]> gcc.gnu.org Git - gcc.git/blame - gcc/match.pd
Daily bump.
[gcc.git] / gcc / match.pd
CommitLineData
3d2cf79f 1/* Match-and-simplify patterns for shared GENERIC and GIMPLE folding.
e53b6e56
ML
2 This file is consumed by genmatch which produces gimple-match.cc
3 and generic-match.cc from it.
3d2cf79f 4
aeee4812 5 Copyright (C) 2014-2023 Free Software Foundation, Inc.
3d2cf79f
RB
6 Contributed by Richard Biener <rguenther@suse.de>
7 and Prathamesh Kulkarni <bilbotheelffriend@gmail.com>
8
9This file is part of GCC.
10
11GCC is free software; you can redistribute it and/or modify it under
12the terms of the GNU General Public License as published by the Free
13Software Foundation; either version 3, or (at your option) any later
14version.
15
16GCC is distributed in the hope that it will be useful, but WITHOUT ANY
17WARRANTY; without even the implied warranty of MERCHANTABILITY or
18FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19for more details.
20
21You should have received a copy of the GNU General Public License
22along with GCC; see the file COPYING3. If not see
23<http://www.gnu.org/licenses/>. */
24
25
26/* Generic tree predicates we inherit. */
27(define_predicates
cc7b5acf 28 integer_onep integer_zerop integer_all_onesp integer_minus_onep
53a19317 29 integer_each_onep integer_truep integer_nonzerop
cc7b5acf 30 real_zerop real_onep real_minus_onep
b0eb889b 31 zerop
46c66a46 32 initializer_each_zero_or_onep
f3582e54 33 CONSTANT_CLASS_P
887ab609 34 tree_expr_nonnegative_p
e36c1cfe 35 tree_expr_nonzero_p
67dbe582 36 integer_valued_real_p
53a19317 37 integer_pow2p
f06e47d7 38 uniform_integer_cst_p
21caa1a2 39 HONOR_NANS
d70720c2 40 uniform_vector_p
0888d6bb
TC
41 expand_vec_cmp_expr_p
42 bitmask_inv_cst_vector_p)
e0ee10ed 43
f84e7fd6
RB
44/* Operator lists. */
45(define_operator_list tcc_comparison
46 lt le eq ne ge gt unordered ordered unlt unle ungt unge uneq ltgt)
47(define_operator_list inverted_tcc_comparison
48 ge gt ne eq lt le ordered unordered ge gt le lt ltgt uneq)
49(define_operator_list inverted_tcc_comparison_with_nans
50 unge ungt ne eq unlt unle ordered unordered ge gt le lt ltgt uneq)
534bd33b
MG
51(define_operator_list swapped_tcc_comparison
52 gt ge eq ne le lt unordered ordered ungt unge unlt unle uneq ltgt)
07cdc2b8
RB
53(define_operator_list simple_comparison lt le eq ne ge gt)
54(define_operator_list swapped_simple_comparison gt ge eq ne le lt)
55
b1dc4a20 56#include "cfn-operators.pd"
257aecb4 57
543a9bcd
RS
58/* Define operand lists for math rounding functions {,i,l,ll}FN,
59 where the versions prefixed with "i" return an int, those prefixed with
60 "l" return a long and those prefixed with "ll" return a long long.
61
62 Also define operand lists:
63
64 X<FN>F for all float functions, in the order i, l, ll
65 X<FN> for all double functions, in the same order
66 X<FN>L for all long double functions, in the same order. */
67#define DEFINE_INT_AND_FLOAT_ROUND_FN(FN) \
543a9bcd
RS
68 (define_operator_list X##FN##F BUILT_IN_I##FN##F \
69 BUILT_IN_L##FN##F \
70 BUILT_IN_LL##FN##F) \
71 (define_operator_list X##FN BUILT_IN_I##FN \
72 BUILT_IN_L##FN \
73 BUILT_IN_LL##FN) \
74 (define_operator_list X##FN##L BUILT_IN_I##FN##L \
75 BUILT_IN_L##FN##L \
76 BUILT_IN_LL##FN##L)
77
543a9bcd
RS
78DEFINE_INT_AND_FLOAT_ROUND_FN (FLOOR)
79DEFINE_INT_AND_FLOAT_ROUND_FN (CEIL)
80DEFINE_INT_AND_FLOAT_ROUND_FN (ROUND)
81DEFINE_INT_AND_FLOAT_ROUND_FN (RINT)
0d2b3bca 82
20dcda98 83/* Unary operations and their associated IFN_COND_* function. */
84(define_operator_list UNCOND_UNARY
85 negate)
86(define_operator_list COND_UNARY
87 IFN_COND_NEG)
88
0d2b3bca
RS
89/* Binary operations and their associated IFN_COND_* function. */
90(define_operator_list UNCOND_BINARY
91 plus minus
6c4fd4a9 92 mult trunc_div trunc_mod rdiv
0d2b3bca 93 min max
70613000 94 IFN_FMIN IFN_FMAX
20103c0e
RS
95 bit_and bit_ior bit_xor
96 lshift rshift)
0d2b3bca
RS
97(define_operator_list COND_BINARY
98 IFN_COND_ADD IFN_COND_SUB
6c4fd4a9 99 IFN_COND_MUL IFN_COND_DIV IFN_COND_MOD IFN_COND_RDIV
0d2b3bca 100 IFN_COND_MIN IFN_COND_MAX
70613000 101 IFN_COND_FMIN IFN_COND_FMAX
20103c0e
RS
102 IFN_COND_AND IFN_COND_IOR IFN_COND_XOR
103 IFN_COND_SHL IFN_COND_SHR)
b41d1f6e
RS
104
105/* Same for ternary operations. */
106(define_operator_list UNCOND_TERNARY
107 IFN_FMA IFN_FMS IFN_FNMA IFN_FNMS)
108(define_operator_list COND_TERNARY
109 IFN_COND_FMA IFN_COND_FMS IFN_COND_FNMA IFN_COND_FNMS)
03cc70b5 110
fb161782 111/* __atomic_fetch_or_*, __atomic_fetch_xor_*, __atomic_xor_fetch_* */
112(define_operator_list ATOMIC_FETCH_OR_XOR_N
113 BUILT_IN_ATOMIC_FETCH_OR_1 BUILT_IN_ATOMIC_FETCH_OR_2
114 BUILT_IN_ATOMIC_FETCH_OR_4 BUILT_IN_ATOMIC_FETCH_OR_8
115 BUILT_IN_ATOMIC_FETCH_OR_16
116 BUILT_IN_ATOMIC_FETCH_XOR_1 BUILT_IN_ATOMIC_FETCH_XOR_2
117 BUILT_IN_ATOMIC_FETCH_XOR_4 BUILT_IN_ATOMIC_FETCH_XOR_8
118 BUILT_IN_ATOMIC_FETCH_XOR_16
119 BUILT_IN_ATOMIC_XOR_FETCH_1 BUILT_IN_ATOMIC_XOR_FETCH_2
120 BUILT_IN_ATOMIC_XOR_FETCH_4 BUILT_IN_ATOMIC_XOR_FETCH_8
121 BUILT_IN_ATOMIC_XOR_FETCH_16)
122/* __sync_fetch_and_or_*, __sync_fetch_and_xor_*, __sync_xor_and_fetch_* */
123(define_operator_list SYNC_FETCH_OR_XOR_N
124 BUILT_IN_SYNC_FETCH_AND_OR_1 BUILT_IN_SYNC_FETCH_AND_OR_2
125 BUILT_IN_SYNC_FETCH_AND_OR_4 BUILT_IN_SYNC_FETCH_AND_OR_8
126 BUILT_IN_SYNC_FETCH_AND_OR_16
127 BUILT_IN_SYNC_FETCH_AND_XOR_1 BUILT_IN_SYNC_FETCH_AND_XOR_2
128 BUILT_IN_SYNC_FETCH_AND_XOR_4 BUILT_IN_SYNC_FETCH_AND_XOR_8
129 BUILT_IN_SYNC_FETCH_AND_XOR_16
130 BUILT_IN_SYNC_XOR_AND_FETCH_1 BUILT_IN_SYNC_XOR_AND_FETCH_2
131 BUILT_IN_SYNC_XOR_AND_FETCH_4 BUILT_IN_SYNC_XOR_AND_FETCH_8
132 BUILT_IN_SYNC_XOR_AND_FETCH_16)
133/* __atomic_fetch_and_*. */
134(define_operator_list ATOMIC_FETCH_AND_N
135 BUILT_IN_ATOMIC_FETCH_AND_1 BUILT_IN_ATOMIC_FETCH_AND_2
136 BUILT_IN_ATOMIC_FETCH_AND_4 BUILT_IN_ATOMIC_FETCH_AND_8
137 BUILT_IN_ATOMIC_FETCH_AND_16)
138/* __sync_fetch_and_and_*. */
139(define_operator_list SYNC_FETCH_AND_AND_N
140 BUILT_IN_SYNC_FETCH_AND_AND_1 BUILT_IN_SYNC_FETCH_AND_AND_2
141 BUILT_IN_SYNC_FETCH_AND_AND_4 BUILT_IN_SYNC_FETCH_AND_AND_8
142 BUILT_IN_SYNC_FETCH_AND_AND_16)
143
e150da38
RB
144/* With nop_convert? combine convert? and view_convert? in one pattern
145 plus conditionalize on tree_nop_conversion_p conversions. */
ed73f46f
MG
146(match (nop_convert @0)
147 (convert @0)
148 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))))
149(match (nop_convert @0)
150 (view_convert @0)
151 (if (VECTOR_TYPE_P (type) && VECTOR_TYPE_P (TREE_TYPE (@0))
928686b1
RS
152 && known_eq (TYPE_VECTOR_SUBPARTS (type),
153 TYPE_VECTOR_SUBPARTS (TREE_TYPE (@0)))
ed73f46f 154 && tree_nop_conversion_p (TREE_TYPE (type), TREE_TYPE (TREE_TYPE (@0))))))
f84e7fd6 155
e197e64e
KV
156/* Transform likes of (char) ABS_EXPR <(int) x> into (char) ABSU_EXPR <x>
157 ABSU_EXPR returns unsigned absolute value of the operand and the operand
158 of the ABSU_EXPR will have the corresponding signed type. */
159(simplify (abs (convert @0))
160 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
161 && !TYPE_UNSIGNED (TREE_TYPE (@0))
162 && element_precision (type) > element_precision (TREE_TYPE (@0)))
163 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
164 (convert (absu:utype @0)))))
165
a0d732ee
JJ
166#if GIMPLE
167/* Optimize (X + (X >> (prec - 1))) ^ (X >> (prec - 1)) into abs (X). */
168(simplify
169 (bit_xor:c (plus:c @0 (rshift@2 @0 INTEGER_CST@1)) @2)
170 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
171 && !TYPE_UNSIGNED (TREE_TYPE (@0))
172 && wi::to_widest (@1) == element_precision (TREE_TYPE (@0)) - 1)
173 (abs @0)))
174#endif
e197e64e 175
e0ee10ed 176/* Simplifications of operations with one constant operand and
36a60e48 177 simplifications to constants or single values. */
e0ee10ed
RB
178
179(for op (plus pointer_plus minus bit_ior bit_xor)
180 (simplify
181 (op @0 integer_zerop)
182 (non_lvalue @0)))
183
a499aac5
RB
184/* 0 +p index -> (type)index */
185(simplify
186 (pointer_plus integer_zerop @1)
187 (non_lvalue (convert @1)))
188
d43177ad
MG
189/* ptr - 0 -> (type)ptr */
190(simplify
191 (pointer_diff @0 integer_zerop)
192 (convert @0))
193
a7f24614
RB
194/* See if ARG1 is zero and X + ARG1 reduces to X.
195 Likewise if the operands are reversed. */
196(simplify
197 (plus:c @0 real_zerop@1)
5b02ed4b 198 (if (fold_real_zero_addition_p (type, @0, @1, 0))
a7f24614
RB
199 (non_lvalue @0)))
200
201/* See if ARG1 is zero and X - ARG1 reduces to X. */
202(simplify
203 (minus @0 real_zerop@1)
5b02ed4b 204 (if (fold_real_zero_addition_p (type, @0, @1, 1))
a7f24614 205 (non_lvalue @0)))
f7b7e5d0
JJ
206
207/* Even if the fold_real_zero_addition_p can't simplify X + 0.0
208 into X, we can optimize (X + 0.0) + 0.0 or (X + 0.0) - 0.0
209 or (X - 0.0) + 0.0 into X + 0.0 and (X - 0.0) - 0.0 into X - 0.0
210 if not -frounding-math. For sNaNs the first operation would raise
211 exceptions but turn the result into qNan, so the second operation
212 would not raise it. */
213(for inner_op (plus minus)
214 (for outer_op (plus minus)
215 (simplify
216 (outer_op (inner_op@3 @0 REAL_CST@1) REAL_CST@2)
217 (if (real_zerop (@1)
218 && real_zerop (@2)
219 && !HONOR_SIGN_DEPENDENT_ROUNDING (type))
220 (with { bool inner_plus = ((inner_op == PLUS_EXPR)
221 ^ REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (@1)));
222 bool outer_plus
223 = ((outer_op == PLUS_EXPR)
224 ^ REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (@2))); }
225 (if (outer_plus && !inner_plus)
226 (outer_op @0 @2)
227 @3))))))
a7f24614 228
e0ee10ed
RB
229/* Simplify x - x.
230 This is unsafe for certain floats even in non-IEEE formats.
231 In IEEE, it is unsafe because it does wrong for NaNs.
72c24301 232 PR middle-end/98420: x - x may be -0.0 with FE_DOWNWARD.
e0ee10ed
RB
233 Also note that operand_equal_p is always false if an operand
234 is volatile. */
235(simplify
a7f24614 236 (minus @0 @0)
6ea5fb3c
RS
237 (if (!FLOAT_TYPE_P (type)
238 || (!tree_expr_maybe_nan_p (@0)
72c24301
RS
239 && !tree_expr_maybe_infinite_p (@0)
240 && (!HONOR_SIGN_DEPENDENT_ROUNDING (type)
241 || !HONOR_SIGNED_ZEROS (type))))
a7f24614 242 { build_zero_cst (type); }))
1af4ebf5
MG
243(simplify
244 (pointer_diff @@0 @0)
245 { build_zero_cst (type); })
e0ee10ed
RB
246
247(simplify
a7f24614
RB
248 (mult @0 integer_zerop@1)
249 @1)
250
e888bea2
NR
251/* -x == x -> x == 0 */
252(for cmp (eq ne)
253 (simplify
254 (cmp:c @0 (negate @0))
255 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
256 && !TYPE_OVERFLOW_WRAPS (TREE_TYPE(@0)))
257 (cmp @0 { build_zero_cst (TREE_TYPE(@0)); }))))
258
a7f24614
RB
259/* Maybe fold x * 0 to 0. The expressions aren't the same
260 when x is NaN, since x * 0 is also NaN. Nor are they the
261 same in modes with signed zeros, since multiplying a
b3763384
JJ
262 negative value by 0 gives -0, not +0. Nor when x is +-Inf,
263 since x * 0 is NaN. */
a7f24614
RB
264(simplify
265 (mult @0 real_zerop@1)
5b02ed4b 266 (if (!tree_expr_maybe_nan_p (@0)
b3763384 267 && (!HONOR_NANS (type) || !tree_expr_maybe_infinite_p (@0))
2d3c4775 268 && (!HONOR_SIGNED_ZEROS (type) || tree_expr_nonnegative_p (@0)))
a7f24614
RB
269 @1))
270
271/* In IEEE floating point, x*1 is not equivalent to x for snans.
272 Likewise for complex arithmetic with signed zeros. */
273(simplify
274 (mult @0 real_onep)
5b02ed4b 275 (if (!tree_expr_maybe_signaling_nan_p (@0)
8b5ee871 276 && (!HONOR_SIGNED_ZEROS (type)
a7f24614
RB
277 || !COMPLEX_FLOAT_TYPE_P (type)))
278 (non_lvalue @0)))
279
280/* Transform x * -1.0 into -x. */
281(simplify
282 (mult @0 real_minus_onep)
5b02ed4b 283 (if (!tree_expr_maybe_signaling_nan_p (@0)
8b5ee871 284 && (!HONOR_SIGNED_ZEROS (type)
a7f24614
RB
285 || !COMPLEX_FLOAT_TYPE_P (type)))
286 (negate @0)))
e0ee10ed 287
46c66a46
RS
288/* Transform x * { 0 or 1, 0 or 1, ... } into x & { 0 or -1, 0 or -1, ...},
289 unless the target has native support for the former but not the latter. */
290(simplify
291 (mult @0 VECTOR_CST@1)
292 (if (initializer_each_zero_or_onep (@1)
293 && !HONOR_SNANS (type)
294 && !HONOR_SIGNED_ZEROS (type))
295 (with { tree itype = FLOAT_TYPE_P (type) ? unsigned_type_for (type) : type; }
296 (if (itype
297 && (!VECTOR_MODE_P (TYPE_MODE (type))
298 || (VECTOR_MODE_P (TYPE_MODE (itype))
299 && optab_handler (and_optab,
300 TYPE_MODE (itype)) != CODE_FOR_nothing)))
301 (view_convert (bit_and:itype (view_convert @0)
302 (ne @1 { build_zero_cst (type); })))))))
303
8c2805bb
AP
304(for cmp (gt ge lt le)
305 outp (convert convert negate negate)
306 outn (negate negate convert convert)
36fe1cdc
JJ
307 /* Transform X * (X > 0.0 ? 1.0 : -1.0) into abs(X). */
308 /* Transform X * (X >= 0.0 ? 1.0 : -1.0) into abs(X). */
309 /* Transform X * (X < 0.0 ? 1.0 : -1.0) into -abs(X). */
310 /* Transform X * (X <= 0.0 ? 1.0 : -1.0) into -abs(X). */
8c2805bb 311 (simplify
36fe1cdc 312 (mult:c @0 (cond (cmp @0 real_zerop) real_onep@1 real_minus_onep))
5b02ed4b 313 (if (!tree_expr_maybe_nan_p (@0) && !HONOR_SIGNED_ZEROS (type))
36fe1cdc
JJ
314 (outp (abs @0))))
315 /* Transform X * (X > 0.0 ? -1.0 : 1.0) into -abs(X). */
316 /* Transform X * (X >= 0.0 ? -1.0 : 1.0) into -abs(X). */
317 /* Transform X * (X < 0.0 ? -1.0 : 1.0) into abs(X). */
318 /* Transform X * (X <= 0.0 ? -1.0 : 1.0) into abs(X). */
8c2805bb 319 (simplify
36fe1cdc 320 (mult:c @0 (cond (cmp @0 real_zerop) real_minus_onep real_onep@1))
5b02ed4b 321 (if (!tree_expr_maybe_nan_p (@0) && !HONOR_SIGNED_ZEROS (type))
36fe1cdc 322 (outn (abs @0)))))
8c2805bb
AP
323
324/* Transform X * copysign (1.0, X) into abs(X). */
325(simplify
c6cfa2bf 326 (mult:c @0 (COPYSIGN_ALL real_onep @0))
5b02ed4b 327 (if (!tree_expr_maybe_nan_p (@0) && !HONOR_SIGNED_ZEROS (type))
8c2805bb
AP
328 (abs @0)))
329
330/* Transform X * copysign (1.0, -X) into -abs(X). */
331(simplify
c6cfa2bf 332 (mult:c @0 (COPYSIGN_ALL real_onep (negate @0)))
5b02ed4b 333 (if (!tree_expr_maybe_nan_p (@0) && !HONOR_SIGNED_ZEROS (type))
8c2805bb
AP
334 (negate (abs @0))))
335
336/* Transform copysign (CST, X) into copysign (ABS(CST), X). */
337(simplify
c6cfa2bf 338 (COPYSIGN_ALL REAL_CST@0 @1)
8c2805bb 339 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@0)))
c6cfa2bf 340 (COPYSIGN_ALL (negate @0) @1)))
8c2805bb 341
7486fe15
RS
342/* Transform c ? x * copysign (1, y) : z to c ? x ^ signs(y) : z.
343 tree-ssa-math-opts.cc does the corresponding optimization for
344 unconditional multiplications (via xorsign). */
345(simplify
346 (IFN_COND_MUL:c @0 @1 (IFN_COPYSIGN real_onep @2) @3)
347 (with { tree signs = sign_mask_for (type); }
348 (if (signs)
349 (with { tree inttype = TREE_TYPE (signs); }
350 (view_convert:type
351 (IFN_COND_XOR:inttype @0
352 (view_convert:inttype @1)
353 (bit_and (view_convert:inttype @2) { signs; })
354 (view_convert:inttype @3)))))))
355
633e9920
SF
356/* (x >= 0 ? x : 0) + (x <= 0 ? -x : 0) -> abs x. */
357(simplify
358 (plus:c (max @0 integer_zerop) (max (negate @0) integer_zerop))
359 (abs @0))
360
5b7f6ed0 361/* X * 1, X / 1 -> X. */
e0ee10ed
RB
362(for op (mult trunc_div ceil_div floor_div round_div exact_div)
363 (simplify
364 (op @0 integer_onep)
365 (non_lvalue @0)))
366
71f82be9
JG
367/* (A / (1 << B)) -> (A >> B).
368 Only for unsigned A. For signed A, this would not preserve rounding
369 toward zero.
873140e6 370 For example: (-1 / ( 1 << B)) != -1 >> B.
47d81b1b 371 Also handle widening conversions, like:
873140e6
JJ
372 (A / (unsigned long long) (1U << B)) -> (A >> B)
373 or
374 (A / (unsigned long long) (1 << B)) -> (A >> B).
375 If the left shift is signed, it can be done only if the upper bits
376 of A starting from shift's type sign bit are zero, as
377 (unsigned long long) (1 << 31) is -2147483648ULL, not 2147483648ULL,
378 so it is valid only if A >> 31 is zero. */
71f82be9 379(simplify
5ca24002 380 (trunc_div (convert?@0 @3) (convert2? (lshift integer_onep@1 @2)))
71f82be9
JG
381 (if ((TYPE_UNSIGNED (type) || tree_expr_nonnegative_p (@0))
382 && (!VECTOR_TYPE_P (type)
383 || target_supports_op_p (type, RSHIFT_EXPR, optab_vector)
873140e6
JJ
384 || target_supports_op_p (type, RSHIFT_EXPR, optab_scalar))
385 && (useless_type_conversion_p (type, TREE_TYPE (@1))
386 || (element_precision (type) >= element_precision (TREE_TYPE (@1))
387 && (TYPE_UNSIGNED (TREE_TYPE (@1))
388 || (element_precision (type)
389 == element_precision (TREE_TYPE (@1)))
6d5093da
JJ
390 || (INTEGRAL_TYPE_P (type)
391 && (tree_nonzero_bits (@0)
392 & wi::mask (element_precision (TREE_TYPE (@1)) - 1,
393 true,
394 element_precision (type))) == 0)))))
5ca24002
JJ
395 (if (!VECTOR_TYPE_P (type)
396 && useless_type_conversion_p (TREE_TYPE (@3), TREE_TYPE (@1))
397 && element_precision (TREE_TYPE (@3)) < element_precision (type))
398 (convert (rshift @3 @2))
399 (rshift @0 @2))))
71f82be9 400
5b7f6ed0
MG
401/* Preserve explicit divisions by 0: the C++ front-end wants to detect
402 undefined behavior in constexpr evaluation, and assuming that the division
403 traps enables better optimizations than these anyway. */
a7f24614 404(for div (trunc_div ceil_div floor_div round_div exact_div)
5b7f6ed0
MG
405 /* 0 / X is always zero. */
406 (simplify
407 (div integer_zerop@0 @1)
408 /* But not for 0 / 0 so that we can get the proper warnings and errors. */
409 (if (!integer_zerop (@1))
410 @0))
d41b0973 411 /* X / -1 is -X. */
a7f24614 412 (simplify
d41b0973
JJ
413 (div @0 integer_minus_onep@1)
414 (if (!TYPE_UNSIGNED (type))
415 (negate @0)))
416 /* X / bool_range_Y is X. */
417 (simplify
418 (div @0 SSA_NAME@1)
bd14cdce
EB
419 (if (INTEGRAL_TYPE_P (type)
420 && ssa_name_has_boolean_range (@1)
421 && !flag_non_call_exceptions)
d41b0973 422 @0))
5b7f6ed0
MG
423 /* X / X is one. */
424 (simplify
425 (div @0 @0)
9ebce098
JJ
426 /* But not for 0 / 0 so that we can get the proper warnings and errors.
427 And not for _Fract types where we can't build 1. */
bd14cdce
EB
428 (if (!ALL_FRACT_MODE_P (TYPE_MODE (type))
429 && !integer_zerop (@0)
430 && (!flag_non_call_exceptions || tree_expr_nonzero_p (@0)))
5b7f6ed0 431 { build_one_cst (type); }))
03cc70b5 432 /* X / abs (X) is X < 0 ? -1 : 1. */
da186c1f 433 (simplify
d96a5585
RB
434 (div:C @0 (abs @0))
435 (if (INTEGRAL_TYPE_P (type)
bd14cdce
EB
436 && TYPE_OVERFLOW_UNDEFINED (type)
437 && !integer_zerop (@0)
438 && (!flag_non_call_exceptions || tree_expr_nonzero_p (@0)))
da186c1f
RB
439 (cond (lt @0 { build_zero_cst (type); })
440 { build_minus_one_cst (type); } { build_one_cst (type); })))
441 /* X / -X is -1. */
442 (simplify
d96a5585 443 (div:C @0 (negate @0))
da186c1f 444 (if ((INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
bd14cdce
EB
445 && TYPE_OVERFLOW_UNDEFINED (type)
446 && !integer_zerop (@0)
447 && (!flag_non_call_exceptions || tree_expr_nonzero_p (@0)))
da186c1f 448 { build_minus_one_cst (type); })))
a7f24614
RB
449
450/* For unsigned integral types, FLOOR_DIV_EXPR is the same as
ffc7f200
JJ
451 TRUNC_DIV_EXPR. Rewrite into the latter in this case. Similarly
452 for MOD instead of DIV. */
453(for floor_divmod (floor_div floor_mod)
454 trunc_divmod (trunc_div trunc_mod)
455 (simplify
456 (floor_divmod @0 @1)
457 (if ((INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
458 && TYPE_UNSIGNED (type))
459 (trunc_divmod @0 @1))))
a7f24614 460
a1544878
JJ
461/* 1 / X -> X == 1 for unsigned integer X.
462 1 / X -> X >= -1 && X <= 1 ? X : 0 for signed integer X.
463 But not for 1 / 0 so that we can get proper warnings and errors,
464 and not for 1-bit integers as they are edge cases better handled
465 elsewhere. */
c2b610e7 466(simplify
a1544878
JJ
467 (trunc_div integer_onep@0 @1)
468 (if (INTEGRAL_TYPE_P (type)
bd14cdce 469 && TYPE_PRECISION (type) > 1
a1544878 470 && !integer_zerop (@1)
bd14cdce 471 && (!flag_non_call_exceptions || tree_expr_nonzero_p (@1)))
a1544878
JJ
472 (if (TYPE_UNSIGNED (type))
473 (convert (eq:boolean_type_node @1 { build_one_cst (type); }))
474 (with { tree utype = unsigned_type_for (type); }
475 (cond (le (plus (convert:utype @1) { build_one_cst (utype); })
476 { build_int_cst (utype, 2); })
477 @1 { build_zero_cst (type); })))))
c2b610e7 478
28093105
RB
479/* Combine two successive divisions. Note that combining ceil_div
480 and floor_div is trickier and combining round_div even more so. */
481(for div (trunc_div exact_div)
c306cfaf 482 (simplify
98610dc5 483 (div (div@3 @0 INTEGER_CST@1) INTEGER_CST@2)
c306cfaf 484 (with {
4a669ac3 485 wi::overflow_type overflow;
8e6cdc90 486 wide_int mul = wi::mul (wi::to_wide (@1), wi::to_wide (@2),
4a669ac3 487 TYPE_SIGN (type), &overflow);
c306cfaf 488 }
98610dc5
JJ
489 (if (div == EXACT_DIV_EXPR
490 || optimize_successive_divisions_p (@2, @3))
491 (if (!overflow)
492 (div @0 { wide_int_to_tree (type, mul); })
493 (if (TYPE_UNSIGNED (type)
494 || mul != wi::min_value (TYPE_PRECISION (type), SIGNED))
495 { build_zero_cst (type); }))))))
c306cfaf 496
288fe52e
AM
497/* Combine successive multiplications. Similar to above, but handling
498 overflow is different. */
499(simplify
500 (mult (mult @0 INTEGER_CST@1) INTEGER_CST@2)
501 (with {
4a669ac3 502 wi::overflow_type overflow;
8e6cdc90 503 wide_int mul = wi::mul (wi::to_wide (@1), wi::to_wide (@2),
4a669ac3 504 TYPE_SIGN (type), &overflow);
288fe52e
AM
505 }
506 /* Skip folding on overflow: the only special case is @1 * @2 == -INT_MIN,
507 otherwise undefined overflow implies that @0 must be zero. */
4a669ac3 508 (if (!overflow || TYPE_OVERFLOW_WRAPS (type))
288fe52e
AM
509 (mult @0 { wide_int_to_tree (type, mul); }))))
510
1089d083 511/* Similar to above, but there could be an extra add/sub between
512 successive multuiplications. */
513(simplify
514 (mult (plus:s (mult:s@4 @0 INTEGER_CST@1) INTEGER_CST@2) INTEGER_CST@3)
515 (with {
516 bool overflowed = true;
517 wi::overflow_type ovf1, ovf2;
518 wide_int mul = wi::mul (wi::to_wide (@1), wi::to_wide (@3),
519 TYPE_SIGN (type), &ovf1);
520 wide_int add = wi::mul (wi::to_wide (@2), wi::to_wide (@3),
521 TYPE_SIGN (type), &ovf2);
522 if (TYPE_OVERFLOW_UNDEFINED (type))
523 {
524#if GIMPLE
525 value_range vr0;
526 if (ovf1 == wi::OVF_NONE && ovf2 == wi::OVF_NONE
527 && get_global_range_query ()->range_of_expr (vr0, @4)
528 && vr0.kind () == VR_RANGE)
529 {
530 wide_int wmin0 = vr0.lower_bound ();
531 wide_int wmax0 = vr0.upper_bound ();
532 wmin0 = wi::mul (wmin0, wi::to_wide (@3), TYPE_SIGN (type), &ovf1);
533 wmax0 = wi::mul (wmax0, wi::to_wide (@3), TYPE_SIGN (type), &ovf2);
534 if (ovf1 == wi::OVF_NONE && ovf2 == wi::OVF_NONE)
535 {
536 wi::add (wmin0, add, TYPE_SIGN (type), &ovf1);
537 wi::add (wmax0, add, TYPE_SIGN (type), &ovf2);
538 if (ovf1 == wi::OVF_NONE && ovf2 == wi::OVF_NONE)
539 overflowed = false;
540 }
541 }
542#endif
543 }
544 else
545 overflowed = false;
546 }
547 /* Skip folding on overflow. */
548 (if (!overflowed)
549 (plus (mult @0 { wide_int_to_tree (type, mul); })
550 { wide_int_to_tree (type, add); }))))
551
552/* Similar to above, but a multiplication between successive additions. */
553(simplify
554 (plus (mult:s (plus:s @0 INTEGER_CST@1) INTEGER_CST@2) INTEGER_CST@3)
555 (with {
556 bool overflowed = true;
557 wi::overflow_type ovf1;
558 wi::overflow_type ovf2;
559 wide_int mul = wi::mul (wi::to_wide (@1), wi::to_wide (@2),
560 TYPE_SIGN (type), &ovf1);
561 wide_int add = wi::add (mul, wi::to_wide (@3),
562 TYPE_SIGN (type), &ovf2);
563 if (TYPE_OVERFLOW_UNDEFINED (type))
564 {
565#if GIMPLE
566 value_range vr0;
567 if (ovf1 == wi::OVF_NONE && ovf2 == wi::OVF_NONE
568 && get_global_range_query ()->range_of_expr (vr0, @0)
569 && vr0.kind () == VR_RANGE)
570 {
571 wide_int wmin0 = vr0.lower_bound ();
572 wide_int wmax0 = vr0.upper_bound ();
573 wmin0 = wi::mul (wmin0, wi::to_wide (@2), TYPE_SIGN (type), &ovf1);
574 wmax0 = wi::mul (wmax0, wi::to_wide (@2), TYPE_SIGN (type), &ovf2);
575 if (ovf1 == wi::OVF_NONE && ovf2 == wi::OVF_NONE)
576 {
577 wi::add (wmin0, mul, TYPE_SIGN (type), &ovf1);
578 wi::add (wmax0, mul, TYPE_SIGN (type), &ovf2);
579 if (ovf1 == wi::OVF_NONE && ovf2 == wi::OVF_NONE)
580 overflowed = false;
581 }
582 }
583#endif
584 }
585 else
586 overflowed = false;
587 }
588 /* Skip folding on overflow. */
589 (if (!overflowed)
590 (plus (mult @0 @2) { wide_int_to_tree (type, add); }))))
591
a7f24614 592/* Optimize A / A to 1.0 if we don't care about
09240451 593 NaNs or Infinities. */
a7f24614
RB
594(simplify
595 (rdiv @0 @0)
09240451 596 (if (FLOAT_TYPE_P (type)
1b457aa4 597 && ! HONOR_NANS (type)
8b5ee871 598 && ! HONOR_INFINITIES (type))
09240451
MG
599 { build_one_cst (type); }))
600
601/* Optimize -A / A to -1.0 if we don't care about
602 NaNs or Infinities. */
603(simplify
e04d2a35 604 (rdiv:C @0 (negate @0))
09240451 605 (if (FLOAT_TYPE_P (type)
1b457aa4 606 && ! HONOR_NANS (type)
8b5ee871 607 && ! HONOR_INFINITIES (type))
09240451 608 { build_minus_one_cst (type); }))
a7f24614 609
8c6961ca
PK
610/* PR71078: x / abs(x) -> copysign (1.0, x) */
611(simplify
612 (rdiv:C (convert? @0) (convert? (abs @0)))
613 (if (SCALAR_FLOAT_TYPE_P (type)
614 && ! HONOR_NANS (type)
615 && ! HONOR_INFINITIES (type))
616 (switch
617 (if (types_match (type, float_type_node))
618 (BUILT_IN_COPYSIGNF { build_one_cst (type); } (convert @0)))
619 (if (types_match (type, double_type_node))
620 (BUILT_IN_COPYSIGN { build_one_cst (type); } (convert @0)))
621 (if (types_match (type, long_double_type_node))
622 (BUILT_IN_COPYSIGNL { build_one_cst (type); } (convert @0))))))
623
a7f24614
RB
624/* In IEEE floating point, x/1 is not equivalent to x for snans. */
625(simplify
626 (rdiv @0 real_onep)
5b02ed4b 627 (if (!tree_expr_maybe_signaling_nan_p (@0))
a7f24614
RB
628 (non_lvalue @0)))
629
630/* In IEEE floating point, x/-1 is not equivalent to -x for snans. */
631(simplify
632 (rdiv @0 real_minus_onep)
5b02ed4b 633 (if (!tree_expr_maybe_signaling_nan_p (@0))
a7f24614
RB
634 (negate @0)))
635
5711ac88 636(if (flag_reciprocal_math)
81825e28 637 /* Convert (A/B)/C to A/(B*C). */
5711ac88
N
638 (simplify
639 (rdiv (rdiv:s @0 @1) @2)
81825e28
WD
640 (rdiv @0 (mult @1 @2)))
641
642 /* Canonicalize x / (C1 * y) to (x * C2) / y. */
643 (simplify
644 (rdiv @0 (mult:s @1 REAL_CST@2))
645 (with
646 { tree tem = const_binop (RDIV_EXPR, type, build_one_cst (type), @2); }
647 (if (tem)
648 (rdiv (mult @0 { tem; } ) @1))))
5711ac88
N
649
650 /* Convert A/(B/C) to (A/B)*C */
651 (simplify
652 (rdiv @0 (rdiv:s @1 @2))
653 (mult (rdiv @0 @1) @2)))
654
6a435314
WD
655/* Simplify x / (- y) to -x / y. */
656(simplify
657 (rdiv @0 (negate @1))
658 (rdiv (negate @0) @1))
659
5e21d765
WD
660(if (flag_unsafe_math_optimizations)
661 /* Simplify (C / x op 0.0) to x op 0.0 for C != 0, C != Inf/Nan.
662 Since C / x may underflow to zero, do this only for unsafe math. */
663 (for op (lt le gt ge)
664 neg_op (gt ge lt le)
665 (simplify
666 (op (rdiv REAL_CST@0 @1) real_zerop@2)
667 (if (!HONOR_SIGNED_ZEROS (@1) && !HONOR_INFINITIES (@1))
668 (switch
669 (if (real_less (&dconst0, TREE_REAL_CST_PTR (@0)))
670 (op @1 @2))
671 /* For C < 0, use the inverted operator. */
672 (if (real_less (TREE_REAL_CST_PTR (@0), &dconst0))
673 (neg_op @1 @2)))))))
674
5711ac88
N
675/* Optimize (X & (-A)) / A where A is a power of 2, to X >> log2(A) */
676(for div (trunc_div ceil_div floor_div round_div exact_div)
677 (simplify
678 (div (convert? (bit_and @0 INTEGER_CST@1)) INTEGER_CST@2)
679 (if (integer_pow2p (@2)
680 && tree_int_cst_sgn (@2) > 0
a1488398 681 && tree_nop_conversion_p (type, TREE_TYPE (@0))
8e6cdc90
RS
682 && wi::to_wide (@2) + wi::to_wide (@1) == 0)
683 (rshift (convert @0)
684 { build_int_cst (integer_type_node,
685 wi::exact_log2 (wi::to_wide (@2))); }))))
5711ac88 686
a7f24614
RB
687/* If ARG1 is a constant, we can convert this to a multiply by the
688 reciprocal. This does not have the same rounding properties,
689 so only do this if -freciprocal-math. We can actually
690 always safely do it if ARG1 is a power of two, but it's hard to
691 tell if it is or not in a portable manner. */
692(for cst (REAL_CST COMPLEX_CST VECTOR_CST)
693 (simplify
694 (rdiv @0 cst@1)
695 (if (optimize)
53bc4b3a
RB
696 (if (flag_reciprocal_math
697 && !real_zerop (@1))
a7f24614 698 (with
249700b5 699 { tree tem = const_binop (RDIV_EXPR, type, build_one_cst (type), @1); }
a7f24614 700 (if (tem)
8fdc6c67
RB
701 (mult @0 { tem; } )))
702 (if (cst != COMPLEX_CST)
703 (with { tree inverse = exact_inverse (type, @1); }
704 (if (inverse)
705 (mult @0 { inverse; } ))))))))
a7f24614 706
a7f24614 707(for mod (ceil_mod floor_mod round_mod trunc_mod)
e0ee10ed
RB
708 /* 0 % X is always zero. */
709 (simplify
a7f24614 710 (mod integer_zerop@0 @1)
e0ee10ed
RB
711 /* But not for 0 % 0 so that we can get the proper warnings and errors. */
712 (if (!integer_zerop (@1))
713 @0))
714 /* X % 1 is always zero. */
715 (simplify
a7f24614
RB
716 (mod @0 integer_onep)
717 { build_zero_cst (type); })
718 /* X % -1 is zero. */
719 (simplify
09240451
MG
720 (mod @0 integer_minus_onep@1)
721 (if (!TYPE_UNSIGNED (type))
bc4315fb 722 { build_zero_cst (type); }))
5b7f6ed0
MG
723 /* X % X is zero. */
724 (simplify
725 (mod @0 @0)
726 /* But not for 0 % 0 so that we can get the proper warnings and errors. */
727 (if (!integer_zerop (@0))
728 { build_zero_cst (type); }))
bc4315fb
MG
729 /* (X % Y) % Y is just X % Y. */
730 (simplify
731 (mod (mod@2 @0 @1) @1)
98e30e51
RB
732 @2)
733 /* From extract_muldiv_1: (X * C1) % C2 is zero if C1 is a multiple of C2. */
734 (simplify
735 (mod (mult @0 INTEGER_CST@1) INTEGER_CST@2)
736 (if (ANY_INTEGRAL_TYPE_P (type)
737 && TYPE_OVERFLOW_UNDEFINED (type)
8e6cdc90
RS
738 && wi::multiple_of_p (wi::to_wide (@1), wi::to_wide (@2),
739 TYPE_SIGN (type)))
392750c5
JJ
740 { build_zero_cst (type); }))
741 /* For (X % C) == 0, if X is signed and C is power of 2, use unsigned
742 modulo and comparison, since it is simpler and equivalent. */
743 (for cmp (eq ne)
744 (simplify
745 (cmp (mod @0 integer_pow2p@2) integer_zerop@1)
746 (if (!TYPE_UNSIGNED (TREE_TYPE (@0)))
747 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
748 (cmp (mod (convert:utype @0) (convert:utype @2)) (convert:utype @1)))))))
a7f24614
RB
749
750/* X % -C is the same as X % C. */
751(simplify
752 (trunc_mod @0 INTEGER_CST@1)
753 (if (TYPE_SIGN (type) == SIGNED
754 && !TREE_OVERFLOW (@1)
8e6cdc90 755 && wi::neg_p (wi::to_wide (@1))
a7f24614
RB
756 && !TYPE_OVERFLOW_TRAPS (type)
757 /* Avoid this transformation if C is INT_MIN, i.e. C == -C. */
758 && !sign_bit_p (@1, @1))
759 (trunc_mod @0 (negate @1))))
e0ee10ed 760
8f0c696a
RB
761/* X % -Y is the same as X % Y. */
762(simplify
763 (trunc_mod @0 (convert? (negate @1)))
a2a743a1
MP
764 (if (INTEGRAL_TYPE_P (type)
765 && !TYPE_UNSIGNED (type)
8f0c696a 766 && !TYPE_OVERFLOW_TRAPS (type)
20b8d734
JJ
767 && tree_nop_conversion_p (type, TREE_TYPE (@1))
768 /* Avoid this transformation if X might be INT_MIN or
769 Y might be -1, because we would then change valid
770 INT_MIN % -(-1) into invalid INT_MIN % -1. */
8e6cdc90 771 && (expr_not_equal_to (@0, wi::to_wide (TYPE_MIN_VALUE (type)))
20b8d734
JJ
772 || expr_not_equal_to (@1, wi::minus_one (TYPE_PRECISION
773 (TREE_TYPE (@1))))))
8f0c696a
RB
774 (trunc_mod @0 (convert @1))))
775
f461569a
MP
776/* X - (X / Y) * Y is the same as X % Y. */
777(simplify
2eef1fc1
RB
778 (minus (convert1? @0) (convert2? (mult:c (trunc_div @@0 @@1) @1)))
779 (if (INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
fba46f03 780 (convert (trunc_mod @0 @1))))
f461569a 781
df1a0d52
NR
782/* x * (1 + y / x) - y -> x - y % x */
783(simplify
784 (minus (mult:cs @0 (plus:s (trunc_div:s @1 @0) integer_onep)) @1)
785 (if (INTEGRAL_TYPE_P (type))
786 (minus @0 (trunc_mod @1 @0))))
787
8f0c696a
RB
788/* Optimize TRUNC_MOD_EXPR by a power of two into a BIT_AND_EXPR,
789 i.e. "X % C" into "X & (C - 1)", if X and C are positive.
790 Also optimize A % (C << N) where C is a power of 2,
222f312a 791 to A & ((C << N) - 1).
792 Also optimize "A shift (B % C)", if C is a power of 2, to
793 "A shift (B & (C - 1))". SHIFT operation include "<<" and ">>"
794 and assume (B % C) is nonnegative as shifts negative values would
795 be UB. */
8f0c696a
RB
796(match (power_of_two_cand @1)
797 INTEGER_CST@1)
798(match (power_of_two_cand @1)
799 (lshift INTEGER_CST@1 @2))
800(for mod (trunc_mod floor_mod)
222f312a 801 (for shift (lshift rshift)
802 (simplify
803 (shift @0 (mod @1 (power_of_two_cand@2 @3)))
804 (if (integer_pow2p (@3) && tree_int_cst_sgn (@3) > 0)
805 (shift @0 (bit_and @1 (minus @2 { build_int_cst (TREE_TYPE (@2),
806 1); }))))))
8f0c696a 807 (simplify
70099a6a
JJ
808 (mod @0 (convert? (power_of_two_cand@1 @2)))
809 (if ((TYPE_UNSIGNED (type) || tree_expr_nonnegative_p (@0))
810 /* Allow any integral conversions of the divisor, except
811 conversion from narrower signed to wider unsigned type
812 where if @1 would be negative power of two, the divisor
813 would not be a power of two. */
814 && INTEGRAL_TYPE_P (type)
815 && INTEGRAL_TYPE_P (TREE_TYPE (@1))
816 && (TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@1))
817 || TYPE_UNSIGNED (TREE_TYPE (@1))
818 || !TYPE_UNSIGNED (type))
819 && integer_pow2p (@2) && tree_int_cst_sgn (@2) > 0)
820 (with { tree utype = TREE_TYPE (@1);
821 if (!TYPE_OVERFLOW_WRAPS (utype))
822 utype = unsigned_type_for (utype); }
823 (bit_and @0 (convert (minus (convert:utype @1)
824 { build_one_cst (utype); })))))))
8f0c696a 825
887ab609
N
826/* Simplify (unsigned t * 2)/2 -> unsigned t & 0x7FFFFFFF. */
827(simplify
828 (trunc_div (mult @0 integer_pow2p@1) @1)
f62115c9 829 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)) && TYPE_UNSIGNED (TREE_TYPE (@0)))
887ab609 830 (bit_and @0 { wide_int_to_tree
8e6cdc90
RS
831 (type, wi::mask (TYPE_PRECISION (type)
832 - wi::exact_log2 (wi::to_wide (@1)),
887ab609
N
833 false, TYPE_PRECISION (type))); })))
834
5f8d832e
N
835/* Simplify (unsigned t / 2) * 2 -> unsigned t & ~1. */
836(simplify
837 (mult (trunc_div @0 integer_pow2p@1) @1)
f62115c9 838 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)) && TYPE_UNSIGNED (TREE_TYPE (@0)))
5f8d832e
N
839 (bit_and @0 (negate @1))))
840
95765f36
N
841/* Simplify (t * 2) / 2) -> t. */
842(for div (trunc_div ceil_div floor_div round_div exact_div)
843 (simplify
55d84e61 844 (div (mult:c @0 @1) @1)
a3ebc134
JJ
845 (if (ANY_INTEGRAL_TYPE_P (type))
846 (if (TYPE_OVERFLOW_UNDEFINED (type))
847 @0
848#if GIMPLE
83325a9d
JJ
849 (with
850 {
851 bool overflowed = true;
45f4e2b0 852 value_range vr0, vr1;
83325a9d 853 if (INTEGRAL_TYPE_P (type)
45f4e2b0
AH
854 && get_global_range_query ()->range_of_expr (vr0, @0)
855 && get_global_range_query ()->range_of_expr (vr1, @1)
856 && vr0.kind () == VR_RANGE
857 && vr1.kind () == VR_RANGE)
83325a9d 858 {
45f4e2b0
AH
859 wide_int wmin0 = vr0.lower_bound ();
860 wide_int wmax0 = vr0.upper_bound ();
861 wide_int wmin1 = vr1.lower_bound ();
862 wide_int wmax1 = vr1.upper_bound ();
83325a9d
JJ
863 /* If the multiplication can't overflow/wrap around, then
864 it can be optimized too. */
865 wi::overflow_type min_ovf, max_ovf;
866 wi::mul (wmin0, wmin1, TYPE_SIGN (type), &min_ovf);
867 wi::mul (wmax0, wmax1, TYPE_SIGN (type), &max_ovf);
868 if (min_ovf == wi::OVF_NONE && max_ovf == wi::OVF_NONE)
869 {
870 wi::mul (wmin0, wmax1, TYPE_SIGN (type), &min_ovf);
871 wi::mul (wmax0, wmin1, TYPE_SIGN (type), &max_ovf);
872 if (min_ovf == wi::OVF_NONE && max_ovf == wi::OVF_NONE)
873 overflowed = false;
874 }
875 }
876 }
877 (if (!overflowed)
878 @0))
a3ebc134
JJ
879#endif
880 ))))
95765f36 881
d202f9bd 882(for op (negate abs)
9b054b08
RS
883 /* Simplify cos(-x) and cos(|x|) -> cos(x). Similarly for cosh. */
884 (for coss (COS COSH)
885 (simplify
886 (coss (op @0))
887 (coss @0)))
888 /* Simplify pow(-x, y) and pow(|x|,y) -> pow(x,y) if y is an even integer. */
889 (for pows (POW)
890 (simplify
891 (pows (op @0) REAL_CST@1)
892 (with { HOST_WIDE_INT n; }
893 (if (real_isinteger (&TREE_REAL_CST (@1), &n) && (n & 1) == 0)
5d3498b4 894 (pows @0 @1)))))
de3fbea3
RB
895 /* Likewise for powi. */
896 (for pows (POWI)
897 (simplify
898 (pows (op @0) INTEGER_CST@1)
8e6cdc90 899 (if ((wi::to_wide (@1) & 1) == 0)
de3fbea3 900 (pows @0 @1))))
5d3498b4
RS
901 /* Strip negate and abs from both operands of hypot. */
902 (for hypots (HYPOT)
903 (simplify
904 (hypots (op @0) @1)
905 (hypots @0 @1))
906 (simplify
907 (hypots @0 (op @1))
908 (hypots @0 @1)))
909 /* copysign(-x, y) and copysign(abs(x), y) -> copysign(x, y). */
c6cfa2bf 910 (for copysigns (COPYSIGN_ALL)
5d3498b4
RS
911 (simplify
912 (copysigns (op @0) @1)
913 (copysigns @0 @1))))
914
915/* abs(x)*abs(x) -> x*x. Should be valid for all types. */
916(simplify
917 (mult (abs@1 @0) @1)
918 (mult @0 @0))
919
64f7ea7c
KV
920/* Convert absu(x)*absu(x) -> x*x. */
921(simplify
922 (mult (absu@1 @0) @1)
923 (mult (convert@2 @0) @2))
924
5d3498b4
RS
925/* cos(copysign(x, y)) -> cos(x). Similarly for cosh. */
926(for coss (COS COSH)
927 copysigns (COPYSIGN)
928 (simplify
929 (coss (copysigns @0 @1))
930 (coss @0)))
931
932/* pow(copysign(x, y), z) -> pow(x, z) if z is an even integer. */
933(for pows (POW)
934 copysigns (COPYSIGN)
935 (simplify
de3fbea3 936 (pows (copysigns @0 @2) REAL_CST@1)
5d3498b4
RS
937 (with { HOST_WIDE_INT n; }
938 (if (real_isinteger (&TREE_REAL_CST (@1), &n) && (n & 1) == 0)
939 (pows @0 @1)))))
de3fbea3
RB
940/* Likewise for powi. */
941(for pows (POWI)
942 copysigns (COPYSIGN)
943 (simplify
944 (pows (copysigns @0 @2) INTEGER_CST@1)
8e6cdc90 945 (if ((wi::to_wide (@1) & 1) == 0)
de3fbea3 946 (pows @0 @1))))
5d3498b4
RS
947
948(for hypots (HYPOT)
949 copysigns (COPYSIGN)
950 /* hypot(copysign(x, y), z) -> hypot(x, z). */
951 (simplify
952 (hypots (copysigns @0 @1) @2)
953 (hypots @0 @2))
954 /* hypot(x, copysign(y, z)) -> hypot(x, y). */
955 (simplify
956 (hypots @0 (copysigns @1 @2))
957 (hypots @0 @1)))
958
eeb57981 959/* copysign(x, CST) -> [-]abs (x). */
c6cfa2bf 960(for copysigns (COPYSIGN_ALL)
eeb57981
RB
961 (simplify
962 (copysigns @0 REAL_CST@1)
963 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
964 (negate (abs @0))
965 (abs @0))))
966
5d3498b4 967/* copysign(copysign(x, y), z) -> copysign(x, z). */
c6cfa2bf 968(for copysigns (COPYSIGN_ALL)
5d3498b4
RS
969 (simplify
970 (copysigns (copysigns @0 @1) @2)
971 (copysigns @0 @2)))
972
973/* copysign(x,y)*copysign(x,y) -> x*x. */
c6cfa2bf 974(for copysigns (COPYSIGN_ALL)
5d3498b4
RS
975 (simplify
976 (mult (copysigns@2 @0 @1) @2)
977 (mult @0 @0)))
978
979/* ccos(-x) -> ccos(x). Similarly for ccosh. */
980(for ccoss (CCOS CCOSH)
981 (simplify
982 (ccoss (negate @0))
983 (ccoss @0)))
d202f9bd 984
abcc43f5
RS
985/* cabs(-x) and cos(conj(x)) -> cabs(x). */
986(for ops (conj negate)
987 (for cabss (CABS)
988 (simplify
989 (cabss (ops @0))
990 (cabss @0))))
991
0a8f32b8
RB
992/* Fold (a * (1 << b)) into (a << b) */
993(simplify
994 (mult:c @0 (convert? (lshift integer_onep@1 @2)))
995 (if (! FLOAT_TYPE_P (type)
9ff6fb6e 996 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
0a8f32b8
RB
997 (lshift @0 @2)))
998
03acd8b6
RS
999/* Shifts by constants distribute over several binary operations,
1000 hence (X << C) + (Y << C) can be simplified to (X + Y) << C. */
1001(for op (plus minus)
1002 (simplify
1003 (op (lshift:s @0 @1) (lshift:s @2 @1))
1004 (if (INTEGRAL_TYPE_P (type)
1005 && TYPE_OVERFLOW_WRAPS (type)
1006 && !TYPE_SATURATING (type))
1007 (lshift (op @0 @2) @1))))
1008
1009(for op (bit_and bit_ior bit_xor)
1010 (simplify
1011 (op (lshift:s @0 @1) (lshift:s @2 @1))
1012 (if (INTEGRAL_TYPE_P (type))
1013 (lshift (op @0 @2) @1)))
1014 (simplify
1015 (op (rshift:s @0 @1) (rshift:s @2 @1))
1016 (if (INTEGRAL_TYPE_P (type))
1017 (rshift (op @0 @2) @1))))
1018
4349b15f
SD
1019/* Fold (1 << (C - x)) where C = precision(type) - 1
1020 into ((1 << C) >> x). */
1021(simplify
1022 (lshift integer_onep@0 (minus@1 INTEGER_CST@2 @3))
1023 (if (INTEGRAL_TYPE_P (type)
56ccfbd6 1024 && wi::eq_p (wi::to_wide (@2), TYPE_PRECISION (type) - 1)
4349b15f
SD
1025 && single_use (@1))
1026 (if (TYPE_UNSIGNED (type))
1027 (rshift (lshift @0 @2) @3)
1028 (with
1029 { tree utype = unsigned_type_for (type); }
1030 (convert (rshift (lshift (convert:utype @0) @2) @3))))))
1031
11c4a06a
AP
1032/* Fold ((type)(a<0)) << SIGNBITOFA into ((type)a) & signbit. */
1033(simplify
1034 (lshift (convert (lt @0 integer_zerop@1)) INTEGER_CST@2)
1035 (if (TYPE_SIGN (TREE_TYPE (@0)) == SIGNED
1036 && wi::eq_p (wi::to_wide (@2), TYPE_PRECISION (TREE_TYPE (@0)) - 1))
1037 (with { wide_int wone = wi::one (TYPE_PRECISION (type)); }
1038 (bit_and (convert @0)
1039 { wide_int_to_tree (type,
1040 wi::lshift (wone, wi::to_wide (@2))); }))))
1041
d70720c2
TC
1042/* Fold (-x >> C) into -(x > 0) where C = precision(type) - 1. */
1043(for cst (INTEGER_CST VECTOR_CST)
1044 (simplify
1045 (rshift (negate:s @0) cst@1)
1046 (if (!TYPE_UNSIGNED (type)
1047 && TYPE_OVERFLOW_UNDEFINED (type))
1048 (with { tree stype = TREE_TYPE (@1);
1049 tree bt = truth_type_for (type);
1050 tree zeros = build_zero_cst (type);
1051 tree cst = NULL_TREE; }
1052 (switch
1053 /* Handle scalar case. */
1054 (if (INTEGRAL_TYPE_P (type)
1055 /* If we apply the rule to the scalar type before vectorization
1056 we will enforce the result of the comparison being a bool
1057 which will require an extra AND on the result that will be
1058 indistinguishable from when the user did actually want 0
1059 or 1 as the result so it can't be removed. */
1060 && canonicalize_math_after_vectorization_p ()
1061 && wi::eq_p (wi::to_wide (@1), TYPE_PRECISION (type) - 1))
1062 (negate (convert (gt @0 { zeros; }))))
1063 /* Handle vector case. */
1064 (if (VECTOR_INTEGER_TYPE_P (type)
1065 /* First check whether the target has the same mode for vector
1066 comparison results as it's operands do. */
1067 && TYPE_MODE (bt) == TYPE_MODE (type)
1068 /* Then check to see if the target is able to expand the comparison
1069 with the given type later on, otherwise we may ICE. */
1070 && expand_vec_cmp_expr_p (type, bt, GT_EXPR)
1071 && (cst = uniform_integer_cst_p (@1)) != NULL
1072 && wi::eq_p (wi::to_wide (cst), element_precision (type) - 1))
1073 (view_convert (gt:bt @0 { zeros; }))))))))
1074
0a8f32b8
RB
1075/* Fold (C1/X)*C2 into (C1*C2)/X. */
1076(simplify
ff86345f
RB
1077 (mult (rdiv@3 REAL_CST@0 @1) REAL_CST@2)
1078 (if (flag_associative_math
1079 && single_use (@3))
0a8f32b8
RB
1080 (with
1081 { tree tem = const_binop (MULT_EXPR, type, @0, @2); }
1082 (if (tem)
1083 (rdiv { tem; } @1)))))
1084
1085/* Simplify ~X & X as zero. */
1086(simplify
1087 (bit_and:c (convert? @0) (convert? (bit_not @0)))
1088 { build_zero_cst (type); })
1089
89b80c42
PK
1090/* PR71636: Transform x & ((1U << b) - 1) -> x & ~(~0U << b); */
1091(simplify
1092 (bit_and:c @0 (plus:s (lshift:s integer_onep @1) integer_minus_onep))
1093 (if (TYPE_UNSIGNED (type))
1094 (bit_and @0 (bit_not (lshift { build_all_ones_cst (type); } @1)))))
1095
7aa13860
PK
1096(for bitop (bit_and bit_ior)
1097 cmp (eq ne)
a93952d2
JJ
1098 /* PR35691: Transform
1099 (x == 0 & y == 0) -> (x | typeof(x)(y)) == 0.
