]> gcc.gnu.org Git - gcc.git/blame - gcc/optabs.c
frv.md (*return_true, [...]): New patterns.
[gcc.git] / gcc / optabs.c
CommitLineData
77c9c6c2 1/* Expand the basic unary and binary arithmetic operations, for GNU compiler.
d050d723 2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
d9221e01 3 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
77c9c6c2 4
1322177d 5This file is part of GCC.
77c9c6c2 6
1322177d
LB
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
9Software Foundation; either version 2, or (at your option) any later
10version.
77c9c6c2 11
1322177d
LB
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15for more details.
77c9c6c2
RK
16
17You should have received a copy of the GNU General Public License
1322177d
LB
18along with GCC; see the file COPYING. If not, write to the Free
19Software Foundation, 59 Temple Place - Suite 330, Boston, MA
2002111-1307, USA. */
77c9c6c2
RK
21
22
23#include "config.h"
670ee920 24#include "system.h"
4977bab6
ZW
25#include "coretypes.h"
26#include "tm.h"
01198c2f 27#include "toplev.h"
dff01034
KG
28
29/* Include insn-config.h before expr.h so that HAVE_conditional_move
dc297297 30 is properly defined. */
dff01034 31#include "insn-config.h"
77c9c6c2
RK
32#include "rtl.h"
33#include "tree.h"
6baf1cc8 34#include "tm_p.h"
77c9c6c2 35#include "flags.h"
49ad7cfa 36#include "function.h"
52a11cbf 37#include "except.h"
77c9c6c2 38#include "expr.h"
e78d8e51
ZW
39#include "optabs.h"
40#include "libfuncs.h"
77c9c6c2 41#include "recog.h"
2829c155 42#include "reload.h"
87ff9c8e 43#include "ggc.h"
7bdb32b9 44#include "real.h"
4a69cf79 45#include "basic-block.h"
c15c90bb 46#include "target.h"
77c9c6c2
RK
47
48/* Each optab contains info on how this target machine
49 can perform a particular operation
50 for all sizes and kinds of operands.
51
52 The operation to be performed is often specified
53 by passing one of these optabs as an argument.
54
55 See expr.h for documentation of these optabs. */
56
34220a12
BS
57optab optab_table[OTI_MAX];
58
59rtx libfunc_table[LTI_MAX];
19c3fc24 60
85363ca0
ZW
61/* Tables of patterns for converting one mode to another. */
62convert_optab convert_optab_table[CTI_MAX];
5d81dc5b 63
377017c4
RK
64/* Contains the optab used for each rtx code. */
65optab code_to_optab[NUM_RTX_CODE + 1];
66
77c9c6c2
RK
67/* Indexed by the rtx-code for a conditional (eg. EQ, LT,...)
68 gives the gen_function to make a branch to test that condition. */
69
70rtxfun bcc_gen_fctn[NUM_RTX_CODE];
71
72/* Indexed by the rtx-code for a conditional (eg. EQ, LT,...)
73 gives the insn code to make a store-condition insn
74 to test that condition. */
75
76enum insn_code setcc_gen_code[NUM_RTX_CODE];
77
49c4584c
DE
78#ifdef HAVE_conditional_move
79/* Indexed by the machine mode, gives the insn code to make a conditional
80 move insn. This is not indexed by the rtx-code like bcc_gen_fctn and
81 setcc_gen_code to cut down on the number of named patterns. Consider a day
82 when a lot more rtx codes are conditional (eg: for the ARM). */
83
84enum insn_code movcc_gen_code[NUM_MACHINE_MODES];
85#endif
86
842a431a
DM
87/* The insn generating function can not take an rtx_code argument.
88 TRAP_RTX is used as an rtx argument. Its code is replaced with
89 the code to be used in the trap insn and all other fields are ignored. */
90static GTY(()) rtx trap_rtx;
91
0c20a65f
AJ
92static int add_equal_note (rtx, rtx, enum rtx_code, rtx, rtx);
93static rtx widen_operand (rtx, enum machine_mode, enum machine_mode, int,
94 int);
95static int expand_cmplxdiv_straight (rtx, rtx, rtx, rtx, rtx, rtx,
96 enum machine_mode, int,
97 enum optab_methods, enum mode_class,
98 optab);
99static int expand_cmplxdiv_wide (rtx, rtx, rtx, rtx, rtx, rtx,
100 enum machine_mode, int, enum optab_methods,
101 enum mode_class, optab);
102static void prepare_cmp_insn (rtx *, rtx *, enum rtx_code *, rtx,
103 enum machine_mode *, int *,
104 enum can_compare_purpose);
105static enum insn_code can_fix_p (enum machine_mode, enum machine_mode, int,
106 int *);
107static enum insn_code can_float_p (enum machine_mode, enum machine_mode, int);
0c20a65f 108static optab new_optab (void);
85363ca0 109static convert_optab new_convert_optab (void);
0c20a65f
AJ
110static inline optab init_optab (enum rtx_code);
111static inline optab init_optabv (enum rtx_code);
85363ca0 112static inline convert_optab init_convert_optab (enum rtx_code);
0c20a65f
AJ
113static void init_libfuncs (optab, int, int, const char *, int);
114static void init_integral_libfuncs (optab, const char *, int);
115static void init_floating_libfuncs (optab, const char *, int);
85363ca0
ZW
116static void init_interclass_conv_libfuncs (convert_optab, const char *,
117 enum mode_class, enum mode_class);
118static void init_intraclass_conv_libfuncs (convert_optab, const char *,
119 enum mode_class, bool);
0c20a65f
AJ
120static void emit_cmp_and_jump_insn_1 (rtx, rtx, enum machine_mode,
121 enum rtx_code, int, rtx);
122static void prepare_float_lib_cmp (rtx *, rtx *, enum rtx_code *,
123 enum machine_mode *, int *);
124static rtx expand_vector_binop (enum machine_mode, optab, rtx, rtx, rtx, int,
125 enum optab_methods);
126static rtx expand_vector_unop (enum machine_mode, optab, rtx, rtx, int);
127static rtx widen_clz (enum machine_mode, rtx, rtx);
128static rtx expand_parity (enum machine_mode, rtx, rtx);
842a431a
DM
129
130#ifndef HAVE_conditional_trap
131#define HAVE_conditional_trap 0
132#define gen_conditional_trap(a,b) (abort (), NULL_RTX)
133#endif
77c9c6c2 134\f
2f937369 135/* Add a REG_EQUAL note to the last insn in INSNS. TARGET is being set to
77c9c6c2
RK
136 the result of operation CODE applied to OP0 (and OP1 if it is a binary
137 operation).
138
139 If the last insn does not set TARGET, don't do anything, but return 1.
140
141 If a previous insn sets TARGET and TARGET is one of OP0 or OP1,
142 don't add the REG_EQUAL note but return 0. Our caller can then try
143 again, ensuring that TARGET is not one of the operands. */
144
145static int
0c20a65f 146add_equal_note (rtx insns, rtx target, enum rtx_code code, rtx op0, rtx op1)
77c9c6c2 147{
2f937369 148 rtx last_insn, insn, set;
77c9c6c2
RK
149 rtx note;
150
2f937369
DM
151 if (! insns
152 || ! INSN_P (insns)
153 || NEXT_INSN (insns) == NULL_RTX)
154 abort ();
155
ec8e098d
PB
156 if (GET_RTX_CLASS (code) != RTX_COMM_ARITH
157 && GET_RTX_CLASS (code) != RTX_BIN_ARITH
158 && GET_RTX_CLASS (code) != RTX_COMM_COMPARE
159 && GET_RTX_CLASS (code) != RTX_COMPARE
160 && GET_RTX_CLASS (code) != RTX_UNARY)
2f937369
DM
161 return 1;
162
163 if (GET_CODE (target) == ZERO_EXTRACT)
164 return 1;
165
166 for (last_insn = insns;
167 NEXT_INSN (last_insn) != NULL_RTX;
168 last_insn = NEXT_INSN (last_insn))
169 ;
170
171 set = single_set (last_insn);
172 if (set == NULL_RTX)
173 return 1;
174
175 if (! rtx_equal_p (SET_DEST (set), target)
f9d36a92 176 /* For a STRICT_LOW_PART, the REG_NOTE applies to what is inside it. */
2f937369 177 && (GET_CODE (SET_DEST (set)) != STRICT_LOW_PART
f9d36a92 178 || ! rtx_equal_p (XEXP (SET_DEST (set), 0), target)))
77c9c6c2
RK
179 return 1;
180
181 /* If TARGET is in OP0 or OP1, check if anything in SEQ sets TARGET
182 besides the last insn. */
183 if (reg_overlap_mentioned_p (target, op0)
184 || (op1 && reg_overlap_mentioned_p (target, op1)))
2f937369
DM
185 {
186 insn = PREV_INSN (last_insn);
187 while (insn != NULL_RTX)
188 {
189 if (reg_set_p (target, insn))
190 return 0;
191
192 insn = PREV_INSN (insn);
193 }
194 }
77c9c6c2 195
ec8e098d 196 if (GET_RTX_CLASS (code) == RTX_UNARY)
9e6a5703 197 note = gen_rtx_fmt_e (code, GET_MODE (target), copy_rtx (op0));
77c9c6c2 198 else
9e6a5703 199 note = gen_rtx_fmt_ee (code, GET_MODE (target), copy_rtx (op0), copy_rtx (op1));
77c9c6c2 200
2f937369 201 set_unique_reg_note (last_insn, REG_EQUAL, note);
77c9c6c2
RK
202
203 return 1;
204}
205\f
835532b8
RK
206/* Widen OP to MODE and return the rtx for the widened operand. UNSIGNEDP
207 says whether OP is signed or unsigned. NO_EXTEND is nonzero if we need
0c20a65f 208 not actually do a sign-extend or zero-extend, but can leave the
835532b8
RK
209 higher-order bits of the result rtx undefined, for example, in the case
210 of logical operations, but not right shifts. */
211
212static rtx
0c20a65f
AJ
213widen_operand (rtx op, enum machine_mode mode, enum machine_mode oldmode,
214 int unsignedp, int no_extend)
835532b8
RK
215{
216 rtx result;
217
8041889f
RK
218 /* If we don't have to extend and this is a constant, return it. */
219 if (no_extend && GET_MODE (op) == VOIDmode)
220 return op;
221
222 /* If we must extend do so. If OP is a SUBREG for a promoted object, also
223 extend since it will be more efficient to do so unless the signedness of
224 a promoted object differs from our extension. */
835532b8 225 if (! no_extend
cb8f73be
RK
226 || (GET_CODE (op) == SUBREG && SUBREG_PROMOTED_VAR_P (op)
227 && SUBREG_PROMOTED_UNSIGNED_P (op) == unsignedp))
0661a3de 228 return convert_modes (mode, oldmode, op, unsignedp);
835532b8
RK
229
230 /* If MODE is no wider than a single word, we return a paradoxical
231 SUBREG. */
232 if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
9e6a5703 233 return gen_rtx_SUBREG (mode, force_reg (GET_MODE (op), op), 0);
835532b8
RK
234
235 /* Otherwise, get an object of MODE, clobber it, and set the low-order
236 part to OP. */
237
238 result = gen_reg_rtx (mode);
9e6a5703 239 emit_insn (gen_rtx_CLOBBER (VOIDmode, result));
835532b8
RK
240 emit_move_insn (gen_lowpart (GET_MODE (op), result), op);
241 return result;
242}
243\f
c64f913e
CB
244/* Generate code to perform a straightforward complex divide. */
245
246static int
0c20a65f
AJ
247expand_cmplxdiv_straight (rtx real0, rtx real1, rtx imag0, rtx imag1,
248 rtx realr, rtx imagr, enum machine_mode submode,
249 int unsignedp, enum optab_methods methods,
250 enum mode_class class, optab binoptab)
c64f913e
CB
251{
252 rtx divisor;
253 rtx real_t, imag_t;
254 rtx temp1, temp2;
255 rtx res;
91ce572a
CC
256 optab this_add_optab = add_optab;
257 optab this_sub_optab = sub_optab;
258 optab this_neg_optab = neg_optab;
259 optab this_mul_optab = smul_optab;
0c20a65f 260
91ce572a
CC
261 if (binoptab == sdivv_optab)
262 {
263 this_add_optab = addv_optab;
264 this_sub_optab = subv_optab;
265 this_neg_optab = negv_optab;
266 this_mul_optab = smulv_optab;
267 }
268
c64f913e
CB
269 /* Don't fetch these from memory more than once. */
270 real0 = force_reg (submode, real0);
271 real1 = force_reg (submode, real1);
272
273 if (imag0 != 0)
274 imag0 = force_reg (submode, imag0);
275
276 imag1 = force_reg (submode, imag1);
277
278 /* Divisor: c*c + d*d. */
91ce572a 279 temp1 = expand_binop (submode, this_mul_optab, real1, real1,
c64f913e
CB
280 NULL_RTX, unsignedp, methods);
281
91ce572a 282 temp2 = expand_binop (submode, this_mul_optab, imag1, imag1,
c64f913e
CB
283 NULL_RTX, unsignedp, methods);
284
285 if (temp1 == 0 || temp2 == 0)
286 return 0;
287
91ce572a 288 divisor = expand_binop (submode, this_add_optab, temp1, temp2,
c64f913e
CB
289 NULL_RTX, unsignedp, methods);
290 if (divisor == 0)
291 return 0;
292
086bbd21 293 if (imag0 == 0)
c64f913e
CB
294 {
295 /* Mathematically, ((a)(c-id))/divisor. */
296 /* Computationally, (a+i0) / (c+id) = (ac/(cc+dd)) + i(-ad/(cc+dd)). */
297
298 /* Calculate the dividend. */
91ce572a 299 real_t = expand_binop (submode, this_mul_optab, real0, real1,
c64f913e 300 NULL_RTX, unsignedp, methods);
0c20a65f 301
91ce572a 302 imag_t = expand_binop (submode, this_mul_optab, real0, imag1,
c64f913e
CB
303 NULL_RTX, unsignedp, methods);
304
305 if (real_t == 0 || imag_t == 0)
306 return 0;
307
91ce572a 308 imag_t = expand_unop (submode, this_neg_optab, imag_t,
c64f913e
CB
309 NULL_RTX, unsignedp);
310 }
311 else
312 {
313 /* Mathematically, ((a+ib)(c-id))/divider. */
314 /* Calculate the dividend. */
91ce572a 315 temp1 = expand_binop (submode, this_mul_optab, real0, real1,
c64f913e
CB
316 NULL_RTX, unsignedp, methods);
317
91ce572a 318 temp2 = expand_binop (submode, this_mul_optab, imag0, imag1,
c64f913e
CB
319 NULL_RTX, unsignedp, methods);
320
321 if (temp1 == 0 || temp2 == 0)
322 return 0;
323
91ce572a 324 real_t = expand_binop (submode, this_add_optab, temp1, temp2,
c64f913e 325 NULL_RTX, unsignedp, methods);
0c20a65f 326
91ce572a 327 temp1 = expand_binop (submode, this_mul_optab, imag0, real1,
c64f913e
CB
328 NULL_RTX, unsignedp, methods);
329
91ce572a 330 temp2 = expand_binop (submode, this_mul_optab, real0, imag1,
c64f913e
CB
331 NULL_RTX, unsignedp, methods);
332
333 if (temp1 == 0 || temp2 == 0)
334 return 0;
335
91ce572a 336 imag_t = expand_binop (submode, this_sub_optab, temp1, temp2,
c64f913e
CB
337 NULL_RTX, unsignedp, methods);
338
339 if (real_t == 0 || imag_t == 0)
340 return 0;
341 }
342
343 if (class == MODE_COMPLEX_FLOAT)
344 res = expand_binop (submode, binoptab, real_t, divisor,
345 realr, unsignedp, methods);
346 else
347 res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
348 real_t, divisor, realr, unsignedp);
349
350 if (res == 0)
351 return 0;
352
353 if (res != realr)
354 emit_move_insn (realr, res);
355
356 if (class == MODE_COMPLEX_FLOAT)
357 res = expand_binop (submode, binoptab, imag_t, divisor,
358 imagr, unsignedp, methods);
359 else
360 res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
361 imag_t, divisor, imagr, unsignedp);
362
363 if (res == 0)
364 return 0;
365
366 if (res != imagr)
367 emit_move_insn (imagr, res);
368
369 return 1;
370}
371\f
372/* Generate code to perform a wide-input-range-acceptable complex divide. */
373
374static int
0c20a65f
AJ
375expand_cmplxdiv_wide (rtx real0, rtx real1, rtx imag0, rtx imag1, rtx realr,
376 rtx imagr, enum machine_mode submode, int unsignedp,
377 enum optab_methods methods, enum mode_class class,
378 optab binoptab)
c64f913e
CB
379{
380 rtx ratio, divisor;
381 rtx real_t, imag_t;
382 rtx temp1, temp2, lab1, lab2;
383 enum machine_mode mode;
c64f913e 384 rtx res;
91ce572a
CC
385 optab this_add_optab = add_optab;
386 optab this_sub_optab = sub_optab;
387 optab this_neg_optab = neg_optab;
388 optab this_mul_optab = smul_optab;
389
390 if (binoptab == sdivv_optab)
391 {
392 this_add_optab = addv_optab;
393 this_sub_optab = subv_optab;
394 this_neg_optab = negv_optab;
395 this_mul_optab = smulv_optab;
396 }
0c20a65f 397
c64f913e
CB
398 /* Don't fetch these from memory more than once. */
399 real0 = force_reg (submode, real0);
400 real1 = force_reg (submode, real1);
401
402 if (imag0 != 0)
403 imag0 = force_reg (submode, imag0);
404
405 imag1 = force_reg (submode, imag1);
406
a59a536c
RE
407 /* XXX What's an "unsigned" complex number? */
408 if (unsignedp)
409 {
410 temp1 = real1;
411 temp2 = imag1;
412 }
413 else
414 {
91ce572a
CC
415 temp1 = expand_abs (submode, real1, NULL_RTX, unsignedp, 1);
416 temp2 = expand_abs (submode, imag1, NULL_RTX, unsignedp, 1);
a59a536c 417 }
c64f913e
CB
418
419 if (temp1 == 0 || temp2 == 0)
420 return 0;
421
422 mode = GET_MODE (temp1);
c64f913e
CB
423 lab1 = gen_label_rtx ();
424 emit_cmp_and_jump_insns (temp1, temp2, LT, NULL_RTX,
a06ef755 425 mode, unsignedp, lab1);
c64f913e
CB
426
427 /* |c| >= |d|; use ratio d/c to scale dividend and divisor. */
428
429 if (class == MODE_COMPLEX_FLOAT)
430 ratio = expand_binop (submode, binoptab, imag1, real1,
431 NULL_RTX, unsignedp, methods);
432 else
433 ratio = expand_divmod (0, TRUNC_DIV_EXPR, submode,
434 imag1, real1, NULL_RTX, unsignedp);
435
436 if (ratio == 0)
437 return 0;
438
439 /* Calculate divisor. */
440
91ce572a 441 temp1 = expand_binop (submode, this_mul_optab, imag1, ratio,
c64f913e
CB
442 NULL_RTX, unsignedp, methods);
443
444 if (temp1 == 0)
445 return 0;
446
91ce572a 447 divisor = expand_binop (submode, this_add_optab, temp1, real1,
c64f913e
CB
448 NULL_RTX, unsignedp, methods);
449
450 if (divisor == 0)
451 return 0;
452
453 /* Calculate dividend. */
454
086bbd21 455 if (imag0 == 0)
c64f913e
CB
456 {
457 real_t = real0;
458
459 /* Compute a / (c+id) as a / (c+d(d/c)) + i (-a(d/c)) / (c+d(d/c)). */
460
91ce572a 461 imag_t = expand_binop (submode, this_mul_optab, real0, ratio,
c64f913e
CB
462 NULL_RTX, unsignedp, methods);
463
464 if (imag_t == 0)
465 return 0;
466
91ce572a 467 imag_t = expand_unop (submode, this_neg_optab, imag_t,
c64f913e
CB
468 NULL_RTX, unsignedp);
469
470 if (real_t == 0 || imag_t == 0)
471 return 0;
472 }
473 else
474 {
475 /* Compute (a+ib)/(c+id) as
476 (a+b(d/c))/(c+d(d/c) + i(b-a(d/c))/(c+d(d/c)). */
477
91ce572a 478 temp1 = expand_binop (submode, this_mul_optab, imag0, ratio,
c64f913e
CB
479 NULL_RTX, unsignedp, methods);
480
481 if (temp1 == 0)
482 return 0;
483
91ce572a 484 real_t = expand_binop (submode, this_add_optab, temp1, real0,
c64f913e
CB
485 NULL_RTX, unsignedp, methods);
486
91ce572a 487 temp1 = expand_binop (submode, this_mul_optab, real0, ratio,
c64f913e
CB
488 NULL_RTX, unsignedp, methods);
489
490 if (temp1 == 0)
491 return 0;
492
91ce572a 493 imag_t = expand_binop (submode, this_sub_optab, imag0, temp1,
c64f913e
CB
494 NULL_RTX, unsignedp, methods);
495
496 if (real_t == 0 || imag_t == 0)
497 return 0;
498 }
499
500 if (class == MODE_COMPLEX_FLOAT)
501 res = expand_binop (submode, binoptab, real_t, divisor,
502 realr, unsignedp, methods);
503 else
504 res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
505 real_t, divisor, realr, unsignedp);
506
507 if (res == 0)
508 return 0;
509
510 if (res != realr)
511 emit_move_insn (realr, res);
512
513 if (class == MODE_COMPLEX_FLOAT)
514 res = expand_binop (submode, binoptab, imag_t, divisor,
515 imagr, unsignedp, methods);
516 else
517 res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
518 imag_t, divisor, imagr, unsignedp);
519
520 if (res == 0)
521 return 0;
522
523 if (res != imagr)
524 emit_move_insn (imagr, res);
525
526 lab2 = gen_label_rtx ();
527 emit_jump_insn (gen_jump (lab2));
528 emit_barrier ();
529
530 emit_label (lab1);
531
532 /* |d| > |c|; use ratio c/d to scale dividend and divisor. */
533
534 if (class == MODE_COMPLEX_FLOAT)
535 ratio = expand_binop (submode, binoptab, real1, imag1,
536 NULL_RTX, unsignedp, methods);
537 else
538 ratio = expand_divmod (0, TRUNC_DIV_EXPR, submode,
539 real1, imag1, NULL_RTX, unsignedp);
540
541 if (ratio == 0)
542 return 0;
543
544 /* Calculate divisor. */
545
91ce572a 546 temp1 = expand_binop (submode, this_mul_optab, real1, ratio,
c64f913e
CB
547 NULL_RTX, unsignedp, methods);
548
549 if (temp1 == 0)
550 return 0;
551
91ce572a 552 divisor = expand_binop (submode, this_add_optab, temp1, imag1,
c64f913e
CB
553 NULL_RTX, unsignedp, methods);
554
555 if (divisor == 0)
556 return 0;
557
558 /* Calculate dividend. */
559
086bbd21 560 if (imag0 == 0)
c64f913e
CB
561 {
562 /* Compute a / (c+id) as a(c/d) / (c(c/d)+d) + i (-a) / (c(c/d)+d). */
563
91ce572a 564 real_t = expand_binop (submode, this_mul_optab, real0, ratio,
c64f913e
CB
565 NULL_RTX, unsignedp, methods);
566
91ce572a 567 imag_t = expand_unop (submode, this_neg_optab, real0,
c64f913e
CB
568 NULL_RTX, unsignedp);
569
570 if (real_t == 0 || imag_t == 0)
571 return 0;
572 }
573 else
574 {
575 /* Compute (a+ib)/(c+id) as
576 (a(c/d)+b)/(c(c/d)+d) + i (b(c/d)-a)/(c(c/d)+d). */
577
91ce572a 578 temp1 = expand_binop (submode, this_mul_optab, real0, ratio,
c64f913e
CB
579 NULL_RTX, unsignedp, methods);
580
581 if (temp1 == 0)
582 return 0;
583
91ce572a 584 real_t = expand_binop (submode, this_add_optab, temp1, imag0,
c64f913e
CB
585 NULL_RTX, unsignedp, methods);
586
91ce572a 587 temp1 = expand_binop (submode, this_mul_optab, imag0, ratio,
c64f913e
CB
588 NULL_RTX, unsignedp, methods);
589
590 if (temp1 == 0)
591 return 0;
592
91ce572a 593 imag_t = expand_binop (submode, this_sub_optab, temp1, real0,
c64f913e
CB
594 NULL_RTX, unsignedp, methods);
595
596 if (real_t == 0 || imag_t == 0)
597 return 0;
598 }
599
600 if (class == MODE_COMPLEX_FLOAT)
601 res = expand_binop (submode, binoptab, real_t, divisor,
602 realr, unsignedp, methods);
603 else
604 res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
605 real_t, divisor, realr, unsignedp);
606
607 if (res == 0)
608 return 0;
609
610 if (res != realr)
611 emit_move_insn (realr, res);
612
613 if (class == MODE_COMPLEX_FLOAT)
614 res = expand_binop (submode, binoptab, imag_t, divisor,
615 imagr, unsignedp, methods);
616 else
617 res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
618 imag_t, divisor, imagr, unsignedp);
619
620 if (res == 0)
621 return 0;
622
623 if (res != imagr)
624 emit_move_insn (imagr, res);
625
626 emit_label (lab2);
627
628 return 1;
629}
630\f
ef89d648
ZW
631/* Wrapper around expand_binop which takes an rtx code to specify
632 the operation to perform, not an optab pointer. All other
633 arguments are the same. */
634rtx
0c20a65f
AJ
635expand_simple_binop (enum machine_mode mode, enum rtx_code code, rtx op0,
636 rtx op1, rtx target, int unsignedp,
637 enum optab_methods methods)
ef89d648 638{
7e1a450d 639 optab binop = code_to_optab[(int) code];
ef89d648
ZW
640 if (binop == 0)
641 abort ();
642
643 return expand_binop (mode, binop, op0, op1, target, unsignedp, methods);
644}
645
77c9c6c2
RK
646/* Generate code to perform an operation specified by BINOPTAB
647 on operands OP0 and OP1, with result having machine-mode MODE.
648
649 UNSIGNEDP is for the case where we have to widen the operands
650 to perform the operation. It says to use zero-extension.
651
652 If TARGET is nonzero, the value
653 is generated there, if it is convenient to do so.
654 In all cases an rtx is returned for the locus of the value;
655 this may or may not be TARGET. */
656
657rtx
0c20a65f
AJ
658expand_binop (enum machine_mode mode, optab binoptab, rtx op0, rtx op1,
659 rtx target, int unsignedp, enum optab_methods methods)
77c9c6c2 660{
70864443
RK
661 enum optab_methods next_methods
662 = (methods == OPTAB_LIB || methods == OPTAB_LIB_WIDEN
663 ? OPTAB_WIDEN : methods);
77c9c6c2
RK
664 enum mode_class class;
665 enum machine_mode wider_mode;
b3694847 666 rtx temp;
77c9c6c2 667 int commutative_op = 0;
7e1a450d 668 int shift_op = (binoptab->code == ASHIFT
77c9c6c2 669 || binoptab->code == ASHIFTRT
77c9c6c2
RK
670 || binoptab->code == LSHIFTRT
671 || binoptab->code == ROTATE
672 || binoptab->code == ROTATERT);
abd418d3 673 rtx entry_last = get_last_insn ();
77c9c6c2
RK
674 rtx last;
675
676 class = GET_MODE_CLASS (mode);
677
678 op0 = protect_from_queue (op0, 0);
679 op1 = protect_from_queue (op1, 0);
680 if (target)
681 target = protect_from_queue (target, 1);
682
683 if (flag_force_mem)
684 {
894207cf
RS
685 /* Load duplicate non-volatile operands once. */
686 if (rtx_equal_p (op0, op1) && ! volatile_refs_p (op0))
687 {
688 op0 = force_not_mem (op0);
689 op1 = op0;
690 }
691 else
692 {
693 op0 = force_not_mem (op0);
694 op1 = force_not_mem (op1);
695 }
77c9c6c2
RK
696 }
697
8aecce0a
RK
698 /* If subtracting an integer constant, convert this into an addition of
699 the negated constant. */
700
701 if (binoptab == sub_optab && GET_CODE (op1) == CONST_INT)
702 {
703 op1 = negate_rtx (mode, op1);
704 binoptab = add_optab;
705 }
706
77c9c6c2
RK
707 /* If we are inside an appropriately-short loop and one operand is an
708 expensive constant, force it into a register. */
aeedc93f 709 if (CONSTANT_P (op0) && preserve_subexpressions_p ()
b437f1a7 710 && rtx_cost (op0, binoptab->code) > COSTS_N_INSNS (1))
77c9c6c2
RK
711 op0 = force_reg (mode, op0);
712
aeedc93f 713 if (CONSTANT_P (op1) && preserve_subexpressions_p ()
b437f1a7 714 && ! shift_op && rtx_cost (op1, binoptab->code) > COSTS_N_INSNS (1))
4074220e 715 op1 = force_reg (mode, op1);
77c9c6c2 716
77c9c6c2
RK
717 /* Record where to delete back to if we backtrack. */
718 last = get_last_insn ();
719
720 /* If operation is commutative,
721 try to make the first operand a register.
