]> gcc.gnu.org Git - gcc.git/blame - gcc/postreload.c
Add SET_DECL_MODE
[gcc.git] / gcc / postreload.c
CommitLineData
15e35479 1/* Perform simple optimizations to clean up the result of reload.
818ab71a 2 Copyright (C) 1987-2016 Free Software Foundation, Inc.
15e35479
KH
3
4This file is part of GCC.
5
6GCC is free software; you can redistribute it and/or modify it under
7the terms of the GNU General Public License as published by the Free
9dcd6f09 8Software Foundation; either version 3, or (at your option) any later
15e35479
KH
9version.
10
11GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12WARRANTY; without even the implied warranty of MERCHANTABILITY or
13FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14for more details.
15
16You should have received a copy of the GNU General Public License
9dcd6f09
NC
17along with GCC; see the file COPYING3. If not see
18<http://www.gnu.org/licenses/>. */
15e35479
KH
19
20#include "config.h"
21#include "system.h"
22#include "coretypes.h"
c7131fb2 23#include "backend.h"
957060b5 24#include "target.h"
15e35479 25#include "rtl.h"
957060b5
AM
26#include "tree.h"
27#include "predict.h"
c7131fb2 28#include "df.h"
4d0cdd0c 29#include "memmodel.h"
15e35479 30#include "tm_p.h"
957060b5
AM
31#include "optabs.h"
32#include "regs.h"
33#include "emit-rtl.h"
34#include "recog.h"
957060b5 35
60393bbc
AM
36#include "cfgrtl.h"
37#include "cfgbuild.h"
38#include "cfgcleanup.h"
15e35479 39#include "reload.h"
15e35479 40#include "cselib.h"
ef330312 41#include "tree-pass.h"
6fb5fa3c 42#include "dbgcnt.h"
15e35479 43
0c20a65f 44static int reload_cse_noop_set_p (rtx);
f90af2e0 45static bool reload_cse_simplify (rtx_insn *, rtx);
3a15c2cf 46static void reload_cse_regs_1 (void);
f90af2e0
DM
47static int reload_cse_simplify_set (rtx, rtx_insn *);
48static int reload_cse_simplify_operands (rtx_insn *, rtx);
15e35479 49
0c20a65f 50static void reload_combine (void);
f90af2e0 51static void reload_combine_note_use (rtx *, rtx_insn *, int, rtx);
7bc980e1 52static void reload_combine_note_store (rtx, const_rtx, void *);
15e35479 53
f90af2e0 54static bool reload_cse_move2add (rtx_insn *);
7bc980e1 55static void move2add_note_store (rtx, const_rtx, void *);
15e35479
KH
56
57/* Call cse / combine like post-reload optimization phases.
58 FIRST is the first instruction. */
8bb91f49
SB
59
60static void
f90af2e0 61reload_cse_regs (rtx_insn *first ATTRIBUTE_UNUSED)
15e35479 62{
dc0d5a57 63 bool moves_converted;
3a15c2cf 64 reload_cse_regs_1 ();
15e35479 65 reload_combine ();
dc0d5a57 66 moves_converted = reload_cse_move2add (first);
15e35479 67 if (flag_expensive_optimizations)
dc0d5a57
BS
68 {
69 if (moves_converted)
70 reload_combine ();
3a15c2cf 71 reload_cse_regs_1 ();
dc0d5a57 72 }
15e35479
KH
73}
74
75/* See whether a single set SET is a noop. */
76static int
0c20a65f 77reload_cse_noop_set_p (rtx set)
15e35479
KH
78{
79 if (cselib_reg_set_mode (SET_DEST (set)) != GET_MODE (SET_DEST (set)))
80 return 0;
81
82 return rtx_equal_for_cselib_p (SET_DEST (set), SET_SRC (set));
83}
84
3a15c2cf
SB
85/* Try to simplify INSN. Return true if the CFG may have changed. */
86static bool
f90af2e0 87reload_cse_simplify (rtx_insn *insn, rtx testreg)
15e35479
KH
88{
89 rtx body = PATTERN (insn);
3a15c2cf
SB
90 basic_block insn_bb = BLOCK_FOR_INSN (insn);
91 unsigned insn_bb_succs = EDGE_COUNT (insn_bb->succs);
15e35479
KH
92
93 if (GET_CODE (body) == SET)
94 {
95 int count = 0;
96
97 /* Simplify even if we may think it is a no-op.
98 We may think a memory load of a value smaller than WORD_SIZE
99 is redundant because we haven't taken into account possible
100 implicit extension. reload_cse_simplify_set() will bring
101 this out, so it's safer to simplify before we delete. */
102 count += reload_cse_simplify_set (body, insn);
103
104 if (!count && reload_cse_noop_set_p (body))
105 {
9e582b1d
JR
106 if (check_for_inc_dec (insn))
107 delete_insn_and_edges (insn);
3a15c2cf
SB
108 /* We're done with this insn. */
109 goto done;
15e35479
KH
110 }
111
112 if (count > 0)
113 apply_change_group ();
114 else
115 reload_cse_simplify_operands (insn, testreg);
116 }
117 else if (GET_CODE (body) == PARALLEL)
118 {
119 int i;
120 int count = 0;
121 rtx value = NULL_RTX;
122
0d87c765
RH
123 /* Registers mentioned in the clobber list for an asm cannot be reused
124 within the body of the asm. Invalidate those registers now so that
125 we don't try to substitute values for them. */
126 if (asm_noperands (body) >= 0)
127 {
128 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
129 {
130 rtx part = XVECEXP (body, 0, i);
131 if (GET_CODE (part) == CLOBBER && REG_P (XEXP (part, 0)))
132 cselib_invalidate_rtx (XEXP (part, 0));
133 }
134 }
135
15e35479
KH
136 /* If every action in a PARALLEL is a noop, we can delete
137 the entire PARALLEL. */
138 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
139 {
140 rtx part = XVECEXP (body, 0, i);
141 if (GET_CODE (part) == SET)
142 {
143 if (! reload_cse_noop_set_p (part))
144 break;
145 if (REG_P (SET_DEST (part))
146 && REG_FUNCTION_VALUE_P (SET_DEST (part)))
147 {
148 if (value)
149 break;
150 value = SET_DEST (part);
151 }
152 }
c6a26179
JH
153 else if (GET_CODE (part) != CLOBBER
154 && GET_CODE (part) != USE)
15e35479
KH
155 break;
156 }
157
158 if (i < 0)
159 {
9e582b1d
JR
160 if (check_for_inc_dec (insn))
161 delete_insn_and_edges (insn);
15e35479 162 /* We're done with this insn. */
3a15c2cf 163 goto done;
15e35479
KH
164 }
165
166 /* It's not a no-op, but we can try to simplify it. */
167 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
168 if (GET_CODE (XVECEXP (body, 0, i)) == SET)
169 count += reload_cse_simplify_set (XVECEXP (body, 0, i), insn);
170
171 if (count > 0)
172 apply_change_group ();
173 else
174 reload_cse_simplify_operands (insn, testreg);
175 }
3a15c2cf
SB
176
177done:
178 return (EDGE_COUNT (insn_bb->succs) != insn_bb_succs);
15e35479
KH
179}
180
181/* Do a very simple CSE pass over the hard registers.
182
183 This function detects no-op moves where we happened to assign two
184 different pseudo-registers to the same hard register, and then
185 copied one to the other. Reload will generate a useless
186 instruction copying a register to itself.
187
188 This function also detects cases where we load a value from memory
189 into two different registers, and (if memory is more expensive than
190 registers) changes it to simply copy the first register into the
191 second register.
192
193 Another optimization is performed that scans the operands of each
194 instruction to see whether the value is already available in a
195 hard register. It then replaces the operand with the hard register
196 if possible, much like an optional reload would. */
197
198static void
3a15c2cf 199reload_cse_regs_1 (void)
15e35479 200{
3a15c2cf
SB
201 bool cfg_changed = false;
202 basic_block bb;
f90af2e0 203 rtx_insn *insn;
c3dc5e66 204 rtx testreg = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 1);
15e35479 205
457eeaae 206 cselib_init (CSELIB_RECORD_MEMORY);
15e35479
KH
207 init_alias_analysis ();
208
11cd3bed 209 FOR_EACH_BB_FN (bb, cfun)
3a15c2cf
SB
210 FOR_BB_INSNS (bb, insn)
211 {
212 if (INSN_P (insn))
213 cfg_changed |= reload_cse_simplify (insn, testreg);
15e35479 214
3a15c2cf
SB
215 cselib_process_insn (insn);
216 }
15e35479
KH
217
218 /* Clean up. */
219 end_alias_analysis ();
220 cselib_finish ();
3a15c2cf
SB
221 if (cfg_changed)
222 cleanup_cfg (0);
15e35479
KH
223}
224
225/* Try to simplify a single SET instruction. SET is the set pattern.
226 INSN is the instruction it came from.
227 This function only handles one case: if we set a register to a value
228 which is not a register, we try to find that value in some other register
229 and change the set into a register copy. */
230
231static int
f90af2e0 232reload_cse_simplify_set (rtx set, rtx_insn *insn)
15e35479
KH
233{
234 int did_change = 0;
235 int dreg;
236 rtx src;
6f76a878 237 reg_class_t dclass;
15e35479
KH
238 int old_cost;
239 cselib_val *val;
240 struct elt_loc_list *l;
f822d252 241 enum rtx_code extend_op = UNKNOWN;
f40751dd 242 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
15e35479
KH
243
244 dreg = true_regnum (SET_DEST (set));
245 if (dreg < 0)
246 return 0;
247
248 src = SET_SRC (set);
249 if (side_effects_p (src) || true_regnum (src) >= 0)
250 return 0;
251
252 dclass = REGNO_REG_CLASS (dreg);
253
15e35479
KH
254 /* When replacing a memory with a register, we need to honor assumptions
255 that combine made wrt the contents of sign bits. We'll do this by
256 generating an extend instruction instead of a reg->reg copy. Thus
257 the destination must be a register that we can widen. */
3c0cb5de 258 if (MEM_P (src)
3712c7a3 259 && (extend_op = load_extend_op (GET_MODE (src))) != UNKNOWN
f8cfc6aa 260 && !REG_P (SET_DEST (set)))
15e35479 261 return 0;
15e35479 262
4deef538 263 val = cselib_lookup (src, GET_MODE (SET_DEST (set)), 0, VOIDmode);
b2948a2c
KH
264 if (! val)
265 return 0;
266
15e35479 267 /* If memory loads are cheaper than register copies, don't change them. */
3c0cb5de 268 if (MEM_P (src))
f5c21ef3 269 old_cost = memory_move_cost (GET_MODE (src), dclass, true);
f8cfc6aa 270 else if (REG_P (src))
de8f4b07 271 old_cost = register_move_cost (GET_MODE (src),
15e35479
KH
272 REGNO_REG_CLASS (REGNO (src)), dclass);
273 else
e548c9df 274 old_cost = set_src_cost (src, GET_MODE (SET_DEST (set)), speed);
15e35479 275
15e35479
KH
276 for (l = val->locs; l; l = l->next)
277 {
278 rtx this_rtx = l->loc;
279 int this_cost;
280
281 if (CONSTANT_P (this_rtx) && ! references_value_p (this_rtx, 0))
282 {
f822d252 283 if (extend_op != UNKNOWN)
15e35479 284 {
807e902e 285 wide_int result;
15e35479 286
807e902e 287 if (!CONST_SCALAR_INT_P (this_rtx))
15e35479
KH
288 continue;
289
15e35479
KH
290 switch (extend_op)
291 {
292 case ZERO_EXTEND:
807e902e
KZ
293 result = wide_int::from (std::make_pair (this_rtx,
294 GET_MODE (src)),
295 BITS_PER_WORD, UNSIGNED);
15e35479
KH
296 break;
297 case SIGN_EXTEND:
807e902e
KZ
298 result = wide_int::from (std::make_pair (this_rtx,
299 GET_MODE (src)),
300 BITS_PER_WORD, SIGNED);
301 break;
15e35479 302 default:
e16acfcd 303 gcc_unreachable ();
15e35479 304 }
807e902e 305 this_rtx = immed_wide_int_const (result, word_mode);
15e35479 306 }
f1657f05 307
e548c9df 308 this_cost = set_src_cost (this_rtx, GET_MODE (SET_DEST (set)), speed);
15e35479 309 }
f8cfc6aa 310 else if (REG_P (this_rtx))
15e35479 311 {
f822d252 312 if (extend_op != UNKNOWN)
15e35479
KH
313 {
314 this_rtx = gen_rtx_fmt_e (extend_op, word_mode, this_rtx);
e548c9df 315 this_cost = set_src_cost (this_rtx, word_mode, speed);
15e35479
KH
316 }
317 else
de8f4b07 318 this_cost = register_move_cost (GET_MODE (this_rtx),
15e35479
KH
319 REGNO_REG_CLASS (REGNO (this_rtx)),
320 dclass);
321 }
322 else
323 continue;
324
325 /* If equal costs, prefer registers over anything else. That
326 tends to lead to smaller instructions on some machines. */
327 if (this_cost < old_cost
328 || (this_cost == old_cost
f8cfc6aa
JQ
329 && REG_P (this_rtx)
330 && !REG_P (SET_SRC (set))))
15e35479 331 {
3712c7a3 332 if (extend_op != UNKNOWN
15e35479
KH
333#ifdef CANNOT_CHANGE_MODE_CLASS
334 && !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SET_DEST (set)),
335 word_mode,
336 REGNO_REG_CLASS (REGNO (SET_DEST (set))))
337#endif
338 )
339 {
340 rtx wide_dest = gen_rtx_REG (word_mode, REGNO (SET_DEST (set)));
341 ORIGINAL_REGNO (wide_dest) = ORIGINAL_REGNO (SET_DEST (set));
342 validate_change (insn, &SET_DEST (set), wide_dest, 1);
343 }
15e35479 344
95e88efd 345 validate_unshare_change (insn, &SET_SRC (set), this_rtx, 1);
15e35479
KH
346 old_cost = this_cost, did_change = 1;
347 }
348 }
349
350 return did_change;
351}
352
353/* Try to replace operands in INSN with equivalent values that are already
354 in registers. This can be viewed as optional reloading.
