]>
Commit | Line | Data |
---|---|---|
985b6196 | 1 | /* real.c - implementation of REAL_ARITHMETIC, REAL_VALUE_ATOF, |
29e11dab | 2 | and support for XFmode IEEE extended real floating point arithmetic. |
de3a68a1 | 3 | Copyright (C) 1993, 1994, 1995, 1996 Free Software Foundation, Inc. |
c764eafd | 4 | Contributed by Stephen L. Moshier (moshier@world.std.com). |
985b6196 RS |
5 | |
6 | This file is part of GNU CC. | |
7 | ||
8 | GNU CC is free software; you can redistribute it and/or modify | |
9 | it under the terms of the GNU General Public License as published by | |
10 | the Free Software Foundation; either version 2, or (at your option) | |
11 | any later version. | |
12 | ||
13 | GNU CC is distributed in the hope that it will be useful, | |
14 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 | GNU General Public License for more details. | |
17 | ||
18 | You should have received a copy of the GNU General Public License | |
19 | along with GNU CC; see the file COPYING. If not, write to | |
e99215a3 RK |
20 | the Free Software Foundation, 59 Temple Place - Suite 330, |
21 | Boston, MA 02111-1307, USA. */ | |
985b6196 RS |
22 | |
23 | #include <stdio.h> | |
64685ffa | 24 | #include <errno.h> |
985b6196 | 25 | #include "config.h" |
985b6196 RS |
26 | #include "tree.h" |
27 | ||
64685ffa RS |
28 | #ifndef errno |
29 | extern int errno; | |
30 | #endif | |
31 | ||
985b6196 RS |
32 | /* To enable support of XFmode extended real floating point, define |
33 | LONG_DOUBLE_TYPE_SIZE 96 in the tm.h file (m68k.h or i386.h). | |
34 | ||
842fbaaa | 35 | To support cross compilation between IEEE, VAX and IBM floating |
985b6196 RS |
36 | point formats, define REAL_ARITHMETIC in the tm.h file. |
37 | ||
38 | In either case the machine files (tm.h) must not contain any code | |
39 | that tries to use host floating point arithmetic to convert | |
40 | REAL_VALUE_TYPEs from `double' to `float', pass them to fprintf, | |
41 | etc. In cross-compile situations a REAL_VALUE_TYPE may not | |
42 | be intelligible to the host computer's native arithmetic. | |
43 | ||
44 | The emulator defaults to the host's floating point format so that | |
45 | its decimal conversion functions can be used if desired (see | |
46 | real.h). | |
47 | ||
8c35bbc5 RK |
48 | The first part of this file interfaces gcc to a floating point |
49 | arithmetic suite that was not written with gcc in mind. Avoid | |
50 | changing the low-level arithmetic routines unless you have suitable | |
51 | test programs available. A special version of the PARANOIA floating | |
52 | point arithmetic tester, modified for this purpose, can be found on | |
53 | usc.edu: /pub/C-numanal/ieeetest.zoo. Other tests, and libraries of | |
54 | XFmode and TFmode transcendental functions, can be obtained by ftp from | |
55 | netlib.att.com: netlib/cephes. */ | |
775ba35d | 56 | \f |
985b6196 | 57 | /* Type of computer arithmetic. |
f76b9db2 ILT |
58 | Only one of DEC, IBM, IEEE, or UNK should get defined. |
59 | ||
8c35bbc5 | 60 | `IEEE', when REAL_WORDS_BIG_ENDIAN is non-zero, refers generically |
f76b9db2 ILT |
61 | to big-endian IEEE floating-point data structure. This definition |
62 | should work in SFmode `float' type and DFmode `double' type on | |
63 | virtually all big-endian IEEE machines. If LONG_DOUBLE_TYPE_SIZE | |
64 | has been defined to be 96, then IEEE also invokes the particular | |
65 | XFmode (`long double' type) data structure used by the Motorola | |
66 | 680x0 series processors. | |
67 | ||
8c35bbc5 | 68 | `IEEE', when REAL_WORDS_BIG_ENDIAN is zero, refers generally to |
f76b9db2 ILT |
69 | little-endian IEEE machines. In this case, if LONG_DOUBLE_TYPE_SIZE |
70 | has been defined to be 96, then IEEE also invokes the particular | |
71 | XFmode `long double' data structure used by the Intel 80x86 series | |
72 | processors. | |
66b6d60b RS |
73 | |
74 | `DEC' refers specifically to the Digital Equipment Corp PDP-11 | |
75 | and VAX floating point data structure. This model currently | |
76 | supports no type wider than DFmode. | |
77 | ||
842fbaaa JW |
78 | `IBM' refers specifically to the IBM System/370 and compatible |
79 | floating point data structure. This model currently supports | |
80 | no type wider than DFmode. The IBM conversions were contributed by | |
81 | frank@atom.ansto.gov.au (Frank Crawford). | |
82 | ||
66b6d60b RS |
83 | If LONG_DOUBLE_TYPE_SIZE = 64 (the default, unless tm.h defines it) |
84 | then `long double' and `double' are both implemented, but they | |
85 | both mean DFmode. In this case, the software floating-point | |
86 | support available here is activated by writing | |
87 | #define REAL_ARITHMETIC | |
88 | in tm.h. | |
89 | ||
90 | The case LONG_DOUBLE_TYPE_SIZE = 128 activates TFmode support | |
842fbaaa | 91 | and may deactivate XFmode since `long double' is used to refer |
b51ab098 RK |
92 | to both modes. |
93 | ||
94 | The macros FLOAT_WORDS_BIG_ENDIAN, HOST_FLOAT_WORDS_BIG_ENDIAN, | |
95 | contributed by Richard Earnshaw <Richard.Earnshaw@cl.cam.ac.uk>, | |
96 | separate the floating point unit's endian-ness from that of | |
97 | the integer addressing. This permits one to define a big-endian | |
98 | FPU on a little-endian machine (e.g., ARM). An extension to | |
99 | BYTES_BIG_ENDIAN may be required for some machines in the future. | |
100 | These optional macros may be defined in tm.h. In real.h, they | |
101 | default to WORDS_BIG_ENDIAN, etc., so there is no need to define | |
102 | them for any normal host or target machine on which the floats | |
103 | and the integers have the same endian-ness. */ | |
104 | ||
66b6d60b RS |
105 | |
106 | /* The following converts gcc macros into the ones used by this file. */ | |
107 | ||
985b6196 RS |
108 | /* REAL_ARITHMETIC defined means that macros in real.h are |
109 | defined to call emulator functions. */ | |
110 | #ifdef REAL_ARITHMETIC | |
111 | ||
112 | #if TARGET_FLOAT_FORMAT == VAX_FLOAT_FORMAT | |
113 | /* PDP-11, Pro350, VAX: */ | |
114 | #define DEC 1 | |
115 | #else /* it's not VAX */ | |
842fbaaa JW |
116 | #if TARGET_FLOAT_FORMAT == IBM_FLOAT_FORMAT |
117 | /* IBM System/370 style */ | |
118 | #define IBM 1 | |
119 | #else /* it's also not an IBM */ | |
985b6196 | 120 | #if TARGET_FLOAT_FORMAT == IEEE_FLOAT_FORMAT |
f76b9db2 | 121 | #define IEEE |
985b6196 RS |
122 | #else /* it's not IEEE either */ |
123 | /* UNKnown arithmetic. We don't support this and can't go on. */ | |
124 | unknown arithmetic type | |
125 | #define UNK 1 | |
126 | #endif /* not IEEE */ | |
842fbaaa | 127 | #endif /* not IBM */ |
985b6196 RS |
128 | #endif /* not VAX */ |
129 | ||
8c35bbc5 RK |
130 | #define REAL_WORDS_BIG_ENDIAN FLOAT_WORDS_BIG_ENDIAN |
131 | ||
985b6196 RS |
132 | #else |
133 | /* REAL_ARITHMETIC not defined means that the *host's* data | |
134 | structure will be used. It may differ by endian-ness from the | |
135 | target machine's structure and will get its ends swapped | |
136 | accordingly (but not here). Probably only the decimal <-> binary | |
137 | functions in this file will actually be used in this case. */ | |
defb5dab | 138 | |
985b6196 RS |
139 | #if HOST_FLOAT_FORMAT == VAX_FLOAT_FORMAT |
140 | #define DEC 1 | |
141 | #else /* it's not VAX */ | |
842fbaaa JW |
142 | #if HOST_FLOAT_FORMAT == IBM_FLOAT_FORMAT |
143 | /* IBM System/370 style */ | |
144 | #define IBM 1 | |
145 | #else /* it's also not an IBM */ | |
985b6196 | 146 | #if HOST_FLOAT_FORMAT == IEEE_FLOAT_FORMAT |
f76b9db2 | 147 | #define IEEE |
985b6196 RS |
148 | #else /* it's not IEEE either */ |
149 | unknown arithmetic type | |
150 | #define UNK 1 | |
151 | #endif /* not IEEE */ | |
842fbaaa | 152 | #endif /* not IBM */ |
985b6196 RS |
153 | #endif /* not VAX */ |
154 | ||
8c35bbc5 RK |
155 | #define REAL_WORDS_BIG_ENDIAN HOST_FLOAT_WORDS_BIG_ENDIAN |
156 | ||
985b6196 RS |
157 | #endif /* REAL_ARITHMETIC not defined */ |
158 | ||
66b6d60b RS |
159 | /* Define INFINITY for support of infinity. |
160 | Define NANS for support of Not-a-Number's (NaN's). */ | |
842fbaaa | 161 | #if !defined(DEC) && !defined(IBM) |
985b6196 | 162 | #define INFINITY |
66b6d60b | 163 | #define NANS |
985b6196 RS |
164 | #endif |
165 | ||
66b6d60b RS |
166 | /* Support of NaNs requires support of infinity. */ |
167 | #ifdef NANS | |
168 | #ifndef INFINITY | |
169 | #define INFINITY | |
170 | #endif | |
171 | #endif | |
775ba35d | 172 | \f |
985b6196 RS |
173 | /* Find a host integer type that is at least 16 bits wide, |
174 | and another type at least twice whatever that size is. */ | |
175 | ||
176 | #if HOST_BITS_PER_CHAR >= 16 | |
177 | #define EMUSHORT char | |
178 | #define EMUSHORT_SIZE HOST_BITS_PER_CHAR | |
179 | #define EMULONG_SIZE (2 * HOST_BITS_PER_CHAR) | |
180 | #else | |
181 | #if HOST_BITS_PER_SHORT >= 16 | |
182 | #define EMUSHORT short | |
183 | #define EMUSHORT_SIZE HOST_BITS_PER_SHORT | |
184 | #define EMULONG_SIZE (2 * HOST_BITS_PER_SHORT) | |
185 | #else | |
186 | #if HOST_BITS_PER_INT >= 16 | |
187 | #define EMUSHORT int | |
188 | #define EMUSHORT_SIZE HOST_BITS_PER_INT | |
189 | #define EMULONG_SIZE (2 * HOST_BITS_PER_INT) | |
190 | #else | |
191 | #if HOST_BITS_PER_LONG >= 16 | |
192 | #define EMUSHORT long | |
193 | #define EMUSHORT_SIZE HOST_BITS_PER_LONG | |
194 | #define EMULONG_SIZE (2 * HOST_BITS_PER_LONG) | |
195 | #else | |
196 | /* You will have to modify this program to have a smaller unit size. */ | |
197 | #define EMU_NON_COMPILE | |
198 | #endif | |
199 | #endif | |
200 | #endif | |
201 | #endif | |
202 | ||
203 | #if HOST_BITS_PER_SHORT >= EMULONG_SIZE | |
204 | #define EMULONG short | |
205 | #else | |
206 | #if HOST_BITS_PER_INT >= EMULONG_SIZE | |
207 | #define EMULONG int | |
208 | #else | |
209 | #if HOST_BITS_PER_LONG >= EMULONG_SIZE | |
210 | #define EMULONG long | |
211 | #else | |
212 | #if HOST_BITS_PER_LONG_LONG >= EMULONG_SIZE | |
213 | #define EMULONG long long int | |
214 | #else | |
215 | /* You will have to modify this program to have a smaller unit size. */ | |
216 | #define EMU_NON_COMPILE | |
217 | #endif | |
218 | #endif | |
219 | #endif | |
220 | #endif | |
221 | ||
222 | ||
223 | /* The host interface doesn't work if no 16-bit size exists. */ | |
224 | #if EMUSHORT_SIZE != 16 | |
225 | #define EMU_NON_COMPILE | |
226 | #endif | |
227 | ||
228 | /* OK to continue compilation. */ | |
229 | #ifndef EMU_NON_COMPILE | |
230 | ||
231 | /* Construct macros to translate between REAL_VALUE_TYPE and e type. | |
232 | In GET_REAL and PUT_REAL, r and e are pointers. | |
233 | A REAL_VALUE_TYPE is guaranteed to occupy contiguous locations | |
234 | in memory, with no holes. */ | |
235 | ||
236 | #if LONG_DOUBLE_TYPE_SIZE == 96 | |
842fbaaa JW |
237 | /* Number of 16 bit words in external e type format */ |
238 | #define NE 6 | |
239 | #define MAXDECEXP 4932 | |
240 | #define MINDECEXP -4956 | |
4ba46f43 RK |
241 | #define GET_REAL(r,e) bcopy ((char *) r, (char *) e, 2*NE) |
242 | #define PUT_REAL(e,r) bcopy ((char *) e, (char *) r, 2*NE) | |
985b6196 | 243 | #else /* no XFmode */ |
842fbaaa JW |
244 | #if LONG_DOUBLE_TYPE_SIZE == 128 |
245 | #define NE 10 | |
246 | #define MAXDECEXP 4932 | |
247 | #define MINDECEXP -4977 | |
4ba46f43 RK |
248 | #define GET_REAL(r,e) bcopy ((char *) r, (char *) e, 2*NE) |
249 | #define PUT_REAL(e,r) bcopy ((char *) e, (char *) r, 2*NE) | |
842fbaaa JW |
250 | #else |
251 | #define NE 6 | |
252 | #define MAXDECEXP 4932 | |
253 | #define MINDECEXP -4956 | |
985b6196 RS |
254 | #ifdef REAL_ARITHMETIC |
255 | /* Emulator uses target format internally | |
256 | but host stores it in host endian-ness. */ | |
257 | ||
f76b9db2 ILT |
258 | #define GET_REAL(r,e) \ |
259 | do { \ | |
8c35bbc5 | 260 | if (HOST_FLOAT_WORDS_BIG_ENDIAN == REAL_WORDS_BIG_ENDIAN) \ |
f76b9db2 ILT |
261 | e53toe ((unsigned EMUSHORT*) (r), (e)); \ |
262 | else \ | |
263 | { \ | |
264 | unsigned EMUSHORT w[4]; \ | |
265 | w[3] = ((EMUSHORT *) r)[0]; \ | |
266 | w[2] = ((EMUSHORT *) r)[1]; \ | |
267 | w[1] = ((EMUSHORT *) r)[2]; \ | |
268 | w[0] = ((EMUSHORT *) r)[3]; \ | |
269 | e53toe (w, (e)); \ | |
270 | } \ | |
271 | } while (0) | |
272 | ||
273 | #define PUT_REAL(e,r) \ | |
274 | do { \ | |
8c35bbc5 | 275 | if (HOST_FLOAT_WORDS_BIG_ENDIAN == REAL_WORDS_BIG_ENDIAN) \ |
f76b9db2 ILT |
276 | etoe53 ((e), (unsigned EMUSHORT *) (r)); \ |
277 | else \ | |
278 | { \ | |
279 | unsigned EMUSHORT w[4]; \ | |
280 | etoe53 ((e), w); \ | |
281 | *((EMUSHORT *) r) = w[3]; \ | |
282 | *((EMUSHORT *) r + 1) = w[2]; \ | |
283 | *((EMUSHORT *) r + 2) = w[1]; \ | |
284 | *((EMUSHORT *) r + 3) = w[0]; \ | |
285 | } \ | |
286 | } while (0) | |
985b6196 RS |
287 | |
288 | #else /* not REAL_ARITHMETIC */ | |
289 | ||
290 | /* emulator uses host format */ | |
a0353055 RK |
291 | #define GET_REAL(r,e) e53toe ((unsigned EMUSHORT *) (r), (e)) |
292 | #define PUT_REAL(e,r) etoe53 ((e), (unsigned EMUSHORT *) (r)) | |
985b6196 RS |
293 | |
294 | #endif /* not REAL_ARITHMETIC */ | |
842fbaaa | 295 | #endif /* not TFmode */ |
985b6196 RS |
296 | #endif /* no XFmode */ |
297 | ||
842fbaaa JW |
298 | |
299 | /* Number of 16 bit words in internal format */ | |
300 | #define NI (NE+3) | |
301 | ||
302 | /* Array offset to exponent */ | |
303 | #define E 1 | |
304 | ||
305 | /* Array offset to high guard word */ | |
306 | #define M 2 | |
307 | ||
308 | /* Number of bits of precision */ | |
309 | #define NBITS ((NI-4)*16) | |
310 | ||
311 | /* Maximum number of decimal digits in ASCII conversion | |
312 | * = NBITS*log10(2) | |
313 | */ | |
314 | #define NDEC (NBITS*8/27) | |
315 | ||
316 | /* The exponent of 1.0 */ | |
317 | #define EXONE (0x3fff) | |
318 | ||
64685ffa | 319 | extern int extra_warnings; |
9d1bd99c MM |
320 | extern unsigned EMUSHORT ezero[], ehalf[], eone[], etwo[]; |
321 | extern unsigned EMUSHORT elog2[], esqrt2[]; | |
a0353055 RK |
322 | |
323 | static void endian PROTO((unsigned EMUSHORT *, long *, | |
324 | enum machine_mode)); | |
325 | static void eclear PROTO((unsigned EMUSHORT *)); | |
326 | static void emov PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); | |
327 | static void eabs PROTO((unsigned EMUSHORT *)); | |
328 | static void eneg PROTO((unsigned EMUSHORT *)); | |
329 | static int eisneg PROTO((unsigned EMUSHORT *)); | |
330 | static int eisinf PROTO((unsigned EMUSHORT *)); | |
331 | static int eisnan PROTO((unsigned EMUSHORT *)); | |
332 | static void einfin PROTO((unsigned EMUSHORT *)); | |
333 | static void enan PROTO((unsigned EMUSHORT *, int)); | |
334 | static void emovi PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); | |
335 | static void emovo PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); | |
336 | static void ecleaz PROTO((unsigned EMUSHORT *)); | |
337 | static void ecleazs PROTO((unsigned EMUSHORT *)); | |
338 | static void emovz PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); | |
339 | static void einan PROTO((unsigned EMUSHORT *)); | |
340 | static int eiisnan PROTO((unsigned EMUSHORT *)); | |
341 | static int eiisneg PROTO((unsigned EMUSHORT *)); | |
342 | static void eiinfin PROTO((unsigned EMUSHORT *)); | |
343 | static int eiisinf PROTO((unsigned EMUSHORT *)); | |
344 | static int ecmpm PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); | |
345 | static void eshdn1 PROTO((unsigned EMUSHORT *)); | |
346 | static void eshup1 PROTO((unsigned EMUSHORT *)); | |
347 | static void eshdn8 PROTO((unsigned EMUSHORT *)); | |
348 | static void eshup8 PROTO((unsigned EMUSHORT *)); | |
349 | static void eshup6 PROTO((unsigned EMUSHORT *)); | |
350 | static void eshdn6 PROTO((unsigned EMUSHORT *)); | |
351 | static void eaddm PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *));\f | |
352 | static void esubm PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); | |
c92d992a | 353 | static void m16m PROTO((unsigned int, unsigned short *, |
a0353055 RK |
354 | unsigned short *)); |
355 | static int edivm PROTO((unsigned short *, unsigned short *)); | |
356 | static int emulm PROTO((unsigned short *, unsigned short *)); | |
357 | static void emdnorm PROTO((unsigned EMUSHORT *, int, int, EMULONG, int)); | |
358 | static void esub PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *, | |
359 | unsigned EMUSHORT *)); | |
360 | static void eadd PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *, | |
361 | unsigned EMUSHORT *)); | |
362 | static void eadd1 PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *, | |
363 | unsigned EMUSHORT *)); | |
364 | static void ediv PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *, | |
365 | unsigned EMUSHORT *)); | |
366 | static void emul PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *, | |
367 | unsigned EMUSHORT *)); | |
368 | static void e53toe PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); | |
369 | static void e64toe PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); | |
370 | static void e113toe PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); | |
371 | static void e24toe PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); | |
372 | static void etoe113 PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); | |
373 | static void toe113 PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); | |
374 | static void etoe64 PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); | |
375 | static void toe64 PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); | |
376 | static void etoe53 PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); | |
377 | static void toe53 PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); | |
378 | static void etoe24 PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); | |
379 | static void toe24 PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); | |
380 | static int ecmp PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); | |
381 | static void eround PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); | |
382 | static void ltoe PROTO((HOST_WIDE_INT *, unsigned EMUSHORT *)); | |
383 | static void ultoe PROTO((unsigned HOST_WIDE_INT *, unsigned EMUSHORT *)); | |
384 | static void eifrac PROTO((unsigned EMUSHORT *, HOST_WIDE_INT *, | |
385 | unsigned EMUSHORT *)); | |
386 | static void euifrac PROTO((unsigned EMUSHORT *, unsigned HOST_WIDE_INT *, | |
387 | unsigned EMUSHORT *)); | |
388 | static int eshift PROTO((unsigned EMUSHORT *, int)); | |
389 | static int enormlz PROTO((unsigned EMUSHORT *)); | |
390 | static void e24toasc PROTO((unsigned EMUSHORT *, char *, int)); | |
391 | static void e53toasc PROTO((unsigned EMUSHORT *, char *, int)); | |
392 | static void e64toasc PROTO((unsigned EMUSHORT *, char *, int)); | |
393 | static void e113toasc PROTO((unsigned EMUSHORT *, char *, int)); | |
394 | static void etoasc PROTO((unsigned EMUSHORT *, char *, int)); | |
395 | static void asctoe24 PROTO((char *, unsigned EMUSHORT *)); | |
396 | static void asctoe53 PROTO((char *, unsigned EMUSHORT *)); | |
397 | static void asctoe64 PROTO((char *, unsigned EMUSHORT *)); | |
398 | static void asctoe113 PROTO((char *, unsigned EMUSHORT *)); | |
399 | static void asctoe PROTO((char *, unsigned EMUSHORT *)); | |
400 | static void asctoeg PROTO((char *, unsigned EMUSHORT *, int)); | |
401 | static void efloor PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); | |
402 | static void efrexp PROTO((unsigned EMUSHORT *, int *, | |
403 | unsigned EMUSHORT *)); | |
404 | static void eldexp PROTO((unsigned EMUSHORT *, int, unsigned EMUSHORT *)); | |
405 | static void eremain PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *, | |
406 | unsigned EMUSHORT *)); | |
407 | static void eiremain PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); | |
408 | static void mtherr PROTO((char *, int)); | |
409 | static void dectoe PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); | |
410 | static void etodec PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); | |
411 | static void todec PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); | |
412 | static void ibmtoe PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *, | |
413 | enum machine_mode)); | |
414 | static void etoibm PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *, | |
415 | enum machine_mode)); | |
416 | static void toibm PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *, | |
417 | enum machine_mode)); | |
418 | static void make_nan PROTO((unsigned EMUSHORT *, int, enum machine_mode)); | |
419 | static void uditoe PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); | |
420 | static void ditoe PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); | |
421 | static void etoudi PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); | |
422 | static void etodi PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); | |
423 | static void esqrt PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); | |
775ba35d | 424 | \f |
b51ab098 RK |
425 | /* Copy 32-bit numbers obtained from array containing 16-bit numbers, |
426 | swapping ends if required, into output array of longs. The | |
427 | result is normally passed to fprintf by the ASM_OUTPUT_ macros. */ | |
a0353055 RK |
428 | |
429 | static void | |
985b6196 RS |
430 | endian (e, x, mode) |
431 | unsigned EMUSHORT e[]; | |
432 | long x[]; | |
433 | enum machine_mode mode; | |
434 | { | |
435 | unsigned long th, t; | |
436 | ||
8c35bbc5 | 437 | if (REAL_WORDS_BIG_ENDIAN) |
985b6196 | 438 | { |
f76b9db2 ILT |
439 | switch (mode) |
440 | { | |
985b6196 | 441 | |
f76b9db2 ILT |
442 | case TFmode: |
443 | /* Swap halfwords in the fourth long. */ | |
444 | th = (unsigned long) e[6] & 0xffff; | |
445 | t = (unsigned long) e[7] & 0xffff; | |
446 | t |= th << 16; | |
447 | x[3] = (long) t; | |
448 | ||
449 | case XFmode: | |
450 | ||
451 | /* Swap halfwords in the third long. */ | |
452 | th = (unsigned long) e[4] & 0xffff; | |
453 | t = (unsigned long) e[5] & 0xffff; | |
454 | t |= th << 16; | |
455 | x[2] = (long) t; | |
456 | /* fall into the double case */ | |
457 | ||
458 | case DFmode: | |
459 | ||
460 | /* swap halfwords in the second word */ | |
461 | th = (unsigned long) e[2] & 0xffff; | |
462 | t = (unsigned long) e[3] & 0xffff; | |
463 | t |= th << 16; | |
464 | x[1] = (long) t; | |
465 | /* fall into the float case */ | |
466 | ||
467 | case HFmode: | |
468 | case SFmode: | |
469 | ||
470 | /* swap halfwords in the first word */ | |
471 | th = (unsigned long) e[0] & 0xffff; | |
472 | t = (unsigned long) e[1] & 0xffff; | |
473 | t |= th << 16; | |
474 | x[0] = t; | |
475 | break; | |
985b6196 | 476 | |
f76b9db2 ILT |
477 | default: |
478 | abort (); | |
479 | } | |
985b6196 | 480 | } |
f76b9db2 | 481 | else |
985b6196 | 482 | { |
f76b9db2 | 483 | /* Pack the output array without swapping. */ |
985b6196 | 484 | |
f76b9db2 ILT |
485 | switch (mode) |
486 | { | |
985b6196 | 487 | |
f76b9db2 ILT |
488 | case TFmode: |
489 | ||
490 | /* Pack the fourth long. */ | |
491 | th = (unsigned long) e[7] & 0xffff; | |
492 | t = (unsigned long) e[6] & 0xffff; | |
493 | t |= th << 16; | |
494 | x[3] = (long) t; | |
495 | ||
496 | case XFmode: | |
497 | ||
498 | /* Pack the third long. | |
499 | Each element of the input REAL_VALUE_TYPE array has 16 useful bits | |
500 | in it. */ | |
501 | th = (unsigned long) e[5] & 0xffff; | |
502 | t = (unsigned long) e[4] & 0xffff; | |
503 | t |= th << 16; | |
504 | x[2] = (long) t; | |
505 | /* fall into the double case */ | |
506 | ||
507 | case DFmode: | |
508 | ||
509 | /* pack the second long */ | |
510 | th = (unsigned long) e[3] & 0xffff; | |
511 | t = (unsigned long) e[2] & 0xffff; | |
512 | t |= th << 16; | |
513 | x[1] = (long) t; | |
514 | /* fall into the float case */ | |
515 | ||
516 | case HFmode: | |
517 | case SFmode: | |
518 | ||
519 | /* pack the first long */ | |
520 | th = (unsigned long) e[1] & 0xffff; | |
521 | t = (unsigned long) e[0] & 0xffff; | |
522 | t |= th << 16; | |
523 | x[0] = t; | |
524 | break; | |
985b6196 | 525 | |
f76b9db2 ILT |
526 | default: |
527 | abort (); | |
528 | } | |
985b6196 | 529 | } |
985b6196 RS |
530 | } |
531 | ||
532 | ||
defb5dab | 533 | /* This is the implementation of the REAL_ARITHMETIC macro. */ |
a0353055 | 534 | |