1100 (x != 0 | y != 0) -> (x | typeof(x)(y)) != 0. */
7aa13860
PK
1101 (simplify
1102 (bitop (cmp @0 integer_zerop@2) (cmp @1 integer_zerop))
1103 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
a93952d2
JJ
1104 && INTEGRAL_TYPE_P (TREE_TYPE (@1))
1105 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
1106 (cmp (bit_ior @0 (convert @1)) @2)))
1107 /* Transform:
1108 (x == -1 & y == -1) -> (x & typeof(x)(y)) == -1.
1109 (x != -1 | y != -1) -> (x & typeof(x)(y)) != -1. */
1110 (simplify
1111 (bitop (cmp @0 integer_all_onesp@2) (cmp @1 integer_all_onesp))
1112 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1113 && INTEGRAL_TYPE_P (TREE_TYPE (@1))
1114 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
1115 (cmp (bit_and @0 (convert @1)) @2))))
7aa13860 1116
10158317
RB
1117/* Fold (A & ~B) - (A & B) into (A ^ B) - B. */
1118(simplify
a9658b11 1119 (minus (bit_and:cs @0 (bit_not @1)) (bit_and:cs @0 @1))
10158317
RB
1120 (minus (bit_xor @0 @1) @1))
1121(simplify
1122 (minus (bit_and:s @0 INTEGER_CST@2) (bit_and:s @0 INTEGER_CST@1))
8e6cdc90 1123 (if (~wi::to_wide (@2) == wi::to_wide (@1))
10158317
RB
1124 (minus (bit_xor @0 @1) @1)))
1125
1126/* Fold (A & B) - (A & ~B) into B - (A ^ B). */
1127(simplify
a8e9f9a3 1128 (minus (bit_and:cs @0 @1) (bit_and:cs @0 (bit_not @1)))
10158317
RB
1129 (minus @1 (bit_xor @0 @1)))
1130
42bd89ce
MG
1131/* Simplify (X & ~Y) |^+ (~X & Y) -> X ^ Y. */
1132(for op (bit_ior bit_xor plus)
1133 (simplify
1134 (op (bit_and:c @0 (bit_not @1)) (bit_and:c (bit_not @0) @1))
1135 (bit_xor @0 @1))
1136 (simplify
1137 (op:c (bit_and @0 INTEGER_CST@2) (bit_and (bit_not @0) INTEGER_CST@1))
8e6cdc90 1138 (if (~wi::to_wide (@2) == wi::to_wide (@1))
42bd89ce 1139 (bit_xor @0 @1))))
2066ef6a
PK
1140
1141/* PR53979: Transform ((a ^ b) | a) -> (a | b) */
1142(simplify
1143 (bit_ior:c (bit_xor:c @0 @1) @0)
1144 (bit_ior @0 @1))
1145
e268a77b
MG
1146/* (a & ~b) | (a ^ b) --> a ^ b */
1147(simplify
1148 (bit_ior:c (bit_and:c @0 (bit_not @1)) (bit_xor:c@2 @0 @1))
1149 @2)
1150
1151/* (a & ~b) ^ ~a --> ~(a & b) */
1152(simplify
1153 (bit_xor:c (bit_and:cs @0 (bit_not @1)) (bit_not @0))
1154 (bit_not (bit_and @0 @1)))
1155
52792faa
KK
1156/* (~a & b) ^ a --> (a | b) */
1157(simplify
1158 (bit_xor:c (bit_and:cs (bit_not @0) @1) @0)
1159 (bit_ior @0 @1))
1160
e268a77b
MG
1161/* (a | b) & ~(a ^ b) --> a & b */
1162(simplify
1163 (bit_and:c (bit_ior @0 @1) (bit_not (bit_xor:c @0 @1)))
1164 (bit_and @0 @1))
1165
1166/* a | ~(a ^ b) --> a | ~b */
1167(simplify
1168 (bit_ior:c @0 (bit_not:s (bit_xor:c @0 @1)))
1169 (bit_ior @0 (bit_not @1)))
1170
1171/* (a | b) | (a &^ b) --> a | b */
1172(for op (bit_and bit_xor)
1173 (simplify
1174 (bit_ior:c (bit_ior@2 @0 @1) (op:c @0 @1))
1175 @2))
1176
1177/* (a & b) | ~(a ^ b) --> ~(a ^ b) */
1178(simplify
1179 (bit_ior:c (bit_and:c @0 @1) (bit_not@2 (bit_xor @0 @1)))
1180 @2)
1181
1182/* ~(~a & b) --> a | ~b */
1183(simplify
1184 (bit_not (bit_and:cs (bit_not @0) @1))
1185 (bit_ior @0 (bit_not @1)))
1186
fd8303a5
MC
1187/* ~(~a | b) --> a & ~b */
1188(simplify
1189 (bit_not (bit_ior:cs (bit_not @0) @1))
1190 (bit_and @0 (bit_not @1)))
1191
f44e6091
ER
1192/* (a ^ b) & ((b ^ c) ^ a) --> (a ^ b) & ~c */
1193(simplify
1194 (bit_and:c (bit_xor:c@3 @0 @1) (bit_xor:cs (bit_xor:cs @1 @2) @0))
1195 (bit_and @3 (bit_not @2)))
1196
1197/* (a ^ b) | ((b ^ c) ^ a) --> (a ^ b) | c */
1198(simplify
1199 (bit_ior:c (bit_xor:c@3 @0 @1) (bit_xor:c (bit_xor:c @1 @2) @0))
1200 (bit_ior @3 @2))
1201
8fc183cc
JJ
1202/* (~X | C) ^ D -> (X | C) ^ (~D ^ C) if (~D ^ C) can be simplified. */
1203(simplify
1204 (bit_xor:c (bit_ior:cs (bit_not:s @0) @1) @2)
1205 (bit_xor (bit_ior @0 @1) (bit_xor! (bit_not! @2) @1)))
1206
1207/* (~X & C) ^ D -> (X & C) ^ (D ^ C) if (D ^ C) can be simplified. */
1208(simplify
1209 (bit_xor:c (bit_and:cs (bit_not:s @0) @1) @2)
1210 (bit_xor (bit_and @0 @1) (bit_xor! @2 @1)))
1211
1212/* Simplify (~X & Y) to X ^ Y if we know that (X & ~Y) is 0. */
d982c5b7
MG
1213(simplify
1214 (bit_and (bit_not SSA_NAME@0) INTEGER_CST@1)
1215 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
8e6cdc90 1216 && wi::bit_and_not (get_nonzero_bits (@0), wi::to_wide (@1)) == 0)
d982c5b7 1217 (bit_xor @0 @1)))
10158317 1218
f2901002
JJ
1219/* For constants M and N, if M == (1LL << cst) - 1 && (N & M) == M,
1220 ((A & N) + B) & M -> (A + B) & M
1221 Similarly if (N & M) == 0,
1222 ((A | N) + B) & M -> (A + B) & M
1223 and for - instead of + (or unary - instead of +)
1224 and/or ^ instead of |.
1225 If B is constant and (B & M) == 0, fold into A & M. */
1226(for op (plus minus)
1227 (for bitop (bit_and bit_ior bit_xor)
1228 (simplify
1229 (bit_and (op:s (bitop:s@0 @3 INTEGER_CST@4) @1) INTEGER_CST@2)
1230 (with
1231 { tree pmop[2];
1232 tree utype = fold_bit_and_mask (TREE_TYPE (@0), @2, op, @0, bitop,
1233 @3, @4, @1, ERROR_MARK, NULL_TREE,
1234 NULL_TREE, pmop); }
1235 (if (utype)
1236 (convert (bit_and (op (convert:utype { pmop[0]; })
1237 (convert:utype { pmop[1]; }))
1238 (convert:utype @2))))))
1239 (simplify
1240 (bit_and (op:s @0 (bitop:s@1 @3 INTEGER_CST@4)) INTEGER_CST@2)
1241 (with
1242 { tree pmop[2];
1243 tree utype = fold_bit_and_mask (TREE_TYPE (@0), @2, op, @0, ERROR_MARK,
1244 NULL_TREE, NULL_TREE, @1, bitop, @3,
1245 @4, pmop); }
1246 (if (utype)
1247 (convert (bit_and (op (convert:utype { pmop[0]; })
1248 (convert:utype { pmop[1]; }))
1249 (convert:utype @2)))))))
1250 (simplify
1251 (bit_and (op:s @0 @1) INTEGER_CST@2)
1252 (with
1253 { tree pmop[2];
1254 tree utype = fold_bit_and_mask (TREE_TYPE (@0), @2, op, @0, ERROR_MARK,
1255 NULL_TREE, NULL_TREE, @1, ERROR_MARK,
1256 NULL_TREE, NULL_TREE, pmop); }
1257 (if (utype)
1258 (convert (bit_and (op (convert:utype { pmop[0]; })
1259 (convert:utype { pmop[1]; }))
1260 (convert:utype @2)))))))
1261(for bitop (bit_and bit_ior bit_xor)
1262 (simplify
1263 (bit_and (negate:s (bitop:s@0 @2 INTEGER_CST@3)) INTEGER_CST@1)
1264 (with
1265 { tree pmop[2];
1266 tree utype = fold_bit_and_mask (TREE_TYPE (@0), @1, NEGATE_EXPR, @0,
1267 bitop, @2, @3, NULL_TREE, ERROR_MARK,
1268 NULL_TREE, NULL_TREE, pmop); }
1269 (if (utype)
1270 (convert (bit_and (negate (convert:utype { pmop[0]; }))
1271 (convert:utype @1)))))))
1272
bc4315fb
MG
1273/* X % Y is smaller than Y. */
1274(for cmp (lt ge)
1275 (simplify
1276 (cmp (trunc_mod @0 @1) @1)
1277 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
1278 { constant_boolean_node (cmp == LT_EXPR, type); })))
1279(for cmp (gt le)
1280 (simplify
1281 (cmp @1 (trunc_mod @0 @1))
1282 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
1283 { constant_boolean_node (cmp == GT_EXPR, type); })))
1284
e0ee10ed
RB
1285/* x | ~0 -> ~0 */
1286(simplify
ca0b7ece
RB
1287 (bit_ior @0 integer_all_onesp@1)
1288 @1)
1289
1290/* x | 0 -> x */
1291(simplify
1292 (bit_ior @0 integer_zerop)
1293 @0)
e0ee10ed
RB
1294
1295/* x & 0 -> 0 */
1296(simplify
ca0b7ece
RB
1297 (bit_and @0 integer_zerop@1)
1298 @1)
e0ee10ed 1299
a4398a30 1300/* ~x | x -> -1 */
8b5ee871 1301/* ~x ^ x -> -1 */
cf716ab5 1302(for op (bit_ior bit_xor)
8b5ee871
MG
1303 (simplify
1304 (op:c (convert? @0) (convert? (bit_not @0)))
1305 (convert { build_all_ones_cst (TREE_TYPE (@0)); })))
a4398a30 1306
e0ee10ed
RB
1307/* x ^ x -> 0 */
1308(simplify
1309 (bit_xor @0 @0)
1310 { build_zero_cst (type); })
1311
36a60e48
RB
1312/* Canonicalize X ^ ~0 to ~X. */
1313(simplify
1314 (bit_xor @0 integer_all_onesp@1)
1315 (bit_not @0))
1316
1317/* x & ~0 -> x */
1318(simplify
1319 (bit_and @0 integer_all_onesp)
1320 (non_lvalue @0))
1321
1322/* x & x -> x, x | x -> x */
1323(for bitop (bit_and bit_ior)
1324 (simplify
1325 (bitop @0 @0)
1326 (non_lvalue @0)))
1327
c7986356
MG
1328/* x & C -> x if we know that x & ~C == 0. */
1329#if GIMPLE
1330(simplify
1331 (bit_and SSA_NAME@0 INTEGER_CST@1)
1332 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
8e6cdc90 1333 && wi::bit_and_not (get_nonzero_bits (@0), wi::to_wide (@1)) == 0)
c7986356
MG
1334 @0))
1335#endif
1336
a7b76d57
JJ
1337/* ~(~X - Y) -> X + Y and ~(~X + Y) -> X - Y. */
1338(simplify
1339 (bit_not (minus (bit_not @0) @1))
1340 (plus @0 @1))
1341(simplify
1342 (bit_not (plus:c (bit_not @0) @1))
1343 (minus @0 @1))
be58bf98
TC
1344/* (~X - ~Y) -> Y - X. */
1345(simplify
1346 (minus (bit_not @0) (bit_not @1))
07cc4c1d
JJ
1347 (if (!TYPE_OVERFLOW_SANITIZED (type))
1348 (with { tree utype = unsigned_type_for (type); }
1349 (convert (minus (convert:utype @1) (convert:utype @0))))))
a7b76d57 1350
0bd67518
JJ
1351/* ~(X - Y) -> ~X + Y. */
1352(simplify
1353 (bit_not (minus:s @0 @1))
1354 (plus (bit_not @0) @1))
1355(simplify
1356 (bit_not (plus:s @0 INTEGER_CST@1))
1357 (if ((INTEGRAL_TYPE_P (type)
1358 && TYPE_UNSIGNED (type))
1359 || (!TYPE_OVERFLOW_SANITIZED (type)
1360 && may_negate_without_overflow_p (@1)))
1361 (plus (bit_not @0) { const_unop (NEGATE_EXPR, type, @1); })))
1362
1363#if GIMPLE
1364/* ~X + Y -> (Y - X) - 1. */
1365(simplify
1366 (plus:c (bit_not @0) @1)
1367 (if (ANY_INTEGRAL_TYPE_P (type)
1368 && TYPE_OVERFLOW_WRAPS (type)
1369 /* -1 - X is folded to ~X, so we'd recurse endlessly. */
1370 && !integer_all_onesp (@1))
1371 (plus (minus @1 @0) { build_minus_one_cst (type); })
1372 (if (INTEGRAL_TYPE_P (type)
1373 && TREE_CODE (@1) == INTEGER_CST
1374 && wi::to_wide (@1) != wi::min_value (TYPE_PRECISION (type),
1375 SIGNED))
1376 (minus (plus @1 { build_minus_one_cst (type); }) @0))))
93416de0 1377#endif
8f8762a2
JJ
1378
1379/* ~(X >> Y) -> ~X >> Y if ~X can be simplified. */
1380(simplify
1381 (bit_not (rshift:s @0 @1))
1382 (if (!TYPE_UNSIGNED (TREE_TYPE (@0)))
1383 (rshift (bit_not! @0) @1)
1384 /* For logical right shifts, this is possible only if @0 doesn't
1385 have MSB set and the logical right shift is changed into
1386 arithmetic shift. */
193fccaa
AP
1387 (if (INTEGRAL_TYPE_P (type)
1388 && !wi::neg_p (tree_nonzero_bits (@0)))
8f8762a2
JJ
1389 (with { tree stype = signed_type_for (TREE_TYPE (@0)); }
1390 (convert (rshift (bit_not! (convert:stype @0)) @1))))))
0bd67518 1391
0f770b01
RV
1392/* x + (x & 1) -> (x + 1) & ~1 */
1393(simplify
44fc0a51
RB
1394 (plus:c @0 (bit_and:s @0 integer_onep@1))
1395 (bit_and (plus @0 @1) (bit_not @1)))
0f770b01
RV
1396
1397/* x & ~(x & y) -> x & ~y */
1398/* x | ~(x | y) -> x | ~y */
1399(for bitop (bit_and bit_ior)
af563d4b 1400 (simplify
44fc0a51
RB
1401 (bitop:c @0 (bit_not (bitop:cs @0 @1)))
1402 (bitop @0 (bit_not @1))))
af563d4b 1403
03cc70b5
MC
1404/* (~x & y) | ~(x | y) -> ~x */
1405(simplify
1406 (bit_ior:c (bit_and:c (bit_not@2 @0) @1) (bit_not (bit_ior:c @0 @1)))
1407 @2)
1408
1409/* (x | y) ^ (x | ~y) -> ~x */
1410(simplify
1411 (bit_xor:c (bit_ior:c @0 @1) (bit_ior:c @0 (bit_not @1)))
1412 (bit_not @0))
1413
1414/* (x & y) | ~(x | y) -> ~(x ^ y) */
1415(simplify
1416 (bit_ior:c (bit_and:s @0 @1) (bit_not:s (bit_ior:s @0 @1)))
1417 (bit_not (bit_xor @0 @1)))
1418
1419/* (~x | y) ^ (x ^ y) -> x | ~y */
1420(simplify
1421 (bit_xor:c (bit_ior:cs (bit_not @0) @1) (bit_xor:s @0 @1))
1422 (bit_ior @0 (bit_not @1)))
1423
1424/* (x ^ y) | ~(x | y) -> ~(x & y) */
1425(simplify
1426 (bit_ior:c (bit_xor:s @0 @1) (bit_not:s (bit_ior:s @0 @1)))
1427 (bit_not (bit_and @0 @1)))
1428
af563d4b
MG
1429/* (x | y) & ~x -> y & ~x */
1430/* (x & y) | ~x -> y | ~x */
1431(for bitop (bit_and bit_ior)
1432 rbitop (bit_ior bit_and)
1433 (simplify
1434 (bitop:c (rbitop:c @0 @1) (bit_not@2 @0))
1435 (bitop @1 @2)))
0f770b01 1436
f13c4673
MP
1437/* (x & y) ^ (x | y) -> x ^ y */
1438(simplify
2d6f2dce
MP
1439 (bit_xor:c (bit_and @0 @1) (bit_ior @0 @1))
1440 (bit_xor @0 @1))
f13c4673 1441
9ea65ca6
MP
1442/* (x ^ y) ^ (x | y) -> x & y */
1443(simplify
1444 (bit_xor:c (bit_xor @0 @1) (bit_ior @0 @1))
1445 (bit_and @0 @1))
1446
1447/* (x & y) + (x ^ y) -> x | y */
1448/* (x & y) | (x ^ y) -> x | y */
1449/* (x & y) ^ (x ^ y) -> x | y */
1450(for op (plus bit_ior bit_xor)
1451 (simplify
1452 (op:c (bit_and @0 @1) (bit_xor @0 @1))
1453 (bit_ior @0 @1)))
1454
1455/* (x & y) + (x | y) -> x + y */
1456(simplify
1457 (plus:c (bit_and @0 @1) (bit_ior @0 @1))
1458 (plus @0 @1))
1459
9737efaf
MP
1460/* (x + y) - (x | y) -> x & y */
1461(simplify
1462 (minus (plus @0 @1) (bit_ior @0 @1))
1463 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
1464 && !TYPE_SATURATING (type))
1465 (bit_and @0 @1)))
1466
1467/* (x + y) - (x & y) -> x | y */
1468(simplify
1469 (minus (plus @0 @1) (bit_and @0 @1))
1470 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
1471 && !TYPE_SATURATING (type))
1472 (bit_ior @0 @1)))
1473
e0bfe016
PW
1474/* (x | y) - y -> (x & ~y) */
1475(simplify
1476 (minus (bit_ior:cs @0 @1) @1)
1477 (bit_and @0 (bit_not @1)))
1478
9ea65ca6
MP
1479/* (x | y) - (x ^ y) -> x & y */
1480(simplify
1481 (minus (bit_ior @0 @1) (bit_xor @0 @1))
1482 (bit_and @0 @1))
1483
1484/* (x | y) - (x & y) -> x ^ y */
1485(simplify
1486 (minus (bit_ior @0 @1) (bit_and @0 @1))
1487 (bit_xor @0 @1))
1488
66cc6273
MP
1489/* (x | y) & ~(x & y) -> x ^ y */
1490(simplify
1491 (bit_and:c (bit_ior @0 @1) (bit_not (bit_and @0 @1)))
1492 (bit_xor @0 @1))
1493
1494/* (x | y) & (~x ^ y) -> x & y */
1495(simplify
1496 (bit_and:c (bit_ior:c @0 @1) (bit_xor:c @1 (bit_not @0)))
1497 (bit_and @0 @1))
1498
fd8303a5
MC
1499/* (~x | y) & (x | ~y) -> ~(x ^ y) */
1500(simplify
1501 (bit_and (bit_ior:cs (bit_not @0) @1) (bit_ior:cs @0 (bit_not @1)))
1502 (bit_not (bit_xor @0 @1)))
1503
1504/* (~x | y) ^ (x | ~y) -> x ^ y */
1505(simplify
1506 (bit_xor (bit_ior:c (bit_not @0) @1) (bit_ior:c @0 (bit_not @1)))
1507 (bit_xor @0 @1))
1508
553c6572
JL
1509/* ((x & y) - (x | y)) - 1 -> ~(x ^ y) */
1510(simplify
1511 (plus (nop_convert1? (minus@2 (nop_convert2? (bit_and:c @0 @1))
1512 (nop_convert2? (bit_ior @0 @1))))
1513 integer_all_onesp)
1514 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
1515 && !TYPE_SATURATING (type) && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2))
1516 && !TYPE_OVERFLOW_TRAPS (TREE_TYPE (@2))
1517 && !TYPE_SATURATING (TREE_TYPE (@2)))
1518 (bit_not (convert (bit_xor @0 @1)))))
1519(simplify
1520 (minus (nop_convert1? (plus@2 (nop_convert2? (bit_and:c @0 @1))
1521 integer_all_onesp))
1522 (nop_convert3? (bit_ior @0 @1)))
1523 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
1524 && !TYPE_SATURATING (type) && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2))
1525 && !TYPE_OVERFLOW_TRAPS (TREE_TYPE (@2))
1526 && !TYPE_SATURATING (TREE_TYPE (@2)))
1527 (bit_not (convert (bit_xor @0 @1)))))
1528(simplify
1529 (minus (nop_convert1? (bit_and @0 @1))
1530 (nop_convert2? (plus@2 (nop_convert3? (bit_ior:c @0 @1))
1531 integer_onep)))
1532 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
1533 && !TYPE_SATURATING (type) && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2))
1534 && !TYPE_OVERFLOW_TRAPS (TREE_TYPE (@2))
1535 && !TYPE_SATURATING (TREE_TYPE (@2)))
1536 (bit_not (convert (bit_xor @0 @1)))))
1537
5b00d921
RB
1538/* ~x & ~y -> ~(x | y)
1539 ~x | ~y -> ~(x & y) */
1540(for op (bit_and bit_ior)
1541 rop (bit_ior bit_and)
1542 (simplify
1543 (op (convert1? (bit_not @0)) (convert2? (bit_not @1)))
ece46666
MG
1544 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1545 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
5b00d921
RB
1546 (bit_not (rop (convert @0) (convert @1))))))
1547
14ea9f92 1548/* If we are XORing or adding two BIT_AND_EXPR's, both of which are and'ing
5b00d921
RB
1549 with a constant, and the two constants have no bits in common,
1550 we should treat this as a BIT_IOR_EXPR since this may produce more
1551 simplifications. */
14ea9f92
RB
1552(for op (bit_xor plus)
1553 (simplify
1554 (op (convert1? (bit_and@4 @0 INTEGER_CST@1))
1555 (convert2? (bit_and@5 @2 INTEGER_CST@3)))
1556 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
1557 && tree_nop_conversion_p (type, TREE_TYPE (@2))
8e6cdc90 1558 && (wi::to_wide (@1) & wi::to_wide (@3)) == 0)
14ea9f92 1559 (bit_ior (convert @4) (convert @5)))))
5b00d921
RB
1560
1561/* (X | Y) ^ X -> Y & ~ X*/
1562(simplify
2eef1fc1 1563 (bit_xor:c (convert1? (bit_ior:c @@0 @1)) (convert2? @0))
5b00d921
RB
1564 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1565 (convert (bit_and @1 (bit_not @0)))))
1566
1567/* Convert ~X ^ ~Y to X ^ Y. */
1568(simplify
1569 (bit_xor (convert1? (bit_not @0)) (convert2? (bit_not @1)))
ece46666
MG
1570 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1571 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
5b00d921
RB
1572 (bit_xor (convert @0) (convert @1))))
1573
1574/* Convert ~X ^ C to X ^ ~C. */
1575(simplify
1576 (bit_xor (convert? (bit_not @0)) INTEGER_CST@1)
c8ba6498
EB
1577 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1578 (bit_xor (convert @0) (bit_not @1))))
5b00d921 1579
e39dab2c
MG
1580/* Fold (X & Y) ^ Y and (X ^ Y) & Y as ~X & Y. */
1581(for opo (bit_and bit_xor)
1582 opi (bit_xor bit_and)
1583 (simplify
de5b5228 1584 (opo:c (opi:cs @0 @1) @1)
e39dab2c 1585 (bit_and (bit_not @0) @1)))
97e77391 1586
14ea9f92
RB
1587/* Given a bit-wise operation CODE applied to ARG0 and ARG1, see if both
1588 operands are another bit-wise operation with a common input. If so,
1589 distribute the bit operations to save an operation and possibly two if
1590 constants are involved. For example, convert
1591 (A | B) & (A | C) into A | (B & C)
1592 Further simplification will occur if B and C are constants. */
e07ab2fe
MG
1593(for op (bit_and bit_ior bit_xor)
1594 rop (bit_ior bit_and bit_and)
14ea9f92 1595 (simplify
2eef1fc1 1596 (op (convert? (rop:c @@0 @1)) (convert? (rop:c @0 @2)))
e07ab2fe
MG
1597 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1598 && tree_nop_conversion_p (type, TREE_TYPE (@2)))
14ea9f92
RB
1599 (rop (convert @0) (op (convert @1) (convert @2))))))
1600
e39dab2c
MG
1601/* Some simple reassociation for bit operations, also handled in reassoc. */
1602/* (X & Y) & Y -> X & Y
1603 (X | Y) | Y -> X | Y */
1604(for op (bit_and bit_ior)
1605 (simplify
2eef1fc1 1606 (op:c (convert1?@2 (op:c @0 @@1)) (convert2? @1))
e39dab2c
MG
1607 @2))
1608/* (X ^ Y) ^ Y -> X */
1609(simplify
2eef1fc1 1610 (bit_xor:c (convert1? (bit_xor:c @0 @@1)) (convert2? @1))
ece46666 1611 (convert @0))
e39dab2c
MG
1612/* (X & Y) & (X & Z) -> (X & Y) & Z
1613 (X | Y) | (X | Z) -> (X | Y) | Z */
1614(for op (bit_and bit_ior)
1615 (simplify
6c35e5b0 1616 (op (convert1?@3 (op:c@4 @0 @1)) (convert2?@5 (op:c@6 @0 @2)))
e39dab2c
MG
1617 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1618 && tree_nop_conversion_p (type, TREE_TYPE (@2)))
1619 (if (single_use (@5) && single_use (@6))
1620 (op @3 (convert @2))
1621 (if (single_use (@3) && single_use (@4))
1622 (op (convert @1) @5))))))
1623/* (X ^ Y) ^ (X ^ Z) -> Y ^ Z */
1624(simplify
1625 (bit_xor (convert1? (bit_xor:c @0 @1)) (convert2? (bit_xor:c @0 @2)))
1626 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1627 && tree_nop_conversion_p (type, TREE_TYPE (@2)))
d78789f5 1628 (bit_xor (convert @1) (convert @2))))
5b00d921 1629
64f7ea7c
KV
1630/* Convert abs (abs (X)) into abs (X).
1631 also absu (absu (X)) into absu (X). */
b14a9c57
RB
1632(simplify
1633 (abs (abs@1 @0))
1634 @1)
64f7ea7c
KV
1635
1636(simplify
1637 (absu (convert@2 (absu@1 @0)))
1638 (if (tree_nop_conversion_p (TREE_TYPE (@2), TREE_TYPE (@1)))
1639 @1))
1640
1641/* Convert abs[u] (-X) -> abs[u] (X). */
f3582e54
RB
1642(simplify
1643 (abs (negate @0))
1644 (abs @0))
64f7ea7c
KV
1645
1646(simplify
1647 (absu (negate @0))
1648 (absu @0))
1649
1650/* Convert abs[u] (X) where X is nonnegative -> (X). */
f3582e54
RB
1651(simplify
1652 (abs tree_expr_nonnegative_p@0)
1653 @0)
1654
64f7ea7c
KV
1655(simplify
1656 (absu tree_expr_nonnegative_p@0)
1657 (convert @0))
1658
3200de91 1659/* Simplify (-(X < 0) | 1) * X into abs (X) or absu(X). */
8f12ce2e 1660(simplify
3200de91
AP
1661 (mult:c (nop_convert1?
1662 (bit_ior (nop_convert2? (negate (convert? (lt @0 integer_zerop))))
1663 integer_onep))
1664 (nop_convert3? @0))
8f12ce2e 1665 (if (INTEGRAL_TYPE_P (type)
8f12ce2e
JJ
1666 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
1667 && !TYPE_UNSIGNED (TREE_TYPE (@0)))
3200de91
AP
1668 (if (TYPE_UNSIGNED (type))
1669 (absu @0)
1670 (abs @0)
1671 )
1672 )
1673)
8f12ce2e 1674
e53b6e56 1675/* A few cases of fold-const.cc negate_expr_p predicate. */
55cf3946
RB
1676(match negate_expr_p
1677 INTEGER_CST
b14a9c57 1678 (if ((INTEGRAL_TYPE_P (type)
56a6d474 1679 && TYPE_UNSIGNED (type))
b14a9c57 1680 || (!TYPE_OVERFLOW_SANITIZED (type)
55cf3946
RB
1681 && may_negate_without_overflow_p (t)))))
1682(match negate_expr_p
1683 FIXED_CST)
1684(match negate_expr_p
1685 (negate @0)
1686 (if (!TYPE_OVERFLOW_SANITIZED (type))))
1687(match negate_expr_p
1688 REAL_CST
1689 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (t)))))
1690/* VECTOR_CST handling of non-wrapping types would recurse in unsupported
1691 ways. */
1692(match negate_expr_p
1693 VECTOR_CST
1694 (if (FLOAT_TYPE_P (TREE_TYPE (type)) || TYPE_OVERFLOW_WRAPS (type))))
81bd903a
MG
1695(match negate_expr_p
1696 (minus @0 @1)
1697 (if ((ANY_INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_WRAPS (type))
1698 || (FLOAT_TYPE_P (type)
1699 && !HONOR_SIGN_DEPENDENT_ROUNDING (type)
1700 && !HONOR_SIGNED_ZEROS (type)))))
0a8f32b8
RB
1701
1702/* (-A) * (-B) -> A * B */
1703(simplify
1704 (mult:c (convert1? (negate @0)) (convert2? negate_expr_p@1))
1705 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
1706 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
1707 (mult (convert @0) (convert (negate @1)))))
03cc70b5 1708
55cf3946 1709/* -(A + B) -> (-B) - A. */
b14a9c57 1710(simplify
55cf3946 1711 (negate (plus:c @0 negate_expr_p@1))
3c44b412
AP
1712 (if (!HONOR_SIGN_DEPENDENT_ROUNDING (type)
1713 && !HONOR_SIGNED_ZEROS (type))
55cf3946
RB
1714 (minus (negate @1) @0)))
1715
81bd903a
MG
1716/* -(A - B) -> B - A. */
1717(simplify
1718 (negate (minus @0 @1))
1719 (if ((ANY_INTEGRAL_TYPE_P (type) && !TYPE_OVERFLOW_SANITIZED (type))
1720 || (FLOAT_TYPE_P (type)
1721 && !HONOR_SIGN_DEPENDENT_ROUNDING (type)
1722 && !HONOR_SIGNED_ZEROS (type)))
1723 (minus @1 @0)))
1af4ebf5
MG
1724(simplify
1725 (negate (pointer_diff @0 @1))
1726 (if (TYPE_OVERFLOW_UNDEFINED (type))
1727 (pointer_diff @1 @0)))
81bd903a 1728
55cf3946 1729/* A - B -> A + (-B) if B is easily negatable. */
b14a9c57 1730(simplify
55cf3946 1731 (minus @0 negate_expr_p@1)
e4e96a4f
KT
1732 (if (!FIXED_POINT_TYPE_P (type))
1733 (plus @0 (negate @1))))
d4573ffe 1734
a42ed1d9
AP
1735/* 1 - a is a ^ 1 if a had a bool range. */
1736/* This is only enabled for gimple as sometimes
1737 cfun is not set for the function which contains
1738 the SSA_NAME (e.g. while IPA passes are happening,
1739 fold might be called). */
1740(simplify
1741 (minus integer_onep@0 SSA_NAME@1)
1742 (if (INTEGRAL_TYPE_P (type)
1743 && ssa_name_has_boolean_range (@1))
1744 (bit_xor @1 @0)))
a42ed1d9 1745
8f571e64
RS
1746/* Other simplifications of negation (c.f. fold_negate_expr_1). */
1747(simplify
1748 (negate (mult:c@0 @1 negate_expr_p@2))
1749 (if (! TYPE_UNSIGNED (type)
1750 && ! HONOR_SIGN_DEPENDENT_ROUNDING (type)
1751 && single_use (@0))
1752 (mult @1 (negate @2))))
1753
1754(simplify
1755 (negate (rdiv@0 @1 negate_expr_p@2))
1756 (if (! HONOR_SIGN_DEPENDENT_ROUNDING (type)
1757 && single_use (@0))
1758 (rdiv @1 (negate @2))))
1759
1760(simplify
1761 (negate (rdiv@0 negate_expr_p@1 @2))
1762 (if (! HONOR_SIGN_DEPENDENT_ROUNDING (type)
1763 && single_use (@0))
1764 (rdiv (negate @1) @2)))
1765
1766/* Fold -((int)x >> (prec - 1)) into (unsigned)x >> (prec - 1). */
1767(simplify
1768 (negate (convert? (rshift @0 INTEGER_CST@1)))
1769 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
1770 && wi::to_wide (@1) == element_precision (type) - 1)
1771 (with { tree stype = TREE_TYPE (@0);
1772 tree ntype = TYPE_UNSIGNED (stype) ? signed_type_for (stype)
1773 : unsigned_type_for (stype); }
e2521cd2
RB
1774 (if (VECTOR_TYPE_P (type))
1775 (view_convert (rshift (view_convert:ntype @0) @1))
1776 (convert (rshift (convert:ntype @0) @1))))))
8f571e64 1777
5609420f
RB
1778/* Try to fold (type) X op CST -> (type) (X op ((type-x) CST))
1779 when profitable.
1780 For bitwise binary operations apply operand conversions to the
1781 binary operation result instead of to the operands. This allows
1782 to combine successive conversions and bitwise binary operations.
1783 We combine the above two cases by using a conditional convert. */
1784(for bitop (bit_and bit_ior bit_xor)
1785 (simplify
496f4f88 1786 (bitop (convert@2 @0) (convert?@3 @1))
5609420f
RB
1787 (if (((TREE_CODE (@1) == INTEGER_CST
1788 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
74faa983
AP
1789 && (int_fits_type_p (@1, TREE_TYPE (@0))
1790 || tree_nop_conversion_p (TREE_TYPE (@0), type)))
aea417d7 1791 || types_match (@0, @1))
645ef01a
JJ
1792 && !POINTER_TYPE_P (TREE_TYPE (@0))
1793 && TREE_CODE (TREE_TYPE (@0)) != OFFSET_TYPE
e53b6e56 1794 /* ??? This transform conflicts with fold-const.cc doing
ad6f996c
RB
1795 Convert (T)(x & c) into (T)x & (T)c, if c is an integer
1796 constants (if x has signed type, the sign bit cannot be set
1797 in c). This folds extension into the BIT_AND_EXPR.
1798 Restrict it to GIMPLE to avoid endless recursions. */
1799 && (bitop != BIT_AND_EXPR || GIMPLE)
5609420f 1800 && (/* That's a good idea if the conversion widens the operand, thus
32221357
AP
1801 after hoisting the conversion the operation will be narrower.
1802 It is also a good if the conversion is a nop as moves the
1803 conversion to one side; allowing for combining of the conversions. */
ea2954df
AP
1804 TYPE_PRECISION (TREE_TYPE (@0)) < TYPE_PRECISION (type)
1805 /* The conversion check for being a nop can only be done at the gimple
1806 level as fold_binary has some re-association code which can conflict
1807 with this if there is a "constant" which is not a full INTEGER_CST. */
1808 || (GIMPLE && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (type))
5609420f
RB
1809 /* It's also a good idea if the conversion is to a non-integer
1810 mode. */
1811 || GET_MODE_CLASS (TYPE_MODE (type)) != MODE_INT
1812 /* Or if the precision of TO is not the same as the precision
1813 of its mode. */
496f4f88
JJ
1814 || !type_has_mode_precision_p (type)
1815 /* In GIMPLE, getting rid of 2 conversions for one new results
1816 in smaller IL. */
1817 || (GIMPLE
1818 && TREE_CODE (@1) != INTEGER_CST
1819 && tree_nop_conversion_p (type, TREE_TYPE (@0))
1820 && single_use (@2)
1821 && single_use (@3))))
1822 (convert (bitop @0 (convert @1)))))
1823 /* In GIMPLE, getting rid of 2 conversions for one new results
1824 in smaller IL. */
1825 (simplify
1826 (convert (bitop:cs@2 (nop_convert:s @0) @1))
1827 (if (GIMPLE
1828 && TREE_CODE (@1) != INTEGER_CST
1829 && tree_nop_conversion_p (type, TREE_TYPE (@2))
645ef01a
JJ
1830 && types_match (type, @0)
1831 && !POINTER_TYPE_P (TREE_TYPE (@0))
1832 && TREE_CODE (TREE_TYPE (@0)) != OFFSET_TYPE)
496f4f88 1833 (bitop @0 (convert @1)))))
5609420f 1834
b14a9c57
RB
1835(for bitop (bit_and bit_ior)
1836 rbitop (bit_ior bit_and)
1837 /* (x | y) & x -> x */
1838 /* (x & y) | x -> x */
1839 (simplify
1840 (bitop:c (rbitop:c @0 @1) @0)
1841 @0)
1842 /* (~x | y) & x -> x & y */
1843 /* (~x & y) | x -> x | y */
1844 (simplify
1845 (bitop:c (rbitop:c (bit_not @0) @1) @0)
1846 (bitop @0 @1)))
1847
28a7fdd8
ER
1848/* ((x | y) & z) | x -> (z & y) | x */
1849(simplify
1850 (bit_ior:c (bit_and:cs (bit_ior:cs @0 @1) @2) @0)
1851 (bit_ior (bit_and @2 @1) @0))
1852
5609420f
RB
1853/* (x | CST1) & CST2 -> (x & CST2) | (CST1 & CST2) */
1854(simplify
1855 (bit_and (bit_ior @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
1856 (bit_ior (bit_and @0 @2) (bit_and @1 @2)))
1857
1858/* Combine successive equal operations with constants. */
1859(for bitop (bit_and bit_ior bit_xor)
1860 (simplify
1861 (bitop (bitop @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
fba05d9e
RS
1862 (if (!CONSTANT_CLASS_P (@0))
1863 /* This is the canonical form regardless of whether (bitop @1 @2) can be
1864 folded to a constant. */
1865 (bitop @0 (bitop @1 @2))
1866 /* In this case we have three constants and (bitop @0 @1) doesn't fold
1867 to a constant. This can happen if @0 or @1 is a POLY_INT_CST and if
1868 the values involved are such that the operation can't be decided at
1869 compile time. Try folding one of @0 or @1 with @2 to see whether
1870 that combination can be decided at compile time.
1871
1872 Keep the existing form if both folds fail, to avoid endless
1873 oscillation. */
1874 (with { tree cst1 = const_binop (bitop, type, @0, @2); }
1875 (if (cst1)
1876 (bitop @1 { cst1; })
1877 (with { tree cst2 = const_binop (bitop, type, @1, @2); }
1878 (if (cst2)
1879 (bitop @0 { cst2; }))))))))
5609420f
RB
1880
1881/* Try simple folding for X op !X, and X op X with the help
1882 of the truth_valued_p and logical_inverted_value predicates. */
1883(match truth_valued_p
1884 @0
1885 (if (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1)))
f84e7fd6 1886(for op (tcc_comparison truth_and truth_andif truth_or truth_orif truth_xor)
5609420f
RB
1887 (match truth_valued_p
1888 (op @0 @1)))
1889(match truth_valued_p
1890 (truth_not @0))
1891
0a8f32b8
RB
1892(match (logical_inverted_value @0)
1893 (truth_not @0))
5609420f
RB
1894(match (logical_inverted_value @0)
1895 (bit_not truth_valued_p@0))
1896(match (logical_inverted_value @0)
09240451 1897 (eq @0 integer_zerop))
5609420f 1898(match (logical_inverted_value @0)
09240451 1899 (ne truth_valued_p@0 integer_truep))
5609420f 1900(match (logical_inverted_value @0)
09240451 1901 (bit_xor truth_valued_p@0 integer_truep))
5609420f
RB
1902
1903/* X & !X -> 0. */
1904(simplify
1905 (bit_and:c @0 (logical_inverted_value @0))
1906 { build_zero_cst (type); })
1907/* X | !X and X ^ !X -> 1, , if X is truth-valued. */
1908(for op (bit_ior bit_xor)
1909 (simplify
1910 (op:c truth_valued_p@0 (logical_inverted_value @0))
f84e7fd6 1911 { constant_boolean_node (true, type); }))
59c20dc7
RB
1912/* X ==/!= !X is false/true. */
1913(for op (eq ne)
1914 (simplify
1915 (op:c truth_valued_p@0 (logical_inverted_value @0))
1916 { constant_boolean_node (op == NE_EXPR ? true : false, type); }))
5609420f 1917
5609420f
RB
1918/* ~~x -> x */
1919(simplify
1920 (bit_not (bit_not @0))
1921 @0)
1922
8fb94fc6
RS
1923(match zero_one_valued_p
1924 @0
1925 (if (INTEGRAL_TYPE_P (type) && tree_nonzero_bits (@0) == 1)))
1926(match zero_one_valued_p
1927 truth_valued_p@0)
1928
1929/* Transform { 0 or 1 } * { 0 or 1 } into { 0 or 1 } & { 0 or 1 }. */
1930(simplify
1931 (mult zero_one_valued_p@0 zero_one_valued_p@1)
1932 (if (INTEGRAL_TYPE_P (type))
1933 (bit_and @0 @1)))
1934
4d9db4bd
TC
1935(for cmp (tcc_comparison)
1936 icmp (inverted_tcc_comparison)
1937 /* Fold (((a < b) & c) | ((a >= b) & d)) into (a < b ? c : d) & 1. */
1938 (simplify
1939 (bit_ior
1940 (bit_and:c (convert? (cmp@0 @01 @02)) @3)
1941 (bit_and:c (convert? (icmp@4 @01 @02)) @5))
1942 (if (INTEGRAL_TYPE_P (type)
1943 /* The scalar version has to be canonicalized after vectorization
1944 because it makes unconditional loads conditional ones, which
1945 means we lose vectorization because the loads may trap. */
1946 && canonicalize_math_after_vectorization_p ())
1947 (bit_and (cond @0 @3 @5) { build_one_cst (type); })))
1948
1949 /* Fold ((-(a < b) & c) | (-(a >= b) & d)) into a < b ? c : d. This is
1950 canonicalized further and we recognize the conditional form:
1951 (a < b ? c : 0) | (a >= b ? d : 0) into a < b ? c : d. */
1952 (simplify
1953 (bit_ior
1954 (cond (cmp@0 @01 @02) @3 zerop)
1955 (cond (icmp@4 @01 @02) @5 zerop))
1956 (if (INTEGRAL_TYPE_P (type)
1957 /* The scalar version has to be canonicalized after vectorization
1958 because it makes unconditional loads conditional ones, which
1959 means we lose vectorization because the loads may trap. */
1960 && canonicalize_math_after_vectorization_p ())
1961 (cond @0 @3 @5)))
1962
1963 /* Vector Fold (((a < b) & c) | ((a >= b) & d)) into a < b ? c : d.
1964 and ((~(a < b) & c) | (~(a >= b) & d)) into a < b ? c : d. */
1965 (simplify
1966 (bit_ior
1967 (bit_and:c (vec_cond:s (cmp@0 @6 @7) @4 @5) @2)
1968 (bit_and:c (vec_cond:s (icmp@1 @6 @7) @4 @5) @3))
1969 (if (integer_zerop (@5))
1970 (switch
1971 (if (integer_onep (@4))
1972 (bit_and (vec_cond @0 @2 @3) @4))
1973 (if (integer_minus_onep (@4))
1974 (vec_cond @0 @2 @3)))
1975 (if (integer_zerop (@4))
1976 (switch
1977 (if (integer_onep (@5))
1978 (bit_and (vec_cond @0 @3 @2) @5))
1979 (if (integer_minus_onep (@5))
1980 (vec_cond @0 @3 @2))))))
1981
1982 /* Scalar Vectorized Fold ((-(a < b) & c) | (-(a >= b) & d))
1983 into a < b ? d : c. */
1984 (simplify
1985 (bit_ior
1986 (vec_cond:s (cmp@0 @4 @5) @2 integer_zerop)
1987 (vec_cond:s (icmp@1 @4 @5) @3 integer_zerop))
1988 (vec_cond @0 @2 @3)))
1989
8fb94fc6
RS
1990/* Transform X & -Y into X * Y when Y is { 0 or 1 }. */
1991(simplify
1992 (bit_and:c (convert? (negate zero_one_valued_p@0)) @1)
1993 (if (INTEGRAL_TYPE_P (type)
1994 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
1995 && TREE_CODE (TREE_TYPE (@0)) != BOOLEAN_TYPE
1996 && !TYPE_UNSIGNED (TREE_TYPE (@0)))
1997 (mult (convert @0) @1)))
1998
9991d84d
RS
1999/* Narrow integer multiplication by a zero_one_valued_p operand.
2000 Multiplication by [0,1] is guaranteed not to overflow. */
2001(simplify
2002 (convert (mult@0 zero_one_valued_p@1 INTEGER_CST@2))
2003 (if (INTEGRAL_TYPE_P (type)
2004 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
5e88fccf 2005 && TYPE_PRECISION (type) < TYPE_PRECISION (TREE_TYPE (@0)))
9991d84d
RS
2006 (mult (convert @1) (convert @2))))
2007
418b71c0
RS
2008/* (X << C) != 0 can be simplified to X, when C is zero_one_valued_p.
2009 Check that the shift is well-defined (C is less than TYPE_PRECISION)
2010 as some targets (such as x86's SSE) may return zero for larger C. */
2011(simplify
2012 (ne (lshift zero_one_valued_p@0 INTEGER_CST@1) integer_zerop@2)
2013 (if (tree_fits_shwi_p (@1)
2014 && tree_to_shwi (@1) > 0
2015 && tree_to_shwi (@1) < TYPE_PRECISION (TREE_TYPE (@0)))
2016 (convert @0)))
2017
2018/* (X << C) == 0 can be simplified to X == 0, when C is zero_one_valued_p.
