]> gcc.gnu.org Git - gcc.git/blame - gcc/postreload.c
[multiple changes]
[gcc.git] / gcc / postreload.c
CommitLineData
15e35479 1/* Perform simple optimizations to clean up the result of reload.
cbe34bb5 2 Copyright (C) 1987-2017 Free Software Foundation, Inc.
15e35479
KH
3
4This file is part of GCC.
5
6GCC is free software; you can redistribute it and/or modify it under
7the terms of the GNU General Public License as published by the Free
9dcd6f09 8Software Foundation; either version 3, or (at your option) any later
15e35479
KH
9version.
10
11GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12WARRANTY; without even the implied warranty of MERCHANTABILITY or
13FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14for more details.
15
16You should have received a copy of the GNU General Public License
9dcd6f09
NC
17along with GCC; see the file COPYING3. If not see
18<http://www.gnu.org/licenses/>. */
15e35479
KH
19
20#include "config.h"
21#include "system.h"
22#include "coretypes.h"
c7131fb2 23#include "backend.h"
957060b5 24#include "target.h"
15e35479 25#include "rtl.h"
957060b5
AM
26#include "tree.h"
27#include "predict.h"
c7131fb2 28#include "df.h"
4d0cdd0c 29#include "memmodel.h"
15e35479 30#include "tm_p.h"
957060b5
AM
31#include "optabs.h"
32#include "regs.h"
33#include "emit-rtl.h"
34#include "recog.h"
957060b5 35
60393bbc
AM
36#include "cfgrtl.h"
37#include "cfgbuild.h"
38#include "cfgcleanup.h"
15e35479 39#include "reload.h"
15e35479 40#include "cselib.h"
ef330312 41#include "tree-pass.h"
6fb5fa3c 42#include "dbgcnt.h"
15e35479 43
0c20a65f 44static int reload_cse_noop_set_p (rtx);
f90af2e0 45static bool reload_cse_simplify (rtx_insn *, rtx);
3a15c2cf 46static void reload_cse_regs_1 (void);
f90af2e0
DM
47static int reload_cse_simplify_set (rtx, rtx_insn *);
48static int reload_cse_simplify_operands (rtx_insn *, rtx);
15e35479 49
0c20a65f 50static void reload_combine (void);
f90af2e0 51static void reload_combine_note_use (rtx *, rtx_insn *, int, rtx);
7bc980e1 52static void reload_combine_note_store (rtx, const_rtx, void *);
15e35479 53
f90af2e0 54static bool reload_cse_move2add (rtx_insn *);
7bc980e1 55static void move2add_note_store (rtx, const_rtx, void *);
15e35479
KH
56
57/* Call cse / combine like post-reload optimization phases.
58 FIRST is the first instruction. */
8bb91f49
SB
59
60static void
f90af2e0 61reload_cse_regs (rtx_insn *first ATTRIBUTE_UNUSED)
15e35479 62{
dc0d5a57 63 bool moves_converted;
3a15c2cf 64 reload_cse_regs_1 ();
15e35479 65 reload_combine ();
dc0d5a57 66 moves_converted = reload_cse_move2add (first);
15e35479 67 if (flag_expensive_optimizations)
dc0d5a57
BS
68 {
69 if (moves_converted)
70 reload_combine ();
3a15c2cf 71 reload_cse_regs_1 ();
dc0d5a57 72 }
15e35479
KH
73}
74
75/* See whether a single set SET is a noop. */
76static int
0c20a65f 77reload_cse_noop_set_p (rtx set)
15e35479
KH
78{
79 if (cselib_reg_set_mode (SET_DEST (set)) != GET_MODE (SET_DEST (set)))
80 return 0;
81
82 return rtx_equal_for_cselib_p (SET_DEST (set), SET_SRC (set));
83}
84
3a15c2cf
SB
85/* Try to simplify INSN. Return true if the CFG may have changed. */
86static bool
f90af2e0 87reload_cse_simplify (rtx_insn *insn, rtx testreg)
15e35479
KH
88{
89 rtx body = PATTERN (insn);
3a15c2cf
SB
90 basic_block insn_bb = BLOCK_FOR_INSN (insn);
91 unsigned insn_bb_succs = EDGE_COUNT (insn_bb->succs);
15e35479 92
d5a752eb
AV
93 /* If NO_FUNCTION_CSE has been set by the target, then we should not try
94 to cse function calls. */
95 if (NO_FUNCTION_CSE && CALL_P (insn))
96 return false;
97
15e35479
KH
98 if (GET_CODE (body) == SET)
99 {
100 int count = 0;
101
102 /* Simplify even if we may think it is a no-op.
103 We may think a memory load of a value smaller than WORD_SIZE
104 is redundant because we haven't taken into account possible
105 implicit extension. reload_cse_simplify_set() will bring
106 this out, so it's safer to simplify before we delete. */
107 count += reload_cse_simplify_set (body, insn);
108
109 if (!count && reload_cse_noop_set_p (body))
110 {
9e582b1d
JR
111 if (check_for_inc_dec (insn))
112 delete_insn_and_edges (insn);
3a15c2cf
SB
113 /* We're done with this insn. */
114 goto done;
15e35479
KH
115 }
116
117 if (count > 0)
118 apply_change_group ();
119 else
120 reload_cse_simplify_operands (insn, testreg);
121 }
122 else if (GET_CODE (body) == PARALLEL)
123 {
124 int i;
125 int count = 0;
126 rtx value = NULL_RTX;
127
0d87c765
RH
128 /* Registers mentioned in the clobber list for an asm cannot be reused
129 within the body of the asm. Invalidate those registers now so that
130 we don't try to substitute values for them. */
131 if (asm_noperands (body) >= 0)
132 {
133 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
134 {
135 rtx part = XVECEXP (body, 0, i);
136 if (GET_CODE (part) == CLOBBER && REG_P (XEXP (part, 0)))
137 cselib_invalidate_rtx (XEXP (part, 0));
138 }
139 }
140
15e35479
KH
141 /* If every action in a PARALLEL is a noop, we can delete
142 the entire PARALLEL. */
143 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
144 {
145 rtx part = XVECEXP (body, 0, i);
146 if (GET_CODE (part) == SET)
147 {
148 if (! reload_cse_noop_set_p (part))
149 break;
150 if (REG_P (SET_DEST (part))
151 && REG_FUNCTION_VALUE_P (SET_DEST (part)))
152 {
153 if (value)
154 break;
155 value = SET_DEST (part);
156 }
157 }
c6a26179
JH
158 else if (GET_CODE (part) != CLOBBER
159 && GET_CODE (part) != USE)
15e35479
KH
160 break;
161 }
162
163 if (i < 0)
164 {
9e582b1d
JR
165 if (check_for_inc_dec (insn))
166 delete_insn_and_edges (insn);
15e35479 167 /* We're done with this insn. */
3a15c2cf 168 goto done;
15e35479
KH
169 }
170
171 /* It's not a no-op, but we can try to simplify it. */
172 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
173 if (GET_CODE (XVECEXP (body, 0, i)) == SET)
174 count += reload_cse_simplify_set (XVECEXP (body, 0, i), insn);
175
176 if (count > 0)
177 apply_change_group ();
178 else
179 reload_cse_simplify_operands (insn, testreg);
180 }
3a15c2cf
SB
181
182done:
183 return (EDGE_COUNT (insn_bb->succs) != insn_bb_succs);
15e35479
KH
184}
185
186/* Do a very simple CSE pass over the hard registers.
187
188 This function detects no-op moves where we happened to assign two
189 different pseudo-registers to the same hard register, and then
190 copied one to the other. Reload will generate a useless
191 instruction copying a register to itself.
192
193 This function also detects cases where we load a value from memory
194 into two different registers, and (if memory is more expensive than
195 registers) changes it to simply copy the first register into the
196 second register.
197
198 Another optimization is performed that scans the operands of each
199 instruction to see whether the value is already available in a
200 hard register. It then replaces the operand with the hard register
201 if possible, much like an optional reload would. */
202
203static void
3a15c2cf 204reload_cse_regs_1 (void)
15e35479 205{
3a15c2cf
SB
206 bool cfg_changed = false;
207 basic_block bb;
f90af2e0 208 rtx_insn *insn;
c3dc5e66 209 rtx testreg = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 1);
15e35479 210
457eeaae 211 cselib_init (CSELIB_RECORD_MEMORY);
15e35479
KH
212 init_alias_analysis ();
213
11cd3bed 214 FOR_EACH_BB_FN (bb, cfun)
3a15c2cf
SB
215 FOR_BB_INSNS (bb, insn)
216 {
217 if (INSN_P (insn))
218 cfg_changed |= reload_cse_simplify (insn, testreg);
15e35479 219
3a15c2cf
SB
220 cselib_process_insn (insn);
221 }
15e35479
KH
222
223 /* Clean up. */
224 end_alias_analysis ();
225 cselib_finish ();
3a15c2cf
SB
226 if (cfg_changed)
227 cleanup_cfg (0);
15e35479
KH
228}
229
230/* Try to simplify a single SET instruction. SET is the set pattern.
231 INSN is the instruction it came from.
232 This function only handles one case: if we set a register to a value
233 which is not a register, we try to find that value in some other register
234 and change the set into a register copy. */
235
236static int
f90af2e0 237reload_cse_simplify_set (rtx set, rtx_insn *insn)
15e35479
KH
238{
239 int did_change = 0;
240 int dreg;
241 rtx src;
6f76a878 242 reg_class_t dclass;
15e35479
KH
243 int old_cost;
244 cselib_val *val;
245 struct elt_loc_list *l;
f822d252 246 enum rtx_code extend_op = UNKNOWN;
f40751dd 247 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
15e35479
KH
248
249 dreg = true_regnum (SET_DEST (set));
250 if (dreg < 0)
251 return 0;
252
253 src = SET_SRC (set);
254 if (side_effects_p (src) || true_regnum (src) >= 0)
255 return 0;
256
257 dclass = REGNO_REG_CLASS (dreg);
258
15e35479
KH
259 /* When replacing a memory with a register, we need to honor assumptions
260 that combine made wrt the contents of sign bits. We'll do this by
261 generating an extend instruction instead of a reg->reg copy. Thus
262 the destination must be a register that we can widen. */
3c0cb5de 263 if (MEM_P (src)
3712c7a3 264 && (extend_op = load_extend_op (GET_MODE (src))) != UNKNOWN
f8cfc6aa 265 && !REG_P (SET_DEST (set)))
15e35479 266 return 0;
15e35479 267
4deef538 268 val = cselib_lookup (src, GET_MODE (SET_DEST (set)), 0, VOIDmode);
b2948a2c
KH
269 if (! val)
270 return 0;
271
15e35479 272 /* If memory loads are cheaper than register copies, don't change them. */
3c0cb5de 273 if (MEM_P (src))
f5c21ef3 274 old_cost = memory_move_cost (GET_MODE (src), dclass, true);
f8cfc6aa 275 else if (REG_P (src))
de8f4b07 276 old_cost = register_move_cost (GET_MODE (src),
15e35479
KH
277 REGNO_REG_CLASS (REGNO (src)), dclass);
278 else
e548c9df 279 old_cost = set_src_cost (src, GET_MODE (SET_DEST (set)), speed);
15e35479 280
15e35479
KH
281 for (l = val->locs; l; l = l->next)
282 {
283 rtx this_rtx = l->loc;
284 int this_cost;
285
286 if (CONSTANT_P (this_rtx) && ! references_value_p (this_rtx, 0))
287 {
f822d252 288 if (extend_op != UNKNOWN)
15e35479 289 {
807e902e 290 wide_int result;
15e35479 291
807e902e 292 if (!CONST_SCALAR_INT_P (this_rtx))
15e35479
KH
293 continue;
294
15e35479
KH
295 switch (extend_op)
296 {
297 case ZERO_EXTEND:
f079167a
RS
298 result = wide_int::from (rtx_mode_t (this_rtx,
299 GET_MODE (src)),
807e902e 300 BITS_PER_WORD, UNSIGNED);
15e35479
KH
301 break;
302 case SIGN_EXTEND:
f079167a
RS
303 result = wide_int::from (rtx_mode_t (this_rtx,
304 GET_MODE (src)),
807e902e
KZ
305 BITS_PER_WORD, SIGNED);
306 break;
15e35479 307 default:
e16acfcd 308 gcc_unreachable ();
15e35479 309 }
807e902e 310 this_rtx = immed_wide_int_const (result, word_mode);
15e35479 311 }
f1657f05 312
e548c9df 313 this_cost = set_src_cost (this_rtx, GET_MODE (SET_DEST (set)), speed);
15e35479 314 }
f8cfc6aa 315 else if (REG_P (this_rtx))
15e35479 316 {
f822d252 317 if (extend_op != UNKNOWN)
15e35479
KH
318 {
319 this_rtx = gen_rtx_fmt_e (extend_op, word_mode, this_rtx);
e548c9df 320 this_cost = set_src_cost (this_rtx, word_mode, speed);
15e35479
KH
321 }
322 else
de8f4b07 323 this_cost = register_move_cost (GET_MODE (this_rtx),
15e35479
KH
324 REGNO_REG_CLASS (REGNO (this_rtx)),
325 dclass);
326 }
327 else
328 continue;
329
330 /* If equal costs, prefer registers over anything else. That
331 tends to lead to smaller instructions on some machines. */
332 if (this_cost < old_cost
333 || (this_cost == old_cost
f8cfc6aa
JQ
334 && REG_P (this_rtx)
335 && !REG_P (SET_SRC (set))))
15e35479 336 {
3712c7a3 337 if (extend_op != UNKNOWN
0d803030
RS
338 && REG_CAN_CHANGE_MODE_P (REGNO (SET_DEST (set)),
339 GET_MODE (SET_DEST (set)), word_mode))
15e35479
KH
340 {
341 rtx wide_dest = gen_rtx_REG (word_mode, REGNO (SET_DEST (set)));
342 ORIGINAL_REGNO (wide_dest) = ORIGINAL_REGNO (SET_DEST (set));
343 validate_change (insn, &SET_DEST (set), wide_dest, 1);
344 }
15e35479 345
95e88efd 346 validate_unshare_change (insn, &SET_SRC (set), this_rtx, 1);
15e35479
KH
347 old_cost = this_cost, did_change = 1;
348 }
349 }
350
351 return did_change;
352}
353
354/* Try to replace operands in INSN with equivalent values that are already
355 in registers. This can be viewed as optional reloading.
