]> gcc.gnu.org Git - gcc.git/blame - gcc/predict.c
re PR target/16532 (Inefficient jump to epilogue)
[gcc.git] / gcc / predict.c
CommitLineData
f1ebdfc5 1/* Branch prediction routines for the GNU compiler.
2f89bbc1 2 Copyright (C) 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
f1ebdfc5 3
bfdade77 4This file is part of GCC.
f1ebdfc5 5
bfdade77
RK
6GCC is free software; you can redistribute it and/or modify it under
7the terms of the GNU General Public License as published by the Free
8Software Foundation; either version 2, or (at your option) any later
9version.
f1ebdfc5 10
bfdade77
RK
11GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12WARRANTY; without even the implied warranty of MERCHANTABILITY or
13FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14for more details.
f1ebdfc5 15
bfdade77
RK
16You should have received a copy of the GNU General Public License
17along with GCC; see the file COPYING. If not, write to the Free
18Software Foundation, 59 Temple Place - Suite 330, Boston, MA
1902111-1307, USA. */
f1ebdfc5
JE
20
21/* References:
22
23 [1] "Branch Prediction for Free"
24 Ball and Larus; PLDI '93.
25 [2] "Static Branch Frequency and Program Profile Analysis"
26 Wu and Larus; MICRO-27.
27 [3] "Corpus-based Static Branch Prediction"
3ef42a0c 28 Calder, Grunwald, Lindsay, Martin, Mozer, and Zorn; PLDI '95. */
f1ebdfc5
JE
29
30
31#include "config.h"
32#include "system.h"
4977bab6
ZW
33#include "coretypes.h"
34#include "tm.h"
f1ebdfc5
JE
35#include "tree.h"
36#include "rtl.h"
37#include "tm_p.h"
efc9bd41 38#include "hard-reg-set.h"
f1ebdfc5
JE
39#include "basic-block.h"
40#include "insn-config.h"
41#include "regs.h"
f1ebdfc5
JE
42#include "flags.h"
43#include "output.h"
44#include "function.h"
45#include "except.h"
46#include "toplev.h"
47#include "recog.h"
f1ebdfc5 48#include "expr.h"
4db384c9 49#include "predict.h"
d79f9ec9 50#include "coverage.h"
ac5e69da 51#include "sreal.h"
194734e9
JH
52#include "params.h"
53#include "target.h"
3d436d2a 54#include "cfgloop.h"
6de9cd9a
DN
55#include "tree-flow.h"
56#include "ggc.h"
57#include "tree-dump.h"
58#include "tree-pass.h"
59#include "timevar.h"
b6acab32
JH
60#include "tree-scalar-evolution.h"
61#include "cfgloop.h"
8aa18a7d 62
fbe3b30b
SB
63/* real constants: 0, 1, 1-1/REG_BR_PROB_BASE, REG_BR_PROB_BASE,
64 1/REG_BR_PROB_BASE, 0.5, BB_FREQ_MAX. */
ac5e69da
JZ
65static sreal real_zero, real_one, real_almost_one, real_br_prob_base,
66 real_inv_br_prob_base, real_one_half, real_bb_freq_max;
f1ebdfc5 67
c66f079e 68/* Random guesstimation given names. */
c66f079e 69#define PROB_VERY_UNLIKELY (REG_BR_PROB_BASE / 10 - 1)
c66f079e 70#define PROB_EVEN (REG_BR_PROB_BASE / 2)
c66f079e
RH
71#define PROB_VERY_LIKELY (REG_BR_PROB_BASE - PROB_VERY_UNLIKELY)
72#define PROB_ALWAYS (REG_BR_PROB_BASE)
f1ebdfc5 73
79a490a9 74static void combine_predictions_for_insn (rtx, basic_block);
6de9cd9a 75static void dump_prediction (FILE *, enum br_predictor, int, basic_block, int);
79a490a9
AJ
76static void estimate_loops_at_level (struct loop *loop);
77static void propagate_freq (struct loop *);
78static void estimate_bb_frequencies (struct loops *);
bb033fd8 79static void predict_paths_leading_to (basic_block, int *, enum br_predictor, enum prediction);
79a490a9
AJ
80static bool last_basic_block_p (basic_block);
81static void compute_function_frequency (void);
82static void choose_function_section (void);
83static bool can_predict_insn_p (rtx);
ee92cb46 84
4db384c9
JH
85/* Information we hold about each branch predictor.
86 Filled using information from predict.def. */
bfdade77 87
4db384c9 88struct predictor_info
ee92cb46 89{
8b60264b
KG
90 const char *const name; /* Name used in the debugging dumps. */
91 const int hitrate; /* Expected hitrate used by
92 predict_insn_def call. */
93 const int flags;
4db384c9 94};
ee92cb46 95
134d3a2e
JH
96/* Use given predictor without Dempster-Shaffer theory if it matches
97 using first_match heuristics. */
98#define PRED_FLAG_FIRST_MATCH 1
99
100/* Recompute hitrate in percent to our representation. */
101
bfdade77 102#define HITRATE(VAL) ((int) ((VAL) * REG_BR_PROB_BASE + 50) / 100)
134d3a2e
JH
103
104#define DEF_PREDICTOR(ENUM, NAME, HITRATE, FLAGS) {NAME, HITRATE, FLAGS},
bfdade77 105static const struct predictor_info predictor_info[]= {
4db384c9
JH
106#include "predict.def"
107
dc297297 108 /* Upper bound on predictors. */
134d3a2e 109 {NULL, 0, 0}
4db384c9
JH
110};
111#undef DEF_PREDICTOR
194734e9
JH
112
113/* Return true in case BB can be CPU intensive and should be optimized
d55d8fc7 114 for maximal performance. */
194734e9
JH
115
116bool
79a490a9 117maybe_hot_bb_p (basic_block bb)
194734e9 118{
cdb23767 119 if (profile_info && flag_branch_probabilities
194734e9 120 && (bb->count
cdb23767 121 < profile_info->sum_max / PARAM_VALUE (HOT_BB_COUNT_FRACTION)))
194734e9
JH
122 return false;
123 if (bb->frequency < BB_FREQ_MAX / PARAM_VALUE (HOT_BB_FREQUENCY_FRACTION))
124 return false;
125 return true;
126}
127
128/* Return true in case BB is cold and should be optimized for size. */
129
130bool
79a490a9 131probably_cold_bb_p (basic_block bb)
194734e9 132{
cdb23767 133 if (profile_info && flag_branch_probabilities
194734e9 134 && (bb->count
cdb23767 135 < profile_info->sum_max / PARAM_VALUE (HOT_BB_COUNT_FRACTION)))
194734e9
JH
136 return true;
137 if (bb->frequency < BB_FREQ_MAX / PARAM_VALUE (HOT_BB_FREQUENCY_FRACTION))
138 return true;
139 return false;
140}
141
142/* Return true in case BB is probably never executed. */
143bool
79a490a9 144probably_never_executed_bb_p (basic_block bb)
194734e9 145{
cdb23767
NS
146 if (profile_info && flag_branch_probabilities)
147 return ((bb->count + profile_info->runs / 2) / profile_info->runs) == 0;
194734e9
JH
148 return false;
149}
150
969d70ca
JH
151/* Return true if the one of outgoing edges is already predicted by
152 PREDICTOR. */
153
6de9cd9a
DN
154bool
155rtl_predicted_by_p (basic_block bb, enum br_predictor predictor)
969d70ca
JH
156{
157 rtx note;
a813c111 158 if (!INSN_P (BB_END (bb)))
969d70ca 159 return false;
a813c111 160 for (note = REG_NOTES (BB_END (bb)); note; note = XEXP (note, 1))
969d70ca
JH
161 if (REG_NOTE_KIND (note) == REG_BR_PRED
162 && INTVAL (XEXP (XEXP (note, 0), 0)) == (int)predictor)
163 return true;
164 return false;
165}
ee92cb46 166
6de9cd9a
DN
167/* Return true if the one of outgoing edges is already predicted by
168 PREDICTOR. */
169
170bool
171tree_predicted_by_p (basic_block bb, enum br_predictor predictor)
172{
173 struct edge_prediction *i = bb_ann (bb)->predictions;
174 for (i = bb_ann (bb)->predictions; i; i = i->next)
175 if (i->predictor == predictor)
176 return true;
177 return false;
178}
179
4db384c9 180void
79a490a9 181predict_insn (rtx insn, enum br_predictor predictor, int probability)
4db384c9 182{
8127d0e0
NS
183 if (!any_condjump_p (insn))
184 abort ();
d50672ef
JH
185 if (!flag_guess_branch_prob)
186 return;
bfdade77 187
ee92cb46 188 REG_NOTES (insn)
4db384c9
JH
189 = gen_rtx_EXPR_LIST (REG_BR_PRED,
190 gen_rtx_CONCAT (VOIDmode,
191 GEN_INT ((int) predictor),
192 GEN_INT ((int) probability)),
193 REG_NOTES (insn));
194}
195
196/* Predict insn by given predictor. */
bfdade77 197
4db384c9 198void
79a490a9
AJ
199predict_insn_def (rtx insn, enum br_predictor predictor,
200 enum prediction taken)
4db384c9
JH
201{
202 int probability = predictor_info[(int) predictor].hitrate;
bfdade77 203
4db384c9
JH
204 if (taken != TAKEN)
205 probability = REG_BR_PROB_BASE - probability;
bfdade77 206
4db384c9 207 predict_insn (insn, predictor, probability);
ee92cb46
JH
208}
209
210/* Predict edge E with given probability if possible. */
bfdade77 211
4db384c9 212void
6de9cd9a 213rtl_predict_edge (edge e, enum br_predictor predictor, int probability)
ee92cb46
JH
214{
215 rtx last_insn;
a813c111 216 last_insn = BB_END (e->src);
ee92cb46
JH
217
218 /* We can store the branch prediction information only about
219 conditional jumps. */
220 if (!any_condjump_p (last_insn))
221 return;
222
223 /* We always store probability of branching. */
224 if (e->flags & EDGE_FALLTHRU)
225 probability = REG_BR_PROB_BASE - probability;
226
4db384c9
JH
227 predict_insn (last_insn, predictor, probability);
228}
229
6de9cd9a
DN
230/* Predict edge E with the given PROBABILITY. */
231void
232tree_predict_edge (edge e, enum br_predictor predictor, int probability)
233{
234 struct edge_prediction *i = ggc_alloc (sizeof (struct edge_prediction));
235
236 i->next = bb_ann (e->src)->predictions;
237 bb_ann (e->src)->predictions = i;
238 i->probability = probability;
239 i->predictor = predictor;
240 i->edge = e;
241}
242
2ffa9932
JH
243/* Return true when we can store prediction on insn INSN.