2019 Check that the shift is well-defined (C is less than TYPE_PRECISION)
2020 as some targets (such as x86's SSE) may return zero for larger C. */
2021(simplify
2022 (eq (lshift zero_one_valued_p@0 INTEGER_CST@1) integer_zerop@2)
2023 (if (tree_fits_shwi_p (@1)
2024 && tree_to_shwi (@1) > 0
2025 && tree_to_shwi (@1) < TYPE_PRECISION (TREE_TYPE (@0)))
2026 (eq @0 @2)))
2027
b14a9c57
RB
2028/* Convert ~ (-A) to A - 1. */
2029(simplify
2030 (bit_not (convert? (negate @0)))
ece46666
MG
2031 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
2032 || !TYPE_UNSIGNED (TREE_TYPE (@0)))
8b5ee871 2033 (convert (minus @0 { build_each_one_cst (TREE_TYPE (@0)); }))))
b14a9c57 2034
81bd903a
MG
2035/* Convert - (~A) to A + 1. */
2036(simplify
e150da38 2037 (negate (nop_convert? (bit_not @0)))
81bd903a
MG
2038 (plus (view_convert @0) { build_each_one_cst (type); }))
2039
cb3ac198
NR
2040/* (a & b) ^ (a == b) -> !(a | b) */
2041/* (a & b) == (a ^ b) -> !(a | b) */
2042(for first_op (bit_xor eq)
2043 second_op (eq bit_xor)
2044 (simplify
2045 (first_op:c (bit_and:c truth_valued_p@0 truth_valued_p@1) (second_op:c @0 @1))
2046 (bit_not (bit_ior @0 @1))))
2047
b14a9c57
RB
2048/* Convert ~ (A - 1) or ~ (A + -1) to -A. */
2049(simplify
8b5ee871 2050 (bit_not (convert? (minus @0 integer_each_onep)))
ece46666
MG
2051 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
2052 || !TYPE_UNSIGNED (TREE_TYPE (@0)))
b14a9c57
RB
2053 (convert (negate @0))))
2054(simplify
2055 (bit_not (convert? (plus @0 integer_all_onesp)))
ece46666
MG
2056 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
2057 || !TYPE_UNSIGNED (TREE_TYPE (@0)))
b14a9c57
RB
2058 (convert (negate @0))))
2059
2060/* Part of convert ~(X ^ Y) to ~X ^ Y or X ^ ~Y if ~X or ~Y simplify. */
2061(simplify
2062 (bit_not (convert? (bit_xor @0 INTEGER_CST@1)))
2063 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
2064 (convert (bit_xor @0 (bit_not @1)))))
2065(simplify
2066 (bit_not (convert? (bit_xor:c (bit_not @0) @1)))
2067 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
2068 (convert (bit_xor @0 @1))))
2069
e268a77b
MG
2070/* Otherwise prefer ~(X ^ Y) to ~X ^ Y as more canonical. */
2071(simplify
e150da38 2072 (bit_xor:c (nop_convert?:s (bit_not:s @0)) @1)
e268a77b
MG
2073 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
2074 (bit_not (bit_xor (view_convert @0) @1))))
2075
375668e0
RB
2076/* ~(a ^ b) is a == b for truth valued a and b. */
2077(simplify
2078 (bit_not (bit_xor:s truth_valued_p@0 truth_valued_p@1))
613e3b86
RB
2079 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
2080 && TYPE_PRECISION (TREE_TYPE (@0)) == 1)
375668e0
RB
2081 (convert (eq @0 @1))))
2082
f9378e3c
AP
2083/* (~a) == b is a ^ b for truth valued a and b. */
2084(simplify
2085 (eq:c (bit_not:s truth_valued_p@0) truth_valued_p@1)
2086 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
2087 && TYPE_PRECISION (TREE_TYPE (@0)) == 1)
2088 (convert (bit_xor @0 @1))))
2089
f52baa7b
MP
2090/* (x & ~m) | (y & m) -> ((x ^ y) & m) ^ x */
2091(simplify
44fc0a51
RB
2092 (bit_ior:c (bit_and:cs @0 (bit_not @2)) (bit_and:cs @1 @2))
2093 (bit_xor (bit_and (bit_xor @0 @1) @2) @0))
f52baa7b 2094
f7b7b0aa
MP
2095/* Fold A - (A & B) into ~B & A. */
2096(simplify
2eef1fc1 2097 (minus (convert1? @0) (convert2?:s (bit_and:cs @@0 @1)))
f7b7b0aa
MP
2098 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
2099 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
2100 (convert (bit_and (bit_not @1) @0))))
5609420f 2101
2071f8f9 2102/* (m1 CMP m2) * d -> (m1 CMP m2) ? d : 0 */
527e54a4 2103(if (!canonicalize_math_p ())
fd1f5373 2104 (for cmp (tcc_comparison)
527e54a4 2105 (simplify
fd1f5373
RS
2106 (mult:c (convert (cmp@0 @1 @2)) @3)
2107 (if (INTEGRAL_TYPE_P (type)
2108 && INTEGRAL_TYPE_P (TREE_TYPE (@0)))
2109 (cond @0 @3 { build_zero_cst (type); })))
2110/* (-(m1 CMP m2)) & d -> (m1 CMP m2) ? d : 0 */
2111 (simplify
2112 (bit_and:c (negate (convert (cmp@0 @1 @2))) @3)
2113 (if (INTEGRAL_TYPE_P (type)
2114 && INTEGRAL_TYPE_P (TREE_TYPE (@0)))
2115 (cond @0 @3 { build_zero_cst (type); })))
2116 )
2117)
2071f8f9 2118
e36c1cfe
N
2119/* For integral types with undefined overflow and C != 0 fold
2120 x * C EQ/NE y * C into x EQ/NE y. */
2121(for cmp (eq ne)
2122 (simplify
2123 (cmp (mult:c @0 @1) (mult:c @2 @1))
2124 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
2125 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
2126 && tree_expr_nonzero_p (@1))
2127 (cmp @0 @2))))
2128
42bd89ce
MG
2129/* For integral types with wrapping overflow and C odd fold
2130 x * C EQ/NE y * C into x EQ/NE y. */
2131(for cmp (eq ne)
2132 (simplify
2133 (cmp (mult @0 INTEGER_CST@1) (mult @2 @1))
2134 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
2135 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))
2136 && (TREE_INT_CST_LOW (@1) & 1) != 0)
2137 (cmp @0 @2))))
2138
e36c1cfe
N
2139/* For integral types with undefined overflow and C != 0 fold
2140 x * C RELOP y * C into:
84ff66b8 2141
e36c1cfe
N
2142 x RELOP y for nonnegative C
2143 y RELOP x for negative C */
2144(for cmp (lt gt le ge)
2145 (simplify
2146 (cmp (mult:c @0 @1) (mult:c @2 @1))
2147 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
2148 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
2149 (if (tree_expr_nonnegative_p (@1) && tree_expr_nonzero_p (@1))
2150 (cmp @0 @2)
2151 (if (TREE_CODE (@1) == INTEGER_CST
8e6cdc90 2152 && wi::neg_p (wi::to_wide (@1), TYPE_SIGN (TREE_TYPE (@1))))
e36c1cfe 2153 (cmp @2 @0))))))
84ff66b8 2154
564e405c
JJ
2155/* (X - 1U) <= INT_MAX-1U into (int) X > 0. */
2156(for cmp (le gt)
2157 icmp (gt le)
2158 (simplify
2159 (cmp (plus @0 integer_minus_onep@1) INTEGER_CST@2)
2160 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
2161 && TYPE_UNSIGNED (TREE_TYPE (@0))
2162 && TYPE_PRECISION (TREE_TYPE (@0)) > 1
8e6cdc90
RS
2163 && (wi::to_wide (@2)
2164 == wi::max_value (TYPE_PRECISION (TREE_TYPE (@0)), SIGNED) - 1))
564e405c
JJ
2165 (with { tree stype = signed_type_for (TREE_TYPE (@0)); }
2166 (icmp (convert:stype @0) { build_int_cst (stype, 0); })))))
2167
a8492d5e
MG
2168/* X / 4 < Y / 4 iff X < Y when the division is known to be exact. */
2169(for cmp (simple_comparison)
2170 (simplify
9adfa8e2
MG
2171 (cmp (convert?@3 (exact_div @0 INTEGER_CST@2)) (convert? (exact_div @1 @2)))
2172 (if (element_precision (@3) >= element_precision (@0)
2173 && types_match (@0, @1))
9cf60d3b 2174 (if (wi::lt_p (wi::to_wide (@2), 0, TYPE_SIGN (TREE_TYPE (@2))))
9adfa8e2
MG
2175 (if (!TYPE_UNSIGNED (TREE_TYPE (@3)))
2176 (cmp @1 @0)
2177 (if (tree_expr_nonzero_p (@0) && tree_expr_nonzero_p (@1))
2178 (with
2179 {
2180 tree utype = unsigned_type_for (TREE_TYPE (@0));
2181 }
2182 (cmp (convert:utype @1) (convert:utype @0)))))
2183 (if (wi::gt_p (wi::to_wide (@2), 1, TYPE_SIGN (TREE_TYPE (@2))))
2184 (if (TYPE_UNSIGNED (TREE_TYPE (@0)) || !TYPE_UNSIGNED (TREE_TYPE (@3)))
2185 (cmp @0 @1)
2186 (with
2187 {
2188 tree utype = unsigned_type_for (TREE_TYPE (@0));
2189 }
2190 (cmp (convert:utype @0) (convert:utype @1)))))))))
a8492d5e 2191
8d1628eb
JJ
2192/* X / C1 op C2 into a simple range test. */
2193(for cmp (simple_comparison)
2194 (simplify
2195 (cmp (trunc_div:s @0 INTEGER_CST@1) INTEGER_CST@2)
2196 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
2197 && integer_nonzerop (@1)
2198 && !TREE_OVERFLOW (@1)
2199 && !TREE_OVERFLOW (@2))
2200 (with { tree lo, hi; bool neg_overflow;
2201 enum tree_code code = fold_div_compare (cmp, @1, @2, &lo, &hi,
2202 &neg_overflow); }
2203 (switch
2204 (if (code == LT_EXPR || code == GE_EXPR)
2205 (if (TREE_OVERFLOW (lo))
2206 { build_int_cst (type, (code == LT_EXPR) ^ neg_overflow); }
2207 (if (code == LT_EXPR)
2208 (lt @0 { lo; })
2209 (ge @0 { lo; }))))
2210 (if (code == LE_EXPR || code == GT_EXPR)
2211 (if (TREE_OVERFLOW (hi))
2212 { build_int_cst (type, (code == LE_EXPR) ^ neg_overflow); }
2213 (if (code == LE_EXPR)
2214 (le @0 { hi; })
2215 (gt @0 { hi; }))))
2216 (if (!lo && !hi)
2217 { build_int_cst (type, code == NE_EXPR); })
2218 (if (code == EQ_EXPR && !hi)
2219 (ge @0 { lo; }))
2220 (if (code == EQ_EXPR && !lo)
2221 (le @0 { hi; }))
2222 (if (code == NE_EXPR && !hi)
2223 (lt @0 { lo; }))
2224 (if (code == NE_EXPR && !lo)
2225 (gt @0 { hi; }))
2226 (if (GENERIC)
2227 { build_range_check (UNKNOWN_LOCATION, type, @0, code == EQ_EXPR,
2228 lo, hi); })
2229 (with
2230 {
2231 tree etype = range_check_type (TREE_TYPE (@0));
2232 if (etype)
2233 {
8d1628eb
JJ
2234 hi = fold_convert (etype, hi);
2235 lo = fold_convert (etype, lo);
2236 hi = const_binop (MINUS_EXPR, etype, hi, lo);
2237 }
2238 }
2239 (if (etype && hi && !TREE_OVERFLOW (hi))
2240 (if (code == EQ_EXPR)
2241 (le (minus (convert:etype @0) { lo; }) { hi; })
2242 (gt (minus (convert:etype @0) { lo; }) { hi; })))))))))
2243
d35256b6
MG
2244/* X + Z < Y + Z is the same as X < Y when there is no overflow. */
2245(for op (lt le ge gt)
2246 (simplify
2247 (op (plus:c @0 @2) (plus:c @1 @2))
2248 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2249 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
2250 (op @0 @1))))
ab981aab
AS
2251
2252/* As a special case, X + C < Y + C is the same as (signed) X < (signed) Y
2253 when C is an unsigned integer constant with only the MSB set, and X and
2254 Y have types of equal or lower integer conversion rank than C's. */
2255(for op (lt le ge gt)
2256 (simplify
2257 (op (plus @1 INTEGER_CST@0) (plus @2 @0))
2258 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
2259 && TYPE_UNSIGNED (TREE_TYPE (@0))
2260 && wi::only_sign_bit_p (wi::to_wide (@0)))
2261 (with { tree stype = signed_type_for (TREE_TYPE (@0)); }
2262 (op (convert:stype @1) (convert:stype @2))))))
2263
d35256b6
MG
2264/* For equality and subtraction, this is also true with wrapping overflow. */
2265(for op (eq ne minus)
2266 (simplify
2267 (op (plus:c @0 @2) (plus:c @1 @2))
2268 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2269 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
2270 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
2271 (op @0 @1))))
2272
2273/* X - Z < Y - Z is the same as X < Y when there is no overflow. */
2274(for op (lt le ge gt)
2275 (simplify
2276 (op (minus @0 @2) (minus @1 @2))
2277 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2278 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
2279 (op @0 @1))))
2280/* For equality and subtraction, this is also true with wrapping overflow. */
2281(for op (eq ne minus)
2282 (simplify
2283 (op (minus @0 @2) (minus @1 @2))
2284 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2285 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
2286 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
2287 (op @0 @1))))
1af4ebf5
MG
2288/* And for pointers... */
2289(for op (simple_comparison)
2290 (simplify
2291 (op (pointer_diff@3 @0 @2) (pointer_diff @1 @2))
2292 (if (!TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
2293 (op @0 @1))))
2294(simplify
2295 (minus (pointer_diff@3 @0 @2) (pointer_diff @1 @2))
2296 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@3))
2297 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
2298 (pointer_diff @0 @1)))
d35256b6
MG
2299
2300/* Z - X < Z - Y is the same as Y < X when there is no overflow. */
2301(for op (lt le ge gt)
2302 (simplify
2303 (op (minus @2 @0) (minus @2 @1))
2304 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2305 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
2306 (op @1 @0))))
2307/* For equality and subtraction, this is also true with wrapping overflow. */
2308(for op (eq ne minus)
2309 (simplify
2310 (op (minus @2 @0) (minus @2 @1))
2311 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2312 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
2313 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
2314 (op @1 @0))))
1af4ebf5
MG
2315/* And for pointers... */
2316(for op (simple_comparison)
2317 (simplify
2318 (op (pointer_diff@3 @2 @0) (pointer_diff @2 @1))
2319 (if (!TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
2320 (op @1 @0))))
2321(simplify
2322 (minus (pointer_diff@3 @2 @0) (pointer_diff @2 @1))
2323 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@3))
2324 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
2325 (pointer_diff @1 @0)))
d35256b6 2326
6358a676
MG
2327/* X + Y < Y is the same as X < 0 when there is no overflow. */
2328(for op (lt le gt ge)
2329 (simplify
2330 (op:c (plus:c@2 @0 @1) @1)
2331 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2332 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
cbd42900 2333 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0))
6358a676
MG
2334 && (CONSTANT_CLASS_P (@0) || single_use (@2)))
2335 (op @0 { build_zero_cst (TREE_TYPE (@0)); }))))
2336/* For equality, this is also true with wrapping overflow. */
2337(for op (eq ne)
2338 (simplify
e150da38 2339 (op:c (nop_convert?@3 (plus:c@2 @0 (convert1? @1))) (convert2? @1))
6358a676
MG
2340 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2341 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
2342 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
2343 && (CONSTANT_CLASS_P (@0) || (single_use (@2) && single_use (@3)))
2344 && tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@2))
2345 && tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@1)))
2346 (op @0 { build_zero_cst (TREE_TYPE (@0)); })))
2347 (simplify
e150da38 2348 (op:c (nop_convert?@3 (pointer_plus@2 (convert1? @0) @1)) (convert2? @0))
6358a676
MG
2349 (if (tree_nop_conversion_p (TREE_TYPE (@2), TREE_TYPE (@0))
2350 && tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0))
2351 && (CONSTANT_CLASS_P (@1) || (single_use (@2) && single_use (@3))))
2352 (op @1 { build_zero_cst (TREE_TYPE (@1)); }))))
2353
892e8c52
RB
2354/* (&a + b) !=/== (&a[1] + c) -> (&a[0] - &a[1]) + b !=/== c */
2355(for neeq (ne eq)
2356 (simplify
2dc5d6b1 2357 (neeq:c ADDR_EXPR@0 (pointer_plus @2 @3))
892e8c52
RB
2358 (with { poly_int64 diff; tree inner_type = TREE_TYPE (@3);}
2359 (if (ptr_difference_const (@0, @2, &diff))
2360 (neeq { build_int_cst_type (inner_type, diff); } @3))))
2361 (simplify
2362 (neeq (pointer_plus ADDR_EXPR@0 @1) (pointer_plus ADDR_EXPR@2 @3))
2363 (with { poly_int64 diff; tree inner_type = TREE_TYPE (@1);}
2364 (if (ptr_difference_const (@0, @2, &diff))
2365 (neeq (plus { build_int_cst_type (inner_type, diff); } @1) @3)))))
2366
6358a676
MG
2367/* X - Y < X is the same as Y > 0 when there is no overflow.
2368 For equality, this is also true with wrapping overflow. */
2369(for op (simple_comparison)
2370 (simplify
2371 (op:c @0 (minus@2 @0 @1))
2372 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2373 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
2374 || ((op == EQ_EXPR || op == NE_EXPR)
2375 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
2376 && (CONSTANT_CLASS_P (@1) || single_use (@2)))
2377 (op @1 { build_zero_cst (TREE_TYPE (@1)); }))))
2378
1d6fadee 2379/* Transform:
b8d85005
JJ
2380 (X / Y) == 0 -> X < Y if X, Y are unsigned.
2381 (X / Y) != 0 -> X >= Y, if X, Y are unsigned. */
1d6fadee
PK
2382(for cmp (eq ne)
2383 ocmp (lt ge)
2384 (simplify
2385 (cmp (trunc_div @0 @1) integer_zerop)
2386 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
b8d85005
JJ
2387 /* Complex ==/!= is allowed, but not </>=. */
2388 && TREE_CODE (TREE_TYPE (@0)) != COMPLEX_TYPE
1d6fadee
PK
2389 && (VECTOR_TYPE_P (type) || !VECTOR_TYPE_P (TREE_TYPE (@0))))
2390 (ocmp @0 @1))))
2391
8b656ca7
MG
2392/* X == C - X can never be true if C is odd. */
2393(for cmp (eq ne)
2394 (simplify
2395 (cmp:c (convert? @0) (convert1? (minus INTEGER_CST@1 (convert2? @0))))
2396 (if (TREE_INT_CST_LOW (@1) & 1)
2397 { constant_boolean_node (cmp == NE_EXPR, type); })))
2398
10bc8017
MG
2399/* Arguments on which one can call get_nonzero_bits to get the bits
2400 possibly set. */
2401(match with_possible_nonzero_bits
2402 INTEGER_CST@0)
2403(match with_possible_nonzero_bits
2404 SSA_NAME@0
2405 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))))
2406/* Slightly extended version, do not make it recursive to keep it cheap. */
2407(match (with_possible_nonzero_bits2 @0)
2408 with_possible_nonzero_bits@0)
2409(match (with_possible_nonzero_bits2 @0)
2410 (bit_and:c with_possible_nonzero_bits@0 @2))
2411
2412/* Same for bits that are known to be set, but we do not have
2413 an equivalent to get_nonzero_bits yet. */
2414(match (with_certain_nonzero_bits2 @0)
2415 INTEGER_CST@0)
2416(match (with_certain_nonzero_bits2 @0)
2417 (bit_ior @1 INTEGER_CST@0))
2418
2419/* X == C (or X & Z == Y | C) is impossible if ~nonzero(X) & C != 0. */
2420(for cmp (eq ne)
2421 (simplify
2422 (cmp:c (with_possible_nonzero_bits2 @0) (with_certain_nonzero_bits2 @1))
8e6cdc90 2423 (if (wi::bit_and_not (wi::to_wide (@1), get_nonzero_bits (@0)) != 0)
10bc8017
MG
2424 { constant_boolean_node (cmp == NE_EXPR, type); })))
2425
84ff66b8
AV
2426/* ((X inner_op C0) outer_op C1)
2427 With X being a tree where value_range has reasoned certain bits to always be
2428 zero throughout its computed value range,
2429 inner_op = {|,^}, outer_op = {|,^} and inner_op != outer_op
2430 where zero_mask has 1's for all bits that are sure to be 0 in
2431 and 0's otherwise.
2432 if (inner_op == '^') C0 &= ~C1;
2433 if ((C0 & ~zero_mask) == 0) then emit (X outer_op (C0 outer_op C1)
2434 if ((C1 & ~zero_mask) == 0) then emit (X inner_op (C0 outer_op C1)
2435*/
2436(for inner_op (bit_ior bit_xor)
2437 outer_op (bit_xor bit_ior)
2438(simplify
2439 (outer_op
2440 (inner_op:s @2 INTEGER_CST@0) INTEGER_CST@1)
2441 (with
2442 {
2443 bool fail = false;
2444 wide_int zero_mask_not;
2445 wide_int C0;
2446 wide_int cst_emit;
2447
2448 if (TREE_CODE (@2) == SSA_NAME)
2449 zero_mask_not = get_nonzero_bits (@2);
2450 else
2451 fail = true;
2452
2453 if (inner_op == BIT_XOR_EXPR)
2454 {
8e6cdc90
RS
2455 C0 = wi::bit_and_not (wi::to_wide (@0), wi::to_wide (@1));
2456 cst_emit = C0 | wi::to_wide (@1);
84ff66b8
AV
2457 }
2458 else
2459 {
8e6cdc90
RS
2460 C0 = wi::to_wide (@0);
2461 cst_emit = C0 ^ wi::to_wide (@1);
84ff66b8
AV
2462 }
2463 }
8e6cdc90 2464 (if (!fail && (C0 & zero_mask_not) == 0)
84ff66b8 2465 (outer_op @2 { wide_int_to_tree (type, cst_emit); })
8e6cdc90 2466 (if (!fail && (wi::to_wide (@1) & zero_mask_not) == 0)
84ff66b8
AV
2467 (inner_op @2 { wide_int_to_tree (type, cst_emit); }))))))
2468
a499aac5
RB
2469/* Associate (p +p off1) +p off2 as (p +p (off1 + off2)). */
2470(simplify
44fc0a51
RB
2471 (pointer_plus (pointer_plus:s @0 @1) @3)
2472 (pointer_plus @0 (plus @1 @3)))
51d464b6
JJ
2473#if GENERIC
2474(simplify
2475 (pointer_plus (convert:s (pointer_plus:s @0 @1)) @3)
2476 (convert:type (pointer_plus @0 (plus @1 @3))))
2477#endif
a499aac5
RB
2478
2479/* Pattern match
2480 tem1 = (long) ptr1;
2481 tem2 = (long) ptr2;
2482 tem3 = tem2 - tem1;
2483 tem4 = (unsigned long) tem3;
2484 tem5 = ptr1 + tem4;
2485 and produce
2486 tem5 = ptr2; */
2487(simplify
2488 (pointer_plus @0 (convert?@2 (minus@3 (convert @1) (convert @0))))
2489 /* Conditionally look through a sign-changing conversion. */
2490 (if (TYPE_PRECISION (TREE_TYPE (@2)) == TYPE_PRECISION (TREE_TYPE (@3))
2491 && ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@1)))
2492 || (GENERIC && type == TREE_TYPE (@1))))
2493 @1))
1af4ebf5
MG
2494(simplify
2495 (pointer_plus @0 (convert?@2 (pointer_diff@3 @1 @@0)))
2496 (if (TYPE_PRECISION (TREE_TYPE (@2)) >= TYPE_PRECISION (TREE_TYPE (@3)))
2497 (convert @1)))
a499aac5
RB
2498
2499/* Pattern match
2500 tem = (sizetype) ptr;
2501 tem = tem & algn;
2502 tem = -tem;
2503 ... = ptr p+ tem;
2504 and produce the simpler and easier to analyze with respect to alignment
2505 ... = ptr & ~algn; */
2506(simplify
2507 (pointer_plus @0 (negate (bit_and (convert @0) INTEGER_CST@1)))
8e6cdc90 2508 (with { tree algn = wide_int_to_tree (TREE_TYPE (@0), ~wi::to_wide (@1)); }
a499aac5
RB
2509 (bit_and @0 { algn; })))
2510
99e943a2
RB
2511/* Try folding difference of addresses. */
2512(simplify
2513 (minus (convert ADDR_EXPR@0) (convert @1))
2514 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
f37fac2b 2515 (with { poly_int64 diff; }
99e943a2
RB
2516 (if (ptr_difference_const (@0, @1, &diff))
2517 { build_int_cst_type (type, diff); }))))
2518(simplify
2519 (minus (convert @0) (convert ADDR_EXPR@1))
2520 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
f37fac2b 2521 (with { poly_int64 diff; }
99e943a2
RB
2522 (if (ptr_difference_const (@0, @1, &diff))
2523 { build_int_cst_type (type, diff); }))))
1af4ebf5 2524(simplify
67fccea4 2525 (pointer_diff (convert?@2 ADDR_EXPR@0) (convert1?@3 @1))
1af4ebf5
MG
2526 (if (tree_nop_conversion_p (TREE_TYPE(@2), TREE_TYPE (@0))
2527 && tree_nop_conversion_p (TREE_TYPE(@3), TREE_TYPE (@1)))
f37fac2b 2528 (with { poly_int64 diff; }
1af4ebf5
MG
2529 (if (ptr_difference_const (@0, @1, &diff))
2530 { build_int_cst_type (type, diff); }))))
2531(simplify
67fccea4 2532 (pointer_diff (convert?@2 @0) (convert1?@3 ADDR_EXPR@1))
1af4ebf5
MG
2533 (if (tree_nop_conversion_p (TREE_TYPE(@2), TREE_TYPE (@0))
2534 && tree_nop_conversion_p (TREE_TYPE(@3), TREE_TYPE (@1)))
f37fac2b 2535 (with { poly_int64 diff; }
1af4ebf5
MG
2536 (if (ptr_difference_const (@0, @1, &diff))
2537 { build_int_cst_type (type, diff); }))))
99e943a2 2538
564efbf4
AP
2539/* (&a+b) - (&a[1] + c) -> sizeof(a[0]) + (b - c) */
2540(simplify
2541 (pointer_diff (pointer_plus ADDR_EXPR@0 @1) (pointer_plus ADDR_EXPR@2 @3))
2542 (with { poly_int64 diff; }
2543 (if (ptr_difference_const (@0, @2, &diff))
2544 (plus { build_int_cst_type (type, diff); } (convert (minus @1 @3))))))
d13b86f9
RB
2545/* (p + b) - &p->d -> offsetof (*p, d) + b */
2546(simplify
2547 (pointer_diff (pointer_plus @0 @1) ADDR_EXPR@2)
2548 (with { poly_int64 diff; }
2549 (if (ptr_difference_const (@0, @2, &diff))
2550 (plus { build_int_cst_type (type, diff); } (convert @1)))))
2551(simplify
2552 (pointer_diff ADDR_EXPR@0 (pointer_plus @1 @2))
2553 (with { poly_int64 diff; }
2554 (if (ptr_difference_const (@0, @1, &diff))
2555 (minus { build_int_cst_type (type, diff); } (convert @2)))))
564efbf4 2556
cb99630f
RB
2557/* Canonicalize (T *)(ptr - ptr-cst) to &MEM[ptr + -ptr-cst]. */
2558(simplify
2559 (convert (pointer_diff @0 INTEGER_CST@1))
2560 (if (POINTER_TYPE_P (type))
2561 { build_fold_addr_expr_with_type
2562 (build2 (MEM_REF, char_type_node, @0,
2563 wide_int_to_tree (ptr_type_node, wi::neg (wi::to_wide (@1)))),
2564 type); }))
2565
bab73f11
RB
2566/* If arg0 is derived from the address of an object or function, we may
2567 be able to fold this expression using the object or function's
2568 alignment. */
2569(simplify
2570 (bit_and (convert? @0) INTEGER_CST@1)
2571 (if (POINTER_TYPE_P (TREE_TYPE (@0))
2572 && tree_nop_conversion_p (type, TREE_TYPE (@0)))
2573 (with
2574 {
2575 unsigned int align;
2576 unsigned HOST_WIDE_INT bitpos;
2577 get_pointer_alignment_1 (@0, &align, &bitpos);
2578 }
8e6cdc90
RS
2579 (if (wi::ltu_p (wi::to_wide (@1), align / BITS_PER_UNIT))
2580 { wide_int_to_tree (type, (wi::to_wide (@1)
2581 & (bitpos / BITS_PER_UNIT))); }))))
99e943a2 2582
c16504f6
LJH
2583(match min_value
2584 INTEGER_CST
2585 (if (INTEGRAL_TYPE_P (type)
2586 && wi::eq_p (wi::to_wide (t), wi::min_value (type)))))
2587
2588(match max_value
2589 INTEGER_CST
2590 (if (INTEGRAL_TYPE_P (type)
2591 && wi::eq_p (wi::to_wide (t), wi::max_value (type)))))
2592
2593/* x > y && x != XXX_MIN --> x > y
2594 x > y && x == XXX_MIN --> false . */
2595(for eqne (eq ne)
2596 (simplify
2597 (bit_and:c (gt:c@2 @0 @1) (eqne @0 min_value))
2598 (switch
2599 (if (eqne == EQ_EXPR)
2600 { constant_boolean_node (false, type); })
2601 (if (eqne == NE_EXPR)
2602 @2)
2603 )))
2604
2605/* x < y && x != XXX_MAX --> x < y
2606 x < y && x == XXX_MAX --> false. */
2607(for eqne (eq ne)
2608 (simplify
2609 (bit_and:c (lt:c@2 @0 @1) (eqne @0 max_value))
2610 (switch
2611 (if (eqne == EQ_EXPR)
2612 { constant_boolean_node (false, type); })
2613 (if (eqne == NE_EXPR)
2614 @2)
2615 )))
2616
2617/* x <= y && x == XXX_MIN --> x == XXX_MIN. */
2618(simplify
2619 (bit_and:c (le:c @0 @1) (eq@2 @0 min_value))
2620 @2)
2621
2622/* x >= y && x == XXX_MAX --> x == XXX_MAX. */
2623(simplify
2624 (bit_and:c (ge:c @0 @1) (eq@2 @0 max_value))
2625 @2)
2626
2627/* x > y || x != XXX_MIN --> x != XXX_MIN. */
2628(simplify
2629 (bit_ior:c (gt:c @0 @1) (ne@2 @0 min_value))
2630 @2)
2631
2632/* x <= y || x != XXX_MIN --> true. */
2633(simplify
2634 (bit_ior:c (le:c @0 @1) (ne @0 min_value))
2635 { constant_boolean_node (true, type); })
2636
2637/* x <= y || x == XXX_MIN --> x <= y. */
2638(simplify
2639 (bit_ior:c (le:c@2 @0 @1) (eq @0 min_value))
2640 @2)
2641
2642/* x < y || x != XXX_MAX --> x != XXX_MAX. */
2643(simplify
2644 (bit_ior:c (lt:c @0 @1) (ne@2 @0 max_value))
2645 @2)
2646
2647/* x >= y || x != XXX_MAX --> true
2648 x >= y || x == XXX_MAX --> x >= y. */
2649(for eqne (eq ne)
2650 (simplify
2651 (bit_ior:c (ge:c@2 @0 @1) (eqne @0 max_value))
2652 (switch
2653 (if (eqne == EQ_EXPR)
2654 @2)
2655 (if (eqne == NE_EXPR)
2656 { constant_boolean_node (true, type); }))))
a499aac5 2657
49e8c14e
ER
2658/* y == XXX_MIN || x < y --> x <= y - 1 */
2659(simplify
9642d07c 2660 (bit_ior:c (eq:s @1 min_value) (lt:cs @0 @1))
49e8c14e
ER
2661 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
2662 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1)))
2663 (le @0 (minus @1 { build_int_cst (TREE_TYPE (@1), 1); }))))
2664
2665/* y != XXX_MIN && x >= y --> x > y - 1 */
2666(simplify
9642d07c 2667 (bit_and:c (ne:s @1 min_value) (ge:cs @0 @1))
49e8c14e
ER
2668 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
2669 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1)))
2670 (gt @0 (minus @1 { build_int_cst (TREE_TYPE (@1), 1); }))))
2671
ae9c3507
ML
2672/* Convert (X == CST1) && (X OP2 CST2) to a known value
2673 based on CST1 OP2 CST2. Similarly for (X != CST1). */
2674
2675(for code1 (eq ne)
2676 (for code2 (eq ne lt gt le ge)
2677 (simplify
2678 (bit_and:c (code1@3 @0 INTEGER_CST@1) (code2@4 @0 INTEGER_CST@2))
2679 (with
2680 {
2681 int cmp = tree_int_cst_compare (@1, @2);
2682 bool val;
2683 switch (code2)
2684 {
2685 case EQ_EXPR: val = (cmp == 0); break;
2686 case NE_EXPR: val = (cmp != 0); break;
2687 case LT_EXPR: val = (cmp < 0); break;
2688 case GT_EXPR: val = (cmp > 0); break;
2689 case LE_EXPR: val = (cmp <= 0); break;
2690 case GE_EXPR: val = (cmp >= 0); break;
2691 default: gcc_unreachable ();
2692 }
2693 }
2694 (switch
2695 (if (code1 == EQ_EXPR && val) @3)
2696 (if (code1 == EQ_EXPR && !val) { constant_boolean_node (false, type); })
2697 (if (code1 == NE_EXPR && !val) @4))))))
2698
2699/* Convert (X OP1 CST1) && (X OP2 CST2). */
2700
2701(for code1 (lt le gt ge)
2702 (for code2 (lt le gt ge)
2703 (simplify
2704 (bit_and (code1:c@3 @0 INTEGER_CST@1) (code2:c@4 @0 INTEGER_CST@2))
2705 (with
2706 {
2707 int cmp = tree_int_cst_compare (@1, @2);
2708 }
2709 (switch
2710 /* Choose the more restrictive of two < or <= comparisons. */
2711 (if ((code1 == LT_EXPR || code1 == LE_EXPR)
2712 && (code2 == LT_EXPR || code2 == LE_EXPR))
2713 (if ((cmp < 0) || (cmp == 0 && code1 == LT_EXPR))
2714 @3
2715 @4))
2716 /* Likewise chose the more restrictive of two > or >= comparisons. */
2717 (if ((code1 == GT_EXPR || code1 == GE_EXPR)
2718 && (code2 == GT_EXPR || code2 == GE_EXPR))
2719 (if ((cmp > 0) || (cmp == 0 && code1 == GT_EXPR))
2720 @3
2721 @4))
2722 /* Check for singleton ranges. */
2723 (if (cmp == 0
2724 && ((code1 == LE_EXPR && code2 == GE_EXPR)
2725 || (code1 == GE_EXPR && code2 == LE_EXPR)))
2726 (eq @0 @1))
2727 /* Check for disjoint ranges. */
2728 (if (cmp <= 0
2729 && (code1 == LT_EXPR || code1 == LE_EXPR)
2730 && (code2 == GT_EXPR || code2 == GE_EXPR))
2731 { constant_boolean_node (false, type); })
2732 (if (cmp >= 0
2733 && (code1 == GT_EXPR || code1 == GE_EXPR)
2734 && (code2 == LT_EXPR || code2 == LE_EXPR))
2735 { constant_boolean_node (false, type); })
2736 )))))
2737
130c4034
ML
2738/* Convert (X == CST1) || (X OP2 CST2) to a known value
2739 based on CST1 OP2 CST2. Similarly for (X != CST1). */
2740
2741(for code1 (eq ne)
2742 (for code2 (eq ne lt gt le ge)
2743 (simplify
2744 (bit_ior:c (code1@3 @0 INTEGER_CST@1) (code2@4 @0 INTEGER_CST@2))
2745 (with
2746 {
2747 int cmp = tree_int_cst_compare (@1, @2);
2748 bool val;
2749 switch (code2)
2750 {
2751 case EQ_EXPR: val = (cmp == 0); break;
2752 case NE_EXPR: val = (cmp != 0); break;
2753 case LT_EXPR: val = (cmp < 0); break;
2754 case GT_EXPR: val = (cmp > 0); break;
2755 case LE_EXPR: val = (cmp <= 0); break;
2756 case GE_EXPR: val = (cmp >= 0); break;
2757 default: gcc_unreachable ();
2758 }
2759 }
2760 (switch
2761 (if (code1 == EQ_EXPR && val) @4)
2762 (if (code1 == NE_EXPR && val) { constant_boolean_node (true, type); })
2763 (if (code1 == NE_EXPR && !val) @3))))))
2764
cda65821
ML
2765/* Convert (X OP1 CST1) || (X OP2 CST2). */
2766
2767(for code1 (lt le gt ge)
2768 (for code2 (lt le gt ge)
2769 (simplify
2770 (bit_ior (code1@3 @0 INTEGER_CST@1) (code2@4 @0 INTEGER_CST@2))
2771 (with
2772 {
2773 int cmp = tree_int_cst_compare (@1, @2);
2774 }
2775 (switch
2776 /* Choose the more restrictive of two < or <= comparisons. */
2777 (if ((code1 == LT_EXPR || code1 == LE_EXPR)
2778 && (code2 == LT_EXPR || code2 == LE_EXPR))
2779 (if ((cmp < 0) || (cmp == 0 && code1 == LT_EXPR))
2780 @4
2781 @3))
2782 /* Likewise chose the more restrictive of two > or >= comparisons. */
2783 (if ((code1 == GT_EXPR || code1 == GE_EXPR)
2784 && (code2 == GT_EXPR || code2 == GE_EXPR))
2785 (if ((cmp > 0) || (cmp == 0 && code1 == GT_EXPR))
2786 @4
2787 @3))
2788 /* Check for singleton ranges. */
2789 (if (cmp == 0
2790 && ((code1 == LT_EXPR && code2 == GT_EXPR)
2791 || (code1 == GT_EXPR && code2 == LT_EXPR)))
2792 (ne @0 @2))
2793 /* Check for disjoint ranges. */
2794 (if (cmp >= 0
2795 && (code1 == LT_EXPR || code1 == LE_EXPR)
2796 && (code2 == GT_EXPR || code2 == GE_EXPR))
2797 { constant_boolean_node (true, type); })
2798 (if (cmp <= 0
2799 && (code1 == GT_EXPR || code1 == GE_EXPR)
2800 && (code2 == LT_EXPR || code2 == LE_EXPR))
2801 { constant_boolean_node (true, type); })
2802 )))))
130c4034 2803
cc7b5acf
RB
2804/* We can't reassociate at all for saturating types. */
2805(if (!TYPE_SATURATING (type))
2806
2807 /* Contract negates. */
2808 /* A + (-B) -> A - B */
2809 (simplify
248179b5
RB
2810 (plus:c @0 (convert? (negate @1)))
2811 /* Apply STRIP_NOPS on the negate. */
2812 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
6a4f0678 2813 && !TYPE_OVERFLOW_SANITIZED (type))
248179b5
RB
2814 (with
2815 {
2816 tree t1 = type;
2817 if (INTEGRAL_TYPE_P (type)
2818 && TYPE_OVERFLOW_WRAPS (type) != TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1)))
2819 t1 = TYPE_OVERFLOW_WRAPS (type) ? type : TREE_TYPE (@1);
2820 }
2821 (convert (minus (convert:t1 @0) (convert:t1 @1))))))
cc7b5acf
RB
2822 /* A - (-B) -> A + B */
2823 (simplify
248179b5
RB
2824 (minus @0 (convert? (negate @1)))
2825 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
6a4f0678 2826 && !TYPE_OVERFLOW_SANITIZED (type))
248179b5
RB
2827 (with
2828 {
2829 tree t1 = type;
2830 if (INTEGRAL_TYPE_P (type)
2831 && TYPE_OVERFLOW_WRAPS (type) != TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1)))
2832 t1 = TYPE_OVERFLOW_WRAPS (type) ? type : TREE_TYPE (@1);
2833 }
2834 (convert (plus (convert:t1 @0) (convert:t1 @1))))))
63626547
MG
2835 /* -(T)(-A) -> (T)A
2836 Sign-extension is ok except for INT_MIN, which thankfully cannot
2837 happen without overflow. */
2838 (simplify
2839 (negate (convert (negate @1)))
2840 (if (INTEGRAL_TYPE_P (type)
2841 && (TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@1))
2842 || (!TYPE_UNSIGNED (TREE_TYPE (@1))
2843 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))))
2844 && !TYPE_OVERFLOW_SANITIZED (type)
2845 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@1)))
a0f12cf8 2846 (convert @1)))
63626547
MG
2847 (simplify
2848 (negate (convert negate_expr_p@1))
2849 (if (SCALAR_FLOAT_TYPE_P (type)
2850 && ((DECIMAL_FLOAT_TYPE_P (type)
2851 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1))
2852 && TYPE_PRECISION (type) >= TYPE_PRECISION (TREE_TYPE (@1)))
2853 || !HONOR_SIGN_DEPENDENT_ROUNDING (type)))
2854 (convert (negate @1))))
2855 (simplify
e150da38 2856 (negate (nop_convert? (negate @1)))
63626547
MG
2857 (if (!TYPE_OVERFLOW_SANITIZED (type)
2858 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@1)))
2859 (view_convert @1)))
cc7b5acf 2860
7318e44f
RB
2861 /* We can't reassociate floating-point unless -fassociative-math
2862 or fixed-point plus or minus because of saturation to +-Inf. */
2863 (if ((!FLOAT_TYPE_P (type) || flag_associative_math)
2864 && !FIXED_POINT_TYPE_P (type))
cc7b5acf
RB
2865
2866 /* Match patterns that allow contracting a plus-minus pair
2867 irrespective of overflow issues. */
2868 /* (A +- B) - A -> +- B */
2869 /* (A +- B) -+ B -> A */
2870 /* A - (A +- B) -> -+ B */
2871 /* A +- (B -+ A) -> +- B */
2872 (simplify
e150da38 2873 (minus (nop_convert1? (plus:c (nop_convert2? @0) @1)) @0)
526b4c71 2874 (view_convert @1))
cc7b5acf 2875 (simplify
e150da38 2876 (minus (nop_convert1? (minus (nop_convert2? @0) @1)) @0)
526b4c71
JJ
2877 (if (!ANY_INTEGRAL_TYPE_P (type)
2878 || TYPE_OVERFLOW_WRAPS (type))
2879 (negate (view_convert @1))
2880 (view_convert (negate @1))))
cc7b5acf 2881 (simplify
e150da38 2882 (plus:c (nop_convert1? (minus @0 (nop_convert2? @1))) @1)
526b4c71 2883 (view_convert @0))
cc7b5acf 2884 (simplify
e150da38 2885 (minus @0 (nop_convert1? (plus:c (nop_convert2? @0) @1)))
526b4c71
JJ
2886 (if (!ANY_INTEGRAL_TYPE_P (type)
2887 || TYPE_OVERFLOW_WRAPS (type))
2888 (negate (view_convert @1))
2889 (view_convert (negate @1))))
cc7b5acf 2890 (simplify
e150da38 2891 (minus @0 (nop_convert1? (minus (nop_convert2? @0) @1)))
526b4c71 2892 (view_convert @1))
1e7df2e6
MG
2893 /* (A +- B) + (C - A) -> C +- B */
2894 /* (A + B) - (A - C) -> B + C */
2895 /* More cases are handled with comparisons. */
2896 (simplify
2897 (plus:c (plus:c @0 @1) (minus @2 @0))
2898 (plus @2 @1))
2899 (simplify
2900 (plus:c (minus @0 @1) (minus @2 @0))
2901 (minus @2 @1))
1af4ebf5
MG
2902 (simplify
2903 (plus:c (pointer_diff @0 @1) (pointer_diff @2 @0))
2904 (if (TYPE_OVERFLOW_UNDEFINED (type)
2905 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0)))
2906 (pointer_diff @2 @1)))
1e7df2e6
MG
2907 (simplify
2908 (minus (plus:c @0 @1) (minus @0 @2))
2909 (plus @1 @2))
cc7b5acf 2910
ed73f46f
MG
2911 /* (A +- CST1) +- CST2 -> A + CST3
2912 Use view_convert because it is safe for vectors and equivalent for
2913 scalars. */
cc7b5acf
RB
2914 (for outer_op (plus minus)
2915 (for inner_op (plus minus)
ed73f46f 2916 neg_inner_op (minus plus)
cc7b5acf 2917 (simplify
e150da38 2918 (outer_op (nop_convert? (inner_op @0 CONSTANT_CLASS_P@1))
ed73f46f
MG
2919 CONSTANT_CLASS_P@2)
2920 /* If one of the types wraps, use that one. */
2921 (if (!ANY_INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_WRAPS (type))
3eb1eecf
JJ
2922 /* If all 3 captures are CONSTANT_CLASS_P, punt, as we might recurse
2923 forever if something doesn't simplify into a constant. */
2924 (if (!CONSTANT_CLASS_P (@0))
2925 (if (outer_op == PLUS_EXPR)
2926 (plus (view_convert @0) (inner_op @2 (view_convert @1)))
2927 (minus (view_convert @0) (neg_inner_op @2 (view_convert @1)))))
ed73f46f
MG
2928 (if (!ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2929 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
2930 (if (outer_op == PLUS_EXPR)
2931 (view_convert (plus @0 (inner_op (view_convert @2) @1)))
2932 (view_convert (minus @0 (neg_inner_op (view_convert @2) @1))))
2933 /* If the constant operation overflows we cannot do the transform
2934 directly as we would introduce undefined overflow, for example
2935 with (a - 1) + INT_MIN. */
2936 (if (types_match (type, @0))
2937 (with { tree cst = const_binop (outer_op == inner_op
2938 ? PLUS_EXPR : MINUS_EXPR,
2939 type, @1, @2); }
2940 (if (cst && !TREE_OVERFLOW (cst))
2941 (inner_op @0 { cst; } )
2942 /* X+INT_MAX+1 is X-INT_MIN. */
2943 (if (INTEGRAL_TYPE_P (type) && cst
8e6cdc90
RS
2944 && wi::to_wide (cst) == wi::min_value (type))
2945 (neg_inner_op @0 { wide_int_to_tree (type, wi::to_wide (cst)); })
ed73f46f
MG
2946 /* Last resort, use some unsigned type. */
2947 (with { tree utype = unsigned_type_for (type); }
48fcd201
JJ
2948 (if (utype)
2949 (view_convert (inner_op
2950 (view_convert:utype @0)
2951 (view_convert:utype
2952 { drop_tree_overflow (cst); }))))))))))))))
cc7b5acf 2953
b302f2e0 2954 /* (CST1 - A) +- CST2 -> CST3 - A */
cc7b5acf
RB
2955 (for outer_op (plus minus)
2956 (simplify
e150da38 2957 (outer_op (nop_convert? (minus CONSTANT_CLASS_P@1 @0)) CONSTANT_CLASS_P@2)
129bd066
JJ
2958 /* If one of the types wraps, use that one. */
2959 (if (!ANY_INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_WRAPS (type))
2960 /* If all 3 captures are CONSTANT_CLASS_P, punt, as we might recurse
2961 forever if something doesn't simplify into a constant. */
2962 (if (!CONSTANT_CLASS_P (@0))
2963 (minus (outer_op (view_convert @1) @2) (view_convert @0)))
2964 (if (!ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2965 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
2966 (view_convert (minus (outer_op @1 (view_convert @2)) @0))
2967 (if (types_match (type, @0))
2968 (with { tree cst = const_binop (outer_op, type, @1, @2); }
2969 (if (cst && !TREE_OVERFLOW (cst))
2970 (minus { cst; } @0))))))))
2971
2972 /* CST1 - (CST2 - A) -> CST3 + A
2973 Use view_convert because it is safe for vectors and equivalent for
2974 scalars. */
b302f2e0 2975 (simplify
e150da38 2976 (minus CONSTANT_CLASS_P@1 (nop_convert? (minus CONSTANT_CLASS_P@2 @0)))
129bd066
JJ
2977 /* If one of the types wraps, use that one. */
2978 (if (!ANY_INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_WRAPS (type))
2979 /* If all 3 captures are CONSTANT_CLASS_P, punt, as we might recurse
2980 forever if something doesn't simplify into a constant. */
2981 (if (!CONSTANT_CLASS_P (@0))
2982 (plus (view_convert @0) (minus @1 (view_convert @2))))
2983 (if (!ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2984 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
2985 (view_convert (plus @0 (minus (view_convert @1) @2)))
2986 (if (types_match (type, @0))
2987 (with { tree cst = const_binop (MINUS_EXPR, type, @1, @2); }
2988 (if (cst && !TREE_OVERFLOW (cst))
2989 (plus { cst; } @0)))))))
b302f2e0 2990
df7d46d9
RD
2991/* ((T)(A)) + CST -> (T)(A + CST) */
2992#if GIMPLE
2993 (simplify
880682e7 2994 (plus (convert:s SSA_NAME@0) INTEGER_CST@1)
df7d46d9
RD
2995 (if (TREE_CODE (TREE_TYPE (@0)) == INTEGER_TYPE
2996 && TREE_CODE (type) == INTEGER_TYPE
2997 && TYPE_PRECISION (type) > TYPE_PRECISION (TREE_TYPE (@0))
2998 && int_fits_type_p (@1, TREE_TYPE (@0)))
2999 /* Perform binary operation inside the cast if the constant fits
3000 and (A + CST)'s range does not overflow. */
3001 (with
3002 {
3003 wi::overflow_type min_ovf = wi::OVF_OVERFLOW,
3004 max_ovf = wi::OVF_OVERFLOW;
3005 tree inner_type = TREE_TYPE (@0);
3006
81b40582
JJ
3007 wide_int w1
3008 = wide_int::from (wi::to_wide (@1), TYPE_PRECISION (inner_type),
3009 TYPE_SIGN (inner_type));
df7d46d9 3010
45f4e2b0
AH
3011 value_range vr;
3012 if (get_global_range_query ()->range_of_expr (vr, @0)
3013 && vr.kind () == VR_RANGE)
df7d46d9 3014 {
45f4e2b0
AH
3015 wide_int wmin0 = vr.lower_bound ();
3016 wide_int wmax0 = vr.upper_bound ();
df7d46d9
RD
3017 wi::add (wmin0, w1, TYPE_SIGN (inner_type), &min_ovf);
3018 wi::add (wmax0, w1, TYPE_SIGN (inner_type), &max_ovf);
3019 }
3020 }
3021 (if (min_ovf == wi::OVF_NONE && max_ovf == wi::OVF_NONE)
3022 (convert (plus @0 { wide_int_to_tree (TREE_TYPE (@0), w1); } )))
3023 )))
3024#endif
3025
81b40582
JJ
3026/* ((T)(A + CST1)) + CST2 -> (T)(A) + (T)CST1 + CST2 */
3027#if GIMPLE
3028 (for op (plus minus)
3029 (simplify
3030 (plus (convert:s (op:s @0 INTEGER_CST@1)) INTEGER_CST@2)
3031 (if (TREE_CODE (TREE_TYPE (@0)) == INTEGER_TYPE
3032 && TREE_CODE (type) == INTEGER_TYPE
3033 && TYPE_PRECISION (type) > TYPE_PRECISION (TREE_TYPE (@0))
3034 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
3035 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0))
3036 && TYPE_OVERFLOW_WRAPS (type))
3037 (plus (convert @0) (op @2 (convert @1))))))
3038#endif
3039
8f0d743c
FX
3040/* (T)(A) +- (T)(B) -> (T)(A +- B) only when (A +- B) could be simplified
3041 to a simple value. */
8f0d743c
FX
3042 (for op (plus minus)
3043 (simplify
3044 (op (convert @0) (convert @1))
3045 (if (INTEGRAL_TYPE_P (type)
3046 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
3047 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0))
3048 && types_match (TREE_TYPE (@0), TREE_TYPE (@1))
3049 && !TYPE_OVERFLOW_TRAPS (type)
3050 && !TYPE_OVERFLOW_SANITIZED (type))
3051 (convert (op! @0 @1)))))
8f0d743c 3052
cc7b5acf
RB
3053 /* ~A + A -> -1 */
3054 (simplify
cf716ab5 3055 (plus:c (convert? (bit_not @0)) (convert? @0))
cc7b5acf 3056 (if (!TYPE_OVERFLOW_TRAPS (type))
cf716ab5 3057 (convert { build_all_ones_cst (TREE_TYPE (@0)); })))
cc7b5acf
RB
3058
3059 /* ~A + 1 -> -A */
3060 (simplify
e19740ae
RB
3061 (plus (convert? (bit_not @0)) integer_each_onep)
3062 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
3063 (negate (convert @0))))
3064
3065 /* -A - 1 -> ~A */
3066 (simplify
3067 (minus (convert? (negate @0)) integer_each_onep)
3068 (if (!TYPE_OVERFLOW_TRAPS (type)
758671b8 3069 && TREE_CODE (type) != COMPLEX_TYPE
e19740ae
RB
3070 && tree_nop_conversion_p (type, TREE_TYPE (@0)))
3071 (bit_not (convert @0))))
3072
3073 /* -1 - A -> ~A */
3074 (simplify
3075 (minus integer_all_onesp @0)
758671b8
JJ
3076 (if (TREE_CODE (type) != COMPLEX_TYPE)
3077 (bit_not @0)))
cc7b5acf
RB
3078
3079 /* (T)(P + A) - (T)P -> (T) A */
d7f44d4d 3080 (simplify
a72610d4
JJ
3081 (minus (convert (plus:c @@0 @1))
3082 (convert? @0))
d7f44d4d
JJ
3083 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
3084 /* For integer types, if A has a smaller type
3085 than T the result depends on the possible
3086 overflow in P + A.
3087 E.g. T=size_t, A=(unsigned)429497295, P>0.
3088 However, if an overflow in P + A would cause
3089 undefined behavior, we can assume that there
3090 is no overflow. */
a72610d4
JJ
3091 || (INTEGRAL_TYPE_P (TREE_TYPE (@1))
3092 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))))
d7f44d4d
JJ
3093 (convert @1)))
3094 (simplify
3095 (minus (convert (pointer_plus @@0 @1))
3096 (convert @0))
3097 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
3098 /* For pointer types, if the conversion of A to the
3099 final type requires a sign- or zero-extension,
3100 then we have to punt - it is not defined which
3101 one is correct. */
3102 || (POINTER_TYPE_P (TREE_TYPE (@0))
3103 && TREE_CODE (@1) == INTEGER_CST
3104 && tree_int_cst_sign_bit (@1) == 0))
3105 (convert @1)))
1af4ebf5
MG
3106 (simplify
3107 (pointer_diff (pointer_plus @@0 @1) @0)
3108 /* The second argument of pointer_plus must be interpreted as signed, and
3109 thus sign-extended if necessary. */
3110 (with { tree stype = signed_type_for (TREE_TYPE (@1)); }
8ae43881
JJ
3111 /* Use view_convert instead of convert here, as POINTER_PLUS_EXPR
3112 second arg is unsigned even when we need to consider it as signed,
3113 we don't want to diagnose overflow here. */
3114 (convert (view_convert:stype @1))))
a8fc2579
RB
3115
3116 /* (T)P - (T)(P + A) -> -(T) A */
d7f44d4d 3117 (simplify
a72610d4
JJ
3118 (minus (convert? @0)
3119 (convert (plus:c @@0 @1)))
d7f44d4d
JJ
3120 (if (INTEGRAL_TYPE_P (type)
3121 && TYPE_OVERFLOW_UNDEFINED (type)
3122 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
3123 (with { tree utype = unsigned_type_for (type); }
3124 (convert (negate (convert:utype @1))))
a8fc2579
RB
3125 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
3126 /* For integer types, if A has a smaller type
3127 than T the result depends on the possible
3128 overflow in P + A.
3129 E.g. T=size_t, A=(unsigned)429497295, P>0.
3130 However, if an overflow in P + A would cause
3131 undefined behavior, we can assume that there
3132 is no overflow. */
a72610d4
JJ
3133 || (INTEGRAL_TYPE_P (TREE_TYPE (@1))
3134 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))))
d7f44d4d
JJ
3135 (negate (convert @1)))))
3136 (simplify
3137 (minus (convert @0)
3138 (convert (pointer_plus @@0 @1)))
3139 (if (INTEGRAL_TYPE_P (type)
3140 && TYPE_OVERFLOW_UNDEFINED (type)
3141 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
3142 (with { tree utype = unsigned_type_for (type); }
3143 (convert (negate (convert:utype @1))))
3144 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
a8fc2579
RB
3145 /* For pointer types, if the conversion of A to the
3146 final type requires a sign- or zero-extension,
3147 then we have to punt - it is not defined which
3148 one is correct. */
3149 || (POINTER_TYPE_P (TREE_TYPE (@0))
3150 && TREE_CODE (@1) == INTEGER_CST
3151 && tree_int_cst_sign_bit (@1) == 0))
3152 (negate (convert @1)))))
1af4ebf5
MG
3153 (simplify
3154 (pointer_diff @0 (pointer_plus @@0 @1))
3155 /* The second argument of pointer_plus must be interpreted as signed, and
3156 thus sign-extended if necessary. */
3157 (with { tree stype = signed_type_for (TREE_TYPE (@1)); }
8ae43881
JJ
3158 /* Use view_convert instead of convert here, as POINTER_PLUS_EXPR
3159 second arg is unsigned even when we need to consider it as signed,
3160 we don't want to diagnose overflow here. */
3161 (negate (convert (view_convert:stype @1)))))
a8fc2579
RB
3162
3163 /* (T)(P + A) - (T)(P + B) -> (T)A - (T)B */
d7f44d4d 3164 (simplify
a72610d4 3165 (minus (convert (plus:c @@0 @1))
d7f44d4d
JJ
3166 (convert (plus:c @0 @2)))
3167 (if (INTEGRAL_TYPE_P (type)
3168 && TYPE_OVERFLOW_UNDEFINED (type)
a72610d4
JJ
3169 && element_precision (type) <= element_precision (TREE_TYPE (@1))
3170 && element_precision (type) <= element_precision (TREE_TYPE (@2)))
d7f44d4d
JJ
3171 (with { tree utype = unsigned_type_for (type); }
3172 (convert (minus (convert:utype @1) (convert:utype @2))))
a72610d4
JJ
3173 (if (((element_precision (type) <= element_precision (TREE_TYPE (@1)))
3174 == (element_precision (type) <= element_precision (TREE_TYPE (@2))))
3175 && (element_precision (type) <= element_precision (TREE_TYPE (@1))
3176 /* For integer types, if A has a smaller type
3177 than T the result depends on the possible
3178 overflow in P + A.