356
357 For each non-register operand in the insn, see if any hard regs are
358 known to be equivalent to that operand. Record the alternatives which
359 can accept these hard registers. Among all alternatives, select the
360 ones which are better or equal to the one currently matching, where
361 "better" is in terms of '?' and '!' constraints. Among the remaining
362 alternatives, select the one which replaces most operands with
363 hard registers. */
364
365static int
f90af2e0 366reload_cse_simplify_operands (rtx_insn *insn, rtx testreg)
15e35479
KH
367{
368 int i, j;
369
370 /* For each operand, all registers that are equivalent to it. */
371 HARD_REG_SET equiv_regs[MAX_RECOG_OPERANDS];
372
373 const char *constraints[MAX_RECOG_OPERANDS];
374
375 /* Vector recording how bad an alternative is. */
376 int *alternative_reject;
377 /* Vector recording how many registers can be introduced by choosing
378 this alternative. */
379 int *alternative_nregs;
380 /* Array of vectors recording, for each operand and each alternative,
381 which hard register to substitute, or -1 if the operand should be
382 left as it is. */
383 int *op_alt_regno[MAX_RECOG_OPERANDS];
384 /* Array of alternatives, sorted in order of decreasing desirability. */
385 int *alternative_order;
386
75d25a02 387 extract_constrain_insn (insn);
15e35479
KH
388
389 if (recog_data.n_alternatives == 0 || recog_data.n_operands == 0)
390 return 0;
391
d3bfe4de
KG
392 alternative_reject = XALLOCAVEC (int, recog_data.n_alternatives);
393 alternative_nregs = XALLOCAVEC (int, recog_data.n_alternatives);
394 alternative_order = XALLOCAVEC (int, recog_data.n_alternatives);
703ad42b
KG
395 memset (alternative_reject, 0, recog_data.n_alternatives * sizeof (int));
396 memset (alternative_nregs, 0, recog_data.n_alternatives * sizeof (int));
15e35479
KH
397
398 /* For each operand, find out which regs are equivalent. */
399 for (i = 0; i < recog_data.n_operands; i++)
400 {
401 cselib_val *v;
402 struct elt_loc_list *l;
115df136 403 rtx op;
15e35479
KH
404
405 CLEAR_HARD_REG_SET (equiv_regs[i]);
406
407 /* cselib blows up on CODE_LABELs. Trying to fix that doesn't seem
854dde43
JJ
408 right, so avoid the problem here. Similarly NOTE_INSN_DELETED_LABEL.
409 Likewise if we have a constant and the insn pattern doesn't tell us
410 the mode we need. */
4b4bf941 411 if (LABEL_P (recog_data.operand[i])
854dde43
JJ
412 || (NOTE_P (recog_data.operand[i])
413 && NOTE_KIND (recog_data.operand[i]) == NOTE_INSN_DELETED_LABEL)
15e35479
KH
414 || (CONSTANT_P (recog_data.operand[i])
415 && recog_data.operand_mode[i] == VOIDmode))
416 continue;
417
115df136 418 op = recog_data.operand[i];
3712c7a3 419 if (MEM_P (op) && load_extend_op (GET_MODE (op)) != UNKNOWN)
115df136
R
420 {
421 rtx set = single_set (insn);
422
1f52178b 423 /* We might have multiple sets, some of which do implicit
115df136
R
424 extension. Punt on this for now. */
425 if (! set)
426 continue;
1f838355 427 /* If the destination is also a MEM or a STRICT_LOW_PART, no
115df136
R
428 extension applies.
429 Also, if there is an explicit extension, we don't have to
430 worry about an implicit one. */
3c0cb5de 431 else if (MEM_P (SET_DEST (set))
115df136
R
432 || GET_CODE (SET_DEST (set)) == STRICT_LOW_PART
433 || GET_CODE (SET_SRC (set)) == ZERO_EXTEND
434 || GET_CODE (SET_SRC (set)) == SIGN_EXTEND)
435 ; /* Continue ordinary processing. */
7be4d808
R
436 /* If the register cannot change mode to word_mode, it follows that
437 it cannot have been used in word_mode. */
f8cfc6aa 438 else if (REG_P (SET_DEST (set))
0d803030
RS
439 && !REG_CAN_CHANGE_MODE_P (REGNO (SET_DEST (set)),
440 GET_MODE (SET_DEST (set)),
441 word_mode))
7be4d808 442 ; /* Continue ordinary processing. */
115df136 443 /* If this is a straight load, make the extension explicit. */
f8cfc6aa 444 else if (REG_P (SET_DEST (set))
115df136
R
445 && recog_data.n_operands == 2
446 && SET_SRC (set) == op
447 && SET_DEST (set) == recog_data.operand[1-i])
448 {
449 validate_change (insn, recog_data.operand_loc[i],
3712c7a3 450 gen_rtx_fmt_e (load_extend_op (GET_MODE (op)),
115df136
R
451 word_mode, op),
452 1);
453 validate_change (insn, recog_data.operand_loc[1-i],
454 gen_rtx_REG (word_mode, REGNO (SET_DEST (set))),
455 1);
456 if (! apply_change_group ())
457 return 0;
458 return reload_cse_simplify_operands (insn, testreg);
459 }
460 else
461 /* ??? There might be arithmetic operations with memory that are
462 safe to optimize, but is it worth the trouble? */
463 continue;
464 }
f1657f05 465
3f82421f
PH
466 if (side_effects_p (op))
467 continue;
4deef538 468 v = cselib_lookup (op, recog_data.operand_mode[i], 0, VOIDmode);
15e35479
KH
469 if (! v)
470 continue;
471
472 for (l = v->locs; l; l = l->next)
f8cfc6aa 473 if (REG_P (l->loc))
15e35479
KH
474 SET_HARD_REG_BIT (equiv_regs[i], REGNO (l->loc));
475 }
476
9840b2fa 477 alternative_mask preferred = get_preferred_alternatives (insn);
15e35479
KH
478 for (i = 0; i < recog_data.n_operands; i++)
479 {
ef4bddc2 480 machine_mode mode;
15e35479
KH
481 int regno;
482 const char *p;
483
d3bfe4de 484 op_alt_regno[i] = XALLOCAVEC (int, recog_data.n_alternatives);
15e35479
KH
485 for (j = 0; j < recog_data.n_alternatives; j++)
486 op_alt_regno[i][j] = -1;
487
488 p = constraints[i] = recog_data.constraints[i];
489 mode = recog_data.operand_mode[i];
490
491 /* Add the reject values for each alternative given by the constraints
492 for this operand. */
493 j = 0;
494 while (*p != '\0')
495 {
496 char c = *p++;
497 if (c == ',')
498 j++;
499 else if (c == '?')
500 alternative_reject[j] += 3;
501 else if (c == '!')
502 alternative_reject[j] += 300;
503 }
504
505 /* We won't change operands which are already registers. We
506 also don't want to modify output operands. */
507 regno = true_regnum (recog_data.operand[i]);
508 if (regno >= 0
509 || constraints[i][0] == '='
510 || constraints[i][0] == '+')
511 continue;
512
513 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
514 {
bbbbb16a 515 enum reg_class rclass = NO_REGS;
15e35479
KH
516
517 if (! TEST_HARD_REG_BIT (equiv_regs[i], regno))
518 continue;
519
8deccbb7 520 set_mode_and_regno (testreg, mode, regno);
15e35479
KH
521
522 /* We found a register equal to this operand. Now look for all
523 alternatives that can accept this register and have not been
524 assigned a register they can use yet. */
525 j = 0;
526 p = constraints[i];
527 for (;;)
528 {
529 char c = *p;
530
531 switch (c)
532 {
8677664e
RS
533 case 'g':
534 rclass = reg_class_subunion[rclass][GENERAL_REGS];
15e35479
KH
535 break;
536
537 default:
d858f359 538 rclass
15e35479 539 = (reg_class_subunion
777e635f
RS
540 [rclass]
541 [reg_class_for_constraint (lookup_constraint (p))]);
15e35479
KH
542 break;
543
544 case ',': case '\0':
545 /* See if REGNO fits this alternative, and set it up as the
546 replacement register if we don't have one for this
547 alternative yet and the operand being replaced is not
548 a cheap CONST_INT. */
549 if (op_alt_regno[i][j] == -1
9840b2fa 550 && TEST_BIT (preferred, j)
d858f359 551 && reg_fits_class_p (testreg, rclass, 0, mode)
481683e1 552 && (!CONST_INT_P (recog_data.operand[i])
e548c9df 553 || (set_src_cost (recog_data.operand[i], mode,
5e8f01f4
RS
554 optimize_bb_for_speed_p
555 (BLOCK_FOR_INSN (insn)))
e548c9df 556 > set_src_cost (testreg, mode,
5e8f01f4
RS
557 optimize_bb_for_speed_p
558 (BLOCK_FOR_INSN (insn))))))
15e35479
KH
559 {
560 alternative_nregs[j]++;
561 op_alt_regno[i][j] = regno;
562 }
563 j++;
bbbbb16a 564 rclass = NO_REGS;
15e35479
KH
565 break;
566 }
567 p += CONSTRAINT_LEN (c, p);
568
569 if (c == '\0')
570 break;
571 }
572 }
573 }
574
575 /* Record all alternatives which are better or equal to the currently
576 matching one in the alternative_order array. */
577 for (i = j = 0; i < recog_data.n_alternatives; i++)
578 if (alternative_reject[i] <= alternative_reject[which_alternative])
579 alternative_order[j++] = i;
580 recog_data.n_alternatives = j;
581
582 /* Sort it. Given a small number of alternatives, a dumb algorithm
583 won't hurt too much. */
584 for (i = 0; i < recog_data.n_alternatives - 1; i++)
585 {
586 int best = i;
587 int best_reject = alternative_reject[alternative_order[i]];
588 int best_nregs = alternative_nregs[alternative_order[i]];
15e35479
KH
589
590 for (j = i + 1; j < recog_data.n_alternatives; j++)
591 {
592 int this_reject = alternative_reject[alternative_order[j]];
593 int this_nregs = alternative_nregs[alternative_order[j]];
594
595 if (this_reject < best_reject
8a4c09c8 596 || (this_reject == best_reject && this_nregs > best_nregs))
15e35479
KH
597 {
598 best = j;
599 best_reject = this_reject;
600 best_nregs = this_nregs;
601 }
602 }
603
fab27f52 604 std::swap (alternative_order[best], alternative_order[i]);
15e35479
KH
605 }
606
607 /* Substitute the operands as determined by op_alt_regno for the best
608 alternative. */
609 j = alternative_order[0];
610
611 for (i = 0; i < recog_data.n_operands; i++)
612 {
ef4bddc2 613 machine_mode mode = recog_data.operand_mode[i];
15e35479
KH
614 if (op_alt_regno[i][j] == -1)
615 continue;
616
617 validate_change (insn, recog_data.operand_loc[i],
618 gen_rtx_REG (mode, op_alt_regno[i][j]), 1);
619 }
620
621 for (i = recog_data.n_dups - 1; i >= 0; i--)
622 {
623 int op = recog_data.dup_num[i];
ef4bddc2 624 machine_mode mode = recog_data.operand_mode[op];
15e35479
KH
625
626 if (op_alt_regno[op][j] == -1)
627 continue;
628
629 validate_change (insn, recog_data.dup_loc[i],
630 gen_rtx_REG (mode, op_alt_regno[op][j]), 1);
631 }
632
633 return apply_change_group ();
634}
635\f
636/* If reload couldn't use reg+reg+offset addressing, try to use reg+reg
637 addressing now.
