]> gcc.gnu.org Git - gcc.git/blame - gcc/optabs.c
c-pragma.c (apply_pragma_weak): Don't use warning_with_decl.
[gcc.git] / gcc / optabs.c
CommitLineData
77c9c6c2 1/* Expand the basic unary and binary arithmetic operations, for GNU compiler.
d050d723 2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
9ee0a442 3 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
77c9c6c2 4
1322177d 5This file is part of GCC.
77c9c6c2 6
1322177d
LB
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
9Software Foundation; either version 2, or (at your option) any later
10version.
77c9c6c2 11
1322177d
LB
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15for more details.
77c9c6c2
RK
16
17You should have received a copy of the GNU General Public License
1322177d
LB
18along with GCC; see the file COPYING. If not, write to the Free
19Software Foundation, 59 Temple Place - Suite 330, Boston, MA
2002111-1307, USA. */
77c9c6c2
RK
21
22
23#include "config.h"
670ee920 24#include "system.h"
4977bab6
ZW
25#include "coretypes.h"
26#include "tm.h"
01198c2f 27#include "toplev.h"
dff01034
KG
28
29/* Include insn-config.h before expr.h so that HAVE_conditional_move
dc297297 30 is properly defined. */
dff01034 31#include "insn-config.h"
77c9c6c2
RK
32#include "rtl.h"
33#include "tree.h"
6baf1cc8 34#include "tm_p.h"
77c9c6c2 35#include "flags.h"
49ad7cfa 36#include "function.h"
52a11cbf 37#include "except.h"
77c9c6c2 38#include "expr.h"
e78d8e51
ZW
39#include "optabs.h"
40#include "libfuncs.h"
77c9c6c2 41#include "recog.h"
2829c155 42#include "reload.h"
87ff9c8e 43#include "ggc.h"
7bdb32b9 44#include "real.h"
4a69cf79 45#include "basic-block.h"
77c9c6c2
RK
46
47/* Each optab contains info on how this target machine
48 can perform a particular operation
49 for all sizes and kinds of operands.
50
51 The operation to be performed is often specified
52 by passing one of these optabs as an argument.
53
54 See expr.h for documentation of these optabs. */
55
34220a12
BS
56optab optab_table[OTI_MAX];
57
58rtx libfunc_table[LTI_MAX];
19c3fc24 59
5d81dc5b
RK
60/* Tables of patterns for extending one integer mode to another. */
61enum insn_code extendtab[MAX_MACHINE_MODE][MAX_MACHINE_MODE][2];
62
0f41302f 63/* Tables of patterns for converting between fixed and floating point. */
5d81dc5b
RK
64enum insn_code fixtab[NUM_MACHINE_MODES][NUM_MACHINE_MODES][2];
65enum insn_code fixtrunctab[NUM_MACHINE_MODES][NUM_MACHINE_MODES][2];
66enum insn_code floattab[NUM_MACHINE_MODES][NUM_MACHINE_MODES][2];
67
377017c4
RK
68/* Contains the optab used for each rtx code. */
69optab code_to_optab[NUM_RTX_CODE + 1];
70
77c9c6c2
RK
71/* Indexed by the rtx-code for a conditional (eg. EQ, LT,...)
72 gives the gen_function to make a branch to test that condition. */
73
74rtxfun bcc_gen_fctn[NUM_RTX_CODE];
75
76/* Indexed by the rtx-code for a conditional (eg. EQ, LT,...)
77 gives the insn code to make a store-condition insn
78 to test that condition. */
79
80enum insn_code setcc_gen_code[NUM_RTX_CODE];
81
49c4584c
DE
82#ifdef HAVE_conditional_move
83/* Indexed by the machine mode, gives the insn code to make a conditional
84 move insn. This is not indexed by the rtx-code like bcc_gen_fctn and
85 setcc_gen_code to cut down on the number of named patterns. Consider a day
86 when a lot more rtx codes are conditional (eg: for the ARM). */
87
88enum insn_code movcc_gen_code[NUM_MACHINE_MODES];
89#endif
90
842a431a
DM
91/* The insn generating function can not take an rtx_code argument.
92 TRAP_RTX is used as an rtx argument. Its code is replaced with
93 the code to be used in the trap insn and all other fields are ignored. */
94static GTY(()) rtx trap_rtx;
95
0c20a65f
AJ
96static int add_equal_note (rtx, rtx, enum rtx_code, rtx, rtx);
97static rtx widen_operand (rtx, enum machine_mode, enum machine_mode, int,
98 int);
99static int expand_cmplxdiv_straight (rtx, rtx, rtx, rtx, rtx, rtx,
100 enum machine_mode, int,
101 enum optab_methods, enum mode_class,
102 optab);
103static int expand_cmplxdiv_wide (rtx, rtx, rtx, rtx, rtx, rtx,
104 enum machine_mode, int, enum optab_methods,
105 enum mode_class, optab);
106static void prepare_cmp_insn (rtx *, rtx *, enum rtx_code *, rtx,
107 enum machine_mode *, int *,
108 enum can_compare_purpose);
109static enum insn_code can_fix_p (enum machine_mode, enum machine_mode, int,
110 int *);
111static enum insn_code can_float_p (enum machine_mode, enum machine_mode, int);
112static rtx ftruncify (rtx);
113static optab new_optab (void);
114static inline optab init_optab (enum rtx_code);
115static inline optab init_optabv (enum rtx_code);
116static void init_libfuncs (optab, int, int, const char *, int);
117static void init_integral_libfuncs (optab, const char *, int);
118static void init_floating_libfuncs (optab, const char *, int);
119static void emit_cmp_and_jump_insn_1 (rtx, rtx, enum machine_mode,
120 enum rtx_code, int, rtx);
121static void prepare_float_lib_cmp (rtx *, rtx *, enum rtx_code *,
122 enum machine_mode *, int *);
123static rtx expand_vector_binop (enum machine_mode, optab, rtx, rtx, rtx, int,
124 enum optab_methods);
125static rtx expand_vector_unop (enum machine_mode, optab, rtx, rtx, int);
126static rtx widen_clz (enum machine_mode, rtx, rtx);
127static rtx expand_parity (enum machine_mode, rtx, rtx);
842a431a
DM
128
129#ifndef HAVE_conditional_trap
130#define HAVE_conditional_trap 0
131#define gen_conditional_trap(a,b) (abort (), NULL_RTX)
132#endif
77c9c6c2 133\f
2f937369 134/* Add a REG_EQUAL note to the last insn in INSNS. TARGET is being set to
77c9c6c2
RK
135 the result of operation CODE applied to OP0 (and OP1 if it is a binary
136 operation).
137
138 If the last insn does not set TARGET, don't do anything, but return 1.
139
140 If a previous insn sets TARGET and TARGET is one of OP0 or OP1,
141 don't add the REG_EQUAL note but return 0. Our caller can then try
142 again, ensuring that TARGET is not one of the operands. */
143
144static int
0c20a65f 145add_equal_note (rtx insns, rtx target, enum rtx_code code, rtx op0, rtx op1)
77c9c6c2 146{
2f937369 147 rtx last_insn, insn, set;
77c9c6c2
RK
148 rtx note;
149
2f937369
DM
150 if (! insns
151 || ! INSN_P (insns)
152 || NEXT_INSN (insns) == NULL_RTX)
153 abort ();
154
155 if (GET_RTX_CLASS (code) != '1' && GET_RTX_CLASS (code) != '2'
156 && GET_RTX_CLASS (code) != 'c' && GET_RTX_CLASS (code) != '<')
157 return 1;
158
159 if (GET_CODE (target) == ZERO_EXTRACT)
160 return 1;
161
162 for (last_insn = insns;
163 NEXT_INSN (last_insn) != NULL_RTX;
164 last_insn = NEXT_INSN (last_insn))
165 ;
166
167 set = single_set (last_insn);
168 if (set == NULL_RTX)
169 return 1;
170
171 if (! rtx_equal_p (SET_DEST (set), target)
f9d36a92 172 /* For a STRICT_LOW_PART, the REG_NOTE applies to what is inside it. */
2f937369 173 && (GET_CODE (SET_DEST (set)) != STRICT_LOW_PART
f9d36a92 174 || ! rtx_equal_p (XEXP (SET_DEST (set), 0), target)))
77c9c6c2
RK
175 return 1;
176
177 /* If TARGET is in OP0 or OP1, check if anything in SEQ sets TARGET
178 besides the last insn. */
179 if (reg_overlap_mentioned_p (target, op0)
180 || (op1 && reg_overlap_mentioned_p (target, op1)))
2f937369
DM
181 {
182 insn = PREV_INSN (last_insn);
183 while (insn != NULL_RTX)
184 {
185 if (reg_set_p (target, insn))
186 return 0;
187
188 insn = PREV_INSN (insn);
189 }
190 }
77c9c6c2
RK
191
192 if (GET_RTX_CLASS (code) == '1')
9e6a5703 193 note = gen_rtx_fmt_e (code, GET_MODE (target), copy_rtx (op0));
77c9c6c2 194 else
9e6a5703 195 note = gen_rtx_fmt_ee (code, GET_MODE (target), copy_rtx (op0), copy_rtx (op1));
77c9c6c2 196
2f937369 197 set_unique_reg_note (last_insn, REG_EQUAL, note);
77c9c6c2
RK
198
199 return 1;
200}
201\f
835532b8
RK
202/* Widen OP to MODE and return the rtx for the widened operand. UNSIGNEDP
203 says whether OP is signed or unsigned. NO_EXTEND is nonzero if we need
0c20a65f 204 not actually do a sign-extend or zero-extend, but can leave the
835532b8
RK
205 higher-order bits of the result rtx undefined, for example, in the case
206 of logical operations, but not right shifts. */
207
208static rtx
0c20a65f
AJ
209widen_operand (rtx op, enum machine_mode mode, enum machine_mode oldmode,
210 int unsignedp, int no_extend)
835532b8
RK
211{
212 rtx result;
213
8041889f
RK
214 /* If we don't have to extend and this is a constant, return it. */
215 if (no_extend && GET_MODE (op) == VOIDmode)
216 return op;
217
218 /* If we must extend do so. If OP is a SUBREG for a promoted object, also
219 extend since it will be more efficient to do so unless the signedness of
220 a promoted object differs from our extension. */
835532b8 221 if (! no_extend
cb8f73be
RK
222 || (GET_CODE (op) == SUBREG && SUBREG_PROMOTED_VAR_P (op)
223 && SUBREG_PROMOTED_UNSIGNED_P (op) == unsignedp))
0661a3de 224 return convert_modes (mode, oldmode, op, unsignedp);
835532b8
RK
225
226 /* If MODE is no wider than a single word, we return a paradoxical
227 SUBREG. */
228 if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
9e6a5703 229 return gen_rtx_SUBREG (mode, force_reg (GET_MODE (op), op), 0);
835532b8
RK
230
231 /* Otherwise, get an object of MODE, clobber it, and set the low-order
232 part to OP. */
233
234 result = gen_reg_rtx (mode);
9e6a5703 235 emit_insn (gen_rtx_CLOBBER (VOIDmode, result));
835532b8
RK
236 emit_move_insn (gen_lowpart (GET_MODE (op), result), op);
237 return result;
238}
239\f
c64f913e
CB
240/* Generate code to perform a straightforward complex divide. */
241
242static int
0c20a65f
AJ
243expand_cmplxdiv_straight (rtx real0, rtx real1, rtx imag0, rtx imag1,
244 rtx realr, rtx imagr, enum machine_mode submode,
245 int unsignedp, enum optab_methods methods,
246 enum mode_class class, optab binoptab)
c64f913e
CB
247{
248 rtx divisor;
249 rtx real_t, imag_t;
250 rtx temp1, temp2;
251 rtx res;
91ce572a
CC
252 optab this_add_optab = add_optab;
253 optab this_sub_optab = sub_optab;
254 optab this_neg_optab = neg_optab;
255 optab this_mul_optab = smul_optab;
0c20a65f 256
91ce572a
CC
257 if (binoptab == sdivv_optab)
258 {
259 this_add_optab = addv_optab;
260 this_sub_optab = subv_optab;
261 this_neg_optab = negv_optab;
262 this_mul_optab = smulv_optab;
263 }
264
c64f913e
CB
265 /* Don't fetch these from memory more than once. */
266 real0 = force_reg (submode, real0);
267 real1 = force_reg (submode, real1);
268
269 if (imag0 != 0)
270 imag0 = force_reg (submode, imag0);
271
272 imag1 = force_reg (submode, imag1);
273
274 /* Divisor: c*c + d*d. */
91ce572a 275 temp1 = expand_binop (submode, this_mul_optab, real1, real1,
c64f913e
CB
276 NULL_RTX, unsignedp, methods);
277
91ce572a 278 temp2 = expand_binop (submode, this_mul_optab, imag1, imag1,
c64f913e
CB
279 NULL_RTX, unsignedp, methods);
280
281 if (temp1 == 0 || temp2 == 0)
282 return 0;
283
91ce572a 284 divisor = expand_binop (submode, this_add_optab, temp1, temp2,
c64f913e
CB
285 NULL_RTX, unsignedp, methods);
286 if (divisor == 0)
287 return 0;
288
086bbd21 289 if (imag0 == 0)
c64f913e
CB
290 {
291 /* Mathematically, ((a)(c-id))/divisor. */
292 /* Computationally, (a+i0) / (c+id) = (ac/(cc+dd)) + i(-ad/(cc+dd)). */
293
294 /* Calculate the dividend. */
91ce572a 295 real_t = expand_binop (submode, this_mul_optab, real0, real1,
c64f913e 296 NULL_RTX, unsignedp, methods);
0c20a65f 297
91ce572a 298 imag_t = expand_binop (submode, this_mul_optab, real0, imag1,
c64f913e
CB
299 NULL_RTX, unsignedp, methods);
300
301 if (real_t == 0 || imag_t == 0)
302 return 0;
303
91ce572a 304 imag_t = expand_unop (submode, this_neg_optab, imag_t,
c64f913e
CB
305 NULL_RTX, unsignedp);
306 }
307 else
308 {
309 /* Mathematically, ((a+ib)(c-id))/divider. */
310 /* Calculate the dividend. */
91ce572a 311 temp1 = expand_binop (submode, this_mul_optab, real0, real1,
c64f913e
CB
312 NULL_RTX, unsignedp, methods);
313
91ce572a 314 temp2 = expand_binop (submode, this_mul_optab, imag0, imag1,
c64f913e
CB
315 NULL_RTX, unsignedp, methods);
316
317 if (temp1 == 0 || temp2 == 0)
318 return 0;
319
91ce572a 320 real_t = expand_binop (submode, this_add_optab, temp1, temp2,
c64f913e 321 NULL_RTX, unsignedp, methods);
0c20a65f 322
91ce572a 323 temp1 = expand_binop (submode, this_mul_optab, imag0, real1,
c64f913e
CB
324 NULL_RTX, unsignedp, methods);
325
91ce572a 326 temp2 = expand_binop (submode, this_mul_optab, real0, imag1,
c64f913e
CB
327 NULL_RTX, unsignedp, methods);
328
329 if (temp1 == 0 || temp2 == 0)
330 return 0;
331
91ce572a 332 imag_t = expand_binop (submode, this_sub_optab, temp1, temp2,
c64f913e
CB
333 NULL_RTX, unsignedp, methods);
334
335 if (real_t == 0 || imag_t == 0)
336 return 0;
337 }
338
339 if (class == MODE_COMPLEX_FLOAT)
340 res = expand_binop (submode, binoptab, real_t, divisor,
341 realr, unsignedp, methods);
342 else
343 res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
344 real_t, divisor, realr, unsignedp);
345
346 if (res == 0)
347 return 0;
348
349 if (res != realr)
350 emit_move_insn (realr, res);
351
352 if (class == MODE_COMPLEX_FLOAT)
353 res = expand_binop (submode, binoptab, imag_t, divisor,
354 imagr, unsignedp, methods);
355 else
356 res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
357 imag_t, divisor, imagr, unsignedp);
358
359 if (res == 0)
360 return 0;
361
362 if (res != imagr)
363 emit_move_insn (imagr, res);
364
365 return 1;
366}
367\f
368/* Generate code to perform a wide-input-range-acceptable complex divide. */
369
370static int
0c20a65f
AJ
371expand_cmplxdiv_wide (rtx real0, rtx real1, rtx imag0, rtx imag1, rtx realr,
372 rtx imagr, enum machine_mode submode, int unsignedp,
373 enum optab_methods methods, enum mode_class class,
374 optab binoptab)
c64f913e
CB
375{
376 rtx ratio, divisor;
377 rtx real_t, imag_t;
378 rtx temp1, temp2, lab1, lab2;
379 enum machine_mode mode;
c64f913e 380 rtx res;
91ce572a
CC
381 optab this_add_optab = add_optab;
382 optab this_sub_optab = sub_optab;
383 optab this_neg_optab = neg_optab;
384 optab this_mul_optab = smul_optab;
385
386 if (binoptab == sdivv_optab)
387 {
388 this_add_optab = addv_optab;
389 this_sub_optab = subv_optab;
390 this_neg_optab = negv_optab;
391 this_mul_optab = smulv_optab;
392 }
0c20a65f 393
c64f913e
CB
394 /* Don't fetch these from memory more than once. */
395 real0 = force_reg (submode, real0);
396 real1 = force_reg (submode, real1);
397
398 if (imag0 != 0)
399 imag0 = force_reg (submode, imag0);
400
401 imag1 = force_reg (submode, imag1);
402
a59a536c
RE
403 /* XXX What's an "unsigned" complex number? */
404 if (unsignedp)
405 {
406 temp1 = real1;
407 temp2 = imag1;
408 }
409 else
410 {
91ce572a
CC
411 temp1 = expand_abs (submode, real1, NULL_RTX, unsignedp, 1);
412 temp2 = expand_abs (submode, imag1, NULL_RTX, unsignedp, 1);
a59a536c 413 }
c64f913e
CB
414
415 if (temp1 == 0 || temp2 == 0)
416 return 0;
417
418 mode = GET_MODE (temp1);
c64f913e
CB
419 lab1 = gen_label_rtx ();
420 emit_cmp_and_jump_insns (temp1, temp2, LT, NULL_RTX,
a06ef755 421 mode, unsignedp, lab1);
c64f913e
CB
422
423 /* |c| >= |d|; use ratio d/c to scale dividend and divisor. */
424
425 if (class == MODE_COMPLEX_FLOAT)
426 ratio = expand_binop (submode, binoptab, imag1, real1,
427 NULL_RTX, unsignedp, methods);
428 else
429 ratio = expand_divmod (0, TRUNC_DIV_EXPR, submode,
430 imag1, real1, NULL_RTX, unsignedp);
431
432 if (ratio == 0)
433 return 0;
434
435 /* Calculate divisor. */
436
91ce572a 437 temp1 = expand_binop (submode, this_mul_optab, imag1, ratio,
c64f913e
CB
438 NULL_RTX, unsignedp, methods);
439
440 if (temp1 == 0)
441 return 0;
442
91ce572a 443 divisor = expand_binop (submode, this_add_optab, temp1, real1,
c64f913e
CB
444 NULL_RTX, unsignedp, methods);
445
446 if (divisor == 0)
447 return 0;
448
449 /* Calculate dividend. */
450
086bbd21 451 if (imag0 == 0)
c64f913e
CB
452 {
453 real_t = real0;
454
455 /* Compute a / (c+id) as a / (c+d(d/c)) + i (-a(d/c)) / (c+d(d/c)). */
456
91ce572a 457 imag_t = expand_binop (submode, this_mul_optab, real0, ratio,
c64f913e
CB
458 NULL_RTX, unsignedp, methods);
459
460 if (imag_t == 0)
461 return 0;
462
91ce572a 463 imag_t = expand_unop (submode, this_neg_optab, imag_t,
c64f913e
CB
464 NULL_RTX, unsignedp);
465
466 if (real_t == 0 || imag_t == 0)
467 return 0;
468 }
469 else
470 {
471 /* Compute (a+ib)/(c+id) as
472 (a+b(d/c))/(c+d(d/c) + i(b-a(d/c))/(c+d(d/c)). */
473
91ce572a 474 temp1 = expand_binop (submode, this_mul_optab, imag0, ratio,
c64f913e
CB
475 NULL_RTX, unsignedp, methods);
476
477 if (temp1 == 0)
478 return 0;
479
91ce572a 480 real_t = expand_binop (submode, this_add_optab, temp1, real0,
c64f913e
CB
481 NULL_RTX, unsignedp, methods);
482
91ce572a 483 temp1 = expand_binop (submode, this_mul_optab, real0, ratio,
c64f913e
CB
484 NULL_RTX, unsignedp, methods);
485
486 if (temp1 == 0)
487 return 0;
488
91ce572a 489 imag_t = expand_binop (submode, this_sub_optab, imag0, temp1,
c64f913e
CB
490 NULL_RTX, unsignedp, methods);
491
492 if (real_t == 0 || imag_t == 0)
493 return 0;
494 }
495
496 if (class == MODE_COMPLEX_FLOAT)
497 res = expand_binop (submode, binoptab, real_t, divisor,
498 realr, unsignedp, methods);
499 else
500 res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
501 real_t, divisor, realr, unsignedp);
502
503 if (res == 0)
504 return 0;
505
506 if (res != realr)
507 emit_move_insn (realr, res);
508
509 if (class == MODE_COMPLEX_FLOAT)
510 res = expand_binop (submode, binoptab, imag_t, divisor,
511 imagr, unsignedp, methods);
512 else
513 res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
514 imag_t, divisor, imagr, unsignedp);
515
516 if (res == 0)
517 return 0;
518
519 if (res != imagr)
520 emit_move_insn (imagr, res);
521
522 lab2 = gen_label_rtx ();
523 emit_jump_insn (gen_jump (lab2));
524 emit_barrier ();
525
526 emit_label (lab1);
527
528 /* |d| > |c|; use ratio c/d to scale dividend and divisor. */
529
530 if (class == MODE_COMPLEX_FLOAT)
531 ratio = expand_binop (submode, binoptab, real1, imag1,
532 NULL_RTX, unsignedp, methods);
533 else
534 ratio = expand_divmod (0, TRUNC_DIV_EXPR, submode,
535 real1, imag1, NULL_RTX, unsignedp);
536
537 if (ratio == 0)
538 return 0;
539
540 /* Calculate divisor. */
541
91ce572a 542 temp1 = expand_binop (submode, this_mul_optab, real1, ratio,
c64f913e
CB
543 NULL_RTX, unsignedp, methods);
544
545 if (temp1 == 0)
546 return 0;
547
91ce572a 548 divisor = expand_binop (submode, this_add_optab, temp1, imag1,
c64f913e
CB
549 NULL_RTX, unsignedp, methods);
550
551 if (divisor == 0)
552 return 0;
553
554 /* Calculate dividend. */
555
086bbd21 556 if (imag0 == 0)
c64f913e
CB
557 {
558 /* Compute a / (c+id) as a(c/d) / (c(c/d)+d) + i (-a) / (c(c/d)+d). */
559
91ce572a 560 real_t = expand_binop (submode, this_mul_optab, real0, ratio,
c64f913e
CB
561 NULL_RTX, unsignedp, methods);
562
91ce572a 563 imag_t = expand_unop (submode, this_neg_optab, real0,
c64f913e
CB
564 NULL_RTX, unsignedp);
565
566 if (real_t == 0 || imag_t == 0)
567 return 0;
568 }
569 else
570 {
571 /* Compute (a+ib)/(c+id) as
572 (a(c/d)+b)/(c(c/d)+d) + i (b(c/d)-a)/(c(c/d)+d). */
573
91ce572a 574 temp1 = expand_binop (submode, this_mul_optab, real0, ratio,
c64f913e
CB
575 NULL_RTX, unsignedp, methods);
576
577 if (temp1 == 0)
578 return 0;
579
91ce572a 580 real_t = expand_binop (submode, this_add_optab, temp1, imag0,
c64f913e
CB
581 NULL_RTX, unsignedp, methods);
582
91ce572a 583 temp1 = expand_binop (submode, this_mul_optab, imag0, ratio,
c64f913e
CB
584 NULL_RTX, unsignedp, methods);
585
586 if (temp1 == 0)
587 return 0;
588
91ce572a 589 imag_t = expand_binop (submode, this_sub_optab, temp1, real0,
c64f913e
CB
590 NULL_RTX, unsignedp, methods);
591
592 if (real_t == 0 || imag_t == 0)
593 return 0;
594 }
595
596 if (class == MODE_COMPLEX_FLOAT)
597 res = expand_binop (submode, binoptab, real_t, divisor,
598 realr, unsignedp, methods);
599 else
600 res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
601 real_t, divisor, realr, unsignedp);
602
603 if (res == 0)
604 return 0;
605
606 if (res != realr)
607 emit_move_insn (realr, res);
608
609 if (class == MODE_COMPLEX_FLOAT)
610 res = expand_binop (submode, binoptab, imag_t, divisor,
611 imagr, unsignedp, methods);
612 else
613 res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
614 imag_t, divisor, imagr, unsignedp);
615
616 if (res == 0)
617 return 0;
618
619 if (res != imagr)
620 emit_move_insn (imagr, res);
621
622 emit_label (lab2);
623
624 return 1;
625}
626\f
ef89d648
ZW
627/* Wrapper around expand_binop which takes an rtx code to specify
628 the operation to perform, not an optab pointer. All other
629 arguments are the same. */
630rtx
0c20a65f
AJ
631expand_simple_binop (enum machine_mode mode, enum rtx_code code, rtx op0,
632 rtx op1, rtx target, int unsignedp,
633 enum optab_methods methods)
ef89d648 634{
7e1a450d 635 optab binop = code_to_optab[(int) code];
ef89d648
ZW
636 if (binop == 0)
637 abort ();
638
639 return expand_binop (mode, binop, op0, op1, target, unsignedp, methods);
640}
641
77c9c6c2
RK
642/* Generate code to perform an operation specified by BINOPTAB
643 on operands OP0 and OP1, with result having machine-mode MODE.
644
645 UNSIGNEDP is for the case where we have to widen the operands
646 to perform the operation. It says to use zero-extension.
647
648 If TARGET is nonzero, the value
649 is generated there, if it is convenient to do so.
650 In all cases an rtx is returned for the locus of the value;
651 this may or may not be TARGET. */
652
653rtx
0c20a65f
AJ
654expand_binop (enum machine_mode mode, optab binoptab, rtx op0, rtx op1,
655 rtx target, int unsignedp, enum optab_methods methods)
77c9c6c2 656{
70864443
RK
657 enum optab_methods next_methods
658 = (methods == OPTAB_LIB || methods == OPTAB_LIB_WIDEN
659 ? OPTAB_WIDEN : methods);
77c9c6c2
RK
660 enum mode_class class;
661 enum machine_mode wider_mode;
b3694847 662 rtx temp;
77c9c6c2 663 int commutative_op = 0;
7e1a450d 664 int shift_op = (binoptab->code == ASHIFT
77c9c6c2 665 || binoptab->code == ASHIFTRT
77c9c6c2
RK
666 || binoptab->code == LSHIFTRT
667 || binoptab->code == ROTATE
668 || binoptab->code == ROTATERT);
abd418d3 669 rtx entry_last = get_last_insn ();
77c9c6c2
RK
670 rtx last;
671
672 class = GET_MODE_CLASS (mode);
673
674 op0 = protect_from_queue (op0, 0);
675 op1 = protect_from_queue (op1, 0);
676 if (target)
677 target = protect_from_queue (target, 1);
678
679 if (flag_force_mem)
680 {
894207cf
RS
681 /* Load duplicate non-volatile operands once. */
682 if (rtx_equal_p (op0, op1) && ! volatile_refs_p (op0))
683 {
684 op0 = force_not_mem (op0);
685 op1 = op0;
686 }
687 else
688 {
689 op0 = force_not_mem (op0);
690 op1 = force_not_mem (op1);
691 }
77c9c6c2
RK
692 }
693
8aecce0a
RK
694 /* If subtracting an integer constant, convert this into an addition of
695 the negated constant. */
696
697 if (binoptab == sub_optab && GET_CODE (op1) == CONST_INT)
698 {
699 op1 = negate_rtx (mode, op1);
700 binoptab = add_optab;
701 }
702
77c9c6c2
RK
703 /* If we are inside an appropriately-short loop and one operand is an
704 expensive constant, force it into a register. */
aeedc93f 705 if (CONSTANT_P (op0) && preserve_subexpressions_p ()
b437f1a7 706 && rtx_cost (op0, binoptab->code) > COSTS_N_INSNS (1))
77c9c6c2
RK
707 op0 = force_reg (mode, op0);
708
aeedc93f 709 if (CONSTANT_P (op1) && preserve_subexpressions_p ()
b437f1a7 710 && ! shift_op && rtx_cost (op1, binoptab->code) > COSTS_N_INSNS (1))
4074220e 711 op1 = force_reg (mode, op1);
77c9c6c2 712
77c9c6c2
RK
713 /* Record where to delete back to if we backtrack. */
714 last = get_last_insn ();
715
716 /* If operation is commutative,
717 try to make the first operand a register.
