]>
Commit | Line | Data |
---|---|---|
77c9c6c2 | 1 | /* Expand the basic unary and binary arithmetic operations, for GNU compiler. |
34e56753 | 2 | Copyright (C) 1987, 1988, 1992 Free Software Foundation, Inc. |
77c9c6c2 RK |
3 | |
4 | This file is part of GNU CC. | |
5 | ||
6 | GNU CC is free software; you can redistribute it and/or modify | |
7 | it under the terms of the GNU General Public License as published by | |
8 | the Free Software Foundation; either version 2, or (at your option) | |
9 | any later version. | |
10 | ||
11 | GNU CC is distributed in the hope that it will be useful, | |
12 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
14 | GNU General Public License for more details. | |
15 | ||
16 | You should have received a copy of the GNU General Public License | |
17 | along with GNU CC; see the file COPYING. If not, write to | |
18 | the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */ | |
19 | ||
20 | ||
21 | #include "config.h" | |
22 | #include "rtl.h" | |
23 | #include "tree.h" | |
24 | #include "flags.h" | |
25 | #include "insn-flags.h" | |
26 | #include "insn-codes.h" | |
27 | #include "expr.h" | |
28 | #include "insn-config.h" | |
29 | #include "recog.h" | |
2d9f831e | 30 | #include <ctype.h> |
77c9c6c2 RK |
31 | |
32 | /* Each optab contains info on how this target machine | |
33 | can perform a particular operation | |
34 | for all sizes and kinds of operands. | |
35 | ||
36 | The operation to be performed is often specified | |
37 | by passing one of these optabs as an argument. | |
38 | ||
39 | See expr.h for documentation of these optabs. */ | |
40 | ||
41 | optab add_optab; | |
42 | optab sub_optab; | |
43 | optab smul_optab; | |
44 | optab smul_widen_optab; | |
45 | optab umul_widen_optab; | |
46 | optab sdiv_optab; | |
47 | optab sdivmod_optab; | |
48 | optab udiv_optab; | |
49 | optab udivmod_optab; | |
50 | optab smod_optab; | |
51 | optab umod_optab; | |
52 | optab flodiv_optab; | |
53 | optab ftrunc_optab; | |
54 | optab and_optab; | |
55 | optab ior_optab; | |
56 | optab xor_optab; | |
57 | optab ashl_optab; | |
58 | optab lshr_optab; | |
59 | optab lshl_optab; | |
60 | optab ashr_optab; | |
61 | optab rotl_optab; | |
62 | optab rotr_optab; | |
63 | optab smin_optab; | |
64 | optab smax_optab; | |
65 | optab umin_optab; | |
66 | optab umax_optab; | |
67 | ||
68 | optab mov_optab; | |
69 | optab movstrict_optab; | |
70 | ||
71 | optab neg_optab; | |
72 | optab abs_optab; | |
73 | optab one_cmpl_optab; | |
74 | optab ffs_optab; | |
d45cf215 | 75 | optab sqrt_optab; |
77c9c6c2 RK |
76 | |
77 | optab cmp_optab; | |
78 | optab ucmp_optab; /* Used only for libcalls for unsigned comparisons. */ | |
79 | optab tst_optab; | |
80 | ||
19c3fc24 RS |
81 | optab strlen_optab; |
82 | ||
77c9c6c2 RK |
83 | /* SYMBOL_REF rtx's for the library functions that are called |
84 | implicitly and not via optabs. */ | |
85 | ||
86 | rtx extendsfdf2_libfunc; | |
b092b471 JW |
87 | rtx extendsfxf2_libfunc; |
88 | rtx extendsftf2_libfunc; | |
89 | rtx extenddfxf2_libfunc; | |
90 | rtx extenddftf2_libfunc; | |
91 | ||
77c9c6c2 | 92 | rtx truncdfsf2_libfunc; |
b092b471 JW |
93 | rtx truncxfsf2_libfunc; |
94 | rtx trunctfsf2_libfunc; | |
95 | rtx truncxfdf2_libfunc; | |
96 | rtx trunctfdf2_libfunc; | |
97 | ||
77c9c6c2 RK |
98 | rtx memcpy_libfunc; |
99 | rtx bcopy_libfunc; | |
100 | rtx memcmp_libfunc; | |
101 | rtx bcmp_libfunc; | |
102 | rtx memset_libfunc; | |
103 | rtx bzero_libfunc; | |
b092b471 | 104 | |
77c9c6c2 RK |
105 | rtx eqsf2_libfunc; |
106 | rtx nesf2_libfunc; | |
107 | rtx gtsf2_libfunc; | |
108 | rtx gesf2_libfunc; | |
109 | rtx ltsf2_libfunc; | |
110 | rtx lesf2_libfunc; | |
b092b471 | 111 | |
77c9c6c2 RK |
112 | rtx eqdf2_libfunc; |
113 | rtx nedf2_libfunc; | |
114 | rtx gtdf2_libfunc; | |
115 | rtx gedf2_libfunc; | |
116 | rtx ltdf2_libfunc; | |
117 | rtx ledf2_libfunc; | |
b092b471 JW |
118 | |
119 | rtx eqxf2_libfunc; | |
120 | rtx nexf2_libfunc; | |
121 | rtx gtxf2_libfunc; | |
122 | rtx gexf2_libfunc; | |
123 | rtx ltxf2_libfunc; | |
124 | rtx lexf2_libfunc; | |
125 | ||
126 | rtx eqtf2_libfunc; | |
127 | rtx netf2_libfunc; | |
128 | rtx gttf2_libfunc; | |
129 | rtx getf2_libfunc; | |
130 | rtx lttf2_libfunc; | |
131 | rtx letf2_libfunc; | |
132 | ||
6bce1b78 | 133 | rtx floatsisf_libfunc; |
b092b471 JW |
134 | rtx floatdisf_libfunc; |
135 | rtx floattisf_libfunc; | |
136 | ||
6bce1b78 | 137 | rtx floatsidf_libfunc; |
b092b471 JW |
138 | rtx floatdidf_libfunc; |
139 | rtx floattidf_libfunc; | |
140 | ||
141 | rtx floatsixf_libfunc; | |
142 | rtx floatdixf_libfunc; | |
143 | rtx floattixf_libfunc; | |
144 | ||
145 | rtx floatsitf_libfunc; | |
146 | rtx floatditf_libfunc; | |
147 | rtx floattitf_libfunc; | |
148 | ||
6bce1b78 RK |
149 | rtx fixsfsi_libfunc; |
150 | rtx fixsfdi_libfunc; | |
b092b471 JW |
151 | rtx fixsfti_libfunc; |
152 | ||
6bce1b78 RK |
153 | rtx fixdfsi_libfunc; |
154 | rtx fixdfdi_libfunc; | |
b092b471 JW |
155 | rtx fixdfti_libfunc; |
156 | ||
157 | rtx fixxfsi_libfunc; | |
158 | rtx fixxfdi_libfunc; | |
159 | rtx fixxfti_libfunc; | |
160 | ||
161 | rtx fixtfsi_libfunc; | |
162 | rtx fixtfdi_libfunc; | |
163 | rtx fixtfti_libfunc; | |
164 | ||
6bce1b78 RK |
165 | rtx fixunssfsi_libfunc; |
166 | rtx fixunssfdi_libfunc; | |
b092b471 JW |
167 | rtx fixunssfti_libfunc; |
168 | ||
6bce1b78 RK |
169 | rtx fixunsdfsi_libfunc; |
170 | rtx fixunsdfdi_libfunc; | |
b092b471 JW |
171 | rtx fixunsdfti_libfunc; |
172 | ||
173 | rtx fixunsxfsi_libfunc; | |
174 | rtx fixunsxfdi_libfunc; | |
175 | rtx fixunsxfti_libfunc; | |
176 | ||
177 | rtx fixunstfsi_libfunc; | |
178 | rtx fixunstfdi_libfunc; | |
179 | rtx fixunstfti_libfunc; | |
77c9c6c2 RK |
180 | |
181 | /* Indexed by the rtx-code for a conditional (eg. EQ, LT,...) | |
182 | gives the gen_function to make a branch to test that condition. */ | |
183 | ||
184 | rtxfun bcc_gen_fctn[NUM_RTX_CODE]; | |
185 | ||
186 | /* Indexed by the rtx-code for a conditional (eg. EQ, LT,...) | |
187 | gives the insn code to make a store-condition insn | |
188 | to test that condition. */ | |
189 | ||
190 | enum insn_code setcc_gen_code[NUM_RTX_CODE]; | |
191 | ||
192 | static void emit_float_lib_cmp (); | |
193 | \f | |
194 | /* Add a REG_EQUAL note to the last insn in SEQ. TARGET is being set to | |
195 | the result of operation CODE applied to OP0 (and OP1 if it is a binary | |
196 | operation). | |
197 | ||
198 | If the last insn does not set TARGET, don't do anything, but return 1. | |
199 | ||
200 | If a previous insn sets TARGET and TARGET is one of OP0 or OP1, | |
201 | don't add the REG_EQUAL note but return 0. Our caller can then try | |
202 | again, ensuring that TARGET is not one of the operands. */ | |
203 | ||
204 | static int | |
205 | add_equal_note (seq, target, code, op0, op1) | |
206 | rtx seq; | |
207 | rtx target; | |
208 | enum rtx_code code; | |
209 | rtx op0, op1; | |
210 | { | |
211 | rtx set; | |
212 | int i; | |
213 | rtx note; | |
214 | ||
215 | if ((GET_RTX_CLASS (code) != '1' && GET_RTX_CLASS (code) != '2' | |
216 | && GET_RTX_CLASS (code) != 'c' && GET_RTX_CLASS (code) != '<') | |
217 | || GET_CODE (seq) != SEQUENCE | |
218 | || (set = single_set (XVECEXP (seq, 0, XVECLEN (seq, 0) - 1))) == 0 | |
219 | || GET_CODE (target) == ZERO_EXTRACT | |
220 | || (! rtx_equal_p (SET_DEST (set), target) | |
221 | /* For a STRICT_LOW_PART, the REG_NOTE applies to what is inside the | |
222 | SUBREG. */ | |
223 | && (GET_CODE (SET_DEST (set)) != STRICT_LOW_PART | |
224 | || ! rtx_equal_p (SUBREG_REG (XEXP (SET_DEST (set), 0)), | |
225 | target)))) | |
226 | return 1; | |
227 | ||
228 | /* If TARGET is in OP0 or OP1, check if anything in SEQ sets TARGET | |
229 | besides the last insn. */ | |
230 | if (reg_overlap_mentioned_p (target, op0) | |
231 | || (op1 && reg_overlap_mentioned_p (target, op1))) | |
232 | for (i = XVECLEN (seq, 0) - 2; i >= 0; i--) | |
233 | if (reg_set_p (target, XVECEXP (seq, 0, i))) | |
234 | return 0; | |
235 | ||
236 | if (GET_RTX_CLASS (code) == '1') | |
237 | note = gen_rtx (code, GET_MODE (target), op0); | |
238 | else | |
239 | note = gen_rtx (code, GET_MODE (target), op0, op1); | |
240 | ||
241 | REG_NOTES (XVECEXP (seq, 0, XVECLEN (seq, 0) - 1)) | |
242 | = gen_rtx (EXPR_LIST, REG_EQUAL, note, | |
243 | REG_NOTES (XVECEXP (seq, 0, XVECLEN (seq, 0) - 1))); | |
244 | ||
245 | return 1; | |
246 | } | |
247 | \f | |
248 | /* Generate code to perform an operation specified by BINOPTAB | |
249 | on operands OP0 and OP1, with result having machine-mode MODE. | |
250 | ||
251 | UNSIGNEDP is for the case where we have to widen the operands | |
252 | to perform the operation. It says to use zero-extension. | |
253 | ||
254 | If TARGET is nonzero, the value | |
255 | is generated there, if it is convenient to do so. | |
256 | In all cases an rtx is returned for the locus of the value; | |
257 | this may or may not be TARGET. */ | |
258 | ||
259 | rtx | |
260 | expand_binop (mode, binoptab, op0, op1, target, unsignedp, methods) | |
261 | enum machine_mode mode; | |
262 | optab binoptab; | |
263 | rtx op0, op1; | |
264 | rtx target; | |
265 | int unsignedp; | |
266 | enum optab_methods methods; | |
267 | { | |
268 | enum mode_class class; | |
269 | enum machine_mode wider_mode; | |
77c9c6c2 RK |
270 | register rtx temp; |
271 | int commutative_op = 0; | |
272 | int shift_op = (binoptab->code == ASHIFT | |
273 | || binoptab->code == ASHIFTRT | |
274 | || binoptab->code == LSHIFT | |
275 | || binoptab->code == LSHIFTRT | |
276 | || binoptab->code == ROTATE | |
277 | || binoptab->code == ROTATERT); | |
278 | rtx last; | |
279 | ||
280 | class = GET_MODE_CLASS (mode); | |
281 | ||
282 | op0 = protect_from_queue (op0, 0); | |
283 | op1 = protect_from_queue (op1, 0); | |
284 | if (target) | |
285 | target = protect_from_queue (target, 1); | |
286 | ||
287 | if (flag_force_mem) | |
288 | { | |
289 | op0 = force_not_mem (op0); | |
290 | op1 = force_not_mem (op1); | |
291 | } | |
292 | ||
293 | /* If we are inside an appropriately-short loop and one operand is an | |
294 | expensive constant, force it into a register. */ | |
aeedc93f RS |
295 | if (CONSTANT_P (op0) && preserve_subexpressions_p () |
296 | && rtx_cost (op0, binoptab->code) > 2) | |
77c9c6c2 RK |
297 | op0 = force_reg (mode, op0); |
298 | ||
aeedc93f RS |
299 | if (CONSTANT_P (op1) && preserve_subexpressions_p () |
300 | && rtx_cost (op1, binoptab->code) > 2) | |
34e56753 | 301 | op1 = force_reg (shift_op ? word_mode : mode, op1); |
77c9c6c2 RK |
302 | |
303 | #if 0 /* Turned off because it seems to be a kludgy method. */ | |
304 | /* If subtracting integer from pointer, and the pointer has a special mode, | |
305 | then change it to an add. We use the add insn of Pmode for combining | |
306 | integers with pointers, and the sub insn to subtract two pointers. */ | |
307 | ||
308 | if (binoptab == sub_optab | |
309 | && GET_MODE (op0) == Pmode && GET_MODE (op1) != Pmode) | |
310 | { | |
311 | op1 = negate_rtx (GET_MODE(op1), op1); | |
312 | binoptab = add_optab; | |
313 | } | |
314 | #endif /* 0 */ | |
315 | ||
316 | /* Record where to delete back to if we backtrack. */ | |
317 | last = get_last_insn (); | |
318 | ||
319 | /* If operation is commutative, | |
320 | try to make the first operand a register. | |
321 | Even better, try to make it the same as the target. | |
322 | Also try to make the last operand a constant. */ | |
323 | if (GET_RTX_CLASS (binoptab->code) == 'c' | |
324 | || binoptab == smul_widen_optab | |
325 | || binoptab == umul_widen_optab) | |
326 | { | |
327 | commutative_op = 1; | |
328 | ||
329 | if (((target == 0 || GET_CODE (target) == REG) | |
330 | ? ((GET_CODE (op1) == REG | |
331 | && GET_CODE (op0) != REG) | |
332 | || target == op1) | |
333 | : rtx_equal_p (op1, target)) | |
334 | || GET_CODE (op0) == CONST_INT) | |
335 | { | |
336 | temp = op1; | |
337 | op1 = op0; | |
338 | op0 = temp; | |
339 | } | |
340 | } | |
341 | ||
342 | /* If we can do it with a three-operand insn, do so. */ | |
343 | ||
344 | if (methods != OPTAB_MUST_WIDEN | |
345 | && binoptab->handlers[(int) mode].insn_code != CODE_FOR_nothing) | |
346 | { | |
347 | int icode = (int) binoptab->handlers[(int) mode].insn_code; | |
348 | enum machine_mode mode0 = insn_operand_mode[icode][1]; | |
349 | enum machine_mode mode1 = insn_operand_mode[icode][2]; | |
350 | rtx pat; | |
351 | rtx xop0 = op0, xop1 = op1; | |
352 | ||
353 | if (target) | |
354 | temp = target; | |
355 | else | |
356 | temp = gen_reg_rtx (mode); | |
357 | ||
358 | /* If it is a commutative operator and the modes would match | |
359 | if we would swap the operands, we can save the conversions. */ | |
360 | if (commutative_op) | |
361 | { | |
362 | if (GET_MODE (op0) != mode0 && GET_MODE (op1) != mode1 | |
363 | && GET_MODE (op0) == mode1 && GET_MODE (op1) == mode0) | |
364 | { | |
365 | register rtx tmp; | |
366 | ||
367 | tmp = op0; op0 = op1; op1 = tmp; | |
368 | tmp = xop0; xop0 = xop1; xop1 = tmp; | |
369 | } | |
370 | } | |
371 | ||
372 | /* In case the insn wants input operands in modes different from | |
373 | the result, convert the operands. */ | |
374 | ||
375 | if (GET_MODE (op0) != VOIDmode | |
376 | && GET_MODE (op0) != mode0) | |
377 | xop0 = convert_to_mode (mode0, xop0, unsignedp); | |
378 | ||
379 | if (GET_MODE (xop1) != VOIDmode | |
380 | && GET_MODE (xop1) != mode1) | |
381 | xop1 = convert_to_mode (mode1, xop1, unsignedp); | |
382 | ||
383 | /* Now, if insn's predicates don't allow our operands, put them into | |
384 | pseudo regs. */ | |
385 | ||
386 | if (! (*insn_operand_predicate[icode][1]) (xop0, mode0)) | |
387 | xop0 = copy_to_mode_reg (mode0, xop0); | |
388 | ||
389 | if (! (*insn_operand_predicate[icode][2]) (xop1, mode1)) | |
390 | xop1 = copy_to_mode_reg (mode1, xop1); | |
391 | ||
392 | if (! (*insn_operand_predicate[icode][0]) (temp, mode)) | |
393 | temp = gen_reg_rtx (mode); | |
394 | ||
395 | pat = GEN_FCN (icode) (temp, xop0, xop1); | |
396 | if (pat) | |
397 | { | |
398 | /* If PAT is a multi-insn sequence, try to add an appropriate | |
399 | REG_EQUAL note to it. If we can't because TEMP conflicts with an | |
400 | operand, call ourselves again, this time without a target. */ | |
401 | if (GET_CODE (pat) == SEQUENCE | |
402 | && ! add_equal_note (pat, temp, binoptab->code, xop0, xop1)) | |
403 | { | |
404 | delete_insns_since (last); | |
b1ec3c92 CH |
405 | return expand_binop (mode, binoptab, op0, op1, NULL_RTX, |
406 | unsignedp, methods); | |
77c9c6c2 RK |
407 | } |
408 | ||
409 | emit_insn (pat); | |
410 | return temp; | |
411 | } | |
412 | else | |
413 | delete_insns_since (last); | |
414 | } | |
415 | ||
5a5064dc RK |
416 | /* If this is a multiply, see if we can do a widening operation that |
417 | takes operands of this mode and makes a wider mode. */ | |
418 | ||
419 | if (binoptab == smul_optab && GET_MODE_WIDER_MODE (mode) != VOIDmode | |
420 | && (((unsignedp ? umul_widen_optab : smul_widen_optab) | |
421 | ->handlers[(int) GET_MODE_WIDER_MODE (mode)].insn_code) | |
422 | != CODE_FOR_nothing)) | |
423 | { | |
424 | temp = expand_binop (GET_MODE_WIDER_MODE (mode), | |
425 | unsignedp ? umul_widen_optab : smul_widen_optab, | |
426 | op0, op1, 0, unsignedp, OPTAB_DIRECT); | |
427 | ||
428 | if (GET_MODE_CLASS (mode) == MODE_INT) | |
429 | return gen_lowpart (mode, temp); | |
430 | else | |
431 | return convert_to_mode (mode, temp, unsignedp); | |
432 | } | |
433 | ||
9a856ec7 | 434 | /* Look for a wider mode of the same class for which we think we |
5a5064dc RK |
435 | can open-code the operation. Check for a widening multiply at the |
436 | wider mode as well. */ | |
9a856ec7 RK |
437 | |
438 | if ((class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT) | |
439 | && mode != OPTAB_DIRECT && mode != OPTAB_LIB) | |
440 | for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode; | |
441 | wider_mode = GET_MODE_WIDER_MODE (wider_mode)) | |
442 | { | |
5a5064dc RK |
443 | if (binoptab->handlers[(int) wider_mode].insn_code != CODE_FOR_nothing |
444 | || (binoptab == smul_optab | |
445 | && GET_MODE_WIDER_MODE (wider_mode) != VOIDmode | |
446 | && (((unsignedp ? umul_widen_optab : smul_widen_optab) | |
447 | ->handlers[(int) GET_MODE_WIDER_MODE (wider_mode)].insn_code) | |
448 | != CODE_FOR_nothing))) | |
9a856ec7 RK |
449 | { |
450 | rtx xop0 = op0, xop1 = op1; | |
451 | int no_extend = 0; | |
452 | ||
453 | /* For certain integer operations, we need not actually extend | |
454 | the narrow operands, as long as we will truncate | |
455 | the results to the same narrowness. */ | |
456 | ||
457 | if ((binoptab == ior_optab || binoptab == and_optab | |
458 | || binoptab == xor_optab | |
459 | || binoptab == add_optab || binoptab == sub_optab | |
460 | || binoptab == smul_optab | |
461 | || binoptab == ashl_optab || binoptab == lshl_optab) | |
462 | && class == MODE_INT) | |
463 | no_extend = 1; | |
464 | ||
465 | /* If an operand is a constant integer, we might as well | |
466 | convert it since that is more efficient than using a SUBREG, | |
467 | unlike the case for other operands. */ | |
468 | ||
469 | if (no_extend && GET_MODE (xop0) != VOIDmode) | |
470 | xop0 = gen_rtx (SUBREG, wider_mode, | |
471 | force_reg (GET_MODE (xop0), xop0), 0); | |
472 | else | |
473 | xop0 = convert_to_mode (wider_mode, xop0, unsignedp); | |
474 | ||
475 | if (no_extend && GET_MODE (xop1) != VOIDmode) | |
476 | xop1 = gen_rtx (SUBREG, wider_mode, | |
477 | force_reg (GET_MODE (xop1), xop1), 0); | |
478 | else | |
479 | xop1 = convert_to_mode (wider_mode, xop1, unsignedp); | |
480 | ||
b1ec3c92 | 481 | temp = expand_binop (wider_mode, binoptab, xop0, xop1, NULL_RTX, |
9a856ec7 RK |
482 | unsignedp, OPTAB_DIRECT); |
483 | if (temp) | |
484 | { | |
485 | if (class != MODE_INT) | |
486 | { | |
487 | if (target == 0) | |
488 | target = gen_reg_rtx (mode); | |
489 | convert_move (target, temp, 0); | |
490 | return target; | |
491 | } | |
492 | else | |
493 | return gen_lowpart (mode, temp); | |
494 | } | |
495 | else | |
496 | delete_insns_since (last); | |
497 | } | |
498 | } | |
499 | ||
77c9c6c2 RK |
500 | /* These can be done a word at a time. */ |
501 | if ((binoptab == and_optab || binoptab == ior_optab || binoptab == xor_optab) | |
502 | && class == MODE_INT | |
503 | && GET_MODE_SIZE (mode) > UNITS_PER_WORD | |
34e56753 | 504 | && binoptab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing) |
77c9c6c2 RK |
505 | { |
506 | int i; | |
507 | rtx insns; | |
508 | rtx equiv_value; | |
509 | ||
510 | /* If TARGET is the same as one of the operands, the REG_EQUAL note | |
511 | won't be accurate, so use a new target. */ | |
512 | if (target == 0 || target == op0 || target == op1) | |
513 | target = gen_reg_rtx (mode); | |
514 | ||
515 | start_sequence (); | |
516 | ||
517 | /* Do the actual arithmetic. */ | |
518 | for (i = 0; i < GET_MODE_BITSIZE (mode) / BITS_PER_WORD; i++) | |
519 | { | |
520 | rtx target_piece = operand_subword (target, i, 1, mode); | |
34e56753 | 521 | rtx x = expand_binop (word_mode, binoptab, |
77c9c6c2 RK |
522 | operand_subword_force (op0, i, mode), |
523 | operand_subword_force (op1, i, mode), | |
524 | target_piece, unsignedp, methods); | |
525 | if (target_piece != x) | |
526 | emit_move_insn (target_piece, x); | |
527 | } | |
528 | ||
529 | insns = get_insns (); | |
530 | end_sequence (); | |
531 | ||
532 | if (binoptab->code != UNKNOWN) | |
533 | equiv_value = gen_rtx (binoptab->code, mode, op0, op1); | |
534 | else | |
535 | equiv_value = 0; | |
536 | ||
537 | emit_no_conflict_block (insns, target, op0, op1, equiv_value); | |
538 | return target; | |
539 | } | |
540 | ||
541 | /* These can be done a word at a time by propagating carries. */ | |
542 | if ((binoptab == add_optab || binoptab == sub_optab) | |
543 | && class == MODE_INT | |
544 | && GET_MODE_SIZE (mode) >= 2 * UNITS_PER_WORD | |
34e56753 | 545 | && binoptab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing) |
77c9c6c2 RK |
546 | { |
547 | int i; | |
34e56753 | 548 | rtx carry_tmp = gen_reg_rtx (word_mode); |
77c9c6c2 RK |
549 | optab otheroptab = binoptab == add_optab ? sub_optab : add_optab; |
550 | int nwords = GET_MODE_BITSIZE (mode) / BITS_PER_WORD; | |
551 | rtx carry_in, carry_out; | |
552 | ||
553 | /* We can handle either a 1 or -1 value for the carry. If STORE_FLAG | |
554 | value is one of those, use it. Otherwise, use 1 since it is the | |
555 | one easiest to get. */ | |
556 | #if STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1 | |
557 | int normalizep = STORE_FLAG_VALUE; | |
558 | #else | |
559 | int normalizep = 1; | |
560 | #endif | |
561 | ||
562 | /* Prepare the operands. */ | |
563 | op0 = force_reg (mode, op0); | |
564 | op1 = force_reg (mode, op1); | |
565 | ||
566 | if (target == 0 || GET_CODE (target) != REG | |
567 | || target == op0 || target == op1) | |
568 | target = gen_reg_rtx (mode); | |
569 | ||
570 | /* Do the actual arithmetic. */ | |
571 | for (i = 0; i < nwords; i++) | |
572 | { | |
573 | int index = (WORDS_BIG_ENDIAN ? nwords - i - 1 : i); | |
574 | rtx target_piece = operand_subword (target, index, 1, mode); | |
575 | rtx op0_piece = operand_subword_force (op0, index, mode); | |
576 | rtx op1_piece = operand_subword_force (op1, index, mode); | |
577 | rtx x; | |
578 | ||
579 | /* Main add/subtract of the input operands. */ | |
34e56753 | 580 | x = expand_binop (word_mode, binoptab, |
77c9c6c2 RK |
581 | op0_piece, op1_piece, |
582 | target_piece, unsignedp, methods); | |
583 | if (x == 0) | |
584 | break; | |
585 | ||
586 | if (i + 1 < nwords) | |
587 | { | |
588 | /* Store carry from main add/subtract. */ | |
34e56753 | 589 | carry_out = gen_reg_rtx (word_mode); |
77c9c6c2 RK |
590 | carry_out = emit_store_flag (carry_out, |
591 | binoptab == add_optab ? LTU : GTU, | |
592 | x, op0_piece, | |
34e56753 | 593 | word_mode, 1, normalizep); |
77c9c6c2 RK |
594 | if (!carry_out) |
595 | break; | |
596 | } | |
597 | ||
598 | if (i > 0) | |
599 | { | |
600 | /* Add/subtract previous carry to main result. */ | |
34e56753 | 601 | x = expand_binop (word_mode, |
77c9c6c2 RK |
602 | normalizep == 1 ? binoptab : otheroptab, |
603 | x, carry_in, | |
604 | target_piece, 1, methods); | |
605 | if (target_piece != x) | |
606 | emit_move_insn (target_piece, x); | |
607 | ||
608 | if (i + 1 < nwords) | |
609 | { | |
610 | /* THIS CODE HAS NOT BEEN TESTED. */ | |
611 | /* Get out carry from adding/subtracting carry in. */ | |
612 | carry_tmp = emit_store_flag (carry_tmp, | |
613 | binoptab == add_optab | |
614 | ? LTU : GTU, | |
615 | x, carry_in, | |
34e56753 | 616 | word_mode, 1, normalizep); |
77c9c6c2 | 617 | /* Logical-ior the two poss. carry together. */ |
34e56753 | 618 | carry_out = expand_binop (word_mode, ior_optab, |
77c9c6c2 RK |