985b6196 RS |
535 | void |
536 | earith (value, icode, r1, r2) | |
537 | REAL_VALUE_TYPE *value; | |
538 | int icode; | |
539 | REAL_VALUE_TYPE *r1; | |
540 | REAL_VALUE_TYPE *r2; | |
541 | { | |
542 | unsigned EMUSHORT d1[NE], d2[NE], v[NE]; | |
543 | enum tree_code code; | |
544 | ||
545 | GET_REAL (r1, d1); | |
546 | GET_REAL (r2, d2); | |
66b6d60b RS |
547 | #ifdef NANS |
548 | /* Return NaN input back to the caller. */ | |
549 | if (eisnan (d1)) | |
550 | { | |
551 | PUT_REAL (d1, value); | |
552 | return; | |
553 | } | |
554 | if (eisnan (d2)) | |
555 | { | |
556 | PUT_REAL (d2, value); | |
557 | return; | |
558 | } | |
559 | #endif | |
985b6196 RS |
560 | code = (enum tree_code) icode; |
561 | switch (code) | |
562 | { | |
563 | case PLUS_EXPR: | |
564 | eadd (d2, d1, v); | |
565 | break; | |
566 | ||
567 | case MINUS_EXPR: | |
568 | esub (d2, d1, v); /* d1 - d2 */ | |
569 | break; | |
570 | ||
571 | case MULT_EXPR: | |
572 | emul (d2, d1, v); | |
573 | break; | |
574 | ||
575 | case RDIV_EXPR: | |
576 | #ifndef REAL_INFINITY | |
577 | if (ecmp (d2, ezero) == 0) | |
66b6d60b RS |
578 | { |
579 | #ifdef NANS | |
29e11dab | 580 | enan (v, eisneg (d1) ^ eisneg (d2)); |
66b6d60b RS |
581 | break; |
582 | #else | |
985b6196 | 583 | abort (); |
66b6d60b RS |
584 | #endif |
585 | } | |
985b6196 RS |
586 | #endif |
587 | ediv (d2, d1, v); /* d1/d2 */ | |
588 | break; | |
589 | ||
590 | case MIN_EXPR: /* min (d1,d2) */ | |
591 | if (ecmp (d1, d2) < 0) | |
592 | emov (d1, v); | |
593 | else | |
594 | emov (d2, v); | |
595 | break; | |
596 | ||
597 | case MAX_EXPR: /* max (d1,d2) */ | |
598 | if (ecmp (d1, d2) > 0) | |
599 | emov (d1, v); | |
600 | else | |
601 | emov (d2, v); | |
602 | break; | |
603 | default: | |
604 | emov (ezero, v); | |
605 | break; | |
606 | } | |
607 | PUT_REAL (v, value); | |
608 | } | |
609 | ||
610 | ||
defb5dab RK |
611 | /* Truncate REAL_VALUE_TYPE toward zero to signed HOST_WIDE_INT. |
612 | implements REAL_VALUE_RNDZINT (x) (etrunci (x)). */ | |
613 | ||
985b6196 RS |
614 | REAL_VALUE_TYPE |
615 | etrunci (x) | |
616 | REAL_VALUE_TYPE x; | |
617 | { | |
618 | unsigned EMUSHORT f[NE], g[NE]; | |
619 | REAL_VALUE_TYPE r; | |
b51ab098 | 620 | HOST_WIDE_INT l; |
985b6196 RS |
621 | |
622 | GET_REAL (&x, g); | |
66b6d60b RS |
623 | #ifdef NANS |
624 | if (eisnan (g)) | |
625 | return (x); | |
626 | #endif | |
985b6196 RS |
627 | eifrac (g, &l, f); |
628 | ltoe (&l, g); | |
629 | PUT_REAL (g, &r); | |
630 | return (r); | |
631 | } | |
632 | ||
633 | ||
defb5dab RK |
634 | /* Truncate REAL_VALUE_TYPE toward zero to unsigned HOST_WIDE_INT; |
635 | implements REAL_VALUE_UNSIGNED_RNDZINT (x) (etruncui (x)). */ | |
636 | ||
985b6196 RS |
637 | REAL_VALUE_TYPE |
638 | etruncui (x) | |
639 | REAL_VALUE_TYPE x; | |
640 | { | |
641 | unsigned EMUSHORT f[NE], g[NE]; | |
642 | REAL_VALUE_TYPE r; | |
b51ab098 | 643 | unsigned HOST_WIDE_INT l; |
985b6196 RS |
644 | |
645 | GET_REAL (&x, g); | |
66b6d60b RS |
646 | #ifdef NANS |
647 | if (eisnan (g)) | |
648 | return (x); | |
649 | #endif | |
985b6196 RS |
650 | euifrac (g, &l, f); |
651 | ultoe (&l, g); | |
652 | PUT_REAL (g, &r); | |
653 | return (r); | |
654 | } | |
655 | ||
656 | ||
defb5dab RK |
657 | /* This is the REAL_VALUE_ATOF function. It converts a decimal string to |
658 | binary, rounding off as indicated by the machine_mode argument. Then it | |
659 | promotes the rounded value to REAL_VALUE_TYPE. */ | |
660 | ||
985b6196 RS |
661 | REAL_VALUE_TYPE |
662 | ereal_atof (s, t) | |
663 | char *s; | |
664 | enum machine_mode t; | |
665 | { | |
666 | unsigned EMUSHORT tem[NE], e[NE]; | |
667 | REAL_VALUE_TYPE r; | |
668 | ||
669 | switch (t) | |
670 | { | |
bfbc6416 | 671 | case HFmode: |
985b6196 RS |
672 | case SFmode: |
673 | asctoe24 (s, tem); | |
674 | e24toe (tem, e); | |
675 | break; | |
676 | case DFmode: | |
677 | asctoe53 (s, tem); | |
678 | e53toe (tem, e); | |
679 | break; | |
680 | case XFmode: | |
681 | asctoe64 (s, tem); | |
682 | e64toe (tem, e); | |
683 | break; | |
842fbaaa JW |
684 | case TFmode: |
685 | asctoe113 (s, tem); | |
686 | e113toe (tem, e); | |
687 | break; | |
985b6196 RS |
688 | default: |
689 | asctoe (s, e); | |
690 | } | |
691 | PUT_REAL (e, &r); | |
692 | return (r); | |
693 | } | |
694 | ||
695 | ||
defb5dab RK |
696 | /* Expansion of REAL_NEGATE. */ |
697 | ||
985b6196 RS |
698 | REAL_VALUE_TYPE |
699 | ereal_negate (x) | |
700 | REAL_VALUE_TYPE x; | |
701 | { | |
702 | unsigned EMUSHORT e[NE]; | |
703 | REAL_VALUE_TYPE r; | |
704 | ||
705 | GET_REAL (&x, e); | |
706 | eneg (e); | |
707 | PUT_REAL (e, &r); | |
708 | return (r); | |
709 | } | |
710 | ||
711 | ||
defb5dab RK |
712 | /* Round real toward zero to HOST_WIDE_INT; |
713 | implements REAL_VALUE_FIX (x). */ | |
714 | ||
b51ab098 | 715 | HOST_WIDE_INT |
842fbaaa | 716 | efixi (x) |
985b6196 RS |
717 | REAL_VALUE_TYPE x; |
718 | { | |
719 | unsigned EMUSHORT f[NE], g[NE]; | |
b51ab098 | 720 | HOST_WIDE_INT l; |
985b6196 RS |
721 | |
722 | GET_REAL (&x, f); | |
66b6d60b RS |
723 | #ifdef NANS |
724 | if (eisnan (f)) | |
725 | { | |
726 | warning ("conversion from NaN to int"); | |
727 | return (-1); | |
728 | } | |
729 | #endif | |
842fbaaa JW |
730 | eifrac (f, &l, g); |
731 | return l; | |
985b6196 RS |
732 | } |
733 | ||
842fbaaa | 734 | /* Round real toward zero to unsigned HOST_WIDE_INT |
defb5dab RK |
735 | implements REAL_VALUE_UNSIGNED_FIX (x). |
736 | Negative input returns zero. */ | |
737 | ||
b51ab098 | 738 | unsigned HOST_WIDE_INT |
842fbaaa | 739 | efixui (x) |
985b6196 RS |
740 | REAL_VALUE_TYPE x; |
741 | { | |
742 | unsigned EMUSHORT f[NE], g[NE]; | |
b51ab098 | 743 | unsigned HOST_WIDE_INT l; |
985b6196 RS |
744 | |
745 | GET_REAL (&x, f); | |
66b6d60b RS |
746 | #ifdef NANS |
747 | if (eisnan (f)) | |
748 | { | |
749 | warning ("conversion from NaN to unsigned int"); | |
750 | return (-1); | |
751 | } | |
752 | #endif | |
842fbaaa JW |
753 | euifrac (f, &l, g); |
754 | return l; | |
985b6196 RS |
755 | } |
756 | ||
757 | ||
defb5dab RK |
758 | /* REAL_VALUE_FROM_INT macro. */ |
759 | ||
985b6196 RS |
760 | void |
761 | ereal_from_int (d, i, j) | |
762 | REAL_VALUE_TYPE *d; | |
b51ab098 | 763 | HOST_WIDE_INT i, j; |
985b6196 RS |
764 | { |
765 | unsigned EMUSHORT df[NE], dg[NE]; | |
b51ab098 | 766 | HOST_WIDE_INT low, high; |
985b6196 RS |
767 | int sign; |
768 | ||
769 | sign = 0; | |
770 | low = i; | |
771 | if ((high = j) < 0) | |
772 | { | |
773 | sign = 1; | |
774 | /* complement and add 1 */ | |
775 | high = ~high; | |
776 | if (low) | |
777 | low = -low; | |
778 | else | |
779 | high += 1; | |
780 | } | |
b51ab098 | 781 | eldexp (eone, HOST_BITS_PER_WIDE_INT, df); |
60e61165 | 782 | ultoe ((unsigned HOST_WIDE_INT *) &high, dg); |
985b6196 | 783 | emul (dg, df, dg); |
60e61165 | 784 | ultoe ((unsigned HOST_WIDE_INT *) &low, df); |
985b6196 RS |
785 | eadd (df, dg, dg); |
786 | if (sign) | |
787 | eneg (dg); | |
788 | PUT_REAL (dg, d); | |
789 | } | |
790 | ||
791 | ||
defb5dab | 792 | /* REAL_VALUE_FROM_UNSIGNED_INT macro. */ |
a0353055 | 793 | |
985b6196 RS |
794 | void |
795 | ereal_from_uint (d, i, j) | |
796 | REAL_VALUE_TYPE *d; | |
b51ab098 | 797 | unsigned HOST_WIDE_INT i, j; |
985b6196 RS |
798 | { |
799 | unsigned EMUSHORT df[NE], dg[NE]; | |
b51ab098 | 800 | unsigned HOST_WIDE_INT low, high; |
985b6196 RS |
801 | |
802 | low = i; | |
803 | high = j; | |
b51ab098 | 804 | eldexp (eone, HOST_BITS_PER_WIDE_INT, df); |
985b6196 RS |
805 | ultoe (&high, dg); |
806 | emul (dg, df, dg); | |
807 | ultoe (&low, df); | |
808 | eadd (df, dg, dg); | |
809 | PUT_REAL (dg, d); | |
810 | } | |
811 | ||
812 | ||
defb5dab RK |
813 | /* REAL_VALUE_TO_INT macro. */ |
814 | ||
985b6196 RS |
815 | void |
816 | ereal_to_int (low, high, rr) | |
b51ab098 | 817 | HOST_WIDE_INT *low, *high; |
985b6196 RS |
818 | REAL_VALUE_TYPE rr; |
819 | { | |
820 | unsigned EMUSHORT d[NE], df[NE], dg[NE], dh[NE]; | |
821 | int s; | |
822 | ||
823 | GET_REAL (&rr, d); | |
66b6d60b | 824 | #ifdef NANS |
970491df | 825 | if (eisnan (d)) |
66b6d60b RS |
826 | { |
827 | warning ("conversion from NaN to int"); | |
828 | *low = -1; | |
829 | *high = -1; | |
830 | return; | |
831 | } | |
832 | #endif | |
985b6196 RS |
833 | /* convert positive value */ |
834 | s = 0; | |
835 | if (eisneg (d)) | |
836 | { | |
837 | eneg (d); | |
838 | s = 1; | |
839 | } | |
b51ab098 | 840 | eldexp (eone, HOST_BITS_PER_WIDE_INT, df); |
985b6196 | 841 | ediv (df, d, dg); /* dg = d / 2^32 is the high word */ |
60e61165 | 842 | euifrac (dg, (unsigned HOST_WIDE_INT *) high, dh); |
985b6196 | 843 | emul (df, dh, dg); /* fractional part is the low word */ |
60e61165 | 844 | euifrac (dg, (unsigned HOST_WIDE_INT *)low, dh); |
985b6196 RS |
845 | if (s) |
846 | { | |
847 | /* complement and add 1 */ | |
848 | *high = ~(*high); | |
849 | if (*low) | |
850 | *low = -(*low); | |
851 | else | |
852 | *high += 1; | |
853 | } | |
854 | } | |
855 | ||
856 | ||
defb5dab RK |
857 | /* REAL_VALUE_LDEXP macro. */ |
858 | ||
985b6196 RS |
859 | REAL_VALUE_TYPE |
860 | ereal_ldexp (x, n) | |
861 | REAL_VALUE_TYPE x; | |
862 | int n; | |
863 | { | |
864 | unsigned EMUSHORT e[NE], y[NE]; | |
865 | REAL_VALUE_TYPE r; | |
866 | ||
867 | GET_REAL (&x, e); | |
66b6d60b RS |
868 | #ifdef NANS |
869 | if (eisnan (e)) | |
870 | return (x); | |
871 | #endif | |
985b6196 RS |
872 | eldexp (e, n, y); |
873 | PUT_REAL (y, &r); | |
874 | return (r); | |
875 | } | |
876 | ||
877 | /* These routines are conditionally compiled because functions | |
defb5dab RK |
878 | of the same names may be defined in fold-const.c. */ |
879 | ||
985b6196 RS |
880 | #ifdef REAL_ARITHMETIC |
881 | ||
882 | /* Check for infinity in a REAL_VALUE_TYPE. */ | |
defb5dab | 883 | |
985b6196 RS |
884 | int |
885 | target_isinf (x) | |
886 | REAL_VALUE_TYPE x; | |
887 | { | |
888 | unsigned EMUSHORT e[NE]; | |
889 | ||
890 | #ifdef INFINITY | |
891 | GET_REAL (&x, e); | |
892 | return (eisinf (e)); | |
893 | #else | |
894 | return 0; | |
895 | #endif | |
896 | } | |
897 | ||
66b6d60b | 898 | /* Check whether a REAL_VALUE_TYPE item is a NaN. */ |
985b6196 RS |
899 | |
900 | int | |
901 | target_isnan (x) | |
902 | REAL_VALUE_TYPE x; | |
903 | { | |
9d72da33 RS |
904 | unsigned EMUSHORT e[NE]; |
905 | ||
66b6d60b | 906 | #ifdef NANS |
9d72da33 RS |
907 | GET_REAL (&x, e); |
908 | return (eisnan (e)); | |
66b6d60b | 909 | #else |
985b6196 | 910 | return (0); |
66b6d60b | 911 | #endif |
985b6196 RS |
912 | } |
913 | ||
914 | ||
66b6d60b | 915 | /* Check for a negative REAL_VALUE_TYPE number. |
defb5dab | 916 | This just checks the sign bit, so that -0 counts as negative. */ |
985b6196 RS |
917 | |
918 | int | |
919 | target_negative (x) | |
920 | REAL_VALUE_TYPE x; | |
921 | { | |
281bb5e4 | 922 | return ereal_isneg (x); |
985b6196 RS |
923 | } |
924 | ||
925 | /* Expansion of REAL_VALUE_TRUNCATE. | |
defb5dab RK |
926 | The result is in floating point, rounded to nearest or even. */ |
927 | ||
985b6196 RS |
928 | REAL_VALUE_TYPE |
929 | real_value_truncate (mode, arg) | |
930 | enum machine_mode mode; | |
931 | REAL_VALUE_TYPE arg; | |
932 | { | |
933 | unsigned EMUSHORT e[NE], t[NE]; | |
934 | REAL_VALUE_TYPE r; | |
935 | ||
936 | GET_REAL (&arg, e); | |
66b6d60b RS |
937 | #ifdef NANS |
938 | if (eisnan (e)) | |
939 | return (arg); | |
940 | #endif | |
985b6196 RS |
941 | eclear (t); |
942 | switch (mode) | |
943 | { | |
842fbaaa JW |
944 | case TFmode: |
945 | etoe113 (e, t); | |
946 | e113toe (t, t); | |
947 | break; | |
948 | ||
985b6196 RS |
949 | case XFmode: |
950 | etoe64 (e, t); | |
951 | e64toe (t, t); | |
952 | break; | |
953 | ||
954 | case DFmode: | |
955 | etoe53 (e, t); | |
956 | e53toe (t, t); | |
957 | break; | |
958 | ||
bfbc6416 | 959 | case HFmode: |
985b6196 RS |
960 | case SFmode: |
961 | etoe24 (e, t); | |
962 | e24toe (t, t); | |
963 | break; | |
964 | ||
965 | case SImode: | |
f8ece317 | 966 | r = etrunci (arg); |
985b6196 RS |
967 | return (r); |
968 | ||
0de689b7 RK |
969 | /* If an unsupported type was requested, presume that |
970 | the machine files know something useful to do with | |
971 | the unmodified value. */ | |
defb5dab | 972 | |
985b6196 | 973 | default: |
0de689b7 | 974 | return (arg); |
985b6196 RS |
975 | } |
976 | PUT_REAL (t, &r); | |
977 | return (r); | |
978 | } | |
979 | ||
980 | #endif /* REAL_ARITHMETIC defined */ | |
981 | ||
775ba35d RS |
982 | /* Used for debugging--print the value of R in human-readable format |
983 | on stderr. */ | |
984 | ||
985 | void | |
986 | debug_real (r) | |
987 | REAL_VALUE_TYPE r; | |
988 | { | |
989 | char dstr[30]; | |
990 | ||
991 | REAL_VALUE_TO_DECIMAL (r, "%.20g", dstr); | |
992 | fprintf (stderr, "%s", dstr); | |
993 | } | |
994 | ||
995 | \f | |
8c35bbc5 RK |
996 | /* The following routines convert REAL_VALUE_TYPE to the various floating |
997 | point formats that are meaningful to supported computers. | |
998 | ||
999 | The results are returned in 32-bit pieces, each piece stored in a `long'. | |
1000 | This is so they can be printed by statements like | |
1001 | ||
1002 | fprintf (file, "%lx, %lx", L[0], L[1]); | |
1003 | ||
1004 | that will work on both narrow- and wide-word host computers. */ | |
842fbaaa | 1005 | |
8c35bbc5 RK |
1006 | /* Convert R to a 128-bit long double precision value. The output array L |
1007 | contains four 32-bit pieces of the result, in the order they would appear | |
1008 | in memory. */ | |
defb5dab | 1009 | |
842fbaaa JW |
1010 | void |
1011 | etartdouble (r, l) | |
1012 | REAL_VALUE_TYPE r; | |
1013 | long l[]; | |
1014 | { | |
1015 | unsigned EMUSHORT e[NE]; | |
1016 | ||
1017 | GET_REAL (&r, e); | |
1018 | etoe113 (e, e); | |
1019 | endian (e, l, TFmode); | |
1020 | } | |
1021 | ||
8c35bbc5 RK |
1022 | /* Convert R to a double extended precision value. The output array L |
1023 | contains three 32-bit pieces of the result, in the order they would | |
1024 | appear in memory. */ | |
defb5dab | 1025 | |
985b6196 RS |
1026 | void |
1027 | etarldouble (r, l) | |
1028 | REAL_VALUE_TYPE r; | |
1029 | long l[]; | |
1030 | { | |
1031 | unsigned EMUSHORT e[NE]; | |
1032 | ||
1033 | GET_REAL (&r, e); | |
1034 | etoe64 (e, e); | |
1035 | endian (e, l, XFmode); | |
1036 | } | |
1037 | ||
8c35bbc5 RK |
1038 | /* Convert R to a double precision value. The output array L contains two |
1039 | 32-bit pieces of the result, in the order they would appear in memory. */ | |
1040 | ||
985b6196 RS |
1041 | void |
1042 | etardouble (r, l) | |
1043 | REAL_VALUE_TYPE r; | |
1044 | long l[]; | |
1045 | { | |
1046 | unsigned EMUSHORT e[NE]; | |
1047 | ||
1048 | GET_REAL (&r, e); | |
1049 | etoe53 (e, e); | |
1050 | endian (e, l, DFmode); | |
1051 | } | |
1052 | ||
8c35bbc5 RK |
1053 | /* Convert R to a single precision float value stored in the least-significant |
1054 | bits of a `long'. */ | |
1055 | ||
985b6196 RS |
1056 | long |
1057 | etarsingle (r) | |
1058 | REAL_VALUE_TYPE r; | |
1059 | { | |
1060 | unsigned EMUSHORT e[NE]; | |
60e61165 | 1061 | long l; |
985b6196 RS |
1062 | |
1063 | GET_REAL (&r, e); | |
1064 | etoe24 (e, e); | |
1065 | endian (e, &l, SFmode); | |
1066 | return ((long) l); | |
1067 | } | |
1068 | ||
8c35bbc5 RK |
1069 | /* Convert X to a decimal ASCII string S for output to an assembly |
1070 | language file. Note, there is no standard way to spell infinity or | |
1071 | a NaN, so these values may require special treatment in the tm.h | |
1072 | macros. */ | |
1073 | ||
985b6196 RS |
1074 | void |
1075 | ereal_to_decimal (x, s) | |
1076 | REAL_VALUE_TYPE x; | |
1077 | char *s; | |
1078 | { | |
1079 | unsigned EMUSHORT e[NE]; | |
1080 | ||
1081 | GET_REAL (&x, e); | |
1082 | etoasc (e, s, 20); | |
1083 | } | |
1084 | ||
8c35bbc5 RK |
1085 | /* Compare X and Y. Return 1 if X > Y, 0 if X == Y, -1 if X < Y, |
1086 | or -2 if either is a NaN. */ | |
1087 | ||
985b6196 RS |
1088 | int |
1089 | ereal_cmp (x, y) | |
1090 | REAL_VALUE_TYPE x, y; | |
1091 | { | |
1092 | unsigned EMUSHORT ex[NE], ey[NE]; | |
1093 | ||
1094 | GET_REAL (&x, ex); | |
1095 | GET_REAL (&y, ey); | |
1096 | return (ecmp (ex, ey)); | |
1097 | } | |
1098 | ||
8c35bbc5 RK |
1099 | /* Return 1 if the sign bit of X is set, else return 0. */ |
1100 | ||
985b6196 RS |
1101 | int |
1102 | ereal_isneg (x) | |
1103 | REAL_VALUE_TYPE x; | |
1104 | { | |
1105 | unsigned EMUSHORT ex[NE]; | |
1106 | ||
1107 | GET_REAL (&x, ex); | |
1108 | return (eisneg (ex)); | |
1109 | } | |
1110 | ||
1111 | /* End of REAL_ARITHMETIC interface */ | |
775ba35d | 1112 | \f |
defb5dab RK |
1113 | /* |
1114 | Extended precision IEEE binary floating point arithmetic routines | |
1115 | ||
1116 | Numbers are stored in C language as arrays of 16-bit unsigned | |
1117 | short integers. The arguments of the routines are pointers to | |
1118 | the arrays. | |
1119 | ||
8c35bbc5 | 1120 | External e type data structure, similar to Intel 8087 chip |
defb5dab RK |
1121 | temporary real format but possibly with a larger significand: |
1122 | ||
1123 | NE-1 significand words (least significant word first, | |
1124 | most significant bit is normally set) | |
1125 | exponent (value = EXONE for 1.0, | |
1126 | top bit is the sign) | |
1127 | ||
1128 | ||
8c35bbc5 | 1129 | Internal exploded e-type data structure of a number (a "word" is 16 bits): |
defb5dab RK |
1130 | |
1131 | ei[0] sign word (0 for positive, 0xffff for negative) | |
1132 | ei[1] biased exponent (value = EXONE for the number 1.0) | |
1133 | ei[2] high guard word (always zero after normalization) | |
1134 | ei[3] | |
1135 | to ei[NI-2] significand (NI-4 significand words, | |
1136 | most significant word first, | |
1137 | most significant bit is set) | |
1138 | ei[NI-1] low guard word (0x8000 bit is rounding place) | |
1139 | ||
1140 | ||
1141 | ||
8c35bbc5 | 1142 | Routines for external format e-type numbers |
defb5dab RK |
1143 | |
1144 | asctoe (string, e) ASCII string to extended double e type | |
1145 | asctoe64 (string, &d) ASCII string to long double | |
1146 | asctoe53 (string, &d) ASCII string to double | |
1147 | asctoe24 (string, &f) ASCII string to single | |
1148 | asctoeg (string, e, prec) ASCII string to specified precision | |
1149 | e24toe (&f, e) IEEE single precision to e type | |
1150 | e53toe (&d, e) IEEE double precision to e type | |
1151 | e64toe (&d, e) IEEE long double precision to e type | |
1152 | e113toe (&d, e) 128-bit long double precision to e type | |
1153 | eabs (e) absolute value | |
1154 | eadd (a, b, c) c = b + a | |
1155 | eclear (e) e = 0 | |
1156 | ecmp (a, b) Returns 1 if a > b, 0 if a == b, | |
1157 | -1 if a < b, -2 if either a or b is a NaN. | |
1158 | ediv (a, b, c) c = b / a | |
1159 | efloor (a, b) truncate to integer, toward -infinity | |
1160 | efrexp (a, exp, s) extract exponent and significand | |
1161 | eifrac (e, &l, frac) e to HOST_WIDE_INT and e type fraction | |
1162 | euifrac (e, &l, frac) e to unsigned HOST_WIDE_INT and e type fraction | |
1163 | einfin (e) set e to infinity, leaving its sign alone | |
1164 | eldexp (a, n, b) multiply by 2**n | |
1165 | emov (a, b) b = a | |
1166 | emul (a, b, c) c = b * a | |
1167 | eneg (e) e = -e | |
1168 | eround (a, b) b = nearest integer value to a | |
1169 | esub (a, b, c) c = b - a | |
1170 | e24toasc (&f, str, n) single to ASCII string, n digits after decimal | |
1171 | e53toasc (&d, str, n) double to ASCII string, n digits after decimal | |
1172 | e64toasc (&d, str, n) 80-bit long double to ASCII string | |
1173 | e113toasc (&d, str, n) 128-bit long double to ASCII string | |
1174 | etoasc (e, str, n) e to ASCII string, n digits after decimal | |
1175 | etoe24 (e, &f) convert e type to IEEE single precision | |
1176 | etoe53 (e, &d) convert e type to IEEE double precision | |
1177 | etoe64 (e, &d) convert e type to IEEE long double precision | |
1178 | ltoe (&l, e) HOST_WIDE_INT to e type | |
1179 | ultoe (&l, e) unsigned HOST_WIDE_INT to e type | |
1180 | eisneg (e) 1 if sign bit of e != 0, else 0 | |
1181 | eisinf (e) 1 if e has maximum exponent (non-IEEE) | |
1182 | or is infinite (IEEE) | |
1183 | eisnan (e) 1 if e is a NaN | |
1184 | ||
1185 | ||
8c35bbc5 | 1186 | Routines for internal format exploded e-type numbers |
defb5dab RK |
1187 | |
1188 | eaddm (ai, bi) add significands, bi = bi + ai | |
1189 | ecleaz (ei) ei = 0 | |
1190 | ecleazs (ei) set ei = 0 but leave its sign alone | |
1191 | ecmpm (ai, bi) compare significands, return 1, 0, or -1 | |
1192 | edivm (ai, bi) divide significands, bi = bi / ai | |
1193 | emdnorm (ai,l,s,exp) normalize and round off | |
1194 | emovi (a, ai) convert external a to internal ai | |
1195 | emovo (ai, a) convert internal ai to external a | |
1196 | emovz (ai, bi) bi = ai, low guard word of bi = 0 | |
1197 | emulm (ai, bi) multiply significands, bi = bi * ai | |
1198 | enormlz (ei) left-justify the significand | |
1199 | eshdn1 (ai) shift significand and guards down 1 bit | |
1200 | eshdn8 (ai) shift down 8 bits | |
1201 | eshdn6 (ai) shift down 16 bits | |
1202 | eshift (ai, n) shift ai n bits up (or down if n < 0) | |
1203 | eshup1 (ai) shift significand and guards up 1 bit | |
1204 | eshup8 (ai) shift up 8 bits | |
1205 | eshup6 (ai) shift up 16 bits | |
1206 | esubm (ai, bi) subtract significands, bi = bi - ai | |
1207 | eiisinf (ai) 1 if infinite | |
1208 | eiisnan (ai) 1 if a NaN | |
1209 | eiisneg (ai) 1 if sign bit of ai != 0, else 0 | |
1210 | einan (ai) set ai = NaN | |
1211 | eiinfin (ai) set ai = infinity | |
1212 | ||
1213 | The result is always normalized and rounded to NI-4 word precision | |
1214 | after each arithmetic operation. | |
1215 | ||
1216 | Exception flags are NOT fully supported. | |
1217 | ||
1218 | Signaling NaN's are NOT supported; they are treated the same | |
1219 | as quiet NaN's. | |
1220 | ||
1221 | Define INFINITY for support of infinity; otherwise a | |
1222 | saturation arithmetic is implemented. | |
1223 | ||
1224 | Define NANS for support of Not-a-Number items; otherwise the | |
1225 | arithmetic will never produce a NaN output, and might be confused | |
1226 | by a NaN input. | |
1227 | If NaN's are supported, the output of `ecmp (a,b)' is -2 if | |
1228 | either a or b is a NaN. This means asking `if (ecmp (a,b) < 0)' | |
1229 | may not be legitimate. Use `if (ecmp (a,b) == -1)' for `less than' | |
1230 | if in doubt. | |
1231 | ||
1232 | Denormals are always supported here where appropriate (e.g., not | |
1233 | for conversion to DEC numbers). */ | |
1234 | ||
1235 | /* Definitions for error codes that are passed to the common error handling | |
1236 | routine mtherr. | |
1237 | ||
1238 | For Digital Equipment PDP-11 and VAX computers, certain | |
1239 | IBM systems, and others that use numbers with a 56-bit | |
1240 | significand, the symbol DEC should be defined. In this | |
1241 | mode, most floating point constants are given as arrays | |
1242 | of octal integers to eliminate decimal to binary conversion | |
1243 | errors that might be introduced by the compiler. | |
1244 | ||
1245 | For computers, such as IBM PC, that follow the IEEE | |
1246 | Standard for Binary Floating Point Arithmetic (ANSI/IEEE | |
8c35bbc5 | 1247 | Std 754-1985), the symbol IEEE should be defined. |
defb5dab RK |
1248 | These numbers have 53-bit significands. In this mode, constants |
1249 | are provided as arrays of hexadecimal 16 bit integers. | |
8c35bbc5 RK |
1250 | The endian-ness of generated values is controlled by |
1251 | REAL_WORDS_BIG_ENDIAN. | |
defb5dab RK |
1252 | |
1253 | To accommodate other types of computer arithmetic, all | |
1254 | constants are also provided in a normal decimal radix | |
1255 | which one can hope are correctly converted to a suitable | |
1256 | format by the available C language compiler. To invoke | |
1257 | this mode, the symbol UNK is defined. | |
1258 | ||
1259 | An important difference among these modes is a predefined | |
1260 | set of machine arithmetic constants for each. The numbers | |
1261 | MACHEP (the machine roundoff error), MAXNUM (largest number | |
1262 | represented), and several other parameters are preset by | |
1263 | the configuration symbol. Check the file const.c to | |