718 Even better, try to make it the same as the target.
719 Also try to make the last operand a constant. */
720 if (GET_RTX_CLASS (binoptab->code) == 'c'
721 || binoptab == smul_widen_optab
5035bbfe
TG
722 || binoptab == umul_widen_optab
723 || binoptab == smul_highpart_optab
724 || binoptab == umul_highpart_optab)
77c9c6c2
RK
725 {
726 commutative_op = 1;
727
728 if (((target == 0 || GET_CODE (target) == REG)
729 ? ((GET_CODE (op1) == REG
730 && GET_CODE (op0) != REG)
731 || target == op1)
732 : rtx_equal_p (op1, target))
733 || GET_CODE (op0) == CONST_INT)
734 {
735 temp = op1;
736 op1 = op0;
737 op0 = temp;
738 }
739 }
740
741 /* If we can do it with a three-operand insn, do so. */
742
743 if (methods != OPTAB_MUST_WIDEN
744 && binoptab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
745 {
746 int icode = (int) binoptab->handlers[(int) mode].insn_code;
a995e389
RH
747 enum machine_mode mode0 = insn_data[icode].operand[1].mode;
748 enum machine_mode mode1 = insn_data[icode].operand[2].mode;
77c9c6c2
RK
749 rtx pat;
750 rtx xop0 = op0, xop1 = op1;
751
752 if (target)
753 temp = target;
754 else
755 temp = gen_reg_rtx (mode);
756
757 /* If it is a commutative operator and the modes would match
0f41302f 758 if we would swap the operands, we can save the conversions. */
77c9c6c2
RK
759 if (commutative_op)
760 {
761 if (GET_MODE (op0) != mode0 && GET_MODE (op1) != mode1
762 && GET_MODE (op0) == mode1 && GET_MODE (op1) == mode0)
763 {
b3694847 764 rtx tmp;
77c9c6c2
RK
765
766 tmp = op0; op0 = op1; op1 = tmp;
767 tmp = xop0; xop0 = xop1; xop1 = tmp;
768 }
769 }
770
771 /* In case the insn wants input operands in modes different from
29984e05
EB
772 those of the actual operands, convert the operands. It would
773 seem that we don't need to convert CONST_INTs, but we do, so
35f1c975
EB
774 that they're properly zero-extended, sign-extended or truncated
775 for their mode. */
77c9c6c2 776
874f6a6d 777 if (GET_MODE (op0) != mode0 && mode0 != VOIDmode)
69107307
AO
778 xop0 = convert_modes (mode0,
779 GET_MODE (op0) != VOIDmode
780 ? GET_MODE (op0)
29984e05 781 : mode,
69107307 782 xop0, unsignedp);
77c9c6c2 783
874f6a6d 784 if (GET_MODE (op1) != mode1 && mode1 != VOIDmode)
69107307
AO
785 xop1 = convert_modes (mode1,
786 GET_MODE (op1) != VOIDmode
787 ? GET_MODE (op1)
35f1c975 788 : mode,
69107307 789 xop1, unsignedp);
77c9c6c2
RK
790
791 /* Now, if insn's predicates don't allow our operands, put them into
792 pseudo regs. */
793
a995e389 794 if (! (*insn_data[icode].operand[1].predicate) (xop0, mode0)
4074220e 795 && mode0 != VOIDmode)
77c9c6c2
RK
796 xop0 = copy_to_mode_reg (mode0, xop0);
797
a995e389 798 if (! (*insn_data[icode].operand[2].predicate) (xop1, mode1)
4074220e 799 && mode1 != VOIDmode)
77c9c6c2
RK
800 xop1 = copy_to_mode_reg (mode1, xop1);
801
a995e389 802 if (! (*insn_data[icode].operand[0].predicate) (temp, mode))
77c9c6c2
RK
803 temp = gen_reg_rtx (mode);
804
805 pat = GEN_FCN (icode) (temp, xop0, xop1);
806 if (pat)
807 {
2f937369 808 /* If PAT is composed of more than one insn, try to add an appropriate
77c9c6c2
RK
809 REG_EQUAL note to it. If we can't because TEMP conflicts with an
810 operand, call ourselves again, this time without a target. */
2f937369 811 if (INSN_P (pat) && NEXT_INSN (pat) != NULL_RTX
77c9c6c2
RK
812 && ! add_equal_note (pat, temp, binoptab->code, xop0, xop1))
813 {
814 delete_insns_since (last);
b1ec3c92
CH
815 return expand_binop (mode, binoptab, op0, op1, NULL_RTX,
816 unsignedp, methods);
77c9c6c2
RK
817 }
818
819 emit_insn (pat);
820 return temp;
821 }
822 else
823 delete_insns_since (last);
824 }
825
5a5064dc
RK
826 /* If this is a multiply, see if we can do a widening operation that
827 takes operands of this mode and makes a wider mode. */
828
829 if (binoptab == smul_optab && GET_MODE_WIDER_MODE (mode) != VOIDmode
830 && (((unsignedp ? umul_widen_optab : smul_widen_optab)
831 ->handlers[(int) GET_MODE_WIDER_MODE (mode)].insn_code)
832 != CODE_FOR_nothing))
833 {
834 temp = expand_binop (GET_MODE_WIDER_MODE (mode),
835 unsignedp ? umul_widen_optab : smul_widen_optab,
73d9a835 836 op0, op1, NULL_RTX, unsignedp, OPTAB_DIRECT);
5a5064dc 837
70864443
RK
838 if (temp != 0)
839 {
840 if (GET_MODE_CLASS (mode) == MODE_INT)
841 return gen_lowpart (mode, temp);
842 else
843 return convert_to_mode (mode, temp, unsignedp);
844 }
5a5064dc
RK
845 }
846
9a856ec7 847 /* Look for a wider mode of the same class for which we think we
5a5064dc
RK
848 can open-code the operation. Check for a widening multiply at the
849 wider mode as well. */
9a856ec7
RK
850
851 if ((class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
6f43c157 852 && methods != OPTAB_DIRECT && methods != OPTAB_LIB)
9a856ec7
RK
853 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
854 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
855 {
5a5064dc
RK
856 if (binoptab->handlers[(int) wider_mode].insn_code != CODE_FOR_nothing
857 || (binoptab == smul_optab
858 && GET_MODE_WIDER_MODE (wider_mode) != VOIDmode
859 && (((unsignedp ? umul_widen_optab : smul_widen_optab)
860 ->handlers[(int) GET_MODE_WIDER_MODE (wider_mode)].insn_code)
861 != CODE_FOR_nothing)))
9a856ec7
RK
862 {
863 rtx xop0 = op0, xop1 = op1;
864 int no_extend = 0;
865
866 /* For certain integer operations, we need not actually extend
867 the narrow operands, as long as we will truncate
6d2f8887 868 the results to the same narrowness. */
9a856ec7
RK
869
870 if ((binoptab == ior_optab || binoptab == and_optab
871 || binoptab == xor_optab
872 || binoptab == add_optab || binoptab == sub_optab
e5df894b 873 || binoptab == smul_optab || binoptab == ashl_optab)
835532b8 874 && class == MODE_INT)
9a856ec7
RK
875 no_extend = 1;
876
0661a3de 877 xop0 = widen_operand (xop0, wider_mode, mode, unsignedp, no_extend);
943cc242
RK
878
879 /* The second operand of a shift must always be extended. */
0661a3de 880 xop1 = widen_operand (xop1, wider_mode, mode, unsignedp,
e5df894b 881 no_extend && binoptab != ashl_optab);
943cc242 882
b1ec3c92 883 temp = expand_binop (wider_mode, binoptab, xop0, xop1, NULL_RTX,
9a856ec7
RK
884 unsignedp, OPTAB_DIRECT);
885 if (temp)
886 {
887 if (class != MODE_INT)
888 {
889 if (target == 0)
890 target = gen_reg_rtx (mode);
891 convert_move (target, temp, 0);
892 return target;
893 }
894 else
895 return gen_lowpart (mode, temp);
896 }
897 else
898 delete_insns_since (last);
899 }
900 }
901
77c9c6c2
RK
902 /* These can be done a word at a time. */
903 if ((binoptab == and_optab || binoptab == ior_optab || binoptab == xor_optab)
904 && class == MODE_INT
905 && GET_MODE_SIZE (mode) > UNITS_PER_WORD
34e56753 906 && binoptab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing)
77c9c6c2 907 {
bb93b973 908 int i;
77c9c6c2
RK
909 rtx insns;
910 rtx equiv_value;
911
912 /* If TARGET is the same as one of the operands, the REG_EQUAL note
913 won't be accurate, so use a new target. */
914 if (target == 0 || target == op0 || target == op1)
915 target = gen_reg_rtx (mode);
916
917 start_sequence ();
918
919 /* Do the actual arithmetic. */
920 for (i = 0; i < GET_MODE_BITSIZE (mode) / BITS_PER_WORD; i++)
921 {
922 rtx target_piece = operand_subword (target, i, 1, mode);
34e56753 923 rtx x = expand_binop (word_mode, binoptab,
77c9c6c2
RK
924 operand_subword_force (op0, i, mode),
925 operand_subword_force (op1, i, mode),
70864443
RK
926 target_piece, unsignedp, next_methods);
927
928 if (x == 0)
929 break;
930
77c9c6c2
RK
931 if (target_piece != x)
932 emit_move_insn (target_piece, x);
933 }
934
935 insns = get_insns ();
936 end_sequence ();
937
70864443
RK
938 if (i == GET_MODE_BITSIZE (mode) / BITS_PER_WORD)
939 {
940 if (binoptab->code != UNKNOWN)
941 equiv_value
9e6a5703
JC
942 = gen_rtx_fmt_ee (binoptab->code, mode,
943 copy_rtx (op0), copy_rtx (op1));
70864443
RK
944 else
945 equiv_value = 0;
77c9c6c2 946
70864443
RK
947 emit_no_conflict_block (insns, target, op0, op1, equiv_value);
948 return target;
949 }
77c9c6c2
RK
950 }
951
8c597270 952 /* Synthesize double word shifts from single word shifts. */
e5df894b
RK
953 if ((binoptab == lshr_optab || binoptab == ashl_optab
954 || binoptab == ashr_optab)
8c597270
JW
955 && class == MODE_INT
956 && GET_CODE (op1) == CONST_INT
957 && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
958 && binoptab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing
959 && ashl_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing
960 && lshr_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing)
961 {
70864443 962 rtx insns, inter, equiv_value;
8c597270
JW
963 rtx into_target, outof_target;
964 rtx into_input, outof_input;
965 int shift_count, left_shift, outof_word;
966
967 /* If TARGET is the same as one of the operands, the REG_EQUAL note
968 won't be accurate, so use a new target. */
969 if (target == 0 || target == op0 || target == op1)
970 target = gen_reg_rtx (mode);
971
972 start_sequence ();
973
974 shift_count = INTVAL (op1);
975
976 /* OUTOF_* is the word we are shifting bits away from, and
977 INTO_* is the word that we are shifting bits towards, thus
978 they differ depending on the direction of the shift and
979 WORDS_BIG_ENDIAN. */
980
e5df894b 981 left_shift = binoptab == ashl_optab;
8c597270
JW
982 outof_word = left_shift ^ ! WORDS_BIG_ENDIAN;
983
984 outof_target = operand_subword (target, outof_word, 1, mode);
985 into_target = operand_subword (target, 1 - outof_word, 1, mode);
986
987 outof_input = operand_subword_force (op0, outof_word, mode);
988 into_input = operand_subword_force (op0, 1 - outof_word, mode);
989
990 if (shift_count >= BITS_PER_WORD)
991 {
70864443
RK
992 inter = expand_binop (word_mode, binoptab,
993 outof_input,
994 GEN_INT (shift_count - BITS_PER_WORD),
995 into_target, unsignedp, next_methods);
996
cb5b00cf 997 if (inter != 0 && inter != into_target)
70864443 998 emit_move_insn (into_target, inter);
8c597270
JW
999
1000 /* For a signed right shift, we must fill the word we are shifting
1001 out of with copies of the sign bit. Otherwise it is zeroed. */
cb5b00cf
RK
1002 if (inter != 0 && binoptab != ashr_optab)
1003 inter = CONST0_RTX (word_mode);
70864443
RK
1004 else if (inter != 0)
1005 inter = expand_binop (word_mode, binoptab,
1006 outof_input,
1007 GEN_INT (BITS_PER_WORD - 1),
1008 outof_target, unsignedp, next_methods);
1009
cb5b00cf 1010 if (inter != 0 && inter != outof_target)
70864443 1011 emit_move_insn (outof_target, inter);
8c597270
JW
1012 }
1013 else
1014 {
70864443 1015 rtx carries;
8c597270
JW
1016 optab reverse_unsigned_shift, unsigned_shift;
1017
1018 /* For a shift of less then BITS_PER_WORD, to compute the carry,
1019 we must do a logical shift in the opposite direction of the
1020 desired shift. */
1021
8c597270
JW
1022 reverse_unsigned_shift = (left_shift ? lshr_optab : ashl_optab);
1023
1024 /* For a shift of less than BITS_PER_WORD, to compute the word
1025 shifted towards, we need to unsigned shift the orig value of
1026 that word. */
1027
1028 unsigned_shift = (left_shift ? ashl_optab : lshr_optab);
1029
1030 carries = expand_binop (word_mode, reverse_unsigned_shift,
1031 outof_input,
1032 GEN_INT (BITS_PER_WORD - shift_count),
70864443
RK
1033 0, unsignedp, next_methods);
1034
1035 if (carries == 0)
1036 inter = 0;
1037 else
70864443
RK
1038 inter = expand_binop (word_mode, unsigned_shift, into_input,
1039 op1, 0, unsignedp, next_methods);
1040
1041 if (inter != 0)
1042 inter = expand_binop (word_mode, ior_optab, carries, inter,
1043 into_target, unsignedp, next_methods);
1044
cb5b00cf 1045 if (inter != 0 && inter != into_target)
70864443 1046 emit_move_insn (into_target, inter);
cf2f7113
RE
1047
1048 if (inter != 0)
1049 inter = expand_binop (word_mode, binoptab, outof_input,
1050 op1, outof_target, unsignedp, next_methods);
0c20a65f 1051
cf2f7113
RE
1052 if (inter != 0 && inter != outof_target)
1053 emit_move_insn (outof_target, inter);
8c597270
JW
1054 }
1055
1056 insns = get_insns ();
1057 end_sequence ();
1058
70864443
RK
1059 if (inter != 0)
1060 {
1061 if (binoptab->code != UNKNOWN)
9e6a5703 1062 equiv_value = gen_rtx_fmt_ee (binoptab->code, mode, op0, op1);
70864443
RK
1063 else
1064 equiv_value = 0;
8c597270 1065
70864443
RK
1066 emit_no_conflict_block (insns, target, op0, op1, equiv_value);
1067 return target;
1068 }
8c597270
JW
1069 }
1070
1071 /* Synthesize double word rotates from single word shifts. */
1072 if ((binoptab == rotl_optab || binoptab == rotr_optab)
1073 && class == MODE_INT
1074 && GET_CODE (op1) == CONST_INT
1075 && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
1076 && ashl_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing
1077 && lshr_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing)
1078 {
1079 rtx insns, equiv_value;
1080 rtx into_target, outof_target;
1081 rtx into_input, outof_input;
70864443 1082 rtx inter;
8c597270
JW
1083 int shift_count, left_shift, outof_word;
1084
1085 /* If TARGET is the same as one of the operands, the REG_EQUAL note
1086 won't be accurate, so use a new target. */
1087 if (target == 0 || target == op0 || target == op1)
1088 target = gen_reg_rtx (mode);
1089
1090 start_sequence ();
1091
1092 shift_count = INTVAL (op1);
1093
1094 /* OUTOF_* is the word we are shifting bits away from, and
1095 INTO_* is the word that we are shifting bits towards, thus
1096 they differ depending on the direction of the shift and
1097 WORDS_BIG_ENDIAN. */
1098
1099 left_shift = (binoptab == rotl_optab);
1100 outof_word = left_shift ^ ! WORDS_BIG_ENDIAN;
1101
1102 outof_target = operand_subword (target, outof_word, 1, mode);
1103 into_target = operand_subword (target, 1 - outof_word, 1, mode);
1104
1105 outof_input = operand_subword_force (op0, outof_word, mode);
1106 into_input = operand_subword_force (op0, 1 - outof_word, mode);
1107
1108 if (shift_count == BITS_PER_WORD)
1109 {
1110 /* This is just a word swap. */
1111 emit_move_insn (outof_target, into_input);
1112 emit_move_insn (into_target, outof_input);
70864443 1113 inter = const0_rtx;
8c597270
JW
1114 }
1115 else
1116 {
1117 rtx into_temp1, into_temp2, outof_temp1, outof_temp2;
1118 rtx first_shift_count, second_shift_count;
1119 optab reverse_unsigned_shift, unsigned_shift;
1120
1121 reverse_unsigned_shift = (left_shift ^ (shift_count < BITS_PER_WORD)
1122 ? lshr_optab : ashl_optab);
1123
1124 unsigned_shift = (left_shift ^ (shift_count < BITS_PER_WORD)
1125 ? ashl_optab : lshr_optab);
1126
1127 if (shift_count > BITS_PER_WORD)
1128 {
1129 first_shift_count = GEN_INT (shift_count - BITS_PER_WORD);
7e1a450d 1130 second_shift_count = GEN_INT (2 * BITS_PER_WORD - shift_count);
8c597270
JW
1131 }
1132 else
1133 {
1134 first_shift_count = GEN_INT (BITS_PER_WORD - shift_count);
1135 second_shift_count = GEN_INT (shift_count);
1136 }
1137
1138 into_temp1 = expand_binop (word_mode, unsigned_shift,
1139 outof_input, first_shift_count,
70864443 1140 NULL_RTX, unsignedp, next_methods);
8c597270
JW
1141 into_temp2 = expand_binop (word_mode, reverse_unsigned_shift,
1142 into_input, second_shift_count,
5be5c8d4 1143 NULL_RTX, unsignedp, next_methods);
70864443
RK
1144
1145 if (into_temp1 != 0 && into_temp2 != 0)
1146 inter = expand_binop (word_mode, ior_optab, into_temp1, into_temp2,
1147 into_target, unsignedp, next_methods);
1148 else
1149 inter = 0;
1150
cb5b00cf 1151 if (inter != 0 && inter != into_target)
70864443 1152 emit_move_insn (into_target, inter);
8c597270
JW
1153
1154 outof_temp1 = expand_binop (word_mode, unsigned_shift,
1155 into_input, first_shift_count,
70864443 1156 NULL_RTX, unsignedp, next_methods);
8c597270
JW
1157 outof_temp2 = expand_binop (word_mode, reverse_unsigned_shift,
1158 outof_input, second_shift_count,
5be5c8d4 1159 NULL_RTX, unsignedp, next_methods);
70864443
RK
1160
1161 if (inter != 0 && outof_temp1 != 0 && outof_temp2 != 0)
1162 inter = expand_binop (word_mode, ior_optab,
1163 outof_temp1, outof_temp2,
1164 outof_target, unsignedp, next_methods);
1165
cb5b00cf 1166 if (inter != 0 && inter != outof_target)
70864443 1167 emit_move_insn (outof_target, inter);
8c597270
JW
1168 }
1169
1170 insns = get_insns ();
1171 end_sequence ();
1172
70864443
RK
1173 if (inter != 0)
1174 {
1175 if (binoptab->code != UNKNOWN)
9e6a5703 1176 equiv_value = gen_rtx_fmt_ee (binoptab->code, mode, op0, op1);
70864443
RK
1177 else
1178 equiv_value = 0;
8c597270 1179
70864443
RK
1180 /* We can't make this a no conflict block if this is a word swap,
1181 because the word swap case fails if the input and output values
1182 are in the same register. */
1183 if (shift_count != BITS_PER_WORD)
1184 emit_no_conflict_block (insns, target, op0, op1, equiv_value);
1185 else
2f937369 1186 emit_insn (insns);
70864443
RK
1187
1188
1189 return target;
1190 }
8c597270
JW
1191 }
1192
77c9c6c2
RK
1193 /* These can be done a word at a time by propagating carries. */
1194 if ((binoptab == add_optab || binoptab == sub_optab)
1195 && class == MODE_INT
1196 && GET_MODE_SIZE (mode) >= 2 * UNITS_PER_WORD
34e56753 1197 && binoptab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing)
77c9c6c2 1198 {
e2500fed 1199 unsigned int i;
77c9c6c2 1200 optab otheroptab = binoptab == add_optab ? sub_optab : add_optab;
a4b5414c 1201 const unsigned int nwords = GET_MODE_BITSIZE (mode) / BITS_PER_WORD;
07444f1d 1202 rtx carry_in = NULL_RTX, carry_out = NULL_RTX;
64de6c0a 1203 rtx xop0, xop1, xtarget;
77c9c6c2
RK
1204
1205 /* We can handle either a 1 or -1 value for the carry. If STORE_FLAG
1206 value is one of those, use it. Otherwise, use 1 since it is the
1207 one easiest to get. */
1208#if STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1
1209 int normalizep = STORE_FLAG_VALUE;
1210#else
1211 int normalizep = 1;
1212#endif
1213
1214 /* Prepare the operands. */
cee85023
RS
1215 xop0 = force_reg (mode, op0);
1216 xop1 = force_reg (mode, op1);
77c9c6c2 1217
64de6c0a
DE
1218 xtarget = gen_reg_rtx (mode);
1219
1220 if (target == 0 || GET_CODE (target) != REG)
1221 target = xtarget;
77c9c6c2 1222
af2cc4dd
RS
1223 /* Indicate for flow that the entire target reg is being set. */
1224 if (GET_CODE (target) == REG)
64de6c0a 1225 emit_insn (gen_rtx_CLOBBER (VOIDmode, xtarget));
af2cc4dd 1226
77c9c6c2
RK
1227 /* Do the actual arithmetic. */
1228 for (i = 0; i < nwords; i++)
1229 {
1230 int index = (WORDS_BIG_ENDIAN ? nwords - i - 1 : i);
64de6c0a 1231 rtx target_piece = operand_subword (xtarget, index, 1, mode);
cee85023
RS
1232 rtx op0_piece = operand_subword_force (xop0, index, mode);
1233 rtx op1_piece = operand_subword_force (xop1, index, mode);
77c9c6c2
RK
1234 rtx x;
1235
1236 /* Main add/subtract of the input operands. */
34e56753 1237 x = expand_binop (word_mode, binoptab,
77c9c6c2 1238 op0_piece, op1_piece,
70864443 1239 target_piece, unsignedp, next_methods);
77c9c6c2
RK
1240 if (x == 0)
1241 break;
1242
1243 if (i + 1 < nwords)
1244 {
1245 /* Store carry from main add/subtract. */
34e56753 1246 carry_out = gen_reg_rtx (word_mode);
23357404
TG
1247 carry_out = emit_store_flag_force (carry_out,
1248 (binoptab == add_optab
b30f05db 1249 ? LT : GT),
23357404
TG
1250 x, op0_piece,
1251 word_mode, 1, normalizep);
77c9c6c2
RK
1252 }
1253
1254 if (i > 0)
1255 {
859cb4d8 1256 rtx newx;
0c20a65f 1257
77c9c6c2 1258 /* Add/subtract previous carry to main result. */
859cb4d8
GK
1259 newx = expand_binop (word_mode,
1260 normalizep == 1 ? binoptab : otheroptab,
1261 x, carry_in,
1262 NULL_RTX, 1, next_methods);
77c9c6c2
RK
1263
1264 if (i + 1 < nwords)
1265 {
77c9c6c2 1266 /* Get out carry from adding/subtracting carry in. */
859cb4d8 1267 rtx carry_tmp = gen_reg_rtx (word_mode);
23357404 1268 carry_tmp = emit_store_flag_force (carry_tmp,
859cb4d8
GK
1269 (binoptab == add_optab
1270 ? LT : GT),
1271 newx, x,
23357404 1272 word_mode, 1, normalizep);
70864443 1273
77c9c6c2 1274 /* Logical-ior the two poss. carry together. */
34e56753 1275 carry_out = expand_binop (word_mode, ior_optab,
77c9c6c2 1276 carry_out, carry_tmp,
70864443
RK
1277 carry_out, 0, next_methods);
1278 if (carry_out == 0)
77c9c6c2
RK
1279 break;
1280 }
859cb4d8 1281 emit_move_insn (target_piece, newx);
77c9c6c2
RK
1282 }
1283
1284 carry_in = carry_out;
0c20a65f 1285 }
77c9c6c2 1286
e2500fed 1287 if (i == GET_MODE_BITSIZE (mode) / (unsigned) BITS_PER_WORD)
77c9c6c2 1288 {
d0ccc658
RK
1289 if (mov_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing
1290 || ! rtx_equal_p (target, xtarget))
02214a5c 1291 {
64de6c0a 1292 rtx temp = emit_move_insn (target, xtarget);
70864443 1293
5fa671cf 1294 set_unique_reg_note (temp,
0c20a65f 1295 REG_EQUAL,
5fa671cf
AM
1296 gen_rtx_fmt_ee (binoptab->code, mode,
1297 copy_rtx (xop0),
1298 copy_rtx (xop1)));
02214a5c 1299 }
2cd622c3
AO
1300 else
1301 target = xtarget;
c5c76735 1302
77c9c6c2
RK
1303 return target;
1304 }
c5c76735 1305
77c9c6c2
RK
1306 else
1307 delete_insns_since (last);
1308 }
1309
1310 /* If we want to multiply two two-word values and have normal and widening
1311 multiplies of single-word values, we can do this with three smaller
1312 multiplications. Note that we do not make a REG_NO_CONFLICT block here
0c20a65f 1313 because we are not operating on one word at a time.
77c9c6c2
RK
1314
1315 The multiplication proceeds as follows:
34e56753
RS
1316 _______________________
1317 [__op0_high_|__op0_low__]
1318 _______________________
6ffe0821 1319 * [__op1_high_|__op1_low__]
34e56753
RS
1320 _______________________________________________
1321 _______________________
6ffe0821 1322 (1) [__op0_low__*__op1_low__]
34e56753 1323 _______________________
6ffe0821 1324 (2a) [__op0_low__*__op1_high_]
34e56753 1325 _______________________
6ffe0821 1326 (2b) [__op0_high_*__op1_low__]
34e56753
RS
1327 _______________________
1328 (3) [__op0_high_*__op1_high_]
77c9c6c2
RK
1329
1330
1331 This gives a 4-word result. Since we are only interested in the
1332 lower 2 words, partial result (3) and the upper words of (2a) and
1333 (2b) don't need to be calculated. Hence (2a) and (2b) can be
1334 calculated using non-widening multiplication.
1335
1336 (1), however, needs to be calculated with an unsigned widening
1337 multiplication. If this operation is not directly supported we
1338 try using a signed widening multiplication and adjust the result.
1339 This adjustment works as follows:
1340
1341 If both operands are positive then no adjustment is needed.
1342
1343 If the operands have different signs, for example op0_low < 0 and
1344 op1_low >= 0, the instruction treats the most significant bit of
1345 op0_low as a sign bit instead of a bit with significance
1346 2**(BITS_PER_WORD-1), i.e. the instruction multiplies op1_low
1347 with 2**BITS_PER_WORD - op0_low, and two's complements the
1348 result. Conclusion: We need to add op1_low * 2**BITS_PER_WORD to
1349 the result.
1350
1351 Similarly, if both operands are negative, we need to add
1352 (op0_low + op1_low) * 2**BITS_PER_WORD.
1353
1354 We use a trick to adjust quickly. We logically shift op0_low right
1355 (op1_low) BITS_PER_WORD-1 steps to get 0 or 1, and add this to
1356 op0_high (op1_high) before it is used to calculate 2b (2a). If no
1357 logical shift exists, we do an arithmetic right shift and subtract
1358 the 0 or -1. */
1359
1360 if (binoptab == smul_optab
1361 && class == MODE_INT
1362 && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
34e56753
RS
1363 && smul_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing
1364 && add_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing
77c9c6c2
RK
1365 && ((umul_widen_optab->handlers[(int) mode].insn_code
1366 != CODE_FOR_nothing)
1367 || (smul_widen_optab->handlers[(int) mode].insn_code
1368 != CODE_FOR_nothing)))
1369 {
1370 int low = (WORDS_BIG_ENDIAN ? 1 : 0);
1371 int high = (WORDS_BIG_ENDIAN ? 0 : 1);
1372 rtx op0_high = operand_subword_force (op0, high, mode);
1373 rtx op0_low = operand_subword_force (op0, low, mode);
1374 rtx op1_high = operand_subword_force (op1, high, mode);
1375 rtx op1_low = operand_subword_force (op1, low, mode);
1376 rtx product = 0;
07444f1d
TM
1377 rtx op0_xhigh = NULL_RTX;
1378 rtx op1_xhigh = NULL_RTX;
77c9c6c2
RK
1379
1380 /* If the target is the same as one of the inputs, don't use it. This
1381 prevents problems with the REG_EQUAL note. */
f96d689c
RK
1382 if (target == op0 || target == op1
1383 || (target != 0 && GET_CODE (target) != REG))
77c9c6c2
RK
1384 target = 0;
1385
1386 /* Multiply the two lower words to get a double-word product.
1387 If unsigned widening multiplication is available, use that;
1388 otherwise use the signed form and compensate. */
1389
1390 if (umul_widen_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
1391 {
1392 product = expand_binop (mode, umul_widen_optab, op0_low, op1_low,
1393 target, 1, OPTAB_DIRECT);
1394
1395 /* If we didn't succeed, delete everything we did so far. */
1396 if (product == 0)
1397 delete_insns_since (last);
1398 else
1399 op0_xhigh = op0_high, op1_xhigh = op1_high;
1400 }
1401
1402 if (product == 0
1403 && smul_widen_optab->handlers[(int) mode].insn_code
1404 != CODE_FOR_nothing)
1405 {
b1ec3c92 1406 rtx wordm1 = GEN_INT (BITS_PER_WORD - 1);
77c9c6c2
RK
1407 product = expand_binop (mode, smul_widen_optab, op0_low, op1_low,
1408 target, 1, OPTAB_DIRECT);
34e56753 1409 op0_xhigh = expand_binop (word_mode, lshr_optab, op0_low, wordm1,
70864443 1410 NULL_RTX, 1, next_methods);
77c9c6c2 1411 if (op0_xhigh)
34e56753 1412 op0_xhigh = expand_binop (word_mode, add_optab, op0_high,
70864443 1413 op0_xhigh, op0_xhigh, 0, next_methods);
77c9c6c2
RK
1414 else
1415 {
34e56753 1416 op0_xhigh = expand_binop (word_mode, ashr_optab, op0_low, wordm1,
70864443 1417 NULL_RTX, 0, next_methods);
77c9c6c2 1418 if (op0_xhigh)
34e56753 1419 op0_xhigh = expand_binop (word_mode, sub_optab, op0_high,
77c9c6c2 1420 op0_xhigh, op0_xhigh, 0,
70864443 1421 next_methods);
77c9c6c2
RK
1422 }
1423
34e56753 1424 op1_xhigh = expand_binop (word_mode, lshr_optab, op1_low, wordm1,
70864443 1425 NULL_RTX, 1, next_methods);
77c9c6c2 1426 if (op1_xhigh)
34e56753 1427 op1_xhigh = expand_binop (word_mode, add_optab, op1_high,
70864443 1428 op1_xhigh, op1_xhigh, 0, next_methods);
77c9c6c2
RK
1429 else
1430 {
34e56753 1431 op1_xhigh = expand_binop (word_mode, ashr_optab, op1_low, wordm1,
70864443 1432 NULL_RTX, 0, next_methods);
77c9c6c2 1433 if (op1_xhigh)
34e56753 1434 op1_xhigh = expand_binop (word_mode, sub_optab, op1_high,
77c9c6c2 1435 op1_xhigh, op1_xhigh, 0,
70864443 1436 next_methods);
77c9c6c2
RK
1437 }
1438 }
1439
1440 /* If we have been able to directly compute the product of the
1441 low-order words of the operands and perform any required adjustments
1442 of the operands, we proceed by trying two more multiplications
1443 and then computing the appropriate sum.
