]>
Commit | Line | Data |
---|---|---|
77c9c6c2 | 1 | /* Expand the basic unary and binary arithmetic operations, for GNU compiler. |
34e56753 | 2 | Copyright (C) 1987, 1988, 1992 Free Software Foundation, Inc. |
77c9c6c2 RK |
3 | |
4 | This file is part of GNU CC. | |
5 | ||
6 | GNU CC is free software; you can redistribute it and/or modify | |
7 | it under the terms of the GNU General Public License as published by | |
8 | the Free Software Foundation; either version 2, or (at your option) | |
9 | any later version. | |
10 | ||
11 | GNU CC is distributed in the hope that it will be useful, | |
12 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
14 | GNU General Public License for more details. | |
15 | ||
16 | You should have received a copy of the GNU General Public License | |
17 | along with GNU CC; see the file COPYING. If not, write to | |
18 | the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */ | |
19 | ||
20 | ||
21 | #include "config.h" | |
22 | #include "rtl.h" | |
23 | #include "tree.h" | |
24 | #include "flags.h" | |
25 | #include "insn-flags.h" | |
26 | #include "insn-codes.h" | |
27 | #include "expr.h" | |
28 | #include "insn-config.h" | |
29 | #include "recog.h" | |
2d9f831e | 30 | #include <ctype.h> |
77c9c6c2 RK |
31 | |
32 | /* Each optab contains info on how this target machine | |
33 | can perform a particular operation | |
34 | for all sizes and kinds of operands. | |
35 | ||
36 | The operation to be performed is often specified | |
37 | by passing one of these optabs as an argument. | |
38 | ||
39 | See expr.h for documentation of these optabs. */ | |
40 | ||
41 | optab add_optab; | |
42 | optab sub_optab; | |
43 | optab smul_optab; | |
44 | optab smul_widen_optab; | |
45 | optab umul_widen_optab; | |
46 | optab sdiv_optab; | |
47 | optab sdivmod_optab; | |
48 | optab udiv_optab; | |
49 | optab udivmod_optab; | |
50 | optab smod_optab; | |
51 | optab umod_optab; | |
52 | optab flodiv_optab; | |
53 | optab ftrunc_optab; | |
54 | optab and_optab; | |
55 | optab ior_optab; | |
56 | optab xor_optab; | |
57 | optab ashl_optab; | |
58 | optab lshr_optab; | |
59 | optab lshl_optab; | |
60 | optab ashr_optab; | |
61 | optab rotl_optab; | |
62 | optab rotr_optab; | |
63 | optab smin_optab; | |
64 | optab smax_optab; | |
65 | optab umin_optab; | |
66 | optab umax_optab; | |
67 | ||
68 | optab mov_optab; | |
69 | optab movstrict_optab; | |
70 | ||
71 | optab neg_optab; | |
72 | optab abs_optab; | |
73 | optab one_cmpl_optab; | |
74 | optab ffs_optab; | |
d45cf215 | 75 | optab sqrt_optab; |
28cf078d JVA |
76 | optab sin_optab; |
77 | optab cos_optab; | |
77c9c6c2 RK |
78 | |
79 | optab cmp_optab; | |
80 | optab ucmp_optab; /* Used only for libcalls for unsigned comparisons. */ | |
81 | optab tst_optab; | |
82 | ||
19c3fc24 RS |
83 | optab strlen_optab; |
84 | ||
77c9c6c2 RK |
85 | /* SYMBOL_REF rtx's for the library functions that are called |
86 | implicitly and not via optabs. */ | |
87 | ||
88 | rtx extendsfdf2_libfunc; | |
b092b471 JW |
89 | rtx extendsfxf2_libfunc; |
90 | rtx extendsftf2_libfunc; | |
91 | rtx extenddfxf2_libfunc; | |
92 | rtx extenddftf2_libfunc; | |
93 | ||
77c9c6c2 | 94 | rtx truncdfsf2_libfunc; |
b092b471 JW |
95 | rtx truncxfsf2_libfunc; |
96 | rtx trunctfsf2_libfunc; | |
97 | rtx truncxfdf2_libfunc; | |
98 | rtx trunctfdf2_libfunc; | |
99 | ||
77c9c6c2 RK |
100 | rtx memcpy_libfunc; |
101 | rtx bcopy_libfunc; | |
102 | rtx memcmp_libfunc; | |
103 | rtx bcmp_libfunc; | |
104 | rtx memset_libfunc; | |
105 | rtx bzero_libfunc; | |
b092b471 | 106 | |
77c9c6c2 RK |
107 | rtx eqsf2_libfunc; |
108 | rtx nesf2_libfunc; | |
109 | rtx gtsf2_libfunc; | |
110 | rtx gesf2_libfunc; | |
111 | rtx ltsf2_libfunc; | |
112 | rtx lesf2_libfunc; | |
b092b471 | 113 | |
77c9c6c2 RK |
114 | rtx eqdf2_libfunc; |
115 | rtx nedf2_libfunc; | |
116 | rtx gtdf2_libfunc; | |
117 | rtx gedf2_libfunc; | |
118 | rtx ltdf2_libfunc; | |
119 | rtx ledf2_libfunc; | |
b092b471 JW |
120 | |
121 | rtx eqxf2_libfunc; | |
122 | rtx nexf2_libfunc; | |
123 | rtx gtxf2_libfunc; | |
124 | rtx gexf2_libfunc; | |
125 | rtx ltxf2_libfunc; | |
126 | rtx lexf2_libfunc; | |
127 | ||
128 | rtx eqtf2_libfunc; | |
129 | rtx netf2_libfunc; | |
130 | rtx gttf2_libfunc; | |
131 | rtx getf2_libfunc; | |
132 | rtx lttf2_libfunc; | |
133 | rtx letf2_libfunc; | |
134 | ||
6bce1b78 | 135 | rtx floatsisf_libfunc; |
b092b471 JW |
136 | rtx floatdisf_libfunc; |
137 | rtx floattisf_libfunc; | |
138 | ||
6bce1b78 | 139 | rtx floatsidf_libfunc; |
b092b471 JW |
140 | rtx floatdidf_libfunc; |
141 | rtx floattidf_libfunc; | |
142 | ||
143 | rtx floatsixf_libfunc; | |
144 | rtx floatdixf_libfunc; | |
145 | rtx floattixf_libfunc; | |
146 | ||
147 | rtx floatsitf_libfunc; | |
148 | rtx floatditf_libfunc; | |
149 | rtx floattitf_libfunc; | |
150 | ||
6bce1b78 RK |
151 | rtx fixsfsi_libfunc; |
152 | rtx fixsfdi_libfunc; | |
b092b471 JW |
153 | rtx fixsfti_libfunc; |
154 | ||
6bce1b78 RK |
155 | rtx fixdfsi_libfunc; |
156 | rtx fixdfdi_libfunc; | |
b092b471 JW |
157 | rtx fixdfti_libfunc; |
158 | ||
159 | rtx fixxfsi_libfunc; | |
160 | rtx fixxfdi_libfunc; | |
161 | rtx fixxfti_libfunc; | |
162 | ||
163 | rtx fixtfsi_libfunc; | |
164 | rtx fixtfdi_libfunc; | |
165 | rtx fixtfti_libfunc; | |
166 | ||
6bce1b78 RK |
167 | rtx fixunssfsi_libfunc; |
168 | rtx fixunssfdi_libfunc; | |
b092b471 JW |
169 | rtx fixunssfti_libfunc; |
170 | ||
6bce1b78 RK |
171 | rtx fixunsdfsi_libfunc; |
172 | rtx fixunsdfdi_libfunc; | |
b092b471 JW |
173 | rtx fixunsdfti_libfunc; |
174 | ||
175 | rtx fixunsxfsi_libfunc; | |
176 | rtx fixunsxfdi_libfunc; | |
177 | rtx fixunsxfti_libfunc; | |
178 | ||
179 | rtx fixunstfsi_libfunc; | |
180 | rtx fixunstfdi_libfunc; | |
181 | rtx fixunstfti_libfunc; | |
77c9c6c2 | 182 | |
b818abb0 | 183 | /* from emit-rtl.c */ |
139e5e08 | 184 | extern rtx gen_highpart (); |
b818abb0 | 185 | |
77c9c6c2 RK |
186 | /* Indexed by the rtx-code for a conditional (eg. EQ, LT,...) |
187 | gives the gen_function to make a branch to test that condition. */ | |
188 | ||
189 | rtxfun bcc_gen_fctn[NUM_RTX_CODE]; | |
190 | ||
191 | /* Indexed by the rtx-code for a conditional (eg. EQ, LT,...) | |
192 | gives the insn code to make a store-condition insn | |
193 | to test that condition. */ | |
194 | ||
195 | enum insn_code setcc_gen_code[NUM_RTX_CODE]; | |
196 | ||
197 | static void emit_float_lib_cmp (); | |
198 | \f | |
199 | /* Add a REG_EQUAL note to the last insn in SEQ. TARGET is being set to | |
200 | the result of operation CODE applied to OP0 (and OP1 if it is a binary | |
201 | operation). | |
202 | ||
203 | If the last insn does not set TARGET, don't do anything, but return 1. | |
204 | ||
205 | If a previous insn sets TARGET and TARGET is one of OP0 or OP1, | |
206 | don't add the REG_EQUAL note but return 0. Our caller can then try | |
207 | again, ensuring that TARGET is not one of the operands. */ | |
208 | ||
209 | static int | |
210 | add_equal_note (seq, target, code, op0, op1) | |
211 | rtx seq; | |
212 | rtx target; | |
213 | enum rtx_code code; | |
214 | rtx op0, op1; | |
215 | { | |
216 | rtx set; | |
217 | int i; | |
218 | rtx note; | |
219 | ||
220 | if ((GET_RTX_CLASS (code) != '1' && GET_RTX_CLASS (code) != '2' | |
221 | && GET_RTX_CLASS (code) != 'c' && GET_RTX_CLASS (code) != '<') | |
222 | || GET_CODE (seq) != SEQUENCE | |
223 | || (set = single_set (XVECEXP (seq, 0, XVECLEN (seq, 0) - 1))) == 0 | |
224 | || GET_CODE (target) == ZERO_EXTRACT | |
225 | || (! rtx_equal_p (SET_DEST (set), target) | |
226 | /* For a STRICT_LOW_PART, the REG_NOTE applies to what is inside the | |
227 | SUBREG. */ | |
228 | && (GET_CODE (SET_DEST (set)) != STRICT_LOW_PART | |
229 | || ! rtx_equal_p (SUBREG_REG (XEXP (SET_DEST (set), 0)), | |
230 | target)))) | |
231 | return 1; | |
232 | ||
233 | /* If TARGET is in OP0 or OP1, check if anything in SEQ sets TARGET | |
234 | besides the last insn. */ | |
235 | if (reg_overlap_mentioned_p (target, op0) | |
236 | || (op1 && reg_overlap_mentioned_p (target, op1))) | |
237 | for (i = XVECLEN (seq, 0) - 2; i >= 0; i--) | |
238 | if (reg_set_p (target, XVECEXP (seq, 0, i))) | |
239 | return 0; | |
240 | ||
241 | if (GET_RTX_CLASS (code) == '1') | |
242 | note = gen_rtx (code, GET_MODE (target), op0); | |
243 | else | |
244 | note = gen_rtx (code, GET_MODE (target), op0, op1); | |
245 | ||
246 | REG_NOTES (XVECEXP (seq, 0, XVECLEN (seq, 0) - 1)) | |
247 | = gen_rtx (EXPR_LIST, REG_EQUAL, note, | |
248 | REG_NOTES (XVECEXP (seq, 0, XVECLEN (seq, 0) - 1))); | |
249 | ||
250 | return 1; | |
251 | } | |
252 | \f | |
253 | /* Generate code to perform an operation specified by BINOPTAB | |
254 | on operands OP0 and OP1, with result having machine-mode MODE. | |
255 | ||
256 | UNSIGNEDP is for the case where we have to widen the operands | |
257 | to perform the operation. It says to use zero-extension. | |
258 | ||
259 | If TARGET is nonzero, the value | |
260 | is generated there, if it is convenient to do so. | |
261 | In all cases an rtx is returned for the locus of the value; | |
262 | this may or may not be TARGET. */ | |
263 | ||
264 | rtx | |
265 | expand_binop (mode, binoptab, op0, op1, target, unsignedp, methods) | |
266 | enum machine_mode mode; | |
267 | optab binoptab; | |
268 | rtx op0, op1; | |
269 | rtx target; | |
270 | int unsignedp; | |
271 | enum optab_methods methods; | |
272 | { | |
273 | enum mode_class class; | |
274 | enum machine_mode wider_mode; | |
77c9c6c2 RK |
275 | register rtx temp; |
276 | int commutative_op = 0; | |
277 | int shift_op = (binoptab->code == ASHIFT | |
278 | || binoptab->code == ASHIFTRT | |
279 | || binoptab->code == LSHIFT | |
280 | || binoptab->code == LSHIFTRT | |
281 | || binoptab->code == ROTATE | |
282 | || binoptab->code == ROTATERT); | |
283 | rtx last; | |
284 | ||
285 | class = GET_MODE_CLASS (mode); | |
286 | ||
287 | op0 = protect_from_queue (op0, 0); | |
288 | op1 = protect_from_queue (op1, 0); | |
289 | if (target) | |
290 | target = protect_from_queue (target, 1); | |
291 | ||
292 | if (flag_force_mem) | |
293 | { | |
294 | op0 = force_not_mem (op0); | |
295 | op1 = force_not_mem (op1); | |
296 | } | |
297 | ||
8aecce0a RK |
298 | /* If subtracting an integer constant, convert this into an addition of |
299 | the negated constant. */ | |
300 | ||
301 | if (binoptab == sub_optab && GET_CODE (op1) == CONST_INT) | |
302 | { | |
303 | op1 = negate_rtx (mode, op1); | |
304 | binoptab = add_optab; | |
305 | } | |
306 | ||
77c9c6c2 RK |
307 | /* If we are inside an appropriately-short loop and one operand is an |
308 | expensive constant, force it into a register. */ | |
aeedc93f RS |
309 | if (CONSTANT_P (op0) && preserve_subexpressions_p () |
310 | && rtx_cost (op0, binoptab->code) > 2) | |
77c9c6c2 RK |
311 | op0 = force_reg (mode, op0); |
312 | ||
aeedc93f RS |
313 | if (CONSTANT_P (op1) && preserve_subexpressions_p () |
314 | && rtx_cost (op1, binoptab->code) > 2) | |
34e56753 | 315 | op1 = force_reg (shift_op ? word_mode : mode, op1); |
77c9c6c2 | 316 | |
77c9c6c2 RK |
317 | /* Record where to delete back to if we backtrack. */ |
318 | last = get_last_insn (); | |
319 | ||
320 | /* If operation is commutative, | |
321 | try to make the first operand a register. | |
322 | Even better, try to make it the same as the target. | |
323 | Also try to make the last operand a constant. */ | |
324 | if (GET_RTX_CLASS (binoptab->code) == 'c' | |
325 | || binoptab == smul_widen_optab | |
326 | || binoptab == umul_widen_optab) | |
327 | { | |
328 | commutative_op = 1; | |
329 | ||
330 | if (((target == 0 || GET_CODE (target) == REG) | |
331 | ? ((GET_CODE (op1) == REG | |
332 | && GET_CODE (op0) != REG) | |
333 | || target == op1) | |
334 | : rtx_equal_p (op1, target)) | |
335 | || GET_CODE (op0) == CONST_INT) | |
336 | { | |
337 | temp = op1; | |
338 | op1 = op0; | |
339 | op0 = temp; | |
340 | } | |
341 | } | |
342 | ||
343 | /* If we can do it with a three-operand insn, do so. */ | |
344 | ||
345 | if (methods != OPTAB_MUST_WIDEN | |
346 | && binoptab->handlers[(int) mode].insn_code != CODE_FOR_nothing) | |
347 | { | |
348 | int icode = (int) binoptab->handlers[(int) mode].insn_code; | |
349 | enum machine_mode mode0 = insn_operand_mode[icode][1]; | |
350 | enum machine_mode mode1 = insn_operand_mode[icode][2]; | |
351 | rtx pat; | |
352 | rtx xop0 = op0, xop1 = op1; | |
353 | ||
354 | if (target) | |
355 | temp = target; | |
356 | else | |
357 | temp = gen_reg_rtx (mode); | |
358 | ||
359 | /* If it is a commutative operator and the modes would match | |
360 | if we would swap the operands, we can save the conversions. */ | |
361 | if (commutative_op) | |
362 | { | |
363 | if (GET_MODE (op0) != mode0 && GET_MODE (op1) != mode1 | |
364 | && GET_MODE (op0) == mode1 && GET_MODE (op1) == mode0) | |
365 | { | |
366 | register rtx tmp; | |
367 | ||
368 | tmp = op0; op0 = op1; op1 = tmp; | |
369 | tmp = xop0; xop0 = xop1; xop1 = tmp; | |
370 | } | |
371 | } | |
372 | ||
373 | /* In case the insn wants input operands in modes different from | |
374 | the result, convert the operands. */ | |
375 | ||
376 | if (GET_MODE (op0) != VOIDmode | |
377 | && GET_MODE (op0) != mode0) | |
378 | xop0 = convert_to_mode (mode0, xop0, unsignedp); | |
379 | ||
380 | if (GET_MODE (xop1) != VOIDmode | |
381 | && GET_MODE (xop1) != mode1) | |
382 | xop1 = convert_to_mode (mode1, xop1, unsignedp); | |
383 | ||
384 | /* Now, if insn's predicates don't allow our operands, put them into | |
385 | pseudo regs. */ | |
386 | ||
387 | if (! (*insn_operand_predicate[icode][1]) (xop0, mode0)) | |
388 | xop0 = copy_to_mode_reg (mode0, xop0); | |
389 | ||
390 | if (! (*insn_operand_predicate[icode][2]) (xop1, mode1)) | |
391 | xop1 = copy_to_mode_reg (mode1, xop1); | |
392 | ||
393 | if (! (*insn_operand_predicate[icode][0]) (temp, mode)) | |
394 | temp = gen_reg_rtx (mode); | |
395 | ||
396 | pat = GEN_FCN (icode) (temp, xop0, xop1); | |
397 | if (pat) | |
398 | { | |
399 | /* If PAT is a multi-insn sequence, try to add an appropriate | |
400 | REG_EQUAL note to it. If we can't because TEMP conflicts with an | |
401 | operand, call ourselves again, this time without a target. */ | |
402 | if (GET_CODE (pat) == SEQUENCE | |
403 | && ! add_equal_note (pat, temp, binoptab->code, xop0, xop1)) | |
404 | { | |
405 | delete_insns_since (last); | |
b1ec3c92 CH |
406 | return expand_binop (mode, binoptab, op0, op1, NULL_RTX, |
407 | unsignedp, methods); | |
77c9c6c2 RK |
408 | } |
409 | ||
410 | emit_insn (pat); | |
411 | return temp; | |
412 | } | |
413 | else | |
414 | delete_insns_since (last); | |
415 | } | |
416 | ||
5a5064dc RK |
417 | /* If this is a multiply, see if we can do a widening operation that |
418 | takes operands of this mode and makes a wider mode. */ | |
419 | ||
420 | if (binoptab == smul_optab && GET_MODE_WIDER_MODE (mode) != VOIDmode | |
421 | && (((unsignedp ? umul_widen_optab : smul_widen_optab) | |
422 | ->handlers[(int) GET_MODE_WIDER_MODE (mode)].insn_code) | |
423 | != CODE_FOR_nothing)) | |
424 | { | |
425 | temp = expand_binop (GET_MODE_WIDER_MODE (mode), | |
426 | unsignedp ? umul_widen_optab : smul_widen_optab, | |
427 | op0, op1, 0, unsignedp, OPTAB_DIRECT); | |
428 | ||
429 | if (GET_MODE_CLASS (mode) == MODE_INT) | |
430 | return gen_lowpart (mode, temp); | |
431 | else | |
432 | return convert_to_mode (mode, temp, unsignedp); | |
433 | } | |
434 | ||
9a856ec7 | 435 | /* Look for a wider mode of the same class for which we think we |
5a5064dc RK |
436 | can open-code the operation. Check for a widening multiply at the |
437 | wider mode as well. */ | |
9a856ec7 RK |
438 | |
439 | if ((class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT) | |
6f43c157 | 440 | && methods != OPTAB_DIRECT && methods != OPTAB_LIB) |
9a856ec7 RK |
441 | for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode; |
442 | wider_mode = GET_MODE_WIDER_MODE (wider_mode)) | |
443 | { | |
5a5064dc RK |
444 | if (binoptab->handlers[(int) wider_mode].insn_code != CODE_FOR_nothing |
445 | || (binoptab == smul_optab | |
446 | && GET_MODE_WIDER_MODE (wider_mode) != VOIDmode | |
447 | && (((unsignedp ? umul_widen_optab : smul_widen_optab) | |
448 | ->handlers[(int) GET_MODE_WIDER_MODE (wider_mode)].insn_code) | |
449 | != CODE_FOR_nothing))) | |
9a856ec7 RK |
450 | { |
451 | rtx xop0 = op0, xop1 = op1; | |
452 | int no_extend = 0; | |
453 | ||
454 | /* For certain integer operations, we need not actually extend | |
455 | the narrow operands, as long as we will truncate | |
4a969847 RK |
456 | the results to the same narrowness. Don't do this when |
457 | WIDER_MODE is wider than a word since a paradoxical SUBREG | |
458 | isn't valid for such modes. */ | |
9a856ec7 RK |
459 | |
460 | if ((binoptab == ior_optab || binoptab == and_optab | |
461 | || binoptab == xor_optab | |
462 | || binoptab == add_optab || binoptab == sub_optab | |
463 | || binoptab == smul_optab | |
464 | || binoptab == ashl_optab || binoptab == lshl_optab) | |
4a969847 RK |
465 | && class == MODE_INT |
466 | && GET_MODE_SIZE (wider_mode) <= UNITS_PER_WORD) | |
9a856ec7 RK |
467 | no_extend = 1; |
468 | ||
469 | /* If an operand is a constant integer, we might as well | |
470 | convert it since that is more efficient than using a SUBREG, | |
f3f391d7 RK |
471 | unlike the case for other operands. Similarly for |
472 | SUBREGs that were made due to promoted objects. */ | |
9a856ec7 | 473 | |
f3f391d7 RK |
474 | if (no_extend && GET_MODE (xop0) != VOIDmode |
475 | && ! (GET_CODE (xop0) == SUBREG | |
476 | && SUBREG_PROMOTED_VAR_P (xop0))) | |
9a856ec7 RK |
477 | xop0 = gen_rtx (SUBREG, wider_mode, |
478 | force_reg (GET_MODE (xop0), xop0), 0); | |
479 | else | |
480 | xop0 = convert_to_mode (wider_mode, xop0, unsignedp); | |
481 | ||
f3f391d7 RK |
482 | if (no_extend && GET_MODE (xop1) != VOIDmode |
483 | && ! (GET_CODE (xop1) == SUBREG | |
484 | && SUBREG_PROMOTED_VAR_P (xop1))) | |
9a856ec7 RK |
485 | xop1 = gen_rtx (SUBREG, wider_mode, |
486 | force_reg (GET_MODE (xop1), xop1), 0); | |
487 | else | |
488 | xop1 = convert_to_mode (wider_mode, xop1, unsignedp); | |
489 | ||
b1ec3c92 | 490 | temp = expand_binop (wider_mode, binoptab, xop0, xop1, NULL_RTX, |
9a856ec7 RK |
491 | unsignedp, OPTAB_DIRECT); |
492 | if (temp) | |
493 | { | |
494 | if (class != MODE_INT) | |
495 | { | |
496 | if (target == 0) | |
497 | target = gen_reg_rtx (mode); | |
498 | convert_move (target, temp, 0); | |
499 | return target; | |
500 | } | |
501 | else | |
502 | return gen_lowpart (mode, temp); | |
503 | } | |
504 | else | |
505 | delete_insns_since (last); | |
506 | } | |
507 | } | |
508 | ||
77c9c6c2 RK |
509 | /* These can be done a word at a time. */ |
510 | if ((binoptab == and_optab || binoptab == ior_optab || binoptab == xor_optab) | |
511 | && class == MODE_INT | |
512 | && GET_MODE_SIZE (mode) > UNITS_PER_WORD | |
34e56753 | 513 | && binoptab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing) |
77c9c6c2 RK |
514 | { |
515 | int i; | |
516 | rtx insns; | |
517 | rtx equiv_value; | |
518 | ||
519 | /* If TARGET is the same as one of the operands, the REG_EQUAL note | |
520 | won't be accurate, so use a new target. */ | |
521 | if (target == 0 || target == op0 || target == op1) | |
522 | target = gen_reg_rtx (mode); | |
523 | ||
524 | start_sequence (); | |
525 | ||
526 | /* Do the actual arithmetic. */ | |
527 | for (i = 0; i < GET_MODE_BITSIZE (mode) / BITS_PER_WORD; i++) | |
528 | { | |
529 | rtx target_piece = operand_subword (target, i, 1, mode); | |
34e56753 | 530 | rtx x = expand_binop (word_mode, binoptab, |
77c9c6c2 RK |
531 | operand_subword_force (op0, i, mode), |
532 | operand_subword_force (op1, i, mode), | |
533 | target_piece, unsignedp, methods); | |
534 | if (target_piece != x) | |
535 | emit_move_insn (target_piece, x); | |
536 | } | |
537 | ||
538 | insns = get_insns (); | |
539 | end_sequence (); | |
540 | ||
541 | if (binoptab->code != UNKNOWN) | |
542 | equiv_value = gen_rtx (binoptab->code, mode, op0, op1); | |
543 | else | |
544 | equiv_value = 0; | |
545 | ||
546 | emit_no_conflict_block (insns, target, op0, op1, equiv_value); | |
547 | return target; | |
548 | } | |
549 | ||
550 | /* These can be done a word at a time by propagating carries. */ | |
551 | if ((binoptab == add_optab || binoptab == sub_optab) | |
552 | && class == MODE_INT | |
553 | && GET_MODE_SIZE (mode) >= 2 * UNITS_PER_WORD | |
34e56753 | 554 | && binoptab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing) |
77c9c6c2 RK |
555 | { |
556 | int i; | |
34e56753 | 557 | rtx carry_tmp = gen_reg_rtx (word_mode); |
77c9c6c2 RK |
558 | optab otheroptab = binoptab == add_optab ? sub_optab : add_optab; |
559 | int nwords = GET_MODE_BITSIZE (mode) / BITS_PER_WORD; | |
560 | rtx carry_in, carry_out; | |
cee85023 | 561 | rtx xop0, xop1; |
77c9c6c2 RK |
562 | |
563 | /* We can handle either a 1 or -1 value for the carry. If STORE_FLAG | |
564 | value is one of those, use it. Otherwise, use 1 since it is the | |
565 | one easiest to get. */ | |
566 | #if STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1 | |
567 | int normalizep = STORE_FLAG_VALUE; | |
568 | #else | |
569 | int normalizep = 1; | |
570 | #endif | |
571 | ||
572 | /* Prepare the operands. */ | |
cee85023 RS |
573 | xop0 = force_reg (mode, op0); |
574 | xop1 = force_reg (mode, op1); | |
77c9c6c2 RK |
575 | |
576 | if (target == 0 || GET_CODE (target) != REG | |
cee85023 | 577 | || target == xop0 || target == xop1) |
77c9c6c2 RK |
578 | target = gen_reg_rtx (mode); |
579 | ||
580 | /* Do the actual arithmetic. */ | |
581 | for (i = 0; i < nwords; i++) | |
582 | { | |
583 | int index = (WORDS_BIG_ENDIAN ? nwords - i - 1 : i); | |
584 | rtx target_piece = operand_subword (target, index, 1, mode); | |
cee85023 RS |
585 | rtx op0_piece = operand_subword_force (xop0, index, mode); |
586 | rtx op1_piece = operand_subword_force (xop1, index, mode); | |
77c9c6c2 RK |
587 | rtx x; |
588 | ||
589 | /* Main add/subtract of the input operands. */ | |
34e56753 | 590 | x = expand_binop (word_mode, binoptab, |
77c9c6c2 RK |
591 | op0_piece, op1_piece, |
592 | target_piece, unsignedp, methods); | |
593 | if (x == 0) | |
594 | break; | |
595 | ||
596 | if (i + 1 < nwords) | |
597 | { | |
598 | /* Store carry from main add/subtract. */ | |
34e56753 | 599 | carry_out = gen_reg_rtx (word_mode); |
77c9c6c2 RK |
600 | carry_out = emit_store_flag (carry_out, |
601 | binoptab == add_optab ? LTU : GTU, | |
602 | x, op0_piece, | |
34e56753 | 603 | word_mode, 1, normalizep); |
77c9c6c2 RK |
604 | if (!carry_out) |
605 | break; | |
606 | } | |
607 | ||
608 | if (i > 0) | |
609 | { | |
610 | /* Add/subtract previous carry to main result. */ | |
34e56753 | 611 | x = expand_binop (word_mode, |
77c9c6c2 RK |
612 | normalizep == 1 ? binoptab : otheroptab, |
613 | x, carry_in, | |
614 | target_piece, 1, methods); | |
615 | if (target_piece != x) | |
616 | emit_move_insn (target_piece, x); | |
617 | ||
618 | if (i + 1 < nwords) | |
619 | { | |
620 | /* THIS CODE HAS NOT BEEN TESTED. */ | |
621 | /* Get out carry from adding/subtracting carry in. */ | |
622 | carry_tmp = emit_store_flag (carry_tmp, | |
623 | binoptab == add_optab | |
624 | ? LTU : GTU, | |
625 | x, carry_in, | |
34e56753 | 626 | word_mode, 1, normalizep); |
77c9c6c2 | 627 | /* Logical-ior the two poss. carry together. */ |
34e56753 | 628 | carry_out = expand_binop (word_mode, ior_optab, |
77c9c6c2 RK |
629 | carry_out, carry_tmp, |
630 | carry_out, 0, methods); | |
631 | if (!carry_out) | |
632 | break; | |
633 | } | |
634 | } | |
635 | ||
636 | carry_in = carry_out; | |
637 | } | |
638 | ||
639 | if (i == GET_MODE_BITSIZE (mode) / BITS_PER_WORD) | |
640 | { | |
641 | rtx temp; | |
642 | ||
643 | temp = emit_move_insn (target, target); | |
644 | REG_NOTES (temp) = gen_rtx (EXPR_LIST, REG_EQUAL, | |
cee85023 | 645 | gen_rtx (binoptab->code, mode, xop0, xop1), |
77c9c6c2 RK |
646 | REG_NOTES (temp)); |
647 | return target; | |
648 | } | |
649 | else | |
650 | delete_insns_since (last); | |
651 | } | |
652 | ||
653 | /* If we want to multiply two two-word values and have normal and widening | |
654 | multiplies of single-word values, we can do this with three smaller | |
655 | multiplications. Note that we do not make a REG_NO_CONFLICT block here | |
656 | because we are not operating on one word at a time. | |
657 | ||
658 | The multiplication proceeds as follows: | |
34e56753 RS |
659 | _______________________ |
660 | [__op0_high_|__op0_low__] | |
661 | _______________________ | |
662 | * [__op1_high_|__op1_low__] | |
663 | _______________________________________________ | |
664 | _______________________ | |
665 | (1) [__op0_low__*__op1_low__] | |
666 | _______________________ | |
667 | (2a) [__op0_low__*__op1_high_] | |
668 | _______________________ | |
669 | (2b) [__op0_high_*__op1_low__] | |
670 | _______________________ | |
671 | (3) [__op0_high_*__op1_high_] | |
77c9c6c2 RK |
672 | |
673 | ||
674 | This gives a 4-word result. Since we are only interested in the | |
675 | lower 2 words, partial result (3) and the upper words of (2a) and | |
676 | (2b) don't need to be calculated. Hence (2a) and (2b) can be | |
677 | calculated using non-widening multiplication. | |
678 | ||