638 This code might also be useful when reload gave up on reg+reg addressing
639 because of clashes between the return register and INDEX_REG_CLASS. */
640
641/* The maximum number of uses of a register we can keep track of to
642 replace them with reg+reg addressing. */
dc0d5a57 643#define RELOAD_COMBINE_MAX_USES 16
15e35479 644
dc0d5a57
BS
645/* Describes a recorded use of a register. */
646struct reg_use
647{
648 /* The insn where a register has been used. */
f90af2e0 649 rtx_insn *insn;
dc0d5a57
BS
650 /* Points to the memory reference enclosing the use, if any, NULL_RTX
651 otherwise. */
652 rtx containing_mem;
073a8998 653 /* Location of the register within INSN. */
dc0d5a57
BS
654 rtx *usep;
655 /* The reverse uid of the insn. */
656 int ruid;
657};
15e35479
KH
658
659/* If the register is used in some unknown fashion, USE_INDEX is negative.
660 If it is dead, USE_INDEX is RELOAD_COMBINE_MAX_USES, and STORE_RUID
dc0d5a57 661 indicates where it is first set or clobbered.
15e35479 662 Otherwise, USE_INDEX is the index of the last encountered use of the
dc0d5a57
BS
663 register (which is first among these we have seen since we scan backwards).
664 USE_RUID indicates the first encountered, i.e. last, of these uses.
665 If ALL_OFFSETS_MATCH is true, all encountered uses were inside a PLUS
666 with a constant offset; OFFSET contains this constant in that case.
15e35479
KH
667 STORE_RUID is always meaningful if we only want to use a value in a
668 register in a different place: it denotes the next insn in the insn
dc0d5a57
BS
669 stream (i.e. the last encountered) that sets or clobbers the register.
670 REAL_STORE_RUID is similar, but clobbers are ignored when updating it. */
15e35479
KH
671static struct
672 {
673 struct reg_use reg_use[RELOAD_COMBINE_MAX_USES];
15e35479 674 rtx offset;
dc0d5a57 675 int use_index;
15e35479 676 int store_ruid;
dc0d5a57 677 int real_store_ruid;
15e35479 678 int use_ruid;
dc0d5a57 679 bool all_offsets_match;
15e35479
KH
680 } reg_state[FIRST_PSEUDO_REGISTER];
681
682/* Reverse linear uid. This is increased in reload_combine while scanning
683 the instructions from last to first. It is used to set last_label_ruid
684 and the store_ruid / use_ruid fields in reg_state. */
685static int reload_combine_ruid;
686
67bb0206
BS
687/* The RUID of the last label we encountered in reload_combine. */
688static int last_label_ruid;
689
dc0d5a57
BS
690/* The RUID of the last jump we encountered in reload_combine. */
691static int last_jump_ruid;
692
67bb0206
BS
693/* The register numbers of the first and last index register. A value of
694 -1 in LAST_INDEX_REG indicates that we've previously computed these
695 values and found no suitable index registers. */
696static int first_index_reg = -1;
697static int last_index_reg;
698
15e35479
KH
699#define LABEL_LIVE(LABEL) \
700 (label_live[CODE_LABEL_NUMBER (LABEL) - min_labelno])
701
dc0d5a57
BS
702/* Subroutine of reload_combine_split_ruids, called to fix up a single
703 ruid pointed to by *PRUID if it is higher than SPLIT_RUID. */
704
705static inline void
706reload_combine_split_one_ruid (int *pruid, int split_ruid)
707{
708 if (*pruid > split_ruid)
709 (*pruid)++;
710}
711
712/* Called when we insert a new insn in a position we've already passed in
713 the scan. Examine all our state, increasing all ruids that are higher
714 than SPLIT_RUID by one in order to make room for a new insn. */
715
716static void
717reload_combine_split_ruids (int split_ruid)
718{
719 unsigned i;
720
721 reload_combine_split_one_ruid (&reload_combine_ruid, split_ruid);
722 reload_combine_split_one_ruid (&last_label_ruid, split_ruid);
723 reload_combine_split_one_ruid (&last_jump_ruid, split_ruid);
724
725 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
726 {
727 int j, idx = reg_state[i].use_index;
728 reload_combine_split_one_ruid (&reg_state[i].use_ruid, split_ruid);
729 reload_combine_split_one_ruid (&reg_state[i].store_ruid, split_ruid);
730 reload_combine_split_one_ruid (&reg_state[i].real_store_ruid,
731 split_ruid);
732 if (idx < 0)
733 continue;
734 for (j = idx; j < RELOAD_COMBINE_MAX_USES; j++)
735 {
736 reload_combine_split_one_ruid (&reg_state[i].reg_use[j].ruid,
737 split_ruid);
738 }
739 }
740}
741
742/* Called when we are about to rescan a previously encountered insn with
743 reload_combine_note_use after modifying some part of it. This clears all
744 information about uses in that particular insn. */
745
746static void
f90af2e0 747reload_combine_purge_insn_uses (rtx_insn *insn)
dc0d5a57
BS
748{
749 unsigned i;
750
751 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
752 {
753 int j, k, idx = reg_state[i].use_index;
754 if (idx < 0)
755 continue;
756 j = k = RELOAD_COMBINE_MAX_USES;
757 while (j-- > idx)
758 {
759 if (reg_state[i].reg_use[j].insn != insn)
760 {
761 k--;
762 if (k != j)
763 reg_state[i].reg_use[k] = reg_state[i].reg_use[j];
764 }
765 }
766 reg_state[i].use_index = k;
767 }
768}
769
770/* Called when we need to forget about all uses of REGNO after an insn
771 which is identified by RUID. */
772
773static void
774reload_combine_purge_reg_uses_after_ruid (unsigned regno, int ruid)
775{
776 int j, k, idx = reg_state[regno].use_index;
777 if (idx < 0)
778 return;
779 j = k = RELOAD_COMBINE_MAX_USES;
780 while (j-- > idx)
781 {
782 if (reg_state[regno].reg_use[j].ruid >= ruid)
783 {
784 k--;
785 if (k != j)
786 reg_state[regno].reg_use[k] = reg_state[regno].reg_use[j];
787 }
788 }
789 reg_state[regno].use_index = k;
790}
791
792/* Find the use of REGNO with the ruid that is highest among those
793 lower than RUID_LIMIT, and return it if it is the only use of this
08bd6876 794 reg in the insn. Return NULL otherwise. */
dc0d5a57
BS
795
796static struct reg_use *
797reload_combine_closest_single_use (unsigned regno, int ruid_limit)
798{
799 int i, best_ruid = 0;
800 int use_idx = reg_state[regno].use_index;
801 struct reg_use *retval;
802
803 if (use_idx < 0)
804 return NULL;
805 retval = NULL;
806 for (i = use_idx; i < RELOAD_COMBINE_MAX_USES; i++)
807 {
b1d5eee8
BS
808 struct reg_use *use = reg_state[regno].reg_use + i;
809 int this_ruid = use->ruid;
dc0d5a57
BS
810 if (this_ruid >= ruid_limit)
811 continue;
812 if (this_ruid > best_ruid)
813 {
814 best_ruid = this_ruid;
08bd6876 815 retval = use;
dc0d5a57 816 }
08bd6876 817 else if (this_ruid == best_ruid)
dc0d5a57
BS
818 retval = NULL;
819 }
820 if (last_label_ruid >= best_ruid)
821 return NULL;
822 return retval;
823}
824
caa4a250
BS
825/* After we've moved an add insn, fix up any debug insns that occur
826 between the old location of the add and the new location. REG is
827 the destination register of the add insn; REPLACEMENT is the
828 SET_SRC of the add. FROM and TO specify the range in which we
829 should make this change on debug insns. */
b1d5eee8
BS
830
831static void
f90af2e0 832fixup_debug_insns (rtx reg, rtx replacement, rtx_insn *from, rtx_insn *to)
b1d5eee8 833{
f90af2e0 834 rtx_insn *insn;
caa4a250 835 for (insn = from; insn != to; insn = NEXT_INSN (insn))
b1d5eee8
BS
836 {
837 rtx t;
caa4a250
BS
838
839 if (!DEBUG_INSN_P (insn))
b1d5eee8 840 continue;
caa4a250
BS
841
842 t = INSN_VAR_LOCATION_LOC (insn);
08bd6876 843 t = simplify_replace_rtx (t, reg, replacement);
caa4a250 844 validate_change (insn, &INSN_VAR_LOCATION_LOC (insn), t, 0);
b1d5eee8
BS
845 }
846}
847
a78e242c
BS
848/* Subroutine of reload_combine_recognize_const_pattern. Try to replace REG
849 with SRC in the insn described by USE, taking costs into account. Return
850 true if we made the replacement. */
851
852static bool
853try_replace_in_use (struct reg_use *use, rtx reg, rtx src)
854{
f90af2e0 855 rtx_insn *use_insn = use->insn;
a78e242c
BS
856 rtx mem = use->containing_mem;
857 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (use_insn));
858
859 if (mem != NULL_RTX)
860 {
861 addr_space_t as = MEM_ADDR_SPACE (mem);
862 rtx oldaddr = XEXP (mem, 0);
863 rtx newaddr = NULL_RTX;
864 int old_cost = address_cost (oldaddr, GET_MODE (mem), as, speed);
865 int new_cost;
866
867 newaddr = simplify_replace_rtx (oldaddr, reg, src);
868 if (memory_address_addr_space_p (GET_MODE (mem), newaddr, as))
869 {
870 XEXP (mem, 0) = newaddr;
871 new_cost = address_cost (newaddr, GET_MODE (mem), as, speed);
872 XEXP (mem, 0) = oldaddr;
873 if (new_cost <= old_cost
874 && validate_change (use_insn,
875 &XEXP (mem, 0), newaddr, 0))
876 return true;
877 }
878 }
879 else
880 {
881 rtx new_set = single_set (use_insn);
882 if (new_set
883 && REG_P (SET_DEST (new_set))
884 && GET_CODE (SET_SRC (new_set)) == PLUS
885 && REG_P (XEXP (SET_SRC (new_set), 0))
886 && CONSTANT_P (XEXP (SET_SRC (new_set), 1)))
887 {
888 rtx new_src;
e548c9df
AM
889 machine_mode mode = GET_MODE (SET_DEST (new_set));
890 int old_cost = set_src_cost (SET_SRC (new_set), mode, speed);
a78e242c
BS
891
892 gcc_assert (rtx_equal_p (XEXP (SET_SRC (new_set), 0), reg));
893 new_src = simplify_replace_rtx (SET_SRC (new_set), reg, src);
894
e548c9df 895 if (set_src_cost (new_src, mode, speed) <= old_cost
a78e242c
BS
896 && validate_change (use_insn, &SET_SRC (new_set),
897 new_src, 0))
898 return true;
899 }
900 }
901 return false;
902}
903
dc0d5a57
BS
904/* Called by reload_combine when scanning INSN. This function tries to detect
905 patterns where a constant is added to a register, and the result is used
906 in an address.