3179 E.g. T=size_t, A=(unsigned)429497295, P>0.
3180 However, if an overflow in P + A would cause
3181 undefined behavior, we can assume that there
3182 is no overflow. */
3183 || (INTEGRAL_TYPE_P (TREE_TYPE (@1))
3184 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
3185 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))
3186 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@2)))))
d7f44d4d
JJ
3187 (minus (convert @1) (convert @2)))))
3188 (simplify
3189 (minus (convert (pointer_plus @@0 @1))
3190 (convert (pointer_plus @0 @2)))
3191 (if (INTEGRAL_TYPE_P (type)
3192 && TYPE_OVERFLOW_UNDEFINED (type)
3193 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
3194 (with { tree utype = unsigned_type_for (type); }
3195 (convert (minus (convert:utype @1) (convert:utype @2))))
3196 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
a8fc2579
RB
3197 /* For pointer types, if the conversion of A to the
3198 final type requires a sign- or zero-extension,
3199 then we have to punt - it is not defined which
3200 one is correct. */
3201 || (POINTER_TYPE_P (TREE_TYPE (@0))
3202 && TREE_CODE (@1) == INTEGER_CST
3203 && tree_int_cst_sign_bit (@1) == 0
3204 && TREE_CODE (@2) == INTEGER_CST
3205 && tree_int_cst_sign_bit (@2) == 0))
d7f44d4d 3206 (minus (convert @1) (convert @2)))))
459f6f68
FX
3207 (simplify
3208 (pointer_diff (pointer_plus @0 @2) (pointer_plus @1 @2))
3209 (pointer_diff @0 @1))
1af4ebf5
MG
3210 (simplify
3211 (pointer_diff (pointer_plus @@0 @1) (pointer_plus @0 @2))
3212 /* The second argument of pointer_plus must be interpreted as signed, and
3213 thus sign-extended if necessary. */
3214 (with { tree stype = signed_type_for (TREE_TYPE (@1)); }
8ae43881
JJ
3215 /* Use view_convert instead of convert here, as POINTER_PLUS_EXPR
3216 second arg is unsigned even when we need to consider it as signed,
3217 we don't want to diagnose overflow here. */
3218 (minus (convert (view_convert:stype @1))
3219 (convert (view_convert:stype @2)))))))
cc7b5acf 3220
5b55e6e3
RB
3221/* (A * C) +- (B * C) -> (A+-B) * C and (A * C) +- A -> A * (C+-1).
3222 Modeled after fold_plusminus_mult_expr. */
3223(if (!TYPE_SATURATING (type)
3224 && (!FLOAT_TYPE_P (type) || flag_associative_math))
3225 (for plusminus (plus minus)
3226 (simplify
c1bbe5b3 3227 (plusminus (mult:cs@3 @0 @1) (mult:cs@4 @0 @2))
f9d2def0
FX
3228 (if (!ANY_INTEGRAL_TYPE_P (type)
3229 || TYPE_OVERFLOW_WRAPS (type)
3230 || (INTEGRAL_TYPE_P (type)
3231 && tree_expr_nonzero_p (@0)
3232 && expr_not_equal_to (@0, wi::minus_one (TYPE_PRECISION (type)))))
3233 (if (single_use (@3) || single_use (@4))
3234 /* If @1 +- @2 is constant require a hard single-use on either
3235 original operand (but not on both). */
3236 (mult (plusminus @1 @2) @0)
f9d2def0 3237 (mult! (plusminus @1 @2) @0)
f9d2def0 3238 )))
c1bbe5b3
RB
3239 /* We cannot generate constant 1 for fract. */
3240 (if (!ALL_FRACT_MODE_P (TYPE_MODE (type)))
3241 (simplify
3242 (plusminus @0 (mult:c@3 @0 @2))
3243 (if ((!ANY_INTEGRAL_TYPE_P (type)
3244 || TYPE_OVERFLOW_WRAPS (type)
a213ab38
JJ
3245 /* For @0 + @0*@2 this transformation would introduce UB
3246 (where there was none before) for @0 in [-1,0] and @2 max.
3247 For @0 - @0*@2 this transformation would introduce UB
3248 for @0 0 and @2 in [min,min+1] or @0 -1 and @2 min+1. */
c1bbe5b3 3249 || (INTEGRAL_TYPE_P (type)
a213ab38
JJ
3250 && ((tree_expr_nonzero_p (@0)
3251 && expr_not_equal_to (@0,
3252 wi::minus_one (TYPE_PRECISION (type))))
3253 || (plusminus == PLUS_EXPR
3254 ? expr_not_equal_to (@2,
3255 wi::max_value (TYPE_PRECISION (type), SIGNED))
3256 /* Let's ignore the @0 -1 and @2 min case. */
3257 : (expr_not_equal_to (@2,
3258 wi::min_value (TYPE_PRECISION (type), SIGNED))
3259 && expr_not_equal_to (@2,
3260 wi::min_value (TYPE_PRECISION (type), SIGNED)
3261 + 1))))))
c1bbe5b3 3262 && single_use (@3))
5b55e6e3
RB
3263 (mult (plusminus { build_one_cst (type); } @2) @0)))
3264 (simplify
c1bbe5b3
RB
3265 (plusminus (mult:c@3 @0 @2) @0)
3266 (if ((!ANY_INTEGRAL_TYPE_P (type)
3267 || TYPE_OVERFLOW_WRAPS (type)
a213ab38
JJ
3268 /* For @0*@2 + @0 this transformation would introduce UB
3269 (where there was none before) for @0 in [-1,0] and @2 max.
3270 For @0*@2 - @0 this transformation would introduce UB
3271 for @0 0 and @2 min. */
c1bbe5b3 3272 || (INTEGRAL_TYPE_P (type)
a213ab38
JJ
3273 && ((tree_expr_nonzero_p (@0)
3274 && (plusminus == MINUS_EXPR
3275 || expr_not_equal_to (@0,
3276 wi::minus_one (TYPE_PRECISION (type)))))
3277 || expr_not_equal_to (@2,
3278 (plusminus == PLUS_EXPR
3279 ? wi::max_value (TYPE_PRECISION (type), SIGNED)
3280 : wi::min_value (TYPE_PRECISION (type), SIGNED))))))
c1bbe5b3 3281 && single_use (@3))
5b55e6e3 3282 (mult (plusminus @2 { build_one_cst (type); }) @0))))))
cc7b5acf 3283
144aee70
JJ
3284#if GIMPLE
3285/* Canonicalize X + (X << C) into X * (1 + (1 << C)) and
3286 (X << C1) + (X << C2) into X * ((1 << C1) + (1 << C2)). */
3287(simplify
3288 (plus:c @0 (lshift:s @0 INTEGER_CST@1))
3289 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
3290 && tree_fits_uhwi_p (@1)
bbdf59fd
JJ
3291 && tree_to_uhwi (@1) < element_precision (type)
3292 && (INTEGRAL_TYPE_P (TREE_TYPE (@0))
3293 || optab_handler (smul_optab,
3294 TYPE_MODE (type)) != CODE_FOR_nothing))
144aee70
JJ
3295 (with { tree t = type;
3296 if (!TYPE_OVERFLOW_WRAPS (t)) t = unsigned_type_for (t);
3297 wide_int w = wi::set_bit_in_zero (tree_to_uhwi (@1),
3298 element_precision (type));
3299 w += 1;
3300 tree cst = wide_int_to_tree (VECTOR_TYPE_P (t) ? TREE_TYPE (t)
3301 : t, w);
3302 cst = build_uniform_cst (t, cst); }
3303 (convert (mult (convert:t @0) { cst; })))))
3304(simplify
3305 (plus (lshift:s @0 INTEGER_CST@1) (lshift:s @0 INTEGER_CST@2))
3306 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
3307 && tree_fits_uhwi_p (@1)
3308 && tree_to_uhwi (@1) < element_precision (type)
3309 && tree_fits_uhwi_p (@2)
bbdf59fd
JJ
3310 && tree_to_uhwi (@2) < element_precision (type)
3311 && (INTEGRAL_TYPE_P (TREE_TYPE (@0))
3312 || optab_handler (smul_optab,
3313 TYPE_MODE (type)) != CODE_FOR_nothing))
144aee70
JJ
3314 (with { tree t = type;
3315 if (!TYPE_OVERFLOW_WRAPS (t)) t = unsigned_type_for (t);
3316 unsigned int prec = element_precision (type);
3317 wide_int w = wi::set_bit_in_zero (tree_to_uhwi (@1), prec);
3318 w += wi::set_bit_in_zero (tree_to_uhwi (@2), prec);
3319 tree cst = wide_int_to_tree (VECTOR_TYPE_P (t) ? TREE_TYPE (t)
3320 : t, w);
3321 cst = build_uniform_cst (t, cst); }
3322 (convert (mult (convert:t @0) { cst; })))))
3323#endif
3324
96146e61
RS
3325/* Canonicalize (X*C1)|(X*C2) and (X*C1)^(X*C2) to (C1+C2)*X when
3326 tree_nonzero_bits allows IOR and XOR to be treated like PLUS.
3327 Likewise, handle (X<<C3) and X as legitimate variants of X*C. */
3328(for op (bit_ior bit_xor)
3329 (simplify
3330 (op (mult:s@0 @1 INTEGER_CST@2)
3331 (mult:s@3 @1 INTEGER_CST@4))
3332 (if (INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_WRAPS (type)
3333 && (tree_nonzero_bits (@0) & tree_nonzero_bits (@3)) == 0)
3334 (mult @1
3335 { wide_int_to_tree (type, wi::to_wide (@2) + wi::to_wide (@4)); })))
3336 (simplify
3337 (op:c (mult:s@0 @1 INTEGER_CST@2)
3338 (lshift:s@3 @1 INTEGER_CST@4))
3339 (if (INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_WRAPS (type)
3340 && tree_int_cst_sgn (@4) > 0
3341 && (tree_nonzero_bits (@0) & tree_nonzero_bits (@3)) == 0)
3342 (with { wide_int wone = wi::one (TYPE_PRECISION (type));
3343 wide_int c = wi::add (wi::to_wide (@2),
3344 wi::lshift (wone, wi::to_wide (@4))); }
3345 (mult @1 { wide_int_to_tree (type, c); }))))
3346 (simplify
3347 (op:c (mult:s@0 @1 INTEGER_CST@2)
3348 @1)
3349 (if (INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_WRAPS (type)
3350 && (tree_nonzero_bits (@0) & tree_nonzero_bits (@1)) == 0)
3351 (mult @1
3352 { wide_int_to_tree (type,
3353 wi::add (wi::to_wide (@2), 1)); })))
3354 (simplify
3355 (op (lshift:s@0 @1 INTEGER_CST@2)
3356 (lshift:s@3 @1 INTEGER_CST@4))
3357 (if (INTEGRAL_TYPE_P (type)
3358 && tree_int_cst_sgn (@2) > 0
3359 && tree_int_cst_sgn (@4) > 0
3360 && (tree_nonzero_bits (@0) & tree_nonzero_bits (@3)) == 0)
3361 (with { tree t = type;
3362 if (!TYPE_OVERFLOW_WRAPS (t))
3363 t = unsigned_type_for (t);
3364 wide_int wone = wi::one (TYPE_PRECISION (t));
3365 wide_int c = wi::add (wi::lshift (wone, wi::to_wide (@2)),
3366 wi::lshift (wone, wi::to_wide (@4))); }
3367 (convert (mult:t (convert:t @1) { wide_int_to_tree (t,c); })))))
3368 (simplify
3369 (op:c (lshift:s@0 @1 INTEGER_CST@2)
3370 @1)
3371 (if (INTEGRAL_TYPE_P (type)
3372 && tree_int_cst_sgn (@2) > 0
3373 && (tree_nonzero_bits (@0) & tree_nonzero_bits (@1)) == 0)
3374 (with { tree t = type;
3375 if (!TYPE_OVERFLOW_WRAPS (t))
3376 t = unsigned_type_for (t);
3377 wide_int wone = wi::one (TYPE_PRECISION (t));
3378 wide_int c = wi::add (wi::lshift (wone, wi::to_wide (@2)), wone); }
3379 (convert (mult:t (convert:t @1) { wide_int_to_tree (t, c); }))))))
3380
0122e8e5 3381/* Simplifications of MIN_EXPR, MAX_EXPR, fmin() and fmax(). */
a7f24614 3382
344e4253 3383(for minmax (min max)
a7f24614
RB
3384 (simplify
3385 (minmax @0 @0)
3386 @0))
344e4253
HG
3387/* For fmin() and fmax(), skip folding when both are sNaN. */
3388(for minmax (FMIN_ALL FMAX_ALL)
3389 (simplify
3390 (minmax @0 @0)
3391 (if (!tree_expr_maybe_signaling_nan_p (@0))
3392 @0)))
4a334cba
RS
3393/* min(max(x,y),y) -> y. */
3394(simplify
3395 (min:c (max:c @0 @1) @1)
3396 @1)
3397/* max(min(x,y),y) -> y. */
3398(simplify
3399 (max:c (min:c @0 @1) @1)
3400 @1)
d657e995
RB
3401/* max(a,-a) -> abs(a). */
3402(simplify
3403 (max:c @0 (negate @0))
3404 (if (TREE_CODE (type) != COMPLEX_TYPE
3405 && (! ANY_INTEGRAL_TYPE_P (type)
3406 || TYPE_OVERFLOW_UNDEFINED (type)))
3407 (abs @0)))
54f84ca9
RB
3408/* min(a,-a) -> -abs(a). */
3409(simplify
3410 (min:c @0 (negate @0))
3411 (if (TREE_CODE (type) != COMPLEX_TYPE
3412 && (! ANY_INTEGRAL_TYPE_P (type)
3413 || TYPE_OVERFLOW_UNDEFINED (type)))
3414 (negate (abs @0))))
a7f24614
RB
3415(simplify
3416 (min @0 @1)
2c2870a1
MG
3417 (switch
3418 (if (INTEGRAL_TYPE_P (type)
3419 && TYPE_MIN_VALUE (type)
3420 && operand_equal_p (@1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
3421 @1)
3422 (if (INTEGRAL_TYPE_P (type)
3423 && TYPE_MAX_VALUE (type)
3424 && operand_equal_p (@1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
3425 @0)))
a7f24614
RB
3426(simplify
3427 (max @0 @1)
2c2870a1
MG
3428 (switch
3429 (if (INTEGRAL_TYPE_P (type)
3430 && TYPE_MAX_VALUE (type)
3431 && operand_equal_p (@1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
3432 @1)
3433 (if (INTEGRAL_TYPE_P (type)
3434 && TYPE_MIN_VALUE (type)
3435 && operand_equal_p (@1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
3436 @0)))
ad6e4ba8 3437
182f37c9
N
3438/* max (a, a + CST) -> a + CST where CST is positive. */
3439/* max (a, a + CST) -> a where CST is negative. */
3440(simplify
3441 (max:c @0 (plus@2 @0 INTEGER_CST@1))
3442 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
3443 (if (tree_int_cst_sgn (@1) > 0)
3444 @2
3445 @0)))
3446
3447/* min (a, a + CST) -> a where CST is positive. */
3448/* min (a, a + CST) -> a + CST where CST is negative. */
3449(simplify
3450 (min:c @0 (plus@2 @0 INTEGER_CST@1))
3451 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
3452 (if (tree_int_cst_sgn (@1) > 0)
3453 @0
3454 @2)))
3455
6123b998
JJ
3456/* Simplify min (&var[off0], &var[off1]) etc. depending on whether
3457 the addresses are known to be less, equal or greater. */
3458(for minmax (min max)
3459 cmp (lt gt)
3460 (simplify
3461 (minmax (convert1?@2 addr@0) (convert2?@3 addr@1))
3462 (with
3463 {
3464 poly_int64 off0, off1;
3465 tree base0, base1;
3466 int equal = address_compare (cmp, TREE_TYPE (@2), @0, @1, base0, base1,
3467 off0, off1, GENERIC);
3468 }
3469 (if (equal == 1)
3470 (if (minmax == MIN_EXPR)
3471 (if (known_le (off0, off1))
3472 @2
3473 (if (known_gt (off0, off1))
3474 @3))
3475 (if (known_ge (off0, off1))
3476 @2
3477 (if (known_lt (off0, off1))
3478 @3)))))))
3479
ad6e4ba8
BC
3480/* (convert (minmax ((convert (x) c)))) -> minmax (x c) if x is promoted
3481 and the outer convert demotes the expression back to x's type. */
3482(for minmax (min max)
3483 (simplify
3484 (convert (minmax@0 (convert @1) INTEGER_CST@2))
ebf41734
BC
3485 (if (INTEGRAL_TYPE_P (type)
3486 && types_match (@1, type) && int_fits_type_p (@2, type)
ad6e4ba8
BC
3487 && TYPE_SIGN (TREE_TYPE (@0)) == TYPE_SIGN (type)
3488 && TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (type))
3489 (minmax @1 (convert @2)))))
3490
c6cfa2bf 3491(for minmax (FMIN_ALL FMAX_ALL)
344e4253
HG
3492 /* If either argument is NaN and other one is not sNaN, return the other
3493 one. Avoid the transformation if we get (and honor) a signalling NaN. */
0122e8e5
RS
3494 (simplify
3495 (minmax:c @0 REAL_CST@1)
344e4253
HG
3496 (if (real_isnan (TREE_REAL_CST_PTR (@1))
3497 && (!HONOR_SNANS (@1) || !TREE_REAL_CST (@1).signalling)
3498 && !tree_expr_maybe_signaling_nan_p (@0))
0122e8e5
RS
3499 @0)))
3500/* Convert fmin/fmax to MIN_EXPR/MAX_EXPR. C99 requires these
3501 functions to return the numeric arg if the other one is NaN.
3502 MIN and MAX don't honor that, so only transform if -ffinite-math-only
3503 is set. C99 doesn't require -0.0 to be handled, so we don't have to
3504 worry about it either. */
3505(if (flag_finite_math_only)
3506 (simplify
c6cfa2bf 3507 (FMIN_ALL @0 @1)
0122e8e5 3508 (min @0 @1))
4119b2eb 3509 (simplify
c6cfa2bf 3510 (FMAX_ALL @0 @1)
0122e8e5 3511 (max @0 @1)))
ce0e66ff 3512/* min (-A, -B) -> -max (A, B) */
c6cfa2bf
MM
3513(for minmax (min max FMIN_ALL FMAX_ALL)
3514 maxmin (max min FMAX_ALL FMIN_ALL)
ce0e66ff
MG
3515 (simplify
3516 (minmax (negate:s@2 @0) (negate:s@3 @1))
3517 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
3518 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
3519 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
3520 (negate (maxmin @0 @1)))))
3521/* MIN (~X, ~Y) -> ~MAX (X, Y)
3522 MAX (~X, ~Y) -> ~MIN (X, Y) */
3523(for minmax (min max)
3524 maxmin (max min)
3525 (simplify
3526 (minmax (bit_not:s@2 @0) (bit_not:s@3 @1))
3527 (bit_not (maxmin @0 @1))))
a7f24614 3528
b4817bd6
MG
3529/* MIN (X, Y) == X -> X <= Y */
3530(for minmax (min min max max)
3531 cmp (eq ne eq ne )
3532 out (le gt ge lt )
3533 (simplify
3534 (cmp:c (minmax:c @0 @1) @0)
3535 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0)))
3536 (out @0 @1))))
3537/* MIN (X, 5) == 0 -> X == 0
3538 MIN (X, 5) == 7 -> false */
3539(for cmp (eq ne)
3540 (simplify
3541 (cmp (min @0 INTEGER_CST@1) INTEGER_CST@2)
8e6cdc90
RS
3542 (if (wi::lt_p (wi::to_wide (@1), wi::to_wide (@2),
3543 TYPE_SIGN (TREE_TYPE (@0))))
b4817bd6 3544 { constant_boolean_node (cmp == NE_EXPR, type); }
8e6cdc90
RS
3545 (if (wi::gt_p (wi::to_wide (@1), wi::to_wide (@2),
3546 TYPE_SIGN (TREE_TYPE (@0))))
b4817bd6
MG
3547 (cmp @0 @2)))))
3548(for cmp (eq ne)
3549 (simplify
3550 (cmp (max @0 INTEGER_CST@1) INTEGER_CST@2)
8e6cdc90
RS
3551 (if (wi::gt_p (wi::to_wide (@1), wi::to_wide (@2),
3552 TYPE_SIGN (TREE_TYPE (@0))))
b4817bd6 3553 { constant_boolean_node (cmp == NE_EXPR, type); }
8e6cdc90
RS
3554 (if (wi::lt_p (wi::to_wide (@1), wi::to_wide (@2),
3555 TYPE_SIGN (TREE_TYPE (@0))))
b4817bd6
MG
3556 (cmp @0 @2)))))
3557/* MIN (X, C1) < C2 -> X < C2 || C1 < C2 */
3558(for minmax (min min max max min min max max )
3559 cmp (lt le gt ge gt ge lt le )
3560 comb (bit_ior bit_ior bit_ior bit_ior bit_and bit_and bit_and bit_and)
3561 (simplify
3562 (cmp (minmax @0 INTEGER_CST@1) INTEGER_CST@2)
3563 (comb (cmp @0 @2) (cmp @1 @2))))
3564
abef3691
ER
3565/* X <= MAX(X, Y) -> true
3566 X > MAX(X, Y) -> false
3567 X >= MIN(X, Y) -> true
3568 X < MIN(X, Y) -> false */
3569(for minmax (min min max max )
3570 cmp (ge lt le gt )
3571 (simplify
3572 (cmp @0 (minmax:c @0 @1))
3573 { constant_boolean_node (cmp == GE_EXPR || cmp == LE_EXPR, type); } ))
3574
8fb94fc6
RS
3575/* Undo fancy ways of writing max/min or other ?: expressions, like
3576 a - ((a - b) & -(a < b)) and a - (a - b) * (a < b) into (a < b) ? b : a.
49647b7b 3577 People normally use ?: and that is what we actually try to optimize. */
8fb94fc6
RS
3578/* Transform A + (B-A)*cmp into cmp ? B : A. */
3579(simplify
3580 (plus:c @0 (mult:c (minus @1 @0) zero_one_valued_p@2))
3581 (if (INTEGRAL_TYPE_P (type)
3582 && (GIMPLE || !TREE_SIDE_EFFECTS (@1)))
3583 (cond (convert:boolean_type_node @2) @1 @0)))
3584/* Transform A - (A-B)*cmp into cmp ? B : A. */
3585(simplify
3586 (minus @0 (mult:c (minus @0 @1) zero_one_valued_p@2))
3587 (if (INTEGRAL_TYPE_P (type)
3588 && (GIMPLE || !TREE_SIDE_EFFECTS (@1)))
3589 (cond (convert:boolean_type_node @2) @1 @0)))
3590/* Transform A ^ (A^B)*cmp into cmp ? B : A. */
3591(simplify
3592 (bit_xor:c @0 (mult:c (bit_xor:c @0 @1) zero_one_valued_p@2))
3593 (if (INTEGRAL_TYPE_P (type)
3594 && (GIMPLE || !TREE_SIDE_EFFECTS (@1)))
3595 (cond (convert:boolean_type_node @2) @1 @0)))
49647b7b 3596
633e9920
SF
3597/* (x <= 0 ? -x : 0) -> max(-x, 0). */
3598(simplify
3599 (cond (le @0 integer_zerop@1) (negate@2 @0) integer_zerop@1)
3600 (max @2 @1))
3601
6508d5e5
MC
3602/* ((x & 0x1) == 0) ? y : z <op> y -> (-(typeof(y))(x & 0x1) & z) <op> y */
3603(for op (bit_xor bit_ior)
3604 (simplify
3605 (cond (eq zero_one_valued_p@0
3606 integer_zerop)
3607 @1
3608 (op:c @2 @1))
3609 (if (INTEGRAL_TYPE_P (type)
3610 && TYPE_PRECISION (type) > 1
3611 && (INTEGRAL_TYPE_P (TREE_TYPE (@0))))
3612 (op (bit_and (negate (convert:type @0)) @2) @1))))
3613
3614/* ((x & 0x1) == 0) ? z <op> y : y -> (-(typeof(y))(x & 0x1) & z) <op> y */
3615(for op (bit_xor bit_ior)
3616 (simplify
3617 (cond (ne zero_one_valued_p@0
3618 integer_zerop)
3619 (op:c @2 @1)
3620 @1)
3621 (if (INTEGRAL_TYPE_P (type)
3622 && TYPE_PRECISION (type) > 1
3623 && (INTEGRAL_TYPE_P (TREE_TYPE (@0))))
3624 (op (bit_and (negate (convert:type @0)) @2) @1))))
3625
a7f24614
RB
3626/* Simplifications of shift and rotates. */
3627
3628(for rotate (lrotate rrotate)
3629 (simplify
3630 (rotate integer_all_onesp@0 @1)
3631 @0))
3632
3633/* Optimize -1 >> x for arithmetic right shifts. */
3634(simplify
3635 (rshift integer_all_onesp@0 @1)
4866b2f5 3636 (if (!TYPE_UNSIGNED (type))
a7f24614
RB
3637 @0))
3638
12085390
N
3639/* Optimize (x >> c) << c into x & (-1<<c). */
3640(simplify
f26916c2 3641 (lshift (nop_convert? (rshift @0 INTEGER_CST@1)) @1)
8e6cdc90 3642 (if (wi::ltu_p (wi::to_wide (@1), element_precision (type)))
f26916c2
JJ
3643 /* It doesn't matter if the right shift is arithmetic or logical. */
3644 (bit_and (view_convert @0) (lshift { build_minus_one_cst (type); } @1))))
3645
3646(simplify
3647 (lshift (convert (convert@2 (rshift @0 INTEGER_CST@1))) @1)
3648 (if (wi::ltu_p (wi::to_wide (@1), element_precision (type))
3649 /* Allow intermediate conversion to integral type with whatever sign, as
3650 long as the low TYPE_PRECISION (type)
3651 - TYPE_PRECISION (TREE_TYPE (@2)) bits are preserved. */
3652 && INTEGRAL_TYPE_P (type)
3653 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
3654 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
3655 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (@0))
3656 && (TYPE_PRECISION (TREE_TYPE (@2)) >= TYPE_PRECISION (type)
3657 || wi::geu_p (wi::to_wide (@1),
3658 TYPE_PRECISION (type)
3659 - TYPE_PRECISION (TREE_TYPE (@2)))))
3660 (bit_and (convert @0) (lshift { build_minus_one_cst (type); } @1))))
12085390
N
3661
3662/* Optimize (x << c) >> c into x & ((unsigned)-1 >> c) for unsigned
3663 types. */
3664(simplify
3665 (rshift (lshift @0 INTEGER_CST@1) @1)
3666 (if (TYPE_UNSIGNED (type)
8e6cdc90 3667 && (wi::ltu_p (wi::to_wide (@1), element_precision (type))))
12085390
N
3668 (bit_and @0 (rshift { build_minus_one_cst (type); } @1))))
3669
6483f059
ER
3670/* Optimize x >> x into 0 */
3671(simplify
3672 (rshift @0 @0)
3673 { build_zero_cst (type); })
3674
a7f24614
RB
3675(for shiftrotate (lrotate rrotate lshift rshift)
3676 (simplify
3677 (shiftrotate @0 integer_zerop)
3678 (non_lvalue @0))
3679 (simplify
3680 (shiftrotate integer_zerop@0 @1)
3681 @0)
3682 /* Prefer vector1 << scalar to vector1 << vector2
3683 if vector2 is uniform. */
3684 (for vec (VECTOR_CST CONSTRUCTOR)
3685 (simplify
3686 (shiftrotate @0 vec@1)
3687 (with { tree tem = uniform_vector_p (@1); }
3688 (if (tem)
3689 (shiftrotate @0 { tem; }))))))
3690
165ba2e9
JJ
3691/* Simplify X << Y where Y's low width bits are 0 to X, as only valid
3692 Y is 0. Similarly for X >> Y. */
3693#if GIMPLE
3694(for shift (lshift rshift)
3695 (simplify
3696 (shift @0 SSA_NAME@1)
3697 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1)))
3698 (with {
3699 int width = ceil_log2 (element_precision (TREE_TYPE (@0)));
3700 int prec = TYPE_PRECISION (TREE_TYPE (@1));
3701 }
3702 (if ((get_nonzero_bits (@1) & wi::mask (width, false, prec)) == 0)
3703 @0)))))
3704#endif
3705
a7f24614
RB
3706/* Rewrite an LROTATE_EXPR by a constant into an
3707 RROTATE_EXPR by a new constant. */
3708(simplify
3709 (lrotate @0 INTEGER_CST@1)
23f27839 3710 (rrotate @0 { const_binop (MINUS_EXPR, TREE_TYPE (@1),
a7f24614
RB
3711 build_int_cst (TREE_TYPE (@1),
3712 element_precision (type)), @1); }))
3713
14ea9f92
RB
3714/* Turn (a OP c1) OP c2 into a OP (c1+c2). */
3715(for op (lrotate rrotate rshift lshift)
3716 (simplify
3717 (op (op @0 INTEGER_CST@1) INTEGER_CST@2)
3718 (with { unsigned int prec = element_precision (type); }
8e6cdc90
RS
3719 (if (wi::ge_p (wi::to_wide (@1), 0, TYPE_SIGN (TREE_TYPE (@1)))
3720 && wi::lt_p (wi::to_wide (@1), prec, TYPE_SIGN (TREE_TYPE (@1)))
3721 && wi::ge_p (wi::to_wide (@2), 0, TYPE_SIGN (TREE_TYPE (@2)))
3722 && wi::lt_p (wi::to_wide (@2), prec, TYPE_SIGN (TREE_TYPE (@2))))
a1488398
RS
3723 (with { unsigned int low = (tree_to_uhwi (@1)
3724 + tree_to_uhwi (@2)); }
14ea9f92
RB
3725 /* Deal with a OP (c1 + c2) being undefined but (a OP c1) OP c2
3726 being well defined. */
3727 (if (low >= prec)
3728 (if (op == LROTATE_EXPR || op == RROTATE_EXPR)
8fdc6c67 3729 (op @0 { build_int_cst (TREE_TYPE (@1), low % prec); })
50301115 3730 (if (TYPE_UNSIGNED (type) || op == LSHIFT_EXPR)
8fdc6c67
RB
3731 { build_zero_cst (type); }
3732 (op @0 { build_int_cst (TREE_TYPE (@1), prec - 1); })))
3733 (op @0 { build_int_cst (TREE_TYPE (@1), low); })))))))
14ea9f92
RB
3734
3735
e2559c39
JJ
3736/* Simplify (CST << x) & 1 to 0 if CST is even or to x == 0 if it is odd. */
3737(simplify
3738 (bit_and (lshift INTEGER_CST@1 @0) integer_onep)
3739 (if ((wi::to_wide (@1) & 1) != 0)
3740 (convert (eq:boolean_type_node @0 { build_zero_cst (TREE_TYPE (@0)); }))
3741 { build_zero_cst (type); }))
3742
0425f4c1
JJ
3743/* Simplify ((C << x) & D) != 0 where C and D are power of two constants,
3744 either to false if D is smaller (unsigned comparison) than C, or to
3745 x == log2 (D) - log2 (C). Similarly for right shifts. */
01ada710
MP
3746(for cmp (ne eq)
3747 icmp (eq ne)
3748 (simplify
0425f4c1
JJ
3749 (cmp (bit_and (lshift integer_pow2p@1 @0) integer_pow2p@2) integer_zerop)
3750 (with { int c1 = wi::clz (wi::to_wide (@1));
3751 int c2 = wi::clz (wi::to_wide (@2)); }
3752 (if (c1 < c2)
3753 { constant_boolean_node (cmp == NE_EXPR ? false : true, type); }
3754 (icmp @0 { build_int_cst (TREE_TYPE (@0), c1 - c2); }))))
3755 (simplify
3756 (cmp (bit_and (rshift integer_pow2p@1 @0) integer_pow2p@2) integer_zerop)
3757 (if (tree_int_cst_sgn (@1) > 0)
3758 (with { int c1 = wi::clz (wi::to_wide (@1));
3759 int c2 = wi::clz (wi::to_wide (@2)); }
3760 (if (c1 > c2)
3761 { constant_boolean_node (cmp == NE_EXPR ? false : true, type); }
3762 (icmp @0 { build_int_cst (TREE_TYPE (@0), c2 - c1); }))))))
cc7b5acf 3763
f2e609c3
MP
3764/* (CST1 << A) == CST2 -> A == ctz (CST2) - ctz (CST1)
3765 (CST1 << A) != CST2 -> A != ctz (CST2) - ctz (CST1)
3766 if CST2 != 0. */
3767(for cmp (ne eq)
3768 (simplify
3769 (cmp (lshift INTEGER_CST@0 @1) INTEGER_CST@2)
8e6cdc90 3770 (with { int cand = wi::ctz (wi::to_wide (@2)) - wi::ctz (wi::to_wide (@0)); }
f2e609c3
MP
3771 (if (cand < 0
3772 || (!integer_zerop (@2)
8e6cdc90 3773 && wi::lshift (wi::to_wide (@0), cand) != wi::to_wide (@2)))
8fdc6c67
RB
3774 { constant_boolean_node (cmp == NE_EXPR, type); }
3775 (if (!integer_zerop (@2)
8e6cdc90 3776 && wi::lshift (wi::to_wide (@0), cand) == wi::to_wide (@2))
8fdc6c67 3777 (cmp @1 { build_int_cst (TREE_TYPE (@1), cand); }))))))
f2e609c3 3778
f3f73e86
RS
3779/* Fold ((X << C1) & C2) cmp C3 into (X & (C2 >> C1)) cmp (C3 >> C1)
3780 ((X >> C1) & C2) cmp C3 into (X & (C2 << C1)) cmp (C3 << C1). */
3781(for cmp (ne eq)
3782 (simplify
3783 (cmp (bit_and:s (lshift:s @0 INTEGER_CST@1) INTEGER_CST@2) INTEGER_CST@3)
3784 (if (tree_fits_shwi_p (@1)
3785 && tree_to_shwi (@1) > 0
6fc14f19
RS
3786 && tree_to_shwi (@1) < TYPE_PRECISION (TREE_TYPE (@0)))
3787 (if (tree_to_shwi (@1) > wi::ctz (wi::to_wide (@3)))
3788 { constant_boolean_node (cmp == NE_EXPR, type); }
3789 (with { wide_int c1 = wi::to_wide (@1);
3790 wide_int c2 = wi::lrshift (wi::to_wide (@2), c1);
3791 wide_int c3 = wi::lrshift (wi::to_wide (@3), c1); }
3792 (cmp (bit_and @0 { wide_int_to_tree (TREE_TYPE (@0), c2); })
3793 { wide_int_to_tree (TREE_TYPE (@0), c3); })))))
f3f73e86
RS
3794 (simplify
3795 (cmp (bit_and:s (rshift:s @0 INTEGER_CST@1) INTEGER_CST@2) INTEGER_CST@3)
3796 (if (tree_fits_shwi_p (@1)
3797 && tree_to_shwi (@1) > 0
6fc14f19
RS
3798 && tree_to_shwi (@1) < TYPE_PRECISION (TREE_TYPE (@0)))
3799 (with { tree t0 = TREE_TYPE (@0);
3800 unsigned int prec = TYPE_PRECISION (t0);
3801 wide_int c1 = wi::to_wide (@1);
3802 wide_int c2 = wi::to_wide (@2);
3803 wide_int c3 = wi::to_wide (@3);
3804 wide_int sb = wi::set_bit_in_zero (prec - 1, prec); }
3805 (if ((c2 & c3) != c3)
3806 { constant_boolean_node (cmp == NE_EXPR, type); }
3807 (if (TYPE_UNSIGNED (t0))
3808 (if ((c3 & wi::arshift (sb, c1 - 1)) != 0)
3809 { constant_boolean_node (cmp == NE_EXPR, type); }
3810 (cmp (bit_and @0 { wide_int_to_tree (t0, c2 << c1); })
3811 { wide_int_to_tree (t0, c3 << c1); }))
3812 (with { wide_int smask = wi::arshift (sb, c1); }
3813 (switch
3814 (if ((c2 & smask) == 0)
3815 (cmp (bit_and @0 { wide_int_to_tree (t0, c2 << c1); })
3816 { wide_int_to_tree (t0, c3 << c1); }))
3817 (if ((c3 & smask) == 0)
3818 (cmp (bit_and @0 { wide_int_to_tree (t0, (c2 << c1) | sb); })
3819 { wide_int_to_tree (t0, c3 << c1); }))
3820 (if ((c2 & smask) != (c3 & smask))
3821 { constant_boolean_node (cmp == NE_EXPR, type); })
3822 (cmp (bit_and @0 { wide_int_to_tree (t0, (c2 << c1) | sb); })
3823 { wide_int_to_tree (t0, (c3 << c1) | sb); })))))))))
f3f73e86 3824
1ffbaa3f
RB
3825/* Fold (X << C1) & C2 into (X << C1) & (C2 | ((1 << C1) - 1))
3826 (X >> C1) & C2 into (X >> C1) & (C2 | ~((type) -1 >> C1))
3827 if the new mask might be further optimized. */
3828(for shift (lshift rshift)
3829 (simplify
44fc0a51
RB
3830 (bit_and (convert?:s@4 (shift:s@5 (convert1?@3 @0) INTEGER_CST@1))
3831 INTEGER_CST@2)
1ffbaa3f
RB
3832 (if (tree_nop_conversion_p (TREE_TYPE (@4), TREE_TYPE (@5))
3833 && TYPE_PRECISION (type) <= HOST_BITS_PER_WIDE_INT
3834 && tree_fits_uhwi_p (@1)
3835 && tree_to_uhwi (@1) > 0
3836 && tree_to_uhwi (@1) < TYPE_PRECISION (type))
3837 (with
3838 {
3839 unsigned int shiftc = tree_to_uhwi (@1);
3840 unsigned HOST_WIDE_INT mask = TREE_INT_CST_LOW (@2);
3841 unsigned HOST_WIDE_INT newmask, zerobits = 0;
3842 tree shift_type = TREE_TYPE (@3);
3843 unsigned int prec;
3844
3845 if (shift == LSHIFT_EXPR)
fecfbfa4 3846 zerobits = ((HOST_WIDE_INT_1U << shiftc) - 1);
1ffbaa3f 3847 else if (shift == RSHIFT_EXPR
2be65d9e 3848 && type_has_mode_precision_p (shift_type))
1ffbaa3f
RB
3849 {
3850 prec = TYPE_PRECISION (TREE_TYPE (@3));
3851 tree arg00 = @0;
3852 /* See if more bits can be proven as zero because of
3853 zero extension. */
3854 if (@3 != @0
3855 && TYPE_UNSIGNED (TREE_TYPE (@0)))
3856 {
3857 tree inner_type = TREE_TYPE (@0);
2be65d9e 3858 if (type_has_mode_precision_p (inner_type)
1ffbaa3f
RB
3859 && TYPE_PRECISION (inner_type) < prec)
3860 {
3861 prec = TYPE_PRECISION (inner_type);
3862 /* See if we can shorten the right shift. */
3863 if (shiftc < prec)
3864 shift_type = inner_type;
3865 /* Otherwise X >> C1 is all zeros, so we'll optimize
3866 it into (X, 0) later on by making sure zerobits
3867 is all ones. */
3868 }
3869 }
dd4786fe 3870 zerobits = HOST_WIDE_INT_M1U;
1ffbaa3f
RB
3871 if (shiftc < prec)
3872 {
3873 zerobits >>= HOST_BITS_PER_WIDE_INT - shiftc;
3874 zerobits <<= prec - shiftc;
3875 }
3876 /* For arithmetic shift if sign bit could be set, zerobits
3877 can contain actually sign bits, so no transformation is
3878 possible, unless MASK masks them all away. In that
3879 case the shift needs to be converted into logical shift. */
3880 if (!TYPE_UNSIGNED (TREE_TYPE (@3))
3881 && prec == TYPE_PRECISION (TREE_TYPE (@3)))
3882 {
3883 if ((mask & zerobits) == 0)
3884 shift_type = unsigned_type_for (TREE_TYPE (@3));
3885 else
3886 zerobits = 0;
3887 }
3888 }
3889 }
3890 /* ((X << 16) & 0xff00) is (X, 0). */
3891 (if ((mask & zerobits) == mask)
8fdc6c67
RB
3892 { build_int_cst (type, 0); }
3893 (with { newmask = mask | zerobits; }
3894 (if (newmask != mask && (newmask & (newmask + 1)) == 0)
3895 (with
3896 {
3897 /* Only do the transformation if NEWMASK is some integer
3898 mode's mask. */
3899 for (prec = BITS_PER_UNIT;
3900 prec < HOST_BITS_PER_WIDE_INT; prec <<= 1)
fecfbfa4 3901 if (newmask == (HOST_WIDE_INT_1U << prec) - 1)
8fdc6c67
RB
3902 break;
3903 }
3904 (if (prec < HOST_BITS_PER_WIDE_INT
dd4786fe 3905 || newmask == HOST_WIDE_INT_M1U)
8fdc6c67
RB
3906 (with
3907 { tree newmaskt = build_int_cst_type (TREE_TYPE (@2), newmask); }
3908 (if (!tree_int_cst_equal (newmaskt, @2))
3909 (if (shift_type != TREE_TYPE (@3))
3910 (bit_and (convert (shift:shift_type (convert @3) @1)) { newmaskt; })
3911 (bit_and @4 { newmaskt; })))))))))))))
1ffbaa3f 3912
2abd924f
JL
3913/* ((1 << n) & M) != 0 -> n == log2 (M) */
3914(for cmp (ne eq)
3915 icmp (eq ne)
3916 (simplify
3917 (cmp
3918 (bit_and
3919 (nop_convert? (lshift integer_onep @0)) integer_pow2p@1) integer_zerop)
3920 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)))
3921 (icmp @0 { wide_int_to_tree (TREE_TYPE (@0),
3922 wi::exact_log2 (wi::to_wide (@1))); }))))
3923
84ff66b8
AV
3924/* Fold (X {&,^,|} C2) << C1 into (X << C1) {&,^,|} (C2 << C1)
3925 (X {&,^,|} C2) >> C1 into (X >> C1) & (C2 >> C1). */
98e30e51 3926(for shift (lshift rshift)
84ff66b8
AV
3927 (for bit_op (bit_and bit_xor bit_ior)
3928 (simplify
3929 (shift (convert?:s (bit_op:s @0 INTEGER_CST@2)) INTEGER_CST@1)
3930 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
3931 (with { tree mask = int_const_binop (shift, fold_convert (type, @2), @1); }
39f5e9ad
JJ
3932 (if (mask)
3933 (bit_op (shift (convert @0) @1) { mask; })))))))
98e30e51 3934
ad1d92ab
MM
3935/* ~(~X >> Y) -> X >> Y (for arithmetic shift). */
3936(simplify
3937 (bit_not (convert1?:s (rshift:s (convert2?@0 (bit_not @1)) @2)))
3938 (if (!TYPE_UNSIGNED (TREE_TYPE (@0))
ece46666
MG
3939 && (element_precision (TREE_TYPE (@0))
3940 <= element_precision (TREE_TYPE (@1))
3941 || !TYPE_UNSIGNED (TREE_TYPE (@1))))
ad1d92ab
MM
3942 (with
3943 { tree shift_type = TREE_TYPE (@0); }
3944 (convert (rshift (convert:shift_type @1) @2)))))
3945
3946/* ~(~X >>r Y) -> X >>r Y
3947 ~(~X <<r Y) -> X <<r Y */
3948(for rotate (lrotate rrotate)
3949 (simplify
3950 (bit_not (convert1?:s (rotate:s (convert2?@0 (bit_not @1)) @2)))
ece46666
MG
3951 (if ((element_precision (TREE_TYPE (@0))
3952 <= element_precision (TREE_TYPE (@1))
3953 || !TYPE_UNSIGNED (TREE_TYPE (@1)))
3954 && (element_precision (type) <= element_precision (TREE_TYPE (@0))
3955 || !TYPE_UNSIGNED (TREE_TYPE (@0))))
ad1d92ab
MM
3956 (with
3957 { tree rotate_type = TREE_TYPE (@0); }
3958 (convert (rotate (convert:rotate_type @1) @2))))))
98e30e51 3959
cf5f5442
RS
3960(for cmp (eq ne)
3961 (for rotate (lrotate rrotate)
3962 invrot (rrotate lrotate)
3963 /* (X >>r Y) cmp (Z >>r Y) may simplify to X cmp Y. */
3964 (simplify
3965 (cmp (rotate @1 @0) (rotate @2 @0))
3966 (cmp @1 @2))
3967 /* (X >>r C1) cmp C2 may simplify to X cmp C3. */
3968 (simplify
3969 (cmp (rotate @0 INTEGER_CST@1) INTEGER_CST@2)
3970 (cmp @0 { const_binop (invrot, TREE_TYPE (@0), @2, @1); }))
3971 /* (X >>r Y) cmp C where C is 0 or ~0, may simplify to X cmp C. */
3972 (simplify
3973 (cmp (rotate @0 @1) INTEGER_CST@2)
3974 (if (integer_zerop (@2) || integer_all_onesp (@2))
3975 (cmp @0 @2)))))
3976
acb1e6f4 3977/* Narrow a lshift by constant. */
1d244020 3978(simplify
acb1e6f4 3979 (convert (lshift:s@0 @1 INTEGER_CST@2))
78fa5112 3980 (if (INTEGRAL_TYPE_P (type)
acb1e6f4
RS
3981 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
3982 && !integer_zerop (@2)
3983 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0)))
3984 (if (TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (@0))
3985 || wi::ltu_p (wi::to_wide (@2), TYPE_PRECISION (type)))
3986 (lshift (convert @1) @2)
3987 (if (wi::ltu_p (wi::to_wide (@2), TYPE_PRECISION (TREE_TYPE (@0))))
3988 { build_zero_cst (type); }))))
1d244020 3989
d4573ffe
RB
3990/* Simplifications of conversions. */
3991
3992/* Basic strip-useless-type-conversions / strip_nops. */
f3582e54 3993(for cvt (convert view_convert float fix_trunc)
d4573ffe
RB
3994 (simplify
3995 (cvt @0)
3996 (if ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@0)))
3997 || (GENERIC && type == TREE_TYPE (@0)))
3998 @0)))
3999
4000/* Contract view-conversions. */
4001(simplify
4002 (view_convert (view_convert @0))
4003 (view_convert @0))
4004
4005/* For integral conversions with the same precision or pointer
4006 conversions use a NOP_EXPR instead. */
4007(simplify
4008 (view_convert @0)
4009 (if ((INTEGRAL_TYPE_P (type) || POINTER_TYPE_P (type))
4010 && (INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
4011 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (@0)))
4012 (convert @0)))
4013
bce8ef71
MG
4014/* Strip inner integral conversions that do not change precision or size, or
4015 zero-extend while keeping the same size (for bool-to-char). */
d4573ffe
RB
4016(simplify
4017 (view_convert (convert@0 @1))
4018 (if ((INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
4019 && (INTEGRAL_TYPE_P (TREE_TYPE (@1)) || POINTER_TYPE_P (TREE_TYPE (@1)))
bce8ef71
MG
4020 && TYPE_SIZE (TREE_TYPE (@0)) == TYPE_SIZE (TREE_TYPE (@1))
4021 && (TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1))
4022 || (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (TREE_TYPE (@1))
4023 && TYPE_UNSIGNED (TREE_TYPE (@1)))))
d4573ffe
RB
4024 (view_convert @1)))
4025
90467f0a 4026/* Simplify a view-converted empty or single-element constructor. */
f469220d
RB
4027(simplify
4028 (view_convert CONSTRUCTOR@0)
90467f0a 4029 (with
49bf49bb
RB
4030 { tree ctor = (TREE_CODE (@0) == SSA_NAME
4031 ? gimple_assign_rhs1 (SSA_NAME_DEF_STMT (@0)) : @0); }
90467f0a
RB
4032 (switch
4033 (if (CONSTRUCTOR_NELTS (ctor) == 0)
4034 { build_zero_cst (type); })
4035 (if (CONSTRUCTOR_NELTS (ctor) == 1
4036 && VECTOR_TYPE_P (TREE_TYPE (ctor))
4037 && operand_equal_p (TYPE_SIZE (type),
4038 TYPE_SIZE (TREE_TYPE
4039 (CONSTRUCTOR_ELT (ctor, 0)->value))))
4040 (view_convert { CONSTRUCTOR_ELT (ctor, 0)->value; })))))
f469220d 4041
d4573ffe
RB
4042/* Re-association barriers around constants and other re-association
4043 barriers can be removed. */
4044(simplify
4045 (paren CONSTANT_CLASS_P@0)
4046 @0)
4047(simplify
4048 (paren (paren@1 @0))
4049 @1)
1e51d0a2
RB
4050
4051/* Handle cases of two conversions in a row. */
4052(for ocvt (convert float fix_trunc)
4053 (for icvt (convert float)
4054 (simplify
4055 (ocvt (icvt@1 @0))
4056 (with
4057 {
4058 tree inside_type = TREE_TYPE (@0);
4059 tree inter_type = TREE_TYPE (@1);
4060 int inside_int = INTEGRAL_TYPE_P (inside_type);
4061 int inside_ptr = POINTER_TYPE_P (inside_type);
4062 int inside_float = FLOAT_TYPE_P (inside_type);
09240451 4063 int inside_vec = VECTOR_TYPE_P (inside_type);
1e51d0a2
RB
4064 unsigned int inside_prec = TYPE_PRECISION (inside_type);
4065 int inside_unsignedp = TYPE_UNSIGNED (inside_type);
4066 int inter_int = INTEGRAL_TYPE_P (inter_type);
4067 int inter_ptr = POINTER_TYPE_P (inter_type);
4068 int inter_float = FLOAT_TYPE_P (inter_type);
09240451 4069 int inter_vec = VECTOR_TYPE_P (inter_type);
1e51d0a2
RB
4070 unsigned int inter_prec = TYPE_PRECISION (inter_type);
4071 int inter_unsignedp = TYPE_UNSIGNED (inter_type);
4072 int final_int = INTEGRAL_TYPE_P (type);
4073 int final_ptr = POINTER_TYPE_P (type);
4074 int final_float = FLOAT_TYPE_P (type);
09240451 4075 int final_vec = VECTOR_TYPE_P (type);
1e51d0a2
RB
4076 unsigned int final_prec = TYPE_PRECISION (type);
4077 int final_unsignedp = TYPE_UNSIGNED (type);
4078 }
64d3a1f0
RB
4079 (switch
4080 /* In addition to the cases of two conversions in a row
4081 handled below, if we are converting something to its own
4082 type via an object of identical or wider precision, neither
4083 conversion is needed. */
4084 (if (((GIMPLE && useless_type_conversion_p (type, inside_type))
4085 || (GENERIC
4086 && TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (inside_type)))
4087 && (((inter_int || inter_ptr) && final_int)
4088 || (inter_float && final_float))
4089 && inter_prec >= final_prec)
4090 (ocvt @0))
4091
4092 /* Likewise, if the intermediate and initial types are either both
4093 float or both integer, we don't need the middle conversion if the
4094 former is wider than the latter and doesn't change the signedness
4095 (for integers). Avoid this if the final type is a pointer since
36088299 4096 then we sometimes need the middle conversion. */
64d3a1f0
RB
4097 (if (((inter_int && inside_int) || (inter_float && inside_float))
4098 && (final_int || final_float)
4099 && inter_prec >= inside_prec
36088299 4100 && (inter_float || inter_unsignedp == inside_unsignedp))
64d3a1f0
RB
4101 (ocvt @0))
4102
4103 /* If we have a sign-extension of a zero-extended value, we can
4104 replace that by a single zero-extension. Likewise if the
4105 final conversion does not change precision we can drop the
4106 intermediate conversion. */
4107 (if (inside_int && inter_int && final_int
4108 && ((inside_prec < inter_prec && inter_prec < final_prec
4109 && inside_unsignedp && !inter_unsignedp)
4110 || final_prec == inter_prec))
4111 (ocvt @0))
4112
4113 /* Two conversions in a row are not needed unless:
1e51d0a2
RB
4114 - some conversion is floating-point (overstrict for now), or
4115 - some conversion is a vector (overstrict for now), or
4116 - the intermediate type is narrower than both initial and
4117 final, or
4118 - the intermediate type and innermost type differ in signedness,
4119 and the outermost type is wider than the intermediate, or
4120 - the initial type is a pointer type and the precisions of the
4121 intermediate and final types differ, or
4122 - the final type is a pointer type and the precisions of the
4123 initial and intermediate types differ. */
64d3a1f0
RB
4124 (if (! inside_float && ! inter_float && ! final_float
4125 && ! inside_vec && ! inter_vec && ! final_vec
4126 && (inter_prec >= inside_prec || inter_prec >= final_prec)
4127 && ! (inside_int && inter_int
4128 && inter_unsignedp != inside_unsignedp
4129 && inter_prec < final_prec)
4130 && ((inter_unsignedp && inter_prec > inside_prec)
4131 == (final_unsignedp && final_prec > inter_prec))
4132 && ! (inside_ptr && inter_prec != final_prec)
36088299 4133 && ! (final_ptr && inside_prec != inter_prec))
64d3a1f0
RB
4134 (ocvt @0))
4135
4136 /* A truncation to an unsigned type (a zero-extension) should be
4137 canonicalized as bitwise and of a mask. */
1d510e04
JJ
4138 (if (GIMPLE /* PR70366: doing this in GENERIC breaks -Wconversion. */
4139 && final_int && inter_int && inside_int
64d3a1f0
RB
4140 && final_prec == inside_prec
4141 && final_prec > inter_prec
4142 && inter_unsignedp)
4143 (convert (bit_and @0 { wide_int_to_tree
4144 (inside_type,
4145 wi::mask (inter_prec, false,
4146 TYPE_PRECISION (inside_type))); })))
4147
4148 /* If we are converting an integer to a floating-point that can
4149 represent it exactly and back to an integer, we can skip the
4150 floating-point conversion. */
4151 (if (GIMPLE /* PR66211 */
4152 && inside_int && inter_float && final_int &&
4153 (unsigned) significand_size (TYPE_MODE (inter_type))
4154 >= inside_prec - !inside_unsignedp)
4155 (convert @0)))))))
ea2042ba 4156
914045df
ASDV
4157/* (float_type)(integer_type) x -> trunc (x) if the type of x matches
4158 float_type. Only do the transformation if we do not need to preserve
4159 trapping behaviour, so require !flag_trapping_math. */
4160#if GIMPLE
4161(simplify
4162 (float (fix_trunc @0))
4163 (if (!flag_trapping_math
4164 && types_match (type, TREE_TYPE (@0))
4165 && direct_internal_fn_supported_p (IFN_TRUNC, type,
4166 OPTIMIZE_FOR_BOTH))
4167 (IFN_TRUNC @0)))
4168#endif
4169
ea2042ba
RB
4170/* If we have a narrowing conversion to an integral type that is fed by a
4171 BIT_AND_EXPR, we might be able to remove the BIT_AND_EXPR if it merely
4172 masks off bits outside the final type (and nothing else). */
4173(simplify
4174 (convert (bit_and @0 INTEGER_CST@1))
4175 (if (INTEGRAL_TYPE_P (type)
4176 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
4177 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0))
4178 && operand_equal_p (@1, build_low_bits_mask (TREE_TYPE (@1),
4179 TYPE_PRECISION (type)), 0))
4180 (convert @0)))
a25454ea
RB
4181
4182
4183/* (X /[ex] A) * A -> X. */
4184(simplify
2eef1fc1
RB
4185 (mult (convert1? (exact_div @0 @@1)) (convert2? @1))
4186 (convert @0))
eaeba53a 4187
839d0860
RB
4188/* Simplify (A / B) * B + (A % B) -> A. */
4189(for div (trunc_div ceil_div floor_div round_div)
4190 mod (trunc_mod ceil_mod floor_mod round_mod)
4191 (simplify
4192 (plus:c (mult:c (div @0 @1) @1) (mod @0 @1))
4193 @0))
4194
388fbbd8
SF
4195/* x / y * y == x -> x % y == 0. */
4196(simplify
4197 (eq:c (mult:c (trunc_div:s @0 @1) @1) @0)
4198 (if (TREE_CODE (TREE_TYPE (@0)) != COMPLEX_TYPE)
4199 (eq (trunc_mod @0 @1) { build_zero_cst (TREE_TYPE (@0)); })))
4200
0036218b
MG
4201/* ((X /[ex] A) +- B) * A --> X +- A * B. */
4202(for op (plus minus)
4203 (simplify
4204 (mult (convert1? (op (convert2? (exact_div @0 INTEGER_CST@@1)) INTEGER_CST@2)) @1)
4205 (if (tree_nop_conversion_p (type, TREE_TYPE (@2))
4206 && tree_nop_conversion_p (TREE_TYPE (@0), TREE_TYPE (@2)))
4207 (with
4208 {
4209 wi::overflow_type overflow;
4210 wide_int mul = wi::mul (wi::to_wide (@1), wi::to_wide (@2),
4211 TYPE_SIGN (type), &overflow);
4212 }
4213 (if (types_match (type, TREE_TYPE (@2))
4214 && types_match (TREE_TYPE (@0), TREE_TYPE (@2)) && !overflow)
4215 (op @0 { wide_int_to_tree (type, mul); })
4216 (with { tree utype = unsigned_type_for (type); }
4217 (convert (op (convert:utype @0)
4218 (mult (convert:utype @1) (convert:utype @2))))))))))
4219
a7f24614
RB
4220/* Canonicalization of binary operations. */
4221
4222/* Convert X + -C into X - C. */
4223(simplify
4224 (plus @0 REAL_CST@1)
4225 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
23f27839 4226 (with { tree tem = const_unop (NEGATE_EXPR, type, @1); }
a7f24614
RB
4227 (if (!TREE_OVERFLOW (tem) || !flag_trapping_math)
4228 (minus @0 { tem; })))))
4229
6b6aa8d3 4230/* Convert x+x into x*2. */
a7f24614
RB
4231(simplify
4232 (plus @0 @0)
4233 (if (SCALAR_FLOAT_TYPE_P (type))
6b6aa8d3
MG
4234 (mult @0 { build_real (type, dconst2); })
4235 (if (INTEGRAL_TYPE_P (type))
4236 (mult @0 { build_int_cst (type, 2); }))))
a7f24614 4237
406520e2 4238/* 0 - X -> -X. */
a7f24614
RB
4239(simplify
4240 (minus integer_zerop @1)
4241 (negate @1))
406520e2
MG
4242(simplify
4243 (pointer_diff integer_zerop @1)
4244 (negate (convert @1)))
a7f24614
RB
4245
4246/* (ARG0 - ARG1) is the same as (-ARG1 + ARG0). So check whether
4247 ARG0 is zero and X + ARG0 reduces to X, since that would mean
4248 (-ARG1 + ARG0) reduces to -ARG1. */
4249(simplify
4250 (minus real_zerop@0 @1)
5b02ed4b 4251 (if (fold_real_zero_addition_p (type, @1, @0, 0))
a7f24614
RB
4252 (negate @1)))
4253
4254/* Transform x * -1 into -x. */
4255(simplify
4256 (mult @0 integer_minus_onep)
4257 (negate @0))
eaeba53a 4258
b771c609
AM
4259/* Reassociate (X * CST) * Y to (X * Y) * CST. This does not introduce
4260 signed overflow for CST != 0 && CST != -1. */
4261(simplify
b46ebc6c 4262 (mult:c (mult:s@3 @0 INTEGER_CST@1) @2)
b771c609 4263 (if (TREE_CODE (@2) != INTEGER_CST
b46ebc6c 4264 && single_use (@3)
b771c609
AM
4265 && !integer_zerop (@1) && !integer_minus_onep (@1))
4266 (mult (mult @0 @2) @1)))
4267
96285749
RS
4268/* True if we can easily extract the real and imaginary parts of a complex
4269 number. */
4270(match compositional_complex
4271 (convert? (complex @0 @1)))
4272
eaeba53a
RB
4273/* COMPLEX_EXPR and REALPART/IMAGPART_EXPR cancellations. */
4274(simplify
4275 (complex (realpart @0) (imagpart @0))
4276 @0)
4277(simplify
4278 (realpart (complex @0 @1))
4279 @0)
4280(simplify
4281 (imagpart (complex @0 @1))
4282 @1)
83633539 4283
77c028c5
MG
4284/* Sometimes we only care about half of a complex expression. */
4285(simplify
4286 (realpart (convert?:s (conj:s @0)))
4287 (convert (realpart @0)))
4288(simplify
4289 (imagpart (convert?:s (conj:s @0)))
4290 (convert (negate (imagpart @0))))
4291(for part (realpart imagpart)
4292 (for op (plus minus)
4293 (simplify
4294 (part (convert?:s@2 (op:s @0 @1)))
4295 (convert (op (part @0) (part @1))))))
4296(simplify
4297 (realpart (convert?:s (CEXPI:s @0)))
4298 (convert (COS @0)))
4299(simplify
4300 (imagpart (convert?:s (CEXPI:s @0)))
4301 (convert (SIN @0)))
4302
4303/* conj(conj(x)) -> x */
4304(simplify
4305 (conj (convert? (conj @0)))
4306 (if (tree_nop_conversion_p (TREE_TYPE (@0), type))
4307 (convert @0)))
4308
4309/* conj({x,y}) -> {x,-y} */
4310(simplify
4311 (conj (convert?:s (complex:s @0 @1)))
4312 (with { tree itype = TREE_TYPE (type); }
4313 (complex (convert:itype @0) (negate (convert:itype @1)))))
83633539
RB
4314
4315/* BSWAP simplifications, transforms checked by gcc.dg/builtin-bswap-8.c. */
4c619132
RS
4316(for bswap (BUILT_IN_BSWAP16 BUILT_IN_BSWAP32
4317 BUILT_IN_BSWAP64 BUILT_IN_BSWAP128)
83633539
RB
4318 (simplify
4319 (bswap (bswap @0))
4320 @0)
4321 (simplify
4322 (bswap (bit_not (bswap @0)))
4323 (bit_not @0))
4324 (for bitop (bit_xor bit_ior bit_and)
4325 (simplify
4326 (bswap (bitop:c (bswap @0) @1))
4c619132 4327 (bitop @0 (bswap @1))))
cf5f5442
RS
4328 (for cmp (eq ne)
4329 (simplify
b4fc4df9
JJ
4330 (cmp (bswap@2 @0) (bswap @1))
4331 (with { tree ctype = TREE_TYPE (@2); }
4332 (cmp (convert:ctype @0) (convert:ctype @1))))
cf5f5442
RS
4333 (simplify
4334 (cmp (bswap @0) INTEGER_CST@1)
b4fc4df9 4335 (with { tree ctype = TREE_TYPE (@1); }
fdc46830 4336 (cmp (convert:ctype @0) (bswap! @1)))))
4c619132
RS
4337 /* (bswap(x) >> C1) & C2 can sometimes be simplified to (x >> C3) & C2. */
4338 (simplify
4339 (bit_and (convert1? (rshift@0 (convert2? (bswap@4 @1)) INTEGER_CST@2))
4340 INTEGER_CST@3)
4341 (if (BITS_PER_UNIT == 8
4342 && tree_fits_uhwi_p (@2)
4343 && tree_fits_uhwi_p (@3))
4344 (with
4345 {
4346 unsigned HOST_WIDE_INT prec = TYPE_PRECISION (TREE_TYPE (@4));
4347 unsigned HOST_WIDE_INT bits = tree_to_uhwi (@2);
4348 unsigned HOST_WIDE_INT mask = tree_to_uhwi (@3);
4349 unsigned HOST_WIDE_INT lo = bits & 7;
4350 unsigned HOST_WIDE_INT hi = bits - lo;
4351 }
4352 (if (bits < prec
4353 && mask < (256u>>lo)
4354 && bits < TYPE_PRECISION (TREE_TYPE(@0)))
4355 (with { unsigned HOST_WIDE_INT ns = (prec - (hi + 8)) + lo; }
4356 (if (ns == 0)
4357 (bit_and (convert @1) @3)
4358 (with
4359 {
4360 tree utype = unsigned_type_for (TREE_TYPE (@1));
4361 tree nst = build_int_cst (integer_type_node, ns);
4362 }
4363 (bit_and (convert (rshift:utype (convert:utype @1) {nst;})) @3))))))))
4364 /* bswap(x) >> C1 can sometimes be simplified to (T)x >> C2. */
4365 (simplify
4366 (rshift (convert? (bswap@2 @0)) INTEGER_CST@1)
4367 (if (BITS_PER_UNIT == 8
4368 && CHAR_TYPE_SIZE == 8
4369 && tree_fits_uhwi_p (@1))
4370 (with
4371 {
4372 unsigned HOST_WIDE_INT prec = TYPE_PRECISION (TREE_TYPE (@2));
4373 unsigned HOST_WIDE_INT bits = tree_to_uhwi (@1);
5f5fbb55
RS
4374 /* If the bswap was extended before the original shift, this
4375 byte (shift) has the sign of the extension, not the sign of
4376 the original shift. */
4377 tree st = TYPE_PRECISION (type) > prec ? TREE_TYPE (@2) : type;
4c619132 4378 }
5f5fbb55
RS
4379 /* Special case: logical right shift of sign-extended bswap.
