]>
Commit | Line | Data |
---|---|---|
985b6196 | 1 | /* real.c - implementation of REAL_ARITHMETIC, REAL_VALUE_ATOF, |
29e11dab | 2 | and support for XFmode IEEE extended real floating point arithmetic. |
de3a68a1 | 3 | Copyright (C) 1993, 1994, 1995, 1996 Free Software Foundation, Inc. |
c764eafd | 4 | Contributed by Stephen L. Moshier (moshier@world.std.com). |
985b6196 RS |
5 | |
6 | This file is part of GNU CC. | |
7 | ||
8 | GNU CC is free software; you can redistribute it and/or modify | |
9 | it under the terms of the GNU General Public License as published by | |
10 | the Free Software Foundation; either version 2, or (at your option) | |
11 | any later version. | |
12 | ||
13 | GNU CC is distributed in the hope that it will be useful, | |
14 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 | GNU General Public License for more details. | |
17 | ||
18 | You should have received a copy of the GNU General Public License | |
19 | along with GNU CC; see the file COPYING. If not, write to | |
e99215a3 RK |
20 | the Free Software Foundation, 59 Temple Place - Suite 330, |
21 | Boston, MA 02111-1307, USA. */ | |
985b6196 RS |
22 | |
23 | #include <stdio.h> | |
64685ffa | 24 | #include <errno.h> |
985b6196 | 25 | #include "config.h" |
985b6196 RS |
26 | #include "tree.h" |
27 | ||
64685ffa RS |
28 | #ifndef errno |
29 | extern int errno; | |
30 | #endif | |
31 | ||
985b6196 RS |
32 | /* To enable support of XFmode extended real floating point, define |
33 | LONG_DOUBLE_TYPE_SIZE 96 in the tm.h file (m68k.h or i386.h). | |
34 | ||
842fbaaa | 35 | To support cross compilation between IEEE, VAX and IBM floating |
985b6196 RS |
36 | point formats, define REAL_ARITHMETIC in the tm.h file. |
37 | ||
38 | In either case the machine files (tm.h) must not contain any code | |
39 | that tries to use host floating point arithmetic to convert | |
40 | REAL_VALUE_TYPEs from `double' to `float', pass them to fprintf, | |
41 | etc. In cross-compile situations a REAL_VALUE_TYPE may not | |
42 | be intelligible to the host computer's native arithmetic. | |
43 | ||
44 | The emulator defaults to the host's floating point format so that | |
45 | its decimal conversion functions can be used if desired (see | |
46 | real.h). | |
47 | ||
8c35bbc5 RK |
48 | The first part of this file interfaces gcc to a floating point |
49 | arithmetic suite that was not written with gcc in mind. Avoid | |
50 | changing the low-level arithmetic routines unless you have suitable | |
51 | test programs available. A special version of the PARANOIA floating | |
52 | point arithmetic tester, modified for this purpose, can be found on | |
53 | usc.edu: /pub/C-numanal/ieeetest.zoo. Other tests, and libraries of | |
54 | XFmode and TFmode transcendental functions, can be obtained by ftp from | |
55 | netlib.att.com: netlib/cephes. */ | |
775ba35d | 56 | \f |
985b6196 | 57 | /* Type of computer arithmetic. |
f76b9db2 ILT |
58 | Only one of DEC, IBM, IEEE, or UNK should get defined. |
59 | ||
8c35bbc5 | 60 | `IEEE', when REAL_WORDS_BIG_ENDIAN is non-zero, refers generically |
f76b9db2 ILT |
61 | to big-endian IEEE floating-point data structure. This definition |
62 | should work in SFmode `float' type and DFmode `double' type on | |
63 | virtually all big-endian IEEE machines. If LONG_DOUBLE_TYPE_SIZE | |
64 | has been defined to be 96, then IEEE also invokes the particular | |
65 | XFmode (`long double' type) data structure used by the Motorola | |
66 | 680x0 series processors. | |
67 | ||
8c35bbc5 | 68 | `IEEE', when REAL_WORDS_BIG_ENDIAN is zero, refers generally to |
f76b9db2 ILT |
69 | little-endian IEEE machines. In this case, if LONG_DOUBLE_TYPE_SIZE |
70 | has been defined to be 96, then IEEE also invokes the particular | |
71 | XFmode `long double' data structure used by the Intel 80x86 series | |
72 | processors. | |
66b6d60b RS |
73 | |
74 | `DEC' refers specifically to the Digital Equipment Corp PDP-11 | |
75 | and VAX floating point data structure. This model currently | |
76 | supports no type wider than DFmode. | |
77 | ||
842fbaaa JW |
78 | `IBM' refers specifically to the IBM System/370 and compatible |
79 | floating point data structure. This model currently supports | |
80 | no type wider than DFmode. The IBM conversions were contributed by | |
81 | frank@atom.ansto.gov.au (Frank Crawford). | |
82 | ||
66b6d60b RS |
83 | If LONG_DOUBLE_TYPE_SIZE = 64 (the default, unless tm.h defines it) |
84 | then `long double' and `double' are both implemented, but they | |
85 | both mean DFmode. In this case, the software floating-point | |
86 | support available here is activated by writing | |
87 | #define REAL_ARITHMETIC | |
88 | in tm.h. | |
89 | ||
90 | The case LONG_DOUBLE_TYPE_SIZE = 128 activates TFmode support | |
842fbaaa | 91 | and may deactivate XFmode since `long double' is used to refer |
b51ab098 RK |
92 | to both modes. |
93 | ||
94 | The macros FLOAT_WORDS_BIG_ENDIAN, HOST_FLOAT_WORDS_BIG_ENDIAN, | |
95 | contributed by Richard Earnshaw <Richard.Earnshaw@cl.cam.ac.uk>, | |
96 | separate the floating point unit's endian-ness from that of | |
97 | the integer addressing. This permits one to define a big-endian | |
98 | FPU on a little-endian machine (e.g., ARM). An extension to | |
99 | BYTES_BIG_ENDIAN may be required for some machines in the future. | |
100 | These optional macros may be defined in tm.h. In real.h, they | |
101 | default to WORDS_BIG_ENDIAN, etc., so there is no need to define | |
102 | them for any normal host or target machine on which the floats | |
103 | and the integers have the same endian-ness. */ | |
104 | ||
66b6d60b RS |
105 | |
106 | /* The following converts gcc macros into the ones used by this file. */ | |
107 | ||
985b6196 RS |
108 | /* REAL_ARITHMETIC defined means that macros in real.h are |
109 | defined to call emulator functions. */ | |
110 | #ifdef REAL_ARITHMETIC | |
111 | ||
112 | #if TARGET_FLOAT_FORMAT == VAX_FLOAT_FORMAT | |
113 | /* PDP-11, Pro350, VAX: */ | |
114 | #define DEC 1 | |
115 | #else /* it's not VAX */ | |
842fbaaa JW |
116 | #if TARGET_FLOAT_FORMAT == IBM_FLOAT_FORMAT |
117 | /* IBM System/370 style */ | |
118 | #define IBM 1 | |
119 | #else /* it's also not an IBM */ | |
985b6196 | 120 | #if TARGET_FLOAT_FORMAT == IEEE_FLOAT_FORMAT |
f76b9db2 | 121 | #define IEEE |
985b6196 RS |
122 | #else /* it's not IEEE either */ |
123 | /* UNKnown arithmetic. We don't support this and can't go on. */ | |
124 | unknown arithmetic type | |
125 | #define UNK 1 | |
126 | #endif /* not IEEE */ | |
842fbaaa | 127 | #endif /* not IBM */ |
985b6196 RS |
128 | #endif /* not VAX */ |
129 | ||
8c35bbc5 RK |
130 | #define REAL_WORDS_BIG_ENDIAN FLOAT_WORDS_BIG_ENDIAN |
131 | ||
985b6196 RS |
132 | #else |
133 | /* REAL_ARITHMETIC not defined means that the *host's* data | |
134 | structure will be used. It may differ by endian-ness from the | |
135 | target machine's structure and will get its ends swapped | |
136 | accordingly (but not here). Probably only the decimal <-> binary | |
137 | functions in this file will actually be used in this case. */ | |
defb5dab | 138 | |
985b6196 RS |
139 | #if HOST_FLOAT_FORMAT == VAX_FLOAT_FORMAT |
140 | #define DEC 1 | |
141 | #else /* it's not VAX */ | |
842fbaaa JW |
142 | #if HOST_FLOAT_FORMAT == IBM_FLOAT_FORMAT |
143 | /* IBM System/370 style */ | |
144 | #define IBM 1 | |
145 | #else /* it's also not an IBM */ | |
985b6196 | 146 | #if HOST_FLOAT_FORMAT == IEEE_FLOAT_FORMAT |
f76b9db2 | 147 | #define IEEE |
985b6196 RS |
148 | #else /* it's not IEEE either */ |
149 | unknown arithmetic type | |
150 | #define UNK 1 | |
151 | #endif /* not IEEE */ | |
842fbaaa | 152 | #endif /* not IBM */ |
985b6196 RS |
153 | #endif /* not VAX */ |
154 | ||
8c35bbc5 RK |
155 | #define REAL_WORDS_BIG_ENDIAN HOST_FLOAT_WORDS_BIG_ENDIAN |
156 | ||
985b6196 RS |
157 | #endif /* REAL_ARITHMETIC not defined */ |
158 | ||
66b6d60b RS |
159 | /* Define INFINITY for support of infinity. |
160 | Define NANS for support of Not-a-Number's (NaN's). */ | |
842fbaaa | 161 | #if !defined(DEC) && !defined(IBM) |
985b6196 | 162 | #define INFINITY |
66b6d60b | 163 | #define NANS |
985b6196 RS |
164 | #endif |
165 | ||
66b6d60b RS |
166 | /* Support of NaNs requires support of infinity. */ |
167 | #ifdef NANS | |
168 | #ifndef INFINITY | |
169 | #define INFINITY | |
170 | #endif | |
171 | #endif | |
775ba35d | 172 | \f |
985b6196 RS |
173 | /* Find a host integer type that is at least 16 bits wide, |
174 | and another type at least twice whatever that size is. */ | |
175 | ||
176 | #if HOST_BITS_PER_CHAR >= 16 | |
177 | #define EMUSHORT char | |
178 | #define EMUSHORT_SIZE HOST_BITS_PER_CHAR | |
179 | #define EMULONG_SIZE (2 * HOST_BITS_PER_CHAR) | |
180 | #else | |
181 | #if HOST_BITS_PER_SHORT >= 16 | |
182 | #define EMUSHORT short | |
183 | #define EMUSHORT_SIZE HOST_BITS_PER_SHORT | |
184 | #define EMULONG_SIZE (2 * HOST_BITS_PER_SHORT) | |
185 | #else | |
186 | #if HOST_BITS_PER_INT >= 16 | |
187 | #define EMUSHORT int | |
188 | #define EMUSHORT_SIZE HOST_BITS_PER_INT | |
189 | #define EMULONG_SIZE (2 * HOST_BITS_PER_INT) | |
190 | #else | |
191 | #if HOST_BITS_PER_LONG >= 16 | |
192 | #define EMUSHORT long | |
193 | #define EMUSHORT_SIZE HOST_BITS_PER_LONG | |
194 | #define EMULONG_SIZE (2 * HOST_BITS_PER_LONG) | |
195 | #else | |
196 | /* You will have to modify this program to have a smaller unit size. */ | |
197 | #define EMU_NON_COMPILE | |
198 | #endif | |
199 | #endif | |
200 | #endif | |
201 | #endif | |
202 | ||
203 | #if HOST_BITS_PER_SHORT >= EMULONG_SIZE | |
204 | #define EMULONG short | |
205 | #else | |
206 | #if HOST_BITS_PER_INT >= EMULONG_SIZE | |
207 | #define EMULONG int | |
208 | #else | |
209 | #if HOST_BITS_PER_LONG >= EMULONG_SIZE | |
210 | #define EMULONG long | |
211 | #else | |
212 | #if HOST_BITS_PER_LONG_LONG >= EMULONG_SIZE | |
213 | #define EMULONG long long int | |
214 | #else | |
215 | /* You will have to modify this program to have a smaller unit size. */ | |
216 | #define EMU_NON_COMPILE | |
217 | #endif | |
218 | #endif | |
219 | #endif | |
220 | #endif | |
221 | ||
222 | ||
223 | /* The host interface doesn't work if no 16-bit size exists. */ | |
224 | #if EMUSHORT_SIZE != 16 | |
225 | #define EMU_NON_COMPILE | |
226 | #endif | |
227 | ||
228 | /* OK to continue compilation. */ | |
229 | #ifndef EMU_NON_COMPILE | |
230 | ||
231 | /* Construct macros to translate between REAL_VALUE_TYPE and e type. | |
232 | In GET_REAL and PUT_REAL, r and e are pointers. | |
233 | A REAL_VALUE_TYPE is guaranteed to occupy contiguous locations | |
234 | in memory, with no holes. */ | |
235 | ||
236 | #if LONG_DOUBLE_TYPE_SIZE == 96 | |
842fbaaa JW |
237 | /* Number of 16 bit words in external e type format */ |
238 | #define NE 6 | |
239 | #define MAXDECEXP 4932 | |
240 | #define MINDECEXP -4956 | |
4ba46f43 RK |
241 | #define GET_REAL(r,e) bcopy ((char *) r, (char *) e, 2*NE) |
242 | #define PUT_REAL(e,r) bcopy ((char *) e, (char *) r, 2*NE) | |
985b6196 | 243 | #else /* no XFmode */ |
842fbaaa JW |
244 | #if LONG_DOUBLE_TYPE_SIZE == 128 |
245 | #define NE 10 | |
246 | #define MAXDECEXP 4932 | |
247 | #define MINDECEXP -4977 | |
4ba46f43 RK |
248 | #define GET_REAL(r,e) bcopy ((char *) r, (char *) e, 2*NE) |
249 | #define PUT_REAL(e,r) bcopy ((char *) e, (char *) r, 2*NE) | |
842fbaaa JW |
250 | #else |
251 | #define NE 6 | |
252 | #define MAXDECEXP 4932 | |
253 | #define MINDECEXP -4956 | |
985b6196 RS |
254 | #ifdef REAL_ARITHMETIC |
255 | /* Emulator uses target format internally | |
256 | but host stores it in host endian-ness. */ | |
257 | ||
f76b9db2 ILT |
258 | #define GET_REAL(r,e) \ |
259 | do { \ | |
8c35bbc5 | 260 | if (HOST_FLOAT_WORDS_BIG_ENDIAN == REAL_WORDS_BIG_ENDIAN) \ |
f76b9db2 ILT |
261 | e53toe ((unsigned EMUSHORT*) (r), (e)); \ |
262 | else \ | |
263 | { \ | |
264 | unsigned EMUSHORT w[4]; \ | |
265 | w[3] = ((EMUSHORT *) r)[0]; \ | |
266 | w[2] = ((EMUSHORT *) r)[1]; \ | |
267 | w[1] = ((EMUSHORT *) r)[2]; \ | |
268 | w[0] = ((EMUSHORT *) r)[3]; \ | |
269 | e53toe (w, (e)); \ | |
270 | } \ | |
271 | } while (0) | |
272 | ||
273 | #define PUT_REAL(e,r) \ | |
274 | do { \ | |
8c35bbc5 | 275 | if (HOST_FLOAT_WORDS_BIG_ENDIAN == REAL_WORDS_BIG_ENDIAN) \ |
f76b9db2 ILT |
276 | etoe53 ((e), (unsigned EMUSHORT *) (r)); \ |
277 | else \ | |
278 | { \ | |
279 | unsigned EMUSHORT w[4]; \ | |
280 | etoe53 ((e), w); \ | |
281 | *((EMUSHORT *) r) = w[3]; \ | |
282 | *((EMUSHORT *) r + 1) = w[2]; \ | |
283 | *((EMUSHORT *) r + 2) = w[1]; \ | |
284 | *((EMUSHORT *) r + 3) = w[0]; \ | |
285 | } \ | |
286 | } while (0) | |
985b6196 RS |
287 | |
288 | #else /* not REAL_ARITHMETIC */ | |
289 | ||
290 | /* emulator uses host format */ | |
a0353055 RK |
291 | #define GET_REAL(r,e) e53toe ((unsigned EMUSHORT *) (r), (e)) |
292 | #define PUT_REAL(e,r) etoe53 ((e), (unsigned EMUSHORT *) (r)) | |
985b6196 RS |
293 | |
294 | #endif /* not REAL_ARITHMETIC */ | |
842fbaaa | 295 | #endif /* not TFmode */ |
985b6196 RS |
296 | #endif /* no XFmode */ |
297 | ||
842fbaaa JW |
298 | |
299 | /* Number of 16 bit words in internal format */ | |
300 | #define NI (NE+3) | |
301 | ||
302 | /* Array offset to exponent */ | |
303 | #define E 1 | |
304 | ||
305 | /* Array offset to high guard word */ | |
306 | #define M 2 | |
307 | ||
308 | /* Number of bits of precision */ | |
309 | #define NBITS ((NI-4)*16) | |
310 | ||
311 | /* Maximum number of decimal digits in ASCII conversion | |
312 | * = NBITS*log10(2) | |
313 | */ | |
314 | #define NDEC (NBITS*8/27) | |
315 | ||
316 | /* The exponent of 1.0 */ | |
317 | #define EXONE (0x3fff) | |
318 | ||
64685ffa | 319 | extern int extra_warnings; |
9d1bd99c MM |
320 | extern unsigned EMUSHORT ezero[], ehalf[], eone[], etwo[]; |
321 | extern unsigned EMUSHORT elog2[], esqrt2[]; | |
a0353055 RK |
322 | |
323 | static void endian PROTO((unsigned EMUSHORT *, long *, | |
324 | enum machine_mode)); | |
325 | static void eclear PROTO((unsigned EMUSHORT *)); | |
326 | static void emov PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); | |
327 | static void eabs PROTO((unsigned EMUSHORT *)); | |
328 | static void eneg PROTO((unsigned EMUSHORT *)); | |
329 | static int eisneg PROTO((unsigned EMUSHORT *)); | |
330 | static int eisinf PROTO((unsigned EMUSHORT *)); | |
331 | static int eisnan PROTO((unsigned EMUSHORT *)); | |
332 | static void einfin PROTO((unsigned EMUSHORT *)); | |
333 | static void enan PROTO((unsigned EMUSHORT *, int)); | |
334 | static void emovi PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); | |
335 | static void emovo PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); | |
336 | static void ecleaz PROTO((unsigned EMUSHORT *)); | |
337 | static void ecleazs PROTO((unsigned EMUSHORT *)); | |
338 | static void emovz PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); | |
339 | static void einan PROTO((unsigned EMUSHORT *)); | |
340 | static int eiisnan PROTO((unsigned EMUSHORT *)); | |
341 | static int eiisneg PROTO((unsigned EMUSHORT *)); | |
342 | static void eiinfin PROTO((unsigned EMUSHORT *)); | |
343 | static int eiisinf PROTO((unsigned EMUSHORT *)); | |
344 | static int ecmpm PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); | |
345 | static void eshdn1 PROTO((unsigned EMUSHORT *)); | |
346 | static void eshup1 PROTO((unsigned EMUSHORT *)); | |
347 | static void eshdn8 PROTO((unsigned EMUSHORT *)); | |
348 | static void eshup8 PROTO((unsigned EMUSHORT *)); | |
349 | static void eshup6 PROTO((unsigned EMUSHORT *)); | |
350 | static void eshdn6 PROTO((unsigned EMUSHORT *)); | |
351 | static void eaddm PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *));\f | |
352 | static void esubm PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); | |
c92d992a | 353 | static void m16m PROTO((unsigned int, unsigned short *, |
a0353055 RK |
354 | unsigned short *)); |
355 | static int edivm PROTO((unsigned short *, unsigned short *)); | |
356 | static int emulm PROTO((unsigned short *, unsigned short *)); | |
357 | static void emdnorm PROTO((unsigned EMUSHORT *, int, int, EMULONG, int)); | |
358 | static void esub PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *, | |
359 | unsigned EMUSHORT *)); | |
360 | static void eadd PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *, | |
361 | unsigned EMUSHORT *)); | |
362 | static void eadd1 PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *, | |
363 | unsigned EMUSHORT *)); | |
364 | static void ediv PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *, | |
365 | unsigned EMUSHORT *)); | |
366 | static void emul PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *, | |
367 | unsigned EMUSHORT *)); | |
368 | static void e53toe PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); | |
369 | static void e64toe PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); | |
370 | static void e113toe PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); | |
371 | static void e24toe PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); | |
372 | static void etoe113 PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); | |
373 | static void toe113 PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); | |
374 | static void etoe64 PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); | |
375 | static void toe64 PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); | |
376 | static void etoe53 PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); | |
377 | static void toe53 PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); | |
378 | static void etoe24 PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); | |
379 | static void toe24 PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); | |
380 | static int ecmp PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); | |
381 | static void eround PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); | |
382 | static void ltoe PROTO((HOST_WIDE_INT *, unsigned EMUSHORT *)); | |
383 | static void ultoe PROTO((unsigned HOST_WIDE_INT *, unsigned EMUSHORT *)); | |
384 | static void eifrac PROTO((unsigned EMUSHORT *, HOST_WIDE_INT *, | |
385 | unsigned EMUSHORT *)); | |
386 | static void euifrac PROTO((unsigned EMUSHORT *, unsigned HOST_WIDE_INT *, | |
387 | unsigned EMUSHORT *)); | |
388 | static int eshift PROTO((unsigned EMUSHORT *, int)); | |
389 | static int enormlz PROTO((unsigned EMUSHORT *)); | |
390 | static void e24toasc PROTO((unsigned EMUSHORT *, char *, int)); | |
391 | static void e53toasc PROTO((unsigned EMUSHORT *, char *, int)); | |
392 | static void e64toasc PROTO((unsigned EMUSHORT *, char *, int)); | |
393 | static void e113toasc PROTO((unsigned EMUSHORT *, char *, int)); | |
394 | static void etoasc PROTO((unsigned EMUSHORT *, char *, int)); | |
395 | static void asctoe24 PROTO((char *, unsigned EMUSHORT *)); | |
396 | static void asctoe53 PROTO((char *, unsigned EMUSHORT *)); | |
397 | static void asctoe64 PROTO((char *, unsigned EMUSHORT *)); | |
398 | static void asctoe113 PROTO((char *, unsigned EMUSHORT *)); | |
399 | static void asctoe PROTO((char *, unsigned EMUSHORT *)); | |
400 | static void asctoeg PROTO((char *, unsigned EMUSHORT *, int)); | |
401 | static void efloor PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); | |
402 | static void efrexp PROTO((unsigned EMUSHORT *, int *, | |
403 | unsigned EMUSHORT *)); | |
404 | static void eldexp PROTO((unsigned EMUSHORT *, int, unsigned EMUSHORT *)); | |
405 | static void eremain PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *, | |
406 | unsigned EMUSHORT *)); | |
407 | static void eiremain PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); | |
408 | static void mtherr PROTO((char *, int)); | |
409 | static void dectoe PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); | |
410 | static void etodec PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); | |
411 | static void todec PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); | |
412 | static void ibmtoe PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *, | |
413 | enum machine_mode)); | |
414 | static void etoibm PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *, | |
415 | enum machine_mode)); | |
416 | static void toibm PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *, | |
417 | enum machine_mode)); | |
418 | static void make_nan PROTO((unsigned EMUSHORT *, int, enum machine_mode)); | |
419 | static void uditoe PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); | |
420 | static void ditoe PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); | |
421 | static void etoudi PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); | |
422 | static void etodi PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); | |
423 | static void esqrt PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); | |
775ba35d | 424 | \f |
b51ab098 RK |
425 | /* Copy 32-bit numbers obtained from array containing 16-bit numbers, |
426 | swapping ends if required, into output array of longs. The | |
427 | result is normally passed to fprintf by the ASM_OUTPUT_ macros. */ | |
a0353055 RK |
428 | |
429 | static void | |
985b6196 RS |
430 | endian (e, x, mode) |
431 | unsigned EMUSHORT e[]; | |
432 | long x[]; | |
433 | enum machine_mode mode; | |
434 | { | |
435 | unsigned long th, t; | |
436 | ||
8c35bbc5 | 437 | if (REAL_WORDS_BIG_ENDIAN) |
985b6196 | 438 | { |
f76b9db2 ILT |
439 | switch (mode) |
440 | { | |
985b6196 | 441 | |
f76b9db2 ILT |
442 | case TFmode: |
443 | /* Swap halfwords in the fourth long. */ | |
444 | th = (unsigned long) e[6] & 0xffff; | |
445 | t = (unsigned long) e[7] & 0xffff; | |
446 | t |= th << 16; | |
447 | x[3] = (long) t; | |
448 | ||
449 | case XFmode: | |
450 | ||
451 | /* Swap halfwords in the third long. */ | |
452 | th = (unsigned long) e[4] & 0xffff; | |
453 | t = (unsigned long) e[5] & 0xffff; | |
454 | t |= th << 16; | |
455 | x[2] = (long) t; | |
456 | /* fall into the double case */ | |
457 | ||
458 | case DFmode: | |
459 | ||
460 | /* swap halfwords in the second word */ | |
461 | th = (unsigned long) e[2] & 0xffff; | |
462 | t = (unsigned long) e[3] & 0xffff; | |
463 | t |= th << 16; | |
464 | x[1] = (long) t; | |
465 | /* fall into the float case */ | |
466 | ||
467 | case HFmode: | |
468 | case SFmode: | |
469 | ||
470 | /* swap halfwords in the first word */ | |
471 | th = (unsigned long) e[0] & 0xffff; | |
472 | t = (unsigned long) e[1] & 0xffff; | |
473 | t |= th << 16; | |
f250a0bc | 474 | x[0] = (long) t; |
f76b9db2 | 475 | break; |
985b6196 | 476 | |
f76b9db2 ILT |
477 | default: |
478 | abort (); | |
479 | } | |
985b6196 | 480 | } |
f76b9db2 | 481 | else |
985b6196 | 482 | { |
f76b9db2 | 483 | /* Pack the output array without swapping. */ |
985b6196 | 484 | |
f76b9db2 ILT |
485 | switch (mode) |
486 | { | |
985b6196 | 487 | |
f76b9db2 ILT |
488 | case TFmode: |
489 | ||
490 | /* Pack the fourth long. */ | |
491 | th = (unsigned long) e[7] & 0xffff; | |
492 | t = (unsigned long) e[6] & 0xffff; | |
493 | t |= th << 16; | |
494 | x[3] = (long) t; | |
495 | ||
496 | case XFmode: | |
497 | ||
498 | /* Pack the third long. | |
499 | Each element of the input REAL_VALUE_TYPE array has 16 useful bits | |
500 | in it. */ | |
501 | th = (unsigned long) e[5] & 0xffff; | |
502 | t = (unsigned long) e[4] & 0xffff; | |
503 | t |= th << 16; | |
504 | x[2] = (long) t; | |
505 | /* fall into the double case */ | |
506 | ||
507 | case DFmode: | |
508 | ||
509 | /* pack the second long */ | |
510 | th = (unsigned long) e[3] & 0xffff; | |
511 | t = (unsigned long) e[2] & 0xffff; | |
512 | t |= th << 16; | |
513 | x[1] = (long) t; | |
514 | /* fall into the float case */ | |
515 | ||
516 | case HFmode: | |
517 | case SFmode: | |
518 | ||
519 | /* pack the first long */ | |
520 | th = (unsigned long) e[1] & 0xffff; | |
521 | t = (unsigned long) e[0] & 0xffff; | |
522 | t |= th << 16; | |
f250a0bc | 523 | x[0] = (long) t; |
f76b9db2 | 524 | break; |
985b6196 | 525 | |
f76b9db2 ILT |
526 | default: |
527 | abort (); | |
528 | } | |
985b6196 | 529 | } |
985b6196 RS |
530 | } |
531 | ||
532 | ||
defb5dab | 533 | /* This is the implementation of the REAL_ARITHMETIC macro. */ |
a0353055 | 534 | |
985b6196 RS |
535 | void |
536 | earith (value, icode, r1, r2) | |
537 | REAL_VALUE_TYPE *value; | |
538 | int icode; | |
539 | REAL_VALUE_TYPE *r1; | |
540 | REAL_VALUE_TYPE *r2; | |
541 | { | |
542 | unsigned EMUSHORT d1[NE], d2[NE], v[NE]; | |
543 | enum tree_code code; | |
544 | ||
545 | GET_REAL (r1, d1); | |
546 | GET_REAL (r2, d2); | |
66b6d60b RS |
