]>
Commit | Line | Data |
---|---|---|
77c9c6c2 RK |
1 | /* Expand the basic unary and binary arithmetic operations, for GNU compiler. |
2 | Copyright (C) 1987-1991 Free Software Foundation, Inc. | |
3 | ||
4 | This file is part of GNU CC. | |
5 | ||
6 | GNU CC is free software; you can redistribute it and/or modify | |
7 | it under the terms of the GNU General Public License as published by | |
8 | the Free Software Foundation; either version 2, or (at your option) | |
9 | any later version. | |
10 | ||
11 | GNU CC is distributed in the hope that it will be useful, | |
12 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
14 | GNU General Public License for more details. | |
15 | ||
16 | You should have received a copy of the GNU General Public License | |
17 | along with GNU CC; see the file COPYING. If not, write to | |
18 | the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */ | |
19 | ||
20 | ||
21 | #include "config.h" | |
22 | #include "rtl.h" | |
23 | #include "tree.h" | |
24 | #include "flags.h" | |
25 | #include "insn-flags.h" | |
26 | #include "insn-codes.h" | |
27 | #include "expr.h" | |
28 | #include "insn-config.h" | |
29 | #include "recog.h" | |
30 | ||
31 | /* Each optab contains info on how this target machine | |
32 | can perform a particular operation | |
33 | for all sizes and kinds of operands. | |
34 | ||
35 | The operation to be performed is often specified | |
36 | by passing one of these optabs as an argument. | |
37 | ||
38 | See expr.h for documentation of these optabs. */ | |
39 | ||
40 | optab add_optab; | |
41 | optab sub_optab; | |
42 | optab smul_optab; | |
43 | optab smul_widen_optab; | |
44 | optab umul_widen_optab; | |
45 | optab sdiv_optab; | |
46 | optab sdivmod_optab; | |
47 | optab udiv_optab; | |
48 | optab udivmod_optab; | |
49 | optab smod_optab; | |
50 | optab umod_optab; | |
51 | optab flodiv_optab; | |
52 | optab ftrunc_optab; | |
53 | optab and_optab; | |
54 | optab ior_optab; | |
55 | optab xor_optab; | |
56 | optab ashl_optab; | |
57 | optab lshr_optab; | |
58 | optab lshl_optab; | |
59 | optab ashr_optab; | |
60 | optab rotl_optab; | |
61 | optab rotr_optab; | |
62 | optab smin_optab; | |
63 | optab smax_optab; | |
64 | optab umin_optab; | |
65 | optab umax_optab; | |
66 | ||
67 | optab mov_optab; | |
68 | optab movstrict_optab; | |
69 | ||
70 | optab neg_optab; | |
71 | optab abs_optab; | |
72 | optab one_cmpl_optab; | |
73 | optab ffs_optab; | |
74 | ||
75 | optab cmp_optab; | |
76 | optab ucmp_optab; /* Used only for libcalls for unsigned comparisons. */ | |
77 | optab tst_optab; | |
78 | ||
79 | /* SYMBOL_REF rtx's for the library functions that are called | |
80 | implicitly and not via optabs. */ | |
81 | ||
82 | rtx extendsfdf2_libfunc; | |
83 | rtx truncdfsf2_libfunc; | |
84 | rtx memcpy_libfunc; | |
85 | rtx bcopy_libfunc; | |
86 | rtx memcmp_libfunc; | |
87 | rtx bcmp_libfunc; | |
88 | rtx memset_libfunc; | |
89 | rtx bzero_libfunc; | |
90 | rtx eqsf2_libfunc; | |
91 | rtx nesf2_libfunc; | |
92 | rtx gtsf2_libfunc; | |
93 | rtx gesf2_libfunc; | |
94 | rtx ltsf2_libfunc; | |
95 | rtx lesf2_libfunc; | |
96 | rtx eqdf2_libfunc; | |
97 | rtx nedf2_libfunc; | |
98 | rtx gtdf2_libfunc; | |
99 | rtx gedf2_libfunc; | |
100 | rtx ltdf2_libfunc; | |
101 | rtx ledf2_libfunc; | |
102 | ||
103 | /* Indexed by the rtx-code for a conditional (eg. EQ, LT,...) | |
104 | gives the gen_function to make a branch to test that condition. */ | |
105 | ||
106 | rtxfun bcc_gen_fctn[NUM_RTX_CODE]; | |
107 | ||
108 | /* Indexed by the rtx-code for a conditional (eg. EQ, LT,...) | |
109 | gives the insn code to make a store-condition insn | |
110 | to test that condition. */ | |
111 | ||
112 | enum insn_code setcc_gen_code[NUM_RTX_CODE]; | |
113 | ||
114 | static void emit_float_lib_cmp (); | |
115 | \f | |
116 | /* Add a REG_EQUAL note to the last insn in SEQ. TARGET is being set to | |
117 | the result of operation CODE applied to OP0 (and OP1 if it is a binary | |
118 | operation). | |
119 | ||
120 | If the last insn does not set TARGET, don't do anything, but return 1. | |
121 | ||
122 | If a previous insn sets TARGET and TARGET is one of OP0 or OP1, | |
123 | don't add the REG_EQUAL note but return 0. Our caller can then try | |
124 | again, ensuring that TARGET is not one of the operands. */ | |
125 | ||
126 | static int | |
127 | add_equal_note (seq, target, code, op0, op1) | |
128 | rtx seq; | |
129 | rtx target; | |
130 | enum rtx_code code; | |
131 | rtx op0, op1; | |
132 | { | |
133 | rtx set; | |
134 | int i; | |
135 | rtx note; | |
136 | ||
137 | if ((GET_RTX_CLASS (code) != '1' && GET_RTX_CLASS (code) != '2' | |
138 | && GET_RTX_CLASS (code) != 'c' && GET_RTX_CLASS (code) != '<') | |
139 | || GET_CODE (seq) != SEQUENCE | |
140 | || (set = single_set (XVECEXP (seq, 0, XVECLEN (seq, 0) - 1))) == 0 | |
141 | || GET_CODE (target) == ZERO_EXTRACT | |
142 | || (! rtx_equal_p (SET_DEST (set), target) | |
143 | /* For a STRICT_LOW_PART, the REG_NOTE applies to what is inside the | |
144 | SUBREG. */ | |
145 | && (GET_CODE (SET_DEST (set)) != STRICT_LOW_PART | |
146 | || ! rtx_equal_p (SUBREG_REG (XEXP (SET_DEST (set), 0)), | |
147 | target)))) | |
148 | return 1; | |
149 | ||
150 | /* If TARGET is in OP0 or OP1, check if anything in SEQ sets TARGET | |
151 | besides the last insn. */ | |
152 | if (reg_overlap_mentioned_p (target, op0) | |
153 | || (op1 && reg_overlap_mentioned_p (target, op1))) | |
154 | for (i = XVECLEN (seq, 0) - 2; i >= 0; i--) | |
155 | if (reg_set_p (target, XVECEXP (seq, 0, i))) | |
156 | return 0; | |
157 | ||
158 | if (GET_RTX_CLASS (code) == '1') | |
159 | note = gen_rtx (code, GET_MODE (target), op0); | |
160 | else | |
161 | note = gen_rtx (code, GET_MODE (target), op0, op1); | |
162 | ||
163 | REG_NOTES (XVECEXP (seq, 0, XVECLEN (seq, 0) - 1)) | |
164 | = gen_rtx (EXPR_LIST, REG_EQUAL, note, | |
165 | REG_NOTES (XVECEXP (seq, 0, XVECLEN (seq, 0) - 1))); | |
166 | ||
167 | return 1; | |
168 | } | |
169 | \f | |
170 | /* Generate code to perform an operation specified by BINOPTAB | |
171 | on operands OP0 and OP1, with result having machine-mode MODE. | |
172 | ||
173 | UNSIGNEDP is for the case where we have to widen the operands | |
174 | to perform the operation. It says to use zero-extension. | |
175 | ||
176 | If TARGET is nonzero, the value | |
177 | is generated there, if it is convenient to do so. | |
178 | In all cases an rtx is returned for the locus of the value; | |
179 | this may or may not be TARGET. */ | |
180 | ||
181 | rtx | |
182 | expand_binop (mode, binoptab, op0, op1, target, unsignedp, methods) | |
183 | enum machine_mode mode; | |
184 | optab binoptab; | |
185 | rtx op0, op1; | |
186 | rtx target; | |
187 | int unsignedp; | |
188 | enum optab_methods methods; | |
189 | { | |
190 | enum mode_class class; | |
191 | enum machine_mode wider_mode; | |
192 | enum machine_mode submode = mode_for_size (BITS_PER_WORD, MODE_INT, 0); | |
193 | register rtx temp; | |
194 | int commutative_op = 0; | |
195 | int shift_op = (binoptab->code == ASHIFT | |
196 | || binoptab->code == ASHIFTRT | |
197 | || binoptab->code == LSHIFT | |
198 | || binoptab->code == LSHIFTRT | |
199 | || binoptab->code == ROTATE | |
200 | || binoptab->code == ROTATERT); | |
201 | rtx last; | |
202 | ||
203 | class = GET_MODE_CLASS (mode); | |
204 | ||
205 | op0 = protect_from_queue (op0, 0); | |
206 | op1 = protect_from_queue (op1, 0); | |
207 | if (target) | |
208 | target = protect_from_queue (target, 1); | |
209 | ||
210 | if (flag_force_mem) | |
211 | { | |
212 | op0 = force_not_mem (op0); | |
213 | op1 = force_not_mem (op1); | |
214 | } | |
215 | ||
216 | /* If we are inside an appropriately-short loop and one operand is an | |
217 | expensive constant, force it into a register. */ | |
218 | if (CONSTANT_P (op0) && preserve_subexpressions_p () && rtx_cost (op0) > 2) | |
219 | op0 = force_reg (mode, op0); | |
220 | ||
221 | if (CONSTANT_P (op1) && preserve_subexpressions_p () && rtx_cost (op1) > 2) | |
222 | op1 = force_reg ((shift_op | |
223 | ? mode_for_size (BITS_PER_WORD, MODE_INT, 0) | |
224 | : mode), | |
225 | op1); | |
226 | ||
227 | #if 0 /* Turned off because it seems to be a kludgy method. */ | |
228 | /* If subtracting integer from pointer, and the pointer has a special mode, | |
229 | then change it to an add. We use the add insn of Pmode for combining | |
230 | integers with pointers, and the sub insn to subtract two pointers. */ | |
231 | ||
232 | if (binoptab == sub_optab | |
233 | && GET_MODE (op0) == Pmode && GET_MODE (op1) != Pmode) | |
234 | { | |
235 | op1 = negate_rtx (GET_MODE(op1), op1); | |
236 | binoptab = add_optab; | |
237 | } | |
238 | #endif /* 0 */ | |
239 | ||
240 | /* Record where to delete back to if we backtrack. */ | |
241 | last = get_last_insn (); | |
242 | ||
243 | /* If operation is commutative, | |
244 | try to make the first operand a register. | |
245 | Even better, try to make it the same as the target. | |
246 | Also try to make the last operand a constant. */ | |
247 | if (GET_RTX_CLASS (binoptab->code) == 'c' | |
248 | || binoptab == smul_widen_optab | |
249 | || binoptab == umul_widen_optab) | |
250 | { | |
251 | commutative_op = 1; | |
252 | ||
253 | if (((target == 0 || GET_CODE (target) == REG) | |
254 | ? ((GET_CODE (op1) == REG | |
255 | && GET_CODE (op0) != REG) | |
256 | || target == op1) | |
257 | : rtx_equal_p (op1, target)) | |
258 | || GET_CODE (op0) == CONST_INT) | |
259 | { | |
260 | temp = op1; | |
261 | op1 = op0; | |
262 | op0 = temp; | |
263 | } | |
264 | } | |
265 | ||
266 | /* If we can do it with a three-operand insn, do so. */ | |
267 | ||
268 | if (methods != OPTAB_MUST_WIDEN | |
269 | && binoptab->handlers[(int) mode].insn_code != CODE_FOR_nothing) | |
270 | { | |
271 | int icode = (int) binoptab->handlers[(int) mode].insn_code; | |
272 | enum machine_mode mode0 = insn_operand_mode[icode][1]; | |
273 | enum machine_mode mode1 = insn_operand_mode[icode][2]; | |
274 | rtx pat; | |
275 | rtx xop0 = op0, xop1 = op1; | |
276 | ||
277 | if (target) | |
278 | temp = target; | |
279 | else | |
280 | temp = gen_reg_rtx (mode); | |
281 | ||
282 | /* If it is a commutative operator and the modes would match | |
283 | if we would swap the operands, we can save the conversions. */ | |
284 | if (commutative_op) | |
285 | { | |
286 | if (GET_MODE (op0) != mode0 && GET_MODE (op1) != mode1 | |
287 | && GET_MODE (op0) == mode1 && GET_MODE (op1) == mode0) | |
288 | { | |
289 | register rtx tmp; | |
290 | ||
291 | tmp = op0; op0 = op1; op1 = tmp; | |
292 | tmp = xop0; xop0 = xop1; xop1 = tmp; | |
293 | } | |
294 | } | |
295 | ||
296 | /* In case the insn wants input operands in modes different from | |
297 | the result, convert the operands. */ | |
298 | ||
299 | if (GET_MODE (op0) != VOIDmode | |
300 | && GET_MODE (op0) != mode0) | |
301 | xop0 = convert_to_mode (mode0, xop0, unsignedp); | |
302 | ||
303 | if (GET_MODE (xop1) != VOIDmode | |
304 | && GET_MODE (xop1) != mode1) | |
305 | xop1 = convert_to_mode (mode1, xop1, unsignedp); | |
306 | ||
307 | /* Now, if insn's predicates don't allow our operands, put them into | |
308 | pseudo regs. */ | |
309 | ||
310 | if (! (*insn_operand_predicate[icode][1]) (xop0, mode0)) | |
311 | xop0 = copy_to_mode_reg (mode0, xop0); | |
312 | ||
313 | if (! (*insn_operand_predicate[icode][2]) (xop1, mode1)) | |
314 | xop1 = copy_to_mode_reg (mode1, xop1); | |
315 | ||
316 | if (! (*insn_operand_predicate[icode][0]) (temp, mode)) | |
317 | temp = gen_reg_rtx (mode); | |
318 | ||
319 | pat = GEN_FCN (icode) (temp, xop0, xop1); | |
320 | if (pat) | |
321 | { | |
322 | /* If PAT is a multi-insn sequence, try to add an appropriate | |
323 | REG_EQUAL note to it. If we can't because TEMP conflicts with an | |
324 | operand, call ourselves again, this time without a target. */ | |
325 | if (GET_CODE (pat) == SEQUENCE | |
326 | && ! add_equal_note (pat, temp, binoptab->code, xop0, xop1)) | |
327 | { | |
328 | delete_insns_since (last); | |
329 | return expand_binop (mode, binoptab, op0, op1, 0, unsignedp, | |
330 | methods); | |
331 | } | |
332 | ||
333 | emit_insn (pat); | |
334 | return temp; | |
335 | } | |
336 | else | |
337 | delete_insns_since (last); | |
338 | } | |
339 | ||
340 | /* These can be done a word at a time. */ | |
341 | if ((binoptab == and_optab || binoptab == ior_optab || binoptab == xor_optab) | |
342 | && class == MODE_INT | |
343 | && GET_MODE_SIZE (mode) > UNITS_PER_WORD | |
344 | && binoptab->handlers[(int) submode].insn_code != CODE_FOR_nothing) | |
345 | { | |
346 | int i; | |
347 | rtx insns; | |
348 | rtx equiv_value; | |
349 | ||
350 | /* If TARGET is the same as one of the operands, the REG_EQUAL note | |
351 | won't be accurate, so use a new target. */ | |
352 | if (target == 0 || target == op0 || target == op1) | |
353 | target = gen_reg_rtx (mode); | |
354 | ||
355 | start_sequence (); | |
356 | ||
357 | /* Do the actual arithmetic. */ | |
358 | for (i = 0; i < GET_MODE_BITSIZE (mode) / BITS_PER_WORD; i++) | |
359 | { | |
360 | rtx target_piece = operand_subword (target, i, 1, mode); | |
361 | rtx x = expand_binop (submode, binoptab, | |
362 | operand_subword_force (op0, i, mode), | |
363 | operand_subword_force (op1, i, mode), | |
364 | target_piece, unsignedp, methods); | |
365 | if (target_piece != x) | |
366 | emit_move_insn (target_piece, x); | |
367 | } | |
368 | ||
369 | insns = get_insns (); | |
370 | end_sequence (); | |
371 | ||
372 | if (binoptab->code != UNKNOWN) | |
373 | equiv_value = gen_rtx (binoptab->code, mode, op0, op1); | |
374 | else | |
375 | equiv_value = 0; | |
376 | ||
377 | emit_no_conflict_block (insns, target, op0, op1, equiv_value); | |
378 | return target; | |
379 | } | |
380 | ||
381 | /* These can be done a word at a time by propagating carries. */ | |
382 | if ((binoptab == add_optab || binoptab == sub_optab) | |
383 | && class == MODE_INT | |
384 | && GET_MODE_SIZE (mode) >= 2 * UNITS_PER_WORD | |
385 | && binoptab->handlers[(int) submode].insn_code != CODE_FOR_nothing) | |
386 | { | |
387 | int i; | |
388 | rtx carry_tmp = gen_reg_rtx (submode); | |
389 | optab otheroptab = binoptab == add_optab ? sub_optab : add_optab; | |
390 | int nwords = GET_MODE_BITSIZE (mode) / BITS_PER_WORD; | |
391 | rtx carry_in, carry_out; | |
392 | ||
393 | /* We can handle either a 1 or -1 value for the carry. If STORE_FLAG | |
394 | value is one of those, use it. Otherwise, use 1 since it is the | |
395 | one easiest to get. */ | |
396 | #if STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1 | |
397 | int normalizep = STORE_FLAG_VALUE; | |
398 | #else | |
399 | int normalizep = 1; | |
400 | #endif | |
401 | ||
402 | /* Prepare the operands. */ | |
403 | op0 = force_reg (mode, op0); | |
404 | op1 = force_reg (mode, op1); | |
405 | ||
406 | if (target == 0 || GET_CODE (target) != REG | |
407 | || target == op0 || target == op1) | |
408 | target = gen_reg_rtx (mode); | |
409 | ||
410 | /* Do the actual arithmetic. */ | |
411 | for (i = 0; i < nwords; i++) | |
412 | { | |
413 | int index = (WORDS_BIG_ENDIAN ? nwords - i - 1 : i); | |
414 | rtx target_piece = operand_subword (target, index, 1, mode); | |
415 | rtx op0_piece = operand_subword_force (op0, index, mode); | |
416 | rtx op1_piece = operand_subword_force (op1, index, mode); | |
417 | rtx x; | |
418 | ||
419 | /* Main add/subtract of the input operands. */ | |
420 | x = expand_binop (submode, binoptab, | |
421 | op0_piece, op1_piece, | |
422 | target_piece, unsignedp, methods); | |
423 | if (x == 0) | |
424 | break; | |
425 | ||
426 | if (i + 1 < nwords) | |
427 | { | |
428 | /* Store carry from main add/subtract. */ | |
429 | carry_out = gen_reg_rtx (submode); | |
430 | carry_out = emit_store_flag (carry_out, | |
431 | binoptab == add_optab ? LTU : GTU, | |
432 | x, op0_piece, | |
433 | submode, 1, normalizep); | |
434 | if (!carry_out) | |
435 | break; | |
436 | } | |
437 | ||
438 | if (i > 0) | |
439 | { | |
440 | /* Add/subtract previous carry to main result. */ | |
441 | x = expand_binop (submode, | |
442 | normalizep == 1 ? binoptab : otheroptab, | |
443 | x, carry_in, | |
444 | target_piece, 1, methods); | |
445 | if (target_piece != x) | |
446 | emit_move_insn (target_piece, x); | |
447 | ||
448 | if (i + 1 < nwords) | |
449 | { | |
450 | /* THIS CODE HAS NOT BEEN TESTED. */ | |
451 | /* Get out carry from adding/subtracting carry in. */ | |
452 | carry_tmp = emit_store_flag (carry_tmp, | |
453 | binoptab == add_optab | |
454 | ? LTU : GTU, | |
455 | x, carry_in, | |
456 | submode, 1, normalizep); | |
457 | /* Logical-ior the two poss. carry together. */ | |
458 | carry_out = expand_binop (submode, ior_optab, | |
459 | carry_out, carry_tmp, | |
460 | carry_out, 0, methods); | |
461 | if (!carry_out) | |
462 | break; | |
463 | } | |
464 | } | |
465 | ||
466 | carry_in = carry_out; | |
467 | } | |
468 | ||
469 | if (i == GET_MODE_BITSIZE (mode) / BITS_PER_WORD) | |
470 | { | |
471 | rtx temp; | |
472 | ||
473 | temp = emit_move_insn (target, target); | |
474 | REG_NOTES (temp) = gen_rtx (EXPR_LIST, REG_EQUAL, | |
475 | gen_rtx (binoptab->code, mode, op0, op1), | |
476 | REG_NOTES (temp)); | |
477 | return target; | |
478 | } | |
479 | else | |
480 | delete_insns_since (last); | |
481 | } | |
482 | ||
483 | /* If we want to multiply two two-word values and have normal and widening | |
484 | multiplies of single-word values, we can do this with three smaller | |
485 | multiplications. Note that we do not make a REG_NO_CONFLICT block here | |
486 | because we are not operating on one word at a time. | |
487 | ||
488 | The multiplication proceeds as follows: | |
489 | _______________________ | |
490 | [__op0_high_|__op0_low__] | |
491 | _______________________ | |
492 | * [__op1_high_|__op1_low__] | |
493 | _______________________________________________ | |
494 | _______________________ | |
495 | (1) [__op0_low__*__op1_low__] | |
496 | _______________________ | |
497 | (2a) [__op0_low__*__op1_high_] | |
498 | _______________________ | |
499 | (2b) [__op0_high_*__op1_low__] | |
500 | _______________________ | |
501 | (3) [__op0_high_*__op1_high_] | |
502 | ||
503 | ||
504 | This gives a 4-word result. Since we are only interested in the | |
505 | lower 2 words, partial result (3) and the upper words of (2a) and | |
506 | (2b) don't need to be calculated. Hence (2a) and (2b) can be | |
507 | calculated using non-widening multiplication. | |
508 | ||
509 | (1), however, needs to be calculated with an unsigned widening | |
510 | multiplication. If this operation is not directly supported we | |