244 At the moment we represent predictions only on conditional
245 jumps, not at computed jump or other complicated cases. */
246static bool
79a490a9 247can_predict_insn_p (rtx insn)
2ffa9932 248{
4b4bf941 249 return (JUMP_P (insn)
2ffa9932
JH
250 && any_condjump_p (insn)
251 && BLOCK_FOR_INSN (insn)->succ->succ_next);
252}
253
4db384c9 254/* Predict edge E by given predictor if possible. */
bfdade77 255
4db384c9 256void
79a490a9
AJ
257predict_edge_def (edge e, enum br_predictor predictor,
258 enum prediction taken)
4db384c9
JH
259{
260 int probability = predictor_info[(int) predictor].hitrate;
261
262 if (taken != TAKEN)
263 probability = REG_BR_PROB_BASE - probability;
bfdade77 264
4db384c9
JH
265 predict_edge (e, predictor, probability);
266}
267
268/* Invert all branch predictions or probability notes in the INSN. This needs
269 to be done each time we invert the condition used by the jump. */
bfdade77 270
4db384c9 271void
79a490a9 272invert_br_probabilities (rtx insn)
4db384c9 273{
bfdade77
RK
274 rtx note;
275
276 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
277 if (REG_NOTE_KIND (note) == REG_BR_PROB)
278 XEXP (note, 0) = GEN_INT (REG_BR_PROB_BASE - INTVAL (XEXP (note, 0)));
279 else if (REG_NOTE_KIND (note) == REG_BR_PRED)
280 XEXP (XEXP (note, 0), 1)
281 = GEN_INT (REG_BR_PROB_BASE - INTVAL (XEXP (XEXP (note, 0), 1)));
4db384c9
JH
282}
283
284/* Dump information about the branch prediction to the output file. */
bfdade77 285
4db384c9 286static void
6de9cd9a 287dump_prediction (FILE *file, enum br_predictor predictor, int probability,
79a490a9 288 basic_block bb, int used)
4db384c9
JH
289{
290 edge e = bb->succ;
291
6de9cd9a 292 if (!file)
4db384c9
JH
293 return;
294
fbc2782e 295 while (e && (e->flags & EDGE_FALLTHRU))
4db384c9
JH
296 e = e->succ_next;
297
6de9cd9a 298 fprintf (file, " %s heuristics%s: %.1f%%",
4db384c9 299 predictor_info[predictor].name,
bfdade77 300 used ? "" : " (ignored)", probability * 100.0 / REG_BR_PROB_BASE);
4db384c9
JH
301
302 if (bb->count)
25c3a4ef 303 {
6de9cd9a
DN
304 fprintf (file, " exec ");
305 fprintf (file, HOST_WIDEST_INT_PRINT_DEC, bb->count);
fbc2782e
DD
306 if (e)
307 {
6de9cd9a
DN
308 fprintf (file, " hit ");
309 fprintf (file, HOST_WIDEST_INT_PRINT_DEC, e->count);
310 fprintf (file, " (%.1f%%)", e->count * 100.0 / bb->count);
fbc2782e 311 }
25c3a4ef 312 }
bfdade77 313
6de9cd9a 314 fprintf (file, "\n");
4db384c9
JH
315}
316
229031d0 317/* We can not predict the probabilities of outgoing edges of bb. Set them
87022a6b
JH
318 evenly and hope for the best. */
319static void
320set_even_probabilities (basic_block bb)
321{
322 int nedges = 0;
323 edge e;
324
325 for (e = bb->succ; e; e = e->succ_next)
326 if (!(e->flags & (EDGE_EH | EDGE_FAKE)))
327 nedges ++;
328 for (e = bb->succ; e; e = e->succ_next)
329 if (!(e->flags & (EDGE_EH | EDGE_FAKE)))
330 e->probability = (REG_BR_PROB_BASE + nedges / 2) / nedges;
331 else
332 e->probability = 0;
333}
334
4db384c9
JH
335/* Combine all REG_BR_PRED notes into single probability and attach REG_BR_PROB
336 note if not already present. Remove now useless REG_BR_PRED notes. */
bfdade77 337
4db384c9 338static void
79a490a9 339combine_predictions_for_insn (rtx insn, basic_block bb)
4db384c9 340{
87022a6b
JH
341 rtx prob_note;
342 rtx *pnote;
bfdade77 343 rtx note;
4db384c9
JH
344 int best_probability = PROB_EVEN;
345 int best_predictor = END_PREDICTORS;
134d3a2e
JH
346 int combined_probability = REG_BR_PROB_BASE / 2;
347 int d;
d195b46f
JH
348 bool first_match = false;
349 bool found = false;
4db384c9 350
87022a6b
JH
351 if (!can_predict_insn_p (insn))
352 {
353 set_even_probabilities (bb);
354 return;
355 }
356
357 prob_note = find_reg_note (insn, REG_BR_PROB, 0);
358 pnote = &REG_NOTES (insn);
c263766c
RH
359 if (dump_file)
360 fprintf (dump_file, "Predictions for insn %i bb %i\n", INSN_UID (insn),
0b17ab2f 361 bb->index);
4db384c9
JH
362
363 /* We implement "first match" heuristics and use probability guessed
6de9cd9a 364 by predictor with smallest index. */
bfdade77
RK
365 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
366 if (REG_NOTE_KIND (note) == REG_BR_PRED)
367 {
368 int predictor = INTVAL (XEXP (XEXP (note, 0), 0));
369 int probability = INTVAL (XEXP (XEXP (note, 0), 1));
370
371 found = true;
372 if (best_predictor > predictor)
373 best_probability = probability, best_predictor = predictor;
374
375 d = (combined_probability * probability
376 + (REG_BR_PROB_BASE - combined_probability)
377 * (REG_BR_PROB_BASE - probability));
378
379 /* Use FP math to avoid overflows of 32bit integers. */
571a03b8
JJ
380 if (d == 0)
381 /* If one probability is 0% and one 100%, avoid division by zero. */
382 combined_probability = REG_BR_PROB_BASE / 2;
383 else
384 combined_probability = (((double) combined_probability) * probability
385 * REG_BR_PROB_BASE / d + 0.5);
bfdade77
RK
386 }
387
388 /* Decide which heuristic to use. In case we didn't match anything,
389 use no_prediction heuristic, in case we did match, use either
d195b46f
JH
390 first match or Dempster-Shaffer theory depending on the flags. */
391
134d3a2e 392 if (predictor_info [best_predictor].flags & PRED_FLAG_FIRST_MATCH)
d195b46f
JH
393 first_match = true;
394
395 if (!found)
6de9cd9a
DN
396 dump_prediction (dump_file, PRED_NO_PREDICTION,
397 combined_probability, bb, true);
d195b46f
JH
398 else
399 {
6de9cd9a
DN
400 dump_prediction (dump_file, PRED_DS_THEORY, combined_probability,
401 bb, !first_match);
402 dump_prediction (dump_file, PRED_FIRST_MATCH, best_probability,
403 bb, first_match);
d195b46f
JH
404 }
405
406 if (first_match)
134d3a2e 407 combined_probability = best_probability;
6de9cd9a 408 dump_prediction (dump_file, PRED_COMBINED, combined_probability, bb, true);
d195b46f
JH
409
410 while (*pnote)
411 {
412 if (REG_NOTE_KIND (*pnote) == REG_BR_PRED)
413 {
414 int predictor = INTVAL (XEXP (XEXP (*pnote, 0), 0));
415 int probability = INTVAL (XEXP (XEXP (*pnote, 0), 1));
416
6de9cd9a 417 dump_prediction (dump_file, predictor, probability, bb,
d195b46f 418 !first_match || best_predictor == predictor);
6a4d6760 419 *pnote = XEXP (*pnote, 1);
d195b46f
JH
420 }
421 else
6a4d6760 422 pnote = &XEXP (*pnote, 1);
d195b46f 423 }
bfdade77 424
4db384c9
JH
425 if (!prob_note)
426 {
427 REG_NOTES (insn)
428 = gen_rtx_EXPR_LIST (REG_BR_PROB,
134d3a2e 429 GEN_INT (combined_probability), REG_NOTES (insn));
bfdade77 430
134d3a2e
JH
431 /* Save the prediction into CFG in case we are seeing non-degenerated
432 conditional jump. */
433 if (bb->succ->succ_next)
434 {
435 BRANCH_EDGE (bb)->probability = combined_probability;
bfdade77
RK
436 FALLTHRU_EDGE (bb)->probability
437 = REG_BR_PROB_BASE - combined_probability;
134d3a2e 438 }
4db384c9 439 }
e53de54d
JH
440 else if (bb->succ->succ_next)
441 {
442 int prob = INTVAL (XEXP (prob_note, 0));
443
444 BRANCH_EDGE (bb)->probability = prob;
445 FALLTHRU_EDGE (bb)->probability = REG_BR_PROB_BASE - prob;
446 }
447 else
448 bb->succ->probability = REG_BR_PROB_BASE;
ee92cb46
JH
449}
450
6de9cd9a
DN
451/* Combine predictions into single probability and store them into CFG.
452 Remove now useless prediction entries. */
f1ebdfc5 453
6de9cd9a
DN
454static void
455combine_predictions_for_bb (FILE *file, basic_block bb)
f1ebdfc5 456{
6de9cd9a
DN
457 int best_probability = PROB_EVEN;
458 int best_predictor = END_PREDICTORS;
459 int combined_probability = REG_BR_PROB_BASE / 2;
460 int d;
461 bool first_match = false;
462 bool found = false;
463 struct edge_prediction *pred;
464 int nedges = 0;
465 edge e, first = NULL, second = NULL;
f1ebdfc5 466
6de9cd9a
DN
467 for (e = bb->succ; e; e = e->succ_next)
468 if (!(e->flags & (EDGE_EH | EDGE_FAKE)))
469 {
470 nedges ++;
471 if (first && !second)
472 second = e;
473 if (!first)
474 first = e;
475 }
476
477 /* When there is no successor or only one choice, prediction is easy.