355
356 For each non-register operand in the insn, see if any hard regs are
357 known to be equivalent to that operand. Record the alternatives which
358 can accept these hard registers. Among all alternatives, select the
359 ones which are better or equal to the one currently matching, where
360 "better" is in terms of '?' and '!' constraints. Among the remaining
361 alternatives, select the one which replaces most operands with
362 hard registers. */
363
364static int
f90af2e0 365reload_cse_simplify_operands (rtx_insn *insn, rtx testreg)
15e35479
KH
366{
367 int i, j;
368
369 /* For each operand, all registers that are equivalent to it. */
370 HARD_REG_SET equiv_regs[MAX_RECOG_OPERANDS];
371
372 const char *constraints[MAX_RECOG_OPERANDS];
373
374 /* Vector recording how bad an alternative is. */
375 int *alternative_reject;
376 /* Vector recording how many registers can be introduced by choosing
377 this alternative. */
378 int *alternative_nregs;
379 /* Array of vectors recording, for each operand and each alternative,
380 which hard register to substitute, or -1 if the operand should be
381 left as it is. */
382 int *op_alt_regno[MAX_RECOG_OPERANDS];
383 /* Array of alternatives, sorted in order of decreasing desirability. */
384 int *alternative_order;
385
75d25a02 386 extract_constrain_insn (insn);
15e35479
KH
387
388 if (recog_data.n_alternatives == 0 || recog_data.n_operands == 0)
389 return 0;
390
d3bfe4de
KG
391 alternative_reject = XALLOCAVEC (int, recog_data.n_alternatives);
392 alternative_nregs = XALLOCAVEC (int, recog_data.n_alternatives);
393 alternative_order = XALLOCAVEC (int, recog_data.n_alternatives);
703ad42b
KG
394 memset (alternative_reject, 0, recog_data.n_alternatives * sizeof (int));
395 memset (alternative_nregs, 0, recog_data.n_alternatives * sizeof (int));
15e35479
KH
396
397 /* For each operand, find out which regs are equivalent. */
398 for (i = 0; i < recog_data.n_operands; i++)
399 {
400 cselib_val *v;
401 struct elt_loc_list *l;
115df136 402 rtx op;
15e35479
KH
403
404 CLEAR_HARD_REG_SET (equiv_regs[i]);
405
406 /* cselib blows up on CODE_LABELs. Trying to fix that doesn't seem
407 right, so avoid the problem here. Likewise if we have a constant
408 and the insn pattern doesn't tell us the mode we need. */
4b4bf941 409 if (LABEL_P (recog_data.operand[i])
15e35479
KH
410 || (CONSTANT_P (recog_data.operand[i])
411 && recog_data.operand_mode[i] == VOIDmode))
412 continue;
413
115df136 414 op = recog_data.operand[i];
3712c7a3 415 if (MEM_P (op) && load_extend_op (GET_MODE (op)) != UNKNOWN)
115df136
R
416 {
417 rtx set = single_set (insn);
418
1f52178b 419 /* We might have multiple sets, some of which do implicit
115df136
R
420 extension. Punt on this for now. */
421 if (! set)
422 continue;
1f838355 423 /* If the destination is also a MEM or a STRICT_LOW_PART, no
115df136
R
424 extension applies.
425 Also, if there is an explicit extension, we don't have to
426 worry about an implicit one. */
3c0cb5de 427 else if (MEM_P (SET_DEST (set))
115df136
R
428 || GET_CODE (SET_DEST (set)) == STRICT_LOW_PART
429 || GET_CODE (SET_SRC (set)) == ZERO_EXTEND
430 || GET_CODE (SET_SRC (set)) == SIGN_EXTEND)
431 ; /* Continue ordinary processing. */
7be4d808
R
432#ifdef CANNOT_CHANGE_MODE_CLASS
433 /* If the register cannot change mode to word_mode, it follows that
434 it cannot have been used in word_mode. */
f8cfc6aa 435 else if (REG_P (SET_DEST (set))
7be4d808
R
436 && CANNOT_CHANGE_MODE_CLASS (GET_MODE (SET_DEST (set)),
437 word_mode,
438 REGNO_REG_CLASS (REGNO (SET_DEST (set)))))
439 ; /* Continue ordinary processing. */
440#endif
115df136 441 /* If this is a straight load, make the extension explicit. */
f8cfc6aa 442 else if (REG_P (SET_DEST (set))
115df136
R
443 && recog_data.n_operands == 2
444 && SET_SRC (set) == op
445 && SET_DEST (set) == recog_data.operand[1-i])
446 {
447 validate_change (insn, recog_data.operand_loc[i],
3712c7a3 448 gen_rtx_fmt_e (load_extend_op (GET_MODE (op)),
115df136
R
449 word_mode, op),
450 1);
451 validate_change (insn, recog_data.operand_loc[1-i],
452 gen_rtx_REG (word_mode, REGNO (SET_DEST (set))),
453 1);
454 if (! apply_change_group ())
455 return 0;
456 return reload_cse_simplify_operands (insn, testreg);
457 }
458 else
459 /* ??? There might be arithmetic operations with memory that are
460 safe to optimize, but is it worth the trouble? */
461 continue;
462 }
f1657f05 463
3f82421f
PH
464 if (side_effects_p (op))
465 continue;
4deef538 466 v = cselib_lookup (op, recog_data.operand_mode[i], 0, VOIDmode);
15e35479
KH
467 if (! v)
468 continue;
469
470 for (l = v->locs; l; l = l->next)
f8cfc6aa 471 if (REG_P (l->loc))
15e35479
KH
472 SET_HARD_REG_BIT (equiv_regs[i], REGNO (l->loc));
473 }
474
9840b2fa 475 alternative_mask preferred = get_preferred_alternatives (insn);
15e35479
KH
476 for (i = 0; i < recog_data.n_operands; i++)
477 {
ef4bddc2 478 machine_mode mode;
15e35479
KH
479 int regno;
480 const char *p;
481
d3bfe4de 482 op_alt_regno[i] = XALLOCAVEC (int, recog_data.n_alternatives);
15e35479
KH
483 for (j = 0; j < recog_data.n_alternatives; j++)
484 op_alt_regno[i][j] = -1;
485
486 p = constraints[i] = recog_data.constraints[i];
487 mode = recog_data.operand_mode[i];
488
489 /* Add the reject values for each alternative given by the constraints
490 for this operand. */
491 j = 0;
492 while (*p != '\0')
493 {
494 char c = *p++;
495 if (c == ',')
496 j++;
497 else if (c == '?')
498 alternative_reject[j] += 3;
499 else if (c == '!')
500 alternative_reject[j] += 300;
501 }
502
503 /* We won't change operands which are already registers. We
504 also don't want to modify output operands. */
505 regno = true_regnum (recog_data.operand[i]);
506 if (regno >= 0
507 || constraints[i][0] == '='
508 || constraints[i][0] == '+')
509 continue;
510
511 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
512 {
bbbbb16a 513 enum reg_class rclass = NO_REGS;
15e35479
KH
514
515 if (! TEST_HARD_REG_BIT (equiv_regs[i], regno))
516 continue;
517
8deccbb7 518 set_mode_and_regno (testreg, mode, regno);
15e35479
KH
519
520 /* We found a register equal to this operand. Now look for all
521 alternatives that can accept this register and have not been
522 assigned a register they can use yet. */
523 j = 0;
524 p = constraints[i];
525 for (;;)
526 {
527 char c = *p;
528
529 switch (c)
530 {
8677664e
RS
531 case 'g':
532 rclass = reg_class_subunion[rclass][GENERAL_REGS];
15e35479
KH
533 break;
534
535 default:
d858f359 536 rclass
15e35479 537 = (reg_class_subunion
777e635f
RS
538 [rclass]
539 [reg_class_for_constraint (lookup_constraint (p))]);
15e35479
KH
540 break;
541
542 case ',': case '\0':
543 /* See if REGNO fits this alternative, and set it up as the
544 replacement register if we don't have one for this
545 alternative yet and the operand being replaced is not
546 a cheap CONST_INT. */
547 if (op_alt_regno[i][j] == -1
9840b2fa 548 && TEST_BIT (preferred, j)
d858f359 549 && reg_fits_class_p (testreg, rclass, 0, mode)
481683e1 550 && (!CONST_INT_P (recog_data.operand[i])
e548c9df 551 || (set_src_cost (recog_data.operand[i], mode,
5e8f01f4
RS
552 optimize_bb_for_speed_p
553 (BLOCK_FOR_INSN (insn)))
e548c9df 554 > set_src_cost (testreg, mode,
5e8f01f4
RS
555 optimize_bb_for_speed_p
556 (BLOCK_FOR_INSN (insn))))))
15e35479
KH
557 {
558 alternative_nregs[j]++;
559 op_alt_regno[i][j] = regno;
560 }
561 j++;
bbbbb16a 562 rclass = NO_REGS;
15e35479
KH
563 break;
564 }
565 p += CONSTRAINT_LEN (c, p);
566
567 if (c == '\0')
568 break;
569 }
570 }
571 }
572
573 /* Record all alternatives which are better or equal to the currently
574 matching one in the alternative_order array. */
575 for (i = j = 0; i < recog_data.n_alternatives; i++)
576 if (alternative_reject[i] <= alternative_reject[which_alternative])
577 alternative_order[j++] = i;
578 recog_data.n_alternatives = j;
579
580 /* Sort it. Given a small number of alternatives, a dumb algorithm
581 won't hurt too much. */
582 for (i = 0; i < recog_data.n_alternatives - 1; i++)
583 {
584 int best = i;
585 int best_reject = alternative_reject[alternative_order[i]];
586 int best_nregs = alternative_nregs[alternative_order[i]];
15e35479
KH
587
588 for (j = i + 1; j < recog_data.n_alternatives; j++)
589 {
590 int this_reject = alternative_reject[alternative_order[j]];
591 int this_nregs = alternative_nregs[alternative_order[j]];
592
593 if (this_reject < best_reject
8a4c09c8 594 || (this_reject == best_reject && this_nregs > best_nregs))
15e35479
KH
595 {
596 best = j;
597 best_reject = this_reject;
598 best_nregs = this_nregs;
599 }
600 }
601
fab27f52 602 std::swap (alternative_order[best], alternative_order[i]);
15e35479
KH
603 }
604
605 /* Substitute the operands as determined by op_alt_regno for the best
606 alternative. */
607 j = alternative_order[0];
608
609 for (i = 0; i < recog_data.n_operands; i++)
610 {
ef4bddc2 611 machine_mode mode = recog_data.operand_mode[i];
15e35479
KH
612 if (op_alt_regno[i][j] == -1)
613 continue;
614
615 validate_change (insn, recog_data.operand_loc[i],
616 gen_rtx_REG (mode, op_alt_regno[i][j]), 1);
617 }
618
619 for (i = recog_data.n_dups - 1; i >= 0; i--)
620 {
621 int op = recog_data.dup_num[i];
ef4bddc2 622 machine_mode mode = recog_data.operand_mode[op];
15e35479
KH
623
624 if (op_alt_regno[op][j] == -1)
625 continue;
626
627 validate_change (insn, recog_data.dup_loc[i],
628 gen_rtx_REG (mode, op_alt_regno[op][j]), 1);
629 }
630
631 return apply_change_group ();
632}
633\f
634/* If reload couldn't use reg+reg+offset addressing, try to use reg+reg
635 addressing now.
