]> gcc.gnu.org Git - gcc.git/blame - gcc/optabs.c
Daily bump.
[gcc.git] / gcc / optabs.c
CommitLineData
77c9c6c2 1/* Expand the basic unary and binary arithmetic operations, for GNU compiler.
d050d723 2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
c913b6f1 3 1999, 2000, 2001 Free Software Foundation, Inc.
77c9c6c2 4
1322177d 5This file is part of GCC.
77c9c6c2 6
1322177d
LB
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
9Software Foundation; either version 2, or (at your option) any later
10version.
77c9c6c2 11
1322177d
LB
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15for more details.
77c9c6c2
RK
16
17You should have received a copy of the GNU General Public License
1322177d
LB
18along with GCC; see the file COPYING. If not, write to the Free
19Software Foundation, 59 Temple Place - Suite 330, Boston, MA
2002111-1307, USA. */
77c9c6c2
RK
21
22
23#include "config.h"
670ee920 24#include "system.h"
01198c2f 25#include "toplev.h"
dff01034
KG
26
27/* Include insn-config.h before expr.h so that HAVE_conditional_move
dc297297 28 is properly defined. */
dff01034 29#include "insn-config.h"
77c9c6c2
RK
30#include "rtl.h"
31#include "tree.h"
6baf1cc8 32#include "tm_p.h"
77c9c6c2 33#include "flags.h"
49ad7cfa 34#include "function.h"
52a11cbf 35#include "except.h"
77c9c6c2 36#include "expr.h"
e78d8e51
ZW
37#include "optabs.h"
38#include "libfuncs.h"
77c9c6c2 39#include "recog.h"
2829c155 40#include "reload.h"
87ff9c8e 41#include "ggc.h"
7bdb32b9 42#include "real.h"
77c9c6c2
RK
43
44/* Each optab contains info on how this target machine
45 can perform a particular operation
46 for all sizes and kinds of operands.
47
48 The operation to be performed is often specified
49 by passing one of these optabs as an argument.
50
51 See expr.h for documentation of these optabs. */
52
34220a12
BS
53optab optab_table[OTI_MAX];
54
55rtx libfunc_table[LTI_MAX];
19c3fc24 56
5d81dc5b
RK
57/* Tables of patterns for extending one integer mode to another. */
58enum insn_code extendtab[MAX_MACHINE_MODE][MAX_MACHINE_MODE][2];
59
0f41302f 60/* Tables of patterns for converting between fixed and floating point. */
5d81dc5b
RK
61enum insn_code fixtab[NUM_MACHINE_MODES][NUM_MACHINE_MODES][2];
62enum insn_code fixtrunctab[NUM_MACHINE_MODES][NUM_MACHINE_MODES][2];
63enum insn_code floattab[NUM_MACHINE_MODES][NUM_MACHINE_MODES][2];
64
377017c4
RK
65/* Contains the optab used for each rtx code. */
66optab code_to_optab[NUM_RTX_CODE + 1];
67
77c9c6c2
RK
68/* Indexed by the rtx-code for a conditional (eg. EQ, LT,...)
69 gives the gen_function to make a branch to test that condition. */
70
71rtxfun bcc_gen_fctn[NUM_RTX_CODE];
72
73/* Indexed by the rtx-code for a conditional (eg. EQ, LT,...)
74 gives the insn code to make a store-condition insn
75 to test that condition. */
76
77enum insn_code setcc_gen_code[NUM_RTX_CODE];
78
49c4584c
DE
79#ifdef HAVE_conditional_move
80/* Indexed by the machine mode, gives the insn code to make a conditional
81 move insn. This is not indexed by the rtx-code like bcc_gen_fctn and
82 setcc_gen_code to cut down on the number of named patterns. Consider a day
83 when a lot more rtx codes are conditional (eg: for the ARM). */
84
85enum insn_code movcc_gen_code[NUM_MACHINE_MODES];
86#endif
87
13536812
KG
88static int add_equal_note PARAMS ((rtx, rtx, enum rtx_code, rtx, rtx));
89static rtx widen_operand PARAMS ((rtx, enum machine_mode,
c31049fd 90 enum machine_mode, int, int));
13536812 91static int expand_cmplxdiv_straight PARAMS ((rtx, rtx, rtx, rtx,
c64f913e
CB
92 rtx, rtx, enum machine_mode,
93 int, enum optab_methods,
94 enum mode_class, optab));
13536812 95static int expand_cmplxdiv_wide PARAMS ((rtx, rtx, rtx, rtx,
c64f913e
CB
96 rtx, rtx, enum machine_mode,
97 int, enum optab_methods,
98 enum mode_class, optab));
a06ef755
RK
99static void prepare_cmp_insn PARAMS ((rtx *, rtx *, enum rtx_code *, rtx,
100 enum machine_mode *, int *,
101 enum can_compare_purpose));
13536812 102static enum insn_code can_fix_p PARAMS ((enum machine_mode, enum machine_mode,
c19b0882 103 int, int *));
a06ef755
RK
104static enum insn_code can_float_p PARAMS ((enum machine_mode,
105 enum machine_mode,
106 int));
13536812 107static rtx ftruncify PARAMS ((rtx));
ef89d648
ZW
108static optab new_optab PARAMS ((void));
109static inline optab init_optab PARAMS ((enum rtx_code));
110static inline optab init_optabv PARAMS ((enum rtx_code));
13536812
KG
111static void init_libfuncs PARAMS ((optab, int, int, const char *, int));
112static void init_integral_libfuncs PARAMS ((optab, const char *, int));
113static void init_floating_libfuncs PARAMS ((optab, const char *, int));
4ef873c2 114#ifdef HAVE_conditional_trap
13536812 115static void init_traps PARAMS ((void));
4ef873c2 116#endif
13536812 117static void emit_cmp_and_jump_insn_1 PARAMS ((rtx, rtx, enum machine_mode,
b30f05db 118 enum rtx_code, int, rtx));
13536812 119static void prepare_float_lib_cmp PARAMS ((rtx *, rtx *, enum rtx_code *,
b30f05db 120 enum machine_mode *, int *));
cb2a532e
AH
121static rtx expand_vector_binop PARAMS ((enum machine_mode, optab,
122 rtx, rtx, rtx, int,
123 enum optab_methods));
124static rtx expand_vector_unop PARAMS ((enum machine_mode, optab, rtx, rtx,
125 int));
77c9c6c2 126\f
2f937369 127/* Add a REG_EQUAL note to the last insn in INSNS. TARGET is being set to
77c9c6c2
RK
128 the result of operation CODE applied to OP0 (and OP1 if it is a binary
129 operation).
130
131 If the last insn does not set TARGET, don't do anything, but return 1.
132
133 If a previous insn sets TARGET and TARGET is one of OP0 or OP1,
134 don't add the REG_EQUAL note but return 0. Our caller can then try
135 again, ensuring that TARGET is not one of the operands. */
136
137static int
2f937369
DM
138add_equal_note (insns, target, code, op0, op1)
139 rtx insns;
77c9c6c2
RK
140 rtx target;
141 enum rtx_code code;
142 rtx op0, op1;
143{
2f937369 144 rtx last_insn, insn, set;
77c9c6c2
RK
145 rtx note;
146
2f937369
DM
147 if (! insns
148 || ! INSN_P (insns)
149 || NEXT_INSN (insns) == NULL_RTX)
150 abort ();
151
152 if (GET_RTX_CLASS (code) != '1' && GET_RTX_CLASS (code) != '2'
153 && GET_RTX_CLASS (code) != 'c' && GET_RTX_CLASS (code) != '<')
154 return 1;
155
156 if (GET_CODE (target) == ZERO_EXTRACT)
157 return 1;
158
159 for (last_insn = insns;
160 NEXT_INSN (last_insn) != NULL_RTX;
161 last_insn = NEXT_INSN (last_insn))
162 ;
163
164 set = single_set (last_insn);
165 if (set == NULL_RTX)
166 return 1;
167
168 if (! rtx_equal_p (SET_DEST (set), target)
169 /* For a STRICT_LOW_PART, the REG_NOTE applies to what is inside the
170 SUBREG. */
171 && (GET_CODE (SET_DEST (set)) != STRICT_LOW_PART
172 || ! rtx_equal_p (SUBREG_REG (XEXP (SET_DEST (set), 0)),
173 target)))
77c9c6c2
RK
174 return 1;
175
176 /* If TARGET is in OP0 or OP1, check if anything in SEQ sets TARGET
177 besides the last insn. */
178 if (reg_overlap_mentioned_p (target, op0)
179 || (op1 && reg_overlap_mentioned_p (target, op1)))
2f937369
DM
180 {
181 insn = PREV_INSN (last_insn);
182 while (insn != NULL_RTX)
183 {
184 if (reg_set_p (target, insn))
185 return 0;
186
187 insn = PREV_INSN (insn);
188 }
189 }
77c9c6c2
RK
190
191 if (GET_RTX_CLASS (code) == '1')
9e6a5703 192 note = gen_rtx_fmt_e (code, GET_MODE (target), copy_rtx (op0));
77c9c6c2 193 else
9e6a5703 194 note = gen_rtx_fmt_ee (code, GET_MODE (target), copy_rtx (op0), copy_rtx (op1));
77c9c6c2 195
2f937369 196 set_unique_reg_note (last_insn, REG_EQUAL, note);
77c9c6c2
RK
197
198 return 1;
199}
200\f
835532b8
RK
201/* Widen OP to MODE and return the rtx for the widened operand. UNSIGNEDP
202 says whether OP is signed or unsigned. NO_EXTEND is nonzero if we need
203 not actually do a sign-extend or zero-extend, but can leave the
204 higher-order bits of the result rtx undefined, for example, in the case
205 of logical operations, but not right shifts. */
206
207static rtx
0661a3de 208widen_operand (op, mode, oldmode, unsignedp, no_extend)
835532b8 209 rtx op;
0661a3de 210 enum machine_mode mode, oldmode;
835532b8
RK
211 int unsignedp;
212 int no_extend;
213{
214 rtx result;
215
8041889f
RK
216 /* If we don't have to extend and this is a constant, return it. */
217 if (no_extend && GET_MODE (op) == VOIDmode)
218 return op;
219
220 /* If we must extend do so. If OP is a SUBREG for a promoted object, also
221 extend since it will be more efficient to do so unless the signedness of
222 a promoted object differs from our extension. */
835532b8 223 if (! no_extend
cb8f73be
RK
224 || (GET_CODE (op) == SUBREG && SUBREG_PROMOTED_VAR_P (op)
225 && SUBREG_PROMOTED_UNSIGNED_P (op) == unsignedp))
0661a3de 226 return convert_modes (mode, oldmode, op, unsignedp);
835532b8
RK
227
228 /* If MODE is no wider than a single word, we return a paradoxical
229 SUBREG. */
230 if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
9e6a5703 231 return gen_rtx_SUBREG (mode, force_reg (GET_MODE (op), op), 0);
835532b8
RK
232
233 /* Otherwise, get an object of MODE, clobber it, and set the low-order
234 part to OP. */
235
236 result = gen_reg_rtx (mode);
9e6a5703 237 emit_insn (gen_rtx_CLOBBER (VOIDmode, result));
835532b8
RK
238 emit_move_insn (gen_lowpart (GET_MODE (op), result), op);
239 return result;
240}
241\f
c64f913e
CB
242/* Generate code to perform a straightforward complex divide. */
243
244static int
f96b337a
KG
245expand_cmplxdiv_straight (real0, real1, imag0, imag1, realr, imagr, submode,
246 unsignedp, methods, class, binoptab)
247 rtx real0, real1, imag0, imag1, realr, imagr;
248 enum machine_mode submode;
249 int unsignedp;
250 enum optab_methods methods;
251 enum mode_class class;
252 optab binoptab;
c64f913e
CB
253{
254 rtx divisor;
255 rtx real_t, imag_t;
256 rtx temp1, temp2;
257 rtx res;
91ce572a
CC
258 optab this_add_optab = add_optab;
259 optab this_sub_optab = sub_optab;
260 optab this_neg_optab = neg_optab;
261 optab this_mul_optab = smul_optab;
c64f913e 262
91ce572a
CC
263 if (binoptab == sdivv_optab)
264 {
265 this_add_optab = addv_optab;
266 this_sub_optab = subv_optab;
267 this_neg_optab = negv_optab;
268 this_mul_optab = smulv_optab;
269 }
270
c64f913e
CB
271 /* Don't fetch these from memory more than once. */
272 real0 = force_reg (submode, real0);
273 real1 = force_reg (submode, real1);
274
275 if (imag0 != 0)
276 imag0 = force_reg (submode, imag0);
277
278 imag1 = force_reg (submode, imag1);
279
280 /* Divisor: c*c + d*d. */
91ce572a 281 temp1 = expand_binop (submode, this_mul_optab, real1, real1,
c64f913e
CB
282 NULL_RTX, unsignedp, methods);
283
91ce572a 284 temp2 = expand_binop (submode, this_mul_optab, imag1, imag1,
c64f913e
CB
285 NULL_RTX, unsignedp, methods);
286
287 if (temp1 == 0 || temp2 == 0)
288 return 0;
289
91ce572a 290 divisor = expand_binop (submode, this_add_optab, temp1, temp2,
c64f913e
CB
291 NULL_RTX, unsignedp, methods);
292 if (divisor == 0)
293 return 0;
294
086bbd21 295 if (imag0 == 0)
c64f913e
CB
296 {
297 /* Mathematically, ((a)(c-id))/divisor. */
298 /* Computationally, (a+i0) / (c+id) = (ac/(cc+dd)) + i(-ad/(cc+dd)). */
299
300 /* Calculate the dividend. */
91ce572a 301 real_t = expand_binop (submode, this_mul_optab, real0, real1,
c64f913e
CB
302 NULL_RTX, unsignedp, methods);
303
91ce572a 304 imag_t = expand_binop (submode, this_mul_optab, real0, imag1,
c64f913e
CB
305 NULL_RTX, unsignedp, methods);
306
307 if (real_t == 0 || imag_t == 0)
308 return 0;
309
91ce572a 310 imag_t = expand_unop (submode, this_neg_optab, imag_t,
c64f913e
CB
311 NULL_RTX, unsignedp);
312 }
313 else
314 {
315 /* Mathematically, ((a+ib)(c-id))/divider. */
316 /* Calculate the dividend. */
91ce572a 317 temp1 = expand_binop (submode, this_mul_optab, real0, real1,
c64f913e
CB
318 NULL_RTX, unsignedp, methods);
319
91ce572a 320 temp2 = expand_binop (submode, this_mul_optab, imag0, imag1,
c64f913e
CB
321 NULL_RTX, unsignedp, methods);
322
323 if (temp1 == 0 || temp2 == 0)
324 return 0;
325
91ce572a 326 real_t = expand_binop (submode, this_add_optab, temp1, temp2,
c64f913e
CB
327 NULL_RTX, unsignedp, methods);
328
91ce572a 329 temp1 = expand_binop (submode, this_mul_optab, imag0, real1,
c64f913e
CB
330 NULL_RTX, unsignedp, methods);
331
91ce572a 332 temp2 = expand_binop (submode, this_mul_optab, real0, imag1,
c64f913e
CB
333 NULL_RTX, unsignedp, methods);
334
335 if (temp1 == 0 || temp2 == 0)
336 return 0;
337
91ce572a 338 imag_t = expand_binop (submode, this_sub_optab, temp1, temp2,
c64f913e
CB
339 NULL_RTX, unsignedp, methods);
340
341 if (real_t == 0 || imag_t == 0)
342 return 0;
343 }
344
345 if (class == MODE_COMPLEX_FLOAT)
346 res = expand_binop (submode, binoptab, real_t, divisor,
347 realr, unsignedp, methods);
348 else
349 res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
350 real_t, divisor, realr, unsignedp);
351
352 if (res == 0)
353 return 0;
354
355 if (res != realr)
356 emit_move_insn (realr, res);
357
358 if (class == MODE_COMPLEX_FLOAT)
359 res = expand_binop (submode, binoptab, imag_t, divisor,
360 imagr, unsignedp, methods);
361 else
362 res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
363 imag_t, divisor, imagr, unsignedp);
364
365 if (res == 0)
366 return 0;
367
368 if (res != imagr)
369 emit_move_insn (imagr, res);
370
371 return 1;
372}
373\f
374/* Generate code to perform a wide-input-range-acceptable complex divide. */
375
376static int
f96b337a
KG
377expand_cmplxdiv_wide (real0, real1, imag0, imag1, realr, imagr, submode,
378 unsignedp, methods, class, binoptab)
379 rtx real0, real1, imag0, imag1, realr, imagr;
380 enum machine_mode submode;
381 int unsignedp;
382 enum optab_methods methods;
383 enum mode_class class;
384 optab binoptab;
c64f913e
CB
385{
386 rtx ratio, divisor;
387 rtx real_t, imag_t;
388 rtx temp1, temp2, lab1, lab2;
389 enum machine_mode mode;
c64f913e 390 rtx res;
91ce572a
CC
391 optab this_add_optab = add_optab;
392 optab this_sub_optab = sub_optab;
393 optab this_neg_optab = neg_optab;
394 optab this_mul_optab = smul_optab;
395
396 if (binoptab == sdivv_optab)
397 {
398 this_add_optab = addv_optab;
399 this_sub_optab = subv_optab;
400 this_neg_optab = negv_optab;
401 this_mul_optab = smulv_optab;
402 }
c64f913e
CB
403
404 /* Don't fetch these from memory more than once. */
405 real0 = force_reg (submode, real0);
406 real1 = force_reg (submode, real1);
407
408 if (imag0 != 0)
409 imag0 = force_reg (submode, imag0);
410
411 imag1 = force_reg (submode, imag1);
412
a59a536c
RE
413 /* XXX What's an "unsigned" complex number? */
414 if (unsignedp)
415 {
416 temp1 = real1;
417 temp2 = imag1;
418 }
419 else
420 {
91ce572a
CC
421 temp1 = expand_abs (submode, real1, NULL_RTX, unsignedp, 1);
422 temp2 = expand_abs (submode, imag1, NULL_RTX, unsignedp, 1);
a59a536c 423 }
c64f913e
CB
424
425 if (temp1 == 0 || temp2 == 0)
426 return 0;
427
428 mode = GET_MODE (temp1);
c64f913e
CB
429 lab1 = gen_label_rtx ();
430 emit_cmp_and_jump_insns (temp1, temp2, LT, NULL_RTX,
a06ef755 431 mode, unsignedp, lab1);
c64f913e
CB
432
433 /* |c| >= |d|; use ratio d/c to scale dividend and divisor. */
434
435 if (class == MODE_COMPLEX_FLOAT)
436 ratio = expand_binop (submode, binoptab, imag1, real1,
437 NULL_RTX, unsignedp, methods);
438 else
439 ratio = expand_divmod (0, TRUNC_DIV_EXPR, submode,
440 imag1, real1, NULL_RTX, unsignedp);
441
442 if (ratio == 0)
443 return 0;
444
445 /* Calculate divisor. */
446
91ce572a 447 temp1 = expand_binop (submode, this_mul_optab, imag1, ratio,
c64f913e
CB
448 NULL_RTX, unsignedp, methods);
449
450 if (temp1 == 0)
451 return 0;
452
91ce572a 453 divisor = expand_binop (submode, this_add_optab, temp1, real1,
c64f913e
CB
454 NULL_RTX, unsignedp, methods);
455
456 if (divisor == 0)
457 return 0;
458
459 /* Calculate dividend. */
460
086bbd21 461 if (imag0 == 0)
c64f913e
CB
462 {
463 real_t = real0;
464
465 /* Compute a / (c+id) as a / (c+d(d/c)) + i (-a(d/c)) / (c+d(d/c)). */
466
91ce572a 467 imag_t = expand_binop (submode, this_mul_optab, real0, ratio,
c64f913e
CB
468 NULL_RTX, unsignedp, methods);
469
470 if (imag_t == 0)
471 return 0;
472
91ce572a 473 imag_t = expand_unop (submode, this_neg_optab, imag_t,
c64f913e
CB
474 NULL_RTX, unsignedp);
475
476 if (real_t == 0 || imag_t == 0)
477 return 0;
478 }
479 else
480 {
481 /* Compute (a+ib)/(c+id) as
482 (a+b(d/c))/(c+d(d/c) + i(b-a(d/c))/(c+d(d/c)). */
483
91ce572a 484 temp1 = expand_binop (submode, this_mul_optab, imag0, ratio,
c64f913e
CB
485 NULL_RTX, unsignedp, methods);
486
487 if (temp1 == 0)
488 return 0;
489
91ce572a 490 real_t = expand_binop (submode, this_add_optab, temp1, real0,
c64f913e
CB
491 NULL_RTX, unsignedp, methods);
492
91ce572a 493 temp1 = expand_binop (submode, this_mul_optab, real0, ratio,
c64f913e
CB
494 NULL_RTX, unsignedp, methods);
495
496 if (temp1 == 0)
497 return 0;
498
91ce572a 499 imag_t = expand_binop (submode, this_sub_optab, imag0, temp1,
c64f913e
CB
500 NULL_RTX, unsignedp, methods);
501
502 if (real_t == 0 || imag_t == 0)
503 return 0;
504 }
505
506 if (class == MODE_COMPLEX_FLOAT)
507 res = expand_binop (submode, binoptab, real_t, divisor,
508 realr, unsignedp, methods);
509 else
510 res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
511 real_t, divisor, realr, unsignedp);
512
513 if (res == 0)
514 return 0;
515
516 if (res != realr)
517 emit_move_insn (realr, res);
518
519 if (class == MODE_COMPLEX_FLOAT)
520 res = expand_binop (submode, binoptab, imag_t, divisor,
521 imagr, unsignedp, methods);
522 else
523 res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
524 imag_t, divisor, imagr, unsignedp);
525
526 if (res == 0)
527 return 0;
528
529 if (res != imagr)
530 emit_move_insn (imagr, res);
531
532 lab2 = gen_label_rtx ();
533 emit_jump_insn (gen_jump (lab2));
534 emit_barrier ();
535
536 emit_label (lab1);
537
538 /* |d| > |c|; use ratio c/d to scale dividend and divisor. */
539
540 if (class == MODE_COMPLEX_FLOAT)
541 ratio = expand_binop (submode, binoptab, real1, imag1,
542 NULL_RTX, unsignedp, methods);
543 else
544 ratio = expand_divmod (0, TRUNC_DIV_EXPR, submode,
545 real1, imag1, NULL_RTX, unsignedp);
546
547 if (ratio == 0)
548 return 0;
549
550 /* Calculate divisor. */
551
91ce572a 552 temp1 = expand_binop (submode, this_mul_optab, real1, ratio,
c64f913e
CB
553 NULL_RTX, unsignedp, methods);
554
555 if (temp1 == 0)
556 return 0;
557
91ce572a 558 divisor = expand_binop (submode, this_add_optab, temp1, imag1,
c64f913e
CB
559 NULL_RTX, unsignedp, methods);
560
561 if (divisor == 0)
562 return 0;
563
564 /* Calculate dividend. */
565
086bbd21 566 if (imag0 == 0)
c64f913e
CB
567 {
568 /* Compute a / (c+id) as a(c/d) / (c(c/d)+d) + i (-a) / (c(c/d)+d). */
569
91ce572a 570 real_t = expand_binop (submode, this_mul_optab, real0, ratio,
c64f913e
CB
571 NULL_RTX, unsignedp, methods);
572
91ce572a 573 imag_t = expand_unop (submode, this_neg_optab, real0,
c64f913e
CB
574 NULL_RTX, unsignedp);
575
576 if (real_t == 0 || imag_t == 0)
577 return 0;
578 }
579 else
580 {
581 /* Compute (a+ib)/(c+id) as
582 (a(c/d)+b)/(c(c/d)+d) + i (b(c/d)-a)/(c(c/d)+d). */
583
91ce572a 584 temp1 = expand_binop (submode, this_mul_optab, real0, ratio,
c64f913e
CB
585 NULL_RTX, unsignedp, methods);
586
587 if (temp1 == 0)
588 return 0;
589
91ce572a 590 real_t = expand_binop (submode, this_add_optab, temp1, imag0,
c64f913e
CB
591 NULL_RTX, unsignedp, methods);
592
91ce572a 593 temp1 = expand_binop (submode, this_mul_optab, imag0, ratio,
c64f913e
CB
594 NULL_RTX, unsignedp, methods);
595
596 if (temp1 == 0)
597 return 0;
598
91ce572a 599 imag_t = expand_binop (submode, this_sub_optab, temp1, real0,
c64f913e
CB
600 NULL_RTX, unsignedp, methods);
601
602 if (real_t == 0 || imag_t == 0)
603 return 0;
604 }
605
606 if (class == MODE_COMPLEX_FLOAT)
607 res = expand_binop (submode, binoptab, real_t, divisor,
608 realr, unsignedp, methods);
609 else
610 res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
611 real_t, divisor, realr, unsignedp);
612
613 if (res == 0)
614 return 0;
615
616 if (res != realr)
617 emit_move_insn (realr, res);
618
619 if (class == MODE_COMPLEX_FLOAT)
620 res = expand_binop (submode, binoptab, imag_t, divisor,
621 imagr, unsignedp, methods);
622 else
623 res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
624 imag_t, divisor, imagr, unsignedp);
625
626 if (res == 0)
627 return 0;
628
629 if (res != imagr)
630 emit_move_insn (imagr, res);
631
632 emit_label (lab2);
633
634 return 1;
635}
636\f
ef89d648
ZW
637/* Wrapper around expand_binop which takes an rtx code to specify
638 the operation to perform, not an optab pointer. All other
639 arguments are the same. */
640rtx
641expand_simple_binop (mode, code, op0, op1, target, unsignedp, methods)
642 enum machine_mode mode;
643 enum rtx_code code;
644 rtx op0, op1;
645 rtx target;
646 int unsignedp;
647 enum optab_methods methods;
648{
649 optab binop = code_to_optab [(int) code];
650 if (binop == 0)
651 abort ();
652
653 return expand_binop (mode, binop, op0, op1, target, unsignedp, methods);
654}
655
77c9c6c2
RK
656/* Generate code to perform an operation specified by BINOPTAB
657 on operands OP0 and OP1, with result having machine-mode MODE.
658
659 UNSIGNEDP is for the case where we have to widen the operands
660 to perform the operation. It says to use zero-extension.
661
662 If TARGET is nonzero, the value
663 is generated there, if it is convenient to do so.
664 In all cases an rtx is returned for the locus of the value;
665 this may or may not be TARGET. */
666
667rtx
668expand_binop (mode, binoptab, op0, op1, target, unsignedp, methods)
669 enum machine_mode mode;
670 optab binoptab;
671 rtx op0, op1;
672 rtx target;
673 int unsignedp;
674 enum optab_methods methods;
675{
70864443
RK
676 enum optab_methods next_methods
677 = (methods == OPTAB_LIB || methods == OPTAB_LIB_WIDEN
678 ? OPTAB_WIDEN : methods);
77c9c6c2
RK
679 enum mode_class class;
680 enum machine_mode wider_mode;
b3694847 681 rtx temp;
77c9c6c2
RK
682 int commutative_op = 0;
683 int shift_op = (binoptab->code == ASHIFT
684 || binoptab->code == ASHIFTRT
77c9c6c2
RK
685 || binoptab->code == LSHIFTRT
686 || binoptab->code == ROTATE
687 || binoptab->code == ROTATERT);
abd418d3 688 rtx entry_last = get_last_insn ();
77c9c6c2
RK
689 rtx last;
690
691 class = GET_MODE_CLASS (mode);
692
693 op0 = protect_from_queue (op0, 0);
694 op1 = protect_from_queue (op1, 0);
695 if (target)
696 target = protect_from_queue (target, 1);
697
698 if (flag_force_mem)
699 {
700 op0 = force_not_mem (op0);
701 op1 = force_not_mem (op1);
702 }
703
8aecce0a
RK
704 /* If subtracting an integer constant, convert this into an addition of
705 the negated constant. */
706
707 if (binoptab == sub_optab && GET_CODE (op1) == CONST_INT)
708 {
709 op1 = negate_rtx (mode, op1);
710 binoptab = add_optab;
711 }
712
77c9c6c2
RK
713 /* If we are inside an appropriately-short loop and one operand is an
714 expensive constant, force it into a register. */
aeedc93f 715 if (CONSTANT_P (op0) && preserve_subexpressions_p ()
b437f1a7 716 && rtx_cost (op0, binoptab->code) > COSTS_N_INSNS (1))
77c9c6c2
RK
717 op0 = force_reg (mode, op0);
718
aeedc93f 719 if (CONSTANT_P (op1) && preserve_subexpressions_p ()
b437f1a7 720 && ! shift_op && rtx_cost (op1, binoptab->code) > COSTS_N_INSNS (1))
4074220e 721 op1 = force_reg (mode, op1);
77c9c6c2 722
77c9c6c2
RK
723 /* Record where to delete back to if we backtrack. */
724 last = get_last_insn ();
725
726 /* If operation is commutative,
727 try to make the first operand a register.