1444
1445 We have checked above that the required addition is provided.
1446 Full-word addition will normally always succeed, especially if
1447 it is provided at all, so we don't worry about its failure. The
1448 multiplication may well fail, however, so we do handle that. */
1449
1450 if (product && op0_xhigh && op1_xhigh)
1451 {
77c9c6c2 1452 rtx product_high = operand_subword (product, high, 1, mode);
b1ec3c92
CH
1453 rtx temp = expand_binop (word_mode, binoptab, op0_low, op1_xhigh,
1454 NULL_RTX, 0, OPTAB_DIRECT);
77c9c6c2 1455
c7539aa0
JL
1456 if (!REG_P (product_high))
1457 product_high = force_reg (word_mode, product_high);
1458
70864443
RK
1459 if (temp != 0)
1460 temp = expand_binop (word_mode, add_optab, temp, product_high,
1461 product_high, 0, next_methods);
77c9c6c2 1462
70864443
RK
1463 if (temp != 0 && temp != product_high)
1464 emit_move_insn (product_high, temp);
1465
1466 if (temp != 0)
0c20a65f 1467 temp = expand_binop (word_mode, binoptab, op1_low, op0_xhigh,
70864443
RK
1468 NULL_RTX, 0, OPTAB_DIRECT);
1469
1470 if (temp != 0)
1471 temp = expand_binop (word_mode, add_optab, temp,
1472 product_high, product_high,
1473 0, next_methods);
77c9c6c2 1474
70864443
RK
1475 if (temp != 0 && temp != product_high)
1476 emit_move_insn (product_high, temp);
77c9c6c2 1477
c7539aa0
JL
1478 emit_move_insn (operand_subword (product, high, 1, mode), product_high);
1479
70864443
RK
1480 if (temp != 0)
1481 {
02214a5c
RK
1482 if (mov_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
1483 {
1484 temp = emit_move_insn (product, product);
5fa671cf 1485 set_unique_reg_note (temp,
0c20a65f 1486 REG_EQUAL,
5fa671cf
AM
1487 gen_rtx_fmt_ee (MULT, mode,
1488 copy_rtx (op0),
1489 copy_rtx (op1)));
02214a5c 1490 }
c5c76735 1491
77c9c6c2
RK
1492 return product;
1493 }
1494 }
1495
1496 /* If we get here, we couldn't do it for some reason even though we
1497 originally thought we could. Delete anything we've emitted in
1498 trying to do it. */
1499
1500 delete_insns_since (last);
1501 }
1502
cb2a532e
AH
1503 /* Open-code the vector operations if we have no hardware support
1504 for them. */
1505 if (class == MODE_VECTOR_INT || class == MODE_VECTOR_FLOAT)
1506 return expand_vector_binop (mode, binoptab, op0, op1, target,
1507 unsignedp, methods);
1508
b818abb0
RS
1509 /* We need to open-code the complex type operations: '+, -, * and /' */
1510
1511 /* At this point we allow operations between two similar complex
1512 numbers, and also if one of the operands is not a complex number
1513 but rather of MODE_FLOAT or MODE_INT. However, the caller
1514 must make sure that the MODE of the non-complex operand matches
6f43c157 1515 the SUBMODE of the complex operand. */
b818abb0
RS
1516
1517 if (class == MODE_COMPLEX_FLOAT || class == MODE_COMPLEX_INT)
6f43c157 1518 {
70864443
RK
1519 rtx real0 = 0, imag0 = 0;
1520 rtx real1 = 0, imag1 = 0;
1521 rtx realr, imagr, res;
b818abb0
RS
1522 rtx seq;
1523 rtx equiv_value;
70864443 1524 int ok = 0;
b818abb0 1525
f9da5064 1526 /* Find the correct mode for the real and imaginary parts. */
27e58a70 1527 enum machine_mode submode = GET_MODE_INNER(mode);
b818abb0
RS
1528
1529 if (submode == BLKmode)
1530 abort ();
1531
1532 if (! target)
1533 target = gen_reg_rtx (mode);
1534
1535 start_sequence ();
1536
c64f913e 1537 realr = gen_realpart (submode, target);
decdfa82 1538 imagr = gen_imagpart (submode, target);
b818abb0
RS
1539
1540 if (GET_MODE (op0) == mode)
1541 {
c64f913e 1542 real0 = gen_realpart (submode, op0);
decdfa82 1543 imag0 = gen_imagpart (submode, op0);
b818abb0
RS
1544 }
1545 else
1546 real0 = op0;
1547
1548 if (GET_MODE (op1) == mode)
1549 {
c64f913e 1550 real1 = gen_realpart (submode, op1);
decdfa82 1551 imag1 = gen_imagpart (submode, op1);
b818abb0
RS
1552 }
1553 else
1554 real1 = op1;
1555
c0fe508e 1556 if (real0 == 0 || real1 == 0 || ! (imag0 != 0 || imag1 != 0))
b818abb0
RS
1557 abort ();
1558
6f43c157
RS
1559 switch (binoptab->code)
1560 {
1561 case PLUS:
96f153da 1562 /* (a+ib) + (c+id) = (a+c) + i(b+d) */
6f43c157 1563 case MINUS:
96f153da 1564 /* (a+ib) - (c+id) = (a-c) + i(b-d) */
b818abb0
RS
1565 res = expand_binop (submode, binoptab, real0, real1,
1566 realr, unsignedp, methods);
70864443
RK
1567
1568 if (res == 0)
1569 break;
1570 else if (res != realr)
b818abb0
RS
1571 emit_move_insn (realr, res);
1572
086bbd21 1573 if (imag0 != 0 && imag1 != 0)
b818abb0
RS
1574 res = expand_binop (submode, binoptab, imag0, imag1,
1575 imagr, unsignedp, methods);
086bbd21 1576 else if (imag0 != 0)
b818abb0
RS
1577 res = imag0;
1578 else if (binoptab->code == MINUS)
91ce572a
CC
1579 res = expand_unop (submode,
1580 binoptab == subv_optab ? negv_optab : neg_optab,
1581 imag1, imagr, unsignedp);
b818abb0
RS
1582 else
1583 res = imag1;
1584
70864443
RK
1585 if (res == 0)
1586 break;
1587 else if (res != imagr)
b818abb0 1588 emit_move_insn (imagr, res);
70864443
RK
1589
1590 ok = 1;
b818abb0 1591 break;
6f43c157
RS
1592
1593 case MULT:
b818abb0
RS
1594 /* (a+ib) * (c+id) = (ac-bd) + i(ad+cb) */
1595
086bbd21 1596 if (imag0 != 0 && imag1 != 0)
b818abb0 1597 {
70864443
RK
1598 rtx temp1, temp2;
1599
54e7b5e6
RS
1600 /* Don't fetch these from memory more than once. */
1601 real0 = force_reg (submode, real0);
1602 real1 = force_reg (submode, real1);
1603 imag0 = force_reg (submode, imag0);
1604 imag1 = force_reg (submode, imag1);
1605
70864443
RK
1606 temp1 = expand_binop (submode, binoptab, real0, real1, NULL_RTX,
1607 unsignedp, methods);
1608
1609 temp2 = expand_binop (submode, binoptab, imag0, imag1, NULL_RTX,
1610 unsignedp, methods);
1611
1612 if (temp1 == 0 || temp2 == 0)
1613 break;
1614
91ce572a
CC
1615 res = (expand_binop
1616 (submode,
1617 binoptab == smulv_optab ? subv_optab : sub_optab,
1618 temp1, temp2, realr, unsignedp, methods));
b818abb0 1619
70864443
RK
1620 if (res == 0)
1621 break;
1622 else if (res != realr)
54e7b5e6 1623 emit_move_insn (realr, res);
b818abb0 1624
70864443
RK
1625 temp1 = expand_binop (submode, binoptab, real0, imag1,
1626 NULL_RTX, unsignedp, methods);
1627
df8ca70e
RS
1628 /* Avoid expanding redundant multiplication for the common
1629 case of squaring a complex number. */
1630 if (rtx_equal_p (real0, real1) && rtx_equal_p (imag0, imag1))
1631 temp2 = temp1;
1632 else
1633 temp2 = expand_binop (submode, binoptab, real1, imag0,
1634 NULL_RTX, unsignedp, methods);
70864443
RK
1635
1636 if (temp1 == 0 || temp2 == 0)
7e1a450d 1637 break;
1c63cc82 1638
91ce572a
CC
1639 res = (expand_binop
1640 (submode,
1641 binoptab == smulv_optab ? addv_optab : add_optab,
1642 temp1, temp2, imagr, unsignedp, methods));
70864443
RK
1643
1644 if (res == 0)
1645 break;
1646 else if (res != imagr)
b818abb0 1647 emit_move_insn (imagr, res);
70864443
RK
1648
1649 ok = 1;
b818abb0
RS
1650 }
1651 else
1652 {
54e7b5e6
RS
1653 /* Don't fetch these from memory more than once. */
1654 real0 = force_reg (submode, real0);
1655 real1 = force_reg (submode, real1);
1656
96f153da
RS
1657 res = expand_binop (submode, binoptab, real0, real1,
1658 realr, unsignedp, methods);
70864443
RK
1659 if (res == 0)
1660 break;
1661 else if (res != realr)
b818abb0
RS
1662 emit_move_insn (realr, res);
1663
086bbd21 1664 if (imag0 != 0)
b818abb0
RS
1665 res = expand_binop (submode, binoptab,
1666 real1, imag0, imagr, unsignedp, methods);
1667 else
1668 res = expand_binop (submode, binoptab,
1669 real0, imag1, imagr, unsignedp, methods);
70864443
RK
1670
1671 if (res == 0)
1672 break;
1673 else if (res != imagr)
b818abb0 1674 emit_move_insn (imagr, res);
70864443
RK
1675
1676 ok = 1;
b818abb0
RS
1677 }
1678 break;
6f43c157
RS
1679
1680 case DIV:
96f153da 1681 /* (a+ib) / (c+id) = ((ac+bd)/(cc+dd)) + i((bc-ad)/(cc+dd)) */
0c20a65f 1682
086bbd21 1683 if (imag1 == 0)
70864443
RK
1684 {
1685 /* (a+ib) / (c+i0) = (a/c) + i(b/c) */
54e7b5e6
RS
1686
1687 /* Don't fetch these from memory more than once. */
1688 real1 = force_reg (submode, real1);
1689
96f153da 1690 /* Simply divide the real and imaginary parts by `c' */
2140ed5b
RK
1691 if (class == MODE_COMPLEX_FLOAT)
1692 res = expand_binop (submode, binoptab, real0, real1,
1693 realr, unsignedp, methods);
1694 else
1695 res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
1696 real0, real1, realr, unsignedp);
1697
70864443
RK
1698 if (res == 0)
1699 break;
1700 else if (res != realr)
b818abb0
RS
1701 emit_move_insn (realr, res);
1702
2140ed5b
RK
1703 if (class == MODE_COMPLEX_FLOAT)
1704 res = expand_binop (submode, binoptab, imag0, real1,
1705 imagr, unsignedp, methods);
1706 else
1707 res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
1708 imag0, real1, imagr, unsignedp);
1709
70864443
RK
1710 if (res == 0)
1711 break;
1712 else if (res != imagr)
b818abb0 1713 emit_move_insn (imagr, res);
b818abb0 1714
70864443
RK
1715 ok = 1;
1716 }
1717 else
1718 {
c64f913e 1719 switch (flag_complex_divide_method)
70864443 1720 {
c64f913e
CB
1721 case 0:
1722 ok = expand_cmplxdiv_straight (real0, real1, imag0, imag1,
1723 realr, imagr, submode,
1724 unsignedp, methods,
1725 class, binoptab);
1726 break;
41b19f3e 1727
c64f913e
CB
1728 case 1:
1729 ok = expand_cmplxdiv_wide (real0, real1, imag0, imag1,
1730 realr, imagr, submode,
1731 unsignedp, methods,
1732 class, binoptab);
1733 break;
70864443 1734
c64f913e
CB
1735 default:
1736 abort ();
b818abb0 1737 }
b818abb0
RS
1738 }
1739 break;
0c20a65f 1740
b818abb0
RS
1741 default:
1742 abort ();
1743 }
1744
c15886da 1745 seq = get_insns ();
b818abb0
RS
1746 end_sequence ();
1747
70864443
RK
1748 if (ok)
1749 {
1750 if (binoptab->code != UNKNOWN)
1751 equiv_value
9e6a5703
JC
1752 = gen_rtx_fmt_ee (binoptab->code, mode,
1753 copy_rtx (op0), copy_rtx (op1));
70864443
RK
1754 else
1755 equiv_value = 0;
0c20a65f 1756
70864443 1757 emit_no_conflict_block (seq, target, op0, op1, equiv_value);
0c20a65f 1758
70864443
RK
1759 return target;
1760 }
b818abb0 1761 }
b818abb0 1762
77c9c6c2
RK
1763 /* It can't be open-coded in this mode.
1764 Use a library call if one is available and caller says that's ok. */
1765
1766 if (binoptab->handlers[(int) mode].libfunc
1767 && (methods == OPTAB_LIB || methods == OPTAB_LIB_WIDEN))
1768 {
1769 rtx insns;
0bbb7f4d
RS
1770 rtx op1x = op1;
1771 enum machine_mode op1_mode = mode;
9a7f678c 1772 rtx value;
77c9c6c2
RK
1773
1774 start_sequence ();
1775
0bbb7f4d
RS
1776 if (shift_op)
1777 {
1778 op1_mode = word_mode;
1779 /* Specify unsigned here,
1780 since negative shift counts are meaningless. */
1781 op1x = convert_to_mode (word_mode, op1, 1);
1782 }
1783
82f0e2cc
RK
1784 if (GET_MODE (op0) != VOIDmode
1785 && GET_MODE (op0) != mode)
5035bbfe
TG
1786 op0 = convert_to_mode (mode, op0, unsignedp);
1787
77c9c6c2
RK
1788 /* Pass 1 for NO_QUEUE so we don't lose any increments
1789 if the libcall is cse'd or moved. */
9a7f678c 1790 value = emit_library_call_value (binoptab->handlers[(int) mode].libfunc,
ebb1b59a 1791 NULL_RTX, LCT_CONST, mode, 2,
9a7f678c 1792 op0, mode, op1x, op1_mode);
77c9c6c2
RK
1793
1794 insns = get_insns ();
1795 end_sequence ();
1796
1797 target = gen_reg_rtx (mode);
9a7f678c 1798 emit_libcall_block (insns, target, value,
9e6a5703 1799 gen_rtx_fmt_ee (binoptab->code, mode, op0, op1));
77c9c6c2
RK
1800
1801 return target;
1802 }
1803
1804 delete_insns_since (last);
1805
1806 /* It can't be done in this mode. Can we do it in a wider mode? */
1807
1808 if (! (methods == OPTAB_WIDEN || methods == OPTAB_LIB_WIDEN
1809 || methods == OPTAB_MUST_WIDEN))
abd418d3
RS
1810 {
1811 /* Caller says, don't even try. */
1812 delete_insns_since (entry_last);
1813 return 0;
1814 }
77c9c6c2
RK
1815
1816 /* Compute the value of METHODS to pass to recursive calls.
1817 Don't allow widening to be tried recursively. */
1818
1819 methods = (methods == OPTAB_LIB_WIDEN ? OPTAB_LIB : OPTAB_DIRECT);
1820
34e56753
RS
1821 /* Look for a wider mode of the same class for which it appears we can do
1822 the operation. */
77c9c6c2
RK
1823
1824 if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
1825 {
34e56753 1826 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
77c9c6c2
RK
1827 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
1828 {
1829 if ((binoptab->handlers[(int) wider_mode].insn_code
1830 != CODE_FOR_nothing)
1831 || (methods == OPTAB_LIB
1832 && binoptab->handlers[(int) wider_mode].libfunc))
1833 {
1834 rtx xop0 = op0, xop1 = op1;
1835 int no_extend = 0;
1836
34e56753 1837 /* For certain integer operations, we need not actually extend
77c9c6c2 1838 the narrow operands, as long as we will truncate
835532b8 1839 the results to the same narrowness. */
77c9c6c2 1840
34e56753
RS
1841 if ((binoptab == ior_optab || binoptab == and_optab
1842 || binoptab == xor_optab
1843 || binoptab == add_optab || binoptab == sub_optab
e5df894b 1844 || binoptab == smul_optab || binoptab == ashl_optab)
835532b8 1845 && class == MODE_INT)
77c9c6c2
RK
1846 no_extend = 1;
1847
0661a3de
RS
1848 xop0 = widen_operand (xop0, wider_mode, mode,
1849 unsignedp, no_extend);
943cc242
RK
1850
1851 /* The second operand of a shift must always be extended. */
0661a3de 1852 xop1 = widen_operand (xop1, wider_mode, mode, unsignedp,
e5df894b 1853 no_extend && binoptab != ashl_optab);
77c9c6c2 1854
b1ec3c92 1855 temp = expand_binop (wider_mode, binoptab, xop0, xop1, NULL_RTX,
77c9c6c2
RK
1856 unsignedp, methods);
1857 if (temp)
1858 {
34e56753 1859 if (class != MODE_INT)
77c9c6c2
RK
1860 {
1861 if (target == 0)
1862 target = gen_reg_rtx (mode);
1863 convert_move (target, temp, 0);
1864 return target;
1865 }
1866 else
1867 return gen_lowpart (mode, temp);
1868 }
1869 else
1870 delete_insns_since (last);
1871 }
1872 }
1873 }
1874
abd418d3 1875 delete_insns_since (entry_last);
77c9c6c2
RK
1876 return 0;
1877}
cb2a532e
AH
1878
1879/* Like expand_binop, but for open-coding vectors binops. */
1880
1881static rtx
0c20a65f
AJ
1882expand_vector_binop (enum machine_mode mode, optab binoptab, rtx op0,
1883 rtx op1, rtx target, int unsignedp,
1884 enum optab_methods methods)
cb2a532e 1885{
34a80643
R
1886 enum machine_mode submode, tmode;
1887 int size, elts, subsize, subbitsize, i;
cb2a532e
AH
1888 rtx t, a, b, res, seq;
1889 enum mode_class class;
1890
1891 class = GET_MODE_CLASS (mode);
1892
7e1a450d 1893 size = GET_MODE_SIZE (mode);
cb2a532e 1894 submode = GET_MODE_INNER (mode);
cb2a532e 1895
34a80643
R
1896 /* Search for the widest vector mode with the same inner mode that is
1897 still narrower than MODE and that allows to open-code this operator.
1898 Note, if we find such a mode and the handler later decides it can't
1899 do the expansion, we'll be called recursively with the narrower mode. */
1900 for (tmode = GET_CLASS_NARROWEST_MODE (class);
1901 GET_MODE_SIZE (tmode) < GET_MODE_SIZE (mode);
1902 tmode = GET_MODE_WIDER_MODE (tmode))
1903 {
1904 if (GET_MODE_INNER (tmode) == GET_MODE_INNER (mode)
1905 && binoptab->handlers[(int) tmode].insn_code != CODE_FOR_nothing)
1906 submode = tmode;
1907 }
cb2a532e
AH
1908
1909 switch (binoptab->code)
1910 {
34a80643
R
1911 case AND:
1912 case IOR:
1913 case XOR:
1914 tmode = int_mode_for_mode (mode);
1915 if (tmode != BLKmode)
1916 submode = tmode;
cb2a532e
AH
1917 case PLUS:
1918 case MINUS:
1919 case MULT:
1920 case DIV:
34a80643
R
1921 subsize = GET_MODE_SIZE (submode);
1922 subbitsize = GET_MODE_BITSIZE (submode);
1923 elts = size / subsize;
1924
1925 /* If METHODS is OPTAB_DIRECT, we don't insist on the exact mode,
1926 but that we operate on more than one element at a time. */
1927 if (subsize == GET_MODE_UNIT_SIZE (mode) && methods == OPTAB_DIRECT)
1928 return 0;
1929
1930 start_sequence ();
1931
1932 /* Errors can leave us with a const0_rtx as operand. */
1933 if (GET_MODE (op0) != mode)
1934 op0 = copy_to_mode_reg (mode, op0);
1935 if (GET_MODE (op1) != mode)
1936 op1 = copy_to_mode_reg (mode, op1);
1937
1938 if (!target)
1939 target = gen_reg_rtx (mode);
1940
cb2a532e
AH
1941 for (i = 0; i < elts; ++i)
1942 {
34a80643
R
1943 /* If this is part of a register, and not the first item in the
1944 word, we can't store using a SUBREG - that would clobber
1945 previous results.
1946 And storing with a SUBREG is only possible for the least
1947 significant part, hence we can't do it for big endian
1948 (unless we want to permute the evaluation order. */
1949 if (GET_CODE (target) == REG
1950 && (BYTES_BIG_ENDIAN
1951 ? subsize < UNITS_PER_WORD
1952 : ((i * subsize) % UNITS_PER_WORD) != 0))
1953 t = NULL_RTX;
1954 else
1955 t = simplify_gen_subreg (submode, target, mode, i * subsize);
1956 if (CONSTANT_P (op0))
1957 a = simplify_gen_subreg (submode, op0, mode, i * subsize);
1958 else
1959 a = extract_bit_field (op0, subbitsize, i * subbitsize, unsignedp,
1960 NULL_RTX, submode, submode, size);
1961 if (CONSTANT_P (op1))
1962 b = simplify_gen_subreg (submode, op1, mode, i * subsize);
1963 else
1964 b = extract_bit_field (op1, subbitsize, i * subbitsize, unsignedp,
1965 NULL_RTX, submode, submode, size);
cb2a532e
AH
1966
1967 if (binoptab->code == DIV)
1968 {
1969 if (class == MODE_VECTOR_FLOAT)
1970 res = expand_binop (submode, binoptab, a, b, t,
1971 unsignedp, methods);
1972 else
1973 res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
1974 a, b, t, unsignedp);
1975 }
1976 else
1977 res = expand_binop (submode, binoptab, a, b, t,
1978 unsignedp, methods);
1979
1980 if (res == 0)
1981 break;
1982
34a80643
R
1983 if (t)
1984 emit_move_insn (t, res);
1985 else
1986 store_bit_field (target, subbitsize, i * subbitsize, submode, res,
1987 size);
cb2a532e
AH
1988 }
1989 break;
1990
1991 default:
1992 abort ();
1993 }
1994
1995 seq = get_insns ();
1996 end_sequence ();
1997 emit_insn (seq);
1998
1999 return target;
2000}
2001
2002/* Like expand_unop but for open-coding vector unops. */
2003
2004static rtx
0c20a65f
AJ
2005expand_vector_unop (enum machine_mode mode, optab unoptab, rtx op0,
2006 rtx target, int unsignedp)
cb2a532e 2007{
34a80643
R
2008 enum machine_mode submode, tmode;
2009 int size, elts, subsize, subbitsize, i;
cb2a532e
AH
2010 rtx t, a, res, seq;
2011
7e1a450d 2012 size = GET_MODE_SIZE (mode);
cb2a532e 2013 submode = GET_MODE_INNER (mode);
34a80643
R
2014
2015 /* Search for the widest vector mode with the same inner mode that is
2016 still narrower than MODE and that allows to open-code this operator.
2017 Note, if we find such a mode and the handler later decides it can't
2018 do the expansion, we'll be called recursively with the narrower mode. */
2019 for (tmode = GET_CLASS_NARROWEST_MODE (GET_MODE_CLASS (mode));
2020 GET_MODE_SIZE (tmode) < GET_MODE_SIZE (mode);
2021 tmode = GET_MODE_WIDER_MODE (tmode))
2022 {
2023 if (GET_MODE_INNER (tmode) == GET_MODE_INNER (mode)
2024 && unoptab->handlers[(int) tmode].insn_code != CODE_FOR_nothing)
2025 submode = tmode;
2026 }
2027 /* If there is no negate operation, try doing a subtract from zero. */
0d541696
R
2028 if (unoptab == neg_optab && GET_MODE_CLASS (submode) == MODE_INT
2029 /* Avoid infinite recursion when an
2030 error has left us with the wrong mode. */
2031 && GET_MODE (op0) == mode)
0c20a65f 2032 {
34a80643
R
2033 rtx temp;
2034 temp = expand_binop (mode, sub_optab, CONST0_RTX (mode), op0,
2035 target, unsignedp, OPTAB_DIRECT);
2036 if (temp)
2037 return temp;
2038 }
2039
2040 if (unoptab == one_cmpl_optab)
2041 {
2042 tmode = int_mode_for_mode (mode);
2043 if (tmode != BLKmode)
2044 submode = tmode;
2045 }
2046
2047 subsize = GET_MODE_SIZE (submode);
2048 subbitsize = GET_MODE_BITSIZE (submode);
2049 elts = size / subsize;
2050
2051 /* Errors can leave us with a const0_rtx as operand. */
2052 if (GET_MODE (op0) != mode)
2053 op0 = copy_to_mode_reg (mode, op0);
cb2a532e
AH
2054
2055 if (!target)
2056 target = gen_reg_rtx (mode);
2057
2058 start_sequence ();
2059
cb2a532e
AH
2060 for (i = 0; i < elts; ++i)
2061 {
34a80643
R
2062 /* If this is part of a register, and not the first item in the
2063 word, we can't store using a SUBREG - that would clobber
2064 previous results.
2065 And storing with a SUBREG is only possible for the least
2066 significant part, hence we can't do it for big endian
2067 (unless we want to permute the evaluation order. */
2068 if (GET_CODE (target) == REG
2069 && (BYTES_BIG_ENDIAN
2070 ? subsize < UNITS_PER_WORD
2071 : ((i * subsize) % UNITS_PER_WORD) != 0))
2072 t = NULL_RTX;
2073 else
2074 t = simplify_gen_subreg (submode, target, mode, i * subsize);
2075 if (CONSTANT_P (op0))
2076 a = simplify_gen_subreg (submode, op0, mode, i * subsize);
2077 else
2078 a = extract_bit_field (op0, subbitsize, i * subbitsize, unsignedp,
2079 t, submode, submode, size);
cb2a532e
AH
2080
2081 res = expand_unop (submode, unoptab, a, t, unsignedp);
2082
34a80643
R
2083 if (t)
2084 emit_move_insn (t, res);
2085 else
2086 store_bit_field (target, subbitsize, i * subbitsize, submode, res,
2087 size);
cb2a532e
AH
2088 }
2089
2090 seq = get_insns ();
2091 end_sequence ();
2092 emit_insn (seq);
2093
2094 return target;
2095}
77c9c6c2
RK
2096\f
2097/* Expand a binary operator which has both signed and unsigned forms.
2098 UOPTAB is the optab for unsigned operations, and SOPTAB is for
2099 signed operations.
2100
2101 If we widen unsigned operands, we may use a signed wider operation instead
2102 of an unsigned wider operation, since the result would be the same. */
2103
2104rtx
0c20a65f
AJ
2105sign_expand_binop (enum machine_mode mode, optab uoptab, optab soptab,
2106 rtx op0, rtx op1, rtx target, int unsignedp,
2107 enum optab_methods methods)
77c9c6c2 2108{
b3694847 2109 rtx temp;
77c9c6c2
RK
2110 optab direct_optab = unsignedp ? uoptab : soptab;
2111 struct optab wide_soptab;
2112
2113 /* Do it without widening, if possible. */
2114 temp = expand_binop (mode, direct_optab, op0, op1, target,
2115 unsignedp, OPTAB_DIRECT);
2116 if (temp || methods == OPTAB_DIRECT)
2117 return temp;
2118
2119 /* Try widening to a signed int. Make a fake signed optab that
2120 hides any signed insn for direct use. */
2121 wide_soptab = *soptab;
2122 wide_soptab.handlers[(int) mode].insn_code = CODE_FOR_nothing;
2123 wide_soptab.handlers[(int) mode].libfunc = 0;
2124
2125 temp = expand_binop (mode, &wide_soptab, op0, op1, target,
2126 unsignedp, OPTAB_WIDEN);
2127
2128 /* For unsigned operands, try widening to an unsigned int. */
2129 if (temp == 0 && unsignedp)
2130 temp = expand_binop (mode, uoptab, op0, op1, target,
2131 unsignedp, OPTAB_WIDEN);
2132 if (temp || methods == OPTAB_WIDEN)
2133 return temp;
2134
2135 /* Use the right width lib call if that exists. */
2136 temp = expand_binop (mode, direct_optab, op0, op1, target, unsignedp, OPTAB_LIB);
2137 if (temp || methods == OPTAB_LIB)
2138 return temp;
2139
2140 /* Must widen and use a lib call, use either signed or unsigned. */
2141 temp = expand_binop (mode, &wide_soptab, op0, op1, target,
2142 unsignedp, methods);
2143 if (temp != 0)
2144 return temp;
2145 if (unsignedp)
2146 return expand_binop (mode, uoptab, op0, op1, target,
2147 unsignedp, methods);
2148 return 0;
2149}
2150\f
2151/* Generate code to perform an operation specified by BINOPTAB
2152 on operands OP0 and OP1, with two results to TARG1 and TARG2.
2153 We assume that the order of the operands for the instruction
2154 is TARG0, OP0, OP1, TARG1, which would fit a pattern like
2155 [(set TARG0 (operate OP0 OP1)) (set TARG1 (operate ...))].
2156
2157 Either TARG0 or TARG1 may be zero, but what that means is that
38e01259 2158 the result is not actually wanted. We will generate it into
77c9c6c2
RK
2159 a dummy pseudo-reg and discard it. They may not both be zero.