1264 | ensure that these values are correct for your computer. | |
1265 | ||
1266 | For ANSI C compatibility, define ANSIC equal to 1. Currently | |
1267 | this affects only the atan2 function and others that use it. */ | |
985b6196 | 1268 | |
e8650b8f | 1269 | /* Constant definitions for math error conditions. */ |
985b6196 RS |
1270 | |
1271 | #define DOMAIN 1 /* argument domain error */ | |
1272 | #define SING 2 /* argument singularity */ | |
1273 | #define OVERFLOW 3 /* overflow range error */ | |
1274 | #define UNDERFLOW 4 /* underflow range error */ | |
1275 | #define TLOSS 5 /* total loss of precision */ | |
1276 | #define PLOSS 6 /* partial loss of precision */ | |
66b6d60b | 1277 | #define INVALID 7 /* NaN-producing operation */ |
985b6196 | 1278 | |
985b6196 RS |
1279 | /* e type constants used by high precision check routines */ |
1280 | ||
842fbaaa | 1281 | #if LONG_DOUBLE_TYPE_SIZE == 128 |
985b6196 RS |
1282 | /* 0.0 */ |
1283 | unsigned EMUSHORT ezero[NE] = | |
842fbaaa JW |
1284 | {0x0000, 0x0000, 0x0000, 0x0000, |
1285 | 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,}; | |
985b6196 RS |
1286 | extern unsigned EMUSHORT ezero[]; |
1287 | ||
1288 | /* 5.0E-1 */ | |
1289 | unsigned EMUSHORT ehalf[NE] = | |
842fbaaa JW |
1290 | {0x0000, 0x0000, 0x0000, 0x0000, |
1291 | 0x0000, 0x0000, 0x0000, 0x0000, 0x8000, 0x3ffe,}; | |
985b6196 RS |
1292 | extern unsigned EMUSHORT ehalf[]; |
1293 | ||
1294 | /* 1.0E0 */ | |
1295 | unsigned EMUSHORT eone[NE] = | |
842fbaaa JW |
1296 | {0x0000, 0x0000, 0x0000, 0x0000, |
1297 | 0x0000, 0x0000, 0x0000, 0x0000, 0x8000, 0x3fff,}; | |
985b6196 RS |
1298 | extern unsigned EMUSHORT eone[]; |
1299 | ||
1300 | /* 2.0E0 */ | |
1301 | unsigned EMUSHORT etwo[NE] = | |
842fbaaa JW |
1302 | {0x0000, 0x0000, 0x0000, 0x0000, |
1303 | 0x0000, 0x0000, 0x0000, 0x0000, 0x8000, 0x4000,}; | |
985b6196 RS |
1304 | extern unsigned EMUSHORT etwo[]; |
1305 | ||
1306 | /* 3.2E1 */ | |
1307 | unsigned EMUSHORT e32[NE] = | |
842fbaaa JW |
1308 | {0x0000, 0x0000, 0x0000, 0x0000, |
1309 | 0x0000, 0x0000, 0x0000, 0x0000, 0x8000, 0x4004,}; | |
985b6196 RS |
1310 | extern unsigned EMUSHORT e32[]; |
1311 | ||
1312 | /* 6.93147180559945309417232121458176568075500134360255E-1 */ | |
1313 | unsigned EMUSHORT elog2[NE] = | |
842fbaaa JW |
1314 | {0x40f3, 0xf6af, 0x03f2, 0xb398, |
1315 | 0xc9e3, 0x79ab, 0150717, 0013767, 0130562, 0x3ffe,}; | |
985b6196 RS |
1316 | extern unsigned EMUSHORT elog2[]; |
1317 | ||
1318 | /* 1.41421356237309504880168872420969807856967187537695E0 */ | |
1319 | unsigned EMUSHORT esqrt2[NE] = | |
842fbaaa JW |
1320 | {0x1d6f, 0xbe9f, 0x754a, 0x89b3, |
1321 | 0x597d, 0x6484, 0174736, 0171463, 0132404, 0x3fff,}; | |
985b6196 RS |
1322 | extern unsigned EMUSHORT esqrt2[]; |
1323 | ||
985b6196 RS |
1324 | /* 3.14159265358979323846264338327950288419716939937511E0 */ |
1325 | unsigned EMUSHORT epi[NE] = | |
842fbaaa | 1326 | {0x2902, 0x1cd1, 0x80dc, 0x628b, |
985b6196 RS |
1327 | 0xc4c6, 0xc234, 0020550, 0155242, 0144417, 0040000,}; |
1328 | extern unsigned EMUSHORT epi[]; | |
1329 | ||
842fbaaa JW |
1330 | #else |
1331 | /* LONG_DOUBLE_TYPE_SIZE is other than 128 */ | |
1332 | unsigned EMUSHORT ezero[NE] = | |
1333 | {0, 0000000, 0000000, 0000000, 0000000, 0000000,}; | |
1334 | unsigned EMUSHORT ehalf[NE] = | |
1335 | {0, 0000000, 0000000, 0000000, 0100000, 0x3ffe,}; | |
1336 | unsigned EMUSHORT eone[NE] = | |
1337 | {0, 0000000, 0000000, 0000000, 0100000, 0x3fff,}; | |
1338 | unsigned EMUSHORT etwo[NE] = | |
1339 | {0, 0000000, 0000000, 0000000, 0100000, 0040000,}; | |
1340 | unsigned EMUSHORT e32[NE] = | |
1341 | {0, 0000000, 0000000, 0000000, 0100000, 0040004,}; | |
1342 | unsigned EMUSHORT elog2[NE] = | |
1343 | {0xc9e4, 0x79ab, 0150717, 0013767, 0130562, 0x3ffe,}; | |
1344 | unsigned EMUSHORT esqrt2[NE] = | |
1345 | {0x597e, 0x6484, 0174736, 0171463, 0132404, 0x3fff,}; | |
1346 | unsigned EMUSHORT epi[NE] = | |
1347 | {0xc4c6, 0xc234, 0020550, 0155242, 0144417, 0040000,}; | |
1348 | #endif | |
985b6196 | 1349 | |
985b6196 | 1350 | /* Control register for rounding precision. |
defb5dab RK |
1351 | This can be set to 113 (if NE=10), 80 (if NE=6), 64, 56, 53, or 24 bits. */ |
1352 | ||
985b6196 RS |
1353 | int rndprc = NBITS; |
1354 | extern int rndprc; | |
1355 | ||
8c35bbc5 | 1356 | /* Clear out entire e-type number X. */ |
985b6196 | 1357 | |
a0353055 | 1358 | static void |
985b6196 RS |
1359 | eclear (x) |
1360 | register unsigned EMUSHORT *x; | |
1361 | { | |
1362 | register int i; | |
1363 | ||
1364 | for (i = 0; i < NE; i++) | |
1365 | *x++ = 0; | |
1366 | } | |
1367 | ||
8c35bbc5 | 1368 | /* Move e-type number from A to B. */ |
985b6196 | 1369 | |
a0353055 | 1370 | static void |
985b6196 RS |
1371 | emov (a, b) |
1372 | register unsigned EMUSHORT *a, *b; | |
1373 | { | |
1374 | register int i; | |
1375 | ||
1376 | for (i = 0; i < NE; i++) | |
1377 | *b++ = *a++; | |
1378 | } | |
1379 | ||
1380 | ||
8c35bbc5 | 1381 | /* Absolute value of e-type X. */ |
985b6196 | 1382 | |
a0353055 | 1383 | static void |
985b6196 | 1384 | eabs (x) |
a0353055 | 1385 | unsigned EMUSHORT x[]; |
985b6196 | 1386 | { |
a0353055 RK |
1387 | /* sign is top bit of last word of external format */ |
1388 | x[NE - 1] &= 0x7fff; | |
985b6196 RS |
1389 | } |
1390 | ||
8c35bbc5 | 1391 | /* Negate the e-type number X. */ |
985b6196 | 1392 | |
a0353055 | 1393 | static void |
985b6196 RS |
1394 | eneg (x) |
1395 | unsigned EMUSHORT x[]; | |
1396 | { | |
1397 | ||
1398 | x[NE - 1] ^= 0x8000; /* Toggle the sign bit */ | |
1399 | } | |
1400 | ||
8c35bbc5 | 1401 | /* Return 1 if sign bit of e-type number X is nonzero, else zero. */ |
defb5dab | 1402 | |
a0353055 | 1403 | static int |
985b6196 RS |
1404 | eisneg (x) |
1405 | unsigned EMUSHORT x[]; | |
1406 | { | |
1407 | ||
1408 | if (x[NE - 1] & 0x8000) | |
1409 | return (1); | |
1410 | else | |
1411 | return (0); | |
1412 | } | |
1413 | ||
8c35bbc5 | 1414 | /* Return 1 if e-type number X is infinity, else return zero. */ |
a0353055 RK |
1415 | |
1416 | static int | |
985b6196 RS |
1417 | eisinf (x) |
1418 | unsigned EMUSHORT x[]; | |
1419 | { | |
1420 | ||
66b6d60b RS |
1421 | #ifdef NANS |
1422 | if (eisnan (x)) | |
1423 | return (0); | |
1424 | #endif | |
985b6196 RS |
1425 | if ((x[NE - 1] & 0x7fff) == 0x7fff) |
1426 | return (1); | |
1427 | else | |
1428 | return (0); | |
1429 | } | |
1430 | ||
defb5dab RK |
1431 | /* Check if e-type number is not a number. The bit pattern is one that we |
1432 | defined, so we know for sure how to detect it. */ | |
66b6d60b | 1433 | |
a0353055 | 1434 | static int |
66b6d60b RS |
1435 | eisnan (x) |
1436 | unsigned EMUSHORT x[]; | |
1437 | { | |
66b6d60b RS |
1438 | #ifdef NANS |
1439 | int i; | |
defb5dab RK |
1440 | |
1441 | /* NaN has maximum exponent */ | |
66b6d60b RS |
1442 | if ((x[NE - 1] & 0x7fff) != 0x7fff) |
1443 | return (0); | |
defb5dab | 1444 | /* ... and non-zero significand field. */ |
66b6d60b RS |
1445 | for (i = 0; i < NE - 1; i++) |
1446 | { | |
1447 | if (*x++ != 0) | |
1448 | return (1); | |
1449 | } | |
1450 | #endif | |
defb5dab | 1451 | |
66b6d60b RS |
1452 | return (0); |
1453 | } | |
1454 | ||
8c35bbc5 | 1455 | /* Fill e-type number X with infinity pattern (IEEE) |
842fbaaa | 1456 | or largest possible number (non-IEEE). */ |
985b6196 | 1457 | |
a0353055 | 1458 | static void |
985b6196 RS |
1459 | einfin (x) |
1460 | register unsigned EMUSHORT *x; | |
1461 | { | |
1462 | register int i; | |
1463 | ||
1464 | #ifdef INFINITY | |
1465 | for (i = 0; i < NE - 1; i++) | |
1466 | *x++ = 0; | |
1467 | *x |= 32767; | |
1468 | #else | |
1469 | for (i = 0; i < NE - 1; i++) | |
1470 | *x++ = 0xffff; | |
1471 | *x |= 32766; | |
1472 | if (rndprc < NBITS) | |
1473 | { | |
842fbaaa JW |
1474 | if (rndprc == 113) |
1475 | { | |
1476 | *(x - 9) = 0; | |
1477 | *(x - 8) = 0; | |
1478 | } | |
985b6196 RS |
1479 | if (rndprc == 64) |
1480 | { | |
1481 | *(x - 5) = 0; | |
1482 | } | |
1483 | if (rndprc == 53) | |
1484 | { | |
1485 | *(x - 4) = 0xf800; | |
1486 | } | |
1487 | else | |
1488 | { | |
1489 | *(x - 4) = 0; | |
1490 | *(x - 3) = 0; | |
1491 | *(x - 2) = 0xff00; | |
1492 | } | |
1493 | } | |
1494 | #endif | |
1495 | } | |
1496 | ||
66b6d60b RS |
1497 | /* Output an e-type NaN. |
1498 | This generates Intel's quiet NaN pattern for extended real. | |
1499 | The exponent is 7fff, the leading mantissa word is c000. */ | |
1500 | ||
a0353055 | 1501 | static void |
29e11dab | 1502 | enan (x, sign) |
66b6d60b | 1503 | register unsigned EMUSHORT *x; |
29e11dab | 1504 | int sign; |
66b6d60b RS |
1505 | { |
1506 | register int i; | |
1507 | ||
1508 | for (i = 0; i < NE - 2; i++) | |
1509 | *x++ = 0; | |
1510 | *x++ = 0xc000; | |
29e11dab | 1511 | *x = (sign << 15) | 0x7fff; |
66b6d60b RS |
1512 | } |
1513 | ||
8c35bbc5 | 1514 | /* Move in an e-type number A, converting it to exploded e-type B. */ |
defb5dab | 1515 | |
a0353055 | 1516 | static void |
985b6196 RS |
1517 | emovi (a, b) |
1518 | unsigned EMUSHORT *a, *b; | |
1519 | { | |
1520 | register unsigned EMUSHORT *p, *q; | |
1521 | int i; | |
1522 | ||
1523 | q = b; | |
1524 | p = a + (NE - 1); /* point to last word of external number */ | |
1525 | /* get the sign bit */ | |
1526 | if (*p & 0x8000) | |
1527 | *q++ = 0xffff; | |
1528 | else | |
1529 | *q++ = 0; | |
1530 | /* get the exponent */ | |
1531 | *q = *p--; | |
1532 | *q++ &= 0x7fff; /* delete the sign bit */ | |
1533 | #ifdef INFINITY | |
1534 | if ((*(q - 1) & 0x7fff) == 0x7fff) | |
1535 | { | |
66b6d60b RS |
1536 | #ifdef NANS |
1537 | if (eisnan (a)) | |
1538 | { | |
1539 | *q++ = 0; | |
1540 | for (i = 3; i < NI; i++) | |
1541 | *q++ = *p--; | |
1542 | return; | |
1543 | } | |
1544 | #endif | |
defb5dab | 1545 | |
985b6196 RS |
1546 | for (i = 2; i < NI; i++) |
1547 | *q++ = 0; | |
1548 | return; | |
1549 | } | |
1550 | #endif | |
defb5dab | 1551 | |
985b6196 RS |
1552 | /* clear high guard word */ |
1553 | *q++ = 0; | |
1554 | /* move in the significand */ | |
1555 | for (i = 0; i < NE - 1; i++) | |
1556 | *q++ = *p--; | |
1557 | /* clear low guard word */ | |
1558 | *q = 0; | |
1559 | } | |
1560 | ||
8c35bbc5 | 1561 | /* Move out exploded e-type number A, converting it to e type B. */ |
defb5dab | 1562 | |
a0353055 | 1563 | static void |
985b6196 RS |
1564 | emovo (a, b) |
1565 | unsigned EMUSHORT *a, *b; | |
1566 | { | |
1567 | register unsigned EMUSHORT *p, *q; | |
1568 | unsigned EMUSHORT i; | |
239b043b | 1569 | int j; |
985b6196 RS |
1570 | |
1571 | p = a; | |
1572 | q = b + (NE - 1); /* point to output exponent */ | |
1573 | /* combine sign and exponent */ | |
1574 | i = *p++; | |
1575 | if (i) | |
1576 | *q-- = *p++ | 0x8000; | |
1577 | else | |
1578 | *q-- = *p++; | |
1579 | #ifdef INFINITY | |
1580 | if (*(p - 1) == 0x7fff) | |
1581 | { | |
66b6d60b RS |
1582 | #ifdef NANS |
1583 | if (eiisnan (a)) | |
1584 | { | |
29e11dab | 1585 | enan (b, eiisneg (a)); |
66b6d60b RS |
1586 | return; |
1587 | } | |
1588 | #endif | |
985b6196 | 1589 | einfin (b); |
842fbaaa | 1590 | return; |
985b6196 RS |
1591 | } |
1592 | #endif | |
1593 | /* skip over guard word */ | |
1594 | ++p; | |
1595 | /* move the significand */ | |
239b043b | 1596 | for (j = 0; j < NE - 1; j++) |
985b6196 RS |
1597 | *q-- = *p++; |
1598 | } | |
1599 | ||
8c35bbc5 | 1600 | /* Clear out exploded e-type number XI. */ |
985b6196 | 1601 | |
a0353055 | 1602 | static void |
985b6196 RS |
1603 | ecleaz (xi) |
1604 | register unsigned EMUSHORT *xi; | |
1605 | { | |
1606 | register int i; | |
1607 | ||
1608 | for (i = 0; i < NI; i++) | |
1609 | *xi++ = 0; | |
1610 | } | |
1611 | ||
8c35bbc5 | 1612 | /* Clear out exploded e-type XI, but don't touch the sign. */ |
985b6196 | 1613 | |
a0353055 | 1614 | static void |
985b6196 RS |
1615 | ecleazs (xi) |
1616 | register unsigned EMUSHORT *xi; | |
1617 | { | |
1618 | register int i; | |
1619 | ||
1620 | ++xi; | |
1621 | for (i = 0; i < NI - 1; i++) | |
1622 | *xi++ = 0; | |
1623 | } | |
1624 | ||
8c35bbc5 | 1625 | /* Move exploded e-type number from A to B. */ |
a0353055 RK |
1626 | |
1627 | static void | |
985b6196 RS |
1628 | emovz (a, b) |
1629 | register unsigned EMUSHORT *a, *b; | |
1630 | { | |
1631 | register int i; | |
1632 | ||
1633 | for (i = 0; i < NI - 1; i++) | |
1634 | *b++ = *a++; | |
1635 | /* clear low guard word */ | |
1636 | *b = 0; | |
1637 | } | |
1638 | ||
8c35bbc5 | 1639 | /* Generate exploded e-type NaN. |
66b6d60b | 1640 | The explicit pattern for this is maximum exponent and |
defb5dab | 1641 | top two significant bits set. */ |
66b6d60b | 1642 | |
a0353055 | 1643 | static void |
66b6d60b RS |
1644 | einan (x) |
1645 | unsigned EMUSHORT x[]; | |
1646 | { | |
1647 | ||
1648 | ecleaz (x); | |
1649 | x[E] = 0x7fff; | |
1650 | x[M + 1] = 0xc000; | |
1651 | } | |
1652 | ||
8c35bbc5 | 1653 | /* Return nonzero if exploded e-type X is a NaN. */ |
66b6d60b | 1654 | |
a0353055 | 1655 | static int |
66b6d60b RS |
1656 | eiisnan (x) |
1657 | unsigned EMUSHORT x[]; | |
1658 | { | |
1659 | int i; | |
1660 | ||
1661 | if ((x[E] & 0x7fff) == 0x7fff) | |
1662 | { | |
1663 | for (i = M + 1; i < NI; i++) | |
1664 | { | |
1665 | if (x[i] != 0) | |
1666 | return (1); | |
1667 | } | |
1668 | } | |
1669 | return (0); | |
1670 | } | |
1671 | ||
8c35bbc5 | 1672 | /* Return nonzero if sign of exploded e-type X is nonzero. */ |
29e11dab | 1673 | |
a0353055 | 1674 | static int |
29e11dab RK |
1675 | eiisneg (x) |
1676 | unsigned EMUSHORT x[]; | |
1677 | { | |
1678 | ||
1679 | return x[0] != 0; | |
1680 | } | |
1681 | ||
8c35bbc5 | 1682 | /* Fill exploded e-type X with infinity pattern. |
66b6d60b RS |
1683 | This has maximum exponent and significand all zeros. */ |
1684 | ||
a0353055 | 1685 | static void |
66b6d60b RS |
1686 | eiinfin (x) |
1687 | unsigned EMUSHORT x[]; | |
1688 | { | |
1689 | ||
1690 | ecleaz (x); | |
1691 | x[E] = 0x7fff; | |
1692 | } | |
1693 | ||
8c35bbc5 | 1694 | /* Return nonzero if exploded e-type X is infinite. */ |
66b6d60b | 1695 | |
a0353055 | 1696 | static int |
66b6d60b RS |
1697 | eiisinf (x) |
1698 | unsigned EMUSHORT x[]; | |
1699 | { | |
1700 | ||
1701 | #ifdef NANS | |
1702 | if (eiisnan (x)) | |
1703 | return (0); | |
1704 | #endif | |
1705 | if ((x[E] & 0x7fff) == 0x7fff) | |
1706 | return (1); | |
1707 | return (0); | |
1708 | } | |
1709 | ||
985b6196 | 1710 | |
8c35bbc5 | 1711 | /* Compare significands of numbers in internal exploded e-type format. |
defb5dab RK |
1712 | Guard words are included in the comparison. |
1713 | ||
1714 | Returns +1 if a > b | |
1715 | 0 if a == b | |
1716 | -1 if a < b */ | |
a0353055 RK |
1717 | |
1718 | static int | |
985b6196 RS |
1719 | ecmpm (a, b) |
1720 | register unsigned EMUSHORT *a, *b; | |
1721 | { | |
1722 | int i; | |
1723 | ||
1724 | a += M; /* skip up to significand area */ | |
1725 | b += M; | |
1726 | for (i = M; i < NI; i++) | |
1727 | { | |
1728 | if (*a++ != *b++) | |
1729 | goto difrnt; | |
1730 | } | |
1731 | return (0); | |
1732 | ||
1733 | difrnt: | |
1734 | if (*(--a) > *(--b)) | |
1735 | return (1); | |
1736 | else | |
1737 | return (-1); | |
1738 | } | |
1739 | ||
8c35bbc5 | 1740 | /* Shift significand of exploded e-type X down by 1 bit. */ |
985b6196 | 1741 | |
a0353055 | 1742 | static void |
985b6196 RS |
1743 | eshdn1 (x) |
1744 | register unsigned EMUSHORT *x; | |
1745 | { | |
1746 | register unsigned EMUSHORT bits; | |
1747 | int i; | |
1748 | ||
1749 | x += M; /* point to significand area */ | |
1750 | ||
1751 | bits = 0; | |
1752 | for (i = M; i < NI; i++) | |
1753 | { | |
1754 | if (*x & 1) | |
1755 | bits |= 1; | |
1756 | *x >>= 1; | |
1757 | if (bits & 2) | |
1758 | *x |= 0x8000; | |
1759 | bits <<= 1; | |
1760 | ++x; | |
1761 | } | |
1762 | } | |
1763 | ||
8c35bbc5 | 1764 | /* Shift significand of exploded e-type X up by 1 bit. */ |
985b6196 | 1765 | |
a0353055 | 1766 | static void |
985b6196 RS |
1767 | eshup1 (x) |
1768 | register unsigned EMUSHORT *x; | |
1769 | { | |
1770 | register unsigned EMUSHORT bits; | |
1771 | int i; | |
1772 | ||
1773 | x += NI - 1; | |
1774 | bits = 0; | |
1775 | ||
1776 | for (i = M; i < NI; i++) | |
1777 | { | |
1778 | if (*x & 0x8000) | |
1779 | bits |= 1; | |
1780 | *x <<= 1; | |
1781 | if (bits & 2) | |
1782 | *x |= 1; | |
1783 | bits <<= 1; | |
1784 | --x; | |
1785 | } | |
1786 | } | |
1787 | ||
1788 | ||
8c35bbc5 | 1789 | /* Shift significand of exploded e-type X down by 8 bits. */ |
985b6196 | 1790 | |
a0353055 | 1791 | static void |
985b6196 RS |
1792 | eshdn8 (x) |
1793 | register unsigned EMUSHORT *x; | |
1794 | { | |
1795 | register unsigned EMUSHORT newbyt, oldbyt; | |
1796 | int i; | |
1797 | ||
1798 | x += M; | |
1799 | oldbyt = 0; | |
1800 | for (i = M; i < NI; i++) | |
1801 | { | |
1802 | newbyt = *x << 8; | |
1803 | *x >>= 8; | |
1804 | *x |= oldbyt; | |
1805 | oldbyt = newbyt; | |
1806 | ++x; | |
1807 | } | |
1808 | } | |
1809 | ||
8c35bbc5 | 1810 | /* Shift significand of exploded e-type X up by 8 bits. */ |
985b6196 | 1811 | |
a0353055 | 1812 | static void |
985b6196 RS |
1813 | eshup8 (x) |
1814 | register unsigned EMUSHORT *x; | |
1815 | { | |
1816 | int i; | |
1817 | register unsigned EMUSHORT newbyt, oldbyt; | |
1818 | ||
1819 | x += NI - 1; | |
1820 | oldbyt = 0; | |
1821 | ||
1822 | for (i = M; i < NI; i++) | |
1823 | { | |
1824 | newbyt = *x >> 8; | |
1825 | *x <<= 8; | |
1826 | *x |= oldbyt; | |
1827 | oldbyt = newbyt; | |
1828 | --x; | |
1829 | } | |
1830 | } | |
1831 | ||
8c35bbc5 | 1832 | /* Shift significand of exploded e-type X up by 16 bits. */ |
985b6196 | 1833 | |
a0353055 | 1834 | static void |
985b6196 RS |
1835 | eshup6 (x) |
1836 | register unsigned EMUSHORT *x; | |
1837 | { | |
1838 | int i; | |
1839 | register unsigned EMUSHORT *p; | |
1840 | ||
1841 | p = x + M; | |
1842 | x += M + 1; | |
1843 | ||
1844 | for (i = M; i < NI - 1; i++) | |
1845 | *p++ = *x++; | |
1846 | ||
1847 | *p = 0; | |
1848 | } | |
1849 | ||
8c35bbc5 | 1850 | /* Shift significand of exploded e-type X down by 16 bits. */ |
985b6196 | 1851 | |
a0353055 | 1852 | static void |
985b6196 RS |
1853 | eshdn6 (x) |
1854 | register unsigned EMUSHORT *x; | |
1855 | { | |
1856 | int i; | |
1857 | register unsigned EMUSHORT *p; | |
1858 | ||
1859 | x += NI - 1; | |
1860 | p = x + 1; | |
1861 | ||
1862 | for (i = M; i < NI - 1; i++) | |
1863 | *(--p) = *(--x); | |
1864 | ||
1865 | *(--p) = 0; | |
1866 | } | |
8c35bbc5 RK |
1867 | |
1868 | /* Add significands of exploded e-type X and Y. X + Y replaces Y. */ | |
985b6196 | 1869 | |
a0353055 | 1870 | static void |
985b6196 RS |
1871 | eaddm (x, y) |
1872 | unsigned EMUSHORT *x, *y; | |
1873 | { | |
1874 | register unsigned EMULONG a; | |
1875 | int i; | |
1876 | unsigned int carry; | |
1877 | ||
1878 | x += NI - 1; | |
1879 | y += NI - 1; | |
1880 | carry = 0; | |
1881 | for (i = M; i < NI; i++) | |
1882 | { | |
1883 | a = (unsigned EMULONG) (*x) + (unsigned EMULONG) (*y) + carry; | |
1884 | if (a & 0x10000) | |
1885 | carry = 1; | |
1886 | else | |
1887 | carry = 0; | |
1888 | *y = (unsigned EMUSHORT) a; | |
1889 | --x; | |
1890 | --y; | |
1891 | } | |
1892 | } | |
1893 | ||
8c35bbc5 | 1894 | /* Subtract significands of exploded e-type X and Y. Y - X replaces Y. */ |
985b6196 | 1895 | |
a0353055 | 1896 | static void |
985b6196 RS |
1897 | esubm (x, y) |
1898 | unsigned EMUSHORT *x, *y; | |
1899 | { | |
1900 | unsigned EMULONG a; | |
1901 | int i; | |
1902 | unsigned int carry; | |
1903 | ||
1904 | x += NI - 1; | |
1905 | y += NI - 1; | |
1906 | carry = 0; | |
1907 | for (i = M; i < NI; i++) | |
1908 | { | |
1909 | a = (unsigned EMULONG) (*y) - (unsigned EMULONG) (*x) - carry; | |
1910 | if (a & 0x10000) | |
1911 | carry = 1; | |
1912 | else | |
1913 | carry = 0; | |
1914 | *y = (unsigned EMUSHORT) a; | |
1915 | --x; | |
1916 | --y; | |
1917 | } | |
1918 | } | |
1919 | ||
1920 | ||
985b6196 RS |
1921 | static unsigned EMUSHORT equot[NI]; |
1922 | ||
842fbaaa JW |
1923 | |
1924 | #if 0 | |
1925 | /* Radix 2 shift-and-add versions of multiply and divide */ | |
1926 | ||
1927 | ||
1928 | /* Divide significands */ | |
1929 | ||
985b6196 RS |
1930 | int |
1931 | edivm (den, num) | |
1932 | unsigned EMUSHORT den[], num[]; | |
1933 | { | |
1934 | int i; | |
1935 | register unsigned EMUSHORT *p, *q; | |
1936 | unsigned EMUSHORT j; | |
1937 | ||
1938 | p = &equot[0]; | |
1939 | *p++ = num[0]; | |
1940 | *p++ = num[1]; | |
1941 | ||
1942 | for (i = M; i < NI; i++) | |
1943 | { | |
1944 | *p++ = 0; | |
1945 | } | |
1946 | ||
defb5dab RK |
1947 | /* Use faster compare and subtraction if denominator has only 15 bits of |
1948 | significance. */ | |
1949 | ||
985b6196 RS |
1950 | p = &den[M + 2]; |
1951 | if (*p++ == 0) | |
1952 | { | |
1953 | for (i = M + 3; i < NI; i++) | |
1954 | { | |
1955 | if (*p++ != 0) | |
1956 | goto fulldiv; | |
1957 | } | |
1958 | if ((den[M + 1] & 1) != 0) | |
1959 | goto fulldiv; | |
1960 | eshdn1 (num); | |
1961 | eshdn1 (den); | |
1962 | ||
1963 | p = &den[M + 1]; | |
1964 | q = &num[M + 1]; | |
1965 | ||
1966 | for (i = 0; i < NBITS + 2; i++) | |
1967 | { | |
1968 | if (*p <= *q) | |
1969 | { | |
1970 | *q -= *p; | |
1971 | j = 1; | |
1972 | } | |
1973 | else | |
1974 | { | |
1975 | j = 0; | |
1976 | } | |
1977 | eshup1 (equot); | |
1978 | equot[NI - 2] |= j; | |
1979 | eshup1 (num); | |
1980 | } | |
1981 | goto divdon; | |
1982 | } | |
1983 | ||
defb5dab RK |
1984 | /* The number of quotient bits to calculate is NBITS + 1 scaling guard |
1985 | bit + 1 roundoff bit. */ | |
1986 | ||
985b6196 RS |
1987 | fulldiv: |
1988 | ||
1989 | p = &equot[NI - 2]; | |
1990 | for (i = 0; i < NBITS + 2; i++) | |
1991 | { | |
1992 | if (ecmpm (den, num) <= 0) | |
1993 | { | |
1994 | esubm (den, num); | |
1995 | j = 1; /* quotient bit = 1 */ | |
1996 | } | |
1997 | else | |
1998 | j = 0; | |
1999 | eshup1 (equot); | |
2000 | *p |= j; | |
2001 | eshup1 (num); | |
2002 | } | |
2003 | ||
2004 | divdon: | |
2005 | ||
2006 | eshdn1 (equot); | |
2007 | eshdn1 (equot); | |
2008 | ||
2009 | /* test for nonzero remainder after roundoff bit */ | |
2010 | p = &num[M]; | |
2011 | j = 0; | |
2012 | for (i = M; i < NI; i++) | |
2013 | { | |
2014 | j |= *p++; | |
2015 | } | |
2016 | if (j) | |
2017 | j = 1; | |
2018 | ||
2019 | ||
2020 | for (i = 0; i < NI; i++) | |
2021 | num[i] = equot[i]; | |
2022 | return ((int) j); | |
2023 | } | |
2024 | ||
2025 | ||
2026 | /* Multiply significands */ | |
2027 | int | |
2028 | emulm (a, b) | |
2029 | unsigned EMUSHORT a[], b[]; | |
2030 | { | |
2031 | unsigned EMUSHORT *p, *q; | |
2032 | int i, j, k; | |
2033 | ||
2034 | equot[0] = b[0]; | |
2035 | equot[1] = b[1]; | |
2036 | for (i = M; i < NI; i++) | |
2037 | equot[i] = 0; | |
2038 | ||
2039 | p = &a[NI - 2]; | |
2040 | k = NBITS; | |
defb5dab | 2041 | while (*p == 0) /* significand is not supposed to be zero */ |
985b6196 RS |
2042 | { |
2043 | eshdn6 (a); | |
2044 | k -= 16; | |
2045 | } | |
2046 | if ((*p & 0xff) == 0) | |
2047 | { | |
2048 | eshdn8 (a); | |
2049 | k -= 8; | |
2050 | } | |
2051 | ||
2052 | q = &equot[NI - 1]; | |
2053 | j = 0; | |
2054 | for (i = 0; i < k; i++) | |
2055 | { | |
2056 | if (*p & 1) | |
2057 | eaddm (b, equot); | |
2058 | /* remember if there were any nonzero bits shifted out */ | |
2059 | if (*q & 1) | |
2060 | j |= 1; | |
2061 | eshdn1 (a); | |
2062 | eshdn1 (equot); | |
2063 | } | |
2064 | ||
2065 | for (i = 0; i < NI; i++) | |
2066 | b[i] = equot[i]; | |
2067 | ||
2068 | /* return flag for lost nonzero bits */ | |
2069 | return (j); | |
2070 | } | |
2071 | ||
842fbaaa JW |
2072 | #else |
2073 | ||
8c35bbc5 | 2074 | /* Radix 65536 versions of multiply and divide. */ |
842fbaaa | 2075 | |
8c35bbc5 RK |
2076 | /* Multiply significand of e-type number B |
2077 | by 16-bit quantity A, return e-type result to C. */ | |
842fbaaa | 2078 | |
a0353055 | 2079 | static void |
242cef1e | 2080 | m16m (a, b, c) |
c92d992a | 2081 | unsigned int a; |
8c35bbc5 | 2082 | unsigned EMUSHORT b[], c[]; |
842fbaaa | 2083 | { |
8c35bbc5 RK |
2084 | register unsigned EMUSHORT *pp; |
2085 | register unsigned EMULONG carry; | |
2086 | unsigned EMUSHORT *ps; | |
2087 | unsigned EMUSHORT p[NI]; | |
2088 | unsigned EMULONG aa, m; | |
242cef1e RS |
2089 | int i; |
2090 | ||
2091 | aa = a; | |
2092 | pp = &p[NI-2]; | |
