]>
Commit | Line | Data |
---|---|---|
985b6196 | 1 | /* real.c - implementation of REAL_ARITHMETIC, REAL_VALUE_ATOF, |
29e11dab | 2 | and support for XFmode IEEE extended real floating point arithmetic. |
82e974d4 | 3 | Copyright (C) 1993, 1994, 1995 Free Software Foundation, Inc. |
c764eafd | 4 | Contributed by Stephen L. Moshier (moshier@world.std.com). |
985b6196 RS |
5 | |
6 | This file is part of GNU CC. | |
7 | ||
8 | GNU CC is free software; you can redistribute it and/or modify | |
9 | it under the terms of the GNU General Public License as published by | |
10 | the Free Software Foundation; either version 2, or (at your option) | |
11 | any later version. | |
12 | ||
13 | GNU CC is distributed in the hope that it will be useful, | |
14 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 | GNU General Public License for more details. | |
17 | ||
18 | You should have received a copy of the GNU General Public License | |
19 | along with GNU CC; see the file COPYING. If not, write to | |
20 | the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */ | |
21 | ||
22 | #include <stdio.h> | |
64685ffa | 23 | #include <errno.h> |
985b6196 | 24 | #include "config.h" |
985b6196 RS |
25 | #include "tree.h" |
26 | ||
64685ffa RS |
27 | #ifndef errno |
28 | extern int errno; | |
29 | #endif | |
30 | ||
985b6196 RS |
31 | /* To enable support of XFmode extended real floating point, define |
32 | LONG_DOUBLE_TYPE_SIZE 96 in the tm.h file (m68k.h or i386.h). | |
33 | ||
842fbaaa | 34 | To support cross compilation between IEEE, VAX and IBM floating |
985b6196 RS |
35 | point formats, define REAL_ARITHMETIC in the tm.h file. |
36 | ||
37 | In either case the machine files (tm.h) must not contain any code | |
38 | that tries to use host floating point arithmetic to convert | |
39 | REAL_VALUE_TYPEs from `double' to `float', pass them to fprintf, | |
40 | etc. In cross-compile situations a REAL_VALUE_TYPE may not | |
41 | be intelligible to the host computer's native arithmetic. | |
42 | ||
43 | The emulator defaults to the host's floating point format so that | |
44 | its decimal conversion functions can be used if desired (see | |
45 | real.h). | |
46 | ||
47 | The first part of this file interfaces gcc to ieee.c, which is a | |
48 | floating point arithmetic suite that was not written with gcc in | |
49 | mind. The interface is followed by ieee.c itself and related | |
50 | items. Avoid changing ieee.c unless you have suitable test | |
51 | programs available. A special version of the PARANOIA floating | |
52 | point arithmetic tester, modified for this purpose, can be found | |
53 | on usc.edu : /pub/C-numanal/ieeetest.zoo. Some tutorial | |
54 | information on ieee.c is given in my book: S. L. Moshier, | |
55 | _Methods and Programs for Mathematical Functions_, Prentice-Hall | |
56 | or Simon & Schuster Int'l, 1989. A library of XFmode elementary | |
57 | transcendental functions can be obtained by ftp from | |
58 | research.att.com: netlib/cephes/ldouble.shar.Z */ | |
775ba35d | 59 | \f |
985b6196 | 60 | /* Type of computer arithmetic. |
f76b9db2 ILT |
61 | Only one of DEC, IBM, IEEE, or UNK should get defined. |
62 | ||
63 | `IEEE', when FLOAT_WORDS_BIG_ENDIAN is non-zero, refers generically | |
64 | to big-endian IEEE floating-point data structure. This definition | |
65 | should work in SFmode `float' type and DFmode `double' type on | |
66 | virtually all big-endian IEEE machines. If LONG_DOUBLE_TYPE_SIZE | |
67 | has been defined to be 96, then IEEE also invokes the particular | |
68 | XFmode (`long double' type) data structure used by the Motorola | |
69 | 680x0 series processors. | |
70 | ||
71 | `IEEE', when FLOAT_WORDS_BIG_ENDIAN is zero, refers generally to | |
72 | little-endian IEEE machines. In this case, if LONG_DOUBLE_TYPE_SIZE | |
73 | has been defined to be 96, then IEEE also invokes the particular | |
74 | XFmode `long double' data structure used by the Intel 80x86 series | |
75 | processors. | |
66b6d60b RS |
76 | |
77 | `DEC' refers specifically to the Digital Equipment Corp PDP-11 | |
78 | and VAX floating point data structure. This model currently | |
79 | supports no type wider than DFmode. | |
80 | ||
842fbaaa JW |
81 | `IBM' refers specifically to the IBM System/370 and compatible |
82 | floating point data structure. This model currently supports | |
83 | no type wider than DFmode. The IBM conversions were contributed by | |
84 | frank@atom.ansto.gov.au (Frank Crawford). | |
85 | ||
66b6d60b RS |
86 | If LONG_DOUBLE_TYPE_SIZE = 64 (the default, unless tm.h defines it) |
87 | then `long double' and `double' are both implemented, but they | |
88 | both mean DFmode. In this case, the software floating-point | |
89 | support available here is activated by writing | |
90 | #define REAL_ARITHMETIC | |
91 | in tm.h. | |
92 | ||
93 | The case LONG_DOUBLE_TYPE_SIZE = 128 activates TFmode support | |
842fbaaa | 94 | and may deactivate XFmode since `long double' is used to refer |
b51ab098 RK |
95 | to both modes. |
96 | ||
97 | The macros FLOAT_WORDS_BIG_ENDIAN, HOST_FLOAT_WORDS_BIG_ENDIAN, | |
98 | contributed by Richard Earnshaw <Richard.Earnshaw@cl.cam.ac.uk>, | |
99 | separate the floating point unit's endian-ness from that of | |
100 | the integer addressing. This permits one to define a big-endian | |
101 | FPU on a little-endian machine (e.g., ARM). An extension to | |
102 | BYTES_BIG_ENDIAN may be required for some machines in the future. | |
103 | These optional macros may be defined in tm.h. In real.h, they | |
104 | default to WORDS_BIG_ENDIAN, etc., so there is no need to define | |
105 | them for any normal host or target machine on which the floats | |
106 | and the integers have the same endian-ness. */ | |
107 | ||
66b6d60b RS |
108 | |
109 | /* The following converts gcc macros into the ones used by this file. */ | |
110 | ||
985b6196 RS |
111 | /* REAL_ARITHMETIC defined means that macros in real.h are |
112 | defined to call emulator functions. */ | |
113 | #ifdef REAL_ARITHMETIC | |
114 | ||
115 | #if TARGET_FLOAT_FORMAT == VAX_FLOAT_FORMAT | |
116 | /* PDP-11, Pro350, VAX: */ | |
117 | #define DEC 1 | |
118 | #else /* it's not VAX */ | |
842fbaaa JW |
119 | #if TARGET_FLOAT_FORMAT == IBM_FLOAT_FORMAT |
120 | /* IBM System/370 style */ | |
121 | #define IBM 1 | |
122 | #else /* it's also not an IBM */ | |
985b6196 | 123 | #if TARGET_FLOAT_FORMAT == IEEE_FLOAT_FORMAT |
f76b9db2 | 124 | #define IEEE |
985b6196 RS |
125 | #else /* it's not IEEE either */ |
126 | /* UNKnown arithmetic. We don't support this and can't go on. */ | |
127 | unknown arithmetic type | |
128 | #define UNK 1 | |
129 | #endif /* not IEEE */ | |
842fbaaa | 130 | #endif /* not IBM */ |
985b6196 RS |
131 | #endif /* not VAX */ |
132 | ||
133 | #else | |
134 | /* REAL_ARITHMETIC not defined means that the *host's* data | |
135 | structure will be used. It may differ by endian-ness from the | |
136 | target machine's structure and will get its ends swapped | |
137 | accordingly (but not here). Probably only the decimal <-> binary | |
138 | functions in this file will actually be used in this case. */ | |
defb5dab | 139 | |
985b6196 RS |
140 | #if HOST_FLOAT_FORMAT == VAX_FLOAT_FORMAT |
141 | #define DEC 1 | |
142 | #else /* it's not VAX */ | |
842fbaaa JW |
143 | #if HOST_FLOAT_FORMAT == IBM_FLOAT_FORMAT |
144 | /* IBM System/370 style */ | |
145 | #define IBM 1 | |
146 | #else /* it's also not an IBM */ | |
985b6196 | 147 | #if HOST_FLOAT_FORMAT == IEEE_FLOAT_FORMAT |
f76b9db2 | 148 | #define IEEE |
985b6196 RS |
149 | #else /* it's not IEEE either */ |
150 | unknown arithmetic type | |
151 | #define UNK 1 | |
152 | #endif /* not IEEE */ | |
842fbaaa | 153 | #endif /* not IBM */ |
985b6196 RS |
154 | #endif /* not VAX */ |
155 | ||
156 | #endif /* REAL_ARITHMETIC not defined */ | |
157 | ||
66b6d60b RS |
158 | /* Define INFINITY for support of infinity. |
159 | Define NANS for support of Not-a-Number's (NaN's). */ | |
842fbaaa | 160 | #if !defined(DEC) && !defined(IBM) |
985b6196 | 161 | #define INFINITY |
66b6d60b | 162 | #define NANS |
985b6196 RS |
163 | #endif |
164 | ||
66b6d60b RS |
165 | /* Support of NaNs requires support of infinity. */ |
166 | #ifdef NANS | |
167 | #ifndef INFINITY | |
168 | #define INFINITY | |
169 | #endif | |
170 | #endif | |
775ba35d | 171 | \f |
985b6196 RS |
172 | /* Find a host integer type that is at least 16 bits wide, |
173 | and another type at least twice whatever that size is. */ | |
174 | ||
175 | #if HOST_BITS_PER_CHAR >= 16 | |
176 | #define EMUSHORT char | |
177 | #define EMUSHORT_SIZE HOST_BITS_PER_CHAR | |
178 | #define EMULONG_SIZE (2 * HOST_BITS_PER_CHAR) | |
179 | #else | |
180 | #if HOST_BITS_PER_SHORT >= 16 | |
181 | #define EMUSHORT short | |
182 | #define EMUSHORT_SIZE HOST_BITS_PER_SHORT | |
183 | #define EMULONG_SIZE (2 * HOST_BITS_PER_SHORT) | |
184 | #else | |
185 | #if HOST_BITS_PER_INT >= 16 | |
186 | #define EMUSHORT int | |
187 | #define EMUSHORT_SIZE HOST_BITS_PER_INT | |
188 | #define EMULONG_SIZE (2 * HOST_BITS_PER_INT) | |
189 | #else | |
190 | #if HOST_BITS_PER_LONG >= 16 | |
191 | #define EMUSHORT long | |
192 | #define EMUSHORT_SIZE HOST_BITS_PER_LONG | |
193 | #define EMULONG_SIZE (2 * HOST_BITS_PER_LONG) | |
194 | #else | |
195 | /* You will have to modify this program to have a smaller unit size. */ | |
196 | #define EMU_NON_COMPILE | |
197 | #endif | |
198 | #endif | |
199 | #endif | |
200 | #endif | |
201 | ||
202 | #if HOST_BITS_PER_SHORT >= EMULONG_SIZE | |
203 | #define EMULONG short | |
204 | #else | |
205 | #if HOST_BITS_PER_INT >= EMULONG_SIZE | |
206 | #define EMULONG int | |
207 | #else | |
208 | #if HOST_BITS_PER_LONG >= EMULONG_SIZE | |
209 | #define EMULONG long | |
210 | #else | |
211 | #if HOST_BITS_PER_LONG_LONG >= EMULONG_SIZE | |
212 | #define EMULONG long long int | |
213 | #else | |
214 | /* You will have to modify this program to have a smaller unit size. */ | |
215 | #define EMU_NON_COMPILE | |
216 | #endif | |
217 | #endif | |
218 | #endif | |
219 | #endif | |
220 | ||
221 | ||
222 | /* The host interface doesn't work if no 16-bit size exists. */ | |
223 | #if EMUSHORT_SIZE != 16 | |
224 | #define EMU_NON_COMPILE | |
225 | #endif | |
226 | ||
227 | /* OK to continue compilation. */ | |
228 | #ifndef EMU_NON_COMPILE | |
229 | ||
230 | /* Construct macros to translate between REAL_VALUE_TYPE and e type. | |
231 | In GET_REAL and PUT_REAL, r and e are pointers. | |
232 | A REAL_VALUE_TYPE is guaranteed to occupy contiguous locations | |
233 | in memory, with no holes. */ | |
234 | ||
235 | #if LONG_DOUBLE_TYPE_SIZE == 96 | |
842fbaaa JW |
236 | /* Number of 16 bit words in external e type format */ |
237 | #define NE 6 | |
238 | #define MAXDECEXP 4932 | |
239 | #define MINDECEXP -4956 | |
4ba46f43 RK |
240 | #define GET_REAL(r,e) bcopy ((char *) r, (char *) e, 2*NE) |
241 | #define PUT_REAL(e,r) bcopy ((char *) e, (char *) r, 2*NE) | |
985b6196 | 242 | #else /* no XFmode */ |
842fbaaa JW |
243 | #if LONG_DOUBLE_TYPE_SIZE == 128 |
244 | #define NE 10 | |
245 | #define MAXDECEXP 4932 | |
246 | #define MINDECEXP -4977 | |
4ba46f43 RK |
247 | #define GET_REAL(r,e) bcopy ((char *) r, (char *) e, 2*NE) |
248 | #define PUT_REAL(e,r) bcopy ((char *) e, (char *) r, 2*NE) | |
842fbaaa JW |
249 | #else |
250 | #define NE 6 | |
251 | #define MAXDECEXP 4932 | |
252 | #define MINDECEXP -4956 | |
985b6196 RS |
253 | #ifdef REAL_ARITHMETIC |
254 | /* Emulator uses target format internally | |
255 | but host stores it in host endian-ness. */ | |
256 | ||
f76b9db2 ILT |
257 | #define GET_REAL(r,e) \ |
258 | do { \ | |
259 | if (HOST_FLOAT_WORDS_BIG_ENDIAN == FLOAT_WORDS_BIG_ENDIAN) \ | |
260 | e53toe ((unsigned EMUSHORT*) (r), (e)); \ | |
261 | else \ | |
262 | { \ | |
263 | unsigned EMUSHORT w[4]; \ | |
264 | w[3] = ((EMUSHORT *) r)[0]; \ | |
265 | w[2] = ((EMUSHORT *) r)[1]; \ | |
266 | w[1] = ((EMUSHORT *) r)[2]; \ | |
267 | w[0] = ((EMUSHORT *) r)[3]; \ | |
268 | e53toe (w, (e)); \ | |
269 | } \ | |
270 | } while (0) | |
271 | ||
272 | #define PUT_REAL(e,r) \ | |
273 | do { \ | |
274 | if (HOST_FLOAT_WORDS_BIG_ENDIAN == FLOAT_WORDS_BIG_ENDIAN) \ | |
275 | etoe53 ((e), (unsigned EMUSHORT *) (r)); \ | |
276 | else \ | |
277 | { \ | |
278 | unsigned EMUSHORT w[4]; \ | |
279 | etoe53 ((e), w); \ | |
280 | *((EMUSHORT *) r) = w[3]; \ | |
281 | *((EMUSHORT *) r + 1) = w[2]; \ | |
282 | *((EMUSHORT *) r + 2) = w[1]; \ | |
283 | *((EMUSHORT *) r + 3) = w[0]; \ | |
284 | } \ | |
285 | } while (0) | |
985b6196 RS |
286 | |
287 | #else /* not REAL_ARITHMETIC */ | |
288 | ||
289 | /* emulator uses host format */ | |
a0353055 RK |
290 | #define GET_REAL(r,e) e53toe ((unsigned EMUSHORT *) (r), (e)) |
291 | #define PUT_REAL(e,r) etoe53 ((e), (unsigned EMUSHORT *) (r)) | |
985b6196 RS |
292 | |
293 | #endif /* not REAL_ARITHMETIC */ | |
842fbaaa | 294 | #endif /* not TFmode */ |
985b6196 RS |
295 | #endif /* no XFmode */ |
296 | ||
842fbaaa JW |
297 | |
298 | /* Number of 16 bit words in internal format */ | |
299 | #define NI (NE+3) | |
300 | ||
301 | /* Array offset to exponent */ | |
302 | #define E 1 | |
303 | ||
304 | /* Array offset to high guard word */ | |
305 | #define M 2 | |
306 | ||
307 | /* Number of bits of precision */ | |
308 | #define NBITS ((NI-4)*16) | |
309 | ||
310 | /* Maximum number of decimal digits in ASCII conversion | |
311 | * = NBITS*log10(2) | |
312 | */ | |
313 | #define NDEC (NBITS*8/27) | |
314 | ||
315 | /* The exponent of 1.0 */ | |
316 | #define EXONE (0x3fff) | |
317 | ||
64685ffa | 318 | extern int extra_warnings; |
9d1bd99c MM |
319 | extern unsigned EMUSHORT ezero[], ehalf[], eone[], etwo[]; |
320 | extern unsigned EMUSHORT elog2[], esqrt2[]; | |
a0353055 RK |
321 | |
322 | static void endian PROTO((unsigned EMUSHORT *, long *, | |
323 | enum machine_mode)); | |
324 | static void eclear PROTO((unsigned EMUSHORT *)); | |
325 | static void emov PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); | |
326 | static void eabs PROTO((unsigned EMUSHORT *)); | |
327 | static void eneg PROTO((unsigned EMUSHORT *)); | |
328 | static int eisneg PROTO((unsigned EMUSHORT *)); | |
329 | static int eisinf PROTO((unsigned EMUSHORT *)); | |
330 | static int eisnan PROTO((unsigned EMUSHORT *)); | |
331 | static void einfin PROTO((unsigned EMUSHORT *)); | |
332 | static void enan PROTO((unsigned EMUSHORT *, int)); | |
333 | static void emovi PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); | |
334 | static void emovo PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); | |
335 | static void ecleaz PROTO((unsigned EMUSHORT *)); | |
336 | static void ecleazs PROTO((unsigned EMUSHORT *)); | |
337 | static void emovz PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); | |
338 | static void einan PROTO((unsigned EMUSHORT *)); | |
339 | static int eiisnan PROTO((unsigned EMUSHORT *)); | |
340 | static int eiisneg PROTO((unsigned EMUSHORT *)); | |
341 | static void eiinfin PROTO((unsigned EMUSHORT *)); | |
342 | static int eiisinf PROTO((unsigned EMUSHORT *)); | |
343 | static int ecmpm PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); | |
344 | static void eshdn1 PROTO((unsigned EMUSHORT *)); | |
345 | static void eshup1 PROTO((unsigned EMUSHORT *)); | |
346 | static void eshdn8 PROTO((unsigned EMUSHORT *)); | |
347 | static void eshup8 PROTO((unsigned EMUSHORT *)); | |
348 | static void eshup6 PROTO((unsigned EMUSHORT *)); | |
349 | static void eshdn6 PROTO((unsigned EMUSHORT *)); | |
350 | static void eaddm PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *));\f | |
351 | static void esubm PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); | |
c92d992a | 352 | static void m16m PROTO((unsigned int, unsigned short *, |
a0353055 RK |
353 | unsigned short *)); |
354 | static int edivm PROTO((unsigned short *, unsigned short *)); | |
355 | static int emulm PROTO((unsigned short *, unsigned short *)); | |
356 | static void emdnorm PROTO((unsigned EMUSHORT *, int, int, EMULONG, int)); | |
357 | static void esub PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *, | |
358 | unsigned EMUSHORT *)); | |
359 | static void eadd PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *, | |
360 | unsigned EMUSHORT *)); | |
361 | static void eadd1 PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *, | |
362 | unsigned EMUSHORT *)); | |
363 | static void ediv PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *, | |
364 | unsigned EMUSHORT *)); | |
365 | static void emul PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *, | |
366 | unsigned EMUSHORT *)); | |
367 | static void e53toe PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); | |
368 | static void e64toe PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); | |
369 | static void e113toe PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); | |
370 | static void e24toe PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); | |
371 | static void etoe113 PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); | |
372 | static void toe113 PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); | |
373 | static void etoe64 PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); | |
374 | static void toe64 PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); | |
375 | static void etoe53 PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); | |
376 | static void toe53 PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); | |
377 | static void etoe24 PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); | |
378 | static void toe24 PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); | |
379 | static int ecmp PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); | |
380 | static void eround PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); | |
381 | static void ltoe PROTO((HOST_WIDE_INT *, unsigned EMUSHORT *)); | |
382 | static void ultoe PROTO((unsigned HOST_WIDE_INT *, unsigned EMUSHORT *)); | |
383 | static void eifrac PROTO((unsigned EMUSHORT *, HOST_WIDE_INT *, | |
384 | unsigned EMUSHORT *)); | |
385 | static void euifrac PROTO((unsigned EMUSHORT *, unsigned HOST_WIDE_INT *, | |
386 | unsigned EMUSHORT *)); | |
387 | static int eshift PROTO((unsigned EMUSHORT *, int)); | |
388 | static int enormlz PROTO((unsigned EMUSHORT *)); | |
389 | static void e24toasc PROTO((unsigned EMUSHORT *, char *, int)); | |
390 | static void e53toasc PROTO((unsigned EMUSHORT *, char *, int)); | |
391 | static void e64toasc PROTO((unsigned EMUSHORT *, char *, int)); | |
392 | static void e113toasc PROTO((unsigned EMUSHORT *, char *, int)); | |
393 | static void etoasc PROTO((unsigned EMUSHORT *, char *, int)); | |
394 | static void asctoe24 PROTO((char *, unsigned EMUSHORT *)); | |
395 | static void asctoe53 PROTO((char *, unsigned EMUSHORT *)); | |
396 | static void asctoe64 PROTO((char *, unsigned EMUSHORT *)); | |
397 | static void asctoe113 PROTO((char *, unsigned EMUSHORT *)); | |
398 | static void asctoe PROTO((char *, unsigned EMUSHORT *)); | |
399 | static void asctoeg PROTO((char *, unsigned EMUSHORT *, int)); | |
400 | static void efloor PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); | |
401 | static void efrexp PROTO((unsigned EMUSHORT *, int *, | |
402 | unsigned EMUSHORT *)); | |
403 | static void eldexp PROTO((unsigned EMUSHORT *, int, unsigned EMUSHORT *)); | |
404 | static void eremain PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *, | |
405 | unsigned EMUSHORT *)); | |
406 | static void eiremain PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); | |
407 | static void mtherr PROTO((char *, int)); | |
408 | static void dectoe PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); | |
409 | static void etodec PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); | |
410 | static void todec PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); | |
411 | static void ibmtoe PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *, | |
412 | enum machine_mode)); | |
413 | static void etoibm PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *, | |
414 | enum machine_mode)); | |
415 | static void toibm PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *, | |
416 | enum machine_mode)); | |
417 | static void make_nan PROTO((unsigned EMUSHORT *, int, enum machine_mode)); | |
418 | static void uditoe PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); | |
419 | static void ditoe PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); | |
420 | static void etoudi PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); | |
421 | static void etodi PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); | |
422 | static void esqrt PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); | |
775ba35d | 423 | \f |
b51ab098 RK |
424 | /* Copy 32-bit numbers obtained from array containing 16-bit numbers, |
425 | swapping ends if required, into output array of longs. The | |
426 | result is normally passed to fprintf by the ASM_OUTPUT_ macros. */ | |
a0353055 RK |
427 | |
428 | static void | |
985b6196 RS |
429 | endian (e, x, mode) |
430 | unsigned EMUSHORT e[]; | |
431 | long x[]; | |
432 | enum machine_mode mode; | |
433 | { | |
434 | unsigned long th, t; | |
435 | ||
f76b9db2 | 436 | if (FLOAT_WORDS_BIG_ENDIAN) |
985b6196 | 437 | { |
f76b9db2 ILT |
438 | switch (mode) |
439 | { | |
985b6196 | 440 | |
f76b9db2 ILT |
441 | case TFmode: |
442 | /* Swap halfwords in the fourth long. */ | |
443 | th = (unsigned long) e[6] & 0xffff; | |
444 | t = (unsigned long) e[7] & 0xffff; | |
445 | t |= th << 16; | |
446 | x[3] = (long) t; | |
447 | ||
448 | case XFmode: | |
449 | ||
450 | /* Swap halfwords in the third long. */ | |
451 | th = (unsigned long) e[4] & 0xffff; | |
452 | t = (unsigned long) e[5] & 0xffff; | |
453 | t |= th << 16; | |
454 | x[2] = (long) t; | |
455 | /* fall into the double case */ | |
456 | ||
457 | case DFmode: | |
458 | ||
459 | /* swap halfwords in the second word */ | |
460 | th = (unsigned long) e[2] & 0xffff; | |
461 | t = (unsigned long) e[3] & 0xffff; | |
462 | t |= th << 16; | |
463 | x[1] = (long) t; | |
464 | /* fall into the float case */ | |
465 | ||
466 | case HFmode: | |
467 | case SFmode: | |
468 | ||
469 | /* swap halfwords in the first word */ | |
470 | th = (unsigned long) e[0] & 0xffff; | |
471 | t = (unsigned long) e[1] & 0xffff; | |
472 | t |= th << 16; | |
473 | x[0] = t; | |
474 | break; | |
985b6196 | 475 | |
f76b9db2 ILT |
476 | default: |
477 | abort (); | |
478 | } | |
985b6196 | 479 | } |
f76b9db2 | 480 | else |
985b6196 | 481 | { |
f76b9db2 | 482 | /* Pack the output array without swapping. */ |
985b6196 | 483 | |
f76b9db2 ILT |
484 | switch (mode) |
485 | { | |
985b6196 | 486 | |
f76b9db2 ILT |
487 | case TFmode: |
488 | ||
489 | /* Pack the fourth long. */ | |
490 | th = (unsigned long) e[7] & 0xffff; | |
491 | t = (unsigned long) e[6] & 0xffff; | |
492 | t |= th << 16; | |
493 | x[3] = (long) t; | |
494 | ||
495 | case XFmode: | |
496 | ||
497 | /* Pack the third long. | |
498 | Each element of the input REAL_VALUE_TYPE array has 16 useful bits | |
499 | in it. */ | |
500 | th = (unsigned long) e[5] & 0xffff; | |
501 | t = (unsigned long) e[4] & 0xffff; | |
502 | t |= th << 16; | |
503 | x[2] = (long) t; | |
504 | /* fall into the double case */ | |
505 | ||
506 | case DFmode: | |
507 | ||