619 | carry_out, carry_tmp, |
620 | carry_out, 0, methods); | |
621 | if (!carry_out) | |
622 | break; | |
623 | } | |
624 | } | |
625 | ||
626 | carry_in = carry_out; | |
627 | } | |
628 | ||
629 | if (i == GET_MODE_BITSIZE (mode) / BITS_PER_WORD) | |
630 | { | |
631 | rtx temp; | |
632 | ||
633 | temp = emit_move_insn (target, target); | |
634 | REG_NOTES (temp) = gen_rtx (EXPR_LIST, REG_EQUAL, | |
635 | gen_rtx (binoptab->code, mode, op0, op1), | |
636 | REG_NOTES (temp)); | |
637 | return target; | |
638 | } | |
639 | else | |
640 | delete_insns_since (last); | |
641 | } | |
642 | ||
643 | /* If we want to multiply two two-word values and have normal and widening | |
644 | multiplies of single-word values, we can do this with three smaller | |
645 | multiplications. Note that we do not make a REG_NO_CONFLICT block here | |
646 | because we are not operating on one word at a time. | |
647 | ||
648 | The multiplication proceeds as follows: | |
34e56753 RS |
649 | _______________________ |
650 | [__op0_high_|__op0_low__] | |
651 | _______________________ | |
652 | * [__op1_high_|__op1_low__] | |
653 | _______________________________________________ | |
654 | _______________________ | |
655 | (1) [__op0_low__*__op1_low__] | |
656 | _______________________ | |
657 | (2a) [__op0_low__*__op1_high_] | |
658 | _______________________ | |
659 | (2b) [__op0_high_*__op1_low__] | |
660 | _______________________ | |
661 | (3) [__op0_high_*__op1_high_] | |
77c9c6c2 RK |
662 | |
663 | ||
664 | This gives a 4-word result. Since we are only interested in the | |
665 | lower 2 words, partial result (3) and the upper words of (2a) and | |
666 | (2b) don't need to be calculated. Hence (2a) and (2b) can be | |
667 | calculated using non-widening multiplication. | |
668 | ||
669 | (1), however, needs to be calculated with an unsigned widening | |
670 | multiplication. If this operation is not directly supported we | |
671 | try using a signed widening multiplication and adjust the result. | |
672 | This adjustment works as follows: | |
673 | ||
674 | If both operands are positive then no adjustment is needed. | |
675 | ||
676 | If the operands have different signs, for example op0_low < 0 and | |
677 | op1_low >= 0, the instruction treats the most significant bit of | |
678 | op0_low as a sign bit instead of a bit with significance | |
679 | 2**(BITS_PER_WORD-1), i.e. the instruction multiplies op1_low | |
680 | with 2**BITS_PER_WORD - op0_low, and two's complements the | |
681 | result. Conclusion: We need to add op1_low * 2**BITS_PER_WORD to | |
682 | the result. | |
683 | ||
684 | Similarly, if both operands are negative, we need to add | |
685 | (op0_low + op1_low) * 2**BITS_PER_WORD. | |
686 | ||
687 | We use a trick to adjust quickly. We logically shift op0_low right | |
688 | (op1_low) BITS_PER_WORD-1 steps to get 0 or 1, and add this to | |
689 | op0_high (op1_high) before it is used to calculate 2b (2a). If no | |
690 | logical shift exists, we do an arithmetic right shift and subtract | |
691 | the 0 or -1. */ | |
692 | ||
693 | if (binoptab == smul_optab | |
694 | && class == MODE_INT | |
695 | && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD | |
34e56753 RS |
696 | && smul_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing |
697 | && add_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing | |
77c9c6c2 RK |
698 | && ((umul_widen_optab->handlers[(int) mode].insn_code |
699 | != CODE_FOR_nothing) | |
700 | || (smul_widen_optab->handlers[(int) mode].insn_code | |
701 | != CODE_FOR_nothing))) | |
702 | { | |
703 | int low = (WORDS_BIG_ENDIAN ? 1 : 0); | |
704 | int high = (WORDS_BIG_ENDIAN ? 0 : 1); | |
705 | rtx op0_high = operand_subword_force (op0, high, mode); | |
706 | rtx op0_low = operand_subword_force (op0, low, mode); | |
707 | rtx op1_high = operand_subword_force (op1, high, mode); | |
708 | rtx op1_low = operand_subword_force (op1, low, mode); | |
709 | rtx product = 0; | |
710 | rtx op0_xhigh; | |
711 | rtx op1_xhigh; | |
712 | ||
713 | /* If the target is the same as one of the inputs, don't use it. This | |
714 | prevents problems with the REG_EQUAL note. */ | |
715 | if (target == op0 || target == op1) | |
716 | target = 0; | |
717 | ||
718 | /* Multiply the two lower words to get a double-word product. | |
719 | If unsigned widening multiplication is available, use that; | |
720 | otherwise use the signed form and compensate. */ | |
721 | ||
722 | if (umul_widen_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing) | |
723 | { | |
724 | product = expand_binop (mode, umul_widen_optab, op0_low, op1_low, | |
725 | target, 1, OPTAB_DIRECT); | |
726 | ||
727 | /* If we didn't succeed, delete everything we did so far. */ | |
728 | if (product == 0) | |
729 | delete_insns_since (last); | |
730 | else | |
731 | op0_xhigh = op0_high, op1_xhigh = op1_high; | |
732 | } | |
733 | ||
734 | if (product == 0 | |
735 | && smul_widen_optab->handlers[(int) mode].insn_code | |
736 | != CODE_FOR_nothing) | |
737 | { | |
b1ec3c92 | 738 | rtx wordm1 = GEN_INT (BITS_PER_WORD - 1); |
77c9c6c2 RK |
739 | product = expand_binop (mode, smul_widen_optab, op0_low, op1_low, |
740 | target, 1, OPTAB_DIRECT); | |
34e56753 | 741 | op0_xhigh = expand_binop (word_mode, lshr_optab, op0_low, wordm1, |
b1ec3c92 | 742 | NULL_RTX, 1, OPTAB_DIRECT); |
77c9c6c2 | 743 | if (op0_xhigh) |
34e56753 RS |
744 | op0_xhigh = expand_binop (word_mode, add_optab, op0_high, |
745 | op0_xhigh, op0_xhigh, 0, OPTAB_DIRECT); | |
77c9c6c2 RK |
746 | else |
747 | { | |
34e56753 | 748 | op0_xhigh = expand_binop (word_mode, ashr_optab, op0_low, wordm1, |
b1ec3c92 | 749 | NULL_RTX, 0, OPTAB_DIRECT); |
77c9c6c2 | 750 | if (op0_xhigh) |
34e56753 | 751 | op0_xhigh = expand_binop (word_mode, sub_optab, op0_high, |
77c9c6c2 RK |
752 | op0_xhigh, op0_xhigh, 0, |
753 | OPTAB_DIRECT); | |
754 | } | |
755 | ||
34e56753 | 756 | op1_xhigh = expand_binop (word_mode, lshr_optab, op1_low, wordm1, |
b1ec3c92 | 757 | NULL_RTX, 1, OPTAB_DIRECT); |
77c9c6c2 | 758 | if (op1_xhigh) |
34e56753 RS |
759 | op1_xhigh = expand_binop (word_mode, add_optab, op1_high, |
760 | op1_xhigh, op1_xhigh, 0, OPTAB_DIRECT); | |
77c9c6c2 RK |
761 | else |
762 | { | |
34e56753 | 763 | op1_xhigh = expand_binop (word_mode, ashr_optab, op1_low, wordm1, |
b1ec3c92 | 764 | NULL_RTX, 0, OPTAB_DIRECT); |
77c9c6c2 | 765 | if (op1_xhigh) |
34e56753 | 766 | op1_xhigh = expand_binop (word_mode, sub_optab, op1_high, |
77c9c6c2 RK |
767 | op1_xhigh, op1_xhigh, 0, |
768 | OPTAB_DIRECT); | |
769 | } | |
770 | } | |
771 | ||
772 | /* If we have been able to directly compute the product of the | |
773 | low-order words of the operands and perform any required adjustments | |
774 | of the operands, we proceed by trying two more multiplications | |
775 | and then computing the appropriate sum. | |
776 | ||
777 | We have checked above that the required addition is provided. | |
778 | Full-word addition will normally always succeed, especially if | |
779 | it is provided at all, so we don't worry about its failure. The | |
780 | multiplication may well fail, however, so we do handle that. */ | |
781 | ||
782 | if (product && op0_xhigh && op1_xhigh) | |
783 | { | |
784 | rtx product_piece; | |
785 | rtx product_high = operand_subword (product, high, 1, mode); | |
b1ec3c92 CH |
786 | rtx temp = expand_binop (word_mode, binoptab, op0_low, op1_xhigh, |
787 | NULL_RTX, 0, OPTAB_DIRECT); | |
77c9c6c2 RK |
788 | |
789 | if (temp) | |
790 | { | |
34e56753 | 791 | product_piece = expand_binop (word_mode, add_optab, temp, |
77c9c6c2 RK |
792 | product_high, product_high, |
793 | 0, OPTAB_LIB_WIDEN); | |
794 | if (product_piece != product_high) | |
795 | emit_move_insn (product_high, product_piece); | |
796 | ||
b1ec3c92 CH |
797 | temp = expand_binop (word_mode, binoptab, op1_low, op0_xhigh, |
798 | NULL_RTX, 0, OPTAB_DIRECT); | |
77c9c6c2 | 799 | |
34e56753 | 800 | product_piece = expand_binop (word_mode, add_optab, temp, |
77c9c6c2 RK |
801 | product_high, product_high, |
802 | 0, OPTAB_LIB_WIDEN); | |
803 | if (product_piece != product_high) | |
804 | emit_move_insn (product_high, product_piece); | |
805 | ||
806 | temp = emit_move_insn (product, product); | |
807 | REG_NOTES (temp) = gen_rtx (EXPR_LIST, REG_EQUAL, | |
808 | gen_rtx (MULT, mode, op0, op1), | |
809 | REG_NOTES (temp)); | |
810 | ||
811 | return product; | |
812 | } | |
813 | } | |
814 | ||
815 | /* If we get here, we couldn't do it for some reason even though we | |
816 | originally thought we could. Delete anything we've emitted in | |
817 | trying to do it. */ | |
818 | ||
819 | delete_insns_since (last); | |
820 | } | |
821 | ||
822 | /* It can't be open-coded in this mode. | |
823 | Use a library call if one is available and caller says that's ok. */ | |
824 | ||
825 | if (binoptab->handlers[(int) mode].libfunc | |
826 | && (methods == OPTAB_LIB || methods == OPTAB_LIB_WIDEN)) | |
827 | { | |
828 | rtx insns; | |
829 | rtx funexp = binoptab->handlers[(int) mode].libfunc; | |
830 | ||
831 | start_sequence (); | |
832 | ||
833 | /* Pass 1 for NO_QUEUE so we don't lose any increments | |
834 | if the libcall is cse'd or moved. */ | |
835 | emit_library_call (binoptab->handlers[(int) mode].libfunc, | |
836 | 1, mode, 2, op0, mode, op1, | |
34e56753 | 837 | (shift_op ? word_mode : mode)); |
77c9c6c2 RK |
838 | |
839 | insns = get_insns (); | |
840 | end_sequence (); | |
841 | ||
842 | target = gen_reg_rtx (mode); | |
843 | emit_libcall_block (insns, target, hard_libcall_value (mode), | |
844 | gen_rtx (binoptab->code, mode, op0, op1)); | |
845 | ||
846 | return target; | |
847 | } | |
848 | ||
849 | delete_insns_since (last); | |
850 | ||
851 | /* It can't be done in this mode. Can we do it in a wider mode? */ | |
852 | ||
853 | if (! (methods == OPTAB_WIDEN || methods == OPTAB_LIB_WIDEN | |
854 | || methods == OPTAB_MUST_WIDEN)) | |
855 | return 0; /* Caller says, don't even try. */ | |
856 | ||
857 | /* Compute the value of METHODS to pass to recursive calls. | |
858 | Don't allow widening to be tried recursively. */ | |
859 | ||
860 | methods = (methods == OPTAB_LIB_WIDEN ? OPTAB_LIB : OPTAB_DIRECT); | |
861 | ||
34e56753 RS |
862 | /* Look for a wider mode of the same class for which it appears we can do |
863 | the operation. */ | |
77c9c6c2 RK |
864 | |
865 | if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT) | |
866 | { | |
34e56753 | 867 | for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode; |
77c9c6c2 RK |
868 | wider_mode = GET_MODE_WIDER_MODE (wider_mode)) |
869 | { | |
870 | if ((binoptab->handlers[(int) wider_mode].insn_code | |
871 | != CODE_FOR_nothing) | |
872 | || (methods == OPTAB_LIB | |
873 | && binoptab->handlers[(int) wider_mode].libfunc)) | |
874 | { | |
875 | rtx xop0 = op0, xop1 = op1; | |
876 | int no_extend = 0; | |
877 | ||
34e56753 | 878 | /* For certain integer operations, we need not actually extend |
77c9c6c2 RK |
879 | the narrow operands, as long as we will truncate |
880 | the results to the same narrowness. */ | |
881 | ||
34e56753 RS |
882 | if ((binoptab == ior_optab || binoptab == and_optab |
883 | || binoptab == xor_optab | |
884 | || binoptab == add_optab || binoptab == sub_optab | |
885 | || binoptab == smul_optab | |
886 | || binoptab == ashl_optab || binoptab == lshl_optab) | |
887 | && class == MODE_INT) | |
77c9c6c2 RK |
888 | no_extend = 1; |
889 | ||
34e56753 RS |
890 | /* If an operand is a constant integer, we might as well |
891 | convert it since that is more efficient than using a SUBREG, | |
892 | unlike the case for other operands. */ | |
893 | ||
894 | if (no_extend && GET_MODE (xop0) != VOIDmode) | |
895 | xop0 = gen_rtx (SUBREG, wider_mode, | |
896 | force_reg (GET_MODE (xop0), xop0), 0); | |
897 | else | |
898 | xop0 = convert_to_mode (wider_mode, xop0, unsignedp); | |
899 | ||
900 | if (no_extend && GET_MODE (xop1) != VOIDmode) | |
901 | xop1 = gen_rtx (SUBREG, wider_mode, | |
902 | force_reg (GET_MODE (xop1), xop1), 0); | |
903 | else | |
904 | xop1 = convert_to_mode (wider_mode, xop1, unsignedp); | |
77c9c6c2 | 905 | |
b1ec3c92 | 906 | temp = expand_binop (wider_mode, binoptab, xop0, xop1, NULL_RTX, |
77c9c6c2 RK |
907 | unsignedp, methods); |
908 | if (temp) | |
909 | { | |
34e56753 | 910 | if (class != MODE_INT) |
77c9c6c2 RK |
911 | { |
912 | if (target == 0) | |
913 | target = gen_reg_rtx (mode); | |
914 | convert_move (target, temp, 0); | |
915 | return target; | |
916 | } | |
917 | else | |
918 | return gen_lowpart (mode, temp); | |
919 | } | |
920 | else | |
921 | delete_insns_since (last); | |
922 | } | |
923 | } | |
924 | } | |
925 | ||
926 | return 0; | |
927 | } | |
928 | \f | |
929 | /* Expand a binary operator which has both signed and unsigned forms. | |
930 | UOPTAB is the optab for unsigned operations, and SOPTAB is for | |
931 | signed operations. | |
932 | ||
933 | If we widen unsigned operands, we may use a signed wider operation instead | |
934 | of an unsigned wider operation, since the result would be the same. */ | |
935 | ||
936 | rtx | |
937 | sign_expand_binop (mode, uoptab, soptab, op0, op1, target, unsignedp, methods) | |
938 | enum machine_mode mode; | |
939 | optab uoptab, soptab; | |
940 | rtx op0, op1, target; | |
941 | int unsignedp; | |
942 | enum optab_methods methods; | |
943 | { | |
944 | register rtx temp; | |
945 | optab direct_optab = unsignedp ? uoptab : soptab; | |
946 | struct optab wide_soptab; | |
947 | ||
948 | /* Do it without widening, if possible. */ | |
949 | temp = expand_binop (mode, direct_optab, op0, op1, target, | |
950 | unsignedp, OPTAB_DIRECT); | |
951 | if (temp || methods == OPTAB_DIRECT) | |
952 | return temp; | |
953 | ||
954 | /* Try widening to a signed int. Make a fake signed optab that | |
955 | hides any signed insn for direct use. */ | |
956 | wide_soptab = *soptab; | |
957 | wide_soptab.handlers[(int) mode].insn_code = CODE_FOR_nothing; | |
958 | wide_soptab.handlers[(int) mode].libfunc = 0; | |
959 | ||
960 | temp = expand_binop (mode, &wide_soptab, op0, op1, target, | |
961 | unsignedp, OPTAB_WIDEN); | |
962 | ||
963 | /* For unsigned operands, try widening to an unsigned int. */ | |
964 | if (temp == 0 && unsignedp) | |
965 | temp = expand_binop (mode, uoptab, op0, op1, target, | |
966 | unsignedp, OPTAB_WIDEN); | |
967 | if (temp || methods == OPTAB_WIDEN) | |
968 | return temp; | |
969 | ||
970 | /* Use the right width lib call if that exists. */ | |
971 | temp = expand_binop (mode, direct_optab, op0, op1, target, unsignedp, OPTAB_LIB); | |
972 | if (temp || methods == OPTAB_LIB) | |
973 | return temp; | |
974 | ||
975 | /* Must widen and use a lib call, use either signed or unsigned. */ | |
976 | temp = expand_binop (mode, &wide_soptab, op0, op1, target, | |
977 | unsignedp, methods); | |
978 | if (temp != 0) | |
979 | return temp; | |
980 | if (unsignedp) | |
981 | return expand_binop (mode, uoptab, op0, op1, target, | |
982 | unsignedp, methods); | |
983 | return 0; | |
984 | } | |
985 | \f | |
986 | /* Generate code to perform an operation specified by BINOPTAB | |
987 | on operands OP0 and OP1, with two results to TARG1 and TARG2. | |
988 | We assume that the order of the operands for the instruction | |
989 | is TARG0, OP0, OP1, TARG1, which would fit a pattern like | |
990 | [(set TARG0 (operate OP0 OP1)) (set TARG1 (operate ...))]. | |
991 | ||
992 | Either TARG0 or TARG1 may be zero, but what that means is that | |
993 | that result is not actually wanted. We will generate it into | |
994 | a dummy pseudo-reg and discard it. They may not both be zero. | |
995 | ||
996 | Returns 1 if this operation can be performed; 0 if not. */ | |
997 | ||
998 | int | |
999 | expand_twoval_binop (binoptab, op0, op1, targ0, targ1, unsignedp) | |
1000 | optab binoptab; | |
1001 | rtx op0, op1; | |
1002 | rtx targ0, targ1; | |
1003 | int unsignedp; | |
1004 | { | |
1005 | enum machine_mode mode = GET_MODE (targ0 ? targ0 : targ1); | |
1006 | enum mode_class class; | |
1007 | enum machine_mode wider_mode; | |
1008 | rtx last; | |
1009 | ||
1010 | class = GET_MODE_CLASS (mode); | |
1011 | ||
1012 | op0 = protect_from_queue (op0, 0); | |
1013 | op1 = protect_from_queue (op1, 0); | |
1014 | ||
1015 | if (flag_force_mem) | |
1016 | { | |
1017 | op0 = force_not_mem (op0); | |
1018 | op1 = force_not_mem (op1); | |
1019 | } | |
1020 | ||
1021 | /* If we are inside an appropriately-short loop and one operand is an | |
1022 | expensive constant, force it into a register. */ | |
aeedc93f RS |
1023 | if (CONSTANT_P (op0) && preserve_subexpressions_p () |
1024 | && rtx_cost (op0, binoptab->code) > 2) | |
77c9c6c2 RK |
1025 | op0 = force_reg (mode, op0); |
1026 | ||
aeedc93f RS |
1027 | if (CONSTANT_P (op1) && preserve_subexpressions_p () |
1028 | && rtx_cost (op1, binoptab->code) > 2) | |
77c9c6c2 RK |
1029 | op1 = force_reg (mode, op1); |
1030 | ||
1031 | if (targ0) | |
1032 | targ0 = protect_from_queue (targ0, 1); | |
1033 | else | |
1034 | targ0 = gen_reg_rtx (mode); | |
1035 | if (targ1) | |
1036 | targ1 = protect_from_queue (targ1, 1); | |
1037 | else | |
1038 | targ1 = gen_reg_rtx (mode); | |
1039 | ||
1040 | /* Record where to go back to if we fail. */ | |
1041 | last = get_last_insn (); | |
1042 | ||
1043 | if (binoptab->handlers[(int) mode].insn_code != CODE_FOR_nothing) | |
1044 | { | |
1045 | int icode = (int) binoptab->handlers[(int) mode].insn_code; | |
1046 | enum machine_mode mode0 = insn_operand_mode[icode][1]; | |
1047 | enum machine_mode mode1 = insn_operand_mode[icode][2]; | |
1048 | rtx pat; | |
1049 | rtx xop0 = op0, xop1 = op1; | |
1050 | ||
1051 | /* In case this insn wants input operands in modes different from the | |
1052 | result, convert the operands. */ | |
1053 | if (GET_MODE (op0) != VOIDmode && GET_MODE (op0) != mode0) | |
1054 | xop0 = convert_to_mode (mode0, xop0, unsignedp); | |
1055 | ||
1056 | if (GET_MODE (op1) != VOIDmode && GET_MODE (op1) != mode1) | |
1057 | xop1 = convert_to_mode (mode1, xop1, unsignedp); | |
1058 | ||
1059 | /* Now, if insn doesn't accept these operands, put them into pseudos. */ | |
1060 | if (! (*insn_operand_predicate[icode][1]) (xop0, mode0)) | |
1061 | xop0 = copy_to_mode_reg (mode0, xop0); | |
1062 | ||
1063 | if (! (*insn_operand_predicate[icode][2]) (xop1, mode1)) | |
1064 | xop1 = copy_to_mode_reg (mode1, xop1); | |
1065 | ||
1066 | /* We could handle this, but we should always be called with a pseudo | |
1067 | for our targets and all insns should take them as outputs. */ | |
1068 | if (! (*insn_operand_predicate[icode][0]) (targ0, mode) | |
1069 | || ! (*insn_operand_predicate[icode][3]) (targ1, mode)) | |
1070 | abort (); | |
1071 | ||
1072 | pat = GEN_FCN (icode) (targ0, xop0, xop1, targ1); | |
1073 | if (pat) | |
1074 | { | |
1075 | emit_insn (pat); | |
1076 | return 1; | |
1077 | } | |
1078 | else | |
1079 | delete_insns_since (last); | |
1080 | } | |
1081 | ||
1082 | /* It can't be done in this mode. Can we do it in a wider mode? */ | |
1083 | ||
1084 | if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT) | |
1085 | { | |
34e56753 | 1086 | for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode; |
77c9c6c2 RK |
1087 | wider_mode = GET_MODE_WIDER_MODE (wider_mode)) |
1088 | { | |
1089 | if (binoptab->handlers[(int) wider_mode].insn_code | |
1090 | != CODE_FOR_nothing) | |
1091 | { | |
1092 | register rtx t0 = gen_reg_rtx (wider_mode); | |
1093 | register rtx t1 = gen_reg_rtx (wider_mode); | |
1094 | ||
1095 | if (expand_twoval_binop (binoptab, | |
1096 | convert_to_mode (wider_mode, op0, | |
1097 | unsignedp), | |
1098 | convert_to_mode (wider_mode, op1, | |
1099 | unsignedp), | |
1100 | t0, t1, unsignedp)) | |
1101 | { | |
1102 | convert_move (targ0, t0, unsignedp); | |
1103 | convert_move (targ1, t1, unsignedp); | |
1104 | return 1; | |
1105 | } | |
1106 | else | |
1107 | delete_insns_since (last); | |
1108 | } | |
1109 | } | |
1110 | } | |
1111 | ||
1112 | return 0; | |
1113 | } | |
1114 | \f | |
1115 | /* Generate code to perform an operation specified by UNOPTAB | |
1116 | on operand OP0, with result having machine-mode MODE. | |
1117 | ||
1118 | UNSIGNEDP is for the case where we have to widen the operands | |
1119 | to perform the operation. It says to use zero-extension. | |
1120 | ||
1121 | If TARGET is nonzero, the value | |
1122 | is generated there, if it is convenient to do so. | |
1123 | In all cases an rtx is returned for the locus of the value; | |
1124 | this may or may not be TARGET. */ | |
1125 | ||
1126 | rtx | |
1127 | expand_unop (mode, unoptab, op0, target, unsignedp) | |
1128 | enum machine_mode mode; | |
1129 | optab unoptab; | |
1130 | rtx op0; | |
1131 | rtx target; | |
1132 | int unsignedp; | |
1133 | { | |
1134 | enum mode_class class; | |
1135 | enum machine_mode wider_mode; | |
77c9c6c2 RK |
1136 | register rtx temp; |
1137 | rtx last = get_last_insn (); | |
1138 | rtx pat; | |
1139 | ||
1140 | class = GET_MODE_CLASS (mode); | |
1141 | ||
1142 | op0 = protect_from_queue (op0, 0); | |
1143 | ||
1144 | if (flag_force_mem) | |
1145 | { | |
1146 | op0 = force_not_mem (op0); | |
1147 | } | |
1148 | ||
1149 | if (target) | |
1150 | target = protect_from_queue (target, 1); | |
1151 | ||
1152 | if (unoptab->handlers[(int) mode].insn_code != CODE_FOR_nothing) | |
1153 | { | |
1154 | int icode = (int) unoptab->handlers[(int) mode].insn_code; | |
1155 | enum machine_mode mode0 = insn_operand_mode[icode][1]; | |
1156 | rtx xop0 = op0; | |
1157 | ||
1158 | if (target) | |
1159 | temp = target; | |
1160 | else | |
1161 | temp = gen_reg_rtx (mode); | |
1162 | ||
1163 | if (GET_MODE (xop0) != VOIDmode | |
1164 | && GET_MODE (xop0) != mode0) | |
1165 | xop0 = convert_to_mode (mode0, xop0, unsignedp); | |
1166 | ||
1167 | /* Now, if insn doesn't accept our operand, put it into a pseudo. */ | |
1168 | ||
1169 | if (! (*insn_operand_predicate[icode][1]) (xop0, mode0)) | |
1170 | xop0 = copy_to_mode_reg (mode0, xop0); | |
1171 | ||
1172 | if (! (*insn_operand_predicate[icode][0]) (temp, mode)) | |
1173 | temp = gen_reg_rtx (mode); | |
1174 | ||
1175 | pat = GEN_FCN (icode) (temp, xop0); | |
1176 | if (pat) | |
1177 | { | |
1178 | if (GET_CODE (pat) == SEQUENCE | |
b1ec3c92 | 1179 | && ! add_equal_note (pat, temp, unoptab->code, xop0, NULL_RTX)) |
77c9c6c2 RK |
1180 | { |
1181 | delete_insns_since (last); | |
b1ec3c92 | 1182 | return expand_unop (mode, unoptab, op0, NULL_RTX, unsignedp); |
77c9c6c2 RK |
1183 | } |
1184 | ||
1185 | emit_insn (pat); | |
1186 | ||
1187 | return temp; | |
1188 | } | |
1189 | else | |
1190 | delete_insns_since (last); | |
1191 | } | |
1192 | ||
9a856ec7 RK |
1193 | /* It can't be done in this mode. Can we open-code it in a wider mode? */ |
1194 | ||
1195 | if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT) | |
