]> gcc.gnu.org Git - gcc.git/blame - gcc/postreload.c
neon-docgen.ml: Add crypto intrinsics documentation.
[gcc.git] / gcc / postreload.c
CommitLineData
15e35479 1/* Perform simple optimizations to clean up the result of reload.
d1e082c2 2 Copyright (C) 1987-2013 Free Software Foundation, Inc.
15e35479
KH
3
4This file is part of GCC.
5
6GCC is free software; you can redistribute it and/or modify it under
7the terms of the GNU General Public License as published by the Free
9dcd6f09 8Software Foundation; either version 3, or (at your option) any later
15e35479
KH
9version.
10
11GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12WARRANTY; without even the implied warranty of MERCHANTABILITY or
13FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14for more details.
15
16You should have received a copy of the GNU General Public License
9dcd6f09
NC
17along with GCC; see the file COPYING3. If not see
18<http://www.gnu.org/licenses/>. */
15e35479
KH
19
20#include "config.h"
21#include "system.h"
22#include "coretypes.h"
23#include "tm.h"
24
25#include "machmode.h"
26#include "hard-reg-set.h"
27#include "rtl.h"
28#include "tm_p.h"
29#include "obstack.h"
30#include "insn-config.h"
31#include "flags.h"
32#include "function.h"
33#include "expr.h"
34#include "optabs.h"
35#include "regs.h"
36#include "basic-block.h"
37#include "reload.h"
38#include "recog.h"
15e35479 39#include "cselib.h"
718f9c0f 40#include "diagnostic-core.h"
15e35479
KH
41#include "except.h"
42#include "tree.h"
08bd6876 43#include "target.h"
ef330312 44#include "tree-pass.h"
6fb5fa3c
DB
45#include "df.h"
46#include "dbgcnt.h"
15e35479 47
0c20a65f 48static int reload_cse_noop_set_p (rtx);
3a15c2cf
SB
49static bool reload_cse_simplify (rtx, rtx);
50static void reload_cse_regs_1 (void);
0c20a65f
AJ
51static int reload_cse_simplify_set (rtx, rtx);
52static int reload_cse_simplify_operands (rtx, rtx);
15e35479 53
0c20a65f 54static void reload_combine (void);
dc0d5a57 55static void reload_combine_note_use (rtx *, rtx, int, rtx);
7bc980e1 56static void reload_combine_note_store (rtx, const_rtx, void *);
15e35479 57
dc0d5a57 58static bool reload_cse_move2add (rtx);
7bc980e1 59static void move2add_note_store (rtx, const_rtx, void *);
15e35479
KH
60
61/* Call cse / combine like post-reload optimization phases.
62 FIRST is the first instruction. */
8bb91f49
SB
63
64static void
0c20a65f 65reload_cse_regs (rtx first ATTRIBUTE_UNUSED)
15e35479 66{
dc0d5a57 67 bool moves_converted;
3a15c2cf 68 reload_cse_regs_1 ();
15e35479 69 reload_combine ();
dc0d5a57 70 moves_converted = reload_cse_move2add (first);
15e35479 71 if (flag_expensive_optimizations)
dc0d5a57
BS
72 {
73 if (moves_converted)
74 reload_combine ();
3a15c2cf 75 reload_cse_regs_1 ();
dc0d5a57 76 }
15e35479
KH
77}
78
79/* See whether a single set SET is a noop. */
80static int
0c20a65f 81reload_cse_noop_set_p (rtx set)
15e35479
KH
82{
83 if (cselib_reg_set_mode (SET_DEST (set)) != GET_MODE (SET_DEST (set)))
84 return 0;
85
86 return rtx_equal_for_cselib_p (SET_DEST (set), SET_SRC (set));
87}
88
3a15c2cf
SB
89/* Try to simplify INSN. Return true if the CFG may have changed. */
90static bool
0c20a65f 91reload_cse_simplify (rtx insn, rtx testreg)
15e35479
KH
92{
93 rtx body = PATTERN (insn);
3a15c2cf
SB
94 basic_block insn_bb = BLOCK_FOR_INSN (insn);
95 unsigned insn_bb_succs = EDGE_COUNT (insn_bb->succs);
15e35479
KH
96
97 if (GET_CODE (body) == SET)
98 {
99 int count = 0;
100
101 /* Simplify even if we may think it is a no-op.
102 We may think a memory load of a value smaller than WORD_SIZE
103 is redundant because we haven't taken into account possible
104 implicit extension. reload_cse_simplify_set() will bring
105 this out, so it's safer to simplify before we delete. */
106 count += reload_cse_simplify_set (body, insn);
107
108 if (!count && reload_cse_noop_set_p (body))
109 {
110 rtx value = SET_DEST (body);
111 if (REG_P (value)
112 && ! REG_FUNCTION_VALUE_P (value))
113 value = 0;
9e582b1d
JR
114 if (check_for_inc_dec (insn))
115 delete_insn_and_edges (insn);
3a15c2cf
SB
116 /* We're done with this insn. */
117 goto done;
15e35479
KH
118 }
119
120 if (count > 0)
121 apply_change_group ();
122 else
123 reload_cse_simplify_operands (insn, testreg);
124 }
125 else if (GET_CODE (body) == PARALLEL)
126 {
127 int i;
128 int count = 0;
129 rtx value = NULL_RTX;
130
0d87c765
RH
131 /* Registers mentioned in the clobber list for an asm cannot be reused
132 within the body of the asm. Invalidate those registers now so that
133 we don't try to substitute values for them. */
134 if (asm_noperands (body) >= 0)
135 {
136 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
137 {
138 rtx part = XVECEXP (body, 0, i);
139 if (GET_CODE (part) == CLOBBER && REG_P (XEXP (part, 0)))
140 cselib_invalidate_rtx (XEXP (part, 0));
141 }
142 }
143
15e35479
KH
144 /* If every action in a PARALLEL is a noop, we can delete
145 the entire PARALLEL. */
146 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
147 {
148 rtx part = XVECEXP (body, 0, i);
149 if (GET_CODE (part) == SET)
150 {
151 if (! reload_cse_noop_set_p (part))
152 break;
153 if (REG_P (SET_DEST (part))
154 && REG_FUNCTION_VALUE_P (SET_DEST (part)))
155 {
156 if (value)
157 break;
158 value = SET_DEST (part);
159 }
160 }
161 else if (GET_CODE (part) != CLOBBER)
162 break;
163 }
164
165 if (i < 0)
166 {
9e582b1d
JR
167 if (check_for_inc_dec (insn))
168 delete_insn_and_edges (insn);
15e35479 169 /* We're done with this insn. */
3a15c2cf 170 goto done;
15e35479
KH
171 }
172
173 /* It's not a no-op, but we can try to simplify it. */
174 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
175 if (GET_CODE (XVECEXP (body, 0, i)) == SET)
176 count += reload_cse_simplify_set (XVECEXP (body, 0, i), insn);
177
178 if (count > 0)
179 apply_change_group ();
180 else
181 reload_cse_simplify_operands (insn, testreg);
182 }
3a15c2cf
SB
183
184done:
185 return (EDGE_COUNT (insn_bb->succs) != insn_bb_succs);
15e35479
KH
186}
187
188/* Do a very simple CSE pass over the hard registers.
189
190 This function detects no-op moves where we happened to assign two
191 different pseudo-registers to the same hard register, and then
192 copied one to the other. Reload will generate a useless
193 instruction copying a register to itself.
194
195 This function also detects cases where we load a value from memory
196 into two different registers, and (if memory is more expensive than
197 registers) changes it to simply copy the first register into the
198 second register.
199
200 Another optimization is performed that scans the operands of each
201 instruction to see whether the value is already available in a
202 hard register. It then replaces the operand with the hard register
203 if possible, much like an optional reload would. */
204
205static void
3a15c2cf 206reload_cse_regs_1 (void)
15e35479 207{
3a15c2cf
SB
208 bool cfg_changed = false;
209 basic_block bb;
ba4807a0 210 rtx insn;
15e35479
KH
211 rtx testreg = gen_rtx_REG (VOIDmode, -1);
212
457eeaae 213 cselib_init (CSELIB_RECORD_MEMORY);
15e35479
KH
214 init_alias_analysis ();
215
11cd3bed 216 FOR_EACH_BB_FN (bb, cfun)
3a15c2cf
SB
217 FOR_BB_INSNS (bb, insn)
218 {
219 if (INSN_P (insn))
220 cfg_changed |= reload_cse_simplify (insn, testreg);
15e35479 221
3a15c2cf
SB
222 cselib_process_insn (insn);
223 }
15e35479
KH
224
225 /* Clean up. */
226 end_alias_analysis ();
227 cselib_finish ();
3a15c2cf
SB
228 if (cfg_changed)
229 cleanup_cfg (0);
15e35479
KH
230}
231
232/* Try to simplify a single SET instruction. SET is the set pattern.
233 INSN is the instruction it came from.
234 This function only handles one case: if we set a register to a value
235 which is not a register, we try to find that value in some other register
236 and change the set into a register copy. */
237
238static int
0c20a65f 239reload_cse_simplify_set (rtx set, rtx insn)
15e35479
KH
240{
241 int did_change = 0;
242 int dreg;
243 rtx src;
6f76a878 244 reg_class_t dclass;
15e35479
KH
245 int old_cost;
246 cselib_val *val;
247 struct elt_loc_list *l;
248#ifdef LOAD_EXTEND_OP
f822d252 249 enum rtx_code extend_op = UNKNOWN;
15e35479 250#endif
f40751dd 251 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
15e35479
KH
252
253 dreg = true_regnum (SET_DEST (set));
254 if (dreg < 0)
255 return 0;
256
257 src = SET_SRC (set);
258 if (side_effects_p (src) || true_regnum (src) >= 0)
259 return 0;
260
261 dclass = REGNO_REG_CLASS (dreg);
262
263#ifdef LOAD_EXTEND_OP
264 /* When replacing a memory with a register, we need to honor assumptions
265 that combine made wrt the contents of sign bits. We'll do this by
266 generating an extend instruction instead of a reg->reg copy. Thus
267 the destination must be a register that we can widen. */
3c0cb5de 268 if (MEM_P (src)
15e35479 269 && GET_MODE_BITSIZE (GET_MODE (src)) < BITS_PER_WORD
f822d252 270 && (extend_op = LOAD_EXTEND_OP (GET_MODE (src))) != UNKNOWN
f8cfc6aa 271 && !REG_P (SET_DEST (set)))
15e35479
KH
272 return 0;
273#endif
274
4deef538 275 val = cselib_lookup (src, GET_MODE (SET_DEST (set)), 0, VOIDmode);
b2948a2c
KH
276 if (! val)
277 return 0;
278
15e35479 279 /* If memory loads are cheaper than register copies, don't change them. */
3c0cb5de 280 if (MEM_P (src))
f5c21ef3 281 old_cost = memory_move_cost (GET_MODE (src), dclass, true);
f8cfc6aa 282 else if (REG_P (src))
de8f4b07 283 old_cost = register_move_cost (GET_MODE (src),
15e35479
KH
284 REGNO_REG_CLASS (REGNO (src)), dclass);
285 else
5e8f01f4 286 old_cost = set_src_cost (src, speed);
15e35479 287
15e35479
KH
288 for (l = val->locs; l; l = l->next)
289 {
290 rtx this_rtx = l->loc;
291 int this_cost;
292
293 if (CONSTANT_P (this_rtx) && ! references_value_p (this_rtx, 0))
294 {
295#ifdef LOAD_EXTEND_OP
f822d252 296 if (extend_op != UNKNOWN)
15e35479
KH
297 {
298 HOST_WIDE_INT this_val;
299
300 /* ??? I'm lazy and don't wish to handle CONST_DOUBLE. Other
301 constants, such as SYMBOL_REF, cannot be extended. */
481683e1 302 if (!CONST_INT_P (this_rtx))
15e35479
KH
303 continue;
304
305 this_val = INTVAL (this_rtx);
306 switch (extend_op)
307 {
308 case ZERO_EXTEND:
309 this_val &= GET_MODE_MASK (GET_MODE (src));
310 break;
311 case SIGN_EXTEND:
312 /* ??? In theory we're already extended. */
313 if (this_val == trunc_int_for_mode (this_val, GET_MODE (src)))
314 break;
315 default:
e16acfcd 316 gcc_unreachable ();
15e35479
KH
317 }
318 this_rtx = GEN_INT (this_val);
319 }
320#endif
5e8f01f4 321 this_cost = set_src_cost (this_rtx, speed);
15e35479 322 }
f8cfc6aa 323 else if (REG_P (this_rtx))
15e35479
KH
324 {
325#ifdef LOAD_EXTEND_OP
f822d252 326 if (extend_op != UNKNOWN)
15e35479
KH
327 {
328 this_rtx = gen_rtx_fmt_e (extend_op, word_mode, this_rtx);
5e8f01f4 329 this_cost = set_src_cost (this_rtx, speed);
15e35479
KH
330 }
331 else
332#endif
de8f4b07 333 this_cost = register_move_cost (GET_MODE (this_rtx),
15e35479
KH
334 REGNO_REG_CLASS (REGNO (this_rtx)),
335 dclass);
336 }
337 else
338 continue;
339
340 /* If equal costs, prefer registers over anything else. That
341 tends to lead to smaller instructions on some machines. */
342 if (this_cost < old_cost
343 || (this_cost == old_cost
f8cfc6aa
JQ
344 && REG_P (this_rtx)
345 && !REG_P (SET_SRC (set))))
15e35479
KH
346 {
347#ifdef LOAD_EXTEND_OP
348 if (GET_MODE_BITSIZE (GET_MODE (SET_DEST (set))) < BITS_PER_WORD
f822d252 349 && extend_op != UNKNOWN
15e35479
KH
350#ifdef CANNOT_CHANGE_MODE_CLASS
351 && !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SET_DEST (set)),
352 word_mode,
353 REGNO_REG_CLASS (REGNO (SET_DEST (set))))
354#endif
355 )
356 {
357 rtx wide_dest = gen_rtx_REG (word_mode, REGNO (SET_DEST (set)));
358 ORIGINAL_REGNO (wide_dest) = ORIGINAL_REGNO (SET_DEST (set));
359 validate_change (insn, &SET_DEST (set), wide_dest, 1);
360 }
361#endif
362
95e88efd 363 validate_unshare_change (insn, &SET_SRC (set), this_rtx, 1);
15e35479
KH
364 old_cost = this_cost, did_change = 1;
365 }
366 }
367
368 return did_change;
369}
370
371/* Try to replace operands in INSN with equivalent values that are already
372 in registers. This can be viewed as optional reloading.