547 | #ifdef NANS |
548 | /* Return NaN input back to the caller. */ | |
549 | if (eisnan (d1)) | |
550 | { | |
551 | PUT_REAL (d1, value); | |
552 | return; | |
553 | } | |
554 | if (eisnan (d2)) | |
555 | { | |
556 | PUT_REAL (d2, value); | |
557 | return; | |
558 | } | |
559 | #endif | |
985b6196 RS |
560 | code = (enum tree_code) icode; |
561 | switch (code) | |
562 | { | |
563 | case PLUS_EXPR: | |
564 | eadd (d2, d1, v); | |
565 | break; | |
566 | ||
567 | case MINUS_EXPR: | |
568 | esub (d2, d1, v); /* d1 - d2 */ | |
569 | break; | |
570 | ||
571 | case MULT_EXPR: | |
572 | emul (d2, d1, v); | |
573 | break; | |
574 | ||
575 | case RDIV_EXPR: | |
576 | #ifndef REAL_INFINITY | |
577 | if (ecmp (d2, ezero) == 0) | |
66b6d60b RS |
578 | { |
579 | #ifdef NANS | |
29e11dab | 580 | enan (v, eisneg (d1) ^ eisneg (d2)); |
66b6d60b RS |
581 | break; |
582 | #else | |
985b6196 | 583 | abort (); |
66b6d60b RS |
584 | #endif |
585 | } | |
985b6196 RS |
586 | #endif |
587 | ediv (d2, d1, v); /* d1/d2 */ | |
588 | break; | |
589 | ||
590 | case MIN_EXPR: /* min (d1,d2) */ | |
591 | if (ecmp (d1, d2) < 0) | |
592 | emov (d1, v); | |
593 | else | |
594 | emov (d2, v); | |
595 | break; | |
596 | ||
597 | case MAX_EXPR: /* max (d1,d2) */ | |
598 | if (ecmp (d1, d2) > 0) | |
599 | emov (d1, v); | |
600 | else | |
601 | emov (d2, v); | |
602 | break; | |
603 | default: | |
604 | emov (ezero, v); | |
605 | break; | |
606 | } | |
607 | PUT_REAL (v, value); | |
608 | } | |
609 | ||
610 | ||
defb5dab RK |
611 | /* Truncate REAL_VALUE_TYPE toward zero to signed HOST_WIDE_INT. |
612 | implements REAL_VALUE_RNDZINT (x) (etrunci (x)). */ | |
613 | ||
985b6196 RS |
614 | REAL_VALUE_TYPE |
615 | etrunci (x) | |
616 | REAL_VALUE_TYPE x; | |
617 | { | |
618 | unsigned EMUSHORT f[NE], g[NE]; | |
619 | REAL_VALUE_TYPE r; | |
b51ab098 | 620 | HOST_WIDE_INT l; |
985b6196 RS |
621 | |
622 | GET_REAL (&x, g); | |
66b6d60b RS |
623 | #ifdef NANS |
624 | if (eisnan (g)) | |
625 | return (x); | |
626 | #endif | |
985b6196 RS |
627 | eifrac (g, &l, f); |
628 | ltoe (&l, g); | |
629 | PUT_REAL (g, &r); | |
630 | return (r); | |
631 | } | |
632 | ||
633 | ||
defb5dab RK |
634 | /* Truncate REAL_VALUE_TYPE toward zero to unsigned HOST_WIDE_INT; |
635 | implements REAL_VALUE_UNSIGNED_RNDZINT (x) (etruncui (x)). */ | |
636 | ||
985b6196 RS |
637 | REAL_VALUE_TYPE |
638 | etruncui (x) | |
639 | REAL_VALUE_TYPE x; | |
640 | { | |
641 | unsigned EMUSHORT f[NE], g[NE]; | |
642 | REAL_VALUE_TYPE r; | |
b51ab098 | 643 | unsigned HOST_WIDE_INT l; |
985b6196 RS |
644 | |
645 | GET_REAL (&x, g); | |
66b6d60b RS |
646 | #ifdef NANS |
647 | if (eisnan (g)) | |
648 | return (x); | |
649 | #endif | |
985b6196 RS |
650 | euifrac (g, &l, f); |
651 | ultoe (&l, g); | |
652 | PUT_REAL (g, &r); | |
653 | return (r); | |
654 | } | |
655 | ||
656 | ||
defb5dab RK |
657 | /* This is the REAL_VALUE_ATOF function. It converts a decimal string to |
658 | binary, rounding off as indicated by the machine_mode argument. Then it | |
659 | promotes the rounded value to REAL_VALUE_TYPE. */ | |
660 | ||
985b6196 RS |
661 | REAL_VALUE_TYPE |
662 | ereal_atof (s, t) | |
663 | char *s; | |
664 | enum machine_mode t; | |
665 | { | |
666 | unsigned EMUSHORT tem[NE], e[NE]; | |
667 | REAL_VALUE_TYPE r; | |
668 | ||
669 | switch (t) | |
670 | { | |
bfbc6416 | 671 | case HFmode: |
985b6196 RS |
672 | case SFmode: |
673 | asctoe24 (s, tem); | |
674 | e24toe (tem, e); | |
675 | break; | |
676 | case DFmode: | |
677 | asctoe53 (s, tem); | |
678 | e53toe (tem, e); | |
679 | break; | |
680 | case XFmode: | |
681 | asctoe64 (s, tem); | |
682 | e64toe (tem, e); | |
683 | break; | |
842fbaaa JW |
684 | case TFmode: |
685 | asctoe113 (s, tem); | |
686 | e113toe (tem, e); | |
687 | break; | |
985b6196 RS |
688 | default: |
689 | asctoe (s, e); | |
690 | } | |
691 | PUT_REAL (e, &r); | |
692 | return (r); | |
693 | } | |
694 | ||
695 | ||
defb5dab RK |
696 | /* Expansion of REAL_NEGATE. */ |
697 | ||
985b6196 RS |
698 | REAL_VALUE_TYPE |
699 | ereal_negate (x) | |
700 | REAL_VALUE_TYPE x; | |
701 | { | |
702 | unsigned EMUSHORT e[NE]; | |
703 | REAL_VALUE_TYPE r; | |
704 | ||
705 | GET_REAL (&x, e); | |
706 | eneg (e); | |
707 | PUT_REAL (e, &r); | |
708 | return (r); | |
709 | } | |
710 | ||
711 | ||
defb5dab RK |
712 | /* Round real toward zero to HOST_WIDE_INT; |
713 | implements REAL_VALUE_FIX (x). */ | |
714 | ||
b51ab098 | 715 | HOST_WIDE_INT |
842fbaaa | 716 | efixi (x) |
985b6196 RS |
717 | REAL_VALUE_TYPE x; |
718 | { | |
719 | unsigned EMUSHORT f[NE], g[NE]; | |
b51ab098 | 720 | HOST_WIDE_INT l; |
985b6196 RS |
721 | |
722 | GET_REAL (&x, f); | |
66b6d60b RS |
723 | #ifdef NANS |
724 | if (eisnan (f)) | |
725 | { | |
726 | warning ("conversion from NaN to int"); | |
727 | return (-1); | |
728 | } | |
729 | #endif | |
842fbaaa JW |
730 | eifrac (f, &l, g); |
731 | return l; | |
985b6196 RS |
732 | } |
733 | ||
842fbaaa | 734 | /* Round real toward zero to unsigned HOST_WIDE_INT |
defb5dab RK |
735 | implements REAL_VALUE_UNSIGNED_FIX (x). |
736 | Negative input returns zero. */ | |
737 | ||
b51ab098 | 738 | unsigned HOST_WIDE_INT |
842fbaaa | 739 | efixui (x) |
985b6196 RS |
740 | REAL_VALUE_TYPE x; |
741 | { | |
742 | unsigned EMUSHORT f[NE], g[NE]; | |
b51ab098 | 743 | unsigned HOST_WIDE_INT l; |
985b6196 RS |
744 | |
745 | GET_REAL (&x, f); | |
66b6d60b RS |
746 | #ifdef NANS |
747 | if (eisnan (f)) | |
748 | { | |
749 | warning ("conversion from NaN to unsigned int"); | |
750 | return (-1); | |
751 | } | |
752 | #endif | |
842fbaaa JW |
753 | euifrac (f, &l, g); |
754 | return l; | |
985b6196 RS |
755 | } |
756 | ||
757 | ||
defb5dab RK |
758 | /* REAL_VALUE_FROM_INT macro. */ |
759 | ||
985b6196 | 760 | void |
48e73d63 | 761 | ereal_from_int (d, i, j, mode) |
985b6196 | 762 | REAL_VALUE_TYPE *d; |
b51ab098 | 763 | HOST_WIDE_INT i, j; |
48e73d63 | 764 | enum machine_mode mode; |
985b6196 RS |
765 | { |
766 | unsigned EMUSHORT df[NE], dg[NE]; | |
b51ab098 | 767 | HOST_WIDE_INT low, high; |
985b6196 RS |
768 | int sign; |
769 | ||
48e73d63 RK |
770 | if (GET_MODE_CLASS (mode) != MODE_FLOAT) |
771 | abort (); | |
985b6196 RS |
772 | sign = 0; |
773 | low = i; | |
774 | if ((high = j) < 0) | |
775 | { | |
776 | sign = 1; | |
777 | /* complement and add 1 */ | |
778 | high = ~high; | |
779 | if (low) | |
780 | low = -low; | |
781 | else | |
782 | high += 1; | |
783 | } | |
b51ab098 | 784 | eldexp (eone, HOST_BITS_PER_WIDE_INT, df); |
60e61165 | 785 | ultoe ((unsigned HOST_WIDE_INT *) &high, dg); |
985b6196 | 786 | emul (dg, df, dg); |
60e61165 | 787 | ultoe ((unsigned HOST_WIDE_INT *) &low, df); |
985b6196 RS |
788 | eadd (df, dg, dg); |
789 | if (sign) | |
790 | eneg (dg); | |
48e73d63 RK |
791 | |
792 | /* A REAL_VALUE_TYPE may not be wide enough to hold the two HOST_WIDE_INTS. | |
793 | Avoid double-rounding errors later by rounding off now from the | |
794 | extra-wide internal format to the requested precision. */ | |
795 | switch (GET_MODE_BITSIZE (mode)) | |
796 | { | |
797 | case 32: | |
798 | etoe24 (dg, df); | |
799 | e24toe (df, dg); | |
800 | break; | |
801 | ||
802 | case 64: | |
803 | etoe53 (dg, df); | |
804 | e53toe (df, dg); | |
805 | break; | |
806 | ||
807 | case 96: | |
808 | etoe64 (dg, df); | |
809 | e64toe (df, dg); | |
810 | break; | |
811 | ||
812 | case 128: | |
813 | etoe113 (dg, df); | |
814 | e113toe (df, dg); | |
815 | break; | |
816 | ||
817 | default: | |
818 | abort (); | |
819 | } | |
820 | ||
985b6196 RS |
821 | PUT_REAL (dg, d); |
822 | } | |
823 | ||
824 | ||
defb5dab | 825 | /* REAL_VALUE_FROM_UNSIGNED_INT macro. */ |
a0353055 | 826 | |
985b6196 | 827 | void |
48e73d63 | 828 | ereal_from_uint (d, i, j, mode) |
985b6196 | 829 | REAL_VALUE_TYPE *d; |
b51ab098 | 830 | unsigned HOST_WIDE_INT i, j; |
48e73d63 | 831 | enum machine_mode mode; |
985b6196 RS |
832 | { |
833 | unsigned EMUSHORT df[NE], dg[NE]; | |
b51ab098 | 834 | unsigned HOST_WIDE_INT low, high; |
985b6196 | 835 | |
48e73d63 RK |
836 | if (GET_MODE_CLASS (mode) != MODE_FLOAT) |
837 | abort (); | |
985b6196 RS |
838 | low = i; |
839 | high = j; | |
b51ab098 | 840 | eldexp (eone, HOST_BITS_PER_WIDE_INT, df); |
985b6196 RS |
841 | ultoe (&high, dg); |
842 | emul (dg, df, dg); | |
843 | ultoe (&low, df); | |
844 | eadd (df, dg, dg); | |
48e73d63 RK |
845 | |
846 | /* A REAL_VALUE_TYPE may not be wide enough to hold the two HOST_WIDE_INTS. | |
847 | Avoid double-rounding errors later by rounding off now from the | |
848 | extra-wide internal format to the requested precision. */ | |
849 | switch (GET_MODE_BITSIZE (mode)) | |
850 | { | |
851 | case 32: | |
852 | etoe24 (dg, df); | |
853 | e24toe (df, dg); | |
854 | break; | |
855 | ||
856 | case 64: | |
857 | etoe53 (dg, df); | |
858 | e53toe (df, dg); | |
859 | break; | |
860 | ||
861 | case 96: | |
862 | etoe64 (dg, df); | |
863 | e64toe (df, dg); | |
864 | break; | |
865 | ||
866 | case 128: | |
867 | etoe113 (dg, df); | |
868 | e113toe (df, dg); | |
869 | break; | |
870 | ||
871 | default: | |
872 | abort (); | |
873 | } | |
874 | ||
985b6196 RS |
875 | PUT_REAL (dg, d); |
876 | } | |
877 | ||
878 | ||
defb5dab RK |
879 | /* REAL_VALUE_TO_INT macro. */ |
880 | ||
985b6196 RS |
881 | void |
882 | ereal_to_int (low, high, rr) | |
b51ab098 | 883 | HOST_WIDE_INT *low, *high; |
985b6196 RS |
884 | REAL_VALUE_TYPE rr; |
885 | { | |
886 | unsigned EMUSHORT d[NE], df[NE], dg[NE], dh[NE]; | |
887 | int s; | |
888 | ||
889 | GET_REAL (&rr, d); | |
66b6d60b | 890 | #ifdef NANS |
970491df | 891 | if (eisnan (d)) |
66b6d60b RS |
892 | { |
893 | warning ("conversion from NaN to int"); | |
894 | *low = -1; | |
895 | *high = -1; | |
896 | return; | |
897 | } | |
898 | #endif | |
985b6196 RS |
899 | /* convert positive value */ |
900 | s = 0; | |
901 | if (eisneg (d)) | |
902 | { | |
903 | eneg (d); | |
904 | s = 1; | |
905 | } | |
b51ab098 | 906 | eldexp (eone, HOST_BITS_PER_WIDE_INT, df); |
985b6196 | 907 | ediv (df, d, dg); /* dg = d / 2^32 is the high word */ |
60e61165 | 908 | euifrac (dg, (unsigned HOST_WIDE_INT *) high, dh); |
985b6196 | 909 | emul (df, dh, dg); /* fractional part is the low word */ |
60e61165 | 910 | euifrac (dg, (unsigned HOST_WIDE_INT *)low, dh); |
985b6196 RS |
911 | if (s) |
912 | { | |
913 | /* complement and add 1 */ | |
914 | *high = ~(*high); | |
915 | if (*low) | |
916 | *low = -(*low); | |
917 | else | |
918 | *high += 1; | |
919 | } | |
920 | } | |
921 | ||
922 | ||
defb5dab RK |
923 | /* REAL_VALUE_LDEXP macro. */ |
924 | ||
985b6196 RS |
925 | REAL_VALUE_TYPE |
926 | ereal_ldexp (x, n) | |
927 | REAL_VALUE_TYPE x; | |
928 | int n; | |
929 | { | |
930 | unsigned EMUSHORT e[NE], y[NE]; | |
931 | REAL_VALUE_TYPE r; | |
932 | ||
933 | GET_REAL (&x, e); | |
66b6d60b RS |
934 | #ifdef NANS |
935 | if (eisnan (e)) | |
936 | return (x); | |
937 | #endif | |
985b6196 RS |
938 | eldexp (e, n, y); |
939 | PUT_REAL (y, &r); | |
940 | return (r); | |
941 | } | |
942 | ||
943 | /* These routines are conditionally compiled because functions | |
defb5dab RK |
944 | of the same names may be defined in fold-const.c. */ |
945 | ||
985b6196 RS |
946 | #ifdef REAL_ARITHMETIC |
947 | ||
948 | /* Check for infinity in a REAL_VALUE_TYPE. */ | |
defb5dab | 949 | |
985b6196 RS |
950 | int |
951 | target_isinf (x) | |
952 | REAL_VALUE_TYPE x; | |
953 | { | |
954 | unsigned EMUSHORT e[NE]; | |
955 | ||
956 | #ifdef INFINITY | |
957 | GET_REAL (&x, e); | |
958 | return (eisinf (e)); | |
959 | #else | |
960 | return 0; | |
961 | #endif | |
962 | } | |
963 | ||
66b6d60b | 964 | /* Check whether a REAL_VALUE_TYPE item is a NaN. */ |
985b6196 RS |
965 | |
966 | int | |
967 | target_isnan (x) | |
968 | REAL_VALUE_TYPE x; | |
969 | { | |
9d72da33 RS |
970 | unsigned EMUSHORT e[NE]; |
971 | ||
66b6d60b | 972 | #ifdef NANS |
9d72da33 RS |
973 | GET_REAL (&x, e); |
974 | return (eisnan (e)); | |
66b6d60b | 975 | #else |
985b6196 | 976 | return (0); |
66b6d60b | 977 | #endif |
985b6196 RS |
978 | } |
979 | ||
980 | ||
66b6d60b | 981 | /* Check for a negative REAL_VALUE_TYPE number. |
defb5dab | 982 | This just checks the sign bit, so that -0 counts as negative. */ |
985b6196 RS |
983 | |
984 | int | |
985 | target_negative (x) | |
986 | REAL_VALUE_TYPE x; | |
987 | { | |
281bb5e4 | 988 | return ereal_isneg (x); |
985b6196 RS |
989 | } |
990 | ||
991 | /* Expansion of REAL_VALUE_TRUNCATE. | |
defb5dab RK |
992 | The result is in floating point, rounded to nearest or even. */ |
993 | ||
985b6196 RS |
994 | REAL_VALUE_TYPE |
995 | real_value_truncate (mode, arg) | |
996 | enum machine_mode mode; | |
997 | REAL_VALUE_TYPE arg; | |
998 | { | |
999 | unsigned EMUSHORT e[NE], t[NE]; | |
1000 | REAL_VALUE_TYPE r; | |
1001 | ||
1002 | GET_REAL (&arg, e); | |
66b6d60b RS |
1003 | #ifdef NANS |
1004 | if (eisnan (e)) | |
1005 | return (arg); | |
1006 | #endif | |
985b6196 RS |
1007 | eclear (t); |
1008 | switch (mode) | |
1009 | { | |
842fbaaa JW |
1010 | case TFmode: |
1011 | etoe113 (e, t); | |
1012 | e113toe (t, t); | |
1013 | break; | |
1014 | ||
985b6196 RS |
1015 | case XFmode: |
1016 | etoe64 (e, t); | |
1017 | e64toe (t, t); | |
1018 | break; | |
1019 | ||
1020 | case DFmode: | |
1021 | etoe53 (e, t); | |
1022 | e53toe (t, t); | |
1023 | break; | |
1024 | ||
bfbc6416 | 1025 | case HFmode: |
985b6196 RS |
1026 | case SFmode: |
1027 | etoe24 (e, t); | |
1028 | e24toe (t, t); | |
1029 | break; | |
1030 | ||
1031 | case SImode: | |
f8ece317 | 1032 | r = etrunci (arg); |
985b6196 RS |
1033 | return (r); |
1034 | ||
0de689b7 RK |
1035 | /* If an unsupported type was requested, presume that |
1036 | the machine files know something useful to do with | |
1037 | the unmodified value. */ | |
defb5dab | 1038 | |
985b6196 | 1039 | default: |
0de689b7 | 1040 | return (arg); |
985b6196 RS |
1041 | } |
1042 | PUT_REAL (t, &r); | |
1043 | return (r); | |
1044 | } | |
1045 | ||
1046 | #endif /* REAL_ARITHMETIC defined */ | |
1047 | ||
775ba35d RS |
1048 | /* Used for debugging--print the value of R in human-readable format |
1049 | on stderr. */ | |
1050 | ||
1051 | void | |
1052 | debug_real (r) | |
1053 | REAL_VALUE_TYPE r; | |
1054 | { | |
1055 | char dstr[30]; | |
1056 | ||
1057 | REAL_VALUE_TO_DECIMAL (r, "%.20g", dstr); | |
1058 | fprintf (stderr, "%s", dstr); | |
1059 | } | |
1060 | ||
1061 | \f | |
8c35bbc5 RK |
1062 | /* The following routines convert REAL_VALUE_TYPE to the various floating |
1063 | point formats that are meaningful to supported computers. | |
1064 | ||
1065 | The results are returned in 32-bit pieces, each piece stored in a `long'. | |
1066 | This is so they can be printed by statements like | |
1067 | ||
1068 | fprintf (file, "%lx, %lx", L[0], L[1]); | |
1069 | ||
1070 | that will work on both narrow- and wide-word host computers. */ | |
842fbaaa | 1071 | |
8c35bbc5 RK |
1072 | /* Convert R to a 128-bit long double precision value. The output array L |
1073 | contains four 32-bit pieces of the result, in the order they would appear | |
1074 | in memory. */ | |
defb5dab | 1075 | |
842fbaaa JW |
1076 | void |
1077 | etartdouble (r, l) | |
1078 | REAL_VALUE_TYPE r; | |
1079 | long l[]; | |
1080 | { | |
1081 | unsigned EMUSHORT e[NE]; | |
1082 | ||
1083 | GET_REAL (&r, e); | |
1084 | etoe113 (e, e); | |
1085 | endian (e, l, TFmode); | |
1086 | } | |
1087 | ||
8c35bbc5 RK |
1088 | /* Convert R to a double extended precision value. The output array L |
1089 | contains three 32-bit pieces of the result, in the order they would | |
1090 | appear in memory. */ | |
defb5dab | 1091 | |
985b6196 RS |
1092 | void |
1093 | etarldouble (r, l) | |
1094 | REAL_VALUE_TYPE r; | |
1095 | long l[]; | |
1096 | { | |
1097 | unsigned EMUSHORT e[NE]; | |
1098 | ||
1099 | GET_REAL (&r, e); | |
1100 | etoe64 (e, e); | |
1101 | endian (e, l, XFmode); | |
1102 | } | |
1103 | ||
8c35bbc5 RK |
1104 | /* Convert R to a double precision value. The output array L contains two |
1105 | 32-bit pieces of the result, in the order they would appear in memory. */ | |
1106 | ||
985b6196 RS |
1107 | void |
1108 | etardouble (r, l) | |
1109 | REAL_VALUE_TYPE r; | |
1110 | long l[]; | |
1111 | { | |
1112 | unsigned EMUSHORT e[NE]; | |
1113 | ||
1114 | GET_REAL (&r, e); | |
1115 | etoe53 (e, e); | |
1116 | endian (e, l, DFmode); | |
1117 | } | |
1118 | ||
8c35bbc5 RK |
1119 | /* Convert R to a single precision float value stored in the least-significant |
1120 | bits of a `long'. */ | |
1121 | ||
985b6196 RS |
1122 | long |
1123 | etarsingle (r) | |
1124 | REAL_VALUE_TYPE r; | |
1125 | { | |
1126 | unsigned EMUSHORT e[NE]; | |
60e61165 | 1127 | long l; |
985b6196 RS |
1128 | |
1129 | GET_REAL (&r, e); | |
1130 | etoe24 (e, e); | |
1131 | endian (e, &l, SFmode); | |
1132 | return ((long) l); | |
1133 | } | |
1134 | ||
8c35bbc5 RK |
1135 | /* Convert X to a decimal ASCII string S for output to an assembly |
1136 | language file. Note, there is no standard way to spell infinity or | |
1137 | a NaN, so these values may require special treatment in the tm.h | |
1138 | macros. */ | |
1139 | ||
985b6196 RS |
1140 | void |
1141 | ereal_to_decimal (x, s) | |
1142 | REAL_VALUE_TYPE x; | |
1143 | char *s; | |
1144 | { | |
1145 | unsigned EMUSHORT e[NE]; | |
1146 | ||
1147 | GET_REAL (&x, e); | |
1148 | etoasc (e, s, 20); | |
1149 | } | |
1150 | ||
8c35bbc5 RK |
1151 | /* Compare X and Y. Return 1 if X > Y, 0 if X == Y, -1 if X < Y, |
1152 | or -2 if either is a NaN. */ | |
1153 | ||
985b6196 RS |
1154 | int |
1155 | ereal_cmp (x, y) | |
1156 | REAL_VALUE_TYPE x, y; | |
1157 | { | |
1158 | unsigned EMUSHORT ex[NE], ey[NE]; | |
1159 | ||
1160 | GET_REAL (&x, ex); | |
1161 | GET_REAL (&y, ey); | |
1162 | return (ecmp (ex, ey)); | |
1163 | } | |
1164 | ||
8c35bbc5 RK |
1165 | /* Return 1 if the sign bit of X is set, else return 0. */ |
1166 | ||
985b6196 RS |
1167 | int |
1168 | ereal_isneg (x) | |
1169 | REAL_VALUE_TYPE x; | |
1170 | { | |
1171 | unsigned EMUSHORT ex[NE]; | |
1172 | ||
1173 | GET_REAL (&x, ex); | |
1174 | return (eisneg (ex)); | |
1175 | } | |
1176 | ||
1177 | /* End of REAL_ARITHMETIC interface */ | |
775ba35d | 1178 | \f |
defb5dab RK |
1179 | /* |
1180 | Extended precision IEEE binary floating point arithmetic routines | |
1181 | ||
1182 | Numbers are stored in C language as arrays of 16-bit unsigned | |
1183 | short integers. The arguments of the routines are pointers to | |
1184 | the arrays. | |
1185 | ||
8c35bbc5 | 1186 | External e type data structure, similar to Intel 8087 chip |
defb5dab RK |
1187 | temporary real format but possibly with a larger significand: |
1188 | ||
1189 | NE-1 significand words (least significant word first, | |
1190 | most significant bit is normally set) | |
1191 | exponent (value = EXONE for 1.0, | |
1192 | top bit is the sign) | |
1193 | ||
1194 | ||
8c35bbc5 | 1195 | Internal exploded e-type data structure of a number (a "word" is 16 bits): |
defb5dab RK |
1196 | |
1197 | ei[0] sign word (0 for positive, 0xffff for negative) | |
1198 | ei[1] biased exponent (value = EXONE for the number 1.0) | |
1199 | ei[2] high guard word (always zero after normalization) | |
1200 | ei[3] | |
1201 | to ei[NI-2] significand (NI-4 significand words, | |
1202 | most significant word first, | |
1203 | most significant bit is set) | |
1204 | ei[NI-1] low guard word (0x8000 bit is rounding place) | |
1205 | ||
1206 | ||
1207 | ||
8c35bbc5 | 1208 | Routines for external format e-type numbers |
defb5dab RK |
1209 | |
1210 | asctoe (string, e) ASCII string to extended double e type | |
1211 | asctoe64 (string, &d) ASCII string to long double | |
1212 | asctoe53 (string, &d) ASCII string to double | |
1213 | asctoe24 (string, &f) ASCII string to single | |
1214 | asctoeg (string, e, prec) ASCII string to specified precision | |
1215 | e24toe (&f, e) IEEE single precision to e type | |
1216 | e53toe (&d, e) IEEE double precision to e type | |
1217 | e64toe (&d, e) IEEE long double precision to e type | |
1218 | e113toe (&d, e) 128-bit long double precision to e type | |
1219 | eabs (e) absolute value | |
1220 | eadd (a, b, c) c = b + a | |
1221 | eclear (e) e = 0 | |
1222 | ecmp (a, b) Returns 1 if a > b, 0 if a == b, | |
1223 | -1 if a < b, -2 if either a or b is a NaN. | |
1224 | ediv (a, b, c) c = b / a | |
1225 | efloor (a, b) truncate to integer, toward -infinity | |
1226 | efrexp (a, exp, s) extract exponent and significand | |
1227 | eifrac (e, &l, frac) e to HOST_WIDE_INT and e type fraction | |
1228 | euifrac (e, &l, frac) e to unsigned HOST_WIDE_INT and e type fraction | |
1229 | einfin (e) set e to infinity, leaving its sign alone | |
1230 | eldexp (a, n, b) multiply by 2**n | |
1231 | emov (a, b) b = a | |
1232 | emul (a, b, c) c = b * a | |
1233 | eneg (e) e = -e | |
1234 | eround (a, b) b = nearest integer value to a | |
1235 | esub (a, b, c) c = b - a | |
1236 | e24toasc (&f, str, n) single to ASCII string, n digits after decimal | |
1237 | e53toasc (&d, str, n) double to ASCII string, n digits after decimal | |
1238 | e64toasc (&d, str, n) 80-bit long double to ASCII string | |
1239 | e113toasc (&d, str, n) 128-bit long double to ASCII string | |
1240 | etoasc (e, str, n) e to ASCII string, n digits after decimal | |
1241 | etoe24 (e, &f) convert e type to IEEE single precision | |
1242 | etoe53 (e, &d) convert e type to IEEE double precision | |
1243 | etoe64 (e, &d) convert e type to IEEE long double precision | |
1244 | ltoe (&l, e) HOST_WIDE_INT to e type | |
1245 | ultoe (&l, e) unsigned HOST_WIDE_INT to e type | |
1246 | eisneg (e) 1 if sign bit of e != 0, else 0 | |
1247 | eisinf (e) 1 if e has maximum exponent (non-IEEE) | |
1248 | or is infinite (IEEE) | |
1249 | eisnan (e) 1 if e is a NaN | |
1250 | ||
1251 | ||
8c35bbc5 | 1252 | Routines for internal format exploded e-type numbers |
defb5dab RK |
1253 | |
1254 | eaddm (ai, bi) add significands, bi = bi + ai | |
1255 | ecleaz (ei) ei = 0 | |
1256 | ecleazs (ei) set ei = 0 but leave its sign alone | |
1257 | ecmpm (ai, bi) compare significands, return 1, 0, or -1 | |
1258 | edivm (ai, bi) divide significands, bi = bi / ai | |
1259 | emdnorm (ai,l,s,exp) normalize and round off | |
1260 | emovi (a, ai) convert external a to internal ai | |
1261 | emovo (ai, a) convert internal ai to external a | |
1262 | emovz (ai, bi) bi = ai, low guard word of bi = 0 | |
1263 | emulm (ai, bi) multiply significands, bi = bi * ai | |
1264 | enormlz (ei) left-justify the significand | |
1265 | eshdn1 (ai) shift significand and guards down 1 bit | |
1266 | eshdn8 (ai) shift down 8 bits | |
1267 | eshdn6 (ai) shift down 16 bits | |
1268 | eshift (ai, n) shift ai n bits up (or down if n < 0) | |
1269 | eshup1 (ai) shift significand and guards up 1 bit | |
1270 | eshup8 (ai) shift up 8 bits | |
1271 | eshup6 (ai) shift up 16 bits | |
1272 | esubm (ai, bi) subtract significands, bi = bi - ai | |
1273 | eiisinf (ai) 1 if infinite | |
1274 | eiisnan (ai) 1 if a NaN | |
1275 | eiisneg (ai) 1 if sign bit of ai != 0, else 0 | |
1276 | einan (ai) set ai = NaN | |
1277 | eiinfin (ai) set ai = infinity | |
1278 | ||
1279 | The result is always normalized and rounded to NI-4 word precision | |
1280 | after each arithmetic operation. | |
1281 | ||
1282 | Exception flags are NOT fully supported. | |
1283 | ||
1284 | Signaling NaN's are NOT supported; they are treated the same | |
1285 | as quiet NaN's. | |
1286 | ||
1287 | Define INFINITY for support of infinity; otherwise a | |
1288 | saturation arithmetic is implemented. | |
1289 | ||
1290 | Define NANS for support of Not-a-Number items; otherwise the | |
1291 | arithmetic will never produce a NaN output, and might be confused | |
1292 | by a NaN input. | |
1293 | If NaN's are supported, the output of `ecmp (a,b)' is -2 if | |
1294 | either a or b is a NaN. This means asking `if (ecmp (a,b) < 0)' | |
1295 | may not be legitimate. Use `if (ecmp (a,b) == -1)' for `less than' | |
1296 | if in doubt. | |
1297 | ||
1298 | Denormals are always supported here where appropriate (e.g., not | |
1299 | for conversion to DEC numbers). */ | |
1300 | ||
1301 | /* Definitions for error codes that are passed to the common error handling | |
1302 | routine mtherr. | |
1303 | ||
1304 | For Digital Equipment PDP-11 and VAX computers, certain | |
1305 | IBM systems, and others that use numbers with a 56-bit | |
1306 | significand, the symbol DEC should be defined. In this | |
1307 | mode, most floating point constants are given as arrays | |
1308 | of octal integers to eliminate decimal to binary conversion | |
1309 | errors that might be introduced by the compiler. | |
1310 | ||