4380 (unsigned)(short)bswap16(x)>>12 is (unsigned)((short)x<<8)>>12. */
4381 (if (TYPE_PRECISION (type) > prec
4382 && !TYPE_UNSIGNED (TREE_TYPE (@2))
4383 && TYPE_UNSIGNED (type)
4384 && bits < prec && bits + 8 >= prec)
4385 (with { tree nst = build_int_cst (integer_type_node, prec - 8); }
4386 (rshift (convert (lshift:st (convert:st @0) {nst;})) @1))
4387 (if (bits + 8 == prec)
4388 (if (TYPE_UNSIGNED (st))
4389 (convert (convert:unsigned_char_type_node @0))
4390 (convert (convert:signed_char_type_node @0)))
4391 (if (bits < prec && bits + 8 > prec)
4392 (with
4393 {
4394 tree nst = build_int_cst (integer_type_node, bits & 7);
4395 tree bt = TYPE_UNSIGNED (st) ? unsigned_char_type_node
4396 : signed_char_type_node;
4397 }
4398 (convert (rshift:bt (convert:bt @0) {nst;})))))))))
4c619132
RS
4399 /* bswap(x) & C1 can sometimes be simplified to (x >> C2) & C1. */
4400 (simplify
4401 (bit_and (convert? (bswap@2 @0)) INTEGER_CST@1)
4402 (if (BITS_PER_UNIT == 8
4403 && tree_fits_uhwi_p (@1)
4404 && tree_to_uhwi (@1) < 256)
4405 (with
4406 {
4407 unsigned HOST_WIDE_INT prec = TYPE_PRECISION (TREE_TYPE (@2));
4408 tree utype = unsigned_type_for (TREE_TYPE (@0));
4409 tree nst = build_int_cst (integer_type_node, prec - 8);
4410 }
4411 (bit_and (convert (rshift:utype (convert:utype @0) {nst;})) @1)))))
96994de0
RB
4412
4413
4414/* Combine COND_EXPRs and VEC_COND_EXPRs. */
4415
4416/* Simplify constant conditions.
4417 Only optimize constant conditions when the selected branch
4418 has the same type as the COND_EXPR. This avoids optimizing
4419 away "c ? x : throw", where the throw has a void type.
e53b6e56 4420 Note that we cannot throw away the fold-const.cc variant nor
96994de0 4421 this one as we depend on doing this transform before possibly
e53b6e56 4422 A ? B : B -> B triggers and the fold-const.cc one can optimize
96994de0
RB
4423 0 ? A : B to B even if A has side-effects. Something
4424 genmatch cannot handle. */
4425(simplify
4426 (cond INTEGER_CST@0 @1 @2)
8fdc6c67
RB
4427 (if (integer_zerop (@0))
4428 (if (!VOID_TYPE_P (TREE_TYPE (@2)) || VOID_TYPE_P (type))
4429 @2)
4430 (if (!VOID_TYPE_P (TREE_TYPE (@1)) || VOID_TYPE_P (type))
4431 @1)))
96994de0
RB
4432(simplify
4433 (vec_cond VECTOR_CST@0 @1 @2)
4434 (if (integer_all_onesp (@0))
8fdc6c67
RB
4435 @1
4436 (if (integer_zerop (@0))
4437 @2)))
96994de0 4438
229752af 4439/* Sink unary operations to branches, but only if we do fold both. */
34a13a52
MG
4440(for op (negate bit_not abs absu)
4441 (simplify
229752af
MG
4442 (op (vec_cond:s @0 @1 @2))
4443 (vec_cond @0 (op! @1) (op! @2))))
4444
4445/* Sink binary operation to branches, but only if we can fold it. */
4446(for op (tcc_comparison plus minus mult bit_and bit_ior bit_xor
5240c5ca 4447 lshift rshift rdiv trunc_div ceil_div floor_div round_div
229752af
MG
4448 trunc_mod ceil_mod floor_mod round_mod min max)
4449/* (c ? a : b) op (c ? d : e) --> c ? (a op d) : (b op e) */
4450 (simplify
4451 (op (vec_cond:s @0 @1 @2) (vec_cond:s @0 @3 @4))
4452 (vec_cond @0 (op! @1 @3) (op! @2 @4)))
4453
4454/* (c ? a : b) op d --> c ? (a op d) : (b op d) */
4455 (simplify
4456 (op (vec_cond:s @0 @1 @2) @3)
4457 (vec_cond @0 (op! @1 @3) (op! @2 @3)))
4458 (simplify
4459 (op @3 (vec_cond:s @0 @1 @2))
4460 (vec_cond @0 (op! @3 @1) (op! @3 @2))))
229752af 4461
fb161782 4462#if GIMPLE
4463(match (nop_atomic_bit_test_and_p @0 @1 @4)
7df89377 4464 (bit_and (convert?@4 (ATOMIC_FETCH_OR_XOR_N @2 INTEGER_CST@0 @3))
fb161782 4465 INTEGER_CST@1)
4466 (with {
4467 int ibit = tree_log2 (@0);
4468 int ibit2 = tree_log2 (@1);
4469 }
4470 (if (ibit == ibit2
7df89377 4471 && ibit >= 0
379be00f 4472 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0))))))
fb161782 4473
4474(match (nop_atomic_bit_test_and_p @0 @1 @3)
7df89377 4475 (bit_and (convert?@3 (SYNC_FETCH_OR_XOR_N @2 INTEGER_CST@0))
fb161782 4476 INTEGER_CST@1)
4477 (with {
4478 int ibit = tree_log2 (@0);
4479 int ibit2 = tree_log2 (@1);
4480 }
4481 (if (ibit == ibit2
7df89377 4482 && ibit >= 0
379be00f 4483 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0))))))
fb161782 4484
4485(match (nop_atomic_bit_test_and_p @0 @0 @4)
4486 (bit_and:c
7df89377 4487 (convert1?@4
fb161782 4488 (ATOMIC_FETCH_OR_XOR_N @2 (nop_convert? (lshift@0 integer_onep@5 @6)) @3))
7df89377 4489 (convert2? @0))
379be00f 4490 (if (TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0)))))
fb161782 4491
4492(match (nop_atomic_bit_test_and_p @0 @0 @4)
4493 (bit_and:c
7df89377 4494 (convert1?@4
fb161782 4495 (SYNC_FETCH_OR_XOR_N @2 (nop_convert? (lshift@0 integer_onep@3 @5))))
7df89377 4496 (convert2? @0))
379be00f 4497 (if (TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0)))))
fb161782 4498
4499(match (nop_atomic_bit_test_and_p @0 @1 @3)
7df89377 4500 (bit_and@4 (convert?@3 (ATOMIC_FETCH_AND_N @2 INTEGER_CST@0 @5))
fb161782 4501 INTEGER_CST@1)
4502 (with {
4503 int ibit = wi::exact_log2 (wi::zext (wi::bit_not (wi::to_wide (@0)),
4504 TYPE_PRECISION(type)));
4505 int ibit2 = tree_log2 (@1);
4506 }
4507 (if (ibit == ibit2
7df89377 4508 && ibit >= 0
379be00f 4509 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0))))))
fb161782 4510
4511(match (nop_atomic_bit_test_and_p @0 @1 @3)
4512 (bit_and@4
7df89377 4513 (convert?@3 (SYNC_FETCH_AND_AND_N @2 INTEGER_CST@0))
fb161782 4514 INTEGER_CST@1)
4515 (with {
4516 int ibit = wi::exact_log2 (wi::zext (wi::bit_not (wi::to_wide (@0)),
4517 TYPE_PRECISION(type)));
4518 int ibit2 = tree_log2 (@1);
4519 }
4520 (if (ibit == ibit2
7df89377 4521 && ibit >= 0
379be00f 4522 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0))))))
fb161782 4523
7df89377 4524(match (nop_atomic_bit_test_and_p @4 @0 @3)
fb161782 4525 (bit_and:c
7df89377 4526 (convert1?@3
4527 (ATOMIC_FETCH_AND_N @2 (nop_convert?@4 (bit_not (lshift@0 integer_onep@6 @7))) @5))
4528 (convert2? @0))
379be00f 4529 (if (TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@4)))))
fb161782 4530
7df89377 4531(match (nop_atomic_bit_test_and_p @4 @0 @3)
fb161782 4532 (bit_and:c
7df89377 4533 (convert1?@3
4534 (SYNC_FETCH_AND_AND_N @2 (nop_convert?@4 (bit_not (lshift@0 integer_onep@6 @7)))))
4535 (convert2? @0))
379be00f 4536 (if (TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@4)))))
fb161782 4537
4538#endif
4539
a1ee6d50
MG
4540/* (v ? w : 0) ? a : b is just (v & w) ? a : b
4541 Currently disabled after pass lvec because ARM understands
4542 VEC_COND_EXPR<v==w,-1,0> but not a plain v==w fed to BIT_IOR_EXPR. */
229752af
MG
4543(simplify
4544 (vec_cond (vec_cond:s @0 @3 integer_zerop) @1 @2)
a1ee6d50 4545 (if (optimize_vectors_before_lowering_p () && types_match (@0, @3))
229752af
MG
4546 (vec_cond (bit_and @0 @3) @1 @2)))
4547(simplify
4548 (vec_cond (vec_cond:s @0 integer_all_onesp @3) @1 @2)
a1ee6d50 4549 (if (optimize_vectors_before_lowering_p () && types_match (@0, @3))
229752af
MG
4550 (vec_cond (bit_ior @0 @3) @1 @2)))
4551(simplify
4552 (vec_cond (vec_cond:s @0 integer_zerop @3) @1 @2)
a1ee6d50 4553 (if (optimize_vectors_before_lowering_p () && types_match (@0, @3))
229752af
MG
4554 (vec_cond (bit_ior @0 (bit_not @3)) @2 @1)))
4555(simplify
4556 (vec_cond (vec_cond:s @0 @3 integer_all_onesp) @1 @2)
a1ee6d50 4557 (if (optimize_vectors_before_lowering_p () && types_match (@0, @3))
229752af
MG
4558 (vec_cond (bit_and @0 (bit_not @3)) @2 @1)))
4559
4560/* c1 ? c2 ? a : b : b --> (c1 & c2) ? a : b */
4561(simplify
4562 (vec_cond @0 (vec_cond:s @1 @2 @3) @3)
a1ee6d50 4563 (if (optimize_vectors_before_lowering_p () && types_match (@0, @1))
229752af
MG
4564 (vec_cond (bit_and @0 @1) @2 @3)))
4565(simplify
4566 (vec_cond @0 @2 (vec_cond:s @1 @2 @3))
a1ee6d50 4567 (if (optimize_vectors_before_lowering_p () && types_match (@0, @1))
229752af
MG
4568 (vec_cond (bit_ior @0 @1) @2 @3)))
4569(simplify
4570 (vec_cond @0 (vec_cond:s @1 @2 @3) @2)
a1ee6d50 4571 (if (optimize_vectors_before_lowering_p () && types_match (@0, @1))
229752af
MG
4572 (vec_cond (bit_ior (bit_not @0) @1) @2 @3)))
4573(simplify
4574 (vec_cond @0 @3 (vec_cond:s @1 @2 @3))
a1ee6d50 4575 (if (optimize_vectors_before_lowering_p () && types_match (@0, @1))
229752af 4576 (vec_cond (bit_and (bit_not @0) @1) @2 @3)))
34a13a52 4577
10843f83
RB
4578/* Canonicalize mask ? { 0, ... } : { -1, ...} to ~mask if the mask
4579 types are compatible. */
4580(simplify
4581 (vec_cond @0 VECTOR_CST@1 VECTOR_CST@2)
4582 (if (VECTOR_BOOLEAN_TYPE_P (type)
4583 && types_match (type, TREE_TYPE (@0)))
4584 (if (integer_zerop (@1) && integer_all_onesp (@2))
4585 (bit_not @0)
4586 (if (integer_all_onesp (@1) && integer_zerop (@2))
4587 @0))))
4588
b6bdd7a4
AP
4589/* A few simplifications of "a ? CST1 : CST2". */
4590/* NOTE: Only do this on gimple as the if-chain-to-switch
4591 optimization depends on the gimple to have if statements in it. */
4592#if GIMPLE
4593(simplify
4594 (cond @0 INTEGER_CST@1 INTEGER_CST@2)
4595 (switch
4596 (if (integer_zerop (@2))
4597 (switch
4598 /* a ? 1 : 0 -> a if 0 and 1 are integral types. */
4599 (if (integer_onep (@1))
4600 (convert (convert:boolean_type_node @0)))
b6bdd7a4 4601 /* a ? powerof2cst : 0 -> a << (log2(powerof2cst)) */
d4faa36e 4602 (if (INTEGRAL_TYPE_P (type) && integer_pow2p (@1))
b6bdd7a4
AP
4603 (with {
4604 tree shift = build_int_cst (integer_type_node, tree_log2 (@1));
4605 }
882d806c
AP
4606 (lshift (convert (convert:boolean_type_node @0)) { shift; })))
4607 /* a ? -1 : 0 -> -a. No need to check the TYPE_PRECISION not being 1
4608 here as the powerof2cst case above will handle that case correctly. */
4609 (if (INTEGRAL_TYPE_P (type) && integer_all_onesp (@1))
4610 (negate (convert (convert:boolean_type_node @0))))))
b6bdd7a4
AP
4611 (if (integer_zerop (@1))
4612 (with {
4613 tree booltrue = constant_boolean_node (true, boolean_type_node);
4614 }
4615 (switch
4616 /* a ? 0 : 1 -> !a. */
4617 (if (integer_onep (@2))
4618 (convert (bit_xor (convert:boolean_type_node @0) { booltrue; } )))
b6bdd7a4 4619 /* a ? powerof2cst : 0 -> (!a) << (log2(powerof2cst)) */
f7844b6a 4620 (if (INTEGRAL_TYPE_P (type) && integer_pow2p (@2))
b6bdd7a4
AP
4621 (with {
4622 tree shift = build_int_cst (integer_type_node, tree_log2 (@2));
4623 }
4624 (lshift (convert (bit_xor (convert:boolean_type_node @0) { booltrue; } ))
882d806c
AP
4625 { shift; })))
4626 /* a ? -1 : 0 -> -(!a). No need to check the TYPE_PRECISION not being 1
4627 here as the powerof2cst case above will handle that case correctly. */
4628 (if (INTEGRAL_TYPE_P (type) && integer_all_onesp (@2))
4629 (negate (convert (bit_xor (convert:boolean_type_node @0) { booltrue; } ))))
4630 )
4631 )
4632 )
4633 )
4634)
b6bdd7a4
AP
4635#endif
4636
9991d84d
RS
4637(simplify
4638 (convert (cond@0 @1 INTEGER_CST@2 INTEGER_CST@3))
4639 (if (INTEGRAL_TYPE_P (type)
4640 && INTEGRAL_TYPE_P (TREE_TYPE (@0)))
4641 (cond @1 (convert @2) (convert @3))))
4642
b5481987
BC
4643/* Simplification moved from fold_cond_expr_with_comparison. It may also
4644 be extended. */
e2535011
BC
4645/* This pattern implements two kinds simplification:
4646
4647 Case 1)
4648 (cond (cmp (convert1? x) c1) (convert2? x) c2) -> (minmax (x c)) if:
b5481987
BC
4649 1) Conversions are type widening from smaller type.
4650 2) Const c1 equals to c2 after canonicalizing comparison.
4651 3) Comparison has tree code LT, LE, GT or GE.
4652 This specific pattern is needed when (cmp (convert x) c) may not
4653 be simplified by comparison patterns because of multiple uses of
4654 x. It also makes sense here because simplifying across multiple
e2535011
BC
4655 referred var is always benefitial for complicated cases.
4656
4657 Case 2)
4658 (cond (eq (convert1? x) c1) (convert2? x) c2) -> (cond (eq x c1) c1 c2). */
4659(for cmp (lt le gt ge eq)
b5481987 4660 (simplify
ae22bc5d 4661 (cond (cmp (convert1? @1) INTEGER_CST@3) (convert2? @1) INTEGER_CST@2)
b5481987
BC
4662 (with
4663 {
4664 tree from_type = TREE_TYPE (@1);
4665 tree c1_type = TREE_TYPE (@3), c2_type = TREE_TYPE (@2);
ae22bc5d 4666 enum tree_code code = ERROR_MARK;
b5481987 4667
ae22bc5d
BC
4668 if (INTEGRAL_TYPE_P (from_type)
4669 && int_fits_type_p (@2, from_type)
b5481987
BC
4670 && (types_match (c1_type, from_type)
4671 || (TYPE_PRECISION (c1_type) > TYPE_PRECISION (from_type)
4672 && (TYPE_UNSIGNED (from_type)
4673 || TYPE_SIGN (c1_type) == TYPE_SIGN (from_type))))
4674 && (types_match (c2_type, from_type)
4675 || (TYPE_PRECISION (c2_type) > TYPE_PRECISION (from_type)
4676 && (TYPE_UNSIGNED (from_type)
4677 || TYPE_SIGN (c2_type) == TYPE_SIGN (from_type)))))
4678 {
ae22bc5d 4679 if (cmp != EQ_EXPR)
b5481987 4680 {
e2535011
BC
4681 if (wi::to_widest (@3) == (wi::to_widest (@2) - 1))
4682 {
4683 /* X <= Y - 1 equals to X < Y. */
ae22bc5d 4684 if (cmp == LE_EXPR)
e2535011
BC
4685 code = LT_EXPR;
4686 /* X > Y - 1 equals to X >= Y. */
ae22bc5d 4687 if (cmp == GT_EXPR)
e2535011
BC
4688 code = GE_EXPR;
4689 }
4690 if (wi::to_widest (@3) == (wi::to_widest (@2) + 1))
4691 {
4692 /* X < Y + 1 equals to X <= Y. */
ae22bc5d 4693 if (cmp == LT_EXPR)
e2535011
BC
4694 code = LE_EXPR;
4695 /* X >= Y + 1 equals to X > Y. */
ae22bc5d 4696 if (cmp == GE_EXPR)
e2535011
BC
4697 code = GT_EXPR;
4698 }
ae22bc5d
BC
4699 if (code != ERROR_MARK
4700 || wi::to_widest (@2) == wi::to_widest (@3))
e2535011 4701 {
ae22bc5d 4702 if (cmp == LT_EXPR || cmp == LE_EXPR)
e2535011 4703 code = MIN_EXPR;
ae22bc5d 4704 if (cmp == GT_EXPR || cmp == GE_EXPR)
e2535011
BC
4705 code = MAX_EXPR;
4706 }
b5481987 4707 }
e2535011 4708 /* Can do A == C1 ? A : C2 -> A == C1 ? C1 : C2? */
ae22bc5d
BC
4709 else if (int_fits_type_p (@3, from_type))
4710 code = EQ_EXPR;
b5481987
BC
4711 }
4712 }
4713 (if (code == MAX_EXPR)
21aaaf1e 4714 (convert (max @1 (convert @2)))
b5481987 4715 (if (code == MIN_EXPR)
21aaaf1e 4716 (convert (min @1 (convert @2)))
e2535011 4717 (if (code == EQ_EXPR)
ae22bc5d 4718 (convert (cond (eq @1 (convert @3))
21aaaf1e 4719 (convert:from_type @3) (convert:from_type @2)))))))))
b5481987 4720
714445ae
BC
4721/* (cond (cmp (convert? x) c1) (op x c2) c3) -> (op (minmax x c1) c2) if:
4722
4723 1) OP is PLUS or MINUS.
4724 2) CMP is LT, LE, GT or GE.
4725 3) C3 == (C1 op C2), and computation doesn't have undefined behavior.
4726
4727 This pattern also handles special cases like:
4728
4729 A) Operand x is a unsigned to signed type conversion and c1 is
4730 integer zero. In this case,
4731 (signed type)x < 0 <=> x > MAX_VAL(signed type)
4732 (signed type)x >= 0 <=> x <= MAX_VAL(signed type)
4733 B) Const c1 may not equal to (C3 op' C2). In this case we also
4734 check equality for (c1+1) and (c1-1) by adjusting comparison
4735 code.
4736
4737 TODO: Though signed type is handled by this pattern, it cannot be
4738 simplified at the moment because C standard requires additional
4739 type promotion. In order to match&simplify it here, the IR needs
4740 to be cleaned up by other optimizers, i.e, VRP. */
4741(for op (plus minus)
4742 (for cmp (lt le gt ge)
4743 (simplify
4744 (cond (cmp (convert? @X) INTEGER_CST@1) (op @X INTEGER_CST@2) INTEGER_CST@3)
4745 (with { tree from_type = TREE_TYPE (@X), to_type = TREE_TYPE (@1); }
4746 (if (types_match (from_type, to_type)
4747 /* Check if it is special case A). */
4748 || (TYPE_UNSIGNED (from_type)
4749 && !TYPE_UNSIGNED (to_type)
4750 && TYPE_PRECISION (from_type) == TYPE_PRECISION (to_type)
4751 && integer_zerop (@1)
4752 && (cmp == LT_EXPR || cmp == GE_EXPR)))
4753 (with
4754 {
4a669ac3 4755 wi::overflow_type overflow = wi::OVF_NONE;
714445ae 4756 enum tree_code code, cmp_code = cmp;
8e6cdc90
RS
4757 wide_int real_c1;
4758 wide_int c1 = wi::to_wide (@1);
4759 wide_int c2 = wi::to_wide (@2);
4760 wide_int c3 = wi::to_wide (@3);
714445ae
BC
4761 signop sgn = TYPE_SIGN (from_type);
4762
4763 /* Handle special case A), given x of unsigned type:
4764 ((signed type)x < 0) <=> (x > MAX_VAL(signed type))
4765 ((signed type)x >= 0) <=> (x <= MAX_VAL(signed type)) */
4766 if (!types_match (from_type, to_type))
4767 {
4768 if (cmp_code == LT_EXPR)
4769 cmp_code = GT_EXPR;
4770 if (cmp_code == GE_EXPR)
4771 cmp_code = LE_EXPR;
4772 c1 = wi::max_value (to_type);
4773 }
4774 /* To simplify this pattern, we require c3 = (c1 op c2). Here we
4775 compute (c3 op' c2) and check if it equals to c1 with op' being
4776 the inverted operator of op. Make sure overflow doesn't happen
4777 if it is undefined. */
4778 if (op == PLUS_EXPR)
4779 real_c1 = wi::sub (c3, c2, sgn, &overflow);
4780 else
4781 real_c1 = wi::add (c3, c2, sgn, &overflow);
4782
4783 code = cmp_code;
4784 if (!overflow || !TYPE_OVERFLOW_UNDEFINED (from_type))
4785 {
4786 /* Check if c1 equals to real_c1. Boundary condition is handled
4787 by adjusting comparison operation if necessary. */
4788 if (!wi::cmp (wi::sub (real_c1, 1, sgn, &overflow), c1, sgn)
4789 && !overflow)
4790 {
4791 /* X <= Y - 1 equals to X < Y. */
4792 if (cmp_code == LE_EXPR)
4793 code = LT_EXPR;
4794 /* X > Y - 1 equals to X >= Y. */
4795 if (cmp_code == GT_EXPR)
4796 code = GE_EXPR;
4797 }
4798 if (!wi::cmp (wi::add (real_c1, 1, sgn, &overflow), c1, sgn)
4799 && !overflow)
4800 {
4801 /* X < Y + 1 equals to X <= Y. */
4802 if (cmp_code == LT_EXPR)
4803 code = LE_EXPR;
4804 /* X >= Y + 1 equals to X > Y. */
4805 if (cmp_code == GE_EXPR)
4806 code = GT_EXPR;
4807 }
4808 if (code != cmp_code || !wi::cmp (real_c1, c1, sgn))
4809 {
4810 if (cmp_code == LT_EXPR || cmp_code == LE_EXPR)
4811 code = MIN_EXPR;
4812 if (cmp_code == GT_EXPR || cmp_code == GE_EXPR)
4813 code = MAX_EXPR;
4814 }
4815 }
4816 }
4817 (if (code == MAX_EXPR)
4818 (op (max @X { wide_int_to_tree (from_type, real_c1); })
4819 { wide_int_to_tree (from_type, c2); })
4820 (if (code == MIN_EXPR)
4821 (op (min @X { wide_int_to_tree (from_type, real_c1); })
4822 { wide_int_to_tree (from_type, c2); })))))))))
4823
9a53101c
RB
4824#if GIMPLE
4825/* A >= B ? A : B -> max (A, B) and friends. The code is still
4826 in fold_cond_expr_with_comparison for GENERIC folding with
4827 some extra constraints. */
4828(for cmp (eq ne le lt unle unlt ge gt unge ungt uneq ltgt)
4829 (simplify
4830 (cond (cmp:c (nop_convert1?@c0 @0) (nop_convert2?@c1 @1))
4831 (convert3? @0) (convert4? @1))
4832 (if (!HONOR_SIGNED_ZEROS (type)
b36a1c96
RB
4833 && (/* Allow widening conversions of the compare operands as data. */
4834 (INTEGRAL_TYPE_P (type)
4835 && types_match (TREE_TYPE (@c0), TREE_TYPE (@0))
4836 && types_match (TREE_TYPE (@c1), TREE_TYPE (@1))
9a53101c
RB
4837 && TYPE_PRECISION (TREE_TYPE (@0)) <= TYPE_PRECISION (type)
4838 && TYPE_PRECISION (TREE_TYPE (@1)) <= TYPE_PRECISION (type))
b36a1c96
RB
4839 /* Or sign conversions for the comparison. */
4840 || (types_match (type, TREE_TYPE (@0))
4841 && types_match (type, TREE_TYPE (@1)))))
9a53101c
RB
4842 (switch
4843 (if (cmp == EQ_EXPR)
4844 (if (VECTOR_TYPE_P (type))
4845 (view_convert @c1)
4846 (convert @c1)))
4847 (if (cmp == NE_EXPR)
4848 (if (VECTOR_TYPE_P (type))
4849 (view_convert @c0)
4850 (convert @c0)))
4851 (if (cmp == LE_EXPR || cmp == UNLE_EXPR || cmp == LT_EXPR || cmp == UNLT_EXPR)
4852 (if (!HONOR_NANS (type))
4853 (if (VECTOR_TYPE_P (type))
4854 (view_convert (min @c0 @c1))
4855 (convert (min @c0 @c1)))))
4856 (if (cmp == GE_EXPR || cmp == UNGE_EXPR || cmp == GT_EXPR || cmp == UNGT_EXPR)
4857 (if (!HONOR_NANS (type))
4858 (if (VECTOR_TYPE_P (type))
4859 (view_convert (max @c0 @c1))
4860 (convert (max @c0 @c1)))))
4861 (if (cmp == UNEQ_EXPR)
4862 (if (!HONOR_NANS (type))
4863 (if (VECTOR_TYPE_P (type))
4864 (view_convert @c1)
4865 (convert @c1))))
4866 (if (cmp == LTGT_EXPR)
4867 (if (!HONOR_NANS (type))
4868 (if (VECTOR_TYPE_P (type))
4869 (view_convert @c0)
4870 (convert @c0))))))))
4871#endif
4872
de3e5aae
RS
4873/* X != C1 ? -X : C2 simplifies to -X when -C1 == C2. */
4874(simplify
4875 (cond (ne @0 INTEGER_CST@1) (negate@3 @0) INTEGER_CST@2)
4876 (if (!TYPE_SATURATING (type)
4877 && (TYPE_OVERFLOW_WRAPS (type)
4878 || !wi::only_sign_bit_p (wi::to_wide (@1)))
4879 && wi::eq_p (wi::neg (wi::to_wide (@1)), wi::to_wide (@2)))
4880 @3))
4881
4882/* X != C1 ? ~X : C2 simplifies to ~X when ~C1 == C2. */
4883(simplify
4884 (cond (ne @0 INTEGER_CST@1) (bit_not@3 @0) INTEGER_CST@2)
4885 (if (wi::eq_p (wi::bit_not (wi::to_wide (@1)), wi::to_wide (@2)))
4886 @3))
4887
4888/* (X + 1) > Y ? -X : 1 simplifies to X >= Y ? -X : 1 when
4889 X is unsigned, as when X + 1 overflows, X is -1, so -X == 1. */
4890(simplify
4891 (cond (gt (plus @0 integer_onep) @1) (negate @0) integer_onep@2)
4892 (if (TYPE_UNSIGNED (type))
4893 (cond (ge @0 @1) (negate @0) @2)))
4894
96994de0
RB
4895(for cnd (cond vec_cond)
4896 /* A ? B : (A ? X : C) -> A ? B : C. */
4897 (simplify
4898 (cnd @0 (cnd @0 @1 @2) @3)
4899 (cnd @0 @1 @3))
4900 (simplify
4901 (cnd @0 @1 (cnd @0 @2 @3))
4902 (cnd @0 @1 @3))
24a179f8
RB
4903 /* A ? B : (!A ? C : X) -> A ? B : C. */
4904 /* ??? This matches embedded conditions open-coded because genmatch
4905 would generate matching code for conditions in separate stmts only.
4906 The following is still important to merge then and else arm cases
4907 from if-conversion. */
4908 (simplify
4909 (cnd @0 @1 (cnd @2 @3 @4))
2c58d42c 4910 (if (inverse_conditions_p (@0, @2))
24a179f8
RB
4911 (cnd @0 @1 @3)))
4912 (simplify
4913 (cnd @0 (cnd @1 @2 @3) @4)
2c58d42c 4914 (if (inverse_conditions_p (@0, @1))
24a179f8 4915 (cnd @0 @3 @4)))
96994de0
RB
4916
4917 /* A ? B : B -> B. */
4918 (simplify
4919 (cnd @0 @1 @1)
09240451 4920 @1)
96994de0 4921
09240451
MG
4922 /* !A ? B : C -> A ? C : B. */
4923 (simplify
4924 (cnd (logical_inverted_value truth_valued_p@0) @1 @2)
4925 (cnd @0 @2 @1)))
f84e7fd6 4926
7d697919
AP
4927/* abs/negative simplifications moved from fold_cond_expr_with_comparison,
4928 Need to handle (A - B) case as fold_cond_expr_with_comparison does.
4929 Need to handle UN* comparisons.
4930
4931 None of these transformations work for modes with signed
4932 zeros. If A is +/-0, the first two transformations will
4933 change the sign of the result (from +0 to -0, or vice
4934 versa). The last four will fix the sign of the result,
4935 even though the original expressions could be positive or
4936 negative, depending on the sign of A.
4937
4938 Note that all these transformations are correct if A is
4939 NaN, since the two alternatives (A and -A) are also NaNs. */
4940
4941(for cnd (cond vec_cond)
4942 /* A == 0 ? A : -A same as -A */
4943 (for cmp (eq uneq)
4944 (simplify
4945 (cnd (cmp @0 zerop) @0 (negate@1 @0))
4946 (if (!HONOR_SIGNED_ZEROS (type))
4947 @1))
4948 (simplify
df8fe4ad 4949 (cnd (cmp @0 zerop) zerop (negate@1 @0))
7d697919
AP
4950 (if (!HONOR_SIGNED_ZEROS (type))
4951 @1))
4952 )
4953 /* A != 0 ? A : -A same as A */
4954 (for cmp (ne ltgt)
4955 (simplify
4956 (cnd (cmp @0 zerop) @0 (negate @0))
4957 (if (!HONOR_SIGNED_ZEROS (type))
4958 @0))
4959 (simplify
4960 (cnd (cmp @0 zerop) @0 integer_zerop)
4961 (if (!HONOR_SIGNED_ZEROS (type))
4962 @0))
4963 )
4964 /* A >=/> 0 ? A : -A same as abs (A) */
4965 (for cmp (ge gt)
4966 (simplify
4967 (cnd (cmp @0 zerop) @0 (negate @0))
4968 (if (!HONOR_SIGNED_ZEROS (type)
4969 && !TYPE_UNSIGNED (type))
4970 (abs @0))))
4971 /* A <=/< 0 ? A : -A same as -abs (A) */
4972 (for cmp (le lt)
4973 (simplify
4974 (cnd (cmp @0 zerop) @0 (negate @0))
4975 (if (!HONOR_SIGNED_ZEROS (type)
4976 && !TYPE_UNSIGNED (type))
4977 (if (ANY_INTEGRAL_TYPE_P (type)
4978 && !TYPE_OVERFLOW_WRAPS (type))
4979 (with {
4980 tree utype = unsigned_type_for (type);
4981 }
4982 (convert (negate (absu:utype @0))))
4983 (negate (abs @0)))))
4984 )
4985)
4986
9e12b8b1
JJ
4987/* -(type)!A -> (type)A - 1. */
4988(simplify
4989 (negate (convert?:s (logical_inverted_value:s @0)))
4990 (if (INTEGRAL_TYPE_P (type)
4991 && TREE_CODE (type) != BOOLEAN_TYPE
4992 && TYPE_PRECISION (type) > 1
4993 && TREE_CODE (@0) == SSA_NAME
4994 && ssa_name_has_boolean_range (@0))
4995 (plus (convert:type @0) { build_all_ones_cst (type); })))
4996
a3ca1bc5
RB
4997/* A + (B vcmp C ? 1 : 0) -> A - (B vcmp C ? -1 : 0), since vector comparisons
4998 return all -1 or all 0 results. */
f43d102e
RS
4999/* ??? We could instead convert all instances of the vec_cond to negate,
5000 but that isn't necessarily a win on its own. */
5001(simplify
a3ca1bc5 5002 (plus:c @3 (view_convert? (vec_cond:s @0 integer_each_onep@1 integer_zerop@2)))
f43d102e 5003 (if (VECTOR_TYPE_P (type)
928686b1
RS
5004 && known_eq (TYPE_VECTOR_SUBPARTS (type),
5005 TYPE_VECTOR_SUBPARTS (TREE_TYPE (@1)))
f43d102e 5006 && (TYPE_MODE (TREE_TYPE (type))
4d8989d5 5007 == TYPE_MODE (TREE_TYPE (TREE_TYPE (@1)))))
a3ca1bc5 5008 (minus @3 (view_convert (vec_cond @0 (negate @1) @2)))))
f43d102e 5009
a3ca1bc5 5010/* ... likewise A - (B vcmp C ? 1 : 0) -> A + (B vcmp C ? -1 : 0). */
f43d102e 5011(simplify
a3ca1bc5 5012 (minus @3 (view_convert? (vec_cond:s @0 integer_each_onep@1 integer_zerop@2)))
f43d102e 5013 (if (VECTOR_TYPE_P (type)
928686b1
RS
5014 && known_eq (TYPE_VECTOR_SUBPARTS (type),
5015 TYPE_VECTOR_SUBPARTS (TREE_TYPE (@1)))
f43d102e 5016 && (TYPE_MODE (TREE_TYPE (type))
4d8989d5 5017 == TYPE_MODE (TREE_TYPE (TREE_TYPE (@1)))))
a3ca1bc5 5018 (plus @3 (view_convert (vec_cond @0 (negate @1) @2)))))
f84e7fd6 5019
2ee05f1e 5020
f84e7fd6
RB
5021/* Simplifications of comparisons. */
5022
24f1db9c
RB
5023/* See if we can reduce the magnitude of a constant involved in a
5024 comparison by changing the comparison code. This is a canonicalization
5025 formerly done by maybe_canonicalize_comparison_1. */
5026(for cmp (le gt)
5027 acmp (lt ge)
5028 (simplify
f06e47d7
JJ
5029 (cmp @0 uniform_integer_cst_p@1)
5030 (with { tree cst = uniform_integer_cst_p (@1); }
5031 (if (tree_int_cst_sgn (cst) == -1)
5032 (acmp @0 { build_uniform_cst (TREE_TYPE (@1),
5033 wide_int_to_tree (TREE_TYPE (cst),
5034 wi::to_wide (cst)
5035 + 1)); })))))
24f1db9c
RB
5036(for cmp (ge lt)
5037 acmp (gt le)
5038 (simplify
f06e47d7
JJ
5039 (cmp @0 uniform_integer_cst_p@1)
5040 (with { tree cst = uniform_integer_cst_p (@1); }
5041 (if (tree_int_cst_sgn (cst) == 1)
5042 (acmp @0 { build_uniform_cst (TREE_TYPE (@1),
5043 wide_int_to_tree (TREE_TYPE (cst),
5044 wi::to_wide (cst) - 1)); })))))
24f1db9c 5045
f84e7fd6
RB
5046/* We can simplify a logical negation of a comparison to the
5047 inverted comparison. As we cannot compute an expression
5048 operator using invert_tree_comparison we have to simulate
5049 that with expression code iteration. */
5050(for cmp (tcc_comparison)
5051 icmp (inverted_tcc_comparison)
5052 ncmp (inverted_tcc_comparison_with_nans)
5053 /* Ideally we'd like to combine the following two patterns
5054 and handle some more cases by using
5055 (logical_inverted_value (cmp @0 @1))
5056 here but for that genmatch would need to "inline" that.
5057 For now implement what forward_propagate_comparison did. */
5058 (simplify
5059 (bit_not (cmp @0 @1))
5060 (if (VECTOR_TYPE_P (type)
5061 || (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1))
5062 /* Comparison inversion may be impossible for trapping math,
5063 invert_tree_comparison will tell us. But we can't use
5064 a computed operator in the replacement tree thus we have
5065 to play the trick below. */
5066 (with { enum tree_code ic = invert_tree_comparison
1b457aa4 5067 (cmp, HONOR_NANS (@0)); }
f84e7fd6 5068 (if (ic == icmp)
8fdc6c67
RB
5069 (icmp @0 @1)
5070 (if (ic == ncmp)
5071 (ncmp @0 @1))))))
f84e7fd6 5072 (simplify
09240451
MG
5073 (bit_xor (cmp @0 @1) integer_truep)
5074 (with { enum tree_code ic = invert_tree_comparison
1b457aa4 5075 (cmp, HONOR_NANS (@0)); }
09240451 5076 (if (ic == icmp)
8fdc6c67
RB
5077 (icmp @0 @1)
5078 (if (ic == ncmp)
7f04b0d7
RB
5079 (ncmp @0 @1)))))
5080 /* The following bits are handled by fold_binary_op_with_conditional_arg. */
5081 (simplify
5082 (ne (cmp@2 @0 @1) integer_zerop)
5083 (if (types_match (type, TREE_TYPE (@2)))
5084 (cmp @0 @1)))
5085 (simplify
5086 (eq (cmp@2 @0 @1) integer_truep)
5087 (if (types_match (type, TREE_TYPE (@2)))
5088 (cmp @0 @1)))
5089 (simplify
5090 (ne (cmp@2 @0 @1) integer_truep)
5091 (if (types_match (type, TREE_TYPE (@2)))
5092 (with { enum tree_code ic = invert_tree_comparison
5093 (cmp, HONOR_NANS (@0)); }
5094 (if (ic == icmp)
5095 (icmp @0 @1)
5096 (if (ic == ncmp)
5097 (ncmp @0 @1))))))
5098 (simplify
5099 (eq (cmp@2 @0 @1) integer_zerop)
5100 (if (types_match (type, TREE_TYPE (@2)))
5101 (with { enum tree_code ic = invert_tree_comparison
5102 (cmp, HONOR_NANS (@0)); }
5103 (if (ic == icmp)
5104 (icmp @0 @1)
5105 (if (ic == ncmp)
5106 (ncmp @0 @1)))))))
e18c1d66 5107
2ee05f1e
RB
5108/* Transform comparisons of the form X - Y CMP 0 to X CMP Y.
5109 ??? The transformation is valid for the other operators if overflow
5110 is undefined for the type, but performing it here badly interacts
5111 with the transformation in fold_cond_expr_with_comparison which
5112 attempts to synthetize ABS_EXPR. */
5113(for cmp (eq ne)
1af4ebf5
MG
5114 (for sub (minus pointer_diff)
5115 (simplify
5116 (cmp (sub@2 @0 @1) integer_zerop)
5117 (if (single_use (@2))
5118 (cmp @0 @1)))))
2ee05f1e 5119
5c046034
JJ
5120/* Simplify (x < 0) ^ (y < 0) to (x ^ y) < 0 and
5121 (x >= 0) ^ (y >= 0) to (x ^ y) < 0. */
5122(for cmp (lt ge)
5123 (simplify
5124 (bit_xor (cmp:s @0 integer_zerop) (cmp:s @1 integer_zerop))
5125 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
5126 && !TYPE_UNSIGNED (TREE_TYPE (@0))
5127 && types_match (TREE_TYPE (@0), TREE_TYPE (@1)))
5128 (lt (bit_xor @0 @1) { build_zero_cst (TREE_TYPE (@0)); }))))
5129/* Simplify (x < 0) ^ (y >= 0) to (x ^ y) >= 0 and
5130 (x >= 0) ^ (y < 0) to (x ^ y) >= 0. */
5131(simplify
5132 (bit_xor:c (lt:s @0 integer_zerop) (ge:s @1 integer_zerop))
5133 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
5134 && !TYPE_UNSIGNED (TREE_TYPE (@0))
5135 && types_match (TREE_TYPE (@0), TREE_TYPE (@1)))
5136 (ge (bit_xor @0 @1) { build_zero_cst (TREE_TYPE (@0)); })))
5137
2ee05f1e
RB
5138/* Transform comparisons of the form X * C1 CMP 0 to X CMP 0 in the
5139 signed arithmetic case. That form is created by the compiler
5140 often enough for folding it to be of value. One example is in
5141 computing loop trip counts after Operator Strength Reduction. */
07cdc2b8
RB
5142(for cmp (simple_comparison)
5143 scmp (swapped_simple_comparison)
2ee05f1e 5144 (simplify
bc6e9db4 5145 (cmp (mult@3 @0 INTEGER_CST@1) integer_zerop@2)
2ee05f1e
RB
5146 /* Handle unfolded multiplication by zero. */
5147 (if (integer_zerop (@1))
8fdc6c67
RB
5148 (cmp @1 @2)
5149 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
bc6e9db4
RB
5150 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
5151 && single_use (@3))
8fdc6c67
RB
5152 /* If @1 is negative we swap the sense of the comparison. */
5153 (if (tree_int_cst_sgn (@1) < 0)
5154 (scmp @0 @2)
5155 (cmp @0 @2))))))
03cc70b5 5156
ca2b8c08 5157/* For integral types with undefined overflow fold
28752261
MG
5158 x * C1 == C2 into x == C2 / C1 or false.