636 This code might also be useful when reload gave up on reg+reg addressing
637 because of clashes between the return register and INDEX_REG_CLASS. */
638
639/* The maximum number of uses of a register we can keep track of to
640 replace them with reg+reg addressing. */
dc0d5a57 641#define RELOAD_COMBINE_MAX_USES 16
15e35479 642
dc0d5a57
BS
643/* Describes a recorded use of a register. */
644struct reg_use
645{
646 /* The insn where a register has been used. */
f90af2e0 647 rtx_insn *insn;
dc0d5a57
BS
648 /* Points to the memory reference enclosing the use, if any, NULL_RTX
649 otherwise. */
650 rtx containing_mem;
073a8998 651 /* Location of the register within INSN. */
dc0d5a57
BS
652 rtx *usep;
653 /* The reverse uid of the insn. */
654 int ruid;
655};
15e35479
KH
656
657/* If the register is used in some unknown fashion, USE_INDEX is negative.
658 If it is dead, USE_INDEX is RELOAD_COMBINE_MAX_USES, and STORE_RUID
dc0d5a57 659 indicates where it is first set or clobbered.
15e35479 660 Otherwise, USE_INDEX is the index of the last encountered use of the
dc0d5a57
BS
661 register (which is first among these we have seen since we scan backwards).
662 USE_RUID indicates the first encountered, i.e. last, of these uses.
663 If ALL_OFFSETS_MATCH is true, all encountered uses were inside a PLUS
664 with a constant offset; OFFSET contains this constant in that case.
15e35479
KH
665 STORE_RUID is always meaningful if we only want to use a value in a
666 register in a different place: it denotes the next insn in the insn
dc0d5a57
BS
667 stream (i.e. the last encountered) that sets or clobbers the register.
668 REAL_STORE_RUID is similar, but clobbers are ignored when updating it. */
15e35479
KH
669static struct
670 {
671 struct reg_use reg_use[RELOAD_COMBINE_MAX_USES];
15e35479 672 rtx offset;
dc0d5a57 673 int use_index;
15e35479 674 int store_ruid;
dc0d5a57 675 int real_store_ruid;
15e35479 676 int use_ruid;
dc0d5a57 677 bool all_offsets_match;
15e35479
KH
678 } reg_state[FIRST_PSEUDO_REGISTER];
679
680/* Reverse linear uid. This is increased in reload_combine while scanning
681 the instructions from last to first. It is used to set last_label_ruid
682 and the store_ruid / use_ruid fields in reg_state. */
683static int reload_combine_ruid;
684
67bb0206
BS
685/* The RUID of the last label we encountered in reload_combine. */
686static int last_label_ruid;
687
dc0d5a57
BS
688/* The RUID of the last jump we encountered in reload_combine. */
689static int last_jump_ruid;
690
67bb0206
BS
691/* The register numbers of the first and last index register. A value of
692 -1 in LAST_INDEX_REG indicates that we've previously computed these
693 values and found no suitable index registers. */
694static int first_index_reg = -1;
695static int last_index_reg;
696
15e35479
KH
697#define LABEL_LIVE(LABEL) \
698 (label_live[CODE_LABEL_NUMBER (LABEL) - min_labelno])
699
dc0d5a57
BS
700/* Subroutine of reload_combine_split_ruids, called to fix up a single
701 ruid pointed to by *PRUID if it is higher than SPLIT_RUID. */
702
703static inline void
704reload_combine_split_one_ruid (int *pruid, int split_ruid)
705{
706 if (*pruid > split_ruid)
707 (*pruid)++;
708}
709
710/* Called when we insert a new insn in a position we've already passed in
711 the scan. Examine all our state, increasing all ruids that are higher
712 than SPLIT_RUID by one in order to make room for a new insn. */
713
714static void
715reload_combine_split_ruids (int split_ruid)
716{
717 unsigned i;
718
719 reload_combine_split_one_ruid (&reload_combine_ruid, split_ruid);
720 reload_combine_split_one_ruid (&last_label_ruid, split_ruid);
721 reload_combine_split_one_ruid (&last_jump_ruid, split_ruid);
722
723 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
724 {
725 int j, idx = reg_state[i].use_index;
726 reload_combine_split_one_ruid (&reg_state[i].use_ruid, split_ruid);
727 reload_combine_split_one_ruid (&reg_state[i].store_ruid, split_ruid);
728 reload_combine_split_one_ruid (&reg_state[i].real_store_ruid,
729 split_ruid);
730 if (idx < 0)
731 continue;
732 for (j = idx; j < RELOAD_COMBINE_MAX_USES; j++)
733 {
734 reload_combine_split_one_ruid (&reg_state[i].reg_use[j].ruid,
735 split_ruid);
736 }
737 }
738}
739
740/* Called when we are about to rescan a previously encountered insn with
741 reload_combine_note_use after modifying some part of it. This clears all
742 information about uses in that particular insn. */
743
744static void
f90af2e0 745reload_combine_purge_insn_uses (rtx_insn *insn)
dc0d5a57
BS
746{
747 unsigned i;
748
749 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
750 {
751 int j, k, idx = reg_state[i].use_index;
752 if (idx < 0)
753 continue;
754 j = k = RELOAD_COMBINE_MAX_USES;
755 while (j-- > idx)
756 {
757 if (reg_state[i].reg_use[j].insn != insn)
758 {
759 k--;
760 if (k != j)
761 reg_state[i].reg_use[k] = reg_state[i].reg_use[j];
762 }
763 }
764 reg_state[i].use_index = k;
765 }
766}
767
768/* Called when we need to forget about all uses of REGNO after an insn
769 which is identified by RUID. */
770
771static void
772reload_combine_purge_reg_uses_after_ruid (unsigned regno, int ruid)
773{
774 int j, k, idx = reg_state[regno].use_index;
775 if (idx < 0)
776 return;
777 j = k = RELOAD_COMBINE_MAX_USES;
778 while (j-- > idx)
779 {
780 if (reg_state[regno].reg_use[j].ruid >= ruid)
781 {
782 k--;
783 if (k != j)
784 reg_state[regno].reg_use[k] = reg_state[regno].reg_use[j];
785 }
786 }
787 reg_state[regno].use_index = k;
788}
789
790/* Find the use of REGNO with the ruid that is highest among those
791 lower than RUID_LIMIT, and return it if it is the only use of this
08bd6876 792 reg in the insn. Return NULL otherwise. */
dc0d5a57
BS
793
794static struct reg_use *
795reload_combine_closest_single_use (unsigned regno, int ruid_limit)
796{
797 int i, best_ruid = 0;
798 int use_idx = reg_state[regno].use_index;
799 struct reg_use *retval;
800
801 if (use_idx < 0)
802 return NULL;
803 retval = NULL;
804 for (i = use_idx; i < RELOAD_COMBINE_MAX_USES; i++)
805 {
b1d5eee8
BS
806 struct reg_use *use = reg_state[regno].reg_use + i;
807 int this_ruid = use->ruid;
dc0d5a57
BS
808 if (this_ruid >= ruid_limit)
809 continue;
810 if (this_ruid > best_ruid)
811 {
812 best_ruid = this_ruid;
08bd6876 813 retval = use;
dc0d5a57 814 }
08bd6876 815 else if (this_ruid == best_ruid)
dc0d5a57
BS
816 retval = NULL;
817 }
818 if (last_label_ruid >= best_ruid)
819 return NULL;
820 return retval;
821}
822
caa4a250
BS
823/* After we've moved an add insn, fix up any debug insns that occur
824 between the old location of the add and the new location. REG is
825 the destination register of the add insn; REPLACEMENT is the
826 SET_SRC of the add. FROM and TO specify the range in which we
827 should make this change on debug insns. */
b1d5eee8
BS
828
829static void
f90af2e0 830fixup_debug_insns (rtx reg, rtx replacement, rtx_insn *from, rtx_insn *to)
b1d5eee8 831{
f90af2e0 832 rtx_insn *insn;
caa4a250 833 for (insn = from; insn != to; insn = NEXT_INSN (insn))
b1d5eee8
BS
834 {
835 rtx t;
caa4a250
BS
836
837 if (!DEBUG_INSN_P (insn))
b1d5eee8 838 continue;
caa4a250
BS
839
840 t = INSN_VAR_LOCATION_LOC (insn);
08bd6876 841 t = simplify_replace_rtx (t, reg, replacement);
caa4a250 842 validate_change (insn, &INSN_VAR_LOCATION_LOC (insn), t, 0);
b1d5eee8
BS
843 }
844}
845
a78e242c
BS
846/* Subroutine of reload_combine_recognize_const_pattern. Try to replace REG
847 with SRC in the insn described by USE, taking costs into account. Return
848 true if we made the replacement. */
849
850static bool
851try_replace_in_use (struct reg_use *use, rtx reg, rtx src)
852{
f90af2e0 853 rtx_insn *use_insn = use->insn;
a78e242c
BS
854 rtx mem = use->containing_mem;
855 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (use_insn));
856
857 if (mem != NULL_RTX)
858 {
859 addr_space_t as = MEM_ADDR_SPACE (mem);
860 rtx oldaddr = XEXP (mem, 0);
861 rtx newaddr = NULL_RTX;
862 int old_cost = address_cost (oldaddr, GET_MODE (mem), as, speed);
863 int new_cost;
864
865 newaddr = simplify_replace_rtx (oldaddr, reg, src);
866 if (memory_address_addr_space_p (GET_MODE (mem), newaddr, as))
867 {
868 XEXP (mem, 0) = newaddr;
869 new_cost = address_cost (newaddr, GET_MODE (mem), as, speed);
870 XEXP (mem, 0) = oldaddr;
871 if (new_cost <= old_cost
872 && validate_change (use_insn,
873 &XEXP (mem, 0), newaddr, 0))
874 return true;
875 }
876 }
877 else
878 {
879 rtx new_set = single_set (use_insn);
880 if (new_set
881 && REG_P (SET_DEST (new_set))
882 && GET_CODE (SET_SRC (new_set)) == PLUS
883 && REG_P (XEXP (SET_SRC (new_set), 0))
884 && CONSTANT_P (XEXP (SET_SRC (new_set), 1)))
885 {
886 rtx new_src;
e548c9df
AM
887 machine_mode mode = GET_MODE (SET_DEST (new_set));
888 int old_cost = set_src_cost (SET_SRC (new_set), mode, speed);
a78e242c
BS
889
890 gcc_assert (rtx_equal_p (XEXP (SET_SRC (new_set), 0), reg));
891 new_src = simplify_replace_rtx (SET_SRC (new_set), reg, src);
892
e548c9df 893 if (set_src_cost (new_src, mode, speed) <= old_cost
a78e242c
BS
894 && validate_change (use_insn, &SET_SRC (new_set),
895 new_src, 0))
896 return true;
897 }
898 }
899 return false;
900}
901
dc0d5a57
BS
902/* Called by reload_combine when scanning INSN. This function tries to detect
903 patterns where a constant is added to a register, and the result is used
904 in an address.