478
479 We are lazy for now and predict only basic blocks with two outgoing
480 edges. It is possible to predict generic case too, but we have to
481 ignore first match heuristics and do more involved combining. Implement
482 this later. */
483 if (nedges != 2)
484 {
87022a6b
JH
485 if (!bb->count)
486 set_even_probabilities (bb);
6de9cd9a
DN
487 bb_ann (bb)->predictions = NULL;
488 if (file)
489 fprintf (file, "%i edges in bb %i predicted to even probabilities\n",
490 nedges, bb->index);
491 return;
492 }
493
494 if (file)
495 fprintf (file, "Predictions for bb %i\n", bb->index);
496
497 /* We implement "first match" heuristics and use probability guessed
498 by predictor with smallest index. */
499 for (pred = bb_ann (bb)->predictions; pred; pred = pred->next)
500 {
501 int predictor = pred->predictor;
502 int probability = pred->probability;
503
504 if (pred->edge != first)
505 probability = REG_BR_PROB_BASE - probability;
506
507 found = true;
508 if (best_predictor > predictor)
509 best_probability = probability, best_predictor = predictor;
510
511 d = (combined_probability * probability
512 + (REG_BR_PROB_BASE - combined_probability)
513 * (REG_BR_PROB_BASE - probability));
514
515 /* Use FP math to avoid overflows of 32bit integers. */
516 if (d == 0)
517 /* If one probability is 0% and one 100%, avoid division by zero. */
518 combined_probability = REG_BR_PROB_BASE / 2;
519 else
520 combined_probability = (((double) combined_probability) * probability
521 * REG_BR_PROB_BASE / d + 0.5);
522 }
523
524 /* Decide which heuristic to use. In case we didn't match anything,
525 use no_prediction heuristic, in case we did match, use either
526 first match or Dempster-Shaffer theory depending on the flags. */
527
528 if (predictor_info [best_predictor].flags & PRED_FLAG_FIRST_MATCH)
529 first_match = true;
530
531 if (!found)
532 dump_prediction (file, PRED_NO_PREDICTION, combined_probability, bb, true);
533 else
534 {
535 dump_prediction (file, PRED_DS_THEORY, combined_probability, bb,
536 !first_match);
537 dump_prediction (file, PRED_FIRST_MATCH, best_probability, bb,
538 first_match);
539 }
540
541 if (first_match)
542 combined_probability = best_probability;
543 dump_prediction (file, PRED_COMBINED, combined_probability, bb, true);
544
545 for (pred = bb_ann (bb)->predictions; pred; pred = pred->next)
546 {
547 int predictor = pred->predictor;
548 int probability = pred->probability;
549
550 if (pred->edge != bb->succ)
551 probability = REG_BR_PROB_BASE - probability;
552 dump_prediction (file, predictor, probability, bb,
553 !first_match || best_predictor == predictor);
554 }
555 bb_ann (bb)->predictions = NULL;
556
87022a6b
JH
557 if (!bb->count)
558 {
559 first->probability = combined_probability;
560 second->probability = REG_BR_PROB_BASE - combined_probability;
561 }
6de9cd9a
DN
562}
563
564/* Predict edge probabilities by exploiting loop structure.
b6acab32
JH
565 When RTLSIMPLELOOPS is set, attempt to count number of iterations by analyzing
566 RTL otherwise use tree based approach. */
6de9cd9a 567static void
b6acab32 568predict_loops (struct loops *loops_info, bool rtlsimpleloops)
6de9cd9a
DN
569{
570 unsigned i;
0b92ff33 571
b6acab32
JH
572 if (!rtlsimpleloops)
573 scev_initialize (loops_info);
574
65169dcf
JE
575 /* Try to predict out blocks in a loop that are not part of a
576 natural loop. */
2ecfd709 577 for (i = 1; i < loops_info->num; i++)
f1ebdfc5 578 {
2ecfd709 579 basic_block bb, *bbs;
3d436d2a 580 unsigned j;
0dd0e980 581 int exits;
2ecfd709 582 struct loop *loop = loops_info->parray[i];
50654f6c 583 struct niter_desc desc;
3d436d2a 584 unsigned HOST_WIDE_INT niter;
f1ebdfc5 585
d47cc544 586 flow_loop_scan (loop, LOOP_EXIT_EDGES);
0dd0e980
JH
587 exits = loop->num_exits;
588
b6acab32 589 if (rtlsimpleloops)
3d436d2a 590 {
6de9cd9a
DN
591 iv_analysis_loop_init (loop);
592 find_simple_exit (loop, &desc);
593
594 if (desc.simple_p && desc.const_iter)
595 {
596 int prob;
597 niter = desc.niter + 1;
598 if (niter == 0) /* We might overflow here. */
599 niter = desc.niter;
600
601 prob = (REG_BR_PROB_BASE
602 - (REG_BR_PROB_BASE + niter /2) / niter);
603 /* Branch prediction algorithm gives 0 frequency for everything
604 after the end of loop for loop having 0 probability to finish. */
605 if (prob == REG_BR_PROB_BASE)
606 prob = REG_BR_PROB_BASE - 1;
607 predict_edge (desc.in_edge, PRED_LOOP_ITERATIONS,
608 prob);
609 }
3d436d2a 610 }
b6acab32
JH
611 else
612 {
613 edge *exits;
614 unsigned j, n_exits;
615 struct tree_niter_desc niter_desc;
616
617 exits = get_loop_exit_edges (loop, &n_exits);
618 for (j = 0; j < n_exits; j++)
619 {
620 tree niter = NULL;
621
622 if (number_of_iterations_exit (loop, exits[j], &niter_desc))
623 niter = niter_desc.niter;
624 if (!niter || TREE_CODE (niter_desc.niter) != INTEGER_CST)
625 niter = loop_niter_by_eval (loop, exits[j]);
626
627 if (TREE_CODE (niter) == INTEGER_CST)
628 {
629 int probability;
630 if (host_integerp (niter, 1)
631 && tree_int_cst_lt (niter,
632 build_int_cstu (NULL_TREE,
633 REG_BR_PROB_BASE - 1)))
634 {
635 HOST_WIDE_INT nitercst = tree_low_cst (niter, 1) + 1;
636 probability = (REG_BR_PROB_BASE + nitercst / 2) / nitercst;
637 }
638 else
639 probability = 1;
640
641 predict_edge (exits[j], PRED_LOOP_ITERATIONS, probability);
642 }
643 }
644
645 free (exits);
646 }
3d436d2a 647
2ecfd709 648 bbs = get_loop_body (loop);
6de9cd9a 649
2ecfd709
ZD
650 for (j = 0; j < loop->num_nodes; j++)
651 {
652 int header_found = 0;
653 edge e;
654
655 bb = bbs[j];
bfdade77 656
969d70ca
JH
657 /* Bypass loop heuristics on continue statement. These
658 statements construct loops via "non-loop" constructs
659 in the source language and are better to be handled
660 separately. */
b6acab32 661 if ((rtlsimpleloops && !can_predict_insn_p (BB_END (bb)))
2ffa9932 662 || predicted_by_p (bb, PRED_CONTINUE))
969d70ca
JH
663 continue;
664
2ecfd709
ZD
665 /* Loop branch heuristics - predict an edge back to a
666 loop's head as taken. */
667 for (e = bb->succ; e; e = e->succ_next)
668 if (e->dest == loop->header
669 && e->src == loop->latch)
670 {
671 header_found = 1;
672 predict_edge_def (e, PRED_LOOP_BRANCH, TAKEN);
673 }
bfdade77 674
2ecfd709 675 /* Loop exit heuristics - predict an edge exiting the loop if the
d55d8fc7 676 conditional has no loop header successors as not taken. */
2ecfd709
ZD
677 if (!header_found)
678 for (e = bb->succ; e; e = e->succ_next)
679 if (e->dest->index < 0
680 || !flow_bb_inside_loop_p (loop, e->dest))
681 predict_edge
682 (e, PRED_LOOP_EXIT,
683 (REG_BR_PROB_BASE
684 - predictor_info [(int) PRED_LOOP_EXIT].hitrate)
685 / exits);
686 }
36579663 687
e0a21ab9 688 /* Free basic blocks from get_loop_body. */
36579663 689 free (bbs);
f1ebdfc5 690 }
b6acab32
JH
691
692 if (!rtlsimpleloops)
693 scev_reset ();
6de9cd9a
DN
694}
695
87022a6b
JH
696/* Attempt to predict probabilities of BB outgoing edges using local
697 properties. */
698static void
699bb_estimate_probability_locally (basic_block bb)
700{
701 rtx last_insn = BB_END (bb);
702 rtx cond;
703
704 if (! can_predict_insn_p (last_insn))
705 return;
706 cond = get_condition (last_insn, NULL, false, false);
707 if (! cond)
708 return;
709
710 /* Try "pointer heuristic."
711 A comparison ptr == 0 is predicted as false.
712 Similarly, a comparison ptr1 == ptr2 is predicted as false. */
713 if (COMPARISON_P (cond)
714 && ((REG_P (XEXP (cond, 0)) && REG_POINTER (XEXP (cond, 0)))
715 || (REG_P (XEXP (cond, 1)) && REG_POINTER (XEXP (cond, 1)))))
716 {
717 if (GET_CODE (cond) == EQ)
718 predict_insn_def (last_insn, PRED_POINTER, NOT_TAKEN);
719 else if (GET_CODE (cond) == NE)
720 predict_insn_def (last_insn, PRED_POINTER, TAKEN);
721 }
722 else
723
724 /* Try "opcode heuristic."