5159 If overflow wraps and C1 is odd, simplify to x == C2 / C1 in the ring
5160 Z / 2^n Z. */
ca2b8c08
MG
5161(for cmp (eq ne)
5162 (simplify
5163 (cmp (mult @0 INTEGER_CST@1) INTEGER_CST@2)
5164 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
5165 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
5166 && wi::to_wide (@1) != 0)
5167 (with { widest_int quot; }
5168 (if (wi::multiple_of_p (wi::to_widest (@2), wi::to_widest (@1),
5169 TYPE_SIGN (TREE_TYPE (@0)), &quot))
5170 (cmp @0 { wide_int_to_tree (TREE_TYPE (@0), quot); })
28752261
MG
5171 { constant_boolean_node (cmp == NE_EXPR, type); }))
5172 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
5173 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))
5174 && (wi::bit_and (wi::to_wide (@1), 1) == 1))
5175 (cmp @0
5176 {
5177 tree itype = TREE_TYPE (@0);
5178 int p = TYPE_PRECISION (itype);
5179 wide_int m = wi::one (p + 1) << p;
5180 wide_int a = wide_int::from (wi::to_wide (@1), p + 1, UNSIGNED);
5181 wide_int i = wide_int::from (wi::mod_inv (a, m),
5182 p, TYPE_SIGN (itype));
5183 wide_int_to_tree (itype, wi::mul (i, wi::to_wide (@2)));
5184 })))))
ca2b8c08 5185
2ee05f1e
RB
5186/* Simplify comparison of something with itself. For IEEE
5187 floating-point, we can only do some of these simplifications. */
287f8f17 5188(for cmp (eq ge le)
2ee05f1e
RB
5189 (simplify
5190 (cmp @0 @0)
287f8f17 5191 (if (! FLOAT_TYPE_P (TREE_TYPE (@0))
7690bee9 5192 || ! tree_expr_maybe_nan_p (@0))
287f8f17 5193 { constant_boolean_node (true, type); }
d9ca2ca3
RB
5194 (if (cmp != EQ_EXPR
5195 /* With -ftrapping-math conversion to EQ loses an exception. */
5196 && (! FLOAT_TYPE_P (TREE_TYPE (@0))
5197 || ! flag_trapping_math))
287f8f17 5198 (eq @0 @0)))))
2ee05f1e
RB
5199(for cmp (ne gt lt)
5200 (simplify
5201 (cmp @0 @0)
5202 (if (cmp != NE_EXPR
5203 || ! FLOAT_TYPE_P (TREE_TYPE (@0))
7690bee9 5204 || ! tree_expr_maybe_nan_p (@0))
2ee05f1e 5205 { constant_boolean_node (false, type); })))
b5d3d787
RB
5206(for cmp (unle unge uneq)
5207 (simplify
5208 (cmp @0 @0)
5209 { constant_boolean_node (true, type); }))
dd53d197
MG
5210(for cmp (unlt ungt)
5211 (simplify
5212 (cmp @0 @0)
5213 (unordered @0 @0)))
b5d3d787
RB
5214(simplify
5215 (ltgt @0 @0)
7690bee9 5216 (if (!flag_trapping_math || !tree_expr_maybe_nan_p (@0))
b5d3d787 5217 { constant_boolean_node (false, type); }))
2ee05f1e 5218
ad64e807
JJ
5219/* x == ~x -> false */
5220/* x != ~x -> true */
5221(for cmp (eq ne)
5222 (simplify
5223 (cmp:c @0 (bit_not @0))
5224 { constant_boolean_node (cmp == NE_EXPR, type); }))
5225
2ee05f1e 5226/* Fold ~X op ~Y as Y op X. */
07cdc2b8 5227(for cmp (simple_comparison)
2ee05f1e 5228 (simplify
7fe996ba
RB
5229 (cmp (bit_not@2 @0) (bit_not@3 @1))
5230 (if (single_use (@2) && single_use (@3))
5231 (cmp @1 @0))))
2ee05f1e
RB
5232
5233/* Fold ~X op C as X op' ~C, where op' is the swapped comparison. */
07cdc2b8
RB
5234(for cmp (simple_comparison)
5235 scmp (swapped_simple_comparison)
2ee05f1e 5236 (simplify
7fe996ba
RB
5237 (cmp (bit_not@2 @0) CONSTANT_CLASS_P@1)
5238 (if (single_use (@2)
5239 && (TREE_CODE (@1) == INTEGER_CST || TREE_CODE (@1) == VECTOR_CST))
2ee05f1e
RB
5240 (scmp @0 (bit_not @1)))))
5241
07cdc2b8 5242(for cmp (simple_comparison)
07cdc2b8
RB
5243 (simplify
5244 (cmp @0 REAL_CST@1)
5245 /* IEEE doesn't distinguish +0 and -0 in comparisons. */
64d3a1f0
RB
5246 (switch
5247 /* a CMP (-0) -> a CMP 0 */
5248 (if (REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (@1)))
5249 (cmp @0 { build_real (TREE_TYPE (@1), dconst0); }))
e9e46864
RS
5250 /* (-0) CMP b -> 0 CMP b. */
5251 (if (TREE_CODE (@0) == REAL_CST
5252 && REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (@0)))
5253 (cmp { build_real (TREE_TYPE (@0), dconst0); } @1))
64d3a1f0
RB
5254 /* x != NaN is always true, other ops are always false. */
5255 (if (REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
109148dd 5256 && (cmp == EQ_EXPR || cmp == NE_EXPR || !flag_trapping_math)
e9e46864
RS
5257 && !tree_expr_signaling_nan_p (@1)
5258 && !tree_expr_maybe_signaling_nan_p (@0))
5259 { constant_boolean_node (cmp == NE_EXPR, type); })
5260 /* NaN != y is always true, other ops are always false. */
5261 (if (TREE_CODE (@0) == REAL_CST
5262 && REAL_VALUE_ISNAN (TREE_REAL_CST (@0))
109148dd 5263 && (cmp == EQ_EXPR || cmp == NE_EXPR || !flag_trapping_math)
e9e46864
RS
5264 && !tree_expr_signaling_nan_p (@0)
5265 && !tree_expr_signaling_nan_p (@1))
64d3a1f0
RB
5266 { constant_boolean_node (cmp == NE_EXPR, type); })
5267 /* Fold comparisons against infinity. */
5268 (if (REAL_VALUE_ISINF (TREE_REAL_CST (@1))
5269 && MODE_HAS_INFINITIES (TYPE_MODE (TREE_TYPE (@1))))
5270 (with
5271 {
5272 REAL_VALUE_TYPE max;
5273 enum tree_code code = cmp;
5274 bool neg = REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1));
5275 if (neg)
5276 code = swap_tree_comparison (code);
5277 }
5278 (switch
e96a5786 5279 /* x > +Inf is always false, if we ignore NaNs or exceptions. */
64d3a1f0 5280 (if (code == GT_EXPR
e96a5786 5281 && !(HONOR_NANS (@0) && flag_trapping_math))
64d3a1f0
RB
5282 { constant_boolean_node (false, type); })
5283 (if (code == LE_EXPR)
e96a5786 5284 /* x <= +Inf is always true, if we don't care about NaNs. */
64d3a1f0
RB
5285 (if (! HONOR_NANS (@0))
5286 { constant_boolean_node (true, type); }
e96a5786
JM
5287 /* x <= +Inf is the same as x == x, i.e. !isnan(x), but this loses
5288 an "invalid" exception. */
5289 (if (!flag_trapping_math)
5290 (eq @0 @0))))
5291 /* x == +Inf and x >= +Inf are always equal to x > DBL_MAX, but
5292 for == this introduces an exception for x a NaN. */
5293 (if ((code == EQ_EXPR && !(HONOR_NANS (@0) && flag_trapping_math))
5294 || code == GE_EXPR)
64d3a1f0
RB
5295 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
5296 (if (neg)
5297 (lt @0 { build_real (TREE_TYPE (@0), max); })
5298 (gt @0 { build_real (TREE_TYPE (@0), max); }))))
5299 /* x < +Inf is always equal to x <= DBL_MAX. */
5300 (if (code == LT_EXPR)
5301 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
5302 (if (neg)
5303 (ge @0 { build_real (TREE_TYPE (@0), max); })
5304 (le @0 { build_real (TREE_TYPE (@0), max); }))))
e96a5786
JM
5305 /* x != +Inf is always equal to !(x > DBL_MAX), but this introduces
5306 an exception for x a NaN so use an unordered comparison. */
64d3a1f0
RB
5307 (if (code == NE_EXPR)
5308 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
5309 (if (! HONOR_NANS (@0))
5310 (if (neg)
5311 (ge @0 { build_real (TREE_TYPE (@0), max); })
5312 (le @0 { build_real (TREE_TYPE (@0), max); }))
5313 (if (neg)
e96a5786
JM
5314 (unge @0 { build_real (TREE_TYPE (@0), max); })
5315 (unle @0 { build_real (TREE_TYPE (@0), max); }))))))))))
07cdc2b8
RB
5316
5317 /* If this is a comparison of a real constant with a PLUS_EXPR
5318 or a MINUS_EXPR of a real constant, we can convert it into a
5319 comparison with a revised real constant as long as no overflow
5320 occurs when unsafe_math_optimizations are enabled. */
5321 (if (flag_unsafe_math_optimizations)
5322 (for op (plus minus)
5323 (simplify
5324 (cmp (op @0 REAL_CST@1) REAL_CST@2)
5325 (with
5326 {
5327 tree tem = const_binop (op == PLUS_EXPR ? MINUS_EXPR : PLUS_EXPR,
5328 TREE_TYPE (@1), @2, @1);
5329 }
f980c9a2 5330 (if (tem && !TREE_OVERFLOW (tem))
07cdc2b8
RB
5331 (cmp @0 { tem; }))))))
5332
5333 /* Likewise, we can simplify a comparison of a real constant with
5334 a MINUS_EXPR whose first operand is also a real constant, i.e.
5335 (c1 - x) < c2 becomes x > c1-c2. Reordering is allowed on
5336 floating-point types only if -fassociative-math is set. */
5337 (if (flag_associative_math)
5338 (simplify
0409237b 5339 (cmp (minus REAL_CST@0 @1) REAL_CST@2)
07cdc2b8 5340 (with { tree tem = const_binop (MINUS_EXPR, TREE_TYPE (@1), @0, @2); }
f980c9a2 5341 (if (tem && !TREE_OVERFLOW (tem))
07cdc2b8
RB
5342 (cmp { tem; } @1)))))
5343
5344 /* Fold comparisons against built-in math functions. */
0043b528 5345 (if (flag_unsafe_math_optimizations && ! flag_errno_math)
07cdc2b8
RB
5346 (for sq (SQRT)
5347 (simplify
5348 (cmp (sq @0) REAL_CST@1)
64d3a1f0
RB
5349 (switch
5350 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
5351 (switch
5352 /* sqrt(x) < y is always false, if y is negative. */
5353 (if (cmp == EQ_EXPR || cmp == LT_EXPR || cmp == LE_EXPR)
8fdc6c67 5354 { constant_boolean_node (false, type); })
64d3a1f0
RB
5355 /* sqrt(x) > y is always true, if y is negative and we
5356 don't care about NaNs, i.e. negative values of x. */
5357 (if (cmp == NE_EXPR || !HONOR_NANS (@0))
5358 { constant_boolean_node (true, type); })
5359 /* sqrt(x) > y is the same as x >= 0, if y is negative. */
5360 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })))
c53233c6
RS
5361 (if (real_equal (TREE_REAL_CST_PTR (@1), &dconst0))
5362 (switch
5363 /* sqrt(x) < 0 is always false. */
5364 (if (cmp == LT_EXPR)
5365 { constant_boolean_node (false, type); })
5366 /* sqrt(x) >= 0 is always true if we don't care about NaNs. */
5367 (if (cmp == GE_EXPR && !HONOR_NANS (@0))
5368 { constant_boolean_node (true, type); })
5369 /* sqrt(x) <= 0 -> x == 0. */
5370 (if (cmp == LE_EXPR)
5371 (eq @0 @1))
5372 /* Otherwise sqrt(x) cmp 0 -> x cmp 0. Here cmp can be >=, >,
5373 == or !=. In the last case:
5374
5375 (sqrt(x) != 0) == (NaN != 0) == true == (x != 0)
5376
5377 if x is negative or NaN. Due to -funsafe-math-optimizations,
5378 the results for other x follow from natural arithmetic. */
5379 (cmp @0 @1)))
0043b528
JJ
5380 (if ((cmp == LT_EXPR
5381 || cmp == LE_EXPR
5382 || cmp == GT_EXPR
5383 || cmp == GE_EXPR)
5384 && !REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
5385 /* Give up for -frounding-math. */
5386 && !HONOR_SIGN_DEPENDENT_ROUNDING (TREE_TYPE (@0)))
64d3a1f0
RB
5387 (with
5388 {
0043b528
JJ
5389 REAL_VALUE_TYPE c2;
5390 enum tree_code ncmp = cmp;
5391 const real_format *fmt
5392 = REAL_MODE_FORMAT (TYPE_MODE (TREE_TYPE (@0)));
5c88ea94
RS
5393 real_arithmetic (&c2, MULT_EXPR,
5394 &TREE_REAL_CST (@1), &TREE_REAL_CST (@1));
0043b528
JJ
5395 real_convert (&c2, fmt, &c2);
5396 /* See PR91734: if c2 is inexact and sqrt(c2) < c (or sqrt(c2) >= c),
5397 then change LT_EXPR into LE_EXPR or GE_EXPR into GT_EXPR. */
5398 if (!REAL_VALUE_ISINF (c2))
5399 {
5400 tree c3 = fold_const_call (CFN_SQRT, TREE_TYPE (@0),
5401 build_real (TREE_TYPE (@0), c2));
5402 if (c3 == NULL_TREE || TREE_CODE (c3) != REAL_CST)
5403 ncmp = ERROR_MARK;
5404 else if ((cmp == LT_EXPR || cmp == GE_EXPR)
5405 && real_less (&TREE_REAL_CST (c3), &TREE_REAL_CST (@1)))
5406 ncmp = cmp == LT_EXPR ? LE_EXPR : GT_EXPR;
5407 else if ((cmp == LE_EXPR || cmp == GT_EXPR)
5408 && real_less (&TREE_REAL_CST (@1), &TREE_REAL_CST (c3)))
5409 ncmp = cmp == LE_EXPR ? LT_EXPR : GE_EXPR;
5410 else
5411 {
5412 /* With rounding to even, sqrt of up to 3 different values
5413 gives the same normal result, so in some cases c2 needs
5414 to be adjusted. */
5415 REAL_VALUE_TYPE c2alt, tow;
5416 if (cmp == LT_EXPR || cmp == GE_EXPR)
5417 tow = dconst0;
5418 else
bb9d4344 5419 tow = dconstinf;
0043b528
JJ
5420 real_nextafter (&c2alt, fmt, &c2, &tow);
5421 real_convert (&c2alt, fmt, &c2alt);
5422 if (REAL_VALUE_ISINF (c2alt))
5423 ncmp = ERROR_MARK;
5424 else
5425 {
5426 c3 = fold_const_call (CFN_SQRT, TREE_TYPE (@0),
5427 build_real (TREE_TYPE (@0), c2alt));
5428 if (c3 == NULL_TREE || TREE_CODE (c3) != REAL_CST)
5429 ncmp = ERROR_MARK;
5430 else if (real_equal (&TREE_REAL_CST (c3),
5431 &TREE_REAL_CST (@1)))
5432 c2 = c2alt;
5433 }
5434 }
5435 }
64d3a1f0 5436 }
0043b528
JJ
5437 (if (cmp == GT_EXPR || cmp == GE_EXPR)
5438 (if (REAL_VALUE_ISINF (c2))
5439 /* sqrt(x) > y is x == +Inf, when y is very large. */
5440 (if (HONOR_INFINITIES (@0))
5441 (eq @0 { build_real (TREE_TYPE (@0), c2); })
5442 { constant_boolean_node (false, type); })
5443 /* sqrt(x) > c is the same as x > c*c. */
5444 (if (ncmp != ERROR_MARK)
5445 (if (ncmp == GE_EXPR)
5446 (ge @0 { build_real (TREE_TYPE (@0), c2); })
5447 (gt @0 { build_real (TREE_TYPE (@0), c2); }))))
5448 /* else if (cmp == LT_EXPR || cmp == LE_EXPR) */
5449 (if (REAL_VALUE_ISINF (c2))
5450 (switch
5451 /* sqrt(x) < y is always true, when y is a very large
5452 value and we don't care about NaNs or Infinities. */
5453 (if (! HONOR_NANS (@0) && ! HONOR_INFINITIES (@0))
5454 { constant_boolean_node (true, type); })
5455 /* sqrt(x) < y is x != +Inf when y is very large and we
5456 don't care about NaNs. */
5457 (if (! HONOR_NANS (@0))
5458 (ne @0 { build_real (TREE_TYPE (@0), c2); }))
5459 /* sqrt(x) < y is x >= 0 when y is very large and we
5460 don't care about Infinities. */
5461 (if (! HONOR_INFINITIES (@0))
5462 (ge @0 { build_real (TREE_TYPE (@0), dconst0); }))
5463 /* sqrt(x) < y is x >= 0 && x != +Inf, when y is large. */
5464 (if (GENERIC)
5465 (truth_andif
5466 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
5467 (ne @0 { build_real (TREE_TYPE (@0), c2); }))))
5468 /* sqrt(x) < c is the same as x < c*c, if we ignore NaNs. */
5469 (if (ncmp != ERROR_MARK && ! HONOR_NANS (@0))
5470 (if (ncmp == LT_EXPR)
5471 (lt @0 { build_real (TREE_TYPE (@0), c2); })
5472 (le @0 { build_real (TREE_TYPE (@0), c2); }))
5473 /* sqrt(x) < c is the same as x >= 0 && x < c*c. */
5474 (if (ncmp != ERROR_MARK && GENERIC)
5475 (if (ncmp == LT_EXPR)
5476 (truth_andif
5477 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
5478 (lt @0 { build_real (TREE_TYPE (@0), c2); }))
5479 (truth_andif
5480 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
5481 (le @0 { build_real (TREE_TYPE (@0), c2); })))))))))))
0ca2e7f7
PK
5482 /* Transform sqrt(x) cmp sqrt(y) -> x cmp y. */
5483 (simplify
5484 (cmp (sq @0) (sq @1))
5485 (if (! HONOR_NANS (@0))
5486 (cmp @0 @1))))))
2ee05f1e 5487
e41ec71b 5488/* Optimize various special cases of (FTYPE) N CMP (FTYPE) M. */
f3842847
YG
5489(for cmp (lt le eq ne ge gt unordered ordered unlt unle ungt unge uneq ltgt)
5490 icmp (lt le eq ne ge gt unordered ordered lt le gt ge eq ne)
e41ec71b
YG
5491 (simplify
5492 (cmp (float@0 @1) (float @2))
5493 (if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (@0))
5494 && ! DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@0)))
5495 (with
5496 {
5497 format_helper fmt (REAL_MODE_FORMAT (TYPE_MODE (TREE_TYPE (@0))));
5498 tree type1 = TREE_TYPE (@1);
5499 bool type1_signed_p = TYPE_SIGN (type1) == SIGNED;
5500 tree type2 = TREE_TYPE (@2);
5501 bool type2_signed_p = TYPE_SIGN (type2) == SIGNED;
5502 }
5503 (if (fmt.can_represent_integral_type_p (type1)
5504 && fmt.can_represent_integral_type_p (type2))
f3842847
YG
5505 (if (cmp == ORDERED_EXPR || cmp == UNORDERED_EXPR)
5506 { constant_boolean_node (cmp == ORDERED_EXPR, type); }
5507 (if (TYPE_PRECISION (type1) > TYPE_PRECISION (type2)
5508 && type1_signed_p >= type2_signed_p)
5509 (icmp @1 (convert @2))
5510 (if (TYPE_PRECISION (type1) < TYPE_PRECISION (type2)
5511 && type1_signed_p <= type2_signed_p)
5512 (icmp (convert:type2 @1) @2)
5513 (if (TYPE_PRECISION (type1) == TYPE_PRECISION (type2)
5514 && type1_signed_p == type2_signed_p)
5515 (icmp @1 @2))))))))))
e41ec71b 5516
c779bea5
YG
5517/* Optimize various special cases of (FTYPE) N CMP CST. */
5518(for cmp (lt le eq ne ge gt)
5519 icmp (le le eq ne ge ge)
5520 (simplify
5521 (cmp (float @0) REAL_CST@1)
5522 (if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (@1))
5523 && ! DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1)))
5524 (with
5525 {
5526 tree itype = TREE_TYPE (@0);
c779bea5
YG
5527 format_helper fmt (REAL_MODE_FORMAT (TYPE_MODE (TREE_TYPE (@1))));
5528 const REAL_VALUE_TYPE *cst = TREE_REAL_CST_PTR (@1);
5529 /* Be careful to preserve any potential exceptions due to
5530 NaNs. qNaNs are ok in == or != context.
5531 TODO: relax under -fno-trapping-math or
5532 -fno-signaling-nans. */
5533 bool exception_p
5534 = real_isnan (cst) && (cst->signalling
c651dca2 5535 || (cmp != EQ_EXPR && cmp != NE_EXPR));
c779bea5
YG
5536 }
5537 /* TODO: allow non-fitting itype and SNaNs when
5538 -fno-trapping-math. */
e41ec71b 5539 (if (fmt.can_represent_integral_type_p (itype) && ! exception_p)
c779bea5
YG
5540 (with
5541 {
e41ec71b 5542 signop isign = TYPE_SIGN (itype);
c779bea5
YG
5543 REAL_VALUE_TYPE imin, imax;
5544 real_from_integer (&imin, fmt, wi::min_value (itype), isign);
5545 real_from_integer (&imax, fmt, wi::max_value (itype), isign);
5546
5547 REAL_VALUE_TYPE icst;
5548 if (cmp == GT_EXPR || cmp == GE_EXPR)
5549 real_ceil (&icst, fmt, cst);
5550 else if (cmp == LT_EXPR || cmp == LE_EXPR)
5551 real_floor (&icst, fmt, cst);
5552 else
5553 real_trunc (&icst, fmt, cst);
5554
b09bf97b 5555 bool cst_int_p = !real_isnan (cst) && real_identical (&icst, cst);
c779bea5
YG
5556
5557 bool overflow_p = false;
5558 wide_int icst_val
5559 = real_to_integer (&icst, &overflow_p, TYPE_PRECISION (itype));
5560 }
5561 (switch
5562 /* Optimize cases when CST is outside of ITYPE's range. */
5563 (if (real_compare (LT_EXPR, cst, &imin))
5564 { constant_boolean_node (cmp == GT_EXPR || cmp == GE_EXPR || cmp == NE_EXPR,
5565 type); })
5566 (if (real_compare (GT_EXPR, cst, &imax))
5567 { constant_boolean_node (cmp == LT_EXPR || cmp == LE_EXPR || cmp == NE_EXPR,
5568 type); })
5569 /* Remove cast if CST is an integer representable by ITYPE. */
5570 (if (cst_int_p)
5571 (cmp @0 { gcc_assert (!overflow_p);
5572 wide_int_to_tree (itype, icst_val); })
5573 )
5574 /* When CST is fractional, optimize
5575 (FTYPE) N == CST -> 0
5576 (FTYPE) N != CST -> 1. */
5577 (if (cmp == EQ_EXPR || cmp == NE_EXPR)
03cc70b5 5578 { constant_boolean_node (cmp == NE_EXPR, type); })
c779bea5
YG
5579 /* Otherwise replace with sensible integer constant. */
5580 (with
5581 {
5582 gcc_checking_assert (!overflow_p);
5583 }
5584 (icmp @0 { wide_int_to_tree (itype, icst_val); })))))))))
5585
40fd269a
MG
5586/* Fold A /[ex] B CMP C to A CMP B * C. */
5587(for cmp (eq ne)
5588 (simplify
5589 (cmp (exact_div @0 @1) INTEGER_CST@2)
5590 (if (!integer_zerop (@1))
8e6cdc90 5591 (if (wi::to_wide (@2) == 0)
40fd269a
MG
5592 (cmp @0 @2)
5593 (if (TREE_CODE (@1) == INTEGER_CST)
5594 (with
5595 {
4a669ac3 5596 wi::overflow_type ovf;
8e6cdc90
RS
5597 wide_int prod = wi::mul (wi::to_wide (@2), wi::to_wide (@1),
5598 TYPE_SIGN (TREE_TYPE (@1)), &ovf);
40fd269a
MG
5599 }
5600 (if (ovf)
5601 { constant_boolean_node (cmp == NE_EXPR, type); }
5602 (cmp @0 { wide_int_to_tree (TREE_TYPE (@0), prod); }))))))))
5603(for cmp (lt le gt ge)
5604 (simplify
5605 (cmp (exact_div @0 INTEGER_CST@1) INTEGER_CST@2)
8e6cdc90 5606 (if (wi::gt_p (wi::to_wide (@1), 0, TYPE_SIGN (TREE_TYPE (@1))))
40fd269a
MG
5607 (with
5608 {
4a669ac3 5609 wi::overflow_type ovf;
8e6cdc90
RS
5610 wide_int prod = wi::mul (wi::to_wide (@2), wi::to_wide (@1),
5611 TYPE_SIGN (TREE_TYPE (@1)), &ovf);
40fd269a
MG
5612 }
5613 (if (ovf)
8e6cdc90
RS
5614 { constant_boolean_node (wi::lt_p (wi::to_wide (@2), 0,
5615 TYPE_SIGN (TREE_TYPE (@2)))
40fd269a
MG
5616 != (cmp == LT_EXPR || cmp == LE_EXPR), type); }
5617 (cmp @0 { wide_int_to_tree (TREE_TYPE (@0), prod); }))))))
5618
9cf60d3b
MG
5619/* Fold (size_t)(A /[ex] B) CMP C to (size_t)A CMP (size_t)B * C or A CMP' 0.
5620
5621 For small C (less than max/B), this is (size_t)A CMP (size_t)B * C.
5622 For large C (more than min/B+2^size), this is also true, with the
5623 multiplication computed modulo 2^size.
5624 For intermediate C, this just tests the sign of A. */
5625(for cmp (lt le gt ge)
5626 cmp2 (ge ge lt lt)
5627 (simplify
5628 (cmp (convert (exact_div @0 INTEGER_CST@1)) INTEGER_CST@2)
5629 (if (tree_nop_conversion_p (TREE_TYPE (@0), TREE_TYPE (@2))
5630 && TYPE_UNSIGNED (TREE_TYPE (@2)) && !TYPE_UNSIGNED (TREE_TYPE (@0))
5631 && wi::gt_p (wi::to_wide (@1), 0, TYPE_SIGN (TREE_TYPE (@1))))
5632 (with
5633 {
5634 tree utype = TREE_TYPE (@2);
5635 wide_int denom = wi::to_wide (@1);
5636 wide_int right = wi::to_wide (@2);
5637 wide_int smax = wi::sdiv_trunc (wi::max_value (TREE_TYPE (@0)), denom);
5638 wide_int smin = wi::sdiv_trunc (wi::min_value (TREE_TYPE (@0)), denom);
5639 bool small = wi::leu_p (right, smax);
5640 bool large = wi::geu_p (right, smin);
5641 }
5642 (if (small || large)
5643 (cmp (convert:utype @0) (mult @2 (convert @1)))
5644 (cmp2 @0 { build_zero_cst (TREE_TYPE (@0)); }))))))
5645
cfdc4f33
MG
5646/* Unordered tests if either argument is a NaN. */
5647(simplify
5648 (bit_ior (unordered @0 @0) (unordered @1 @1))
aea417d7 5649 (if (types_match (@0, @1))
cfdc4f33 5650 (unordered @0 @1)))
257b01ba
MG
5651(simplify
5652 (bit_and (ordered @0 @0) (ordered @1 @1))
5653 (if (types_match (@0, @1))
5654 (ordered @0 @1)))
cfdc4f33
MG
5655(simplify
5656 (bit_ior:c (unordered @0 @0) (unordered:c@2 @0 @1))
5657 @2)
257b01ba
MG
5658(simplify
5659 (bit_and:c (ordered @0 @0) (ordered:c@2 @0 @1))
5660 @2)
e18c1d66 5661
90c6f26c
RB
5662/* Simple range test simplifications. */
5663/* A < B || A >= B -> true. */
5d30c58d
RB
5664(for test1 (lt le le le ne ge)
5665 test2 (ge gt ge ne eq ne)
90c6f26c
RB
5666 (simplify
5667 (bit_ior:c (test1 @0 @1) (test2 @0 @1))
5668 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
5669 || VECTOR_INTEGER_TYPE_P (TREE_TYPE (@0)))
5670 { constant_boolean_node (true, type); })))
5671/* A < B && A >= B -> false. */
5672(for test1 (lt lt lt le ne eq)
5673 test2 (ge gt eq gt eq gt)
5674 (simplify
5675 (bit_and:c (test1 @0 @1) (test2 @0 @1))
5676 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
5677 || VECTOR_INTEGER_TYPE_P (TREE_TYPE (@0)))
5678 { constant_boolean_node (false, type); })))
5679
9ebc3467
YG
5680/* A & (2**N - 1) <= 2**K - 1 -> A & (2**N - 2**K) == 0
5681 A & (2**N - 1) > 2**K - 1 -> A & (2**N - 2**K) != 0
5682
5683 Note that comparisons
5684 A & (2**N - 1) < 2**K -> A & (2**N - 2**K) == 0
5685 A & (2**N - 1) >= 2**K -> A & (2**N - 2**K) != 0
5686 will be canonicalized to above so there's no need to
5687 consider them here.
5688 */
5689
5690(for cmp (le gt)
5691 eqcmp (eq ne)
5692 (simplify
5693 (cmp (bit_and@0 @1 INTEGER_CST@2) INTEGER_CST@3)
5694 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)))
5695 (with
5696 {
5697 tree ty = TREE_TYPE (@0);
5698 unsigned prec = TYPE_PRECISION (ty);
5699 wide_int mask = wi::to_wide (@2, prec);
5700 wide_int rhs = wi::to_wide (@3, prec);
5701 signop sgn = TYPE_SIGN (ty);
5702 }
5703 (if ((mask & (mask + 1)) == 0 && wi::gt_p (rhs, 0, sgn)
5704 && (rhs & (rhs + 1)) == 0 && wi::ge_p (mask, rhs, sgn))
5705 (eqcmp (bit_and @1 { wide_int_to_tree (ty, mask - rhs); })
5706 { build_zero_cst (ty); }))))))
5707
534bd33b
MG
5708/* -A CMP -B -> B CMP A. */
5709(for cmp (tcc_comparison)
5710 scmp (swapped_tcc_comparison)
5711 (simplify
5712 (cmp (negate @0) (negate @1))
5713 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
5714 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
5715 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
5716 (scmp @0 @1)))
5717 (simplify
5718 (cmp (negate @0) CONSTANT_CLASS_P@1)
5719 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
5720 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
5721 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
23f27839 5722 (with { tree tem = const_unop (NEGATE_EXPR, TREE_TYPE (@0), @1); }
534bd33b
MG
5723 (if (tem && !TREE_OVERFLOW (tem))
5724 (scmp @0 { tem; }))))))
5725
b0eb889b
MG
5726/* Convert ABS_EXPR<x> == 0 or ABS_EXPR<x> != 0 to x == 0 or x != 0. */
5727(for op (eq ne)
5728 (simplify
5729 (op (abs @0) zerop@1)
5730 (op @0 @1)))
5731
6358a676
MG
5732/* From fold_sign_changed_comparison and fold_widened_comparison.
5733 FIXME: the lack of symmetry is disturbing. */
79d4f7c6
RB
5734(for cmp (simple_comparison)
5735 (simplify
5736 (cmp (convert@0 @00) (convert?@1 @10))
452ec2a5 5737 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
79d4f7c6
RB
5738 /* Disable this optimization if we're casting a function pointer
5739 type on targets that require function pointer canonicalization. */
5740 && !(targetm.have_canonicalize_funcptr_for_compare ()
400bc526
JDA
5741 && ((POINTER_TYPE_P (TREE_TYPE (@00))
5742 && FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@00))))
5743 || (POINTER_TYPE_P (TREE_TYPE (@10))
5744 && FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@10))))))
2fde61e3 5745 && single_use (@0))
79d4f7c6
RB
5746 (if (TYPE_PRECISION (TREE_TYPE (@00)) == TYPE_PRECISION (TREE_TYPE (@0))
5747 && (TREE_CODE (@10) == INTEGER_CST
6358a676 5748 || @1 != @10)
79d4f7c6
RB
5749 && (TYPE_UNSIGNED (TREE_TYPE (@00)) == TYPE_UNSIGNED (TREE_TYPE (@0))
5750 || cmp == NE_EXPR
5751 || cmp == EQ_EXPR)
a3ca1fc5
RB
5752 && !POINTER_TYPE_P (TREE_TYPE (@00))
5753 /* (int)bool:32 != (int)uint is not the same as
5754 bool:32 != (bool:32)uint since boolean types only have two valid
5755 values independent of their precision. */
5756 && (TREE_CODE (TREE_TYPE (@00)) != BOOLEAN_TYPE
5757 || TREE_CODE (TREE_TYPE (@10)) == BOOLEAN_TYPE))
79d4f7c6
RB
5758 /* ??? The special-casing of INTEGER_CST conversion was in the original
5759 code and here to avoid a spurious overflow flag on the resulting
5760 constant which fold_convert produces. */
5761 (if (TREE_CODE (@1) == INTEGER_CST)
5762 (cmp @00 { force_fit_type (TREE_TYPE (@00), wi::to_widest (@1), 0,
5763 TREE_OVERFLOW (@1)); })
5764 (cmp @00 (convert @1)))
5765
5766 (if (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (TREE_TYPE (@00)))
5767 /* If possible, express the comparison in the shorter mode. */
5768 (if ((cmp == EQ_EXPR || cmp == NE_EXPR
7fd82d52
PP
5769 || TYPE_UNSIGNED (TREE_TYPE (@0)) == TYPE_UNSIGNED (TREE_TYPE (@00))
5770 || (!TYPE_UNSIGNED (TREE_TYPE (@0))
5771 && TYPE_UNSIGNED (TREE_TYPE (@00))))
79d4f7c6
RB
5772 && (types_match (TREE_TYPE (@10), TREE_TYPE (@00))
5773 || ((TYPE_PRECISION (TREE_TYPE (@00))
5774 >= TYPE_PRECISION (TREE_TYPE (@10)))
5775 && (TYPE_UNSIGNED (TREE_TYPE (@00))
5776 == TYPE_UNSIGNED (TREE_TYPE (@10))))
5777 || (TREE_CODE (@10) == INTEGER_CST
f6c15759 5778 && INTEGRAL_TYPE_P (TREE_TYPE (@00))
79d4f7c6
RB
5779 && int_fits_type_p (@10, TREE_TYPE (@00)))))
5780 (cmp @00 (convert @10))
5781 (if (TREE_CODE (@10) == INTEGER_CST
f6c15759 5782 && INTEGRAL_TYPE_P (TREE_TYPE (@00))
79d4f7c6
RB
5783 && !int_fits_type_p (@10, TREE_TYPE (@00)))
5784 (with
5785 {
5786 tree min = lower_bound_in_type (TREE_TYPE (@10), TREE_TYPE (@00));
5787 tree max = upper_bound_in_type (TREE_TYPE (@10), TREE_TYPE (@00));
5788 bool above = integer_nonzerop (const_binop (LT_EXPR, type, max, @10));
5789 bool below = integer_nonzerop (const_binop (LT_EXPR, type, @10, min));
5790 }
5791 (if (above || below)
5792 (if (cmp == EQ_EXPR || cmp == NE_EXPR)
5793 { constant_boolean_node (cmp == EQ_EXPR ? false : true, type); }
5794 (if (cmp == LT_EXPR || cmp == LE_EXPR)
5795 { constant_boolean_node (above ? true : false, type); }
5796 (if (cmp == GT_EXPR || cmp == GE_EXPR)
cf716ab5
RB
5797 { constant_boolean_node (above ? false : true, type); })))))))))
5798 /* Fold (double)float1 CMP (double)float2 into float1 CMP float2. */
5799 (if (FLOAT_TYPE_P (TREE_TYPE (@00))
5800 && (DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@0))
5801 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@00)))
5802 && (DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@0))
5803 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@10))))
5804 (with
5805 {
5806 tree type1 = TREE_TYPE (@10);
5807 if (TREE_CODE (@10) == REAL_CST && !DECIMAL_FLOAT_TYPE_P (type1))
5808 {
5809 REAL_VALUE_TYPE orig = TREE_REAL_CST (@10);
5810 if (TYPE_PRECISION (type1) > TYPE_PRECISION (float_type_node)
5811 && exact_real_truncate (TYPE_MODE (float_type_node), &orig))
5812 type1 = float_type_node;
5813 if (TYPE_PRECISION (type1) > TYPE_PRECISION (double_type_node)
5814 && exact_real_truncate (TYPE_MODE (double_type_node), &orig))
5815 type1 = double_type_node;
5816 }
5817 tree newtype
5818 = (TYPE_PRECISION (TREE_TYPE (@00)) > TYPE_PRECISION (type1)
5819 ? TREE_TYPE (@00) : type1);
5820 }
5821 (if (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (newtype))
5822 (cmp (convert:newtype @00) (convert:newtype @10))))))))
5823
66e1cacf 5824
96a111a3 5825(for cmp (eq ne)
96a111a3 5826 (simplify
5124c34f 5827 /* SSA names are canonicalized to 2nd place. */
96a111a3 5828 (cmp addr@0 SSA_NAME@1)
5124c34f 5829 (with
49bf49bb
RB
5830 {
5831 poly_int64 off; tree base;
5832 tree addr = (TREE_CODE (@0) == SSA_NAME
5833 ? gimple_assign_rhs1 (SSA_NAME_DEF_STMT (@0)) : @0);
5834 }
5124c34f
RB
5835 /* A local variable can never be pointed to by
5836 the default SSA name of an incoming parameter. */
5837 (if (SSA_NAME_IS_DEFAULT_DEF (@1)
5838 && TREE_CODE (SSA_NAME_VAR (@1)) == PARM_DECL
49bf49bb 5839 && (base = get_base_address (TREE_OPERAND (addr, 0)))
5124c34f
RB
5840 && TREE_CODE (base) == VAR_DECL
5841 && auto_var_in_fn_p (base, current_function_decl))
5842 (if (cmp == NE_EXPR)
5843 { constant_boolean_node (true, type); }
5844 { constant_boolean_node (false, type); })
5845 /* If the address is based on @1 decide using the offset. */
49bf49bb 5846 (if ((base = get_addr_base_and_unit_offset (TREE_OPERAND (addr, 0), &off))
5124c34f
RB
5847 && TREE_CODE (base) == MEM_REF
5848 && TREE_OPERAND (base, 0) == @1)
5849 (with { off += mem_ref_offset (base).force_shwi (); }
5850 (if (known_ne (off, 0))
5851 { constant_boolean_node (cmp == NE_EXPR, type); }
5852 (if (known_eq (off, 0))
5853 { constant_boolean_node (cmp == EQ_EXPR, type); }))))))))
96a111a3 5854
66e1cacf
RB
5855/* Equality compare simplifications from fold_binary */
5856(for cmp (eq ne)
5857
5858 /* If we have (A | C) == D where C & ~D != 0, convert this into 0.
5859 Similarly for NE_EXPR. */
5860 (simplify
5861 (cmp (convert?@3 (bit_ior @0 INTEGER_CST@1)) INTEGER_CST@2)
5862 (if (tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0))
8e6cdc90 5863 && wi::bit_and_not (wi::to_wide (@1), wi::to_wide (@2)) != 0)
66e1cacf
RB
5864 { constant_boolean_node (cmp == NE_EXPR, type); }))
5865
5866 /* (X ^ Y) == 0 becomes X == Y, and (X ^ Y) != 0 becomes X != Y. */
5867 (simplify
5868 (cmp (bit_xor @0 @1) integer_zerop)
5869 (cmp @0 @1))
5870
5871 /* (X ^ Y) == Y becomes X == 0.
5872 Likewise (X ^ Y) == X becomes Y == 0. */
5873 (simplify
99e943a2 5874 (cmp:c (bit_xor:c @0 @1) @0)
66e1cacf
RB
5875 (cmp @1 { build_zero_cst (TREE_TYPE (@1)); }))
5876
f5f18384
JJ
5877 /* (X & Y) == X becomes (X & ~Y) == 0. */
5878 (simplify
5879 (cmp:c (bit_and:c @0 @1) @0)
5880 (cmp (bit_and @0 (bit_not! @1)) { build_zero_cst (TREE_TYPE (@0)); }))
2b536797
JJ
5881 (simplify
5882 (cmp:c (convert@3 (bit_and (convert@2 @0) INTEGER_CST@1)) (convert @0))
5883 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
5884 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
5885 && INTEGRAL_TYPE_P (TREE_TYPE (@3))
5886 && TYPE_PRECISION (TREE_TYPE (@2)) == TYPE_PRECISION (TREE_TYPE (@0))
5887 && TYPE_PRECISION (TREE_TYPE (@3)) > TYPE_PRECISION (TREE_TYPE (@2))
5888 && !wi::neg_p (wi::to_wide (@1)))
5889 (cmp (bit_and @0 (convert (bit_not @1)))
5890 { build_zero_cst (TREE_TYPE (@0)); })))
f5f18384
JJ
5891
5892 /* (X | Y) == Y becomes (X & ~Y) == 0. */
5893 (simplify
5894 (cmp:c (bit_ior:c @0 @1) @1)
5895 (cmp (bit_and @0 (bit_not! @1)) { build_zero_cst (TREE_TYPE (@0)); }))
f5f18384 5896
66e1cacf
RB
5897 /* (X ^ C1) op C2 can be rewritten as X op (C1 ^ C2). */
5898 (simplify
5899 (cmp (convert?@3 (bit_xor @0 INTEGER_CST@1)) INTEGER_CST@2)
5900 (if (tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0)))
d057c866 5901 (cmp @0 (bit_xor @1 (convert @2)))))
d057c866
RB
5902
5903 (simplify
5904 (cmp (convert? addr@0) integer_zerop)
5905 (if (tree_single_nonzero_warnv_p (@0, NULL))
73a80434
JJ
5906 { constant_boolean_node (cmp == NE_EXPR, type); }))
5907
5908 /* (X & C) op (Y & C) into (X ^ Y) & C op 0. */
5909 (simplify
5910 (cmp (bit_and:cs @0 @2) (bit_and:cs @1 @2))
5911 (cmp (bit_and (bit_xor @0 @1) @2) { build_zero_cst (TREE_TYPE (@2)); })))
d057c866 5912
6b5c7ee0
JJ
5913/* (X < 0) != (Y < 0) into (X ^ Y) < 0.
5914 (X >= 0) != (Y >= 0) into (X ^ Y) < 0.
5915 (X < 0) == (Y < 0) into (X ^ Y) >= 0.
5916 (X >= 0) == (Y >= 0) into (X ^ Y) >= 0. */
5917(for cmp (eq ne)
5918 ncmp (ge lt)
5919 (for sgncmp (ge lt)
5920 (simplify
5921 (cmp (sgncmp @0 integer_zerop@2) (sgncmp @1 integer_zerop))
5922 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
5923 && !TYPE_UNSIGNED (TREE_TYPE (@0))
5924 && types_match (@0, @1))
5925 (ncmp (bit_xor @0 @1) @2)))))
5926/* (X < 0) == (Y >= 0) into (X ^ Y) < 0.
5927 (X < 0) != (Y >= 0) into (X ^ Y) >= 0. */
5928(for cmp (eq ne)
5929 ncmp (lt ge)
5930 (simplify
5931 (cmp:c (lt @0 integer_zerop@2) (ge @1 integer_zerop))
5932 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
5933 && !TYPE_UNSIGNED (TREE_TYPE (@0))
5934 && types_match (@0, @1))
5935 (ncmp (bit_xor @0 @1) @2))))
5936
b0eb889b
MG
5937/* If we have (A & C) == C where C is a power of 2, convert this into
5938 (A & C) != 0. Similarly for NE_EXPR. */
5939(for cmp (eq ne)
5940 icmp (ne eq)
5941 (simplify
5942 (cmp (bit_and@2 @0 integer_pow2p@1) @1)
5943 (icmp @2 { build_zero_cst (TREE_TYPE (@0)); })))
03cc70b5 5944
ac68f904 5945#if GIMPLE
7f04b0d7
RB
5946/* From fold_binary_op_with_conditional_arg handle the case of
5947 rewriting (a ? b : c) > d to a ? (b > d) : (c > d) when the
5948 compares simplify. */
5949(for cmp (simple_comparison)
5950 (simplify
5951 (cmp:c (cond @0 @1 @2) @3)
5952 /* Do not move possibly trapping operations into the conditional as this
5953 pessimizes code and causes gimplification issues when applied late. */
5954 (if (!FLOAT_TYPE_P (TREE_TYPE (@3))
ac68f904 5955 || !operation_could_trap_p (cmp, true, false, @3))
7f04b0d7 5956 (cond @0 (cmp! @1 @3) (cmp! @2 @3)))))
ac68f904 5957#endif
7f04b0d7 5958
1fd76b24
AP
5959(for cmp (ge lt)
5960/* x < 0 ? ~y : y into (x >> (prec-1)) ^ y. */
5961/* x >= 0 ? ~y : y into ~((x >> (prec-1)) ^ y). */
5962 (simplify
5963 (cond (cmp @0 integer_zerop) (bit_not @1) @1)
5964 (if (INTEGRAL_TYPE_P (type)
5965 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
5966 && !TYPE_UNSIGNED (TREE_TYPE (@0))
5967 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (type))
5968 (with
5969 {
5970 tree shifter = build_int_cst (integer_type_node, TYPE_PRECISION (type) - 1);
5971 }
5972 (if (cmp == LT_EXPR)
5973 (bit_xor (convert (rshift @0 {shifter;})) @1)
5974 (bit_not (bit_xor (convert (rshift @0 {shifter;})) @1))))))
5975/* x < 0 ? y : ~y into ~((x >> (prec-1)) ^ y). */
5976/* x >= 0 ? y : ~y into (x >> (prec-1)) ^ y. */
5977 (simplify
5978 (cond (cmp @0 integer_zerop) @1 (bit_not @1))
5979 (if (INTEGRAL_TYPE_P (type)
5980 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
5981 && !TYPE_UNSIGNED (TREE_TYPE (@0))
5982 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (type))
5983 (with
5984 {
5985 tree shifter = build_int_cst (integer_type_node, TYPE_PRECISION (type) - 1);
5986 }
5987 (if (cmp == GE_EXPR)
5988 (bit_xor (convert (rshift @0 {shifter;})) @1)
5989 (bit_not (bit_xor (convert (rshift @0 {shifter;})) @1)))))))
5990
519e0faa
PB
5991/* If we have (A & C) != 0 ? D : 0 where C and D are powers of 2,
5992 convert this into a shift followed by ANDing with D. */
5993(simplify
5994 (cond
5995 (ne (bit_and @0 integer_pow2p@1) integer_zerop)
9e61e48e 5996 INTEGER_CST@2 integer_zerop)
99b76adb 5997 (if (!POINTER_TYPE_P (type) && integer_pow2p (@2))
9e61e48e
JJ
5998 (with {
5999 int shift = (wi::exact_log2 (wi::to_wide (@2))
6000 - wi::exact_log2 (wi::to_wide (@1)));
6001 }
6002 (if (shift > 0)
6003 (bit_and
6004 (lshift (convert @0) { build_int_cst (integer_type_node, shift); }) @2)
6005 (bit_and
6006 (convert (rshift @0 { build_int_cst (integer_type_node, -shift); }))
6007 @2)))))
519e0faa 6008
b0eb889b
MG
6009/* If we have (A & C) != 0 where C is the sign bit of A, convert
6010 this into A < 0. Similarly for (A & C) == 0 into A >= 0. */
6011(for cmp (eq ne)
6012 ncmp (ge lt)
6013 (simplify
6014 (cmp (bit_and (convert?@2 @0) integer_pow2p@1) integer_zerop)
6015 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
2be65d9e 6016 && type_has_mode_precision_p (TREE_TYPE (@0))
b0eb889b 6017 && element_precision (@2) >= element_precision (@0)
8e6cdc90 6018 && wi::only_sign_bit_p (wi::to_wide (@1), element_precision (@0)))
b0eb889b
MG
6019 (with { tree stype = signed_type_for (TREE_TYPE (@0)); }
6020 (ncmp (convert:stype @0) { build_zero_cst (stype); })))))
6021
519e0faa 6022/* If we have A < 0 ? C : 0 where C is a power of 2, convert
c0140e3c 6023 this into a right shift or sign extension followed by ANDing with C. */
519e0faa
PB
6024(simplify
6025 (cond
6026 (lt @0 integer_zerop)
9e61e48e
JJ
6027 INTEGER_CST@1 integer_zerop)
6028 (if (integer_pow2p (@1)
6029 && !TYPE_UNSIGNED (TREE_TYPE (@0)))
c0140e3c 6030 (with {
8e6cdc90 6031 int shift = element_precision (@0) - wi::exact_log2 (wi::to_wide (@1)) - 1;
c0140e3c
JJ
6032 }
6033 (if (shift >= 0)
6034 (bit_and
6035 (convert (rshift @0 { build_int_cst (integer_type_node, shift); }))
6036 @1)
6037 /* Otherwise ctype must be wider than TREE_TYPE (@0) and pure
6038 sign extension followed by AND with C will achieve the effect. */
6039 (bit_and (convert @0) @1)))))
519e0faa 6040
68aba1f6
RB
6041/* When the addresses are not directly of decls compare base and offset.
6042 This implements some remaining parts of fold_comparison address
6043 comparisons but still no complete part of it. Still it is good
6044 enough to make fold_stmt not regress when not dispatching to fold_binary. */
6045(for cmp (simple_comparison)
6046 (simplify
f501d5cd 6047 (cmp (convert1?@2 addr@0) (convert2? addr@1))
68aba1f6
RB
6048 (with
6049 {
a90c8804 6050 poly_int64 off0, off1;
6123b998
JJ
6051 tree base0, base1;
6052 int equal = address_compare (cmp, TREE_TYPE (@2), @0, @1, base0, base1,
6053 off0, off1, GENERIC);
68aba1f6 6054 }
6123b998
JJ
6055 (if (equal == 1)
6056 (switch
6057 (if (cmp == EQ_EXPR && (known_eq (off0, off1) || known_ne (off0, off1)))
6058 { constant_boolean_node (known_eq (off0, off1), type); })
6059 (if (cmp == NE_EXPR && (known_eq (off0, off1) || known_ne (off0, off1)))
6060 { constant_boolean_node (known_ne (off0, off1), type); })
6061 (if (cmp == LT_EXPR && (known_lt (off0, off1) || known_ge (off0, off1)))
6062 { constant_boolean_node (known_lt (off0, off1), type); })
6063 (if (cmp == LE_EXPR && (known_le (off0, off1) || known_gt (off0, off1)))
6064 { constant_boolean_node (known_le (off0, off1), type); })
6065 (if (cmp == GE_EXPR && (known_ge (off0, off1) || known_lt (off0, off1)))
6066 { constant_boolean_node (known_ge (off0, off1), type); })
6067 (if (cmp == GT_EXPR && (known_gt (off0, off1) || known_le (off0, off1)))
6068 { constant_boolean_node (known_gt (off0, off1), type); }))
6069 (if (equal == 0)
6070 (switch
6071 (if (cmp == EQ_EXPR)
6072 { constant_boolean_node (false, type); })
6073 (if (cmp == NE_EXPR)
6074 { constant_boolean_node (true, type); })))))))
66e1cacf 6075
98998245
RB
6076/* Simplify pointer equality compares using PTA. */
6077(for neeq (ne eq)
6078 (simplify
6079 (neeq @0 @1)
6080 (if (POINTER_TYPE_P (TREE_TYPE (@0))
6081 && ptrs_compare_unequal (@0, @1))
f913ff2a 6082 { constant_boolean_node (neeq != EQ_EXPR, type); })))
98998245 6083
8f63caf6 6084/* PR70920: Transform (intptr_t)x eq/ne CST to x eq/ne (typeof x) CST.
467719fb
PK
6085 and (typeof ptr_cst) x eq/ne ptr_cst to x eq/ne (typeof x) CST.