907 Return true if no further processing is needed on INSN; false if it wasn't
908 recognized and should be handled normally. */
909
910static bool
f90af2e0 911reload_combine_recognize_const_pattern (rtx_insn *insn)
dc0d5a57
BS
912{
913 int from_ruid = reload_combine_ruid;
914 rtx set, pat, reg, src, addreg;
915 unsigned int regno;
916 struct reg_use *use;
917 bool must_move_add;
f90af2e0 918 rtx_insn *add_moved_after_insn = NULL;
dc0d5a57
BS
919 int add_moved_after_ruid = 0;
920 int clobbered_regno = -1;
921
922 set = single_set (insn);
923 if (set == NULL_RTX)
924 return false;
925
926 reg = SET_DEST (set);
927 src = SET_SRC (set);
928 if (!REG_P (reg)
dc8afb70 929 || REG_NREGS (reg) != 1
dc0d5a57
BS
930 || GET_MODE (reg) != Pmode
931 || reg == stack_pointer_rtx)
932 return false;
933
934 regno = REGNO (reg);
935
936 /* We look for a REG1 = REG2 + CONSTANT insn, followed by either
937 uses of REG1 inside an address, or inside another add insn. If
938 possible and profitable, merge the addition into subsequent
939 uses. */
940 if (GET_CODE (src) != PLUS
941 || !REG_P (XEXP (src, 0))
942 || !CONSTANT_P (XEXP (src, 1)))
943 return false;
944
945 addreg = XEXP (src, 0);
946 must_move_add = rtx_equal_p (reg, addreg);
947
948 pat = PATTERN (insn);
949 if (must_move_add && set != pat)
950 {
951 /* We have to be careful when moving the add; apart from the
952 single_set there may also be clobbers. Recognize one special
953 case, that of one clobber alongside the set (likely a clobber
954 of the CC register). */
955 gcc_assert (GET_CODE (PATTERN (insn)) == PARALLEL);
956 if (XVECLEN (pat, 0) != 2 || XVECEXP (pat, 0, 0) != set
957 || GET_CODE (XVECEXP (pat, 0, 1)) != CLOBBER
958 || !REG_P (XEXP (XVECEXP (pat, 0, 1), 0)))
959 return false;
960 clobbered_regno = REGNO (XEXP (XVECEXP (pat, 0, 1), 0));
961 }
962
963 do
964 {
965 use = reload_combine_closest_single_use (regno, from_ruid);
966
967 if (use)
968 /* Start the search for the next use from here. */
969 from_ruid = use->ruid;
970
971 if (use && GET_MODE (*use->usep) == Pmode)
972 {
a78e242c 973 bool delete_add = false;
f90af2e0 974 rtx_insn *use_insn = use->insn;
dc0d5a57 975 int use_ruid = use->ruid;
dc0d5a57
BS
976
977 /* Avoid moving the add insn past a jump. */
b1d5eee8 978 if (must_move_add && use_ruid <= last_jump_ruid)
dc0d5a57
BS
979 break;
980
981 /* If the add clobbers another hard reg in parallel, don't move
982 it past a real set of this hard reg. */
983 if (must_move_add && clobbered_regno >= 0
984 && reg_state[clobbered_regno].real_store_ruid >= use_ruid)
985 break;
986
3b8ff89f 987 /* Do not separate cc0 setter and cc0 user on HAVE_cc0 targets. */
058eb3b0 988 if (HAVE_cc0 && must_move_add && sets_cc0_p (PATTERN (use_insn)))
3b8ff89f 989 break;
3b8ff89f 990
62036819
BS
991 gcc_assert (reg_state[regno].store_ruid <= use_ruid);
992 /* Avoid moving a use of ADDREG past a point where it is stored. */
a78e242c 993 if (reg_state[REGNO (addreg)].store_ruid > use_ruid)
dc0d5a57
BS
994 break;
995
a78e242c
BS
996 /* We also must not move the addition past an insn that sets
997 the same register, unless we can combine two add insns. */
998 if (must_move_add && reg_state[regno].store_ruid == use_ruid)
dc0d5a57 999 {
a78e242c
BS
1000 if (use->containing_mem == NULL_RTX)
1001 delete_add = true;
1002 else
1003 break;
dc0d5a57 1004 }
dc0d5a57 1005
a78e242c
BS
1006 if (try_replace_in_use (use, reg, src))
1007 {
1008 reload_combine_purge_insn_uses (use_insn);
1009 reload_combine_note_use (&PATTERN (use_insn), use_insn,
1010 use_ruid, NULL_RTX);
dc0d5a57 1011
a78e242c
BS
1012 if (delete_add)
1013 {
1014 fixup_debug_insns (reg, src, insn, use_insn);
1015 delete_insn (insn);
1016 return true;
1017 }
1018 if (must_move_add)
1019 {
1020 add_moved_after_insn = use_insn;
1021 add_moved_after_ruid = use_ruid;
dc0d5a57 1022 }
a78e242c 1023 continue;
dc0d5a57 1024 }
dc0d5a57 1025 }
62036819
BS
1026 /* If we get here, we couldn't handle this use. */
1027 if (must_move_add)
1028 break;
dc0d5a57
BS
1029 }
1030 while (use);
1031
1032 if (!must_move_add || add_moved_after_insn == NULL_RTX)
1033 /* Process the add normally. */
1034 return false;
1035
caa4a250
BS
1036 fixup_debug_insns (reg, src, insn, add_moved_after_insn);
1037
dc0d5a57
BS
1038 reorder_insns (insn, insn, add_moved_after_insn);
1039 reload_combine_purge_reg_uses_after_ruid (regno, add_moved_after_ruid);
1040 reload_combine_split_ruids (add_moved_after_ruid - 1);
1041 reload_combine_note_use (&PATTERN (insn), insn,
1042 add_moved_after_ruid, NULL_RTX);
1043 reg_state[regno].store_ruid = add_moved_after_ruid;
1044
1045 return true;
1046}
1047
67bb0206
BS
1048/* Called by reload_combine when scanning INSN. Try to detect a pattern we
1049 can handle and improve. Return true if no further processing is needed on
1050 INSN; false if it wasn't recognized and should be handled normally. */
1051
1052static bool
f90af2e0 1053reload_combine_recognize_pattern (rtx_insn *insn)
67bb0206
BS
1054{
1055 rtx set, reg, src;
67bb0206 1056
dc0d5a57
BS
1057 set = single_set (insn);
1058 if (set == NULL_RTX)
1059 return false;
1060
1061 reg = SET_DEST (set);
1062 src = SET_SRC (set);
dc8afb70 1063 if (!REG_P (reg) || REG_NREGS (reg) != 1)
dc0d5a57
BS
1064 return false;
1065
201d49e9
BS
1066 unsigned int regno = REGNO (reg);
1067 machine_mode mode = GET_MODE (reg);
1068
1069 if (reg_state[regno].use_index < 0
1070 || reg_state[regno].use_index >= RELOAD_COMBINE_MAX_USES)
1071 return false;
1072
1073 for (int i = reg_state[regno].use_index;
1074 i < RELOAD_COMBINE_MAX_USES; i++)
1075 {
1076 struct reg_use *use = reg_state[regno].reg_use + i;
1077 if (GET_MODE (*use->usep) != mode)
1078 return false;
1079 }
dc0d5a57 1080
67bb0206
BS
1081 /* Look for (set (REGX) (CONST_INT))
1082 (set (REGX) (PLUS (REGX) (REGY)))
1083 ...
1084 ... (MEM (REGX)) ...
1085 and convert it to
1086 (set (REGZ) (CONST_INT))
1087 ...
1088 ... (MEM (PLUS (REGZ) (REGY)))... .
1089
1090 First, check that we have (set (REGX) (PLUS (REGX) (REGY)))
1091 and that we know all uses of REGX before it dies.
1092 Also, explicitly check that REGX != REGY; our life information
1093 does not yet show whether REGY changes in this insn. */
67bb0206
BS
1094
1095 if (GET_CODE (src) == PLUS
dc0d5a57
BS
1096 && reg_state[regno].all_offsets_match
1097 && last_index_reg != -1
67bb0206
BS
1098 && REG_P (XEXP (src, 1))
1099 && rtx_equal_p (XEXP (src, 0), reg)
1100 && !rtx_equal_p (XEXP (src, 1), reg)
1101 && last_label_ruid < reg_state[regno].use_ruid)
1102 {
1103 rtx base = XEXP (src, 1);
f90af2e0 1104 rtx_insn *prev = prev_nonnote_nondebug_insn (insn);
67bb0206
BS
1105 rtx prev_set = prev ? single_set (prev) : NULL_RTX;
1106 rtx index_reg = NULL_RTX;
1107 rtx reg_sum = NULL_RTX;
1108 int i;
1109
1110 /* Now we need to set INDEX_REG to an index register (denoted as
1111 REGZ in the illustration above) and REG_SUM to the expression
1112 register+register that we want to use to substitute uses of REG
1113 (typically in MEMs) with. First check REG and BASE for being
1114 index registers; we can use them even if they are not dead. */
1115 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], regno)
1116 || TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS],
1117 REGNO (base)))
1118 {
1119 index_reg = reg;
1120 reg_sum = src;
1121 }
1122 else
1123 {
1124 /* Otherwise, look for a free index register. Since we have
1125 checked above that neither REG nor BASE are index registers,
1126 if we find anything at all, it will be different from these
1127 two registers. */
1128 for (i = first_index_reg; i <= last_index_reg; i++)
1129 {
1130 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], i)
1131 && reg_state[i].use_index == RELOAD_COMBINE_MAX_USES
1132 && reg_state[i].store_ruid <= reg_state[regno].use_ruid
08bd6876
BS
1133 && (call_used_regs[i] || df_regs_ever_live_p (i))
1134 && (!frame_pointer_needed || i != HARD_FRAME_POINTER_REGNUM)
1135 && !fixed_regs[i] && !global_regs[i]
ad474626 1136 && hard_regno_nregs (i, GET_MODE (reg)) == 1
08bd6876 1137 && targetm.hard_regno_scratch_ok (i))
67bb0206
BS
1138 {
1139 index_reg = gen_rtx_REG (GET_MODE (reg), i);
1140 reg_sum = gen_rtx_PLUS (GET_MODE (reg), index_reg, base);
1141 break;
1142 }
1143 }
1144 }
1145
1146 /* Check that PREV_SET is indeed (set (REGX) (CONST_INT)) and that
1147 (REGY), i.e. BASE, is not clobbered before the last use we'll
1148 create. */
1149 if (reg_sum
1150 && prev_set
1151 && CONST_INT_P (SET_SRC (prev_set))
1152 && rtx_equal_p (SET_DEST (prev_set), reg)
67bb0206
BS
1153 && (reg_state[REGNO (base)].store_ruid
1154 <= reg_state[regno].use_ruid))
1155 {
1156 /* Change destination register and, if necessary, the constant
1157 value in PREV, the constant loading instruction. */
1158 validate_change (prev, &SET_DEST (prev_set), index_reg, 1);
1159 if (reg_state[regno].offset != const0_rtx)
1160 validate_change (prev,
1161 &SET_SRC (prev_set),
1162 GEN_INT (INTVAL (SET_SRC (prev_set))
1163 + INTVAL (reg_state[regno].offset)),
1164 1);
1165
1166 /* Now for every use of REG that we have recorded, replace REG
1167 with REG_SUM. */
1168 for (i = reg_state[regno].use_index;
1169 i < RELOAD_COMBINE_MAX_USES; i++)
1170 validate_unshare_change (reg_state[regno].reg_use[i].insn,
1171 reg_state[regno].reg_use[i].usep,
1172 /* Each change must have its own
1173 replacement. */
1174 reg_sum, 1);
1175
1176 if (apply_change_group ())
1177 {
caa4a250
BS
1178 struct reg_use *lowest_ruid = NULL;
1179
67bb0206
BS
1180 /* For every new use of REG_SUM, we have to record the use
1181 of BASE therein, i.e. operand 1. */
1182 for (i = reg_state[regno].use_index;
1183 i < RELOAD_COMBINE_MAX_USES; i++)
caa4a250
BS
1184 {
1185 struct reg_use *use = reg_state[regno].reg_use + i;
1186 reload_combine_note_use (&XEXP (*use->usep, 1), use->insn,
1187 use->ruid, use->containing_mem);
1188 if (lowest_ruid == NULL || use->ruid < lowest_ruid->ruid)
1189 lowest_ruid = use;
1190 }
1191
1192 fixup_debug_insns (reg, reg_sum, insn, lowest_ruid->insn);
67bb0206 1193
67bb0206
BS
1194 /* Delete the reg-reg addition. */
1195 delete_insn (insn);
1196
a5a4add7
JJ
1197 if (reg_state[regno].offset != const0_rtx
1198 /* Previous REG_EQUIV / REG_EQUAL notes for PREV
1199 are now invalid. */
1200 && remove_reg_equal_equiv_notes (prev))
1201 df_notes_rescan (prev);
67bb0206
BS
1202
1203 reg_state[regno].use_index = RELOAD_COMBINE_MAX_USES;
67bb0206
BS
1204 return true;
1205 }
1206 }
1207 }
1208 return false;
1209}
1210
15e35479 1211static void
0c20a65f 1212reload_combine (void)
15e35479 1213{
f90af2e0 1214 rtx_insn *insn, *prev;
15e35479
KH
1215 basic_block bb;
1216 unsigned int r;
15e35479
KH
1217 int min_labelno, n_labels;
1218 HARD_REG_SET ever_live_at_start, *label_live;
1219
15e35479
KH
1220 /* To avoid wasting too much time later searching for an index register,
1221 determine the minimum and maximum index register numbers. */
67bb0206
BS
1222 if (INDEX_REG_CLASS == NO_REGS)
1223 last_index_reg = -1;