728 Even better, try to make it the same as the target.
729 Also try to make the last operand a constant. */
730 if (GET_RTX_CLASS (binoptab->code) == 'c'
731 || binoptab == smul_widen_optab
5035bbfe
TG
732 || binoptab == umul_widen_optab
733 || binoptab == smul_highpart_optab
734 || binoptab == umul_highpart_optab)
77c9c6c2
RK
735 {
736 commutative_op = 1;
737
738 if (((target == 0 || GET_CODE (target) == REG)
739 ? ((GET_CODE (op1) == REG
740 && GET_CODE (op0) != REG)
741 || target == op1)
742 : rtx_equal_p (op1, target))
743 || GET_CODE (op0) == CONST_INT)
744 {
745 temp = op1;
746 op1 = op0;
747 op0 = temp;
748 }
749 }
750
751 /* If we can do it with a three-operand insn, do so. */
752
753 if (methods != OPTAB_MUST_WIDEN
754 && binoptab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
755 {
756 int icode = (int) binoptab->handlers[(int) mode].insn_code;
a995e389
RH
757 enum machine_mode mode0 = insn_data[icode].operand[1].mode;
758 enum machine_mode mode1 = insn_data[icode].operand[2].mode;
77c9c6c2
RK
759 rtx pat;
760 rtx xop0 = op0, xop1 = op1;
761
762 if (target)
763 temp = target;
764 else
765 temp = gen_reg_rtx (mode);
766
767 /* If it is a commutative operator and the modes would match
0f41302f 768 if we would swap the operands, we can save the conversions. */
77c9c6c2
RK
769 if (commutative_op)
770 {
771 if (GET_MODE (op0) != mode0 && GET_MODE (op1) != mode1
772 && GET_MODE (op0) == mode1 && GET_MODE (op1) == mode0)
773 {
b3694847 774 rtx tmp;
77c9c6c2
RK
775
776 tmp = op0; op0 = op1; op1 = tmp;
777 tmp = xop0; xop0 = xop1; xop1 = tmp;
778 }
779 }
780
781 /* In case the insn wants input operands in modes different from
29984e05
EB
782 those of the actual operands, convert the operands. It would
783 seem that we don't need to convert CONST_INTs, but we do, so
784 that they're properly zero-extended or sign-extended for their
785 modes; shift operations are an exception, because the second
874f6a6d 786 operand need not be extended to the mode of the result. */
77c9c6c2 787
874f6a6d 788 if (GET_MODE (op0) != mode0 && mode0 != VOIDmode)
69107307
AO
789 xop0 = convert_modes (mode0,
790 GET_MODE (op0) != VOIDmode
791 ? GET_MODE (op0)
29984e05 792 : mode,
69107307 793 xop0, unsignedp);
77c9c6c2 794
874f6a6d 795 if (GET_MODE (op1) != mode1 && mode1 != VOIDmode)
69107307
AO
796 xop1 = convert_modes (mode1,
797 GET_MODE (op1) != VOIDmode
798 ? GET_MODE (op1)
874f6a6d 799 : (shift_op ? mode1 : mode),
69107307 800 xop1, unsignedp);
77c9c6c2
RK
801
802 /* Now, if insn's predicates don't allow our operands, put them into
803 pseudo regs. */
804
a995e389 805 if (! (*insn_data[icode].operand[1].predicate) (xop0, mode0)
4074220e 806 && mode0 != VOIDmode)
77c9c6c2
RK
807 xop0 = copy_to_mode_reg (mode0, xop0);
808
a995e389 809 if (! (*insn_data[icode].operand[2].predicate) (xop1, mode1)
4074220e 810 && mode1 != VOIDmode)
77c9c6c2
RK
811 xop1 = copy_to_mode_reg (mode1, xop1);
812
a995e389 813 if (! (*insn_data[icode].operand[0].predicate) (temp, mode))
77c9c6c2
RK
814 temp = gen_reg_rtx (mode);
815
816 pat = GEN_FCN (icode) (temp, xop0, xop1);
817 if (pat)
818 {
2f937369 819 /* If PAT is composed of more than one insn, try to add an appropriate
77c9c6c2
RK
820 REG_EQUAL note to it. If we can't because TEMP conflicts with an
821 operand, call ourselves again, this time without a target. */
2f937369 822 if (INSN_P (pat) && NEXT_INSN (pat) != NULL_RTX
77c9c6c2
RK
823 && ! add_equal_note (pat, temp, binoptab->code, xop0, xop1))
824 {
825 delete_insns_since (last);
b1ec3c92
CH
826 return expand_binop (mode, binoptab, op0, op1, NULL_RTX,
827 unsignedp, methods);
77c9c6c2
RK
828 }
829
830 emit_insn (pat);
831 return temp;
832 }
833 else
834 delete_insns_since (last);
835 }
836
5a5064dc
RK
837 /* If this is a multiply, see if we can do a widening operation that
838 takes operands of this mode and makes a wider mode. */
839
840 if (binoptab == smul_optab && GET_MODE_WIDER_MODE (mode) != VOIDmode
841 && (((unsignedp ? umul_widen_optab : smul_widen_optab)
842 ->handlers[(int) GET_MODE_WIDER_MODE (mode)].insn_code)
843 != CODE_FOR_nothing))
844 {
845 temp = expand_binop (GET_MODE_WIDER_MODE (mode),
846 unsignedp ? umul_widen_optab : smul_widen_optab,
73d9a835 847 op0, op1, NULL_RTX, unsignedp, OPTAB_DIRECT);
5a5064dc 848
70864443
RK
849 if (temp != 0)
850 {
851 if (GET_MODE_CLASS (mode) == MODE_INT)
852 return gen_lowpart (mode, temp);
853 else
854 return convert_to_mode (mode, temp, unsignedp);
855 }
5a5064dc
RK
856 }
857
9a856ec7 858 /* Look for a wider mode of the same class for which we think we
5a5064dc
RK
859 can open-code the operation. Check for a widening multiply at the
860 wider mode as well. */
9a856ec7
RK
861
862 if ((class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
6f43c157 863 && methods != OPTAB_DIRECT && methods != OPTAB_LIB)
9a856ec7
RK
864 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
865 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
866 {
5a5064dc
RK
867 if (binoptab->handlers[(int) wider_mode].insn_code != CODE_FOR_nothing
868 || (binoptab == smul_optab
869 && GET_MODE_WIDER_MODE (wider_mode) != VOIDmode
870 && (((unsignedp ? umul_widen_optab : smul_widen_optab)
871 ->handlers[(int) GET_MODE_WIDER_MODE (wider_mode)].insn_code)
872 != CODE_FOR_nothing)))
9a856ec7
RK
873 {
874 rtx xop0 = op0, xop1 = op1;
875 int no_extend = 0;
876
877 /* For certain integer operations, we need not actually extend
878 the narrow operands, as long as we will truncate
6d2f8887 879 the results to the same narrowness. */
9a856ec7
RK
880
881 if ((binoptab == ior_optab || binoptab == and_optab
882 || binoptab == xor_optab
883 || binoptab == add_optab || binoptab == sub_optab
e5df894b 884 || binoptab == smul_optab || binoptab == ashl_optab)
835532b8 885 && class == MODE_INT)
9a856ec7
RK
886 no_extend = 1;
887
0661a3de 888 xop0 = widen_operand (xop0, wider_mode, mode, unsignedp, no_extend);
943cc242
RK
889
890 /* The second operand of a shift must always be extended. */
0661a3de 891 xop1 = widen_operand (xop1, wider_mode, mode, unsignedp,
e5df894b 892 no_extend && binoptab != ashl_optab);
943cc242 893
b1ec3c92 894 temp = expand_binop (wider_mode, binoptab, xop0, xop1, NULL_RTX,
9a856ec7
RK
895 unsignedp, OPTAB_DIRECT);
896 if (temp)
897 {
898 if (class != MODE_INT)
899 {
900 if (target == 0)
901 target = gen_reg_rtx (mode);
902 convert_move (target, temp, 0);
903 return target;
904 }
905 else
906 return gen_lowpart (mode, temp);
907 }
908 else
909 delete_insns_since (last);
910 }
911 }
912
77c9c6c2
RK
913 /* These can be done a word at a time. */
914 if ((binoptab == and_optab || binoptab == ior_optab || binoptab == xor_optab)
915 && class == MODE_INT
916 && GET_MODE_SIZE (mode) > UNITS_PER_WORD
34e56753 917 && binoptab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing)
77c9c6c2 918 {
bb93b973 919 int i;
77c9c6c2
RK
920 rtx insns;
921 rtx equiv_value;
922
923 /* If TARGET is the same as one of the operands, the REG_EQUAL note
924 won't be accurate, so use a new target. */
925 if (target == 0 || target == op0 || target == op1)
926 target = gen_reg_rtx (mode);
927
928 start_sequence ();
929
930 /* Do the actual arithmetic. */
931 for (i = 0; i < GET_MODE_BITSIZE (mode) / BITS_PER_WORD; i++)
932 {
933 rtx target_piece = operand_subword (target, i, 1, mode);
34e56753 934 rtx x = expand_binop (word_mode, binoptab,
77c9c6c2
RK
935 operand_subword_force (op0, i, mode),
936 operand_subword_force (op1, i, mode),
70864443
RK
937 target_piece, unsignedp, next_methods);
938
939 if (x == 0)
940 break;
941
77c9c6c2
RK
942 if (target_piece != x)
943 emit_move_insn (target_piece, x);
944 }
945
946 insns = get_insns ();
947 end_sequence ();
948
70864443
RK
949 if (i == GET_MODE_BITSIZE (mode) / BITS_PER_WORD)
950 {
951 if (binoptab->code != UNKNOWN)
952 equiv_value
9e6a5703
JC
953 = gen_rtx_fmt_ee (binoptab->code, mode,
954 copy_rtx (op0), copy_rtx (op1));
70864443
RK
955 else
956 equiv_value = 0;
77c9c6c2 957
70864443
RK
958 emit_no_conflict_block (insns, target, op0, op1, equiv_value);
959 return target;
960 }
77c9c6c2
RK
961 }
962
8c597270 963 /* Synthesize double word shifts from single word shifts. */
e5df894b
RK
964 if ((binoptab == lshr_optab || binoptab == ashl_optab
965 || binoptab == ashr_optab)
8c597270
JW
966 && class == MODE_INT
967 && GET_CODE (op1) == CONST_INT
968 && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
969 && binoptab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing
970 && ashl_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing
971 && lshr_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing)
972 {
70864443 973 rtx insns, inter, equiv_value;
8c597270
JW
974 rtx into_target, outof_target;
975 rtx into_input, outof_input;
976 int shift_count, left_shift, outof_word;
977
978 /* If TARGET is the same as one of the operands, the REG_EQUAL note
979 won't be accurate, so use a new target. */
980 if (target == 0 || target == op0 || target == op1)
981 target = gen_reg_rtx (mode);
982
983 start_sequence ();
984
985 shift_count = INTVAL (op1);
986
987 /* OUTOF_* is the word we are shifting bits away from, and
988 INTO_* is the word that we are shifting bits towards, thus
989 they differ depending on the direction of the shift and
990 WORDS_BIG_ENDIAN. */
991
e5df894b 992 left_shift = binoptab == ashl_optab;
8c597270
JW
993 outof_word = left_shift ^ ! WORDS_BIG_ENDIAN;
994
995 outof_target = operand_subword (target, outof_word, 1, mode);
996 into_target = operand_subword (target, 1 - outof_word, 1, mode);
997
998 outof_input = operand_subword_force (op0, outof_word, mode);
999 into_input = operand_subword_force (op0, 1 - outof_word, mode);
1000
1001 if (shift_count >= BITS_PER_WORD)
1002 {
70864443
RK
1003 inter = expand_binop (word_mode, binoptab,
1004 outof_input,
1005 GEN_INT (shift_count - BITS_PER_WORD),
1006 into_target, unsignedp, next_methods);
1007
cb5b00cf 1008 if (inter != 0 && inter != into_target)
70864443 1009 emit_move_insn (into_target, inter);
8c597270
JW
1010
1011 /* For a signed right shift, we must fill the word we are shifting
1012 out of with copies of the sign bit. Otherwise it is zeroed. */
cb5b00cf
RK
1013 if (inter != 0 && binoptab != ashr_optab)
1014 inter = CONST0_RTX (word_mode);
70864443
RK
1015 else if (inter != 0)
1016 inter = expand_binop (word_mode, binoptab,
1017 outof_input,
1018 GEN_INT (BITS_PER_WORD - 1),
1019 outof_target, unsignedp, next_methods);
1020
cb5b00cf 1021 if (inter != 0 && inter != outof_target)
70864443 1022 emit_move_insn (outof_target, inter);
8c597270
JW
1023 }
1024 else
1025 {
70864443 1026 rtx carries;
8c597270
JW
1027 optab reverse_unsigned_shift, unsigned_shift;
1028
1029 /* For a shift of less then BITS_PER_WORD, to compute the carry,
1030 we must do a logical shift in the opposite direction of the
1031 desired shift. */
1032
8c597270
JW
1033 reverse_unsigned_shift = (left_shift ? lshr_optab : ashl_optab);
1034
1035 /* For a shift of less than BITS_PER_WORD, to compute the word
1036 shifted towards, we need to unsigned shift the orig value of
1037 that word. */
1038
1039 unsigned_shift = (left_shift ? ashl_optab : lshr_optab);
1040
1041 carries = expand_binop (word_mode, reverse_unsigned_shift,
1042 outof_input,
1043 GEN_INT (BITS_PER_WORD - shift_count),
70864443
RK
1044 0, unsignedp, next_methods);
1045
1046 if (carries == 0)
1047 inter = 0;
1048 else
70864443
RK
1049 inter = expand_binop (word_mode, unsigned_shift, into_input,
1050 op1, 0, unsignedp, next_methods);
1051
1052 if (inter != 0)
1053 inter = expand_binop (word_mode, ior_optab, carries, inter,
1054 into_target, unsignedp, next_methods);
1055
cb5b00cf 1056 if (inter != 0 && inter != into_target)
70864443 1057 emit_move_insn (into_target, inter);
cf2f7113
RE
1058
1059 if (inter != 0)
1060 inter = expand_binop (word_mode, binoptab, outof_input,
1061 op1, outof_target, unsignedp, next_methods);
1062
1063 if (inter != 0 && inter != outof_target)
1064 emit_move_insn (outof_target, inter);
8c597270
JW
1065 }
1066
1067 insns = get_insns ();
1068 end_sequence ();
1069
70864443
RK
1070 if (inter != 0)
1071 {
1072 if (binoptab->code != UNKNOWN)
9e6a5703 1073 equiv_value = gen_rtx_fmt_ee (binoptab->code, mode, op0, op1);
70864443
RK
1074 else
1075 equiv_value = 0;
8c597270 1076
70864443
RK
1077 emit_no_conflict_block (insns, target, op0, op1, equiv_value);
1078 return target;
1079 }
8c597270
JW
1080 }
1081
1082 /* Synthesize double word rotates from single word shifts. */
1083 if ((binoptab == rotl_optab || binoptab == rotr_optab)
1084 && class == MODE_INT
1085 && GET_CODE (op1) == CONST_INT
1086 && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
1087 && ashl_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing
1088 && lshr_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing)
1089 {
1090 rtx insns, equiv_value;
1091 rtx into_target, outof_target;
1092 rtx into_input, outof_input;
70864443 1093 rtx inter;
8c597270
JW
1094 int shift_count, left_shift, outof_word;
1095
1096 /* If TARGET is the same as one of the operands, the REG_EQUAL note
1097 won't be accurate, so use a new target. */
1098 if (target == 0 || target == op0 || target == op1)
1099 target = gen_reg_rtx (mode);
1100
1101 start_sequence ();
1102
1103 shift_count = INTVAL (op1);
1104
1105 /* OUTOF_* is the word we are shifting bits away from, and
1106 INTO_* is the word that we are shifting bits towards, thus
1107 they differ depending on the direction of the shift and
1108 WORDS_BIG_ENDIAN. */
1109
1110 left_shift = (binoptab == rotl_optab);
1111 outof_word = left_shift ^ ! WORDS_BIG_ENDIAN;
1112
1113 outof_target = operand_subword (target, outof_word, 1, mode);
1114 into_target = operand_subword (target, 1 - outof_word, 1, mode);
1115
1116 outof_input = operand_subword_force (op0, outof_word, mode);
1117 into_input = operand_subword_force (op0, 1 - outof_word, mode);
1118
1119 if (shift_count == BITS_PER_WORD)
1120 {
1121 /* This is just a word swap. */
1122 emit_move_insn (outof_target, into_input);
1123 emit_move_insn (into_target, outof_input);
70864443 1124 inter = const0_rtx;
8c597270
JW
1125 }
1126 else
1127 {
1128 rtx into_temp1, into_temp2, outof_temp1, outof_temp2;
1129 rtx first_shift_count, second_shift_count;
1130 optab reverse_unsigned_shift, unsigned_shift;
1131
1132 reverse_unsigned_shift = (left_shift ^ (shift_count < BITS_PER_WORD)
1133 ? lshr_optab : ashl_optab);
1134
1135 unsigned_shift = (left_shift ^ (shift_count < BITS_PER_WORD)
1136 ? ashl_optab : lshr_optab);
1137
1138 if (shift_count > BITS_PER_WORD)
1139 {
1140 first_shift_count = GEN_INT (shift_count - BITS_PER_WORD);
1141 second_shift_count = GEN_INT (2*BITS_PER_WORD - shift_count);
1142 }
1143 else
1144 {
1145 first_shift_count = GEN_INT (BITS_PER_WORD - shift_count);
1146 second_shift_count = GEN_INT (shift_count);
1147 }
1148
1149 into_temp1 = expand_binop (word_mode, unsigned_shift,
1150 outof_input, first_shift_count,
70864443 1151 NULL_RTX, unsignedp, next_methods);
8c597270
JW
1152 into_temp2 = expand_binop (word_mode, reverse_unsigned_shift,
1153 into_input, second_shift_count,
70864443
RK
1154 into_target, unsignedp, next_methods);
1155
1156 if (into_temp1 != 0 && into_temp2 != 0)
1157 inter = expand_binop (word_mode, ior_optab, into_temp1, into_temp2,
1158 into_target, unsignedp, next_methods);
1159 else
1160 inter = 0;
1161
cb5b00cf 1162 if (inter != 0 && inter != into_target)
70864443 1163 emit_move_insn (into_target, inter);
8c597270
JW
1164
1165 outof_temp1 = expand_binop (word_mode, unsigned_shift,
1166 into_input, first_shift_count,
70864443 1167 NULL_RTX, unsignedp, next_methods);
8c597270
JW
1168 outof_temp2 = expand_binop (word_mode, reverse_unsigned_shift,
1169 outof_input, second_shift_count,
70864443
RK
1170 outof_target, unsignedp, next_methods);
1171
1172 if (inter != 0 && outof_temp1 != 0 && outof_temp2 != 0)
1173 inter = expand_binop (word_mode, ior_optab,
1174 outof_temp1, outof_temp2,
1175 outof_target, unsignedp, next_methods);
1176
cb5b00cf 1177 if (inter != 0 && inter != outof_target)
70864443 1178 emit_move_insn (outof_target, inter);
8c597270
JW
1179 }
1180
1181 insns = get_insns ();
1182 end_sequence ();
1183
70864443
RK
1184 if (inter != 0)
1185 {
1186 if (binoptab->code != UNKNOWN)
9e6a5703 1187 equiv_value = gen_rtx_fmt_ee (binoptab->code, mode, op0, op1);
70864443
RK
1188 else
1189 equiv_value = 0;
8c597270 1190
70864443
RK
1191 /* We can't make this a no conflict block if this is a word swap,
1192 because the word swap case fails if the input and output values
1193 are in the same register. */
1194 if (shift_count != BITS_PER_WORD)
1195 emit_no_conflict_block (insns, target, op0, op1, equiv_value);
1196 else
2f937369 1197 emit_insn (insns);
70864443
RK
1198
1199
1200 return target;
1201 }
8c597270
JW
1202 }
1203
77c9c6c2
RK
1204 /* These can be done a word at a time by propagating carries. */
1205 if ((binoptab == add_optab || binoptab == sub_optab)
1206 && class == MODE_INT
1207 && GET_MODE_SIZE (mode) >= 2 * UNITS_PER_WORD
34e56753 1208 && binoptab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing)
77c9c6c2 1209 {
e2500fed 1210 unsigned int i;
77c9c6c2 1211 optab otheroptab = binoptab == add_optab ? sub_optab : add_optab;
a4b5414c 1212 const unsigned int nwords = GET_MODE_BITSIZE (mode) / BITS_PER_WORD;
07444f1d 1213 rtx carry_in = NULL_RTX, carry_out = NULL_RTX;
64de6c0a 1214 rtx xop0, xop1, xtarget;
77c9c6c2
RK
1215
1216 /* We can handle either a 1 or -1 value for the carry. If STORE_FLAG
1217 value is one of those, use it. Otherwise, use 1 since it is the
1218 one easiest to get. */
1219#if STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1
1220 int normalizep = STORE_FLAG_VALUE;
1221#else
1222 int normalizep = 1;
1223#endif
1224
1225 /* Prepare the operands. */
cee85023
RS
1226 xop0 = force_reg (mode, op0);
1227 xop1 = force_reg (mode, op1);
77c9c6c2 1228
64de6c0a
DE
1229 xtarget = gen_reg_rtx (mode);
1230
1231 if (target == 0 || GET_CODE (target) != REG)
1232 target = xtarget;
77c9c6c2 1233
af2cc4dd
RS
1234 /* Indicate for flow that the entire target reg is being set. */
1235 if (GET_CODE (target) == REG)
64de6c0a 1236 emit_insn (gen_rtx_CLOBBER (VOIDmode, xtarget));
af2cc4dd 1237
77c9c6c2
RK
1238 /* Do the actual arithmetic. */
1239 for (i = 0; i < nwords; i++)
1240 {
1241 int index = (WORDS_BIG_ENDIAN ? nwords - i - 1 : i);
64de6c0a 1242 rtx target_piece = operand_subword (xtarget, index, 1, mode);
cee85023
RS
1243 rtx op0_piece = operand_subword_force (xop0, index, mode);
1244 rtx op1_piece = operand_subword_force (xop1, index, mode);
77c9c6c2
RK
1245 rtx x;
1246
1247 /* Main add/subtract of the input operands. */
34e56753 1248 x = expand_binop (word_mode, binoptab,
77c9c6c2 1249 op0_piece, op1_piece,
70864443 1250 target_piece, unsignedp, next_methods);
77c9c6c2
RK
1251 if (x == 0)
1252 break;
1253
1254 if (i + 1 < nwords)
1255 {
1256 /* Store carry from main add/subtract. */
34e56753 1257 carry_out = gen_reg_rtx (word_mode);
23357404
TG
1258 carry_out = emit_store_flag_force (carry_out,
1259 (binoptab == add_optab
b30f05db 1260 ? LT : GT),
23357404
TG
1261 x, op0_piece,
1262 word_mode, 1, normalizep);
77c9c6c2
RK
1263 }
1264
1265 if (i > 0)
1266 {
859cb4d8
GK
1267 rtx newx;
1268
77c9c6c2 1269 /* Add/subtract previous carry to main result. */
859cb4d8
GK
1270 newx = expand_binop (word_mode,
1271 normalizep == 1 ? binoptab : otheroptab,
1272 x, carry_in,
1273 NULL_RTX, 1, next_methods);
77c9c6c2
RK
1274
1275 if (i + 1 < nwords)
1276 {
77c9c6c2 1277 /* Get out carry from adding/subtracting carry in. */
859cb4d8 1278 rtx carry_tmp = gen_reg_rtx (word_mode);
23357404 1279 carry_tmp = emit_store_flag_force (carry_tmp,
859cb4d8
GK
1280 (binoptab == add_optab
1281 ? LT : GT),
1282 newx, x,
23357404 1283 word_mode, 1, normalizep);
70864443 1284
77c9c6c2 1285 /* Logical-ior the two poss. carry together. */
34e56753 1286 carry_out = expand_binop (word_mode, ior_optab,
77c9c6c2 1287 carry_out, carry_tmp,
70864443
RK
1288 carry_out, 0, next_methods);
1289 if (carry_out == 0)
77c9c6c2
RK
1290 break;
1291 }
859cb4d8 1292 emit_move_insn (target_piece, newx);
77c9c6c2
RK
1293 }
1294
1295 carry_in = carry_out;
1296 }
1297
e2500fed 1298 if (i == GET_MODE_BITSIZE (mode) / (unsigned) BITS_PER_WORD)
77c9c6c2 1299 {
02214a5c
RK
1300 if (mov_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
1301 {
64de6c0a 1302 rtx temp = emit_move_insn (target, xtarget);
70864443 1303
5fa671cf
AM
1304 set_unique_reg_note (temp,
1305 REG_EQUAL,
1306 gen_rtx_fmt_ee (binoptab->code, mode,
1307 copy_rtx (xop0),
1308 copy_rtx (xop1)));
02214a5c 1309 }
c5c76735 1310
77c9c6c2
RK
1311 return target;
1312 }
c5c76735 1313
77c9c6c2
RK
1314 else
1315 delete_insns_since (last);
1316 }
1317
1318 /* If we want to multiply two two-word values and have normal and widening
1319 multiplies of single-word values, we can do this with three smaller
1320 multiplications. Note that we do not make a REG_NO_CONFLICT block here
1321 because we are not operating on one word at a time.
1322
1323 The multiplication proceeds as follows:
34e56753
RS
1324 _______________________
1325 [__op0_high_|__op0_low__]
1326 _______________________
6ffe0821 1327 * [__op1_high_|__op1_low__]
34e56753
RS
1328 _______________________________________________
1329 _______________________
6ffe0821 1330 (1) [__op0_low__*__op1_low__]
34e56753 1331 _______________________
6ffe0821 1332 (2a) [__op0_low__*__op1_high_]
34e56753 1333 _______________________
6ffe0821 1334 (2b) [__op0_high_*__op1_low__]
34e56753
RS
1335 _______________________
1336 (3) [__op0_high_*__op1_high_]
77c9c6c2
RK
1337
1338
1339 This gives a 4-word result. Since we are only interested in the
1340 lower 2 words, partial result (3) and the upper words of (2a) and
1341 (2b) don't need to be calculated. Hence (2a) and (2b) can be
1342 calculated using non-widening multiplication.
1343
1344 (1), however, needs to be calculated with an unsigned widening
1345 multiplication. If this operation is not directly supported we
1346 try using a signed widening multiplication and adjust the result.
1347 This adjustment works as follows:
1348
1349 If both operands are positive then no adjustment is needed.
1350
1351 If the operands have different signs, for example op0_low < 0 and
1352 op1_low >= 0, the instruction treats the most significant bit of
1353 op0_low as a sign bit instead of a bit with significance
1354 2**(BITS_PER_WORD-1), i.e. the instruction multiplies op1_low
1355 with 2**BITS_PER_WORD - op0_low, and two's complements the
1356 result. Conclusion: We need to add op1_low * 2**BITS_PER_WORD to
1357 the result.
1358
1359 Similarly, if both operands are negative, we need to add
1360 (op0_low + op1_low) * 2**BITS_PER_WORD.
1361
1362 We use a trick to adjust quickly. We logically shift op0_low right
1363 (op1_low) BITS_PER_WORD-1 steps to get 0 or 1, and add this to
1364 op0_high (op1_high) before it is used to calculate 2b (2a). If no
1365 logical shift exists, we do an arithmetic right shift and subtract
1366 the 0 or -1. */
1367
1368 if (binoptab == smul_optab
1369 && class == MODE_INT
1370 && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
34e56753
RS
1371 && smul_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing
1372 && add_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing
77c9c6c2
RK
1373 && ((umul_widen_optab->handlers[(int) mode].insn_code
1374 != CODE_FOR_nothing)
1375 || (smul_widen_optab->handlers[(int) mode].insn_code
1376 != CODE_FOR_nothing)))
1377 {
1378 int low = (WORDS_BIG_ENDIAN ? 1 : 0);
1379 int high = (WORDS_BIG_ENDIAN ? 0 : 1);
1380 rtx op0_high = operand_subword_force (op0, high, mode);
1381 rtx op0_low = operand_subword_force (op0, low, mode);
1382 rtx op1_high = operand_subword_force (op1, high, mode);
1383 rtx op1_low = operand_subword_force (op1, low, mode);
1384 rtx product = 0;
07444f1d
TM
1385 rtx op0_xhigh = NULL_RTX;
1386 rtx op1_xhigh = NULL_RTX;
77c9c6c2
RK
1387
1388 /* If the target is the same as one of the inputs, don't use it. This
1389 prevents problems with the REG_EQUAL note. */
f96d689c
RK
1390 if (target == op0 || target == op1
1391 || (target != 0 && GET_CODE (target) != REG))
77c9c6c2
RK
1392 target = 0;
1393
1394 /* Multiply the two lower words to get a double-word product.