725 EQ tests are usually false and NE tests are usually true. Also,
726 most quantities are positive, so we can make the appropriate guesses
727 about signed comparisons against zero. */
728 switch (GET_CODE (cond))
729 {
730 case CONST_INT:
731 /* Unconditional branch. */
732 predict_insn_def (last_insn, PRED_UNCONDITIONAL,
733 cond == const0_rtx ? NOT_TAKEN : TAKEN);
734 break;
735
736 case EQ:
737 case UNEQ:
738 /* Floating point comparisons appears to behave in a very
739 unpredictable way because of special role of = tests in
740 FP code. */
741 if (FLOAT_MODE_P (GET_MODE (XEXP (cond, 0))))
742 ;
743 /* Comparisons with 0 are often used for booleans and there is
744 nothing useful to predict about them. */
745 else if (XEXP (cond, 1) == const0_rtx
746 || XEXP (cond, 0) == const0_rtx)
747 ;
748 else
749 predict_insn_def (last_insn, PRED_OPCODE_NONEQUAL, NOT_TAKEN);
750 break;
751
752 case NE:
753 case LTGT:
754 /* Floating point comparisons appears to behave in a very
755 unpredictable way because of special role of = tests in
756 FP code. */
757 if (FLOAT_MODE_P (GET_MODE (XEXP (cond, 0))))
758 ;
759 /* Comparisons with 0 are often used for booleans and there is
760 nothing useful to predict about them. */
761 else if (XEXP (cond, 1) == const0_rtx
762 || XEXP (cond, 0) == const0_rtx)
763 ;
764 else
765 predict_insn_def (last_insn, PRED_OPCODE_NONEQUAL, TAKEN);
766 break;
767
768 case ORDERED:
769 predict_insn_def (last_insn, PRED_FPOPCODE, TAKEN);
770 break;
771
772 case UNORDERED:
773 predict_insn_def (last_insn, PRED_FPOPCODE, NOT_TAKEN);
774 break;
775
776 case LE:
777 case LT:
778 if (XEXP (cond, 1) == const0_rtx || XEXP (cond, 1) == const1_rtx
779 || XEXP (cond, 1) == constm1_rtx)
780 predict_insn_def (last_insn, PRED_OPCODE_POSITIVE, NOT_TAKEN);
781 break;
782
783 case GE:
784 case GT:
785 if (XEXP (cond, 1) == const0_rtx || XEXP (cond, 1) == const1_rtx
786 || XEXP (cond, 1) == constm1_rtx)
787 predict_insn_def (last_insn, PRED_OPCODE_POSITIVE, TAKEN);
788 break;
789
790 default:
791 break;
792 }
793}
794
6de9cd9a
DN
795/* Statically estimate the probability that a branch will be taken and produce
796 estimated profile. When profile feedback is present never executed portions
797 of function gets estimated. */
798
799void
800estimate_probability (struct loops *loops_info)
801{
802 basic_block bb;
803
804 connect_infinite_loops_to_exit ();
805 calculate_dominance_info (CDI_DOMINATORS);
806 calculate_dominance_info (CDI_POST_DOMINATORS);
807
808 predict_loops (loops_info, true);
f1ebdfc5 809
50654f6c
ZD
810 iv_analysis_done ();
811
134d3a2e 812 /* Attempt to predict conditional jumps using a number of heuristics. */
e0082a72 813 FOR_EACH_BB (bb)
f1ebdfc5 814 {
a813c111 815 rtx last_insn = BB_END (bb);
152897b1 816 edge e;
f1ebdfc5 817
2ffa9932 818 if (! can_predict_insn_p (last_insn))
f1ebdfc5 819 continue;
9bcbfc52 820
0b92ff33
JH
821 for (e = bb->succ; e; e = e->succ_next)
822 {
969d70ca
JH
823 /* Predict early returns to be probable, as we've already taken
824 care for error returns and other are often used for fast paths
825 trought function. */
826 if ((e->dest == EXIT_BLOCK_PTR
827 || (e->dest->succ && !e->dest->succ->succ_next
828 && e->dest->succ->dest == EXIT_BLOCK_PTR))
829 && !predicted_by_p (bb, PRED_NULL_RETURN)
830 && !predicted_by_p (bb, PRED_CONST_RETURN)
831 && !predicted_by_p (bb, PRED_NEGATIVE_RETURN)
832 && !last_basic_block_p (e->dest))
833 predict_edge_def (e, PRED_EARLY_RETURN, TAKEN);
0b92ff33 834
454ff5cb 835 /* Look for block we are guarding (i.e. we dominate it,
0b92ff33 836 but it doesn't postdominate us). */
bfdade77 837 if (e->dest != EXIT_BLOCK_PTR && e->dest != bb
d47cc544
SB
838 && dominated_by_p (CDI_DOMINATORS, e->dest, e->src)
839 && !dominated_by_p (CDI_POST_DOMINATORS, e->src, e->dest))
0b92ff33
JH
840 {
841 rtx insn;
bfdade77 842
0b92ff33
JH
843 /* The call heuristic claims that a guarded function call
844 is improbable. This is because such calls are often used
845 to signal exceptional situations such as printing error
846 messages. */
a813c111 847 for (insn = BB_HEAD (e->dest); insn != NEXT_INSN (BB_END (e->dest));
0b92ff33 848 insn = NEXT_INSN (insn))
4b4bf941 849 if (CALL_P (insn)
0b92ff33
JH
850 /* Constant and pure calls are hardly used to signalize
851 something exceptional. */
24a28584 852 && ! CONST_OR_PURE_CALL_P (insn))
0b92ff33
JH
853 {
854 predict_edge_def (e, PRED_CALL, NOT_TAKEN);
855 break;
856 }
857 }
858 }
87022a6b 859 bb_estimate_probability_locally (bb);
f1ebdfc5 860 }
4db384c9
JH
861
862 /* Attach the combined probability to each conditional jump. */
e0082a72 863 FOR_EACH_BB (bb)
58016611 864 combine_predictions_for_insn (BB_END (bb), bb);
6de9cd9a 865
58016611 866 remove_fake_edges ();
6de9cd9a 867 estimate_bb_frequencies (loops_info);
d47cc544 868 free_dominance_info (CDI_POST_DOMINATORS);
878f99d2
JH
869 if (profile_status == PROFILE_ABSENT)
870 profile_status = PROFILE_GUESSED;
6de9cd9a 871}
87022a6b 872
229031d0 873/* Set edge->probability for each successor edge of BB. */
87022a6b
JH
874void
875guess_outgoing_edge_probabilities (basic_block bb)
876{
877 bb_estimate_probability_locally (bb);
878 combine_predictions_for_insn (BB_END (bb), bb);
879}
6de9cd9a 880\f
42f97fd2
JH
881/* Return constant EXPR will likely have at execution time, NULL if unknown.
882 The function is used by builtin_expect branch predictor so the evidence
883 must come from this construct and additional possible constant folding.
884
885 We may want to implement more involved value guess (such as value range
886 propagation based prediction), but such tricks shall go to new
887 implementation. */
888
889static tree
890expr_expected_value (tree expr, bitmap visited)
891{
892 if (TREE_CONSTANT (expr))
893 return expr;
894 else if (TREE_CODE (expr) == SSA_NAME)
895 {
896 tree def = SSA_NAME_DEF_STMT (expr);
897
898 /* If we were already here, break the infinite cycle. */
899 if (bitmap_bit_p (visited, SSA_NAME_VERSION (expr)))
900 return NULL;
901 bitmap_set_bit (visited, SSA_NAME_VERSION (expr));
902
903 if (TREE_CODE (def) == PHI_NODE)
904 {
905 /* All the arguments of the PHI node must have the same constant
906 length. */
907 int i;
908 tree val = NULL, new_val;
6de9cd9a 909
42f97fd2
JH
910 for (i = 0; i < PHI_NUM_ARGS (def); i++)
911 {
912 tree arg = PHI_ARG_DEF (def, i);
913
914 /* If this PHI has itself as an argument, we cannot
915 determine the string length of this argument. However,
b01d837f 916 if we can find a expected constant value for the other
42f97fd2
JH
917 PHI args then we can still be sure that this is
918 likely a constant. So be optimistic and just
919 continue with the next argument. */
920 if (arg == PHI_RESULT (def))
921 continue;
922
923 new_val = expr_expected_value (arg, visited);
924 if (!new_val)
925 return NULL;
926 if (!val)
927 val = new_val;
928 else if (!operand_equal_p (val, new_val, false))
929 return NULL;
930 }
931 return val;
932 }
933 if (TREE_CODE (def) != MODIFY_EXPR || TREE_OPERAND (def, 0) != expr)
934 return NULL;
935 return expr_expected_value (TREE_OPERAND (def, 1), visited);
936 }
937 else if (TREE_CODE (expr) == CALL_EXPR)
938 {
939 tree decl = get_callee_fndecl (expr);
940 if (!decl)
941 return NULL;
942 if (DECL_BUILT_IN (decl) && DECL_FUNCTION_CODE (decl) == BUILT_IN_EXPECT)
943 {
944 tree arglist = TREE_OPERAND (expr, 1);
945 tree val;
946
947 if (arglist == NULL_TREE
948 || TREE_CHAIN (arglist) == NULL_TREE)
949 return NULL;
950 val = TREE_VALUE (TREE_CHAIN (TREE_OPERAND (expr, 1)));
951 if (TREE_CONSTANT (val))
952 return val;
953 return TREE_VALUE (TREE_CHAIN (TREE_OPERAND (expr, 1)));
954 }
955 }
096759eb 956 if (BINARY_CLASS_P (expr) || COMPARISON_CLASS_P (expr))
42f97fd2
JH
957 {
958 tree op0, op1, res;
959 op0 = expr_expected_value (TREE_OPERAND (expr, 0), visited);
960 if (!op0)
961 return NULL;
962 op1 = expr_expected_value (TREE_OPERAND (expr, 1), visited);
963 if (!op1)
964 return NULL;
965 res = fold (build (TREE_CODE (expr), TREE_TYPE (expr), op0, op1));
966 if (TREE_CONSTANT (res))
967 return res;
968 return NULL;
969 }
096759eb 970 if (UNARY_CLASS_P (expr))
42f97fd2
JH
971 {
972 tree op0, res;
973 op0 = expr_expected_value (TREE_OPERAND (expr, 0), visited);
974 if (!op0)
975 return NULL;
976 res = fold (build1 (TREE_CODE (expr), TREE_TYPE (expr), op0));
977 if (TREE_CONSTANT (res))
978 return res;
979 return NULL;
980 }
981 return NULL;
982}
983\f
984/* Get rid of all builtin_expect calls we no longer need. */
985static void
986strip_builtin_expect (void)
987{
988 basic_block bb;
989 FOR_EACH_BB (bb)
990 {
991 block_stmt_iterator bi;
992 for (bi = bsi_start (bb); !bsi_end_p (bi); bsi_next (&bi))
993 {
994 tree stmt = bsi_stmt (bi);
995 tree fndecl;
996 tree arglist;
997
998 if (TREE_CODE (stmt) == MODIFY_EXPR
999 && TREE_CODE (TREE_OPERAND (stmt, 1)) == CALL_EXPR
1000 && (fndecl = get_callee_fndecl (TREE_OPERAND (stmt, 1)))
1001 && DECL_BUILT_IN (fndecl)
1002 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_EXPECT
1003 && (arglist = TREE_OPERAND (TREE_OPERAND (stmt, 1), 1))
1004 && TREE_CHAIN (arglist))
1005 {
1006 TREE_OPERAND (stmt, 1) = TREE_VALUE (arglist);
1007 modify_stmt (stmt);
1008 }
1009 }
1010 }
1011}
1012\f
6de9cd9a
DN
1013/* Predict using opcode of the last statement in basic block. */
1014static void
1015tree_predict_by_opcode (basic_block bb)
1016{
1017 tree stmt = last_stmt (bb);
1018 edge then_edge;
1019 tree cond;
1020 tree op0;
1021 tree type;
42f97fd2
JH
1022 tree val;
1023 bitmap visited;
6de9cd9a
DN
1024
1025 if (!stmt || TREE_CODE (stmt) != COND_EXPR)
1026 return;
1027 for (then_edge = bb->succ; then_edge; then_edge = then_edge->succ_next)
1028 if (then_edge->flags & EDGE_TRUE_VALUE)
1029 break;
1030 cond = TREE_OPERAND (stmt, 0);
6615c446 1031 if (!COMPARISON_CLASS_P (cond))
6de9cd9a
DN
1032 return;
1033 op0 = TREE_OPERAND (cond, 0);
1034 type = TREE_TYPE (op0);
42f97fd2
JH
1035 visited = BITMAP_XMALLOC ();
1036 val = expr_expected_value (cond, visited);
1037 BITMAP_XFREE (visited);
1038 if (val)
1039 {
1040 if (integer_zerop (val))
1041 predict_edge_def (then_edge, PRED_BUILTIN_EXPECT, NOT_TAKEN);
1042 else
1043 predict_edge_def (then_edge, PRED_BUILTIN_EXPECT, TAKEN);
1044 return;
1045 }
6de9cd9a
DN
1046 /* Try "pointer heuristic."