2160
2161 Returns 1 if this operation can be performed; 0 if not. */
2162
2163int
0c20a65f
AJ
2164expand_twoval_binop (optab binoptab, rtx op0, rtx op1, rtx targ0, rtx targ1,
2165 int unsignedp)
77c9c6c2
RK
2166{
2167 enum machine_mode mode = GET_MODE (targ0 ? targ0 : targ1);
2168 enum mode_class class;
2169 enum machine_mode wider_mode;
abd418d3 2170 rtx entry_last = get_last_insn ();
77c9c6c2
RK
2171 rtx last;
2172
2173 class = GET_MODE_CLASS (mode);
2174
2175 op0 = protect_from_queue (op0, 0);
2176 op1 = protect_from_queue (op1, 0);
2177
2178 if (flag_force_mem)
2179 {
2180 op0 = force_not_mem (op0);
2181 op1 = force_not_mem (op1);
2182 }
2183
2184 /* If we are inside an appropriately-short loop and one operand is an
2185 expensive constant, force it into a register. */
aeedc93f 2186 if (CONSTANT_P (op0) && preserve_subexpressions_p ()
b437f1a7 2187 && rtx_cost (op0, binoptab->code) > COSTS_N_INSNS (1))
77c9c6c2
RK
2188 op0 = force_reg (mode, op0);
2189
aeedc93f 2190 if (CONSTANT_P (op1) && preserve_subexpressions_p ()
b437f1a7 2191 && rtx_cost (op1, binoptab->code) > COSTS_N_INSNS (1))
77c9c6c2
RK
2192 op1 = force_reg (mode, op1);
2193
2194 if (targ0)
2195 targ0 = protect_from_queue (targ0, 1);
2196 else
2197 targ0 = gen_reg_rtx (mode);
2198 if (targ1)
2199 targ1 = protect_from_queue (targ1, 1);
2200 else
2201 targ1 = gen_reg_rtx (mode);
2202
2203 /* Record where to go back to if we fail. */
2204 last = get_last_insn ();
2205
2206 if (binoptab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
2207 {
2208 int icode = (int) binoptab->handlers[(int) mode].insn_code;
a995e389
RH
2209 enum machine_mode mode0 = insn_data[icode].operand[1].mode;
2210 enum machine_mode mode1 = insn_data[icode].operand[2].mode;
77c9c6c2
RK
2211 rtx pat;
2212 rtx xop0 = op0, xop1 = op1;
2213
874f6a6d
EB
2214 /* In case the insn wants input operands in modes different from
2215 those of the actual operands, convert the operands. It would
2216 seem that we don't need to convert CONST_INTs, but we do, so
35f1c975
EB
2217 that they're properly zero-extended, sign-extended or truncated
2218 for their mode. */
77c9c6c2 2219
874f6a6d
EB
2220 if (GET_MODE (op0) != mode0 && mode0 != VOIDmode)
2221 xop0 = convert_modes (mode0,
2222 GET_MODE (op0) != VOIDmode
2223 ? GET_MODE (op0)
2224 : mode,
2225 xop0, unsignedp);
2226
2227 if (GET_MODE (op1) != mode1 && mode1 != VOIDmode)
2228 xop1 = convert_modes (mode1,
2229 GET_MODE (op1) != VOIDmode
2230 ? GET_MODE (op1)
2231 : mode,
2232 xop1, unsignedp);
77c9c6c2
RK
2233
2234 /* Now, if insn doesn't accept these operands, put them into pseudos. */
a995e389 2235 if (! (*insn_data[icode].operand[1].predicate) (xop0, mode0))
77c9c6c2
RK
2236 xop0 = copy_to_mode_reg (mode0, xop0);
2237
a995e389 2238 if (! (*insn_data[icode].operand[2].predicate) (xop1, mode1))
77c9c6c2
RK
2239 xop1 = copy_to_mode_reg (mode1, xop1);
2240
2241 /* We could handle this, but we should always be called with a pseudo
2242 for our targets and all insns should take them as outputs. */
a995e389
RH
2243 if (! (*insn_data[icode].operand[0].predicate) (targ0, mode)
2244 || ! (*insn_data[icode].operand[3].predicate) (targ1, mode))
77c9c6c2 2245 abort ();
0c20a65f 2246
77c9c6c2
RK
2247 pat = GEN_FCN (icode) (targ0, xop0, xop1, targ1);
2248 if (pat)
2249 {
2250 emit_insn (pat);
2251 return 1;
2252 }
2253 else
2254 delete_insns_since (last);
2255 }
2256
2257 /* It can't be done in this mode. Can we do it in a wider mode? */
2258
2259 if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
2260 {
34e56753 2261 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
77c9c6c2
RK
2262 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2263 {
2264 if (binoptab->handlers[(int) wider_mode].insn_code
2265 != CODE_FOR_nothing)
2266 {
b3694847
SS
2267 rtx t0 = gen_reg_rtx (wider_mode);
2268 rtx t1 = gen_reg_rtx (wider_mode);
76791f3d
JH
2269 rtx cop0 = convert_modes (wider_mode, mode, op0, unsignedp);
2270 rtx cop1 = convert_modes (wider_mode, mode, op1, unsignedp);
77c9c6c2 2271
76791f3d 2272 if (expand_twoval_binop (binoptab, cop0, cop1,
77c9c6c2
RK
2273 t0, t1, unsignedp))
2274 {
2275 convert_move (targ0, t0, unsignedp);
2276 convert_move (targ1, t1, unsignedp);
2277 return 1;
2278 }
2279 else
2280 delete_insns_since (last);
2281 }
2282 }
2283 }
2284
abd418d3 2285 delete_insns_since (entry_last);
77c9c6c2
RK
2286 return 0;
2287}
2288\f
ef89d648
ZW
2289/* Wrapper around expand_unop which takes an rtx code to specify
2290 the operation to perform, not an optab pointer. All other
2291 arguments are the same. */
2292rtx
0c20a65f
AJ
2293expand_simple_unop (enum machine_mode mode, enum rtx_code code, rtx op0,
2294 rtx target, int unsignedp)
ef89d648 2295{
7e1a450d 2296 optab unop = code_to_optab[(int) code];
ef89d648
ZW
2297 if (unop == 0)
2298 abort ();
2299
2300 return expand_unop (mode, unop, op0, target, unsignedp);
2301}
2302
2928cd7a
RH
2303/* Try calculating
2304 (clz:narrow x)
2305 as
2306 (clz:wide (zero_extend:wide x)) - ((width wide) - (width narrow)). */
2307static rtx
0c20a65f 2308widen_clz (enum machine_mode mode, rtx op0, rtx target)
2928cd7a
RH
2309{
2310 enum mode_class class = GET_MODE_CLASS (mode);
2311 if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
2312 {
2313 enum machine_mode wider_mode;
2314 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
2315 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2316 {
2317 if (clz_optab->handlers[(int) wider_mode].insn_code
2318 != CODE_FOR_nothing)
2319 {
2320 rtx xop0, temp, last;
2321
2322 last = get_last_insn ();
2323
2324 if (target == 0)
2325 target = gen_reg_rtx (mode);
2326 xop0 = widen_operand (op0, wider_mode, mode, true, false);
2327 temp = expand_unop (wider_mode, clz_optab, xop0, NULL_RTX, true);
2328 if (temp != 0)
2329 temp = expand_binop (wider_mode, sub_optab, temp,
2330 GEN_INT (GET_MODE_BITSIZE (wider_mode)
2331 - GET_MODE_BITSIZE (mode)),
2332 target, true, OPTAB_DIRECT);
2333 if (temp == 0)
2334 delete_insns_since (last);
2335
2336 return temp;
2337 }
2338 }
2339 }
2340 return 0;
2341}
2342
2343/* Try calculating (parity x) as (and (popcount x) 1), where
2344 popcount can also be done in a wider mode. */
2345static rtx
0c20a65f 2346expand_parity (enum machine_mode mode, rtx op0, rtx target)
2928cd7a
RH
2347{
2348 enum mode_class class = GET_MODE_CLASS (mode);
2349 if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
2350 {
2351 enum machine_mode wider_mode;
2352 for (wider_mode = mode; wider_mode != VOIDmode;
2353 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2354 {
2355 if (popcount_optab->handlers[(int) wider_mode].insn_code
2356 != CODE_FOR_nothing)
2357 {
2358 rtx xop0, temp, last;
2359
2360 last = get_last_insn ();
2361
2362 if (target == 0)
2363 target = gen_reg_rtx (mode);
2364 xop0 = widen_operand (op0, wider_mode, mode, true, false);
2365 temp = expand_unop (wider_mode, popcount_optab, xop0, NULL_RTX,
2366 true);
2367 if (temp != 0)
2368 temp = expand_binop (wider_mode, and_optab, temp, GEN_INT (1),
2369 target, true, OPTAB_DIRECT);
2370 if (temp == 0)
2371 delete_insns_since (last);
2372
2373 return temp;
2374 }
2375 }
2376 }
2377 return 0;
2378}
2379
77c9c6c2
RK
2380/* Generate code to perform an operation specified by UNOPTAB
2381 on operand OP0, with result having machine-mode MODE.
2382
2383 UNSIGNEDP is for the case where we have to widen the operands
2384 to perform the operation. It says to use zero-extension.
2385
2386 If TARGET is nonzero, the value
2387 is generated there, if it is convenient to do so.
2388 In all cases an rtx is returned for the locus of the value;
2389 this may or may not be TARGET. */
2390
2391rtx
0c20a65f
AJ
2392expand_unop (enum machine_mode mode, optab unoptab, rtx op0, rtx target,
2393 int unsignedp)
77c9c6c2
RK
2394{
2395 enum mode_class class;
2396 enum machine_mode wider_mode;
b3694847 2397 rtx temp;
77c9c6c2
RK
2398 rtx last = get_last_insn ();
2399 rtx pat;
2400
2401 class = GET_MODE_CLASS (mode);
2402
2403 op0 = protect_from_queue (op0, 0);
2404
2405 if (flag_force_mem)
2406 {
2407 op0 = force_not_mem (op0);
2408 }
2409
2410 if (target)
2411 target = protect_from_queue (target, 1);
2412
2413 if (unoptab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
2414 {
2415 int icode = (int) unoptab->handlers[(int) mode].insn_code;
a995e389 2416 enum machine_mode mode0 = insn_data[icode].operand[1].mode;
77c9c6c2
RK
2417 rtx xop0 = op0;
2418
2419 if (target)
2420 temp = target;
2421 else
2422 temp = gen_reg_rtx (mode);
2423
2424 if (GET_MODE (xop0) != VOIDmode
2425 && GET_MODE (xop0) != mode0)
2426 xop0 = convert_to_mode (mode0, xop0, unsignedp);
2427
2428 /* Now, if insn doesn't accept our operand, put it into a pseudo. */
2429
a995e389 2430 if (! (*insn_data[icode].operand[1].predicate) (xop0, mode0))
77c9c6c2
RK
2431 xop0 = copy_to_mode_reg (mode0, xop0);
2432
a995e389 2433 if (! (*insn_data[icode].operand[0].predicate) (temp, mode))
77c9c6c2
RK
2434 temp = gen_reg_rtx (mode);
2435
2436 pat = GEN_FCN (icode) (temp, xop0);
2437 if (pat)
2438 {
2f937369 2439 if (INSN_P (pat) && NEXT_INSN (pat) != NULL_RTX
b1ec3c92 2440 && ! add_equal_note (pat, temp, unoptab->code, xop0, NULL_RTX))
77c9c6c2
RK
2441 {
2442 delete_insns_since (last);
b1ec3c92 2443 return expand_unop (mode, unoptab, op0, NULL_RTX, unsignedp);
77c9c6c2
RK
2444 }
2445
2446 emit_insn (pat);
0c20a65f 2447
77c9c6c2
RK
2448 return temp;
2449 }
2450 else
2451 delete_insns_since (last);
2452 }
2453
9a856ec7
RK
2454 /* It can't be done in this mode. Can we open-code it in a wider mode? */
2455
2928cd7a
RH
2456 /* Widening clz needs special treatment. */
2457 if (unoptab == clz_optab)
2458 {
2459 temp = widen_clz (mode, op0, target);
2460 if (temp)
2461 return temp;
2462 else
2463 goto try_libcall;
2464 }
2465
9a856ec7
RK
2466 if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
2467 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
2468 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2469 {
2470 if (unoptab->handlers[(int) wider_mode].insn_code != CODE_FOR_nothing)
2471 {
2472 rtx xop0 = op0;
2473
2474 /* For certain operations, we need not actually extend
2475 the narrow operand, as long as we will truncate the
835532b8
RK
2476 results to the same narrowness. */
2477
0661a3de 2478 xop0 = widen_operand (xop0, wider_mode, mode, unsignedp,
835532b8
RK
2479 (unoptab == neg_optab
2480 || unoptab == one_cmpl_optab)
2481 && class == MODE_INT);
0c20a65f 2482
b1ec3c92
CH
2483 temp = expand_unop (wider_mode, unoptab, xop0, NULL_RTX,
2484 unsignedp);
9a856ec7
RK
2485
2486 if (temp)
2487 {
2488 if (class != MODE_INT)
2489 {
2490 if (target == 0)
2491 target = gen_reg_rtx (mode);
2492 convert_move (target, temp, 0);
2493 return target;
2494 }
2495 else
2496 return gen_lowpart (mode, temp);
2497 }
2498 else
2499 delete_insns_since (last);
2500 }
2501 }
2502
77c9c6c2
RK
2503 /* These can be done a word at a time. */
2504 if (unoptab == one_cmpl_optab
2505 && class == MODE_INT
2506 && GET_MODE_SIZE (mode) > UNITS_PER_WORD
34e56753 2507 && unoptab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing)
77c9c6c2 2508 {
bb93b973 2509 int i;
77c9c6c2
RK
2510 rtx insns;
2511
2512 if (target == 0 || target == op0)
2513 target = gen_reg_rtx (mode);
2514
2515 start_sequence ();
2516
2517 /* Do the actual arithmetic. */
2518 for (i = 0; i < GET_MODE_BITSIZE (mode) / BITS_PER_WORD; i++)
2519 {
2520 rtx target_piece = operand_subword (target, i, 1, mode);
34e56753 2521 rtx x = expand_unop (word_mode, unoptab,
77c9c6c2
RK
2522 operand_subword_force (op0, i, mode),
2523 target_piece, unsignedp);
bb93b973 2524
77c9c6c2
RK
2525 if (target_piece != x)
2526 emit_move_insn (target_piece, x);
2527 }
2528
2529 insns = get_insns ();
2530 end_sequence ();
2531
b1ec3c92 2532 emit_no_conflict_block (insns, target, op0, NULL_RTX,
9e6a5703
JC
2533 gen_rtx_fmt_e (unoptab->code, mode,
2534 copy_rtx (op0)));
77c9c6c2
RK
2535 return target;
2536 }
2537
139e5e08 2538 /* Open-code the complex negation operation. */
91ce572a 2539 else if (unoptab->code == NEG
139e5e08
RS
2540 && (class == MODE_COMPLEX_FLOAT || class == MODE_COMPLEX_INT))
2541 {
2542 rtx target_piece;
2543 rtx x;
2544 rtx seq;
2545
f9da5064 2546 /* Find the correct mode for the real and imaginary parts. */
27e58a70 2547 enum machine_mode submode = GET_MODE_INNER (mode);
139e5e08
RS
2548
2549 if (submode == BLKmode)
2550 abort ();
2551
2552 if (target == 0)
2553 target = gen_reg_rtx (mode);
0c20a65f 2554
139e5e08
RS
2555 start_sequence ();
2556
decdfa82 2557 target_piece = gen_imagpart (submode, target);
139e5e08 2558 x = expand_unop (submode, unoptab,
decdfa82 2559 gen_imagpart (submode, op0),
139e5e08
RS
2560 target_piece, unsignedp);
2561 if (target_piece != x)
2562 emit_move_insn (target_piece, x);
2563
decdfa82 2564 target_piece = gen_realpart (submode, target);
139e5e08 2565 x = expand_unop (submode, unoptab,
decdfa82 2566 gen_realpart (submode, op0),
139e5e08
RS
2567 target_piece, unsignedp);
2568 if (target_piece != x)
2569 emit_move_insn (target_piece, x);
2570
a29b481b 2571 seq = get_insns ();
139e5e08
RS
2572 end_sequence ();
2573
2574 emit_no_conflict_block (seq, target, op0, 0,
9e6a5703
JC
2575 gen_rtx_fmt_e (unoptab->code, mode,
2576 copy_rtx (op0)));
139e5e08
RS
2577 return target;
2578 }
2579
4977bab6
ZW
2580 /* Try negating floating point values by flipping the sign bit. */
2581 if (unoptab->code == NEG && class == MODE_FLOAT
2582 && GET_MODE_BITSIZE (mode) <= 2 * HOST_BITS_PER_WIDE_INT)
2583 {
2584 const struct real_format *fmt = real_format_for_mode[mode - QFmode];
2585 enum machine_mode imode = int_mode_for_mode (mode);
2586 int bitpos = (fmt != 0) ? fmt->signbit : -1;
2587
2588 if (imode != BLKmode && bitpos >= 0 && fmt->has_signed_zero)
2589 {
2590 HOST_WIDE_INT hi, lo;
2591 rtx last = get_last_insn ();
2592
9ee0a442
RS
2593 /* Handle targets with different FP word orders. */
2594 if (FLOAT_WORDS_BIG_ENDIAN != WORDS_BIG_ENDIAN)
2595 {
2596 int nwords = GET_MODE_BITSIZE (mode) / BITS_PER_WORD;
2597 int word = nwords - (bitpos / BITS_PER_WORD) - 1;
2598 bitpos = word * BITS_PER_WORD + bitpos % BITS_PER_WORD;
2599 }
2600
4977bab6
ZW
2601 if (bitpos < HOST_BITS_PER_WIDE_INT)
2602 {
2603 hi = 0;
2604 lo = (HOST_WIDE_INT) 1 << bitpos;
2605 }
2606 else
2607 {
2608 hi = (HOST_WIDE_INT) 1 << (bitpos - HOST_BITS_PER_WIDE_INT);
2609 lo = 0;
2610 }
2611 temp = expand_binop (imode, xor_optab,
2612 gen_lowpart (imode, op0),
2613 immed_double_const (lo, hi, imode),
2614 NULL_RTX, 1, OPTAB_LIB_WIDEN);
2615 if (temp != 0)
2616 return gen_lowpart (mode, temp);
2617 delete_insns_since (last);
2618 }
2619 }
2620
2928cd7a
RH
2621 /* Try calculating parity (x) as popcount (x) % 2. */
2622 if (unoptab == parity_optab)
2623 {
2624 temp = expand_parity (mode, op0, target);
2625 if (temp)
2626 return temp;
2627 }
2628
2629 try_libcall:
139e5e08 2630 /* Now try a library call in this mode. */
77c9c6c2
RK
2631 if (unoptab->handlers[(int) mode].libfunc)
2632 {
2633 rtx insns;
9a7f678c 2634 rtx value;
2928cd7a
RH
2635 enum machine_mode outmode = mode;
2636
2637 /* All of these functions return small values. Thus we choose to
2638 have them return something that isn't a double-word. */
2639 if (unoptab == ffs_optab || unoptab == clz_optab || unoptab == ctz_optab
2640 || unoptab == popcount_optab || unoptab == parity_optab)
dabb3f04 2641 outmode = TYPE_MODE (integer_type_node);
77c9c6c2
RK
2642
2643 start_sequence ();
2644
2645 /* Pass 1 for NO_QUEUE so we don't lose any increments
2646 if the libcall is cse'd or moved. */
9a7f678c 2647 value = emit_library_call_value (unoptab->handlers[(int) mode].libfunc,
2928cd7a
RH
2648 NULL_RTX, LCT_CONST, outmode,
2649 1, op0, mode);
77c9c6c2
RK
2650 insns = get_insns ();
2651 end_sequence ();
2652
2928cd7a 2653 target = gen_reg_rtx (outmode);
9a7f678c 2654 emit_libcall_block (insns, target, value,
9e6a5703 2655 gen_rtx_fmt_e (unoptab->code, mode, op0));
77c9c6c2
RK
2656
2657 return target;
2658 }
2659
cb2a532e
AH
2660 if (class == MODE_VECTOR_FLOAT || class == MODE_VECTOR_INT)
2661 return expand_vector_unop (mode, unoptab, op0, target, unsignedp);
2662
77c9c6c2
RK
2663 /* It can't be done in this mode. Can we do it in a wider mode? */
2664
2665 if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
2666 {
34e56753 2667 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
77c9c6c2
RK
2668 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2669 {
2670 if ((unoptab->handlers[(int) wider_mode].insn_code
2671 != CODE_FOR_nothing)
2672 || unoptab->handlers[(int) wider_mode].libfunc)
2673 {
34e56753
RS
2674 rtx xop0 = op0;
2675
2676 /* For certain operations, we need not actually extend
2677 the narrow operand, as long as we will truncate the
2678 results to the same narrowness. */
2679
0661a3de 2680 xop0 = widen_operand (xop0, wider_mode, mode, unsignedp,
835532b8
RK
2681 (unoptab == neg_optab
2682 || unoptab == one_cmpl_optab)
2683 && class == MODE_INT);
0c20a65f 2684
b1ec3c92
CH
2685 temp = expand_unop (wider_mode, unoptab, xop0, NULL_RTX,
2686 unsignedp);
34e56753 2687
c117dddc
KH
2688 /* If we are generating clz using wider mode, adjust the
2689 result. */
2690 if (unoptab == clz_optab && temp != 0)
2691 temp = expand_binop (wider_mode, sub_optab, temp,
2692 GEN_INT (GET_MODE_BITSIZE (wider_mode)
2693 - GET_MODE_BITSIZE (mode)),
2694 target, true, OPTAB_DIRECT);
2695
34e56753 2696 if (temp)
77c9c6c2 2697 {
34e56753
RS
2698 if (class != MODE_INT)
2699 {
2700 if (target == 0)
2701 target = gen_reg_rtx (mode);
2702 convert_move (target, temp, 0);
2703 return target;
2704 }
2705 else
2706 return gen_lowpart (mode, temp);
77c9c6c2
RK
2707 }
2708 else
34e56753 2709 delete_insns_since (last);
77c9c6c2
RK
2710 }
2711 }
2712 }
2713
b82b6eea
DE
2714 /* If there is no negate operation, try doing a subtract from zero.
2715 The US Software GOFAST library needs this. */
91ce572a 2716 if (unoptab->code == NEG)
0c20a65f 2717 {
b82b6eea 2718 rtx temp;
91ce572a
CC
2719 temp = expand_binop (mode,
2720 unoptab == negv_optab ? subv_optab : sub_optab,
2721 CONST0_RTX (mode), op0,
2722 target, unsignedp, OPTAB_LIB_WIDEN);
b82b6eea
DE
2723 if (temp)
2724 return temp;
2725 }
0c20a65f 2726
77c9c6c2
RK
2727 return 0;
2728}
2729\f
decdfa82
RS
2730/* Emit code to compute the absolute value of OP0, with result to
2731 TARGET if convenient. (TARGET may be 0.) The return value says
2732 where the result actually is to be found.
2733
2734 MODE is the mode of the operand; the mode of the result is
2735 different but can be deduced from MODE.
2736
91813b28 2737 */
7fd01431
RK
2738
2739rtx
0c20a65f
AJ
2740expand_abs_nojump (enum machine_mode mode, rtx op0, rtx target,
2741 int result_unsignedp)
7fd01431 2742{
2ef0a555 2743 rtx temp;
7fd01431 2744
91ce572a
CC
2745 if (! flag_trapv)
2746 result_unsignedp = 1;
2747
7fd01431 2748 /* First try to do it with a special abs instruction. */
91ce572a
CC
2749 temp = expand_unop (mode, result_unsignedp ? abs_optab : absv_optab,
2750 op0, target, 0);
7fd01431
RK
2751 if (temp != 0)
2752 return temp;
2753
4977bab6
ZW
2754 /* For floating point modes, try clearing the sign bit. */
2755 if (GET_MODE_CLASS (mode) == MODE_FLOAT
2756 && GET_MODE_BITSIZE (mode) <= 2 * HOST_BITS_PER_WIDE_INT)
2757 {
2758 const struct real_format *fmt = real_format_for_mode[mode - QFmode];
2759 enum machine_mode imode = int_mode_for_mode (mode);
2760 int bitpos = (fmt != 0) ? fmt->signbit : -1;
2761
2762 if (imode != BLKmode && bitpos >= 0)
2763 {
2764 HOST_WIDE_INT hi, lo;
2765 rtx last = get_last_insn ();
2766
9ee0a442
RS
2767 /* Handle targets with different FP word orders. */
2768 if (FLOAT_WORDS_BIG_ENDIAN != WORDS_BIG_ENDIAN)
2769 {
2770 int nwords = GET_MODE_BITSIZE (mode) / BITS_PER_WORD;
2771 int word = nwords - (bitpos / BITS_PER_WORD) - 1;
2772 bitpos = word * BITS_PER_WORD + bitpos % BITS_PER_WORD;
2773 }
2774
4977bab6
ZW
2775 if (bitpos < HOST_BITS_PER_WIDE_INT)
2776 {
2777 hi = 0;
2778 lo = (HOST_WIDE_INT) 1 << bitpos;
2779 }
2780 else
2781 {
2782 hi = (HOST_WIDE_INT) 1 << (bitpos - HOST_BITS_PER_WIDE_INT);
2783 lo = 0;
2784 }
2785 temp = expand_binop (imode, and_optab,
2786 gen_lowpart (imode, op0),
2787 immed_double_const (~lo, ~hi, imode),
2788 NULL_RTX, 1, OPTAB_LIB_WIDEN);
2789 if (temp != 0)
2790 return gen_lowpart (mode, temp);
2791 delete_insns_since (last);
2792 }
2793 }
2794
14a774a9
RK
2795 /* If we have a MAX insn, we can do this as MAX (x, -x). */
2796 if (smax_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
2797 {
2798 rtx last = get_last_insn ();
2799
2800 temp = expand_unop (mode, neg_optab, op0, NULL_RTX, 0);
2801 if (temp != 0)
2802 temp = expand_binop (mode, smax_optab, op0, temp, target, 0,
2803 OPTAB_WIDEN);
2804
2805 if (temp != 0)
2806 return temp;
2807
2808 delete_insns_since (last);
2809 }
2810
7fd01431
RK
2811 /* If this machine has expensive jumps, we can do integer absolute
2812 value of X as (((signed) x >> (W-1)) ^ x) - ((signed) x >> (W-1)),
e1078cfc 2813 where W is the width of MODE. */
7fd01431
RK
2814
2815 if (GET_MODE_CLASS (mode) == MODE_INT && BRANCH_COST >= 2)
2816 {
2817 rtx extended = expand_shift (RSHIFT_EXPR, mode, op0,
2818 size_int (GET_MODE_BITSIZE (mode) - 1),
2819 NULL_RTX, 0);
2820
2821 temp = expand_binop (mode, xor_optab, extended, op0, target, 0,
2822 OPTAB_LIB_WIDEN);
2823 if (temp != 0)
91ce572a
CC
2824 temp = expand_binop (mode, result_unsignedp ? sub_optab : subv_optab,
2825 temp, extended, target, 0, OPTAB_LIB_WIDEN);
7fd01431
RK
2826
2827 if (temp != 0)
2828 return temp;
2829 }
2830
2ef0a555
RH
2831 return NULL_RTX;
2832}
2833
2834rtx
0c20a65f
AJ
2835expand_abs (enum machine_mode mode, rtx op0, rtx target,
2836 int result_unsignedp, int safe)
2ef0a555
RH
2837{
2838 rtx temp, op1;
2839
77173bbe
KH
2840 if (! flag_trapv)
2841 result_unsignedp = 1;
2842
2ef0a555
RH
2843 temp = expand_abs_nojump (mode, op0, target, result_unsignedp);
2844 if (temp != 0)
2845 return temp;
2846
7fd01431 2847 /* If that does not win, use conditional jump and negate. */
5c0bf747
RK
2848
2849 /* It is safe to use the target if it is the same
2850 as the source if this is also a pseudo register */
2851 if (op0 == target && GET_CODE (op0) == REG
2852 && REGNO (op0) >= FIRST_PSEUDO_REGISTER)
2853 safe = 1;
2854
7fd01431
RK
2855 op1 = gen_label_rtx ();
2856 if (target == 0 || ! safe
2857 || GET_MODE (target) != mode
2858 || (GET_CODE (target) == MEM && MEM_VOLATILE_P (target))
2859 || (GET_CODE (target) == REG
2860 && REGNO (target) < FIRST_PSEUDO_REGISTER))
2861 target = gen_reg_rtx (mode);
2862
2863 emit_move_insn (target, op0);
2864 NO_DEFER_POP;
2865
2866 /* If this mode is an integer too wide to compare properly,
2867 compare word by word. Rely on CSE to optimize constant cases. */
1eb8759b
RH
2868 if (GET_MODE_CLASS (mode) == MODE_INT
2869 && ! can_compare_p (GE, mode, ccp_jump))
0c20a65f 2870 do_jump_by_parts_greater_rtx (mode, 0, target, const0_rtx,
7fd01431
RK
2871 NULL_RTX, op1);
2872 else
b30f05db 2873 do_compare_rtx_and_jump (target, CONST0_RTX (mode), GE, 0, mode,
a06ef755 2874 NULL_RTX, NULL_RTX, op1);
7fd01431 2875
91ce572a
CC
2876 op0 = expand_unop (mode, result_unsignedp ? neg_optab : negv_optab,
2877 target, target, 0);
7fd01431
RK
2878 if (op0 != target)
2879 emit_move_insn (target, op0);
2880 emit_label (op1);
2881 OK_DEFER_POP;
2882 return target;
2883}
2884\f
2885/* Emit code to compute the absolute value of OP0, with result to
2886 TARGET if convenient. (TARGET may be 0.) The return value says
2887 where the result actually is to be found.
2888
2889 MODE is the mode of the operand; the mode of the result is
2890 different but can be deduced from MODE.
2891
decdfa82
RS
2892 UNSIGNEDP is relevant for complex integer modes. */
2893
2894rtx
0c20a65f
AJ
2895expand_complex_abs (enum machine_mode mode, rtx op0, rtx target,
2896 int unsignedp)
decdfa82
RS
2897{
2898 enum mode_class class = GET_MODE_CLASS (mode);
2899 enum machine_mode wider_mode;
b3694847 2900 rtx temp;
abd418d3
RS
2901 rtx entry_last = get_last_insn ();
2902 rtx last;
decdfa82 2903 rtx pat;
91ce572a 2904 optab this_abs_optab;
decdfa82
RS
2905
2906 /* Find the correct mode for the real and imaginary parts. */
27e58a70 2907 enum machine_mode submode = GET_MODE_INNER (mode);
decdfa82
RS
2908
2909 if (submode == BLKmode)
2910 abort ();
2911
2912 op0 = protect_from_queue (op0, 0);
2913
2914 if (flag_force_mem)
2915 {
2916 op0 = force_not_mem (op0);
2917 }
2918
abd418d3
RS
2919 last = get_last_insn ();
2920
decdfa82
RS
2921 if (target)
2922 target = protect_from_queue (target, 1);
2923
91ce572a
CC
2924 this_abs_optab = ! unsignedp && flag_trapv
2925 && (GET_MODE_CLASS(mode) == MODE_INT)
2926 ? absv_optab : abs_optab;
2927
2928 if (this_abs_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
decdfa82 2929 {
91ce572a 2930 int icode = (int) this_abs_optab->handlers[(int) mode].insn_code;
a995e389 2931 enum machine_mode mode0 = insn_data[icode].operand[1].mode;
decdfa82
RS
2932 rtx xop0 = op0;
2933
2934 if (target)
2935 temp = target;
2936 else
2937 temp = gen_reg_rtx (submode);
2938
2939 if (GET_MODE (xop0) != VOIDmode
2940 && GET_MODE (xop0) != mode0)
2941 xop0 = convert_to_mode (mode0, xop0, unsignedp);
2942
2943 /* Now, if insn doesn't accept our operand, put it into a pseudo. */
2944
a995e389 2945 if (! (*insn_data[icode].operand[1].predicate) (xop0, mode0))
decdfa82
RS
2946 xop0 = copy_to_mode_reg (mode0, xop0);
2947
a995e389 2948 if (! (*insn_data[icode].operand[0].predicate) (temp, submode))
decdfa82
RS
2949 temp = gen_reg_rtx (submode);
2950
2951 pat = GEN_FCN (icode) (temp, xop0);
2952 if (pat)
2953 {
2f937369 2954 if (INSN_P (pat) && NEXT_INSN (pat) != NULL_RTX
0c20a65f 2955 && ! add_equal_note (pat, temp, this_abs_optab->code, xop0,
91ce572a 2956 NULL_RTX))
decdfa82
RS
2957 {
2958 delete_insns_since (last);
0c20a65f 2959 return expand_unop (mode, this_abs_optab, op0, NULL_RTX,
91ce572a 2960 unsignedp);
decdfa82
RS
2961 }
2962
2963 emit_insn (pat);
0c20a65f 2964
decdfa82
RS
2965 return temp;
2966 }
2967 else
2968 delete_insns_since (last);
2969 }
2970
2971 /* It can't be done in this mode. Can we open-code it in a wider mode? */
2972
2973 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
2974 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2975 {
0c20a65f 2976 if (this_abs_optab->handlers[(int) wider_mode].insn_code
91ce572a 2977 != CODE_FOR_nothing)
decdfa82
RS
2978 {
2979 rtx xop0 = op0;
2980
0661a3de 2981 xop0 = convert_modes (wider_mode, mode, xop0, unsignedp);
decdfa82
RS
2982 temp = expand_complex_abs (wider_mode, xop0, NULL_RTX, unsignedp);
2983
2984 if (temp)
2985 {
2986 if (class != MODE_COMPLEX_INT)
2987 {
2988 if (target == 0)
2989 target = gen_reg_rtx (submode);
2990 convert_move (target, temp, 0);
2991 return target;
2992 }
2993 else
2994 return gen_lowpart (submode, temp);
2995 }
2996 else
2997 delete_insns_since (last);
2998 }
2999 }
3000
3001 /* Open-code the complex absolute-value operation
3002 if we can open-code sqrt. Otherwise it's not worth while. */
10e927ef
CC
3003 if (sqrt_optab->handlers[(int) submode].insn_code != CODE_FOR_nothing
3004 && ! flag_trapv)
decdfa82
RS
3005 {
3006 rtx real, imag, total;
3007
3008 real = gen_realpart (submode, op0);
3009 imag = gen_imagpart (submode, op0);
9061e4cd 3010
decdfa82 3011 /* Square both parts. */
9061e4cd
RK
3012 real = expand_mult (submode, real, real, NULL_RTX, 0);
3013 imag = expand_mult (submode, imag, imag, NULL_RTX, 0);
3014
decdfa82 3015 /* Sum the parts. */
73d9a835 3016 total = expand_binop (submode, add_optab, real, imag, NULL_RTX,
decdfa82 3017 0, OPTAB_LIB_WIDEN);
9061e4cd 3018
decdfa82
RS
3019 /* Get sqrt in TARGET. Set TARGET to where the result is. */
3020 target = expand_unop (submode, sqrt_optab, total, target, 0);
3021 if (target == 0)
3022 delete_insns_since (last);
3023 else
3024 return target;
3025 }
3026
3027 /* Now try a library call in this mode. */
91ce572a 3028 if (this_abs_optab->handlers[(int) mode].libfunc)
decdfa82
RS
3029 {
3030 rtx insns;
a0bc0933 3031 rtx value;
decdfa82
RS
3032
3033 start_sequence ();
3034
3035 /* Pass 1 for NO_QUEUE so we don't lose any increments
3036 if the libcall is cse'd or moved. */
9a7f678c 3037 value = emit_library_call_value (abs_optab->handlers[(int) mode].libfunc,
ebb1b59a 3038 NULL_RTX, LCT_CONST, submode, 1, op0, mode);
decdfa82
RS
3039 insns = get_insns ();
3040 end_sequence ();
3041
3042 target = gen_reg_rtx (submode);
9a7f678c 3043 emit_libcall_block (insns, target, value,
91ce572a 3044 gen_rtx_fmt_e (this_abs_optab->code, mode, op0));
decdfa82
RS
3045
3046 return target;
3047 }
3048
3049 /* It can't be done in this mode. Can we do it in a wider mode? */
3050
3051 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
3052 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
3053 {
91ce572a 3054 if ((this_abs_optab->handlers[(int) wider_mode].insn_code
decdfa82 3055 != CODE_FOR_nothing)
91ce572a 3056 || this_abs_optab->handlers[(int) wider_mode].libfunc)
decdfa82
RS
3057 {
3058 rtx xop0 = op0;
3059
0661a3de 3060 xop0 = convert_modes (wider_mode, mode, xop0, unsignedp);
decdfa82
RS
3061
3062 temp = expand_complex_abs (wider_mode, xop0, NULL_RTX, unsignedp);
3063
3064 if (temp)
3065 {
3066 if (class != MODE_COMPLEX_INT)
3067 {
3068 if (target == 0)
3069 target = gen_reg_rtx (submode);
3070 convert_move (target, temp, 0);
3071 return target;
3072 }
3073 else
3074 return gen_lowpart (submode, temp);
3075 }
3076 else
3077 delete_insns_since (last);
3078 }
3079 }
3080
abd418d3 3081 delete_insns_since (entry_last);
decdfa82
RS
3082 return 0;
3083}
3084\f
77c9c6c2
RK
3085/* Generate an instruction whose insn-code is INSN_CODE,
3086 with two operands: an output TARGET and an input OP0.