1395 If unsigned widening multiplication is available, use that;
1396 otherwise use the signed form and compensate. */
1397
1398 if (umul_widen_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
1399 {
1400 product = expand_binop (mode, umul_widen_optab, op0_low, op1_low,
1401 target, 1, OPTAB_DIRECT);
1402
1403 /* If we didn't succeed, delete everything we did so far. */
1404 if (product == 0)
1405 delete_insns_since (last);
1406 else
1407 op0_xhigh = op0_high, op1_xhigh = op1_high;
1408 }
1409
1410 if (product == 0
1411 && smul_widen_optab->handlers[(int) mode].insn_code
1412 != CODE_FOR_nothing)
1413 {
b1ec3c92 1414 rtx wordm1 = GEN_INT (BITS_PER_WORD - 1);
77c9c6c2
RK
1415 product = expand_binop (mode, smul_widen_optab, op0_low, op1_low,
1416 target, 1, OPTAB_DIRECT);
34e56753 1417 op0_xhigh = expand_binop (word_mode, lshr_optab, op0_low, wordm1,
70864443 1418 NULL_RTX, 1, next_methods);
77c9c6c2 1419 if (op0_xhigh)
34e56753 1420 op0_xhigh = expand_binop (word_mode, add_optab, op0_high,
70864443 1421 op0_xhigh, op0_xhigh, 0, next_methods);
77c9c6c2
RK
1422 else
1423 {
34e56753 1424 op0_xhigh = expand_binop (word_mode, ashr_optab, op0_low, wordm1,
70864443 1425 NULL_RTX, 0, next_methods);
77c9c6c2 1426 if (op0_xhigh)
34e56753 1427 op0_xhigh = expand_binop (word_mode, sub_optab, op0_high,
77c9c6c2 1428 op0_xhigh, op0_xhigh, 0,
70864443 1429 next_methods);
77c9c6c2
RK
1430 }
1431
34e56753 1432 op1_xhigh = expand_binop (word_mode, lshr_optab, op1_low, wordm1,
70864443 1433 NULL_RTX, 1, next_methods);
77c9c6c2 1434 if (op1_xhigh)
34e56753 1435 op1_xhigh = expand_binop (word_mode, add_optab, op1_high,
70864443 1436 op1_xhigh, op1_xhigh, 0, next_methods);
77c9c6c2
RK
1437 else
1438 {
34e56753 1439 op1_xhigh = expand_binop (word_mode, ashr_optab, op1_low, wordm1,
70864443 1440 NULL_RTX, 0, next_methods);
77c9c6c2 1441 if (op1_xhigh)
34e56753 1442 op1_xhigh = expand_binop (word_mode, sub_optab, op1_high,
77c9c6c2 1443 op1_xhigh, op1_xhigh, 0,
70864443 1444 next_methods);
77c9c6c2
RK
1445 }
1446 }
1447
1448 /* If we have been able to directly compute the product of the
1449 low-order words of the operands and perform any required adjustments
1450 of the operands, we proceed by trying two more multiplications
1451 and then computing the appropriate sum.
1452
1453 We have checked above that the required addition is provided.
1454 Full-word addition will normally always succeed, especially if
1455 it is provided at all, so we don't worry about its failure. The
1456 multiplication may well fail, however, so we do handle that. */
1457
1458 if (product && op0_xhigh && op1_xhigh)
1459 {
77c9c6c2 1460 rtx product_high = operand_subword (product, high, 1, mode);
b1ec3c92
CH
1461 rtx temp = expand_binop (word_mode, binoptab, op0_low, op1_xhigh,
1462 NULL_RTX, 0, OPTAB_DIRECT);
77c9c6c2 1463
c7539aa0
JL
1464 if (!REG_P (product_high))
1465 product_high = force_reg (word_mode, product_high);
1466
70864443
RK
1467 if (temp != 0)
1468 temp = expand_binop (word_mode, add_optab, temp, product_high,
1469 product_high, 0, next_methods);
77c9c6c2 1470
70864443
RK
1471 if (temp != 0 && temp != product_high)
1472 emit_move_insn (product_high, temp);
1473
1474 if (temp != 0)
1475 temp = expand_binop (word_mode, binoptab, op1_low, op0_xhigh,
1476 NULL_RTX, 0, OPTAB_DIRECT);
1477
1478 if (temp != 0)
1479 temp = expand_binop (word_mode, add_optab, temp,
1480 product_high, product_high,
1481 0, next_methods);
77c9c6c2 1482
70864443
RK
1483 if (temp != 0 && temp != product_high)
1484 emit_move_insn (product_high, temp);
77c9c6c2 1485
c7539aa0
JL
1486 emit_move_insn (operand_subword (product, high, 1, mode), product_high);
1487
70864443
RK
1488 if (temp != 0)
1489 {
02214a5c
RK
1490 if (mov_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
1491 {
1492 temp = emit_move_insn (product, product);
5fa671cf
AM
1493 set_unique_reg_note (temp,
1494 REG_EQUAL,
1495 gen_rtx_fmt_ee (MULT, mode,
1496 copy_rtx (op0),
1497 copy_rtx (op1)));
02214a5c 1498 }
c5c76735 1499
77c9c6c2
RK
1500 return product;
1501 }
1502 }
1503
1504 /* If we get here, we couldn't do it for some reason even though we
1505 originally thought we could. Delete anything we've emitted in
1506 trying to do it. */
1507
1508 delete_insns_since (last);
1509 }
1510
cb2a532e
AH
1511 /* Open-code the vector operations if we have no hardware support
1512 for them. */
1513 if (class == MODE_VECTOR_INT || class == MODE_VECTOR_FLOAT)
1514 return expand_vector_binop (mode, binoptab, op0, op1, target,
1515 unsignedp, methods);
1516
b818abb0
RS
1517 /* We need to open-code the complex type operations: '+, -, * and /' */
1518
1519 /* At this point we allow operations between two similar complex
1520 numbers, and also if one of the operands is not a complex number
1521 but rather of MODE_FLOAT or MODE_INT. However, the caller
1522 must make sure that the MODE of the non-complex operand matches
6f43c157 1523 the SUBMODE of the complex operand. */
b818abb0
RS
1524
1525 if (class == MODE_COMPLEX_FLOAT || class == MODE_COMPLEX_INT)
6f43c157 1526 {
70864443
RK
1527 rtx real0 = 0, imag0 = 0;
1528 rtx real1 = 0, imag1 = 0;
1529 rtx realr, imagr, res;
b818abb0
RS
1530 rtx seq;
1531 rtx equiv_value;
70864443 1532 int ok = 0;
b818abb0
RS
1533
1534 /* Find the correct mode for the real and imaginary parts */
6f43c157
RS
1535 enum machine_mode submode
1536 = mode_for_size (GET_MODE_UNIT_SIZE (mode) * BITS_PER_UNIT,
1537 class == MODE_COMPLEX_INT ? MODE_INT : MODE_FLOAT,
1538 0);
b818abb0
RS
1539
1540 if (submode == BLKmode)
1541 abort ();
1542
1543 if (! target)
1544 target = gen_reg_rtx (mode);
1545
1546 start_sequence ();
1547
c64f913e 1548 realr = gen_realpart (submode, target);
decdfa82 1549 imagr = gen_imagpart (submode, target);
b818abb0
RS
1550
1551 if (GET_MODE (op0) == mode)
1552 {
c64f913e 1553 real0 = gen_realpart (submode, op0);
decdfa82 1554 imag0 = gen_imagpart (submode, op0);
b818abb0
RS
1555 }
1556 else
1557 real0 = op0;
1558
1559 if (GET_MODE (op1) == mode)
1560 {
c64f913e 1561 real1 = gen_realpart (submode, op1);
decdfa82 1562 imag1 = gen_imagpart (submode, op1);
b818abb0
RS
1563 }
1564 else
1565 real1 = op1;
1566
c0fe508e 1567 if (real0 == 0 || real1 == 0 || ! (imag0 != 0 || imag1 != 0))
b818abb0
RS
1568 abort ();
1569
6f43c157
RS
1570 switch (binoptab->code)
1571 {
1572 case PLUS:
96f153da 1573 /* (a+ib) + (c+id) = (a+c) + i(b+d) */
6f43c157 1574 case MINUS:
96f153da 1575 /* (a+ib) - (c+id) = (a-c) + i(b-d) */
b818abb0
RS
1576 res = expand_binop (submode, binoptab, real0, real1,
1577 realr, unsignedp, methods);
70864443
RK
1578
1579 if (res == 0)
1580 break;
1581 else if (res != realr)
b818abb0
RS
1582 emit_move_insn (realr, res);
1583
086bbd21 1584 if (imag0 != 0 && imag1 != 0)
b818abb0
RS
1585 res = expand_binop (submode, binoptab, imag0, imag1,
1586 imagr, unsignedp, methods);
086bbd21 1587 else if (imag0 != 0)
b818abb0
RS
1588 res = imag0;
1589 else if (binoptab->code == MINUS)
91ce572a
CC
1590 res = expand_unop (submode,
1591 binoptab == subv_optab ? negv_optab : neg_optab,
1592 imag1, imagr, unsignedp);
b818abb0
RS
1593 else
1594 res = imag1;
1595
70864443
RK
1596 if (res == 0)
1597 break;
1598 else if (res != imagr)
b818abb0 1599 emit_move_insn (imagr, res);
70864443
RK
1600
1601 ok = 1;
b818abb0 1602 break;
6f43c157
RS
1603
1604 case MULT:
b818abb0
RS
1605 /* (a+ib) * (c+id) = (ac-bd) + i(ad+cb) */
1606
086bbd21 1607 if (imag0 != 0 && imag1 != 0)
b818abb0 1608 {
70864443
RK
1609 rtx temp1, temp2;
1610
54e7b5e6
RS
1611 /* Don't fetch these from memory more than once. */
1612 real0 = force_reg (submode, real0);
1613 real1 = force_reg (submode, real1);
1614 imag0 = force_reg (submode, imag0);
1615 imag1 = force_reg (submode, imag1);
1616
70864443
RK
1617 temp1 = expand_binop (submode, binoptab, real0, real1, NULL_RTX,
1618 unsignedp, methods);
1619
1620 temp2 = expand_binop (submode, binoptab, imag0, imag1, NULL_RTX,
1621 unsignedp, methods);
1622
1623 if (temp1 == 0 || temp2 == 0)
1624 break;
1625
91ce572a
CC
1626 res = (expand_binop
1627 (submode,
1628 binoptab == smulv_optab ? subv_optab : sub_optab,
1629 temp1, temp2, realr, unsignedp, methods));
b818abb0 1630
70864443
RK
1631 if (res == 0)
1632 break;
1633 else if (res != realr)
54e7b5e6 1634 emit_move_insn (realr, res);
b818abb0 1635
70864443
RK
1636 temp1 = expand_binop (submode, binoptab, real0, imag1,
1637 NULL_RTX, unsignedp, methods);
1638
1639 temp2 = expand_binop (submode, binoptab, real1, imag0,
1640 NULL_RTX, unsignedp, methods);
1641
1642 if (temp1 == 0 || temp2 == 0)
1c63cc82
RK
1643 break;
1644
91ce572a
CC
1645 res = (expand_binop
1646 (submode,
1647 binoptab == smulv_optab ? addv_optab : add_optab,
1648 temp1, temp2, imagr, unsignedp, methods));
70864443
RK
1649
1650 if (res == 0)
1651 break;
1652 else if (res != imagr)
b818abb0 1653 emit_move_insn (imagr, res);
70864443
RK
1654
1655 ok = 1;
b818abb0
RS
1656 }
1657 else
1658 {
54e7b5e6
RS
1659 /* Don't fetch these from memory more than once. */
1660 real0 = force_reg (submode, real0);
1661 real1 = force_reg (submode, real1);
1662
96f153da
RS
1663 res = expand_binop (submode, binoptab, real0, real1,
1664 realr, unsignedp, methods);
70864443
RK
1665 if (res == 0)
1666 break;
1667 else if (res != realr)
b818abb0
RS
1668 emit_move_insn (realr, res);
1669
086bbd21 1670 if (imag0 != 0)
b818abb0
RS
1671 res = expand_binop (submode, binoptab,
1672 real1, imag0, imagr, unsignedp, methods);
1673 else
1674 res = expand_binop (submode, binoptab,
1675 real0, imag1, imagr, unsignedp, methods);
70864443
RK
1676
1677 if (res == 0)
1678 break;
1679 else if (res != imagr)
b818abb0 1680 emit_move_insn (imagr, res);
70864443
RK
1681
1682 ok = 1;
b818abb0
RS
1683 }
1684 break;
6f43c157
RS
1685
1686 case DIV:
96f153da 1687 /* (a+ib) / (c+id) = ((ac+bd)/(cc+dd)) + i((bc-ad)/(cc+dd)) */
b818abb0 1688
086bbd21 1689 if (imag1 == 0)
70864443
RK
1690 {
1691 /* (a+ib) / (c+i0) = (a/c) + i(b/c) */
54e7b5e6
RS
1692
1693 /* Don't fetch these from memory more than once. */
1694 real1 = force_reg (submode, real1);
1695
96f153da 1696 /* Simply divide the real and imaginary parts by `c' */
2140ed5b
RK
1697 if (class == MODE_COMPLEX_FLOAT)
1698 res = expand_binop (submode, binoptab, real0, real1,
1699 realr, unsignedp, methods);
1700 else
1701 res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
1702 real0, real1, realr, unsignedp);
1703
70864443
RK
1704 if (res == 0)
1705 break;
1706 else if (res != realr)
b818abb0
RS
1707 emit_move_insn (realr, res);
1708
2140ed5b
RK
1709 if (class == MODE_COMPLEX_FLOAT)
1710 res = expand_binop (submode, binoptab, imag0, real1,
1711 imagr, unsignedp, methods);
1712 else
1713 res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
1714 imag0, real1, imagr, unsignedp);
1715
70864443
RK
1716 if (res == 0)
1717 break;
1718 else if (res != imagr)
b818abb0 1719 emit_move_insn (imagr, res);
b818abb0 1720
70864443
RK
1721 ok = 1;
1722 }
1723 else
1724 {
c64f913e 1725 switch (flag_complex_divide_method)
70864443 1726 {
c64f913e
CB
1727 case 0:
1728 ok = expand_cmplxdiv_straight (real0, real1, imag0, imag1,
1729 realr, imagr, submode,
1730 unsignedp, methods,
1731 class, binoptab);
1732 break;
41b19f3e 1733
c64f913e
CB
1734 case 1:
1735 ok = expand_cmplxdiv_wide (real0, real1, imag0, imag1,
1736 realr, imagr, submode,
1737 unsignedp, methods,
1738 class, binoptab);
1739 break;
70864443 1740
c64f913e
CB
1741 default:
1742 abort ();
b818abb0 1743 }
b818abb0
RS
1744 }
1745 break;
1746
1747 default:
1748 abort ();
1749 }
1750
c15886da 1751 seq = get_insns ();
b818abb0
RS
1752 end_sequence ();
1753
70864443
RK
1754 if (ok)
1755 {
1756 if (binoptab->code != UNKNOWN)
1757 equiv_value
9e6a5703
JC
1758 = gen_rtx_fmt_ee (binoptab->code, mode,
1759 copy_rtx (op0), copy_rtx (op1));
70864443
RK
1760 else
1761 equiv_value = 0;
b818abb0 1762
70864443 1763 emit_no_conflict_block (seq, target, op0, op1, equiv_value);
b818abb0 1764
70864443
RK
1765 return target;
1766 }
b818abb0 1767 }
b818abb0 1768
77c9c6c2
RK
1769 /* It can't be open-coded in this mode.
1770 Use a library call if one is available and caller says that's ok. */
1771
1772 if (binoptab->handlers[(int) mode].libfunc
1773 && (methods == OPTAB_LIB || methods == OPTAB_LIB_WIDEN))
1774 {
1775 rtx insns;
0bbb7f4d
RS
1776 rtx op1x = op1;
1777 enum machine_mode op1_mode = mode;
9a7f678c 1778 rtx value;
77c9c6c2
RK
1779
1780 start_sequence ();
1781
0bbb7f4d
RS
1782 if (shift_op)
1783 {
1784 op1_mode = word_mode;
1785 /* Specify unsigned here,
1786 since negative shift counts are meaningless. */
1787 op1x = convert_to_mode (word_mode, op1, 1);
1788 }
1789
82f0e2cc
RK
1790 if (GET_MODE (op0) != VOIDmode
1791 && GET_MODE (op0) != mode)
5035bbfe
TG
1792 op0 = convert_to_mode (mode, op0, unsignedp);
1793
77c9c6c2
RK
1794 /* Pass 1 for NO_QUEUE so we don't lose any increments
1795 if the libcall is cse'd or moved. */
9a7f678c 1796 value = emit_library_call_value (binoptab->handlers[(int) mode].libfunc,
ebb1b59a 1797 NULL_RTX, LCT_CONST, mode, 2,
9a7f678c 1798 op0, mode, op1x, op1_mode);
77c9c6c2
RK
1799
1800 insns = get_insns ();
1801 end_sequence ();
1802
1803 target = gen_reg_rtx (mode);
9a7f678c 1804 emit_libcall_block (insns, target, value,
9e6a5703 1805 gen_rtx_fmt_ee (binoptab->code, mode, op0, op1));
77c9c6c2
RK
1806
1807 return target;
1808 }
1809
1810 delete_insns_since (last);
1811
1812 /* It can't be done in this mode. Can we do it in a wider mode? */
1813
1814 if (! (methods == OPTAB_WIDEN || methods == OPTAB_LIB_WIDEN
1815 || methods == OPTAB_MUST_WIDEN))
abd418d3
RS
1816 {
1817 /* Caller says, don't even try. */
1818 delete_insns_since (entry_last);
1819 return 0;
1820 }
77c9c6c2
RK
1821
1822 /* Compute the value of METHODS to pass to recursive calls.
1823 Don't allow widening to be tried recursively. */
1824
1825 methods = (methods == OPTAB_LIB_WIDEN ? OPTAB_LIB : OPTAB_DIRECT);
1826
34e56753
RS
1827 /* Look for a wider mode of the same class for which it appears we can do
1828 the operation. */
77c9c6c2
RK
1829
1830 if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
1831 {
34e56753 1832 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
77c9c6c2
RK
1833 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
1834 {
1835 if ((binoptab->handlers[(int) wider_mode].insn_code
1836 != CODE_FOR_nothing)
1837 || (methods == OPTAB_LIB
1838 && binoptab->handlers[(int) wider_mode].libfunc))
1839 {
1840 rtx xop0 = op0, xop1 = op1;
1841 int no_extend = 0;
1842
34e56753 1843 /* For certain integer operations, we need not actually extend
77c9c6c2 1844 the narrow operands, as long as we will truncate
835532b8 1845 the results to the same narrowness. */
77c9c6c2 1846
34e56753
RS
1847 if ((binoptab == ior_optab || binoptab == and_optab
1848 || binoptab == xor_optab
1849 || binoptab == add_optab || binoptab == sub_optab
e5df894b 1850 || binoptab == smul_optab || binoptab == ashl_optab)
835532b8 1851 && class == MODE_INT)
77c9c6c2
RK
1852 no_extend = 1;
1853
0661a3de
RS
1854 xop0 = widen_operand (xop0, wider_mode, mode,
1855 unsignedp, no_extend);
943cc242
RK
1856
1857 /* The second operand of a shift must always be extended. */
0661a3de 1858 xop1 = widen_operand (xop1, wider_mode, mode, unsignedp,
e5df894b 1859 no_extend && binoptab != ashl_optab);
77c9c6c2 1860
b1ec3c92 1861 temp = expand_binop (wider_mode, binoptab, xop0, xop1, NULL_RTX,
77c9c6c2
RK
1862 unsignedp, methods);
1863 if (temp)
1864 {
34e56753 1865 if (class != MODE_INT)
77c9c6c2
RK
1866 {
1867 if (target == 0)
1868 target = gen_reg_rtx (mode);
1869 convert_move (target, temp, 0);
1870 return target;
1871 }
1872 else
1873 return gen_lowpart (mode, temp);
1874 }
1875 else
1876 delete_insns_since (last);
1877 }
1878 }
1879 }
1880
abd418d3 1881 delete_insns_since (entry_last);
77c9c6c2
RK
1882 return 0;
1883}
cb2a532e
AH
1884
1885/* Like expand_binop, but for open-coding vectors binops. */
1886
1887static rtx
1888expand_vector_binop (mode, binoptab, op0, op1, target, unsignedp, methods)
1889 enum machine_mode mode;
1890 optab binoptab;
1891 rtx op0, op1;
1892 rtx target;
1893 int unsignedp;
1894 enum optab_methods methods;
1895{
34a80643
R
1896 enum machine_mode submode, tmode;
1897 int size, elts, subsize, subbitsize, i;
cb2a532e
AH
1898 rtx t, a, b, res, seq;
1899 enum mode_class class;
1900
1901 class = GET_MODE_CLASS (mode);
1902
34a80643 1903 size = GET_MODE_SIZE (mode);
cb2a532e 1904 submode = GET_MODE_INNER (mode);
cb2a532e 1905
34a80643
R
1906 /* Search for the widest vector mode with the same inner mode that is
1907 still narrower than MODE and that allows to open-code this operator.
1908 Note, if we find such a mode and the handler later decides it can't
1909 do the expansion, we'll be called recursively with the narrower mode. */
1910 for (tmode = GET_CLASS_NARROWEST_MODE (class);
1911 GET_MODE_SIZE (tmode) < GET_MODE_SIZE (mode);
1912 tmode = GET_MODE_WIDER_MODE (tmode))
1913 {
1914 if (GET_MODE_INNER (tmode) == GET_MODE_INNER (mode)
1915 && binoptab->handlers[(int) tmode].insn_code != CODE_FOR_nothing)
1916 submode = tmode;
1917 }
cb2a532e
AH
1918
1919 switch (binoptab->code)
1920 {
34a80643
R
1921 case AND:
1922 case IOR:
1923 case XOR:
1924 tmode = int_mode_for_mode (mode);
1925 if (tmode != BLKmode)
1926 submode = tmode;
cb2a532e
AH
1927 case PLUS:
1928 case MINUS:
1929 case MULT:
1930 case DIV:
34a80643
R
1931 subsize = GET_MODE_SIZE (submode);
1932 subbitsize = GET_MODE_BITSIZE (submode);
1933 elts = size / subsize;
1934
1935 /* If METHODS is OPTAB_DIRECT, we don't insist on the exact mode,
1936 but that we operate on more than one element at a time. */
1937 if (subsize == GET_MODE_UNIT_SIZE (mode) && methods == OPTAB_DIRECT)
1938 return 0;
1939
1940 start_sequence ();
1941
1942 /* Errors can leave us with a const0_rtx as operand. */
1943 if (GET_MODE (op0) != mode)
1944 op0 = copy_to_mode_reg (mode, op0);
1945 if (GET_MODE (op1) != mode)
1946 op1 = copy_to_mode_reg (mode, op1);
1947
1948 if (!target)
1949 target = gen_reg_rtx (mode);
1950
cb2a532e
AH
1951 for (i = 0; i < elts; ++i)
1952 {
34a80643
R
1953 /* If this is part of a register, and not the first item in the
1954 word, we can't store using a SUBREG - that would clobber
1955 previous results.
1956 And storing with a SUBREG is only possible for the least
1957 significant part, hence we can't do it for big endian
1958 (unless we want to permute the evaluation order. */
1959 if (GET_CODE (target) == REG
1960 && (BYTES_BIG_ENDIAN
1961 ? subsize < UNITS_PER_WORD
1962 : ((i * subsize) % UNITS_PER_WORD) != 0))
1963 t = NULL_RTX;
1964 else
1965 t = simplify_gen_subreg (submode, target, mode, i * subsize);
1966 if (CONSTANT_P (op0))
1967 a = simplify_gen_subreg (submode, op0, mode, i * subsize);
1968 else
1969 a = extract_bit_field (op0, subbitsize, i * subbitsize, unsignedp,
1970 NULL_RTX, submode, submode, size);
1971 if (CONSTANT_P (op1))
1972 b = simplify_gen_subreg (submode, op1, mode, i * subsize);
1973 else
1974 b = extract_bit_field (op1, subbitsize, i * subbitsize, unsignedp,
1975 NULL_RTX, submode, submode, size);
cb2a532e
AH
1976
1977 if (binoptab->code == DIV)
1978 {
1979 if (class == MODE_VECTOR_FLOAT)
1980 res = expand_binop (submode, binoptab, a, b, t,
1981 unsignedp, methods);
1982 else
1983 res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
1984 a, b, t, unsignedp);
1985 }
1986 else
1987 res = expand_binop (submode, binoptab, a, b, t,
1988 unsignedp, methods);
1989
1990 if (res == 0)
1991 break;
1992
34a80643
R
1993 if (t)
1994 emit_move_insn (t, res);
1995 else
1996 store_bit_field (target, subbitsize, i * subbitsize, submode, res,
1997 size);
cb2a532e
AH
1998 }
1999 break;
2000
2001 default:
2002 abort ();
2003 }
2004
2005 seq = get_insns ();
2006 end_sequence ();
2007 emit_insn (seq);
2008
2009 return target;
2010}
2011
2012/* Like expand_unop but for open-coding vector unops. */
2013
2014static rtx
2015expand_vector_unop (mode, unoptab, op0, target, unsignedp)
2016 enum machine_mode mode;
2017 optab unoptab;
2018 rtx op0;
2019 rtx target;
2020 int unsignedp;
2021{
34a80643
R
2022 enum machine_mode submode, tmode;
2023 int size, elts, subsize, subbitsize, i;
cb2a532e
AH
2024 rtx t, a, res, seq;
2025
34a80643 2026 size = GET_MODE_SIZE (mode);
cb2a532e 2027 submode = GET_MODE_INNER (mode);
34a80643
R
2028
2029 /* Search for the widest vector mode with the same inner mode that is
2030 still narrower than MODE and that allows to open-code this operator.
2031 Note, if we find such a mode and the handler later decides it can't
2032 do the expansion, we'll be called recursively with the narrower mode. */
2033 for (tmode = GET_CLASS_NARROWEST_MODE (GET_MODE_CLASS (mode));
2034 GET_MODE_SIZE (tmode) < GET_MODE_SIZE (mode);
2035 tmode = GET_MODE_WIDER_MODE (tmode))
2036 {
2037 if (GET_MODE_INNER (tmode) == GET_MODE_INNER (mode)
2038 && unoptab->handlers[(int) tmode].insn_code != CODE_FOR_nothing)
2039 submode = tmode;
2040 }
2041 /* If there is no negate operation, try doing a subtract from zero. */
0d541696
R
2042 if (unoptab == neg_optab && GET_MODE_CLASS (submode) == MODE_INT
2043 /* Avoid infinite recursion when an
2044 error has left us with the wrong mode. */
2045 && GET_MODE (op0) == mode)
34a80643
R
2046 {
2047 rtx temp;
2048 temp = expand_binop (mode, sub_optab, CONST0_RTX (mode), op0,
2049 target, unsignedp, OPTAB_DIRECT);
2050 if (temp)
2051 return temp;
2052 }
2053
2054 if (unoptab == one_cmpl_optab)
2055 {
2056 tmode = int_mode_for_mode (mode);
2057 if (tmode != BLKmode)
2058 submode = tmode;
2059 }
2060
2061 subsize = GET_MODE_SIZE (submode);
2062 subbitsize = GET_MODE_BITSIZE (submode);
2063 elts = size / subsize;
2064
2065 /* Errors can leave us with a const0_rtx as operand. */
2066 if (GET_MODE (op0) != mode)
2067 op0 = copy_to_mode_reg (mode, op0);
cb2a532e
AH
2068
2069 if (!target)
2070 target = gen_reg_rtx (mode);
2071
2072 start_sequence ();
2073
cb2a532e
AH
2074 for (i = 0; i < elts; ++i)
2075 {
34a80643
R
2076 /* If this is part of a register, and not the first item in the
2077 word, we can't store using a SUBREG - that would clobber
2078 previous results.
2079 And storing with a SUBREG is only possible for the least
2080 significant part, hence we can't do it for big endian
2081 (unless we want to permute the evaluation order. */
2082 if (GET_CODE (target) == REG
2083 && (BYTES_BIG_ENDIAN
2084 ? subsize < UNITS_PER_WORD
2085 : ((i * subsize) % UNITS_PER_WORD) != 0))
2086 t = NULL_RTX;
2087 else
2088 t = simplify_gen_subreg (submode, target, mode, i * subsize);
2089 if (CONSTANT_P (op0))
2090 a = simplify_gen_subreg (submode, op0, mode, i * subsize);
2091 else
2092 a = extract_bit_field (op0, subbitsize, i * subbitsize, unsignedp,
2093 t, submode, submode, size);
cb2a532e
AH
2094
2095 res = expand_unop (submode, unoptab, a, t, unsignedp);
2096
34a80643
R
2097 if (t)
2098 emit_move_insn (t, res);
2099 else
2100 store_bit_field (target, subbitsize, i * subbitsize, submode, res,
2101 size);
cb2a532e
AH
2102 }
2103
2104 seq = get_insns ();
2105 end_sequence ();
2106 emit_insn (seq);
2107
2108 return target;
2109}
77c9c6c2
RK
2110\f
2111/* Expand a binary operator which has both signed and unsigned forms.
2112 UOPTAB is the optab for unsigned operations, and SOPTAB is for
2113 signed operations.