1311 | For computers, such as IBM PC, that follow the IEEE | |
1312 | Standard for Binary Floating Point Arithmetic (ANSI/IEEE | |
8c35bbc5 | 1313 | Std 754-1985), the symbol IEEE should be defined. |
defb5dab RK |
1314 | These numbers have 53-bit significands. In this mode, constants |
1315 | are provided as arrays of hexadecimal 16 bit integers. | |
8c35bbc5 RK |
1316 | The endian-ness of generated values is controlled by |
1317 | REAL_WORDS_BIG_ENDIAN. | |
defb5dab RK |
1318 | |
1319 | To accommodate other types of computer arithmetic, all | |
1320 | constants are also provided in a normal decimal radix | |
1321 | which one can hope are correctly converted to a suitable | |
1322 | format by the available C language compiler. To invoke | |
1323 | this mode, the symbol UNK is defined. | |
1324 | ||
1325 | An important difference among these modes is a predefined | |
1326 | set of machine arithmetic constants for each. The numbers | |
1327 | MACHEP (the machine roundoff error), MAXNUM (largest number | |
1328 | represented), and several other parameters are preset by | |
1329 | the configuration symbol. Check the file const.c to | |
1330 | ensure that these values are correct for your computer. | |
1331 | ||
1332 | For ANSI C compatibility, define ANSIC equal to 1. Currently | |
1333 | this affects only the atan2 function and others that use it. */ | |
985b6196 | 1334 | |
e8650b8f | 1335 | /* Constant definitions for math error conditions. */ |
985b6196 RS |
1336 | |
1337 | #define DOMAIN 1 /* argument domain error */ | |
1338 | #define SING 2 /* argument singularity */ | |
1339 | #define OVERFLOW 3 /* overflow range error */ | |
1340 | #define UNDERFLOW 4 /* underflow range error */ | |
1341 | #define TLOSS 5 /* total loss of precision */ | |
1342 | #define PLOSS 6 /* partial loss of precision */ | |
66b6d60b | 1343 | #define INVALID 7 /* NaN-producing operation */ |
985b6196 | 1344 | |
985b6196 RS |
1345 | /* e type constants used by high precision check routines */ |
1346 | ||
842fbaaa | 1347 | #if LONG_DOUBLE_TYPE_SIZE == 128 |
985b6196 RS |
1348 | /* 0.0 */ |
1349 | unsigned EMUSHORT ezero[NE] = | |
842fbaaa JW |
1350 | {0x0000, 0x0000, 0x0000, 0x0000, |
1351 | 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,}; | |
985b6196 RS |
1352 | extern unsigned EMUSHORT ezero[]; |
1353 | ||
1354 | /* 5.0E-1 */ | |
1355 | unsigned EMUSHORT ehalf[NE] = | |
842fbaaa JW |
1356 | {0x0000, 0x0000, 0x0000, 0x0000, |
1357 | 0x0000, 0x0000, 0x0000, 0x0000, 0x8000, 0x3ffe,}; | |
985b6196 RS |
1358 | extern unsigned EMUSHORT ehalf[]; |
1359 | ||
1360 | /* 1.0E0 */ | |
1361 | unsigned EMUSHORT eone[NE] = | |
842fbaaa JW |
1362 | {0x0000, 0x0000, 0x0000, 0x0000, |
1363 | 0x0000, 0x0000, 0x0000, 0x0000, 0x8000, 0x3fff,}; | |
985b6196 RS |
1364 | extern unsigned EMUSHORT eone[]; |
1365 | ||
1366 | /* 2.0E0 */ | |
1367 | unsigned EMUSHORT etwo[NE] = | |
842fbaaa JW |
1368 | {0x0000, 0x0000, 0x0000, 0x0000, |
1369 | 0x0000, 0x0000, 0x0000, 0x0000, 0x8000, 0x4000,}; | |
985b6196 RS |
1370 | extern unsigned EMUSHORT etwo[]; |
1371 | ||
1372 | /* 3.2E1 */ | |
1373 | unsigned EMUSHORT e32[NE] = | |
842fbaaa JW |
1374 | {0x0000, 0x0000, 0x0000, 0x0000, |
1375 | 0x0000, 0x0000, 0x0000, 0x0000, 0x8000, 0x4004,}; | |
985b6196 RS |
1376 | extern unsigned EMUSHORT e32[]; |
1377 | ||
1378 | /* 6.93147180559945309417232121458176568075500134360255E-1 */ | |
1379 | unsigned EMUSHORT elog2[NE] = | |
842fbaaa JW |
1380 | {0x40f3, 0xf6af, 0x03f2, 0xb398, |
1381 | 0xc9e3, 0x79ab, 0150717, 0013767, 0130562, 0x3ffe,}; | |
985b6196 RS |
1382 | extern unsigned EMUSHORT elog2[]; |
1383 | ||
1384 | /* 1.41421356237309504880168872420969807856967187537695E0 */ | |
1385 | unsigned EMUSHORT esqrt2[NE] = | |
842fbaaa JW |
1386 | {0x1d6f, 0xbe9f, 0x754a, 0x89b3, |
1387 | 0x597d, 0x6484, 0174736, 0171463, 0132404, 0x3fff,}; | |
985b6196 RS |
1388 | extern unsigned EMUSHORT esqrt2[]; |
1389 | ||
985b6196 RS |
1390 | /* 3.14159265358979323846264338327950288419716939937511E0 */ |
1391 | unsigned EMUSHORT epi[NE] = | |
842fbaaa | 1392 | {0x2902, 0x1cd1, 0x80dc, 0x628b, |
985b6196 RS |
1393 | 0xc4c6, 0xc234, 0020550, 0155242, 0144417, 0040000,}; |
1394 | extern unsigned EMUSHORT epi[]; | |
1395 | ||
842fbaaa JW |
1396 | #else |
1397 | /* LONG_DOUBLE_TYPE_SIZE is other than 128 */ | |
1398 | unsigned EMUSHORT ezero[NE] = | |
1399 | {0, 0000000, 0000000, 0000000, 0000000, 0000000,}; | |
1400 | unsigned EMUSHORT ehalf[NE] = | |
1401 | {0, 0000000, 0000000, 0000000, 0100000, 0x3ffe,}; | |
1402 | unsigned EMUSHORT eone[NE] = | |
1403 | {0, 0000000, 0000000, 0000000, 0100000, 0x3fff,}; | |
1404 | unsigned EMUSHORT etwo[NE] = | |
1405 | {0, 0000000, 0000000, 0000000, 0100000, 0040000,}; | |
1406 | unsigned EMUSHORT e32[NE] = | |
1407 | {0, 0000000, 0000000, 0000000, 0100000, 0040004,}; | |
1408 | unsigned EMUSHORT elog2[NE] = | |
1409 | {0xc9e4, 0x79ab, 0150717, 0013767, 0130562, 0x3ffe,}; | |
1410 | unsigned EMUSHORT esqrt2[NE] = | |
1411 | {0x597e, 0x6484, 0174736, 0171463, 0132404, 0x3fff,}; | |
1412 | unsigned EMUSHORT epi[NE] = | |
1413 | {0xc4c6, 0xc234, 0020550, 0155242, 0144417, 0040000,}; | |
1414 | #endif | |
985b6196 | 1415 | |
985b6196 | 1416 | /* Control register for rounding precision. |
defb5dab RK |
1417 | This can be set to 113 (if NE=10), 80 (if NE=6), 64, 56, 53, or 24 bits. */ |
1418 | ||
985b6196 RS |
1419 | int rndprc = NBITS; |
1420 | extern int rndprc; | |
1421 | ||
8c35bbc5 | 1422 | /* Clear out entire e-type number X. */ |
985b6196 | 1423 | |
a0353055 | 1424 | static void |
985b6196 RS |
1425 | eclear (x) |
1426 | register unsigned EMUSHORT *x; | |
1427 | { | |
1428 | register int i; | |
1429 | ||
1430 | for (i = 0; i < NE; i++) | |
1431 | *x++ = 0; | |
1432 | } | |
1433 | ||
8c35bbc5 | 1434 | /* Move e-type number from A to B. */ |
985b6196 | 1435 | |
a0353055 | 1436 | static void |
985b6196 RS |
1437 | emov (a, b) |
1438 | register unsigned EMUSHORT *a, *b; | |
1439 | { | |
1440 | register int i; | |
1441 | ||
1442 | for (i = 0; i < NE; i++) | |
1443 | *b++ = *a++; | |
1444 | } | |
1445 | ||
1446 | ||
8c35bbc5 | 1447 | /* Absolute value of e-type X. */ |
985b6196 | 1448 | |
a0353055 | 1449 | static void |
985b6196 | 1450 | eabs (x) |
a0353055 | 1451 | unsigned EMUSHORT x[]; |
985b6196 | 1452 | { |
a0353055 RK |
1453 | /* sign is top bit of last word of external format */ |
1454 | x[NE - 1] &= 0x7fff; | |
985b6196 RS |
1455 | } |
1456 | ||
8c35bbc5 | 1457 | /* Negate the e-type number X. */ |
985b6196 | 1458 | |
a0353055 | 1459 | static void |
985b6196 RS |
1460 | eneg (x) |
1461 | unsigned EMUSHORT x[]; | |
1462 | { | |
1463 | ||
1464 | x[NE - 1] ^= 0x8000; /* Toggle the sign bit */ | |
1465 | } | |
1466 | ||
8c35bbc5 | 1467 | /* Return 1 if sign bit of e-type number X is nonzero, else zero. */ |
defb5dab | 1468 | |
a0353055 | 1469 | static int |
985b6196 RS |
1470 | eisneg (x) |
1471 | unsigned EMUSHORT x[]; | |
1472 | { | |
1473 | ||
1474 | if (x[NE - 1] & 0x8000) | |
1475 | return (1); | |
1476 | else | |
1477 | return (0); | |
1478 | } | |
1479 | ||
8c35bbc5 | 1480 | /* Return 1 if e-type number X is infinity, else return zero. */ |
a0353055 RK |
1481 | |
1482 | static int | |
985b6196 RS |
1483 | eisinf (x) |
1484 | unsigned EMUSHORT x[]; | |
1485 | { | |
1486 | ||
66b6d60b RS |
1487 | #ifdef NANS |
1488 | if (eisnan (x)) | |
1489 | return (0); | |
1490 | #endif | |
985b6196 RS |
1491 | if ((x[NE - 1] & 0x7fff) == 0x7fff) |
1492 | return (1); | |
1493 | else | |
1494 | return (0); | |
1495 | } | |
1496 | ||
defb5dab RK |
1497 | /* Check if e-type number is not a number. The bit pattern is one that we |
1498 | defined, so we know for sure how to detect it. */ | |
66b6d60b | 1499 | |
a0353055 | 1500 | static int |
66b6d60b RS |
1501 | eisnan (x) |
1502 | unsigned EMUSHORT x[]; | |
1503 | { | |
66b6d60b RS |
1504 | #ifdef NANS |
1505 | int i; | |
defb5dab RK |
1506 | |
1507 | /* NaN has maximum exponent */ | |
66b6d60b RS |
1508 | if ((x[NE - 1] & 0x7fff) != 0x7fff) |
1509 | return (0); | |
defb5dab | 1510 | /* ... and non-zero significand field. */ |
66b6d60b RS |
1511 | for (i = 0; i < NE - 1; i++) |
1512 | { | |
1513 | if (*x++ != 0) | |
1514 | return (1); | |
1515 | } | |
1516 | #endif | |
defb5dab | 1517 | |
66b6d60b RS |
1518 | return (0); |
1519 | } | |
1520 | ||
8c35bbc5 | 1521 | /* Fill e-type number X with infinity pattern (IEEE) |
842fbaaa | 1522 | or largest possible number (non-IEEE). */ |
985b6196 | 1523 | |
a0353055 | 1524 | static void |
985b6196 RS |
1525 | einfin (x) |
1526 | register unsigned EMUSHORT *x; | |
1527 | { | |
1528 | register int i; | |
1529 | ||
1530 | #ifdef INFINITY | |
1531 | for (i = 0; i < NE - 1; i++) | |
1532 | *x++ = 0; | |
1533 | *x |= 32767; | |
1534 | #else | |
1535 | for (i = 0; i < NE - 1; i++) | |
1536 | *x++ = 0xffff; | |
1537 | *x |= 32766; | |
1538 | if (rndprc < NBITS) | |
1539 | { | |
842fbaaa JW |
1540 | if (rndprc == 113) |
1541 | { | |
1542 | *(x - 9) = 0; | |
1543 | *(x - 8) = 0; | |
1544 | } | |
985b6196 RS |
1545 | if (rndprc == 64) |
1546 | { | |
1547 | *(x - 5) = 0; | |
1548 | } | |
1549 | if (rndprc == 53) | |
1550 | { | |
1551 | *(x - 4) = 0xf800; | |
1552 | } | |
1553 | else | |
1554 | { | |
1555 | *(x - 4) = 0; | |
1556 | *(x - 3) = 0; | |
1557 | *(x - 2) = 0xff00; | |
1558 | } | |
1559 | } | |
1560 | #endif | |
1561 | } | |
1562 | ||
66b6d60b RS |
1563 | /* Output an e-type NaN. |
1564 | This generates Intel's quiet NaN pattern for extended real. | |
1565 | The exponent is 7fff, the leading mantissa word is c000. */ | |
1566 | ||
a0353055 | 1567 | static void |
29e11dab | 1568 | enan (x, sign) |
66b6d60b | 1569 | register unsigned EMUSHORT *x; |
29e11dab | 1570 | int sign; |
66b6d60b RS |
1571 | { |
1572 | register int i; | |
1573 | ||
1574 | for (i = 0; i < NE - 2; i++) | |
1575 | *x++ = 0; | |
1576 | *x++ = 0xc000; | |
29e11dab | 1577 | *x = (sign << 15) | 0x7fff; |
66b6d60b RS |
1578 | } |
1579 | ||
8c35bbc5 | 1580 | /* Move in an e-type number A, converting it to exploded e-type B. */ |
defb5dab | 1581 | |
a0353055 | 1582 | static void |
985b6196 RS |
1583 | emovi (a, b) |
1584 | unsigned EMUSHORT *a, *b; | |
1585 | { | |
1586 | register unsigned EMUSHORT *p, *q; | |
1587 | int i; | |
1588 | ||
1589 | q = b; | |
1590 | p = a + (NE - 1); /* point to last word of external number */ | |
1591 | /* get the sign bit */ | |
1592 | if (*p & 0x8000) | |
1593 | *q++ = 0xffff; | |
1594 | else | |
1595 | *q++ = 0; | |
1596 | /* get the exponent */ | |
1597 | *q = *p--; | |
1598 | *q++ &= 0x7fff; /* delete the sign bit */ | |
1599 | #ifdef INFINITY | |
1600 | if ((*(q - 1) & 0x7fff) == 0x7fff) | |
1601 | { | |
66b6d60b RS |
1602 | #ifdef NANS |
1603 | if (eisnan (a)) | |
1604 | { | |
1605 | *q++ = 0; | |
1606 | for (i = 3; i < NI; i++) | |
1607 | *q++ = *p--; | |
1608 | return; | |
1609 | } | |
1610 | #endif | |
defb5dab | 1611 | |
985b6196 RS |
1612 | for (i = 2; i < NI; i++) |
1613 | *q++ = 0; | |
1614 | return; | |
1615 | } | |
1616 | #endif | |
defb5dab | 1617 | |
985b6196 RS |
1618 | /* clear high guard word */ |
1619 | *q++ = 0; | |
1620 | /* move in the significand */ | |
1621 | for (i = 0; i < NE - 1; i++) | |
1622 | *q++ = *p--; | |
1623 | /* clear low guard word */ | |
1624 | *q = 0; | |
1625 | } | |
1626 | ||
8c35bbc5 | 1627 | /* Move out exploded e-type number A, converting it to e type B. */ |
defb5dab | 1628 | |
a0353055 | 1629 | static void |
985b6196 RS |
1630 | emovo (a, b) |
1631 | unsigned EMUSHORT *a, *b; | |
1632 | { | |
1633 | register unsigned EMUSHORT *p, *q; | |
1634 | unsigned EMUSHORT i; | |
239b043b | 1635 | int j; |
985b6196 RS |
1636 | |
1637 | p = a; | |
1638 | q = b + (NE - 1); /* point to output exponent */ | |
1639 | /* combine sign and exponent */ | |
1640 | i = *p++; | |
1641 | if (i) | |
1642 | *q-- = *p++ | 0x8000; | |
1643 | else | |
1644 | *q-- = *p++; | |
1645 | #ifdef INFINITY | |
1646 | if (*(p - 1) == 0x7fff) | |
1647 | { | |
66b6d60b RS |
1648 | #ifdef NANS |
1649 | if (eiisnan (a)) | |
1650 | { | |
29e11dab | 1651 | enan (b, eiisneg (a)); |
66b6d60b RS |
1652 | return; |
1653 | } | |
1654 | #endif | |
985b6196 | 1655 | einfin (b); |
842fbaaa | 1656 | return; |
985b6196 RS |
1657 | } |
1658 | #endif | |
1659 | /* skip over guard word */ | |
1660 | ++p; | |
1661 | /* move the significand */ | |
239b043b | 1662 | for (j = 0; j < NE - 1; j++) |
985b6196 RS |
1663 | *q-- = *p++; |
1664 | } | |
1665 | ||
8c35bbc5 | 1666 | /* Clear out exploded e-type number XI. */ |
985b6196 | 1667 | |
a0353055 | 1668 | static void |
985b6196 RS |
1669 | ecleaz (xi) |
1670 | register unsigned EMUSHORT *xi; | |
1671 | { | |
1672 | register int i; | |
1673 | ||
1674 | for (i = 0; i < NI; i++) | |
1675 | *xi++ = 0; | |
1676 | } | |
1677 | ||
8c35bbc5 | 1678 | /* Clear out exploded e-type XI, but don't touch the sign. */ |
985b6196 | 1679 | |
a0353055 | 1680 | static void |
985b6196 RS |
1681 | ecleazs (xi) |
1682 | register unsigned EMUSHORT *xi; | |
1683 | { | |
1684 | register int i; | |
1685 | ||
1686 | ++xi; | |
1687 | for (i = 0; i < NI - 1; i++) | |
1688 | *xi++ = 0; | |
1689 | } | |
1690 | ||
8c35bbc5 | 1691 | /* Move exploded e-type number from A to B. */ |
a0353055 RK |
1692 | |
1693 | static void | |
985b6196 RS |
1694 | emovz (a, b) |
1695 | register unsigned EMUSHORT *a, *b; | |
1696 | { | |
1697 | register int i; | |
1698 | ||
1699 | for (i = 0; i < NI - 1; i++) | |
1700 | *b++ = *a++; | |
1701 | /* clear low guard word */ | |
1702 | *b = 0; | |
1703 | } | |
1704 | ||
8c35bbc5 | 1705 | /* Generate exploded e-type NaN. |
66b6d60b | 1706 | The explicit pattern for this is maximum exponent and |
defb5dab | 1707 | top two significant bits set. */ |
66b6d60b | 1708 | |
a0353055 | 1709 | static void |
66b6d60b RS |
1710 | einan (x) |
1711 | unsigned EMUSHORT x[]; | |
1712 | { | |
1713 | ||
1714 | ecleaz (x); | |
1715 | x[E] = 0x7fff; | |
1716 | x[M + 1] = 0xc000; | |
1717 | } | |
1718 | ||
8c35bbc5 | 1719 | /* Return nonzero if exploded e-type X is a NaN. */ |
66b6d60b | 1720 | |
a0353055 | 1721 | static int |
66b6d60b RS |
1722 | eiisnan (x) |
1723 | unsigned EMUSHORT x[]; | |
1724 | { | |
1725 | int i; | |
1726 | ||
1727 | if ((x[E] & 0x7fff) == 0x7fff) | |
1728 | { | |
1729 | for (i = M + 1; i < NI; i++) | |
1730 | { | |
1731 | if (x[i] != 0) | |
1732 | return (1); | |
1733 | } | |
1734 | } | |
1735 | return (0); | |
1736 | } | |
1737 | ||
8c35bbc5 | 1738 | /* Return nonzero if sign of exploded e-type X is nonzero. */ |
29e11dab | 1739 | |
a0353055 | 1740 | static int |
29e11dab RK |
1741 | eiisneg (x) |
1742 | unsigned EMUSHORT x[]; | |
1743 | { | |
1744 | ||
1745 | return x[0] != 0; | |
1746 | } | |
1747 | ||
8c35bbc5 | 1748 | /* Fill exploded e-type X with infinity pattern. |
66b6d60b RS |
1749 | This has maximum exponent and significand all zeros. */ |
1750 | ||
a0353055 | 1751 | static void |
66b6d60b RS |
1752 | eiinfin (x) |
1753 | unsigned EMUSHORT x[]; | |
1754 | { | |
1755 | ||
1756 | ecleaz (x); | |
1757 | x[E] = 0x7fff; | |
1758 | } | |
1759 | ||
8c35bbc5 | 1760 | /* Return nonzero if exploded e-type X is infinite. */ |
66b6d60b | 1761 | |
a0353055 | 1762 | static int |
66b6d60b RS |
1763 | eiisinf (x) |
1764 | unsigned EMUSHORT x[]; | |
1765 | { | |
1766 | ||
1767 | #ifdef NANS | |
1768 | if (eiisnan (x)) | |
1769 | return (0); | |
1770 | #endif | |
1771 | if ((x[E] & 0x7fff) == 0x7fff) | |
1772 | return (1); | |
1773 | return (0); | |
1774 | } | |
1775 | ||
985b6196 | 1776 | |
8c35bbc5 | 1777 | /* Compare significands of numbers in internal exploded e-type format. |
defb5dab RK |
1778 | Guard words are included in the comparison. |
1779 | ||
1780 | Returns +1 if a > b | |
1781 | 0 if a == b | |
1782 | -1 if a < b */ | |
a0353055 RK |
1783 | |
1784 | static int | |
985b6196 RS |
1785 | ecmpm (a, b) |
1786 | register unsigned EMUSHORT *a, *b; | |
1787 | { | |
1788 | int i; | |
1789 | ||
1790 | a += M; /* skip up to significand area */ | |
1791 | b += M; | |
1792 | for (i = M; i < NI; i++) | |
1793 | { | |
1794 | if (*a++ != *b++) | |
1795 | goto difrnt; | |
1796 | } | |
1797 | return (0); | |
1798 | ||
1799 | difrnt: | |
1800 | if (*(--a) > *(--b)) | |
1801 | return (1); | |
1802 | else | |
1803 | return (-1); | |
1804 | } | |
1805 | ||
8c35bbc5 | 1806 | /* Shift significand of exploded e-type X down by 1 bit. */ |
985b6196 | 1807 | |
a0353055 | 1808 | static void |
985b6196 RS |
1809 | eshdn1 (x) |
1810 | register unsigned EMUSHORT *x; | |
1811 | { | |
1812 | register unsigned EMUSHORT bits; | |
1813 | int i; | |
1814 | ||
1815 | x += M; /* point to significand area */ | |
1816 | ||
1817 | bits = 0; | |
1818 | for (i = M; i < NI; i++) | |
1819 | { | |
1820 | if (*x & 1) | |
1821 | bits |= 1; | |
1822 | *x >>= 1; | |
1823 | if (bits & 2) | |
1824 | *x |= 0x8000; | |
1825 | bits <<= 1; | |
1826 | ++x; | |
1827 | } | |
1828 | } | |
1829 | ||
8c35bbc5 | 1830 | /* Shift significand of exploded e-type X up by 1 bit. */ |
985b6196 | 1831 | |
a0353055 | 1832 | static void |
985b6196 RS |
1833 | eshup1 (x) |
1834 | register unsigned EMUSHORT *x; | |
1835 | { | |
1836 | register unsigned EMUSHORT bits; | |
1837 | int i; | |
1838 | ||
1839 | x += NI - 1; | |
1840 | bits = 0; | |
1841 | ||
1842 | for (i = M; i < NI; i++) | |
1843 | { | |
1844 | if (*x & 0x8000) | |
1845 | bits |= 1; | |
1846 | *x <<= 1; | |
1847 | if (bits & 2) | |
1848 | *x |= 1; | |
1849 | bits <<= 1; | |
1850 | --x; | |
1851 | } | |
1852 | } | |
1853 | ||
1854 | ||
8c35bbc5 | 1855 | /* Shift significand of exploded e-type X down by 8 bits. */ |
985b6196 | 1856 | |
a0353055 | 1857 | static void |
985b6196 RS |
1858 | eshdn8 (x) |
1859 | register unsigned EMUSHORT *x; | |
1860 | { | |
1861 | register unsigned EMUSHORT newbyt, oldbyt; | |
1862 | int i; | |
1863 | ||
1864 | x += M; | |
1865 | oldbyt = 0; | |
1866 | for (i = M; i < NI; i++) | |
1867 | { | |
1868 | newbyt = *x << 8; | |
1869 | *x >>= 8; | |
1870 | *x |= oldbyt; | |
1871 | oldbyt = newbyt; | |
1872 | ++x; | |
1873 | } | |
1874 | } | |
1875 | ||
8c35bbc5 | 1876 | /* Shift significand of exploded e-type X up by 8 bits. */ |
985b6196 | 1877 | |
a0353055 | 1878 | static void |
985b6196 RS |
1879 | eshup8 (x) |
1880 | register unsigned EMUSHORT *x; | |
1881 | { | |
1882 | int i; | |
1883 | register unsigned EMUSHORT newbyt, oldbyt; | |
1884 | ||
1885 | x += NI - 1; | |
1886 | oldbyt = 0; | |
1887 | ||
1888 | for (i = M; i < NI; i++) | |
1889 | { | |
1890 | newbyt = *x >> 8; | |
1891 | *x <<= 8; | |
1892 | *x |= oldbyt; | |
1893 | oldbyt = newbyt; | |
1894 | --x; | |
1895 | } | |
1896 | } | |
1897 | ||
8c35bbc5 | 1898 | /* Shift significand of exploded e-type X up by 16 bits. */ |
985b6196 | 1899 | |
a0353055 | 1900 | static void |
985b6196 RS |
1901 | eshup6 (x) |
1902 | register unsigned EMUSHORT *x; | |
1903 | { | |
1904 | int i; | |
1905 | register unsigned EMUSHORT *p; | |
1906 | ||
1907 | p = x + M; | |
1908 | x += M + 1; | |
1909 | ||
1910 | for (i = M; i < NI - 1; i++) | |
1911 | *p++ = *x++; | |
1912 | ||
1913 | *p = 0; | |
1914 | } | |
1915 | ||
8c35bbc5 | 1916 | /* Shift significand of exploded e-type X down by 16 bits. */ |
985b6196 | 1917 | |
a0353055 | 1918 | static void |
985b6196 RS |
1919 | eshdn6 (x) |
1920 | register unsigned EMUSHORT *x; | |
1921 | { | |
1922 | int i; | |
1923 | register unsigned EMUSHORT *p; | |
1924 | ||
1925 | x += NI - 1; | |
1926 | p = x + 1; | |
1927 | ||
1928 | for (i = M; i < NI - 1; i++) | |
1929 | *(--p) = *(--x); | |
1930 | ||
1931 | *(--p) = 0; | |
1932 | } | |
8c35bbc5 RK |
1933 | |
1934 | /* Add significands of exploded e-type X and Y. X + Y replaces Y. */ | |
985b6196 | 1935 | |
a0353055 | 1936 | static void |
985b6196 RS |
1937 | eaddm (x, y) |
1938 | unsigned EMUSHORT *x, *y; | |
1939 | { | |
1940 | register unsigned EMULONG a; | |
1941 | int i; | |
1942 | unsigned int carry; | |
1943 | ||
1944 | x += NI - 1; | |
1945 | y += NI - 1; | |
1946 | carry = 0; | |
1947 | for (i = M; i < NI; i++) | |
1948 | { | |
1949 | a = (unsigned EMULONG) (*x) + (unsigned EMULONG) (*y) + carry; | |
1950 | if (a & 0x10000) | |
1951 | carry = 1; | |
1952 | else | |
1953 | carry = 0; | |
1954 | *y = (unsigned EMUSHORT) a; | |
1955 | --x; | |
1956 | --y; | |
1957 | } | |
1958 | } | |
1959 | ||
8c35bbc5 | 1960 | /* Subtract significands of exploded e-type X and Y. Y - X replaces Y. */ |
985b6196 | 1961 | |
a0353055 | 1962 | static void |
985b6196 RS |
1963 | esubm (x, y) |
1964 | unsigned EMUSHORT *x, *y; | |
1965 | { | |
1966 | unsigned EMULONG a; | |
1967 | int i; | |
1968 | unsigned int carry; | |
1969 | ||
1970 | x += NI - 1; | |
1971 | y += NI - 1; | |
1972 | carry = 0; | |
1973 | for (i = M; i < NI; i++) | |
1974 | { | |
1975 | a = (unsigned EMULONG) (*y) - (unsigned EMULONG) (*x) - carry; | |
1976 | if (a & 0x10000) | |
1977 | carry = 1; | |
1978 | else | |
1979 | carry = 0; | |
1980 | *y = (unsigned EMUSHORT) a; | |
1981 | --x; | |
1982 | --y; | |
1983 | } | |
1984 | } | |
1985 | ||
1986 | ||
985b6196 RS |
1987 | static unsigned EMUSHORT equot[NI]; |
1988 | ||
842fbaaa JW |
1989 | |
1990 | #if 0 | |
1991 | /* Radix 2 shift-and-add versions of multiply and divide */ | |
1992 | ||
1993 | ||
1994 | /* Divide significands */ | |
1995 | ||
985b6196 RS |
1996 | int |
1997 | edivm (den, num) | |
1998 | unsigned EMUSHORT den[], num[]; | |
1999 | { | |
2000 | int i; | |
2001 | register unsigned EMUSHORT *p, *q; | |
2002 | unsigned EMUSHORT j; | |
2003 | ||
2004 | p = &equot[0]; | |
2005 | *p++ = num[0]; | |
2006 | *p++ = num[1]; | |
2007 | ||
2008 | for (i = M; i < NI; i++) | |
2009 | { | |
2010 | *p++ = 0; | |
2011 | } | |
2012 | ||
defb5dab RK |
2013 | /* Use faster compare and subtraction if denominator has only 15 bits of |
2014 | significance. */ | |
2015 | ||
985b6196 RS |
2016 | p = &den[M + 2]; |
2017 | if (*p++ == 0) | |
2018 | { | |
2019 | for (i = M + 3; i < NI; i++) | |
2020 | { | |
2021 | if (*p++ != 0) | |
2022 | goto fulldiv; | |
2023 | } | |
2024 | if ((den[M + 1] & 1) != 0) | |
2025 | goto fulldiv; | |
2026 | eshdn1 (num); | |
2027 | eshdn1 (den); | |
2028 | ||
2029 | p = &den[M + 1]; | |
2030 | q = &num[M + 1]; | |
2031 | ||
2032 | for (i = 0; i < NBITS + 2; i++) | |
2033 | { | |
2034 | if (*p <= *q) | |
2035 | { | |
2036 | *q -= *p; | |
2037 | j = 1; | |
2038 | } | |
2039 | else | |
2040 | { | |
2041 | j = 0; | |
2042 | } | |
2043 | eshup1 (equot); | |
2044 | equot[NI - 2] |= j; | |
2045 | eshup1 (num); | |
2046 | } | |
2047 | goto divdon; | |
2048 | } | |
2049 | ||
defb5dab RK |
2050 | /* The number of quotient bits to calculate is NBITS + 1 scaling guard |
2051 | bit + 1 roundoff bit. */ | |
2052 | ||
985b6196 RS |
2053 | fulldiv: |
2054 | ||
2055 | p = &equot[NI - 2]; | |
2056 | for (i = 0; i < NBITS + 2; i++) | |
2057 | { | |
2058 | if (ecmpm (den, num) <= 0) | |
2059 | { | |
2060 | esubm (den, num); | |
2061 | j = 1; /* quotient bit = 1 */ | |
2062 | } | |
2063 | else | |
2064 | j = 0; | |
2065 | eshup1 (equot); | |
2066 | *p |= j; | |
2067 | eshup1 (num); | |
2068 | } | |
2069 | ||
2070 | divdon: | |
2071 | ||
2072 | eshdn1 (equot); | |
2073 | eshdn1 (equot); | |
2074 | ||
2075 | /* test for nonzero remainder after roundoff bit */ | |
2076 | p = &num[M]; | |
2077 | j = 0; | |
2078 | for (i = M; i < NI; i++) | |
2079 | { | |
2080 | j |= *p++; | |
2081 | } | |
2082 | if (j) | |
2083 | j = 1; | |
2084 | ||
2085 | ||
2086 | for (i = 0; i < NI; i++) | |
2087 | num[i] = equot[i]; | |
2088 | return ((int) j); | |
2089 | } | |
2090 | ||
2091 | ||
2092 | /* Multiply significands */ | |
2093 | int | |
2094 | emulm (a, b) | |
2095 | unsigned EMUSHORT a[], b[]; | |
2096 | { | |
2097 | unsigned EMUSHORT *p, *q; | |
2098 | int i, j, k; | |
2099 | ||
2100 | equot[0] = b[0]; | |
2101 | equot[1] = b[1]; | |
2102 | for (i = M; i < NI; i++) | |
2103 | equot[i] = 0; | |
2104 | ||
2105 | p = &a[NI - 2]; | |
2106 | k = NBITS; | |
defb5dab | 2107 | while (*p == 0) /* significand is not supposed to be zero */ |
985b6196 RS |
2108 | { |
2109 | eshdn6 (a); | |
2110 | k -= 16; | |
2111 | } | |
2112 | if ((*p & 0xff) == 0) | |
2113 | { | |
2114 | eshdn8 (a); | |
2115 | k -= 8; | |
2116 | } | |
2117 | ||
2118 | q = &equot[NI - 1]; | |
2119 | j = 0; | |
2120 | for (i = 0; i < k; i++) | |
2121 | { | |
2122 | if (*p & 1) | |
2123 | eaddm (b, equot); | |
2124 | /* remember if there were any nonzero bits shifted out */ | |
2125 | if (*q & 1) | |
2126 | j |= 1; | |
2127 | eshdn1 (a); | |
2128 | eshdn1 (equot); | |
2129 | } | |
2130 | ||
2131 | for (i = 0; i < NI; i++) | |
2132 | b[i] = equot[i]; | |
2133 | ||
2134 | /* return flag for lost nonzero bits */ | |
2135 | return (j); | |
2136 | } | |