3087 TARGET *must* be nonzero, and the output is always stored there.
3088 CODE is an rtx code such that (CODE OP0) is an rtx that describes
3089 the value that is stored into TARGET. */
3090
3091void
0c20a65f 3092emit_unop_insn (int icode, rtx target, rtx op0, enum rtx_code code)
77c9c6c2 3093{
b3694847 3094 rtx temp;
a995e389 3095 enum machine_mode mode0 = insn_data[icode].operand[1].mode;
77c9c6c2
RK
3096 rtx pat;
3097
3098 temp = target = protect_from_queue (target, 1);
3099
3100 op0 = protect_from_queue (op0, 0);
3101
bd8c4b14
ILT
3102 /* Sign and zero extension from memory is often done specially on
3103 RISC machines, so forcing into a register here can pessimize
3104 code. */
3105 if (flag_force_mem && code != SIGN_EXTEND && code != ZERO_EXTEND)
77c9c6c2
RK
3106 op0 = force_not_mem (op0);
3107
3108 /* Now, if insn does not accept our operands, put them into pseudos. */
3109
a995e389 3110 if (! (*insn_data[icode].operand[1].predicate) (op0, mode0))
77c9c6c2
RK
3111 op0 = copy_to_mode_reg (mode0, op0);
3112
a995e389 3113 if (! (*insn_data[icode].operand[0].predicate) (temp, GET_MODE (temp))
77c9c6c2
RK
3114 || (flag_force_mem && GET_CODE (temp) == MEM))
3115 temp = gen_reg_rtx (GET_MODE (temp));
3116
3117 pat = GEN_FCN (icode) (temp, op0);
3118
2f937369 3119 if (INSN_P (pat) && NEXT_INSN (pat) != NULL_RTX && code != UNKNOWN)
b1ec3c92 3120 add_equal_note (pat, temp, code, op0, NULL_RTX);
0c20a65f 3121
77c9c6c2
RK
3122 emit_insn (pat);
3123
3124 if (temp != target)
3125 emit_move_insn (target, temp);
3126}
3127\f
3128/* Emit code to perform a series of operations on a multi-word quantity, one
3129 word at a time.
3130
d45cf215 3131 Such a block is preceded by a CLOBBER of the output, consists of multiple
77c9c6c2
RK
3132 insns, each setting one word of the output, and followed by a SET copying
3133 the output to itself.
3134
3135 Each of the insns setting words of the output receives a REG_NO_CONFLICT
3136 note indicating that it doesn't conflict with the (also multi-word)
3137 inputs. The entire block is surrounded by REG_LIBCALL and REG_RETVAL
3138 notes.
3139
3140 INSNS is a block of code generated to perform the operation, not including
3141 the CLOBBER and final copy. All insns that compute intermediate values
0c20a65f 3142 are first emitted, followed by the block as described above.
77c9c6c2
RK
3143
3144 TARGET, OP0, and OP1 are the output and inputs of the operations,
3145 respectively. OP1 may be zero for a unary operation.
3146
40f03658 3147 EQUIV, if nonzero, is an expression to be placed into a REG_EQUAL note
77c9c6c2
RK
3148 on the last insn.
3149
3150 If TARGET is not a register, INSNS is simply emitted with no special
dce39da6
RK
3151 processing. Likewise if anything in INSNS is not an INSN or if
3152 there is a libcall block inside INSNS.
77c9c6c2
RK
3153
3154 The final insn emitted is returned. */
3155
3156rtx
0c20a65f 3157emit_no_conflict_block (rtx insns, rtx target, rtx op0, rtx op1, rtx equiv)
77c9c6c2
RK
3158{
3159 rtx prev, next, first, last, insn;
3160
3161 if (GET_CODE (target) != REG || reload_in_progress)
2f937369 3162 return emit_insn (insns);
dce39da6
RK
3163 else
3164 for (insn = insns; insn; insn = NEXT_INSN (insn))
3165 if (GET_CODE (insn) != INSN
3166 || find_reg_note (insn, REG_LIBCALL, NULL_RTX))
2f937369 3167 return emit_insn (insns);
77c9c6c2
RK
3168
3169 /* First emit all insns that do not store into words of the output and remove
3170 these from the list. */
3171 for (insn = insns; insn; insn = next)
3172 {
218aa620 3173 rtx set = 0, note;
77c9c6c2
RK
3174 int i;
3175
3176 next = NEXT_INSN (insn);
3177
218aa620
JH
3178 /* Some ports (cris) create an libcall regions at their own. We must
3179 avoid any potential nesting of LIBCALLs. */
3180 if ((note = find_reg_note (insn, REG_LIBCALL, NULL)) != NULL)
3181 remove_note (insn, note);
3182 if ((note = find_reg_note (insn, REG_RETVAL, NULL)) != NULL)
3183 remove_note (insn, note);
3184
c5c76735
JL
3185 if (GET_CODE (PATTERN (insn)) == SET || GET_CODE (PATTERN (insn)) == USE
3186 || GET_CODE (PATTERN (insn)) == CLOBBER)
77c9c6c2
RK
3187 set = PATTERN (insn);
3188 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
3189 {
3190 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
3191 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
3192 {
3193 set = XVECEXP (PATTERN (insn), 0, i);
3194 break;
3195 }
3196 }
3197
3198 if (set == 0)
3199 abort ();
3200
3201 if (! reg_overlap_mentioned_p (target, SET_DEST (set)))
3202 {
3203 if (PREV_INSN (insn))
3204 NEXT_INSN (PREV_INSN (insn)) = next;
3205 else
3206 insns = next;
3207
3208 if (next)
3209 PREV_INSN (next) = PREV_INSN (insn);
3210
3211 add_insn (insn);
3212 }
3213 }
3214
3215 prev = get_last_insn ();
3216
3217 /* Now write the CLOBBER of the output, followed by the setting of each
3218 of the words, followed by the final copy. */
3219 if (target != op0 && target != op1)
9e6a5703 3220 emit_insn (gen_rtx_CLOBBER (VOIDmode, target));
77c9c6c2
RK
3221
3222 for (insn = insns; insn; insn = next)
3223 {
3224 next = NEXT_INSN (insn);
3225 add_insn (insn);
3226
3227 if (op1 && GET_CODE (op1) == REG)
9e6a5703
JC
3228 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_NO_CONFLICT, op1,
3229 REG_NOTES (insn));
77c9c6c2
RK
3230
3231 if (op0 && GET_CODE (op0) == REG)
9e6a5703
JC
3232 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_NO_CONFLICT, op0,
3233 REG_NOTES (insn));
77c9c6c2
RK
3234 }
3235
54e7b5e6
RS
3236 if (mov_optab->handlers[(int) GET_MODE (target)].insn_code
3237 != CODE_FOR_nothing)
3238 {
3239 last = emit_move_insn (target, target);
3240 if (equiv)
5fa671cf 3241 set_unique_reg_note (last, REG_EQUAL, equiv);
54e7b5e6
RS
3242 }
3243 else
07edd4c5
HPN
3244 {
3245 last = get_last_insn ();
3246
3247 /* Remove any existing REG_EQUAL note from "last", or else it will
3248 be mistaken for a note referring to the full contents of the
3249 alleged libcall value when found together with the REG_RETVAL
3250 note added below. An existing note can come from an insn
3251 expansion at "last". */
3252 remove_note (last, find_reg_note (last, REG_EQUAL, NULL_RTX));
3253 }
77c9c6c2
RK
3254
3255 if (prev == 0)
3256 first = get_insns ();
3257 else
3258 first = NEXT_INSN (prev);
3259
3260 /* Encapsulate the block so it gets manipulated as a unit. */
9e6a5703
JC
3261 REG_NOTES (first) = gen_rtx_INSN_LIST (REG_LIBCALL, last,
3262 REG_NOTES (first));
3263 REG_NOTES (last) = gen_rtx_INSN_LIST (REG_RETVAL, first, REG_NOTES (last));
77c9c6c2
RK
3264
3265 return last;
3266}
3267\f
3268/* Emit code to make a call to a constant function or a library call.
3269
3270 INSNS is a list containing all insns emitted in the call.
3271 These insns leave the result in RESULT. Our block is to copy RESULT
3272 to TARGET, which is logically equivalent to EQUIV.
3273
3274 We first emit any insns that set a pseudo on the assumption that these are
3275 loading constants into registers; doing so allows them to be safely cse'ed
3276 between blocks. Then we emit all the other insns in the block, followed by
3277 an insn to move RESULT to TARGET. This last insn will have a REQ_EQUAL
3278 note with an operand of EQUIV.
3279
29ebe69a
RK
3280 Moving assignments to pseudos outside of the block is done to improve
3281 the generated code, but is not required to generate correct code,
3282 hence being unable to move an assignment is not grounds for not making
3283 a libcall block. There are two reasons why it is safe to leave these
3284 insns inside the block: First, we know that these pseudos cannot be
3285 used in generated RTL outside the block since they are created for
3286 temporary purposes within the block. Second, CSE will not record the
3287 values of anything set inside a libcall block, so we know they must
3288 be dead at the end of the block.
3289
77c9c6c2
RK
3290 Except for the first group of insns (the ones setting pseudos), the
3291 block is delimited by REG_RETVAL and REG_LIBCALL notes. */
3292
3293void
0c20a65f 3294emit_libcall_block (rtx insns, rtx target, rtx result, rtx equiv)
77c9c6c2 3295{
aff2c2d3 3296 rtx final_dest = target;
77c9c6c2
RK
3297 rtx prev, next, first, last, insn;
3298
aff2c2d3
BS
3299 /* If this is a reg with REG_USERVAR_P set, then it could possibly turn
3300 into a MEM later. Protect the libcall block from this change. */
3301 if (! REG_P (target) || REG_USERVAR_P (target))
3302 target = gen_reg_rtx (GET_MODE (target));
0c20a65f 3303
5154e79a
AH
3304 /* If we're using non-call exceptions, a libcall corresponding to an
3305 operation that may trap may also trap. */
3306 if (flag_non_call_exceptions && may_trap_p (equiv))
3307 {
3308 for (insn = insns; insn; insn = NEXT_INSN (insn))
3309 if (GET_CODE (insn) == CALL_INSN)
3310 {
3311 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
0c20a65f 3312
5154e79a
AH
3313 if (note != 0 && INTVAL (XEXP (note, 0)) <= 0)
3314 remove_note (insn, note);
3315 }
3316 }
3317 else
b472794d 3318 /* look for any CALL_INSNs in this sequence, and attach a REG_EH_REGION
c29ea88a 3319 reg note to indicate that this call cannot throw or execute a nonlocal
cf67d231 3320 goto (unless there is already a REG_EH_REGION note, in which case
897aa57f 3321 we update it). */
5154e79a
AH
3322 for (insn = insns; insn; insn = NEXT_INSN (insn))
3323 if (GET_CODE (insn) == CALL_INSN)
3324 {
3325 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
0c20a65f 3326
5154e79a
AH
3327 if (note != 0)
3328 XEXP (note, 0) = GEN_INT (-1);
3329 else
3330 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_EH_REGION, GEN_INT (-1),
3331 REG_NOTES (insn));
3332 }
b472794d 3333
77c9c6c2 3334 /* First emit all insns that set pseudos. Remove them from the list as
ccf5f342 3335 we go. Avoid insns that set pseudos which were referenced in previous
29ebe69a 3336 insns. These can be generated by move_by_pieces, for example,
ccf5f342
RK
3337 to update an address. Similarly, avoid insns that reference things
3338 set in previous insns. */
77c9c6c2
RK
3339
3340 for (insn = insns; insn; insn = next)
3341 {
3342 rtx set = single_set (insn);
218aa620
JH
3343 rtx note;
3344
3345 /* Some ports (cris) create an libcall regions at their own. We must
3346 avoid any potential nesting of LIBCALLs. */
3347 if ((note = find_reg_note (insn, REG_LIBCALL, NULL)) != NULL)
3348 remove_note (insn, note);
3349 if ((note = find_reg_note (insn, REG_RETVAL, NULL)) != NULL)
3350 remove_note (insn, note);
77c9c6c2
RK
3351
3352 next = NEXT_INSN (insn);
3353
3354 if (set != 0 && GET_CODE (SET_DEST (set)) == REG
29ebe69a 3355 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER
8d9e73cc 3356 && (insn == insns
9485c46e
DM
3357 || ((! INSN_P(insns)
3358 || ! reg_mentioned_p (SET_DEST (set), PATTERN (insns)))
ccf5f342
RK
3359 && ! reg_used_between_p (SET_DEST (set), insns, insn)
3360 && ! modified_in_p (SET_SRC (set), insns)
3361 && ! modified_between_p (SET_SRC (set), insns, insn))))
77c9c6c2
RK
3362 {
3363 if (PREV_INSN (insn))
3364 NEXT_INSN (PREV_INSN (insn)) = next;
3365 else
3366 insns = next;
3367
3368 if (next)
3369 PREV_INSN (next) = PREV_INSN (insn);
3370
3371 add_insn (insn);
3372 }
695a94b3
RS
3373
3374 /* Some ports use a loop to copy large arguments onto the stack.
3375 Don't move anything outside such a loop. */
3376 if (GET_CODE (insn) == CODE_LABEL)
3377 break;
77c9c6c2
RK
3378 }
3379
3380 prev = get_last_insn ();
3381
3382 /* Write the remaining insns followed by the final copy. */
3383
3384 for (insn = insns; insn; insn = next)
3385 {
3386 next = NEXT_INSN (insn);
3387
3388 add_insn (insn);
3389 }
3390
3391 last = emit_move_insn (target, result);
02214a5c
RK
3392 if (mov_optab->handlers[(int) GET_MODE (target)].insn_code
3393 != CODE_FOR_nothing)
5fa671cf 3394 set_unique_reg_note (last, REG_EQUAL, copy_rtx (equiv));
07edd4c5
HPN
3395 else
3396 {
3397 /* Remove any existing REG_EQUAL note from "last", or else it will
3398 be mistaken for a note referring to the full contents of the
3399 libcall value when found together with the REG_RETVAL note added
3400 below. An existing note can come from an insn expansion at
3401 "last". */
3402 remove_note (last, find_reg_note (last, REG_EQUAL, NULL_RTX));
3403 }
77c9c6c2 3404
e85427f9
BS
3405 if (final_dest != target)
3406 emit_move_insn (final_dest, target);
aff2c2d3 3407
77c9c6c2
RK
3408 if (prev == 0)
3409 first = get_insns ();
3410 else
3411 first = NEXT_INSN (prev);
3412
3413 /* Encapsulate the block so it gets manipulated as a unit. */
11e9ecc5
HB
3414 if (!flag_non_call_exceptions || !may_trap_p (equiv))
3415 {
4a69cf79
JZ
3416 /* We can't attach the REG_LIBCALL and REG_RETVAL notes
3417 when the encapsulated region would not be in one basic block,
3418 i.e. when there is a control_flow_insn_p insn between FIRST and LAST.
3419 */
3420 bool attach_libcall_retval_notes = true;
3421 next = NEXT_INSN (last);
3422 for (insn = first; insn != next; insn = NEXT_INSN (insn))
3423 if (control_flow_insn_p (insn))
3424 {
3425 attach_libcall_retval_notes = false;
3426 break;
3427 }
3428
3429 if (attach_libcall_retval_notes)
3430 {
3431 REG_NOTES (first) = gen_rtx_INSN_LIST (REG_LIBCALL, last,
3432 REG_NOTES (first));
3433 REG_NOTES (last) = gen_rtx_INSN_LIST (REG_RETVAL, first,
3434 REG_NOTES (last));
3435 }
11e9ecc5 3436 }
77c9c6c2
RK
3437}
3438\f
3439/* Generate code to store zero in X. */
3440
3441void
0c20a65f 3442emit_clr_insn (rtx x)
77c9c6c2
RK
3443{
3444 emit_move_insn (x, const0_rtx);
3445}
3446
3447/* Generate code to store 1 in X
3448 assuming it contains zero beforehand. */
3449
3450void
0c20a65f 3451emit_0_to_1_insn (rtx x)
77c9c6c2
RK
3452{
3453 emit_move_insn (x, const1_rtx);
3454}
3455
1c0290ea 3456/* Nonzero if we can perform a comparison of mode MODE straightforwardly.
1eb8759b
RH
3457 PURPOSE describes how this comparison will be used. CODE is the rtx
3458 comparison code we will be using.
3459
3460 ??? Actually, CODE is slightly weaker than that. A target is still
0c20a65f 3461 required to implement all of the normal bcc operations, but not
1eb8759b 3462 required to implement all (or any) of the unordered bcc operations. */
0c20a65f 3463
1c0290ea 3464int
0c20a65f
AJ
3465can_compare_p (enum rtx_code code, enum machine_mode mode,
3466 enum can_compare_purpose purpose)
b30f05db
BS
3467{
3468 do
3469 {
7e1a450d 3470 if (cmp_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
1eb8759b
RH
3471 {
3472 if (purpose == ccp_jump)
7e1a450d 3473 return bcc_gen_fctn[(int) code] != NULL;
1eb8759b 3474 else if (purpose == ccp_store_flag)
7e1a450d 3475 return setcc_gen_code[(int) code] != CODE_FOR_nothing;
1eb8759b
RH
3476 else
3477 /* There's only one cmov entry point, and it's allowed to fail. */
3478 return 1;
3479 }
1c0290ea 3480 if (purpose == ccp_jump
7e1a450d 3481 && cbranch_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
1c0290ea
BS
3482 return 1;
3483 if (purpose == ccp_cmov
7e1a450d 3484 && cmov_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
1c0290ea
BS
3485 return 1;
3486 if (purpose == ccp_store_flag
7e1a450d 3487 && cstore_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
1c0290ea
BS
3488 return 1;
3489
b30f05db 3490 mode = GET_MODE_WIDER_MODE (mode);
1c0290ea
BS
3491 }
3492 while (mode != VOIDmode);
b30f05db
BS
3493
3494 return 0;
3495}
3496
3497/* This function is called when we are going to emit a compare instruction that
3498 compares the values found in *PX and *PY, using the rtl operator COMPARISON.
3499
3500 *PMODE is the mode of the inputs (in case they are const_int).
3501 *PUNSIGNEDP nonzero says that the operands are unsigned;
77c9c6c2
RK
3502 this matters if they need to be widened.
3503
a06ef755 3504 If they have mode BLKmode, then SIZE specifies the size of both operands.
77c9c6c2 3505
b30f05db
BS
3506 This function performs all the setup necessary so that the caller only has
3507 to emit a single comparison insn. This setup can involve doing a BLKmode
3508 comparison or emitting a library call to perform the comparison if no insn
3509 is available to handle it.
3510 The values which are passed in through pointers can be modified; the caller
3511 should perform the comparison on the modified values. */
77c9c6c2 3512
a06ef755 3513static void
0c20a65f
AJ
3514prepare_cmp_insn (rtx *px, rtx *py, enum rtx_code *pcomparison, rtx size,
3515 enum machine_mode *pmode, int *punsignedp,
3516 enum can_compare_purpose purpose)
77c9c6c2 3517{
b30f05db
BS
3518 enum machine_mode mode = *pmode;
3519 rtx x = *px, y = *py;
3520 int unsignedp = *punsignedp;
77c9c6c2 3521 enum mode_class class;
77c9c6c2
RK
3522
3523 class = GET_MODE_CLASS (mode);
3524
3525 /* They could both be VOIDmode if both args are immediate constants,
3526 but we should fold that at an earlier stage.
3527 With no special code here, this will call abort,
3528 reminding the programmer to implement such folding. */
3529
3530 if (mode != BLKmode && flag_force_mem)
3531 {
894207cf
RS
3532 /* Load duplicate non-volatile operands once. */
3533 if (rtx_equal_p (x, y) && ! volatile_refs_p (x))
3534 {
3535 x = force_not_mem (x);
3536 y = x;
3537 }
3538 else
3539 {
3540 x = force_not_mem (x);
3541 y = force_not_mem (y);
3542 }
77c9c6c2
RK
3543 }
3544
3545 /* If we are inside an appropriately-short loop and one operand is an
3546 expensive constant, force it into a register. */
19caa751 3547 if (CONSTANT_P (x) && preserve_subexpressions_p ()
b437f1a7 3548 && rtx_cost (x, COMPARE) > COSTS_N_INSNS (1))
77c9c6c2
RK
3549 x = force_reg (mode, x);
3550
19caa751 3551 if (CONSTANT_P (y) && preserve_subexpressions_p ()
b437f1a7 3552 && rtx_cost (y, COMPARE) > COSTS_N_INSNS (1))
77c9c6c2
RK
3553 y = force_reg (mode, y);
3554
362cc3d4
MH
3555#ifdef HAVE_cc0
3556 /* Abort if we have a non-canonical comparison. The RTL documentation
3557 states that canonical comparisons are required only for targets which
3558 have cc0. */
3559 if (CONSTANT_P (x) && ! CONSTANT_P (y))
7e1a450d 3560 abort ();
362cc3d4
MH
3561#endif
3562
77c9c6c2
RK
3563 /* Don't let both operands fail to indicate the mode. */
3564 if (GET_MODE (x) == VOIDmode && GET_MODE (y) == VOIDmode)
3565 x = force_reg (mode, x);
3566
3567 /* Handle all BLKmode compares. */
3568
3569 if (mode == BLKmode)
3570 {
b30f05db
BS
3571 rtx result;
3572 enum machine_mode result_mode;
f4dc10d1
GS
3573 rtx opalign ATTRIBUTE_UNUSED
3574 = GEN_INT (MIN (MEM_ALIGN (x), MEM_ALIGN (y)) / BITS_PER_UNIT);
b30f05db 3575
77c9c6c2
RK
3576 emit_queue ();
3577 x = protect_from_queue (x, 0);
3578 y = protect_from_queue (y, 0);
3579
3580 if (size == 0)
3581 abort ();
358b8f01
JJ
3582#ifdef HAVE_cmpmemqi
3583 if (HAVE_cmpmemqi
3584 && GET_CODE (size) == CONST_INT
3585 && INTVAL (size) < (1 << GET_MODE_BITSIZE (QImode)))
3586 {
3587 result_mode = insn_data[(int) CODE_FOR_cmpmemqi].operand[0].mode;
3588 result = gen_reg_rtx (result_mode);
3589 emit_insn (gen_cmpmemqi (result, x, y, size, opalign));
3590 }
3591 else
3592#endif
3593#ifdef HAVE_cmpmemhi
3594 if (HAVE_cmpmemhi
3595 && GET_CODE (size) == CONST_INT
3596 && INTVAL (size) < (1 << GET_MODE_BITSIZE (HImode)))
3597 {
3598 result_mode = insn_data[(int) CODE_FOR_cmpmemhi].operand[0].mode;
3599 result = gen_reg_rtx (result_mode);
3600 emit_insn (gen_cmpmemhi (result, x, y, size, opalign));
3601 }
3602 else
3603#endif
3604#ifdef HAVE_cmpmemsi
3605 if (HAVE_cmpmemsi)
3606 {
3607 result_mode = insn_data[(int) CODE_FOR_cmpmemsi].operand[0].mode;
3608 result = gen_reg_rtx (result_mode);
3609 size = protect_from_queue (size, 0);
3610 emit_insn (gen_cmpmemsi (result, x, y,
3611 convert_to_mode (SImode, size, 1),
3612 opalign));
3613 }
3614 else
3615#endif
77c9c6c2
RK
3616#ifdef HAVE_cmpstrqi
3617 if (HAVE_cmpstrqi
3618 && GET_CODE (size) == CONST_INT
3619 && INTVAL (size) < (1 << GET_MODE_BITSIZE (QImode)))
3620 {
a995e389 3621 result_mode = insn_data[(int) CODE_FOR_cmpstrqi].operand[0].mode;
b30f05db 3622 result = gen_reg_rtx (result_mode);
19caa751 3623 emit_insn (gen_cmpstrqi (result, x, y, size, opalign));
77c9c6c2
RK
3624 }
3625 else
3626#endif
3627#ifdef HAVE_cmpstrhi
3628 if (HAVE_cmpstrhi
3629 && GET_CODE (size) == CONST_INT
3630 && INTVAL (size) < (1 << GET_MODE_BITSIZE (HImode)))
3631 {
a995e389 3632 result_mode = insn_data[(int) CODE_FOR_cmpstrhi].operand[0].mode;
b30f05db 3633 result = gen_reg_rtx (result_mode);
19caa751 3634 emit_insn (gen_cmpstrhi (result, x, y, size, opalign));
77c9c6c2
RK
3635 }
3636 else
3637#endif
3638#ifdef HAVE_cmpstrsi
3639 if (HAVE_cmpstrsi)
3640 {
a995e389 3641 result_mode = insn_data[(int) CODE_FOR_cmpstrsi].operand[0].mode;
b30f05db 3642 result = gen_reg_rtx (result_mode);
06e40b26 3643 size = protect_from_queue (size, 0);
77c9c6c2
RK
3644 emit_insn (gen_cmpstrsi (result, x, y,
3645 convert_to_mode (SImode, size, 1),
19caa751 3646 opalign));
77c9c6c2
RK
3647 }
3648 else
3649#endif
3650 {
3651#ifdef TARGET_MEM_FUNCTIONS
24491a09
KH
3652 result = emit_library_call_value (memcmp_libfunc, NULL_RTX, LCT_PURE_MAKE_BLOCK,
3653 TYPE_MODE (integer_type_node), 3,
3654 XEXP (x, 0), Pmode, XEXP (y, 0), Pmode,
3655 convert_to_mode (TYPE_MODE (sizetype), size,
3656 TREE_UNSIGNED (sizetype)),
3657 TYPE_MODE (sizetype));
77c9c6c2 3658#else
24491a09
KH
3659 result = emit_library_call_value (bcmp_libfunc, NULL_RTX, LCT_PURE_MAKE_BLOCK,
3660 TYPE_MODE (integer_type_node), 3,
3661 XEXP (x, 0), Pmode, XEXP (y, 0), Pmode,
3662 convert_to_mode (TYPE_MODE (integer_type_node),
3663 size,
3664 TREE_UNSIGNED (integer_type_node)),
3665 TYPE_MODE (integer_type_node));
77c9c6c2 3666#endif
9725066d 3667
b30f05db 3668 result_mode = TYPE_MODE (integer_type_node);
77c9c6c2 3669 }
b30f05db
BS
3670 *px = result;
3671 *py = const0_rtx;
3672 *pmode = result_mode;
77c9c6c2
RK
3673 return;
3674 }
3675
b30f05db
BS
3676 *px = x;
3677 *py = y;
1eb8759b 3678 if (can_compare_p (*pcomparison, mode, purpose))
b30f05db 3679 return;
77c9c6c2
RK
3680
3681 /* Handle a lib call just for the mode we are using. */
3682
b30f05db 3683 if (cmp_optab->handlers[(int) mode].libfunc && class != MODE_FLOAT)
77c9c6c2
RK
3684 {
3685 rtx libfunc = cmp_optab->handlers[(int) mode].libfunc;
9725066d
JL
3686 rtx result;
3687
77c9c6c2
RK
3688 /* If we want unsigned, and this mode has a distinct unsigned
3689 comparison routine, use that. */
3690 if (unsignedp && ucmp_optab->handlers[(int) mode].libfunc)
3691 libfunc = ucmp_optab->handlers[(int) mode].libfunc;
3692
24491a09
KH
3693 result = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST_MAKE_BLOCK,
3694 word_mode, 2, x, mode, y, mode);
9725066d 3695
77c9c6c2
RK
3696 /* Integer comparison returns a result that must be compared against 1,
3697 so that even if we do an unsigned compare afterward,
3698 there is still a value that can represent the result "less than". */
b30f05db
BS
3699 *px = result;
3700 *py = const1_rtx;
3701 *pmode = word_mode;
77c9c6c2
RK
3702 return;
3703 }
3704
3705 if (class == MODE_FLOAT)
c5c60e15 3706 prepare_float_lib_cmp (px, py, pcomparison, pmode, punsignedp);
77c9c6c2
RK
3707
3708 else
3709 abort ();
3710}
3711
b30f05db
BS
3712/* Before emitting an insn with code ICODE, make sure that X, which is going
3713 to be used for operand OPNUM of the insn, is converted from mode MODE to
4fe9b91c 3714 WIDER_MODE (UNSIGNEDP determines whether it is an unsigned conversion), and
b30f05db 3715 that it is accepted by the operand predicate. Return the new value. */
749a2da1 3716
1c0290ea 3717rtx
0c20a65f
AJ
3718prepare_operand (int icode, rtx x, int opnum, enum machine_mode mode,
3719 enum machine_mode wider_mode, int unsignedp)
b30f05db
BS
3720{
3721 x = protect_from_queue (x, 0);
3722
3723 if (mode != wider_mode)
3724 x = convert_modes (wider_mode, mode, x, unsignedp);
3725
a995e389
RH
3726 if (! (*insn_data[icode].operand[opnum].predicate)
3727 (x, insn_data[icode].operand[opnum].mode))
d893ccde
RH
3728 {
3729 if (no_new_pseudos)
3730 return NULL_RTX;
3731 x = copy_to_mode_reg (insn_data[icode].operand[opnum].mode, x);
3732 }
3733
b30f05db
BS
3734 return x;
3735}
3736
3737/* Subroutine of emit_cmp_and_jump_insns; this function is called when we know
3738 we can do the comparison.