6086 Disable the transform if either operand is pointer to function.
6087 This broke pr22051-2.c for arm where function pointer
6088 canonicalizaion is not wanted. */
1c0a8806 6089
8f63caf6
RB
6090(for cmp (ne eq)
6091 (simplify
6092 (cmp (convert @0) INTEGER_CST@1)
f53e7e13
JJ
6093 (if (((POINTER_TYPE_P (TREE_TYPE (@0))
6094 && !FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@0)))
53fd7544
JJ
6095 && INTEGRAL_TYPE_P (TREE_TYPE (@1))
6096 /* Don't perform this optimization in GENERIC if @0 has reference
6097 type when sanitizing. See PR101210. */
6098 && !(GENERIC
6099 && TREE_CODE (TREE_TYPE (@0)) == REFERENCE_TYPE
6100 && (flag_sanitize & (SANITIZE_NULL | SANITIZE_ALIGNMENT))))
f53e7e13
JJ
6101 || (INTEGRAL_TYPE_P (TREE_TYPE (@0))
6102 && POINTER_TYPE_P (TREE_TYPE (@1))
6103 && !FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@1)))))
6104 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
8f63caf6
RB
6105 (cmp @0 (convert @1)))))
6106
21aacde4
RB
6107/* Non-equality compare simplifications from fold_binary */
6108(for cmp (lt gt le ge)
6109 /* Comparisons with the highest or lowest possible integer of
6110 the specified precision will have known values. */
6111 (simplify
f06e47d7
JJ
6112 (cmp (convert?@2 @0) uniform_integer_cst_p@1)
6113 (if ((INTEGRAL_TYPE_P (TREE_TYPE (@1))
6114 || POINTER_TYPE_P (TREE_TYPE (@1))
6115 || VECTOR_INTEGER_TYPE_P (TREE_TYPE (@1)))
21aacde4
RB
6116 && tree_nop_conversion_p (TREE_TYPE (@2), TREE_TYPE (@0)))
6117 (with
6118 {
f06e47d7
JJ
6119 tree cst = uniform_integer_cst_p (@1);
6120 tree arg1_type = TREE_TYPE (cst);
21aacde4
RB
6121 unsigned int prec = TYPE_PRECISION (arg1_type);
6122 wide_int max = wi::max_value (arg1_type);
6123 wide_int signed_max = wi::max_value (prec, SIGNED);
6124 wide_int min = wi::min_value (arg1_type);
6125 }
6126 (switch
f06e47d7 6127 (if (wi::to_wide (cst) == max)
21aacde4
RB
6128 (switch
6129 (if (cmp == GT_EXPR)
6130 { constant_boolean_node (false, type); })
6131 (if (cmp == GE_EXPR)
6132 (eq @2 @1))
6133 (if (cmp == LE_EXPR)
6134 { constant_boolean_node (true, type); })
6135 (if (cmp == LT_EXPR)
6136 (ne @2 @1))))
f06e47d7 6137 (if (wi::to_wide (cst) == min)
21aacde4
RB
6138 (switch
6139 (if (cmp == LT_EXPR)
6140 { constant_boolean_node (false, type); })
6141 (if (cmp == LE_EXPR)
6142 (eq @2 @1))
6143 (if (cmp == GE_EXPR)
6144 { constant_boolean_node (true, type); })
6145 (if (cmp == GT_EXPR)
6146 (ne @2 @1))))
f06e47d7 6147 (if (wi::to_wide (cst) == max - 1)
9bc22d19
RB
6148 (switch
6149 (if (cmp == GT_EXPR)
f06e47d7
JJ
6150 (eq @2 { build_uniform_cst (TREE_TYPE (@1),
6151 wide_int_to_tree (TREE_TYPE (cst),
6152 wi::to_wide (cst)
6153 + 1)); }))
9bc22d19 6154 (if (cmp == LE_EXPR)
f06e47d7
JJ
6155 (ne @2 { build_uniform_cst (TREE_TYPE (@1),
6156 wide_int_to_tree (TREE_TYPE (cst),
6157 wi::to_wide (cst)
6158 + 1)); }))))
6159 (if (wi::to_wide (cst) == min + 1)
21aacde4
RB
6160 (switch
6161 (if (cmp == GE_EXPR)
f06e47d7
JJ
6162 (ne @2 { build_uniform_cst (TREE_TYPE (@1),
6163 wide_int_to_tree (TREE_TYPE (cst),
6164 wi::to_wide (cst)
6165 - 1)); }))
21aacde4 6166 (if (cmp == LT_EXPR)
f06e47d7
JJ
6167 (eq @2 { build_uniform_cst (TREE_TYPE (@1),
6168 wide_int_to_tree (TREE_TYPE (cst),
6169 wi::to_wide (cst)
6170 - 1)); }))))
6171 (if (wi::to_wide (cst) == signed_max
21aacde4
RB
6172 && TYPE_UNSIGNED (arg1_type)
6173 /* We will flip the signedness of the comparison operator
6174 associated with the mode of @1, so the sign bit is
6175 specified by this mode. Check that @1 is the signed
6176 max associated with this sign bit. */
7a504f33 6177 && prec == GET_MODE_PRECISION (SCALAR_INT_TYPE_MODE (arg1_type))
21aacde4
RB
6178 /* signed_type does not work on pointer types. */
6179 && INTEGRAL_TYPE_P (arg1_type))
6180 /* The following case also applies to X < signed_max+1
6181 and X >= signed_max+1 because previous transformations. */
6182 (if (cmp == LE_EXPR || cmp == GT_EXPR)
f06e47d7
JJ
6183 (with { tree st = signed_type_for (TREE_TYPE (@1)); }
6184 (switch
6185 (if (cst == @1 && cmp == LE_EXPR)
6186 (ge (convert:st @0) { build_zero_cst (st); }))
6187 (if (cst == @1 && cmp == GT_EXPR)
6188 (lt (convert:st @0) { build_zero_cst (st); }))
6189 (if (cmp == LE_EXPR)
6190 (ge (view_convert:st @0) { build_zero_cst (st); }))
6191 (if (cmp == GT_EXPR)
6192 (lt (view_convert:st @0) { build_zero_cst (st); })))))))))))
03cc70b5 6193
b5d3d787
RB
6194(for cmp (unordered ordered unlt unle ungt unge uneq ltgt)
6195 /* If the second operand is NaN, the result is constant. */
6196 (simplify
6197 (cmp @0 REAL_CST@1)
6198 (if (REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
6199 && (cmp != LTGT_EXPR || ! flag_trapping_math))
50301115 6200 { constant_boolean_node (cmp == ORDERED_EXPR || cmp == LTGT_EXPR
b5d3d787 6201 ? false : true, type); })))
21aacde4 6202
1be48781
RS
6203/* Fold UNORDERED if either operand must be NaN, or neither can be. */
6204(simplify
6205 (unordered @0 @1)
6206 (switch
6207 (if (tree_expr_nan_p (@0) || tree_expr_nan_p (@1))
6208 { constant_boolean_node (true, type); })
6209 (if (!tree_expr_maybe_nan_p (@0) && !tree_expr_maybe_nan_p (@1))
6210 { constant_boolean_node (false, type); })))
6211
6212/* Fold ORDERED if either operand must be NaN, or neither can be. */
6213(simplify
6214 (ordered @0 @1)
6215 (switch
6216 (if (tree_expr_nan_p (@0) || tree_expr_nan_p (@1))
6217 { constant_boolean_node (false, type); })
6218 (if (!tree_expr_maybe_nan_p (@0) && !tree_expr_maybe_nan_p (@1))
6219 { constant_boolean_node (true, type); })))
6220
55cf3946
RB
6221/* bool_var != 0 becomes bool_var. */
6222(simplify
b5d3d787 6223 (ne @0 integer_zerop)
55cf3946
RB
6224 (if (TREE_CODE (TREE_TYPE (@0)) == BOOLEAN_TYPE
6225 && types_match (type, TREE_TYPE (@0)))
6226 (non_lvalue @0)))
6227/* bool_var == 1 becomes bool_var. */
6228(simplify
b5d3d787 6229 (eq @0 integer_onep)
55cf3946
RB
6230 (if (TREE_CODE (TREE_TYPE (@0)) == BOOLEAN_TYPE
6231 && types_match (type, TREE_TYPE (@0)))
6232 (non_lvalue @0)))
b5d3d787
RB
6233/* Do not handle
6234 bool_var == 0 becomes !bool_var or
6235 bool_var != 1 becomes !bool_var
6236 here because that only is good in assignment context as long
6237 as we require a tcc_comparison in GIMPLE_CONDs where we'd
6238 replace if (x == 0) with tem = ~x; if (tem != 0) which is
6239 clearly less optimal and which we'll transform again in forwprop. */
55cf3946 6240
29df53fe
TC
6241/* Transform comparisons of the form (X & Y) CMP 0 to X CMP2 Z
6242 where ~Y + 1 == pow2 and Z = ~Y. */
6243(for cst (VECTOR_CST INTEGER_CST)
6244 (for cmp (eq ne)
6245 icmp (le gt)
6246 (simplify
6247 (cmp (bit_and:c@2 @0 cst@1) integer_zerop)
6248 (with { tree csts = bitmask_inv_cst_vector_p (@1); }
6249 (if (csts && (VECTOR_TYPE_P (TREE_TYPE (@1)) || single_use (@2)))
f7854e2f
TC
6250 (with { auto optab = VECTOR_TYPE_P (TREE_TYPE (@1))
6251 ? optab_vector : optab_default;
6252 tree utype = unsigned_type_for (TREE_TYPE (@1)); }
6253 (if (target_supports_op_p (utype, icmp, optab)
6254 || (optimize_vectors_before_lowering_p ()
6255 && (!target_supports_op_p (type, cmp, optab)
6256 || !target_supports_op_p (type, BIT_AND_EXPR, optab))))
6257 (if (TYPE_UNSIGNED (TREE_TYPE (@1)))
6258 (icmp @0 { csts; })
6259 (icmp (view_convert:utype @0) { csts; })))))))))
29df53fe 6260
ca1206be
MG
6261/* When one argument is a constant, overflow detection can be simplified.
6262 Currently restricted to single use so as not to interfere too much with
e53b6e56 6263 ADD_OVERFLOW detection in tree-ssa-math-opts.cc.
32ee4728 6264 CONVERT?(CONVERT?(A) + CST) CMP A -> A CMP' CST' */
ca1206be
MG
6265(for cmp (lt le ge gt)
6266 out (gt gt le le)
6267 (simplify
32ee4728
JL
6268 (cmp:c (convert?@3 (plus@2 (convert?@4 @0) INTEGER_CST@1)) @0)
6269 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@2))
6270 && types_match (TREE_TYPE (@0), TREE_TYPE (@3))
6271 && tree_nop_conversion_p (TREE_TYPE (@4), TREE_TYPE (@0))
8e6cdc90 6272 && wi::to_wide (@1) != 0
ca1206be 6273 && single_use (@2))
32ee4728
JL
6274 (with {
6275 unsigned int prec = TYPE_PRECISION (TREE_TYPE (@0));
6276 signop sign = TYPE_SIGN (TREE_TYPE (@0));
6277 }
8e6cdc90 6278 (out @0 { wide_int_to_tree (TREE_TYPE (@0),
32ee4728 6279 wi::max_value (prec, sign)
8e6cdc90 6280 - wi::to_wide (@1)); })))))
ca1206be 6281
3563f78f 6282/* To detect overflow in unsigned A - B, A < B is simpler than A - B > A.
e53b6e56 6283 However, the detection logic for SUB_OVERFLOW in tree-ssa-math-opts.cc
3563f78f
MG
6284 expects the long form, so we restrict the transformation for now. */
6285(for cmp (gt le)
6286 (simplify
a8e9f9a3 6287 (cmp:c (minus@2 @0 @1) @0)
3563f78f
MG
6288 (if (single_use (@2)
6289 && ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
ff336801 6290 && TYPE_UNSIGNED (TREE_TYPE (@0)))
3563f78f 6291 (cmp @1 @0))))
3563f78f 6292
ff336801
JJ
6293/* Optimize A - B + -1 >= A into B >= A for unsigned comparisons. */
6294(for cmp (ge lt)
6295 (simplify
6296 (cmp:c (plus (minus @0 @1) integer_minus_onep) @0)
6297 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
6298 && TYPE_UNSIGNED (TREE_TYPE (@0)))
6299 (cmp @1 @0))))
6300
3563f78f 6301/* Testing for overflow is unnecessary if we already know the result. */
3563f78f
MG
6302/* A - B > A */
6303(for cmp (gt le)
6304 out (ne eq)
6305 (simplify
a8e9f9a3 6306 (cmp:c (realpart (IFN_SUB_OVERFLOW@2 @0 @1)) @0)
3563f78f
MG
6307 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
6308 && types_match (TREE_TYPE (@0), TREE_TYPE (@1)))
6309 (out (imagpart @2) { build_zero_cst (TREE_TYPE (@0)); }))))
6310/* A + B < A */
6311(for cmp (lt ge)
6312 out (ne eq)
6313 (simplify
a8e9f9a3 6314 (cmp:c (realpart (IFN_ADD_OVERFLOW:c@2 @0 @1)) @0)
3563f78f
MG
6315 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
6316 && types_match (TREE_TYPE (@0), TREE_TYPE (@1)))
6317 (out (imagpart @2) { build_zero_cst (TREE_TYPE (@0)); }))))
6318
603aeb87 6319/* For unsigned operands, -1 / B < A checks whether A * B would overflow.
0557293f 6320 Simplify it to __builtin_mul_overflow (A, B, <unused>). */
0557293f
AM
6321(for cmp (lt ge)
6322 out (ne eq)
6323 (simplify
603aeb87 6324 (cmp:c (trunc_div:s integer_all_onesp @1) @0)
0557293f
AM
6325 (if (TYPE_UNSIGNED (TREE_TYPE (@0)) && !VECTOR_TYPE_P (TREE_TYPE (@0)))
6326 (with { tree t = TREE_TYPE (@0), cpx = build_complex_type (t); }
6327 (out (imagpart (IFN_MUL_OVERFLOW:cpx @0 @1)) { build_zero_cst (t); })))))
55cf3946 6328
6d938a5d
JJ
6329/* Similarly, for unsigned operands, (((type) A * B) >> prec) != 0 where type
6330 is at least twice as wide as type of A and B, simplify to
6331 __builtin_mul_overflow (A, B, <unused>). */
6332(for cmp (eq ne)
6333 (simplify
6334 (cmp (rshift (mult:s (convert@3 @0) (convert @1)) INTEGER_CST@2)
6335 integer_zerop)
6336 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
6337 && INTEGRAL_TYPE_P (TREE_TYPE (@3))
6338 && TYPE_UNSIGNED (TREE_TYPE (@0))
6339 && (TYPE_PRECISION (TREE_TYPE (@3))
6340 >= 2 * TYPE_PRECISION (TREE_TYPE (@0)))
6341 && tree_fits_uhwi_p (@2)
6342 && tree_to_uhwi (@2) == TYPE_PRECISION (TREE_TYPE (@0))
6343 && types_match (@0, @1)
6344 && type_has_mode_precision_p (TREE_TYPE (@0))
6345 && (optab_handler (umulv4_optab, TYPE_MODE (TREE_TYPE (@0)))
6346 != CODE_FOR_nothing))
6347 (with { tree t = TREE_TYPE (@0), cpx = build_complex_type (t); }
6348 (cmp (imagpart (IFN_MUL_OVERFLOW:cpx @0 @1)) { build_zero_cst (t); })))))
6349
2af6dd77
JJ
6350/* Demote operands of IFN_{ADD,SUB,MUL}_OVERFLOW. */
6351(for ovf (IFN_ADD_OVERFLOW IFN_SUB_OVERFLOW IFN_MUL_OVERFLOW)
6352 (simplify
6353 (ovf (convert@2 @0) @1)
6354 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
6355 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
8a4602c2
JJ
6356 && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
6357 && (!TYPE_UNSIGNED (TREE_TYPE (@2)) || TYPE_UNSIGNED (TREE_TYPE (@0))))
2af6dd77
JJ
6358 (ovf @0 @1)))
6359 (simplify
6360 (ovf @1 (convert@2 @0))
6361 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
6362 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
8a4602c2
JJ
6363 && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
6364 && (!TYPE_UNSIGNED (TREE_TYPE (@2)) || TYPE_UNSIGNED (TREE_TYPE (@0))))
2af6dd77
JJ
6365 (ovf @1 @0))))
6366
cf78d841 6367/* Optimize __builtin_mul_overflow_p (x, cst, (utype) 0) if all 3 types
1982fe26
JJ
6368 are unsigned to x > (umax / cst). Similarly for signed type, but
6369 in that case it needs to be outside of a range. */
cf78d841
JJ
6370(simplify
6371 (imagpart (IFN_MUL_OVERFLOW:cs@2 @0 integer_nonzerop@1))
6372 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
cf78d841
JJ
6373 && TYPE_MAX_VALUE (TREE_TYPE (@0))
6374 && types_match (TREE_TYPE (@0), TREE_TYPE (TREE_TYPE (@2)))
6375 && int_fits_type_p (@1, TREE_TYPE (@0)))
1982fe26
JJ
6376 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
6377 (convert (gt @0 (trunc_div! { TYPE_MAX_VALUE (TREE_TYPE (@0)); } @1)))
6378 (if (TYPE_MIN_VALUE (TREE_TYPE (@0)))
6379 (if (integer_minus_onep (@1))
6380 (convert (eq @0 { TYPE_MIN_VALUE (TREE_TYPE (@0)); }))
6381 (with
6382 {
74e6a403 6383 tree div = fold_convert (TREE_TYPE (@0), @1);
1982fe26 6384 tree lo = int_const_binop (TRUNC_DIV_EXPR,
74e6a403 6385 TYPE_MIN_VALUE (TREE_TYPE (@0)), div);
1982fe26 6386 tree hi = int_const_binop (TRUNC_DIV_EXPR,
74e6a403 6387 TYPE_MAX_VALUE (TREE_TYPE (@0)), div);
1982fe26
JJ
6388 tree etype = range_check_type (TREE_TYPE (@0));
6389 if (etype)
6390 {
74e6a403 6391 if (wi::neg_p (wi::to_wide (div)))
1982fe26
JJ
6392 std::swap (lo, hi);
6393 lo = fold_convert (etype, lo);
6394 hi = fold_convert (etype, hi);
6395 hi = int_const_binop (MINUS_EXPR, hi, lo);
6396 }
6397 }
6398 (if (etype)
6399 (convert (gt (minus (convert:etype @0) { lo; }) { hi; })))))))))
cf78d841 6400
53f3cd25
RS
6401/* Simplification of math builtins. These rules must all be optimizations
6402 as well as IL simplifications. If there is a possibility that the new
6403 form could be a pessimization, the rule should go in the canonicalization
6404 section that follows this one.
e18c1d66 6405
53f3cd25
RS
6406 Rules can generally go in this section if they satisfy one of
6407 the following:
6408
6409 - the rule describes an identity
6410
6411 - the rule replaces calls with something as simple as addition or
6412 multiplication
6413
6414 - the rule contains unary calls only and simplifies the surrounding
6415 arithmetic. (The idea here is to exclude non-unary calls in which
6416 one operand is constant and in which the call is known to be cheap
6417 when the operand has that value.) */
52c6378a 6418
53f3cd25 6419(if (flag_unsafe_math_optimizations)
52c6378a
N
6420 /* Simplify sqrt(x) * sqrt(x) -> x. */
6421 (simplify
c6cfa2bf 6422 (mult (SQRT_ALL@1 @0) @1)
1be48781 6423 (if (!tree_expr_maybe_signaling_nan_p (@0))
52c6378a
N
6424 @0))
6425
ed17cb57
JW
6426 (for op (plus minus)
6427 /* Simplify (A / C) +- (B / C) -> (A +- B) / C. */
6428 (simplify
6429 (op (rdiv @0 @1)
6430 (rdiv @2 @1))
6431 (rdiv (op @0 @2) @1)))
6432
5e21d765
WD
6433 (for cmp (lt le gt ge)
6434 neg_cmp (gt ge lt le)
6435 /* Simplify (x * C1) cmp C2 -> x cmp (C2 / C1), where C1 != 0. */
6436 (simplify
6437 (cmp (mult @0 REAL_CST@1) REAL_CST@2)
6438 (with
6439 { tree tem = const_binop (RDIV_EXPR, type, @2, @1); }
6440 (if (tem
6441 && !(REAL_VALUE_ISINF (TREE_REAL_CST (tem))
6442 || (real_zerop (tem) && !real_zerop (@1))))
6443 (switch
6444 (if (real_less (&dconst0, TREE_REAL_CST_PTR (@1)))
6445 (cmp @0 { tem; }))
6446 (if (real_less (TREE_REAL_CST_PTR (@1), &dconst0))
6447 (neg_cmp @0 { tem; })))))))
6448
35401640
N
6449 /* Simplify sqrt(x) * sqrt(y) -> sqrt(x*y). */
6450 (for root (SQRT CBRT)
6451 (simplify
6452 (mult (root:s @0) (root:s @1))
6453 (root (mult @0 @1))))
6454
35401640
N
6455 /* Simplify expN(x) * expN(y) -> expN(x+y). */
6456 (for exps (EXP EXP2 EXP10 POW10)
6457 (simplify
6458 (mult (exps:s @0) (exps:s @1))
6459 (exps (plus @0 @1))))
6460
52c6378a 6461 /* Simplify a/root(b/c) into a*root(c/b). */
35401640
N
6462 (for root (SQRT CBRT)
6463 (simplify
6464 (rdiv @0 (root:s (rdiv:s @1 @2)))
6465 (mult @0 (root (rdiv @2 @1)))))
6466
6467 /* Simplify x/expN(y) into x*expN(-y). */
6468 (for exps (EXP EXP2 EXP10 POW10)
6469 (simplify
6470 (rdiv @0 (exps:s @1))
6471 (mult @0 (exps (negate @1)))))
52c6378a 6472
eee7b6c4
RB
6473 (for logs (LOG LOG2 LOG10 LOG10)
6474 exps (EXP EXP2 EXP10 POW10)
8acda9b2 6475 /* logN(expN(x)) -> x. */
e18c1d66
RB
6476 (simplify
6477 (logs (exps @0))
8acda9b2
RS
6478 @0)
6479 /* expN(logN(x)) -> x. */
6480 (simplify
6481 (exps (logs @0))
6482 @0))
53f3cd25 6483
e18c1d66
RB
6484 /* Optimize logN(func()) for various exponential functions. We
6485 want to determine the value "x" and the power "exponent" in
6486 order to transform logN(x**exponent) into exponent*logN(x). */
eee7b6c4
RB
6487 (for logs (LOG LOG LOG LOG2 LOG2 LOG2 LOG10 LOG10)
6488 exps (EXP2 EXP10 POW10 EXP EXP10 POW10 EXP EXP2)
e18c1d66
RB
6489 (simplify
6490 (logs (exps @0))
c9e926ce
RS
6491 (if (SCALAR_FLOAT_TYPE_P (type))
6492 (with {
6493 tree x;
6494 switch (exps)
6495 {
6496 CASE_CFN_EXP:
6497 /* Prepare to do logN(exp(exponent)) -> exponent*logN(e). */
6498 x = build_real_truncate (type, dconst_e ());
6499 break;
6500 CASE_CFN_EXP2:
6501 /* Prepare to do logN(exp2(exponent)) -> exponent*logN(2). */
6502 x = build_real (type, dconst2);
6503 break;
6504 CASE_CFN_EXP10:
6505 CASE_CFN_POW10:
6506 /* Prepare to do logN(exp10(exponent)) -> exponent*logN(10). */
6507 {
6508 REAL_VALUE_TYPE dconst10;
6509 real_from_integer (&dconst10, VOIDmode, 10, SIGNED);
6510 x = build_real (type, dconst10);
6511 }
6512 break;
6513 default:
6514 gcc_unreachable ();
6515 }
6516 }
6517 (mult (logs { x; }) @0)))))
53f3cd25 6518
e18c1d66
RB
6519 (for logs (LOG LOG
6520 LOG2 LOG2
6521 LOG10 LOG10)
6522 exps (SQRT CBRT)
6523 (simplify
6524 (logs (exps @0))
c9e926ce
RS
6525 (if (SCALAR_FLOAT_TYPE_P (type))
6526 (with {
6527 tree x;
6528 switch (exps)
6529 {
6530 CASE_CFN_SQRT:
6531 /* Prepare to do logN(sqrt(x)) -> 0.5*logN(x). */
6532 x = build_real (type, dconsthalf);
6533 break;
6534 CASE_CFN_CBRT:
6535 /* Prepare to do logN(cbrt(x)) -> (1/3)*logN(x). */
6536 x = build_real_truncate (type, dconst_third ());
6537 break;
6538 default:
6539 gcc_unreachable ();
6540 }
6541 }
6542 (mult { x; } (logs @0))))))
53f3cd25
RS
6543
6544 /* logN(pow(x,exponent)) -> exponent*logN(x). */
e18c1d66
RB
6545 (for logs (LOG LOG2 LOG10)
6546 pows (POW)
6547 (simplify
6548 (logs (pows @0 @1))
53f3cd25
RS
6549 (mult @1 (logs @0))))
6550
848bb6fc
JJ
6551 /* pow(C,x) -> exp(log(C)*x) if C > 0,
6552 or if C is a positive power of 2,
6553 pow(C,x) -> exp2(log2(C)*x). */
30a2c10e 6554#if GIMPLE
e83fe013
WD
6555 (for pows (POW)
6556 exps (EXP)
6557 logs (LOG)
848bb6fc
JJ
6558 exp2s (EXP2)
6559 log2s (LOG2)
e83fe013
WD
6560 (simplify
6561 (pows REAL_CST@0 @1)
848bb6fc 6562 (if (real_compare (GT_EXPR, TREE_REAL_CST_PTR (@0), &dconst0)
ef7866a3
JJ
6563 && real_isfinite (TREE_REAL_CST_PTR (@0))
6564 /* As libmvec doesn't have a vectorized exp2, defer optimizing
6565 the use_exp2 case until after vectorization. It seems actually
6566 beneficial for all constants to postpone this until later,
6567 because exp(log(C)*x), while faster, will have worse precision
6568 and if x folds into a constant too, that is unnecessary
6569 pessimization. */
6570 && canonicalize_math_after_vectorization_p ())
848bb6fc
JJ
6571 (with {
6572 const REAL_VALUE_TYPE *const value = TREE_REAL_CST_PTR (@0);
6573 bool use_exp2 = false;
bae974e6 6574 if (targetm.libc_has_function (function_c99_misc, TREE_TYPE (@0))
848bb6fc
JJ
6575 && value->cl == rvc_normal)
6576 {
6577 REAL_VALUE_TYPE frac_rvt = *value;
6578 SET_REAL_EXP (&frac_rvt, 1);
6579 if (real_equal (&frac_rvt, &dconst1))
6580 use_exp2 = true;
6581 }
6582 }
6583 (if (!use_exp2)
30a2c10e
JJ
6584 (if (optimize_pow_to_exp (@0, @1))
6585 (exps (mult (logs @0) @1)))
ef7866a3 6586 (exp2s (mult (log2s @0) @1)))))))
30a2c10e 6587#endif
e83fe013 6588
16ef0a8c
JJ
6589 /* pow(C,x)*expN(y) -> expN(logN(C)*x+y) if C > 0. */
6590 (for pows (POW)
6591 exps (EXP EXP2 EXP10 POW10)
6592 logs (LOG LOG2 LOG10 LOG10)
6593 (simplify
6594 (mult:c (pows:s REAL_CST@0 @1) (exps:s @2))
6595 (if (real_compare (GT_EXPR, TREE_REAL_CST_PTR (@0), &dconst0)
6596 && real_isfinite (TREE_REAL_CST_PTR (@0)))
6597 (exps (plus (mult (logs @0) @1) @2)))))
6598
53f3cd25
RS
6599 (for sqrts (SQRT)
6600 cbrts (CBRT)
b4838d77 6601 pows (POW)
53f3cd25
RS
6602 exps (EXP EXP2 EXP10 POW10)
6603 /* sqrt(expN(x)) -> expN(x*0.5). */
6604 (simplify
6605 (sqrts (exps @0))
6606 (exps (mult @0 { build_real (type, dconsthalf); })))
6607 /* cbrt(expN(x)) -> expN(x/3). */
6608 (simplify
6609 (cbrts (exps @0))
b4838d77
RS
6610 (exps (mult @0 { build_real_truncate (type, dconst_third ()); })))
6611 /* pow(expN(x), y) -> expN(x*y). */
6612 (simplify
6613 (pows (exps @0) @1)
6614 (exps (mult @0 @1))))
cfed37a0
RS
6615
6616 /* tan(atan(x)) -> x. */
6617 (for tans (TAN)
6618 atans (ATAN)
6619 (simplify
6620 (tans (atans @0))
6621 @0)))
53f3cd25 6622
121ef08b
GB
6623 /* Simplify sin(atan(x)) -> x / sqrt(x*x + 1). */
6624 (for sins (SIN)
6625 atans (ATAN)
6626 sqrts (SQRT)
6627 copysigns (COPYSIGN)
6628 (simplify
6629 (sins (atans:s @0))
6630 (with
6631 {
6632 REAL_VALUE_TYPE r_cst;
6633 build_sinatan_real (&r_cst, type);
6634 tree t_cst = build_real (type, r_cst);
6635 tree t_one = build_one_cst (type);
6636 }
6637 (if (SCALAR_FLOAT_TYPE_P (type))
5f054b17 6638 (cond (lt (abs @0) { t_cst; })
121ef08b
GB
6639 (rdiv @0 (sqrts (plus (mult @0 @0) { t_one; })))
6640 (copysigns { t_one; } @0))))))
6641
6642/* Simplify cos(atan(x)) -> 1 / sqrt(x*x + 1). */
6643 (for coss (COS)
6644 atans (ATAN)
6645 sqrts (SQRT)
6646 copysigns (COPYSIGN)
6647 (simplify
6648 (coss (atans:s @0))
6649 (with
6650 {
6651 REAL_VALUE_TYPE r_cst;
6652 build_sinatan_real (&r_cst, type);
6653 tree t_cst = build_real (type, r_cst);
6654 tree t_one = build_one_cst (type);
6655 tree t_zero = build_zero_cst (type);
6656 }
6657 (if (SCALAR_FLOAT_TYPE_P (type))
5f054b17 6658 (cond (lt (abs @0) { t_cst; })
121ef08b
GB
6659 (rdiv { t_one; } (sqrts (plus (mult @0 @0) { t_one; })))
6660 (copysigns { t_zero; } @0))))))
6661
4aff6d17
GB
6662 (if (!flag_errno_math)
6663 /* Simplify sinh(atanh(x)) -> x / sqrt((1 - x)*(1 + x)). */
6664 (for sinhs (SINH)
6665 atanhs (ATANH)
6666 sqrts (SQRT)
6667 (simplify
6668 (sinhs (atanhs:s @0))
6669 (with { tree t_one = build_one_cst (type); }
6670 (rdiv @0 (sqrts (mult (minus { t_one; } @0) (plus { t_one; } @0)))))))
6671
6672 /* Simplify cosh(atanh(x)) -> 1 / sqrt((1 - x)*(1 + x)) */
6673 (for coshs (COSH)
6674 atanhs (ATANH)
6675 sqrts (SQRT)
6676 (simplify
6677 (coshs (atanhs:s @0))
6678 (with { tree t_one = build_one_cst (type); }
6679 (rdiv { t_one; } (sqrts (mult (minus { t_one; } @0) (plus { t_one; } @0))))))))
6680
abcc43f5
RS
6681/* cabs(x+0i) or cabs(0+xi) -> abs(x). */
6682(simplify
e04d2a35 6683 (CABS (complex:C @0 real_zerop@1))
abcc43f5
RS
6684 (abs @0))
6685
67dbe582 6686/* trunc(trunc(x)) -> trunc(x), etc. */
c6cfa2bf 6687(for fns (TRUNC_ALL FLOOR_ALL CEIL_ALL ROUND_ALL NEARBYINT_ALL RINT_ALL)
67dbe582
RS
6688 (simplify
6689 (fns (fns @0))
6690 (fns @0)))
6691/* f(x) -> x if x is integer valued and f does nothing for such values. */
c6cfa2bf 6692(for fns (TRUNC_ALL FLOOR_ALL CEIL_ALL ROUND_ALL NEARBYINT_ALL RINT_ALL)
67dbe582
RS
6693 (simplify
6694 (fns integer_valued_real_p@0)
6695 @0))
67dbe582 6696
4d7836c4
RS
6697/* hypot(x,0) and hypot(0,x) -> abs(x). */
6698(simplify
c9e926ce 6699 (HYPOT:c @0 real_zerop@1)
4d7836c4
RS
6700 (abs @0))
6701
b4838d77
RS
6702/* pow(1,x) -> 1. */
6703(simplify
6704 (POW real_onep@0 @1)
6705 @0)
6706
461e4145
RS
6707(simplify
6708 /* copysign(x,x) -> x. */
c6cfa2bf 6709 (COPYSIGN_ALL @0 @0)
461e4145
RS
6710 @0)
6711
bb5e8952
JJ
6712(simplify
6713 /* copysign(x,-x) -> -x. */
6714 (COPYSIGN_ALL @0 (negate@1 @0))
6715 @1)
6716
461e4145
RS
6717(simplify
6718 /* copysign(x,y) -> fabs(x) if y is nonnegative. */
c6cfa2bf 6719 (COPYSIGN_ALL @0 tree_expr_nonnegative_p@1)
461e4145
RS
6720 (abs @0))
6721
86c0733f
RS
6722(for scale (LDEXP SCALBN SCALBLN)
6723 /* ldexp(0, x) -> 0. */
6724 (simplify
6725 (scale real_zerop@0 @1)
6726 @0)
6727 /* ldexp(x, 0) -> x. */
6728 (simplify
6729 (scale @0 integer_zerop@1)
6730 @0)
6731 /* ldexp(x, y) -> x if x is +-Inf or NaN. */
6732 (simplify
6733 (scale REAL_CST@0 @1)
6734 (if (!real_isfinite (TREE_REAL_CST_PTR (@0)))
6735 @0)))
6736
53f3cd25
RS
6737/* Canonicalization of sequences of math builtins. These rules represent
6738 IL simplifications but are not necessarily optimizations.
6739
6740 The sincos pass is responsible for picking "optimal" implementations
6741 of math builtins, which may be more complicated and can sometimes go
6742 the other way, e.g. converting pow into a sequence of sqrts.
6743 We only want to do these canonicalizations before the pass has run. */
6744
6745(if (flag_unsafe_math_optimizations && canonicalize_math_p ())
6746 /* Simplify tan(x) * cos(x) -> sin(x). */
6747 (simplify
6748 (mult:c (TAN:s @0) (COS:s @0))
6749 (SIN @0))
6750
6751 /* Simplify x * pow(x,c) -> pow(x,c+1). */
6752 (simplify
de3fbea3 6753 (mult:c @0 (POW:s @0 REAL_CST@1))
53f3cd25
RS
6754 (if (!TREE_OVERFLOW (@1))
6755 (POW @0 (plus @1 { build_one_cst (type); }))))
6756
6757 /* Simplify sin(x) / cos(x) -> tan(x). */
6758 (simplify
6759 (rdiv (SIN:s @0) (COS:s @0))
6760 (TAN @0))
6761
2066f795
RT
6762 /* Simplify sinh(x) / cosh(x) -> tanh(x). */
6763 (simplify
6764 (rdiv (SINH:s @0) (COSH:s @0))
6765 (TANH @0))
6766
29e304fd
VG
6767 /* Simplify tanh (x) / sinh (x) -> 1.0 / cosh (x). */
6768 (simplify
6769 (rdiv (TANH:s @0) (SINH:s @0))
6770 (rdiv {build_one_cst (type);} (COSH @0)))
6771
53f3cd25
RS
6772 /* Simplify cos(x) / sin(x) -> 1 / tan(x). */
6773 (simplify
6774 (rdiv (COS:s @0) (SIN:s @0))
6775 (rdiv { build_one_cst (type); } (TAN @0)))
6776
6777 /* Simplify sin(x) / tan(x) -> cos(x). */
6778 (simplify
6779 (rdiv (SIN:s @0) (TAN:s @0))
6780 (if (! HONOR_NANS (@0)
6781 && ! HONOR_INFINITIES (@0))
c9e926ce 6782 (COS @0)))
53f3cd25
RS
6783
6784 /* Simplify tan(x) / sin(x) -> 1.0 / cos(x). */
6785 (simplify
6786 (rdiv (TAN:s @0) (SIN:s @0))
6787 (if (! HONOR_NANS (@0)
6788 && ! HONOR_INFINITIES (@0))
6789 (rdiv { build_one_cst (type); } (COS @0))))
6790
6791 /* Simplify pow(x,y) * pow(x,z) -> pow(x,y+z). */
6792 (simplify
6793 (mult (POW:s @0 @1) (POW:s @0 @2))
6794 (POW @0 (plus @1 @2)))
6795
6796 /* Simplify pow(x,y) * pow(z,y) -> pow(x*z,y). */
6797 (simplify
6798 (mult (POW:s @0 @1) (POW:s @2 @1))
6799 (POW (mult @0 @2) @1))
6800
de3fbea3
RB
6801 /* Simplify powi(x,y) * powi(z,y) -> powi(x*z,y). */
6802 (simplify
6803 (mult (POWI:s @0 @1) (POWI:s @2 @1))
6804 (POWI (mult @0 @2) @1))
6805
53f3cd25
RS
6806 /* Simplify pow(x,c) / x -> pow(x,c-1). */
6807 (simplify
6808 (rdiv (POW:s @0 REAL_CST@1) @0)
6809 (if (!TREE_OVERFLOW (@1))
6810 (POW @0 (minus @1 { build_one_cst (type); }))))
6811
6812 /* Simplify x / pow (y,z) -> x * pow(y,-z). */
6813 (simplify
6814 (rdiv @0 (POW:s @1 @2))
6815 (mult @0 (POW @1 (negate @2))))
6816
6817 (for sqrts (SQRT)
6818 cbrts (CBRT)
6819 pows (POW)
6820 /* sqrt(sqrt(x)) -> pow(x,1/4). */
6821 (simplify
6822 (sqrts (sqrts @0))
6823 (pows @0 { build_real (type, dconst_quarter ()); }))
6824 /* sqrt(cbrt(x)) -> pow(x,1/6). */
6825 (simplify
6826 (sqrts (cbrts @0))
6827 (pows @0 { build_real_truncate (type, dconst_sixth ()); }))
6828 /* cbrt(sqrt(x)) -> pow(x,1/6). */
6829 (simplify
6830 (cbrts (sqrts @0))
6831 (pows @0 { build_real_truncate (type, dconst_sixth ()); }))
6832 /* cbrt(cbrt(x)) -> pow(x,1/9), iff x is nonnegative. */
6833 (simplify
6834 (cbrts (cbrts tree_expr_nonnegative_p@0))
6835 (pows @0 { build_real_truncate (type, dconst_ninth ()); }))
6836 /* sqrt(pow(x,y)) -> pow(|x|,y*0.5). */
6837 (simplify
6838 (sqrts (pows @0 @1))
6839 (pows (abs @0) (mult @1 { build_real (type, dconsthalf); })))
6840 /* cbrt(pow(x,y)) -> pow(x,y/3), iff x is nonnegative. */
6841 (simplify
6842 (cbrts (pows tree_expr_nonnegative_p@0 @1))
b4838d77
RS
6843 (pows @0 (mult @1 { build_real_truncate (type, dconst_third ()); })))
6844 /* pow(sqrt(x),y) -> pow(x,y*0.5). */
6845 (simplify
6846 (pows (sqrts @0) @1)
6847 (pows @0 (mult @1 { build_real (type, dconsthalf); })))
6848 /* pow(cbrt(x),y) -> pow(x,y/3) iff x is nonnegative. */
6849 (simplify
6850 (pows (cbrts tree_expr_nonnegative_p@0) @1)
6851 (pows @0 (mult @1 { build_real_truncate (type, dconst_third ()); })))
6852 /* pow(pow(x,y),z) -> pow(x,y*z) iff x is nonnegative. */
6853 (simplify
6854 (pows (pows tree_expr_nonnegative_p@0 @1) @2)
6855 (pows @0 (mult @1 @2))))
abcc43f5
RS
6856
6857 /* cabs(x+xi) -> fabs(x)*sqrt(2). */
6858 (simplify
6859 (CABS (complex @0 @0))
96285749
RS
6860 (mult (abs @0) { build_real_truncate (type, dconst_sqrt2 ()); }))
6861
4d7836c4
RS
6862 /* hypot(x,x) -> fabs(x)*sqrt(2). */
6863 (simplify
6864 (HYPOT @0 @0)
6865 (mult (abs @0) { build_real_truncate (type, dconst_sqrt2 ()); }))
6866
96285749
RS
6867 /* cexp(x+yi) -> exp(x)*cexpi(y). */
6868 (for cexps (CEXP)
6869 exps (EXP)
6870 cexpis (CEXPI)
6871 (simplify
6872 (cexps compositional_complex@0)
bae974e6 6873 (if (targetm.libc_has_function (function_c99_math_complex, TREE_TYPE (@0)))
96285749
RS
6874 (complex
6875 (mult (exps@1 (realpart @0)) (realpart (cexpis:type@2 (imagpart @0))))
6876 (mult @1 (imagpart @2)))))))
e18c1d66 6877
67dbe582
RS
6878(if (canonicalize_math_p ())
6879 /* floor(x) -> trunc(x) if x is nonnegative. */
c6cfa2bf
MM
6880 (for floors (FLOOR_ALL)
6881 truncs (TRUNC_ALL)
67dbe582
RS
6882 (simplify
6883 (floors tree_expr_nonnegative_p@0)
6884 (truncs @0))))
6885
6886(match double_value_p
6887 @0
6888 (if (TYPE_MAIN_VARIANT (TREE_TYPE (@0)) == double_type_node)))
6889(for froms (BUILT_IN_TRUNCL
6890 BUILT_IN_FLOORL
6891 BUILT_IN_CEILL
6892 BUILT_IN_ROUNDL
6893 BUILT_IN_NEARBYINTL
6894 BUILT_IN_RINTL)
6895 tos (BUILT_IN_TRUNC
6896 BUILT_IN_FLOOR
6897 BUILT_IN_CEIL
6898 BUILT_IN_ROUND
6899 BUILT_IN_NEARBYINT
6900 BUILT_IN_RINT)
6901 /* truncl(extend(x)) -> extend(trunc(x)), etc., if x is a double. */
6902 (if (optimize && canonicalize_math_p ())
6903 (simplify
6904 (froms (convert double_value_p@0))
6905 (convert (tos @0)))))
6906
6907(match float_value_p
6908 @0
6909 (if (TYPE_MAIN_VARIANT (TREE_TYPE (@0)) == float_type_node)))
6910(for froms (BUILT_IN_TRUNCL BUILT_IN_TRUNC
6911 BUILT_IN_FLOORL BUILT_IN_FLOOR
6912 BUILT_IN_CEILL BUILT_IN_CEIL
6913 BUILT_IN_ROUNDL BUILT_IN_ROUND
6914 BUILT_IN_NEARBYINTL BUILT_IN_NEARBYINT
6915 BUILT_IN_RINTL BUILT_IN_RINT)
6916 tos (BUILT_IN_TRUNCF BUILT_IN_TRUNCF
6917 BUILT_IN_FLOORF BUILT_IN_FLOORF
6918 BUILT_IN_CEILF BUILT_IN_CEILF
6919 BUILT_IN_ROUNDF BUILT_IN_ROUNDF
6920 BUILT_IN_NEARBYINTF BUILT_IN_NEARBYINTF
6921 BUILT_IN_RINTF BUILT_IN_RINTF)
6922 /* truncl(extend(x)) and trunc(extend(x)) -> extend(truncf(x)), etc.,
6923 if x is a float. */
5dac7dbd 6924 (if (optimize && canonicalize_math_p ()
bae974e6 6925 && targetm.libc_has_function (function_c99_misc, NULL_TREE))
67dbe582
RS
6926 (simplify
6927 (froms (convert float_value_p@0))
6928 (convert (tos @0)))))
6929
61319646 6930#if GIMPLE
6931(match float16_value_p
6932 @0
6933 (if (TYPE_MAIN_VARIANT (TREE_TYPE (@0)) == float16_type_node)))
6934(for froms (BUILT_IN_TRUNCL BUILT_IN_TRUNC BUILT_IN_TRUNCF
6935 BUILT_IN_FLOORL BUILT_IN_FLOOR BUILT_IN_FLOORF
6936 BUILT_IN_CEILL BUILT_IN_CEIL BUILT_IN_CEILF
6937 BUILT_IN_ROUNDEVENL BUILT_IN_ROUNDEVEN BUILT_IN_ROUNDEVENF
6938 BUILT_IN_ROUNDL BUILT_IN_ROUND BUILT_IN_ROUNDF
6939 BUILT_IN_NEARBYINTL BUILT_IN_NEARBYINT BUILT_IN_NEARBYINTF
1a07bc9c 6940 BUILT_IN_RINTL BUILT_IN_RINT BUILT_IN_RINTF
6941 BUILT_IN_SQRTL BUILT_IN_SQRT BUILT_IN_SQRTF)
61319646 6942 tos (IFN_TRUNC IFN_TRUNC IFN_TRUNC
6943 IFN_FLOOR IFN_FLOOR IFN_FLOOR
6944 IFN_CEIL IFN_CEIL IFN_CEIL
6945 IFN_ROUNDEVEN IFN_ROUNDEVEN IFN_ROUNDEVEN
6946 IFN_ROUND IFN_ROUND IFN_ROUND
6947 IFN_NEARBYINT IFN_NEARBYINT IFN_NEARBYINT
1a07bc9c 6948 IFN_RINT IFN_RINT IFN_RINT
6949 IFN_SQRT IFN_SQRT IFN_SQRT)
61319646 6950 /* (_Float16) round ((doube) x) -> __built_in_roundf16 (x), etc.,
6951 if x is a _Float16. */
6952 (simplify
6953 (convert (froms (convert float16_value_p@0)))
6954 (if (optimize
6955 && types_match (type, TREE_TYPE (@0))
6956 && direct_internal_fn_supported_p (as_internal_fn (tos),
6957 type, OPTIMIZE_FOR_BOTH))
6958 (tos @0))))
22ce7382 6959
6960/* Simplify (trunc)copysign ((extend)x, (extend)y) to copysignf (x, y),
6961 x,y is float value, similar for _Float16/double. */
6962(for copysigns (COPYSIGN_ALL)
6963 (simplify
6964 (convert (copysigns (convert@2 @0) (convert @1)))
6965 (if (optimize
a1f7ead0 6966 && !HONOR_SNANS (@2)
22ce7382 6967 && types_match (type, TREE_TYPE (@0))
6968 && types_match (type, TREE_TYPE (@1))
6969 && TYPE_PRECISION (type) < TYPE_PRECISION (TREE_TYPE (@2))
6970 && direct_internal_fn_supported_p (IFN_COPYSIGN,
6971 type, OPTIMIZE_FOR_BOTH))
6972 (IFN_COPYSIGN @0 @1))))
6973
2ad1e808 6974(for froms (BUILT_IN_FMAF BUILT_IN_FMA BUILT_IN_FMAL)
6975 tos (IFN_FMA IFN_FMA IFN_FMA)
6976 (simplify
6977 (convert (froms (convert@3 @0) (convert @1) (convert @2)))
6978 (if (flag_unsafe_math_optimizations
6979 && optimize
6980 && FLOAT_TYPE_P (type)
6981 && FLOAT_TYPE_P (TREE_TYPE (@3))
6982 && types_match (type, TREE_TYPE (@0))
6983 && types_match (type, TREE_TYPE (@1))
6984 && types_match (type, TREE_TYPE (@2))
6985 && TYPE_PRECISION (type) < TYPE_PRECISION (TREE_TYPE (@3))
6986 && direct_internal_fn_supported_p (as_internal_fn (tos),
6987 type, OPTIMIZE_FOR_BOTH))
6988 (tos @0 @1 @2))))
b879d40a 6989
6990(for maxmin (max min)
6991 (simplify
6992 (convert (maxmin (convert@2 @0) (convert @1)))
6993 (if (optimize
6994 && FLOAT_TYPE_P (type)
6995 && FLOAT_TYPE_P (TREE_TYPE (@2))
6996 && types_match (type, TREE_TYPE (@0))
6997 && types_match (type, TREE_TYPE (@1))
6998 && element_precision (type) < element_precision (TREE_TYPE (@2)))
6999 (maxmin @0 @1))))
61319646 7000#endif
7001
543a9bcd
RS
7002(for froms (XFLOORL XCEILL XROUNDL XRINTL)
7003 tos (XFLOOR XCEIL XROUND XRINT)
7004 /* llfloorl(extend(x)) -> llfloor(x), etc., if x is a double. */
7005 (if (optimize && canonicalize_math_p ())
7006 (simplify
7007 (froms (convert double_value_p@0))
7008 (tos @0))))
7009
7010(for froms (XFLOORL XCEILL XROUNDL XRINTL
7011 XFLOOR XCEIL XROUND XRINT)
7012 tos (XFLOORF XCEILF XROUNDF XRINTF)
7013 /* llfloorl(extend(x)) and llfloor(extend(x)) -> llfloorf(x), etc.,
7014 if x is a float. */
7015 (if (optimize && canonicalize_math_p ())
7016 (simplify
7017 (froms (convert float_value_p@0))
7018 (tos @0))))
7019
7020(if (canonicalize_math_p ())
7021 /* xfloor(x) -> fix_trunc(x) if x is nonnegative. */
7022 (for floors (IFLOOR LFLOOR LLFLOOR)
7023 (simplify
7024 (floors tree_expr_nonnegative_p@0)
7025 (fix_trunc @0))))
7026
7027(if (canonicalize_math_p ())
7028 /* xfloor(x) -> fix_trunc(x), etc., if x is integer valued. */
7029 (for fns (IFLOOR LFLOOR LLFLOOR
7030 ICEIL LCEIL LLCEIL
7031 IROUND LROUND LLROUND)
7032 (simplify
7033 (fns integer_valued_real_p@0)
7034 (fix_trunc @0)))
7035 (if (!flag_errno_math)
7036 /* xrint(x) -> fix_trunc(x), etc., if x is integer valued. */
7037 (for rints (IRINT LRINT LLRINT)
7038 (simplify
7039 (rints integer_valued_real_p@0)
7040 (fix_trunc @0)))))
7041
7042(if (canonicalize_math_p ())
7043 (for ifn (IFLOOR ICEIL IROUND IRINT)
7044 lfn (LFLOOR LCEIL LROUND LRINT)
7045 llfn (LLFLOOR LLCEIL LLROUND LLRINT)
7046 /* Canonicalize iround (x) to lround (x) on ILP32 targets where
7047 sizeof (int) == sizeof (long). */
7048 (if (TYPE_PRECISION (integer_type_node)
7049 == TYPE_PRECISION (long_integer_type_node))
7050 (simplify
7051 (ifn @0)
7052 (lfn:long_integer_type_node @0)))
7053 /* Canonicalize llround (x) to lround (x) on LP64 targets where
7054 sizeof (long long) == sizeof (long). */
7055 (if (TYPE_PRECISION (long_long_integer_type_node)
7056 == TYPE_PRECISION (long_integer_type_node))
7057 (simplify
7058 (llfn @0)
7059 (lfn:long_integer_type_node @0)))))
7060
92c52eab
RS
7061/* cproj(x) -> x if we're ignoring infinities. */
7062(simplify
7063 (CPROJ @0)
7064 (if (!HONOR_INFINITIES (type))
7065 @0))
7066
4534c203
RB
7067/* If the real part is inf and the imag part is known to be
7068 nonnegative, return (inf + 0i). */
7069(simplify
7070 (CPROJ (complex REAL_CST@0 tree_expr_nonnegative_p@1))
7071 (if (real_isinf (TREE_REAL_CST_PTR (@0)))
92c52eab
RS
7072 { build_complex_inf (type, false); }))
7073
4534c203
RB
7074/* If the imag part is inf, return (inf+I*copysign(0,imag)). */
7075(simplify
7076 (CPROJ (complex @0 REAL_CST@1))
7077 (if (real_isinf (TREE_REAL_CST_PTR (@1)))
92c52eab 7078 { build_complex_inf (type, TREE_REAL_CST_PTR (@1)->sign); }))
4534c203 7079
b4838d77
RS
7080(for pows (POW)
7081 sqrts (SQRT)
7082 cbrts (CBRT)
7083 (simplify
7084 (pows @0 REAL_CST@1)
7085 (with {
7086 const REAL_VALUE_TYPE *value = TREE_REAL_CST_PTR (@1);
7087 REAL_VALUE_TYPE tmp;
7088 }
7089 (switch
7090 /* pow(x,0) -> 1. */
7091 (if (real_equal (value, &dconst0))
7092 { build_real (type, dconst1); })
7093 /* pow(x,1) -> x. */
7094 (if (real_equal (value, &dconst1))
7095 @0)
7096 /* pow(x,-1) -> 1/x. */
7097 (if (real_equal (value, &dconstm1))
7098 (rdiv { build_real (type, dconst1); } @0))
7099 /* pow(x,0.5) -> sqrt(x). */
7100 (if (flag_unsafe_math_optimizations
7101 && canonicalize_math_p ()
7102 && real_equal (value, &dconsthalf))
7103 (sqrts @0))
7104 /* pow(x,1/3) -> cbrt(x). */
7105 (if (flag_unsafe_math_optimizations
7106 && canonicalize_math_p ()
7107 && (tmp = real_value_truncate (TYPE_MODE (type), dconst_third ()),
7108 real_equal (value, &tmp)))
7109 (cbrts @0))))))
4534c203 7110
5ddc84ca
RS
7111/* powi(1,x) -> 1. */
7112(simplify
7113 (POWI real_onep@0 @1)
7114 @0)
7115
7116(simplify
7117 (POWI @0 INTEGER_CST@1)
7118 (switch
7119 /* powi(x,0) -> 1. */
8e6cdc90 7120 (if (wi::to_wide (@1) == 0)
5ddc84ca
RS
7121 { build_real (type, dconst1); })
7122 /* powi(x,1) -> x. */
8e6cdc90 7123 (if (wi::to_wide (@1) == 1)
5ddc84ca
RS
7124 @0)
7125 /* powi(x,-1) -> 1/x. */
8e6cdc90 7126 (if (wi::to_wide (@1) == -1)
5ddc84ca
RS
7127 (rdiv { build_real (type, dconst1); } @0))))
7128
03cc70b5 7129/* Narrowing of arithmetic and logical operations.