2093 | *pp++ = 0; | |
2094 | *pp = 0; | |
2095 | ps = &b[NI-1]; | |
2096 | ||
2097 | for (i=M+1; i<NI; i++) | |
2098 | { | |
2099 | if (*ps == 0) | |
842fbaaa | 2100 | { |
242cef1e RS |
2101 | --ps; |
2102 | --pp; | |
2103 | *(pp-1) = 0; | |
842fbaaa | 2104 | } |
242cef1e RS |
2105 | else |
2106 | { | |
8c35bbc5 | 2107 | m = (unsigned EMULONG) aa * *ps--; |
242cef1e | 2108 | carry = (m & 0xffff) + *pp; |
8c35bbc5 | 2109 | *pp-- = (unsigned EMUSHORT)carry; |
242cef1e | 2110 | carry = (carry >> 16) + (m >> 16) + *pp; |
8c35bbc5 | 2111 | *pp = (unsigned EMUSHORT)carry; |
242cef1e RS |
2112 | *(pp-1) = carry >> 16; |
2113 | } | |
2114 | } | |
2115 | for (i=M; i<NI; i++) | |
2116 | c[i] = p[i]; | |
842fbaaa JW |
2117 | } |
2118 | ||
8c35bbc5 RK |
2119 | /* Divide significands of exploded e-types NUM / DEN. Neither the |
2120 | numerator NUM nor the denominator DEN is permitted to have its high guard | |
2121 | word nonzero. */ | |
842fbaaa | 2122 | |
a0353055 | 2123 | static int |
242cef1e | 2124 | edivm (den, num) |
8c35bbc5 | 2125 | unsigned EMUSHORT den[], num[]; |
842fbaaa | 2126 | { |
242cef1e | 2127 | int i; |
8c35bbc5 RK |
2128 | register unsigned EMUSHORT *p; |
2129 | unsigned EMULONG tnum; | |
2130 | unsigned EMUSHORT j, tdenm, tquot; | |
2131 | unsigned EMUSHORT tprod[NI+1]; | |
842fbaaa | 2132 | |
242cef1e RS |
2133 | p = &equot[0]; |
2134 | *p++ = num[0]; | |
2135 | *p++ = num[1]; | |
842fbaaa | 2136 | |
242cef1e RS |
2137 | for (i=M; i<NI; i++) |
2138 | { | |
2139 | *p++ = 0; | |
2140 | } | |
2141 | eshdn1 (num); | |
2142 | tdenm = den[M+1]; | |
2143 | for (i=M; i<NI; i++) | |
2144 | { | |
2145 | /* Find trial quotient digit (the radix is 65536). */ | |
8c35bbc5 | 2146 | tnum = (((unsigned EMULONG) num[M]) << 16) + num[M+1]; |
242cef1e RS |
2147 | |
2148 | /* Do not execute the divide instruction if it will overflow. */ | |
2149 | if ((tdenm * 0xffffL) < tnum) | |
2150 | tquot = 0xffff; | |
2151 | else | |
2152 | tquot = tnum / tdenm; | |
2153 | /* Multiply denominator by trial quotient digit. */ | |
c92d992a | 2154 | m16m ((unsigned int)tquot, den, tprod); |
242cef1e RS |
2155 | /* The quotient digit may have been overestimated. */ |
2156 | if (ecmpm (tprod, num) > 0) | |
842fbaaa | 2157 | { |
242cef1e RS |
2158 | tquot -= 1; |
2159 | esubm (den, tprod); | |
2160 | if (ecmpm (tprod, num) > 0) | |
2161 | { | |
2162 | tquot -= 1; | |
2163 | esubm (den, tprod); | |
2164 | } | |
842fbaaa | 2165 | } |
242cef1e RS |
2166 | esubm (tprod, num); |
2167 | equot[i] = tquot; | |
2168 | eshup6(num); | |
2169 | } | |
2170 | /* test for nonzero remainder after roundoff bit */ | |
2171 | p = &num[M]; | |
2172 | j = 0; | |
2173 | for (i=M; i<NI; i++) | |
2174 | { | |
2175 | j |= *p++; | |
2176 | } | |
2177 | if (j) | |
2178 | j = 1; | |
842fbaaa | 2179 | |
242cef1e RS |
2180 | for (i=0; i<NI; i++) |
2181 | num[i] = equot[i]; | |
842fbaaa | 2182 | |
242cef1e | 2183 | return ((int)j); |
842fbaaa JW |
2184 | } |
2185 | ||
8c35bbc5 | 2186 | /* Multiply significands of exploded e-type A and B, result in B. */ |
842fbaaa | 2187 | |
a0353055 | 2188 | static int |
242cef1e | 2189 | emulm (a, b) |
8c35bbc5 | 2190 | unsigned EMUSHORT a[], b[]; |
842fbaaa | 2191 | { |
8c35bbc5 RK |
2192 | unsigned EMUSHORT *p, *q; |
2193 | unsigned EMUSHORT pprod[NI]; | |
2194 | unsigned EMUSHORT j; | |
242cef1e RS |
2195 | int i; |
2196 | ||
2197 | equot[0] = b[0]; | |
2198 | equot[1] = b[1]; | |
2199 | for (i=M; i<NI; i++) | |
2200 | equot[i] = 0; | |
2201 | ||
2202 | j = 0; | |
2203 | p = &a[NI-1]; | |
2204 | q = &equot[NI-1]; | |
2205 | for (i=M+1; i<NI; i++) | |
2206 | { | |
2207 | if (*p == 0) | |
842fbaaa | 2208 | { |
242cef1e RS |
2209 | --p; |
2210 | } | |
2211 | else | |
2212 | { | |
c92d992a | 2213 | m16m ((unsigned int) *p--, b, pprod); |
242cef1e | 2214 | eaddm(pprod, equot); |
842fbaaa | 2215 | } |
242cef1e RS |
2216 | j |= *q; |
2217 | eshdn6(equot); | |
2218 | } | |
842fbaaa | 2219 | |
242cef1e RS |
2220 | for (i=0; i<NI; i++) |
2221 | b[i] = equot[i]; | |
842fbaaa | 2222 | |
242cef1e RS |
2223 | /* return flag for lost nonzero bits */ |
2224 | return ((int)j); | |
842fbaaa JW |
2225 | } |
2226 | #endif | |
985b6196 RS |
2227 | |
2228 | ||
defb5dab | 2229 | /* Normalize and round off. |
985b6196 | 2230 | |
8c35bbc5 RK |
2231 | The internal format number to be rounded is S. |
2232 | Input LOST is 0 if the value is exact. This is the so-called sticky bit. | |
defb5dab | 2233 | |
8c35bbc5 RK |
2234 | Input SUBFLG indicates whether the number was obtained |
2235 | by a subtraction operation. In that case if LOST is nonzero | |
defb5dab RK |
2236 | then the number is slightly smaller than indicated. |
2237 | ||
8c35bbc5 RK |
2238 | Input EXP is the biased exponent, which may be negative. |
2239 | the exponent field of S is ignored but is replaced by | |
2240 | EXP as adjusted by normalization and rounding. | |
defb5dab | 2241 | |
8c35bbc5 RK |
2242 | Input RCNTRL is the rounding control. If it is nonzero, the |
2243 | returned value will be rounded to RNDPRC bits. | |
defb5dab RK |
2244 | |
2245 | For future reference: In order for emdnorm to round off denormal | |
842fbaaa JW |
2246 | significands at the right point, the input exponent must be |
2247 | adjusted to be the actual value it would have after conversion to | |
2248 | the final floating point type. This adjustment has been | |
2249 | implemented for all type conversions (etoe53, etc.) and decimal | |
2250 | conversions, but not for the arithmetic functions (eadd, etc.). | |
2251 | Data types having standard 15-bit exponents are not affected by | |
2252 | this, but SFmode and DFmode are affected. For example, ediv with | |
2253 | rndprc = 24 will not round correctly to 24-bit precision if the | |
2254 | result is denormal. */ | |
2255 | ||
985b6196 RS |
2256 | static int rlast = -1; |
2257 | static int rw = 0; | |
2258 | static unsigned EMUSHORT rmsk = 0; | |
2259 | static unsigned EMUSHORT rmbit = 0; | |
2260 | static unsigned EMUSHORT rebit = 0; | |
2261 | static int re = 0; | |
2262 | static unsigned EMUSHORT rbit[NI]; | |
2263 | ||
a0353055 | 2264 | static void |
985b6196 RS |
2265 | emdnorm (s, lost, subflg, exp, rcntrl) |
2266 | unsigned EMUSHORT s[]; | |
2267 | int lost; | |
2268 | int subflg; | |
2269 | EMULONG exp; | |
2270 | int rcntrl; | |
2271 | { | |
2272 | int i, j; | |
2273 | unsigned EMUSHORT r; | |
2274 | ||
2275 | /* Normalize */ | |
2276 | j = enormlz (s); | |
2277 | ||
2278 | /* a blank significand could mean either zero or infinity. */ | |
2279 | #ifndef INFINITY | |
2280 | if (j > NBITS) | |
2281 | { | |
2282 | ecleazs (s); | |
2283 | return; | |
2284 | } | |
2285 | #endif | |
2286 | exp -= j; | |
2287 | #ifndef INFINITY | |
2288 | if (exp >= 32767L) | |
2289 | goto overf; | |
2290 | #else | |
2291 | if ((j > NBITS) && (exp < 32767)) | |
2292 | { | |
2293 | ecleazs (s); | |
2294 | return; | |
2295 | } | |
2296 | #endif | |
2297 | if (exp < 0L) | |
2298 | { | |
2299 | if (exp > (EMULONG) (-NBITS - 1)) | |
2300 | { | |
2301 | j = (int) exp; | |
2302 | i = eshift (s, j); | |
2303 | if (i) | |
2304 | lost = 1; | |
2305 | } | |
2306 | else | |
2307 | { | |
2308 | ecleazs (s); | |
2309 | return; | |
2310 | } | |
2311 | } | |
2312 | /* Round off, unless told not to by rcntrl. */ | |
2313 | if (rcntrl == 0) | |
2314 | goto mdfin; | |
2315 | /* Set up rounding parameters if the control register changed. */ | |
2316 | if (rndprc != rlast) | |
2317 | { | |
2318 | ecleaz (rbit); | |
2319 | switch (rndprc) | |
2320 | { | |
2321 | default: | |
2322 | case NBITS: | |
2323 | rw = NI - 1; /* low guard word */ | |
2324 | rmsk = 0xffff; | |
2325 | rmbit = 0x8000; | |
842fbaaa | 2326 | re = rw - 1; |
985b6196 RS |
2327 | rebit = 1; |
2328 | break; | |
842fbaaa JW |
2329 | case 113: |
2330 | rw = 10; | |
2331 | rmsk = 0x7fff; | |
2332 | rmbit = 0x4000; | |
2333 | rebit = 0x8000; | |
2334 | re = rw; | |
2335 | break; | |
985b6196 RS |
2336 | case 64: |
2337 | rw = 7; | |
2338 | rmsk = 0xffff; | |
2339 | rmbit = 0x8000; | |
985b6196 RS |
2340 | re = rw - 1; |
2341 | rebit = 1; | |
2342 | break; | |
842fbaaa | 2343 | /* For DEC or IBM arithmetic */ |
985b6196 RS |
2344 | case 56: |
2345 | rw = 6; | |
2346 | rmsk = 0xff; | |
2347 | rmbit = 0x80; | |
985b6196 | 2348 | rebit = 0x100; |
842fbaaa | 2349 | re = rw; |
985b6196 RS |
2350 | break; |
2351 | case 53: | |
2352 | rw = 6; | |
2353 | rmsk = 0x7ff; | |
2354 | rmbit = 0x0400; | |
985b6196 | 2355 | rebit = 0x800; |
842fbaaa | 2356 | re = rw; |
985b6196 RS |
2357 | break; |
2358 | case 24: | |
2359 | rw = 4; | |
2360 | rmsk = 0xff; | |
2361 | rmbit = 0x80; | |
985b6196 | 2362 | rebit = 0x100; |
842fbaaa | 2363 | re = rw; |
985b6196 RS |
2364 | break; |
2365 | } | |
842fbaaa | 2366 | rbit[re] = rebit; |
985b6196 RS |
2367 | rlast = rndprc; |
2368 | } | |
2369 | ||
842fbaaa | 2370 | /* Shift down 1 temporarily if the data structure has an implied |
d730ef29 RK |
2371 | most significant bit and the number is denormal. |
2372 | Intel long double denormals also lose one bit of precision. */ | |
2373 | if ((exp <= 0) && (rndprc != NBITS) | |
2374 | && ((rndprc != 64) || ((rndprc == 64) && ! REAL_WORDS_BIG_ENDIAN))) | |
985b6196 | 2375 | { |
842fbaaa JW |
2376 | lost |= s[NI - 1] & 1; |
2377 | eshdn1 (s); | |
985b6196 | 2378 | } |
842fbaaa JW |
2379 | /* Clear out all bits below the rounding bit, |
2380 | remembering in r if any were nonzero. */ | |
2381 | r = s[rw] & rmsk; | |
2382 | if (rndprc < NBITS) | |
985b6196 | 2383 | { |
985b6196 RS |
2384 | i = rw + 1; |
2385 | while (i < NI) | |
2386 | { | |
2387 | if (s[i]) | |
2388 | r |= 1; | |
2389 | s[i] = 0; | |
2390 | ++i; | |
2391 | } | |
985b6196 | 2392 | } |
afb817fd | 2393 | s[rw] &= ~rmsk; |
985b6196 RS |
2394 | if ((r & rmbit) != 0) |
2395 | { | |
2396 | if (r == rmbit) | |
2397 | { | |
2398 | if (lost == 0) | |
2399 | { /* round to even */ | |
2400 | if ((s[re] & rebit) == 0) | |
2401 | goto mddone; | |
2402 | } | |
2403 | else | |
2404 | { | |
2405 | if (subflg != 0) | |
2406 | goto mddone; | |
2407 | } | |
2408 | } | |
2409 | eaddm (rbit, s); | |
2410 | } | |
2411 | mddone: | |
d730ef29 RK |
2412 | /* Undo the temporary shift for denormal values. */ |
2413 | if ((exp <= 0) && (rndprc != NBITS) | |
2414 | && ((rndprc != 64) || ((rndprc == 64) && ! REAL_WORDS_BIG_ENDIAN))) | |
985b6196 RS |
2415 | { |
2416 | eshup1 (s); | |
2417 | } | |
2418 | if (s[2] != 0) | |
2419 | { /* overflow on roundoff */ | |
2420 | eshdn1 (s); | |
2421 | exp += 1; | |
2422 | } | |
2423 | mdfin: | |
2424 | s[NI - 1] = 0; | |
2425 | if (exp >= 32767L) | |
2426 | { | |
2427 | #ifndef INFINITY | |
2428 | overf: | |
2429 | #endif | |
2430 | #ifdef INFINITY | |
2431 | s[1] = 32767; | |
2432 | for (i = 2; i < NI - 1; i++) | |
2433 | s[i] = 0; | |
64685ffa RS |
2434 | if (extra_warnings) |
2435 | warning ("floating point overflow"); | |
985b6196 RS |
2436 | #else |
2437 | s[1] = 32766; | |
2438 | s[2] = 0; | |
2439 | for (i = M + 1; i < NI - 1; i++) | |
2440 | s[i] = 0xffff; | |
2441 | s[NI - 1] = 0; | |
842fbaaa | 2442 | if ((rndprc < 64) || (rndprc == 113)) |
985b6196 RS |
2443 | { |
2444 | s[rw] &= ~rmsk; | |
2445 | if (rndprc == 24) | |
2446 | { | |
2447 | s[5] = 0; | |
2448 | s[6] = 0; | |
2449 | } | |
2450 | } | |
2451 | #endif | |
2452 | return; | |
2453 | } | |
2454 | if (exp < 0) | |
2455 | s[1] = 0; | |
2456 | else | |
2457 | s[1] = (unsigned EMUSHORT) exp; | |
2458 | } | |
2459 | ||
8c35bbc5 | 2460 | /* Subtract. C = B - A, all e type numbers. */ |
985b6196 RS |
2461 | |
2462 | static int subflg = 0; | |
2463 | ||
a0353055 | 2464 | static void |
985b6196 RS |
2465 | esub (a, b, c) |
2466 | unsigned EMUSHORT *a, *b, *c; | |
2467 | { | |
2468 | ||
66b6d60b RS |
2469 | #ifdef NANS |
2470 | if (eisnan (a)) | |
2471 | { | |
2472 | emov (a, c); | |
2473 | return; | |
2474 | } | |
2475 | if (eisnan (b)) | |
2476 | { | |
2477 | emov (b, c); | |
2478 | return; | |
2479 | } | |
2480 | /* Infinity minus infinity is a NaN. | |
2481 | Test for subtracting infinities of the same sign. */ | |
2482 | if (eisinf (a) && eisinf (b) | |
2483 | && ((eisneg (a) ^ eisneg (b)) == 0)) | |
2484 | { | |
2485 | mtherr ("esub", INVALID); | |
29e11dab | 2486 | enan (c, 0); |
66b6d60b RS |
2487 | return; |
2488 | } | |
2489 | #endif | |
985b6196 RS |
2490 | subflg = 1; |
2491 | eadd1 (a, b, c); | |
2492 | } | |
2493 | ||
8c35bbc5 | 2494 | /* Add. C = A + B, all e type. */ |
a0353055 RK |
2495 | |
2496 | static void | |
985b6196 RS |
2497 | eadd (a, b, c) |
2498 | unsigned EMUSHORT *a, *b, *c; | |
2499 | { | |
2500 | ||
66b6d60b RS |
2501 | #ifdef NANS |
2502 | /* NaN plus anything is a NaN. */ | |
2503 | if (eisnan (a)) | |
2504 | { | |
2505 | emov (a, c); | |
2506 | return; | |
2507 | } | |
2508 | if (eisnan (b)) | |
2509 | { | |
2510 | emov (b, c); | |
2511 | return; | |
2512 | } | |
2513 | /* Infinity minus infinity is a NaN. | |
2514 | Test for adding infinities of opposite signs. */ | |
2515 | if (eisinf (a) && eisinf (b) | |
2516 | && ((eisneg (a) ^ eisneg (b)) != 0)) | |
2517 | { | |
2518 | mtherr ("esub", INVALID); | |
29e11dab | 2519 | enan (c, 0); |
66b6d60b RS |
2520 | return; |
2521 | } | |
2522 | #endif | |
985b6196 RS |
2523 | subflg = 0; |
2524 | eadd1 (a, b, c); | |
2525 | } | |
2526 | ||
8c35bbc5 RK |
2527 | /* Arithmetic common to both addition and subtraction. */ |
2528 | ||
a0353055 | 2529 | static void |
985b6196 RS |
2530 | eadd1 (a, b, c) |
2531 | unsigned EMUSHORT *a, *b, *c; | |
2532 | { | |
2533 | unsigned EMUSHORT ai[NI], bi[NI], ci[NI]; | |
2534 | int i, lost, j, k; | |
2535 | EMULONG lt, lta, ltb; | |
2536 | ||
2537 | #ifdef INFINITY | |
2538 | if (eisinf (a)) | |
2539 | { | |
2540 | emov (a, c); | |
2541 | if (subflg) | |
2542 | eneg (c); | |
2543 | return; | |
2544 | } | |
2545 | if (eisinf (b)) | |
2546 | { | |
2547 | emov (b, c); | |
2548 | return; | |
2549 | } | |
2550 | #endif | |
2551 | emovi (a, ai); | |
2552 | emovi (b, bi); | |
2553 | if (subflg) | |
2554 | ai[0] = ~ai[0]; | |
2555 | ||
2556 | /* compare exponents */ | |
2557 | lta = ai[E]; | |
2558 | ltb = bi[E]; | |
2559 | lt = lta - ltb; | |
2560 | if (lt > 0L) | |
2561 | { /* put the larger number in bi */ | |
2562 | emovz (bi, ci); | |
2563 | emovz (ai, bi); | |
2564 | emovz (ci, ai); | |
2565 | ltb = bi[E]; | |
2566 | lt = -lt; | |
2567 | } | |
2568 | lost = 0; | |
2569 | if (lt != 0L) | |
2570 | { | |
2571 | if (lt < (EMULONG) (-NBITS - 1)) | |
2572 | goto done; /* answer same as larger addend */ | |
2573 | k = (int) lt; | |
2574 | lost = eshift (ai, k); /* shift the smaller number down */ | |
2575 | } | |
2576 | else | |
2577 | { | |
2578 | /* exponents were the same, so must compare significands */ | |
2579 | i = ecmpm (ai, bi); | |
2580 | if (i == 0) | |
2581 | { /* the numbers are identical in magnitude */ | |
2582 | /* if different signs, result is zero */ | |
2583 | if (ai[0] != bi[0]) | |
2584 | { | |
2585 | eclear (c); | |
2586 | return; | |
2587 | } | |
2588 | /* if same sign, result is double */ | |
9faa82d8 | 2589 | /* double denormalized tiny number */ |
985b6196 RS |
2590 | if ((bi[E] == 0) && ((bi[3] & 0x8000) == 0)) |
2591 | { | |
2592 | eshup1 (bi); | |
2593 | goto done; | |
2594 | } | |
2595 | /* add 1 to exponent unless both are zero! */ | |
2596 | for (j = 1; j < NI - 1; j++) | |
2597 | { | |
2598 | if (bi[j] != 0) | |
2599 | { | |
2600 | /* This could overflow, but let emovo take care of that. */ | |
2601 | ltb += 1; | |
2602 | break; | |
2603 | } | |
2604 | } | |
2605 | bi[E] = (unsigned EMUSHORT) ltb; | |
2606 | goto done; | |
2607 | } | |
2608 | if (i > 0) | |
2609 | { /* put the larger number in bi */ | |
2610 | emovz (bi, ci); | |
2611 | emovz (ai, bi); | |
2612 | emovz (ci, ai); | |
2613 | } | |
2614 | } | |
2615 | if (ai[0] == bi[0]) | |
2616 | { | |
2617 | eaddm (ai, bi); | |
2618 | subflg = 0; | |
2619 | } | |
2620 | else | |
2621 | { | |
2622 | esubm (ai, bi); | |
2623 | subflg = 1; | |
2624 | } | |
2625 | emdnorm (bi, lost, subflg, ltb, 64); | |
2626 | ||
2627 | done: | |
2628 | emovo (bi, c); | |
2629 | } | |
2630 | ||
8c35bbc5 | 2631 | /* Divide: C = B/A, all e type. */ |
a0353055 RK |
2632 | |
2633 | static void | |
985b6196 RS |
2634 | ediv (a, b, c) |
2635 | unsigned EMUSHORT *a, *b, *c; | |
2636 | { | |
2637 | unsigned EMUSHORT ai[NI], bi[NI]; | |
d56390c4 | 2638 | int i, sign; |
985b6196 RS |
2639 | EMULONG lt, lta, ltb; |
2640 | ||
d56390c4 RK |
2641 | /* IEEE says if result is not a NaN, the sign is "-" if and only if |
2642 | operands have opposite signs -- but flush -0 to 0 later if not IEEE. */ | |
2643 | sign = eisneg(a) ^ eisneg(b); | |
2644 | ||
66b6d60b RS |
2645 | #ifdef NANS |
2646 | /* Return any NaN input. */ | |
2647 | if (eisnan (a)) | |
2648 | { | |
2649 | emov (a, c); | |
2650 | return; | |
2651 | } | |
2652 | if (eisnan (b)) | |
2653 | { | |
2654 | emov (b, c); | |
2655 | return; | |
2656 | } | |
2657 | /* Zero over zero, or infinity over infinity, is a NaN. */ | |
2658 | if (((ecmp (a, ezero) == 0) && (ecmp (b, ezero) == 0)) | |
2659 | || (eisinf (a) && eisinf (b))) | |
2660 | { | |
2661 | mtherr ("ediv", INVALID); | |
d56390c4 | 2662 | enan (c, sign); |
66b6d60b RS |
2663 | return; |
2664 | } | |
2665 | #endif | |
2666 | /* Infinity over anything else is infinity. */ | |
985b6196 RS |
2667 | #ifdef INFINITY |
2668 | if (eisinf (b)) | |
2669 | { | |
985b6196 | 2670 | einfin (c); |
d56390c4 | 2671 | goto divsign; |
985b6196 | 2672 | } |
66b6d60b | 2673 | /* Anything else over infinity is zero. */ |
985b6196 RS |
2674 | if (eisinf (a)) |
2675 | { | |
2676 | eclear (c); | |
d56390c4 | 2677 | goto divsign; |
985b6196 RS |
2678 | } |
2679 | #endif | |
2680 | emovi (a, ai); | |
2681 | emovi (b, bi); | |
2682 | lta = ai[E]; | |
2683 | ltb = bi[E]; | |
2684 | if (bi[E] == 0) | |
2685 | { /* See if numerator is zero. */ | |
2686 | for (i = 1; i < NI - 1; i++) | |
2687 | { | |
2688 | if (bi[i] != 0) | |
2689 | { | |
2690 | ltb -= enormlz (bi); | |
2691 | goto dnzro1; | |
2692 | } | |
2693 | } | |
2694 | eclear (c); | |
d56390c4 | 2695 | goto divsign; |
985b6196 RS |
2696 | } |
2697 | dnzro1: | |
2698 | ||
2699 | if (ai[E] == 0) | |
2700 | { /* possible divide by zero */ | |
2701 | for (i = 1; i < NI - 1; i++) | |
2702 | { | |
2703 | if (ai[i] != 0) | |
2704 | { | |
2705 | lta -= enormlz (ai); | |
2706 | goto dnzro2; | |
2707 | } | |
2708 | } | |
66b6d60b RS |
2709 | /* Divide by zero is not an invalid operation. |
2710 | It is a divide-by-zero operation! */ | |
985b6196 RS |
2711 | einfin (c); |
2712 | mtherr ("ediv", SING); | |
d56390c4 | 2713 | goto divsign; |
985b6196 RS |
2714 | } |
2715 | dnzro2: | |
2716 | ||
2717 | i = edivm (ai, bi); | |
2718 | /* calculate exponent */ | |
2719 | lt = ltb - lta + EXONE; | |
2720 | emdnorm (bi, i, 0, lt, 64); | |
985b6196 | 2721 | emovo (bi, c); |
d56390c4 RK |
2722 | |
2723 | divsign: | |
2724 | ||
2725 | if (sign | |
2726 | #ifndef IEEE | |
2727 | && (ecmp (c, ezero) != 0) | |
2728 | #endif | |
2729 | ) | |
2730 | *(c+(NE-1)) |= 0x8000; | |
2731 | else | |
2732 | *(c+(NE-1)) &= ~0x8000; | |
985b6196 RS |
2733 | } |
2734 | ||
8c35bbc5 | 2735 | /* Multiply e-types A and B, return e-type product C. */ |
a0353055 RK |
2736 | |
2737 | static void | |
985b6196 RS |
2738 | emul (a, b, c) |
2739 | unsigned EMUSHORT *a, *b, *c; | |
2740 | { | |
2741 | unsigned EMUSHORT ai[NI], bi[NI]; | |
d56390c4 | 2742 | int i, j, sign; |
985b6196 RS |
2743 | EMULONG lt, lta, ltb; |
2744 | ||
d56390c4 RK |
2745 | /* IEEE says if result is not a NaN, the sign is "-" if and only if |
2746 | operands have opposite signs -- but flush -0 to 0 later if not IEEE. */ | |
2747 | sign = eisneg(a) ^ eisneg(b); | |
2748 | ||
66b6d60b RS |
2749 | #ifdef NANS |
2750 | /* NaN times anything is the same NaN. */ | |
2751 | if (eisnan (a)) | |
2752 | { | |
2753 | emov (a, c); | |
2754 | return; | |
2755 | } | |
2756 | if (eisnan (b)) | |
2757 | { | |
2758 | emov (b, c); | |
2759 | return; | |
2760 | } | |
2761 | /* Zero times infinity is a NaN. */ | |
2762 | if ((eisinf (a) && (ecmp (b, ezero) == 0)) | |
2763 | || (eisinf (b) && (ecmp (a, ezero) == 0))) | |
2764 | { | |
2765 | mtherr ("emul", INVALID); | |
d56390c4 | 2766 | enan (c, sign); |
66b6d60b RS |
2767 | return; |
2768 | } | |
2769 | #endif | |
2770 | /* Infinity times anything else is infinity. */ | |
985b6196 RS |
2771 | #ifdef INFINITY |
2772 | if (eisinf (a) || eisinf (b)) | |
2773 | { | |
985b6196 | 2774 | einfin (c); |
d56390c4 | 2775 | goto mulsign; |
985b6196 RS |
2776 | } |
2777 | #endif | |
2778 | emovi (a, ai); | |
2779 | emovi (b, bi); | |
2780 | lta = ai[E]; | |
2781 | ltb = bi[E]; | |
2782 | if (ai[E] == 0) | |
2783 | { | |
2784 | for (i = 1; i < NI - 1; i++) | |
2785 | { | |
2786 | if (ai[i] != 0) | |
2787 | { | |
2788 | lta -= enormlz (ai); | |
2789 | goto mnzer1; | |
2790 | } | |
2791 | } | |
2792 | eclear (c); | |
d56390c4 | 2793 | goto mulsign; |
985b6196 RS |
2794 | } |
2795 | mnzer1: | |
2796 | ||
2797 | if (bi[E] == 0) | |
2798 | { | |
2799 | for (i = 1; i < NI - 1; i++) | |
2800 | { | |
2801 | if (bi[i] != 0) | |
2802 | { | |
2803 | ltb -= enormlz (bi); | |
2804 | goto mnzer2; | |
2805 | } | |
2806 | } | |
2807 | eclear (c); | |
d56390c4 | 2808 | goto mulsign; |
985b6196 RS |
2809 | } |
2810 | mnzer2: | |
2811 | ||
2812 | /* Multiply significands */ | |
2813 | j = emulm (ai, bi); | |
2814 | /* calculate exponent */ | |
2815 | lt = lta + ltb - (EXONE - 1); | |
2816 | emdnorm (bi, j, 0, lt, 64); | |
985b6196 | 2817 | emovo (bi, c); |
d56390c4 RK |
2818 | |
2819 | mulsign: | |
2820 | ||
2821 | if (sign | |
2822 | #ifndef IEEE | |
2823 | && (ecmp (c, ezero) != 0) | |
2824 | #endif | |
2825 | ) | |
2826 | *(c+(NE-1)) |= 0x8000; | |
2827 | else | |
2828 | *(c+(NE-1)) &= ~0x8000; | |
985b6196 RS |
2829 | } |
2830 | ||
8c35bbc5 | 2831 | /* Convert double precision PE to e-type Y. */ |
a0353055 RK |
2832 | |
2833 | static void | |
66b6d60b RS |
2834 | e53toe (pe, y) |
2835 | unsigned EMUSHORT *pe, *y; | |
985b6196 RS |
2836 | { |
2837 | #ifdef DEC | |
2838 | ||
8c35bbc5 | 2839 | dectoe (pe, y); |
985b6196 RS |
2840 | |
2841 | #else | |
842fbaaa JW |
2842 | #ifdef IBM |
2843 | ||
2844 | ibmtoe (pe, y, DFmode); | |
985b6196 | 2845 | |
842fbaaa | 2846 | #else |
985b6196 | 2847 | register unsigned EMUSHORT r; |
66b6d60b | 2848 | register unsigned EMUSHORT *e, *p; |
985b6196 RS |
2849 | unsigned EMUSHORT yy[NI]; |
2850 | int denorm, k; | |
2851 | ||
66b6d60b | 2852 | e = pe; |
985b6196 RS |
2853 | denorm = 0; /* flag if denormalized number */ |
2854 | ecleaz (yy); | |
8c35bbc5 | 2855 | if (! REAL_WORDS_BIG_ENDIAN) |
f76b9db2 | 2856 | e += 3; |
985b6196 RS |
2857 | r = *e; |
2858 | yy[0] = 0; | |
2859 | if (r & 0x8000) | |
2860 | yy[0] = 0xffff; | |
2861 | yy[M] = (r & 0x0f) | 0x10; | |
2862 | r &= ~0x800f; /* strip sign and 4 significand bits */ | |
2863 | #ifdef INFINITY | |
2864 | if (r == 0x7ff0) | |
2865 | { | |
66b6d60b | 2866 | #ifdef NANS |
8c35bbc5 | 2867 | if (! REAL_WORDS_BIG_ENDIAN) |
66b6d60b | 2868 | { |
f76b9db2 ILT |
2869 | if (((pe[3] & 0xf) != 0) || (pe[2] != 0) |
2870 | || (pe[1] != 0) || (pe[0] != 0)) | |
2871 | { | |
2872 | enan (y, yy[0] != 0); | |
2873 | return; | |
2874 | } | |
66b6d60b | 2875 | } |
f76b9db2 | 2876 | else |
66b6d60b | 2877 | { |
f76b9db2 ILT |
2878 | if (((pe[0] & 0xf) != 0) || (pe[1] != 0) |
2879 | || (pe[2] != 0) || (pe[3] != 0)) | |
2880 | { | |
2881 | enan (y, yy[0] != 0); | |
2882 | return; | |
2883 | } | |
66b6d60b | 2884 | } |
66b6d60b | 2885 | #endif /* NANS */ |
dca821e1 | 2886 | eclear (y); |
985b6196 | 2887 | einfin (y); |
dca821e1 | 2888 | if (yy[0]) |
985b6196 RS |
2889 | eneg (y); |
2890 | return; | |
2891 | } | |
66b6d60b | 2892 | #endif /* INFINITY */ |
985b6196 RS |
2893 | r >>= 4; |
2894 | /* If zero exponent, then the significand is denormalized. | |
defb5dab RK |
2895 | So take back the understood high significand bit. */ |
2896 | ||
985b6196 RS |
2897 | if (r == 0) |
2898 | { | |
2899 | denorm = 1; | |
2900 | yy[M] &= ~0x10; | |
2901 | } | |
2902 | r += EXONE - 01777; | |
2903 | yy[E] = r; | |
2904 | p = &yy[M + 1]; | |
f76b9db2 | 2905 | #ifdef IEEE |
8c35bbc5 | 2906 | if (! REAL_WORDS_BIG_ENDIAN) |
f76b9db2 ILT |
2907 | { |