3739 The arguments are the same as for emit_cmp_and_jump_insns; but LABEL may
3740 be NULL_RTX which indicates that only a comparison is to be generated. */
3741
3742static void
0c20a65f
AJ
3743emit_cmp_and_jump_insn_1 (rtx x, rtx y, enum machine_mode mode,
3744 enum rtx_code comparison, int unsignedp, rtx label)
b30f05db
BS
3745{
3746 rtx test = gen_rtx_fmt_ee (comparison, mode, x, y);
3747 enum mode_class class = GET_MODE_CLASS (mode);
3748 enum machine_mode wider_mode = mode;
3749
3750 /* Try combined insns first. */
3751 do
3752 {
3753 enum insn_code icode;
3754 PUT_MODE (test, wider_mode);
3755
1c0290ea 3756 if (label)
0c20a65f 3757 {
7e1a450d 3758 icode = cbranch_optab->handlers[(int) wider_mode].insn_code;
0c20a65f 3759
1c0290ea
BS
3760 if (icode != CODE_FOR_nothing
3761 && (*insn_data[icode].operand[0].predicate) (test, wider_mode))
3762 {
3763 x = prepare_operand (icode, x, 1, mode, wider_mode, unsignedp);
3764 y = prepare_operand (icode, y, 2, mode, wider_mode, unsignedp);
3765 emit_jump_insn (GEN_FCN (icode) (test, x, y, label));
3766 return;
3767 }
3768 }
3769
b30f05db
BS
3770 /* Handle some compares against zero. */
3771 icode = (int) tst_optab->handlers[(int) wider_mode].insn_code;
3772 if (y == CONST0_RTX (mode) && icode != CODE_FOR_nothing)
3773 {
3774 x = prepare_operand (icode, x, 0, mode, wider_mode, unsignedp);
3775 emit_insn (GEN_FCN (icode) (x));
3776 if (label)
3777 emit_jump_insn ((*bcc_gen_fctn[(int) comparison]) (label));
3778 return;
3779 }
3780
3781 /* Handle compares for which there is a directly suitable insn. */
3782
3783 icode = (int) cmp_optab->handlers[(int) wider_mode].insn_code;
3784 if (icode != CODE_FOR_nothing)
3785 {
3786 x = prepare_operand (icode, x, 0, mode, wider_mode, unsignedp);
3787 y = prepare_operand (icode, y, 1, mode, wider_mode, unsignedp);
3788 emit_insn (GEN_FCN (icode) (x, y));
3789 if (label)
3790 emit_jump_insn ((*bcc_gen_fctn[(int) comparison]) (label));
3791 return;
3792 }
3793
3794 if (class != MODE_INT && class != MODE_FLOAT
3795 && class != MODE_COMPLEX_FLOAT)
3796 break;
3797
3798 wider_mode = GET_MODE_WIDER_MODE (wider_mode);
7e1a450d
KH
3799 }
3800 while (wider_mode != VOIDmode);
b30f05db
BS
3801
3802 abort ();
3803}
3804
362cc3d4
MH
3805/* Generate code to compare X with Y so that the condition codes are
3806 set and to jump to LABEL if the condition is true. If X is a
3807 constant and Y is not a constant, then the comparison is swapped to
3808 ensure that the comparison RTL has the canonical form.
3809
c5d5d461
JL
3810 UNSIGNEDP nonzero says that X and Y are unsigned; this matters if they
3811 need to be widened by emit_cmp_insn. UNSIGNEDP is also used to select
3812 the proper branch condition code.
362cc3d4 3813
a06ef755 3814 If X and Y have mode BLKmode, then SIZE specifies the size of both X and Y.
362cc3d4 3815
c5d5d461
JL
3816 MODE is the mode of the inputs (in case they are const_int).
3817
3818 COMPARISON is the rtl operator to compare with (EQ, NE, GT, etc.). It will
3819 be passed unchanged to emit_cmp_insn, then potentially converted into an
3820 unsigned variant based on UNSIGNEDP to select a proper jump instruction. */
362cc3d4
MH
3821
3822void
0c20a65f
AJ
3823emit_cmp_and_jump_insns (rtx x, rtx y, enum rtx_code comparison, rtx size,
3824 enum machine_mode mode, int unsignedp, rtx label)
362cc3d4 3825{
8c9864f3
JH
3826 rtx op0 = x, op1 = y;
3827
3828 /* Swap operands and condition to ensure canonical RTL. */
3829 if (swap_commutative_operands_p (x, y))
362cc3d4 3830 {
8c9864f3
JH
3831 /* If we're not emitting a branch, this means some caller
3832 is out of sync. */
3833 if (! label)
3834 abort ();
3835
3836 op0 = y, op1 = x;
3837 comparison = swap_condition (comparison);
362cc3d4 3838 }
0ca40216
JL
3839
3840#ifdef HAVE_cc0
3841 /* If OP0 is still a constant, then both X and Y must be constants. Force
3842 X into a register to avoid aborting in emit_cmp_insn due to non-canonical
3843 RTL. */
3844 if (CONSTANT_P (op0))
3845 op0 = force_reg (mode, op0);
3846#endif
3847
b30f05db 3848 emit_queue ();
c5d5d461
JL
3849 if (unsignedp)
3850 comparison = unsigned_condition (comparison);
a06ef755
RK
3851
3852 prepare_cmp_insn (&op0, &op1, &comparison, size, &mode, &unsignedp,
1c0290ea 3853 ccp_jump);
b30f05db
BS
3854 emit_cmp_and_jump_insn_1 (op0, op1, mode, comparison, unsignedp, label);
3855}
3856
3857/* Like emit_cmp_and_jump_insns, but generate only the comparison. */
19caa751 3858
b30f05db 3859void
0c20a65f
AJ
3860emit_cmp_insn (rtx x, rtx y, enum rtx_code comparison, rtx size,
3861 enum machine_mode mode, int unsignedp)
b30f05db 3862{
a06ef755 3863 emit_cmp_and_jump_insns (x, y, comparison, size, mode, unsignedp, 0);
362cc3d4 3864}
77c9c6c2
RK
3865\f
3866/* Emit a library call comparison between floating point X and Y.
3867 COMPARISON is the rtl operator to compare with (EQ, NE, GT, etc.). */
3868
c5c60e15 3869static void
0c20a65f
AJ
3870prepare_float_lib_cmp (rtx *px, rtx *py, enum rtx_code *pcomparison,
3871 enum machine_mode *pmode, int *punsignedp)
77c9c6c2 3872{
c5c60e15 3873 enum rtx_code comparison = *pcomparison;
12f61e77 3874 rtx tmp;
885e80cc
AO
3875 rtx x = *px = protect_from_queue (*px, 0);
3876 rtx y = *py = protect_from_queue (*py, 0);
77c9c6c2 3877 enum machine_mode mode = GET_MODE (x);
0a300065 3878 rtx libfunc = 0;
9725066d 3879 rtx result;
77c9c6c2 3880
842dcd1a
RK
3881 if (mode == HFmode)
3882 switch (comparison)
3883 {
3884 case EQ:
3885 libfunc = eqhf2_libfunc;
3886 break;
3887
3888 case NE:
3889 libfunc = nehf2_libfunc;
3890 break;
3891
3892 case GT:
3893 libfunc = gthf2_libfunc;
12f61e77
AO
3894 if (libfunc == NULL_RTX)
3895 {
3896 tmp = x; x = y; y = tmp;
3897 *pcomparison = LT;
3898 libfunc = lthf2_libfunc;
3899 }
842dcd1a
RK
3900 break;
3901
3902 case GE:
3903 libfunc = gehf2_libfunc;
12f61e77
AO
3904 if (libfunc == NULL_RTX)
3905 {
3906 tmp = x; x = y; y = tmp;
3907 *pcomparison = LE;
3908 libfunc = lehf2_libfunc;
3909 }
842dcd1a
RK
3910 break;
3911
3912 case LT:
3913 libfunc = lthf2_libfunc;
12f61e77
AO
3914 if (libfunc == NULL_RTX)
3915 {
3916 tmp = x; x = y; y = tmp;
3917 *pcomparison = GT;
3918 libfunc = gthf2_libfunc;
3919 }
842dcd1a
RK
3920 break;
3921
3922 case LE:
3923 libfunc = lehf2_libfunc;
12f61e77
AO
3924 if (libfunc == NULL_RTX)
3925 {
3926 tmp = x; x = y; y = tmp;
3927 *pcomparison = GE;
3928 libfunc = gehf2_libfunc;
3929 }
842dcd1a 3930 break;
bb727b5a 3931
1eb8759b
RH
3932 case UNORDERED:
3933 libfunc = unordhf2_libfunc;
3934 break;
3935
bb727b5a
JM
3936 default:
3937 break;
842dcd1a
RK
3938 }
3939 else if (mode == SFmode)
77c9c6c2
RK
3940 switch (comparison)
3941 {
3942 case EQ:
3943 libfunc = eqsf2_libfunc;
3944 break;
3945
3946 case NE:
3947 libfunc = nesf2_libfunc;
3948 break;
3949
3950 case GT:
3951 libfunc = gtsf2_libfunc;
12f61e77
AO
3952 if (libfunc == NULL_RTX)
3953 {
3954 tmp = x; x = y; y = tmp;
3955 *pcomparison = LT;
3956 libfunc = ltsf2_libfunc;
3957 }
77c9c6c2
RK
3958 break;
3959
3960 case GE:
3961 libfunc = gesf2_libfunc;
12f61e77
AO
3962 if (libfunc == NULL_RTX)
3963 {
3964 tmp = x; x = y; y = tmp;
3965 *pcomparison = LE;
3966 libfunc = lesf2_libfunc;
3967 }
77c9c6c2
RK
3968 break;
3969
3970 case LT:
3971 libfunc = ltsf2_libfunc;
12f61e77
AO
3972 if (libfunc == NULL_RTX)
3973 {
3974 tmp = x; x = y; y = tmp;
3975 *pcomparison = GT;
3976 libfunc = gtsf2_libfunc;
3977 }
77c9c6c2
RK
3978 break;
3979
3980 case LE:
3981 libfunc = lesf2_libfunc;
12f61e77
AO
3982 if (libfunc == NULL_RTX)
3983 {
3984 tmp = x; x = y; y = tmp;
3985 *pcomparison = GE;
3986 libfunc = gesf2_libfunc;
3987 }
77c9c6c2 3988 break;
bb727b5a 3989
1eb8759b
RH
3990 case UNORDERED:
3991 libfunc = unordsf2_libfunc;
3992 break;
3993
bb727b5a
JM
3994 default:
3995 break;
77c9c6c2
RK
3996 }
3997 else if (mode == DFmode)
3998 switch (comparison)
3999 {
4000 case EQ:
4001 libfunc = eqdf2_libfunc;
4002 break;
4003
4004 case NE:
4005 libfunc = nedf2_libfunc;
4006 break;
4007
4008 case GT:
4009 libfunc = gtdf2_libfunc;
12f61e77
AO
4010 if (libfunc == NULL_RTX)
4011 {
4012 tmp = x; x = y; y = tmp;
4013 *pcomparison = LT;
4014 libfunc = ltdf2_libfunc;
4015 }
77c9c6c2
RK
4016 break;
4017
4018 case GE:
4019 libfunc = gedf2_libfunc;
12f61e77
AO
4020 if (libfunc == NULL_RTX)
4021 {
4022 tmp = x; x = y; y = tmp;
4023 *pcomparison = LE;
4024 libfunc = ledf2_libfunc;
4025 }
77c9c6c2
RK
4026 break;
4027
4028 case LT:
4029 libfunc = ltdf2_libfunc;
12f61e77
AO
4030 if (libfunc == NULL_RTX)
4031 {
4032 tmp = x; x = y; y = tmp;
4033 *pcomparison = GT;
4034 libfunc = gtdf2_libfunc;
4035 }
77c9c6c2
RK
4036 break;
4037
4038 case LE:
4039 libfunc = ledf2_libfunc;
12f61e77
AO
4040 if (libfunc == NULL_RTX)
4041 {
4042 tmp = x; x = y; y = tmp;
4043 *pcomparison = GE;
4044 libfunc = gedf2_libfunc;
4045 }
77c9c6c2 4046 break;
bb727b5a 4047
1eb8759b
RH
4048 case UNORDERED:
4049 libfunc = unorddf2_libfunc;
4050 break;
4051
bb727b5a
JM
4052 default:
4053 break;
77c9c6c2 4054 }
b092b471
JW
4055 else if (mode == XFmode)
4056 switch (comparison)
4057 {
4058 case EQ:
4059 libfunc = eqxf2_libfunc;
4060 break;
4061
4062 case NE:
4063 libfunc = nexf2_libfunc;
4064 break;
4065
4066 case GT:
4067 libfunc = gtxf2_libfunc;
12f61e77
AO
4068 if (libfunc == NULL_RTX)
4069 {
4070 tmp = x; x = y; y = tmp;
4071 *pcomparison = LT;
4072 libfunc = ltxf2_libfunc;
4073 }
b092b471
JW
4074 break;
4075
4076 case GE:
4077 libfunc = gexf2_libfunc;
12f61e77
AO
4078 if (libfunc == NULL_RTX)
4079 {
4080 tmp = x; x = y; y = tmp;
4081 *pcomparison = LE;
4082 libfunc = lexf2_libfunc;
4083 }
b092b471
JW
4084 break;
4085
4086 case LT:
4087 libfunc = ltxf2_libfunc;
12f61e77
AO
4088 if (libfunc == NULL_RTX)
4089 {
4090 tmp = x; x = y; y = tmp;
4091 *pcomparison = GT;
4092 libfunc = gtxf2_libfunc;
4093 }
b092b471
JW
4094 break;
4095
4096 case LE:
4097 libfunc = lexf2_libfunc;
12f61e77
AO
4098 if (libfunc == NULL_RTX)
4099 {
4100 tmp = x; x = y; y = tmp;
4101 *pcomparison = GE;
4102 libfunc = gexf2_libfunc;
4103 }
b092b471 4104 break;
bb727b5a 4105
1eb8759b
RH
4106 case UNORDERED:
4107 libfunc = unordxf2_libfunc;
4108 break;
4109
bb727b5a
JM
4110 default:
4111 break;
b092b471
JW
4112 }
4113 else if (mode == TFmode)
4114 switch (comparison)
4115 {
4116 case EQ:
4117 libfunc = eqtf2_libfunc;
4118 break;
4119
4120 case NE:
4121 libfunc = netf2_libfunc;
4122 break;
4123
4124 case GT:
4125 libfunc = gttf2_libfunc;
12f61e77
AO
4126 if (libfunc == NULL_RTX)
4127 {
4128 tmp = x; x = y; y = tmp;
4129 *pcomparison = LT;
4130 libfunc = lttf2_libfunc;
4131 }
b092b471
JW
4132 break;
4133
4134 case GE:
4135 libfunc = getf2_libfunc;
12f61e77
AO
4136 if (libfunc == NULL_RTX)
4137 {
4138 tmp = x; x = y; y = tmp;
4139 *pcomparison = LE;
4140 libfunc = letf2_libfunc;
4141 }
b092b471
JW
4142 break;
4143
4144 case LT:
4145 libfunc = lttf2_libfunc;
12f61e77
AO
4146 if (libfunc == NULL_RTX)
4147 {
4148 tmp = x; x = y; y = tmp;
4149 *pcomparison = GT;
4150 libfunc = gttf2_libfunc;
4151 }
b092b471
JW
4152 break;
4153
4154 case LE:
4155 libfunc = letf2_libfunc;
12f61e77
AO
4156 if (libfunc == NULL_RTX)
4157 {
4158 tmp = x; x = y; y = tmp;
4159 *pcomparison = GE;
4160 libfunc = getf2_libfunc;
4161 }
b092b471 4162 break;
bb727b5a 4163
1eb8759b
RH
4164 case UNORDERED:
4165 libfunc = unordtf2_libfunc;
4166 break;
4167
bb727b5a
JM
4168 default:
4169 break;
b092b471 4170 }
77c9c6c2
RK
4171 else
4172 {
4173 enum machine_mode wider_mode;
4174
34e56753 4175 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
77c9c6c2
RK
4176 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
4177 {
4178 if ((cmp_optab->handlers[(int) wider_mode].insn_code
4179 != CODE_FOR_nothing)
4180 || (cmp_optab->handlers[(int) wider_mode].libfunc != 0))
4181 {
06e40b26
RS
4182 x = protect_from_queue (x, 0);
4183 y = protect_from_queue (y, 0);
b30f05db
BS
4184 *px = convert_to_mode (wider_mode, x, 0);
4185 *py = convert_to_mode (wider_mode, y, 0);
c5c60e15 4186 prepare_float_lib_cmp (px, py, pcomparison, pmode, punsignedp);
77c9c6c2
RK
4187 return;
4188 }
4189 }
4190 abort ();
4191 }
4192
0a300065
RK
4193 if (libfunc == 0)
4194 abort ();
4195
24491a09
KH
4196 result = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST_MAKE_BLOCK,
4197 word_mode, 2, x, mode, y, mode);
b30f05db
BS
4198 *px = result;
4199 *py = const0_rtx;
4200 *pmode = word_mode;
1eb8759b
RH
4201 if (comparison == UNORDERED)
4202 *pcomparison = NE;
c5c60e15 4203#ifdef FLOAT_LIB_COMPARE_RETURNS_BOOL
1eb8759b 4204 else if (FLOAT_LIB_COMPARE_RETURNS_BOOL (mode, comparison))
c5c60e15
BS
4205 *pcomparison = NE;
4206#endif
b30f05db 4207 *punsignedp = 0;
77c9c6c2
RK
4208}
4209\f
4210/* Generate code to indirectly jump to a location given in the rtx LOC. */
4211
4212void
0c20a65f 4213emit_indirect_jump (rtx loc)
77c9c6c2 4214{
7e1a450d 4215 if (! ((*insn_data[(int) CODE_FOR_indirect_jump].operand[0].predicate)
f2de2775
JW
4216 (loc, Pmode)))
4217 loc = copy_to_mode_reg (Pmode, loc);
77c9c6c2
RK
4218
4219 emit_jump_insn (gen_indirect_jump (loc));
9649fb4d 4220 emit_barrier ();
77c9c6c2
RK
4221}
4222\f
49c4584c
DE
4223#ifdef HAVE_conditional_move
4224
4225/* Emit a conditional move instruction if the machine supports one for that
4226 condition and machine mode.
4227
4228 OP0 and OP1 are the operands that should be compared using CODE. CMODE is
4229 the mode to use should they be constants. If it is VOIDmode, they cannot
4230 both be constants.
4231
4232 OP2 should be stored in TARGET if the comparison is true, otherwise OP3
4233 should be stored there. MODE is the mode to use should they be constants.
4234 If it is VOIDmode, they cannot both be constants.
4235
4236 The result is either TARGET (perhaps modified) or NULL_RTX if the operation
4237 is not supported. */
4238
4239rtx
0c20a65f
AJ
4240emit_conditional_move (rtx target, enum rtx_code code, rtx op0, rtx op1,
4241 enum machine_mode cmode, rtx op2, rtx op3,
4242 enum machine_mode mode, int unsignedp)
49c4584c
DE
4243{
4244 rtx tem, subtarget, comparison, insn;
4245 enum insn_code icode;
e5c56fd9 4246 enum rtx_code reversed;
49c4584c
DE
4247
4248 /* If one operand is constant, make it the second one. Only do this
4249 if the other operand is not constant as well. */
4250
e5c56fd9 4251 if (swap_commutative_operands_p (op0, op1))
49c4584c
DE
4252 {
4253 tem = op0;
4254 op0 = op1;
4255 op1 = tem;
4256 code = swap_condition (code);
4257 }
4258
c5c76735
JL
4259 /* get_condition will prefer to generate LT and GT even if the old
4260 comparison was against zero, so undo that canonicalization here since
4261 comparisons against zero are cheaper. */
4262 if (code == LT && GET_CODE (op1) == CONST_INT && INTVAL (op1) == 1)
4263 code = LE, op1 = const0_rtx;
4264 else if (code == GT && GET_CODE (op1) == CONST_INT && INTVAL (op1) == -1)
4265 code = GE, op1 = const0_rtx;
4266
49c4584c
DE
4267 if (cmode == VOIDmode)
4268 cmode = GET_MODE (op0);
4269
e5c56fd9
JH
4270 if (swap_commutative_operands_p (op2, op3)
4271 && ((reversed = reversed_comparison_code_parts (code, op0, op1, NULL))
4272 != UNKNOWN))
49c4584c
DE
4273 {
4274 tem = op2;
4275 op2 = op3;
4276 op3 = tem;
e5c56fd9 4277 code = reversed;
49c4584c
DE
4278 }
4279
4280 if (mode == VOIDmode)
4281 mode = GET_MODE (op2);
4282
4283 icode = movcc_gen_code[mode];
4284
4285 if (icode == CODE_FOR_nothing)
4286 return 0;
4287
4288 if (flag_force_mem)
4289 {
4290 op2 = force_not_mem (op2);
4291 op3 = force_not_mem (op3);
4292 }
4293
4294 if (target)
4295 target = protect_from_queue (target, 1);
4296 else
4297 target = gen_reg_rtx (mode);
4298
4299 subtarget = target;
4300
4301 emit_queue ();
4302
4303 op2 = protect_from_queue (op2, 0);
4304 op3 = protect_from_queue (op3, 0);
4305
4306 /* If the insn doesn't accept these operands, put them in pseudos. */
4307
a995e389
RH
4308 if (! (*insn_data[icode].operand[0].predicate)
4309 (subtarget, insn_data[icode].operand[0].mode))
4310 subtarget = gen_reg_rtx (insn_data[icode].operand[0].mode);
49c4584c 4311
a995e389
RH
4312 if (! (*insn_data[icode].operand[2].predicate)
4313 (op2, insn_data[icode].operand[2].mode))
4314 op2 = copy_to_mode_reg (insn_data[icode].operand[2].mode, op2);
49c4584c 4315
a995e389
RH
4316 if (! (*insn_data[icode].operand[3].predicate)
4317 (op3, insn_data[icode].operand[3].mode))
4318 op3 = copy_to_mode_reg (insn_data[icode].operand[3].mode, op3);
49c4584c
DE
4319
4320 /* Everything should now be in the suitable form, so emit the compare insn
4321 and then the conditional move. */
4322
0c20a65f 4323 comparison
a06ef755 4324 = compare_from_rtx (op0, op1, code, unsignedp, cmode, NULL_RTX);
49c4584c
DE
4325
4326 /* ??? Watch for const0_rtx (nop) and const_true_rtx (unconditional)? */
144a5f9d
JL
4327 /* We can get const0_rtx or const_true_rtx in some circumstances. Just
4328 return NULL and let the caller figure out how best to deal with this
4329 situation. */
49c4584c 4330 if (GET_CODE (comparison) != code)
144a5f9d 4331 return NULL_RTX;
0c20a65f 4332
49c4584c
DE
4333 insn = GEN_FCN (icode) (subtarget, comparison, op2, op3);
4334
4335 /* If that failed, then give up. */
4336 if (insn == 0)
4337 return 0;
4338
4339 emit_insn (insn);
4340
4341 if (subtarget != target)
4342 convert_move (target, subtarget, 0);
4343
4344 return target;
4345}
4346
40f03658 4347/* Return nonzero if a conditional move of mode MODE is supported.
49c4584c
DE
4348
4349 This function is for combine so it can tell whether an insn that looks
4350 like a conditional move is actually supported by the hardware. If we
4351 guess wrong we lose a bit on optimization, but that's it. */
4352/* ??? sparc64 supports conditionally moving integers values based on fp
4353 comparisons, and vice versa. How do we handle them? */
4354
4355int
0c20a65f 4356can_conditionally_move_p (enum machine_mode mode)
49c4584c
DE
4357{
4358 if (movcc_gen_code[mode] != CODE_FOR_nothing)
4359 return 1;
4360
4361 return 0;
4362}
4363
4364#endif /* HAVE_conditional_move */
068f5dea
JH
4365
4366/* Emit a conditional addition instruction if the machine supports one for that
4367 condition and machine mode.
4368
4369 OP0 and OP1 are the operands that should be compared using CODE. CMODE is
4370 the mode to use should they be constants. If it is VOIDmode, they cannot
4371 both be constants.
4372
4373 OP2 should be stored in TARGET if the comparison is true, otherwise OP2+OP3
4374 should be stored there. MODE is the mode to use should they be constants.
4375 If it is VOIDmode, they cannot both be constants.
4376
4377 The result is either TARGET (perhaps modified) or NULL_RTX if the operation
4378 is not supported. */
4379
4380rtx
0c20a65f
AJ
4381emit_conditional_add (rtx target, enum rtx_code code, rtx op0, rtx op1,
4382 enum machine_mode cmode, rtx op2, rtx op3,
4383 enum machine_mode mode, int unsignedp)
068f5dea
JH
4384{
4385 rtx tem, subtarget, comparison, insn;
4386 enum insn_code icode;
4387 enum rtx_code reversed;
4388
4389 /* If one operand is constant, make it the second one. Only do this
4390 if the other operand is not constant as well. */
4391
4392 if (swap_commutative_operands_p (op0, op1))
4393 {
4394 tem = op0;
4395 op0 = op1;
4396 op1 = tem;
4397 code = swap_condition (code);
4398 }
4399
4400 /* get_condition will prefer to generate LT and GT even if the old
4401 comparison was against zero, so undo that canonicalization here since
4402 comparisons against zero are cheaper. */
4403 if (code == LT && GET_CODE (op1) == CONST_INT && INTVAL (op1) == 1)
4404 code = LE, op1 = const0_rtx;
4405 else if (code == GT && GET_CODE (op1) == CONST_INT && INTVAL (op1) == -1)
4406 code = GE, op1 = const0_rtx;
4407
4408 if (cmode == VOIDmode)
4409 cmode = GET_MODE (op0);
4410
4411 if (swap_commutative_operands_p (op2, op3)
4412 && ((reversed = reversed_comparison_code_parts (code, op0, op1, NULL))
4413 != UNKNOWN))
4414 {
4415 tem = op2;
4416 op2 = op3;
4417 op3 = tem;
4418 code = reversed;
4419 }
4420
4421 if (mode == VOIDmode)
4422 mode = GET_MODE (op2);
4423
4424 icode = addcc_optab->handlers[(int) mode].insn_code;
4425
4426 if (icode == CODE_FOR_nothing)
4427 return 0;
4428
4429 if (flag_force_mem)
4430 {
4431 op2 = force_not_mem (op2);
4432 op3 = force_not_mem (op3);
4433 }
4434
4435 if (target)
4436 target = protect_from_queue (target, 1);
4437 else
4438 target = gen_reg_rtx (mode);
4439
4440 subtarget = target;
4441
4442 emit_queue ();
4443
4444 op2 = protect_from_queue (op2, 0);
4445 op3 = protect_from_queue (op3, 0);
4446
4447 /* If the insn doesn't accept these operands, put them in pseudos. */
4448
4449 if (! (*insn_data[icode].operand[0].predicate)
4450 (subtarget, insn_data[icode].operand[0].mode))
4451 subtarget = gen_reg_rtx (insn_data[icode].operand[0].mode);
4452
4453 if (! (*insn_data[icode].operand[2].predicate)
4454 (op2, insn_data[icode].operand[2].mode))
4455 op2 = copy_to_mode_reg (insn_data[icode].operand[2].mode, op2);
4456
4457 if (! (*insn_data[icode].operand[3].predicate)
4458 (op3, insn_data[icode].operand[3].mode))
4459 op3 = copy_to_mode_reg (insn_data[icode].operand[3].mode, op3);
4460
4461 /* Everything should now be in the suitable form, so emit the compare insn
4462 and then the conditional move. */
4463
0c20a65f 4464 comparison
068f5dea
JH
4465 = compare_from_rtx (op0, op1, code, unsignedp, cmode, NULL_RTX);
4466
4467 /* ??? Watch for const0_rtx (nop) and const_true_rtx (unconditional)? */
4468 /* We can get const0_rtx or const_true_rtx in some circumstances. Just
4469 return NULL and let the caller figure out how best to deal with this
4470 situation. */
4471 if (GET_CODE (comparison) != code)
4472 return NULL_RTX;
0c20a65f 4473
068f5dea
JH
4474 insn = GEN_FCN (icode) (subtarget, comparison, op2, op3);
4475
4476 /* If that failed, then give up. */
4477 if (insn == 0)
4478 return 0;
4479
4480 emit_insn (insn);
4481
4482 if (subtarget != target)
4483 convert_move (target, subtarget, 0);
4484
4485 return target;
4486}
49c4584c 4487\f
0913e4b4
AO
4488/* These functions attempt to generate an insn body, rather than
4489 emitting the insn, but if the gen function already emits them, we
4490 make no attempt to turn them back into naked patterns.