508 | /* pack the second long */ | |
509 | th = (unsigned long) e[3] & 0xffff; | |
510 | t = (unsigned long) e[2] & 0xffff; | |
511 | t |= th << 16; | |
512 | x[1] = (long) t; | |
513 | /* fall into the float case */ | |
514 | ||
515 | case HFmode: | |
516 | case SFmode: | |
517 | ||
518 | /* pack the first long */ | |
519 | th = (unsigned long) e[1] & 0xffff; | |
520 | t = (unsigned long) e[0] & 0xffff; | |
521 | t |= th << 16; | |
522 | x[0] = t; | |
523 | break; | |
985b6196 | 524 | |
f76b9db2 ILT |
525 | default: |
526 | abort (); | |
527 | } | |
985b6196 | 528 | } |
985b6196 RS |
529 | } |
530 | ||
531 | ||
defb5dab | 532 | /* This is the implementation of the REAL_ARITHMETIC macro. */ |
a0353055 | 533 | |
985b6196 RS |
534 | void |
535 | earith (value, icode, r1, r2) | |
536 | REAL_VALUE_TYPE *value; | |
537 | int icode; | |
538 | REAL_VALUE_TYPE *r1; | |
539 | REAL_VALUE_TYPE *r2; | |
540 | { | |
541 | unsigned EMUSHORT d1[NE], d2[NE], v[NE]; | |
542 | enum tree_code code; | |
543 | ||
544 | GET_REAL (r1, d1); | |
545 | GET_REAL (r2, d2); | |
66b6d60b RS |
546 | #ifdef NANS |
547 | /* Return NaN input back to the caller. */ | |
548 | if (eisnan (d1)) | |
549 | { | |
550 | PUT_REAL (d1, value); | |
551 | return; | |
552 | } | |
553 | if (eisnan (d2)) | |
554 | { | |
555 | PUT_REAL (d2, value); | |
556 | return; | |
557 | } | |
558 | #endif | |
985b6196 RS |
559 | code = (enum tree_code) icode; |
560 | switch (code) | |
561 | { | |
562 | case PLUS_EXPR: | |
563 | eadd (d2, d1, v); | |
564 | break; | |
565 | ||
566 | case MINUS_EXPR: | |
567 | esub (d2, d1, v); /* d1 - d2 */ | |
568 | break; | |
569 | ||
570 | case MULT_EXPR: | |
571 | emul (d2, d1, v); | |
572 | break; | |
573 | ||
574 | case RDIV_EXPR: | |
575 | #ifndef REAL_INFINITY | |
576 | if (ecmp (d2, ezero) == 0) | |
66b6d60b RS |
577 | { |
578 | #ifdef NANS | |
29e11dab | 579 | enan (v, eisneg (d1) ^ eisneg (d2)); |
66b6d60b RS |
580 | break; |
581 | #else | |
985b6196 | 582 | abort (); |
66b6d60b RS |
583 | #endif |
584 | } | |
985b6196 RS |
585 | #endif |
586 | ediv (d2, d1, v); /* d1/d2 */ | |
587 | break; | |
588 | ||
589 | case MIN_EXPR: /* min (d1,d2) */ | |
590 | if (ecmp (d1, d2) < 0) | |
591 | emov (d1, v); | |
592 | else | |
593 | emov (d2, v); | |
594 | break; | |
595 | ||
596 | case MAX_EXPR: /* max (d1,d2) */ | |
597 | if (ecmp (d1, d2) > 0) | |
598 | emov (d1, v); | |
599 | else | |
600 | emov (d2, v); | |
601 | break; | |
602 | default: | |
603 | emov (ezero, v); | |
604 | break; | |
605 | } | |
606 | PUT_REAL (v, value); | |
607 | } | |
608 | ||
609 | ||
defb5dab RK |
610 | /* Truncate REAL_VALUE_TYPE toward zero to signed HOST_WIDE_INT. |
611 | implements REAL_VALUE_RNDZINT (x) (etrunci (x)). */ | |
612 | ||
985b6196 RS |
613 | REAL_VALUE_TYPE |
614 | etrunci (x) | |
615 | REAL_VALUE_TYPE x; | |
616 | { | |
617 | unsigned EMUSHORT f[NE], g[NE]; | |
618 | REAL_VALUE_TYPE r; | |
b51ab098 | 619 | HOST_WIDE_INT l; |
985b6196 RS |
620 | |
621 | GET_REAL (&x, g); | |
66b6d60b RS |
622 | #ifdef NANS |
623 | if (eisnan (g)) | |
624 | return (x); | |
625 | #endif | |
985b6196 RS |
626 | eifrac (g, &l, f); |
627 | ltoe (&l, g); | |
628 | PUT_REAL (g, &r); | |
629 | return (r); | |
630 | } | |
631 | ||
632 | ||
defb5dab RK |
633 | /* Truncate REAL_VALUE_TYPE toward zero to unsigned HOST_WIDE_INT; |
634 | implements REAL_VALUE_UNSIGNED_RNDZINT (x) (etruncui (x)). */ | |
635 | ||
985b6196 RS |
636 | REAL_VALUE_TYPE |
637 | etruncui (x) | |
638 | REAL_VALUE_TYPE x; | |
639 | { | |
640 | unsigned EMUSHORT f[NE], g[NE]; | |
641 | REAL_VALUE_TYPE r; | |
b51ab098 | 642 | unsigned HOST_WIDE_INT l; |
985b6196 RS |
643 | |
644 | GET_REAL (&x, g); | |
66b6d60b RS |
645 | #ifdef NANS |
646 | if (eisnan (g)) | |
647 | return (x); | |
648 | #endif | |
985b6196 RS |
649 | euifrac (g, &l, f); |
650 | ultoe (&l, g); | |
651 | PUT_REAL (g, &r); | |
652 | return (r); | |
653 | } | |
654 | ||
655 | ||
defb5dab RK |
656 | /* This is the REAL_VALUE_ATOF function. It converts a decimal string to |
657 | binary, rounding off as indicated by the machine_mode argument. Then it | |
658 | promotes the rounded value to REAL_VALUE_TYPE. */ | |
659 | ||
985b6196 RS |
660 | REAL_VALUE_TYPE |
661 | ereal_atof (s, t) | |
662 | char *s; | |
663 | enum machine_mode t; | |
664 | { | |
665 | unsigned EMUSHORT tem[NE], e[NE]; | |
666 | REAL_VALUE_TYPE r; | |
667 | ||
668 | switch (t) | |
669 | { | |
bfbc6416 | 670 | case HFmode: |
985b6196 RS |
671 | case SFmode: |
672 | asctoe24 (s, tem); | |
673 | e24toe (tem, e); | |
674 | break; | |
675 | case DFmode: | |
676 | asctoe53 (s, tem); | |
677 | e53toe (tem, e); | |
678 | break; | |
679 | case XFmode: | |
680 | asctoe64 (s, tem); | |
681 | e64toe (tem, e); | |
682 | break; | |
842fbaaa JW |
683 | case TFmode: |
684 | asctoe113 (s, tem); | |
685 | e113toe (tem, e); | |
686 | break; | |
985b6196 RS |
687 | default: |
688 | asctoe (s, e); | |
689 | } | |
690 | PUT_REAL (e, &r); | |
691 | return (r); | |
692 | } | |
693 | ||
694 | ||
defb5dab RK |
695 | /* Expansion of REAL_NEGATE. */ |
696 | ||
985b6196 RS |
697 | REAL_VALUE_TYPE |
698 | ereal_negate (x) | |
699 | REAL_VALUE_TYPE x; | |
700 | { | |
701 | unsigned EMUSHORT e[NE]; | |
702 | REAL_VALUE_TYPE r; | |
703 | ||
704 | GET_REAL (&x, e); | |
705 | eneg (e); | |
706 | PUT_REAL (e, &r); | |
707 | return (r); | |
708 | } | |
709 | ||
710 | ||
defb5dab RK |
711 | /* Round real toward zero to HOST_WIDE_INT; |
712 | implements REAL_VALUE_FIX (x). */ | |
713 | ||
b51ab098 | 714 | HOST_WIDE_INT |
842fbaaa | 715 | efixi (x) |
985b6196 RS |
716 | REAL_VALUE_TYPE x; |
717 | { | |
718 | unsigned EMUSHORT f[NE], g[NE]; | |
b51ab098 | 719 | HOST_WIDE_INT l; |
985b6196 RS |
720 | |
721 | GET_REAL (&x, f); | |
66b6d60b RS |
722 | #ifdef NANS |
723 | if (eisnan (f)) | |
724 | { | |
725 | warning ("conversion from NaN to int"); | |
726 | return (-1); | |
727 | } | |
728 | #endif | |
842fbaaa JW |
729 | eifrac (f, &l, g); |
730 | return l; | |
985b6196 RS |
731 | } |
732 | ||
842fbaaa | 733 | /* Round real toward zero to unsigned HOST_WIDE_INT |
defb5dab RK |
734 | implements REAL_VALUE_UNSIGNED_FIX (x). |
735 | Negative input returns zero. */ | |
736 | ||
b51ab098 | 737 | unsigned HOST_WIDE_INT |
842fbaaa | 738 | efixui (x) |
985b6196 RS |
739 | REAL_VALUE_TYPE x; |
740 | { | |
741 | unsigned EMUSHORT f[NE], g[NE]; | |
b51ab098 | 742 | unsigned HOST_WIDE_INT l; |
985b6196 RS |
743 | |
744 | GET_REAL (&x, f); | |
66b6d60b RS |
745 | #ifdef NANS |
746 | if (eisnan (f)) | |
747 | { | |
748 | warning ("conversion from NaN to unsigned int"); | |
749 | return (-1); | |
750 | } | |
751 | #endif | |
842fbaaa JW |
752 | euifrac (f, &l, g); |
753 | return l; | |
985b6196 RS |
754 | } |
755 | ||
756 | ||
defb5dab RK |
757 | /* REAL_VALUE_FROM_INT macro. */ |
758 | ||
985b6196 RS |
759 | void |
760 | ereal_from_int (d, i, j) | |
761 | REAL_VALUE_TYPE *d; | |
b51ab098 | 762 | HOST_WIDE_INT i, j; |
985b6196 RS |
763 | { |
764 | unsigned EMUSHORT df[NE], dg[NE]; | |
b51ab098 | 765 | HOST_WIDE_INT low, high; |
985b6196 RS |
766 | int sign; |
767 | ||
768 | sign = 0; | |
769 | low = i; | |
770 | if ((high = j) < 0) | |
771 | { | |
772 | sign = 1; | |
773 | /* complement and add 1 */ | |
774 | high = ~high; | |
775 | if (low) | |
776 | low = -low; | |
777 | else | |
778 | high += 1; | |
779 | } | |
b51ab098 | 780 | eldexp (eone, HOST_BITS_PER_WIDE_INT, df); |
60e61165 | 781 | ultoe ((unsigned HOST_WIDE_INT *) &high, dg); |
985b6196 | 782 | emul (dg, df, dg); |
60e61165 | 783 | ultoe ((unsigned HOST_WIDE_INT *) &low, df); |
985b6196 RS |
784 | eadd (df, dg, dg); |
785 | if (sign) | |
786 | eneg (dg); | |
787 | PUT_REAL (dg, d); | |
788 | } | |
789 | ||
790 | ||
defb5dab | 791 | /* REAL_VALUE_FROM_UNSIGNED_INT macro. */ |
a0353055 | 792 | |
985b6196 RS |
793 | void |
794 | ereal_from_uint (d, i, j) | |
795 | REAL_VALUE_TYPE *d; | |
b51ab098 | 796 | unsigned HOST_WIDE_INT i, j; |
985b6196 RS |
797 | { |
798 | unsigned EMUSHORT df[NE], dg[NE]; | |
b51ab098 | 799 | unsigned HOST_WIDE_INT low, high; |
985b6196 RS |
800 | |
801 | low = i; | |
802 | high = j; | |
b51ab098 | 803 | eldexp (eone, HOST_BITS_PER_WIDE_INT, df); |
985b6196 RS |
804 | ultoe (&high, dg); |
805 | emul (dg, df, dg); | |
806 | ultoe (&low, df); | |
807 | eadd (df, dg, dg); | |
808 | PUT_REAL (dg, d); | |
809 | } | |
810 | ||
811 | ||
defb5dab RK |
812 | /* REAL_VALUE_TO_INT macro. */ |
813 | ||
985b6196 RS |
814 | void |
815 | ereal_to_int (low, high, rr) | |
b51ab098 | 816 | HOST_WIDE_INT *low, *high; |
985b6196 RS |
817 | REAL_VALUE_TYPE rr; |
818 | { | |
819 | unsigned EMUSHORT d[NE], df[NE], dg[NE], dh[NE]; | |
820 | int s; | |
821 | ||
822 | GET_REAL (&rr, d); | |
66b6d60b | 823 | #ifdef NANS |
970491df | 824 | if (eisnan (d)) |
66b6d60b RS |
825 | { |
826 | warning ("conversion from NaN to int"); | |
827 | *low = -1; | |
828 | *high = -1; | |
829 | return; | |
830 | } | |
831 | #endif | |
985b6196 RS |
832 | /* convert positive value */ |
833 | s = 0; | |
834 | if (eisneg (d)) | |
835 | { | |
836 | eneg (d); | |
837 | s = 1; | |
838 | } | |
b51ab098 | 839 | eldexp (eone, HOST_BITS_PER_WIDE_INT, df); |
985b6196 | 840 | ediv (df, d, dg); /* dg = d / 2^32 is the high word */ |
60e61165 | 841 | euifrac (dg, (unsigned HOST_WIDE_INT *) high, dh); |
985b6196 | 842 | emul (df, dh, dg); /* fractional part is the low word */ |
60e61165 | 843 | euifrac (dg, (unsigned HOST_WIDE_INT *)low, dh); |
985b6196 RS |
844 | if (s) |
845 | { | |
846 | /* complement and add 1 */ | |
847 | *high = ~(*high); | |
848 | if (*low) | |
849 | *low = -(*low); | |
850 | else | |
851 | *high += 1; | |
852 | } | |
853 | } | |
854 | ||
855 | ||
defb5dab RK |
856 | /* REAL_VALUE_LDEXP macro. */ |
857 | ||
985b6196 RS |
858 | REAL_VALUE_TYPE |
859 | ereal_ldexp (x, n) | |
860 | REAL_VALUE_TYPE x; | |
861 | int n; | |
862 | { | |
863 | unsigned EMUSHORT e[NE], y[NE]; | |
864 | REAL_VALUE_TYPE r; | |
865 | ||
866 | GET_REAL (&x, e); | |
66b6d60b RS |
867 | #ifdef NANS |
868 | if (eisnan (e)) | |
869 | return (x); | |
870 | #endif | |
985b6196 RS |
871 | eldexp (e, n, y); |
872 | PUT_REAL (y, &r); | |
873 | return (r); | |
874 | } | |
875 | ||
876 | /* These routines are conditionally compiled because functions | |
defb5dab RK |
877 | of the same names may be defined in fold-const.c. */ |
878 | ||
985b6196 RS |
879 | #ifdef REAL_ARITHMETIC |
880 | ||
881 | /* Check for infinity in a REAL_VALUE_TYPE. */ | |
defb5dab | 882 | |
985b6196 RS |
883 | int |
884 | target_isinf (x) | |
885 | REAL_VALUE_TYPE x; | |
886 | { | |
887 | unsigned EMUSHORT e[NE]; | |
888 | ||
889 | #ifdef INFINITY | |
890 | GET_REAL (&x, e); | |
891 | return (eisinf (e)); | |
892 | #else | |
893 | return 0; | |
894 | #endif | |
895 | } | |
896 | ||
897 | ||
66b6d60b | 898 | /* Check whether a REAL_VALUE_TYPE item is a NaN. */ |
985b6196 RS |
899 | |
900 | int | |
901 | target_isnan (x) | |
902 | REAL_VALUE_TYPE x; | |
903 | { | |
9d72da33 RS |
904 | unsigned EMUSHORT e[NE]; |
905 | ||
66b6d60b | 906 | #ifdef NANS |
9d72da33 RS |
907 | GET_REAL (&x, e); |
908 | return (eisnan (e)); | |
66b6d60b | 909 | #else |
985b6196 | 910 | return (0); |
66b6d60b | 911 | #endif |
985b6196 RS |
912 | } |
913 | ||
914 | ||
66b6d60b | 915 | /* Check for a negative REAL_VALUE_TYPE number. |
defb5dab | 916 | This just checks the sign bit, so that -0 counts as negative. */ |
985b6196 RS |
917 | |
918 | int | |
919 | target_negative (x) | |
920 | REAL_VALUE_TYPE x; | |
921 | { | |
281bb5e4 | 922 | return ereal_isneg (x); |
985b6196 RS |
923 | } |
924 | ||
925 | /* Expansion of REAL_VALUE_TRUNCATE. | |
defb5dab RK |
926 | The result is in floating point, rounded to nearest or even. */ |
927 | ||
985b6196 RS |
928 | REAL_VALUE_TYPE |
929 | real_value_truncate (mode, arg) | |
930 | enum machine_mode mode; | |
931 | REAL_VALUE_TYPE arg; | |
932 | { | |
933 | unsigned EMUSHORT e[NE], t[NE]; | |
934 | REAL_VALUE_TYPE r; | |
935 | ||
936 | GET_REAL (&arg, e); | |
66b6d60b RS |
937 | #ifdef NANS |
938 | if (eisnan (e)) | |
939 | return (arg); | |
940 | #endif | |
985b6196 RS |
941 | eclear (t); |
942 | switch (mode) | |
943 | { | |
842fbaaa JW |
944 | case TFmode: |
945 | etoe113 (e, t); | |
946 | e113toe (t, t); | |
947 | break; | |
948 | ||
985b6196 RS |
949 | case XFmode: |
950 | etoe64 (e, t); | |
951 | e64toe (t, t); | |
952 | break; | |
953 | ||
954 | case DFmode: | |
955 | etoe53 (e, t); | |
956 | e53toe (t, t); | |
957 | break; | |
958 | ||
bfbc6416 | 959 | case HFmode: |
985b6196 RS |
960 | case SFmode: |
961 | etoe24 (e, t); | |
962 | e24toe (t, t); | |
963 | break; | |
964 | ||
965 | case SImode: | |
f8ece317 | 966 | r = etrunci (arg); |
985b6196 RS |
967 | return (r); |
968 | ||
0de689b7 RK |
969 | /* If an unsupported type was requested, presume that |
970 | the machine files know something useful to do with | |
971 | the unmodified value. */ | |
defb5dab | 972 | |
985b6196 | 973 | default: |
0de689b7 | 974 | return (arg); |
985b6196 RS |
975 | } |
976 | PUT_REAL (t, &r); | |
977 | return (r); | |
978 | } | |
979 | ||
980 | #endif /* REAL_ARITHMETIC defined */ | |
981 | ||
775ba35d RS |
982 | /* Used for debugging--print the value of R in human-readable format |
983 | on stderr. */ | |
984 | ||
985 | void | |
986 | debug_real (r) | |
987 | REAL_VALUE_TYPE r; | |
988 | { | |
989 | char dstr[30]; | |
990 | ||
991 | REAL_VALUE_TO_DECIMAL (r, "%.20g", dstr); | |
992 | fprintf (stderr, "%s", dstr); | |
993 | } | |
994 | ||
995 | \f | |
985b6196 RS |
996 | /* Target values are arrays of host longs. A long is guaranteed |
997 | to be at least 32 bits wide. */ | |
842fbaaa JW |
998 | |
999 | /* 128-bit long double */ | |
defb5dab | 1000 | |
842fbaaa JW |
1001 | void |
1002 | etartdouble (r, l) | |
1003 | REAL_VALUE_TYPE r; | |
1004 | long l[]; | |
1005 | { | |
1006 | unsigned EMUSHORT e[NE]; | |
1007 | ||
1008 | GET_REAL (&r, e); | |
1009 | etoe113 (e, e); | |
1010 | endian (e, l, TFmode); | |
1011 | } | |
1012 | ||
1013 | /* 80-bit long double */ | |
defb5dab | 1014 | |
985b6196 RS |
1015 | void |
1016 | etarldouble (r, l) | |
1017 | REAL_VALUE_TYPE r; | |
1018 | long l[]; | |
1019 | { | |
1020 | unsigned EMUSHORT e[NE]; | |
1021 | ||
1022 | GET_REAL (&r, e); | |
1023 | etoe64 (e, e); | |
1024 | endian (e, l, XFmode); | |
1025 | } | |
1026 | ||
1027 | void | |
1028 | etardouble (r, l) | |
1029 | REAL_VALUE_TYPE r; | |
1030 | long l[]; | |
1031 | { | |
1032 | unsigned EMUSHORT e[NE]; | |
1033 | ||
1034 | GET_REAL (&r, e); | |
1035 | etoe53 (e, e); | |
1036 | endian (e, l, DFmode); | |
1037 | } | |
1038 | ||
1039 | long | |
1040 | etarsingle (r) | |
1041 | REAL_VALUE_TYPE r; | |
1042 | { | |
1043 | unsigned EMUSHORT e[NE]; | |
60e61165 | 1044 | long l; |
985b6196 RS |
1045 | |
1046 | GET_REAL (&r, e); | |
1047 | etoe24 (e, e); | |
1048 | endian (e, &l, SFmode); | |
1049 | return ((long) l); | |
1050 | } | |
1051 | ||
1052 | void | |
1053 | ereal_to_decimal (x, s) | |
1054 | REAL_VALUE_TYPE x; | |
1055 | char *s; | |
1056 | { | |
1057 | unsigned EMUSHORT e[NE]; | |
1058 | ||
1059 | GET_REAL (&x, e); | |
1060 | etoasc (e, s, 20); | |
1061 | } | |
1062 | ||
1063 | int | |
1064 | ereal_cmp (x, y) | |
1065 | REAL_VALUE_TYPE x, y; | |
1066 | { | |
1067 | unsigned EMUSHORT ex[NE], ey[NE]; | |
1068 | ||
1069 | GET_REAL (&x, ex); | |
1070 | GET_REAL (&y, ey); | |
1071 | return (ecmp (ex, ey)); | |
1072 | } | |
1073 | ||
1074 | int | |
1075 | ereal_isneg (x) | |
1076 | REAL_VALUE_TYPE x; | |
1077 | { | |
1078 | unsigned EMUSHORT ex[NE]; | |
1079 | ||
1080 | GET_REAL (&x, ex); | |
1081 | return (eisneg (ex)); | |
1082 | } | |
1083 | ||
1084 | /* End of REAL_ARITHMETIC interface */ | |
775ba35d | 1085 | \f |
defb5dab RK |
1086 | /* |
1087 | Extended precision IEEE binary floating point arithmetic routines | |
1088 | ||
1089 | Numbers are stored in C language as arrays of 16-bit unsigned | |
1090 | short integers. The arguments of the routines are pointers to | |
1091 | the arrays. | |
1092 | ||
1093 | External e type data structure, simulates Intel 8087 chip | |
1094 | temporary real format but possibly with a larger significand: | |
1095 | ||
1096 | NE-1 significand words (least significant word first, | |
1097 | most significant bit is normally set) | |
1098 | exponent (value = EXONE for 1.0, | |
1099 | top bit is the sign) | |
1100 | ||
1101 | ||
1102 | Internal data structure of a number (a "word" is 16 bits): | |
1103 | ||
1104 | ei[0] sign word (0 for positive, 0xffff for negative) | |
1105 | ei[1] biased exponent (value = EXONE for the number 1.0) | |
1106 | ei[2] high guard word (always zero after normalization) | |
1107 | ei[3] | |
1108 | to ei[NI-2] significand (NI-4 significand words, | |
1109 | most significant word first, | |
1110 | most significant bit is set) | |
1111 | ei[NI-1] low guard word (0x8000 bit is rounding place) | |
1112 | ||
1113 | ||
1114 | ||
1115 | Routines for external format numbers | |
1116 | ||
1117 | asctoe (string, e) ASCII string to extended double e type | |
1118 | asctoe64 (string, &d) ASCII string to long double | |
1119 | asctoe53 (string, &d) ASCII string to double | |
1120 | asctoe24 (string, &f) ASCII string to single | |
1121 | asctoeg (string, e, prec) ASCII string to specified precision | |
1122 | e24toe (&f, e) IEEE single precision to e type | |
1123 | e53toe (&d, e) IEEE double precision to e type | |
1124 | e64toe (&d, e) IEEE long double precision to e type | |
1125 | e113toe (&d, e) 128-bit long double precision to e type | |
1126 | eabs (e) absolute value | |
1127 | eadd (a, b, c) c = b + a | |
1128 | eclear (e) e = 0 | |
1129 | ecmp (a, b) Returns 1 if a > b, 0 if a == b, | |
1130 | -1 if a < b, -2 if either a or b is a NaN. | |
1131 | ediv (a, b, c) c = b / a | |
1132 | efloor (a, b) truncate to integer, toward -infinity | |
1133 | efrexp (a, exp, s) extract exponent and significand | |
1134 | eifrac (e, &l, frac) e to HOST_WIDE_INT and e type fraction | |
1135 | euifrac (e, &l, frac) e to unsigned HOST_WIDE_INT and e type fraction | |
1136 | einfin (e) set e to infinity, leaving its sign alone | |
1137 | eldexp (a, n, b) multiply by 2**n | |
1138 | emov (a, b) b = a | |
1139 | emul (a, b, c) c = b * a | |
1140 | eneg (e) e = -e | |
1141 | eround (a, b) b = nearest integer value to a | |
1142 | esub (a, b, c) c = b - a | |
1143 | e24toasc (&f, str, n) single to ASCII string, n digits after decimal | |
1144 | e53toasc (&d, str, n) double to ASCII string, n digits after decimal | |
1145 | e64toasc (&d, str, n) 80-bit long double to ASCII string | |
1146 | e113toasc (&d, str, n) 128-bit long double to ASCII string | |
1147 | etoasc (e, str, n) e to ASCII string, n digits after decimal | |
1148 | etoe24 (e, &f) convert e type to IEEE single precision | |
1149 | etoe53 (e, &d) convert e type to IEEE double precision | |
1150 | etoe64 (e, &d) convert e type to IEEE long double precision | |
1151 | ltoe (&l, e) HOST_WIDE_INT to e type | |
1152 | ultoe (&l, e) unsigned HOST_WIDE_INT to e type | |
1153 | eisneg (e) 1 if sign bit of e != 0, else 0 | |
1154 | eisinf (e) 1 if e has maximum exponent (non-IEEE) | |
1155 | or is infinite (IEEE) | |
1156 | eisnan (e) 1 if e is a NaN | |
1157 | ||
1158 | ||
1159 | Routines for internal format numbers | |
1160 | ||
1161 | eaddm (ai, bi) add significands, bi = bi + ai | |
1162 | ecleaz (ei) ei = 0 | |
1163 | ecleazs (ei) set ei = 0 but leave its sign alone | |
1164 | ecmpm (ai, bi) compare significands, return 1, 0, or -1 | |
1165 | edivm (ai, bi) divide significands, bi = bi / ai | |
1166 | emdnorm (ai,l,s,exp) normalize and round off | |
1167 | emovi (a, ai) convert external a to internal ai | |
1168 | emovo (ai, a) convert internal ai to external a | |
1169 | emovz (ai, bi) bi = ai, low guard word of bi = 0 | |
1170 | emulm (ai, bi) multiply significands, bi = bi * ai | |
1171 | enormlz (ei) left-justify the significand | |
1172 | eshdn1 (ai) shift significand and guards down 1 bit | |
1173 | eshdn8 (ai) shift down 8 bits | |
1174 | eshdn6 (ai) shift down 16 bits | |
1175 | eshift (ai, n) shift ai n bits up (or down if n < 0) | |
1176 | eshup1 (ai) shift significand and guards up 1 bit | |
1177 | eshup8 (ai) shift up 8 bits | |
1178 | eshup6 (ai) shift up 16 bits | |
1179 | esubm (ai, bi) subtract significands, bi = bi - ai | |
1180 | eiisinf (ai) 1 if infinite | |
1181 | eiisnan (ai) 1 if a NaN | |
1182 | eiisneg (ai) 1 if sign bit of ai != 0, else 0 | |
1183 | einan (ai) set ai = NaN | |
1184 | eiinfin (ai) set ai = infinity | |
1185 | ||
1186 | The result is always normalized and rounded to NI-4 word precision | |
1187 | after each arithmetic operation. | |
1188 | ||
1189 | Exception flags are NOT fully supported. | |
1190 | ||
1191 | Signaling NaN's are NOT supported; they are treated the same | |
1192 | as quiet NaN's. | |
1193 | ||
1194 | Define INFINITY for support of infinity; otherwise a | |
1195 | saturation arithmetic is implemented. | |
1196 | ||
1197 | Define NANS for support of Not-a-Number items; otherwise the | |
1198 | arithmetic will never produce a NaN output, and might be confused | |
1199 | by a NaN input. | |
1200 | If NaN's are supported, the output of `ecmp (a,b)' is -2 if | |
1201 | either a or b is a NaN. This means asking `if (ecmp (a,b) < 0)' | |
1202 | may not be legitimate. Use `if (ecmp (a,b) == -1)' for `less than' | |
1203 | if in doubt. | |
1204 | ||
1205 | Denormals are always supported here where appropriate (e.g., not | |
1206 | for conversion to DEC numbers). */ | |
1207 | ||
1208 | /* Definitions for error codes that are passed to the common error handling | |
1209 | routine mtherr. | |
1210 | ||
1211 | For Digital Equipment PDP-11 and VAX computers, certain | |
1212 | IBM systems, and others that use numbers with a 56-bit | |
1213 | significand, the symbol DEC should be defined. In this | |
1214 | mode, most floating point constants are given as arrays | |
1215 | of octal integers to eliminate decimal to binary conversion | |
1216 | errors that might be introduced by the compiler. | |
1217 | ||
1218 | For computers, such as IBM PC, that follow the IEEE | |
1219 | Standard for Binary Floating Point Arithmetic (ANSI/IEEE | |
1220 | Std 754-1985), the symbol IBMPC or MIEEE should be defined. | |
1221 | These numbers have 53-bit significands. In this mode, constants | |
1222 | are provided as arrays of hexadecimal 16 bit integers. | |
f76b9db2 ILT |
1223 | [This has been changed to instead check the preprocessor macros IEEE |
1224 | and FLOAT_WORDS_BIG_ENDIAN]. | |
defb5dab RK |
1225 | |
1226 | To accommodate other types of computer arithmetic, all | |
1227 | constants are also provided in a normal decimal radix | |
1228 | which one can hope are correctly converted to a suitable | |
1229 | format by the available C language compiler. To invoke | |
1230 | this mode, the symbol UNK is defined. | |
1231 | ||
1232 | An important difference among these modes is a predefined | |
1233 | set of machine arithmetic constants for each. The numbers | |
1234 | MACHEP (the machine roundoff error), MAXNUM (largest number | |
1235 | represented), and several other parameters are preset by | |
1236 | the configuration symbol. Check the file const.c to | |
1237 | ensure that these values are correct for your computer. | |
1238 | ||
1239 | For ANSI C compatibility, define ANSIC equal to 1. Currently | |