722 Even better, try to make it the same as the target.
723 Also try to make the last operand a constant. */
ec8e098d 724 if (GET_RTX_CLASS (binoptab->code) == RTX_COMM_ARITH
77c9c6c2 725 || binoptab == smul_widen_optab
5035bbfe
TG
726 || binoptab == umul_widen_optab
727 || binoptab == smul_highpart_optab
728 || binoptab == umul_highpart_optab)
77c9c6c2
RK
729 {
730 commutative_op = 1;
731
732 if (((target == 0 || GET_CODE (target) == REG)
733 ? ((GET_CODE (op1) == REG
734 && GET_CODE (op0) != REG)
735 || target == op1)
736 : rtx_equal_p (op1, target))
737 || GET_CODE (op0) == CONST_INT)
738 {
739 temp = op1;
740 op1 = op0;
741 op0 = temp;
742 }
743 }
744
745 /* If we can do it with a three-operand insn, do so. */
746
747 if (methods != OPTAB_MUST_WIDEN
748 && binoptab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
749 {
750 int icode = (int) binoptab->handlers[(int) mode].insn_code;
a995e389
RH
751 enum machine_mode mode0 = insn_data[icode].operand[1].mode;
752 enum machine_mode mode1 = insn_data[icode].operand[2].mode;
77c9c6c2
RK
753 rtx pat;
754 rtx xop0 = op0, xop1 = op1;
755
756 if (target)
757 temp = target;
758 else
759 temp = gen_reg_rtx (mode);
760
761 /* If it is a commutative operator and the modes would match
0f41302f 762 if we would swap the operands, we can save the conversions. */
77c9c6c2
RK
763 if (commutative_op)
764 {
765 if (GET_MODE (op0) != mode0 && GET_MODE (op1) != mode1
766 && GET_MODE (op0) == mode1 && GET_MODE (op1) == mode0)
767 {
b3694847 768 rtx tmp;
77c9c6c2
RK
769
770 tmp = op0; op0 = op1; op1 = tmp;
771 tmp = xop0; xop0 = xop1; xop1 = tmp;
772 }
773 }
774
775 /* In case the insn wants input operands in modes different from
29984e05
EB
776 those of the actual operands, convert the operands. It would
777 seem that we don't need to convert CONST_INTs, but we do, so
35f1c975
EB
778 that they're properly zero-extended, sign-extended or truncated
779 for their mode. */
77c9c6c2 780
874f6a6d 781 if (GET_MODE (op0) != mode0 && mode0 != VOIDmode)
69107307
AO
782 xop0 = convert_modes (mode0,
783 GET_MODE (op0) != VOIDmode
784 ? GET_MODE (op0)
29984e05 785 : mode,
69107307 786 xop0, unsignedp);
77c9c6c2 787
874f6a6d 788 if (GET_MODE (op1) != mode1 && mode1 != VOIDmode)
69107307
AO
789 xop1 = convert_modes (mode1,
790 GET_MODE (op1) != VOIDmode
791 ? GET_MODE (op1)
35f1c975 792 : mode,
69107307 793 xop1, unsignedp);
77c9c6c2
RK
794
795 /* Now, if insn's predicates don't allow our operands, put them into
796 pseudo regs. */
797
a995e389 798 if (! (*insn_data[icode].operand[1].predicate) (xop0, mode0)
4074220e 799 && mode0 != VOIDmode)
77c9c6c2
RK
800 xop0 = copy_to_mode_reg (mode0, xop0);
801
a995e389 802 if (! (*insn_data[icode].operand[2].predicate) (xop1, mode1)
4074220e 803 && mode1 != VOIDmode)
77c9c6c2
RK
804 xop1 = copy_to_mode_reg (mode1, xop1);
805
a995e389 806 if (! (*insn_data[icode].operand[0].predicate) (temp, mode))
77c9c6c2
RK
807 temp = gen_reg_rtx (mode);
808
809 pat = GEN_FCN (icode) (temp, xop0, xop1);
810 if (pat)
811 {
2f937369 812 /* If PAT is composed of more than one insn, try to add an appropriate
77c9c6c2
RK
813 REG_EQUAL note to it. If we can't because TEMP conflicts with an
814 operand, call ourselves again, this time without a target. */
2f937369 815 if (INSN_P (pat) && NEXT_INSN (pat) != NULL_RTX
77c9c6c2
RK
816 && ! add_equal_note (pat, temp, binoptab->code, xop0, xop1))
817 {
818 delete_insns_since (last);
b1ec3c92
CH
819 return expand_binop (mode, binoptab, op0, op1, NULL_RTX,
820 unsignedp, methods);
77c9c6c2
RK
821 }
822
823 emit_insn (pat);
824 return temp;
825 }
826 else
827 delete_insns_since (last);
828 }
829
5a5064dc
RK
830 /* If this is a multiply, see if we can do a widening operation that
831 takes operands of this mode and makes a wider mode. */
832
833 if (binoptab == smul_optab && GET_MODE_WIDER_MODE (mode) != VOIDmode
834 && (((unsignedp ? umul_widen_optab : smul_widen_optab)
835 ->handlers[(int) GET_MODE_WIDER_MODE (mode)].insn_code)
836 != CODE_FOR_nothing))
837 {
838 temp = expand_binop (GET_MODE_WIDER_MODE (mode),
839 unsignedp ? umul_widen_optab : smul_widen_optab,
73d9a835 840 op0, op1, NULL_RTX, unsignedp, OPTAB_DIRECT);
5a5064dc 841
70864443
RK
842 if (temp != 0)
843 {
844 if (GET_MODE_CLASS (mode) == MODE_INT)
845 return gen_lowpart (mode, temp);
846 else
847 return convert_to_mode (mode, temp, unsignedp);
848 }
5a5064dc
RK
849 }
850
9a856ec7 851 /* Look for a wider mode of the same class for which we think we
5a5064dc
RK
852 can open-code the operation. Check for a widening multiply at the
853 wider mode as well. */
9a856ec7
RK
854
855 if ((class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
6f43c157 856 && methods != OPTAB_DIRECT && methods != OPTAB_LIB)
9a856ec7
RK
857 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
858 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
859 {
5a5064dc
RK
860 if (binoptab->handlers[(int) wider_mode].insn_code != CODE_FOR_nothing
861 || (binoptab == smul_optab
862 && GET_MODE_WIDER_MODE (wider_mode) != VOIDmode
863 && (((unsignedp ? umul_widen_optab : smul_widen_optab)
864 ->handlers[(int) GET_MODE_WIDER_MODE (wider_mode)].insn_code)
865 != CODE_FOR_nothing)))
9a856ec7
RK
866 {
867 rtx xop0 = op0, xop1 = op1;
868 int no_extend = 0;
869
870 /* For certain integer operations, we need not actually extend
871 the narrow operands, as long as we will truncate
6d2f8887 872 the results to the same narrowness. */
9a856ec7
RK
873
874 if ((binoptab == ior_optab || binoptab == and_optab
875 || binoptab == xor_optab
876 || binoptab == add_optab || binoptab == sub_optab
e5df894b 877 || binoptab == smul_optab || binoptab == ashl_optab)
835532b8 878 && class == MODE_INT)
9a856ec7
RK
879 no_extend = 1;
880
0661a3de 881 xop0 = widen_operand (xop0, wider_mode, mode, unsignedp, no_extend);
943cc242
RK
882
883 /* The second operand of a shift must always be extended. */
0661a3de 884 xop1 = widen_operand (xop1, wider_mode, mode, unsignedp,
e5df894b 885 no_extend && binoptab != ashl_optab);
943cc242 886
b1ec3c92 887 temp = expand_binop (wider_mode, binoptab, xop0, xop1, NULL_RTX,
9a856ec7
RK
888 unsignedp, OPTAB_DIRECT);
889 if (temp)
890 {
891 if (class != MODE_INT)
892 {
893 if (target == 0)
894 target = gen_reg_rtx (mode);
895 convert_move (target, temp, 0);
896 return target;
897 }
898 else
899 return gen_lowpart (mode, temp);
900 }
901 else
902 delete_insns_since (last);
903 }
904 }
905
77c9c6c2
RK
906 /* These can be done a word at a time. */
907 if ((binoptab == and_optab || binoptab == ior_optab || binoptab == xor_optab)
908 && class == MODE_INT
909 && GET_MODE_SIZE (mode) > UNITS_PER_WORD
34e56753 910 && binoptab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing)
77c9c6c2 911 {
bb93b973 912 int i;
77c9c6c2
RK
913 rtx insns;
914 rtx equiv_value;
915
916 /* If TARGET is the same as one of the operands, the REG_EQUAL note
917 won't be accurate, so use a new target. */
918 if (target == 0 || target == op0 || target == op1)
919 target = gen_reg_rtx (mode);
920
921 start_sequence ();
922
923 /* Do the actual arithmetic. */
924 for (i = 0; i < GET_MODE_BITSIZE (mode) / BITS_PER_WORD; i++)
925 {
926 rtx target_piece = operand_subword (target, i, 1, mode);
34e56753 927 rtx x = expand_binop (word_mode, binoptab,
77c9c6c2
RK
928 operand_subword_force (op0, i, mode),
929 operand_subword_force (op1, i, mode),
70864443
RK
930 target_piece, unsignedp, next_methods);
931
932 if (x == 0)
933 break;
934
77c9c6c2
RK
935 if (target_piece != x)
936 emit_move_insn (target_piece, x);
937 }
938
939 insns = get_insns ();
940 end_sequence ();
941
70864443
RK
942 if (i == GET_MODE_BITSIZE (mode) / BITS_PER_WORD)
943 {
944 if (binoptab->code != UNKNOWN)
945 equiv_value
9e6a5703
JC
946 = gen_rtx_fmt_ee (binoptab->code, mode,
947 copy_rtx (op0), copy_rtx (op1));
70864443
RK
948 else
949 equiv_value = 0;
77c9c6c2 950
70864443
RK
951 emit_no_conflict_block (insns, target, op0, op1, equiv_value);
952 return target;
953 }
77c9c6c2
RK
954 }
955
8c597270 956 /* Synthesize double word shifts from single word shifts. */
e5df894b
RK
957 if ((binoptab == lshr_optab || binoptab == ashl_optab
958 || binoptab == ashr_optab)
8c597270
JW
959 && class == MODE_INT
960 && GET_CODE (op1) == CONST_INT
961 && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
962 && binoptab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing
963 && ashl_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing
964 && lshr_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing)
965 {
70864443 966 rtx insns, inter, equiv_value;
8c597270
JW
967 rtx into_target, outof_target;
968 rtx into_input, outof_input;
969 int shift_count, left_shift, outof_word;
970
971 /* If TARGET is the same as one of the operands, the REG_EQUAL note
972 won't be accurate, so use a new target. */
973 if (target == 0 || target == op0 || target == op1)
974 target = gen_reg_rtx (mode);
975
976 start_sequence ();
977
978 shift_count = INTVAL (op1);
979
980 /* OUTOF_* is the word we are shifting bits away from, and
981 INTO_* is the word that we are shifting bits towards, thus
982 they differ depending on the direction of the shift and
983 WORDS_BIG_ENDIAN. */
984
e5df894b 985 left_shift = binoptab == ashl_optab;
8c597270
JW
986 outof_word = left_shift ^ ! WORDS_BIG_ENDIAN;
987
988 outof_target = operand_subword (target, outof_word, 1, mode);
989 into_target = operand_subword (target, 1 - outof_word, 1, mode);
990
991 outof_input = operand_subword_force (op0, outof_word, mode);
992 into_input = operand_subword_force (op0, 1 - outof_word, mode);
993
994 if (shift_count >= BITS_PER_WORD)
995 {
70864443
RK
996 inter = expand_binop (word_mode, binoptab,
997 outof_input,
998 GEN_INT (shift_count - BITS_PER_WORD),
999 into_target, unsignedp, next_methods);
1000
cb5b00cf 1001 if (inter != 0 && inter != into_target)
70864443 1002 emit_move_insn (into_target, inter);
8c597270
JW
1003
1004 /* For a signed right shift, we must fill the word we are shifting
1005 out of with copies of the sign bit. Otherwise it is zeroed. */
cb5b00cf
RK
1006 if (inter != 0 && binoptab != ashr_optab)
1007 inter = CONST0_RTX (word_mode);
70864443
RK
1008 else if (inter != 0)
1009 inter = expand_binop (word_mode, binoptab,
1010 outof_input,
1011 GEN_INT (BITS_PER_WORD - 1),
1012 outof_target, unsignedp, next_methods);
1013
cb5b00cf 1014 if (inter != 0 && inter != outof_target)
70864443 1015 emit_move_insn (outof_target, inter);
8c597270
JW
1016 }
1017 else
1018 {
70864443 1019 rtx carries;
8c597270
JW
1020 optab reverse_unsigned_shift, unsigned_shift;
1021
1022 /* For a shift of less then BITS_PER_WORD, to compute the carry,
1023 we must do a logical shift in the opposite direction of the
1024 desired shift. */
1025
8c597270
JW
1026 reverse_unsigned_shift = (left_shift ? lshr_optab : ashl_optab);
1027
1028 /* For a shift of less than BITS_PER_WORD, to compute the word
1029 shifted towards, we need to unsigned shift the orig value of
1030 that word. */
1031
1032 unsigned_shift = (left_shift ? ashl_optab : lshr_optab);
1033
1034 carries = expand_binop (word_mode, reverse_unsigned_shift,
1035 outof_input,
1036 GEN_INT (BITS_PER_WORD - shift_count),
70864443
RK
1037 0, unsignedp, next_methods);
1038
1039 if (carries == 0)
1040 inter = 0;
1041 else
70864443
RK
1042 inter = expand_binop (word_mode, unsigned_shift, into_input,
1043 op1, 0, unsignedp, next_methods);
1044
1045 if (inter != 0)
1046 inter = expand_binop (word_mode, ior_optab, carries, inter,
1047 into_target, unsignedp, next_methods);
1048
cb5b00cf 1049 if (inter != 0 && inter != into_target)
70864443 1050 emit_move_insn (into_target, inter);
cf2f7113
RE
1051
1052 if (inter != 0)
1053 inter = expand_binop (word_mode, binoptab, outof_input,
1054 op1, outof_target, unsignedp, next_methods);
0c20a65f 1055
cf2f7113
RE
1056 if (inter != 0 && inter != outof_target)
1057 emit_move_insn (outof_target, inter);
8c597270
JW
1058 }
1059
1060 insns = get_insns ();
1061 end_sequence ();
1062
70864443
RK
1063 if (inter != 0)
1064 {
1065 if (binoptab->code != UNKNOWN)
9e6a5703 1066 equiv_value = gen_rtx_fmt_ee (binoptab->code, mode, op0, op1);
70864443
RK
1067 else
1068 equiv_value = 0;
8c597270 1069
70864443
RK
1070 emit_no_conflict_block (insns, target, op0, op1, equiv_value);
1071 return target;
1072 }
8c597270
JW
1073 }
1074
1075 /* Synthesize double word rotates from single word shifts. */
1076 if ((binoptab == rotl_optab || binoptab == rotr_optab)
1077 && class == MODE_INT
1078 && GET_CODE (op1) == CONST_INT
1079 && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
1080 && ashl_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing
1081 && lshr_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing)
1082 {
1083 rtx insns, equiv_value;
1084 rtx into_target, outof_target;
1085 rtx into_input, outof_input;
70864443 1086 rtx inter;
8c597270
JW
1087 int shift_count, left_shift, outof_word;
1088
1089 /* If TARGET is the same as one of the operands, the REG_EQUAL note
0c0ab0f1
OH
1090 won't be accurate, so use a new target. Do this also if target is not
1091 a REG, first because having a register instead may open optimization
1ae58c30 1092 opportunities, and second because if target and op0 happen to be MEMs
0c0ab0f1
OH
1093 designating the same location, we would risk clobbering it too early
1094 in the code sequence we generate below. */
1095 if (target == 0 || target == op0 || target == op1 || ! REG_P (target))
8c597270
JW
1096 target = gen_reg_rtx (mode);
1097
1098 start_sequence ();
1099
1100 shift_count = INTVAL (op1);
1101
1102 /* OUTOF_* is the word we are shifting bits away from, and
1103 INTO_* is the word that we are shifting bits towards, thus
1104 they differ depending on the direction of the shift and
1105 WORDS_BIG_ENDIAN. */
1106
1107 left_shift = (binoptab == rotl_optab);
1108 outof_word = left_shift ^ ! WORDS_BIG_ENDIAN;
1109
1110 outof_target = operand_subword (target, outof_word, 1, mode);
1111 into_target = operand_subword (target, 1 - outof_word, 1, mode);
1112
1113 outof_input = operand_subword_force (op0, outof_word, mode);
1114 into_input = operand_subword_force (op0, 1 - outof_word, mode);
1115
1116 if (shift_count == BITS_PER_WORD)
1117 {
1118 /* This is just a word swap. */
1119 emit_move_insn (outof_target, into_input);
1120 emit_move_insn (into_target, outof_input);
70864443 1121 inter = const0_rtx;
8c597270
JW
1122 }
1123 else
1124 {
1125 rtx into_temp1, into_temp2, outof_temp1, outof_temp2;
1126 rtx first_shift_count, second_shift_count;
1127 optab reverse_unsigned_shift, unsigned_shift;
1128
1129 reverse_unsigned_shift = (left_shift ^ (shift_count < BITS_PER_WORD)
1130 ? lshr_optab : ashl_optab);
1131
1132 unsigned_shift = (left_shift ^ (shift_count < BITS_PER_WORD)
1133 ? ashl_optab : lshr_optab);
1134
1135 if (shift_count > BITS_PER_WORD)
1136 {
1137 first_shift_count = GEN_INT (shift_count - BITS_PER_WORD);
7e1a450d 1138 second_shift_count = GEN_INT (2 * BITS_PER_WORD - shift_count);
8c597270
JW
1139 }
1140 else
1141 {
1142 first_shift_count = GEN_INT (BITS_PER_WORD - shift_count);
1143 second_shift_count = GEN_INT (shift_count);
1144 }
1145
1146 into_temp1 = expand_binop (word_mode, unsigned_shift,
1147 outof_input, first_shift_count,
70864443 1148 NULL_RTX, unsignedp, next_methods);
8c597270
JW
1149 into_temp2 = expand_binop (word_mode, reverse_unsigned_shift,
1150 into_input, second_shift_count,
5be5c8d4 1151 NULL_RTX, unsignedp, next_methods);
70864443
RK
1152
1153 if (into_temp1 != 0 && into_temp2 != 0)
1154 inter = expand_binop (word_mode, ior_optab, into_temp1, into_temp2,
1155 into_target, unsignedp, next_methods);
1156 else
1157 inter = 0;
1158
cb5b00cf 1159 if (inter != 0 && inter != into_target)
70864443 1160 emit_move_insn (into_target, inter);
8c597270
JW
1161
1162 outof_temp1 = expand_binop (word_mode, unsigned_shift,
1163 into_input, first_shift_count,
70864443 1164 NULL_RTX, unsignedp, next_methods);
8c597270
JW
1165 outof_temp2 = expand_binop (word_mode, reverse_unsigned_shift,
1166 outof_input, second_shift_count,
5be5c8d4 1167 NULL_RTX, unsignedp, next_methods);
70864443
RK
1168
1169 if (inter != 0 && outof_temp1 != 0 && outof_temp2 != 0)
1170 inter = expand_binop (word_mode, ior_optab,
1171 outof_temp1, outof_temp2,
1172 outof_target, unsignedp, next_methods);
1173
cb5b00cf 1174 if (inter != 0 && inter != outof_target)
70864443 1175 emit_move_insn (outof_target, inter);
8c597270
JW
1176 }
1177
1178 insns = get_insns ();
1179 end_sequence ();
1180
70864443
RK
1181 if (inter != 0)
1182 {
1183 if (binoptab->code != UNKNOWN)
9e6a5703 1184 equiv_value = gen_rtx_fmt_ee (binoptab->code, mode, op0, op1);
70864443
RK
1185 else
1186 equiv_value = 0;
8c597270 1187
70864443
RK
1188 /* We can't make this a no conflict block if this is a word swap,
1189 because the word swap case fails if the input and output values
1190 are in the same register. */
1191 if (shift_count != BITS_PER_WORD)
1192 emit_no_conflict_block (insns, target, op0, op1, equiv_value);
1193 else
2f937369 1194 emit_insn (insns);
70864443
RK
1195
1196
1197 return target;
1198 }
8c597270
JW
1199 }
1200
77c9c6c2
RK
1201 /* These can be done a word at a time by propagating carries. */
1202 if ((binoptab == add_optab || binoptab == sub_optab)
1203 && class == MODE_INT
1204 && GET_MODE_SIZE (mode) >= 2 * UNITS_PER_WORD
34e56753 1205 && binoptab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing)
77c9c6c2 1206 {
e2500fed 1207 unsigned int i;
77c9c6c2 1208 optab otheroptab = binoptab == add_optab ? sub_optab : add_optab;
a4b5414c 1209 const unsigned int nwords = GET_MODE_BITSIZE (mode) / BITS_PER_WORD;
07444f1d 1210 rtx carry_in = NULL_RTX, carry_out = NULL_RTX;
64de6c0a 1211 rtx xop0, xop1, xtarget;
77c9c6c2
RK
1212
1213 /* We can handle either a 1 or -1 value for the carry. If STORE_FLAG
1214 value is one of those, use it. Otherwise, use 1 since it is the
1215 one easiest to get. */
1216#if STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1
1217 int normalizep = STORE_FLAG_VALUE;
1218#else
1219 int normalizep = 1;
1220#endif
1221
1222 /* Prepare the operands. */
cee85023
RS
1223 xop0 = force_reg (mode, op0);
1224 xop1 = force_reg (mode, op1);
77c9c6c2 1225
64de6c0a
DE
1226 xtarget = gen_reg_rtx (mode);
1227
1228 if (target == 0 || GET_CODE (target) != REG)
1229 target = xtarget;
77c9c6c2 1230
af2cc4dd
RS
1231 /* Indicate for flow that the entire target reg is being set. */
1232 if (GET_CODE (target) == REG)
64de6c0a 1233 emit_insn (gen_rtx_CLOBBER (VOIDmode, xtarget));
af2cc4dd 1234
77c9c6c2
RK
1235 /* Do the actual arithmetic. */
1236 for (i = 0; i < nwords; i++)
1237 {
1238 int index = (WORDS_BIG_ENDIAN ? nwords - i - 1 : i);
64de6c0a 1239 rtx target_piece = operand_subword (xtarget, index, 1, mode);
cee85023
RS
1240 rtx op0_piece = operand_subword_force (xop0, index, mode);
1241 rtx op1_piece = operand_subword_force (xop1, index, mode);
77c9c6c2
RK
1242 rtx x;
1243
1244 /* Main add/subtract of the input operands. */
34e56753 1245 x = expand_binop (word_mode, binoptab,
77c9c6c2 1246 op0_piece, op1_piece,
70864443 1247 target_piece, unsignedp, next_methods);
77c9c6c2
RK
1248 if (x == 0)
1249 break;
1250
1251 if (i + 1 < nwords)
1252 {
1253 /* Store carry from main add/subtract. */
34e56753 1254 carry_out = gen_reg_rtx (word_mode);
23357404
TG
1255 carry_out = emit_store_flag_force (carry_out,
1256 (binoptab == add_optab
b30f05db 1257 ? LT : GT),
23357404
TG
1258 x, op0_piece,
1259 word_mode, 1, normalizep);
77c9c6c2
RK
1260 }
1261
1262 if (i > 0)
1263 {
859cb4d8 1264 rtx newx;
0c20a65f 1265
77c9c6c2 1266 /* Add/subtract previous carry to main result. */
859cb4d8
GK
1267 newx = expand_binop (word_mode,
1268 normalizep == 1 ? binoptab : otheroptab,
1269 x, carry_in,
1270 NULL_RTX, 1, next_methods);
77c9c6c2
RK
1271
1272 if (i + 1 < nwords)
1273 {
77c9c6c2 1274 /* Get out carry from adding/subtracting carry in. */
859cb4d8 1275 rtx carry_tmp = gen_reg_rtx (word_mode);
23357404 1276 carry_tmp = emit_store_flag_force (carry_tmp,
859cb4d8
GK
1277 (binoptab == add_optab
1278 ? LT : GT),
1279 newx, x,
23357404 1280 word_mode, 1, normalizep);
70864443 1281
77c9c6c2 1282 /* Logical-ior the two poss. carry together. */
34e56753 1283 carry_out = expand_binop (word_mode, ior_optab,
77c9c6c2 1284 carry_out, carry_tmp,
70864443
RK
1285 carry_out, 0, next_methods);
1286 if (carry_out == 0)
77c9c6c2
RK
1287 break;
1288 }
859cb4d8 1289 emit_move_insn (target_piece, newx);
77c9c6c2
RK
1290 }
1291
1292 carry_in = carry_out;
0c20a65f 1293 }
77c9c6c2 1294
e2500fed 1295 if (i == GET_MODE_BITSIZE (mode) / (unsigned) BITS_PER_WORD)
77c9c6c2 1296 {
d0ccc658
RK
1297 if (mov_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing
1298 || ! rtx_equal_p (target, xtarget))
02214a5c 1299 {
64de6c0a 1300 rtx temp = emit_move_insn (target, xtarget);
70864443 1301
5fa671cf 1302 set_unique_reg_note (temp,
0c20a65f 1303 REG_EQUAL,
5fa671cf
AM
1304 gen_rtx_fmt_ee (binoptab->code, mode,
1305 copy_rtx (xop0),
1306 copy_rtx (xop1)));
02214a5c 1307 }
2cd622c3
AO
1308 else
1309 target = xtarget;
c5c76735 1310
77c9c6c2
RK
1311 return target;
1312 }
c5c76735 1313
77c9c6c2
RK
1314 else
1315 delete_insns_since (last);
1316 }
1317
1318 /* If we want to multiply two two-word values and have normal and widening
1319 multiplies of single-word values, we can do this with three smaller
1320 multiplications. Note that we do not make a REG_NO_CONFLICT block here
0c20a65f 1321 because we are not operating on one word at a time.
77c9c6c2
RK
1322
1323 The multiplication proceeds as follows:
34e56753
RS
1324 _______________________
1325 [__op0_high_|__op0_low__]
1326 _______________________
6ffe0821 1327 * [__op1_high_|__op1_low__]
34e56753
RS
1328 _______________________________________________
1329 _______________________
6ffe0821 1330 (1) [__op0_low__*__op1_low__]
34e56753 1331 _______________________
6ffe0821 1332 (2a) [__op0_low__*__op1_high_]
34e56753 1333 _______________________
6ffe0821 1334 (2b) [__op0_high_*__op1_low__]
34e56753
RS
1335 _______________________
1336 (3) [__op0_high_*__op1_high_]
77c9c6c2
RK
1337
1338
1339 This gives a 4-word result. Since we are only interested in the
1340 lower 2 words, partial result (3) and the upper words of (2a) and
1341 (2b) don't need to be calculated. Hence (2a) and (2b) can be
1342 calculated using non-widening multiplication.
1343
1344 (1), however, needs to be calculated with an unsigned widening
1345 multiplication. If this operation is not directly supported we
1346 try using a signed widening multiplication and adjust the result.
1347 This adjustment works as follows:
1348
1349 If both operands are positive then no adjustment is needed.
1350
1351 If the operands have different signs, for example op0_low < 0 and
1352 op1_low >= 0, the instruction treats the most significant bit of
1353 op0_low as a sign bit instead of a bit with significance
1354 2**(BITS_PER_WORD-1), i.e. the instruction multiplies op1_low
1355 with 2**BITS_PER_WORD - op0_low, and two's complements the
1356 result. Conclusion: We need to add op1_low * 2**BITS_PER_WORD to
1357 the result.
1358
1359 Similarly, if both operands are negative, we need to add
1360 (op0_low + op1_low) * 2**BITS_PER_WORD.
1361
1362 We use a trick to adjust quickly. We logically shift op0_low right
1363 (op1_low) BITS_PER_WORD-1 steps to get 0 or 1, and add this to
1364 op0_high (op1_high) before it is used to calculate 2b (2a). If no
1365 logical shift exists, we do an arithmetic right shift and subtract
1366 the 0 or -1. */
1367
1368 if (binoptab == smul_optab
1369 && class == MODE_INT
1370 && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
34e56753
RS
1371 && smul_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing
1372 && add_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing
77c9c6c2
RK
1373 && ((umul_widen_optab->handlers[(int) mode].insn_code
1374 != CODE_FOR_nothing)
1375 || (smul_widen_optab->handlers[(int) mode].insn_code
1376 != CODE_FOR_nothing)))
1377 {
1378 int low = (WORDS_BIG_ENDIAN ? 1 : 0);
1379 int high = (WORDS_BIG_ENDIAN ? 0 : 1);
1380 rtx op0_high = operand_subword_force (op0, high, mode);
1381 rtx op0_low = operand_subword_force (op0, low, mode);
1382 rtx op1_high = operand_subword_force (op1, high, mode);
1383 rtx op1_low = operand_subword_force (op1, low, mode);
1384 rtx product = 0;
07444f1d
TM
1385 rtx op0_xhigh = NULL_RTX;
1386 rtx op1_xhigh = NULL_RTX;
77c9c6c2
RK
1387
1388 /* If the target is the same as one of the inputs, don't use it. This
1389 prevents problems with the REG_EQUAL note. */
f96d689c
RK
1390 if (target == op0 || target == op1
1391 || (target != 0 && GET_CODE (target) != REG))
77c9c6c2
RK
1392 target = 0;
1393
1394 /* Multiply the two lower words to get a double-word product.
1395 If unsigned widening multiplication is available, use that;
1396 otherwise use the signed form and compensate. */
1397
1398 if (umul_widen_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
1399 {
1400 product = expand_binop (mode, umul_widen_optab, op0_low, op1_low,
1401 target, 1, OPTAB_DIRECT);
1402
1403 /* If we didn't succeed, delete everything we did so far. */
1404 if (product == 0)
1405 delete_insns_since (last);
1406 else
1407 op0_xhigh = op0_high, op1_xhigh = op1_high;
1408 }
1409
1410 if (product == 0
1411 && smul_widen_optab->handlers[(int) mode].insn_code
1412 != CODE_FOR_nothing)
1413 {
b1ec3c92 1414 rtx wordm1 = GEN_INT (BITS_PER_WORD - 1);
77c9c6c2
RK
1415 product = expand_binop (mode, smul_widen_optab, op0_low, op1_low,
1416 target, 1, OPTAB_DIRECT);
34e56753 1417 op0_xhigh = expand_binop (word_mode, lshr_optab, op0_low, wordm1,
70864443 1418 NULL_RTX, 1, next_methods);
77c9c6c2 1419 if (op0_xhigh)
34e56753 1420 op0_xhigh = expand_binop (word_mode, add_optab, op0_high,
70864443 1421 op0_xhigh, op0_xhigh, 0, next_methods);
77c9c6c2
RK
1422 else
1423 {
34e56753 1424 op0_xhigh = expand_binop (word_mode, ashr_optab, op0_low, wordm1,
70864443 1425 NULL_RTX, 0, next_methods);
77c9c6c2 1426 if (op0_xhigh)
34e56753 1427 op0_xhigh = expand_binop (word_mode, sub_optab, op0_high,
77c9c6c2 1428 op0_xhigh, op0_xhigh, 0,
70864443 1429 next_methods);
77c9c6c2
RK
1430 }
1431
34e56753 1432 op1_xhigh = expand_binop (word_mode, lshr_optab, op1_low, wordm1,
70864443 1433 NULL_RTX, 1, next_methods);
77c9c6c2 1434 if (op1_xhigh)
34e56753 1435 op1_xhigh = expand_binop (word_mode, add_optab, op1_high,
70864443 1436 op1_xhigh, op1_xhigh, 0, next_methods);
77c9c6c2
RK
1437 else
1438 {
34e56753 1439 op1_xhigh = expand_binop (word_mode, ashr_optab, op1_low, wordm1,
70864443 1440 NULL_RTX, 0, next_methods);
77c9c6c2 1441 if (op1_xhigh)
34e56753 1442 op1_xhigh = expand_binop (word_mode, sub_optab, op1_high,
77c9c6c2 1443 op1_xhigh, op1_xhigh, 0,
70864443 1444 next_methods);
77c9c6c2
RK
1445 }
1446 }
1447
1448 /* If we have been able to directly compute the product of the
1449 low-order words of the operands and perform any required adjustments
1450 of the operands, we proceed by trying two more multiplications
1451 and then computing the appropriate sum.