2137 | ||
842fbaaa JW |
2138 | #else |
2139 | ||
8c35bbc5 | 2140 | /* Radix 65536 versions of multiply and divide. */ |
842fbaaa | 2141 | |
8c35bbc5 RK |
2142 | /* Multiply significand of e-type number B |
2143 | by 16-bit quantity A, return e-type result to C. */ | |
842fbaaa | 2144 | |
a0353055 | 2145 | static void |
242cef1e | 2146 | m16m (a, b, c) |
c92d992a | 2147 | unsigned int a; |
8c35bbc5 | 2148 | unsigned EMUSHORT b[], c[]; |
842fbaaa | 2149 | { |
8c35bbc5 RK |
2150 | register unsigned EMUSHORT *pp; |
2151 | register unsigned EMULONG carry; | |
2152 | unsigned EMUSHORT *ps; | |
2153 | unsigned EMUSHORT p[NI]; | |
2154 | unsigned EMULONG aa, m; | |
242cef1e RS |
2155 | int i; |
2156 | ||
2157 | aa = a; | |
2158 | pp = &p[NI-2]; | |
2159 | *pp++ = 0; | |
2160 | *pp = 0; | |
2161 | ps = &b[NI-1]; | |
2162 | ||
2163 | for (i=M+1; i<NI; i++) | |
2164 | { | |
2165 | if (*ps == 0) | |
842fbaaa | 2166 | { |
242cef1e RS |
2167 | --ps; |
2168 | --pp; | |
2169 | *(pp-1) = 0; | |
842fbaaa | 2170 | } |
242cef1e RS |
2171 | else |
2172 | { | |
8c35bbc5 | 2173 | m = (unsigned EMULONG) aa * *ps--; |
242cef1e | 2174 | carry = (m & 0xffff) + *pp; |
8c35bbc5 | 2175 | *pp-- = (unsigned EMUSHORT)carry; |
242cef1e | 2176 | carry = (carry >> 16) + (m >> 16) + *pp; |
8c35bbc5 | 2177 | *pp = (unsigned EMUSHORT)carry; |
242cef1e RS |
2178 | *(pp-1) = carry >> 16; |
2179 | } | |
2180 | } | |
2181 | for (i=M; i<NI; i++) | |
2182 | c[i] = p[i]; | |
842fbaaa JW |
2183 | } |
2184 | ||
8c35bbc5 RK |
2185 | /* Divide significands of exploded e-types NUM / DEN. Neither the |
2186 | numerator NUM nor the denominator DEN is permitted to have its high guard | |
2187 | word nonzero. */ | |
842fbaaa | 2188 | |
a0353055 | 2189 | static int |
242cef1e | 2190 | edivm (den, num) |
8c35bbc5 | 2191 | unsigned EMUSHORT den[], num[]; |
842fbaaa | 2192 | { |
242cef1e | 2193 | int i; |
8c35bbc5 RK |
2194 | register unsigned EMUSHORT *p; |
2195 | unsigned EMULONG tnum; | |
2196 | unsigned EMUSHORT j, tdenm, tquot; | |
2197 | unsigned EMUSHORT tprod[NI+1]; | |
842fbaaa | 2198 | |
242cef1e RS |
2199 | p = &equot[0]; |
2200 | *p++ = num[0]; | |
2201 | *p++ = num[1]; | |
842fbaaa | 2202 | |
242cef1e RS |
2203 | for (i=M; i<NI; i++) |
2204 | { | |
2205 | *p++ = 0; | |
2206 | } | |
2207 | eshdn1 (num); | |
2208 | tdenm = den[M+1]; | |
2209 | for (i=M; i<NI; i++) | |
2210 | { | |
2211 | /* Find trial quotient digit (the radix is 65536). */ | |
8c35bbc5 | 2212 | tnum = (((unsigned EMULONG) num[M]) << 16) + num[M+1]; |
242cef1e RS |
2213 | |
2214 | /* Do not execute the divide instruction if it will overflow. */ | |
2215 | if ((tdenm * 0xffffL) < tnum) | |
2216 | tquot = 0xffff; | |
2217 | else | |
2218 | tquot = tnum / tdenm; | |
2219 | /* Multiply denominator by trial quotient digit. */ | |
c92d992a | 2220 | m16m ((unsigned int)tquot, den, tprod); |
242cef1e RS |
2221 | /* The quotient digit may have been overestimated. */ |
2222 | if (ecmpm (tprod, num) > 0) | |
842fbaaa | 2223 | { |
242cef1e RS |
2224 | tquot -= 1; |
2225 | esubm (den, tprod); | |
2226 | if (ecmpm (tprod, num) > 0) | |
2227 | { | |
2228 | tquot -= 1; | |
2229 | esubm (den, tprod); | |
2230 | } | |
842fbaaa | 2231 | } |
242cef1e RS |
2232 | esubm (tprod, num); |
2233 | equot[i] = tquot; | |
2234 | eshup6(num); | |
2235 | } | |
2236 | /* test for nonzero remainder after roundoff bit */ | |
2237 | p = &num[M]; | |
2238 | j = 0; | |
2239 | for (i=M; i<NI; i++) | |
2240 | { | |
2241 | j |= *p++; | |
2242 | } | |
2243 | if (j) | |
2244 | j = 1; | |
842fbaaa | 2245 | |
242cef1e RS |
2246 | for (i=0; i<NI; i++) |
2247 | num[i] = equot[i]; | |
842fbaaa | 2248 | |
242cef1e | 2249 | return ((int)j); |
842fbaaa JW |
2250 | } |
2251 | ||
8c35bbc5 | 2252 | /* Multiply significands of exploded e-type A and B, result in B. */ |
842fbaaa | 2253 | |
a0353055 | 2254 | static int |
242cef1e | 2255 | emulm (a, b) |
8c35bbc5 | 2256 | unsigned EMUSHORT a[], b[]; |
842fbaaa | 2257 | { |
8c35bbc5 RK |
2258 | unsigned EMUSHORT *p, *q; |
2259 | unsigned EMUSHORT pprod[NI]; | |
2260 | unsigned EMUSHORT j; | |
242cef1e RS |
2261 | int i; |
2262 | ||
2263 | equot[0] = b[0]; | |
2264 | equot[1] = b[1]; | |
2265 | for (i=M; i<NI; i++) | |
2266 | equot[i] = 0; | |
2267 | ||
2268 | j = 0; | |
2269 | p = &a[NI-1]; | |
2270 | q = &equot[NI-1]; | |
2271 | for (i=M+1; i<NI; i++) | |
2272 | { | |
2273 | if (*p == 0) | |
842fbaaa | 2274 | { |
242cef1e RS |
2275 | --p; |
2276 | } | |
2277 | else | |
2278 | { | |
c92d992a | 2279 | m16m ((unsigned int) *p--, b, pprod); |
242cef1e | 2280 | eaddm(pprod, equot); |
842fbaaa | 2281 | } |
242cef1e RS |
2282 | j |= *q; |
2283 | eshdn6(equot); | |
2284 | } | |
842fbaaa | 2285 | |
242cef1e RS |
2286 | for (i=0; i<NI; i++) |
2287 | b[i] = equot[i]; | |
842fbaaa | 2288 | |
242cef1e RS |
2289 | /* return flag for lost nonzero bits */ |
2290 | return ((int)j); | |
842fbaaa JW |
2291 | } |
2292 | #endif | |
985b6196 RS |
2293 | |
2294 | ||
defb5dab | 2295 | /* Normalize and round off. |
985b6196 | 2296 | |
8c35bbc5 RK |
2297 | The internal format number to be rounded is S. |
2298 | Input LOST is 0 if the value is exact. This is the so-called sticky bit. | |
defb5dab | 2299 | |
8c35bbc5 RK |
2300 | Input SUBFLG indicates whether the number was obtained |
2301 | by a subtraction operation. In that case if LOST is nonzero | |
defb5dab RK |
2302 | then the number is slightly smaller than indicated. |
2303 | ||
8c35bbc5 RK |
2304 | Input EXP is the biased exponent, which may be negative. |
2305 | the exponent field of S is ignored but is replaced by | |
2306 | EXP as adjusted by normalization and rounding. | |
defb5dab | 2307 | |
8c35bbc5 RK |
2308 | Input RCNTRL is the rounding control. If it is nonzero, the |
2309 | returned value will be rounded to RNDPRC bits. | |
defb5dab RK |
2310 | |
2311 | For future reference: In order for emdnorm to round off denormal | |
842fbaaa JW |
2312 | significands at the right point, the input exponent must be |
2313 | adjusted to be the actual value it would have after conversion to | |
2314 | the final floating point type. This adjustment has been | |
2315 | implemented for all type conversions (etoe53, etc.) and decimal | |
2316 | conversions, but not for the arithmetic functions (eadd, etc.). | |
2317 | Data types having standard 15-bit exponents are not affected by | |
2318 | this, but SFmode and DFmode are affected. For example, ediv with | |
2319 | rndprc = 24 will not round correctly to 24-bit precision if the | |
2320 | result is denormal. */ | |
2321 | ||
985b6196 RS |
2322 | static int rlast = -1; |
2323 | static int rw = 0; | |
2324 | static unsigned EMUSHORT rmsk = 0; | |
2325 | static unsigned EMUSHORT rmbit = 0; | |
2326 | static unsigned EMUSHORT rebit = 0; | |
2327 | static int re = 0; | |
2328 | static unsigned EMUSHORT rbit[NI]; | |
2329 | ||
a0353055 | 2330 | static void |
985b6196 RS |
2331 | emdnorm (s, lost, subflg, exp, rcntrl) |
2332 | unsigned EMUSHORT s[]; | |
2333 | int lost; | |
2334 | int subflg; | |
2335 | EMULONG exp; | |
2336 | int rcntrl; | |
2337 | { | |
2338 | int i, j; | |
2339 | unsigned EMUSHORT r; | |
2340 | ||
2341 | /* Normalize */ | |
2342 | j = enormlz (s); | |
2343 | ||
2344 | /* a blank significand could mean either zero or infinity. */ | |
2345 | #ifndef INFINITY | |
2346 | if (j > NBITS) | |
2347 | { | |
2348 | ecleazs (s); | |
2349 | return; | |
2350 | } | |
2351 | #endif | |
2352 | exp -= j; | |
2353 | #ifndef INFINITY | |
2354 | if (exp >= 32767L) | |
2355 | goto overf; | |
2356 | #else | |
2357 | if ((j > NBITS) && (exp < 32767)) | |
2358 | { | |
2359 | ecleazs (s); | |
2360 | return; | |
2361 | } | |
2362 | #endif | |
2363 | if (exp < 0L) | |
2364 | { | |
2365 | if (exp > (EMULONG) (-NBITS - 1)) | |
2366 | { | |
2367 | j = (int) exp; | |
2368 | i = eshift (s, j); | |
2369 | if (i) | |
2370 | lost = 1; | |
2371 | } | |
2372 | else | |
2373 | { | |
2374 | ecleazs (s); | |
2375 | return; | |
2376 | } | |
2377 | } | |
2378 | /* Round off, unless told not to by rcntrl. */ | |
2379 | if (rcntrl == 0) | |
2380 | goto mdfin; | |
2381 | /* Set up rounding parameters if the control register changed. */ | |
2382 | if (rndprc != rlast) | |
2383 | { | |
2384 | ecleaz (rbit); | |
2385 | switch (rndprc) | |
2386 | { | |
2387 | default: | |
2388 | case NBITS: | |
2389 | rw = NI - 1; /* low guard word */ | |
2390 | rmsk = 0xffff; | |
2391 | rmbit = 0x8000; | |
842fbaaa | 2392 | re = rw - 1; |
985b6196 RS |
2393 | rebit = 1; |
2394 | break; | |
842fbaaa JW |
2395 | case 113: |
2396 | rw = 10; | |
2397 | rmsk = 0x7fff; | |
2398 | rmbit = 0x4000; | |
2399 | rebit = 0x8000; | |
2400 | re = rw; | |
2401 | break; | |
985b6196 RS |
2402 | case 64: |
2403 | rw = 7; | |
2404 | rmsk = 0xffff; | |
2405 | rmbit = 0x8000; | |
985b6196 RS |
2406 | re = rw - 1; |
2407 | rebit = 1; | |
2408 | break; | |
842fbaaa | 2409 | /* For DEC or IBM arithmetic */ |
985b6196 RS |
2410 | case 56: |
2411 | rw = 6; | |
2412 | rmsk = 0xff; | |
2413 | rmbit = 0x80; | |
985b6196 | 2414 | rebit = 0x100; |
842fbaaa | 2415 | re = rw; |
985b6196 RS |
2416 | break; |
2417 | case 53: | |
2418 | rw = 6; | |
2419 | rmsk = 0x7ff; | |
2420 | rmbit = 0x0400; | |
985b6196 | 2421 | rebit = 0x800; |
842fbaaa | 2422 | re = rw; |
985b6196 RS |
2423 | break; |
2424 | case 24: | |
2425 | rw = 4; | |
2426 | rmsk = 0xff; | |
2427 | rmbit = 0x80; | |
985b6196 | 2428 | rebit = 0x100; |
842fbaaa | 2429 | re = rw; |
985b6196 RS |
2430 | break; |
2431 | } | |
842fbaaa | 2432 | rbit[re] = rebit; |
985b6196 RS |
2433 | rlast = rndprc; |
2434 | } | |
2435 | ||
842fbaaa | 2436 | /* Shift down 1 temporarily if the data structure has an implied |
d730ef29 RK |
2437 | most significant bit and the number is denormal. |
2438 | Intel long double denormals also lose one bit of precision. */ | |
2439 | if ((exp <= 0) && (rndprc != NBITS) | |
2440 | && ((rndprc != 64) || ((rndprc == 64) && ! REAL_WORDS_BIG_ENDIAN))) | |
985b6196 | 2441 | { |
842fbaaa JW |
2442 | lost |= s[NI - 1] & 1; |
2443 | eshdn1 (s); | |
985b6196 | 2444 | } |
842fbaaa JW |
2445 | /* Clear out all bits below the rounding bit, |
2446 | remembering in r if any were nonzero. */ | |
2447 | r = s[rw] & rmsk; | |
2448 | if (rndprc < NBITS) | |
985b6196 | 2449 | { |
985b6196 RS |
2450 | i = rw + 1; |
2451 | while (i < NI) | |
2452 | { | |
2453 | if (s[i]) | |
2454 | r |= 1; | |
2455 | s[i] = 0; | |
2456 | ++i; | |
2457 | } | |
985b6196 | 2458 | } |
afb817fd | 2459 | s[rw] &= ~rmsk; |
985b6196 RS |
2460 | if ((r & rmbit) != 0) |
2461 | { | |
2462 | if (r == rmbit) | |
2463 | { | |
2464 | if (lost == 0) | |
2465 | { /* round to even */ | |
2466 | if ((s[re] & rebit) == 0) | |
2467 | goto mddone; | |
2468 | } | |
2469 | else | |
2470 | { | |
2471 | if (subflg != 0) | |
2472 | goto mddone; | |
2473 | } | |
2474 | } | |
2475 | eaddm (rbit, s); | |
2476 | } | |
2477 | mddone: | |
d730ef29 RK |
2478 | /* Undo the temporary shift for denormal values. */ |
2479 | if ((exp <= 0) && (rndprc != NBITS) | |
2480 | && ((rndprc != 64) || ((rndprc == 64) && ! REAL_WORDS_BIG_ENDIAN))) | |
985b6196 RS |
2481 | { |
2482 | eshup1 (s); | |
2483 | } | |
2484 | if (s[2] != 0) | |
2485 | { /* overflow on roundoff */ | |
2486 | eshdn1 (s); | |
2487 | exp += 1; | |
2488 | } | |
2489 | mdfin: | |
2490 | s[NI - 1] = 0; | |
2491 | if (exp >= 32767L) | |
2492 | { | |
2493 | #ifndef INFINITY | |
2494 | overf: | |
2495 | #endif | |
2496 | #ifdef INFINITY | |
2497 | s[1] = 32767; | |
2498 | for (i = 2; i < NI - 1; i++) | |
2499 | s[i] = 0; | |
64685ffa RS |
2500 | if (extra_warnings) |
2501 | warning ("floating point overflow"); | |
985b6196 RS |
2502 | #else |
2503 | s[1] = 32766; | |
2504 | s[2] = 0; | |
2505 | for (i = M + 1; i < NI - 1; i++) | |
2506 | s[i] = 0xffff; | |
2507 | s[NI - 1] = 0; | |
842fbaaa | 2508 | if ((rndprc < 64) || (rndprc == 113)) |
985b6196 RS |
2509 | { |
2510 | s[rw] &= ~rmsk; | |
2511 | if (rndprc == 24) | |
2512 | { | |
2513 | s[5] = 0; | |
2514 | s[6] = 0; | |
2515 | } | |
2516 | } | |
2517 | #endif | |
2518 | return; | |
2519 | } | |
2520 | if (exp < 0) | |
2521 | s[1] = 0; | |
2522 | else | |
2523 | s[1] = (unsigned EMUSHORT) exp; | |
2524 | } | |
2525 | ||
8c35bbc5 | 2526 | /* Subtract. C = B - A, all e type numbers. */ |
985b6196 RS |
2527 | |
2528 | static int subflg = 0; | |
2529 | ||
a0353055 | 2530 | static void |
985b6196 RS |
2531 | esub (a, b, c) |
2532 | unsigned EMUSHORT *a, *b, *c; | |
2533 | { | |
2534 | ||
66b6d60b RS |
2535 | #ifdef NANS |
2536 | if (eisnan (a)) | |
2537 | { | |
2538 | emov (a, c); | |
2539 | return; | |
2540 | } | |
2541 | if (eisnan (b)) | |
2542 | { | |
2543 | emov (b, c); | |
2544 | return; | |
2545 | } | |
2546 | /* Infinity minus infinity is a NaN. | |
2547 | Test for subtracting infinities of the same sign. */ | |
2548 | if (eisinf (a) && eisinf (b) | |
2549 | && ((eisneg (a) ^ eisneg (b)) == 0)) | |
2550 | { | |
2551 | mtherr ("esub", INVALID); | |
29e11dab | 2552 | enan (c, 0); |
66b6d60b RS |
2553 | return; |
2554 | } | |
2555 | #endif | |
985b6196 RS |
2556 | subflg = 1; |
2557 | eadd1 (a, b, c); | |
2558 | } | |
2559 | ||
8c35bbc5 | 2560 | /* Add. C = A + B, all e type. */ |
a0353055 RK |
2561 | |
2562 | static void | |
985b6196 RS |
2563 | eadd (a, b, c) |
2564 | unsigned EMUSHORT *a, *b, *c; | |
2565 | { | |
2566 | ||
66b6d60b RS |
2567 | #ifdef NANS |
2568 | /* NaN plus anything is a NaN. */ | |
2569 | if (eisnan (a)) | |
2570 | { | |
2571 | emov (a, c); | |
2572 | return; | |
2573 | } | |
2574 | if (eisnan (b)) | |
2575 | { | |
2576 | emov (b, c); | |
2577 | return; | |
2578 | } | |
2579 | /* Infinity minus infinity is a NaN. | |
2580 | Test for adding infinities of opposite signs. */ | |
2581 | if (eisinf (a) && eisinf (b) | |
2582 | && ((eisneg (a) ^ eisneg (b)) != 0)) | |
2583 | { | |
2584 | mtherr ("esub", INVALID); | |
29e11dab | 2585 | enan (c, 0); |
66b6d60b RS |
2586 | return; |
2587 | } | |
2588 | #endif | |
985b6196 RS |
2589 | subflg = 0; |
2590 | eadd1 (a, b, c); | |
2591 | } | |
2592 | ||
8c35bbc5 RK |
2593 | /* Arithmetic common to both addition and subtraction. */ |
2594 | ||
a0353055 | 2595 | static void |
985b6196 RS |
2596 | eadd1 (a, b, c) |
2597 | unsigned EMUSHORT *a, *b, *c; | |
2598 | { | |
2599 | unsigned EMUSHORT ai[NI], bi[NI], ci[NI]; | |
2600 | int i, lost, j, k; | |
2601 | EMULONG lt, lta, ltb; | |
2602 | ||
2603 | #ifdef INFINITY | |
2604 | if (eisinf (a)) | |
2605 | { | |
2606 | emov (a, c); | |
2607 | if (subflg) | |
2608 | eneg (c); | |
2609 | return; | |
2610 | } | |
2611 | if (eisinf (b)) | |
2612 | { | |
2613 | emov (b, c); | |
2614 | return; | |
2615 | } | |
2616 | #endif | |
2617 | emovi (a, ai); | |
2618 | emovi (b, bi); | |
2619 | if (subflg) | |
2620 | ai[0] = ~ai[0]; | |
2621 | ||
2622 | /* compare exponents */ | |
2623 | lta = ai[E]; | |
2624 | ltb = bi[E]; | |
2625 | lt = lta - ltb; | |
2626 | if (lt > 0L) | |
2627 | { /* put the larger number in bi */ | |
2628 | emovz (bi, ci); | |
2629 | emovz (ai, bi); | |
2630 | emovz (ci, ai); | |
2631 | ltb = bi[E]; | |
2632 | lt = -lt; | |
2633 | } | |
2634 | lost = 0; | |
2635 | if (lt != 0L) | |
2636 | { | |
2637 | if (lt < (EMULONG) (-NBITS - 1)) | |
2638 | goto done; /* answer same as larger addend */ | |
2639 | k = (int) lt; | |
2640 | lost = eshift (ai, k); /* shift the smaller number down */ | |
2641 | } | |
2642 | else | |
2643 | { | |
2644 | /* exponents were the same, so must compare significands */ | |
2645 | i = ecmpm (ai, bi); | |
2646 | if (i == 0) | |
2647 | { /* the numbers are identical in magnitude */ | |
2648 | /* if different signs, result is zero */ | |
2649 | if (ai[0] != bi[0]) | |
2650 | { | |
2651 | eclear (c); | |
2652 | return; | |
2653 | } | |
2654 | /* if same sign, result is double */ | |
9faa82d8 | 2655 | /* double denormalized tiny number */ |
985b6196 RS |
2656 | if ((bi[E] == 0) && ((bi[3] & 0x8000) == 0)) |
2657 | { | |
2658 | eshup1 (bi); | |
2659 | goto done; | |
2660 | } | |
2661 | /* add 1 to exponent unless both are zero! */ | |
2662 | for (j = 1; j < NI - 1; j++) | |
2663 | { | |
2664 | if (bi[j] != 0) | |
2665 | { | |
985b6196 | 2666 | ltb += 1; |
2dedbe1f RK |
2667 | if (ltb >= 0x7fff) |
2668 | { | |
2669 | eclear (c); | |
2670 | if (ai[0] != 0) | |
2671 | eneg (c); | |
2672 | einfin (c); | |
2673 | return; | |
2674 | } | |
985b6196 RS |
2675 | break; |
2676 | } | |
2677 | } | |
2678 | bi[E] = (unsigned EMUSHORT) ltb; | |
2679 | goto done; | |
2680 | } | |
2681 | if (i > 0) | |
2682 | { /* put the larger number in bi */ | |
2683 | emovz (bi, ci); | |
2684 | emovz (ai, bi); | |
2685 | emovz (ci, ai); | |
2686 | } | |
2687 | } | |
2688 | if (ai[0] == bi[0]) | |
2689 | { | |
2690 | eaddm (ai, bi); | |
2691 | subflg = 0; | |
2692 | } | |
2693 | else | |
2694 | { | |
2695 | esubm (ai, bi); | |
2696 | subflg = 1; | |
2697 | } | |
2698 | emdnorm (bi, lost, subflg, ltb, 64); | |
2699 | ||
2700 | done: | |
2701 | emovo (bi, c); | |
2702 | } | |
2703 | ||
8c35bbc5 | 2704 | /* Divide: C = B/A, all e type. */ |
a0353055 RK |
2705 | |
2706 | static void | |
985b6196 RS |
2707 | ediv (a, b, c) |
2708 | unsigned EMUSHORT *a, *b, *c; | |
2709 | { | |
2710 | unsigned EMUSHORT ai[NI], bi[NI]; | |
d56390c4 | 2711 | int i, sign; |
985b6196 RS |
2712 | EMULONG lt, lta, ltb; |
2713 | ||
d56390c4 RK |
2714 | /* IEEE says if result is not a NaN, the sign is "-" if and only if |
2715 | operands have opposite signs -- but flush -0 to 0 later if not IEEE. */ | |
2716 | sign = eisneg(a) ^ eisneg(b); | |
2717 | ||
66b6d60b RS |
2718 | #ifdef NANS |
2719 | /* Return any NaN input. */ | |
2720 | if (eisnan (a)) | |
2721 | { | |
2722 | emov (a, c); | |
2723 | return; | |
2724 | } | |
2725 | if (eisnan (b)) | |
2726 | { | |
2727 | emov (b, c); | |
2728 | return; | |
2729 | } | |
2730 | /* Zero over zero, or infinity over infinity, is a NaN. */ | |
2731 | if (((ecmp (a, ezero) == 0) && (ecmp (b, ezero) == 0)) | |
2732 | || (eisinf (a) && eisinf (b))) | |
2733 | { | |
2734 | mtherr ("ediv", INVALID); | |
d56390c4 | 2735 | enan (c, sign); |
66b6d60b RS |
2736 | return; |
2737 | } | |
2738 | #endif | |
2739 | /* Infinity over anything else is infinity. */ | |
985b6196 RS |
2740 | #ifdef INFINITY |
2741 | if (eisinf (b)) | |
2742 | { | |
985b6196 | 2743 | einfin (c); |
d56390c4 | 2744 | goto divsign; |
985b6196 | 2745 | } |
66b6d60b | 2746 | /* Anything else over infinity is zero. */ |
985b6196 RS |
2747 | if (eisinf (a)) |
2748 | { | |
2749 | eclear (c); | |
d56390c4 | 2750 | goto divsign; |
985b6196 RS |
2751 | } |
2752 | #endif | |
2753 | emovi (a, ai); | |
2754 | emovi (b, bi); | |
2755 | lta = ai[E]; | |
2756 | ltb = bi[E]; | |
2757 | if (bi[E] == 0) | |
2758 | { /* See if numerator is zero. */ | |
2759 | for (i = 1; i < NI - 1; i++) | |
2760 | { | |
2761 | if (bi[i] != 0) | |
2762 | { | |
2763 | ltb -= enormlz (bi); | |
2764 | goto dnzro1; | |
2765 | } | |
2766 | } | |
2767 | eclear (c); | |
d56390c4 | 2768 | goto divsign; |
985b6196 RS |
2769 | } |
2770 | dnzro1: | |
2771 | ||
2772 | if (ai[E] == 0) | |
2773 | { /* possible divide by zero */ | |
2774 | for (i = 1; i < NI - 1; i++) | |
2775 | { | |
2776 | if (ai[i] != 0) | |
2777 | { | |
2778 | lta -= enormlz (ai); | |
2779 | goto dnzro2; | |
2780 | } | |
2781 | } | |
66b6d60b RS |
2782 | /* Divide by zero is not an invalid operation. |
2783 | It is a divide-by-zero operation! */ | |
985b6196 RS |
2784 | einfin (c); |
2785 | mtherr ("ediv", SING); | |
d56390c4 | 2786 | goto divsign; |
985b6196 RS |
2787 | } |
2788 | dnzro2: | |
2789 | ||
2790 | i = edivm (ai, bi); | |
2791 | /* calculate exponent */ | |
2792 | lt = ltb - lta + EXONE; | |
2793 | emdnorm (bi, i, 0, lt, 64); | |
985b6196 | 2794 | emovo (bi, c); |
d56390c4 RK |
2795 | |
2796 | divsign: | |
2797 | ||
2798 | if (sign | |
2799 | #ifndef IEEE | |
2800 | && (ecmp (c, ezero) != 0) | |
2801 | #endif | |
2802 | ) | |
2803 | *(c+(NE-1)) |= 0x8000; | |
2804 | else | |
2805 | *(c+(NE-1)) &= ~0x8000; | |
985b6196 RS |
2806 | } |
2807 | ||
8c35bbc5 | 2808 | /* Multiply e-types A and B, return e-type product C. */ |
a0353055 RK |
2809 | |
2810 | static void | |
985b6196 RS |
2811 | emul (a, b, c) |
2812 | unsigned EMUSHORT *a, *b, *c; | |
2813 | { | |
2814 | unsigned EMUSHORT ai[NI], bi[NI]; | |
d56390c4 | 2815 | int i, j, sign; |
985b6196 RS |
2816 | EMULONG lt, lta, ltb; |
2817 | ||
d56390c4 RK |
2818 | /* IEEE says if result is not a NaN, the sign is "-" if and only if |
2819 | operands have opposite signs -- but flush -0 to 0 later if not IEEE. */ | |
2820 | sign = eisneg(a) ^ eisneg(b); | |
2821 | ||
66b6d60b RS |
2822 | #ifdef NANS |
2823 | /* NaN times anything is the same NaN. */ | |
2824 | if (eisnan (a)) | |
2825 | { | |
2826 | emov (a, c); | |
2827 | return; | |
2828 | } | |
2829 | if (eisnan (b)) | |
2830 | { | |
2831 | emov (b, c); | |
2832 | return; | |
2833 | } | |
2834 | /* Zero times infinity is a NaN. */ | |
2835 | if ((eisinf (a) && (ecmp (b, ezero) == 0)) | |
2836 | || (eisinf (b) && (ecmp (a, ezero) == 0))) | |
2837 | { | |
2838 | mtherr ("emul", INVALID); | |
d56390c4 | 2839 | enan (c, sign); |
66b6d60b RS |
2840 | return; |
2841 | } | |
2842 | #endif | |
2843 | /* Infinity times anything else is infinity. */ | |
985b6196 RS |
2844 | #ifdef INFINITY |
2845 | if (eisinf (a) || eisinf (b)) | |
2846 | { | |
985b6196 | 2847 | einfin (c); |
d56390c4 | 2848 | goto mulsign; |
985b6196 RS |
2849 | } |
2850 | #endif | |
2851 | emovi (a, ai); | |
2852 | emovi (b, bi); | |
2853 | lta = ai[E]; | |
2854 | ltb = bi[E]; | |
2855 | if (ai[E] == 0) | |
2856 | { | |
2857 | for (i = 1; i < NI - 1; i++) | |
2858 | { | |
2859 | if (ai[i] != 0) | |
2860 | { | |
2861 | lta -= enormlz (ai); | |
2862 | goto mnzer1; | |
2863 | } | |
2864 | } | |
2865 | eclear (c); | |
d56390c4 | 2866 | goto mulsign; |
985b6196 RS |
2867 | } |
2868 | mnzer1: | |
2869 | ||
2870 | if (bi[E] == 0) | |
2871 | { | |
2872 | for (i = 1; i < NI - 1; i++) | |
2873 | { | |
2874 | if (bi[i] != 0) | |
2875 | { | |
2876 | ltb -= enormlz (bi); | |
2877 | goto mnzer2; | |
2878 | } | |
2879 | } | |
2880 | eclear (c); | |
d56390c4 | 2881 | goto mulsign; |
985b6196 RS |
2882 | } |
2883 | mnzer2: | |
2884 | ||
2885 | /* Multiply significands */ | |
2886 | j = emulm (ai, bi); | |
2887 | /* calculate exponent */ | |
2888 | lt = lta + ltb - (EXONE - 1); | |
2889 | emdnorm (bi, j, 0, lt, 64); | |
985b6196 | 2890 | emovo (bi, c); |
d56390c4 RK |
2891 | |
2892 | mulsign: | |
2893 | ||
2894 | if (sign | |
2895 | #ifndef IEEE | |
2896 | && (ecmp (c, ezero) != 0) | |
2897 | #endif | |
2898 | ) | |
2899 | *(c+(NE-1)) |= 0x8000; | |
2900 | else | |
2901 | *(c+(NE-1)) &= ~0x8000; | |
985b6196 RS |
2902 | } |
2903 | ||
8c35bbc5 | 2904 | /* Convert double precision PE to e-type Y. */ |
a0353055 RK |
2905 | |
2906 | static void | |
66b6d60b RS |
2907 | e53toe (pe, y) |
2908 | unsigned EMUSHORT *pe, *y; | |
985b6196 RS |
2909 | { |
2910 | #ifdef DEC | |
2911 | ||
8c35bbc5 | 2912 | dectoe (pe, y); |
985b6196 RS |
2913 | |
2914 | #else | |
842fbaaa JW |
2915 | #ifdef IBM |
2916 | ||
2917 | ibmtoe (pe, y, DFmode); | |
985b6196 | 2918 | |
842fbaaa | 2919 | #else |
985b6196 | 2920 | register unsigned EMUSHORT r; |
66b6d60b | 2921 | register unsigned EMUSHORT *e, *p; |
985b6196 RS |
2922 | unsigned EMUSHORT yy[NI]; |
2923 | int denorm, k; | |
2924 | ||
66b6d60b | 2925 | e = pe; |
985b6196 RS |
2926 | denorm = 0; /* flag if denormalized number */ |
2927 | ecleaz (yy); | |
8c35bbc5 | 2928 | if (! REAL_WORDS_BIG_ENDIAN) |
f76b9db2 | 2929 | e += 3; |
985b6196 RS |
2930 | r = *e; |
2931 | yy[0] = 0; | |
2932 | if (r & 0x8000) | |
2933 | yy[0] = 0xffff; | |
2934 | yy[M] = (r & 0x0f) | 0x10; | |
2935 | r &= ~0x800f; /* strip sign and 4 significand bits */ | |
2936 | #ifdef INFINITY | |
2937 | if (r == 0x7ff0) | |
2938 | { | |
66b6d60b | 2939 | #ifdef NANS |
8c35bbc5 | 2940 | if (! REAL_WORDS_BIG_ENDIAN) |
66b6d60b | 2941 | { |
f76b9db2 ILT |
2942 | if (((pe[3] & 0xf) != 0) || (pe[2] != 0) |
2943 | || (pe[1] != 0) || (pe[0] != 0)) | |
2944 | { | |
2945 | enan (y, yy[0] != 0); | |
2946 | return; | |
2947 | } | |
66b6d60b | 2948 | } |
f76b9db2 | 2949 | else |
66b6d60b | 2950 | { |
f76b9db2 ILT |
2951 | if (((pe[0] & 0xf) != 0) || (pe[1] != 0) |
2952 | || (pe[2] != 0) || (pe[3] != 0)) | |
2953 | { | |
2954 | enan (y, yy[0] != 0); | |
2955 | return; | |
2956 | } | |
66b6d60b | 2957 | } |
66b6d60b | 2958 | #endif /* NANS */ |
dca821e1 | 2959 | eclear (y); |
985b6196 | 2960 | einfin (y); |
dca821e1 | 2961 | if (yy[0]) |
985b6196 RS |
2962 | eneg (y); |
2963 | return; | |
2964 | } | |
66b6d60b | 2965 | #endif /* INFINITY */ |
985b6196 RS |