1240 | this affects only the atan2 function and others that use it. */ | |
985b6196 | 1241 | |
e8650b8f | 1242 | /* Constant definitions for math error conditions. */ |
985b6196 RS |
1243 | |
1244 | #define DOMAIN 1 /* argument domain error */ | |
1245 | #define SING 2 /* argument singularity */ | |
1246 | #define OVERFLOW 3 /* overflow range error */ | |
1247 | #define UNDERFLOW 4 /* underflow range error */ | |
1248 | #define TLOSS 5 /* total loss of precision */ | |
1249 | #define PLOSS 6 /* partial loss of precision */ | |
66b6d60b | 1250 | #define INVALID 7 /* NaN-producing operation */ |
985b6196 | 1251 | |
985b6196 RS |
1252 | /* e type constants used by high precision check routines */ |
1253 | ||
842fbaaa | 1254 | #if LONG_DOUBLE_TYPE_SIZE == 128 |
985b6196 RS |
1255 | /* 0.0 */ |
1256 | unsigned EMUSHORT ezero[NE] = | |
842fbaaa JW |
1257 | {0x0000, 0x0000, 0x0000, 0x0000, |
1258 | 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,}; | |
985b6196 RS |
1259 | extern unsigned EMUSHORT ezero[]; |
1260 | ||
1261 | /* 5.0E-1 */ | |
1262 | unsigned EMUSHORT ehalf[NE] = | |
842fbaaa JW |
1263 | {0x0000, 0x0000, 0x0000, 0x0000, |
1264 | 0x0000, 0x0000, 0x0000, 0x0000, 0x8000, 0x3ffe,}; | |
985b6196 RS |
1265 | extern unsigned EMUSHORT ehalf[]; |
1266 | ||
1267 | /* 1.0E0 */ | |
1268 | unsigned EMUSHORT eone[NE] = | |
842fbaaa JW |
1269 | {0x0000, 0x0000, 0x0000, 0x0000, |
1270 | 0x0000, 0x0000, 0x0000, 0x0000, 0x8000, 0x3fff,}; | |
985b6196 RS |
1271 | extern unsigned EMUSHORT eone[]; |
1272 | ||
1273 | /* 2.0E0 */ | |
1274 | unsigned EMUSHORT etwo[NE] = | |
842fbaaa JW |
1275 | {0x0000, 0x0000, 0x0000, 0x0000, |
1276 | 0x0000, 0x0000, 0x0000, 0x0000, 0x8000, 0x4000,}; | |
985b6196 RS |
1277 | extern unsigned EMUSHORT etwo[]; |
1278 | ||
1279 | /* 3.2E1 */ | |
1280 | unsigned EMUSHORT e32[NE] = | |
842fbaaa JW |
1281 | {0x0000, 0x0000, 0x0000, 0x0000, |
1282 | 0x0000, 0x0000, 0x0000, 0x0000, 0x8000, 0x4004,}; | |
985b6196 RS |
1283 | extern unsigned EMUSHORT e32[]; |
1284 | ||
1285 | /* 6.93147180559945309417232121458176568075500134360255E-1 */ | |
1286 | unsigned EMUSHORT elog2[NE] = | |
842fbaaa JW |
1287 | {0x40f3, 0xf6af, 0x03f2, 0xb398, |
1288 | 0xc9e3, 0x79ab, 0150717, 0013767, 0130562, 0x3ffe,}; | |
985b6196 RS |
1289 | extern unsigned EMUSHORT elog2[]; |
1290 | ||
1291 | /* 1.41421356237309504880168872420969807856967187537695E0 */ | |
1292 | unsigned EMUSHORT esqrt2[NE] = | |
842fbaaa JW |
1293 | {0x1d6f, 0xbe9f, 0x754a, 0x89b3, |
1294 | 0x597d, 0x6484, 0174736, 0171463, 0132404, 0x3fff,}; | |
985b6196 RS |
1295 | extern unsigned EMUSHORT esqrt2[]; |
1296 | ||
985b6196 RS |
1297 | /* 3.14159265358979323846264338327950288419716939937511E0 */ |
1298 | unsigned EMUSHORT epi[NE] = | |
842fbaaa | 1299 | {0x2902, 0x1cd1, 0x80dc, 0x628b, |
985b6196 RS |
1300 | 0xc4c6, 0xc234, 0020550, 0155242, 0144417, 0040000,}; |
1301 | extern unsigned EMUSHORT epi[]; | |
1302 | ||
842fbaaa JW |
1303 | #else |
1304 | /* LONG_DOUBLE_TYPE_SIZE is other than 128 */ | |
1305 | unsigned EMUSHORT ezero[NE] = | |
1306 | {0, 0000000, 0000000, 0000000, 0000000, 0000000,}; | |
1307 | unsigned EMUSHORT ehalf[NE] = | |
1308 | {0, 0000000, 0000000, 0000000, 0100000, 0x3ffe,}; | |
1309 | unsigned EMUSHORT eone[NE] = | |
1310 | {0, 0000000, 0000000, 0000000, 0100000, 0x3fff,}; | |
1311 | unsigned EMUSHORT etwo[NE] = | |
1312 | {0, 0000000, 0000000, 0000000, 0100000, 0040000,}; | |
1313 | unsigned EMUSHORT e32[NE] = | |
1314 | {0, 0000000, 0000000, 0000000, 0100000, 0040004,}; | |
1315 | unsigned EMUSHORT elog2[NE] = | |
1316 | {0xc9e4, 0x79ab, 0150717, 0013767, 0130562, 0x3ffe,}; | |
1317 | unsigned EMUSHORT esqrt2[NE] = | |
1318 | {0x597e, 0x6484, 0174736, 0171463, 0132404, 0x3fff,}; | |
1319 | unsigned EMUSHORT epi[NE] = | |
1320 | {0xc4c6, 0xc234, 0020550, 0155242, 0144417, 0040000,}; | |
1321 | #endif | |
985b6196 RS |
1322 | |
1323 | ||
1324 | ||
1325 | /* Control register for rounding precision. | |
defb5dab RK |
1326 | This can be set to 113 (if NE=10), 80 (if NE=6), 64, 56, 53, or 24 bits. */ |
1327 | ||
985b6196 RS |
1328 | int rndprc = NBITS; |
1329 | extern int rndprc; | |
1330 | ||
defb5dab | 1331 | /* Clear out entire external format number. */ |
985b6196 | 1332 | |
a0353055 | 1333 | static void |
985b6196 RS |
1334 | eclear (x) |
1335 | register unsigned EMUSHORT *x; | |
1336 | { | |
1337 | register int i; | |
1338 | ||
1339 | for (i = 0; i < NE; i++) | |
1340 | *x++ = 0; | |
1341 | } | |
1342 | ||
1343 | ||
1344 | ||
defb5dab | 1345 | /* Move external format number from a to b. */ |
985b6196 | 1346 | |
a0353055 | 1347 | static void |
985b6196 RS |
1348 | emov (a, b) |
1349 | register unsigned EMUSHORT *a, *b; | |
1350 | { | |
1351 | register int i; | |
1352 | ||
1353 | for (i = 0; i < NE; i++) | |
1354 | *b++ = *a++; | |
1355 | } | |
1356 | ||
1357 | ||
defb5dab | 1358 | /* Absolute value of external format number. */ |
985b6196 | 1359 | |
a0353055 | 1360 | static void |
985b6196 | 1361 | eabs (x) |
a0353055 | 1362 | unsigned EMUSHORT x[]; |
985b6196 | 1363 | { |
a0353055 RK |
1364 | /* sign is top bit of last word of external format */ |
1365 | x[NE - 1] &= 0x7fff; | |
985b6196 RS |
1366 | } |
1367 | ||
defb5dab | 1368 | /* Negate external format number. */ |
985b6196 | 1369 | |
a0353055 | 1370 | static void |
985b6196 RS |
1371 | eneg (x) |
1372 | unsigned EMUSHORT x[]; | |
1373 | { | |
1374 | ||
1375 | x[NE - 1] ^= 0x8000; /* Toggle the sign bit */ | |
1376 | } | |
1377 | ||
1378 | ||
1379 | ||
defb5dab RK |
1380 | /* Return 1 if sign bit of external format number is nonzero, else zero. */ |
1381 | ||
a0353055 | 1382 | static int |
985b6196 RS |
1383 | eisneg (x) |
1384 | unsigned EMUSHORT x[]; | |
1385 | { | |
1386 | ||
1387 | if (x[NE - 1] & 0x8000) | |
1388 | return (1); | |
1389 | else | |
1390 | return (0); | |
1391 | } | |
1392 | ||
1393 | ||
defb5dab | 1394 | /* Return 1 if external format number is infinity, else return zero. */ |
a0353055 RK |
1395 | |
1396 | static int | |
985b6196 RS |
1397 | eisinf (x) |
1398 | unsigned EMUSHORT x[]; | |
1399 | { | |
1400 | ||
66b6d60b RS |
1401 | #ifdef NANS |
1402 | if (eisnan (x)) | |
1403 | return (0); | |
1404 | #endif | |
985b6196 RS |
1405 | if ((x[NE - 1] & 0x7fff) == 0x7fff) |
1406 | return (1); | |
1407 | else | |
1408 | return (0); | |
1409 | } | |
1410 | ||
1411 | ||
defb5dab RK |
1412 | /* Check if e-type number is not a number. The bit pattern is one that we |
1413 | defined, so we know for sure how to detect it. */ | |
66b6d60b | 1414 | |
a0353055 | 1415 | static int |
66b6d60b RS |
1416 | eisnan (x) |
1417 | unsigned EMUSHORT x[]; | |
1418 | { | |
66b6d60b RS |
1419 | #ifdef NANS |
1420 | int i; | |
defb5dab RK |
1421 | |
1422 | /* NaN has maximum exponent */ | |
66b6d60b RS |
1423 | if ((x[NE - 1] & 0x7fff) != 0x7fff) |
1424 | return (0); | |
defb5dab | 1425 | /* ... and non-zero significand field. */ |
66b6d60b RS |
1426 | for (i = 0; i < NE - 1; i++) |
1427 | { | |
1428 | if (*x++ != 0) | |
1429 | return (1); | |
1430 | } | |
1431 | #endif | |
defb5dab | 1432 | |
66b6d60b RS |
1433 | return (0); |
1434 | } | |
1435 | ||
1436 | /* Fill external format number with infinity pattern (IEEE) | |
842fbaaa | 1437 | or largest possible number (non-IEEE). */ |
985b6196 | 1438 | |
a0353055 | 1439 | static void |
985b6196 RS |
1440 | einfin (x) |
1441 | register unsigned EMUSHORT *x; | |
1442 | { | |
1443 | register int i; | |
1444 | ||
1445 | #ifdef INFINITY | |
1446 | for (i = 0; i < NE - 1; i++) | |
1447 | *x++ = 0; | |
1448 | *x |= 32767; | |
1449 | #else | |
1450 | for (i = 0; i < NE - 1; i++) | |
1451 | *x++ = 0xffff; | |
1452 | *x |= 32766; | |
1453 | if (rndprc < NBITS) | |
1454 | { | |
842fbaaa JW |
1455 | if (rndprc == 113) |
1456 | { | |
1457 | *(x - 9) = 0; | |
1458 | *(x - 8) = 0; | |
1459 | } | |
985b6196 RS |
1460 | if (rndprc == 64) |
1461 | { | |
1462 | *(x - 5) = 0; | |
1463 | } | |
1464 | if (rndprc == 53) | |
1465 | { | |
1466 | *(x - 4) = 0xf800; | |
1467 | } | |
1468 | else | |
1469 | { | |
1470 | *(x - 4) = 0; | |
1471 | *(x - 3) = 0; | |
1472 | *(x - 2) = 0xff00; | |
1473 | } | |
1474 | } | |
1475 | #endif | |
1476 | } | |
1477 | ||
1478 | ||
66b6d60b RS |
1479 | /* Output an e-type NaN. |
1480 | This generates Intel's quiet NaN pattern for extended real. | |
1481 | The exponent is 7fff, the leading mantissa word is c000. */ | |
1482 | ||
a0353055 | 1483 | static void |
29e11dab | 1484 | enan (x, sign) |
66b6d60b | 1485 | register unsigned EMUSHORT *x; |
29e11dab | 1486 | int sign; |
66b6d60b RS |
1487 | { |
1488 | register int i; | |
1489 | ||
1490 | for (i = 0; i < NE - 2; i++) | |
1491 | *x++ = 0; | |
1492 | *x++ = 0xc000; | |
29e11dab | 1493 | *x = (sign << 15) | 0x7fff; |
66b6d60b RS |
1494 | } |
1495 | ||
985b6196 | 1496 | |
defb5dab RK |
1497 | /* Move in external format number, converting it to internal format. */ |
1498 | ||
a0353055 | 1499 | static void |
985b6196 RS |
1500 | emovi (a, b) |
1501 | unsigned EMUSHORT *a, *b; | |
1502 | { | |
1503 | register unsigned EMUSHORT *p, *q; | |
1504 | int i; | |
1505 | ||
1506 | q = b; | |
1507 | p = a + (NE - 1); /* point to last word of external number */ | |
1508 | /* get the sign bit */ | |
1509 | if (*p & 0x8000) | |
1510 | *q++ = 0xffff; | |
1511 | else | |
1512 | *q++ = 0; | |
1513 | /* get the exponent */ | |
1514 | *q = *p--; | |
1515 | *q++ &= 0x7fff; /* delete the sign bit */ | |
1516 | #ifdef INFINITY | |
1517 | if ((*(q - 1) & 0x7fff) == 0x7fff) | |
1518 | { | |
66b6d60b RS |
1519 | #ifdef NANS |
1520 | if (eisnan (a)) | |
1521 | { | |
1522 | *q++ = 0; | |
1523 | for (i = 3; i < NI; i++) | |
1524 | *q++ = *p--; | |
1525 | return; | |
1526 | } | |
1527 | #endif | |
defb5dab | 1528 | |
985b6196 RS |
1529 | for (i = 2; i < NI; i++) |
1530 | *q++ = 0; | |
1531 | return; | |
1532 | } | |
1533 | #endif | |
defb5dab | 1534 | |
985b6196 RS |
1535 | /* clear high guard word */ |
1536 | *q++ = 0; | |
1537 | /* move in the significand */ | |
1538 | for (i = 0; i < NE - 1; i++) | |
1539 | *q++ = *p--; | |
1540 | /* clear low guard word */ | |
1541 | *q = 0; | |
1542 | } | |
1543 | ||
1544 | ||
defb5dab RK |
1545 | /* Move internal format number out, converting it to external format. */ |
1546 | ||
a0353055 | 1547 | static void |
985b6196 RS |
1548 | emovo (a, b) |
1549 | unsigned EMUSHORT *a, *b; | |
1550 | { | |
1551 | register unsigned EMUSHORT *p, *q; | |
1552 | unsigned EMUSHORT i; | |
239b043b | 1553 | int j; |
985b6196 RS |
1554 | |
1555 | p = a; | |
1556 | q = b + (NE - 1); /* point to output exponent */ | |
1557 | /* combine sign and exponent */ | |
1558 | i = *p++; | |
1559 | if (i) | |
1560 | *q-- = *p++ | 0x8000; | |
1561 | else | |
1562 | *q-- = *p++; | |
1563 | #ifdef INFINITY | |
1564 | if (*(p - 1) == 0x7fff) | |
1565 | { | |
66b6d60b RS |
1566 | #ifdef NANS |
1567 | if (eiisnan (a)) | |
1568 | { | |
29e11dab | 1569 | enan (b, eiisneg (a)); |
66b6d60b RS |
1570 | return; |
1571 | } | |
1572 | #endif | |
985b6196 | 1573 | einfin (b); |
842fbaaa | 1574 | return; |
985b6196 RS |
1575 | } |
1576 | #endif | |
1577 | /* skip over guard word */ | |
1578 | ++p; | |
1579 | /* move the significand */ | |
239b043b | 1580 | for (j = 0; j < NE - 1; j++) |
985b6196 RS |
1581 | *q-- = *p++; |
1582 | } | |
1583 | ||
defb5dab | 1584 | /* Clear out internal format number. */ |
985b6196 | 1585 | |
a0353055 | 1586 | static void |
985b6196 RS |
1587 | ecleaz (xi) |
1588 | register unsigned EMUSHORT *xi; | |
1589 | { | |
1590 | register int i; | |
1591 | ||
1592 | for (i = 0; i < NI; i++) | |
1593 | *xi++ = 0; | |
1594 | } | |
1595 | ||
1596 | ||
defb5dab | 1597 | /* Same, but don't touch the sign. */ |
985b6196 | 1598 | |
a0353055 | 1599 | static void |
985b6196 RS |
1600 | ecleazs (xi) |
1601 | register unsigned EMUSHORT *xi; | |
1602 | { | |
1603 | register int i; | |
1604 | ||
1605 | ++xi; | |
1606 | for (i = 0; i < NI - 1; i++) | |
1607 | *xi++ = 0; | |
1608 | } | |
1609 | ||
1610 | ||
1611 | ||
defb5dab | 1612 | /* Move internal format number from a to b. */ |
a0353055 RK |
1613 | |
1614 | static void | |
985b6196 RS |
1615 | emovz (a, b) |
1616 | register unsigned EMUSHORT *a, *b; | |
1617 | { | |
1618 | register int i; | |
1619 | ||
1620 | for (i = 0; i < NI - 1; i++) | |
1621 | *b++ = *a++; | |
1622 | /* clear low guard word */ | |
1623 | *b = 0; | |
1624 | } | |
1625 | ||
66b6d60b RS |
1626 | /* Generate internal format NaN. |
1627 | The explicit pattern for this is maximum exponent and | |
defb5dab | 1628 | top two significant bits set. */ |
66b6d60b | 1629 | |
a0353055 | 1630 | static void |
66b6d60b RS |
1631 | einan (x) |
1632 | unsigned EMUSHORT x[]; | |
1633 | { | |
1634 | ||
1635 | ecleaz (x); | |
1636 | x[E] = 0x7fff; | |
1637 | x[M + 1] = 0xc000; | |
1638 | } | |
1639 | ||
1640 | /* Return nonzero if internal format number is a NaN. */ | |
1641 | ||
a0353055 | 1642 | static int |
66b6d60b RS |
1643 | eiisnan (x) |
1644 | unsigned EMUSHORT x[]; | |
1645 | { | |
1646 | int i; | |
1647 | ||
1648 | if ((x[E] & 0x7fff) == 0x7fff) | |
1649 | { | |
1650 | for (i = M + 1; i < NI; i++) | |
1651 | { | |
1652 | if (x[i] != 0) | |
1653 | return (1); | |
1654 | } | |
1655 | } | |
1656 | return (0); | |
1657 | } | |
1658 | ||
29e11dab RK |
1659 | /* Return nonzero if sign of internal format number is nonzero. */ |
1660 | ||
a0353055 | 1661 | static int |
29e11dab RK |
1662 | eiisneg (x) |
1663 | unsigned EMUSHORT x[]; | |
1664 | { | |
1665 | ||
1666 | return x[0] != 0; | |
1667 | } | |
1668 | ||
66b6d60b RS |
1669 | /* Fill internal format number with infinity pattern. |
1670 | This has maximum exponent and significand all zeros. */ | |
1671 | ||
a0353055 | 1672 | static void |
66b6d60b RS |
1673 | eiinfin (x) |
1674 | unsigned EMUSHORT x[]; | |
1675 | { | |
1676 | ||
1677 | ecleaz (x); | |
1678 | x[E] = 0x7fff; | |
1679 | } | |
1680 | ||
1681 | /* Return nonzero if internal format number is infinite. */ | |
1682 | ||
a0353055 | 1683 | static int |
66b6d60b RS |
1684 | eiisinf (x) |
1685 | unsigned EMUSHORT x[]; | |
1686 | { | |
1687 | ||
1688 | #ifdef NANS | |
1689 | if (eiisnan (x)) | |
1690 | return (0); | |
1691 | #endif | |
1692 | if ((x[E] & 0x7fff) == 0x7fff) | |
1693 | return (1); | |
1694 | return (0); | |
1695 | } | |
1696 | ||
985b6196 | 1697 | |
defb5dab RK |
1698 | /* Compare significands of numbers in internal format. |
1699 | Guard words are included in the comparison. | |
1700 | ||
1701 | Returns +1 if a > b | |
1702 | 0 if a == b | |
1703 | -1 if a < b */ | |
a0353055 RK |
1704 | |
1705 | static int | |
985b6196 RS |
1706 | ecmpm (a, b) |
1707 | register unsigned EMUSHORT *a, *b; | |
1708 | { | |
1709 | int i; | |
1710 | ||
1711 | a += M; /* skip up to significand area */ | |
1712 | b += M; | |
1713 | for (i = M; i < NI; i++) | |
1714 | { | |
1715 | if (*a++ != *b++) | |
1716 | goto difrnt; | |
1717 | } | |
1718 | return (0); | |
1719 | ||
1720 | difrnt: | |
1721 | if (*(--a) > *(--b)) | |
1722 | return (1); | |
1723 | else | |
1724 | return (-1); | |
1725 | } | |
1726 | ||
1727 | ||
defb5dab | 1728 | /* Shift significand down by 1 bit. */ |
985b6196 | 1729 | |
a0353055 | 1730 | static void |
985b6196 RS |
1731 | eshdn1 (x) |
1732 | register unsigned EMUSHORT *x; | |
1733 | { | |
1734 | register unsigned EMUSHORT bits; | |
1735 | int i; | |
1736 | ||
1737 | x += M; /* point to significand area */ | |
1738 | ||
1739 | bits = 0; | |
1740 | for (i = M; i < NI; i++) | |
1741 | { | |
1742 | if (*x & 1) | |
1743 | bits |= 1; | |
1744 | *x >>= 1; | |
1745 | if (bits & 2) | |
1746 | *x |= 0x8000; | |
1747 | bits <<= 1; | |
1748 | ++x; | |
1749 | } | |
1750 | } | |
1751 | ||
1752 | ||
1753 | ||
defb5dab | 1754 | /* Shift significand up by 1 bit. */ |
985b6196 | 1755 | |
a0353055 | 1756 | static void |
985b6196 RS |
1757 | eshup1 (x) |
1758 | register unsigned EMUSHORT *x; | |
1759 | { | |
1760 | register unsigned EMUSHORT bits; | |
1761 | int i; | |
1762 | ||
1763 | x += NI - 1; | |
1764 | bits = 0; | |
1765 | ||
1766 | for (i = M; i < NI; i++) | |
1767 | { | |
1768 | if (*x & 0x8000) | |
1769 | bits |= 1; | |
1770 | *x <<= 1; | |
1771 | if (bits & 2) | |
1772 | *x |= 1; | |
1773 | bits <<= 1; | |
1774 | --x; | |
1775 | } | |
1776 | } | |
1777 | ||
1778 | ||
defb5dab | 1779 | /* Shift significand down by 8 bits. */ |
985b6196 | 1780 | |
a0353055 | 1781 | static void |
985b6196 RS |
1782 | eshdn8 (x) |
1783 | register unsigned EMUSHORT *x; | |
1784 | { | |
1785 | register unsigned EMUSHORT newbyt, oldbyt; | |
1786 | int i; | |
1787 | ||
1788 | x += M; | |
1789 | oldbyt = 0; | |
1790 | for (i = M; i < NI; i++) | |
1791 | { | |
1792 | newbyt = *x << 8; | |
1793 | *x >>= 8; | |
1794 | *x |= oldbyt; | |
1795 | oldbyt = newbyt; | |
1796 | ++x; | |
1797 | } | |
1798 | } | |
1799 | ||
defb5dab | 1800 | /* Shift significand up by 8 bits. */ |
985b6196 | 1801 | |
a0353055 | 1802 | static void |
985b6196 RS |
1803 | eshup8 (x) |
1804 | register unsigned EMUSHORT *x; | |
1805 | { | |
1806 | int i; | |
1807 | register unsigned EMUSHORT newbyt, oldbyt; | |
1808 | ||
1809 | x += NI - 1; | |
1810 | oldbyt = 0; | |
1811 | ||
1812 | for (i = M; i < NI; i++) | |
1813 | { | |
1814 | newbyt = *x >> 8; | |
1815 | *x <<= 8; | |
1816 | *x |= oldbyt; | |
1817 | oldbyt = newbyt; | |
1818 | --x; | |
1819 | } | |
1820 | } | |
1821 | ||
defb5dab | 1822 | /* Shift significand up by 16 bits. */ |
985b6196 | 1823 | |
a0353055 | 1824 | static void |
985b6196 RS |
1825 | eshup6 (x) |
1826 | register unsigned EMUSHORT *x; | |
1827 | { | |
1828 | int i; | |
1829 | register unsigned EMUSHORT *p; | |
1830 | ||
1831 | p = x + M; | |
1832 | x += M + 1; | |
1833 | ||
1834 | for (i = M; i < NI - 1; i++) | |
1835 | *p++ = *x++; | |
1836 | ||
1837 | *p = 0; | |
1838 | } | |
1839 | ||
defb5dab | 1840 | /* Shift significand down by 16 bits. */ |
985b6196 | 1841 | |
a0353055 | 1842 | static void |
985b6196 RS |
1843 | eshdn6 (x) |
1844 | register unsigned EMUSHORT *x; | |
1845 | { | |
1846 | int i; | |
1847 | register unsigned EMUSHORT *p; | |
1848 | ||
1849 | x += NI - 1; | |
1850 | p = x + 1; | |
1851 | ||
1852 | for (i = M; i < NI - 1; i++) | |
1853 | *(--p) = *(--x); | |
1854 | ||
1855 | *(--p) = 0; | |
1856 | } | |
1857 | \f | |
defb5dab | 1858 | /* Add significands. x + y replaces y. */ |
985b6196 | 1859 | |
a0353055 | 1860 | static void |
985b6196 RS |
1861 | eaddm (x, y) |
1862 | unsigned EMUSHORT *x, *y; | |
1863 | { | |
1864 | register unsigned EMULONG a; | |
1865 | int i; | |
1866 | unsigned int carry; | |
1867 | ||
1868 | x += NI - 1; | |
1869 | y += NI - 1; | |
1870 | carry = 0; | |
1871 | for (i = M; i < NI; i++) | |
1872 | { | |
1873 | a = (unsigned EMULONG) (*x) + (unsigned EMULONG) (*y) + carry; | |
1874 | if (a & 0x10000) | |
1875 | carry = 1; | |
1876 | else | |
1877 | carry = 0; | |
1878 | *y = (unsigned EMUSHORT) a; | |
1879 | --x; | |
1880 | --y; | |
1881 | } | |
1882 | } | |
1883 | ||
defb5dab | 1884 | /* Subtract significands. y - x replaces y. */ |
985b6196 | 1885 | |
a0353055 | 1886 | static void |
985b6196 RS |
1887 | esubm (x, y) |
1888 | unsigned EMUSHORT *x, *y; | |
1889 | { | |
1890 | unsigned EMULONG a; | |
1891 | int i; | |
1892 | unsigned int carry; | |
1893 | ||
1894 | x += NI - 1; | |
1895 | y += NI - 1; | |
1896 | carry = 0; | |
1897 | for (i = M; i < NI; i++) | |
1898 | { | |
1899 | a = (unsigned EMULONG) (*y) - (unsigned EMULONG) (*x) - carry; | |
1900 | if (a & 0x10000) | |
1901 | carry = 1; | |
1902 | else | |
1903 | carry = 0; | |
1904 | *y = (unsigned EMUSHORT) a; | |
1905 | --x; | |
1906 | --y; | |
1907 | } | |
1908 | } | |
1909 | ||
1910 | ||
985b6196 RS |
1911 | static unsigned EMUSHORT equot[NI]; |
1912 | ||
842fbaaa JW |
1913 | |
1914 | #if 0 | |
1915 | /* Radix 2 shift-and-add versions of multiply and divide */ | |
1916 | ||
1917 | ||
1918 | /* Divide significands */ | |
1919 | ||
985b6196 RS |
1920 | int |
1921 | edivm (den, num) | |
1922 | unsigned EMUSHORT den[], num[]; | |
1923 | { | |
1924 | int i; | |
1925 | register unsigned EMUSHORT *p, *q; | |
1926 | unsigned EMUSHORT j; | |
1927 | ||
1928 | p = &equot[0]; | |
1929 | *p++ = num[0]; | |
1930 | *p++ = num[1]; | |
1931 | ||
1932 | for (i = M; i < NI; i++) | |
1933 | { | |
1934 | *p++ = 0; | |
1935 | } | |
1936 | ||
defb5dab RK |
1937 | /* Use faster compare and subtraction if denominator has only 15 bits of |
1938 | significance. */ | |
1939 | ||
985b6196 RS |
1940 | p = &den[M + 2]; |
1941 | if (*p++ == 0) | |
1942 | { | |
1943 | for (i = M + 3; i < NI; i++) | |
1944 | { | |
1945 | if (*p++ != 0) | |
1946 | goto fulldiv; | |
1947 | } | |
1948 | if ((den[M + 1] & 1) != 0) | |
1949 | goto fulldiv; | |
1950 | eshdn1 (num); | |
1951 | eshdn1 (den); | |
1952 | ||
1953 | p = &den[M + 1]; | |
1954 | q = &num[M + 1]; | |
1955 | ||
1956 | for (i = 0; i < NBITS + 2; i++) | |
1957 | { | |
1958 | if (*p <= *q) | |
1959 | { | |
1960 | *q -= *p; | |
1961 | j = 1; | |
1962 | } | |
1963 | else | |
1964 | { | |
1965 | j = 0; | |
1966 | } | |
1967 | eshup1 (equot); | |
1968 | equot[NI - 2] |= j; | |
1969 | eshup1 (num); | |
1970 | } | |
1971 | goto divdon; | |
1972 | } | |
1973 | ||
defb5dab RK |
1974 | /* The number of quotient bits to calculate is NBITS + 1 scaling guard |
1975 | bit + 1 roundoff bit. */ | |
1976 | ||
985b6196 RS |
1977 | fulldiv: |
1978 | ||
1979 | p = &equot[NI - 2]; | |
1980 | for (i = 0; i < NBITS + 2; i++) | |
1981 | { | |
1982 | if (ecmpm (den, num) <= 0) | |
1983 | { | |
1984 | esubm (den, num); | |
1985 | j = 1; /* quotient bit = 1 */ | |
1986 | } | |
1987 | else | |
1988 | j = 0; | |
1989 | eshup1 (equot); | |
1990 | *p |= j; | |
1991 | eshup1 (num); | |
1992 | } | |
1993 | ||
1994 | divdon: | |
1995 | ||
1996 | eshdn1 (equot); | |
1997 | eshdn1 (equot); | |
1998 | ||
1999 | /* test for nonzero remainder after roundoff bit */ | |
2000 | p = &num[M]; | |
2001 | j = 0; | |
2002 | for (i = M; i < NI; i++) | |
2003 | { | |
2004 | j |= *p++; | |
2005 | } | |
2006 | if (j) | |
2007 | j = 1; | |
2008 | ||
2009 | ||
2010 | for (i = 0; i < NI; i++) | |
2011 | num[i] = equot[i]; | |
2012 | return ((int) j); | |
2013 | } | |
2014 | ||
2015 | ||
2016 | /* Multiply significands */ | |
2017 | int | |
2018 | emulm (a, b) | |
2019 | unsigned EMUSHORT a[], b[]; | |
2020 | { | |
2021 | unsigned EMUSHORT *p, *q; | |
2022 | int i, j, k; | |
2023 | ||
2024 | equot[0] = b[0]; | |
2025 | equot[1] = b[1]; | |
2026 | for (i = M; i < NI; i++) | |
2027 | equot[i] = 0; | |
2028 | ||
2029 | p = &a[NI - 2]; | |
2030 | k = NBITS; | |
defb5dab | 2031 | while (*p == 0) /* significand is not supposed to be zero */ |
985b6196 RS |
2032 | { |
2033 | eshdn6 (a); | |
2034 | k -= 16; | |
2035 | } | |
2036 | if ((*p & 0xff) == 0) | |
2037 | { | |
2038 | eshdn8 (a); | |
2039 | k -= 8; | |
2040 | } | |
2041 | ||
2042 | q = &equot[NI - 1]; | |
2043 | j = 0; | |
2044 | for (i = 0; i < k; i++) | |
2045 | { | |
2046 | if (*p & 1) | |
2047 | eaddm (b, equot); | |
2048 | /* remember if there were any nonzero bits shifted out */ | |
2049 | if (*q & 1) | |
2050 | j |= 1; | |
2051 | eshdn1 (a); | |
2052 | eshdn1 (equot); | |
2053 | } | |
2054 | ||
2055 | for (i = 0; i < NI; i++) | |
2056 | b[i] = equot[i]; | |
2057 | ||
2058 | /* return flag for lost nonzero bits */ | |
2059 | return (j); | |
2060 | } | |
2061 | ||
842fbaaa JW |
2062 | #else |
2063 | ||
2064 | /* Radix 65536 versions of multiply and divide */ | |
2065 | ||
2066 | ||
2067 | /* Multiply significand of e-type number b | |