905 Return true if no further processing is needed on INSN; false if it wasn't
906 recognized and should be handled normally. */
907
908static bool
f90af2e0 909reload_combine_recognize_const_pattern (rtx_insn *insn)
dc0d5a57
BS
910{
911 int from_ruid = reload_combine_ruid;
912 rtx set, pat, reg, src, addreg;
913 unsigned int regno;
914 struct reg_use *use;
915 bool must_move_add;
f90af2e0 916 rtx_insn *add_moved_after_insn = NULL;
dc0d5a57
BS
917 int add_moved_after_ruid = 0;
918 int clobbered_regno = -1;
919
920 set = single_set (insn);
921 if (set == NULL_RTX)
922 return false;
923
924 reg = SET_DEST (set);
925 src = SET_SRC (set);
926 if (!REG_P (reg)
dc8afb70 927 || REG_NREGS (reg) != 1
dc0d5a57
BS
928 || GET_MODE (reg) != Pmode
929 || reg == stack_pointer_rtx)
930 return false;
931
932 regno = REGNO (reg);
933
934 /* We look for a REG1 = REG2 + CONSTANT insn, followed by either
935 uses of REG1 inside an address, or inside another add insn. If
936 possible and profitable, merge the addition into subsequent
937 uses. */
938 if (GET_CODE (src) != PLUS
939 || !REG_P (XEXP (src, 0))
940 || !CONSTANT_P (XEXP (src, 1)))
941 return false;
942
943 addreg = XEXP (src, 0);
944 must_move_add = rtx_equal_p (reg, addreg);
945
946 pat = PATTERN (insn);
947 if (must_move_add && set != pat)
948 {
949 /* We have to be careful when moving the add; apart from the
950 single_set there may also be clobbers. Recognize one special
951 case, that of one clobber alongside the set (likely a clobber
952 of the CC register). */
953 gcc_assert (GET_CODE (PATTERN (insn)) == PARALLEL);
954 if (XVECLEN (pat, 0) != 2 || XVECEXP (pat, 0, 0) != set
955 || GET_CODE (XVECEXP (pat, 0, 1)) != CLOBBER
956 || !REG_P (XEXP (XVECEXP (pat, 0, 1), 0)))
957 return false;
958 clobbered_regno = REGNO (XEXP (XVECEXP (pat, 0, 1), 0));
959 }
960
961 do
962 {
963 use = reload_combine_closest_single_use (regno, from_ruid);
964
965 if (use)
966 /* Start the search for the next use from here. */
967 from_ruid = use->ruid;
968
969 if (use && GET_MODE (*use->usep) == Pmode)
970 {
a78e242c 971 bool delete_add = false;
f90af2e0 972 rtx_insn *use_insn = use->insn;
dc0d5a57 973 int use_ruid = use->ruid;
dc0d5a57
BS
974
975 /* Avoid moving the add insn past a jump. */
b1d5eee8 976 if (must_move_add && use_ruid <= last_jump_ruid)
dc0d5a57
BS
977 break;
978
979 /* If the add clobbers another hard reg in parallel, don't move
980 it past a real set of this hard reg. */
981 if (must_move_add && clobbered_regno >= 0
982 && reg_state[clobbered_regno].real_store_ruid >= use_ruid)
983 break;
984
3b8ff89f 985 /* Do not separate cc0 setter and cc0 user on HAVE_cc0 targets. */
058eb3b0 986 if (HAVE_cc0 && must_move_add && sets_cc0_p (PATTERN (use_insn)))
3b8ff89f 987 break;
3b8ff89f 988
62036819
BS
989 gcc_assert (reg_state[regno].store_ruid <= use_ruid);
990 /* Avoid moving a use of ADDREG past a point where it is stored. */
a78e242c 991 if (reg_state[REGNO (addreg)].store_ruid > use_ruid)
dc0d5a57
BS
992 break;
993
a78e242c
BS
994 /* We also must not move the addition past an insn that sets
995 the same register, unless we can combine two add insns. */
996 if (must_move_add && reg_state[regno].store_ruid == use_ruid)
dc0d5a57 997 {
a78e242c
BS
998 if (use->containing_mem == NULL_RTX)
999 delete_add = true;
1000 else
1001 break;
dc0d5a57 1002 }
dc0d5a57 1003
a78e242c
BS
1004 if (try_replace_in_use (use, reg, src))
1005 {
1006 reload_combine_purge_insn_uses (use_insn);
1007 reload_combine_note_use (&PATTERN (use_insn), use_insn,
1008 use_ruid, NULL_RTX);
dc0d5a57 1009
a78e242c
BS
1010 if (delete_add)
1011 {
1012 fixup_debug_insns (reg, src, insn, use_insn);
1013 delete_insn (insn);
1014 return true;
1015 }
1016 if (must_move_add)
1017 {
1018 add_moved_after_insn = use_insn;
1019 add_moved_after_ruid = use_ruid;
dc0d5a57 1020 }
a78e242c 1021 continue;
dc0d5a57 1022 }
dc0d5a57 1023 }
62036819
BS
1024 /* If we get here, we couldn't handle this use. */
1025 if (must_move_add)
1026 break;
dc0d5a57
BS
1027 }
1028 while (use);
1029
1030 if (!must_move_add || add_moved_after_insn == NULL_RTX)
1031 /* Process the add normally. */
1032 return false;
1033
caa4a250
BS
1034 fixup_debug_insns (reg, src, insn, add_moved_after_insn);
1035
dc0d5a57
BS
1036 reorder_insns (insn, insn, add_moved_after_insn);
1037 reload_combine_purge_reg_uses_after_ruid (regno, add_moved_after_ruid);
1038 reload_combine_split_ruids (add_moved_after_ruid - 1);
1039 reload_combine_note_use (&PATTERN (insn), insn,
1040 add_moved_after_ruid, NULL_RTX);
1041 reg_state[regno].store_ruid = add_moved_after_ruid;
1042
1043 return true;
1044}
1045
67bb0206
BS
1046/* Called by reload_combine when scanning INSN. Try to detect a pattern we
1047 can handle and improve. Return true if no further processing is needed on
1048 INSN; false if it wasn't recognized and should be handled normally. */
1049
1050static bool
f90af2e0 1051reload_combine_recognize_pattern (rtx_insn *insn)
67bb0206
BS
1052{
1053 rtx set, reg, src;
67bb0206 1054
dc0d5a57
BS
1055 set = single_set (insn);
1056 if (set == NULL_RTX)
1057 return false;
1058
1059 reg = SET_DEST (set);
1060 src = SET_SRC (set);
dc8afb70 1061 if (!REG_P (reg) || REG_NREGS (reg) != 1)
dc0d5a57
BS
1062 return false;
1063
201d49e9
BS
1064 unsigned int regno = REGNO (reg);
1065 machine_mode mode = GET_MODE (reg);
1066
1067 if (reg_state[regno].use_index < 0
1068 || reg_state[regno].use_index >= RELOAD_COMBINE_MAX_USES)
1069 return false;
1070
1071 for (int i = reg_state[regno].use_index;
1072 i < RELOAD_COMBINE_MAX_USES; i++)
1073 {
1074 struct reg_use *use = reg_state[regno].reg_use + i;
1075 if (GET_MODE (*use->usep) != mode)
1076 return false;
1077 }
dc0d5a57 1078
67bb0206
BS
1079 /* Look for (set (REGX) (CONST_INT))
1080 (set (REGX) (PLUS (REGX) (REGY)))
1081 ...
1082 ... (MEM (REGX)) ...
1083 and convert it to
1084 (set (REGZ) (CONST_INT))
1085 ...
1086 ... (MEM (PLUS (REGZ) (REGY)))... .
1087
1088 First, check that we have (set (REGX) (PLUS (REGX) (REGY)))
1089 and that we know all uses of REGX before it dies.
1090 Also, explicitly check that REGX != REGY; our life information
1091 does not yet show whether REGY changes in this insn. */
67bb0206
BS
1092
1093 if (GET_CODE (src) == PLUS
dc0d5a57
BS
1094 && reg_state[regno].all_offsets_match
1095 && last_index_reg != -1
67bb0206
BS
1096 && REG_P (XEXP (src, 1))
1097 && rtx_equal_p (XEXP (src, 0), reg)
1098 && !rtx_equal_p (XEXP (src, 1), reg)
1099 && last_label_ruid < reg_state[regno].use_ruid)
1100 {
1101 rtx base = XEXP (src, 1);
f90af2e0 1102 rtx_insn *prev = prev_nonnote_nondebug_insn (insn);
67bb0206
BS
1103 rtx prev_set = prev ? single_set (prev) : NULL_RTX;
1104 rtx index_reg = NULL_RTX;
1105 rtx reg_sum = NULL_RTX;
1106 int i;
1107
1108 /* Now we need to set INDEX_REG to an index register (denoted as
1109 REGZ in the illustration above) and REG_SUM to the expression
1110 register+register that we want to use to substitute uses of REG
1111 (typically in MEMs) with. First check REG and BASE for being
1112 index registers; we can use them even if they are not dead. */
1113 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], regno)
1114 || TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS],
1115 REGNO (base)))
1116 {
1117 index_reg = reg;
1118 reg_sum = src;
1119 }
1120 else
1121 {
1122 /* Otherwise, look for a free index register. Since we have
1123 checked above that neither REG nor BASE are index registers,
1124 if we find anything at all, it will be different from these
1125 two registers. */
1126 for (i = first_index_reg; i <= last_index_reg; i++)
1127 {
1128 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], i)
1129 && reg_state[i].use_index == RELOAD_COMBINE_MAX_USES
1130 && reg_state[i].store_ruid <= reg_state[regno].use_ruid
08bd6876
BS
1131 && (call_used_regs[i] || df_regs_ever_live_p (i))
1132 && (!frame_pointer_needed || i != HARD_FRAME_POINTER_REGNUM)
1133 && !fixed_regs[i] && !global_regs[i]
1134 && hard_regno_nregs[i][GET_MODE (reg)] == 1
1135 && targetm.hard_regno_scratch_ok (i))
67bb0206
BS
1136 {
1137 index_reg = gen_rtx_REG (GET_MODE (reg), i);
1138 reg_sum = gen_rtx_PLUS (GET_MODE (reg), index_reg, base);
1139 break;
1140 }
1141 }
1142 }
1143
1144 /* Check that PREV_SET is indeed (set (REGX) (CONST_INT)) and that
1145 (REGY), i.e. BASE, is not clobbered before the last use we'll
1146 create. */
1147 if (reg_sum
1148 && prev_set
1149 && CONST_INT_P (SET_SRC (prev_set))
1150 && rtx_equal_p (SET_DEST (prev_set), reg)
67bb0206
BS
1151 && (reg_state[REGNO (base)].store_ruid
1152 <= reg_state[regno].use_ruid))
1153 {
1154 /* Change destination register and, if necessary, the constant
1155 value in PREV, the constant loading instruction. */
1156 validate_change (prev, &SET_DEST (prev_set), index_reg, 1);
1157 if (reg_state[regno].offset != const0_rtx)
1158 validate_change (prev,
1159 &SET_SRC (prev_set),
1160 GEN_INT (INTVAL (SET_SRC (prev_set))
1161 + INTVAL (reg_state[regno].offset)),
1162 1);
1163
1164 /* Now for every use of REG that we have recorded, replace REG
1165 with REG_SUM. */
1166 for (i = reg_state[regno].use_index;
1167 i < RELOAD_COMBINE_MAX_USES; i++)
1168 validate_unshare_change (reg_state[regno].reg_use[i].insn,
1169 reg_state[regno].reg_use[i].usep,
1170 /* Each change must have its own
1171 replacement. */
1172 reg_sum, 1);
1173
1174 if (apply_change_group ())
1175 {
caa4a250
BS
1176 struct reg_use *lowest_ruid = NULL;
1177
67bb0206
BS
1178 /* For every new use of REG_SUM, we have to record the use
1179 of BASE therein, i.e. operand 1. */
1180 for (i = reg_state[regno].use_index;
1181 i < RELOAD_COMBINE_MAX_USES; i++)
caa4a250
BS
1182 {
1183 struct reg_use *use = reg_state[regno].reg_use + i;
1184 reload_combine_note_use (&XEXP (*use->usep, 1), use->insn,
1185 use->ruid, use->containing_mem);
1186 if (lowest_ruid == NULL || use->ruid < lowest_ruid->ruid)
1187 lowest_ruid = use;
1188 }
1189
1190 fixup_debug_insns (reg, reg_sum, insn, lowest_ruid->insn);
67bb0206 1191
67bb0206
BS
1192 /* Delete the reg-reg addition. */
1193 delete_insn (insn);
1194
1195 if (reg_state[regno].offset != const0_rtx)
1196 /* Previous REG_EQUIV / REG_EQUAL notes for PREV
1197 are now invalid. */
1198 remove_reg_equal_equiv_notes (prev);
1199
1200 reg_state[regno].use_index = RELOAD_COMBINE_MAX_USES;
67bb0206
BS
1201 return true;
1202 }
1203 }
1204 }
1205 return false;
1206}
1207
15e35479 1208static void
0c20a65f 1209reload_combine (void)
15e35479 1210{
f90af2e0 1211 rtx_insn *insn, *prev;
15e35479
KH
1212 basic_block bb;
1213 unsigned int r;
15e35479
KH
1214 int min_labelno, n_labels;
1215 HARD_REG_SET ever_live_at_start, *label_live;
1216
15e35479
KH
1217 /* To avoid wasting too much time later searching for an index register,
1218 determine the minimum and maximum index register numbers. */
67bb0206
BS
1219 if (INDEX_REG_CLASS == NO_REGS)
1220 last_index_reg = -1;
1221 else if (first_index_reg == -1 && last_index_reg == 0)