2966 | r >>= 4; |
2967 | /* If zero exponent, then the significand is denormalized. | |
defb5dab RK |
2968 | So take back the understood high significand bit. */ |
2969 | ||
985b6196 RS |
2970 | if (r == 0) |
2971 | { | |
2972 | denorm = 1; | |
2973 | yy[M] &= ~0x10; | |
2974 | } | |
2975 | r += EXONE - 01777; | |
2976 | yy[E] = r; | |
2977 | p = &yy[M + 1]; | |
f76b9db2 | 2978 | #ifdef IEEE |
8c35bbc5 | 2979 | if (! REAL_WORDS_BIG_ENDIAN) |
f76b9db2 ILT |
2980 | { |
2981 | *p++ = *(--e); | |
2982 | *p++ = *(--e); | |
2983 | *p++ = *(--e); | |
2984 | } | |
2985 | else | |
2986 | { | |
2987 | ++e; | |
2988 | *p++ = *e++; | |
2989 | *p++ = *e++; | |
2990 | *p++ = *e++; | |
2991 | } | |
985b6196 | 2992 | #endif |
64685ffa | 2993 | eshift (yy, -5); |
985b6196 RS |
2994 | if (denorm) |
2995 | { /* if zero exponent, then normalize the significand */ | |
2996 | if ((k = enormlz (yy)) > NBITS) | |
2997 | ecleazs (yy); | |
2998 | else | |
2999 | yy[E] -= (unsigned EMUSHORT) (k - 1); | |
3000 | } | |
3001 | emovo (yy, y); | |
842fbaaa | 3002 | #endif /* not IBM */ |
985b6196 RS |
3003 | #endif /* not DEC */ |
3004 | } | |
3005 | ||
8c35bbc5 RK |
3006 | /* Convert double extended precision float PE to e type Y. */ |
3007 | ||
a0353055 | 3008 | static void |
66b6d60b RS |
3009 | e64toe (pe, y) |
3010 | unsigned EMUSHORT *pe, *y; | |
985b6196 RS |
3011 | { |
3012 | unsigned EMUSHORT yy[NI]; | |
66b6d60b | 3013 | unsigned EMUSHORT *e, *p, *q; |
985b6196 RS |
3014 | int i; |
3015 | ||
66b6d60b | 3016 | e = pe; |
985b6196 RS |
3017 | p = yy; |
3018 | for (i = 0; i < NE - 5; i++) | |
3019 | *p++ = 0; | |
842fbaaa | 3020 | /* This precision is not ordinarily supported on DEC or IBM. */ |
985b6196 RS |
3021 | #ifdef DEC |
3022 | for (i = 0; i < 5; i++) | |
3023 | *p++ = *e++; | |
3024 | #endif | |
842fbaaa JW |
3025 | #ifdef IBM |
3026 | p = &yy[0] + (NE - 1); | |
3027 | *p-- = *e++; | |
3028 | ++e; | |
3029 | for (i = 0; i < 5; i++) | |
3030 | *p-- = *e++; | |
3031 | #endif | |
f76b9db2 | 3032 | #ifdef IEEE |
8c35bbc5 | 3033 | if (! REAL_WORDS_BIG_ENDIAN) |
f76b9db2 ILT |
3034 | { |
3035 | for (i = 0; i < 5; i++) | |
3036 | *p++ = *e++; | |
d730ef29 RK |
3037 | |
3038 | /* For denormal long double Intel format, shift significand up one | |
3039 | -- but only if the top significand bit is zero. A top bit of 1 | |
3040 | is "pseudodenormal" when the exponent is zero. */ | |
3041 | if((yy[NE-1] & 0x7fff) == 0 && (yy[NE-2] & 0x8000) == 0) | |
3042 | { | |
3043 | unsigned EMUSHORT temp[NI]; | |
3044 | ||
3045 | emovi(yy, temp); | |
3046 | eshup1(temp); | |
3047 | emovo(temp,y); | |
3048 | return; | |
3049 | } | |
f76b9db2 ILT |
3050 | } |
3051 | else | |
3052 | { | |
3053 | p = &yy[0] + (NE - 1); | |
f250a0bc RK |
3054 | #ifdef ARM_EXTENDED_IEEE_FORMAT |
3055 | /* For ARMs, the exponent is in the lowest 15 bits of the word. */ | |
3056 | *p-- = (e[0] & 0x8000) | (e[1] & 0x7ffff); | |
3057 | e += 2; | |
3058 | #else | |
f76b9db2 ILT |
3059 | *p-- = *e++; |
3060 | ++e; | |
f250a0bc | 3061 | #endif |
f76b9db2 ILT |
3062 | for (i = 0; i < 4; i++) |
3063 | *p-- = *e++; | |
3064 | } | |
985b6196 | 3065 | #endif |
985b6196 | 3066 | #ifdef INFINITY |
82e974d4 RK |
3067 | /* Point to the exponent field and check max exponent cases. */ |
3068 | p = &yy[NE - 1]; | |
f250a0bc | 3069 | if ((*p & 0x7fff) == 0x7fff) |
985b6196 | 3070 | { |
66b6d60b | 3071 | #ifdef NANS |
8c35bbc5 | 3072 | if (! REAL_WORDS_BIG_ENDIAN) |
66b6d60b | 3073 | { |
f76b9db2 | 3074 | for (i = 0; i < 4; i++) |
66b6d60b | 3075 | { |
82e974d4 RK |
3076 | if ((i != 3 && pe[i] != 0) |
3077 | /* Anything but 0x8000 here, including 0, is a NaN. */ | |
3078 | || (i == 3 && pe[i] != 0x8000)) | |
f76b9db2 ILT |
3079 | { |
3080 | enan (y, (*p & 0x8000) != 0); | |
3081 | return; | |
3082 | } | |
66b6d60b RS |
3083 | } |
3084 | } | |
f76b9db2 | 3085 | else |
66b6d60b | 3086 | { |
f250a0bc RK |
3087 | #ifdef ARM_EXTENDED_IEEE_FORMAT |
3088 | for (i = 2; i <= 5; i++) | |
66b6d60b | 3089 | { |
f76b9db2 ILT |
3090 | if (pe[i] != 0) |
3091 | { | |
3092 | enan (y, (*p & 0x8000) != 0); | |
3093 | return; | |
3094 | } | |
66b6d60b | 3095 | } |
f250a0bc RK |
3096 | #else /* not ARM */ |
3097 | /* In Motorola extended precision format, the most significant | |
3098 | bit of an infinity mantissa could be either 1 or 0. It is | |
3099 | the lower order bits that tell whether the value is a NaN. */ | |
3100 | if ((pe[2] & 0x7fff) != 0) | |
3101 | goto bigend_nan; | |
3102 | ||
3103 | for (i = 3; i <= 5; i++) | |
3104 | { | |
3105 | if (pe[i] != 0) | |
3106 | { | |
3107 | bigend_nan: | |
3108 | enan (y, (*p & 0x8000) != 0); | |
3109 | return; | |
3110 | } | |
3111 | } | |
3112 | #endif /* not ARM */ | |
66b6d60b | 3113 | } |
66b6d60b | 3114 | #endif /* NANS */ |
dca821e1 | 3115 | eclear (y); |
985b6196 RS |
3116 | einfin (y); |
3117 | if (*p & 0x8000) | |
3118 | eneg (y); | |
3119 | return; | |
3120 | } | |
66b6d60b | 3121 | #endif /* INFINITY */ |
82e974d4 RK |
3122 | p = yy; |
3123 | q = y; | |
985b6196 RS |
3124 | for (i = 0; i < NE; i++) |
3125 | *q++ = *p++; | |
3126 | } | |
3127 | ||
8c35bbc5 | 3128 | /* Convert 128-bit long double precision float PE to e type Y. */ |
985b6196 | 3129 | |
a0353055 | 3130 | static void |
842fbaaa | 3131 | e113toe (pe, y) |
66b6d60b | 3132 | unsigned EMUSHORT *pe, *y; |
985b6196 RS |
3133 | { |
3134 | register unsigned EMUSHORT r; | |
842fbaaa | 3135 | unsigned EMUSHORT *e, *p; |
985b6196 | 3136 | unsigned EMUSHORT yy[NI]; |
842fbaaa | 3137 | int denorm, i; |
985b6196 | 3138 | |
66b6d60b | 3139 | e = pe; |
842fbaaa | 3140 | denorm = 0; |
985b6196 | 3141 | ecleaz (yy); |
f76b9db2 | 3142 | #ifdef IEEE |
8c35bbc5 | 3143 | if (! REAL_WORDS_BIG_ENDIAN) |
f76b9db2 | 3144 | e += 7; |
985b6196 RS |
3145 | #endif |
3146 | r = *e; | |
3147 | yy[0] = 0; | |
3148 | if (r & 0x8000) | |
3149 | yy[0] = 0xffff; | |
842fbaaa | 3150 | r &= 0x7fff; |
985b6196 | 3151 | #ifdef INFINITY |
842fbaaa | 3152 | if (r == 0x7fff) |
985b6196 | 3153 | { |
66b6d60b | 3154 | #ifdef NANS |
8c35bbc5 | 3155 | if (! REAL_WORDS_BIG_ENDIAN) |
66b6d60b | 3156 | { |
f76b9db2 | 3157 | for (i = 0; i < 7; i++) |
842fbaaa | 3158 | { |
f76b9db2 ILT |
3159 | if (pe[i] != 0) |
3160 | { | |
3161 | enan (y, yy[0] != 0); | |
3162 | return; | |
3163 | } | |
842fbaaa | 3164 | } |
66b6d60b | 3165 | } |
f76b9db2 | 3166 | else |
66b6d60b | 3167 | { |
f76b9db2 | 3168 | for (i = 1; i < 8; i++) |
842fbaaa | 3169 | { |
f76b9db2 ILT |
3170 | if (pe[i] != 0) |
3171 | { | |
3172 | enan (y, yy[0] != 0); | |
3173 | return; | |
3174 | } | |
842fbaaa | 3175 | } |
66b6d60b | 3176 | } |
842fbaaa | 3177 | #endif /* NANS */ |
dca821e1 | 3178 | eclear (y); |
985b6196 | 3179 | einfin (y); |
dca821e1 | 3180 | if (yy[0]) |
985b6196 RS |
3181 | eneg (y); |
3182 | return; | |
3183 | } | |
66b6d60b | 3184 | #endif /* INFINITY */ |
985b6196 RS |
3185 | yy[E] = r; |
3186 | p = &yy[M + 1]; | |
f76b9db2 | 3187 | #ifdef IEEE |
8c35bbc5 | 3188 | if (! REAL_WORDS_BIG_ENDIAN) |
f76b9db2 ILT |
3189 | { |
3190 | for (i = 0; i < 7; i++) | |
3191 | *p++ = *(--e); | |
3192 | } | |
3193 | else | |
3194 | { | |
3195 | ++e; | |
3196 | for (i = 0; i < 7; i++) | |
3197 | *p++ = *e++; | |
3198 | } | |
985b6196 | 3199 | #endif |
842fbaaa JW |
3200 | /* If denormal, remove the implied bit; else shift down 1. */ |
3201 | if (r == 0) | |
3202 | { | |
3203 | yy[M] = 0; | |
3204 | } | |
3205 | else | |
3206 | { | |
3207 | yy[M] = 1; | |
3208 | eshift (yy, -1); | |
3209 | } | |
3210 | emovo (yy, y); | |
3211 | } | |
3212 | ||
8c35bbc5 | 3213 | /* Convert single precision float PE to e type Y. */ |
a0353055 RK |
3214 | |
3215 | static void | |
842fbaaa JW |
3216 | e24toe (pe, y) |
3217 | unsigned EMUSHORT *pe, *y; | |
3218 | { | |
3219 | #ifdef IBM | |
3220 | ||
3221 | ibmtoe (pe, y, SFmode); | |
3222 | ||
3223 | #else | |
3224 | register unsigned EMUSHORT r; | |
3225 | register unsigned EMUSHORT *e, *p; | |
3226 | unsigned EMUSHORT yy[NI]; | |
3227 | int denorm, k; | |
3228 | ||
3229 | e = pe; | |
3230 | denorm = 0; /* flag if denormalized number */ | |
3231 | ecleaz (yy); | |
f76b9db2 | 3232 | #ifdef IEEE |
8c35bbc5 | 3233 | if (! REAL_WORDS_BIG_ENDIAN) |
f76b9db2 | 3234 | e += 1; |
842fbaaa JW |
3235 | #endif |
3236 | #ifdef DEC | |
3237 | e += 1; | |
3238 | #endif | |
3239 | r = *e; | |
3240 | yy[0] = 0; | |
3241 | if (r & 0x8000) | |
3242 | yy[0] = 0xffff; | |
3243 | yy[M] = (r & 0x7f) | 0200; | |
3244 | r &= ~0x807f; /* strip sign and 7 significand bits */ | |
3245 | #ifdef INFINITY | |
3246 | if (r == 0x7f80) | |
3247 | { | |
3248 | #ifdef NANS | |
8c35bbc5 | 3249 | if (REAL_WORDS_BIG_ENDIAN) |
842fbaaa | 3250 | { |
f76b9db2 ILT |
3251 | if (((pe[0] & 0x7f) != 0) || (pe[1] != 0)) |
3252 | { | |
3253 | enan (y, yy[0] != 0); | |
3254 | return; | |
3255 | } | |
842fbaaa | 3256 | } |
f76b9db2 | 3257 | else |
842fbaaa | 3258 | { |
f76b9db2 ILT |
3259 | if (((pe[1] & 0x7f) != 0) || (pe[0] != 0)) |
3260 | { | |
3261 | enan (y, yy[0] != 0); | |
3262 | return; | |
3263 | } | |
842fbaaa | 3264 | } |
842fbaaa JW |
3265 | #endif /* NANS */ |
3266 | eclear (y); | |
3267 | einfin (y); | |
3268 | if (yy[0]) | |
3269 | eneg (y); | |
3270 | return; | |
3271 | } | |
3272 | #endif /* INFINITY */ | |
3273 | r >>= 7; | |
3274 | /* If zero exponent, then the significand is denormalized. | |
defb5dab | 3275 | So take back the understood high significand bit. */ |
842fbaaa JW |
3276 | if (r == 0) |
3277 | { | |
3278 | denorm = 1; | |
3279 | yy[M] &= ~0200; | |
3280 | } | |
3281 | r += EXONE - 0177; | |
3282 | yy[E] = r; | |
3283 | p = &yy[M + 1]; | |
842fbaaa JW |
3284 | #ifdef DEC |
3285 | *p++ = *(--e); | |
3286 | #endif | |
f76b9db2 | 3287 | #ifdef IEEE |
8c35bbc5 | 3288 | if (! REAL_WORDS_BIG_ENDIAN) |
f76b9db2 ILT |
3289 | *p++ = *(--e); |
3290 | else | |
3291 | { | |
3292 | ++e; | |
3293 | *p++ = *e++; | |
3294 | } | |
842fbaaa JW |
3295 | #endif |
3296 | eshift (yy, -8); | |
3297 | if (denorm) | |
3298 | { /* if zero exponent, then normalize the significand */ | |
3299 | if ((k = enormlz (yy)) > NBITS) | |
3300 | ecleazs (yy); | |
3301 | else | |
3302 | yy[E] -= (unsigned EMUSHORT) (k - 1); | |
985b6196 RS |
3303 | } |
3304 | emovo (yy, y); | |
842fbaaa JW |
3305 | #endif /* not IBM */ |
3306 | } | |
3307 | ||
8c35bbc5 | 3308 | /* Convert e-type X to IEEE 128-bit long double format E. */ |
842fbaaa | 3309 | |
a0353055 | 3310 | static void |
842fbaaa JW |
3311 | etoe113 (x, e) |
3312 | unsigned EMUSHORT *x, *e; | |
3313 | { | |
3314 | unsigned EMUSHORT xi[NI]; | |
3315 | EMULONG exp; | |
3316 | int rndsav; | |
3317 | ||
3318 | #ifdef NANS | |
3319 | if (eisnan (x)) | |
3320 | { | |
29e11dab | 3321 | make_nan (e, eisneg (x), TFmode); |
842fbaaa JW |
3322 | return; |
3323 | } | |
3324 | #endif | |
3325 | emovi (x, xi); | |
3326 | exp = (EMULONG) xi[E]; | |
3327 | #ifdef INFINITY | |
3328 | if (eisinf (x)) | |
3329 | goto nonorm; | |
3330 | #endif | |
3331 | /* round off to nearest or even */ | |
3332 | rndsav = rndprc; | |
3333 | rndprc = 113; | |
3334 | emdnorm (xi, 0, 0, exp, 64); | |
3335 | rndprc = rndsav; | |
3336 | nonorm: | |
3337 | toe113 (xi, e); | |
985b6196 RS |
3338 | } |
3339 | ||
8c35bbc5 RK |
3340 | /* Convert exploded e-type X, that has already been rounded to |
3341 | 113-bit precision, to IEEE 128-bit long double format Y. */ | |
a0353055 | 3342 | |
842fbaaa JW |
3343 | static void |
3344 | toe113 (a, b) | |
3345 | unsigned EMUSHORT *a, *b; | |
3346 | { | |
3347 | register unsigned EMUSHORT *p, *q; | |
3348 | unsigned EMUSHORT i; | |
3349 | ||
3350 | #ifdef NANS | |
3351 | if (eiisnan (a)) | |
3352 | { | |
29e11dab | 3353 | make_nan (b, eiisneg (a), TFmode); |
842fbaaa JW |
3354 | return; |
3355 | } | |
3356 | #endif | |
3357 | p = a; | |
8c35bbc5 | 3358 | if (REAL_WORDS_BIG_ENDIAN) |
f76b9db2 ILT |
3359 | q = b; |
3360 | else | |
3361 | q = b + 7; /* point to output exponent */ | |
842fbaaa JW |
3362 | |
3363 | /* If not denormal, delete the implied bit. */ | |
3364 | if (a[E] != 0) | |
3365 | { | |
3366 | eshup1 (a); | |
3367 | } | |
3368 | /* combine sign and exponent */ | |
3369 | i = *p++; | |
8c35bbc5 | 3370 | if (REAL_WORDS_BIG_ENDIAN) |
f76b9db2 ILT |
3371 | { |
3372 | if (i) | |
3373 | *q++ = *p++ | 0x8000; | |
3374 | else | |
3375 | *q++ = *p++; | |
3376 | } | |
842fbaaa | 3377 | else |
f76b9db2 ILT |
3378 | { |
3379 | if (i) | |
3380 | *q-- = *p++ | 0x8000; | |
3381 | else | |
3382 | *q-- = *p++; | |
3383 | } | |
842fbaaa JW |
3384 | /* skip over guard word */ |
3385 | ++p; | |
3386 | /* move the significand */ | |
8c35bbc5 | 3387 | if (REAL_WORDS_BIG_ENDIAN) |
f76b9db2 ILT |
3388 | { |
3389 | for (i = 0; i < 7; i++) | |
3390 | *q++ = *p++; | |
3391 | } | |
3392 | else | |
3393 | { | |
3394 | for (i = 0; i < 7; i++) | |
3395 | *q-- = *p++; | |
3396 | } | |
842fbaaa | 3397 | } |
985b6196 | 3398 | |
8c35bbc5 RK |
3399 | /* Convert e-type X to IEEE double extended format E. */ |
3400 | ||
a0353055 | 3401 | static void |
985b6196 RS |
3402 | etoe64 (x, e) |
3403 | unsigned EMUSHORT *x, *e; | |
3404 | { | |
3405 | unsigned EMUSHORT xi[NI]; | |
3406 | EMULONG exp; | |
3407 | int rndsav; | |
3408 | ||
66b6d60b RS |
3409 | #ifdef NANS |
3410 | if (eisnan (x)) | |
3411 | { | |
29e11dab | 3412 | make_nan (e, eisneg (x), XFmode); |
66b6d60b RS |
3413 | return; |
3414 | } | |
3415 | #endif | |
985b6196 RS |
3416 | emovi (x, xi); |
3417 | /* adjust exponent for offset */ | |
3418 | exp = (EMULONG) xi[E]; | |
3419 | #ifdef INFINITY | |
3420 | if (eisinf (x)) | |
3421 | goto nonorm; | |
3422 | #endif | |
3423 | /* round off to nearest or even */ | |
3424 | rndsav = rndprc; | |
3425 | rndprc = 64; | |
3426 | emdnorm (xi, 0, 0, exp, 64); | |
3427 | rndprc = rndsav; | |
3428 | nonorm: | |
3429 | toe64 (xi, e); | |
3430 | } | |
3431 | ||
8c35bbc5 RK |
3432 | /* Convert exploded e-type X, that has already been rounded to |
3433 | 64-bit precision, to IEEE double extended format Y. */ | |
defb5dab | 3434 | |
985b6196 RS |
3435 | static void |
3436 | toe64 (a, b) | |
3437 | unsigned EMUSHORT *a, *b; | |
3438 | { | |
3439 | register unsigned EMUSHORT *p, *q; | |
3440 | unsigned EMUSHORT i; | |
3441 | ||
66b6d60b RS |
3442 | #ifdef NANS |
3443 | if (eiisnan (a)) | |
3444 | { | |
29e11dab | 3445 | make_nan (b, eiisneg (a), XFmode); |
66b6d60b RS |
3446 | return; |
3447 | } | |
3448 | #endif | |
d730ef29 RK |
3449 | /* Shift denormal long double Intel format significand down one bit. */ |
3450 | if ((a[E] == 0) && ! REAL_WORDS_BIG_ENDIAN) | |
3451 | eshdn1 (a); | |
985b6196 | 3452 | p = a; |
f76b9db2 | 3453 | #ifdef IBM |
985b6196 | 3454 | q = b; |
f76b9db2 ILT |
3455 | #endif |
3456 | #ifdef DEC | |
3457 | q = b + 4; | |
3458 | #endif | |
3459 | #ifdef IEEE | |
8c35bbc5 | 3460 | if (REAL_WORDS_BIG_ENDIAN) |
f76b9db2 ILT |
3461 | q = b; |
3462 | else | |
3463 | { | |
3464 | q = b + 4; /* point to output exponent */ | |
985b6196 | 3465 | #if LONG_DOUBLE_TYPE_SIZE == 96 |
f76b9db2 ILT |
3466 | /* Clear the last two bytes of 12-byte Intel format */ |
3467 | *(q+1) = 0; | |
985b6196 | 3468 | #endif |
f76b9db2 | 3469 | } |
985b6196 RS |
3470 | #endif |
3471 | ||
3472 | /* combine sign and exponent */ | |
3473 | i = *p++; | |
f76b9db2 | 3474 | #ifdef IBM |
985b6196 RS |
3475 | if (i) |
3476 | *q++ = *p++ | 0x8000; | |
3477 | else | |
3478 | *q++ = *p++; | |
3479 | *q++ = 0; | |
f76b9db2 ILT |
3480 | #endif |
3481 | #ifdef DEC | |
985b6196 RS |
3482 | if (i) |
3483 | *q-- = *p++ | 0x8000; | |
3484 | else | |
3485 | *q-- = *p++; | |
f76b9db2 ILT |
3486 | #endif |
3487 | #ifdef IEEE | |
8c35bbc5 | 3488 | if (REAL_WORDS_BIG_ENDIAN) |
f76b9db2 | 3489 | { |
f250a0bc RK |
3490 | #ifdef ARM_EXTENDED_IEEE_FORMAT |
3491 | /* The exponent is in the lowest 15 bits of the first word. */ | |
3492 | *q++ = i ? 0x8000 : 0; | |
3493 | *q++ = *p++; | |
3494 | #else | |
f76b9db2 ILT |
3495 | if (i) |
3496 | *q++ = *p++ | 0x8000; | |
3497 | else | |
3498 | *q++ = *p++; | |
3499 | *q++ = 0; | |
f250a0bc | 3500 | #endif |
f76b9db2 ILT |
3501 | } |
3502 | else | |
3503 | { | |
3504 | if (i) | |
3505 | *q-- = *p++ | 0x8000; | |
3506 | else | |
3507 | *q-- = *p++; | |
3508 | } | |
985b6196 RS |
3509 | #endif |
3510 | /* skip over guard word */ | |
3511 | ++p; | |
3512 | /* move the significand */ | |
f76b9db2 | 3513 | #ifdef IBM |
985b6196 RS |
3514 | for (i = 0; i < 4; i++) |
3515 | *q++ = *p++; | |
f76b9db2 ILT |
3516 | #endif |
3517 | #ifdef DEC | |
985b6196 RS |
3518 | for (i = 0; i < 4; i++) |
3519 | *q-- = *p++; | |
3520 | #endif | |
f76b9db2 | 3521 | #ifdef IEEE |
8c35bbc5 | 3522 | if (REAL_WORDS_BIG_ENDIAN) |
f76b9db2 ILT |
3523 | { |
3524 | for (i = 0; i < 4; i++) | |
3525 | *q++ = *p++; | |
3526 | } | |
3527 | else | |
3528 | { | |
82e974d4 RK |
3529 | #ifdef INFINITY |
3530 | if (eiisinf (a)) | |
3531 | { | |
3532 | /* Intel long double infinity significand. */ | |
3533 | *q-- = 0x8000; | |
3534 | *q-- = 0; | |
3535 | *q-- = 0; | |
3536 | *q = 0; | |
3537 | return; | |
3538 | } | |
3539 | #endif | |
f76b9db2 ILT |
3540 | for (i = 0; i < 4; i++) |
3541 | *q-- = *p++; | |
3542 | } | |
3543 | #endif | |
985b6196 RS |
3544 | } |
3545 | ||
8c35bbc5 | 3546 | /* e type to double precision. */ |
985b6196 RS |
3547 | |
3548 | #ifdef DEC | |
8c35bbc5 | 3549 | /* Convert e-type X to DEC-format double E. */ |
985b6196 | 3550 | |
a0353055 | 3551 | static void |
985b6196 RS |
3552 | etoe53 (x, e) |
3553 | unsigned EMUSHORT *x, *e; | |
3554 | { | |
3555 | etodec (x, e); /* see etodec.c */ | |
3556 | } | |
3557 | ||
8c35bbc5 RK |
3558 | /* Convert exploded e-type X, that has already been rounded to |
3559 | 56-bit double precision, to DEC double Y. */ | |
3560 | ||
985b6196 RS |
3561 | static void |
3562 | toe53 (x, y) | |
3563 | unsigned EMUSHORT *x, *y; | |
3564 | { | |
3565 | todec (x, y); | |
3566 | } | |
3567 | ||
3568 | #else | |
842fbaaa | 3569 | #ifdef IBM |
8c35bbc5 | 3570 | /* Convert e-type X to IBM 370-format double E. */ |
842fbaaa | 3571 | |
008f0d36 | 3572 | static void |
842fbaaa JW |
3573 | etoe53 (x, e) |
3574 | unsigned EMUSHORT *x, *e; | |
3575 | { | |
3576 | etoibm (x, e, DFmode); | |
3577 | } | |
3578 | ||
8c35bbc5 RK |
3579 | /* Convert exploded e-type X, that has already been rounded to |
3580 | 56-bit precision, to IBM 370 double Y. */ | |
3581 | ||
842fbaaa JW |
3582 | static void |
3583 | toe53 (x, y) | |
3584 | unsigned EMUSHORT *x, *y; | |
3585 | { | |
3586 | toibm (x, y, DFmode); | |
3587 | } | |
3588 | ||
3589 | #else /* it's neither DEC nor IBM */ | |
985b6196 | 3590 | |
8c35bbc5 RK |
3591 | /* Convert e-type X to IEEE double E. */ |
3592 | ||
008f0d36 | 3593 | static void |
985b6196 RS |
3594 | etoe53 (x, e) |
3595 | unsigned EMUSHORT *x, *e; | |
3596 | { | |
3597 | unsigned EMUSHORT xi[NI]; | |
3598 | EMULONG exp; | |
3599 | int rndsav; | |
3600 | ||
66b6d60b RS |
3601 | #ifdef NANS |
3602 | if (eisnan (x)) | |
3603 | { | |
29e11dab | 3604 | make_nan (e, eisneg (x), DFmode); |
66b6d60b RS |
3605 | return; |
3606 | } | |
3607 | #endif | |
985b6196 RS |
3608 | emovi (x, xi); |
3609 | /* adjust exponent for offsets */ | |
3610 | exp = (EMULONG) xi[E] - (EXONE - 0x3ff); | |
3611 | #ifdef INFINITY | |
3612 | if (eisinf (x)) | |
3613 | goto nonorm; | |
3614 | #endif | |
3615 | /* round off to nearest or even */ | |
3616 | rndsav = rndprc; | |
3617 | rndprc = 53; | |
3618 | emdnorm (xi, 0, 0, exp, 64); | |
3619 | rndprc = rndsav; | |
3620 | nonorm: | |
3621 | toe53 (xi, e); | |
3622 | } | |
3623 | ||
8c35bbc5 RK |
3624 | /* Convert exploded e-type X, that has already been rounded to |
3625 | 53-bit precision, to IEEE double Y. */ | |
985b6196 RS |
3626 | |
3627 | static void | |
3628 | toe53 (x, y) | |
3629 | unsigned EMUSHORT *x, *y; | |
3630 | { | |
3631 | unsigned EMUSHORT i; | |
3632 | unsigned EMUSHORT *p; | |
3633 | ||
66b6d60b RS |
3634 | #ifdef NANS |
3635 | if (eiisnan (x)) | |
3636 | { | |
29e11dab | 3637 | make_nan (y, eiisneg (x), DFmode); |
66b6d60b RS |
3638 | return; |
3639 | } | |
3640 | #endif | |
985b6196 | 3641 | p = &x[0]; |
f76b9db2 | 3642 | #ifdef IEEE |
8c35bbc5 | 3643 | if (! REAL_WORDS_BIG_ENDIAN) |
f76b9db2 | 3644 | y += 3; |
985b6196 RS |
3645 | #endif |
3646 | *y = 0; /* output high order */ | |
3647 | if (*p++) | |
3648 | *y = 0x8000; /* output sign bit */ | |
3649 | ||
3650 | i = *p++; | |
3651 | if (i >= (unsigned int) 2047) | |
3652 | { /* Saturate at largest number less than infinity. */ | |
3653 | #ifdef INFINITY | |
3654 | *y |= 0x7ff0; | |
8c35bbc5 | 3655 | if (! REAL_WORDS_BIG_ENDIAN) |
f76b9db2 ILT |
3656 | { |
3657 | *(--y) = 0; | |
3658 | *(--y) = 0; | |
3659 | *(--y) = 0; | |
3660 | } | |
3661 | else | |
3662 | { | |
3663 | ++y; | |
3664 | *y++ = 0; | |
3665 | *y++ = 0; | |
3666 | *y++ = 0; | |
3667 | } | |
985b6196 RS |
3668 | #else |
3669 | *y |= (unsigned EMUSHORT) 0x7fef; | |
8c35bbc5 | 3670 | if (! REAL_WORDS_BIG_ENDIAN) |
f76b9db2 ILT |
3671 | { |
3672 | *(--y) = 0xffff; | |
3673 | *(--y) = 0xffff; | |
3674 | *(--y) = 0xffff; | |
3675 | } | |
3676 | else | |
3677 | { | |
3678 | ++y; | |
3679 | *y++ = 0xffff; | |
3680 | *y++ = 0xffff; | |
3681 | *y++ = 0xffff; | |
3682 | } | |
985b6196 RS |
3683 | #endif |
3684 | return; | |
3685 | } | |
3686 | if (i == 0) | |
3687 | { | |
64685ffa | 3688 | eshift (x, 4); |
985b6196 RS |
3689 | } |
3690 | else | |
3691 | { | |
3692 | i <<= 4; | |
64685ffa | 3693 | eshift (x, 5); |
985b6196 RS |
3694 | } |
3695 | i |= *p++ & (unsigned EMUSHORT) 0x0f; /* *p = xi[M] */ | |
3696 | *y |= (unsigned EMUSHORT) i; /* high order output already has sign bit set */ | |
8c35bbc5 | 3697 | if (! REAL_WORDS_BIG_ENDIAN) |
f76b9db2 ILT |
3698 | { |
3699 | *(--y) = *p++; | |
3700 | *(--y) = *p++; | |
3701 | *(--y) = *p; | |
3702 | } | |
3703 | else | |
3704 | { | |
3705 | ++y; | |
3706 | *y++ = *p++; | |
3707 | *y++ = *p++; | |
3708 | *y++ = *p++; | |
3709 | } | |
985b6196 RS |
3710 | } |
3711 | ||
842fbaaa | 3712 | #endif /* not IBM */ |
985b6196 RS |
3713 | #endif /* not DEC */ |
3714 | ||
3715 | ||
3716 | ||
8c35bbc5 | 3717 | /* e type to single precision. */ |
defb5dab | 3718 | |
842fbaaa | 3719 | #ifdef IBM |
8c35bbc5 | 3720 | /* Convert e-type X to IBM 370 float E. */ |
842fbaaa | 3721 | |
008f0d36 | 3722 | static void |
842fbaaa JW |
3723 | etoe24 (x, e) |
3724 | unsigned EMUSHORT *x, *e; | |
3725 | { | |
3726 | etoibm (x, e, SFmode); | |
3727 | } | |
3728 | ||
8c35bbc5 RK |
3729 | /* Convert exploded e-type X, that has already been rounded to |
3730 | float precision, to IBM 370 float Y. */ | |
3731 | ||
842fbaaa JW |
3732 | static void |
3733 | toe24 (x, y) | |
3734 | unsigned EMUSHORT *x, *y; | |
3735 | { | |
3736 | toibm (x, y, SFmode); | |
3737 | } | |
3738 | ||
3739 | #else | |
8c35bbc5 | 3740 | /* Convert e-type X to IEEE float E. DEC float is the same as IEEE float. */ |
842fbaaa | 3741 | |
008f0d36 | 3742 | static void |
985b6196 RS |
3743 | etoe24 (x, e) |
3744 | unsigned EMUSHORT *x, *e; | |
3745 | { | |
3746 | EMULONG exp; | |
3747 | unsigned EMUSHORT xi[NI]; | |
3748 | int rndsav; | |
3749 | ||
66b6d60b RS |
3750 | #ifdef NANS |
3751 | if (eisnan (x)) | |
3752 | { | |
29e11dab | 3753 | make_nan (e, eisneg (x), SFmode); |
66b6d60b RS |
3754 | return; |
3755 | } | |
3756 | #endif | |
985b6196 RS |
3757 | emovi (x, xi); |
3758 | /* adjust exponent for offsets */ | |
3759 | exp = (EMULONG) xi[E] - (EXONE - 0177); | |
3760 | #ifdef INFINITY | |
3761 | if (eisinf (x)) | |
3762 | goto nonorm; | |
3763 | #endif | |
3764 | /* round off to nearest or even */ | |
3765 | rndsav = rndprc; | |
3766 | rndprc = 24; | |
3767 | emdnorm (xi, 0, 0, exp, 64); | |
3768 | rndprc = rndsav; | |
3769 | nonorm: | |
3770 | toe24 (xi, e); | |
3771 | } | |
3772 | ||
8c35bbc5 RK |
3773 | /* Convert exploded e-type X, that has already been rounded to |
3774 | float precision, to IEEE float Y. */ | |
3775 | ||
985b6196 RS |
3776 | static void |
3777 | toe24 (x, y) | |
3778 | unsigned EMUSHORT *x, *y; | |
3779 | { | |
3780 | unsigned EMUSHORT i; | |
3781 | unsigned EMUSHORT *p; | |
3782 | ||
66b6d60b RS |
3783 | #ifdef NANS |
3784 | if (eiisnan (x)) | |
3785 | { | |
29e11dab | 3786 | make_nan (y, eiisneg (x), SFmode); |
66b6d60b RS |
3787 | return; |
3788 | } | |
3789 | #endif | |
985b6196 | 3790 | p = &x[0]; |
f76b9db2 | 3791 | #ifdef IEEE |
8c35bbc5 | 3792 | if (! REAL_WORDS_BIG_ENDIAN) |
f76b9db2 | 3793 | y += 1; |
985b6196 RS |
3794 | #endif |
3795 | #ifdef DEC | |
3796 | y += 1; | |
3797 | #endif | |
3798 | *y = 0; /* output high order */ | |
3799 | if (*p++) | |
3800 | *y = 0x8000; /* output sign bit */ | |
3801 | ||
3802 | i = *p++; | |
64685ffa | 3803 | /* Handle overflow cases. */ |
985b6196 | 3804 | if (i >= 255) |