a0353055 | 2068 | by 16-bit quantity a, e-type result to c. */ |
842fbaaa | 2069 | |
a0353055 | 2070 | static void |
242cef1e | 2071 | m16m (a, b, c) |
c92d992a | 2072 | unsigned int a; |
242cef1e | 2073 | unsigned short b[], c[]; |
842fbaaa | 2074 | { |
242cef1e RS |
2075 | register unsigned short *pp; |
2076 | register unsigned long carry; | |
2077 | unsigned short *ps; | |
2078 | unsigned short p[NI]; | |
2079 | unsigned long aa, m; | |
2080 | int i; | |
2081 | ||
2082 | aa = a; | |
2083 | pp = &p[NI-2]; | |
2084 | *pp++ = 0; | |
2085 | *pp = 0; | |
2086 | ps = &b[NI-1]; | |
2087 | ||
2088 | for (i=M+1; i<NI; i++) | |
2089 | { | |
2090 | if (*ps == 0) | |
842fbaaa | 2091 | { |
242cef1e RS |
2092 | --ps; |
2093 | --pp; | |
2094 | *(pp-1) = 0; | |
842fbaaa | 2095 | } |
242cef1e RS |
2096 | else |
2097 | { | |
2098 | m = (unsigned long) aa * *ps--; | |
2099 | carry = (m & 0xffff) + *pp; | |
2100 | *pp-- = (unsigned short)carry; | |
2101 | carry = (carry >> 16) + (m >> 16) + *pp; | |
2102 | *pp = (unsigned short)carry; | |
2103 | *(pp-1) = carry >> 16; | |
2104 | } | |
2105 | } | |
2106 | for (i=M; i<NI; i++) | |
2107 | c[i] = p[i]; | |
842fbaaa JW |
2108 | } |
2109 | ||
2110 | ||
2111 | /* Divide significands. Neither the numerator nor the denominator | |
242cef1e | 2112 | is permitted to have its high guard word nonzero. */ |
842fbaaa | 2113 | |
a0353055 | 2114 | static int |
242cef1e RS |
2115 | edivm (den, num) |
2116 | unsigned short den[], num[]; | |
842fbaaa | 2117 | { |
242cef1e RS |
2118 | int i; |
2119 | register unsigned short *p; | |
2120 | unsigned long tnum; | |
2121 | unsigned short j, tdenm, tquot; | |
2122 | unsigned short tprod[NI+1]; | |
842fbaaa | 2123 | |
242cef1e RS |
2124 | p = &equot[0]; |
2125 | *p++ = num[0]; | |
2126 | *p++ = num[1]; | |
842fbaaa | 2127 | |
242cef1e RS |
2128 | for (i=M; i<NI; i++) |
2129 | { | |
2130 | *p++ = 0; | |
2131 | } | |
2132 | eshdn1 (num); | |
2133 | tdenm = den[M+1]; | |
2134 | for (i=M; i<NI; i++) | |
2135 | { | |
2136 | /* Find trial quotient digit (the radix is 65536). */ | |
2137 | tnum = (((unsigned long) num[M]) << 16) + num[M+1]; | |
2138 | ||
2139 | /* Do not execute the divide instruction if it will overflow. */ | |
2140 | if ((tdenm * 0xffffL) < tnum) | |
2141 | tquot = 0xffff; | |
2142 | else | |
2143 | tquot = tnum / tdenm; | |
2144 | /* Multiply denominator by trial quotient digit. */ | |
c92d992a | 2145 | m16m ((unsigned int)tquot, den, tprod); |
242cef1e RS |
2146 | /* The quotient digit may have been overestimated. */ |
2147 | if (ecmpm (tprod, num) > 0) | |
842fbaaa | 2148 | { |
242cef1e RS |
2149 | tquot -= 1; |
2150 | esubm (den, tprod); | |
2151 | if (ecmpm (tprod, num) > 0) | |
2152 | { | |
2153 | tquot -= 1; | |
2154 | esubm (den, tprod); | |
2155 | } | |
842fbaaa | 2156 | } |
242cef1e RS |
2157 | esubm (tprod, num); |
2158 | equot[i] = tquot; | |
2159 | eshup6(num); | |
2160 | } | |
2161 | /* test for nonzero remainder after roundoff bit */ | |
2162 | p = &num[M]; | |
2163 | j = 0; | |
2164 | for (i=M; i<NI; i++) | |
2165 | { | |
2166 | j |= *p++; | |
2167 | } | |
2168 | if (j) | |
2169 | j = 1; | |
842fbaaa | 2170 | |
242cef1e RS |
2171 | for (i=0; i<NI; i++) |
2172 | num[i] = equot[i]; | |
842fbaaa | 2173 | |
242cef1e | 2174 | return ((int)j); |
842fbaaa JW |
2175 | } |
2176 | ||
2177 | ||
2178 | ||
2179 | /* Multiply significands */ | |
a0353055 | 2180 | static int |
242cef1e RS |
2181 | emulm (a, b) |
2182 | unsigned short a[], b[]; | |
842fbaaa | 2183 | { |
242cef1e RS |
2184 | unsigned short *p, *q; |
2185 | unsigned short pprod[NI]; | |
2186 | unsigned short j; | |
2187 | int i; | |
2188 | ||
2189 | equot[0] = b[0]; | |
2190 | equot[1] = b[1]; | |
2191 | for (i=M; i<NI; i++) | |
2192 | equot[i] = 0; | |
2193 | ||
2194 | j = 0; | |
2195 | p = &a[NI-1]; | |
2196 | q = &equot[NI-1]; | |
2197 | for (i=M+1; i<NI; i++) | |
2198 | { | |
2199 | if (*p == 0) | |
842fbaaa | 2200 | { |
242cef1e RS |
2201 | --p; |
2202 | } | |
2203 | else | |
2204 | { | |
c92d992a | 2205 | m16m ((unsigned int) *p--, b, pprod); |
242cef1e | 2206 | eaddm(pprod, equot); |
842fbaaa | 2207 | } |
242cef1e RS |
2208 | j |= *q; |
2209 | eshdn6(equot); | |
2210 | } | |
842fbaaa | 2211 | |
242cef1e RS |
2212 | for (i=0; i<NI; i++) |
2213 | b[i] = equot[i]; | |
842fbaaa | 2214 | |
242cef1e RS |
2215 | /* return flag for lost nonzero bits */ |
2216 | return ((int)j); | |
842fbaaa JW |
2217 | } |
2218 | #endif | |
985b6196 RS |
2219 | |
2220 | ||
defb5dab | 2221 | /* Normalize and round off. |
985b6196 | 2222 | |
defb5dab RK |
2223 | The internal format number to be rounded is "s". |
2224 | Input "lost" indicates whether or not the number is exact. | |
2225 | This is the so-called sticky bit. | |
2226 | ||
2227 | Input "subflg" indicates whether the number was obtained | |
2228 | by a subtraction operation. In that case if lost is nonzero | |
2229 | then the number is slightly smaller than indicated. | |
2230 | ||
2231 | Input "exp" is the biased exponent, which may be negative. | |
2232 | the exponent field of "s" is ignored but is replaced by | |
2233 | "exp" as adjusted by normalization and rounding. | |
2234 | ||
2235 | Input "rcntrl" is the rounding control. | |
2236 | ||
2237 | For future reference: In order for emdnorm to round off denormal | |
842fbaaa JW |
2238 | significands at the right point, the input exponent must be |
2239 | adjusted to be the actual value it would have after conversion to | |
2240 | the final floating point type. This adjustment has been | |
2241 | implemented for all type conversions (etoe53, etc.) and decimal | |
2242 | conversions, but not for the arithmetic functions (eadd, etc.). | |
2243 | Data types having standard 15-bit exponents are not affected by | |
2244 | this, but SFmode and DFmode are affected. For example, ediv with | |
2245 | rndprc = 24 will not round correctly to 24-bit precision if the | |
2246 | result is denormal. */ | |
2247 | ||
985b6196 RS |
2248 | static int rlast = -1; |
2249 | static int rw = 0; | |
2250 | static unsigned EMUSHORT rmsk = 0; | |
2251 | static unsigned EMUSHORT rmbit = 0; | |
2252 | static unsigned EMUSHORT rebit = 0; | |
2253 | static int re = 0; | |
2254 | static unsigned EMUSHORT rbit[NI]; | |
2255 | ||
a0353055 | 2256 | static void |
985b6196 RS |
2257 | emdnorm (s, lost, subflg, exp, rcntrl) |
2258 | unsigned EMUSHORT s[]; | |
2259 | int lost; | |
2260 | int subflg; | |
2261 | EMULONG exp; | |
2262 | int rcntrl; | |
2263 | { | |
2264 | int i, j; | |
2265 | unsigned EMUSHORT r; | |
2266 | ||
2267 | /* Normalize */ | |
2268 | j = enormlz (s); | |
2269 | ||
2270 | /* a blank significand could mean either zero or infinity. */ | |
2271 | #ifndef INFINITY | |
2272 | if (j > NBITS) | |
2273 | { | |
2274 | ecleazs (s); | |
2275 | return; | |
2276 | } | |
2277 | #endif | |
2278 | exp -= j; | |
2279 | #ifndef INFINITY | |
2280 | if (exp >= 32767L) | |
2281 | goto overf; | |
2282 | #else | |
2283 | if ((j > NBITS) && (exp < 32767)) | |
2284 | { | |
2285 | ecleazs (s); | |
2286 | return; | |
2287 | } | |
2288 | #endif | |
2289 | if (exp < 0L) | |
2290 | { | |
2291 | if (exp > (EMULONG) (-NBITS - 1)) | |
2292 | { | |
2293 | j = (int) exp; | |
2294 | i = eshift (s, j); | |
2295 | if (i) | |
2296 | lost = 1; | |
2297 | } | |
2298 | else | |
2299 | { | |
2300 | ecleazs (s); | |
2301 | return; | |
2302 | } | |
2303 | } | |
2304 | /* Round off, unless told not to by rcntrl. */ | |
2305 | if (rcntrl == 0) | |
2306 | goto mdfin; | |
2307 | /* Set up rounding parameters if the control register changed. */ | |
2308 | if (rndprc != rlast) | |
2309 | { | |
2310 | ecleaz (rbit); | |
2311 | switch (rndprc) | |
2312 | { | |
2313 | default: | |
2314 | case NBITS: | |
2315 | rw = NI - 1; /* low guard word */ | |
2316 | rmsk = 0xffff; | |
2317 | rmbit = 0x8000; | |
842fbaaa | 2318 | re = rw - 1; |
985b6196 RS |
2319 | rebit = 1; |
2320 | break; | |
842fbaaa JW |
2321 | case 113: |
2322 | rw = 10; | |
2323 | rmsk = 0x7fff; | |
2324 | rmbit = 0x4000; | |
2325 | rebit = 0x8000; | |
2326 | re = rw; | |
2327 | break; | |
985b6196 RS |
2328 | case 64: |
2329 | rw = 7; | |
2330 | rmsk = 0xffff; | |
2331 | rmbit = 0x8000; | |
985b6196 RS |
2332 | re = rw - 1; |
2333 | rebit = 1; | |
2334 | break; | |
842fbaaa | 2335 | /* For DEC or IBM arithmetic */ |
985b6196 RS |
2336 | case 56: |
2337 | rw = 6; | |
2338 | rmsk = 0xff; | |
2339 | rmbit = 0x80; | |
985b6196 | 2340 | rebit = 0x100; |
842fbaaa | 2341 | re = rw; |
985b6196 RS |
2342 | break; |
2343 | case 53: | |
2344 | rw = 6; | |
2345 | rmsk = 0x7ff; | |
2346 | rmbit = 0x0400; | |
985b6196 | 2347 | rebit = 0x800; |
842fbaaa | 2348 | re = rw; |
985b6196 RS |
2349 | break; |
2350 | case 24: | |
2351 | rw = 4; | |
2352 | rmsk = 0xff; | |
2353 | rmbit = 0x80; | |
985b6196 | 2354 | rebit = 0x100; |
842fbaaa | 2355 | re = rw; |
985b6196 RS |
2356 | break; |
2357 | } | |
842fbaaa | 2358 | rbit[re] = rebit; |
985b6196 RS |
2359 | rlast = rndprc; |
2360 | } | |
2361 | ||
842fbaaa JW |
2362 | /* Shift down 1 temporarily if the data structure has an implied |
2363 | most significant bit and the number is denormal. */ | |
2364 | if ((exp <= 0) && (rndprc != 64) && (rndprc != NBITS)) | |
985b6196 | 2365 | { |
842fbaaa JW |
2366 | lost |= s[NI - 1] & 1; |
2367 | eshdn1 (s); | |
985b6196 | 2368 | } |
842fbaaa JW |
2369 | /* Clear out all bits below the rounding bit, |
2370 | remembering in r if any were nonzero. */ | |
2371 | r = s[rw] & rmsk; | |
2372 | if (rndprc < NBITS) | |
985b6196 | 2373 | { |
985b6196 RS |
2374 | i = rw + 1; |
2375 | while (i < NI) | |
2376 | { | |
2377 | if (s[i]) | |
2378 | r |= 1; | |
2379 | s[i] = 0; | |
2380 | ++i; | |
2381 | } | |
985b6196 | 2382 | } |
afb817fd | 2383 | s[rw] &= ~rmsk; |
985b6196 RS |
2384 | if ((r & rmbit) != 0) |
2385 | { | |
2386 | if (r == rmbit) | |
2387 | { | |
2388 | if (lost == 0) | |
2389 | { /* round to even */ | |
2390 | if ((s[re] & rebit) == 0) | |
2391 | goto mddone; | |
2392 | } | |
2393 | else | |
2394 | { | |
2395 | if (subflg != 0) | |
2396 | goto mddone; | |
2397 | } | |
2398 | } | |
2399 | eaddm (rbit, s); | |
2400 | } | |
2401 | mddone: | |
842fbaaa | 2402 | if ((exp <= 0) && (rndprc != 64) && (rndprc != NBITS)) |
985b6196 RS |
2403 | { |
2404 | eshup1 (s); | |
2405 | } | |
2406 | if (s[2] != 0) | |
2407 | { /* overflow on roundoff */ | |
2408 | eshdn1 (s); | |
2409 | exp += 1; | |
2410 | } | |
2411 | mdfin: | |
2412 | s[NI - 1] = 0; | |
2413 | if (exp >= 32767L) | |
2414 | { | |
2415 | #ifndef INFINITY | |
2416 | overf: | |
2417 | #endif | |
2418 | #ifdef INFINITY | |
2419 | s[1] = 32767; | |
2420 | for (i = 2; i < NI - 1; i++) | |
2421 | s[i] = 0; | |
64685ffa RS |
2422 | if (extra_warnings) |
2423 | warning ("floating point overflow"); | |
985b6196 RS |
2424 | #else |
2425 | s[1] = 32766; | |
2426 | s[2] = 0; | |
2427 | for (i = M + 1; i < NI - 1; i++) | |
2428 | s[i] = 0xffff; | |
2429 | s[NI - 1] = 0; | |
842fbaaa | 2430 | if ((rndprc < 64) || (rndprc == 113)) |
985b6196 RS |
2431 | { |
2432 | s[rw] &= ~rmsk; | |
2433 | if (rndprc == 24) | |
2434 | { | |
2435 | s[5] = 0; | |
2436 | s[6] = 0; | |
2437 | } | |
2438 | } | |
2439 | #endif | |
2440 | return; | |
2441 | } | |
2442 | if (exp < 0) | |
2443 | s[1] = 0; | |
2444 | else | |
2445 | s[1] = (unsigned EMUSHORT) exp; | |
2446 | } | |
2447 | ||
2448 | ||
2449 | ||
defb5dab | 2450 | /* Subtract external format numbers. */ |
985b6196 RS |
2451 | |
2452 | static int subflg = 0; | |
2453 | ||
a0353055 | 2454 | static void |
985b6196 RS |
2455 | esub (a, b, c) |
2456 | unsigned EMUSHORT *a, *b, *c; | |
2457 | { | |
2458 | ||
66b6d60b RS |
2459 | #ifdef NANS |
2460 | if (eisnan (a)) | |
2461 | { | |
2462 | emov (a, c); | |
2463 | return; | |
2464 | } | |
2465 | if (eisnan (b)) | |
2466 | { | |
2467 | emov (b, c); | |
2468 | return; | |
2469 | } | |
2470 | /* Infinity minus infinity is a NaN. | |
2471 | Test for subtracting infinities of the same sign. */ | |
2472 | if (eisinf (a) && eisinf (b) | |
2473 | && ((eisneg (a) ^ eisneg (b)) == 0)) | |
2474 | { | |
2475 | mtherr ("esub", INVALID); | |
29e11dab | 2476 | enan (c, 0); |
66b6d60b RS |
2477 | return; |
2478 | } | |
2479 | #endif | |
985b6196 RS |
2480 | subflg = 1; |
2481 | eadd1 (a, b, c); | |
2482 | } | |
2483 | ||
2484 | ||
defb5dab | 2485 | /* Add. */ |
a0353055 RK |
2486 | |
2487 | static void | |
985b6196 RS |
2488 | eadd (a, b, c) |
2489 | unsigned EMUSHORT *a, *b, *c; | |
2490 | { | |
2491 | ||
66b6d60b RS |
2492 | #ifdef NANS |
2493 | /* NaN plus anything is a NaN. */ | |
2494 | if (eisnan (a)) | |
2495 | { | |
2496 | emov (a, c); | |
2497 | return; | |
2498 | } | |
2499 | if (eisnan (b)) | |
2500 | { | |
2501 | emov (b, c); | |
2502 | return; | |
2503 | } | |
2504 | /* Infinity minus infinity is a NaN. | |
2505 | Test for adding infinities of opposite signs. */ | |
2506 | if (eisinf (a) && eisinf (b) | |
2507 | && ((eisneg (a) ^ eisneg (b)) != 0)) | |
2508 | { | |
2509 | mtherr ("esub", INVALID); | |
29e11dab | 2510 | enan (c, 0); |
66b6d60b RS |
2511 | return; |
2512 | } | |
2513 | #endif | |
985b6196 RS |
2514 | subflg = 0; |
2515 | eadd1 (a, b, c); | |
2516 | } | |
2517 | ||
a0353055 | 2518 | static void |
985b6196 RS |
2519 | eadd1 (a, b, c) |
2520 | unsigned EMUSHORT *a, *b, *c; | |
2521 | { | |
2522 | unsigned EMUSHORT ai[NI], bi[NI], ci[NI]; | |
2523 | int i, lost, j, k; | |
2524 | EMULONG lt, lta, ltb; | |
2525 | ||
2526 | #ifdef INFINITY | |
2527 | if (eisinf (a)) | |
2528 | { | |
2529 | emov (a, c); | |
2530 | if (subflg) | |
2531 | eneg (c); | |
2532 | return; | |
2533 | } | |
2534 | if (eisinf (b)) | |
2535 | { | |
2536 | emov (b, c); | |
2537 | return; | |
2538 | } | |
2539 | #endif | |
2540 | emovi (a, ai); | |
2541 | emovi (b, bi); | |
2542 | if (subflg) | |
2543 | ai[0] = ~ai[0]; | |
2544 | ||
2545 | /* compare exponents */ | |
2546 | lta = ai[E]; | |
2547 | ltb = bi[E]; | |
2548 | lt = lta - ltb; | |
2549 | if (lt > 0L) | |
2550 | { /* put the larger number in bi */ | |
2551 | emovz (bi, ci); | |
2552 | emovz (ai, bi); | |
2553 | emovz (ci, ai); | |
2554 | ltb = bi[E]; | |
2555 | lt = -lt; | |
2556 | } | |
2557 | lost = 0; | |
2558 | if (lt != 0L) | |
2559 | { | |
2560 | if (lt < (EMULONG) (-NBITS - 1)) | |
2561 | goto done; /* answer same as larger addend */ | |
2562 | k = (int) lt; | |
2563 | lost = eshift (ai, k); /* shift the smaller number down */ | |
2564 | } | |
2565 | else | |
2566 | { | |
2567 | /* exponents were the same, so must compare significands */ | |
2568 | i = ecmpm (ai, bi); | |
2569 | if (i == 0) | |
2570 | { /* the numbers are identical in magnitude */ | |
2571 | /* if different signs, result is zero */ | |
2572 | if (ai[0] != bi[0]) | |
2573 | { | |
2574 | eclear (c); | |
2575 | return; | |
2576 | } | |
2577 | /* if same sign, result is double */ | |
2578 | /* double denomalized tiny number */ | |
2579 | if ((bi[E] == 0) && ((bi[3] & 0x8000) == 0)) | |
2580 | { | |
2581 | eshup1 (bi); | |
2582 | goto done; | |
2583 | } | |
2584 | /* add 1 to exponent unless both are zero! */ | |
2585 | for (j = 1; j < NI - 1; j++) | |
2586 | { | |
2587 | if (bi[j] != 0) | |
2588 | { | |
2589 | /* This could overflow, but let emovo take care of that. */ | |
2590 | ltb += 1; | |
2591 | break; | |
2592 | } | |
2593 | } | |
2594 | bi[E] = (unsigned EMUSHORT) ltb; | |
2595 | goto done; | |
2596 | } | |
2597 | if (i > 0) | |
2598 | { /* put the larger number in bi */ | |
2599 | emovz (bi, ci); | |
2600 | emovz (ai, bi); | |
2601 | emovz (ci, ai); | |
2602 | } | |
2603 | } | |
2604 | if (ai[0] == bi[0]) | |
2605 | { | |
2606 | eaddm (ai, bi); | |
2607 | subflg = 0; | |
2608 | } | |
2609 | else | |
2610 | { | |
2611 | esubm (ai, bi); | |
2612 | subflg = 1; | |
2613 | } | |
2614 | emdnorm (bi, lost, subflg, ltb, 64); | |
2615 | ||
2616 | done: | |
2617 | emovo (bi, c); | |
2618 | } | |
2619 | ||
2620 | ||
2621 | ||
defb5dab | 2622 | /* Divide. */ |
a0353055 RK |
2623 | |
2624 | static void | |
985b6196 RS |
2625 | ediv (a, b, c) |
2626 | unsigned EMUSHORT *a, *b, *c; | |
2627 | { | |
2628 | unsigned EMUSHORT ai[NI], bi[NI]; | |
2629 | int i; | |
2630 | EMULONG lt, lta, ltb; | |
2631 | ||
66b6d60b RS |
2632 | #ifdef NANS |
2633 | /* Return any NaN input. */ | |
2634 | if (eisnan (a)) | |
2635 | { | |
2636 | emov (a, c); | |
2637 | return; | |
2638 | } | |
2639 | if (eisnan (b)) | |
2640 | { | |
2641 | emov (b, c); | |
2642 | return; | |
2643 | } | |
2644 | /* Zero over zero, or infinity over infinity, is a NaN. */ | |
2645 | if (((ecmp (a, ezero) == 0) && (ecmp (b, ezero) == 0)) | |
2646 | || (eisinf (a) && eisinf (b))) | |
2647 | { | |
2648 | mtherr ("ediv", INVALID); | |
29e11dab | 2649 | enan (c, eisneg (a) ^ eisneg (b)); |
66b6d60b RS |
2650 | return; |
2651 | } | |
2652 | #endif | |
2653 | /* Infinity over anything else is infinity. */ | |
985b6196 RS |
2654 | #ifdef INFINITY |
2655 | if (eisinf (b)) | |
2656 | { | |
2657 | if (eisneg (a) ^ eisneg (b)) | |
2658 | *(c + (NE - 1)) = 0x8000; | |
2659 | else | |
2660 | *(c + (NE - 1)) = 0; | |
2661 | einfin (c); | |
2662 | return; | |
2663 | } | |
66b6d60b | 2664 | /* Anything else over infinity is zero. */ |
985b6196 RS |
2665 | if (eisinf (a)) |
2666 | { | |
2667 | eclear (c); | |
2668 | return; | |
2669 | } | |
2670 | #endif | |
2671 | emovi (a, ai); | |
2672 | emovi (b, bi); | |
2673 | lta = ai[E]; | |
2674 | ltb = bi[E]; | |
2675 | if (bi[E] == 0) | |
2676 | { /* See if numerator is zero. */ | |
2677 | for (i = 1; i < NI - 1; i++) | |
2678 | { | |
2679 | if (bi[i] != 0) | |
2680 | { | |
2681 | ltb -= enormlz (bi); | |
2682 | goto dnzro1; | |
2683 | } | |
2684 | } | |
2685 | eclear (c); | |
2686 | return; | |
2687 | } | |
2688 | dnzro1: | |
2689 | ||
2690 | if (ai[E] == 0) | |
2691 | { /* possible divide by zero */ | |
2692 | for (i = 1; i < NI - 1; i++) | |
2693 | { | |
2694 | if (ai[i] != 0) | |
2695 | { | |
2696 | lta -= enormlz (ai); | |
2697 | goto dnzro2; | |
2698 | } | |
2699 | } | |
2700 | if (ai[0] == bi[0]) | |
2701 | *(c + (NE - 1)) = 0; | |
2702 | else | |
2703 | *(c + (NE - 1)) = 0x8000; | |
66b6d60b RS |
2704 | /* Divide by zero is not an invalid operation. |
2705 | It is a divide-by-zero operation! */ | |
985b6196 RS |
2706 | einfin (c); |
2707 | mtherr ("ediv", SING); | |
2708 | return; | |
2709 | } | |
2710 | dnzro2: | |
2711 | ||
2712 | i = edivm (ai, bi); | |
2713 | /* calculate exponent */ | |
2714 | lt = ltb - lta + EXONE; | |
2715 | emdnorm (bi, i, 0, lt, 64); | |
2716 | /* set the sign */ | |
2717 | if (ai[0] == bi[0]) | |
2718 | bi[0] = 0; | |
2719 | else | |
2720 | bi[0] = 0Xffff; | |
2721 | emovo (bi, c); | |
2722 | } | |
2723 | ||
2724 | ||
2725 | ||
defb5dab | 2726 | /* Multiply. */ |
a0353055 RK |
2727 | |
2728 | static void | |
985b6196 RS |
2729 | emul (a, b, c) |
2730 | unsigned EMUSHORT *a, *b, *c; | |
2731 | { | |
2732 | unsigned EMUSHORT ai[NI], bi[NI]; | |
2733 | int i, j; | |
2734 | EMULONG lt, lta, ltb; | |
2735 | ||
66b6d60b RS |
2736 | #ifdef NANS |
2737 | /* NaN times anything is the same NaN. */ | |
2738 | if (eisnan (a)) | |
2739 | { | |
2740 | emov (a, c); | |
2741 | return; | |
2742 | } | |
2743 | if (eisnan (b)) | |
2744 | { | |
2745 | emov (b, c); | |
2746 | return; | |
2747 | } | |
2748 | /* Zero times infinity is a NaN. */ | |
2749 | if ((eisinf (a) && (ecmp (b, ezero) == 0)) | |
2750 | || (eisinf (b) && (ecmp (a, ezero) == 0))) | |
2751 | { | |
2752 | mtherr ("emul", INVALID); | |
29e11dab | 2753 | enan (c, eisneg (a) ^ eisneg (b)); |
66b6d60b RS |
2754 | return; |
2755 | } | |
2756 | #endif | |
2757 | /* Infinity times anything else is infinity. */ | |
985b6196 RS |
2758 | #ifdef INFINITY |
2759 | if (eisinf (a) || eisinf (b)) | |
2760 | { | |
2761 | if (eisneg (a) ^ eisneg (b)) | |
2762 | *(c + (NE - 1)) = 0x8000; | |
2763 | else | |
2764 | *(c + (NE - 1)) = 0; | |
2765 | einfin (c); | |
2766 | return; | |
2767 | } | |
2768 | #endif | |
2769 | emovi (a, ai); | |
2770 | emovi (b, bi); | |
2771 | lta = ai[E]; | |
2772 | ltb = bi[E]; | |
2773 | if (ai[E] == 0) | |
2774 | { | |
2775 | for (i = 1; i < NI - 1; i++) | |
2776 | { | |
2777 | if (ai[i] != 0) | |
2778 | { | |
2779 | lta -= enormlz (ai); | |
2780 | goto mnzer1; | |
2781 | } | |
2782 | } | |
2783 | eclear (c); | |
2784 | return; | |
2785 | } | |
2786 | mnzer1: | |
2787 | ||
2788 | if (bi[E] == 0) | |
2789 | { | |
2790 | for (i = 1; i < NI - 1; i++) | |
2791 | { | |
2792 | if (bi[i] != 0) | |
2793 | { | |
2794 | ltb -= enormlz (bi); | |
2795 | goto mnzer2; | |
2796 | } | |
2797 | } | |
2798 | eclear (c); | |
2799 | return; | |
2800 | } | |
2801 | mnzer2: | |
2802 | ||
2803 | /* Multiply significands */ | |
2804 | j = emulm (ai, bi); | |
2805 | /* calculate exponent */ | |
2806 | lt = lta + ltb - (EXONE - 1); | |
2807 | emdnorm (bi, j, 0, lt, 64); | |
2808 | /* calculate sign of product */ | |
2809 | if (ai[0] == bi[0]) | |
2810 | bi[0] = 0; | |
2811 | else | |
2812 | bi[0] = 0xffff; | |
2813 | emovo (bi, c); | |
2814 | } | |
2815 | ||
2816 | ||
2817 | ||
2818 | ||
defb5dab | 2819 | /* Convert IEEE double precision to e type. */ |
a0353055 RK |
2820 | |
2821 | static void | |
66b6d60b RS |
2822 | e53toe (pe, y) |
2823 | unsigned EMUSHORT *pe, *y; | |
985b6196 RS |
2824 | { |
2825 | #ifdef DEC | |
2826 | ||
66b6d60b | 2827 | dectoe (pe, y); /* see etodec.c */ |
985b6196 RS |
2828 | |
2829 | #else | |
842fbaaa JW |
2830 | #ifdef IBM |
2831 | ||
2832 | ibmtoe (pe, y, DFmode); | |
985b6196 | 2833 | |
842fbaaa | 2834 | #else |
985b6196 | 2835 | register unsigned EMUSHORT r; |
66b6d60b | 2836 | register unsigned EMUSHORT *e, *p; |
985b6196 RS |
2837 | unsigned EMUSHORT yy[NI]; |
2838 | int denorm, k; | |
2839 | ||
66b6d60b | 2840 | e = pe; |
985b6196 RS |
2841 | denorm = 0; /* flag if denormalized number */ |
2842 | ecleaz (yy); | |
f76b9db2 ILT |
2843 | if (! FLOAT_WORDS_BIG_ENDIAN) |
2844 | e += 3; | |
985b6196 RS |
2845 | r = *e; |
2846 | yy[0] = 0; | |
2847 | if (r & 0x8000) | |
2848 | yy[0] = 0xffff; | |
2849 | yy[M] = (r & 0x0f) | 0x10; | |
2850 | r &= ~0x800f; /* strip sign and 4 significand bits */ | |
2851 | #ifdef INFINITY | |
2852 | if (r == 0x7ff0) | |
2853 | { | |
66b6d60b | 2854 | #ifdef NANS |
f76b9db2 | 2855 | if (! FLOAT_WORDS_BIG_ENDIAN) |
66b6d60b | 2856 | { |
f76b9db2 ILT |
2857 | if (((pe[3] & 0xf) != 0) || (pe[2] != 0) |
2858 | || (pe[1] != 0) || (pe[0] != 0)) | |
2859 | { | |
2860 | enan (y, yy[0] != 0); | |
2861 | return; | |
2862 | } | |
66b6d60b | 2863 | } |
f76b9db2 | 2864 | else |
66b6d60b | 2865 | { |
f76b9db2 ILT |
2866 | if (((pe[0] & 0xf) != 0) || (pe[1] != 0) |
2867 | || (pe[2] != 0) || (pe[3] != 0)) | |
2868 | { | |
2869 | enan (y, yy[0] != 0); | |
2870 | return; | |
2871 | } | |
66b6d60b | 2872 | } |
66b6d60b | 2873 | #endif /* NANS */ |
dca821e1 | 2874 | eclear (y); |
985b6196 | 2875 | einfin (y); |
dca821e1 | 2876 | if (yy[0]) |
985b6196 RS |
2877 | eneg (y); |
2878 | return; | |
2879 | } | |
66b6d60b | 2880 | #endif /* INFINITY */ |
985b6196 RS |
2881 | r >>= 4; |
2882 | /* If zero exponent, then the significand is denormalized. | |
defb5dab RK |
2883 | So take back the understood high significand bit. */ |
2884 | ||
985b6196 RS |
2885 | if (r == 0) |
2886 | { | |
2887 | denorm = 1; | |
2888 | yy[M] &= ~0x10; | |
2889 | } | |
2890 | r += EXONE - 01777; | |
2891 | yy[E] = r; | |
2892 | p = &yy[M + 1]; | |
f76b9db2 ILT |
2893 | #ifdef IEEE |
2894 | if (! FLOAT_WORDS_BIG_ENDIAN) | |