1224 else if (first_index_reg == -1 && last_index_reg == 0)
1225 {
1226 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1227 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], r))
1228 {
1229 if (first_index_reg == -1)
1230 first_index_reg = r;
1231
1232 last_index_reg = r;
1233 }
1234
1235 /* If no index register is available, we can quit now. Set LAST_INDEX_REG
1236 to -1 so we'll know to quit early the next time we get here. */
1237 if (first_index_reg == -1)
1238 {
1239 last_index_reg = -1;
1240 return;
1241 }
1242 }
15e35479 1243
15e35479
KH
1244 /* Set up LABEL_LIVE and EVER_LIVE_AT_START. The register lifetime
1245 information is a bit fuzzy immediately after reload, but it's
1246 still good enough to determine which registers are live at a jump
1247 destination. */
1248 min_labelno = get_first_label_num ();
1249 n_labels = max_label_num () - min_labelno;
5ed6ace5 1250 label_live = XNEWVEC (HARD_REG_SET, n_labels);
15e35479
KH
1251 CLEAR_HARD_REG_SET (ever_live_at_start);
1252
4f42035e 1253 FOR_EACH_BB_REVERSE_FN (bb, cfun)
15e35479 1254 {
a813c111 1255 insn = BB_HEAD (bb);
4b4bf941 1256 if (LABEL_P (insn))
15e35479
KH
1257 {
1258 HARD_REG_SET live;
89a95777 1259 bitmap live_in = df_get_live_in (bb);
15e35479 1260
89a95777
KZ
1261 REG_SET_TO_HARD_REG_SET (live, live_in);
1262 compute_use_by_pseudos (&live, live_in);
15e35479
KH
1263 COPY_HARD_REG_SET (LABEL_LIVE (insn), live);
1264 IOR_HARD_REG_SET (ever_live_at_start, live);
1265 }
1266 }
1267
1268 /* Initialize last_label_ruid, reload_combine_ruid and reg_state. */
dc0d5a57 1269 last_label_ruid = last_jump_ruid = reload_combine_ruid = 0;
15e35479
KH
1270 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1271 {
dc0d5a57
BS
1272 reg_state[r].store_ruid = 0;
1273 reg_state[r].real_store_ruid = 0;
15e35479
KH
1274 if (fixed_regs[r])
1275 reg_state[r].use_index = -1;
1276 else
1277 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
1278 }
1279
dc0d5a57 1280 for (insn = get_last_insn (); insn; insn = prev)
15e35479 1281 {
7ad93142 1282 bool control_flow_insn;
15e35479
KH
1283 rtx note;
1284
dc0d5a57
BS
1285 prev = PREV_INSN (insn);
1286
15e35479
KH
1287 /* We cannot do our optimization across labels. Invalidating all the use
1288 information we have would be costly, so we just note where the label
1289 is and then later disable any optimization that would cross it. */
4b4bf941 1290 if (LABEL_P (insn))
15e35479 1291 last_label_ruid = reload_combine_ruid;
2195c9be
AK
1292 else if (BARRIER_P (insn))
1293 {
1294 /* Crossing a barrier resets all the use information. */
1295 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1296 if (! fixed_regs[r])
15e35479 1297 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
2195c9be
AK
1298 }
1299 else if (INSN_P (insn) && volatile_insn_p (PATTERN (insn)))
1300 /* Optimizations across insns being marked as volatile must be
1301 prevented. All the usage information is invalidated
1302 here. */
1303 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1304 if (! fixed_regs[r]
1305 && reg_state[r].use_index != RELOAD_COMBINE_MAX_USES)
1306 reg_state[r].use_index = -1;
15e35479 1307
caa4a250 1308 if (! NONDEBUG_INSN_P (insn))
15e35479
KH
1309 continue;
1310
1311 reload_combine_ruid++;
1312
7ad93142
EB
1313 control_flow_insn = control_flow_insn_p (insn);
1314 if (control_flow_insn)
dc0d5a57
BS
1315 last_jump_ruid = reload_combine_ruid;
1316
1317 if (reload_combine_recognize_const_pattern (insn)
1318 || reload_combine_recognize_pattern (insn))
67bb0206 1319 continue;
15e35479
KH
1320
1321 note_stores (PATTERN (insn), reload_combine_note_store, NULL);
1322
4b4bf941 1323 if (CALL_P (insn))
15e35479
KH
1324 {
1325 rtx link;
97ded4cd
TV
1326 HARD_REG_SET used_regs;
1327
1328 get_call_reg_set_usage (insn, &used_regs, call_used_reg_set);
15e35479
KH
1329
1330 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
97ded4cd 1331 if (TEST_HARD_REG_BIT (used_regs, r))
15e35479
KH
1332 {
1333 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
1334 reg_state[r].store_ruid = reload_combine_ruid;
1335 }
1336
1337 for (link = CALL_INSN_FUNCTION_USAGE (insn); link;
1338 link = XEXP (link, 1))
1339 {
e384e6b5
BS
1340 rtx setuse = XEXP (link, 0);
1341 rtx usage_rtx = XEXP (setuse, 0);
1342 if ((GET_CODE (setuse) == USE || GET_CODE (setuse) == CLOBBER)
1343 && REG_P (usage_rtx))
15e35479 1344 {
53d1bae9
RS
1345 unsigned int end_regno = END_REGNO (usage_rtx);
1346 for (unsigned int i = REGNO (usage_rtx); i < end_regno; ++i)
15e35479
KH
1347 if (GET_CODE (XEXP (link, 0)) == CLOBBER)
1348 {
1349 reg_state[i].use_index = RELOAD_COMBINE_MAX_USES;
1350 reg_state[i].store_ruid = reload_combine_ruid;
1351 }
1352 else
1353 reg_state[i].use_index = -1;
1354 }
1355 }
15e35479 1356 }
18c33e03 1357
57895947 1358 if (control_flow_insn && !ANY_RETURN_P (PATTERN (insn)))
15e35479
KH
1359 {
1360 /* Non-spill registers might be used at the call destination in
1361 some unknown fashion, so we have to mark the unknown use. */
1362 HARD_REG_SET *live;
1363
1364 if ((condjump_p (insn) || condjump_in_parallel_p (insn))
1365 && JUMP_LABEL (insn))
57895947
EB
1366 {
1367 if (ANY_RETURN_P (JUMP_LABEL (insn)))
1368 live = NULL;
1369 else
1370 live = &LABEL_LIVE (JUMP_LABEL (insn));
1371 }
15e35479
KH
1372 else
1373 live = &ever_live_at_start;
1374
57895947
EB
1375 if (live)
1376 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1377 if (TEST_HARD_REG_BIT (*live, r))
1378 reg_state[r].use_index = -1;
15e35479
KH
1379 }
1380
7ad93142
EB
1381 reload_combine_note_use (&PATTERN (insn), insn, reload_combine_ruid,
1382 NULL_RTX);
1383
15e35479
KH
1384 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1385 {
7ad93142 1386 if (REG_NOTE_KIND (note) == REG_INC && REG_P (XEXP (note, 0)))
15e35479
KH
1387 {
1388 int regno = REGNO (XEXP (note, 0));
15e35479 1389 reg_state[regno].store_ruid = reload_combine_ruid;
dc0d5a57 1390 reg_state[regno].real_store_ruid = reload_combine_ruid;
15e35479
KH
1391 reg_state[regno].use_index = -1;
1392 }
1393 }
1394 }
1395
1396 free (label_live);
1397}
1398
1399/* Check if DST is a register or a subreg of a register; if it is,
dc0d5a57
BS
1400 update store_ruid, real_store_ruid and use_index in the reg_state
1401 structure accordingly. Called via note_stores from reload_combine. */
15e35479
KH
1402
1403static void
7bc980e1 1404reload_combine_note_store (rtx dst, const_rtx set, void *data ATTRIBUTE_UNUSED)
15e35479
KH
1405{
1406 int regno = 0;
1407 int i;
ef4bddc2 1408 machine_mode mode = GET_MODE (dst);
15e35479
KH
1409
1410 if (GET_CODE (dst) == SUBREG)
1411 {
1412 regno = subreg_regno_offset (REGNO (SUBREG_REG (dst)),
1413 GET_MODE (SUBREG_REG (dst)),
1414 SUBREG_BYTE (dst),
1415 GET_MODE (dst));
1416 dst = SUBREG_REG (dst);
1417 }
12c2b0ad
JL
1418
1419 /* Some targets do argument pushes without adding REG_INC notes. */
1420
1421 if (MEM_P (dst))
1422 {
1423 dst = XEXP (dst, 0);
1424 if (GET_CODE (dst) == PRE_INC || GET_CODE (dst) == POST_INC
96676a5d
JJ
1425 || GET_CODE (dst) == PRE_DEC || GET_CODE (dst) == POST_DEC
1426 || GET_CODE (dst) == PRE_MODIFY || GET_CODE (dst) == POST_MODIFY)
12c2b0ad 1427 {
53d1bae9
RS
1428 unsigned int end_regno = END_REGNO (XEXP (dst, 0));
1429 for (unsigned int i = REGNO (XEXP (dst, 0)); i < end_regno; ++i)
12c2b0ad
JL
1430 {
1431 /* We could probably do better, but for now mark the register
1432 as used in an unknown fashion and set/clobbered at this
1433 insn. */
1434 reg_state[i].use_index = -1;
1435 reg_state[i].store_ruid = reload_combine_ruid;
1436 reg_state[i].real_store_ruid = reload_combine_ruid;
1437 }
1438 }
1439 else
1440 return;
1441 }
1442
f8cfc6aa 1443 if (!REG_P (dst))
15e35479
KH
1444 return;
1445 regno += REGNO (dst);
1446
1447 /* note_stores might have stripped a STRICT_LOW_PART, so we have to be
1448 careful with registers / register parts that are not full words.
46d096a3 1449 Similarly for ZERO_EXTRACT. */
dc0d5a57 1450 if (GET_CODE (SET_DEST (set)) == ZERO_EXTRACT
15e35479
KH
1451 || GET_CODE (SET_DEST (set)) == STRICT_LOW_PART)
1452 {
4edd6298 1453 for (i = end_hard_regno (mode, regno) - 1; i >= regno; i--)
15e35479
KH
1454 {
1455 reg_state[i].use_index = -1;
1456 reg_state[i].store_ruid = reload_combine_ruid;
dc0d5a57 1457 reg_state[i].real_store_ruid = reload_combine_ruid;
15e35479
KH
1458 }
1459 }
1460 else
1461 {
4edd6298 1462 for (i = end_hard_regno (mode, regno) - 1; i >= regno; i--)
15e35479
KH
1463 {
1464 reg_state[i].store_ruid = reload_combine_ruid;
dc0d5a57
BS
1465 if (GET_CODE (set) == SET)
1466 reg_state[i].real_store_ruid = reload_combine_ruid;
15e35479
KH
1467 reg_state[i].use_index = RELOAD_COMBINE_MAX_USES;
1468 }
1469 }
1470}
1471
1472/* XP points to a piece of rtl that has to be checked for any uses of
1473 registers.
1474 *XP is the pattern of INSN, or a part of it.
1475 Called from reload_combine, and recursively by itself. */
1476static void
f90af2e0 1477reload_combine_note_use (rtx *xp, rtx_insn *insn, int ruid, rtx containing_mem)
15e35479
KH
1478{
1479 rtx x = *xp;
1480 enum rtx_code code = x->code;
1481 const char *fmt;
1482 int i, j;
1483 rtx offset = const0_rtx; /* For the REG case below. */
1484
1485 switch (code)
1486 {
1487 case SET:
f8cfc6aa 1488 if (REG_P (SET_DEST (x)))
15e35479 1489 {
dc0d5a57 1490 reload_combine_note_use (&SET_SRC (x), insn, ruid, NULL_RTX);
15e35479
KH
1491 return;
1492 }
1493 break;
1494
1495 case USE:
1496 /* If this is the USE of a return value, we can't change it. */
f8cfc6aa 1497 if (REG_P (XEXP (x, 0)) && REG_FUNCTION_VALUE_P (XEXP (x, 0)))
15e35479 1498 {
53d1bae9 1499 /* Mark the return register as used in an unknown fashion. */
15e35479 1500 rtx reg = XEXP (x, 0);
53d1bae9
RS
1501 unsigned int end_regno = END_REGNO (reg);
1502 for (unsigned int regno = REGNO (reg); regno < end_regno; ++regno)
1503 reg_state[regno].use_index = -1;
15e35479
KH
1504 return;
1505 }
1506 break;
1507
1508 case CLOBBER:
f8cfc6aa 1509 if (REG_P (SET_DEST (x)))
15e35479
KH
1510 {
1511 /* No spurious CLOBBERs of pseudo registers may remain. */
e16acfcd 1512 gcc_assert (REGNO (SET_DEST (x)) < FIRST_PSEUDO_REGISTER);
15e35479
KH
1513 return;
1514 }
1515 break;
1516
1517 case PLUS:
1518 /* We are interested in (plus (reg) (const_int)) . */
f8cfc6aa 1519 if (!REG_P (XEXP (x, 0))
481683e1 1520 || !CONST_INT_P (XEXP (x, 1)))
15e35479
KH
1521 break;
1522 offset = XEXP (x, 1);
1523 x = XEXP (x, 0);
1524 /* Fall through. */
1525 case REG:
1526 {
1527 int regno = REGNO (x);
1528 int use_index;
1529 int nregs;
1530
1531 /* No spurious USEs of pseudo registers may remain. */
e16acfcd 1532 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
15e35479 1533
dc8afb70 1534 nregs = REG_NREGS (x);
15e35479
KH
1535
1536 /* We can't substitute into multi-hard-reg uses. */
1537 if (nregs > 1)
1538 {
1539 while (--nregs >= 0)
1540 reg_state[regno + nregs].use_index = -1;
1541 return;
1542 }
1543
08bd6876
BS
1544 /* We may be called to update uses in previously seen insns.