64685ffa | 3805 | { |
985b6196 RS |
3806 | #ifdef INFINITY |
3807 | *y |= (unsigned EMUSHORT) 0x7f80; | |
985b6196 RS |
3808 | #ifdef DEC |
3809 | *(--y) = 0; | |
3810 | #endif | |
f76b9db2 | 3811 | #ifdef IEEE |
8c35bbc5 | 3812 | if (! REAL_WORDS_BIG_ENDIAN) |
f76b9db2 ILT |
3813 | *(--y) = 0; |
3814 | else | |
3815 | { | |
3816 | ++y; | |
3817 | *y = 0; | |
3818 | } | |
985b6196 | 3819 | #endif |
64685ffa | 3820 | #else /* no INFINITY */ |
985b6196 | 3821 | *y |= (unsigned EMUSHORT) 0x7f7f; |
985b6196 RS |
3822 | #ifdef DEC |
3823 | *(--y) = 0xffff; | |
3824 | #endif | |
f76b9db2 | 3825 | #ifdef IEEE |
8c35bbc5 | 3826 | if (! REAL_WORDS_BIG_ENDIAN) |
f76b9db2 ILT |
3827 | *(--y) = 0xffff; |
3828 | else | |
3829 | { | |
3830 | ++y; | |
3831 | *y = 0xffff; | |
3832 | } | |
985b6196 | 3833 | #endif |
64685ffa RS |
3834 | #ifdef ERANGE |
3835 | errno = ERANGE; | |
985b6196 | 3836 | #endif |
64685ffa | 3837 | #endif /* no INFINITY */ |
985b6196 RS |
3838 | return; |
3839 | } | |
3840 | if (i == 0) | |
3841 | { | |
64685ffa | 3842 | eshift (x, 7); |
985b6196 RS |
3843 | } |
3844 | else | |
3845 | { | |
3846 | i <<= 7; | |
64685ffa | 3847 | eshift (x, 8); |
985b6196 RS |
3848 | } |
3849 | i |= *p++ & (unsigned EMUSHORT) 0x7f; /* *p = xi[M] */ | |
8c35bbc5 RK |
3850 | /* High order output already has sign bit set. */ |
3851 | *y |= i; | |
985b6196 RS |
3852 | #ifdef DEC |
3853 | *(--y) = *p; | |
3854 | #endif | |
f76b9db2 | 3855 | #ifdef IEEE |
8c35bbc5 | 3856 | if (! REAL_WORDS_BIG_ENDIAN) |
f76b9db2 ILT |
3857 | *(--y) = *p; |
3858 | else | |
3859 | { | |
3860 | ++y; | |
3861 | *y = *p; | |
3862 | } | |
985b6196 RS |
3863 | #endif |
3864 | } | |
842fbaaa | 3865 | #endif /* not IBM */ |
985b6196 | 3866 | |
defb5dab RK |
3867 | /* Compare two e type numbers. |
3868 | Return +1 if a > b | |
3869 | 0 if a == b | |
3870 | -1 if a < b | |
3871 | -2 if either a or b is a NaN. */ | |
a0353055 RK |
3872 | |
3873 | static int | |
985b6196 RS |
3874 | ecmp (a, b) |
3875 | unsigned EMUSHORT *a, *b; | |
3876 | { | |
3877 | unsigned EMUSHORT ai[NI], bi[NI]; | |
3878 | register unsigned EMUSHORT *p, *q; | |
3879 | register int i; | |
3880 | int msign; | |
3881 | ||
66b6d60b RS |
3882 | #ifdef NANS |
3883 | if (eisnan (a) || eisnan (b)) | |
3884 | return (-2); | |
3885 | #endif | |
985b6196 RS |
3886 | emovi (a, ai); |
3887 | p = ai; | |
3888 | emovi (b, bi); | |
3889 | q = bi; | |
3890 | ||
3891 | if (*p != *q) | |
3892 | { /* the signs are different */ | |
3893 | /* -0 equals + 0 */ | |
3894 | for (i = 1; i < NI - 1; i++) | |
3895 | { | |
3896 | if (ai[i] != 0) | |
3897 | goto nzro; | |
3898 | if (bi[i] != 0) | |
3899 | goto nzro; | |
3900 | } | |
3901 | return (0); | |
3902 | nzro: | |
3903 | if (*p == 0) | |
3904 | return (1); | |
3905 | else | |
3906 | return (-1); | |
3907 | } | |
3908 | /* both are the same sign */ | |
3909 | if (*p == 0) | |
3910 | msign = 1; | |
3911 | else | |
3912 | msign = -1; | |
3913 | i = NI - 1; | |
3914 | do | |
3915 | { | |
3916 | if (*p++ != *q++) | |
3917 | { | |
3918 | goto diff; | |
3919 | } | |
3920 | } | |
3921 | while (--i > 0); | |
3922 | ||
3923 | return (0); /* equality */ | |
3924 | ||
985b6196 RS |
3925 | diff: |
3926 | ||
3927 | if (*(--p) > *(--q)) | |
3928 | return (msign); /* p is bigger */ | |
3929 | else | |
3930 | return (-msign); /* p is littler */ | |
3931 | } | |
3932 | ||
8c35bbc5 | 3933 | /* Find e-type nearest integer to X, as floor (X + 0.5). */ |
a0353055 RK |
3934 | |
3935 | static void | |
985b6196 RS |
3936 | eround (x, y) |
3937 | unsigned EMUSHORT *x, *y; | |
3938 | { | |
3939 | eadd (ehalf, x, y); | |
3940 | efloor (y, y); | |
3941 | } | |
3942 | ||
8c35bbc5 | 3943 | /* Convert HOST_WIDE_INT LP to e type Y. */ |
a0353055 RK |
3944 | |
3945 | static void | |
985b6196 | 3946 | ltoe (lp, y) |
b51ab098 RK |
3947 | HOST_WIDE_INT *lp; |
3948 | unsigned EMUSHORT *y; | |
985b6196 RS |
3949 | { |
3950 | unsigned EMUSHORT yi[NI]; | |
b51ab098 | 3951 | unsigned HOST_WIDE_INT ll; |
985b6196 RS |
3952 | int k; |
3953 | ||
3954 | ecleaz (yi); | |
3955 | if (*lp < 0) | |
3956 | { | |
3957 | /* make it positive */ | |
b51ab098 | 3958 | ll = (unsigned HOST_WIDE_INT) (-(*lp)); |
985b6196 RS |
3959 | yi[0] = 0xffff; /* put correct sign in the e type number */ |
3960 | } | |
3961 | else | |
3962 | { | |
b51ab098 | 3963 | ll = (unsigned HOST_WIDE_INT) (*lp); |
985b6196 RS |
3964 | } |
3965 | /* move the long integer to yi significand area */ | |
b51ab098 | 3966 | #if HOST_BITS_PER_WIDE_INT == 64 |
7729f1ca RS |
3967 | yi[M] = (unsigned EMUSHORT) (ll >> 48); |
3968 | yi[M + 1] = (unsigned EMUSHORT) (ll >> 32); | |
3969 | yi[M + 2] = (unsigned EMUSHORT) (ll >> 16); | |
3970 | yi[M + 3] = (unsigned EMUSHORT) ll; | |
3971 | yi[E] = EXONE + 47; /* exponent if normalize shift count were 0 */ | |
3972 | #else | |
985b6196 RS |
3973 | yi[M] = (unsigned EMUSHORT) (ll >> 16); |
3974 | yi[M + 1] = (unsigned EMUSHORT) ll; | |
985b6196 | 3975 | yi[E] = EXONE + 15; /* exponent if normalize shift count were 0 */ |
7729f1ca RS |
3976 | #endif |
3977 | ||
985b6196 RS |
3978 | if ((k = enormlz (yi)) > NBITS)/* normalize the significand */ |
3979 | ecleaz (yi); /* it was zero */ | |
3980 | else | |
3981 | yi[E] -= (unsigned EMUSHORT) k;/* subtract shift count from exponent */ | |
3982 | emovo (yi, y); /* output the answer */ | |
3983 | } | |
3984 | ||
8c35bbc5 | 3985 | /* Convert unsigned HOST_WIDE_INT LP to e type Y. */ |
a0353055 RK |
3986 | |
3987 | static void | |
985b6196 | 3988 | ultoe (lp, y) |
b51ab098 RK |
3989 | unsigned HOST_WIDE_INT *lp; |
3990 | unsigned EMUSHORT *y; | |
985b6196 RS |
3991 | { |
3992 | unsigned EMUSHORT yi[NI]; | |
b51ab098 | 3993 | unsigned HOST_WIDE_INT ll; |
985b6196 RS |
3994 | int k; |
3995 | ||
3996 | ecleaz (yi); | |
3997 | ll = *lp; | |
3998 | ||
3999 | /* move the long integer to ayi significand area */ | |
b51ab098 | 4000 | #if HOST_BITS_PER_WIDE_INT == 64 |
7729f1ca RS |
4001 | yi[M] = (unsigned EMUSHORT) (ll >> 48); |
4002 | yi[M + 1] = (unsigned EMUSHORT) (ll >> 32); | |
4003 | yi[M + 2] = (unsigned EMUSHORT) (ll >> 16); | |
4004 | yi[M + 3] = (unsigned EMUSHORT) ll; | |
4005 | yi[E] = EXONE + 47; /* exponent if normalize shift count were 0 */ | |
4006 | #else | |
985b6196 RS |
4007 | yi[M] = (unsigned EMUSHORT) (ll >> 16); |
4008 | yi[M + 1] = (unsigned EMUSHORT) ll; | |
985b6196 | 4009 | yi[E] = EXONE + 15; /* exponent if normalize shift count were 0 */ |
7729f1ca RS |
4010 | #endif |
4011 | ||
985b6196 RS |
4012 | if ((k = enormlz (yi)) > NBITS)/* normalize the significand */ |
4013 | ecleaz (yi); /* it was zero */ | |
4014 | else | |
4015 | yi[E] -= (unsigned EMUSHORT) k; /* subtract shift count from exponent */ | |
4016 | emovo (yi, y); /* output the answer */ | |
4017 | } | |
4018 | ||
4019 | ||
8c35bbc5 RK |
4020 | /* Find signed HOST_WIDE_INT integer I and floating point fractional |
4021 | part FRAC of e-type (packed internal format) floating point input X. | |
c764eafd RK |
4022 | The integer output I has the sign of the input, except that |
4023 | positive overflow is permitted if FIXUNS_TRUNC_LIKE_FIX_TRUNC. | |
4024 | The output e-type fraction FRAC is the positive fractional | |
4025 | part of abs (X). */ | |
985b6196 | 4026 | |
a0353055 | 4027 | static void |
985b6196 RS |
4028 | eifrac (x, i, frac) |
4029 | unsigned EMUSHORT *x; | |
b51ab098 | 4030 | HOST_WIDE_INT *i; |
985b6196 RS |
4031 | unsigned EMUSHORT *frac; |
4032 | { | |
4033 | unsigned EMUSHORT xi[NI]; | |
7729f1ca | 4034 | int j, k; |
b51ab098 | 4035 | unsigned HOST_WIDE_INT ll; |
985b6196 RS |
4036 | |
4037 | emovi (x, xi); | |
4038 | k = (int) xi[E] - (EXONE - 1); | |
4039 | if (k <= 0) | |
4040 | { | |
4041 | /* if exponent <= 0, integer = 0 and real output is fraction */ | |
4042 | *i = 0L; | |
4043 | emovo (xi, frac); | |
4044 | return; | |
4045 | } | |
b51ab098 | 4046 | if (k > (HOST_BITS_PER_WIDE_INT - 1)) |
985b6196 | 4047 | { |
7729f1ca RS |
4048 | /* long integer overflow: output large integer |
4049 | and correct fraction */ | |
985b6196 | 4050 | if (xi[0]) |
b51ab098 | 4051 | *i = ((unsigned HOST_WIDE_INT) 1) << (HOST_BITS_PER_WIDE_INT - 1); |
985b6196 | 4052 | else |
c764eafd RK |
4053 | { |
4054 | #ifdef FIXUNS_TRUNC_LIKE_FIX_TRUNC | |
4055 | /* In this case, let it overflow and convert as if unsigned. */ | |
4056 | euifrac (x, &ll, frac); | |
4057 | *i = (HOST_WIDE_INT) ll; | |
4058 | return; | |
4059 | #else | |
4060 | /* In other cases, return the largest positive integer. */ | |
4061 | *i = (((unsigned HOST_WIDE_INT) 1) << (HOST_BITS_PER_WIDE_INT - 1)) - 1; | |
4062 | #endif | |
4063 | } | |
64685ffa RS |
4064 | eshift (xi, k); |
4065 | if (extra_warnings) | |
4066 | warning ("overflow on truncation to integer"); | |
985b6196 | 4067 | } |
7729f1ca | 4068 | else if (k > 16) |
985b6196 | 4069 | { |
7729f1ca RS |
4070 | /* Shift more than 16 bits: first shift up k-16 mod 16, |
4071 | then shift up by 16's. */ | |
4072 | j = k - ((k >> 4) << 4); | |
4073 | eshift (xi, j); | |
4074 | ll = xi[M]; | |
4075 | k -= j; | |
4076 | do | |
4077 | { | |
4078 | eshup6 (xi); | |
4079 | ll = (ll << 16) | xi[M]; | |
4080 | } | |
4081 | while ((k -= 16) > 0); | |
4082 | *i = ll; | |
4083 | if (xi[0]) | |
4084 | *i = -(*i); | |
4085 | } | |
4086 | else | |
842fbaaa JW |
4087 | { |
4088 | /* shift not more than 16 bits */ | |
4089 | eshift (xi, k); | |
b51ab098 | 4090 | *i = (HOST_WIDE_INT) xi[M] & 0xffff; |
842fbaaa JW |
4091 | if (xi[0]) |
4092 | *i = -(*i); | |
4093 | } | |
985b6196 RS |
4094 | xi[0] = 0; |
4095 | xi[E] = EXONE - 1; | |
4096 | xi[M] = 0; | |
4097 | if ((k = enormlz (xi)) > NBITS) | |
4098 | ecleaz (xi); | |
4099 | else | |
4100 | xi[E] -= (unsigned EMUSHORT) k; | |
4101 | ||
4102 | emovo (xi, frac); | |
4103 | } | |
4104 | ||
4105 | ||
8c35bbc5 RK |
4106 | /* Find unsigned HOST_WIDE_INT integer I and floating point fractional part |
4107 | FRAC of e-type X. A negative input yields integer output = 0 but | |
4108 | correct fraction. */ | |
985b6196 | 4109 | |
a0353055 | 4110 | static void |
985b6196 RS |
4111 | euifrac (x, i, frac) |
4112 | unsigned EMUSHORT *x; | |
b51ab098 | 4113 | unsigned HOST_WIDE_INT *i; |
985b6196 RS |
4114 | unsigned EMUSHORT *frac; |
4115 | { | |
b51ab098 | 4116 | unsigned HOST_WIDE_INT ll; |
985b6196 | 4117 | unsigned EMUSHORT xi[NI]; |
7729f1ca | 4118 | int j, k; |
985b6196 RS |
4119 | |
4120 | emovi (x, xi); | |
4121 | k = (int) xi[E] - (EXONE - 1); | |
4122 | if (k <= 0) | |
4123 | { | |
4124 | /* if exponent <= 0, integer = 0 and argument is fraction */ | |
4125 | *i = 0L; | |
4126 | emovo (xi, frac); | |
4127 | return; | |
4128 | } | |
b51ab098 | 4129 | if (k > HOST_BITS_PER_WIDE_INT) |
985b6196 | 4130 | { |
7729f1ca RS |
4131 | /* Long integer overflow: output large integer |
4132 | and correct fraction. | |
4133 | Note, the BSD microvax compiler says that ~(0UL) | |
4134 | is a syntax error. */ | |
985b6196 | 4135 | *i = ~(0L); |
64685ffa RS |
4136 | eshift (xi, k); |
4137 | if (extra_warnings) | |
4138 | warning ("overflow on truncation to unsigned integer"); | |
985b6196 | 4139 | } |
7729f1ca | 4140 | else if (k > 16) |
985b6196 | 4141 | { |
7729f1ca RS |
4142 | /* Shift more than 16 bits: first shift up k-16 mod 16, |
4143 | then shift up by 16's. */ | |
4144 | j = k - ((k >> 4) << 4); | |
4145 | eshift (xi, j); | |
4146 | ll = xi[M]; | |
4147 | k -= j; | |
4148 | do | |
4149 | { | |
4150 | eshup6 (xi); | |
4151 | ll = (ll << 16) | xi[M]; | |
4152 | } | |
4153 | while ((k -= 16) > 0); | |
4154 | *i = ll; | |
4155 | } | |
4156 | else | |
4157 | { | |
4158 | /* shift not more than 16 bits */ | |
64685ffa | 4159 | eshift (xi, k); |
b51ab098 | 4160 | *i = (HOST_WIDE_INT) xi[M] & 0xffff; |
985b6196 RS |
4161 | } |
4162 | ||
7729f1ca | 4163 | if (xi[0]) /* A negative value yields unsigned integer 0. */ |
985b6196 | 4164 | *i = 0L; |
842fbaaa | 4165 | |
985b6196 RS |
4166 | xi[0] = 0; |
4167 | xi[E] = EXONE - 1; | |
4168 | xi[M] = 0; | |
4169 | if ((k = enormlz (xi)) > NBITS) | |
4170 | ecleaz (xi); | |
4171 | else | |
4172 | xi[E] -= (unsigned EMUSHORT) k; | |
4173 | ||
4174 | emovo (xi, frac); | |
4175 | } | |
4176 | ||
8c35bbc5 | 4177 | /* Shift the significand of exploded e-type X up or down by SC bits. */ |
a0353055 RK |
4178 | |
4179 | static int | |
985b6196 RS |
4180 | eshift (x, sc) |
4181 | unsigned EMUSHORT *x; | |
4182 | int sc; | |
4183 | { | |
4184 | unsigned EMUSHORT lost; | |
4185 | unsigned EMUSHORT *p; | |
4186 | ||
4187 | if (sc == 0) | |
4188 | return (0); | |
4189 | ||
4190 | lost = 0; | |
4191 | p = x + NI - 1; | |
4192 | ||
4193 | if (sc < 0) | |
4194 | { | |
4195 | sc = -sc; | |
4196 | while (sc >= 16) | |
4197 | { | |
4198 | lost |= *p; /* remember lost bits */ | |
4199 | eshdn6 (x); | |
4200 | sc -= 16; | |
4201 | } | |
4202 | ||
4203 | while (sc >= 8) | |
4204 | { | |
4205 | lost |= *p & 0xff; | |
4206 | eshdn8 (x); | |
4207 | sc -= 8; | |
4208 | } | |
4209 | ||
4210 | while (sc > 0) | |
4211 | { | |
4212 | lost |= *p & 1; | |
4213 | eshdn1 (x); | |
4214 | sc -= 1; | |
4215 | } | |
4216 | } | |
4217 | else | |
4218 | { | |
4219 | while (sc >= 16) | |
4220 | { | |
4221 | eshup6 (x); | |
4222 | sc -= 16; | |
4223 | } | |
4224 | ||
4225 | while (sc >= 8) | |
4226 | { | |
4227 | eshup8 (x); | |
4228 | sc -= 8; | |
4229 | } | |
4230 | ||
4231 | while (sc > 0) | |
4232 | { | |
4233 | eshup1 (x); | |
4234 | sc -= 1; | |
4235 | } | |
4236 | } | |
4237 | if (lost) | |
4238 | lost = 1; | |
4239 | return ((int) lost); | |
4240 | } | |
4241 | ||
8c35bbc5 RK |
4242 | /* Shift normalize the significand area of exploded e-type X. |
4243 | Return the shift count (up = positive). */ | |
a0353055 RK |
4244 | |
4245 | static int | |
985b6196 RS |
4246 | enormlz (x) |
4247 | unsigned EMUSHORT x[]; | |
4248 | { | |
4249 | register unsigned EMUSHORT *p; | |
4250 | int sc; | |
4251 | ||
4252 | sc = 0; | |
4253 | p = &x[M]; | |
4254 | if (*p != 0) | |
4255 | goto normdn; | |
4256 | ++p; | |
4257 | if (*p & 0x8000) | |
4258 | return (0); /* already normalized */ | |
4259 | while (*p == 0) | |
4260 | { | |
4261 | eshup6 (x); | |
4262 | sc += 16; | |
defb5dab | 4263 | |
985b6196 | 4264 | /* With guard word, there are NBITS+16 bits available. |
defb5dab | 4265 | Return true if all are zero. */ |
985b6196 RS |
4266 | if (sc > NBITS) |
4267 | return (sc); | |
4268 | } | |
4269 | /* see if high byte is zero */ | |
4270 | while ((*p & 0xff00) == 0) | |
4271 | { | |
4272 | eshup8 (x); | |
4273 | sc += 8; | |
4274 | } | |
4275 | /* now shift 1 bit at a time */ | |
4276 | while ((*p & 0x8000) == 0) | |
4277 | { | |
4278 | eshup1 (x); | |
4279 | sc += 1; | |
4280 | if (sc > NBITS) | |
4281 | { | |
4282 | mtherr ("enormlz", UNDERFLOW); | |
4283 | return (sc); | |
4284 | } | |
4285 | } | |
4286 | return (sc); | |
4287 | ||
4288 | /* Normalize by shifting down out of the high guard word | |
4289 | of the significand */ | |
4290 | normdn: | |
4291 | ||
4292 | if (*p & 0xff00) | |
4293 | { | |
4294 | eshdn8 (x); | |
4295 | sc -= 8; | |
4296 | } | |
4297 | while (*p != 0) | |
4298 | { | |
4299 | eshdn1 (x); | |
4300 | sc -= 1; | |
4301 | ||
4302 | if (sc < -NBITS) | |
4303 | { | |
4304 | mtherr ("enormlz", OVERFLOW); | |
4305 | return (sc); | |
4306 | } | |
4307 | } | |
4308 | return (sc); | |
4309 | } | |
4310 | ||
8c35bbc5 | 4311 | /* Powers of ten used in decimal <-> binary conversions. */ |
985b6196 RS |
4312 | |
4313 | #define NTEN 12 | |
4314 | #define MAXP 4096 | |
4315 | ||
842fbaaa JW |
4316 | #if LONG_DOUBLE_TYPE_SIZE == 128 |
4317 | static unsigned EMUSHORT etens[NTEN + 1][NE] = | |
4318 | { | |
4319 | {0x6576, 0x4a92, 0x804a, 0x153f, | |
4320 | 0xc94c, 0x979a, 0x8a20, 0x5202, 0xc460, 0x7525,}, /* 10**4096 */ | |
4321 | {0x6a32, 0xce52, 0x329a, 0x28ce, | |
4322 | 0xa74d, 0x5de4, 0xc53d, 0x3b5d, 0x9e8b, 0x5a92,}, /* 10**2048 */ | |
4323 | {0x526c, 0x50ce, 0xf18b, 0x3d28, | |
4324 | 0x650d, 0x0c17, 0x8175, 0x7586, 0xc976, 0x4d48,}, | |
4325 | {0x9c66, 0x58f8, 0xbc50, 0x5c54, | |
4326 | 0xcc65, 0x91c6, 0xa60e, 0xa0ae, 0xe319, 0x46a3,}, | |
4327 | {0x851e, 0xeab7, 0x98fe, 0x901b, | |
4328 | 0xddbb, 0xde8d, 0x9df9, 0xebfb, 0xaa7e, 0x4351,}, | |
4329 | {0x0235, 0x0137, 0x36b1, 0x336c, | |
4330 | 0xc66f, 0x8cdf, 0x80e9, 0x47c9, 0x93ba, 0x41a8,}, | |
4331 | {0x50f8, 0x25fb, 0xc76b, 0x6b71, | |
4332 | 0x3cbf, 0xa6d5, 0xffcf, 0x1f49, 0xc278, 0x40d3,}, | |
4333 | {0x0000, 0x0000, 0x0000, 0x0000, | |
4334 | 0xf020, 0xb59d, 0x2b70, 0xada8, 0x9dc5, 0x4069,}, | |
4335 | {0x0000, 0x0000, 0x0000, 0x0000, | |
4336 | 0x0000, 0x0000, 0x0400, 0xc9bf, 0x8e1b, 0x4034,}, | |
4337 | {0x0000, 0x0000, 0x0000, 0x0000, | |
4338 | 0x0000, 0x0000, 0x0000, 0x2000, 0xbebc, 0x4019,}, | |
4339 | {0x0000, 0x0000, 0x0000, 0x0000, | |
4340 | 0x0000, 0x0000, 0x0000, 0x0000, 0x9c40, 0x400c,}, | |
4341 | {0x0000, 0x0000, 0x0000, 0x0000, | |
4342 | 0x0000, 0x0000, 0x0000, 0x0000, 0xc800, 0x4005,}, | |
4343 | {0x0000, 0x0000, 0x0000, 0x0000, | |
4344 | 0x0000, 0x0000, 0x0000, 0x0000, 0xa000, 0x4002,}, /* 10**1 */ | |
4345 | }; | |
4346 | ||
4347 | static unsigned EMUSHORT emtens[NTEN + 1][NE] = | |
4348 | { | |
4349 | {0x2030, 0xcffc, 0xa1c3, 0x8123, | |
4350 | 0x2de3, 0x9fde, 0xd2ce, 0x04c8, 0xa6dd, 0x0ad8,}, /* 10**-4096 */ | |
4351 | {0x8264, 0xd2cb, 0xf2ea, 0x12d4, | |
4352 | 0x4925, 0x2de4, 0x3436, 0x534f, 0xceae, 0x256b,}, /* 10**-2048 */ | |
4353 | {0xf53f, 0xf698, 0x6bd3, 0x0158, | |
4354 | 0x87a6, 0xc0bd, 0xda57, 0x82a5, 0xa2a6, 0x32b5,}, | |
4355 | {0xe731, 0x04d4, 0xe3f2, 0xd332, | |
4356 | 0x7132, 0xd21c, 0xdb23, 0xee32, 0x9049, 0x395a,}, | |
4357 | {0xa23e, 0x5308, 0xfefb, 0x1155, | |
4358 | 0xfa91, 0x1939, 0x637a, 0x4325, 0xc031, 0x3cac,}, | |
4359 | {0xe26d, 0xdbde, 0xd05d, 0xb3f6, | |
4360 | 0xac7c, 0xe4a0, 0x64bc, 0x467c, 0xddd0, 0x3e55,}, | |
4361 | {0x2a20, 0x6224, 0x47b3, 0x98d7, | |
4362 | 0x3f23, 0xe9a5, 0xa539, 0xea27, 0xa87f, 0x3f2a,}, | |
4363 | {0x0b5b, 0x4af2, 0xa581, 0x18ed, | |
4364 | 0x67de, 0x94ba, 0x4539, 0x1ead, 0xcfb1, 0x3f94,}, | |
4365 | {0xbf71, 0xa9b3, 0x7989, 0xbe68, | |
4366 | 0x4c2e, 0xe15b, 0xc44d, 0x94be, 0xe695, 0x3fc9,}, | |
4367 | {0x3d4d, 0x7c3d, 0x36ba, 0x0d2b, | |
4368 | 0xfdc2, 0xcefc, 0x8461, 0x7711, 0xabcc, 0x3fe4,}, | |
4369 | {0xc155, 0xa4a8, 0x404e, 0x6113, | |
4370 | 0xd3c3, 0x652b, 0xe219, 0x1758, 0xd1b7, 0x3ff1,}, | |
4371 | {0xd70a, 0x70a3, 0x0a3d, 0xa3d7, | |
4372 | 0x3d70, 0xd70a, 0x70a3, 0x0a3d, 0xa3d7, 0x3ff8,}, | |
4373 | {0xcccd, 0xcccc, 0xcccc, 0xcccc, | |
4374 | 0xcccc, 0xcccc, 0xcccc, 0xcccc, 0xcccc, 0x3ffb,}, /* 10**-1 */ | |
4375 | }; | |
4376 | #else | |
4377 | /* LONG_DOUBLE_TYPE_SIZE is other than 128 */ | |
985b6196 RS |
4378 | static unsigned EMUSHORT etens[NTEN + 1][NE] = |
4379 | { | |
4380 | {0xc94c, 0x979a, 0x8a20, 0x5202, 0xc460, 0x7525,}, /* 10**4096 */ | |
4381 | {0xa74d, 0x5de4, 0xc53d, 0x3b5d, 0x9e8b, 0x5a92,}, /* 10**2048 */ | |
4382 | {0x650d, 0x0c17, 0x8175, 0x7586, 0xc976, 0x4d48,}, | |
4383 | {0xcc65, 0x91c6, 0xa60e, 0xa0ae, 0xe319, 0x46a3,}, | |
4384 | {0xddbc, 0xde8d, 0x9df9, 0xebfb, 0xaa7e, 0x4351,}, | |
4385 | {0xc66f, 0x8cdf, 0x80e9, 0x47c9, 0x93ba, 0x41a8,}, | |
4386 | {0x3cbf, 0xa6d5, 0xffcf, 0x1f49, 0xc278, 0x40d3,}, | |
4387 | {0xf020, 0xb59d, 0x2b70, 0xada8, 0x9dc5, 0x4069,}, | |
4388 | {0x0000, 0x0000, 0x0400, 0xc9bf, 0x8e1b, 0x4034,}, | |
4389 | {0x0000, 0x0000, 0x0000, 0x2000, 0xbebc, 0x4019,}, | |
4390 | {0x0000, 0x0000, 0x0000, 0x0000, 0x9c40, 0x400c,}, | |
4391 | {0x0000, 0x0000, 0x0000, 0x0000, 0xc800, 0x4005,}, | |
4392 | {0x0000, 0x0000, 0x0000, 0x0000, 0xa000, 0x4002,}, /* 10**1 */ | |
4393 | }; | |
4394 | ||
4395 | static unsigned EMUSHORT emtens[NTEN + 1][NE] = | |
4396 | { | |
4397 | {0x2de4, 0x9fde, 0xd2ce, 0x04c8, 0xa6dd, 0x0ad8,}, /* 10**-4096 */ | |
4398 | {0x4925, 0x2de4, 0x3436, 0x534f, 0xceae, 0x256b,}, /* 10**-2048 */ | |
4399 | {0x87a6, 0xc0bd, 0xda57, 0x82a5, 0xa2a6, 0x32b5,}, | |
4400 | {0x7133, 0xd21c, 0xdb23, 0xee32, 0x9049, 0x395a,}, | |
4401 | {0xfa91, 0x1939, 0x637a, 0x4325, 0xc031, 0x3cac,}, | |
4402 | {0xac7d, 0xe4a0, 0x64bc, 0x467c, 0xddd0, 0x3e55,}, | |
4403 | {0x3f24, 0xe9a5, 0xa539, 0xea27, 0xa87f, 0x3f2a,}, | |
4404 | {0x67de, 0x94ba, 0x4539, 0x1ead, 0xcfb1, 0x3f94,}, | |
4405 | {0x4c2f, 0xe15b, 0xc44d, 0x94be, 0xe695, 0x3fc9,}, | |
4406 | {0xfdc2, 0xcefc, 0x8461, 0x7711, 0xabcc, 0x3fe4,}, | |
4407 | {0xd3c3, 0x652b, 0xe219, 0x1758, 0xd1b7, 0x3ff1,}, | |
4408 | {0x3d71, 0xd70a, 0x70a3, 0x0a3d, 0xa3d7, 0x3ff8,}, | |
4409 | {0xcccd, 0xcccc, 0xcccc, 0xcccc, 0xcccc, 0x3ffb,}, /* 10**-1 */ | |
4410 | }; | |
842fbaaa | 4411 | #endif |
985b6196 | 4412 | |
8c35bbc5 RK |
4413 | /* Convert float value X to ASCII string STRING with NDIG digits after |
4414 | the decimal point. */ | |
4415 | ||
a0353055 | 4416 | static void |
985b6196 RS |
4417 | e24toasc (x, string, ndigs) |
4418 | unsigned EMUSHORT x[]; | |
4419 | char *string; | |
4420 | int ndigs; | |
4421 | { | |
4422 | unsigned EMUSHORT w[NI]; | |
4423 | ||
985b6196 RS |
4424 | e24toe (x, w); |
4425 | etoasc (w, string, ndigs); | |
4426 | } | |
4427 | ||
8c35bbc5 RK |
4428 | /* Convert double value X to ASCII string STRING with NDIG digits after |
4429 | the decimal point. */ | |
985b6196 | 4430 | |
a0353055 | 4431 | static void |
985b6196 RS |
4432 | e53toasc (x, string, ndigs) |
4433 | unsigned EMUSHORT x[]; | |
4434 | char *string; | |
4435 | int ndigs; | |
4436 | { | |
4437 | unsigned EMUSHORT w[NI]; | |
4438 | ||
985b6196 RS |
4439 | e53toe (x, w); |
4440 | etoasc (w, string, ndigs); | |
4441 | } | |
4442 | ||
8c35bbc5 RK |
4443 | /* Convert double extended value X to ASCII string STRING with NDIG digits |
4444 | after the decimal point. */ | |
985b6196 | 4445 | |
a0353055 | 4446 | static void |
985b6196 RS |
4447 | e64toasc (x, string, ndigs) |
4448 | unsigned EMUSHORT x[]; | |
4449 | char *string; | |
4450 | int ndigs; | |
4451 | { | |
4452 | unsigned EMUSHORT w[NI]; | |
4453 | ||
985b6196 RS |
4454 | e64toe (x, w); |
4455 | etoasc (w, string, ndigs); | |
4456 | } | |
4457 | ||
8c35bbc5 RK |
4458 | /* Convert 128-bit long double value X to ASCII string STRING with NDIG digits |
4459 | after the decimal point. */ | |
4460 | ||
a0353055 | 4461 | static void |
842fbaaa JW |
4462 | e113toasc (x, string, ndigs) |
4463 | unsigned EMUSHORT x[]; | |
4464 | char *string; | |
4465 | int ndigs; | |
4466 | { | |
4467 | unsigned EMUSHORT w[NI]; | |
4468 | ||
4469 | e113toe (x, w); | |
4470 | etoasc (w, string, ndigs); | |
4471 | } | |
4472 | ||
8c35bbc5 RK |
4473 | /* Convert e-type X to ASCII string STRING with NDIGS digits after |
4474 | the decimal point. */ | |
985b6196 RS |
4475 | |
4476 | static char wstring[80]; /* working storage for ASCII output */ | |
4477 | ||
a0353055 | 4478 | static void |
985b6196 RS |
4479 | etoasc (x, string, ndigs) |
4480 | unsigned EMUSHORT x[]; | |
4481 | char *string; | |
4482 | int ndigs; | |
4483 | { | |
4484 | EMUSHORT digit; | |
4485 | unsigned EMUSHORT y[NI], t[NI], u[NI], w[NI]; | |
4486 | unsigned EMUSHORT *p, *r, *ten; | |
4487 | unsigned EMUSHORT sign; | |
4488 | int i, j, k, expon, rndsav; | |
4489 | char *s, *ss; | |
4490 | unsigned EMUSHORT m; | |
4491 | ||
66b6d60b RS |
4492 | |
4493 | rndsav = rndprc; | |
985b6196 RS |
4494 | ss = string; |
4495 | s = wstring; | |
66b6d60b RS |
4496 | *ss = '\0'; |
4497 | *s = '\0'; | |
4498 | #ifdef NANS | |
4499 | if (eisnan (x)) | |
4500 | { | |
4501 | sprintf (wstring, " NaN "); | |
4502 | goto bxit; | |
4503 | } | |
4504 | #endif | |
985b6196 RS |
4505 | rndprc = NBITS; /* set to full precision */ |
4506 | emov (x, y); /* retain external format */ | |
4507 | if (y[NE - 1] & 0x8000) | |
4508 | { | |
4509 | sign = 0xffff; | |
4510 | y[NE - 1] &= 0x7fff; | |
4511 | } | |
4512 | else | |
4513 | { | |
4514 | sign = 0; | |
4515 | } | |
4516 | expon = 0; | |
4517 | ten = &etens[NTEN][0]; | |
4518 | emov (eone, t); | |
4519 | /* Test for zero exponent */ | |
4520 | if (y[NE - 1] == 0) | |
4521 | { | |
4522 | for (k = 0; k < NE - 1; k++) | |
4523 | { | |
4524 | if (y[k] != 0) | |
4525 | goto tnzro; /* denormalized number */ | |
4526 | } | |
43b55a67 | 4527 | goto isone; /* valid all zeros */ |
985b6196 RS |
4528 | } |
4529 | tnzro: | |
4530 | ||
66b6d60b | 4531 | /* Test for infinity. */ |
985b6196 RS |
4532 | if (y[NE - 1] == 0x7fff) |
4533 | { | |
4534 | if (sign) | |
4535 | sprintf (wstring, " -Infinity "); | |
4536 | else | |
4537 | sprintf (wstring, " Infinity "); | |
4538 | goto bxit; | |
4539 | } | |
4540 | ||
4541 | /* Test for exponent nonzero but significand denormalized. | |
4542 | * This is an error condition. | |
4543 | */ | |
4544 | if ((y[NE - 1] != 0) && ((y[NE - 2] & 0x8000) == 0)) | |