2895 | { | |
2896 | *p++ = *(--e); | |
2897 | *p++ = *(--e); | |
2898 | *p++ = *(--e); | |
2899 | } | |
2900 | else | |
2901 | { | |
2902 | ++e; | |
2903 | *p++ = *e++; | |
2904 | *p++ = *e++; | |
2905 | *p++ = *e++; | |
2906 | } | |
985b6196 | 2907 | #endif |
64685ffa | 2908 | eshift (yy, -5); |
985b6196 RS |
2909 | if (denorm) |
2910 | { /* if zero exponent, then normalize the significand */ | |
2911 | if ((k = enormlz (yy)) > NBITS) | |
2912 | ecleazs (yy); | |
2913 | else | |
2914 | yy[E] -= (unsigned EMUSHORT) (k - 1); | |
2915 | } | |
2916 | emovo (yy, y); | |
842fbaaa | 2917 | #endif /* not IBM */ |
985b6196 RS |
2918 | #endif /* not DEC */ |
2919 | } | |
2920 | ||
a0353055 | 2921 | static void |
66b6d60b RS |
2922 | e64toe (pe, y) |
2923 | unsigned EMUSHORT *pe, *y; | |
985b6196 RS |
2924 | { |
2925 | unsigned EMUSHORT yy[NI]; | |
66b6d60b | 2926 | unsigned EMUSHORT *e, *p, *q; |
985b6196 RS |
2927 | int i; |
2928 | ||
66b6d60b | 2929 | e = pe; |
985b6196 RS |
2930 | p = yy; |
2931 | for (i = 0; i < NE - 5; i++) | |
2932 | *p++ = 0; | |
842fbaaa | 2933 | /* This precision is not ordinarily supported on DEC or IBM. */ |
985b6196 RS |
2934 | #ifdef DEC |
2935 | for (i = 0; i < 5; i++) | |
2936 | *p++ = *e++; | |
2937 | #endif | |
842fbaaa JW |
2938 | #ifdef IBM |
2939 | p = &yy[0] + (NE - 1); | |
2940 | *p-- = *e++; | |
2941 | ++e; | |
2942 | for (i = 0; i < 5; i++) | |
2943 | *p-- = *e++; | |
2944 | #endif | |
f76b9db2 ILT |
2945 | #ifdef IEEE |
2946 | if (! FLOAT_WORDS_BIG_ENDIAN) | |
2947 | { | |
2948 | for (i = 0; i < 5; i++) | |
2949 | *p++ = *e++; | |
2950 | } | |
2951 | else | |
2952 | { | |
2953 | p = &yy[0] + (NE - 1); | |
2954 | *p-- = *e++; | |
2955 | ++e; | |
2956 | for (i = 0; i < 4; i++) | |
2957 | *p-- = *e++; | |
2958 | } | |
985b6196 | 2959 | #endif |
985b6196 | 2960 | #ifdef INFINITY |
82e974d4 RK |
2961 | /* Point to the exponent field and check max exponent cases. */ |
2962 | p = &yy[NE - 1]; | |
985b6196 RS |
2963 | if (*p == 0x7fff) |
2964 | { | |
66b6d60b | 2965 | #ifdef NANS |
f76b9db2 | 2966 | if (! FLOAT_WORDS_BIG_ENDIAN) |
66b6d60b | 2967 | { |
f76b9db2 | 2968 | for (i = 0; i < 4; i++) |
66b6d60b | 2969 | { |
82e974d4 RK |
2970 | if ((i != 3 && pe[i] != 0) |
2971 | /* Anything but 0x8000 here, including 0, is a NaN. */ | |
2972 | || (i == 3 && pe[i] != 0x8000)) | |
f76b9db2 ILT |
2973 | { |
2974 | enan (y, (*p & 0x8000) != 0); | |
2975 | return; | |
2976 | } | |
66b6d60b RS |
2977 | } |
2978 | } | |
f76b9db2 | 2979 | else |
66b6d60b | 2980 | { |
f76b9db2 | 2981 | for (i = 1; i <= 4; i++) |
66b6d60b | 2982 | { |
f76b9db2 ILT |
2983 | if (pe[i] != 0) |
2984 | { | |
2985 | enan (y, (*p & 0x8000) != 0); | |
2986 | return; | |
2987 | } | |
66b6d60b RS |
2988 | } |
2989 | } | |
66b6d60b | 2990 | #endif /* NANS */ |
dca821e1 | 2991 | eclear (y); |
985b6196 RS |
2992 | einfin (y); |
2993 | if (*p & 0x8000) | |
2994 | eneg (y); | |
2995 | return; | |
2996 | } | |
66b6d60b | 2997 | #endif /* INFINITY */ |
82e974d4 RK |
2998 | p = yy; |
2999 | q = y; | |
985b6196 RS |
3000 | for (i = 0; i < NE; i++) |
3001 | *q++ = *p++; | |
3002 | } | |
3003 | ||
3004 | ||
a0353055 | 3005 | static void |
842fbaaa | 3006 | e113toe (pe, y) |
66b6d60b | 3007 | unsigned EMUSHORT *pe, *y; |
985b6196 RS |
3008 | { |
3009 | register unsigned EMUSHORT r; | |
842fbaaa | 3010 | unsigned EMUSHORT *e, *p; |
985b6196 | 3011 | unsigned EMUSHORT yy[NI]; |
842fbaaa | 3012 | int denorm, i; |
985b6196 | 3013 | |
66b6d60b | 3014 | e = pe; |
842fbaaa | 3015 | denorm = 0; |
985b6196 | 3016 | ecleaz (yy); |
f76b9db2 ILT |
3017 | #ifdef IEEE |
3018 | if (! FLOAT_WORDS_BIG_ENDIAN) | |
3019 | e += 7; | |
985b6196 RS |
3020 | #endif |
3021 | r = *e; | |
3022 | yy[0] = 0; | |
3023 | if (r & 0x8000) | |
3024 | yy[0] = 0xffff; | |
842fbaaa | 3025 | r &= 0x7fff; |
985b6196 | 3026 | #ifdef INFINITY |
842fbaaa | 3027 | if (r == 0x7fff) |
985b6196 | 3028 | { |
66b6d60b | 3029 | #ifdef NANS |
f76b9db2 | 3030 | if (! FLOAT_WORDS_BIG_ENDIAN) |
66b6d60b | 3031 | { |
f76b9db2 | 3032 | for (i = 0; i < 7; i++) |
842fbaaa | 3033 | { |
f76b9db2 ILT |
3034 | if (pe[i] != 0) |
3035 | { | |
3036 | enan (y, yy[0] != 0); | |
3037 | return; | |
3038 | } | |
842fbaaa | 3039 | } |
66b6d60b | 3040 | } |
f76b9db2 | 3041 | else |
66b6d60b | 3042 | { |
f76b9db2 | 3043 | for (i = 1; i < 8; i++) |
842fbaaa | 3044 | { |
f76b9db2 ILT |
3045 | if (pe[i] != 0) |
3046 | { | |
3047 | enan (y, yy[0] != 0); | |
3048 | return; | |
3049 | } | |
842fbaaa | 3050 | } |
66b6d60b | 3051 | } |
842fbaaa | 3052 | #endif /* NANS */ |
dca821e1 | 3053 | eclear (y); |
985b6196 | 3054 | einfin (y); |
dca821e1 | 3055 | if (yy[0]) |
985b6196 RS |
3056 | eneg (y); |
3057 | return; | |
3058 | } | |
66b6d60b | 3059 | #endif /* INFINITY */ |
985b6196 RS |
3060 | yy[E] = r; |
3061 | p = &yy[M + 1]; | |
f76b9db2 ILT |
3062 | #ifdef IEEE |
3063 | if (! FLOAT_WORDS_BIG_ENDIAN) | |
3064 | { | |
3065 | for (i = 0; i < 7; i++) | |
3066 | *p++ = *(--e); | |
3067 | } | |
3068 | else | |
3069 | { | |
3070 | ++e; | |
3071 | for (i = 0; i < 7; i++) | |
3072 | *p++ = *e++; | |
3073 | } | |
985b6196 | 3074 | #endif |
842fbaaa JW |
3075 | /* If denormal, remove the implied bit; else shift down 1. */ |
3076 | if (r == 0) | |
3077 | { | |
3078 | yy[M] = 0; | |
3079 | } | |
3080 | else | |
3081 | { | |
3082 | yy[M] = 1; | |
3083 | eshift (yy, -1); | |
3084 | } | |
3085 | emovo (yy, y); | |
3086 | } | |
3087 | ||
3088 | ||
defb5dab | 3089 | /* Convert IEEE single precision to e type. */ |
a0353055 RK |
3090 | |
3091 | static void | |
842fbaaa JW |
3092 | e24toe (pe, y) |
3093 | unsigned EMUSHORT *pe, *y; | |
3094 | { | |
3095 | #ifdef IBM | |
3096 | ||
3097 | ibmtoe (pe, y, SFmode); | |
3098 | ||
3099 | #else | |
3100 | register unsigned EMUSHORT r; | |
3101 | register unsigned EMUSHORT *e, *p; | |
3102 | unsigned EMUSHORT yy[NI]; | |
3103 | int denorm, k; | |
3104 | ||
3105 | e = pe; | |
3106 | denorm = 0; /* flag if denormalized number */ | |
3107 | ecleaz (yy); | |
f76b9db2 ILT |
3108 | #ifdef IEEE |
3109 | if (! FLOAT_WORDS_BIG_ENDIAN) | |
3110 | e += 1; | |
842fbaaa JW |
3111 | #endif |
3112 | #ifdef DEC | |
3113 | e += 1; | |
3114 | #endif | |
3115 | r = *e; | |
3116 | yy[0] = 0; | |
3117 | if (r & 0x8000) | |
3118 | yy[0] = 0xffff; | |
3119 | yy[M] = (r & 0x7f) | 0200; | |
3120 | r &= ~0x807f; /* strip sign and 7 significand bits */ | |
3121 | #ifdef INFINITY | |
3122 | if (r == 0x7f80) | |
3123 | { | |
3124 | #ifdef NANS | |
f76b9db2 | 3125 | if (FLOAT_WORDS_BIG_ENDIAN) |
842fbaaa | 3126 | { |
f76b9db2 ILT |
3127 | if (((pe[0] & 0x7f) != 0) || (pe[1] != 0)) |
3128 | { | |
3129 | enan (y, yy[0] != 0); | |
3130 | return; | |
3131 | } | |
842fbaaa | 3132 | } |
f76b9db2 | 3133 | else |
842fbaaa | 3134 | { |
f76b9db2 ILT |
3135 | if (((pe[1] & 0x7f) != 0) || (pe[0] != 0)) |
3136 | { | |
3137 | enan (y, yy[0] != 0); | |
3138 | return; | |
3139 | } | |
842fbaaa | 3140 | } |
842fbaaa JW |
3141 | #endif /* NANS */ |
3142 | eclear (y); | |
3143 | einfin (y); | |
3144 | if (yy[0]) | |
3145 | eneg (y); | |
3146 | return; | |
3147 | } | |
3148 | #endif /* INFINITY */ | |
3149 | r >>= 7; | |
3150 | /* If zero exponent, then the significand is denormalized. | |
defb5dab | 3151 | So take back the understood high significand bit. */ |
842fbaaa JW |
3152 | if (r == 0) |
3153 | { | |
3154 | denorm = 1; | |
3155 | yy[M] &= ~0200; | |
3156 | } | |
3157 | r += EXONE - 0177; | |
3158 | yy[E] = r; | |
3159 | p = &yy[M + 1]; | |
842fbaaa JW |
3160 | #ifdef DEC |
3161 | *p++ = *(--e); | |
3162 | #endif | |
f76b9db2 ILT |
3163 | #ifdef IEEE |
3164 | if (! FLOAT_WORDS_BIG_ENDIAN) | |
3165 | *p++ = *(--e); | |
3166 | else | |
3167 | { | |
3168 | ++e; | |
3169 | *p++ = *e++; | |
3170 | } | |
842fbaaa JW |
3171 | #endif |
3172 | eshift (yy, -8); | |
3173 | if (denorm) | |
3174 | { /* if zero exponent, then normalize the significand */ | |
3175 | if ((k = enormlz (yy)) > NBITS) | |
3176 | ecleazs (yy); | |
3177 | else | |
3178 | yy[E] -= (unsigned EMUSHORT) (k - 1); | |
985b6196 RS |
3179 | } |
3180 | emovo (yy, y); | |
842fbaaa JW |
3181 | #endif /* not IBM */ |
3182 | } | |
3183 | ||
3184 | ||
a0353055 | 3185 | static void |
842fbaaa JW |
3186 | etoe113 (x, e) |
3187 | unsigned EMUSHORT *x, *e; | |
3188 | { | |
3189 | unsigned EMUSHORT xi[NI]; | |
3190 | EMULONG exp; | |
3191 | int rndsav; | |
3192 | ||
3193 | #ifdef NANS | |
3194 | if (eisnan (x)) | |
3195 | { | |
29e11dab | 3196 | make_nan (e, eisneg (x), TFmode); |
842fbaaa JW |
3197 | return; |
3198 | } | |
3199 | #endif | |
3200 | emovi (x, xi); | |
3201 | exp = (EMULONG) xi[E]; | |
3202 | #ifdef INFINITY | |
3203 | if (eisinf (x)) | |
3204 | goto nonorm; | |
3205 | #endif | |
3206 | /* round off to nearest or even */ | |
3207 | rndsav = rndprc; | |
3208 | rndprc = 113; | |
3209 | emdnorm (xi, 0, 0, exp, 64); | |
3210 | rndprc = rndsav; | |
3211 | nonorm: | |
3212 | toe113 (xi, e); | |
985b6196 RS |
3213 | } |
3214 | ||
defb5dab | 3215 | /* Move out internal format to ieee long double */ |
a0353055 | 3216 | |
842fbaaa JW |
3217 | static void |
3218 | toe113 (a, b) | |
3219 | unsigned EMUSHORT *a, *b; | |
3220 | { | |
3221 | register unsigned EMUSHORT *p, *q; | |
3222 | unsigned EMUSHORT i; | |
3223 | ||
3224 | #ifdef NANS | |
3225 | if (eiisnan (a)) | |
3226 | { | |
29e11dab | 3227 | make_nan (b, eiisneg (a), TFmode); |
842fbaaa JW |
3228 | return; |
3229 | } | |
3230 | #endif | |
3231 | p = a; | |
f76b9db2 ILT |
3232 | if (FLOAT_WORDS_BIG_ENDIAN) |
3233 | q = b; | |
3234 | else | |
3235 | q = b + 7; /* point to output exponent */ | |
842fbaaa JW |
3236 | |
3237 | /* If not denormal, delete the implied bit. */ | |
3238 | if (a[E] != 0) | |
3239 | { | |
3240 | eshup1 (a); | |
3241 | } | |
3242 | /* combine sign and exponent */ | |
3243 | i = *p++; | |
f76b9db2 ILT |
3244 | if (FLOAT_WORDS_BIG_ENDIAN) |
3245 | { | |
3246 | if (i) | |
3247 | *q++ = *p++ | 0x8000; | |
3248 | else | |
3249 | *q++ = *p++; | |
3250 | } | |
842fbaaa | 3251 | else |
f76b9db2 ILT |
3252 | { |
3253 | if (i) | |
3254 | *q-- = *p++ | 0x8000; | |
3255 | else | |
3256 | *q-- = *p++; | |
3257 | } | |
842fbaaa JW |
3258 | /* skip over guard word */ |
3259 | ++p; | |
3260 | /* move the significand */ | |
f76b9db2 ILT |
3261 | if (FLOAT_WORDS_BIG_ENDIAN) |
3262 | { | |
3263 | for (i = 0; i < 7; i++) | |
3264 | *q++ = *p++; | |
3265 | } | |
3266 | else | |
3267 | { | |
3268 | for (i = 0; i < 7; i++) | |
3269 | *q-- = *p++; | |
3270 | } | |
842fbaaa | 3271 | } |
985b6196 | 3272 | |
a0353055 | 3273 | static void |
985b6196 RS |
3274 | etoe64 (x, e) |
3275 | unsigned EMUSHORT *x, *e; | |
3276 | { | |
3277 | unsigned EMUSHORT xi[NI]; | |
3278 | EMULONG exp; | |
3279 | int rndsav; | |
3280 | ||
66b6d60b RS |
3281 | #ifdef NANS |
3282 | if (eisnan (x)) | |
3283 | { | |
29e11dab | 3284 | make_nan (e, eisneg (x), XFmode); |
66b6d60b RS |
3285 | return; |
3286 | } | |
3287 | #endif | |
985b6196 RS |
3288 | emovi (x, xi); |
3289 | /* adjust exponent for offset */ | |
3290 | exp = (EMULONG) xi[E]; | |
3291 | #ifdef INFINITY | |
3292 | if (eisinf (x)) | |
3293 | goto nonorm; | |
3294 | #endif | |
3295 | /* round off to nearest or even */ | |
3296 | rndsav = rndprc; | |
3297 | rndprc = 64; | |
3298 | emdnorm (xi, 0, 0, exp, 64); | |
3299 | rndprc = rndsav; | |
3300 | nonorm: | |
3301 | toe64 (xi, e); | |
3302 | } | |
3303 | ||
a0353055 | 3304 | |
defb5dab RK |
3305 | /* Move out internal format to ieee long double. */ |
3306 | ||
985b6196 RS |
3307 | static void |
3308 | toe64 (a, b) | |
3309 | unsigned EMUSHORT *a, *b; | |
3310 | { | |
3311 | register unsigned EMUSHORT *p, *q; | |
3312 | unsigned EMUSHORT i; | |
3313 | ||
66b6d60b RS |
3314 | #ifdef NANS |
3315 | if (eiisnan (a)) | |
3316 | { | |
29e11dab | 3317 | make_nan (b, eiisneg (a), XFmode); |
66b6d60b RS |
3318 | return; |
3319 | } | |
3320 | #endif | |
985b6196 | 3321 | p = a; |
f76b9db2 | 3322 | #ifdef IBM |
985b6196 | 3323 | q = b; |
f76b9db2 ILT |
3324 | #endif |
3325 | #ifdef DEC | |
3326 | q = b + 4; | |
3327 | #endif | |
3328 | #ifdef IEEE | |
3329 | if (FLOAT_WORDS_BIG_ENDIAN) | |
3330 | q = b; | |
3331 | else | |
3332 | { | |
3333 | q = b + 4; /* point to output exponent */ | |
985b6196 | 3334 | #if LONG_DOUBLE_TYPE_SIZE == 96 |
f76b9db2 ILT |
3335 | /* Clear the last two bytes of 12-byte Intel format */ |
3336 | *(q+1) = 0; | |
985b6196 | 3337 | #endif |
f76b9db2 | 3338 | } |
985b6196 RS |
3339 | #endif |
3340 | ||
3341 | /* combine sign and exponent */ | |
3342 | i = *p++; | |
f76b9db2 | 3343 | #ifdef IBM |
985b6196 RS |
3344 | if (i) |
3345 | *q++ = *p++ | 0x8000; | |
3346 | else | |
3347 | *q++ = *p++; | |
3348 | *q++ = 0; | |
f76b9db2 ILT |
3349 | #endif |
3350 | #ifdef DEC | |
985b6196 RS |
3351 | if (i) |
3352 | *q-- = *p++ | 0x8000; | |
3353 | else | |
3354 | *q-- = *p++; | |
f76b9db2 ILT |
3355 | #endif |
3356 | #ifdef IEEE | |
3357 | if (FLOAT_WORDS_BIG_ENDIAN) | |
3358 | { | |
3359 | if (i) | |
3360 | *q++ = *p++ | 0x8000; | |
3361 | else | |
3362 | *q++ = *p++; | |
3363 | *q++ = 0; | |
3364 | } | |
3365 | else | |
3366 | { | |
3367 | if (i) | |
3368 | *q-- = *p++ | 0x8000; | |
3369 | else | |
3370 | *q-- = *p++; | |
3371 | } | |
985b6196 RS |
3372 | #endif |
3373 | /* skip over guard word */ | |
3374 | ++p; | |
3375 | /* move the significand */ | |
f76b9db2 | 3376 | #ifdef IBM |
985b6196 RS |
3377 | for (i = 0; i < 4; i++) |
3378 | *q++ = *p++; | |
f76b9db2 ILT |
3379 | #endif |
3380 | #ifdef DEC | |
985b6196 RS |
3381 | for (i = 0; i < 4; i++) |
3382 | *q-- = *p++; | |
3383 | #endif | |
f76b9db2 ILT |
3384 | #ifdef IEEE |
3385 | if (FLOAT_WORDS_BIG_ENDIAN) | |
3386 | { | |
3387 | for (i = 0; i < 4; i++) | |
3388 | *q++ = *p++; | |
3389 | } | |
3390 | else | |
3391 | { | |
82e974d4 RK |
3392 | #ifdef INFINITY |
3393 | if (eiisinf (a)) | |
3394 | { | |
3395 | /* Intel long double infinity significand. */ | |
3396 | *q-- = 0x8000; | |
3397 | *q-- = 0; | |
3398 | *q-- = 0; | |
3399 | *q = 0; | |
3400 | return; | |
3401 | } | |
3402 | #endif | |
f76b9db2 ILT |
3403 | for (i = 0; i < 4; i++) |
3404 | *q-- = *p++; | |
3405 | } | |
3406 | #endif | |
985b6196 RS |
3407 | } |
3408 | ||
3409 | ||
defb5dab | 3410 | /* e type to IEEE double precision. */ |
985b6196 RS |
3411 | |
3412 | #ifdef DEC | |
3413 | ||
a0353055 | 3414 | static void |
985b6196 RS |
3415 | etoe53 (x, e) |
3416 | unsigned EMUSHORT *x, *e; | |
3417 | { | |
3418 | etodec (x, e); /* see etodec.c */ | |
3419 | } | |
3420 | ||
3421 | static void | |
3422 | toe53 (x, y) | |
3423 | unsigned EMUSHORT *x, *y; | |
3424 | { | |
3425 | todec (x, y); | |
3426 | } | |
3427 | ||
3428 | #else | |
842fbaaa JW |
3429 | #ifdef IBM |
3430 | ||
008f0d36 | 3431 | static void |
842fbaaa JW |
3432 | etoe53 (x, e) |
3433 | unsigned EMUSHORT *x, *e; | |
3434 | { | |
3435 | etoibm (x, e, DFmode); | |
3436 | } | |
3437 | ||
3438 | static void | |
3439 | toe53 (x, y) | |
3440 | unsigned EMUSHORT *x, *y; | |
3441 | { | |
3442 | toibm (x, y, DFmode); | |
3443 | } | |
3444 | ||
3445 | #else /* it's neither DEC nor IBM */ | |
985b6196 | 3446 | |
008f0d36 | 3447 | static void |
985b6196 RS |
3448 | etoe53 (x, e) |
3449 | unsigned EMUSHORT *x, *e; | |
3450 | { | |
3451 | unsigned EMUSHORT xi[NI]; | |
3452 | EMULONG exp; | |
3453 | int rndsav; | |
3454 | ||
66b6d60b RS |
3455 | #ifdef NANS |
3456 | if (eisnan (x)) | |
3457 | { | |
29e11dab | 3458 | make_nan (e, eisneg (x), DFmode); |
66b6d60b RS |
3459 | return; |
3460 | } | |
3461 | #endif | |
985b6196 RS |
3462 | emovi (x, xi); |
3463 | /* adjust exponent for offsets */ | |
3464 | exp = (EMULONG) xi[E] - (EXONE - 0x3ff); | |
3465 | #ifdef INFINITY | |
3466 | if (eisinf (x)) | |
3467 | goto nonorm; | |
3468 | #endif | |
3469 | /* round off to nearest or even */ | |
3470 | rndsav = rndprc; | |
3471 | rndprc = 53; | |
3472 | emdnorm (xi, 0, 0, exp, 64); | |
3473 | rndprc = rndsav; | |
3474 | nonorm: | |
3475 | toe53 (xi, e); | |
3476 | } | |
3477 | ||
3478 | ||
3479 | static void | |
3480 | toe53 (x, y) | |
3481 | unsigned EMUSHORT *x, *y; | |
3482 | { | |
3483 | unsigned EMUSHORT i; | |
3484 | unsigned EMUSHORT *p; | |
3485 | ||
66b6d60b RS |
3486 | #ifdef NANS |
3487 | if (eiisnan (x)) | |
3488 | { | |
29e11dab | 3489 | make_nan (y, eiisneg (x), DFmode); |
66b6d60b RS |
3490 | return; |
3491 | } | |
3492 | #endif | |
985b6196 | 3493 | p = &x[0]; |
f76b9db2 ILT |
3494 | #ifdef IEEE |
3495 | if (! FLOAT_WORDS_BIG_ENDIAN) | |
3496 | y += 3; | |
985b6196 RS |
3497 | #endif |
3498 | *y = 0; /* output high order */ | |
3499 | if (*p++) | |
3500 | *y = 0x8000; /* output sign bit */ | |
3501 | ||
3502 | i = *p++; | |
3503 | if (i >= (unsigned int) 2047) | |
3504 | { /* Saturate at largest number less than infinity. */ | |
3505 | #ifdef INFINITY | |
3506 | *y |= 0x7ff0; | |
f76b9db2 ILT |
3507 | if (! FLOAT_WORDS_BIG_ENDIAN) |
3508 | { | |
3509 | *(--y) = 0; | |
3510 | *(--y) = 0; | |
3511 | *(--y) = 0; | |
3512 | } | |
3513 | else | |
3514 | { | |
3515 | ++y; | |
3516 | *y++ = 0; | |
3517 | *y++ = 0; | |
3518 | *y++ = 0; | |
3519 | } | |
985b6196 RS |
3520 | #else |
3521 | *y |= (unsigned EMUSHORT) 0x7fef; | |
f76b9db2 ILT |
3522 | if (! FLOAT_WORDS_BIG_ENDIAN) |
3523 | { | |
3524 | *(--y) = 0xffff; | |
3525 | *(--y) = 0xffff; | |
3526 | *(--y) = 0xffff; | |
3527 | } | |
3528 | else | |
3529 | { | |
3530 | ++y; | |
3531 | *y++ = 0xffff; | |
3532 | *y++ = 0xffff; | |
3533 | *y++ = 0xffff; | |
3534 | } | |
985b6196 RS |
3535 | #endif |
3536 | return; | |
3537 | } | |
3538 | if (i == 0) | |
3539 | { | |
64685ffa | 3540 | eshift (x, 4); |
985b6196 RS |
3541 | } |
3542 | else | |
3543 | { | |
3544 | i <<= 4; | |
64685ffa | 3545 | eshift (x, 5); |
985b6196 RS |
3546 | } |
3547 | i |= *p++ & (unsigned EMUSHORT) 0x0f; /* *p = xi[M] */ | |
3548 | *y |= (unsigned EMUSHORT) i; /* high order output already has sign bit set */ | |
f76b9db2 ILT |
3549 | if (! FLOAT_WORDS_BIG_ENDIAN) |
3550 | { | |
3551 | *(--y) = *p++; | |
3552 | *(--y) = *p++; | |
3553 | *(--y) = *p; | |
3554 | } | |
3555 | else | |
3556 | { | |
3557 | ++y; | |
3558 | *y++ = *p++; | |
3559 | *y++ = *p++; | |
3560 | *y++ = *p++; | |
3561 | } | |
985b6196 RS |
3562 | } |
3563 | ||
842fbaaa | 3564 | #endif /* not IBM */ |
985b6196 RS |
3565 | #endif /* not DEC */ |
3566 | ||
3567 | ||
3568 | ||
defb5dab RK |
3569 | /* e type to IEEE single precision. */ |
3570 | ||
842fbaaa JW |
3571 | #ifdef IBM |
3572 | ||
008f0d36 | 3573 | static void |
842fbaaa JW |
3574 | etoe24 (x, e) |
3575 | unsigned EMUSHORT *x, *e; | |
3576 | { | |
3577 | etoibm (x, e, SFmode); | |
3578 | } | |
3579 | ||
3580 | static void | |
3581 | toe24 (x, y) | |
3582 | unsigned EMUSHORT *x, *y; | |
3583 | { | |
3584 | toibm (x, y, SFmode); | |
3585 | } | |
3586 | ||
3587 | #else | |
3588 | ||
008f0d36 | 3589 | static void |
985b6196 RS |
3590 | etoe24 (x, e) |
3591 | unsigned EMUSHORT *x, *e; | |
3592 | { | |
3593 | EMULONG exp; | |
3594 | unsigned EMUSHORT xi[NI]; | |
3595 | int rndsav; | |
3596 | ||
66b6d60b RS |
3597 | #ifdef NANS |
3598 | if (eisnan (x)) | |
3599 | { | |
29e11dab | 3600 | make_nan (e, eisneg (x), SFmode); |
66b6d60b RS |
3601 | return; |
3602 | } | |
3603 | #endif | |
985b6196 RS |
3604 | emovi (x, xi); |
3605 | /* adjust exponent for offsets */ | |
3606 | exp = (EMULONG) xi[E] - (EXONE - 0177); | |
3607 | #ifdef INFINITY | |
3608 | if (eisinf (x)) | |
3609 | goto nonorm; | |
3610 | #endif | |
3611 | /* round off to nearest or even */ | |
3612 | rndsav = rndprc; | |
3613 | rndprc = 24; | |
3614 | emdnorm (xi, 0, 0, exp, 64); | |
3615 | rndprc = rndsav; | |
3616 | nonorm: | |
3617 | toe24 (xi, e); | |
3618 | } | |
3619 | ||
3620 | static void | |
3621 | toe24 (x, y) | |
3622 | unsigned EMUSHORT *x, *y; | |
3623 | { | |
3624 | unsigned EMUSHORT i; | |
3625 | unsigned EMUSHORT *p; | |
3626 | ||
66b6d60b RS |
3627 | #ifdef NANS |
3628 | if (eiisnan (x)) | |
3629 | { | |
29e11dab | 3630 | make_nan (y, eiisneg (x), SFmode); |
66b6d60b RS |
3631 | return; |
3632 | } | |
3633 | #endif | |
985b6196 | 3634 | p = &x[0]; |
f76b9db2 ILT |
3635 | #ifdef IEEE |
3636 | if (! FLOAT_WORDS_BIG_ENDIAN) | |
3637 | y += 1; | |
985b6196 RS |
3638 | #endif |
3639 | #ifdef DEC | |
3640 | y += 1; | |
3641 | #endif | |
3642 | *y = 0; /* output high order */ | |
3643 | if (*p++) | |
3644 | *y = 0x8000; /* output sign bit */ | |
3645 | ||
3646 | i = *p++; | |
64685ffa | 3647 | /* Handle overflow cases. */ |
985b6196 | 3648 | if (i >= 255) |
64685ffa | 3649 | { |
985b6196 RS |
3650 | #ifdef INFINITY |
3651 | *y |= (unsigned EMUSHORT) 0x7f80; | |
985b6196 RS |
3652 | #ifdef DEC |
3653 | *(--y) = 0; | |
3654 | #endif | |
f76b9db2 ILT |
3655 | #ifdef IEEE |
3656 | if (! FLOAT_WORDS_BIG_ENDIAN) | |
3657 | *(--y) = 0; | |
3658 | else | |
3659 | { | |
3660 | ++y; | |
3661 | *y = 0; | |
3662 | } | |
985b6196 | 3663 | #endif |
64685ffa | 3664 | #else /* no INFINITY */ |
985b6196 | 3665 | *y |= (unsigned EMUSHORT) 0x7f7f; |
985b6196 RS |
3666 | #ifdef DEC |
3667 | *(--y) = 0xffff; | |
3668 | #endif | |
f76b9db2 ILT |
3669 | #ifdef IEEE |
3670 | if (! FLOAT_WORDS_BIG_ENDIAN) | |
3671 | *(--y) = 0xffff; | |
3672 | else | |
3673 | { | |
3674 | ++y; | |
3675 | *y = 0xffff; | |
3676 | } | |
985b6196 | 3677 | #endif |
64685ffa RS |
3678 | #ifdef ERANGE |
3679 | errno = ERANGE; | |
985b6196 | 3680 | #endif |
64685ffa | 3681 | #endif /* no INFINITY */ |
985b6196 RS |
3682 | return; |
3683 | } | |
3684 | if (i == 0) | |
3685 | { | |
64685ffa | 3686 | eshift (x, 7); |
985b6196 RS |
3687 | } |
3688 | else | |
3689 | { | |
3690 | i <<= 7; | |
64685ffa | 3691 | eshift (x, 8); |
985b6196 RS |
3692 | } |
3693 | i |= *p++ & (unsigned EMUSHORT) 0x7f; /* *p = xi[M] */ | |
3694 | *y |= i; /* high order output already has sign bit set */ | |
985b6196 RS |
3695 | #ifdef DEC |
3696 | *(--y) = *p; | |
3697 | #endif | |
f76b9db2 ILT |
3698 | #ifdef IEEE |
3699 | if (! FLOAT_WORDS_BIG_ENDIAN) | |
3700 | *(--y) = *p; | |
3701 | else | |
3702 | { | |
3703 | ++y; | |
3704 | *y = *p; | |
3705 | } | |
985b6196 RS |
3706 | #endif |
3707 | } | |
842fbaaa | 3708 | #endif /* not IBM */ |
985b6196 | 3709 | |
defb5dab RK |
3710 | /* Compare two e type numbers. |
3711 | Return +1 if a > b | |
3712 | 0 if a == b | |
3713 | -1 if a < b | |
3714 | -2 if either a or b is a NaN. */ | |
a0353055 RK |
3715 | |
3716 | static int | |
985b6196 RS |
3717 | ecmp (a, b) |
3718 | unsigned EMUSHORT *a, *b; | |
3719 | { | |
3720 | unsigned EMUSHORT ai[NI], bi[NI]; | |
3721 | register unsigned EMUSHORT *p, *q; | |
3722 | register int i; | |
3723 | int msign; | |
3724 | ||
66b6d60b RS |
3725 | #ifdef NANS |
3726 | if (eisnan (a) || eisnan (b)) | |
3727 | return (-2); | |
3728 | #endif | |
985b6196 RS |
3729 | emovi (a, ai); |
3730 | p = ai; | |
3731 | emovi (b, bi); | |
3732 | q = bi; | |
3733 | ||
3734 | if (*p != *q) | |
3735 | { /* the signs are different */ | |
3736 | /* -0 equals + 0 */ | |
3737 | for (i = 1; i < NI - 1; i++) | |
3738 | { | |
3739 | if (ai[i] != 0) | |
3740 | goto nzro; | |
3741 | if (bi[i] != 0) | |
3742 | goto nzro; | |
3743 | } | |
3744 | return (0); | |
3745 | nzro: | |
3746 | if (*p == 0) | |
3747 | return (1); | |
3748 | else | |
3749 | return (-1); | |
3750 | } | |
3751 | /* both are the same sign */ | |
3752 | if (*p == 0) | |
3753 | msign = 1; | |
3754 | else | |
3755 | msign = -1; | |
3756 | i = NI - 1; | |
3757 | do | |
3758 | { | |
3759 | if (*p++ != *q++) | |
