt); | |
4855 | lexp -= tt[E]; | |
4856 | k = edivm (tt, yy); | |
4857 | lexp += EXONE; | |
4858 | nexp -= 4096; | |
4859 | } | |
4860 | } | |
4861 | p = &etens[NTEN][0]; | |
4862 | emov (eone, xt); | |
4863 | exp = 1; | |
4864 | do | |
4865 | { | |
4866 | if (exp & nexp) | |
4867 | emul (p, xt, xt); | |
4868 | p -= NE; | |
4869 | exp = exp + exp; | |
4870 | } | |
4871 | while (exp <= MAXP); | |
4872 | ||
4873 | emovi (xt, tt); | |
4874 | if (esign < 0) | |
4875 | { | |
4876 | lexp -= tt[E]; | |
4877 | k = edivm (tt, yy); | |
4878 | lexp += EXONE; | |
4879 | } | |
4880 | else | |
4881 | { | |
4882 | lexp += tt[E]; | |
4883 | k = emulm (tt, yy); | |
4884 | lexp -= EXONE - 1; | |
4885 | } | |
4886 | ||
4887 | expdon: | |
4888 | ||
4889 | /* Round and convert directly to the destination type */ | |
4890 | if (oprec == 53) | |
4891 | lexp -= EXONE - 0x3ff; | |
842fbaaa JW |
4892 | #ifdef IBM |
4893 | else if (oprec == 24 || oprec == 56) | |
4894 | lexp -= EXONE - (0x41 << 2); | |
4895 | #else | |
985b6196 RS |
4896 | else if (oprec == 24) |
4897 | lexp -= EXONE - 0177; | |
842fbaaa | 4898 | #endif |
985b6196 RS |
4899 | #ifdef DEC |
4900 | else if (oprec == 56) | |
4901 | lexp -= EXONE - 0201; | |
4902 | #endif | |
4903 | rndprc = oprec; | |
4904 | emdnorm (yy, k, 0, lexp, 64); | |
4905 | ||
4906 | aexit: | |
4907 | ||
4908 | rndprc = rndsav; | |
4909 | yy[0] = nsign; | |
4910 | switch (oprec) | |
4911 | { | |
4912 | #ifdef DEC | |
4913 | case 56: | |
4914 | todec (yy, y); /* see etodec.c */ | |
4915 | break; | |
842fbaaa JW |
4916 | #endif |
4917 | #ifdef IBM | |
4918 | case 56: | |
4919 | toibm (yy, y, DFmode); | |
4920 | break; | |
985b6196 RS |
4921 | #endif |
4922 | case 53: | |
4923 | toe53 (yy, y); | |
4924 | break; | |
4925 | case 24: | |
4926 | toe24 (yy, y); | |
4927 | break; | |
4928 | case 64: | |
4929 | toe64 (yy, y); | |
4930 | break; | |
842fbaaa JW |
4931 | case 113: |
4932 | toe113 (yy, y); | |
4933 | break; | |
985b6196 RS |
4934 | case NBITS: |
4935 | emovo (yy, y); | |
4936 | break; | |
4937 | } | |
4938 | } | |
4939 | ||
4940 | ||
4941 | ||
4942 | /* y = largest integer not greater than x | |
4943 | * (truncated toward minus infinity) | |
4944 | * | |
4945 | * unsigned EMUSHORT x[NE], y[NE] | |
4946 | * | |
4947 | * efloor (x, y); | |
4948 | */ | |
4949 | static unsigned EMUSHORT bmask[] = | |
4950 | { | |
4951 | 0xffff, | |
4952 | 0xfffe, | |
4953 | 0xfffc, | |
4954 | 0xfff8, | |
4955 | 0xfff0, | |
4956 | 0xffe0, | |
4957 | 0xffc0, | |
4958 | 0xff80, | |
4959 | 0xff00, | |
4960 | 0xfe00, | |
4961 | 0xfc00, | |
4962 | 0xf800, | |
4963 | 0xf000, | |
4964 | 0xe000, | |
4965 | 0xc000, | |
4966 | 0x8000, | |
4967 | 0x0000, | |
4968 | }; | |
4969 | ||
4970 | void | |
4971 | efloor (x, y) | |
4972 | unsigned EMUSHORT x[], y[]; | |
4973 | { | |
4974 | register unsigned EMUSHORT *p; | |
4975 | int e, expon, i; | |
4976 | unsigned EMUSHORT f[NE]; | |
4977 | ||
4978 | emov (x, f); /* leave in external format */ | |
4979 | expon = (int) f[NE - 1]; | |
4980 | e = (expon & 0x7fff) - (EXONE - 1); | |
4981 | if (e <= 0) | |
4982 | { | |
4983 | eclear (y); | |
4984 | goto isitneg; | |
4985 | } | |
4986 | /* number of bits to clear out */ | |
4987 | e = NBITS - e; | |
4988 | emov (f, y); | |
4989 | if (e <= 0) | |
4990 | return; | |
4991 | ||
4992 | p = &y[0]; | |
4993 | while (e >= 16) | |
4994 | { | |
4995 | *p++ = 0; | |
4996 | e -= 16; | |
4997 | } | |
4998 | /* clear the remaining bits */ | |
4999 | *p &= bmask[e]; | |
5000 | /* truncate negatives toward minus infinity */ | |
5001 | isitneg: | |
5002 | ||
5003 | if ((unsigned EMUSHORT) expon & (unsigned EMUSHORT) 0x8000) | |
5004 | { | |
5005 | for (i = 0; i < NE - 1; i++) | |
5006 | { | |
5007 | if (f[i] != y[i]) | |
5008 | { | |
5009 | esub (eone, y, y); | |
5010 | break; | |
5011 | } | |
5012 | } | |
5013 | } | |
5014 | } | |
5015 | ||
5016 | ||
5017 | /* unsigned EMUSHORT x[], s[]; | |
5018 | * int *exp; | |
5019 | * | |
5020 | * efrexp (x, exp, s); | |
5021 | * | |
5022 | * Returns s and exp such that s * 2**exp = x and .5 <= s < 1. | |