77c9c6c2
RK
4491
4492 They do not protect from queued increments,
4493 because they may be used 1) in protect_from_queue itself
4494 and 2) in other passes where there is no queue. */
4495
4496/* Generate and return an insn body to add Y to X. */
4497
4498rtx
0c20a65f 4499gen_add2_insn (rtx x, rtx y)
77c9c6c2 4500{
0c20a65f 4501 int icode = (int) add_optab->handlers[(int) GET_MODE (x)].insn_code;
77c9c6c2 4502
a995e389
RH
4503 if (! ((*insn_data[icode].operand[0].predicate)
4504 (x, insn_data[icode].operand[0].mode))
4505 || ! ((*insn_data[icode].operand[1].predicate)
4506 (x, insn_data[icode].operand[1].mode))
4507 || ! ((*insn_data[icode].operand[2].predicate)
4508 (y, insn_data[icode].operand[2].mode)))
77c9c6c2
RK
4509 abort ();
4510
4511 return (GEN_FCN (icode) (x, x, y));
4512}
4513
e78d8e51
ZW
4514/* Generate and return an insn body to add r1 and c,
4515 storing the result in r0. */
4516rtx
0c20a65f 4517gen_add3_insn (rtx r0, rtx r1, rtx c)
e78d8e51
ZW
4518{
4519 int icode = (int) add_optab->handlers[(int) GET_MODE (r0)].insn_code;
4520
7e1a450d 4521 if (icode == CODE_FOR_nothing
e78d8e51
ZW
4522 || ! ((*insn_data[icode].operand[0].predicate)
4523 (r0, insn_data[icode].operand[0].mode))
4524 || ! ((*insn_data[icode].operand[1].predicate)
4525 (r1, insn_data[icode].operand[1].mode))
4526 || ! ((*insn_data[icode].operand[2].predicate)
4527 (c, insn_data[icode].operand[2].mode)))
4528 return NULL_RTX;
4529
4530 return (GEN_FCN (icode) (r0, r1, c));
4531}
4532
77c9c6c2 4533int
0c20a65f 4534have_add2_insn (rtx x, rtx y)
77c9c6c2 4535{
fb7e77d7
TM
4536 int icode;
4537
4538 if (GET_MODE (x) == VOIDmode)
4539 abort ();
4540
0c20a65f 4541 icode = (int) add_optab->handlers[(int) GET_MODE (x)].insn_code;
fb7e77d7
TM
4542
4543 if (icode == CODE_FOR_nothing)
4544 return 0;
4545
4546 if (! ((*insn_data[icode].operand[0].predicate)
4547 (x, insn_data[icode].operand[0].mode))
4548 || ! ((*insn_data[icode].operand[1].predicate)
4549 (x, insn_data[icode].operand[1].mode))
4550 || ! ((*insn_data[icode].operand[2].predicate)
4551 (y, insn_data[icode].operand[2].mode)))
4552 return 0;
4553
4554 return 1;
77c9c6c2
RK
4555}
4556
4557/* Generate and return an insn body to subtract Y from X. */
4558
4559rtx
0c20a65f 4560gen_sub2_insn (rtx x, rtx y)
77c9c6c2 4561{
0c20a65f 4562 int icode = (int) sub_optab->handlers[(int) GET_MODE (x)].insn_code;
77c9c6c2 4563
a995e389
RH
4564 if (! ((*insn_data[icode].operand[0].predicate)
4565 (x, insn_data[icode].operand[0].mode))
4566 || ! ((*insn_data[icode].operand[1].predicate)
4567 (x, insn_data[icode].operand[1].mode))
4568 || ! ((*insn_data[icode].operand[2].predicate)
4569 (y, insn_data[icode].operand[2].mode)))
77c9c6c2
RK
4570 abort ();
4571
4572 return (GEN_FCN (icode) (x, x, y));
4573}
4574
ef89d648
ZW
4575/* Generate and return an insn body to subtract r1 and c,
4576 storing the result in r0. */
4577rtx
0c20a65f 4578gen_sub3_insn (rtx r0, rtx r1, rtx c)
ef89d648
ZW
4579{
4580 int icode = (int) sub_optab->handlers[(int) GET_MODE (r0)].insn_code;
4581
7e1a450d 4582 if (icode == CODE_FOR_nothing
ef89d648
ZW
4583 || ! ((*insn_data[icode].operand[0].predicate)
4584 (r0, insn_data[icode].operand[0].mode))
4585 || ! ((*insn_data[icode].operand[1].predicate)
4586 (r1, insn_data[icode].operand[1].mode))
4587 || ! ((*insn_data[icode].operand[2].predicate)
4588 (c, insn_data[icode].operand[2].mode)))
4589 return NULL_RTX;
4590
4591 return (GEN_FCN (icode) (r0, r1, c));
4592}
4593
77c9c6c2 4594int
0c20a65f 4595have_sub2_insn (rtx x, rtx y)
77c9c6c2 4596{
fb7e77d7
TM
4597 int icode;
4598
4599 if (GET_MODE (x) == VOIDmode)
4600 abort ();
4601
0c20a65f 4602 icode = (int) sub_optab->handlers[(int) GET_MODE (x)].insn_code;
fb7e77d7
TM
4603
4604 if (icode == CODE_FOR_nothing)
4605 return 0;
4606
4607 if (! ((*insn_data[icode].operand[0].predicate)
4608 (x, insn_data[icode].operand[0].mode))
4609 || ! ((*insn_data[icode].operand[1].predicate)
4610 (x, insn_data[icode].operand[1].mode))
4611 || ! ((*insn_data[icode].operand[2].predicate)
4612 (y, insn_data[icode].operand[2].mode)))
4613 return 0;
4614
4615 return 1;
77c9c6c2
RK
4616}
4617
e3654226 4618/* Generate the body of an instruction to copy Y into X.
2f937369 4619 It may be a list of insns, if one insn isn't enough. */
77c9c6c2
RK
4620
4621rtx
0c20a65f 4622gen_move_insn (rtx x, rtx y)
77c9c6c2 4623{
e3654226 4624 rtx seq;
77c9c6c2 4625
e3654226
RS
4626 start_sequence ();
4627 emit_move_insn_1 (x, y);
2f937369 4628 seq = get_insns ();
e3654226
RS
4629 end_sequence ();
4630 return seq;
77c9c6c2
RK
4631}
4632\f
34e56753
RS
4633/* Return the insn code used to extend FROM_MODE to TO_MODE.
4634 UNSIGNEDP specifies zero-extension instead of sign-extension. If
4635 no such operation exists, CODE_FOR_nothing will be returned. */
77c9c6c2 4636
34e56753 4637enum insn_code
0c20a65f
AJ
4638can_extend_p (enum machine_mode to_mode, enum machine_mode from_mode,
4639 int unsignedp)
77c9c6c2 4640{
6dd12198
SE
4641#ifdef HAVE_ptr_extend
4642 if (unsignedp < 0)
4643 return CODE_FOR_ptr_extend;
4644 else
4645#endif
4646 return extendtab[(int) to_mode][(int) from_mode][unsignedp != 0];
77c9c6c2
RK
4647}
4648
4649/* Generate the body of an insn to extend Y (with mode MFROM)
4650 into X (with mode MTO). Do zero-extension if UNSIGNEDP is nonzero. */
4651
4652rtx
0c20a65f
AJ
4653gen_extend_insn (rtx x, rtx y, enum machine_mode mto,
4654 enum machine_mode mfrom, int unsignedp)
77c9c6c2 4655{
678164a5 4656 return (GEN_FCN (extendtab[(int) mto][(int) mfrom][unsignedp != 0]) (x, y));
77c9c6c2 4657}
77c9c6c2
RK
4658\f
4659/* can_fix_p and can_float_p say whether the target machine
4660 can directly convert a given fixed point type to
4661 a given floating point type, or vice versa.
4662 The returned value is the CODE_FOR_... value to use,
5d81dc5b 4663 or CODE_FOR_nothing if these modes cannot be directly converted.
77c9c6c2 4664
5d81dc5b 4665 *TRUNCP_PTR is set to 1 if it is necessary to output
77c9c6c2
RK
4666 an explicit FTRUNC insn before the fix insn; otherwise 0. */
4667
4668static enum insn_code
0c20a65f
AJ
4669can_fix_p (enum machine_mode fixmode, enum machine_mode fltmode,
4670 int unsignedp, int *truncp_ptr)
77c9c6c2
RK
4671{
4672 *truncp_ptr = 0;
678164a5
RK
4673 if (fixtrunctab[(int) fltmode][(int) fixmode][unsignedp != 0]
4674 != CODE_FOR_nothing)
4675 return fixtrunctab[(int) fltmode][(int) fixmode][unsignedp != 0];
77c9c6c2
RK
4676
4677 if (ftrunc_optab->handlers[(int) fltmode].insn_code != CODE_FOR_nothing)
4678 {
4679 *truncp_ptr = 1;
678164a5 4680 return fixtab[(int) fltmode][(int) fixmode][unsignedp != 0];
77c9c6c2
RK
4681 }
4682 return CODE_FOR_nothing;
4683}
4684
4685static enum insn_code
0c20a65f
AJ
4686can_float_p (enum machine_mode fltmode, enum machine_mode fixmode,
4687 int unsignedp)
77c9c6c2 4688{
678164a5 4689 return floattab[(int) fltmode][(int) fixmode][unsignedp != 0];
77c9c6c2 4690}
77c9c6c2
RK
4691\f
4692/* Generate code to convert FROM to floating point
34e56753 4693 and store in TO. FROM must be fixed point and not VOIDmode.
77c9c6c2
RK
4694 UNSIGNEDP nonzero means regard FROM as unsigned.
4695 Normally this is done by correcting the final value
4696 if it is negative. */
4697
4698void
0c20a65f 4699expand_float (rtx to, rtx from, int unsignedp)
77c9c6c2
RK
4700{
4701 enum insn_code icode;
b3694847 4702 rtx target = to;
77c9c6c2
RK
4703 enum machine_mode fmode, imode;
4704
34e56753
RS
4705 /* Crash now, because we won't be able to decide which mode to use. */
4706 if (GET_MODE (from) == VOIDmode)
4707 abort ();
4708
77c9c6c2
RK
4709 /* Look for an insn to do the conversion. Do it in the specified
4710 modes if possible; otherwise convert either input, output or both to
4711 wider mode. If the integer mode is wider than the mode of FROM,
4712 we can do the conversion signed even if the input is unsigned. */
4713
7bf0a593
AP
4714 for (fmode = GET_MODE (to); fmode != VOIDmode;
4715 fmode = GET_MODE_WIDER_MODE (fmode))
4716 for (imode = GET_MODE (from); imode != VOIDmode;
4717 imode = GET_MODE_WIDER_MODE (imode))
77c9c6c2
RK
4718 {
4719 int doing_unsigned = unsignedp;
4720
5ba02ca6
GK
4721 if (fmode != GET_MODE (to)
4722 && significand_size (fmode) < GET_MODE_BITSIZE (GET_MODE (from)))
4723 continue;
4724
77c9c6c2
RK
4725 icode = can_float_p (fmode, imode, unsignedp);
4726 if (icode == CODE_FOR_nothing && imode != GET_MODE (from) && unsignedp)
4727 icode = can_float_p (fmode, imode, 0), doing_unsigned = 0;
4728
4729 if (icode != CODE_FOR_nothing)
4730 {
4731 to = protect_from_queue (to, 1);
06e40b26 4732 from = protect_from_queue (from, 0);
77c9c6c2
RK
4733
4734 if (imode != GET_MODE (from))
4735 from = convert_to_mode (imode, from, unsignedp);
77c9c6c2
RK
4736
4737 if (fmode != GET_MODE (to))
4738 target = gen_reg_rtx (fmode);
4739
4740 emit_unop_insn (icode, target, from,
4741 doing_unsigned ? UNSIGNED_FLOAT : FLOAT);
4742
4743 if (target != to)
4744 convert_move (to, target, 0);
4745 return;
4746 }
7e1a450d 4747 }
77c9c6c2 4748
77c9c6c2
RK
4749 /* Unsigned integer, and no way to convert directly.
4750 Convert as signed, then conditionally adjust the result. */
4751 if (unsignedp)
4752 {
4753 rtx label = gen_label_rtx ();
4754 rtx temp;
4755 REAL_VALUE_TYPE offset;
4756
4757 emit_queue ();
4758
4759 to = protect_from_queue (to, 1);
4760 from = protect_from_queue (from, 0);
4761
4762 if (flag_force_mem)
4763 from = force_not_mem (from);
4764
c95c47f3
PE
4765 /* Look for a usable floating mode FMODE wider than the source and at
4766 least as wide as the target. Using FMODE will avoid rounding woes
4767 with unsigned values greater than the signed maximum value. */
70864443 4768
c95c47f3
PE
4769 for (fmode = GET_MODE (to); fmode != VOIDmode;
4770 fmode = GET_MODE_WIDER_MODE (fmode))
4771 if (GET_MODE_BITSIZE (GET_MODE (from)) < GET_MODE_BITSIZE (fmode)
4772 && can_float_p (fmode, GET_MODE (from), 0) != CODE_FOR_nothing)
4773 break;
a48fb61b 4774
c95c47f3
PE
4775 if (fmode == VOIDmode)
4776 {
a48fb61b 4777 /* There is no such mode. Pretend the target is wide enough. */
c95c47f3 4778 fmode = GET_MODE (to);
a48fb61b 4779
0f41302f 4780 /* Avoid double-rounding when TO is narrower than FROM. */
a48fb61b
RK
4781 if ((significand_size (fmode) + 1)
4782 < GET_MODE_BITSIZE (GET_MODE (from)))
4783 {
4784 rtx temp1;
4785 rtx neglabel = gen_label_rtx ();
4786
0c20a65f 4787 /* Don't use TARGET if it isn't a register, is a hard register,
70864443 4788 or is the wrong mode. */
44f51d4a 4789 if (GET_CODE (target) != REG
70864443
RK
4790 || REGNO (target) < FIRST_PSEUDO_REGISTER
4791 || GET_MODE (target) != fmode)
44f51d4a
RK
4792 target = gen_reg_rtx (fmode);
4793
a48fb61b
RK
4794 imode = GET_MODE (from);
4795 do_pending_stack_adjust ();
4796
4797 /* Test whether the sign bit is set. */
1c0290ea 4798 emit_cmp_and_jump_insns (from, const0_rtx, LT, NULL_RTX, imode,
a06ef755 4799 0, neglabel);
a48fb61b
RK
4800
4801 /* The sign bit is not set. Convert as signed. */
4802 expand_float (target, from, 0);
4803 emit_jump_insn (gen_jump (label));
2ad79487 4804 emit_barrier ();
a48fb61b
RK
4805
4806 /* The sign bit is set.
4807 Convert to a usable (positive signed) value by shifting right
4808 one bit, while remembering if a nonzero bit was shifted
4809 out; i.e., compute (from & 1) | (from >> 1). */
4810
4811 emit_label (neglabel);
4812 temp = expand_binop (imode, and_optab, from, const1_rtx,
70864443 4813 NULL_RTX, 1, OPTAB_LIB_WIDEN);
73d9a835
RK
4814 temp1 = expand_shift (RSHIFT_EXPR, imode, from, integer_one_node,
4815 NULL_RTX, 1);
0c20a65f 4816 temp = expand_binop (imode, ior_optab, temp, temp1, temp, 1,
70864443 4817 OPTAB_LIB_WIDEN);
a48fb61b
RK
4818 expand_float (target, temp, 0);
4819
4820 /* Multiply by 2 to undo the shift above. */
a93738eb 4821 temp = expand_binop (fmode, add_optab, target, target,
7e1a450d 4822 target, 0, OPTAB_LIB_WIDEN);
a93738eb
RK
4823 if (temp != target)
4824 emit_move_insn (target, temp);
4825
a48fb61b
RK
4826 do_pending_stack_adjust ();
4827 emit_label (label);
4828 goto done;
4829 }
c95c47f3
PE
4830 }
4831
77c9c6c2
RK
4832 /* If we are about to do some arithmetic to correct for an
4833 unsigned operand, do it in a pseudo-register. */
4834
c95c47f3 4835 if (GET_MODE (to) != fmode
70864443 4836 || GET_CODE (to) != REG || REGNO (to) < FIRST_PSEUDO_REGISTER)
c95c47f3 4837 target = gen_reg_rtx (fmode);
77c9c6c2
RK
4838
4839 /* Convert as signed integer to floating. */
4840 expand_float (target, from, 0);
4841
4842 /* If FROM is negative (and therefore TO is negative),
4843 correct its value by 2**bitwidth. */
4844
4845 do_pending_stack_adjust ();
c5d5d461 4846 emit_cmp_and_jump_insns (from, const0_rtx, GE, NULL_RTX, GET_MODE (from),
a06ef755 4847 0, label);
70864443 4848
0c20a65f 4849
efdc7e19 4850 real_2expN (&offset, GET_MODE_BITSIZE (GET_MODE (from)));
c95c47f3 4851 temp = expand_binop (fmode, add_optab, target,
30d88916 4852 CONST_DOUBLE_FROM_REAL_VALUE (offset, fmode),
77c9c6c2
RK
4853 target, 0, OPTAB_LIB_WIDEN);
4854 if (temp != target)
4855 emit_move_insn (target, temp);
a48fb61b 4856
77c9c6c2
RK
4857 do_pending_stack_adjust ();
4858 emit_label (label);
70864443 4859 goto done;
77c9c6c2 4860 }
77c9c6c2 4861
560f3f8a 4862 /* No hardware instruction available; call a library routine to convert from
b092b471 4863 SImode, DImode, or TImode into SFmode, DFmode, XFmode, or TFmode. */
77c9c6c2 4864 {
6bce1b78 4865 rtx libfcn;
77c9c6c2 4866 rtx insns;
9a7f678c 4867 rtx value;
77c9c6c2
RK
4868
4869 to = protect_from_queue (to, 1);
06e40b26 4870 from = protect_from_queue (from, 0);
77c9c6c2
RK
4871
4872 if (GET_MODE_SIZE (GET_MODE (from)) < GET_MODE_SIZE (SImode))
4873 from = convert_to_mode (SImode, from, unsignedp);
77c9c6c2
RK
4874
4875 if (flag_force_mem)
4876 from = force_not_mem (from);
4877
4878 if (GET_MODE (to) == SFmode)
4879 {
4880 if (GET_MODE (from) == SImode)
6bce1b78 4881 libfcn = floatsisf_libfunc;
77c9c6c2 4882 else if (GET_MODE (from) == DImode)
6bce1b78 4883 libfcn = floatdisf_libfunc;
b092b471
JW
4884 else if (GET_MODE (from) == TImode)
4885 libfcn = floattisf_libfunc;
77c9c6c2
RK
4886 else
4887 abort ();
4888 }
4889 else if (GET_MODE (to) == DFmode)
4890 {
4891 if (GET_MODE (from) == SImode)
6bce1b78 4892 libfcn = floatsidf_libfunc;
77c9c6c2 4893 else if (GET_MODE (from) == DImode)
6bce1b78 4894 libfcn = floatdidf_libfunc;
b092b471
JW
4895 else if (GET_MODE (from) == TImode)
4896 libfcn = floattidf_libfunc;
4897 else
4898 abort ();
4899 }
4900 else if (GET_MODE (to) == XFmode)
4901 {
4902 if (GET_MODE (from) == SImode)
4903 libfcn = floatsixf_libfunc;
4904 else if (GET_MODE (from) == DImode)
4905 libfcn = floatdixf_libfunc;
4906 else if (GET_MODE (from) == TImode)
4907 libfcn = floattixf_libfunc;
4908 else
4909 abort ();
4910 }
4911 else if (GET_MODE (to) == TFmode)
4912 {
4913 if (GET_MODE (from) == SImode)
4914 libfcn = floatsitf_libfunc;
4915 else if (GET_MODE (from) == DImode)
4916 libfcn = floatditf_libfunc;
4917 else if (GET_MODE (from) == TImode)
4918 libfcn = floattitf_libfunc;
77c9c6c2
RK
4919 else
4920 abort ();
4921 }
4922 else
4923 abort ();
4924
4925 start_sequence ();
4926
ebb1b59a
BS
4927 value = emit_library_call_value (libfcn, NULL_RTX, LCT_CONST,
4928 GET_MODE (to), 1, from,
4929 GET_MODE (from));
77c9c6c2
RK
4930 insns = get_insns ();
4931 end_sequence ();
4932
9a7f678c 4933 emit_libcall_block (insns, target, value,
9e6a5703 4934 gen_rtx_FLOAT (GET_MODE (to), from));
77c9c6c2
RK
4935 }
4936
a48fb61b
RK
4937 done:
4938
77c9c6c2
RK
4939 /* Copy result to requested destination
4940 if we have been computing in a temp location. */
4941
4942 if (target != to)
4943 {
4944 if (GET_MODE (target) == GET_MODE (to))
4945 emit_move_insn (to, target);
4946 else
4947 convert_move (to, target, 0);
4948 }
4949}
4950\f
4951/* expand_fix: generate code to convert FROM to fixed point
4952 and store in TO. FROM must be floating point. */
4953
4954static rtx
0c20a65f 4955ftruncify (rtx x)
77c9c6c2
RK
4956{
4957 rtx temp = gen_reg_rtx (GET_MODE (x));
4958 return expand_unop (GET_MODE (x), ftrunc_optab, x, temp, 0);
4959}
4960
4961void
0c20a65f 4962expand_fix (rtx to, rtx from, int unsignedp)
77c9c6c2
RK
4963{
4964 enum insn_code icode;
b3694847 4965 rtx target = to;
77c9c6c2
RK
4966 enum machine_mode fmode, imode;
4967 int must_trunc = 0;
6bce1b78 4968 rtx libfcn = 0;
77c9c6c2
RK
4969
4970 /* We first try to find a pair of modes, one real and one integer, at
4971 least as wide as FROM and TO, respectively, in which we can open-code
4972 this conversion. If the integer mode is wider than the mode of TO,
4973 we can do the conversion either signed or unsigned. */
4974
3987b9db
JH
4975 for (fmode = GET_MODE (from); fmode != VOIDmode;
4976 fmode = GET_MODE_WIDER_MODE (fmode))
4977 for (imode = GET_MODE (to); imode != VOIDmode;
4978 imode = GET_MODE_WIDER_MODE (imode))
77c9c6c2
RK
4979 {
4980 int doing_unsigned = unsignedp;
4981
4982 icode = can_fix_p (imode, fmode, unsignedp, &must_trunc);
4983 if (icode == CODE_FOR_nothing && imode != GET_MODE (to) && unsignedp)
4984 icode = can_fix_p (imode, fmode, 0, &must_trunc), doing_unsigned = 0;
4985
4986 if (icode != CODE_FOR_nothing)
4987 {
4988 to = protect_from_queue (to, 1);
06e40b26 4989 from = protect_from_queue (from, 0);
77c9c6c2
RK
4990
4991 if (fmode != GET_MODE (from))
4992 from = convert_to_mode (fmode, from, 0);
77c9c6c2
RK
4993
4994 if (must_trunc)
4995 from = ftruncify (from);
4996
4997 if (imode != GET_MODE (to))
4998 target = gen_reg_rtx (imode);
4999
5000 emit_unop_insn (icode, target, from,
5001 doing_unsigned ? UNSIGNED_FIX : FIX);
5002 if (target != to)
5003 convert_move (to, target, unsignedp);
5004 return;
5005 }
5006 }
5007
77c9c6c2
RK
5008 /* For an unsigned conversion, there is one more way to do it.
5009 If we have a signed conversion, we generate code that compares
5010 the real value to the largest representable positive number. If if
5011 is smaller, the conversion is done normally. Otherwise, subtract
5012 one plus the highest signed number, convert, and add it back.
5013
5014 We only need to check all real modes, since we know we didn't find
0c20a65f 5015 anything with a wider integer mode.
0d446150
JH
5016
5017 This code used to extend FP value into mode wider than the destination.
5018 This is not needed. Consider, for instance conversion from SFmode
5019 into DImode.
5020
5021 The hot path trought the code is dealing with inputs smaller than 2^63
5022 and doing just the conversion, so there is no bits to lose.
5023
5024 In the other path we know the value is positive in the range 2^63..2^64-1
5025 inclusive. (as for other imput overflow happens and result is undefined)
e0bb17a8 5026 So we know that the most important bit set in mantissa corresponds to
0d446150
JH
5027 2^63. The subtraction of 2^63 should not generate any rounding as it
5028 simply clears out that bit. The rest is trivial. */
77c9c6c2 5029
b1ec3c92 5030 if (unsignedp && GET_MODE_BITSIZE (GET_MODE (to)) <= HOST_BITS_PER_WIDE_INT)
77c9c6c2
RK
5031 for (fmode = GET_MODE (from); fmode != VOIDmode;
5032 fmode = GET_MODE_WIDER_MODE (fmode))
0d446150
JH
5033 if (CODE_FOR_nothing != can_fix_p (GET_MODE (to), fmode, 0,
5034 &must_trunc))
77c9c6c2 5035 {
e9f7ae44
RS
5036 int bitsize;
5037 REAL_VALUE_TYPE offset;
5038 rtx limit, lab1, lab2, insn;
5039
5040 bitsize = GET_MODE_BITSIZE (GET_MODE (to));
efdc7e19 5041 real_2expN (&offset, bitsize - 1);
30d88916 5042 limit = CONST_DOUBLE_FROM_REAL_VALUE (offset, fmode);
e9f7ae44
RS
5043 lab1 = gen_label_rtx ();
5044 lab2 = gen_label_rtx ();
77c9c6c2
RK
5045
5046 emit_queue ();
5047 to = protect_from_queue (to, 1);
5048 from = protect_from_queue (from, 0);
5049
5050 if (flag_force_mem)
5051 from = force_not_mem (from);
5052
5053 if (fmode != GET_MODE (from))
5054 from = convert_to_mode (fmode, from, 0);
5055
5056 /* See if we need to do the subtraction. */
5057 do_pending_stack_adjust ();
c5d5d461 5058 emit_cmp_and_jump_insns (from, limit, GE, NULL_RTX, GET_MODE (from),
a06ef755 5059 0, lab1);
77c9c6c2
RK
5060
5061 /* If not, do the signed "fix" and branch around fixup code. */
5062 expand_fix (to, from, 0);
5063 emit_jump_insn (gen_jump (lab2));
5064 emit_barrier ();
5065
5066 /* Otherwise, subtract 2**(N-1), convert to signed number,
5067 then add 2**(N-1). Do the addition using XOR since this
5068 will often generate better code. */
5069 emit_label (lab1);
5070 target = expand_binop (GET_MODE (from), sub_optab, from, limit,
b1ec3c92 5071 NULL_RTX, 0, OPTAB_LIB_WIDEN);
77c9c6c2
RK
5072 expand_fix (to, target, 0);
5073 target = expand_binop (GET_MODE (to), xor_optab, to,
2496c7bd
LB
5074 gen_int_mode
5075 ((HOST_WIDE_INT) 1 << (bitsize - 1),
5076 GET_MODE (to)),
77c9c6c2
RK
5077 to, 1, OPTAB_LIB_WIDEN);
5078
5079 if (target != to)
5080 emit_move_insn (to, target);
5081
5082 emit_label (lab2);
5083
02214a5c
RK
5084 if (mov_optab->handlers[(int) GET_MODE (to)].insn_code
5085 != CODE_FOR_nothing)
5086 {
5087 /* Make a place for a REG_NOTE and add it. */
5088 insn = emit_move_insn (to, to);
5fa671cf
AM
5089 set_unique_reg_note (insn,
5090 REG_EQUAL,
5091 gen_rtx_fmt_e (UNSIGNED_FIX,
5092 GET_MODE (to),
5093 copy_rtx (from)));
02214a5c 5094 }
c5c76735 5095
77c9c6c2
RK
5096 return;
5097 }
77c9c6c2
RK
5098
5099 /* We can't do it with an insn, so use a library call. But first ensure
5100 that the mode of TO is at least as wide as SImode, since those are the
5101 only library calls we know about. */
5102
5103 if (GET_MODE_SIZE (GET_MODE (to)) < GET_MODE_SIZE (SImode))
5104 {
5105 target = gen_reg_rtx (SImode);
5106
5107 expand_fix (target, from, unsignedp);
5108 }
5109 else if (GET_MODE (from) == SFmode)
5110 {
5111 if (GET_MODE (to) == SImode)
6bce1b78 5112 libfcn = unsignedp ? fixunssfsi_libfunc : fixsfsi_libfunc;
77c9c6c2 5113 else if (GET_MODE (to) == DImode)
6bce1b78 5114 libfcn = unsignedp ? fixunssfdi_libfunc : fixsfdi_libfunc;
b092b471
JW
5115 else if (GET_MODE (to) == TImode)
5116 libfcn = unsignedp ? fixunssfti_libfunc : fixsfti_libfunc;
77c9c6c2
RK
5117 else
5118 abort ();
5119 }
5120 else if (GET_MODE (from) == DFmode)
5121 {
5122 if (GET_MODE (to) == SImode)
6bce1b78 5123 libfcn = unsignedp ? fixunsdfsi_libfunc : fixdfsi_libfunc;
77c9c6c2 5124 else if (GET_MODE (to) == DImode)
6bce1b78 5125 libfcn = unsignedp ? fixunsdfdi_libfunc : fixdfdi_libfunc;
b092b471
JW
5126 else if (GET_MODE (to) == TImode)
5127 libfcn = unsignedp ? fixunsdfti_libfunc : fixdfti_libfunc;
5128 else
5129 abort ();
5130 }
5131 else if (GET_MODE (from) == XFmode)
5132 {
5133 if (GET_MODE (to) == SImode)
5134 libfcn = unsignedp ? fixunsxfsi_libfunc : fixxfsi_libfunc;
5135 else if (GET_MODE (to) == DImode)
5136 libfcn = unsignedp ? fixunsxfdi_libfunc : fixxfdi_libfunc;
5137 else if (GET_MODE (to) == TImode)
5138 libfcn = unsignedp ? fixunsxfti_libfunc : fixxfti_libfunc;
5139 else
5140 abort ();
5141 }
5142 else if (GET_MODE (from) == TFmode)
5143 {
5144 if (GET_MODE (to) == SImode)
5145 libfcn = unsignedp ? fixunstfsi_libfunc : fixtfsi_libfunc;
5146 else if (GET_MODE (to) == DImode)
5147 libfcn = unsignedp ? fixunstfdi_libfunc : fixtfdi_libfunc;
5148 else if (GET_MODE (to) == TImode)
5149 libfcn = unsignedp ? fixunstfti_libfunc : fixtfti_libfunc;
77c9c6c2
RK
5150 else
5151 abort ();
5152 }
5153 else
5154 abort ();
5155
6bce1b78 5156 if (libfcn)
77c9c6c2
RK
5157 {
5158 rtx insns;
560f3f8a 5159 rtx value;
77c9c6c2
RK
5160
5161 to = protect_from_queue (to, 1);
5162 from = protect_from_queue (from, 0);
5163
5164 if (flag_force_mem)
5165 from = force_not_mem (from);
5166
5167 start_sequence ();
5168
ebb1b59a
BS
5169 value = emit_library_call_value (libfcn, NULL_RTX, LCT_CONST,
5170 GET_MODE (to), 1, from,
5171 GET_MODE (from));
77c9c6c2
RK
5172 insns = get_insns ();
5173 end_sequence ();
5174
560f3f8a 5175 emit_libcall_block (insns, target, value,
9e6a5703
JC
5176 gen_rtx_fmt_e (unsignedp ? UNSIGNED_FIX : FIX,
5177 GET_MODE (to), from));
77c9c6c2 5178 }
0c20a65f 5179
3e53ea48
RK
5180 if (target != to)
5181 {
5182 if (GET_MODE (to) == GET_MODE (target))
5183 emit_move_insn (to, target);
5184 else
5185 convert_move (to, target, 0);
5186 }
77c9c6c2
RK
5187}
5188\f
ef89d648
ZW
5189/* Report whether we have an instruction to perform the operation
5190 specified by CODE on operands of mode MODE. */
5191int
0c20a65f 5192have_insn_for (enum rtx_code code, enum machine_mode mode)
ef89d648
ZW
5193{
5194 return (code_to_optab[(int) code] != 0
5195 && (code_to_optab[(int) code]->handlers[(int) mode].insn_code
5196 != CODE_FOR_nothing));
5197}
5198
5199/* Create a blank optab. */
5200static optab
0c20a65f 5201new_optab (void)
77c9c6c2
RK
5202{
5203 int i;
e2500fed 5204 optab op = (optab) ggc_alloc (sizeof (struct optab));
77c9c6c2
RK
5205 for (i = 0; i < NUM_MACHINE_MODES; i++)
5206 {
5207 op->handlers[i].insn_code = CODE_FOR_nothing;
5208 op->handlers[i].libfunc = 0;
5209 }
377017c4 5210
ef89d648
ZW
5211 return op;
5212}
377017c4 5213
ef89d648
ZW
5214/* Same, but fill in its code as CODE, and write it into the
5215 code_to_optab table. */
5216static inline optab
0c20a65f 5217init_optab (enum rtx_code code)
ef89d648
ZW
5218{
5219 optab op = new_optab ();
5220 op->code = code;
5221 code_to_optab[(int) code] = op;
5222 return op;
5223}
5224
5225/* Same, but fill in its code as CODE, and do _not_ write it into
5226 the code_to_optab table. */
5227static inline optab
0c20a65f 5228init_optabv (enum rtx_code code)
ef89d648
ZW
5229{
5230 optab op = new_optab ();
5231 op->code = code;
77c9c6c2
RK
5232 return op;
5233}
5234
b092b471
JW
5235/* Initialize the libfunc fields of an entire group of entries in some
5236 optab. Each entry is set equal to a string consisting of a leading
5237 pair of underscores followed by a generic operation name followed by
5238 a mode name (downshifted to lower case) followed by a single character
5239 representing the number of operands for the given operation (which is
5240 usually one of the characters '2', '3', or '4').