2114
2115 If we widen unsigned operands, we may use a signed wider operation instead
2116 of an unsigned wider operation, since the result would be the same. */
2117
2118rtx
2119sign_expand_binop (mode, uoptab, soptab, op0, op1, target, unsignedp, methods)
2120 enum machine_mode mode;
2121 optab uoptab, soptab;
2122 rtx op0, op1, target;
2123 int unsignedp;
2124 enum optab_methods methods;
2125{
b3694847 2126 rtx temp;
77c9c6c2
RK
2127 optab direct_optab = unsignedp ? uoptab : soptab;
2128 struct optab wide_soptab;
2129
2130 /* Do it without widening, if possible. */
2131 temp = expand_binop (mode, direct_optab, op0, op1, target,
2132 unsignedp, OPTAB_DIRECT);
2133 if (temp || methods == OPTAB_DIRECT)
2134 return temp;
2135
2136 /* Try widening to a signed int. Make a fake signed optab that
2137 hides any signed insn for direct use. */
2138 wide_soptab = *soptab;
2139 wide_soptab.handlers[(int) mode].insn_code = CODE_FOR_nothing;
2140 wide_soptab.handlers[(int) mode].libfunc = 0;
2141
2142 temp = expand_binop (mode, &wide_soptab, op0, op1, target,
2143 unsignedp, OPTAB_WIDEN);
2144
2145 /* For unsigned operands, try widening to an unsigned int. */
2146 if (temp == 0 && unsignedp)
2147 temp = expand_binop (mode, uoptab, op0, op1, target,
2148 unsignedp, OPTAB_WIDEN);
2149 if (temp || methods == OPTAB_WIDEN)
2150 return temp;
2151
2152 /* Use the right width lib call if that exists. */
2153 temp = expand_binop (mode, direct_optab, op0, op1, target, unsignedp, OPTAB_LIB);
2154 if (temp || methods == OPTAB_LIB)
2155 return temp;
2156
2157 /* Must widen and use a lib call, use either signed or unsigned. */
2158 temp = expand_binop (mode, &wide_soptab, op0, op1, target,
2159 unsignedp, methods);
2160 if (temp != 0)
2161 return temp;
2162 if (unsignedp)
2163 return expand_binop (mode, uoptab, op0, op1, target,
2164 unsignedp, methods);
2165 return 0;
2166}
2167\f
2168/* Generate code to perform an operation specified by BINOPTAB
2169 on operands OP0 and OP1, with two results to TARG1 and TARG2.
2170 We assume that the order of the operands for the instruction
2171 is TARG0, OP0, OP1, TARG1, which would fit a pattern like
2172 [(set TARG0 (operate OP0 OP1)) (set TARG1 (operate ...))].
2173
2174 Either TARG0 or TARG1 may be zero, but what that means is that
38e01259 2175 the result is not actually wanted. We will generate it into
77c9c6c2
RK
2176 a dummy pseudo-reg and discard it. They may not both be zero.
2177
2178 Returns 1 if this operation can be performed; 0 if not. */
2179
2180int
2181expand_twoval_binop (binoptab, op0, op1, targ0, targ1, unsignedp)
2182 optab binoptab;
2183 rtx op0, op1;
2184 rtx targ0, targ1;
2185 int unsignedp;
2186{
2187 enum machine_mode mode = GET_MODE (targ0 ? targ0 : targ1);
2188 enum mode_class class;
2189 enum machine_mode wider_mode;
abd418d3 2190 rtx entry_last = get_last_insn ();
77c9c6c2
RK
2191 rtx last;
2192
2193 class = GET_MODE_CLASS (mode);
2194
2195 op0 = protect_from_queue (op0, 0);
2196 op1 = protect_from_queue (op1, 0);
2197
2198 if (flag_force_mem)
2199 {
2200 op0 = force_not_mem (op0);
2201 op1 = force_not_mem (op1);
2202 }
2203
2204 /* If we are inside an appropriately-short loop and one operand is an
2205 expensive constant, force it into a register. */
aeedc93f 2206 if (CONSTANT_P (op0) && preserve_subexpressions_p ()
b437f1a7 2207 && rtx_cost (op0, binoptab->code) > COSTS_N_INSNS (1))
77c9c6c2
RK
2208 op0 = force_reg (mode, op0);
2209
aeedc93f 2210 if (CONSTANT_P (op1) && preserve_subexpressions_p ()
b437f1a7 2211 && rtx_cost (op1, binoptab->code) > COSTS_N_INSNS (1))
77c9c6c2
RK
2212 op1 = force_reg (mode, op1);
2213
2214 if (targ0)
2215 targ0 = protect_from_queue (targ0, 1);
2216 else
2217 targ0 = gen_reg_rtx (mode);
2218 if (targ1)
2219 targ1 = protect_from_queue (targ1, 1);
2220 else
2221 targ1 = gen_reg_rtx (mode);
2222
2223 /* Record where to go back to if we fail. */
2224 last = get_last_insn ();
2225
2226 if (binoptab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
2227 {
2228 int icode = (int) binoptab->handlers[(int) mode].insn_code;
a995e389
RH
2229 enum machine_mode mode0 = insn_data[icode].operand[1].mode;
2230 enum machine_mode mode1 = insn_data[icode].operand[2].mode;
77c9c6c2
RK
2231 rtx pat;
2232 rtx xop0 = op0, xop1 = op1;
2233
874f6a6d
EB
2234 /* In case the insn wants input operands in modes different from
2235 those of the actual operands, convert the operands. It would
2236 seem that we don't need to convert CONST_INTs, but we do, so
2237 that they're properly zero-extended or sign-extended for their
2238 modes. */
77c9c6c2 2239
874f6a6d
EB
2240 if (GET_MODE (op0) != mode0 && mode0 != VOIDmode)
2241 xop0 = convert_modes (mode0,
2242 GET_MODE (op0) != VOIDmode
2243 ? GET_MODE (op0)
2244 : mode,
2245 xop0, unsignedp);
2246
2247 if (GET_MODE (op1) != mode1 && mode1 != VOIDmode)
2248 xop1 = convert_modes (mode1,
2249 GET_MODE (op1) != VOIDmode
2250 ? GET_MODE (op1)
2251 : mode,
2252 xop1, unsignedp);
77c9c6c2
RK
2253
2254 /* Now, if insn doesn't accept these operands, put them into pseudos. */
a995e389 2255 if (! (*insn_data[icode].operand[1].predicate) (xop0, mode0))
77c9c6c2
RK
2256 xop0 = copy_to_mode_reg (mode0, xop0);
2257
a995e389 2258 if (! (*insn_data[icode].operand[2].predicate) (xop1, mode1))
77c9c6c2
RK
2259 xop1 = copy_to_mode_reg (mode1, xop1);
2260
2261 /* We could handle this, but we should always be called with a pseudo
2262 for our targets and all insns should take them as outputs. */
a995e389
RH
2263 if (! (*insn_data[icode].operand[0].predicate) (targ0, mode)
2264 || ! (*insn_data[icode].operand[3].predicate) (targ1, mode))
77c9c6c2
RK
2265 abort ();
2266
2267 pat = GEN_FCN (icode) (targ0, xop0, xop1, targ1);
2268 if (pat)
2269 {
2270 emit_insn (pat);
2271 return 1;
2272 }
2273 else
2274 delete_insns_since (last);
2275 }
2276
2277 /* It can't be done in this mode. Can we do it in a wider mode? */
2278
2279 if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
2280 {
34e56753 2281 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
77c9c6c2
RK
2282 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2283 {
2284 if (binoptab->handlers[(int) wider_mode].insn_code
2285 != CODE_FOR_nothing)
2286 {
b3694847
SS
2287 rtx t0 = gen_reg_rtx (wider_mode);
2288 rtx t1 = gen_reg_rtx (wider_mode);
76791f3d
JH
2289 rtx cop0 = convert_modes (wider_mode, mode, op0, unsignedp);
2290 rtx cop1 = convert_modes (wider_mode, mode, op1, unsignedp);
77c9c6c2 2291
76791f3d 2292 if (expand_twoval_binop (binoptab, cop0, cop1,
77c9c6c2
RK
2293 t0, t1, unsignedp))
2294 {
2295 convert_move (targ0, t0, unsignedp);
2296 convert_move (targ1, t1, unsignedp);
2297 return 1;
2298 }
2299 else
2300 delete_insns_since (last);
2301 }
2302 }
2303 }
2304
abd418d3 2305 delete_insns_since (entry_last);
77c9c6c2
RK
2306 return 0;
2307}
2308\f
ef89d648
ZW
2309/* Wrapper around expand_unop which takes an rtx code to specify
2310 the operation to perform, not an optab pointer. All other
2311 arguments are the same. */
2312rtx
2313expand_simple_unop (mode, code, op0, target, unsignedp)
2314 enum machine_mode mode;
2315 enum rtx_code code;
2316 rtx op0;
2317 rtx target;
2318 int unsignedp;
2319{
2320 optab unop = code_to_optab [(int) code];
2321 if (unop == 0)
2322 abort ();
2323
2324 return expand_unop (mode, unop, op0, target, unsignedp);
2325}
2326
77c9c6c2
RK
2327/* Generate code to perform an operation specified by UNOPTAB
2328 on operand OP0, with result having machine-mode MODE.
2329
2330 UNSIGNEDP is for the case where we have to widen the operands
2331 to perform the operation. It says to use zero-extension.
2332
2333 If TARGET is nonzero, the value
2334 is generated there, if it is convenient to do so.
2335 In all cases an rtx is returned for the locus of the value;
2336 this may or may not be TARGET. */
2337
2338rtx
2339expand_unop (mode, unoptab, op0, target, unsignedp)
2340 enum machine_mode mode;
2341 optab unoptab;
2342 rtx op0;
2343 rtx target;
2344 int unsignedp;
2345{
2346 enum mode_class class;
2347 enum machine_mode wider_mode;
b3694847 2348 rtx temp;
77c9c6c2
RK
2349 rtx last = get_last_insn ();
2350 rtx pat;
2351
2352 class = GET_MODE_CLASS (mode);
2353
2354 op0 = protect_from_queue (op0, 0);
2355
2356 if (flag_force_mem)
2357 {
2358 op0 = force_not_mem (op0);
2359 }
2360
2361 if (target)
2362 target = protect_from_queue (target, 1);
2363
2364 if (unoptab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
2365 {
2366 int icode = (int) unoptab->handlers[(int) mode].insn_code;
a995e389 2367 enum machine_mode mode0 = insn_data[icode].operand[1].mode;
77c9c6c2
RK
2368 rtx xop0 = op0;
2369
2370 if (target)
2371 temp = target;
2372 else
2373 temp = gen_reg_rtx (mode);
2374
2375 if (GET_MODE (xop0) != VOIDmode
2376 && GET_MODE (xop0) != mode0)
2377 xop0 = convert_to_mode (mode0, xop0, unsignedp);
2378
2379 /* Now, if insn doesn't accept our operand, put it into a pseudo. */
2380
a995e389 2381 if (! (*insn_data[icode].operand[1].predicate) (xop0, mode0))
77c9c6c2
RK
2382 xop0 = copy_to_mode_reg (mode0, xop0);
2383
a995e389 2384 if (! (*insn_data[icode].operand[0].predicate) (temp, mode))
77c9c6c2
RK
2385 temp = gen_reg_rtx (mode);
2386
2387 pat = GEN_FCN (icode) (temp, xop0);
2388 if (pat)
2389 {
2f937369 2390 if (INSN_P (pat) && NEXT_INSN (pat) != NULL_RTX
b1ec3c92 2391 && ! add_equal_note (pat, temp, unoptab->code, xop0, NULL_RTX))
77c9c6c2
RK
2392 {
2393 delete_insns_since (last);
b1ec3c92 2394 return expand_unop (mode, unoptab, op0, NULL_RTX, unsignedp);
77c9c6c2
RK
2395 }
2396
2397 emit_insn (pat);
2398
2399 return temp;
2400 }
2401 else
2402 delete_insns_since (last);
2403 }
2404
9a856ec7
RK
2405 /* It can't be done in this mode. Can we open-code it in a wider mode? */
2406
2407 if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
2408 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
2409 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2410 {
2411 if (unoptab->handlers[(int) wider_mode].insn_code != CODE_FOR_nothing)
2412 {
2413 rtx xop0 = op0;
2414
2415 /* For certain operations, we need not actually extend
2416 the narrow operand, as long as we will truncate the
835532b8
RK
2417 results to the same narrowness. */
2418
0661a3de 2419 xop0 = widen_operand (xop0, wider_mode, mode, unsignedp,
835532b8
RK
2420 (unoptab == neg_optab
2421 || unoptab == one_cmpl_optab)
2422 && class == MODE_INT);
9a856ec7 2423
b1ec3c92
CH
2424 temp = expand_unop (wider_mode, unoptab, xop0, NULL_RTX,
2425 unsignedp);
9a856ec7
RK
2426
2427 if (temp)
2428 {
2429 if (class != MODE_INT)
2430 {
2431 if (target == 0)
2432 target = gen_reg_rtx (mode);
2433 convert_move (target, temp, 0);
2434 return target;
2435 }
2436 else
2437 return gen_lowpart (mode, temp);
2438 }
2439 else
2440 delete_insns_since (last);
2441 }
2442 }
2443
77c9c6c2
RK
2444 /* These can be done a word at a time. */
2445 if (unoptab == one_cmpl_optab
2446 && class == MODE_INT
2447 && GET_MODE_SIZE (mode) > UNITS_PER_WORD
34e56753 2448 && unoptab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing)
77c9c6c2 2449 {
bb93b973 2450 int i;
77c9c6c2
RK
2451 rtx insns;
2452
2453 if (target == 0 || target == op0)
2454 target = gen_reg_rtx (mode);
2455
2456 start_sequence ();
2457
2458 /* Do the actual arithmetic. */
2459 for (i = 0; i < GET_MODE_BITSIZE (mode) / BITS_PER_WORD; i++)
2460 {
2461 rtx target_piece = operand_subword (target, i, 1, mode);
34e56753 2462 rtx x = expand_unop (word_mode, unoptab,
77c9c6c2
RK
2463 operand_subword_force (op0, i, mode),
2464 target_piece, unsignedp);
bb93b973 2465
77c9c6c2
RK
2466 if (target_piece != x)
2467 emit_move_insn (target_piece, x);
2468 }
2469
2470 insns = get_insns ();
2471 end_sequence ();
2472
b1ec3c92 2473 emit_no_conflict_block (insns, target, op0, NULL_RTX,
9e6a5703
JC
2474 gen_rtx_fmt_e (unoptab->code, mode,
2475 copy_rtx (op0)));
77c9c6c2
RK
2476 return target;
2477 }
2478
139e5e08 2479 /* Open-code the complex negation operation. */
91ce572a 2480 else if (unoptab->code == NEG
139e5e08
RS
2481 && (class == MODE_COMPLEX_FLOAT || class == MODE_COMPLEX_INT))
2482 {
2483 rtx target_piece;
2484 rtx x;
2485 rtx seq;
2486
2487 /* Find the correct mode for the real and imaginary parts */
2488 enum machine_mode submode
2489 = mode_for_size (GET_MODE_UNIT_SIZE (mode) * BITS_PER_UNIT,
2490 class == MODE_COMPLEX_INT ? MODE_INT : MODE_FLOAT,
2491 0);
2492
2493 if (submode == BLKmode)
2494 abort ();
2495
2496 if (target == 0)
2497 target = gen_reg_rtx (mode);
2498
2499 start_sequence ();
2500
decdfa82 2501 target_piece = gen_imagpart (submode, target);
139e5e08 2502 x = expand_unop (submode, unoptab,
decdfa82 2503 gen_imagpart (submode, op0),
139e5e08
RS
2504 target_piece, unsignedp);
2505 if (target_piece != x)
2506 emit_move_insn (target_piece, x);
2507
decdfa82 2508 target_piece = gen_realpart (submode, target);
139e5e08 2509 x = expand_unop (submode, unoptab,
decdfa82 2510 gen_realpart (submode, op0),
139e5e08
RS
2511 target_piece, unsignedp);
2512 if (target_piece != x)
2513 emit_move_insn (target_piece, x);
2514
a29b481b 2515 seq = get_insns ();
139e5e08
RS
2516 end_sequence ();
2517
2518 emit_no_conflict_block (seq, target, op0, 0,
9e6a5703
JC
2519 gen_rtx_fmt_e (unoptab->code, mode,
2520 copy_rtx (op0)));
139e5e08
RS
2521 return target;
2522 }
2523
139e5e08 2524 /* Now try a library call in this mode. */
77c9c6c2
RK
2525 if (unoptab->handlers[(int) mode].libfunc)
2526 {
2527 rtx insns;
9a7f678c 2528 rtx value;
77c9c6c2
RK
2529
2530 start_sequence ();
2531
2532 /* Pass 1 for NO_QUEUE so we don't lose any increments
2533 if the libcall is cse'd or moved. */
9a7f678c 2534 value = emit_library_call_value (unoptab->handlers[(int) mode].libfunc,
ebb1b59a 2535 NULL_RTX, LCT_CONST, mode, 1, op0, mode);
77c9c6c2
RK
2536 insns = get_insns ();
2537 end_sequence ();
2538
2539 target = gen_reg_rtx (mode);
9a7f678c 2540 emit_libcall_block (insns, target, value,
9e6a5703 2541 gen_rtx_fmt_e (unoptab->code, mode, op0));
77c9c6c2
RK
2542
2543 return target;
2544 }
2545
cb2a532e
AH
2546 if (class == MODE_VECTOR_FLOAT || class == MODE_VECTOR_INT)
2547 return expand_vector_unop (mode, unoptab, op0, target, unsignedp);
2548
77c9c6c2
RK
2549 /* It can't be done in this mode. Can we do it in a wider mode? */
2550
2551 if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
2552 {
34e56753 2553 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
77c9c6c2
RK
2554 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2555 {
2556 if ((unoptab->handlers[(int) wider_mode].insn_code
2557 != CODE_FOR_nothing)
2558 || unoptab->handlers[(int) wider_mode].libfunc)
2559 {
34e56753
RS
2560 rtx xop0 = op0;
2561
2562 /* For certain operations, we need not actually extend
2563 the narrow operand, as long as we will truncate the
2564 results to the same narrowness. */
2565
0661a3de 2566 xop0 = widen_operand (xop0, wider_mode, mode, unsignedp,
835532b8
RK
2567 (unoptab == neg_optab
2568 || unoptab == one_cmpl_optab)
2569 && class == MODE_INT);
77c9c6c2 2570
b1ec3c92
CH
2571 temp = expand_unop (wider_mode, unoptab, xop0, NULL_RTX,
2572 unsignedp);
34e56753
RS
2573
2574 if (temp)
77c9c6c2 2575 {
34e56753
RS
2576 if (class != MODE_INT)
2577 {
2578 if (target == 0)
2579 target = gen_reg_rtx (mode);
2580 convert_move (target, temp, 0);
2581 return target;
2582 }
2583 else
2584 return gen_lowpart (mode, temp);
77c9c6c2
RK
2585 }
2586 else
34e56753 2587 delete_insns_since (last);
77c9c6c2
RK
2588 }
2589 }
2590 }
2591
b82b6eea
DE
2592 /* If there is no negate operation, try doing a subtract from zero.
2593 The US Software GOFAST library needs this. */
91ce572a 2594 if (unoptab->code == NEG)
b82b6eea
DE
2595 {
2596 rtx temp;
91ce572a
CC
2597 temp = expand_binop (mode,
2598 unoptab == negv_optab ? subv_optab : sub_optab,
2599 CONST0_RTX (mode), op0,
2600 target, unsignedp, OPTAB_LIB_WIDEN);
b82b6eea
DE
2601 if (temp)
2602 return temp;
2603 }
2604
77c9c6c2
RK
2605 return 0;
2606}
2607\f
decdfa82
RS
2608/* Emit code to compute the absolute value of OP0, with result to
2609 TARGET if convenient. (TARGET may be 0.) The return value says
2610 where the result actually is to be found.
2611
2612 MODE is the mode of the operand; the mode of the result is
2613 different but can be deduced from MODE.
2614
91813b28 2615 */
7fd01431
RK
2616
2617rtx
91ce572a 2618expand_abs (mode, op0, target, result_unsignedp, safe)
7fd01431
RK
2619 enum machine_mode mode;
2620 rtx op0;
2621 rtx target;
91ce572a 2622 int result_unsignedp;
7fd01431
RK
2623 int safe;
2624{
2625 rtx temp, op1;
2626
91ce572a
CC
2627 if (! flag_trapv)
2628 result_unsignedp = 1;
2629
7fd01431 2630 /* First try to do it with a special abs instruction. */
91ce572a
CC
2631 temp = expand_unop (mode, result_unsignedp ? abs_optab : absv_optab,
2632 op0, target, 0);
7fd01431
RK
2633 if (temp != 0)
2634 return temp;
2635
14a774a9
RK
2636 /* If we have a MAX insn, we can do this as MAX (x, -x). */
2637 if (smax_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
2638 {
2639 rtx last = get_last_insn ();
2640
2641 temp = expand_unop (mode, neg_optab, op0, NULL_RTX, 0);
2642 if (temp != 0)
2643 temp = expand_binop (mode, smax_optab, op0, temp, target, 0,
2644 OPTAB_WIDEN);
2645
2646 if (temp != 0)
2647 return temp;
2648
2649 delete_insns_since (last);
2650 }
2651
7fd01431
RK
2652 /* If this machine has expensive jumps, we can do integer absolute
2653 value of X as (((signed) x >> (W-1)) ^ x) - ((signed) x >> (W-1)),
e1078cfc 2654 where W is the width of MODE. */
7fd01431
RK
2655
2656 if (GET_MODE_CLASS (mode) == MODE_INT && BRANCH_COST >= 2)
2657 {
2658 rtx extended = expand_shift (RSHIFT_EXPR, mode, op0,
2659 size_int (GET_MODE_BITSIZE (mode) - 1),
2660 NULL_RTX, 0);
2661
2662 temp = expand_binop (mode, xor_optab, extended, op0, target, 0,
2663 OPTAB_LIB_WIDEN);
2664 if (temp != 0)
91ce572a
CC
2665 temp = expand_binop (mode, result_unsignedp ? sub_optab : subv_optab,
2666 temp, extended, target, 0, OPTAB_LIB_WIDEN);
7fd01431
RK
2667
2668 if (temp != 0)
2669 return temp;
2670 }
2671
2672 /* If that does not win, use conditional jump and negate. */
5c0bf747
RK
2673
2674 /* It is safe to use the target if it is the same
2675 as the source if this is also a pseudo register */
2676 if (op0 == target && GET_CODE (op0) == REG
2677 && REGNO (op0) >= FIRST_PSEUDO_REGISTER)
2678 safe = 1;
2679
7fd01431
RK
2680 op1 = gen_label_rtx ();
2681 if (target == 0 || ! safe
2682 || GET_MODE (target) != mode
2683 || (GET_CODE (target) == MEM && MEM_VOLATILE_P (target))
2684 || (GET_CODE (target) == REG
2685 && REGNO (target) < FIRST_PSEUDO_REGISTER))
2686 target = gen_reg_rtx (mode);
2687
2688 emit_move_insn (target, op0);
2689 NO_DEFER_POP;
2690
2691 /* If this mode is an integer too wide to compare properly,
2692 compare word by word. Rely on CSE to optimize constant cases. */
1eb8759b
RH
2693 if (GET_MODE_CLASS (mode) == MODE_INT
2694 && ! can_compare_p (GE, mode, ccp_jump))
7fd01431
RK
2695 do_jump_by_parts_greater_rtx (mode, 0, target, const0_rtx,
2696 NULL_RTX, op1);
2697 else
b30f05db 2698 do_compare_rtx_and_jump (target, CONST0_RTX (mode), GE, 0, mode,
a06ef755 2699 NULL_RTX, NULL_RTX, op1);
7fd01431 2700
91ce572a
CC
2701 op0 = expand_unop (mode, result_unsignedp ? neg_optab : negv_optab,
2702 target, target, 0);
7fd01431
RK
2703 if (op0 != target)
2704 emit_move_insn (target, op0);
2705 emit_label (op1);
2706 OK_DEFER_POP;
2707 return target;
2708}
2709\f
2710/* Emit code to compute the absolute value of OP0, with result to
2711 TARGET if convenient. (TARGET may be 0.) The return value says
2712 where the result actually is to be found.
2713
2714 MODE is the mode of the operand; the mode of the result is
2715 different but can be deduced from MODE.
2716
decdfa82
RS
2717 UNSIGNEDP is relevant for complex integer modes. */
2718
2719rtx
2720expand_complex_abs (mode, op0, target, unsignedp)
2721 enum machine_mode mode;
2722 rtx op0;
2723 rtx target;
2724 int unsignedp;
2725{
2726 enum mode_class class = GET_MODE_CLASS (mode);
2727 enum machine_mode wider_mode;
b3694847 2728 rtx temp;
abd418d3
RS
2729 rtx entry_last = get_last_insn ();
2730 rtx last;
decdfa82 2731 rtx pat;
91ce572a 2732 optab this_abs_optab;
decdfa82
RS
2733
2734 /* Find the correct mode for the real and imaginary parts. */
2735 enum machine_mode submode
2736 = mode_for_size (GET_MODE_UNIT_SIZE (mode) * BITS_PER_UNIT,
2737 class == MODE_COMPLEX_INT ? MODE_INT : MODE_FLOAT,
2738 0);
2739
2740 if (submode == BLKmode)
2741 abort ();
2742
2743 op0 = protect_from_queue (op0, 0);
2744
2745 if (flag_force_mem)
2746 {
2747 op0 = force_not_mem (op0);
2748 }
2749
abd418d3
RS
2750 last = get_last_insn ();
2751
decdfa82
RS
2752 if (target)
2753 target = protect_from_queue (target, 1);
2754
91ce572a
CC
2755 this_abs_optab = ! unsignedp && flag_trapv
2756 && (GET_MODE_CLASS(mode) == MODE_INT)
2757 ? absv_optab : abs_optab;
2758
2759 if (this_abs_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
decdfa82 2760 {
91ce572a 2761 int icode = (int) this_abs_optab->handlers[(int) mode].insn_code;
a995e389 2762 enum machine_mode mode0 = insn_data[icode].operand[1].mode;
decdfa82
RS
2763 rtx xop0 = op0;
2764
2765 if (target)
2766 temp = target;
2767 else
2768 temp = gen_reg_rtx (submode);
2769
2770 if (GET_MODE (xop0) != VOIDmode
2771 && GET_MODE (xop0) != mode0)
2772 xop0 = convert_to_mode (mode0, xop0, unsignedp);
2773
2774 /* Now, if insn doesn't accept our operand, put it into a pseudo. */
2775
a995e389 2776 if (! (*insn_data[icode].operand[1].predicate) (xop0, mode0))
decdfa82
RS
2777 xop0 = copy_to_mode_reg (mode0, xop0);
2778
a995e389 2779 if (! (*insn_data[icode].operand[0].predicate) (temp, submode))
decdfa82
RS
2780 temp = gen_reg_rtx (submode);
2781
2782 pat = GEN_FCN (icode) (temp, xop0);
2783 if (pat)
2784 {
2f937369 2785 if (INSN_P (pat) && NEXT_INSN (pat) != NULL_RTX
91ce572a
CC
2786 && ! add_equal_note (pat, temp, this_abs_optab->code, xop0,
2787 NULL_RTX))
decdfa82
RS
2788 {
2789 delete_insns_since (last);
91ce572a
CC
2790 return expand_unop (mode, this_abs_optab, op0, NULL_RTX,
2791 unsignedp);
decdfa82
RS
2792 }
2793
2794 emit_insn (pat);
2795
2796 return temp;
2797 }
2798 else
2799 delete_insns_since (last);
2800 }
2801
2802 /* It can't be done in this mode. Can we open-code it in a wider mode? */
2803
2804 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
2805 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2806 {
91ce572a
CC
2807 if (this_abs_optab->handlers[(int) wider_mode].insn_code
2808 != CODE_FOR_nothing)
decdfa82
RS
2809 {
2810 rtx xop0 = op0;
2811
0661a3de 2812 xop0 = convert_modes (wider_mode, mode, xop0, unsignedp);
decdfa82
RS
2813 temp = expand_complex_abs (wider_mode, xop0, NULL_RTX, unsignedp);
2814
2815 if (temp)
2816 {
2817 if (class != MODE_COMPLEX_INT)
2818 {
2819 if (target == 0)
2820 target = gen_reg_rtx (submode);
2821 convert_move (target, temp, 0);
2822 return target;
2823 }
2824 else
2825 return gen_lowpart (submode, temp);
2826 }
2827 else
2828 delete_insns_since (last);
2829 }
2830 }
2831
2832 /* Open-code the complex absolute-value operation
2833 if we can open-code sqrt. Otherwise it's not worth while. */
10e927ef
CC
2834 if (sqrt_optab->handlers[(int) submode].insn_code != CODE_FOR_nothing
2835 && ! flag_trapv)
decdfa82
RS
2836 {
2837 rtx real, imag, total;
2838
2839 real = gen_realpart (submode, op0);
2840 imag = gen_imagpart (submode, op0);
9061e4cd 2841
decdfa82 2842 /* Square both parts. */
9061e4cd
RK
2843 real = expand_mult (submode, real, real, NULL_RTX, 0);
2844 imag = expand_mult (submode, imag, imag, NULL_RTX, 0);
2845
decdfa82 2846 /* Sum the parts. */
73d9a835 2847 total = expand_binop (submode, add_optab, real, imag, NULL_RTX,
decdfa82 2848 0, OPTAB_LIB_WIDEN);
9061e4cd 2849
decdfa82
RS
2850 /* Get sqrt in TARGET. Set TARGET to where the result is. */
2851 target = expand_unop (submode, sqrt_optab, total, target, 0);
2852 if (target == 0)
2853 delete_insns_since (last);
2854 else
2855 return target;
2856 }
2857
2858 /* Now try a library call in this mode. */
91ce572a 2859 if (this_abs_optab->handlers[(int) mode].libfunc)
decdfa82
RS
2860 {
2861 rtx insns;
a0bc0933 2862 rtx value;
decdfa82
RS
2863
2864 start_sequence ();
2865
2866 /* Pass 1 for NO_QUEUE so we don't lose any increments
2867 if the libcall is cse'd or moved. */
9a7f678c 2868 value = emit_library_call_value (abs_optab->handlers[(int) mode].libfunc,
ebb1b59a 2869 NULL_RTX, LCT_CONST, submode, 1, op0, mode);
decdfa82
RS
2870 insns = get_insns ();
2871 end_sequence ();
2872
2873 target = gen_reg_rtx (submode);
9a7f678c 2874 emit_libcall_block (insns, target, value,
91ce572a 2875 gen_rtx_fmt_e (this_abs_optab->code, mode, op0));
decdfa82
RS
2876
2877 return target;
2878 }
2879
2880 /* It can't be done in this mode. Can we do it in a wider mode? */
2881
2882 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
2883 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2884 {
91ce572a 2885 if ((this_abs_optab->handlers[(int) wider_mode].insn_code
decdfa82 2886 != CODE_FOR_nothing)
91ce572a 2887 || this_abs_optab->handlers[(int) wider_mode].libfunc)
decdfa82
RS
2888 {
2889 rtx xop0 = op0;
2890
0661a3de 2891 xop0 = convert_modes (wider_mode, mode, xop0, unsignedp);
decdfa82
RS
2892
2893 temp = expand_complex_abs (wider_mode, xop0, NULL_RTX, unsignedp);
2894
2895 if (temp)
2896 {
2897 if (class != MODE_COMPLEX_INT)
2898 {
2899 if (target == 0)
2900 target = gen_reg_rtx (submode);
2901 convert_move (target, temp, 0);
2902 return target;
2903 }
2904 else
2905 return gen_lowpart (submode, temp);
2906 }
2907 else
2908 delete_insns_since (last);
2909 }
2910 }
2911
abd418d3 2912 delete_insns_since (entry_last);
decdfa82
RS
2913 return 0;
2914}
2915\f
77c9c6c2
RK
2916/* Generate an instruction whose insn-code is INSN_CODE,
2917 with two operands: an output TARGET and an input OP0.