373
374 For each non-register operand in the insn, see if any hard regs are
375 known to be equivalent to that operand. Record the alternatives which
376 can accept these hard registers. Among all alternatives, select the
377 ones which are better or equal to the one currently matching, where
378 "better" is in terms of '?' and '!' constraints. Among the remaining
379 alternatives, select the one which replaces most operands with
380 hard registers. */
381
382static int
0c20a65f 383reload_cse_simplify_operands (rtx insn, rtx testreg)
15e35479
KH
384{
385 int i, j;
386
387 /* For each operand, all registers that are equivalent to it. */
388 HARD_REG_SET equiv_regs[MAX_RECOG_OPERANDS];
389
390 const char *constraints[MAX_RECOG_OPERANDS];
391
392 /* Vector recording how bad an alternative is. */
393 int *alternative_reject;
394 /* Vector recording how many registers can be introduced by choosing
395 this alternative. */
396 int *alternative_nregs;
397 /* Array of vectors recording, for each operand and each alternative,
398 which hard register to substitute, or -1 if the operand should be
399 left as it is. */
400 int *op_alt_regno[MAX_RECOG_OPERANDS];
401 /* Array of alternatives, sorted in order of decreasing desirability. */
402 int *alternative_order;
403
404 extract_insn (insn);
405
406 if (recog_data.n_alternatives == 0 || recog_data.n_operands == 0)
407 return 0;
408
409 /* Figure out which alternative currently matches. */
410 if (! constrain_operands (1))
411 fatal_insn_not_found (insn);
412
d3bfe4de
KG
413 alternative_reject = XALLOCAVEC (int, recog_data.n_alternatives);
414 alternative_nregs = XALLOCAVEC (int, recog_data.n_alternatives);
415 alternative_order = XALLOCAVEC (int, recog_data.n_alternatives);
703ad42b
KG
416 memset (alternative_reject, 0, recog_data.n_alternatives * sizeof (int));
417 memset (alternative_nregs, 0, recog_data.n_alternatives * sizeof (int));
15e35479
KH
418
419 /* For each operand, find out which regs are equivalent. */
420 for (i = 0; i < recog_data.n_operands; i++)
421 {
422 cselib_val *v;
423 struct elt_loc_list *l;
115df136 424 rtx op;
15e35479
KH
425
426 CLEAR_HARD_REG_SET (equiv_regs[i]);
427
428 /* cselib blows up on CODE_LABELs. Trying to fix that doesn't seem
429 right, so avoid the problem here. Likewise if we have a constant
430 and the insn pattern doesn't tell us the mode we need. */
4b4bf941 431 if (LABEL_P (recog_data.operand[i])
15e35479
KH
432 || (CONSTANT_P (recog_data.operand[i])
433 && recog_data.operand_mode[i] == VOIDmode))
434 continue;
435
115df136 436 op = recog_data.operand[i];
115df136 437#ifdef LOAD_EXTEND_OP
3c0cb5de 438 if (MEM_P (op)
0f900dfa
JJ
439 && GET_MODE_BITSIZE (GET_MODE (op)) < BITS_PER_WORD
440 && LOAD_EXTEND_OP (GET_MODE (op)) != UNKNOWN)
115df136
R
441 {
442 rtx set = single_set (insn);
443
1f52178b 444 /* We might have multiple sets, some of which do implicit
115df136
R
445 extension. Punt on this for now. */
446 if (! set)
447 continue;
1f838355 448 /* If the destination is also a MEM or a STRICT_LOW_PART, no
115df136
R
449 extension applies.
450 Also, if there is an explicit extension, we don't have to
451 worry about an implicit one. */
3c0cb5de 452 else if (MEM_P (SET_DEST (set))
115df136
R
453 || GET_CODE (SET_DEST (set)) == STRICT_LOW_PART
454 || GET_CODE (SET_SRC (set)) == ZERO_EXTEND
455 || GET_CODE (SET_SRC (set)) == SIGN_EXTEND)
456 ; /* Continue ordinary processing. */
7be4d808
R
457#ifdef CANNOT_CHANGE_MODE_CLASS
458 /* If the register cannot change mode to word_mode, it follows that
459 it cannot have been used in word_mode. */
f8cfc6aa 460 else if (REG_P (SET_DEST (set))
7be4d808
R
461 && CANNOT_CHANGE_MODE_CLASS (GET_MODE (SET_DEST (set)),
462 word_mode,
463 REGNO_REG_CLASS (REGNO (SET_DEST (set)))))
464 ; /* Continue ordinary processing. */
465#endif
115df136 466 /* If this is a straight load, make the extension explicit. */
f8cfc6aa 467 else if (REG_P (SET_DEST (set))
115df136
R
468 && recog_data.n_operands == 2
469 && SET_SRC (set) == op
470 && SET_DEST (set) == recog_data.operand[1-i])
471 {
472 validate_change (insn, recog_data.operand_loc[i],
0f900dfa 473 gen_rtx_fmt_e (LOAD_EXTEND_OP (GET_MODE (op)),
115df136
R
474 word_mode, op),
475 1);
476 validate_change (insn, recog_data.operand_loc[1-i],
477 gen_rtx_REG (word_mode, REGNO (SET_DEST (set))),
478 1);
479 if (! apply_change_group ())
480 return 0;
481 return reload_cse_simplify_operands (insn, testreg);
482 }
483 else
484 /* ??? There might be arithmetic operations with memory that are
485 safe to optimize, but is it worth the trouble? */
486 continue;
487 }
488#endif /* LOAD_EXTEND_OP */
3f82421f
PH
489 if (side_effects_p (op))
490 continue;
4deef538 491 v = cselib_lookup (op, recog_data.operand_mode[i], 0, VOIDmode);
15e35479
KH
492 if (! v)
493 continue;
494
495 for (l = v->locs; l; l = l->next)
f8cfc6aa 496 if (REG_P (l->loc))
15e35479
KH
497 SET_HARD_REG_BIT (equiv_regs[i], REGNO (l->loc));
498 }
499
500 for (i = 0; i < recog_data.n_operands; i++)
501 {
502 enum machine_mode mode;
503 int regno;
504 const char *p;
505
d3bfe4de 506 op_alt_regno[i] = XALLOCAVEC (int, recog_data.n_alternatives);
15e35479
KH
507 for (j = 0; j < recog_data.n_alternatives; j++)
508 op_alt_regno[i][j] = -1;
509
510 p = constraints[i] = recog_data.constraints[i];
511 mode = recog_data.operand_mode[i];
512
513 /* Add the reject values for each alternative given by the constraints
514 for this operand. */
515 j = 0;
516 while (*p != '\0')
517 {
518 char c = *p++;
519 if (c == ',')
520 j++;
521 else if (c == '?')
522 alternative_reject[j] += 3;
523 else if (c == '!')
524 alternative_reject[j] += 300;
525 }
526
527 /* We won't change operands which are already registers. We
528 also don't want to modify output operands. */
529 regno = true_regnum (recog_data.operand[i]);
530 if (regno >= 0
531 || constraints[i][0] == '='
532 || constraints[i][0] == '+')
533 continue;
534
535 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
536 {
bbbbb16a 537 enum reg_class rclass = NO_REGS;
15e35479
KH
538
539 if (! TEST_HARD_REG_BIT (equiv_regs[i], regno))
540 continue;
541
5444da31 542 SET_REGNO_RAW (testreg, regno);
15e35479
KH
543 PUT_MODE (testreg, mode);
544
545 /* We found a register equal to this operand. Now look for all
546 alternatives that can accept this register and have not been
547 assigned a register they can use yet. */
548 j = 0;
549 p = constraints[i];
550 for (;;)
551 {
552 char c = *p;
553
554 switch (c)
555 {
556 case '=': case '+': case '?':
557 case '#': case '&': case '!':
558 case '*': case '%':
559 case '0': case '1': case '2': case '3': case '4':
560 case '5': case '6': case '7': case '8': case '9':
a4edaf83 561 case '<': case '>': case 'V': case 'o':
15e35479
KH
562 case 'E': case 'F': case 'G': case 'H':
563 case 's': case 'i': case 'n':
564 case 'I': case 'J': case 'K': case 'L':
565 case 'M': case 'N': case 'O': case 'P':
a4edaf83 566 case 'p': case 'X': case TARGET_MEM_CONSTRAINT:
15e35479
KH
567 /* These don't say anything we care about. */
568 break;
569
570 case 'g': case 'r':
d858f359 571 rclass = reg_class_subunion[(int) rclass][(int) GENERAL_REGS];
15e35479
KH
572 break;
573
574 default:
d858f359 575 rclass
15e35479 576 = (reg_class_subunion
d858f359 577 [(int) rclass]
15e35479
KH
578 [(int) REG_CLASS_FROM_CONSTRAINT ((unsigned char) c, p)]);
579 break;
580
581 case ',': case '\0':
582 /* See if REGNO fits this alternative, and set it up as the
583 replacement register if we don't have one for this
584 alternative yet and the operand being replaced is not
585 a cheap CONST_INT. */
586 if (op_alt_regno[i][j] == -1
f37e278a 587 && recog_data.alternative_enabled_p[j]
d858f359 588 && reg_fits_class_p (testreg, rclass, 0, mode)
481683e1 589 && (!CONST_INT_P (recog_data.operand[i])
5e8f01f4
RS
590 || (set_src_cost (recog_data.operand[i],
591 optimize_bb_for_speed_p
592 (BLOCK_FOR_INSN (insn)))
593 > set_src_cost (testreg,
594 optimize_bb_for_speed_p
595 (BLOCK_FOR_INSN (insn))))))
15e35479
KH
596 {
597 alternative_nregs[j]++;
598 op_alt_regno[i][j] = regno;
599 }
600 j++;
bbbbb16a 601 rclass = NO_REGS;
15e35479
KH
602 break;
603 }
604 p += CONSTRAINT_LEN (c, p);
605
606 if (c == '\0')
607 break;
608 }
609 }
610 }
611
612 /* Record all alternatives which are better or equal to the currently
613 matching one in the alternative_order array. */
614 for (i = j = 0; i < recog_data.n_alternatives; i++)
615 if (alternative_reject[i] <= alternative_reject[which_alternative])
616 alternative_order[j++] = i;
617 recog_data.n_alternatives = j;
618
619 /* Sort it. Given a small number of alternatives, a dumb algorithm
620 won't hurt too much. */
621 for (i = 0; i < recog_data.n_alternatives - 1; i++)
622 {
623 int best = i;
624 int best_reject = alternative_reject[alternative_order[i]];
625 int best_nregs = alternative_nregs[alternative_order[i]];
626 int tmp;
627
628 for (j = i + 1; j < recog_data.n_alternatives; j++)
629 {
630 int this_reject = alternative_reject[alternative_order[j]];
631 int this_nregs = alternative_nregs[alternative_order[j]];
632
633 if (this_reject < best_reject
8a4c09c8 634 || (this_reject == best_reject && this_nregs > best_nregs))
15e35479
KH
635 {
636 best = j;
637 best_reject = this_reject;
638 best_nregs = this_nregs;
639 }
640 }
641
642 tmp = alternative_order[best];
643 alternative_order[best] = alternative_order[i];
644 alternative_order[i] = tmp;
645 }
646
647 /* Substitute the operands as determined by op_alt_regno for the best
648 alternative. */
649 j = alternative_order[0];
650
651 for (i = 0; i < recog_data.n_operands; i++)
652 {
653 enum machine_mode mode = recog_data.operand_mode[i];
654 if (op_alt_regno[i][j] == -1)
655 continue;
656
657 validate_change (insn, recog_data.operand_loc[i],
658 gen_rtx_REG (mode, op_alt_regno[i][j]), 1);
659 }
660
661 for (i = recog_data.n_dups - 1; i >= 0; i--)
662 {
663 int op = recog_data.dup_num[i];
664 enum machine_mode mode = recog_data.operand_mode[op];
665
666 if (op_alt_regno[op][j] == -1)
667 continue;
668
669 validate_change (insn, recog_data.dup_loc[i],
670 gen_rtx_REG (mode, op_alt_regno[op][j]), 1);
671 }
672
673 return apply_change_group ();
674}
675\f
676/* If reload couldn't use reg+reg+offset addressing, try to use reg+reg
677 addressing now.