5023 | * For example, 1.1 = 0.55 * 2**1 | |
5024 | * Handles denormalized numbers properly using long integer exp. | |
5025 | */ | |
5026 | void | |
5027 | efrexp (x, exp, s) | |
5028 | unsigned EMUSHORT x[]; | |
5029 | int *exp; | |
5030 | unsigned EMUSHORT s[]; | |
5031 | { | |
5032 | unsigned EMUSHORT xi[NI]; | |
5033 | EMULONG li; | |
5034 | ||
5035 | emovi (x, xi); | |
5036 | li = (EMULONG) ((EMUSHORT) xi[1]); | |
5037 | ||
5038 | if (li == 0) | |
5039 | { | |
5040 | li -= enormlz (xi); | |
5041 | } | |
5042 | xi[1] = 0x3ffe; | |
5043 | emovo (xi, s); | |
5044 | *exp = (int) (li - 0x3ffe); | |
5045 | } | |
5046 | ||
5047 | ||
5048 | ||
5049 | /* unsigned EMUSHORT x[], y[]; | |
5050 | * long pwr2; | |
5051 | * | |
5052 | * eldexp (x, pwr2, y); | |
5053 | * | |
5054 | * Returns y = x * 2**pwr2. | |
5055 | */ | |
5056 | void | |
5057 | eldexp (x, pwr2, y) | |
5058 | unsigned EMUSHORT x[]; | |
5059 | int pwr2; | |
5060 | unsigned EMUSHORT y[]; | |
5061 | { | |
5062 | unsigned EMUSHORT xi[NI]; | |
5063 | EMULONG li; | |
5064 | int i; | |
5065 | ||
5066 | emovi (x, xi); | |
5067 | li = xi[1]; | |
5068 | li += pwr2; | |
5069 | i = 0; | |
5070 | emdnorm (xi, i, i, li, 64); | |
5071 | emovo (xi, y); | |
5072 | } | |
5073 | ||
5074 | ||
5075 | /* c = remainder after dividing b by a | |
5076 | * Least significant integer quotient bits left in equot[]. | |
5077 | */ | |
5078 | void | |
5079 | eremain (a, b, c) | |
5080 | unsigned EMUSHORT a[], b[], c[]; | |
5081 | { | |
5082 | unsigned EMUSHORT den[NI], num[NI]; | |
5083 | ||
66b6d60b RS |
5084 | #ifdef NANS |
5085 | if ( eisinf (b) | |
5086 | || (ecmp (a, ezero) == 0) | |
5087 | || eisnan (a) | |
5088 | || eisnan (b)) | |
5089 | { | |
5090 | enan (c); | |
5091 | return; | |
5092 | } | |
5093 | #endif | |
985b6196 RS |
5094 | if (ecmp (a, ezero) == 0) |
5095 | { | |
5096 | mtherr ("eremain", SING); | |
5097 | eclear (c); | |
5098 | return; | |
5099 | } | |
5100 | emovi (a, den); | |
5101 | emovi (b, num); | |
5102 | eiremain (den, num); | |
5103 | /* Sign of remainder = sign of quotient */ | |
5104 | if (a[0] == b[0]) | |
5105 | num[0] = 0; | |
5106 | else | |
5107 | num[0] = 0xffff; | |
5108 | emovo (num, c); | |
5109 | } | |
5110 | ||
5111 | void | |
5112 | eiremain (den, num) | |
5113 | unsigned EMUSHORT den[], num[]; | |
5114 | { | |
5115 | EMULONG ld, ln; | |
5116 | unsigned EMUSHORT j; | |
5117 | ||
5118 | ld = den[E]; | |
5119 | ld -= enormlz (den); | |
5120 | ln = num[E]; | |
5121 | ln -= enormlz (num); | |
5122 | ecleaz (equot); | |
5123 | while (ln >= ld) | |
5124 | { | |
5125 | if (ecmpm (den, num) <= 0) | |
5126 | { | |
5127 | esubm (den, num); | |
5128 | j = 1; | |
5129 | } | |
5130 | else | |
5131 | { | |
5132 | j = 0; | |
5133 | } | |
5134 | eshup1 (equot); | |
5135 | equot[NI - 1] |= j; | |
5136 | eshup1 (num); | |
5137 | ln -= 1; | |
5138 | } | |
5139 | emdnorm (num, 0, 0, ln, 0); | |
5140 | } | |
5141 | ||
5142 | /* mtherr.c | |
5143 | * | |
5144 | * Library common error handling routine | |
5145 | * | |
5146 | * | |
5147 | * | |
5148 | * SYNOPSIS: | |
5149 | * | |
5150 | * char *fctnam; | |
5151 | * int code; | |
5152 | * void mtherr (); | |
5153 | * | |
5154 | * mtherr (fctnam, code); | |
5155 | * | |
5156 | * | |
5157 | * | |
5158 | * DESCRIPTION: | |
5159 | * | |
5160 | * This routine may be called to report one of the following | |
5161 | * error conditions (in the include file mconf.h). | |
5162 | * | |
5163 | * Mnemonic Value Significance | |
5164 | * | |
5165 | * DOMAIN 1 argument domain error | |
5166 | * SING 2 function singularity | |
5167 | * OVERFLOW 3 overflow range error | |
5168 | * UNDERFLOW 4 underflow range error | |
5169 | * TLOSS 5 total loss of precision | |
5170 | * PLOSS 6 partial loss of precision | |
66b6d60b | 5171 | * INVALID 7 NaN - producing operation |
985b6196 RS |
5172 | * EDOM 33 Unix domain error code |
5173 | * ERANGE 34 Unix range error code | |
5174 | * | |
5175 | * The default version of the file prints the function name, | |
5176 | * passed to it by the pointer fctnam, followed by the | |