511 | try using a signed widening multiplication and adjust the result. | |
512 | This adjustment works as follows: | |
513 | ||
514 | If both operands are positive then no adjustment is needed. | |
515 | ||
516 | If the operands have different signs, for example op0_low < 0 and | |
517 | op1_low >= 0, the instruction treats the most significant bit of | |
518 | op0_low as a sign bit instead of a bit with significance | |
519 | 2**(BITS_PER_WORD-1), i.e. the instruction multiplies op1_low | |
520 | with 2**BITS_PER_WORD - op0_low, and two's complements the | |
521 | result. Conclusion: We need to add op1_low * 2**BITS_PER_WORD to | |
522 | the result. | |
523 | ||
524 | Similarly, if both operands are negative, we need to add | |
525 | (op0_low + op1_low) * 2**BITS_PER_WORD. | |
526 | ||
527 | We use a trick to adjust quickly. We logically shift op0_low right | |
528 | (op1_low) BITS_PER_WORD-1 steps to get 0 or 1, and add this to | |
529 | op0_high (op1_high) before it is used to calculate 2b (2a). If no | |
530 | logical shift exists, we do an arithmetic right shift and subtract | |
531 | the 0 or -1. */ | |
532 | ||
533 | if (binoptab == smul_optab | |
534 | && class == MODE_INT | |
535 | && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD | |
536 | && smul_optab->handlers[(int) submode].insn_code != CODE_FOR_nothing | |
537 | && add_optab->handlers[(int) submode].insn_code != CODE_FOR_nothing | |
538 | && ((umul_widen_optab->handlers[(int) mode].insn_code | |
539 | != CODE_FOR_nothing) | |
540 | || (smul_widen_optab->handlers[(int) mode].insn_code | |
541 | != CODE_FOR_nothing))) | |
542 | { | |
543 | int low = (WORDS_BIG_ENDIAN ? 1 : 0); | |
544 | int high = (WORDS_BIG_ENDIAN ? 0 : 1); | |
545 | rtx op0_high = operand_subword_force (op0, high, mode); | |
546 | rtx op0_low = operand_subword_force (op0, low, mode); | |
547 | rtx op1_high = operand_subword_force (op1, high, mode); | |
548 | rtx op1_low = operand_subword_force (op1, low, mode); | |
549 | rtx product = 0; | |
550 | rtx op0_xhigh; | |
551 | rtx op1_xhigh; | |
552 | ||
553 | /* If the target is the same as one of the inputs, don't use it. This | |
554 | prevents problems with the REG_EQUAL note. */ | |
555 | if (target == op0 || target == op1) | |
556 | target = 0; | |
557 | ||
558 | /* Multiply the two lower words to get a double-word product. | |
559 | If unsigned widening multiplication is available, use that; | |
560 | otherwise use the signed form and compensate. */ | |
561 | ||
562 | if (umul_widen_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing) | |
563 | { | |
564 | product = expand_binop (mode, umul_widen_optab, op0_low, op1_low, | |
565 | target, 1, OPTAB_DIRECT); | |
566 | ||
567 | /* If we didn't succeed, delete everything we did so far. */ | |
568 | if (product == 0) | |
569 | delete_insns_since (last); | |
570 | else | |
571 | op0_xhigh = op0_high, op1_xhigh = op1_high; | |
572 | } | |
573 | ||
574 | if (product == 0 | |
575 | && smul_widen_optab->handlers[(int) mode].insn_code | |
576 | != CODE_FOR_nothing) | |
577 | { | |
578 | rtx wordm1 = gen_rtx (CONST_INT, VOIDmode, BITS_PER_WORD - 1); | |
579 | product = expand_binop (mode, smul_widen_optab, op0_low, op1_low, | |
580 | target, 1, OPTAB_DIRECT); | |
581 | op0_xhigh = expand_binop (submode, lshr_optab, op0_low, wordm1, | |
582 | 0, 1, OPTAB_DIRECT); | |
583 | if (op0_xhigh) | |
584 | op0_xhigh = expand_binop (submode, add_optab, op0_high, op0_xhigh, | |
585 | op0_xhigh, 0, OPTAB_DIRECT); | |
586 | else | |
587 | { | |
588 | op0_xhigh = expand_binop (submode, ashr_optab, op0_low, wordm1, | |
589 | 0, 0, OPTAB_DIRECT); | |
590 | if (op0_xhigh) | |
591 | op0_xhigh = expand_binop (submode, sub_optab, op0_high, | |
592 | op0_xhigh, op0_xhigh, 0, | |
593 | OPTAB_DIRECT); | |
594 | } | |
595 | ||
596 | op1_xhigh = expand_binop (submode, lshr_optab, op1_low, wordm1, | |
597 | 0, 1, OPTAB_DIRECT); | |
598 | if (op1_xhigh) | |
599 | op1_xhigh = expand_binop (SImode, add_optab, op1_high, op1_xhigh, | |
600 | op1_xhigh, 0, OPTAB_DIRECT); | |
601 | else | |
602 | { | |
603 | op1_xhigh = expand_binop (submode, ashr_optab, op1_low, wordm1, | |
604 | 0, 0, OPTAB_DIRECT); | |
605 | if (op1_xhigh) | |
606 | op1_xhigh = expand_binop (SImode, sub_optab, op1_high, | |
607 | op1_xhigh, op1_xhigh, 0, | |
608 | OPTAB_DIRECT); | |
609 | } | |
610 | } | |
611 | ||
612 | /* If we have been able to directly compute the product of the | |
613 | low-order words of the operands and perform any required adjustments | |
614 | of the operands, we proceed by trying two more multiplications | |
615 | and then computing the appropriate sum. | |
616 | ||
617 | We have checked above that the required addition is provided. | |
618 | Full-word addition will normally always succeed, especially if | |
619 | it is provided at all, so we don't worry about its failure. The | |
620 | multiplication may well fail, however, so we do handle that. */ | |
621 | ||
622 | if (product && op0_xhigh && op1_xhigh) | |
623 | { | |
624 | rtx product_piece; | |
625 | rtx product_high = operand_subword (product, high, 1, mode); | |
626 | rtx temp = expand_binop (submode, binoptab, op0_low, op1_xhigh, 0, | |
627 | 0, OPTAB_DIRECT); | |
628 | ||
629 | if (temp) | |
630 | { | |
631 | product_piece = expand_binop (submode, add_optab, temp, | |
632 | product_high, product_high, | |
633 | 0, OPTAB_LIB_WIDEN); | |
634 | if (product_piece != product_high) | |
635 | emit_move_insn (product_high, product_piece); | |
636 | ||
637 | temp = expand_binop (submode, binoptab, op1_low, op0_xhigh, 0, | |
638 | 0, OPTAB_DIRECT); | |
639 | ||
640 | product_piece = expand_binop (submode, add_optab, temp, | |
641 | product_high, product_high, | |
642 | 0, OPTAB_LIB_WIDEN); | |
643 | if (product_piece != product_high) | |
644 | emit_move_insn (product_high, product_piece); | |
645 | ||
646 | temp = emit_move_insn (product, product); | |
647 | REG_NOTES (temp) = gen_rtx (EXPR_LIST, REG_EQUAL, | |
648 | gen_rtx (MULT, mode, op0, op1), | |
649 | REG_NOTES (temp)); | |
650 | ||
651 | return product; | |
652 | } | |
653 | } | |
654 | ||
655 | /* If we get here, we couldn't do it for some reason even though we | |
656 | originally thought we could. Delete anything we've emitted in | |
657 | trying to do it. */ | |
658 | ||
659 | delete_insns_since (last); | |
660 | } | |
661 | ||
662 | /* It can't be open-coded in this mode. | |
663 | Use a library call if one is available and caller says that's ok. */ | |
664 | ||
665 | if (binoptab->handlers[(int) mode].libfunc | |
666 | && (methods == OPTAB_LIB || methods == OPTAB_LIB_WIDEN)) | |
667 | { | |
668 | rtx insns; | |
669 | rtx funexp = binoptab->handlers[(int) mode].libfunc; | |
670 | ||
671 | start_sequence (); | |
672 | ||
673 | /* Pass 1 for NO_QUEUE so we don't lose any increments | |
674 | if the libcall is cse'd or moved. */ | |
675 | emit_library_call (binoptab->handlers[(int) mode].libfunc, | |
676 | 1, mode, 2, op0, mode, op1, | |
677 | (shift_op | |
678 | ? mode_for_size (BITS_PER_WORD, MODE_INT, 0) | |
679 | : mode)); | |
680 | ||
681 | insns = get_insns (); | |
682 | end_sequence (); | |
683 | ||
684 | target = gen_reg_rtx (mode); | |
685 | emit_libcall_block (insns, target, hard_libcall_value (mode), | |
686 | gen_rtx (binoptab->code, mode, op0, op1)); | |
687 | ||
688 | return target; | |
689 | } | |
690 | ||
691 | delete_insns_since (last); | |
692 | ||
693 | /* It can't be done in this mode. Can we do it in a wider mode? */ | |
694 | ||
695 | if (! (methods == OPTAB_WIDEN || methods == OPTAB_LIB_WIDEN | |
696 | || methods == OPTAB_MUST_WIDEN)) | |
697 | return 0; /* Caller says, don't even try. */ | |
698 | ||
699 | /* Compute the value of METHODS to pass to recursive calls. | |
700 | Don't allow widening to be tried recursively. */ | |
701 | ||
702 | methods = (methods == OPTAB_LIB_WIDEN ? OPTAB_LIB : OPTAB_DIRECT); | |
703 | ||
704 | /* Widening is now independent of specific machine modes. | |
705 | It is assumed that widening may be performed to any | |
706 | higher numbered mode in the same mode class. */ | |
707 | ||
708 | if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT) | |
709 | { | |
710 | for (wider_mode = GET_MODE_WIDER_MODE (mode); | |
711 | ((int) wider_mode < (int) MAX_MACHINE_MODE | |
712 | && GET_MODE_CLASS (wider_mode) == class); | |
713 | wider_mode = GET_MODE_WIDER_MODE (wider_mode)) | |
714 | { | |
715 | if ((binoptab->handlers[(int) wider_mode].insn_code | |
716 | != CODE_FOR_nothing) | |
717 | || (methods == OPTAB_LIB | |
718 | && binoptab->handlers[(int) wider_mode].libfunc)) | |
719 | { | |
720 | rtx xop0 = op0, xop1 = op1; | |
721 | int no_extend = 0; | |
722 | ||
723 | /* For certain operations, we need not actually extend | |
724 | the narrow operands, as long as we will truncate | |
725 | the results to the same narrowness. */ | |
726 | ||
727 | if (binoptab == ior_optab || binoptab == and_optab | |
728 | || binoptab == xor_optab | |
729 | || binoptab == add_optab || binoptab == sub_optab | |
730 | || binoptab == smul_optab | |
731 | || binoptab == ashl_optab || binoptab == lshl_optab) | |
732 | no_extend = 1; | |
733 | ||
734 | if (GET_MODE (xop0) != VOIDmode | |
735 | && GET_MODE_BITSIZE (wider_mode) <= HOST_BITS_PER_INT) | |
736 | { | |
737 | if (no_extend) | |
738 | { | |
739 | temp = force_reg (GET_MODE (xop0), xop0); | |
740 | xop0 = gen_rtx (SUBREG, wider_mode, temp, 0); | |
741 | } | |
742 | else | |
743 | { | |
744 | temp = gen_reg_rtx (wider_mode); | |
745 | convert_move (temp, xop0, unsignedp); | |
746 | xop0 = temp; | |
747 | } | |
748 | } | |
749 | if (GET_MODE (xop1) != VOIDmode | |
750 | && GET_MODE_BITSIZE (wider_mode) <= HOST_BITS_PER_INT) | |
751 | { | |
752 | if (no_extend) | |
753 | { | |
754 | temp = force_reg (GET_MODE (xop1), xop1); | |
755 | xop1 = gen_rtx (SUBREG, wider_mode, temp, 0); | |
756 | } | |
757 | else | |
758 | { | |
759 | temp = gen_reg_rtx (wider_mode); | |
760 | convert_move (temp, xop1, unsignedp); | |
761 | xop1 = temp; | |
762 | } | |
763 | } | |
764 | ||
765 | temp = expand_binop (wider_mode, binoptab, xop0, xop1, 0, | |
766 | unsignedp, methods); | |
767 | if (temp) | |
768 | { | |
769 | if (class == MODE_FLOAT) | |
770 | { | |
771 | if (target == 0) | |
772 | target = gen_reg_rtx (mode); | |
773 | convert_move (target, temp, 0); | |
774 | return target; | |
775 | } | |
776 | else | |
777 | return gen_lowpart (mode, temp); | |
778 | } | |
779 | else | |
780 | delete_insns_since (last); | |
781 | } | |
782 | } | |
783 | } | |
784 | ||
785 | return 0; | |
786 | } | |
787 | \f | |
788 | /* Expand a binary operator which has both signed and unsigned forms. | |
789 | UOPTAB is the optab for unsigned operations, and SOPTAB is for | |
790 | signed operations. | |
791 | ||
792 | If we widen unsigned operands, we may use a signed wider operation instead | |
793 | of an unsigned wider operation, since the result would be the same. */ | |
794 | ||
795 | rtx | |
796 | sign_expand_binop (mode, uoptab, soptab, op0, op1, target, unsignedp, methods) | |
797 | enum machine_mode mode; | |
798 | optab uoptab, soptab; | |
799 | rtx op0, op1, target; | |
800 | int unsignedp; | |
801 | enum optab_methods methods; | |
802 | { | |
803 | register rtx temp; | |
804 | optab direct_optab = unsignedp ? uoptab : soptab; | |
805 | struct optab wide_soptab; | |
806 | ||
807 | /* Do it without widening, if possible. */ | |
808 | temp = expand_binop (mode, direct_optab, op0, op1, target, | |
809 | unsignedp, OPTAB_DIRECT); | |
810 | if (temp || methods == OPTAB_DIRECT) | |
811 | return temp; | |
812 | ||
813 | /* Try widening to a signed int. Make a fake signed optab that | |
814 | hides any signed insn for direct use. */ | |
815 | wide_soptab = *soptab; | |
816 | wide_soptab.handlers[(int) mode].insn_code = CODE_FOR_nothing; | |
817 | wide_soptab.handlers[(int) mode].libfunc = 0; | |
818 | ||
819 | temp = expand_binop (mode, &wide_soptab, op0, op1, target, | |
820 | unsignedp, OPTAB_WIDEN); | |
821 | ||
822 | /* For unsigned operands, try widening to an unsigned int. */ | |
823 | if (temp == 0 && unsignedp) | |
824 | temp = expand_binop (mode, uoptab, op0, op1, target, | |
825 | unsignedp, OPTAB_WIDEN); | |
826 | if (temp || methods == OPTAB_WIDEN) | |
827 | return temp; | |
828 | ||
829 | /* Use the right width lib call if that exists. */ | |
830 | temp = expand_binop (mode, direct_optab, op0, op1, target, unsignedp, OPTAB_LIB); | |
831 | if (temp || methods == OPTAB_LIB) | |
832 | return temp; | |
833 | ||
834 | /* Must widen and use a lib call, use either signed or unsigned. */ | |
835 | temp = expand_binop (mode, &wide_soptab, op0, op1, target, | |
836 | unsignedp, methods); | |
837 | if (temp != 0) | |
838 | return temp; | |
839 | if (unsignedp) | |
840 | return expand_binop (mode, uoptab, op0, op1, target, | |
841 | unsignedp, methods); | |
842 | return 0; | |
843 | } | |
844 | \f | |
845 | /* Generate code to perform an operation specified by BINOPTAB | |
846 | on operands OP0 and OP1, with two results to TARG1 and TARG2. | |
847 | We assume that the order of the operands for the instruction | |
848 | is TARG0, OP0, OP1, TARG1, which would fit a pattern like | |
849 | [(set TARG0 (operate OP0 OP1)) (set TARG1 (operate ...))]. | |
850 | ||
851 | Either TARG0 or TARG1 may be zero, but what that means is that | |
852 | that result is not actually wanted. We will generate it into | |
853 | a dummy pseudo-reg and discard it. They may not both be zero. | |
854 | ||
855 | Returns 1 if this operation can be performed; 0 if not. */ | |
856 | ||
857 | int | |
858 | expand_twoval_binop (binoptab, op0, op1, targ0, targ1, unsignedp) | |
859 | optab binoptab; | |
860 | rtx op0, op1; | |
861 | rtx targ0, targ1; | |
862 | int unsignedp; | |
863 | { | |
864 | enum machine_mode mode = GET_MODE (targ0 ? targ0 : targ1); | |
865 | enum mode_class class; | |
866 | enum machine_mode wider_mode; | |
867 | rtx last; | |
868 | ||
869 | class = GET_MODE_CLASS (mode); | |
870 | ||
871 | op0 = protect_from_queue (op0, 0); | |
872 | op1 = protect_from_queue (op1, 0); | |
873 | ||
874 | if (flag_force_mem) | |
875 | { | |
876 | op0 = force_not_mem (op0); | |
877 | op1 = force_not_mem (op1); | |
878 | } | |
879 | ||
880 | /* If we are inside an appropriately-short loop and one operand is an | |
881 | expensive constant, force it into a register. */ | |
882 | if (CONSTANT_P (op0) && preserve_subexpressions_p () && rtx_cost (op0) > 2) | |
883 | op0 = force_reg (mode, op0); | |
884 | ||
885 | if (CONSTANT_P (op1) && preserve_subexpressions_p () && rtx_cost (op1) > 2) | |
886 | op1 = force_reg (mode, op1); | |
887 | ||
888 | if (targ0) | |
889 | targ0 = protect_from_queue (targ0, 1); | |
890 | else | |
891 | targ0 = gen_reg_rtx (mode); | |
892 | if (targ1) | |
893 | targ1 = protect_from_queue (targ1, 1); | |
894 | else | |
895 | targ1 = gen_reg_rtx (mode); | |
896 | ||
897 | /* Record where to go back to if we fail. */ | |
898 | last = get_last_insn (); | |
899 | ||
900 | if (binoptab->handlers[(int) mode].insn_code != CODE_FOR_nothing) | |
901 | { | |
902 | int icode = (int) binoptab->handlers[(int) mode].insn_code; | |
903 | enum machine_mode mode0 = insn_operand_mode[icode][1]; | |
904 | enum machine_mode mode1 = insn_operand_mode[icode][2]; | |
905 | rtx pat; | |
906 | rtx xop0 = op0, xop1 = op1; | |
907 | ||
908 | /* In case this insn wants input operands in modes different from the | |
909 | result, convert the operands. */ | |
910 | if (GET_MODE (op0) != VOIDmode && GET_MODE (op0) != mode0) | |
911 | xop0 = convert_to_mode (mode0, xop0, unsignedp); | |
912 | ||
913 | if (GET_MODE (op1) != VOIDmode && GET_MODE (op1) != mode1) | |
914 | xop1 = convert_to_mode (mode1, xop1, unsignedp); | |
915 | ||
916 | /* Now, if insn doesn't accept these operands, put them into pseudos. */ | |
917 | if (! (*insn_operand_predicate[icode][1]) (xop0, mode0)) | |
918 | xop0 = copy_to_mode_reg (mode0, xop0); | |
919 | ||
920 | if (! (*insn_operand_predicate[icode][2]) (xop1, mode1)) | |
921 | xop1 = copy_to_mode_reg (mode1, xop1); | |
922 | ||
923 | /* We could handle this, but we should always be called with a pseudo | |
924 | for our targets and all insns should take them as outputs. */ | |
925 | if (! (*insn_operand_predicate[icode][0]) (targ0, mode) | |
926 | || ! (*insn_operand_predicate[icode][3]) (targ1, mode)) | |
927 | abort (); | |
928 | ||
929 | pat = GEN_FCN (icode) (targ0, xop0, xop1, targ1); | |
930 | if (pat) | |
931 | { | |
932 | emit_insn (pat); | |
933 | return 1; | |
934 | } | |
935 | else | |
936 | delete_insns_since (last); | |
937 | } | |
938 | ||
939 | /* It can't be done in this mode. Can we do it in a wider mode? */ | |
940 | ||
941 | if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT) | |
942 | { | |
943 | for (wider_mode = GET_MODE_WIDER_MODE (mode); | |
944 | GET_MODE_CLASS (wider_mode) == class; | |
945 | wider_mode = GET_MODE_WIDER_MODE (wider_mode)) | |
946 | { | |
947 | if (binoptab->handlers[(int) wider_mode].insn_code | |
948 | != CODE_FOR_nothing) | |
949 | { | |
950 | register rtx t0 = gen_reg_rtx (wider_mode); | |
951 | register rtx t1 = gen_reg_rtx (wider_mode); | |
952 | ||
953 | if (expand_twoval_binop (binoptab, | |
954 | convert_to_mode (wider_mode, op0, | |
955 | unsignedp), | |
956 | convert_to_mode (wider_mode, op1, | |
957 | unsignedp), | |
958 | t0, t1, unsignedp)) | |
959 | { | |
960 | convert_move (targ0, t0, unsignedp); | |
961 | convert_move (targ1, t1, unsignedp); | |
962 | return 1; | |
963 | } | |
964 | else | |
965 | delete_insns_since (last); | |
966 | } | |
967 | } | |
968 | } | |
969 | ||
970 | return 0; | |
971 | } | |
972 | \f | |
973 | /* Generate code to perform an operation specified by UNOPTAB | |
974 | on operand OP0, with result having machine-mode MODE. | |
975 | ||
976 | UNSIGNEDP is for the case where we have to widen the operands | |
977 | to perform the operation. It says to use zero-extension. | |
978 | ||
979 | If TARGET is nonzero, the value | |
980 | is generated there, if it is convenient to do so. | |
981 | In all cases an rtx is returned for the locus of the value; | |
982 | this may or may not be TARGET. */ | |
983 | ||
984 | rtx | |
985 | expand_unop (mode, unoptab, op0, target, unsignedp) | |
986 | enum machine_mode mode; | |
987 | optab unoptab; | |
988 | rtx op0; | |
989 | rtx target; | |
990 | int unsignedp; | |
991 | { | |
992 | enum mode_class class; | |
993 | enum machine_mode wider_mode; | |
994 | enum machine_mode submode = mode_for_size (BITS_PER_WORD, MODE_INT, 0); | |
995 | register rtx temp; | |
996 | rtx last = get_last_insn (); | |
997 | rtx pat; | |
998 | ||