678 This code might also be useful when reload gave up on reg+reg addressing
679 because of clashes between the return register and INDEX_REG_CLASS. */
680
681/* The maximum number of uses of a register we can keep track of to
682 replace them with reg+reg addressing. */
dc0d5a57 683#define RELOAD_COMBINE_MAX_USES 16
15e35479 684
dc0d5a57
BS
685/* Describes a recorded use of a register. */
686struct reg_use
687{
688 /* The insn where a register has been used. */
689 rtx insn;
690 /* Points to the memory reference enclosing the use, if any, NULL_RTX
691 otherwise. */
692 rtx containing_mem;
073a8998 693 /* Location of the register within INSN. */
dc0d5a57
BS
694 rtx *usep;
695 /* The reverse uid of the insn. */
696 int ruid;
697};
15e35479
KH
698
699/* If the register is used in some unknown fashion, USE_INDEX is negative.
700 If it is dead, USE_INDEX is RELOAD_COMBINE_MAX_USES, and STORE_RUID
dc0d5a57 701 indicates where it is first set or clobbered.
15e35479 702 Otherwise, USE_INDEX is the index of the last encountered use of the
dc0d5a57
BS
703 register (which is first among these we have seen since we scan backwards).
704 USE_RUID indicates the first encountered, i.e. last, of these uses.
705 If ALL_OFFSETS_MATCH is true, all encountered uses were inside a PLUS
706 with a constant offset; OFFSET contains this constant in that case.
15e35479
KH
707 STORE_RUID is always meaningful if we only want to use a value in a
708 register in a different place: it denotes the next insn in the insn
dc0d5a57
BS
709 stream (i.e. the last encountered) that sets or clobbers the register.
710 REAL_STORE_RUID is similar, but clobbers are ignored when updating it. */
15e35479
KH
711static struct
712 {
713 struct reg_use reg_use[RELOAD_COMBINE_MAX_USES];
15e35479 714 rtx offset;
dc0d5a57 715 int use_index;
15e35479 716 int store_ruid;
dc0d5a57 717 int real_store_ruid;
15e35479 718 int use_ruid;
dc0d5a57 719 bool all_offsets_match;
15e35479
KH
720 } reg_state[FIRST_PSEUDO_REGISTER];
721
722/* Reverse linear uid. This is increased in reload_combine while scanning
723 the instructions from last to first. It is used to set last_label_ruid
724 and the store_ruid / use_ruid fields in reg_state. */
725static int reload_combine_ruid;
726
67bb0206
BS
727/* The RUID of the last label we encountered in reload_combine. */
728static int last_label_ruid;
729
dc0d5a57
BS
730/* The RUID of the last jump we encountered in reload_combine. */
731static int last_jump_ruid;
732
67bb0206
BS
733/* The register numbers of the first and last index register. A value of
734 -1 in LAST_INDEX_REG indicates that we've previously computed these
735 values and found no suitable index registers. */
736static int first_index_reg = -1;
737static int last_index_reg;
738
15e35479
KH
739#define LABEL_LIVE(LABEL) \
740 (label_live[CODE_LABEL_NUMBER (LABEL) - min_labelno])
741
dc0d5a57
BS
742/* Subroutine of reload_combine_split_ruids, called to fix up a single
743 ruid pointed to by *PRUID if it is higher than SPLIT_RUID. */
744
745static inline void
746reload_combine_split_one_ruid (int *pruid, int split_ruid)
747{
748 if (*pruid > split_ruid)
749 (*pruid)++;
750}
751
752/* Called when we insert a new insn in a position we've already passed in
753 the scan. Examine all our state, increasing all ruids that are higher
754 than SPLIT_RUID by one in order to make room for a new insn. */
755
756static void
757reload_combine_split_ruids (int split_ruid)
758{
759 unsigned i;
760
761 reload_combine_split_one_ruid (&reload_combine_ruid, split_ruid);
762 reload_combine_split_one_ruid (&last_label_ruid, split_ruid);
763 reload_combine_split_one_ruid (&last_jump_ruid, split_ruid);
764
765 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
766 {
767 int j, idx = reg_state[i].use_index;
768 reload_combine_split_one_ruid (&reg_state[i].use_ruid, split_ruid);
769 reload_combine_split_one_ruid (&reg_state[i].store_ruid, split_ruid);
770 reload_combine_split_one_ruid (&reg_state[i].real_store_ruid,
771 split_ruid);
772 if (idx < 0)
773 continue;
774 for (j = idx; j < RELOAD_COMBINE_MAX_USES; j++)
775 {
776 reload_combine_split_one_ruid (&reg_state[i].reg_use[j].ruid,
777 split_ruid);
778 }
779 }
780}
781
782/* Called when we are about to rescan a previously encountered insn with
783 reload_combine_note_use after modifying some part of it. This clears all
784 information about uses in that particular insn. */
785
786static void
787reload_combine_purge_insn_uses (rtx insn)
788{
789 unsigned i;
790
791 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
792 {
793 int j, k, idx = reg_state[i].use_index;
794 if (idx < 0)
795 continue;
796 j = k = RELOAD_COMBINE_MAX_USES;
797 while (j-- > idx)
798 {
799 if (reg_state[i].reg_use[j].insn != insn)
800 {
801 k--;
802 if (k != j)
803 reg_state[i].reg_use[k] = reg_state[i].reg_use[j];
804 }
805 }
806 reg_state[i].use_index = k;
807 }
808}
809
810/* Called when we need to forget about all uses of REGNO after an insn
811 which is identified by RUID. */
812
813static void
814reload_combine_purge_reg_uses_after_ruid (unsigned regno, int ruid)
815{
816 int j, k, idx = reg_state[regno].use_index;
817 if (idx < 0)
818 return;
819 j = k = RELOAD_COMBINE_MAX_USES;
820 while (j-- > idx)
821 {
822 if (reg_state[regno].reg_use[j].ruid >= ruid)
823 {
824 k--;
825 if (k != j)
826 reg_state[regno].reg_use[k] = reg_state[regno].reg_use[j];
827 }
828 }
829 reg_state[regno].use_index = k;
830}
831
832/* Find the use of REGNO with the ruid that is highest among those
833 lower than RUID_LIMIT, and return it if it is the only use of this
08bd6876 834 reg in the insn. Return NULL otherwise. */
dc0d5a57
BS
835
836static struct reg_use *
837reload_combine_closest_single_use (unsigned regno, int ruid_limit)
838{
839 int i, best_ruid = 0;
840 int use_idx = reg_state[regno].use_index;
841 struct reg_use *retval;
842
843 if (use_idx < 0)
844 return NULL;
845 retval = NULL;
846 for (i = use_idx; i < RELOAD_COMBINE_MAX_USES; i++)
847 {
b1d5eee8
BS
848 struct reg_use *use = reg_state[regno].reg_use + i;
849 int this_ruid = use->ruid;
dc0d5a57
BS
850 if (this_ruid >= ruid_limit)
851 continue;
852 if (this_ruid > best_ruid)
853 {
854 best_ruid = this_ruid;
08bd6876 855 retval = use;
dc0d5a57 856 }
08bd6876 857 else if (this_ruid == best_ruid)
dc0d5a57
BS
858 retval = NULL;
859 }
860 if (last_label_ruid >= best_ruid)
861 return NULL;
862 return retval;
863}
864
caa4a250
BS
865/* After we've moved an add insn, fix up any debug insns that occur
866 between the old location of the add and the new location. REG is
867 the destination register of the add insn; REPLACEMENT is the
868 SET_SRC of the add. FROM and TO specify the range in which we
869 should make this change on debug insns. */
b1d5eee8
BS
870
871static void
caa4a250 872fixup_debug_insns (rtx reg, rtx replacement, rtx from, rtx to)
b1d5eee8 873{
caa4a250
BS
874 rtx insn;
875 for (insn = from; insn != to; insn = NEXT_INSN (insn))
b1d5eee8
BS
876 {
877 rtx t;
caa4a250
BS
878
879 if (!DEBUG_INSN_P (insn))
b1d5eee8 880 continue;
caa4a250
BS
881
882 t = INSN_VAR_LOCATION_LOC (insn);
08bd6876 883 t = simplify_replace_rtx (t, reg, replacement);
caa4a250 884 validate_change (insn, &INSN_VAR_LOCATION_LOC (insn), t, 0);
b1d5eee8
BS
885 }
886}
887
a78e242c
BS
888/* Subroutine of reload_combine_recognize_const_pattern. Try to replace REG
889 with SRC in the insn described by USE, taking costs into account. Return
890 true if we made the replacement. */
891
892static bool
893try_replace_in_use (struct reg_use *use, rtx reg, rtx src)
894{
895 rtx use_insn = use->insn;
896 rtx mem = use->containing_mem;
897 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (use_insn));
898
899 if (mem != NULL_RTX)
900 {
901 addr_space_t as = MEM_ADDR_SPACE (mem);
902 rtx oldaddr = XEXP (mem, 0);
903 rtx newaddr = NULL_RTX;
904 int old_cost = address_cost (oldaddr, GET_MODE (mem), as, speed);
905 int new_cost;
906
907 newaddr = simplify_replace_rtx (oldaddr, reg, src);
908 if (memory_address_addr_space_p (GET_MODE (mem), newaddr, as))
909 {
910 XEXP (mem, 0) = newaddr;
911 new_cost = address_cost (newaddr, GET_MODE (mem), as, speed);
912 XEXP (mem, 0) = oldaddr;
913 if (new_cost <= old_cost
914 && validate_change (use_insn,
915 &XEXP (mem, 0), newaddr, 0))
916 return true;
917 }
918 }
919 else
920 {
921 rtx new_set = single_set (use_insn);
922 if (new_set
923 && REG_P (SET_DEST (new_set))
924 && GET_CODE (SET_SRC (new_set)) == PLUS
925 && REG_P (XEXP (SET_SRC (new_set), 0))
926 && CONSTANT_P (XEXP (SET_SRC (new_set), 1)))
927 {
928 rtx new_src;
5e8f01f4 929 int old_cost = set_src_cost (SET_SRC (new_set), speed);
a78e242c
BS
930
931 gcc_assert (rtx_equal_p (XEXP (SET_SRC (new_set), 0), reg));
932 new_src = simplify_replace_rtx (SET_SRC (new_set), reg, src);
933
5e8f01f4 934 if (set_src_cost (new_src, speed) <= old_cost
a78e242c
BS
935 && validate_change (use_insn, &SET_SRC (new_set),
936 new_src, 0))
937 return true;
938 }
939 }
940 return false;
941}
942
dc0d5a57
BS
943/* Called by reload_combine when scanning INSN. This function tries to detect
944 patterns where a constant is added to a register, and the result is used
945 in an address.