2918 TARGET *must* be nonzero, and the output is always stored there.
2919 CODE is an rtx code such that (CODE OP0) is an rtx that describes
2920 the value that is stored into TARGET. */
2921
2922void
2923emit_unop_insn (icode, target, op0, code)
2924 int icode;
2925 rtx target;
2926 rtx op0;
2927 enum rtx_code code;
2928{
b3694847 2929 rtx temp;
a995e389 2930 enum machine_mode mode0 = insn_data[icode].operand[1].mode;
77c9c6c2
RK
2931 rtx pat;
2932
2933 temp = target = protect_from_queue (target, 1);
2934
2935 op0 = protect_from_queue (op0, 0);
2936
bd8c4b14
ILT
2937 /* Sign and zero extension from memory is often done specially on
2938 RISC machines, so forcing into a register here can pessimize
2939 code. */
2940 if (flag_force_mem && code != SIGN_EXTEND && code != ZERO_EXTEND)
77c9c6c2
RK
2941 op0 = force_not_mem (op0);
2942
2943 /* Now, if insn does not accept our operands, put them into pseudos. */
2944
a995e389 2945 if (! (*insn_data[icode].operand[1].predicate) (op0, mode0))
77c9c6c2
RK
2946 op0 = copy_to_mode_reg (mode0, op0);
2947
a995e389 2948 if (! (*insn_data[icode].operand[0].predicate) (temp, GET_MODE (temp))
77c9c6c2
RK
2949 || (flag_force_mem && GET_CODE (temp) == MEM))
2950 temp = gen_reg_rtx (GET_MODE (temp));
2951
2952 pat = GEN_FCN (icode) (temp, op0);
2953
2f937369 2954 if (INSN_P (pat) && NEXT_INSN (pat) != NULL_RTX && code != UNKNOWN)
b1ec3c92 2955 add_equal_note (pat, temp, code, op0, NULL_RTX);
77c9c6c2
RK
2956
2957 emit_insn (pat);
2958
2959 if (temp != target)
2960 emit_move_insn (target, temp);
2961}
2962\f
2963/* Emit code to perform a series of operations on a multi-word quantity, one
2964 word at a time.
2965
d45cf215 2966 Such a block is preceded by a CLOBBER of the output, consists of multiple
77c9c6c2
RK
2967 insns, each setting one word of the output, and followed by a SET copying
2968 the output to itself.
2969
2970 Each of the insns setting words of the output receives a REG_NO_CONFLICT
2971 note indicating that it doesn't conflict with the (also multi-word)
2972 inputs. The entire block is surrounded by REG_LIBCALL and REG_RETVAL
2973 notes.
2974
2975 INSNS is a block of code generated to perform the operation, not including
2976 the CLOBBER and final copy. All insns that compute intermediate values
dce39da6 2977 are first emitted, followed by the block as described above.
77c9c6c2
RK
2978
2979 TARGET, OP0, and OP1 are the output and inputs of the operations,
2980 respectively. OP1 may be zero for a unary operation.
2981
40f03658 2982 EQUIV, if nonzero, is an expression to be placed into a REG_EQUAL note
77c9c6c2
RK
2983 on the last insn.
2984
2985 If TARGET is not a register, INSNS is simply emitted with no special
dce39da6
RK
2986 processing. Likewise if anything in INSNS is not an INSN or if
2987 there is a libcall block inside INSNS.
77c9c6c2
RK
2988
2989 The final insn emitted is returned. */
2990
2991rtx
2992emit_no_conflict_block (insns, target, op0, op1, equiv)
2993 rtx insns;
2994 rtx target;
2995 rtx op0, op1;
2996 rtx equiv;
2997{
2998 rtx prev, next, first, last, insn;
2999
3000 if (GET_CODE (target) != REG || reload_in_progress)
2f937369 3001 return emit_insn (insns);
dce39da6
RK
3002 else
3003 for (insn = insns; insn; insn = NEXT_INSN (insn))
3004 if (GET_CODE (insn) != INSN
3005 || find_reg_note (insn, REG_LIBCALL, NULL_RTX))
2f937369 3006 return emit_insn (insns);
77c9c6c2
RK
3007
3008 /* First emit all insns that do not store into words of the output and remove
3009 these from the list. */
3010 for (insn = insns; insn; insn = next)
3011 {
218aa620 3012 rtx set = 0, note;
77c9c6c2
RK
3013 int i;
3014
3015 next = NEXT_INSN (insn);
3016
218aa620
JH
3017 /* Some ports (cris) create an libcall regions at their own. We must
3018 avoid any potential nesting of LIBCALLs. */
3019 if ((note = find_reg_note (insn, REG_LIBCALL, NULL)) != NULL)
3020 remove_note (insn, note);
3021 if ((note = find_reg_note (insn, REG_RETVAL, NULL)) != NULL)
3022 remove_note (insn, note);
3023
c5c76735
JL
3024 if (GET_CODE (PATTERN (insn)) == SET || GET_CODE (PATTERN (insn)) == USE
3025 || GET_CODE (PATTERN (insn)) == CLOBBER)
77c9c6c2
RK
3026 set = PATTERN (insn);
3027 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
3028 {
3029 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
3030 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
3031 {
3032 set = XVECEXP (PATTERN (insn), 0, i);
3033 break;
3034 }
3035 }
3036
3037 if (set == 0)
3038 abort ();
3039
3040 if (! reg_overlap_mentioned_p (target, SET_DEST (set)))
3041 {
3042 if (PREV_INSN (insn))
3043 NEXT_INSN (PREV_INSN (insn)) = next;
3044 else
3045 insns = next;
3046
3047 if (next)
3048 PREV_INSN (next) = PREV_INSN (insn);
3049
3050 add_insn (insn);
3051 }
3052 }
3053
3054 prev = get_last_insn ();
3055
3056 /* Now write the CLOBBER of the output, followed by the setting of each
3057 of the words, followed by the final copy. */
3058 if (target != op0 && target != op1)
9e6a5703 3059 emit_insn (gen_rtx_CLOBBER (VOIDmode, target));
77c9c6c2
RK
3060
3061 for (insn = insns; insn; insn = next)
3062 {
3063 next = NEXT_INSN (insn);
3064 add_insn (insn);
3065
3066 if (op1 && GET_CODE (op1) == REG)
9e6a5703
JC
3067 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_NO_CONFLICT, op1,
3068 REG_NOTES (insn));
77c9c6c2
RK
3069
3070 if (op0 && GET_CODE (op0) == REG)
9e6a5703
JC
3071 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_NO_CONFLICT, op0,
3072 REG_NOTES (insn));
77c9c6c2
RK
3073 }
3074
54e7b5e6
RS
3075 if (mov_optab->handlers[(int) GET_MODE (target)].insn_code
3076 != CODE_FOR_nothing)
3077 {
3078 last = emit_move_insn (target, target);
3079 if (equiv)
5fa671cf 3080 set_unique_reg_note (last, REG_EQUAL, equiv);
54e7b5e6
RS
3081 }
3082 else
07edd4c5
HPN
3083 {
3084 last = get_last_insn ();
3085
3086 /* Remove any existing REG_EQUAL note from "last", or else it will
3087 be mistaken for a note referring to the full contents of the
3088 alleged libcall value when found together with the REG_RETVAL
3089 note added below. An existing note can come from an insn
3090 expansion at "last". */
3091 remove_note (last, find_reg_note (last, REG_EQUAL, NULL_RTX));
3092 }
77c9c6c2
RK
3093
3094 if (prev == 0)
3095 first = get_insns ();
3096 else
3097 first = NEXT_INSN (prev);
3098
3099 /* Encapsulate the block so it gets manipulated as a unit. */
9e6a5703
JC
3100 REG_NOTES (first) = gen_rtx_INSN_LIST (REG_LIBCALL, last,
3101 REG_NOTES (first));
3102 REG_NOTES (last) = gen_rtx_INSN_LIST (REG_RETVAL, first, REG_NOTES (last));
77c9c6c2
RK
3103
3104 return last;
3105}
3106\f
3107/* Emit code to make a call to a constant function or a library call.
3108
3109 INSNS is a list containing all insns emitted in the call.
3110 These insns leave the result in RESULT. Our block is to copy RESULT
3111 to TARGET, which is logically equivalent to EQUIV.
3112
3113 We first emit any insns that set a pseudo on the assumption that these are
3114 loading constants into registers; doing so allows them to be safely cse'ed
3115 between blocks. Then we emit all the other insns in the block, followed by
3116 an insn to move RESULT to TARGET. This last insn will have a REQ_EQUAL
3117 note with an operand of EQUIV.
3118
29ebe69a
RK
3119 Moving assignments to pseudos outside of the block is done to improve
3120 the generated code, but is not required to generate correct code,
3121 hence being unable to move an assignment is not grounds for not making
3122 a libcall block. There are two reasons why it is safe to leave these
3123 insns inside the block: First, we know that these pseudos cannot be
3124 used in generated RTL outside the block since they are created for
3125 temporary purposes within the block. Second, CSE will not record the
3126 values of anything set inside a libcall block, so we know they must
3127 be dead at the end of the block.
3128
77c9c6c2
RK
3129 Except for the first group of insns (the ones setting pseudos), the
3130 block is delimited by REG_RETVAL and REG_LIBCALL notes. */
3131
3132void
3133emit_libcall_block (insns, target, result, equiv)
3134 rtx insns;
3135 rtx target;
3136 rtx result;
3137 rtx equiv;
3138{
aff2c2d3 3139 rtx final_dest = target;
77c9c6c2
RK
3140 rtx prev, next, first, last, insn;
3141
aff2c2d3
BS
3142 /* If this is a reg with REG_USERVAR_P set, then it could possibly turn
3143 into a MEM later. Protect the libcall block from this change. */
3144 if (! REG_P (target) || REG_USERVAR_P (target))
3145 target = gen_reg_rtx (GET_MODE (target));
5154e79a
AH
3146
3147 /* If we're using non-call exceptions, a libcall corresponding to an
3148 operation that may trap may also trap. */
3149 if (flag_non_call_exceptions && may_trap_p (equiv))
3150 {
3151 for (insn = insns; insn; insn = NEXT_INSN (insn))
3152 if (GET_CODE (insn) == CALL_INSN)
3153 {
3154 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
3155
3156 if (note != 0 && INTVAL (XEXP (note, 0)) <= 0)
3157 remove_note (insn, note);
3158 }
3159 }
3160 else
b472794d 3161 /* look for any CALL_INSNs in this sequence, and attach a REG_EH_REGION
c29ea88a 3162 reg note to indicate that this call cannot throw or execute a nonlocal
cf67d231 3163 goto (unless there is already a REG_EH_REGION note, in which case
897aa57f 3164 we update it). */
5154e79a
AH
3165 for (insn = insns; insn; insn = NEXT_INSN (insn))
3166 if (GET_CODE (insn) == CALL_INSN)
3167 {
3168 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
3169
3170 if (note != 0)
3171 XEXP (note, 0) = GEN_INT (-1);
3172 else
3173 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_EH_REGION, GEN_INT (-1),
3174 REG_NOTES (insn));
3175 }
b472794d 3176
77c9c6c2 3177 /* First emit all insns that set pseudos. Remove them from the list as
ccf5f342 3178 we go. Avoid insns that set pseudos which were referenced in previous
29ebe69a 3179 insns. These can be generated by move_by_pieces, for example,
ccf5f342
RK
3180 to update an address. Similarly, avoid insns that reference things
3181 set in previous insns. */
77c9c6c2
RK
3182
3183 for (insn = insns; insn; insn = next)
3184 {
3185 rtx set = single_set (insn);
218aa620
JH
3186 rtx note;
3187
3188 /* Some ports (cris) create an libcall regions at their own. We must
3189 avoid any potential nesting of LIBCALLs. */
3190 if ((note = find_reg_note (insn, REG_LIBCALL, NULL)) != NULL)
3191 remove_note (insn, note);
3192 if ((note = find_reg_note (insn, REG_RETVAL, NULL)) != NULL)
3193 remove_note (insn, note);
77c9c6c2
RK
3194
3195 next = NEXT_INSN (insn);
3196
3197 if (set != 0 && GET_CODE (SET_DEST (set)) == REG
29ebe69a 3198 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER
8d9e73cc 3199 && (insn == insns
9485c46e
DM
3200 || ((! INSN_P(insns)
3201 || ! reg_mentioned_p (SET_DEST (set), PATTERN (insns)))
ccf5f342
RK
3202 && ! reg_used_between_p (SET_DEST (set), insns, insn)
3203 && ! modified_in_p (SET_SRC (set), insns)
3204 && ! modified_between_p (SET_SRC (set), insns, insn))))
77c9c6c2
RK
3205 {
3206 if (PREV_INSN (insn))
3207 NEXT_INSN (PREV_INSN (insn)) = next;
3208 else
3209 insns = next;
3210
3211 if (next)
3212 PREV_INSN (next) = PREV_INSN (insn);
3213
3214 add_insn (insn);
3215 }
3216 }
3217
3218 prev = get_last_insn ();
3219
3220 /* Write the remaining insns followed by the final copy. */
3221
3222 for (insn = insns; insn; insn = next)
3223 {
3224 next = NEXT_INSN (insn);
3225
3226 add_insn (insn);
3227 }
3228
3229 last = emit_move_insn (target, result);
02214a5c
RK
3230 if (mov_optab->handlers[(int) GET_MODE (target)].insn_code
3231 != CODE_FOR_nothing)
5fa671cf 3232 set_unique_reg_note (last, REG_EQUAL, copy_rtx (equiv));
07edd4c5
HPN
3233 else
3234 {
3235 /* Remove any existing REG_EQUAL note from "last", or else it will
3236 be mistaken for a note referring to the full contents of the
3237 libcall value when found together with the REG_RETVAL note added
3238 below. An existing note can come from an insn expansion at
3239 "last". */
3240 remove_note (last, find_reg_note (last, REG_EQUAL, NULL_RTX));
3241 }
77c9c6c2 3242
e85427f9
BS
3243 if (final_dest != target)
3244 emit_move_insn (final_dest, target);
aff2c2d3 3245
77c9c6c2
RK
3246 if (prev == 0)
3247 first = get_insns ();
3248 else
3249 first = NEXT_INSN (prev);
3250
3251 /* Encapsulate the block so it gets manipulated as a unit. */
11e9ecc5
HB
3252 if (!flag_non_call_exceptions || !may_trap_p (equiv))
3253 {
3254 REG_NOTES (first) = gen_rtx_INSN_LIST (REG_LIBCALL, last,
3255 REG_NOTES (first));
3256 REG_NOTES (last) = gen_rtx_INSN_LIST (REG_RETVAL, first,
3257 REG_NOTES (last));
3258 }
77c9c6c2
RK
3259}
3260\f
3261/* Generate code to store zero in X. */
3262
3263void
3264emit_clr_insn (x)
3265 rtx x;
3266{
3267 emit_move_insn (x, const0_rtx);
3268}
3269
3270/* Generate code to store 1 in X
3271 assuming it contains zero beforehand. */
3272
3273void
3274emit_0_to_1_insn (x)
3275 rtx x;
3276{
3277 emit_move_insn (x, const1_rtx);
3278}
3279
1c0290ea 3280/* Nonzero if we can perform a comparison of mode MODE straightforwardly.
1eb8759b
RH
3281 PURPOSE describes how this comparison will be used. CODE is the rtx
3282 comparison code we will be using.
3283
3284 ??? Actually, CODE is slightly weaker than that. A target is still
3285 required to implement all of the normal bcc operations, but not
3286 required to implement all (or any) of the unordered bcc operations. */
1c0290ea
BS
3287
3288int
1eb8759b
RH
3289can_compare_p (code, mode, purpose)
3290 enum rtx_code code;
b30f05db 3291 enum machine_mode mode;
1c0290ea 3292 enum can_compare_purpose purpose;
b30f05db
BS
3293{
3294 do
3295 {
1c0290ea 3296 if (cmp_optab->handlers[(int)mode].insn_code != CODE_FOR_nothing)
1eb8759b
RH
3297 {
3298 if (purpose == ccp_jump)
3299 return bcc_gen_fctn[(int)code] != NULL;
3300 else if (purpose == ccp_store_flag)
3301 return setcc_gen_code[(int)code] != CODE_FOR_nothing;
3302 else
3303 /* There's only one cmov entry point, and it's allowed to fail. */
3304 return 1;
3305 }
1c0290ea
BS
3306 if (purpose == ccp_jump
3307 && cbranch_optab->handlers[(int)mode].insn_code != CODE_FOR_nothing)
3308 return 1;
3309 if (purpose == ccp_cmov
3310 && cmov_optab->handlers[(int)mode].insn_code != CODE_FOR_nothing)
3311 return 1;
3312 if (purpose == ccp_store_flag
3313 && cstore_optab->handlers[(int)mode].insn_code != CODE_FOR_nothing)
3314 return 1;
3315
b30f05db 3316 mode = GET_MODE_WIDER_MODE (mode);
1c0290ea
BS
3317 }
3318 while (mode != VOIDmode);
b30f05db
BS
3319
3320 return 0;
3321}
3322
3323/* This function is called when we are going to emit a compare instruction that
3324 compares the values found in *PX and *PY, using the rtl operator COMPARISON.
3325
3326 *PMODE is the mode of the inputs (in case they are const_int).
3327 *PUNSIGNEDP nonzero says that the operands are unsigned;
77c9c6c2
RK
3328 this matters if they need to be widened.
3329
a06ef755 3330 If they have mode BLKmode, then SIZE specifies the size of both operands.
77c9c6c2 3331
b30f05db
BS
3332 This function performs all the setup necessary so that the caller only has
3333 to emit a single comparison insn. This setup can involve doing a BLKmode
3334 comparison or emitting a library call to perform the comparison if no insn
3335 is available to handle it.
3336 The values which are passed in through pointers can be modified; the caller
3337 should perform the comparison on the modified values. */
77c9c6c2 3338
a06ef755
RK
3339static void
3340prepare_cmp_insn (px, py, pcomparison, size, pmode, punsignedp, purpose)
b30f05db 3341 rtx *px, *py;
c5c60e15 3342 enum rtx_code *pcomparison;
77c9c6c2 3343 rtx size;
b30f05db
BS
3344 enum machine_mode *pmode;
3345 int *punsignedp;
1c0290ea 3346 enum can_compare_purpose purpose;
77c9c6c2 3347{
b30f05db
BS
3348 enum machine_mode mode = *pmode;
3349 rtx x = *px, y = *py;
3350 int unsignedp = *punsignedp;
77c9c6c2 3351 enum mode_class class;
77c9c6c2
RK
3352
3353 class = GET_MODE_CLASS (mode);
3354
3355 /* They could both be VOIDmode if both args are immediate constants,
3356 but we should fold that at an earlier stage.
3357 With no special code here, this will call abort,
3358 reminding the programmer to implement such folding. */
3359
3360 if (mode != BLKmode && flag_force_mem)
3361 {
3362 x = force_not_mem (x);
3363 y = force_not_mem (y);
3364 }
3365
3366 /* If we are inside an appropriately-short loop and one operand is an
3367 expensive constant, force it into a register. */
19caa751 3368 if (CONSTANT_P (x) && preserve_subexpressions_p ()
b437f1a7 3369 && rtx_cost (x, COMPARE) > COSTS_N_INSNS (1))
77c9c6c2
RK
3370 x = force_reg (mode, x);
3371
19caa751 3372 if (CONSTANT_P (y) && preserve_subexpressions_p ()
b437f1a7 3373 && rtx_cost (y, COMPARE) > COSTS_N_INSNS (1))
77c9c6c2
RK
3374 y = force_reg (mode, y);
3375
362cc3d4
MH
3376#ifdef HAVE_cc0
3377 /* Abort if we have a non-canonical comparison. The RTL documentation
3378 states that canonical comparisons are required only for targets which
3379 have cc0. */
3380 if (CONSTANT_P (x) && ! CONSTANT_P (y))
3381 abort();
3382#endif
3383
77c9c6c2
RK
3384 /* Don't let both operands fail to indicate the mode. */
3385 if (GET_MODE (x) == VOIDmode && GET_MODE (y) == VOIDmode)
3386 x = force_reg (mode, x);
3387
3388 /* Handle all BLKmode compares. */
3389
3390 if (mode == BLKmode)
3391 {
b30f05db
BS
3392 rtx result;
3393 enum machine_mode result_mode;
f4dc10d1
GS
3394 rtx opalign ATTRIBUTE_UNUSED
3395 = GEN_INT (MIN (MEM_ALIGN (x), MEM_ALIGN (y)) / BITS_PER_UNIT);
b30f05db 3396
77c9c6c2
RK
3397 emit_queue ();
3398 x = protect_from_queue (x, 0);
3399 y = protect_from_queue (y, 0);
3400
3401 if (size == 0)
3402 abort ();
3403#ifdef HAVE_cmpstrqi
3404 if (HAVE_cmpstrqi
3405 && GET_CODE (size) == CONST_INT
3406 && INTVAL (size) < (1 << GET_MODE_BITSIZE (QImode)))
3407 {
a995e389 3408 result_mode = insn_data[(int) CODE_FOR_cmpstrqi].operand[0].mode;
b30f05db 3409 result = gen_reg_rtx (result_mode);
19caa751 3410 emit_insn (gen_cmpstrqi (result, x, y, size, opalign));
77c9c6c2
RK
3411 }
3412 else
3413#endif
3414#ifdef HAVE_cmpstrhi
3415 if (HAVE_cmpstrhi
3416 && GET_CODE (size) == CONST_INT
3417 && INTVAL (size) < (1 << GET_MODE_BITSIZE (HImode)))
3418 {
a995e389 3419 result_mode = insn_data[(int) CODE_FOR_cmpstrhi].operand[0].mode;
b30f05db 3420 result = gen_reg_rtx (result_mode);
19caa751 3421 emit_insn (gen_cmpstrhi (result, x, y, size, opalign));
77c9c6c2
RK
3422 }
3423 else
3424#endif
3425#ifdef HAVE_cmpstrsi
3426 if (HAVE_cmpstrsi)
3427 {
a995e389 3428 result_mode = insn_data[(int) CODE_FOR_cmpstrsi].operand[0].mode;
b30f05db 3429 result = gen_reg_rtx (result_mode);
06e40b26 3430 size = protect_from_queue (size, 0);
77c9c6c2
RK
3431 emit_insn (gen_cmpstrsi (result, x, y,
3432 convert_to_mode (SImode, size, 1),
19caa751 3433 opalign));
77c9c6c2
RK
3434 }
3435 else
3436#endif
3437 {
3438#ifdef TARGET_MEM_FUNCTIONS
24491a09
KH
3439 result = emit_library_call_value (memcmp_libfunc, NULL_RTX, LCT_PURE_MAKE_BLOCK,
3440 TYPE_MODE (integer_type_node), 3,
3441 XEXP (x, 0), Pmode, XEXP (y, 0), Pmode,
3442 convert_to_mode (TYPE_MODE (sizetype), size,
3443 TREE_UNSIGNED (sizetype)),
3444 TYPE_MODE (sizetype));
77c9c6c2 3445#else
24491a09
KH
3446 result = emit_library_call_value (bcmp_libfunc, NULL_RTX, LCT_PURE_MAKE_BLOCK,
3447 TYPE_MODE (integer_type_node), 3,
3448 XEXP (x, 0), Pmode, XEXP (y, 0), Pmode,
3449 convert_to_mode (TYPE_MODE (integer_type_node),
3450 size,
3451 TREE_UNSIGNED (integer_type_node)),
3452 TYPE_MODE (integer_type_node));
77c9c6c2 3453#endif
9725066d 3454
b30f05db 3455 result_mode = TYPE_MODE (integer_type_node);
77c9c6c2 3456 }
b30f05db
BS
3457 *px = result;
3458 *py = const0_rtx;
3459 *pmode = result_mode;
77c9c6c2
RK
3460 return;
3461 }
3462
b30f05db
BS
3463 *px = x;
3464 *py = y;
1eb8759b 3465 if (can_compare_p (*pcomparison, mode, purpose))
b30f05db 3466 return;
77c9c6c2
RK
3467
3468 /* Handle a lib call just for the mode we are using. */
3469
b30f05db 3470 if (cmp_optab->handlers[(int) mode].libfunc && class != MODE_FLOAT)
77c9c6c2
RK
3471 {
3472 rtx libfunc = cmp_optab->handlers[(int) mode].libfunc;
9725066d
JL
3473 rtx result;
3474
77c9c6c2
RK
3475 /* If we want unsigned, and this mode has a distinct unsigned
3476 comparison routine, use that. */
3477 if (unsignedp && ucmp_optab->handlers[(int) mode].libfunc)
3478 libfunc = ucmp_optab->handlers[(int) mode].libfunc;
3479
24491a09
KH
3480 result = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST_MAKE_BLOCK,
3481 word_mode, 2, x, mode, y, mode);
9725066d 3482
77c9c6c2
RK
3483 /* Integer comparison returns a result that must be compared against 1,
3484 so that even if we do an unsigned compare afterward,
3485 there is still a value that can represent the result "less than". */
b30f05db
BS
3486 *px = result;
3487 *py = const1_rtx;
3488 *pmode = word_mode;
77c9c6c2
RK
3489 return;
3490 }
3491
3492 if (class == MODE_FLOAT)
c5c60e15 3493 prepare_float_lib_cmp (px, py, pcomparison, pmode, punsignedp);
77c9c6c2
RK
3494
3495 else
3496 abort ();
3497}
3498
b30f05db
BS
3499/* Before emitting an insn with code ICODE, make sure that X, which is going
3500 to be used for operand OPNUM of the insn, is converted from mode MODE to
4fe9b91c 3501 WIDER_MODE (UNSIGNEDP determines whether it is an unsigned conversion), and
b30f05db 3502 that it is accepted by the operand predicate. Return the new value. */
749a2da1 3503
1c0290ea 3504rtx
b30f05db
BS
3505prepare_operand (icode, x, opnum, mode, wider_mode, unsignedp)
3506 int icode;
3507 rtx x;
3508 int opnum;
3509 enum machine_mode mode, wider_mode;
3510 int unsignedp;
3511{
3512 x = protect_from_queue (x, 0);
3513
3514 if (mode != wider_mode)
3515 x = convert_modes (wider_mode, mode, x, unsignedp);
3516
a995e389
RH
3517 if (! (*insn_data[icode].operand[opnum].predicate)
3518 (x, insn_data[icode].operand[opnum].mode))
3519 x = copy_to_mode_reg (insn_data[icode].operand[opnum].mode, x);
b30f05db
BS
3520 return x;
3521}
3522
3523/* Subroutine of emit_cmp_and_jump_insns; this function is called when we know
3524 we can do the comparison.