1545 Don't add uses beyond the last store we saw. */
1546 if (ruid < reg_state[regno].store_ruid)
1547 return;
1548
15e35479
KH
1549 /* If this register is already used in some unknown fashion, we
1550 can't do anything.
1551 If we decrement the index from zero to -1, we can't store more
1552 uses, so this register becomes used in an unknown fashion. */
1553 use_index = --reg_state[regno].use_index;
1554 if (use_index < 0)
1555 return;
1556
dc0d5a57 1557 if (use_index == RELOAD_COMBINE_MAX_USES - 1)
15e35479
KH
1558 {
1559 /* This is the first use of this register we have seen since we
1560 marked it as dead. */
1561 reg_state[regno].offset = offset;
dc0d5a57
BS
1562 reg_state[regno].all_offsets_match = true;
1563 reg_state[regno].use_ruid = ruid;
15e35479 1564 }
b1d5eee8
BS
1565 else
1566 {
1567 if (reg_state[regno].use_ruid > ruid)
1568 reg_state[regno].use_ruid = ruid;
1569
1570 if (! rtx_equal_p (offset, reg_state[regno].offset))
1571 reg_state[regno].all_offsets_match = false;
1572 }
dc0d5a57 1573
15e35479 1574 reg_state[regno].reg_use[use_index].insn = insn;
dc0d5a57
BS
1575 reg_state[regno].reg_use[use_index].ruid = ruid;
1576 reg_state[regno].reg_use[use_index].containing_mem = containing_mem;
15e35479
KH
1577 reg_state[regno].reg_use[use_index].usep = xp;
1578 return;
1579 }
1580
dc0d5a57
BS
1581 case MEM:
1582 containing_mem = x;
1583 break;
1584
15e35479
KH
1585 default:
1586 break;
1587 }
1588
1589 /* Recursively process the components of X. */
1590 fmt = GET_RTX_FORMAT (code);
1591 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1592 {
1593 if (fmt[i] == 'e')
dc0d5a57 1594 reload_combine_note_use (&XEXP (x, i), insn, ruid, containing_mem);
15e35479
KH
1595 else if (fmt[i] == 'E')
1596 {
1597 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
dc0d5a57
BS
1598 reload_combine_note_use (&XVECEXP (x, i, j), insn, ruid,
1599 containing_mem);
15e35479
KH
1600 }
1601 }
1602}
1603\f
1604/* See if we can reduce the cost of a constant by replacing a move
1605 with an add. We track situations in which a register is set to a
1606 constant or to a register plus a constant. */
1607/* We cannot do our optimization across labels. Invalidating all the
1608 information about register contents we have would be costly, so we
1609 use move2add_last_label_luid to note where the label is and then
1610 later disable any optimization that would cross it.
7beb0596
JZ
1611 reg_offset[n] / reg_base_reg[n] / reg_symbol_ref[n] / reg_mode[n]
1612 are only valid if reg_set_luid[n] is greater than
7894bc6b
JR
1613 move2add_last_label_luid.
1614 For a set that established a new (potential) base register with
1615 non-constant value, we use move2add_luid from the place where the
1616 setting insn is encountered; registers based off that base then
1617 get the same reg_set_luid. Constants all get
1618 move2add_last_label_luid + 1 as their reg_set_luid. */
15e35479
KH
1619static int reg_set_luid[FIRST_PSEUDO_REGISTER];
1620
1621/* If reg_base_reg[n] is negative, register n has been set to
7beb0596 1622 reg_offset[n] or reg_symbol_ref[n] + reg_offset[n] in mode reg_mode[n].
15e35479
KH
1623 If reg_base_reg[n] is non-negative, register n has been set to the
1624 sum of reg_offset[n] and the value of register reg_base_reg[n]
7894bc6b
JR
1625 before reg_set_luid[n], calculated in mode reg_mode[n] .
1626 For multi-hard-register registers, all but the first one are
1627 recorded as BLKmode in reg_mode. Setting reg_mode to VOIDmode
1628 marks it as invalid. */
15e35479
KH
1629static HOST_WIDE_INT reg_offset[FIRST_PSEUDO_REGISTER];
1630static int reg_base_reg[FIRST_PSEUDO_REGISTER];
7beb0596 1631static rtx reg_symbol_ref[FIRST_PSEUDO_REGISTER];
ef4bddc2 1632static machine_mode reg_mode[FIRST_PSEUDO_REGISTER];
15e35479
KH
1633
1634/* move2add_luid is linearly increased while scanning the instructions
1635 from first to last. It is used to set reg_set_luid in
1636 reload_cse_move2add and move2add_note_store. */
1637static int move2add_luid;
1638
1639/* move2add_last_label_luid is set whenever a label is found. Labels
1640 invalidate all previously collected reg_offset data. */
1641static int move2add_last_label_luid;
1642
1643/* ??? We don't know how zero / sign extension is handled, hence we
1644 can't go from a narrower to a wider mode. */
1645#define MODES_OK_FOR_MOVE2ADD(OUTMODE, INMODE) \
1646 (GET_MODE_SIZE (OUTMODE) == GET_MODE_SIZE (INMODE) \
1647 || (GET_MODE_SIZE (OUTMODE) <= GET_MODE_SIZE (INMODE) \
d0edd768 1648 && TRULY_NOOP_TRUNCATION_MODES_P (OUTMODE, INMODE)))
15e35479 1649
7894bc6b
JR
1650/* Record that REG is being set to a value with the mode of REG. */
1651
1652static void
1653move2add_record_mode (rtx reg)
1654{
1655 int regno, nregs;
ef4bddc2 1656 machine_mode mode = GET_MODE (reg);
7894bc6b
JR
1657
1658 if (GET_CODE (reg) == SUBREG)
1659 {
1660 regno = subreg_regno (reg);
1661 nregs = subreg_nregs (reg);
1662 }
1663 else if (REG_P (reg))
1664 {
1665 regno = REGNO (reg);
dc8afb70 1666 nregs = REG_NREGS (reg);
7894bc6b
JR
1667 }
1668 else
1669 gcc_unreachable ();
1670 for (int i = nregs - 1; i > 0; i--)
1671 reg_mode[regno + i] = BLKmode;
1672 reg_mode[regno] = mode;
1673}
1674
1675/* Record that REG is being set to the sum of SYM and OFF. */
1676
1677static void
1678move2add_record_sym_value (rtx reg, rtx sym, rtx off)
1679{
1680 int regno = REGNO (reg);
1681
1682 move2add_record_mode (reg);
1683 reg_set_luid[regno] = move2add_luid;
1684 reg_base_reg[regno] = -1;
1685 reg_symbol_ref[regno] = sym;
1686 reg_offset[regno] = INTVAL (off);
1687}
1688
1689/* Check if REGNO contains a valid value in MODE. */
1690
1691static bool
1e047eed 1692move2add_valid_value_p (int regno, scalar_int_mode mode)
7894bc6b 1693{
ca035367 1694 if (reg_set_luid[regno] <= move2add_last_label_luid)
7894bc6b
JR
1695 return false;
1696
ca035367
JR
1697 if (mode != reg_mode[regno])
1698 {
6b9c3dec
RS
1699 scalar_int_mode old_mode;
1700 if (!is_a <scalar_int_mode> (reg_mode[regno], &old_mode)
1701 || !MODES_OK_FOR_MOVE2ADD (mode, old_mode))
ca035367
JR
1702 return false;
1703 /* The value loaded into regno in reg_mode[regno] is also valid in
1704 mode after truncation only if (REG:mode regno) is the lowpart of
1705 (REG:reg_mode[regno] regno). Now, for big endian, the starting
1706 regno of the lowpart might be different. */
6b9c3dec
RS
1707 int s_off = subreg_lowpart_offset (mode, old_mode);
1708 s_off = subreg_regno_offset (regno, old_mode, s_off, mode);
ca035367
JR
1709 if (s_off != 0)
1710 /* We could in principle adjust regno, check reg_mode[regno] to be
1711 BLKmode, and return s_off to the caller (vs. -1 for failure),
1712 but we currently have no callers that could make use of this
1713 information. */
1714 return false;
1715 }
1716
4edd6298
RS
1717 for (int i = end_hard_regno (mode, regno) - 1; i > regno; i--)
1718 if (reg_mode[i] != BLKmode)
7894bc6b
JR
1719 return false;
1720 return true;
1721}
1722
1e047eed
RS
1723/* This function is called with INSN that sets REG (of mode MODE)
1724 to (SYM + OFF), while REG is known to already have value (SYM + offset).
7beb0596
JZ
1725 This function tries to change INSN into an add instruction
1726 (set (REG) (plus (REG) (OFF - offset))) using the known value.
dc0d5a57
BS
1727 It also updates the information about REG's known value.
1728 Return true if we made a change. */
7beb0596 1729
dc0d5a57 1730static bool
1e047eed
RS
1731move2add_use_add2_insn (scalar_int_mode mode, rtx reg, rtx sym, rtx off,
1732 rtx_insn *insn)
7beb0596
JZ
1733{
1734 rtx pat = PATTERN (insn);
1735 rtx src = SET_SRC (pat);
1736 int regno = REGNO (reg);
1e047eed 1737 rtx new_src = gen_int_mode (UINTVAL (off) - reg_offset[regno], mode);
7beb0596 1738 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
dc0d5a57 1739 bool changed = false;
7beb0596
JZ
1740
1741 /* (set (reg) (plus (reg) (const_int 0))) is not canonical;
1742 use (set (reg) (reg)) instead.
1743 We don't delete this insn, nor do we convert it into a
1744 note, to avoid losing register notes or the return
1745 value flag. jump2 already knows how to get rid of
1746 no-op moves. */
1747 if (new_src == const0_rtx)
1748 {
1749 /* If the constants are different, this is a
1750 truncation, that, if turned into (set (reg)
1751 (reg)), would be discarded. Maybe we should
1752 try a truncMN pattern? */
1753 if (INTVAL (off) == reg_offset [regno])
dc0d5a57 1754 changed = validate_change (insn, &SET_SRC (pat), reg, 0);
7beb0596 1755 }
22939744 1756 else
7beb0596 1757 {
22939744 1758 struct full_rtx_costs oldcst, newcst;
1e047eed 1759 rtx tem = gen_rtx_PLUS (mode, reg, new_src);
22939744 1760
d51102f3 1761 get_full_set_rtx_cost (pat, &oldcst);
22939744 1762 SET_SRC (pat) = tem;
d51102f3 1763 get_full_set_rtx_cost (pat, &newcst);
22939744
BS
1764 SET_SRC (pat) = src;
1765
1766 if (costs_lt_p (&newcst, &oldcst, speed)
1767 && have_add2_insn (reg, new_src))
1768 changed = validate_change (insn, &SET_SRC (pat), tem, 0);
1e047eed 1769 else if (sym == NULL_RTX && mode != BImode)
7beb0596 1770 {
1e047eed
RS
1771 scalar_int_mode narrow_mode;
1772 FOR_EACH_MODE_UNTIL (narrow_mode, mode)
7beb0596 1773 {
22939744
BS
1774 if (have_insn_for (STRICT_LOW_PART, narrow_mode)
1775 && ((reg_offset[regno] & ~GET_MODE_MASK (narrow_mode))
1776 == (INTVAL (off) & ~GET_MODE_MASK (narrow_mode))))
1777 {
b49eefa5 1778 rtx narrow_reg = gen_lowpart_common (narrow_mode, reg);
22939744
BS
1779 rtx narrow_src = gen_int_mode (INTVAL (off),
1780 narrow_mode);
1781 rtx new_set
f7df4a84 1782 = gen_rtx_SET (gen_rtx_STRICT_LOW_PART (VOIDmode,
22939744
BS
1783 narrow_reg),
1784 narrow_src);
a0f37b26
AS
1785 get_full_set_rtx_cost (new_set, &newcst);
1786 if (costs_lt_p (&newcst, &oldcst, speed))
1787 {
1788 changed = validate_change (insn, &PATTERN (insn),
1789 new_set, 0);
1790 if (changed)
1791 break;
1792 }
22939744 1793 }
7beb0596
JZ
1794 }
1795 }
1796 }
7894bc6b 1797 move2add_record_sym_value (reg, sym, off);
dc0d5a57 1798 return changed;