999 | class = GET_MODE_CLASS (mode); | |
1000 | ||
1001 | op0 = protect_from_queue (op0, 0); | |
1002 | ||
1003 | if (flag_force_mem) | |
1004 | { | |
1005 | op0 = force_not_mem (op0); | |
1006 | } | |
1007 | ||
1008 | if (target) | |
1009 | target = protect_from_queue (target, 1); | |
1010 | ||
1011 | if (unoptab->handlers[(int) mode].insn_code != CODE_FOR_nothing) | |
1012 | { | |
1013 | int icode = (int) unoptab->handlers[(int) mode].insn_code; | |
1014 | enum machine_mode mode0 = insn_operand_mode[icode][1]; | |
1015 | rtx xop0 = op0; | |
1016 | ||
1017 | if (target) | |
1018 | temp = target; | |
1019 | else | |
1020 | temp = gen_reg_rtx (mode); | |
1021 | ||
1022 | if (GET_MODE (xop0) != VOIDmode | |
1023 | && GET_MODE (xop0) != mode0) | |
1024 | xop0 = convert_to_mode (mode0, xop0, unsignedp); | |
1025 | ||
1026 | /* Now, if insn doesn't accept our operand, put it into a pseudo. */ | |
1027 | ||
1028 | if (! (*insn_operand_predicate[icode][1]) (xop0, mode0)) | |
1029 | xop0 = copy_to_mode_reg (mode0, xop0); | |
1030 | ||
1031 | if (! (*insn_operand_predicate[icode][0]) (temp, mode)) | |
1032 | temp = gen_reg_rtx (mode); | |
1033 | ||
1034 | pat = GEN_FCN (icode) (temp, xop0); | |
1035 | if (pat) | |
1036 | { | |
1037 | if (GET_CODE (pat) == SEQUENCE | |
1038 | && ! add_equal_note (pat, temp, unoptab->code, xop0, 0)) | |
1039 | { | |
1040 | delete_insns_since (last); | |
1041 | return expand_unop (mode, unoptab, op0, 0, unsignedp); | |
1042 | } | |
1043 | ||
1044 | emit_insn (pat); | |
1045 | ||
1046 | return temp; | |
1047 | } | |
1048 | else | |
1049 | delete_insns_since (last); | |
1050 | } | |
1051 | ||
1052 | /* These can be done a word at a time. */ | |
1053 | if (unoptab == one_cmpl_optab | |
1054 | && class == MODE_INT | |
1055 | && GET_MODE_SIZE (mode) > UNITS_PER_WORD | |
1056 | && unoptab->handlers[(int) submode].insn_code != CODE_FOR_nothing) | |
1057 | { | |
1058 | int i; | |
1059 | rtx insns; | |
1060 | ||
1061 | if (target == 0 || target == op0) | |
1062 | target = gen_reg_rtx (mode); | |
1063 | ||
1064 | start_sequence (); | |
1065 | ||
1066 | /* Do the actual arithmetic. */ | |
1067 | for (i = 0; i < GET_MODE_BITSIZE (mode) / BITS_PER_WORD; i++) | |
1068 | { | |
1069 | rtx target_piece = operand_subword (target, i, 1, mode); | |
1070 | rtx x = expand_unop (submode, unoptab, | |
1071 | operand_subword_force (op0, i, mode), | |
1072 | target_piece, unsignedp); | |
1073 | if (target_piece != x) | |
1074 | emit_move_insn (target_piece, x); | |
1075 | } | |
1076 | ||
1077 | insns = get_insns (); | |
1078 | end_sequence (); | |
1079 | ||
1080 | emit_no_conflict_block (insns, target, op0, 0, | |
1081 | gen_rtx (unoptab->code, mode, op0)); | |
1082 | return target; | |
1083 | } | |
1084 | ||
1085 | if (unoptab->handlers[(int) mode].libfunc) | |
1086 | { | |
1087 | rtx insns; | |
1088 | rtx funexp = unoptab->handlers[(int) mode].libfunc; | |
1089 | ||
1090 | start_sequence (); | |
1091 | ||
1092 | /* Pass 1 for NO_QUEUE so we don't lose any increments | |
1093 | if the libcall is cse'd or moved. */ | |
1094 | emit_library_call (unoptab->handlers[(int) mode].libfunc, | |
1095 | 1, mode, 1, op0, mode); | |
1096 | insns = get_insns (); | |
1097 | end_sequence (); | |
1098 | ||
1099 | target = gen_reg_rtx (mode); | |
1100 | emit_libcall_block (insns, target, hard_libcall_value (mode), | |
1101 | gen_rtx (unoptab->code, mode, op0)); | |
1102 | ||
1103 | return target; | |
1104 | } | |
1105 | ||
1106 | /* It can't be done in this mode. Can we do it in a wider mode? */ | |
1107 | ||
1108 | if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT) | |
1109 | { | |
1110 | for (wider_mode = GET_MODE_WIDER_MODE (mode); | |
1111 | GET_MODE_CLASS (wider_mode) == class; | |
1112 | wider_mode = GET_MODE_WIDER_MODE (wider_mode)) | |
1113 | { | |
1114 | if ((unoptab->handlers[(int) wider_mode].insn_code | |
1115 | != CODE_FOR_nothing) | |
1116 | || unoptab->handlers[(int) wider_mode].libfunc) | |
1117 | { | |
1118 | if (GET_MODE (op0) != VOIDmode | |
1119 | && GET_MODE_BITSIZE (wider_mode) <= HOST_BITS_PER_INT) | |
1120 | { | |
1121 | temp = gen_reg_rtx (wider_mode); | |
1122 | convert_move (temp, op0, unsignedp); | |
1123 | op0 = temp; | |
1124 | } | |
1125 | ||
1126 | target = expand_unop (wider_mode, unoptab, op0, 0, unsignedp); | |
1127 | if (class == MODE_FLOAT) | |
1128 | { | |
1129 | if (target == 0) | |
1130 | target = gen_reg_rtx (mode); | |
1131 | convert_move (target, temp, 0); | |
1132 | return target; | |
1133 | } | |
1134 | else | |
1135 | return gen_lowpart (mode, target); | |
1136 | } | |
1137 | } | |
1138 | } | |
1139 | ||
1140 | return 0; | |
1141 | } | |
1142 | \f | |
1143 | /* Generate an instruction whose insn-code is INSN_CODE, | |
1144 | with two operands: an output TARGET and an input OP0. | |
1145 | TARGET *must* be nonzero, and the output is always stored there. | |
1146 | CODE is an rtx code such that (CODE OP0) is an rtx that describes | |
1147 | the value that is stored into TARGET. */ | |
1148 | ||
1149 | void | |
1150 | emit_unop_insn (icode, target, op0, code) | |
1151 | int icode; | |
1152 | rtx target; | |
1153 | rtx op0; | |
1154 | enum rtx_code code; | |
1155 | { | |
1156 | register rtx temp; | |
1157 | enum machine_mode mode0 = insn_operand_mode[icode][1]; | |
1158 | rtx pat; | |
1159 | ||
1160 | temp = target = protect_from_queue (target, 1); | |
1161 | ||
1162 | op0 = protect_from_queue (op0, 0); | |
1163 | ||
1164 | if (flag_force_mem) | |
1165 | op0 = force_not_mem (op0); | |
1166 | ||
1167 | /* Now, if insn does not accept our operands, put them into pseudos. */ | |
1168 | ||
1169 | if (! (*insn_operand_predicate[icode][1]) (op0, mode0)) | |
1170 | op0 = copy_to_mode_reg (mode0, op0); | |
1171 | ||
1172 | if (! (*insn_operand_predicate[icode][0]) (temp, GET_MODE (temp)) | |
1173 | || (flag_force_mem && GET_CODE (temp) == MEM)) | |
1174 | temp = gen_reg_rtx (GET_MODE (temp)); | |
1175 | ||
1176 | pat = GEN_FCN (icode) (temp, op0); | |
1177 | ||
1178 | if (GET_CODE (pat) == SEQUENCE && code != UNKNOWN) | |
1179 | add_equal_note (pat, temp, code, op0, 0); | |
1180 | ||
1181 | emit_insn (pat); | |
1182 | ||
1183 | if (temp != target) | |
1184 | emit_move_insn (target, temp); | |
1185 | } | |
1186 | \f | |
1187 | /* Emit code to perform a series of operations on a multi-word quantity, one | |
1188 | word at a time. | |
1189 | ||
1190 | Such a block is preceeded by a CLOBBER of the output, consists of multiple | |
1191 | insns, each setting one word of the output, and followed by a SET copying | |
1192 | the output to itself. | |
1193 | ||
1194 | Each of the insns setting words of the output receives a REG_NO_CONFLICT | |
1195 | note indicating that it doesn't conflict with the (also multi-word) | |
1196 | inputs. The entire block is surrounded by REG_LIBCALL and REG_RETVAL | |
1197 | notes. | |
1198 | ||
1199 | INSNS is a block of code generated to perform the operation, not including | |
1200 | the CLOBBER and final copy. All insns that compute intermediate values | |
1201 | are first emitted, followed by the block as described above. Only | |
1202 | INSNs are allowed in the block; no library calls or jumps may be | |
1203 | present. | |
1204 | ||
1205 | TARGET, OP0, and OP1 are the output and inputs of the operations, | |
1206 | respectively. OP1 may be zero for a unary operation. | |
1207 | ||
1208 | EQUIV, if non-zero, is an expression to be placed into a REG_EQUAL note | |
1209 | on the last insn. | |
1210 | ||
1211 | If TARGET is not a register, INSNS is simply emitted with no special | |
1212 | processing. | |
1213 | ||
1214 | The final insn emitted is returned. */ | |
1215 | ||
1216 | rtx | |
1217 | emit_no_conflict_block (insns, target, op0, op1, equiv) | |
1218 | rtx insns; | |
1219 | rtx target; | |
1220 | rtx op0, op1; | |
1221 | rtx equiv; | |
1222 | { | |
1223 | rtx prev, next, first, last, insn; | |
1224 | ||
1225 | if (GET_CODE (target) != REG || reload_in_progress) | |
1226 | return emit_insns (insns); | |
1227 | ||
1228 | /* First emit all insns that do not store into words of the output and remove | |
1229 | these from the list. */ | |
1230 | for (insn = insns; insn; insn = next) | |
1231 | { | |
1232 | rtx set = 0; | |
1233 | int i; | |
1234 | ||
1235 | next = NEXT_INSN (insn); | |
1236 | ||
1237 | if (GET_CODE (insn) != INSN) | |
1238 | abort (); | |
1239 | ||
1240 | if (GET_CODE (PATTERN (insn)) == SET) | |
1241 | set = PATTERN (insn); | |
1242 | else if (GET_CODE (PATTERN (insn)) == PARALLEL) | |
1243 | { | |
1244 | for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++) | |
1245 | if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET) | |
1246 | { | |
1247 | set = XVECEXP (PATTERN (insn), 0, i); | |
1248 | break; | |
1249 | } | |
1250 | } | |
1251 | ||
1252 | if (set == 0) | |
1253 | abort (); | |
1254 | ||
1255 | if (! reg_overlap_mentioned_p (target, SET_DEST (set))) | |
1256 | { | |
1257 | if (PREV_INSN (insn)) | |
1258 | NEXT_INSN (PREV_INSN (insn)) = next; | |
1259 | else | |
1260 | insns = next; | |
1261 | ||
1262 | if (next) | |
1263 | PREV_INSN (next) = PREV_INSN (insn); | |
1264 | ||
1265 | add_insn (insn); | |
1266 | } | |
1267 | } | |
1268 | ||
1269 | prev = get_last_insn (); | |
1270 | ||
1271 | /* Now write the CLOBBER of the output, followed by the setting of each | |
1272 | of the words, followed by the final copy. */ | |
1273 | if (target != op0 && target != op1) | |
1274 | emit_insn (gen_rtx (CLOBBER, VOIDmode, target)); | |
1275 | ||
1276 | for (insn = insns; insn; insn = next) | |
1277 | { | |
1278 | next = NEXT_INSN (insn); | |
1279 | add_insn (insn); | |
1280 | ||
1281 | if (op1 && GET_CODE (op1) == REG) | |
1282 | REG_NOTES (insn) = gen_rtx (EXPR_LIST, REG_NO_CONFLICT, op1, | |
1283 | REG_NOTES (insn)); | |
1284 | ||
1285 | if (op0 && GET_CODE (op0) == REG) | |
1286 | REG_NOTES (insn) = gen_rtx (EXPR_LIST, REG_NO_CONFLICT, op0, | |
1287 | REG_NOTES (insn)); | |
1288 | } | |
1289 | ||
1290 | last = emit_move_insn (target, target); | |
1291 | if (equiv) | |
1292 | REG_NOTES (last) = gen_rtx (EXPR_LIST, REG_EQUAL, equiv, REG_NOTES (last)); | |
1293 | ||
1294 | if (prev == 0) | |
1295 | first = get_insns (); | |
1296 | else | |
1297 | first = NEXT_INSN (prev); | |
1298 | ||
1299 | /* Encapsulate the block so it gets manipulated as a unit. */ | |
1300 | REG_NOTES (first) = gen_rtx (INSN_LIST, REG_LIBCALL, last, | |
1301 | REG_NOTES (first)); | |
1302 | REG_NOTES (last) = gen_rtx (INSN_LIST, REG_RETVAL, first, REG_NOTES (last)); | |
1303 | ||
1304 | return last; | |
1305 | } | |
1306 | \f | |
1307 | /* Emit code to make a call to a constant function or a library call. | |
1308 | ||
1309 | INSNS is a list containing all insns emitted in the call. | |
1310 | These insns leave the result in RESULT. Our block is to copy RESULT | |
1311 | to TARGET, which is logically equivalent to EQUIV. | |
1312 | ||
1313 | We first emit any insns that set a pseudo on the assumption that these are | |
1314 | loading constants into registers; doing so allows them to be safely cse'ed | |
1315 | between blocks. Then we emit all the other insns in the block, followed by | |
1316 | an insn to move RESULT to TARGET. This last insn will have a REQ_EQUAL | |
1317 | note with an operand of EQUIV. | |
1318 | ||
1319 | Except for the first group of insns (the ones setting pseudos), the | |
1320 | block is delimited by REG_RETVAL and REG_LIBCALL notes. */ | |
1321 | ||
1322 | void | |
1323 | emit_libcall_block (insns, target, result, equiv) | |
1324 | rtx insns; | |
1325 | rtx target; | |
1326 | rtx result; | |
1327 | rtx equiv; | |
1328 | { | |
1329 | rtx prev, next, first, last, insn; | |
1330 | ||
1331 | /* First emit all insns that set pseudos. Remove them from the list as | |
1332 | we go. */ | |
1333 | ||
1334 | for (insn = insns; insn; insn = next) | |
1335 | { | |
1336 | rtx set = single_set (insn); | |
1337 | ||
1338 | next = NEXT_INSN (insn); | |
1339 | ||
1340 | if (set != 0 && GET_CODE (SET_DEST (set)) == REG | |
1341 | && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER) | |
1342 | { | |
1343 | if (PREV_INSN (insn)) | |
1344 | NEXT_INSN (PREV_INSN (insn)) = next; | |
1345 | else | |
1346 | insns = next; | |
1347 | ||
1348 | if (next) | |
1349 | PREV_INSN (next) = PREV_INSN (insn); | |
1350 | ||
1351 | add_insn (insn); | |
1352 | } | |
1353 | } | |
1354 | ||
1355 | prev = get_last_insn (); | |
1356 | ||
1357 | /* Write the remaining insns followed by the final copy. */ | |
1358 | ||
1359 | for (insn = insns; insn; insn = next) | |
1360 | { | |
1361 | next = NEXT_INSN (insn); | |
1362 | ||
1363 | add_insn (insn); | |
1364 | } | |
1365 | ||
1366 | last = emit_move_insn (target, result); | |
1367 | REG_NOTES (last) = gen_rtx (EXPR_LIST, REG_EQUAL, equiv, REG_NOTES (last)); | |
1368 | ||
1369 | if (prev == 0) | |
1370 | first = get_insns (); | |
1371 | else | |
1372 | first = NEXT_INSN (prev); | |
1373 | ||
1374 | /* Encapsulate the block so it gets manipulated as a unit. */ | |
1375 | REG_NOTES (first) = gen_rtx (INSN_LIST, REG_LIBCALL, last, | |
1376 | REG_NOTES (first)); | |
1377 | REG_NOTES (last) = gen_rtx (INSN_LIST, REG_RETVAL, first, REG_NOTES (last)); | |
1378 | } | |
1379 | \f | |
1380 | /* Generate code to store zero in X. */ | |
1381 | ||
1382 | void | |
1383 | emit_clr_insn (x) | |
1384 | rtx x; | |
1385 | { | |
1386 | emit_move_insn (x, const0_rtx); | |
1387 | } | |
1388 | ||
1389 | /* Generate code to store 1 in X | |
1390 | assuming it contains zero beforehand. */ | |
1391 | ||
1392 | void | |
1393 | emit_0_to_1_insn (x) | |
1394 | rtx x; | |
1395 | { | |
1396 | emit_move_insn (x, const1_rtx); | |
1397 | } | |
1398 | ||
1399 | /* Generate code to compare X with Y | |
1400 | so that the condition codes are set. | |
1401 | ||
1402 | MODE is the mode of the inputs (in case they are const_int). | |
1403 | UNSIGNEDP nonzero says that X and Y are unsigned; | |
1404 | this matters if they need to be widened. | |
1405 | ||
1406 | If they have mode BLKmode, then SIZE specifies the size of both X and Y, | |
1407 | and ALIGN specifies the known shared alignment of X and Y. | |
1408 | ||
1409 | COMPARISON is the rtl operator to compare with (EQ, NE, GT, etc.). | |
1410 | It is ignored for fixed-point and block comparisons; | |
1411 | it is used only for floating-point comparisons. */ | |
1412 | ||
1413 | void | |
1414 | emit_cmp_insn (x, y, comparison, size, mode, unsignedp, align) | |
1415 | rtx x, y; | |
1416 | enum rtx_code comparison; | |
1417 | rtx size; | |
1418 | int unsignedp; | |
1419 | int align; | |
1420 | { | |
1421 | enum mode_class class; | |
1422 | enum machine_mode wider_mode; | |
1423 | ||
1424 | class = GET_MODE_CLASS (mode); | |
1425 | ||
1426 | /* They could both be VOIDmode if both args are immediate constants, | |
1427 | but we should fold that at an earlier stage. | |
1428 | With no special code here, this will call abort, | |
1429 | reminding the programmer to implement such folding. */ | |
1430 | ||
1431 | if (mode != BLKmode && flag_force_mem) | |
1432 | { | |
1433 | x = force_not_mem (x); | |
1434 | y = force_not_mem (y); | |
1435 | } | |
1436 | ||
1437 | /* If we are inside an appropriately-short loop and one operand is an | |
1438 | expensive constant, force it into a register. */ | |
1439 | if (CONSTANT_P (x) && preserve_subexpressions_p () && rtx_cost (x) > 2) | |
1440 | x = force_reg (mode, x); | |
1441 | ||
1442 | if (CONSTANT_P (y) && preserve_subexpressions_p () && rtx_cost (y) > 2) | |
1443 | y = force_reg (mode, y); | |
1444 | ||
1445 | /* Don't let both operands fail to indicate the mode. */ | |
1446 | if (GET_MODE (x) == VOIDmode && GET_MODE (y) == VOIDmode) | |
1447 | x = force_reg (mode, x); | |
1448 | ||
1449 | /* Handle all BLKmode compares. */ | |
1450 | ||
1451 | if (mode == BLKmode) | |
1452 | { | |
1453 | emit_queue (); | |
1454 | x = protect_from_queue (x, 0); | |
1455 | y = protect_from_queue (y, 0); | |
1456 | ||
1457 | if (size == 0) | |
1458 | abort (); | |
1459 | #ifdef HAVE_cmpstrqi | |
1460 | if (HAVE_cmpstrqi | |
1461 | && GET_CODE (size) == CONST_INT | |
1462 | && INTVAL (size) < (1 << GET_MODE_BITSIZE (QImode))) | |
1463 | { | |
1464 | enum machine_mode result_mode | |
1465 | = insn_operand_mode[(int) CODE_FOR_cmpstrqi][0]; | |
1466 | rtx result = gen_reg_rtx (result_mode); | |
1467 | emit_insn (gen_cmpstrqi (result, x, y, size, | |
1468 | gen_rtx (CONST_INT, VOIDmode, align))); | |
1469 | emit_cmp_insn (result, const0_rtx, comparison, 0, result_mode, 0, 0); | |
1470 | } | |
1471 | else | |
1472 | #endif | |
1473 | #ifdef HAVE_cmpstrhi | |
1474 | if (HAVE_cmpstrhi | |
1475 | && GET_CODE (size) == CONST_INT | |
1476 | && INTVAL (size) < (1 << GET_MODE_BITSIZE (HImode))) | |
1477 | { | |
1478 | enum machine_mode result_mode | |
1479 | = insn_operand_mode[(int) CODE_FOR_cmpstrhi][0]; | |
1480 | rtx result = gen_reg_rtx (result_mode); | |
1481 | emit_insn (gen_cmpstrhi (result, x, y, size, | |
1482 | gen_rtx (CONST_INT, VOIDmode, align))); | |
1483 | emit_cmp_insn (result, const0_rtx, comparison, 0, result_mode, 0, 0); | |
1484 | } | |
1485 | else | |
1486 | #endif | |
1487 | #ifdef HAVE_cmpstrsi | |
1488 | if (HAVE_cmpstrsi) | |
1489 | { | |
1490 | enum machine_mode result_mode | |
1491 | = insn_operand_mode[(int) CODE_FOR_cmpstrsi][0]; | |
1492 | rtx result = gen_reg_rtx (result_mode); | |
1493 | emit_insn (gen_cmpstrsi (result, x, y, | |
1494 | convert_to_mode (SImode, size, 1), | |
1495 | gen_rtx (CONST_INT, VOIDmode, align))); | |
1496 | emit_cmp_insn (result, const0_rtx, comparison, 0, result_mode, 0, 0); | |
1497 | } | |
1498 | else | |
1499 | #endif | |
1500 | { | |
1501 | #ifdef TARGET_MEM_FUNCTIONS | |
1502 | emit_library_call (memcmp_libfunc, 0, | |
1503 | TYPE_MODE (integer_type_node), 3, | |
1504 | XEXP (x, 0), Pmode, XEXP (y, 0), Pmode, | |
1505 | size, Pmode); | |
1506 | #else | |
1507 | emit_library_call (bcmp_libfunc, 0, | |
1508 | TYPE_MODE (integer_type_node), 3, | |
1509 | XEXP (x, 0), Pmode, XEXP (y, 0), Pmode, | |
1510 | size, Pmode); | |
1511 | #endif | |
1512 | emit_cmp_insn (hard_libcall_value (TYPE_MODE (integer_type_node)), | |
1513 | const0_rtx, comparison, 0, | |
1514 | TYPE_MODE (integer_type_node), 0, 0); | |
1515 | } | |
1516 | return; | |
1517 | } | |
1518 | ||
1519 | /* Handle some compares against zero. */ | |
1520 | ||
1521 | if (y == CONST0_RTX (mode) | |
1522 | && tst_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing) | |
1523 | { | |
1524 | int icode = (int) tst_optab->handlers[(int) mode].insn_code; | |
1525 | ||
1526 | emit_queue (); | |
1527 | x = protect_from_queue (x, 0); | |
1528 | y = protect_from_queue (y, 0); | |