5177 | * error condition. The display is directed to the standard | |
5178 | * output device. The routine then returns to the calling | |
5179 | * program. Users may wish to modify the program to abort by | |
5180 | * calling exit under severe error conditions such as domain | |
5181 | * errors. | |
5182 | * | |
5183 | * Since all error conditions pass control to this function, | |
5184 | * the display may be easily changed, eliminated, or directed | |
5185 | * to an error logging device. | |
5186 | * | |
5187 | * SEE ALSO: | |
5188 | * | |
5189 | * mconf.h | |
5190 | * | |
5191 | */ | |
5192 | \f | |
5193 | /* | |
5194 | Cephes Math Library Release 2.0: April, 1987 | |
5195 | Copyright 1984, 1987 by Stephen L. Moshier | |
5196 | Direct inquiries to 30 Frost Street, Cambridge, MA 02140 | |
5197 | */ | |
5198 | ||
5199 | /* include "mconf.h" */ | |
5200 | ||
5201 | /* Notice: the order of appearance of the following | |
5202 | * messages is bound to the error codes defined | |
5203 | * in mconf.h. | |
5204 | */ | |
66b6d60b RS |
5205 | #define NMSGS 8 |
5206 | static char *ermsg[NMSGS] = | |
985b6196 RS |
5207 | { |
5208 | "unknown", /* error code 0 */ | |
5209 | "domain", /* error code 1 */ | |
5210 | "singularity", /* et seq. */ | |
5211 | "overflow", | |
5212 | "underflow", | |
5213 | "total loss of precision", | |
66b6d60b RS |
5214 | "partial loss of precision", |
5215 | "invalid operation" | |
985b6196 RS |
5216 | }; |
5217 | ||
5218 | int merror = 0; | |
5219 | extern int merror; | |
5220 | ||
5221 | void | |
5222 | mtherr (name, code) | |
5223 | char *name; | |
5224 | int code; | |
5225 | { | |
5226 | char errstr[80]; | |
5227 | ||
5228 | /* Display string passed by calling program, | |
5229 | * which is supposed to be the name of the | |
5230 | * function in which the error occurred. | |
5231 | */ | |
5232 | ||
5233 | /* Display error message defined | |
5234 | * by the code argument. | |
5235 | */ | |
66b6d60b | 5236 | if ((code <= 0) || (code >= NMSGS)) |
985b6196 | 5237 | code = 0; |
a8d78514 | 5238 | sprintf (errstr, " %s %s error", name, ermsg[code]); |
64685ffa RS |
5239 | if (extra_warnings) |
5240 | warning (errstr); | |
985b6196 RS |
5241 | /* Set global error message word */ |
5242 | merror = code + 1; | |
5243 | ||
5244 | /* Return to calling | |
5245 | * program | |
5246 | */ | |
5247 | } | |
5248 | ||
842fbaaa | 5249 | #ifdef DEC |
985b6196 RS |
5250 | /* Here is etodec.c . |
5251 | * | |
5252 | */ | |
5253 | ||
5254 | /* | |
5255 | ; convert DEC double precision to e type | |
5256 | ; double d; | |
5257 | ; EMUSHORT e[NE]; | |
5258 | ; dectoe (&d, e); | |
5259 | */ | |
5260 | void | |
5261 | dectoe (d, e) | |
5262 | unsigned EMUSHORT *d; | |
5263 | unsigned EMUSHORT *e; | |
5264 | { | |
5265 | unsigned EMUSHORT y[NI]; | |
5266 | register unsigned EMUSHORT r, *p; | |
5267 | ||
5268 | ecleaz (y); /* start with a zero */ | |
5269 | p = y; /* point to our number */ | |
5270 | r = *d; /* get DEC exponent word */ | |
5271 | if (*d & (unsigned int) 0x8000) | |
5272 | *p = 0xffff; /* fill in our sign */ | |
5273 | ++p; /* bump pointer to our exponent word */ | |
5274 | r &= 0x7fff; /* strip the sign bit */ | |
5275 | if (r == 0) /* answer = 0 if high order DEC word = 0 */ | |
5276 | goto done; | |
5277 | ||
5278 | ||
5279 | r >>= 7; /* shift exponent word down 7 bits */ | |
5280 | r += EXONE - 0201; /* subtract DEC exponent offset */ | |
5281 | /* add our e type exponent offset */ | |
5282 | *p++ = r; /* to form our exponent */ | |
5283 | ||
5284 | r = *d++; /* now do the high order mantissa */ | |
5285 | r &= 0177; /* strip off the DEC exponent and sign bits */ | |
5286 | r |= 0200; /* the DEC understood high order mantissa bit */ | |
5287 | *p++ = r; /* put result in our high guard word */ | |
5288 | ||
5289 | *p++ = *d++; /* fill in the rest of our mantissa */ | |
5290 | *p++ = *d++; | |
5291 | *p = *d; | |
5292 | ||
5293 | eshdn8 (y); /* shift our mantissa down 8 bits */ | |
5294 | done: | |
5295 | emovo (y, e); | |
5296 | } | |
5297 | ||
5298 | ||
5299 | ||