2908 | *p++ = *(--e); | |
2909 | *p++ = *(--e); | |
2910 | *p++ = *(--e); | |
2911 | } | |
2912 | else | |
2913 | { | |
2914 | ++e; | |
2915 | *p++ = *e++; | |
2916 | *p++ = *e++; | |
2917 | *p++ = *e++; | |
2918 | } | |
985b6196 | 2919 | #endif |
64685ffa | 2920 | eshift (yy, -5); |
985b6196 RS |
2921 | if (denorm) |
2922 | { /* if zero exponent, then normalize the significand */ | |
2923 | if ((k = enormlz (yy)) > NBITS) | |
2924 | ecleazs (yy); | |
2925 | else | |
2926 | yy[E] -= (unsigned EMUSHORT) (k - 1); | |
2927 | } | |
2928 | emovo (yy, y); | |
842fbaaa | 2929 | #endif /* not IBM */ |
985b6196 RS |
2930 | #endif /* not DEC */ |
2931 | } | |
2932 | ||
8c35bbc5 RK |
2933 | /* Convert double extended precision float PE to e type Y. */ |
2934 | ||
a0353055 | 2935 | static void |
66b6d60b RS |
2936 | e64toe (pe, y) |
2937 | unsigned EMUSHORT *pe, *y; | |
985b6196 RS |
2938 | { |
2939 | unsigned EMUSHORT yy[NI]; | |
66b6d60b | 2940 | unsigned EMUSHORT *e, *p, *q; |
985b6196 RS |
2941 | int i; |
2942 | ||
66b6d60b | 2943 | e = pe; |
985b6196 RS |
2944 | p = yy; |
2945 | for (i = 0; i < NE - 5; i++) | |
2946 | *p++ = 0; | |
842fbaaa | 2947 | /* This precision is not ordinarily supported on DEC or IBM. */ |
985b6196 RS |
2948 | #ifdef DEC |
2949 | for (i = 0; i < 5; i++) | |
2950 | *p++ = *e++; | |
2951 | #endif | |
842fbaaa JW |
2952 | #ifdef IBM |
2953 | p = &yy[0] + (NE - 1); | |
2954 | *p-- = *e++; | |
2955 | ++e; | |
2956 | for (i = 0; i < 5; i++) | |
2957 | *p-- = *e++; | |
2958 | #endif | |
f76b9db2 | 2959 | #ifdef IEEE |
8c35bbc5 | 2960 | if (! REAL_WORDS_BIG_ENDIAN) |
f76b9db2 ILT |
2961 | { |
2962 | for (i = 0; i < 5; i++) | |
2963 | *p++ = *e++; | |
d730ef29 RK |
2964 | |
2965 | /* For denormal long double Intel format, shift significand up one | |
2966 | -- but only if the top significand bit is zero. A top bit of 1 | |
2967 | is "pseudodenormal" when the exponent is zero. */ | |
2968 | if((yy[NE-1] & 0x7fff) == 0 && (yy[NE-2] & 0x8000) == 0) | |
2969 | { | |
2970 | unsigned EMUSHORT temp[NI]; | |
2971 | ||
2972 | emovi(yy, temp); | |
2973 | eshup1(temp); | |
2974 | emovo(temp,y); | |
2975 | return; | |
2976 | } | |
f76b9db2 ILT |
2977 | } |
2978 | else | |
2979 | { | |
2980 | p = &yy[0] + (NE - 1); | |
2981 | *p-- = *e++; | |
2982 | ++e; | |
2983 | for (i = 0; i < 4; i++) | |
2984 | *p-- = *e++; | |
2985 | } | |
985b6196 | 2986 | #endif |
985b6196 | 2987 | #ifdef INFINITY |
82e974d4 RK |
2988 | /* Point to the exponent field and check max exponent cases. */ |
2989 | p = &yy[NE - 1]; | |
985b6196 RS |
2990 | if (*p == 0x7fff) |
2991 | { | |
66b6d60b | 2992 | #ifdef NANS |
8c35bbc5 | 2993 | if (! REAL_WORDS_BIG_ENDIAN) |
66b6d60b | 2994 | { |
f76b9db2 | 2995 | for (i = 0; i < 4; i++) |
66b6d60b | 2996 | { |
82e974d4 RK |
2997 | if ((i != 3 && pe[i] != 0) |
2998 | /* Anything but 0x8000 here, including 0, is a NaN. */ | |
2999 | || (i == 3 && pe[i] != 0x8000)) | |
f76b9db2 ILT |
3000 | { |
3001 | enan (y, (*p & 0x8000) != 0); | |
3002 | return; | |
3003 | } | |
66b6d60b RS |
3004 | } |
3005 | } | |
f76b9db2 | 3006 | else |
66b6d60b | 3007 | { |
f76b9db2 | 3008 | for (i = 1; i <= 4; i++) |
66b6d60b | 3009 | { |
f76b9db2 ILT |
3010 | if (pe[i] != 0) |
3011 | { | |
3012 | enan (y, (*p & 0x8000) != 0); | |
3013 | return; | |
3014 | } | |
66b6d60b RS |
3015 | } |
3016 | } | |
66b6d60b | 3017 | #endif /* NANS */ |
dca821e1 | 3018 | eclear (y); |
985b6196 RS |
3019 | einfin (y); |
3020 | if (*p & 0x8000) | |
3021 | eneg (y); | |
3022 | return; | |
3023 | } | |
66b6d60b | 3024 | #endif /* INFINITY */ |
82e974d4 RK |
3025 | p = yy; |
3026 | q = y; | |
985b6196 RS |
3027 | for (i = 0; i < NE; i++) |
3028 | *q++ = *p++; | |
3029 | } | |
3030 | ||
8c35bbc5 | 3031 | /* Convert 128-bit long double precision float PE to e type Y. */ |
985b6196 | 3032 | |
a0353055 | 3033 | static void |
842fbaaa | 3034 | e113toe (pe, y) |
66b6d60b | 3035 | unsigned EMUSHORT *pe, *y; |
985b6196 RS |
3036 | { |
3037 | register unsigned EMUSHORT r; | |
842fbaaa | 3038 | unsigned EMUSHORT *e, *p; |
985b6196 | 3039 | unsigned EMUSHORT yy[NI]; |
842fbaaa | 3040 | int denorm, i; |
985b6196 | 3041 | |
66b6d60b | 3042 | e = pe; |
842fbaaa | 3043 | denorm = 0; |
985b6196 | 3044 | ecleaz (yy); |
f76b9db2 | 3045 | #ifdef IEEE |
8c35bbc5 | 3046 | if (! REAL_WORDS_BIG_ENDIAN) |
f76b9db2 | 3047 | e += 7; |
985b6196 RS |
3048 | #endif |
3049 | r = *e; | |
3050 | yy[0] = 0; | |
3051 | if (r & 0x8000) | |
3052 | yy[0] = 0xffff; | |
842fbaaa | 3053 | r &= 0x7fff; |
985b6196 | 3054 | #ifdef INFINITY |
842fbaaa | 3055 | if (r == 0x7fff) |
985b6196 | 3056 | { |
66b6d60b | 3057 | #ifdef NANS |
8c35bbc5 | 3058 | if (! REAL_WORDS_BIG_ENDIAN) |
66b6d60b | 3059 | { |
f76b9db2 | 3060 | for (i = 0; i < 7; i++) |
842fbaaa | 3061 | { |
f76b9db2 ILT |
3062 | if (pe[i] != 0) |
3063 | { | |
3064 | enan (y, yy[0] != 0); | |
3065 | return; | |
3066 | } | |
842fbaaa | 3067 | } |
66b6d60b | 3068 | } |
f76b9db2 | 3069 | else |
66b6d60b | 3070 | { |
f76b9db2 | 3071 | for (i = 1; i < 8; i++) |
842fbaaa | 3072 | { |
f76b9db2 ILT |
3073 | if (pe[i] != 0) |
3074 | { | |
3075 | enan (y, yy[0] != 0); | |
3076 | return; | |
3077 | } | |
842fbaaa | 3078 | } |
66b6d60b | 3079 | } |
842fbaaa | 3080 | #endif /* NANS */ |
dca821e1 | 3081 | eclear (y); |
985b6196 | 3082 | einfin (y); |
dca821e1 | 3083 | if (yy[0]) |
985b6196 RS |
3084 | eneg (y); |
3085 | return; | |
3086 | } | |
66b6d60b | 3087 | #endif /* INFINITY */ |
985b6196 RS |
3088 | yy[E] = r; |
3089 | p = &yy[M + 1]; | |
f76b9db2 | 3090 | #ifdef IEEE |
8c35bbc5 | 3091 | if (! REAL_WORDS_BIG_ENDIAN) |
f76b9db2 ILT |
3092 | { |
3093 | for (i = 0; i < 7; i++) | |
3094 | *p++ = *(--e); | |
3095 | } | |
3096 | else | |
3097 | { | |
3098 | ++e; | |
3099 | for (i = 0; i < 7; i++) | |
3100 | *p++ = *e++; | |
3101 | } | |
985b6196 | 3102 | #endif |
842fbaaa JW |
3103 | /* If denormal, remove the implied bit; else shift down 1. */ |
3104 | if (r == 0) | |
3105 | { | |
3106 | yy[M] = 0; | |
3107 | } | |
3108 | else | |
3109 | { | |
3110 | yy[M] = 1; | |
3111 | eshift (yy, -1); | |
3112 | } | |
3113 | emovo (yy, y); | |
3114 | } | |
3115 | ||
8c35bbc5 | 3116 | /* Convert single precision float PE to e type Y. */ |
a0353055 RK |
3117 | |
3118 | static void | |
842fbaaa JW |
3119 | e24toe (pe, y) |
3120 | unsigned EMUSHORT *pe, *y; | |
3121 | { | |
3122 | #ifdef IBM | |
3123 | ||
3124 | ibmtoe (pe, y, SFmode); | |
3125 | ||
3126 | #else | |
3127 | register unsigned EMUSHORT r; | |
3128 | register unsigned EMUSHORT *e, *p; | |
3129 | unsigned EMUSHORT yy[NI]; | |
3130 | int denorm, k; | |
3131 | ||
3132 | e = pe; | |
3133 | denorm = 0; /* flag if denormalized number */ | |
3134 | ecleaz (yy); | |
f76b9db2 | 3135 | #ifdef IEEE |
8c35bbc5 | 3136 | if (! REAL_WORDS_BIG_ENDIAN) |
f76b9db2 | 3137 | e += 1; |
842fbaaa JW |
3138 | #endif |
3139 | #ifdef DEC | |
3140 | e += 1; | |
3141 | #endif | |
3142 | r = *e; | |
3143 | yy[0] = 0; | |
3144 | if (r & 0x8000) | |
3145 | yy[0] = 0xffff; | |
3146 | yy[M] = (r & 0x7f) | 0200; | |
3147 | r &= ~0x807f; /* strip sign and 7 significand bits */ | |
3148 | #ifdef INFINITY | |
3149 | if (r == 0x7f80) | |
3150 | { | |
3151 | #ifdef NANS | |
8c35bbc5 | 3152 | if (REAL_WORDS_BIG_ENDIAN) |
842fbaaa | 3153 | { |
f76b9db2 ILT |
3154 | if (((pe[0] & 0x7f) != 0) || (pe[1] != 0)) |
3155 | { | |
3156 | enan (y, yy[0] != 0); | |
3157 | return; | |
3158 | } | |
842fbaaa | 3159 | } |
f76b9db2 | 3160 | else |
842fbaaa | 3161 | { |
f76b9db2 ILT |
3162 | if (((pe[1] & 0x7f) != 0) || (pe[0] != 0)) |
3163 | { | |
3164 | enan (y, yy[0] != 0); | |
3165 | return; | |
3166 | } | |
842fbaaa | 3167 | } |
842fbaaa JW |
3168 | #endif /* NANS */ |
3169 | eclear (y); | |
3170 | einfin (y); | |
3171 | if (yy[0]) | |
3172 | eneg (y); | |
3173 | return; | |
3174 | } | |
3175 | #endif /* INFINITY */ | |
3176 | r >>= 7; | |
3177 | /* If zero exponent, then the significand is denormalized. | |
defb5dab | 3178 | So take back the understood high significand bit. */ |
842fbaaa JW |
3179 | if (r == 0) |
3180 | { | |
3181 | denorm = 1; | |
3182 | yy[M] &= ~0200; | |
3183 | } | |
3184 | r += EXONE - 0177; | |
3185 | yy[E] = r; | |
3186 | p = &yy[M + 1]; | |
842fbaaa JW |
3187 | #ifdef DEC |
3188 | *p++ = *(--e); | |
3189 | #endif | |
f76b9db2 | 3190 | #ifdef IEEE |
8c35bbc5 | 3191 | if (! REAL_WORDS_BIG_ENDIAN) |
f76b9db2 ILT |
3192 | *p++ = *(--e); |
3193 | else | |
3194 | { | |
3195 | ++e; | |
3196 | *p++ = *e++; | |
3197 | } | |
842fbaaa JW |
3198 | #endif |
3199 | eshift (yy, -8); | |
3200 | if (denorm) | |
3201 | { /* if zero exponent, then normalize the significand */ | |
3202 | if ((k = enormlz (yy)) > NBITS) | |
3203 | ecleazs (yy); | |
3204 | else | |
3205 | yy[E] -= (unsigned EMUSHORT) (k - 1); | |
985b6196 RS |
3206 | } |
3207 | emovo (yy, y); | |
842fbaaa JW |
3208 | #endif /* not IBM */ |
3209 | } | |
3210 | ||
8c35bbc5 | 3211 | /* Convert e-type X to IEEE 128-bit long double format E. */ |
842fbaaa | 3212 | |
a0353055 | 3213 | static void |
842fbaaa JW |
3214 | etoe113 (x, e) |
3215 | unsigned EMUSHORT *x, *e; | |
3216 | { | |
3217 | unsigned EMUSHORT xi[NI]; | |
3218 | EMULONG exp; | |
3219 | int rndsav; | |
3220 | ||
3221 | #ifdef NANS | |
3222 | if (eisnan (x)) | |
3223 | { | |
29e11dab | 3224 | make_nan (e, eisneg (x), TFmode); |
842fbaaa JW |
3225 | return; |
3226 | } | |
3227 | #endif | |
3228 | emovi (x, xi); | |
3229 | exp = (EMULONG) xi[E]; | |
3230 | #ifdef INFINITY | |
3231 | if (eisinf (x)) | |
3232 | goto nonorm; | |
3233 | #endif | |
3234 | /* round off to nearest or even */ | |
3235 | rndsav = rndprc; | |
3236 | rndprc = 113; | |
3237 | emdnorm (xi, 0, 0, exp, 64); | |
3238 | rndprc = rndsav; | |
3239 | nonorm: | |
3240 | toe113 (xi, e); | |
985b6196 RS |
3241 | } |
3242 | ||
8c35bbc5 RK |
3243 | /* Convert exploded e-type X, that has already been rounded to |
3244 | 113-bit precision, to IEEE 128-bit long double format Y. */ | |
a0353055 | 3245 | |
842fbaaa JW |
3246 | static void |
3247 | toe113 (a, b) | |
3248 | unsigned EMUSHORT *a, *b; | |
3249 | { | |
3250 | register unsigned EMUSHORT *p, *q; | |
3251 | unsigned EMUSHORT i; | |
3252 | ||
3253 | #ifdef NANS | |
3254 | if (eiisnan (a)) | |
3255 | { | |
29e11dab | 3256 | make_nan (b, eiisneg (a), TFmode); |
842fbaaa JW |
3257 | return; |
3258 | } | |
3259 | #endif | |
3260 | p = a; | |
8c35bbc5 | 3261 | if (REAL_WORDS_BIG_ENDIAN) |
f76b9db2 ILT |
3262 | q = b; |
3263 | else | |
3264 | q = b + 7; /* point to output exponent */ | |
842fbaaa JW |
3265 | |
3266 | /* If not denormal, delete the implied bit. */ | |
3267 | if (a[E] != 0) | |
3268 | { | |
3269 | eshup1 (a); | |
3270 | } | |
3271 | /* combine sign and exponent */ | |
3272 | i = *p++; | |
8c35bbc5 | 3273 | if (REAL_WORDS_BIG_ENDIAN) |
f76b9db2 ILT |
3274 | { |
3275 | if (i) | |
3276 | *q++ = *p++ | 0x8000; | |
3277 | else | |
3278 | *q++ = *p++; | |
3279 | } | |
842fbaaa | 3280 | else |
f76b9db2 ILT |
3281 | { |
3282 | if (i) | |
3283 | *q-- = *p++ | 0x8000; | |
3284 | else | |
3285 | *q-- = *p++; | |
3286 | } | |
842fbaaa JW |
3287 | /* skip over guard word */ |
3288 | ++p; | |
3289 | /* move the significand */ | |
8c35bbc5 | 3290 | if (REAL_WORDS_BIG_ENDIAN) |
f76b9db2 ILT |
3291 | { |
3292 | for (i = 0; i < 7; i++) | |
3293 | *q++ = *p++; | |
3294 | } | |
3295 | else | |
3296 | { | |
3297 | for (i = 0; i < 7; i++) | |
3298 | *q-- = *p++; | |
3299 | } | |
842fbaaa | 3300 | } |
985b6196 | 3301 | |
8c35bbc5 RK |
3302 | /* Convert e-type X to IEEE double extended format E. */ |
3303 | ||
a0353055 | 3304 | static void |
985b6196 RS |
3305 | etoe64 (x, e) |
3306 | unsigned EMUSHORT *x, *e; | |
3307 | { | |
3308 | unsigned EMUSHORT xi[NI]; | |
3309 | EMULONG exp; | |
3310 | int rndsav; | |
3311 | ||
66b6d60b RS |
3312 | #ifdef NANS |
3313 | if (eisnan (x)) | |
3314 | { | |
29e11dab | 3315 | make_nan (e, eisneg (x), XFmode); |
66b6d60b RS |
3316 | return; |
3317 | } | |
3318 | #endif | |
985b6196 RS |
3319 | emovi (x, xi); |
3320 | /* adjust exponent for offset */ | |
3321 | exp = (EMULONG) xi[E]; | |
3322 | #ifdef INFINITY | |
3323 | if (eisinf (x)) | |
3324 | goto nonorm; | |
3325 | #endif | |
3326 | /* round off to nearest or even */ | |
3327 | rndsav = rndprc; | |
3328 | rndprc = 64; | |
3329 | emdnorm (xi, 0, 0, exp, 64); | |
3330 | rndprc = rndsav; | |
3331 | nonorm: | |
3332 | toe64 (xi, e); | |
3333 | } | |
3334 | ||
8c35bbc5 RK |
3335 | /* Convert exploded e-type X, that has already been rounded to |
3336 | 64-bit precision, to IEEE double extended format Y. */ | |
defb5dab | 3337 | |
985b6196 RS |
3338 | static void |
3339 | toe64 (a, b) | |
3340 | unsigned EMUSHORT *a, *b; | |
3341 | { | |
3342 | register unsigned EMUSHORT *p, *q; | |
3343 | unsigned EMUSHORT i; | |
3344 | ||
66b6d60b RS |
3345 | #ifdef NANS |
3346 | if (eiisnan (a)) | |
3347 | { | |
29e11dab | 3348 | make_nan (b, eiisneg (a), XFmode); |
66b6d60b RS |
3349 | return; |
3350 | } | |
3351 | #endif | |
d730ef29 RK |
3352 | /* Shift denormal long double Intel format significand down one bit. */ |
3353 | if ((a[E] == 0) && ! REAL_WORDS_BIG_ENDIAN) | |
3354 | eshdn1 (a); | |
985b6196 | 3355 | p = a; |
f76b9db2 | 3356 | #ifdef IBM |
985b6196 | 3357 | q = b; |
f76b9db2 ILT |
3358 | #endif |
3359 | #ifdef DEC | |
3360 | q = b + 4; | |
3361 | #endif | |
3362 | #ifdef IEEE | |
8c35bbc5 | 3363 | if (REAL_WORDS_BIG_ENDIAN) |
f76b9db2 ILT |
3364 | q = b; |
3365 | else | |
3366 | { | |
3367 | q = b + 4; /* point to output exponent */ | |
985b6196 | 3368 | #if LONG_DOUBLE_TYPE_SIZE == 96 |
f76b9db2 ILT |
3369 | /* Clear the last two bytes of 12-byte Intel format */ |
3370 | *(q+1) = 0; | |
985b6196 | 3371 | #endif |
f76b9db2 | 3372 | } |
985b6196 RS |
3373 | #endif |
3374 | ||
3375 | /* combine sign and exponent */ | |
3376 | i = *p++; | |
f76b9db2 | 3377 | #ifdef IBM |
985b6196 RS |
3378 | if (i) |
3379 | *q++ = *p++ | 0x8000; | |
3380 | else | |
3381 | *q++ = *p++; | |
3382 | *q++ = 0; | |
f76b9db2 ILT |
3383 | #endif |
3384 | #ifdef DEC | |
985b6196 RS |
3385 | if (i) |
3386 | *q-- = *p++ | 0x8000; | |
3387 | else | |
3388 | *q-- = *p++; | |
f76b9db2 ILT |
3389 | #endif |
3390 | #ifdef IEEE | |
8c35bbc5 | 3391 | if (REAL_WORDS_BIG_ENDIAN) |
f76b9db2 ILT |
3392 | { |
3393 | if (i) | |
3394 | *q++ = *p++ | 0x8000; | |
3395 | else | |
3396 | *q++ = *p++; | |
3397 | *q++ = 0; | |
3398 | } | |
3399 | else | |
3400 | { | |
3401 | if (i) | |
3402 | *q-- = *p++ | 0x8000; | |
3403 | else | |
3404 | *q-- = *p++; | |
3405 | } | |
985b6196 RS |
3406 | #endif |
3407 | /* skip over guard word */ | |
3408 | ++p; | |
3409 | /* move the significand */ | |
f76b9db2 | 3410 | #ifdef IBM |
985b6196 RS |
3411 | for (i = 0; i < 4; i++) |
3412 | *q++ = *p++; | |
f76b9db2 ILT |
3413 | #endif |
3414 | #ifdef DEC | |
985b6196 RS |
3415 | for (i = 0; i < 4; i++) |
3416 | *q-- = *p++; | |
3417 | #endif | |
f76b9db2 | 3418 | #ifdef IEEE |
8c35bbc5 | 3419 | if (REAL_WORDS_BIG_ENDIAN) |
f76b9db2 ILT |
3420 | { |
3421 | for (i = 0; i < 4; i++) | |
3422 | *q++ = *p++; | |
3423 | } | |
3424 | else | |
3425 | { | |
82e974d4 RK |
3426 | #ifdef INFINITY |
3427 | if (eiisinf (a)) | |
3428 | { | |
3429 | /* Intel long double infinity significand. */ | |
3430 | *q-- = 0x8000; | |
3431 | *q-- = 0; | |
3432 | *q-- = 0; | |
3433 | *q = 0; | |
3434 | return; | |
3435 | } | |
3436 | #endif | |
f76b9db2 ILT |
3437 | for (i = 0; i < 4; i++) |
3438 | *q-- = *p++; | |
3439 | } | |
3440 | #endif | |
985b6196 RS |
3441 | } |
3442 | ||
8c35bbc5 | 3443 | /* e type to double precision. */ |
985b6196 RS |
3444 | |
3445 | #ifdef DEC | |
8c35bbc5 | 3446 | /* Convert e-type X to DEC-format double E. */ |
985b6196 | 3447 | |
a0353055 | 3448 | static void |
985b6196 RS |
3449 | etoe53 (x, e) |
3450 | unsigned EMUSHORT *x, *e; | |
3451 | { | |
3452 | etodec (x, e); /* see etodec.c */ | |
3453 | } | |
3454 | ||
8c35bbc5 RK |
3455 | /* Convert exploded e-type X, that has already been rounded to |
3456 | 56-bit double precision, to DEC double Y. */ | |
3457 | ||
985b6196 RS |
3458 | static void |
3459 | toe53 (x, y) | |
3460 | unsigned EMUSHORT *x, *y; | |
3461 | { | |
3462 | todec (x, y); | |
3463 | } | |
3464 | ||
3465 | #else | |
842fbaaa | 3466 | #ifdef IBM |
8c35bbc5 | 3467 | /* Convert e-type X to IBM 370-format double E. */ |
842fbaaa | 3468 | |
008f0d36 | 3469 | static void |
842fbaaa JW |
3470 | etoe53 (x, e) |
3471 | unsigned EMUSHORT *x, *e; | |
3472 | { | |
3473 | etoibm (x, e, DFmode); | |
3474 | } | |
3475 | ||
8c35bbc5 RK |
3476 | /* Convert exploded e-type X, that has already been rounded to |
3477 | 56-bit precision, to IBM 370 double Y. */ | |
3478 | ||
842fbaaa JW |
3479 | static void |
3480 | toe53 (x, y) | |
3481 | unsigned EMUSHORT *x, *y; | |
3482 | { | |
3483 | toibm (x, y, DFmode); | |
3484 | } | |
3485 | ||
3486 | #else /* it's neither DEC nor IBM */ | |
985b6196 | 3487 | |
8c35bbc5 RK |
3488 | /* Convert e-type X to IEEE double E. */ |
3489 | ||
008f0d36 | 3490 | static void |
985b6196 RS |
3491 | etoe53 (x, e) |
3492 | unsigned EMUSHORT *x, *e; | |
3493 | { | |
3494 | unsigned EMUSHORT xi[NI]; | |
3495 | EMULONG exp; | |
3496 | int rndsav; | |
3497 | ||
66b6d60b RS |
3498 | #ifdef NANS |
3499 | if (eisnan (x)) | |
3500 | { | |
29e11dab | 3501 | make_nan (e, eisneg (x), DFmode); |
66b6d60b RS |
3502 | return; |
3503 | } | |
3504 | #endif | |
985b6196 RS |
3505 | emovi (x, xi); |
3506 | /* adjust exponent for offsets */ | |
3507 | exp = (EMULONG) xi[E] - (EXONE - 0x3ff); | |
3508 | #ifdef INFINITY | |
3509 | if (eisinf (x)) | |
3510 | goto nonorm; | |
3511 | #endif | |
3512 | /* round off to nearest or even */ | |
3513 | rndsav = rndprc; | |
3514 | rndprc = 53; | |
3515 | emdnorm (xi, 0, 0, exp, 64); | |
3516 | rndprc = rndsav; | |
3517 | nonorm: | |
3518 | toe53 (xi, e); | |
3519 | } | |
3520 | ||
8c35bbc5 RK |
3521 | /* Convert exploded e-type X, that has already been rounded to |
3522 | 53-bit precision, to IEEE double Y. */ | |
985b6196 RS |
3523 | |
3524 | static void | |
3525 | toe53 (x, y) | |
3526 | unsigned EMUSHORT *x, *y; | |
3527 | { | |
3528 | unsigned EMUSHORT i; | |
3529 | unsigned EMUSHORT *p; | |
3530 | ||
66b6d60b RS |
3531 | #ifdef NANS |
3532 | if (eiisnan (x)) | |
3533 | { | |
29e11dab | 3534 | make_nan (y, eiisneg (x), DFmode); |
66b6d60b RS |
3535 | return; |
3536 | } | |
3537 | #endif | |
985b6196 | 3538 | p = &x[0]; |
f76b9db2 | 3539 | #ifdef IEEE |
8c35bbc5 | 3540 | if (! REAL_WORDS_BIG_ENDIAN) |
f76b9db2 | 3541 | y += 3; |
985b6196 RS |
3542 | #endif |
3543 | *y = 0; /* output high order */ | |
3544 | if (*p++) | |
3545 | *y = 0x8000; /* output sign bit */ | |
3546 | ||
3547 | i = *p++; | |
3548 | if (i >= (unsigned int) 2047) | |
3549 | { /* Saturate at largest number less than infinity. */ | |
3550 | #ifdef INFINITY | |
3551 | *y |= 0x7ff0; | |
8c35bbc5 | 3552 | if (! REAL_WORDS_BIG_ENDIAN) |
f76b9db2 ILT |
3553 | { |
3554 | *(--y) = 0; | |
3555 | *(--y) = 0; | |
3556 | *(--y) = 0; | |
3557 | } | |
3558 | else | |
3559 | { | |
3560 | ++y; | |
3561 | *y++ = 0; | |
3562 | *y++ = 0; | |
3563 | *y++ = 0; | |
3564 | } | |
985b6196 RS |
3565 | #else |
3566 | *y |= (unsigned EMUSHORT) 0x7fef; | |
8c35bbc5 | 3567 | if (! REAL_WORDS_BIG_ENDIAN) |
f76b9db2 ILT |
3568 | { |
3569 | *(--y) = 0xffff; | |
3570 | *(--y) = 0xffff; | |
3571 | *(--y) = 0xffff; | |
3572 | } | |
3573 | else | |
3574 | { | |
3575 | ++y; | |
3576 | *y++ = 0xffff; | |
3577 | *y++ = 0xffff; | |
3578 | *y++ = 0xffff; | |
3579 | } | |
985b6196 RS |
3580 | #endif |
3581 | return; | |
3582 | } | |
3583 | if (i == 0) | |
3584 | { | |
64685ffa | 3585 | eshift (x, 4); |
985b6196 RS |
3586 | } |
3587 | else | |
3588 | { | |
3589 | i <<= 4; | |
64685ffa | 3590 | eshift (x, 5); |
985b6196 RS |
3591 | } |
3592 | i |= *p++ & (unsigned EMUSHORT) 0x0f; /* *p = xi[M] */ | |
3593 | *y |= (unsigned EMUSHORT) i; /* high order output already has sign bit set */ | |
8c35bbc5 | 3594 | if (! REAL_WORDS_BIG_ENDIAN) |
f76b9db2 ILT |
3595 | { |
3596 | *(--y) = *p++; | |
3597 | *(--y) = *p++; | |
3598 | *(--y) = *p; | |
3599 | } | |
3600 | else | |
3601 | { | |
3602 | ++y; | |
3603 | *y++ = *p++; | |
3604 | *y++ = *p++; | |
3605 | *y++ = *p++; | |
3606 | } | |
985b6196 RS |
3607 | } |
3608 | ||
842fbaaa | 3609 | #endif /* not IBM */ |
985b6196 RS |
3610 | #endif /* not DEC */ |
3611 | ||
3612 | ||
3613 | ||
8c35bbc5 | 3614 | /* e type to single precision. */ |
defb5dab | 3615 | |
842fbaaa | 3616 | #ifdef IBM |
8c35bbc5 | 3617 | /* Convert e-type X to IBM 370 float E. */ |
842fbaaa | 3618 | |
008f0d36 | 3619 | static void |
842fbaaa JW |
3620 | etoe24 (x, e) |
3621 | unsigned EMUSHORT *x, *e; | |
3622 | { | |
3623 | etoibm (x, e, SFmode); | |
3624 | } | |
3625 | ||
8c35bbc5 RK |
3626 | /* Convert exploded e-type X, that has already been rounded to |
3627 | float precision, to IBM 370 float Y. */ | |
3628 | ||
842fbaaa JW |
3629 | static void |
3630 | toe24 (x, y) | |
3631 | unsigned EMUSHORT *x, *y; | |
3632 | { | |
3633 | toibm (x, y, SFmode); | |
3634 | } | |
3635 | ||
3636 | #else | |
8c35bbc5 | 3637 | /* Convert e-type X to IEEE float E. DEC float is the same as IEEE float. */ |
842fbaaa | 3638 | |
008f0d36 | 3639 | static void |
985b6196 RS |
3640 | etoe24 (x, e) |
3641 | unsigned EMUSHORT *x, *e; | |
3642 | { | |
3643 | EMULONG exp; | |
3644 | unsigned EMUSHORT xi[NI]; | |
3645 | int rndsav; | |
3646 | ||
66b6d60b RS |
3647 | #ifdef NANS |
3648 | if (eisnan (x)) | |
3649 | { | |
29e11dab | 3650 | make_nan (e, eisneg (x), SFmode); |
66b6d60b RS |
3651 | return; |
3652 | } | |
3653 | #endif | |
985b6196 RS |
3654 | emovi (x, xi); |
3655 | /* adjust exponent for offsets */ | |
3656 | exp = (EMULONG) xi[E] - (EXONE - 0177); | |
3657 | #ifdef INFINITY | |
3658 | if (eisinf (x)) | |
3659 | goto nonorm; | |
3660 | #endif | |
3661 | /* round off to nearest or even */ | |
3662 | rndsav = rndprc; | |
3663 | rndprc = 24; | |
3664 | emdnorm (xi, 0, 0, exp, 64); | |
3665 | rndprc = rndsav; | |
3666 | nonorm: | |
3667 | toe24 (xi, e); | |
3668 | } | |
3669 | ||
8c35bbc5 RK |
3670 | /* Convert exploded e-type X, that has already been rounded to |
3671 | float precision, to IEEE float Y. */ | |
3672 | ||
985b6196 RS |
3673 | static void |
3674 | toe24 (x, y) | |
3675 | unsigned EMUSHORT *x, *y; | |
3676 | { | |
3677 | unsigned EMUSHORT i; | |
3678 | unsigned EMUSHORT *p; | |
3679 | ||
66b6d60b RS |
3680 | #ifdef NANS |
3681 | if (eiisnan (x)) | |
3682 | { | |
29e11dab | 3683 | make_nan (y, eiisneg (x), SFmode); |
66b6d60b RS |
3684 | return; |
3685 | } | |
3686 | #endif | |
985b6196 | 3687 | p = &x[0]; |
f76b9db2 | 3688 | #ifdef IEEE |
8c35bbc5 | 3689 | if (! REAL_WORDS_BIG_ENDIAN) |
f76b9db2 | 3690 | y += 1; |
985b6196 RS |
3691 | #endif |
3692 | #ifdef DEC | |
3693 | y += 1; | |
3694 | #endif | |
3695 | *y = 0; /* output high order */ | |
3696 | if (*p++) | |
3697 | *y = 0x8000; /* output sign bit */ | |
3698 | ||
3699 | i = *p++; | |
64685ffa | 3700 | /* Handle overflow cases. */ |
985b6196 | 3701 | if (i >= 255) |
64685ffa | 3702 | { |
985b6196 RS |
3703 | #ifdef INFINITY |
3704 | *y |= (unsigned EMUSHORT) 0x7f80; | |
985b6196 RS |
3705 | #ifdef DEC |
3706 | *(--y) = 0; | |
3707 | #endif | |
f76b9db2 | 3708 | #ifdef IEEE |
8c35bbc5 | 3709 | if (! REAL_WORDS_BIG_ENDIAN) |
f76b9db2 ILT |
3710 | *(--y) = 0; |
3711 | else | |
3712 | { | |
3713 | ++y; | |
3714 | *y = 0; | |
3715 | } | |
985b6196 | 3716 | #endif |
64685ffa | 3717 | #else /* no INFINITY */ |
985b6196 | 3718 | *y |= (unsigned EMUSHORT) 0x7f7f; |
985b6196 RS |
3719 | #ifdef DEC |
3720 | *(--y) = 0xffff; | |
3721 | #endif | |
f76b9db2 | 3722 | #ifdef IEEE |
8c35bbc5 | 3723 | if (! REAL_WORDS_BIG_ENDIAN) |
f76b9db2 ILT |
3724 | *(--y) = 0xffff; |
3725 | else | |
3726 | { | |
3727 | ++y; | |
3728 | *y = 0xffff; | |
3729 | } | |
985b6196 | 3730 | #endif |
64685ffa RS |
3731 | #ifdef ERANGE |
3732 | errno = ERANGE; | |
985b6196 | 3733 | #endif |
64685ffa | 3734 | #endif /* no INFINITY */ |
985b6196 RS |
3735 | return; |
3736 | } | |
3737 | if (i == 0) | |
3738 | { | |
64685ffa | 3739 | eshift (x, 7); |
985b6196 RS |
3740 | } |
3741 | else | |
3742 | { | |
3743 | i <<= 7; | |
64685ffa | 3744 | eshift (x, 8); |
985b6196 RS |
3745 | } |