1047 A comparison ptr == 0 is predicted as false.
1048 Similarly, a comparison ptr1 == ptr2 is predicted as false. */
1049 if (POINTER_TYPE_P (type))
1050 {
1051 if (TREE_CODE (cond) == EQ_EXPR)
1052 predict_edge_def (then_edge, PRED_TREE_POINTER, NOT_TAKEN);
1053 else if (TREE_CODE (cond) == NE_EXPR)
1054 predict_edge_def (then_edge, PRED_TREE_POINTER, TAKEN);
1055 }
1056 else
1057
1058 /* Try "opcode heuristic."
1059 EQ tests are usually false and NE tests are usually true. Also,
1060 most quantities are positive, so we can make the appropriate guesses
1061 about signed comparisons against zero. */
1062 switch (TREE_CODE (cond))
1063 {
1064 case EQ_EXPR:
1065 case UNEQ_EXPR:
1066 /* Floating point comparisons appears to behave in a very
1067 unpredictable way because of special role of = tests in
1068 FP code. */
1069 if (FLOAT_TYPE_P (type))
1070 ;
1071 /* Comparisons with 0 are often used for booleans and there is
1072 nothing useful to predict about them. */
1073 else if (integer_zerop (op0)
1074 || integer_zerop (TREE_OPERAND (cond, 1)))
1075 ;
1076 else
1077 predict_edge_def (then_edge, PRED_TREE_OPCODE_NONEQUAL, NOT_TAKEN);
1078 break;
1079
1080 case NE_EXPR:
d1a7edaf 1081 case LTGT_EXPR:
6de9cd9a
DN
1082 /* Floating point comparisons appears to behave in a very
1083 unpredictable way because of special role of = tests in
1084 FP code. */
1085 if (FLOAT_TYPE_P (type))
1086 ;
1087 /* Comparisons with 0 are often used for booleans and there is
1088 nothing useful to predict about them. */
1089 else if (integer_zerop (op0)
1090 || integer_zerop (TREE_OPERAND (cond, 1)))
1091 ;
1092 else
1093 predict_edge_def (then_edge, PRED_TREE_OPCODE_NONEQUAL, TAKEN);
1094 break;
1095
1096 case ORDERED_EXPR:
1097 predict_edge_def (then_edge, PRED_TREE_FPOPCODE, TAKEN);
1098 break;
1099
1100 case UNORDERED_EXPR:
1101 predict_edge_def (then_edge, PRED_TREE_FPOPCODE, NOT_TAKEN);
1102 break;
1103
1104 case LE_EXPR:
1105 case LT_EXPR:
1106 if (integer_zerop (TREE_OPERAND (cond, 1))
1107 || integer_onep (TREE_OPERAND (cond, 1))
1108 || integer_all_onesp (TREE_OPERAND (cond, 1))
1109 || real_zerop (TREE_OPERAND (cond, 1))
1110 || real_onep (TREE_OPERAND (cond, 1))
1111 || real_minus_onep (TREE_OPERAND (cond, 1)))
1112 predict_edge_def (then_edge, PRED_TREE_OPCODE_POSITIVE, NOT_TAKEN);
1113 break;
1114
1115 case GE_EXPR:
1116 case GT_EXPR:
1117 if (integer_zerop (TREE_OPERAND (cond, 1))
1118 || integer_onep (TREE_OPERAND (cond, 1))
1119 || integer_all_onesp (TREE_OPERAND (cond, 1))
1120 || real_zerop (TREE_OPERAND (cond, 1))
1121 || real_onep (TREE_OPERAND (cond, 1))
1122 || real_minus_onep (TREE_OPERAND (cond, 1)))
1123 predict_edge_def (then_edge, PRED_TREE_OPCODE_POSITIVE, TAKEN);
1124 break;
1125
1126 default:
1127 break;
1128 }
1129}
1130
bb033fd8
JH
1131/* Try to guess whether the value of return means error code. */
1132static enum br_predictor
1133return_prediction (tree val, enum prediction *prediction)
1134{
1135 /* VOID. */
1136 if (!val)
1137 return PRED_NO_PREDICTION;
1138 /* Different heuristics for pointers and scalars. */
1139 if (POINTER_TYPE_P (TREE_TYPE (val)))
1140 {
1141 /* NULL is usually not returned. */
1142 if (integer_zerop (val))
1143 {
1144 *prediction = NOT_TAKEN;
1145 return PRED_NULL_RETURN;
1146 }
1147 }
1148 else if (INTEGRAL_TYPE_P (TREE_TYPE (val)))
1149 {
1150 /* Negative return values are often used to indicate
1151 errors. */
1152 if (TREE_CODE (val) == INTEGER_CST
1153 && tree_int_cst_sgn (val) < 0)
1154 {
1155 *prediction = NOT_TAKEN;
1156 return PRED_NEGATIVE_RETURN;
1157 }
1158 /* Constant return values seems to be commonly taken.