679 | (1), however, needs to be calculated with an unsigned widening | |
680 | multiplication. If this operation is not directly supported we | |
681 | try using a signed widening multiplication and adjust the result. | |
682 | This adjustment works as follows: | |
683 | ||
684 | If both operands are positive then no adjustment is needed. | |
685 | ||
686 | If the operands have different signs, for example op0_low < 0 and | |
687 | op1_low >= 0, the instruction treats the most significant bit of | |
688 | op0_low as a sign bit instead of a bit with significance | |
689 | 2**(BITS_PER_WORD-1), i.e. the instruction multiplies op1_low | |
690 | with 2**BITS_PER_WORD - op0_low, and two's complements the | |
691 | result. Conclusion: We need to add op1_low * 2**BITS_PER_WORD to | |
692 | the result. | |
693 | ||
694 | Similarly, if both operands are negative, we need to add | |
695 | (op0_low + op1_low) * 2**BITS_PER_WORD. | |
696 | ||
697 | We use a trick to adjust quickly. We logically shift op0_low right | |
698 | (op1_low) BITS_PER_WORD-1 steps to get 0 or 1, and add this to | |
699 | op0_high (op1_high) before it is used to calculate 2b (2a). If no | |
700 | logical shift exists, we do an arithmetic right shift and subtract | |
701 | the 0 or -1. */ | |
702 | ||
703 | if (binoptab == smul_optab | |
704 | && class == MODE_INT | |
705 | && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD | |
34e56753 RS |
706 | && smul_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing |
707 | && add_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing | |
77c9c6c2 RK |
708 | && ((umul_widen_optab->handlers[(int) mode].insn_code |
709 | != CODE_FOR_nothing) | |
710 | || (smul_widen_optab->handlers[(int) mode].insn_code | |
711 | != CODE_FOR_nothing))) | |
712 | { | |
713 | int low = (WORDS_BIG_ENDIAN ? 1 : 0); | |
714 | int high = (WORDS_BIG_ENDIAN ? 0 : 1); | |
715 | rtx op0_high = operand_subword_force (op0, high, mode); | |
716 | rtx op0_low = operand_subword_force (op0, low, mode); | |
717 | rtx op1_high = operand_subword_force (op1, high, mode); | |
718 | rtx op1_low = operand_subword_force (op1, low, mode); | |
719 | rtx product = 0; | |
720 | rtx op0_xhigh; | |
721 | rtx op1_xhigh; | |
722 | ||
723 | /* If the target is the same as one of the inputs, don't use it. This | |
724 | prevents problems with the REG_EQUAL note. */ | |
725 | if (target == op0 || target == op1) | |
726 | target = 0; | |
727 | ||
728 | /* Multiply the two lower words to get a double-word product. | |
729 | If unsigned widening multiplication is available, use that; | |
730 | otherwise use the signed form and compensate. */ | |
731 | ||
732 | if (umul_widen_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing) | |
733 | { | |
734 | product = expand_binop (mode, umul_widen_optab, op0_low, op1_low, | |
735 | target, 1, OPTAB_DIRECT); | |
736 | ||
737 | /* If we didn't succeed, delete everything we did so far. */ | |
738 | if (product == 0) | |
739 | delete_insns_since (last); | |
740 | else | |
741 | op0_xhigh = op0_high, op1_xhigh = op1_high; | |
742 | } | |
743 | ||
744 | if (product == 0 | |
745 | && smul_widen_optab->handlers[(int) mode].insn_code | |
746 | != CODE_FOR_nothing) | |
747 | { | |
b1ec3c92 | 748 | rtx wordm1 = GEN_INT (BITS_PER_WORD - 1); |
77c9c6c2 RK |
749 | product = expand_binop (mode, smul_widen_optab, op0_low, op1_low, |
750 | target, 1, OPTAB_DIRECT); | |
34e56753 | 751 | op0_xhigh = expand_binop (word_mode, lshr_optab, op0_low, wordm1, |
b1ec3c92 | 752 | NULL_RTX, 1, OPTAB_DIRECT); |
77c9c6c2 | 753 | if (op0_xhigh) |
34e56753 RS |
754 | op0_xhigh = expand_binop (word_mode, add_optab, op0_high, |
755 | op0_xhigh, op0_xhigh, 0, OPTAB_DIRECT); | |
77c9c6c2 RK |
756 | else |
757 | { | |
34e56753 | 758 | op0_xhigh = expand_binop (word_mode, ashr_optab, op0_low, wordm1, |
b1ec3c92 | 759 | NULL_RTX, 0, OPTAB_DIRECT); |
77c9c6c2 | 760 | if (op0_xhigh) |
34e56753 | 761 | op0_xhigh = expand_binop (word_mode, sub_optab, op0_high, |
77c9c6c2 RK |
762 | op0_xhigh, op0_xhigh, 0, |
763 | OPTAB_DIRECT); | |
764 | } | |
765 | ||
34e56753 | 766 | op1_xhigh = expand_binop (word_mode, lshr_optab, op1_low, wordm1, |
b1ec3c92 | 767 | NULL_RTX, 1, OPTAB_DIRECT); |
77c9c6c2 | 768 | if (op1_xhigh) |
34e56753 RS |
769 | op1_xhigh = expand_binop (word_mode, add_optab, op1_high, |
770 | op1_xhigh, op1_xhigh, 0, OPTAB_DIRECT); | |
77c9c6c2 RK |
771 | else |
772 | { | |
34e56753 | 773 | op1_xhigh = expand_binop (word_mode, ashr_optab, op1_low, wordm1, |
b1ec3c92 | 774 | NULL_RTX, 0, OPTAB_DIRECT); |
77c9c6c2 | 775 | if (op1_xhigh) |
34e56753 | 776 | op1_xhigh = expand_binop (word_mode, sub_optab, op1_high, |
77c9c6c2 RK |
777 | op1_xhigh, op1_xhigh, 0, |
778 | OPTAB_DIRECT); | |
779 | } | |
780 | } | |
781 | ||
782 | /* If we have been able to directly compute the product of the | |
783 | low-order words of the operands and perform any required adjustments | |
784 | of the operands, we proceed by trying two more multiplications | |
785 | and then computing the appropriate sum. | |
786 | ||
787 | We have checked above that the required addition is provided. | |
788 | Full-word addition will normally always succeed, especially if | |
789 | it is provided at all, so we don't worry about its failure. The | |
790 | multiplication may well fail, however, so we do handle that. */ | |
791 | ||
792 | if (product && op0_xhigh && op1_xhigh) | |
793 | { | |
794 | rtx product_piece; | |
795 | rtx product_high = operand_subword (product, high, 1, mode); | |
b1ec3c92 CH |
796 | rtx temp = expand_binop (word_mode, binoptab, op0_low, op1_xhigh, |
797 | NULL_RTX, 0, OPTAB_DIRECT); | |
77c9c6c2 RK |
798 | |
799 | if (temp) | |
800 | { | |
34e56753 | 801 | product_piece = expand_binop (word_mode, add_optab, temp, |
77c9c6c2 RK |
802 | product_high, product_high, |
803 | 0, OPTAB_LIB_WIDEN); | |
804 | if (product_piece != product_high) | |
805 | emit_move_insn (product_high, product_piece); | |
806 | ||
b1ec3c92 CH |
807 | temp = expand_binop (word_mode, binoptab, op1_low, op0_xhigh, |
808 | NULL_RTX, 0, OPTAB_DIRECT); | |
77c9c6c2 | 809 | |
34e56753 | 810 | product_piece = expand_binop (word_mode, add_optab, temp, |
77c9c6c2 RK |
811 | product_high, product_high, |
812 | 0, OPTAB_LIB_WIDEN); | |
813 | if (product_piece != product_high) | |
814 | emit_move_insn (product_high, product_piece); | |
815 | ||
816 | temp = emit_move_insn (product, product); | |
817 | REG_NOTES (temp) = gen_rtx (EXPR_LIST, REG_EQUAL, | |
818 | gen_rtx (MULT, mode, op0, op1), | |
819 | REG_NOTES (temp)); | |
820 | ||
821 | return product; | |
822 | } | |
823 | } | |
824 | ||
825 | /* If we get here, we couldn't do it for some reason even though we | |
826 | originally thought we could. Delete anything we've emitted in | |
827 | trying to do it. */ | |
828 | ||
829 | delete_insns_since (last); | |
830 | } | |
831 | ||
b818abb0 RS |
832 | /* We need to open-code the complex type operations: '+, -, * and /' */ |
833 | ||
834 | /* At this point we allow operations between two similar complex | |
835 | numbers, and also if one of the operands is not a complex number | |
836 | but rather of MODE_FLOAT or MODE_INT. However, the caller | |
837 | must make sure that the MODE of the non-complex operand matches | |
6f43c157 | 838 | the SUBMODE of the complex operand. */ |
b818abb0 RS |
839 | |
840 | if (class == MODE_COMPLEX_FLOAT || class == MODE_COMPLEX_INT) | |
6f43c157 RS |
841 | { |
842 | rtx real0 = (rtx) 0; | |
b818abb0 RS |
843 | rtx imag0 = (rtx) 0; |
844 | rtx real1 = (rtx) 0; | |
845 | rtx imag1 = (rtx) 0; | |
846 | rtx realr; | |
847 | rtx imagr; | |
848 | rtx res; | |
849 | rtx seq; | |
850 | rtx equiv_value; | |
851 | ||
852 | /* Find the correct mode for the real and imaginary parts */ | |
6f43c157 RS |
853 | enum machine_mode submode |
854 | = mode_for_size (GET_MODE_UNIT_SIZE (mode) * BITS_PER_UNIT, | |
855 | class == MODE_COMPLEX_INT ? MODE_INT : MODE_FLOAT, | |
856 | 0); | |
b818abb0 RS |
857 | |
858 | if (submode == BLKmode) | |
859 | abort (); | |
860 | ||
861 | if (! target) | |
862 | target = gen_reg_rtx (mode); | |
863 | ||
864 | start_sequence (); | |
865 | ||
decdfa82 RS |
866 | realr = gen_realpart (submode, target); |
867 | imagr = gen_imagpart (submode, target); | |
b818abb0 RS |
868 | |
869 | if (GET_MODE (op0) == mode) | |
870 | { | |
decdfa82 RS |
871 | real0 = gen_realpart (submode, op0); |
872 | imag0 = gen_imagpart (submode, op0); | |
b818abb0 RS |
873 | } |
874 | else | |
875 | real0 = op0; | |
876 | ||
877 | if (GET_MODE (op1) == mode) | |
878 | { | |
decdfa82 RS |
879 | real1 = gen_realpart (submode, op1); |
880 | imag1 = gen_imagpart (submode, op1); | |
b818abb0 RS |
881 | } |
882 | else | |
883 | real1 = op1; | |
884 | ||
885 | if (! real0 || ! real1 || ! (imag0 || imag1)) | |
886 | abort (); | |
887 | ||
6f43c157 RS |
888 | switch (binoptab->code) |
889 | { | |
890 | case PLUS: | |
891 | case MINUS: | |
b818abb0 RS |
892 | res = expand_binop (submode, binoptab, real0, real1, |
893 | realr, unsignedp, methods); | |
894 | if (res != realr) | |
895 | emit_move_insn (realr, res); | |
896 | ||
897 | if (imag0 && imag1) | |
898 | res = expand_binop (submode, binoptab, imag0, imag1, | |
899 | imagr, unsignedp, methods); | |
900 | else if (imag0) | |
901 | res = imag0; | |
902 | else if (binoptab->code == MINUS) | |
903 | res = expand_unop (submode, neg_optab, imag1, imagr, unsignedp); | |
904 | else | |
905 | res = imag1; | |
906 | ||
907 | if (res != imagr) | |
908 | emit_move_insn (imagr, res); | |
909 | break; | |
6f43c157 RS |
910 | |
911 | case MULT: | |
b818abb0 RS |
912 | /* (a+ib) * (c+id) = (ac-bd) + i(ad+cb) */ |
913 | ||
914 | res = expand_binop (submode, binoptab, real0, real1, | |
915 | realr, unsignedp, methods); | |
916 | ||
917 | if (imag0 && imag1) | |
918 | { | |
919 | rtx temp = | |
920 | expand_binop (submode, sub_optab, res, | |
921 | expand_binop (submode, binoptab, imag0, imag1, | |
922 | 0, unsignedp, methods), | |
923 | realr, unsignedp, methods); | |
924 | ||
925 | if (temp != realr) | |
926 | emit_move_insn (realr, temp); | |
927 | ||
928 | res = expand_binop (submode, add_optab, | |
929 | expand_binop (submode, binoptab, | |
930 | real0, imag1, | |
931 | 0, unsignedp, methods), | |
932 | expand_binop (submode, binoptab, | |
933 | real1, imag0, | |
934 | 0, unsignedp, methods), | |
935 | imagr, unsignedp, methods); | |
936 | if (res != imagr) | |
937 | emit_move_insn (imagr, res); | |
938 | } | |
939 | else | |
940 | { | |
941 | if (res != realr) | |
942 | emit_move_insn (realr, res); | |
943 | ||
944 | if (imag0) | |
945 | res = expand_binop (submode, binoptab, | |
946 | real1, imag0, imagr, unsignedp, methods); | |
947 | else | |
948 | res = expand_binop (submode, binoptab, | |
949 | real0, imag1, imagr, unsignedp, methods); | |
950 | if (res != imagr) | |
951 | emit_move_insn (imagr, res); | |
952 | } | |
953 | break; | |
6f43c157 RS |
954 | |
955 | case DIV: | |
b818abb0 RS |
956 | /* (c+id)/(a+ib) == ((c+id)*(a-ib))/(a*a+b*b) */ |
957 | ||
958 | if (! imag1) | |
6f43c157 RS |
959 | { |
960 | /* Simply divide the real and imaginary parts by `a' */ | |
b818abb0 RS |
961 | res = expand_binop (submode, binoptab, real0, real1, |
962 | realr, unsignedp, methods); | |
963 | if (res != realr) | |
964 | emit_move_insn (realr, res); | |
965 | ||
966 | res = expand_binop (submode, binoptab, imag0, real1, | |
967 | imagr, unsignedp, methods); | |
968 | if (res != imagr) | |
969 | emit_move_insn (imagr, res); | |
970 | } | |
6f43c157 RS |
971 | else /* Divider is of complex type */ |
972 | { /* X/(a+ib) */ | |
b818abb0 RS |
973 | |
974 | rtx divider; | |
975 | rtx real_t; | |
976 | rtx imag_t; | |
977 | ||
978 | optab mulopt = unsignedp ? umul_widen_optab : smul_optab; | |
979 | ||
980 | /* Divider: a*a + b*b */ | |
981 | divider = expand_binop (submode, add_optab, | |
6f43c157 RS |
982 | expand_binop (submode, mulopt, |
983 | real1, real1, | |
984 | 0, unsignedp, methods), | |
985 | expand_binop (submode, mulopt, | |
986 | imag1, imag1, | |
987 | 0, unsignedp, methods), | |
988 | 0, unsignedp, methods); | |
989 | ||
990 | if (! imag0) /* ((c)(a-ib))/divider */ | |
b818abb0 RS |
991 | { |
992 | /* Calculate the divident */ | |
993 | real_t = expand_binop (submode, mulopt, real0, real1, | |
994 | 0, unsignedp, methods); | |
995 | ||
6f43c157 RS |
996 | imag_t |
997 | = expand_unop (submode, neg_optab, | |
998 | expand_binop (submode, mulopt, real0, imag1, | |
999 | 0, unsignedp, methods), | |
1000 | 0, unsignedp); | |
b818abb0 | 1001 | } |
6f43c157 | 1002 | else /* ((c+id)(a-ib))/divider */ |
b818abb0 RS |
1003 | { |
1004 | /* Calculate the divident */ | |
1005 | real_t = expand_binop (submode, add_optab, | |
1006 | expand_binop (submode, mulopt, | |
1007 | real0, real1, | |
1008 | 0, unsignedp, methods), | |
1009 | expand_binop (submode, mulopt, | |
1010 | imag0, imag1, | |
1011 | 0, unsignedp, methods), | |
1012 | 0, unsignedp, methods); | |
1013 | ||
1014 | imag_t = expand_binop (submode, sub_optab, | |
1015 | expand_binop (submode, mulopt, | |
1016 | real0, imag1, | |
1017 | 0, unsignedp, methods), | |
1018 | expand_binop (submode, mulopt, | |
1019 | real1, imag0, | |
1020 | 0, unsignedp, methods), | |
1021 | 0, unsignedp, methods); | |
1022 | ||
1023 | } | |
1024 | ||
1025 | res = expand_binop (submode, binoptab, real_t, divider, | |
1026 | realr, unsignedp, methods); | |
1027 | if (res != realr) | |
1028 | emit_move_insn (realr, res); | |
1029 | ||
1030 | res = expand_binop (submode, binoptab, imag_t, divider, | |
1031 | imagr, unsignedp, methods); | |
1032 | if (res != imagr) | |
1033 | emit_move_insn (imagr, res); | |
1034 | } | |
1035 | break; | |
1036 | ||
1037 | default: | |
1038 | abort (); | |
1039 | } | |
1040 | ||
c15886da | 1041 | seq = get_insns (); |
b818abb0 RS |
1042 | end_sequence (); |
1043 | ||
1044 | if (binoptab->code != UNKNOWN) | |
1045 | equiv_value = gen_rtx (binoptab->code, mode, op0, op1); | |
1046 | else | |
1047 | equiv_value = 0; | |
1048 | ||
1049 | emit_no_conflict_block (seq, target, op0, op1, equiv_value); | |
1050 | ||
1051 | return target; | |
1052 | } | |
b818abb0 | 1053 | |
77c9c6c2 RK |
1054 | /* It can't be open-coded in this mode. |
1055 | Use a library call if one is available and caller says that's ok. */ | |
1056 | ||
1057 | if (binoptab->handlers[(int) mode].libfunc | |
1058 | && (methods == OPTAB_LIB || methods == OPTAB_LIB_WIDEN)) | |
1059 | { | |
1060 | rtx insns; | |
1061 | rtx funexp = binoptab->handlers[(int) mode].libfunc; | |
0bbb7f4d RS |
1062 | rtx op1x = op1; |
1063 | enum machine_mode op1_mode = mode; | |
77c9c6c2 RK |
1064 | |
1065 | start_sequence (); | |
1066 | ||
0bbb7f4d RS |
1067 | if (shift_op) |
1068 | { | |
1069 | op1_mode = word_mode; | |
1070 | /* Specify unsigned here, | |
1071 | since negative shift counts are meaningless. */ | |
1072 | op1x = convert_to_mode (word_mode, op1, 1); | |
1073 | } | |
1074 | ||
77c9c6c2 RK |
1075 | /* Pass 1 for NO_QUEUE so we don't lose any increments |
1076 | if the libcall is cse'd or moved. */ | |
1077 | emit_library_call (binoptab->handlers[(int) mode].libfunc, | |
0bbb7f4d | 1078 | 1, mode, 2, op0, mode, op1x, op1_mode); |
77c9c6c2 RK |
1079 | |
1080 | insns = get_insns (); | |
1081 | end_sequence (); | |
1082 | ||
1083 | target = gen_reg_rtx (mode); | |
1084 | emit_libcall_block (insns, target, hard_libcall_value (mode), | |
1085 | gen_rtx (binoptab->code, mode, op0, op1)); | |
1086 | ||
1087 | return target; | |
1088 | } | |
1089 | ||
1090 | delete_insns_since (last); | |
1091 | ||
1092 | /* It can't be done in this mode. Can we do it in a wider mode? */ | |
1093 | ||
1094 | if (! (methods == OPTAB_WIDEN || methods == OPTAB_LIB_WIDEN | |
1095 | || methods == OPTAB_MUST_WIDEN)) | |
1096 | return 0; /* Caller says, don't even try. */ | |
1097 | ||
1098 | /* Compute the value of METHODS to pass to recursive calls. | |
1099 | Don't allow widening to be tried recursively. */ | |
1100 | ||
1101 | methods = (methods == OPTAB_LIB_WIDEN ? OPTAB_LIB : OPTAB_DIRECT); | |
1102 | ||
34e56753 RS |
1103 | /* Look for a wider mode of the same class for which it appears we can do |
1104 | the operation. */ | |
77c9c6c2 RK |
1105 | |
1106 | if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT) | |
1107 | { | |
34e56753 | 1108 | for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode; |
77c9c6c2 RK |
1109 | wider_mode = GET_MODE_WIDER_MODE (wider_mode)) |
1110 | { | |
1111 | if ((binoptab->handlers[(int) wider_mode].insn_code | |
1112 | != CODE_FOR_nothing) | |
1113 | || (methods == OPTAB_LIB | |
1114 | && binoptab->handlers[(int) wider_mode].libfunc)) | |
1115 | { | |
1116 | rtx xop0 = op0, xop1 = op1; | |
1117 | int no_extend = 0; | |
1118 | ||
34e56753 | 1119 | /* For certain integer operations, we need not actually extend |
77c9c6c2 | 1120 | the narrow operands, as long as we will truncate |
4a969847 RK |
1121 | the results to the same narrowness. Don't do this when |
1122 | WIDER_MODE is wider than a word since a paradoxical SUBREG | |
1123 | isn't valid for such modes. */ | |
77c9c6c2 | 1124 | |
34e56753 RS |
1125 | if ((binoptab == ior_optab || binoptab == and_optab |
1126 | || binoptab == xor_optab | |
1127 | || binoptab == add_optab || binoptab == sub_optab | |
1128 | || binoptab == smul_optab | |
1129 | || binoptab == ashl_optab || binoptab == lshl_optab) | |
4a969847 RK |
1130 | && class == MODE_INT |
1131 | && GET_MODE_SIZE (wider_mode) <= UNITS_PER_WORD) | |
77c9c6c2 RK |
1132 | no_extend = 1; |
1133 | ||
34e56753 RS |
1134 | /* If an operand is a constant integer, we might as well |
1135 | convert it since that is more efficient than using a SUBREG, | |
f3f391d7 RK |
1136 | unlike the case for other operands. Similarly for |
1137 | SUBREGs that were made due to promoted objects.*/ | |
34e56753 | 1138 | |
f3f391d7 RK |
1139 | if (no_extend && GET_MODE (xop0) != VOIDmode |
1140 | && ! (GET_CODE (xop0) == SUBREG | |
1141 | && SUBREG_PROMOTED_VAR_P (xop0))) | |
34e56753 RS |
1142 | xop0 = gen_rtx (SUBREG, wider_mode, |
1143 | force_reg (GET_MODE (xop0), xop0), 0); | |
1144 | else | |
1145 | xop0 = convert_to_mode (wider_mode, xop0, unsignedp); | |
1146 | ||
f3f391d7 RK |
1147 | if (no_extend && GET_MODE (xop1) != VOIDmode |
1148 | && ! (GET_CODE (xop1) == SUBREG | |
1149 | && SUBREG_PROMOTED_VAR_P (xop1))) | |
34e56753 RS |
1150 | xop1 = gen_rtx (SUBREG, wider_mode, |
1151 | force_reg (GET_MODE (xop1), xop1), 0); | |
1152 | else | |
1153 | xop1 = convert_to_mode (wider_mode, xop1, unsignedp); | |
77c9c6c2 | 1154 | |
b1ec3c92 | 1155 | temp = expand_binop (wider_mode, binoptab, xop0, xop1, NULL_RTX, |
77c9c6c2 RK |
1156 | unsignedp, methods); |
1157 | if (temp) | |
1158 | { | |
34e56753 | 1159 | if (class != MODE_INT) |
77c9c6c2 RK |
1160 | { |
1161 | if (target == 0) | |
1162 | target = gen_reg_rtx (mode); | |
1163 | convert_move (target, temp, 0); | |
1164 | return target; | |
1165 | } | |
1166 | else | |
1167 | return gen_lowpart (mode, temp); | |
1168 | } | |
1169 | else | |
1170 | delete_insns_since (last); | |
1171 | } | |
1172 | } | |
1173 | } | |
1174 | ||
1175 | return 0; | |
1176 | } | |
1177 | \f | |
1178 | /* Expand a binary operator which has both signed and unsigned forms. | |
1179 | UOPTAB is the optab for unsigned operations, and SOPTAB is for | |
1180 | signed operations. | |
1181 | ||
1182 | If we widen unsigned operands, we may use a signed wider operation instead | |
1183 | of an unsigned wider operation, since the result would be the same. */ | |
1184 | ||
1185 | rtx | |
1186 | sign_expand_binop (mode, uoptab, soptab, op0, op1, target, unsignedp, methods) | |
1187 | enum machine_mode mode; | |
1188 | optab uoptab, soptab; | |
1189 | rtx op0, op1, target; | |
1190 | int unsignedp; | |
1191 | enum optab_methods methods; | |
1192 | { | |
1193 | register rtx temp; | |
1194 | optab direct_optab = unsignedp ? uoptab : soptab; | |
1195 | struct optab wide_soptab; | |
1196 | ||
1197 | /* Do it without widening, if possible. */ | |
1198 | temp = expand_binop (mode, direct_optab, op0, op1, target, | |
1199 | unsignedp, OPTAB_DIRECT); | |
1200 | if (temp || methods == OPTAB_DIRECT) | |
1201 | return temp; | |
1202 | ||
1203 | /* Try widening to a signed int. Make a fake signed optab that | |
1204 | hides any signed insn for direct use. */ | |
1205 | wide_soptab = *soptab; | |
1206 | wide_soptab.handlers[(int) mode].insn_code = CODE_FOR_nothing; | |
1207 | wide_soptab.handlers[(int) mode].libfunc = 0; | |
1208 | ||
1209 | temp = expand_binop (mode, &wide_soptab, op0, op1, target, | |
1210 | unsignedp, OPTAB_WIDEN); | |
1211 | ||
1212 | /* For unsigned operands, try widening to an unsigned int. */ | |
1213 | if (temp == 0 && unsignedp) | |
1214 | temp = expand_binop (mode, uoptab, op0, op1, target, | |
1215 | unsignedp, OPTAB_WIDEN); | |
1216 | if (temp || methods == OPTAB_WIDEN) | |
1217 | return temp; | |
1218 | ||
1219 | /* Use the right width lib call if that exists. */ | |
1220 | temp = expand_binop (mode, direct_optab, op0, op1, target, unsignedp, OPTAB_LIB); | |
1221 | if (temp || methods == OPTAB_LIB) | |
1222 | return temp; | |
1223 | ||
1224 | /* Must widen and use a lib call, use either signed or unsigned. */ | |
1225 | temp = expand_binop (mode, &wide_soptab, op0, op1, target, | |
1226 | unsignedp, methods); | |
1227 | if (temp != 0) | |
1228 | return temp; | |
1229 | if (unsignedp) | |
1230 | return expand_binop (mode, uoptab, op0, op1, target, | |
1231 | unsignedp, methods); | |
1232 | return 0; | |
1233 | } | |
1234 | \f | |
1235 | /* Generate code to perform an operation specified by BINOPTAB | |
1236 | on operands OP0 and OP1, with two results to TARG1 and TARG2. | |
1237 | We assume that the order of the operands for the instruction | |
1238 | is TARG0, OP0, OP1, TARG1, which would fit a pattern like | |
1239 | [(set TARG0 (operate OP0 OP1)) (set TARG1 (operate ...))]. | |
1240 | ||
1241 | Either TARG0 or TARG1 may be zero, but what that means is that | |
1242 | that result is not actually wanted. We will generate it into | |
1243 | a dummy pseudo-reg and discard it. They may not both be zero. | |
1244 | ||
1245 | Returns 1 if this operation can be performed; 0 if not. */ | |
1246 | ||
1247 | int | |
1248 | expand_twoval_binop (binoptab, op0, op1, targ0, targ1, unsignedp) | |
1249 | optab binoptab; | |
1250 | rtx op0, op1; | |
1251 | rtx targ0, targ1; | |
1252 | int unsignedp; | |
1253 | { | |
1254 | enum machine_mode mode = GET_MODE (targ0 ? targ0 : targ1); | |
1255 | enum mode_class class; | |
1256 | enum machine_mode wider_mode; | |
1257 | rtx last; | |
1258 | ||
1259 | class = GET_MODE_CLASS (mode); | |
1260 | ||
1261 | op0 = protect_from_queue (op0, 0); | |
1262 | op1 = protect_from_queue (op1, 0); | |
1263 | ||
1264 | if (flag_force_mem) | |
1265 | { | |
1266 | op0 = force_not_mem (op0); | |
1267 | op1 = force_not_mem (op1); | |
1268 | } | |
1269 | ||
1270 | /* If we are inside an appropriately-short loop and one operand is an | |
1271 | expensive constant, force it into a register. */ | |
aeedc93f RS |
1272 | if (CONSTANT_P (op0) && preserve_subexpressions_p () |
1273 | && rtx_cost (op0, binoptab->code) > 2) | |
77c9c6c2 RK |
1274 | op0 = force_reg (mode, op0); |
1275 | ||
aeedc93f RS |
1276 | if (CONSTANT_P (op1) && preserve_subexpressions_p () |
1277 | && rtx_cost (op1, binoptab->code) > 2) | |
77c9c6c2 RK |
1278 | op1 = force_reg (mode, op1); |
1279 | ||
1280 | if (targ0) | |
1281 | targ0 = protect_from_queue (targ0, 1); | |
1282 | else | |
1283 | targ0 = gen_reg_rtx (mode); | |
1284 | if (targ1) | |
1285 | targ1 = protect_from_queue (targ1, 1); | |
1286 | else | |
1287 | targ1 = gen_reg_rtx (mode); | |
1288 | ||
1289 | /* Record where to go back to if we fail. */ | |
1290 | last = get_last_insn (); | |
1291 | ||
1292 | if (binoptab->handlers[(int) mode].insn_code != CODE_FOR_nothing) | |
1293 | { | |
1294 | int icode = (int) binoptab->handlers[(int) mode].insn_code; | |
1295 | enum machine_mode mode0 = insn_operand_mode[icode][1]; | |
1296 | enum machine_mode mode1 = insn_operand_mode[icode][2]; | |
1297 | rtx pat; | |
1298 | rtx xop0 = op0, xop1 = op1; | |
1299 | ||
1300 | /* In case this insn wants input operands in modes different from the | |
1301 | result, convert the operands. */ | |
1302 | if (GET_MODE (op0) != VOIDmode && GET_MODE (op0) != mode0) | |
1303 | xop0 = convert_to_mode (mode0, xop0, unsignedp); | |
1304 | ||
1305 | if (GET_MODE (op1) != VOIDmode && GET_MODE (op1) != mode1) | |
1306 | xop1 = convert_to_mode (mode1, xop1, unsignedp); | |
1307 | ||
1308 | /* Now, if insn doesn't accept these operands, put them into pseudos. */ | |
1309 | if (! (*insn_operand_predicate[icode][1]) (xop0, mode0)) | |
1310 | xop0 = copy_to_mode_reg (mode0, xop0); | |
1311 | ||
1312 | if (! (*insn_operand_predicate[icode][2]) (xop1, mode1)) | |
1313 | xop1 = copy_to_mode_reg (mode1, xop1); | |
1314 | ||
1315 | /* We could handle this, but we should always be called with a pseudo | |
1316 | for our targets and all insns should take them as outputs. */ | |
1317 | if (! (*insn_operand_predicate[icode][0]) (targ0, mode) | |
1318 | || ! (*insn_operand_predicate[icode][3]) (targ1, mode)) | |
1319 | abort (); | |
1320 | ||
1321 | pat = GEN_FCN (icode) (targ0, xop0, xop1, targ1); | |