1452
1453 We have checked above that the required addition is provided.
1454 Full-word addition will normally always succeed, especially if
1455 it is provided at all, so we don't worry about its failure. The
1456 multiplication may well fail, however, so we do handle that. */
1457
1458 if (product && op0_xhigh && op1_xhigh)
1459 {
77c9c6c2 1460 rtx product_high = operand_subword (product, high, 1, mode);
b1ec3c92
CH
1461 rtx temp = expand_binop (word_mode, binoptab, op0_low, op1_xhigh,
1462 NULL_RTX, 0, OPTAB_DIRECT);
77c9c6c2 1463
c7539aa0
JL
1464 if (!REG_P (product_high))
1465 product_high = force_reg (word_mode, product_high);
1466
70864443
RK
1467 if (temp != 0)
1468 temp = expand_binop (word_mode, add_optab, temp, product_high,
1469 product_high, 0, next_methods);
77c9c6c2 1470
70864443
RK
1471 if (temp != 0 && temp != product_high)
1472 emit_move_insn (product_high, temp);
1473
1474 if (temp != 0)
0c20a65f 1475 temp = expand_binop (word_mode, binoptab, op1_low, op0_xhigh,
70864443
RK
1476 NULL_RTX, 0, OPTAB_DIRECT);
1477
1478 if (temp != 0)
1479 temp = expand_binop (word_mode, add_optab, temp,
1480 product_high, product_high,
1481 0, next_methods);
77c9c6c2 1482
70864443
RK
1483 if (temp != 0 && temp != product_high)
1484 emit_move_insn (product_high, temp);
77c9c6c2 1485
c7539aa0
JL
1486 emit_move_insn (operand_subword (product, high, 1, mode), product_high);
1487
70864443
RK
1488 if (temp != 0)
1489 {
02214a5c
RK
1490 if (mov_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
1491 {
1492 temp = emit_move_insn (product, product);
5fa671cf 1493 set_unique_reg_note (temp,
0c20a65f 1494 REG_EQUAL,
5fa671cf
AM
1495 gen_rtx_fmt_ee (MULT, mode,
1496 copy_rtx (op0),
1497 copy_rtx (op1)));
02214a5c 1498 }
c5c76735 1499
77c9c6c2
RK
1500 return product;
1501 }
1502 }
1503
1504 /* If we get here, we couldn't do it for some reason even though we
1505 originally thought we could. Delete anything we've emitted in
1506 trying to do it. */
1507
1508 delete_insns_since (last);
1509 }
1510
cb2a532e
AH
1511 /* Open-code the vector operations if we have no hardware support
1512 for them. */
1513 if (class == MODE_VECTOR_INT || class == MODE_VECTOR_FLOAT)
1514 return expand_vector_binop (mode, binoptab, op0, op1, target,
1515 unsignedp, methods);
1516
b818abb0
RS
1517 /* We need to open-code the complex type operations: '+, -, * and /' */
1518
1519 /* At this point we allow operations between two similar complex
1520 numbers, and also if one of the operands is not a complex number
1521 but rather of MODE_FLOAT or MODE_INT. However, the caller
1522 must make sure that the MODE of the non-complex operand matches
6f43c157 1523 the SUBMODE of the complex operand. */
b818abb0
RS
1524
1525 if (class == MODE_COMPLEX_FLOAT || class == MODE_COMPLEX_INT)
6f43c157 1526 {
70864443
RK
1527 rtx real0 = 0, imag0 = 0;
1528 rtx real1 = 0, imag1 = 0;
1529 rtx realr, imagr, res;
c7d91a94 1530 rtx seq, result;
70864443 1531 int ok = 0;
b818abb0 1532
f9da5064 1533 /* Find the correct mode for the real and imaginary parts. */
c7d91a94 1534 enum machine_mode submode = GET_MODE_INNER (mode);
b818abb0
RS
1535
1536 if (submode == BLKmode)
1537 abort ();
1538
b818abb0
RS
1539 start_sequence ();
1540
b818abb0
RS
1541 if (GET_MODE (op0) == mode)
1542 {
c64f913e 1543 real0 = gen_realpart (submode, op0);
decdfa82 1544 imag0 = gen_imagpart (submode, op0);
b818abb0
RS
1545 }
1546 else
1547 real0 = op0;
1548
1549 if (GET_MODE (op1) == mode)
1550 {
c64f913e 1551 real1 = gen_realpart (submode, op1);
decdfa82 1552 imag1 = gen_imagpart (submode, op1);
b818abb0
RS
1553 }
1554 else
1555 real1 = op1;
1556
c0fe508e 1557 if (real0 == 0 || real1 == 0 || ! (imag0 != 0 || imag1 != 0))
b818abb0
RS
1558 abort ();
1559
c7d91a94
RS
1560 result = gen_reg_rtx (mode);
1561 realr = gen_realpart (submode, result);
1562 imagr = gen_imagpart (submode, result);
1563
6f43c157
RS
1564 switch (binoptab->code)
1565 {
1566 case PLUS:
96f153da 1567 /* (a+ib) + (c+id) = (a+c) + i(b+d) */
6f43c157 1568 case MINUS:
96f153da 1569 /* (a+ib) - (c+id) = (a-c) + i(b-d) */
b818abb0
RS
1570 res = expand_binop (submode, binoptab, real0, real1,
1571 realr, unsignedp, methods);
70864443
RK
1572
1573 if (res == 0)
1574 break;
1575 else if (res != realr)
b818abb0
RS
1576 emit_move_insn (realr, res);
1577
086bbd21 1578 if (imag0 != 0 && imag1 != 0)
b818abb0
RS
1579 res = expand_binop (submode, binoptab, imag0, imag1,
1580 imagr, unsignedp, methods);
086bbd21 1581 else if (imag0 != 0)
b818abb0
RS
1582 res = imag0;
1583 else if (binoptab->code == MINUS)
91ce572a
CC
1584 res = expand_unop (submode,
1585 binoptab == subv_optab ? negv_optab : neg_optab,
1586 imag1, imagr, unsignedp);
b818abb0
RS
1587 else
1588 res = imag1;
1589
70864443
RK
1590 if (res == 0)
1591 break;
1592 else if (res != imagr)
b818abb0 1593 emit_move_insn (imagr, res);
70864443
RK
1594
1595 ok = 1;
b818abb0 1596 break;
6f43c157
RS
1597
1598 case MULT:
b818abb0
RS
1599 /* (a+ib) * (c+id) = (ac-bd) + i(ad+cb) */
1600
086bbd21 1601 if (imag0 != 0 && imag1 != 0)
b818abb0 1602 {
70864443
RK
1603 rtx temp1, temp2;
1604
54e7b5e6
RS
1605 /* Don't fetch these from memory more than once. */
1606 real0 = force_reg (submode, real0);
1607 real1 = force_reg (submode, real1);
1608 imag0 = force_reg (submode, imag0);
1609 imag1 = force_reg (submode, imag1);
1610
70864443
RK
1611 temp1 = expand_binop (submode, binoptab, real0, real1, NULL_RTX,
1612 unsignedp, methods);
1613
1614 temp2 = expand_binop (submode, binoptab, imag0, imag1, NULL_RTX,
1615 unsignedp, methods);
1616
1617 if (temp1 == 0 || temp2 == 0)
1618 break;
1619
91ce572a
CC
1620 res = (expand_binop
1621 (submode,
1622 binoptab == smulv_optab ? subv_optab : sub_optab,
1623 temp1, temp2, realr, unsignedp, methods));
b818abb0 1624
70864443
RK
1625 if (res == 0)
1626 break;
1627 else if (res != realr)
54e7b5e6 1628 emit_move_insn (realr, res);
b818abb0 1629
70864443
RK
1630 temp1 = expand_binop (submode, binoptab, real0, imag1,
1631 NULL_RTX, unsignedp, methods);
1632
df8ca70e
RS
1633 /* Avoid expanding redundant multiplication for the common
1634 case of squaring a complex number. */
1635 if (rtx_equal_p (real0, real1) && rtx_equal_p (imag0, imag1))
1636 temp2 = temp1;
1637 else
1638 temp2 = expand_binop (submode, binoptab, real1, imag0,
1639 NULL_RTX, unsignedp, methods);
70864443
RK
1640
1641 if (temp1 == 0 || temp2 == 0)
7e1a450d 1642 break;
1c63cc82 1643
91ce572a
CC
1644 res = (expand_binop
1645 (submode,
1646 binoptab == smulv_optab ? addv_optab : add_optab,
1647 temp1, temp2, imagr, unsignedp, methods));
70864443
RK
1648
1649 if (res == 0)
1650 break;
1651 else if (res != imagr)
b818abb0 1652 emit_move_insn (imagr, res);
70864443
RK
1653
1654 ok = 1;
b818abb0
RS
1655 }
1656 else
1657 {
54e7b5e6
RS
1658 /* Don't fetch these from memory more than once. */
1659 real0 = force_reg (submode, real0);
1660 real1 = force_reg (submode, real1);
1661
96f153da
RS
1662 res = expand_binop (submode, binoptab, real0, real1,
1663 realr, unsignedp, methods);
70864443
RK
1664 if (res == 0)
1665 break;
1666 else if (res != realr)
b818abb0
RS
1667 emit_move_insn (realr, res);
1668
086bbd21 1669 if (imag0 != 0)
b818abb0
RS
1670 res = expand_binop (submode, binoptab,
1671 real1, imag0, imagr, unsignedp, methods);
1672 else
1673 res = expand_binop (submode, binoptab,
1674 real0, imag1, imagr, unsignedp, methods);
70864443
RK
1675
1676 if (res == 0)
1677 break;
1678 else if (res != imagr)
b818abb0 1679 emit_move_insn (imagr, res);
70864443
RK
1680
1681 ok = 1;
b818abb0
RS
1682 }
1683 break;
6f43c157
RS
1684
1685 case DIV:
96f153da 1686 /* (a+ib) / (c+id) = ((ac+bd)/(cc+dd)) + i((bc-ad)/(cc+dd)) */
0c20a65f 1687
086bbd21 1688 if (imag1 == 0)
70864443
RK
1689 {
1690 /* (a+ib) / (c+i0) = (a/c) + i(b/c) */
54e7b5e6
RS
1691
1692 /* Don't fetch these from memory more than once. */
1693 real1 = force_reg (submode, real1);
1694
96f153da 1695 /* Simply divide the real and imaginary parts by `c' */
2140ed5b
RK
1696 if (class == MODE_COMPLEX_FLOAT)
1697 res = expand_binop (submode, binoptab, real0, real1,
1698 realr, unsignedp, methods);
1699 else
1700 res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
1701 real0, real1, realr, unsignedp);
1702
70864443
RK
1703 if (res == 0)
1704 break;
1705 else if (res != realr)
b818abb0
RS
1706 emit_move_insn (realr, res);
1707
2140ed5b
RK
1708 if (class == MODE_COMPLEX_FLOAT)
1709 res = expand_binop (submode, binoptab, imag0, real1,
1710 imagr, unsignedp, methods);
1711 else
1712 res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
1713 imag0, real1, imagr, unsignedp);
1714
70864443
RK
1715 if (res == 0)
1716 break;
1717 else if (res != imagr)
b818abb0 1718 emit_move_insn (imagr, res);
b818abb0 1719
70864443
RK
1720 ok = 1;
1721 }
1722 else
1723 {
c64f913e 1724 switch (flag_complex_divide_method)
70864443 1725 {
c64f913e
CB
1726 case 0:
1727 ok = expand_cmplxdiv_straight (real0, real1, imag0, imag1,
1728 realr, imagr, submode,
1729 unsignedp, methods,
1730 class, binoptab);
1731 break;
41b19f3e 1732
c64f913e
CB
1733 case 1:
1734 ok = expand_cmplxdiv_wide (real0, real1, imag0, imag1,
1735 realr, imagr, submode,
1736 unsignedp, methods,
1737 class, binoptab);
1738 break;
70864443 1739
c64f913e
CB
1740 default:
1741 abort ();
b818abb0 1742 }
b818abb0
RS
1743 }
1744 break;
0c20a65f 1745
b818abb0
RS
1746 default:
1747 abort ();
1748 }
1749
c15886da 1750 seq = get_insns ();
b818abb0
RS
1751 end_sequence ();
1752
70864443
RK
1753 if (ok)
1754 {
c7d91a94
RS
1755 rtx equiv = gen_rtx_fmt_ee (binoptab->code, mode,
1756 copy_rtx (op0), copy_rtx (op1));
1757 emit_no_conflict_block (seq, result, op0, op1, equiv);
1758 return result;
70864443 1759 }
b818abb0 1760 }
b818abb0 1761
77c9c6c2
RK
1762 /* It can't be open-coded in this mode.
1763 Use a library call if one is available and caller says that's ok. */
1764
1765 if (binoptab->handlers[(int) mode].libfunc
1766 && (methods == OPTAB_LIB || methods == OPTAB_LIB_WIDEN))
1767 {
1768 rtx insns;
0bbb7f4d
RS
1769 rtx op1x = op1;
1770 enum machine_mode op1_mode = mode;
9a7f678c 1771 rtx value;
77c9c6c2
RK
1772
1773 start_sequence ();
1774
0bbb7f4d
RS
1775 if (shift_op)
1776 {
1777 op1_mode = word_mode;
1778 /* Specify unsigned here,
1779 since negative shift counts are meaningless. */
1780 op1x = convert_to_mode (word_mode, op1, 1);
1781 }
1782
82f0e2cc
RK
1783 if (GET_MODE (op0) != VOIDmode
1784 && GET_MODE (op0) != mode)
5035bbfe
TG
1785 op0 = convert_to_mode (mode, op0, unsignedp);
1786
77c9c6c2
RK
1787 /* Pass 1 for NO_QUEUE so we don't lose any increments
1788 if the libcall is cse'd or moved. */
9a7f678c 1789 value = emit_library_call_value (binoptab->handlers[(int) mode].libfunc,
ebb1b59a 1790 NULL_RTX, LCT_CONST, mode, 2,
9a7f678c 1791 op0, mode, op1x, op1_mode);
77c9c6c2
RK
1792
1793 insns = get_insns ();
1794 end_sequence ();
1795
1796 target = gen_reg_rtx (mode);
9a7f678c 1797 emit_libcall_block (insns, target, value,
9e6a5703 1798 gen_rtx_fmt_ee (binoptab->code, mode, op0, op1));
77c9c6c2
RK
1799
1800 return target;
1801 }
1802
1803 delete_insns_since (last);
1804
1805 /* It can't be done in this mode. Can we do it in a wider mode? */
1806
1807 if (! (methods == OPTAB_WIDEN || methods == OPTAB_LIB_WIDEN
1808 || methods == OPTAB_MUST_WIDEN))
abd418d3
RS
1809 {
1810 /* Caller says, don't even try. */
1811 delete_insns_since (entry_last);
1812 return 0;
1813 }
77c9c6c2
RK
1814
1815 /* Compute the value of METHODS to pass to recursive calls.
1816 Don't allow widening to be tried recursively. */
1817
1818 methods = (methods == OPTAB_LIB_WIDEN ? OPTAB_LIB : OPTAB_DIRECT);
1819
34e56753
RS
1820 /* Look for a wider mode of the same class for which it appears we can do
1821 the operation. */
77c9c6c2
RK
1822
1823 if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
1824 {
34e56753 1825 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
77c9c6c2
RK
1826 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
1827 {
1828 if ((binoptab->handlers[(int) wider_mode].insn_code
1829 != CODE_FOR_nothing)
1830 || (methods == OPTAB_LIB
1831 && binoptab->handlers[(int) wider_mode].libfunc))
1832 {
1833 rtx xop0 = op0, xop1 = op1;
1834 int no_extend = 0;
1835
34e56753 1836 /* For certain integer operations, we need not actually extend
77c9c6c2 1837 the narrow operands, as long as we will truncate
835532b8 1838 the results to the same narrowness. */
77c9c6c2 1839
34e56753
RS
1840 if ((binoptab == ior_optab || binoptab == and_optab
1841 || binoptab == xor_optab
1842 || binoptab == add_optab || binoptab == sub_optab
e5df894b 1843 || binoptab == smul_optab || binoptab == ashl_optab)
835532b8 1844 && class == MODE_INT)
77c9c6c2
RK
1845 no_extend = 1;
1846
0661a3de
RS
1847 xop0 = widen_operand (xop0, wider_mode, mode,
1848 unsignedp, no_extend);
943cc242
RK
1849
1850 /* The second operand of a shift must always be extended. */
0661a3de 1851 xop1 = widen_operand (xop1, wider_mode, mode, unsignedp,
e5df894b 1852 no_extend && binoptab != ashl_optab);
77c9c6c2 1853
b1ec3c92 1854 temp = expand_binop (wider_mode, binoptab, xop0, xop1, NULL_RTX,
77c9c6c2
RK
1855 unsignedp, methods);
1856 if (temp)
1857 {
34e56753 1858 if (class != MODE_INT)
77c9c6c2
RK
1859 {
1860 if (target == 0)
1861 target = gen_reg_rtx (mode);
1862 convert_move (target, temp, 0);
1863 return target;
1864 }
1865 else
1866 return gen_lowpart (mode, temp);
1867 }
1868 else
1869 delete_insns_since (last);
1870 }
1871 }
1872 }
1873
abd418d3 1874 delete_insns_since (entry_last);
77c9c6c2
RK
1875 return 0;
1876}
cb2a532e
AH
1877
1878/* Like expand_binop, but for open-coding vectors binops. */
1879
1880static rtx
0c20a65f
AJ
1881expand_vector_binop (enum machine_mode mode, optab binoptab, rtx op0,
1882 rtx op1, rtx target, int unsignedp,
1883 enum optab_methods methods)
cb2a532e 1884{
34a80643
R
1885 enum machine_mode submode, tmode;
1886 int size, elts, subsize, subbitsize, i;
cb2a532e
AH
1887 rtx t, a, b, res, seq;
1888 enum mode_class class;
1889
1890 class = GET_MODE_CLASS (mode);
1891
7e1a450d 1892 size = GET_MODE_SIZE (mode);
cb2a532e 1893 submode = GET_MODE_INNER (mode);
cb2a532e 1894
34a80643
R
1895 /* Search for the widest vector mode with the same inner mode that is
1896 still narrower than MODE and that allows to open-code this operator.
1897 Note, if we find such a mode and the handler later decides it can't
1898 do the expansion, we'll be called recursively with the narrower mode. */
1899 for (tmode = GET_CLASS_NARROWEST_MODE (class);
1900 GET_MODE_SIZE (tmode) < GET_MODE_SIZE (mode);
1901 tmode = GET_MODE_WIDER_MODE (tmode))
1902 {
1903 if (GET_MODE_INNER (tmode) == GET_MODE_INNER (mode)
1904 && binoptab->handlers[(int) tmode].insn_code != CODE_FOR_nothing)
1905 submode = tmode;
1906 }
cb2a532e
AH
1907
1908 switch (binoptab->code)
1909 {
34a80643
R
1910 case AND:
1911 case IOR:
1912 case XOR:
1913 tmode = int_mode_for_mode (mode);
1914 if (tmode != BLKmode)
1915 submode = tmode;
cb2a532e
AH
1916 case PLUS:
1917 case MINUS:
1918 case MULT:
1919 case DIV:
34a80643
R
1920 subsize = GET_MODE_SIZE (submode);
1921 subbitsize = GET_MODE_BITSIZE (submode);
1922 elts = size / subsize;
1923
1924 /* If METHODS is OPTAB_DIRECT, we don't insist on the exact mode,
1925 but that we operate on more than one element at a time. */
1926 if (subsize == GET_MODE_UNIT_SIZE (mode) && methods == OPTAB_DIRECT)
1927 return 0;
1928
1929 start_sequence ();
1930
1931 /* Errors can leave us with a const0_rtx as operand. */
1932 if (GET_MODE (op0) != mode)
1933 op0 = copy_to_mode_reg (mode, op0);
1934 if (GET_MODE (op1) != mode)
1935 op1 = copy_to_mode_reg (mode, op1);
1936
1937 if (!target)
1938 target = gen_reg_rtx (mode);
1939
cb2a532e
AH
1940 for (i = 0; i < elts; ++i)
1941 {
34a80643
R
1942 /* If this is part of a register, and not the first item in the
1943 word, we can't store using a SUBREG - that would clobber
1944 previous results.
1945 And storing with a SUBREG is only possible for the least
1946 significant part, hence we can't do it for big endian
1947 (unless we want to permute the evaluation order. */
1948 if (GET_CODE (target) == REG
1949 && (BYTES_BIG_ENDIAN
1950 ? subsize < UNITS_PER_WORD
1951 : ((i * subsize) % UNITS_PER_WORD) != 0))
1952 t = NULL_RTX;
1953 else
1954 t = simplify_gen_subreg (submode, target, mode, i * subsize);
1955 if (CONSTANT_P (op0))
1956 a = simplify_gen_subreg (submode, op0, mode, i * subsize);
1957 else
1958 a = extract_bit_field (op0, subbitsize, i * subbitsize, unsignedp,
1959 NULL_RTX, submode, submode, size);
1960 if (CONSTANT_P (op1))
1961 b = simplify_gen_subreg (submode, op1, mode, i * subsize);
1962 else
1963 b = extract_bit_field (op1, subbitsize, i * subbitsize, unsignedp,
1964 NULL_RTX, submode, submode, size);
cb2a532e
AH
1965
1966 if (binoptab->code == DIV)
1967 {
1968 if (class == MODE_VECTOR_FLOAT)
1969 res = expand_binop (submode, binoptab, a, b, t,
1970 unsignedp, methods);
1971 else
1972 res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
1973 a, b, t, unsignedp);
1974 }
1975 else
1976 res = expand_binop (submode, binoptab, a, b, t,
1977 unsignedp, methods);
1978
1979 if (res == 0)
1980 break;
1981
34a80643
R
1982 if (t)
1983 emit_move_insn (t, res);
1984 else
1985 store_bit_field (target, subbitsize, i * subbitsize, submode, res,
1986 size);
cb2a532e
AH
1987 }
1988 break;
1989
1990 default:
1991 abort ();
1992 }
1993
1994 seq = get_insns ();
1995 end_sequence ();
1996 emit_insn (seq);
1997
1998 return target;
1999}
2000
2001/* Like expand_unop but for open-coding vector unops. */
2002
2003static rtx
0c20a65f
AJ
2004expand_vector_unop (enum machine_mode mode, optab unoptab, rtx op0,
2005 rtx target, int unsignedp)
cb2a532e 2006{
34a80643
R
2007 enum machine_mode submode, tmode;
2008 int size, elts, subsize, subbitsize, i;
cb2a532e
AH
2009 rtx t, a, res, seq;
2010
7e1a450d 2011 size = GET_MODE_SIZE (mode);
cb2a532e 2012 submode = GET_MODE_INNER (mode);
34a80643
R
2013
2014 /* Search for the widest vector mode with the same inner mode that is
2015 still narrower than MODE and that allows to open-code this operator.
2016 Note, if we find such a mode and the handler later decides it can't
2017 do the expansion, we'll be called recursively with the narrower mode. */
2018 for (tmode = GET_CLASS_NARROWEST_MODE (GET_MODE_CLASS (mode));
2019 GET_MODE_SIZE (tmode) < GET_MODE_SIZE (mode);
2020 tmode = GET_MODE_WIDER_MODE (tmode))
2021 {
2022 if (GET_MODE_INNER (tmode) == GET_MODE_INNER (mode)
2023 && unoptab->handlers[(int) tmode].insn_code != CODE_FOR_nothing)
2024 submode = tmode;
2025 }
2026 /* If there is no negate operation, try doing a subtract from zero. */
0d541696
R
2027 if (unoptab == neg_optab && GET_MODE_CLASS (submode) == MODE_INT
2028 /* Avoid infinite recursion when an
2029 error has left us with the wrong mode. */
2030 && GET_MODE (op0) == mode)
0c20a65f 2031 {
34a80643
R
2032 rtx temp;
2033 temp = expand_binop (mode, sub_optab, CONST0_RTX (mode), op0,
2034 target, unsignedp, OPTAB_DIRECT);
2035 if (temp)
2036 return temp;
2037 }
2038
2039 if (unoptab == one_cmpl_optab)
2040 {
2041 tmode = int_mode_for_mode (mode);
2042 if (tmode != BLKmode)
2043 submode = tmode;
2044 }
2045
2046 subsize = GET_MODE_SIZE (submode);
2047 subbitsize = GET_MODE_BITSIZE (submode);
2048 elts = size / subsize;
2049
2050 /* Errors can leave us with a const0_rtx as operand. */
2051 if (GET_MODE (op0) != mode)
2052 op0 = copy_to_mode_reg (mode, op0);
cb2a532e
AH
2053
2054 if (!target)
2055 target = gen_reg_rtx (mode);
2056
2057 start_sequence ();
2058
cb2a532e
AH
2059 for (i = 0; i < elts; ++i)
2060 {
34a80643
R
2061 /* If this is part of a register, and not the first item in the
2062 word, we can't store using a SUBREG - that would clobber
2063 previous results.
2064 And storing with a SUBREG is only possible for the least
2065 significant part, hence we can't do it for big endian
2066 (unless we want to permute the evaluation order. */
2067 if (GET_CODE (target) == REG
2068 && (BYTES_BIG_ENDIAN
2069 ? subsize < UNITS_PER_WORD
2070 : ((i * subsize) % UNITS_PER_WORD) != 0))
2071 t = NULL_RTX;
2072 else
2073 t = simplify_gen_subreg (submode, target, mode, i * subsize);
2074 if (CONSTANT_P (op0))
2075 a = simplify_gen_subreg (submode, op0, mode, i * subsize);
2076 else
2077 a = extract_bit_field (op0, subbitsize, i * subbitsize, unsignedp,
2078 t, submode, submode, size);
cb2a532e
AH
2079
2080 res = expand_unop (submode, unoptab, a, t, unsignedp);
2081
34a80643
R
2082 if (t)
2083 emit_move_insn (t, res);
2084 else
2085 store_bit_field (target, subbitsize, i * subbitsize, submode, res,
2086 size);
cb2a532e
AH
2087 }
2088
2089 seq = get_insns ();
2090 end_sequence ();
2091 emit_insn (seq);
2092
2093 return target;
2094}
77c9c6c2
RK
2095\f
2096/* Expand a binary operator which has both signed and unsigned forms.
2097 UOPTAB is the optab for unsigned operations, and SOPTAB is for
2098 signed operations.
2099
2100 If we widen unsigned operands, we may use a signed wider operation instead
2101 of an unsigned wider operation, since the result would be the same. */
2102
2103rtx
0c20a65f
AJ
2104sign_expand_binop (enum machine_mode mode, optab uoptab, optab soptab,
2105 rtx op0, rtx op1, rtx target, int unsignedp,
2106 enum optab_methods methods)
77c9c6c2 2107{
b3694847 2108 rtx temp;
77c9c6c2
RK
2109 optab direct_optab = unsignedp ? uoptab : soptab;
2110 struct optab wide_soptab;
2111
2112 /* Do it without widening, if possible. */
2113 temp = expand_binop (mode, direct_optab, op0, op1, target,
2114 unsignedp, OPTAB_DIRECT);
2115 if (temp || methods == OPTAB_DIRECT)
2116 return temp;
2117
2118 /* Try widening to a signed int. Make a fake signed optab that
2119 hides any signed insn for direct use. */
2120 wide_soptab = *soptab;
2121 wide_soptab.handlers[(int) mode].insn_code = CODE_FOR_nothing;
2122 wide_soptab.handlers[(int) mode].libfunc = 0;
2123
2124 temp = expand_binop (mode, &wide_soptab, op0, op1, target,
2125 unsignedp, OPTAB_WIDEN);
2126
2127 /* For unsigned operands, try widening to an unsigned int. */
2128 if (temp == 0 && unsignedp)
2129 temp = expand_binop (mode, uoptab, op0, op1, target,
2130 unsignedp, OPTAB_WIDEN);
2131 if (temp || methods == OPTAB_WIDEN)
2132 return temp;
2133
2134 /* Use the right width lib call if that exists. */
2135 temp = expand_binop (mode, direct_optab, op0, op1, target, unsignedp, OPTAB_LIB);
2136 if (temp || methods == OPTAB_LIB)
2137 return temp;
2138
2139 /* Must widen and use a lib call, use either signed or unsigned. */
2140 temp = expand_binop (mode, &wide_soptab, op0, op1, target,
2141 unsignedp, methods);
2142 if (temp != 0)
2143 return temp;
2144 if (unsignedp)
2145 return expand_binop (mode, uoptab, op0, op1, target,
2146 unsignedp, methods);
2147 return 0;
2148}
2149\f
6c7cf1f0
UB
2150/* Generate code to perform an operation specified by UNOPPTAB
2151 on operand OP0, with two results to TARG0 and TARG1.
2152 We assume that the order of the operands for the instruction
2153 is TARG0, TARG1, OP0.
2154
2155 Either TARG0 or TARG1 may be zero, but what that means is that
2156 the result is not actually wanted. We will generate it into
2157 a dummy pseudo-reg and discard it. They may not both be zero.