946 Return true if no further processing is needed on INSN; false if it wasn't
947 recognized and should be handled normally. */
948
949static bool
950reload_combine_recognize_const_pattern (rtx insn)
951{
952 int from_ruid = reload_combine_ruid;
953 rtx set, pat, reg, src, addreg;
954 unsigned int regno;
955 struct reg_use *use;
956 bool must_move_add;
957 rtx add_moved_after_insn = NULL_RTX;
958 int add_moved_after_ruid = 0;
959 int clobbered_regno = -1;
960
961 set = single_set (insn);
962 if (set == NULL_RTX)
963 return false;
964
965 reg = SET_DEST (set);
966 src = SET_SRC (set);
967 if (!REG_P (reg)
968 || hard_regno_nregs[REGNO (reg)][GET_MODE (reg)] != 1
969 || GET_MODE (reg) != Pmode
970 || reg == stack_pointer_rtx)
971 return false;
972
973 regno = REGNO (reg);
974
975 /* We look for a REG1 = REG2 + CONSTANT insn, followed by either
976 uses of REG1 inside an address, or inside another add insn. If
977 possible and profitable, merge the addition into subsequent
978 uses. */
979 if (GET_CODE (src) != PLUS
980 || !REG_P (XEXP (src, 0))
981 || !CONSTANT_P (XEXP (src, 1)))
982 return false;
983
984 addreg = XEXP (src, 0);
985 must_move_add = rtx_equal_p (reg, addreg);
986
987 pat = PATTERN (insn);
988 if (must_move_add && set != pat)
989 {
990 /* We have to be careful when moving the add; apart from the
991 single_set there may also be clobbers. Recognize one special
992 case, that of one clobber alongside the set (likely a clobber
993 of the CC register). */
994 gcc_assert (GET_CODE (PATTERN (insn)) == PARALLEL);
995 if (XVECLEN (pat, 0) != 2 || XVECEXP (pat, 0, 0) != set
996 || GET_CODE (XVECEXP (pat, 0, 1)) != CLOBBER
997 || !REG_P (XEXP (XVECEXP (pat, 0, 1), 0)))
998 return false;
999 clobbered_regno = REGNO (XEXP (XVECEXP (pat, 0, 1), 0));
1000 }
1001
1002 do
1003 {
1004 use = reload_combine_closest_single_use (regno, from_ruid);
1005
1006 if (use)
1007 /* Start the search for the next use from here. */
1008 from_ruid = use->ruid;
1009
1010 if (use && GET_MODE (*use->usep) == Pmode)
1011 {
a78e242c 1012 bool delete_add = false;
dc0d5a57
BS
1013 rtx use_insn = use->insn;
1014 int use_ruid = use->ruid;
dc0d5a57
BS
1015
1016 /* Avoid moving the add insn past a jump. */
b1d5eee8 1017 if (must_move_add && use_ruid <= last_jump_ruid)
dc0d5a57
BS
1018 break;
1019
1020 /* If the add clobbers another hard reg in parallel, don't move
1021 it past a real set of this hard reg. */
1022 if (must_move_add && clobbered_regno >= 0
1023 && reg_state[clobbered_regno].real_store_ruid >= use_ruid)
1024 break;
1025
3b8ff89f
MP
1026#ifdef HAVE_cc0
1027 /* Do not separate cc0 setter and cc0 user on HAVE_cc0 targets. */
1028 if (must_move_add && sets_cc0_p (PATTERN (use_insn)))
1029 break;
1030#endif
1031
62036819
BS
1032 gcc_assert (reg_state[regno].store_ruid <= use_ruid);
1033 /* Avoid moving a use of ADDREG past a point where it is stored. */
a78e242c 1034 if (reg_state[REGNO (addreg)].store_ruid > use_ruid)
dc0d5a57
BS
1035 break;
1036
a78e242c
BS
1037 /* We also must not move the addition past an insn that sets
1038 the same register, unless we can combine two add insns. */
1039 if (must_move_add && reg_state[regno].store_ruid == use_ruid)
dc0d5a57 1040 {
a78e242c
BS
1041 if (use->containing_mem == NULL_RTX)
1042 delete_add = true;
1043 else
1044 break;
dc0d5a57 1045 }
dc0d5a57 1046
a78e242c
BS
1047 if (try_replace_in_use (use, reg, src))
1048 {
1049 reload_combine_purge_insn_uses (use_insn);
1050 reload_combine_note_use (&PATTERN (use_insn), use_insn,
1051 use_ruid, NULL_RTX);
dc0d5a57 1052
a78e242c
BS
1053 if (delete_add)
1054 {
1055 fixup_debug_insns (reg, src, insn, use_insn);
1056 delete_insn (insn);
1057 return true;
1058 }
1059 if (must_move_add)
1060 {
1061 add_moved_after_insn = use_insn;
1062 add_moved_after_ruid = use_ruid;
dc0d5a57 1063 }
a78e242c 1064 continue;
dc0d5a57 1065 }
dc0d5a57 1066 }
62036819
BS
1067 /* If we get here, we couldn't handle this use. */
1068 if (must_move_add)
1069 break;
dc0d5a57
BS
1070 }
1071 while (use);
1072
1073 if (!must_move_add || add_moved_after_insn == NULL_RTX)
1074 /* Process the add normally. */
1075 return false;
1076
caa4a250
BS
1077 fixup_debug_insns (reg, src, insn, add_moved_after_insn);
1078
dc0d5a57
BS
1079 reorder_insns (insn, insn, add_moved_after_insn);
1080 reload_combine_purge_reg_uses_after_ruid (regno, add_moved_after_ruid);
1081 reload_combine_split_ruids (add_moved_after_ruid - 1);
1082 reload_combine_note_use (&PATTERN (insn), insn,
1083 add_moved_after_ruid, NULL_RTX);
1084 reg_state[regno].store_ruid = add_moved_after_ruid;
1085
1086 return true;
1087}
1088
67bb0206
BS
1089/* Called by reload_combine when scanning INSN. Try to detect a pattern we
1090 can handle and improve. Return true if no further processing is needed on
1091 INSN; false if it wasn't recognized and should be handled normally. */
1092
1093static bool
1094reload_combine_recognize_pattern (rtx insn)
1095{
1096 rtx set, reg, src;
1097 unsigned int regno;
1098
dc0d5a57
BS
1099 set = single_set (insn);
1100 if (set == NULL_RTX)
1101 return false;
1102
1103 reg = SET_DEST (set);
1104 src = SET_SRC (set);
1105 if (!REG_P (reg)
1106 || hard_regno_nregs[REGNO (reg)][GET_MODE (reg)] != 1)
1107 return false;
1108
1109 regno = REGNO (reg);
1110
67bb0206
BS
1111 /* Look for (set (REGX) (CONST_INT))
1112 (set (REGX) (PLUS (REGX) (REGY)))
1113 ...
1114 ... (MEM (REGX)) ...
1115 and convert it to
1116 (set (REGZ) (CONST_INT))
1117 ...
1118 ... (MEM (PLUS (REGZ) (REGY)))... .
1119
1120 First, check that we have (set (REGX) (PLUS (REGX) (REGY)))
1121 and that we know all uses of REGX before it dies.
1122 Also, explicitly check that REGX != REGY; our life information
1123 does not yet show whether REGY changes in this insn. */
67bb0206
BS
1124
1125 if (GET_CODE (src) == PLUS
dc0d5a57
BS
1126 && reg_state[regno].all_offsets_match
1127 && last_index_reg != -1
67bb0206
BS
1128 && REG_P (XEXP (src, 1))
1129 && rtx_equal_p (XEXP (src, 0), reg)
1130 && !rtx_equal_p (XEXP (src, 1), reg)
08bd6876
BS
1131 && reg_state[regno].use_index >= 0
1132 && reg_state[regno].use_index < RELOAD_COMBINE_MAX_USES
67bb0206
BS
1133 && last_label_ruid < reg_state[regno].use_ruid)
1134 {
1135 rtx base = XEXP (src, 1);
f0fc0803 1136 rtx prev = prev_nonnote_nondebug_insn (insn);
67bb0206
BS
1137 rtx prev_set = prev ? single_set (prev) : NULL_RTX;
1138 rtx index_reg = NULL_RTX;
1139 rtx reg_sum = NULL_RTX;
1140 int i;
1141
1142 /* Now we need to set INDEX_REG to an index register (denoted as
1143 REGZ in the illustration above) and REG_SUM to the expression
1144 register+register that we want to use to substitute uses of REG
1145 (typically in MEMs) with. First check REG and BASE for being
1146 index registers; we can use them even if they are not dead. */
1147 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], regno)
1148 || TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS],
1149 REGNO (base)))
1150 {
1151 index_reg = reg;
1152 reg_sum = src;
1153 }
1154 else
1155 {
1156 /* Otherwise, look for a free index register. Since we have
1157 checked above that neither REG nor BASE are index registers,
1158 if we find anything at all, it will be different from these
1159 two registers. */
1160 for (i = first_index_reg; i <= last_index_reg; i++)
1161 {
1162 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], i)
1163 && reg_state[i].use_index == RELOAD_COMBINE_MAX_USES
1164 && reg_state[i].store_ruid <= reg_state[regno].use_ruid
08bd6876
BS
1165 && (call_used_regs[i] || df_regs_ever_live_p (i))
1166 && (!frame_pointer_needed || i != HARD_FRAME_POINTER_REGNUM)
1167 && !fixed_regs[i] && !global_regs[i]
1168 && hard_regno_nregs[i][GET_MODE (reg)] == 1
1169 && targetm.hard_regno_scratch_ok (i))
67bb0206
BS
1170 {
1171 index_reg = gen_rtx_REG (GET_MODE (reg), i);
1172 reg_sum = gen_rtx_PLUS (GET_MODE (reg), index_reg, base);
1173 break;
1174 }
1175 }
1176 }
1177
1178 /* Check that PREV_SET is indeed (set (REGX) (CONST_INT)) and that
1179 (REGY), i.e. BASE, is not clobbered before the last use we'll
1180 create. */
1181 if (reg_sum
1182 && prev_set
1183 && CONST_INT_P (SET_SRC (prev_set))
1184 && rtx_equal_p (SET_DEST (prev_set), reg)
67bb0206
BS
1185 && (reg_state[REGNO (base)].store_ruid
1186 <= reg_state[regno].use_ruid))
1187 {
1188 /* Change destination register and, if necessary, the constant
1189 value in PREV, the constant loading instruction. */
1190 validate_change (prev, &SET_DEST (prev_set), index_reg, 1);
1191 if (reg_state[regno].offset != const0_rtx)
1192 validate_change (prev,
1193 &SET_SRC (prev_set),
1194 GEN_INT (INTVAL (SET_SRC (prev_set))
1195 + INTVAL (reg_state[regno].offset)),
1196 1);
1197
1198 /* Now for every use of REG that we have recorded, replace REG
1199 with REG_SUM. */
1200 for (i = reg_state[regno].use_index;
1201 i < RELOAD_COMBINE_MAX_USES; i++)
1202 validate_unshare_change (reg_state[regno].reg_use[i].insn,
1203 reg_state[regno].reg_use[i].usep,
1204 /* Each change must have its own
1205 replacement. */
1206 reg_sum, 1);
1207
1208 if (apply_change_group ())
1209 {
caa4a250
BS
1210 struct reg_use *lowest_ruid = NULL;
1211
67bb0206
BS
1212 /* For every new use of REG_SUM, we have to record the use
1213 of BASE therein, i.e. operand 1. */
1214 for (i = reg_state[regno].use_index;
1215 i < RELOAD_COMBINE_MAX_USES; i++)
caa4a250
BS
1216 {
1217 struct reg_use *use = reg_state[regno].reg_use + i;
1218 reload_combine_note_use (&XEXP (*use->usep, 1), use->insn,
1219 use->ruid, use->containing_mem);
1220 if (lowest_ruid == NULL || use->ruid < lowest_ruid->ruid)
1221 lowest_ruid = use;
1222 }
1223
1224 fixup_debug_insns (reg, reg_sum, insn, lowest_ruid->insn);
67bb0206 1225