1196 | for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode; | |
1197 | wider_mode = GET_MODE_WIDER_MODE (wider_mode)) | |
1198 | { | |
1199 | if (unoptab->handlers[(int) wider_mode].insn_code != CODE_FOR_nothing) | |
1200 | { | |
1201 | rtx xop0 = op0; | |
1202 | ||
1203 | /* For certain operations, we need not actually extend | |
1204 | the narrow operand, as long as we will truncate the | |
1205 | results to the same narrowness. */ | |
1206 | ||
1207 | if ((unoptab == neg_optab || unoptab == one_cmpl_optab) | |
1208 | && class == MODE_INT) | |
1209 | xop0 = gen_rtx (SUBREG, wider_mode, force_reg (mode, xop0), 0); | |
1210 | else | |
1211 | xop0 = convert_to_mode (wider_mode, xop0, unsignedp); | |
1212 | ||
b1ec3c92 CH |
1213 | temp = expand_unop (wider_mode, unoptab, xop0, NULL_RTX, |
1214 | unsignedp); | |
9a856ec7 RK |
1215 | |
1216 | if (temp) | |
1217 | { | |
1218 | if (class != MODE_INT) | |
1219 | { | |
1220 | if (target == 0) | |
1221 | target = gen_reg_rtx (mode); | |
1222 | convert_move (target, temp, 0); | |
1223 | return target; | |
1224 | } | |
1225 | else | |
1226 | return gen_lowpart (mode, temp); | |
1227 | } | |
1228 | else | |
1229 | delete_insns_since (last); | |
1230 | } | |
1231 | } | |
1232 | ||
77c9c6c2 RK |
1233 | /* These can be done a word at a time. */ |
1234 | if (unoptab == one_cmpl_optab | |
1235 | && class == MODE_INT | |
1236 | && GET_MODE_SIZE (mode) > UNITS_PER_WORD | |
34e56753 | 1237 | && unoptab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing) |
77c9c6c2 RK |
1238 | { |
1239 | int i; | |
1240 | rtx insns; | |
1241 | ||
1242 | if (target == 0 || target == op0) | |
1243 | target = gen_reg_rtx (mode); | |
1244 | ||
1245 | start_sequence (); | |
1246 | ||
1247 | /* Do the actual arithmetic. */ | |
1248 | for (i = 0; i < GET_MODE_BITSIZE (mode) / BITS_PER_WORD; i++) | |
1249 | { | |
1250 | rtx target_piece = operand_subword (target, i, 1, mode); | |
34e56753 | 1251 | rtx x = expand_unop (word_mode, unoptab, |
77c9c6c2 RK |
1252 | operand_subword_force (op0, i, mode), |
1253 | target_piece, unsignedp); | |
1254 | if (target_piece != x) | |
1255 | emit_move_insn (target_piece, x); | |
1256 | } | |
1257 | ||
1258 | insns = get_insns (); | |
1259 | end_sequence (); | |
1260 | ||
b1ec3c92 | 1261 | emit_no_conflict_block (insns, target, op0, NULL_RTX, |
77c9c6c2 RK |
1262 | gen_rtx (unoptab->code, mode, op0)); |
1263 | return target; | |
1264 | } | |
1265 | ||
1266 | if (unoptab->handlers[(int) mode].libfunc) | |
1267 | { | |
1268 | rtx insns; | |
1269 | rtx funexp = unoptab->handlers[(int) mode].libfunc; | |
1270 | ||
1271 | start_sequence (); | |
1272 | ||
1273 | /* Pass 1 for NO_QUEUE so we don't lose any increments | |
1274 | if the libcall is cse'd or moved. */ | |
1275 | emit_library_call (unoptab->handlers[(int) mode].libfunc, | |
1276 | 1, mode, 1, op0, mode); | |
1277 | insns = get_insns (); | |
1278 | end_sequence (); | |
1279 | ||
1280 | target = gen_reg_rtx (mode); | |
1281 | emit_libcall_block (insns, target, hard_libcall_value (mode), | |
1282 | gen_rtx (unoptab->code, mode, op0)); | |
1283 | ||
1284 | return target; | |
1285 | } | |
1286 | ||
1287 | /* It can't be done in this mode. Can we do it in a wider mode? */ | |
1288 | ||
1289 | if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT) | |
1290 | { | |
34e56753 | 1291 | for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode; |
77c9c6c2 RK |
1292 | wider_mode = GET_MODE_WIDER_MODE (wider_mode)) |
1293 | { | |
1294 | if ((unoptab->handlers[(int) wider_mode].insn_code | |
1295 | != CODE_FOR_nothing) | |
1296 | || unoptab->handlers[(int) wider_mode].libfunc) | |
1297 | { | |
34e56753 RS |
1298 | rtx xop0 = op0; |
1299 | ||
1300 | /* For certain operations, we need not actually extend | |
1301 | the narrow operand, as long as we will truncate the | |
1302 | results to the same narrowness. */ | |
1303 | ||
1304 | if ((unoptab == neg_optab || unoptab == one_cmpl_optab) | |
1305 | && class == MODE_INT) | |
1306 | xop0 = gen_rtx (SUBREG, wider_mode, force_reg (mode, xop0), 0); | |
1307 | else | |
1308 | xop0 = convert_to_mode (wider_mode, xop0, unsignedp); | |
77c9c6c2 | 1309 | |
b1ec3c92 CH |
1310 | temp = expand_unop (wider_mode, unoptab, xop0, NULL_RTX, |
1311 | unsignedp); | |
34e56753 RS |
1312 | |
1313 | if (temp) | |
77c9c6c2 | 1314 | { |
34e56753 RS |
1315 | if (class != MODE_INT) |
1316 | { | |
1317 | if (target == 0) | |
1318 | target = gen_reg_rtx (mode); | |
1319 | convert_move (target, temp, 0); | |
1320 | return target; | |
1321 | } | |
1322 | else | |
1323 | return gen_lowpart (mode, temp); | |
77c9c6c2 RK |
1324 | } |
1325 | else | |
34e56753 | 1326 | delete_insns_since (last); |
77c9c6c2 RK |
1327 | } |
1328 | } | |
1329 | } | |
1330 | ||
1331 | return 0; | |
1332 | } | |
1333 | \f | |
1334 | /* Generate an instruction whose insn-code is INSN_CODE, | |
1335 | with two operands: an output TARGET and an input OP0. | |
1336 | TARGET *must* be nonzero, and the output is always stored there. | |
1337 | CODE is an rtx code such that (CODE OP0) is an rtx that describes | |
1338 | the value that is stored into TARGET. */ | |
1339 | ||
1340 | void | |
1341 | emit_unop_insn (icode, target, op0, code) | |
1342 | int icode; | |
1343 | rtx target; | |
1344 | rtx op0; | |
1345 | enum rtx_code code; | |
1346 | { | |
1347 | register rtx temp; | |
1348 | enum machine_mode mode0 = insn_operand_mode[icode][1]; | |
1349 | rtx pat; | |
1350 | ||
1351 | temp = target = protect_from_queue (target, 1); | |
1352 | ||
1353 | op0 = protect_from_queue (op0, 0); | |
1354 | ||
1355 | if (flag_force_mem) | |
1356 | op0 = force_not_mem (op0); | |
1357 | ||
1358 | /* Now, if insn does not accept our operands, put them into pseudos. */ | |
1359 | ||
1360 | if (! (*insn_operand_predicate[icode][1]) (op0, mode0)) | |
1361 | op0 = copy_to_mode_reg (mode0, op0); | |
1362 | ||
1363 | if (! (*insn_operand_predicate[icode][0]) (temp, GET_MODE (temp)) | |
1364 | || (flag_force_mem && GET_CODE (temp) == MEM)) | |
1365 | temp = gen_reg_rtx (GET_MODE (temp)); | |
1366 | ||
1367 | pat = GEN_FCN (icode) (temp, op0); | |
1368 | ||
1369 | if (GET_CODE (pat) == SEQUENCE && code != UNKNOWN) | |
b1ec3c92 | 1370 | add_equal_note (pat, temp, code, op0, NULL_RTX); |
77c9c6c2 RK |
1371 | |
1372 | emit_insn (pat); | |
1373 | ||
1374 | if (temp != target) | |
1375 | emit_move_insn (target, temp); | |
1376 | } | |
1377 | \f | |
1378 | /* Emit code to perform a series of operations on a multi-word quantity, one | |
1379 | word at a time. | |
1380 | ||
d45cf215 | 1381 | Such a block is preceded by a CLOBBER of the output, consists of multiple |
77c9c6c2 RK |
1382 | insns, each setting one word of the output, and followed by a SET copying |
1383 | the output to itself. | |
1384 | ||
1385 | Each of the insns setting words of the output receives a REG_NO_CONFLICT | |
1386 | note indicating that it doesn't conflict with the (also multi-word) | |
1387 | inputs. The entire block is surrounded by REG_LIBCALL and REG_RETVAL | |
1388 | notes. | |
1389 | ||
1390 | INSNS is a block of code generated to perform the operation, not including | |
1391 | the CLOBBER and final copy. All insns that compute intermediate values | |
1392 | are first emitted, followed by the block as described above. Only | |
1393 | INSNs are allowed in the block; no library calls or jumps may be | |
1394 | present. | |
1395 | ||
1396 | TARGET, OP0, and OP1 are the output and inputs of the operations, | |
1397 | respectively. OP1 may be zero for a unary operation. | |
1398 | ||
1399 | EQUIV, if non-zero, is an expression to be placed into a REG_EQUAL note | |
1400 | on the last insn. | |
1401 | ||
1402 | If TARGET is not a register, INSNS is simply emitted with no special | |
1403 | processing. | |
1404 | ||
1405 | The final insn emitted is returned. */ | |
1406 | ||
1407 | rtx | |
1408 | emit_no_conflict_block (insns, target, op0, op1, equiv) | |
1409 | rtx insns; | |
1410 | rtx target; | |
1411 | rtx op0, op1; | |
1412 | rtx equiv; | |
1413 | { | |
1414 | rtx prev, next, first, last, insn; | |
1415 | ||
1416 | if (GET_CODE (target) != REG || reload_in_progress) | |
1417 | return emit_insns (insns); | |
1418 | ||
1419 | /* First emit all insns that do not store into words of the output and remove | |
1420 | these from the list. */ | |
1421 | for (insn = insns; insn; insn = next) | |
1422 | { | |
1423 | rtx set = 0; | |
1424 | int i; | |
1425 | ||
1426 | next = NEXT_INSN (insn); | |
1427 | ||
1428 | if (GET_CODE (insn) != INSN) | |
1429 | abort (); | |
1430 | ||
1431 | if (GET_CODE (PATTERN (insn)) == SET) | |
1432 | set = PATTERN (insn); | |
1433 | else if (GET_CODE (PATTERN (insn)) == PARALLEL) | |
1434 | { | |
1435 | for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++) | |
1436 | if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET) | |
1437 | { | |
1438 | set = XVECEXP (PATTERN (insn), 0, i); | |
1439 | break; | |
1440 | } | |
1441 | } | |
1442 | ||
1443 | if (set == 0) | |
1444 | abort (); | |
1445 | ||
1446 | if (! reg_overlap_mentioned_p (target, SET_DEST (set))) | |
1447 | { | |
1448 | if (PREV_INSN (insn)) | |
1449 | NEXT_INSN (PREV_INSN (insn)) = next; | |
1450 | else | |
1451 | insns = next; | |
1452 | ||
1453 | if (next) | |
1454 | PREV_INSN (next) = PREV_INSN (insn); | |
1455 | ||
1456 | add_insn (insn); | |
1457 | } | |
1458 | } | |
1459 | ||
1460 | prev = get_last_insn (); | |
1461 | ||
1462 | /* Now write the CLOBBER of the output, followed by the setting of each | |
1463 | of the words, followed by the final copy. */ | |
1464 | if (target != op0 && target != op1) | |
1465 | emit_insn (gen_rtx (CLOBBER, VOIDmode, target)); | |
1466 | ||
1467 | for (insn = insns; insn; insn = next) | |
1468 | { | |
1469 | next = NEXT_INSN (insn); | |
1470 | add_insn (insn); | |
1471 | ||
1472 | if (op1 && GET_CODE (op1) == REG) | |
1473 | REG_NOTES (insn) = gen_rtx (EXPR_LIST, REG_NO_CONFLICT, op1, | |
1474 | REG_NOTES (insn)); | |
1475 | ||
1476 | if (op0 && GET_CODE (op0) == REG) | |
1477 | REG_NOTES (insn) = gen_rtx (EXPR_LIST, REG_NO_CONFLICT, op0, | |
1478 | REG_NOTES (insn)); | |
1479 | } | |
1480 | ||
1481 | last = emit_move_insn (target, target); | |
1482 | if (equiv) | |
1483 | REG_NOTES (last) = gen_rtx (EXPR_LIST, REG_EQUAL, equiv, REG_NOTES (last)); | |
1484 | ||
1485 | if (prev == 0) | |
1486 | first = get_insns (); | |
1487 | else | |
1488 | first = NEXT_INSN (prev); | |
1489 | ||
1490 | /* Encapsulate the block so it gets manipulated as a unit. */ | |
1491 | REG_NOTES (first) = gen_rtx (INSN_LIST, REG_LIBCALL, last, | |
1492 | REG_NOTES (first)); | |
1493 | REG_NOTES (last) = gen_rtx (INSN_LIST, REG_RETVAL, first, REG_NOTES (last)); | |
1494 | ||
1495 | return last; | |
1496 | } | |
1497 | \f | |
1498 | /* Emit code to make a call to a constant function or a library call. | |
1499 | ||
1500 | INSNS is a list containing all insns emitted in the call. | |
1501 | These insns leave the result in RESULT. Our block is to copy RESULT | |
1502 | to TARGET, which is logically equivalent to EQUIV. | |
1503 | ||
1504 | We first emit any insns that set a pseudo on the assumption that these are | |
1505 | loading constants into registers; doing so allows them to be safely cse'ed | |
1506 | between blocks. Then we emit all the other insns in the block, followed by | |
1507 | an insn to move RESULT to TARGET. This last insn will have a REQ_EQUAL | |
1508 | note with an operand of EQUIV. | |
1509 | ||
29ebe69a RK |
1510 | Moving assignments to pseudos outside of the block is done to improve |
1511 | the generated code, but is not required to generate correct code, | |
1512 | hence being unable to move an assignment is not grounds for not making | |
1513 | a libcall block. There are two reasons why it is safe to leave these | |
1514 | insns inside the block: First, we know that these pseudos cannot be | |
1515 | used in generated RTL outside the block since they are created for | |
1516 | temporary purposes within the block. Second, CSE will not record the | |
1517 | values of anything set inside a libcall block, so we know they must | |
1518 | be dead at the end of the block. | |
1519 | ||
77c9c6c2 RK |
1520 | Except for the first group of insns (the ones setting pseudos), the |
1521 | block is delimited by REG_RETVAL and REG_LIBCALL notes. */ | |
1522 | ||
1523 | void | |
1524 | emit_libcall_block (insns, target, result, equiv) | |
1525 | rtx insns; | |
1526 | rtx target; | |
1527 | rtx result; | |
1528 | rtx equiv; | |
1529 | { | |
1530 | rtx prev, next, first, last, insn; | |
1531 | ||
1532 | /* First emit all insns that set pseudos. Remove them from the list as | |
29ebe69a RK |
1533 | we go. Avoid insns that set pseudo which were referenced in previous |
1534 | insns. These can be generated by move_by_pieces, for example, | |
1535 | to update an address. */ | |
77c9c6c2 RK |
1536 | |
1537 | for (insn = insns; insn; insn = next) | |
1538 | { | |
1539 | rtx set = single_set (insn); | |
1540 | ||
1541 | next = NEXT_INSN (insn); | |
1542 | ||
1543 | if (set != 0 && GET_CODE (SET_DEST (set)) == REG | |
29ebe69a | 1544 | && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER |
8d9e73cc RS |
1545 | && (insn == insns |
1546 | || (! reg_mentioned_p (SET_DEST (set), PATTERN (insns)) | |
1547 | && ! reg_used_between_p (SET_DEST (set), insns, insn)))) | |
77c9c6c2 RK |
1548 | { |
1549 | if (PREV_INSN (insn)) | |
1550 | NEXT_INSN (PREV_INSN (insn)) = next; | |
1551 | else | |
1552 | insns = next; | |
1553 | ||
1554 | if (next) | |
1555 | PREV_INSN (next) = PREV_INSN (insn); | |
1556 | ||
1557 | add_insn (insn); | |
1558 | } | |
1559 | } | |
1560 | ||
1561 | prev = get_last_insn (); | |
1562 | ||
1563 | /* Write the remaining insns followed by the final copy. */ | |
1564 | ||
1565 | for (insn = insns; insn; insn = next) | |
1566 | { | |
1567 | next = NEXT_INSN (insn); | |
1568 | ||
1569 | add_insn (insn); | |
1570 | } | |
1571 | ||
1572 | last = emit_move_insn (target, result); | |
1573 | REG_NOTES (last) = gen_rtx (EXPR_LIST, REG_EQUAL, equiv, REG_NOTES (last)); | |
1574 | ||
1575 | if (prev == 0) | |
1576 | first = get_insns (); | |
1577 | else | |
1578 | first = NEXT_INSN (prev); | |
1579 | ||
1580 | /* Encapsulate the block so it gets manipulated as a unit. */ | |
1581 | REG_NOTES (first) = gen_rtx (INSN_LIST, REG_LIBCALL, last, | |
1582 | REG_NOTES (first)); | |
1583 | REG_NOTES (last) = gen_rtx (INSN_LIST, REG_RETVAL, first, REG_NOTES (last)); | |
1584 | } | |
1585 | \f | |
1586 | /* Generate code to store zero in X. */ | |
1587 | ||
1588 | void | |
1589 | emit_clr_insn (x) | |
1590 | rtx x; | |
1591 | { | |
1592 | emit_move_insn (x, const0_rtx); | |
1593 | } | |
1594 | ||
1595 | /* Generate code to store 1 in X | |
1596 | assuming it contains zero beforehand. */ | |
1597 | ||
1598 | void | |
1599 | emit_0_to_1_insn (x) | |
1600 | rtx x; | |
1601 | { | |
1602 | emit_move_insn (x, const1_rtx); | |
1603 | } | |
1604 | ||
1605 | /* Generate code to compare X with Y | |
1606 | so that the condition codes are set. | |
1607 | ||
1608 | MODE is the mode of the inputs (in case they are const_int). | |
1609 | UNSIGNEDP nonzero says that X and Y are unsigned; | |
1610 | this matters if they need to be widened. | |
1611 | ||
1612 | If they have mode BLKmode, then SIZE specifies the size of both X and Y, | |
1613 | and ALIGN specifies the known shared alignment of X and Y. | |
1614 | ||
1615 | COMPARISON is the rtl operator to compare with (EQ, NE, GT, etc.). | |
1616 | It is ignored for fixed-point and block comparisons; | |
1617 | it is used only for floating-point comparisons. */ | |
1618 | ||
1619 | void | |
1620 | emit_cmp_insn (x, y, comparison, size, mode, unsignedp, align) | |
1621 | rtx x, y; | |
1622 | enum rtx_code comparison; | |
1623 | rtx size; | |
2aa8f23f | 1624 | enum machine_mode mode; |
77c9c6c2 RK |
1625 | int unsignedp; |
1626 | int align; | |
1627 | { | |
1628 | enum mode_class class; | |
1629 | enum machine_mode wider_mode; | |
1630 | ||
1631 | class = GET_MODE_CLASS (mode); | |
1632 | ||
1633 | /* They could both be VOIDmode if both args are immediate constants, | |
1634 | but we should fold that at an earlier stage. | |
1635 | With no special code here, this will call abort, | |
1636 | reminding the programmer to implement such folding. */ | |
1637 | ||
1638 | if (mode != BLKmode && flag_force_mem) | |
1639 | { | |
1640 | x = force_not_mem (x); | |
1641 | y = force_not_mem (y); | |
1642 | } | |
1643 | ||
1644 | /* If we are inside an appropriately-short loop and one operand is an | |
1645 | expensive constant, force it into a register. */ | |
aeedc93f | 1646 | if (CONSTANT_P (x) && preserve_subexpressions_p () && rtx_cost (x, COMPARE) > 2) |
77c9c6c2 RK |
1647 | x = force_reg (mode, x); |
1648 | ||
aeedc93f | 1649 | if (CONSTANT_P (y) && preserve_subexpressions_p () && rtx_cost (y, COMPARE) > 2) |
77c9c6c2 RK |
1650 | y = force_reg (mode, y); |
1651 | ||
1652 | /* Don't let both operands fail to indicate the mode. */ | |
1653 | if (GET_MODE (x) == VOIDmode && GET_MODE (y) == VOIDmode) | |
1654 | x = force_reg (mode, x); | |
1655 | ||
1656 | /* Handle all BLKmode compares. */ | |
1657 | ||
1658 | if (mode == BLKmode) | |
1659 | { | |
1660 | emit_queue (); | |
1661 | x = protect_from_queue (x, 0); | |
1662 | y = protect_from_queue (y, 0); | |
1663 | ||
1664 | if (size == 0) | |
1665 | abort (); | |
1666 | #ifdef HAVE_cmpstrqi | |
1667 | if (HAVE_cmpstrqi | |
1668 | && GET_CODE (size) == CONST_INT | |
1669 | && INTVAL (size) < (1 << GET_MODE_BITSIZE (QImode))) | |
1670 | { | |
1671 | enum machine_mode result_mode | |
1672 | = insn_operand_mode[(int) CODE_FOR_cmpstrqi][0]; | |
1673 | rtx result = gen_reg_rtx (result_mode); | |
b1ec3c92 CH |
1674 | emit_insn (gen_cmpstrqi (result, x, y, size, GEN_INT (align))); |
1675 | emit_cmp_insn (result, const0_rtx, comparison, NULL_RTX, | |
1676 | result_mode, 0, 0); | |
77c9c6c2 RK |
1677 | } |
1678 | else | |
1679 | #endif | |
1680 | #ifdef HAVE_cmpstrhi | |
1681 | if (HAVE_cmpstrhi | |
1682 | && GET_CODE (size) == CONST_INT | |
1683 | && INTVAL (size) < (1 << GET_MODE_BITSIZE (HImode))) | |
1684 | { | |
1685 | enum machine_mode result_mode | |
1686 | = insn_operand_mode[(int) CODE_FOR_cmpstrhi][0]; | |
1687 | rtx result = gen_reg_rtx (result_mode); | |
b1ec3c92 CH |
1688 | emit_insn (gen_cmpstrhi (result, x, y, size, GEN_INT (align))); |
1689 | emit_cmp_insn (result, const0_rtx, comparison, NULL_RTX, | |
1690 | result_mode, 0, 0); | |
77c9c6c2 RK |
1691 | } |
1692 | else | |
1693 | #endif | |
1694 | #ifdef HAVE_cmpstrsi | |
1695 | if (HAVE_cmpstrsi) | |
1696 | { | |
1697 | enum machine_mode result_mode | |
1698 | = insn_operand_mode[(int) CODE_FOR_cmpstrsi][0]; | |
1699 | rtx result = gen_reg_rtx (result_mode); | |
06e40b26 | 1700 | size = protect_from_queue (size, 0); |
77c9c6c2 RK |
1701 | emit_insn (gen_cmpstrsi (result, x, y, |
1702 | convert_to_mode (SImode, size, 1), | |
b1ec3c92 CH |
1703 | GEN_INT (align))); |
1704 | emit_cmp_insn (result, const0_rtx, comparison, NULL_RTX, | |
1705 | result_mode, 0, 0); | |
77c9c6c2 RK |
1706 | } |
1707 | else | |
1708 | #endif | |
1709 | { | |
1710 | #ifdef TARGET_MEM_FUNCTIONS | |
86f8eff3 | 1711 | emit_library_call (memcmp_libfunc, 1, |
77c9c6c2 RK |
1712 | TYPE_MODE (integer_type_node), 3, |
1713 | XEXP (x, 0), Pmode, XEXP (y, 0), Pmode, | |
1714 | size, Pmode); | |
1715 | #else | |
86f8eff3 | 1716 | emit_library_call (bcmp_libfunc, 1, |
77c9c6c2 RK |
1717 | TYPE_MODE (integer_type_node), 3, |
1718 | XEXP (x, 0), Pmode, XEXP (y, 0), Pmode, | |
1719 | size, Pmode); | |
1720 | #endif | |
1721 | emit_cmp_insn (hard_libcall_value (TYPE_MODE (integer_type_node)), | |
b1ec3c92 | 1722 | const0_rtx, comparison, NULL_RTX, |
77c9c6c2 RK |
1723 | TYPE_MODE (integer_type_node), 0, 0); |
1724 | } | |
1725 | return; | |
1726 | } | |
1727 | ||
1728 | /* Handle some compares against zero. */ | |
1729 | ||
1730 | if (y == CONST0_RTX (mode) | |
1731 | && tst_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing) | |
1732 | { | |
1733 | int icode = (int) tst_optab->handlers[(int) mode].insn_code; | |
1734 | ||
1735 | emit_queue (); | |
1736 | x = protect_from_queue (x, 0); | |
1737 | y = protect_from_queue (y, 0); | |
1738 | ||
1739 | /* Now, if insn does accept these operands, put them into pseudos. */ | |
1740 | if (! (*insn_operand_predicate[icode][0]) | |
1741 | (x, insn_operand_mode[icode][0])) | |
1742 | x = copy_to_mode_reg (insn_operand_mode[icode][0], x); | |
1743 | ||
1744 | emit_insn (GEN_FCN (icode) (x)); | |
1745 | return; | |
1746 | } | |
1747 | ||
1748 | /* Handle compares for which there is a directly suitable insn. */ | |
1749 | ||
1750 | if (cmp_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing) | |
1751 | { | |
1752 | int icode = (int) cmp_optab->handlers[(int) mode].insn_code; | |
1753 | ||
1754 | emit_queue (); | |
1755 | x = protect_from_queue (x, 0); | |
1756 | y = protect_from_queue (y, 0); | |
1757 | ||
1758 | /* Now, if insn doesn't accept these operands, put them into pseudos. */ | |
1759 | if (! (*insn_operand_predicate[icode][0]) | |
1760 | (x, insn_operand_mode[icode][0])) | |
1761 | x = copy_to_mode_reg (insn_operand_mode[icode][0], x); | |
1762 | ||
1763 | if (! (*insn_operand_predicate[icode][1]) | |
1764 | (y, insn_operand_mode[icode][1])) | |
1765 | y = copy_to_mode_reg (insn_operand_mode[icode][1], y); | |
1766 | ||
1767 | emit_insn (GEN_FCN (icode) (x, y)); | |
1768 | return; | |
1769 | } | |
1770 | ||
1771 | /* Try widening if we can find a direct insn that way. */ | |
1772 | ||
1773 | if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT) | |
1774 | { | |
34e56753 | 1775 | for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode; |
77c9c6c2 RK |
1776 | wider_mode = GET_MODE_WIDER_MODE (wider_mode)) |
1777 | { | |
1778 | if (cmp_optab->handlers[(int) wider_mode].insn_code | |
1779 | != CODE_FOR_nothing) | |
1780 | { | |
06e40b26 RS |
1781 | x = protect_from_queue (x, 0); |
1782 | y = protect_from_queue (y, 0); | |
77c9c6c2 RK |
1783 | x = convert_to_mode (wider_mode, x, unsignedp); |
1784 | y = convert_to_mode (wider_mode, y, unsignedp); | |
b1ec3c92 | 1785 | emit_cmp_insn (x, y, comparison, NULL_RTX, |
77c9c6c2 RK |
1786 | wider_mode, unsignedp, align); |
1787 | return; | |
1788 | } | |
1789 | } | |
1790 | } | |
1791 | ||
1792 | /* Handle a lib call just for the mode we are using. */ | |
1793 | ||
1794 | if (cmp_optab->handlers[(int) mode].libfunc | |
1795 | && class != MODE_FLOAT) | |
1796 | { | |
1797 | rtx libfunc = cmp_optab->handlers[(int) mode].libfunc; | |
1798 | /* If we want unsigned, and this mode has a distinct unsigned | |
1799 | comparison routine, use that. */ | |
1800 | if (unsignedp && ucmp_optab->handlers[(int) mode].libfunc) | |