1322 | if (pat) | |
1323 | { | |
1324 | emit_insn (pat); | |
1325 | return 1; | |
1326 | } | |
1327 | else | |
1328 | delete_insns_since (last); | |
1329 | } | |
1330 | ||
1331 | /* It can't be done in this mode. Can we do it in a wider mode? */ | |
1332 | ||
1333 | if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT) | |
1334 | { | |
34e56753 | 1335 | for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode; |
77c9c6c2 RK |
1336 | wider_mode = GET_MODE_WIDER_MODE (wider_mode)) |
1337 | { | |
1338 | if (binoptab->handlers[(int) wider_mode].insn_code | |
1339 | != CODE_FOR_nothing) | |
1340 | { | |
1341 | register rtx t0 = gen_reg_rtx (wider_mode); | |
1342 | register rtx t1 = gen_reg_rtx (wider_mode); | |
1343 | ||
1344 | if (expand_twoval_binop (binoptab, | |
1345 | convert_to_mode (wider_mode, op0, | |
1346 | unsignedp), | |
1347 | convert_to_mode (wider_mode, op1, | |
1348 | unsignedp), | |
1349 | t0, t1, unsignedp)) | |
1350 | { | |
1351 | convert_move (targ0, t0, unsignedp); | |
1352 | convert_move (targ1, t1, unsignedp); | |
1353 | return 1; | |
1354 | } | |
1355 | else | |
1356 | delete_insns_since (last); | |
1357 | } | |
1358 | } | |
1359 | } | |
1360 | ||
1361 | return 0; | |
1362 | } | |
1363 | \f | |
1364 | /* Generate code to perform an operation specified by UNOPTAB | |
1365 | on operand OP0, with result having machine-mode MODE. | |
1366 | ||
1367 | UNSIGNEDP is for the case where we have to widen the operands | |
1368 | to perform the operation. It says to use zero-extension. | |
1369 | ||
1370 | If TARGET is nonzero, the value | |
1371 | is generated there, if it is convenient to do so. | |
1372 | In all cases an rtx is returned for the locus of the value; | |
1373 | this may or may not be TARGET. */ | |
1374 | ||
1375 | rtx | |
1376 | expand_unop (mode, unoptab, op0, target, unsignedp) | |
1377 | enum machine_mode mode; | |
1378 | optab unoptab; | |
1379 | rtx op0; | |
1380 | rtx target; | |
1381 | int unsignedp; | |
1382 | { | |
1383 | enum mode_class class; | |
1384 | enum machine_mode wider_mode; | |
77c9c6c2 RK |
1385 | register rtx temp; |
1386 | rtx last = get_last_insn (); | |
1387 | rtx pat; | |
1388 | ||
1389 | class = GET_MODE_CLASS (mode); | |
1390 | ||
1391 | op0 = protect_from_queue (op0, 0); | |
1392 | ||
1393 | if (flag_force_mem) | |
1394 | { | |
1395 | op0 = force_not_mem (op0); | |
1396 | } | |
1397 | ||
1398 | if (target) | |
1399 | target = protect_from_queue (target, 1); | |
1400 | ||
1401 | if (unoptab->handlers[(int) mode].insn_code != CODE_FOR_nothing) | |
1402 | { | |
1403 | int icode = (int) unoptab->handlers[(int) mode].insn_code; | |
1404 | enum machine_mode mode0 = insn_operand_mode[icode][1]; | |
1405 | rtx xop0 = op0; | |
1406 | ||
1407 | if (target) | |
1408 | temp = target; | |
1409 | else | |
1410 | temp = gen_reg_rtx (mode); | |
1411 | ||
1412 | if (GET_MODE (xop0) != VOIDmode | |
1413 | && GET_MODE (xop0) != mode0) | |
1414 | xop0 = convert_to_mode (mode0, xop0, unsignedp); | |
1415 | ||
1416 | /* Now, if insn doesn't accept our operand, put it into a pseudo. */ | |
1417 | ||
1418 | if (! (*insn_operand_predicate[icode][1]) (xop0, mode0)) | |
1419 | xop0 = copy_to_mode_reg (mode0, xop0); | |
1420 | ||
1421 | if (! (*insn_operand_predicate[icode][0]) (temp, mode)) | |
1422 | temp = gen_reg_rtx (mode); | |
1423 | ||
1424 | pat = GEN_FCN (icode) (temp, xop0); | |
1425 | if (pat) | |
1426 | { | |
1427 | if (GET_CODE (pat) == SEQUENCE | |
b1ec3c92 | 1428 | && ! add_equal_note (pat, temp, unoptab->code, xop0, NULL_RTX)) |
77c9c6c2 RK |
1429 | { |
1430 | delete_insns_since (last); | |
b1ec3c92 | 1431 | return expand_unop (mode, unoptab, op0, NULL_RTX, unsignedp); |
77c9c6c2 RK |
1432 | } |
1433 | ||
1434 | emit_insn (pat); | |
1435 | ||
1436 | return temp; | |
1437 | } | |
1438 | else | |
1439 | delete_insns_since (last); | |
1440 | } | |
1441 | ||
9a856ec7 RK |
1442 | /* It can't be done in this mode. Can we open-code it in a wider mode? */ |
1443 | ||
1444 | if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT) | |
1445 | for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode; | |
1446 | wider_mode = GET_MODE_WIDER_MODE (wider_mode)) | |
1447 | { | |
1448 | if (unoptab->handlers[(int) wider_mode].insn_code != CODE_FOR_nothing) | |
1449 | { | |
1450 | rtx xop0 = op0; | |
1451 | ||
1452 | /* For certain operations, we need not actually extend | |
1453 | the narrow operand, as long as we will truncate the | |
f3f391d7 RK |
1454 | results to the same narrowness. But it is faster to |
1455 | convert a SUBREG due to mode promotion. */ | |
9a856ec7 RK |
1456 | |
1457 | if ((unoptab == neg_optab || unoptab == one_cmpl_optab) | |
4a969847 | 1458 | && GET_MODE_SIZE (wider_mode) <= UNITS_PER_WORD |
f3f391d7 RK |
1459 | && class == MODE_INT |
1460 | && ! (GET_CODE (xop0) == SUBREG | |
1461 | && SUBREG_PROMOTED_VAR_P (xop0))) | |
9a856ec7 RK |
1462 | xop0 = gen_rtx (SUBREG, wider_mode, force_reg (mode, xop0), 0); |
1463 | else | |
1464 | xop0 = convert_to_mode (wider_mode, xop0, unsignedp); | |
1465 | ||
b1ec3c92 CH |
1466 | temp = expand_unop (wider_mode, unoptab, xop0, NULL_RTX, |
1467 | unsignedp); | |
9a856ec7 RK |
1468 | |
1469 | if (temp) | |
1470 | { | |
1471 | if (class != MODE_INT) | |
1472 | { | |
1473 | if (target == 0) | |
1474 | target = gen_reg_rtx (mode); | |
1475 | convert_move (target, temp, 0); | |
1476 | return target; | |
1477 | } | |
1478 | else | |
1479 | return gen_lowpart (mode, temp); | |
1480 | } | |
1481 | else | |
1482 | delete_insns_since (last); | |
1483 | } | |
1484 | } | |
1485 | ||
77c9c6c2 RK |
1486 | /* These can be done a word at a time. */ |
1487 | if (unoptab == one_cmpl_optab | |
1488 | && class == MODE_INT | |
1489 | && GET_MODE_SIZE (mode) > UNITS_PER_WORD | |
34e56753 | 1490 | && unoptab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing) |
77c9c6c2 RK |
1491 | { |
1492 | int i; | |
1493 | rtx insns; | |
1494 | ||
1495 | if (target == 0 || target == op0) | |
1496 | target = gen_reg_rtx (mode); | |
1497 | ||
1498 | start_sequence (); | |
1499 | ||
1500 | /* Do the actual arithmetic. */ | |
1501 | for (i = 0; i < GET_MODE_BITSIZE (mode) / BITS_PER_WORD; i++) | |
1502 | { | |
1503 | rtx target_piece = operand_subword (target, i, 1, mode); | |
34e56753 | 1504 | rtx x = expand_unop (word_mode, unoptab, |
77c9c6c2 RK |
1505 | operand_subword_force (op0, i, mode), |
1506 | target_piece, unsignedp); | |
1507 | if (target_piece != x) | |
1508 | emit_move_insn (target_piece, x); | |
1509 | } | |
1510 | ||
1511 | insns = get_insns (); | |
1512 | end_sequence (); | |
1513 | ||
b1ec3c92 | 1514 | emit_no_conflict_block (insns, target, op0, NULL_RTX, |
77c9c6c2 RK |
1515 | gen_rtx (unoptab->code, mode, op0)); |
1516 | return target; | |
1517 | } | |
1518 | ||
139e5e08 RS |
1519 | /* Open-code the complex negation operation. */ |
1520 | else if (unoptab == neg_optab | |
1521 | && (class == MODE_COMPLEX_FLOAT || class == MODE_COMPLEX_INT)) | |
1522 | { | |
1523 | rtx target_piece; | |
1524 | rtx x; | |
1525 | rtx seq; | |
1526 | ||
1527 | /* Find the correct mode for the real and imaginary parts */ | |
1528 | enum machine_mode submode | |
1529 | = mode_for_size (GET_MODE_UNIT_SIZE (mode) * BITS_PER_UNIT, | |
1530 | class == MODE_COMPLEX_INT ? MODE_INT : MODE_FLOAT, | |
1531 | 0); | |
1532 | ||
1533 | if (submode == BLKmode) | |
1534 | abort (); | |
1535 | ||
1536 | if (target == 0) | |
1537 | target = gen_reg_rtx (mode); | |
1538 | ||
1539 | start_sequence (); | |
1540 | ||
decdfa82 | 1541 | target_piece = gen_imagpart (submode, target); |
139e5e08 | 1542 | x = expand_unop (submode, unoptab, |
decdfa82 | 1543 | gen_imagpart (submode, op0), |
139e5e08 RS |
1544 | target_piece, unsignedp); |
1545 | if (target_piece != x) | |
1546 | emit_move_insn (target_piece, x); | |
1547 | ||
decdfa82 | 1548 | target_piece = gen_realpart (submode, target); |
139e5e08 | 1549 | x = expand_unop (submode, unoptab, |
decdfa82 | 1550 | gen_realpart (submode, op0), |
139e5e08 RS |
1551 | target_piece, unsignedp); |
1552 | if (target_piece != x) | |
1553 | emit_move_insn (target_piece, x); | |
1554 | ||
1555 | seq = gen_sequence (); | |
1556 | end_sequence (); | |
1557 | ||
1558 | emit_no_conflict_block (seq, target, op0, 0, | |
1559 | gen_rtx (unoptab->code, mode, op0)); | |
1560 | return target; | |
1561 | } | |
1562 | ||
139e5e08 | 1563 | /* Now try a library call in this mode. */ |
77c9c6c2 RK |
1564 | if (unoptab->handlers[(int) mode].libfunc) |
1565 | { | |
1566 | rtx insns; | |
1567 | rtx funexp = unoptab->handlers[(int) mode].libfunc; | |
1568 | ||
1569 | start_sequence (); | |
1570 | ||
1571 | /* Pass 1 for NO_QUEUE so we don't lose any increments | |
1572 | if the libcall is cse'd or moved. */ | |
1573 | emit_library_call (unoptab->handlers[(int) mode].libfunc, | |
1574 | 1, mode, 1, op0, mode); | |
1575 | insns = get_insns (); | |
1576 | end_sequence (); | |
1577 | ||
1578 | target = gen_reg_rtx (mode); | |
1579 | emit_libcall_block (insns, target, hard_libcall_value (mode), | |
1580 | gen_rtx (unoptab->code, mode, op0)); | |
1581 | ||
1582 | return target; | |
1583 | } | |
1584 | ||
1585 | /* It can't be done in this mode. Can we do it in a wider mode? */ | |
1586 | ||
1587 | if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT) | |
1588 | { | |
34e56753 | 1589 | for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode; |
77c9c6c2 RK |
1590 | wider_mode = GET_MODE_WIDER_MODE (wider_mode)) |
1591 | { | |
1592 | if ((unoptab->handlers[(int) wider_mode].insn_code | |
1593 | != CODE_FOR_nothing) | |
1594 | || unoptab->handlers[(int) wider_mode].libfunc) | |
1595 | { | |
34e56753 RS |
1596 | rtx xop0 = op0; |
1597 | ||
1598 | /* For certain operations, we need not actually extend | |
1599 | the narrow operand, as long as we will truncate the | |
1600 | results to the same narrowness. */ | |
1601 | ||
1602 | if ((unoptab == neg_optab || unoptab == one_cmpl_optab) | |
4a969847 | 1603 | && GET_MODE_SIZE (wider_mode) <= UNITS_PER_WORD |
f3f391d7 RK |
1604 | && class == MODE_INT |
1605 | && ! (GET_CODE (xop0) == SUBREG | |
1606 | && SUBREG_PROMOTED_VAR_P (xop0))) | |
34e56753 RS |
1607 | xop0 = gen_rtx (SUBREG, wider_mode, force_reg (mode, xop0), 0); |
1608 | else | |
1609 | xop0 = convert_to_mode (wider_mode, xop0, unsignedp); | |
77c9c6c2 | 1610 | |
b1ec3c92 CH |
1611 | temp = expand_unop (wider_mode, unoptab, xop0, NULL_RTX, |
1612 | unsignedp); | |
34e56753 RS |
1613 | |
1614 | if (temp) | |
77c9c6c2 | 1615 | { |
34e56753 RS |
1616 | if (class != MODE_INT) |
1617 | { | |
1618 | if (target == 0) | |
1619 | target = gen_reg_rtx (mode); | |
1620 | convert_move (target, temp, 0); | |
1621 | return target; | |
1622 | } | |
1623 | else | |
1624 | return gen_lowpart (mode, temp); | |
77c9c6c2 RK |
1625 | } |
1626 | else | |
34e56753 | 1627 | delete_insns_since (last); |
77c9c6c2 RK |
1628 | } |
1629 | } | |
1630 | } | |
1631 | ||
1632 | return 0; | |
1633 | } | |
1634 | \f | |
decdfa82 RS |
1635 | /* Emit code to compute the absolute value of OP0, with result to |
1636 | TARGET if convenient. (TARGET may be 0.) The return value says | |
1637 | where the result actually is to be found. | |
1638 | ||
1639 | MODE is the mode of the operand; the mode of the result is | |
1640 | different but can be deduced from MODE. | |
1641 | ||
1642 | UNSIGNEDP is relevant for complex integer modes. */ | |
1643 | ||
1644 | rtx | |
1645 | expand_complex_abs (mode, op0, target, unsignedp) | |
1646 | enum machine_mode mode; | |
1647 | rtx op0; | |
1648 | rtx target; | |
1649 | int unsignedp; | |
1650 | { | |
1651 | enum mode_class class = GET_MODE_CLASS (mode); | |
1652 | enum machine_mode wider_mode; | |
1653 | register rtx temp; | |
1654 | rtx last = get_last_insn (); | |
1655 | rtx pat; | |
1656 | ||
1657 | /* Find the correct mode for the real and imaginary parts. */ | |
1658 | enum machine_mode submode | |
1659 | = mode_for_size (GET_MODE_UNIT_SIZE (mode) * BITS_PER_UNIT, | |
1660 | class == MODE_COMPLEX_INT ? MODE_INT : MODE_FLOAT, | |
1661 | 0); | |
1662 | ||
1663 | if (submode == BLKmode) | |
1664 | abort (); | |
1665 | ||
1666 | op0 = protect_from_queue (op0, 0); | |
1667 | ||
1668 | if (flag_force_mem) | |
1669 | { | |
1670 | op0 = force_not_mem (op0); | |
1671 | } | |
1672 | ||
1673 | if (target) | |
1674 | target = protect_from_queue (target, 1); | |
1675 | ||
1676 | if (abs_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing) | |
1677 | { | |
1678 | int icode = (int) abs_optab->handlers[(int) mode].insn_code; | |
1679 | enum machine_mode mode0 = insn_operand_mode[icode][1]; | |
1680 | rtx xop0 = op0; | |
1681 | ||
1682 | if (target) | |
1683 | temp = target; | |
1684 | else | |
1685 | temp = gen_reg_rtx (submode); | |
1686 | ||
1687 | if (GET_MODE (xop0) != VOIDmode | |
1688 | && GET_MODE (xop0) != mode0) | |
1689 | xop0 = convert_to_mode (mode0, xop0, unsignedp); | |
1690 | ||
1691 | /* Now, if insn doesn't accept our operand, put it into a pseudo. */ | |
1692 | ||
1693 | if (! (*insn_operand_predicate[icode][1]) (xop0, mode0)) | |
1694 | xop0 = copy_to_mode_reg (mode0, xop0); | |
1695 | ||
1696 | if (! (*insn_operand_predicate[icode][0]) (temp, submode)) | |
1697 | temp = gen_reg_rtx (submode); | |
1698 | ||
1699 | pat = GEN_FCN (icode) (temp, xop0); | |
1700 | if (pat) | |
1701 | { | |
1702 | if (GET_CODE (pat) == SEQUENCE | |
1703 | && ! add_equal_note (pat, temp, abs_optab->code, xop0, NULL_RTX)) | |
1704 | { | |
1705 | delete_insns_since (last); | |
1706 | return expand_unop (mode, abs_optab, op0, NULL_RTX, unsignedp); | |
1707 | } | |
1708 | ||
1709 | emit_insn (pat); | |
1710 | ||
1711 | return temp; | |
1712 | } | |
1713 | else | |
1714 | delete_insns_since (last); | |
1715 | } | |
1716 | ||
1717 | /* It can't be done in this mode. Can we open-code it in a wider mode? */ | |
1718 | ||
1719 | for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode; | |
1720 | wider_mode = GET_MODE_WIDER_MODE (wider_mode)) | |
1721 | { | |
1722 | if (abs_optab->handlers[(int) wider_mode].insn_code != CODE_FOR_nothing) | |
1723 | { | |
1724 | rtx xop0 = op0; | |
1725 | ||
1726 | xop0 = convert_to_mode (wider_mode, xop0, unsignedp); | |
1727 | temp = expand_complex_abs (wider_mode, xop0, NULL_RTX, unsignedp); | |
1728 | ||
1729 | if (temp) | |
1730 | { | |
1731 | if (class != MODE_COMPLEX_INT) | |
1732 | { | |
1733 | if (target == 0) | |
1734 | target = gen_reg_rtx (submode); | |
1735 | convert_move (target, temp, 0); | |
1736 | return target; | |
1737 | } | |
1738 | else | |
1739 | return gen_lowpart (submode, temp); | |
1740 | } | |
1741 | else | |
1742 | delete_insns_since (last); | |
1743 | } | |
1744 | } | |
1745 | ||
1746 | /* Open-code the complex absolute-value operation | |
1747 | if we can open-code sqrt. Otherwise it's not worth while. */ | |
1748 | if (sqrt_optab->handlers[(int) submode].insn_code != CODE_FOR_nothing) | |
1749 | { | |
1750 | rtx real, imag, total; | |
1751 | ||
1752 | real = gen_realpart (submode, op0); | |
1753 | imag = gen_imagpart (submode, op0); | |
1754 | /* Square both parts. */ | |
1755 | real = expand_mult (mode, real, real, NULL_RTX, 0); | |
1756 | imag = expand_mult (mode, imag, imag, NULL_RTX, 0); | |
1757 | /* Sum the parts. */ | |
1758 | total = expand_binop (submode, add_optab, real, imag, 0, | |
1759 | 0, OPTAB_LIB_WIDEN); | |
1760 | /* Get sqrt in TARGET. Set TARGET to where the result is. */ | |
1761 | target = expand_unop (submode, sqrt_optab, total, target, 0); | |
1762 | if (target == 0) | |
1763 | delete_insns_since (last); | |
1764 | else | |
1765 | return target; | |
1766 | } | |
1767 | ||
1768 | /* Now try a library call in this mode. */ | |
1769 | if (abs_optab->handlers[(int) mode].libfunc) | |
1770 | { | |
1771 | rtx insns; | |
1772 | rtx funexp = abs_optab->handlers[(int) mode].libfunc; | |
1773 | ||
1774 | start_sequence (); | |
1775 | ||
1776 | /* Pass 1 for NO_QUEUE so we don't lose any increments | |
1777 | if the libcall is cse'd or moved. */ | |
1778 | emit_library_call (abs_optab->handlers[(int) mode].libfunc, | |
1779 | 1, mode, 1, op0, mode); | |
1780 | insns = get_insns (); | |
1781 | end_sequence (); | |
1782 | ||
1783 | target = gen_reg_rtx (submode); | |
1784 | emit_libcall_block (insns, target, hard_libcall_value (submode), | |
1785 | gen_rtx (abs_optab->code, mode, op0)); | |
1786 | ||
1787 | return target; | |
1788 | } | |
1789 | ||
1790 | /* It can't be done in this mode. Can we do it in a wider mode? */ | |
1791 | ||
1792 | for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode; | |
1793 | wider_mode = GET_MODE_WIDER_MODE (wider_mode)) | |
1794 | { | |
1795 | if ((abs_optab->handlers[(int) wider_mode].insn_code | |
1796 | != CODE_FOR_nothing) | |
1797 | || abs_optab->handlers[(int) wider_mode].libfunc) | |
1798 | { | |
1799 | rtx xop0 = op0; | |
1800 | ||
1801 | xop0 = convert_to_mode (wider_mode, xop0, unsignedp); | |
1802 | ||
1803 | temp = expand_complex_abs (wider_mode, xop0, NULL_RTX, unsignedp); | |
1804 | ||
1805 | if (temp) | |
1806 | { | |
1807 | if (class != MODE_COMPLEX_INT) | |
1808 | { | |
1809 | if (target == 0) | |
1810 | target = gen_reg_rtx (submode); | |
1811 | convert_move (target, temp, 0); | |
1812 | return target; | |
1813 | } | |
1814 | else | |
1815 | return gen_lowpart (submode, temp); | |
1816 | } | |
1817 | else | |
1818 | delete_insns_since (last); | |
1819 | } | |
1820 | } | |
1821 | ||
1822 | return 0; | |
1823 | } | |
1824 | \f | |
77c9c6c2 RK |
1825 | /* Generate an instruction whose insn-code is INSN_CODE, |
1826 | with two operands: an output TARGET and an input OP0. | |
1827 | TARGET *must* be nonzero, and the output is always stored there. | |
1828 | CODE is an rtx code such that (CODE OP0) is an rtx that describes | |
1829 | the value that is stored into TARGET. */ | |
1830 | ||
1831 | void | |
1832 | emit_unop_insn (icode, target, op0, code) | |
1833 | int icode; | |
1834 | rtx target; | |
1835 | rtx op0; | |
1836 | enum rtx_code code; | |
1837 | { | |
1838 | register rtx temp; | |
1839 | enum machine_mode mode0 = insn_operand_mode[icode][1]; | |
1840 | rtx pat; | |
1841 | ||
1842 | temp = target = protect_from_queue (target, 1); | |
1843 | ||
1844 | op0 = protect_from_queue (op0, 0); | |
1845 | ||
1846 | if (flag_force_mem) | |
1847 | op0 = force_not_mem (op0); | |
1848 | ||
1849 | /* Now, if insn does not accept our operands, put them into pseudos. */ | |
1850 | ||
1851 | if (! (*insn_operand_predicate[icode][1]) (op0, mode0)) | |
1852 | op0 = copy_to_mode_reg (mode0, op0); | |
1853 | ||
1854 | if (! (*insn_operand_predicate[icode][0]) (temp, GET_MODE (temp)) | |
1855 | || (flag_force_mem && GET_CODE (temp) == MEM)) | |
1856 | temp = gen_reg_rtx (GET_MODE (temp)); | |
1857 | ||
1858 | pat = GEN_FCN (icode) (temp, op0); | |
1859 | ||
1860 | if (GET_CODE (pat) == SEQUENCE && code != UNKNOWN) | |
b1ec3c92 | 1861 | add_equal_note (pat, temp, code, op0, NULL_RTX); |
77c9c6c2 RK |
1862 | |
1863 | emit_insn (pat); | |
1864 | ||
1865 | if (temp != target) | |
1866 | emit_move_insn (target, temp); | |
1867 | } | |
1868 | \f | |
1869 | /* Emit code to perform a series of operations on a multi-word quantity, one | |
1870 | word at a time. | |
1871 | ||
d45cf215 | 1872 | Such a block is preceded by a CLOBBER of the output, consists of multiple |
77c9c6c2 RK |
1873 | insns, each setting one word of the output, and followed by a SET copying |
1874 | the output to itself. | |
1875 | ||
1876 | Each of the insns setting words of the output receives a REG_NO_CONFLICT | |
1877 | note indicating that it doesn't conflict with the (also multi-word) | |
1878 | inputs. The entire block is surrounded by REG_LIBCALL and REG_RETVAL | |
1879 | notes. | |
1880 | ||
1881 | INSNS is a block of code generated to perform the operation, not including | |
1882 | the CLOBBER and final copy. All insns that compute intermediate values | |
1883 | are first emitted, followed by the block as described above. Only | |
1884 | INSNs are allowed in the block; no library calls or jumps may be | |
1885 | present. | |
1886 | ||
1887 | TARGET, OP0, and OP1 are the output and inputs of the operations, | |
1888 | respectively. OP1 may be zero for a unary operation. | |
1889 | ||
1890 | EQUIV, if non-zero, is an expression to be placed into a REG_EQUAL note | |
1891 | on the last insn. | |
1892 | ||
1893 | If TARGET is not a register, INSNS is simply emitted with no special | |
1894 | processing. | |
1895 | ||
1896 | The final insn emitted is returned. */ | |
1897 | ||
1898 | rtx | |
1899 | emit_no_conflict_block (insns, target, op0, op1, equiv) | |
1900 | rtx insns; | |
1901 | rtx target; | |
1902 | rtx op0, op1; | |
1903 | rtx equiv; | |
1904 | { | |
1905 | rtx prev, next, first, last, insn; | |
1906 | ||
1907 | if (GET_CODE (target) != REG || reload_in_progress) | |
1908 | return emit_insns (insns); | |
1909 | ||
1910 | /* First emit all insns that do not store into words of the output and remove | |
1911 | these from the list. */ | |
1912 | for (insn = insns; insn; insn = next) | |
1913 | { | |
1914 | rtx set = 0; | |
1915 | int i; | |
1916 | ||
1917 | next = NEXT_INSN (insn); | |
1918 | ||
1919 | if (GET_CODE (insn) != INSN) | |
1920 | abort (); | |
1921 | ||
1922 | if (GET_CODE (PATTERN (insn)) == SET) | |
1923 | set = PATTERN (insn); | |
1924 | else if (GET_CODE (PATTERN (insn)) == PARALLEL) | |
1925 | { | |
1926 | for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++) | |
1927 | if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET) | |
1928 | { | |
1929 | set = XVECEXP (PATTERN (insn), 0, i); | |
1930 | break; | |
1931 | } | |
1932 | } | |
1933 | ||
1934 | if (set == 0) | |
1935 | abort (); | |
1936 | ||
1937 | if (! reg_overlap_mentioned_p (target, SET_DEST (set))) | |
1938 | { | |
1939 | if (PREV_INSN (insn)) | |
1940 | NEXT_INSN (PREV_INSN (insn)) = next; | |
1941 | else | |
1942 | insns = next; | |
1943 | ||
1944 | if (next) | |
1945 | PREV_INSN (next) = PREV_INSN (insn); | |
1946 | ||
1947 | add_insn (insn); | |
1948 | } | |
1949 | } | |
1950 | ||
1951 | prev = get_last_insn (); | |
1952 | ||
1953 | /* Now write the CLOBBER of the output, followed by the setting of each | |
1954 | of the words, followed by the final copy. */ | |
1955 | if (target != op0 && target != op1) | |
1956 | emit_insn (gen_rtx (CLOBBER, VOIDmode, target)); | |
1957 | ||
1958 | for (insn = insns; insn; insn = next) | |
1959 | { | |
1960 | next = NEXT_INSN (insn); | |
1961 | add_insn (insn); | |
1962 | ||
1963 | if (op1 && GET_CODE (op1) == REG) | |
1964 | REG_NOTES (insn) = gen_rtx (EXPR_LIST, REG_NO_CONFLICT, op1, | |
1965 | REG_NOTES (insn)); | |
1966 | ||
1967 | if (op0 && GET_CODE (op0) == REG) | |
1968 | REG_NOTES (insn) = gen_rtx (EXPR_LIST, REG_NO_CONFLICT, op0, | |
1969 | REG_NOTES (insn)); | |
1970 | } | |
1971 | ||
1972 | last = emit_move_insn (target, target); | |
1973 | if (equiv) | |
1974 | REG_NOTES (last) = gen_rtx (EXPR_LIST, REG_EQUAL, equiv, REG_NOTES (last)); | |
1975 | ||
1976 | if (prev == 0) | |
1977 | first = get_insns (); | |
1978 | else | |
1979 | first = NEXT_INSN (prev); | |
1980 | ||
1981 | /* Encapsulate the block so it gets manipulated as a unit. */ | |
1982 | REG_NOTES (first) = gen_rtx (INSN_LIST, REG_LIBCALL, last, | |
1983 | REG_NOTES (first)); | |
1984 | REG_NOTES (last) = gen_rtx (INSN_LIST, REG_RETVAL, first, REG_NOTES (last)); | |
1985 | ||
1986 | return last; | |
1987 | } | |
1988 | \f | |
1989 | /* Emit code to make a call to a constant function or a library call. | |
1990 | ||
1991 | INSNS is a list containing all insns emitted in the call. | |
1992 | These insns leave the result in RESULT. Our block is to copy RESULT | |
1993 | to TARGET, which is logically equivalent to EQUIV. | |
1994 | ||
1995 | We first emit any insns that set a pseudo on the assumption that these are | |
1996 | loading constants into registers; doing so allows them to be safely cse'ed | |
1997 | between blocks. Then we emit all the other insns in the block, followed by | |
1998 | an insn to move RESULT to TARGET. This last insn will have a REQ_EQUAL | |
1999 | note with an operand of EQUIV. | |
2000 | ||
29ebe69a RK |
2001 | Moving assignments to pseudos outside of the block is done to improve |
2002 | the generated code, but is not required to generate correct code, | |
2003 | hence being unable to move an assignment is not grounds for not making | |
2004 | a libcall block. There are two reasons why it is safe to leave these | |
2005 | insns inside the block: First, we know that these pseudos cannot be | |
2006 | used in generated RTL outside the block since they are created for | |
2007 | temporary purposes within the block. Second, CSE will not record the | |
2008 | values of anything set inside a libcall block, so we know they must | |
2009 | be dead at the end of the block. | |
2010 | ||
77c9c6c2 RK |
2011 | Except for the first group of insns (the ones setting pseudos), the |
2012 | block is delimited by REG_RETVAL and REG_LIBCALL notes. */ | |
2013 | ||
2014 | void | |
2015 | emit_libcall_block (insns, target, result, equiv) | |
2016 | rtx insns; | |
2017 | rtx target; | |
2018 | rtx result; | |
2019 | rtx equiv; | |
2020 | { | |
2021 | rtx prev, next, first, last, insn; | |
2022 | ||