67bb0206
BS
1226 /* Delete the reg-reg addition. */
1227 delete_insn (insn);
1228
1229 if (reg_state[regno].offset != const0_rtx)
1230 /* Previous REG_EQUIV / REG_EQUAL notes for PREV
1231 are now invalid. */
1232 remove_reg_equal_equiv_notes (prev);
1233
1234 reg_state[regno].use_index = RELOAD_COMBINE_MAX_USES;
67bb0206
BS
1235 return true;
1236 }
1237 }
1238 }
1239 return false;
1240}
1241
15e35479 1242static void
0c20a65f 1243reload_combine (void)
15e35479 1244{
dc0d5a57 1245 rtx insn, prev;
15e35479
KH
1246 basic_block bb;
1247 unsigned int r;
15e35479
KH
1248 int min_labelno, n_labels;
1249 HARD_REG_SET ever_live_at_start, *label_live;
1250
15e35479
KH
1251 /* To avoid wasting too much time later searching for an index register,
1252 determine the minimum and maximum index register numbers. */
67bb0206
BS
1253 if (INDEX_REG_CLASS == NO_REGS)
1254 last_index_reg = -1;
1255 else if (first_index_reg == -1 && last_index_reg == 0)
1256 {
1257 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1258 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], r))
1259 {
1260 if (first_index_reg == -1)
1261 first_index_reg = r;
1262
1263 last_index_reg = r;
1264 }
1265
1266 /* If no index register is available, we can quit now. Set LAST_INDEX_REG
1267 to -1 so we'll know to quit early the next time we get here. */
1268 if (first_index_reg == -1)
1269 {
1270 last_index_reg = -1;
1271 return;
1272 }
1273 }
15e35479 1274
15e35479
KH
1275 /* Set up LABEL_LIVE and EVER_LIVE_AT_START. The register lifetime
1276 information is a bit fuzzy immediately after reload, but it's
1277 still good enough to determine which registers are live at a jump
1278 destination. */
1279 min_labelno = get_first_label_num ();
1280 n_labels = max_label_num () - min_labelno;
5ed6ace5 1281 label_live = XNEWVEC (HARD_REG_SET, n_labels);
15e35479
KH
1282 CLEAR_HARD_REG_SET (ever_live_at_start);
1283
4f42035e 1284 FOR_EACH_BB_REVERSE_FN (bb, cfun)
15e35479 1285 {
a813c111 1286 insn = BB_HEAD (bb);
4b4bf941 1287 if (LABEL_P (insn))
15e35479
KH
1288 {
1289 HARD_REG_SET live;
89a95777 1290 bitmap live_in = df_get_live_in (bb);
15e35479 1291
89a95777
KZ
1292 REG_SET_TO_HARD_REG_SET (live, live_in);
1293 compute_use_by_pseudos (&live, live_in);
15e35479
KH
1294 COPY_HARD_REG_SET (LABEL_LIVE (insn), live);
1295 IOR_HARD_REG_SET (ever_live_at_start, live);
1296 }
1297 }
1298
1299 /* Initialize last_label_ruid, reload_combine_ruid and reg_state. */
dc0d5a57 1300 last_label_ruid = last_jump_ruid = reload_combine_ruid = 0;
15e35479
KH
1301 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1302 {
dc0d5a57
BS
1303 reg_state[r].store_ruid = 0;
1304 reg_state[r].real_store_ruid = 0;
15e35479
KH
1305 if (fixed_regs[r])
1306 reg_state[r].use_index = -1;
1307 else
1308 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
1309 }
1310
dc0d5a57 1311 for (insn = get_last_insn (); insn; insn = prev)
15e35479 1312 {
7ad93142 1313 bool control_flow_insn;
15e35479
KH
1314 rtx note;
1315
dc0d5a57
BS
1316 prev = PREV_INSN (insn);
1317
15e35479
KH
1318 /* We cannot do our optimization across labels. Invalidating all the use
1319 information we have would be costly, so we just note where the label
1320 is and then later disable any optimization that would cross it. */
4b4bf941 1321 if (LABEL_P (insn))
15e35479 1322 last_label_ruid = reload_combine_ruid;
2195c9be
AK
1323 else if (BARRIER_P (insn))
1324 {
1325 /* Crossing a barrier resets all the use information. */
1326 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1327 if (! fixed_regs[r])
15e35479 1328 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
2195c9be
AK
1329 }
1330 else if (INSN_P (insn) && volatile_insn_p (PATTERN (insn)))
1331 /* Optimizations across insns being marked as volatile must be
1332 prevented. All the usage information is invalidated
1333 here. */
1334 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1335 if (! fixed_regs[r]
1336 && reg_state[r].use_index != RELOAD_COMBINE_MAX_USES)
1337 reg_state[r].use_index = -1;
15e35479 1338
caa4a250 1339 if (! NONDEBUG_INSN_P (insn))
15e35479
KH
1340 continue;
1341
1342 reload_combine_ruid++;
1343
7ad93142
EB
1344 control_flow_insn = control_flow_insn_p (insn);
1345 if (control_flow_insn)
dc0d5a57
BS
1346 last_jump_ruid = reload_combine_ruid;
1347
1348 if (reload_combine_recognize_const_pattern (insn)
1349 || reload_combine_recognize_pattern (insn))
67bb0206 1350 continue;
15e35479
KH
1351
1352 note_stores (PATTERN (insn), reload_combine_note_store, NULL);
1353
4b4bf941 1354 if (CALL_P (insn))
15e35479
KH
1355 {
1356 rtx link;
1357
1358 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1359 if (call_used_regs[r])
1360 {
1361 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
1362 reg_state[r].store_ruid = reload_combine_ruid;
1363 }
1364
1365 for (link = CALL_INSN_FUNCTION_USAGE (insn); link;
1366 link = XEXP (link, 1))
1367 {
e384e6b5
BS
1368 rtx setuse = XEXP (link, 0);
1369 rtx usage_rtx = XEXP (setuse, 0);
1370 if ((GET_CODE (setuse) == USE || GET_CODE (setuse) == CLOBBER)
1371 && REG_P (usage_rtx))
15e35479
KH
1372 {
1373 unsigned int i;
1374 unsigned int start_reg = REGNO (usage_rtx);
7ad93142
EB
1375 unsigned int num_regs
1376 = hard_regno_nregs[start_reg][GET_MODE (usage_rtx)];
1377 unsigned int end_reg = start_reg + num_regs - 1;
15e35479
KH
1378 for (i = start_reg; i <= end_reg; i++)
1379 if (GET_CODE (XEXP (link, 0)) == CLOBBER)
1380 {
1381 reg_state[i].use_index = RELOAD_COMBINE_MAX_USES;
1382 reg_state[i].store_ruid = reload_combine_ruid;
1383 }
1384 else
1385 reg_state[i].use_index = -1;
1386 }
1387 }
15e35479 1388 }
18c33e03 1389
57895947 1390 if (control_flow_insn && !ANY_RETURN_P (PATTERN (insn)))
15e35479
KH
1391 {
1392 /* Non-spill registers might be used at the call destination in
1393 some unknown fashion, so we have to mark the unknown use. */
1394 HARD_REG_SET *live;
1395
1396 if ((condjump_p (insn) || condjump_in_parallel_p (insn))
1397 && JUMP_LABEL (insn))
57895947
EB
1398 {
1399 if (ANY_RETURN_P (JUMP_LABEL (insn)))
1400 live = NULL;
1401 else
1402 live = &LABEL_LIVE (JUMP_LABEL (insn));
1403 }
15e35479
KH
1404 else
1405 live = &ever_live_at_start;
1406
57895947
EB
1407 if (live)
1408 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1409 if (TEST_HARD_REG_BIT (*live, r))
1410 reg_state[r].use_index = -1;
15e35479
KH
1411 }
1412
7ad93142
EB
1413 reload_combine_note_use (&PATTERN (insn), insn, reload_combine_ruid,
1414 NULL_RTX);
1415
15e35479
KH
1416 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1417 {
7ad93142 1418 if (REG_NOTE_KIND (note) == REG_INC && REG_P (XEXP (note, 0)))
15e35479
KH
1419 {
1420 int regno = REGNO (XEXP (note, 0));
15e35479 1421 reg_state[regno].store_ruid = reload_combine_ruid;
dc0d5a57 1422 reg_state[regno].real_store_ruid = reload_combine_ruid;
15e35479
KH
1423 reg_state[regno].use_index = -1;
1424 }
1425 }
1426 }
1427
1428 free (label_live);
1429}
1430
1431/* Check if DST is a register or a subreg of a register; if it is,
dc0d5a57
BS
1432 update store_ruid, real_store_ruid and use_index in the reg_state
1433 structure accordingly. Called via note_stores from reload_combine. */
15e35479
KH
1434
1435static void
7bc980e1 1436reload_combine_note_store (rtx dst, const_rtx set, void *data ATTRIBUTE_UNUSED)
15e35479
KH
1437{
1438 int regno = 0;
1439 int i;
1440 enum machine_mode mode = GET_MODE (dst);
1441
1442 if (GET_CODE (dst) == SUBREG)
1443 {
1444 regno = subreg_regno_offset (REGNO (SUBREG_REG (dst)),
1445 GET_MODE (SUBREG_REG (dst)),
1446 SUBREG_BYTE (dst),
1447 GET_MODE (dst));
1448 dst = SUBREG_REG (dst);
1449 }
12c2b0ad
JL
1450
1451 /* Some targets do argument pushes without adding REG_INC notes. */
1452
1453 if (MEM_P (dst))
1454 {
1455 dst = XEXP (dst, 0);
1456 if (GET_CODE (dst) == PRE_INC || GET_CODE (dst) == POST_INC
96676a5d
JJ
1457 || GET_CODE (dst) == PRE_DEC || GET_CODE (dst) == POST_DEC
1458 || GET_CODE (dst) == PRE_MODIFY || GET_CODE (dst) == POST_MODIFY)
12c2b0ad
JL
1459 {
1460 regno = REGNO (XEXP (dst, 0));
1461 mode = GET_MODE (XEXP (dst, 0));
1462 for (i = hard_regno_nregs[regno][mode] - 1 + regno; i >= regno; i--)
1463 {
1464 /* We could probably do better, but for now mark the register
1465 as used in an unknown fashion and set/clobbered at this
1466 insn. */
1467 reg_state[i].use_index = -1;
1468 reg_state[i].store_ruid = reload_combine_ruid;
1469 reg_state[i].real_store_ruid = reload_combine_ruid;
1470 }
1471 }
1472 else
1473 return;
1474 }
1475
f8cfc6aa 1476 if (!REG_P (dst))
15e35479
KH
1477 return;
1478 regno += REGNO (dst);
1479
1480 /* note_stores might have stripped a STRICT_LOW_PART, so we have to be
1481 careful with registers / register parts that are not full words.
46d096a3 1482 Similarly for ZERO_EXTRACT. */
dc0d5a57 1483 if (GET_CODE (SET_DEST (set)) == ZERO_EXTRACT
15e35479
KH
1484 || GET_CODE (SET_DEST (set)) == STRICT_LOW_PART)
1485 {
66fd46b6 1486 for (i = hard_regno_nregs[regno][mode] - 1 + regno; i >= regno; i--)
15e35479
KH
1487 {
1488 reg_state[i].use_index = -1;
1489 reg_state[i].store_ruid = reload_combine_ruid;
dc0d5a57 1490 reg_state[i].real_store_ruid = reload_combine_ruid;
15e35479
KH
1491 }
1492 }
1493 else
1494 {
66fd46b6 1495 for (i = hard_regno_nregs[regno][mode] - 1 + regno; i >= regno; i--)
15e35479
KH
1496 {
1497 reg_state[i].store_ruid = reload_combine_ruid;
dc0d5a57
BS
1498 if (GET_CODE (set) == SET)
1499 reg_state[i].real_store_ruid = reload_combine_ruid;
15e35479
KH
1500 reg_state[i].use_index = RELOAD_COMBINE_MAX_USES;
1501 }
1502 }
1503}
1504
1505/* XP points to a piece of rtl that has to be checked for any uses of
1506 registers.
1507 *XP is the pattern of INSN, or a part of it.