1801 | libfunc = ucmp_optab->handlers[(int) mode].libfunc; | |
1802 | ||
86f8eff3 | 1803 | emit_library_call (libfunc, 1, |
77c9c6c2 RK |
1804 | SImode, 2, x, mode, y, mode); |
1805 | ||
1806 | /* Integer comparison returns a result that must be compared against 1, | |
1807 | so that even if we do an unsigned compare afterward, | |
1808 | there is still a value that can represent the result "less than". */ | |
1809 | ||
1810 | emit_cmp_insn (hard_libcall_value (SImode), const1_rtx, | |
b1ec3c92 | 1811 | comparison, NULL_RTX, SImode, unsignedp, 0); |
77c9c6c2 RK |
1812 | return; |
1813 | } | |
1814 | ||
1815 | if (class == MODE_FLOAT) | |
1816 | emit_float_lib_cmp (x, y, comparison); | |
1817 | ||
1818 | else | |
1819 | abort (); | |
1820 | } | |
1821 | ||
1822 | /* Nonzero if a compare of mode MODE can be done straightforwardly | |
1823 | (without splitting it into pieces). */ | |
1824 | ||
1825 | int | |
1826 | can_compare_p (mode) | |
1827 | enum machine_mode mode; | |
1828 | { | |
1829 | do | |
1830 | { | |
1831 | if (cmp_optab->handlers[(int)mode].insn_code != CODE_FOR_nothing) | |
1832 | return 1; | |
1833 | mode = GET_MODE_WIDER_MODE (mode); | |
1834 | } while (mode != VOIDmode); | |
1835 | ||
1836 | return 0; | |
1837 | } | |
1838 | \f | |
1839 | /* Emit a library call comparison between floating point X and Y. | |
1840 | COMPARISON is the rtl operator to compare with (EQ, NE, GT, etc.). */ | |
1841 | ||
1842 | static void | |
1843 | emit_float_lib_cmp (x, y, comparison) | |
1844 | rtx x, y; | |
1845 | enum rtx_code comparison; | |
1846 | { | |
1847 | enum machine_mode mode = GET_MODE (x); | |
1848 | rtx libfunc; | |
1849 | ||
1850 | if (mode == SFmode) | |
1851 | switch (comparison) | |
1852 | { | |
1853 | case EQ: | |
1854 | libfunc = eqsf2_libfunc; | |
1855 | break; | |
1856 | ||
1857 | case NE: | |
1858 | libfunc = nesf2_libfunc; | |
1859 | break; | |
1860 | ||
1861 | case GT: | |
1862 | libfunc = gtsf2_libfunc; | |
1863 | break; | |
1864 | ||
1865 | case GE: | |
1866 | libfunc = gesf2_libfunc; | |
1867 | break; | |
1868 | ||
1869 | case LT: | |
1870 | libfunc = ltsf2_libfunc; | |
1871 | break; | |
1872 | ||
1873 | case LE: | |
1874 | libfunc = lesf2_libfunc; | |
1875 | break; | |
1876 | } | |
1877 | else if (mode == DFmode) | |
1878 | switch (comparison) | |
1879 | { | |
1880 | case EQ: | |
1881 | libfunc = eqdf2_libfunc; | |
1882 | break; | |
1883 | ||
1884 | case NE: | |
1885 | libfunc = nedf2_libfunc; | |
1886 | break; | |
1887 | ||
1888 | case GT: | |
1889 | libfunc = gtdf2_libfunc; | |
1890 | break; | |
1891 | ||
1892 | case GE: | |
1893 | libfunc = gedf2_libfunc; | |
1894 | break; | |
1895 | ||
1896 | case LT: | |
1897 | libfunc = ltdf2_libfunc; | |
1898 | break; | |
1899 | ||
1900 | case LE: | |
1901 | libfunc = ledf2_libfunc; | |
1902 | break; | |
1903 | } | |
b092b471 JW |
1904 | else if (mode == XFmode) |
1905 | switch (comparison) | |
1906 | { | |
1907 | case EQ: | |
1908 | libfunc = eqxf2_libfunc; | |
1909 | break; | |
1910 | ||
1911 | case NE: | |
1912 | libfunc = nexf2_libfunc; | |
1913 | break; | |
1914 | ||
1915 | case GT: | |
1916 | libfunc = gtxf2_libfunc; | |
1917 | break; | |
1918 | ||
1919 | case GE: | |
1920 | libfunc = gexf2_libfunc; | |
1921 | break; | |
1922 | ||
1923 | case LT: | |
1924 | libfunc = ltxf2_libfunc; | |
1925 | break; | |
1926 | ||
1927 | case LE: | |
1928 | libfunc = lexf2_libfunc; | |
1929 | break; | |
1930 | } | |
1931 | else if (mode == TFmode) | |
1932 | switch (comparison) | |
1933 | { | |
1934 | case EQ: | |
1935 | libfunc = eqtf2_libfunc; | |
1936 | break; | |
1937 | ||
1938 | case NE: | |
1939 | libfunc = netf2_libfunc; | |
1940 | break; | |
1941 | ||
1942 | case GT: | |
1943 | libfunc = gttf2_libfunc; | |
1944 | break; | |
1945 | ||
1946 | case GE: | |
1947 | libfunc = getf2_libfunc; | |
1948 | break; | |
1949 | ||
1950 | case LT: | |
1951 | libfunc = lttf2_libfunc; | |
1952 | break; | |
1953 | ||
1954 | case LE: | |
1955 | libfunc = letf2_libfunc; | |
1956 | break; | |
1957 | } | |
77c9c6c2 RK |
1958 | else |
1959 | { | |
1960 | enum machine_mode wider_mode; | |
1961 | ||
34e56753 | 1962 | for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode; |
77c9c6c2 RK |
1963 | wider_mode = GET_MODE_WIDER_MODE (wider_mode)) |
1964 | { | |
1965 | if ((cmp_optab->handlers[(int) wider_mode].insn_code | |
1966 | != CODE_FOR_nothing) | |
1967 | || (cmp_optab->handlers[(int) wider_mode].libfunc != 0)) | |
1968 | { | |
06e40b26 RS |
1969 | x = protect_from_queue (x, 0); |
1970 | y = protect_from_queue (y, 0); | |
77c9c6c2 RK |
1971 | x = convert_to_mode (wider_mode, x, 0); |
1972 | y = convert_to_mode (wider_mode, y, 0); | |
1973 | emit_float_lib_cmp (x, y, comparison); | |
1974 | return; | |
1975 | } | |
1976 | } | |
1977 | abort (); | |
1978 | } | |
1979 | ||
86f8eff3 | 1980 | emit_library_call (libfunc, 1, |
77c9c6c2 RK |
1981 | SImode, 2, x, mode, y, mode); |
1982 | ||
1983 | emit_cmp_insn (hard_libcall_value (SImode), const0_rtx, comparison, | |
b1ec3c92 | 1984 | NULL_RTX, SImode, 0, 0); |
77c9c6c2 RK |
1985 | } |
1986 | \f | |
1987 | /* Generate code to indirectly jump to a location given in the rtx LOC. */ | |
1988 | ||
1989 | void | |
1990 | emit_indirect_jump (loc) | |
1991 | rtx loc; | |
1992 | { | |
1993 | if (! ((*insn_operand_predicate[(int)CODE_FOR_indirect_jump][0]) | |
1994 | (loc, VOIDmode))) | |
1995 | loc = copy_to_mode_reg (insn_operand_mode[(int)CODE_FOR_indirect_jump][0], | |
1996 | loc); | |
1997 | ||
1998 | emit_jump_insn (gen_indirect_jump (loc)); | |
9649fb4d | 1999 | emit_barrier (); |
77c9c6c2 RK |
2000 | } |
2001 | \f | |
2002 | /* These three functions generate an insn body and return it | |
2003 | rather than emitting the insn. | |
2004 | ||
2005 | They do not protect from queued increments, | |
2006 | because they may be used 1) in protect_from_queue itself | |
2007 | and 2) in other passes where there is no queue. */ | |
2008 | ||
2009 | /* Generate and return an insn body to add Y to X. */ | |
2010 | ||
2011 | rtx | |
2012 | gen_add2_insn (x, y) | |
2013 | rtx x, y; | |
2014 | { | |
2015 | int icode = (int) add_optab->handlers[(int) GET_MODE (x)].insn_code; | |
2016 | ||
2017 | if (! (*insn_operand_predicate[icode][0]) (x, insn_operand_mode[icode][0]) | |
2018 | || ! (*insn_operand_predicate[icode][1]) (x, insn_operand_mode[icode][1]) | |
2019 | || ! (*insn_operand_predicate[icode][2]) (y, insn_operand_mode[icode][2])) | |
2020 | abort (); | |
2021 | ||
2022 | return (GEN_FCN (icode) (x, x, y)); | |
2023 | } | |
2024 | ||
2025 | int | |
2026 | have_add2_insn (mode) | |
2027 | enum machine_mode mode; | |
2028 | { | |
2029 | return add_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing; | |
2030 | } | |
2031 | ||
2032 | /* Generate and return an insn body to subtract Y from X. */ | |
2033 | ||
2034 | rtx | |
2035 | gen_sub2_insn (x, y) | |
2036 | rtx x, y; | |
2037 | { | |
2038 | int icode = (int) sub_optab->handlers[(int) GET_MODE (x)].insn_code; | |
2039 | ||
2040 | if (! (*insn_operand_predicate[icode][0]) (x, insn_operand_mode[icode][0]) | |
2041 | || ! (*insn_operand_predicate[icode][1]) (x, insn_operand_mode[icode][1]) | |
2042 | || ! (*insn_operand_predicate[icode][2]) (y, insn_operand_mode[icode][2])) | |
2043 | abort (); | |
2044 | ||
2045 | return (GEN_FCN (icode) (x, x, y)); | |
2046 | } | |
2047 | ||
2048 | int | |
2049 | have_sub2_insn (mode) | |
2050 | enum machine_mode mode; | |
2051 | { | |
2052 | return sub_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing; | |
2053 | } | |
2054 | ||
2055 | /* Generate the body of an instruction to copy Y into X. */ | |
2056 | ||
2057 | rtx | |
2058 | gen_move_insn (x, y) | |
2059 | rtx x, y; | |
2060 | { | |
2061 | register enum machine_mode mode = GET_MODE (x); | |
2062 | enum insn_code insn_code; | |
2063 | ||
2064 | if (mode == VOIDmode) | |
2065 | mode = GET_MODE (y); | |
2066 | ||
2067 | insn_code = mov_optab->handlers[(int) mode].insn_code; | |
2068 | ||
2069 | /* Handle MODE_CC modes: If we don't have a special move insn for this mode, | |
2070 | find a mode to do it in. If we have a movcc, use it. Otherwise, | |
2071 | find the MODE_INT mode of the same width. */ | |
2072 | ||
2073 | if (insn_code == CODE_FOR_nothing) | |
2074 | { | |
2075 | enum machine_mode tmode = VOIDmode; | |
2076 | rtx x1 = x, y1 = y; | |
2077 | ||
2078 | if (GET_MODE_CLASS (mode) == MODE_CC && mode != CCmode | |
2079 | && mov_optab->handlers[(int) CCmode].insn_code != CODE_FOR_nothing) | |
2080 | tmode = CCmode; | |
2081 | else if (GET_MODE_CLASS (mode) == MODE_CC) | |
2082 | for (tmode = QImode; tmode != VOIDmode; | |
2083 | tmode = GET_MODE_WIDER_MODE (tmode)) | |
2084 | if (GET_MODE_SIZE (tmode) == GET_MODE_SIZE (mode)) | |
2085 | break; | |
2086 | ||
2087 | if (tmode == VOIDmode) | |
2088 | abort (); | |
2089 | ||
2090 | /* Get X and Y in TMODE. We can't use gen_lowpart here because it | |
2091 | may call change_address which is not appropriate if we were | |
2092 | called when a reload was in progress. We don't have to worry | |
2093 | about changing the address since the size in bytes is supposed to | |
2094 | be the same. Copy the MEM to change the mode and move any | |
2095 | substitutions from the old MEM to the new one. */ | |
2096 | ||
2097 | if (reload_in_progress) | |
2098 | { | |
2099 | x = gen_lowpart_common (tmode, x1); | |
2100 | if (x == 0 && GET_CODE (x1) == MEM) | |
2101 | { | |
2102 | x = gen_rtx (MEM, tmode, XEXP (x1, 0)); | |
2103 | RTX_UNCHANGING_P (x) = RTX_UNCHANGING_P (x1); | |
2104 | MEM_IN_STRUCT_P (x) = MEM_IN_STRUCT_P (x1); | |
2105 | MEM_VOLATILE_P (x) = MEM_VOLATILE_P (x1); | |
2106 | copy_replacements (x1, x); | |
2107 | } | |
2108 | ||
2109 | y = gen_lowpart_common (tmode, y1); | |
2110 | if (y == 0 && GET_CODE (y1) == MEM) | |
2111 | { | |
2112 | y = gen_rtx (MEM, tmode, XEXP (y1, 0)); | |
2113 | RTX_UNCHANGING_P (y) = RTX_UNCHANGING_P (y1); | |
2114 | MEM_IN_STRUCT_P (y) = MEM_IN_STRUCT_P (y1); | |
2115 | MEM_VOLATILE_P (y) = MEM_VOLATILE_P (y1); | |
2116 | copy_replacements (y1, y); | |
2117 | } | |
2118 | } | |
2119 | else | |
2120 | { | |
2121 | x = gen_lowpart (tmode, x); | |
2122 | y = gen_lowpart (tmode, y); | |
2123 | } | |
2124 | ||
2125 | insn_code = mov_optab->handlers[(int) tmode].insn_code; | |
2126 | } | |
2127 | ||
2128 | return (GEN_FCN (insn_code) (x, y)); | |
2129 | } | |
2130 | \f | |
2131 | /* Tables of patterns for extending one integer mode to another. */ | |
34e56753 | 2132 | static enum insn_code extendtab[MAX_MACHINE_MODE][MAX_MACHINE_MODE][2]; |
77c9c6c2 | 2133 | |
34e56753 RS |
2134 | /* Return the insn code used to extend FROM_MODE to TO_MODE. |
2135 | UNSIGNEDP specifies zero-extension instead of sign-extension. If | |
2136 | no such operation exists, CODE_FOR_nothing will be returned. */ | |
77c9c6c2 | 2137 | |
34e56753 | 2138 | enum insn_code |
77c9c6c2 RK |
2139 | can_extend_p (to_mode, from_mode, unsignedp) |
2140 | enum machine_mode to_mode, from_mode; | |
2141 | int unsignedp; | |
2142 | { | |
34e56753 | 2143 | return extendtab[(int) to_mode][(int) from_mode][unsignedp]; |
77c9c6c2 RK |
2144 | } |
2145 | ||
2146 | /* Generate the body of an insn to extend Y (with mode MFROM) | |
2147 | into X (with mode MTO). Do zero-extension if UNSIGNEDP is nonzero. */ | |
2148 | ||
2149 | rtx | |
2150 | gen_extend_insn (x, y, mto, mfrom, unsignedp) | |
2151 | rtx x, y; | |
2152 | enum machine_mode mto, mfrom; | |
2153 | int unsignedp; | |
2154 | { | |
34e56753 | 2155 | return (GEN_FCN (extendtab[(int) mto][(int) mfrom][unsignedp]) (x, y)); |
77c9c6c2 RK |
2156 | } |
2157 | ||
2158 | static void | |
2159 | init_extends () | |
2160 | { | |
34e56753 RS |
2161 | enum insn_code *p; |
2162 | ||
2163 | for (p = extendtab[0][0]; | |
2164 | p < extendtab[0][0] + sizeof extendtab / sizeof extendtab[0][0][0]; | |
2165 | p++) | |
2166 | *p = CODE_FOR_nothing; | |
77c9c6c2 RK |
2167 | |
2168 | #ifdef HAVE_extendditi2 | |
2169 | if (HAVE_extendditi2) | |
34e56753 | 2170 | extendtab[(int) TImode][(int) DImode][0] = CODE_FOR_extendditi2; |
77c9c6c2 RK |
2171 | #endif |
2172 | #ifdef HAVE_extendsiti2 | |
2173 | if (HAVE_extendsiti2) | |
34e56753 | 2174 | extendtab[(int) TImode][(int) SImode][0] = CODE_FOR_extendsiti2; |
77c9c6c2 RK |
2175 | #endif |
2176 | #ifdef HAVE_extendhiti2 | |
2177 | if (HAVE_extendhiti2) | |
34e56753 | 2178 | extendtab[(int) TImode][(int) HImode][0] = CODE_FOR_extendhiti2; |
77c9c6c2 RK |
2179 | #endif |
2180 | #ifdef HAVE_extendqiti2 | |
2181 | if (HAVE_extendqiti2) | |
34e56753 | 2182 | extendtab[(int) TImode][(int) QImode][0] = CODE_FOR_extendqiti2; |
77c9c6c2 RK |
2183 | #endif |
2184 | #ifdef HAVE_extendsidi2 | |
2185 | if (HAVE_extendsidi2) | |
34e56753 | 2186 | extendtab[(int) DImode][(int) SImode][0] = CODE_FOR_extendsidi2; |
77c9c6c2 RK |
2187 | #endif |
2188 | #ifdef HAVE_extendhidi2 | |
2189 | if (HAVE_extendhidi2) | |
34e56753 | 2190 | extendtab[(int) DImode][(int) HImode][0] = CODE_FOR_extendhidi2; |
77c9c6c2 RK |
2191 | #endif |
2192 | #ifdef HAVE_extendqidi2 | |
2193 | if (HAVE_extendqidi2) | |
34e56753 | 2194 | extendtab[(int) DImode][(int) QImode][0] = CODE_FOR_extendqidi2; |
77c9c6c2 RK |
2195 | #endif |
2196 | #ifdef HAVE_extendhisi2 | |
2197 | if (HAVE_extendhisi2) | |
34e56753 | 2198 | extendtab[(int) SImode][(int) HImode][0] = CODE_FOR_extendhisi2; |
77c9c6c2 RK |
2199 | #endif |
2200 | #ifdef HAVE_extendqisi2 | |
2201 | if (HAVE_extendqisi2) | |
34e56753 | 2202 | extendtab[(int) SImode][(int) QImode][0] = CODE_FOR_extendqisi2; |
77c9c6c2 RK |
2203 | #endif |
2204 | #ifdef HAVE_extendqihi2 | |
2205 | if (HAVE_extendqihi2) | |
34e56753 | 2206 | extendtab[(int) HImode][(int) QImode][0] = CODE_FOR_extendqihi2; |
77c9c6c2 RK |
2207 | #endif |
2208 | ||
2209 | #ifdef HAVE_zero_extendditi2 | |
2210 | if (HAVE_zero_extendsiti2) | |
34e56753 | 2211 | extendtab[(int) TImode][(int) DImode][1] = CODE_FOR_zero_extendditi2; |
77c9c6c2 RK |
2212 | #endif |
2213 | #ifdef HAVE_zero_extendsiti2 | |
2214 | if (HAVE_zero_extendsiti2) | |
34e56753 | 2215 | extendtab[(int) TImode][(int) SImode][1] = CODE_FOR_zero_extendsiti2; |
77c9c6c2 RK |
2216 | #endif |
2217 | #ifdef HAVE_zero_extendhiti2 | |
2218 | if (HAVE_zero_extendhiti2) | |
34e56753 | 2219 | extendtab[(int) TImode][(int) HImode][1] = CODE_FOR_zero_extendhiti2; |
77c9c6c2 RK |
2220 | #endif |
2221 | #ifdef HAVE_zero_extendqiti2 | |
2222 | if (HAVE_zero_extendqiti2) | |
34e56753 | 2223 | extendtab[(int) TImode][(int) QImode][1] = CODE_FOR_zero_extendqiti2; |
77c9c6c2 RK |
2224 | #endif |
2225 | #ifdef HAVE_zero_extendsidi2 | |
2226 | if (HAVE_zero_extendsidi2) | |
34e56753 | 2227 | extendtab[(int) DImode][(int) SImode][1] = CODE_FOR_zero_extendsidi2; |
77c9c6c2 RK |
2228 | #endif |
2229 | #ifdef HAVE_zero_extendhidi2 | |
2230 | if (HAVE_zero_extendhidi2) | |
34e56753 | 2231 | extendtab[(int) DImode][(int) HImode][1] = CODE_FOR_zero_extendhidi2; |
77c9c6c2 RK |
2232 | #endif |
2233 | #ifdef HAVE_zero_extendqidi2 | |
2234 | if (HAVE_zero_extendqidi2) | |
34e56753 | 2235 | extendtab[(int) DImode][(int) QImode][1] = CODE_FOR_zero_extendqidi2; |
77c9c6c2 RK |
2236 | #endif |
2237 | #ifdef HAVE_zero_extendhisi2 | |
2238 | if (HAVE_zero_extendhisi2) | |
34e56753 | 2239 | extendtab[(int) SImode][(int) HImode][1] = CODE_FOR_zero_extendhisi2; |
77c9c6c2 RK |
2240 | #endif |
2241 | #ifdef HAVE_zero_extendqisi2 | |
2242 | if (HAVE_zero_extendqisi2) | |
34e56753 | 2243 | extendtab[(int) SImode][(int) QImode][1] = CODE_FOR_zero_extendqisi2; |
77c9c6c2 RK |
2244 | #endif |
2245 | #ifdef HAVE_zero_extendqihi2 | |
2246 | if (HAVE_zero_extendqihi2) | |
34e56753 | 2247 | extendtab[(int) HImode][(int) QImode][1] = CODE_FOR_zero_extendqihi2; |
77c9c6c2 RK |
2248 | #endif |
2249 | } | |
2250 | \f | |
2251 | /* can_fix_p and can_float_p say whether the target machine | |
2252 | can directly convert a given fixed point type to | |
2253 | a given floating point type, or vice versa. | |
2254 | The returned value is the CODE_FOR_... value to use, | |
2255 | or CODE_FOR_nothing if these modes cannot be directly converted. */ | |
2256 | ||
2257 | static enum insn_code fixtab[NUM_MACHINE_MODES][NUM_MACHINE_MODES][2]; | |
2258 | static enum insn_code fixtrunctab[NUM_MACHINE_MODES][NUM_MACHINE_MODES][2]; | |
2259 | static enum insn_code floattab[NUM_MACHINE_MODES][NUM_MACHINE_MODES][2]; | |
2260 | ||
2261 | /* *TRUNCP_PTR is set to 1 if it is necessary to output | |
2262 | an explicit FTRUNC insn before the fix insn; otherwise 0. */ | |
2263 | ||
2264 | static enum insn_code | |
2265 | can_fix_p (fixmode, fltmode, unsignedp, truncp_ptr) | |
2266 | enum machine_mode fltmode, fixmode; | |
2267 | int unsignedp; | |
2268 | int *truncp_ptr; | |
2269 | { | |
2270 | *truncp_ptr = 0; | |
2271 | if (fixtrunctab[(int) fltmode][(int) fixmode][unsignedp] != CODE_FOR_nothing) | |
2272 | return fixtrunctab[(int) fltmode][(int) fixmode][unsignedp]; | |
2273 | ||
2274 | if (ftrunc_optab->handlers[(int) fltmode].insn_code != CODE_FOR_nothing) | |
2275 | { | |
2276 | *truncp_ptr = 1; | |
2277 | return fixtab[(int) fltmode][(int) fixmode][unsignedp]; | |
2278 | } | |
2279 | return CODE_FOR_nothing; | |
2280 | } | |
2281 | ||
2282 | static enum insn_code | |
2283 | can_float_p (fltmode, fixmode, unsignedp) | |
2284 | enum machine_mode fixmode, fltmode; | |
2285 | int unsignedp; | |
2286 | { | |
2287 | return floattab[(int) fltmode][(int) fixmode][unsignedp]; | |
2288 | } | |
2289 | ||
2290 | void | |
2291 | init_fixtab () | |
2292 | { | |
2293 | enum insn_code *p; | |
2294 | for (p = fixtab[0][0]; | |
2295 | p < fixtab[0][0] + sizeof fixtab / sizeof (fixtab[0][0][0]); | |
2296 | p++) | |
2297 | *p = CODE_FOR_nothing; | |
2298 | for (p = fixtrunctab[0][0]; | |
2299 | p < fixtrunctab[0][0] + sizeof fixtrunctab / sizeof (fixtrunctab[0][0][0]); | |
2300 | p++) | |
2301 | *p = CODE_FOR_nothing; | |
2302 | ||
2303 | #ifdef HAVE_fixsfqi2 | |
2304 | if (HAVE_fixsfqi2) | |
2305 | fixtab[(int) SFmode][(int) QImode][0] = CODE_FOR_fixsfqi2; | |
2306 | #endif | |
2307 | #ifdef HAVE_fixsfhi2 | |
2308 | if (HAVE_fixsfhi2) | |
2309 | fixtab[(int) SFmode][(int) HImode][0] = CODE_FOR_fixsfhi2; | |
2310 | #endif | |
2311 | #ifdef HAVE_fixsfsi2 | |
2312 | if (HAVE_fixsfsi2) | |
2313 | fixtab[(int) SFmode][(int) SImode][0] = CODE_FOR_fixsfsi2; | |
2314 | #endif | |
2315 | #ifdef HAVE_fixsfdi2 | |
2316 | if (HAVE_fixsfdi2) | |
2317 | fixtab[(int) SFmode][(int) DImode][0] = CODE_FOR_fixsfdi2; | |
2318 | #endif | |
2319 | ||
2320 | #ifdef HAVE_fixdfqi2 | |
2321 | if (HAVE_fixdfqi2) | |
2322 | fixtab[(int) DFmode][(int) QImode][0] = CODE_FOR_fixdfqi2; | |
2323 | #endif | |
2324 | #ifdef HAVE_fixdfhi2 | |
2325 | if (HAVE_fixdfhi2) | |
2326 | fixtab[(int) DFmode][(int) HImode][0] = CODE_FOR_fixdfhi2; | |
2327 | #endif | |
2328 | #ifdef HAVE_fixdfsi2 | |
2329 | if (HAVE_fixdfsi2) | |
2330 | fixtab[(int) DFmode][(int) SImode][0] = CODE_FOR_fixdfsi2; | |
2331 | #endif | |
2332 | #ifdef HAVE_fixdfdi2 | |
2333 | if (HAVE_fixdfdi2) | |
2334 | fixtab[(int) DFmode][(int) DImode][0] = CODE_FOR_fixdfdi2; | |
2335 | #endif | |
2336 | #ifdef HAVE_fixdfti2 | |
2337 | if (HAVE_fixdfti2) | |
2338 | fixtab[(int) DFmode][(int) TImode][0] = CODE_FOR_fixdfti2; | |
2339 | #endif | |
2340 | ||
b092b471 JW |
2341 | #ifdef HAVE_fixxfqi2 |
2342 | if (HAVE_fixxfqi2) | |
2343 | fixtab[(int) XFmode][(int) QImode][0] = CODE_FOR_fixxfqi2; | |
2344 | #endif | |
2345 | #ifdef HAVE_fixxfhi2 | |
2346 | if (HAVE_fixxfhi2) | |
2347 | fixtab[(int) XFmode][(int) HImode][0] = CODE_FOR_fixxfhi2; | |
2348 | #endif | |
2349 | #ifdef HAVE_fixxfsi2 | |
2350 | if (HAVE_fixxfsi2) | |
2351 | fixtab[(int) XFmode][(int) SImode][0] = CODE_FOR_fixxfsi2; | |
2352 | #endif | |
2353 | #ifdef HAVE_fixxfdi2 | |
2354 | if (HAVE_fixxfdi2) | |
2355 | fixtab[(int) XFmode][(int) DImode][0] = CODE_FOR_fixxfdi2; | |
2356 | #endif | |
2357 | #ifdef HAVE_fixxfti2 | |
2358 | if (HAVE_fixxfti2) | |
2359 | fixtab[(int) XFmode][(int) TImode][0] = CODE_FOR_fixxfti2; | |
2360 | #endif | |
2361 | ||
77c9c6c2 RK |
2362 | #ifdef HAVE_fixtfqi2 |
2363 | if (HAVE_fixtfqi2) | |
2364 | fixtab[(int) TFmode][(int) QImode][0] = CODE_FOR_fixtfqi2; | |
2365 | #endif | |
2366 | #ifdef HAVE_fixtfhi2 | |
2367 | if (HAVE_fixtfhi2) | |
2368 | fixtab[(int) TFmode][(int) HImode][0] = CODE_FOR_fixtfhi2; | |
2369 | #endif | |
2370 | #ifdef HAVE_fixtfsi2 | |
2371 | if (HAVE_fixtfsi2) | |
2372 | fixtab[(int) TFmode][(int) SImode][0] = CODE_FOR_fixtfsi2; | |
2373 | #endif | |
2374 | #ifdef HAVE_fixtfdi2 | |
2375 | if (HAVE_fixtfdi2) | |
2376 | fixtab[(int) TFmode][(int) DImode][0] = CODE_FOR_fixtfdi2; | |
2377 | #endif | |
2378 | #ifdef HAVE_fixtfti2 | |
2379 | if (HAVE_fixtfti2) | |
2380 | fixtab[(int) TFmode][(int) TImode][0] = CODE_FOR_fixtfti2; | |
2381 | #endif | |
2382 | ||
2383 | #ifdef HAVE_fixunssfqi2 | |
2384 | if (HAVE_fixunssfqi2) | |
2385 | fixtab[(int) SFmode][(int) QImode][1] = CODE_FOR_fixunssfqi2; | |
2386 | #endif | |
2387 | #ifdef HAVE_fixunssfhi2 | |
2388 | if (HAVE_fixunssfhi2) | |
2389 | fixtab[(int) SFmode][(int) HImode][1] = CODE_FOR_fixunssfhi2; | |
2390 | #endif | |
2391 | #ifdef HAVE_fixunssfsi2 | |
2392 | if (HAVE_fixunssfsi2) | |
2393 | fixtab[(int) SFmode][(int) SImode][1] = CODE_FOR_fixunssfsi2; | |
2394 | #endif | |
2395 | #ifdef HAVE_fixunssfdi2 | |
2396 | if (HAVE_fixunssfdi2) | |
2397 | fixtab[(int) SFmode][(int) DImode][1] = CODE_FOR_fixunssfdi2; | |
2398 | #endif | |
2399 | ||
2400 | #ifdef HAVE_fixunsdfqi2 | |
2401 | if (HAVE_fixunsdfqi2) | |
2402 | fixtab[(int) DFmode][(int) QImode][1] = CODE_FOR_fixunsdfqi2; | |
2403 | #endif | |
2404 | #ifdef HAVE_fixunsdfhi2 | |
2405 | if (HAVE_fixunsdfhi2) | |
2406 | fixtab[(int) DFmode][(int) HImode][1] = CODE_FOR_fixunsdfhi2; | |
2407 | #endif | |
2408 | #ifdef HAVE_fixunsdfsi2 | |
2409 | if (HAVE_fixunsdfsi2) | |
2410 | fixtab[(int) DFmode][(int) SImode][1] = CODE_FOR_fixunsdfsi2; | |
2411 | #endif | |
2412 | #ifdef HAVE_fixunsdfdi2 | |
2413 | if (HAVE_fixunsdfdi2) | |
2414 | fixtab[(int) DFmode][(int) DImode][1] = CODE_FOR_fixunsdfdi2; | |
2415 | #endif | |
2416 | #ifdef HAVE_fixunsdfti2 | |
2417 | if (HAVE_fixunsdfti2) | |
2418 | fixtab[(int) DFmode][(int) TImode][1] = CODE_FOR_fixunsdfti2; | |
2419 | #endif | |
2420 | ||
b092b471 JW |
2421 | #ifdef HAVE_fixunsxfqi2 |
2422 | if (HAVE_fixunsxfqi2) | |
2423 | fixtab[(int) XFmode][(int) QImode][1] = CODE_FOR_fixunsxfqi2; | |
2424 | #endif | |
2425 | #ifdef HAVE_fixunsxfhi2 | |
2426 | if (HAVE_fixunsxfhi2) | |
2427 | fixtab[(int) XFmode][(int) HImode][1] = CODE_FOR_fixunsxfhi2; | |
2428 | #endif | |
2429 | #ifdef HAVE_fixunsxfsi2 | |
2430 | if (HAVE_fixunsxfsi2) | |
2431 | fixtab[(int) XFmode][(int) SImode][1] = CODE_FOR_fixunsxfsi2; | |
2432 | #endif | |
2433 | #ifdef HAVE_fixunsxfdi2 | |
2434 | if (HAVE_fixunsxfdi2) | |