1529 | ||
1530 | /* Now, if insn does accept these operands, put them into pseudos. */ | |
1531 | if (! (*insn_operand_predicate[icode][0]) | |
1532 | (x, insn_operand_mode[icode][0])) | |
1533 | x = copy_to_mode_reg (insn_operand_mode[icode][0], x); | |
1534 | ||
1535 | emit_insn (GEN_FCN (icode) (x)); | |
1536 | return; | |
1537 | } | |
1538 | ||
1539 | /* Handle compares for which there is a directly suitable insn. */ | |
1540 | ||
1541 | if (cmp_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing) | |
1542 | { | |
1543 | int icode = (int) cmp_optab->handlers[(int) mode].insn_code; | |
1544 | ||
1545 | emit_queue (); | |
1546 | x = protect_from_queue (x, 0); | |
1547 | y = protect_from_queue (y, 0); | |
1548 | ||
1549 | /* Now, if insn doesn't accept these operands, put them into pseudos. */ | |
1550 | if (! (*insn_operand_predicate[icode][0]) | |
1551 | (x, insn_operand_mode[icode][0])) | |
1552 | x = copy_to_mode_reg (insn_operand_mode[icode][0], x); | |
1553 | ||
1554 | if (! (*insn_operand_predicate[icode][1]) | |
1555 | (y, insn_operand_mode[icode][1])) | |
1556 | y = copy_to_mode_reg (insn_operand_mode[icode][1], y); | |
1557 | ||
1558 | emit_insn (GEN_FCN (icode) (x, y)); | |
1559 | return; | |
1560 | } | |
1561 | ||
1562 | /* Try widening if we can find a direct insn that way. */ | |
1563 | ||
1564 | if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT) | |
1565 | { | |
1566 | for (wider_mode = GET_MODE_WIDER_MODE (mode); | |
1567 | GET_MODE_CLASS (wider_mode) == class; | |
1568 | wider_mode = GET_MODE_WIDER_MODE (wider_mode)) | |
1569 | { | |
1570 | if (cmp_optab->handlers[(int) wider_mode].insn_code | |
1571 | != CODE_FOR_nothing) | |
1572 | { | |
1573 | x = convert_to_mode (wider_mode, x, unsignedp); | |
1574 | y = convert_to_mode (wider_mode, y, unsignedp); | |
1575 | emit_cmp_insn (x, y, comparison, 0, | |
1576 | wider_mode, unsignedp, align); | |
1577 | return; | |
1578 | } | |
1579 | } | |
1580 | } | |
1581 | ||
1582 | /* Handle a lib call just for the mode we are using. */ | |
1583 | ||
1584 | if (cmp_optab->handlers[(int) mode].libfunc | |
1585 | && class != MODE_FLOAT) | |
1586 | { | |
1587 | rtx libfunc = cmp_optab->handlers[(int) mode].libfunc; | |
1588 | /* If we want unsigned, and this mode has a distinct unsigned | |
1589 | comparison routine, use that. */ | |
1590 | if (unsignedp && ucmp_optab->handlers[(int) mode].libfunc) | |
1591 | libfunc = ucmp_optab->handlers[(int) mode].libfunc; | |
1592 | ||
1593 | emit_library_call (libfunc, 0, | |
1594 | SImode, 2, x, mode, y, mode); | |
1595 | ||
1596 | /* Integer comparison returns a result that must be compared against 1, | |
1597 | so that even if we do an unsigned compare afterward, | |
1598 | there is still a value that can represent the result "less than". */ | |
1599 | ||
1600 | emit_cmp_insn (hard_libcall_value (SImode), const1_rtx, | |
1601 | comparison, 0, SImode, unsignedp, 0); | |
1602 | return; | |
1603 | } | |
1604 | ||
1605 | if (class == MODE_FLOAT) | |
1606 | emit_float_lib_cmp (x, y, comparison); | |
1607 | ||
1608 | else | |
1609 | abort (); | |
1610 | } | |
1611 | ||
1612 | /* Nonzero if a compare of mode MODE can be done straightforwardly | |
1613 | (without splitting it into pieces). */ | |
1614 | ||
1615 | int | |
1616 | can_compare_p (mode) | |
1617 | enum machine_mode mode; | |
1618 | { | |
1619 | do | |
1620 | { | |
1621 | if (cmp_optab->handlers[(int)mode].insn_code != CODE_FOR_nothing) | |
1622 | return 1; | |
1623 | mode = GET_MODE_WIDER_MODE (mode); | |
1624 | } while (mode != VOIDmode); | |
1625 | ||
1626 | return 0; | |
1627 | } | |
1628 | \f | |
1629 | /* Emit a library call comparison between floating point X and Y. | |
1630 | COMPARISON is the rtl operator to compare with (EQ, NE, GT, etc.). */ | |
1631 | ||
1632 | static void | |
1633 | emit_float_lib_cmp (x, y, comparison) | |
1634 | rtx x, y; | |
1635 | enum rtx_code comparison; | |
1636 | { | |
1637 | enum machine_mode mode = GET_MODE (x); | |
1638 | rtx libfunc; | |
1639 | ||
1640 | if (mode == SFmode) | |
1641 | switch (comparison) | |
1642 | { | |
1643 | case EQ: | |
1644 | libfunc = eqsf2_libfunc; | |
1645 | break; | |
1646 | ||
1647 | case NE: | |
1648 | libfunc = nesf2_libfunc; | |
1649 | break; | |
1650 | ||
1651 | case GT: | |
1652 | libfunc = gtsf2_libfunc; | |
1653 | break; | |
1654 | ||
1655 | case GE: | |
1656 | libfunc = gesf2_libfunc; | |
1657 | break; | |
1658 | ||
1659 | case LT: | |
1660 | libfunc = ltsf2_libfunc; | |
1661 | break; | |
1662 | ||
1663 | case LE: | |
1664 | libfunc = lesf2_libfunc; | |
1665 | break; | |
1666 | } | |
1667 | else if (mode == DFmode) | |
1668 | switch (comparison) | |
1669 | { | |
1670 | case EQ: | |
1671 | libfunc = eqdf2_libfunc; | |
1672 | break; | |
1673 | ||
1674 | case NE: | |
1675 | libfunc = nedf2_libfunc; | |
1676 | break; | |
1677 | ||
1678 | case GT: | |
1679 | libfunc = gtdf2_libfunc; | |
1680 | break; | |
1681 | ||
1682 | case GE: | |
1683 | libfunc = gedf2_libfunc; | |
1684 | break; | |
1685 | ||
1686 | case LT: | |
1687 | libfunc = ltdf2_libfunc; | |
1688 | break; | |
1689 | ||
1690 | case LE: | |
1691 | libfunc = ledf2_libfunc; | |
1692 | break; | |
1693 | } | |
1694 | else | |
1695 | { | |
1696 | enum machine_mode wider_mode; | |
1697 | ||
1698 | for (wider_mode = GET_MODE_WIDER_MODE (mode); | |
1699 | GET_MODE_CLASS (wider_mode) == MODE_FLOAT; | |
1700 | wider_mode = GET_MODE_WIDER_MODE (wider_mode)) | |
1701 | { | |
1702 | if ((cmp_optab->handlers[(int) wider_mode].insn_code | |
1703 | != CODE_FOR_nothing) | |
1704 | || (cmp_optab->handlers[(int) wider_mode].libfunc != 0)) | |
1705 | { | |
1706 | x = convert_to_mode (wider_mode, x, 0); | |
1707 | y = convert_to_mode (wider_mode, y, 0); | |
1708 | emit_float_lib_cmp (x, y, comparison); | |
1709 | return; | |
1710 | } | |
1711 | } | |
1712 | abort (); | |
1713 | } | |
1714 | ||
1715 | emit_library_call (libfunc, 0, | |
1716 | SImode, 2, x, mode, y, mode); | |
1717 | ||
1718 | emit_cmp_insn (hard_libcall_value (SImode), const0_rtx, comparison, | |
1719 | 0, SImode, 0, 0); | |
1720 | } | |
1721 | \f | |
1722 | /* Generate code to indirectly jump to a location given in the rtx LOC. */ | |
1723 | ||
1724 | void | |
1725 | emit_indirect_jump (loc) | |
1726 | rtx loc; | |
1727 | { | |
1728 | if (! ((*insn_operand_predicate[(int)CODE_FOR_indirect_jump][0]) | |
1729 | (loc, VOIDmode))) | |
1730 | loc = copy_to_mode_reg (insn_operand_mode[(int)CODE_FOR_indirect_jump][0], | |
1731 | loc); | |
1732 | ||
1733 | emit_jump_insn (gen_indirect_jump (loc)); | |
1734 | } | |
1735 | \f | |
1736 | /* These three functions generate an insn body and return it | |
1737 | rather than emitting the insn. | |
1738 | ||
1739 | They do not protect from queued increments, | |
1740 | because they may be used 1) in protect_from_queue itself | |
1741 | and 2) in other passes where there is no queue. */ | |
1742 | ||
1743 | /* Generate and return an insn body to add Y to X. */ | |
1744 | ||
1745 | rtx | |
1746 | gen_add2_insn (x, y) | |
1747 | rtx x, y; | |
1748 | { | |
1749 | int icode = (int) add_optab->handlers[(int) GET_MODE (x)].insn_code; | |
1750 | ||
1751 | if (! (*insn_operand_predicate[icode][0]) (x, insn_operand_mode[icode][0]) | |
1752 | || ! (*insn_operand_predicate[icode][1]) (x, insn_operand_mode[icode][1]) | |
1753 | || ! (*insn_operand_predicate[icode][2]) (y, insn_operand_mode[icode][2])) | |
1754 | abort (); | |
1755 | ||
1756 | return (GEN_FCN (icode) (x, x, y)); | |
1757 | } | |
1758 | ||
1759 | int | |
1760 | have_add2_insn (mode) | |
1761 | enum machine_mode mode; | |
1762 | { | |
1763 | return add_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing; | |
1764 | } | |
1765 | ||
1766 | /* Generate and return an insn body to subtract Y from X. */ | |
1767 | ||
1768 | rtx | |
1769 | gen_sub2_insn (x, y) | |
1770 | rtx x, y; | |
1771 | { | |
1772 | int icode = (int) sub_optab->handlers[(int) GET_MODE (x)].insn_code; | |
1773 | ||
1774 | if (! (*insn_operand_predicate[icode][0]) (x, insn_operand_mode[icode][0]) | |
1775 | || ! (*insn_operand_predicate[icode][1]) (x, insn_operand_mode[icode][1]) | |
1776 | || ! (*insn_operand_predicate[icode][2]) (y, insn_operand_mode[icode][2])) | |
1777 | abort (); | |
1778 | ||
1779 | return (GEN_FCN (icode) (x, x, y)); | |
1780 | } | |
1781 | ||
1782 | int | |
1783 | have_sub2_insn (mode) | |
1784 | enum machine_mode mode; | |
1785 | { | |
1786 | return sub_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing; | |
1787 | } | |
1788 | ||
1789 | /* Generate the body of an instruction to copy Y into X. */ | |
1790 | ||
1791 | rtx | |
1792 | gen_move_insn (x, y) | |
1793 | rtx x, y; | |
1794 | { | |
1795 | register enum machine_mode mode = GET_MODE (x); | |
1796 | enum insn_code insn_code; | |
1797 | ||
1798 | if (mode == VOIDmode) | |
1799 | mode = GET_MODE (y); | |
1800 | ||
1801 | insn_code = mov_optab->handlers[(int) mode].insn_code; | |
1802 | ||
1803 | /* Handle MODE_CC modes: If we don't have a special move insn for this mode, | |
1804 | find a mode to do it in. If we have a movcc, use it. Otherwise, | |
1805 | find the MODE_INT mode of the same width. */ | |
1806 | ||
1807 | if (insn_code == CODE_FOR_nothing) | |
1808 | { | |
1809 | enum machine_mode tmode = VOIDmode; | |
1810 | rtx x1 = x, y1 = y; | |
1811 | ||
1812 | if (GET_MODE_CLASS (mode) == MODE_CC && mode != CCmode | |
1813 | && mov_optab->handlers[(int) CCmode].insn_code != CODE_FOR_nothing) | |
1814 | tmode = CCmode; | |
1815 | else if (GET_MODE_CLASS (mode) == MODE_CC) | |
1816 | for (tmode = QImode; tmode != VOIDmode; | |
1817 | tmode = GET_MODE_WIDER_MODE (tmode)) | |
1818 | if (GET_MODE_SIZE (tmode) == GET_MODE_SIZE (mode)) | |
1819 | break; | |
1820 | ||
1821 | if (tmode == VOIDmode) | |
1822 | abort (); | |
1823 | ||
1824 | /* Get X and Y in TMODE. We can't use gen_lowpart here because it | |
1825 | may call change_address which is not appropriate if we were | |
1826 | called when a reload was in progress. We don't have to worry | |
1827 | about changing the address since the size in bytes is supposed to | |
1828 | be the same. Copy the MEM to change the mode and move any | |
1829 | substitutions from the old MEM to the new one. */ | |
1830 | ||
1831 | if (reload_in_progress) | |
1832 | { | |
1833 | x = gen_lowpart_common (tmode, x1); | |
1834 | if (x == 0 && GET_CODE (x1) == MEM) | |
1835 | { | |
1836 | x = gen_rtx (MEM, tmode, XEXP (x1, 0)); | |
1837 | RTX_UNCHANGING_P (x) = RTX_UNCHANGING_P (x1); | |
1838 | MEM_IN_STRUCT_P (x) = MEM_IN_STRUCT_P (x1); | |
1839 | MEM_VOLATILE_P (x) = MEM_VOLATILE_P (x1); | |
1840 | copy_replacements (x1, x); | |
1841 | } | |
1842 | ||
1843 | y = gen_lowpart_common (tmode, y1); | |
1844 | if (y == 0 && GET_CODE (y1) == MEM) | |
1845 | { | |
1846 | y = gen_rtx (MEM, tmode, XEXP (y1, 0)); | |
1847 | RTX_UNCHANGING_P (y) = RTX_UNCHANGING_P (y1); | |
1848 | MEM_IN_STRUCT_P (y) = MEM_IN_STRUCT_P (y1); | |
1849 | MEM_VOLATILE_P (y) = MEM_VOLATILE_P (y1); | |
1850 | copy_replacements (y1, y); | |
1851 | } | |
1852 | } | |
1853 | else | |
1854 | { | |
1855 | x = gen_lowpart (tmode, x); | |
1856 | y = gen_lowpart (tmode, y); | |
1857 | } | |
1858 | ||
1859 | insn_code = mov_optab->handlers[(int) tmode].insn_code; | |
1860 | } | |
1861 | ||
1862 | return (GEN_FCN (insn_code) (x, y)); | |
1863 | } | |
1864 | \f | |
1865 | /* Tables of patterns for extending one integer mode to another. */ | |
1866 | static enum insn_code zero_extend_codes[MAX_MACHINE_MODE][MAX_MACHINE_MODE]; | |
1867 | static enum insn_code sign_extend_codes[MAX_MACHINE_MODE][MAX_MACHINE_MODE]; | |
1868 | ||
1869 | /* Return nonzero if it's possible to extend FROM_MODE to TO_MODE. | |
1870 | UNSIGNEDP specifies zero-extension instead of sign-extension. | |
1871 | ||
1872 | Actually, the value is the instruction code for the extension pattern. */ | |
1873 | ||
1874 | int | |
1875 | can_extend_p (to_mode, from_mode, unsignedp) | |
1876 | enum machine_mode to_mode, from_mode; | |
1877 | int unsignedp; | |
1878 | { | |
1879 | return ((unsignedp ? zero_extend_codes : sign_extend_codes) | |
1880 | [(int) to_mode][(int) from_mode]); | |
1881 | } | |
1882 | ||
1883 | /* Generate the body of an insn to extend Y (with mode MFROM) | |
1884 | into X (with mode MTO). Do zero-extension if UNSIGNEDP is nonzero. */ | |
1885 | ||
1886 | rtx | |
1887 | gen_extend_insn (x, y, mto, mfrom, unsignedp) | |
1888 | rtx x, y; | |
1889 | enum machine_mode mto, mfrom; | |
1890 | int unsignedp; | |
1891 | { | |
1892 | return (GEN_FCN ((unsignedp ? zero_extend_codes : sign_extend_codes) | |
1893 | [(int)mto][(int)mfrom]) | |
1894 | (x, y)); | |
1895 | } | |
1896 | ||
1897 | static void | |
1898 | init_extends () | |
1899 | { | |
1900 | bzero (sign_extend_codes, sizeof sign_extend_codes); | |
1901 | bzero (zero_extend_codes, sizeof zero_extend_codes); | |
1902 | ||
1903 | #ifdef HAVE_extendditi2 | |
1904 | if (HAVE_extendditi2) | |
1905 | sign_extend_codes[(int) TImode][(int) DImode] = CODE_FOR_extendditi2; | |
1906 | #endif | |
1907 | #ifdef HAVE_extendsiti2 | |
1908 | if (HAVE_extendsiti2) | |
1909 | sign_extend_codes[(int) TImode][(int) SImode] = CODE_FOR_extendsiti2; | |
1910 | #endif | |
1911 | #ifdef HAVE_extendhiti2 | |
1912 | if (HAVE_extendhiti2) | |
1913 | sign_extend_codes[(int) TImode][(int) HImode] = CODE_FOR_extendhiti2; | |
1914 | #endif | |
1915 | #ifdef HAVE_extendqiti2 | |
1916 | if (HAVE_extendqiti2) | |
1917 | sign_extend_codes[(int) TImode][(int) QImode] = CODE_FOR_extendqiti2; | |
1918 | #endif | |
1919 | #ifdef HAVE_extendsidi2 | |
1920 | if (HAVE_extendsidi2) | |
1921 | sign_extend_codes[(int) DImode][(int) SImode] = CODE_FOR_extendsidi2; | |
1922 | #endif | |
1923 | #ifdef HAVE_extendhidi2 | |
1924 | if (HAVE_extendhidi2) | |
1925 | sign_extend_codes[(int) DImode][(int) HImode] = CODE_FOR_extendhidi2; | |
1926 | #endif | |
1927 | #ifdef HAVE_extendqidi2 | |
1928 | if (HAVE_extendqidi2) | |
1929 | sign_extend_codes[(int) DImode][(int) QImode] = CODE_FOR_extendqidi2; | |
1930 | #endif | |
1931 | #ifdef HAVE_extendhisi2 | |
1932 | if (HAVE_extendhisi2) | |
1933 | sign_extend_codes[(int) SImode][(int) HImode] = CODE_FOR_extendhisi2; | |
1934 | #endif | |
1935 | #ifdef HAVE_extendqisi2 | |
1936 | if (HAVE_extendqisi2) | |
1937 | sign_extend_codes[(int) SImode][(int) QImode] = CODE_FOR_extendqisi2; | |
1938 | #endif | |
1939 | #ifdef HAVE_extendqihi2 | |
1940 | if (HAVE_extendqihi2) | |
1941 | sign_extend_codes[(int) HImode][(int) QImode] = CODE_FOR_extendqihi2; | |
1942 | #endif | |
1943 | ||
1944 | #ifdef HAVE_zero_extendditi2 | |
1945 | if (HAVE_zero_extendsiti2) | |
1946 | zero_extend_codes[(int) TImode][(int) DImode] = CODE_FOR_zero_extendditi2; | |
1947 | #endif | |
1948 | #ifdef HAVE_zero_extendsiti2 | |
1949 | if (HAVE_zero_extendsiti2) | |
1950 | zero_extend_codes[(int) TImode][(int) SImode] = CODE_FOR_zero_extendsiti2; | |
1951 | #endif | |
1952 | #ifdef HAVE_zero_extendhiti2 | |
1953 | if (HAVE_zero_extendhiti2) | |
1954 | zero_extend_codes[(int) TImode][(int) HImode] = CODE_FOR_zero_extendhiti2; | |
1955 | #endif | |
1956 | #ifdef HAVE_zero_extendqiti2 | |
1957 | if (HAVE_zero_extendqiti2) | |
1958 | zero_extend_codes[(int) TImode][(int) QImode] = CODE_FOR_zero_extendqiti2; | |
1959 | #endif | |
1960 | #ifdef HAVE_zero_extendsidi2 | |
1961 | if (HAVE_zero_extendsidi2) | |
1962 | zero_extend_codes[(int) DImode][(int) SImode] = CODE_FOR_zero_extendsidi2; | |
1963 | #endif | |
1964 | #ifdef HAVE_zero_extendhidi2 | |
1965 | if (HAVE_zero_extendhidi2) | |
1966 | zero_extend_codes[(int) DImode][(int) HImode] = CODE_FOR_zero_extendhidi2; | |
1967 | #endif | |
1968 | #ifdef HAVE_zero_extendqidi2 | |
1969 | if (HAVE_zero_extendqidi2) | |
1970 | zero_extend_codes[(int) DImode][(int) QImode] = CODE_FOR_zero_extendqidi2; | |
1971 | #endif | |
1972 | #ifdef HAVE_zero_extendhisi2 | |
1973 | if (HAVE_zero_extendhisi2) | |
1974 | zero_extend_codes[(int) SImode][(int) HImode] = CODE_FOR_zero_extendhisi2; | |
1975 | #endif | |
1976 | #ifdef HAVE_zero_extendqisi2 | |
1977 | if (HAVE_zero_extendqisi2) | |
1978 | zero_extend_codes[(int) SImode][(int) QImode] = CODE_FOR_zero_extendqisi2; | |
1979 | #endif | |
1980 | #ifdef HAVE_zero_extendqihi2 | |
1981 | if (HAVE_zero_extendqihi2) | |
1982 | zero_extend_codes[(int) HImode][(int) QImode] = CODE_FOR_zero_extendqihi2; | |
1983 | #endif | |
1984 | } | |
1985 | \f | |
1986 | /* can_fix_p and can_float_p say whether the target machine | |
1987 | can directly convert a given fixed point type to | |
1988 | a given floating point type, or vice versa. | |
1989 | The returned value is the CODE_FOR_... value to use, | |
1990 | or CODE_FOR_nothing if these modes cannot be directly converted. */ | |
1991 | ||
1992 | static enum insn_code fixtab[NUM_MACHINE_MODES][NUM_MACHINE_MODES][2]; | |
1993 | static enum insn_code fixtrunctab[NUM_MACHINE_MODES][NUM_MACHINE_MODES][2]; | |
1994 | static enum insn_code floattab[NUM_MACHINE_MODES][NUM_MACHINE_MODES][2]; | |
1995 | ||
1996 | /* *TRUNCP_PTR is set to 1 if it is necessary to output | |
1997 | an explicit FTRUNC insn before the fix insn; otherwise 0. */ | |
1998 | ||
1999 | static enum insn_code | |
2000 | can_fix_p (fixmode, fltmode, unsignedp, truncp_ptr) | |
2001 | enum machine_mode fltmode, fixmode; | |
2002 | int unsignedp; | |
2003 | int *truncp_ptr; | |
2004 | { | |
2005 | *truncp_ptr = 0; | |
2006 | if (fixtrunctab[(int) fltmode][(int) fixmode][unsignedp] != CODE_FOR_nothing) | |
2007 | return fixtrunctab[(int) fltmode][(int) fixmode][unsignedp]; | |
2008 | ||
2009 | if (ftrunc_optab->handlers[(int) fltmode].insn_code != CODE_FOR_nothing) | |
2010 | { | |
2011 | *truncp_ptr = 1; | |
2012 | return fixtab[(int) fltmode][(int) fixmode][unsignedp]; | |
2013 | } | |
2014 | return CODE_FOR_nothing; | |
2015 | } | |
2016 | ||
2017 | static enum insn_code | |
2018 | can_float_p (fltmode, fixmode, unsignedp) | |
2019 | enum machine_mode fixmode, fltmode; | |
2020 | int unsignedp; | |
2021 | { | |
2022 | return floattab[(int) fltmode][(int) fixmode][unsignedp]; | |
2023 | } | |
2024 | ||
2025 | void | |
2026 | init_fixtab () | |
2027 | { | |
2028 | enum insn_code *p; | |
2029 | for (p = fixtab[0][0]; | |
2030 | p < fixtab[0][0] + sizeof fixtab / sizeof (fixtab[0][0][0]); | |
2031 | p++) | |
2032 | *p = CODE_FOR_nothing; | |
2033 | for (p = fixtrunctab[0][0]; | |
2034 | p < fixtrunctab[0][0] + sizeof fixtrunctab / sizeof (fixtrunctab[0][0][0]); | |
2035 | p++) | |
2036 | *p = CODE_FOR_nothing; | |
2037 | ||
2038 | #ifdef HAVE_fixsfqi2 | |
2039 | if (HAVE_fixsfqi2) | |
2040 | fixtab[(int) SFmode][(int) QImode][0] = CODE_FOR_fixsfqi2; | |
2041 | #endif | |