1508 Called from reload_combine, and recursively by itself. */
1509static void
dc0d5a57 1510reload_combine_note_use (rtx *xp, rtx insn, int ruid, rtx containing_mem)
15e35479
KH
1511{
1512 rtx x = *xp;
1513 enum rtx_code code = x->code;
1514 const char *fmt;
1515 int i, j;
1516 rtx offset = const0_rtx; /* For the REG case below. */
1517
1518 switch (code)
1519 {
1520 case SET:
f8cfc6aa 1521 if (REG_P (SET_DEST (x)))
15e35479 1522 {
dc0d5a57 1523 reload_combine_note_use (&SET_SRC (x), insn, ruid, NULL_RTX);
15e35479
KH
1524 return;
1525 }
1526 break;
1527
1528 case USE:
1529 /* If this is the USE of a return value, we can't change it. */
f8cfc6aa 1530 if (REG_P (XEXP (x, 0)) && REG_FUNCTION_VALUE_P (XEXP (x, 0)))
15e35479
KH
1531 {
1532 /* Mark the return register as used in an unknown fashion. */
1533 rtx reg = XEXP (x, 0);
1534 int regno = REGNO (reg);
66fd46b6 1535 int nregs = hard_regno_nregs[regno][GET_MODE (reg)];
15e35479
KH
1536
1537 while (--nregs >= 0)
1538 reg_state[regno + nregs].use_index = -1;
1539 return;
1540 }
1541 break;
1542
1543 case CLOBBER:
f8cfc6aa 1544 if (REG_P (SET_DEST (x)))
15e35479
KH
1545 {
1546 /* No spurious CLOBBERs of pseudo registers may remain. */
e16acfcd 1547 gcc_assert (REGNO (SET_DEST (x)) < FIRST_PSEUDO_REGISTER);
15e35479
KH
1548 return;
1549 }
1550 break;
1551
1552 case PLUS:
1553 /* We are interested in (plus (reg) (const_int)) . */
f8cfc6aa 1554 if (!REG_P (XEXP (x, 0))
481683e1 1555 || !CONST_INT_P (XEXP (x, 1)))
15e35479
KH
1556 break;
1557 offset = XEXP (x, 1);
1558 x = XEXP (x, 0);
1559 /* Fall through. */
1560 case REG:
1561 {
1562 int regno = REGNO (x);
1563 int use_index;
1564 int nregs;
1565
1566 /* No spurious USEs of pseudo registers may remain. */
e16acfcd 1567 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
15e35479 1568
66fd46b6 1569 nregs = hard_regno_nregs[regno][GET_MODE (x)];
15e35479
KH
1570
1571 /* We can't substitute into multi-hard-reg uses. */
1572 if (nregs > 1)
1573 {
1574 while (--nregs >= 0)
1575 reg_state[regno + nregs].use_index = -1;
1576 return;
1577 }
1578
08bd6876
BS
1579 /* We may be called to update uses in previously seen insns.
1580 Don't add uses beyond the last store we saw. */
1581 if (ruid < reg_state[regno].store_ruid)
1582 return;
1583
15e35479
KH
1584 /* If this register is already used in some unknown fashion, we
1585 can't do anything.
1586 If we decrement the index from zero to -1, we can't store more
1587 uses, so this register becomes used in an unknown fashion. */
1588 use_index = --reg_state[regno].use_index;
1589 if (use_index < 0)
1590 return;
1591
dc0d5a57 1592 if (use_index == RELOAD_COMBINE_MAX_USES - 1)
15e35479
KH
1593 {
1594 /* This is the first use of this register we have seen since we
1595 marked it as dead. */
1596 reg_state[regno].offset = offset;
dc0d5a57
BS
1597 reg_state[regno].all_offsets_match = true;
1598 reg_state[regno].use_ruid = ruid;
15e35479 1599 }
b1d5eee8
BS
1600 else
1601 {
1602 if (reg_state[regno].use_ruid > ruid)
1603 reg_state[regno].use_ruid = ruid;
1604
1605 if (! rtx_equal_p (offset, reg_state[regno].offset))
1606 reg_state[regno].all_offsets_match = false;
1607 }
dc0d5a57 1608
15e35479 1609 reg_state[regno].reg_use[use_index].insn = insn;
dc0d5a57
BS
1610 reg_state[regno].reg_use[use_index].ruid = ruid;
1611 reg_state[regno].reg_use[use_index].containing_mem = containing_mem;
15e35479
KH
1612 reg_state[regno].reg_use[use_index].usep = xp;
1613 return;
1614 }
1615
dc0d5a57
BS
1616 case MEM:
1617 containing_mem = x;
1618 break;
1619
15e35479
KH
1620 default:
1621 break;
1622 }
1623
1624 /* Recursively process the components of X. */
1625 fmt = GET_RTX_FORMAT (code);
1626 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1627 {
1628 if (fmt[i] == 'e')
dc0d5a57 1629 reload_combine_note_use (&XEXP (x, i), insn, ruid, containing_mem);
15e35479
KH
1630 else if (fmt[i] == 'E')
1631 {
1632 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
dc0d5a57
BS
1633 reload_combine_note_use (&XVECEXP (x, i, j), insn, ruid,
1634 containing_mem);
15e35479
KH
1635 }
1636 }
1637}
1638\f
1639/* See if we can reduce the cost of a constant by replacing a move
1640 with an add. We track situations in which a register is set to a
1641 constant or to a register plus a constant. */
1642/* We cannot do our optimization across labels. Invalidating all the
1643 information about register contents we have would be costly, so we
1644 use move2add_last_label_luid to note where the label is and then
1645 later disable any optimization that would cross it.
7beb0596
JZ
1646 reg_offset[n] / reg_base_reg[n] / reg_symbol_ref[n] / reg_mode[n]
1647 are only valid if reg_set_luid[n] is greater than
7894bc6b
JR
1648 move2add_last_label_luid.
1649 For a set that established a new (potential) base register with
1650 non-constant value, we use move2add_luid from the place where the
1651 setting insn is encountered; registers based off that base then
1652 get the same reg_set_luid. Constants all get
1653 move2add_last_label_luid + 1 as their reg_set_luid. */
15e35479
KH
1654static int reg_set_luid[FIRST_PSEUDO_REGISTER];
1655
1656/* If reg_base_reg[n] is negative, register n has been set to
7beb0596 1657 reg_offset[n] or reg_symbol_ref[n] + reg_offset[n] in mode reg_mode[n].
15e35479
KH
1658 If reg_base_reg[n] is non-negative, register n has been set to the
1659 sum of reg_offset[n] and the value of register reg_base_reg[n]
7894bc6b
JR
1660 before reg_set_luid[n], calculated in mode reg_mode[n] .
1661 For multi-hard-register registers, all but the first one are
1662 recorded as BLKmode in reg_mode. Setting reg_mode to VOIDmode
1663 marks it as invalid. */
15e35479
KH
1664static HOST_WIDE_INT reg_offset[FIRST_PSEUDO_REGISTER];
1665static int reg_base_reg[FIRST_PSEUDO_REGISTER];
7beb0596 1666static rtx reg_symbol_ref[FIRST_PSEUDO_REGISTER];
15e35479
KH
1667static enum machine_mode reg_mode[FIRST_PSEUDO_REGISTER];
1668
1669/* move2add_luid is linearly increased while scanning the instructions
1670 from first to last. It is used to set reg_set_luid in
1671 reload_cse_move2add and move2add_note_store. */
1672static int move2add_luid;
1673
1674/* move2add_last_label_luid is set whenever a label is found. Labels
1675 invalidate all previously collected reg_offset data. */
1676static int move2add_last_label_luid;
1677
1678/* ??? We don't know how zero / sign extension is handled, hence we
1679 can't go from a narrower to a wider mode. */
1680#define MODES_OK_FOR_MOVE2ADD(OUTMODE, INMODE) \
1681 (GET_MODE_SIZE (OUTMODE) == GET_MODE_SIZE (INMODE) \
1682 || (GET_MODE_SIZE (OUTMODE) <= GET_MODE_SIZE (INMODE) \
d0edd768 1683 && TRULY_NOOP_TRUNCATION_MODES_P (OUTMODE, INMODE)))
15e35479 1684
7894bc6b
JR
1685/* Record that REG is being set to a value with the mode of REG. */
1686
1687static void
1688move2add_record_mode (rtx reg)
1689{
1690 int regno, nregs;
1691 enum machine_mode mode = GET_MODE (reg);
1692
1693 if (GET_CODE (reg) == SUBREG)
1694 {
1695 regno = subreg_regno (reg);
1696 nregs = subreg_nregs (reg);
1697 }
1698 else if (REG_P (reg))
1699 {
1700 regno = REGNO (reg);
1701 nregs = hard_regno_nregs[regno][mode];
1702 }
1703 else
1704 gcc_unreachable ();
1705 for (int i = nregs - 1; i > 0; i--)
1706 reg_mode[regno + i] = BLKmode;
1707 reg_mode[regno] = mode;
1708}
1709
1710/* Record that REG is being set to the sum of SYM and OFF. */
1711
1712static void
1713move2add_record_sym_value (rtx reg, rtx sym, rtx off)
1714{
1715 int regno = REGNO (reg);
1716
1717 move2add_record_mode (reg);
1718 reg_set_luid[regno] = move2add_luid;
1719 reg_base_reg[regno] = -1;
1720 reg_symbol_ref[regno] = sym;
1721 reg_offset[regno] = INTVAL (off);
1722}
1723
1724/* Check if REGNO contains a valid value in MODE. */
1725
1726static bool
1727move2add_valid_value_p (int regno, enum machine_mode mode)
1728{
ca035367 1729 if (reg_set_luid[regno] <= move2add_last_label_luid)
7894bc6b
JR
1730 return false;
1731
ca035367
JR
1732 if (mode != reg_mode[regno])
1733 {
1734 if (!MODES_OK_FOR_MOVE2ADD (mode, reg_mode[regno]))
1735 return false;
1736 /* The value loaded into regno in reg_mode[regno] is also valid in
1737 mode after truncation only if (REG:mode regno) is the lowpart of
1738 (REG:reg_mode[regno] regno). Now, for big endian, the starting
1739 regno of the lowpart might be different. */
1740 int s_off = subreg_lowpart_offset (mode, reg_mode[regno]);
1741 s_off = subreg_regno_offset (regno, reg_mode[regno], s_off, mode);
1742 if (s_off != 0)
1743 /* We could in principle adjust regno, check reg_mode[regno] to be
1744 BLKmode, and return s_off to the caller (vs. -1 for failure),
1745 but we currently have no callers that could make use of this
1746 information. */
1747 return false;
1748 }
1749
7894bc6b
JR
1750 for (int i = hard_regno_nregs[regno][mode] - 1; i > 0; i--)
1751 if (reg_mode[regno + i] != BLKmode)
1752 return false;
1753 return true;
1754}
1755
7beb0596
JZ
1756/* This function is called with INSN that sets REG to (SYM + OFF),
1757 while REG is known to already have value (SYM + offset).
1758 This function tries to change INSN into an add instruction
1759 (set (REG) (plus (REG) (OFF - offset))) using the known value.
dc0d5a57
BS
1760 It also updates the information about REG's known value.
1761 Return true if we made a change. */
7beb0596 1762
dc0d5a57 1763static bool
7beb0596
JZ
1764move2add_use_add2_insn (rtx reg, rtx sym, rtx off, rtx insn)
1765{
1766 rtx pat = PATTERN (insn);
1767 rtx src = SET_SRC (pat);
1768 int regno = REGNO (reg);
1769 rtx new_src = gen_int_mode (INTVAL (off) - reg_offset[regno],
1770 GET_MODE (reg));
1771 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
dc0d5a57 1772 bool changed = false;
7beb0596
JZ
1773
1774 /* (set (reg) (plus (reg) (const_int 0))) is not canonical;
1775 use (set (reg) (reg)) instead.