2435 | fixtab[(int) XFmode][(int) DImode][1] = CODE_FOR_fixunsxfdi2; | |
2436 | #endif | |
2437 | #ifdef HAVE_fixunsxfti2 | |
2438 | if (HAVE_fixunsxfti2) | |
2439 | fixtab[(int) XFmode][(int) TImode][1] = CODE_FOR_fixunsxfti2; | |
2440 | #endif | |
2441 | ||
77c9c6c2 RK |
2442 | #ifdef HAVE_fixunstfqi2 |
2443 | if (HAVE_fixunstfqi2) | |
2444 | fixtab[(int) TFmode][(int) QImode][1] = CODE_FOR_fixunstfqi2; | |
2445 | #endif | |
2446 | #ifdef HAVE_fixunstfhi2 | |
2447 | if (HAVE_fixunstfhi2) | |
2448 | fixtab[(int) TFmode][(int) HImode][1] = CODE_FOR_fixunstfhi2; | |
2449 | #endif | |
2450 | #ifdef HAVE_fixunstfsi2 | |
2451 | if (HAVE_fixunstfsi2) | |
2452 | fixtab[(int) TFmode][(int) SImode][1] = CODE_FOR_fixunstfsi2; | |
2453 | #endif | |
2454 | #ifdef HAVE_fixunstfdi2 | |
2455 | if (HAVE_fixunstfdi2) | |
2456 | fixtab[(int) TFmode][(int) DImode][1] = CODE_FOR_fixunstfdi2; | |
2457 | #endif | |
2458 | #ifdef HAVE_fixunstfti2 | |
2459 | if (HAVE_fixunstfti2) | |
2460 | fixtab[(int) TFmode][(int) TImode][1] = CODE_FOR_fixunstfti2; | |
2461 | #endif | |
2462 | ||
2463 | #ifdef HAVE_fix_truncsfqi2 | |
2464 | if (HAVE_fix_truncsfqi2) | |
2465 | fixtrunctab[(int) SFmode][(int) QImode][0] = CODE_FOR_fix_truncsfqi2; | |
2466 | #endif | |
2467 | #ifdef HAVE_fix_truncsfhi2 | |
2468 | if (HAVE_fix_truncsfhi2) | |
2469 | fixtrunctab[(int) SFmode][(int) HImode][0] = CODE_FOR_fix_truncsfhi2; | |
2470 | #endif | |
2471 | #ifdef HAVE_fix_truncsfsi2 | |
2472 | if (HAVE_fix_truncsfsi2) | |
2473 | fixtrunctab[(int) SFmode][(int) SImode][0] = CODE_FOR_fix_truncsfsi2; | |
2474 | #endif | |
2475 | #ifdef HAVE_fix_truncsfdi2 | |
2476 | if (HAVE_fix_truncsfdi2) | |
2477 | fixtrunctab[(int) SFmode][(int) DImode][0] = CODE_FOR_fix_truncsfdi2; | |
2478 | #endif | |
2479 | ||
2480 | #ifdef HAVE_fix_truncdfqi2 | |
2481 | if (HAVE_fix_truncdfsi2) | |
2482 | fixtrunctab[(int) DFmode][(int) QImode][0] = CODE_FOR_fix_truncdfqi2; | |
2483 | #endif | |
2484 | #ifdef HAVE_fix_truncdfhi2 | |
2485 | if (HAVE_fix_truncdfhi2) | |
2486 | fixtrunctab[(int) DFmode][(int) HImode][0] = CODE_FOR_fix_truncdfhi2; | |
2487 | #endif | |
2488 | #ifdef HAVE_fix_truncdfsi2 | |
2489 | if (HAVE_fix_truncdfsi2) | |
2490 | fixtrunctab[(int) DFmode][(int) SImode][0] = CODE_FOR_fix_truncdfsi2; | |
2491 | #endif | |
2492 | #ifdef HAVE_fix_truncdfdi2 | |
2493 | if (HAVE_fix_truncdfdi2) | |
2494 | fixtrunctab[(int) DFmode][(int) DImode][0] = CODE_FOR_fix_truncdfdi2; | |
2495 | #endif | |
2496 | #ifdef HAVE_fix_truncdfti2 | |
2497 | if (HAVE_fix_truncdfti2) | |
2498 | fixtrunctab[(int) DFmode][(int) TImode][0] = CODE_FOR_fix_truncdfti2; | |
2499 | #endif | |
2500 | ||
b092b471 JW |
2501 | #ifdef HAVE_fix_truncxfqi2 |
2502 | if (HAVE_fix_truncxfqi2) | |
2503 | fixtrunctab[(int) XFmode][(int) QImode][0] = CODE_FOR_fix_truncxfqi2; | |
2504 | #endif | |
2505 | #ifdef HAVE_fix_truncxfhi2 | |
2506 | if (HAVE_fix_truncxfhi2) | |
2507 | fixtrunctab[(int) XFmode][(int) HImode][0] = CODE_FOR_fix_truncxfhi2; | |
2508 | #endif | |
2509 | #ifdef HAVE_fix_truncxfsi2 | |
2510 | if (HAVE_fix_truncxfsi2) | |
2511 | fixtrunctab[(int) XFmode][(int) SImode][0] = CODE_FOR_fix_truncxfsi2; | |
2512 | #endif | |
2513 | #ifdef HAVE_fix_truncxfdi2 | |
2514 | if (HAVE_fix_truncxfdi2) | |
2515 | fixtrunctab[(int) XFmode][(int) DImode][0] = CODE_FOR_fix_truncxfdi2; | |
2516 | #endif | |
2517 | #ifdef HAVE_fix_truncxfti2 | |
2518 | if (HAVE_fix_truncxfti2) | |
2519 | fixtrunctab[(int) XFmode][(int) TImode][0] = CODE_FOR_fix_truncxfti2; | |
2520 | #endif | |
2521 | ||
77c9c6c2 RK |
2522 | #ifdef HAVE_fix_trunctfqi2 |
2523 | if (HAVE_fix_trunctfqi2) | |
2524 | fixtrunctab[(int) TFmode][(int) QImode][0] = CODE_FOR_fix_trunctfqi2; | |
2525 | #endif | |
2526 | #ifdef HAVE_fix_trunctfhi2 | |
2527 | if (HAVE_fix_trunctfhi2) | |
2528 | fixtrunctab[(int) TFmode][(int) HImode][0] = CODE_FOR_fix_trunctfhi2; | |
2529 | #endif | |
2530 | #ifdef HAVE_fix_trunctfsi2 | |
2531 | if (HAVE_fix_trunctfsi2) | |
2532 | fixtrunctab[(int) TFmode][(int) SImode][0] = CODE_FOR_fix_trunctfsi2; | |
2533 | #endif | |
2534 | #ifdef HAVE_fix_trunctfdi2 | |
2535 | if (HAVE_fix_trunctfdi2) | |
2536 | fixtrunctab[(int) TFmode][(int) DImode][0] = CODE_FOR_fix_trunctfdi2; | |
2537 | #endif | |
2538 | #ifdef HAVE_fix_trunctfti2 | |
2539 | if (HAVE_fix_trunctfti2) | |
2540 | fixtrunctab[(int) TFmode][(int) TImode][0] = CODE_FOR_fix_trunctfti2; | |
2541 | #endif | |
2542 | ||
2543 | #ifdef HAVE_fixuns_truncsfqi2 | |
2544 | if (HAVE_fixuns_truncsfqi2) | |
2545 | fixtrunctab[(int) SFmode][(int) QImode][1] = CODE_FOR_fixuns_truncsfqi2; | |
2546 | #endif | |
2547 | #ifdef HAVE_fixuns_truncsfhi2 | |
2548 | if (HAVE_fixuns_truncsfhi2) | |
2549 | fixtrunctab[(int) SFmode][(int) HImode][1] = CODE_FOR_fixuns_truncsfhi2; | |
2550 | #endif | |
2551 | #ifdef HAVE_fixuns_truncsfsi2 | |
2552 | if (HAVE_fixuns_truncsfsi2) | |
2553 | fixtrunctab[(int) SFmode][(int) SImode][1] = CODE_FOR_fixuns_truncsfsi2; | |
2554 | #endif | |
2555 | #ifdef HAVE_fixuns_truncsfdi2 | |
2556 | if (HAVE_fixuns_truncsfdi2) | |
2557 | fixtrunctab[(int) SFmode][(int) DImode][1] = CODE_FOR_fixuns_truncsfdi2; | |
2558 | #endif | |
2559 | ||
2560 | #ifdef HAVE_fixuns_truncdfqi2 | |
2561 | if (HAVE_fixuns_truncdfqi2) | |
2562 | fixtrunctab[(int) DFmode][(int) QImode][1] = CODE_FOR_fixuns_truncdfqi2; | |
2563 | #endif | |
2564 | #ifdef HAVE_fixuns_truncdfhi2 | |
2565 | if (HAVE_fixuns_truncdfhi2) | |
2566 | fixtrunctab[(int) DFmode][(int) HImode][1] = CODE_FOR_fixuns_truncdfhi2; | |
2567 | #endif | |
2568 | #ifdef HAVE_fixuns_truncdfsi2 | |
2569 | if (HAVE_fixuns_truncdfsi2) | |
2570 | fixtrunctab[(int) DFmode][(int) SImode][1] = CODE_FOR_fixuns_truncdfsi2; | |
2571 | #endif | |
2572 | #ifdef HAVE_fixuns_truncdfdi2 | |
2573 | if (HAVE_fixuns_truncdfdi2) | |
2574 | fixtrunctab[(int) DFmode][(int) DImode][1] = CODE_FOR_fixuns_truncdfdi2; | |
2575 | #endif | |
2576 | #ifdef HAVE_fixuns_truncdfti2 | |
2577 | if (HAVE_fixuns_truncdfti2) | |
2578 | fixtrunctab[(int) DFmode][(int) TImode][1] = CODE_FOR_fixuns_truncdfti2; | |
2579 | #endif | |
2580 | ||
b092b471 JW |
2581 | #ifdef HAVE_fixuns_truncxfqi2 |
2582 | if (HAVE_fixuns_truncxfqi2) | |
2583 | fixtrunctab[(int) XFmode][(int) QImode][1] = CODE_FOR_fixuns_truncxfqi2; | |
2584 | #endif | |
2585 | #ifdef HAVE_fixuns_truncxfhi2 | |
2586 | if (HAVE_fixuns_truncxfhi2) | |
2587 | fixtrunctab[(int) XFmode][(int) HImode][1] = CODE_FOR_fixuns_truncxfhi2; | |
2588 | #endif | |
2589 | #ifdef HAVE_fixuns_truncxfsi2 | |
2590 | if (HAVE_fixuns_truncxfsi2) | |
2591 | fixtrunctab[(int) XFmode][(int) SImode][1] = CODE_FOR_fixuns_truncxfsi2; | |
2592 | #endif | |
2593 | #ifdef HAVE_fixuns_truncxfdi2 | |
2594 | if (HAVE_fixuns_truncxfdi2) | |
2595 | fixtrunctab[(int) XFmode][(int) DImode][1] = CODE_FOR_fixuns_truncxfdi2; | |
2596 | #endif | |
2597 | #ifdef HAVE_fixuns_truncxfti2 | |
2598 | if (HAVE_fixuns_truncxfti2) | |
2599 | fixtrunctab[(int) XFmode][(int) TImode][1] = CODE_FOR_fixuns_truncxfti2; | |
2600 | #endif | |
2601 | ||
77c9c6c2 RK |
2602 | #ifdef HAVE_fixuns_trunctfqi2 |
2603 | if (HAVE_fixuns_trunctfqi2) | |
2604 | fixtrunctab[(int) TFmode][(int) QImode][1] = CODE_FOR_fixuns_trunctfqi2; | |
2605 | #endif | |
2606 | #ifdef HAVE_fixuns_trunctfhi2 | |
2607 | if (HAVE_fixuns_trunctfhi2) | |
2608 | fixtrunctab[(int) TFmode][(int) HImode][1] = CODE_FOR_fixuns_trunctfhi2; | |
2609 | #endif | |
2610 | #ifdef HAVE_fixuns_trunctfsi2 | |
2611 | if (HAVE_fixuns_trunctfsi2) | |
2612 | fixtrunctab[(int) TFmode][(int) SImode][1] = CODE_FOR_fixuns_trunctfsi2; | |
2613 | #endif | |
2614 | #ifdef HAVE_fixuns_trunctfdi2 | |
2615 | if (HAVE_fixuns_trunctfdi2) | |
2616 | fixtrunctab[(int) TFmode][(int) DImode][1] = CODE_FOR_fixuns_trunctfdi2; | |
2617 | #endif | |
2618 | #ifdef HAVE_fixuns_trunctfti2 | |
2619 | if (HAVE_fixuns_trunctfti2) | |
2620 | fixtrunctab[(int) TFmode][(int) TImode][1] = CODE_FOR_fixuns_trunctfti2; | |
2621 | #endif | |
2622 | ||
2623 | #ifdef FIXUNS_TRUNC_LIKE_FIX_TRUNC | |
2624 | /* This flag says the same insns that convert to a signed fixnum | |
2625 | also convert validly to an unsigned one. */ | |
2626 | { | |
2627 | int i; | |
2628 | int j; | |
2629 | for (i = 0; i < NUM_MACHINE_MODES; i++) | |
2630 | for (j = 0; j < NUM_MACHINE_MODES; j++) | |
2631 | fixtrunctab[i][j][1] = fixtrunctab[i][j][0]; | |
2632 | } | |
2633 | #endif | |
2634 | } | |
2635 | ||
2636 | void | |
2637 | init_floattab () | |
2638 | { | |
2639 | enum insn_code *p; | |
2640 | for (p = floattab[0][0]; | |
2641 | p < floattab[0][0] + sizeof floattab / sizeof (floattab[0][0][0]); | |
2642 | p++) | |
2643 | *p = CODE_FOR_nothing; | |
2644 | ||
2645 | #ifdef HAVE_floatqisf2 | |
2646 | if (HAVE_floatqisf2) | |
2647 | floattab[(int) SFmode][(int) QImode][0] = CODE_FOR_floatqisf2; | |
2648 | #endif | |
2649 | #ifdef HAVE_floathisf2 | |
2650 | if (HAVE_floathisf2) | |
2651 | floattab[(int) SFmode][(int) HImode][0] = CODE_FOR_floathisf2; | |
2652 | #endif | |
2653 | #ifdef HAVE_floatsisf2 | |
2654 | if (HAVE_floatsisf2) | |
2655 | floattab[(int) SFmode][(int) SImode][0] = CODE_FOR_floatsisf2; | |
2656 | #endif | |
2657 | #ifdef HAVE_floatdisf2 | |
2658 | if (HAVE_floatdisf2) | |
2659 | floattab[(int) SFmode][(int) DImode][0] = CODE_FOR_floatdisf2; | |
2660 | #endif | |
2661 | #ifdef HAVE_floattisf2 | |
2662 | if (HAVE_floattisf2) | |
2663 | floattab[(int) SFmode][(int) TImode][0] = CODE_FOR_floattisf2; | |
2664 | #endif | |
2665 | ||
2666 | #ifdef HAVE_floatqidf2 | |
2667 | if (HAVE_floatqidf2) | |
2668 | floattab[(int) DFmode][(int) QImode][0] = CODE_FOR_floatqidf2; | |
2669 | #endif | |
2670 | #ifdef HAVE_floathidf2 | |
2671 | if (HAVE_floathidf2) | |
2672 | floattab[(int) DFmode][(int) HImode][0] = CODE_FOR_floathidf2; | |
2673 | #endif | |
2674 | #ifdef HAVE_floatsidf2 | |
2675 | if (HAVE_floatsidf2) | |
2676 | floattab[(int) DFmode][(int) SImode][0] = CODE_FOR_floatsidf2; | |
2677 | #endif | |
2678 | #ifdef HAVE_floatdidf2 | |
2679 | if (HAVE_floatdidf2) | |
2680 | floattab[(int) DFmode][(int) DImode][0] = CODE_FOR_floatdidf2; | |
2681 | #endif | |
2682 | #ifdef HAVE_floattidf2 | |
2683 | if (HAVE_floattidf2) | |
2684 | floattab[(int) DFmode][(int) TImode][0] = CODE_FOR_floattidf2; | |
2685 | #endif | |
2686 | ||
b092b471 JW |
2687 | #ifdef HAVE_floatqixf2 |
2688 | if (HAVE_floatqixf2) | |
2689 | floattab[(int) XFmode][(int) QImode][0] = CODE_FOR_floatqixf2; | |
2690 | #endif | |
2691 | #ifdef HAVE_floathixf2 | |
2692 | if (HAVE_floathixf2) | |
2693 | floattab[(int) XFmode][(int) HImode][0] = CODE_FOR_floathixf2; | |
2694 | #endif | |
2695 | #ifdef HAVE_floatsixf2 | |
2696 | if (HAVE_floatsixf2) | |
2697 | floattab[(int) XFmode][(int) SImode][0] = CODE_FOR_floatsixf2; | |
2698 | #endif | |
2699 | #ifdef HAVE_floatdixf2 | |
2700 | if (HAVE_floatdixf2) | |
2701 | floattab[(int) XFmode][(int) DImode][0] = CODE_FOR_floatdixf2; | |
2702 | #endif | |
2703 | #ifdef HAVE_floattixf2 | |
2704 | if (HAVE_floattixf2) | |
2705 | floattab[(int) XFmode][(int) TImode][0] = CODE_FOR_floattixf2; | |
2706 | #endif | |
2707 | ||
77c9c6c2 RK |
2708 | #ifdef HAVE_floatqitf2 |
2709 | if (HAVE_floatqitf2) | |
2710 | floattab[(int) TFmode][(int) QImode][0] = CODE_FOR_floatqitf2; | |
2711 | #endif | |
2712 | #ifdef HAVE_floathitf2 | |
2713 | if (HAVE_floathitf2) | |
2714 | floattab[(int) TFmode][(int) HImode][0] = CODE_FOR_floathitf2; | |
2715 | #endif | |
2716 | #ifdef HAVE_floatsitf2 | |
2717 | if (HAVE_floatsitf2) | |
2718 | floattab[(int) TFmode][(int) SImode][0] = CODE_FOR_floatsitf2; | |
2719 | #endif | |
2720 | #ifdef HAVE_floatditf2 | |
2721 | if (HAVE_floatditf2) | |
2722 | floattab[(int) TFmode][(int) DImode][0] = CODE_FOR_floatditf2; | |
2723 | #endif | |
2724 | #ifdef HAVE_floattitf2 | |
2725 | if (HAVE_floattitf2) | |
2726 | floattab[(int) TFmode][(int) TImode][0] = CODE_FOR_floattitf2; | |
2727 | #endif | |
2728 | ||
2729 | #ifdef HAVE_floatunsqisf2 | |
2730 | if (HAVE_floatunsqisf2) | |
2731 | floattab[(int) SFmode][(int) QImode][1] = CODE_FOR_floatunsqisf2; | |
2732 | #endif | |
2733 | #ifdef HAVE_floatunshisf2 | |
2734 | if (HAVE_floatunshisf2) | |
2735 | floattab[(int) SFmode][(int) HImode][1] = CODE_FOR_floatunshisf2; | |
2736 | #endif | |
2737 | #ifdef HAVE_floatunssisf2 | |
2738 | if (HAVE_floatunssisf2) | |
2739 | floattab[(int) SFmode][(int) SImode][1] = CODE_FOR_floatunssisf2; | |
2740 | #endif | |
2741 | #ifdef HAVE_floatunsdisf2 | |
2742 | if (HAVE_floatunsdisf2) | |
2743 | floattab[(int) SFmode][(int) DImode][1] = CODE_FOR_floatunsdisf2; | |
2744 | #endif | |
2745 | #ifdef HAVE_floatunstisf2 | |
2746 | if (HAVE_floatunstisf2) | |
2747 | floattab[(int) SFmode][(int) TImode][1] = CODE_FOR_floatunstisf2; | |
2748 | #endif | |
2749 | ||
2750 | #ifdef HAVE_floatunsqidf2 | |
2751 | if (HAVE_floatunsqidf2) | |
2752 | floattab[(int) DFmode][(int) QImode][1] = CODE_FOR_floatunsqidf2; | |
2753 | #endif | |
2754 | #ifdef HAVE_floatunshidf2 | |
2755 | if (HAVE_floatunshidf2) | |
2756 | floattab[(int) DFmode][(int) HImode][1] = CODE_FOR_floatunshidf2; | |
2757 | #endif | |
2758 | #ifdef HAVE_floatunssidf2 | |
2759 | if (HAVE_floatunssidf2) | |
2760 | floattab[(int) DFmode][(int) SImode][1] = CODE_FOR_floatunssidf2; | |
2761 | #endif | |
2762 | #ifdef HAVE_floatunsdidf2 | |
2763 | if (HAVE_floatunsdidf2) | |
2764 | floattab[(int) DFmode][(int) DImode][1] = CODE_FOR_floatunsdidf2; | |
2765 | #endif | |
2766 | #ifdef HAVE_floatunstidf2 | |
2767 | if (HAVE_floatunstidf2) | |
2768 | floattab[(int) DFmode][(int) TImode][1] = CODE_FOR_floatunstidf2; | |
2769 | #endif | |
2770 | ||
b092b471 JW |
2771 | #ifdef HAVE_floatunsqixf2 |
2772 | if (HAVE_floatunsqixf2) | |
2773 | floattab[(int) XFmode][(int) QImode][1] = CODE_FOR_floatunsqixf2; | |
2774 | #endif | |
2775 | #ifdef HAVE_floatunshixf2 | |
2776 | if (HAVE_floatunshixf2) | |
2777 | floattab[(int) XFmode][(int) HImode][1] = CODE_FOR_floatunshixf2; | |
2778 | #endif | |
2779 | #ifdef HAVE_floatunssixf2 | |
2780 | if (HAVE_floatunssixf2) | |
2781 | floattab[(int) XFmode][(int) SImode][1] = CODE_FOR_floatunssixf2; | |
2782 | #endif | |
2783 | #ifdef HAVE_floatunsdixf2 | |
2784 | if (HAVE_floatunsdixf2) | |
2785 | floattab[(int) XFmode][(int) DImode][1] = CODE_FOR_floatunsdixf2; | |
2786 | #endif | |
2787 | #ifdef HAVE_floatunstixf2 | |
2788 | if (HAVE_floatunstixf2) | |
2789 | floattab[(int) XFmode][(int) TImode][1] = CODE_FOR_floatunstixf2; | |
2790 | #endif | |
2791 | ||
77c9c6c2 RK |
2792 | #ifdef HAVE_floatunsqitf2 |
2793 | if (HAVE_floatunsqitf2) | |
2794 | floattab[(int) TFmode][(int) QImode][1] = CODE_FOR_floatunsqitf2; | |
2795 | #endif | |
2796 | #ifdef HAVE_floatunshitf2 | |
2797 | if (HAVE_floatunshitf2) | |
2798 | floattab[(int) TFmode][(int) HImode][1] = CODE_FOR_floatunshitf2; | |
2799 | #endif | |
2800 | #ifdef HAVE_floatunssitf2 | |
2801 | if (HAVE_floatunssitf2) | |
2802 | floattab[(int) TFmode][(int) SImode][1] = CODE_FOR_floatunssitf2; | |
2803 | #endif | |
2804 | #ifdef HAVE_floatunsditf2 | |
2805 | if (HAVE_floatunsditf2) | |
2806 | floattab[(int) TFmode][(int) DImode][1] = CODE_FOR_floatunsditf2; | |
2807 | #endif | |
2808 | #ifdef HAVE_floatunstitf2 | |
2809 | if (HAVE_floatunstitf2) | |
2810 | floattab[(int) TFmode][(int) TImode][1] = CODE_FOR_floatunstitf2; | |
2811 | #endif | |
2812 | } | |
2813 | \f | |
2814 | /* Generate code to convert FROM to floating point | |
34e56753 | 2815 | and store in TO. FROM must be fixed point and not VOIDmode. |
77c9c6c2 RK |
2816 | UNSIGNEDP nonzero means regard FROM as unsigned. |
2817 | Normally this is done by correcting the final value | |
2818 | if it is negative. */ | |
2819 | ||
2820 | void | |
2821 | expand_float (to, from, unsignedp) | |
2822 | rtx to, from; | |
2823 | int unsignedp; | |
2824 | { | |
2825 | enum insn_code icode; | |
2826 | register rtx target = to; | |
2827 | enum machine_mode fmode, imode; | |
2828 | ||
34e56753 RS |
2829 | /* Crash now, because we won't be able to decide which mode to use. */ |
2830 | if (GET_MODE (from) == VOIDmode) | |
2831 | abort (); | |
2832 | ||
77c9c6c2 RK |
2833 | /* Look for an insn to do the conversion. Do it in the specified |
2834 | modes if possible; otherwise convert either input, output or both to | |
2835 | wider mode. If the integer mode is wider than the mode of FROM, | |
2836 | we can do the conversion signed even if the input is unsigned. */ | |
2837 | ||
2838 | for (imode = GET_MODE (from); imode != VOIDmode; | |
2839 | imode = GET_MODE_WIDER_MODE (imode)) | |
2840 | for (fmode = GET_MODE (to); fmode != VOIDmode; | |
2841 | fmode = GET_MODE_WIDER_MODE (fmode)) | |
2842 | { | |
2843 | int doing_unsigned = unsignedp; | |
2844 | ||
2845 | icode = can_float_p (fmode, imode, unsignedp); | |
2846 | if (icode == CODE_FOR_nothing && imode != GET_MODE (from) && unsignedp) | |
2847 | icode = can_float_p (fmode, imode, 0), doing_unsigned = 0; | |
2848 | ||
2849 | if (icode != CODE_FOR_nothing) | |
2850 | { | |
2851 | to = protect_from_queue (to, 1); | |
06e40b26 | 2852 | from = protect_from_queue (from, 0); |
77c9c6c2 RK |
2853 | |
2854 | if (imode != GET_MODE (from)) | |
2855 | from = convert_to_mode (imode, from, unsignedp); | |
77c9c6c2 RK |
2856 | |
2857 | if (fmode != GET_MODE (to)) | |
2858 | target = gen_reg_rtx (fmode); | |
2859 | ||
2860 | emit_unop_insn (icode, target, from, | |
2861 | doing_unsigned ? UNSIGNED_FLOAT : FLOAT); | |
2862 | ||
2863 | if (target != to) | |
2864 | convert_move (to, target, 0); | |
2865 | return; | |
2866 | } | |
2867 | } | |
2868 | ||
2869 | #if !defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC) | |
2870 | ||
2871 | /* Unsigned integer, and no way to convert directly. | |
2872 | Convert as signed, then conditionally adjust the result. */ | |
2873 | if (unsignedp) | |
2874 | { | |
2875 | rtx label = gen_label_rtx (); | |
2876 | rtx temp; | |
2877 | REAL_VALUE_TYPE offset; | |
2878 | ||
2879 | emit_queue (); | |
2880 | ||
2881 | to = protect_from_queue (to, 1); | |
2882 | from = protect_from_queue (from, 0); | |
2883 | ||
2884 | if (flag_force_mem) | |
2885 | from = force_not_mem (from); | |
2886 | ||
2887 | /* If we are about to do some arithmetic to correct for an | |
2888 | unsigned operand, do it in a pseudo-register. */ | |
2889 | ||
2890 | if (GET_CODE (to) != REG || REGNO (to) <= LAST_VIRTUAL_REGISTER) | |
2891 | target = gen_reg_rtx (GET_MODE (to)); | |
2892 | ||
2893 | /* Convert as signed integer to floating. */ | |
2894 | expand_float (target, from, 0); | |
2895 | ||
2896 | /* If FROM is negative (and therefore TO is negative), | |
2897 | correct its value by 2**bitwidth. */ | |
2898 | ||
2899 | do_pending_stack_adjust (); | |
b1ec3c92 | 2900 | emit_cmp_insn (from, const0_rtx, GE, NULL_RTX, GET_MODE (from), 0, 0); |
77c9c6c2 RK |
2901 | emit_jump_insn (gen_bge (label)); |
2902 | /* On SCO 3.2.1, ldexp rejects values outside [0.5, 1). | |
2903 | Rather than setting up a dconst_dot_5, let's hope SCO | |
2904 | fixes the bug. */ | |
2905 | offset = REAL_VALUE_LDEXP (dconst1, GET_MODE_BITSIZE (GET_MODE (from))); | |
2906 | temp = expand_binop (GET_MODE (to), add_optab, target, | |
2907 | immed_real_const_1 (offset, GET_MODE (to)), | |
2908 | target, 0, OPTAB_LIB_WIDEN); | |
2909 | if (temp != target) | |
2910 | emit_move_insn (target, temp); | |
2911 | do_pending_stack_adjust (); | |
2912 | emit_label (label); | |
2913 | } | |
2914 | else | |
2915 | #endif | |
2916 | ||
b092b471 JW |
2917 | /* No hardware instruction available; call a library rotine to convert from |
2918 | SImode, DImode, or TImode into SFmode, DFmode, XFmode, or TFmode. */ | |
77c9c6c2 | 2919 | { |
6bce1b78 | 2920 | rtx libfcn; |
77c9c6c2 RK |
2921 | rtx insns; |
2922 | ||
2923 | to = protect_from_queue (to, 1); | |
06e40b26 | 2924 | from = protect_from_queue (from, 0); |
77c9c6c2 RK |
2925 | |
2926 | if (GET_MODE_SIZE (GET_MODE (from)) < GET_MODE_SIZE (SImode)) | |
2927 | from = convert_to_mode (SImode, from, unsignedp); | |
77c9c6c2 RK |
2928 | |
2929 | if (flag_force_mem) | |
2930 | from = force_not_mem (from); | |
2931 | ||
2932 | if (GET_MODE (to) == SFmode) | |
2933 | { | |
2934 | if (GET_MODE (from) == SImode) | |
6bce1b78 | 2935 | libfcn = floatsisf_libfunc; |
77c9c6c2 | 2936 | else if (GET_MODE (from) == DImode) |
6bce1b78 | 2937 | libfcn = floatdisf_libfunc; |
b092b471 JW |
2938 | else if (GET_MODE (from) == TImode) |
2939 | libfcn = floattisf_libfunc; | |
77c9c6c2 RK |
2940 | else |
2941 | abort (); | |
2942 | } | |
2943 | else if (GET_MODE (to) == DFmode) | |
2944 | { | |
2945 | if (GET_MODE (from) == SImode) | |
6bce1b78 | 2946 | libfcn = floatsidf_libfunc; |
77c9c6c2 | 2947 | else if (GET_MODE (from) == DImode) |
6bce1b78 | 2948 | libfcn = floatdidf_libfunc; |
b092b471 JW |
2949 | else if (GET_MODE (from) == TImode) |
2950 | libfcn = floattidf_libfunc; | |
2951 | else | |
2952 | abort (); | |
2953 | } | |
2954 | else if (GET_MODE (to) == XFmode) | |
2955 | { | |
2956 | if (GET_MODE (from) == SImode) | |
2957 | libfcn = floatsixf_libfunc; | |
2958 | else if (GET_MODE (from) == DImode) | |
2959 | libfcn = floatdixf_libfunc; | |
2960 | else if (GET_MODE (from) == TImode) | |
2961 | libfcn = floattixf_libfunc; | |
2962 | else | |
2963 | abort (); | |
2964 | } | |
2965 | else if (GET_MODE (to) == TFmode) | |
2966 | { | |
2967 | if (GET_MODE (from) == SImode) | |
2968 | libfcn = floatsitf_libfunc; | |
2969 | else if (GET_MODE (from) == DImode) | |
2970 | libfcn = floatditf_libfunc; | |
2971 | else if (GET_MODE (from) == TImode) | |
2972 | libfcn = floattitf_libfunc; | |
77c9c6c2 RK |
2973 | else |
2974 | abort (); | |
2975 | } | |
2976 | else | |
2977 | abort (); | |
2978 | ||
2979 | start_sequence (); | |
2980 | ||
86f8eff3 | 2981 | emit_library_call (libfcn, 1, GET_MODE (to), 1, from, GET_MODE (from)); |
77c9c6c2 RK |
2982 | insns = get_insns (); |
2983 | end_sequence (); | |
2984 | ||
2985 | emit_libcall_block (insns, target, hard_libcall_value (GET_MODE (to)), | |
2986 | gen_rtx (FLOAT, GET_MODE (to), from)); | |
2987 | } | |
2988 | ||
2989 | /* Copy result to requested destination | |
2990 | if we have been computing in a temp location. */ | |
2991 | ||
2992 | if (target != to) | |
2993 | { | |
2994 | if (GET_MODE (target) == GET_MODE (to)) | |
2995 | emit_move_insn (to, target); | |
2996 | else | |
2997 | convert_move (to, target, 0); | |
2998 | } | |
2999 | } | |
3000 | \f | |
3001 | /* expand_fix: generate code to convert FROM to fixed point | |
3002 | and store in TO. FROM must be floating point. */ | |
3003 | ||
3004 | static rtx | |
3005 | ftruncify (x) | |
3006 | rtx x; | |
3007 | { | |
3008 | rtx temp = gen_reg_rtx (GET_MODE (x)); | |
3009 | return expand_unop (GET_MODE (x), ftrunc_optab, x, temp, 0); | |
3010 | } | |
3011 | ||
3012 | void | |
3013 | expand_fix (to, from, unsignedp) | |
3014 | register rtx to, from; | |