5241
5242 OPTABLE is the table in which libfunc fields are to be initialized.
5243 FIRST_MODE is the first machine mode index in the given optab to
5244 initialize.
5245 LAST_MODE is the last machine mode index in the given optab to
5246 initialize.
5247 OPNAME is the generic (string) name of the operation.
5248 SUFFIX is the character which specifies the number of operands for
5249 the given generic operation.
5250*/
5251
5252static void
0c20a65f
AJ
5253init_libfuncs (optab optable, int first_mode, int last_mode,
5254 const char *opname, int suffix)
b092b471 5255{
b3694847
SS
5256 int mode;
5257 unsigned opname_len = strlen (opname);
b092b471 5258
fe0035ff
RS
5259 for (mode = first_mode; (int) mode <= (int) last_mode;
5260 mode = (enum machine_mode) ((int) mode + 1))
b092b471 5261 {
7e1a450d 5262 const char *mname = GET_MODE_NAME (mode);
b3694847
SS
5263 unsigned mname_len = strlen (mname);
5264 char *libfunc_name = alloca (2 + opname_len + mname_len + 1 + 1);
5265 char *p;
5266 const char *q;
b092b471
JW
5267
5268 p = libfunc_name;
5269 *p++ = '_';
5270 *p++ = '_';
5271 for (q = opname; *q; )
5272 *p++ = *q++;
5273 for (q = mname; *q; q++)
92a438d1 5274 *p++ = TOLOWER (*q);
b092b471 5275 *p++ = suffix;
520a57c8 5276 *p = '\0';
76095e2f 5277
b092b471 5278 optable->handlers[(int) mode].libfunc
68d28100 5279 = init_one_libfunc (ggc_alloc_string (libfunc_name, p - libfunc_name));
b092b471
JW
5280 }
5281}
5282
5283/* Initialize the libfunc fields of an entire group of entries in some
5284 optab which correspond to all integer mode operations. The parameters
5285 have the same meaning as similarly named ones for the `init_libfuncs'
5286 routine. (See above). */
5287
5288static void
0c20a65f 5289init_integral_libfuncs (optab optable, const char *opname, int suffix)
b092b471 5290{
c0510d84
DD
5291 int maxsize = 2*BITS_PER_WORD;
5292 if (maxsize < LONG_LONG_TYPE_SIZE)
5293 maxsize = LONG_LONG_TYPE_SIZE;
8275b011 5294 init_libfuncs (optable, word_mode,
c0510d84 5295 mode_for_size (maxsize, MODE_INT, 0),
8275b011 5296 opname, suffix);
b092b471
JW
5297}
5298
5299/* Initialize the libfunc fields of an entire group of entries in some
5300 optab which correspond to all real mode operations. The parameters
5301 have the same meaning as similarly named ones for the `init_libfuncs'
5302 routine. (See above). */
5303
5304static void
0c20a65f 5305init_floating_libfuncs (optab optable, const char *opname, int suffix)
b092b471 5306{
8275b011
RH
5307 enum machine_mode fmode, dmode, lmode;
5308
5309 fmode = float_type_node ? TYPE_MODE (float_type_node) : VOIDmode;
5310 dmode = double_type_node ? TYPE_MODE (double_type_node) : VOIDmode;
5311 lmode = long_double_type_node ? TYPE_MODE (long_double_type_node) : VOIDmode;
5312
5313 if (fmode != VOIDmode)
5314 init_libfuncs (optable, fmode, fmode, opname, suffix);
5315 if (dmode != fmode && dmode != VOIDmode)
5316 init_libfuncs (optable, dmode, dmode, opname, suffix);
5317 if (lmode != dmode && lmode != VOIDmode)
5318 init_libfuncs (optable, lmode, lmode, opname, suffix);
b092b471
JW
5319}
5320
76095e2f 5321rtx
0c20a65f 5322init_one_libfunc (const char *name)
76095e2f 5323{
52859c77
RH
5324 rtx symbol;
5325
fb49053f
RH
5326 /* Create a FUNCTION_DECL that can be passed to
5327 targetm.encode_section_info. */
ee1315aa 5328 /* ??? We don't have any type information except for this is
9c2f7166 5329 a function. Pretend this is "int foo()". */
ee1315aa 5330 tree decl = build_decl (FUNCTION_DECL, get_identifier (name),
9c2f7166 5331 build_function_type (integer_type_node, NULL_TREE));
ee1315aa
RH
5332 DECL_ARTIFICIAL (decl) = 1;
5333 DECL_EXTERNAL (decl) = 1;
5334 TREE_PUBLIC (decl) = 1;
5335
52859c77
RH
5336 symbol = XEXP (DECL_RTL (decl), 0);
5337
5338 /* Zap the nonsensical SYMBOL_REF_DECL for this. What we're left with
5339 are the flags assigned by targetm.encode_section_info. */
5340 SYMBOL_REF_DECL (symbol) = 0;
5341
5342 return symbol;
76095e2f
RH
5343}
5344
77c9c6c2
RK
5345/* Call this once to initialize the contents of the optabs
5346 appropriately for the current target machine. */
5347
5348void
0c20a65f 5349init_optabs (void)
77c9c6c2 5350{
b6a1cbae 5351 unsigned int i, j, k;
77c9c6c2 5352
5d81dc5b 5353 /* Start by initializing all tables to contain CODE_FOR_nothing. */
77c9c6c2 5354
b6a1cbae
GM
5355 for (i = 0; i < ARRAY_SIZE (fixtab); i++)
5356 for (j = 0; j < ARRAY_SIZE (fixtab[0]); j++)
5357 for (k = 0; k < ARRAY_SIZE (fixtab[0][0]); k++)
5358 fixtab[i][j][k] = CODE_FOR_nothing;
5359
5360 for (i = 0; i < ARRAY_SIZE (fixtrunctab); i++)
5361 for (j = 0; j < ARRAY_SIZE (fixtrunctab[0]); j++)
5362 for (k = 0; k < ARRAY_SIZE (fixtrunctab[0][0]); k++)
5363 fixtrunctab[i][j][k] = CODE_FOR_nothing;
5364
5365 for (i = 0; i < ARRAY_SIZE (floattab); i++)
5366 for (j = 0; j < ARRAY_SIZE (floattab[0]); j++)
5367 for (k = 0; k < ARRAY_SIZE (floattab[0][0]); k++)
5368 floattab[i][j][k] = CODE_FOR_nothing;
5369
5370 for (i = 0; i < ARRAY_SIZE (extendtab); i++)
5371 for (j = 0; j < ARRAY_SIZE (extendtab[0]); j++)
5372 for (k = 0; k < ARRAY_SIZE (extendtab[0][0]); k++)
5373 extendtab[i][j][k] = CODE_FOR_nothing;
5d81dc5b
RK
5374
5375 for (i = 0; i < NUM_RTX_CODE; i++)
5376 setcc_gen_code[i] = CODE_FOR_nothing;
5377
49c4584c
DE
5378#ifdef HAVE_conditional_move
5379 for (i = 0; i < NUM_MACHINE_MODES; i++)
5380 movcc_gen_code[i] = CODE_FOR_nothing;
5381#endif
5382
5d81dc5b 5383 add_optab = init_optab (PLUS);
ef89d648 5384 addv_optab = init_optabv (PLUS);
5d81dc5b 5385 sub_optab = init_optab (MINUS);
ef89d648 5386 subv_optab = init_optabv (MINUS);
5d81dc5b 5387 smul_optab = init_optab (MULT);
ef89d648 5388 smulv_optab = init_optabv (MULT);
5035bbfe
TG
5389 smul_highpart_optab = init_optab (UNKNOWN);
5390 umul_highpart_optab = init_optab (UNKNOWN);
5d81dc5b
RK
5391 smul_widen_optab = init_optab (UNKNOWN);
5392 umul_widen_optab = init_optab (UNKNOWN);
5393 sdiv_optab = init_optab (DIV);
ef89d648 5394 sdivv_optab = init_optabv (DIV);
5d81dc5b
RK
5395 sdivmod_optab = init_optab (UNKNOWN);
5396 udiv_optab = init_optab (UDIV);
5397 udivmod_optab = init_optab (UNKNOWN);
5398 smod_optab = init_optab (MOD);
5399 umod_optab = init_optab (UMOD);
77c9c6c2
RK
5400 ftrunc_optab = init_optab (UNKNOWN);
5401 and_optab = init_optab (AND);
5402 ior_optab = init_optab (IOR);
5403 xor_optab = init_optab (XOR);
5404 ashl_optab = init_optab (ASHIFT);
5405 ashr_optab = init_optab (ASHIFTRT);
77c9c6c2
RK
5406 lshr_optab = init_optab (LSHIFTRT);
5407 rotl_optab = init_optab (ROTATE);
5408 rotr_optab = init_optab (ROTATERT);
5409 smin_optab = init_optab (SMIN);
5410 smax_optab = init_optab (SMAX);
5411 umin_optab = init_optab (UMIN);
5412 umax_optab = init_optab (UMAX);
b5e01d4b
RS
5413 pow_optab = init_optab (UNKNOWN);
5414 atan2_optab = init_optab (UNKNOWN);
ef89d648
ZW
5415
5416 /* These three have codes assigned exclusively for the sake of
5417 have_insn_for. */
5418 mov_optab = init_optab (SET);
5419 movstrict_optab = init_optab (STRICT_LOW_PART);
5420 cmp_optab = init_optab (COMPARE);
5421
77c9c6c2
RK
5422 ucmp_optab = init_optab (UNKNOWN);
5423 tst_optab = init_optab (UNKNOWN);
5424 neg_optab = init_optab (NEG);
ef89d648 5425 negv_optab = init_optabv (NEG);
77c9c6c2 5426 abs_optab = init_optab (ABS);
ef89d648 5427 absv_optab = init_optabv (ABS);
068f5dea 5428 addcc_optab = init_optab (UNKNOWN);
77c9c6c2
RK
5429 one_cmpl_optab = init_optab (NOT);
5430 ffs_optab = init_optab (FFS);
2928cd7a
RH
5431 clz_optab = init_optab (CLZ);
5432 ctz_optab = init_optab (CTZ);
5433 popcount_optab = init_optab (POPCOUNT);
5434 parity_optab = init_optab (PARITY);
d45cf215 5435 sqrt_optab = init_optab (SQRT);
4977bab6
ZW
5436 floor_optab = init_optab (UNKNOWN);
5437 ceil_optab = init_optab (UNKNOWN);
5438 round_optab = init_optab (UNKNOWN);
5439 trunc_optab = init_optab (UNKNOWN);
5440 nearbyint_optab = init_optab (UNKNOWN);
28cf078d
JVA
5441 sin_optab = init_optab (UNKNOWN);
5442 cos_optab = init_optab (UNKNOWN);
e7b489c8
RS
5443 exp_optab = init_optab (UNKNOWN);
5444 log_optab = init_optab (UNKNOWN);
82d397c7
RS
5445 tan_optab = init_optab (UNKNOWN);
5446 atan_optab = init_optab (UNKNOWN);
19c3fc24 5447 strlen_optab = init_optab (UNKNOWN);
1c0290ea
BS
5448 cbranch_optab = init_optab (UNKNOWN);
5449 cmov_optab = init_optab (UNKNOWN);
5450 cstore_optab = init_optab (UNKNOWN);
371b8fc0 5451 push_optab = init_optab (UNKNOWN);
77c9c6c2 5452
5d81dc5b
RK
5453 for (i = 0; i < NUM_MACHINE_MODES; i++)
5454 {
5455 movstr_optab[i] = CODE_FOR_nothing;
45169d12 5456 clrstr_optab[i] = CODE_FOR_nothing;
5d81dc5b
RK
5457
5458#ifdef HAVE_SECONDARY_RELOADS
5459 reload_in_optab[i] = reload_out_optab[i] = CODE_FOR_nothing;
77c9c6c2 5460#endif
5d81dc5b
RK
5461 }
5462
5463 /* Fill in the optabs with the insns we support. */
5464 init_all_optabs ();
5465
5466#ifdef FIXUNS_TRUNC_LIKE_FIX_TRUNC
5467 /* This flag says the same insns that convert to a signed fixnum
5468 also convert validly to an unsigned one. */
5469 for (i = 0; i < NUM_MACHINE_MODES; i++)
5470 for (j = 0; j < NUM_MACHINE_MODES; j++)
5471 fixtrunctab[i][j][1] = fixtrunctab[i][j][0];
b092b471 5472#endif
5d81dc5b 5473
5d81dc5b 5474 /* Initialize the optabs with the names of the library functions. */
b092b471
JW
5475 init_integral_libfuncs (add_optab, "add", '3');
5476 init_floating_libfuncs (add_optab, "add", '3');
91ce572a
CC
5477 init_integral_libfuncs (addv_optab, "addv", '3');
5478 init_floating_libfuncs (addv_optab, "add", '3');
b092b471
JW
5479 init_integral_libfuncs (sub_optab, "sub", '3');
5480 init_floating_libfuncs (sub_optab, "sub", '3');
91ce572a
CC
5481 init_integral_libfuncs (subv_optab, "subv", '3');
5482 init_floating_libfuncs (subv_optab, "sub", '3');
b092b471
JW
5483 init_integral_libfuncs (smul_optab, "mul", '3');
5484 init_floating_libfuncs (smul_optab, "mul", '3');
91ce572a
CC
5485 init_integral_libfuncs (smulv_optab, "mulv", '3');
5486 init_floating_libfuncs (smulv_optab, "mul", '3');
5d81dc5b 5487 init_integral_libfuncs (sdiv_optab, "div", '3');
ef89d648 5488 init_floating_libfuncs (sdiv_optab, "div", '3');
91ce572a 5489 init_integral_libfuncs (sdivv_optab, "divv", '3');
5d81dc5b
RK
5490 init_integral_libfuncs (udiv_optab, "udiv", '3');
5491 init_integral_libfuncs (sdivmod_optab, "divmod", '4');
5492 init_integral_libfuncs (udivmod_optab, "udivmod", '4');
5493 init_integral_libfuncs (smod_optab, "mod", '3');
5494 init_integral_libfuncs (umod_optab, "umod", '3');
5d81dc5b
RK
5495 init_floating_libfuncs (ftrunc_optab, "ftrunc", '2');
5496 init_integral_libfuncs (and_optab, "and", '3');
5497 init_integral_libfuncs (ior_optab, "ior", '3');
5498 init_integral_libfuncs (xor_optab, "xor", '3');
5499 init_integral_libfuncs (ashl_optab, "ashl", '3');
5500 init_integral_libfuncs (ashr_optab, "ashr", '3');
5d81dc5b 5501 init_integral_libfuncs (lshr_optab, "lshr", '3');
5d81dc5b
RK
5502 init_integral_libfuncs (smin_optab, "min", '3');
5503 init_floating_libfuncs (smin_optab, "min", '3');
5504 init_integral_libfuncs (smax_optab, "max", '3');
5505 init_floating_libfuncs (smax_optab, "max", '3');
5506 init_integral_libfuncs (umin_optab, "umin", '3');
5507 init_integral_libfuncs (umax_optab, "umax", '3');
5508 init_integral_libfuncs (neg_optab, "neg", '2');
5509 init_floating_libfuncs (neg_optab, "neg", '2');
91ce572a
CC
5510 init_integral_libfuncs (negv_optab, "negv", '2');
5511 init_floating_libfuncs (negv_optab, "neg", '2');
5d81dc5b
RK
5512 init_integral_libfuncs (one_cmpl_optab, "one_cmpl", '2');
5513 init_integral_libfuncs (ffs_optab, "ffs", '2');
2928cd7a
RH
5514 init_integral_libfuncs (clz_optab, "clz", '2');
5515 init_integral_libfuncs (ctz_optab, "ctz", '2');
5516 init_integral_libfuncs (popcount_optab, "popcount", '2');
5517 init_integral_libfuncs (parity_optab, "parity", '2');
5d81dc5b
RK
5518
5519 /* Comparison libcalls for integers MUST come in pairs, signed/unsigned. */
5520 init_integral_libfuncs (cmp_optab, "cmp", '2');
5521 init_integral_libfuncs (ucmp_optab, "ucmp", '2');
5522 init_floating_libfuncs (cmp_optab, "cmp", '2');
77c9c6c2
RK
5523
5524#ifdef MULSI3_LIBCALL
5525 smul_optab->handlers[(int) SImode].libfunc
76095e2f 5526 = init_one_libfunc (MULSI3_LIBCALL);
77c9c6c2
RK
5527#endif
5528#ifdef MULDI3_LIBCALL
5529 smul_optab->handlers[(int) DImode].libfunc
76095e2f 5530 = init_one_libfunc (MULDI3_LIBCALL);
77c9c6c2 5531#endif
77c9c6c2 5532
77c9c6c2
RK
5533#ifdef DIVSI3_LIBCALL
5534 sdiv_optab->handlers[(int) SImode].libfunc
76095e2f 5535 = init_one_libfunc (DIVSI3_LIBCALL);
77c9c6c2
RK
5536#endif
5537#ifdef DIVDI3_LIBCALL
5538 sdiv_optab->handlers[(int) DImode].libfunc
76095e2f 5539 = init_one_libfunc (DIVDI3_LIBCALL);
b092b471 5540#endif
77c9c6c2 5541
77c9c6c2
RK
5542#ifdef UDIVSI3_LIBCALL
5543 udiv_optab->handlers[(int) SImode].libfunc
76095e2f 5544 = init_one_libfunc (UDIVSI3_LIBCALL);
77c9c6c2
RK
5545#endif
5546#ifdef UDIVDI3_LIBCALL
5547 udiv_optab->handlers[(int) DImode].libfunc
76095e2f 5548 = init_one_libfunc (UDIVDI3_LIBCALL);
b092b471 5549#endif
77c9c6c2
RK
5550
5551#ifdef MODSI3_LIBCALL
5552 smod_optab->handlers[(int) SImode].libfunc
76095e2f 5553 = init_one_libfunc (MODSI3_LIBCALL);
77c9c6c2
RK
5554#endif
5555#ifdef MODDI3_LIBCALL
5556 smod_optab->handlers[(int) DImode].libfunc
76095e2f 5557 = init_one_libfunc (MODDI3_LIBCALL);
b092b471 5558#endif
77c9c6c2
RK
5559
5560#ifdef UMODSI3_LIBCALL
5561 umod_optab->handlers[(int) SImode].libfunc
76095e2f 5562 = init_one_libfunc (UMODSI3_LIBCALL);
77c9c6c2
RK
5563#endif
5564#ifdef UMODDI3_LIBCALL
5565 umod_optab->handlers[(int) DImode].libfunc
76095e2f 5566 = init_one_libfunc (UMODDI3_LIBCALL);
b092b471 5567#endif
4754348d 5568
decdfa82
RS
5569 /* Use cabs for DC complex abs, since systems generally have cabs.
5570 Don't define any libcall for SCmode, so that cabs will be used. */
5571 abs_optab->handlers[(int) DCmode].libfunc
76095e2f 5572 = init_one_libfunc ("cabs");
77c9c6c2 5573
7f7d6d64 5574 /* The ffs function operates on `int'. */
c5c76735 5575 ffs_optab->handlers[(int) mode_for_size (INT_TYPE_SIZE, MODE_INT, 0)].libfunc
76095e2f
RH
5576 = init_one_libfunc ("ffs");
5577
5578 extendsfdf2_libfunc = init_one_libfunc ("__extendsfdf2");
5579 extendsfxf2_libfunc = init_one_libfunc ("__extendsfxf2");
5580 extendsftf2_libfunc = init_one_libfunc ("__extendsftf2");
5581 extenddfxf2_libfunc = init_one_libfunc ("__extenddfxf2");
5582 extenddftf2_libfunc = init_one_libfunc ("__extenddftf2");
5583
5584 truncdfsf2_libfunc = init_one_libfunc ("__truncdfsf2");
5585 truncxfsf2_libfunc = init_one_libfunc ("__truncxfsf2");
5586 trunctfsf2_libfunc = init_one_libfunc ("__trunctfsf2");
5587 truncxfdf2_libfunc = init_one_libfunc ("__truncxfdf2");
5588 trunctfdf2_libfunc = init_one_libfunc ("__trunctfdf2");
5589
9602f5a0 5590 abort_libfunc = init_one_libfunc ("abort");
76095e2f 5591 memcpy_libfunc = init_one_libfunc ("memcpy");
b215b52e 5592 memmove_libfunc = init_one_libfunc ("memmove");
76095e2f
RH
5593 bcopy_libfunc = init_one_libfunc ("bcopy");
5594 memcmp_libfunc = init_one_libfunc ("memcmp");
5595 bcmp_libfunc = init_one_libfunc ("__gcc_bcmp");
5596 memset_libfunc = init_one_libfunc ("memset");
5597 bzero_libfunc = init_one_libfunc ("bzero");
68d28100 5598 setbits_libfunc = init_one_libfunc ("__setbits");
76095e2f 5599
52a11cbf
RH
5600 unwind_resume_libfunc = init_one_libfunc (USING_SJLJ_EXCEPTIONS
5601 ? "_Unwind_SjLj_Resume"
5602 : "_Unwind_Resume");
6e6a07d2 5603#ifndef DONT_USE_BUILTIN_SETJMP
76095e2f
RH
5604 setjmp_libfunc = init_one_libfunc ("__builtin_setjmp");
5605 longjmp_libfunc = init_one_libfunc ("__builtin_longjmp");
27a36778 5606#else
76095e2f
RH
5607 setjmp_libfunc = init_one_libfunc ("setjmp");
5608 longjmp_libfunc = init_one_libfunc ("longjmp");
27a36778 5609#endif
52a11cbf
RH
5610 unwind_sjlj_register_libfunc = init_one_libfunc ("_Unwind_SjLj_Register");
5611 unwind_sjlj_unregister_libfunc
5612 = init_one_libfunc ("_Unwind_SjLj_Unregister");
6adb4e3a 5613
76095e2f
RH
5614 eqhf2_libfunc = init_one_libfunc ("__eqhf2");
5615 nehf2_libfunc = init_one_libfunc ("__nehf2");
5616 gthf2_libfunc = init_one_libfunc ("__gthf2");
5617 gehf2_libfunc = init_one_libfunc ("__gehf2");
5618 lthf2_libfunc = init_one_libfunc ("__lthf2");
5619 lehf2_libfunc = init_one_libfunc ("__lehf2");
1eb8759b 5620 unordhf2_libfunc = init_one_libfunc ("__unordhf2");
76095e2f
RH
5621
5622 eqsf2_libfunc = init_one_libfunc ("__eqsf2");
5623 nesf2_libfunc = init_one_libfunc ("__nesf2");
5624 gtsf2_libfunc = init_one_libfunc ("__gtsf2");
5625 gesf2_libfunc = init_one_libfunc ("__gesf2");
5626 ltsf2_libfunc = init_one_libfunc ("__ltsf2");
5627 lesf2_libfunc = init_one_libfunc ("__lesf2");
1eb8759b 5628 unordsf2_libfunc = init_one_libfunc ("__unordsf2");
76095e2f
RH
5629
5630 eqdf2_libfunc = init_one_libfunc ("__eqdf2");
5631 nedf2_libfunc = init_one_libfunc ("__nedf2");
5632 gtdf2_libfunc = init_one_libfunc ("__gtdf2");
5633 gedf2_libfunc = init_one_libfunc ("__gedf2");
5634 ltdf2_libfunc = init_one_libfunc ("__ltdf2");
5635 ledf2_libfunc = init_one_libfunc ("__ledf2");
1eb8759b 5636 unorddf2_libfunc = init_one_libfunc ("__unorddf2");
76095e2f
RH
5637
5638 eqxf2_libfunc = init_one_libfunc ("__eqxf2");
5639 nexf2_libfunc = init_one_libfunc ("__nexf2");
5640 gtxf2_libfunc = init_one_libfunc ("__gtxf2");
5641 gexf2_libfunc = init_one_libfunc ("__gexf2");
5642 ltxf2_libfunc = init_one_libfunc ("__ltxf2");
5643 lexf2_libfunc = init_one_libfunc ("__lexf2");
1eb8759b 5644 unordxf2_libfunc = init_one_libfunc ("__unordxf2");
76095e2f
RH
5645
5646 eqtf2_libfunc = init_one_libfunc ("__eqtf2");
5647 netf2_libfunc = init_one_libfunc ("__netf2");
5648 gttf2_libfunc = init_one_libfunc ("__gttf2");
5649 getf2_libfunc = init_one_libfunc ("__getf2");
5650 lttf2_libfunc = init_one_libfunc ("__lttf2");
5651 letf2_libfunc = init_one_libfunc ("__letf2");
1eb8759b 5652 unordtf2_libfunc = init_one_libfunc ("__unordtf2");
76095e2f
RH
5653
5654 floatsisf_libfunc = init_one_libfunc ("__floatsisf");
5655 floatdisf_libfunc = init_one_libfunc ("__floatdisf");
5656 floattisf_libfunc = init_one_libfunc ("__floattisf");
5657
5658 floatsidf_libfunc = init_one_libfunc ("__floatsidf");
5659 floatdidf_libfunc = init_one_libfunc ("__floatdidf");
5660 floattidf_libfunc = init_one_libfunc ("__floattidf");
5661
5662 floatsixf_libfunc = init_one_libfunc ("__floatsixf");
5663 floatdixf_libfunc = init_one_libfunc ("__floatdixf");
5664 floattixf_libfunc = init_one_libfunc ("__floattixf");
5665
5666 floatsitf_libfunc = init_one_libfunc ("__floatsitf");
5667 floatditf_libfunc = init_one_libfunc ("__floatditf");
5668 floattitf_libfunc = init_one_libfunc ("__floattitf");
5669
5670 fixsfsi_libfunc = init_one_libfunc ("__fixsfsi");
5671 fixsfdi_libfunc = init_one_libfunc ("__fixsfdi");
5672 fixsfti_libfunc = init_one_libfunc ("__fixsfti");
5673
5674 fixdfsi_libfunc = init_one_libfunc ("__fixdfsi");
5675 fixdfdi_libfunc = init_one_libfunc ("__fixdfdi");
5676 fixdfti_libfunc = init_one_libfunc ("__fixdfti");
5677
5678 fixxfsi_libfunc = init_one_libfunc ("__fixxfsi");
5679 fixxfdi_libfunc = init_one_libfunc ("__fixxfdi");
5680 fixxfti_libfunc = init_one_libfunc ("__fixxfti");
5681
5682 fixtfsi_libfunc = init_one_libfunc ("__fixtfsi");
5683 fixtfdi_libfunc = init_one_libfunc ("__fixtfdi");
5684 fixtfti_libfunc = init_one_libfunc ("__fixtfti");
5685
5686 fixunssfsi_libfunc = init_one_libfunc ("__fixunssfsi");
5687 fixunssfdi_libfunc = init_one_libfunc ("__fixunssfdi");
5688 fixunssfti_libfunc = init_one_libfunc ("__fixunssfti");
5689
5690 fixunsdfsi_libfunc = init_one_libfunc ("__fixunsdfsi");
5691 fixunsdfdi_libfunc = init_one_libfunc ("__fixunsdfdi");
5692 fixunsdfti_libfunc = init_one_libfunc ("__fixunsdfti");
5693
5694 fixunsxfsi_libfunc = init_one_libfunc ("__fixunsxfsi");
5695 fixunsxfdi_libfunc = init_one_libfunc ("__fixunsxfdi");
5696 fixunsxfti_libfunc = init_one_libfunc ("__fixunsxfti");
5697
5698 fixunstfsi_libfunc = init_one_libfunc ("__fixunstfsi");
5699 fixunstfdi_libfunc = init_one_libfunc ("__fixunstfdi");
5700 fixunstfti_libfunc = init_one_libfunc ("__fixunstfti");
4754348d 5701
07417085
KR
5702 /* For function entry/exit instrumentation. */
5703 profile_function_entry_libfunc
76095e2f 5704 = init_one_libfunc ("__cyg_profile_func_enter");
07417085 5705 profile_function_exit_libfunc
76095e2f 5706 = init_one_libfunc ("__cyg_profile_func_exit");
07417085 5707
68d28100
RH
5708 gcov_flush_libfunc = init_one_libfunc ("__gcov_flush");
5709 gcov_init_libfunc = init_one_libfunc ("__gcov_init");
5710
842a431a
DM
5711 if (HAVE_conditional_trap)
5712 trap_rtx = gen_rtx_fmt_ee (EQ, VOIDmode, NULL_RTX, NULL_RTX);
e0cd0770 5713
159c2aed
DE
5714#ifdef INIT_TARGET_OPTABS
5715 /* Allow the target to add more libcalls or rename some, etc. */
5716 INIT_TARGET_OPTABS;
5717#endif
77c9c6c2 5718}
7e1966ca 5719\f
e0cd0770
JC
5720/* Generate insns to trap with code TCODE if OP1 and OP2 satisfy condition
5721 CODE. Return 0 on failure. */
5722
5723rtx
0c20a65f
AJ
5724gen_cond_trap (enum rtx_code code ATTRIBUTE_UNUSED, rtx op1,
5725 rtx op2 ATTRIBUTE_UNUSED, rtx tcode ATTRIBUTE_UNUSED)
e0cd0770
JC
5726{
5727 enum machine_mode mode = GET_MODE (op1);
842a431a
DM
5728 enum insn_code icode;
5729 rtx insn;
5730
5731 if (!HAVE_conditional_trap)
5732 return 0;
e0cd0770
JC
5733
5734 if (mode == VOIDmode)
5735 return 0;
5736
842a431a
DM
5737 icode = cmp_optab->handlers[(int) mode].insn_code;
5738 if (icode == CODE_FOR_nothing)
5739 return 0;
5740
5741 start_sequence ();
5742 op1 = prepare_operand (icode, op1, 0, mode, mode, 0);
0310c414 5743 op2 = prepare_operand (icode, op2, 1, mode, mode, 0);
d893ccde
RH
5744 if (!op1 || !op2)
5745 {
5746 end_sequence ();
5747 return 0;
5748 }
842a431a
DM
5749 emit_insn (GEN_FCN (icode) (op1, op2));
5750
5751 PUT_CODE (trap_rtx, code);
5752 insn = gen_conditional_trap (trap_rtx, tcode);
5753 if (insn)
e0cd0770 5754 {
842a431a
DM
5755 emit_insn (insn);
5756 insn = get_insns ();
e0cd0770 5757 }
842a431a 5758 end_sequence ();
e0cd0770 5759
842a431a 5760 return insn;
e0cd0770 5761}
e2500fed
GK
5762
5763#include "gt-optabs.h"
This page took 2.856967 seconds and 5 git commands to generate.