1776 We don't delete this insn, nor do we convert it into a
1777 note, to avoid losing register notes or the return
1778 value flag. jump2 already knows how to get rid of
1779 no-op moves. */
1780 if (new_src == const0_rtx)
1781 {
1782 /* If the constants are different, this is a
1783 truncation, that, if turned into (set (reg)
1784 (reg)), would be discarded. Maybe we should
1785 try a truncMN pattern? */
1786 if (INTVAL (off) == reg_offset [regno])
dc0d5a57 1787 changed = validate_change (insn, &SET_SRC (pat), reg, 0);
7beb0596 1788 }
22939744 1789 else
7beb0596 1790 {
22939744 1791 struct full_rtx_costs oldcst, newcst;
7beb0596 1792 rtx tem = gen_rtx_PLUS (GET_MODE (reg), reg, new_src);
22939744 1793
d51102f3 1794 get_full_set_rtx_cost (pat, &oldcst);
22939744 1795 SET_SRC (pat) = tem;
d51102f3 1796 get_full_set_rtx_cost (pat, &newcst);
22939744
BS
1797 SET_SRC (pat) = src;
1798
1799 if (costs_lt_p (&newcst, &oldcst, speed)
1800 && have_add2_insn (reg, new_src))
1801 changed = validate_change (insn, &SET_SRC (pat), tem, 0);
1802 else if (sym == NULL_RTX && GET_MODE (reg) != BImode)
7beb0596 1803 {
22939744
BS
1804 enum machine_mode narrow_mode;
1805 for (narrow_mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1806 narrow_mode != VOIDmode
1807 && narrow_mode != GET_MODE (reg);
1808 narrow_mode = GET_MODE_WIDER_MODE (narrow_mode))
7beb0596 1809 {
22939744
BS
1810 if (have_insn_for (STRICT_LOW_PART, narrow_mode)
1811 && ((reg_offset[regno] & ~GET_MODE_MASK (narrow_mode))
1812 == (INTVAL (off) & ~GET_MODE_MASK (narrow_mode))))
1813 {
b49eefa5 1814 rtx narrow_reg = gen_lowpart_common (narrow_mode, reg);
22939744
BS
1815 rtx narrow_src = gen_int_mode (INTVAL (off),
1816 narrow_mode);
1817 rtx new_set
1818 = gen_rtx_SET (VOIDmode,
1819 gen_rtx_STRICT_LOW_PART (VOIDmode,
1820 narrow_reg),
1821 narrow_src);
1822 changed = validate_change (insn, &PATTERN (insn),
1823 new_set, 0);
1824 if (changed)
1825 break;
1826 }
7beb0596
JZ
1827 }
1828 }
1829 }
7894bc6b 1830 move2add_record_sym_value (reg, sym, off);
dc0d5a57 1831 return changed;
7beb0596
JZ
1832}
1833
1834
1835/* This function is called with INSN that sets REG to (SYM + OFF),
1836 but REG doesn't have known value (SYM + offset). This function
1837 tries to find another register which is known to already have
1838 value (SYM + offset) and change INSN into an add instruction
1839 (set (REG) (plus (the found register) (OFF - offset))) if such
1840 a register is found. It also updates the information about
dc0d5a57
BS
1841 REG's known value.
1842 Return true iff we made a change. */
7beb0596 1843
dc0d5a57 1844static bool
7beb0596
JZ
1845move2add_use_add3_insn (rtx reg, rtx sym, rtx off, rtx insn)
1846{
1847 rtx pat = PATTERN (insn);
1848 rtx src = SET_SRC (pat);
1849 int regno = REGNO (reg);
5676e87d 1850 int min_regno = 0;
7beb0596
JZ
1851 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
1852 int i;
dc0d5a57 1853 bool changed = false;
22939744
BS
1854 struct full_rtx_costs oldcst, newcst, mincst;
1855 rtx plus_expr;
1856
1857 init_costs_to_max (&mincst);
d51102f3 1858 get_full_set_rtx_cost (pat, &oldcst);
22939744
BS
1859
1860 plus_expr = gen_rtx_PLUS (GET_MODE (reg), reg, const0_rtx);
1861 SET_SRC (pat) = plus_expr;
7beb0596
JZ
1862
1863 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
7894bc6b 1864 if (move2add_valid_value_p (i, GET_MODE (reg))
7beb0596
JZ
1865 && reg_base_reg[i] < 0
1866 && reg_symbol_ref[i] != NULL_RTX
1867 && rtx_equal_p (sym, reg_symbol_ref[i]))
1868 {
1869 rtx new_src = gen_int_mode (INTVAL (off) - reg_offset[i],
1870 GET_MODE (reg));
1871 /* (set (reg) (plus (reg) (const_int 0))) is not canonical;
1872 use (set (reg) (reg)) instead.
1873 We don't delete this insn, nor do we convert it into a
1874 note, to avoid losing register notes or the return
1875 value flag. jump2 already knows how to get rid of
1876 no-op moves. */
1877 if (new_src == const0_rtx)
1878 {
22939744 1879 init_costs_to_zero (&mincst);
7beb0596
JZ
1880 min_regno = i;
1881 break;
1882 }
1883 else
1884 {
22939744 1885 XEXP (plus_expr, 1) = new_src;
d51102f3 1886 get_full_set_rtx_cost (pat, &newcst);
22939744
BS
1887
1888 if (costs_lt_p (&newcst, &mincst, speed))
7beb0596 1889 {
22939744 1890 mincst = newcst;
7beb0596
JZ
1891 min_regno = i;
1892 }
1893 }
1894 }
22939744 1895 SET_SRC (pat) = src;
7beb0596 1896
22939744 1897 if (costs_lt_p (&mincst, &oldcst, speed))
7beb0596
JZ
1898 {
1899 rtx tem;
1900
1901 tem = gen_rtx_REG (GET_MODE (reg), min_regno);
1902 if (i != min_regno)
1903 {
1904 rtx new_src = gen_int_mode (INTVAL (off) - reg_offset[min_regno],
1905 GET_MODE (reg));
1906 tem = gen_rtx_PLUS (GET_MODE (reg), tem, new_src);
1907 }
dc0d5a57
BS
1908 if (validate_change (insn, &SET_SRC (pat), tem, 0))
1909 changed = true;
7beb0596
JZ
1910 }
1911 reg_set_luid[regno] = move2add_luid;
7894bc6b 1912 move2add_record_sym_value (reg, sym, off);
dc0d5a57 1913 return changed;
7beb0596
JZ
1914}
1915
dc0d5a57
BS
1916/* Convert move insns with constant inputs to additions if they are cheaper.
1917 Return true if any changes were made. */
1918static bool
0c20a65f 1919reload_cse_move2add (rtx first)
15e35479
KH
1920{
1921 int i;
1922 rtx insn;
dc0d5a57 1923 bool changed = false;
15e35479
KH
1924
1925 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
7beb0596
JZ
1926 {
1927 reg_set_luid[i] = 0;
1928 reg_offset[i] = 0;
1929 reg_base_reg[i] = 0;
1930 reg_symbol_ref[i] = NULL_RTX;
1931 reg_mode[i] = VOIDmode;
1932 }
15e35479
KH
1933
1934 move2add_last_label_luid = 0;
1935 move2add_luid = 2;
1936 for (insn = first; insn; insn = NEXT_INSN (insn), move2add_luid++)
1937 {
1938 rtx pat, note;
1939
4b4bf941 1940 if (LABEL_P (insn))
15e35479
KH
1941 {
1942 move2add_last_label_luid = move2add_luid;
1943 /* We're going to increment move2add_luid twice after a
1944 label, so that we can use move2add_last_label_luid + 1 as
1945 the luid for constants. */
1946 move2add_luid++;
1947 continue;
1948 }
1949 if (! INSN_P (insn))
1950 continue;
1951 pat = PATTERN (insn);
1952 /* For simplicity, we only perform this optimization on
1953 straightforward SETs. */
1954 if (GET_CODE (pat) == SET
f8cfc6aa 1955 && REG_P (SET_DEST (pat)))
15e35479
KH
1956 {
1957 rtx reg = SET_DEST (pat);
1958 int regno = REGNO (reg);
1959 rtx src = SET_SRC (pat);
1960
1961 /* Check if we have valid information on the contents of this
1962 register in the mode of REG. */
7894bc6b 1963 if (move2add_valid_value_p (regno, GET_MODE (reg))
6fb5fa3c 1964 && dbg_cnt (cse2_move2add))
15e35479
KH
1965 {
1966 /* Try to transform (set (REGX) (CONST_INT A))
1967 ...
1968 (set (REGX) (CONST_INT B))
1969 to
1970 (set (REGX) (CONST_INT A))
1971 ...
1972 (set (REGX) (plus (REGX) (CONST_INT B-A)))
1973 or
1974 (set (REGX) (CONST_INT A))
1975 ...
1976 (set (STRICT_LOW_PART (REGX)) (CONST_INT B))
1977 */
1978
7beb0596
JZ
1979 if (CONST_INT_P (src)
1980 && reg_base_reg[regno] < 0
1981 && reg_symbol_ref[regno] == NULL_RTX)
15e35479 1982 {
dc0d5a57 1983 changed |= move2add_use_add2_insn (reg, NULL_RTX, src, insn);
15e35479
KH
1984 continue;
1985 }
1986
1987 /* Try to transform (set (REGX) (REGY))
1988 (set (REGX) (PLUS (REGX) (CONST_INT A)))
1989 ...
1990 (set (REGX) (REGY))
1991 (set (REGX) (PLUS (REGX) (CONST_INT B)))
1992 to
1993 (set (REGX) (REGY))
1994 (set (REGX) (PLUS (REGX) (CONST_INT A)))
1995 ...
1996 (set (REGX) (plus (REGX) (CONST_INT B-A))) */
f8cfc6aa 1997 else if (REG_P (src)
15e35479
KH
1998 && reg_set_luid[regno] == reg_set_luid[REGNO (src)]
1999 && reg_base_reg[regno] == reg_base_reg[REGNO (src)]
7894bc6b 2000 && move2add_valid_value_p (REGNO (src), GET_MODE (reg)))
15e35479 2001 {
f0fc0803 2002 rtx next = next_nonnote_nondebug_insn (insn);
15e35479
KH
2003 rtx set = NULL_RTX;
2004 if (next)
2005 set = single_set (next);
2006 if (set
2007 && SET_DEST (set) == reg
2008 && GET_CODE (SET_SRC (set)) == PLUS
2009 && XEXP (SET_SRC (set), 0) == reg
481683e1 2010 && CONST_INT_P (XEXP (SET_SRC (set), 1)))
15e35479
KH
2011 {
2012 rtx src3 = XEXP (SET_SRC (set), 1);
2013 HOST_WIDE_INT added_offset = INTVAL (src3);
2014 HOST_WIDE_INT base_offset = reg_offset[REGNO (src)];
2015 HOST_WIDE_INT regno_offset = reg_offset[regno];
2016 rtx new_src =
bb80db7b
KH
2017 gen_int_mode (added_offset
2018 + base_offset
2019 - regno_offset,
2020 GET_MODE (reg));
f40751dd
JH
2021 bool success = false;
2022 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
15e35479
KH
2023
2024 if (new_src == const0_rtx)
2025 /* See above why we create (set (reg) (reg)) here. */
2026 success
2027 = validate_change (next, &SET_SRC (set), reg, 0);
22939744 2028 else
15e35479 2029 {
22939744
BS
2030 rtx old_src = SET_SRC (set);
2031 struct full_rtx_costs oldcst, newcst;
2032 rtx tem = gen_rtx_PLUS (GET_MODE (reg), reg, new_src);
2033
d51102f3 2034 get_full_set_rtx_cost (set, &oldcst);
22939744 2035 SET_SRC (set) = tem;
5e8f01f4 2036 get_full_set_src_cost (tem, &newcst);
22939744
BS
2037 SET_SRC (set) = old_src;
2038 costs_add_n_insns (&oldcst, 1);
2039
2040 if (costs_lt_p (&newcst, &oldcst, speed)
2041 && have_add2_insn (reg, new_src))
2042 {
2043 rtx newpat = gen_rtx_SET (VOIDmode, reg, tem);
2044 success
2045 = validate_change (next, &PATTERN (next),
2046 newpat, 0);
2047 }
15e35479
KH
2048 }
2049 if (success)
2050 delete_insn (insn);
dc0d5a57 2051 changed |= success;
15e35479 2052 insn = next;
7894bc6b
JR
2053 move2add_record_mode (reg);
2054 reg_offset[regno]
2055 = trunc_int_for_mode (added_offset + base_offset,
2056 GET_MODE (reg));
15e35479
KH
2057 continue;
2058 }
2059 }
2060 }
7beb0596
JZ
2061
2062 /* Try to transform
2063 (set (REGX) (CONST (PLUS (SYMBOL_REF) (CONST_INT A))))
2064 ...
2065 (set (REGY) (CONST (PLUS (SYMBOL_REF) (CONST_INT B))))
2066 to
2067 (set (REGX) (CONST (PLUS (SYMBOL_REF) (CONST_INT A))))
2068 ...