2042 | #ifdef HAVE_fixsfhi2 | |
2043 | if (HAVE_fixsfhi2) | |
2044 | fixtab[(int) SFmode][(int) HImode][0] = CODE_FOR_fixsfhi2; | |
2045 | #endif | |
2046 | #ifdef HAVE_fixsfsi2 | |
2047 | if (HAVE_fixsfsi2) | |
2048 | fixtab[(int) SFmode][(int) SImode][0] = CODE_FOR_fixsfsi2; | |
2049 | #endif | |
2050 | #ifdef HAVE_fixsfdi2 | |
2051 | if (HAVE_fixsfdi2) | |
2052 | fixtab[(int) SFmode][(int) DImode][0] = CODE_FOR_fixsfdi2; | |
2053 | #endif | |
2054 | ||
2055 | #ifdef HAVE_fixdfqi2 | |
2056 | if (HAVE_fixdfqi2) | |
2057 | fixtab[(int) DFmode][(int) QImode][0] = CODE_FOR_fixdfqi2; | |
2058 | #endif | |
2059 | #ifdef HAVE_fixdfhi2 | |
2060 | if (HAVE_fixdfhi2) | |
2061 | fixtab[(int) DFmode][(int) HImode][0] = CODE_FOR_fixdfhi2; | |
2062 | #endif | |
2063 | #ifdef HAVE_fixdfsi2 | |
2064 | if (HAVE_fixdfsi2) | |
2065 | fixtab[(int) DFmode][(int) SImode][0] = CODE_FOR_fixdfsi2; | |
2066 | #endif | |
2067 | #ifdef HAVE_fixdfdi2 | |
2068 | if (HAVE_fixdfdi2) | |
2069 | fixtab[(int) DFmode][(int) DImode][0] = CODE_FOR_fixdfdi2; | |
2070 | #endif | |
2071 | #ifdef HAVE_fixdfti2 | |
2072 | if (HAVE_fixdfti2) | |
2073 | fixtab[(int) DFmode][(int) TImode][0] = CODE_FOR_fixdfti2; | |
2074 | #endif | |
2075 | ||
2076 | #ifdef HAVE_fixtfqi2 | |
2077 | if (HAVE_fixtfqi2) | |
2078 | fixtab[(int) TFmode][(int) QImode][0] = CODE_FOR_fixtfqi2; | |
2079 | #endif | |
2080 | #ifdef HAVE_fixtfhi2 | |
2081 | if (HAVE_fixtfhi2) | |
2082 | fixtab[(int) TFmode][(int) HImode][0] = CODE_FOR_fixtfhi2; | |
2083 | #endif | |
2084 | #ifdef HAVE_fixtfsi2 | |
2085 | if (HAVE_fixtfsi2) | |
2086 | fixtab[(int) TFmode][(int) SImode][0] = CODE_FOR_fixtfsi2; | |
2087 | #endif | |
2088 | #ifdef HAVE_fixtfdi2 | |
2089 | if (HAVE_fixtfdi2) | |
2090 | fixtab[(int) TFmode][(int) DImode][0] = CODE_FOR_fixtfdi2; | |
2091 | #endif | |
2092 | #ifdef HAVE_fixtfti2 | |
2093 | if (HAVE_fixtfti2) | |
2094 | fixtab[(int) TFmode][(int) TImode][0] = CODE_FOR_fixtfti2; | |
2095 | #endif | |
2096 | ||
2097 | #ifdef HAVE_fixunssfqi2 | |
2098 | if (HAVE_fixunssfqi2) | |
2099 | fixtab[(int) SFmode][(int) QImode][1] = CODE_FOR_fixunssfqi2; | |
2100 | #endif | |
2101 | #ifdef HAVE_fixunssfhi2 | |
2102 | if (HAVE_fixunssfhi2) | |
2103 | fixtab[(int) SFmode][(int) HImode][1] = CODE_FOR_fixunssfhi2; | |
2104 | #endif | |
2105 | #ifdef HAVE_fixunssfsi2 | |
2106 | if (HAVE_fixunssfsi2) | |
2107 | fixtab[(int) SFmode][(int) SImode][1] = CODE_FOR_fixunssfsi2; | |
2108 | #endif | |
2109 | #ifdef HAVE_fixunssfdi2 | |
2110 | if (HAVE_fixunssfdi2) | |
2111 | fixtab[(int) SFmode][(int) DImode][1] = CODE_FOR_fixunssfdi2; | |
2112 | #endif | |
2113 | ||
2114 | #ifdef HAVE_fixunsdfqi2 | |
2115 | if (HAVE_fixunsdfqi2) | |
2116 | fixtab[(int) DFmode][(int) QImode][1] = CODE_FOR_fixunsdfqi2; | |
2117 | #endif | |
2118 | #ifdef HAVE_fixunsdfhi2 | |
2119 | if (HAVE_fixunsdfhi2) | |
2120 | fixtab[(int) DFmode][(int) HImode][1] = CODE_FOR_fixunsdfhi2; | |
2121 | #endif | |
2122 | #ifdef HAVE_fixunsdfsi2 | |
2123 | if (HAVE_fixunsdfsi2) | |
2124 | fixtab[(int) DFmode][(int) SImode][1] = CODE_FOR_fixunsdfsi2; | |
2125 | #endif | |
2126 | #ifdef HAVE_fixunsdfdi2 | |
2127 | if (HAVE_fixunsdfdi2) | |
2128 | fixtab[(int) DFmode][(int) DImode][1] = CODE_FOR_fixunsdfdi2; | |
2129 | #endif | |
2130 | #ifdef HAVE_fixunsdfti2 | |
2131 | if (HAVE_fixunsdfti2) | |
2132 | fixtab[(int) DFmode][(int) TImode][1] = CODE_FOR_fixunsdfti2; | |
2133 | #endif | |
2134 | ||
2135 | #ifdef HAVE_fixunstfqi2 | |
2136 | if (HAVE_fixunstfqi2) | |
2137 | fixtab[(int) TFmode][(int) QImode][1] = CODE_FOR_fixunstfqi2; | |
2138 | #endif | |
2139 | #ifdef HAVE_fixunstfhi2 | |
2140 | if (HAVE_fixunstfhi2) | |
2141 | fixtab[(int) TFmode][(int) HImode][1] = CODE_FOR_fixunstfhi2; | |
2142 | #endif | |
2143 | #ifdef HAVE_fixunstfsi2 | |
2144 | if (HAVE_fixunstfsi2) | |
2145 | fixtab[(int) TFmode][(int) SImode][1] = CODE_FOR_fixunstfsi2; | |
2146 | #endif | |
2147 | #ifdef HAVE_fixunstfdi2 | |
2148 | if (HAVE_fixunstfdi2) | |
2149 | fixtab[(int) TFmode][(int) DImode][1] = CODE_FOR_fixunstfdi2; | |
2150 | #endif | |
2151 | #ifdef HAVE_fixunstfti2 | |
2152 | if (HAVE_fixunstfti2) | |
2153 | fixtab[(int) TFmode][(int) TImode][1] = CODE_FOR_fixunstfti2; | |
2154 | #endif | |
2155 | ||
2156 | #ifdef HAVE_fix_truncsfqi2 | |
2157 | if (HAVE_fix_truncsfqi2) | |
2158 | fixtrunctab[(int) SFmode][(int) QImode][0] = CODE_FOR_fix_truncsfqi2; | |
2159 | #endif | |
2160 | #ifdef HAVE_fix_truncsfhi2 | |
2161 | if (HAVE_fix_truncsfhi2) | |
2162 | fixtrunctab[(int) SFmode][(int) HImode][0] = CODE_FOR_fix_truncsfhi2; | |
2163 | #endif | |
2164 | #ifdef HAVE_fix_truncsfsi2 | |
2165 | if (HAVE_fix_truncsfsi2) | |
2166 | fixtrunctab[(int) SFmode][(int) SImode][0] = CODE_FOR_fix_truncsfsi2; | |
2167 | #endif | |
2168 | #ifdef HAVE_fix_truncsfdi2 | |
2169 | if (HAVE_fix_truncsfdi2) | |
2170 | fixtrunctab[(int) SFmode][(int) DImode][0] = CODE_FOR_fix_truncsfdi2; | |
2171 | #endif | |
2172 | ||
2173 | #ifdef HAVE_fix_truncdfqi2 | |
2174 | if (HAVE_fix_truncdfsi2) | |
2175 | fixtrunctab[(int) DFmode][(int) QImode][0] = CODE_FOR_fix_truncdfqi2; | |
2176 | #endif | |
2177 | #ifdef HAVE_fix_truncdfhi2 | |
2178 | if (HAVE_fix_truncdfhi2) | |
2179 | fixtrunctab[(int) DFmode][(int) HImode][0] = CODE_FOR_fix_truncdfhi2; | |
2180 | #endif | |
2181 | #ifdef HAVE_fix_truncdfsi2 | |
2182 | if (HAVE_fix_truncdfsi2) | |
2183 | fixtrunctab[(int) DFmode][(int) SImode][0] = CODE_FOR_fix_truncdfsi2; | |
2184 | #endif | |
2185 | #ifdef HAVE_fix_truncdfdi2 | |
2186 | if (HAVE_fix_truncdfdi2) | |
2187 | fixtrunctab[(int) DFmode][(int) DImode][0] = CODE_FOR_fix_truncdfdi2; | |
2188 | #endif | |
2189 | #ifdef HAVE_fix_truncdfti2 | |
2190 | if (HAVE_fix_truncdfti2) | |
2191 | fixtrunctab[(int) DFmode][(int) TImode][0] = CODE_FOR_fix_truncdfti2; | |
2192 | #endif | |
2193 | ||
2194 | #ifdef HAVE_fix_trunctfqi2 | |
2195 | if (HAVE_fix_trunctfqi2) | |
2196 | fixtrunctab[(int) TFmode][(int) QImode][0] = CODE_FOR_fix_trunctfqi2; | |
2197 | #endif | |
2198 | #ifdef HAVE_fix_trunctfhi2 | |
2199 | if (HAVE_fix_trunctfhi2) | |
2200 | fixtrunctab[(int) TFmode][(int) HImode][0] = CODE_FOR_fix_trunctfhi2; | |
2201 | #endif | |
2202 | #ifdef HAVE_fix_trunctfsi2 | |
2203 | if (HAVE_fix_trunctfsi2) | |
2204 | fixtrunctab[(int) TFmode][(int) SImode][0] = CODE_FOR_fix_trunctfsi2; | |
2205 | #endif | |
2206 | #ifdef HAVE_fix_trunctfdi2 | |
2207 | if (HAVE_fix_trunctfdi2) | |
2208 | fixtrunctab[(int) TFmode][(int) DImode][0] = CODE_FOR_fix_trunctfdi2; | |
2209 | #endif | |
2210 | #ifdef HAVE_fix_trunctfti2 | |
2211 | if (HAVE_fix_trunctfti2) | |
2212 | fixtrunctab[(int) TFmode][(int) TImode][0] = CODE_FOR_fix_trunctfti2; | |
2213 | #endif | |
2214 | ||
2215 | #ifdef HAVE_fixuns_truncsfqi2 | |
2216 | if (HAVE_fixuns_truncsfqi2) | |
2217 | fixtrunctab[(int) SFmode][(int) QImode][1] = CODE_FOR_fixuns_truncsfqi2; | |
2218 | #endif | |
2219 | #ifdef HAVE_fixuns_truncsfhi2 | |
2220 | if (HAVE_fixuns_truncsfhi2) | |
2221 | fixtrunctab[(int) SFmode][(int) HImode][1] = CODE_FOR_fixuns_truncsfhi2; | |
2222 | #endif | |
2223 | #ifdef HAVE_fixuns_truncsfsi2 | |
2224 | if (HAVE_fixuns_truncsfsi2) | |
2225 | fixtrunctab[(int) SFmode][(int) SImode][1] = CODE_FOR_fixuns_truncsfsi2; | |
2226 | #endif | |
2227 | #ifdef HAVE_fixuns_truncsfdi2 | |
2228 | if (HAVE_fixuns_truncsfdi2) | |
2229 | fixtrunctab[(int) SFmode][(int) DImode][1] = CODE_FOR_fixuns_truncsfdi2; | |
2230 | #endif | |
2231 | ||
2232 | #ifdef HAVE_fixuns_truncdfqi2 | |
2233 | if (HAVE_fixuns_truncdfqi2) | |
2234 | fixtrunctab[(int) DFmode][(int) QImode][1] = CODE_FOR_fixuns_truncdfqi2; | |
2235 | #endif | |
2236 | #ifdef HAVE_fixuns_truncdfhi2 | |
2237 | if (HAVE_fixuns_truncdfhi2) | |
2238 | fixtrunctab[(int) DFmode][(int) HImode][1] = CODE_FOR_fixuns_truncdfhi2; | |
2239 | #endif | |
2240 | #ifdef HAVE_fixuns_truncdfsi2 | |
2241 | if (HAVE_fixuns_truncdfsi2) | |
2242 | fixtrunctab[(int) DFmode][(int) SImode][1] = CODE_FOR_fixuns_truncdfsi2; | |
2243 | #endif | |
2244 | #ifdef HAVE_fixuns_truncdfdi2 | |
2245 | if (HAVE_fixuns_truncdfdi2) | |
2246 | fixtrunctab[(int) DFmode][(int) DImode][1] = CODE_FOR_fixuns_truncdfdi2; | |
2247 | #endif | |
2248 | #ifdef HAVE_fixuns_truncdfti2 | |
2249 | if (HAVE_fixuns_truncdfti2) | |
2250 | fixtrunctab[(int) DFmode][(int) TImode][1] = CODE_FOR_fixuns_truncdfti2; | |
2251 | #endif | |
2252 | ||
2253 | #ifdef HAVE_fixuns_trunctfqi2 | |
2254 | if (HAVE_fixuns_trunctfqi2) | |
2255 | fixtrunctab[(int) TFmode][(int) QImode][1] = CODE_FOR_fixuns_trunctfqi2; | |
2256 | #endif | |
2257 | #ifdef HAVE_fixuns_trunctfhi2 | |
2258 | if (HAVE_fixuns_trunctfhi2) | |
2259 | fixtrunctab[(int) TFmode][(int) HImode][1] = CODE_FOR_fixuns_trunctfhi2; | |
2260 | #endif | |
2261 | #ifdef HAVE_fixuns_trunctfsi2 | |
2262 | if (HAVE_fixuns_trunctfsi2) | |
2263 | fixtrunctab[(int) TFmode][(int) SImode][1] = CODE_FOR_fixuns_trunctfsi2; | |
2264 | #endif | |
2265 | #ifdef HAVE_fixuns_trunctfdi2 | |
2266 | if (HAVE_fixuns_trunctfdi2) | |
2267 | fixtrunctab[(int) TFmode][(int) DImode][1] = CODE_FOR_fixuns_trunctfdi2; | |
2268 | #endif | |
2269 | #ifdef HAVE_fixuns_trunctfti2 | |
2270 | if (HAVE_fixuns_trunctfti2) | |
2271 | fixtrunctab[(int) TFmode][(int) TImode][1] = CODE_FOR_fixuns_trunctfti2; | |
2272 | #endif | |
2273 | ||
2274 | #ifdef FIXUNS_TRUNC_LIKE_FIX_TRUNC | |
2275 | /* This flag says the same insns that convert to a signed fixnum | |
2276 | also convert validly to an unsigned one. */ | |
2277 | { | |
2278 | int i; | |
2279 | int j; | |
2280 | for (i = 0; i < NUM_MACHINE_MODES; i++) | |
2281 | for (j = 0; j < NUM_MACHINE_MODES; j++) | |
2282 | fixtrunctab[i][j][1] = fixtrunctab[i][j][0]; | |
2283 | } | |
2284 | #endif | |
2285 | } | |
2286 | ||
2287 | void | |
2288 | init_floattab () | |
2289 | { | |
2290 | enum insn_code *p; | |
2291 | for (p = floattab[0][0]; | |
2292 | p < floattab[0][0] + sizeof floattab / sizeof (floattab[0][0][0]); | |
2293 | p++) | |
2294 | *p = CODE_FOR_nothing; | |
2295 | ||
2296 | #ifdef HAVE_floatqisf2 | |
2297 | if (HAVE_floatqisf2) | |
2298 | floattab[(int) SFmode][(int) QImode][0] = CODE_FOR_floatqisf2; | |
2299 | #endif | |
2300 | #ifdef HAVE_floathisf2 | |
2301 | if (HAVE_floathisf2) | |
2302 | floattab[(int) SFmode][(int) HImode][0] = CODE_FOR_floathisf2; | |
2303 | #endif | |
2304 | #ifdef HAVE_floatsisf2 | |
2305 | if (HAVE_floatsisf2) | |
2306 | floattab[(int) SFmode][(int) SImode][0] = CODE_FOR_floatsisf2; | |
2307 | #endif | |
2308 | #ifdef HAVE_floatdisf2 | |
2309 | if (HAVE_floatdisf2) | |
2310 | floattab[(int) SFmode][(int) DImode][0] = CODE_FOR_floatdisf2; | |
2311 | #endif | |
2312 | #ifdef HAVE_floattisf2 | |
2313 | if (HAVE_floattisf2) | |
2314 | floattab[(int) SFmode][(int) TImode][0] = CODE_FOR_floattisf2; | |
2315 | #endif | |
2316 | ||
2317 | #ifdef HAVE_floatqidf2 | |
2318 | if (HAVE_floatqidf2) | |
2319 | floattab[(int) DFmode][(int) QImode][0] = CODE_FOR_floatqidf2; | |
2320 | #endif | |
2321 | #ifdef HAVE_floathidf2 | |
2322 | if (HAVE_floathidf2) | |
2323 | floattab[(int) DFmode][(int) HImode][0] = CODE_FOR_floathidf2; | |
2324 | #endif | |
2325 | #ifdef HAVE_floatsidf2 | |
2326 | if (HAVE_floatsidf2) | |
2327 | floattab[(int) DFmode][(int) SImode][0] = CODE_FOR_floatsidf2; | |
2328 | #endif | |
2329 | #ifdef HAVE_floatdidf2 | |
2330 | if (HAVE_floatdidf2) | |
2331 | floattab[(int) DFmode][(int) DImode][0] = CODE_FOR_floatdidf2; | |
2332 | #endif | |
2333 | #ifdef HAVE_floattidf2 | |
2334 | if (HAVE_floattidf2) | |
2335 | floattab[(int) DFmode][(int) TImode][0] = CODE_FOR_floattidf2; | |
2336 | #endif | |
2337 | ||
2338 | #ifdef HAVE_floatqitf2 | |
2339 | if (HAVE_floatqitf2) | |
2340 | floattab[(int) TFmode][(int) QImode][0] = CODE_FOR_floatqitf2; | |
2341 | #endif | |
2342 | #ifdef HAVE_floathitf2 | |
2343 | if (HAVE_floathitf2) | |
2344 | floattab[(int) TFmode][(int) HImode][0] = CODE_FOR_floathitf2; | |
2345 | #endif | |
2346 | #ifdef HAVE_floatsitf2 | |
2347 | if (HAVE_floatsitf2) | |
2348 | floattab[(int) TFmode][(int) SImode][0] = CODE_FOR_floatsitf2; | |
2349 | #endif | |
2350 | #ifdef HAVE_floatditf2 | |
2351 | if (HAVE_floatditf2) | |
2352 | floattab[(int) TFmode][(int) DImode][0] = CODE_FOR_floatditf2; | |
2353 | #endif | |
2354 | #ifdef HAVE_floattitf2 | |
2355 | if (HAVE_floattitf2) | |
2356 | floattab[(int) TFmode][(int) TImode][0] = CODE_FOR_floattitf2; | |
2357 | #endif | |
2358 | ||
2359 | #ifdef HAVE_floatunsqisf2 | |
2360 | if (HAVE_floatunsqisf2) | |
2361 | floattab[(int) SFmode][(int) QImode][1] = CODE_FOR_floatunsqisf2; | |
2362 | #endif | |
2363 | #ifdef HAVE_floatunshisf2 | |
2364 | if (HAVE_floatunshisf2) | |
2365 | floattab[(int) SFmode][(int) HImode][1] = CODE_FOR_floatunshisf2; | |
2366 | #endif | |
2367 | #ifdef HAVE_floatunssisf2 | |
2368 | if (HAVE_floatunssisf2) | |
2369 | floattab[(int) SFmode][(int) SImode][1] = CODE_FOR_floatunssisf2; | |
2370 | #endif | |
2371 | #ifdef HAVE_floatunsdisf2 | |
2372 | if (HAVE_floatunsdisf2) | |
2373 | floattab[(int) SFmode][(int) DImode][1] = CODE_FOR_floatunsdisf2; | |
2374 | #endif | |
2375 | #ifdef HAVE_floatunstisf2 | |
2376 | if (HAVE_floatunstisf2) | |
2377 | floattab[(int) SFmode][(int) TImode][1] = CODE_FOR_floatunstisf2; | |
2378 | #endif | |
2379 | ||
2380 | #ifdef HAVE_floatunsqidf2 | |
2381 | if (HAVE_floatunsqidf2) | |
2382 | floattab[(int) DFmode][(int) QImode][1] = CODE_FOR_floatunsqidf2; | |
2383 | #endif | |
2384 | #ifdef HAVE_floatunshidf2 | |
2385 | if (HAVE_floatunshidf2) | |
2386 | floattab[(int) DFmode][(int) HImode][1] = CODE_FOR_floatunshidf2; | |
2387 | #endif | |
2388 | #ifdef HAVE_floatunssidf2 | |
2389 | if (HAVE_floatunssidf2) | |
2390 | floattab[(int) DFmode][(int) SImode][1] = CODE_FOR_floatunssidf2; | |
2391 | #endif | |
2392 | #ifdef HAVE_floatunsdidf2 | |
2393 | if (HAVE_floatunsdidf2) | |
2394 | floattab[(int) DFmode][(int) DImode][1] = CODE_FOR_floatunsdidf2; | |
2395 | #endif | |
2396 | #ifdef HAVE_floatunstidf2 | |
2397 | if (HAVE_floatunstidf2) | |
2398 | floattab[(int) DFmode][(int) TImode][1] = CODE_FOR_floatunstidf2; | |
2399 | #endif | |
2400 | ||
2401 | #ifdef HAVE_floatunsqitf2 | |
2402 | if (HAVE_floatunsqitf2) | |
2403 | floattab[(int) TFmode][(int) QImode][1] = CODE_FOR_floatunsqitf2; | |
2404 | #endif | |
2405 | #ifdef HAVE_floatunshitf2 | |
2406 | if (HAVE_floatunshitf2) | |
2407 | floattab[(int) TFmode][(int) HImode][1] = CODE_FOR_floatunshitf2; | |
2408 | #endif | |
2409 | #ifdef HAVE_floatunssitf2 | |
2410 | if (HAVE_floatunssitf2) | |
2411 | floattab[(int) TFmode][(int) SImode][1] = CODE_FOR_floatunssitf2; | |
2412 | #endif | |
2413 | #ifdef HAVE_floatunsditf2 | |
2414 | if (HAVE_floatunsditf2) | |
2415 | floattab[(int) TFmode][(int) DImode][1] = CODE_FOR_floatunsditf2; | |
2416 | #endif | |
2417 | #ifdef HAVE_floatunstitf2 | |
2418 | if (HAVE_floatunstitf2) | |
2419 | floattab[(int) TFmode][(int) TImode][1] = CODE_FOR_floatunstitf2; | |
2420 | #endif | |
2421 | } | |
2422 | \f | |
2423 | /* Generate code to convert FROM to floating point | |
2424 | and store in TO. FROM must be fixed point. | |
2425 | UNSIGNEDP nonzero means regard FROM as unsigned. | |
2426 | Normally this is done by correcting the final value | |
2427 | if it is negative. */ | |
2428 | ||
2429 | void | |
2430 | expand_float (to, from, unsignedp) | |
2431 | rtx to, from; | |
2432 | int unsignedp; | |
2433 | { | |
2434 | enum insn_code icode; | |
2435 | register rtx target = to; | |
2436 | enum machine_mode fmode, imode; | |
2437 | ||
2438 | /* Look for an insn to do the conversion. Do it in the specified | |
2439 | modes if possible; otherwise convert either input, output or both to | |
2440 | wider mode. If the integer mode is wider than the mode of FROM, | |
2441 | we can do the conversion signed even if the input is unsigned. */ | |
2442 | ||
2443 | for (imode = GET_MODE (from); imode != VOIDmode; | |
2444 | imode = GET_MODE_WIDER_MODE (imode)) | |
2445 | for (fmode = GET_MODE (to); fmode != VOIDmode; | |
2446 | fmode = GET_MODE_WIDER_MODE (fmode)) | |
2447 | { | |
2448 | int doing_unsigned = unsignedp; | |
2449 | ||
2450 | icode = can_float_p (fmode, imode, unsignedp); | |
2451 | if (icode == CODE_FOR_nothing && imode != GET_MODE (from) && unsignedp) | |
2452 | icode = can_float_p (fmode, imode, 0), doing_unsigned = 0; | |
2453 | ||
2454 | if (icode != CODE_FOR_nothing) | |
2455 | { | |
2456 | to = protect_from_queue (to, 1); | |
2457 | ||
2458 | if (imode != GET_MODE (from)) | |
2459 | from = convert_to_mode (imode, from, unsignedp); | |
2460 | else | |
2461 | from = protect_from_queue (from, 0); | |
2462 | ||
2463 | if (fmode != GET_MODE (to)) | |
2464 | target = gen_reg_rtx (fmode); | |
2465 | ||
2466 | emit_unop_insn (icode, target, from, | |
2467 | doing_unsigned ? UNSIGNED_FLOAT : FLOAT); | |
2468 | ||
2469 | if (target != to) | |
2470 | convert_move (to, target, 0); | |
2471 | return; | |
2472 | } | |
2473 | } | |
2474 | ||
2475 | #if !defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC) | |
2476 | ||
2477 | /* Unsigned integer, and no way to convert directly. | |
2478 | Convert as signed, then conditionally adjust the result. */ | |
2479 | if (unsignedp) | |
2480 | { | |
2481 | rtx label = gen_label_rtx (); | |
2482 | rtx temp; | |
2483 | REAL_VALUE_TYPE offset; | |
2484 | ||
2485 | emit_queue (); | |
2486 | ||
2487 | to = protect_from_queue (to, 1); | |
2488 | from = protect_from_queue (from, 0); | |
2489 | ||
2490 | if (flag_force_mem) | |
2491 | from = force_not_mem (from); | |
2492 | ||
2493 | /* If we are about to do some arithmetic to correct for an | |
2494 | unsigned operand, do it in a pseudo-register. */ | |
2495 | ||
2496 | if (GET_CODE (to) != REG || REGNO (to) <= LAST_VIRTUAL_REGISTER) | |
2497 | target = gen_reg_rtx (GET_MODE (to)); | |
2498 | ||
2499 | /* Convert as signed integer to floating. */ | |
2500 | expand_float (target, from, 0); | |
2501 | ||
2502 | /* If FROM is negative (and therefore TO is negative), | |
2503 | correct its value by 2**bitwidth. */ | |
2504 | ||
2505 | do_pending_stack_adjust (); | |
2506 | emit_cmp_insn (from, const0_rtx, GE, 0, GET_MODE (from), 0, 0); | |
2507 | emit_jump_insn (gen_bge (label)); | |
2508 | /* On SCO 3.2.1, ldexp rejects values outside [0.5, 1). | |
2509 | Rather than setting up a dconst_dot_5, let's hope SCO | |
2510 | fixes the bug. */ | |
2511 | offset = REAL_VALUE_LDEXP (dconst1, GET_MODE_BITSIZE (GET_MODE (from))); | |
2512 | temp = expand_binop (GET_MODE (to), add_optab, target, | |
2513 | immed_real_const_1 (offset, GET_MODE (to)), | |
2514 | target, 0, OPTAB_LIB_WIDEN); | |
2515 | if (temp != target) | |
2516 | emit_move_insn (target, temp); | |