3760 | { | |
3761 | goto diff; | |
3762 | } | |
3763 | } | |
3764 | while (--i > 0); | |
3765 | ||
3766 | return (0); /* equality */ | |
3767 | ||
3768 | ||
3769 | ||
3770 | diff: | |
3771 | ||
3772 | if (*(--p) > *(--q)) | |
3773 | return (msign); /* p is bigger */ | |
3774 | else | |
3775 | return (-msign); /* p is littler */ | |
3776 | } | |
3777 | ||
3778 | ||
3779 | ||
3780 | ||
defb5dab | 3781 | /* Find nearest integer to x = floor (x + 0.5). */ |
a0353055 RK |
3782 | |
3783 | static void | |
985b6196 RS |
3784 | eround (x, y) |
3785 | unsigned EMUSHORT *x, *y; | |
3786 | { | |
3787 | eadd (ehalf, x, y); | |
3788 | efloor (y, y); | |
3789 | } | |
3790 | ||
3791 | ||
3792 | ||
3793 | ||
defb5dab | 3794 | /* Convert HOST_WIDE_INT to e type. */ |
a0353055 RK |
3795 | |
3796 | static void | |
985b6196 | 3797 | ltoe (lp, y) |
b51ab098 RK |
3798 | HOST_WIDE_INT *lp; |
3799 | unsigned EMUSHORT *y; | |
985b6196 RS |
3800 | { |
3801 | unsigned EMUSHORT yi[NI]; | |
b51ab098 | 3802 | unsigned HOST_WIDE_INT ll; |
985b6196 RS |
3803 | int k; |
3804 | ||
3805 | ecleaz (yi); | |
3806 | if (*lp < 0) | |
3807 | { | |
3808 | /* make it positive */ | |
b51ab098 | 3809 | ll = (unsigned HOST_WIDE_INT) (-(*lp)); |
985b6196 RS |
3810 | yi[0] = 0xffff; /* put correct sign in the e type number */ |
3811 | } | |
3812 | else | |
3813 | { | |
b51ab098 | 3814 | ll = (unsigned HOST_WIDE_INT) (*lp); |
985b6196 RS |
3815 | } |
3816 | /* move the long integer to yi significand area */ | |
b51ab098 | 3817 | #if HOST_BITS_PER_WIDE_INT == 64 |
7729f1ca RS |
3818 | yi[M] = (unsigned EMUSHORT) (ll >> 48); |
3819 | yi[M + 1] = (unsigned EMUSHORT) (ll >> 32); | |
3820 | yi[M + 2] = (unsigned EMUSHORT) (ll >> 16); | |
3821 | yi[M + 3] = (unsigned EMUSHORT) ll; | |
3822 | yi[E] = EXONE + 47; /* exponent if normalize shift count were 0 */ | |
3823 | #else | |
985b6196 RS |
3824 | yi[M] = (unsigned EMUSHORT) (ll >> 16); |
3825 | yi[M + 1] = (unsigned EMUSHORT) ll; | |
985b6196 | 3826 | yi[E] = EXONE + 15; /* exponent if normalize shift count were 0 */ |
7729f1ca RS |
3827 | #endif |
3828 | ||
985b6196 RS |
3829 | if ((k = enormlz (yi)) > NBITS)/* normalize the significand */ |
3830 | ecleaz (yi); /* it was zero */ | |
3831 | else | |
3832 | yi[E] -= (unsigned EMUSHORT) k;/* subtract shift count from exponent */ | |
3833 | emovo (yi, y); /* output the answer */ | |
3834 | } | |
3835 | ||
defb5dab | 3836 | /* Convert unsigned HOST_WIDE_INT to e type. */ |
a0353055 RK |
3837 | |
3838 | static void | |
985b6196 | 3839 | ultoe (lp, y) |
b51ab098 RK |
3840 | unsigned HOST_WIDE_INT *lp; |
3841 | unsigned EMUSHORT *y; | |
985b6196 RS |
3842 | { |
3843 | unsigned EMUSHORT yi[NI]; | |
b51ab098 | 3844 | unsigned HOST_WIDE_INT ll; |
985b6196 RS |
3845 | int k; |
3846 | ||
3847 | ecleaz (yi); | |
3848 | ll = *lp; | |
3849 | ||
3850 | /* move the long integer to ayi significand area */ | |
b51ab098 | 3851 | #if HOST_BITS_PER_WIDE_INT == 64 |
7729f1ca RS |
3852 | yi[M] = (unsigned EMUSHORT) (ll >> 48); |
3853 | yi[M + 1] = (unsigned EMUSHORT) (ll >> 32); | |
3854 | yi[M + 2] = (unsigned EMUSHORT) (ll >> 16); | |
3855 | yi[M + 3] = (unsigned EMUSHORT) ll; | |
3856 | yi[E] = EXONE + 47; /* exponent if normalize shift count were 0 */ | |
3857 | #else | |
985b6196 RS |
3858 | yi[M] = (unsigned EMUSHORT) (ll >> 16); |
3859 | yi[M + 1] = (unsigned EMUSHORT) ll; | |
985b6196 | 3860 | yi[E] = EXONE + 15; /* exponent if normalize shift count were 0 */ |
7729f1ca RS |
3861 | #endif |
3862 | ||
985b6196 RS |
3863 | if ((k = enormlz (yi)) > NBITS)/* normalize the significand */ |
3864 | ecleaz (yi); /* it was zero */ | |
3865 | else | |
3866 | yi[E] -= (unsigned EMUSHORT) k; /* subtract shift count from exponent */ | |
3867 | emovo (yi, y); /* output the answer */ | |
3868 | } | |
3869 | ||
3870 | ||
c764eafd RK |
3871 | /* Find signed HOST_WIDE_INT integer and floating point fractional |
3872 | parts of e-type (packed internal format) floating point input X. | |
3873 | The integer output I has the sign of the input, except that | |
3874 | positive overflow is permitted if FIXUNS_TRUNC_LIKE_FIX_TRUNC. | |
3875 | The output e-type fraction FRAC is the positive fractional | |
3876 | part of abs (X). */ | |
985b6196 | 3877 | |
a0353055 | 3878 | static void |
985b6196 RS |
3879 | eifrac (x, i, frac) |
3880 | unsigned EMUSHORT *x; | |
b51ab098 | 3881 | HOST_WIDE_INT *i; |
985b6196 RS |
3882 | unsigned EMUSHORT *frac; |
3883 | { | |
3884 | unsigned EMUSHORT xi[NI]; | |
7729f1ca | 3885 | int j, k; |
b51ab098 | 3886 | unsigned HOST_WIDE_INT ll; |
985b6196 RS |
3887 | |
3888 | emovi (x, xi); | |
3889 | k = (int) xi[E] - (EXONE - 1); | |
3890 | if (k <= 0) | |
3891 | { | |
3892 | /* if exponent <= 0, integer = 0 and real output is fraction */ | |
3893 | *i = 0L; | |
3894 | emovo (xi, frac); | |
3895 | return; | |
3896 | } | |
b51ab098 | 3897 | if (k > (HOST_BITS_PER_WIDE_INT - 1)) |
985b6196 | 3898 | { |
7729f1ca RS |
3899 | /* long integer overflow: output large integer |
3900 | and correct fraction */ | |
985b6196 | 3901 | if (xi[0]) |
b51ab098 | 3902 | *i = ((unsigned HOST_WIDE_INT) 1) << (HOST_BITS_PER_WIDE_INT - 1); |
985b6196 | 3903 | else |
c764eafd RK |
3904 | { |
3905 | #ifdef FIXUNS_TRUNC_LIKE_FIX_TRUNC | |
3906 | /* In this case, let it overflow and convert as if unsigned. */ | |
3907 | euifrac (x, &ll, frac); | |
3908 | *i = (HOST_WIDE_INT) ll; | |
3909 | return; | |
3910 | #else | |
3911 | /* In other cases, return the largest positive integer. */ | |
3912 | *i = (((unsigned HOST_WIDE_INT) 1) << (HOST_BITS_PER_WIDE_INT - 1)) - 1; | |
3913 | #endif | |
3914 | } | |
64685ffa RS |
3915 | eshift (xi, k); |
3916 | if (extra_warnings) | |
3917 | warning ("overflow on truncation to integer"); | |
985b6196 | 3918 | } |
7729f1ca | 3919 | else if (k > 16) |
985b6196 | 3920 | { |
7729f1ca RS |
3921 | /* Shift more than 16 bits: first shift up k-16 mod 16, |
3922 | then shift up by 16's. */ | |
3923 | j = k - ((k >> 4) << 4); | |
3924 | eshift (xi, j); | |
3925 | ll = xi[M]; | |
3926 | k -= j; | |
3927 | do | |
3928 | { | |
3929 | eshup6 (xi); | |
3930 | ll = (ll << 16) | xi[M]; | |
3931 | } | |
3932 | while ((k -= 16) > 0); | |
3933 | *i = ll; | |
3934 | if (xi[0]) | |
3935 | *i = -(*i); | |
3936 | } | |
3937 | else | |
842fbaaa JW |
3938 | { |
3939 | /* shift not more than 16 bits */ | |
3940 | eshift (xi, k); | |
b51ab098 | 3941 | *i = (HOST_WIDE_INT) xi[M] & 0xffff; |
842fbaaa JW |
3942 | if (xi[0]) |
3943 | *i = -(*i); | |
3944 | } | |
985b6196 RS |
3945 | xi[0] = 0; |
3946 | xi[E] = EXONE - 1; | |
3947 | xi[M] = 0; | |
3948 | if ((k = enormlz (xi)) > NBITS) | |
3949 | ecleaz (xi); | |
3950 | else | |
3951 | xi[E] -= (unsigned EMUSHORT) k; | |
3952 | ||
3953 | emovo (xi, frac); | |
3954 | } | |
3955 | ||
3956 | ||
b51ab098 | 3957 | /* Find unsigned HOST_WIDE_INT integer and floating point fractional parts. |
7729f1ca RS |
3958 | A negative e type input yields integer output = 0 |
3959 | but correct fraction. */ | |
985b6196 | 3960 | |
a0353055 | 3961 | static void |
985b6196 RS |
3962 | euifrac (x, i, frac) |
3963 | unsigned EMUSHORT *x; | |
b51ab098 | 3964 | unsigned HOST_WIDE_INT *i; |
985b6196 RS |
3965 | unsigned EMUSHORT *frac; |
3966 | { | |
b51ab098 | 3967 | unsigned HOST_WIDE_INT ll; |
985b6196 | 3968 | unsigned EMUSHORT xi[NI]; |
7729f1ca | 3969 | int j, k; |
985b6196 RS |
3970 | |
3971 | emovi (x, xi); | |
3972 | k = (int) xi[E] - (EXONE - 1); | |
3973 | if (k <= 0) | |
3974 | { | |
3975 | /* if exponent <= 0, integer = 0 and argument is fraction */ | |
3976 | *i = 0L; | |
3977 | emovo (xi, frac); | |
3978 | return; | |
3979 | } | |
b51ab098 | 3980 | if (k > HOST_BITS_PER_WIDE_INT) |
985b6196 | 3981 | { |
7729f1ca RS |
3982 | /* Long integer overflow: output large integer |
3983 | and correct fraction. | |
3984 | Note, the BSD microvax compiler says that ~(0UL) | |
3985 | is a syntax error. */ | |
985b6196 | 3986 | *i = ~(0L); |
64685ffa RS |
3987 | eshift (xi, k); |
3988 | if (extra_warnings) | |
3989 | warning ("overflow on truncation to unsigned integer"); | |
985b6196 | 3990 | } |
7729f1ca | 3991 | else if (k > 16) |
985b6196 | 3992 | { |
7729f1ca RS |
3993 | /* Shift more than 16 bits: first shift up k-16 mod 16, |
3994 | then shift up by 16's. */ | |
3995 | j = k - ((k >> 4) << 4); | |
3996 | eshift (xi, j); | |
3997 | ll = xi[M]; | |
3998 | k -= j; | |
3999 | do | |
4000 | { | |
4001 | eshup6 (xi); | |
4002 | ll = (ll << 16) | xi[M]; | |
4003 | } | |
4004 | while ((k -= 16) > 0); | |
4005 | *i = ll; | |
4006 | } | |
4007 | else | |
4008 | { | |
4009 | /* shift not more than 16 bits */ | |
64685ffa | 4010 | eshift (xi, k); |
b51ab098 | 4011 | *i = (HOST_WIDE_INT) xi[M] & 0xffff; |
985b6196 RS |
4012 | } |
4013 | ||
7729f1ca | 4014 | if (xi[0]) /* A negative value yields unsigned integer 0. */ |
985b6196 | 4015 | *i = 0L; |
842fbaaa | 4016 | |
985b6196 RS |
4017 | xi[0] = 0; |
4018 | xi[E] = EXONE - 1; | |
4019 | xi[M] = 0; | |
4020 | if ((k = enormlz (xi)) > NBITS) | |
4021 | ecleaz (xi); | |
4022 | else | |
4023 | xi[E] -= (unsigned EMUSHORT) k; | |
4024 | ||
4025 | emovo (xi, frac); | |
4026 | } | |
4027 | ||
4028 | ||
4029 | ||
defb5dab | 4030 | /* Shift significand area up or down by the number of bits given by SC. */ |
a0353055 RK |
4031 | |
4032 | static int | |
985b6196 RS |
4033 | eshift (x, sc) |
4034 | unsigned EMUSHORT *x; | |
4035 | int sc; | |
4036 | { | |
4037 | unsigned EMUSHORT lost; | |
4038 | unsigned EMUSHORT *p; | |
4039 | ||
4040 | if (sc == 0) | |
4041 | return (0); | |
4042 | ||
4043 | lost = 0; | |
4044 | p = x + NI - 1; | |
4045 | ||
4046 | if (sc < 0) | |
4047 | { | |
4048 | sc = -sc; | |
4049 | while (sc >= 16) | |
4050 | { | |
4051 | lost |= *p; /* remember lost bits */ | |
4052 | eshdn6 (x); | |
4053 | sc -= 16; | |
4054 | } | |
4055 | ||
4056 | while (sc >= 8) | |
4057 | { | |
4058 | lost |= *p & 0xff; | |
4059 | eshdn8 (x); | |
4060 | sc -= 8; | |
4061 | } | |
4062 | ||
4063 | while (sc > 0) | |
4064 | { | |
4065 | lost |= *p & 1; | |
4066 | eshdn1 (x); | |
4067 | sc -= 1; | |
4068 | } | |
4069 | } | |
4070 | else | |
4071 | { | |
4072 | while (sc >= 16) | |
4073 | { | |
4074 | eshup6 (x); | |
4075 | sc -= 16; | |
4076 | } | |
4077 | ||
4078 | while (sc >= 8) | |
4079 | { | |
4080 | eshup8 (x); | |
4081 | sc -= 8; | |
4082 | } | |
4083 | ||
4084 | while (sc > 0) | |
4085 | { | |
4086 | eshup1 (x); | |
4087 | sc -= 1; | |
4088 | } | |
4089 | } | |
4090 | if (lost) | |
4091 | lost = 1; | |
4092 | return ((int) lost); | |
4093 | } | |
4094 | ||
4095 | ||
4096 | ||
defb5dab RK |
4097 | /* Shift normalize the significand area pointed to by argument. |
4098 | Shift count (up = positive) is returned. */ | |
a0353055 RK |
4099 | |
4100 | static int | |
985b6196 RS |
4101 | enormlz (x) |
4102 | unsigned EMUSHORT x[]; | |
4103 | { | |
4104 | register unsigned EMUSHORT *p; | |
4105 | int sc; | |
4106 | ||
4107 | sc = 0; | |
4108 | p = &x[M]; | |
4109 | if (*p != 0) | |
4110 | goto normdn; | |
4111 | ++p; | |
4112 | if (*p & 0x8000) | |
4113 | return (0); /* already normalized */ | |
4114 | while (*p == 0) | |
4115 | { | |
4116 | eshup6 (x); | |
4117 | sc += 16; | |
defb5dab | 4118 | |
985b6196 | 4119 | /* With guard word, there are NBITS+16 bits available. |
defb5dab | 4120 | Return true if all are zero. */ |
985b6196 RS |
4121 | if (sc > NBITS) |
4122 | return (sc); | |
4123 | } | |
4124 | /* see if high byte is zero */ | |
4125 | while ((*p & 0xff00) == 0) | |
4126 | { | |
4127 | eshup8 (x); | |
4128 | sc += 8; | |
4129 | } | |
4130 | /* now shift 1 bit at a time */ | |
4131 | while ((*p & 0x8000) == 0) | |
4132 | { | |
4133 | eshup1 (x); | |
4134 | sc += 1; | |
4135 | if (sc > NBITS) | |
4136 | { | |
4137 | mtherr ("enormlz", UNDERFLOW); | |
4138 | return (sc); | |
4139 | } | |
4140 | } | |
4141 | return (sc); | |
4142 | ||
4143 | /* Normalize by shifting down out of the high guard word | |
4144 | of the significand */ | |
4145 | normdn: | |
4146 | ||
4147 | if (*p & 0xff00) | |
4148 | { | |
4149 | eshdn8 (x); | |
4150 | sc -= 8; | |
4151 | } | |
4152 | while (*p != 0) | |
4153 | { | |
4154 | eshdn1 (x); | |
4155 | sc -= 1; | |
4156 | ||
4157 | if (sc < -NBITS) | |
4158 | { | |
4159 | mtherr ("enormlz", OVERFLOW); | |
4160 | return (sc); | |
4161 | } | |
4162 | } | |
4163 | return (sc); | |
4164 | } | |
4165 | ||
4166 | ||
4167 | ||
4168 | ||
4169 | /* Convert e type number to decimal format ASCII string. | |
defb5dab | 4170 | The constants are for 64 bit precision. */ |
985b6196 RS |
4171 | |
4172 | #define NTEN 12 | |
4173 | #define MAXP 4096 | |
4174 | ||
842fbaaa JW |
4175 | #if LONG_DOUBLE_TYPE_SIZE == 128 |
4176 | static unsigned EMUSHORT etens[NTEN + 1][NE] = | |
4177 | { | |
4178 | {0x6576, 0x4a92, 0x804a, 0x153f, | |
4179 | 0xc94c, 0x979a, 0x8a20, 0x5202, 0xc460, 0x7525,}, /* 10**4096 */ | |
4180 | {0x6a32, 0xce52, 0x329a, 0x28ce, | |
4181 | 0xa74d, 0x5de4, 0xc53d, 0x3b5d, 0x9e8b, 0x5a92,}, /* 10**2048 */ | |
4182 | {0x526c, 0x50ce, 0xf18b, 0x3d28, | |
4183 | 0x650d, 0x0c17, 0x8175, 0x7586, 0xc976, 0x4d48,}, | |
4184 | {0x9c66, 0x58f8, 0xbc50, 0x5c54, | |
4185 | 0xcc65, 0x91c6, 0xa60e, 0xa0ae, 0xe319, 0x46a3,}, | |
4186 | {0x851e, 0xeab7, 0x98fe, 0x901b, | |
4187 | 0xddbb, 0xde8d, 0x9df9, 0xebfb, 0xaa7e, 0x4351,}, | |
4188 | {0x0235, 0x0137, 0x36b1, 0x336c, | |
4189 | 0xc66f, 0x8cdf, 0x80e9, 0x47c9, 0x93ba, 0x41a8,}, | |
4190 | {0x50f8, 0x25fb, 0xc76b, 0x6b71, | |
4191 | 0x3cbf, 0xa6d5, 0xffcf, 0x1f49, 0xc278, 0x40d3,}, | |
4192 | {0x0000, 0x0000, 0x0000, 0x0000, | |
4193 | 0xf020, 0xb59d, 0x2b70, 0xada8, 0x9dc5, 0x4069,}, | |
4194 | {0x0000, 0x0000, 0x0000, 0x0000, | |
4195 | 0x0000, 0x0000, 0x0400, 0xc9bf, 0x8e1b, 0x4034,}, | |
4196 | {0x0000, 0x0000, 0x0000, 0x0000, | |
4197 | 0x0000, 0x0000, 0x0000, 0x2000, 0xbebc, 0x4019,}, | |
4198 | {0x0000, 0x0000, 0x0000, 0x0000, | |
4199 | 0x0000, 0x0000, 0x0000, 0x0000, 0x9c40, 0x400c,}, | |
4200 | {0x0000, 0x0000, 0x0000, 0x0000, | |
4201 | 0x0000, 0x0000, 0x0000, 0x0000, 0xc800, 0x4005,}, | |
4202 | {0x0000, 0x0000, 0x0000, 0x0000, | |
4203 | 0x0000, 0x0000, 0x0000, 0x0000, 0xa000, 0x4002,}, /* 10**1 */ | |
4204 | }; | |
4205 | ||
4206 | static unsigned EMUSHORT emtens[NTEN + 1][NE] = | |
4207 | { | |
4208 | {0x2030, 0xcffc, 0xa1c3, 0x8123, | |
4209 | 0x2de3, 0x9fde, 0xd2ce, 0x04c8, 0xa6dd, 0x0ad8,}, /* 10**-4096 */ | |
4210 | {0x8264, 0xd2cb, 0xf2ea, 0x12d4, | |
4211 | 0x4925, 0x2de4, 0x3436, 0x534f, 0xceae, 0x256b,}, /* 10**-2048 */ | |
4212 | {0xf53f, 0xf698, 0x6bd3, 0x0158, | |
4213 | 0x87a6, 0xc0bd, 0xda57, 0x82a5, 0xa2a6, 0x32b5,}, | |
4214 | {0xe731, 0x04d4, 0xe3f2, 0xd332, | |
4215 | 0x7132, 0xd21c, 0xdb23, 0xee32, 0x9049, 0x395a,}, | |
4216 | {0xa23e, 0x5308, 0xfefb, 0x1155, | |
4217 | 0xfa91, 0x1939, 0x637a, 0x4325, 0xc031, 0x3cac,}, | |
4218 | {0xe26d, 0xdbde, 0xd05d, 0xb3f6, | |
4219 | 0xac7c, 0xe4a0, 0x64bc, 0x467c, 0xddd0, 0x3e55,}, | |
4220 | {0x2a20, 0x6224, 0x47b3, 0x98d7, | |
4221 | 0x3f23, 0xe9a5, 0xa539, 0xea27, 0xa87f, 0x3f2a,}, | |
4222 | {0x0b5b, 0x4af2, 0xa581, 0x18ed, | |
4223 | 0x67de, 0x94ba, 0x4539, 0x1ead, 0xcfb1, 0x3f94,}, | |
4224 | {0xbf71, 0xa9b3, 0x7989, 0xbe68, | |
4225 | 0x4c2e, 0xe15b, 0xc44d, 0x94be, 0xe695, 0x3fc9,}, | |
4226 | {0x3d4d, 0x7c3d, 0x36ba, 0x0d2b, | |
4227 | 0xfdc2, 0xcefc, 0x8461, 0x7711, 0xabcc, 0x3fe4,}, | |
4228 | {0xc155, 0xa4a8, 0x404e, 0x6113, | |
4229 | 0xd3c3, 0x652b, 0xe219, 0x1758, 0xd1b7, 0x3ff1,}, | |
4230 | {0xd70a, 0x70a3, 0x0a3d, 0xa3d7, | |
4231 | 0x3d70, 0xd70a, 0x70a3, 0x0a3d, 0xa3d7, 0x3ff8,}, | |
4232 | {0xcccd, 0xcccc, 0xcccc, 0xcccc, | |
4233 | 0xcccc, 0xcccc, 0xcccc, 0xcccc, 0xcccc, 0x3ffb,}, /* 10**-1 */ | |
4234 | }; | |
4235 | #else | |
4236 | /* LONG_DOUBLE_TYPE_SIZE is other than 128 */ | |
985b6196 RS |
4237 | static unsigned EMUSHORT etens[NTEN + 1][NE] = |
4238 | { | |
4239 | {0xc94c, 0x979a, 0x8a20, 0x5202, 0xc460, 0x7525,}, /* 10**4096 */ | |
4240 | {0xa74d, 0x5de4, 0xc53d, 0x3b5d, 0x9e8b, 0x5a92,}, /* 10**2048 */ | |
4241 | {0x650d, 0x0c17, 0x8175, 0x7586, 0xc976, 0x4d48,}, | |
4242 | {0xcc65, 0x91c6, 0xa60e, 0xa0ae, 0xe319, 0x46a3,}, | |
4243 | {0xddbc, 0xde8d, 0x9df9, 0xebfb, 0xaa7e, 0x4351,}, | |
4244 | {0xc66f, 0x8cdf, 0x80e9, 0x47c9, 0x93ba, 0x41a8,}, | |
4245 | {0x3cbf, 0xa6d5, 0xffcf, 0x1f49, 0xc278, 0x40d3,}, | |
4246 | {0xf020, 0xb59d, 0x2b70, 0xada8, 0x9dc5, 0x4069,}, | |
4247 | {0x0000, 0x0000, 0x0400, 0xc9bf, 0x8e1b, 0x4034,}, | |
4248 | {0x0000, 0x0000, 0x0000, 0x2000, 0xbebc, 0x4019,}, | |
4249 | {0x0000, 0x0000, 0x0000, 0x0000, 0x9c40, 0x400c,}, | |
4250 | {0x0000, 0x0000, 0x0000, 0x0000, 0xc800, 0x4005,}, | |
4251 | {0x0000, 0x0000, 0x0000, 0x0000, 0xa000, 0x4002,}, /* 10**1 */ | |
4252 | }; | |
4253 | ||
4254 | static unsigned EMUSHORT emtens[NTEN + 1][NE] = | |
4255 | { | |
4256 | {0x2de4, 0x9fde, 0xd2ce, 0x04c8, 0xa6dd, 0x0ad8,}, /* 10**-4096 */ | |
4257 | {0x4925, 0x2de4, 0x3436, 0x534f, 0xceae, 0x256b,}, /* 10**-2048 */ | |
4258 | {0x87a6, 0xc0bd, 0xda57, 0x82a5, 0xa2a6, 0x32b5,}, | |
4259 | {0x7133, 0xd21c, 0xdb23, 0xee32, 0x9049, 0x395a,}, | |
4260 | {0xfa91, 0x1939, 0x637a, 0x4325, 0xc031, 0x3cac,}, | |
4261 | {0xac7d, 0xe4a0, 0x64bc, 0x467c, 0xddd0, 0x3e55,}, | |
4262 | {0x3f24, 0xe9a5, 0xa539, 0xea27, 0xa87f, 0x3f2a,}, | |
4263 | {0x67de, 0x94ba, 0x4539, 0x1ead, 0xcfb1, 0x3f94,}, | |
4264 | {0x4c2f, 0xe15b, 0xc44d, 0x94be, 0xe695, 0x3fc9,}, | |
4265 | {0xfdc2, 0xcefc, 0x8461, 0x7711, 0xabcc, 0x3fe4,}, | |
4266 | {0xd3c3, 0x652b, 0xe219, 0x1758, 0xd1b7, 0x3ff1,}, | |
4267 | {0x3d71, 0xd70a, 0x70a3, 0x0a3d, 0xa3d7, 0x3ff8,}, | |
4268 | {0xcccd, 0xcccc, 0xcccc, 0xcccc, 0xcccc, 0x3ffb,}, /* 10**-1 */ | |
4269 | }; | |
842fbaaa | 4270 | #endif |
985b6196 | 4271 | |
a0353055 | 4272 | static void |
985b6196 RS |
4273 | e24toasc (x, string, ndigs) |
4274 | unsigned EMUSHORT x[]; | |
4275 | char *string; | |
4276 | int ndigs; | |
4277 | { | |
4278 | unsigned EMUSHORT w[NI]; | |
4279 | ||
985b6196 RS |
4280 | e24toe (x, w); |
4281 | etoasc (w, string, ndigs); | |
4282 | } | |
4283 | ||
4284 | ||
a0353055 | 4285 | static void |
985b6196 RS |
4286 | e53toasc (x, string, ndigs) |
4287 | unsigned EMUSHORT x[]; | |
4288 | char *string; | |
4289 | int ndigs; | |
4290 | { | |
4291 | unsigned EMUSHORT w[NI]; | |
4292 | ||
985b6196 RS |
4293 | e53toe (x, w); |
4294 | etoasc (w, string, ndigs); | |
4295 | } | |
4296 | ||
4297 | ||
a0353055 | 4298 | static void |
985b6196 RS |
4299 | e64toasc (x, string, ndigs) |
4300 | unsigned EMUSHORT x[]; | |
4301 | char *string; | |
4302 | int ndigs; | |
4303 | { | |
4304 | unsigned EMUSHORT w[NI]; | |
4305 | ||
985b6196 RS |
4306 | e64toe (x, w); |
4307 | etoasc (w, string, ndigs); | |
4308 | } | |
4309 | ||
a0353055 | 4310 | static void |
842fbaaa JW |
4311 | e113toasc (x, string, ndigs) |
4312 | unsigned EMUSHORT x[]; | |
4313 | char *string; | |
4314 | int ndigs; | |
4315 | { | |
4316 | unsigned EMUSHORT w[NI]; | |
4317 | ||
4318 | e113toe (x, w); | |
4319 | etoasc (w, string, ndigs); | |
4320 | } | |
4321 | ||
985b6196 RS |
4322 | |
4323 | static char wstring[80]; /* working storage for ASCII output */ | |
4324 | ||
a0353055 | 4325 | static void |
985b6196 RS |
4326 | etoasc (x, string, ndigs) |
4327 | unsigned EMUSHORT x[]; | |
4328 | char *string; | |
4329 | int ndigs; | |
4330 | { | |
4331 | EMUSHORT digit; | |
4332 | unsigned EMUSHORT y[NI], t[NI], u[NI], w[NI]; | |
4333 | unsigned EMUSHORT *p, *r, *ten; | |
4334 | unsigned EMUSHORT sign; | |
4335 | int i, j, k, expon, rndsav; | |
4336 | char *s, *ss; | |
4337 | unsigned EMUSHORT m; | |
4338 | ||
66b6d60b RS |
4339 | |
4340 | rndsav = rndprc; | |
985b6196 RS |
4341 | ss = string; |
4342 | s = wstring; | |
66b6d60b RS |
4343 | *ss = '\0'; |
4344 | *s = '\0'; | |
4345 | #ifdef NANS | |
4346 | if (eisnan (x)) | |
4347 | { | |
4348 | sprintf (wstring, " NaN "); | |
4349 | goto bxit; | |
4350 | } | |
4351 | #endif | |
985b6196 RS |
4352 | rndprc = NBITS; /* set to full precision */ |
4353 | emov (x, y); /* retain external format */ | |
4354 | if (y[NE - 1] & 0x8000) | |
4355 | { | |
4356 | sign = 0xffff; | |
4357 | y[NE - 1] &= 0x7fff; | |
4358 | } | |
4359 | else | |
4360 | { | |
4361 | sign = 0; | |
4362 | } | |
4363 | expon = 0; | |
4364 | ten = &etens[NTEN][0]; | |
4365 | emov (eone, t); | |
4366 | /* Test for zero exponent */ | |
4367 | if (y[NE - 1] == 0) | |
4368 | { | |
4369 | for (k = 0; k < NE - 1; k++) | |
4370 | { | |
4371 | if (y[k] != 0) | |
4372 | goto tnzro; /* denormalized number */ | |
4373 | } | |
43b55a67 | 4374 | goto isone; /* valid all zeros */ |
985b6196 RS |
4375 | } |
4376 | tnzro: | |
4377 | ||
66b6d60b | 4378 | /* Test for infinity. */ |
985b6196 RS |
4379 | if (y[NE - 1] == 0x7fff) |
4380 | { | |
4381 | if (sign) | |
4382 | sprintf (wstring, " -Infinity "); | |
4383 | else | |
4384 | sprintf (wstring, " Infinity "); | |
4385 | goto bxit; | |
4386 | } | |
4387 | ||
4388 | /* Test for exponent nonzero but significand denormalized. | |
4389 | * This is an error condition. | |
4390 | */ | |
4391 | if ((y[NE - 1] != 0) && ((y[NE - 2] & 0x8000) == 0)) | |
4392 | { | |
4393 | mtherr ("etoasc", DOMAIN); | |
4394 | sprintf (wstring, "NaN"); | |
4395 | goto bxit; | |
4396 | } | |
4397 | ||
4398 | /* Compare to 1.0 */ | |
4399 | i = ecmp (eone, y); | |
4400 | if (i == 0) | |
4401 | goto isone; | |
4402 | ||
66b6d60b RS |
4403 | if (i == -2) |
4404 | abort (); | |
4405 | ||
985b6196 RS |
4406 | if (i < 0) |
4407 | { /* Number is greater than 1 */ | |
4408 | /* Convert significand to an integer and strip trailing decimal zeros. */ | |
4409 | emov (y, u); | |
4410 | u[NE - 1] = EXONE + NBITS - 1; | |
4411 | ||
4412 | p = &etens[NTEN - 4][0]; | |
4413 | m = 16; | |
4414 | do | |
4415 | { | |
4416 | ediv (p, u, t); | |
4417 | efloor (t, w); | |
4418 | for (j = 0; j < NE - 1; j++) | |
4419 | { | |
4420 | if (t[j] != w[j]) | |
4421 | goto noint; | |
4422 | } | |
4423 | emov (t, u); | |
4424 | expon += (int) m; | |
4425 | noint: | |
4426 | p += NE; | |
4427 | m >>= 1; | |
4428 | } | |
4429 | while (m != 0); | |
4430 | ||
4431 | /* Rescale from integer significand */ | |
4432 | u[NE - 1] += y[NE - 1] - (unsigned int) (EXONE + NBITS - 1); | |
4433 | emov (u, y); | |
4434 | /* Find power of 10 */ | |
4435 | emov (eone, t); | |
4436 | m = MAXP; | |
4437 | p = &etens[0][0]; | |
66b6d60b | 4438 | /* An unordered compare result shouldn't happen here. */ |
985b6196 RS |
4439 | while (ecmp (ten, u) <= 0) |
4440 | { | |
4441 | if (ecmp (p, u) <= 0) | |
4442 | { | |
4443 | ediv (p, u, u); | |
4444 | emul (p, t, t); | |
4445 | expon += (int) m; | |
4446 | } | |
4447 | m >>= 1; | |
4448 | if (m == 0) | |
4449 | break; | |
4450 | p += NE; | |
4451 | } | |
4452 | } | |
4453 | else | |
4454 | { /* Number is less than 1.0 */ | |
4455 | /* Pad significand with trailing decimal zeros. */ | |
4456 | if (y[NE - 1] == 0) | |
4457 | { | |
4458 | while ((y[NE - 2] & 0x8000) == 0) | |
4459 | { | |
4460 | emul (ten, y, y); | |
4461 | expon -= 1; | |
4462 | } | |
4463 | } | |
4464 | else | |
4465 | { | |
4466 | emovi (y, w); | |
4467 | for (i = 0; i < NDEC + 1; i++) | |
4468 | { | |
4469 | if ((w[NI - 1] & 0x7) != 0) | |
4470 | break; | |
4471 | /* multiply by 10 */ | |
4472 | emovz (w, u); | |
4473 | eshdn1 (u); | |
4474 | eshdn1 (u); | |
4475 | eaddm (w, u); | |
4476 | u[1] += 3; | |
4477 | while (u[2] != 0) | |
4478 | { | |
4479 | eshdn1 (u); | |
4480 | u[1] += 1; | |
4481 | } | |