4545 | { | |
4546 | mtherr ("etoasc", DOMAIN); | |
4547 | sprintf (wstring, "NaN"); | |
4548 | goto bxit; | |
4549 | } | |
4550 | ||
4551 | /* Compare to 1.0 */ | |
4552 | i = ecmp (eone, y); | |
4553 | if (i == 0) | |
4554 | goto isone; | |
4555 | ||
66b6d60b RS |
4556 | if (i == -2) |
4557 | abort (); | |
4558 | ||
985b6196 RS |
4559 | if (i < 0) |
4560 | { /* Number is greater than 1 */ | |
4561 | /* Convert significand to an integer and strip trailing decimal zeros. */ | |
4562 | emov (y, u); | |
4563 | u[NE - 1] = EXONE + NBITS - 1; | |
4564 | ||
4565 | p = &etens[NTEN - 4][0]; | |
4566 | m = 16; | |
4567 | do | |
4568 | { | |
4569 | ediv (p, u, t); | |
4570 | efloor (t, w); | |
4571 | for (j = 0; j < NE - 1; j++) | |
4572 | { | |
4573 | if (t[j] != w[j]) | |
4574 | goto noint; | |
4575 | } | |
4576 | emov (t, u); | |
4577 | expon += (int) m; | |
4578 | noint: | |
4579 | p += NE; | |
4580 | m >>= 1; | |
4581 | } | |
4582 | while (m != 0); | |
4583 | ||
4584 | /* Rescale from integer significand */ | |
4585 | u[NE - 1] += y[NE - 1] - (unsigned int) (EXONE + NBITS - 1); | |
4586 | emov (u, y); | |
4587 | /* Find power of 10 */ | |
4588 | emov (eone, t); | |
4589 | m = MAXP; | |
4590 | p = &etens[0][0]; | |
66b6d60b | 4591 | /* An unordered compare result shouldn't happen here. */ |
985b6196 RS |
4592 | while (ecmp (ten, u) <= 0) |
4593 | { | |
4594 | if (ecmp (p, u) <= 0) | |
4595 | { | |
4596 | ediv (p, u, u); | |
4597 | emul (p, t, t); | |
4598 | expon += (int) m; | |
4599 | } | |
4600 | m >>= 1; | |
4601 | if (m == 0) | |
4602 | break; | |
4603 | p += NE; | |
4604 | } | |
4605 | } | |
4606 | else | |
4607 | { /* Number is less than 1.0 */ | |
4608 | /* Pad significand with trailing decimal zeros. */ | |
4609 | if (y[NE - 1] == 0) | |
4610 | { | |
4611 | while ((y[NE - 2] & 0x8000) == 0) | |
4612 | { | |
4613 | emul (ten, y, y); | |
4614 | expon -= 1; | |
4615 | } | |
4616 | } | |
4617 | else | |
4618 | { | |
4619 | emovi (y, w); | |
4620 | for (i = 0; i < NDEC + 1; i++) | |
4621 | { | |
4622 | if ((w[NI - 1] & 0x7) != 0) | |
4623 | break; | |
4624 | /* multiply by 10 */ | |
4625 | emovz (w, u); | |
4626 | eshdn1 (u); | |
4627 | eshdn1 (u); | |
4628 | eaddm (w, u); | |
4629 | u[1] += 3; | |
4630 | while (u[2] != 0) | |
4631 | { | |
4632 | eshdn1 (u); | |
4633 | u[1] += 1; | |
4634 | } | |
4635 | if (u[NI - 1] != 0) | |
4636 | break; | |
4637 | if (eone[NE - 1] <= u[1]) | |
4638 | break; | |
4639 | emovz (u, w); | |
4640 | expon -= 1; | |
4641 | } | |
4642 | emovo (w, y); | |
4643 | } | |
4644 | k = -MAXP; | |
4645 | p = &emtens[0][0]; | |
4646 | r = &etens[0][0]; | |
4647 | emov (y, w); | |
4648 | emov (eone, t); | |
4649 | while (ecmp (eone, w) > 0) | |
4650 | { | |
4651 | if (ecmp (p, w) >= 0) | |
4652 | { | |
4653 | emul (r, w, w); | |
4654 | emul (r, t, t); | |
4655 | expon += k; | |
4656 | } | |
4657 | k /= 2; | |
4658 | if (k == 0) | |
4659 | break; | |
4660 | p += NE; | |
4661 | r += NE; | |
4662 | } | |
4663 | ediv (t, eone, t); | |
4664 | } | |
4665 | isone: | |
4666 | /* Find the first (leading) digit. */ | |
4667 | emovi (t, w); | |
4668 | emovz (w, t); | |
4669 | emovi (y, w); | |
4670 | emovz (w, y); | |
4671 | eiremain (t, y); | |
4672 | digit = equot[NI - 1]; | |
4673 | while ((digit == 0) && (ecmp (y, ezero) != 0)) | |
4674 | { | |
4675 | eshup1 (y); | |
4676 | emovz (y, u); | |
4677 | eshup1 (u); | |
4678 | eshup1 (u); | |
4679 | eaddm (u, y); | |
4680 | eiremain (t, y); | |
4681 | digit = equot[NI - 1]; | |
4682 | expon -= 1; | |
4683 | } | |
4684 | s = wstring; | |
4685 | if (sign) | |
4686 | *s++ = '-'; | |
4687 | else | |
4688 | *s++ = ' '; | |
985b6196 RS |
4689 | /* Examine number of digits requested by caller. */ |
4690 | if (ndigs < 0) | |
4691 | ndigs = 0; | |
4692 | if (ndigs > NDEC) | |
4693 | ndigs = NDEC; | |
64685ffa RS |
4694 | if (digit == 10) |
4695 | { | |
4696 | *s++ = '1'; | |
4697 | *s++ = '.'; | |
4698 | if (ndigs > 0) | |
4699 | { | |
4700 | *s++ = '0'; | |
4701 | ndigs -= 1; | |
4702 | } | |
4703 | expon += 1; | |
4704 | } | |
4705 | else | |
4706 | { | |
242cef1e | 4707 | *s++ = (char)digit + '0'; |
64685ffa RS |
4708 | *s++ = '.'; |
4709 | } | |
985b6196 RS |
4710 | /* Generate digits after the decimal point. */ |
4711 | for (k = 0; k <= ndigs; k++) | |
4712 | { | |
4713 | /* multiply current number by 10, without normalizing */ | |
4714 | eshup1 (y); | |
4715 | emovz (y, u); | |
4716 | eshup1 (u); | |
4717 | eshup1 (u); | |
4718 | eaddm (u, y); | |
4719 | eiremain (t, y); | |
4720 | *s++ = (char) equot[NI - 1] + '0'; | |
4721 | } | |
4722 | digit = equot[NI - 1]; | |
4723 | --s; | |
4724 | ss = s; | |
4725 | /* round off the ASCII string */ | |
4726 | if (digit > 4) | |
4727 | { | |
4728 | /* Test for critical rounding case in ASCII output. */ | |
4729 | if (digit == 5) | |
4730 | { | |
4731 | emovo (y, t); | |
4732 | if (ecmp (t, ezero) != 0) | |
4733 | goto roun; /* round to nearest */ | |
4734 | if ((*(s - 1) & 1) == 0) | |
4735 | goto doexp; /* round to even */ | |
4736 | } | |
4737 | /* Round up and propagate carry-outs */ | |
4738 | roun: | |
4739 | --s; | |
4740 | k = *s & 0x7f; | |
4741 | /* Carry out to most significant digit? */ | |
4742 | if (k == '.') | |
4743 | { | |
4744 | --s; | |
4745 | k = *s; | |
4746 | k += 1; | |
4747 | *s = (char) k; | |
4748 | /* Most significant digit carries to 10? */ | |
4749 | if (k > '9') | |
4750 | { | |
4751 | expon += 1; | |
4752 | *s = '1'; | |
4753 | } | |
4754 | goto doexp; | |
4755 | } | |
4756 | /* Round up and carry out from less significant digits */ | |
4757 | k += 1; | |
4758 | *s = (char) k; | |
4759 | if (k > '9') | |
4760 | { | |
4761 | *s = '0'; | |
4762 | goto roun; | |
4763 | } | |
4764 | } | |
4765 | doexp: | |
4766 | /* | |
4767 | if (expon >= 0) | |
4768 | sprintf (ss, "e+%d", expon); | |
4769 | else | |
4770 | sprintf (ss, "e%d", expon); | |
4771 | */ | |
4772 | sprintf (ss, "e%d", expon); | |
4773 | bxit: | |
4774 | rndprc = rndsav; | |
4775 | /* copy out the working string */ | |
4776 | s = string; | |
4777 | ss = wstring; | |
4778 | while (*ss == ' ') /* strip possible leading space */ | |
4779 | ++ss; | |
4780 | while ((*s++ = *ss++) != '\0') | |
4781 | ; | |
4782 | } | |
4783 | ||
4784 | ||
8c35bbc5 | 4785 | /* Convert ASCII string to floating point. |
985b6196 | 4786 | |
8c35bbc5 RK |
4787 | Numeric input is a free format decimal number of any length, with |
4788 | or without decimal point. Entering E after the number followed by an | |
4789 | integer number causes the second number to be interpreted as a power of | |
4790 | 10 to be multiplied by the first number (i.e., "scientific" notation). */ | |
985b6196 | 4791 | |
8c35bbc5 | 4792 | /* Convert ASCII string S to single precision float value Y. */ |
a0353055 RK |
4793 | |
4794 | static void | |
985b6196 RS |
4795 | asctoe24 (s, y) |
4796 | char *s; | |
4797 | unsigned EMUSHORT *y; | |
4798 | { | |
4799 | asctoeg (s, y, 24); | |
4800 | } | |
4801 | ||
4802 | ||
8c35bbc5 | 4803 | /* Convert ASCII string S to double precision value Y. */ |
a0353055 RK |
4804 | |
4805 | static void | |
985b6196 RS |
4806 | asctoe53 (s, y) |
4807 | char *s; | |
4808 | unsigned EMUSHORT *y; | |
4809 | { | |
842fbaaa | 4810 | #if defined(DEC) || defined(IBM) |
985b6196 RS |
4811 | asctoeg (s, y, 56); |
4812 | #else | |
4813 | asctoeg (s, y, 53); | |
4814 | #endif | |
4815 | } | |
4816 | ||
4817 | ||
8c35bbc5 | 4818 | /* Convert ASCII string S to double extended value Y. */ |
a0353055 RK |
4819 | |
4820 | static void | |
985b6196 RS |
4821 | asctoe64 (s, y) |
4822 | char *s; | |
4823 | unsigned EMUSHORT *y; | |
4824 | { | |
4825 | asctoeg (s, y, 64); | |
4826 | } | |
4827 | ||
8c35bbc5 | 4828 | /* Convert ASCII string S to 128-bit long double Y. */ |
a0353055 RK |
4829 | |
4830 | static void | |
842fbaaa JW |
4831 | asctoe113 (s, y) |
4832 | char *s; | |
4833 | unsigned EMUSHORT *y; | |
4834 | { | |
4835 | asctoeg (s, y, 113); | |
4836 | } | |
4837 | ||
8c35bbc5 | 4838 | /* Convert ASCII string S to e type Y. */ |
defb5dab | 4839 | |
a0353055 | 4840 | static void |
985b6196 RS |
4841 | asctoe (s, y) |
4842 | char *s; | |
4843 | unsigned EMUSHORT *y; | |
4844 | { | |
4845 | asctoeg (s, y, NBITS); | |
4846 | } | |
4847 | ||
8c35bbc5 RK |
4848 | /* Convert ASCII string SS to e type Y, with a specified rounding precision |
4849 | of OPREC bits. */ | |
defb5dab | 4850 | |
a0353055 | 4851 | static void |
985b6196 RS |
4852 | asctoeg (ss, y, oprec) |
4853 | char *ss; | |
4854 | unsigned EMUSHORT *y; | |
4855 | int oprec; | |
4856 | { | |
4857 | unsigned EMUSHORT yy[NI], xt[NI], tt[NI]; | |
4858 | int esign, decflg, sgnflg, nexp, exp, prec, lost; | |
4859 | int k, trail, c, rndsav; | |
4860 | EMULONG lexp; | |
4861 | unsigned EMUSHORT nsign, *p; | |
d73e9b8d | 4862 | char *sp, *s, *lstr; |
985b6196 RS |
4863 | |
4864 | /* Copy the input string. */ | |
d73e9b8d | 4865 | lstr = (char *) alloca (strlen (ss) + 1); |
985b6196 RS |
4866 | s = ss; |
4867 | while (*s == ' ') /* skip leading spaces */ | |
4868 | ++s; | |
4869 | sp = lstr; | |
a9456cd3 RS |
4870 | while ((*sp++ = *s++) != '\0') |
4871 | ; | |
985b6196 RS |
4872 | s = lstr; |
4873 | ||
4874 | rndsav = rndprc; | |
4875 | rndprc = NBITS; /* Set to full precision */ | |
4876 | lost = 0; | |
4877 | nsign = 0; | |
4878 | decflg = 0; | |
4879 | sgnflg = 0; | |
4880 | nexp = 0; | |
4881 | exp = 0; | |
4882 | prec = 0; | |
4883 | ecleaz (yy); | |
4884 | trail = 0; | |
4885 | ||
4886 | nxtcom: | |
4887 | k = *s - '0'; | |
4888 | if ((k >= 0) && (k <= 9)) | |
4889 | { | |
4890 | /* Ignore leading zeros */ | |
4891 | if ((prec == 0) && (decflg == 0) && (k == 0)) | |
4892 | goto donchr; | |
4893 | /* Identify and strip trailing zeros after the decimal point. */ | |
4894 | if ((trail == 0) && (decflg != 0)) | |
4895 | { | |
4896 | sp = s; | |
4897 | while ((*sp >= '0') && (*sp <= '9')) | |
4898 | ++sp; | |
4899 | /* Check for syntax error */ | |
4900 | c = *sp & 0x7f; | |
4901 | if ((c != 'e') && (c != 'E') && (c != '\0') | |
4902 | && (c != '\n') && (c != '\r') && (c != ' ') | |
4903 | && (c != ',')) | |
4904 | goto error; | |
4905 | --sp; | |
4906 | while (*sp == '0') | |
4907 | *sp-- = 'z'; | |
4908 | trail = 1; | |
4909 | if (*s == 'z') | |
4910 | goto donchr; | |
4911 | } | |
defb5dab | 4912 | |
985b6196 | 4913 | /* If enough digits were given to more than fill up the yy register, |
defb5dab RK |
4914 | continuing until overflow into the high guard word yy[2] |
4915 | guarantees that there will be a roundoff bit at the top | |
4916 | of the low guard word after normalization. */ | |
4917 | ||
985b6196 RS |
4918 | if (yy[2] == 0) |
4919 | { | |
4920 | if (decflg) | |
4921 | nexp += 1; /* count digits after decimal point */ | |
4922 | eshup1 (yy); /* multiply current number by 10 */ | |
4923 | emovz (yy, xt); | |
4924 | eshup1 (xt); | |
4925 | eshup1 (xt); | |
4926 | eaddm (xt, yy); | |
4927 | ecleaz (xt); | |
4928 | xt[NI - 2] = (unsigned EMUSHORT) k; | |
4929 | eaddm (xt, yy); | |
4930 | } | |
4931 | else | |
4932 | { | |
d73e9b8d | 4933 | /* Mark any lost non-zero digit. */ |
985b6196 | 4934 | lost |= k; |
d73e9b8d RS |
4935 | /* Count lost digits before the decimal point. */ |
4936 | if (decflg == 0) | |
4937 | nexp -= 1; | |
985b6196 RS |
4938 | } |
4939 | prec += 1; | |
4940 | goto donchr; | |
4941 | } | |
4942 | ||
4943 | switch (*s) | |
4944 | { | |
4945 | case 'z': | |
4946 | break; | |
4947 | case 'E': | |
4948 | case 'e': | |
4949 | goto expnt; | |
4950 | case '.': /* decimal point */ | |
4951 | if (decflg) | |
4952 | goto error; | |
4953 | ++decflg; | |
4954 | break; | |
4955 | case '-': | |
4956 | nsign = 0xffff; | |
4957 | if (sgnflg) | |
4958 | goto error; | |
4959 | ++sgnflg; | |
4960 | break; | |
4961 | case '+': | |
4962 | if (sgnflg) | |
4963 | goto error; | |
4964 | ++sgnflg; | |
4965 | break; | |
4966 | case ',': | |
4967 | case ' ': | |
4968 | case '\0': | |
4969 | case '\n': | |
4970 | case '\r': | |
4971 | goto daldone; | |
4972 | case 'i': | |
4973 | case 'I': | |
64685ffa | 4974 | goto infinite; |
985b6196 RS |
4975 | default: |
4976 | error: | |
66b6d60b RS |
4977 | #ifdef NANS |
4978 | einan (yy); | |
4979 | #else | |
985b6196 | 4980 | mtherr ("asctoe", DOMAIN); |
66b6d60b RS |
4981 | eclear (yy); |
4982 | #endif | |
985b6196 RS |
4983 | goto aexit; |
4984 | } | |
4985 | donchr: | |
4986 | ++s; | |
4987 | goto nxtcom; | |
4988 | ||
4989 | /* Exponent interpretation */ | |
4990 | expnt: | |
4991 | ||
4992 | esign = 1; | |
4993 | exp = 0; | |
4994 | ++s; | |
4995 | /* check for + or - */ | |
4996 | if (*s == '-') | |
4997 | { | |
4998 | esign = -1; | |
4999 | ++s; | |
5000 | } | |
5001 | if (*s == '+') | |
5002 | ++s; | |
5003 | while ((*s >= '0') && (*s <= '9')) | |
5004 | { | |
5005 | exp *= 10; | |
5006 | exp += *s++ - '0'; | |
842fbaaa | 5007 | if (exp > -(MINDECEXP)) |
64685ffa RS |
5008 | { |
5009 | if (esign < 0) | |
5010 | goto zero; | |
5011 | else | |
5012 | goto infinite; | |
5013 | } | |
985b6196 RS |
5014 | } |
5015 | if (esign < 0) | |
5016 | exp = -exp; | |
842fbaaa | 5017 | if (exp > MAXDECEXP) |
64685ffa RS |
5018 | { |
5019 | infinite: | |
5020 | ecleaz (yy); | |
5021 | yy[E] = 0x7fff; /* infinity */ | |
5022 | goto aexit; | |
5023 | } | |
842fbaaa | 5024 | if (exp < MINDECEXP) |
64685ffa RS |
5025 | { |
5026 | zero: | |
5027 | ecleaz (yy); | |
5028 | goto aexit; | |
5029 | } | |
985b6196 RS |
5030 | |
5031 | daldone: | |
5032 | nexp = exp - nexp; | |
5033 | /* Pad trailing zeros to minimize power of 10, per IEEE spec. */ | |
5034 | while ((nexp > 0) && (yy[2] == 0)) | |
5035 | { | |
5036 | emovz (yy, xt); | |
5037 | eshup1 (xt); | |
5038 | eshup1 (xt); | |
5039 | eaddm (yy, xt); | |
5040 | eshup1 (xt); | |
5041 | if (xt[2] != 0) | |
5042 | break; | |
5043 | nexp -= 1; | |
5044 | emovz (xt, yy); | |
5045 | } | |
5046 | if ((k = enormlz (yy)) > NBITS) | |
5047 | { | |
5048 | ecleaz (yy); | |
5049 | goto aexit; | |
5050 | } | |
5051 | lexp = (EXONE - 1 + NBITS) - k; | |
5052 | emdnorm (yy, lost, 0, lexp, 64); | |
985b6196 | 5053 | |
defb5dab RK |
5054 | /* Convert to external format: |
5055 | ||
5056 | Multiply by 10**nexp. If precision is 64 bits, | |
5057 | the maximum relative error incurred in forming 10**n | |
5058 | for 0 <= n <= 324 is 8.2e-20, at 10**180. | |
5059 | For 0 <= n <= 999, the peak relative error is 1.4e-19 at 10**947. | |
5060 | For 0 >= n >= -999, it is -1.55e-19 at 10**-435. */ | |
985b6196 | 5061 | |
985b6196 RS |
5062 | lexp = yy[E]; |
5063 | if (nexp == 0) | |
5064 | { | |
5065 | k = 0; | |
5066 | goto expdon; | |
5067 | } | |
5068 | esign = 1; | |
5069 | if (nexp < 0) | |
5070 | { | |
5071 | nexp = -nexp; | |
5072 | esign = -1; | |
5073 | if (nexp > 4096) | |
defb5dab RK |
5074 | { |
5075 | /* Punt. Can't handle this without 2 divides. */ | |
985b6196 RS |
5076 | emovi (etens[0], tt); |
5077 | lexp -= tt[E]; | |
5078 | k = edivm (tt, yy); | |
5079 | lexp += EXONE; | |
5080 | nexp -= 4096; | |
5081 | } | |
5082 | } | |
5083 | p = &etens[NTEN][0]; | |
5084 | emov (eone, xt); | |
5085 | exp = 1; | |
5086 | do | |
5087 | { | |
5088 | if (exp & nexp) | |
5089 | emul (p, xt, xt); | |
5090 | p -= NE; | |
5091 | exp = exp + exp; | |
5092 | } | |
5093 | while (exp <= MAXP); | |
5094 | ||
5095 | emovi (xt, tt); | |
5096 | if (esign < 0) | |
5097 | { | |
5098 | lexp -= tt[E]; | |
5099 | k = edivm (tt, yy); | |
5100 | lexp += EXONE; | |
5101 | } | |
5102 | else | |
5103 | { | |
5104 | lexp += tt[E]; | |
5105 | k = emulm (tt, yy); | |
5106 | lexp -= EXONE - 1; | |
5107 | } | |
5108 | ||
5109 | expdon: | |
5110 | ||
5111 | /* Round and convert directly to the destination type */ | |
5112 | if (oprec == 53) | |
5113 | lexp -= EXONE - 0x3ff; | |
842fbaaa JW |
5114 | #ifdef IBM |
5115 | else if (oprec == 24 || oprec == 56) | |
5116 | lexp -= EXONE - (0x41 << 2); | |
5117 | #else | |
985b6196 RS |
5118 | else if (oprec == 24) |
5119 | lexp -= EXONE - 0177; | |
842fbaaa | 5120 | #endif |
985b6196 RS |
5121 | #ifdef DEC |
5122 | else if (oprec == 56) | |
5123 | lexp -= EXONE - 0201; | |
5124 | #endif | |
5125 | rndprc = oprec; | |
5126 | emdnorm (yy, k, 0, lexp, 64); | |
5127 | ||
5128 | aexit: | |
5129 | ||
5130 | rndprc = rndsav; | |
5131 | yy[0] = nsign; | |
5132 | switch (oprec) | |
5133 | { | |
5134 | #ifdef DEC | |
5135 | case 56: | |
5136 | todec (yy, y); /* see etodec.c */ | |
5137 | break; | |
842fbaaa JW |
5138 | #endif |
5139 | #ifdef IBM | |
5140 | case 56: | |
5141 | toibm (yy, y, DFmode); | |
5142 | break; | |
985b6196 RS |
5143 | #endif |
5144 | case 53: | |
5145 | toe53 (yy, y); | |
5146 | break; | |
5147 | case 24: | |
5148 | toe24 (yy, y); | |
5149 | break; | |
5150 | case 64: | |
5151 | toe64 (yy, y); | |
5152 | break; | |
842fbaaa JW |
5153 | case 113: |
5154 | toe113 (yy, y); | |
5155 | break; | |
985b6196 RS |
5156 | case NBITS: |
5157 | emovo (yy, y); | |
5158 | break; | |
5159 | } | |
5160 | } | |
5161 | ||
5162 | ||
5163 | ||
8c35bbc5 RK |
5164 | /* Return Y = largest integer not greater than X (truncated toward minus |
5165 | infinity). */ | |
defb5dab | 5166 | |
985b6196 RS |
5167 | static unsigned EMUSHORT bmask[] = |
5168 | { | |
5169 | 0xffff, | |
5170 | 0xfffe, | |
5171 | 0xfffc, | |
5172 | 0xfff8, | |
5173 | 0xfff0, | |
5174 | 0xffe0, | |
5175 | 0xffc0, | |
5176 | 0xff80, | |
5177 | 0xff00, | |
5178 | 0xfe00, | |
5179 | 0xfc00, | |
5180 | 0xf800, | |
5181 | 0xf000, | |
5182 | 0xe000, | |
5183 | 0xc000, | |
5184 | 0x8000, | |
5185 | 0x0000, | |
5186 | }; | |
5187 | ||
a0353055 | 5188 | static void |
985b6196 RS |
5189 | efloor (x, y) |
5190 | unsigned EMUSHORT x[], y[]; | |
5191 | { | |
5192 | register unsigned EMUSHORT *p; | |
5193 | int e, expon, i; | |
5194 | unsigned EMUSHORT f[NE]; | |
5195 | ||
5196 | emov (x, f); /* leave in external format */ | |
5197 | expon = (int) f[NE - 1]; | |
5198 | e = (expon & 0x7fff) - (EXONE - 1); | |
5199 | if (e <= 0) | |
5200 | { | |
5201 | eclear (y); | |
5202 | goto isitneg; | |
5203 | } | |
5204 | /* number of bits to clear out */ | |
5205 | e = NBITS - e; | |
5206 | emov (f, y); | |
5207 | if (e <= 0) | |
5208 | return; | |
5209 | ||
5210 | p = &y[0]; | |
5211 | while (e >= 16) | |
5212 | { | |
5213 | *p++ = 0; | |
5214 | e -= 16; | |
5215 | } | |
5216 | /* clear the remaining bits */ | |
5217 | *p &= bmask[e]; | |
5218 | /* truncate negatives toward minus infinity */ | |
5219 | isitneg: | |
5220 | ||
5221 | if ((unsigned EMUSHORT) expon & (unsigned EMUSHORT) 0x8000) | |
5222 | { | |
5223 | for (i = 0; i < NE - 1; i++) | |
5224 | { | |
5225 | if (f[i] != y[i]) | |
5226 | { | |
5227 | esub (eone, y, y); | |
5228 | break; | |
5229 | } | |
5230 | } | |
5231 | } | |
5232 | } | |
5233 | ||
5234 | ||
8c35bbc5 RK |
5235 | /* Return S and EXP such that S * 2^EXP = X and .5 <= S < 1. |
5236 | For example, 1.1 = 0.55 * 2^1. */ | |
a0353055 RK |
5237 | |
5238 | static void | |
985b6196 RS |
5239 | efrexp (x, exp, s) |
5240 | unsigned EMUSHORT x[]; | |
5241 | int *exp; | |
5242 | unsigned EMUSHORT s[]; | |
5243 | { | |
5244 | unsigned EMUSHORT xi[NI]; | |
5245 | EMULONG li; | |
5246 | ||
5247 | emovi (x, xi); | |
8c35bbc5 | 5248 | /* Handle denormalized numbers properly using long integer exponent. */ |
985b6196 RS |
5249 | li = (EMULONG) ((EMUSHORT) xi[1]); |
5250 | ||
5251 | if (li == 0) | |
5252 | { | |
5253 | li -= enormlz (xi); | |
5254 | } | |
5255 | xi[1] = 0x3ffe; | |
5256 | emovo (xi, s); | |
5257 | *exp = (int) (li - 0x3ffe); | |
5258 | } | |
5259 | ||
8c35bbc5 | 5260 | /* Return e type Y = X * 2^PWR2. */ |
a0353055 RK |
5261 | |
5262 | static void | |
985b6196 RS |
5263 | eldexp (x, pwr2, y) |
5264 | unsigned EMUSHORT x[]; | |
5265 | int pwr2; | |
5266 | unsigned EMUSHORT y[]; | |
5267 | { | |
5268 | unsigned EMUSHORT xi[NI]; | |
5269 | EMULONG li; | |
5270 | int i; | |
5271 | ||
5272 | emovi (x, xi); | |
5273 | li = xi[1]; | |
5274 | li += pwr2; | |
5275 | i = 0; | |
5276 | emdnorm (xi, i, i, li, 64); | |
5277 | emovo (xi, y); | |
5278 | } | |
5279 | ||
5280 | ||
8c35bbc5 RK |
5281 | /* C = remainder after dividing B by A, all e type values. |
5282 | Least significant integer quotient bits left in EQUOT. */ | |
a0353055 RK |
5283 | |
5284 | static void | |
985b6196 RS |
5285 | eremain (a, b, c) |
5286 | unsigned EMUSHORT a[], b[], c[]; | |
5287 | { | |
5288 | unsigned EMUSHORT den[NI], num[NI]; | |
5289 | ||
66b6d60b | 5290 | #ifdef NANS |
242cef1e RS |
5291 | if (eisinf (b) |
5292 | || (ecmp (a, ezero) == 0) | |
5293 | || eisnan (a) | |
5294 | || eisnan (b)) | |
66b6d60b | 5295 | { |
29e11dab | 5296 | enan (c, 0); |
66b6d60b RS |
5297 | return; |
5298 | } | |
5299 | #endif | |
985b6196 RS |
5300 | if (ecmp (a, ezero) == 0) |
5301 | { | |
5302 | mtherr ("eremain", SING); | |
5303 | eclear (c); | |
5304 | return; | |
5305 | } | |
5306 | emovi (a, den); | |
5307 | emovi (b, num); | |
5308 | eiremain (den, num); | |
5309 | /* Sign of remainder = sign of quotient */ | |
5310 | if (a[0] == b[0]) | |
5311 | num[0] = 0; | |
5312 | else | |
5313 | num[0] = 0xffff; | |
5314 | emovo (num, c); | |
5315 | } | |
5316 | ||
8c35bbc5 RK |
5317 | /* Return quotient of exploded e-types NUM / DEN in EQUOT, |
5318 | remainder in NUM. */ | |
5319 | ||
a0353055 | 5320 | static void |
985b6196 RS |
5321 | eiremain (den, num) |
5322 | unsigned EMUSHORT den[], num[]; | |
5323 | { | |
5324 | EMULONG ld, ln; | |
5325 | unsigned EMUSHORT j; | |
5326 | ||
5327 | ld = den[E]; | |
5328 | ld -= enormlz (den); | |
5329 | ln = num[E]; | |
5330 | ln -= enormlz (num); | |
5331 | ecleaz (equot); | |
5332 | while (ln >= ld) | |
5333 | { | |
5334 | if (ecmpm (den, num) <= 0) | |
5335 | { | |
5336 | esubm (den, num); | |
5337 | j = 1; | |
5338 | } | |
5339 | else | |
985b6196 | 5340 | j = 0; |
985b6196 RS |
5341 | eshup1 (equot); |
5342 | equot[NI - 1] |= j; | |
5343 | eshup1 (num); | |
5344 | ln -= 1; | |
5345 | } | |
5346 | emdnorm (num, 0, 0, ln, 0); | |
5347 | } | |
5348 | ||
8c35bbc5 RK |
5349 | /* Report an error condition CODE encountered in function NAME. |
5350 | CODE is one of the following: | |
defb5dab RK |
5351 | |
5352 | Mnemonic Value Significance | |
5353 | ||
5354 | DOMAIN 1 argument domain error | |
5355 | SING 2 function singularity | |
5356 | OVERFLOW 3 overflow range error | |
5357 | UNDERFLOW 4 underflow range error | |
5358 | TLOSS 5 total loss of precision | |
5359 | PLOSS 6 partial loss of precision | |
5360 | INVALID 7 NaN - producing operation | |
5361 | EDOM 33 Unix domain error code | |
5362 | ERANGE 34 Unix range error code | |
5363 | ||
8c35bbc5 | 5364 | The order of appearance of the following messages is bound to the |
defb5dab | 5365 | error codes defined above. */ |
985b6196 | 5366 | |
66b6d60b RS |
5367 | #define NMSGS 8 |
5368 | static char *ermsg[NMSGS] = | |
985b6196 RS |
5369 | { |
5370 | "unknown", /* error code 0 */ | |
5371 | "domain", /* error code 1 */ | |
5372 | "singularity", /* et seq. */ | |
5373 | "overflow", | |
5374 | "underflow", | |
5375 | "total loss of precision", | |
66b6d60b RS |
5376 | "partial loss of precision", |
5377 | "invalid operation" | |
985b6196 RS |
5378 | }; |
5379 | ||
5380 | int merror = 0; | |
5381 | extern int merror; | |
5382 | ||
a0353055 | 5383 | static void |
985b6196 RS |
5384 | mtherr (name, code) |
5385 | char *name; | |
5386 | int code; | |
5387 | { | |
5388 | char errstr[80]; | |
5389 | ||
8c35bbc5 | 5390 | /* The string passed by the calling program is supposed to be the |
defb5dab | 5391 | name of the function in which the error occurred. |
8c35bbc5 | 5392 | The code argument selects which error message string will be printed. */ |
985b6196 | 5393 | |
66b6d60b | 5394 | if ((code <= 0) || (code >= NMSGS)) |
985b6196 | 5395 | code = 0; |
a8d78514 | 5396 | sprintf (errstr, " %s %s error", name, ermsg[code]); |
64685ffa RS |
5397 | if (extra_warnings) |
5398 | warning (errstr); | |
985b6196 RS |
5399 | /* Set global error message word */ |
5400 | merror = code + 1; | |
985b6196 RS |
5401 | } |
5402 | ||
842fbaaa | 5403 | #ifdef DEC |
8c35bbc5 | 5404 | /* Convert DEC double precision D to e type E. */ |
a0353055 RK |
5405 | |
5406 | static void | |
985b6196 RS |
5407 | dectoe (d, e) |
5408 | unsigned EMUSHORT *d; | |
5409 | unsigned EMUSHORT *e; | |
5410 | { | |
5411 | unsigned EMUSHORT y[NI]; | |
5412 | register unsigned EMUSHORT r, *p; | |
5413 | ||
5414 | ecleaz (y); /* start with a zero */ | |
5415 | p = y; /* point to our number */ | |
5416 | r = *d; /* get DEC exponent word */ | |
5417 | if (*d & (unsigned int) 0x8000) | |
5418 | *p = 0xffff; /* fill in our sign */ | |
5419 | ++p; /* bump pointer to our exponent word */ | |