1159 Zero/one often represent booleans so exclude them from the
1160 heuristics. */
1161 if (TREE_CONSTANT (val)
1162 && (!integer_zerop (val) && !integer_onep (val)))
1163 {
1164 *prediction = TAKEN;
1165 return PRED_NEGATIVE_RETURN;
1166 }
1167 }
1168 return PRED_NO_PREDICTION;
1169}
1170
1171/* Find the basic block with return expression and look up for possible
1172 return value trying to apply RETURN_PREDICTION heuristics. */
1173static void
1174apply_return_prediction (int *heads)
1175{
1176 tree return_stmt;
1177 tree return_val;
1178 edge e;
1179 tree phi;
1180 int phi_num_args, i;
1181 enum br_predictor pred;
1182 enum prediction direction;
1183
1184 for (e = EXIT_BLOCK_PTR->pred; e ; e = e->pred_next)
1185 {
1186 return_stmt = last_stmt (e->src);
1187 if (TREE_CODE (return_stmt) == RETURN_EXPR)
1188 break;
1189 }
1190 if (!e)
1191 return;
1192 return_val = TREE_OPERAND (return_stmt, 0);
1193 if (!return_val)
1194 return;
1195 if (TREE_CODE (return_val) == MODIFY_EXPR)
1196 return_val = TREE_OPERAND (return_val, 1);
1197 if (TREE_CODE (return_val) != SSA_NAME
1198 || !SSA_NAME_DEF_STMT (return_val)
1199 || TREE_CODE (SSA_NAME_DEF_STMT (return_val)) != PHI_NODE)
1200 return;
1201 phi = SSA_NAME_DEF_STMT (return_val);
1202 while (phi)
1203 {
1204 tree next = PHI_CHAIN (phi);
1205 if (PHI_RESULT (phi) == return_val)
1206 break;
1207 phi = next;
1208 }
1209 if (!phi)
1210 return;
1211 phi_num_args = PHI_NUM_ARGS (phi);
1212 pred = return_prediction (PHI_ARG_DEF (phi, 0), &direction);
1213
1214 /* Avoid the degenerate case where all return values form the function
1215 belongs to same category (ie they are all positive constants)
1216 so we can hardly say something about them. */
1217 for (i = 1; i < phi_num_args; i++)
1218 if (pred != return_prediction (PHI_ARG_DEF (phi, i), &direction))
1219 break;
1220 if (i != phi_num_args)
1221 for (i = 0; i < phi_num_args; i++)
1222 {
1223 pred = return_prediction (PHI_ARG_DEF (phi, i), &direction);
1224 if (pred != PRED_NO_PREDICTION)
1225 predict_paths_leading_to (PHI_ARG_EDGE (phi, i)->src, heads, pred,
1226 direction);
1227 }
1228}
1229
1230/* Look for basic block that contains unlikely to happen events
1231 (such as noreturn calls) and mark all paths leading to execution
1232 of this basic blocks as unlikely. */
1233
1234static void
1235tree_bb_level_predictions (void)
1236{
1237 basic_block bb;
1238 int *heads;
1239
1240 heads = xmalloc (sizeof (int) * last_basic_block);
1241 memset (heads, -1, sizeof (int) * last_basic_block);
1242 heads[ENTRY_BLOCK_PTR->next_bb->index] = last_basic_block;
1243
1244 apply_return_prediction (heads);
1245
1246 FOR_EACH_BB (bb)
1247 {
1248 block_stmt_iterator bsi = bsi_last (bb);
1249
1250 for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
1251 {
1252 tree stmt = bsi_stmt (bsi);
1253 switch (TREE_CODE (stmt))
1254 {
1255 case MODIFY_EXPR:
1256 if (TREE_CODE (TREE_OPERAND (stmt, 1)) == CALL_EXPR)
1257 {
1258 stmt = TREE_OPERAND (stmt, 1);
1259 goto call_expr;
1260 }
1261 break;
1262 case CALL_EXPR:
1263call_expr:;
1264 if (call_expr_flags (stmt) & ECF_NORETURN)
1265 predict_paths_leading_to (bb, heads, PRED_NORETURN,
1266 NOT_TAKEN);
1267 break;
1268 default:
1269 break;
1270 }
1271 }
1272 }
1273
1274 free (heads);
1275}
1276
6de9cd9a
DN
1277/* Predict branch probabilities and estimate profile of the tree CFG. */
1278static void
1279tree_estimate_probability (void)
1280{
1281 basic_block bb;
1282 struct loops loops_info;
1283
1284 flow_loops_find (&loops_info, LOOP_TREE);
1285 if (dump_file && (dump_flags & TDF_DETAILS))
1286 flow_loops_dump (&loops_info, dump_file, NULL, 0);
1287
bb033fd8 1288 add_noreturn_fake_exit_edges ();
6de9cd9a
DN
1289 connect_infinite_loops_to_exit ();
1290 calculate_dominance_info (CDI_DOMINATORS);
1291 calculate_dominance_info (CDI_POST_DOMINATORS);
1292
bb033fd8
JH
1293 tree_bb_level_predictions ();
1294
6de9cd9a
DN
1295 predict_loops (&loops_info, false);
1296
1297 FOR_EACH_BB (bb)
1298 {
1299 edge e;
1300
1301 for (e = bb->succ; e; e = e->succ_next)
1302 {
1303 /* Predict early returns to be probable, as we've already taken
bb033fd8
JH
1304 care for error returns and other cases are often used for
1305 fast paths trought function. */
1306 if (e->dest == EXIT_BLOCK_PTR
1307 && TREE_CODE (last_stmt (bb)) == RETURN_EXPR
1308 && bb->pred && bb->pred->pred_next)
1309 {
1310 edge e1;
1311
1312 for (e1 = bb->pred; e1; e1 = e1->pred_next)
1313 if (!predicted_by_p (e1->src, PRED_NULL_RETURN)
1314 && !predicted_by_p (e1->src, PRED_CONST_RETURN)
1315 && !predicted_by_p (e1->src, PRED_NEGATIVE_RETURN)
1316 && !last_basic_block_p (e1->src))
1317 predict_edge_def (e1, PRED_TREE_EARLY_RETURN, NOT_TAKEN);
1318 }
6de9cd9a 1319
bb033fd8 1320 /* Look for block we are guarding (ie we dominate it,
6de9cd9a
DN
1321 but it doesn't postdominate us). */
1322 if (e->dest != EXIT_BLOCK_PTR && e->dest != bb
1323 && dominated_by_p (CDI_DOMINATORS, e->dest, e->src)
1324 && !dominated_by_p (CDI_POST_DOMINATORS, e->src, e->dest))
1325 {
1326 block_stmt_iterator bi;
1327
1328 /* The call heuristic claims that a guarded function call
1329 is improbable. This is because such calls are often used
1330 to signal exceptional situations such as printing error
1331 messages. */
1332 for (bi = bsi_start (e->dest); !bsi_end_p (bi);
1333 bsi_next (&bi))
1334 {
1335 tree stmt = bsi_stmt (bi);
1336 if ((TREE_CODE (stmt) == CALL_EXPR
1337 || (TREE_CODE (stmt) == MODIFY_EXPR
1338 && TREE_CODE (TREE_OPERAND (stmt, 1)) == CALL_EXPR))
1339 /* Constant and pure calls are hardly used to signalize
1340 something exceptional. */
1341 && TREE_SIDE_EFFECTS (stmt))
1342 {
1343 predict_edge_def (e, PRED_CALL, NOT_TAKEN);
1344 break;
1345 }
1346 }
1347 }
1348 }
1349 tree_predict_by_opcode (bb);
1350 }
1351 FOR_EACH_BB (bb)
1352 combine_predictions_for_bb (dump_file, bb);
861f9cd0 1353
42f97fd2
JH
1354 if (0) /* FIXME: Enable once we are pass down the profile to RTL level. */
1355 strip_builtin_expect ();
6de9cd9a
DN
1356 estimate_bb_frequencies (&loops_info);
1357 free_dominance_info (CDI_POST_DOMINATORS);
6809cbf9 1358 remove_fake_exit_edges ();
6de9cd9a
DN
1359 flow_loops_free (&loops_info);
1360 if (dump_file && (dump_flags & TDF_DETAILS))
1361 dump_tree_cfg (dump_file, dump_flags);
878f99d2
JH
1362 if (profile_status == PROFILE_ABSENT)
1363 profile_status = PROFILE_GUESSED;
f1ebdfc5 1364}
994a57cd 1365\f
bfdade77
RK
1366/* __builtin_expect dropped tokens into the insn stream describing expected
1367 values of registers. Generate branch probabilities based off these
1368 values. */
f1ebdfc5 1369
994a57cd 1370void
79a490a9 1371expected_value_to_br_prob (void)
994a57cd 1372{
36244024 1373 rtx insn, cond, ev = NULL_RTX, ev_reg = NULL_RTX;
994a57cd
RH
1374
1375 for (insn = get_insns (); insn ; insn = NEXT_INSN (insn))
1376 {
10f13594
RH
1377 switch (GET_CODE (insn))
1378 {
1379 case NOTE:
1380 /* Look for expected value notes. */
1381 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EXPECTED_VALUE)
1382 {
1383 ev = NOTE_EXPECTED_VALUE (insn);
1384 ev_reg = XEXP (ev, 0);
49778644 1385 delete_insn (insn);
10f13594
RH
1386 }
1387 continue;
1388
1389 case CODE_LABEL:
1390 /* Never propagate across labels. */
1391 ev = NULL_RTX;
1392 continue;
994a57cd 1393
10f13594 1394 case JUMP_INSN:
a1f300c0 1395 /* Look for simple conditional branches. If we haven't got an
10f13594 1396 expected value yet, no point going further. */
4b4bf941 1397 if (!JUMP_P (insn) || ev == NULL_RTX
bfdade77 1398 || ! any_condjump_p (insn))
10f13594
RH
1399 continue;
1400 break;
bfdade77
RK
1401
1402 default:
1403 /* Look for insns that clobber the EV register. */
1404 if (ev && reg_set_p (ev_reg, insn))
1405 ev = NULL_RTX;
1406 continue;
10f13594
RH
1407 }
1408
1409 /* Collect the branch condition, hopefully relative to EV_REG. */
d9490f2f
RH
1410 /* ??? At present we'll miss things like
1411 (expected_value (eq r70 0))
1412 (set r71 -1)
1413 (set r80 (lt r70 r71))
1414 (set pc (if_then_else (ne r80 0) ...))