2158
2159 Returns 1 if this operation can be performed; 0 if not. */
2160
2161int
a072d43b 2162expand_twoval_unop (optab unoptab, rtx op0, rtx targ0, rtx targ1,
6c7cf1f0
UB
2163 int unsignedp)
2164{
2165 enum machine_mode mode = GET_MODE (targ0 ? targ0 : targ1);
2166 enum mode_class class;
2167 enum machine_mode wider_mode;
2168 rtx entry_last = get_last_insn ();
2169 rtx last;
2170
2171 class = GET_MODE_CLASS (mode);
2172
2173 op0 = protect_from_queue (op0, 0);
2174
2175 if (flag_force_mem)
2176 {
2177 op0 = force_not_mem (op0);
2178 }
2179
2180 if (targ0)
2181 targ0 = protect_from_queue (targ0, 1);
2182 else
2183 targ0 = gen_reg_rtx (mode);
2184 if (targ1)
2185 targ1 = protect_from_queue (targ1, 1);
2186 else
2187 targ1 = gen_reg_rtx (mode);
2188
2189 /* Record where to go back to if we fail. */
2190 last = get_last_insn ();
2191
2192 if (unoptab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
2193 {
2194 int icode = (int) unoptab->handlers[(int) mode].insn_code;
2195 enum machine_mode mode0 = insn_data[icode].operand[2].mode;
2196 rtx pat;
2197 rtx xop0 = op0;
2198
2199 if (GET_MODE (xop0) != VOIDmode
2200 && GET_MODE (xop0) != mode0)
2201 xop0 = convert_to_mode (mode0, xop0, unsignedp);
2202
2203 /* Now, if insn doesn't accept these operands, put them into pseudos. */
2204 if (! (*insn_data[icode].operand[2].predicate) (xop0, mode0))
2205 xop0 = copy_to_mode_reg (mode0, xop0);
2206
2207 /* We could handle this, but we should always be called with a pseudo
2208 for our targets and all insns should take them as outputs. */
2209 if (! (*insn_data[icode].operand[0].predicate) (targ0, mode)
2210 || ! (*insn_data[icode].operand[1].predicate) (targ1, mode))
2211 abort ();
2212
2213 pat = GEN_FCN (icode) (targ0, targ1, xop0);
2214 if (pat)
2215 {
2216 emit_insn (pat);
2217 return 1;
2218 }
2219 else
2220 delete_insns_since (last);
2221 }
2222
2223 /* It can't be done in this mode. Can we do it in a wider mode? */
2224
2225 if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
2226 {
2227 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
2228 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2229 {
2230 if (unoptab->handlers[(int) wider_mode].insn_code
2231 != CODE_FOR_nothing)
2232 {
2233 rtx t0 = gen_reg_rtx (wider_mode);
2234 rtx t1 = gen_reg_rtx (wider_mode);
2235 rtx cop0 = convert_modes (wider_mode, mode, op0, unsignedp);
2236
a072d43b 2237 if (expand_twoval_unop (unoptab, cop0, t0, t1, unsignedp))
6c7cf1f0
UB
2238 {
2239 convert_move (targ0, t0, unsignedp);
2240 convert_move (targ1, t1, unsignedp);
2241 return 1;
2242 }
2243 else
2244 delete_insns_since (last);
2245 }
2246 }
2247 }
2248
2249 delete_insns_since (entry_last);
2250 return 0;
2251}
2252\f
77c9c6c2
RK
2253/* Generate code to perform an operation specified by BINOPTAB
2254 on operands OP0 and OP1, with two results to TARG1 and TARG2.
2255 We assume that the order of the operands for the instruction
2256 is TARG0, OP0, OP1, TARG1, which would fit a pattern like
2257 [(set TARG0 (operate OP0 OP1)) (set TARG1 (operate ...))].
2258
2259 Either TARG0 or TARG1 may be zero, but what that means is that
38e01259 2260 the result is not actually wanted. We will generate it into
77c9c6c2
RK
2261 a dummy pseudo-reg and discard it. They may not both be zero.
2262
2263 Returns 1 if this operation can be performed; 0 if not. */
2264
2265int
0c20a65f
AJ
2266expand_twoval_binop (optab binoptab, rtx op0, rtx op1, rtx targ0, rtx targ1,
2267 int unsignedp)
77c9c6c2
RK
2268{
2269 enum machine_mode mode = GET_MODE (targ0 ? targ0 : targ1);
2270 enum mode_class class;
2271 enum machine_mode wider_mode;
abd418d3 2272 rtx entry_last = get_last_insn ();
77c9c6c2
RK
2273 rtx last;
2274
2275 class = GET_MODE_CLASS (mode);
2276
2277 op0 = protect_from_queue (op0, 0);
2278 op1 = protect_from_queue (op1, 0);
2279
2280 if (flag_force_mem)
2281 {
2282 op0 = force_not_mem (op0);
2283 op1 = force_not_mem (op1);
2284 }
2285
2286 /* If we are inside an appropriately-short loop and one operand is an
2287 expensive constant, force it into a register. */
aeedc93f 2288 if (CONSTANT_P (op0) && preserve_subexpressions_p ()
b437f1a7 2289 && rtx_cost (op0, binoptab->code) > COSTS_N_INSNS (1))
77c9c6c2
RK
2290 op0 = force_reg (mode, op0);
2291
aeedc93f 2292 if (CONSTANT_P (op1) && preserve_subexpressions_p ()
b437f1a7 2293 && rtx_cost (op1, binoptab->code) > COSTS_N_INSNS (1))
77c9c6c2
RK
2294 op1 = force_reg (mode, op1);
2295
2296 if (targ0)
2297 targ0 = protect_from_queue (targ0, 1);
2298 else
2299 targ0 = gen_reg_rtx (mode);
2300 if (targ1)
2301 targ1 = protect_from_queue (targ1, 1);
2302 else
2303 targ1 = gen_reg_rtx (mode);
2304
2305 /* Record where to go back to if we fail. */
2306 last = get_last_insn ();
2307
2308 if (binoptab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
2309 {
2310 int icode = (int) binoptab->handlers[(int) mode].insn_code;
a995e389
RH
2311 enum machine_mode mode0 = insn_data[icode].operand[1].mode;
2312 enum machine_mode mode1 = insn_data[icode].operand[2].mode;
77c9c6c2
RK
2313 rtx pat;
2314 rtx xop0 = op0, xop1 = op1;
2315
874f6a6d
EB
2316 /* In case the insn wants input operands in modes different from
2317 those of the actual operands, convert the operands. It would
2318 seem that we don't need to convert CONST_INTs, but we do, so
35f1c975
EB
2319 that they're properly zero-extended, sign-extended or truncated
2320 for their mode. */
77c9c6c2 2321
874f6a6d
EB
2322 if (GET_MODE (op0) != mode0 && mode0 != VOIDmode)
2323 xop0 = convert_modes (mode0,
2324 GET_MODE (op0) != VOIDmode
2325 ? GET_MODE (op0)
2326 : mode,
2327 xop0, unsignedp);
2328
2329 if (GET_MODE (op1) != mode1 && mode1 != VOIDmode)
2330 xop1 = convert_modes (mode1,
2331 GET_MODE (op1) != VOIDmode
2332 ? GET_MODE (op1)
2333 : mode,
2334 xop1, unsignedp);
77c9c6c2
RK
2335
2336 /* Now, if insn doesn't accept these operands, put them into pseudos. */
a995e389 2337 if (! (*insn_data[icode].operand[1].predicate) (xop0, mode0))
77c9c6c2
RK
2338 xop0 = copy_to_mode_reg (mode0, xop0);
2339
a995e389 2340 if (! (*insn_data[icode].operand[2].predicate) (xop1, mode1))
77c9c6c2
RK
2341 xop1 = copy_to_mode_reg (mode1, xop1);
2342
2343 /* We could handle this, but we should always be called with a pseudo
2344 for our targets and all insns should take them as outputs. */
a995e389
RH
2345 if (! (*insn_data[icode].operand[0].predicate) (targ0, mode)
2346 || ! (*insn_data[icode].operand[3].predicate) (targ1, mode))
77c9c6c2 2347 abort ();
0c20a65f 2348
77c9c6c2
RK
2349 pat = GEN_FCN (icode) (targ0, xop0, xop1, targ1);
2350 if (pat)
2351 {
2352 emit_insn (pat);
2353 return 1;
2354 }
2355 else
2356 delete_insns_since (last);
2357 }
2358
2359 /* It can't be done in this mode. Can we do it in a wider mode? */
2360
2361 if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
2362 {
34e56753 2363 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
77c9c6c2
RK
2364 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2365 {
2366 if (binoptab->handlers[(int) wider_mode].insn_code
2367 != CODE_FOR_nothing)
2368 {
b3694847
SS
2369 rtx t0 = gen_reg_rtx (wider_mode);
2370 rtx t1 = gen_reg_rtx (wider_mode);
76791f3d
JH
2371 rtx cop0 = convert_modes (wider_mode, mode, op0, unsignedp);
2372 rtx cop1 = convert_modes (wider_mode, mode, op1, unsignedp);
77c9c6c2 2373
76791f3d 2374 if (expand_twoval_binop (binoptab, cop0, cop1,
77c9c6c2
RK
2375 t0, t1, unsignedp))
2376 {
2377 convert_move (targ0, t0, unsignedp);
2378 convert_move (targ1, t1, unsignedp);
2379 return 1;
2380 }
2381 else
2382 delete_insns_since (last);
2383 }
2384 }
2385 }
2386
abd418d3 2387 delete_insns_since (entry_last);
77c9c6c2
RK
2388 return 0;
2389}
2390\f
ef89d648
ZW
2391/* Wrapper around expand_unop which takes an rtx code to specify
2392 the operation to perform, not an optab pointer. All other
2393 arguments are the same. */
2394rtx
0c20a65f
AJ
2395expand_simple_unop (enum machine_mode mode, enum rtx_code code, rtx op0,
2396 rtx target, int unsignedp)
ef89d648 2397{
7e1a450d 2398 optab unop = code_to_optab[(int) code];
ef89d648
ZW
2399 if (unop == 0)
2400 abort ();
2401
2402 return expand_unop (mode, unop, op0, target, unsignedp);
2403}
2404
2928cd7a
RH
2405/* Try calculating
2406 (clz:narrow x)
2407 as
2408 (clz:wide (zero_extend:wide x)) - ((width wide) - (width narrow)). */
2409static rtx
0c20a65f 2410widen_clz (enum machine_mode mode, rtx op0, rtx target)
2928cd7a
RH
2411{
2412 enum mode_class class = GET_MODE_CLASS (mode);
2413 if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
2414 {
2415 enum machine_mode wider_mode;
2416 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
2417 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2418 {
2419 if (clz_optab->handlers[(int) wider_mode].insn_code
2420 != CODE_FOR_nothing)
2421 {
2422 rtx xop0, temp, last;
2423
2424 last = get_last_insn ();
2425
2426 if (target == 0)
2427 target = gen_reg_rtx (mode);
2428 xop0 = widen_operand (op0, wider_mode, mode, true, false);
2429 temp = expand_unop (wider_mode, clz_optab, xop0, NULL_RTX, true);
2430 if (temp != 0)
2431 temp = expand_binop (wider_mode, sub_optab, temp,
2432 GEN_INT (GET_MODE_BITSIZE (wider_mode)
2433 - GET_MODE_BITSIZE (mode)),
2434 target, true, OPTAB_DIRECT);
2435 if (temp == 0)
2436 delete_insns_since (last);
2437
2438 return temp;
2439 }
2440 }
2441 }
2442 return 0;
2443}
2444
2445/* Try calculating (parity x) as (and (popcount x) 1), where
2446 popcount can also be done in a wider mode. */
2447static rtx
0c20a65f 2448expand_parity (enum machine_mode mode, rtx op0, rtx target)
2928cd7a
RH
2449{
2450 enum mode_class class = GET_MODE_CLASS (mode);
2451 if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
2452 {
2453 enum machine_mode wider_mode;
2454 for (wider_mode = mode; wider_mode != VOIDmode;
2455 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2456 {
2457 if (popcount_optab->handlers[(int) wider_mode].insn_code
2458 != CODE_FOR_nothing)
2459 {
2460 rtx xop0, temp, last;
2461
2462 last = get_last_insn ();
2463
2464 if (target == 0)
2465 target = gen_reg_rtx (mode);
2466 xop0 = widen_operand (op0, wider_mode, mode, true, false);
2467 temp = expand_unop (wider_mode, popcount_optab, xop0, NULL_RTX,
2468 true);
2469 if (temp != 0)
60c81c89 2470 temp = expand_binop (wider_mode, and_optab, temp, const1_rtx,
2928cd7a
RH
2471 target, true, OPTAB_DIRECT);
2472 if (temp == 0)
2473 delete_insns_since (last);
2474
2475 return temp;
2476 }
2477 }
2478 }
2479 return 0;
2480}
2481
77c9c6c2
RK
2482/* Generate code to perform an operation specified by UNOPTAB
2483 on operand OP0, with result having machine-mode MODE.
2484
2485 UNSIGNEDP is for the case where we have to widen the operands
2486 to perform the operation. It says to use zero-extension.
2487
2488 If TARGET is nonzero, the value
2489 is generated there, if it is convenient to do so.
2490 In all cases an rtx is returned for the locus of the value;
2491 this may or may not be TARGET. */
2492
2493rtx
0c20a65f
AJ
2494expand_unop (enum machine_mode mode, optab unoptab, rtx op0, rtx target,
2495 int unsignedp)
77c9c6c2
RK
2496{
2497 enum mode_class class;
2498 enum machine_mode wider_mode;
b3694847 2499 rtx temp;
77c9c6c2
RK
2500 rtx last = get_last_insn ();
2501 rtx pat;
2502
2503 class = GET_MODE_CLASS (mode);
2504
2505 op0 = protect_from_queue (op0, 0);
2506
2507 if (flag_force_mem)
2508 {
2509 op0 = force_not_mem (op0);
2510 }
2511
2512 if (target)
2513 target = protect_from_queue (target, 1);
2514
2515 if (unoptab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
2516 {
2517 int icode = (int) unoptab->handlers[(int) mode].insn_code;
a995e389 2518 enum machine_mode mode0 = insn_data[icode].operand[1].mode;
77c9c6c2
RK
2519 rtx xop0 = op0;
2520
2521 if (target)
2522 temp = target;
2523 else
2524 temp = gen_reg_rtx (mode);
2525
2526 if (GET_MODE (xop0) != VOIDmode
2527 && GET_MODE (xop0) != mode0)
2528 xop0 = convert_to_mode (mode0, xop0, unsignedp);
2529
2530 /* Now, if insn doesn't accept our operand, put it into a pseudo. */
2531
a995e389 2532 if (! (*insn_data[icode].operand[1].predicate) (xop0, mode0))
77c9c6c2
RK
2533 xop0 = copy_to_mode_reg (mode0, xop0);
2534
a995e389 2535 if (! (*insn_data[icode].operand[0].predicate) (temp, mode))
77c9c6c2
RK
2536 temp = gen_reg_rtx (mode);
2537
2538 pat = GEN_FCN (icode) (temp, xop0);
2539 if (pat)
2540 {
2f937369 2541 if (INSN_P (pat) && NEXT_INSN (pat) != NULL_RTX
b1ec3c92 2542 && ! add_equal_note (pat, temp, unoptab->code, xop0, NULL_RTX))
77c9c6c2
RK
2543 {
2544 delete_insns_since (last);
b1ec3c92 2545 return expand_unop (mode, unoptab, op0, NULL_RTX, unsignedp);
77c9c6c2
RK
2546 }
2547
2548 emit_insn (pat);
0c20a65f 2549
77c9c6c2
RK
2550 return temp;
2551 }
2552 else
2553 delete_insns_since (last);
2554 }
2555
9a856ec7
RK
2556 /* It can't be done in this mode. Can we open-code it in a wider mode? */
2557
2928cd7a
RH
2558 /* Widening clz needs special treatment. */
2559 if (unoptab == clz_optab)
2560 {
2561 temp = widen_clz (mode, op0, target);
2562 if (temp)
2563 return temp;
2564 else
2565 goto try_libcall;
2566 }
2567
9a856ec7
RK
2568 if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
2569 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
2570 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2571 {
2572 if (unoptab->handlers[(int) wider_mode].insn_code != CODE_FOR_nothing)
2573 {
2574 rtx xop0 = op0;
2575
2576 /* For certain operations, we need not actually extend
2577 the narrow operand, as long as we will truncate the
835532b8
RK
2578 results to the same narrowness. */
2579
0661a3de 2580 xop0 = widen_operand (xop0, wider_mode, mode, unsignedp,
835532b8
RK
2581 (unoptab == neg_optab
2582 || unoptab == one_cmpl_optab)
2583 && class == MODE_INT);
0c20a65f 2584
b1ec3c92
CH
2585 temp = expand_unop (wider_mode, unoptab, xop0, NULL_RTX,
2586 unsignedp);
9a856ec7
RK
2587
2588 if (temp)
2589 {
2590 if (class != MODE_INT)
2591 {
2592 if (target == 0)
2593 target = gen_reg_rtx (mode);
2594 convert_move (target, temp, 0);
2595 return target;
2596 }
2597 else
2598 return gen_lowpart (mode, temp);
2599 }
2600 else
2601 delete_insns_since (last);
2602 }
2603 }
2604
77c9c6c2
RK
2605 /* These can be done a word at a time. */
2606 if (unoptab == one_cmpl_optab
2607 && class == MODE_INT
2608 && GET_MODE_SIZE (mode) > UNITS_PER_WORD
34e56753 2609 && unoptab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing)
77c9c6c2 2610 {
bb93b973 2611 int i;
77c9c6c2
RK
2612 rtx insns;
2613
2614 if (target == 0 || target == op0)
2615 target = gen_reg_rtx (mode);
2616
2617 start_sequence ();
2618
2619 /* Do the actual arithmetic. */
2620 for (i = 0; i < GET_MODE_BITSIZE (mode) / BITS_PER_WORD; i++)
2621 {
2622 rtx target_piece = operand_subword (target, i, 1, mode);
34e56753 2623 rtx x = expand_unop (word_mode, unoptab,
77c9c6c2
RK
2624 operand_subword_force (op0, i, mode),
2625 target_piece, unsignedp);
bb93b973 2626
77c9c6c2
RK
2627 if (target_piece != x)
2628 emit_move_insn (target_piece, x);
2629 }
2630
2631 insns = get_insns ();
2632 end_sequence ();
2633
b1ec3c92 2634 emit_no_conflict_block (insns, target, op0, NULL_RTX,
9e6a5703
JC
2635 gen_rtx_fmt_e (unoptab->code, mode,
2636 copy_rtx (op0)));
77c9c6c2
RK
2637 return target;
2638 }
2639
139e5e08 2640 /* Open-code the complex negation operation. */
91ce572a 2641 else if (unoptab->code == NEG
139e5e08
RS
2642 && (class == MODE_COMPLEX_FLOAT || class == MODE_COMPLEX_INT))
2643 {
2644 rtx target_piece;
2645 rtx x;
2646 rtx seq;
2647
f9da5064 2648 /* Find the correct mode for the real and imaginary parts. */
27e58a70 2649 enum machine_mode submode = GET_MODE_INNER (mode);
139e5e08
RS
2650
2651 if (submode == BLKmode)
2652 abort ();
2653
2654 if (target == 0)
2655 target = gen_reg_rtx (mode);
0c20a65f 2656
139e5e08
RS
2657 start_sequence ();
2658
decdfa82 2659 target_piece = gen_imagpart (submode, target);
139e5e08 2660 x = expand_unop (submode, unoptab,
decdfa82 2661 gen_imagpart (submode, op0),
139e5e08
RS
2662 target_piece, unsignedp);
2663 if (target_piece != x)
2664 emit_move_insn (target_piece, x);
2665
decdfa82 2666 target_piece = gen_realpart (submode, target);
139e5e08 2667 x = expand_unop (submode, unoptab,
decdfa82 2668 gen_realpart (submode, op0),
139e5e08
RS
2669 target_piece, unsignedp);
2670 if (target_piece != x)
2671 emit_move_insn (target_piece, x);
2672
a29b481b 2673 seq = get_insns ();
139e5e08
RS
2674 end_sequence ();
2675
2676 emit_no_conflict_block (seq, target, op0, 0,
9e6a5703
JC
2677 gen_rtx_fmt_e (unoptab->code, mode,
2678 copy_rtx (op0)));
139e5e08
RS
2679 return target;
2680 }
2681
4977bab6
ZW
2682 /* Try negating floating point values by flipping the sign bit. */
2683 if (unoptab->code == NEG && class == MODE_FLOAT
2684 && GET_MODE_BITSIZE (mode) <= 2 * HOST_BITS_PER_WIDE_INT)
2685 {
70a01792 2686 const struct real_format *fmt = REAL_MODE_FORMAT (mode);
4977bab6
ZW
2687 enum machine_mode imode = int_mode_for_mode (mode);
2688 int bitpos = (fmt != 0) ? fmt->signbit : -1;
2689
2690 if (imode != BLKmode && bitpos >= 0 && fmt->has_signed_zero)
2691 {
2692 HOST_WIDE_INT hi, lo;
2693 rtx last = get_last_insn ();
2694
9ee0a442
RS
2695 /* Handle targets with different FP word orders. */
2696 if (FLOAT_WORDS_BIG_ENDIAN != WORDS_BIG_ENDIAN)
2697 {
2698 int nwords = GET_MODE_BITSIZE (mode) / BITS_PER_WORD;
2699 int word = nwords - (bitpos / BITS_PER_WORD) - 1;
2700 bitpos = word * BITS_PER_WORD + bitpos % BITS_PER_WORD;
2701 }
2702
4977bab6
ZW
2703 if (bitpos < HOST_BITS_PER_WIDE_INT)
2704 {
2705 hi = 0;
2706 lo = (HOST_WIDE_INT) 1 << bitpos;
2707 }
2708 else
2709 {
2710 hi = (HOST_WIDE_INT) 1 << (bitpos - HOST_BITS_PER_WIDE_INT);
2711 lo = 0;
2712 }
2713 temp = expand_binop (imode, xor_optab,
2714 gen_lowpart (imode, op0),
2715 immed_double_const (lo, hi, imode),
2716 NULL_RTX, 1, OPTAB_LIB_WIDEN);
2717 if (temp != 0)
dd0ba281
RS
2718 {
2719 rtx insn;
2720 if (target == 0)
2721 target = gen_reg_rtx (mode);
2722 insn = emit_move_insn (target, gen_lowpart (mode, temp));
2723 set_unique_reg_note (insn, REG_EQUAL,
2724 gen_rtx_fmt_e (NEG, mode,
2725 copy_rtx (op0)));
2726 return target;
2727 }
4977bab6
ZW
2728 delete_insns_since (last);
2729 }
2730 }
2731
2928cd7a
RH
2732 /* Try calculating parity (x) as popcount (x) % 2. */
2733 if (unoptab == parity_optab)
2734 {
2735 temp = expand_parity (mode, op0, target);
2736 if (temp)
2737 return temp;
2738 }
2739
2740 try_libcall:
139e5e08 2741 /* Now try a library call in this mode. */
77c9c6c2
RK
2742 if (unoptab->handlers[(int) mode].libfunc)
2743 {
2744 rtx insns;
9a7f678c 2745 rtx value;
2928cd7a
RH
2746 enum machine_mode outmode = mode;
2747
2748 /* All of these functions return small values. Thus we choose to
2749 have them return something that isn't a double-word. */
2750 if (unoptab == ffs_optab || unoptab == clz_optab || unoptab == ctz_optab
2751 || unoptab == popcount_optab || unoptab == parity_optab)
cd2ac05b
FH
2752 outmode
2753 = GET_MODE (hard_libcall_value (TYPE_MODE (integer_type_node)));
77c9c6c2
RK
2754
2755 start_sequence ();
2756
2757 /* Pass 1 for NO_QUEUE so we don't lose any increments
2758 if the libcall is cse'd or moved. */
9a7f678c 2759 value = emit_library_call_value (unoptab->handlers[(int) mode].libfunc,
2928cd7a
RH
2760 NULL_RTX, LCT_CONST, outmode,
2761 1, op0, mode);
77c9c6c2
RK
2762 insns = get_insns ();
2763 end_sequence ();
2764
2928cd7a 2765 target = gen_reg_rtx (outmode);
9a7f678c 2766 emit_libcall_block (insns, target, value,
9e6a5703 2767 gen_rtx_fmt_e (unoptab->code, mode, op0));
77c9c6c2
RK
2768
2769 return target;
2770 }
2771
cb2a532e
AH
2772 if (class == MODE_VECTOR_FLOAT || class == MODE_VECTOR_INT)
2773 return expand_vector_unop (mode, unoptab, op0, target, unsignedp);
2774
77c9c6c2
RK
2775 /* It can't be done in this mode. Can we do it in a wider mode? */
2776
2777 if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
2778 {
34e56753 2779 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
77c9c6c2
RK
2780 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2781 {
2782 if ((unoptab->handlers[(int) wider_mode].insn_code
2783 != CODE_FOR_nothing)
2784 || unoptab->handlers[(int) wider_mode].libfunc)
2785 {
34e56753
RS
2786 rtx xop0 = op0;
2787
2788 /* For certain operations, we need not actually extend
2789 the narrow operand, as long as we will truncate the
2790 results to the same narrowness. */
2791
0661a3de 2792 xop0 = widen_operand (xop0, wider_mode, mode, unsignedp,
835532b8
RK
2793 (unoptab == neg_optab
2794 || unoptab == one_cmpl_optab)
2795 && class == MODE_INT);
0c20a65f 2796
b1ec3c92
CH
2797 temp = expand_unop (wider_mode, unoptab, xop0, NULL_RTX,
2798 unsignedp);
34e56753 2799
c117dddc
KH
2800 /* If we are generating clz using wider mode, adjust the
2801 result. */
2802 if (unoptab == clz_optab && temp != 0)
2803 temp = expand_binop (wider_mode, sub_optab, temp,
2804 GEN_INT (GET_MODE_BITSIZE (wider_mode)
2805 - GET_MODE_BITSIZE (mode)),
2806 target, true, OPTAB_DIRECT);
2807
34e56753 2808 if (temp)
77c9c6c2 2809 {
34e56753
RS
2810 if (class != MODE_INT)
2811 {
2812 if (target == 0)
2813 target = gen_reg_rtx (mode);
2814 convert_move (target, temp, 0);
2815 return target;
2816 }
2817 else
2818 return gen_lowpart (mode, temp);
77c9c6c2
RK
2819 }
2820 else
34e56753 2821 delete_insns_since (last);
77c9c6c2
RK
2822 }
2823 }
2824 }
2825
b82b6eea
DE
2826 /* If there is no negate operation, try doing a subtract from zero.
2827 The US Software GOFAST library needs this. */
91ce572a 2828 if (unoptab->code == NEG)
0c20a65f 2829 {
b82b6eea 2830 rtx temp;
91ce572a
CC
2831 temp = expand_binop (mode,
2832 unoptab == negv_optab ? subv_optab : sub_optab,
2833 CONST0_RTX (mode), op0,
2834 target, unsignedp, OPTAB_LIB_WIDEN);
b82b6eea
DE
2835 if (temp)
2836 return temp;
2837 }
0c20a65f 2838
77c9c6c2
RK
2839 return 0;
2840}
2841\f
decdfa82
RS
2842/* Emit code to compute the absolute value of OP0, with result to
2843 TARGET if convenient. (TARGET may be 0.) The return value says
2844 where the result actually is to be found.
2845
2846 MODE is the mode of the operand; the mode of the result is
2847 different but can be deduced from MODE.