4482 | if (u[NI - 1] != 0) | |
4483 | break; | |
4484 | if (eone[NE - 1] <= u[1]) | |
4485 | break; | |
4486 | emovz (u, w); | |
4487 | expon -= 1; | |
4488 | } | |
4489 | emovo (w, y); | |
4490 | } | |
4491 | k = -MAXP; | |
4492 | p = &emtens[0][0]; | |
4493 | r = &etens[0][0]; | |
4494 | emov (y, w); | |
4495 | emov (eone, t); | |
4496 | while (ecmp (eone, w) > 0) | |
4497 | { | |
4498 | if (ecmp (p, w) >= 0) | |
4499 | { | |
4500 | emul (r, w, w); | |
4501 | emul (r, t, t); | |
4502 | expon += k; | |
4503 | } | |
4504 | k /= 2; | |
4505 | if (k == 0) | |
4506 | break; | |
4507 | p += NE; | |
4508 | r += NE; | |
4509 | } | |
4510 | ediv (t, eone, t); | |
4511 | } | |
4512 | isone: | |
4513 | /* Find the first (leading) digit. */ | |
4514 | emovi (t, w); | |
4515 | emovz (w, t); | |
4516 | emovi (y, w); | |
4517 | emovz (w, y); | |
4518 | eiremain (t, y); | |
4519 | digit = equot[NI - 1]; | |
4520 | while ((digit == 0) && (ecmp (y, ezero) != 0)) | |
4521 | { | |
4522 | eshup1 (y); | |
4523 | emovz (y, u); | |
4524 | eshup1 (u); | |
4525 | eshup1 (u); | |
4526 | eaddm (u, y); | |
4527 | eiremain (t, y); | |
4528 | digit = equot[NI - 1]; | |
4529 | expon -= 1; | |
4530 | } | |
4531 | s = wstring; | |
4532 | if (sign) | |
4533 | *s++ = '-'; | |
4534 | else | |
4535 | *s++ = ' '; | |
985b6196 RS |
4536 | /* Examine number of digits requested by caller. */ |
4537 | if (ndigs < 0) | |
4538 | ndigs = 0; | |
4539 | if (ndigs > NDEC) | |
4540 | ndigs = NDEC; | |
64685ffa RS |
4541 | if (digit == 10) |
4542 | { | |
4543 | *s++ = '1'; | |
4544 | *s++ = '.'; | |
4545 | if (ndigs > 0) | |
4546 | { | |
4547 | *s++ = '0'; | |
4548 | ndigs -= 1; | |
4549 | } | |
4550 | expon += 1; | |
4551 | } | |
4552 | else | |
4553 | { | |
242cef1e | 4554 | *s++ = (char)digit + '0'; |
64685ffa RS |
4555 | *s++ = '.'; |
4556 | } | |
985b6196 RS |
4557 | /* Generate digits after the decimal point. */ |
4558 | for (k = 0; k <= ndigs; k++) | |
4559 | { | |
4560 | /* multiply current number by 10, without normalizing */ | |
4561 | eshup1 (y); | |
4562 | emovz (y, u); | |
4563 | eshup1 (u); | |
4564 | eshup1 (u); | |
4565 | eaddm (u, y); | |
4566 | eiremain (t, y); | |
4567 | *s++ = (char) equot[NI - 1] + '0'; | |
4568 | } | |
4569 | digit = equot[NI - 1]; | |
4570 | --s; | |
4571 | ss = s; | |
4572 | /* round off the ASCII string */ | |
4573 | if (digit > 4) | |
4574 | { | |
4575 | /* Test for critical rounding case in ASCII output. */ | |
4576 | if (digit == 5) | |
4577 | { | |
4578 | emovo (y, t); | |
4579 | if (ecmp (t, ezero) != 0) | |
4580 | goto roun; /* round to nearest */ | |
4581 | if ((*(s - 1) & 1) == 0) | |
4582 | goto doexp; /* round to even */ | |
4583 | } | |
4584 | /* Round up and propagate carry-outs */ | |
4585 | roun: | |
4586 | --s; | |
4587 | k = *s & 0x7f; | |
4588 | /* Carry out to most significant digit? */ | |
4589 | if (k == '.') | |
4590 | { | |
4591 | --s; | |
4592 | k = *s; | |
4593 | k += 1; | |
4594 | *s = (char) k; | |
4595 | /* Most significant digit carries to 10? */ | |
4596 | if (k > '9') | |
4597 | { | |
4598 | expon += 1; | |
4599 | *s = '1'; | |
4600 | } | |
4601 | goto doexp; | |
4602 | } | |
4603 | /* Round up and carry out from less significant digits */ | |
4604 | k += 1; | |
4605 | *s = (char) k; | |
4606 | if (k > '9') | |
4607 | { | |
4608 | *s = '0'; | |
4609 | goto roun; | |
4610 | } | |
4611 | } | |
4612 | doexp: | |
4613 | /* | |
4614 | if (expon >= 0) | |
4615 | sprintf (ss, "e+%d", expon); | |
4616 | else | |
4617 | sprintf (ss, "e%d", expon); | |
4618 | */ | |
4619 | sprintf (ss, "e%d", expon); | |
4620 | bxit: | |
4621 | rndprc = rndsav; | |
4622 | /* copy out the working string */ | |
4623 | s = string; | |
4624 | ss = wstring; | |
4625 | while (*ss == ' ') /* strip possible leading space */ | |
4626 | ++ss; | |
4627 | while ((*s++ = *ss++) != '\0') | |
4628 | ; | |
4629 | } | |
4630 | ||
4631 | ||
defb5dab | 4632 | /* Convert ASCII string to quadruple precision floating point |
985b6196 | 4633 | |
defb5dab RK |
4634 | Numeric input is free field decimal number with max of 15 digits with or |
4635 | without decimal point entered as ASCII from teletype. Entering E after | |
4636 | the number followed by a second number causes the second number to be | |
4637 | interpreted as a power of 10 to be multiplied by the first number | |
4638 | (i.e., "scientific" notation). */ | |
985b6196 RS |
4639 | |
4640 | /* ASCII to single */ | |
a0353055 RK |
4641 | |
4642 | static void | |
985b6196 RS |
4643 | asctoe24 (s, y) |
4644 | char *s; | |
4645 | unsigned EMUSHORT *y; | |
4646 | { | |
4647 | asctoeg (s, y, 24); | |
4648 | } | |
4649 | ||
4650 | ||
4651 | /* ASCII to double */ | |
a0353055 RK |
4652 | |
4653 | static void | |
985b6196 RS |
4654 | asctoe53 (s, y) |
4655 | char *s; | |
4656 | unsigned EMUSHORT *y; | |
4657 | { | |
842fbaaa | 4658 | #if defined(DEC) || defined(IBM) |
985b6196 RS |
4659 | asctoeg (s, y, 56); |
4660 | #else | |
4661 | asctoeg (s, y, 53); | |
4662 | #endif | |
4663 | } | |
4664 | ||
4665 | ||
4666 | /* ASCII to long double */ | |
a0353055 RK |
4667 | |
4668 | static void | |
985b6196 RS |
4669 | asctoe64 (s, y) |
4670 | char *s; | |
4671 | unsigned EMUSHORT *y; | |
4672 | { | |
4673 | asctoeg (s, y, 64); | |
4674 | } | |
4675 | ||
842fbaaa | 4676 | /* ASCII to 128-bit long double */ |
a0353055 RK |
4677 | |
4678 | static void | |
842fbaaa JW |
4679 | asctoe113 (s, y) |
4680 | char *s; | |
4681 | unsigned EMUSHORT *y; | |
4682 | { | |
4683 | asctoeg (s, y, 113); | |
4684 | } | |
4685 | ||
985b6196 | 4686 | /* ASCII to super double */ |
defb5dab | 4687 | |
a0353055 | 4688 | static void |
985b6196 RS |
4689 | asctoe (s, y) |
4690 | char *s; | |
4691 | unsigned EMUSHORT *y; | |
4692 | { | |
4693 | asctoeg (s, y, NBITS); | |
4694 | } | |
4695 | ||
985b6196 | 4696 | |
d73e9b8d | 4697 | /* ASCII to e type, with specified rounding precision = oprec. */ |
defb5dab | 4698 | |
a0353055 | 4699 | static void |
985b6196 RS |
4700 | asctoeg (ss, y, oprec) |
4701 | char *ss; | |
4702 | unsigned EMUSHORT *y; | |
4703 | int oprec; | |
4704 | { | |
4705 | unsigned EMUSHORT yy[NI], xt[NI], tt[NI]; | |
4706 | int esign, decflg, sgnflg, nexp, exp, prec, lost; | |
4707 | int k, trail, c, rndsav; | |
4708 | EMULONG lexp; | |
4709 | unsigned EMUSHORT nsign, *p; | |
d73e9b8d | 4710 | char *sp, *s, *lstr; |
985b6196 RS |
4711 | |
4712 | /* Copy the input string. */ | |
d73e9b8d | 4713 | lstr = (char *) alloca (strlen (ss) + 1); |
985b6196 RS |
4714 | s = ss; |
4715 | while (*s == ' ') /* skip leading spaces */ | |
4716 | ++s; | |
4717 | sp = lstr; | |
a9456cd3 RS |
4718 | while ((*sp++ = *s++) != '\0') |
4719 | ; | |
985b6196 RS |
4720 | s = lstr; |
4721 | ||
4722 | rndsav = rndprc; | |
4723 | rndprc = NBITS; /* Set to full precision */ | |
4724 | lost = 0; | |
4725 | nsign = 0; | |
4726 | decflg = 0; | |
4727 | sgnflg = 0; | |
4728 | nexp = 0; | |
4729 | exp = 0; | |
4730 | prec = 0; | |
4731 | ecleaz (yy); | |
4732 | trail = 0; | |
4733 | ||
4734 | nxtcom: | |
4735 | k = *s - '0'; | |
4736 | if ((k >= 0) && (k <= 9)) | |
4737 | { | |
4738 | /* Ignore leading zeros */ | |
4739 | if ((prec == 0) && (decflg == 0) && (k == 0)) | |
4740 | goto donchr; | |
4741 | /* Identify and strip trailing zeros after the decimal point. */ | |
4742 | if ((trail == 0) && (decflg != 0)) | |
4743 | { | |
4744 | sp = s; | |
4745 | while ((*sp >= '0') && (*sp <= '9')) | |
4746 | ++sp; | |
4747 | /* Check for syntax error */ | |
4748 | c = *sp & 0x7f; | |
4749 | if ((c != 'e') && (c != 'E') && (c != '\0') | |
4750 | && (c != '\n') && (c != '\r') && (c != ' ') | |
4751 | && (c != ',')) | |
4752 | goto error; | |
4753 | --sp; | |
4754 | while (*sp == '0') | |
4755 | *sp-- = 'z'; | |
4756 | trail = 1; | |
4757 | if (*s == 'z') | |
4758 | goto donchr; | |
4759 | } | |
defb5dab | 4760 | |
985b6196 | 4761 | /* If enough digits were given to more than fill up the yy register, |
defb5dab RK |
4762 | continuing until overflow into the high guard word yy[2] |
4763 | guarantees that there will be a roundoff bit at the top | |
4764 | of the low guard word after normalization. */ | |
4765 | ||
985b6196 RS |
4766 | if (yy[2] == 0) |
4767 | { | |
4768 | if (decflg) | |
4769 | nexp += 1; /* count digits after decimal point */ | |
4770 | eshup1 (yy); /* multiply current number by 10 */ | |
4771 | emovz (yy, xt); | |
4772 | eshup1 (xt); | |
4773 | eshup1 (xt); | |
4774 | eaddm (xt, yy); | |
4775 | ecleaz (xt); | |
4776 | xt[NI - 2] = (unsigned EMUSHORT) k; | |
4777 | eaddm (xt, yy); | |
4778 | } | |
4779 | else | |
4780 | { | |
d73e9b8d | 4781 | /* Mark any lost non-zero digit. */ |
985b6196 | 4782 | lost |= k; |
d73e9b8d RS |
4783 | /* Count lost digits before the decimal point. */ |
4784 | if (decflg == 0) | |
4785 | nexp -= 1; | |
985b6196 RS |
4786 | } |
4787 | prec += 1; | |
4788 | goto donchr; | |
4789 | } | |
4790 | ||
4791 | switch (*s) | |
4792 | { | |
4793 | case 'z': | |
4794 | break; | |
4795 | case 'E': | |
4796 | case 'e': | |
4797 | goto expnt; | |
4798 | case '.': /* decimal point */ | |
4799 | if (decflg) | |
4800 | goto error; | |
4801 | ++decflg; | |
4802 | break; | |
4803 | case '-': | |
4804 | nsign = 0xffff; | |
4805 | if (sgnflg) | |
4806 | goto error; | |
4807 | ++sgnflg; | |
4808 | break; | |
4809 | case '+': | |
4810 | if (sgnflg) | |
4811 | goto error; | |
4812 | ++sgnflg; | |
4813 | break; | |
4814 | case ',': | |
4815 | case ' ': | |
4816 | case '\0': | |
4817 | case '\n': | |
4818 | case '\r': | |
4819 | goto daldone; | |
4820 | case 'i': | |
4821 | case 'I': | |
64685ffa | 4822 | goto infinite; |
985b6196 RS |
4823 | default: |
4824 | error: | |
66b6d60b RS |
4825 | #ifdef NANS |
4826 | einan (yy); | |
4827 | #else | |
985b6196 | 4828 | mtherr ("asctoe", DOMAIN); |
66b6d60b RS |
4829 | eclear (yy); |
4830 | #endif | |
985b6196 RS |
4831 | goto aexit; |
4832 | } | |
4833 | donchr: | |
4834 | ++s; | |
4835 | goto nxtcom; | |
4836 | ||
4837 | /* Exponent interpretation */ | |
4838 | expnt: | |
4839 | ||
4840 | esign = 1; | |
4841 | exp = 0; | |
4842 | ++s; | |
4843 | /* check for + or - */ | |
4844 | if (*s == '-') | |
4845 | { | |
4846 | esign = -1; | |
4847 | ++s; | |
4848 | } | |
4849 | if (*s == '+') | |
4850 | ++s; | |
4851 | while ((*s >= '0') && (*s <= '9')) | |
4852 | { | |
4853 | exp *= 10; | |
4854 | exp += *s++ - '0'; | |
842fbaaa | 4855 | if (exp > -(MINDECEXP)) |
64685ffa RS |
4856 | { |
4857 | if (esign < 0) | |
4858 | goto zero; | |
4859 | else | |
4860 | goto infinite; | |
4861 | } | |
985b6196 RS |
4862 | } |
4863 | if (esign < 0) | |
4864 | exp = -exp; | |
842fbaaa | 4865 | if (exp > MAXDECEXP) |
64685ffa RS |
4866 | { |
4867 | infinite: | |
4868 | ecleaz (yy); | |
4869 | yy[E] = 0x7fff; /* infinity */ | |
4870 | goto aexit; | |
4871 | } | |
842fbaaa | 4872 | if (exp < MINDECEXP) |
64685ffa RS |
4873 | { |
4874 | zero: | |
4875 | ecleaz (yy); | |
4876 | goto aexit; | |
4877 | } | |
985b6196 RS |
4878 | |
4879 | daldone: | |
4880 | nexp = exp - nexp; | |
4881 | /* Pad trailing zeros to minimize power of 10, per IEEE spec. */ | |
4882 | while ((nexp > 0) && (yy[2] == 0)) | |
4883 | { | |
4884 | emovz (yy, xt); | |
4885 | eshup1 (xt); | |
4886 | eshup1 (xt); | |
4887 | eaddm (yy, xt); | |
4888 | eshup1 (xt); | |
4889 | if (xt[2] != 0) | |
4890 | break; | |
4891 | nexp -= 1; | |
4892 | emovz (xt, yy); | |
4893 | } | |
4894 | if ((k = enormlz (yy)) > NBITS) | |
4895 | { | |
4896 | ecleaz (yy); | |
4897 | goto aexit; | |
4898 | } | |
4899 | lexp = (EXONE - 1 + NBITS) - k; | |
4900 | emdnorm (yy, lost, 0, lexp, 64); | |
985b6196 | 4901 | |
defb5dab RK |
4902 | /* Convert to external format: |
4903 | ||
4904 | Multiply by 10**nexp. If precision is 64 bits, | |
4905 | the maximum relative error incurred in forming 10**n | |
4906 | for 0 <= n <= 324 is 8.2e-20, at 10**180. | |
4907 | For 0 <= n <= 999, the peak relative error is 1.4e-19 at 10**947. | |
4908 | For 0 >= n >= -999, it is -1.55e-19 at 10**-435. */ | |
985b6196 | 4909 | |
985b6196 RS |
4910 | lexp = yy[E]; |
4911 | if (nexp == 0) | |
4912 | { | |
4913 | k = 0; | |
4914 | goto expdon; | |
4915 | } | |
4916 | esign = 1; | |
4917 | if (nexp < 0) | |
4918 | { | |
4919 | nexp = -nexp; | |
4920 | esign = -1; | |
4921 | if (nexp > 4096) | |
defb5dab RK |
4922 | { |
4923 | /* Punt. Can't handle this without 2 divides. */ | |
985b6196 RS |
4924 | emovi (etens[0], tt); |
4925 | lexp -= tt[E]; | |
4926 | k = edivm (tt, yy); | |
4927 | lexp += EXONE; | |
4928 | nexp -= 4096; | |
4929 | } | |
4930 | } | |
4931 | p = &etens[NTEN][0]; | |
4932 | emov (eone, xt); | |
4933 | exp = 1; | |
4934 | do | |
4935 | { | |
4936 | if (exp & nexp) | |
4937 | emul (p, xt, xt); | |
4938 | p -= NE; | |
4939 | exp = exp + exp; | |
4940 | } | |
4941 | while (exp <= MAXP); | |
4942 | ||
4943 | emovi (xt, tt); | |
4944 | if (esign < 0) | |
4945 | { | |
4946 | lexp -= tt[E]; | |
4947 | k = edivm (tt, yy); | |
4948 | lexp += EXONE; | |
4949 | } | |
4950 | else | |
4951 | { | |
4952 | lexp += tt[E]; | |
4953 | k = emulm (tt, yy); | |
4954 | lexp -= EXONE - 1; | |
4955 | } | |
4956 | ||
4957 | expdon: | |
4958 | ||
4959 | /* Round and convert directly to the destination type */ | |
4960 | if (oprec == 53) | |
4961 | lexp -= EXONE - 0x3ff; | |
842fbaaa JW |
4962 | #ifdef IBM |
4963 | else if (oprec == 24 || oprec == 56) | |
4964 | lexp -= EXONE - (0x41 << 2); | |
4965 | #else | |
985b6196 RS |
4966 | else if (oprec == 24) |
4967 | lexp -= EXONE - 0177; | |
842fbaaa | 4968 | #endif |
985b6196 RS |
4969 | #ifdef DEC |
4970 | else if (oprec == 56) | |
4971 | lexp -= EXONE - 0201; | |
4972 | #endif | |
4973 | rndprc = oprec; | |
4974 | emdnorm (yy, k, 0, lexp, 64); | |
4975 | ||
4976 | aexit: | |
4977 | ||
4978 | rndprc = rndsav; | |
4979 | yy[0] = nsign; | |
4980 | switch (oprec) | |
4981 | { | |
4982 | #ifdef DEC | |
4983 | case 56: | |
4984 | todec (yy, y); /* see etodec.c */ | |
4985 | break; | |
842fbaaa JW |
4986 | #endif |
4987 | #ifdef IBM | |
4988 | case 56: | |
4989 | toibm (yy, y, DFmode); | |
4990 | break; | |
985b6196 RS |
4991 | #endif |
4992 | case 53: | |
4993 | toe53 (yy, y); | |
4994 | break; | |
4995 | case 24: | |
4996 | toe24 (yy, y); | |
4997 | break; | |
4998 | case 64: | |
4999 | toe64 (yy, y); | |
5000 | break; | |
842fbaaa JW |
5001 | case 113: |
5002 | toe113 (yy, y); | |
5003 | break; | |
985b6196 RS |
5004 | case NBITS: |
5005 | emovo (yy, y); | |
5006 | break; | |
5007 | } | |
5008 | } | |
5009 | ||
5010 | ||
5011 | ||
defb5dab RK |
5012 | /* y = largest integer not greater than x (truncated toward minus infinity) */ |
5013 | ||
985b6196 RS |
5014 | static unsigned EMUSHORT bmask[] = |
5015 | { | |
5016 | 0xffff, | |
5017 | 0xfffe, | |
5018 | 0xfffc, | |
5019 | 0xfff8, | |
5020 | 0xfff0, | |
5021 | 0xffe0, | |
5022 | 0xffc0, | |
5023 | 0xff80, | |
5024 | 0xff00, | |
5025 | 0xfe00, | |
5026 | 0xfc00, | |
5027 | 0xf800, | |
5028 | 0xf000, | |
5029 | 0xe000, | |
5030 | 0xc000, | |
5031 | 0x8000, | |
5032 | 0x0000, | |
5033 | }; | |
5034 | ||
a0353055 | 5035 | static void |
985b6196 RS |
5036 | efloor (x, y) |
5037 | unsigned EMUSHORT x[], y[]; | |
5038 | { | |
5039 | register unsigned EMUSHORT *p; | |
5040 | int e, expon, i; | |
5041 | unsigned EMUSHORT f[NE]; | |
5042 | ||
5043 | emov (x, f); /* leave in external format */ | |
5044 | expon = (int) f[NE - 1]; | |
5045 | e = (expon & 0x7fff) - (EXONE - 1); | |
5046 | if (e <= 0) | |
5047 | { | |
5048 | eclear (y); | |
5049 | goto isitneg; | |
5050 | } | |
5051 | /* number of bits to clear out */ | |
5052 | e = NBITS - e; | |
5053 | emov (f, y); | |
5054 | if (e <= 0) | |
5055 | return; | |
5056 | ||
5057 | p = &y[0]; | |
5058 | while (e >= 16) | |
5059 | { | |
5060 | *p++ = 0; | |
5061 | e -= 16; | |
5062 | } | |
5063 | /* clear the remaining bits */ | |
5064 | *p &= bmask[e]; | |
5065 | /* truncate negatives toward minus infinity */ | |
5066 | isitneg: | |
5067 | ||
5068 | if ((unsigned EMUSHORT) expon & (unsigned EMUSHORT) 0x8000) | |
5069 | { | |
5070 | for (i = 0; i < NE - 1; i++) | |
5071 | { | |
5072 | if (f[i] != y[i]) | |
5073 | { | |
5074 | esub (eone, y, y); | |
5075 | break; | |
5076 | } | |
5077 | } | |
5078 | } | |
5079 | } | |
5080 | ||
5081 | ||
defb5dab RK |
5082 | /* Returns s and exp such that s * 2**exp = x and .5 <= s < 1. |
5083 | For example, 1.1 = 0.55 * 2**1 | |
5084 | Handles denormalized numbers properly using long integer exp. */ | |
a0353055 RK |
5085 | |
5086 | static void | |
985b6196 RS |
5087 | efrexp (x, exp, s) |
5088 | unsigned EMUSHORT x[]; | |
5089 | int *exp; | |
5090 | unsigned EMUSHORT s[]; | |
5091 | { | |
5092 | unsigned EMUSHORT xi[NI]; | |
5093 | EMULONG li; | |
5094 | ||
5095 | emovi (x, xi); | |
5096 | li = (EMULONG) ((EMUSHORT) xi[1]); | |
5097 | ||
5098 | if (li == 0) | |
5099 | { | |
5100 | li -= enormlz (xi); | |
5101 | } | |
5102 | xi[1] = 0x3ffe; | |
5103 | emovo (xi, s); | |
5104 | *exp = (int) (li - 0x3ffe); | |
5105 | } | |
5106 | ||
5107 | ||
5108 | ||
defb5dab | 5109 | /* Return y = x * 2**pwr2. */ |
a0353055 RK |
5110 | |
5111 | static void | |
985b6196 RS |
5112 | eldexp (x, pwr2, y) |
5113 | unsigned EMUSHORT x[]; | |
5114 | int pwr2; | |
5115 | unsigned EMUSHORT y[]; | |
5116 | { | |
5117 | unsigned EMUSHORT xi[NI]; | |
5118 | EMULONG li; | |
5119 | int i; | |
5120 | ||
5121 | emovi (x, xi); | |
5122 | li = xi[1]; | |
5123 | li += pwr2; | |
5124 | i = 0; | |
5125 | emdnorm (xi, i, i, li, 64); | |
5126 | emovo (xi, y); | |
5127 | } | |
5128 | ||
5129 | ||
5130 | /* c = remainder after dividing b by a | |
defb5dab | 5131 | Least significant integer quotient bits left in equot[]. */ |
a0353055 RK |
5132 | |
5133 | static void | |
985b6196 RS |
5134 | eremain (a, b, c) |
5135 | unsigned EMUSHORT a[], b[], c[]; | |
5136 | { | |
5137 | unsigned EMUSHORT den[NI], num[NI]; | |
5138 | ||
66b6d60b | 5139 | #ifdef NANS |
242cef1e RS |
5140 | if (eisinf (b) |
5141 | || (ecmp (a, ezero) == 0) | |
5142 | || eisnan (a) | |
5143 | || eisnan (b)) | |
66b6d60b | 5144 | { |
29e11dab | 5145 | enan (c, 0); |
66b6d60b RS |
5146 | return; |
5147 | } | |
5148 | #endif | |
985b6196 RS |
5149 | if (ecmp (a, ezero) == 0) |
5150 | { | |
5151 | mtherr ("eremain", SING); | |
5152 | eclear (c); | |
5153 | return; | |
5154 | } | |
5155 | emovi (a, den); | |
5156 | emovi (b, num); | |
5157 | eiremain (den, num); | |
5158 | /* Sign of remainder = sign of quotient */ | |
5159 | if (a[0] == b[0]) | |
5160 | num[0] = 0; | |
5161 | else | |
5162 | num[0] = 0xffff; | |
5163 | emovo (num, c); | |
5164 | } | |
5165 | ||
a0353055 | 5166 | static void |
985b6196 RS |
5167 | eiremain (den, num) |
5168 | unsigned EMUSHORT den[], num[]; | |
5169 | { | |
5170 | EMULONG ld, ln; | |
5171 | unsigned EMUSHORT j; | |
5172 | ||
5173 | ld = den[E]; | |
5174 | ld -= enormlz (den); | |
5175 | ln = num[E]; | |
5176 | ln -= enormlz (num); | |
5177 | ecleaz (equot); | |
5178 | while (ln >= ld) | |
5179 | { | |
5180 | if (ecmpm (den, num) <= 0) | |
5181 | { | |
5182 | esubm (den, num); | |
5183 | j = 1; | |
5184 | } | |
5185 | else | |
5186 | { | |
5187 | j = 0; | |
5188 | } | |
5189 | eshup1 (equot); | |
5190 | equot[NI - 1] |= j; | |
5191 | eshup1 (num); | |
5192 | ln -= 1; | |
5193 | } | |
5194 | emdnorm (num, 0, 0, ln, 0); | |
5195 | } | |
5196 | ||
defb5dab RK |
5197 | /* This routine may be called to report one of the following |
5198 | error conditions (in the include file mconf.h). | |
5199 | ||
5200 | Mnemonic Value Significance | |
5201 | ||
5202 | DOMAIN 1 argument domain error | |
5203 | SING 2 function singularity | |
5204 | OVERFLOW 3 overflow range error | |
5205 | UNDERFLOW 4 underflow range error | |
5206 | TLOSS 5 total loss of precision | |
5207 | PLOSS 6 partial loss of precision | |
5208 | INVALID 7 NaN - producing operation | |
5209 | EDOM 33 Unix domain error code | |
5210 | ERANGE 34 Unix range error code | |
5211 | ||
5212 | The default version of the file prints the function name, | |
5213 | passed to it by the pointer fctnam, followed by the | |
5214 | error condition. The display is directed to the standard | |
5215 | output device. The routine then returns to the calling | |
5216 | program. Users may wish to modify the program to abort by | |
5217 | calling exit under severe error conditions such as domain | |
5218 | errors. | |
5219 | ||
5220 | Since all error conditions pass control to this function, | |
5221 | the display may be easily changed, eliminated, or directed | |
5222 | to an error logging device. */ | |
5223 | ||
5224 | /* Note: the order of appearance of the following messages is bound to the | |
5225 | error codes defined above. */ | |
985b6196 | 5226 | |
66b6d60b RS |
5227 | #define NMSGS 8 |
5228 | static char *ermsg[NMSGS] = | |
985b6196 RS |
5229 | { |
5230 | "unknown", /* error code 0 */ | |
5231 | "domain", /* error code 1 */ | |
5232 | "singularity", /* et seq. */ | |
5233 | "overflow", | |
5234 | "underflow", | |
5235 | "total loss of precision", | |
66b6d60b RS |
5236 | "partial loss of precision", |
5237 | "invalid operation" | |
985b6196 RS |
5238 | }; |
5239 | ||
5240 | int merror = 0; | |
5241 | extern int merror; | |
5242 | ||
a0353055 | 5243 | static void |
985b6196 RS |
5244 | mtherr (name, code) |
5245 | char *name; | |
5246 | int code; | |
5247 | { | |
5248 | char errstr[80]; | |
5249 | ||
defb5dab RK |
5250 | /* Display string passed by calling program, which is supposed to be the |
5251 | name of the function in which the error occurred. | |
5252 | ||
5253 | Display error message defined by the code argument. */ | |
985b6196 | 5254 | |
66b6d60b | 5255 | if ((code <= 0) || (code >= NMSGS)) |
985b6196 | 5256 | code = 0; |
a8d78514 | 5257 | sprintf (errstr, " %s %s error", name, ermsg[code]); |
64685ffa RS |
5258 | if (extra_warnings) |
5259 | warning (errstr); | |
985b6196 RS |
5260 | /* Set global error message word */ |
5261 | merror = code + 1; | |
985b6196 RS |
5262 | } |
5263 | ||
842fbaaa | 5264 | #ifdef DEC |
defb5dab | 5265 | /* Convert DEC double precision to e type. */ |
a0353055 RK |
5266 | |
5267 | static void | |
985b6196 RS |
5268 | dectoe (d, e) |
5269 | unsigned EMUSHORT *d; | |
5270 | unsigned EMUSHORT *e; | |
5271 | { | |
5272 | unsigned EMUSHORT y[NI]; | |
5273 | register unsigned EMUSHORT r, *p; | |
5274 | ||
5275 | ecleaz (y); /* start with a zero */ | |
5276 | p = y; /* point to our number */ | |
5277 | r = *d; /* get DEC exponent word */ | |
5278 | if (*d & (unsigned int) 0x8000) | |
5279 | *p = 0xffff; /* fill in our sign */ | |
5280 | ++p; /* bump pointer to our exponent word */ | |
5281 | r &= 0x7fff; /* strip the sign bit */ | |
5282 | if (r == 0) /* answer = 0 if high order DEC word = 0 */ | |
5283 | goto done; | |
5284 | ||
5285 | ||
5286 | r >>= 7; /* shift exponent word down 7 bits */ | |
5287 | r += EXONE - 0201; /* subtract DEC exponent offset */ | |
5288 | /* add our e type exponent offset */ | |
5289 | *p++ = r; /* to form our exponent */ | |
5290 | ||
5291 | r = *d++; /* now do the high order mantissa */ | |
5292 | r &= 0177; /* strip off the DEC exponent and sign bits */ | |
5293 | r |= 0200; /* the DEC understood high order mantissa bit */ | |
5294 | *p++ = r; /* put result in our high guard word */ | |
5295 | ||
5296 | *p++ = *d++; /* fill in the rest of our mantissa */ | |
5297 | *p++ = *d++; | |
5298 | *p = *d; | |
5299 | ||
5300 | eshdn8 (y); /* shift our mantissa down 8 bits */ | |
5301 | done: | |