3525 The arguments are the same as for emit_cmp_and_jump_insns; but LABEL may
3526 be NULL_RTX which indicates that only a comparison is to be generated. */
3527
3528static void
3529emit_cmp_and_jump_insn_1 (x, y, mode, comparison, unsignedp, label)
3530 rtx x, y;
3531 enum machine_mode mode;
3532 enum rtx_code comparison;
3533 int unsignedp;
3534 rtx label;
3535{
3536 rtx test = gen_rtx_fmt_ee (comparison, mode, x, y);
3537 enum mode_class class = GET_MODE_CLASS (mode);
3538 enum machine_mode wider_mode = mode;
3539
3540 /* Try combined insns first. */
3541 do
3542 {
3543 enum insn_code icode;
3544 PUT_MODE (test, wider_mode);
3545
1c0290ea
BS
3546 if (label)
3547 {
3548 icode = cbranch_optab->handlers[(int)wider_mode].insn_code;
3549
3550 if (icode != CODE_FOR_nothing
3551 && (*insn_data[icode].operand[0].predicate) (test, wider_mode))
3552 {
3553 x = prepare_operand (icode, x, 1, mode, wider_mode, unsignedp);
3554 y = prepare_operand (icode, y, 2, mode, wider_mode, unsignedp);
3555 emit_jump_insn (GEN_FCN (icode) (test, x, y, label));
3556 return;
3557 }
3558 }
3559
b30f05db
BS
3560 /* Handle some compares against zero. */
3561 icode = (int) tst_optab->handlers[(int) wider_mode].insn_code;
3562 if (y == CONST0_RTX (mode) && icode != CODE_FOR_nothing)
3563 {
3564 x = prepare_operand (icode, x, 0, mode, wider_mode, unsignedp);
3565 emit_insn (GEN_FCN (icode) (x));
3566 if (label)
3567 emit_jump_insn ((*bcc_gen_fctn[(int) comparison]) (label));
3568 return;
3569 }
3570
3571 /* Handle compares for which there is a directly suitable insn. */
3572
3573 icode = (int) cmp_optab->handlers[(int) wider_mode].insn_code;
3574 if (icode != CODE_FOR_nothing)
3575 {
3576 x = prepare_operand (icode, x, 0, mode, wider_mode, unsignedp);
3577 y = prepare_operand (icode, y, 1, mode, wider_mode, unsignedp);
3578 emit_insn (GEN_FCN (icode) (x, y));
3579 if (label)
3580 emit_jump_insn ((*bcc_gen_fctn[(int) comparison]) (label));
3581 return;
3582 }
3583
3584 if (class != MODE_INT && class != MODE_FLOAT
3585 && class != MODE_COMPLEX_FLOAT)
3586 break;
3587
3588 wider_mode = GET_MODE_WIDER_MODE (wider_mode);
3589 } while (wider_mode != VOIDmode);
3590
3591 abort ();
3592}
3593
362cc3d4
MH
3594/* Generate code to compare X with Y so that the condition codes are
3595 set and to jump to LABEL if the condition is true. If X is a
3596 constant and Y is not a constant, then the comparison is swapped to
3597 ensure that the comparison RTL has the canonical form.
3598
c5d5d461
JL
3599 UNSIGNEDP nonzero says that X and Y are unsigned; this matters if they
3600 need to be widened by emit_cmp_insn. UNSIGNEDP is also used to select
3601 the proper branch condition code.
362cc3d4 3602
a06ef755 3603 If X and Y have mode BLKmode, then SIZE specifies the size of both X and Y.
362cc3d4 3604
c5d5d461
JL
3605 MODE is the mode of the inputs (in case they are const_int).
3606
3607 COMPARISON is the rtl operator to compare with (EQ, NE, GT, etc.). It will
3608 be passed unchanged to emit_cmp_insn, then potentially converted into an
3609 unsigned variant based on UNSIGNEDP to select a proper jump instruction. */
362cc3d4
MH
3610
3611void
a06ef755 3612emit_cmp_and_jump_insns (x, y, comparison, size, mode, unsignedp, label)
362cc3d4
MH
3613 rtx x, y;
3614 enum rtx_code comparison;
3615 rtx size;
3616 enum machine_mode mode;
3617 int unsignedp;
362cc3d4
MH
3618 rtx label;
3619{
8c9864f3
JH
3620 rtx op0 = x, op1 = y;
3621
3622 /* Swap operands and condition to ensure canonical RTL. */
3623 if (swap_commutative_operands_p (x, y))
362cc3d4 3624 {
8c9864f3
JH
3625 /* If we're not emitting a branch, this means some caller
3626 is out of sync. */
3627 if (! label)
3628 abort ();
3629
3630 op0 = y, op1 = x;
3631 comparison = swap_condition (comparison);
362cc3d4 3632 }
0ca40216
JL
3633
3634#ifdef HAVE_cc0
3635 /* If OP0 is still a constant, then both X and Y must be constants. Force
3636 X into a register to avoid aborting in emit_cmp_insn due to non-canonical
3637 RTL. */
3638 if (CONSTANT_P (op0))
3639 op0 = force_reg (mode, op0);
3640#endif
3641
b30f05db 3642 emit_queue ();
c5d5d461
JL
3643 if (unsignedp)
3644 comparison = unsigned_condition (comparison);
a06ef755
RK
3645
3646 prepare_cmp_insn (&op0, &op1, &comparison, size, &mode, &unsignedp,
1c0290ea 3647 ccp_jump);
b30f05db
BS
3648 emit_cmp_and_jump_insn_1 (op0, op1, mode, comparison, unsignedp, label);
3649}
3650
3651/* Like emit_cmp_and_jump_insns, but generate only the comparison. */
19caa751 3652
b30f05db 3653void
a06ef755 3654emit_cmp_insn (x, y, comparison, size, mode, unsignedp)
b30f05db
BS
3655 rtx x, y;
3656 enum rtx_code comparison;
3657 rtx size;
3658 enum machine_mode mode;
3659 int unsignedp;
b30f05db 3660{
a06ef755 3661 emit_cmp_and_jump_insns (x, y, comparison, size, mode, unsignedp, 0);
362cc3d4 3662}
77c9c6c2
RK
3663\f
3664/* Emit a library call comparison between floating point X and Y.
3665 COMPARISON is the rtl operator to compare with (EQ, NE, GT, etc.). */
3666
c5c60e15
BS
3667static void
3668prepare_float_lib_cmp (px, py, pcomparison, pmode, punsignedp)
b30f05db 3669 rtx *px, *py;
c5c60e15 3670 enum rtx_code *pcomparison;
b30f05db
BS
3671 enum machine_mode *pmode;
3672 int *punsignedp;
77c9c6c2 3673{
c5c60e15 3674 enum rtx_code comparison = *pcomparison;
12f61e77 3675 rtx tmp;
885e80cc
AO
3676 rtx x = *px = protect_from_queue (*px, 0);
3677 rtx y = *py = protect_from_queue (*py, 0);
77c9c6c2 3678 enum machine_mode mode = GET_MODE (x);
0a300065 3679 rtx libfunc = 0;
9725066d 3680 rtx result;
77c9c6c2 3681
842dcd1a
RK
3682 if (mode == HFmode)
3683 switch (comparison)
3684 {
3685 case EQ:
3686 libfunc = eqhf2_libfunc;
3687 break;
3688
3689 case NE:
3690 libfunc = nehf2_libfunc;
3691 break;
3692
3693 case GT:
3694 libfunc = gthf2_libfunc;
12f61e77
AO
3695 if (libfunc == NULL_RTX)
3696 {
3697 tmp = x; x = y; y = tmp;
3698 *pcomparison = LT;
3699 libfunc = lthf2_libfunc;
3700 }
842dcd1a
RK
3701 break;
3702
3703 case GE:
3704 libfunc = gehf2_libfunc;
12f61e77
AO
3705 if (libfunc == NULL_RTX)
3706 {
3707 tmp = x; x = y; y = tmp;
3708 *pcomparison = LE;
3709 libfunc = lehf2_libfunc;
3710 }
842dcd1a
RK
3711 break;
3712
3713 case LT:
3714 libfunc = lthf2_libfunc;
12f61e77
AO
3715 if (libfunc == NULL_RTX)
3716 {
3717 tmp = x; x = y; y = tmp;
3718 *pcomparison = GT;
3719 libfunc = gthf2_libfunc;
3720 }
842dcd1a
RK
3721 break;
3722
3723 case LE:
3724 libfunc = lehf2_libfunc;
12f61e77
AO
3725 if (libfunc == NULL_RTX)
3726 {
3727 tmp = x; x = y; y = tmp;
3728 *pcomparison = GE;
3729 libfunc = gehf2_libfunc;
3730 }
842dcd1a 3731 break;
bb727b5a 3732
1eb8759b
RH
3733 case UNORDERED:
3734 libfunc = unordhf2_libfunc;
3735 break;
3736
bb727b5a
JM
3737 default:
3738 break;
842dcd1a
RK
3739 }
3740 else if (mode == SFmode)
77c9c6c2
RK
3741 switch (comparison)
3742 {
3743 case EQ:
3744 libfunc = eqsf2_libfunc;
3745 break;
3746
3747 case NE:
3748 libfunc = nesf2_libfunc;
3749 break;
3750
3751 case GT:
3752 libfunc = gtsf2_libfunc;
12f61e77
AO
3753 if (libfunc == NULL_RTX)
3754 {
3755 tmp = x; x = y; y = tmp;
3756 *pcomparison = LT;
3757 libfunc = ltsf2_libfunc;
3758 }
77c9c6c2
RK
3759 break;
3760
3761 case GE:
3762 libfunc = gesf2_libfunc;
12f61e77
AO
3763 if (libfunc == NULL_RTX)
3764 {
3765 tmp = x; x = y; y = tmp;
3766 *pcomparison = LE;
3767 libfunc = lesf2_libfunc;
3768 }
77c9c6c2
RK
3769 break;
3770
3771 case LT:
3772 libfunc = ltsf2_libfunc;
12f61e77
AO
3773 if (libfunc == NULL_RTX)
3774 {
3775 tmp = x; x = y; y = tmp;
3776 *pcomparison = GT;
3777 libfunc = gtsf2_libfunc;
3778 }
77c9c6c2
RK
3779 break;
3780
3781 case LE:
3782 libfunc = lesf2_libfunc;
12f61e77
AO
3783 if (libfunc == NULL_RTX)
3784 {
3785 tmp = x; x = y; y = tmp;
3786 *pcomparison = GE;
3787 libfunc = gesf2_libfunc;
3788 }
77c9c6c2 3789 break;
bb727b5a 3790
1eb8759b
RH
3791 case UNORDERED:
3792 libfunc = unordsf2_libfunc;
3793 break;
3794
bb727b5a
JM
3795 default:
3796 break;
77c9c6c2
RK
3797 }
3798 else if (mode == DFmode)
3799 switch (comparison)
3800 {
3801 case EQ:
3802 libfunc = eqdf2_libfunc;
3803 break;
3804
3805 case NE:
3806 libfunc = nedf2_libfunc;
3807 break;
3808
3809 case GT:
3810 libfunc = gtdf2_libfunc;
12f61e77
AO
3811 if (libfunc == NULL_RTX)
3812 {
3813 tmp = x; x = y; y = tmp;
3814 *pcomparison = LT;
3815 libfunc = ltdf2_libfunc;
3816 }
77c9c6c2
RK
3817 break;
3818
3819 case GE:
3820 libfunc = gedf2_libfunc;
12f61e77
AO
3821 if (libfunc == NULL_RTX)
3822 {
3823 tmp = x; x = y; y = tmp;
3824 *pcomparison = LE;
3825 libfunc = ledf2_libfunc;
3826 }
77c9c6c2
RK
3827 break;
3828
3829 case LT:
3830 libfunc = ltdf2_libfunc;
12f61e77
AO
3831 if (libfunc == NULL_RTX)
3832 {
3833 tmp = x; x = y; y = tmp;
3834 *pcomparison = GT;
3835 libfunc = gtdf2_libfunc;
3836 }
77c9c6c2
RK
3837 break;
3838
3839 case LE:
3840 libfunc = ledf2_libfunc;
12f61e77
AO
3841 if (libfunc == NULL_RTX)
3842 {
3843 tmp = x; x = y; y = tmp;
3844 *pcomparison = GE;
3845 libfunc = gedf2_libfunc;
3846 }
77c9c6c2 3847 break;
bb727b5a 3848
1eb8759b
RH
3849 case UNORDERED:
3850 libfunc = unorddf2_libfunc;
3851 break;
3852
bb727b5a
JM
3853 default:
3854 break;
77c9c6c2 3855 }
b092b471
JW
3856 else if (mode == XFmode)
3857 switch (comparison)
3858 {
3859 case EQ:
3860 libfunc = eqxf2_libfunc;
3861 break;
3862
3863 case NE:
3864 libfunc = nexf2_libfunc;
3865 break;
3866
3867 case GT:
3868 libfunc = gtxf2_libfunc;
12f61e77
AO
3869 if (libfunc == NULL_RTX)
3870 {
3871 tmp = x; x = y; y = tmp;
3872 *pcomparison = LT;
3873 libfunc = ltxf2_libfunc;
3874 }
b092b471
JW
3875 break;
3876
3877 case GE:
3878 libfunc = gexf2_libfunc;
12f61e77
AO
3879 if (libfunc == NULL_RTX)
3880 {
3881 tmp = x; x = y; y = tmp;
3882 *pcomparison = LE;
3883 libfunc = lexf2_libfunc;
3884 }
b092b471
JW
3885 break;
3886
3887 case LT:
3888 libfunc = ltxf2_libfunc;
12f61e77
AO
3889 if (libfunc == NULL_RTX)
3890 {
3891 tmp = x; x = y; y = tmp;
3892 *pcomparison = GT;
3893 libfunc = gtxf2_libfunc;
3894 }
b092b471
JW
3895 break;
3896
3897 case LE:
3898 libfunc = lexf2_libfunc;
12f61e77
AO
3899 if (libfunc == NULL_RTX)
3900 {
3901 tmp = x; x = y; y = tmp;
3902 *pcomparison = GE;
3903 libfunc = gexf2_libfunc;
3904 }
b092b471 3905 break;
bb727b5a 3906
1eb8759b
RH
3907 case UNORDERED:
3908 libfunc = unordxf2_libfunc;
3909 break;
3910
bb727b5a
JM
3911 default:
3912 break;
b092b471
JW
3913 }
3914 else if (mode == TFmode)
3915 switch (comparison)
3916 {
3917 case EQ:
3918 libfunc = eqtf2_libfunc;
3919 break;
3920
3921 case NE:
3922 libfunc = netf2_libfunc;
3923 break;
3924
3925 case GT:
3926 libfunc = gttf2_libfunc;
12f61e77
AO
3927 if (libfunc == NULL_RTX)
3928 {
3929 tmp = x; x = y; y = tmp;
3930 *pcomparison = LT;
3931 libfunc = lttf2_libfunc;
3932 }
b092b471
JW
3933 break;
3934
3935 case GE:
3936 libfunc = getf2_libfunc;
12f61e77
AO
3937 if (libfunc == NULL_RTX)
3938 {
3939 tmp = x; x = y; y = tmp;
3940 *pcomparison = LE;
3941 libfunc = letf2_libfunc;
3942 }
b092b471
JW
3943 break;
3944
3945 case LT:
3946 libfunc = lttf2_libfunc;
12f61e77
AO
3947 if (libfunc == NULL_RTX)
3948 {
3949 tmp = x; x = y; y = tmp;
3950 *pcomparison = GT;
3951 libfunc = gttf2_libfunc;
3952 }
b092b471
JW
3953 break;
3954
3955 case LE:
3956 libfunc = letf2_libfunc;
12f61e77
AO
3957 if (libfunc == NULL_RTX)
3958 {
3959 tmp = x; x = y; y = tmp;
3960 *pcomparison = GE;
3961 libfunc = getf2_libfunc;
3962 }
b092b471 3963 break;
bb727b5a 3964
1eb8759b
RH
3965 case UNORDERED:
3966 libfunc = unordtf2_libfunc;
3967 break;
3968
bb727b5a
JM
3969 default:
3970 break;
b092b471 3971 }
77c9c6c2
RK
3972 else
3973 {
3974 enum machine_mode wider_mode;
3975
34e56753 3976 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
77c9c6c2
RK
3977 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
3978 {
3979 if ((cmp_optab->handlers[(int) wider_mode].insn_code
3980 != CODE_FOR_nothing)
3981 || (cmp_optab->handlers[(int) wider_mode].libfunc != 0))
3982 {
06e40b26
RS
3983 x = protect_from_queue (x, 0);
3984 y = protect_from_queue (y, 0);
b30f05db
BS
3985 *px = convert_to_mode (wider_mode, x, 0);
3986 *py = convert_to_mode (wider_mode, y, 0);
c5c60e15 3987 prepare_float_lib_cmp (px, py, pcomparison, pmode, punsignedp);
77c9c6c2
RK
3988 return;
3989 }
3990 }
3991 abort ();
3992 }
3993
0a300065
RK
3994 if (libfunc == 0)
3995 abort ();
3996
24491a09
KH
3997 result = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST_MAKE_BLOCK,
3998 word_mode, 2, x, mode, y, mode);
b30f05db
BS
3999 *px = result;
4000 *py = const0_rtx;
4001 *pmode = word_mode;
1eb8759b
RH
4002 if (comparison == UNORDERED)
4003 *pcomparison = NE;
c5c60e15 4004#ifdef FLOAT_LIB_COMPARE_RETURNS_BOOL
1eb8759b 4005 else if (FLOAT_LIB_COMPARE_RETURNS_BOOL (mode, comparison))
c5c60e15
BS
4006 *pcomparison = NE;
4007#endif
b30f05db 4008 *punsignedp = 0;
77c9c6c2
RK
4009}
4010\f
4011/* Generate code to indirectly jump to a location given in the rtx LOC. */
4012
4013void
4014emit_indirect_jump (loc)
4015 rtx loc;
4016{
a995e389 4017 if (! ((*insn_data[(int)CODE_FOR_indirect_jump].operand[0].predicate)
f2de2775
JW
4018 (loc, Pmode)))
4019 loc = copy_to_mode_reg (Pmode, loc);
77c9c6c2
RK
4020
4021 emit_jump_insn (gen_indirect_jump (loc));
9649fb4d 4022 emit_barrier ();
77c9c6c2
RK
4023}
4024\f
49c4584c
DE
4025#ifdef HAVE_conditional_move
4026
4027/* Emit a conditional move instruction if the machine supports one for that
4028 condition and machine mode.
4029
4030 OP0 and OP1 are the operands that should be compared using CODE. CMODE is
4031 the mode to use should they be constants. If it is VOIDmode, they cannot
4032 both be constants.
4033
4034 OP2 should be stored in TARGET if the comparison is true, otherwise OP3
4035 should be stored there. MODE is the mode to use should they be constants.
4036 If it is VOIDmode, they cannot both be constants.
4037
4038 The result is either TARGET (perhaps modified) or NULL_RTX if the operation
4039 is not supported. */
4040
4041rtx
4042emit_conditional_move (target, code, op0, op1, cmode, op2, op3, mode,
4043 unsignedp)
4044 rtx target;
4045 enum rtx_code code;
4046 rtx op0, op1;
4047 enum machine_mode cmode;
4048 rtx op2, op3;
4049 enum machine_mode mode;
4050 int unsignedp;
4051{
4052 rtx tem, subtarget, comparison, insn;
4053 enum insn_code icode;
e5c56fd9 4054 enum rtx_code reversed;
49c4584c
DE
4055
4056 /* If one operand is constant, make it the second one. Only do this
4057 if the other operand is not constant as well. */
4058
e5c56fd9 4059 if (swap_commutative_operands_p (op0, op1))
49c4584c
DE
4060 {
4061 tem = op0;
4062 op0 = op1;
4063 op1 = tem;
4064 code = swap_condition (code);
4065 }
4066
c5c76735
JL
4067 /* get_condition will prefer to generate LT and GT even if the old
4068 comparison was against zero, so undo that canonicalization here since
4069 comparisons against zero are cheaper. */
4070 if (code == LT && GET_CODE (op1) == CONST_INT && INTVAL (op1) == 1)
4071 code = LE, op1 = const0_rtx;
4072 else if (code == GT && GET_CODE (op1) == CONST_INT && INTVAL (op1) == -1)
4073 code = GE, op1 = const0_rtx;
4074
49c4584c
DE
4075 if (cmode == VOIDmode)
4076 cmode = GET_MODE (op0);
4077
e5c56fd9
JH
4078 if (swap_commutative_operands_p (op2, op3)
4079 && ((reversed = reversed_comparison_code_parts (code, op0, op1, NULL))
4080 != UNKNOWN))
49c4584c
DE
4081 {
4082 tem = op2;
4083 op2 = op3;
4084 op3 = tem;
e5c56fd9 4085 code = reversed;
49c4584c
DE
4086 }
4087
4088 if (mode == VOIDmode)
4089 mode = GET_MODE (op2);
4090
4091 icode = movcc_gen_code[mode];
4092
4093 if (icode == CODE_FOR_nothing)
4094 return 0;
4095
4096 if (flag_force_mem)
4097 {
4098 op2 = force_not_mem (op2);
4099 op3 = force_not_mem (op3);
4100 }
4101
4102 if (target)
4103 target = protect_from_queue (target, 1);
4104 else
4105 target = gen_reg_rtx (mode);
4106
4107 subtarget = target;
4108
4109 emit_queue ();
4110
4111 op2 = protect_from_queue (op2, 0);
4112 op3 = protect_from_queue (op3, 0);
4113
4114 /* If the insn doesn't accept these operands, put them in pseudos. */
4115
a995e389
RH
4116 if (! (*insn_data[icode].operand[0].predicate)
4117 (subtarget, insn_data[icode].operand[0].mode))
4118 subtarget = gen_reg_rtx (insn_data[icode].operand[0].mode);
49c4584c 4119
a995e389
RH
4120 if (! (*insn_data[icode].operand[2].predicate)
4121 (op2, insn_data[icode].operand[2].mode))
4122 op2 = copy_to_mode_reg (insn_data[icode].operand[2].mode, op2);
49c4584c 4123
a995e389
RH
4124 if (! (*insn_data[icode].operand[3].predicate)
4125 (op3, insn_data[icode].operand[3].mode))
4126 op3 = copy_to_mode_reg (insn_data[icode].operand[3].mode, op3);
49c4584c
DE
4127
4128 /* Everything should now be in the suitable form, so emit the compare insn
4129 and then the conditional move. */
4130
4131 comparison
a06ef755 4132 = compare_from_rtx (op0, op1, code, unsignedp, cmode, NULL_RTX);
49c4584c
DE
4133
4134 /* ??? Watch for const0_rtx (nop) and const_true_rtx (unconditional)? */
144a5f9d
JL
4135 /* We can get const0_rtx or const_true_rtx in some circumstances. Just
4136 return NULL and let the caller figure out how best to deal with this
4137 situation. */
49c4584c 4138 if (GET_CODE (comparison) != code)
144a5f9d 4139 return NULL_RTX;
49c4584c
DE
4140
4141 insn = GEN_FCN (icode) (subtarget, comparison, op2, op3);
4142
4143 /* If that failed, then give up. */
4144 if (insn == 0)
4145 return 0;
4146
4147 emit_insn (insn);
4148
4149 if (subtarget != target)
4150 convert_move (target, subtarget, 0);
4151
4152 return target;
4153}
4154
40f03658 4155/* Return nonzero if a conditional move of mode MODE is supported.
49c4584c
DE
4156
4157 This function is for combine so it can tell whether an insn that looks
4158 like a conditional move is actually supported by the hardware. If we
4159 guess wrong we lose a bit on optimization, but that's it. */
4160/* ??? sparc64 supports conditionally moving integers values based on fp
4161 comparisons, and vice versa. How do we handle them? */
4162
4163int
4164can_conditionally_move_p (mode)
4165 enum machine_mode mode;
4166{
4167 if (movcc_gen_code[mode] != CODE_FOR_nothing)
4168 return 1;
4169
4170 return 0;
4171}
4172
4173#endif /* HAVE_conditional_move */
4174\f
e78d8e51 4175/* These functions generate an insn body and return it
77c9c6c2
RK
4176 rather than emitting the insn.
4177
4178 They do not protect from queued increments,
4179 because they may be used 1) in protect_from_queue itself
4180 and 2) in other passes where there is no queue. */
4181
4182/* Generate and return an insn body to add Y to X. */
4183
4184rtx
4185gen_add2_insn (x, y)
4186 rtx x, y;
4187{
4188 int icode = (int) add_optab->handlers[(int) GET_MODE (x)].insn_code;
4189
a995e389
RH
4190 if (! ((*insn_data[icode].operand[0].predicate)
4191 (x, insn_data[icode].operand[0].mode))
4192 || ! ((*insn_data[icode].operand[1].predicate)
4193 (x, insn_data[icode].operand[1].mode))
4194 || ! ((*insn_data[icode].operand[2].predicate)
4195 (y, insn_data[icode].operand[2].mode)))
77c9c6c2
RK
4196 abort ();
4197
4198 return (GEN_FCN (icode) (x, x, y));
4199}
4200
e78d8e51
ZW
4201/* Generate and return an insn body to add r1 and c,
4202 storing the result in r0. */
4203rtx
4204gen_add3_insn (r0, r1, c)
4205 rtx r0, r1, c;
4206{
4207 int icode = (int) add_optab->handlers[(int) GET_MODE (r0)].insn_code;
4208
4209 if (icode == CODE_FOR_nothing
4210 || ! ((*insn_data[icode].operand[0].predicate)
4211 (r0, insn_data[icode].operand[0].mode))
4212 || ! ((*insn_data[icode].operand[1].predicate)
4213 (r1, insn_data[icode].operand[1].mode))
4214 || ! ((*insn_data[icode].operand[2].predicate)
4215 (c, insn_data[icode].operand[2].mode)))
4216 return NULL_RTX;
4217
4218 return (GEN_FCN (icode) (r0, r1, c));
4219}
4220
77c9c6c2 4221int
fb7e77d7
TM
4222have_add2_insn (x, y)
4223 rtx x, y;
77c9c6c2 4224{
fb7e77d7
TM
4225 int icode;
4226
4227 if (GET_MODE (x) == VOIDmode)
4228 abort ();
4229
4230 icode = (int) add_optab->handlers[(int) GET_MODE (x)].insn_code;
4231
4232 if (icode == CODE_FOR_nothing)
4233 return 0;
4234
4235 if (! ((*insn_data[icode].operand[0].predicate)
4236 (x, insn_data[icode].operand[0].mode))
4237 || ! ((*insn_data[icode].operand[1].predicate)
4238 (x, insn_data[icode].operand[1].mode))
4239 || ! ((*insn_data[icode].operand[2].predicate)
4240 (y, insn_data[icode].operand[2].mode)))
4241 return 0;
4242
4243 return 1;
77c9c6c2
RK
4244}
4245
4246/* Generate and return an insn body to subtract Y from X. */
4247
4248rtx
4249gen_sub2_insn (x, y)
4250 rtx x, y;
4251{
4252 int icode = (int) sub_optab->handlers[(int) GET_MODE (x)].insn_code;
4253
a995e389
RH
4254 if (! ((*insn_data[icode].operand[0].predicate)
4255 (x, insn_data[icode].operand[0].mode))
4256 || ! ((*insn_data[icode].operand[1].predicate)
4257 (x, insn_data[icode].operand[1].mode))
4258 || ! ((*insn_data[icode].operand[2].predicate)
4259 (y, insn_data[icode].operand[2].mode)))
77c9c6c2
RK
4260 abort ();
4261
4262 return (GEN_FCN (icode) (x, x, y));
4263}
4264
ef89d648
ZW
4265/* Generate and return an insn body to subtract r1 and c,
4266 storing the result in r0. */
4267rtx
4268gen_sub3_insn (r0, r1, c)
4269 rtx r0, r1, c;
4270{
4271 int icode = (int) sub_optab->handlers[(int) GET_MODE (r0)].insn_code;
4272
4273 if (icode == CODE_FOR_nothing
4274 || ! ((*insn_data[icode].operand[0].predicate)
4275 (r0, insn_data[icode].operand[0].mode))
4276 || ! ((*insn_data[icode].operand[1].predicate)
4277 (r1, insn_data[icode].operand[1].mode))
4278 || ! ((*insn_data[icode].operand[2].predicate)
4279 (c, insn_data[icode].operand[2].mode)))
4280 return NULL_RTX;
4281
4282 return (GEN_FCN (icode) (r0, r1, c));
4283}
4284
77c9c6c2 4285int
fb7e77d7
TM
4286have_sub2_insn (x, y)
4287 rtx x, y;
77c9c6c2 4288{
fb7e77d7
TM
4289 int icode;
4290
4291 if (GET_MODE (x) == VOIDmode)
4292 abort ();
4293
4294 icode = (int) sub_optab->handlers[(int) GET_MODE (x)].insn_code;
4295
4296 if (icode == CODE_FOR_nothing)
4297 return 0;
4298
4299 if (! ((*insn_data[icode].operand[0].predicate)
4300 (x, insn_data[icode].operand[0].mode))
4301 || ! ((*insn_data[icode].operand[1].predicate)
4302 (x, insn_data[icode].operand[1].mode))
4303 || ! ((*insn_data[icode].operand[2].predicate)
4304 (y, insn_data[icode].operand[2].mode)))
4305 return 0;
4306
4307 return 1;
77c9c6c2
RK
4308}
4309
e3654226 4310/* Generate the body of an instruction to copy Y into X.