2848
91813b28 2849 */
7fd01431
RK
2850
2851rtx
0c20a65f
AJ
2852expand_abs_nojump (enum machine_mode mode, rtx op0, rtx target,
2853 int result_unsignedp)
7fd01431 2854{
2ef0a555 2855 rtx temp;
7fd01431 2856
91ce572a
CC
2857 if (! flag_trapv)
2858 result_unsignedp = 1;
2859
7fd01431 2860 /* First try to do it with a special abs instruction. */
91ce572a
CC
2861 temp = expand_unop (mode, result_unsignedp ? abs_optab : absv_optab,
2862 op0, target, 0);
7fd01431
RK
2863 if (temp != 0)
2864 return temp;
2865
4977bab6
ZW
2866 /* For floating point modes, try clearing the sign bit. */
2867 if (GET_MODE_CLASS (mode) == MODE_FLOAT
2868 && GET_MODE_BITSIZE (mode) <= 2 * HOST_BITS_PER_WIDE_INT)
2869 {
70a01792 2870 const struct real_format *fmt = REAL_MODE_FORMAT (mode);
4977bab6
ZW
2871 enum machine_mode imode = int_mode_for_mode (mode);
2872 int bitpos = (fmt != 0) ? fmt->signbit : -1;
2873
2874 if (imode != BLKmode && bitpos >= 0)
2875 {
2876 HOST_WIDE_INT hi, lo;
2877 rtx last = get_last_insn ();
2878
9ee0a442
RS
2879 /* Handle targets with different FP word orders. */
2880 if (FLOAT_WORDS_BIG_ENDIAN != WORDS_BIG_ENDIAN)
2881 {
2882 int nwords = GET_MODE_BITSIZE (mode) / BITS_PER_WORD;
2883 int word = nwords - (bitpos / BITS_PER_WORD) - 1;
2884 bitpos = word * BITS_PER_WORD + bitpos % BITS_PER_WORD;
2885 }
2886
4977bab6
ZW
2887 if (bitpos < HOST_BITS_PER_WIDE_INT)
2888 {
2889 hi = 0;
2890 lo = (HOST_WIDE_INT) 1 << bitpos;
2891 }
2892 else
2893 {
2894 hi = (HOST_WIDE_INT) 1 << (bitpos - HOST_BITS_PER_WIDE_INT);
2895 lo = 0;
2896 }
2897 temp = expand_binop (imode, and_optab,
2898 gen_lowpart (imode, op0),
2899 immed_double_const (~lo, ~hi, imode),
2900 NULL_RTX, 1, OPTAB_LIB_WIDEN);
2901 if (temp != 0)
dd0ba281
RS
2902 {
2903 rtx insn;
2904 if (target == 0)
2905 target = gen_reg_rtx (mode);
2906 insn = emit_move_insn (target, gen_lowpart (mode, temp));
2907 set_unique_reg_note (insn, REG_EQUAL,
2908 gen_rtx_fmt_e (ABS, mode,
2909 copy_rtx (op0)));
2910 return target;
2911 }
4977bab6
ZW
2912 delete_insns_since (last);
2913 }
2914 }
2915
14a774a9
RK
2916 /* If we have a MAX insn, we can do this as MAX (x, -x). */
2917 if (smax_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
2918 {
2919 rtx last = get_last_insn ();
2920
2921 temp = expand_unop (mode, neg_optab, op0, NULL_RTX, 0);
2922 if (temp != 0)
2923 temp = expand_binop (mode, smax_optab, op0, temp, target, 0,
2924 OPTAB_WIDEN);
2925
2926 if (temp != 0)
2927 return temp;
2928
2929 delete_insns_since (last);
2930 }
2931
7fd01431
RK
2932 /* If this machine has expensive jumps, we can do integer absolute
2933 value of X as (((signed) x >> (W-1)) ^ x) - ((signed) x >> (W-1)),
e1078cfc 2934 where W is the width of MODE. */
7fd01431
RK
2935
2936 if (GET_MODE_CLASS (mode) == MODE_INT && BRANCH_COST >= 2)
2937 {
2938 rtx extended = expand_shift (RSHIFT_EXPR, mode, op0,
2939 size_int (GET_MODE_BITSIZE (mode) - 1),
2940 NULL_RTX, 0);
2941
2942 temp = expand_binop (mode, xor_optab, extended, op0, target, 0,
2943 OPTAB_LIB_WIDEN);
2944 if (temp != 0)
91ce572a
CC
2945 temp = expand_binop (mode, result_unsignedp ? sub_optab : subv_optab,
2946 temp, extended, target, 0, OPTAB_LIB_WIDEN);
7fd01431
RK
2947
2948 if (temp != 0)
2949 return temp;
2950 }
2951
2ef0a555
RH
2952 return NULL_RTX;
2953}
2954
2955rtx
0c20a65f
AJ
2956expand_abs (enum machine_mode mode, rtx op0, rtx target,
2957 int result_unsignedp, int safe)
2ef0a555
RH
2958{
2959 rtx temp, op1;
2960
77173bbe
KH
2961 if (! flag_trapv)
2962 result_unsignedp = 1;
2963
2ef0a555
RH
2964 temp = expand_abs_nojump (mode, op0, target, result_unsignedp);
2965 if (temp != 0)
2966 return temp;
2967
7fd01431 2968 /* If that does not win, use conditional jump and negate. */
5c0bf747
RK
2969
2970 /* It is safe to use the target if it is the same
2971 as the source if this is also a pseudo register */
2972 if (op0 == target && GET_CODE (op0) == REG
2973 && REGNO (op0) >= FIRST_PSEUDO_REGISTER)
2974 safe = 1;
2975
7fd01431
RK
2976 op1 = gen_label_rtx ();
2977 if (target == 0 || ! safe
2978 || GET_MODE (target) != mode
2979 || (GET_CODE (target) == MEM && MEM_VOLATILE_P (target))
2980 || (GET_CODE (target) == REG
2981 && REGNO (target) < FIRST_PSEUDO_REGISTER))
2982 target = gen_reg_rtx (mode);
2983
2984 emit_move_insn (target, op0);
2985 NO_DEFER_POP;
2986
2987 /* If this mode is an integer too wide to compare properly,
2988 compare word by word. Rely on CSE to optimize constant cases. */
1eb8759b
RH
2989 if (GET_MODE_CLASS (mode) == MODE_INT
2990 && ! can_compare_p (GE, mode, ccp_jump))
0c20a65f 2991 do_jump_by_parts_greater_rtx (mode, 0, target, const0_rtx,
7fd01431
RK
2992 NULL_RTX, op1);
2993 else
b30f05db 2994 do_compare_rtx_and_jump (target, CONST0_RTX (mode), GE, 0, mode,
a06ef755 2995 NULL_RTX, NULL_RTX, op1);
7fd01431 2996
91ce572a
CC
2997 op0 = expand_unop (mode, result_unsignedp ? neg_optab : negv_optab,
2998 target, target, 0);
7fd01431
RK
2999 if (op0 != target)
3000 emit_move_insn (target, op0);
3001 emit_label (op1);
3002 OK_DEFER_POP;
3003 return target;
3004}
3005\f
3006/* Emit code to compute the absolute value of OP0, with result to
3007 TARGET if convenient. (TARGET may be 0.) The return value says
3008 where the result actually is to be found.
3009
3010 MODE is the mode of the operand; the mode of the result is
3011 different but can be deduced from MODE.
3012
decdfa82
RS
3013 UNSIGNEDP is relevant for complex integer modes. */
3014
3015rtx
0c20a65f
AJ
3016expand_complex_abs (enum machine_mode mode, rtx op0, rtx target,
3017 int unsignedp)
decdfa82
RS
3018{
3019 enum mode_class class = GET_MODE_CLASS (mode);
3020 enum machine_mode wider_mode;
b3694847 3021 rtx temp;
abd418d3
RS
3022 rtx entry_last = get_last_insn ();
3023 rtx last;
decdfa82 3024 rtx pat;
91ce572a 3025 optab this_abs_optab;
decdfa82
RS
3026
3027 /* Find the correct mode for the real and imaginary parts. */
27e58a70 3028 enum machine_mode submode = GET_MODE_INNER (mode);
decdfa82
RS
3029
3030 if (submode == BLKmode)
3031 abort ();
3032
3033 op0 = protect_from_queue (op0, 0);
3034
3035 if (flag_force_mem)
3036 {
3037 op0 = force_not_mem (op0);
3038 }
3039
abd418d3
RS
3040 last = get_last_insn ();
3041
decdfa82
RS
3042 if (target)
3043 target = protect_from_queue (target, 1);
3044
91ce572a
CC
3045 this_abs_optab = ! unsignedp && flag_trapv
3046 && (GET_MODE_CLASS(mode) == MODE_INT)
3047 ? absv_optab : abs_optab;
3048
3049 if (this_abs_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
decdfa82 3050 {
91ce572a 3051 int icode = (int) this_abs_optab->handlers[(int) mode].insn_code;
a995e389 3052 enum machine_mode mode0 = insn_data[icode].operand[1].mode;
decdfa82
RS
3053 rtx xop0 = op0;
3054
3055 if (target)
3056 temp = target;
3057 else
3058 temp = gen_reg_rtx (submode);
3059
3060 if (GET_MODE (xop0) != VOIDmode
3061 && GET_MODE (xop0) != mode0)
3062 xop0 = convert_to_mode (mode0, xop0, unsignedp);
3063
3064 /* Now, if insn doesn't accept our operand, put it into a pseudo. */
3065
a995e389 3066 if (! (*insn_data[icode].operand[1].predicate) (xop0, mode0))
decdfa82
RS
3067 xop0 = copy_to_mode_reg (mode0, xop0);
3068
a995e389 3069 if (! (*insn_data[icode].operand[0].predicate) (temp, submode))
decdfa82
RS
3070 temp = gen_reg_rtx (submode);
3071
3072 pat = GEN_FCN (icode) (temp, xop0);
3073 if (pat)
3074 {
2f937369 3075 if (INSN_P (pat) && NEXT_INSN (pat) != NULL_RTX
0c20a65f 3076 && ! add_equal_note (pat, temp, this_abs_optab->code, xop0,
91ce572a 3077 NULL_RTX))
decdfa82
RS
3078 {
3079 delete_insns_since (last);
0c20a65f 3080 return expand_unop (mode, this_abs_optab, op0, NULL_RTX,
91ce572a 3081 unsignedp);
decdfa82
RS
3082 }
3083
3084 emit_insn (pat);
0c20a65f 3085
decdfa82
RS
3086 return temp;
3087 }
3088 else
3089 delete_insns_since (last);
3090 }
3091
3092 /* It can't be done in this mode. Can we open-code it in a wider mode? */
3093
3094 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
3095 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
3096 {
0c20a65f 3097 if (this_abs_optab->handlers[(int) wider_mode].insn_code
91ce572a 3098 != CODE_FOR_nothing)
decdfa82
RS
3099 {
3100 rtx xop0 = op0;
3101
0661a3de 3102 xop0 = convert_modes (wider_mode, mode, xop0, unsignedp);
decdfa82
RS
3103 temp = expand_complex_abs (wider_mode, xop0, NULL_RTX, unsignedp);
3104
3105 if (temp)
3106 {
3107 if (class != MODE_COMPLEX_INT)
3108 {
3109 if (target == 0)
3110 target = gen_reg_rtx (submode);
3111 convert_move (target, temp, 0);
3112 return target;
3113 }
3114 else
3115 return gen_lowpart (submode, temp);
3116 }
3117 else
3118 delete_insns_since (last);
3119 }
3120 }
3121
3122 /* Open-code the complex absolute-value operation
3123 if we can open-code sqrt. Otherwise it's not worth while. */
10e927ef
CC
3124 if (sqrt_optab->handlers[(int) submode].insn_code != CODE_FOR_nothing
3125 && ! flag_trapv)
decdfa82
RS
3126 {
3127 rtx real, imag, total;
3128
3129 real = gen_realpart (submode, op0);
3130 imag = gen_imagpart (submode, op0);
9061e4cd 3131
decdfa82 3132 /* Square both parts. */
9061e4cd
RK
3133 real = expand_mult (submode, real, real, NULL_RTX, 0);
3134 imag = expand_mult (submode, imag, imag, NULL_RTX, 0);
3135
decdfa82 3136 /* Sum the parts. */
73d9a835 3137 total = expand_binop (submode, add_optab, real, imag, NULL_RTX,
decdfa82 3138 0, OPTAB_LIB_WIDEN);
9061e4cd 3139
decdfa82
RS
3140 /* Get sqrt in TARGET. Set TARGET to where the result is. */
3141 target = expand_unop (submode, sqrt_optab, total, target, 0);
3142 if (target == 0)
3143 delete_insns_since (last);
3144 else
3145 return target;
3146 }
3147
3148 /* Now try a library call in this mode. */
91ce572a 3149 if (this_abs_optab->handlers[(int) mode].libfunc)
decdfa82
RS
3150 {
3151 rtx insns;
a0bc0933 3152 rtx value;
decdfa82
RS
3153
3154 start_sequence ();
3155
3156 /* Pass 1 for NO_QUEUE so we don't lose any increments
3157 if the libcall is cse'd or moved. */
9a7f678c 3158 value = emit_library_call_value (abs_optab->handlers[(int) mode].libfunc,
ebb1b59a 3159 NULL_RTX, LCT_CONST, submode, 1, op0, mode);
decdfa82
RS
3160 insns = get_insns ();
3161 end_sequence ();
3162
3163 target = gen_reg_rtx (submode);
9a7f678c 3164 emit_libcall_block (insns, target, value,
91ce572a 3165 gen_rtx_fmt_e (this_abs_optab->code, mode, op0));
decdfa82
RS
3166
3167 return target;
3168 }
3169
3170 /* It can't be done in this mode. Can we do it in a wider mode? */
3171
3172 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
3173 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
3174 {
91ce572a 3175 if ((this_abs_optab->handlers[(int) wider_mode].insn_code
decdfa82 3176 != CODE_FOR_nothing)
91ce572a 3177 || this_abs_optab->handlers[(int) wider_mode].libfunc)
decdfa82
RS
3178 {
3179 rtx xop0 = op0;
3180
0661a3de 3181 xop0 = convert_modes (wider_mode, mode, xop0, unsignedp);
decdfa82
RS
3182
3183 temp = expand_complex_abs (wider_mode, xop0, NULL_RTX, unsignedp);
3184
3185 if (temp)
3186 {
3187 if (class != MODE_COMPLEX_INT)
3188 {
3189 if (target == 0)
3190 target = gen_reg_rtx (submode);
3191 convert_move (target, temp, 0);
3192 return target;
3193 }
3194 else
3195 return gen_lowpart (submode, temp);
3196 }
3197 else
3198 delete_insns_since (last);
3199 }
3200 }
3201
abd418d3 3202 delete_insns_since (entry_last);
decdfa82
RS
3203 return 0;
3204}
3205\f
77c9c6c2
RK
3206/* Generate an instruction whose insn-code is INSN_CODE,
3207 with two operands: an output TARGET and an input OP0.
3208 TARGET *must* be nonzero, and the output is always stored there.
3209 CODE is an rtx code such that (CODE OP0) is an rtx that describes
3210 the value that is stored into TARGET. */
3211
3212void
0c20a65f 3213emit_unop_insn (int icode, rtx target, rtx op0, enum rtx_code code)
77c9c6c2 3214{
b3694847 3215 rtx temp;
a995e389 3216 enum machine_mode mode0 = insn_data[icode].operand[1].mode;
77c9c6c2
RK
3217 rtx pat;
3218
3219 temp = target = protect_from_queue (target, 1);
3220
3221 op0 = protect_from_queue (op0, 0);
3222
bd8c4b14
ILT
3223 /* Sign and zero extension from memory is often done specially on
3224 RISC machines, so forcing into a register here can pessimize
3225 code. */
3226 if (flag_force_mem && code != SIGN_EXTEND && code != ZERO_EXTEND)
77c9c6c2
RK
3227 op0 = force_not_mem (op0);
3228
3229 /* Now, if insn does not accept our operands, put them into pseudos. */
3230
a995e389 3231 if (! (*insn_data[icode].operand[1].predicate) (op0, mode0))
77c9c6c2
RK
3232 op0 = copy_to_mode_reg (mode0, op0);
3233
a995e389 3234 if (! (*insn_data[icode].operand[0].predicate) (temp, GET_MODE (temp))
77c9c6c2
RK
3235 || (flag_force_mem && GET_CODE (temp) == MEM))
3236 temp = gen_reg_rtx (GET_MODE (temp));
3237
3238 pat = GEN_FCN (icode) (temp, op0);
3239
2f937369 3240 if (INSN_P (pat) && NEXT_INSN (pat) != NULL_RTX && code != UNKNOWN)
b1ec3c92 3241 add_equal_note (pat, temp, code, op0, NULL_RTX);
0c20a65f 3242
77c9c6c2
RK
3243 emit_insn (pat);
3244
3245 if (temp != target)
3246 emit_move_insn (target, temp);
3247}
3248\f
3249/* Emit code to perform a series of operations on a multi-word quantity, one
3250 word at a time.
3251
d45cf215 3252 Such a block is preceded by a CLOBBER of the output, consists of multiple
77c9c6c2
RK
3253 insns, each setting one word of the output, and followed by a SET copying
3254 the output to itself.
3255
3256 Each of the insns setting words of the output receives a REG_NO_CONFLICT
3257 note indicating that it doesn't conflict with the (also multi-word)
3258 inputs. The entire block is surrounded by REG_LIBCALL and REG_RETVAL
3259 notes.
3260
3261 INSNS is a block of code generated to perform the operation, not including
3262 the CLOBBER and final copy. All insns that compute intermediate values
0c20a65f 3263 are first emitted, followed by the block as described above.
77c9c6c2
RK
3264
3265 TARGET, OP0, and OP1 are the output and inputs of the operations,
3266 respectively. OP1 may be zero for a unary operation.
3267
40f03658 3268 EQUIV, if nonzero, is an expression to be placed into a REG_EQUAL note
77c9c6c2
RK
3269 on the last insn.
3270
3271 If TARGET is not a register, INSNS is simply emitted with no special
dce39da6
RK
3272 processing. Likewise if anything in INSNS is not an INSN or if
3273 there is a libcall block inside INSNS.
77c9c6c2
RK
3274
3275 The final insn emitted is returned. */
3276
3277rtx
0c20a65f 3278emit_no_conflict_block (rtx insns, rtx target, rtx op0, rtx op1, rtx equiv)
77c9c6c2
RK
3279{
3280 rtx prev, next, first, last, insn;
3281
3282 if (GET_CODE (target) != REG || reload_in_progress)
2f937369 3283 return emit_insn (insns);
dce39da6
RK
3284 else
3285 for (insn = insns; insn; insn = NEXT_INSN (insn))
3286 if (GET_CODE (insn) != INSN
3287 || find_reg_note (insn, REG_LIBCALL, NULL_RTX))
2f937369 3288 return emit_insn (insns);
77c9c6c2
RK
3289
3290 /* First emit all insns that do not store into words of the output and remove
3291 these from the list. */
3292 for (insn = insns; insn; insn = next)
3293 {
218aa620 3294 rtx set = 0, note;
77c9c6c2
RK
3295 int i;
3296
3297 next = NEXT_INSN (insn);
3298
dcc24678 3299 /* Some ports (cris) create a libcall regions at their own. We must
218aa620
JH
3300 avoid any potential nesting of LIBCALLs. */
3301 if ((note = find_reg_note (insn, REG_LIBCALL, NULL)) != NULL)
3302 remove_note (insn, note);
3303 if ((note = find_reg_note (insn, REG_RETVAL, NULL)) != NULL)
3304 remove_note (insn, note);
3305
c5c76735
JL
3306 if (GET_CODE (PATTERN (insn)) == SET || GET_CODE (PATTERN (insn)) == USE
3307 || GET_CODE (PATTERN (insn)) == CLOBBER)
77c9c6c2
RK
3308 set = PATTERN (insn);
3309 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
3310 {
3311 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
3312 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
3313 {
3314 set = XVECEXP (PATTERN (insn), 0, i);
3315 break;
3316 }
3317 }
3318
3319 if (set == 0)
3320 abort ();
3321
3322 if (! reg_overlap_mentioned_p (target, SET_DEST (set)))
3323 {
3324 if (PREV_INSN (insn))
3325 NEXT_INSN (PREV_INSN (insn)) = next;
3326 else
3327 insns = next;
3328
3329 if (next)
3330 PREV_INSN (next) = PREV_INSN (insn);
3331
3332 add_insn (insn);
3333 }
3334 }
3335
3336 prev = get_last_insn ();
3337
3338 /* Now write the CLOBBER of the output, followed by the setting of each
3339 of the words, followed by the final copy. */
3340 if (target != op0 && target != op1)
9e6a5703 3341 emit_insn (gen_rtx_CLOBBER (VOIDmode, target));
77c9c6c2
RK
3342
3343 for (insn = insns; insn; insn = next)
3344 {
3345 next = NEXT_INSN (insn);
3346 add_insn (insn);
3347
3348 if (op1 && GET_CODE (op1) == REG)
9e6a5703
JC
3349 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_NO_CONFLICT, op1,
3350 REG_NOTES (insn));
77c9c6c2
RK
3351
3352 if (op0 && GET_CODE (op0) == REG)
9e6a5703
JC
3353 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_NO_CONFLICT, op0,
3354 REG_NOTES (insn));
77c9c6c2
RK
3355 }
3356
54e7b5e6
RS
3357 if (mov_optab->handlers[(int) GET_MODE (target)].insn_code
3358 != CODE_FOR_nothing)
3359 {
3360 last = emit_move_insn (target, target);
3361 if (equiv)
5fa671cf 3362 set_unique_reg_note (last, REG_EQUAL, equiv);
54e7b5e6
RS
3363 }
3364 else
07edd4c5
HPN
3365 {
3366 last = get_last_insn ();
3367
3368 /* Remove any existing REG_EQUAL note from "last", or else it will
3369 be mistaken for a note referring to the full contents of the
3370 alleged libcall value when found together with the REG_RETVAL
3371 note added below. An existing note can come from an insn
3372 expansion at "last". */
3373 remove_note (last, find_reg_note (last, REG_EQUAL, NULL_RTX));
3374 }
77c9c6c2
RK
3375
3376 if (prev == 0)
3377 first = get_insns ();
3378 else
3379 first = NEXT_INSN (prev);
3380
3381 /* Encapsulate the block so it gets manipulated as a unit. */
9e6a5703
JC
3382 REG_NOTES (first) = gen_rtx_INSN_LIST (REG_LIBCALL, last,
3383 REG_NOTES (first));
3384 REG_NOTES (last) = gen_rtx_INSN_LIST (REG_RETVAL, first, REG_NOTES (last));
77c9c6c2
RK
3385
3386 return last;
3387}
3388\f
3389/* Emit code to make a call to a constant function or a library call.
3390
3391 INSNS is a list containing all insns emitted in the call.
3392 These insns leave the result in RESULT. Our block is to copy RESULT
3393 to TARGET, which is logically equivalent to EQUIV.
3394
3395 We first emit any insns that set a pseudo on the assumption that these are
3396 loading constants into registers; doing so allows them to be safely cse'ed
3397 between blocks. Then we emit all the other insns in the block, followed by
3398 an insn to move RESULT to TARGET. This last insn will have a REQ_EQUAL
3399 note with an operand of EQUIV.
3400
29ebe69a
RK
3401 Moving assignments to pseudos outside of the block is done to improve
3402 the generated code, but is not required to generate correct code,
3403 hence being unable to move an assignment is not grounds for not making
3404 a libcall block. There are two reasons why it is safe to leave these
3405 insns inside the block: First, we know that these pseudos cannot be
3406 used in generated RTL outside the block since they are created for
3407 temporary purposes within the block. Second, CSE will not record the
3408 values of anything set inside a libcall block, so we know they must
3409 be dead at the end of the block.
3410
77c9c6c2
RK
3411 Except for the first group of insns (the ones setting pseudos), the
3412 block is delimited by REG_RETVAL and REG_LIBCALL notes. */
3413
3414void
0c20a65f 3415emit_libcall_block (rtx insns, rtx target, rtx result, rtx equiv)
77c9c6c2 3416{
aff2c2d3 3417 rtx final_dest = target;
77c9c6c2
RK
3418 rtx prev, next, first, last, insn;
3419
aff2c2d3
BS
3420 /* If this is a reg with REG_USERVAR_P set, then it could possibly turn
3421 into a MEM later. Protect the libcall block from this change. */
3422 if (! REG_P (target) || REG_USERVAR_P (target))
3423 target = gen_reg_rtx (GET_MODE (target));
0c20a65f 3424
5154e79a
AH
3425 /* If we're using non-call exceptions, a libcall corresponding to an
3426 operation that may trap may also trap. */
3427 if (flag_non_call_exceptions && may_trap_p (equiv))
3428 {
3429 for (insn = insns; insn; insn = NEXT_INSN (insn))
3430 if (GET_CODE (insn) == CALL_INSN)
3431 {
3432 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
0c20a65f 3433
5154e79a
AH
3434 if (note != 0 && INTVAL (XEXP (note, 0)) <= 0)
3435 remove_note (insn, note);
3436 }
3437 }
3438 else
b472794d 3439 /* look for any CALL_INSNs in this sequence, and attach a REG_EH_REGION
c29ea88a 3440 reg note to indicate that this call cannot throw or execute a nonlocal
cf67d231 3441 goto (unless there is already a REG_EH_REGION note, in which case
897aa57f 3442 we update it). */
5154e79a
AH
3443 for (insn = insns; insn; insn = NEXT_INSN (insn))
3444 if (GET_CODE (insn) == CALL_INSN)
3445 {
3446 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
0c20a65f 3447
5154e79a 3448 if (note != 0)
60c81c89 3449 XEXP (note, 0) = constm1_rtx;
5154e79a 3450 else
60c81c89 3451 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_EH_REGION, constm1_rtx,
5154e79a
AH
3452 REG_NOTES (insn));
3453 }
b472794d 3454
77c9c6c2 3455 /* First emit all insns that set pseudos. Remove them from the list as
ccf5f342 3456 we go. Avoid insns that set pseudos which were referenced in previous
29ebe69a 3457 insns. These can be generated by move_by_pieces, for example,
ccf5f342
RK
3458 to update an address. Similarly, avoid insns that reference things
3459 set in previous insns. */
77c9c6c2
RK
3460
3461 for (insn = insns; insn; insn = next)
3462 {
3463 rtx set = single_set (insn);
218aa620
JH
3464 rtx note;
3465
dcc24678 3466 /* Some ports (cris) create a libcall regions at their own. We must
218aa620
JH
3467 avoid any potential nesting of LIBCALLs. */
3468 if ((note = find_reg_note (insn, REG_LIBCALL, NULL)) != NULL)
3469 remove_note (insn, note);
3470 if ((note = find_reg_note (insn, REG_RETVAL, NULL)) != NULL)
3471 remove_note (insn, note);
77c9c6c2
RK
3472
3473 next = NEXT_INSN (insn);
3474
3475 if (set != 0 && GET_CODE (SET_DEST (set)) == REG
29ebe69a 3476 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER
8d9e73cc 3477 && (insn == insns
9485c46e
DM
3478 || ((! INSN_P(insns)
3479 || ! reg_mentioned_p (SET_DEST (set), PATTERN (insns)))
ccf5f342
RK
3480 && ! reg_used_between_p (SET_DEST (set), insns, insn)
3481 && ! modified_in_p (SET_SRC (set), insns)
3482 && ! modified_between_p (SET_SRC (set), insns, insn))))
77c9c6c2
RK
3483 {
3484 if (PREV_INSN (insn))
3485 NEXT_INSN (PREV_INSN (insn)) = next;
3486 else
3487 insns = next;
3488
3489 if (next)
3490 PREV_INSN (next) = PREV_INSN (insn);
3491
3492 add_insn (insn);
3493 }
695a94b3
RS
3494
3495 /* Some ports use a loop to copy large arguments onto the stack.
3496 Don't move anything outside such a loop. */
3497 if (GET_CODE (insn) == CODE_LABEL)
3498 break;
77c9c6c2
RK
3499 }
3500
3501 prev = get_last_insn ();
3502
3503 /* Write the remaining insns followed by the final copy. */
3504
3505 for (insn = insns; insn; insn = next)
3506 {
3507 next = NEXT_INSN (insn);
3508
3509 add_insn (insn);
3510 }
3511
3512 last = emit_move_insn (target, result);
02214a5c
RK
3513 if (mov_optab->handlers[(int) GET_MODE (target)].insn_code
3514 != CODE_FOR_nothing)
5fa671cf 3515 set_unique_reg_note (last, REG_EQUAL, copy_rtx (equiv));
07edd4c5
HPN
3516 else
3517 {
3518 /* Remove any existing REG_EQUAL note from "last", or else it will
3519 be mistaken for a note referring to the full contents of the
3520 libcall value when found together with the REG_RETVAL note added
3521 below. An existing note can come from an insn expansion at
3522 "last". */
3523 remove_note (last, find_reg_note (last, REG_EQUAL, NULL_RTX));
3524 }
77c9c6c2 3525
e85427f9
BS
3526 if (final_dest != target)
3527 emit_move_insn (final_dest, target);
aff2c2d3 3528
77c9c6c2
RK
3529 if (prev == 0)
3530 first = get_insns ();
3531 else
3532 first = NEXT_INSN (prev);
3533
3534 /* Encapsulate the block so it gets manipulated as a unit. */
11e9ecc5
HB
3535 if (!flag_non_call_exceptions || !may_trap_p (equiv))
3536 {
4a69cf79
JZ
3537 /* We can't attach the REG_LIBCALL and REG_RETVAL notes
3538 when the encapsulated region would not be in one basic block,
3539 i.e. when there is a control_flow_insn_p insn between FIRST and LAST.
3540 */
3541 bool attach_libcall_retval_notes = true;
3542 next = NEXT_INSN (last);
3543 for (insn = first; insn != next; insn = NEXT_INSN (insn))
3544 if (control_flow_insn_p (insn))
3545 {
3546 attach_libcall_retval_notes = false;
3547 break;
3548 }
3549
3550 if (attach_libcall_retval_notes)
3551 {
3552 REG_NOTES (first) = gen_rtx_INSN_LIST (REG_LIBCALL, last,
3553 REG_NOTES (first));
3554 REG_NOTES (last) = gen_rtx_INSN_LIST (REG_RETVAL, first,
3555 REG_NOTES (last));
3556 }
11e9ecc5 3557 }
77c9c6c2
RK
3558}
3559\f
3560/* Generate code to store zero in X. */
3561
3562void
0c20a65f 3563emit_clr_insn (rtx x)
77c9c6c2
RK
3564{
3565 emit_move_insn (x, const0_rtx);
3566}
3567
3568/* Generate code to store 1 in X
3569 assuming it contains zero beforehand. */
3570
3571void
0c20a65f 3572emit_0_to_1_insn (rtx x)
77c9c6c2
RK
3573{
3574 emit_move_insn (x, const1_rtx);
3575}
3576
1c0290ea 3577/* Nonzero if we can perform a comparison of mode MODE straightforwardly.
1eb8759b
RH
3578 PURPOSE describes how this comparison will be used. CODE is the rtx
3579 comparison code we will be using.
3580
3581 ??? Actually, CODE is slightly weaker than that. A target is still
0c20a65f 3582 required to implement all of the normal bcc operations, but not
1eb8759b 3583 required to implement all (or any) of the unordered bcc operations. */
0c20a65f 3584
1c0290ea 3585int
0c20a65f
AJ
3586can_compare_p (enum rtx_code code, enum machine_mode mode,
3587 enum can_compare_purpose purpose)
b30f05db
BS
3588{
3589 do
3590 {
7e1a450d 3591 if (cmp_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
1eb8759b
RH
3592 {
3593 if (purpose == ccp_jump)
7e1a450d 3594 return bcc_gen_fctn[(int) code] != NULL;
1eb8759b 3595 else if (purpose == ccp_store_flag)
7e1a450d 3596 return setcc_gen_code[(int) code] != CODE_FOR_nothing;
1eb8759b
RH
3597 else
3598 /* There's only one cmov entry point, and it's allowed to fail. */
3599 return 1;
3600 }
1c0290ea 3601 if (purpose == ccp_jump
7e1a450d 3602 && cbranch_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
1c0290ea
BS
3603 return 1;
3604 if (purpose == ccp_cmov
7e1a450d 3605 && cmov_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
1c0290ea
BS
3606 return 1;
3607 if (purpose == ccp_store_flag
7e1a450d 3608 && cstore_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
1c0290ea
BS
3609 return 1;
3610
b30f05db 3611 mode = GET_MODE_WIDER_MODE (mode);
1c0290ea
BS
3612 }
3613 while (mode != VOIDmode);
b30f05db
BS
3614
3615 return 0;
3616}
3617
3618/* This function is called when we are going to emit a compare instruction that
3619 compares the values found in *PX and *PY, using the rtl operator COMPARISON.
3620
3621 *PMODE is the mode of the inputs (in case they are const_int).
3622 *PUNSIGNEDP nonzero says that the operands are unsigned;
77c9c6c2
RK
3623 this matters if they need to be widened.