3015 | int unsignedp; | |
3016 | { | |
3017 | enum insn_code icode; | |
3018 | register rtx target = to; | |
3019 | enum machine_mode fmode, imode; | |
3020 | int must_trunc = 0; | |
6bce1b78 | 3021 | rtx libfcn = 0; |
77c9c6c2 RK |
3022 | |
3023 | /* We first try to find a pair of modes, one real and one integer, at | |
3024 | least as wide as FROM and TO, respectively, in which we can open-code | |
3025 | this conversion. If the integer mode is wider than the mode of TO, | |
3026 | we can do the conversion either signed or unsigned. */ | |
3027 | ||
3028 | for (imode = GET_MODE (to); imode != VOIDmode; | |
3029 | imode = GET_MODE_WIDER_MODE (imode)) | |
3030 | for (fmode = GET_MODE (from); fmode != VOIDmode; | |
3031 | fmode = GET_MODE_WIDER_MODE (fmode)) | |
3032 | { | |
3033 | int doing_unsigned = unsignedp; | |
3034 | ||
3035 | icode = can_fix_p (imode, fmode, unsignedp, &must_trunc); | |
3036 | if (icode == CODE_FOR_nothing && imode != GET_MODE (to) && unsignedp) | |
3037 | icode = can_fix_p (imode, fmode, 0, &must_trunc), doing_unsigned = 0; | |
3038 | ||
3039 | if (icode != CODE_FOR_nothing) | |
3040 | { | |
3041 | to = protect_from_queue (to, 1); | |
06e40b26 | 3042 | from = protect_from_queue (from, 0); |
77c9c6c2 RK |
3043 | |
3044 | if (fmode != GET_MODE (from)) | |
3045 | from = convert_to_mode (fmode, from, 0); | |
77c9c6c2 RK |
3046 | |
3047 | if (must_trunc) | |
3048 | from = ftruncify (from); | |
3049 | ||
3050 | if (imode != GET_MODE (to)) | |
3051 | target = gen_reg_rtx (imode); | |
3052 | ||
3053 | emit_unop_insn (icode, target, from, | |
3054 | doing_unsigned ? UNSIGNED_FIX : FIX); | |
3055 | if (target != to) | |
3056 | convert_move (to, target, unsignedp); | |
3057 | return; | |
3058 | } | |
3059 | } | |
3060 | ||
3061 | #if !defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC) | |
3062 | /* For an unsigned conversion, there is one more way to do it. | |
3063 | If we have a signed conversion, we generate code that compares | |
3064 | the real value to the largest representable positive number. If if | |
3065 | is smaller, the conversion is done normally. Otherwise, subtract | |
3066 | one plus the highest signed number, convert, and add it back. | |
3067 | ||
3068 | We only need to check all real modes, since we know we didn't find | |
6dc42e49 | 3069 | anything with a wider integer mode. */ |
77c9c6c2 | 3070 | |
b1ec3c92 | 3071 | if (unsignedp && GET_MODE_BITSIZE (GET_MODE (to)) <= HOST_BITS_PER_WIDE_INT) |
77c9c6c2 RK |
3072 | for (fmode = GET_MODE (from); fmode != VOIDmode; |
3073 | fmode = GET_MODE_WIDER_MODE (fmode)) | |
3074 | /* Make sure we won't lose significant bits doing this. */ | |
3075 | if (GET_MODE_BITSIZE (fmode) > GET_MODE_BITSIZE (GET_MODE (to)) | |
3076 | && CODE_FOR_nothing != can_fix_p (GET_MODE (to), fmode, 0, | |
3077 | &must_trunc)) | |
3078 | { | |
3079 | int bitsize = GET_MODE_BITSIZE (GET_MODE (to)); | |
3080 | REAL_VALUE_TYPE offset = REAL_VALUE_LDEXP (dconst1, bitsize - 1); | |
3081 | rtx limit = immed_real_const_1 (offset, fmode); | |
3082 | rtx lab1 = gen_label_rtx (); | |
3083 | rtx lab2 = gen_label_rtx (); | |
3084 | rtx insn; | |
3085 | ||
3086 | emit_queue (); | |
3087 | to = protect_from_queue (to, 1); | |
3088 | from = protect_from_queue (from, 0); | |
3089 | ||
3090 | if (flag_force_mem) | |
3091 | from = force_not_mem (from); | |
3092 | ||
3093 | if (fmode != GET_MODE (from)) | |
3094 | from = convert_to_mode (fmode, from, 0); | |
3095 | ||
3096 | /* See if we need to do the subtraction. */ | |
3097 | do_pending_stack_adjust (); | |
b1ec3c92 | 3098 | emit_cmp_insn (from, limit, GE, NULL_RTX, GET_MODE (from), 0, 0); |
77c9c6c2 RK |
3099 | emit_jump_insn (gen_bge (lab1)); |
3100 | ||
3101 | /* If not, do the signed "fix" and branch around fixup code. */ | |
3102 | expand_fix (to, from, 0); | |
3103 | emit_jump_insn (gen_jump (lab2)); | |
3104 | emit_barrier (); | |
3105 | ||
3106 | /* Otherwise, subtract 2**(N-1), convert to signed number, | |
3107 | then add 2**(N-1). Do the addition using XOR since this | |
3108 | will often generate better code. */ | |
3109 | emit_label (lab1); | |
3110 | target = expand_binop (GET_MODE (from), sub_optab, from, limit, | |
b1ec3c92 | 3111 | NULL_RTX, 0, OPTAB_LIB_WIDEN); |
77c9c6c2 RK |
3112 | expand_fix (to, target, 0); |
3113 | target = expand_binop (GET_MODE (to), xor_optab, to, | |
b1ec3c92 | 3114 | GEN_INT ((HOST_WIDE_INT) 1 << (bitsize - 1)), |
77c9c6c2 RK |
3115 | to, 1, OPTAB_LIB_WIDEN); |
3116 | ||
3117 | if (target != to) | |
3118 | emit_move_insn (to, target); | |
3119 | ||
3120 | emit_label (lab2); | |
3121 | ||
3122 | /* Make a place for a REG_NOTE and add it. */ | |
3123 | insn = emit_move_insn (to, to); | |
3124 | REG_NOTES (insn) = gen_rtx (EXPR_LIST, REG_EQUAL, | |
3125 | gen_rtx (UNSIGNED_FIX, GET_MODE (to), | |
3126 | from), REG_NOTES (insn)); | |
3127 | ||
3128 | return; | |
3129 | } | |
3130 | #endif | |
3131 | ||
3132 | /* We can't do it with an insn, so use a library call. But first ensure | |
3133 | that the mode of TO is at least as wide as SImode, since those are the | |
3134 | only library calls we know about. */ | |
3135 | ||
3136 | if (GET_MODE_SIZE (GET_MODE (to)) < GET_MODE_SIZE (SImode)) | |
3137 | { | |
3138 | target = gen_reg_rtx (SImode); | |
3139 | ||
3140 | expand_fix (target, from, unsignedp); | |
3141 | } | |
3142 | else if (GET_MODE (from) == SFmode) | |
3143 | { | |
3144 | if (GET_MODE (to) == SImode) | |
6bce1b78 | 3145 | libfcn = unsignedp ? fixunssfsi_libfunc : fixsfsi_libfunc; |
77c9c6c2 | 3146 | else if (GET_MODE (to) == DImode) |
6bce1b78 | 3147 | libfcn = unsignedp ? fixunssfdi_libfunc : fixsfdi_libfunc; |
b092b471 JW |
3148 | else if (GET_MODE (to) == TImode) |
3149 | libfcn = unsignedp ? fixunssfti_libfunc : fixsfti_libfunc; | |
77c9c6c2 RK |
3150 | else |
3151 | abort (); | |
3152 | } | |
3153 | else if (GET_MODE (from) == DFmode) | |
3154 | { | |
3155 | if (GET_MODE (to) == SImode) | |
6bce1b78 | 3156 | libfcn = unsignedp ? fixunsdfsi_libfunc : fixdfsi_libfunc; |
77c9c6c2 | 3157 | else if (GET_MODE (to) == DImode) |
6bce1b78 | 3158 | libfcn = unsignedp ? fixunsdfdi_libfunc : fixdfdi_libfunc; |
b092b471 JW |
3159 | else if (GET_MODE (to) == TImode) |
3160 | libfcn = unsignedp ? fixunsdfti_libfunc : fixdfti_libfunc; | |
3161 | else | |
3162 | abort (); | |
3163 | } | |
3164 | else if (GET_MODE (from) == XFmode) | |
3165 | { | |
3166 | if (GET_MODE (to) == SImode) | |
3167 | libfcn = unsignedp ? fixunsxfsi_libfunc : fixxfsi_libfunc; | |
3168 | else if (GET_MODE (to) == DImode) | |
3169 | libfcn = unsignedp ? fixunsxfdi_libfunc : fixxfdi_libfunc; | |
3170 | else if (GET_MODE (to) == TImode) | |
3171 | libfcn = unsignedp ? fixunsxfti_libfunc : fixxfti_libfunc; | |
3172 | else | |
3173 | abort (); | |
3174 | } | |
3175 | else if (GET_MODE (from) == TFmode) | |
3176 | { | |
3177 | if (GET_MODE (to) == SImode) | |
3178 | libfcn = unsignedp ? fixunstfsi_libfunc : fixtfsi_libfunc; | |
3179 | else if (GET_MODE (to) == DImode) | |
3180 | libfcn = unsignedp ? fixunstfdi_libfunc : fixtfdi_libfunc; | |
3181 | else if (GET_MODE (to) == TImode) | |
3182 | libfcn = unsignedp ? fixunstfti_libfunc : fixtfti_libfunc; | |
77c9c6c2 RK |
3183 | else |
3184 | abort (); | |
3185 | } | |
3186 | else | |
3187 | abort (); | |
3188 | ||
6bce1b78 | 3189 | if (libfcn) |
77c9c6c2 RK |
3190 | { |
3191 | rtx insns; | |
3192 | ||
3193 | to = protect_from_queue (to, 1); | |
3194 | from = protect_from_queue (from, 0); | |
3195 | ||
3196 | if (flag_force_mem) | |
3197 | from = force_not_mem (from); | |
3198 | ||
3199 | start_sequence (); | |
3200 | ||
86f8eff3 | 3201 | emit_library_call (libfcn, 1, GET_MODE (to), 1, from, GET_MODE (from)); |
77c9c6c2 RK |
3202 | insns = get_insns (); |
3203 | end_sequence (); | |
3204 | ||
3205 | emit_libcall_block (insns, target, hard_libcall_value (GET_MODE (to)), | |
3206 | gen_rtx (unsignedp ? FIX : UNSIGNED_FIX, | |
3207 | GET_MODE (to), from)); | |
3208 | } | |
3209 | ||
3210 | if (GET_MODE (to) == GET_MODE (target)) | |
3211 | emit_move_insn (to, target); | |
3212 | else | |
3213 | convert_move (to, target, 0); | |
3214 | } | |
3215 | \f | |
3216 | static optab | |
3217 | init_optab (code) | |
3218 | enum rtx_code code; | |
3219 | { | |
3220 | int i; | |
3221 | optab op = (optab) xmalloc (sizeof (struct optab)); | |
3222 | op->code = code; | |
3223 | for (i = 0; i < NUM_MACHINE_MODES; i++) | |
3224 | { | |
3225 | op->handlers[i].insn_code = CODE_FOR_nothing; | |
3226 | op->handlers[i].libfunc = 0; | |
3227 | } | |
3228 | return op; | |
3229 | } | |
3230 | ||
b092b471 JW |
3231 | /* Initialize the libfunc fields of an entire group of entries in some |
3232 | optab. Each entry is set equal to a string consisting of a leading | |
3233 | pair of underscores followed by a generic operation name followed by | |
3234 | a mode name (downshifted to lower case) followed by a single character | |
3235 | representing the number of operands for the given operation (which is | |
3236 | usually one of the characters '2', '3', or '4'). | |
3237 | ||
3238 | OPTABLE is the table in which libfunc fields are to be initialized. | |
3239 | FIRST_MODE is the first machine mode index in the given optab to | |
3240 | initialize. | |
3241 | LAST_MODE is the last machine mode index in the given optab to | |
3242 | initialize. | |
3243 | OPNAME is the generic (string) name of the operation. | |
3244 | SUFFIX is the character which specifies the number of operands for | |
3245 | the given generic operation. | |
3246 | */ | |
3247 | ||
3248 | static void | |
3249 | init_libfuncs (optable, first_mode, last_mode, opname, suffix) | |
3250 | register optab optable; | |
3251 | register char *opname; | |
3252 | register enum machine_mode first_mode; | |
3253 | register enum machine_mode last_mode; | |
3254 | register char suffix; | |
3255 | { | |
3256 | register enum machine_mode mode; | |
3257 | register unsigned opname_len = strlen (opname); | |
3258 | ||
3259 | for (mode = first_mode; mode <= last_mode; mode++) | |
3260 | { | |
3261 | register char *mname = mode_name[(int) mode]; | |
3262 | register unsigned mname_len = strlen (mname); | |
3263 | register char *libfunc_name | |
3264 | = (char *) xmalloc (2 + opname_len + mname_len + 1 + 1); | |
3265 | register char *p; | |
3266 | register char *q; | |
3267 | ||
3268 | p = libfunc_name; | |
3269 | *p++ = '_'; | |
3270 | *p++ = '_'; | |
3271 | for (q = opname; *q; ) | |
3272 | *p++ = *q++; | |
3273 | for (q = mname; *q; q++) | |
3274 | *p++ = tolower (*q); | |
3275 | *p++ = suffix; | |
3276 | *p++ = '\0'; | |
3277 | optable->handlers[(int) mode].libfunc | |
3278 | = gen_rtx (SYMBOL_REF, Pmode, libfunc_name); | |
3279 | } | |
3280 | } | |
3281 | ||
3282 | /* Initialize the libfunc fields of an entire group of entries in some | |
3283 | optab which correspond to all integer mode operations. The parameters | |
3284 | have the same meaning as similarly named ones for the `init_libfuncs' | |
3285 | routine. (See above). */ | |
3286 | ||
3287 | static void | |
3288 | init_integral_libfuncs (optable, opname, suffix) | |
3289 | register optab optable; | |
3290 | register char *opname; | |
3291 | register char suffix; | |
3292 | { | |
3293 | init_libfuncs (optable, SImode, TImode, opname, suffix); | |
3294 | } | |
3295 | ||
3296 | /* Initialize the libfunc fields of an entire group of entries in some | |
3297 | optab which correspond to all real mode operations. The parameters | |
3298 | have the same meaning as similarly named ones for the `init_libfuncs' | |
3299 | routine. (See above). */ | |
3300 | ||
3301 | static void | |
3302 | init_floating_libfuncs (optable, opname, suffix) | |
3303 | register optab optable; | |
3304 | register char *opname; | |
3305 | register char suffix; | |
3306 | { | |
3307 | init_libfuncs (optable, SFmode, TFmode, opname, suffix); | |
3308 | } | |
3309 | ||
77c9c6c2 RK |
3310 | /* Call this once to initialize the contents of the optabs |
3311 | appropriately for the current target machine. */ | |
3312 | ||
3313 | void | |
3314 | init_optabs () | |
3315 | { | |
3316 | int i; | |
3317 | ||
3318 | init_fixtab (); | |
3319 | init_floattab (); | |
3320 | init_extends (); | |
3321 | ||
3322 | add_optab = init_optab (PLUS); | |
3323 | sub_optab = init_optab (MINUS); | |
3324 | smul_optab = init_optab (MULT); | |
3325 | smul_widen_optab = init_optab (UNKNOWN); | |
3326 | umul_widen_optab = init_optab (UNKNOWN); | |
3327 | sdiv_optab = init_optab (DIV); | |
3328 | sdivmod_optab = init_optab (UNKNOWN); | |
3329 | udiv_optab = init_optab (UDIV); | |
3330 | udivmod_optab = init_optab (UNKNOWN); | |
3331 | smod_optab = init_optab (MOD); | |
3332 | umod_optab = init_optab (UMOD); | |
3333 | flodiv_optab = init_optab (DIV); | |
3334 | ftrunc_optab = init_optab (UNKNOWN); | |
3335 | and_optab = init_optab (AND); | |
3336 | ior_optab = init_optab (IOR); | |
3337 | xor_optab = init_optab (XOR); | |
3338 | ashl_optab = init_optab (ASHIFT); | |
3339 | ashr_optab = init_optab (ASHIFTRT); | |
3340 | lshl_optab = init_optab (LSHIFT); | |
3341 | lshr_optab = init_optab (LSHIFTRT); | |
3342 | rotl_optab = init_optab (ROTATE); | |
3343 | rotr_optab = init_optab (ROTATERT); | |
3344 | smin_optab = init_optab (SMIN); | |
3345 | smax_optab = init_optab (SMAX); | |
3346 | umin_optab = init_optab (UMIN); | |
3347 | umax_optab = init_optab (UMAX); | |
3348 | mov_optab = init_optab (UNKNOWN); | |
3349 | movstrict_optab = init_optab (UNKNOWN); | |
3350 | cmp_optab = init_optab (UNKNOWN); | |
3351 | ucmp_optab = init_optab (UNKNOWN); | |
3352 | tst_optab = init_optab (UNKNOWN); | |
3353 | neg_optab = init_optab (NEG); | |
3354 | abs_optab = init_optab (ABS); | |
3355 | one_cmpl_optab = init_optab (NOT); | |
3356 | ffs_optab = init_optab (FFS); | |
d45cf215 | 3357 | sqrt_optab = init_optab (SQRT); |
19c3fc24 | 3358 | strlen_optab = init_optab (UNKNOWN); |
77c9c6c2 RK |
3359 | |
3360 | #ifdef HAVE_addqi3 | |
3361 | if (HAVE_addqi3) | |
3362 | add_optab->handlers[(int) QImode].insn_code = CODE_FOR_addqi3; | |
3363 | #endif | |
3364 | #ifdef HAVE_addhi3 | |
3365 | if (HAVE_addhi3) | |
3366 | add_optab->handlers[(int) HImode].insn_code = CODE_FOR_addhi3; | |
3367 | #endif | |
3368 | #ifdef HAVE_addpsi3 | |
3369 | if (HAVE_addpsi3) | |
3370 | add_optab->handlers[(int) PSImode].insn_code = CODE_FOR_addpsi3; | |
3371 | #endif | |
3372 | #ifdef HAVE_addsi3 | |
3373 | if (HAVE_addsi3) | |
3374 | add_optab->handlers[(int) SImode].insn_code = CODE_FOR_addsi3; | |
3375 | #endif | |
3376 | #ifdef HAVE_adddi3 | |
3377 | if (HAVE_adddi3) | |
3378 | add_optab->handlers[(int) DImode].insn_code = CODE_FOR_adddi3; | |
3379 | #endif | |
3380 | #ifdef HAVE_addti3 | |
3381 | if (HAVE_addti3) | |
3382 | add_optab->handlers[(int) TImode].insn_code = CODE_FOR_addti3; | |
3383 | #endif | |
3384 | #ifdef HAVE_addsf3 | |
3385 | if (HAVE_addsf3) | |
3386 | add_optab->handlers[(int) SFmode].insn_code = CODE_FOR_addsf3; | |
3387 | #endif | |
3388 | #ifdef HAVE_adddf3 | |
3389 | if (HAVE_adddf3) | |
3390 | add_optab->handlers[(int) DFmode].insn_code = CODE_FOR_adddf3; | |
3391 | #endif | |
b092b471 JW |
3392 | #ifdef HAVE_addxf3 |
3393 | if (HAVE_addxf3) | |
3394 | add_optab->handlers[(int) XFmode].insn_code = CODE_FOR_addxf3; | |
3395 | #endif | |
77c9c6c2 RK |
3396 | #ifdef HAVE_addtf3 |
3397 | if (HAVE_addtf3) | |
3398 | add_optab->handlers[(int) TFmode].insn_code = CODE_FOR_addtf3; | |
3399 | #endif | |
b092b471 JW |
3400 | init_integral_libfuncs (add_optab, "add", '3'); |
3401 | init_floating_libfuncs (add_optab, "add", '3'); | |
77c9c6c2 RK |
3402 | |
3403 | #ifdef HAVE_subqi3 | |
3404 | if (HAVE_subqi3) | |
3405 | sub_optab->handlers[(int) QImode].insn_code = CODE_FOR_subqi3; | |
3406 | #endif | |
3407 | #ifdef HAVE_subhi3 | |
3408 | if (HAVE_subhi3) | |
3409 | sub_optab->handlers[(int) HImode].insn_code = CODE_FOR_subhi3; | |
3410 | #endif | |
3411 | #ifdef HAVE_subpsi3 | |
3412 | if (HAVE_subpsi3) | |
3413 | sub_optab->handlers[(int) PSImode].insn_code = CODE_FOR_subpsi3; | |
3414 | #endif | |
3415 | #ifdef HAVE_subsi3 | |
3416 | if (HAVE_subsi3) | |
3417 | sub_optab->handlers[(int) SImode].insn_code = CODE_FOR_subsi3; | |
3418 | #endif | |
3419 | #ifdef HAVE_subdi3 | |
3420 | if (HAVE_subdi3) | |
3421 | sub_optab->handlers[(int) DImode].insn_code = CODE_FOR_subdi3; | |
3422 | #endif | |
3423 | #ifdef HAVE_subti3 | |
3424 | if (HAVE_subti3) | |
ded40dfe | 3425 | sub_optab->handlers[(int) TImode].insn_code = CODE_FOR_subti3; |
77c9c6c2 RK |
3426 | #endif |
3427 | #ifdef HAVE_subsf3 | |
3428 | if (HAVE_subsf3) | |
3429 | sub_optab->handlers[(int) SFmode].insn_code = CODE_FOR_subsf3; | |
3430 | #endif | |
3431 | #ifdef HAVE_subdf3 | |
3432 | if (HAVE_subdf3) | |
3433 | sub_optab->handlers[(int) DFmode].insn_code = CODE_FOR_subdf3; | |
3434 | #endif | |
b092b471 JW |
3435 | #ifdef HAVE_subxf3 |
3436 | if (HAVE_subxf3) | |
3437 | sub_optab->handlers[(int) XFmode].insn_code = CODE_FOR_subxf3; | |
3438 | #endif | |
77c9c6c2 RK |
3439 | #ifdef HAVE_subtf3 |
3440 | if (HAVE_subtf3) | |
3441 | sub_optab->handlers[(int) TFmode].insn_code = CODE_FOR_subtf3; | |
3442 | #endif | |
b092b471 JW |
3443 | init_integral_libfuncs (sub_optab, "sub", '3'); |
3444 | init_floating_libfuncs (sub_optab, "sub", '3'); | |
77c9c6c2 RK |
3445 | |
3446 | #ifdef HAVE_mulqi3 | |
3447 | if (HAVE_mulqi3) | |
3448 | smul_optab->handlers[(int) QImode].insn_code = CODE_FOR_mulqi3; | |
3449 | #endif | |
3450 | #ifdef HAVE_mulhi3 | |
3451 | if (HAVE_mulhi3) | |
3452 | smul_optab->handlers[(int) HImode].insn_code = CODE_FOR_mulhi3; | |
3453 | #endif | |
3454 | #ifdef HAVE_mulpsi3 | |
3455 | if (HAVE_mulpsi3) | |
3456 | smul_optab->handlers[(int) PSImode].insn_code = CODE_FOR_mulpsi3; | |
3457 | #endif | |
3458 | #ifdef HAVE_mulsi3 | |
3459 | if (HAVE_mulsi3) | |
3460 | smul_optab->handlers[(int) SImode].insn_code = CODE_FOR_mulsi3; | |
3461 | #endif | |
3462 | #ifdef HAVE_muldi3 | |
3463 | if (HAVE_muldi3) | |
3464 | smul_optab->handlers[(int) DImode].insn_code = CODE_FOR_muldi3; | |
3465 | #endif | |
3466 | #ifdef HAVE_multi3 | |
3467 | if (HAVE_multi3) | |
3468 | smul_optab->handlers[(int) TImode].insn_code = CODE_FOR_multi3; | |
3469 | #endif | |
3470 | #ifdef HAVE_mulsf3 | |
3471 | if (HAVE_mulsf3) | |
3472 | smul_optab->handlers[(int) SFmode].insn_code = CODE_FOR_mulsf3; | |
3473 | #endif | |
3474 | #ifdef HAVE_muldf3 | |
3475 | if (HAVE_muldf3) | |
3476 | smul_optab->handlers[(int) DFmode].insn_code = CODE_FOR_muldf3; | |
3477 | #endif | |
b092b471 JW |
3478 | #ifdef HAVE_mulxf3 |
3479 | if (HAVE_mulxf3) | |
3480 | smul_optab->handlers[(int) XFmode].insn_code = CODE_FOR_mulxf3; | |
3481 | #endif | |
77c9c6c2 RK |
3482 | #ifdef HAVE_multf3 |
3483 | if (HAVE_multf3) | |
3484 | smul_optab->handlers[(int) TFmode].insn_code = CODE_FOR_multf3; | |
3485 | #endif | |
b092b471 JW |
3486 | init_integral_libfuncs (smul_optab, "mul", '3'); |
3487 | init_floating_libfuncs (smul_optab, "mul", '3'); | |
77c9c6c2 RK |
3488 | |
3489 | #ifdef MULSI3_LIBCALL | |
3490 | smul_optab->handlers[(int) SImode].libfunc | |
3491 | = gen_rtx (SYMBOL_REF, Pmode, MULSI3_LIBCALL); | |
77c9c6c2 RK |
3492 | #endif |
3493 | #ifdef MULDI3_LIBCALL | |
3494 | smul_optab->handlers[(int) DImode].libfunc | |
3495 | = gen_rtx (SYMBOL_REF, Pmode, MULDI3_LIBCALL); | |
77c9c6c2 | 3496 | #endif |
b092b471 JW |
3497 | #ifdef MULTI3_LIBCALL |
3498 | smul_optab->handlers[(int) TImode].libfunc | |
3499 | = gen_rtx (SYMBOL_REF, Pmode, MULTI3_LIBCALL); | |
3500 | #endif | |
77c9c6c2 RK |
3501 | |
3502 | #ifdef HAVE_mulqihi3 | |
3503 | if (HAVE_mulqihi3) | |
3504 | smul_widen_optab->handlers[(int) HImode].insn_code = CODE_FOR_mulqihi3; | |
3505 | #endif | |
3506 | #ifdef HAVE_mulhisi3 | |
3507 | if (HAVE_mulhisi3) | |
3508 | smul_widen_optab->handlers[(int) SImode].insn_code = CODE_FOR_mulhisi3; | |
3509 | #endif | |
3510 | #ifdef HAVE_mulsidi3 | |
3511 | if (HAVE_mulsidi3) | |
3512 | smul_widen_optab->handlers[(int) DImode].insn_code = CODE_FOR_mulsidi3; | |
3513 | #endif | |
3514 | #ifdef HAVE_mulditi3 | |
3515 | if (HAVE_mulditi3) | |
3516 | smul_widen_optab->handlers[(int) TImode].insn_code = CODE_FOR_mulditi3; | |
3517 | #endif | |
3518 | ||
3519 | #ifdef HAVE_umulqihi3 | |
3520 | if (HAVE_umulqihi3) | |
3521 | umul_widen_optab->handlers[(int) HImode].insn_code = CODE_FOR_umulqihi3; | |
3522 | #endif | |
3523 | #ifdef HAVE_umulhisi3 | |
3524 | if (HAVE_umulhisi3) | |
3525 | umul_widen_optab->handlers[(int) SImode].insn_code = CODE_FOR_umulhisi3; | |
3526 | #endif | |
3527 | #ifdef HAVE_umulsidi3 | |
3528 | if (HAVE_umulsidi3) | |
3529 | umul_widen_optab->handlers[(int) DImode].insn_code = CODE_FOR_umulsidi3; | |
3530 | #endif | |
3531 | #ifdef HAVE_umulditi3 | |
3532 | if (HAVE_umulditi3) | |
3533 | umul_widen_optab->handlers[(int) TImode].insn_code = CODE_FOR_umulditi3; | |
3534 | #endif | |
3535 | ||
3536 | #ifdef HAVE_divqi3 | |
3537 | if (HAVE_divqi3) | |
3538 | sdiv_optab->handlers[(int) QImode].insn_code = CODE_FOR_divqi3; | |
3539 | #endif | |
3540 | #ifdef HAVE_divhi3 | |
3541 | if (HAVE_divhi3) | |
3542 | sdiv_optab->handlers[(int) HImode].insn_code = CODE_FOR_divhi3; | |
3543 | #endif | |
3544 | #ifdef HAVE_divpsi3 | |
3545 | if (HAVE_divpsi3) | |
3546 | sdiv_optab->handlers[(int) PSImode].insn_code = CODE_FOR_divpsi3; | |
3547 | #endif | |
3548 | #ifdef HAVE_divsi3 | |
3549 | if (HAVE_divsi3) | |
3550 | sdiv_optab->handlers[(int) SImode].insn_code = CODE_FOR_divsi3; | |
3551 | #endif | |
3552 | #ifdef HAVE_divdi3 | |
3553 | if (HAVE_divdi3) | |
3554 | sdiv_optab->handlers[(int) DImode].insn_code = CODE_FOR_divdi3; | |
3555 | #endif | |
3556 | #ifdef HAVE_divti3 | |
3557 | if (HAVE_divti3) | |
3558 | sdiv_optab->handlers[(int) TImode].insn_code = CODE_FOR_divti3; | |
3559 | #endif | |
b092b471 | 3560 | init_integral_libfuncs (sdiv_optab, "div", '3'); |
77c9c6c2 RK |
3561 | |
3562 | #ifdef DIVSI3_LIBCALL | |
3563 | sdiv_optab->handlers[(int) SImode].libfunc | |
3564 | = gen_rtx (SYMBOL_REF, Pmode, DIVSI3_LIBCALL); | |
77c9c6c2 RK |
3565 | #endif |
3566 | #ifdef DIVDI3_LIBCALL | |
3567 | sdiv_optab->handlers[(int) DImode].libfunc | |
3568 | = gen_rtx (SYMBOL_REF, Pmode, DIVDI3_LIBCALL); | |
b092b471 JW |
3569 | #endif |
3570 | #ifdef DIVTI3_LIBCALL | |
3571 | sdiv_optab->handlers[(int) TImode].libfunc | |
3572 | = gen_rtx (SYMBOL_REF, Pmode, DIVTI3_LIBCALL); | |
77c9c6c2 RK |
3573 | #endif |
3574 | ||
3575 | #ifdef HAVE_udivqi3 | |
3576 | if (HAVE_udivqi3) | |
3577 | udiv_optab->handlers[(int) QImode].insn_code = CODE_FOR_udivqi3; | |
3578 | #endif | |
3579 | #ifdef HAVE_udivhi3 | |
3580 | if (HAVE_udivhi3) | |
3581 | udiv_optab->handlers[(int) HImode].insn_code = CODE_FOR_udivhi3; | |
3582 | #endif | |
3583 | #ifdef HAVE_udivpsi3 | |
3584 | if (HAVE_udivpsi3) | |