5300 | /* | |
5301 | ; convert e type to DEC double precision | |
5302 | ; double d; | |
5303 | ; EMUSHORT e[NE]; | |
5304 | ; etodec (e, &d); | |
5305 | */ | |
985b6196 RS |
5306 | |
5307 | void | |
5308 | etodec (x, d) | |
5309 | unsigned EMUSHORT *x, *d; | |
5310 | { | |
5311 | unsigned EMUSHORT xi[NI]; | |
842fbaaa JW |
5312 | EMULONG exp; |
5313 | int rndsav; | |
985b6196 RS |
5314 | |
5315 | emovi (x, xi); | |
5316 | exp = (EMULONG) xi[E] - (EXONE - 0201); /* adjust exponent for offsets */ | |
5317 | /* round off to nearest or even */ | |
5318 | rndsav = rndprc; | |
5319 | rndprc = 56; | |
5320 | emdnorm (xi, 0, 0, exp, 64); | |
5321 | rndprc = rndsav; | |
5322 | todec (xi, d); | |
5323 | } | |
5324 | ||
5325 | void | |
5326 | todec (x, y) | |
5327 | unsigned EMUSHORT *x, *y; | |
5328 | { | |
5329 | unsigned EMUSHORT i; | |
5330 | unsigned EMUSHORT *p; | |
5331 | ||
5332 | p = x; | |
5333 | *y = 0; | |
5334 | if (*p++) | |
5335 | *y = 0100000; | |
5336 | i = *p++; | |
5337 | if (i == 0) | |
5338 | { | |
5339 | *y++ = 0; | |
5340 | *y++ = 0; | |
5341 | *y++ = 0; | |
5342 | *y++ = 0; | |
5343 | return; | |
5344 | } | |
5345 | if (i > 0377) | |
5346 | { | |
5347 | *y++ |= 077777; | |
5348 | *y++ = 0xffff; | |
5349 | *y++ = 0xffff; | |
5350 | *y++ = 0xffff; | |
64685ffa RS |
5351 | #ifdef ERANGE |
5352 | errno = ERANGE; | |
5353 | #endif | |
985b6196 RS |
5354 | return; |
5355 | } | |
5356 | i &= 0377; | |
5357 | i <<= 7; | |
5358 | eshup8 (x); | |
5359 | x[M] &= 0177; | |
5360 | i |= x[M]; | |
5361 | *y++ |= i; | |
5362 | *y++ = x[M + 1]; | |
5363 | *y++ = x[M + 2]; | |
5364 | *y++ = x[M + 3]; | |
5365 | } | |
842fbaaa JW |
5366 | #endif /* DEC */ |
5367 | ||
5368 | #ifdef IBM | |
5369 | /* Here is etoibm | |
5370 | * | |
5371 | */ | |
5372 | ||
5373 | /* | |
5374 | ; convert IBM single/double precision to e type | |
5375 | ; single/double d; | |
5376 | ; EMUSHORT e[NE]; | |
5377 | ; enum machine_mode mode; SFmode/DFmode | |
5378 | ; ibmtoe (&d, e, mode); | |
5379 | */ | |
5380 | void | |
5381 | ibmtoe (d, e, mode) | |
5382 | unsigned EMUSHORT *d; | |
5383 | unsigned EMUSHORT *e; | |
5384 | enum machine_mode mode; | |
5385 | { | |
5386 | unsigned EMUSHORT y[NI]; | |
5387 | register unsigned EMUSHORT r, *p; | |
5388 | int rndsav; | |
5389 | ||
5390 | ecleaz (y); /* start with a zero */ | |
5391 | p = y; /* point to our number */ | |
5392 | r = *d; /* get IBM exponent word */ | |
5393 | if (*d & (unsigned int) 0x8000) | |
5394 | *p = 0xffff; /* fill in our sign */ | |
5395 | ++p; /* bump pointer to our exponent word */ | |
5396 | r &= 0x7f00; /* strip the sign bit */ | |
5397 | r >>= 6; /* shift exponent word down 6 bits */ | |
5398 | /* in fact shift by 8 right and 2 left */ | |
5399 | r += EXONE - (0x41 << 2); /* subtract IBM exponent offset */ | |
5400 | /* add our e type exponent offset */ | |
5401 | *p++ = r; /* to form our exponent */ | |
5402 | ||
5403 | *p++ = *d++ & 0xff; /* now do the high order mantissa */ | |
5404 | /* strip off the IBM exponent and sign bits */ | |
5405 | if (mode != SFmode) /* there are only 2 words in SFmode */ | |
5406 | { | |
5407 | *p++ = *d++; /* fill in the rest of our mantissa */ | |
5408 | *p++ = *d++; | |
5409 | } | |
5410 | *p = *d; | |
5411 | ||
5412 | if (y[M] == 0 && y[M+1] == 0 && y[M+2] == 0 && y[M+3] == 0) | |
5413 | y[0] = y[E] = 0; | |
5414 | else | |
5415 | y[E] -= 5 + enormlz (y); /* now normalise the mantissa */ | |
5416 | /* handle change in RADIX */ | |
5417 | emovo (y, e); | |
5418 | } | |
5419 | ||
985b6196 | 5420 | |
985b6196 | 5421 | |
842fbaaa JW |
5422 | /* |
5423 | ; convert e type to IBM single/double precision | |
5424 | ; single/double d; | |
5425 | ; EMUSHORT e[NE]; | |
5426 | ; enum machine_mode mode; SFmode/DFmode | |
5427 | ; etoibm (e, &d, mode); | |
5428 | */ | |
5429 | ||
5430 | void | |
5431 | etoibm (x, d, mode) | |
5432 | unsigned EMUSHORT *x, *d; | |
5433 | enum machine_mode mode; | |
5434 | { | |
5435 | unsigned EMUSHORT xi[NI]; | |
5436 | EMULONG exp; | |
5437 | int rndsav; | |
5438 | ||
5439 | emovi (x, xi); | |