3624
a06ef755 3625 If they have mode BLKmode, then SIZE specifies the size of both operands.
77c9c6c2 3626
b30f05db
BS
3627 This function performs all the setup necessary so that the caller only has
3628 to emit a single comparison insn. This setup can involve doing a BLKmode
3629 comparison or emitting a library call to perform the comparison if no insn
3630 is available to handle it.
3631 The values which are passed in through pointers can be modified; the caller
3632 should perform the comparison on the modified values. */
77c9c6c2 3633
a06ef755 3634static void
0c20a65f
AJ
3635prepare_cmp_insn (rtx *px, rtx *py, enum rtx_code *pcomparison, rtx size,
3636 enum machine_mode *pmode, int *punsignedp,
3637 enum can_compare_purpose purpose)
77c9c6c2 3638{
b30f05db
BS
3639 enum machine_mode mode = *pmode;
3640 rtx x = *px, y = *py;
3641 int unsignedp = *punsignedp;
77c9c6c2 3642 enum mode_class class;
77c9c6c2
RK
3643
3644 class = GET_MODE_CLASS (mode);
3645
3646 /* They could both be VOIDmode if both args are immediate constants,
3647 but we should fold that at an earlier stage.
3648 With no special code here, this will call abort,
3649 reminding the programmer to implement such folding. */
3650
3651 if (mode != BLKmode && flag_force_mem)
3652 {
894207cf
RS
3653 /* Load duplicate non-volatile operands once. */
3654 if (rtx_equal_p (x, y) && ! volatile_refs_p (x))
3655 {
3656 x = force_not_mem (x);
3657 y = x;
3658 }
3659 else
3660 {
3661 x = force_not_mem (x);
3662 y = force_not_mem (y);
3663 }
77c9c6c2
RK
3664 }
3665
3666 /* If we are inside an appropriately-short loop and one operand is an
3667 expensive constant, force it into a register. */
19caa751 3668 if (CONSTANT_P (x) && preserve_subexpressions_p ()
b437f1a7 3669 && rtx_cost (x, COMPARE) > COSTS_N_INSNS (1))
77c9c6c2
RK
3670 x = force_reg (mode, x);
3671
19caa751 3672 if (CONSTANT_P (y) && preserve_subexpressions_p ()
b437f1a7 3673 && rtx_cost (y, COMPARE) > COSTS_N_INSNS (1))
77c9c6c2
RK
3674 y = force_reg (mode, y);
3675
362cc3d4
MH
3676#ifdef HAVE_cc0
3677 /* Abort if we have a non-canonical comparison. The RTL documentation
3678 states that canonical comparisons are required only for targets which
3679 have cc0. */
3680 if (CONSTANT_P (x) && ! CONSTANT_P (y))
7e1a450d 3681 abort ();
362cc3d4
MH
3682#endif
3683
77c9c6c2
RK
3684 /* Don't let both operands fail to indicate the mode. */
3685 if (GET_MODE (x) == VOIDmode && GET_MODE (y) == VOIDmode)
3686 x = force_reg (mode, x);
3687
3688 /* Handle all BLKmode compares. */
3689
3690 if (mode == BLKmode)
3691 {
118355a0
ZW
3692 enum machine_mode cmp_mode, result_mode;
3693 enum insn_code cmp_code;
3694 tree length_type;
3695 rtx libfunc;
b30f05db 3696 rtx result;
118355a0 3697 rtx opalign
f4dc10d1 3698 = GEN_INT (MIN (MEM_ALIGN (x), MEM_ALIGN (y)) / BITS_PER_UNIT);
b30f05db 3699
118355a0
ZW
3700 if (size == 0)
3701 abort ();
3702
77c9c6c2
RK
3703 emit_queue ();
3704 x = protect_from_queue (x, 0);
3705 y = protect_from_queue (y, 0);
118355a0 3706 size = protect_from_queue (size, 0);
77c9c6c2 3707
118355a0
ZW
3708 /* Try to use a memory block compare insn - either cmpstr
3709 or cmpmem will do. */
3710 for (cmp_mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
3711 cmp_mode != VOIDmode;
3712 cmp_mode = GET_MODE_WIDER_MODE (cmp_mode))
358b8f01 3713 {
118355a0
ZW
3714 cmp_code = cmpmem_optab[cmp_mode];
3715 if (cmp_code == CODE_FOR_nothing)
3716 cmp_code = cmpstr_optab[cmp_mode];
3717 if (cmp_code == CODE_FOR_nothing)
3718 continue;
3719
3720 /* Must make sure the size fits the insn's mode. */
3721 if ((GET_CODE (size) == CONST_INT
3722 && INTVAL (size) >= (1 << GET_MODE_BITSIZE (cmp_mode)))
3723 || (GET_MODE_BITSIZE (GET_MODE (size))
3724 > GET_MODE_BITSIZE (cmp_mode)))
3725 continue;
3726
3727 result_mode = insn_data[cmp_code].operand[0].mode;
358b8f01 3728 result = gen_reg_rtx (result_mode);
118355a0
ZW
3729 size = convert_to_mode (cmp_mode, size, 1);
3730 emit_insn (GEN_FCN (cmp_code) (result, x, y, size, opalign));
3731
3732 *px = result;
3733 *py = const0_rtx;
3734 *pmode = result_mode;
3735 return;
77c9c6c2 3736 }
118355a0
ZW
3737
3738 /* Otherwise call a library function, memcmp if we've got it,
3739 bcmp otherwise. */
77c9c6c2 3740#ifdef TARGET_MEM_FUNCTIONS
118355a0
ZW
3741 libfunc = memcmp_libfunc;
3742 length_type = sizetype;
77c9c6c2 3743#else
118355a0
ZW
3744 libfunc = bcmp_libfunc;
3745 length_type = integer_type_node;
77c9c6c2 3746#endif
118355a0
ZW
3747 result_mode = TYPE_MODE (integer_type_node);
3748 cmp_mode = TYPE_MODE (length_type);
3749 size = convert_to_mode (TYPE_MODE (length_type), size,
8df83eae 3750 TYPE_UNSIGNED (length_type));
118355a0
ZW
3751
3752 result = emit_library_call_value (libfunc, 0, LCT_PURE_MAKE_BLOCK,
3753 result_mode, 3,
3754 XEXP (x, 0), Pmode,
3755 XEXP (y, 0), Pmode,
3756 size, cmp_mode);
b30f05db
BS
3757 *px = result;
3758 *py = const0_rtx;
3759 *pmode = result_mode;
77c9c6c2
RK
3760 return;
3761 }
3762
27ab3e91
RH
3763 /* Don't allow operands to the compare to trap, as that can put the
3764 compare and branch in different basic blocks. */
3765 if (flag_non_call_exceptions)
3766 {
3767 if (may_trap_p (x))
3768 x = force_reg (mode, x);
3769 if (may_trap_p (y))
3770 y = force_reg (mode, y);
3771 }
3772
b30f05db
BS
3773 *px = x;
3774 *py = y;
1eb8759b 3775 if (can_compare_p (*pcomparison, mode, purpose))
b30f05db 3776 return;
77c9c6c2
RK
3777
3778 /* Handle a lib call just for the mode we are using. */
3779
b30f05db 3780 if (cmp_optab->handlers[(int) mode].libfunc && class != MODE_FLOAT)
77c9c6c2
RK
3781 {
3782 rtx libfunc = cmp_optab->handlers[(int) mode].libfunc;
9725066d
JL
3783 rtx result;
3784
77c9c6c2
RK
3785 /* If we want unsigned, and this mode has a distinct unsigned
3786 comparison routine, use that. */
3787 if (unsignedp && ucmp_optab->handlers[(int) mode].libfunc)
3788 libfunc = ucmp_optab->handlers[(int) mode].libfunc;
3789
24491a09
KH
3790 result = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST_MAKE_BLOCK,
3791 word_mode, 2, x, mode, y, mode);
9725066d 3792
77c9c6c2
RK
3793 /* Integer comparison returns a result that must be compared against 1,
3794 so that even if we do an unsigned compare afterward,
3795 there is still a value that can represent the result "less than". */
b30f05db
BS
3796 *px = result;
3797 *py = const1_rtx;
3798 *pmode = word_mode;
77c9c6c2
RK
3799 return;
3800 }
3801
3802 if (class == MODE_FLOAT)
c5c60e15 3803 prepare_float_lib_cmp (px, py, pcomparison, pmode, punsignedp);
77c9c6c2
RK
3804
3805 else
3806 abort ();
3807}
3808
b30f05db
BS
3809/* Before emitting an insn with code ICODE, make sure that X, which is going
3810 to be used for operand OPNUM of the insn, is converted from mode MODE to
4fe9b91c 3811 WIDER_MODE (UNSIGNEDP determines whether it is an unsigned conversion), and
b30f05db 3812 that it is accepted by the operand predicate. Return the new value. */
749a2da1 3813
1c0290ea 3814rtx
0c20a65f
AJ
3815prepare_operand (int icode, rtx x, int opnum, enum machine_mode mode,
3816 enum machine_mode wider_mode, int unsignedp)
b30f05db
BS
3817{
3818 x = protect_from_queue (x, 0);
3819
3820 if (mode != wider_mode)
3821 x = convert_modes (wider_mode, mode, x, unsignedp);
3822
a995e389
RH
3823 if (! (*insn_data[icode].operand[opnum].predicate)
3824 (x, insn_data[icode].operand[opnum].mode))
d893ccde
RH
3825 {
3826 if (no_new_pseudos)
3827 return NULL_RTX;
3828 x = copy_to_mode_reg (insn_data[icode].operand[opnum].mode, x);
3829 }
3830
b30f05db
BS
3831 return x;
3832}
3833
3834/* Subroutine of emit_cmp_and_jump_insns; this function is called when we know
3835 we can do the comparison.
3836 The arguments are the same as for emit_cmp_and_jump_insns; but LABEL may
3837 be NULL_RTX which indicates that only a comparison is to be generated. */
3838
3839static void
0c20a65f
AJ
3840emit_cmp_and_jump_insn_1 (rtx x, rtx y, enum machine_mode mode,
3841 enum rtx_code comparison, int unsignedp, rtx label)
b30f05db
BS
3842{
3843 rtx test = gen_rtx_fmt_ee (comparison, mode, x, y);
3844 enum mode_class class = GET_MODE_CLASS (mode);
3845 enum machine_mode wider_mode = mode;
3846
3847 /* Try combined insns first. */
3848 do
3849 {
3850 enum insn_code icode;
3851 PUT_MODE (test, wider_mode);
3852
1c0290ea 3853 if (label)
0c20a65f 3854 {
7e1a450d 3855 icode = cbranch_optab->handlers[(int) wider_mode].insn_code;
0c20a65f 3856
1c0290ea
BS
3857 if (icode != CODE_FOR_nothing
3858 && (*insn_data[icode].operand[0].predicate) (test, wider_mode))
3859 {
3860 x = prepare_operand (icode, x, 1, mode, wider_mode, unsignedp);
3861 y = prepare_operand (icode, y, 2, mode, wider_mode, unsignedp);
3862 emit_jump_insn (GEN_FCN (icode) (test, x, y, label));
3863 return;
3864 }
3865 }
3866
b30f05db
BS
3867 /* Handle some compares against zero. */
3868 icode = (int) tst_optab->handlers[(int) wider_mode].insn_code;
3869 if (y == CONST0_RTX (mode) && icode != CODE_FOR_nothing)
3870 {
3871 x = prepare_operand (icode, x, 0, mode, wider_mode, unsignedp);
3872 emit_insn (GEN_FCN (icode) (x));
3873 if (label)
3874 emit_jump_insn ((*bcc_gen_fctn[(int) comparison]) (label));
3875 return;
3876 }
3877
3878 /* Handle compares for which there is a directly suitable insn. */
3879
3880 icode = (int) cmp_optab->handlers[(int) wider_mode].insn_code;
3881 if (icode != CODE_FOR_nothing)
3882 {
3883 x = prepare_operand (icode, x, 0, mode, wider_mode, unsignedp);
3884 y = prepare_operand (icode, y, 1, mode, wider_mode, unsignedp);
3885 emit_insn (GEN_FCN (icode) (x, y));
3886 if (label)
3887 emit_jump_insn ((*bcc_gen_fctn[(int) comparison]) (label));
3888 return;
3889 }
3890
3891 if (class != MODE_INT && class != MODE_FLOAT
3892 && class != MODE_COMPLEX_FLOAT)
3893 break;
3894
3895 wider_mode = GET_MODE_WIDER_MODE (wider_mode);
7e1a450d
KH
3896 }
3897 while (wider_mode != VOIDmode);
b30f05db
BS
3898
3899 abort ();
3900}
3901
362cc3d4
MH
3902/* Generate code to compare X with Y so that the condition codes are
3903 set and to jump to LABEL if the condition is true. If X is a
3904 constant and Y is not a constant, then the comparison is swapped to
3905 ensure that the comparison RTL has the canonical form.
3906
c5d5d461
JL
3907 UNSIGNEDP nonzero says that X and Y are unsigned; this matters if they
3908 need to be widened by emit_cmp_insn. UNSIGNEDP is also used to select
3909 the proper branch condition code.
362cc3d4 3910
a06ef755 3911 If X and Y have mode BLKmode, then SIZE specifies the size of both X and Y.
362cc3d4 3912
c5d5d461
JL
3913 MODE is the mode of the inputs (in case they are const_int).
3914
3915 COMPARISON is the rtl operator to compare with (EQ, NE, GT, etc.). It will
3916 be passed unchanged to emit_cmp_insn, then potentially converted into an
3917 unsigned variant based on UNSIGNEDP to select a proper jump instruction. */
362cc3d4
MH
3918
3919void
0c20a65f
AJ
3920emit_cmp_and_jump_insns (rtx x, rtx y, enum rtx_code comparison, rtx size,
3921 enum machine_mode mode, int unsignedp, rtx label)
362cc3d4 3922{
8c9864f3
JH
3923 rtx op0 = x, op1 = y;
3924
3925 /* Swap operands and condition to ensure canonical RTL. */
3926 if (swap_commutative_operands_p (x, y))
362cc3d4 3927 {
8c9864f3
JH
3928 /* If we're not emitting a branch, this means some caller
3929 is out of sync. */
3930 if (! label)
3931 abort ();
3932
3933 op0 = y, op1 = x;
3934 comparison = swap_condition (comparison);
362cc3d4 3935 }
0ca40216
JL
3936
3937#ifdef HAVE_cc0
3938 /* If OP0 is still a constant, then both X and Y must be constants. Force
3939 X into a register to avoid aborting in emit_cmp_insn due to non-canonical
3940 RTL. */
3941 if (CONSTANT_P (op0))
3942 op0 = force_reg (mode, op0);
3943#endif
3944
b30f05db 3945 emit_queue ();
c5d5d461
JL
3946 if (unsignedp)
3947 comparison = unsigned_condition (comparison);
a06ef755
RK
3948
3949 prepare_cmp_insn (&op0, &op1, &comparison, size, &mode, &unsignedp,
1c0290ea 3950 ccp_jump);
b30f05db
BS
3951 emit_cmp_and_jump_insn_1 (op0, op1, mode, comparison, unsignedp, label);
3952}
3953
3954/* Like emit_cmp_and_jump_insns, but generate only the comparison. */
19caa751 3955
b30f05db 3956void
0c20a65f
AJ
3957emit_cmp_insn (rtx x, rtx y, enum rtx_code comparison, rtx size,
3958 enum machine_mode mode, int unsignedp)
b30f05db 3959{
a06ef755 3960 emit_cmp_and_jump_insns (x, y, comparison, size, mode, unsignedp, 0);
362cc3d4 3961}
77c9c6c2
RK
3962\f
3963/* Emit a library call comparison between floating point X and Y.
3964 COMPARISON is the rtl operator to compare with (EQ, NE, GT, etc.). */
3965
c5c60e15 3966static void
0c20a65f
AJ
3967prepare_float_lib_cmp (rtx *px, rtx *py, enum rtx_code *pcomparison,
3968 enum machine_mode *pmode, int *punsignedp)
77c9c6c2 3969{
c5c60e15 3970 enum rtx_code comparison = *pcomparison;
c9034561
ZW
3971 enum rtx_code swapped = swap_condition (comparison);
3972 rtx x = protect_from_queue (*px, 0);
3973 rtx y = protect_from_queue (*py, 0);
3974 enum machine_mode orig_mode = GET_MODE (x);
3975 enum machine_mode mode;
37bf20ee 3976 rtx value, target, insns, equiv;
0a300065 3977 rtx libfunc = 0;
77c9c6c2 3978
c9034561 3979 for (mode = orig_mode; mode != VOIDmode; mode = GET_MODE_WIDER_MODE (mode))
77c9c6c2 3980 {
c9034561
ZW
3981 if ((libfunc = code_to_optab[comparison]->handlers[mode].libfunc))
3982 break;
77c9c6c2 3983
c9034561 3984 if ((libfunc = code_to_optab[swapped]->handlers[mode].libfunc))
77c9c6c2 3985 {
c9034561
ZW
3986 rtx tmp;
3987 tmp = x; x = y; y = tmp;
3988 comparison = swapped;
3989 break;
77c9c6c2 3990 }
77c9c6c2
RK
3991 }
3992
c9034561 3993 if (mode == VOIDmode)
0a300065
RK
3994 abort ();
3995
c9034561
ZW
3996 if (mode != orig_mode)
3997 {
3998 x = convert_to_mode (mode, x, 0);
3999 y = convert_to_mode (mode, y, 0);
4000 }
4001
17796a89
RS
4002 /* Attach a REG_EQUAL note describing the semantics of the libcall to
4003 the RTL. The allows the RTL optimizers to delete the libcall if the
4004 condition can be determined at compile-time. */
4005 if (comparison == UNORDERED)
4006 {
4007 rtx temp = simplify_gen_relational (NE, word_mode, mode, x, x);
4008 equiv = simplify_gen_relational (NE, word_mode, mode, y, y);
4009 equiv = simplify_gen_ternary (IF_THEN_ELSE, word_mode, word_mode,
4010 temp, const_true_rtx, equiv);
4011 }
4012 else
4013 {
4014 equiv = simplify_gen_relational (comparison, word_mode, mode, x, y);
4015 if (! FLOAT_LIB_COMPARE_RETURNS_BOOL (mode, comparison))
bd831d5c 4016 {
17796a89 4017 rtx true_rtx, false_rtx;
37bf20ee 4018
17796a89
RS
4019 switch (comparison)
4020 {
4021 case EQ:
4022 true_rtx = const0_rtx;
4023 false_rtx = const_true_rtx;
4024 break;
4025
4026 case NE:
4027 true_rtx = const_true_rtx;
4028 false_rtx = const0_rtx;
4029 break;
4030
4031 case GT:
4032 true_rtx = const1_rtx;
4033 false_rtx = const0_rtx;
4034 break;
4035
4036 case GE:
4037 true_rtx = const0_rtx;
4038 false_rtx = constm1_rtx;
4039 break;
4040
4041 case LT:
4042 true_rtx = constm1_rtx;
4043 false_rtx = const0_rtx;
4044 break;
4045
4046 case LE:
4047 true_rtx = const0_rtx;
4048 false_rtx = const1_rtx;
4049 break;
4050
4051 default:
4052 abort ();
bd831d5c 4053 }
17796a89
RS
4054 equiv = simplify_gen_ternary (IF_THEN_ELSE, word_mode, word_mode,
4055 equiv, true_rtx, false_rtx);
bd831d5c
RS
4056 }
4057 }
37bf20ee
RS
4058
4059 start_sequence ();
4060 value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
4061 word_mode, 2, x, mode, y, mode);
4062 insns = get_insns ();
4063 end_sequence ();
4064
4065 target = gen_reg_rtx (word_mode);
4066 emit_libcall_block (insns, target, value, equiv);
4067
bd831d5c 4068
c9034561
ZW
4069 if (comparison == UNORDERED
4070 || FLOAT_LIB_COMPARE_RETURNS_BOOL (mode, comparison))
4071 comparison = NE;
4072
37bf20ee 4073 *px = target;
b30f05db
BS
4074 *py = const0_rtx;
4075 *pmode = word_mode;
c9034561 4076 *pcomparison = comparison;
b30f05db 4077 *punsignedp = 0;
77c9c6c2
RK
4078}
4079\f
4080/* Generate code to indirectly jump to a location given in the rtx LOC. */
4081
4082void
0c20a65f 4083emit_indirect_jump (rtx loc)
77c9c6c2 4084{
7e1a450d 4085 if (! ((*insn_data[(int) CODE_FOR_indirect_jump].operand[0].predicate)
f2de2775
JW
4086 (loc, Pmode)))
4087 loc = copy_to_mode_reg (Pmode, loc);
77c9c6c2
RK
4088
4089 emit_jump_insn (gen_indirect_jump (loc));
9649fb4d 4090 emit_barrier ();
77c9c6c2
RK
4091}
4092\f
49c4584c
DE
4093#ifdef HAVE_conditional_move
4094
4095/* Emit a conditional move instruction if the machine supports one for that
4096 condition and machine mode.
4097
4098 OP0 and OP1 are the operands that should be compared using CODE. CMODE is
4099 the mode to use should they be constants. If it is VOIDmode, they cannot
4100 both be constants.
4101
4102 OP2 should be stored in TARGET if the comparison is true, otherwise OP3
4103 should be stored there. MODE is the mode to use should they be constants.
4104 If it is VOIDmode, they cannot both be constants.
4105
4106 The result is either TARGET (perhaps modified) or NULL_RTX if the operation
4107 is not supported. */
4108
4109rtx
0c20a65f
AJ
4110emit_conditional_move (rtx target, enum rtx_code code, rtx op0, rtx op1,
4111 enum machine_mode cmode, rtx op2, rtx op3,
4112 enum machine_mode mode, int unsignedp)
49c4584c
DE
4113{
4114 rtx tem, subtarget, comparison, insn;
4115 enum insn_code icode;
e5c56fd9 4116 enum rtx_code reversed;
49c4584c
DE
4117
4118 /* If one operand is constant, make it the second one. Only do this
4119 if the other operand is not constant as well. */
4120
e5c56fd9 4121 if (swap_commutative_operands_p (op0, op1))
49c4584c
DE
4122 {
4123 tem = op0;
4124 op0 = op1;
4125 op1 = tem;
4126 code = swap_condition (code);
4127 }
4128
c5c76735
JL
4129 /* get_condition will prefer to generate LT and GT even if the old
4130 comparison was against zero, so undo that canonicalization here since
4131 comparisons against zero are cheaper. */
87d9741e 4132 if (code == LT && op1 == const1_rtx)
c5c76735 4133 code = LE, op1 = const0_rtx;
87d9741e 4134 else if (code == GT && op1 == constm1_rtx)
c5c76735
JL
4135 code = GE, op1 = const0_rtx;
4136
49c4584c
DE
4137 if (cmode == VOIDmode)
4138 cmode = GET_MODE (op0);
4139
e5c56fd9
JH
4140 if (swap_commutative_operands_p (op2, op3)
4141 && ((reversed = reversed_comparison_code_parts (code, op0, op1, NULL))
4142 != UNKNOWN))
49c4584c
DE
4143 {
4144 tem = op2;
4145 op2 = op3;
4146 op3 = tem;
e5c56fd9 4147 code = reversed;
49c4584c
DE
4148 }
4149
4150 if (mode == VOIDmode)
4151 mode = GET_MODE (op2);
4152
4153 icode = movcc_gen_code[mode];
4154
4155 if (icode == CODE_FOR_nothing)
4156 return 0;
4157
4158 if (flag_force_mem)
4159 {
4160 op2 = force_not_mem (op2);
4161 op3 = force_not_mem (op3);
4162 }
4163
4164 if (target)
4165 target = protect_from_queue (target, 1);
4166 else
4167 target = gen_reg_rtx (mode);
4168
4169 subtarget = target;
4170
4171 emit_queue ();
4172
4173 op2 = protect_from_queue (op2, 0);
4174 op3 = protect_from_queue (op3, 0);
4175
4176 /* If the insn doesn't accept these operands, put them in pseudos. */
4177
a995e389
RH
4178 if (! (*insn_data[icode].operand[0].predicate)
4179 (subtarget, insn_data[icode].operand[0].mode))
4180 subtarget = gen_reg_rtx (insn_data[icode].operand[0].mode);
49c4584c 4181
a995e389
RH
4182 if (! (*insn_data[icode].operand[2].predicate)
4183 (op2, insn_data[icode].operand[2].mode))
4184 op2 = copy_to_mode_reg (insn_data[icode].operand[2].mode, op2);
49c4584c 4185
a995e389
RH
4186 if (! (*insn_data[icode].operand[3].predicate)
4187 (op3, insn_data[icode].operand[3].mode))
4188 op3 = copy_to_mode_reg (insn_data[icode].operand[3].mode, op3);
49c4584c
DE
4189
4190 /* Everything should now be in the suitable form, so emit the compare insn
4191 and then the conditional move. */
4192
0c20a65f 4193 comparison
a06ef755 4194 = compare_from_rtx (op0, op1, code, unsignedp, cmode, NULL_RTX);
49c4584c
DE
4195
4196 /* ??? Watch for const0_rtx (nop) and const_true_rtx (unconditional)? */
144a5f9d
JL
4197 /* We can get const0_rtx or const_true_rtx in some circumstances. Just
4198 return NULL and let the caller figure out how best to deal with this
4199 situation. */
49c4584c 4200 if (GET_CODE (comparison) != code)
144a5f9d 4201 return NULL_RTX;
0c20a65f 4202
49c4584c
DE
4203 insn = GEN_FCN (icode) (subtarget, comparison, op2, op3);
4204
4205 /* If that failed, then give up. */
4206 if (insn == 0)
4207 return 0;
4208
4209 emit_insn (insn);
4210
4211 if (subtarget != target)
4212 convert_move (target, subtarget, 0);
4213
4214 return target;
4215}
4216
40f03658 4217/* Return nonzero if a conditional move of mode MODE is supported.
49c4584c
DE
4218
4219 This function is for combine so it can tell whether an insn that looks
4220 like a conditional move is actually supported by the hardware. If we
4221 guess wrong we lose a bit on optimization, but that's it. */
4222/* ??? sparc64 supports conditionally moving integers values based on fp
4223 comparisons, and vice versa. How do we handle them? */
4224
4225int
0c20a65f 4226can_conditionally_move_p (enum machine_mode mode)
49c4584c
DE
4227{
4228 if (movcc_gen_code[mode] != CODE_FOR_nothing)
4229 return 1;
4230
4231 return 0;
4232}
4233
4234#endif /* HAVE_conditional_move */
068f5dea
JH
4235
4236/* Emit a conditional addition instruction if the machine supports one for that
4237 condition and machine mode.
4238
4239 OP0 and OP1 are the operands that should be compared using CODE. CMODE is
4240 the mode to use should they be constants. If it is VOIDmode, they cannot
4241 both be constants.
4242
4243 OP2 should be stored in TARGET if the comparison is true, otherwise OP2+OP3
4244 should be stored there. MODE is the mode to use should they be constants.
4245 If it is VOIDmode, they cannot both be constants.
4246
4247 The result is either TARGET (perhaps modified) or NULL_RTX if the operation
4248 is not supported. */
4249
4250rtx
0c20a65f
AJ
4251emit_conditional_add (rtx target, enum rtx_code code, rtx op0, rtx op1,
4252 enum machine_mode cmode, rtx op2, rtx op3,
4253 enum machine_mode mode, int unsignedp)
068f5dea
JH
4254{
4255 rtx tem, subtarget, comparison, insn;
4256 enum insn_code icode;
4257 enum rtx_code reversed;
4258
4259 /* If one operand is constant, make it the second one. Only do this
4260 if the other operand is not constant as well. */
4261
4262 if (swap_commutative_operands_p (op0, op1))
4263 {
4264 tem = op0;
4265 op0 = op1;
4266 op1 = tem;
4267 code = swap_condition (code);
4268 }
4269
4270 /* get_condition will prefer to generate LT and GT even if the old
4271 comparison was against zero, so undo that canonicalization here since
4272 comparisons against zero are cheaper. */
87d9741e 4273 if (code == LT && op1 == const1_rtx)
068f5dea 4274 code = LE, op1 = const0_rtx;
87d9741e 4275 else if (code == GT && op1 == constm1_rtx)
068f5dea
JH
4276 code = GE, op1 = const0_rtx;
4277
4278 if (cmode == VOIDmode)
4279 cmode = GET_MODE (op0);
4280
4281 if (swap_commutative_operands_p (op2, op3)
4282 && ((reversed = reversed_comparison_code_parts (code, op0, op1, NULL))
4283 != UNKNOWN))
4284 {
4285 tem = op2;
4286 op2 = op3;
4287 op3 = tem;
4288 code = reversed;
4289 }
4290
4291 if (mode == VOIDmode)
4292 mode = GET_MODE (op2);
4293
4294 icode = addcc_optab->handlers[(int) mode].insn_code;
4295
4296 if (icode == CODE_FOR_nothing)
4297 return 0;
4298
4299 if (flag_force_mem)
4300 {
4301 op2 = force_not_mem (op2);
4302 op3 = force_not_mem (op3);
4303 }
4304
4305 if (target)
4306 target = protect_from_queue (target, 1);
4307 else
4308 target = gen_reg_rtx (mode);
4309
4310 subtarget = target;
4311
4312 emit_queue ();
4313
4314 op2 = protect_from_queue (op2, 0);
4315 op3 = protect_from_queue (op3, 0);
4316
4317 /* If the insn doesn't accept these operands, put them in pseudos. */
4318
4319 if (! (*insn_data[icode].operand[0].predicate)
4320 (subtarget, insn_data[icode].operand[0].mode))
4321 subtarget = gen_reg_rtx (insn_data[icode].operand[0].mode);
4322
4323 if (! (*insn_data[icode].operand[2].predicate)
4324 (op2, insn_data[icode].operand[2].mode))
4325 op2 = copy_to_mode_reg (insn_data[icode].operand[2].mode, op2);
4326
4327 if (! (*insn_data[icode].operand[3].predicate)
4328 (op3, insn_data[icode].operand[3].mode))
4329 op3 = copy_to_mode_reg (insn_data[icode].operand[3].mode, op3);
4330
4331 /* Everything should now be in the suitable form, so emit the compare insn
4332 and then the conditional move. */
4333
0c20a65f 4334 comparison
068f5dea
JH
4335 = compare_from_rtx (op0, op1, code, unsignedp, cmode, NULL_RTX);
4336
4337 /* ??? Watch for const0_rtx (nop) and const_true_rtx (unconditional)? */
4338 /* We can get const0_rtx or const_true_rtx in some circumstances. Just
4339 return NULL and let the caller figure out how best to deal with this
4340 situation. */
4341 if (GET_CODE (comparison) != code)
4342 return NULL_RTX;
0c20a65f 4343
068f5dea
JH
4344 insn = GEN_FCN (icode) (subtarget, comparison, op2, op3);
4345
4346 /* If that failed, then give up. */
4347 if (insn == 0)
4348 return 0;
4349
4350 emit_insn (insn);
4351
4352 if (subtarget != target)
4353 convert_move (target, subtarget, 0);
4354
4355 return target;
4356}
49c4584c 4357\f
0913e4b4
AO
4358/* These functions attempt to generate an insn body, rather than
4359 emitting the insn, but if the gen function already emits them, we
4360 make no attempt to turn them back into naked patterns.