7beb0596
JZ
1799}
1800
1801
1e047eed
RS
1802/* This function is called with INSN that sets REG (of mode MODE) to
1803 (SYM + OFF), but REG doesn't have known value (SYM + offset). This
1804 function tries to find another register which is known to already have
7beb0596
JZ
1805 value (SYM + offset) and change INSN into an add instruction
1806 (set (REG) (plus (the found register) (OFF - offset))) if such
1807 a register is found. It also updates the information about
dc0d5a57
BS
1808 REG's known value.
1809 Return true iff we made a change. */
7beb0596 1810
dc0d5a57 1811static bool
1e047eed
RS
1812move2add_use_add3_insn (scalar_int_mode mode, rtx reg, rtx sym, rtx off,
1813 rtx_insn *insn)
7beb0596
JZ
1814{
1815 rtx pat = PATTERN (insn);
1816 rtx src = SET_SRC (pat);
1817 int regno = REGNO (reg);
5676e87d 1818 int min_regno = 0;
7beb0596
JZ
1819 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
1820 int i;
dc0d5a57 1821 bool changed = false;
22939744
BS
1822 struct full_rtx_costs oldcst, newcst, mincst;
1823 rtx plus_expr;
1824
1825 init_costs_to_max (&mincst);
d51102f3 1826 get_full_set_rtx_cost (pat, &oldcst);
22939744
BS
1827
1828 plus_expr = gen_rtx_PLUS (GET_MODE (reg), reg, const0_rtx);
1829 SET_SRC (pat) = plus_expr;
7beb0596
JZ
1830
1831 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1e047eed 1832 if (move2add_valid_value_p (i, mode)
7beb0596
JZ
1833 && reg_base_reg[i] < 0
1834 && reg_symbol_ref[i] != NULL_RTX
1835 && rtx_equal_p (sym, reg_symbol_ref[i]))
1836 {
e15eb172 1837 rtx new_src = gen_int_mode (UINTVAL (off) - reg_offset[i],
7beb0596
JZ
1838 GET_MODE (reg));
1839 /* (set (reg) (plus (reg) (const_int 0))) is not canonical;
1840 use (set (reg) (reg)) instead.
1841 We don't delete this insn, nor do we convert it into a
1842 note, to avoid losing register notes or the return
1843 value flag. jump2 already knows how to get rid of
1844 no-op moves. */
1845 if (new_src == const0_rtx)
1846 {
22939744 1847 init_costs_to_zero (&mincst);
7beb0596
JZ
1848 min_regno = i;
1849 break;
1850 }
1851 else
1852 {
22939744 1853 XEXP (plus_expr, 1) = new_src;
d51102f3 1854 get_full_set_rtx_cost (pat, &newcst);
22939744
BS
1855
1856 if (costs_lt_p (&newcst, &mincst, speed))
7beb0596 1857 {
22939744 1858 mincst = newcst;
7beb0596
JZ
1859 min_regno = i;
1860 }
1861 }
1862 }
22939744 1863 SET_SRC (pat) = src;
7beb0596 1864
22939744 1865 if (costs_lt_p (&mincst, &oldcst, speed))
7beb0596
JZ
1866 {
1867 rtx tem;
1868
1869 tem = gen_rtx_REG (GET_MODE (reg), min_regno);
1870 if (i != min_regno)
1871 {
e15eb172 1872 rtx new_src = gen_int_mode (UINTVAL (off) - reg_offset[min_regno],
7beb0596
JZ
1873 GET_MODE (reg));
1874 tem = gen_rtx_PLUS (GET_MODE (reg), tem, new_src);
1875 }
dc0d5a57
BS
1876 if (validate_change (insn, &SET_SRC (pat), tem, 0))
1877 changed = true;
7beb0596
JZ
1878 }
1879 reg_set_luid[regno] = move2add_luid;
7894bc6b 1880 move2add_record_sym_value (reg, sym, off);
dc0d5a57 1881 return changed;
7beb0596
JZ
1882}
1883
dc0d5a57
BS
1884/* Convert move insns with constant inputs to additions if they are cheaper.
1885 Return true if any changes were made. */
1886static bool
f90af2e0 1887reload_cse_move2add (rtx_insn *first)
15e35479
KH
1888{
1889 int i;
f90af2e0 1890 rtx_insn *insn;
dc0d5a57 1891 bool changed = false;
15e35479
KH
1892
1893 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
7beb0596
JZ
1894 {
1895 reg_set_luid[i] = 0;
1896 reg_offset[i] = 0;
1897 reg_base_reg[i] = 0;
1898 reg_symbol_ref[i] = NULL_RTX;
1899 reg_mode[i] = VOIDmode;
1900 }
15e35479
KH
1901
1902 move2add_last_label_luid = 0;
1903 move2add_luid = 2;
1904 for (insn = first; insn; insn = NEXT_INSN (insn), move2add_luid++)
1905 {
1906 rtx pat, note;
1907
4b4bf941 1908 if (LABEL_P (insn))
15e35479
KH
1909 {
1910 move2add_last_label_luid = move2add_luid;
1911 /* We're going to increment move2add_luid twice after a
1912 label, so that we can use move2add_last_label_luid + 1 as
1913 the luid for constants. */
1914 move2add_luid++;
1915 continue;
1916 }
1917 if (! INSN_P (insn))
1918 continue;
1919 pat = PATTERN (insn);
1920 /* For simplicity, we only perform this optimization on
1921 straightforward SETs. */
1e047eed 1922 scalar_int_mode mode;
15e35479 1923 if (GET_CODE (pat) == SET
1e047eed
RS
1924 && REG_P (SET_DEST (pat))
1925 && is_a <scalar_int_mode> (GET_MODE (SET_DEST (pat)), &mode))
15e35479
KH
1926 {
1927 rtx reg = SET_DEST (pat);
1928 int regno = REGNO (reg);
1929 rtx src = SET_SRC (pat);
1930
1931 /* Check if we have valid information on the contents of this
1932 register in the mode of REG. */
1e047eed 1933 if (move2add_valid_value_p (regno, mode)
6fb5fa3c 1934 && dbg_cnt (cse2_move2add))
15e35479
KH
1935 {
1936 /* Try to transform (set (REGX) (CONST_INT A))
1937 ...
1938 (set (REGX) (CONST_INT B))
1939 to
1940 (set (REGX) (CONST_INT A))
1941 ...
1942 (set (REGX) (plus (REGX) (CONST_INT B-A)))
1943 or
1944 (set (REGX) (CONST_INT A))
1945 ...
1946 (set (STRICT_LOW_PART (REGX)) (CONST_INT B))
1947 */
1948
7beb0596
JZ
1949 if (CONST_INT_P (src)
1950 && reg_base_reg[regno] < 0
1951 && reg_symbol_ref[regno] == NULL_RTX)
15e35479 1952 {
1e047eed
RS
1953 changed |= move2add_use_add2_insn (mode, reg, NULL_RTX,
1954 src, insn);
15e35479
KH
1955 continue;
1956 }
1957
1958 /* Try to transform (set (REGX) (REGY))
1959 (set (REGX) (PLUS (REGX) (CONST_INT A)))
1960 ...
1961 (set (REGX) (REGY))
1962 (set (REGX) (PLUS (REGX) (CONST_INT B)))
1963 to
1964 (set (REGX) (REGY))
1965 (set (REGX) (PLUS (REGX) (CONST_INT A)))
1966 ...
1967 (set (REGX) (plus (REGX) (CONST_INT B-A))) */
f8cfc6aa 1968 else if (REG_P (src)
15e35479
KH
1969 && reg_set_luid[regno] == reg_set_luid[REGNO (src)]
1970 && reg_base_reg[regno] == reg_base_reg[REGNO (src)]
1e047eed 1971 && move2add_valid_value_p (REGNO (src), mode))
15e35479 1972 {
f90af2e0 1973 rtx_insn *next = next_nonnote_nondebug_insn (insn);
15e35479
KH
1974 rtx set = NULL_RTX;
1975 if (next)
1976 set = single_set (next);
1977 if (set
1978 && SET_DEST (set) == reg
1979 && GET_CODE (SET_SRC (set)) == PLUS
1980 && XEXP (SET_SRC (set), 0) == reg
481683e1 1981 && CONST_INT_P (XEXP (SET_SRC (set), 1)))
15e35479
KH
1982 {
1983 rtx src3 = XEXP (SET_SRC (set), 1);
e15eb172 1984 unsigned HOST_WIDE_INT added_offset = UINTVAL (src3);
15e35479
KH
1985 HOST_WIDE_INT base_offset = reg_offset[REGNO (src)];
1986 HOST_WIDE_INT regno_offset = reg_offset[regno];
1987 rtx new_src =
bb80db7b
KH
1988 gen_int_mode (added_offset
1989 + base_offset
1990 - regno_offset,
1e047eed 1991 mode);
f40751dd
JH
1992 bool success = false;
1993 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
15e35479
KH
1994
1995 if (new_src == const0_rtx)
1996 /* See above why we create (set (reg) (reg)) here. */
1997 success
1998 = validate_change (next, &SET_SRC (set), reg, 0);
22939744 1999 else
15e35479 2000 {
22939744
BS
2001 rtx old_src = SET_SRC (set);
2002 struct full_rtx_costs oldcst, newcst;
1e047eed 2003 rtx tem = gen_rtx_PLUS (mode, reg, new_src);
22939744 2004
d51102f3 2005 get_full_set_rtx_cost (set, &oldcst);
22939744 2006 SET_SRC (set) = tem;
1e047eed 2007 get_full_set_src_cost (tem, mode, &newcst);
22939744
BS
2008 SET_SRC (set) = old_src;
2009 costs_add_n_insns (&oldcst, 1);
2010
2011 if (costs_lt_p (&newcst, &oldcst, speed)
2012 && have_add2_insn (reg, new_src))
2013 {
f7df4a84 2014 rtx newpat = gen_rtx_SET (reg, tem);
22939744
BS
2015 success
2016 = validate_change (next, &PATTERN (next),
2017 newpat, 0);
2018 }
15e35479
KH
2019 }
2020 if (success)
2021 delete_insn (insn);
dc0d5a57 2022 changed |= success;
15e35479 2023 insn = next;
7894bc6b
JR
2024 move2add_record_mode (reg);
2025 reg_offset[regno]
2026 = trunc_int_for_mode (added_offset + base_offset,
1e047eed 2027 mode);
15e35479
KH
2028 continue;
2029 }
2030 }
2031 }
7beb0596
JZ
2032
2033 /* Try to transform
2034 (set (REGX) (CONST (PLUS (SYMBOL_REF) (CONST_INT A))))
2035 ...
2036 (set (REGY) (CONST (PLUS (SYMBOL_REF) (CONST_INT B))))
2037 to
2038 (set (REGX) (CONST (PLUS (SYMBOL_REF) (CONST_INT A))))
2039 ...