5440 | exp = (EMULONG) xi[E] - (EXONE - (0x41 << 2)); /* adjust exponent for offsets */ | |
5441 | /* round off to nearest or even */ | |
5442 | rndsav = rndprc; | |
5443 | rndprc = 56; | |
5444 | emdnorm (xi, 0, 0, exp, 64); | |
5445 | rndprc = rndsav; | |
5446 | toibm (xi, d, mode); | |
5447 | } | |
5448 | ||
5449 | void | |
5450 | toibm (x, y, mode) | |
5451 | unsigned EMUSHORT *x, *y; | |
5452 | enum machine_mode mode; | |
5453 | { | |
5454 | unsigned EMUSHORT i; | |
5455 | unsigned EMUSHORT *p; | |
5456 | int r; | |
5457 | ||
5458 | p = x; | |
5459 | *y = 0; | |
5460 | if (*p++) | |
5461 | *y = 0x8000; | |
5462 | i = *p++; | |
5463 | if (i == 0) | |
5464 | { | |
5465 | *y++ = 0; | |
5466 | *y++ = 0; | |
5467 | if (mode != SFmode) | |
5468 | { | |
5469 | *y++ = 0; | |
5470 | *y++ = 0; | |
5471 | } | |
5472 | return; | |
5473 | } | |
5474 | r = i & 0x3; | |
5475 | i >>= 2; | |
5476 | if (i > 0x7f) | |
5477 | { | |
5478 | *y++ |= 0x7fff; | |
5479 | *y++ = 0xffff; | |
5480 | if (mode != SFmode) | |
5481 | { | |
5482 | *y++ = 0xffff; | |
5483 | *y++ = 0xffff; | |
5484 | } | |
5485 | #ifdef ERANGE | |
5486 | errno = ERANGE; | |
5487 | #endif | |
5488 | return; | |
5489 | } | |
5490 | i &= 0x7f; | |
5491 | *y |= (i << 8); | |
5492 | eshift (x, r + 5); | |
5493 | *y++ |= x[M]; | |
5494 | *y++ = x[M + 1]; | |
5495 | if (mode != SFmode) | |
5496 | { | |
5497 | *y++ = x[M + 2]; | |
5498 | *y++ = x[M + 3]; | |
5499 | } | |
5500 | } | |
5501 | #endif /* IBM */ | |
66b6d60b RS |
5502 | |
5503 | /* Output a binary NaN bit pattern in the target machine's format. */ | |
5504 | ||
5505 | /* If special NaN bit patterns are required, define them in tm.h | |
5506 | as arrays of unsigned 16-bit shorts. Otherwise, use the default | |
5507 | patterns here. */ | |
7729f1ca RS |
5508 | #ifdef TFMODE_NAN |
5509 | TFMODE_NAN; | |
5510 | #else | |
66b6d60b RS |
5511 | #ifdef MIEEE |
5512 | unsigned EMUSHORT TFnan[8] = | |
5513 | {0x7fff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff}; | |
5514 | #endif | |
5515 | #ifdef IBMPC | |
5516 | unsigned EMUSHORT TFnan[8] = {0, 0, 0, 0, 0, 0, 0x8000, 0xffff}; | |
5517 | #endif | |
5518 | #endif | |
5519 | ||
7729f1ca RS |
5520 | #ifdef XFMODE_NAN |
5521 | XFMODE_NAN; | |
5522 | #else | |
66b6d60b RS |
5523 | #ifdef MIEEE |
5524 | unsigned EMUSHORT XFnan[6] = {0x7fff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff}; | |
5525 | #endif | |
5526 | #ifdef IBMPC | |
5527 | unsigned EMUSHORT XFnan[6] = {0, 0, 0, 0xc000, 0xffff, 0}; | |
5528 | #endif | |
5529 | #endif | |
5530 | ||
7729f1ca RS |
5531 | #ifdef DFMODE_NAN |
5532 | DFMODE_NAN; | |
5533 | #else | |
66b6d60b RS |
5534 | #ifdef MIEEE |
5535 | unsigned EMUSHORT DFnan[4] = {0x7fff, 0xffff, 0xffff, 0xffff}; | |
5536 | #endif | |
5537 | #ifdef IBMPC | |
5538 | unsigned EMUSHORT DFnan[4] = {0, 0, 0, 0xfff8}; | |
5539 | #endif | |
5540 | #endif | |
5541 | ||
7729f1ca RS |
5542 | #ifdef SFMODE_NAN |
5543 | SFMODE_NAN; | |
5544 | #else | |
66b6d60b RS |
5545 | #ifdef MIEEE |
5546 | unsigned EMUSHORT SFnan[2] = {0x7fff, 0xffff}; | |
5547 | #endif | |
5548 | #ifdef IBMPC | |
5549 | unsigned EMUSHORT SFnan[2] = {0, 0xffc0}; | |
5550 | #endif | |
5551 | #endif | |
5552 | ||
5553 | ||
5554 | void | |
5555 | make_nan (nan, mode) | |
5556 | unsigned EMUSHORT *nan; | |
5557 | enum machine_mode mode; | |
5558 | { | |
5559 | int i, n; | |
5560 | unsigned EMUSHORT *p; | |
5561 | ||
842fbaaa | 5562 | n = 0; |
66b6d60b RS |
5563 | switch (mode) |
5564 | { | |
5565 | /* Possibly the `reserved operand' patterns on a VAX can be | |
5566 | used like NaN's, but probably not in the same way as IEEE. */ | |
842fbaaa | 5567 | #if !defined(DEC) && !defined(IBM) |
66b6d60b RS |
5568 | case TFmode: |
5569 | n = 8; | |
5570 | p = TFnan; | |
5571 | break; | |
5572 | case XFmode: | |
5573 | n = 6; | |
5574 | p = XFnan; | |
5575 | break; | |
5576 | case DFmode: | |
5577 | n = 4; | |
5578 | p = DFnan; | |
5579 | break; | |
5580 | case SFmode: | |
5581 | n = 2; | |
5582 | p = SFnan; | |
5583 | break; | |
5584 | #endif | |
5585 | default: | |