57cb6d52 1415 as canonicalize_condition will render this to us as
d9490f2f
RH
1416 (lt r70, r71)
1417 Could use cselib to try and reduce this further. */
24ee7cae 1418 cond = XEXP (SET_SRC (pc_set (insn)), 0);
45d09c02
RS
1419 cond = canonicalize_condition (insn, cond, 0, NULL, ev_reg,
1420 false, false);
bfdade77 1421 if (! cond || XEXP (cond, 0) != ev_reg
d9490f2f 1422 || GET_CODE (XEXP (cond, 1)) != CONST_INT)
994a57cd
RH
1423 continue;
1424
57cb6d52 1425 /* Substitute and simplify. Given that the expression we're
994a57cd
RH
1426 building involves two constants, we should wind up with either
1427 true or false. */
1428 cond = gen_rtx_fmt_ee (GET_CODE (cond), VOIDmode,
1429 XEXP (ev, 1), XEXP (cond, 1));
1430 cond = simplify_rtx (cond);
1431
1432 /* Turn the condition into a scaled branch probability. */
8127d0e0
NS
1433 if (cond != const_true_rtx && cond != const0_rtx)
1434 abort ();
4db384c9 1435 predict_insn_def (insn, PRED_BUILTIN_EXPECT,
1b28186a 1436 cond == const_true_rtx ? TAKEN : NOT_TAKEN);
994a57cd
RH
1437 }
1438}
861f9cd0 1439\f
79a490a9
AJ
1440/* Check whether this is the last basic block of function. Commonly
1441 there is one extra common cleanup block. */
969d70ca 1442static bool
79a490a9 1443last_basic_block_p (basic_block bb)
969d70ca 1444{
f6366fc7
ZD
1445 if (bb == EXIT_BLOCK_PTR)
1446 return false;
1447
1448 return (bb->next_bb == EXIT_BLOCK_PTR
1449 || (bb->next_bb->next_bb == EXIT_BLOCK_PTR
969d70ca 1450 && bb->succ && !bb->succ->succ_next
f6366fc7 1451 && bb->succ->dest->next_bb == EXIT_BLOCK_PTR));
969d70ca 1452}
bb033fd8
JH
1453
1454/* Sets branch probabilities according to PREDiction and
1455 FLAGS. HEADS[bb->index] should be index of basic block in that we
1456 need to alter branch predictions (i.e. the first of our dominators
1457 such that we do not post-dominate it) (but we fill this information
1458 on demand, so -1 may be there in case this was not needed yet). */
1459
1460static void
1461predict_paths_leading_to (basic_block bb, int *heads, enum br_predictor pred,
1462 enum prediction taken)
1463{
1464 edge e;
1465 int y;
1466
1467 if (heads[bb->index] < 0)
1468 {
1469 /* This is first time we need this field in heads array; so
1470 find first dominator that we do not post-dominate (we are
1471 using already known members of heads array). */
1472 basic_block ai = bb;
1473 basic_block next_ai = get_immediate_dominator (CDI_DOMINATORS, bb);
1474 int head;
1475
1476 while (heads[next_ai->index] < 0)
1477 {
1478 if (!dominated_by_p (CDI_POST_DOMINATORS, next_ai, bb))
1479 break;
1480 heads[next_ai->index] = ai->index;
1481 ai = next_ai;
1482 next_ai = get_immediate_dominator (CDI_DOMINATORS, next_ai);
1483 }
1484 if (!dominated_by_p (CDI_POST_DOMINATORS, next_ai, bb))
1485 head = next_ai->index;
1486 else
1487 head = heads[next_ai->index];
1488 while (next_ai != bb)
1489 {
1490 next_ai = ai;
1491 if (heads[ai->index] == ENTRY_BLOCK)
1492 ai = ENTRY_BLOCK_PTR;
1493 else
1494 ai = BASIC_BLOCK (heads[ai->index]);
1495 heads[next_ai->index] = head;
1496 }
1497 }
1498 y = heads[bb->index];
1499
1500 /* Now find the edge that leads to our branch and aply the prediction. */
1501
1502 if (y == last_basic_block)
1503 return;
1504 for (e = BASIC_BLOCK (y)->succ; e; e = e->succ_next)
1505 if (e->dest->index >= 0
1506 && dominated_by_p (CDI_POST_DOMINATORS, e->dest, bb))
1507 predict_edge_def (e, pred, taken);
1508}
969d70ca 1509\f
57cb6d52 1510/* This is used to carry information about basic blocks. It is
861f9cd0
JH
1511 attached to the AUX field of the standard CFG block. */
1512
1513typedef struct block_info_def
1514{
1515 /* Estimated frequency of execution of basic_block. */
ac5e69da 1516 sreal frequency;
861f9cd0
JH
1517
1518 /* To keep queue of basic blocks to process. */
1519 basic_block next;
1520
ba228239 1521 /* True if block needs to be visited in propagate_freq. */
2c45a16a 1522 unsigned int tovisit:1;
247a370b 1523
eaec9b3d 1524 /* Number of predecessors we need to visit first. */
754d9299 1525 int npredecessors;
861f9cd0
JH
1526} *block_info;
1527
1528/* Similar information for edges. */
1529typedef struct edge_info_def
1530{
1531 /* In case edge is an loopback edge, the probability edge will be reached
1532 in case header is. Estimated number of iterations of the loop can be
8aa18a7d 1533 then computed as 1 / (1 - back_edge_prob). */
ac5e69da 1534 sreal back_edge_prob;
861f9cd0 1535 /* True if the edge is an loopback edge in the natural loop. */
2c45a16a 1536 unsigned int back_edge:1;
861f9cd0
JH
1537} *edge_info;
1538
1539#define BLOCK_INFO(B) ((block_info) (B)->aux)
1540#define EDGE_INFO(E) ((edge_info) (E)->aux)
1541
1542/* Helper function for estimate_bb_frequencies.
2ecfd709 1543 Propagate the frequencies for LOOP. */
bfdade77 1544
861f9cd0 1545static void
79a490a9 1546propagate_freq (struct loop *loop)
861f9cd0 1547{
2ecfd709 1548 basic_block head = loop->header;
e0082a72
ZD
1549 basic_block bb;
1550 basic_block last;
861f9cd0
JH
1551 edge e;
1552 basic_block nextbb;
247a370b 1553
eaec9b3d 1554 /* For each basic block we need to visit count number of his predecessors
247a370b 1555 we need to visit first. */
214ee4a2 1556 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
247a370b 1557 {
247a370b
JH
1558 if (BLOCK_INFO (bb)->tovisit)
1559 {
1560 int count = 0;
bfdade77 1561
247a370b
JH
1562 for (e = bb->pred; e; e = e->pred_next)
1563 if (BLOCK_INFO (e->src)->tovisit && !(e->flags & EDGE_DFS_BACK))
1564 count++;
1565 else if (BLOCK_INFO (e->src)->tovisit
c263766c
RH
1566 && dump_file && !EDGE_INFO (e)->back_edge)
1567 fprintf (dump_file,
247a370b 1568 "Irreducible region hit, ignoring edge to %i->%i\n",
0b17ab2f 1569 e->src->index, bb->index);
754d9299 1570 BLOCK_INFO (bb)->npredecessors = count;
247a370b
JH
1571 }
1572 }
861f9cd0 1573
8aa18a7d 1574 memcpy (&BLOCK_INFO (head)->frequency, &real_one, sizeof (real_one));
e0082a72
ZD
1575 last = head;
1576 for (bb = head; bb; bb = nextbb)
861f9cd0 1577 {
ac5e69da 1578 sreal cyclic_probability, frequency;
8aa18a7d
JH
1579
1580 memcpy (&cyclic_probability, &real_zero, sizeof (real_zero));
1581 memcpy (&frequency, &real_zero, sizeof (real_zero));
861f9cd0
JH
1582
1583 nextbb = BLOCK_INFO (bb)->next;
1584 BLOCK_INFO (bb)->next = NULL;
1585
1586 /* Compute frequency of basic block. */
1587 if (bb != head)
1588 {
247a370b 1589#ifdef ENABLE_CHECKING
861f9cd0 1590 for (e = bb->pred; e; e = e->pred_next)
8127d0e0
NS
1591 if (BLOCK_INFO (e->src)->tovisit && !(e->flags & EDGE_DFS_BACK))
1592 abort ();
247a370b 1593#endif
861f9cd0
JH
1594
1595 for (e = bb->pred; e; e = e->pred_next)
1596 if (EDGE_INFO (e)->back_edge)
8aa18a7d 1597 {
ac5e69da
JZ
1598 sreal_add (&cyclic_probability, &cyclic_probability,
1599 &EDGE_INFO (e)->back_edge_prob);
8aa18a7d 1600 }
247a370b 1601 else if (!(e->flags & EDGE_DFS_BACK))
8aa18a7d 1602 {
ac5e69da 1603 sreal tmp;
8aa18a7d
JH
1604
1605 /* frequency += (e->probability
1606 * BLOCK_INFO (e->src)->frequency /
1607 REG_BR_PROB_BASE); */
1608
ac5e69da
JZ
1609 sreal_init (&tmp, e->probability, 0);
1610 sreal_mul (&tmp, &tmp, &BLOCK_INFO (e->src)->frequency);
1611 sreal_mul (&tmp, &tmp, &real_inv_br_prob_base);
1612 sreal_add (&frequency, &frequency, &tmp);
8aa18a7d
JH
1613 }
1614
ac5e69da
JZ
1615 if (sreal_compare (&cyclic_probability, &real_zero) == 0)
1616 {
1617 memcpy (&BLOCK_INFO (bb)->frequency, &frequency,
1618 sizeof (frequency));
1619 }
fbe3b30b
SB
1620 else
1621 {
ac5e69da
JZ
1622 if (sreal_compare (&cyclic_probability, &real_almost_one) > 0)
1623 {
1624 memcpy (&cyclic_probability, &real_almost_one,
1625 sizeof (real_almost_one));
1626 }
861f9cd0 1627
79a490a9 1628 /* BLOCK_INFO (bb)->frequency = frequency
ac5e69da 1629 / (1 - cyclic_probability) */
861f9cd0 1630
ac5e69da
JZ
1631 sreal_sub (&cyclic_probability, &real_one, &cyclic_probability);
1632 sreal_div (&BLOCK_INFO (bb)->frequency,
1633 &frequency, &cyclic_probability);
fbe3b30b 1634 }
861f9cd0
JH
1635 }
1636
247a370b 1637 BLOCK_INFO (bb)->tovisit = 0;
861f9cd0
JH
1638
1639 /* Compute back edge frequencies. */
1640 for (e = bb->succ; e; e = e->succ_next)
1641 if (e->dest == head)
8aa18a7d 1642 {
ac5e69da 1643 sreal tmp;
8aa18a7d
JH
1644
1645 /* EDGE_INFO (e)->back_edge_prob
1646 = ((e->probability * BLOCK_INFO (bb)->frequency)
1647 / REG_BR_PROB_BASE); */
8aa18a7d 1648
ac5e69da
JZ
1649 sreal_init (&tmp, e->probability, 0);
1650 sreal_mul (&tmp, &tmp, &BLOCK_INFO (bb)->frequency);
1651 sreal_mul (&EDGE_INFO (e)->back_edge_prob,
1652 &tmp, &real_inv_br_prob_base);
8aa18a7d 1653 }
861f9cd0 1654
57cb6d52 1655 /* Propagate to successor blocks. */
861f9cd0 1656 for (e = bb->succ; e; e = e->succ_next)
247a370b 1657 if (!(e->flags & EDGE_DFS_BACK)
754d9299 1658 && BLOCK_INFO (e->dest)->npredecessors)
861f9cd0 1659 {
754d9299
JM
1660 BLOCK_INFO (e->dest)->npredecessors--;
1661 if (!BLOCK_INFO (e->dest)->npredecessors)
247a370b
JH
1662 {
1663 if (!nextbb)
1664 nextbb = e->dest;
1665 else
1666 BLOCK_INFO (last)->next = e->dest;
bfdade77 1667
247a370b
JH
1668 last = e->dest;
1669 }
1670 }
861f9cd0
JH
1671 }
1672}
1673
57cb6d52 1674/* Estimate probabilities of loopback edges in loops at same nest level. */
bfdade77 1675
861f9cd0 1676static void
79a490a9 1677estimate_loops_at_level (struct loop *first_loop)
861f9cd0 1678{
2ecfd709 1679 struct loop *loop;
861f9cd0
JH
1680
1681 for (loop = first_loop; loop; loop = loop->next)
1682 {
861f9cd0 1683 edge e;
2ecfd709 1684 basic_block *bbs;
3d436d2a 1685 unsigned i;
861f9cd0
JH
1686
1687 estimate_loops_at_level (loop->inner);
79a490a9 1688
2ecfd709 1689 if (loop->latch->succ) /* Do not do this for dummy function loop. */
861f9cd0 1690 {
2ecfd709
ZD
1691 /* Find current loop back edge and mark it. */
1692 e = loop_latch_edge (loop);
1693 EDGE_INFO (e)->back_edge = 1;
1694 }
1695
1696 bbs = get_loop_body (loop);
1697 for (i = 0; i < loop->num_nodes; i++)
1698 BLOCK_INFO (bbs[i])->tovisit = 1;
1699 free (bbs);
1700 propagate_freq (loop);
861f9cd0
JH
1701 }
1702}
1703
02307675
R
1704/* Convert counts measured by profile driven feedback to frequencies.