2023 | /* First emit all insns that set pseudos. Remove them from the list as | |
29ebe69a RK |
2024 | we go. Avoid insns that set pseudo which were referenced in previous |
2025 | insns. These can be generated by move_by_pieces, for example, | |
2026 | to update an address. */ | |
77c9c6c2 RK |
2027 | |
2028 | for (insn = insns; insn; insn = next) | |
2029 | { | |
2030 | rtx set = single_set (insn); | |
2031 | ||
2032 | next = NEXT_INSN (insn); | |
2033 | ||
2034 | if (set != 0 && GET_CODE (SET_DEST (set)) == REG | |
29ebe69a | 2035 | && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER |
8d9e73cc RS |
2036 | && (insn == insns |
2037 | || (! reg_mentioned_p (SET_DEST (set), PATTERN (insns)) | |
2038 | && ! reg_used_between_p (SET_DEST (set), insns, insn)))) | |
77c9c6c2 RK |
2039 | { |
2040 | if (PREV_INSN (insn)) | |
2041 | NEXT_INSN (PREV_INSN (insn)) = next; | |
2042 | else | |
2043 | insns = next; | |
2044 | ||
2045 | if (next) | |
2046 | PREV_INSN (next) = PREV_INSN (insn); | |
2047 | ||
2048 | add_insn (insn); | |
2049 | } | |
2050 | } | |
2051 | ||
2052 | prev = get_last_insn (); | |
2053 | ||
2054 | /* Write the remaining insns followed by the final copy. */ | |
2055 | ||
2056 | for (insn = insns; insn; insn = next) | |
2057 | { | |
2058 | next = NEXT_INSN (insn); | |
2059 | ||
2060 | add_insn (insn); | |
2061 | } | |
2062 | ||
2063 | last = emit_move_insn (target, result); | |
2064 | REG_NOTES (last) = gen_rtx (EXPR_LIST, REG_EQUAL, equiv, REG_NOTES (last)); | |
2065 | ||
2066 | if (prev == 0) | |
2067 | first = get_insns (); | |
2068 | else | |
2069 | first = NEXT_INSN (prev); | |
2070 | ||
2071 | /* Encapsulate the block so it gets manipulated as a unit. */ | |
2072 | REG_NOTES (first) = gen_rtx (INSN_LIST, REG_LIBCALL, last, | |
2073 | REG_NOTES (first)); | |
2074 | REG_NOTES (last) = gen_rtx (INSN_LIST, REG_RETVAL, first, REG_NOTES (last)); | |
2075 | } | |
2076 | \f | |
2077 | /* Generate code to store zero in X. */ | |
2078 | ||
2079 | void | |
2080 | emit_clr_insn (x) | |
2081 | rtx x; | |
2082 | { | |
2083 | emit_move_insn (x, const0_rtx); | |
2084 | } | |
2085 | ||
2086 | /* Generate code to store 1 in X | |
2087 | assuming it contains zero beforehand. */ | |
2088 | ||
2089 | void | |
2090 | emit_0_to_1_insn (x) | |
2091 | rtx x; | |
2092 | { | |
2093 | emit_move_insn (x, const1_rtx); | |
2094 | } | |
2095 | ||
2096 | /* Generate code to compare X with Y | |
2097 | so that the condition codes are set. | |
2098 | ||
2099 | MODE is the mode of the inputs (in case they are const_int). | |
2100 | UNSIGNEDP nonzero says that X and Y are unsigned; | |
2101 | this matters if they need to be widened. | |
2102 | ||
2103 | If they have mode BLKmode, then SIZE specifies the size of both X and Y, | |
2104 | and ALIGN specifies the known shared alignment of X and Y. | |
2105 | ||
2106 | COMPARISON is the rtl operator to compare with (EQ, NE, GT, etc.). | |
2107 | It is ignored for fixed-point and block comparisons; | |
2108 | it is used only for floating-point comparisons. */ | |
2109 | ||
2110 | void | |
2111 | emit_cmp_insn (x, y, comparison, size, mode, unsignedp, align) | |
2112 | rtx x, y; | |
2113 | enum rtx_code comparison; | |
2114 | rtx size; | |
2aa8f23f | 2115 | enum machine_mode mode; |
77c9c6c2 RK |
2116 | int unsignedp; |
2117 | int align; | |
2118 | { | |
2119 | enum mode_class class; | |
2120 | enum machine_mode wider_mode; | |
2121 | ||
2122 | class = GET_MODE_CLASS (mode); | |
2123 | ||
2124 | /* They could both be VOIDmode if both args are immediate constants, | |
2125 | but we should fold that at an earlier stage. | |
2126 | With no special code here, this will call abort, | |
2127 | reminding the programmer to implement such folding. */ | |
2128 | ||
2129 | if (mode != BLKmode && flag_force_mem) | |
2130 | { | |
2131 | x = force_not_mem (x); | |
2132 | y = force_not_mem (y); | |
2133 | } | |
2134 | ||
2135 | /* If we are inside an appropriately-short loop and one operand is an | |
2136 | expensive constant, force it into a register. */ | |
aeedc93f | 2137 | if (CONSTANT_P (x) && preserve_subexpressions_p () && rtx_cost (x, COMPARE) > 2) |
77c9c6c2 RK |
2138 | x = force_reg (mode, x); |
2139 | ||
aeedc93f | 2140 | if (CONSTANT_P (y) && preserve_subexpressions_p () && rtx_cost (y, COMPARE) > 2) |
77c9c6c2 RK |
2141 | y = force_reg (mode, y); |
2142 | ||
2143 | /* Don't let both operands fail to indicate the mode. */ | |
2144 | if (GET_MODE (x) == VOIDmode && GET_MODE (y) == VOIDmode) | |
2145 | x = force_reg (mode, x); | |
2146 | ||
2147 | /* Handle all BLKmode compares. */ | |
2148 | ||
2149 | if (mode == BLKmode) | |
2150 | { | |
2151 | emit_queue (); | |
2152 | x = protect_from_queue (x, 0); | |
2153 | y = protect_from_queue (y, 0); | |
2154 | ||
2155 | if (size == 0) | |
2156 | abort (); | |
2157 | #ifdef HAVE_cmpstrqi | |
2158 | if (HAVE_cmpstrqi | |
2159 | && GET_CODE (size) == CONST_INT | |
2160 | && INTVAL (size) < (1 << GET_MODE_BITSIZE (QImode))) | |
2161 | { | |
2162 | enum machine_mode result_mode | |
2163 | = insn_operand_mode[(int) CODE_FOR_cmpstrqi][0]; | |
2164 | rtx result = gen_reg_rtx (result_mode); | |
b1ec3c92 CH |
2165 | emit_insn (gen_cmpstrqi (result, x, y, size, GEN_INT (align))); |
2166 | emit_cmp_insn (result, const0_rtx, comparison, NULL_RTX, | |
2167 | result_mode, 0, 0); | |
77c9c6c2 RK |
2168 | } |
2169 | else | |
2170 | #endif | |
2171 | #ifdef HAVE_cmpstrhi | |
2172 | if (HAVE_cmpstrhi | |
2173 | && GET_CODE (size) == CONST_INT | |
2174 | && INTVAL (size) < (1 << GET_MODE_BITSIZE (HImode))) | |
2175 | { | |
2176 | enum machine_mode result_mode | |
2177 | = insn_operand_mode[(int) CODE_FOR_cmpstrhi][0]; | |
2178 | rtx result = gen_reg_rtx (result_mode); | |
b1ec3c92 CH |
2179 | emit_insn (gen_cmpstrhi (result, x, y, size, GEN_INT (align))); |
2180 | emit_cmp_insn (result, const0_rtx, comparison, NULL_RTX, | |
2181 | result_mode, 0, 0); | |
77c9c6c2 RK |
2182 | } |
2183 | else | |
2184 | #endif | |
2185 | #ifdef HAVE_cmpstrsi | |
2186 | if (HAVE_cmpstrsi) | |
2187 | { | |
2188 | enum machine_mode result_mode | |
2189 | = insn_operand_mode[(int) CODE_FOR_cmpstrsi][0]; | |
2190 | rtx result = gen_reg_rtx (result_mode); | |
06e40b26 | 2191 | size = protect_from_queue (size, 0); |
77c9c6c2 RK |
2192 | emit_insn (gen_cmpstrsi (result, x, y, |
2193 | convert_to_mode (SImode, size, 1), | |
b1ec3c92 CH |
2194 | GEN_INT (align))); |
2195 | emit_cmp_insn (result, const0_rtx, comparison, NULL_RTX, | |
2196 | result_mode, 0, 0); | |
77c9c6c2 RK |
2197 | } |
2198 | else | |
2199 | #endif | |
2200 | { | |
2201 | #ifdef TARGET_MEM_FUNCTIONS | |
d562e42e | 2202 | emit_library_call (memcmp_libfunc, 0, |
77c9c6c2 RK |
2203 | TYPE_MODE (integer_type_node), 3, |
2204 | XEXP (x, 0), Pmode, XEXP (y, 0), Pmode, | |
2205 | size, Pmode); | |
2206 | #else | |
d562e42e | 2207 | emit_library_call (bcmp_libfunc, 0, |
77c9c6c2 RK |
2208 | TYPE_MODE (integer_type_node), 3, |
2209 | XEXP (x, 0), Pmode, XEXP (y, 0), Pmode, | |
2210 | size, Pmode); | |
2211 | #endif | |
2212 | emit_cmp_insn (hard_libcall_value (TYPE_MODE (integer_type_node)), | |
b1ec3c92 | 2213 | const0_rtx, comparison, NULL_RTX, |
77c9c6c2 RK |
2214 | TYPE_MODE (integer_type_node), 0, 0); |
2215 | } | |
2216 | return; | |
2217 | } | |
2218 | ||
2219 | /* Handle some compares against zero. */ | |
2220 | ||
2221 | if (y == CONST0_RTX (mode) | |
2222 | && tst_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing) | |
2223 | { | |
2224 | int icode = (int) tst_optab->handlers[(int) mode].insn_code; | |
2225 | ||
2226 | emit_queue (); | |
2227 | x = protect_from_queue (x, 0); | |
2228 | y = protect_from_queue (y, 0); | |
2229 | ||
2230 | /* Now, if insn does accept these operands, put them into pseudos. */ | |
2231 | if (! (*insn_operand_predicate[icode][0]) | |
2232 | (x, insn_operand_mode[icode][0])) | |
2233 | x = copy_to_mode_reg (insn_operand_mode[icode][0], x); | |
2234 | ||
2235 | emit_insn (GEN_FCN (icode) (x)); | |
2236 | return; | |
2237 | } | |
2238 | ||
2239 | /* Handle compares for which there is a directly suitable insn. */ | |
2240 | ||
2241 | if (cmp_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing) | |
2242 | { | |
2243 | int icode = (int) cmp_optab->handlers[(int) mode].insn_code; | |
2244 | ||
2245 | emit_queue (); | |
2246 | x = protect_from_queue (x, 0); | |
2247 | y = protect_from_queue (y, 0); | |
2248 | ||
2249 | /* Now, if insn doesn't accept these operands, put them into pseudos. */ | |
2250 | if (! (*insn_operand_predicate[icode][0]) | |
2251 | (x, insn_operand_mode[icode][0])) | |
2252 | x = copy_to_mode_reg (insn_operand_mode[icode][0], x); | |
2253 | ||
2254 | if (! (*insn_operand_predicate[icode][1]) | |
2255 | (y, insn_operand_mode[icode][1])) | |
2256 | y = copy_to_mode_reg (insn_operand_mode[icode][1], y); | |
2257 | ||
2258 | emit_insn (GEN_FCN (icode) (x, y)); | |
2259 | return; | |
2260 | } | |
2261 | ||
2262 | /* Try widening if we can find a direct insn that way. */ | |
2263 | ||
2264 | if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT) | |
2265 | { | |
34e56753 | 2266 | for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode; |
77c9c6c2 RK |
2267 | wider_mode = GET_MODE_WIDER_MODE (wider_mode)) |
2268 | { | |
2269 | if (cmp_optab->handlers[(int) wider_mode].insn_code | |
2270 | != CODE_FOR_nothing) | |
2271 | { | |
06e40b26 RS |
2272 | x = protect_from_queue (x, 0); |
2273 | y = protect_from_queue (y, 0); | |
77c9c6c2 RK |
2274 | x = convert_to_mode (wider_mode, x, unsignedp); |
2275 | y = convert_to_mode (wider_mode, y, unsignedp); | |
b1ec3c92 | 2276 | emit_cmp_insn (x, y, comparison, NULL_RTX, |
77c9c6c2 RK |
2277 | wider_mode, unsignedp, align); |
2278 | return; | |
2279 | } | |
2280 | } | |
2281 | } | |
2282 | ||
2283 | /* Handle a lib call just for the mode we are using. */ | |
2284 | ||
2285 | if (cmp_optab->handlers[(int) mode].libfunc | |
2286 | && class != MODE_FLOAT) | |
2287 | { | |
2288 | rtx libfunc = cmp_optab->handlers[(int) mode].libfunc; | |
2289 | /* If we want unsigned, and this mode has a distinct unsigned | |
2290 | comparison routine, use that. */ | |
2291 | if (unsignedp && ucmp_optab->handlers[(int) mode].libfunc) | |
2292 | libfunc = ucmp_optab->handlers[(int) mode].libfunc; | |
2293 | ||
86f8eff3 | 2294 | emit_library_call (libfunc, 1, |
77c9c6c2 RK |
2295 | SImode, 2, x, mode, y, mode); |
2296 | ||
2297 | /* Integer comparison returns a result that must be compared against 1, | |
2298 | so that even if we do an unsigned compare afterward, | |
2299 | there is still a value that can represent the result "less than". */ | |
2300 | ||
2301 | emit_cmp_insn (hard_libcall_value (SImode), const1_rtx, | |
b1ec3c92 | 2302 | comparison, NULL_RTX, SImode, unsignedp, 0); |
77c9c6c2 RK |
2303 | return; |
2304 | } | |
2305 | ||
2306 | if (class == MODE_FLOAT) | |
2307 | emit_float_lib_cmp (x, y, comparison); | |
2308 | ||
2309 | else | |
2310 | abort (); | |
2311 | } | |
2312 | ||
2313 | /* Nonzero if a compare of mode MODE can be done straightforwardly | |
2314 | (without splitting it into pieces). */ | |
2315 | ||
2316 | int | |
2317 | can_compare_p (mode) | |
2318 | enum machine_mode mode; | |
2319 | { | |
2320 | do | |
2321 | { | |
2322 | if (cmp_optab->handlers[(int)mode].insn_code != CODE_FOR_nothing) | |
2323 | return 1; | |
2324 | mode = GET_MODE_WIDER_MODE (mode); | |
2325 | } while (mode != VOIDmode); | |
2326 | ||
2327 | return 0; | |
2328 | } | |
2329 | \f | |
2330 | /* Emit a library call comparison between floating point X and Y. | |
2331 | COMPARISON is the rtl operator to compare with (EQ, NE, GT, etc.). */ | |
2332 | ||
2333 | static void | |
2334 | emit_float_lib_cmp (x, y, comparison) | |
2335 | rtx x, y; | |
2336 | enum rtx_code comparison; | |
2337 | { | |
2338 | enum machine_mode mode = GET_MODE (x); | |
2339 | rtx libfunc; | |
2340 | ||
2341 | if (mode == SFmode) | |
2342 | switch (comparison) | |
2343 | { | |
2344 | case EQ: | |
2345 | libfunc = eqsf2_libfunc; | |
2346 | break; | |
2347 | ||
2348 | case NE: | |
2349 | libfunc = nesf2_libfunc; | |
2350 | break; | |
2351 | ||
2352 | case GT: | |
2353 | libfunc = gtsf2_libfunc; | |
2354 | break; | |
2355 | ||
2356 | case GE: | |
2357 | libfunc = gesf2_libfunc; | |
2358 | break; | |
2359 | ||
2360 | case LT: | |
2361 | libfunc = ltsf2_libfunc; | |
2362 | break; | |
2363 | ||
2364 | case LE: | |
2365 | libfunc = lesf2_libfunc; | |
2366 | break; | |
2367 | } | |
2368 | else if (mode == DFmode) | |
2369 | switch (comparison) | |
2370 | { | |
2371 | case EQ: | |
2372 | libfunc = eqdf2_libfunc; | |
2373 | break; | |
2374 | ||
2375 | case NE: | |
2376 | libfunc = nedf2_libfunc; | |
2377 | break; | |
2378 | ||
2379 | case GT: | |
2380 | libfunc = gtdf2_libfunc; | |
2381 | break; | |
2382 | ||
2383 | case GE: | |
2384 | libfunc = gedf2_libfunc; | |
2385 | break; | |
2386 | ||
2387 | case LT: | |
2388 | libfunc = ltdf2_libfunc; | |
2389 | break; | |
2390 | ||
2391 | case LE: | |
2392 | libfunc = ledf2_libfunc; | |
2393 | break; | |
2394 | } | |
b092b471 JW |
2395 | else if (mode == XFmode) |
2396 | switch (comparison) | |
2397 | { | |
2398 | case EQ: | |
2399 | libfunc = eqxf2_libfunc; | |
2400 | break; | |
2401 | ||
2402 | case NE: | |
2403 | libfunc = nexf2_libfunc; | |
2404 | break; | |
2405 | ||
2406 | case GT: | |
2407 | libfunc = gtxf2_libfunc; | |
2408 | break; | |
2409 | ||
2410 | case GE: | |
2411 | libfunc = gexf2_libfunc; | |
2412 | break; | |
2413 | ||
2414 | case LT: | |
2415 | libfunc = ltxf2_libfunc; | |
2416 | break; | |
2417 | ||
2418 | case LE: | |
2419 | libfunc = lexf2_libfunc; | |
2420 | break; | |
2421 | } | |
2422 | else if (mode == TFmode) | |
2423 | switch (comparison) | |
2424 | { | |
2425 | case EQ: | |
2426 | libfunc = eqtf2_libfunc; | |
2427 | break; | |
2428 | ||
2429 | case NE: | |
2430 | libfunc = netf2_libfunc; | |
2431 | break; | |
2432 | ||
2433 | case GT: | |
2434 | libfunc = gttf2_libfunc; | |
2435 | break; | |
2436 | ||
2437 | case GE: | |
2438 | libfunc = getf2_libfunc; | |
2439 | break; | |
2440 | ||
2441 | case LT: | |
2442 | libfunc = lttf2_libfunc; | |
2443 | break; | |
2444 | ||
2445 | case LE: | |
2446 | libfunc = letf2_libfunc; | |
2447 | break; | |
2448 | } | |
77c9c6c2 RK |
2449 | else |
2450 | { | |
2451 | enum machine_mode wider_mode; | |
2452 | ||
34e56753 | 2453 | for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode; |
77c9c6c2 RK |
2454 | wider_mode = GET_MODE_WIDER_MODE (wider_mode)) |
2455 | { | |
2456 | if ((cmp_optab->handlers[(int) wider_mode].insn_code | |
2457 | != CODE_FOR_nothing) | |
2458 | || (cmp_optab->handlers[(int) wider_mode].libfunc != 0)) | |
2459 | { | |
06e40b26 RS |
2460 | x = protect_from_queue (x, 0); |
2461 | y = protect_from_queue (y, 0); | |
77c9c6c2 RK |
2462 | x = convert_to_mode (wider_mode, x, 0); |
2463 | y = convert_to_mode (wider_mode, y, 0); | |
2464 | emit_float_lib_cmp (x, y, comparison); | |
2465 | return; | |
2466 | } | |
2467 | } | |
2468 | abort (); | |
2469 | } | |
2470 | ||
86f8eff3 | 2471 | emit_library_call (libfunc, 1, |
77c9c6c2 RK |
2472 | SImode, 2, x, mode, y, mode); |
2473 | ||
2474 | emit_cmp_insn (hard_libcall_value (SImode), const0_rtx, comparison, | |
b1ec3c92 | 2475 | NULL_RTX, SImode, 0, 0); |
77c9c6c2 RK |
2476 | } |
2477 | \f | |
2478 | /* Generate code to indirectly jump to a location given in the rtx LOC. */ | |
2479 | ||
2480 | void | |
2481 | emit_indirect_jump (loc) | |
2482 | rtx loc; | |
2483 | { | |
2484 | if (! ((*insn_operand_predicate[(int)CODE_FOR_indirect_jump][0]) | |
2485 | (loc, VOIDmode))) | |
2486 | loc = copy_to_mode_reg (insn_operand_mode[(int)CODE_FOR_indirect_jump][0], | |
2487 | loc); | |
2488 | ||
2489 | emit_jump_insn (gen_indirect_jump (loc)); | |
9649fb4d | 2490 | emit_barrier (); |
77c9c6c2 RK |
2491 | } |
2492 | \f | |
2493 | /* These three functions generate an insn body and return it | |
2494 | rather than emitting the insn. | |
2495 | ||
2496 | They do not protect from queued increments, | |
2497 | because they may be used 1) in protect_from_queue itself | |
2498 | and 2) in other passes where there is no queue. */ | |
2499 | ||
2500 | /* Generate and return an insn body to add Y to X. */ | |
2501 | ||
2502 | rtx | |
2503 | gen_add2_insn (x, y) | |
2504 | rtx x, y; | |
2505 | { | |
2506 | int icode = (int) add_optab->handlers[(int) GET_MODE (x)].insn_code; | |
2507 | ||
2508 | if (! (*insn_operand_predicate[icode][0]) (x, insn_operand_mode[icode][0]) | |
2509 | || ! (*insn_operand_predicate[icode][1]) (x, insn_operand_mode[icode][1]) | |
2510 | || ! (*insn_operand_predicate[icode][2]) (y, insn_operand_mode[icode][2])) | |
2511 | abort (); | |
2512 | ||
2513 | return (GEN_FCN (icode) (x, x, y)); | |
2514 | } | |
2515 | ||
2516 | int | |
2517 | have_add2_insn (mode) | |
2518 | enum machine_mode mode; | |
2519 | { | |
2520 | return add_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing; | |
2521 | } | |
2522 | ||
2523 | /* Generate and return an insn body to subtract Y from X. */ | |
2524 | ||
2525 | rtx | |
2526 | gen_sub2_insn (x, y) | |
2527 | rtx x, y; | |
2528 | { | |
2529 | int icode = (int) sub_optab->handlers[(int) GET_MODE (x)].insn_code; | |
2530 | ||
2531 | if (! (*insn_operand_predicate[icode][0]) (x, insn_operand_mode[icode][0]) | |
2532 | || ! (*insn_operand_predicate[icode][1]) (x, insn_operand_mode[icode][1]) | |
2533 | || ! (*insn_operand_predicate[icode][2]) (y, insn_operand_mode[icode][2])) | |
2534 | abort (); | |
2535 | ||
2536 | return (GEN_FCN (icode) (x, x, y)); | |
2537 | } | |
2538 | ||
2539 | int | |
2540 | have_sub2_insn (mode) | |
2541 | enum machine_mode mode; | |
2542 | { | |
2543 | return sub_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing; | |
2544 | } | |
2545 | ||
2546 | /* Generate the body of an instruction to copy Y into X. */ | |
2547 | ||
2548 | rtx | |
2549 | gen_move_insn (x, y) | |
2550 | rtx x, y; | |
2551 | { | |
2552 | register enum machine_mode mode = GET_MODE (x); | |
2553 | enum insn_code insn_code; | |
2554 | ||
2555 | if (mode == VOIDmode) | |
2556 | mode = GET_MODE (y); | |
2557 | ||
2558 | insn_code = mov_optab->handlers[(int) mode].insn_code; | |
2559 | ||
2560 | /* Handle MODE_CC modes: If we don't have a special move insn for this mode, | |
2561 | find a mode to do it in. If we have a movcc, use it. Otherwise, | |
2562 | find the MODE_INT mode of the same width. */ | |
2563 | ||
2564 | if (insn_code == CODE_FOR_nothing) | |
2565 | { | |
2566 | enum machine_mode tmode = VOIDmode; | |
2567 | rtx x1 = x, y1 = y; | |
2568 | ||
2569 | if (GET_MODE_CLASS (mode) == MODE_CC && mode != CCmode | |
2570 | && mov_optab->handlers[(int) CCmode].insn_code != CODE_FOR_nothing) | |
2571 | tmode = CCmode; | |
2572 | else if (GET_MODE_CLASS (mode) == MODE_CC) | |
2573 | for (tmode = QImode; tmode != VOIDmode; | |
2574 | tmode = GET_MODE_WIDER_MODE (tmode)) | |
2575 | if (GET_MODE_SIZE (tmode) == GET_MODE_SIZE (mode)) | |
2576 | break; | |
2577 | ||
2578 | if (tmode == VOIDmode) | |
2579 | abort (); | |
2580 | ||
2581 | /* Get X and Y in TMODE. We can't use gen_lowpart here because it | |
2582 | may call change_address which is not appropriate if we were | |
2583 | called when a reload was in progress. We don't have to worry | |
2584 | about changing the address since the size in bytes is supposed to | |
2585 | be the same. Copy the MEM to change the mode and move any | |
2586 | substitutions from the old MEM to the new one. */ | |
2587 | ||
2588 | if (reload_in_progress) | |
2589 | { | |
2590 | x = gen_lowpart_common (tmode, x1); | |
2591 | if (x == 0 && GET_CODE (x1) == MEM) | |
2592 | { | |
2593 | x = gen_rtx (MEM, tmode, XEXP (x1, 0)); | |
2594 | RTX_UNCHANGING_P (x) = RTX_UNCHANGING_P (x1); | |
2595 | MEM_IN_STRUCT_P (x) = MEM_IN_STRUCT_P (x1); | |
2596 | MEM_VOLATILE_P (x) = MEM_VOLATILE_P (x1); | |
2597 | copy_replacements (x1, x); | |
2598 | } | |
2599 | ||
2600 | y = gen_lowpart_common (tmode, y1); | |
2601 | if (y == 0 && GET_CODE (y1) == MEM) | |
2602 | { | |
2603 | y = gen_rtx (MEM, tmode, XEXP (y1, 0)); | |
2604 | RTX_UNCHANGING_P (y) = RTX_UNCHANGING_P (y1); | |
2605 | MEM_IN_STRUCT_P (y) = MEM_IN_STRUCT_P (y1); | |
2606 | MEM_VOLATILE_P (y) = MEM_VOLATILE_P (y1); | |
2607 | copy_replacements (y1, y); | |
2608 | } | |
2609 | } | |
2610 | else | |
2611 | { | |
2612 | x = gen_lowpart (tmode, x); | |
2613 | y = gen_lowpart (tmode, y); | |
2614 | } | |
2615 | ||
2616 | insn_code = mov_optab->handlers[(int) tmode].insn_code; | |
2617 | } | |
2618 | ||
2619 | return (GEN_FCN (insn_code) (x, y)); | |
2620 | } | |
2621 | \f | |
2622 | /* Tables of patterns for extending one integer mode to another. */ | |
34e56753 | 2623 | static enum insn_code extendtab[MAX_MACHINE_MODE][MAX_MACHINE_MODE][2]; |
77c9c6c2 | 2624 | |
34e56753 RS |
2625 | /* Return the insn code used to extend FROM_MODE to TO_MODE. |
2626 | UNSIGNEDP specifies zero-extension instead of sign-extension. If | |
2627 | no such operation exists, CODE_FOR_nothing will be returned. */ | |
77c9c6c2 | 2628 | |
34e56753 | 2629 | enum insn_code |
77c9c6c2 RK |
2630 | can_extend_p (to_mode, from_mode, unsignedp) |
2631 | enum machine_mode to_mode, from_mode; | |
2632 | int unsignedp; | |
2633 | { | |
34e56753 | 2634 | return extendtab[(int) to_mode][(int) from_mode][unsignedp]; |
77c9c6c2 RK |
2635 | } |
2636 | ||
2637 | /* Generate the body of an insn to extend Y (with mode MFROM) | |
2638 | into X (with mode MTO). Do zero-extension if UNSIGNEDP is nonzero. */ | |
2639 | ||
2640 | rtx | |
2641 | gen_extend_insn (x, y, mto, mfrom, unsignedp) | |
2642 | rtx x, y; | |
2643 | enum machine_mode mto, mfrom; | |
2644 | int unsignedp; | |
2645 | { | |
34e56753 | 2646 | return (GEN_FCN (extendtab[(int) mto][(int) mfrom][unsignedp]) (x, y)); |
77c9c6c2 RK |
2647 | } |
2648 | ||
2649 | static void | |
2650 | init_extends () | |
2651 | { | |
34e56753 RS |
2652 | enum insn_code *p; |
2653 | ||
2654 | for (p = extendtab[0][0]; | |
2655 | p < extendtab[0][0] + sizeof extendtab / sizeof extendtab[0][0][0]; | |
2656 | p++) | |
2657 | *p = CODE_FOR_nothing; | |
77c9c6c2 RK |
2658 | |
2659 | #ifdef HAVE_extendditi2 | |
2660 | if (HAVE_extendditi2) | |
34e56753 | 2661 | extendtab[(int) TImode][(int) DImode][0] = CODE_FOR_extendditi2; |
77c9c6c2 RK |
2662 | #endif |
2663 | #ifdef HAVE_extendsiti2 | |
2664 | if (HAVE_extendsiti2) | |
34e56753 | 2665 | extendtab[(int) TImode][(int) SImode][0] = CODE_FOR_extendsiti2; |
77c9c6c2 RK |
2666 | #endif |
2667 | #ifdef HAVE_extendhiti2 | |
2668 | if (HAVE_extendhiti2) | |
34e56753 | 2669 | extendtab[(int) TImode][(int) HImode][0] = CODE_FOR_extendhiti2; |
77c9c6c2 RK |
2670 | #endif |
2671 | #ifdef HAVE_extendqiti2 | |
2672 | if (HAVE_extendqiti2) | |
34e56753 | 2673 | extendtab[(int) TImode][(int) QImode][0] = CODE_FOR_extendqiti2; |
77c9c6c2 RK |
2674 | #endif |
2675 | #ifdef HAVE_extendsidi2 | |
2676 | if (HAVE_extendsidi2) | |
34e56753 | 2677 | extendtab[(int) DImode][(int) SImode][0] = CODE_FOR_extendsidi2; |
77c9c6c2 RK |
2678 | #endif |
2679 | #ifdef HAVE_extendhidi2 | |
2680 | if (HAVE_extendhidi2) | |
34e56753 | 2681 | extendtab[(int) DImode][(int) HImode][0] = CODE_FOR_extendhidi2; |
77c9c6c2 RK |
2682 | #endif |
2683 | #ifdef HAVE_extendqidi2 | |
2684 | if (HAVE_extendqidi2) | |
34e56753 | 2685 | extendtab[(int) DImode][(int) QImode][0] = CODE_FOR_extendqidi2; |
77c9c6c2 RK |
2686 | #endif |
2687 | #ifdef HAVE_extendhisi2 | |
2688 | if (HAVE_extendhisi2) | |
34e56753 | 2689 | extendtab[(int) SImode][(int) HImode][0] = CODE_FOR_extendhisi2; |
77c9c6c2 RK |
2690 | #endif |
2691 | #ifdef HAVE_extendqisi2 | |
2692 | if (HAVE_extendqisi2) | |
34e56753 | 2693 | extendtab[(int) SImode][(int) QImode][0] = CODE_FOR_extendqisi2; |
77c9c6c2 RK |
2694 | #endif |
2695 | #ifdef HAVE_extendqihi2 | |
2696 | if (HAVE_extendqihi2) | |
34e56753 | 2697 | extendtab[(int) HImode][(int) QImode][0] = CODE_FOR_extendqihi2; |
77c9c6c2 RK |
2698 | #endif |
2699 | ||
2700 | #ifdef HAVE_zero_extendditi2 | |
2701 | if (HAVE_zero_extendsiti2) | |
34e56753 | 2702 | extendtab[(int) TImode][(int) DImode][1] = CODE_FOR_zero_extendditi2; |
77c9c6c2 RK |
2703 | #endif |
2704 | #ifdef HAVE_zero_extendsiti2 | |
2705 | if (HAVE_zero_extendsiti2) | |
34e56753 | 2706 | extendtab[(int) TImode][(int) SImode][1] = CODE_FOR_zero_extendsiti2; |
77c9c6c2 RK |
2707 | #endif |
2708 | #ifdef HAVE_zero_extendhiti2 | |
2709 | if (HAVE_zero_extendhiti2) | |
34e56753 | 2710 | extendtab[(int) TImode][(int) HImode][1] = CODE_FOR_zero_extendhiti2; |
77c9c6c2 RK |
2711 | #endif |
2712 | #ifdef HAVE_zero_extendqiti2 | |
2713 | if (HAVE_zero_extendqiti2) | |
34e56753 | 2714 | extendtab[(int) TImode][(int) QImode][1] = CODE_FOR_zero_extendqiti2; |
77c9c6c2 RK |
2715 | #endif |
2716 | #ifdef HAVE_zero_extendsidi2 | |
2717 | if (HAVE_zero_extendsidi2) | |
34e56753 | 2718 | extendtab[(int) DImode][(int) SImode][1] = CODE_FOR_zero_extendsidi2; |
77c9c6c2 RK |
2719 | #endif |
2720 | #ifdef HAVE_zero_extendhidi2 | |
2721 | if (HAVE_zero_extendhidi2) | |
34e56753 | 2722 | extendtab[(int) DImode][(int) HImode][1] = CODE_FOR_zero_extendhidi2; |
77c9c6c2 RK |
2723 | #endif |
2724 | #ifdef HAVE_zero_extendqidi2 | |
2725 | if (HAVE_zero_extendqidi2) | |
34e56753 | 2726 | extendtab[(int) DImode][(int) QImode][1] = CODE_FOR_zero_extendqidi2; |