5586 | abort (); | |
5587 | } | |
5588 | for (i=0; i < n; i++) | |
5589 | *nan++ = *p++; | |
5590 | } | |
5591 | ||
b31c244f RS |
5592 | /* Convert an SFmode target `float' value to a REAL_VALUE_TYPE. |
5593 | This is the inverse of the function `etarsingle' invoked by | |
5594 | REAL_VALUE_TO_TARGET_SINGLE. */ | |
5595 | ||
5596 | REAL_VALUE_TYPE | |
5597 | ereal_from_float (f) | |
5598 | unsigned long f; | |
5599 | { | |
5600 | REAL_VALUE_TYPE r; | |
5601 | unsigned EMUSHORT s[2]; | |
5602 | unsigned EMUSHORT e[NE]; | |
5603 | ||
5604 | /* Convert 32 bit integer to array of 16 bit pieces in target machine order. | |
5605 | This is the inverse operation to what the function `endian' does. */ | |
5606 | #if WORDS_BIG_ENDIAN | |
5607 | s[0] = (unsigned EMUSHORT) (f >> 16); | |
5608 | s[1] = (unsigned EMUSHORT) f; | |
5609 | #else | |
5610 | s[0] = (unsigned EMUSHORT) f; | |
5611 | s[1] = (unsigned EMUSHORT) (f >> 16); | |
5612 | #endif | |
5613 | /* Convert and promote the target float to E-type. */ | |
5614 | e24toe (s, e); | |
5615 | /* Output E-type to REAL_VALUE_TYPE. */ | |
5616 | PUT_REAL (e, &r); | |
5617 | return r; | |
5618 | } | |
5619 | ||
842fbaaa | 5620 | |
b31c244f RS |
5621 | /* Convert a DFmode target `double' value to a REAL_VALUE_TYPE. |
5622 | This is the inverse of the function `etardouble' invoked by | |
5623 | REAL_VALUE_TO_TARGET_DOUBLE. | |
5624 | ||
5625 | The DFmode is stored as an array of longs (i.e., HOST_WIDE_INTs) | |
5626 | with 32 bits of the value per each long. The first element | |
5627 | of the input array holds the bits that would come first in the | |
5628 | target computer's memory. */ | |
5629 | ||
5630 | REAL_VALUE_TYPE | |
5631 | ereal_from_double (d) | |
5632 | unsigned long d[]; | |
5633 | { | |
5634 | REAL_VALUE_TYPE r; | |
5635 | unsigned EMUSHORT s[4]; | |
5636 | unsigned EMUSHORT e[NE]; | |
5637 | ||
5638 | /* Convert array of 32 bit pieces to equivalent array of 16 bit pieces. | |
842fbaaa | 5639 | This is the inverse of `endian'. */ |
b31c244f RS |
5640 | #if WORDS_BIG_ENDIAN |
5641 | s[0] = (unsigned EMUSHORT) (d[0] >> 16); | |
5642 | s[1] = (unsigned EMUSHORT) d[0]; | |
5643 | s[2] = (unsigned EMUSHORT) (d[1] >> 16); | |
5644 | s[3] = (unsigned EMUSHORT) d[1]; | |
5645 | #else | |
5646 | s[0] = (unsigned EMUSHORT) d[0]; | |
5647 | s[1] = (unsigned EMUSHORT) (d[0] >> 16); | |
5648 | s[2] = (unsigned EMUSHORT) d[1]; | |
5649 | s[3] = (unsigned EMUSHORT) (d[1] >> 16); | |
5650 | #endif | |
5651 | /* Convert target double to E-type. */ | |
5652 | e53toe (s, e); | |
5653 | /* Output E-type to REAL_VALUE_TYPE. */ | |
5654 | PUT_REAL (e, &r); | |
5655 | return r; | |
5656 | } | |
842fbaaa JW |
5657 | |
5658 | ||
5659 | /* Convert target computer unsigned 64-bit integer to e-type. */ | |
5660 | ||
5661 | void | |
5662 | uditoe (di, e) | |
5663 | unsigned EMUSHORT *di; /* Address of the 64-bit int. */ | |
5664 | unsigned EMUSHORT *e; | |
5665 | { | |
5666 | unsigned EMUSHORT yi[NI]; | |
5667 | int k; | |
5668 | ||
5669 | ecleaz (yi); | |
5670 | #if WORDS_BIG_ENDIAN | |
5671 | for (k = M; k < M + 4; k++) | |
5672 | yi[k] = *di++; | |
5673 | #else | |
5674 | for (k = M + 3; k >= M; k--) | |
5675 | yi[k] = *di++; | |
5676 | #endif | |
5677 | yi[E] = EXONE + 47; /* exponent if normalize shift count were 0 */ | |
5678 | if ((k = enormlz (yi)) > NBITS)/* normalize the significand */ | |
5679 | ecleaz (yi); /* it was zero */ | |
5680 | else | |
5681 | yi[E] -= (unsigned EMUSHORT) k;/* subtract shift count from exponent */ | |
5682 | emovo (yi, e); | |
5683 | } | |
5684 | ||
5685 | /* Convert target computer signed 64-bit integer to e-type. */ | |
5686 | ||
5687 | void | |
5688 | ditoe (di, e) | |
5689 | unsigned EMUSHORT *di; /* Address of the 64-bit int. */ | |
5690 | unsigned EMUSHORT *e; | |
5691 | { | |
5692 | unsigned EMULONG acc; | |
5693 | unsigned EMUSHORT yi[NI]; | |
5694 | unsigned EMUSHORT carry; | |
5695 | int k, sign; | |
5696 | ||
5697 | ecleaz (yi); | |
5698 | #if WORDS_BIG_ENDIAN | |
5699 | for (k = M; k < M + 4; k++) | |
5700 | yi[k] = *di++; | |