1705 Return nonzero iff there was any nonzero execution count. */
bfdade77 1706
bbd236a1 1707int
79a490a9 1708counts_to_freqs (void)
861f9cd0 1709{
02307675 1710 gcov_type count_max, true_count_max = 0;
e0082a72 1711 basic_block bb;
0b17ab2f 1712
e0082a72 1713 FOR_EACH_BB (bb)
02307675 1714 true_count_max = MAX (bb->count, true_count_max);
861f9cd0 1715
02307675 1716 count_max = MAX (true_count_max, 1);
e0082a72
ZD
1717 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
1718 bb->frequency = (bb->count * BB_FREQ_MAX + count_max / 2) / count_max;
02307675 1719 return true_count_max;
861f9cd0
JH
1720}
1721
bfdade77
RK
1722/* Return true if function is likely to be expensive, so there is no point to
1723 optimize performance of prologue, epilogue or do inlining at the expense
d55d8fc7 1724 of code size growth. THRESHOLD is the limit of number of instructions
bfdade77
RK
1725 function can execute at average to be still considered not expensive. */
1726
6ab16dd9 1727bool
79a490a9 1728expensive_function_p (int threshold)
6ab16dd9
JH
1729{
1730 unsigned int sum = 0;
e0082a72 1731 basic_block bb;
5197bd50 1732 unsigned int limit;
6ab16dd9
JH
1733
1734 /* We can not compute accurately for large thresholds due to scaled
1735 frequencies. */
8127d0e0
NS
1736 if (threshold > BB_FREQ_MAX)
1737 abort ();
6ab16dd9 1738
eaec9b3d 1739 /* Frequencies are out of range. This either means that function contains
6ab16dd9
JH
1740 internal loop executing more than BB_FREQ_MAX times or profile feedback
1741 is available and function has not been executed at all. */
1742 if (ENTRY_BLOCK_PTR->frequency == 0)
1743 return true;
6a4d6760 1744
6ab16dd9
JH
1745 /* Maximally BB_FREQ_MAX^2 so overflow won't happen. */
1746 limit = ENTRY_BLOCK_PTR->frequency * threshold;
e0082a72 1747 FOR_EACH_BB (bb)
6ab16dd9 1748 {
6ab16dd9
JH
1749 rtx insn;
1750
a813c111 1751 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
6ab16dd9 1752 insn = NEXT_INSN (insn))
bfdade77
RK
1753 if (active_insn_p (insn))
1754 {
1755 sum += bb->frequency;
1756 if (sum > limit)
1757 return true;
6ab16dd9
JH
1758 }
1759 }
bfdade77 1760
6ab16dd9
JH
1761 return false;
1762}
1763
861f9cd0 1764/* Estimate basic blocks frequency by given branch probabilities. */
bfdade77 1765
861f9cd0 1766static void
79a490a9 1767estimate_bb_frequencies (struct loops *loops)
861f9cd0 1768{
e0082a72 1769 basic_block bb;
ac5e69da 1770 sreal freq_max;
8aa18a7d 1771
02307675 1772 if (!flag_branch_probabilities || !counts_to_freqs ())
194734e9 1773 {
c4f6b78e
RE
1774 static int real_values_initialized = 0;
1775
1776 if (!real_values_initialized)
1777 {
85bb9c2a 1778 real_values_initialized = 1;
c4f6b78e
RE
1779 sreal_init (&real_zero, 0, 0);
1780 sreal_init (&real_one, 1, 0);
1781 sreal_init (&real_br_prob_base, REG_BR_PROB_BASE, 0);
1782 sreal_init (&real_bb_freq_max, BB_FREQ_MAX, 0);
1783 sreal_init (&real_one_half, 1, -1);
1784 sreal_div (&real_inv_br_prob_base, &real_one, &real_br_prob_base);
1785 sreal_sub (&real_almost_one, &real_one, &real_inv_br_prob_base);
1786 }
861f9cd0 1787
194734e9 1788 mark_dfs_back_edges ();
194734e9
JH
1789
1790 ENTRY_BLOCK_PTR->succ->probability = REG_BR_PROB_BASE;
1791
1792 /* Set up block info for each basic block. */
1793 alloc_aux_for_blocks (sizeof (struct block_info_def));
1794 alloc_aux_for_edges (sizeof (struct edge_info_def));
e0082a72 1795 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
861f9cd0 1796 {
861f9cd0 1797 edge e;
194734e9
JH
1798
1799 BLOCK_INFO (bb)->tovisit = 0;
1800 for (e = bb->succ; e; e = e->succ_next)
861f9cd0 1801 {
ac5e69da
JZ
1802 sreal_init (&EDGE_INFO (e)->back_edge_prob, e->probability, 0);
1803 sreal_mul (&EDGE_INFO (e)->back_edge_prob,
1804 &EDGE_INFO (e)->back_edge_prob,
1805 &real_inv_br_prob_base);
861f9cd0 1806 }
861f9cd0 1807 }
bfdade77 1808
194734e9
JH
1809 /* First compute probabilities locally for each loop from innermost
1810 to outermost to examine probabilities for back edges. */
1811 estimate_loops_at_level (loops->tree_root);
861f9cd0 1812
194734e9 1813 memcpy (&freq_max, &real_zero, sizeof (real_zero));
e0082a72 1814 FOR_EACH_BB (bb)
ac5e69da
JZ
1815 if (sreal_compare (&freq_max, &BLOCK_INFO (bb)->frequency) < 0)
1816 memcpy (&freq_max, &BLOCK_INFO (bb)->frequency, sizeof (freq_max));
fbe3b30b 1817
ac5e69da 1818 sreal_div (&freq_max, &real_bb_freq_max, &freq_max);
e0082a72 1819 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
8aa18a7d 1820 {
ac5e69da 1821 sreal tmp;
bfdade77 1822
ac5e69da
JZ
1823 sreal_mul (&tmp, &BLOCK_INFO (bb)->frequency, &freq_max);
1824 sreal_add (&tmp, &tmp, &real_one_half);
1825 bb->frequency = sreal_to_int (&tmp);
194734e9 1826 }
bfdade77 1827
194734e9
JH
1828 free_aux_for_blocks ();
1829 free_aux_for_edges ();
1830 }
1831 compute_function_frequency ();
1832 if (flag_reorder_functions)
1833 choose_function_section ();
1834}
861f9cd0 1835
194734e9
JH
1836/* Decide whether function is hot, cold or unlikely executed. */
1837static void
79a490a9 1838compute_function_frequency (void)
194734e9 1839{
e0082a72
ZD
1840 basic_block bb;
1841
cdb23767 1842 if (!profile_info || !flag_branch_probabilities)
194734e9
JH
1843 return;
1844 cfun->function_frequency = FUNCTION_FREQUENCY_UNLIKELY_EXECUTED;
e0082a72 1845 FOR_EACH_BB (bb)
861f9cd0 1846 {
194734e9
JH
1847 if (maybe_hot_bb_p (bb))
1848 {
1849 cfun->function_frequency = FUNCTION_FREQUENCY_HOT;
1850 return;
1851 }
1852 if (!probably_never_executed_bb_p (bb))
1853 cfun->function_frequency = FUNCTION_FREQUENCY_NORMAL;
861f9cd0 1854 }
194734e9 1855}
861f9cd0 1856
194734e9
JH
1857/* Choose appropriate section for the function. */
1858static void
79a490a9 1859choose_function_section (void)
194734e9
JH
1860{
1861 if (DECL_SECTION_NAME (current_function_decl)
c07f146f
JH
1862 || !targetm.have_named_sections
1863 /* Theoretically we can split the gnu.linkonce text section too,
79a490a9 1864 but this requires more work as the frequency needs to match
c07f146f
JH
1865 for all generated objects so we need to merge the frequency
1866 of all instances. For now just never set frequency for these. */
c728da61 1867 || DECL_ONE_ONLY (current_function_decl))
194734e9 1868 return;
9fb32434
CT
1869
1870 /* If we are doing the partitioning optimization, let the optimization
1871 choose the correct section into which to put things. */
1872
1873 if (flag_reorder_blocks_and_partition)
1874 return;
1875
194734e9
JH
1876 if (cfun->function_frequency == FUNCTION_FREQUENCY_HOT)
1877 DECL_SECTION_NAME (current_function_decl) =
1878 build_string (strlen (HOT_TEXT_SECTION_NAME), HOT_TEXT_SECTION_NAME);
1879 if (cfun->function_frequency == FUNCTION_FREQUENCY_UNLIKELY_EXECUTED)
1880 DECL_SECTION_NAME (current_function_decl) =
1881 build_string (strlen (UNLIKELY_EXECUTED_TEXT_SECTION_NAME),
1882 UNLIKELY_EXECUTED_TEXT_SECTION_NAME);
861f9cd0 1883}
6de9cd9a
DN
1884
1885
1886struct tree_opt_pass pass_profile =
1887{
1888 "profile", /* name */
1889 NULL, /* gate */
1890 tree_estimate_probability, /* execute */
1891 NULL, /* sub */
1892 NULL, /* next */
1893 0, /* static_pass_number */
1894 TV_BRANCH_PROB, /* tv_id */
1895 PROP_cfg, /* properties_required */
1896 0, /* properties_provided */
1897 0, /* properties_destroyed */
1898 0, /* todo_flags_start */
9f8628ba
PB
1899 TODO_ggc_collect | TODO_verify_ssa, /* todo_flags_finish */
1900 0 /* letter */
6de9cd9a 1901};
This page took 1.670029 seconds and 5 git commands to generate.