2f937369 4311 It may be a list of insns, if one insn isn't enough. */
77c9c6c2
RK
4312
4313rtx
4314gen_move_insn (x, y)
4315 rtx x, y;
4316{
b3694847 4317 enum machine_mode mode = GET_MODE (x);
77c9c6c2 4318 enum insn_code insn_code;
e3654226 4319 rtx seq;
77c9c6c2
RK
4320
4321 if (mode == VOIDmode)
4322 mode = GET_MODE (y);
4323
4324 insn_code = mov_optab->handlers[(int) mode].insn_code;
4325
4326 /* Handle MODE_CC modes: If we don't have a special move insn for this mode,
4327 find a mode to do it in. If we have a movcc, use it. Otherwise,
4328 find the MODE_INT mode of the same width. */
4329
aa0cd7a2 4330 if (GET_MODE_CLASS (mode) == MODE_CC && insn_code == CODE_FOR_nothing)
77c9c6c2
RK
4331 {
4332 enum machine_mode tmode = VOIDmode;
4333 rtx x1 = x, y1 = y;
4334
aa0cd7a2 4335 if (mode != CCmode
77c9c6c2
RK
4336 && mov_optab->handlers[(int) CCmode].insn_code != CODE_FOR_nothing)
4337 tmode = CCmode;
aa0cd7a2 4338 else
77c9c6c2
RK
4339 for (tmode = QImode; tmode != VOIDmode;
4340 tmode = GET_MODE_WIDER_MODE (tmode))
4341 if (GET_MODE_SIZE (tmode) == GET_MODE_SIZE (mode))
4342 break;
4343
4344 if (tmode == VOIDmode)
4345 abort ();
4346
4347 /* Get X and Y in TMODE. We can't use gen_lowpart here because it
4348 may call change_address which is not appropriate if we were
4349 called when a reload was in progress. We don't have to worry
4350 about changing the address since the size in bytes is supposed to
4351 be the same. Copy the MEM to change the mode and move any
4352 substitutions from the old MEM to the new one. */
4353
4354 if (reload_in_progress)
4355 {
4356 x = gen_lowpart_common (tmode, x1);
4357 if (x == 0 && GET_CODE (x1) == MEM)
4358 {
f1ec5147 4359 x = adjust_address_nv (x1, tmode, 0);
77c9c6c2
RK
4360 copy_replacements (x1, x);
4361 }
4362
4363 y = gen_lowpart_common (tmode, y1);
4364 if (y == 0 && GET_CODE (y1) == MEM)
4365 {
f1ec5147 4366 y = adjust_address_nv (y1, tmode, 0);
77c9c6c2
RK
4367 copy_replacements (y1, y);
4368 }
4369 }
4370 else
4371 {
4372 x = gen_lowpart (tmode, x);
4373 y = gen_lowpart (tmode, y);
4374 }
4375
4376 insn_code = mov_optab->handlers[(int) tmode].insn_code;
e3654226 4377 return (GEN_FCN (insn_code) (x, y));
77c9c6c2
RK
4378 }
4379
e3654226
RS
4380 start_sequence ();
4381 emit_move_insn_1 (x, y);
2f937369 4382 seq = get_insns ();
e3654226
RS
4383 end_sequence ();
4384 return seq;
77c9c6c2
RK
4385}
4386\f
34e56753
RS
4387/* Return the insn code used to extend FROM_MODE to TO_MODE.
4388 UNSIGNEDP specifies zero-extension instead of sign-extension. If
4389 no such operation exists, CODE_FOR_nothing will be returned. */
77c9c6c2 4390
34e56753 4391enum insn_code
77c9c6c2
RK
4392can_extend_p (to_mode, from_mode, unsignedp)
4393 enum machine_mode to_mode, from_mode;
4394 int unsignedp;
4395{
6dd12198
SE
4396#ifdef HAVE_ptr_extend
4397 if (unsignedp < 0)
4398 return CODE_FOR_ptr_extend;
4399 else
4400#endif
4401 return extendtab[(int) to_mode][(int) from_mode][unsignedp != 0];
77c9c6c2
RK
4402}
4403
4404/* Generate the body of an insn to extend Y (with mode MFROM)
4405 into X (with mode MTO). Do zero-extension if UNSIGNEDP is nonzero. */
4406
4407rtx
4408gen_extend_insn (x, y, mto, mfrom, unsignedp)
4409 rtx x, y;
4410 enum machine_mode mto, mfrom;
4411 int unsignedp;
4412{
678164a5 4413 return (GEN_FCN (extendtab[(int) mto][(int) mfrom][unsignedp != 0]) (x, y));
77c9c6c2 4414}
77c9c6c2
RK
4415\f
4416/* can_fix_p and can_float_p say whether the target machine
4417 can directly convert a given fixed point type to
4418 a given floating point type, or vice versa.
4419 The returned value is the CODE_FOR_... value to use,
5d81dc5b 4420 or CODE_FOR_nothing if these modes cannot be directly converted.
77c9c6c2 4421
5d81dc5b 4422 *TRUNCP_PTR is set to 1 if it is necessary to output
77c9c6c2
RK
4423 an explicit FTRUNC insn before the fix insn; otherwise 0. */
4424
4425static enum insn_code
4426can_fix_p (fixmode, fltmode, unsignedp, truncp_ptr)
4427 enum machine_mode fltmode, fixmode;
4428 int unsignedp;
4429 int *truncp_ptr;
4430{
4431 *truncp_ptr = 0;
678164a5
RK
4432 if (fixtrunctab[(int) fltmode][(int) fixmode][unsignedp != 0]
4433 != CODE_FOR_nothing)
4434 return fixtrunctab[(int) fltmode][(int) fixmode][unsignedp != 0];
77c9c6c2
RK
4435
4436 if (ftrunc_optab->handlers[(int) fltmode].insn_code != CODE_FOR_nothing)
4437 {
4438 *truncp_ptr = 1;
678164a5 4439 return fixtab[(int) fltmode][(int) fixmode][unsignedp != 0];
77c9c6c2
RK
4440 }
4441 return CODE_FOR_nothing;
4442}
4443
4444static enum insn_code
4445can_float_p (fltmode, fixmode, unsignedp)
4446 enum machine_mode fixmode, fltmode;
4447 int unsignedp;
4448{
678164a5 4449 return floattab[(int) fltmode][(int) fixmode][unsignedp != 0];
77c9c6c2 4450}
77c9c6c2
RK
4451\f
4452/* Generate code to convert FROM to floating point
34e56753 4453 and store in TO. FROM must be fixed point and not VOIDmode.
77c9c6c2
RK
4454 UNSIGNEDP nonzero means regard FROM as unsigned.
4455 Normally this is done by correcting the final value
4456 if it is negative. */
4457
4458void
4459expand_float (to, from, unsignedp)
4460 rtx to, from;
4461 int unsignedp;
4462{
4463 enum insn_code icode;
b3694847 4464 rtx target = to;
77c9c6c2
RK
4465 enum machine_mode fmode, imode;
4466
34e56753
RS
4467 /* Crash now, because we won't be able to decide which mode to use. */
4468 if (GET_MODE (from) == VOIDmode)
4469 abort ();
4470
77c9c6c2
RK
4471 /* Look for an insn to do the conversion. Do it in the specified
4472 modes if possible; otherwise convert either input, output or both to
4473 wider mode. If the integer mode is wider than the mode of FROM,
4474 we can do the conversion signed even if the input is unsigned. */
4475
4476 for (imode = GET_MODE (from); imode != VOIDmode;
4477 imode = GET_MODE_WIDER_MODE (imode))
4478 for (fmode = GET_MODE (to); fmode != VOIDmode;
4479 fmode = GET_MODE_WIDER_MODE (fmode))
4480 {
4481 int doing_unsigned = unsignedp;
4482
5ba02ca6
GK
4483 if (fmode != GET_MODE (to)
4484 && significand_size (fmode) < GET_MODE_BITSIZE (GET_MODE (from)))
4485 continue;
4486
77c9c6c2
RK
4487 icode = can_float_p (fmode, imode, unsignedp);
4488 if (icode == CODE_FOR_nothing && imode != GET_MODE (from) && unsignedp)
4489 icode = can_float_p (fmode, imode, 0), doing_unsigned = 0;
4490
4491 if (icode != CODE_FOR_nothing)
4492 {
4493 to = protect_from_queue (to, 1);
06e40b26 4494 from = protect_from_queue (from, 0);
77c9c6c2
RK
4495
4496 if (imode != GET_MODE (from))
4497 from = convert_to_mode (imode, from, unsignedp);
77c9c6c2
RK
4498
4499 if (fmode != GET_MODE (to))
4500 target = gen_reg_rtx (fmode);
4501
4502 emit_unop_insn (icode, target, from,
4503 doing_unsigned ? UNSIGNED_FLOAT : FLOAT);
4504
4505 if (target != to)
4506 convert_move (to, target, 0);
4507 return;
4508 }
4509 }
4510
77c9c6c2
RK
4511 /* Unsigned integer, and no way to convert directly.
4512 Convert as signed, then conditionally adjust the result. */
4513 if (unsignedp)
4514 {
4515 rtx label = gen_label_rtx ();
4516 rtx temp;
4517 REAL_VALUE_TYPE offset;
4518
4519 emit_queue ();
4520
4521 to = protect_from_queue (to, 1);
4522 from = protect_from_queue (from, 0);
4523
4524 if (flag_force_mem)
4525 from = force_not_mem (from);
4526
c95c47f3
PE
4527 /* Look for a usable floating mode FMODE wider than the source and at
4528 least as wide as the target. Using FMODE will avoid rounding woes
4529 with unsigned values greater than the signed maximum value. */
70864443 4530
c95c47f3
PE
4531 for (fmode = GET_MODE (to); fmode != VOIDmode;
4532 fmode = GET_MODE_WIDER_MODE (fmode))
4533 if (GET_MODE_BITSIZE (GET_MODE (from)) < GET_MODE_BITSIZE (fmode)
4534 && can_float_p (fmode, GET_MODE (from), 0) != CODE_FOR_nothing)
4535 break;
a48fb61b 4536
c95c47f3
PE
4537 if (fmode == VOIDmode)
4538 {
a48fb61b 4539 /* There is no such mode. Pretend the target is wide enough. */
c95c47f3 4540 fmode = GET_MODE (to);
a48fb61b 4541
0f41302f 4542 /* Avoid double-rounding when TO is narrower than FROM. */
a48fb61b
RK
4543 if ((significand_size (fmode) + 1)
4544 < GET_MODE_BITSIZE (GET_MODE (from)))
4545 {
4546 rtx temp1;
4547 rtx neglabel = gen_label_rtx ();
4548
70864443
RK
4549 /* Don't use TARGET if it isn't a register, is a hard register,
4550 or is the wrong mode. */
44f51d4a 4551 if (GET_CODE (target) != REG
70864443
RK
4552 || REGNO (target) < FIRST_PSEUDO_REGISTER
4553 || GET_MODE (target) != fmode)
44f51d4a
RK
4554 target = gen_reg_rtx (fmode);
4555
a48fb61b
RK
4556 imode = GET_MODE (from);
4557 do_pending_stack_adjust ();
4558
4559 /* Test whether the sign bit is set. */
1c0290ea 4560 emit_cmp_and_jump_insns (from, const0_rtx, LT, NULL_RTX, imode,
a06ef755 4561 0, neglabel);
a48fb61b
RK
4562
4563 /* The sign bit is not set. Convert as signed. */
4564 expand_float (target, from, 0);
4565 emit_jump_insn (gen_jump (label));
2ad79487 4566 emit_barrier ();
a48fb61b
RK
4567
4568 /* The sign bit is set.
4569 Convert to a usable (positive signed) value by shifting right
4570 one bit, while remembering if a nonzero bit was shifted
4571 out; i.e., compute (from & 1) | (from >> 1). */
4572
4573 emit_label (neglabel);
4574 temp = expand_binop (imode, and_optab, from, const1_rtx,
70864443 4575 NULL_RTX, 1, OPTAB_LIB_WIDEN);
73d9a835
RK
4576 temp1 = expand_shift (RSHIFT_EXPR, imode, from, integer_one_node,
4577 NULL_RTX, 1);
70864443
RK
4578 temp = expand_binop (imode, ior_optab, temp, temp1, temp, 1,
4579 OPTAB_LIB_WIDEN);
a48fb61b
RK
4580 expand_float (target, temp, 0);
4581
4582 /* Multiply by 2 to undo the shift above. */
a93738eb 4583 temp = expand_binop (fmode, add_optab, target, target,
70864443 4584 target, 0, OPTAB_LIB_WIDEN);
a93738eb
RK
4585 if (temp != target)
4586 emit_move_insn (target, temp);
4587
a48fb61b
RK
4588 do_pending_stack_adjust ();
4589 emit_label (label);
4590 goto done;
4591 }
c95c47f3
PE
4592 }
4593
77c9c6c2
RK
4594 /* If we are about to do some arithmetic to correct for an
4595 unsigned operand, do it in a pseudo-register. */
4596
c95c47f3 4597 if (GET_MODE (to) != fmode
70864443 4598 || GET_CODE (to) != REG || REGNO (to) < FIRST_PSEUDO_REGISTER)
c95c47f3 4599 target = gen_reg_rtx (fmode);
77c9c6c2
RK
4600
4601 /* Convert as signed integer to floating. */
4602 expand_float (target, from, 0);
4603
4604 /* If FROM is negative (and therefore TO is negative),
4605 correct its value by 2**bitwidth. */
4606
4607 do_pending_stack_adjust ();
c5d5d461 4608 emit_cmp_and_jump_insns (from, const0_rtx, GE, NULL_RTX, GET_MODE (from),
a06ef755 4609 0, label);
70864443 4610
efdc7e19
RH
4611
4612 real_2expN (&offset, GET_MODE_BITSIZE (GET_MODE (from)));
c95c47f3 4613 temp = expand_binop (fmode, add_optab, target,
30d88916 4614 CONST_DOUBLE_FROM_REAL_VALUE (offset, fmode),
77c9c6c2
RK
4615 target, 0, OPTAB_LIB_WIDEN);
4616 if (temp != target)
4617 emit_move_insn (target, temp);
a48fb61b 4618
77c9c6c2
RK
4619 do_pending_stack_adjust ();
4620 emit_label (label);
70864443 4621 goto done;
77c9c6c2 4622 }
77c9c6c2 4623
560f3f8a 4624 /* No hardware instruction available; call a library routine to convert from
b092b471 4625 SImode, DImode, or TImode into SFmode, DFmode, XFmode, or TFmode. */
77c9c6c2 4626 {
6bce1b78 4627 rtx libfcn;
77c9c6c2 4628 rtx insns;
9a7f678c 4629 rtx value;
77c9c6c2
RK
4630
4631 to = protect_from_queue (to, 1);
06e40b26 4632 from = protect_from_queue (from, 0);
77c9c6c2
RK
4633
4634 if (GET_MODE_SIZE (GET_MODE (from)) < GET_MODE_SIZE (SImode))
4635 from = convert_to_mode (SImode, from, unsignedp);
77c9c6c2
RK
4636
4637 if (flag_force_mem)
4638 from = force_not_mem (from);
4639
4640 if (GET_MODE (to) == SFmode)
4641 {
4642 if (GET_MODE (from) == SImode)
6bce1b78 4643 libfcn = floatsisf_libfunc;
77c9c6c2 4644 else if (GET_MODE (from) == DImode)
6bce1b78 4645 libfcn = floatdisf_libfunc;
b092b471
JW
4646 else if (GET_MODE (from) == TImode)
4647 libfcn = floattisf_libfunc;
77c9c6c2
RK
4648 else
4649 abort ();
4650 }
4651 else if (GET_MODE (to) == DFmode)
4652 {
4653 if (GET_MODE (from) == SImode)
6bce1b78 4654 libfcn = floatsidf_libfunc;
77c9c6c2 4655 else if (GET_MODE (from) == DImode)
6bce1b78 4656 libfcn = floatdidf_libfunc;
b092b471
JW
4657 else if (GET_MODE (from) == TImode)
4658 libfcn = floattidf_libfunc;
4659 else
4660 abort ();
4661 }
4662 else if (GET_MODE (to) == XFmode)
4663 {
4664 if (GET_MODE (from) == SImode)
4665 libfcn = floatsixf_libfunc;
4666 else if (GET_MODE (from) == DImode)
4667 libfcn = floatdixf_libfunc;
4668 else if (GET_MODE (from) == TImode)
4669 libfcn = floattixf_libfunc;
4670 else
4671 abort ();
4672 }
4673 else if (GET_MODE (to) == TFmode)
4674 {
4675 if (GET_MODE (from) == SImode)
4676 libfcn = floatsitf_libfunc;
4677 else if (GET_MODE (from) == DImode)
4678 libfcn = floatditf_libfunc;
4679 else if (GET_MODE (from) == TImode)
4680 libfcn = floattitf_libfunc;
77c9c6c2
RK
4681 else
4682 abort ();
4683 }
4684 else
4685 abort ();
4686
4687 start_sequence ();
4688
ebb1b59a
BS
4689 value = emit_library_call_value (libfcn, NULL_RTX, LCT_CONST,
4690 GET_MODE (to), 1, from,
4691 GET_MODE (from));
77c9c6c2
RK
4692 insns = get_insns ();
4693 end_sequence ();
4694
9a7f678c 4695 emit_libcall_block (insns, target, value,
9e6a5703 4696 gen_rtx_FLOAT (GET_MODE (to), from));
77c9c6c2
RK
4697 }
4698
a48fb61b
RK
4699 done:
4700
77c9c6c2
RK
4701 /* Copy result to requested destination
4702 if we have been computing in a temp location. */
4703
4704 if (target != to)
4705 {
4706 if (GET_MODE (target) == GET_MODE (to))
4707 emit_move_insn (to, target);
4708 else
4709 convert_move (to, target, 0);
4710 }
4711}
4712\f
4713/* expand_fix: generate code to convert FROM to fixed point
4714 and store in TO. FROM must be floating point. */
4715
4716static rtx
4717ftruncify (x)
4718 rtx x;
4719{
4720 rtx temp = gen_reg_rtx (GET_MODE (x));
4721 return expand_unop (GET_MODE (x), ftrunc_optab, x, temp, 0);
4722}
4723
4724void
4725expand_fix (to, from, unsignedp)
b3694847 4726 rtx to, from;
77c9c6c2
RK
4727 int unsignedp;
4728{
4729 enum insn_code icode;
b3694847 4730 rtx target = to;
77c9c6c2
RK
4731 enum machine_mode fmode, imode;
4732 int must_trunc = 0;
6bce1b78 4733 rtx libfcn = 0;
77c9c6c2
RK
4734
4735 /* We first try to find a pair of modes, one real and one integer, at
4736 least as wide as FROM and TO, respectively, in which we can open-code
4737 this conversion. If the integer mode is wider than the mode of TO,
4738 we can do the conversion either signed or unsigned. */
4739
3987b9db
JH
4740 for (fmode = GET_MODE (from); fmode != VOIDmode;
4741 fmode = GET_MODE_WIDER_MODE (fmode))
4742 for (imode = GET_MODE (to); imode != VOIDmode;
4743 imode = GET_MODE_WIDER_MODE (imode))
77c9c6c2
RK
4744 {
4745 int doing_unsigned = unsignedp;
4746
4747 icode = can_fix_p (imode, fmode, unsignedp, &must_trunc);
4748 if (icode == CODE_FOR_nothing && imode != GET_MODE (to) && unsignedp)
4749 icode = can_fix_p (imode, fmode, 0, &must_trunc), doing_unsigned = 0;
4750
4751 if (icode != CODE_FOR_nothing)
4752 {
4753 to = protect_from_queue (to, 1);
06e40b26 4754 from = protect_from_queue (from, 0);
77c9c6c2
RK
4755
4756 if (fmode != GET_MODE (from))
4757 from = convert_to_mode (fmode, from, 0);
77c9c6c2
RK
4758
4759 if (must_trunc)
4760 from = ftruncify (from);
4761
4762 if (imode != GET_MODE (to))
4763 target = gen_reg_rtx (imode);
4764
4765 emit_unop_insn (icode, target, from,
4766 doing_unsigned ? UNSIGNED_FIX : FIX);
4767 if (target != to)
4768 convert_move (to, target, unsignedp);
4769 return;
4770 }
4771 }
4772
77c9c6c2
RK
4773 /* For an unsigned conversion, there is one more way to do it.
4774 If we have a signed conversion, we generate code that compares
4775 the real value to the largest representable positive number. If if
4776 is smaller, the conversion is done normally. Otherwise, subtract
4777 one plus the highest signed number, convert, and add it back.
4778
4779 We only need to check all real modes, since we know we didn't find
6dc42e49 4780 anything with a wider integer mode. */
77c9c6c2 4781
b1ec3c92 4782 if (unsignedp && GET_MODE_BITSIZE (GET_MODE (to)) <= HOST_BITS_PER_WIDE_INT)
77c9c6c2
RK
4783 for (fmode = GET_MODE (from); fmode != VOIDmode;
4784 fmode = GET_MODE_WIDER_MODE (fmode))
4785 /* Make sure we won't lose significant bits doing this. */
4786 if (GET_MODE_BITSIZE (fmode) > GET_MODE_BITSIZE (GET_MODE (to))
4787 && CODE_FOR_nothing != can_fix_p (GET_MODE (to), fmode, 0,
4788 &must_trunc))
4789 {
e9f7ae44
RS
4790 int bitsize;
4791 REAL_VALUE_TYPE offset;
4792 rtx limit, lab1, lab2, insn;
4793
4794 bitsize = GET_MODE_BITSIZE (GET_MODE (to));
efdc7e19 4795 real_2expN (&offset, bitsize - 1);
30d88916 4796 limit = CONST_DOUBLE_FROM_REAL_VALUE (offset, fmode);
e9f7ae44
RS
4797 lab1 = gen_label_rtx ();
4798 lab2 = gen_label_rtx ();
77c9c6c2
RK
4799
4800 emit_queue ();
4801 to = protect_from_queue (to, 1);
4802 from = protect_from_queue (from, 0);
4803
4804 if (flag_force_mem)
4805 from = force_not_mem (from);
4806
4807 if (fmode != GET_MODE (from))
4808 from = convert_to_mode (fmode, from, 0);
4809
4810 /* See if we need to do the subtraction. */
4811 do_pending_stack_adjust ();
c5d5d461 4812 emit_cmp_and_jump_insns (from, limit, GE, NULL_RTX, GET_MODE (from),
a06ef755 4813 0, lab1);
77c9c6c2
RK
4814
4815 /* If not, do the signed "fix" and branch around fixup code. */
4816 expand_fix (to, from, 0);
4817 emit_jump_insn (gen_jump (lab2));
4818 emit_barrier ();
4819
4820 /* Otherwise, subtract 2**(N-1), convert to signed number,
4821 then add 2**(N-1). Do the addition using XOR since this
4822 will often generate better code. */
4823 emit_label (lab1);
4824 target = expand_binop (GET_MODE (from), sub_optab, from, limit,
b1ec3c92 4825 NULL_RTX, 0, OPTAB_LIB_WIDEN);
77c9c6c2
RK
4826 expand_fix (to, target, 0);
4827 target = expand_binop (GET_MODE (to), xor_optab, to,
2496c7bd
LB
4828 gen_int_mode
4829 ((HOST_WIDE_INT) 1 << (bitsize - 1),
4830 GET_MODE (to)),
77c9c6c2
RK
4831 to, 1, OPTAB_LIB_WIDEN);
4832
4833 if (target != to)
4834 emit_move_insn (to, target);
4835
4836 emit_label (lab2);
4837
02214a5c
RK
4838 if (mov_optab->handlers[(int) GET_MODE (to)].insn_code
4839 != CODE_FOR_nothing)
4840 {
4841 /* Make a place for a REG_NOTE and add it. */
4842 insn = emit_move_insn (to, to);
5fa671cf
AM
4843 set_unique_reg_note (insn,
4844 REG_EQUAL,
4845 gen_rtx_fmt_e (UNSIGNED_FIX,
4846 GET_MODE (to),
4847 copy_rtx (from)));
02214a5c 4848 }
c5c76735 4849
77c9c6c2
RK
4850 return;
4851 }
77c9c6c2
RK
4852
4853 /* We can't do it with an insn, so use a library call. But first ensure
4854 that the mode of TO is at least as wide as SImode, since those are the
4855 only library calls we know about. */
4856
4857 if (GET_MODE_SIZE (GET_MODE (to)) < GET_MODE_SIZE (SImode))
4858 {
4859 target = gen_reg_rtx (SImode);
4860
4861 expand_fix (target, from, unsignedp);
4862 }
4863 else if (GET_MODE (from) == SFmode)
4864 {
4865 if (GET_MODE (to) == SImode)
6bce1b78 4866 libfcn = unsignedp ? fixunssfsi_libfunc : fixsfsi_libfunc;
77c9c6c2 4867 else if (GET_MODE (to) == DImode)
6bce1b78 4868 libfcn = unsignedp ? fixunssfdi_libfunc : fixsfdi_libfunc;
b092b471
JW
4869 else if (GET_MODE (to) == TImode)
4870 libfcn = unsignedp ? fixunssfti_libfunc : fixsfti_libfunc;
77c9c6c2
RK
4871 else
4872 abort ();
4873 }
4874 else if (GET_MODE (from) == DFmode)
4875 {
4876 if (GET_MODE (to) == SImode)
6bce1b78 4877 libfcn = unsignedp ? fixunsdfsi_libfunc : fixdfsi_libfunc;
77c9c6c2 4878 else if (GET_MODE (to) == DImode)
6bce1b78 4879 libfcn = unsignedp ? fixunsdfdi_libfunc : fixdfdi_libfunc;
b092b471
JW
4880 else if (GET_MODE (to) == TImode)
4881 libfcn = unsignedp ? fixunsdfti_libfunc : fixdfti_libfunc;
4882 else
4883 abort ();
4884 }
4885 else if (GET_MODE (from) == XFmode)
4886 {
4887 if (GET_MODE (to) == SImode)
4888 libfcn = unsignedp ? fixunsxfsi_libfunc : fixxfsi_libfunc;
4889 else if (GET_MODE (to) == DImode)
4890 libfcn = unsignedp ? fixunsxfdi_libfunc : fixxfdi_libfunc;
4891 else if (GET_MODE (to) == TImode)
4892 libfcn = unsignedp ? fixunsxfti_libfunc : fixxfti_libfunc;
4893 else
4894 abort ();
4895 }
4896 else if (GET_MODE (from) == TFmode)
4897 {
4898 if (GET_MODE (to) == SImode)
4899 libfcn = unsignedp ? fixunstfsi_libfunc : fixtfsi_libfunc;
4900 else if (GET_MODE (to) == DImode)
4901 libfcn = unsignedp ? fixunstfdi_libfunc : fixtfdi_libfunc;
4902 else if (GET_MODE (to) == TImode)
4903 libfcn = unsignedp ? fixunstfti_libfunc : fixtfti_libfunc;
77c9c6c2
RK
4904 else
4905 abort ();
4906 }
4907 else
4908 abort ();
4909
6bce1b78 4910 if (libfcn)
77c9c6c2
RK
4911 {
4912 rtx insns;
560f3f8a 4913 rtx value;
77c9c6c2
RK
4914
4915 to = protect_from_queue (to, 1);
4916 from = protect_from_queue (from, 0);
4917
4918 if (flag_force_mem)
4919 from = force_not_mem (from);
4920
4921 start_sequence ();
4922
ebb1b59a
BS
4923 value = emit_library_call_value (libfcn, NULL_RTX, LCT_CONST,
4924 GET_MODE (to), 1, from,
4925 GET_MODE (from));
77c9c6c2
RK
4926 insns = get_insns ();
4927 end_sequence ();
4928
560f3f8a 4929 emit_libcall_block (insns, target, value,
9e6a5703
JC
4930 gen_rtx_fmt_e (unsignedp ? UNSIGNED_FIX : FIX,
4931 GET_MODE (to), from));
77c9c6c2
RK
4932 }
4933
3e53ea48
RK
4934 if (target != to)
4935 {
4936 if (GET_MODE (to) == GET_MODE (target))
4937 emit_move_insn (to, target);
4938 else
4939 convert_move (to, target, 0);
4940 }
77c9c6c2
RK
4941}
4942\f
ef89d648
ZW
4943/* Report whether we have an instruction to perform the operation
4944 specified by CODE on operands of mode MODE. */
4945int
4946have_insn_for (code, mode)
77c9c6c2 4947 enum rtx_code code;
ef89d648
ZW
4948 enum machine_mode mode;
4949{
4950 return (code_to_optab[(int) code] != 0
4951 && (code_to_optab[(int) code]->handlers[(int) mode].insn_code
4952 != CODE_FOR_nothing));
4953}
4954
4955/* Create a blank optab. */
4956static optab
4957new_optab ()
77c9c6c2
RK
4958{
4959 int i;
e2500fed 4960 optab op = (optab) ggc_alloc (sizeof (struct optab));
77c9c6c2
RK
4961 for (i = 0; i < NUM_MACHINE_MODES; i++)
4962 {
4963 op->handlers[i].insn_code = CODE_FOR_nothing;
4964 op->handlers[i].libfunc = 0;
4965 }
377017c4 4966
ef89d648
ZW
4967 return op;
4968}
377017c4 4969
ef89d648
ZW
4970/* Same, but fill in its code as CODE, and write it into the
4971 code_to_optab table. */
4972static inline optab
4973init_optab (code)
4974 enum rtx_code code;
4975{
4976 optab op = new_optab ();
4977 op->code = code;
4978 code_to_optab[(int) code] = op;
4979 return op;
4980}
4981
4982/* Same, but fill in its code as CODE, and do _not_ write it into
4983 the code_to_optab table. */
4984static inline optab
4985init_optabv (code)
4986 enum rtx_code code;
4987{
4988 optab op = new_optab ();
4989 op->code = code;
77c9c6c2
RK
4990 return op;
4991}
4992
b092b471
JW
4993/* Initialize the libfunc fields of an entire group of entries in some
4994 optab. Each entry is set equal to a string consisting of a leading
4995 pair of underscores followed by a generic operation name followed by
4996 a mode name (downshifted to lower case) followed by a single character
4997 representing the number of operands for the given operation (which is
4998 usually one of the characters '2', '3', or '4').