5701 | #else | |
5702 | for (k = M + 3; k >= M; k--) | |
5703 | yi[k] = *di++; | |
5704 | #endif | |
5705 | /* Take absolute value */ | |
5706 | sign = 0; | |
5707 | if (yi[M] & 0x8000) | |
5708 | { | |
5709 | sign = 1; | |
5710 | carry = 0; | |
5711 | for (k = M + 3; k >= M; k--) | |
5712 | { | |
5713 | acc = (unsigned EMULONG) (~yi[k] & 0xffff) + carry; | |
5714 | yi[k] = acc; | |
5715 | carry = 0; | |
5716 | if (acc & 0x10000) | |
5717 | carry = 1; | |
5718 | } | |
5719 | } | |
5720 | yi[E] = EXONE + 47; /* exponent if normalize shift count were 0 */ | |
5721 | if ((k = enormlz (yi)) > NBITS)/* normalize the significand */ | |
5722 | ecleaz (yi); /* it was zero */ | |
5723 | else | |
5724 | yi[E] -= (unsigned EMUSHORT) k;/* subtract shift count from exponent */ | |
5725 | emovo (yi, e); | |
5726 | if (sign) | |
5727 | eneg (e); | |
5728 | } | |
5729 | ||
5730 | ||
5731 | /* Convert e-type to unsigned 64-bit int. */ | |
5732 | ||
5733 | void | |
5734 | etoudi (x, i) | |
5735 | unsigned EMUSHORT *x; | |
5736 | unsigned EMUSHORT *i; | |
5737 | { | |
5738 | unsigned EMUSHORT xi[NI]; | |
5739 | int j, k; | |
5740 | ||
5741 | emovi (x, xi); | |
5742 | if (xi[0]) | |
5743 | { | |
5744 | xi[M] = 0; | |
5745 | goto noshift; | |
5746 | } | |
5747 | k = (int) xi[E] - (EXONE - 1); | |
5748 | if (k <= 0) | |
5749 | { | |
5750 | for (j = 0; j < 4; j++) | |
5751 | *i++ = 0; | |
5752 | return; | |
5753 | } | |
5754 | if (k > 64) | |
5755 | { | |
5756 | for (j = 0; j < 4; j++) | |
5757 | *i++ = 0xffff; | |
5758 | if (extra_warnings) | |
5759 | warning ("overflow on truncation to integer"); | |
5760 | return; | |
5761 | } | |
5762 | if (k > 16) | |
5763 | { | |
5764 | /* Shift more than 16 bits: first shift up k-16 mod 16, | |
5765 | then shift up by 16's. */ | |
5766 | j = k - ((k >> 4) << 4); | |
5767 | if (j == 0) | |
5768 | j = 16; | |
5769 | eshift (xi, j); | |
5770 | #if WORDS_BIG_ENDIAN | |
5771 | *i++ = xi[M]; | |
5772 | #else | |
5773 | i += 3; | |
5774 | *i-- = xi[M]; | |
5775 | #endif | |
5776 | k -= j; | |
5777 | do | |
5778 | { | |
5779 | eshup6 (xi); | |
5780 | #if WORDS_BIG_ENDIAN | |
5781 | *i++ = xi[M]; | |
5782 | #else | |
5783 | *i-- = xi[M]; | |
5784 | #endif | |
5785 | } | |
5786 | while ((k -= 16) > 0); | |
5787 | } | |
5788 | else | |
5789 | { | |
5790 | /* shift not more than 16 bits */ | |
5791 | eshift (xi, k); | |
5792 | ||
5793 | noshift: | |
5794 | ||
5795 | #if WORDS_BIG_ENDIAN | |
5796 | i += 3; | |
5797 | *i-- = xi[M]; | |
5798 | *i-- = 0; | |
5799 | *i-- = 0; | |
5800 | *i = 0; | |
5801 | #else | |
5802 | *i++ = xi[M]; | |
5803 | *i++ = 0; | |
5804 | *i++ = 0; | |
5805 | *i = 0; | |
5806 | #endif | |
5807 | } | |
5808 | } | |
5809 | ||
5810 | ||
5811 | /* Convert e-type to signed 64-bit int. */ | |
5812 | ||
5813 | void | |
5814 | etodi (x, i) | |
5815 | unsigned EMUSHORT *x; | |
5816 | unsigned EMUSHORT *i; | |
5817 | { | |
5818 | unsigned EMULONG acc; | |
5819 | unsigned EMUSHORT xi[NI]; | |
5820 | unsigned EMUSHORT carry; | |
5821 | unsigned EMUSHORT *isave; | |
5822 | int j, k; | |
5823 | ||
5824 | emovi (x, xi); | |
5825 | k = (int) xi[E] - (EXONE - 1); | |
5826 | if (k <= 0) | |
5827 | { | |
5828 | for (j = 0; j < 4; j++) | |
5829 | *i++ = 0; | |
5830 | return; | |
5831 | } | |
5832 | if (k > 64) | |
5833 | { | |
5834 | for (j = 0; j < 4; j++) | |
5835 | *i++ = 0xffff; | |
5836 | if (extra_warnings) | |
5837 | warning ("overflow on truncation to integer"); | |
5838 | return; | |
5839 | } | |
5840 | isave = i; | |
5841 | if (k > 16) | |
5842 | { | |
5843 | /* Shift more than 16 bits: first shift up k-16 mod 16, | |
5844 | then shift up by 16's. */ | |
5845 | j = k - ((k >> 4) << 4); | |
5846 | if (j == 0) | |
5847 | j = 16; | |
5848 | eshift (xi, j); | |
5849 | #if WORDS_BIG_ENDIAN | |
5850 | *i++ = xi[M]; | |
5851 | #else | |
5852 | i += 3; | |
5853 | *i-- = xi[M]; | |
5854 | #endif | |
5855 | k -= j; | |
5856 | do | |
5857 | { | |
5858 | eshup6 (xi); | |
5859 | #if WORDS_BIG_ENDIAN | |
5860 | *i++ = xi[M]; | |
5861 | #else | |
5862 | *i-- = xi[M]; | |