3746 | i |= *p++ & (unsigned EMUSHORT) 0x7f; /* *p = xi[M] */ | |
8c35bbc5 RK |
3747 | /* High order output already has sign bit set. */ |
3748 | *y |= i; | |
985b6196 RS |
3749 | #ifdef DEC |
3750 | *(--y) = *p; | |
3751 | #endif | |
f76b9db2 | 3752 | #ifdef IEEE |
8c35bbc5 | 3753 | if (! REAL_WORDS_BIG_ENDIAN) |
f76b9db2 ILT |
3754 | *(--y) = *p; |
3755 | else | |
3756 | { | |
3757 | ++y; | |
3758 | *y = *p; | |
3759 | } | |
985b6196 RS |
3760 | #endif |
3761 | } | |
842fbaaa | 3762 | #endif /* not IBM */ |
985b6196 | 3763 | |
defb5dab RK |
3764 | /* Compare two e type numbers. |
3765 | Return +1 if a > b | |
3766 | 0 if a == b | |
3767 | -1 if a < b | |
3768 | -2 if either a or b is a NaN. */ | |
a0353055 RK |
3769 | |
3770 | static int | |
985b6196 RS |
3771 | ecmp (a, b) |
3772 | unsigned EMUSHORT *a, *b; | |
3773 | { | |
3774 | unsigned EMUSHORT ai[NI], bi[NI]; | |
3775 | register unsigned EMUSHORT *p, *q; | |
3776 | register int i; | |
3777 | int msign; | |
3778 | ||
66b6d60b RS |
3779 | #ifdef NANS |
3780 | if (eisnan (a) || eisnan (b)) | |
3781 | return (-2); | |
3782 | #endif | |
985b6196 RS |
3783 | emovi (a, ai); |
3784 | p = ai; | |
3785 | emovi (b, bi); | |
3786 | q = bi; | |
3787 | ||
3788 | if (*p != *q) | |
3789 | { /* the signs are different */ | |
3790 | /* -0 equals + 0 */ | |
3791 | for (i = 1; i < NI - 1; i++) | |
3792 | { | |
3793 | if (ai[i] != 0) | |
3794 | goto nzro; | |
3795 | if (bi[i] != 0) | |
3796 | goto nzro; | |
3797 | } | |
3798 | return (0); | |
3799 | nzro: | |
3800 | if (*p == 0) | |
3801 | return (1); | |
3802 | else | |
3803 | return (-1); | |
3804 | } | |
3805 | /* both are the same sign */ | |
3806 | if (*p == 0) | |
3807 | msign = 1; | |
3808 | else | |
3809 | msign = -1; | |
3810 | i = NI - 1; | |
3811 | do | |
3812 | { | |
3813 | if (*p++ != *q++) | |
3814 | { | |
3815 | goto diff; | |
3816 | } | |
3817 | } | |
3818 | while (--i > 0); | |
3819 | ||
3820 | return (0); /* equality */ | |
3821 | ||
985b6196 RS |
3822 | diff: |
3823 | ||
3824 | if (*(--p) > *(--q)) | |
3825 | return (msign); /* p is bigger */ | |
3826 | else | |
3827 | return (-msign); /* p is littler */ | |
3828 | } | |
3829 | ||
8c35bbc5 | 3830 | /* Find e-type nearest integer to X, as floor (X + 0.5). */ |
a0353055 RK |
3831 | |
3832 | static void | |
985b6196 RS |
3833 | eround (x, y) |
3834 | unsigned EMUSHORT *x, *y; | |
3835 | { | |
3836 | eadd (ehalf, x, y); | |
3837 | efloor (y, y); | |
3838 | } | |
3839 | ||
8c35bbc5 | 3840 | /* Convert HOST_WIDE_INT LP to e type Y. */ |
a0353055 RK |
3841 | |
3842 | static void | |
985b6196 | 3843 | ltoe (lp, y) |
b51ab098 RK |
3844 | HOST_WIDE_INT *lp; |
3845 | unsigned EMUSHORT *y; | |
985b6196 RS |
3846 | { |
3847 | unsigned EMUSHORT yi[NI]; | |
b51ab098 | 3848 | unsigned HOST_WIDE_INT ll; |
985b6196 RS |
3849 | int k; |
3850 | ||
3851 | ecleaz (yi); | |
3852 | if (*lp < 0) | |
3853 | { | |
3854 | /* make it positive */ | |
b51ab098 | 3855 | ll = (unsigned HOST_WIDE_INT) (-(*lp)); |
985b6196 RS |
3856 | yi[0] = 0xffff; /* put correct sign in the e type number */ |
3857 | } | |
3858 | else | |
3859 | { | |
b51ab098 | 3860 | ll = (unsigned HOST_WIDE_INT) (*lp); |
985b6196 RS |
3861 | } |
3862 | /* move the long integer to yi significand area */ | |
b51ab098 | 3863 | #if HOST_BITS_PER_WIDE_INT == 64 |
7729f1ca RS |
3864 | yi[M] = (unsigned EMUSHORT) (ll >> 48); |
3865 | yi[M + 1] = (unsigned EMUSHORT) (ll >> 32); | |
3866 | yi[M + 2] = (unsigned EMUSHORT) (ll >> 16); | |
3867 | yi[M + 3] = (unsigned EMUSHORT) ll; | |
3868 | yi[E] = EXONE + 47; /* exponent if normalize shift count were 0 */ | |
3869 | #else | |
985b6196 RS |
3870 | yi[M] = (unsigned EMUSHORT) (ll >> 16); |
3871 | yi[M + 1] = (unsigned EMUSHORT) ll; | |
985b6196 | 3872 | yi[E] = EXONE + 15; /* exponent if normalize shift count were 0 */ |
7729f1ca RS |
3873 | #endif |
3874 | ||
985b6196 RS |
3875 | if ((k = enormlz (yi)) > NBITS)/* normalize the significand */ |
3876 | ecleaz (yi); /* it was zero */ | |
3877 | else | |
3878 | yi[E] -= (unsigned EMUSHORT) k;/* subtract shift count from exponent */ | |
3879 | emovo (yi, y); /* output the answer */ | |
3880 | } | |
3881 | ||
8c35bbc5 | 3882 | /* Convert unsigned HOST_WIDE_INT LP to e type Y. */ |
a0353055 RK |
3883 | |
3884 | static void | |
985b6196 | 3885 | ultoe (lp, y) |
b51ab098 RK |
3886 | unsigned HOST_WIDE_INT *lp; |
3887 | unsigned EMUSHORT *y; | |
985b6196 RS |
3888 | { |
3889 | unsigned EMUSHORT yi[NI]; | |
b51ab098 | 3890 | unsigned HOST_WIDE_INT ll; |
985b6196 RS |
3891 | int k; |
3892 | ||
3893 | ecleaz (yi); | |
3894 | ll = *lp; | |
3895 | ||
3896 | /* move the long integer to ayi significand area */ | |
b51ab098 | 3897 | #if HOST_BITS_PER_WIDE_INT == 64 |
7729f1ca RS |
3898 | yi[M] = (unsigned EMUSHORT) (ll >> 48); |
3899 | yi[M + 1] = (unsigned EMUSHORT) (ll >> 32); | |
3900 | yi[M + 2] = (unsigned EMUSHORT) (ll >> 16); | |
3901 | yi[M + 3] = (unsigned EMUSHORT) ll; | |
3902 | yi[E] = EXONE + 47; /* exponent if normalize shift count were 0 */ | |
3903 | #else | |
985b6196 RS |
3904 | yi[M] = (unsigned EMUSHORT) (ll >> 16); |
3905 | yi[M + 1] = (unsigned EMUSHORT) ll; | |
985b6196 | 3906 | yi[E] = EXONE + 15; /* exponent if normalize shift count were 0 */ |
7729f1ca RS |
3907 | #endif |
3908 | ||
985b6196 RS |
3909 | if ((k = enormlz (yi)) > NBITS)/* normalize the significand */ |
3910 | ecleaz (yi); /* it was zero */ | |
3911 | else | |
3912 | yi[E] -= (unsigned EMUSHORT) k; /* subtract shift count from exponent */ | |
3913 | emovo (yi, y); /* output the answer */ | |
3914 | } | |
3915 | ||
3916 | ||
8c35bbc5 RK |
3917 | /* Find signed HOST_WIDE_INT integer I and floating point fractional |
3918 | part FRAC of e-type (packed internal format) floating point input X. | |
c764eafd RK |
3919 | The integer output I has the sign of the input, except that |
3920 | positive overflow is permitted if FIXUNS_TRUNC_LIKE_FIX_TRUNC. | |
3921 | The output e-type fraction FRAC is the positive fractional | |
3922 | part of abs (X). */ | |
985b6196 | 3923 | |
a0353055 | 3924 | static void |
985b6196 RS |
3925 | eifrac (x, i, frac) |
3926 | unsigned EMUSHORT *x; | |
b51ab098 | 3927 | HOST_WIDE_INT *i; |
985b6196 RS |
3928 | unsigned EMUSHORT *frac; |
3929 | { | |
3930 | unsigned EMUSHORT xi[NI]; | |
7729f1ca | 3931 | int j, k; |
b51ab098 | 3932 | unsigned HOST_WIDE_INT ll; |
985b6196 RS |
3933 | |
3934 | emovi (x, xi); | |
3935 | k = (int) xi[E] - (EXONE - 1); | |
3936 | if (k <= 0) | |
3937 | { | |
3938 | /* if exponent <= 0, integer = 0 and real output is fraction */ | |
3939 | *i = 0L; | |
3940 | emovo (xi, frac); | |
3941 | return; | |
3942 | } | |
b51ab098 | 3943 | if (k > (HOST_BITS_PER_WIDE_INT - 1)) |
985b6196 | 3944 | { |
7729f1ca RS |
3945 | /* long integer overflow: output large integer |
3946 | and correct fraction */ | |
985b6196 | 3947 | if (xi[0]) |
b51ab098 | 3948 | *i = ((unsigned HOST_WIDE_INT) 1) << (HOST_BITS_PER_WIDE_INT - 1); |
985b6196 | 3949 | else |
c764eafd RK |
3950 | { |
3951 | #ifdef FIXUNS_TRUNC_LIKE_FIX_TRUNC | |
3952 | /* In this case, let it overflow and convert as if unsigned. */ | |
3953 | euifrac (x, &ll, frac); | |
3954 | *i = (HOST_WIDE_INT) ll; | |
3955 | return; | |
3956 | #else | |
3957 | /* In other cases, return the largest positive integer. */ | |
3958 | *i = (((unsigned HOST_WIDE_INT) 1) << (HOST_BITS_PER_WIDE_INT - 1)) - 1; | |
3959 | #endif | |
3960 | } | |
64685ffa RS |
3961 | eshift (xi, k); |
3962 | if (extra_warnings) | |
3963 | warning ("overflow on truncation to integer"); | |
985b6196 | 3964 | } |
7729f1ca | 3965 | else if (k > 16) |
985b6196 | 3966 | { |
7729f1ca RS |
3967 | /* Shift more than 16 bits: first shift up k-16 mod 16, |
3968 | then shift up by 16's. */ | |
3969 | j = k - ((k >> 4) << 4); | |
3970 | eshift (xi, j); | |
3971 | ll = xi[M]; | |
3972 | k -= j; | |
3973 | do | |
3974 | { | |
3975 | eshup6 (xi); | |
3976 | ll = (ll << 16) | xi[M]; | |
3977 | } | |
3978 | while ((k -= 16) > 0); | |
3979 | *i = ll; | |
3980 | if (xi[0]) | |
3981 | *i = -(*i); | |
3982 | } | |
3983 | else | |
842fbaaa JW |
3984 | { |
3985 | /* shift not more than 16 bits */ | |
3986 | eshift (xi, k); | |
b51ab098 | 3987 | *i = (HOST_WIDE_INT) xi[M] & 0xffff; |
842fbaaa JW |
3988 | if (xi[0]) |
3989 | *i = -(*i); | |
3990 | } | |
985b6196 RS |
3991 | xi[0] = 0; |
3992 | xi[E] = EXONE - 1; | |
3993 | xi[M] = 0; | |
3994 | if ((k = enormlz (xi)) > NBITS) | |
3995 | ecleaz (xi); | |
3996 | else | |
3997 | xi[E] -= (unsigned EMUSHORT) k; | |
3998 | ||
3999 | emovo (xi, frac); | |
4000 | } | |
4001 | ||
4002 | ||
8c35bbc5 RK |
4003 | /* Find unsigned HOST_WIDE_INT integer I and floating point fractional part |
4004 | FRAC of e-type X. A negative input yields integer output = 0 but | |
4005 | correct fraction. */ | |
985b6196 | 4006 | |
a0353055 | 4007 | static void |
985b6196 RS |
4008 | euifrac (x, i, frac) |
4009 | unsigned EMUSHORT *x; | |
b51ab098 | 4010 | unsigned HOST_WIDE_INT *i; |
985b6196 RS |
4011 | unsigned EMUSHORT *frac; |
4012 | { | |
b51ab098 | 4013 | unsigned HOST_WIDE_INT ll; |
985b6196 | 4014 | unsigned EMUSHORT xi[NI]; |
7729f1ca | 4015 | int j, k; |
985b6196 RS |
4016 | |
4017 | emovi (x, xi); | |
4018 | k = (int) xi[E] - (EXONE - 1); | |
4019 | if (k <= 0) | |
4020 | { | |
4021 | /* if exponent <= 0, integer = 0 and argument is fraction */ | |
4022 | *i = 0L; | |
4023 | emovo (xi, frac); | |
4024 | return; | |
4025 | } | |
b51ab098 | 4026 | if (k > HOST_BITS_PER_WIDE_INT) |
985b6196 | 4027 | { |
7729f1ca RS |
4028 | /* Long integer overflow: output large integer |
4029 | and correct fraction. | |
4030 | Note, the BSD microvax compiler says that ~(0UL) | |
4031 | is a syntax error. */ | |
985b6196 | 4032 | *i = ~(0L); |
64685ffa RS |
4033 | eshift (xi, k); |
4034 | if (extra_warnings) | |
4035 | warning ("overflow on truncation to unsigned integer"); | |
985b6196 | 4036 | } |
7729f1ca | 4037 | else if (k > 16) |
985b6196 | 4038 | { |
7729f1ca RS |
4039 | /* Shift more than 16 bits: first shift up k-16 mod 16, |
4040 | then shift up by 16's. */ | |
4041 | j = k - ((k >> 4) << 4); | |
4042 | eshift (xi, j); | |
4043 | ll = xi[M]; | |
4044 | k -= j; | |
4045 | do | |
4046 | { | |
4047 | eshup6 (xi); | |
4048 | ll = (ll << 16) | xi[M]; | |
4049 | } | |
4050 | while ((k -= 16) > 0); | |
4051 | *i = ll; | |
4052 | } | |
4053 | else | |
4054 | { | |
4055 | /* shift not more than 16 bits */ | |
64685ffa | 4056 | eshift (xi, k); |
b51ab098 | 4057 | *i = (HOST_WIDE_INT) xi[M] & 0xffff; |
985b6196 RS |
4058 | } |
4059 | ||
7729f1ca | 4060 | if (xi[0]) /* A negative value yields unsigned integer 0. */ |
985b6196 | 4061 | *i = 0L; |
842fbaaa | 4062 | |
985b6196 RS |
4063 | xi[0] = 0; |
4064 | xi[E] = EXONE - 1; | |
4065 | xi[M] = 0; | |
4066 | if ((k = enormlz (xi)) > NBITS) | |
4067 | ecleaz (xi); | |
4068 | else | |
4069 | xi[E] -= (unsigned EMUSHORT) k; | |
4070 | ||
4071 | emovo (xi, frac); | |
4072 | } | |
4073 | ||
8c35bbc5 | 4074 | /* Shift the significand of exploded e-type X up or down by SC bits. */ |
a0353055 RK |
4075 | |
4076 | static int | |
985b6196 RS |
4077 | eshift (x, sc) |
4078 | unsigned EMUSHORT *x; | |
4079 | int sc; | |
4080 | { | |
4081 | unsigned EMUSHORT lost; | |
4082 | unsigned EMUSHORT *p; | |
4083 | ||
4084 | if (sc == 0) | |
4085 | return (0); | |
4086 | ||
4087 | lost = 0; | |
4088 | p = x + NI - 1; | |
4089 | ||
4090 | if (sc < 0) | |
4091 | { | |
4092 | sc = -sc; | |
4093 | while (sc >= 16) | |
4094 | { | |
4095 | lost |= *p; /* remember lost bits */ | |
4096 | eshdn6 (x); | |
4097 | sc -= 16; | |
4098 | } | |
4099 | ||
4100 | while (sc >= 8) | |
4101 | { | |
4102 | lost |= *p & 0xff; | |
4103 | eshdn8 (x); | |
4104 | sc -= 8; | |
4105 | } | |
4106 | ||
4107 | while (sc > 0) | |
4108 | { | |
4109 | lost |= *p & 1; | |
4110 | eshdn1 (x); | |
4111 | sc -= 1; | |
4112 | } | |
4113 | } | |
4114 | else | |
4115 | { | |
4116 | while (sc >= 16) | |
4117 | { | |
4118 | eshup6 (x); | |
4119 | sc -= 16; | |
4120 | } | |
4121 | ||
4122 | while (sc >= 8) | |
4123 | { | |
4124 | eshup8 (x); | |
4125 | sc -= 8; | |
4126 | } | |
4127 | ||
4128 | while (sc > 0) | |
4129 | { | |
4130 | eshup1 (x); | |
4131 | sc -= 1; | |
4132 | } | |
4133 | } | |
4134 | if (lost) | |
4135 | lost = 1; | |
4136 | return ((int) lost); | |
4137 | } | |
4138 | ||
8c35bbc5 RK |
4139 | /* Shift normalize the significand area of exploded e-type X. |
4140 | Return the shift count (up = positive). */ | |
a0353055 RK |
4141 | |
4142 | static int | |
985b6196 RS |
4143 | enormlz (x) |
4144 | unsigned EMUSHORT x[]; | |
4145 | { | |
4146 | register unsigned EMUSHORT *p; | |
4147 | int sc; | |
4148 | ||
4149 | sc = 0; | |
4150 | p = &x[M]; | |
4151 | if (*p != 0) | |
4152 | goto normdn; | |
4153 | ++p; | |
4154 | if (*p & 0x8000) | |
4155 | return (0); /* already normalized */ | |
4156 | while (*p == 0) | |
4157 | { | |
4158 | eshup6 (x); | |
4159 | sc += 16; | |
defb5dab | 4160 | |
985b6196 | 4161 | /* With guard word, there are NBITS+16 bits available. |
defb5dab | 4162 | Return true if all are zero. */ |
985b6196 RS |
4163 | if (sc > NBITS) |
4164 | return (sc); | |
4165 | } | |
4166 | /* see if high byte is zero */ | |
4167 | while ((*p & 0xff00) == 0) | |
4168 | { | |
4169 | eshup8 (x); | |
4170 | sc += 8; | |
4171 | } | |
4172 | /* now shift 1 bit at a time */ | |
4173 | while ((*p & 0x8000) == 0) | |
4174 | { | |
4175 | eshup1 (x); | |
4176 | sc += 1; | |
4177 | if (sc > NBITS) | |
4178 | { | |
4179 | mtherr ("enormlz", UNDERFLOW); | |
4180 | return (sc); | |
4181 | } | |
4182 | } | |
4183 | return (sc); | |
4184 | ||
4185 | /* Normalize by shifting down out of the high guard word | |
4186 | of the significand */ | |
4187 | normdn: | |
4188 | ||
4189 | if (*p & 0xff00) | |
4190 | { | |
4191 | eshdn8 (x); | |
4192 | sc -= 8; | |
4193 | } | |
4194 | while (*p != 0) | |
4195 | { | |
4196 | eshdn1 (x); | |
4197 | sc -= 1; | |
4198 | ||
4199 | if (sc < -NBITS) | |
4200 | { | |
4201 | mtherr ("enormlz", OVERFLOW); | |
4202 | return (sc); | |
4203 | } | |
4204 | } | |
4205 | return (sc); | |
4206 | } | |
4207 | ||
8c35bbc5 | 4208 | /* Powers of ten used in decimal <-> binary conversions. */ |
985b6196 RS |
4209 | |
4210 | #define NTEN 12 | |
4211 | #define MAXP 4096 | |
4212 | ||
842fbaaa JW |
4213 | #if LONG_DOUBLE_TYPE_SIZE == 128 |
4214 | static unsigned EMUSHORT etens[NTEN + 1][NE] = | |
4215 | { | |
4216 | {0x6576, 0x4a92, 0x804a, 0x153f, | |
4217 | 0xc94c, 0x979a, 0x8a20, 0x5202, 0xc460, 0x7525,}, /* 10**4096 */ | |
4218 | {0x6a32, 0xce52, 0x329a, 0x28ce, | |
4219 | 0xa74d, 0x5de4, 0xc53d, 0x3b5d, 0x9e8b, 0x5a92,}, /* 10**2048 */ | |
4220 | {0x526c, 0x50ce, 0xf18b, 0x3d28, | |
4221 | 0x650d, 0x0c17, 0x8175, 0x7586, 0xc976, 0x4d48,}, | |
4222 | {0x9c66, 0x58f8, 0xbc50, 0x5c54, | |
4223 | 0xcc65, 0x91c6, 0xa60e, 0xa0ae, 0xe319, 0x46a3,}, | |
4224 | {0x851e, 0xeab7, 0x98fe, 0x901b, | |
4225 | 0xddbb, 0xde8d, 0x9df9, 0xebfb, 0xaa7e, 0x4351,}, | |
4226 | {0x0235, 0x0137, 0x36b1, 0x336c, | |
4227 | 0xc66f, 0x8cdf, 0x80e9, 0x47c9, 0x93ba, 0x41a8,}, | |
4228 | {0x50f8, 0x25fb, 0xc76b, 0x6b71, | |
4229 | 0x3cbf, 0xa6d5, 0xffcf, 0x1f49, 0xc278, 0x40d3,}, | |
4230 | {0x0000, 0x0000, 0x0000, 0x0000, | |
4231 | 0xf020, 0xb59d, 0x2b70, 0xada8, 0x9dc5, 0x4069,}, | |
4232 | {0x0000, 0x0000, 0x0000, 0x0000, | |
4233 | 0x0000, 0x0000, 0x0400, 0xc9bf, 0x8e1b, 0x4034,}, | |
4234 | {0x0000, 0x0000, 0x0000, 0x0000, | |
4235 | 0x0000, 0x0000, 0x0000, 0x2000, 0xbebc, 0x4019,}, | |
4236 | {0x0000, 0x0000, 0x0000, 0x0000, | |
4237 | 0x0000, 0x0000, 0x0000, 0x0000, 0x9c40, 0x400c,}, | |
4238 | {0x0000, 0x0000, 0x0000, 0x0000, | |
4239 | 0x0000, 0x0000, 0x0000, 0x0000, 0xc800, 0x4005,}, | |
4240 | {0x0000, 0x0000, 0x0000, 0x0000, | |
4241 | 0x0000, 0x0000, 0x0000, 0x0000, 0xa000, 0x4002,}, /* 10**1 */ | |
4242 | }; | |
4243 | ||
4244 | static unsigned EMUSHORT emtens[NTEN + 1][NE] = | |
4245 | { | |
4246 | {0x2030, 0xcffc, 0xa1c3, 0x8123, | |
4247 | 0x2de3, 0x9fde, 0xd2ce, 0x04c8, 0xa6dd, 0x0ad8,}, /* 10**-4096 */ | |
4248 | {0x8264, 0xd2cb, 0xf2ea, 0x12d4, | |
4249 | 0x4925, 0x2de4, 0x3436, 0x534f, 0xceae, 0x256b,}, /* 10**-2048 */ | |
4250 | {0xf53f, 0xf698, 0x6bd3, 0x0158, | |
4251 | 0x87a6, 0xc0bd, 0xda57, 0x82a5, 0xa2a6, 0x32b5,}, | |
4252 | {0xe731, 0x04d4, 0xe3f2, 0xd332, | |
4253 | 0x7132, 0xd21c, 0xdb23, 0xee32, 0x9049, 0x395a,}, | |
4254 | {0xa23e, 0x5308, 0xfefb, 0x1155, | |
4255 | 0xfa91, 0x1939, 0x637a, 0x4325, 0xc031, 0x3cac,}, | |
4256 | {0xe26d, 0xdbde, 0xd05d, 0xb3f6, | |
4257 | 0xac7c, 0xe4a0, 0x64bc, 0x467c, 0xddd0, 0x3e55,}, | |
4258 | {0x2a20, 0x6224, 0x47b3, 0x98d7, | |
4259 | 0x3f23, 0xe9a5, 0xa539, 0xea27, 0xa87f, 0x3f2a,}, | |
4260 | {0x0b5b, 0x4af2, 0xa581, 0x18ed, | |
4261 | 0x67de, 0x94ba, 0x4539, 0x1ead, 0xcfb1, 0x3f94,}, | |
4262 | {0xbf71, 0xa9b3, 0x7989, 0xbe68, | |
4263 | 0x4c2e, 0xe15b, 0xc44d, 0x94be, 0xe695, 0x3fc9,}, | |
4264 | {0x3d4d, 0x7c3d, 0x36ba, 0x0d2b, | |
4265 | 0xfdc2, 0xcefc, 0x8461, 0x7711, 0xabcc, 0x3fe4,}, | |
4266 | {0xc155, 0xa4a8, 0x404e, 0x6113, | |
4267 | 0xd3c3, 0x652b, 0xe219, 0x1758, 0xd1b7, 0x3ff1,}, | |
4268 | {0xd70a, 0x70a3, 0x0a3d, 0xa3d7, | |
4269 | 0x3d70, 0xd70a, 0x70a3, 0x0a3d, 0xa3d7, 0x3ff8,}, | |
4270 | {0xcccd, 0xcccc, 0xcccc, 0xcccc, | |
4271 | 0xcccc, 0xcccc, 0xcccc, 0xcccc, 0xcccc, 0x3ffb,}, /* 10**-1 */ | |
4272 | }; | |
4273 | #else | |
4274 | /* LONG_DOUBLE_TYPE_SIZE is other than 128 */ | |
985b6196 RS |
4275 | static unsigned EMUSHORT etens[NTEN + 1][NE] = |
4276 | { | |
4277 | {0xc94c, 0x979a, 0x8a20, 0x5202, 0xc460, 0x7525,}, /* 10**4096 */ | |
4278 | {0xa74d, 0x5de4, 0xc53d, 0x3b5d, 0x9e8b, 0x5a92,}, /* 10**2048 */ | |
4279 | {0x650d, 0x0c17, 0x8175, 0x7586, 0xc976, 0x4d48,}, | |
4280 | {0xcc65, 0x91c6, 0xa60e, 0xa0ae, 0xe319, 0x46a3,}, | |
4281 | {0xddbc, 0xde8d, 0x9df9, 0xebfb, 0xaa7e, 0x4351,}, | |
4282 | {0xc66f, 0x8cdf, 0x80e9, 0x47c9, 0x93ba, 0x41a8,}, | |
4283 | {0x3cbf, 0xa6d5, 0xffcf, 0x1f49, 0xc278, 0x40d3,}, | |
4284 | {0xf020, 0xb59d, 0x2b70, 0xada8, 0x9dc5, 0x4069,}, | |
4285 | {0x0000, 0x0000, 0x0400, 0xc9bf, 0x8e1b, 0x4034,}, | |
4286 | {0x0000, 0x0000, 0x0000, 0x2000, 0xbebc, 0x4019,}, | |
4287 | {0x0000, 0x0000, 0x0000, 0x0000, 0x9c40, 0x400c,}, | |
4288 | {0x0000, 0x0000, 0x0000, 0x0000, 0xc800, 0x4005,}, | |
4289 | {0x0000, 0x0000, 0x0000, 0x0000, 0xa000, 0x4002,}, /* 10**1 */ | |
4290 | }; | |
4291 | ||
4292 | static unsigned EMUSHORT emtens[NTEN + 1][NE] = | |
4293 | { | |
4294 | {0x2de4, 0x9fde, 0xd2ce, 0x04c8, 0xa6dd, 0x0ad8,}, /* 10**-4096 */ | |
4295 | {0x4925, 0x2de4, 0x3436, 0x534f, 0xceae, 0x256b,}, /* 10**-2048 */ | |
4296 | {0x87a6, 0xc0bd, 0xda57, 0x82a5, 0xa2a6, 0x32b5,}, | |
4297 | {0x7133, 0xd21c, 0xdb23, 0xee32, 0x9049, 0x395a,}, | |
4298 | {0xfa91, 0x1939, 0x637a, 0x4325, 0xc031, 0x3cac,}, | |
4299 | {0xac7d, 0xe4a0, 0x64bc, 0x467c, 0xddd0, 0x3e55,}, | |
4300 | {0x3f24, 0xe9a5, 0xa539, 0xea27, 0xa87f, 0x3f2a,}, | |
4301 | {0x67de, 0x94ba, 0x4539, 0x1ead, 0xcfb1, 0x3f94,}, | |
4302 | {0x4c2f, 0xe15b, 0xc44d, 0x94be, 0xe695, 0x3fc9,}, | |
4303 | {0xfdc2, 0xcefc, 0x8461, 0x7711, 0xabcc, 0x3fe4,}, | |
4304 | {0xd3c3, 0x652b, 0xe219, 0x1758, 0xd1b7, 0x3ff1,}, | |
4305 | {0x3d71, 0xd70a, 0x70a3, 0x0a3d, 0xa3d7, 0x3ff8,}, | |
4306 | {0xcccd, 0xcccc, 0xcccc, 0xcccc, 0xcccc, 0x3ffb,}, /* 10**-1 */ | |
4307 | }; | |
842fbaaa | 4308 | #endif |
985b6196 | 4309 | |
8c35bbc5 RK |
4310 | /* Convert float value X to ASCII string STRING with NDIG digits after |
4311 | the decimal point. */ | |
4312 | ||
a0353055 | 4313 | static void |
985b6196 RS |
4314 | e24toasc (x, string, ndigs) |
4315 | unsigned EMUSHORT x[]; | |
4316 | char *string; | |
4317 | int ndigs; | |
4318 | { | |
4319 | unsigned EMUSHORT w[NI]; | |
4320 | ||
985b6196 RS |
4321 | e24toe (x, w); |
4322 | etoasc (w, string, ndigs); | |
4323 | } | |
4324 | ||
8c35bbc5 RK |
4325 | /* Convert double value X to ASCII string STRING with NDIG digits after |
4326 | the decimal point. */ | |
985b6196 | 4327 | |
a0353055 | 4328 | static void |
985b6196 RS |
4329 | e53toasc (x, string, ndigs) |
4330 | unsigned EMUSHORT x[]; | |
4331 | char *string; | |
4332 | int ndigs; | |
4333 | { | |
4334 | unsigned EMUSHORT w[NI]; | |
4335 | ||
985b6196 RS |
4336 | e53toe (x, w); |
4337 | etoasc (w, string, ndigs); | |
4338 | } | |
4339 | ||
8c35bbc5 RK |
4340 | /* Convert double extended value X to ASCII string STRING with NDIG digits |
4341 | after the decimal point. */ | |
985b6196 | 4342 | |
a0353055 | 4343 | static void |
985b6196 RS |
4344 | e64toasc (x, string, ndigs) |
4345 | unsigned EMUSHORT x[]; | |
4346 | char *string; | |
4347 | int ndigs; | |
4348 | { | |
4349 | unsigned EMUSHORT w[NI]; | |
4350 | ||
985b6196 RS |
4351 | e64toe (x, w); |
4352 | etoasc (w, string, ndigs); | |
4353 | } | |
4354 | ||
8c35bbc5 RK |
4355 | /* Convert 128-bit long double value X to ASCII string STRING with NDIG digits |
4356 | after the decimal point. */ | |
4357 | ||
a0353055 | 4358 | static void |
842fbaaa JW |
4359 | e113toasc (x, string, ndigs) |
4360 | unsigned EMUSHORT x[]; | |
4361 | char *string; | |
4362 | int ndigs; | |
4363 | { | |
4364 | unsigned EMUSHORT w[NI]; | |
4365 | ||
4366 | e113toe (x, w); | |
4367 | etoasc (w, string, ndigs); | |
4368 | } | |
4369 | ||
8c35bbc5 RK |
4370 | /* Convert e-type X to ASCII string STRING with NDIGS digits after |
4371 | the decimal point. */ | |
985b6196 RS |
4372 | |
4373 | static char wstring[80]; /* working storage for ASCII output */ | |
4374 | ||
a0353055 | 4375 | static void |
985b6196 RS |
4376 | etoasc (x, string, ndigs) |
4377 | unsigned EMUSHORT x[]; | |
4378 | char *string; | |
4379 | int ndigs; | |
4380 | { | |
4381 | EMUSHORT digit; | |
4382 | unsigned EMUSHORT y[NI], t[NI], u[NI], w[NI]; | |
4383 | unsigned EMUSHORT *p, *r, *ten; | |
4384 | unsigned EMUSHORT sign; | |
4385 | int i, j, k, expon, rndsav; | |
4386 | char *s, *ss; | |
4387 | unsigned EMUSHORT m; | |
4388 | ||
66b6d60b RS |
4389 | |
4390 | rndsav = rndprc; | |
985b6196 RS |
4391 | ss = string; |
4392 | s = wstring; | |
66b6d60b RS |
4393 | *ss = '\0'; |
4394 | *s = '\0'; | |
4395 | #ifdef NANS | |
4396 | if (eisnan (x)) | |
4397 | { | |
4398 | sprintf (wstring, " NaN "); | |
4399 | goto bxit; | |
4400 | } | |
4401 | #endif | |
985b6196 RS |
4402 | rndprc = NBITS; /* set to full precision */ |
4403 | emov (x, y); /* retain external format */ | |
4404 | if (y[NE - 1] & 0x8000) | |
4405 | { | |
4406 | sign = 0xffff; | |
4407 | y[NE - 1] &= 0x7fff; | |
4408 | } | |
4409 | else | |
4410 | { | |
4411 | sign = 0; | |
4412 | } | |
4413 | expon = 0; | |
4414 | ten = &etens[NTEN][0]; | |
4415 | emov (eone, t); | |
4416 | /* Test for zero exponent */ | |
4417 | if (y[NE - 1] == 0) | |
4418 | { | |
4419 | for (k = 0; k < NE - 1; k++) | |
4420 | { | |
4421 | if (y[k] != 0) | |
4422 | goto tnzro; /* denormalized number */ | |
4423 | } | |
43b55a67 | 4424 | goto isone; /* valid all zeros */ |
985b6196 RS |
4425 | } |
4426 | tnzro: | |
4427 | ||
66b6d60b | 4428 | /* Test for infinity. */ |
985b6196 RS |
4429 | if (y[NE - 1] == 0x7fff) |
4430 | { | |
4431 | if (sign) | |
4432 | sprintf (wstring, " -Infinity "); | |
4433 | else | |
4434 | sprintf (wstring, " Infinity "); | |
4435 | goto bxit; | |
4436 | } | |
4437 | ||
4438 | /* Test for exponent nonzero but significand denormalized. | |
4439 | * This is an error condition. | |
4440 | */ | |
4441 | if ((y[NE - 1] != 0) && ((y[NE - 2] & 0x8000) == 0)) | |
4442 | { | |
4443 | mtherr ("etoasc", DOMAIN); | |
4444 | sprintf (wstring, "NaN"); | |
4445 | goto bxit; | |
4446 | } | |
4447 | ||
4448 | /* Compare to 1.0 */ | |
4449 | i = ecmp (eone, y); | |
4450 | if (i == 0) | |
4451 | goto isone; | |
4452 | ||
66b6d60b RS |
4453 | if (i == -2) |
4454 | abort (); | |
4455 | ||
985b6196 RS |
4456 | if (i < 0) |
4457 | { /* Number is greater than 1 */ | |
4458 | /* Convert significand to an integer and strip trailing decimal zeros. */ | |
4459 | emov (y, u); | |
4460 | u[NE - 1] = EXONE + NBITS - 1; | |
4461 | ||
4462 | p = &etens[NTEN - 4][0]; | |
4463 | m = 16; | |
4464 | do | |
4465 | { | |
4466 | ediv (p, u, t); | |
4467 | efloor (t, w); | |
4468 | for (j = 0; j < NE - 1; j++) | |
4469 | { | |
4470 | if (t[j] != w[j]) | |
4471 | goto noint; | |
4472 | } | |