1222 {
1223 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1224 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], r))
1225 {
1226 if (first_index_reg == -1)
1227 first_index_reg = r;
1228
1229 last_index_reg = r;
1230 }
1231
1232 /* If no index register is available, we can quit now. Set LAST_INDEX_REG
1233 to -1 so we'll know to quit early the next time we get here. */
1234 if (first_index_reg == -1)
1235 {
1236 last_index_reg = -1;
1237 return;
1238 }
1239 }
15e35479 1240
15e35479
KH
1241 /* Set up LABEL_LIVE and EVER_LIVE_AT_START. The register lifetime
1242 information is a bit fuzzy immediately after reload, but it's
1243 still good enough to determine which registers are live at a jump
1244 destination. */
1245 min_labelno = get_first_label_num ();
1246 n_labels = max_label_num () - min_labelno;
5ed6ace5 1247 label_live = XNEWVEC (HARD_REG_SET, n_labels);
15e35479
KH
1248 CLEAR_HARD_REG_SET (ever_live_at_start);
1249
4f42035e 1250 FOR_EACH_BB_REVERSE_FN (bb, cfun)
15e35479 1251 {
a813c111 1252 insn = BB_HEAD (bb);
4b4bf941 1253 if (LABEL_P (insn))
15e35479
KH
1254 {
1255 HARD_REG_SET live;
89a95777 1256 bitmap live_in = df_get_live_in (bb);
15e35479 1257
89a95777
KZ
1258 REG_SET_TO_HARD_REG_SET (live, live_in);
1259 compute_use_by_pseudos (&live, live_in);
15e35479
KH
1260 COPY_HARD_REG_SET (LABEL_LIVE (insn), live);
1261 IOR_HARD_REG_SET (ever_live_at_start, live);
1262 }
1263 }
1264
1265 /* Initialize last_label_ruid, reload_combine_ruid and reg_state. */
dc0d5a57 1266 last_label_ruid = last_jump_ruid = reload_combine_ruid = 0;
15e35479
KH
1267 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1268 {
dc0d5a57
BS
1269 reg_state[r].store_ruid = 0;
1270 reg_state[r].real_store_ruid = 0;
15e35479
KH
1271 if (fixed_regs[r])
1272 reg_state[r].use_index = -1;
1273 else
1274 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
1275 }
1276
dc0d5a57 1277 for (insn = get_last_insn (); insn; insn = prev)
15e35479 1278 {
7ad93142 1279 bool control_flow_insn;
15e35479
KH
1280 rtx note;
1281
dc0d5a57
BS
1282 prev = PREV_INSN (insn);
1283
15e35479
KH
1284 /* We cannot do our optimization across labels. Invalidating all the use
1285 information we have would be costly, so we just note where the label
1286 is and then later disable any optimization that would cross it. */
4b4bf941 1287 if (LABEL_P (insn))
15e35479 1288 last_label_ruid = reload_combine_ruid;
2195c9be
AK
1289 else if (BARRIER_P (insn))
1290 {
1291 /* Crossing a barrier resets all the use information. */
1292 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1293 if (! fixed_regs[r])
15e35479 1294 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
2195c9be
AK
1295 }
1296 else if (INSN_P (insn) && volatile_insn_p (PATTERN (insn)))
1297 /* Optimizations across insns being marked as volatile must be
1298 prevented. All the usage information is invalidated
1299 here. */
1300 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1301 if (! fixed_regs[r]
1302 && reg_state[r].use_index != RELOAD_COMBINE_MAX_USES)
1303 reg_state[r].use_index = -1;
15e35479 1304
caa4a250 1305 if (! NONDEBUG_INSN_P (insn))
15e35479
KH
1306 continue;
1307
1308 reload_combine_ruid++;
1309
7ad93142
EB
1310 control_flow_insn = control_flow_insn_p (insn);
1311 if (control_flow_insn)
dc0d5a57
BS
1312 last_jump_ruid = reload_combine_ruid;
1313
1314 if (reload_combine_recognize_const_pattern (insn)
1315 || reload_combine_recognize_pattern (insn))
67bb0206 1316 continue;
15e35479
KH
1317
1318 note_stores (PATTERN (insn), reload_combine_note_store, NULL);
1319
4b4bf941 1320 if (CALL_P (insn))
15e35479
KH
1321 {
1322 rtx link;
97ded4cd
TV
1323 HARD_REG_SET used_regs;
1324
1325 get_call_reg_set_usage (insn, &used_regs, call_used_reg_set);
15e35479
KH
1326
1327 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
97ded4cd 1328 if (TEST_HARD_REG_BIT (used_regs, r))
15e35479
KH
1329 {
1330 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
1331 reg_state[r].store_ruid = reload_combine_ruid;
1332 }
1333
1334 for (link = CALL_INSN_FUNCTION_USAGE (insn); link;
1335 link = XEXP (link, 1))
1336 {
e384e6b5
BS
1337 rtx setuse = XEXP (link, 0);
1338 rtx usage_rtx = XEXP (setuse, 0);
1339 if ((GET_CODE (setuse) == USE || GET_CODE (setuse) == CLOBBER)
1340 && REG_P (usage_rtx))
15e35479 1341 {
53d1bae9
RS
1342 unsigned int end_regno = END_REGNO (usage_rtx);
1343 for (unsigned int i = REGNO (usage_rtx); i < end_regno; ++i)
15e35479
KH
1344 if (GET_CODE (XEXP (link, 0)) == CLOBBER)
1345 {
1346 reg_state[i].use_index = RELOAD_COMBINE_MAX_USES;
1347 reg_state[i].store_ruid = reload_combine_ruid;
1348 }
1349 else
1350 reg_state[i].use_index = -1;
1351 }
1352 }
15e35479 1353 }
18c33e03 1354
57895947 1355 if (control_flow_insn && !ANY_RETURN_P (PATTERN (insn)))
15e35479
KH
1356 {
1357 /* Non-spill registers might be used at the call destination in
1358 some unknown fashion, so we have to mark the unknown use. */
1359 HARD_REG_SET *live;
1360
1361 if ((condjump_p (insn) || condjump_in_parallel_p (insn))
1362 && JUMP_LABEL (insn))
57895947
EB
1363 {
1364 if (ANY_RETURN_P (JUMP_LABEL (insn)))
1365 live = NULL;
1366 else
1367 live = &LABEL_LIVE (JUMP_LABEL (insn));
1368 }
15e35479
KH
1369 else
1370 live = &ever_live_at_start;
1371
57895947
EB
1372 if (live)
1373 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1374 if (TEST_HARD_REG_BIT (*live, r))
1375 reg_state[r].use_index = -1;
15e35479
KH
1376 }
1377
7ad93142
EB
1378 reload_combine_note_use (&PATTERN (insn), insn, reload_combine_ruid,
1379 NULL_RTX);
1380
15e35479
KH
1381 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1382 {
7ad93142 1383 if (REG_NOTE_KIND (note) == REG_INC && REG_P (XEXP (note, 0)))
15e35479
KH
1384 {
1385 int regno = REGNO (XEXP (note, 0));
15e35479 1386 reg_state[regno].store_ruid = reload_combine_ruid;
dc0d5a57 1387 reg_state[regno].real_store_ruid = reload_combine_ruid;
15e35479
KH
1388 reg_state[regno].use_index = -1;
1389 }
1390 }
1391 }
1392
1393 free (label_live);
1394}
1395
1396/* Check if DST is a register or a subreg of a register; if it is,
dc0d5a57
BS
1397 update store_ruid, real_store_ruid and use_index in the reg_state
1398 structure accordingly. Called via note_stores from reload_combine. */
15e35479
KH
1399
1400static void
7bc980e1 1401reload_combine_note_store (rtx dst, const_rtx set, void *data ATTRIBUTE_UNUSED)
15e35479
KH
1402{
1403 int regno = 0;
1404 int i;
ef4bddc2 1405 machine_mode mode = GET_MODE (dst);
15e35479
KH
1406
1407 if (GET_CODE (dst) == SUBREG)
1408 {
1409 regno = subreg_regno_offset (REGNO (SUBREG_REG (dst)),
1410 GET_MODE (SUBREG_REG (dst)),
1411 SUBREG_BYTE (dst),
1412 GET_MODE (dst));
1413 dst = SUBREG_REG (dst);
1414 }
12c2b0ad
JL
1415
1416 /* Some targets do argument pushes without adding REG_INC notes. */
1417
1418 if (MEM_P (dst))
1419 {
1420 dst = XEXP (dst, 0);
1421 if (GET_CODE (dst) == PRE_INC || GET_CODE (dst) == POST_INC
96676a5d
JJ
1422 || GET_CODE (dst) == PRE_DEC || GET_CODE (dst) == POST_DEC
1423 || GET_CODE (dst) == PRE_MODIFY || GET_CODE (dst) == POST_MODIFY)
12c2b0ad 1424 {
53d1bae9
RS
1425 unsigned int end_regno = END_REGNO (XEXP (dst, 0));
1426 for (unsigned int i = REGNO (XEXP (dst, 0)); i < end_regno; ++i)
12c2b0ad
JL
1427 {
1428 /* We could probably do better, but for now mark the register
1429 as used in an unknown fashion and set/clobbered at this
1430 insn. */
1431 reg_state[i].use_index = -1;
1432 reg_state[i].store_ruid = reload_combine_ruid;
1433 reg_state[i].real_store_ruid = reload_combine_ruid;
1434 }
1435 }
1436 else
1437 return;
1438 }
1439
f8cfc6aa 1440 if (!REG_P (dst))
15e35479
KH
1441 return;
1442 regno += REGNO (dst);
1443
1444 /* note_stores might have stripped a STRICT_LOW_PART, so we have to be
1445 careful with registers / register parts that are not full words.
46d096a3 1446 Similarly for ZERO_EXTRACT. */
dc0d5a57 1447 if (GET_CODE (SET_DEST (set)) == ZERO_EXTRACT
15e35479
KH
1448 || GET_CODE (SET_DEST (set)) == STRICT_LOW_PART)
1449 {
66fd46b6 1450 for (i = hard_regno_nregs[regno][mode] - 1 + regno; i >= regno; i--)
15e35479
KH
1451 {
1452 reg_state[i].use_index = -1;
1453 reg_state[i].store_ruid = reload_combine_ruid;
dc0d5a57 1454 reg_state[i].real_store_ruid = reload_combine_ruid;
15e35479
KH
1455 }
1456 }
1457 else
1458 {
66fd46b6 1459 for (i = hard_regno_nregs[regno][mode] - 1 + regno; i >= regno; i--)
15e35479
KH
1460 {
1461 reg_state[i].store_ruid = reload_combine_ruid;
dc0d5a57
BS
1462 if (GET_CODE (set) == SET)
1463 reg_state[i].real_store_ruid = reload_combine_ruid;
15e35479
KH
1464 reg_state[i].use_index = RELOAD_COMBINE_MAX_USES;
1465 }
1466 }
1467}
1468
1469/* XP points to a piece of rtl that has to be checked for any uses of
1470 registers.
1471 *XP is the pattern of INSN, or a part of it.
1472 Called from reload_combine, and recursively by itself. */
1473static void
f90af2e0 1474reload_combine_note_use (rtx *xp, rtx_insn *insn, int ruid, rtx containing_mem)
15e35479
KH
1475{
1476 rtx x = *xp;
1477 enum rtx_code code = x->code;
1478 const char *fmt;
1479 int i, j;
1480 rtx offset = const0_rtx; /* For the REG case below. */
1481
1482 switch (code)
1483 {
1484 case SET:
f8cfc6aa 1485 if (REG_P (SET_DEST (x)))
15e35479 1486 {
dc0d5a57 1487 reload_combine_note_use (&SET_SRC (x), insn, ruid, NULL_RTX);
15e35479
KH
1488 return;
1489 }
1490 break;
1491
1492 case USE:
1493 /* If this is the USE of a return value, we can't change it. */
f8cfc6aa 1494 if (REG_P (XEXP (x, 0)) && REG_FUNCTION_VALUE_P (XEXP (x, 0)))
15e35479 1495 {
53d1bae9 1496 /* Mark the return register as used in an unknown fashion. */
15e35479 1497 rtx reg = XEXP (x, 0);
53d1bae9
RS
1498 unsigned int end_regno = END_REGNO (reg);
1499 for (unsigned int regno = REGNO (reg); regno < end_regno; ++regno)
1500 reg_state[regno].use_index = -1;
15e35479
KH
1501 return;
1502 }
1503 break;
1504
1505 case CLOBBER:
f8cfc6aa 1506 if (REG_P (SET_DEST (x)))
15e35479
KH
1507 {
1508 /* No spurious CLOBBERs of pseudo registers may remain. */
e16acfcd 1509 gcc_assert (REGNO (SET_DEST (x)) < FIRST_PSEUDO_REGISTER);
15e35479
KH
1510 return;
1511 }
1512 break;
1513
1514 case PLUS:
1515 /* We are interested in (plus (reg) (const_int)) . */
f8cfc6aa 1516 if (!REG_P (XEXP (x, 0))
481683e1 1517 || !CONST_INT_P (XEXP (x, 1)))
15e35479
KH
1518 break;
1519 offset = XEXP (x, 1);
1520 x = XEXP (x, 0);
1521 /* Fall through. */
1522 case REG:
1523 {
1524 int regno = REGNO (x);
1525 int use_index;
1526 int nregs;
1527
1528 /* No spurious USEs of pseudo registers may remain. */
e16acfcd 1529 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
15e35479 1530
dc8afb70 1531 nregs = REG_NREGS (x);
15e35479
KH
1532
1533 /* We can't substitute into multi-hard-reg uses. */
1534 if (nregs > 1)
1535 {
1536 while (--nregs >= 0)
1537 reg_state[regno + nregs].use_index = -1;
1538 return;
1539 }
1540
08bd6876
BS
1541 /* We may be called to update uses in previously seen insns.