5863 | #endif | |
5864 | } | |
5865 | while ((k -= 16) > 0); | |
5866 | } | |
5867 | else | |
5868 | { | |
5869 | /* shift not more than 16 bits */ | |
5870 | eshift (xi, k); | |
5871 | ||
5872 | #if WORDS_BIG_ENDIAN | |
5873 | i += 3; | |
5874 | *i = xi[M]; | |
5875 | *i-- = 0; | |
5876 | *i-- = 0; | |
5877 | *i = 0; | |
5878 | #else | |
5879 | *i++ = xi[M]; | |
5880 | *i++ = 0; | |
5881 | *i++ = 0; | |
5882 | *i = 0; | |
5883 | #endif | |
5884 | } | |
5885 | /* Negate if negative */ | |
5886 | if (xi[0]) | |
5887 | { | |
5888 | carry = 0; | |
5889 | #if WORDS_BIG_ENDIAN | |
5890 | isave += 3; | |
5891 | #endif | |
5892 | for (k = 0; k < 4; k++) | |
5893 | { | |
5894 | acc = (unsigned EMULONG) (~(*isave) & 0xffff) + carry; | |
5895 | #if WORDS_BIG_ENDIAN | |
5896 | *isave-- = acc; | |
5897 | #else | |
5898 | *isave++ = acc; | |
5899 | #endif | |
5900 | carry = 0; | |
5901 | if (acc & 0x10000) | |
5902 | carry = 1; | |
5903 | } | |
5904 | } | |
5905 | } | |
5906 | ||
5907 | ||
5908 | /* Longhand square root routine. */ | |
5909 | ||
5910 | ||
5911 | static int esqinited = 0; | |
5912 | static unsigned short sqrndbit[NI]; | |
5913 | ||
5914 | void | |
5915 | esqrt (x, y) | |
5916 | unsigned EMUSHORT *x, *y; | |
5917 | { | |
5918 | unsigned EMUSHORT temp[NI], num[NI], sq[NI], xx[NI]; | |
5919 | EMULONG m, exp; | |
5920 | int i, j, k, n, nlups; | |
5921 | ||
5922 | if (esqinited == 0) | |
5923 | { | |
5924 | ecleaz (sqrndbit); | |
5925 | sqrndbit[NI - 2] = 1; | |
5926 | esqinited = 1; | |
5927 | } | |
5928 | /* Check for arg <= 0 */ | |
5929 | i = ecmp (x, ezero); | |
5930 | if (i <= 0) | |
5931 | { | |
5932 | #ifdef NANS | |
5933 | if (i == -2) | |
5934 | { | |
5935 | enan (y); | |
5936 | return; | |
5937 | } | |
5938 | #endif | |
5939 | eclear (y); | |
5940 | if (i < 0) | |
5941 | mtherr ("esqrt", DOMAIN); | |
5942 | return; | |
5943 | } | |
5944 | ||
5945 | #ifdef INFINITY | |
5946 | if (eisinf (x)) | |
5947 | { | |
5948 | eclear (y); | |
5949 | einfin (y); | |
5950 | return; | |
5951 | } | |
5952 | #endif | |
5953 | /* Bring in the arg and renormalize if it is denormal. */ | |
5954 | emovi (x, xx); | |
5955 | m = (EMULONG) xx[1]; /* local long word exponent */ | |
5956 | if (m == 0) | |
5957 | m -= enormlz (xx); | |
5958 | ||
5959 | /* Divide exponent by 2 */ | |
5960 | m -= 0x3ffe; | |
5961 | exp = (unsigned short) ((m / 2) + 0x3ffe); | |
5962 | ||
5963 | /* Adjust if exponent odd */ | |
5964 | if ((m & 1) != 0) | |
5965 | { | |
5966 | if (m > 0) | |
5967 | exp += 1; | |
5968 | eshdn1 (xx); | |
5969 | } | |
5970 | ||
5971 | ecleaz (sq); | |
5972 | ecleaz (num); | |
5973 | n = 8; /* get 8 bits of result per inner loop */ | |
5974 | nlups = rndprc; | |
5975 | j = 0; | |
5976 | ||
5977 | while (nlups > 0) | |
5978 | { | |
5979 | /* bring in next word of arg */ | |
5980 | if (j < NE) | |
5981 | num[NI - 1] = xx[j + 3]; | |
5982 | /* Do additional bit on last outer loop, for roundoff. */ | |
5983 | if (nlups <= 8) | |
5984 | n = nlups + 1; | |
5985 | for (i = 0; i < n; i++) | |
5986 | { | |
5987 | /* Next 2 bits of arg */ | |
5988 | eshup1 (num); | |
5989 | eshup1 (num); | |
5990 | /* Shift up answer */ | |
5991 | eshup1 (sq); | |
5992 | /* Make trial divisor */ | |
5993 | for (k = 0; k < NI; k++) | |
5994 | temp[k] = sq[k]; | |
5995 | eshup1 (temp); | |
5996 | eaddm (sqrndbit, temp); | |
5997 | /* Subtract and insert answer bit if it goes in */ | |
5998 | if (ecmpm (temp, num) <= 0) | |
5999 | { | |
6000 | esubm (temp, num); | |
6001 | sq[NI - 2] |= 1; | |
6002 | } | |
6003 | } | |
6004 | nlups -= n; | |
6005 | j += 1; | |
6006 | } | |
6007 | ||
6008 | /* Adjust for extra, roundoff loop done. */ | |
6009 | exp += (NBITS - 1) - rndprc; | |
6010 | ||
6011 | /* Sticky bit = 1 if the remainder is nonzero. */ | |
6012 | k = 0; | |
6013 | for (i = 3; i < NI; i++) | |
6014 | k |= (int) num[i]; | |
6015 | ||
6016 | /* Renormalize and round off. */ | |
6017 | emdnorm (sq, k, 0, exp, 64); | |
6018 | emovo (sq, y); | |
6019 | } | |
6020 | ||
985b6196 | 6021 | #endif /* EMU_NON_COMPILE not defined */ |