77c9c6c2
RK
4361
4362 They do not protect from queued increments,
4363 because they may be used 1) in protect_from_queue itself
4364 and 2) in other passes where there is no queue. */
4365
4366/* Generate and return an insn body to add Y to X. */
4367
4368rtx
0c20a65f 4369gen_add2_insn (rtx x, rtx y)
77c9c6c2 4370{
0c20a65f 4371 int icode = (int) add_optab->handlers[(int) GET_MODE (x)].insn_code;
77c9c6c2 4372
a995e389
RH
4373 if (! ((*insn_data[icode].operand[0].predicate)
4374 (x, insn_data[icode].operand[0].mode))
4375 || ! ((*insn_data[icode].operand[1].predicate)
4376 (x, insn_data[icode].operand[1].mode))
4377 || ! ((*insn_data[icode].operand[2].predicate)
4378 (y, insn_data[icode].operand[2].mode)))
77c9c6c2
RK
4379 abort ();
4380
4381 return (GEN_FCN (icode) (x, x, y));
4382}
4383
e78d8e51
ZW
4384/* Generate and return an insn body to add r1 and c,
4385 storing the result in r0. */
4386rtx
0c20a65f 4387gen_add3_insn (rtx r0, rtx r1, rtx c)
e78d8e51
ZW
4388{
4389 int icode = (int) add_optab->handlers[(int) GET_MODE (r0)].insn_code;
4390
7e1a450d 4391 if (icode == CODE_FOR_nothing
e78d8e51
ZW
4392 || ! ((*insn_data[icode].operand[0].predicate)
4393 (r0, insn_data[icode].operand[0].mode))
4394 || ! ((*insn_data[icode].operand[1].predicate)
4395 (r1, insn_data[icode].operand[1].mode))
4396 || ! ((*insn_data[icode].operand[2].predicate)
4397 (c, insn_data[icode].operand[2].mode)))
4398 return NULL_RTX;
4399
4400 return (GEN_FCN (icode) (r0, r1, c));
4401}
4402
77c9c6c2 4403int
0c20a65f 4404have_add2_insn (rtx x, rtx y)
77c9c6c2 4405{
fb7e77d7
TM
4406 int icode;
4407
4408 if (GET_MODE (x) == VOIDmode)
4409 abort ();
4410
0c20a65f 4411 icode = (int) add_optab->handlers[(int) GET_MODE (x)].insn_code;
fb7e77d7
TM
4412
4413 if (icode == CODE_FOR_nothing)
4414 return 0;
4415
4416 if (! ((*insn_data[icode].operand[0].predicate)
4417 (x, insn_data[icode].operand[0].mode))
4418 || ! ((*insn_data[icode].operand[1].predicate)
4419 (x, insn_data[icode].operand[1].mode))
4420 || ! ((*insn_data[icode].operand[2].predicate)
4421 (y, insn_data[icode].operand[2].mode)))
4422 return 0;
4423
4424 return 1;
77c9c6c2
RK
4425}
4426
4427/* Generate and return an insn body to subtract Y from X. */
4428
4429rtx
0c20a65f 4430gen_sub2_insn (rtx x, rtx y)
77c9c6c2 4431{
0c20a65f 4432 int icode = (int) sub_optab->handlers[(int) GET_MODE (x)].insn_code;
77c9c6c2 4433
a995e389
RH
4434 if (! ((*insn_data[icode].operand[0].predicate)
4435 (x, insn_data[icode].operand[0].mode))
4436 || ! ((*insn_data[icode].operand[1].predicate)
4437 (x, insn_data[icode].operand[1].mode))
4438 || ! ((*insn_data[icode].operand[2].predicate)
4439 (y, insn_data[icode].operand[2].mode)))
77c9c6c2
RK
4440 abort ();
4441
4442 return (GEN_FCN (icode) (x, x, y));
4443}
4444
ef89d648
ZW
4445/* Generate and return an insn body to subtract r1 and c,
4446 storing the result in r0. */
4447rtx
0c20a65f 4448gen_sub3_insn (rtx r0, rtx r1, rtx c)
ef89d648
ZW
4449{
4450 int icode = (int) sub_optab->handlers[(int) GET_MODE (r0)].insn_code;
4451
7e1a450d 4452 if (icode == CODE_FOR_nothing
ef89d648
ZW
4453 || ! ((*insn_data[icode].operand[0].predicate)
4454 (r0, insn_data[icode].operand[0].mode))
4455 || ! ((*insn_data[icode].operand[1].predicate)
4456 (r1, insn_data[icode].operand[1].mode))
4457 || ! ((*insn_data[icode].operand[2].predicate)
4458 (c, insn_data[icode].operand[2].mode)))
4459 return NULL_RTX;
4460
4461 return (GEN_FCN (icode) (r0, r1, c));
4462}
4463
77c9c6c2 4464int
0c20a65f 4465have_sub2_insn (rtx x, rtx y)
77c9c6c2 4466{
fb7e77d7
TM
4467 int icode;
4468
4469 if (GET_MODE (x) == VOIDmode)
4470 abort ();
4471
0c20a65f 4472 icode = (int) sub_optab->handlers[(int) GET_MODE (x)].insn_code;
fb7e77d7
TM
4473
4474 if (icode == CODE_FOR_nothing)
4475 return 0;
4476
4477 if (! ((*insn_data[icode].operand[0].predicate)
4478 (x, insn_data[icode].operand[0].mode))
4479 || ! ((*insn_data[icode].operand[1].predicate)
4480 (x, insn_data[icode].operand[1].mode))
4481 || ! ((*insn_data[icode].operand[2].predicate)
4482 (y, insn_data[icode].operand[2].mode)))
4483 return 0;
4484
4485 return 1;
77c9c6c2
RK
4486}
4487
e3654226 4488/* Generate the body of an instruction to copy Y into X.
2f937369 4489 It may be a list of insns, if one insn isn't enough. */
77c9c6c2
RK
4490
4491rtx
0c20a65f 4492gen_move_insn (rtx x, rtx y)
77c9c6c2 4493{
e3654226 4494 rtx seq;
77c9c6c2 4495
e3654226
RS
4496 start_sequence ();
4497 emit_move_insn_1 (x, y);
2f937369 4498 seq = get_insns ();
e3654226
RS
4499 end_sequence ();
4500 return seq;
77c9c6c2
RK
4501}
4502\f
34e56753
RS
4503/* Return the insn code used to extend FROM_MODE to TO_MODE.
4504 UNSIGNEDP specifies zero-extension instead of sign-extension. If
4505 no such operation exists, CODE_FOR_nothing will be returned. */
77c9c6c2 4506
34e56753 4507enum insn_code
0c20a65f
AJ
4508can_extend_p (enum machine_mode to_mode, enum machine_mode from_mode,
4509 int unsignedp)
77c9c6c2 4510{
85363ca0 4511 convert_optab tab;
6dd12198
SE
4512#ifdef HAVE_ptr_extend
4513 if (unsignedp < 0)
4514 return CODE_FOR_ptr_extend;
6dd12198 4515#endif
85363ca0
ZW
4516
4517 tab = unsignedp ? zext_optab : sext_optab;
4518 return tab->handlers[to_mode][from_mode].insn_code;
77c9c6c2
RK
4519}
4520
4521/* Generate the body of an insn to extend Y (with mode MFROM)
4522 into X (with mode MTO). Do zero-extension if UNSIGNEDP is nonzero. */
4523
4524rtx
0c20a65f
AJ
4525gen_extend_insn (rtx x, rtx y, enum machine_mode mto,
4526 enum machine_mode mfrom, int unsignedp)
77c9c6c2 4527{
85363ca0
ZW
4528 enum insn_code icode = can_extend_p (mto, mfrom, unsignedp);
4529 return GEN_FCN (icode) (x, y);
77c9c6c2 4530}
77c9c6c2
RK
4531\f
4532/* can_fix_p and can_float_p say whether the target machine
4533 can directly convert a given fixed point type to
4534 a given floating point type, or vice versa.
4535 The returned value is the CODE_FOR_... value to use,
5d81dc5b 4536 or CODE_FOR_nothing if these modes cannot be directly converted.
77c9c6c2 4537
5d81dc5b 4538 *TRUNCP_PTR is set to 1 if it is necessary to output
77c9c6c2
RK
4539 an explicit FTRUNC insn before the fix insn; otherwise 0. */
4540
4541static enum insn_code
0c20a65f
AJ
4542can_fix_p (enum machine_mode fixmode, enum machine_mode fltmode,
4543 int unsignedp, int *truncp_ptr)
77c9c6c2 4544{
85363ca0
ZW
4545 convert_optab tab;
4546 enum insn_code icode;
4547
4548 tab = unsignedp ? ufixtrunc_optab : sfixtrunc_optab;
4549 icode = tab->handlers[fixmode][fltmode].insn_code;
4550 if (icode != CODE_FOR_nothing)
4551 {
4552 *truncp_ptr = 0;
4553 return icode;
4554 }
77c9c6c2 4555
0e1d7f32
AH
4556 /* FIXME: This requires a port to define both FIX and FTRUNC pattern
4557 for this to work. We need to rework the fix* and ftrunc* patterns
4558 and documentation. */
85363ca0
ZW
4559 tab = unsignedp ? ufix_optab : sfix_optab;
4560 icode = tab->handlers[fixmode][fltmode].insn_code;
4561 if (icode != CODE_FOR_nothing
4562 && ftrunc_optab->handlers[fltmode].insn_code != CODE_FOR_nothing)
77c9c6c2
RK
4563 {
4564 *truncp_ptr = 1;
85363ca0 4565 return icode;
77c9c6c2 4566 }
85363ca0
ZW
4567
4568 *truncp_ptr = 0;
77c9c6c2
RK
4569 return CODE_FOR_nothing;
4570}
4571
4572static enum insn_code
0c20a65f
AJ
4573can_float_p (enum machine_mode fltmode, enum machine_mode fixmode,
4574 int unsignedp)
77c9c6c2 4575{
85363ca0
ZW
4576 convert_optab tab;
4577
4578 tab = unsignedp ? ufloat_optab : sfloat_optab;
4579 return tab->handlers[fltmode][fixmode].insn_code;
77c9c6c2 4580}
77c9c6c2
RK
4581\f
4582/* Generate code to convert FROM to floating point
34e56753 4583 and store in TO. FROM must be fixed point and not VOIDmode.
77c9c6c2
RK
4584 UNSIGNEDP nonzero means regard FROM as unsigned.
4585 Normally this is done by correcting the final value
4586 if it is negative. */
4587
4588void
0c20a65f 4589expand_float (rtx to, rtx from, int unsignedp)
77c9c6c2
RK
4590{
4591 enum insn_code icode;
b3694847 4592 rtx target = to;
77c9c6c2
RK
4593 enum machine_mode fmode, imode;
4594
34e56753
RS
4595 /* Crash now, because we won't be able to decide which mode to use. */
4596 if (GET_MODE (from) == VOIDmode)
4597 abort ();
4598
77c9c6c2
RK
4599 /* Look for an insn to do the conversion. Do it in the specified
4600 modes if possible; otherwise convert either input, output or both to
4601 wider mode. If the integer mode is wider than the mode of FROM,
4602 we can do the conversion signed even if the input is unsigned. */
4603
7bf0a593
AP
4604 for (fmode = GET_MODE (to); fmode != VOIDmode;
4605 fmode = GET_MODE_WIDER_MODE (fmode))
4606 for (imode = GET_MODE (from); imode != VOIDmode;
4607 imode = GET_MODE_WIDER_MODE (imode))
77c9c6c2
RK
4608 {
4609 int doing_unsigned = unsignedp;
4610
5ba02ca6
GK
4611 if (fmode != GET_MODE (to)
4612 && significand_size (fmode) < GET_MODE_BITSIZE (GET_MODE (from)))
4613 continue;
4614
77c9c6c2
RK
4615 icode = can_float_p (fmode, imode, unsignedp);
4616 if (icode == CODE_FOR_nothing && imode != GET_MODE (from) && unsignedp)
4617 icode = can_float_p (fmode, imode, 0), doing_unsigned = 0;
4618
4619 if (icode != CODE_FOR_nothing)
4620 {
4621 to = protect_from_queue (to, 1);
06e40b26 4622 from = protect_from_queue (from, 0);
77c9c6c2
RK
4623
4624 if (imode != GET_MODE (from))
4625 from = convert_to_mode (imode, from, unsignedp);
77c9c6c2
RK
4626
4627 if (fmode != GET_MODE (to))
4628 target = gen_reg_rtx (fmode);
4629
4630 emit_unop_insn (icode, target, from,
4631 doing_unsigned ? UNSIGNED_FLOAT : FLOAT);
4632
4633 if (target != to)
4634 convert_move (to, target, 0);
4635 return;
4636 }
7e1a450d 4637 }
77c9c6c2 4638
77c9c6c2
RK
4639 /* Unsigned integer, and no way to convert directly.
4640 Convert as signed, then conditionally adjust the result. */
4641 if (unsignedp)
4642 {
4643 rtx label = gen_label_rtx ();
4644 rtx temp;
4645 REAL_VALUE_TYPE offset;
4646
4647 emit_queue ();
4648
4649 to = protect_from_queue (to, 1);
4650 from = protect_from_queue (from, 0);
4651
4652 if (flag_force_mem)
4653 from = force_not_mem (from);
4654
c95c47f3
PE
4655 /* Look for a usable floating mode FMODE wider than the source and at
4656 least as wide as the target. Using FMODE will avoid rounding woes
4657 with unsigned values greater than the signed maximum value. */
70864443 4658
c95c47f3
PE
4659 for (fmode = GET_MODE (to); fmode != VOIDmode;
4660 fmode = GET_MODE_WIDER_MODE (fmode))
4661 if (GET_MODE_BITSIZE (GET_MODE (from)) < GET_MODE_BITSIZE (fmode)
4662 && can_float_p (fmode, GET_MODE (from), 0) != CODE_FOR_nothing)
4663 break;
a48fb61b 4664
c95c47f3
PE
4665 if (fmode == VOIDmode)
4666 {
a48fb61b 4667 /* There is no such mode. Pretend the target is wide enough. */
c95c47f3 4668 fmode = GET_MODE (to);
a48fb61b 4669
0f41302f 4670 /* Avoid double-rounding when TO is narrower than FROM. */
a48fb61b
RK
4671 if ((significand_size (fmode) + 1)
4672 < GET_MODE_BITSIZE (GET_MODE (from)))
4673 {
4674 rtx temp1;
4675 rtx neglabel = gen_label_rtx ();
4676
0c20a65f 4677 /* Don't use TARGET if it isn't a register, is a hard register,
70864443 4678 or is the wrong mode. */
44f51d4a 4679 if (GET_CODE (target) != REG
70864443
RK
4680 || REGNO (target) < FIRST_PSEUDO_REGISTER
4681 || GET_MODE (target) != fmode)
44f51d4a
RK
4682 target = gen_reg_rtx (fmode);
4683
a48fb61b
RK
4684 imode = GET_MODE (from);
4685 do_pending_stack_adjust ();
4686
4687 /* Test whether the sign bit is set. */
1c0290ea 4688 emit_cmp_and_jump_insns (from, const0_rtx, LT, NULL_RTX, imode,
a06ef755 4689 0, neglabel);
a48fb61b
RK
4690
4691 /* The sign bit is not set. Convert as signed. */
4692 expand_float (target, from, 0);
4693 emit_jump_insn (gen_jump (label));
2ad79487 4694 emit_barrier ();
a48fb61b
RK
4695
4696 /* The sign bit is set.
4697 Convert to a usable (positive signed) value by shifting right
4698 one bit, while remembering if a nonzero bit was shifted
4699 out; i.e., compute (from & 1) | (from >> 1). */
4700
4701 emit_label (neglabel);
4702 temp = expand_binop (imode, and_optab, from, const1_rtx,
70864443 4703 NULL_RTX, 1, OPTAB_LIB_WIDEN);
73d9a835
RK
4704 temp1 = expand_shift (RSHIFT_EXPR, imode, from, integer_one_node,
4705 NULL_RTX, 1);
0c20a65f 4706 temp = expand_binop (imode, ior_optab, temp, temp1, temp, 1,
70864443 4707 OPTAB_LIB_WIDEN);
a48fb61b
RK
4708 expand_float (target, temp, 0);
4709
4710 /* Multiply by 2 to undo the shift above. */
a93738eb 4711 temp = expand_binop (fmode, add_optab, target, target,
7e1a450d 4712 target, 0, OPTAB_LIB_WIDEN);
a93738eb
RK
4713 if (temp != target)
4714 emit_move_insn (target, temp);
4715
a48fb61b
RK
4716 do_pending_stack_adjust ();
4717 emit_label (label);
4718 goto done;
4719 }
c95c47f3
PE
4720 }
4721
77c9c6c2
RK
4722 /* If we are about to do some arithmetic to correct for an
4723 unsigned operand, do it in a pseudo-register. */
4724
c95c47f3 4725 if (GET_MODE (to) != fmode
70864443 4726 || GET_CODE (to) != REG || REGNO (to) < FIRST_PSEUDO_REGISTER)
c95c47f3 4727 target = gen_reg_rtx (fmode);
77c9c6c2
RK
4728
4729 /* Convert as signed integer to floating. */
4730 expand_float (target, from, 0);
4731
4732 /* If FROM is negative (and therefore TO is negative),
4733 correct its value by 2**bitwidth. */
4734
4735 do_pending_stack_adjust ();
c5d5d461 4736 emit_cmp_and_jump_insns (from, const0_rtx, GE, NULL_RTX, GET_MODE (from),
a06ef755 4737 0, label);
70864443 4738
0c20a65f 4739
efdc7e19 4740 real_2expN (&offset, GET_MODE_BITSIZE (GET_MODE (from)));
c95c47f3 4741 temp = expand_binop (fmode, add_optab, target,
30d88916 4742 CONST_DOUBLE_FROM_REAL_VALUE (offset, fmode),
77c9c6c2
RK
4743 target, 0, OPTAB_LIB_WIDEN);
4744 if (temp != target)
4745 emit_move_insn (target, temp);
a48fb61b 4746
77c9c6c2
RK
4747 do_pending_stack_adjust ();
4748 emit_label (label);
70864443 4749 goto done;
77c9c6c2 4750 }
77c9c6c2 4751
85363ca0 4752 /* No hardware instruction available; call a library routine. */
77c9c6c2 4753 {
85363ca0 4754 rtx libfunc;
77c9c6c2 4755 rtx insns;
9a7f678c 4756 rtx value;
85363ca0 4757 convert_optab tab = unsignedp ? ufloat_optab : sfloat_optab;
77c9c6c2
RK
4758
4759 to = protect_from_queue (to, 1);
06e40b26 4760 from = protect_from_queue (from, 0);
77c9c6c2
RK
4761
4762 if (GET_MODE_SIZE (GET_MODE (from)) < GET_MODE_SIZE (SImode))
4763 from = convert_to_mode (SImode, from, unsignedp);
77c9c6c2
RK
4764
4765 if (flag_force_mem)
4766 from = force_not_mem (from);
4767
85363ca0
ZW
4768 libfunc = tab->handlers[GET_MODE (to)][GET_MODE (from)].libfunc;
4769 if (!libfunc)
77c9c6c2
RK
4770 abort ();
4771
4772 start_sequence ();
4773
85363ca0 4774 value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
ebb1b59a
BS
4775 GET_MODE (to), 1, from,
4776 GET_MODE (from));
77c9c6c2
RK
4777 insns = get_insns ();
4778 end_sequence ();
4779
9a7f678c 4780 emit_libcall_block (insns, target, value,
9e6a5703 4781 gen_rtx_FLOAT (GET_MODE (to), from));
77c9c6c2
RK
4782 }
4783
a48fb61b
RK
4784 done:
4785
77c9c6c2
RK
4786 /* Copy result to requested destination
4787 if we have been computing in a temp location. */
4788
4789 if (target != to)
4790 {
4791 if (GET_MODE (target) == GET_MODE (to))
4792 emit_move_insn (to, target);
4793 else
4794 convert_move (to, target, 0);
4795 }
4796}
4797\f
0e1d7f32
AH
4798/* Generate code to convert FROM to fixed point and store in TO. FROM
4799 must be floating point. */
77c9c6c2
RK
4800
4801void
0c20a65f 4802expand_fix (rtx to, rtx from, int unsignedp)
77c9c6c2
RK
4803{
4804 enum insn_code icode;
b3694847 4805 rtx target = to;
77c9c6c2
RK
4806 enum machine_mode fmode, imode;
4807 int must_trunc = 0;
77c9c6c2
RK
4808
4809 /* We first try to find a pair of modes, one real and one integer, at
4810 least as wide as FROM and TO, respectively, in which we can open-code
4811 this conversion. If the integer mode is wider than the mode of TO,
4812 we can do the conversion either signed or unsigned. */
4813
3987b9db
JH
4814 for (fmode = GET_MODE (from); fmode != VOIDmode;
4815 fmode = GET_MODE_WIDER_MODE (fmode))
4816 for (imode = GET_MODE (to); imode != VOIDmode;
4817 imode = GET_MODE_WIDER_MODE (imode))
77c9c6c2
RK
4818 {
4819 int doing_unsigned = unsignedp;
4820
4821 icode = can_fix_p (imode, fmode, unsignedp, &must_trunc);
4822 if (icode == CODE_FOR_nothing && imode != GET_MODE (to) && unsignedp)
4823 icode = can_fix_p (imode, fmode, 0, &must_trunc), doing_unsigned = 0;
4824
4825 if (icode != CODE_FOR_nothing)
4826 {
4827 to = protect_from_queue (to, 1);
06e40b26 4828 from = protect_from_queue (from, 0);
77c9c6c2
RK
4829
4830 if (fmode != GET_MODE (from))
4831 from = convert_to_mode (fmode, from, 0);
77c9c6c2
RK
4832
4833 if (must_trunc)
0e1d7f32
AH
4834 {
4835 rtx temp = gen_reg_rtx (GET_MODE (from));
4836 from = expand_unop (GET_MODE (from), ftrunc_optab, from,
4837 temp, 0);
4838 }
77c9c6c2
RK
4839
4840 if (imode != GET_MODE (to))
4841 target = gen_reg_rtx (imode);
4842
4843 emit_unop_insn (icode, target, from,
4844 doing_unsigned ? UNSIGNED_FIX : FIX);
4845 if (target != to)
4846 convert_move (to, target, unsignedp);
4847 return;
4848 }
4849 }
4850
77c9c6c2
RK
4851 /* For an unsigned conversion, there is one more way to do it.
4852 If we have a signed conversion, we generate code that compares
4853 the real value to the largest representable positive number. If if
4854 is smaller, the conversion is done normally. Otherwise, subtract
4855 one plus the highest signed number, convert, and add it back.
4856
4857 We only need to check all real modes, since we know we didn't find
0c20a65f 4858 anything with a wider integer mode.
0d446150
JH
4859
4860 This code used to extend FP value into mode wider than the destination.
4861 This is not needed. Consider, for instance conversion from SFmode
4862 into DImode.
4863
4864 The hot path trought the code is dealing with inputs smaller than 2^63
4865 and doing just the conversion, so there is no bits to lose.
4866
4867 In the other path we know the value is positive in the range 2^63..2^64-1
4868 inclusive. (as for other imput overflow happens and result is undefined)
e0bb17a8 4869 So we know that the most important bit set in mantissa corresponds to
0d446150
JH
4870 2^63. The subtraction of 2^63 should not generate any rounding as it
4871 simply clears out that bit. The rest is trivial. */
77c9c6c2 4872
b1ec3c92 4873 if (unsignedp && GET_MODE_BITSIZE (GET_MODE (to)) <= HOST_BITS_PER_WIDE_INT)
77c9c6c2
RK
4874 for (fmode = GET_MODE (from); fmode != VOIDmode;
4875 fmode = GET_MODE_WIDER_MODE (fmode))
0d446150
JH
4876 if (CODE_FOR_nothing != can_fix_p (GET_MODE (to), fmode, 0,
4877 &must_trunc))
77c9c6c2 4878 {
e9f7ae44
RS
4879 int bitsize;
4880 REAL_VALUE_TYPE offset;
4881 rtx limit, lab1, lab2, insn;
4882
4883 bitsize = GET_MODE_BITSIZE (GET_MODE (to));
efdc7e19 4884 real_2expN (&offset, bitsize - 1);
30d88916 4885 limit = CONST_DOUBLE_FROM_REAL_VALUE (offset, fmode);
e9f7ae44
RS
4886 lab1 = gen_label_rtx ();
4887 lab2 = gen_label_rtx ();
77c9c6c2
RK
4888
4889 emit_queue ();
4890 to = protect_from_queue (to, 1);
4891 from = protect_from_queue (from, 0);
4892
4893 if (flag_force_mem)
4894 from = force_not_mem (from);
4895
4896 if (fmode != GET_MODE (from))
4897 from = convert_to_mode (fmode, from, 0);
4898
4899 /* See if we need to do the subtraction. */
4900 do_pending_stack_adjust ();
c5d5d461 4901 emit_cmp_and_jump_insns (from, limit, GE, NULL_RTX, GET_MODE (from),
a06ef755 4902 0, lab1);
77c9c6c2
RK
4903
4904 /* If not, do the signed "fix" and branch around fixup code. */
4905 expand_fix (to, from, 0);
4906 emit_jump_insn (gen_jump (lab2));
4907 emit_barrier ();
4908
4909 /* Otherwise, subtract 2**(N-1), convert to signed number,
4910 then add 2**(N-1). Do the addition using XOR since this
4911 will often generate better code. */
4912 emit_label (lab1);
4913 target = expand_binop (GET_MODE (from), sub_optab, from, limit,
b1ec3c92 4914 NULL_RTX, 0, OPTAB_LIB_WIDEN);
77c9c6c2
RK
4915 expand_fix (to, target, 0);
4916 target = expand_binop (GET_MODE (to), xor_optab, to,
2496c7bd
LB
4917 gen_int_mode
4918 ((HOST_WIDE_INT) 1 << (bitsize - 1),
4919 GET_MODE (to)),
77c9c6c2
RK
4920 to, 1, OPTAB_LIB_WIDEN);
4921
4922 if (target != to)
4923 emit_move_insn (to, target);
4924
4925 emit_label (lab2);
4926
02214a5c
RK
4927 if (mov_optab->handlers[(int) GET_MODE (to)].insn_code
4928 != CODE_FOR_nothing)
4929 {
4930 /* Make a place for a REG_NOTE and add it. */
4931 insn = emit_move_insn (to, to);
5fa671cf
AM
4932 set_unique_reg_note (insn,
4933 REG_EQUAL,
4934 gen_rtx_fmt_e (UNSIGNED_FIX,
4935 GET_MODE (to),
4936 copy_rtx (from)));
02214a5c 4937 }
c5c76735 4938
77c9c6c2
RK
4939 return;
4940 }
77c9c6c2
RK
4941
4942 /* We can't do it with an insn, so use a library call. But first ensure
4943 that the mode of TO is at least as wide as SImode, since those are the
4944 only library calls we know about. */
4945
4946 if (GET_MODE_SIZE (GET_MODE (to)) < GET_MODE_SIZE (SImode))
4947 {
4948 target = gen_reg_rtx (SImode);
4949
4950 expand_fix (target, from, unsignedp);
4951 }
77c9c6c2 4952 else
77c9c6c2
RK
4953 {
4954 rtx insns;
560f3f8a 4955 rtx value;
85363ca0
ZW
4956 rtx libfunc;
4957
4958 convert_optab tab = unsignedp ? ufix_optab : sfix_optab;
4959 libfunc = tab->handlers[GET_MODE (to)][GET_MODE (from)].libfunc;
4960 if (!libfunc)
4961 abort ();
77c9c6c2
RK
4962
4963 to = protect_from_queue (to, 1);
4964 from = protect_from_queue (from, 0);
4965
4966 if (flag_force_mem)
4967 from = force_not_mem (from);
4968
4969 start_sequence ();
4970
85363ca0 4971 value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
ebb1b59a
BS
4972 GET_MODE (to), 1, from,
4973 GET_MODE (from));
77c9c6c2
RK
4974 insns = get_insns ();
4975 end_sequence ();
4976
560f3f8a 4977 emit_libcall_block (insns, target, value,
9e6a5703
JC
4978 gen_rtx_fmt_e (unsignedp ? UNSIGNED_FIX : FIX,
4979 GET_MODE (to), from));
77c9c6c2 4980 }
0c20a65f 4981
3e53ea48
RK
4982 if (target != to)
4983 {
4984 if (GET_MODE (to) == GET_MODE (target))
4985 emit_move_insn (to, target);
4986 else
4987 convert_move (to, target, 0);
4988 }
77c9c6c2
RK
4989}
4990\f
ef89d648
ZW
4991/* Report whether we have an instruction to perform the operation
4992 specified by CODE on operands of mode MODE. */
4993int
0c20a65f 4994have_insn_for (enum rtx_code code, enum machine_mode mode)
ef89d648
ZW
4995{
4996 return (code_to_optab[(int) code] != 0
4997 && (code_to_optab[(int) code]->handlers[(int) mode].insn_code
4998 != CODE_FOR_nothing));
4999}
5000
5001/* Create a blank optab. */
5002static optab
0c20a65f 5003new_optab (void)
77c9c6c2
RK
5004{
5005 int i;
703ad42b 5006 optab op = ggc_alloc (sizeof (struct optab));
77c9c6c2
RK
5007 for (i = 0; i < NUM_MACHINE_MODES; i++)
5008 {
5009 op->handlers[i].insn_code = CODE_FOR_nothing;
5010 op->handlers[i].libfunc = 0;
5011 }
377017c4 5012
ef89d648
ZW
5013 return op;
5014}
377017c4 5015
85363ca0
ZW
5016static convert_optab
5017new_convert_optab (void)
5018{
5019 int i, j;
5020 convert_optab op = ggc_alloc (sizeof (struct convert_optab));
5021 for (i = 0; i < NUM_MACHINE_MODES; i++)
5022 for (j = 0; j < NUM_MACHINE_MODES; j++)
5023 {
5024 op->handlers[i][j].insn_code = CODE_FOR_nothing;
5025 op->handlers[i][j].libfunc = 0;
5026 }
5027 return op;
5028}
5029
ef89d648
ZW
5030/* Same, but fill in its code as CODE, and write it into the
5031 code_to_optab table. */
5032static inline optab
0c20a65f 5033init_optab (enum rtx_code code)
ef89d648
ZW
5034{
5035 optab op = new_optab ();
5036 op->code = code;
5037 code_to_optab[(int) code] = op;
5038 return op;
5039}
5040
5041/* Same, but fill in its code as CODE, and do _not_ write it into
5042 the code_to_optab table. */
5043static inline optab
0c20a65f 5044init_optabv (enum rtx_code code)
ef89d648
ZW
5045{
5046 optab op = new_optab ();
5047 op->code = code;
77c9c6c2
RK
5048 return op;
5049}
5050
85363ca0
ZW
5051/* Conversion optabs never go in the code_to_optab table. */
5052static inline convert_optab
5053init_convert_optab (enum rtx_code code)
5054{
5055 convert_optab op = new_convert_optab ();
5056 op->code = code;
5057 return op;
5058}
5059
b092b471
JW
5060/* Initialize the libfunc fields of an entire group of entries in some
5061 optab. Each entry is set equal to a string consisting of a leading
5062 pair of underscores followed by a generic operation name followed by
7ef0daad 5063 a mode name (downshifted to lowercase) followed by a single character
b092b471
JW
5064 representing the number of operands for the given operation (which is
5065 usually one of the characters '2', '3', or '4').