3585 | udiv_optab->handlers[(int) PSImode].insn_code = CODE_FOR_udivpsi3; | |
3586 | #endif | |
3587 | #ifdef HAVE_udivsi3 | |
3588 | if (HAVE_udivsi3) | |
3589 | udiv_optab->handlers[(int) SImode].insn_code = CODE_FOR_udivsi3; | |
3590 | #endif | |
3591 | #ifdef HAVE_udivdi3 | |
3592 | if (HAVE_udivdi3) | |
3593 | udiv_optab->handlers[(int) DImode].insn_code = CODE_FOR_udivdi3; | |
3594 | #endif | |
3595 | #ifdef HAVE_udivti3 | |
3596 | if (HAVE_udivti3) | |
3597 | udiv_optab->handlers[(int) TImode].insn_code = CODE_FOR_udivti3; | |
3598 | #endif | |
b092b471 | 3599 | init_integral_libfuncs (udiv_optab, "udiv", '3'); |
77c9c6c2 RK |
3600 | |
3601 | #ifdef UDIVSI3_LIBCALL | |
3602 | udiv_optab->handlers[(int) SImode].libfunc | |
3603 | = gen_rtx (SYMBOL_REF, Pmode, UDIVSI3_LIBCALL); | |
77c9c6c2 RK |
3604 | #endif |
3605 | #ifdef UDIVDI3_LIBCALL | |
3606 | udiv_optab->handlers[(int) DImode].libfunc | |
3607 | = gen_rtx (SYMBOL_REF, Pmode, UDIVDI3_LIBCALL); | |
b092b471 JW |
3608 | #endif |
3609 | #ifdef UDIVTI3_LIBCALL | |
3610 | udiv_optab->handlers[(int) TImode].libfunc | |
3611 | = gen_rtx (SYMBOL_REF, Pmode, UDIVTI3_LIBCALL); | |
77c9c6c2 RK |
3612 | #endif |
3613 | ||
3614 | #ifdef HAVE_divmodqi4 | |
3615 | if (HAVE_divmodqi4) | |
3616 | sdivmod_optab->handlers[(int) QImode].insn_code = CODE_FOR_divmodqi4; | |
3617 | #endif | |
3618 | #ifdef HAVE_divmodhi4 | |
3619 | if (HAVE_divmodhi4) | |
3620 | sdivmod_optab->handlers[(int) HImode].insn_code = CODE_FOR_divmodhi4; | |
3621 | #endif | |
3622 | #ifdef HAVE_divmodsi4 | |
3623 | if (HAVE_divmodsi4) | |
3624 | sdivmod_optab->handlers[(int) SImode].insn_code = CODE_FOR_divmodsi4; | |
3625 | #endif | |
3626 | #ifdef HAVE_divmoddi4 | |
3627 | if (HAVE_divmoddi4) | |
3628 | sdivmod_optab->handlers[(int) DImode].insn_code = CODE_FOR_divmoddi4; | |
3629 | #endif | |
3630 | #ifdef HAVE_divmodti4 | |
3631 | if (HAVE_divmodti4) | |
3632 | sdivmod_optab->handlers[(int) TImode].insn_code = CODE_FOR_divmodti4; | |
3633 | #endif | |
b092b471 | 3634 | init_integral_libfuncs (sdivmod_optab, "divmod", '4'); |
77c9c6c2 RK |
3635 | |
3636 | #ifdef HAVE_udivmodqi4 | |
3637 | if (HAVE_udivmodqi4) | |
3638 | udivmod_optab->handlers[(int) QImode].insn_code = CODE_FOR_udivmodqi4; | |
3639 | #endif | |
3640 | #ifdef HAVE_udivmodhi4 | |
3641 | if (HAVE_udivmodhi4) | |
3642 | udivmod_optab->handlers[(int) HImode].insn_code = CODE_FOR_udivmodhi4; | |
3643 | #endif | |
3644 | #ifdef HAVE_udivmodsi4 | |
3645 | if (HAVE_udivmodsi4) | |
3646 | udivmod_optab->handlers[(int) SImode].insn_code = CODE_FOR_udivmodsi4; | |
3647 | #endif | |
3648 | #ifdef HAVE_udivmoddi4 | |
3649 | if (HAVE_udivmoddi4) | |
3650 | udivmod_optab->handlers[(int) DImode].insn_code = CODE_FOR_udivmoddi4; | |
3651 | #endif | |
3652 | #ifdef HAVE_udivmodti4 | |
3653 | if (HAVE_udivmodti4) | |
3654 | udivmod_optab->handlers[(int) TImode].insn_code = CODE_FOR_udivmodti4; | |
3655 | #endif | |
b092b471 | 3656 | init_integral_libfuncs (udivmod_optab, "udivmod", '4'); |
77c9c6c2 RK |
3657 | |
3658 | #ifdef HAVE_modqi3 | |
3659 | if (HAVE_modqi3) | |
3660 | smod_optab->handlers[(int) QImode].insn_code = CODE_FOR_modqi3; | |
3661 | #endif | |
3662 | #ifdef HAVE_modhi3 | |
3663 | if (HAVE_modhi3) | |
3664 | smod_optab->handlers[(int) HImode].insn_code = CODE_FOR_modhi3; | |
3665 | #endif | |
3666 | #ifdef HAVE_modpsi3 | |
3667 | if (HAVE_modpsi3) | |
3668 | smod_optab->handlers[(int) PSImode].insn_code = CODE_FOR_modpsi3; | |
3669 | #endif | |
3670 | #ifdef HAVE_modsi3 | |
3671 | if (HAVE_modsi3) | |
3672 | smod_optab->handlers[(int) SImode].insn_code = CODE_FOR_modsi3; | |
3673 | #endif | |
3674 | #ifdef HAVE_moddi3 | |
3675 | if (HAVE_moddi3) | |
3676 | smod_optab->handlers[(int) DImode].insn_code = CODE_FOR_moddi3; | |
3677 | #endif | |
3678 | #ifdef HAVE_modti3 | |
3679 | if (HAVE_modti3) | |
3680 | smod_optab->handlers[(int) TImode].insn_code = CODE_FOR_modti3; | |
3681 | #endif | |
b092b471 | 3682 | init_integral_libfuncs (smod_optab, "mod", '3'); |
77c9c6c2 RK |
3683 | |
3684 | #ifdef MODSI3_LIBCALL | |
3685 | smod_optab->handlers[(int) SImode].libfunc | |
3686 | = gen_rtx (SYMBOL_REF, Pmode, MODSI3_LIBCALL); | |
77c9c6c2 RK |
3687 | #endif |
3688 | #ifdef MODDI3_LIBCALL | |
3689 | smod_optab->handlers[(int) DImode].libfunc | |
3690 | = gen_rtx (SYMBOL_REF, Pmode, MODDI3_LIBCALL); | |
b092b471 JW |
3691 | #endif |
3692 | #ifdef MODTI3_LIBCALL | |
3693 | smod_optab->handlers[(int) TImode].libfunc | |
3694 | = gen_rtx (SYMBOL_REF, Pmode, MODTI3_LIBCALL); | |
77c9c6c2 RK |
3695 | #endif |
3696 | ||
3697 | #ifdef HAVE_umodqi3 | |
3698 | if (HAVE_umodqi3) | |
3699 | umod_optab->handlers[(int) QImode].insn_code = CODE_FOR_umodqi3; | |
3700 | #endif | |
3701 | #ifdef HAVE_umodhi3 | |
3702 | if (HAVE_umodhi3) | |
3703 | umod_optab->handlers[(int) HImode].insn_code = CODE_FOR_umodhi3; | |
3704 | #endif | |
3705 | #ifdef HAVE_umodpsi3 | |
3706 | if (HAVE_umodpsi3) | |
3707 | umod_optab->handlers[(int) PSImode].insn_code = CODE_FOR_umodpsi3; | |
3708 | #endif | |
3709 | #ifdef HAVE_umodsi3 | |
3710 | if (HAVE_umodsi3) | |
3711 | umod_optab->handlers[(int) SImode].insn_code = CODE_FOR_umodsi3; | |
3712 | #endif | |
3713 | #ifdef HAVE_umoddi3 | |
3714 | if (HAVE_umoddi3) | |
3715 | umod_optab->handlers[(int) DImode].insn_code = CODE_FOR_umoddi3; | |
3716 | #endif | |
3717 | #ifdef HAVE_umodti3 | |
3718 | if (HAVE_umodti3) | |
3719 | umod_optab->handlers[(int) TImode].insn_code = CODE_FOR_umodti3; | |
3720 | #endif | |
b092b471 | 3721 | init_integral_libfuncs (umod_optab, "umod", '3'); |
77c9c6c2 RK |
3722 | |
3723 | #ifdef UMODSI3_LIBCALL | |
3724 | umod_optab->handlers[(int) SImode].libfunc | |
3725 | = gen_rtx (SYMBOL_REF, Pmode, UMODSI3_LIBCALL); | |
77c9c6c2 RK |
3726 | #endif |
3727 | #ifdef UMODDI3_LIBCALL | |
3728 | umod_optab->handlers[(int) DImode].libfunc | |
3729 | = gen_rtx (SYMBOL_REF, Pmode, UMODDI3_LIBCALL); | |
b092b471 JW |
3730 | #endif |
3731 | #ifdef UMODTI3_LIBCALL | |
3732 | umod_optab->handlers[(int) TImode].libfunc | |
3733 | = gen_rtx (SYMBOL_REF, Pmode, UMODTI3_LIBCALL); | |
77c9c6c2 RK |
3734 | #endif |
3735 | ||
3736 | #ifdef HAVE_divsf3 | |
3737 | if (HAVE_divsf3) | |
3738 | flodiv_optab->handlers[(int) SFmode].insn_code = CODE_FOR_divsf3; | |
3739 | #endif | |
3740 | #ifdef HAVE_divdf3 | |
3741 | if (HAVE_divdf3) | |
3742 | flodiv_optab->handlers[(int) DFmode].insn_code = CODE_FOR_divdf3; | |
3743 | #endif | |
b092b471 JW |
3744 | #ifdef HAVE_divxf3 |
3745 | if (HAVE_divxf3) | |
3746 | flodiv_optab->handlers[(int) XFmode].insn_code = CODE_FOR_divxf3; | |
3747 | #endif | |
77c9c6c2 RK |
3748 | #ifdef HAVE_divtf3 |
3749 | if (HAVE_divtf3) | |
3750 | flodiv_optab->handlers[(int) TFmode].insn_code = CODE_FOR_divtf3; | |
3751 | #endif | |
b092b471 | 3752 | init_floating_libfuncs (flodiv_optab, "div", '3'); |
77c9c6c2 RK |
3753 | |
3754 | #ifdef HAVE_ftruncsf2 | |
3755 | if (HAVE_ftruncsf2) | |
3756 | ftrunc_optab->handlers[(int) SFmode].insn_code = CODE_FOR_ftruncsf2; | |
3757 | #endif | |
3758 | #ifdef HAVE_ftruncdf2 | |
3759 | if (HAVE_ftruncdf2) | |
3760 | ftrunc_optab->handlers[(int) DFmode].insn_code = CODE_FOR_ftruncdf2; | |
3761 | #endif | |
b092b471 JW |
3762 | #ifdef HAVE_ftruncxf2 |
3763 | if (HAVE_ftruncxf2) | |
3764 | ftrunc_optab->handlers[(int) XFmode].insn_code = CODE_FOR_ftruncxf2; | |
3765 | #endif | |
77c9c6c2 RK |
3766 | #ifdef HAVE_ftrunctf2 |
3767 | if (HAVE_ftrunctf2) | |
3768 | ftrunc_optab->handlers[(int) TFmode].insn_code = CODE_FOR_ftrunctf2; | |
3769 | #endif | |
b092b471 | 3770 | init_floating_libfuncs (ftrunc_optab, "ftrunc", '2'); |
77c9c6c2 RK |
3771 | |
3772 | #ifdef HAVE_andqi3 | |
3773 | if (HAVE_andqi3) | |
3774 | and_optab->handlers[(int) QImode].insn_code = CODE_FOR_andqi3; | |
3775 | #endif | |
3776 | #ifdef HAVE_andhi3 | |
3777 | if (HAVE_andhi3) | |
3778 | and_optab->handlers[(int) HImode].insn_code = CODE_FOR_andhi3; | |
3779 | #endif | |
3780 | #ifdef HAVE_andpsi3 | |
3781 | if (HAVE_andpsi3) | |
3782 | and_optab->handlers[(int) PSImode].insn_code = CODE_FOR_andpsi3; | |
3783 | #endif | |
3784 | #ifdef HAVE_andsi3 | |
3785 | if (HAVE_andsi3) | |
3786 | and_optab->handlers[(int) SImode].insn_code = CODE_FOR_andsi3; | |
3787 | #endif | |
3788 | #ifdef HAVE_anddi3 | |
3789 | if (HAVE_anddi3) | |
3790 | and_optab->handlers[(int) DImode].insn_code = CODE_FOR_anddi3; | |
3791 | #endif | |
3792 | #ifdef HAVE_andti3 | |
3793 | if (HAVE_andti3) | |
3794 | and_optab->handlers[(int) TImode].insn_code = CODE_FOR_andti3; | |
3795 | #endif | |
b092b471 | 3796 | init_integral_libfuncs (and_optab, "and", '3'); |
77c9c6c2 RK |
3797 | |
3798 | #ifdef HAVE_iorqi3 | |
3799 | if (HAVE_iorqi3) | |
3800 | ior_optab->handlers[(int) QImode].insn_code = CODE_FOR_iorqi3; | |
3801 | #endif | |
3802 | #ifdef HAVE_iorhi3 | |
3803 | if (HAVE_iorhi3) | |
3804 | ior_optab->handlers[(int) HImode].insn_code = CODE_FOR_iorhi3; | |
3805 | #endif | |
3806 | #ifdef HAVE_iorpsi3 | |
3807 | if (HAVE_iorpsi3) | |
3808 | ior_optab->handlers[(int) PSImode].insn_code = CODE_FOR_iorpsi3; | |
3809 | #endif | |
3810 | #ifdef HAVE_iorsi3 | |
3811 | if (HAVE_iorsi3) | |
3812 | ior_optab->handlers[(int) SImode].insn_code = CODE_FOR_iorsi3; | |
3813 | #endif | |
3814 | #ifdef HAVE_iordi3 | |
3815 | if (HAVE_iordi3) | |
3816 | ior_optab->handlers[(int) DImode].insn_code = CODE_FOR_iordi3; | |
3817 | #endif | |
3818 | #ifdef HAVE_iorti3 | |
3819 | if (HAVE_iorti3) | |
3820 | ior_optab->handlers[(int) TImode].insn_code = CODE_FOR_iorti3; | |
3821 | #endif | |
b092b471 | 3822 | init_integral_libfuncs (ior_optab, "ior", '3'); |
77c9c6c2 RK |
3823 | |
3824 | #ifdef HAVE_xorqi3 | |
3825 | if (HAVE_xorqi3) | |
3826 | xor_optab->handlers[(int) QImode].insn_code = CODE_FOR_xorqi3; | |
3827 | #endif | |
3828 | #ifdef HAVE_xorhi3 | |
3829 | if (HAVE_xorhi3) | |
3830 | xor_optab->handlers[(int) HImode].insn_code = CODE_FOR_xorhi3; | |
3831 | #endif | |
3832 | #ifdef HAVE_xorpsi3 | |
3833 | if (HAVE_xorpsi3) | |
3834 | xor_optab->handlers[(int) PSImode].insn_code = CODE_FOR_xorpsi3; | |
3835 | #endif | |
3836 | #ifdef HAVE_xorsi3 | |
3837 | if (HAVE_xorsi3) | |
3838 | xor_optab->handlers[(int) SImode].insn_code = CODE_FOR_xorsi3; | |
3839 | #endif | |
3840 | #ifdef HAVE_xordi3 | |
3841 | if (HAVE_xordi3) | |
3842 | xor_optab->handlers[(int) DImode].insn_code = CODE_FOR_xordi3; | |
3843 | #endif | |
3844 | #ifdef HAVE_xorti3 | |
3845 | if (HAVE_xorti3) | |
3846 | xor_optab->handlers[(int) TImode].insn_code = CODE_FOR_xorti3; | |
3847 | #endif | |
b092b471 | 3848 | init_integral_libfuncs (xor_optab, "xor", '3'); |
77c9c6c2 RK |
3849 | |
3850 | #ifdef HAVE_ashlqi3 | |
3851 | if (HAVE_ashlqi3) | |
3852 | ashl_optab->handlers[(int) QImode].insn_code = CODE_FOR_ashlqi3; | |
3853 | #endif | |
3854 | #ifdef HAVE_ashlhi3 | |
3855 | if (HAVE_ashlhi3) | |
3856 | ashl_optab->handlers[(int) HImode].insn_code = CODE_FOR_ashlhi3; | |
3857 | #endif | |
3858 | #ifdef HAVE_ashlpsi3 | |
3859 | if (HAVE_ashlpsi3) | |
3860 | ashl_optab->handlers[(int) PSImode].insn_code = CODE_FOR_ashlpsi3; | |
3861 | #endif | |
3862 | #ifdef HAVE_ashlsi3 | |
3863 | if (HAVE_ashlsi3) | |
3864 | ashl_optab->handlers[(int) SImode].insn_code = CODE_FOR_ashlsi3; | |
3865 | #endif | |
3866 | #ifdef HAVE_ashldi3 | |
3867 | if (HAVE_ashldi3) | |
3868 | ashl_optab->handlers[(int) DImode].insn_code = CODE_FOR_ashldi3; | |
3869 | #endif | |
3870 | #ifdef HAVE_ashlti3 | |
3871 | if (HAVE_ashlti3) | |
3872 | ashl_optab->handlers[(int) TImode].insn_code = CODE_FOR_ashlti3; | |
3873 | #endif | |
b092b471 | 3874 | init_integral_libfuncs (ashl_optab, "ashl", '3'); |
77c9c6c2 RK |
3875 | |
3876 | #ifdef HAVE_ashrqi3 | |
3877 | if (HAVE_ashrqi3) | |
3878 | ashr_optab->handlers[(int) QImode].insn_code = CODE_FOR_ashrqi3; | |
3879 | #endif | |
3880 | #ifdef HAVE_ashrhi3 | |
3881 | if (HAVE_ashrhi3) | |
3882 | ashr_optab->handlers[(int) HImode].insn_code = CODE_FOR_ashrhi3; | |
3883 | #endif | |
3884 | #ifdef HAVE_ashrpsi3 | |
3885 | if (HAVE_ashrpsi3) | |
3886 | ashr_optab->handlers[(int) PSImode].insn_code = CODE_FOR_ashrpsi3; | |
3887 | #endif | |
3888 | #ifdef HAVE_ashrsi3 | |
3889 | if (HAVE_ashrsi3) | |
3890 | ashr_optab->handlers[(int) SImode].insn_code = CODE_FOR_ashrsi3; | |
3891 | #endif | |
3892 | #ifdef HAVE_ashrdi3 | |
3893 | if (HAVE_ashrdi3) | |
3894 | ashr_optab->handlers[(int) DImode].insn_code = CODE_FOR_ashrdi3; | |
3895 | #endif | |
3896 | #ifdef HAVE_ashrti3 | |
3897 | if (HAVE_ashrti3) | |
3898 | ashr_optab->handlers[(int) TImode].insn_code = CODE_FOR_ashrti3; | |
3899 | #endif | |
b092b471 | 3900 | init_integral_libfuncs (ashr_optab, "ashr", '3'); |
77c9c6c2 RK |
3901 | |
3902 | #ifdef HAVE_lshlqi3 | |
3903 | if (HAVE_lshlqi3) | |
3904 | lshl_optab->handlers[(int) QImode].insn_code = CODE_FOR_lshlqi3; | |
3905 | #endif | |
3906 | #ifdef HAVE_lshlhi3 | |
3907 | if (HAVE_lshlhi3) | |
3908 | lshl_optab->handlers[(int) HImode].insn_code = CODE_FOR_lshlhi3; | |
3909 | #endif | |
3910 | #ifdef HAVE_lshlpsi3 | |
3911 | if (HAVE_lshlpsi3) | |
3912 | lshl_optab->handlers[(int) PSImode].insn_code = CODE_FOR_lshlpsi3; | |
3913 | #endif | |
3914 | #ifdef HAVE_lshlsi3 | |
3915 | if (HAVE_lshlsi3) | |
3916 | lshl_optab->handlers[(int) SImode].insn_code = CODE_FOR_lshlsi3; | |
3917 | #endif | |
3918 | #ifdef HAVE_lshldi3 | |
3919 | if (HAVE_lshldi3) | |
3920 | lshl_optab->handlers[(int) DImode].insn_code = CODE_FOR_lshldi3; | |
3921 | #endif | |
3922 | #ifdef HAVE_lshlti3 | |
3923 | if (HAVE_lshlti3) | |
3924 | lshl_optab->handlers[(int) TImode].insn_code = CODE_FOR_lshlti3; | |
3925 | #endif | |
b092b471 | 3926 | init_integral_libfuncs (lshl_optab, "lshl", '3'); |
77c9c6c2 RK |
3927 | |
3928 | #ifdef HAVE_lshrqi3 | |
3929 | if (HAVE_lshrqi3) | |
3930 | lshr_optab->handlers[(int) QImode].insn_code = CODE_FOR_lshrqi3; | |
3931 | #endif | |
3932 | #ifdef HAVE_lshrhi3 | |
3933 | if (HAVE_lshrhi3) | |
3934 | lshr_optab->handlers[(int) HImode].insn_code = CODE_FOR_lshrhi3; | |
3935 | #endif | |
3936 | #ifdef HAVE_lshrpsi3 | |
3937 | if (HAVE_lshrpsi3) | |
3938 | lshr_optab->handlers[(int) PSImode].insn_code = CODE_FOR_lshrpsi3; | |
3939 | #endif | |
3940 | #ifdef HAVE_lshrsi3 | |
3941 | if (HAVE_lshrsi3) | |
3942 | lshr_optab->handlers[(int) SImode].insn_code = CODE_FOR_lshrsi3; | |
3943 | #endif | |
3944 | #ifdef HAVE_lshrdi3 | |
3945 | if (HAVE_lshrdi3) | |
3946 | lshr_optab->handlers[(int) DImode].insn_code = CODE_FOR_lshrdi3; | |
3947 | #endif | |
3948 | #ifdef HAVE_lshrti3 | |
3949 | if (HAVE_lshrti3) | |
3950 | lshr_optab->handlers[(int) TImode].insn_code = CODE_FOR_lshrti3; | |
3951 | #endif | |
b092b471 | 3952 | init_integral_libfuncs (lshr_optab, "lshr", '3'); |
77c9c6c2 RK |
3953 | |
3954 | #ifdef HAVE_rotlqi3 | |
3955 | if (HAVE_rotlqi3) | |
3956 | rotl_optab->handlers[(int) QImode].insn_code = CODE_FOR_rotlqi3; | |
3957 | #endif | |
3958 | #ifdef HAVE_rotlhi3 | |
3959 | if (HAVE_rotlhi3) | |
3960 | rotl_optab->handlers[(int) HImode].insn_code = CODE_FOR_rotlhi3; | |
3961 | #endif | |
3962 | #ifdef HAVE_rotlpsi3 | |
3963 | if (HAVE_rotlpsi3) | |
3964 | rotl_optab->handlers[(int) PSImode].insn_code = CODE_FOR_rotlpsi3; | |
3965 | #endif | |
3966 | #ifdef HAVE_rotlsi3 | |
3967 | if (HAVE_rotlsi3) | |
3968 | rotl_optab->handlers[(int) SImode].insn_code = CODE_FOR_rotlsi3; | |
3969 | #endif | |
3970 | #ifdef HAVE_rotldi3 | |
3971 | if (HAVE_rotldi3) | |
3972 | rotl_optab->handlers[(int) DImode].insn_code = CODE_FOR_rotldi3; | |
3973 | #endif | |
3974 | #ifdef HAVE_rotlti3 | |
3975 | if (HAVE_rotlti3) | |
3976 | rotl_optab->handlers[(int) TImode].insn_code = CODE_FOR_rotlti3; | |
3977 | #endif | |
b092b471 | 3978 | init_integral_libfuncs (rotl_optab, "rotl", '3'); |
77c9c6c2 RK |
3979 | |
3980 | #ifdef HAVE_rotrqi3 | |
3981 | if (HAVE_rotrqi3) | |
3982 | rotr_optab->handlers[(int) QImode].insn_code = CODE_FOR_rotrqi3; | |
3983 | #endif | |
3984 | #ifdef HAVE_rotrhi3 | |
3985 | if (HAVE_rotrhi3) | |
3986 | rotr_optab->handlers[(int) HImode].insn_code = CODE_FOR_rotrhi3; | |
3987 | #endif | |
3988 | #ifdef HAVE_rotrpsi3 | |
3989 | if (HAVE_rotrpsi3) | |
3990 | rotr_optab->handlers[(int) PSImode].insn_code = CODE_FOR_rotrpsi3; | |
3991 | #endif | |
3992 | #ifdef HAVE_rotrsi3 | |
3993 | if (HAVE_rotrsi3) | |
3994 | rotr_optab->handlers[(int) SImode].insn_code = CODE_FOR_rotrsi3; | |
3995 | #endif | |
3996 | #ifdef HAVE_rotrdi3 | |
3997 | if (HAVE_rotrdi3) | |
3998 | rotr_optab->handlers[(int) DImode].insn_code = CODE_FOR_rotrdi3; | |
3999 | #endif | |
4000 | #ifdef HAVE_rotrti3 | |
4001 | if (HAVE_rotrti3) | |
4002 | rotr_optab->handlers[(int) TImode].insn_code = CODE_FOR_rotrti3; | |
4003 | #endif | |
b092b471 | 4004 | init_integral_libfuncs (rotr_optab, "rotr", '3'); |
77c9c6c2 RK |
4005 | |
4006 | #ifdef HAVE_sminqi3 | |
4007 | if (HAVE_sminqi3) | |
4008 | smin_optab->handlers[(int) QImode].insn_code = CODE_FOR_sminqi3; | |
4009 | #endif | |
4010 | #ifdef HAVE_sminhi3 | |
4011 | if (HAVE_sminhi3) | |
4012 | smin_optab->handlers[(int) HImode].insn_code = CODE_FOR_sminhi3; | |
4013 | #endif | |
4014 | #ifdef HAVE_sminsi3 | |
4015 | if (HAVE_sminsi3) | |
4016 | smin_optab->handlers[(int) SImode].insn_code = CODE_FOR_sminsi3; | |
4017 | #endif | |
4018 | #ifdef HAVE_smindi3 | |
4019 | if (HAVE_smindi3) | |
4020 | smin_optab->handlers[(int) DImode].insn_code = CODE_FOR_smindi3; | |
4021 | #endif | |
4022 | #ifdef HAVE_sminti3 | |
4023 | if (HAVE_sminti3) | |
4024 | smin_optab->handlers[(int) TImode].insn_code = CODE_FOR_sminti3; | |
4025 | #endif | |
b092b471 JW |
4026 | #ifdef HAVE_minsf3 |
4027 | if (HAVE_minsf3) | |
4028 | smin_optab->handlers[(int) SFmode].insn_code = CODE_FOR_minsf3; | |
4029 | #endif | |
4030 | #ifdef HAVE_mindf3 | |
4031 | if (HAVE_mindf3) | |
4032 | smin_optab->handlers[(int) DFmode].insn_code = CODE_FOR_mindf3; | |
77c9c6c2 | 4033 | #endif |
b092b471 JW |
4034 | #ifdef HAVE_minxf3 |
4035 | if (HAVE_minxf3) | |
4036 | smin_optab->handlers[(int) XFmode].insn_code = CODE_FOR_minxf3; | |
77c9c6c2 | 4037 | #endif |
b092b471 JW |
4038 | #ifdef HAVE_mintf3 |
4039 | if (HAVE_mintf3) | |
4040 | smin_optab->handlers[(int) TFmode].insn_code = CODE_FOR_mintf3; | |
77c9c6c2 | 4041 | #endif |
b092b471 JW |
4042 | init_integral_libfuncs (smin_optab, "min", '3'); |
4043 | init_floating_libfuncs (smin_optab, "min", '3'); | |
77c9c6c2 RK |
4044 | |
4045 | #ifdef HAVE_smaxqi3 | |
4046 | if (HAVE_smaxqi3) | |
4047 | smax_optab->handlers[(int) QImode].insn_code = CODE_FOR_smaxqi3; | |
4048 | #endif | |
4049 | #ifdef HAVE_smaxhi3 | |
4050 | if (HAVE_smaxhi3) | |
4051 | smax_optab->handlers[(int) HImode].insn_code = CODE_FOR_smaxhi3; | |
4052 | #endif | |
4053 | #ifdef HAVE_smaxsi3 | |
4054 | if (HAVE_smaxsi3) | |
4055 | smax_optab->handlers[(int) SImode].insn_code = CODE_FOR_smaxsi3; | |
4056 | #endif | |
4057 | #ifdef HAVE_smaxdi3 | |
4058 | if (HAVE_smaxdi3) | |
4059 | smax_optab->handlers[(int) DImode].insn_code = CODE_FOR_smaxdi3; | |
4060 | #endif | |
4061 | #ifdef HAVE_smaxti3 | |
4062 | if (HAVE_smaxti3) | |
4063 | smax_optab->handlers[(int) TImode].insn_code = CODE_FOR_smaxti3; | |
4064 | #endif | |
b092b471 JW |
4065 | #ifdef HAVE_maxsf3 |
4066 | if (HAVE_maxsf3) | |
4067 | smax_optab->handlers[(int) SFmode].insn_code = CODE_FOR_maxsf3; | |
77c9c6c2 | 4068 | #endif |
b092b471 JW |
4069 | #ifdef HAVE_maxdf3 |
4070 | if (HAVE_maxdf3) | |
4071 | smax_optab->handlers[(int) DFmode].insn_code = CODE_FOR_maxdf3; | |
77c9c6c2 | 4072 | #endif |
b092b471 JW |
4073 | #ifdef HAVE_maxxf3 |
4074 | if (HAVE_maxxf3) | |
4075 | smax_optab->handlers[(int) XFmode].insn_code = CODE_FOR_maxxf3; | |
77c9c6c2 | 4076 | #endif |
b092b471 JW |
4077 | #ifdef HAVE_maxtf3 |
4078 | if (HAVE_maxtf3) | |
4079 | smax_optab->handlers[(int) TFmode].insn_code = CODE_FOR_maxtf3; | |
4080 | #endif | |
4081 | init_integral_libfuncs (smax_optab, "max", '3'); | |
4082 | init_floating_libfuncs (smax_optab, "max", '3'); | |
77c9c6c2 RK |
4083 | |
4084 | #ifdef HAVE_uminqi3 | |
4085 | if (HAVE_uminqi3) | |
4086 | umin_optab->handlers[(int) QImode].insn_code = CODE_FOR_uminqi3; | |
4087 | #endif | |
4088 | #ifdef HAVE_uminhi3 | |
4089 | if (HAVE_uminhi3) | |
4090 | umin_optab->handlers[(int) HImode].insn_code = CODE_FOR_uminhi3; | |
4091 | #endif | |
4092 | #ifdef HAVE_uminsi3 | |
4093 | if (HAVE_uminsi3) | |
4094 | umin_optab->handlers[(int) SImode].insn_code = CODE_FOR_uminsi3; | |
4095 | #endif | |
4096 | #ifdef HAVE_umindi3 | |
4097 | if (HAVE_umindi3) | |
4098 | umin_optab->handlers[(int) DImode].insn_code = CODE_FOR_umindi3; | |
4099 | #endif | |
4100 | #ifdef HAVE_uminti3 | |
4101 | if (HAVE_uminti3) | |
4102 | umin_optab->handlers[(int) TImode].insn_code = CODE_FOR_uminti3; | |
4103 | #endif | |
b092b471 | 4104 | init_integral_libfuncs (umin_optab, "umin", '3'); |
77c9c6c2 RK |
4105 | |
4106 | #ifdef HAVE_umaxqi3 | |
4107 | if (HAVE_umaxqi3) | |
4108 | umax_optab->handlers[(int) QImode].insn_code = CODE_FOR_umaxqi3; | |
4109 | #endif | |
4110 | #ifdef HAVE_umaxhi3 | |
4111 | if (HAVE_umaxhi3) | |
4112 | umax_optab->handlers[(int) HImode].insn_code = CODE_FOR_umaxhi3; | |
4113 | #endif | |
4114 | #ifdef HAVE_umaxsi3 | |
4115 | if (HAVE_umaxsi3) | |
4116 | umax_optab->handlers[(int) SImode].insn_code = CODE_FOR_umaxsi3; | |
4117 | #endif | |
4118 | #ifdef HAVE_umaxdi3 | |
4119 | if (HAVE_umaxdi3) | |
4120 | umax_optab->handlers[(int) DImode].insn_code = CODE_FOR_umaxdi3; | |
4121 | #endif | |
4122 | #ifdef HAVE_umaxti3 | |
4123 | if (HAVE_umaxti3) | |
4124 | umax_optab->handlers[(int) TImode].insn_code = CODE_FOR_umaxti3; | |
4125 | #endif | |
b092b471 | 4126 | init_integral_libfuncs (umax_optab, "umax", '3'); |
77c9c6c2 RK |
4127 | |
4128 | #ifdef HAVE_negqi2 | |
4129 | if (HAVE_negqi2) | |
4130 | neg_optab->handlers[(int) QImode].insn_code = CODE_FOR_negqi2; | |
4131 | #endif | |
4132 | #ifdef HAVE_neghi2 | |
4133 | if (HAVE_neghi2) | |
4134 | neg_optab->handlers[(int) HImode].insn_code = CODE_FOR_neghi2; | |
4135 | #endif | |
4136 | #ifdef HAVE_negpsi2 | |
4137 | if (HAVE_negpsi2) | |
4138 | neg_optab->handlers[(int) PSImode].insn_code = CODE_FOR_negpsi2; | |
4139 | #endif | |
4140 | #ifdef HAVE_negsi2 | |
4141 | if (HAVE_negsi2) | |
4142 | neg_optab->handlers[(int) SImode].insn_code = CODE_FOR_negsi2; | |
4143 | #endif | |
4144 | #ifdef HAVE_negdi2 | |
4145 | if (HAVE_negdi2) | |
4146 | neg_optab->handlers[(int) DImode].insn_code = CODE_FOR_negdi2; | |
4147 | #endif | |
4148 | #ifdef HAVE_negti2 | |
4149 | if (HAVE_negti2) | |
4150 | neg_optab->handlers[(int) TImode].insn_code = CODE_FOR_negti2; | |
4151 | #endif | |
4152 | #ifdef HAVE_negsf2 | |
4153 | if (HAVE_negsf2) | |
4154 | neg_optab->handlers[(int) SFmode].insn_code = CODE_FOR_negsf2; | |
4155 | #endif | |
4156 | #ifdef HAVE_negdf2 | |
4157 | if (HAVE_negdf2) | |