5420 | r &= 0x7fff; /* strip the sign bit */ | |
5421 | if (r == 0) /* answer = 0 if high order DEC word = 0 */ | |
5422 | goto done; | |
5423 | ||
5424 | ||
5425 | r >>= 7; /* shift exponent word down 7 bits */ | |
5426 | r += EXONE - 0201; /* subtract DEC exponent offset */ | |
5427 | /* add our e type exponent offset */ | |
5428 | *p++ = r; /* to form our exponent */ | |
5429 | ||
5430 | r = *d++; /* now do the high order mantissa */ | |
5431 | r &= 0177; /* strip off the DEC exponent and sign bits */ | |
5432 | r |= 0200; /* the DEC understood high order mantissa bit */ | |
5433 | *p++ = r; /* put result in our high guard word */ | |
5434 | ||
5435 | *p++ = *d++; /* fill in the rest of our mantissa */ | |
5436 | *p++ = *d++; | |
5437 | *p = *d; | |
5438 | ||
5439 | eshdn8 (y); /* shift our mantissa down 8 bits */ | |
5440 | done: | |
5441 | emovo (y, e); | |
5442 | } | |
5443 | ||
8c35bbc5 | 5444 | /* Convert e type X to DEC double precision D. */ |
985b6196 | 5445 | |
a0353055 | 5446 | static void |
985b6196 RS |
5447 | etodec (x, d) |
5448 | unsigned EMUSHORT *x, *d; | |
5449 | { | |
5450 | unsigned EMUSHORT xi[NI]; | |
842fbaaa JW |
5451 | EMULONG exp; |
5452 | int rndsav; | |
985b6196 RS |
5453 | |
5454 | emovi (x, xi); | |
8c35bbc5 RK |
5455 | /* Adjust exponent for offsets. */ |
5456 | exp = (EMULONG) xi[E] - (EXONE - 0201); | |
5457 | /* Round off to nearest or even. */ | |
985b6196 RS |
5458 | rndsav = rndprc; |
5459 | rndprc = 56; | |
5460 | emdnorm (xi, 0, 0, exp, 64); | |
5461 | rndprc = rndsav; | |
5462 | todec (xi, d); | |
5463 | } | |
5464 | ||
8c35bbc5 RK |
5465 | /* Convert exploded e-type X, that has already been rounded to |
5466 | 56-bit precision, to DEC format double Y. */ | |
5467 | ||
a0353055 | 5468 | static void |
985b6196 RS |
5469 | todec (x, y) |
5470 | unsigned EMUSHORT *x, *y; | |
5471 | { | |
5472 | unsigned EMUSHORT i; | |
5473 | unsigned EMUSHORT *p; | |
5474 | ||
5475 | p = x; | |
5476 | *y = 0; | |
5477 | if (*p++) | |
5478 | *y = 0100000; | |
5479 | i = *p++; | |
5480 | if (i == 0) | |
5481 | { | |
5482 | *y++ = 0; | |
5483 | *y++ = 0; | |
5484 | *y++ = 0; | |
5485 | *y++ = 0; | |
5486 | return; | |
5487 | } | |
5488 | if (i > 0377) | |
5489 | { | |
5490 | *y++ |= 077777; | |
5491 | *y++ = 0xffff; | |
5492 | *y++ = 0xffff; | |
5493 | *y++ = 0xffff; | |
64685ffa RS |
5494 | #ifdef ERANGE |
5495 | errno = ERANGE; | |
5496 | #endif | |
985b6196 RS |
5497 | return; |
5498 | } | |
5499 | i &= 0377; | |
5500 | i <<= 7; | |
5501 | eshup8 (x); | |
5502 | x[M] &= 0177; | |
5503 | i |= x[M]; | |
5504 | *y++ |= i; | |
5505 | *y++ = x[M + 1]; | |
5506 | *y++ = x[M + 2]; | |
5507 | *y++ = x[M + 3]; | |
5508 | } | |
842fbaaa JW |
5509 | #endif /* DEC */ |
5510 | ||
5511 | #ifdef IBM | |
defb5dab | 5512 | /* Convert IBM single/double precision to e type. */ |
a0353055 RK |
5513 | |
5514 | static void | |
842fbaaa JW |
5515 | ibmtoe (d, e, mode) |
5516 | unsigned EMUSHORT *d; | |
5517 | unsigned EMUSHORT *e; | |
5518 | enum machine_mode mode; | |
5519 | { | |
5520 | unsigned EMUSHORT y[NI]; | |
5521 | register unsigned EMUSHORT r, *p; | |
5522 | int rndsav; | |
5523 | ||
5524 | ecleaz (y); /* start with a zero */ | |
5525 | p = y; /* point to our number */ | |
5526 | r = *d; /* get IBM exponent word */ | |
5527 | if (*d & (unsigned int) 0x8000) | |
5528 | *p = 0xffff; /* fill in our sign */ | |
5529 | ++p; /* bump pointer to our exponent word */ | |
5530 | r &= 0x7f00; /* strip the sign bit */ | |
5531 | r >>= 6; /* shift exponent word down 6 bits */ | |
5532 | /* in fact shift by 8 right and 2 left */ | |
5533 | r += EXONE - (0x41 << 2); /* subtract IBM exponent offset */ | |
5534 | /* add our e type exponent offset */ | |
5535 | *p++ = r; /* to form our exponent */ | |
5536 | ||
5537 | *p++ = *d++ & 0xff; /* now do the high order mantissa */ | |
5538 | /* strip off the IBM exponent and sign bits */ | |
5539 | if (mode != SFmode) /* there are only 2 words in SFmode */ | |
5540 | { | |
5541 | *p++ = *d++; /* fill in the rest of our mantissa */ | |
5542 | *p++ = *d++; | |
5543 | } | |
5544 | *p = *d; | |
5545 | ||
5546 | if (y[M] == 0 && y[M+1] == 0 && y[M+2] == 0 && y[M+3] == 0) | |
5547 | y[0] = y[E] = 0; | |
5548 | else | |
5549 | y[E] -= 5 + enormlz (y); /* now normalise the mantissa */ | |
5550 | /* handle change in RADIX */ | |
5551 | emovo (y, e); | |
5552 | } | |
5553 | ||
985b6196 | 5554 | |
985b6196 | 5555 | |
defb5dab | 5556 | /* Convert e type to IBM single/double precision. */ |
842fbaaa | 5557 | |
a0353055 | 5558 | static void |
842fbaaa JW |
5559 | etoibm (x, d, mode) |
5560 | unsigned EMUSHORT *x, *d; | |
5561 | enum machine_mode mode; | |
5562 | { | |
5563 | unsigned EMUSHORT xi[NI]; | |
5564 | EMULONG exp; | |
5565 | int rndsav; | |
5566 | ||
5567 | emovi (x, xi); | |
5568 | exp = (EMULONG) xi[E] - (EXONE - (0x41 << 2)); /* adjust exponent for offsets */ | |
5569 | /* round off to nearest or even */ | |
5570 | rndsav = rndprc; | |
5571 | rndprc = 56; | |
5572 | emdnorm (xi, 0, 0, exp, 64); | |
5573 | rndprc = rndsav; | |
5574 | toibm (xi, d, mode); | |
5575 | } | |
5576 | ||
a0353055 | 5577 | static void |
842fbaaa JW |
5578 | toibm (x, y, mode) |
5579 | unsigned EMUSHORT *x, *y; | |
5580 | enum machine_mode mode; | |
5581 | { | |
5582 | unsigned EMUSHORT i; | |
5583 | unsigned EMUSHORT *p; | |
5584 | int r; | |
5585 | ||
5586 | p = x; | |
5587 | *y = 0; | |
5588 | if (*p++) | |
5589 | *y = 0x8000; | |
5590 | i = *p++; | |
5591 | if (i == 0) | |
5592 | { | |
5593 | *y++ = 0; | |
5594 | *y++ = 0; | |
5595 | if (mode != SFmode) | |
5596 | { | |
5597 | *y++ = 0; | |
5598 | *y++ = 0; | |
5599 | } | |
5600 | return; | |
5601 | } | |
5602 | r = i & 0x3; | |
5603 | i >>= 2; | |
5604 | if (i > 0x7f) | |
5605 | { | |
5606 | *y++ |= 0x7fff; | |
5607 | *y++ = 0xffff; | |
5608 | if (mode != SFmode) | |
5609 | { | |
5610 | *y++ = 0xffff; | |
5611 | *y++ = 0xffff; | |
5612 | } | |
5613 | #ifdef ERANGE | |
5614 | errno = ERANGE; | |
5615 | #endif | |
5616 | return; | |
5617 | } | |
5618 | i &= 0x7f; | |
5619 | *y |= (i << 8); | |
5620 | eshift (x, r + 5); | |
5621 | *y++ |= x[M]; | |
5622 | *y++ = x[M + 1]; | |
5623 | if (mode != SFmode) | |
5624 | { | |
5625 | *y++ = x[M + 2]; | |
5626 | *y++ = x[M + 3]; | |
5627 | } | |
5628 | } | |
5629 | #endif /* IBM */ | |
66b6d60b RS |
5630 | |
5631 | /* Output a binary NaN bit pattern in the target machine's format. */ | |
5632 | ||
5633 | /* If special NaN bit patterns are required, define them in tm.h | |
5634 | as arrays of unsigned 16-bit shorts. Otherwise, use the default | |
5635 | patterns here. */ | |
7729f1ca RS |
5636 | #ifdef TFMODE_NAN |
5637 | TFMODE_NAN; | |
5638 | #else | |
f76b9db2 ILT |
5639 | #ifdef IEEE |
5640 | unsigned EMUSHORT TFbignan[8] = | |
66b6d60b | 5641 | {0x7fff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff}; |
f76b9db2 | 5642 | unsigned EMUSHORT TFlittlenan[8] = {0, 0, 0, 0, 0, 0, 0x8000, 0xffff}; |
66b6d60b RS |
5643 | #endif |
5644 | #endif | |
5645 | ||
7729f1ca RS |
5646 | #ifdef XFMODE_NAN |
5647 | XFMODE_NAN; | |
5648 | #else | |
f76b9db2 ILT |
5649 | #ifdef IEEE |
5650 | unsigned EMUSHORT XFbignan[6] = | |
5651 | {0x7fff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff}; | |
5652 | unsigned EMUSHORT XFlittlenan[6] = {0, 0, 0, 0xc000, 0xffff, 0}; | |
66b6d60b RS |
5653 | #endif |
5654 | #endif | |
5655 | ||
7729f1ca RS |
5656 | #ifdef DFMODE_NAN |
5657 | DFMODE_NAN; | |
5658 | #else | |
f76b9db2 ILT |
5659 | #ifdef IEEE |
5660 | unsigned EMUSHORT DFbignan[4] = {0x7fff, 0xffff, 0xffff, 0xffff}; | |
5661 | unsigned EMUSHORT DFlittlenan[4] = {0, 0, 0, 0xfff8}; | |
66b6d60b RS |
5662 | #endif |
5663 | #endif | |
5664 | ||
7729f1ca RS |
5665 | #ifdef SFMODE_NAN |
5666 | SFMODE_NAN; | |
5667 | #else | |
f76b9db2 ILT |
5668 | #ifdef IEEE |
5669 | unsigned EMUSHORT SFbignan[2] = {0x7fff, 0xffff}; | |
5670 | unsigned EMUSHORT SFlittlenan[2] = {0, 0xffc0}; | |
66b6d60b RS |
5671 | #endif |
5672 | #endif | |
5673 | ||
5674 | ||
a0353055 | 5675 | static void |
29e11dab | 5676 | make_nan (nan, sign, mode) |
a0353055 RK |
5677 | unsigned EMUSHORT *nan; |
5678 | int sign; | |
5679 | enum machine_mode mode; | |
66b6d60b | 5680 | { |
29e11dab | 5681 | int n; |
66b6d60b RS |
5682 | unsigned EMUSHORT *p; |
5683 | ||
5684 | switch (mode) | |
5685 | { | |
5686 | /* Possibly the `reserved operand' patterns on a VAX can be | |
5687 | used like NaN's, but probably not in the same way as IEEE. */ | |
842fbaaa | 5688 | #if !defined(DEC) && !defined(IBM) |
66b6d60b RS |
5689 | case TFmode: |
5690 | n = 8; | |
8c35bbc5 | 5691 | if (REAL_WORDS_BIG_ENDIAN) |
f76b9db2 ILT |
5692 | p = TFbignan; |
5693 | else | |
5694 | p = TFlittlenan; | |
66b6d60b RS |
5695 | break; |
5696 | case XFmode: | |
5697 | n = 6; | |
8c35bbc5 | 5698 | if (REAL_WORDS_BIG_ENDIAN) |
f76b9db2 ILT |
5699 | p = XFbignan; |
5700 | else | |
5701 | p = XFlittlenan; | |
66b6d60b RS |
5702 | break; |
5703 | case DFmode: | |
5704 | n = 4; | |
8c35bbc5 | 5705 | if (REAL_WORDS_BIG_ENDIAN) |
f76b9db2 ILT |
5706 | p = DFbignan; |
5707 | else | |
5708 | p = DFlittlenan; | |
66b6d60b | 5709 | break; |
bfbc6416 | 5710 | case HFmode: |
66b6d60b RS |
5711 | case SFmode: |
5712 | n = 2; | |
8c35bbc5 | 5713 | if (REAL_WORDS_BIG_ENDIAN) |
f76b9db2 ILT |
5714 | p = SFbignan; |
5715 | else | |
5716 | p = SFlittlenan; | |
66b6d60b RS |
5717 | break; |
5718 | #endif | |
5719 | default: | |
5720 | abort (); | |
5721 | } | |
8c35bbc5 | 5722 | if (REAL_WORDS_BIG_ENDIAN) |
f76b9db2 | 5723 | *nan++ = (sign << 15) | *p++; |
29e11dab | 5724 | while (--n != 0) |
66b6d60b | 5725 | *nan++ = *p++; |
8c35bbc5 | 5726 | if (! REAL_WORDS_BIG_ENDIAN) |
f76b9db2 | 5727 | *nan = (sign << 15) | *p; |
66b6d60b RS |
5728 | } |
5729 | ||
b31c244f RS |
5730 | /* Convert an SFmode target `float' value to a REAL_VALUE_TYPE. |
5731 | This is the inverse of the function `etarsingle' invoked by | |
5732 | REAL_VALUE_TO_TARGET_SINGLE. */ | |
5733 | ||
5734 | REAL_VALUE_TYPE | |
5735 | ereal_from_float (f) | |
04ae9e4c | 5736 | HOST_WIDE_INT f; |
b31c244f RS |
5737 | { |
5738 | REAL_VALUE_TYPE r; | |
5739 | unsigned EMUSHORT s[2]; | |
5740 | unsigned EMUSHORT e[NE]; | |
5741 | ||
5742 | /* Convert 32 bit integer to array of 16 bit pieces in target machine order. | |
5743 | This is the inverse operation to what the function `endian' does. */ | |
8c35bbc5 | 5744 | if (REAL_WORDS_BIG_ENDIAN) |
f76b9db2 ILT |
5745 | { |
5746 | s[0] = (unsigned EMUSHORT) (f >> 16); | |
5747 | s[1] = (unsigned EMUSHORT) f; | |
5748 | } | |
5749 | else | |
5750 | { | |
5751 | s[0] = (unsigned EMUSHORT) f; | |
5752 | s[1] = (unsigned EMUSHORT) (f >> 16); | |
5753 | } | |
b31c244f RS |
5754 | /* Convert and promote the target float to E-type. */ |
5755 | e24toe (s, e); | |
5756 | /* Output E-type to REAL_VALUE_TYPE. */ | |
5757 | PUT_REAL (e, &r); | |
5758 | return r; | |
5759 | } | |
5760 | ||
842fbaaa | 5761 | |
b31c244f RS |
5762 | /* Convert a DFmode target `double' value to a REAL_VALUE_TYPE. |
5763 | This is the inverse of the function `etardouble' invoked by | |
5764 | REAL_VALUE_TO_TARGET_DOUBLE. | |
5765 | ||
04ae9e4c RK |
5766 | The DFmode is stored as an array of HOST_WIDE_INT in the target's |
5767 | data format, with no holes in the bit packing. The first element | |
b31c244f RS |
5768 | of the input array holds the bits that would come first in the |
5769 | target computer's memory. */ | |
5770 | ||
5771 | REAL_VALUE_TYPE | |
5772 | ereal_from_double (d) | |
04ae9e4c | 5773 | HOST_WIDE_INT d[]; |
b31c244f RS |
5774 | { |
5775 | REAL_VALUE_TYPE r; | |
5776 | unsigned EMUSHORT s[4]; | |
5777 | unsigned EMUSHORT e[NE]; | |
5778 | ||
04ae9e4c | 5779 | /* Convert array of HOST_WIDE_INT to equivalent array of 16-bit pieces. */ |
8c35bbc5 | 5780 | if (REAL_WORDS_BIG_ENDIAN) |
f76b9db2 ILT |
5781 | { |
5782 | s[0] = (unsigned EMUSHORT) (d[0] >> 16); | |
5783 | s[1] = (unsigned EMUSHORT) d[0]; | |
60e61165 | 5784 | #if HOST_BITS_PER_WIDE_INT == 32 |
f76b9db2 ILT |
5785 | s[2] = (unsigned EMUSHORT) (d[1] >> 16); |
5786 | s[3] = (unsigned EMUSHORT) d[1]; | |
60e61165 | 5787 | #else |
f76b9db2 ILT |
5788 | /* In this case the entire target double is contained in the |
5789 | first array element. The second element of the input is | |
5790 | ignored. */ | |
5791 | s[2] = (unsigned EMUSHORT) (d[0] >> 48); | |
5792 | s[3] = (unsigned EMUSHORT) (d[0] >> 32); | |
60e61165 | 5793 | #endif |
f76b9db2 ILT |
5794 | } |
5795 | else | |
5796 | { | |
5797 | /* Target float words are little-endian. */ | |
5798 | s[0] = (unsigned EMUSHORT) d[0]; | |
5799 | s[1] = (unsigned EMUSHORT) (d[0] >> 16); | |
60e61165 | 5800 | #if HOST_BITS_PER_WIDE_INT == 32 |
f76b9db2 ILT |
5801 | s[2] = (unsigned EMUSHORT) d[1]; |
5802 | s[3] = (unsigned EMUSHORT) (d[1] >> 16); | |
60e61165 | 5803 | #else |
f76b9db2 ILT |
5804 | s[2] = (unsigned EMUSHORT) (d[0] >> 32); |
5805 | s[3] = (unsigned EMUSHORT) (d[0] >> 48); | |
b31c244f | 5806 | #endif |
f76b9db2 | 5807 | } |
b31c244f RS |
5808 | /* Convert target double to E-type. */ |
5809 | e53toe (s, e); | |
5810 | /* Output E-type to REAL_VALUE_TYPE. */ | |
5811 | PUT_REAL (e, &r); | |
5812 | return r; | |
5813 | } | |
842fbaaa JW |
5814 | |
5815 | ||
b51ab098 RK |
5816 | /* Convert target computer unsigned 64-bit integer to e-type. |
5817 | The endian-ness of DImode follows the convention for integers, | |
8c35bbc5 | 5818 | so we use WORDS_BIG_ENDIAN here, not REAL_WORDS_BIG_ENDIAN. */ |
842fbaaa | 5819 | |
a0353055 | 5820 | static void |
842fbaaa JW |
5821 | uditoe (di, e) |
5822 | unsigned EMUSHORT *di; /* Address of the 64-bit int. */ | |
5823 | unsigned EMUSHORT *e; | |
5824 | { | |
5825 | unsigned EMUSHORT yi[NI]; | |
5826 | int k; | |
5827 | ||
5828 | ecleaz (yi); | |
f76b9db2 ILT |
5829 | if (WORDS_BIG_ENDIAN) |
5830 | { | |
5831 | for (k = M; k < M + 4; k++) | |
5832 | yi[k] = *di++; | |
5833 | } | |
5834 | else | |
5835 | { | |
5836 | for (k = M + 3; k >= M; k--) | |
5837 | yi[k] = *di++; | |
5838 | } | |
842fbaaa JW |
5839 | yi[E] = EXONE + 47; /* exponent if normalize shift count were 0 */ |
5840 | if ((k = enormlz (yi)) > NBITS)/* normalize the significand */ | |
5841 | ecleaz (yi); /* it was zero */ | |
5842 | else | |
5843 | yi[E] -= (unsigned EMUSHORT) k;/* subtract shift count from exponent */ | |
5844 | emovo (yi, e); | |
5845 | } | |
5846 | ||
5847 | /* Convert target computer signed 64-bit integer to e-type. */ | |
5848 | ||
a0353055 | 5849 | static void |
842fbaaa JW |
5850 | ditoe (di, e) |
5851 | unsigned EMUSHORT *di; /* Address of the 64-bit int. */ | |
5852 | unsigned EMUSHORT *e; | |
5853 | { | |
5854 | unsigned EMULONG acc; | |
5855 | unsigned EMUSHORT yi[NI]; | |
5856 | unsigned EMUSHORT carry; | |
5857 | int k, sign; | |
5858 | ||
5859 | ecleaz (yi); | |
f76b9db2 ILT |
5860 | if (WORDS_BIG_ENDIAN) |
5861 | { | |
5862 | for (k = M; k < M + 4; k++) | |
5863 | yi[k] = *di++; | |
5864 | } | |
5865 | else | |
5866 | { | |
5867 | for (k = M + 3; k >= M; k--) | |
5868 | yi[k] = *di++; | |
5869 | } | |
842fbaaa JW |
5870 | /* Take absolute value */ |
5871 | sign = 0; | |
5872 | if (yi[M] & 0x8000) | |
5873 | { | |
5874 | sign = 1; | |
5875 | carry = 0; | |
5876 | for (k = M + 3; k >= M; k--) | |
5877 | { | |
5878 | acc = (unsigned EMULONG) (~yi[k] & 0xffff) + carry; | |
5879 | yi[k] = acc; | |
5880 | carry = 0; | |
5881 | if (acc & 0x10000) | |
5882 | carry = 1; | |
5883 | } | |
5884 | } | |
5885 | yi[E] = EXONE + 47; /* exponent if normalize shift count were 0 */ | |
5886 | if ((k = enormlz (yi)) > NBITS)/* normalize the significand */ | |
5887 | ecleaz (yi); /* it was zero */ | |
5888 | else | |
5889 | yi[E] -= (unsigned EMUSHORT) k;/* subtract shift count from exponent */ | |
5890 | emovo (yi, e); | |
5891 | if (sign) | |
5892 | eneg (e); | |
5893 | } | |
5894 | ||
5895 | ||
5896 | /* Convert e-type to unsigned 64-bit int. */ | |
5897 | ||
008f0d36 RK |
5898 | static void |
5899 | etoudi (x, i) | |
842fbaaa JW |
5900 | unsigned EMUSHORT *x; |
5901 | unsigned EMUSHORT *i; | |
5902 | { | |
5903 | unsigned EMUSHORT xi[NI]; | |
5904 | int j, k; | |
5905 | ||
5906 | emovi (x, xi); | |
5907 | if (xi[0]) | |
5908 | { | |
5909 | xi[M] = 0; | |
5910 | goto noshift; | |
5911 | } | |
5912 | k = (int) xi[E] - (EXONE - 1); | |
5913 | if (k <= 0) | |
5914 | { | |
5915 | for (j = 0; j < 4; j++) | |
5916 | *i++ = 0; | |
5917 | return; | |
5918 | } | |
5919 | if (k > 64) | |
5920 | { | |
5921 | for (j = 0; j < 4; j++) | |
5922 | *i++ = 0xffff; | |
5923 | if (extra_warnings) | |
5924 | warning ("overflow on truncation to integer"); | |
5925 | return; | |
5926 | } | |
5927 | if (k > 16) | |
5928 | { | |
5929 | /* Shift more than 16 bits: first shift up k-16 mod 16, | |
5930 | then shift up by 16's. */ | |
5931 | j = k - ((k >> 4) << 4); | |
5932 | if (j == 0) | |
5933 | j = 16; | |
5934 | eshift (xi, j); | |
f76b9db2 ILT |
5935 | if (WORDS_BIG_ENDIAN) |
5936 | *i++ = xi[M]; | |
5937 | else | |
5938 | { | |
5939 | i += 3; | |
5940 | *i-- = xi[M]; | |
5941 | } | |
842fbaaa JW |
5942 | k -= j; |
5943 | do | |
5944 | { | |
5945 | eshup6 (xi); | |
f76b9db2 ILT |
5946 | if (WORDS_BIG_ENDIAN) |
5947 | *i++ = xi[M]; | |
5948 | else | |
5949 | *i-- = xi[M]; | |
842fbaaa JW |
5950 | } |
5951 | while ((k -= 16) > 0); | |
5952 | } | |
5953 | else | |
5954 | { | |
5955 | /* shift not more than 16 bits */ | |
5956 | eshift (xi, k); | |
5957 | ||
5958 | noshift: | |
5959 | ||
f76b9db2 ILT |
5960 | if (WORDS_BIG_ENDIAN) |
5961 | { | |
5962 | i += 3; | |
5963 | *i-- = xi[M]; | |
5964 | *i-- = 0; | |
5965 | *i-- = 0; | |
5966 | *i = 0; | |
5967 | } | |
5968 | else | |
5969 | { | |
5970 | *i++ = xi[M]; | |
5971 | *i++ = 0; | |
5972 | *i++ = 0; | |
5973 | *i = 0; | |
5974 | } | |
842fbaaa JW |
5975 | } |
5976 | } | |
5977 | ||
5978 | ||
5979 | /* Convert e-type to signed 64-bit int. */ | |
5980 | ||
a0353055 | 5981 | static void |
842fbaaa JW |
5982 | etodi (x, i) |
5983 | unsigned EMUSHORT *x; | |
5984 | unsigned EMUSHORT *i; | |
5985 | { | |
5986 | unsigned EMULONG acc; | |
5987 | unsigned EMUSHORT xi[NI]; | |
5988 | unsigned EMUSHORT carry; | |
5989 | unsigned EMUSHORT *isave; | |
5990 | int j, k; | |
5991 | ||
5992 | emovi (x, xi); | |
5993 | k = (int) xi[E] - (EXONE - 1); | |
5994 | if (k <= 0) | |
5995 | { | |
5996 | for (j = 0; j < 4; j++) | |
5997 | *i++ = 0; | |
5998 | return; | |
5999 | } | |
6000 | if (k > 64) | |
6001 | { | |
6002 | for (j = 0; j < 4; j++) | |
6003 | *i++ = 0xffff; | |
6004 | if (extra_warnings) | |
6005 | warning ("overflow on truncation to integer"); | |
6006 | return; | |
6007 | } | |
6008 | isave = i; | |
6009 | if (k > 16) | |
6010 | { | |
6011 | /* Shift more than 16 bits: first shift up k-16 mod 16, | |
6012 | then shift up by 16's. */ | |
6013 | j = k - ((k >> 4) << 4); | |
6014 | if (j == 0) | |
6015 | j = 16; | |
6016 | eshift (xi, j); | |
f76b9db2 ILT |
6017 | if (WORDS_BIG_ENDIAN) |
6018 | *i++ = xi[M]; | |
6019 | else | |
6020 | { | |
6021 | i += 3; | |
6022 | *i-- = xi[M]; | |
6023 | } | |
842fbaaa JW |
6024 | k -= j; |
6025 | do | |
6026 | { | |
6027 | eshup6 (xi); | |
f76b9db2 ILT |
6028 | if (WORDS_BIG_ENDIAN) |
6029 | *i++ = xi[M]; | |
6030 | else | |
6031 | *i-- = xi[M]; | |
842fbaaa JW |
6032 | } |
6033 | while ((k -= 16) > 0); | |
6034 | } | |
6035 | else | |
6036 | { | |
6037 | /* shift not more than 16 bits */ | |
6038 | eshift (xi, k); | |
6039 | ||
f76b9db2 ILT |
6040 | if (WORDS_BIG_ENDIAN) |
6041 | { | |
6042 | i += 3; | |
6043 | *i = xi[M]; | |
6044 | *i-- = 0; | |
6045 | *i-- = 0; | |
6046 | *i = 0; | |
6047 | } | |
6048 | else | |
6049 | { | |
6050 | *i++ = xi[M]; | |
6051 | *i++ = 0; | |
6052 | *i++ = 0; | |
6053 | *i = 0; | |
6054 | } | |
842fbaaa JW |
6055 | } |
6056 | /* Negate if negative */ | |
6057 | if (xi[0]) | |
6058 | { | |
6059 | carry = 0; | |
f76b9db2 ILT |
6060 | if (WORDS_BIG_ENDIAN) |
6061 | isave += 3; | |
842fbaaa JW |
6062 | for (k = 0; k < 4; k++) |
6063 | { | |
6064 | acc = (unsigned EMULONG) (~(*isave) & 0xffff) + carry; | |
f76b9db2 ILT |
6065 | if (WORDS_BIG_ENDIAN) |
6066 | *isave-- = acc; | |
6067 | else | |
6068 | *isave++ = acc; | |
842fbaaa JW |
6069 | carry = 0; |
6070 | if (acc & 0x10000) | |
6071 | carry = 1; | |
6072 | } | |
6073 | } | |
6074 | } | |
6075 | ||
6076 | ||
6077 | /* Longhand square root routine. */ | |
6078 | ||
6079 | ||
6080 | static int esqinited = 0; | |
6081 | static unsigned short sqrndbit[NI]; | |
6082 | ||
a0353055 | 6083 | static void |
842fbaaa JW |
6084 | esqrt (x, y) |
6085 | unsigned EMUSHORT *x, *y; | |
6086 | { | |
6087 | unsigned EMUSHORT temp[NI], num[NI], sq[NI], xx[NI]; | |
6088 | EMULONG m, exp; | |
6089 | int i, j, k, n, nlups; | |
6090 | ||
6091 | if (esqinited == 0) | |
6092 | { | |
6093 | ecleaz (sqrndbit); | |
6094 | sqrndbit[NI - 2] = 1; | |
6095 | esqinited = 1; | |
6096 | } | |
6097 | /* Check for arg <= 0 */ | |
6098 | i = ecmp (x, ezero); | |
6099 | if (i <= 0) | |
6100 | { | |
29e11dab | 6101 | if (i == -1) |
842fbaaa | 6102 | { |
29e11dab RK |
6103 | mtherr ("esqrt", DOMAIN); |
6104 | eclear (y); | |
842fbaaa | 6105 | } |
29e11dab RK |
6106 | else |
6107 | emov (x, y); | |
842fbaaa JW |
6108 | return; |
6109 | } | |
6110 | ||
6111 | #ifdef INFINITY | |
6112 | if (eisinf (x)) | |
6113 | { | |
6114 | eclear (y); | |
6115 | einfin (y); | |
6116 | return; | |
6117 | } | |
6118 | #endif | |
6119 | /* Bring in the arg and renormalize if it is denormal. */ | |
6120 | emovi (x, xx); | |
6121 | m = (EMULONG) xx[1]; /* local long word exponent */ | |
6122 | if (m == 0) | |
6123 | m -= enormlz (xx); | |
6124 | ||
6125 | /* Divide exponent by 2 */ | |
6126 | m -= 0x3ffe; | |
6127 | exp = (unsigned short) ((m / 2) + 0x3ffe); | |
6128 | ||
6129 | /* Adjust if exponent odd */ | |
6130 | if ((m & 1) != 0) | |
6131 | { | |
6132 | if (m > 0) | |
6133 | exp += 1; | |
6134 | eshdn1 (xx); | |
6135 | } | |
6136 | ||
6137 | ecleaz (sq); | |
6138 | ecleaz (num); | |
6139 | n = 8; /* get 8 bits of result per inner loop */ | |
6140 | nlups = rndprc; | |
6141 | j = 0; | |
6142 | ||
6143 | while (nlups > 0) | |
6144 | { | |
6145 | /* bring in next word of arg */ | |
6146 | if (j < NE) | |
6147 | num[NI - 1] = xx[j + 3]; | |
6148 | /* Do additional bit on last outer loop, for roundoff. */ | |
6149 | if (nlups <= 8) | |
6150 | n = nlups + 1; | |
6151 | for (i = 0; i < n; i++) | |
6152 | { | |
6153 | /* Next 2 bits of arg */ | |
6154 | eshup1 (num); | |
6155 | eshup1 (num); | |
6156 | /* Shift up answer */ | |
6157 | eshup1 (sq); | |
6158 | /* Make trial divisor */ | |
6159 | for (k = 0; k < NI; k++) | |
6160 | temp[k] = sq[k]; | |
6161 | eshup1 (temp); | |
6162 | eaddm (sqrndbit, temp); | |
6163 | /* Subtract and insert answer bit if it goes in */ | |
6164 | if (ecmpm (temp, num) <= 0) | |
6165 | { | |
6166 | esubm (temp, num); | |
6167 | sq[NI - 2] |= 1; | |
6168 | } | |
6169 | } | |
6170 | nlups -= n; | |
6171 | j += 1; | |
6172 | } | |
6173 | ||
6174 | /* Adjust for extra, roundoff loop done. */ | |
6175 | exp += (NBITS - 1) - rndprc; | |
6176 | ||
6177 | /* Sticky bit = 1 if the remainder is nonzero. */ | |
6178 | k = 0; | |
6179 | for (i = 3; i < NI; i++) | |
6180 | k |= (int) num[i]; | |
6181 | ||
6182 | /* Renormalize and round off. */ | |
6183 | emdnorm (sq, k, 0, exp, 64); | |
6184 | emovo (sq, y); | |
6185 | } | |
985b6196 | 6186 | #endif /* EMU_NON_COMPILE not defined */ |
8ddae348 RK |
6187 | \f |
6188 | /* Return the binary precision of the significand for a given | |
6189 | floating point mode. The mode can hold an integer value | |
6190 | that many bits wide, without losing any bits. */ | |
6191 | ||
6192 | int | |
6193 | significand_size (mode) | |
6194 | enum machine_mode mode; | |
6195 | { | |
6196 | ||
de3a68a1 RK |
6197 | /* Don't test the modes, but their sizes, lest this |
6198 | code won't work for BITS_PER_UNIT != 8 . */ | |
6199 | ||
6200 | switch (GET_MODE_BITSIZE (mode)) | |
8ddae348 | 6201 | { |
de3a68a1 | 6202 | case 32: |
8ddae348 RK |
6203 | return 24; |
6204 | ||
de3a68a1 | 6205 | case 64: |
8ddae348 RK |
6206 | #if TARGET_FLOAT_FORMAT == IEEE_FLOAT_FORMAT |
6207 | return 53; | |
6208 | #else | |
6209 | #if TARGET_FLOAT_FORMAT == IBM_FLOAT_FORMAT | |
6210 | return 56; | |
6211 | #else | |
6212 | #if TARGET_FLOAT_FORMAT == VAX_FLOAT_FORMAT | |
6213 | return 56; | |
6214 | #else | |
6215 | abort (); | |
6216 | #endif | |
6217 | #endif | |
6218 | #endif | |
6219 | ||
de3a68a1 | 6220 | case 96: |
8ddae348 | 6221 | return 64; |
de3a68a1 | 6222 | case 128: |
8ddae348 RK |
6223 | return 113; |
6224 | ||
6225 | default: | |
6226 | abort (); | |
6227 | } | |
6228 | } |