4473 | emov (t, u); | |
4474 | expon += (int) m; | |
4475 | noint: | |
4476 | p += NE; | |
4477 | m >>= 1; | |
4478 | } | |
4479 | while (m != 0); | |
4480 | ||
4481 | /* Rescale from integer significand */ | |
4482 | u[NE - 1] += y[NE - 1] - (unsigned int) (EXONE + NBITS - 1); | |
4483 | emov (u, y); | |
4484 | /* Find power of 10 */ | |
4485 | emov (eone, t); | |
4486 | m = MAXP; | |
4487 | p = &etens[0][0]; | |
66b6d60b | 4488 | /* An unordered compare result shouldn't happen here. */ |
985b6196 RS |
4489 | while (ecmp (ten, u) <= 0) |
4490 | { | |
4491 | if (ecmp (p, u) <= 0) | |
4492 | { | |
4493 | ediv (p, u, u); | |
4494 | emul (p, t, t); | |
4495 | expon += (int) m; | |
4496 | } | |
4497 | m >>= 1; | |
4498 | if (m == 0) | |
4499 | break; | |
4500 | p += NE; | |
4501 | } | |
4502 | } | |
4503 | else | |
4504 | { /* Number is less than 1.0 */ | |
4505 | /* Pad significand with trailing decimal zeros. */ | |
4506 | if (y[NE - 1] == 0) | |
4507 | { | |
4508 | while ((y[NE - 2] & 0x8000) == 0) | |
4509 | { | |
4510 | emul (ten, y, y); | |
4511 | expon -= 1; | |
4512 | } | |
4513 | } | |
4514 | else | |
4515 | { | |
4516 | emovi (y, w); | |
4517 | for (i = 0; i < NDEC + 1; i++) | |
4518 | { | |
4519 | if ((w[NI - 1] & 0x7) != 0) | |
4520 | break; | |
4521 | /* multiply by 10 */ | |
4522 | emovz (w, u); | |
4523 | eshdn1 (u); | |
4524 | eshdn1 (u); | |
4525 | eaddm (w, u); | |
4526 | u[1] += 3; | |
4527 | while (u[2] != 0) | |
4528 | { | |
4529 | eshdn1 (u); | |
4530 | u[1] += 1; | |
4531 | } | |
4532 | if (u[NI - 1] != 0) | |
4533 | break; | |
4534 | if (eone[NE - 1] <= u[1]) | |
4535 | break; | |
4536 | emovz (u, w); | |
4537 | expon -= 1; | |
4538 | } | |
4539 | emovo (w, y); | |
4540 | } | |
4541 | k = -MAXP; | |
4542 | p = &emtens[0][0]; | |
4543 | r = &etens[0][0]; | |
4544 | emov (y, w); | |
4545 | emov (eone, t); | |
4546 | while (ecmp (eone, w) > 0) | |
4547 | { | |
4548 | if (ecmp (p, w) >= 0) | |
4549 | { | |
4550 | emul (r, w, w); | |
4551 | emul (r, t, t); | |
4552 | expon += k; | |
4553 | } | |
4554 | k /= 2; | |
4555 | if (k == 0) | |
4556 | break; | |
4557 | p += NE; | |
4558 | r += NE; | |
4559 | } | |
4560 | ediv (t, eone, t); | |
4561 | } | |
4562 | isone: | |
4563 | /* Find the first (leading) digit. */ | |
4564 | emovi (t, w); | |
4565 | emovz (w, t); | |
4566 | emovi (y, w); | |
4567 | emovz (w, y); | |
4568 | eiremain (t, y); | |
4569 | digit = equot[NI - 1]; | |
4570 | while ((digit == 0) && (ecmp (y, ezero) != 0)) | |
4571 | { | |
4572 | eshup1 (y); | |
4573 | emovz (y, u); | |
4574 | eshup1 (u); | |
4575 | eshup1 (u); | |
4576 | eaddm (u, y); | |
4577 | eiremain (t, y); | |
4578 | digit = equot[NI - 1]; | |
4579 | expon -= 1; | |
4580 | } | |
4581 | s = wstring; | |
4582 | if (sign) | |
4583 | *s++ = '-'; | |
4584 | else | |
4585 | *s++ = ' '; | |
985b6196 RS |
4586 | /* Examine number of digits requested by caller. */ |
4587 | if (ndigs < 0) | |
4588 | ndigs = 0; | |
4589 | if (ndigs > NDEC) | |
4590 | ndigs = NDEC; | |
64685ffa RS |
4591 | if (digit == 10) |
4592 | { | |
4593 | *s++ = '1'; | |
4594 | *s++ = '.'; | |
4595 | if (ndigs > 0) | |
4596 | { | |
4597 | *s++ = '0'; | |
4598 | ndigs -= 1; | |
4599 | } | |
4600 | expon += 1; | |
4601 | } | |
4602 | else | |
4603 | { | |
242cef1e | 4604 | *s++ = (char)digit + '0'; |
64685ffa RS |
4605 | *s++ = '.'; |
4606 | } | |
985b6196 RS |
4607 | /* Generate digits after the decimal point. */ |
4608 | for (k = 0; k <= ndigs; k++) | |
4609 | { | |
4610 | /* multiply current number by 10, without normalizing */ | |
4611 | eshup1 (y); | |
4612 | emovz (y, u); | |
4613 | eshup1 (u); | |
4614 | eshup1 (u); | |
4615 | eaddm (u, y); | |
4616 | eiremain (t, y); | |
4617 | *s++ = (char) equot[NI - 1] + '0'; | |
4618 | } | |
4619 | digit = equot[NI - 1]; | |
4620 | --s; | |
4621 | ss = s; | |
4622 | /* round off the ASCII string */ | |
4623 | if (digit > 4) | |
4624 | { | |
4625 | /* Test for critical rounding case in ASCII output. */ | |
4626 | if (digit == 5) | |
4627 | { | |
4628 | emovo (y, t); | |
4629 | if (ecmp (t, ezero) != 0) | |
4630 | goto roun; /* round to nearest */ | |
4631 | if ((*(s - 1) & 1) == 0) | |
4632 | goto doexp; /* round to even */ | |
4633 | } | |
4634 | /* Round up and propagate carry-outs */ | |
4635 | roun: | |
4636 | --s; | |
4637 | k = *s & 0x7f; | |
4638 | /* Carry out to most significant digit? */ | |
4639 | if (k == '.') | |
4640 | { | |
4641 | --s; | |
4642 | k = *s; | |
4643 | k += 1; | |
4644 | *s = (char) k; | |
4645 | /* Most significant digit carries to 10? */ | |
4646 | if (k > '9') | |
4647 | { | |
4648 | expon += 1; | |
4649 | *s = '1'; | |
4650 | } | |
4651 | goto doexp; | |
4652 | } | |
4653 | /* Round up and carry out from less significant digits */ | |
4654 | k += 1; | |
4655 | *s = (char) k; | |
4656 | if (k > '9') | |
4657 | { | |
4658 | *s = '0'; | |
4659 | goto roun; | |
4660 | } | |
4661 | } | |
4662 | doexp: | |
4663 | /* | |
4664 | if (expon >= 0) | |
4665 | sprintf (ss, "e+%d", expon); | |
4666 | else | |
4667 | sprintf (ss, "e%d", expon); | |
4668 | */ | |
4669 | sprintf (ss, "e%d", expon); | |
4670 | bxit: | |
4671 | rndprc = rndsav; | |
4672 | /* copy out the working string */ | |
4673 | s = string; | |
4674 | ss = wstring; | |
4675 | while (*ss == ' ') /* strip possible leading space */ | |
4676 | ++ss; | |
4677 | while ((*s++ = *ss++) != '\0') | |
4678 | ; | |
4679 | } | |
4680 | ||
4681 | ||
8c35bbc5 | 4682 | /* Convert ASCII string to floating point. |
985b6196 | 4683 | |
8c35bbc5 RK |
4684 | Numeric input is a free format decimal number of any length, with |
4685 | or without decimal point. Entering E after the number followed by an | |
4686 | integer number causes the second number to be interpreted as a power of | |
4687 | 10 to be multiplied by the first number (i.e., "scientific" notation). */ | |
985b6196 | 4688 | |
8c35bbc5 | 4689 | /* Convert ASCII string S to single precision float value Y. */ |
a0353055 RK |
4690 | |
4691 | static void | |
985b6196 RS |
4692 | asctoe24 (s, y) |
4693 | char *s; | |
4694 | unsigned EMUSHORT *y; | |
4695 | { | |
4696 | asctoeg (s, y, 24); | |
4697 | } | |
4698 | ||
4699 | ||
8c35bbc5 | 4700 | /* Convert ASCII string S to double precision value Y. */ |
a0353055 RK |
4701 | |
4702 | static void | |
985b6196 RS |
4703 | asctoe53 (s, y) |
4704 | char *s; | |
4705 | unsigned EMUSHORT *y; | |
4706 | { | |
842fbaaa | 4707 | #if defined(DEC) || defined(IBM) |
985b6196 RS |
4708 | asctoeg (s, y, 56); |
4709 | #else | |
4710 | asctoeg (s, y, 53); | |
4711 | #endif | |
4712 | } | |
4713 | ||
4714 | ||
8c35bbc5 | 4715 | /* Convert ASCII string S to double extended value Y. */ |
a0353055 RK |
4716 | |
4717 | static void | |
985b6196 RS |
4718 | asctoe64 (s, y) |
4719 | char *s; | |
4720 | unsigned EMUSHORT *y; | |
4721 | { | |
4722 | asctoeg (s, y, 64); | |
4723 | } | |
4724 | ||
8c35bbc5 | 4725 | /* Convert ASCII string S to 128-bit long double Y. */ |
a0353055 RK |
4726 | |
4727 | static void | |
842fbaaa JW |
4728 | asctoe113 (s, y) |
4729 | char *s; | |
4730 | unsigned EMUSHORT *y; | |
4731 | { | |
4732 | asctoeg (s, y, 113); | |
4733 | } | |
4734 | ||
8c35bbc5 | 4735 | /* Convert ASCII string S to e type Y. */ |
defb5dab | 4736 | |
a0353055 | 4737 | static void |
985b6196 RS |
4738 | asctoe (s, y) |
4739 | char *s; | |
4740 | unsigned EMUSHORT *y; | |
4741 | { | |
4742 | asctoeg (s, y, NBITS); | |
4743 | } | |
4744 | ||
8c35bbc5 RK |
4745 | /* Convert ASCII string SS to e type Y, with a specified rounding precision |
4746 | of OPREC bits. */ | |
defb5dab | 4747 | |
a0353055 | 4748 | static void |
985b6196 RS |
4749 | asctoeg (ss, y, oprec) |
4750 | char *ss; | |
4751 | unsigned EMUSHORT *y; | |
4752 | int oprec; | |
4753 | { | |
4754 | unsigned EMUSHORT yy[NI], xt[NI], tt[NI]; | |
4755 | int esign, decflg, sgnflg, nexp, exp, prec, lost; | |
4756 | int k, trail, c, rndsav; | |
4757 | EMULONG lexp; | |
4758 | unsigned EMUSHORT nsign, *p; | |
d73e9b8d | 4759 | char *sp, *s, *lstr; |
985b6196 RS |
4760 | |
4761 | /* Copy the input string. */ | |
d73e9b8d | 4762 | lstr = (char *) alloca (strlen (ss) + 1); |
985b6196 RS |
4763 | s = ss; |
4764 | while (*s == ' ') /* skip leading spaces */ | |
4765 | ++s; | |
4766 | sp = lstr; | |
a9456cd3 RS |
4767 | while ((*sp++ = *s++) != '\0') |
4768 | ; | |
985b6196 RS |
4769 | s = lstr; |
4770 | ||
4771 | rndsav = rndprc; | |
4772 | rndprc = NBITS; /* Set to full precision */ | |
4773 | lost = 0; | |
4774 | nsign = 0; | |
4775 | decflg = 0; | |
4776 | sgnflg = 0; | |
4777 | nexp = 0; | |
4778 | exp = 0; | |
4779 | prec = 0; | |
4780 | ecleaz (yy); | |
4781 | trail = 0; | |
4782 | ||
4783 | nxtcom: | |
4784 | k = *s - '0'; | |
4785 | if ((k >= 0) && (k <= 9)) | |
4786 | { | |
4787 | /* Ignore leading zeros */ | |
4788 | if ((prec == 0) && (decflg == 0) && (k == 0)) | |
4789 | goto donchr; | |
4790 | /* Identify and strip trailing zeros after the decimal point. */ | |
4791 | if ((trail == 0) && (decflg != 0)) | |
4792 | { | |
4793 | sp = s; | |
4794 | while ((*sp >= '0') && (*sp <= '9')) | |
4795 | ++sp; | |
4796 | /* Check for syntax error */ | |
4797 | c = *sp & 0x7f; | |
4798 | if ((c != 'e') && (c != 'E') && (c != '\0') | |
4799 | && (c != '\n') && (c != '\r') && (c != ' ') | |
4800 | && (c != ',')) | |
4801 | goto error; | |
4802 | --sp; | |
4803 | while (*sp == '0') | |
4804 | *sp-- = 'z'; | |
4805 | trail = 1; | |
4806 | if (*s == 'z') | |
4807 | goto donchr; | |
4808 | } | |
defb5dab | 4809 | |
985b6196 | 4810 | /* If enough digits were given to more than fill up the yy register, |
defb5dab RK |
4811 | continuing until overflow into the high guard word yy[2] |
4812 | guarantees that there will be a roundoff bit at the top | |
4813 | of the low guard word after normalization. */ | |
4814 | ||
985b6196 RS |
4815 | if (yy[2] == 0) |
4816 | { | |
4817 | if (decflg) | |
4818 | nexp += 1; /* count digits after decimal point */ | |
4819 | eshup1 (yy); /* multiply current number by 10 */ | |
4820 | emovz (yy, xt); | |
4821 | eshup1 (xt); | |
4822 | eshup1 (xt); | |
4823 | eaddm (xt, yy); | |
4824 | ecleaz (xt); | |
4825 | xt[NI - 2] = (unsigned EMUSHORT) k; | |
4826 | eaddm (xt, yy); | |
4827 | } | |
4828 | else | |
4829 | { | |
d73e9b8d | 4830 | /* Mark any lost non-zero digit. */ |
985b6196 | 4831 | lost |= k; |
d73e9b8d RS |
4832 | /* Count lost digits before the decimal point. */ |
4833 | if (decflg == 0) | |
4834 | nexp -= 1; | |
985b6196 RS |
4835 | } |
4836 | prec += 1; | |
4837 | goto donchr; | |
4838 | } | |
4839 | ||
4840 | switch (*s) | |
4841 | { | |
4842 | case 'z': | |
4843 | break; | |
4844 | case 'E': | |
4845 | case 'e': | |
4846 | goto expnt; | |
4847 | case '.': /* decimal point */ | |
4848 | if (decflg) | |
4849 | goto error; | |
4850 | ++decflg; | |
4851 | break; | |
4852 | case '-': | |
4853 | nsign = 0xffff; | |
4854 | if (sgnflg) | |
4855 | goto error; | |
4856 | ++sgnflg; | |
4857 | break; | |
4858 | case '+': | |
4859 | if (sgnflg) | |
4860 | goto error; | |
4861 | ++sgnflg; | |
4862 | break; | |
4863 | case ',': | |
4864 | case ' ': | |
4865 | case '\0': | |
4866 | case '\n': | |
4867 | case '\r': | |
4868 | goto daldone; | |
4869 | case 'i': | |
4870 | case 'I': | |
64685ffa | 4871 | goto infinite; |
985b6196 RS |
4872 | default: |
4873 | error: | |
66b6d60b RS |
4874 | #ifdef NANS |
4875 | einan (yy); | |
4876 | #else | |
985b6196 | 4877 | mtherr ("asctoe", DOMAIN); |
66b6d60b RS |
4878 | eclear (yy); |
4879 | #endif | |
985b6196 RS |
4880 | goto aexit; |
4881 | } | |
4882 | donchr: | |
4883 | ++s; | |
4884 | goto nxtcom; | |
4885 | ||
4886 | /* Exponent interpretation */ | |
4887 | expnt: | |
4888 | ||
4889 | esign = 1; | |
4890 | exp = 0; | |
4891 | ++s; | |
4892 | /* check for + or - */ | |
4893 | if (*s == '-') | |
4894 | { | |
4895 | esign = -1; | |
4896 | ++s; | |
4897 | } | |
4898 | if (*s == '+') | |
4899 | ++s; | |
4900 | while ((*s >= '0') && (*s <= '9')) | |
4901 | { | |
4902 | exp *= 10; | |
4903 | exp += *s++ - '0'; | |
842fbaaa | 4904 | if (exp > -(MINDECEXP)) |
64685ffa RS |
4905 | { |
4906 | if (esign < 0) | |
4907 | goto zero; | |
4908 | else | |
4909 | goto infinite; | |
4910 | } | |
985b6196 RS |
4911 | } |
4912 | if (esign < 0) | |
4913 | exp = -exp; | |
842fbaaa | 4914 | if (exp > MAXDECEXP) |
64685ffa RS |
4915 | { |
4916 | infinite: | |
4917 | ecleaz (yy); | |
4918 | yy[E] = 0x7fff; /* infinity */ | |
4919 | goto aexit; | |
4920 | } | |
842fbaaa | 4921 | if (exp < MINDECEXP) |
64685ffa RS |
4922 | { |
4923 | zero: | |
4924 | ecleaz (yy); | |
4925 | goto aexit; | |
4926 | } | |
985b6196 RS |
4927 | |
4928 | daldone: | |
4929 | nexp = exp - nexp; | |
4930 | /* Pad trailing zeros to minimize power of 10, per IEEE spec. */ | |
4931 | while ((nexp > 0) && (yy[2] == 0)) | |
4932 | { | |
4933 | emovz (yy, xt); | |
4934 | eshup1 (xt); | |
4935 | eshup1 (xt); | |
4936 | eaddm (yy, xt); | |
4937 | eshup1 (xt); | |
4938 | if (xt[2] != 0) | |
4939 | break; | |
4940 | nexp -= 1; | |
4941 | emovz (xt, yy); | |
4942 | } | |
4943 | if ((k = enormlz (yy)) > NBITS) | |
4944 | { | |
4945 | ecleaz (yy); | |
4946 | goto aexit; | |
4947 | } | |
4948 | lexp = (EXONE - 1 + NBITS) - k; | |
4949 | emdnorm (yy, lost, 0, lexp, 64); | |
985b6196 | 4950 | |
defb5dab RK |
4951 | /* Convert to external format: |
4952 | ||
4953 | Multiply by 10**nexp. If precision is 64 bits, | |
4954 | the maximum relative error incurred in forming 10**n | |
4955 | for 0 <= n <= 324 is 8.2e-20, at 10**180. | |
4956 | For 0 <= n <= 999, the peak relative error is 1.4e-19 at 10**947. | |
4957 | For 0 >= n >= -999, it is -1.55e-19 at 10**-435. */ | |
985b6196 | 4958 | |
985b6196 RS |
4959 | lexp = yy[E]; |
4960 | if (nexp == 0) | |
4961 | { | |
4962 | k = 0; | |
4963 | goto expdon; | |
4964 | } | |
4965 | esign = 1; | |
4966 | if (nexp < 0) | |
4967 | { | |
4968 | nexp = -nexp; | |
4969 | esign = -1; | |
4970 | if (nexp > 4096) | |
defb5dab RK |
4971 | { |
4972 | /* Punt. Can't handle this without 2 divides. */ | |
985b6196 RS |
4973 | emovi (etens[0], tt); |
4974 | lexp -= tt[E]; | |
4975 | k = edivm (tt, yy); | |
4976 | lexp += EXONE; | |
4977 | nexp -= 4096; | |
4978 | } | |
4979 | } | |
4980 | p = &etens[NTEN][0]; | |
4981 | emov (eone, xt); | |
4982 | exp = 1; | |
4983 | do | |
4984 | { | |
4985 | if (exp & nexp) | |
4986 | emul (p, xt, xt); | |
4987 | p -= NE; | |
4988 | exp = exp + exp; | |
4989 | } | |
4990 | while (exp <= MAXP); | |
4991 | ||
4992 | emovi (xt, tt); | |
4993 | if (esign < 0) | |
4994 | { | |
4995 | lexp -= tt[E]; | |
4996 | k = edivm (tt, yy); | |
4997 | lexp += EXONE; | |
4998 | } | |
4999 | else | |
5000 | { | |
5001 | lexp += tt[E]; | |
5002 | k = emulm (tt, yy); | |
5003 | lexp -= EXONE - 1; | |
5004 | } | |
5005 | ||
5006 | expdon: | |
5007 | ||
5008 | /* Round and convert directly to the destination type */ | |
5009 | if (oprec == 53) | |
5010 | lexp -= EXONE - 0x3ff; | |
842fbaaa JW |
5011 | #ifdef IBM |
5012 | else if (oprec == 24 || oprec == 56) | |
5013 | lexp -= EXONE - (0x41 << 2); | |
5014 | #else | |
985b6196 RS |
5015 | else if (oprec == 24) |
5016 | lexp -= EXONE - 0177; | |
842fbaaa | 5017 | #endif |
985b6196 RS |
5018 | #ifdef DEC |
5019 | else if (oprec == 56) | |
5020 | lexp -= EXONE - 0201; | |
5021 | #endif | |
5022 | rndprc = oprec; | |
5023 | emdnorm (yy, k, 0, lexp, 64); | |
5024 | ||
5025 | aexit: | |
5026 | ||
5027 | rndprc = rndsav; | |
5028 | yy[0] = nsign; | |
5029 | switch (oprec) | |
5030 | { | |
5031 | #ifdef DEC | |
5032 | case 56: | |
5033 | todec (yy, y); /* see etodec.c */ | |
5034 | break; | |
842fbaaa JW |
5035 | #endif |
5036 | #ifdef IBM | |
5037 | case 56: | |
5038 | toibm (yy, y, DFmode); | |
5039 | break; | |
985b6196 RS |
5040 | #endif |
5041 | case 53: | |
5042 | toe53 (yy, y); | |
5043 | break; | |
5044 | case 24: | |
5045 | toe24 (yy, y); | |
5046 | break; | |
5047 | case 64: | |
5048 | toe64 (yy, y); | |
5049 | break; | |
842fbaaa JW |
5050 | case 113: |
5051 | toe113 (yy, y); | |
5052 | break; | |
985b6196 RS |
5053 | case NBITS: |
5054 | emovo (yy, y); | |
5055 | break; | |
5056 | } | |
5057 | } | |
5058 | ||
5059 | ||
5060 | ||
8c35bbc5 RK |
5061 | /* Return Y = largest integer not greater than X (truncated toward minus |
5062 | infinity). */ | |
defb5dab | 5063 | |
985b6196 RS |
5064 | static unsigned EMUSHORT bmask[] = |
5065 | { | |
5066 | 0xffff, | |
5067 | 0xfffe, | |
5068 | 0xfffc, | |
5069 | 0xfff8, | |
5070 | 0xfff0, | |
5071 | 0xffe0, | |
5072 | 0xffc0, | |
5073 | 0xff80, | |
5074 | 0xff00, | |
5075 | 0xfe00, | |
5076 | 0xfc00, | |
5077 | 0xf800, | |
5078 | 0xf000, | |
5079 | 0xe000, | |
5080 | 0xc000, | |
5081 | 0x8000, | |
5082 | 0x0000, | |
5083 | }; | |
5084 | ||
a0353055 | 5085 | static void |
985b6196 RS |
5086 | efloor (x, y) |
5087 | unsigned EMUSHORT x[], y[]; | |
5088 | { | |
5089 | register unsigned EMUSHORT *p; | |
5090 | int e, expon, i; | |
5091 | unsigned EMUSHORT f[NE]; | |
5092 | ||
5093 | emov (x, f); /* leave in external format */ | |
5094 | expon = (int) f[NE - 1]; | |
5095 | e = (expon & 0x7fff) - (EXONE - 1); | |
5096 | if (e <= 0) | |
5097 | { | |
5098 | eclear (y); | |
5099 | goto isitneg; | |
5100 | } | |
5101 | /* number of bits to clear out */ | |
5102 | e = NBITS - e; | |
5103 | emov (f, y); | |
5104 | if (e <= 0) | |
5105 | return; | |
5106 | ||
5107 | p = &y[0]; | |
5108 | while (e >= 16) | |
5109 | { | |
5110 | *p++ = 0; | |
5111 | e -= 16; | |
5112 | } | |
5113 | /* clear the remaining bits */ | |
5114 | *p &= bmask[e]; | |
5115 | /* truncate negatives toward minus infinity */ | |
5116 | isitneg: | |
5117 | ||
5118 | if ((unsigned EMUSHORT) expon & (unsigned EMUSHORT) 0x8000) | |
5119 | { | |
5120 | for (i = 0; i < NE - 1; i++) | |
5121 | { | |
5122 | if (f[i] != y[i]) | |
5123 | { | |
5124 | esub (eone, y, y); | |
5125 | break; | |
5126 | } | |
5127 | } | |
5128 | } | |
5129 | } | |
5130 | ||
5131 | ||
8c35bbc5 RK |
5132 | /* Return S and EXP such that S * 2^EXP = X and .5 <= S < 1. |
5133 | For example, 1.1 = 0.55 * 2^1. */ | |
a0353055 RK |
5134 | |
5135 | static void | |
985b6196 RS |
5136 | efrexp (x, exp, s) |
5137 | unsigned EMUSHORT x[]; | |
5138 | int *exp; | |
5139 | unsigned EMUSHORT s[]; | |
5140 | { | |
5141 | unsigned EMUSHORT xi[NI]; | |
5142 | EMULONG li; | |
5143 | ||
5144 | emovi (x, xi); | |
8c35bbc5 | 5145 | /* Handle denormalized numbers properly using long integer exponent. */ |
985b6196 RS |
5146 | li = (EMULONG) ((EMUSHORT) xi[1]); |
5147 | ||
5148 | if (li == 0) | |
5149 | { | |
5150 | li -= enormlz (xi); | |
5151 | } | |
5152 | xi[1] = 0x3ffe; | |
5153 | emovo (xi, s); | |
5154 | *exp = (int) (li - 0x3ffe); | |
5155 | } | |
5156 | ||
8c35bbc5 | 5157 | /* Return e type Y = X * 2^PWR2. */ |
a0353055 RK |
5158 | |
5159 | static void | |
985b6196 RS |
5160 | eldexp (x, pwr2, y) |
5161 | unsigned EMUSHORT x[]; | |
5162 | int pwr2; | |
5163 | unsigned EMUSHORT y[]; | |
5164 | { | |
5165 | unsigned EMUSHORT xi[NI]; | |
5166 | EMULONG li; | |
5167 | int i; | |
5168 | ||
5169 | emovi (x, xi); | |
5170 | li = xi[1]; | |
5171 | li += pwr2; | |
5172 | i = 0; | |
5173 | emdnorm (xi, i, i, li, 64); | |
5174 | emovo (xi, y); | |
5175 | } | |
5176 | ||
5177 | ||
8c35bbc5 RK |
5178 | /* C = remainder after dividing B by A, all e type values. |
5179 | Least significant integer quotient bits left in EQUOT. */ | |
a0353055 RK |
5180 | |
5181 | static void | |
985b6196 RS |
5182 | eremain (a, b, c) |
5183 | unsigned EMUSHORT a[], b[], c[]; | |
5184 | { | |
5185 | unsigned EMUSHORT den[NI], num[NI]; | |
5186 | ||
66b6d60b | 5187 | #ifdef NANS |
242cef1e RS |
5188 | if (eisinf (b) |
5189 | || (ecmp (a, ezero) == 0) | |
5190 | || eisnan (a) | |
5191 | || eisnan (b)) | |
66b6d60b | 5192 | { |
29e11dab | 5193 | enan (c, 0); |
66b6d60b RS |
5194 | return; |
5195 | } | |
5196 | #endif | |
985b6196 RS |
5197 | if (ecmp (a, ezero) == 0) |
5198 | { | |
5199 | mtherr ("eremain", SING); | |
5200 | eclear (c); | |
5201 | return; | |
5202 | } | |
5203 | emovi (a, den); | |
5204 | emovi (b, num); | |
5205 | eiremain (den, num); | |
5206 | /* Sign of remainder = sign of quotient */ | |
5207 | if (a[0] == b[0]) | |
5208 | num[0] = 0; | |
5209 | else | |
5210 | num[0] = 0xffff; | |
5211 | emovo (num, c); | |
5212 | } | |
5213 | ||
8c35bbc5 RK |
5214 | /* Return quotient of exploded e-types NUM / DEN in EQUOT, |
5215 | remainder in NUM. */ | |
5216 | ||
a0353055 | 5217 | static void |
985b6196 RS |
5218 | eiremain (den, num) |
5219 | unsigned EMUSHORT den[], num[]; | |
5220 | { | |
5221 | EMULONG ld, ln; | |
5222 | unsigned EMUSHORT j; | |
5223 | ||
5224 | ld = den[E]; | |
5225 | ld -= enormlz (den); | |
5226 | ln = num[E]; | |
5227 | ln -= enormlz (num); | |
5228 | ecleaz (equot); | |
5229 | while (ln >= ld) | |
5230 | { | |
5231 | if (ecmpm (den, num) <= 0) | |
5232 | { | |
5233 | esubm (den, num); | |
5234 | j = 1; | |
5235 | } | |
5236 | else | |
985b6196 | 5237 | j = 0; |
985b6196 RS |
5238 | eshup1 (equot); |
5239 | equot[NI - 1] |= j; | |
5240 | eshup1 (num); | |
5241 | ln -= 1; | |
5242 | } | |
5243 | emdnorm (num, 0, 0, ln, 0); | |
5244 | } | |
5245 | ||
8c35bbc5 RK |
5246 | /* Report an error condition CODE encountered in function NAME. |
5247 | CODE is one of the following: | |
defb5dab RK |
5248 | |
5249 | Mnemonic Value Significance | |
5250 | ||
5251 | DOMAIN 1 argument domain error | |
5252 | SING 2 function singularity | |
5253 | OVERFLOW 3 overflow range error | |
5254 | UNDERFLOW 4 underflow range error | |
5255 | TLOSS 5 total loss of precision | |
5256 | PLOSS 6 partial loss of precision | |
5257 | INVALID 7 NaN - producing operation | |
5258 | EDOM 33 Unix domain error code | |
5259 | ERANGE 34 Unix range error code | |
5260 | ||
8c35bbc5 | 5261 | The order of appearance of the following messages is bound to the |
defb5dab | 5262 | error codes defined above. */ |
985b6196 | 5263 | |
66b6d60b RS |
5264 | #define NMSGS 8 |
5265 | static char *ermsg[NMSGS] = | |
985b6196 RS |
5266 | { |
5267 | "unknown", /* error code 0 */ | |
5268 | "domain", /* error code 1 */ | |
5269 | "singularity", /* et seq. */ | |
5270 | "overflow", | |
5271 | "underflow", | |
5272 | "total loss of precision", | |
66b6d60b RS |
5273 | "partial loss of precision", |
5274 | "invalid operation" | |
985b6196 RS |
5275 | }; |
5276 | ||
5277 | int merror = 0; | |
5278 | extern int merror; | |
5279 | ||
a0353055 | 5280 | static void |
985b6196 RS |
5281 | mtherr (name, code) |
5282 | char *name; | |
5283 | int code; | |
5284 | { | |
5285 | char errstr[80]; | |
5286 | ||
8c35bbc5 | 5287 | /* The string passed by the calling program is supposed to be the |
defb5dab | 5288 | name of the function in which the error occurred. |
8c35bbc5 | 5289 | The code argument selects which error message string will be printed. */ |
985b6196 | 5290 | |
66b6d60b | 5291 | if ((code <= 0) || (code >= NMSGS)) |
985b6196 | 5292 | code = 0; |
a8d78514 | 5293 | sprintf (errstr, " %s %s error", name, ermsg[code]); |
64685ffa RS |
5294 | if (extra_warnings) |
5295 | warning (errstr); | |
985b6196 RS |
5296 | /* Set global error message word */ |
5297 | merror = code + 1; | |
985b6196 RS |
5298 | } |
5299 | ||
842fbaaa | 5300 | #ifdef DEC |
8c35bbc5 | 5301 | /* Convert DEC double precision D to e type E. */ |
a0353055 RK |
5302 | |
5303 | static void | |
985b6196 RS |
5304 | dectoe (d, e) |
5305 | unsigned EMUSHORT *d; | |
5306 | unsigned EMUSHORT *e; | |
5307 | { | |
5308 | unsigned EMUSHORT y[NI]; | |
5309 | register unsigned EMUSHORT r, *p; | |
5310 | ||
5311 | ecleaz (y); /* start with a zero */ | |
5312 | p = y; /* point to our number */ | |
5313 | r = *d; /* get DEC exponent word */ | |
5314 | if (*d & (unsigned int) 0x8000) | |
5315 | *p = 0xffff; /* fill in our sign */ | |
5316 | ++p; /* bump pointer to our exponent word */ | |
5317 | r &= 0x7fff; /* strip the sign bit */ | |
5318 | if (r == 0) /* answer = 0 if high order DEC word = 0 */ | |
5319 | goto done; | |
5320 | ||
5321 | ||
5322 | r >>= 7; /* shift exponent word down 7 bits */ | |
5323 | r += EXONE - 0201; /* subtract DEC exponent offset */ | |
5324 | /* add our e type exponent offset */ | |
5325 | *p++ = r; /* to form our exponent */ | |
5326 | ||