1542 Don't add uses beyond the last store we saw. */
1543 if (ruid < reg_state[regno].store_ruid)
1544 return;
1545
15e35479
KH
1546 /* If this register is already used in some unknown fashion, we
1547 can't do anything.
1548 If we decrement the index from zero to -1, we can't store more
1549 uses, so this register becomes used in an unknown fashion. */
1550 use_index = --reg_state[regno].use_index;
1551 if (use_index < 0)
1552 return;
1553
dc0d5a57 1554 if (use_index == RELOAD_COMBINE_MAX_USES - 1)
15e35479
KH
1555 {
1556 /* This is the first use of this register we have seen since we
1557 marked it as dead. */
1558 reg_state[regno].offset = offset;
dc0d5a57
BS
1559 reg_state[regno].all_offsets_match = true;
1560 reg_state[regno].use_ruid = ruid;
15e35479 1561 }
b1d5eee8
BS
1562 else
1563 {
1564 if (reg_state[regno].use_ruid > ruid)
1565 reg_state[regno].use_ruid = ruid;
1566
1567 if (! rtx_equal_p (offset, reg_state[regno].offset))
1568 reg_state[regno].all_offsets_match = false;
1569 }
dc0d5a57 1570
15e35479 1571 reg_state[regno].reg_use[use_index].insn = insn;
dc0d5a57
BS
1572 reg_state[regno].reg_use[use_index].ruid = ruid;
1573 reg_state[regno].reg_use[use_index].containing_mem = containing_mem;
15e35479
KH
1574 reg_state[regno].reg_use[use_index].usep = xp;
1575 return;
1576 }
1577
dc0d5a57
BS
1578 case MEM:
1579 containing_mem = x;
1580 break;
1581
15e35479
KH
1582 default:
1583 break;
1584 }
1585
1586 /* Recursively process the components of X. */
1587 fmt = GET_RTX_FORMAT (code);
1588 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1589 {
1590 if (fmt[i] == 'e')
dc0d5a57 1591 reload_combine_note_use (&XEXP (x, i), insn, ruid, containing_mem);
15e35479
KH
1592 else if (fmt[i] == 'E')
1593 {
1594 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
dc0d5a57
BS
1595 reload_combine_note_use (&XVECEXP (x, i, j), insn, ruid,
1596 containing_mem);
15e35479
KH
1597 }
1598 }
1599}
1600\f
1601/* See if we can reduce the cost of a constant by replacing a move
1602 with an add. We track situations in which a register is set to a
1603 constant or to a register plus a constant. */
1604/* We cannot do our optimization across labels. Invalidating all the
1605 information about register contents we have would be costly, so we
1606 use move2add_last_label_luid to note where the label is and then
1607 later disable any optimization that would cross it.
7beb0596
JZ
1608 reg_offset[n] / reg_base_reg[n] / reg_symbol_ref[n] / reg_mode[n]
1609 are only valid if reg_set_luid[n] is greater than
7894bc6b
JR
1610 move2add_last_label_luid.
1611 For a set that established a new (potential) base register with
1612 non-constant value, we use move2add_luid from the place where the
1613 setting insn is encountered; registers based off that base then
1614 get the same reg_set_luid. Constants all get
1615 move2add_last_label_luid + 1 as their reg_set_luid. */
15e35479
KH
1616static int reg_set_luid[FIRST_PSEUDO_REGISTER];
1617
1618/* If reg_base_reg[n] is negative, register n has been set to
7beb0596 1619 reg_offset[n] or reg_symbol_ref[n] + reg_offset[n] in mode reg_mode[n].
15e35479
KH
1620 If reg_base_reg[n] is non-negative, register n has been set to the
1621 sum of reg_offset[n] and the value of register reg_base_reg[n]
7894bc6b
JR
1622 before reg_set_luid[n], calculated in mode reg_mode[n] .
1623 For multi-hard-register registers, all but the first one are
1624 recorded as BLKmode in reg_mode. Setting reg_mode to VOIDmode
1625 marks it as invalid. */
15e35479
KH
1626static HOST_WIDE_INT reg_offset[FIRST_PSEUDO_REGISTER];
1627static int reg_base_reg[FIRST_PSEUDO_REGISTER];
7beb0596 1628static rtx reg_symbol_ref[FIRST_PSEUDO_REGISTER];
ef4bddc2 1629static machine_mode reg_mode[FIRST_PSEUDO_REGISTER];
15e35479
KH
1630
1631/* move2add_luid is linearly increased while scanning the instructions
1632 from first to last. It is used to set reg_set_luid in
1633 reload_cse_move2add and move2add_note_store. */
1634static int move2add_luid;
1635
1636/* move2add_last_label_luid is set whenever a label is found. Labels
1637 invalidate all previously collected reg_offset data. */
1638static int move2add_last_label_luid;
1639
1640/* ??? We don't know how zero / sign extension is handled, hence we
1641 can't go from a narrower to a wider mode. */
1642#define MODES_OK_FOR_MOVE2ADD(OUTMODE, INMODE) \
1643 (GET_MODE_SIZE (OUTMODE) == GET_MODE_SIZE (INMODE) \
1644 || (GET_MODE_SIZE (OUTMODE) <= GET_MODE_SIZE (INMODE) \
d0edd768 1645 && TRULY_NOOP_TRUNCATION_MODES_P (OUTMODE, INMODE)))
15e35479 1646
7894bc6b
JR
1647/* Record that REG is being set to a value with the mode of REG. */
1648
1649static void
1650move2add_record_mode (rtx reg)
1651{
1652 int regno, nregs;
ef4bddc2 1653 machine_mode mode = GET_MODE (reg);
7894bc6b
JR
1654
1655 if (GET_CODE (reg) == SUBREG)
1656 {
1657 regno = subreg_regno (reg);
1658 nregs = subreg_nregs (reg);
1659 }
1660 else if (REG_P (reg))
1661 {
1662 regno = REGNO (reg);
dc8afb70 1663 nregs = REG_NREGS (reg);
7894bc6b
JR
1664 }
1665 else
1666 gcc_unreachable ();
1667 for (int i = nregs - 1; i > 0; i--)
1668 reg_mode[regno + i] = BLKmode;
1669 reg_mode[regno] = mode;
1670}
1671
1672/* Record that REG is being set to the sum of SYM and OFF. */
1673
1674static void
1675move2add_record_sym_value (rtx reg, rtx sym, rtx off)
1676{
1677 int regno = REGNO (reg);
1678
1679 move2add_record_mode (reg);
1680 reg_set_luid[regno] = move2add_luid;
1681 reg_base_reg[regno] = -1;
1682 reg_symbol_ref[regno] = sym;
1683 reg_offset[regno] = INTVAL (off);
1684}
1685
1686/* Check if REGNO contains a valid value in MODE. */
1687
1688static bool
ef4bddc2 1689move2add_valid_value_p (int regno, machine_mode mode)
7894bc6b 1690{
ca035367 1691 if (reg_set_luid[regno] <= move2add_last_label_luid)
7894bc6b
JR
1692 return false;
1693
ca035367
JR
1694 if (mode != reg_mode[regno])
1695 {
1696 if (!MODES_OK_FOR_MOVE2ADD (mode, reg_mode[regno]))
1697 return false;
1698 /* The value loaded into regno in reg_mode[regno] is also valid in
1699 mode after truncation only if (REG:mode regno) is the lowpart of
1700 (REG:reg_mode[regno] regno). Now, for big endian, the starting
1701 regno of the lowpart might be different. */
1702 int s_off = subreg_lowpart_offset (mode, reg_mode[regno]);
1703 s_off = subreg_regno_offset (regno, reg_mode[regno], s_off, mode);
1704 if (s_off != 0)
1705 /* We could in principle adjust regno, check reg_mode[regno] to be
1706 BLKmode, and return s_off to the caller (vs. -1 for failure),
1707 but we currently have no callers that could make use of this
1708 information. */
1709 return false;
1710 }
1711
7894bc6b
JR
1712 for (int i = hard_regno_nregs[regno][mode] - 1; i > 0; i--)
1713 if (reg_mode[regno + i] != BLKmode)
1714 return false;
1715 return true;
1716}
1717
7beb0596
JZ
1718/* This function is called with INSN that sets REG to (SYM + OFF),
1719 while REG is known to already have value (SYM + offset).
1720 This function tries to change INSN into an add instruction
1721 (set (REG) (plus (REG) (OFF - offset))) using the known value.
dc0d5a57
BS
1722 It also updates the information about REG's known value.
1723 Return true if we made a change. */
7beb0596 1724
dc0d5a57 1725static bool
f90af2e0 1726move2add_use_add2_insn (rtx reg, rtx sym, rtx off, rtx_insn *insn)
7beb0596
JZ
1727{
1728 rtx pat = PATTERN (insn);
1729 rtx src = SET_SRC (pat);
1730 int regno = REGNO (reg);
e15eb172 1731 rtx new_src = gen_int_mode (UINTVAL (off) - reg_offset[regno],
7beb0596
JZ
1732 GET_MODE (reg));
1733 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
dc0d5a57 1734 bool changed = false;
7beb0596
JZ
1735
1736 /* (set (reg) (plus (reg) (const_int 0))) is not canonical;
1737 use (set (reg) (reg)) instead.
1738 We don't delete this insn, nor do we convert it into a
1739 note, to avoid losing register notes or the return
1740 value flag. jump2 already knows how to get rid of
1741 no-op moves. */
1742 if (new_src == const0_rtx)
1743 {
1744 /* If the constants are different, this is a
1745 truncation, that, if turned into (set (reg)
1746 (reg)), would be discarded. Maybe we should
1747 try a truncMN pattern? */
1748 if (INTVAL (off) == reg_offset [regno])
dc0d5a57 1749 changed = validate_change (insn, &SET_SRC (pat), reg, 0);
7beb0596 1750 }
22939744 1751 else
7beb0596 1752 {
22939744 1753 struct full_rtx_costs oldcst, newcst;
7beb0596 1754 rtx tem = gen_rtx_PLUS (GET_MODE (reg), reg, new_src);
22939744 1755
d51102f3 1756 get_full_set_rtx_cost (pat, &oldcst);
22939744 1757 SET_SRC (pat) = tem;
d51102f3 1758 get_full_set_rtx_cost (pat, &newcst);
22939744
BS
1759 SET_SRC (pat) = src;
1760
1761 if (costs_lt_p (&newcst, &oldcst, speed)
1762 && have_add2_insn (reg, new_src))
1763 changed = validate_change (insn, &SET_SRC (pat), tem, 0);
1764 else if (sym == NULL_RTX && GET_MODE (reg) != BImode)
7beb0596 1765 {
ef4bddc2 1766 machine_mode narrow_mode;
22939744
BS
1767 for (narrow_mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1768 narrow_mode != VOIDmode
1769 && narrow_mode != GET_MODE (reg);
1770 narrow_mode = GET_MODE_WIDER_MODE (narrow_mode))
7beb0596 1771 {
22939744
BS
1772 if (have_insn_for (STRICT_LOW_PART, narrow_mode)
1773 && ((reg_offset[regno] & ~GET_MODE_MASK (narrow_mode))
1774 == (INTVAL (off) & ~GET_MODE_MASK (narrow_mode))))
1775 {
b49eefa5 1776 rtx narrow_reg = gen_lowpart_common (narrow_mode, reg);
22939744
BS
1777 rtx narrow_src = gen_int_mode (INTVAL (off),
1778 narrow_mode);
1779 rtx new_set
f7df4a84 1780 = gen_rtx_SET (gen_rtx_STRICT_LOW_PART (VOIDmode,
22939744
BS
1781 narrow_reg),
1782 narrow_src);
a0f37b26
AS
1783 get_full_set_rtx_cost (new_set, &newcst);
1784 if (costs_lt_p (&newcst, &oldcst, speed))
1785 {
1786 changed = validate_change (insn, &PATTERN (insn),
1787 new_set, 0);
1788 if (changed)
1789 break;
1790 }
22939744 1791 }
7beb0596
JZ
1792 }
1793 }
1794 }
7894bc6b 1795 move2add_record_sym_value (reg, sym, off);
dc0d5a57 1796 return changed;