77c9c6c2 RK |
2727 | #endif |
2728 | #ifdef HAVE_zero_extendhisi2 | |
2729 | if (HAVE_zero_extendhisi2) | |
34e56753 | 2730 | extendtab[(int) SImode][(int) HImode][1] = CODE_FOR_zero_extendhisi2; |
77c9c6c2 RK |
2731 | #endif |
2732 | #ifdef HAVE_zero_extendqisi2 | |
2733 | if (HAVE_zero_extendqisi2) | |
34e56753 | 2734 | extendtab[(int) SImode][(int) QImode][1] = CODE_FOR_zero_extendqisi2; |
77c9c6c2 RK |
2735 | #endif |
2736 | #ifdef HAVE_zero_extendqihi2 | |
2737 | if (HAVE_zero_extendqihi2) | |
34e56753 | 2738 | extendtab[(int) HImode][(int) QImode][1] = CODE_FOR_zero_extendqihi2; |
77c9c6c2 RK |
2739 | #endif |
2740 | } | |
2741 | \f | |
2742 | /* can_fix_p and can_float_p say whether the target machine | |
2743 | can directly convert a given fixed point type to | |
2744 | a given floating point type, or vice versa. | |
2745 | The returned value is the CODE_FOR_... value to use, | |
2746 | or CODE_FOR_nothing if these modes cannot be directly converted. */ | |
2747 | ||
2748 | static enum insn_code fixtab[NUM_MACHINE_MODES][NUM_MACHINE_MODES][2]; | |
2749 | static enum insn_code fixtrunctab[NUM_MACHINE_MODES][NUM_MACHINE_MODES][2]; | |
2750 | static enum insn_code floattab[NUM_MACHINE_MODES][NUM_MACHINE_MODES][2]; | |
2751 | ||
2752 | /* *TRUNCP_PTR is set to 1 if it is necessary to output | |
2753 | an explicit FTRUNC insn before the fix insn; otherwise 0. */ | |
2754 | ||
2755 | static enum insn_code | |
2756 | can_fix_p (fixmode, fltmode, unsignedp, truncp_ptr) | |
2757 | enum machine_mode fltmode, fixmode; | |
2758 | int unsignedp; | |
2759 | int *truncp_ptr; | |
2760 | { | |
2761 | *truncp_ptr = 0; | |
2762 | if (fixtrunctab[(int) fltmode][(int) fixmode][unsignedp] != CODE_FOR_nothing) | |
2763 | return fixtrunctab[(int) fltmode][(int) fixmode][unsignedp]; | |
2764 | ||
2765 | if (ftrunc_optab->handlers[(int) fltmode].insn_code != CODE_FOR_nothing) | |
2766 | { | |
2767 | *truncp_ptr = 1; | |
2768 | return fixtab[(int) fltmode][(int) fixmode][unsignedp]; | |
2769 | } | |
2770 | return CODE_FOR_nothing; | |
2771 | } | |
2772 | ||
2773 | static enum insn_code | |
2774 | can_float_p (fltmode, fixmode, unsignedp) | |
2775 | enum machine_mode fixmode, fltmode; | |
2776 | int unsignedp; | |
2777 | { | |
2778 | return floattab[(int) fltmode][(int) fixmode][unsignedp]; | |
2779 | } | |
2780 | ||
2781 | void | |
2782 | init_fixtab () | |
2783 | { | |
2784 | enum insn_code *p; | |
2785 | for (p = fixtab[0][0]; | |
2786 | p < fixtab[0][0] + sizeof fixtab / sizeof (fixtab[0][0][0]); | |
2787 | p++) | |
2788 | *p = CODE_FOR_nothing; | |
2789 | for (p = fixtrunctab[0][0]; | |
2790 | p < fixtrunctab[0][0] + sizeof fixtrunctab / sizeof (fixtrunctab[0][0][0]); | |
2791 | p++) | |
2792 | *p = CODE_FOR_nothing; | |
2793 | ||
2794 | #ifdef HAVE_fixsfqi2 | |
2795 | if (HAVE_fixsfqi2) | |
2796 | fixtab[(int) SFmode][(int) QImode][0] = CODE_FOR_fixsfqi2; | |
2797 | #endif | |
2798 | #ifdef HAVE_fixsfhi2 | |
2799 | if (HAVE_fixsfhi2) | |
2800 | fixtab[(int) SFmode][(int) HImode][0] = CODE_FOR_fixsfhi2; | |
2801 | #endif | |
2802 | #ifdef HAVE_fixsfsi2 | |
2803 | if (HAVE_fixsfsi2) | |
2804 | fixtab[(int) SFmode][(int) SImode][0] = CODE_FOR_fixsfsi2; | |
2805 | #endif | |
2806 | #ifdef HAVE_fixsfdi2 | |
2807 | if (HAVE_fixsfdi2) | |
2808 | fixtab[(int) SFmode][(int) DImode][0] = CODE_FOR_fixsfdi2; | |
2809 | #endif | |
2810 | ||
2811 | #ifdef HAVE_fixdfqi2 | |
2812 | if (HAVE_fixdfqi2) | |
2813 | fixtab[(int) DFmode][(int) QImode][0] = CODE_FOR_fixdfqi2; | |
2814 | #endif | |
2815 | #ifdef HAVE_fixdfhi2 | |
2816 | if (HAVE_fixdfhi2) | |
2817 | fixtab[(int) DFmode][(int) HImode][0] = CODE_FOR_fixdfhi2; | |
2818 | #endif | |
2819 | #ifdef HAVE_fixdfsi2 | |
2820 | if (HAVE_fixdfsi2) | |
2821 | fixtab[(int) DFmode][(int) SImode][0] = CODE_FOR_fixdfsi2; | |
2822 | #endif | |
2823 | #ifdef HAVE_fixdfdi2 | |
2824 | if (HAVE_fixdfdi2) | |
2825 | fixtab[(int) DFmode][(int) DImode][0] = CODE_FOR_fixdfdi2; | |
2826 | #endif | |
2827 | #ifdef HAVE_fixdfti2 | |
2828 | if (HAVE_fixdfti2) | |
2829 | fixtab[(int) DFmode][(int) TImode][0] = CODE_FOR_fixdfti2; | |
2830 | #endif | |
2831 | ||
b092b471 JW |
2832 | #ifdef HAVE_fixxfqi2 |
2833 | if (HAVE_fixxfqi2) | |
2834 | fixtab[(int) XFmode][(int) QImode][0] = CODE_FOR_fixxfqi2; | |
2835 | #endif | |
2836 | #ifdef HAVE_fixxfhi2 | |
2837 | if (HAVE_fixxfhi2) | |
2838 | fixtab[(int) XFmode][(int) HImode][0] = CODE_FOR_fixxfhi2; | |
2839 | #endif | |
2840 | #ifdef HAVE_fixxfsi2 | |
2841 | if (HAVE_fixxfsi2) | |
2842 | fixtab[(int) XFmode][(int) SImode][0] = CODE_FOR_fixxfsi2; | |
2843 | #endif | |
2844 | #ifdef HAVE_fixxfdi2 | |
2845 | if (HAVE_fixxfdi2) | |
2846 | fixtab[(int) XFmode][(int) DImode][0] = CODE_FOR_fixxfdi2; | |
2847 | #endif | |
2848 | #ifdef HAVE_fixxfti2 | |
2849 | if (HAVE_fixxfti2) | |
2850 | fixtab[(int) XFmode][(int) TImode][0] = CODE_FOR_fixxfti2; | |
2851 | #endif | |
2852 | ||
77c9c6c2 RK |
2853 | #ifdef HAVE_fixtfqi2 |
2854 | if (HAVE_fixtfqi2) | |
2855 | fixtab[(int) TFmode][(int) QImode][0] = CODE_FOR_fixtfqi2; | |
2856 | #endif | |
2857 | #ifdef HAVE_fixtfhi2 | |
2858 | if (HAVE_fixtfhi2) | |
2859 | fixtab[(int) TFmode][(int) HImode][0] = CODE_FOR_fixtfhi2; | |
2860 | #endif | |
2861 | #ifdef HAVE_fixtfsi2 | |
2862 | if (HAVE_fixtfsi2) | |
2863 | fixtab[(int) TFmode][(int) SImode][0] = CODE_FOR_fixtfsi2; | |
2864 | #endif | |
2865 | #ifdef HAVE_fixtfdi2 | |
2866 | if (HAVE_fixtfdi2) | |
2867 | fixtab[(int) TFmode][(int) DImode][0] = CODE_FOR_fixtfdi2; | |
2868 | #endif | |
2869 | #ifdef HAVE_fixtfti2 | |
2870 | if (HAVE_fixtfti2) | |
2871 | fixtab[(int) TFmode][(int) TImode][0] = CODE_FOR_fixtfti2; | |
2872 | #endif | |
2873 | ||
2874 | #ifdef HAVE_fixunssfqi2 | |
2875 | if (HAVE_fixunssfqi2) | |
2876 | fixtab[(int) SFmode][(int) QImode][1] = CODE_FOR_fixunssfqi2; | |
2877 | #endif | |
2878 | #ifdef HAVE_fixunssfhi2 | |
2879 | if (HAVE_fixunssfhi2) | |
2880 | fixtab[(int) SFmode][(int) HImode][1] = CODE_FOR_fixunssfhi2; | |
2881 | #endif | |
2882 | #ifdef HAVE_fixunssfsi2 | |
2883 | if (HAVE_fixunssfsi2) | |
2884 | fixtab[(int) SFmode][(int) SImode][1] = CODE_FOR_fixunssfsi2; | |
2885 | #endif | |
2886 | #ifdef HAVE_fixunssfdi2 | |
2887 | if (HAVE_fixunssfdi2) | |
2888 | fixtab[(int) SFmode][(int) DImode][1] = CODE_FOR_fixunssfdi2; | |
2889 | #endif | |
2890 | ||
2891 | #ifdef HAVE_fixunsdfqi2 | |
2892 | if (HAVE_fixunsdfqi2) | |
2893 | fixtab[(int) DFmode][(int) QImode][1] = CODE_FOR_fixunsdfqi2; | |
2894 | #endif | |
2895 | #ifdef HAVE_fixunsdfhi2 | |
2896 | if (HAVE_fixunsdfhi2) | |
2897 | fixtab[(int) DFmode][(int) HImode][1] = CODE_FOR_fixunsdfhi2; | |
2898 | #endif | |
2899 | #ifdef HAVE_fixunsdfsi2 | |
2900 | if (HAVE_fixunsdfsi2) | |
2901 | fixtab[(int) DFmode][(int) SImode][1] = CODE_FOR_fixunsdfsi2; | |
2902 | #endif | |
2903 | #ifdef HAVE_fixunsdfdi2 | |
2904 | if (HAVE_fixunsdfdi2) | |
2905 | fixtab[(int) DFmode][(int) DImode][1] = CODE_FOR_fixunsdfdi2; | |
2906 | #endif | |
2907 | #ifdef HAVE_fixunsdfti2 | |
2908 | if (HAVE_fixunsdfti2) | |
2909 | fixtab[(int) DFmode][(int) TImode][1] = CODE_FOR_fixunsdfti2; | |
2910 | #endif | |
2911 | ||
b092b471 JW |
2912 | #ifdef HAVE_fixunsxfqi2 |
2913 | if (HAVE_fixunsxfqi2) | |
2914 | fixtab[(int) XFmode][(int) QImode][1] = CODE_FOR_fixunsxfqi2; | |
2915 | #endif | |
2916 | #ifdef HAVE_fixunsxfhi2 | |
2917 | if (HAVE_fixunsxfhi2) | |
2918 | fixtab[(int) XFmode][(int) HImode][1] = CODE_FOR_fixunsxfhi2; | |
2919 | #endif | |
2920 | #ifdef HAVE_fixunsxfsi2 | |
2921 | if (HAVE_fixunsxfsi2) | |
2922 | fixtab[(int) XFmode][(int) SImode][1] = CODE_FOR_fixunsxfsi2; | |
2923 | #endif | |
2924 | #ifdef HAVE_fixunsxfdi2 | |
2925 | if (HAVE_fixunsxfdi2) | |
2926 | fixtab[(int) XFmode][(int) DImode][1] = CODE_FOR_fixunsxfdi2; | |
2927 | #endif | |
2928 | #ifdef HAVE_fixunsxfti2 | |
2929 | if (HAVE_fixunsxfti2) | |
2930 | fixtab[(int) XFmode][(int) TImode][1] = CODE_FOR_fixunsxfti2; | |
2931 | #endif | |
2932 | ||
77c9c6c2 RK |
2933 | #ifdef HAVE_fixunstfqi2 |
2934 | if (HAVE_fixunstfqi2) | |
2935 | fixtab[(int) TFmode][(int) QImode][1] = CODE_FOR_fixunstfqi2; | |
2936 | #endif | |
2937 | #ifdef HAVE_fixunstfhi2 | |
2938 | if (HAVE_fixunstfhi2) | |
2939 | fixtab[(int) TFmode][(int) HImode][1] = CODE_FOR_fixunstfhi2; | |
2940 | #endif | |
2941 | #ifdef HAVE_fixunstfsi2 | |
2942 | if (HAVE_fixunstfsi2) | |
2943 | fixtab[(int) TFmode][(int) SImode][1] = CODE_FOR_fixunstfsi2; | |
2944 | #endif | |
2945 | #ifdef HAVE_fixunstfdi2 | |
2946 | if (HAVE_fixunstfdi2) | |
2947 | fixtab[(int) TFmode][(int) DImode][1] = CODE_FOR_fixunstfdi2; | |
2948 | #endif | |
2949 | #ifdef HAVE_fixunstfti2 | |
2950 | if (HAVE_fixunstfti2) | |
2951 | fixtab[(int) TFmode][(int) TImode][1] = CODE_FOR_fixunstfti2; | |
2952 | #endif | |
2953 | ||
2954 | #ifdef HAVE_fix_truncsfqi2 | |
2955 | if (HAVE_fix_truncsfqi2) | |
2956 | fixtrunctab[(int) SFmode][(int) QImode][0] = CODE_FOR_fix_truncsfqi2; | |
2957 | #endif | |
2958 | #ifdef HAVE_fix_truncsfhi2 | |
2959 | if (HAVE_fix_truncsfhi2) | |
2960 | fixtrunctab[(int) SFmode][(int) HImode][0] = CODE_FOR_fix_truncsfhi2; | |
2961 | #endif | |
2962 | #ifdef HAVE_fix_truncsfsi2 | |
2963 | if (HAVE_fix_truncsfsi2) | |
2964 | fixtrunctab[(int) SFmode][(int) SImode][0] = CODE_FOR_fix_truncsfsi2; | |
2965 | #endif | |
2966 | #ifdef HAVE_fix_truncsfdi2 | |
2967 | if (HAVE_fix_truncsfdi2) | |
2968 | fixtrunctab[(int) SFmode][(int) DImode][0] = CODE_FOR_fix_truncsfdi2; | |
2969 | #endif | |
2970 | ||
2971 | #ifdef HAVE_fix_truncdfqi2 | |
16ab04d3 | 2972 | if (HAVE_fix_truncdfqi2) |
77c9c6c2 RK |
2973 | fixtrunctab[(int) DFmode][(int) QImode][0] = CODE_FOR_fix_truncdfqi2; |
2974 | #endif | |
2975 | #ifdef HAVE_fix_truncdfhi2 | |
2976 | if (HAVE_fix_truncdfhi2) | |
2977 | fixtrunctab[(int) DFmode][(int) HImode][0] = CODE_FOR_fix_truncdfhi2; | |
2978 | #endif | |
2979 | #ifdef HAVE_fix_truncdfsi2 | |
2980 | if (HAVE_fix_truncdfsi2) | |
2981 | fixtrunctab[(int) DFmode][(int) SImode][0] = CODE_FOR_fix_truncdfsi2; | |
2982 | #endif | |
2983 | #ifdef HAVE_fix_truncdfdi2 | |
2984 | if (HAVE_fix_truncdfdi2) | |
2985 | fixtrunctab[(int) DFmode][(int) DImode][0] = CODE_FOR_fix_truncdfdi2; | |
2986 | #endif | |
2987 | #ifdef HAVE_fix_truncdfti2 | |
2988 | if (HAVE_fix_truncdfti2) | |
2989 | fixtrunctab[(int) DFmode][(int) TImode][0] = CODE_FOR_fix_truncdfti2; | |
2990 | #endif | |
2991 | ||
b092b471 JW |
2992 | #ifdef HAVE_fix_truncxfqi2 |
2993 | if (HAVE_fix_truncxfqi2) | |
2994 | fixtrunctab[(int) XFmode][(int) QImode][0] = CODE_FOR_fix_truncxfqi2; | |
2995 | #endif | |
2996 | #ifdef HAVE_fix_truncxfhi2 | |
2997 | if (HAVE_fix_truncxfhi2) | |
2998 | fixtrunctab[(int) XFmode][(int) HImode][0] = CODE_FOR_fix_truncxfhi2; | |
2999 | #endif | |
3000 | #ifdef HAVE_fix_truncxfsi2 | |
3001 | if (HAVE_fix_truncxfsi2) | |
3002 | fixtrunctab[(int) XFmode][(int) SImode][0] = CODE_FOR_fix_truncxfsi2; | |
3003 | #endif | |
3004 | #ifdef HAVE_fix_truncxfdi2 | |
3005 | if (HAVE_fix_truncxfdi2) | |
3006 | fixtrunctab[(int) XFmode][(int) DImode][0] = CODE_FOR_fix_truncxfdi2; | |
3007 | #endif | |
3008 | #ifdef HAVE_fix_truncxfti2 | |
3009 | if (HAVE_fix_truncxfti2) | |
3010 | fixtrunctab[(int) XFmode][(int) TImode][0] = CODE_FOR_fix_truncxfti2; | |
3011 | #endif | |
3012 | ||
77c9c6c2 RK |
3013 | #ifdef HAVE_fix_trunctfqi2 |
3014 | if (HAVE_fix_trunctfqi2) | |
3015 | fixtrunctab[(int) TFmode][(int) QImode][0] = CODE_FOR_fix_trunctfqi2; | |
3016 | #endif | |
3017 | #ifdef HAVE_fix_trunctfhi2 | |
3018 | if (HAVE_fix_trunctfhi2) | |
3019 | fixtrunctab[(int) TFmode][(int) HImode][0] = CODE_FOR_fix_trunctfhi2; | |
3020 | #endif | |
3021 | #ifdef HAVE_fix_trunctfsi2 | |
3022 | if (HAVE_fix_trunctfsi2) | |
3023 | fixtrunctab[(int) TFmode][(int) SImode][0] = CODE_FOR_fix_trunctfsi2; | |
3024 | #endif | |
3025 | #ifdef HAVE_fix_trunctfdi2 | |
3026 | if (HAVE_fix_trunctfdi2) | |
3027 | fixtrunctab[(int) TFmode][(int) DImode][0] = CODE_FOR_fix_trunctfdi2; | |
3028 | #endif | |
3029 | #ifdef HAVE_fix_trunctfti2 | |
3030 | if (HAVE_fix_trunctfti2) | |
3031 | fixtrunctab[(int) TFmode][(int) TImode][0] = CODE_FOR_fix_trunctfti2; | |
3032 | #endif | |
3033 | ||
3034 | #ifdef HAVE_fixuns_truncsfqi2 | |
3035 | if (HAVE_fixuns_truncsfqi2) | |
3036 | fixtrunctab[(int) SFmode][(int) QImode][1] = CODE_FOR_fixuns_truncsfqi2; | |
3037 | #endif | |
3038 | #ifdef HAVE_fixuns_truncsfhi2 | |
3039 | if (HAVE_fixuns_truncsfhi2) | |
3040 | fixtrunctab[(int) SFmode][(int) HImode][1] = CODE_FOR_fixuns_truncsfhi2; | |
3041 | #endif | |
3042 | #ifdef HAVE_fixuns_truncsfsi2 | |
3043 | if (HAVE_fixuns_truncsfsi2) | |
3044 | fixtrunctab[(int) SFmode][(int) SImode][1] = CODE_FOR_fixuns_truncsfsi2; | |
3045 | #endif | |
3046 | #ifdef HAVE_fixuns_truncsfdi2 | |
3047 | if (HAVE_fixuns_truncsfdi2) | |
3048 | fixtrunctab[(int) SFmode][(int) DImode][1] = CODE_FOR_fixuns_truncsfdi2; | |
3049 | #endif | |
3050 | ||
3051 | #ifdef HAVE_fixuns_truncdfqi2 | |
3052 | if (HAVE_fixuns_truncdfqi2) | |
3053 | fixtrunctab[(int) DFmode][(int) QImode][1] = CODE_FOR_fixuns_truncdfqi2; | |
3054 | #endif | |
3055 | #ifdef HAVE_fixuns_truncdfhi2 | |
3056 | if (HAVE_fixuns_truncdfhi2) | |
3057 | fixtrunctab[(int) DFmode][(int) HImode][1] = CODE_FOR_fixuns_truncdfhi2; | |
3058 | #endif | |
3059 | #ifdef HAVE_fixuns_truncdfsi2 | |
3060 | if (HAVE_fixuns_truncdfsi2) | |
3061 | fixtrunctab[(int) DFmode][(int) SImode][1] = CODE_FOR_fixuns_truncdfsi2; | |
3062 | #endif | |
3063 | #ifdef HAVE_fixuns_truncdfdi2 | |
3064 | if (HAVE_fixuns_truncdfdi2) | |
3065 | fixtrunctab[(int) DFmode][(int) DImode][1] = CODE_FOR_fixuns_truncdfdi2; | |
3066 | #endif | |
3067 | #ifdef HAVE_fixuns_truncdfti2 | |
3068 | if (HAVE_fixuns_truncdfti2) | |
3069 | fixtrunctab[(int) DFmode][(int) TImode][1] = CODE_FOR_fixuns_truncdfti2; | |
3070 | #endif | |
3071 | ||
b092b471 JW |
3072 | #ifdef HAVE_fixuns_truncxfqi2 |
3073 | if (HAVE_fixuns_truncxfqi2) | |
3074 | fixtrunctab[(int) XFmode][(int) QImode][1] = CODE_FOR_fixuns_truncxfqi2; | |
3075 | #endif | |
3076 | #ifdef HAVE_fixuns_truncxfhi2 | |
3077 | if (HAVE_fixuns_truncxfhi2) | |
3078 | fixtrunctab[(int) XFmode][(int) HImode][1] = CODE_FOR_fixuns_truncxfhi2; | |
3079 | #endif | |
3080 | #ifdef HAVE_fixuns_truncxfsi2 | |
3081 | if (HAVE_fixuns_truncxfsi2) | |
3082 | fixtrunctab[(int) XFmode][(int) SImode][1] = CODE_FOR_fixuns_truncxfsi2; | |
3083 | #endif | |
3084 | #ifdef HAVE_fixuns_truncxfdi2 | |
3085 | if (HAVE_fixuns_truncxfdi2) | |
3086 | fixtrunctab[(int) XFmode][(int) DImode][1] = CODE_FOR_fixuns_truncxfdi2; | |
3087 | #endif | |
3088 | #ifdef HAVE_fixuns_truncxfti2 | |
3089 | if (HAVE_fixuns_truncxfti2) | |
3090 | fixtrunctab[(int) XFmode][(int) TImode][1] = CODE_FOR_fixuns_truncxfti2; | |
3091 | #endif | |
3092 | ||
77c9c6c2 RK |
3093 | #ifdef HAVE_fixuns_trunctfqi2 |
3094 | if (HAVE_fixuns_trunctfqi2) | |
3095 | fixtrunctab[(int) TFmode][(int) QImode][1] = CODE_FOR_fixuns_trunctfqi2; | |
3096 | #endif | |
3097 | #ifdef HAVE_fixuns_trunctfhi2 | |
3098 | if (HAVE_fixuns_trunctfhi2) | |
3099 | fixtrunctab[(int) TFmode][(int) HImode][1] = CODE_FOR_fixuns_trunctfhi2; | |
3100 | #endif | |
3101 | #ifdef HAVE_fixuns_trunctfsi2 | |
3102 | if (HAVE_fixuns_trunctfsi2) | |
3103 | fixtrunctab[(int) TFmode][(int) SImode][1] = CODE_FOR_fixuns_trunctfsi2; | |
3104 | #endif | |
3105 | #ifdef HAVE_fixuns_trunctfdi2 | |
3106 | if (HAVE_fixuns_trunctfdi2) | |
3107 | fixtrunctab[(int) TFmode][(int) DImode][1] = CODE_FOR_fixuns_trunctfdi2; | |
3108 | #endif | |
3109 | #ifdef HAVE_fixuns_trunctfti2 | |
3110 | if (HAVE_fixuns_trunctfti2) | |
3111 | fixtrunctab[(int) TFmode][(int) TImode][1] = CODE_FOR_fixuns_trunctfti2; | |
3112 | #endif | |
3113 | ||
3114 | #ifdef FIXUNS_TRUNC_LIKE_FIX_TRUNC | |
3115 | /* This flag says the same insns that convert to a signed fixnum | |
3116 | also convert validly to an unsigned one. */ | |
3117 | { | |
3118 | int i; | |
3119 | int j; | |
3120 | for (i = 0; i < NUM_MACHINE_MODES; i++) | |
3121 | for (j = 0; j < NUM_MACHINE_MODES; j++) | |
3122 | fixtrunctab[i][j][1] = fixtrunctab[i][j][0]; | |
3123 | } | |
3124 | #endif | |
3125 | } | |
3126 | ||
3127 | void | |
3128 | init_floattab () | |
3129 | { | |
3130 | enum insn_code *p; | |
3131 | for (p = floattab[0][0]; | |
3132 | p < floattab[0][0] + sizeof floattab / sizeof (floattab[0][0][0]); | |
3133 | p++) | |
3134 | *p = CODE_FOR_nothing; | |
3135 | ||
3136 | #ifdef HAVE_floatqisf2 | |
3137 | if (HAVE_floatqisf2) | |
3138 | floattab[(int) SFmode][(int) QImode][0] = CODE_FOR_floatqisf2; | |
3139 | #endif | |
3140 | #ifdef HAVE_floathisf2 | |
3141 | if (HAVE_floathisf2) | |
3142 | floattab[(int) SFmode][(int) HImode][0] = CODE_FOR_floathisf2; | |
3143 | #endif | |
3144 | #ifdef HAVE_floatsisf2 | |
3145 | if (HAVE_floatsisf2) | |
3146 | floattab[(int) SFmode][(int) SImode][0] = CODE_FOR_floatsisf2; | |
3147 | #endif | |
3148 | #ifdef HAVE_floatdisf2 | |
3149 | if (HAVE_floatdisf2) | |
3150 | floattab[(int) SFmode][(int) DImode][0] = CODE_FOR_floatdisf2; | |
3151 | #endif | |
3152 | #ifdef HAVE_floattisf2 | |
3153 | if (HAVE_floattisf2) | |
3154 | floattab[(int) SFmode][(int) TImode][0] = CODE_FOR_floattisf2; | |
3155 | #endif | |
3156 | ||
3157 | #ifdef HAVE_floatqidf2 | |
3158 | if (HAVE_floatqidf2) | |
3159 | floattab[(int) DFmode][(int) QImode][0] = CODE_FOR_floatqidf2; | |
3160 | #endif | |
3161 | #ifdef HAVE_floathidf2 | |
3162 | if (HAVE_floathidf2) | |
3163 | floattab[(int) DFmode][(int) HImode][0] = CODE_FOR_floathidf2; | |
3164 | #endif | |
3165 | #ifdef HAVE_floatsidf2 | |
3166 | if (HAVE_floatsidf2) | |
3167 | floattab[(int) DFmode][(int) SImode][0] = CODE_FOR_floatsidf2; | |
3168 | #endif | |
3169 | #ifdef HAVE_floatdidf2 | |
3170 | if (HAVE_floatdidf2) | |
3171 | floattab[(int) DFmode][(int) DImode][0] = CODE_FOR_floatdidf2; | |
3172 | #endif | |
3173 | #ifdef HAVE_floattidf2 | |
3174 | if (HAVE_floattidf2) | |
3175 | floattab[(int) DFmode][(int) TImode][0] = CODE_FOR_floattidf2; | |
3176 | #endif | |
3177 | ||
b092b471 JW |
3178 | #ifdef HAVE_floatqixf2 |
3179 | if (HAVE_floatqixf2) | |
3180 | floattab[(int) XFmode][(int) QImode][0] = CODE_FOR_floatqixf2; | |
3181 | #endif | |
3182 | #ifdef HAVE_floathixf2 | |
3183 | if (HAVE_floathixf2) | |
3184 | floattab[(int) XFmode][(int) HImode][0] = CODE_FOR_floathixf2; | |
3185 | #endif | |
3186 | #ifdef HAVE_floatsixf2 | |
3187 | if (HAVE_floatsixf2) | |
3188 | floattab[(int) XFmode][(int) SImode][0] = CODE_FOR_floatsixf2; | |
3189 | #endif | |
3190 | #ifdef HAVE_floatdixf2 | |
3191 | if (HAVE_floatdixf2) | |
3192 | floattab[(int) XFmode][(int) DImode][0] = CODE_FOR_floatdixf2; | |
3193 | #endif | |
3194 | #ifdef HAVE_floattixf2 | |
3195 | if (HAVE_floattixf2) | |
3196 | floattab[(int) XFmode][(int) TImode][0] = CODE_FOR_floattixf2; | |
3197 | #endif | |
3198 | ||
77c9c6c2 RK |
3199 | #ifdef HAVE_floatqitf2 |
3200 | if (HAVE_floatqitf2) | |
3201 | floattab[(int) TFmode][(int) QImode][0] = CODE_FOR_floatqitf2; | |
3202 | #endif | |
3203 | #ifdef HAVE_floathitf2 | |
3204 | if (HAVE_floathitf2) | |
3205 | floattab[(int) TFmode][(int) HImode][0] = CODE_FOR_floathitf2; | |
3206 | #endif | |
3207 | #ifdef HAVE_floatsitf2 | |
3208 | if (HAVE_floatsitf2) | |
3209 | floattab[(int) TFmode][(int) SImode][0] = CODE_FOR_floatsitf2; | |
3210 | #endif | |
3211 | #ifdef HAVE_floatditf2 | |
3212 | if (HAVE_floatditf2) | |
3213 | floattab[(int) TFmode][(int) DImode][0] = CODE_FOR_floatditf2; | |
3214 | #endif | |
3215 | #ifdef HAVE_floattitf2 | |
3216 | if (HAVE_floattitf2) | |
3217 | floattab[(int) TFmode][(int) TImode][0] = CODE_FOR_floattitf2; | |
3218 | #endif | |
3219 | ||
3220 | #ifdef HAVE_floatunsqisf2 | |
3221 | if (HAVE_floatunsqisf2) | |
3222 | floattab[(int) SFmode][(int) QImode][1] = CODE_FOR_floatunsqisf2; | |
3223 | #endif | |
3224 | #ifdef HAVE_floatunshisf2 | |
3225 | if (HAVE_floatunshisf2) | |
3226 | floattab[(int) SFmode][(int) HImode][1] = CODE_FOR_floatunshisf2; | |
3227 | #endif | |
3228 | #ifdef HAVE_floatunssisf2 | |
3229 | if (HAVE_floatunssisf2) | |
3230 | floattab[(int) SFmode][(int) SImode][1] = CODE_FOR_floatunssisf2; | |
3231 | #endif | |
3232 | #ifdef HAVE_floatunsdisf2 | |
3233 | if (HAVE_floatunsdisf2) | |
3234 | floattab[(int) SFmode][(int) DImode][1] = CODE_FOR_floatunsdisf2; | |
3235 | #endif | |
3236 | #ifdef HAVE_floatunstisf2 | |
3237 | if (HAVE_floatunstisf2) | |
3238 | floattab[(int) SFmode][(int) TImode][1] = CODE_FOR_floatunstisf2; | |
3239 | #endif | |
3240 | ||
3241 | #ifdef HAVE_floatunsqidf2 | |
3242 | if (HAVE_floatunsqidf2) | |
3243 | floattab[(int) DFmode][(int) QImode][1] = CODE_FOR_floatunsqidf2; | |
3244 | #endif | |
3245 | #ifdef HAVE_floatunshidf2 | |
3246 | if (HAVE_floatunshidf2) | |
3247 | floattab[(int) DFmode][(int) HImode][1] = CODE_FOR_floatunshidf2; | |
3248 | #endif | |
3249 | #ifdef HAVE_floatunssidf2 | |
3250 | if (HAVE_floatunssidf2) | |
3251 | floattab[(int) DFmode][(int) SImode][1] = CODE_FOR_floatunssidf2; | |
3252 | #endif | |
3253 | #ifdef HAVE_floatunsdidf2 | |
3254 | if (HAVE_floatunsdidf2) | |
3255 | floattab[(int) DFmode][(int) DImode][1] = CODE_FOR_floatunsdidf2; | |
3256 | #endif | |
3257 | #ifdef HAVE_floatunstidf2 | |
3258 | if (HAVE_floatunstidf2) | |
3259 | floattab[(int) DFmode][(int) TImode][1] = CODE_FOR_floatunstidf2; | |
3260 | #endif | |
3261 | ||
b092b471 JW |
3262 | #ifdef HAVE_floatunsqixf2 |
3263 | if (HAVE_floatunsqixf2) | |
3264 | floattab[(int) XFmode][(int) QImode][1] = CODE_FOR_floatunsqixf2; | |
3265 | #endif | |
3266 | #ifdef HAVE_floatunshixf2 | |
3267 | if (HAVE_floatunshixf2) | |
3268 | floattab[(int) XFmode][(int) HImode][1] = CODE_FOR_floatunshixf2; | |
3269 | #endif | |
3270 | #ifdef HAVE_floatunssixf2 | |
3271 | if (HAVE_floatunssixf2) | |
3272 | floattab[(int) XFmode][(int) SImode][1] = CODE_FOR_floatunssixf2; | |
3273 | #endif | |
3274 | #ifdef HAVE_floatunsdixf2 | |
3275 | if (HAVE_floatunsdixf2) | |
3276 | floattab[(int) XFmode][(int) DImode][1] = CODE_FOR_floatunsdixf2; | |
3277 | #endif | |
3278 | #ifdef HAVE_floatunstixf2 | |
3279 | if (HAVE_floatunstixf2) | |
3280 | floattab[(int) XFmode][(int) TImode][1] = CODE_FOR_floatunstixf2; | |
3281 | #endif | |
3282 | ||
77c9c6c2 RK |
3283 | #ifdef HAVE_floatunsqitf2 |
3284 | if (HAVE_floatunsqitf2) | |
3285 | floattab[(int) TFmode][(int) QImode][1] = CODE_FOR_floatunsqitf2; | |
3286 | #endif | |
3287 | #ifdef HAVE_floatunshitf2 | |
3288 | if (HAVE_floatunshitf2) | |
3289 | floattab[(int) TFmode][(int) HImode][1] = CODE_FOR_floatunshitf2; | |
3290 | #endif | |
3291 | #ifdef HAVE_floatunssitf2 | |
3292 | if (HAVE_floatunssitf2) | |
3293 | floattab[(int) TFmode][(int) SImode][1] = CODE_FOR_floatunssitf2; | |
3294 | #endif | |
3295 | #ifdef HAVE_floatunsditf2 | |
3296 | if (HAVE_floatunsditf2) | |
3297 | floattab[(int) TFmode][(int) DImode][1] = CODE_FOR_floatunsditf2; | |
3298 | #endif | |
3299 | #ifdef HAVE_floatunstitf2 | |
3300 | if (HAVE_floatunstitf2) | |
3301 | floattab[(int) TFmode][(int) TImode][1] = CODE_FOR_floatunstitf2; | |
3302 | #endif | |
3303 | } | |
3304 | \f | |
3305 | /* Generate code to convert FROM to floating point | |
34e56753 | 3306 | and store in TO. FROM must be fixed point and not VOIDmode. |
77c9c6c2 RK |
3307 | UNSIGNEDP nonzero means regard FROM as unsigned. |
3308 | Normally this is done by correcting the final value | |
3309 | if it is negative. */ | |
3310 | ||
3311 | void | |
3312 | expand_float (to, from, unsignedp) | |
3313 | rtx to, from; | |
3314 | int unsignedp; | |
3315 | { | |
3316 | enum insn_code icode; | |
3317 | register rtx target = to; | |
3318 | enum machine_mode fmode, imode; | |
3319 | ||
34e56753 RS |
3320 | /* Crash now, because we won't be able to decide which mode to use. */ |
3321 | if (GET_MODE (from) == VOIDmode) | |
3322 | abort (); | |
3323 | ||
77c9c6c2 RK |
3324 | /* Look for an insn to do the conversion. Do it in the specified |
3325 | modes if possible; otherwise convert either input, output or both to | |
3326 | wider mode. If the integer mode is wider than the mode of FROM, | |
3327 | we can do the conversion signed even if the input is unsigned. */ | |
3328 | ||
3329 | for (imode = GET_MODE (from); imode != VOIDmode; | |
3330 | imode = GET_MODE_WIDER_MODE (imode)) | |
3331 | for (fmode = GET_MODE (to); fmode != VOIDmode; | |
3332 | fmode = GET_MODE_WIDER_MODE (fmode)) | |
3333 | { | |
3334 | int doing_unsigned = unsignedp; | |
3335 | ||
3336 | icode = can_float_p (fmode, imode, unsignedp); | |
3337 | if (icode == CODE_FOR_nothing && imode != GET_MODE (from) && unsignedp) | |
3338 | icode = can_float_p (fmode, imode, 0), doing_unsigned = 0; | |
3339 | ||
3340 | if (icode != CODE_FOR_nothing) | |
3341 | { | |
3342 | to = protect_from_queue (to, 1); | |
06e40b26 | 3343 | from = protect_from_queue (from, 0); |
77c9c6c2 RK |
3344 | |
3345 | if (imode != GET_MODE (from)) | |
3346 | from = convert_to_mode (imode, from, unsignedp); | |
77c9c6c2 RK |
3347 | |
3348 | if (fmode != GET_MODE (to)) | |
3349 | target = gen_reg_rtx (fmode); | |
3350 | ||
3351 | emit_unop_insn (icode, target, from, | |
3352 | doing_unsigned ? UNSIGNED_FLOAT : FLOAT); | |
3353 | ||
3354 | if (target != to) | |
3355 | convert_move (to, target, 0); | |
3356 | return; | |
3357 | } | |
3358 | } | |
3359 | ||