5066
5067 OPTABLE is the table in which libfunc fields are to be initialized.
5068 FIRST_MODE is the first machine mode index in the given optab to
5069 initialize.
5070 LAST_MODE is the last machine mode index in the given optab to
5071 initialize.
5072 OPNAME is the generic (string) name of the operation.
5073 SUFFIX is the character which specifies the number of operands for
5074 the given generic operation.
5075*/
5076
5077static void
0c20a65f
AJ
5078init_libfuncs (optab optable, int first_mode, int last_mode,
5079 const char *opname, int suffix)
b092b471 5080{
b3694847
SS
5081 int mode;
5082 unsigned opname_len = strlen (opname);
b092b471 5083
fe0035ff
RS
5084 for (mode = first_mode; (int) mode <= (int) last_mode;
5085 mode = (enum machine_mode) ((int) mode + 1))
b092b471 5086 {
7e1a450d 5087 const char *mname = GET_MODE_NAME (mode);
b3694847
SS
5088 unsigned mname_len = strlen (mname);
5089 char *libfunc_name = alloca (2 + opname_len + mname_len + 1 + 1);
5090 char *p;
5091 const char *q;
b092b471
JW
5092
5093 p = libfunc_name;
5094 *p++ = '_';
5095 *p++ = '_';
5096 for (q = opname; *q; )
5097 *p++ = *q++;
5098 for (q = mname; *q; q++)
92a438d1 5099 *p++ = TOLOWER (*q);
b092b471 5100 *p++ = suffix;
520a57c8 5101 *p = '\0';
76095e2f 5102
b092b471 5103 optable->handlers[(int) mode].libfunc
68d28100 5104 = init_one_libfunc (ggc_alloc_string (libfunc_name, p - libfunc_name));
b092b471
JW
5105 }
5106}
5107
5108/* Initialize the libfunc fields of an entire group of entries in some
5109 optab which correspond to all integer mode operations. The parameters
5110 have the same meaning as similarly named ones for the `init_libfuncs'
5111 routine. (See above). */
5112
5113static void
0c20a65f 5114init_integral_libfuncs (optab optable, const char *opname, int suffix)
b092b471 5115{
c0510d84
DD
5116 int maxsize = 2*BITS_PER_WORD;
5117 if (maxsize < LONG_LONG_TYPE_SIZE)
5118 maxsize = LONG_LONG_TYPE_SIZE;
8275b011 5119 init_libfuncs (optable, word_mode,
c0510d84 5120 mode_for_size (maxsize, MODE_INT, 0),
8275b011 5121 opname, suffix);
b092b471
JW
5122}
5123
5124/* Initialize the libfunc fields of an entire group of entries in some
5125 optab which correspond to all real mode operations. The parameters
5126 have the same meaning as similarly named ones for the `init_libfuncs'
5127 routine. (See above). */
5128
5129static void
0c20a65f 5130init_floating_libfuncs (optab optable, const char *opname, int suffix)
b092b471 5131{
d1d3865f 5132 init_libfuncs (optable, MIN_MODE_FLOAT, MAX_MODE_FLOAT, opname, suffix);
b092b471
JW
5133}
5134
85363ca0
ZW
5135/* Initialize the libfunc fields of an entire group of entries of an
5136 inter-mode-class conversion optab. The string formation rules are
5137 similar to the ones for init_libfuncs, above, but instead of having
5138 a mode name and an operand count these functions have two mode names
5139 and no operand count. */
5140static void
5141init_interclass_conv_libfuncs (convert_optab tab, const char *opname,
5142 enum mode_class from_class,
5143 enum mode_class to_class)
5144{
5145 enum machine_mode first_from_mode = GET_CLASS_NARROWEST_MODE (from_class);
5146 enum machine_mode first_to_mode = GET_CLASS_NARROWEST_MODE (to_class);
5147 size_t opname_len = strlen (opname);
5148 size_t max_mname_len = 0;
5149
5150 enum machine_mode fmode, tmode;
5151 const char *fname, *tname;
5152 const char *q;
5153 char *libfunc_name, *suffix;
5154 char *p;
5155
5156 for (fmode = first_from_mode;
5157 fmode != VOIDmode;
5158 fmode = GET_MODE_WIDER_MODE (fmode))
5159 max_mname_len = MAX (max_mname_len, strlen (GET_MODE_NAME (fmode)));
5160
5161 for (tmode = first_to_mode;
5162 tmode != VOIDmode;
5163 tmode = GET_MODE_WIDER_MODE (tmode))
5164 max_mname_len = MAX (max_mname_len, strlen (GET_MODE_NAME (tmode)));
5165
5166 libfunc_name = alloca (2 + opname_len + 2*max_mname_len + 1 + 1);
5167 libfunc_name[0] = '_';
5168 libfunc_name[1] = '_';
5169 memcpy (&libfunc_name[2], opname, opname_len);
5170 suffix = libfunc_name + opname_len + 2;
5171
5172 for (fmode = first_from_mode; fmode != VOIDmode;
5173 fmode = GET_MODE_WIDER_MODE (fmode))
5174 for (tmode = first_to_mode; tmode != VOIDmode;
5175 tmode = GET_MODE_WIDER_MODE (tmode))
5176 {
5177 fname = GET_MODE_NAME (fmode);
5178 tname = GET_MODE_NAME (tmode);
5179
5180 p = suffix;
5181 for (q = fname; *q; p++, q++)
5182 *p = TOLOWER (*q);
5183 for (q = tname; *q; p++, q++)
5184 *p = TOLOWER (*q);
5185
5186 *p = '\0';
5187
5188 tab->handlers[tmode][fmode].libfunc
5189 = init_one_libfunc (ggc_alloc_string (libfunc_name,
5190 p - libfunc_name));
5191 }
5192}
5193
5194/* Initialize the libfunc fields of an entire group of entries of an
5195 intra-mode-class conversion optab. The string formation rules are
5196 similar to the ones for init_libfunc, above. WIDENING says whether
5197 the optab goes from narrow to wide modes or vice versa. These functions
5198 have two mode names _and_ an operand count. */
5199static void
5200init_intraclass_conv_libfuncs (convert_optab tab, const char *opname,
5201 enum mode_class class, bool widening)
5202{
5203 enum machine_mode first_mode = GET_CLASS_NARROWEST_MODE (class);
5204 size_t opname_len = strlen (opname);
5205 size_t max_mname_len = 0;
5206
5207 enum machine_mode nmode, wmode;
5208 const char *nname, *wname;
5209 const char *q;
5210 char *libfunc_name, *suffix;
5211 char *p;
5212
5213 for (nmode = first_mode; nmode != VOIDmode;
5214 nmode = GET_MODE_WIDER_MODE (nmode))
5215 max_mname_len = MAX (max_mname_len, strlen (GET_MODE_NAME (nmode)));
5216
5217 libfunc_name = alloca (2 + opname_len + 2*max_mname_len + 1 + 1);
5218 libfunc_name[0] = '_';
5219 libfunc_name[1] = '_';
5220 memcpy (&libfunc_name[2], opname, opname_len);
5221 suffix = libfunc_name + opname_len + 2;
5222
5223 for (nmode = first_mode; nmode != VOIDmode;
5224 nmode = GET_MODE_WIDER_MODE (nmode))
5225 for (wmode = GET_MODE_WIDER_MODE (nmode); wmode != VOIDmode;
5226 wmode = GET_MODE_WIDER_MODE (wmode))
5227 {
5228 nname = GET_MODE_NAME (nmode);
5229 wname = GET_MODE_NAME (wmode);
5230
5231 p = suffix;
5232 for (q = widening ? nname : wname; *q; p++, q++)
5233 *p = TOLOWER (*q);
5234 for (q = widening ? wname : nname; *q; p++, q++)
5235 *p = TOLOWER (*q);
5236
5237 *p++ = '2';
5238 *p = '\0';
5239
456bc4bb
RE
5240 tab->handlers[widening ? wmode : nmode]
5241 [widening ? nmode : wmode].libfunc
85363ca0
ZW
5242 = init_one_libfunc (ggc_alloc_string (libfunc_name,
5243 p - libfunc_name));
5244 }
5245}
5246
5247
76095e2f 5248rtx
0c20a65f 5249init_one_libfunc (const char *name)
76095e2f 5250{
52859c77
RH
5251 rtx symbol;
5252
fb49053f
RH
5253 /* Create a FUNCTION_DECL that can be passed to
5254 targetm.encode_section_info. */
ee1315aa 5255 /* ??? We don't have any type information except for this is
9c2f7166 5256 a function. Pretend this is "int foo()". */
ee1315aa 5257 tree decl = build_decl (FUNCTION_DECL, get_identifier (name),
9c2f7166 5258 build_function_type (integer_type_node, NULL_TREE));
ee1315aa
RH
5259 DECL_ARTIFICIAL (decl) = 1;
5260 DECL_EXTERNAL (decl) = 1;
5261 TREE_PUBLIC (decl) = 1;
5262
52859c77
RH
5263 symbol = XEXP (DECL_RTL (decl), 0);
5264
5265 /* Zap the nonsensical SYMBOL_REF_DECL for this. What we're left with
5266 are the flags assigned by targetm.encode_section_info. */
5267 SYMBOL_REF_DECL (symbol) = 0;
5268
5269 return symbol;
76095e2f
RH
5270}
5271
c15c90bb
ZW
5272/* Call this to reset the function entry for one optab (OPTABLE) in mode
5273 MODE to NAME, which should be either 0 or a string constant. */
5274void
5275set_optab_libfunc (optab optable, enum machine_mode mode, const char *name)
5276{
5277 if (name)
5278 optable->handlers[mode].libfunc = init_one_libfunc (name);
5279 else
5280 optable->handlers[mode].libfunc = 0;
5281}
5282
85363ca0
ZW
5283/* Call this to reset the function entry for one conversion optab
5284 (OPTABLE) from mode FMODE to mode TMODE to NAME, which should be
5285 either 0 or a string constant. */
5286void
5287set_conv_libfunc (convert_optab optable, enum machine_mode tmode,
5288 enum machine_mode fmode, const char *name)
5289{
5290 if (name)
5291 optable->handlers[tmode][fmode].libfunc = init_one_libfunc (name);
5292 else
5293 optable->handlers[tmode][fmode].libfunc = 0;
5294}
5295
77c9c6c2
RK
5296/* Call this once to initialize the contents of the optabs
5297 appropriately for the current target machine. */
5298
5299void
0c20a65f 5300init_optabs (void)
77c9c6c2 5301{
85363ca0 5302 unsigned int i;
77c9c6c2 5303
5d81dc5b 5304 /* Start by initializing all tables to contain CODE_FOR_nothing. */
77c9c6c2 5305
5d81dc5b
RK
5306 for (i = 0; i < NUM_RTX_CODE; i++)
5307 setcc_gen_code[i] = CODE_FOR_nothing;
5308
49c4584c
DE
5309#ifdef HAVE_conditional_move
5310 for (i = 0; i < NUM_MACHINE_MODES; i++)
5311 movcc_gen_code[i] = CODE_FOR_nothing;
5312#endif
5313
5d81dc5b 5314 add_optab = init_optab (PLUS);
ef89d648 5315 addv_optab = init_optabv (PLUS);
5d81dc5b 5316 sub_optab = init_optab (MINUS);
ef89d648 5317 subv_optab = init_optabv (MINUS);
5d81dc5b 5318 smul_optab = init_optab (MULT);
ef89d648 5319 smulv_optab = init_optabv (MULT);
5035bbfe
TG
5320 smul_highpart_optab = init_optab (UNKNOWN);
5321 umul_highpart_optab = init_optab (UNKNOWN);
5d81dc5b
RK
5322 smul_widen_optab = init_optab (UNKNOWN);
5323 umul_widen_optab = init_optab (UNKNOWN);
5324 sdiv_optab = init_optab (DIV);
ef89d648 5325 sdivv_optab = init_optabv (DIV);
5d81dc5b
RK
5326 sdivmod_optab = init_optab (UNKNOWN);
5327 udiv_optab = init_optab (UDIV);
5328 udivmod_optab = init_optab (UNKNOWN);
5329 smod_optab = init_optab (MOD);
5330 umod_optab = init_optab (UMOD);
77c9c6c2
RK
5331 ftrunc_optab = init_optab (UNKNOWN);
5332 and_optab = init_optab (AND);
5333 ior_optab = init_optab (IOR);
5334 xor_optab = init_optab (XOR);
5335 ashl_optab = init_optab (ASHIFT);
5336 ashr_optab = init_optab (ASHIFTRT);
77c9c6c2
RK
5337 lshr_optab = init_optab (LSHIFTRT);
5338 rotl_optab = init_optab (ROTATE);
5339 rotr_optab = init_optab (ROTATERT);
5340 smin_optab = init_optab (SMIN);
5341 smax_optab = init_optab (SMAX);
5342 umin_optab = init_optab (UMIN);
5343 umax_optab = init_optab (UMAX);
b5e01d4b
RS
5344 pow_optab = init_optab (UNKNOWN);
5345 atan2_optab = init_optab (UNKNOWN);
ef89d648
ZW
5346
5347 /* These three have codes assigned exclusively for the sake of
5348 have_insn_for. */
5349 mov_optab = init_optab (SET);
5350 movstrict_optab = init_optab (STRICT_LOW_PART);
5351 cmp_optab = init_optab (COMPARE);
5352
77c9c6c2
RK
5353 ucmp_optab = init_optab (UNKNOWN);
5354 tst_optab = init_optab (UNKNOWN);
c9034561
ZW
5355
5356 eq_optab = init_optab (EQ);
5357 ne_optab = init_optab (NE);
5358 gt_optab = init_optab (GT);
5359 ge_optab = init_optab (GE);
5360 lt_optab = init_optab (LT);
5361 le_optab = init_optab (LE);
5362 unord_optab = init_optab (UNORDERED);
5363
77c9c6c2 5364 neg_optab = init_optab (NEG);
ef89d648 5365 negv_optab = init_optabv (NEG);
77c9c6c2 5366 abs_optab = init_optab (ABS);
ef89d648 5367 absv_optab = init_optabv (ABS);
068f5dea 5368 addcc_optab = init_optab (UNKNOWN);
77c9c6c2
RK
5369 one_cmpl_optab = init_optab (NOT);
5370 ffs_optab = init_optab (FFS);
2928cd7a
RH
5371 clz_optab = init_optab (CLZ);
5372 ctz_optab = init_optab (CTZ);
5373 popcount_optab = init_optab (POPCOUNT);
5374 parity_optab = init_optab (PARITY);
d45cf215 5375 sqrt_optab = init_optab (SQRT);
4977bab6
ZW
5376 floor_optab = init_optab (UNKNOWN);
5377 ceil_optab = init_optab (UNKNOWN);
5378 round_optab = init_optab (UNKNOWN);
85363ca0 5379 btrunc_optab = init_optab (UNKNOWN);
4977bab6 5380 nearbyint_optab = init_optab (UNKNOWN);
6c7cf1f0 5381 sincos_optab = init_optab (UNKNOWN);
28cf078d 5382 sin_optab = init_optab (UNKNOWN);
c56122d8 5383 asin_optab = init_optab (UNKNOWN);
28cf078d 5384 cos_optab = init_optab (UNKNOWN);
c56122d8 5385 acos_optab = init_optab (UNKNOWN);
e7b489c8 5386 exp_optab = init_optab (UNKNOWN);
a251102e
UB
5387 exp10_optab = init_optab (UNKNOWN);
5388 exp2_optab = init_optab (UNKNOWN);
88b28a31
UB
5389 logb_optab = init_optab (UNKNOWN);
5390 ilogb_optab = init_optab (UNKNOWN);
e7b489c8 5391 log_optab = init_optab (UNKNOWN);
3b8e0c91
UB
5392 log10_optab = init_optab (UNKNOWN);
5393 log2_optab = init_optab (UNKNOWN);
82d397c7
RS
5394 tan_optab = init_optab (UNKNOWN);
5395 atan_optab = init_optab (UNKNOWN);
19c3fc24 5396 strlen_optab = init_optab (UNKNOWN);
1c0290ea
BS
5397 cbranch_optab = init_optab (UNKNOWN);
5398 cmov_optab = init_optab (UNKNOWN);
5399 cstore_optab = init_optab (UNKNOWN);
371b8fc0 5400 push_optab = init_optab (UNKNOWN);
77c9c6c2 5401
997404de
JH
5402 vec_extract_optab = init_optab (UNKNOWN);
5403 vec_set_optab = init_optab (UNKNOWN);
5404 vec_init_optab = init_optab (UNKNOWN);
85363ca0
ZW
5405 /* Conversions. */
5406 sext_optab = init_convert_optab (SIGN_EXTEND);
5407 zext_optab = init_convert_optab (ZERO_EXTEND);
5408 trunc_optab = init_convert_optab (TRUNCATE);
5409 sfix_optab = init_convert_optab (FIX);
5410 ufix_optab = init_convert_optab (UNSIGNED_FIX);
5411 sfixtrunc_optab = init_convert_optab (UNKNOWN);
5412 ufixtrunc_optab = init_convert_optab (UNKNOWN);
5413 sfloat_optab = init_convert_optab (FLOAT);
5414 ufloat_optab = init_convert_optab (UNSIGNED_FLOAT);
5415
5d81dc5b
RK
5416 for (i = 0; i < NUM_MACHINE_MODES; i++)
5417 {
5418 movstr_optab[i] = CODE_FOR_nothing;
45169d12 5419 clrstr_optab[i] = CODE_FOR_nothing;
118355a0
ZW
5420 cmpstr_optab[i] = CODE_FOR_nothing;
5421 cmpmem_optab[i] = CODE_FOR_nothing;
5d81dc5b
RK
5422
5423#ifdef HAVE_SECONDARY_RELOADS
5424 reload_in_optab[i] = reload_out_optab[i] = CODE_FOR_nothing;
77c9c6c2 5425#endif
5d81dc5b
RK
5426 }
5427
5428 /* Fill in the optabs with the insns we support. */
5429 init_all_optabs ();
5430
5d81dc5b 5431 /* Initialize the optabs with the names of the library functions. */
b092b471
JW
5432 init_integral_libfuncs (add_optab, "add", '3');
5433 init_floating_libfuncs (add_optab, "add", '3');
91ce572a
CC
5434 init_integral_libfuncs (addv_optab, "addv", '3');
5435 init_floating_libfuncs (addv_optab, "add", '3');
b092b471
JW
5436 init_integral_libfuncs (sub_optab, "sub", '3');
5437 init_floating_libfuncs (sub_optab, "sub", '3');
91ce572a
CC
5438 init_integral_libfuncs (subv_optab, "subv", '3');
5439 init_floating_libfuncs (subv_optab, "sub", '3');
b092b471
JW
5440 init_integral_libfuncs (smul_optab, "mul", '3');
5441 init_floating_libfuncs (smul_optab, "mul", '3');
91ce572a
CC
5442 init_integral_libfuncs (smulv_optab, "mulv", '3');
5443 init_floating_libfuncs (smulv_optab, "mul", '3');
5d81dc5b 5444 init_integral_libfuncs (sdiv_optab, "div", '3');
ef89d648 5445 init_floating_libfuncs (sdiv_optab, "div", '3');
91ce572a 5446 init_integral_libfuncs (sdivv_optab, "divv", '3');
5d81dc5b
RK
5447 init_integral_libfuncs (udiv_optab, "udiv", '3');
5448 init_integral_libfuncs (sdivmod_optab, "divmod", '4');
5449 init_integral_libfuncs (udivmod_optab, "udivmod", '4');
5450 init_integral_libfuncs (smod_optab, "mod", '3');
5451 init_integral_libfuncs (umod_optab, "umod", '3');
5d81dc5b
RK
5452 init_floating_libfuncs (ftrunc_optab, "ftrunc", '2');
5453 init_integral_libfuncs (and_optab, "and", '3');
5454 init_integral_libfuncs (ior_optab, "ior", '3');
5455 init_integral_libfuncs (xor_optab, "xor", '3');
5456 init_integral_libfuncs (ashl_optab, "ashl", '3');
5457 init_integral_libfuncs (ashr_optab, "ashr", '3');
5d81dc5b 5458 init_integral_libfuncs (lshr_optab, "lshr", '3');
5d81dc5b
RK
5459 init_integral_libfuncs (smin_optab, "min", '3');
5460 init_floating_libfuncs (smin_optab, "min", '3');
5461 init_integral_libfuncs (smax_optab, "max", '3');
5462 init_floating_libfuncs (smax_optab, "max", '3');
5463 init_integral_libfuncs (umin_optab, "umin", '3');
5464 init_integral_libfuncs (umax_optab, "umax", '3');
5465 init_integral_libfuncs (neg_optab, "neg", '2');
5466 init_floating_libfuncs (neg_optab, "neg", '2');
91ce572a
CC
5467 init_integral_libfuncs (negv_optab, "negv", '2');
5468 init_floating_libfuncs (negv_optab, "neg", '2');
5d81dc5b
RK
5469 init_integral_libfuncs (one_cmpl_optab, "one_cmpl", '2');
5470 init_integral_libfuncs (ffs_optab, "ffs", '2');
2928cd7a
RH
5471 init_integral_libfuncs (clz_optab, "clz", '2');
5472 init_integral_libfuncs (ctz_optab, "ctz", '2');
5473 init_integral_libfuncs (popcount_optab, "popcount", '2');
5474 init_integral_libfuncs (parity_optab, "parity", '2');
5d81dc5b
RK
5475
5476 /* Comparison libcalls for integers MUST come in pairs, signed/unsigned. */
5477 init_integral_libfuncs (cmp_optab, "cmp", '2');
5478 init_integral_libfuncs (ucmp_optab, "ucmp", '2');
5479 init_floating_libfuncs (cmp_optab, "cmp", '2');
77c9c6c2 5480
c9034561
ZW
5481 /* EQ etc are floating point only. */
5482 init_floating_libfuncs (eq_optab, "eq", '2');
5483 init_floating_libfuncs (ne_optab, "ne", '2');
5484 init_floating_libfuncs (gt_optab, "gt", '2');
5485 init_floating_libfuncs (ge_optab, "ge", '2');
5486 init_floating_libfuncs (lt_optab, "lt", '2');
5487 init_floating_libfuncs (le_optab, "le", '2');
5488 init_floating_libfuncs (unord_optab, "unord", '2');
5489
85363ca0
ZW
5490 /* Conversions. */
5491 init_interclass_conv_libfuncs (sfloat_optab, "float", MODE_INT, MODE_FLOAT);
5492 init_interclass_conv_libfuncs (sfix_optab, "fix", MODE_FLOAT, MODE_INT);
5493 init_interclass_conv_libfuncs (ufix_optab, "fixuns", MODE_FLOAT, MODE_INT);
77c9c6c2 5494
85363ca0
ZW
5495 /* sext_optab is also used for FLOAT_EXTEND. */
5496 init_intraclass_conv_libfuncs (sext_optab, "extend", MODE_FLOAT, true);
5497 init_intraclass_conv_libfuncs (trunc_optab, "trunc", MODE_FLOAT, false);
76095e2f 5498
85363ca0
ZW
5499 /* Use cabs for double complex abs, since systems generally have cabs.
5500 Don't define any libcall for float complex, so that cabs will be used. */
5501 if (complex_double_type_node)
5502 abs_optab->handlers[TYPE_MODE (complex_double_type_node)].libfunc
5503 = init_one_libfunc ("cabs");
76095e2f 5504
d91edf86 5505 /* The ffs function operates on `int'. */
85363ca0
ZW
5506 ffs_optab->handlers[(int) mode_for_size (INT_TYPE_SIZE, MODE_INT, 0)].libfunc
5507 = init_one_libfunc ("ffs");
76095e2f 5508
9602f5a0 5509 abort_libfunc = init_one_libfunc ("abort");
76095e2f 5510 memcpy_libfunc = init_one_libfunc ("memcpy");
b215b52e 5511 memmove_libfunc = init_one_libfunc ("memmove");
76095e2f
RH
5512 bcopy_libfunc = init_one_libfunc ("bcopy");
5513 memcmp_libfunc = init_one_libfunc ("memcmp");
5514 bcmp_libfunc = init_one_libfunc ("__gcc_bcmp");
5515 memset_libfunc = init_one_libfunc ("memset");
5516 bzero_libfunc = init_one_libfunc ("bzero");
68d28100 5517 setbits_libfunc = init_one_libfunc ("__setbits");
76095e2f 5518
52a11cbf
RH
5519 unwind_resume_libfunc = init_one_libfunc (USING_SJLJ_EXCEPTIONS
5520 ? "_Unwind_SjLj_Resume"
5521 : "_Unwind_Resume");
6e6a07d2 5522#ifndef DONT_USE_BUILTIN_SETJMP
76095e2f
RH
5523 setjmp_libfunc = init_one_libfunc ("__builtin_setjmp");
5524 longjmp_libfunc = init_one_libfunc ("__builtin_longjmp");
27a36778 5525#else
76095e2f
RH
5526 setjmp_libfunc = init_one_libfunc ("setjmp");
5527 longjmp_libfunc = init_one_libfunc ("longjmp");
27a36778 5528#endif
52a11cbf
RH
5529 unwind_sjlj_register_libfunc = init_one_libfunc ("_Unwind_SjLj_Register");
5530 unwind_sjlj_unregister_libfunc
5531 = init_one_libfunc ("_Unwind_SjLj_Unregister");
6adb4e3a 5532
07417085
KR
5533 /* For function entry/exit instrumentation. */
5534 profile_function_entry_libfunc
76095e2f 5535 = init_one_libfunc ("__cyg_profile_func_enter");
07417085 5536 profile_function_exit_libfunc
76095e2f 5537 = init_one_libfunc ("__cyg_profile_func_exit");
07417085 5538
68d28100
RH
5539 gcov_flush_libfunc = init_one_libfunc ("__gcov_flush");
5540 gcov_init_libfunc = init_one_libfunc ("__gcov_init");
5541
842a431a
DM
5542 if (HAVE_conditional_trap)
5543 trap_rtx = gen_rtx_fmt_ee (EQ, VOIDmode, NULL_RTX, NULL_RTX);
e0cd0770 5544
159c2aed 5545 /* Allow the target to add more libcalls or rename some, etc. */
c15c90bb 5546 targetm.init_libfuncs ();
77c9c6c2 5547}
7e1966ca 5548\f
e0cd0770
JC
5549/* Generate insns to trap with code TCODE if OP1 and OP2 satisfy condition
5550 CODE. Return 0 on failure. */
5551
5552rtx
0c20a65f
AJ
5553gen_cond_trap (enum rtx_code code ATTRIBUTE_UNUSED, rtx op1,
5554 rtx op2 ATTRIBUTE_UNUSED, rtx tcode ATTRIBUTE_UNUSED)
e0cd0770
JC
5555{
5556 enum machine_mode mode = GET_MODE (op1);
842a431a
DM
5557 enum insn_code icode;
5558 rtx insn;
5559
5560 if (!HAVE_conditional_trap)
5561 return 0;
e0cd0770
JC
5562
5563 if (mode == VOIDmode)
5564 return 0;
5565
842a431a
DM
5566 icode = cmp_optab->handlers[(int) mode].insn_code;
5567 if (icode == CODE_FOR_nothing)
5568 return 0;
5569
5570 start_sequence ();
5571 op1 = prepare_operand (icode, op1, 0, mode, mode, 0);
0310c414 5572 op2 = prepare_operand (icode, op2, 1, mode, mode, 0);
d893ccde
RH
5573 if (!op1 || !op2)
5574 {
5575 end_sequence ();
5576 return 0;
5577 }
842a431a
DM
5578 emit_insn (GEN_FCN (icode) (op1, op2));
5579
5580 PUT_CODE (trap_rtx, code);
5581 insn = gen_conditional_trap (trap_rtx, tcode);
5582 if (insn)
e0cd0770 5583 {
842a431a
DM
5584 emit_insn (insn);
5585 insn = get_insns ();
e0cd0770 5586 }
842a431a 5587 end_sequence ();
e0cd0770 5588
842a431a 5589 return insn;
e0cd0770 5590}
e2500fed
GK
5591
5592#include "gt-optabs.h"
This page took 2.961806 seconds and 5 git commands to generate.