5327 | r = *d++; /* now do the high order mantissa */ | |
5328 | r &= 0177; /* strip off the DEC exponent and sign bits */ | |
5329 | r |= 0200; /* the DEC understood high order mantissa bit */ | |
5330 | *p++ = r; /* put result in our high guard word */ | |
5331 | ||
5332 | *p++ = *d++; /* fill in the rest of our mantissa */ | |
5333 | *p++ = *d++; | |
5334 | *p = *d; | |
5335 | ||
5336 | eshdn8 (y); /* shift our mantissa down 8 bits */ | |
5337 | done: | |
5338 | emovo (y, e); | |
5339 | } | |
5340 | ||
8c35bbc5 | 5341 | /* Convert e type X to DEC double precision D. */ |
985b6196 | 5342 | |
a0353055 | 5343 | static void |
985b6196 RS |
5344 | etodec (x, d) |
5345 | unsigned EMUSHORT *x, *d; | |
5346 | { | |
5347 | unsigned EMUSHORT xi[NI]; | |
842fbaaa JW |
5348 | EMULONG exp; |
5349 | int rndsav; | |
985b6196 RS |
5350 | |
5351 | emovi (x, xi); | |
8c35bbc5 RK |
5352 | /* Adjust exponent for offsets. */ |
5353 | exp = (EMULONG) xi[E] - (EXONE - 0201); | |
5354 | /* Round off to nearest or even. */ | |
985b6196 RS |
5355 | rndsav = rndprc; |
5356 | rndprc = 56; | |
5357 | emdnorm (xi, 0, 0, exp, 64); | |
5358 | rndprc = rndsav; | |
5359 | todec (xi, d); | |
5360 | } | |
5361 | ||
8c35bbc5 RK |
5362 | /* Convert exploded e-type X, that has already been rounded to |
5363 | 56-bit precision, to DEC format double Y. */ | |
5364 | ||
a0353055 | 5365 | static void |
985b6196 RS |
5366 | todec (x, y) |
5367 | unsigned EMUSHORT *x, *y; | |
5368 | { | |
5369 | unsigned EMUSHORT i; | |
5370 | unsigned EMUSHORT *p; | |
5371 | ||
5372 | p = x; | |
5373 | *y = 0; | |
5374 | if (*p++) | |
5375 | *y = 0100000; | |
5376 | i = *p++; | |
5377 | if (i == 0) | |
5378 | { | |
5379 | *y++ = 0; | |
5380 | *y++ = 0; | |
5381 | *y++ = 0; | |
5382 | *y++ = 0; | |
5383 | return; | |
5384 | } | |
5385 | if (i > 0377) | |
5386 | { | |
5387 | *y++ |= 077777; | |
5388 | *y++ = 0xffff; | |
5389 | *y++ = 0xffff; | |
5390 | *y++ = 0xffff; | |
64685ffa RS |
5391 | #ifdef ERANGE |
5392 | errno = ERANGE; | |
5393 | #endif | |
985b6196 RS |
5394 | return; |
5395 | } | |
5396 | i &= 0377; | |
5397 | i <<= 7; | |
5398 | eshup8 (x); | |
5399 | x[M] &= 0177; | |
5400 | i |= x[M]; | |
5401 | *y++ |= i; | |
5402 | *y++ = x[M + 1]; | |
5403 | *y++ = x[M + 2]; | |
5404 | *y++ = x[M + 3]; | |
5405 | } | |
842fbaaa JW |
5406 | #endif /* DEC */ |
5407 | ||
5408 | #ifdef IBM | |
defb5dab | 5409 | /* Convert IBM single/double precision to e type. */ |
a0353055 RK |
5410 | |
5411 | static void | |
842fbaaa JW |
5412 | ibmtoe (d, e, mode) |
5413 | unsigned EMUSHORT *d; | |
5414 | unsigned EMUSHORT *e; | |
5415 | enum machine_mode mode; | |
5416 | { | |
5417 | unsigned EMUSHORT y[NI]; | |
5418 | register unsigned EMUSHORT r, *p; | |
5419 | int rndsav; | |
5420 | ||
5421 | ecleaz (y); /* start with a zero */ | |
5422 | p = y; /* point to our number */ | |
5423 | r = *d; /* get IBM exponent word */ | |
5424 | if (*d & (unsigned int) 0x8000) | |
5425 | *p = 0xffff; /* fill in our sign */ | |
5426 | ++p; /* bump pointer to our exponent word */ | |
5427 | r &= 0x7f00; /* strip the sign bit */ | |
5428 | r >>= 6; /* shift exponent word down 6 bits */ | |
5429 | /* in fact shift by 8 right and 2 left */ | |
5430 | r += EXONE - (0x41 << 2); /* subtract IBM exponent offset */ | |
5431 | /* add our e type exponent offset */ | |
5432 | *p++ = r; /* to form our exponent */ | |
5433 | ||
5434 | *p++ = *d++ & 0xff; /* now do the high order mantissa */ | |
5435 | /* strip off the IBM exponent and sign bits */ | |
5436 | if (mode != SFmode) /* there are only 2 words in SFmode */ | |
5437 | { | |
5438 | *p++ = *d++; /* fill in the rest of our mantissa */ | |
5439 | *p++ = *d++; | |
5440 | } | |
5441 | *p = *d; | |
5442 | ||
5443 | if (y[M] == 0 && y[M+1] == 0 && y[M+2] == 0 && y[M+3] == 0) | |
5444 | y[0] = y[E] = 0; | |
5445 | else | |
5446 | y[E] -= 5 + enormlz (y); /* now normalise the mantissa */ | |
5447 | /* handle change in RADIX */ | |
5448 | emovo (y, e); | |
5449 | } | |
5450 | ||
985b6196 | 5451 | |
985b6196 | 5452 | |
defb5dab | 5453 | /* Convert e type to IBM single/double precision. */ |
842fbaaa | 5454 | |
a0353055 | 5455 | static void |
842fbaaa JW |
5456 | etoibm (x, d, mode) |
5457 | unsigned EMUSHORT *x, *d; | |
5458 | enum machine_mode mode; | |
5459 | { | |
5460 | unsigned EMUSHORT xi[NI]; | |
5461 | EMULONG exp; | |
5462 | int rndsav; | |
5463 | ||
5464 | emovi (x, xi); | |
5465 | exp = (EMULONG) xi[E] - (EXONE - (0x41 << 2)); /* adjust exponent for offsets */ | |
5466 | /* round off to nearest or even */ | |
5467 | rndsav = rndprc; | |
5468 | rndprc = 56; | |
5469 | emdnorm (xi, 0, 0, exp, 64); | |
5470 | rndprc = rndsav; | |
5471 | toibm (xi, d, mode); | |
5472 | } | |
5473 | ||
a0353055 | 5474 | static void |
842fbaaa JW |
5475 | toibm (x, y, mode) |
5476 | unsigned EMUSHORT *x, *y; | |
5477 | enum machine_mode mode; | |
5478 | { | |
5479 | unsigned EMUSHORT i; | |
5480 | unsigned EMUSHORT *p; | |
5481 | int r; | |
5482 | ||
5483 | p = x; | |
5484 | *y = 0; | |
5485 | if (*p++) | |
5486 | *y = 0x8000; | |
5487 | i = *p++; | |
5488 | if (i == 0) | |
5489 | { | |
5490 | *y++ = 0; | |
5491 | *y++ = 0; | |
5492 | if (mode != SFmode) | |
5493 | { | |
5494 | *y++ = 0; | |
5495 | *y++ = 0; | |
5496 | } | |
5497 | return; | |
5498 | } | |
5499 | r = i & 0x3; | |
5500 | i >>= 2; | |
5501 | if (i > 0x7f) | |
5502 | { | |
5503 | *y++ |= 0x7fff; | |
5504 | *y++ = 0xffff; | |
5505 | if (mode != SFmode) | |
5506 | { | |
5507 | *y++ = 0xffff; | |
5508 | *y++ = 0xffff; | |
5509 | } | |
5510 | #ifdef ERANGE | |
5511 | errno = ERANGE; | |
5512 | #endif | |
5513 | return; | |
5514 | } | |
5515 | i &= 0x7f; | |
5516 | *y |= (i << 8); | |
5517 | eshift (x, r + 5); | |
5518 | *y++ |= x[M]; | |
5519 | *y++ = x[M + 1]; | |
5520 | if (mode != SFmode) | |
5521 | { | |
5522 | *y++ = x[M + 2]; | |
5523 | *y++ = x[M + 3]; | |
5524 | } | |
5525 | } | |
5526 | #endif /* IBM */ | |
66b6d60b RS |
5527 | |
5528 | /* Output a binary NaN bit pattern in the target machine's format. */ | |
5529 | ||
5530 | /* If special NaN bit patterns are required, define them in tm.h | |
5531 | as arrays of unsigned 16-bit shorts. Otherwise, use the default | |
5532 | patterns here. */ | |
7729f1ca RS |
5533 | #ifdef TFMODE_NAN |
5534 | TFMODE_NAN; | |
5535 | #else | |
f76b9db2 ILT |
5536 | #ifdef IEEE |
5537 | unsigned EMUSHORT TFbignan[8] = | |
66b6d60b | 5538 | {0x7fff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff}; |
f76b9db2 | 5539 | unsigned EMUSHORT TFlittlenan[8] = {0, 0, 0, 0, 0, 0, 0x8000, 0xffff}; |
66b6d60b RS |
5540 | #endif |
5541 | #endif | |
5542 | ||
7729f1ca RS |
5543 | #ifdef XFMODE_NAN |
5544 | XFMODE_NAN; | |
5545 | #else | |
f76b9db2 ILT |
5546 | #ifdef IEEE |
5547 | unsigned EMUSHORT XFbignan[6] = | |
5548 | {0x7fff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff}; | |
5549 | unsigned EMUSHORT XFlittlenan[6] = {0, 0, 0, 0xc000, 0xffff, 0}; | |
66b6d60b RS |
5550 | #endif |
5551 | #endif | |
5552 | ||
7729f1ca RS |
5553 | #ifdef DFMODE_NAN |
5554 | DFMODE_NAN; | |
5555 | #else | |
f76b9db2 ILT |
5556 | #ifdef IEEE |
5557 | unsigned EMUSHORT DFbignan[4] = {0x7fff, 0xffff, 0xffff, 0xffff}; | |
5558 | unsigned EMUSHORT DFlittlenan[4] = {0, 0, 0, 0xfff8}; | |
66b6d60b RS |
5559 | #endif |
5560 | #endif | |
5561 | ||
7729f1ca RS |
5562 | #ifdef SFMODE_NAN |
5563 | SFMODE_NAN; | |
5564 | #else | |
f76b9db2 ILT |
5565 | #ifdef IEEE |
5566 | unsigned EMUSHORT SFbignan[2] = {0x7fff, 0xffff}; | |
5567 | unsigned EMUSHORT SFlittlenan[2] = {0, 0xffc0}; | |
66b6d60b RS |
5568 | #endif |
5569 | #endif | |
5570 | ||
5571 | ||
a0353055 | 5572 | static void |
29e11dab | 5573 | make_nan (nan, sign, mode) |
a0353055 RK |
5574 | unsigned EMUSHORT *nan; |
5575 | int sign; | |
5576 | enum machine_mode mode; | |
66b6d60b | 5577 | { |
29e11dab | 5578 | int n; |
66b6d60b RS |
5579 | unsigned EMUSHORT *p; |
5580 | ||
5581 | switch (mode) | |
5582 | { | |
5583 | /* Possibly the `reserved operand' patterns on a VAX can be | |
5584 | used like NaN's, but probably not in the same way as IEEE. */ | |
842fbaaa | 5585 | #if !defined(DEC) && !defined(IBM) |
66b6d60b RS |
5586 | case TFmode: |
5587 | n = 8; | |
8c35bbc5 | 5588 | if (REAL_WORDS_BIG_ENDIAN) |
f76b9db2 ILT |
5589 | p = TFbignan; |
5590 | else | |
5591 | p = TFlittlenan; | |
66b6d60b RS |
5592 | break; |
5593 | case XFmode: | |
5594 | n = 6; | |
8c35bbc5 | 5595 | if (REAL_WORDS_BIG_ENDIAN) |
f76b9db2 ILT |
5596 | p = XFbignan; |
5597 | else | |
5598 | p = XFlittlenan; | |
66b6d60b RS |
5599 | break; |
5600 | case DFmode: | |
5601 | n = 4; | |
8c35bbc5 | 5602 | if (REAL_WORDS_BIG_ENDIAN) |
f76b9db2 ILT |
5603 | p = DFbignan; |
5604 | else | |
5605 | p = DFlittlenan; | |
66b6d60b | 5606 | break; |
bfbc6416 | 5607 | case HFmode: |
66b6d60b RS |
5608 | case SFmode: |
5609 | n = 2; | |
8c35bbc5 | 5610 | if (REAL_WORDS_BIG_ENDIAN) |
f76b9db2 ILT |
5611 | p = SFbignan; |
5612 | else | |
5613 | p = SFlittlenan; | |
66b6d60b RS |
5614 | break; |
5615 | #endif | |
5616 | default: | |
5617 | abort (); | |
5618 | } | |
8c35bbc5 | 5619 | if (REAL_WORDS_BIG_ENDIAN) |
f76b9db2 | 5620 | *nan++ = (sign << 15) | *p++; |
29e11dab | 5621 | while (--n != 0) |
66b6d60b | 5622 | *nan++ = *p++; |
8c35bbc5 | 5623 | if (! REAL_WORDS_BIG_ENDIAN) |
f76b9db2 | 5624 | *nan = (sign << 15) | *p; |
66b6d60b RS |
5625 | } |
5626 | ||
b31c244f RS |
5627 | /* Convert an SFmode target `float' value to a REAL_VALUE_TYPE. |
5628 | This is the inverse of the function `etarsingle' invoked by | |
5629 | REAL_VALUE_TO_TARGET_SINGLE. */ | |
5630 | ||
5631 | REAL_VALUE_TYPE | |
5632 | ereal_from_float (f) | |
04ae9e4c | 5633 | HOST_WIDE_INT f; |
b31c244f RS |
5634 | { |
5635 | REAL_VALUE_TYPE r; | |
5636 | unsigned EMUSHORT s[2]; | |
5637 | unsigned EMUSHORT e[NE]; | |
5638 | ||
5639 | /* Convert 32 bit integer to array of 16 bit pieces in target machine order. | |
5640 | This is the inverse operation to what the function `endian' does. */ | |
8c35bbc5 | 5641 | if (REAL_WORDS_BIG_ENDIAN) |
f76b9db2 ILT |
5642 | { |
5643 | s[0] = (unsigned EMUSHORT) (f >> 16); | |
5644 | s[1] = (unsigned EMUSHORT) f; | |
5645 | } | |
5646 | else | |
5647 | { | |
5648 | s[0] = (unsigned EMUSHORT) f; | |
5649 | s[1] = (unsigned EMUSHORT) (f >> 16); | |
5650 | } | |
b31c244f RS |
5651 | /* Convert and promote the target float to E-type. */ |
5652 | e24toe (s, e); | |
5653 | /* Output E-type to REAL_VALUE_TYPE. */ | |
5654 | PUT_REAL (e, &r); | |
5655 | return r; | |
5656 | } | |
5657 | ||
842fbaaa | 5658 | |
b31c244f RS |
5659 | /* Convert a DFmode target `double' value to a REAL_VALUE_TYPE. |
5660 | This is the inverse of the function `etardouble' invoked by | |
5661 | REAL_VALUE_TO_TARGET_DOUBLE. | |
5662 | ||
04ae9e4c RK |
5663 | The DFmode is stored as an array of HOST_WIDE_INT in the target's |
5664 | data format, with no holes in the bit packing. The first element | |
b31c244f RS |
5665 | of the input array holds the bits that would come first in the |
5666 | target computer's memory. */ | |
5667 | ||
5668 | REAL_VALUE_TYPE | |
5669 | ereal_from_double (d) | |
04ae9e4c | 5670 | HOST_WIDE_INT d[]; |
b31c244f RS |
5671 | { |
5672 | REAL_VALUE_TYPE r; | |
5673 | unsigned EMUSHORT s[4]; | |
5674 | unsigned EMUSHORT e[NE]; | |
5675 | ||
04ae9e4c | 5676 | /* Convert array of HOST_WIDE_INT to equivalent array of 16-bit pieces. */ |
8c35bbc5 | 5677 | if (REAL_WORDS_BIG_ENDIAN) |
f76b9db2 ILT |
5678 | { |
5679 | s[0] = (unsigned EMUSHORT) (d[0] >> 16); | |
5680 | s[1] = (unsigned EMUSHORT) d[0]; | |
60e61165 | 5681 | #if HOST_BITS_PER_WIDE_INT == 32 |
f76b9db2 ILT |
5682 | s[2] = (unsigned EMUSHORT) (d[1] >> 16); |
5683 | s[3] = (unsigned EMUSHORT) d[1]; | |
60e61165 | 5684 | #else |
f76b9db2 ILT |
5685 | /* In this case the entire target double is contained in the |
5686 | first array element. The second element of the input is | |
5687 | ignored. */ | |
5688 | s[2] = (unsigned EMUSHORT) (d[0] >> 48); | |
5689 | s[3] = (unsigned EMUSHORT) (d[0] >> 32); | |
60e61165 | 5690 | #endif |
f76b9db2 ILT |
5691 | } |
5692 | else | |
5693 | { | |
5694 | /* Target float words are little-endian. */ | |
5695 | s[0] = (unsigned EMUSHORT) d[0]; | |
5696 | s[1] = (unsigned EMUSHORT) (d[0] >> 16); | |
60e61165 | 5697 | #if HOST_BITS_PER_WIDE_INT == 32 |
f76b9db2 ILT |
5698 | s[2] = (unsigned EMUSHORT) d[1]; |
5699 | s[3] = (unsigned EMUSHORT) (d[1] >> 16); | |
60e61165 | 5700 | #else |
f76b9db2 ILT |
5701 | s[2] = (unsigned EMUSHORT) (d[0] >> 32); |
5702 | s[3] = (unsigned EMUSHORT) (d[0] >> 48); | |
b31c244f | 5703 | #endif |
f76b9db2 | 5704 | } |
b31c244f RS |
5705 | /* Convert target double to E-type. */ |
5706 | e53toe (s, e); | |
5707 | /* Output E-type to REAL_VALUE_TYPE. */ | |
5708 | PUT_REAL (e, &r); | |
5709 | return r; | |
5710 | } | |
842fbaaa JW |
5711 | |
5712 | ||
b51ab098 RK |
5713 | /* Convert target computer unsigned 64-bit integer to e-type. |
5714 | The endian-ness of DImode follows the convention for integers, | |
8c35bbc5 | 5715 | so we use WORDS_BIG_ENDIAN here, not REAL_WORDS_BIG_ENDIAN. */ |
842fbaaa | 5716 | |
a0353055 | 5717 | static void |
842fbaaa JW |
5718 | uditoe (di, e) |
5719 | unsigned EMUSHORT *di; /* Address of the 64-bit int. */ | |
5720 | unsigned EMUSHORT *e; | |
5721 | { | |
5722 | unsigned EMUSHORT yi[NI]; | |
5723 | int k; | |
5724 | ||
5725 | ecleaz (yi); | |
f76b9db2 ILT |
5726 | if (WORDS_BIG_ENDIAN) |
5727 | { | |
5728 | for (k = M; k < M + 4; k++) | |
5729 | yi[k] = *di++; | |
5730 | } | |
5731 | else | |
5732 | { | |
5733 | for (k = M + 3; k >= M; k--) | |
5734 | yi[k] = *di++; | |
5735 | } | |
842fbaaa JW |
5736 | yi[E] = EXONE + 47; /* exponent if normalize shift count were 0 */ |
5737 | if ((k = enormlz (yi)) > NBITS)/* normalize the significand */ | |
5738 | ecleaz (yi); /* it was zero */ | |
5739 | else | |
5740 | yi[E] -= (unsigned EMUSHORT) k;/* subtract shift count from exponent */ | |
5741 | emovo (yi, e); | |
5742 | } | |
5743 | ||
5744 | /* Convert target computer signed 64-bit integer to e-type. */ | |
5745 | ||
a0353055 | 5746 | static void |
842fbaaa JW |
5747 | ditoe (di, e) |
5748 | unsigned EMUSHORT *di; /* Address of the 64-bit int. */ | |
5749 | unsigned EMUSHORT *e; | |
5750 | { | |
5751 | unsigned EMULONG acc; | |
5752 | unsigned EMUSHORT yi[NI]; | |
5753 | unsigned EMUSHORT carry; | |
5754 | int k, sign; | |
5755 | ||
5756 | ecleaz (yi); | |
f76b9db2 ILT |
5757 | if (WORDS_BIG_ENDIAN) |
5758 | { | |
5759 | for (k = M; k < M + 4; k++) | |
5760 | yi[k] = *di++; | |
5761 | } | |
5762 | else | |
5763 | { | |
5764 | for (k = M + 3; k >= M; k--) | |
5765 | yi[k] = *di++; | |
5766 | } | |
842fbaaa JW |
5767 | /* Take absolute value */ |
5768 | sign = 0; | |
5769 | if (yi[M] & 0x8000) | |
5770 | { | |
5771 | sign = 1; | |
5772 | carry = 0; | |
5773 | for (k = M + 3; k >= M; k--) | |
5774 | { | |
5775 | acc = (unsigned EMULONG) (~yi[k] & 0xffff) + carry; | |
5776 | yi[k] = acc; | |
5777 | carry = 0; | |
5778 | if (acc & 0x10000) | |
5779 | carry = 1; | |
5780 | } | |
5781 | } | |
5782 | yi[E] = EXONE + 47; /* exponent if normalize shift count were 0 */ | |
5783 | if ((k = enormlz (yi)) > NBITS)/* normalize the significand */ | |
5784 | ecleaz (yi); /* it was zero */ | |
5785 | else | |
5786 | yi[E] -= (unsigned EMUSHORT) k;/* subtract shift count from exponent */ | |
5787 | emovo (yi, e); | |
5788 | if (sign) | |
5789 | eneg (e); | |
5790 | } | |
5791 | ||
5792 | ||
5793 | /* Convert e-type to unsigned 64-bit int. */ | |
5794 | ||
008f0d36 RK |
5795 | static void |
5796 | etoudi (x, i) | |
842fbaaa JW |
5797 | unsigned EMUSHORT *x; |
5798 | unsigned EMUSHORT *i; | |
5799 | { | |
5800 | unsigned EMUSHORT xi[NI]; | |
5801 | int j, k; | |
5802 | ||
5803 | emovi (x, xi); | |
5804 | if (xi[0]) | |
5805 | { | |
5806 | xi[M] = 0; | |
5807 | goto noshift; | |
5808 | } | |
5809 | k = (int) xi[E] - (EXONE - 1); | |
5810 | if (k <= 0) | |
5811 | { | |
5812 | for (j = 0; j < 4; j++) | |
5813 | *i++ = 0; | |
5814 | return; | |
5815 | } | |
5816 | if (k > 64) | |
5817 | { | |
5818 | for (j = 0; j < 4; j++) | |
5819 | *i++ = 0xffff; | |
5820 | if (extra_warnings) | |
5821 | warning ("overflow on truncation to integer"); | |
5822 | return; | |
5823 | } | |
5824 | if (k > 16) | |
5825 | { | |
5826 | /* Shift more than 16 bits: first shift up k-16 mod 16, | |
5827 | then shift up by 16's. */ | |
5828 | j = k - ((k >> 4) << 4); | |
5829 | if (j == 0) | |
5830 | j = 16; | |
5831 | eshift (xi, j); | |
f76b9db2 ILT |
5832 | if (WORDS_BIG_ENDIAN) |
5833 | *i++ = xi[M]; | |
5834 | else | |
5835 | { | |
5836 | i += 3; | |
5837 | *i-- = xi[M]; | |
5838 | } | |
842fbaaa JW |
5839 | k -= j; |
5840 | do | |
5841 | { | |
5842 | eshup6 (xi); | |
f76b9db2 ILT |
5843 | if (WORDS_BIG_ENDIAN) |
5844 | *i++ = xi[M]; | |
5845 | else | |
5846 | *i-- = xi[M]; | |
842fbaaa JW |
5847 | } |
5848 | while ((k -= 16) > 0); | |
5849 | } | |
5850 | else | |
5851 | { | |
5852 | /* shift not more than 16 bits */ | |
5853 | eshift (xi, k); | |
5854 | ||
5855 | noshift: | |
5856 | ||
f76b9db2 ILT |
5857 | if (WORDS_BIG_ENDIAN) |
5858 | { | |
5859 | i += 3; | |
5860 | *i-- = xi[M]; | |
5861 | *i-- = 0; | |
5862 | *i-- = 0; | |
5863 | *i = 0; | |
5864 | } | |
5865 | else | |
5866 | { | |
5867 | *i++ = xi[M]; | |
5868 | *i++ = 0; | |
5869 | *i++ = 0; | |
5870 | *i = 0; | |
5871 | } | |
842fbaaa JW |
5872 | } |
5873 | } | |
5874 | ||
5875 | ||
5876 | /* Convert e-type to signed 64-bit int. */ | |
5877 | ||
a0353055 | 5878 | static void |
842fbaaa JW |
5879 | etodi (x, i) |
5880 | unsigned EMUSHORT *x; | |
5881 | unsigned EMUSHORT *i; | |
5882 | { | |
5883 | unsigned EMULONG acc; | |
5884 | unsigned EMUSHORT xi[NI]; | |
5885 | unsigned EMUSHORT carry; | |
5886 | unsigned EMUSHORT *isave; | |
5887 | int j, k; | |
5888 | ||
5889 | emovi (x, xi); | |
5890 | k = (int) xi[E] - (EXONE - 1); | |
5891 | if (k <= 0) | |
5892 | { | |
5893 | for (j = 0; j < 4; j++) | |
5894 | *i++ = 0; | |
5895 | return; | |
5896 | } | |
5897 | if (k > 64) | |
5898 | { | |
5899 | for (j = 0; j < 4; j++) | |
5900 | *i++ = 0xffff; | |
5901 | if (extra_warnings) | |
5902 | warning ("overflow on truncation to integer"); | |
5903 | return; | |
5904 | } | |
5905 | isave = i; | |
5906 | if (k > 16) | |
5907 | { | |
5908 | /* Shift more than 16 bits: first shift up k-16 mod 16, | |
5909 | then shift up by 16's. */ | |
5910 | j = k - ((k >> 4) << 4); | |
5911 | if (j == 0) | |
5912 | j = 16; | |
5913 | eshift (xi, j); | |
f76b9db2 ILT |
5914 | if (WORDS_BIG_ENDIAN) |
5915 | *i++ = xi[M]; | |
5916 | else | |
5917 | { | |
5918 | i += 3; | |
5919 | *i-- = xi[M]; | |
5920 | } | |
842fbaaa JW |
5921 | k -= j; |
5922 | do | |
5923 | { | |
5924 | eshup6 (xi); | |
f76b9db2 ILT |
5925 | if (WORDS_BIG_ENDIAN) |
5926 | *i++ = xi[M]; | |
5927 | else | |
5928 | *i-- = xi[M]; | |
842fbaaa JW |
5929 | } |
5930 | while ((k -= 16) > 0); | |
5931 | } | |
5932 | else | |
5933 | { | |
5934 | /* shift not more than 16 bits */ | |
5935 | eshift (xi, k); | |
5936 | ||
f76b9db2 ILT |
5937 | if (WORDS_BIG_ENDIAN) |
5938 | { | |
5939 | i += 3; | |
5940 | *i = xi[M]; | |
5941 | *i-- = 0; | |
5942 | *i-- = 0; | |
5943 | *i = 0; | |
5944 | } | |
5945 | else | |
5946 | { | |
5947 | *i++ = xi[M]; | |
5948 | *i++ = 0; | |
5949 | *i++ = 0; | |
5950 | *i = 0; | |
5951 | } | |
842fbaaa JW |
5952 | } |
5953 | /* Negate if negative */ | |
5954 | if (xi[0]) | |
5955 | { | |
5956 | carry = 0; | |
f76b9db2 ILT |
5957 | if (WORDS_BIG_ENDIAN) |
5958 | isave += 3; | |
842fbaaa JW |
5959 | for (k = 0; k < 4; k++) |
5960 | { | |
5961 | acc = (unsigned EMULONG) (~(*isave) & 0xffff) + carry; | |
f76b9db2 ILT |
5962 | if (WORDS_BIG_ENDIAN) |
5963 | *isave-- = acc; | |
5964 | else | |
5965 | *isave++ = acc; | |
842fbaaa JW |
5966 | carry = 0; |
5967 | if (acc & 0x10000) | |
5968 | carry = 1; | |
5969 | } | |
5970 | } | |
5971 | } | |
5972 | ||
5973 | ||
5974 | /* Longhand square root routine. */ | |
5975 | ||
5976 | ||
5977 | static int esqinited = 0; | |
5978 | static unsigned short sqrndbit[NI]; | |
5979 | ||
a0353055 | 5980 | static void |
842fbaaa JW |
5981 | esqrt (x, y) |
5982 | unsigned EMUSHORT *x, *y; | |
5983 | { | |
5984 | unsigned EMUSHORT temp[NI], num[NI], sq[NI], xx[NI]; | |
5985 | EMULONG m, exp; | |
5986 | int i, j, k, n, nlups; | |
5987 | ||
5988 | if (esqinited == 0) | |
5989 | { | |
5990 | ecleaz (sqrndbit); | |
5991 | sqrndbit[NI - 2] = 1; | |
5992 | esqinited = 1; | |
5993 | } | |
5994 | /* Check for arg <= 0 */ | |
5995 | i = ecmp (x, ezero); | |
5996 | if (i <= 0) | |
5997 | { | |
29e11dab | 5998 | if (i == -1) |
842fbaaa | 5999 | { |
29e11dab RK |
6000 | mtherr ("esqrt", DOMAIN); |
6001 | eclear (y); | |
842fbaaa | 6002 | } |
29e11dab RK |
6003 | else |
6004 | emov (x, y); | |
842fbaaa JW |
6005 | return; |
6006 | } | |
6007 | ||
6008 | #ifdef INFINITY | |
6009 | if (eisinf (x)) | |
6010 | { | |
6011 | eclear (y); | |
6012 | einfin (y); | |
6013 | return; | |
6014 | } | |
6015 | #endif | |
6016 | /* Bring in the arg and renormalize if it is denormal. */ | |
6017 | emovi (x, xx); | |
6018 | m = (EMULONG) xx[1]; /* local long word exponent */ | |
6019 | if (m == 0) | |
6020 | m -= enormlz (xx); | |
6021 | ||
6022 | /* Divide exponent by 2 */ | |
6023 | m -= 0x3ffe; | |
6024 | exp = (unsigned short) ((m / 2) + 0x3ffe); | |
6025 | ||
6026 | /* Adjust if exponent odd */ | |
6027 | if ((m & 1) != 0) | |
6028 | { | |
6029 | if (m > 0) | |
6030 | exp += 1; | |
6031 | eshdn1 (xx); | |
6032 | } | |
6033 | ||
6034 | ecleaz (sq); | |
6035 | ecleaz (num); | |
6036 | n = 8; /* get 8 bits of result per inner loop */ | |
6037 | nlups = rndprc; | |
6038 | j = 0; | |
6039 | ||
6040 | while (nlups > 0) | |
6041 | { | |
6042 | /* bring in next word of arg */ | |
6043 | if (j < NE) | |
6044 | num[NI - 1] = xx[j + 3]; | |
6045 | /* Do additional bit on last outer loop, for roundoff. */ | |
6046 | if (nlups <= 8) | |
6047 | n = nlups + 1; | |
6048 | for (i = 0; i < n; i++) | |
6049 | { | |
6050 | /* Next 2 bits of arg */ | |
6051 | eshup1 (num); | |
6052 | eshup1 (num); | |
6053 | /* Shift up answer */ | |
6054 | eshup1 (sq); | |
6055 | /* Make trial divisor */ | |
6056 | for (k = 0; k < NI; k++) | |
6057 | temp[k] = sq[k]; | |
6058 | eshup1 (temp); | |
6059 | eaddm (sqrndbit, temp); | |
6060 | /* Subtract and insert answer bit if it goes in */ | |
6061 | if (ecmpm (temp, num) <= 0) | |
6062 | { | |
6063 | esubm (temp, num); | |
6064 | sq[NI - 2] |= 1; | |
6065 | } | |
6066 | } | |
6067 | nlups -= n; | |
6068 | j += 1; | |
6069 | } | |
6070 | ||
6071 | /* Adjust for extra, roundoff loop done. */ | |
6072 | exp += (NBITS - 1) - rndprc; | |
6073 | ||
6074 | /* Sticky bit = 1 if the remainder is nonzero. */ | |
6075 | k = 0; | |
6076 | for (i = 3; i < NI; i++) | |
6077 | k |= (int) num[i]; | |
6078 | ||
6079 | /* Renormalize and round off. */ | |
6080 | emdnorm (sq, k, 0, exp, 64); | |
6081 | emovo (sq, y); | |
6082 | } | |
985b6196 | 6083 | #endif /* EMU_NON_COMPILE not defined */ |
8ddae348 RK |
6084 | \f |
6085 | /* Return the binary precision of the significand for a given | |
6086 | floating point mode. The mode can hold an integer value | |
6087 | that many bits wide, without losing any bits. */ | |
6088 | ||
6089 | int | |
6090 | significand_size (mode) | |
6091 | enum machine_mode mode; | |
6092 | { | |
6093 | ||
de3a68a1 RK |
6094 | /* Don't test the modes, but their sizes, lest this |
6095 | code won't work for BITS_PER_UNIT != 8 . */ | |
6096 | ||
6097 | switch (GET_MODE_BITSIZE (mode)) | |
8ddae348 | 6098 | { |
de3a68a1 | 6099 | case 32: |
8ddae348 RK |
6100 | return 24; |
6101 | ||
de3a68a1 | 6102 | case 64: |
8ddae348 RK |
6103 | #if TARGET_FLOAT_FORMAT == IEEE_FLOAT_FORMAT |
6104 | return 53; | |
6105 | #else | |
6106 | #if TARGET_FLOAT_FORMAT == IBM_FLOAT_FORMAT | |
6107 | return 56; | |
6108 | #else | |
6109 | #if TARGET_FLOAT_FORMAT == VAX_FLOAT_FORMAT | |
6110 | return 56; | |
6111 | #else | |
6112 | abort (); | |
6113 | #endif | |
6114 | #endif | |
6115 | #endif | |
6116 | ||
de3a68a1 | 6117 | case 96: |
8ddae348 | 6118 | return 64; |
de3a68a1 | 6119 | case 128: |
8ddae348 RK |
6120 | return 113; |
6121 | ||
6122 | default: | |
6123 | abort (); | |
6124 | } | |
6125 | } |