2040 (set (REGY) (CONST (PLUS (REGX) (CONST_INT B-A)))) */
2041 if ((GET_CODE (src) == SYMBOL_REF
2042 || (GET_CODE (src) == CONST
2043 && GET_CODE (XEXP (src, 0)) == PLUS
2044 && GET_CODE (XEXP (XEXP (src, 0), 0)) == SYMBOL_REF
2045 && CONST_INT_P (XEXP (XEXP (src, 0), 1))))
2046 && dbg_cnt (cse2_move2add))
2047 {
2048 rtx sym, off;
2049
2050 if (GET_CODE (src) == SYMBOL_REF)
2051 {
2052 sym = src;
2053 off = const0_rtx;
2054 }
2055 else
2056 {
2057 sym = XEXP (XEXP (src, 0), 0);
2058 off = XEXP (XEXP (src, 0), 1);
2059 }
2060
2061 /* If the reg already contains the value which is sum of
2062 sym and some constant value, we can use an add2 insn. */
1e047eed 2063 if (move2add_valid_value_p (regno, mode)
7beb0596
JZ
2064 && reg_base_reg[regno] < 0
2065 && reg_symbol_ref[regno] != NULL_RTX
2066 && rtx_equal_p (sym, reg_symbol_ref[regno]))
1e047eed 2067 changed |= move2add_use_add2_insn (mode, reg, sym, off, insn);
7beb0596
JZ
2068
2069 /* Otherwise, we have to find a register whose value is sum
2070 of sym and some constant value. */
2071 else
1e047eed 2072 changed |= move2add_use_add3_insn (mode, reg, sym, off, insn);
7beb0596
JZ
2073
2074 continue;
2075 }
15e35479
KH
2076 }
2077
2078 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2079 {
2080 if (REG_NOTE_KIND (note) == REG_INC
f8cfc6aa 2081 && REG_P (XEXP (note, 0)))
15e35479
KH
2082 {
2083 /* Reset the information about this register. */
2084 int regno = REGNO (XEXP (note, 0));
2085 if (regno < FIRST_PSEUDO_REGISTER)
7894bc6b
JR
2086 {
2087 move2add_record_mode (XEXP (note, 0));
2088 reg_mode[regno] = VOIDmode;
2089 }
15e35479
KH
2090 }
2091 }
7beb0596 2092 note_stores (PATTERN (insn), move2add_note_store, insn);
15e35479
KH
2093
2094 /* If INSN is a conditional branch, we try to extract an
2095 implicit set out of it. */
c4cdb8e1 2096 if (any_condjump_p (insn))
15e35479
KH
2097 {
2098 rtx cnd = fis_get_condition (insn);
2099
2100 if (cnd != NULL_RTX
2101 && GET_CODE (cnd) == NE
f8cfc6aa 2102 && REG_P (XEXP (cnd, 0))
c4cdb8e1 2103 && !reg_set_p (XEXP (cnd, 0), insn)
15e35479
KH
2104 /* The following two checks, which are also in
2105 move2add_note_store, are intended to reduce the
2106 number of calls to gen_rtx_SET to avoid memory
2107 allocation if possible. */
2108 && SCALAR_INT_MODE_P (GET_MODE (XEXP (cnd, 0)))
dc8afb70 2109 && REG_NREGS (XEXP (cnd, 0)) == 1
481683e1 2110 && CONST_INT_P (XEXP (cnd, 1)))
15e35479
KH
2111 {
2112 rtx implicit_set =
f7df4a84 2113 gen_rtx_SET (XEXP (cnd, 0), XEXP (cnd, 1));
7beb0596 2114 move2add_note_store (SET_DEST (implicit_set), implicit_set, insn);
15e35479
KH
2115 }
2116 }
2117
2118 /* If this is a CALL_INSN, all call used registers are stored with
2119 unknown values. */
4b4bf941 2120 if (CALL_P (insn))
15e35479 2121 {
7a708f68
UB
2122 rtx link;
2123
15e35479
KH
2124 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
2125 {
2126 if (call_used_regs[i])
2127 /* Reset the information about this register. */
7894bc6b 2128 reg_mode[i] = VOIDmode;
15e35479 2129 }
7a708f68
UB
2130
2131 for (link = CALL_INSN_FUNCTION_USAGE (insn); link;
2132 link = XEXP (link, 1))
2133 {
2134 rtx setuse = XEXP (link, 0);
2135 rtx usage_rtx = XEXP (setuse, 0);
2136 if (GET_CODE (setuse) == CLOBBER
2137 && REG_P (usage_rtx))
2138 {
2139 unsigned int end_regno = END_REGNO (usage_rtx);
2140 for (unsigned int r = REGNO (usage_rtx); r < end_regno; ++r)
2141 /* Reset the information about this register. */
2142 reg_mode[r] = VOIDmode;
2143 }
2144 }
15e35479
KH
2145 }
2146 }
dc0d5a57 2147 return changed;
15e35479
KH
2148}
2149
7beb0596
JZ
2150/* SET is a SET or CLOBBER that sets DST. DATA is the insn which
2151 contains SET.
15e35479
KH
2152 Update reg_set_luid, reg_offset and reg_base_reg accordingly.
2153 Called from reload_cse_move2add via note_stores. */
2154
2155static void
7beb0596 2156move2add_note_store (rtx dst, const_rtx set, void *data)
15e35479 2157{
f90af2e0 2158 rtx_insn *insn = (rtx_insn *) data;
15e35479 2159 unsigned int regno = 0;
b0567726 2160 scalar_int_mode mode;
15e35479 2161
15e35479
KH
2162 /* Some targets do argument pushes without adding REG_INC notes. */
2163
3c0cb5de 2164 if (MEM_P (dst))
15e35479
KH
2165 {
2166 dst = XEXP (dst, 0);
2167 if (GET_CODE (dst) == PRE_INC || GET_CODE (dst) == POST_INC
2168 || GET_CODE (dst) == PRE_DEC || GET_CODE (dst) == POST_DEC)
7894bc6b 2169 reg_mode[REGNO (XEXP (dst, 0))] = VOIDmode;
15e35479
KH
2170 return;
2171 }
15e35479 2172
7894bc6b
JR
2173 if (GET_CODE (dst) == SUBREG)
2174 regno = subreg_regno (dst);
2175 else if (REG_P (dst))
2176 regno = REGNO (dst);
2177 else
2178 return;
15e35479 2179
b0567726
RS
2180 if (!is_a <scalar_int_mode> (GET_MODE (dst), &mode))
2181 goto invalidate;
2182
2183 if (GET_CODE (set) == SET)
7beb0596
JZ
2184 {
2185 rtx note, sym = NULL_RTX;
7894bc6b 2186 rtx off;
7beb0596
JZ
2187
2188 note = find_reg_equal_equiv_note (insn);
2189 if (note && GET_CODE (XEXP (note, 0)) == SYMBOL_REF)
2190 {
2191 sym = XEXP (note, 0);
7894bc6b 2192 off = const0_rtx;
7beb0596
JZ
2193 }
2194 else if (note && GET_CODE (XEXP (note, 0)) == CONST
2195 && GET_CODE (XEXP (XEXP (note, 0), 0)) == PLUS
2196 && GET_CODE (XEXP (XEXP (XEXP (note, 0), 0), 0)) == SYMBOL_REF
2197 && CONST_INT_P (XEXP (XEXP (XEXP (note, 0), 0), 1)))
2198 {
2199 sym = XEXP (XEXP (XEXP (note, 0), 0), 0);
7894bc6b 2200 off = XEXP (XEXP (XEXP (note, 0), 0), 1);
7beb0596
JZ
2201 }
2202
2203 if (sym != NULL_RTX)
2204 {
7894bc6b 2205 move2add_record_sym_value (dst, sym, off);
7beb0596
JZ
2206 return;
2207 }
2208 }
2209
b0567726 2210 if (GET_CODE (set) == SET
15e35479 2211 && GET_CODE (SET_DEST (set)) != ZERO_EXTRACT
15e35479
KH
2212 && GET_CODE (SET_DEST (set)) != STRICT_LOW_PART)
2213 {
2214 rtx src = SET_SRC (set);
2215 rtx base_reg;
e15eb172 2216 unsigned HOST_WIDE_INT offset;
15e35479 2217 int base_regno;
15e35479
KH
2218
2219 switch (GET_CODE (src))
2220 {
2221 case PLUS:
f8cfc6aa 2222 if (REG_P (XEXP (src, 0)))
15e35479
KH
2223 {
2224 base_reg = XEXP (src, 0);
2225
481683e1 2226 if (CONST_INT_P (XEXP (src, 1)))
e15eb172 2227 offset = UINTVAL (XEXP (src, 1));
f8cfc6aa 2228 else if (REG_P (XEXP (src, 1))
7894bc6b 2229 && move2add_valid_value_p (REGNO (XEXP (src, 1)), mode))
15e35479 2230 {
27d5e204
CLT
2231 if (reg_base_reg[REGNO (XEXP (src, 1))] < 0
2232 && reg_symbol_ref[REGNO (XEXP (src, 1))] == NULL_RTX)
15e35479
KH
2233 offset = reg_offset[REGNO (XEXP (src, 1))];
2234 /* Maybe the first register is known to be a
2235 constant. */
7894bc6b 2236 else if (move2add_valid_value_p (REGNO (base_reg), mode)
27d5e204
CLT
2237 && reg_base_reg[REGNO (base_reg)] < 0
2238 && reg_symbol_ref[REGNO (base_reg)] == NULL_RTX)
15e35479
KH
2239 {
2240 offset = reg_offset[REGNO (base_reg)];
2241 base_reg = XEXP (src, 1);
2242 }
2243 else
2244 goto invalidate;
2245 }
2246 else
2247 goto invalidate;
2248
2249 break;
2250 }
2251
2252 goto invalidate;
2253
2254 case REG:
2255 base_reg = src;
2256 offset = 0;
2257 break;
2258
2259 case CONST_INT:
2260 /* Start tracking the register as a constant. */
2261 reg_base_reg[regno] = -1;
7beb0596 2262 reg_symbol_ref[regno] = NULL_RTX;
15e35479
KH
2263 reg_offset[regno] = INTVAL (SET_SRC (set));
2264 /* We assign the same luid to all registers set to constants. */
2265 reg_set_luid[regno] = move2add_last_label_luid + 1;
7894bc6b 2266 move2add_record_mode (dst);
15e35479
KH
2267 return;
2268
2269 default:
7894bc6b 2270 goto invalidate;
15e35479
KH
2271 }
2272
2273 base_regno = REGNO (base_reg);
2274 /* If information about the base register is not valid, set it
2275 up as a new base register, pretending its value is known
2276 starting from the current insn. */
7894bc6b 2277 if (!move2add_valid_value_p (base_regno, mode))
15e35479
KH
2278 {
2279 reg_base_reg[base_regno] = base_regno;
7beb0596 2280 reg_symbol_ref[base_regno] = NULL_RTX;
15e35479
KH
2281 reg_offset[base_regno] = 0;
2282 reg_set_luid[base_regno] = move2add_luid;
7894bc6b
JR
2283 gcc_assert (GET_MODE (base_reg) == mode);
2284 move2add_record_mode (base_reg);
15e35479 2285 }
15e35479
KH
2286
2287 /* Copy base information from our base register. */
2288 reg_set_luid[regno] = reg_set_luid[base_regno];
2289 reg_base_reg[regno] = reg_base_reg[base_regno];
7beb0596 2290 reg_symbol_ref[regno] = reg_symbol_ref[base_regno];
15e35479
KH
2291
2292 /* Compute the sum of the offsets or constants. */
7894bc6b
JR
2293 reg_offset[regno]
2294 = trunc_int_for_mode (offset + reg_offset[base_regno], mode);
2295
2296 move2add_record_mode (dst);
15e35479
KH
2297 }
2298 else
2299 {
7894bc6b
JR
2300 invalidate:
2301 /* Invalidate the contents of the register. */
2302 move2add_record_mode (dst);
2303 reg_mode[regno] = VOIDmode;
15e35479
KH
2304 }
2305}
ef330312 2306\f
27a4cd48
DM
2307namespace {
2308
2309const pass_data pass_data_postreload_cse =
ef330312 2310{
27a4cd48
DM
2311 RTL_PASS, /* type */
2312 "postreload", /* name */
2313 OPTGROUP_NONE, /* optinfo_flags */
27a4cd48
DM
2314 TV_RELOAD_CSE_REGS, /* tv_id */
2315 0, /* properties_required */
2316 0, /* properties_provided */
2317 0, /* properties_destroyed */
2318 0, /* todo_flags_start */
3bea341f 2319 TODO_df_finish, /* todo_flags_finish */
ef330312 2320};
27a4cd48
DM
2321
2322class pass_postreload_cse : public rtl_opt_pass
2323{
2324public:
c3284718
RS
2325 pass_postreload_cse (gcc::context *ctxt)
2326 : rtl_opt_pass (pass_data_postreload_cse, ctxt)
27a4cd48
DM
2327 {}
2328
2329 /* opt_pass methods: */
1a3d085c
TS
2330 virtual bool gate (function *) { return (optimize > 0 && reload_completed); }
2331
be55bfe6 2332 virtual unsigned int execute (function *);
27a4cd48
DM
2333
2334}; // class pass_postreload_cse
2335
be55bfe6
TS
2336unsigned int
2337pass_postreload_cse::execute (function *fun)
2338{
2339 if (!dbg_cnt (postreload_cse))
2340 return 0;
2341
2342 /* Do a very simple CSE pass over just the hard registers. */
2343 reload_cse_regs (get_insns ());
2344 /* Reload_cse_regs can eliminate potentially-trapping MEMs.
2345 Remove any EH edges associated with them. */
2346 if (fun->can_throw_non_call_exceptions
2347 && purge_all_dead_edges ())
2348 cleanup_cfg (0);
2349
2350 return 0;
2351}
2352
27a4cd48
DM
2353} // anon namespace
2354
2355rtl_opt_pass *
2356make_pass_postreload_cse (gcc::context *ctxt)
2357{
2358 return new pass_postreload_cse (ctxt);
2359}
This page took 6.780039 seconds and 5 git commands to generate.