2069 (set (REGY) (CONST (PLUS (REGX) (CONST_INT B-A)))) */
2070 if ((GET_CODE (src) == SYMBOL_REF
2071 || (GET_CODE (src) == CONST
2072 && GET_CODE (XEXP (src, 0)) == PLUS
2073 && GET_CODE (XEXP (XEXP (src, 0), 0)) == SYMBOL_REF
2074 && CONST_INT_P (XEXP (XEXP (src, 0), 1))))
2075 && dbg_cnt (cse2_move2add))
2076 {
2077 rtx sym, off;
2078
2079 if (GET_CODE (src) == SYMBOL_REF)
2080 {
2081 sym = src;
2082 off = const0_rtx;
2083 }
2084 else
2085 {
2086 sym = XEXP (XEXP (src, 0), 0);
2087 off = XEXP (XEXP (src, 0), 1);
2088 }
2089
2090 /* If the reg already contains the value which is sum of
2091 sym and some constant value, we can use an add2 insn. */
7894bc6b 2092 if (move2add_valid_value_p (regno, GET_MODE (reg))
7beb0596
JZ
2093 && reg_base_reg[regno] < 0
2094 && reg_symbol_ref[regno] != NULL_RTX
2095 && rtx_equal_p (sym, reg_symbol_ref[regno]))
dc0d5a57 2096 changed |= move2add_use_add2_insn (reg, sym, off, insn);
7beb0596
JZ
2097
2098 /* Otherwise, we have to find a register whose value is sum
2099 of sym and some constant value. */
2100 else
dc0d5a57 2101 changed |= move2add_use_add3_insn (reg, sym, off, insn);
7beb0596
JZ
2102
2103 continue;
2104 }
15e35479
KH
2105 }
2106
2107 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2108 {
2109 if (REG_NOTE_KIND (note) == REG_INC
f8cfc6aa 2110 && REG_P (XEXP (note, 0)))
15e35479
KH
2111 {
2112 /* Reset the information about this register. */
2113 int regno = REGNO (XEXP (note, 0));
2114 if (regno < FIRST_PSEUDO_REGISTER)
7894bc6b
JR
2115 {
2116 move2add_record_mode (XEXP (note, 0));
2117 reg_mode[regno] = VOIDmode;
2118 }
15e35479
KH
2119 }
2120 }
7beb0596 2121 note_stores (PATTERN (insn), move2add_note_store, insn);
15e35479
KH
2122
2123 /* If INSN is a conditional branch, we try to extract an
2124 implicit set out of it. */
c4cdb8e1 2125 if (any_condjump_p (insn))
15e35479
KH
2126 {
2127 rtx cnd = fis_get_condition (insn);
2128
2129 if (cnd != NULL_RTX
2130 && GET_CODE (cnd) == NE
f8cfc6aa 2131 && REG_P (XEXP (cnd, 0))
c4cdb8e1 2132 && !reg_set_p (XEXP (cnd, 0), insn)
15e35479
KH
2133 /* The following two checks, which are also in
2134 move2add_note_store, are intended to reduce the
2135 number of calls to gen_rtx_SET to avoid memory
2136 allocation if possible. */
2137 && SCALAR_INT_MODE_P (GET_MODE (XEXP (cnd, 0)))
66fd46b6 2138 && hard_regno_nregs[REGNO (XEXP (cnd, 0))][GET_MODE (XEXP (cnd, 0))] == 1
481683e1 2139 && CONST_INT_P (XEXP (cnd, 1)))
15e35479
KH
2140 {
2141 rtx implicit_set =
2142 gen_rtx_SET (VOIDmode, XEXP (cnd, 0), XEXP (cnd, 1));
7beb0596 2143 move2add_note_store (SET_DEST (implicit_set), implicit_set, insn);
15e35479
KH
2144 }
2145 }
2146
2147 /* If this is a CALL_INSN, all call used registers are stored with
2148 unknown values. */
4b4bf941 2149 if (CALL_P (insn))
15e35479
KH
2150 {
2151 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
2152 {
2153 if (call_used_regs[i])
2154 /* Reset the information about this register. */
7894bc6b 2155 reg_mode[i] = VOIDmode;
15e35479
KH
2156 }
2157 }
2158 }
dc0d5a57 2159 return changed;
15e35479
KH
2160}
2161
7beb0596
JZ
2162/* SET is a SET or CLOBBER that sets DST. DATA is the insn which
2163 contains SET.
15e35479
KH
2164 Update reg_set_luid, reg_offset and reg_base_reg accordingly.
2165 Called from reload_cse_move2add via note_stores. */
2166
2167static void
7beb0596 2168move2add_note_store (rtx dst, const_rtx set, void *data)
15e35479 2169{
7beb0596 2170 rtx insn = (rtx) data;
15e35479 2171 unsigned int regno = 0;
15e35479
KH
2172 enum machine_mode mode = GET_MODE (dst);
2173
15e35479
KH
2174 /* Some targets do argument pushes without adding REG_INC notes. */
2175
3c0cb5de 2176 if (MEM_P (dst))
15e35479
KH
2177 {
2178 dst = XEXP (dst, 0);
2179 if (GET_CODE (dst) == PRE_INC || GET_CODE (dst) == POST_INC
2180 || GET_CODE (dst) == PRE_DEC || GET_CODE (dst) == POST_DEC)
7894bc6b 2181 reg_mode[REGNO (XEXP (dst, 0))] = VOIDmode;
15e35479
KH
2182 return;
2183 }
15e35479 2184
7894bc6b
JR
2185 if (GET_CODE (dst) == SUBREG)
2186 regno = subreg_regno (dst);
2187 else if (REG_P (dst))
2188 regno = REGNO (dst);
2189 else
2190 return;
15e35479 2191
7894bc6b
JR
2192 if (SCALAR_INT_MODE_P (mode)
2193 && GET_CODE (set) == SET)
7beb0596
JZ
2194 {
2195 rtx note, sym = NULL_RTX;
7894bc6b 2196 rtx off;
7beb0596
JZ
2197
2198 note = find_reg_equal_equiv_note (insn);
2199 if (note && GET_CODE (XEXP (note, 0)) == SYMBOL_REF)
2200 {
2201 sym = XEXP (note, 0);
7894bc6b 2202 off = const0_rtx;
7beb0596
JZ
2203 }
2204 else if (note && GET_CODE (XEXP (note, 0)) == CONST
2205 && GET_CODE (XEXP (XEXP (note, 0), 0)) == PLUS
2206 && GET_CODE (XEXP (XEXP (XEXP (note, 0), 0), 0)) == SYMBOL_REF
2207 && CONST_INT_P (XEXP (XEXP (XEXP (note, 0), 0), 1)))
2208 {
2209 sym = XEXP (XEXP (XEXP (note, 0), 0), 0);
7894bc6b 2210 off = XEXP (XEXP (XEXP (note, 0), 0), 1);
7beb0596
JZ
2211 }
2212
2213 if (sym != NULL_RTX)
2214 {
7894bc6b 2215 move2add_record_sym_value (dst, sym, off);
7beb0596
JZ
2216 return;
2217 }
2218 }
2219
7894bc6b
JR
2220 if (SCALAR_INT_MODE_P (mode)
2221 && GET_CODE (set) == SET
15e35479 2222 && GET_CODE (SET_DEST (set)) != ZERO_EXTRACT
15e35479
KH
2223 && GET_CODE (SET_DEST (set)) != STRICT_LOW_PART)
2224 {
2225 rtx src = SET_SRC (set);
2226 rtx base_reg;
2227 HOST_WIDE_INT offset;
2228 int base_regno;
15e35479
KH
2229
2230 switch (GET_CODE (src))
2231 {
2232 case PLUS:
f8cfc6aa 2233 if (REG_P (XEXP (src, 0)))
15e35479
KH
2234 {
2235 base_reg = XEXP (src, 0);
2236
481683e1 2237 if (CONST_INT_P (XEXP (src, 1)))
15e35479 2238 offset = INTVAL (XEXP (src, 1));
f8cfc6aa 2239 else if (REG_P (XEXP (src, 1))
7894bc6b 2240 && move2add_valid_value_p (REGNO (XEXP (src, 1)), mode))
15e35479 2241 {
27d5e204
CLT
2242 if (reg_base_reg[REGNO (XEXP (src, 1))] < 0
2243 && reg_symbol_ref[REGNO (XEXP (src, 1))] == NULL_RTX)
15e35479
KH
2244 offset = reg_offset[REGNO (XEXP (src, 1))];
2245 /* Maybe the first register is known to be a
2246 constant. */
7894bc6b 2247 else if (move2add_valid_value_p (REGNO (base_reg), mode)
27d5e204
CLT
2248 && reg_base_reg[REGNO (base_reg)] < 0
2249 && reg_symbol_ref[REGNO (base_reg)] == NULL_RTX)
15e35479
KH
2250 {
2251 offset = reg_offset[REGNO (base_reg)];
2252 base_reg = XEXP (src, 1);
2253 }
2254 else
2255 goto invalidate;
2256 }
2257 else
2258 goto invalidate;
2259
2260 break;
2261 }
2262
2263 goto invalidate;
2264
2265 case REG:
2266 base_reg = src;
2267 offset = 0;
2268 break;
2269
2270 case CONST_INT:
2271 /* Start tracking the register as a constant. */
2272 reg_base_reg[regno] = -1;
7beb0596 2273 reg_symbol_ref[regno] = NULL_RTX;
15e35479
KH
2274 reg_offset[regno] = INTVAL (SET_SRC (set));
2275 /* We assign the same luid to all registers set to constants. */
2276 reg_set_luid[regno] = move2add_last_label_luid + 1;
7894bc6b 2277 move2add_record_mode (dst);
15e35479
KH
2278 return;
2279
2280 default:
7894bc6b 2281 goto invalidate;
15e35479
KH
2282 }
2283
2284 base_regno = REGNO (base_reg);
2285 /* If information about the base register is not valid, set it
2286 up as a new base register, pretending its value is known
2287 starting from the current insn. */
7894bc6b 2288 if (!move2add_valid_value_p (base_regno, mode))
15e35479
KH
2289 {
2290 reg_base_reg[base_regno] = base_regno;
7beb0596 2291 reg_symbol_ref[base_regno] = NULL_RTX;
15e35479
KH
2292 reg_offset[base_regno] = 0;
2293 reg_set_luid[base_regno] = move2add_luid;
7894bc6b
JR
2294 gcc_assert (GET_MODE (base_reg) == mode);
2295 move2add_record_mode (base_reg);
15e35479 2296 }
15e35479
KH
2297
2298 /* Copy base information from our base register. */
2299 reg_set_luid[regno] = reg_set_luid[base_regno];
2300 reg_base_reg[regno] = reg_base_reg[base_regno];
7beb0596 2301 reg_symbol_ref[regno] = reg_symbol_ref[base_regno];
15e35479
KH
2302
2303 /* Compute the sum of the offsets or constants. */
7894bc6b
JR
2304 reg_offset[regno]
2305 = trunc_int_for_mode (offset + reg_offset[base_regno], mode);
2306
2307 move2add_record_mode (dst);
15e35479
KH
2308 }
2309 else
2310 {
7894bc6b
JR
2311 invalidate:
2312 /* Invalidate the contents of the register. */
2313 move2add_record_mode (dst);
2314 reg_mode[regno] = VOIDmode;
15e35479
KH
2315 }
2316}
ef330312
PB
2317\f
2318static bool
2319gate_handle_postreload (void)
2320{
058e97ec 2321 return (optimize > 0 && reload_completed);
ef330312
PB
2322}
2323
2324
c2924966 2325static unsigned int
ef330312
PB
2326rest_of_handle_postreload (void)
2327{
6fb5fa3c
DB
2328 if (!dbg_cnt (postreload_cse))
2329 return 0;
2330
ef330312
PB
2331 /* Do a very simple CSE pass over just the hard registers. */
2332 reload_cse_regs (get_insns ());
6fb5fa3c 2333 /* Reload_cse_regs can eliminate potentially-trapping MEMs.
ef330312 2334 Remove any EH edges associated with them. */
159520ac
SB
2335 if (cfun->can_throw_non_call_exceptions
2336 && purge_all_dead_edges ())
2337 cleanup_cfg (0);
6fb5fa3c 2338
c2924966 2339 return 0;
ef330312
PB
2340}
2341
27a4cd48
DM
2342namespace {
2343
2344const pass_data pass_data_postreload_cse =
ef330312 2345{
27a4cd48
DM
2346 RTL_PASS, /* type */
2347 "postreload", /* name */
2348 OPTGROUP_NONE, /* optinfo_flags */
2349 true, /* has_gate */
2350 true, /* has_execute */
2351 TV_RELOAD_CSE_REGS, /* tv_id */
2352 0, /* properties_required */
2353 0, /* properties_provided */
2354 0, /* properties_destroyed */
2355 0, /* todo_flags_start */
2356 ( TODO_df_finish | TODO_verify_rtl_sharing | 0 ), /* todo_flags_finish */
ef330312 2357};
27a4cd48
DM
2358
2359class pass_postreload_cse : public rtl_opt_pass
2360{
2361public:
c3284718
RS
2362 pass_postreload_cse (gcc::context *ctxt)
2363 : rtl_opt_pass (pass_data_postreload_cse, ctxt)
27a4cd48
DM
2364 {}
2365
2366 /* opt_pass methods: */
2367 bool gate () { return gate_handle_postreload (); }
2368 unsigned int execute () { return rest_of_handle_postreload (); }
2369
2370}; // class pass_postreload_cse
2371
2372} // anon namespace
2373
2374rtl_opt_pass *
2375make_pass_postreload_cse (gcc::context *ctxt)
2376{
2377 return new pass_postreload_cse (ctxt);
2378}
This page took 4.64285 seconds and 5 git commands to generate.