7beb0596
JZ
1797}
1798
1799
1800/* This function is called with INSN that sets REG to (SYM + OFF),
1801 but REG doesn't have known value (SYM + offset). This function
1802 tries to find another register which is known to already have
1803 value (SYM + offset) and change INSN into an add instruction
1804 (set (REG) (plus (the found register) (OFF - offset))) if such
1805 a register is found. It also updates the information about
dc0d5a57
BS
1806 REG's known value.
1807 Return true iff we made a change. */
7beb0596 1808
dc0d5a57 1809static bool
f90af2e0 1810move2add_use_add3_insn (rtx reg, rtx sym, rtx off, rtx_insn *insn)
7beb0596
JZ
1811{
1812 rtx pat = PATTERN (insn);
1813 rtx src = SET_SRC (pat);
1814 int regno = REGNO (reg);
5676e87d 1815 int min_regno = 0;
7beb0596
JZ
1816 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
1817 int i;
dc0d5a57 1818 bool changed = false;
22939744
BS
1819 struct full_rtx_costs oldcst, newcst, mincst;
1820 rtx plus_expr;
1821
1822 init_costs_to_max (&mincst);
d51102f3 1823 get_full_set_rtx_cost (pat, &oldcst);
22939744
BS
1824
1825 plus_expr = gen_rtx_PLUS (GET_MODE (reg), reg, const0_rtx);
1826 SET_SRC (pat) = plus_expr;
7beb0596
JZ
1827
1828 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
7894bc6b 1829 if (move2add_valid_value_p (i, GET_MODE (reg))
7beb0596
JZ
1830 && reg_base_reg[i] < 0
1831 && reg_symbol_ref[i] != NULL_RTX
1832 && rtx_equal_p (sym, reg_symbol_ref[i]))
1833 {
e15eb172 1834 rtx new_src = gen_int_mode (UINTVAL (off) - reg_offset[i],
7beb0596
JZ
1835 GET_MODE (reg));
1836 /* (set (reg) (plus (reg) (const_int 0))) is not canonical;
1837 use (set (reg) (reg)) instead.
1838 We don't delete this insn, nor do we convert it into a
1839 note, to avoid losing register notes or the return
1840 value flag. jump2 already knows how to get rid of
1841 no-op moves. */
1842 if (new_src == const0_rtx)
1843 {
22939744 1844 init_costs_to_zero (&mincst);
7beb0596
JZ
1845 min_regno = i;
1846 break;
1847 }
1848 else
1849 {
22939744 1850 XEXP (plus_expr, 1) = new_src;
d51102f3 1851 get_full_set_rtx_cost (pat, &newcst);
22939744
BS
1852
1853 if (costs_lt_p (&newcst, &mincst, speed))
7beb0596 1854 {
22939744 1855 mincst = newcst;
7beb0596
JZ
1856 min_regno = i;
1857 }
1858 }
1859 }
22939744 1860 SET_SRC (pat) = src;
7beb0596 1861
22939744 1862 if (costs_lt_p (&mincst, &oldcst, speed))
7beb0596
JZ
1863 {
1864 rtx tem;
1865
1866 tem = gen_rtx_REG (GET_MODE (reg), min_regno);
1867 if (i != min_regno)
1868 {
e15eb172 1869 rtx new_src = gen_int_mode (UINTVAL (off) - reg_offset[min_regno],
7beb0596
JZ
1870 GET_MODE (reg));
1871 tem = gen_rtx_PLUS (GET_MODE (reg), tem, new_src);
1872 }
dc0d5a57
BS
1873 if (validate_change (insn, &SET_SRC (pat), tem, 0))
1874 changed = true;
7beb0596
JZ
1875 }
1876 reg_set_luid[regno] = move2add_luid;
7894bc6b 1877 move2add_record_sym_value (reg, sym, off);
dc0d5a57 1878 return changed;
7beb0596
JZ
1879}
1880
dc0d5a57
BS
1881/* Convert move insns with constant inputs to additions if they are cheaper.
1882 Return true if any changes were made. */
1883static bool
f90af2e0 1884reload_cse_move2add (rtx_insn *first)
15e35479
KH
1885{
1886 int i;
f90af2e0 1887 rtx_insn *insn;
dc0d5a57 1888 bool changed = false;
15e35479
KH
1889
1890 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
7beb0596
JZ
1891 {
1892 reg_set_luid[i] = 0;
1893 reg_offset[i] = 0;
1894 reg_base_reg[i] = 0;
1895 reg_symbol_ref[i] = NULL_RTX;
1896 reg_mode[i] = VOIDmode;
1897 }
15e35479
KH
1898
1899 move2add_last_label_luid = 0;
1900 move2add_luid = 2;
1901 for (insn = first; insn; insn = NEXT_INSN (insn), move2add_luid++)
1902 {
1903 rtx pat, note;
1904
4b4bf941 1905 if (LABEL_P (insn))
15e35479
KH
1906 {
1907 move2add_last_label_luid = move2add_luid;
1908 /* We're going to increment move2add_luid twice after a
1909 label, so that we can use move2add_last_label_luid + 1 as
1910 the luid for constants. */
1911 move2add_luid++;
1912 continue;
1913 }
1914 if (! INSN_P (insn))
1915 continue;
1916 pat = PATTERN (insn);
1917 /* For simplicity, we only perform this optimization on
1918 straightforward SETs. */
1919 if (GET_CODE (pat) == SET
f8cfc6aa 1920 && REG_P (SET_DEST (pat)))
15e35479
KH
1921 {
1922 rtx reg = SET_DEST (pat);
1923 int regno = REGNO (reg);
1924 rtx src = SET_SRC (pat);
1925
1926 /* Check if we have valid information on the contents of this
1927 register in the mode of REG. */
7894bc6b 1928 if (move2add_valid_value_p (regno, GET_MODE (reg))
6fb5fa3c 1929 && dbg_cnt (cse2_move2add))
15e35479
KH
1930 {
1931 /* Try to transform (set (REGX) (CONST_INT A))
1932 ...
1933 (set (REGX) (CONST_INT B))
1934 to
1935 (set (REGX) (CONST_INT A))
1936 ...
1937 (set (REGX) (plus (REGX) (CONST_INT B-A)))
1938 or
1939 (set (REGX) (CONST_INT A))
1940 ...
1941 (set (STRICT_LOW_PART (REGX)) (CONST_INT B))
1942 */
1943
7beb0596
JZ
1944 if (CONST_INT_P (src)
1945 && reg_base_reg[regno] < 0
1946 && reg_symbol_ref[regno] == NULL_RTX)
15e35479 1947 {
dc0d5a57 1948 changed |= move2add_use_add2_insn (reg, NULL_RTX, src, insn);
15e35479
KH
1949 continue;
1950 }
1951
1952 /* Try to transform (set (REGX) (REGY))
1953 (set (REGX) (PLUS (REGX) (CONST_INT A)))
1954 ...
1955 (set (REGX) (REGY))
1956 (set (REGX) (PLUS (REGX) (CONST_INT B)))
1957 to
1958 (set (REGX) (REGY))
1959 (set (REGX) (PLUS (REGX) (CONST_INT A)))
1960 ...
1961 (set (REGX) (plus (REGX) (CONST_INT B-A))) */
f8cfc6aa 1962 else if (REG_P (src)
15e35479
KH
1963 && reg_set_luid[regno] == reg_set_luid[REGNO (src)]
1964 && reg_base_reg[regno] == reg_base_reg[REGNO (src)]
7894bc6b 1965 && move2add_valid_value_p (REGNO (src), GET_MODE (reg)))
15e35479 1966 {
f90af2e0 1967 rtx_insn *next = next_nonnote_nondebug_insn (insn);
15e35479
KH
1968 rtx set = NULL_RTX;
1969 if (next)
1970 set = single_set (next);
1971 if (set
1972 && SET_DEST (set) == reg
1973 && GET_CODE (SET_SRC (set)) == PLUS
1974 && XEXP (SET_SRC (set), 0) == reg
481683e1 1975 && CONST_INT_P (XEXP (SET_SRC (set), 1)))
15e35479
KH
1976 {
1977 rtx src3 = XEXP (SET_SRC (set), 1);
e15eb172 1978 unsigned HOST_WIDE_INT added_offset = UINTVAL (src3);
15e35479
KH
1979 HOST_WIDE_INT base_offset = reg_offset[REGNO (src)];
1980 HOST_WIDE_INT regno_offset = reg_offset[regno];
1981 rtx new_src =
bb80db7b
KH
1982 gen_int_mode (added_offset
1983 + base_offset
1984 - regno_offset,
1985 GET_MODE (reg));
f40751dd
JH
1986 bool success = false;
1987 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
15e35479
KH
1988
1989 if (new_src == const0_rtx)
1990 /* See above why we create (set (reg) (reg)) here. */
1991 success
1992 = validate_change (next, &SET_SRC (set), reg, 0);
22939744 1993 else
15e35479 1994 {
22939744
BS
1995 rtx old_src = SET_SRC (set);
1996 struct full_rtx_costs oldcst, newcst;
1997 rtx tem = gen_rtx_PLUS (GET_MODE (reg), reg, new_src);
1998
d51102f3 1999 get_full_set_rtx_cost (set, &oldcst);
22939744 2000 SET_SRC (set) = tem;
e548c9df 2001 get_full_set_src_cost (tem, GET_MODE (reg), &newcst);
22939744
BS
2002 SET_SRC (set) = old_src;
2003 costs_add_n_insns (&oldcst, 1);
2004
2005 if (costs_lt_p (&newcst, &oldcst, speed)
2006 && have_add2_insn (reg, new_src))
2007 {
f7df4a84 2008 rtx newpat = gen_rtx_SET (reg, tem);
22939744
BS
2009 success
2010 = validate_change (next, &PATTERN (next),
2011 newpat, 0);
2012 }
15e35479
KH
2013 }
2014 if (success)
2015 delete_insn (insn);
dc0d5a57 2016 changed |= success;
15e35479 2017 insn = next;
7894bc6b
JR
2018 move2add_record_mode (reg);
2019 reg_offset[regno]
2020 = trunc_int_for_mode (added_offset + base_offset,
2021 GET_MODE (reg));
15e35479
KH
2022 continue;
2023 }
2024 }
2025 }
7beb0596
JZ
2026
2027 /* Try to transform
2028 (set (REGX) (CONST (PLUS (SYMBOL_REF) (CONST_INT A))))
2029 ...
2030 (set (REGY) (CONST (PLUS (SYMBOL_REF) (CONST_INT B))))
2031 to
2032 (set (REGX) (CONST (PLUS (SYMBOL_REF) (CONST_INT A))))
2033 ...