3360 | #if !defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC) | |
3361 | ||
3362 | /* Unsigned integer, and no way to convert directly. | |
3363 | Convert as signed, then conditionally adjust the result. */ | |
3364 | if (unsignedp) | |
3365 | { | |
3366 | rtx label = gen_label_rtx (); | |
3367 | rtx temp; | |
3368 | REAL_VALUE_TYPE offset; | |
3369 | ||
3370 | emit_queue (); | |
3371 | ||
3372 | to = protect_from_queue (to, 1); | |
3373 | from = protect_from_queue (from, 0); | |
3374 | ||
3375 | if (flag_force_mem) | |
3376 | from = force_not_mem (from); | |
3377 | ||
3378 | /* If we are about to do some arithmetic to correct for an | |
3379 | unsigned operand, do it in a pseudo-register. */ | |
3380 | ||
3381 | if (GET_CODE (to) != REG || REGNO (to) <= LAST_VIRTUAL_REGISTER) | |
3382 | target = gen_reg_rtx (GET_MODE (to)); | |
3383 | ||
3384 | /* Convert as signed integer to floating. */ | |
3385 | expand_float (target, from, 0); | |
3386 | ||
3387 | /* If FROM is negative (and therefore TO is negative), | |
3388 | correct its value by 2**bitwidth. */ | |
3389 | ||
3390 | do_pending_stack_adjust (); | |
b1ec3c92 | 3391 | emit_cmp_insn (from, const0_rtx, GE, NULL_RTX, GET_MODE (from), 0, 0); |
77c9c6c2 RK |
3392 | emit_jump_insn (gen_bge (label)); |
3393 | /* On SCO 3.2.1, ldexp rejects values outside [0.5, 1). | |
3394 | Rather than setting up a dconst_dot_5, let's hope SCO | |
3395 | fixes the bug. */ | |
3396 | offset = REAL_VALUE_LDEXP (dconst1, GET_MODE_BITSIZE (GET_MODE (from))); | |
3397 | temp = expand_binop (GET_MODE (to), add_optab, target, | |
3398 | immed_real_const_1 (offset, GET_MODE (to)), | |
3399 | target, 0, OPTAB_LIB_WIDEN); | |
3400 | if (temp != target) | |
3401 | emit_move_insn (target, temp); | |
3402 | do_pending_stack_adjust (); | |
3403 | emit_label (label); | |
3404 | } | |
3405 | else | |
3406 | #endif | |
3407 | ||
b092b471 JW |
3408 | /* No hardware instruction available; call a library rotine to convert from |
3409 | SImode, DImode, or TImode into SFmode, DFmode, XFmode, or TFmode. */ | |
77c9c6c2 | 3410 | { |
6bce1b78 | 3411 | rtx libfcn; |
77c9c6c2 RK |
3412 | rtx insns; |
3413 | ||
3414 | to = protect_from_queue (to, 1); | |
06e40b26 | 3415 | from = protect_from_queue (from, 0); |
77c9c6c2 RK |
3416 | |
3417 | if (GET_MODE_SIZE (GET_MODE (from)) < GET_MODE_SIZE (SImode)) | |
3418 | from = convert_to_mode (SImode, from, unsignedp); | |
77c9c6c2 RK |
3419 | |
3420 | if (flag_force_mem) | |
3421 | from = force_not_mem (from); | |
3422 | ||
3423 | if (GET_MODE (to) == SFmode) | |
3424 | { | |
3425 | if (GET_MODE (from) == SImode) | |
6bce1b78 | 3426 | libfcn = floatsisf_libfunc; |
77c9c6c2 | 3427 | else if (GET_MODE (from) == DImode) |
6bce1b78 | 3428 | libfcn = floatdisf_libfunc; |
b092b471 JW |
3429 | else if (GET_MODE (from) == TImode) |
3430 | libfcn = floattisf_libfunc; | |
77c9c6c2 RK |
3431 | else |
3432 | abort (); | |
3433 | } | |
3434 | else if (GET_MODE (to) == DFmode) | |
3435 | { | |
3436 | if (GET_MODE (from) == SImode) | |
6bce1b78 | 3437 | libfcn = floatsidf_libfunc; |
77c9c6c2 | 3438 | else if (GET_MODE (from) == DImode) |
6bce1b78 | 3439 | libfcn = floatdidf_libfunc; |
b092b471 JW |
3440 | else if (GET_MODE (from) == TImode) |
3441 | libfcn = floattidf_libfunc; | |
3442 | else | |
3443 | abort (); | |
3444 | } | |
3445 | else if (GET_MODE (to) == XFmode) | |
3446 | { | |
3447 | if (GET_MODE (from) == SImode) | |
3448 | libfcn = floatsixf_libfunc; | |
3449 | else if (GET_MODE (from) == DImode) | |
3450 | libfcn = floatdixf_libfunc; | |
3451 | else if (GET_MODE (from) == TImode) | |
3452 | libfcn = floattixf_libfunc; | |
3453 | else | |
3454 | abort (); | |
3455 | } | |
3456 | else if (GET_MODE (to) == TFmode) | |
3457 | { | |
3458 | if (GET_MODE (from) == SImode) | |
3459 | libfcn = floatsitf_libfunc; | |
3460 | else if (GET_MODE (from) == DImode) | |
3461 | libfcn = floatditf_libfunc; | |
3462 | else if (GET_MODE (from) == TImode) | |
3463 | libfcn = floattitf_libfunc; | |
77c9c6c2 RK |
3464 | else |
3465 | abort (); | |
3466 | } | |
3467 | else | |
3468 | abort (); | |
3469 | ||
3470 | start_sequence (); | |
3471 | ||
86f8eff3 | 3472 | emit_library_call (libfcn, 1, GET_MODE (to), 1, from, GET_MODE (from)); |
77c9c6c2 RK |
3473 | insns = get_insns (); |
3474 | end_sequence (); | |
3475 | ||
3476 | emit_libcall_block (insns, target, hard_libcall_value (GET_MODE (to)), | |
3477 | gen_rtx (FLOAT, GET_MODE (to), from)); | |
3478 | } | |
3479 | ||
3480 | /* Copy result to requested destination | |
3481 | if we have been computing in a temp location. */ | |
3482 | ||
3483 | if (target != to) | |
3484 | { | |
3485 | if (GET_MODE (target) == GET_MODE (to)) | |
3486 | emit_move_insn (to, target); | |
3487 | else | |
3488 | convert_move (to, target, 0); | |
3489 | } | |
3490 | } | |
3491 | \f | |
3492 | /* expand_fix: generate code to convert FROM to fixed point | |
3493 | and store in TO. FROM must be floating point. */ | |
3494 | ||
3495 | static rtx | |
3496 | ftruncify (x) | |
3497 | rtx x; | |
3498 | { | |
3499 | rtx temp = gen_reg_rtx (GET_MODE (x)); | |
3500 | return expand_unop (GET_MODE (x), ftrunc_optab, x, temp, 0); | |
3501 | } | |
3502 | ||
3503 | void | |
3504 | expand_fix (to, from, unsignedp) | |
3505 | register rtx to, from; | |
3506 | int unsignedp; | |
3507 | { | |
3508 | enum insn_code icode; | |
3509 | register rtx target = to; | |
3510 | enum machine_mode fmode, imode; | |
3511 | int must_trunc = 0; | |
6bce1b78 | 3512 | rtx libfcn = 0; |
77c9c6c2 RK |
3513 | |
3514 | /* We first try to find a pair of modes, one real and one integer, at | |
3515 | least as wide as FROM and TO, respectively, in which we can open-code | |
3516 | this conversion. If the integer mode is wider than the mode of TO, | |
3517 | we can do the conversion either signed or unsigned. */ | |
3518 | ||
3519 | for (imode = GET_MODE (to); imode != VOIDmode; | |
3520 | imode = GET_MODE_WIDER_MODE (imode)) | |
3521 | for (fmode = GET_MODE (from); fmode != VOIDmode; | |
3522 | fmode = GET_MODE_WIDER_MODE (fmode)) | |
3523 | { | |
3524 | int doing_unsigned = unsignedp; | |
3525 | ||
3526 | icode = can_fix_p (imode, fmode, unsignedp, &must_trunc); | |
3527 | if (icode == CODE_FOR_nothing && imode != GET_MODE (to) && unsignedp) | |
3528 | icode = can_fix_p (imode, fmode, 0, &must_trunc), doing_unsigned = 0; | |
3529 | ||
3530 | if (icode != CODE_FOR_nothing) | |
3531 | { | |
3532 | to = protect_from_queue (to, 1); | |
06e40b26 | 3533 | from = protect_from_queue (from, 0); |
77c9c6c2 RK |
3534 | |
3535 | if (fmode != GET_MODE (from)) | |
3536 | from = convert_to_mode (fmode, from, 0); | |
77c9c6c2 RK |
3537 | |
3538 | if (must_trunc) | |
3539 | from = ftruncify (from); | |
3540 | ||
3541 | if (imode != GET_MODE (to)) | |
3542 | target = gen_reg_rtx (imode); | |
3543 | ||
3544 | emit_unop_insn (icode, target, from, | |
3545 | doing_unsigned ? UNSIGNED_FIX : FIX); | |
3546 | if (target != to) | |
3547 | convert_move (to, target, unsignedp); | |
3548 | return; | |
3549 | } | |
3550 | } | |
3551 | ||
3552 | #if !defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC) | |
3553 | /* For an unsigned conversion, there is one more way to do it. | |
3554 | If we have a signed conversion, we generate code that compares | |
3555 | the real value to the largest representable positive number. If if | |
3556 | is smaller, the conversion is done normally. Otherwise, subtract | |
3557 | one plus the highest signed number, convert, and add it back. | |
3558 | ||
3559 | We only need to check all real modes, since we know we didn't find | |
6dc42e49 | 3560 | anything with a wider integer mode. */ |
77c9c6c2 | 3561 | |
b1ec3c92 | 3562 | if (unsignedp && GET_MODE_BITSIZE (GET_MODE (to)) <= HOST_BITS_PER_WIDE_INT) |
77c9c6c2 RK |
3563 | for (fmode = GET_MODE (from); fmode != VOIDmode; |
3564 | fmode = GET_MODE_WIDER_MODE (fmode)) | |
3565 | /* Make sure we won't lose significant bits doing this. */ | |
3566 | if (GET_MODE_BITSIZE (fmode) > GET_MODE_BITSIZE (GET_MODE (to)) | |
3567 | && CODE_FOR_nothing != can_fix_p (GET_MODE (to), fmode, 0, | |
3568 | &must_trunc)) | |
3569 | { | |
3570 | int bitsize = GET_MODE_BITSIZE (GET_MODE (to)); | |
3571 | REAL_VALUE_TYPE offset = REAL_VALUE_LDEXP (dconst1, bitsize - 1); | |
3572 | rtx limit = immed_real_const_1 (offset, fmode); | |
3573 | rtx lab1 = gen_label_rtx (); | |
3574 | rtx lab2 = gen_label_rtx (); | |
3575 | rtx insn; | |
3576 | ||
3577 | emit_queue (); | |
3578 | to = protect_from_queue (to, 1); | |
3579 | from = protect_from_queue (from, 0); | |
3580 | ||
3581 | if (flag_force_mem) | |
3582 | from = force_not_mem (from); | |
3583 | ||
3584 | if (fmode != GET_MODE (from)) | |
3585 | from = convert_to_mode (fmode, from, 0); | |
3586 | ||
3587 | /* See if we need to do the subtraction. */ | |
3588 | do_pending_stack_adjust (); | |
b1ec3c92 | 3589 | emit_cmp_insn (from, limit, GE, NULL_RTX, GET_MODE (from), 0, 0); |
77c9c6c2 RK |
3590 | emit_jump_insn (gen_bge (lab1)); |
3591 | ||
3592 | /* If not, do the signed "fix" and branch around fixup code. */ | |
3593 | expand_fix (to, from, 0); | |
3594 | emit_jump_insn (gen_jump (lab2)); | |
3595 | emit_barrier (); | |
3596 | ||
3597 | /* Otherwise, subtract 2**(N-1), convert to signed number, | |
3598 | then add 2**(N-1). Do the addition using XOR since this | |
3599 | will often generate better code. */ | |
3600 | emit_label (lab1); | |
3601 | target = expand_binop (GET_MODE (from), sub_optab, from, limit, | |
b1ec3c92 | 3602 | NULL_RTX, 0, OPTAB_LIB_WIDEN); |
77c9c6c2 RK |
3603 | expand_fix (to, target, 0); |
3604 | target = expand_binop (GET_MODE (to), xor_optab, to, | |
b1ec3c92 | 3605 | GEN_INT ((HOST_WIDE_INT) 1 << (bitsize - 1)), |
77c9c6c2 RK |
3606 | to, 1, OPTAB_LIB_WIDEN); |
3607 | ||
3608 | if (target != to) | |
3609 | emit_move_insn (to, target); | |
3610 | ||
3611 | emit_label (lab2); | |
3612 | ||
3613 | /* Make a place for a REG_NOTE and add it. */ | |
3614 | insn = emit_move_insn (to, to); | |
3615 | REG_NOTES (insn) = gen_rtx (EXPR_LIST, REG_EQUAL, | |
3616 | gen_rtx (UNSIGNED_FIX, GET_MODE (to), | |
3617 | from), REG_NOTES (insn)); | |
3618 | ||
3619 | return; | |
3620 | } | |
3621 | #endif | |
3622 | ||
3623 | /* We can't do it with an insn, so use a library call. But first ensure | |
3624 | that the mode of TO is at least as wide as SImode, since those are the | |
3625 | only library calls we know about. */ | |
3626 | ||
3627 | if (GET_MODE_SIZE (GET_MODE (to)) < GET_MODE_SIZE (SImode)) | |
3628 | { | |
3629 | target = gen_reg_rtx (SImode); | |
3630 | ||
3631 | expand_fix (target, from, unsignedp); | |
3632 | } | |
3633 | else if (GET_MODE (from) == SFmode) | |
3634 | { | |
3635 | if (GET_MODE (to) == SImode) | |
6bce1b78 | 3636 | libfcn = unsignedp ? fixunssfsi_libfunc : fixsfsi_libfunc; |
77c9c6c2 | 3637 | else if (GET_MODE (to) == DImode) |
6bce1b78 | 3638 | libfcn = unsignedp ? fixunssfdi_libfunc : fixsfdi_libfunc; |
b092b471 JW |
3639 | else if (GET_MODE (to) == TImode) |
3640 | libfcn = unsignedp ? fixunssfti_libfunc : fixsfti_libfunc; | |
77c9c6c2 RK |
3641 | else |
3642 | abort (); | |
3643 | } | |
3644 | else if (GET_MODE (from) == DFmode) | |
3645 | { | |
3646 | if (GET_MODE (to) == SImode) | |
6bce1b78 | 3647 | libfcn = unsignedp ? fixunsdfsi_libfunc : fixdfsi_libfunc; |
77c9c6c2 | 3648 | else if (GET_MODE (to) == DImode) |
6bce1b78 | 3649 | libfcn = unsignedp ? fixunsdfdi_libfunc : fixdfdi_libfunc; |
b092b471 JW |
3650 | else if (GET_MODE (to) == TImode) |
3651 | libfcn = unsignedp ? fixunsdfti_libfunc : fixdfti_libfunc; | |
3652 | else | |
3653 | abort (); | |
3654 | } | |
3655 | else if (GET_MODE (from) == XFmode) | |
3656 | { | |
3657 | if (GET_MODE (to) == SImode) | |
3658 | libfcn = unsignedp ? fixunsxfsi_libfunc : fixxfsi_libfunc; | |
3659 | else if (GET_MODE (to) == DImode) | |
3660 | libfcn = unsignedp ? fixunsxfdi_libfunc : fixxfdi_libfunc; | |
3661 | else if (GET_MODE (to) == TImode) | |
3662 | libfcn = unsignedp ? fixunsxfti_libfunc : fixxfti_libfunc; | |
3663 | else | |
3664 | abort (); | |
3665 | } | |
3666 | else if (GET_MODE (from) == TFmode) | |
3667 | { | |
3668 | if (GET_MODE (to) == SImode) | |
3669 | libfcn = unsignedp ? fixunstfsi_libfunc : fixtfsi_libfunc; | |
3670 | else if (GET_MODE (to) == DImode) | |
3671 | libfcn = unsignedp ? fixunstfdi_libfunc : fixtfdi_libfunc; | |
3672 | else if (GET_MODE (to) == TImode) | |
3673 | libfcn = unsignedp ? fixunstfti_libfunc : fixtfti_libfunc; | |
77c9c6c2 RK |
3674 | else |
3675 | abort (); | |
3676 | } | |
3677 | else | |
3678 | abort (); | |
3679 | ||
6bce1b78 | 3680 | if (libfcn) |
77c9c6c2 RK |
3681 | { |
3682 | rtx insns; | |
3683 | ||
3684 | to = protect_from_queue (to, 1); | |
3685 | from = protect_from_queue (from, 0); | |
3686 | ||
3687 | if (flag_force_mem) | |
3688 | from = force_not_mem (from); | |
3689 | ||
3690 | start_sequence (); | |
3691 | ||
86f8eff3 | 3692 | emit_library_call (libfcn, 1, GET_MODE (to), 1, from, GET_MODE (from)); |
77c9c6c2 RK |
3693 | insns = get_insns (); |
3694 | end_sequence (); | |
3695 | ||
3696 | emit_libcall_block (insns, target, hard_libcall_value (GET_MODE (to)), | |
3697 | gen_rtx (unsignedp ? FIX : UNSIGNED_FIX, | |
3698 | GET_MODE (to), from)); | |
3699 | } | |
3700 | ||
3701 | if (GET_MODE (to) == GET_MODE (target)) | |
3702 | emit_move_insn (to, target); | |
3703 | else | |
3704 | convert_move (to, target, 0); | |
3705 | } | |
3706 | \f | |
3707 | static optab | |
3708 | init_optab (code) | |
3709 | enum rtx_code code; | |
3710 | { | |
3711 | int i; | |
3712 | optab op = (optab) xmalloc (sizeof (struct optab)); | |
3713 | op->code = code; | |
3714 | for (i = 0; i < NUM_MACHINE_MODES; i++) | |
3715 | { | |
3716 | op->handlers[i].insn_code = CODE_FOR_nothing; | |
3717 | op->handlers[i].libfunc = 0; | |
3718 | } | |
3719 | return op; | |
3720 | } | |
3721 | ||
b092b471 JW |
3722 | /* Initialize the libfunc fields of an entire group of entries in some |
3723 | optab. Each entry is set equal to a string consisting of a leading | |
3724 | pair of underscores followed by a generic operation name followed by | |
3725 | a mode name (downshifted to lower case) followed by a single character | |
3726 | representing the number of operands for the given operation (which is | |
3727 | usually one of the characters '2', '3', or '4'). | |
3728 | ||
3729 | OPTABLE is the table in which libfunc fields are to be initialized. | |
3730 | FIRST_MODE is the first machine mode index in the given optab to | |
3731 | initialize. | |
3732 | LAST_MODE is the last machine mode index in the given optab to | |
3733 | initialize. | |
3734 | OPNAME is the generic (string) name of the operation. | |
3735 | SUFFIX is the character which specifies the number of operands for | |
3736 | the given generic operation. | |
3737 | */ | |
3738 | ||
3739 | static void | |
3740 | init_libfuncs (optable, first_mode, last_mode, opname, suffix) | |
3741 | register optab optable; | |
3742 | register char *opname; | |
3743 | register enum machine_mode first_mode; | |
3744 | register enum machine_mode last_mode; | |
3745 | register char suffix; | |
3746 | { | |
3747 | register enum machine_mode mode; | |
3748 | register unsigned opname_len = strlen (opname); | |
3749 | ||
fe0035ff RS |
3750 | for (mode = first_mode; (int) mode <= (int) last_mode; |
3751 | mode = (enum machine_mode) ((int) mode + 1)) | |
b092b471 JW |
3752 | { |
3753 | register char *mname = mode_name[(int) mode]; | |
3754 | register unsigned mname_len = strlen (mname); | |
3755 | register char *libfunc_name | |
3756 | = (char *) xmalloc (2 + opname_len + mname_len + 1 + 1); | |
3757 | register char *p; | |
3758 | register char *q; | |
3759 | ||
3760 | p = libfunc_name; | |
3761 | *p++ = '_'; | |
3762 | *p++ = '_'; | |
3763 | for (q = opname; *q; ) | |
3764 | *p++ = *q++; | |
3765 | for (q = mname; *q; q++) | |
3766 | *p++ = tolower (*q); | |
3767 | *p++ = suffix; | |
3768 | *p++ = '\0'; | |
3769 | optable->handlers[(int) mode].libfunc | |
3770 | = gen_rtx (SYMBOL_REF, Pmode, libfunc_name); | |
3771 | } | |
3772 | } | |
3773 | ||
3774 | /* Initialize the libfunc fields of an entire group of entries in some | |
3775 | optab which correspond to all integer mode operations. The parameters | |
3776 | have the same meaning as similarly named ones for the `init_libfuncs' | |
3777 | routine. (See above). */ | |
3778 | ||
3779 | static void | |
3780 | init_integral_libfuncs (optable, opname, suffix) | |
3781 | register optab optable; | |
3782 | register char *opname; | |
3783 | register char suffix; | |
3784 | { | |
3785 | init_libfuncs (optable, SImode, TImode, opname, suffix); | |
3786 | } | |
3787 | ||
3788 | /* Initialize the libfunc fields of an entire group of entries in some | |
3789 | optab which correspond to all real mode operations. The parameters | |
3790 | have the same meaning as similarly named ones for the `init_libfuncs' | |
3791 | routine. (See above). */ | |
3792 | ||
3793 | static void | |
3794 | init_floating_libfuncs (optable, opname, suffix) | |
3795 | register optab optable; | |
3796 | register char *opname; | |
3797 | register char suffix; | |
3798 | { | |
3799 | init_libfuncs (optable, SFmode, TFmode, opname, suffix); | |
3800 | } | |
3801 | ||
139e5e08 RS |
3802 | /* Initialize the libfunc fields of an entire group of entries in some |
3803 | optab which correspond to all complex floating modes. The parameters | |
3804 | have the same meaning as similarly named ones for the `init_libfuncs' | |
3805 | routine. (See above). */ | |
3806 | ||
3807 | static void | |
3808 | init_complex_libfuncs (optable, opname, suffix) | |
3809 | register optab optable; | |
3810 | register char *opname; | |
3811 | register char suffix; | |
3812 | { | |
3813 | init_libfuncs (optable, SCmode, TCmode, opname, suffix); | |
3814 | } | |
3815 | ||
77c9c6c2 RK |
3816 | /* Call this once to initialize the contents of the optabs |
3817 | appropriately for the current target machine. */ | |
3818 | ||
3819 | void | |
3820 | init_optabs () | |
3821 | { | |
3822 | int i; | |
3823 | ||
3824 | init_fixtab (); | |
3825 | init_floattab (); | |
3826 | init_extends (); | |
3827 | ||
3828 | add_optab = init_optab (PLUS); | |
3829 | sub_optab = init_optab (MINUS); | |
3830 | smul_optab = init_optab (MULT); | |
3831 | smul_widen_optab = init_optab (UNKNOWN); | |
3832 | umul_widen_optab = init_optab (UNKNOWN); | |
3833 | sdiv_optab = init_optab (DIV); | |
3834 | sdivmod_optab = init_optab (UNKNOWN); | |
3835 | udiv_optab = init_optab (UDIV); | |
3836 | udivmod_optab = init_optab (UNKNOWN); | |
3837 | smod_optab = init_optab (MOD); | |
3838 | umod_optab = init_optab (UMOD); | |
3839 | flodiv_optab = init_optab (DIV); | |
3840 | ftrunc_optab = init_optab (UNKNOWN); | |
3841 | and_optab = init_optab (AND); | |
3842 | ior_optab = init_optab (IOR); | |
3843 | xor_optab = init_optab (XOR); | |
3844 | ashl_optab = init_optab (ASHIFT); | |
3845 | ashr_optab = init_optab (ASHIFTRT); | |
3846 | lshl_optab = init_optab (LSHIFT); | |
3847 | lshr_optab = init_optab (LSHIFTRT); | |
3848 | rotl_optab = init_optab (ROTATE); | |
3849 | rotr_optab = init_optab (ROTATERT); | |
3850 | smin_optab = init_optab (SMIN); | |
3851 | smax_optab = init_optab (SMAX); | |
3852 | umin_optab = init_optab (UMIN); | |
3853 | umax_optab = init_optab (UMAX); | |
3854 | mov_optab = init_optab (UNKNOWN); | |
3855 | movstrict_optab = init_optab (UNKNOWN); | |
3856 | cmp_optab = init_optab (UNKNOWN); | |
3857 | ucmp_optab = init_optab (UNKNOWN); | |
3858 | tst_optab = init_optab (UNKNOWN); | |
3859 | neg_optab = init_optab (NEG); | |
3860 | abs_optab = init_optab (ABS); | |
3861 | one_cmpl_optab = init_optab (NOT); | |
3862 | ffs_optab = init_optab (FFS); | |
d45cf215 | 3863 | sqrt_optab = init_optab (SQRT); |
28cf078d JVA |
3864 | sin_optab = init_optab (UNKNOWN); |
3865 | cos_optab = init_optab (UNKNOWN); | |
19c3fc24 | 3866 | strlen_optab = init_optab (UNKNOWN); |
77c9c6c2 RK |
3867 | |
3868 | #ifdef HAVE_addqi3 | |
3869 | if (HAVE_addqi3) | |
3870 | add_optab->handlers[(int) QImode].insn_code = CODE_FOR_addqi3; | |
3871 | #endif | |
3872 | #ifdef HAVE_addhi3 | |
3873 | if (HAVE_addhi3) | |
3874 | add_optab->handlers[(int) HImode].insn_code = CODE_FOR_addhi3; | |
3875 | #endif | |
3876 | #ifdef HAVE_addpsi3 | |
3877 | if (HAVE_addpsi3) | |
3878 | add_optab->handlers[(int) PSImode].insn_code = CODE_FOR_addpsi3; | |
3879 | #endif | |
3880 | #ifdef HAVE_addsi3 | |
3881 | if (HAVE_addsi3) | |
3882 | add_optab->handlers[(int) SImode].insn_code = CODE_FOR_addsi3; | |
3883 | #endif | |
3884 | #ifdef HAVE_adddi3 | |
3885 | if (HAVE_adddi3) | |
3886 | add_optab->handlers[(int) DImode].insn_code = CODE_FOR_adddi3; | |
3887 | #endif | |
3888 | #ifdef HAVE_addti3 | |
3889 | if (HAVE_addti3) | |
3890 | add_optab->handlers[(int) TImode].insn_code = CODE_FOR_addti3; | |
3891 | #endif | |
3892 | #ifdef HAVE_addsf3 | |
3893 | if (HAVE_addsf3) | |
3894 | add_optab->handlers[(int) SFmode].insn_code = CODE_FOR_addsf3; | |
3895 | #endif | |
3896 | #ifdef HAVE_adddf3 | |
3897 | if (HAVE_adddf3) | |
3898 | add_optab->handlers[(int) DFmode].insn_code = CODE_FOR_adddf3; | |
3899 | #endif | |
b092b471 JW |
3900 | #ifdef HAVE_addxf3 |
3901 | if (HAVE_addxf3) | |
3902 | add_optab->handlers[(int) XFmode].insn_code = CODE_FOR_addxf3; | |
3903 | #endif | |
77c9c6c2 RK |
3904 | #ifdef HAVE_addtf3 |
3905 | if (HAVE_addtf3) | |
3906 | add_optab->handlers[(int) TFmode].insn_code = CODE_FOR_addtf3; | |
3907 | #endif | |
b092b471 JW |
3908 | init_integral_libfuncs (add_optab, "add", '3'); |
3909 | init_floating_libfuncs (add_optab, "add", '3'); | |
77c9c6c2 RK |
3910 | |
3911 | #ifdef HAVE_subqi3 | |
3912 | if (HAVE_subqi3) | |
3913 | sub_optab->handlers[(int) QImode].insn_code = CODE_FOR_subqi3; | |
3914 | #endif | |
3915 | #ifdef HAVE_subhi3 | |
3916 | if (HAVE_subhi3) | |
3917 | sub_optab->handlers[(int) HImode].insn_code = CODE_FOR_subhi3; | |
3918 | #endif | |
3919 | #ifdef HAVE_subpsi3 | |
3920 | if (HAVE_subpsi3) | |
3921 | sub_optab->handlers[(int) PSImode].insn_code = CODE_FOR_subpsi3; | |
3922 | #endif | |
3923 | #ifdef HAVE_subsi3 | |
3924 | if (HAVE_subsi3) | |
3925 | sub_optab->handlers[(int) SImode].insn_code = CODE_FOR_subsi3; | |
3926 | #endif | |
3927 | #ifdef HAVE_subdi3 | |
3928 | if (HAVE_subdi3) | |
3929 | sub_optab->handlers[(int) DImode].insn_code = CODE_FOR_subdi3; | |
3930 | #endif | |
3931 | #ifdef HAVE_subti3 | |
3932 | if (HAVE_subti3) | |
ded40dfe | 3933 | sub_optab->handlers[(int) TImode].insn_code = CODE_FOR_subti3; |
77c9c6c2 RK |
3934 | #endif |
3935 | #ifdef HAVE_subsf3 | |
3936 | if (HAVE_subsf3) | |
3937 | sub_optab->handlers[(int) SFmode].insn_code = CODE_FOR_subsf3; | |
3938 | #endif | |
3939 | #ifdef HAVE_subdf3 | |
3940 | if (HAVE_subdf3) | |
3941 | sub_optab->handlers[(int) DFmode].insn_code = CODE_FOR_subdf3; | |
3942 | #endif | |
b092b471 JW |
3943 | #ifdef HAVE_subxf3 |
3944 | if (HAVE_subxf3) | |
3945 | sub_optab->handlers[(int) XFmode].insn_code = CODE_FOR_subxf3; | |
3946 | #endif | |
77c9c6c2 RK |
3947 | #ifdef HAVE_subtf3 |
3948 | if (HAVE_subtf3) | |
3949 | sub_optab->handlers[(int) TFmode].insn_code = CODE_FOR_subtf3; | |
3950 | #endif | |
b092b471 JW |
3951 | init_integral_libfuncs (sub_optab, "sub", '3'); |
3952 | init_floating_libfuncs (sub_optab, "sub", '3'); | |
77c9c6c2 RK |
3953 | |
3954 | #ifdef HAVE_mulqi3 | |
3955 | if (HAVE_mulqi3) | |
3956 | smul_optab->handlers[(int) QImode].insn_code = CODE_FOR_mulqi3; | |
3957 | #endif | |
3958 | #ifdef HAVE_mulhi3 | |
3959 | if (HAVE_mulhi3) | |
3960 | smul_optab->handlers[(int) HImode].insn_code = CODE_FOR_mulhi3; | |
3961 | #endif | |
3962 | #ifdef HAVE_mulpsi3 | |
3963 | if (HAVE_mulpsi3) | |
3964 | smul_optab->handlers[(int) PSImode].insn_code = CODE_FOR_mulpsi3; | |
3965 | #endif | |
3966 | #ifdef HAVE_mulsi3 | |
3967 | if (HAVE_mulsi3) | |
3968 | smul_optab->handlers[(int) SImode].insn_code = CODE_FOR_mulsi3; | |
3969 | #endif | |
3970 | #ifdef HAVE_muldi3 | |
3971 | if (HAVE_muldi3) | |
3972 | smul_optab->handlers[(int) DImode].insn_code = CODE_FOR_muldi3; | |
3973 | #endif | |
3974 | #ifdef HAVE_multi3 | |
3975 | if (HAVE_multi3) | |
3976 | smul_optab->handlers[(int) TImode].insn_code = CODE_FOR_multi3; | |
3977 | #endif | |
3978 | #ifdef HAVE_mulsf3 | |
3979 | if (HAVE_mulsf3) | |
3980 | smul_optab->handlers[(int) SFmode].insn_code = CODE_FOR_mulsf3; | |
3981 | #endif | |
3982 | #ifdef HAVE_muldf3 | |
3983 | if (HAVE_muldf3) | |
3984 | smul_optab->handlers[(int) DFmode].insn_code = CODE_FOR_muldf3; | |
3985 | #endif | |
b092b471 JW |
3986 | #ifdef HAVE_mulxf3 |
3987 | if (HAVE_mulxf3) | |
3988 | smul_optab->handlers[(int) XFmode].insn_code = CODE_FOR_mulxf3; | |
3989 | #endif | |
77c9c6c2 RK |
3990 | #ifdef HAVE_multf3 |
3991 | if (HAVE_multf3) | |
3992 | smul_optab->handlers[(int) TFmode].insn_code = CODE_FOR_multf3; | |
3993 | #endif | |
b092b471 JW |
3994 | init_integral_libfuncs (smul_optab, "mul", '3'); |
3995 | init_floating_libfuncs (smul_optab, "mul", '3'); | |
77c9c6c2 RK |
3996 | |
3997 | #ifdef MULSI3_LIBCALL | |
3998 | smul_optab->handlers[(int) SImode].libfunc | |
3999 | = gen_rtx (SYMBOL_REF, Pmode, MULSI3_LIBCALL); | |
77c9c6c2 RK |
4000 | #endif |
4001 | #ifdef MULDI3_LIBCALL | |