2517 | do_pending_stack_adjust (); | |
2518 | emit_label (label); | |
2519 | } | |
2520 | else | |
2521 | #endif | |
2522 | ||
2523 | /* No hardware instruction available; call a library | |
2524 | to convert from SImode or DImode into SFmode or DFmode. */ | |
2525 | { | |
2526 | char *fnname; | |
2527 | rtx insns; | |
2528 | ||
2529 | to = protect_from_queue (to, 1); | |
2530 | ||
2531 | if (GET_MODE_SIZE (GET_MODE (from)) < GET_MODE_SIZE (SImode)) | |
2532 | from = convert_to_mode (SImode, from, unsignedp); | |
2533 | else | |
2534 | from = protect_from_queue (from, 0); | |
2535 | ||
2536 | if (flag_force_mem) | |
2537 | from = force_not_mem (from); | |
2538 | ||
2539 | if (GET_MODE (to) == SFmode) | |
2540 | { | |
2541 | if (GET_MODE (from) == SImode) | |
2542 | fnname = "__floatsisf"; | |
2543 | else if (GET_MODE (from) == DImode) | |
2544 | fnname = "__floatdisf"; | |
2545 | else | |
2546 | abort (); | |
2547 | } | |
2548 | else if (GET_MODE (to) == DFmode) | |
2549 | { | |
2550 | if (GET_MODE (from) == SImode) | |
2551 | fnname = "__floatsidf"; | |
2552 | else if (GET_MODE (from) == DImode) | |
2553 | fnname = "__floatdidf"; | |
2554 | else | |
2555 | abort (); | |
2556 | } | |
2557 | else | |
2558 | abort (); | |
2559 | ||
2560 | start_sequence (); | |
2561 | ||
2562 | emit_library_call (gen_rtx (SYMBOL_REF, Pmode, fnname), | |
2563 | 0, GET_MODE (to), 1, from, GET_MODE (from)); | |
2564 | insns = get_insns (); | |
2565 | end_sequence (); | |
2566 | ||
2567 | emit_libcall_block (insns, target, hard_libcall_value (GET_MODE (to)), | |
2568 | gen_rtx (FLOAT, GET_MODE (to), from)); | |
2569 | } | |
2570 | ||
2571 | /* Copy result to requested destination | |
2572 | if we have been computing in a temp location. */ | |
2573 | ||
2574 | if (target != to) | |
2575 | { | |
2576 | if (GET_MODE (target) == GET_MODE (to)) | |
2577 | emit_move_insn (to, target); | |
2578 | else | |
2579 | convert_move (to, target, 0); | |
2580 | } | |
2581 | } | |
2582 | \f | |
2583 | /* expand_fix: generate code to convert FROM to fixed point | |
2584 | and store in TO. FROM must be floating point. */ | |
2585 | ||
2586 | static rtx | |
2587 | ftruncify (x) | |
2588 | rtx x; | |
2589 | { | |
2590 | rtx temp = gen_reg_rtx (GET_MODE (x)); | |
2591 | return expand_unop (GET_MODE (x), ftrunc_optab, x, temp, 0); | |
2592 | } | |
2593 | ||
2594 | void | |
2595 | expand_fix (to, from, unsignedp) | |
2596 | register rtx to, from; | |
2597 | int unsignedp; | |
2598 | { | |
2599 | enum insn_code icode; | |
2600 | register rtx target = to; | |
2601 | enum machine_mode fmode, imode; | |
2602 | int must_trunc = 0; | |
2603 | char *fnname = 0; | |
2604 | ||
2605 | /* We first try to find a pair of modes, one real and one integer, at | |
2606 | least as wide as FROM and TO, respectively, in which we can open-code | |
2607 | this conversion. If the integer mode is wider than the mode of TO, | |
2608 | we can do the conversion either signed or unsigned. */ | |
2609 | ||
2610 | for (imode = GET_MODE (to); imode != VOIDmode; | |
2611 | imode = GET_MODE_WIDER_MODE (imode)) | |
2612 | for (fmode = GET_MODE (from); fmode != VOIDmode; | |
2613 | fmode = GET_MODE_WIDER_MODE (fmode)) | |
2614 | { | |
2615 | int doing_unsigned = unsignedp; | |
2616 | ||
2617 | icode = can_fix_p (imode, fmode, unsignedp, &must_trunc); | |
2618 | if (icode == CODE_FOR_nothing && imode != GET_MODE (to) && unsignedp) | |
2619 | icode = can_fix_p (imode, fmode, 0, &must_trunc), doing_unsigned = 0; | |
2620 | ||
2621 | if (icode != CODE_FOR_nothing) | |
2622 | { | |
2623 | to = protect_from_queue (to, 1); | |
2624 | ||
2625 | if (fmode != GET_MODE (from)) | |
2626 | from = convert_to_mode (fmode, from, 0); | |
2627 | else | |
2628 | from = protect_from_queue (from, 0); | |
2629 | ||
2630 | if (must_trunc) | |
2631 | from = ftruncify (from); | |
2632 | ||
2633 | if (imode != GET_MODE (to)) | |
2634 | target = gen_reg_rtx (imode); | |
2635 | ||
2636 | emit_unop_insn (icode, target, from, | |
2637 | doing_unsigned ? UNSIGNED_FIX : FIX); | |
2638 | if (target != to) | |
2639 | convert_move (to, target, unsignedp); | |
2640 | return; | |
2641 | } | |
2642 | } | |
2643 | ||
2644 | #if !defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC) | |
2645 | /* For an unsigned conversion, there is one more way to do it. | |
2646 | If we have a signed conversion, we generate code that compares | |
2647 | the real value to the largest representable positive number. If if | |
2648 | is smaller, the conversion is done normally. Otherwise, subtract | |
2649 | one plus the highest signed number, convert, and add it back. | |
2650 | ||
2651 | We only need to check all real modes, since we know we didn't find | |
2652 | anything with a wider inetger mode. */ | |
2653 | ||
2654 | if (unsignedp && GET_MODE_BITSIZE (GET_MODE (to)) <= HOST_BITS_PER_INT) | |
2655 | for (fmode = GET_MODE (from); fmode != VOIDmode; | |
2656 | fmode = GET_MODE_WIDER_MODE (fmode)) | |
2657 | /* Make sure we won't lose significant bits doing this. */ | |
2658 | if (GET_MODE_BITSIZE (fmode) > GET_MODE_BITSIZE (GET_MODE (to)) | |
2659 | && CODE_FOR_nothing != can_fix_p (GET_MODE (to), fmode, 0, | |
2660 | &must_trunc)) | |
2661 | { | |
2662 | int bitsize = GET_MODE_BITSIZE (GET_MODE (to)); | |
2663 | REAL_VALUE_TYPE offset = REAL_VALUE_LDEXP (dconst1, bitsize - 1); | |
2664 | rtx limit = immed_real_const_1 (offset, fmode); | |
2665 | rtx lab1 = gen_label_rtx (); | |
2666 | rtx lab2 = gen_label_rtx (); | |
2667 | rtx insn; | |
2668 | ||
2669 | emit_queue (); | |
2670 | to = protect_from_queue (to, 1); | |
2671 | from = protect_from_queue (from, 0); | |
2672 | ||
2673 | if (flag_force_mem) | |
2674 | from = force_not_mem (from); | |
2675 | ||
2676 | if (fmode != GET_MODE (from)) | |
2677 | from = convert_to_mode (fmode, from, 0); | |
2678 | ||
2679 | /* See if we need to do the subtraction. */ | |
2680 | do_pending_stack_adjust (); | |
2681 | emit_cmp_insn (from, limit, GE, 0, GET_MODE (from), 0, 0); | |
2682 | emit_jump_insn (gen_bge (lab1)); | |
2683 | ||
2684 | /* If not, do the signed "fix" and branch around fixup code. */ | |
2685 | expand_fix (to, from, 0); | |
2686 | emit_jump_insn (gen_jump (lab2)); | |
2687 | emit_barrier (); | |
2688 | ||
2689 | /* Otherwise, subtract 2**(N-1), convert to signed number, | |
2690 | then add 2**(N-1). Do the addition using XOR since this | |
2691 | will often generate better code. */ | |
2692 | emit_label (lab1); | |
2693 | target = expand_binop (GET_MODE (from), sub_optab, from, limit, | |
2694 | 0, 0, OPTAB_LIB_WIDEN); | |
2695 | expand_fix (to, target, 0); | |
2696 | target = expand_binop (GET_MODE (to), xor_optab, to, | |
2697 | gen_rtx (CONST_INT, VOIDmode, | |
2698 | 1 << (bitsize - 1)), | |
2699 | to, 1, OPTAB_LIB_WIDEN); | |
2700 | ||
2701 | if (target != to) | |
2702 | emit_move_insn (to, target); | |
2703 | ||
2704 | emit_label (lab2); | |
2705 | ||
2706 | /* Make a place for a REG_NOTE and add it. */ | |
2707 | insn = emit_move_insn (to, to); | |
2708 | REG_NOTES (insn) = gen_rtx (EXPR_LIST, REG_EQUAL, | |
2709 | gen_rtx (UNSIGNED_FIX, GET_MODE (to), | |
2710 | from), REG_NOTES (insn)); | |
2711 | ||
2712 | return; | |
2713 | } | |
2714 | #endif | |
2715 | ||
2716 | /* We can't do it with an insn, so use a library call. But first ensure | |
2717 | that the mode of TO is at least as wide as SImode, since those are the | |
2718 | only library calls we know about. */ | |
2719 | ||
2720 | if (GET_MODE_SIZE (GET_MODE (to)) < GET_MODE_SIZE (SImode)) | |
2721 | { | |
2722 | target = gen_reg_rtx (SImode); | |
2723 | ||
2724 | expand_fix (target, from, unsignedp); | |
2725 | } | |
2726 | else if (GET_MODE (from) == SFmode) | |
2727 | { | |
2728 | if (GET_MODE (to) == SImode) | |
2729 | fnname = unsignedp ? "__fixunssfsi" : "__fixsfsi"; | |
2730 | else if (GET_MODE (to) == DImode) | |
2731 | fnname = unsignedp ? "__fixunssfdi" : "__fixsfdi"; | |
2732 | else | |
2733 | abort (); | |
2734 | } | |
2735 | else if (GET_MODE (from) == DFmode) | |
2736 | { | |
2737 | if (GET_MODE (to) == SImode) | |
2738 | fnname = unsignedp ? "__fixunsdfsi" : "__fixdfsi"; | |
2739 | else if (GET_MODE (to) == DImode) | |
2740 | fnname = unsignedp ? "__fixunsdfdi" : "__fixdfdi"; | |
2741 | else | |
2742 | abort (); | |
2743 | } | |
2744 | else | |
2745 | abort (); | |
2746 | ||
2747 | if (fnname) | |
2748 | { | |
2749 | rtx insns; | |
2750 | ||
2751 | to = protect_from_queue (to, 1); | |
2752 | from = protect_from_queue (from, 0); | |
2753 | ||
2754 | if (flag_force_mem) | |
2755 | from = force_not_mem (from); | |
2756 | ||
2757 | start_sequence (); | |
2758 | ||
2759 | emit_library_call (gen_rtx (SYMBOL_REF, Pmode, fnname), | |
2760 | 0, GET_MODE (to), 1, from, GET_MODE (from)); | |
2761 | insns = get_insns (); | |
2762 | end_sequence (); | |
2763 | ||
2764 | emit_libcall_block (insns, target, hard_libcall_value (GET_MODE (to)), | |
2765 | gen_rtx (unsignedp ? FIX : UNSIGNED_FIX, | |
2766 | GET_MODE (to), from)); | |
2767 | } | |
2768 | ||
2769 | if (GET_MODE (to) == GET_MODE (target)) | |
2770 | emit_move_insn (to, target); | |
2771 | else | |
2772 | convert_move (to, target, 0); | |
2773 | } | |
2774 | \f | |
2775 | static optab | |
2776 | init_optab (code) | |
2777 | enum rtx_code code; | |
2778 | { | |
2779 | int i; | |
2780 | optab op = (optab) xmalloc (sizeof (struct optab)); | |
2781 | op->code = code; | |
2782 | for (i = 0; i < NUM_MACHINE_MODES; i++) | |
2783 | { | |
2784 | op->handlers[i].insn_code = CODE_FOR_nothing; | |
2785 | op->handlers[i].libfunc = 0; | |
2786 | } | |
2787 | return op; | |
2788 | } | |
2789 | ||
2790 | /* Call this once to initialize the contents of the optabs | |
2791 | appropriately for the current target machine. */ | |
2792 | ||
2793 | void | |
2794 | init_optabs () | |
2795 | { | |
2796 | int i; | |
2797 | ||
2798 | init_fixtab (); | |
2799 | init_floattab (); | |
2800 | init_extends (); | |
2801 | ||
2802 | add_optab = init_optab (PLUS); | |
2803 | sub_optab = init_optab (MINUS); | |
2804 | smul_optab = init_optab (MULT); | |
2805 | smul_widen_optab = init_optab (UNKNOWN); | |
2806 | umul_widen_optab = init_optab (UNKNOWN); | |
2807 | sdiv_optab = init_optab (DIV); | |
2808 | sdivmod_optab = init_optab (UNKNOWN); | |
2809 | udiv_optab = init_optab (UDIV); | |
2810 | udivmod_optab = init_optab (UNKNOWN); | |
2811 | smod_optab = init_optab (MOD); | |
2812 | umod_optab = init_optab (UMOD); | |
2813 | flodiv_optab = init_optab (DIV); | |
2814 | ftrunc_optab = init_optab (UNKNOWN); | |
2815 | and_optab = init_optab (AND); | |
2816 | ior_optab = init_optab (IOR); | |
2817 | xor_optab = init_optab (XOR); | |
2818 | ashl_optab = init_optab (ASHIFT); | |
2819 | ashr_optab = init_optab (ASHIFTRT); | |
2820 | lshl_optab = init_optab (LSHIFT); | |
2821 | lshr_optab = init_optab (LSHIFTRT); | |
2822 | rotl_optab = init_optab (ROTATE); | |
2823 | rotr_optab = init_optab (ROTATERT); | |
2824 | smin_optab = init_optab (SMIN); | |
2825 | smax_optab = init_optab (SMAX); | |
2826 | umin_optab = init_optab (UMIN); | |
2827 | umax_optab = init_optab (UMAX); | |
2828 | mov_optab = init_optab (UNKNOWN); | |
2829 | movstrict_optab = init_optab (UNKNOWN); | |
2830 | cmp_optab = init_optab (UNKNOWN); | |
2831 | ucmp_optab = init_optab (UNKNOWN); | |
2832 | tst_optab = init_optab (UNKNOWN); | |
2833 | neg_optab = init_optab (NEG); | |
2834 | abs_optab = init_optab (ABS); | |
2835 | one_cmpl_optab = init_optab (NOT); | |
2836 | ffs_optab = init_optab (FFS); | |
2837 | ||
2838 | #ifdef HAVE_addqi3 | |
2839 | if (HAVE_addqi3) | |
2840 | add_optab->handlers[(int) QImode].insn_code = CODE_FOR_addqi3; | |
2841 | #endif | |
2842 | #ifdef HAVE_addhi3 | |
2843 | if (HAVE_addhi3) | |
2844 | add_optab->handlers[(int) HImode].insn_code = CODE_FOR_addhi3; | |
2845 | #endif | |
2846 | #ifdef HAVE_addpsi3 | |
2847 | if (HAVE_addpsi3) | |
2848 | add_optab->handlers[(int) PSImode].insn_code = CODE_FOR_addpsi3; | |
2849 | #endif | |
2850 | #ifdef HAVE_addsi3 | |
2851 | if (HAVE_addsi3) | |
2852 | add_optab->handlers[(int) SImode].insn_code = CODE_FOR_addsi3; | |
2853 | #endif | |
2854 | #ifdef HAVE_adddi3 | |
2855 | if (HAVE_adddi3) | |
2856 | add_optab->handlers[(int) DImode].insn_code = CODE_FOR_adddi3; | |
2857 | #endif | |
2858 | #ifdef HAVE_addti3 | |
2859 | if (HAVE_addti3) | |
2860 | add_optab->handlers[(int) TImode].insn_code = CODE_FOR_addti3; | |
2861 | #endif | |
2862 | #ifdef HAVE_addsf3 | |
2863 | if (HAVE_addsf3) | |
2864 | add_optab->handlers[(int) SFmode].insn_code = CODE_FOR_addsf3; | |
2865 | #endif | |
2866 | #ifdef HAVE_adddf3 | |
2867 | if (HAVE_adddf3) | |
2868 | add_optab->handlers[(int) DFmode].insn_code = CODE_FOR_adddf3; | |
2869 | #endif | |
2870 | #ifdef HAVE_addtf3 | |
2871 | if (HAVE_addtf3) | |
2872 | add_optab->handlers[(int) TFmode].insn_code = CODE_FOR_addtf3; | |
2873 | #endif | |
2874 | add_optab->handlers[(int) SFmode].libfunc | |
2875 | = gen_rtx (SYMBOL_REF, Pmode, "__addsf3"); | |
2876 | add_optab->handlers[(int) DFmode].libfunc | |
2877 | = gen_rtx (SYMBOL_REF, Pmode, "__adddf3"); | |
2878 | ||
2879 | #ifdef HAVE_subqi3 | |
2880 | if (HAVE_subqi3) | |
2881 | sub_optab->handlers[(int) QImode].insn_code = CODE_FOR_subqi3; | |
2882 | #endif | |
2883 | #ifdef HAVE_subhi3 | |
2884 | if (HAVE_subhi3) | |
2885 | sub_optab->handlers[(int) HImode].insn_code = CODE_FOR_subhi3; | |
2886 | #endif | |
2887 | #ifdef HAVE_subpsi3 | |
2888 | if (HAVE_subpsi3) | |
2889 | sub_optab->handlers[(int) PSImode].insn_code = CODE_FOR_subpsi3; | |
2890 | #endif | |
2891 | #ifdef HAVE_subsi3 | |
2892 | if (HAVE_subsi3) | |
2893 | sub_optab->handlers[(int) SImode].insn_code = CODE_FOR_subsi3; | |
2894 | #endif | |
2895 | #ifdef HAVE_subdi3 | |
2896 | if (HAVE_subdi3) | |
2897 | sub_optab->handlers[(int) DImode].insn_code = CODE_FOR_subdi3; | |
2898 | #endif | |
2899 | #ifdef HAVE_subti3 | |
2900 | if (HAVE_subti3) | |
2901 | sub_optab->handlers[(int) Imode].insn_code = CODE_FOR_subti3; | |
2902 | #endif | |
2903 | #ifdef HAVE_subsf3 | |
2904 | if (HAVE_subsf3) | |
2905 | sub_optab->handlers[(int) SFmode].insn_code = CODE_FOR_subsf3; | |
2906 | #endif | |
2907 | #ifdef HAVE_subdf3 | |
2908 | if (HAVE_subdf3) | |
2909 | sub_optab->handlers[(int) DFmode].insn_code = CODE_FOR_subdf3; | |
2910 | #endif | |
2911 | #ifdef HAVE_subtf3 | |
2912 | if (HAVE_subtf3) | |
2913 | sub_optab->handlers[(int) TFmode].insn_code = CODE_FOR_subtf3; | |
2914 | #endif | |
2915 | sub_optab->handlers[(int) SFmode].libfunc | |
2916 | = gen_rtx (SYMBOL_REF, Pmode, "__subsf3"); | |
2917 | sub_optab->handlers[(int) DFmode].libfunc | |
2918 | = gen_rtx (SYMBOL_REF, Pmode, "__subdf3"); | |
2919 | ||
2920 | #ifdef HAVE_mulqi3 | |
2921 | if (HAVE_mulqi3) | |
2922 | smul_optab->handlers[(int) QImode].insn_code = CODE_FOR_mulqi3; | |
2923 | #endif | |
2924 | #ifdef HAVE_mulhi3 | |
2925 | if (HAVE_mulhi3) | |
2926 | smul_optab->handlers[(int) HImode].insn_code = CODE_FOR_mulhi3; | |
2927 | #endif | |
2928 | #ifdef HAVE_mulpsi3 | |
2929 | if (HAVE_mulpsi3) | |
2930 | smul_optab->handlers[(int) PSImode].insn_code = CODE_FOR_mulpsi3; | |
2931 | #endif | |
2932 | #ifdef HAVE_mulsi3 | |
2933 | if (HAVE_mulsi3) | |
2934 | smul_optab->handlers[(int) SImode].insn_code = CODE_FOR_mulsi3; | |
2935 | #endif | |
2936 | #ifdef HAVE_muldi3 | |
2937 | if (HAVE_muldi3) | |
2938 | smul_optab->handlers[(int) DImode].insn_code = CODE_FOR_muldi3; | |
2939 | #endif | |
2940 | #ifdef HAVE_multi3 | |
2941 | if (HAVE_multi3) | |
2942 | smul_optab->handlers[(int) TImode].insn_code = CODE_FOR_multi3; | |
2943 | #endif | |
2944 | #ifdef HAVE_mulsf3 | |
2945 | if (HAVE_mulsf3) | |
2946 | smul_optab->handlers[(int) SFmode].insn_code = CODE_FOR_mulsf3; | |
2947 | #endif | |
2948 | #ifdef HAVE_muldf3 | |
2949 | if (HAVE_muldf3) | |
2950 | smul_optab->handlers[(int) DFmode].insn_code = CODE_FOR_muldf3; | |
2951 | #endif | |
2952 | #ifdef HAVE_multf3 | |
2953 | if (HAVE_multf3) | |
2954 | smul_optab->handlers[(int) TFmode].insn_code = CODE_FOR_multf3; | |
2955 | #endif | |
2956 | ||
2957 | #ifdef MULSI3_LIBCALL | |
2958 | smul_optab->handlers[(int) SImode].libfunc | |
2959 | = gen_rtx (SYMBOL_REF, Pmode, MULSI3_LIBCALL); | |
2960 | #else | |
2961 | smul_optab->handlers[(int) SImode].libfunc | |
2962 | = gen_rtx (SYMBOL_REF, Pmode, "__mulsi3"); | |
2963 | #endif | |
2964 | #ifdef MULDI3_LIBCALL | |
2965 | smul_optab->handlers[(int) DImode].libfunc | |
2966 | = gen_rtx (SYMBOL_REF, Pmode, MULDI3_LIBCALL); | |
2967 | #else | |
2968 | smul_optab->handlers[(int) DImode].libfunc | |
2969 | = gen_rtx (SYMBOL_REF, Pmode, "__muldi3"); | |
2970 | #endif | |
2971 | smul_optab->handlers[(int) SFmode].libfunc | |
2972 | = gen_rtx (SYMBOL_REF, Pmode, "__mulsf3"); | |
2973 | smul_optab->handlers[(int) DFmode].libfunc | |
2974 | = gen_rtx (SYMBOL_REF, Pmode, "__muldf3"); | |
2975 | ||
2976 | #ifdef HAVE_mulqihi3 | |
2977 | if (HAVE_mulqihi3) | |
2978 | smul_widen_optab->handlers[(int) HImode].insn_code = CODE_FOR_mulqihi3; | |
2979 | #endif | |
2980 | #ifdef HAVE_mulhisi3 | |
2981 | if (HAVE_mulhisi3) | |
2982 | smul_widen_optab->handlers[(int) SImode].insn_code = CODE_FOR_mulhisi3; | |
2983 | #endif | |
2984 | #ifdef HAVE_mulsidi3 | |
2985 | if (HAVE_mulsidi3) | |
2986 | smul_widen_optab->handlers[(int) DImode].insn_code = CODE_FOR_mulsidi3; | |
2987 | #endif | |
2988 | #ifdef HAVE_mulditi3 | |
2989 | if (HAVE_mulditi3) | |
2990 | smul_widen_optab->handlers[(int) TImode].insn_code = CODE_FOR_mulditi3; | |
2991 | #endif | |
2992 | ||
2993 | #ifdef HAVE_umulqihi3 | |
2994 | if (HAVE_umulqihi3) | |
2995 | umul_widen_optab->handlers[(int) HImode].insn_code = CODE_FOR_umulqihi3; | |
2996 | #endif | |
2997 | #ifdef HAVE_umulhisi3 | |
2998 | if (HAVE_umulhisi3) | |
2999 | umul_widen_optab->handlers[(int) SImode].insn_code = CODE_FOR_umulhisi3; | |
3000 | #endif | |
3001 | #ifdef HAVE_umulsidi3 | |
3002 | if (HAVE_umulsidi3) | |
3003 | umul_widen_optab->handlers[(int) DImode].insn_code = CODE_FOR_umulsidi3; | |
3004 | #endif | |
3005 | #ifdef HAVE_umulditi3 | |
3006 | if (HAVE_umulditi3) | |
3007 | umul_widen_optab->handlers[(int) TImode].insn_code = CODE_FOR_umulditi3; | |
3008 | #endif | |
3009 | ||
3010 | #ifdef HAVE_divqi3 | |
3011 | if (HAVE_divqi3) | |
3012 | sdiv_optab->handlers[(int) QImode].insn_code = CODE_FOR_divqi3; | |
3013 | #endif | |
3014 | #ifdef HAVE_divhi3 | |
3015 | if (HAVE_divhi3) | |
3016 | sdiv_optab->handlers[(int) HImode].insn_code = CODE_FOR_divhi3; | |
3017 | #endif | |
3018 | #ifdef HAVE_divpsi3 | |
3019 | if (HAVE_divpsi3) | |
3020 | sdiv_optab->handlers[(int) PSImode].insn_code = CODE_FOR_divpsi3; | |
3021 | #endif | |
3022 | #ifdef HAVE_divsi3 | |