2034 (set (REGY) (CONST (PLUS (REGX) (CONST_INT B-A)))) */
2035 if ((GET_CODE (src) == SYMBOL_REF
2036 || (GET_CODE (src) == CONST
2037 && GET_CODE (XEXP (src, 0)) == PLUS
2038 && GET_CODE (XEXP (XEXP (src, 0), 0)) == SYMBOL_REF
2039 && CONST_INT_P (XEXP (XEXP (src, 0), 1))))
2040 && dbg_cnt (cse2_move2add))
2041 {
2042 rtx sym, off;
2043
2044 if (GET_CODE (src) == SYMBOL_REF)
2045 {
2046 sym = src;
2047 off = const0_rtx;
2048 }
2049 else
2050 {
2051 sym = XEXP (XEXP (src, 0), 0);
2052 off = XEXP (XEXP (src, 0), 1);
2053 }
2054
2055 /* If the reg already contains the value which is sum of
2056 sym and some constant value, we can use an add2 insn. */
7894bc6b 2057 if (move2add_valid_value_p (regno, GET_MODE (reg))
7beb0596
JZ
2058 && reg_base_reg[regno] < 0
2059 && reg_symbol_ref[regno] != NULL_RTX
2060 && rtx_equal_p (sym, reg_symbol_ref[regno]))
dc0d5a57 2061 changed |= move2add_use_add2_insn (reg, sym, off, insn);
7beb0596
JZ
2062
2063 /* Otherwise, we have to find a register whose value is sum
2064 of sym and some constant value. */
2065 else
dc0d5a57 2066 changed |= move2add_use_add3_insn (reg, sym, off, insn);
7beb0596
JZ
2067
2068 continue;
2069 }
15e35479
KH
2070 }
2071
2072 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2073 {
2074 if (REG_NOTE_KIND (note) == REG_INC
f8cfc6aa 2075 && REG_P (XEXP (note, 0)))
15e35479
KH
2076 {
2077 /* Reset the information about this register. */
2078 int regno = REGNO (XEXP (note, 0));
2079 if (regno < FIRST_PSEUDO_REGISTER)
7894bc6b
JR
2080 {
2081 move2add_record_mode (XEXP (note, 0));
2082 reg_mode[regno] = VOIDmode;
2083 }
15e35479
KH
2084 }
2085 }
7beb0596 2086 note_stores (PATTERN (insn), move2add_note_store, insn);
15e35479
KH
2087
2088 /* If INSN is a conditional branch, we try to extract an
2089 implicit set out of it. */
c4cdb8e1 2090 if (any_condjump_p (insn))
15e35479
KH
2091 {
2092 rtx cnd = fis_get_condition (insn);
2093
2094 if (cnd != NULL_RTX
2095 && GET_CODE (cnd) == NE
f8cfc6aa 2096 && REG_P (XEXP (cnd, 0))
c4cdb8e1 2097 && !reg_set_p (XEXP (cnd, 0), insn)
15e35479
KH
2098 /* The following two checks, which are also in
2099 move2add_note_store, are intended to reduce the
2100 number of calls to gen_rtx_SET to avoid memory
2101 allocation if possible. */
2102 && SCALAR_INT_MODE_P (GET_MODE (XEXP (cnd, 0)))
dc8afb70 2103 && REG_NREGS (XEXP (cnd, 0)) == 1
481683e1 2104 && CONST_INT_P (XEXP (cnd, 1)))
15e35479
KH
2105 {
2106 rtx implicit_set =
f7df4a84 2107 gen_rtx_SET (XEXP (cnd, 0), XEXP (cnd, 1));
7beb0596 2108 move2add_note_store (SET_DEST (implicit_set), implicit_set, insn);
15e35479
KH
2109 }
2110 }
2111
2112 /* If this is a CALL_INSN, all call used registers are stored with
2113 unknown values. */
4b4bf941 2114 if (CALL_P (insn))
15e35479 2115 {
7a708f68
UB
2116 rtx link;
2117
15e35479
KH
2118 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
2119 {
2120 if (call_used_regs[i])
2121 /* Reset the information about this register. */
7894bc6b 2122 reg_mode[i] = VOIDmode;
15e35479 2123 }
7a708f68
UB
2124
2125 for (link = CALL_INSN_FUNCTION_USAGE (insn); link;
2126 link = XEXP (link, 1))
2127 {
2128 rtx setuse = XEXP (link, 0);
2129 rtx usage_rtx = XEXP (setuse, 0);
2130 if (GET_CODE (setuse) == CLOBBER
2131 && REG_P (usage_rtx))
2132 {
2133 unsigned int end_regno = END_REGNO (usage_rtx);
2134 for (unsigned int r = REGNO (usage_rtx); r < end_regno; ++r)
2135 /* Reset the information about this register. */
2136 reg_mode[r] = VOIDmode;
2137 }
2138 }
15e35479
KH
2139 }
2140 }
dc0d5a57 2141 return changed;
15e35479
KH
2142}
2143
7beb0596
JZ
2144/* SET is a SET or CLOBBER that sets DST. DATA is the insn which
2145 contains SET.
15e35479
KH
2146 Update reg_set_luid, reg_offset and reg_base_reg accordingly.
2147 Called from reload_cse_move2add via note_stores. */
2148
2149static void
7beb0596 2150move2add_note_store (rtx dst, const_rtx set, void *data)
15e35479 2151{
f90af2e0 2152 rtx_insn *insn = (rtx_insn *) data;
15e35479 2153 unsigned int regno = 0;
ef4bddc2 2154 machine_mode mode = GET_MODE (dst);
15e35479 2155
15e35479
KH
2156 /* Some targets do argument pushes without adding REG_INC notes. */
2157
3c0cb5de 2158 if (MEM_P (dst))
15e35479
KH
2159 {
2160 dst = XEXP (dst, 0);
2161 if (GET_CODE (dst) == PRE_INC || GET_CODE (dst) == POST_INC
2162 || GET_CODE (dst) == PRE_DEC || GET_CODE (dst) == POST_DEC)
7894bc6b 2163 reg_mode[REGNO (XEXP (dst, 0))] = VOIDmode;
15e35479
KH
2164 return;
2165 }
15e35479 2166
7894bc6b
JR
2167 if (GET_CODE (dst) == SUBREG)
2168 regno = subreg_regno (dst);
2169 else if (REG_P (dst))
2170 regno = REGNO (dst);
2171 else
2172 return;
15e35479 2173
7894bc6b
JR
2174 if (SCALAR_INT_MODE_P (mode)
2175 && GET_CODE (set) == SET)
7beb0596
JZ
2176 {
2177 rtx note, sym = NULL_RTX;
7894bc6b 2178 rtx off;
7beb0596
JZ
2179
2180 note = find_reg_equal_equiv_note (insn);
2181 if (note && GET_CODE (XEXP (note, 0)) == SYMBOL_REF)
2182 {
2183 sym = XEXP (note, 0);
7894bc6b 2184 off = const0_rtx;
7beb0596
JZ
2185 }
2186 else if (note && GET_CODE (XEXP (note, 0)) == CONST
2187 && GET_CODE (XEXP (XEXP (note, 0), 0)) == PLUS
2188 && GET_CODE (XEXP (XEXP (XEXP (note, 0), 0), 0)) == SYMBOL_REF
2189 && CONST_INT_P (XEXP (XEXP (XEXP (note, 0), 0), 1)))
2190 {
2191 sym = XEXP (XEXP (XEXP (note, 0), 0), 0);
7894bc6b 2192 off = XEXP (XEXP (XEXP (note, 0), 0), 1);
7beb0596
JZ
2193 }
2194
2195 if (sym != NULL_RTX)
2196 {
7894bc6b 2197 move2add_record_sym_value (dst, sym, off);
7beb0596
JZ
2198 return;
2199 }
2200 }
2201
7894bc6b
JR
2202 if (SCALAR_INT_MODE_P (mode)
2203 && GET_CODE (set) == SET
15e35479 2204 && GET_CODE (SET_DEST (set)) != ZERO_EXTRACT
15e35479
KH
2205 && GET_CODE (SET_DEST (set)) != STRICT_LOW_PART)
2206 {
2207 rtx src = SET_SRC (set);
2208 rtx base_reg;
e15eb172 2209 unsigned HOST_WIDE_INT offset;
15e35479 2210 int base_regno;
15e35479
KH
2211
2212 switch (GET_CODE (src))
2213 {
2214 case PLUS:
f8cfc6aa 2215 if (REG_P (XEXP (src, 0)))
15e35479
KH
2216 {
2217 base_reg = XEXP (src, 0);
2218
481683e1 2219 if (CONST_INT_P (XEXP (src, 1)))
e15eb172 2220 offset = UINTVAL (XEXP (src, 1));
f8cfc6aa 2221 else if (REG_P (XEXP (src, 1))
7894bc6b 2222 && move2add_valid_value_p (REGNO (XEXP (src, 1)), mode))
15e35479 2223 {
27d5e204
CLT
2224 if (reg_base_reg[REGNO (XEXP (src, 1))] < 0
2225 && reg_symbol_ref[REGNO (XEXP (src, 1))] == NULL_RTX)
15e35479
KH
2226 offset = reg_offset[REGNO (XEXP (src, 1))];
2227 /* Maybe the first register is known to be a
2228 constant. */
7894bc6b 2229 else if (move2add_valid_value_p (REGNO (base_reg), mode)
27d5e204
CLT
2230 && reg_base_reg[REGNO (base_reg)] < 0
2231 && reg_symbol_ref[REGNO (base_reg)] == NULL_RTX)
15e35479
KH
2232 {
2233 offset = reg_offset[REGNO (base_reg)];
2234 base_reg = XEXP (src, 1);
2235 }
2236 else
2237 goto invalidate;
2238 }
2239 else
2240 goto invalidate;
2241
2242 break;
2243 }
2244
2245 goto invalidate;
2246
2247 case REG:
2248 base_reg = src;
2249 offset = 0;
2250 break;
2251
2252 case CONST_INT:
2253 /* Start tracking the register as a constant. */
2254 reg_base_reg[regno] = -1;
7beb0596 2255 reg_symbol_ref[regno] = NULL_RTX;
15e35479
KH
2256 reg_offset[regno] = INTVAL (SET_SRC (set));
2257 /* We assign the same luid to all registers set to constants. */
2258 reg_set_luid[regno] = move2add_last_label_luid + 1;
7894bc6b 2259 move2add_record_mode (dst);
15e35479
KH
2260 return;
2261
2262 default:
7894bc6b 2263 goto invalidate;
15e35479
KH
2264 }
2265
2266 base_regno = REGNO (base_reg);
2267 /* If information about the base register is not valid, set it
2268 up as a new base register, pretending its value is known
2269 starting from the current insn. */
7894bc6b 2270 if (!move2add_valid_value_p (base_regno, mode))
15e35479
KH
2271 {
2272 reg_base_reg[base_regno] = base_regno;
7beb0596 2273 reg_symbol_ref[base_regno] = NULL_RTX;
15e35479
KH
2274 reg_offset[base_regno] = 0;
2275 reg_set_luid[base_regno] = move2add_luid;
7894bc6b
JR
2276 gcc_assert (GET_MODE (base_reg) == mode);
2277 move2add_record_mode (base_reg);
15e35479 2278 }
15e35479
KH
2279
2280 /* Copy base information from our base register. */
2281 reg_set_luid[regno] = reg_set_luid[base_regno];
2282 reg_base_reg[regno] = reg_base_reg[base_regno];
7beb0596 2283 reg_symbol_ref[regno] = reg_symbol_ref[base_regno];
15e35479
KH
2284
2285 /* Compute the sum of the offsets or constants. */
7894bc6b
JR
2286 reg_offset[regno]
2287 = trunc_int_for_mode (offset + reg_offset[base_regno], mode);
2288
2289 move2add_record_mode (dst);
15e35479
KH
2290 }
2291 else
2292 {
7894bc6b
JR
2293 invalidate:
2294 /* Invalidate the contents of the register. */
2295 move2add_record_mode (dst);
2296 reg_mode[regno] = VOIDmode;
15e35479
KH
2297 }
2298}
ef330312 2299\f
27a4cd48
DM
2300namespace {
2301
2302const pass_data pass_data_postreload_cse =
ef330312 2303{
27a4cd48
DM
2304 RTL_PASS, /* type */
2305 "postreload", /* name */
2306 OPTGROUP_NONE, /* optinfo_flags */
27a4cd48
DM
2307 TV_RELOAD_CSE_REGS, /* tv_id */
2308 0, /* properties_required */
2309 0, /* properties_provided */
2310 0, /* properties_destroyed */
2311 0, /* todo_flags_start */
3bea341f 2312 TODO_df_finish, /* todo_flags_finish */
ef330312 2313};
27a4cd48
DM
2314
2315class pass_postreload_cse : public rtl_opt_pass
2316{
2317public:
c3284718
RS
2318 pass_postreload_cse (gcc::context *ctxt)
2319 : rtl_opt_pass (pass_data_postreload_cse, ctxt)
27a4cd48
DM
2320 {}
2321
2322 /* opt_pass methods: */
1a3d085c
TS
2323 virtual bool gate (function *) { return (optimize > 0 && reload_completed); }
2324
be55bfe6 2325 virtual unsigned int execute (function *);
27a4cd48
DM
2326
2327}; // class pass_postreload_cse
2328
be55bfe6
TS
2329unsigned int
2330pass_postreload_cse::execute (function *fun)
2331{
2332 if (!dbg_cnt (postreload_cse))
2333 return 0;
2334
2335 /* Do a very simple CSE pass over just the hard registers. */
2336 reload_cse_regs (get_insns ());
2337 /* Reload_cse_regs can eliminate potentially-trapping MEMs.
2338 Remove any EH edges associated with them. */
2339 if (fun->can_throw_non_call_exceptions
2340 && purge_all_dead_edges ())
2341 cleanup_cfg (0);
2342
2343 return 0;
2344}
2345
27a4cd48
DM
2346} // anon namespace
2347
2348rtl_opt_pass *
2349make_pass_postreload_cse (gcc::context *ctxt)
2350{
2351 return new pass_postreload_cse (ctxt);
2352}
This page took 6.440823 seconds and 5 git commands to generate.