4002 | smul_optab->handlers[(int) DImode].libfunc | |
4003 | = gen_rtx (SYMBOL_REF, Pmode, MULDI3_LIBCALL); | |
77c9c6c2 | 4004 | #endif |
b092b471 JW |
4005 | #ifdef MULTI3_LIBCALL |
4006 | smul_optab->handlers[(int) TImode].libfunc | |
4007 | = gen_rtx (SYMBOL_REF, Pmode, MULTI3_LIBCALL); | |
4008 | #endif | |
77c9c6c2 RK |
4009 | |
4010 | #ifdef HAVE_mulqihi3 | |
4011 | if (HAVE_mulqihi3) | |
4012 | smul_widen_optab->handlers[(int) HImode].insn_code = CODE_FOR_mulqihi3; | |
4013 | #endif | |
4014 | #ifdef HAVE_mulhisi3 | |
4015 | if (HAVE_mulhisi3) | |
4016 | smul_widen_optab->handlers[(int) SImode].insn_code = CODE_FOR_mulhisi3; | |
4017 | #endif | |
4018 | #ifdef HAVE_mulsidi3 | |
4019 | if (HAVE_mulsidi3) | |
4020 | smul_widen_optab->handlers[(int) DImode].insn_code = CODE_FOR_mulsidi3; | |
4021 | #endif | |
4022 | #ifdef HAVE_mulditi3 | |
4023 | if (HAVE_mulditi3) | |
4024 | smul_widen_optab->handlers[(int) TImode].insn_code = CODE_FOR_mulditi3; | |
4025 | #endif | |
4026 | ||
4027 | #ifdef HAVE_umulqihi3 | |
4028 | if (HAVE_umulqihi3) | |
4029 | umul_widen_optab->handlers[(int) HImode].insn_code = CODE_FOR_umulqihi3; | |
4030 | #endif | |
4031 | #ifdef HAVE_umulhisi3 | |
4032 | if (HAVE_umulhisi3) | |
4033 | umul_widen_optab->handlers[(int) SImode].insn_code = CODE_FOR_umulhisi3; | |
4034 | #endif | |
4035 | #ifdef HAVE_umulsidi3 | |
4036 | if (HAVE_umulsidi3) | |
4037 | umul_widen_optab->handlers[(int) DImode].insn_code = CODE_FOR_umulsidi3; | |
4038 | #endif | |
4039 | #ifdef HAVE_umulditi3 | |
4040 | if (HAVE_umulditi3) | |
4041 | umul_widen_optab->handlers[(int) TImode].insn_code = CODE_FOR_umulditi3; | |
4042 | #endif | |
4043 | ||
4044 | #ifdef HAVE_divqi3 | |
4045 | if (HAVE_divqi3) | |
4046 | sdiv_optab->handlers[(int) QImode].insn_code = CODE_FOR_divqi3; | |
4047 | #endif | |
4048 | #ifdef HAVE_divhi3 | |
4049 | if (HAVE_divhi3) | |
4050 | sdiv_optab->handlers[(int) HImode].insn_code = CODE_FOR_divhi3; | |
4051 | #endif | |
4052 | #ifdef HAVE_divpsi3 | |
4053 | if (HAVE_divpsi3) | |
4054 | sdiv_optab->handlers[(int) PSImode].insn_code = CODE_FOR_divpsi3; | |
4055 | #endif | |
4056 | #ifdef HAVE_divsi3 | |
4057 | if (HAVE_divsi3) | |
4058 | sdiv_optab->handlers[(int) SImode].insn_code = CODE_FOR_divsi3; | |
4059 | #endif | |
4060 | #ifdef HAVE_divdi3 | |
4061 | if (HAVE_divdi3) | |
4062 | sdiv_optab->handlers[(int) DImode].insn_code = CODE_FOR_divdi3; | |
4063 | #endif | |
4064 | #ifdef HAVE_divti3 | |
4065 | if (HAVE_divti3) | |
4066 | sdiv_optab->handlers[(int) TImode].insn_code = CODE_FOR_divti3; | |
4067 | #endif | |
b092b471 | 4068 | init_integral_libfuncs (sdiv_optab, "div", '3'); |
77c9c6c2 RK |
4069 | |
4070 | #ifdef DIVSI3_LIBCALL | |
4071 | sdiv_optab->handlers[(int) SImode].libfunc | |
4072 | = gen_rtx (SYMBOL_REF, Pmode, DIVSI3_LIBCALL); | |
77c9c6c2 RK |
4073 | #endif |
4074 | #ifdef DIVDI3_LIBCALL | |
4075 | sdiv_optab->handlers[(int) DImode].libfunc | |
4076 | = gen_rtx (SYMBOL_REF, Pmode, DIVDI3_LIBCALL); | |
b092b471 JW |
4077 | #endif |
4078 | #ifdef DIVTI3_LIBCALL | |
4079 | sdiv_optab->handlers[(int) TImode].libfunc | |
4080 | = gen_rtx (SYMBOL_REF, Pmode, DIVTI3_LIBCALL); | |
77c9c6c2 RK |
4081 | #endif |
4082 | ||
4083 | #ifdef HAVE_udivqi3 | |
4084 | if (HAVE_udivqi3) | |
4085 | udiv_optab->handlers[(int) QImode].insn_code = CODE_FOR_udivqi3; | |
4086 | #endif | |
4087 | #ifdef HAVE_udivhi3 | |
4088 | if (HAVE_udivhi3) | |
4089 | udiv_optab->handlers[(int) HImode].insn_code = CODE_FOR_udivhi3; | |
4090 | #endif | |
4091 | #ifdef HAVE_udivpsi3 | |
4092 | if (HAVE_udivpsi3) | |
4093 | udiv_optab->handlers[(int) PSImode].insn_code = CODE_FOR_udivpsi3; | |
4094 | #endif | |
4095 | #ifdef HAVE_udivsi3 | |
4096 | if (HAVE_udivsi3) | |
4097 | udiv_optab->handlers[(int) SImode].insn_code = CODE_FOR_udivsi3; | |
4098 | #endif | |
4099 | #ifdef HAVE_udivdi3 | |
4100 | if (HAVE_udivdi3) | |
4101 | udiv_optab->handlers[(int) DImode].insn_code = CODE_FOR_udivdi3; | |
4102 | #endif | |
4103 | #ifdef HAVE_udivti3 | |
4104 | if (HAVE_udivti3) | |
4105 | udiv_optab->handlers[(int) TImode].insn_code = CODE_FOR_udivti3; | |
4106 | #endif | |
b092b471 | 4107 | init_integral_libfuncs (udiv_optab, "udiv", '3'); |
77c9c6c2 RK |
4108 | |
4109 | #ifdef UDIVSI3_LIBCALL | |
4110 | udiv_optab->handlers[(int) SImode].libfunc | |
4111 | = gen_rtx (SYMBOL_REF, Pmode, UDIVSI3_LIBCALL); | |
77c9c6c2 RK |
4112 | #endif |
4113 | #ifdef UDIVDI3_LIBCALL | |
4114 | udiv_optab->handlers[(int) DImode].libfunc | |
4115 | = gen_rtx (SYMBOL_REF, Pmode, UDIVDI3_LIBCALL); | |
b092b471 JW |
4116 | #endif |
4117 | #ifdef UDIVTI3_LIBCALL | |
4118 | udiv_optab->handlers[(int) TImode].libfunc | |
4119 | = gen_rtx (SYMBOL_REF, Pmode, UDIVTI3_LIBCALL); | |
77c9c6c2 RK |
4120 | #endif |
4121 | ||
4122 | #ifdef HAVE_divmodqi4 | |
4123 | if (HAVE_divmodqi4) | |
4124 | sdivmod_optab->handlers[(int) QImode].insn_code = CODE_FOR_divmodqi4; | |
4125 | #endif | |
4126 | #ifdef HAVE_divmodhi4 | |
4127 | if (HAVE_divmodhi4) | |
4128 | sdivmod_optab->handlers[(int) HImode].insn_code = CODE_FOR_divmodhi4; | |
4129 | #endif | |
4130 | #ifdef HAVE_divmodsi4 | |
4131 | if (HAVE_divmodsi4) | |
4132 | sdivmod_optab->handlers[(int) SImode].insn_code = CODE_FOR_divmodsi4; | |
4133 | #endif | |
4134 | #ifdef HAVE_divmoddi4 | |
4135 | if (HAVE_divmoddi4) | |
4136 | sdivmod_optab->handlers[(int) DImode].insn_code = CODE_FOR_divmoddi4; | |
4137 | #endif | |
4138 | #ifdef HAVE_divmodti4 | |
4139 | if (HAVE_divmodti4) | |
4140 | sdivmod_optab->handlers[(int) TImode].insn_code = CODE_FOR_divmodti4; | |
4141 | #endif | |
b092b471 | 4142 | init_integral_libfuncs (sdivmod_optab, "divmod", '4'); |
77c9c6c2 RK |
4143 | |
4144 | #ifdef HAVE_udivmodqi4 | |
4145 | if (HAVE_udivmodqi4) | |
4146 | udivmod_optab->handlers[(int) QImode].insn_code = CODE_FOR_udivmodqi4; | |
4147 | #endif | |
4148 | #ifdef HAVE_udivmodhi4 | |
4149 | if (HAVE_udivmodhi4) | |
4150 | udivmod_optab->handlers[(int) HImode].insn_code = CODE_FOR_udivmodhi4; | |
4151 | #endif | |
4152 | #ifdef HAVE_udivmodsi4 | |
4153 | if (HAVE_udivmodsi4) | |
4154 | udivmod_optab->handlers[(int) SImode].insn_code = CODE_FOR_udivmodsi4; | |
4155 | #endif | |
4156 | #ifdef HAVE_udivmoddi4 | |
4157 | if (HAVE_udivmoddi4) | |
4158 | udivmod_optab->handlers[(int) DImode].insn_code = CODE_FOR_udivmoddi4; | |
4159 | #endif | |
4160 | #ifdef HAVE_udivmodti4 | |
4161 | if (HAVE_udivmodti4) | |
4162 | udivmod_optab->handlers[(int) TImode].insn_code = CODE_FOR_udivmodti4; | |
4163 | #endif | |
b092b471 | 4164 | init_integral_libfuncs (udivmod_optab, "udivmod", '4'); |
77c9c6c2 RK |
4165 | |
4166 | #ifdef HAVE_modqi3 | |
4167 | if (HAVE_modqi3) | |
4168 | smod_optab->handlers[(int) QImode].insn_code = CODE_FOR_modqi3; | |
4169 | #endif | |
4170 | #ifdef HAVE_modhi3 | |
4171 | if (HAVE_modhi3) | |
4172 | smod_optab->handlers[(int) HImode].insn_code = CODE_FOR_modhi3; | |
4173 | #endif | |
4174 | #ifdef HAVE_modpsi3 | |
4175 | if (HAVE_modpsi3) | |
4176 | smod_optab->handlers[(int) PSImode].insn_code = CODE_FOR_modpsi3; | |
4177 | #endif | |
4178 | #ifdef HAVE_modsi3 | |
4179 | if (HAVE_modsi3) | |
4180 | smod_optab->handlers[(int) SImode].insn_code = CODE_FOR_modsi3; | |
4181 | #endif | |
4182 | #ifdef HAVE_moddi3 | |
4183 | if (HAVE_moddi3) | |
4184 | smod_optab->handlers[(int) DImode].insn_code = CODE_FOR_moddi3; | |
4185 | #endif | |
4186 | #ifdef HAVE_modti3 | |
4187 | if (HAVE_modti3) | |
4188 | smod_optab->handlers[(int) TImode].insn_code = CODE_FOR_modti3; | |
4189 | #endif | |
b092b471 | 4190 | init_integral_libfuncs (smod_optab, "mod", '3'); |
77c9c6c2 RK |
4191 | |
4192 | #ifdef MODSI3_LIBCALL | |
4193 | smod_optab->handlers[(int) SImode].libfunc | |
4194 | = gen_rtx (SYMBOL_REF, Pmode, MODSI3_LIBCALL); | |
77c9c6c2 RK |
4195 | #endif |
4196 | #ifdef MODDI3_LIBCALL | |
4197 | smod_optab->handlers[(int) DImode].libfunc | |
4198 | = gen_rtx (SYMBOL_REF, Pmode, MODDI3_LIBCALL); | |
b092b471 JW |
4199 | #endif |
4200 | #ifdef MODTI3_LIBCALL | |
4201 | smod_optab->handlers[(int) TImode].libfunc | |
4202 | = gen_rtx (SYMBOL_REF, Pmode, MODTI3_LIBCALL); | |
77c9c6c2 RK |
4203 | #endif |
4204 | ||
4205 | #ifdef HAVE_umodqi3 | |
4206 | if (HAVE_umodqi3) | |
4207 | umod_optab->handlers[(int) QImode].insn_code = CODE_FOR_umodqi3; | |
4208 | #endif | |
4209 | #ifdef HAVE_umodhi3 | |
4210 | if (HAVE_umodhi3) | |
4211 | umod_optab->handlers[(int) HImode].insn_code = CODE_FOR_umodhi3; | |
4212 | #endif | |
4213 | #ifdef HAVE_umodpsi3 | |
4214 | if (HAVE_umodpsi3) | |
4215 | umod_optab->handlers[(int) PSImode].insn_code = CODE_FOR_umodpsi3; | |
4216 | #endif | |
4217 | #ifdef HAVE_umodsi3 | |
4218 | if (HAVE_umodsi3) | |
4219 | umod_optab->handlers[(int) SImode].insn_code = CODE_FOR_umodsi3; | |
4220 | #endif | |
4221 | #ifdef HAVE_umoddi3 | |
4222 | if (HAVE_umoddi3) | |
4223 | umod_optab->handlers[(int) DImode].insn_code = CODE_FOR_umoddi3; | |
4224 | #endif | |
4225 | #ifdef HAVE_umodti3 | |
4226 | if (HAVE_umodti3) | |
4227 | umod_optab->handlers[(int) TImode].insn_code = CODE_FOR_umodti3; | |
4228 | #endif | |
b092b471 | 4229 | init_integral_libfuncs (umod_optab, "umod", '3'); |
77c9c6c2 RK |
4230 | |
4231 | #ifdef UMODSI3_LIBCALL | |
4232 | umod_optab->handlers[(int) SImode].libfunc | |
4233 | = gen_rtx (SYMBOL_REF, Pmode, UMODSI3_LIBCALL); | |
77c9c6c2 RK |
4234 | #endif |
4235 | #ifdef UMODDI3_LIBCALL | |
4236 | umod_optab->handlers[(int) DImode].libfunc | |
4237 | = gen_rtx (SYMBOL_REF, Pmode, UMODDI3_LIBCALL); | |
b092b471 JW |
4238 | #endif |
4239 | #ifdef UMODTI3_LIBCALL | |
4240 | umod_optab->handlers[(int) TImode].libfunc | |
4241 | = gen_rtx (SYMBOL_REF, Pmode, UMODTI3_LIBCALL); | |
77c9c6c2 RK |
4242 | #endif |
4243 | ||
4244 | #ifdef HAVE_divsf3 | |
4245 | if (HAVE_divsf3) | |
4246 | flodiv_optab->handlers[(int) SFmode].insn_code = CODE_FOR_divsf3; | |
4247 | #endif | |
4248 | #ifdef HAVE_divdf3 | |
4249 | if (HAVE_divdf3) | |
4250 | flodiv_optab->handlers[(int) DFmode].insn_code = CODE_FOR_divdf3; | |
4251 | #endif | |
b092b471 JW |
4252 | #ifdef HAVE_divxf3 |
4253 | if (HAVE_divxf3) | |
4254 | flodiv_optab->handlers[(int) XFmode].insn_code = CODE_FOR_divxf3; | |
4255 | #endif | |
77c9c6c2 RK |
4256 | #ifdef HAVE_divtf3 |
4257 | if (HAVE_divtf3) | |
4258 | flodiv_optab->handlers[(int) TFmode].insn_code = CODE_FOR_divtf3; | |
4259 | #endif | |
b092b471 | 4260 | init_floating_libfuncs (flodiv_optab, "div", '3'); |
77c9c6c2 RK |
4261 | |
4262 | #ifdef HAVE_ftruncsf2 | |
4263 | if (HAVE_ftruncsf2) | |
4264 | ftrunc_optab->handlers[(int) SFmode].insn_code = CODE_FOR_ftruncsf2; | |
4265 | #endif | |
4266 | #ifdef HAVE_ftruncdf2 | |
4267 | if (HAVE_ftruncdf2) | |
4268 | ftrunc_optab->handlers[(int) DFmode].insn_code = CODE_FOR_ftruncdf2; | |
4269 | #endif | |
b092b471 JW |
4270 | #ifdef HAVE_ftruncxf2 |
4271 | if (HAVE_ftruncxf2) | |
4272 | ftrunc_optab->handlers[(int) XFmode].insn_code = CODE_FOR_ftruncxf2; | |
4273 | #endif | |
77c9c6c2 RK |
4274 | #ifdef HAVE_ftrunctf2 |
4275 | if (HAVE_ftrunctf2) | |
4276 | ftrunc_optab->handlers[(int) TFmode].insn_code = CODE_FOR_ftrunctf2; | |
4277 | #endif | |
b092b471 | 4278 | init_floating_libfuncs (ftrunc_optab, "ftrunc", '2'); |
77c9c6c2 RK |
4279 | |
4280 | #ifdef HAVE_andqi3 | |
4281 | if (HAVE_andqi3) | |
4282 | and_optab->handlers[(int) QImode].insn_code = CODE_FOR_andqi3; | |
4283 | #endif | |
4284 | #ifdef HAVE_andhi3 | |
4285 | if (HAVE_andhi3) | |
4286 | and_optab->handlers[(int) HImode].insn_code = CODE_FOR_andhi3; | |
4287 | #endif | |
4288 | #ifdef HAVE_andpsi3 | |
4289 | if (HAVE_andpsi3) | |
4290 | and_optab->handlers[(int) PSImode].insn_code = CODE_FOR_andpsi3; | |
4291 | #endif | |
4292 | #ifdef HAVE_andsi3 | |
4293 | if (HAVE_andsi3) | |
4294 | and_optab->handlers[(int) SImode].insn_code = CODE_FOR_andsi3; | |
4295 | #endif | |
4296 | #ifdef HAVE_anddi3 | |
4297 | if (HAVE_anddi3) | |
4298 | and_optab->handlers[(int) DImode].insn_code = CODE_FOR_anddi3; | |
4299 | #endif | |
4300 | #ifdef HAVE_andti3 | |
4301 | if (HAVE_andti3) | |
4302 | and_optab->handlers[(int) TImode].insn_code = CODE_FOR_andti3; | |
4303 | #endif | |
b092b471 | 4304 | init_integral_libfuncs (and_optab, "and", '3'); |
77c9c6c2 RK |
4305 | |
4306 | #ifdef HAVE_iorqi3 | |
4307 | if (HAVE_iorqi3) | |
4308 | ior_optab->handlers[(int) QImode].insn_code = CODE_FOR_iorqi3; | |
4309 | #endif | |
4310 | #ifdef HAVE_iorhi3 | |
4311 | if (HAVE_iorhi3) | |
4312 | ior_optab->handlers[(int) HImode].insn_code = CODE_FOR_iorhi3; | |
4313 | #endif | |
4314 | #ifdef HAVE_iorpsi3 | |
4315 | if (HAVE_iorpsi3) | |
4316 | ior_optab->handlers[(int) PSImode].insn_code = CODE_FOR_iorpsi3; | |
4317 | #endif | |
4318 | #ifdef HAVE_iorsi3 | |
4319 | if (HAVE_iorsi3) | |
4320 | ior_optab->handlers[(int) SImode].insn_code = CODE_FOR_iorsi3; | |
4321 | #endif | |
4322 | #ifdef HAVE_iordi3 | |
4323 | if (HAVE_iordi3) | |
4324 | ior_optab->handlers[(int) DImode].insn_code = CODE_FOR_iordi3; | |
4325 | #endif | |
4326 | #ifdef HAVE_iorti3 | |
4327 | if (HAVE_iorti3) | |
4328 | ior_optab->handlers[(int) TImode].insn_code = CODE_FOR_iorti3; | |
4329 | #endif | |
b092b471 | 4330 | init_integral_libfuncs (ior_optab, "ior", '3'); |
77c9c6c2 RK |
4331 | |
4332 | #ifdef HAVE_xorqi3 | |
4333 | if (HAVE_xorqi3) | |
4334 | xor_optab->handlers[(int) QImode].insn_code = CODE_FOR_xorqi3; | |
4335 | #endif | |
4336 | #ifdef HAVE_xorhi3 | |
4337 | if (HAVE_xorhi3) | |
4338 | xor_optab->handlers[(int) HImode].insn_code = CODE_FOR_xorhi3; | |
4339 | #endif | |
4340 | #ifdef HAVE_xorpsi3 | |
4341 | if (HAVE_xorpsi3) | |
4342 | xor_optab->handlers[(int) PSImode].insn_code = CODE_FOR_xorpsi3; | |
4343 | #endif | |
4344 | #ifdef HAVE_xorsi3 | |
4345 | if (HAVE_xorsi3) | |
4346 | xor_optab->handlers[(int) SImode].insn_code = CODE_FOR_xorsi3; | |
4347 | #endif | |
4348 | #ifdef HAVE_xordi3 | |
4349 | if (HAVE_xordi3) | |
4350 | xor_optab->handlers[(int) DImode].insn_code = CODE_FOR_xordi3; | |
4351 | #endif | |
4352 | #ifdef HAVE_xorti3 | |
4353 | if (HAVE_xorti3) | |
4354 | xor_optab->handlers[(int) TImode].insn_code = CODE_FOR_xorti3; | |
4355 | #endif | |
b092b471 | 4356 | init_integral_libfuncs (xor_optab, "xor", '3'); |
77c9c6c2 RK |
4357 | |
4358 | #ifdef HAVE_ashlqi3 | |
4359 | if (HAVE_ashlqi3) | |
4360 | ashl_optab->handlers[(int) QImode].insn_code = CODE_FOR_ashlqi3; | |
4361 | #endif | |
4362 | #ifdef HAVE_ashlhi3 | |
4363 | if (HAVE_ashlhi3) | |
4364 | ashl_optab->handlers[(int) HImode].insn_code = CODE_FOR_ashlhi3; | |
4365 | #endif | |
4366 | #ifdef HAVE_ashlpsi3 | |
4367 | if (HAVE_ashlpsi3) | |
4368 | ashl_optab->handlers[(int) PSImode].insn_code = CODE_FOR_ashlpsi3; | |
4369 | #endif | |
4370 | #ifdef HAVE_ashlsi3 | |
4371 | if (HAVE_ashlsi3) | |
4372 | ashl_optab->handlers[(int) SImode].insn_code = CODE_FOR_ashlsi3; | |
4373 | #endif | |
4374 | #ifdef HAVE_ashldi3 | |
4375 | if (HAVE_ashldi3) | |
4376 | ashl_optab->handlers[(int) DImode].insn_code = CODE_FOR_ashldi3; | |
4377 | #endif | |
4378 | #ifdef HAVE_ashlti3 | |
4379 | if (HAVE_ashlti3) | |
4380 | ashl_optab->handlers[(int) TImode].insn_code = CODE_FOR_ashlti3; | |
4381 | #endif | |
b092b471 | 4382 | init_integral_libfuncs (ashl_optab, "ashl", '3'); |
77c9c6c2 RK |
4383 | |
4384 | #ifdef HAVE_ashrqi3 | |
4385 | if (HAVE_ashrqi3) | |
4386 | ashr_optab->handlers[(int) QImode].insn_code = CODE_FOR_ashrqi3; | |
4387 | #endif | |
4388 | #ifdef HAVE_ashrhi3 | |
4389 | if (HAVE_ashrhi3) | |
4390 | ashr_optab->handlers[(int) HImode].insn_code = CODE_FOR_ashrhi3; | |
4391 | #endif | |
4392 | #ifdef HAVE_ashrpsi3 | |
4393 | if (HAVE_ashrpsi3) | |
4394 | ashr_optab->handlers[(int) PSImode].insn_code = CODE_FOR_ashrpsi3; | |
4395 | #endif | |
4396 | #ifdef HAVE_ashrsi3 | |
4397 | if (HAVE_ashrsi3) | |
4398 | ashr_optab->handlers[(int) SImode].insn_code = CODE_FOR_ashrsi3; | |
4399 | #endif | |
4400 | #ifdef HAVE_ashrdi3 | |
4401 | if (HAVE_ashrdi3) | |
4402 | ashr_optab->handlers[(int) DImode].insn_code = CODE_FOR_ashrdi3; | |
4403 | #endif | |
4404 | #ifdef HAVE_ashrti3 | |
4405 | if (HAVE_ashrti3) | |
4406 | ashr_optab->handlers[(int) TImode].insn_code = CODE_FOR_ashrti3; | |
4407 | #endif | |
b092b471 | 4408 | init_integral_libfuncs (ashr_optab, "ashr", '3'); |
77c9c6c2 RK |
4409 | |
4410 | #ifdef HAVE_lshlqi3 | |
4411 | if (HAVE_lshlqi3) | |
4412 | lshl_optab->handlers[(int) QImode].insn_code = CODE_FOR_lshlqi3; | |
4413 | #endif | |
4414 | #ifdef HAVE_lshlhi3 | |
4415 | if (HAVE_lshlhi3) | |
4416 | lshl_optab->handlers[(int) HImode].insn_code = CODE_FOR_lshlhi3; | |
4417 | #endif | |
4418 | #ifdef HAVE_lshlpsi3 | |
4419 | if (HAVE_lshlpsi3) | |
4420 | lshl_optab->handlers[(int) PSImode].insn_code = CODE_FOR_lshlpsi3; | |
4421 | #endif | |
4422 | #ifdef HAVE_lshlsi3 | |
4423 | if (HAVE_lshlsi3) | |
4424 | lshl_optab->handlers[(int) SImode].insn_code = CODE_FOR_lshlsi3; | |
4425 | #endif | |
4426 | #ifdef HAVE_lshldi3 | |
4427 | if (HAVE_lshldi3) | |
4428 | lshl_optab->handlers[(int) DImode].insn_code = CODE_FOR_lshldi3; | |
4429 | #endif | |
4430 | #ifdef HAVE_lshlti3 | |
4431 | if (HAVE_lshlti3) | |
4432 | lshl_optab->handlers[(int) TImode].insn_code = CODE_FOR_lshlti3; | |
4433 | #endif | |
b092b471 | 4434 | init_integral_libfuncs (lshl_optab, "lshl", '3'); |
77c9c6c2 RK |
4435 | |
4436 | #ifdef HAVE_lshrqi3 | |
4437 | if (HAVE_lshrqi3) | |
4438 | lshr_optab->handlers[(int) QImode].insn_code = CODE_FOR_lshrqi3; | |
4439 | #endif | |
4440 | #ifdef HAVE_lshrhi3 | |
4441 | if (HAVE_lshrhi3) | |
4442 | lshr_optab->handlers[(int) HImode].insn_code = CODE_FOR_lshrhi3; | |
4443 | #endif | |
4444 | #ifdef HAVE_lshrpsi3 | |
4445 | if (HAVE_lshrpsi3) | |
4446 | lshr_optab->handlers[(int) PSImode].insn_code = CODE_FOR_lshrpsi3; | |
4447 | #endif | |
4448 | #ifdef HAVE_lshrsi3 | |
4449 | if (HAVE_lshrsi3) | |
4450 | lshr_optab->handlers[(int) SImode].insn_code = CODE_FOR_lshrsi3; | |
4451 | #endif | |
4452 | #ifdef HAVE_lshrdi3 | |
4453 | if (HAVE_lshrdi3) | |
4454 | lshr_optab->handlers[(int) DImode].insn_code = CODE_FOR_lshrdi3; | |
4455 | #endif | |
4456 | #ifdef HAVE_lshrti3 | |
4457 | if (HAVE_lshrti3) | |
4458 | lshr_optab->handlers[(int) TImode].insn_code = CODE_FOR_lshrti3; | |
4459 | #endif | |
b092b471 | 4460 | init_integral_libfuncs (lshr_optab, "lshr", '3'); |
77c9c6c2 RK |
4461 | |
4462 | #ifdef HAVE_rotlqi3 | |
4463 | if (HAVE_rotlqi3) | |
4464 | rotl_optab->handlers[(int) QImode].insn_code = CODE_FOR_rotlqi3; | |
4465 | #endif | |
4466 | #ifdef HAVE_rotlhi3 | |
4467 | if (HAVE_rotlhi3) | |
4468 | rotl_optab->handlers[(int) HImode].insn_code = CODE_FOR_rotlhi3; | |
4469 | #endif | |
4470 | #ifdef HAVE_rotlpsi3 | |
4471 | if (HAVE_rotlpsi3) | |
4472 | rotl_optab->handlers[(int) PSImode].insn_code = CODE_FOR_rotlpsi3; | |
4473 | #endif | |
4474 | #ifdef HAVE_rotlsi3 | |
4475 | if (HAVE_rotlsi3) | |
4476 | rotl_optab->handlers[(int) SImode].insn_code = CODE_FOR_rotlsi3; | |
4477 | #endif | |
4478 | #ifdef HAVE_rotldi3 | |
4479 | if (HAVE_rotldi3) | |
4480 | rotl_optab->handlers[(int) DImode].insn_code = CODE_FOR_rotldi3; | |
4481 | #endif | |
4482 | #ifdef HAVE_rotlti3 | |
4483 | if (HAVE_rotlti3) | |
4484 | rotl_optab->handlers[(int) TImode].insn_code = CODE_FOR_rotlti3; | |
4485 | #endif | |
b092b471 | 4486 | init_integral_libfuncs (rotl_optab, "rotl", '3'); |
77c9c6c2 RK |
4487 | |
4488 | #ifdef HAVE_rotrqi3 | |
4489 | if (HAVE_rotrqi3) | |
4490 | rotr_optab->handlers[(int) QImode].insn_code = CODE_FOR_rotrqi3; | |
4491 | #endif | |
4492 | #ifdef HAVE_rotrhi3 | |
4493 | if (HAVE_rotrhi3) | |
4494 | rotr_optab->handlers[(int) HImode].insn_code = CODE_FOR_rotrhi3; | |
4495 | #endif | |
4496 | #ifdef HAVE_rotrpsi3 | |
4497 | if (HAVE_rotrpsi3) | |
4498 | rotr_optab->handlers[(int) PSImode].insn_code = CODE_FOR_rotrpsi3; | |
4499 | #endif | |
4500 | #ifdef HAVE_rotrsi3 | |
4501 | if (HAVE_rotrsi3) | |
4502 | rotr_optab->handlers[(int) SImode].insn_code = CODE_FOR_rotrsi3; | |
4503 | #endif | |
4504 | #ifdef HAVE_rotrdi3 | |
4505 | if (HAVE_rotrdi3) | |
4506 | rotr_optab->handlers[(int) DImode].insn_code = CODE_FOR_rotrdi3; | |
4507 | #endif | |
4508 | #ifdef HAVE_rotrti3 | |
4509 | if (HAVE_rotrti3) | |
4510 | rotr_optab->handlers[(int) TImode].insn_code = CODE_FOR_rotrti3; | |
4511 | #endif | |
b092b471 | 4512 | init_integral_libfuncs (rotr_optab, "rotr", '3'); |
77c9c6c2 RK |
4513 | |
4514 | #ifdef HAVE_sminqi3 | |
4515 | if (HAVE_sminqi3) | |
4516 | smin_optab->handlers[(int) QImode].insn_code = CODE_FOR_sminqi3; | |
4517 | #endif | |
4518 | #ifdef HAVE_sminhi3 | |
4519 | if (HAVE_sminhi3) | |
4520 | smin_optab->handlers[(int) HImode].insn_code = CODE_FOR_sminhi3; | |
4521 | #endif | |
4522 | #ifdef HAVE_sminsi3 | |
4523 | if (HAVE_sminsi3) | |
4524 | smin_optab->handlers[(int) SImode].insn_code = CODE_FOR_sminsi3; | |
4525 | #endif | |
4526 | #ifdef HAVE_smindi3 | |
4527 | if (HAVE_smindi3) | |
4528 | smin_optab->handlers[(int) DImode].insn_code = CODE_FOR_smindi3; | |
4529 | #endif | |
4530 | #ifdef HAVE_sminti3 | |
4531 | if (HAVE_sminti3) | |
4532 | smin_optab->handlers[(int) TImode].insn_code = CODE_FOR_sminti3; | |
4533 | #endif | |
b092b471 JW |
4534 | #ifdef HAVE_minsf3 |
4535 | if (HAVE_minsf3) | |
4536 | smin_optab->handlers[(int) SFmode].insn_code = CODE_FOR_minsf3; | |
4537 | #endif | |
4538 | #ifdef HAVE_mindf3 | |
4539 | if (HAVE_mindf3) | |
4540 | smin_optab->handlers[(int) DFmode].insn_code = CODE_FOR_mindf3; | |
77c9c6c2 | 4541 | #endif |
b092b471 JW |
4542 | #ifdef HAVE_minxf3 |
4543 | if (HAVE_minxf3) | |
4544 | smin_optab->handlers[(int) XFmode].insn_code = CODE_FOR_minxf3; | |
77c9c6c2 | 4545 | #endif |
b092b471 JW |
4546 | #ifdef HAVE_mintf3 |
4547 | if (HAVE_mintf3) | |
4548 | smin_optab->handlers[(int) TFmode].insn_code = CODE_FOR_mintf3; | |
77c9c6c2 | 4549 | #endif |
b092b471 JW |
4550 | init_integral_libfuncs (smin_optab, "min", '3'); |
4551 | init_floating_libfuncs (smin_optab, "min", '3'); | |
77c9c6c2 RK |
4552 | |
4553 | #ifdef HAVE_smaxqi3 | |
4554 | if (HAVE_smaxqi3) | |
4555 | smax_optab->handlers[(int) QImode].insn_code = CODE_FOR_smaxqi3; | |
4556 | #endif | |
4557 | #ifdef HAVE_smaxhi3 | |
4558 | if (HAVE_smaxhi3) | |
4559 | smax_optab->handlers[(int) HImode].insn_code = CODE_FOR_smaxhi3; | |
4560 | #endif | |
4561 | #ifdef HAVE_smaxsi3 | |
4562 | if (HAVE_smaxsi3) | |
4563 | smax_optab->handlers[(int) SImode].insn_code = CODE_FOR_smaxsi3; | |
4564 | #endif | |
4565 | #ifdef HAVE_smaxdi3 | |
4566 | if (HAVE_smaxdi3) | |
4567 | smax_optab->handlers[(int) DImode].insn_code = CODE_FOR_smaxdi3; | |
4568 | #endif | |
4569 | #ifdef HAVE_smaxti3 | |
4570 | if (HAVE_smaxti3) | |
4571 | smax_optab->handlers[(int) TImode].insn_code = CODE_FOR_smaxti3; | |
4572 | #endif | |
b092b471 JW |
4573 | #ifdef HAVE_maxsf3 |
4574 | if (HAVE_maxsf3) | |
4575 | smax_optab->handlers[(int) SFmode].insn_code = CODE_FOR_maxsf3; | |
77c9c6c2 | 4576 | #endif |
b092b471 JW |
4577 | #ifdef HAVE_maxdf3 |
4578 | if (HAVE_maxdf3) | |
4579 | smax_optab->handlers[(int) DFmode].insn_code = CODE_FOR_maxdf3; | |
77c9c6c2 | 4580 | #endif |
b092b471 JW |
4581 | #ifdef HAVE_maxxf3 |
4582 | if (HAVE_maxxf3) | |
4583 | smax_optab->handlers[(int) XFmode].insn_code = CODE_FOR_maxxf3; | |
77c9c6c2 | 4584 | #endif |
b092b471 JW |
4585 | #ifdef HAVE_maxtf3 |
4586 | if (HAVE_maxtf3) | |
4587 | smax_optab->handlers[(int) TFmode].insn_code = CODE_FOR_maxtf3; | |
4588 | #endif | |
4589 | init_integral_libfuncs (smax_optab, "max", '3'); | |
4590 | init_floating_libfuncs (smax_optab, "max", '3'); | |
77c9c6c2 RK |
4591 | |
4592 | #ifdef HAVE_uminqi3 | |
4593 | if (HAVE_uminqi3) | |
4594 | umin_optab->handlers[(int) QImode].insn_code = CODE_FOR_uminqi3; | |
4595 | #endif | |
4596 | #ifdef HAVE_uminhi3 | |
4597 | if (HAVE_uminhi3) | |
4598 | umin_optab->handlers[(int) HImode].insn_code = CODE_FOR_uminhi3; | |
4599 | #endif | |
4600 | #ifdef HAVE_uminsi3 | |
4601 | if (HAVE_uminsi3) | |
4602 | umin_optab->handlers[(int) SImode].insn_code = CODE_FOR_uminsi3; | |
4603 | #endif | |
4604 | #ifdef HAVE_umindi3 | |
4605 | if (HAVE_umindi3) | |
4606 | umin_optab->handlers[(int) DImode].insn_code = CODE_FOR_umindi3; | |
4607 | #endif | |
4608 | #ifdef HAVE_uminti3 | |
4609 | if (HAVE_uminti3) | |
4610 | umin_optab->handlers[(int) TImode].insn_code = CODE_FOR_uminti3; | |
4611 | #endif | |
b092b471 | 4612 | init_integral_libfuncs (umin_optab, "umin", '3'); |
77c9c6c2 RK |
4613 | |
4614 | #ifdef HAVE_umaxqi3 | |
4615 | if (HAVE_umaxqi3) | |
4616 | umax_optab->handlers[(int) QImode].insn_code = CODE_FOR_umaxqi3; | |
4617 | #endif | |
4618 | #ifdef HAVE_umaxhi3 | |
4619 | if (HAVE_umaxhi3) | |
4620 | umax_optab->handlers[(int) HImode].insn_code = CODE_FOR_umaxhi3; | |
4621 | #endif | |
4622 | #ifdef HAVE_umaxsi3 | |
4623 | if (HAVE_umaxsi3) | |
4624 | umax_optab->handlers[(int) SImode].insn_code = CODE_FOR_umaxsi3; | |
4625 | #endif | |
4626 | #ifdef HAVE_umaxdi3 | |
4627 | if (HAVE_umaxdi3) | |
4628 | umax_optab->handlers[(int) DImode].insn_code = CODE_FOR_umaxdi3; | |
4629 | #endif | |
4630 | #ifdef HAVE_umaxti3 | |
4631 | if (HAVE_umaxti3) | |
4632 | umax_optab->handlers[(int) TImode].insn_code = CODE_FOR_umaxti3; | |
4633 | #endif | |
b092b471 | 4634 | init_integral_libfuncs (umax_optab, "umax", '3'); |
77c9c6c2 RK |
4635 | |
4636 | #ifdef HAVE_negqi2 | |