4158 | neg_optab->handlers[(int) DFmode].insn_code = CODE_FOR_negdf2; | |
4159 | #endif | |
b092b471 JW |
4160 | #ifdef HAVE_negxf2 |
4161 | if (HAVE_negxf2) | |
4162 | neg_optab->handlers[(int) XFmode].insn_code = CODE_FOR_negxf2; | |
4163 | #endif | |
77c9c6c2 RK |
4164 | #ifdef HAVE_negtf2 |
4165 | if (HAVE_negtf2) | |
4166 | neg_optab->handlers[(int) TFmode].insn_code = CODE_FOR_negtf2; | |
4167 | #endif | |
b092b471 JW |
4168 | init_integral_libfuncs (neg_optab, "neg", '2'); |
4169 | init_floating_libfuncs (neg_optab, "neg", '2'); | |
77c9c6c2 RK |
4170 | |
4171 | #ifdef HAVE_absqi2 | |
4172 | if (HAVE_absqi2) | |
4173 | abs_optab->handlers[(int) QImode].insn_code = CODE_FOR_absqi2; | |
4174 | #endif | |
4175 | #ifdef HAVE_abshi2 | |
4176 | if (HAVE_abshi2) | |
4177 | abs_optab->handlers[(int) HImode].insn_code = CODE_FOR_abshi2; | |
4178 | #endif | |
4179 | #ifdef HAVE_abspsi2 | |
4180 | if (HAVE_abspsi2) | |
4181 | abs_optab->handlers[(int) PSImode].insn_code = CODE_FOR_abspsi2; | |
4182 | #endif | |
4183 | #ifdef HAVE_abssi2 | |
4184 | if (HAVE_abssi2) | |
4185 | abs_optab->handlers[(int) SImode].insn_code = CODE_FOR_abssi2; | |
4186 | #endif | |
4187 | #ifdef HAVE_absdi2 | |
4188 | if (HAVE_absdi2) | |
4189 | abs_optab->handlers[(int) DImode].insn_code = CODE_FOR_absdi2; | |
4190 | #endif | |
4191 | #ifdef HAVE_absti2 | |
4192 | if (HAVE_absti2) | |
4193 | abs_optab->handlers[(int) TImode].insn_code = CODE_FOR_absti2; | |
4194 | #endif | |
4195 | #ifdef HAVE_abssf2 | |
4196 | if (HAVE_abssf2) | |
4197 | abs_optab->handlers[(int) SFmode].insn_code = CODE_FOR_abssf2; | |
4198 | #endif | |
4199 | #ifdef HAVE_absdf2 | |
4200 | if (HAVE_absdf2) | |
4201 | abs_optab->handlers[(int) DFmode].insn_code = CODE_FOR_absdf2; | |
4202 | #endif | |
b092b471 JW |
4203 | #ifdef HAVE_absxf2 |
4204 | if (HAVE_absxf2) | |
4205 | abs_optab->handlers[(int) XFmode].insn_code = CODE_FOR_absxf2; | |
4206 | #endif | |
77c9c6c2 RK |
4207 | #ifdef HAVE_abstf2 |
4208 | if (HAVE_abstf2) | |
4209 | abs_optab->handlers[(int) TFmode].insn_code = CODE_FOR_abstf2; | |
4210 | #endif | |
4211 | /* No library calls here! If there is no abs instruction, | |
4212 | expand_expr will generate a conditional negation. */ | |
4213 | ||
d45cf215 RS |
4214 | #ifdef HAVE_sqrtqi2 |
4215 | if (HAVE_sqrtqi2) | |
4216 | sqrt_optab->handlers[(int) QImode].insn_code = CODE_FOR_sqrtqi2; | |
4217 | #endif | |
4218 | #ifdef HAVE_sqrthi2 | |
4219 | if (HAVE_sqrthi2) | |
4220 | sqrt_optab->handlers[(int) HImode].insn_code = CODE_FOR_sqrthi2; | |
4221 | #endif | |
4222 | #ifdef HAVE_sqrtpsi2 | |
4223 | if (HAVE_sqrtpsi2) | |
4224 | sqrt_optab->handlers[(int) PSImode].insn_code = CODE_FOR_sqrtpsi2; | |
4225 | #endif | |
4226 | #ifdef HAVE_sqrtsi2 | |
4227 | if (HAVE_sqrtsi2) | |
4228 | sqrt_optab->handlers[(int) SImode].insn_code = CODE_FOR_sqrtsi2; | |
4229 | #endif | |
4230 | #ifdef HAVE_sqrtdi2 | |
4231 | if (HAVE_sqrtdi2) | |
4232 | sqrt_optab->handlers[(int) DImode].insn_code = CODE_FOR_sqrtdi2; | |
4233 | #endif | |
4234 | #ifdef HAVE_sqrtti2 | |
4235 | if (HAVE_sqrtti2) | |
4236 | sqrt_optab->handlers[(int) TImode].insn_code = CODE_FOR_sqrtti2; | |
4237 | #endif | |
4238 | #ifdef HAVE_sqrtsf2 | |
4239 | if (HAVE_sqrtsf2) | |
4240 | sqrt_optab->handlers[(int) SFmode].insn_code = CODE_FOR_sqrtsf2; | |
4241 | #endif | |
4242 | #ifdef HAVE_sqrtdf2 | |
4243 | if (HAVE_sqrtdf2) | |
4244 | sqrt_optab->handlers[(int) DFmode].insn_code = CODE_FOR_sqrtdf2; | |
4245 | #endif | |
4246 | #ifdef HAVE_sqrttf2 | |
4247 | if (HAVE_sqrttf2) | |
4248 | sqrt_optab->handlers[(int) TFmode].insn_code = CODE_FOR_sqrttf2; | |
4249 | #endif | |
4250 | /* No library calls here! If there is no sqrt instruction expand_builtin | |
4251 | should force the library call. */ | |
4252 | ||
19c3fc24 RS |
4253 | #ifdef HAVE_strlenqi |
4254 | if (HAVE_strlenqi) | |
4255 | strlen_optab->handlers[(int) QImode].insn_code = CODE_FOR_strlenqi; | |
4256 | #endif | |
4257 | #ifdef HAVE_strlenhi | |
4258 | if (HAVE_strlenhi) | |
4259 | strlen_optab->handlers[(int) HImode].insn_code = CODE_FOR_strlenhi; | |
4260 | #endif | |
4261 | #ifdef HAVE_strlenpsi | |
4262 | if (HAVE_strlenpsi) | |
4263 | strlen_optab->handlers[(int) PSImode].insn_code = CODE_FOR_strlenpsi; | |
4264 | #endif | |
4265 | #ifdef HAVE_strlensi | |
4266 | if (HAVE_strlensi) | |
4267 | strlen_optab->handlers[(int) SImode].insn_code = CODE_FOR_strlensi; | |
4268 | #endif | |
4269 | #ifdef HAVE_strlendi | |
4270 | if (HAVE_strlendi) | |
4271 | strlen_optab->handlers[(int) DImode].insn_code = CODE_FOR_strlendi; | |
4272 | #endif | |
4273 | #ifdef HAVE_strlenti | |
4274 | if (HAVE_strlenti) | |
4275 | strlen_optab->handlers[(int) TImode].insn_code = CODE_FOR_strlenti; | |
4276 | #endif | |
4277 | /* No library calls here! If there is no strlen instruction expand_builtin | |
4278 | should force the library call. */ | |
4279 | ||
77c9c6c2 RK |
4280 | #ifdef HAVE_one_cmplqi2 |
4281 | if (HAVE_one_cmplqi2) | |
4282 | one_cmpl_optab->handlers[(int) QImode].insn_code = CODE_FOR_one_cmplqi2; | |
4283 | #endif | |
4284 | #ifdef HAVE_one_cmplhi2 | |
4285 | if (HAVE_one_cmplhi2) | |
4286 | one_cmpl_optab->handlers[(int) HImode].insn_code = CODE_FOR_one_cmplhi2; | |
4287 | #endif | |
4288 | #ifdef HAVE_one_cmplpsi2 | |
4289 | if (HAVE_one_cmplpsi2) | |
4290 | one_cmpl_optab->handlers[(int) PSImode].insn_code = CODE_FOR_one_cmplpsi2; | |
4291 | #endif | |
4292 | #ifdef HAVE_one_cmplsi2 | |
4293 | if (HAVE_one_cmplsi2) | |
4294 | one_cmpl_optab->handlers[(int) SImode].insn_code = CODE_FOR_one_cmplsi2; | |
4295 | #endif | |
4296 | #ifdef HAVE_one_cmpldi2 | |
4297 | if (HAVE_one_cmpldi2) | |
4298 | one_cmpl_optab->handlers[(int) DImode].insn_code = CODE_FOR_one_cmpldi2; | |
4299 | #endif | |
4300 | #ifdef HAVE_one_cmplti2 | |
4301 | if (HAVE_one_cmplti2) | |
4302 | one_cmpl_optab->handlers[(int) TImode].insn_code = CODE_FOR_one_cmplti2; | |
4303 | #endif | |
b092b471 | 4304 | init_integral_libfuncs (one_cmpl_optab, "one_cmpl", '2'); |
77c9c6c2 RK |
4305 | |
4306 | #ifdef HAVE_ffsqi2 | |
4307 | if (HAVE_ffsqi2) | |
4308 | ffs_optab->handlers[(int) QImode].insn_code = CODE_FOR_ffsqi2; | |
4309 | #endif | |
4310 | #ifdef HAVE_ffshi2 | |
4311 | if (HAVE_ffshi2) | |
4312 | ffs_optab->handlers[(int) HImode].insn_code = CODE_FOR_ffshi2; | |
4313 | #endif | |
4314 | #ifdef HAVE_ffspsi2 | |
4315 | if (HAVE_ffspsi2) | |
4316 | ffs_optab->handlers[(int) PSImode].insn_code = CODE_FOR_ffspsi2; | |
4317 | #endif | |
4318 | #ifdef HAVE_ffssi2 | |
4319 | if (HAVE_ffssi2) | |
4320 | ffs_optab->handlers[(int) SImode].insn_code = CODE_FOR_ffssi2; | |
4321 | #endif | |
4322 | #ifdef HAVE_ffsdi2 | |
4323 | if (HAVE_ffsdi2) | |
4324 | ffs_optab->handlers[(int) DImode].insn_code = CODE_FOR_ffsdi2; | |
4325 | #endif | |
4326 | #ifdef HAVE_ffsti2 | |
4327 | if (HAVE_ffsti2) | |
4328 | ffs_optab->handlers[(int) TImode].insn_code = CODE_FOR_ffsti2; | |
4329 | #endif | |
b092b471 | 4330 | init_integral_libfuncs (ffs_optab, "ffs", '2'); |
77c9c6c2 RK |
4331 | |
4332 | #ifdef HAVE_movqi | |
4333 | if (HAVE_movqi) | |
4334 | mov_optab->handlers[(int) QImode].insn_code = CODE_FOR_movqi; | |
4335 | #endif | |
4336 | #ifdef HAVE_movhi | |
4337 | if (HAVE_movhi) | |
4338 | mov_optab->handlers[(int) HImode].insn_code = CODE_FOR_movhi; | |
4339 | #endif | |
4340 | #ifdef HAVE_movpsi | |
4341 | if (HAVE_movpsi) | |
4342 | mov_optab->handlers[(int) PSImode].insn_code = CODE_FOR_movpsi; | |
4343 | #endif | |
4344 | #ifdef HAVE_movsi | |
4345 | if (HAVE_movsi) | |
4346 | mov_optab->handlers[(int) SImode].insn_code = CODE_FOR_movsi; | |
4347 | #endif | |
4348 | #ifdef HAVE_movdi | |
4349 | if (HAVE_movdi) | |
4350 | mov_optab->handlers[(int) DImode].insn_code = CODE_FOR_movdi; | |
4351 | #endif | |
4352 | #ifdef HAVE_movti | |
4353 | if (HAVE_movti) | |
4354 | mov_optab->handlers[(int) TImode].insn_code = CODE_FOR_movti; | |
4355 | #endif | |
4356 | #ifdef HAVE_movsf | |
4357 | if (HAVE_movsf) | |
4358 | mov_optab->handlers[(int) SFmode].insn_code = CODE_FOR_movsf; | |
4359 | #endif | |
4360 | #ifdef HAVE_movdf | |
4361 | if (HAVE_movdf) | |
4362 | mov_optab->handlers[(int) DFmode].insn_code = CODE_FOR_movdf; | |
4363 | #endif | |
b092b471 JW |
4364 | #ifdef HAVE_movxf |
4365 | if (HAVE_movxf) | |
4366 | mov_optab->handlers[(int) XFmode].insn_code = CODE_FOR_movxf; | |
4367 | #endif | |
77c9c6c2 RK |
4368 | #ifdef HAVE_movtf |
4369 | if (HAVE_movtf) | |
4370 | mov_optab->handlers[(int) TFmode].insn_code = CODE_FOR_movtf; | |
4371 | #endif | |
4372 | #ifdef HAVE_movcc | |
4373 | if (HAVE_movcc) | |
4374 | mov_optab->handlers[(int) CCmode].insn_code = CODE_FOR_movcc; | |
4375 | #endif | |
4376 | ||
4377 | #ifdef EXTRA_CC_MODES | |
4378 | init_mov_optab (); | |
4379 | #endif | |
4380 | ||
4381 | #ifdef HAVE_movstrictqi | |
4382 | if (HAVE_movstrictqi) | |
4383 | movstrict_optab->handlers[(int) QImode].insn_code = CODE_FOR_movstrictqi; | |
4384 | #endif | |
4385 | #ifdef HAVE_movstricthi | |
4386 | if (HAVE_movstricthi) | |
4387 | movstrict_optab->handlers[(int) HImode].insn_code = CODE_FOR_movstricthi; | |
4388 | #endif | |
4389 | #ifdef HAVE_movstrictpsi | |
4390 | if (HAVE_movstrictpsi) | |
4391 | movstrict_optab->handlers[(int) PSImode].insn_code = CODE_FOR_movstrictpsi; | |
4392 | #endif | |
4393 | #ifdef HAVE_movstrictsi | |
4394 | if (HAVE_movstrictsi) | |
4395 | movstrict_optab->handlers[(int) SImode].insn_code = CODE_FOR_movstrictsi; | |
4396 | #endif | |
4397 | #ifdef HAVE_movstrictdi | |
4398 | if (HAVE_movstrictdi) | |
4399 | movstrict_optab->handlers[(int) DImode].insn_code = CODE_FOR_movstrictdi; | |
4400 | #endif | |
4401 | #ifdef HAVE_movstrictti | |
4402 | if (HAVE_movstrictti) | |
4403 | movstrict_optab->handlers[(int) TImode].insn_code = CODE_FOR_movstrictti; | |
4404 | #endif | |
4405 | ||
4406 | #ifdef HAVE_cmpqi | |
4407 | if (HAVE_cmpqi) | |
4408 | cmp_optab->handlers[(int) QImode].insn_code = CODE_FOR_cmpqi; | |
4409 | #endif | |
4410 | #ifdef HAVE_cmphi | |
4411 | if (HAVE_cmphi) | |
4412 | cmp_optab->handlers[(int) HImode].insn_code = CODE_FOR_cmphi; | |
4413 | #endif | |
4414 | #ifdef HAVE_cmppsi | |
4415 | if (HAVE_cmppsi) | |
4416 | cmp_optab->handlers[(int) PSImode].insn_code = CODE_FOR_cmppsi; | |
4417 | #endif | |
4418 | #ifdef HAVE_cmpsi | |
4419 | if (HAVE_cmpsi) | |
4420 | cmp_optab->handlers[(int) SImode].insn_code = CODE_FOR_cmpsi; | |
4421 | #endif | |
4422 | #ifdef HAVE_cmpdi | |
4423 | if (HAVE_cmpdi) | |
4424 | cmp_optab->handlers[(int) DImode].insn_code = CODE_FOR_cmpdi; | |
4425 | #endif | |
4426 | #ifdef HAVE_cmpti | |
4427 | if (HAVE_cmpti) | |
4428 | cmp_optab->handlers[(int) TImode].insn_code = CODE_FOR_cmpti; | |
4429 | #endif | |
4430 | #ifdef HAVE_cmpsf | |
4431 | if (HAVE_cmpsf) | |
4432 | cmp_optab->handlers[(int) SFmode].insn_code = CODE_FOR_cmpsf; | |
4433 | #endif | |
4434 | #ifdef HAVE_cmpdf | |
4435 | if (HAVE_cmpdf) | |
4436 | cmp_optab->handlers[(int) DFmode].insn_code = CODE_FOR_cmpdf; | |
4437 | #endif | |
b092b471 JW |
4438 | #ifdef HAVE_cmpxf |
4439 | if (HAVE_cmpxf) | |
4440 | cmp_optab->handlers[(int) XFmode].insn_code = CODE_FOR_cmpxf; | |
4441 | #endif | |
77c9c6c2 RK |
4442 | #ifdef HAVE_cmptf |
4443 | if (HAVE_cmptf) | |
4444 | cmp_optab->handlers[(int) TFmode].insn_code = CODE_FOR_cmptf; | |
4445 | #endif | |
b092b471 JW |
4446 | /* Comparison libcalls for integers MUST come in pairs, signed/unsigned. */ |
4447 | init_integral_libfuncs (cmp_optab, "cmp", '2'); | |
4448 | init_integral_libfuncs (ucmp_optab, "ucmp", '2'); | |
4449 | init_floating_libfuncs (cmp_optab, "cmp", '2'); | |
4450 | ||
77c9c6c2 RK |
4451 | #ifdef HAVE_tstqi |
4452 | if (HAVE_tstqi) | |
4453 | tst_optab->handlers[(int) QImode].insn_code = CODE_FOR_tstqi; | |
4454 | #endif | |
4455 | #ifdef HAVE_tsthi | |
4456 | if (HAVE_tsthi) | |
4457 | tst_optab->handlers[(int) HImode].insn_code = CODE_FOR_tsthi; | |
4458 | #endif | |
4459 | #ifdef HAVE_tstpsi | |
4460 | if (HAVE_tstpsi) | |
4461 | tst_optab->handlers[(int) PSImode].insn_code = CODE_FOR_tstpsi; | |
4462 | #endif | |
4463 | #ifdef HAVE_tstsi | |
4464 | if (HAVE_tstsi) | |
4465 | tst_optab->handlers[(int) SImode].insn_code = CODE_FOR_tstsi; | |
4466 | #endif | |
4467 | #ifdef HAVE_tstdi | |
4468 | if (HAVE_tstdi) | |
4469 | tst_optab->handlers[(int) DImode].insn_code = CODE_FOR_tstdi; | |
4470 | #endif | |
4471 | #ifdef HAVE_tstti | |
4472 | if (HAVE_tstti) | |
4473 | tst_optab->handlers[(int) TImode].insn_code = CODE_FOR_tstti; | |
4474 | #endif | |
4475 | #ifdef HAVE_tstsf | |
4476 | if (HAVE_tstsf) | |
4477 | tst_optab->handlers[(int) SFmode].insn_code = CODE_FOR_tstsf; | |
4478 | #endif | |
4479 | #ifdef HAVE_tstdf | |
4480 | if (HAVE_tstdf) | |
4481 | tst_optab->handlers[(int) DFmode].insn_code = CODE_FOR_tstdf; | |
4482 | #endif | |
b092b471 JW |
4483 | #ifdef HAVE_tstxf |
4484 | if (HAVE_tstxf) | |
4485 | tst_optab->handlers[(int) XFmode].insn_code = CODE_FOR_tstxf; | |
4486 | #endif | |
77c9c6c2 RK |
4487 | #ifdef HAVE_tsttf |
4488 | if (HAVE_tsttf) | |
4489 | tst_optab->handlers[(int) TFmode].insn_code = CODE_FOR_tsttf; | |
4490 | #endif | |
77c9c6c2 RK |
4491 | |
4492 | #ifdef HAVE_beq | |
4493 | if (HAVE_beq) | |
4494 | bcc_gen_fctn[(int) EQ] = gen_beq; | |
4495 | #endif | |
4496 | #ifdef HAVE_bne | |
4497 | if (HAVE_bne) | |
4498 | bcc_gen_fctn[(int) NE] = gen_bne; | |
4499 | #endif | |
4500 | #ifdef HAVE_bgt | |
4501 | if (HAVE_bgt) | |
4502 | bcc_gen_fctn[(int) GT] = gen_bgt; | |
4503 | #endif | |
4504 | #ifdef HAVE_bge | |
4505 | if (HAVE_bge) | |
4506 | bcc_gen_fctn[(int) GE] = gen_bge; | |
4507 | #endif | |
4508 | #ifdef HAVE_bgtu | |
4509 | if (HAVE_bgtu) | |
4510 | bcc_gen_fctn[(int) GTU] = gen_bgtu; | |
4511 | #endif | |
4512 | #ifdef HAVE_bgeu | |
4513 | if (HAVE_bgeu) | |
4514 | bcc_gen_fctn[(int) GEU] = gen_bgeu; | |
4515 | #endif | |
4516 | #ifdef HAVE_blt | |
4517 | if (HAVE_blt) | |
4518 | bcc_gen_fctn[(int) LT] = gen_blt; | |
4519 | #endif | |
4520 | #ifdef HAVE_ble | |
4521 | if (HAVE_ble) | |
4522 | bcc_gen_fctn[(int) LE] = gen_ble; | |
4523 | #endif | |
4524 | #ifdef HAVE_bltu | |
4525 | if (HAVE_bltu) | |
4526 | bcc_gen_fctn[(int) LTU] = gen_bltu; | |
4527 | #endif | |
4528 | #ifdef HAVE_bleu | |
4529 | if (HAVE_bleu) | |
4530 | bcc_gen_fctn[(int) LEU] = gen_bleu; | |
4531 | #endif | |
4532 | ||
4533 | for (i = 0; i < NUM_RTX_CODE; i++) | |
4534 | setcc_gen_code[i] = CODE_FOR_nothing; | |
4535 | ||
4536 | #ifdef HAVE_seq | |
4537 | if (HAVE_seq) | |
4538 | setcc_gen_code[(int) EQ] = CODE_FOR_seq; | |
4539 | #endif | |
4540 | #ifdef HAVE_sne | |
4541 | if (HAVE_sne) | |
4542 | setcc_gen_code[(int) NE] = CODE_FOR_sne; | |
4543 | #endif | |
4544 | #ifdef HAVE_sgt | |
4545 | if (HAVE_sgt) | |
4546 | setcc_gen_code[(int) GT] = CODE_FOR_sgt; | |
4547 | #endif | |
4548 | #ifdef HAVE_sge | |
4549 | if (HAVE_sge) | |
4550 | setcc_gen_code[(int) GE] = CODE_FOR_sge; | |
4551 | #endif | |
4552 | #ifdef HAVE_sgtu | |
4553 | if (HAVE_sgtu) | |
4554 | setcc_gen_code[(int) GTU] = CODE_FOR_sgtu; | |
4555 | #endif | |
4556 | #ifdef HAVE_sgeu | |
4557 | if (HAVE_sgeu) | |
4558 | setcc_gen_code[(int) GEU] = CODE_FOR_sgeu; | |
4559 | #endif | |
4560 | #ifdef HAVE_slt | |
4561 | if (HAVE_slt) | |
4562 | setcc_gen_code[(int) LT] = CODE_FOR_slt; | |
4563 | #endif | |
4564 | #ifdef HAVE_sle | |
4565 | if (HAVE_sle) | |
4566 | setcc_gen_code[(int) LE] = CODE_FOR_sle; | |
4567 | #endif | |
4568 | #ifdef HAVE_sltu | |
4569 | if (HAVE_sltu) | |
4570 | setcc_gen_code[(int) LTU] = CODE_FOR_sltu; | |
4571 | #endif | |
4572 | #ifdef HAVE_sleu | |
4573 | if (HAVE_sleu) | |
4574 | setcc_gen_code[(int) LEU] = CODE_FOR_sleu; | |
4575 | #endif | |
4576 | ||
4577 | extendsfdf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__extendsfdf2"); | |
b092b471 JW |
4578 | extendsfxf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__extendsfxf2"); |
4579 | extendsftf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__extendsftf2"); | |
4580 | extenddfxf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__extenddfxf2"); | |
4581 | extenddftf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__extenddftf2"); | |
4582 | ||
77c9c6c2 | 4583 | truncdfsf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__truncdfsf2"); |
b092b471 JW |
4584 | truncxfsf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__truncxfsf2"); |
4585 | trunctfsf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__trunctfsf2"); | |
4586 | truncxfdf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__truncxfdf2"); | |
4587 | trunctfdf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__trunctfdf2"); | |
4588 | ||
77c9c6c2 RK |
4589 | memcpy_libfunc = gen_rtx (SYMBOL_REF, Pmode, "memcpy"); |
4590 | bcopy_libfunc = gen_rtx (SYMBOL_REF, Pmode, "bcopy"); | |
4591 | memcmp_libfunc = gen_rtx (SYMBOL_REF, Pmode, "memcmp"); | |
4592 | bcmp_libfunc = gen_rtx (SYMBOL_REF, Pmode, "bcmp"); | |
4593 | memset_libfunc = gen_rtx (SYMBOL_REF, Pmode, "memset"); | |
4594 | bzero_libfunc = gen_rtx (SYMBOL_REF, Pmode, "bzero"); | |
b092b471 | 4595 | |
77c9c6c2 RK |
4596 | eqsf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__eqsf2"); |
4597 | nesf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__nesf2"); | |
4598 | gtsf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__gtsf2"); | |
4599 | gesf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__gesf2"); | |
4600 | ltsf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__ltsf2"); | |
4601 | lesf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__lesf2"); | |
b092b471 | 4602 | |
77c9c6c2 RK |
4603 | eqdf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__eqdf2"); |
4604 | nedf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__nedf2"); | |
4605 | gtdf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__gtdf2"); | |
4606 | gedf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__gedf2"); | |
4607 | ltdf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__ltdf2"); | |
4608 | ledf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__ledf2"); | |
b092b471 JW |
4609 | |
4610 | eqxf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__eqxf2"); | |
4611 | nexf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__nexf2"); | |
4612 | gtxf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__gtxf2"); | |
4613 | gexf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__gexf2"); | |
4614 | ltxf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__ltxf2"); | |
4615 | lexf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__lexf2"); | |
4616 | ||
4617 | eqtf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__eqtf2"); | |
4618 | netf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__netf2"); | |
4619 | gttf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__gttf2"); | |
4620 | getf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__getf2"); | |
4621 | lttf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__lttf2"); | |
4622 | letf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__letf2"); | |
4623 | ||
6bce1b78 | 4624 | floatsisf_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__floatsisf"); |
b092b471 JW |
4625 | floatdisf_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__floatdisf"); |
4626 | floattisf_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__floattisf"); | |
4627 | ||
6bce1b78 | 4628 | floatsidf_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__floatsidf"); |
b092b471 JW |
4629 | floatdidf_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__floatdidf"); |
4630 | floattidf_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__floattidf"); | |
4631 | ||
4632 | floatsixf_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__floatsixf"); | |
4633 | floatdixf_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__floatdixf"); | |
4634 | floattixf_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__floattixf"); | |
4635 | ||
4636 | floatsitf_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__floatsitf"); | |
4637 | floatditf_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__floatditf"); | |
4638 | floattitf_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__floattitf"); | |
4639 | ||
6bce1b78 RK |
4640 | fixsfsi_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixsfsi"); |
4641 | fixsfdi_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixsfdi"); | |
b092b471 JW |
4642 | fixsfti_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixsfti"); |
4643 | ||
6bce1b78 RK |
4644 | fixdfsi_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixdfsi"); |
4645 | fixdfdi_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixdfdi"); | |
b092b471 JW |
4646 | fixdfti_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixdfti"); |
4647 | ||
4648 | fixxfsi_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixxfsi"); | |
4649 | fixxfdi_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixxfdi"); | |
4650 | fixxfti_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixxfti"); | |
4651 | ||
4652 | fixtfsi_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixtfsi"); | |
4653 | fixtfdi_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixtfdi"); | |
4654 | fixtfti_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixtfti"); | |
4655 | ||
6bce1b78 RK |
4656 | fixunssfsi_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixunssfsi"); |
4657 | fixunssfdi_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixunssfdi"); | |
b092b471 JW |
4658 | fixunssfti_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixunssfti"); |
4659 | ||
6bce1b78 RK |
4660 | fixunsdfsi_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixunsdfsi"); |
4661 | fixunsdfdi_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixunsdfdi"); | |
b092b471 JW |
4662 | fixunsdfti_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixunsdfti"); |
4663 | ||
4664 | fixunsxfsi_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixunsxfsi"); | |
4665 | fixunsxfdi_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixunsxfdi"); | |
4666 | fixunsxfti_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixunsxfti"); | |
4667 | ||
4668 | fixunstfsi_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixunstfsi"); | |
4669 | fixunstfdi_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixunstfdi"); | |
4670 | fixunstfti_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixunstfti"); | |
77c9c6c2 | 4671 | } |
7e1966ca JVA |
4672 | \f |
4673 | #ifdef BROKEN_LDEXP | |
4674 | ||
4675 | /* SCO 3.2 apparently has a broken ldexp. */ | |
4676 | ||
4677 | double | |
4678 | ldexp(x,n) | |
4679 | double x; | |
4680 | int n; | |
4681 | { | |
4682 | if (n > 0) | |
4683 | while (n--) | |
4684 | x *= 2; | |
4685 | ||
4686 | return x; | |
4687 | } | |
4688 | #endif /* BROKEN_LDEXP */ |