4999
5000 OPTABLE is the table in which libfunc fields are to be initialized.
5001 FIRST_MODE is the first machine mode index in the given optab to
5002 initialize.
5003 LAST_MODE is the last machine mode index in the given optab to
5004 initialize.
5005 OPNAME is the generic (string) name of the operation.
5006 SUFFIX is the character which specifies the number of operands for
5007 the given generic operation.
5008*/
5009
5010static void
5011init_libfuncs (optable, first_mode, last_mode, opname, suffix)
b3694847
SS
5012 optab optable;
5013 int first_mode;
5014 int last_mode;
5015 const char *opname;
5016 int suffix;
b092b471 5017{
b3694847
SS
5018 int mode;
5019 unsigned opname_len = strlen (opname);
b092b471 5020
fe0035ff
RS
5021 for (mode = first_mode; (int) mode <= (int) last_mode;
5022 mode = (enum machine_mode) ((int) mode + 1))
b092b471 5023 {
b3694847
SS
5024 const char *mname = GET_MODE_NAME(mode);
5025 unsigned mname_len = strlen (mname);
5026 char *libfunc_name = alloca (2 + opname_len + mname_len + 1 + 1);
5027 char *p;
5028 const char *q;
b092b471
JW
5029
5030 p = libfunc_name;
5031 *p++ = '_';
5032 *p++ = '_';
5033 for (q = opname; *q; )
5034 *p++ = *q++;
5035 for (q = mname; *q; q++)
92a438d1 5036 *p++ = TOLOWER (*q);
b092b471 5037 *p++ = suffix;
520a57c8 5038 *p = '\0';
76095e2f 5039
b092b471 5040 optable->handlers[(int) mode].libfunc
520a57c8
ZW
5041 = gen_rtx_SYMBOL_REF (Pmode, ggc_alloc_string (libfunc_name,
5042 p - libfunc_name));
b092b471
JW
5043 }
5044}
5045
5046/* Initialize the libfunc fields of an entire group of entries in some
5047 optab which correspond to all integer mode operations. The parameters
5048 have the same meaning as similarly named ones for the `init_libfuncs'
5049 routine. (See above). */
5050
5051static void
5052init_integral_libfuncs (optable, opname, suffix)
b3694847
SS
5053 optab optable;
5054 const char *opname;
5055 int suffix;
b092b471
JW
5056{
5057 init_libfuncs (optable, SImode, TImode, opname, suffix);
5058}
5059
5060/* Initialize the libfunc fields of an entire group of entries in some
5061 optab which correspond to all real mode operations. The parameters
5062 have the same meaning as similarly named ones for the `init_libfuncs'
5063 routine. (See above). */
5064
5065static void
5066init_floating_libfuncs (optable, opname, suffix)
b3694847
SS
5067 optab optable;
5068 const char *opname;
5069 int suffix;
b092b471
JW
5070{
5071 init_libfuncs (optable, SFmode, TFmode, opname, suffix);
5072}
5073
76095e2f
RH
5074rtx
5075init_one_libfunc (name)
b3694847 5076 const char *name;
76095e2f 5077{
fb49053f
RH
5078 /* Create a FUNCTION_DECL that can be passed to
5079 targetm.encode_section_info. */
ee1315aa 5080 /* ??? We don't have any type information except for this is
9c2f7166 5081 a function. Pretend this is "int foo()". */
ee1315aa 5082 tree decl = build_decl (FUNCTION_DECL, get_identifier (name),
9c2f7166 5083 build_function_type (integer_type_node, NULL_TREE));
ee1315aa
RH
5084 DECL_ARTIFICIAL (decl) = 1;
5085 DECL_EXTERNAL (decl) = 1;
5086 TREE_PUBLIC (decl) = 1;
5087
5088 /* Return the symbol_ref from the mem rtx. */
5089 return XEXP (DECL_RTL (decl), 0);
76095e2f
RH
5090}
5091
77c9c6c2
RK
5092/* Call this once to initialize the contents of the optabs
5093 appropriately for the current target machine. */
5094
5095void
5096init_optabs ()
5097{
b6a1cbae 5098 unsigned int i, j, k;
77c9c6c2 5099
5d81dc5b 5100 /* Start by initializing all tables to contain CODE_FOR_nothing. */
77c9c6c2 5101
b6a1cbae
GM
5102 for (i = 0; i < ARRAY_SIZE (fixtab); i++)
5103 for (j = 0; j < ARRAY_SIZE (fixtab[0]); j++)
5104 for (k = 0; k < ARRAY_SIZE (fixtab[0][0]); k++)
5105 fixtab[i][j][k] = CODE_FOR_nothing;
5106
5107 for (i = 0; i < ARRAY_SIZE (fixtrunctab); i++)
5108 for (j = 0; j < ARRAY_SIZE (fixtrunctab[0]); j++)
5109 for (k = 0; k < ARRAY_SIZE (fixtrunctab[0][0]); k++)
5110 fixtrunctab[i][j][k] = CODE_FOR_nothing;
5111
5112 for (i = 0; i < ARRAY_SIZE (floattab); i++)
5113 for (j = 0; j < ARRAY_SIZE (floattab[0]); j++)
5114 for (k = 0; k < ARRAY_SIZE (floattab[0][0]); k++)
5115 floattab[i][j][k] = CODE_FOR_nothing;
5116
5117 for (i = 0; i < ARRAY_SIZE (extendtab); i++)
5118 for (j = 0; j < ARRAY_SIZE (extendtab[0]); j++)
5119 for (k = 0; k < ARRAY_SIZE (extendtab[0][0]); k++)
5120 extendtab[i][j][k] = CODE_FOR_nothing;
5d81dc5b
RK
5121
5122 for (i = 0; i < NUM_RTX_CODE; i++)
5123 setcc_gen_code[i] = CODE_FOR_nothing;
5124
49c4584c
DE
5125#ifdef HAVE_conditional_move
5126 for (i = 0; i < NUM_MACHINE_MODES; i++)
5127 movcc_gen_code[i] = CODE_FOR_nothing;
5128#endif
5129
5d81dc5b 5130 add_optab = init_optab (PLUS);
ef89d648 5131 addv_optab = init_optabv (PLUS);
5d81dc5b 5132 sub_optab = init_optab (MINUS);
ef89d648 5133 subv_optab = init_optabv (MINUS);
5d81dc5b 5134 smul_optab = init_optab (MULT);
ef89d648 5135 smulv_optab = init_optabv (MULT);
5035bbfe
TG
5136 smul_highpart_optab = init_optab (UNKNOWN);
5137 umul_highpart_optab = init_optab (UNKNOWN);
5d81dc5b
RK
5138 smul_widen_optab = init_optab (UNKNOWN);
5139 umul_widen_optab = init_optab (UNKNOWN);
5140 sdiv_optab = init_optab (DIV);
ef89d648 5141 sdivv_optab = init_optabv (DIV);
5d81dc5b
RK
5142 sdivmod_optab = init_optab (UNKNOWN);
5143 udiv_optab = init_optab (UDIV);
5144 udivmod_optab = init_optab (UNKNOWN);
5145 smod_optab = init_optab (MOD);
5146 umod_optab = init_optab (UMOD);
77c9c6c2
RK
5147 ftrunc_optab = init_optab (UNKNOWN);
5148 and_optab = init_optab (AND);
5149 ior_optab = init_optab (IOR);
5150 xor_optab = init_optab (XOR);
5151 ashl_optab = init_optab (ASHIFT);
5152 ashr_optab = init_optab (ASHIFTRT);
77c9c6c2
RK
5153 lshr_optab = init_optab (LSHIFTRT);
5154 rotl_optab = init_optab (ROTATE);
5155 rotr_optab = init_optab (ROTATERT);
5156 smin_optab = init_optab (SMIN);
5157 smax_optab = init_optab (SMAX);
5158 umin_optab = init_optab (UMIN);
5159 umax_optab = init_optab (UMAX);
ef89d648
ZW
5160
5161 /* These three have codes assigned exclusively for the sake of
5162 have_insn_for. */
5163 mov_optab = init_optab (SET);
5164 movstrict_optab = init_optab (STRICT_LOW_PART);
5165 cmp_optab = init_optab (COMPARE);
5166
77c9c6c2
RK
5167 ucmp_optab = init_optab (UNKNOWN);
5168 tst_optab = init_optab (UNKNOWN);
5169 neg_optab = init_optab (NEG);
ef89d648 5170 negv_optab = init_optabv (NEG);
77c9c6c2 5171 abs_optab = init_optab (ABS);
ef89d648 5172 absv_optab = init_optabv (ABS);
77c9c6c2
RK
5173 one_cmpl_optab = init_optab (NOT);
5174 ffs_optab = init_optab (FFS);
d45cf215 5175 sqrt_optab = init_optab (SQRT);
28cf078d
JVA
5176 sin_optab = init_optab (UNKNOWN);
5177 cos_optab = init_optab (UNKNOWN);
e7b489c8
RS
5178 exp_optab = init_optab (UNKNOWN);
5179 log_optab = init_optab (UNKNOWN);
19c3fc24 5180 strlen_optab = init_optab (UNKNOWN);
1c0290ea
BS
5181 cbranch_optab = init_optab (UNKNOWN);
5182 cmov_optab = init_optab (UNKNOWN);
5183 cstore_optab = init_optab (UNKNOWN);
371b8fc0 5184 push_optab = init_optab (UNKNOWN);
77c9c6c2 5185
5d81dc5b
RK
5186 for (i = 0; i < NUM_MACHINE_MODES; i++)
5187 {
5188 movstr_optab[i] = CODE_FOR_nothing;
45169d12 5189 clrstr_optab[i] = CODE_FOR_nothing;
5d81dc5b
RK
5190
5191#ifdef HAVE_SECONDARY_RELOADS
5192 reload_in_optab[i] = reload_out_optab[i] = CODE_FOR_nothing;
77c9c6c2 5193#endif
5d81dc5b
RK
5194 }
5195
5196 /* Fill in the optabs with the insns we support. */
5197 init_all_optabs ();
5198
5199#ifdef FIXUNS_TRUNC_LIKE_FIX_TRUNC
5200 /* This flag says the same insns that convert to a signed fixnum
5201 also convert validly to an unsigned one. */
5202 for (i = 0; i < NUM_MACHINE_MODES; i++)
5203 for (j = 0; j < NUM_MACHINE_MODES; j++)
5204 fixtrunctab[i][j][1] = fixtrunctab[i][j][0];
b092b471 5205#endif
5d81dc5b 5206
5d81dc5b 5207 /* Initialize the optabs with the names of the library functions. */
b092b471
JW
5208 init_integral_libfuncs (add_optab, "add", '3');
5209 init_floating_libfuncs (add_optab, "add", '3');
91ce572a
CC
5210 init_integral_libfuncs (addv_optab, "addv", '3');
5211 init_floating_libfuncs (addv_optab, "add", '3');
b092b471
JW
5212 init_integral_libfuncs (sub_optab, "sub", '3');
5213 init_floating_libfuncs (sub_optab, "sub", '3');
91ce572a
CC
5214 init_integral_libfuncs (subv_optab, "subv", '3');
5215 init_floating_libfuncs (subv_optab, "sub", '3');
b092b471
JW
5216 init_integral_libfuncs (smul_optab, "mul", '3');
5217 init_floating_libfuncs (smul_optab, "mul", '3');
91ce572a
CC
5218 init_integral_libfuncs (smulv_optab, "mulv", '3');
5219 init_floating_libfuncs (smulv_optab, "mul", '3');
5d81dc5b 5220 init_integral_libfuncs (sdiv_optab, "div", '3');
ef89d648 5221 init_floating_libfuncs (sdiv_optab, "div", '3');
91ce572a 5222 init_integral_libfuncs (sdivv_optab, "divv", '3');
5d81dc5b
RK
5223 init_integral_libfuncs (udiv_optab, "udiv", '3');
5224 init_integral_libfuncs (sdivmod_optab, "divmod", '4');
5225 init_integral_libfuncs (udivmod_optab, "udivmod", '4');
5226 init_integral_libfuncs (smod_optab, "mod", '3');
5227 init_integral_libfuncs (umod_optab, "umod", '3');
5d81dc5b
RK
5228 init_floating_libfuncs (ftrunc_optab, "ftrunc", '2');
5229 init_integral_libfuncs (and_optab, "and", '3');
5230 init_integral_libfuncs (ior_optab, "ior", '3');
5231 init_integral_libfuncs (xor_optab, "xor", '3');
5232 init_integral_libfuncs (ashl_optab, "ashl", '3');
5233 init_integral_libfuncs (ashr_optab, "ashr", '3');
5d81dc5b 5234 init_integral_libfuncs (lshr_optab, "lshr", '3');
5d81dc5b
RK
5235 init_integral_libfuncs (smin_optab, "min", '3');
5236 init_floating_libfuncs (smin_optab, "min", '3');
5237 init_integral_libfuncs (smax_optab, "max", '3');
5238 init_floating_libfuncs (smax_optab, "max", '3');
5239 init_integral_libfuncs (umin_optab, "umin", '3');
5240 init_integral_libfuncs (umax_optab, "umax", '3');
5241 init_integral_libfuncs (neg_optab, "neg", '2');
5242 init_floating_libfuncs (neg_optab, "neg", '2');
91ce572a
CC
5243 init_integral_libfuncs (negv_optab, "negv", '2');
5244 init_floating_libfuncs (negv_optab, "neg", '2');
5d81dc5b
RK
5245 init_integral_libfuncs (one_cmpl_optab, "one_cmpl", '2');
5246 init_integral_libfuncs (ffs_optab, "ffs", '2');
5247
5248 /* Comparison libcalls for integers MUST come in pairs, signed/unsigned. */
5249 init_integral_libfuncs (cmp_optab, "cmp", '2');
5250 init_integral_libfuncs (ucmp_optab, "ucmp", '2');
5251 init_floating_libfuncs (cmp_optab, "cmp", '2');
77c9c6c2
RK
5252
5253#ifdef MULSI3_LIBCALL
5254 smul_optab->handlers[(int) SImode].libfunc
76095e2f 5255 = init_one_libfunc (MULSI3_LIBCALL);
77c9c6c2
RK
5256#endif
5257#ifdef MULDI3_LIBCALL
5258 smul_optab->handlers[(int) DImode].libfunc
76095e2f 5259 = init_one_libfunc (MULDI3_LIBCALL);
77c9c6c2 5260#endif
77c9c6c2 5261
77c9c6c2
RK
5262#ifdef DIVSI3_LIBCALL
5263 sdiv_optab->handlers[(int) SImode].libfunc
76095e2f 5264 = init_one_libfunc (DIVSI3_LIBCALL);
77c9c6c2
RK
5265#endif
5266#ifdef DIVDI3_LIBCALL
5267 sdiv_optab->handlers[(int) DImode].libfunc
76095e2f 5268 = init_one_libfunc (DIVDI3_LIBCALL);
b092b471 5269#endif
77c9c6c2 5270
77c9c6c2
RK
5271#ifdef UDIVSI3_LIBCALL
5272 udiv_optab->handlers[(int) SImode].libfunc
76095e2f 5273 = init_one_libfunc (UDIVSI3_LIBCALL);
77c9c6c2
RK
5274#endif
5275#ifdef UDIVDI3_LIBCALL
5276 udiv_optab->handlers[(int) DImode].libfunc
76095e2f 5277 = init_one_libfunc (UDIVDI3_LIBCALL);
b092b471 5278#endif
77c9c6c2
RK
5279
5280#ifdef MODSI3_LIBCALL
5281 smod_optab->handlers[(int) SImode].libfunc
76095e2f 5282 = init_one_libfunc (MODSI3_LIBCALL);
77c9c6c2
RK
5283#endif
5284#ifdef MODDI3_LIBCALL
5285 smod_optab->handlers[(int) DImode].libfunc
76095e2f 5286 = init_one_libfunc (MODDI3_LIBCALL);
b092b471 5287#endif
77c9c6c2
RK
5288
5289#ifdef UMODSI3_LIBCALL
5290 umod_optab->handlers[(int) SImode].libfunc
76095e2f 5291 = init_one_libfunc (UMODSI3_LIBCALL);
77c9c6c2
RK
5292#endif
5293#ifdef UMODDI3_LIBCALL
5294 umod_optab->handlers[(int) DImode].libfunc
76095e2f 5295 = init_one_libfunc (UMODDI3_LIBCALL);
b092b471 5296#endif
4754348d 5297
decdfa82
RS
5298 /* Use cabs for DC complex abs, since systems generally have cabs.
5299 Don't define any libcall for SCmode, so that cabs will be used. */
5300 abs_optab->handlers[(int) DCmode].libfunc
76095e2f 5301 = init_one_libfunc ("cabs");
77c9c6c2 5302
7f7d6d64 5303 /* The ffs function operates on `int'. */
c5c76735 5304 ffs_optab->handlers[(int) mode_for_size (INT_TYPE_SIZE, MODE_INT, 0)].libfunc
76095e2f
RH
5305 = init_one_libfunc ("ffs");
5306
5307 extendsfdf2_libfunc = init_one_libfunc ("__extendsfdf2");
5308 extendsfxf2_libfunc = init_one_libfunc ("__extendsfxf2");
5309 extendsftf2_libfunc = init_one_libfunc ("__extendsftf2");
5310 extenddfxf2_libfunc = init_one_libfunc ("__extenddfxf2");
5311 extenddftf2_libfunc = init_one_libfunc ("__extenddftf2");
5312
5313 truncdfsf2_libfunc = init_one_libfunc ("__truncdfsf2");
5314 truncxfsf2_libfunc = init_one_libfunc ("__truncxfsf2");
5315 trunctfsf2_libfunc = init_one_libfunc ("__trunctfsf2");
5316 truncxfdf2_libfunc = init_one_libfunc ("__truncxfdf2");
5317 trunctfdf2_libfunc = init_one_libfunc ("__trunctfdf2");
5318
9602f5a0 5319 abort_libfunc = init_one_libfunc ("abort");
76095e2f 5320 memcpy_libfunc = init_one_libfunc ("memcpy");
b215b52e 5321 memmove_libfunc = init_one_libfunc ("memmove");
76095e2f
RH
5322 bcopy_libfunc = init_one_libfunc ("bcopy");
5323 memcmp_libfunc = init_one_libfunc ("memcmp");
5324 bcmp_libfunc = init_one_libfunc ("__gcc_bcmp");
5325 memset_libfunc = init_one_libfunc ("memset");
5326 bzero_libfunc = init_one_libfunc ("bzero");
5327
52a11cbf
RH
5328 unwind_resume_libfunc = init_one_libfunc (USING_SJLJ_EXCEPTIONS
5329 ? "_Unwind_SjLj_Resume"
5330 : "_Unwind_Resume");
6e6a07d2 5331#ifndef DONT_USE_BUILTIN_SETJMP
76095e2f
RH
5332 setjmp_libfunc = init_one_libfunc ("__builtin_setjmp");
5333 longjmp_libfunc = init_one_libfunc ("__builtin_longjmp");
27a36778 5334#else
76095e2f
RH
5335 setjmp_libfunc = init_one_libfunc ("setjmp");
5336 longjmp_libfunc = init_one_libfunc ("longjmp");
27a36778 5337#endif
52a11cbf
RH
5338 unwind_sjlj_register_libfunc = init_one_libfunc ("_Unwind_SjLj_Register");
5339 unwind_sjlj_unregister_libfunc
5340 = init_one_libfunc ("_Unwind_SjLj_Unregister");
6adb4e3a 5341
76095e2f
RH
5342 eqhf2_libfunc = init_one_libfunc ("__eqhf2");
5343 nehf2_libfunc = init_one_libfunc ("__nehf2");
5344 gthf2_libfunc = init_one_libfunc ("__gthf2");
5345 gehf2_libfunc = init_one_libfunc ("__gehf2");
5346 lthf2_libfunc = init_one_libfunc ("__lthf2");
5347 lehf2_libfunc = init_one_libfunc ("__lehf2");
1eb8759b 5348 unordhf2_libfunc = init_one_libfunc ("__unordhf2");
76095e2f
RH
5349
5350 eqsf2_libfunc = init_one_libfunc ("__eqsf2");
5351 nesf2_libfunc = init_one_libfunc ("__nesf2");
5352 gtsf2_libfunc = init_one_libfunc ("__gtsf2");
5353 gesf2_libfunc = init_one_libfunc ("__gesf2");
5354 ltsf2_libfunc = init_one_libfunc ("__ltsf2");
5355 lesf2_libfunc = init_one_libfunc ("__lesf2");
1eb8759b 5356 unordsf2_libfunc = init_one_libfunc ("__unordsf2");
76095e2f
RH
5357
5358 eqdf2_libfunc = init_one_libfunc ("__eqdf2");
5359 nedf2_libfunc = init_one_libfunc ("__nedf2");
5360 gtdf2_libfunc = init_one_libfunc ("__gtdf2");
5361 gedf2_libfunc = init_one_libfunc ("__gedf2");
5362 ltdf2_libfunc = init_one_libfunc ("__ltdf2");
5363 ledf2_libfunc = init_one_libfunc ("__ledf2");
1eb8759b 5364 unorddf2_libfunc = init_one_libfunc ("__unorddf2");
76095e2f
RH
5365
5366 eqxf2_libfunc = init_one_libfunc ("__eqxf2");
5367 nexf2_libfunc = init_one_libfunc ("__nexf2");
5368 gtxf2_libfunc = init_one_libfunc ("__gtxf2");
5369 gexf2_libfunc = init_one_libfunc ("__gexf2");
5370 ltxf2_libfunc = init_one_libfunc ("__ltxf2");
5371 lexf2_libfunc = init_one_libfunc ("__lexf2");
1eb8759b 5372 unordxf2_libfunc = init_one_libfunc ("__unordxf2");
76095e2f
RH
5373
5374 eqtf2_libfunc = init_one_libfunc ("__eqtf2");
5375 netf2_libfunc = init_one_libfunc ("__netf2");
5376 gttf2_libfunc = init_one_libfunc ("__gttf2");
5377 getf2_libfunc = init_one_libfunc ("__getf2");
5378 lttf2_libfunc = init_one_libfunc ("__lttf2");
5379 letf2_libfunc = init_one_libfunc ("__letf2");
1eb8759b 5380 unordtf2_libfunc = init_one_libfunc ("__unordtf2");
76095e2f
RH
5381
5382 floatsisf_libfunc = init_one_libfunc ("__floatsisf");
5383 floatdisf_libfunc = init_one_libfunc ("__floatdisf");
5384 floattisf_libfunc = init_one_libfunc ("__floattisf");
5385
5386 floatsidf_libfunc = init_one_libfunc ("__floatsidf");
5387 floatdidf_libfunc = init_one_libfunc ("__floatdidf");
5388 floattidf_libfunc = init_one_libfunc ("__floattidf");
5389
5390 floatsixf_libfunc = init_one_libfunc ("__floatsixf");
5391 floatdixf_libfunc = init_one_libfunc ("__floatdixf");
5392 floattixf_libfunc = init_one_libfunc ("__floattixf");
5393
5394 floatsitf_libfunc = init_one_libfunc ("__floatsitf");
5395 floatditf_libfunc = init_one_libfunc ("__floatditf");
5396 floattitf_libfunc = init_one_libfunc ("__floattitf");
5397
5398 fixsfsi_libfunc = init_one_libfunc ("__fixsfsi");
5399 fixsfdi_libfunc = init_one_libfunc ("__fixsfdi");
5400 fixsfti_libfunc = init_one_libfunc ("__fixsfti");
5401
5402 fixdfsi_libfunc = init_one_libfunc ("__fixdfsi");
5403 fixdfdi_libfunc = init_one_libfunc ("__fixdfdi");
5404 fixdfti_libfunc = init_one_libfunc ("__fixdfti");
5405
5406 fixxfsi_libfunc = init_one_libfunc ("__fixxfsi");
5407 fixxfdi_libfunc = init_one_libfunc ("__fixxfdi");
5408 fixxfti_libfunc = init_one_libfunc ("__fixxfti");
5409
5410 fixtfsi_libfunc = init_one_libfunc ("__fixtfsi");
5411 fixtfdi_libfunc = init_one_libfunc ("__fixtfdi");
5412 fixtfti_libfunc = init_one_libfunc ("__fixtfti");
5413
5414 fixunssfsi_libfunc = init_one_libfunc ("__fixunssfsi");
5415 fixunssfdi_libfunc = init_one_libfunc ("__fixunssfdi");
5416 fixunssfti_libfunc = init_one_libfunc ("__fixunssfti");
5417
5418 fixunsdfsi_libfunc = init_one_libfunc ("__fixunsdfsi");
5419 fixunsdfdi_libfunc = init_one_libfunc ("__fixunsdfdi");
5420 fixunsdfti_libfunc = init_one_libfunc ("__fixunsdfti");
5421
5422 fixunsxfsi_libfunc = init_one_libfunc ("__fixunsxfsi");
5423 fixunsxfdi_libfunc = init_one_libfunc ("__fixunsxfdi");
5424 fixunsxfti_libfunc = init_one_libfunc ("__fixunsxfti");
5425
5426 fixunstfsi_libfunc = init_one_libfunc ("__fixunstfsi");
5427 fixunstfdi_libfunc = init_one_libfunc ("__fixunstfdi");
5428 fixunstfti_libfunc = init_one_libfunc ("__fixunstfti");
4754348d 5429
07417085
KR
5430 /* For function entry/exit instrumentation. */
5431 profile_function_entry_libfunc
76095e2f 5432 = init_one_libfunc ("__cyg_profile_func_enter");
07417085 5433 profile_function_exit_libfunc
76095e2f 5434 = init_one_libfunc ("__cyg_profile_func_exit");
07417085 5435
e0cd0770
JC
5436#ifdef HAVE_conditional_trap
5437 init_traps ();
5438#endif
5439
159c2aed
DE
5440#ifdef INIT_TARGET_OPTABS
5441 /* Allow the target to add more libcalls or rename some, etc. */
5442 INIT_TARGET_OPTABS;
5443#endif
77c9c6c2 5444}
7e1966ca 5445\f
e2500fed
GK
5446static GTY(()) rtx trap_rtx;
5447
e0cd0770
JC
5448#ifdef HAVE_conditional_trap
5449/* The insn generating function can not take an rtx_code argument.
5450 TRAP_RTX is used as an rtx argument. Its code is replaced with
5451 the code to be used in the trap insn and all other fields are
541b0512 5452 ignored. */
e0cd0770
JC
5453
5454static void
5455init_traps ()
5456{
5457 if (HAVE_conditional_trap)
541b0512
MM
5458 {
5459 trap_rtx = gen_rtx_fmt_ee (EQ, VOIDmode, NULL_RTX, NULL_RTX);
541b0512 5460 }
e0cd0770
JC
5461}
5462#endif
5463
5464/* Generate insns to trap with code TCODE if OP1 and OP2 satisfy condition
5465 CODE. Return 0 on failure. */
5466
5467rtx
5468gen_cond_trap (code, op1, op2, tcode)
c84e2712
KG
5469 enum rtx_code code ATTRIBUTE_UNUSED;
5470 rtx op1, op2 ATTRIBUTE_UNUSED, tcode ATTRIBUTE_UNUSED;
e0cd0770
JC
5471{
5472 enum machine_mode mode = GET_MODE (op1);
e0cd0770
JC
5473
5474 if (mode == VOIDmode)
5475 return 0;
5476
5477#ifdef HAVE_conditional_trap
5478 if (HAVE_conditional_trap
5479 && cmp_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
5480 {
5481 rtx insn;
a157febd 5482 start_sequence();
e0cd0770
JC
5483 emit_insn (GEN_FCN (cmp_optab->handlers[(int) mode].insn_code) (op1, op2));
5484 PUT_CODE (trap_rtx, code);
5485 insn = gen_conditional_trap (trap_rtx, tcode);
5486 if (insn)
a157febd
GK
5487 {
5488 emit_insn (insn);
2f937369 5489 insn = get_insns ();
a157febd
GK
5490 }
5491 end_sequence();
5492 return insn;
e0cd0770
JC
5493 }
5494#endif
5495
5496 return 0;
5497}
e2500fed
GK
5498
5499#include "gt-optabs.h"
This page took 2.542426 seconds and 5 git commands to generate.