5302 | emovo (y, e); | |
5303 | } | |
5304 | ||
5305 | ||
5306 | ||
5307 | /* | |
5308 | ; convert e type to DEC double precision | |
5309 | ; double d; | |
5310 | ; EMUSHORT e[NE]; | |
5311 | ; etodec (e, &d); | |
5312 | */ | |
985b6196 | 5313 | |
a0353055 | 5314 | static void |
985b6196 RS |
5315 | etodec (x, d) |
5316 | unsigned EMUSHORT *x, *d; | |
5317 | { | |
5318 | unsigned EMUSHORT xi[NI]; | |
842fbaaa JW |
5319 | EMULONG exp; |
5320 | int rndsav; | |
985b6196 RS |
5321 | |
5322 | emovi (x, xi); | |
5323 | exp = (EMULONG) xi[E] - (EXONE - 0201); /* adjust exponent for offsets */ | |
5324 | /* round off to nearest or even */ | |
5325 | rndsav = rndprc; | |
5326 | rndprc = 56; | |
5327 | emdnorm (xi, 0, 0, exp, 64); | |
5328 | rndprc = rndsav; | |
5329 | todec (xi, d); | |
5330 | } | |
5331 | ||
a0353055 | 5332 | static void |
985b6196 RS |
5333 | todec (x, y) |
5334 | unsigned EMUSHORT *x, *y; | |
5335 | { | |
5336 | unsigned EMUSHORT i; | |
5337 | unsigned EMUSHORT *p; | |
5338 | ||
5339 | p = x; | |
5340 | *y = 0; | |
5341 | if (*p++) | |
5342 | *y = 0100000; | |
5343 | i = *p++; | |
5344 | if (i == 0) | |
5345 | { | |
5346 | *y++ = 0; | |
5347 | *y++ = 0; | |
5348 | *y++ = 0; | |
5349 | *y++ = 0; | |
5350 | return; | |
5351 | } | |
5352 | if (i > 0377) | |
5353 | { | |
5354 | *y++ |= 077777; | |
5355 | *y++ = 0xffff; | |
5356 | *y++ = 0xffff; | |
5357 | *y++ = 0xffff; | |
64685ffa RS |
5358 | #ifdef ERANGE |
5359 | errno = ERANGE; | |
5360 | #endif | |
985b6196 RS |
5361 | return; |
5362 | } | |
5363 | i &= 0377; | |
5364 | i <<= 7; | |
5365 | eshup8 (x); | |
5366 | x[M] &= 0177; | |
5367 | i |= x[M]; | |
5368 | *y++ |= i; | |
5369 | *y++ = x[M + 1]; | |
5370 | *y++ = x[M + 2]; | |
5371 | *y++ = x[M + 3]; | |
5372 | } | |
842fbaaa JW |
5373 | #endif /* DEC */ |
5374 | ||
5375 | #ifdef IBM | |
defb5dab | 5376 | /* Convert IBM single/double precision to e type. */ |
a0353055 RK |
5377 | |
5378 | static void | |
842fbaaa JW |
5379 | ibmtoe (d, e, mode) |
5380 | unsigned EMUSHORT *d; | |
5381 | unsigned EMUSHORT *e; | |
5382 | enum machine_mode mode; | |
5383 | { | |
5384 | unsigned EMUSHORT y[NI]; | |
5385 | register unsigned EMUSHORT r, *p; | |
5386 | int rndsav; | |
5387 | ||
5388 | ecleaz (y); /* start with a zero */ | |
5389 | p = y; /* point to our number */ | |
5390 | r = *d; /* get IBM exponent word */ | |
5391 | if (*d & (unsigned int) 0x8000) | |
5392 | *p = 0xffff; /* fill in our sign */ | |
5393 | ++p; /* bump pointer to our exponent word */ | |
5394 | r &= 0x7f00; /* strip the sign bit */ | |
5395 | r >>= 6; /* shift exponent word down 6 bits */ | |
5396 | /* in fact shift by 8 right and 2 left */ | |
5397 | r += EXONE - (0x41 << 2); /* subtract IBM exponent offset */ | |
5398 | /* add our e type exponent offset */ | |
5399 | *p++ = r; /* to form our exponent */ | |
5400 | ||
5401 | *p++ = *d++ & 0xff; /* now do the high order mantissa */ | |
5402 | /* strip off the IBM exponent and sign bits */ | |
5403 | if (mode != SFmode) /* there are only 2 words in SFmode */ | |
5404 | { | |
5405 | *p++ = *d++; /* fill in the rest of our mantissa */ | |
5406 | *p++ = *d++; | |
5407 | } | |
5408 | *p = *d; | |
5409 | ||
5410 | if (y[M] == 0 && y[M+1] == 0 && y[M+2] == 0 && y[M+3] == 0) | |
5411 | y[0] = y[E] = 0; | |
5412 | else | |
5413 | y[E] -= 5 + enormlz (y); /* now normalise the mantissa */ | |
5414 | /* handle change in RADIX */ | |
5415 | emovo (y, e); | |
5416 | } | |
5417 | ||
985b6196 | 5418 | |
985b6196 | 5419 | |
defb5dab | 5420 | /* Convert e type to IBM single/double precision. */ |
842fbaaa | 5421 | |
a0353055 | 5422 | static void |
842fbaaa JW |
5423 | etoibm (x, d, mode) |
5424 | unsigned EMUSHORT *x, *d; | |
5425 | enum machine_mode mode; | |
5426 | { | |
5427 | unsigned EMUSHORT xi[NI]; | |
5428 | EMULONG exp; | |
5429 | int rndsav; | |
5430 | ||
5431 | emovi (x, xi); | |
5432 | exp = (EMULONG) xi[E] - (EXONE - (0x41 << 2)); /* adjust exponent for offsets */ | |
5433 | /* round off to nearest or even */ | |
5434 | rndsav = rndprc; | |
5435 | rndprc = 56; | |
5436 | emdnorm (xi, 0, 0, exp, 64); | |
5437 | rndprc = rndsav; | |
5438 | toibm (xi, d, mode); | |
5439 | } | |
5440 | ||
a0353055 | 5441 | static void |
842fbaaa JW |
5442 | toibm (x, y, mode) |
5443 | unsigned EMUSHORT *x, *y; | |
5444 | enum machine_mode mode; | |
5445 | { | |
5446 | unsigned EMUSHORT i; | |
5447 | unsigned EMUSHORT *p; | |
5448 | int r; | |
5449 | ||
5450 | p = x; | |
5451 | *y = 0; | |
5452 | if (*p++) | |
5453 | *y = 0x8000; | |
5454 | i = *p++; | |
5455 | if (i == 0) | |
5456 | { | |
5457 | *y++ = 0; | |
5458 | *y++ = 0; | |
5459 | if (mode != SFmode) | |
5460 | { | |
5461 | *y++ = 0; | |
5462 | *y++ = 0; | |
5463 | } | |
5464 | return; | |
5465 | } | |
5466 | r = i & 0x3; | |
5467 | i >>= 2; | |
5468 | if (i > 0x7f) | |
5469 | { | |
5470 | *y++ |= 0x7fff; | |
5471 | *y++ = 0xffff; | |
5472 | if (mode != SFmode) | |
5473 | { | |
5474 | *y++ = 0xffff; | |
5475 | *y++ = 0xffff; | |
5476 | } | |
5477 | #ifdef ERANGE | |
5478 | errno = ERANGE; | |
5479 | #endif | |
5480 | return; | |
5481 | } | |
5482 | i &= 0x7f; | |
5483 | *y |= (i << 8); | |
5484 | eshift (x, r + 5); | |
5485 | *y++ |= x[M]; | |
5486 | *y++ = x[M + 1]; | |
5487 | if (mode != SFmode) | |
5488 | { | |
5489 | *y++ = x[M + 2]; | |
5490 | *y++ = x[M + 3]; | |
5491 | } | |
5492 | } | |
5493 | #endif /* IBM */ | |
66b6d60b RS |
5494 | |
5495 | /* Output a binary NaN bit pattern in the target machine's format. */ | |
5496 | ||
5497 | /* If special NaN bit patterns are required, define them in tm.h | |
5498 | as arrays of unsigned 16-bit shorts. Otherwise, use the default | |
5499 | patterns here. */ | |
7729f1ca RS |
5500 | #ifdef TFMODE_NAN |
5501 | TFMODE_NAN; | |
5502 | #else | |
f76b9db2 ILT |
5503 | #ifdef IEEE |
5504 | unsigned EMUSHORT TFbignan[8] = | |
66b6d60b | 5505 | {0x7fff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff}; |
f76b9db2 | 5506 | unsigned EMUSHORT TFlittlenan[8] = {0, 0, 0, 0, 0, 0, 0x8000, 0xffff}; |
66b6d60b RS |
5507 | #endif |
5508 | #endif | |
5509 | ||
7729f1ca RS |
5510 | #ifdef XFMODE_NAN |
5511 | XFMODE_NAN; | |
5512 | #else | |
f76b9db2 ILT |
5513 | #ifdef IEEE |
5514 | unsigned EMUSHORT XFbignan[6] = | |
5515 | {0x7fff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff}; | |
5516 | unsigned EMUSHORT XFlittlenan[6] = {0, 0, 0, 0xc000, 0xffff, 0}; | |
66b6d60b RS |
5517 | #endif |
5518 | #endif | |
5519 | ||
7729f1ca RS |
5520 | #ifdef DFMODE_NAN |
5521 | DFMODE_NAN; | |
5522 | #else | |
f76b9db2 ILT |
5523 | #ifdef IEEE |
5524 | unsigned EMUSHORT DFbignan[4] = {0x7fff, 0xffff, 0xffff, 0xffff}; | |
5525 | unsigned EMUSHORT DFlittlenan[4] = {0, 0, 0, 0xfff8}; | |
66b6d60b RS |
5526 | #endif |
5527 | #endif | |
5528 | ||
7729f1ca RS |
5529 | #ifdef SFMODE_NAN |
5530 | SFMODE_NAN; | |
5531 | #else | |
f76b9db2 ILT |
5532 | #ifdef IEEE |
5533 | unsigned EMUSHORT SFbignan[2] = {0x7fff, 0xffff}; | |
5534 | unsigned EMUSHORT SFlittlenan[2] = {0, 0xffc0}; | |
66b6d60b RS |
5535 | #endif |
5536 | #endif | |
5537 | ||
5538 | ||
a0353055 | 5539 | static void |
29e11dab | 5540 | make_nan (nan, sign, mode) |
a0353055 RK |
5541 | unsigned EMUSHORT *nan; |
5542 | int sign; | |
5543 | enum machine_mode mode; | |
66b6d60b | 5544 | { |
29e11dab | 5545 | int n; |
66b6d60b RS |
5546 | unsigned EMUSHORT *p; |
5547 | ||
5548 | switch (mode) | |
5549 | { | |
5550 | /* Possibly the `reserved operand' patterns on a VAX can be | |
5551 | used like NaN's, but probably not in the same way as IEEE. */ | |
842fbaaa | 5552 | #if !defined(DEC) && !defined(IBM) |
66b6d60b RS |
5553 | case TFmode: |
5554 | n = 8; | |
f76b9db2 ILT |
5555 | if (FLOAT_WORDS_BIG_ENDIAN) |
5556 | p = TFbignan; | |
5557 | else | |
5558 | p = TFlittlenan; | |
66b6d60b RS |
5559 | break; |
5560 | case XFmode: | |
5561 | n = 6; | |
f76b9db2 ILT |
5562 | if (FLOAT_WORDS_BIG_ENDIAN) |
5563 | p = XFbignan; | |
5564 | else | |
5565 | p = XFlittlenan; | |
66b6d60b RS |
5566 | break; |
5567 | case DFmode: | |
5568 | n = 4; | |
f76b9db2 ILT |
5569 | if (FLOAT_WORDS_BIG_ENDIAN) |
5570 | p = DFbignan; | |
5571 | else | |
5572 | p = DFlittlenan; | |
66b6d60b | 5573 | break; |
bfbc6416 | 5574 | case HFmode: |
66b6d60b RS |
5575 | case SFmode: |
5576 | n = 2; | |
f76b9db2 ILT |
5577 | if (FLOAT_WORDS_BIG_ENDIAN) |
5578 | p = SFbignan; | |
5579 | else | |
5580 | p = SFlittlenan; | |
66b6d60b RS |
5581 | break; |
5582 | #endif | |
5583 | default: | |
5584 | abort (); | |
5585 | } | |
f76b9db2 ILT |
5586 | if (FLOAT_WORDS_BIG_ENDIAN) |
5587 | *nan++ = (sign << 15) | *p++; | |
29e11dab | 5588 | while (--n != 0) |
66b6d60b | 5589 | *nan++ = *p++; |
f76b9db2 ILT |
5590 | if (! FLOAT_WORDS_BIG_ENDIAN) |
5591 | *nan = (sign << 15) | *p; | |
66b6d60b RS |
5592 | } |
5593 | ||
b31c244f RS |
5594 | /* Convert an SFmode target `float' value to a REAL_VALUE_TYPE. |
5595 | This is the inverse of the function `etarsingle' invoked by | |
5596 | REAL_VALUE_TO_TARGET_SINGLE. */ | |
5597 | ||
5598 | REAL_VALUE_TYPE | |
5599 | ereal_from_float (f) | |
04ae9e4c | 5600 | HOST_WIDE_INT f; |
b31c244f RS |
5601 | { |
5602 | REAL_VALUE_TYPE r; | |
5603 | unsigned EMUSHORT s[2]; | |
5604 | unsigned EMUSHORT e[NE]; | |
5605 | ||
5606 | /* Convert 32 bit integer to array of 16 bit pieces in target machine order. | |
5607 | This is the inverse operation to what the function `endian' does. */ | |
f76b9db2 ILT |
5608 | if (FLOAT_WORDS_BIG_ENDIAN) |
5609 | { | |
5610 | s[0] = (unsigned EMUSHORT) (f >> 16); | |
5611 | s[1] = (unsigned EMUSHORT) f; | |
5612 | } | |
5613 | else | |
5614 | { | |
5615 | s[0] = (unsigned EMUSHORT) f; | |
5616 | s[1] = (unsigned EMUSHORT) (f >> 16); | |
5617 | } | |
b31c244f RS |
5618 | /* Convert and promote the target float to E-type. */ |
5619 | e24toe (s, e); | |
5620 | /* Output E-type to REAL_VALUE_TYPE. */ | |
5621 | PUT_REAL (e, &r); | |
5622 | return r; | |
5623 | } | |
5624 | ||
842fbaaa | 5625 | |
b31c244f RS |
5626 | /* Convert a DFmode target `double' value to a REAL_VALUE_TYPE. |
5627 | This is the inverse of the function `etardouble' invoked by | |
5628 | REAL_VALUE_TO_TARGET_DOUBLE. | |
5629 | ||
04ae9e4c RK |
5630 | The DFmode is stored as an array of HOST_WIDE_INT in the target's |
5631 | data format, with no holes in the bit packing. The first element | |
b31c244f RS |
5632 | of the input array holds the bits that would come first in the |
5633 | target computer's memory. */ | |
5634 | ||
5635 | REAL_VALUE_TYPE | |
5636 | ereal_from_double (d) | |
04ae9e4c | 5637 | HOST_WIDE_INT d[]; |
b31c244f RS |
5638 | { |
5639 | REAL_VALUE_TYPE r; | |
5640 | unsigned EMUSHORT s[4]; | |
5641 | unsigned EMUSHORT e[NE]; | |
5642 | ||
04ae9e4c | 5643 | /* Convert array of HOST_WIDE_INT to equivalent array of 16-bit pieces. */ |
f76b9db2 ILT |
5644 | if (FLOAT_WORDS_BIG_ENDIAN) |
5645 | { | |
5646 | s[0] = (unsigned EMUSHORT) (d[0] >> 16); | |
5647 | s[1] = (unsigned EMUSHORT) d[0]; | |
60e61165 | 5648 | #if HOST_BITS_PER_WIDE_INT == 32 |
f76b9db2 ILT |
5649 | s[2] = (unsigned EMUSHORT) (d[1] >> 16); |
5650 | s[3] = (unsigned EMUSHORT) d[1]; | |
60e61165 | 5651 | #else |
f76b9db2 ILT |
5652 | /* In this case the entire target double is contained in the |
5653 | first array element. The second element of the input is | |
5654 | ignored. */ | |
5655 | s[2] = (unsigned EMUSHORT) (d[0] >> 48); | |
5656 | s[3] = (unsigned EMUSHORT) (d[0] >> 32); | |
60e61165 | 5657 | #endif |
f76b9db2 ILT |
5658 | } |
5659 | else | |
5660 | { | |
5661 | /* Target float words are little-endian. */ | |
5662 | s[0] = (unsigned EMUSHORT) d[0]; | |
5663 | s[1] = (unsigned EMUSHORT) (d[0] >> 16); | |
60e61165 | 5664 | #if HOST_BITS_PER_WIDE_INT == 32 |
f76b9db2 ILT |
5665 | s[2] = (unsigned EMUSHORT) d[1]; |
5666 | s[3] = (unsigned EMUSHORT) (d[1] >> 16); | |
60e61165 | 5667 | #else |
f76b9db2 ILT |
5668 | s[2] = (unsigned EMUSHORT) (d[0] >> 32); |
5669 | s[3] = (unsigned EMUSHORT) (d[0] >> 48); | |
b31c244f | 5670 | #endif |
f76b9db2 | 5671 | } |
b31c244f RS |
5672 | /* Convert target double to E-type. */ |
5673 | e53toe (s, e); | |
5674 | /* Output E-type to REAL_VALUE_TYPE. */ | |
5675 | PUT_REAL (e, &r); | |
5676 | return r; | |
5677 | } | |
842fbaaa JW |
5678 | |
5679 | ||
b51ab098 RK |
5680 | /* Convert target computer unsigned 64-bit integer to e-type. |
5681 | The endian-ness of DImode follows the convention for integers, | |
5682 | so we use WORDS_BIG_ENDIAN here, not FLOAT_WORDS_BIG_ENDIAN. */ | |
842fbaaa | 5683 | |
a0353055 | 5684 | static void |
842fbaaa JW |
5685 | uditoe (di, e) |
5686 | unsigned EMUSHORT *di; /* Address of the 64-bit int. */ | |
5687 | unsigned EMUSHORT *e; | |
5688 | { | |
5689 | unsigned EMUSHORT yi[NI]; | |
5690 | int k; | |
5691 | ||
5692 | ecleaz (yi); | |
f76b9db2 ILT |
5693 | if (WORDS_BIG_ENDIAN) |
5694 | { | |
5695 | for (k = M; k < M + 4; k++) | |
5696 | yi[k] = *di++; | |
5697 | } | |
5698 | else | |
5699 | { | |
5700 | for (k = M + 3; k >= M; k--) | |
5701 | yi[k] = *di++; | |
5702 | } | |
842fbaaa JW |
5703 | yi[E] = EXONE + 47; /* exponent if normalize shift count were 0 */ |
5704 | if ((k = enormlz (yi)) > NBITS)/* normalize the significand */ | |
5705 | ecleaz (yi); /* it was zero */ | |
5706 | else | |
5707 | yi[E] -= (unsigned EMUSHORT) k;/* subtract shift count from exponent */ | |
5708 | emovo (yi, e); | |
5709 | } | |
5710 | ||
5711 | /* Convert target computer signed 64-bit integer to e-type. */ | |
5712 | ||
a0353055 | 5713 | static void |
842fbaaa JW |
5714 | ditoe (di, e) |
5715 | unsigned EMUSHORT *di; /* Address of the 64-bit int. */ | |
5716 | unsigned EMUSHORT *e; | |
5717 | { | |
5718 | unsigned EMULONG acc; | |
5719 | unsigned EMUSHORT yi[NI]; | |
5720 | unsigned EMUSHORT carry; | |
5721 | int k, sign; | |
5722 | ||
5723 | ecleaz (yi); | |
f76b9db2 ILT |
5724 | if (WORDS_BIG_ENDIAN) |
5725 | { | |
5726 | for (k = M; k < M + 4; k++) | |
5727 | yi[k] = *di++; | |
5728 | } | |
5729 | else | |
5730 | { | |
5731 | for (k = M + 3; k >= M; k--) | |
5732 | yi[k] = *di++; | |
5733 | } | |
842fbaaa JW |
5734 | /* Take absolute value */ |
5735 | sign = 0; | |
5736 | if (yi[M] & 0x8000) | |
5737 | { | |
5738 | sign = 1; | |
5739 | carry = 0; | |
5740 | for (k = M + 3; k >= M; k--) | |
5741 | { | |
5742 | acc = (unsigned EMULONG) (~yi[k] & 0xffff) + carry; | |
5743 | yi[k] = acc; | |
5744 | carry = 0; | |
5745 | if (acc & 0x10000) | |
5746 | carry = 1; | |
5747 | } | |
5748 | } | |
5749 | yi[E] = EXONE + 47; /* exponent if normalize shift count were 0 */ | |
5750 | if ((k = enormlz (yi)) > NBITS)/* normalize the significand */ | |
5751 | ecleaz (yi); /* it was zero */ | |
5752 | else | |
5753 | yi[E] -= (unsigned EMUSHORT) k;/* subtract shift count from exponent */ | |
5754 | emovo (yi, e); | |
5755 | if (sign) | |
5756 | eneg (e); | |
5757 | } | |
5758 | ||
5759 | ||
5760 | /* Convert e-type to unsigned 64-bit int. */ | |
5761 | ||
008f0d36 RK |
5762 | static void |
5763 | etoudi (x, i) | |
842fbaaa JW |
5764 | unsigned EMUSHORT *x; |
5765 | unsigned EMUSHORT *i; | |
5766 | { | |
5767 | unsigned EMUSHORT xi[NI]; | |
5768 | int j, k; | |
5769 | ||
5770 | emovi (x, xi); | |
5771 | if (xi[0]) | |
5772 | { | |
5773 | xi[M] = 0; | |
5774 | goto noshift; | |
5775 | } | |
5776 | k = (int) xi[E] - (EXONE - 1); | |
5777 | if (k <= 0) | |
5778 | { | |
5779 | for (j = 0; j < 4; j++) | |
5780 | *i++ = 0; | |
5781 | return; | |
5782 | } | |
5783 | if (k > 64) | |
5784 | { | |
5785 | for (j = 0; j < 4; j++) | |
5786 | *i++ = 0xffff; | |
5787 | if (extra_warnings) | |
5788 | warning ("overflow on truncation to integer"); | |
5789 | return; | |
5790 | } | |
5791 | if (k > 16) | |
5792 | { | |
5793 | /* Shift more than 16 bits: first shift up k-16 mod 16, | |
5794 | then shift up by 16's. */ | |
5795 | j = k - ((k >> 4) << 4); | |
5796 | if (j == 0) | |
5797 | j = 16; | |
5798 | eshift (xi, j); | |
f76b9db2 ILT |
5799 | if (WORDS_BIG_ENDIAN) |
5800 | *i++ = xi[M]; | |
5801 | else | |
5802 | { | |
5803 | i += 3; | |
5804 | *i-- = xi[M]; | |
5805 | } | |
842fbaaa JW |
5806 | k -= j; |
5807 | do | |
5808 | { | |
5809 | eshup6 (xi); | |
f76b9db2 ILT |
5810 | if (WORDS_BIG_ENDIAN) |
5811 | *i++ = xi[M]; | |
5812 | else | |
5813 | *i-- = xi[M]; | |
842fbaaa JW |
5814 | } |
5815 | while ((k -= 16) > 0); | |
5816 | } | |
5817 | else | |
5818 | { | |
5819 | /* shift not more than 16 bits */ | |
5820 | eshift (xi, k); | |
5821 | ||
5822 | noshift: | |
5823 | ||
f76b9db2 ILT |
5824 | if (WORDS_BIG_ENDIAN) |
5825 | { | |
5826 | i += 3; | |
5827 | *i-- = xi[M]; | |
5828 | *i-- = 0; | |
5829 | *i-- = 0; | |
5830 | *i = 0; | |
5831 | } | |
5832 | else | |
5833 | { | |
5834 | *i++ = xi[M]; | |
5835 | *i++ = 0; | |
5836 | *i++ = 0; | |
5837 | *i = 0; | |
5838 | } | |
842fbaaa JW |
5839 | } |
5840 | } | |
5841 | ||
5842 | ||
5843 | /* Convert e-type to signed 64-bit int. */ | |
5844 | ||
a0353055 | 5845 | static void |
842fbaaa JW |
5846 | etodi (x, i) |
5847 | unsigned EMUSHORT *x; | |
5848 | unsigned EMUSHORT *i; | |
5849 | { | |
5850 | unsigned EMULONG acc; | |
5851 | unsigned EMUSHORT xi[NI]; | |
5852 | unsigned EMUSHORT carry; | |
5853 | unsigned EMUSHORT *isave; | |
5854 | int j, k; | |
5855 | ||
5856 | emovi (x, xi); | |
5857 | k = (int) xi[E] - (EXONE - 1); | |
5858 | if (k <= 0) | |
5859 | { | |
5860 | for (j = 0; j < 4; j++) | |
5861 | *i++ = 0; | |
5862 | return; | |
5863 | } | |
5864 | if (k > 64) | |
5865 | { | |
5866 | for (j = 0; j < 4; j++) | |
5867 | *i++ = 0xffff; | |
5868 | if (extra_warnings) | |
5869 | warning ("overflow on truncation to integer"); | |
5870 | return; | |
5871 | } | |
5872 | isave = i; | |
5873 | if (k > 16) | |
5874 | { | |
5875 | /* Shift more than 16 bits: first shift up k-16 mod 16, | |
5876 | then shift up by 16's. */ | |
5877 | j = k - ((k >> 4) << 4); | |
5878 | if (j == 0) | |
5879 | j = 16; | |
5880 | eshift (xi, j); | |
f76b9db2 ILT |
5881 | if (WORDS_BIG_ENDIAN) |
5882 | *i++ = xi[M]; | |
5883 | else | |
5884 | { | |
5885 | i += 3; | |
5886 | *i-- = xi[M]; | |
5887 | } | |
842fbaaa JW |
5888 | k -= j; |
5889 | do | |
5890 | { | |
5891 | eshup6 (xi); | |
f76b9db2 ILT |
5892 | if (WORDS_BIG_ENDIAN) |
5893 | *i++ = xi[M]; | |
5894 | else | |
5895 | *i-- = xi[M]; | |
842fbaaa JW |
5896 | } |
5897 | while ((k -= 16) > 0); | |
5898 | } | |
5899 | else | |
5900 | { | |
5901 | /* shift not more than 16 bits */ | |
5902 | eshift (xi, k); | |
5903 | ||
f76b9db2 ILT |
5904 | if (WORDS_BIG_ENDIAN) |
5905 | { | |
5906 | i += 3; | |
5907 | *i = xi[M]; | |
5908 | *i-- = 0; | |
5909 | *i-- = 0; | |
5910 | *i = 0; | |
5911 | } | |
5912 | else | |
5913 | { | |
5914 | *i++ = xi[M]; | |
5915 | *i++ = 0; | |
5916 | *i++ = 0; | |
5917 | *i = 0; | |
5918 | } | |
842fbaaa JW |
5919 | } |
5920 | /* Negate if negative */ | |
5921 | if (xi[0]) | |
5922 | { | |
5923 | carry = 0; | |
f76b9db2 ILT |
5924 | if (WORDS_BIG_ENDIAN) |
5925 | isave += 3; | |
842fbaaa JW |
5926 | for (k = 0; k < 4; k++) |
5927 | { | |
5928 | acc = (unsigned EMULONG) (~(*isave) & 0xffff) + carry; | |
f76b9db2 ILT |
5929 | if (WORDS_BIG_ENDIAN) |
5930 | *isave-- = acc; | |
5931 | else | |
5932 | *isave++ = acc; | |
842fbaaa JW |
5933 | carry = 0; |
5934 | if (acc & 0x10000) | |
5935 | carry = 1; | |
5936 | } | |
5937 | } | |
5938 | } | |
5939 | ||
5940 | ||
5941 | /* Longhand square root routine. */ | |
5942 | ||
5943 | ||
5944 | static int esqinited = 0; | |
5945 | static unsigned short sqrndbit[NI]; | |
5946 | ||
a0353055 | 5947 | static void |
842fbaaa JW |
5948 | esqrt (x, y) |
5949 | unsigned EMUSHORT *x, *y; | |
5950 | { | |
5951 | unsigned EMUSHORT temp[NI], num[NI], sq[NI], xx[NI]; | |
5952 | EMULONG m, exp; | |
5953 | int i, j, k, n, nlups; | |
5954 | ||
5955 | if (esqinited == 0) | |
5956 | { | |
5957 | ecleaz (sqrndbit); | |
5958 | sqrndbit[NI - 2] = 1; | |
5959 | esqinited = 1; | |
5960 | } | |
5961 | /* Check for arg <= 0 */ | |
5962 | i = ecmp (x, ezero); | |
5963 | if (i <= 0) | |
5964 | { | |
29e11dab | 5965 | if (i == -1) |
842fbaaa | 5966 | { |
29e11dab RK |
5967 | mtherr ("esqrt", DOMAIN); |
5968 | eclear (y); | |
842fbaaa | 5969 | } |
29e11dab RK |
5970 | else |
5971 | emov (x, y); | |
842fbaaa JW |
5972 | return; |
5973 | } | |
5974 | ||
5975 | #ifdef INFINITY | |
5976 | if (eisinf (x)) | |
5977 | { | |
5978 | eclear (y); | |
5979 | einfin (y); | |
5980 | return; | |
5981 | } | |
5982 | #endif | |
5983 | /* Bring in the arg and renormalize if it is denormal. */ | |
5984 | emovi (x, xx); | |
5985 | m = (EMULONG) xx[1]; /* local long word exponent */ | |
5986 | if (m == 0) | |
5987 | m -= enormlz (xx); | |
5988 | ||
5989 | /* Divide exponent by 2 */ | |
5990 | m -= 0x3ffe; | |
5991 | exp = (unsigned short) ((m / 2) + 0x3ffe); | |
5992 | ||
5993 | /* Adjust if exponent odd */ | |
5994 | if ((m & 1) != 0) | |
5995 | { | |
5996 | if (m > 0) | |
5997 | exp += 1; | |
5998 | eshdn1 (xx); | |
5999 | } | |
6000 | ||
6001 | ecleaz (sq); | |
6002 | ecleaz (num); | |
6003 | n = 8; /* get 8 bits of result per inner loop */ | |
6004 | nlups = rndprc; | |
6005 | j = 0; | |
6006 | ||
6007 | while (nlups > 0) | |
6008 | { | |
6009 | /* bring in next word of arg */ | |
6010 | if (j < NE) | |
6011 | num[NI - 1] = xx[j + 3]; | |
6012 | /* Do additional bit on last outer loop, for roundoff. */ | |
6013 | if (nlups <= 8) | |
6014 | n = nlups + 1; | |
6015 | for (i = 0; i < n; i++) | |
6016 | { | |
6017 | /* Next 2 bits of arg */ | |
6018 | eshup1 (num); | |
6019 | eshup1 (num); | |
6020 | /* Shift up answer */ | |
6021 | eshup1 (sq); | |
6022 | /* Make trial divisor */ | |
6023 | for (k = 0; k < NI; k++) | |
6024 | temp[k] = sq[k]; | |
6025 | eshup1 (temp); | |
6026 | eaddm (sqrndbit, temp); | |
6027 | /* Subtract and insert answer bit if it goes in */ | |
6028 | if (ecmpm (temp, num) <= 0) | |
6029 | { | |
6030 | esubm (temp, num); | |
6031 | sq[NI - 2] |= 1; | |
6032 | } | |
6033 | } | |
6034 | nlups -= n; | |
6035 | j += 1; | |
6036 | } | |
6037 | ||
6038 | /* Adjust for extra, roundoff loop done. */ | |
6039 | exp += (NBITS - 1) - rndprc; | |
6040 | ||
6041 | /* Sticky bit = 1 if the remainder is nonzero. */ | |
6042 | k = 0; | |
6043 | for (i = 3; i < NI; i++) | |
6044 | k |= (int) num[i]; | |
6045 | ||
6046 | /* Renormalize and round off. */ | |
6047 | emdnorm (sq, k, 0, exp, 64); | |
6048 | emovo (sq, y); | |
6049 | } | |
985b6196 | 6050 | #endif /* EMU_NON_COMPILE not defined */ |
8ddae348 RK |
6051 | \f |
6052 | /* Return the binary precision of the significand for a given | |
6053 | floating point mode. The mode can hold an integer value | |
6054 | that many bits wide, without losing any bits. */ | |
6055 | ||
6056 | int | |
6057 | significand_size (mode) | |
6058 | enum machine_mode mode; | |
6059 | { | |
6060 | ||
6061 | switch (mode) | |
6062 | { | |
6063 | case SFmode: | |
6064 | return 24; | |
6065 | ||
6066 | case DFmode: | |
6067 | #if TARGET_FLOAT_FORMAT == IEEE_FLOAT_FORMAT | |
6068 | return 53; | |
6069 | #else | |
6070 | #if TARGET_FLOAT_FORMAT == IBM_FLOAT_FORMAT | |
6071 | return 56; | |
6072 | #else | |
6073 | #if TARGET_FLOAT_FORMAT == VAX_FLOAT_FORMAT | |
6074 | return 56; | |
6075 | #else | |
6076 | abort (); | |
6077 | #endif | |
6078 | #endif | |
6079 | #endif | |
6080 | ||
6081 | case XFmode: | |
6082 | return 64; | |
6083 | case TFmode: | |
6084 | return 113; | |
6085 | ||
6086 | default: | |
6087 | abort (); | |
6088 | } | |
6089 | } |