3023 | if (HAVE_divsi3) | |
3024 | sdiv_optab->handlers[(int) SImode].insn_code = CODE_FOR_divsi3; | |
3025 | #endif | |
3026 | #ifdef HAVE_divdi3 | |
3027 | if (HAVE_divdi3) | |
3028 | sdiv_optab->handlers[(int) DImode].insn_code = CODE_FOR_divdi3; | |
3029 | #endif | |
3030 | #ifdef HAVE_divti3 | |
3031 | if (HAVE_divti3) | |
3032 | sdiv_optab->handlers[(int) TImode].insn_code = CODE_FOR_divti3; | |
3033 | #endif | |
3034 | ||
3035 | #ifdef DIVSI3_LIBCALL | |
3036 | sdiv_optab->handlers[(int) SImode].libfunc | |
3037 | = gen_rtx (SYMBOL_REF, Pmode, DIVSI3_LIBCALL); | |
3038 | #else | |
3039 | sdiv_optab->handlers[(int) SImode].libfunc | |
3040 | = gen_rtx (SYMBOL_REF, Pmode, "__divsi3"); | |
3041 | #endif | |
3042 | #ifdef DIVDI3_LIBCALL | |
3043 | sdiv_optab->handlers[(int) DImode].libfunc | |
3044 | = gen_rtx (SYMBOL_REF, Pmode, DIVDI3_LIBCALL); | |
3045 | #else | |
3046 | sdiv_optab->handlers[(int) DImode].libfunc | |
3047 | = gen_rtx (SYMBOL_REF, Pmode, "__divdi3"); | |
3048 | #endif | |
3049 | ||
3050 | #ifdef HAVE_udivqi3 | |
3051 | if (HAVE_udivqi3) | |
3052 | udiv_optab->handlers[(int) QImode].insn_code = CODE_FOR_udivqi3; | |
3053 | #endif | |
3054 | #ifdef HAVE_udivhi3 | |
3055 | if (HAVE_udivhi3) | |
3056 | udiv_optab->handlers[(int) HImode].insn_code = CODE_FOR_udivhi3; | |
3057 | #endif | |
3058 | #ifdef HAVE_udivpsi3 | |
3059 | if (HAVE_udivpsi3) | |
3060 | udiv_optab->handlers[(int) PSImode].insn_code = CODE_FOR_udivpsi3; | |
3061 | #endif | |
3062 | #ifdef HAVE_udivsi3 | |
3063 | if (HAVE_udivsi3) | |
3064 | udiv_optab->handlers[(int) SImode].insn_code = CODE_FOR_udivsi3; | |
3065 | #endif | |
3066 | #ifdef HAVE_udivdi3 | |
3067 | if (HAVE_udivdi3) | |
3068 | udiv_optab->handlers[(int) DImode].insn_code = CODE_FOR_udivdi3; | |
3069 | #endif | |
3070 | #ifdef HAVE_udivti3 | |
3071 | if (HAVE_udivti3) | |
3072 | udiv_optab->handlers[(int) TImode].insn_code = CODE_FOR_udivti3; | |
3073 | #endif | |
3074 | ||
3075 | #ifdef UDIVSI3_LIBCALL | |
3076 | udiv_optab->handlers[(int) SImode].libfunc | |
3077 | = gen_rtx (SYMBOL_REF, Pmode, UDIVSI3_LIBCALL); | |
3078 | #else | |
3079 | udiv_optab->handlers[(int) SImode].libfunc | |
3080 | = gen_rtx (SYMBOL_REF, Pmode, "__udivsi3"); | |
3081 | #endif | |
3082 | #ifdef UDIVDI3_LIBCALL | |
3083 | udiv_optab->handlers[(int) DImode].libfunc | |
3084 | = gen_rtx (SYMBOL_REF, Pmode, UDIVDI3_LIBCALL); | |
3085 | #else | |
3086 | udiv_optab->handlers[(int) DImode].libfunc | |
3087 | = gen_rtx (SYMBOL_REF, Pmode, "__udivdi3"); | |
3088 | #endif | |
3089 | ||
3090 | #ifdef HAVE_divmodqi4 | |
3091 | if (HAVE_divmodqi4) | |
3092 | sdivmod_optab->handlers[(int) QImode].insn_code = CODE_FOR_divmodqi4; | |
3093 | #endif | |
3094 | #ifdef HAVE_divmodhi4 | |
3095 | if (HAVE_divmodhi4) | |
3096 | sdivmod_optab->handlers[(int) HImode].insn_code = CODE_FOR_divmodhi4; | |
3097 | #endif | |
3098 | #ifdef HAVE_divmodsi4 | |
3099 | if (HAVE_divmodsi4) | |
3100 | sdivmod_optab->handlers[(int) SImode].insn_code = CODE_FOR_divmodsi4; | |
3101 | #endif | |
3102 | #ifdef HAVE_divmoddi4 | |
3103 | if (HAVE_divmoddi4) | |
3104 | sdivmod_optab->handlers[(int) DImode].insn_code = CODE_FOR_divmoddi4; | |
3105 | #endif | |
3106 | #ifdef HAVE_divmodti4 | |
3107 | if (HAVE_divmodti4) | |
3108 | sdivmod_optab->handlers[(int) TImode].insn_code = CODE_FOR_divmodti4; | |
3109 | #endif | |
3110 | ||
3111 | #ifdef HAVE_udivmodqi4 | |
3112 | if (HAVE_udivmodqi4) | |
3113 | udivmod_optab->handlers[(int) QImode].insn_code = CODE_FOR_udivmodqi4; | |
3114 | #endif | |
3115 | #ifdef HAVE_udivmodhi4 | |
3116 | if (HAVE_udivmodhi4) | |
3117 | udivmod_optab->handlers[(int) HImode].insn_code = CODE_FOR_udivmodhi4; | |
3118 | #endif | |
3119 | #ifdef HAVE_udivmodsi4 | |
3120 | if (HAVE_udivmodsi4) | |
3121 | udivmod_optab->handlers[(int) SImode].insn_code = CODE_FOR_udivmodsi4; | |
3122 | #endif | |
3123 | #ifdef HAVE_udivmoddi4 | |
3124 | if (HAVE_udivmoddi4) | |
3125 | udivmod_optab->handlers[(int) DImode].insn_code = CODE_FOR_udivmoddi4; | |
3126 | #endif | |
3127 | #ifdef HAVE_udivmodti4 | |
3128 | if (HAVE_udivmodti4) | |
3129 | udivmod_optab->handlers[(int) TImode].insn_code = CODE_FOR_udivmodti4; | |
3130 | #endif | |
3131 | ||
3132 | #ifdef HAVE_modqi3 | |
3133 | if (HAVE_modqi3) | |
3134 | smod_optab->handlers[(int) QImode].insn_code = CODE_FOR_modqi3; | |
3135 | #endif | |
3136 | #ifdef HAVE_modhi3 | |
3137 | if (HAVE_modhi3) | |
3138 | smod_optab->handlers[(int) HImode].insn_code = CODE_FOR_modhi3; | |
3139 | #endif | |
3140 | #ifdef HAVE_modpsi3 | |
3141 | if (HAVE_modpsi3) | |
3142 | smod_optab->handlers[(int) PSImode].insn_code = CODE_FOR_modpsi3; | |
3143 | #endif | |
3144 | #ifdef HAVE_modsi3 | |
3145 | if (HAVE_modsi3) | |
3146 | smod_optab->handlers[(int) SImode].insn_code = CODE_FOR_modsi3; | |
3147 | #endif | |
3148 | #ifdef HAVE_moddi3 | |
3149 | if (HAVE_moddi3) | |
3150 | smod_optab->handlers[(int) DImode].insn_code = CODE_FOR_moddi3; | |
3151 | #endif | |
3152 | #ifdef HAVE_modti3 | |
3153 | if (HAVE_modti3) | |
3154 | smod_optab->handlers[(int) TImode].insn_code = CODE_FOR_modti3; | |
3155 | #endif | |
3156 | ||
3157 | #ifdef MODSI3_LIBCALL | |
3158 | smod_optab->handlers[(int) SImode].libfunc | |
3159 | = gen_rtx (SYMBOL_REF, Pmode, MODSI3_LIBCALL); | |
3160 | #else | |
3161 | smod_optab->handlers[(int) SImode].libfunc | |
3162 | = gen_rtx (SYMBOL_REF, Pmode, "__modsi3"); | |
3163 | #endif | |
3164 | #ifdef MODDI3_LIBCALL | |
3165 | smod_optab->handlers[(int) DImode].libfunc | |
3166 | = gen_rtx (SYMBOL_REF, Pmode, MODDI3_LIBCALL); | |
3167 | #else | |
3168 | smod_optab->handlers[(int) DImode].libfunc | |
3169 | = gen_rtx (SYMBOL_REF, Pmode, "__moddi3"); | |
3170 | #endif | |
3171 | ||
3172 | #ifdef HAVE_umodqi3 | |
3173 | if (HAVE_umodqi3) | |
3174 | umod_optab->handlers[(int) QImode].insn_code = CODE_FOR_umodqi3; | |
3175 | #endif | |
3176 | #ifdef HAVE_umodhi3 | |
3177 | if (HAVE_umodhi3) | |
3178 | umod_optab->handlers[(int) HImode].insn_code = CODE_FOR_umodhi3; | |
3179 | #endif | |
3180 | #ifdef HAVE_umodpsi3 | |
3181 | if (HAVE_umodpsi3) | |
3182 | umod_optab->handlers[(int) PSImode].insn_code = CODE_FOR_umodpsi3; | |
3183 | #endif | |
3184 | #ifdef HAVE_umodsi3 | |
3185 | if (HAVE_umodsi3) | |
3186 | umod_optab->handlers[(int) SImode].insn_code = CODE_FOR_umodsi3; | |
3187 | #endif | |
3188 | #ifdef HAVE_umoddi3 | |
3189 | if (HAVE_umoddi3) | |
3190 | umod_optab->handlers[(int) DImode].insn_code = CODE_FOR_umoddi3; | |
3191 | #endif | |
3192 | #ifdef HAVE_umodti3 | |
3193 | if (HAVE_umodti3) | |
3194 | umod_optab->handlers[(int) TImode].insn_code = CODE_FOR_umodti3; | |
3195 | #endif | |
3196 | ||
3197 | #ifdef UMODSI3_LIBCALL | |
3198 | umod_optab->handlers[(int) SImode].libfunc | |
3199 | = gen_rtx (SYMBOL_REF, Pmode, UMODSI3_LIBCALL); | |
3200 | #else | |
3201 | umod_optab->handlers[(int) SImode].libfunc | |
3202 | = gen_rtx (SYMBOL_REF, Pmode, "__umodsi3"); | |
3203 | #endif | |
3204 | #ifdef UMODDI3_LIBCALL | |
3205 | umod_optab->handlers[(int) DImode].libfunc | |
3206 | = gen_rtx (SYMBOL_REF, Pmode, UMODDI3_LIBCALL); | |
3207 | #else | |
3208 | umod_optab->handlers[(int) DImode].libfunc | |
3209 | = gen_rtx (SYMBOL_REF, Pmode, "__umoddi3"); | |
3210 | #endif | |
3211 | ||
3212 | #ifdef HAVE_divsf3 | |
3213 | if (HAVE_divsf3) | |
3214 | flodiv_optab->handlers[(int) SFmode].insn_code = CODE_FOR_divsf3; | |
3215 | #endif | |
3216 | #ifdef HAVE_divdf3 | |
3217 | if (HAVE_divdf3) | |
3218 | flodiv_optab->handlers[(int) DFmode].insn_code = CODE_FOR_divdf3; | |
3219 | #endif | |
3220 | #ifdef HAVE_divtf3 | |
3221 | if (HAVE_divtf3) | |
3222 | flodiv_optab->handlers[(int) TFmode].insn_code = CODE_FOR_divtf3; | |
3223 | #endif | |
3224 | flodiv_optab->handlers[(int) SFmode].libfunc | |
3225 | = gen_rtx (SYMBOL_REF, Pmode, "__divsf3"); | |
3226 | flodiv_optab->handlers[(int) DFmode].libfunc | |
3227 | = gen_rtx (SYMBOL_REF, Pmode, "__divdf3"); | |
3228 | ||
3229 | #ifdef HAVE_ftruncsf2 | |
3230 | if (HAVE_ftruncsf2) | |
3231 | ftrunc_optab->handlers[(int) SFmode].insn_code = CODE_FOR_ftruncsf2; | |
3232 | #endif | |
3233 | #ifdef HAVE_ftruncdf2 | |
3234 | if (HAVE_ftruncdf2) | |
3235 | ftrunc_optab->handlers[(int) DFmode].insn_code = CODE_FOR_ftruncdf2; | |
3236 | #endif | |
3237 | #ifdef HAVE_ftrunctf2 | |
3238 | if (HAVE_ftrunctf2) | |
3239 | ftrunc_optab->handlers[(int) TFmode].insn_code = CODE_FOR_ftrunctf2; | |
3240 | #endif | |
3241 | ||
3242 | #ifdef HAVE_andqi3 | |
3243 | if (HAVE_andqi3) | |
3244 | and_optab->handlers[(int) QImode].insn_code = CODE_FOR_andqi3; | |
3245 | #endif | |
3246 | #ifdef HAVE_andhi3 | |
3247 | if (HAVE_andhi3) | |
3248 | and_optab->handlers[(int) HImode].insn_code = CODE_FOR_andhi3; | |
3249 | #endif | |
3250 | #ifdef HAVE_andpsi3 | |
3251 | if (HAVE_andpsi3) | |
3252 | and_optab->handlers[(int) PSImode].insn_code = CODE_FOR_andpsi3; | |
3253 | #endif | |
3254 | #ifdef HAVE_andsi3 | |
3255 | if (HAVE_andsi3) | |
3256 | and_optab->handlers[(int) SImode].insn_code = CODE_FOR_andsi3; | |
3257 | #endif | |
3258 | #ifdef HAVE_anddi3 | |
3259 | if (HAVE_anddi3) | |
3260 | and_optab->handlers[(int) DImode].insn_code = CODE_FOR_anddi3; | |
3261 | #endif | |
3262 | #ifdef HAVE_andti3 | |
3263 | if (HAVE_andti3) | |
3264 | and_optab->handlers[(int) TImode].insn_code = CODE_FOR_andti3; | |
3265 | #endif | |
3266 | ||
3267 | #ifdef HAVE_iorqi3 | |
3268 | if (HAVE_iorqi3) | |
3269 | ior_optab->handlers[(int) QImode].insn_code = CODE_FOR_iorqi3; | |
3270 | #endif | |
3271 | #ifdef HAVE_iorhi3 | |
3272 | if (HAVE_iorhi3) | |
3273 | ior_optab->handlers[(int) HImode].insn_code = CODE_FOR_iorhi3; | |
3274 | #endif | |
3275 | #ifdef HAVE_iorpsi3 | |
3276 | if (HAVE_iorpsi3) | |
3277 | ior_optab->handlers[(int) PSImode].insn_code = CODE_FOR_iorpsi3; | |
3278 | #endif | |
3279 | #ifdef HAVE_iorsi3 | |
3280 | if (HAVE_iorsi3) | |
3281 | ior_optab->handlers[(int) SImode].insn_code = CODE_FOR_iorsi3; | |
3282 | #endif | |
3283 | #ifdef HAVE_iordi3 | |
3284 | if (HAVE_iordi3) | |
3285 | ior_optab->handlers[(int) DImode].insn_code = CODE_FOR_iordi3; | |
3286 | #endif | |
3287 | #ifdef HAVE_iorti3 | |
3288 | if (HAVE_iorti3) | |
3289 | ior_optab->handlers[(int) TImode].insn_code = CODE_FOR_iorti3; | |
3290 | #endif | |
3291 | ||
3292 | #ifdef HAVE_xorqi3 | |
3293 | if (HAVE_xorqi3) | |
3294 | xor_optab->handlers[(int) QImode].insn_code = CODE_FOR_xorqi3; | |
3295 | #endif | |
3296 | #ifdef HAVE_xorhi3 | |
3297 | if (HAVE_xorhi3) | |
3298 | xor_optab->handlers[(int) HImode].insn_code = CODE_FOR_xorhi3; | |
3299 | #endif | |
3300 | #ifdef HAVE_xorpsi3 | |
3301 | if (HAVE_xorpsi3) | |
3302 | xor_optab->handlers[(int) PSImode].insn_code = CODE_FOR_xorpsi3; | |
3303 | #endif | |
3304 | #ifdef HAVE_xorsi3 | |
3305 | if (HAVE_xorsi3) | |
3306 | xor_optab->handlers[(int) SImode].insn_code = CODE_FOR_xorsi3; | |
3307 | #endif | |
3308 | #ifdef HAVE_xordi3 | |
3309 | if (HAVE_xordi3) | |
3310 | xor_optab->handlers[(int) DImode].insn_code = CODE_FOR_xordi3; | |
3311 | #endif | |
3312 | #ifdef HAVE_xorti3 | |
3313 | if (HAVE_xorti3) | |
3314 | xor_optab->handlers[(int) TImode].insn_code = CODE_FOR_xorti3; | |
3315 | #endif | |
3316 | ||
3317 | #ifdef HAVE_ashlqi3 | |
3318 | if (HAVE_ashlqi3) | |
3319 | ashl_optab->handlers[(int) QImode].insn_code = CODE_FOR_ashlqi3; | |
3320 | #endif | |
3321 | #ifdef HAVE_ashlhi3 | |
3322 | if (HAVE_ashlhi3) | |
3323 | ashl_optab->handlers[(int) HImode].insn_code = CODE_FOR_ashlhi3; | |
3324 | #endif | |
3325 | #ifdef HAVE_ashlpsi3 | |
3326 | if (HAVE_ashlpsi3) | |
3327 | ashl_optab->handlers[(int) PSImode].insn_code = CODE_FOR_ashlpsi3; | |
3328 | #endif | |
3329 | #ifdef HAVE_ashlsi3 | |
3330 | if (HAVE_ashlsi3) | |
3331 | ashl_optab->handlers[(int) SImode].insn_code = CODE_FOR_ashlsi3; | |
3332 | #endif | |
3333 | #ifdef HAVE_ashldi3 | |
3334 | if (HAVE_ashldi3) | |
3335 | ashl_optab->handlers[(int) DImode].insn_code = CODE_FOR_ashldi3; | |
3336 | #endif | |
3337 | #ifdef HAVE_ashlti3 | |
3338 | if (HAVE_ashlti3) | |
3339 | ashl_optab->handlers[(int) TImode].insn_code = CODE_FOR_ashlti3; | |
3340 | #endif | |
3341 | ashl_optab->handlers[(int) SImode].libfunc | |
3342 | = gen_rtx (SYMBOL_REF, Pmode, "__ashlsi3"); | |
3343 | ashl_optab->handlers[(int) DImode].libfunc | |
3344 | = gen_rtx (SYMBOL_REF, Pmode, "__ashldi3"); | |
3345 | ||
3346 | #ifdef HAVE_ashrqi3 | |
3347 | if (HAVE_ashrqi3) | |
3348 | ashr_optab->handlers[(int) QImode].insn_code = CODE_FOR_ashrqi3; | |
3349 | #endif | |
3350 | #ifdef HAVE_ashrhi3 | |
3351 | if (HAVE_ashrhi3) | |
3352 | ashr_optab->handlers[(int) HImode].insn_code = CODE_FOR_ashrhi3; | |
3353 | #endif | |
3354 | #ifdef HAVE_ashrpsi3 | |
3355 | if (HAVE_ashrpsi3) | |
3356 | ashr_optab->handlers[(int) PSImode].insn_code = CODE_FOR_ashrpsi3; | |
3357 | #endif | |
3358 | #ifdef HAVE_ashrsi3 | |
3359 | if (HAVE_ashrsi3) | |
3360 | ashr_optab->handlers[(int) SImode].insn_code = CODE_FOR_ashrsi3; | |
3361 | #endif | |
3362 | #ifdef HAVE_ashrdi3 | |
3363 | if (HAVE_ashrdi3) | |
3364 | ashr_optab->handlers[(int) DImode].insn_code = CODE_FOR_ashrdi3; | |
3365 | #endif | |
3366 | #ifdef HAVE_ashrti3 | |
3367 | if (HAVE_ashrti3) | |
3368 | ashr_optab->handlers[(int) TImode].insn_code = CODE_FOR_ashrti3; | |
3369 | #endif | |
3370 | ashr_optab->handlers[(int) SImode].libfunc | |
3371 | = gen_rtx (SYMBOL_REF, Pmode, "__ashrsi3"); | |
3372 | ashr_optab->handlers[(int) DImode].libfunc | |
3373 | = gen_rtx (SYMBOL_REF, Pmode, "__ashrdi3"); | |
3374 | ||
3375 | #ifdef HAVE_lshlqi3 | |
3376 | if (HAVE_lshlqi3) | |
3377 | lshl_optab->handlers[(int) QImode].insn_code = CODE_FOR_lshlqi3; | |
3378 | #endif | |
3379 | #ifdef HAVE_lshlhi3 | |
3380 | if (HAVE_lshlhi3) | |
3381 | lshl_optab->handlers[(int) HImode].insn_code = CODE_FOR_lshlhi3; | |
3382 | #endif | |
3383 | #ifdef HAVE_lshlpsi3 | |
3384 | if (HAVE_lshlpsi3) | |
3385 | lshl_optab->handlers[(int) PSImode].insn_code = CODE_FOR_lshlpsi3; | |
3386 | #endif | |
3387 | #ifdef HAVE_lshlsi3 | |
3388 | if (HAVE_lshlsi3) | |
3389 | lshl_optab->handlers[(int) SImode].insn_code = CODE_FOR_lshlsi3; | |
3390 | #endif | |
3391 | #ifdef HAVE_lshldi3 | |
3392 | if (HAVE_lshldi3) | |
3393 | lshl_optab->handlers[(int) DImode].insn_code = CODE_FOR_lshldi3; | |
3394 | #endif | |
3395 | #ifdef HAVE_lshlti3 | |
3396 | if (HAVE_lshlti3) | |
3397 | lshl_optab->handlers[(int) TImode].insn_code = CODE_FOR_lshlti3; | |
3398 | #endif | |
3399 | lshl_optab->handlers[(int) SImode].libfunc | |
3400 | = gen_rtx (SYMBOL_REF, Pmode, "__lshlsi3"); | |
3401 | lshl_optab->handlers[(int) DImode].libfunc | |
3402 | = gen_rtx (SYMBOL_REF, Pmode, "__lshldi3"); | |
3403 | ||
3404 | #ifdef HAVE_lshrqi3 | |
3405 | if (HAVE_lshrqi3) | |
3406 | lshr_optab->handlers[(int) QImode].insn_code = CODE_FOR_lshrqi3; | |
3407 | #endif | |
3408 | #ifdef HAVE_lshrhi3 | |
3409 | if (HAVE_lshrhi3) | |
3410 | lshr_optab->handlers[(int) HImode].insn_code = CODE_FOR_lshrhi3; | |
3411 | #endif | |
3412 | #ifdef HAVE_lshrpsi3 | |
3413 | if (HAVE_lshrpsi3) | |
3414 | lshr_optab->handlers[(int) PSImode].insn_code = CODE_FOR_lshrpsi3; | |
3415 | #endif | |
3416 | #ifdef HAVE_lshrsi3 | |
3417 | if (HAVE_lshrsi3) | |
3418 | lshr_optab->handlers[(int) SImode].insn_code = CODE_FOR_lshrsi3; | |
3419 | #endif | |
3420 | #ifdef HAVE_lshrdi3 | |
3421 | if (HAVE_lshrdi3) | |
3422 | lshr_optab->handlers[(int) DImode].insn_code = CODE_FOR_lshrdi3; | |
3423 | #endif | |
3424 | #ifdef HAVE_lshrti3 | |
3425 | if (HAVE_lshrti3) | |
3426 | lshr_optab->handlers[(int) TImode].insn_code = CODE_FOR_lshrti3; | |
3427 | #endif | |
3428 | lshr_optab->handlers[(int) SImode].libfunc | |
3429 | = gen_rtx (SYMBOL_REF, Pmode, "__lshrsi3"); | |
3430 | lshr_optab->handlers[(int) DImode].libfunc | |
3431 | = gen_rtx (SYMBOL_REF, Pmode, "__lshrdi3"); | |
3432 | ||
3433 | #ifdef HAVE_rotlqi3 | |
3434 | if (HAVE_rotlqi3) | |
3435 | rotl_optab->handlers[(int) QImode].insn_code = CODE_FOR_rotlqi3; | |
3436 | #endif | |
3437 | #ifdef HAVE_rotlhi3 | |
3438 | if (HAVE_rotlhi3) | |
3439 | rotl_optab->handlers[(int) HImode].insn_code = CODE_FOR_rotlhi3; | |
3440 | #endif | |
3441 | #ifdef HAVE_rotlpsi3 | |
3442 | if (HAVE_rotlpsi3) | |
3443 | rotl_optab->handlers[(int) PSImode].insn_code = CODE_FOR_rotlpsi3; | |
3444 | #endif | |
3445 | #ifdef HAVE_rotlsi3 | |
3446 | if (HAVE_rotlsi3) | |
3447 | rotl_optab->handlers[(int) SImode].insn_code = CODE_FOR_rotlsi3; | |
3448 | #endif | |
3449 | #ifdef HAVE_rotldi3 | |
3450 | if (HAVE_rotldi3) | |
3451 | rotl_optab->handlers[(int) DImode].insn_code = CODE_FOR_rotldi3; | |
3452 | #endif | |
3453 | #ifdef HAVE_rotlti3 | |
3454 | if (HAVE_rotlti3) | |
3455 | rotl_optab->handlers[(int) TImode].insn_code = CODE_FOR_rotlti3; | |
3456 | #endif | |
3457 | rotl_optab->handlers[(int) SImode].libfunc | |
3458 | = gen_rtx (SYMBOL_REF, Pmode, "__rotlsi3"); | |
3459 | rotl_optab->handlers[(int) DImode].libfunc | |
3460 | = gen_rtx (SYMBOL_REF, Pmode, "__rotldi3"); | |
3461 | ||
3462 | #ifdef HAVE_rotrqi3 | |
3463 | if (HAVE_rotrqi3) | |
3464 | rotr_optab->handlers[(int) QImode].insn_code = CODE_FOR_rotrqi3; | |
3465 | #endif | |
3466 | #ifdef HAVE_rotrhi3 | |
3467 | if (HAVE_rotrhi3) | |
3468 | rotr_optab->handlers[(int) HImode].insn_code = CODE_FOR_rotrhi3; | |
3469 | #endif | |
3470 | #ifdef HAVE_rotrpsi3 | |
3471 | if (HAVE_rotrpsi3) | |
3472 | rotr_optab->handlers[(int) PSImode].insn_code = CODE_FOR_rotrpsi3; | |
3473 | #endif | |
3474 | #ifdef HAVE_rotrsi3 | |
3475 | if (HAVE_rotrsi3) | |
3476 | rotr_optab->handlers[(int) SImode].insn_code = CODE_FOR_rotrsi3; | |
3477 | #endif | |
3478 | #ifdef HAVE_rotrdi3 | |
3479 | if (HAVE_rotrdi3) | |
3480 | rotr_optab->handlers[(int) DImode].insn_code = CODE_FOR_rotrdi3; | |
3481 | #endif | |
3482 | #ifdef HAVE_rotrti3 | |
3483 | if (HAVE_rotrti3) | |
3484 | rotr_optab->handlers[(int) TImode].insn_code = CODE_FOR_rotrti3; | |
3485 | #endif | |
3486 | rotr_optab->handlers[(int) SImode].libfunc | |
3487 | = gen_rtx (SYMBOL_REF, Pmode, "__rotrsi3"); | |
3488 | rotr_optab->handlers[(int) DImode].libfunc | |
3489 | = gen_rtx (SYMBOL_REF, Pmode, "__rotrdi3"); | |
3490 | ||
3491 | #ifdef HAVE_sminqi3 | |
3492 | if (HAVE_sminqi3) | |
3493 | smin_optab->handlers[(int) QImode].insn_code = CODE_FOR_sminqi3; | |
3494 | #endif | |
3495 | #ifdef HAVE_sminhi3 | |
3496 | if (HAVE_sminhi3) | |
3497 | smin_optab->handlers[(int) HImode].insn_code = CODE_FOR_sminhi3; | |
3498 | #endif | |
3499 | #ifdef HAVE_sminsi3 | |
3500 | if (HAVE_sminsi3) | |
3501 | smin_optab->handlers[(int) SImode].insn_code = CODE_FOR_sminsi3; | |
3502 | #endif | |
3503 | #ifdef HAVE_smindi3 | |
3504 | if (HAVE_smindi3) | |