4637 | if (HAVE_negqi2) | |
4638 | neg_optab->handlers[(int) QImode].insn_code = CODE_FOR_negqi2; | |
4639 | #endif | |
4640 | #ifdef HAVE_neghi2 | |
4641 | if (HAVE_neghi2) | |
4642 | neg_optab->handlers[(int) HImode].insn_code = CODE_FOR_neghi2; | |
4643 | #endif | |
4644 | #ifdef HAVE_negpsi2 | |
4645 | if (HAVE_negpsi2) | |
4646 | neg_optab->handlers[(int) PSImode].insn_code = CODE_FOR_negpsi2; | |
4647 | #endif | |
4648 | #ifdef HAVE_negsi2 | |
4649 | if (HAVE_negsi2) | |
4650 | neg_optab->handlers[(int) SImode].insn_code = CODE_FOR_negsi2; | |
4651 | #endif | |
4652 | #ifdef HAVE_negdi2 | |
4653 | if (HAVE_negdi2) | |
4654 | neg_optab->handlers[(int) DImode].insn_code = CODE_FOR_negdi2; | |
4655 | #endif | |
4656 | #ifdef HAVE_negti2 | |
4657 | if (HAVE_negti2) | |
4658 | neg_optab->handlers[(int) TImode].insn_code = CODE_FOR_negti2; | |
4659 | #endif | |
4660 | #ifdef HAVE_negsf2 | |
4661 | if (HAVE_negsf2) | |
4662 | neg_optab->handlers[(int) SFmode].insn_code = CODE_FOR_negsf2; | |
4663 | #endif | |
4664 | #ifdef HAVE_negdf2 | |
4665 | if (HAVE_negdf2) | |
4666 | neg_optab->handlers[(int) DFmode].insn_code = CODE_FOR_negdf2; | |
4667 | #endif | |
b092b471 JW |
4668 | #ifdef HAVE_negxf2 |
4669 | if (HAVE_negxf2) | |
4670 | neg_optab->handlers[(int) XFmode].insn_code = CODE_FOR_negxf2; | |
4671 | #endif | |
77c9c6c2 RK |
4672 | #ifdef HAVE_negtf2 |
4673 | if (HAVE_negtf2) | |
4674 | neg_optab->handlers[(int) TFmode].insn_code = CODE_FOR_negtf2; | |
4675 | #endif | |
b092b471 JW |
4676 | init_integral_libfuncs (neg_optab, "neg", '2'); |
4677 | init_floating_libfuncs (neg_optab, "neg", '2'); | |
77c9c6c2 RK |
4678 | |
4679 | #ifdef HAVE_absqi2 | |
4680 | if (HAVE_absqi2) | |
4681 | abs_optab->handlers[(int) QImode].insn_code = CODE_FOR_absqi2; | |
4682 | #endif | |
4683 | #ifdef HAVE_abshi2 | |
4684 | if (HAVE_abshi2) | |
4685 | abs_optab->handlers[(int) HImode].insn_code = CODE_FOR_abshi2; | |
4686 | #endif | |
4687 | #ifdef HAVE_abspsi2 | |
4688 | if (HAVE_abspsi2) | |
4689 | abs_optab->handlers[(int) PSImode].insn_code = CODE_FOR_abspsi2; | |
4690 | #endif | |
4691 | #ifdef HAVE_abssi2 | |
4692 | if (HAVE_abssi2) | |
4693 | abs_optab->handlers[(int) SImode].insn_code = CODE_FOR_abssi2; | |
4694 | #endif | |
4695 | #ifdef HAVE_absdi2 | |
4696 | if (HAVE_absdi2) | |
4697 | abs_optab->handlers[(int) DImode].insn_code = CODE_FOR_absdi2; | |
4698 | #endif | |
4699 | #ifdef HAVE_absti2 | |
4700 | if (HAVE_absti2) | |
4701 | abs_optab->handlers[(int) TImode].insn_code = CODE_FOR_absti2; | |
4702 | #endif | |
4703 | #ifdef HAVE_abssf2 | |
4704 | if (HAVE_abssf2) | |
4705 | abs_optab->handlers[(int) SFmode].insn_code = CODE_FOR_abssf2; | |
4706 | #endif | |
4707 | #ifdef HAVE_absdf2 | |
4708 | if (HAVE_absdf2) | |
4709 | abs_optab->handlers[(int) DFmode].insn_code = CODE_FOR_absdf2; | |
4710 | #endif | |
b092b471 JW |
4711 | #ifdef HAVE_absxf2 |
4712 | if (HAVE_absxf2) | |
4713 | abs_optab->handlers[(int) XFmode].insn_code = CODE_FOR_absxf2; | |
4714 | #endif | |
77c9c6c2 RK |
4715 | #ifdef HAVE_abstf2 |
4716 | if (HAVE_abstf2) | |
4717 | abs_optab->handlers[(int) TFmode].insn_code = CODE_FOR_abstf2; | |
4718 | #endif | |
decdfa82 RS |
4719 | |
4720 | /* Use cabs for DC complex abs, since systems generally have cabs. | |
4721 | Don't define any libcall for SCmode, so that cabs will be used. */ | |
4722 | abs_optab->handlers[(int) DCmode].libfunc | |
4723 | = gen_rtx (SYMBOL_REF, Pmode, "cabs"); | |
77c9c6c2 | 4724 | |
d45cf215 RS |
4725 | #ifdef HAVE_sqrtqi2 |
4726 | if (HAVE_sqrtqi2) | |
4727 | sqrt_optab->handlers[(int) QImode].insn_code = CODE_FOR_sqrtqi2; | |
4728 | #endif | |
4729 | #ifdef HAVE_sqrthi2 | |
4730 | if (HAVE_sqrthi2) | |
4731 | sqrt_optab->handlers[(int) HImode].insn_code = CODE_FOR_sqrthi2; | |
4732 | #endif | |
4733 | #ifdef HAVE_sqrtpsi2 | |
4734 | if (HAVE_sqrtpsi2) | |
4735 | sqrt_optab->handlers[(int) PSImode].insn_code = CODE_FOR_sqrtpsi2; | |
4736 | #endif | |
4737 | #ifdef HAVE_sqrtsi2 | |
4738 | if (HAVE_sqrtsi2) | |
4739 | sqrt_optab->handlers[(int) SImode].insn_code = CODE_FOR_sqrtsi2; | |
4740 | #endif | |
4741 | #ifdef HAVE_sqrtdi2 | |
4742 | if (HAVE_sqrtdi2) | |
4743 | sqrt_optab->handlers[(int) DImode].insn_code = CODE_FOR_sqrtdi2; | |
4744 | #endif | |
4745 | #ifdef HAVE_sqrtti2 | |
4746 | if (HAVE_sqrtti2) | |
4747 | sqrt_optab->handlers[(int) TImode].insn_code = CODE_FOR_sqrtti2; | |
4748 | #endif | |
4749 | #ifdef HAVE_sqrtsf2 | |
4750 | if (HAVE_sqrtsf2) | |
4751 | sqrt_optab->handlers[(int) SFmode].insn_code = CODE_FOR_sqrtsf2; | |
4752 | #endif | |
4753 | #ifdef HAVE_sqrtdf2 | |
4754 | if (HAVE_sqrtdf2) | |
4755 | sqrt_optab->handlers[(int) DFmode].insn_code = CODE_FOR_sqrtdf2; | |
4756 | #endif | |
4757 | #ifdef HAVE_sqrttf2 | |
4758 | if (HAVE_sqrttf2) | |
4759 | sqrt_optab->handlers[(int) TFmode].insn_code = CODE_FOR_sqrttf2; | |
4760 | #endif | |
4761 | /* No library calls here! If there is no sqrt instruction expand_builtin | |
4762 | should force the library call. */ | |
4763 | ||
28cf078d JVA |
4764 | #ifdef HAVE_sinsf2 |
4765 | if (HAVE_sinsf2) | |
4766 | sin_optab->handlers[(int) SFmode].insn_code = CODE_FOR_sinsf2; | |
4767 | #endif | |
4768 | #ifdef HAVE_sindf2 | |
4769 | if (HAVE_sindf2) | |
4770 | sin_optab->handlers[(int) DFmode].insn_code = CODE_FOR_sindf2; | |
4771 | #endif | |
4772 | #ifdef HAVE_sintf2 | |
4773 | if (HAVE_sintf2) | |
4774 | sin_optab->handlers[(int) TFmode].insn_code = CODE_FOR_sintf2; | |
4775 | #endif | |
4776 | /* No library calls here! If there is no sin instruction expand_builtin | |
4777 | should force the library call. */ | |
4778 | ||
4779 | #ifdef HAVE_cossf2 | |
4780 | if (HAVE_cossf2) | |
4781 | cos_optab->handlers[(int) SFmode].insn_code = CODE_FOR_cossf2; | |
4782 | #endif | |
4783 | #ifdef HAVE_cosdf2 | |
4784 | if (HAVE_cosdf2) | |
4785 | cos_optab->handlers[(int) DFmode].insn_code = CODE_FOR_cosdf2; | |
4786 | #endif | |
4787 | #ifdef HAVE_costf2 | |
4788 | if (HAVE_costf2) | |
4789 | cos_optab->handlers[(int) TFmode].insn_code = CODE_FOR_costf2; | |
4790 | #endif | |
4791 | /* No library calls here! If there is no cos instruction expand_builtin | |
4792 | should force the library call. */ | |
4793 | ||
19c3fc24 RS |
4794 | #ifdef HAVE_strlenqi |
4795 | if (HAVE_strlenqi) | |
4796 | strlen_optab->handlers[(int) QImode].insn_code = CODE_FOR_strlenqi; | |
4797 | #endif | |
4798 | #ifdef HAVE_strlenhi | |
4799 | if (HAVE_strlenhi) | |
4800 | strlen_optab->handlers[(int) HImode].insn_code = CODE_FOR_strlenhi; | |
4801 | #endif | |
4802 | #ifdef HAVE_strlenpsi | |
4803 | if (HAVE_strlenpsi) | |
4804 | strlen_optab->handlers[(int) PSImode].insn_code = CODE_FOR_strlenpsi; | |
4805 | #endif | |
4806 | #ifdef HAVE_strlensi | |
4807 | if (HAVE_strlensi) | |
4808 | strlen_optab->handlers[(int) SImode].insn_code = CODE_FOR_strlensi; | |
4809 | #endif | |
4810 | #ifdef HAVE_strlendi | |
4811 | if (HAVE_strlendi) | |
4812 | strlen_optab->handlers[(int) DImode].insn_code = CODE_FOR_strlendi; | |
4813 | #endif | |
4814 | #ifdef HAVE_strlenti | |
4815 | if (HAVE_strlenti) | |
4816 | strlen_optab->handlers[(int) TImode].insn_code = CODE_FOR_strlenti; | |
4817 | #endif | |
4818 | /* No library calls here! If there is no strlen instruction expand_builtin | |
4819 | should force the library call. */ | |
4820 | ||
77c9c6c2 RK |
4821 | #ifdef HAVE_one_cmplqi2 |
4822 | if (HAVE_one_cmplqi2) | |
4823 | one_cmpl_optab->handlers[(int) QImode].insn_code = CODE_FOR_one_cmplqi2; | |
4824 | #endif | |
4825 | #ifdef HAVE_one_cmplhi2 | |
4826 | if (HAVE_one_cmplhi2) | |
4827 | one_cmpl_optab->handlers[(int) HImode].insn_code = CODE_FOR_one_cmplhi2; | |
4828 | #endif | |
4829 | #ifdef HAVE_one_cmplpsi2 | |
4830 | if (HAVE_one_cmplpsi2) | |
4831 | one_cmpl_optab->handlers[(int) PSImode].insn_code = CODE_FOR_one_cmplpsi2; | |
4832 | #endif | |
4833 | #ifdef HAVE_one_cmplsi2 | |
4834 | if (HAVE_one_cmplsi2) | |
4835 | one_cmpl_optab->handlers[(int) SImode].insn_code = CODE_FOR_one_cmplsi2; | |
4836 | #endif | |
4837 | #ifdef HAVE_one_cmpldi2 | |
4838 | if (HAVE_one_cmpldi2) | |
4839 | one_cmpl_optab->handlers[(int) DImode].insn_code = CODE_FOR_one_cmpldi2; | |
4840 | #endif | |
4841 | #ifdef HAVE_one_cmplti2 | |
4842 | if (HAVE_one_cmplti2) | |
4843 | one_cmpl_optab->handlers[(int) TImode].insn_code = CODE_FOR_one_cmplti2; | |
4844 | #endif | |
b092b471 | 4845 | init_integral_libfuncs (one_cmpl_optab, "one_cmpl", '2'); |
77c9c6c2 RK |
4846 | |
4847 | #ifdef HAVE_ffsqi2 | |
4848 | if (HAVE_ffsqi2) | |
4849 | ffs_optab->handlers[(int) QImode].insn_code = CODE_FOR_ffsqi2; | |
4850 | #endif | |
4851 | #ifdef HAVE_ffshi2 | |
4852 | if (HAVE_ffshi2) | |
4853 | ffs_optab->handlers[(int) HImode].insn_code = CODE_FOR_ffshi2; | |
4854 | #endif | |
4855 | #ifdef HAVE_ffspsi2 | |
4856 | if (HAVE_ffspsi2) | |
4857 | ffs_optab->handlers[(int) PSImode].insn_code = CODE_FOR_ffspsi2; | |
4858 | #endif | |
4859 | #ifdef HAVE_ffssi2 | |
4860 | if (HAVE_ffssi2) | |
4861 | ffs_optab->handlers[(int) SImode].insn_code = CODE_FOR_ffssi2; | |
4862 | #endif | |
4863 | #ifdef HAVE_ffsdi2 | |
4864 | if (HAVE_ffsdi2) | |
4865 | ffs_optab->handlers[(int) DImode].insn_code = CODE_FOR_ffsdi2; | |
4866 | #endif | |
4867 | #ifdef HAVE_ffsti2 | |
4868 | if (HAVE_ffsti2) | |
4869 | ffs_optab->handlers[(int) TImode].insn_code = CODE_FOR_ffsti2; | |
4870 | #endif | |
b092b471 | 4871 | init_integral_libfuncs (ffs_optab, "ffs", '2'); |
77c9c6c2 RK |
4872 | |
4873 | #ifdef HAVE_movqi | |
4874 | if (HAVE_movqi) | |
4875 | mov_optab->handlers[(int) QImode].insn_code = CODE_FOR_movqi; | |
4876 | #endif | |
4877 | #ifdef HAVE_movhi | |
4878 | if (HAVE_movhi) | |
4879 | mov_optab->handlers[(int) HImode].insn_code = CODE_FOR_movhi; | |
4880 | #endif | |
4881 | #ifdef HAVE_movpsi | |
4882 | if (HAVE_movpsi) | |
4883 | mov_optab->handlers[(int) PSImode].insn_code = CODE_FOR_movpsi; | |
4884 | #endif | |
4885 | #ifdef HAVE_movsi | |
4886 | if (HAVE_movsi) | |
4887 | mov_optab->handlers[(int) SImode].insn_code = CODE_FOR_movsi; | |
4888 | #endif | |
4889 | #ifdef HAVE_movdi | |
4890 | if (HAVE_movdi) | |
4891 | mov_optab->handlers[(int) DImode].insn_code = CODE_FOR_movdi; | |
4892 | #endif | |
4893 | #ifdef HAVE_movti | |
4894 | if (HAVE_movti) | |
4895 | mov_optab->handlers[(int) TImode].insn_code = CODE_FOR_movti; | |
4896 | #endif | |
4897 | #ifdef HAVE_movsf | |
4898 | if (HAVE_movsf) | |
4899 | mov_optab->handlers[(int) SFmode].insn_code = CODE_FOR_movsf; | |
4900 | #endif | |
4901 | #ifdef HAVE_movdf | |
4902 | if (HAVE_movdf) | |
4903 | mov_optab->handlers[(int) DFmode].insn_code = CODE_FOR_movdf; | |
4904 | #endif | |
b092b471 JW |
4905 | #ifdef HAVE_movxf |
4906 | if (HAVE_movxf) | |
4907 | mov_optab->handlers[(int) XFmode].insn_code = CODE_FOR_movxf; | |
4908 | #endif | |
77c9c6c2 RK |
4909 | #ifdef HAVE_movtf |
4910 | if (HAVE_movtf) | |
4911 | mov_optab->handlers[(int) TFmode].insn_code = CODE_FOR_movtf; | |
4912 | #endif | |
4913 | #ifdef HAVE_movcc | |
4914 | if (HAVE_movcc) | |
4915 | mov_optab->handlers[(int) CCmode].insn_code = CODE_FOR_movcc; | |
4916 | #endif | |
4917 | ||
4918 | #ifdef EXTRA_CC_MODES | |
4919 | init_mov_optab (); | |
4920 | #endif | |
4921 | ||
4922 | #ifdef HAVE_movstrictqi | |
4923 | if (HAVE_movstrictqi) | |
4924 | movstrict_optab->handlers[(int) QImode].insn_code = CODE_FOR_movstrictqi; | |
4925 | #endif | |
4926 | #ifdef HAVE_movstricthi | |
4927 | if (HAVE_movstricthi) | |
4928 | movstrict_optab->handlers[(int) HImode].insn_code = CODE_FOR_movstricthi; | |
4929 | #endif | |
4930 | #ifdef HAVE_movstrictpsi | |
4931 | if (HAVE_movstrictpsi) | |
4932 | movstrict_optab->handlers[(int) PSImode].insn_code = CODE_FOR_movstrictpsi; | |
4933 | #endif | |
4934 | #ifdef HAVE_movstrictsi | |
4935 | if (HAVE_movstrictsi) | |
4936 | movstrict_optab->handlers[(int) SImode].insn_code = CODE_FOR_movstrictsi; | |
4937 | #endif | |
4938 | #ifdef HAVE_movstrictdi | |
4939 | if (HAVE_movstrictdi) | |
4940 | movstrict_optab->handlers[(int) DImode].insn_code = CODE_FOR_movstrictdi; | |
4941 | #endif | |
4942 | #ifdef HAVE_movstrictti | |
4943 | if (HAVE_movstrictti) | |
4944 | movstrict_optab->handlers[(int) TImode].insn_code = CODE_FOR_movstrictti; | |
4945 | #endif | |
4946 | ||
4947 | #ifdef HAVE_cmpqi | |
4948 | if (HAVE_cmpqi) | |
4949 | cmp_optab->handlers[(int) QImode].insn_code = CODE_FOR_cmpqi; | |
4950 | #endif | |
4951 | #ifdef HAVE_cmphi | |
4952 | if (HAVE_cmphi) | |
4953 | cmp_optab->handlers[(int) HImode].insn_code = CODE_FOR_cmphi; | |
4954 | #endif | |
4955 | #ifdef HAVE_cmppsi | |
4956 | if (HAVE_cmppsi) | |
4957 | cmp_optab->handlers[(int) PSImode].insn_code = CODE_FOR_cmppsi; | |
4958 | #endif | |
4959 | #ifdef HAVE_cmpsi | |
4960 | if (HAVE_cmpsi) | |
4961 | cmp_optab->handlers[(int) SImode].insn_code = CODE_FOR_cmpsi; | |
4962 | #endif | |
4963 | #ifdef HAVE_cmpdi | |
4964 | if (HAVE_cmpdi) | |
4965 | cmp_optab->handlers[(int) DImode].insn_code = CODE_FOR_cmpdi; | |
4966 | #endif | |
4967 | #ifdef HAVE_cmpti | |
4968 | if (HAVE_cmpti) | |
4969 | cmp_optab->handlers[(int) TImode].insn_code = CODE_FOR_cmpti; | |
4970 | #endif | |
4971 | #ifdef HAVE_cmpsf | |
4972 | if (HAVE_cmpsf) | |
4973 | cmp_optab->handlers[(int) SFmode].insn_code = CODE_FOR_cmpsf; | |
4974 | #endif | |
4975 | #ifdef HAVE_cmpdf | |
4976 | if (HAVE_cmpdf) | |
4977 | cmp_optab->handlers[(int) DFmode].insn_code = CODE_FOR_cmpdf; | |
4978 | #endif | |
b092b471 JW |
4979 | #ifdef HAVE_cmpxf |
4980 | if (HAVE_cmpxf) | |
4981 | cmp_optab->handlers[(int) XFmode].insn_code = CODE_FOR_cmpxf; | |
4982 | #endif | |
77c9c6c2 RK |
4983 | #ifdef HAVE_cmptf |
4984 | if (HAVE_cmptf) | |
4985 | cmp_optab->handlers[(int) TFmode].insn_code = CODE_FOR_cmptf; | |
4986 | #endif | |
b092b471 JW |
4987 | /* Comparison libcalls for integers MUST come in pairs, signed/unsigned. */ |
4988 | init_integral_libfuncs (cmp_optab, "cmp", '2'); | |
4989 | init_integral_libfuncs (ucmp_optab, "ucmp", '2'); | |
4990 | init_floating_libfuncs (cmp_optab, "cmp", '2'); | |
4991 | ||
77c9c6c2 RK |
4992 | #ifdef HAVE_tstqi |
4993 | if (HAVE_tstqi) | |
4994 | tst_optab->handlers[(int) QImode].insn_code = CODE_FOR_tstqi; | |
4995 | #endif | |
4996 | #ifdef HAVE_tsthi | |
4997 | if (HAVE_tsthi) | |
4998 | tst_optab->handlers[(int) HImode].insn_code = CODE_FOR_tsthi; | |
4999 | #endif | |
5000 | #ifdef HAVE_tstpsi | |
5001 | if (HAVE_tstpsi) | |
5002 | tst_optab->handlers[(int) PSImode].insn_code = CODE_FOR_tstpsi; | |
5003 | #endif | |
5004 | #ifdef HAVE_tstsi | |
5005 | if (HAVE_tstsi) | |
5006 | tst_optab->handlers[(int) SImode].insn_code = CODE_FOR_tstsi; | |
5007 | #endif | |
5008 | #ifdef HAVE_tstdi | |
5009 | if (HAVE_tstdi) | |
5010 | tst_optab->handlers[(int) DImode].insn_code = CODE_FOR_tstdi; | |
5011 | #endif | |
5012 | #ifdef HAVE_tstti | |
5013 | if (HAVE_tstti) | |
5014 | tst_optab->handlers[(int) TImode].insn_code = CODE_FOR_tstti; | |
5015 | #endif | |
5016 | #ifdef HAVE_tstsf | |
5017 | if (HAVE_tstsf) | |
5018 | tst_optab->handlers[(int) SFmode].insn_code = CODE_FOR_tstsf; | |
5019 | #endif | |
5020 | #ifdef HAVE_tstdf | |
5021 | if (HAVE_tstdf) | |
5022 | tst_optab->handlers[(int) DFmode].insn_code = CODE_FOR_tstdf; | |
5023 | #endif | |
b092b471 JW |
5024 | #ifdef HAVE_tstxf |
5025 | if (HAVE_tstxf) | |
5026 | tst_optab->handlers[(int) XFmode].insn_code = CODE_FOR_tstxf; | |
5027 | #endif | |
77c9c6c2 RK |
5028 | #ifdef HAVE_tsttf |
5029 | if (HAVE_tsttf) | |
5030 | tst_optab->handlers[(int) TFmode].insn_code = CODE_FOR_tsttf; | |
5031 | #endif | |
77c9c6c2 RK |
5032 | |
5033 | #ifdef HAVE_beq | |
5034 | if (HAVE_beq) | |
5035 | bcc_gen_fctn[(int) EQ] = gen_beq; | |
5036 | #endif | |
5037 | #ifdef HAVE_bne | |
5038 | if (HAVE_bne) | |
5039 | bcc_gen_fctn[(int) NE] = gen_bne; | |
5040 | #endif | |
5041 | #ifdef HAVE_bgt | |
5042 | if (HAVE_bgt) | |
5043 | bcc_gen_fctn[(int) GT] = gen_bgt; | |
5044 | #endif | |
5045 | #ifdef HAVE_bge | |
5046 | if (HAVE_bge) | |
5047 | bcc_gen_fctn[(int) GE] = gen_bge; | |
5048 | #endif | |
5049 | #ifdef HAVE_bgtu | |
5050 | if (HAVE_bgtu) | |
5051 | bcc_gen_fctn[(int) GTU] = gen_bgtu; | |
5052 | #endif | |
5053 | #ifdef HAVE_bgeu | |
5054 | if (HAVE_bgeu) | |
5055 | bcc_gen_fctn[(int) GEU] = gen_bgeu; | |
5056 | #endif | |
5057 | #ifdef HAVE_blt | |
5058 | if (HAVE_blt) | |
5059 | bcc_gen_fctn[(int) LT] = gen_blt; | |
5060 | #endif | |
5061 | #ifdef HAVE_ble | |
5062 | if (HAVE_ble) | |
5063 | bcc_gen_fctn[(int) LE] = gen_ble; | |
5064 | #endif | |
5065 | #ifdef HAVE_bltu | |
5066 | if (HAVE_bltu) | |
5067 | bcc_gen_fctn[(int) LTU] = gen_bltu; | |
5068 | #endif | |
5069 | #ifdef HAVE_bleu | |
5070 | if (HAVE_bleu) | |
5071 | bcc_gen_fctn[(int) LEU] = gen_bleu; | |
5072 | #endif | |
5073 | ||
5074 | for (i = 0; i < NUM_RTX_CODE; i++) | |
5075 | setcc_gen_code[i] = CODE_FOR_nothing; | |
5076 | ||
5077 | #ifdef HAVE_seq | |
5078 | if (HAVE_seq) | |
5079 | setcc_gen_code[(int) EQ] = CODE_FOR_seq; | |
5080 | #endif | |
5081 | #ifdef HAVE_sne | |
5082 | if (HAVE_sne) | |
5083 | setcc_gen_code[(int) NE] = CODE_FOR_sne; | |
5084 | #endif | |
5085 | #ifdef HAVE_sgt | |
5086 | if (HAVE_sgt) | |
5087 | setcc_gen_code[(int) GT] = CODE_FOR_sgt; | |
5088 | #endif | |
5089 | #ifdef HAVE_sge | |
5090 | if (HAVE_sge) | |
5091 | setcc_gen_code[(int) GE] = CODE_FOR_sge; | |
5092 | #endif | |
5093 | #ifdef HAVE_sgtu | |
5094 | if (HAVE_sgtu) | |
5095 | setcc_gen_code[(int) GTU] = CODE_FOR_sgtu; | |
5096 | #endif | |
5097 | #ifdef HAVE_sgeu | |
5098 | if (HAVE_sgeu) | |
5099 | setcc_gen_code[(int) GEU] = CODE_FOR_sgeu; | |
5100 | #endif | |
5101 | #ifdef HAVE_slt | |
5102 | if (HAVE_slt) | |
5103 | setcc_gen_code[(int) LT] = CODE_FOR_slt; | |
5104 | #endif | |
5105 | #ifdef HAVE_sle | |
5106 | if (HAVE_sle) | |
5107 | setcc_gen_code[(int) LE] = CODE_FOR_sle; | |
5108 | #endif | |
5109 | #ifdef HAVE_sltu | |
5110 | if (HAVE_sltu) | |
5111 | setcc_gen_code[(int) LTU] = CODE_FOR_sltu; | |
5112 | #endif | |
5113 | #ifdef HAVE_sleu | |
5114 | if (HAVE_sleu) | |
5115 | setcc_gen_code[(int) LEU] = CODE_FOR_sleu; | |
5116 | #endif | |
5117 | ||
5118 | extendsfdf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__extendsfdf2"); | |
b092b471 JW |
5119 | extendsfxf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__extendsfxf2"); |
5120 | extendsftf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__extendsftf2"); | |
5121 | extenddfxf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__extenddfxf2"); | |
5122 | extenddftf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__extenddftf2"); | |
5123 | ||
77c9c6c2 | 5124 | truncdfsf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__truncdfsf2"); |
b092b471 JW |
5125 | truncxfsf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__truncxfsf2"); |
5126 | trunctfsf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__trunctfsf2"); | |
5127 | truncxfdf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__truncxfdf2"); | |
5128 | trunctfdf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__trunctfdf2"); | |
5129 | ||
77c9c6c2 RK |
5130 | memcpy_libfunc = gen_rtx (SYMBOL_REF, Pmode, "memcpy"); |
5131 | bcopy_libfunc = gen_rtx (SYMBOL_REF, Pmode, "bcopy"); | |
5132 | memcmp_libfunc = gen_rtx (SYMBOL_REF, Pmode, "memcmp"); | |
b818abb0 | 5133 | bcmp_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__gcc_bcmp"); |
77c9c6c2 RK |
5134 | memset_libfunc = gen_rtx (SYMBOL_REF, Pmode, "memset"); |
5135 | bzero_libfunc = gen_rtx (SYMBOL_REF, Pmode, "bzero"); | |
b092b471 | 5136 | |
77c9c6c2 RK |
5137 | eqsf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__eqsf2"); |
5138 | nesf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__nesf2"); | |
5139 | gtsf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__gtsf2"); | |
5140 | gesf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__gesf2"); | |
5141 | ltsf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__ltsf2"); | |
5142 | lesf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__lesf2"); | |
b092b471 | 5143 | |
77c9c6c2 RK |
5144 | eqdf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__eqdf2"); |
5145 | nedf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__nedf2"); | |
5146 | gtdf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__gtdf2"); | |
5147 | gedf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__gedf2"); | |
5148 | ltdf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__ltdf2"); | |
5149 | ledf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__ledf2"); | |
b092b471 JW |
5150 | |
5151 | eqxf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__eqxf2"); | |
5152 | nexf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__nexf2"); | |
5153 | gtxf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__gtxf2"); | |
5154 | gexf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__gexf2"); | |
5155 | ltxf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__ltxf2"); | |
5156 | lexf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__lexf2"); | |
5157 | ||
5158 | eqtf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__eqtf2"); | |
5159 | netf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__netf2"); | |
5160 | gttf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__gttf2"); | |
5161 | getf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__getf2"); | |
5162 | lttf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__lttf2"); | |
5163 | letf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__letf2"); | |
5164 | ||
6bce1b78 | 5165 | floatsisf_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__floatsisf"); |
b092b471 JW |
5166 | floatdisf_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__floatdisf"); |
5167 | floattisf_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__floattisf"); | |
5168 | ||
6bce1b78 | 5169 | floatsidf_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__floatsidf"); |
b092b471 JW |
5170 | floatdidf_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__floatdidf"); |
5171 | floattidf_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__floattidf"); | |
5172 | ||
5173 | floatsixf_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__floatsixf"); | |
5174 | floatdixf_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__floatdixf"); | |
5175 | floattixf_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__floattixf"); | |
5176 | ||
5177 | floatsitf_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__floatsitf"); | |
5178 | floatditf_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__floatditf"); | |
5179 | floattitf_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__floattitf"); | |
5180 | ||
6bce1b78 RK |
5181 | fixsfsi_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixsfsi"); |
5182 | fixsfdi_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixsfdi"); | |
b092b471 JW |
5183 | fixsfti_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixsfti"); |
5184 | ||
6bce1b78 RK |
5185 | fixdfsi_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixdfsi"); |
5186 | fixdfdi_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixdfdi"); | |
b092b471 JW |
5187 | fixdfti_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixdfti"); |
5188 | ||
5189 | fixxfsi_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixxfsi"); | |
5190 | fixxfdi_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixxfdi"); | |
5191 | fixxfti_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixxfti"); | |
5192 | ||
5193 | fixtfsi_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixtfsi"); | |
5194 | fixtfdi_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixtfdi"); | |
5195 | fixtfti_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixtfti"); | |
5196 | ||
6bce1b78 RK |
5197 | fixunssfsi_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixunssfsi"); |
5198 | fixunssfdi_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixunssfdi"); | |
b092b471 JW |
5199 | fixunssfti_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixunssfti"); |
5200 | ||
6bce1b78 RK |
5201 | fixunsdfsi_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixunsdfsi"); |
5202 | fixunsdfdi_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixunsdfdi"); | |
b092b471 JW |
5203 | fixunsdfti_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixunsdfti"); |
5204 | ||
5205 | fixunsxfsi_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixunsxfsi"); | |
5206 | fixunsxfdi_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixunsxfdi"); | |
5207 | fixunsxfti_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixunsxfti"); | |
5208 | ||
5209 | fixunstfsi_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixunstfsi"); | |
5210 | fixunstfdi_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixunstfdi"); | |
5211 | fixunstfti_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixunstfti"); | |
77c9c6c2 | 5212 | } |
7e1966ca JVA |
5213 | \f |
5214 | #ifdef BROKEN_LDEXP | |
5215 | ||
5216 | /* SCO 3.2 apparently has a broken ldexp. */ | |
5217 | ||
5218 | double | |
5219 | ldexp(x,n) | |
5220 | double x; | |
5221 | int n; | |
5222 | { | |
5223 | if (n > 0) | |
5224 | while (n--) | |
5225 | x *= 2; | |
5226 | ||
5227 | return x; | |
5228 | } | |
5229 | #endif /* BROKEN_LDEXP */ |