3505 | smin_optab->handlers[(int) DImode].insn_code = CODE_FOR_smindi3; | |
3506 | #endif | |
3507 | #ifdef HAVE_sminti3 | |
3508 | if (HAVE_sminti3) | |
3509 | smin_optab->handlers[(int) TImode].insn_code = CODE_FOR_sminti3; | |
3510 | #endif | |
3511 | #ifdef HAVE_sminsf3 | |
3512 | if (HAVE_sminsf3) | |
3513 | smin_optab->handlers[(int) SFmode].insn_code = CODE_FOR_sminsf3; | |
3514 | #endif | |
3515 | #ifdef HAVE_smindf3 | |
3516 | if (HAVE_smindf3) | |
3517 | smin_optab->handlers[(int) DFmode].insn_code = CODE_FOR_smindf3; | |
3518 | #endif | |
3519 | #ifdef HAVE_smintf3 | |
3520 | if (HAVE_smintf3) | |
3521 | smin_optab->handlers[(int) TFmode].insn_code = CODE_FOR_smintf3; | |
3522 | #endif | |
3523 | ||
3524 | #ifdef HAVE_smaxqi3 | |
3525 | if (HAVE_smaxqi3) | |
3526 | smax_optab->handlers[(int) QImode].insn_code = CODE_FOR_smaxqi3; | |
3527 | #endif | |
3528 | #ifdef HAVE_smaxhi3 | |
3529 | if (HAVE_smaxhi3) | |
3530 | smax_optab->handlers[(int) HImode].insn_code = CODE_FOR_smaxhi3; | |
3531 | #endif | |
3532 | #ifdef HAVE_smaxsi3 | |
3533 | if (HAVE_smaxsi3) | |
3534 | smax_optab->handlers[(int) SImode].insn_code = CODE_FOR_smaxsi3; | |
3535 | #endif | |
3536 | #ifdef HAVE_smaxdi3 | |
3537 | if (HAVE_smaxdi3) | |
3538 | smax_optab->handlers[(int) DImode].insn_code = CODE_FOR_smaxdi3; | |
3539 | #endif | |
3540 | #ifdef HAVE_smaxti3 | |
3541 | if (HAVE_smaxti3) | |
3542 | smax_optab->handlers[(int) TImode].insn_code = CODE_FOR_smaxti3; | |
3543 | #endif | |
3544 | #ifdef HAVE_smaxsf3 | |
3545 | if (HAVE_smaxsf3) | |
3546 | smax_optab->handlers[(int) SFmode].insn_code = CODE_FOR_smaxsf3; | |
3547 | #endif | |
3548 | #ifdef HAVE_smaxdf3 | |
3549 | if (HAVE_smaxdf3) | |
3550 | smax_optab->handlers[(int) DFmode].insn_code = CODE_FOR_smaxdf3; | |
3551 | #endif | |
3552 | #ifdef HAVE_smaxtf3 | |
3553 | if (HAVE_smaxtf3) | |
3554 | smax_optab->handlers[(int) TFmode].insn_code = CODE_FOR_smaxtf3; | |
3555 | #endif | |
3556 | ||
3557 | #ifdef HAVE_uminqi3 | |
3558 | if (HAVE_uminqi3) | |
3559 | umin_optab->handlers[(int) QImode].insn_code = CODE_FOR_uminqi3; | |
3560 | #endif | |
3561 | #ifdef HAVE_uminhi3 | |
3562 | if (HAVE_uminhi3) | |
3563 | umin_optab->handlers[(int) HImode].insn_code = CODE_FOR_uminhi3; | |
3564 | #endif | |
3565 | #ifdef HAVE_uminsi3 | |
3566 | if (HAVE_uminsi3) | |
3567 | umin_optab->handlers[(int) SImode].insn_code = CODE_FOR_uminsi3; | |
3568 | #endif | |
3569 | #ifdef HAVE_umindi3 | |
3570 | if (HAVE_umindi3) | |
3571 | umin_optab->handlers[(int) DImode].insn_code = CODE_FOR_umindi3; | |
3572 | #endif | |
3573 | #ifdef HAVE_uminti3 | |
3574 | if (HAVE_uminti3) | |
3575 | umin_optab->handlers[(int) TImode].insn_code = CODE_FOR_uminti3; | |
3576 | #endif | |
3577 | ||
3578 | #ifdef HAVE_umaxqi3 | |
3579 | if (HAVE_umaxqi3) | |
3580 | umax_optab->handlers[(int) QImode].insn_code = CODE_FOR_umaxqi3; | |
3581 | #endif | |
3582 | #ifdef HAVE_umaxhi3 | |
3583 | if (HAVE_umaxhi3) | |
3584 | umax_optab->handlers[(int) HImode].insn_code = CODE_FOR_umaxhi3; | |
3585 | #endif | |
3586 | #ifdef HAVE_umaxsi3 | |
3587 | if (HAVE_umaxsi3) | |
3588 | umax_optab->handlers[(int) SImode].insn_code = CODE_FOR_umaxsi3; | |
3589 | #endif | |
3590 | #ifdef HAVE_umaxdi3 | |
3591 | if (HAVE_umaxdi3) | |
3592 | umax_optab->handlers[(int) DImode].insn_code = CODE_FOR_umaxdi3; | |
3593 | #endif | |
3594 | #ifdef HAVE_umaxti3 | |
3595 | if (HAVE_umaxti3) | |
3596 | umax_optab->handlers[(int) TImode].insn_code = CODE_FOR_umaxti3; | |
3597 | #endif | |
3598 | ||
3599 | #ifdef HAVE_negqi2 | |
3600 | if (HAVE_negqi2) | |
3601 | neg_optab->handlers[(int) QImode].insn_code = CODE_FOR_negqi2; | |
3602 | #endif | |
3603 | #ifdef HAVE_neghi2 | |
3604 | if (HAVE_neghi2) | |
3605 | neg_optab->handlers[(int) HImode].insn_code = CODE_FOR_neghi2; | |
3606 | #endif | |
3607 | #ifdef HAVE_negpsi2 | |
3608 | if (HAVE_negpsi2) | |
3609 | neg_optab->handlers[(int) PSImode].insn_code = CODE_FOR_negpsi2; | |
3610 | #endif | |
3611 | #ifdef HAVE_negsi2 | |
3612 | if (HAVE_negsi2) | |
3613 | neg_optab->handlers[(int) SImode].insn_code = CODE_FOR_negsi2; | |
3614 | #endif | |
3615 | #ifdef HAVE_negdi2 | |
3616 | if (HAVE_negdi2) | |
3617 | neg_optab->handlers[(int) DImode].insn_code = CODE_FOR_negdi2; | |
3618 | #endif | |
3619 | #ifdef HAVE_negti2 | |
3620 | if (HAVE_negti2) | |
3621 | neg_optab->handlers[(int) TImode].insn_code = CODE_FOR_negti2; | |
3622 | #endif | |
3623 | #ifdef HAVE_negsf2 | |
3624 | if (HAVE_negsf2) | |
3625 | neg_optab->handlers[(int) SFmode].insn_code = CODE_FOR_negsf2; | |
3626 | #endif | |
3627 | #ifdef HAVE_negdf2 | |
3628 | if (HAVE_negdf2) | |
3629 | neg_optab->handlers[(int) DFmode].insn_code = CODE_FOR_negdf2; | |
3630 | #endif | |
3631 | #ifdef HAVE_negtf2 | |
3632 | if (HAVE_negtf2) | |
3633 | neg_optab->handlers[(int) TFmode].insn_code = CODE_FOR_negtf2; | |
3634 | #endif | |
3635 | neg_optab->handlers[(int) SImode].libfunc | |
3636 | = gen_rtx (SYMBOL_REF, Pmode, "__negsi2"); | |
3637 | neg_optab->handlers[(int) DImode].libfunc | |
3638 | = gen_rtx (SYMBOL_REF, Pmode, "__negdi2"); | |
3639 | neg_optab->handlers[(int) SFmode].libfunc | |
3640 | = gen_rtx (SYMBOL_REF, Pmode, "__negsf2"); | |
3641 | neg_optab->handlers[(int) DFmode].libfunc | |
3642 | = gen_rtx (SYMBOL_REF, Pmode, "__negdf2"); | |
3643 | ||
3644 | #ifdef HAVE_absqi2 | |
3645 | if (HAVE_absqi2) | |
3646 | abs_optab->handlers[(int) QImode].insn_code = CODE_FOR_absqi2; | |
3647 | #endif | |
3648 | #ifdef HAVE_abshi2 | |
3649 | if (HAVE_abshi2) | |
3650 | abs_optab->handlers[(int) HImode].insn_code = CODE_FOR_abshi2; | |
3651 | #endif | |
3652 | #ifdef HAVE_abspsi2 | |
3653 | if (HAVE_abspsi2) | |
3654 | abs_optab->handlers[(int) PSImode].insn_code = CODE_FOR_abspsi2; | |
3655 | #endif | |
3656 | #ifdef HAVE_abssi2 | |
3657 | if (HAVE_abssi2) | |
3658 | abs_optab->handlers[(int) SImode].insn_code = CODE_FOR_abssi2; | |
3659 | #endif | |
3660 | #ifdef HAVE_absdi2 | |
3661 | if (HAVE_absdi2) | |
3662 | abs_optab->handlers[(int) DImode].insn_code = CODE_FOR_absdi2; | |
3663 | #endif | |
3664 | #ifdef HAVE_absti2 | |
3665 | if (HAVE_absti2) | |
3666 | abs_optab->handlers[(int) TImode].insn_code = CODE_FOR_absti2; | |
3667 | #endif | |
3668 | #ifdef HAVE_abssf2 | |
3669 | if (HAVE_abssf2) | |
3670 | abs_optab->handlers[(int) SFmode].insn_code = CODE_FOR_abssf2; | |
3671 | #endif | |
3672 | #ifdef HAVE_absdf2 | |
3673 | if (HAVE_absdf2) | |
3674 | abs_optab->handlers[(int) DFmode].insn_code = CODE_FOR_absdf2; | |
3675 | #endif | |
3676 | #ifdef HAVE_abstf2 | |
3677 | if (HAVE_abstf2) | |
3678 | abs_optab->handlers[(int) TFmode].insn_code = CODE_FOR_abstf2; | |
3679 | #endif | |
3680 | /* No library calls here! If there is no abs instruction, | |
3681 | expand_expr will generate a conditional negation. */ | |
3682 | ||
3683 | #ifdef HAVE_one_cmplqi2 | |
3684 | if (HAVE_one_cmplqi2) | |
3685 | one_cmpl_optab->handlers[(int) QImode].insn_code = CODE_FOR_one_cmplqi2; | |
3686 | #endif | |
3687 | #ifdef HAVE_one_cmplhi2 | |
3688 | if (HAVE_one_cmplhi2) | |
3689 | one_cmpl_optab->handlers[(int) HImode].insn_code = CODE_FOR_one_cmplhi2; | |
3690 | #endif | |
3691 | #ifdef HAVE_one_cmplpsi2 | |
3692 | if (HAVE_one_cmplpsi2) | |
3693 | one_cmpl_optab->handlers[(int) PSImode].insn_code = CODE_FOR_one_cmplpsi2; | |
3694 | #endif | |
3695 | #ifdef HAVE_one_cmplsi2 | |
3696 | if (HAVE_one_cmplsi2) | |
3697 | one_cmpl_optab->handlers[(int) SImode].insn_code = CODE_FOR_one_cmplsi2; | |
3698 | #endif | |
3699 | #ifdef HAVE_one_cmpldi2 | |
3700 | if (HAVE_one_cmpldi2) | |
3701 | one_cmpl_optab->handlers[(int) DImode].insn_code = CODE_FOR_one_cmpldi2; | |
3702 | #endif | |
3703 | #ifdef HAVE_one_cmplti2 | |
3704 | if (HAVE_one_cmplti2) | |
3705 | one_cmpl_optab->handlers[(int) TImode].insn_code = CODE_FOR_one_cmplti2; | |
3706 | #endif | |
3707 | one_cmpl_optab->handlers[(int) SImode].libfunc | |
3708 | = gen_rtx (SYMBOL_REF, Pmode, "__one_cmplsi2"); | |
3709 | ||
3710 | #ifdef HAVE_ffsqi2 | |
3711 | if (HAVE_ffsqi2) | |
3712 | ffs_optab->handlers[(int) QImode].insn_code = CODE_FOR_ffsqi2; | |
3713 | #endif | |
3714 | #ifdef HAVE_ffshi2 | |
3715 | if (HAVE_ffshi2) | |
3716 | ffs_optab->handlers[(int) HImode].insn_code = CODE_FOR_ffshi2; | |
3717 | #endif | |
3718 | #ifdef HAVE_ffspsi2 | |
3719 | if (HAVE_ffspsi2) | |
3720 | ffs_optab->handlers[(int) PSImode].insn_code = CODE_FOR_ffspsi2; | |
3721 | #endif | |
3722 | #ifdef HAVE_ffssi2 | |
3723 | if (HAVE_ffssi2) | |
3724 | ffs_optab->handlers[(int) SImode].insn_code = CODE_FOR_ffssi2; | |
3725 | #endif | |
3726 | #ifdef HAVE_ffsdi2 | |
3727 | if (HAVE_ffsdi2) | |
3728 | ffs_optab->handlers[(int) DImode].insn_code = CODE_FOR_ffsdi2; | |
3729 | #endif | |
3730 | #ifdef HAVE_ffsti2 | |
3731 | if (HAVE_ffsti2) | |
3732 | ffs_optab->handlers[(int) TImode].insn_code = CODE_FOR_ffsti2; | |
3733 | #endif | |
3734 | ffs_optab->handlers[(int) SImode].libfunc | |
3735 | = gen_rtx (SYMBOL_REF, Pmode, "ffs"); | |
3736 | ||
3737 | #ifdef HAVE_movqi | |
3738 | if (HAVE_movqi) | |
3739 | mov_optab->handlers[(int) QImode].insn_code = CODE_FOR_movqi; | |
3740 | #endif | |
3741 | #ifdef HAVE_movhi | |
3742 | if (HAVE_movhi) | |
3743 | mov_optab->handlers[(int) HImode].insn_code = CODE_FOR_movhi; | |
3744 | #endif | |
3745 | #ifdef HAVE_movpsi | |
3746 | if (HAVE_movpsi) | |
3747 | mov_optab->handlers[(int) PSImode].insn_code = CODE_FOR_movpsi; | |
3748 | #endif | |
3749 | #ifdef HAVE_movsi | |
3750 | if (HAVE_movsi) | |
3751 | mov_optab->handlers[(int) SImode].insn_code = CODE_FOR_movsi; | |
3752 | #endif | |
3753 | #ifdef HAVE_movdi | |
3754 | if (HAVE_movdi) | |
3755 | mov_optab->handlers[(int) DImode].insn_code = CODE_FOR_movdi; | |
3756 | #endif | |
3757 | #ifdef HAVE_movti | |
3758 | if (HAVE_movti) | |
3759 | mov_optab->handlers[(int) TImode].insn_code = CODE_FOR_movti; | |
3760 | #endif | |
3761 | #ifdef HAVE_movsf | |
3762 | if (HAVE_movsf) | |
3763 | mov_optab->handlers[(int) SFmode].insn_code = CODE_FOR_movsf; | |
3764 | #endif | |
3765 | #ifdef HAVE_movdf | |
3766 | if (HAVE_movdf) | |
3767 | mov_optab->handlers[(int) DFmode].insn_code = CODE_FOR_movdf; | |
3768 | #endif | |
3769 | #ifdef HAVE_movtf | |
3770 | if (HAVE_movtf) | |
3771 | mov_optab->handlers[(int) TFmode].insn_code = CODE_FOR_movtf; | |
3772 | #endif | |
3773 | #ifdef HAVE_movcc | |
3774 | if (HAVE_movcc) | |
3775 | mov_optab->handlers[(int) CCmode].insn_code = CODE_FOR_movcc; | |
3776 | #endif | |
3777 | ||
3778 | #ifdef EXTRA_CC_MODES | |
3779 | init_mov_optab (); | |
3780 | #endif | |
3781 | ||
3782 | #ifdef HAVE_movstrictqi | |
3783 | if (HAVE_movstrictqi) | |
3784 | movstrict_optab->handlers[(int) QImode].insn_code = CODE_FOR_movstrictqi; | |
3785 | #endif | |
3786 | #ifdef HAVE_movstricthi | |
3787 | if (HAVE_movstricthi) | |
3788 | movstrict_optab->handlers[(int) HImode].insn_code = CODE_FOR_movstricthi; | |
3789 | #endif | |
3790 | #ifdef HAVE_movstrictpsi | |
3791 | if (HAVE_movstrictpsi) | |
3792 | movstrict_optab->handlers[(int) PSImode].insn_code = CODE_FOR_movstrictpsi; | |
3793 | #endif | |
3794 | #ifdef HAVE_movstrictsi | |
3795 | if (HAVE_movstrictsi) | |
3796 | movstrict_optab->handlers[(int) SImode].insn_code = CODE_FOR_movstrictsi; | |
3797 | #endif | |
3798 | #ifdef HAVE_movstrictdi | |
3799 | if (HAVE_movstrictdi) | |
3800 | movstrict_optab->handlers[(int) DImode].insn_code = CODE_FOR_movstrictdi; | |
3801 | #endif | |
3802 | #ifdef HAVE_movstrictti | |
3803 | if (HAVE_movstrictti) | |
3804 | movstrict_optab->handlers[(int) TImode].insn_code = CODE_FOR_movstrictti; | |
3805 | #endif | |
3806 | ||
3807 | #ifdef HAVE_cmpqi | |
3808 | if (HAVE_cmpqi) | |
3809 | cmp_optab->handlers[(int) QImode].insn_code = CODE_FOR_cmpqi; | |
3810 | #endif | |
3811 | #ifdef HAVE_cmphi | |
3812 | if (HAVE_cmphi) | |
3813 | cmp_optab->handlers[(int) HImode].insn_code = CODE_FOR_cmphi; | |
3814 | #endif | |
3815 | #ifdef HAVE_cmppsi | |
3816 | if (HAVE_cmppsi) | |
3817 | cmp_optab->handlers[(int) PSImode].insn_code = CODE_FOR_cmppsi; | |
3818 | #endif | |
3819 | #ifdef HAVE_cmpsi | |
3820 | if (HAVE_cmpsi) | |
3821 | cmp_optab->handlers[(int) SImode].insn_code = CODE_FOR_cmpsi; | |
3822 | #endif | |
3823 | #ifdef HAVE_cmpdi | |
3824 | if (HAVE_cmpdi) | |
3825 | cmp_optab->handlers[(int) DImode].insn_code = CODE_FOR_cmpdi; | |
3826 | #endif | |
3827 | #ifdef HAVE_cmpti | |
3828 | if (HAVE_cmpti) | |
3829 | cmp_optab->handlers[(int) TImode].insn_code = CODE_FOR_cmpti; | |
3830 | #endif | |
3831 | #ifdef HAVE_cmpsf | |
3832 | if (HAVE_cmpsf) | |
3833 | cmp_optab->handlers[(int) SFmode].insn_code = CODE_FOR_cmpsf; | |
3834 | #endif | |
3835 | #ifdef HAVE_cmpdf | |
3836 | if (HAVE_cmpdf) | |
3837 | cmp_optab->handlers[(int) DFmode].insn_code = CODE_FOR_cmpdf; | |
3838 | #endif | |
3839 | #ifdef HAVE_cmptf | |
3840 | if (HAVE_cmptf) | |
3841 | cmp_optab->handlers[(int) TFmode].insn_code = CODE_FOR_cmptf; | |
3842 | #endif | |
3843 | #ifdef HAVE_tstqi | |
3844 | if (HAVE_tstqi) | |
3845 | tst_optab->handlers[(int) QImode].insn_code = CODE_FOR_tstqi; | |
3846 | #endif | |
3847 | #ifdef HAVE_tsthi | |
3848 | if (HAVE_tsthi) | |
3849 | tst_optab->handlers[(int) HImode].insn_code = CODE_FOR_tsthi; | |
3850 | #endif | |
3851 | #ifdef HAVE_tstpsi | |
3852 | if (HAVE_tstpsi) | |
3853 | tst_optab->handlers[(int) PSImode].insn_code = CODE_FOR_tstpsi; | |
3854 | #endif | |
3855 | #ifdef HAVE_tstsi | |
3856 | if (HAVE_tstsi) | |
3857 | tst_optab->handlers[(int) SImode].insn_code = CODE_FOR_tstsi; | |
3858 | #endif | |
3859 | #ifdef HAVE_tstdi | |
3860 | if (HAVE_tstdi) | |
3861 | tst_optab->handlers[(int) DImode].insn_code = CODE_FOR_tstdi; | |
3862 | #endif | |
3863 | #ifdef HAVE_tstti | |
3864 | if (HAVE_tstti) | |
3865 | tst_optab->handlers[(int) TImode].insn_code = CODE_FOR_tstti; | |
3866 | #endif | |
3867 | #ifdef HAVE_tstsf | |
3868 | if (HAVE_tstsf) | |
3869 | tst_optab->handlers[(int) SFmode].insn_code = CODE_FOR_tstsf; | |
3870 | #endif | |
3871 | #ifdef HAVE_tstdf | |
3872 | if (HAVE_tstdf) | |
3873 | tst_optab->handlers[(int) DFmode].insn_code = CODE_FOR_tstdf; | |
3874 | #endif | |
3875 | #ifdef HAVE_tsttf | |
3876 | if (HAVE_tsttf) | |
3877 | tst_optab->handlers[(int) TFmode].insn_code = CODE_FOR_tsttf; | |
3878 | #endif | |
3879 | /* Comparison libcalls for integers MUST come in pairs, signed/unsigned. */ | |
3880 | cmp_optab->handlers[(int) DImode].libfunc | |
3881 | = gen_rtx (SYMBOL_REF, Pmode, "__cmpdi2"); | |
3882 | ucmp_optab->handlers[(int) DImode].libfunc | |
3883 | = gen_rtx (SYMBOL_REF, Pmode, "__ucmpdi2"); | |
3884 | ||
3885 | #ifdef HAVE_beq | |
3886 | if (HAVE_beq) | |
3887 | bcc_gen_fctn[(int) EQ] = gen_beq; | |
3888 | #endif | |
3889 | #ifdef HAVE_bne | |
3890 | if (HAVE_bne) | |
3891 | bcc_gen_fctn[(int) NE] = gen_bne; | |
3892 | #endif | |
3893 | #ifdef HAVE_bgt | |
3894 | if (HAVE_bgt) | |
3895 | bcc_gen_fctn[(int) GT] = gen_bgt; | |
3896 | #endif | |
3897 | #ifdef HAVE_bge | |
3898 | if (HAVE_bge) | |
3899 | bcc_gen_fctn[(int) GE] = gen_bge; | |
3900 | #endif | |
3901 | #ifdef HAVE_bgtu | |
3902 | if (HAVE_bgtu) | |
3903 | bcc_gen_fctn[(int) GTU] = gen_bgtu; | |
3904 | #endif | |
3905 | #ifdef HAVE_bgeu | |
3906 | if (HAVE_bgeu) | |
3907 | bcc_gen_fctn[(int) GEU] = gen_bgeu; | |
3908 | #endif | |
3909 | #ifdef HAVE_blt | |
3910 | if (HAVE_blt) | |
3911 | bcc_gen_fctn[(int) LT] = gen_blt; | |
3912 | #endif | |
3913 | #ifdef HAVE_ble | |
3914 | if (HAVE_ble) | |
3915 | bcc_gen_fctn[(int) LE] = gen_ble; | |
3916 | #endif | |
3917 | #ifdef HAVE_bltu | |
3918 | if (HAVE_bltu) | |
3919 | bcc_gen_fctn[(int) LTU] = gen_bltu; | |
3920 | #endif | |
3921 | #ifdef HAVE_bleu | |
3922 | if (HAVE_bleu) | |
3923 | bcc_gen_fctn[(int) LEU] = gen_bleu; | |
3924 | #endif | |
3925 | ||
3926 | for (i = 0; i < NUM_RTX_CODE; i++) | |
3927 | setcc_gen_code[i] = CODE_FOR_nothing; | |
3928 | ||
3929 | #ifdef HAVE_seq | |
3930 | if (HAVE_seq) | |
3931 | setcc_gen_code[(int) EQ] = CODE_FOR_seq; | |
3932 | #endif | |
3933 | #ifdef HAVE_sne | |
3934 | if (HAVE_sne) | |
3935 | setcc_gen_code[(int) NE] = CODE_FOR_sne; | |
3936 | #endif | |
3937 | #ifdef HAVE_sgt | |
3938 | if (HAVE_sgt) | |
3939 | setcc_gen_code[(int) GT] = CODE_FOR_sgt; | |
3940 | #endif | |
3941 | #ifdef HAVE_sge | |
3942 | if (HAVE_sge) | |
3943 | setcc_gen_code[(int) GE] = CODE_FOR_sge; | |
3944 | #endif | |
3945 | #ifdef HAVE_sgtu | |
3946 | if (HAVE_sgtu) | |
3947 | setcc_gen_code[(int) GTU] = CODE_FOR_sgtu; | |
3948 | #endif | |
3949 | #ifdef HAVE_sgeu | |
3950 | if (HAVE_sgeu) | |
3951 | setcc_gen_code[(int) GEU] = CODE_FOR_sgeu; | |
3952 | #endif | |
3953 | #ifdef HAVE_slt | |
3954 | if (HAVE_slt) | |
3955 | setcc_gen_code[(int) LT] = CODE_FOR_slt; | |
3956 | #endif | |
3957 | #ifdef HAVE_sle | |
3958 | if (HAVE_sle) | |
3959 | setcc_gen_code[(int) LE] = CODE_FOR_sle; | |
3960 | #endif | |
3961 | #ifdef HAVE_sltu | |
3962 | if (HAVE_sltu) | |
3963 | setcc_gen_code[(int) LTU] = CODE_FOR_sltu; | |
3964 | #endif | |
3965 | #ifdef HAVE_sleu | |
3966 | if (HAVE_sleu) | |
3967 | setcc_gen_code[(int) LEU] = CODE_FOR_sleu; | |
3968 | #endif | |
3969 | ||
3970 | extendsfdf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__extendsfdf2"); | |
3971 | truncdfsf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__truncdfsf2"); | |
3972 | memcpy_libfunc = gen_rtx (SYMBOL_REF, Pmode, "memcpy"); | |
3973 | bcopy_libfunc = gen_rtx (SYMBOL_REF, Pmode, "bcopy"); | |
3974 | memcmp_libfunc = gen_rtx (SYMBOL_REF, Pmode, "memcmp"); | |
3975 | bcmp_libfunc = gen_rtx (SYMBOL_REF, Pmode, "bcmp"); | |
3976 | memset_libfunc = gen_rtx (SYMBOL_REF, Pmode, "memset"); | |
3977 | bzero_libfunc = gen_rtx (SYMBOL_REF, Pmode, "bzero"); | |
3978 | eqsf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__eqsf2"); | |
3979 | nesf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__nesf2"); | |
3980 | gtsf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__gtsf2"); | |
3981 | gesf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__gesf2"); | |
3982 | ltsf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__ltsf2"); | |
3983 | lesf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__lesf2"); | |
3984 | eqdf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__eqdf2"); | |
3985 | nedf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__nedf2"); | |
3986 | gtdf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__gtdf2"); | |
3987 | gedf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__gedf2"); | |
3988 | ltdf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__ltdf2"); | |
3989 | ledf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__ledf2"); | |
3990 | } |