be144838
JL
7130
7131 These are conceptually similar to the transformations performed for
7132 the C/C++ front-ends by shorten_binary_op and shorten_compare. Long
7133 term we want to move all that code out of the front-ends into here. */
7134
8f5331b2
TC
7135/* Convert (outertype)((innertype0)a+(innertype1)b)
7136 into ((newtype)a+(newtype)b) where newtype
7137 is the widest mode from all of these. */
7138(for op (plus minus mult rdiv)
7139 (simplify
7140 (convert (op:s@0 (convert1?@3 @1) (convert2?@4 @2)))
7141 /* If we have a narrowing conversion of an arithmetic operation where
7142 both operands are widening conversions from the same type as the outer
7143 narrowing conversion. Then convert the innermost operands to a
7144 suitable unsigned type (to avoid introducing undefined behavior),
7145 perform the operation and convert the result to the desired type. */
7146 (if (INTEGRAL_TYPE_P (type)
7147 && op != MULT_EXPR
7148 && op != RDIV_EXPR
7149 /* We check for type compatibility between @0 and @1 below,
7150 so there's no need to check that @2/@4 are integral types. */
7151 && INTEGRAL_TYPE_P (TREE_TYPE (@1))
7152 && INTEGRAL_TYPE_P (TREE_TYPE (@3))
7153 /* The precision of the type of each operand must match the
7154 precision of the mode of each operand, similarly for the
7155 result. */
7156 && type_has_mode_precision_p (TREE_TYPE (@1))
7157 && type_has_mode_precision_p (TREE_TYPE (@2))
7158 && type_has_mode_precision_p (type)
7159 /* The inner conversion must be a widening conversion. */
7160 && TYPE_PRECISION (TREE_TYPE (@3)) > TYPE_PRECISION (TREE_TYPE (@1))
7161 && types_match (@1, type)
7162 && (types_match (@1, @2)
7163 /* Or the second operand is const integer or converted const
7164 integer from valueize. */
298b0db7 7165 || poly_int_tree_p (@4)))
8f5331b2
TC
7166 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1)))
7167 (op @1 (convert @2))
7168 (with { tree utype = unsigned_type_for (TREE_TYPE (@1)); }
7169 (convert (op (convert:utype @1)
7170 (convert:utype @2)))))
7171 (if (FLOAT_TYPE_P (type)
7172 && DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@0))
7173 == DECIMAL_FLOAT_TYPE_P (type))
7174 (with { tree arg0 = strip_float_extensions (@1);
7175 tree arg1 = strip_float_extensions (@2);
7176 tree itype = TREE_TYPE (@0);
7177 tree ty1 = TREE_TYPE (arg0);
7178 tree ty2 = TREE_TYPE (arg1);
7179 enum tree_code code = TREE_CODE (itype); }
7180 (if (FLOAT_TYPE_P (ty1)
7181 && FLOAT_TYPE_P (ty2))
7182 (with { tree newtype = type;
7183 if (TYPE_MODE (ty1) == SDmode
7184 || TYPE_MODE (ty2) == SDmode
7185 || TYPE_MODE (type) == SDmode)
7186 newtype = dfloat32_type_node;
7187 if (TYPE_MODE (ty1) == DDmode
7188 || TYPE_MODE (ty2) == DDmode
7189 || TYPE_MODE (type) == DDmode)
7190 newtype = dfloat64_type_node;
7191 if (TYPE_MODE (ty1) == TDmode
7192 || TYPE_MODE (ty2) == TDmode
7193 || TYPE_MODE (type) == TDmode)
7194 newtype = dfloat128_type_node; }
7195 (if ((newtype == dfloat32_type_node
7196 || newtype == dfloat64_type_node
7197 || newtype == dfloat128_type_node)
7198 && newtype == type
7199 && types_match (newtype, type))
7200 (op (convert:newtype @1) (convert:newtype @2))
dc5b1191 7201 (with { if (TYPE_PRECISION (ty1) > TYPE_PRECISION (newtype))
8f5331b2
TC
7202 newtype = ty1;
7203 if (TYPE_PRECISION (ty2) > TYPE_PRECISION (newtype))
dc5b1191 7204 newtype = ty2; }
8f5331b2
TC
7205 /* Sometimes this transformation is safe (cannot
7206 change results through affecting double rounding
7207 cases) and sometimes it is not. If NEWTYPE is
7208 wider than TYPE, e.g. (float)((long double)double
7209 + (long double)double) converted to
7210 (float)(double + double), the transformation is
7211 unsafe regardless of the details of the types
7212 involved; double rounding can arise if the result
7213 of NEWTYPE arithmetic is a NEWTYPE value half way
7214 between two representable TYPE values but the
7215 exact value is sufficiently different (in the
7216 right direction) for this difference to be
7217 visible in ITYPE arithmetic. If NEWTYPE is the
7218 same as TYPE, however, the transformation may be
7219 safe depending on the types involved: it is safe
7220 if the ITYPE has strictly more than twice as many
7221 mantissa bits as TYPE, can represent infinities
7222 and NaNs if the TYPE can, and has sufficient
7223 exponent range for the product or ratio of two
7224 values representable in the TYPE to be within the
7225 range of normal values of ITYPE. */
7226 (if (TYPE_PRECISION (newtype) < TYPE_PRECISION (itype)
7227 && (flag_unsafe_math_optimizations
7228 || (TYPE_PRECISION (newtype) == TYPE_PRECISION (type)
7229 && real_can_shorten_arithmetic (TYPE_MODE (itype),
7230 TYPE_MODE (type))
7231 && !excess_precision_type (newtype)))
7232 && !types_match (itype, newtype))
7233 (convert:type (op (convert:newtype @1)
7234 (convert:newtype @2)))
7235 )))) )
7236 ))
7237)))
48451e8f
JL
7238
7239/* This is another case of narrowing, specifically when there's an outer
7240 BIT_AND_EXPR which masks off bits outside the type of the innermost
7241 operands. Like the previous case we have to convert the operands
9c582551 7242 to unsigned types to avoid introducing undefined behavior for the
48451e8f
JL
7243 arithmetic operation. */
7244(for op (minus plus)
8fdc6c67
RB
7245 (simplify
7246 (bit_and (op:s (convert@2 @0) (convert@3 @1)) INTEGER_CST@4)
7247 (if (INTEGRAL_TYPE_P (type)
7248 /* We check for type compatibility between @0 and @1 below,
7249 so there's no need to check that @1/@3 are integral types. */
7250 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
7251 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
7252 /* The precision of the type of each operand must match the
7253 precision of the mode of each operand, similarly for the
7254 result. */
2be65d9e
RS
7255 && type_has_mode_precision_p (TREE_TYPE (@0))
7256 && type_has_mode_precision_p (TREE_TYPE (@1))
7257 && type_has_mode_precision_p (type)
8fdc6c67
RB
7258 /* The inner conversion must be a widening conversion. */
7259 && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
7260 && types_match (@0, @1)
7261 && (tree_int_cst_min_precision (@4, TYPE_SIGN (TREE_TYPE (@0)))
7262 <= TYPE_PRECISION (TREE_TYPE (@0)))
8e6cdc90
RS
7263 && (wi::to_wide (@4)
7264 & wi::mask (TYPE_PRECISION (TREE_TYPE (@0)),
7265 true, TYPE_PRECISION (type))) == 0)
8fdc6c67
RB
7266 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
7267 (with { tree ntype = TREE_TYPE (@0); }
7268 (convert (bit_and (op @0 @1) (convert:ntype @4))))
7269 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
7270 (convert (bit_and (op (convert:utype @0) (convert:utype @1))
7271 (convert:utype @4))))))))
4f7a5692 7272
03cc70b5 7273/* Transform (@0 < @1 and @0 < @2) to use min,
4f7a5692 7274 (@0 > @1 and @0 > @2) to use max */
dac920e8
MG
7275(for logic (bit_and bit_and bit_and bit_and bit_ior bit_ior bit_ior bit_ior)
7276 op (lt le gt ge lt le gt ge )
7277 ext (min min max max max max min min )
4f7a5692 7278 (simplify
dac920e8 7279 (logic (op:cs @0 @1) (op:cs @0 @2))
4618c453
RB
7280 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
7281 && TREE_CODE (@0) != INTEGER_CST)
4f7a5692
MC
7282 (op @0 (ext @1 @2)))))
7283
7317ef4a
RS
7284(simplify
7285 /* signbit(x) -> 0 if x is nonnegative. */
7286 (SIGNBIT tree_expr_nonnegative_p@0)
7287 { integer_zero_node; })
7288
7289(simplify
7290 /* signbit(x) -> x<0 if x doesn't have signed zeros. */
7291 (SIGNBIT @0)
7292 (if (!HONOR_SIGNED_ZEROS (@0))
7293 (convert (lt @0 { build_real (TREE_TYPE (@0), dconst0); }))))
a8b85ce9
MG
7294
7295/* Transform comparisons of the form X +- C1 CMP C2 to X CMP C2 -+ C1. */
7296(for cmp (eq ne)
7297 (for op (plus minus)
7298 rop (minus plus)
7299 (simplify
7300 (cmp (op@3 @0 INTEGER_CST@1) INTEGER_CST@2)
7301 (if (!TREE_OVERFLOW (@1) && !TREE_OVERFLOW (@2)
7302 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0))
7303 && !TYPE_OVERFLOW_TRAPS (TREE_TYPE (@0))
7304 && !TYPE_SATURATING (TREE_TYPE (@0)))
7305 (with { tree res = int_const_binop (rop, @2, @1); }
75473a91
RB
7306 (if (TREE_OVERFLOW (res)
7307 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
a8b85ce9
MG
7308 { constant_boolean_node (cmp == NE_EXPR, type); }
7309 (if (single_use (@3))
11c1e63c
JJ
7310 (cmp @0 { TREE_OVERFLOW (res)
7311 ? drop_tree_overflow (res) : res; }))))))))
a8b85ce9
MG
7312(for cmp (lt le gt ge)
7313 (for op (plus minus)
7314 rop (minus plus)
7315 (simplify
7316 (cmp (op@3 @0 INTEGER_CST@1) INTEGER_CST@2)
7317 (if (!TREE_OVERFLOW (@1) && !TREE_OVERFLOW (@2)
7318 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
7319 (with { tree res = int_const_binop (rop, @2, @1); }
7320 (if (TREE_OVERFLOW (res))
7321 {
7322 fold_overflow_warning (("assuming signed overflow does not occur "
7323 "when simplifying conditional to constant"),
7324 WARN_STRICT_OVERFLOW_CONDITIONAL);
7325 bool less = cmp == LE_EXPR || cmp == LT_EXPR;
7326 /* wi::ges_p (@2, 0) should be sufficient for a signed type. */
8e6cdc90
RS
7327 bool ovf_high = wi::lt_p (wi::to_wide (@1), 0,
7328 TYPE_SIGN (TREE_TYPE (@1)))
a8b85ce9
MG
7329 != (op == MINUS_EXPR);
7330 constant_boolean_node (less == ovf_high, type);
7331 }
7332 (if (single_use (@3))
7333 (with
7334 {
7335 fold_overflow_warning (("assuming signed overflow does not occur "
7336 "when changing X +- C1 cmp C2 to "
7337 "X cmp C2 -+ C1"),
7338 WARN_STRICT_OVERFLOW_COMPARISON);
7339 }
7340 (cmp @0 { res; })))))))))
d3e40b76
RB
7341
7342/* Canonicalizations of BIT_FIELD_REFs. */
7343
6ec96dcb
RB
7344(simplify
7345 (BIT_FIELD_REF (BIT_FIELD_REF @0 @1 @2) @3 @4)
7346 (BIT_FIELD_REF @0 @3 { const_binop (PLUS_EXPR, bitsizetype, @2, @4); }))
7347
7348(simplify
7349 (BIT_FIELD_REF (view_convert @0) @1 @2)
7350 (BIT_FIELD_REF @0 @1 @2))
7351
7352(simplify
7353 (BIT_FIELD_REF @0 @1 integer_zerop)
7354 (if (tree_int_cst_equal (@1, TYPE_SIZE (TREE_TYPE (@0))))
7355 (view_convert @0)))
7356
d3e40b76
RB
7357(simplify
7358 (BIT_FIELD_REF @0 @1 @2)
7359 (switch
7360 (if (TREE_CODE (TREE_TYPE (@0)) == COMPLEX_TYPE
7361 && tree_int_cst_equal (@1, TYPE_SIZE (TREE_TYPE (TREE_TYPE (@0)))))
7362 (switch
7363 (if (integer_zerop (@2))
7364 (view_convert (realpart @0)))
7365 (if (tree_int_cst_equal (@2, TYPE_SIZE (TREE_TYPE (TREE_TYPE (@0)))))
7366 (view_convert (imagpart @0)))))
7367 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
7368 && INTEGRAL_TYPE_P (type)
171f6f05
RB
7369 /* On GIMPLE this should only apply to register arguments. */
7370 && (! GIMPLE || is_gimple_reg (@0))
d3e40b76
RB
7371 /* A bit-field-ref that referenced the full argument can be stripped. */
7372 && ((compare_tree_int (@1, TYPE_PRECISION (TREE_TYPE (@0))) == 0
7373 && integer_zerop (@2))
7374 /* Low-parts can be reduced to integral conversions.
7375 ??? The following doesn't work for PDP endian. */
7376 || (BYTES_BIG_ENDIAN == WORDS_BIG_ENDIAN
285fa338
RB
7377 /* But only do this after vectorization. */
7378 && canonicalize_math_after_vectorization_p ()
d3e40b76
RB
7379 /* Don't even think about BITS_BIG_ENDIAN. */
7380 && TYPE_PRECISION (TREE_TYPE (@0)) % BITS_PER_UNIT == 0
7381 && TYPE_PRECISION (type) % BITS_PER_UNIT == 0
7382 && compare_tree_int (@2, (BYTES_BIG_ENDIAN
7383 ? (TYPE_PRECISION (TREE_TYPE (@0))
7384 - TYPE_PRECISION (type))
7385 : 0)) == 0)))
7386 (convert @0))))
7387
7388/* Simplify vector extracts. */
7389
7390(simplify
7391 (BIT_FIELD_REF CONSTRUCTOR@0 @1 @2)
7392 (if (VECTOR_TYPE_P (TREE_TYPE (@0))
7d6bb809
RB
7393 && tree_fits_uhwi_p (TYPE_SIZE (type))
7394 && ((tree_to_uhwi (TYPE_SIZE (type))
7395 == tree_to_uhwi (TYPE_SIZE (TREE_TYPE (TREE_TYPE (@0)))))
d3e40b76 7396 || (VECTOR_TYPE_P (type)
7d6bb809
RB
7397 && (tree_to_uhwi (TYPE_SIZE (TREE_TYPE (type)))
7398 == tree_to_uhwi (TYPE_SIZE (TREE_TYPE (TREE_TYPE (@0))))))))
d3e40b76
RB
7399 (with
7400 {
49bf49bb
RB
7401 tree ctor = (TREE_CODE (@0) == SSA_NAME
7402 ? gimple_assign_rhs1 (SSA_NAME_DEF_STMT (@0)) : @0);
d3e40b76
RB
7403 tree eltype = TREE_TYPE (TREE_TYPE (ctor));
7404 unsigned HOST_WIDE_INT width = tree_to_uhwi (TYPE_SIZE (eltype));
7405 unsigned HOST_WIDE_INT n = tree_to_uhwi (@1);
7406 unsigned HOST_WIDE_INT idx = tree_to_uhwi (@2);
7407 }
7408 (if (n != 0
7409 && (idx % width) == 0
7410 && (n % width) == 0
928686b1
RS
7411 && known_le ((idx + n) / width,
7412 TYPE_VECTOR_SUBPARTS (TREE_TYPE (ctor))))
d3e40b76
RB
7413 (with
7414 {
7415 idx = idx / width;
7416 n = n / width;
7417 /* Constructor elements can be subvectors. */
d34457c1 7418 poly_uint64 k = 1;
d3e40b76
RB
7419 if (CONSTRUCTOR_NELTS (ctor) != 0)
7420 {
7421 tree cons_elem = TREE_TYPE (CONSTRUCTOR_ELT (ctor, 0)->value);
7422 if (TREE_CODE (cons_elem) == VECTOR_TYPE)
7423 k = TYPE_VECTOR_SUBPARTS (cons_elem);
7424 }
d34457c1 7425 unsigned HOST_WIDE_INT elt, count, const_k;
d3e40b76
RB
7426 }
7427 (switch
7428 /* We keep an exact subset of the constructor elements. */
d34457c1 7429 (if (multiple_p (idx, k, &elt) && multiple_p (n, k, &count))
d3e40b76 7430 (if (CONSTRUCTOR_NELTS (ctor) == 0)
b972e036 7431 { build_zero_cst (type); }
d34457c1
RS
7432 (if (count == 1)
7433 (if (elt < CONSTRUCTOR_NELTS (ctor))
4c1da8ea 7434 (view_convert { CONSTRUCTOR_ELT (ctor, elt)->value; })
d34457c1 7435 { build_zero_cst (type); })
c265dfbf
RB
7436 /* We don't want to emit new CTORs unless the old one goes away.
7437 ??? Eventually allow this if the CTOR ends up constant or
7438 uniform. */
7439 (if (single_use (@0))
b972e036
RB
7440 (with
7441 {
7442 vec<constructor_elt, va_gc> *vals;
7443 vec_alloc (vals, count);
7444 bool constant_p = true;
7445 tree res;
7446 for (unsigned i = 0;
7447 i < count && elt + i < CONSTRUCTOR_NELTS (ctor); ++i)
7448 {
7449 tree e = CONSTRUCTOR_ELT (ctor, elt + i)->value;
7450 CONSTRUCTOR_APPEND_ELT (vals, NULL_TREE, e);
7451 if (!CONSTANT_CLASS_P (e))
7452 constant_p = false;
7453 }
7d6bb809
RB
7454 tree evtype = (types_match (TREE_TYPE (type),
7455 TREE_TYPE (TREE_TYPE (ctor)))
7456 ? type
7457 : build_vector_type (TREE_TYPE (TREE_TYPE (ctor)),
4a808328 7458 count * k));
7d6bb809
RB
7459 res = (constant_p ? build_vector_from_ctor (evtype, vals)
7460 : build_constructor (evtype, vals));
b972e036 7461 }
7d6bb809 7462 (view_convert { res; }))))))
d3e40b76 7463 /* The bitfield references a single constructor element. */
d34457c1
RS
7464 (if (k.is_constant (&const_k)
7465 && idx + n <= (idx / const_k + 1) * const_k)
d3e40b76 7466 (switch
d34457c1 7467 (if (CONSTRUCTOR_NELTS (ctor) <= idx / const_k)
d3e40b76 7468 { build_zero_cst (type); })
d34457c1 7469 (if (n == const_k)
4c1da8ea 7470 (view_convert { CONSTRUCTOR_ELT (ctor, idx / const_k)->value; }))
d34457c1
RS
7471 (BIT_FIELD_REF { CONSTRUCTOR_ELT (ctor, idx / const_k)->value; }
7472 @1 { bitsize_int ((idx % const_k) * width); })))))))))
92e29a5e
RB
7473
7474/* Simplify a bit extraction from a bit insertion for the cases with
7475 the inserted element fully covering the extraction or the insertion
7476 not touching the extraction. */
7477(simplify
7478 (BIT_FIELD_REF (bit_insert @0 @1 @ipos) @rsize @rpos)
7479 (with
7480 {
7481 unsigned HOST_WIDE_INT isize;
7482 if (INTEGRAL_TYPE_P (TREE_TYPE (@1)))
7483 isize = TYPE_PRECISION (TREE_TYPE (@1));
7484 else
7485 isize = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (@1)));
7486 }
7487 (switch
44f308e5 7488 (if ((!INTEGRAL_TYPE_P (TREE_TYPE (@1))
bcca64d7
JJ
7489 || type_has_mode_precision_p (TREE_TYPE (@1)))
7490 && wi::leu_p (wi::to_wide (@ipos), wi::to_wide (@rpos))
8e6cdc90
RS
7491 && wi::leu_p (wi::to_wide (@rpos) + wi::to_wide (@rsize),
7492 wi::to_wide (@ipos) + isize))
92e29a5e 7493 (BIT_FIELD_REF @1 @rsize { wide_int_to_tree (bitsizetype,
bcca64d7 7494 wi::to_wide (@rpos)
8e6cdc90 7495 - wi::to_wide (@ipos)); }))
bcca64d7
JJ
7496 (if (wi::eq_p (wi::to_wide (@ipos), wi::to_wide (@rpos))
7497 && compare_tree_int (@rsize, isize) == 0)
7498 (convert @1))
8e6cdc90
RS
7499 (if (wi::geu_p (wi::to_wide (@ipos),
7500 wi::to_wide (@rpos) + wi::to_wide (@rsize))
7501 || wi::geu_p (wi::to_wide (@rpos),
7502 wi::to_wide (@ipos) + isize))
92e29a5e 7503 (BIT_FIELD_REF @0 @rsize @rpos)))))
c566cc9f 7504
c453ccc2
RS
7505(if (canonicalize_math_after_vectorization_p ())
7506 (for fmas (FMA)
7507 (simplify
7508 (fmas:c (negate @0) @1 @2)
7509 (IFN_FNMA @0 @1 @2))
7510 (simplify
7511 (fmas @0 @1 (negate @2))
7512 (IFN_FMS @0 @1 @2))
7513 (simplify
7514 (fmas:c (negate @0) @1 (negate @2))
7515 (IFN_FNMS @0 @1 @2))
7516 (simplify
7517 (negate (fmas@3 @0 @1 @2))
7518 (if (single_use (@3))
7519 (IFN_FNMS @0 @1 @2))))
7520
c566cc9f 7521 (simplify
c453ccc2
RS
7522 (IFN_FMS:c (negate @0) @1 @2)
7523 (IFN_FNMS @0 @1 @2))
7524 (simplify
7525 (IFN_FMS @0 @1 (negate @2))
7526 (IFN_FMA @0 @1 @2))
7527 (simplify
7528 (IFN_FMS:c (negate @0) @1 (negate @2))
c566cc9f
RS
7529 (IFN_FNMA @0 @1 @2))
7530 (simplify
c453ccc2
RS
7531 (negate (IFN_FMS@3 @0 @1 @2))
7532 (if (single_use (@3))
7533 (IFN_FNMA @0 @1 @2)))
7534
7535 (simplify
7536 (IFN_FNMA:c (negate @0) @1 @2)
7537 (IFN_FMA @0 @1 @2))
c566cc9f 7538 (simplify
c453ccc2 7539 (IFN_FNMA @0 @1 (negate @2))
c566cc9f
RS
7540 (IFN_FNMS @0 @1 @2))
7541 (simplify
c453ccc2
RS
7542 (IFN_FNMA:c (negate @0) @1 (negate @2))
7543 (IFN_FMS @0 @1 @2))
7544 (simplify
7545 (negate (IFN_FNMA@3 @0 @1 @2))
c566cc9f 7546 (if (single_use (@3))
c453ccc2 7547 (IFN_FMS @0 @1 @2)))
c566cc9f 7548
c453ccc2
RS
7549 (simplify
7550 (IFN_FNMS:c (negate @0) @1 @2)
7551 (IFN_FMS @0 @1 @2))
7552 (simplify
7553 (IFN_FNMS @0 @1 (negate @2))
7554 (IFN_FNMA @0 @1 @2))
7555 (simplify
7556 (IFN_FNMS:c (negate @0) @1 (negate @2))
7557 (IFN_FMA @0 @1 @2))
7558 (simplify
7559 (negate (IFN_FNMS@3 @0 @1 @2))
c566cc9f 7560 (if (single_use (@3))
c453ccc2 7561 (IFN_FMA @0 @1 @2))))
ba6557e2 7562
d2eb616a
JJ
7563/* CLZ simplifications. */
7564(for clz (CLZ)
7565 (for op (eq ne)
7566 cmp (lt ge)
7567 (simplify
a2ef38b1
HPN
7568 (op (clz:s@2 @0) INTEGER_CST@1)
7569 (if (integer_zerop (@1) && single_use (@2))
d2eb616a 7570 /* clz(X) == 0 is (int)X < 0 and clz(X) != 0 is (int)X >= 0. */
75f89001
JJ
7571 (with { tree type0 = TREE_TYPE (@0);
7572 tree stype = signed_type_for (type0);
d2eb616a 7573 HOST_WIDE_INT val = 0;
d2eb616a 7574 /* Punt on hypothetical weird targets. */
75f89001
JJ
7575 if (clz == CFN_CLZ
7576 && CLZ_DEFINED_VALUE_AT_ZERO (SCALAR_TYPE_MODE (type0),
7577 val) == 2
d2eb616a
JJ
7578 && val == 0)
7579 stype = NULL_TREE;
d2eb616a
JJ
7580 }
7581 (if (stype)
7582 (cmp (convert:stype @0) { build_zero_cst (stype); })))
7583 /* clz(X) == (prec-1) is X == 1 and clz(X) != (prec-1) is X != 1. */
7584 (with { bool ok = true;
75f89001
JJ
7585 HOST_WIDE_INT val = 0;
7586 tree type0 = TREE_TYPE (@0);
d2eb616a 7587 /* Punt on hypothetical weird targets. */
75f89001
JJ
7588 if (clz == CFN_CLZ
7589 && CLZ_DEFINED_VALUE_AT_ZERO (SCALAR_TYPE_MODE (type0),
7590 val) == 2
7591 && val == TYPE_PRECISION (type0) - 1)
d2eb616a 7592 ok = false;
d2eb616a 7593 }
75f89001
JJ
7594 (if (ok && wi::to_wide (@1) == (TYPE_PRECISION (type0) - 1))
7595 (op @0 { build_one_cst (type0); })))))))
7596
7597/* CTZ simplifications. */
7598(for ctz (CTZ)
7599 (for op (ge gt le lt)
7600 cmp (eq eq ne ne)
7601 (simplify
7602 /* __builtin_ctz (x) >= C -> (x & ((1 << C) - 1)) == 0. */
7603 (op (ctz:s @0) INTEGER_CST@1)
7604 (with { bool ok = true;
7605 HOST_WIDE_INT val = 0;
7606 if (!tree_fits_shwi_p (@1))
7607 ok = false;
7608 else
7609 {
7610 val = tree_to_shwi (@1);
7611 /* Canonicalize to >= or <. */
7612 if (op == GT_EXPR || op == LE_EXPR)
7613 {
7614 if (val == HOST_WIDE_INT_MAX)
7615 ok = false;
7616 else
7617 val++;
7618 }
7619 }
7620 bool zero_res = false;
7621 HOST_WIDE_INT zero_val = 0;
7622 tree type0 = TREE_TYPE (@0);
7623 int prec = TYPE_PRECISION (type0);
7624 if (ctz == CFN_CTZ
7625 && CTZ_DEFINED_VALUE_AT_ZERO (SCALAR_TYPE_MODE (type0),
7626 zero_val) == 2)
7627 zero_res = true;
7628 }
7629 (if (val <= 0)
7630 (if (ok && (!zero_res || zero_val >= val))
7631 { constant_boolean_node (cmp == EQ_EXPR ? true : false, type); })
7632 (if (val >= prec)
7633 (if (ok && (!zero_res || zero_val < val))
7634 { constant_boolean_node (cmp == EQ_EXPR ? false : true, type); })
7635 (if (ok && (!zero_res || zero_val < 0 || zero_val >= prec))
7636 (cmp (bit_and @0 { wide_int_to_tree (type0,
7637 wi::mask (val, false, prec)); })
7638 { build_zero_cst (type0); })))))))
7639 (for op (eq ne)
7640 (simplify
7641 /* __builtin_ctz (x) == C -> (x & ((1 << (C + 1)) - 1)) == (1 << C). */
7642 (op (ctz:s @0) INTEGER_CST@1)
7643 (with { bool zero_res = false;
7644 HOST_WIDE_INT zero_val = 0;
7645 tree type0 = TREE_TYPE (@0);
7646 int prec = TYPE_PRECISION (type0);
7647 if (ctz == CFN_CTZ
7648 && CTZ_DEFINED_VALUE_AT_ZERO (SCALAR_TYPE_MODE (type0),
7649 zero_val) == 2)
7650 zero_res = true;
7651 }
7652 (if (tree_int_cst_sgn (@1) < 0 || wi::to_widest (@1) >= prec)
7653 (if (!zero_res || zero_val != wi::to_widest (@1))
7654 { constant_boolean_node (op == EQ_EXPR ? false : true, type); })
7655 (if (!zero_res || zero_val < 0 || zero_val >= prec)
7656 (op (bit_and @0 { wide_int_to_tree (type0,
7657 wi::mask (tree_to_uhwi (@1) + 1,
7658 false, prec)); })
7659 { wide_int_to_tree (type0,
7660 wi::shifted_mask (tree_to_uhwi (@1), 1,
7661 false, prec)); })))))))
d2eb616a 7662
ba6557e2 7663/* POPCOUNT simplifications. */
33bf56dd
RS
7664/* popcount(X) + popcount(Y) is popcount(X|Y) when X&Y must be zero. */
7665(simplify
7666 (plus (POPCOUNT:s @0) (POPCOUNT:s @1))
193fccaa
AP
7667 (if (INTEGRAL_TYPE_P (type)
7668 && wi::bit_and (tree_nonzero_bits (@0), tree_nonzero_bits (@1)) == 0)
33bf56dd
RS
7669 (POPCOUNT (bit_ior @0 @1))))
7670
7671/* popcount(X) == 0 is X == 0, and related (in)equalities. */
7672(for popcount (POPCOUNT)
ba6557e2
RS
7673 (for cmp (le eq ne gt)
7674 rep (eq eq ne ne)
7675 (simplify
7676 (cmp (popcount @0) integer_zerop)
7677 (rep @0 { build_zero_cst (TREE_TYPE (@0)); }))))
0d2b3bca 7678
33bf56dd
RS
7679/* Canonicalize POPCOUNT(x)&1 as PARITY(X). */
7680(simplify
7681 (bit_and (POPCOUNT @0) integer_onep)
7682 (PARITY @0))
7683
7684/* PARITY simplifications. */
7685/* parity(~X) is parity(X). */
7686(simplify
7687 (PARITY (bit_not @0))
7688 (PARITY @0))
7689
7690/* parity(X)^parity(Y) is parity(X^Y). */
7691(simplify
7692 (bit_xor (PARITY:s @0) (PARITY:s @1))
7693 (PARITY (bit_xor @0 @1)))
7694
7695/* Common POPCOUNT/PARITY simplifications. */
7696/* popcount(X&C1) is (X>>C2)&1 when C1 == 1<<C2. Same for parity(X&C1). */
7697(for pfun (POPCOUNT PARITY)
7698 (simplify
7699 (pfun @0)
193fccaa
AP
7700 (if (INTEGRAL_TYPE_P (type))
7701 (with { wide_int nz = tree_nonzero_bits (@0); }
7702 (switch
7703 (if (nz == 1)
7704 (convert @0))
7705 (if (wi::popcount (nz) == 1)
7706 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
7707 (convert (rshift:utype (convert:utype @0)
7708 { build_int_cst (integer_type_node,
7709 wi::ctz (nz)); })))))))))
33bf56dd 7710
ac87f0f3
DP
7711#if GIMPLE
7712/* 64- and 32-bits branchless implementations of popcount are detected:
7713
7714 int popcount64c (uint64_t x)
7715 {
7716 x -= (x >> 1) & 0x5555555555555555ULL;
7717 x = (x & 0x3333333333333333ULL) + ((x >> 2) & 0x3333333333333333ULL);
7718 x = (x + (x >> 4)) & 0x0f0f0f0f0f0f0f0fULL;
7719 return (x * 0x0101010101010101ULL) >> 56;
7720 }
7721
7722 int popcount32c (uint32_t x)
7723 {
7724 x -= (x >> 1) & 0x55555555;
7725 x = (x & 0x33333333) + ((x >> 2) & 0x33333333);
7726 x = (x + (x >> 4)) & 0x0f0f0f0f;
7727 return (x * 0x01010101) >> 24;
7728 } */
7729(simplify
2efa10d5
JJ
7730 (rshift
7731 (mult
7732 (bit_and
7733 (plus:c
7734 (rshift @8 INTEGER_CST@5)
7735 (plus:c@8
7736 (bit_and @6 INTEGER_CST@7)
7737 (bit_and
7738 (rshift
7739 (minus@6 @0
7740 (bit_and (rshift @0 INTEGER_CST@4) INTEGER_CST@11))
7741 INTEGER_CST@10)
7742 INTEGER_CST@9)))
7743 INTEGER_CST@3)
7744 INTEGER_CST@2)
7745 INTEGER_CST@1)
ac87f0f3 7746 /* Check constants and optab. */
2efa10d5
JJ
7747 (with { unsigned prec = TYPE_PRECISION (type);
7748 int shift = (64 - prec) & 63;
7749 unsigned HOST_WIDE_INT c1
7750 = HOST_WIDE_INT_UC (0x0101010101010101) >> shift;
7751 unsigned HOST_WIDE_INT c2
7752 = HOST_WIDE_INT_UC (0x0F0F0F0F0F0F0F0F) >> shift;
7753 unsigned HOST_WIDE_INT c3
7754 = HOST_WIDE_INT_UC (0x3333333333333333) >> shift;
7755 unsigned HOST_WIDE_INT c4
7756 = HOST_WIDE_INT_UC (0x5555555555555555) >> shift;
7757 }
7758 (if (prec >= 16
7759 && prec <= 64
7760 && pow2p_hwi (prec)
7761 && TYPE_UNSIGNED (type)
7762 && integer_onep (@4)
7763 && wi::to_widest (@10) == 2
7764 && wi::to_widest (@5) == 4
7765 && wi::to_widest (@1) == prec - 8
7766 && tree_to_uhwi (@2) == c1
7767 && tree_to_uhwi (@3) == c2
7768 && tree_to_uhwi (@9) == c3
7769 && tree_to_uhwi (@7) == c3
5b43f6ac
JR
7770 && tree_to_uhwi (@11) == c4)
7771 (if (direct_internal_fn_supported_p (IFN_POPCOUNT, type,
7772 OPTIMIZE_FOR_BOTH))
7773 (convert (IFN_POPCOUNT:type @0))
7774 /* Try to do popcount in two halves. PREC must be at least
7775 five bits for this to work without extension before adding. */
7776 (with {
7777 tree half_type = NULL_TREE;
7778 opt_machine_mode m = mode_for_size ((prec + 1) / 2, MODE_INT, 1);
7779 int half_prec = 8;
7780 if (m.exists ()
7781 && m.require () != TYPE_MODE (type))
7782 {
7783 half_prec = GET_MODE_PRECISION (as_a <scalar_int_mode> (m));
7784 half_type = build_nonstandard_integer_type (half_prec, 1);
7785 }
7786 gcc_assert (half_prec > 2);
7787 }
7788 (if (half_type != NULL_TREE
7789 && direct_internal_fn_supported_p (IFN_POPCOUNT, half_type,
7790 OPTIMIZE_FOR_BOTH))
7791 (convert (plus
7792 (IFN_POPCOUNT:half_type (convert @0))
7793 (IFN_POPCOUNT:half_type (convert (rshift @0
7794 { build_int_cst (integer_type_node, half_prec); } )))))))))))
df569f7d
JJ
7795
7796/* __builtin_ffs needs to deal on many targets with the possible zero
7797 argument. If we know the argument is always non-zero, __builtin_ctz + 1
7798 should lead to better code. */
7799(simplify
7800 (FFS tree_expr_nonzero_p@0)
7801 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
7802 && direct_internal_fn_supported_p (IFN_CTZ, TREE_TYPE (@0),
7803 OPTIMIZE_FOR_SPEED))
600cf112
JJ
7804 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
7805 (plus (CTZ:type (convert:utype @0)) { build_one_cst (type); }))))
ac87f0f3
DP
7806#endif
7807
653ab081
JJ
7808(for ffs (BUILT_IN_FFS BUILT_IN_FFSL BUILT_IN_FFSLL
7809 BUILT_IN_FFSIMAX)
7810 /* __builtin_ffs (X) == 0 -> X == 0.
7811 __builtin_ffs (X) == 6 -> (X & 63) == 32. */
7812 (for cmp (eq ne)
7813 (simplify
7814 (cmp (ffs@2 @0) INTEGER_CST@1)
7815 (with { int prec = TYPE_PRECISION (TREE_TYPE (@0)); }
7816 (switch
7817 (if (integer_zerop (@1))
7818 (cmp @0 { build_zero_cst (TREE_TYPE (@0)); }))
7819 (if (tree_int_cst_sgn (@1) < 0 || wi::to_widest (@1) > prec)
7820 { constant_boolean_node (cmp == NE_EXPR ? true : false, type); })
7821 (if (single_use (@2))
7822 (cmp (bit_and @0 { wide_int_to_tree (TREE_TYPE (@0),
7823 wi::mask (tree_to_uhwi (@1),
7824 false, prec)); })
7825 { wide_int_to_tree (TREE_TYPE (@0),
7826 wi::shifted_mask (tree_to_uhwi (@1) - 1, 1,
7827 false, prec)); }))))))
7828
7829 /* __builtin_ffs (X) > 6 -> X != 0 && (X & 63) == 0. */
7830 (for cmp (gt le)
7831 cmp2 (ne eq)
7832 cmp3 (eq ne)
7833 bit_op (bit_and bit_ior)
7834 (simplify
7835 (cmp (ffs@2 @0) INTEGER_CST@1)
7836 (with { int prec = TYPE_PRECISION (TREE_TYPE (@0)); }
7837 (switch
7838 (if (integer_zerop (@1))
7839 (cmp2 @0 { build_zero_cst (TREE_TYPE (@0)); }))
7840 (if (tree_int_cst_sgn (@1) < 0)
7841 { constant_boolean_node (cmp == GT_EXPR ? true : false, type); })
7842 (if (wi::to_widest (@1) >= prec)
7843 { constant_boolean_node (cmp == GT_EXPR ? false : true, type); })
7844 (if (wi::to_widest (@1) == prec - 1)
7845 (cmp3 @0 { wide_int_to_tree (TREE_TYPE (@0),
7846 wi::shifted_mask (prec - 1, 1,
7847 false, prec)); }))
7848 (if (single_use (@2))
7849 (bit_op (cmp2 @0 { build_zero_cst (TREE_TYPE (@0)); })
7850 (cmp3 (bit_and @0
7851 { wide_int_to_tree (TREE_TYPE (@0),
7852 wi::mask (tree_to_uhwi (@1),
7853 false, prec)); })
7854 { build_zero_cst (TREE_TYPE (@0)); }))))))))
7855
20dcda98 7856#if GIMPLE
7857
7858/* Simplify:
7859 a = op a1
7860 r = cond ? a : b
7861 --> r = .COND_FN (cond, a, b)
7862and,
7863 a = op a1
7864 r = cond ? b : a
7865 --> r = .COND_FN (~cond, b, a). */
7866
7867(for uncond_op (UNCOND_UNARY)
7868 cond_op (COND_UNARY)
7869 (simplify
7870 (vec_cond @0 (view_convert? (uncond_op@3 @1)) @2)
7871 (with { tree op_type = TREE_TYPE (@3); }
7872 (if (vectorized_internal_fn_supported_p (as_internal_fn (cond_op), op_type)
7873 && is_truth_type_for (op_type, TREE_TYPE (@0)))
7874 (cond_op @0 @1 @2))))
7875 (simplify
7876 (vec_cond @0 @1 (view_convert? (uncond_op@3 @2)))
7877 (with { tree op_type = TREE_TYPE (@3); }
7878 (if (vectorized_internal_fn_supported_p (as_internal_fn (cond_op), op_type)
7879 && is_truth_type_for (op_type, TREE_TYPE (@0)))
7880 (cond_op (bit_not @0) @2 @1)))))
7881
0d2b3bca
RS
7882/* Simplify:
7883
7884 a = a1 op a2
7885 r = c ? a : b;
7886
7887 to:
7888
7889 r = c ? a1 op a2 : b;
7890
7891 if the target can do it in one go. This makes the operation conditional
7892 on c, so could drop potentially-trapping arithmetic, but that's a valid
cff1a122
JJ
7893 simplification if the result of the operation isn't needed.
7894
c16504f6
LJH
7895 Avoid speculatively generating a stand-alone vector comparison
7896 on targets that might not support them. Any target implementing
7897 conditional internal functions must support the same comparisons
7898 inside and outside a VEC_COND_EXPR. */
cff1a122 7899
0d2b3bca
RS
7900(for uncond_op (UNCOND_BINARY)
7901 cond_op (COND_BINARY)
7902 (simplify
7903 (vec_cond @0 (view_convert? (uncond_op@4 @1 @2)) @3)
cff1a122
JJ
7904 (with { tree op_type = TREE_TYPE (@4); }
7905 (if (vectorized_internal_fn_supported_p (as_internal_fn (cond_op), op_type)
165947fe 7906 && is_truth_type_for (op_type, TREE_TYPE (@0))
7907 && single_use (@4))
0d2b3bca
RS
7908 (view_convert (cond_op @0 @1 @2 (view_convert:op_type @3))))))
7909 (simplify
7910 (vec_cond @0 @1 (view_convert? (uncond_op@4 @2 @3)))
cff1a122
JJ
7911 (with { tree op_type = TREE_TYPE (@4); }
7912 (if (vectorized_internal_fn_supported_p (as_internal_fn (cond_op), op_type)
165947fe 7913 && is_truth_type_for (op_type, TREE_TYPE (@0))
7914 && single_use (@4))
0d2b3bca 7915 (view_convert (cond_op (bit_not @0) @2 @3 (view_convert:op_type @1)))))))
6a86928d 7916
b41d1f6e
RS
7917/* Same for ternary operations. */
7918(for uncond_op (UNCOND_TERNARY)
7919 cond_op (COND_TERNARY)
7920 (simplify
7921 (vec_cond @0 (view_convert? (uncond_op@5 @1 @2 @3)) @4)
cff1a122
JJ
7922 (with { tree op_type = TREE_TYPE (@5); }
7923 (if (vectorized_internal_fn_supported_p (as_internal_fn (cond_op), op_type)
165947fe 7924 && is_truth_type_for (op_type, TREE_TYPE (@0))
7925 && single_use (@5))
b41d1f6e
RS
7926 (view_convert (cond_op @0 @1 @2 @3 (view_convert:op_type @4))))))
7927 (simplify
7928 (vec_cond @0 @1 (view_convert? (uncond_op@5 @2 @3 @4)))
cff1a122
JJ
7929 (with { tree op_type = TREE_TYPE (@5); }
7930 (if (vectorized_internal_fn_supported_p (as_internal_fn (cond_op), op_type)
165947fe 7931 && is_truth_type_for (op_type, TREE_TYPE (@0))
7932 && single_use (@5))
b41d1f6e
RS
7933 (view_convert (cond_op (bit_not @0) @2 @3 @4
7934 (view_convert:op_type @1)))))))
ea5212b7 7935#endif
b41d1f6e 7936
6a86928d
RS
7937/* Detect cases in which a VEC_COND_EXPR effectively replaces the
7938 "else" value of an IFN_COND_*. */
7939(for cond_op (COND_BINARY)
7940 (simplify
7941 (vec_cond @0 (view_convert? (cond_op @0 @1 @2 @3)) @4)
7942 (with { tree op_type = TREE_TYPE (@3); }
7943 (if (element_precision (type) == element_precision (op_type))
2c58d42c
RS
7944 (view_convert (cond_op @0 @1 @2 (view_convert:op_type @4))))))
7945 (simplify
7946 (vec_cond @0 @1 (view_convert? (cond_op @2 @3 @4 @5)))
7947 (with { tree op_type = TREE_TYPE (@5); }
7948 (if (inverse_conditions_p (@0, @2)
7949 && element_precision (type) == element_precision (op_type))
7950 (view_convert (cond_op @2 @3 @4 (view_convert:op_type @1)))))))
b41d1f6e
RS
7951
7952/* Same for ternary operations. */
7953(for cond_op (COND_TERNARY)
7954 (simplify
7955 (vec_cond @0 (view_convert? (cond_op @0 @1 @2 @3 @4)) @5)
7956 (with { tree op_type = TREE_TYPE (@4); }
7957 (if (element_precision (type) == element_precision (op_type))
2c58d42c
RS
7958 (view_convert (cond_op @0 @1 @2 @3 (view_convert:op_type @5))))))
7959 (simplify
7960 (vec_cond @0 @1 (view_convert? (cond_op @2 @3 @4 @5 @6)))
7961 (with { tree op_type = TREE_TYPE (@6); }
7962 (if (inverse_conditions_p (@0, @2)
7963 && element_precision (type) == element_precision (op_type))
7964 (view_convert (cond_op @2 @3 @4 @5 (view_convert:op_type @1)))))))
a19f98d5 7965
62b505a4
TC
7966/* Detect simplication for a conditional reduction where
7967
7968 a = mask1 ? b : 0
7969 c = mask2 ? d + a : d
7970
7971 is turned into
7972
7973 c = mask1 && mask2 ? d + b : d. */
7974(simplify
7975 (IFN_COND_ADD @0 @1 (vec_cond @2 @3 integer_zerop) @1)
7976 (IFN_COND_ADD (bit_and @0 @2) @1 @3 @1))
7977
a19f98d5
RS
7978/* For pointers @0 and @2 and nonnegative constant offset @1, look for
7979 expressions like:
7980
7981 A: (@0 + @1 < @2) | (@2 + @1 < @0)
7982 B: (@0 + @1 <= @2) | (@2 + @1 <= @0)
7983
7984 If pointers are known not to wrap, B checks whether @1 bytes starting
7985 at @0 and @2 do not overlap, while A tests the same thing for @1 + 1
7986 bytes. A is more efficiently tested as:
7987
7988 A: (sizetype) (@0 + @1 - @2) > @1 * 2
7989
7990 The equivalent expression for B is given by replacing @1 with @1 - 1:
7991
7992 B: (sizetype) (@0 + (@1 - 1) - @2) > (@1 - 1) * 2
7993
7994 @0 and @2 can be swapped in both expressions without changing the result.
7995
7996 The folds rely on sizetype's being unsigned (which is always true)
7997 and on its being the same width as the pointer (which we have to check).
7998
7999 The fold replaces two pointer_plus expressions, two comparisons and
8000 an IOR with a pointer_plus, a pointer_diff, and a comparison, so in
8001 the best case it's a saving of two operations. The A fold retains one
8002 of the original pointer_pluses, so is a win even if both pointer_pluses
8003 are used elsewhere. The B fold is a wash if both pointer_pluses are
8004 used elsewhere, since all we end up doing is replacing a comparison with
8005 a pointer_plus. We do still apply the fold under those circumstances
8006 though, in case applying it to other conditions eventually makes one of the
8007 pointer_pluses dead. */
8008(for ior (truth_orif truth_or bit_ior)
8009 (for cmp (le lt)
8010 (simplify
8011 (ior (cmp:cs (pointer_plus@3 @0 INTEGER_CST@1) @2)
8012 (cmp:cs (pointer_plus@4 @2 @1) @0))
8013 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
8014 && TYPE_OVERFLOW_WRAPS (sizetype)
8015 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (sizetype))
8016 /* Calculate the rhs constant. */
8017 (with { offset_int off = wi::to_offset (@1) - (cmp == LE_EXPR ? 1 : 0);
8018 offset_int rhs = off * 2; }
8019 /* Always fails for negative values. */
8020 (if (wi::min_precision (rhs, UNSIGNED) <= TYPE_PRECISION (sizetype))
8021 /* Since the order of @0 and @2 doesn't matter, let tree_swap_operands_p
8022 pick a canonical order. This increases the chances of using the
8023 same pointer_plus in multiple checks. */
8024 (with { bool swap_p = tree_swap_operands_p (@0, @2);
8025 tree rhs_tree = wide_int_to_tree (sizetype, rhs); }
8026 (if (cmp == LT_EXPR)
8027 (gt (convert:sizetype
8028 (pointer_diff:ssizetype { swap_p ? @4 : @3; }
8029 { swap_p ? @0 : @2; }))
8030 { rhs_tree; })
8031 (gt (convert:sizetype
8032 (pointer_diff:ssizetype
8033 (pointer_plus { swap_p ? @2 : @0; }
8034 { wide_int_to_tree (sizetype, off); })
8035 { swap_p ? @0 : @2; }))
8036 { rhs_tree; })))))))))
f4bf2aab
RS
8037
8038/* Fold REDUC (@0 & @1) -> @0[I] & @1[I] if element I is the only nonzero
8039 element of @1. */
8040(for reduc (IFN_REDUC_PLUS IFN_REDUC_IOR IFN_REDUC_XOR)
8041 (simplify (reduc (view_convert? (bit_and @0 VECTOR_CST@1)))
8042 (with { int i = single_nonzero_element (@1); }
8043 (if (i >= 0)
8044 (with { tree elt = vector_cst_elt (@1, i);
8045 tree elt_type = TREE_TYPE (elt);
8046 unsigned int elt_bits = tree_to_uhwi (TYPE_SIZE (elt_type));
8047 tree size = bitsize_int (elt_bits);
8048 tree pos = bitsize_int (elt_bits * i); }
8049 (view_convert
8050 (bit_and:elt_type
8051 (BIT_FIELD_REF:elt_type @0 { size; } { pos; })
8052 { elt; })))))))
ebd733a7 8053
2ef0e75d
RS
8054/* Fold reduction of a single nonzero element constructor. */
8055(for reduc (IFN_REDUC_PLUS IFN_REDUC_IOR IFN_REDUC_XOR)
8056 (simplify (reduc (CONSTRUCTOR@0))
49bf49bb
RB
8057 (with { tree ctor = (TREE_CODE (@0) == SSA_NAME
8058 ? gimple_assign_rhs1 (SSA_NAME_DEF_STMT (@0)) : @0);
2ef0e75d
RS
8059 tree elt = ctor_single_nonzero_element (ctor); }
8060 (if (elt
8061 && !HONOR_SNANS (type)
8062 && !HONOR_SIGNED_ZEROS (type))
8063 { elt; }))))
8064
8065/* Fold REDUC (@0 op VECTOR_CST) as REDUC (@0) op REDUC (VECTOR_CST). */
8066(for reduc (IFN_REDUC_PLUS IFN_REDUC_MAX IFN_REDUC_MIN IFN_REDUC_FMAX
8067 IFN_REDUC_FMIN IFN_REDUC_AND IFN_REDUC_IOR IFN_REDUC_XOR)
8068 op (plus max min IFN_FMAX IFN_FMIN bit_and bit_ior bit_xor)
8069 (simplify (reduc (op @0 VECTOR_CST@1))
8070 (op (reduc:type @0) (reduc:type @1))))
8071
b2bb611d
TC
8072/* Simplify vector floating point operations of alternating sub/add pairs
8073 into using an fneg of a wider element type followed by a normal add.
8074 under IEEE 754 the fneg of the wider type will negate every even entry
8075 and when doing an add we get a sub of the even and add of every odd
8076 elements. */
8077(simplify
8078 (vec_perm (plus:c @0 @1) (minus @0 @1) VECTOR_CST@2)
8079 (if (!VECTOR_INTEGER_TYPE_P (type)
8080 && !FLOAT_WORDS_BIG_ENDIAN)
8081 (with
8082 {
8083 /* Build a vector of integers from the tree mask. */
8084 vec_perm_builder builder;
b2bb611d 8085 }
2044cf2d 8086 (if (tree_to_vec_perm_builder (&builder, @2))
b2bb611d
TC
8087 (with
8088 {
2044cf2d
TC
8089 /* Create a vec_perm_indices for the integer vector. */
8090 poly_uint64 nelts = TYPE_VECTOR_SUBPARTS (type);
8091 vec_perm_indices sel (builder, 2, nelts);
b2bb611d
TC
8092 machine_mode vec_mode = TYPE_MODE (type);
8093 machine_mode wide_mode;
1bc7efa9
TC
8094 scalar_mode wide_elt_mode;
8095 poly_uint64 wide_nunits;
8096 scalar_mode inner_mode = GET_MODE_INNER (vec_mode);
b2bb611d 8097 }
2044cf2d 8098 (if (sel.series_p (0, 2, 0, 2)
07fc3491 8099 && sel.series_p (1, 2, nelts + 1, 2)
1bc7efa9
TC
8100 && GET_MODE_2XWIDER_MODE (inner_mode).exists (&wide_elt_mode)
8101 && multiple_p (GET_MODE_NUNITS (vec_mode), 2, &wide_nunits)
8102 && related_vector_mode (vec_mode, wide_elt_mode,
8103 wide_nunits).exists (&wide_mode))
2044cf2d
TC
8104 (with
8105 {
8106 tree stype
8107 = lang_hooks.types.type_for_mode (GET_MODE_INNER (wide_mode),
8108 TYPE_UNSIGNED (type));
8109 tree ntype = build_vector_type_for_mode (stype, wide_mode);
8110
8111 /* The format has to be a non-extended ieee format. */
8112 const struct real_format *fmt_old = FLOAT_MODE_FORMAT (vec_mode);
8113 const struct real_format *fmt_new = FLOAT_MODE_FORMAT (wide_mode);
8114 }
8115 (if (TYPE_MODE (stype) != BLKmode
8116 && VECTOR_TYPE_P (ntype)
8117 && fmt_old != NULL
8118 && fmt_new != NULL)
8119 (with
8120 {
8121 /* If the target doesn't support v1xx vectors, try using
8122 scalar mode xx instead. */
8123 if (known_eq (GET_MODE_NUNITS (wide_mode), 1)
8124 && !target_supports_op_p (ntype, NEGATE_EXPR, optab_vector))
8125 ntype = stype;
8126 }
8127 (if (fmt_new->signbit_rw
8128 == fmt_old->signbit_rw + GET_MODE_UNIT_BITSIZE (vec_mode)
8129 && fmt_new->signbit_rw == fmt_new->signbit_ro
8130 && targetm.can_change_mode_class (TYPE_MODE (ntype), TYPE_MODE (type), ALL_REGS)
8131 && ((optimize_vectors_before_lowering_p () && VECTOR_TYPE_P (ntype))
8132 || target_supports_op_p (ntype, NEGATE_EXPR, optab_vector)))
8133 (plus (view_convert:type (negate (view_convert:ntype @1))) @0)))))))))))
b2bb611d 8134
ebd733a7
RB
8135(simplify
8136 (vec_perm @0 @1 VECTOR_CST@2)
8137 (with
8138 {
8139 tree op0 = @0, op1 = @1, op2 = @2;
ae8decf1
PK
8140 machine_mode result_mode = TYPE_MODE (type);
8141 machine_mode op_mode = TYPE_MODE (TREE_TYPE (op0));
ebd733a7
RB
8142
8143 /* Build a vector of integers from the tree mask. */
8144 vec_perm_builder builder;
ebd733a7 8145 }
786e4c02
RB
8146 (if (tree_to_vec_perm_builder (&builder, op2))
8147 (with
8148 {
8149 /* Create a vec_perm_indices for the integer vector. */
8150 poly_uint64 nelts = TYPE_VECTOR_SUBPARTS (type);
8151 bool single_arg = (op0 == op1);
8152 vec_perm_indices sel (builder, single_arg ? 1 : 2, nelts);
8153 }
8154 (if (sel.series_p (0, 1, 0, 1))
8155 { op0; }
8156 (if (sel.series_p (0, 1, nelts, 1))
8157 { op1; }
8158 (with
8159 {
8160 if (!single_arg)
8161 {
8162 if (sel.all_from_input_p (0))
8163 op1 = op0;
8164 else if (sel.all_from_input_p (1))
8165 {
8166 op0 = op1;
8167 sel.rotate_inputs (1);
8168 }
8169 else if (known_ge (poly_uint64 (sel[0]), nelts))
8170 {
8171 std::swap (op0, op1);
8172 sel.rotate_inputs (1);
8173 }
8174 }
8175 gassign *def;
8176 tree cop0 = op0, cop1 = op1;
8177 if (TREE_CODE (op0) == SSA_NAME
8178 && (def = dyn_cast <gassign *> (SSA_NAME_DEF_STMT (op0)))
8179 && gimple_assign_rhs_code (def) == CONSTRUCTOR)
8180 cop0 = gimple_assign_rhs1 (def);
8181 if (TREE_CODE (op1) == SSA_NAME
8182 && (def = dyn_cast <gassign *> (SSA_NAME_DEF_STMT (op1)))
8183 && gimple_assign_rhs_code (def) == CONSTRUCTOR)
8184 cop1 = gimple_assign_rhs1 (def);
8185 tree t;
8186 }
8187 (if ((TREE_CODE (cop0) == VECTOR_CST
8188 || TREE_CODE (cop0) == CONSTRUCTOR)
8189 && (TREE_CODE (cop1) == VECTOR_CST
8190 || TREE_CODE (cop1) == CONSTRUCTOR)
8191 && (t = fold_vec_perm (type, cop0, cop1, sel)))
8192 { t; }
8193 (with
8194 {
8195 bool changed = (op0 == op1 && !single_arg);
8196 tree ins = NULL_TREE;
8197 unsigned at = 0;
8198
8199 /* See if the permutation is performing a single element
8200 insert from a CONSTRUCTOR or constant and use a BIT_INSERT_EXPR
8201 in that case. But only if the vector mode is supported,
8202 otherwise this is invalid GIMPLE. */
8203 if (op_mode != BLKmode
8204 && (TREE_CODE (cop0) == VECTOR_CST
8205 || TREE_CODE (cop0) == CONSTRUCTOR
8206 || TREE_CODE (cop1) == VECTOR_CST
8207 || TREE_CODE (cop1) == CONSTRUCTOR))
ebd733a7 8208 {
786e4c02
RB
8209 bool insert_first_p = sel.series_p (1, 1, nelts + 1, 1);
8210 if (insert_first_p)
8211 {
8212 /* After canonicalizing the first elt to come from the
8213 first vector we only can insert the first elt from
8214 the first vector. */
8215 at = 0;
8216 if ((ins = fold_read_from_vector (cop0, sel[0])))
8217 op0 = op1;
8218 }
8219 /* The above can fail for two-element vectors which always
8220 appear to insert the first element, so try inserting
8221 into the second lane as well. For more than two
8222 elements that's wasted time. */
8223 if (!insert_first_p || (!ins && maybe_eq (nelts, 2u)))
8224 {
8225 unsigned int encoded_nelts = sel.encoding ().encoded_nelts ();
8226 for (at = 0; at < encoded_nelts; ++at)
8227 if (maybe_ne (sel[at], at))
8228 break;
8229 if (at < encoded_nelts
8230 && (known_eq (at + 1, nelts)
8231 || sel.series_p (at + 1, 1, at + 1, 1)))
8232 {
8233 if (known_lt (poly_uint64 (sel[at]), nelts))
8234 ins = fold_read_from_vector (cop0, sel[at]);
8235 else
8236 ins = fold_read_from_vector (cop1, sel[at] - nelts);
8237 }
8238 }
ebd733a7 8239 }
786e4c02
RB
8240
8241 /* Generate a canonical form of the selector. */
8242 if (!ins && sel.encoding () != builder)
4f8b89f0 8243 {
786e4c02
RB
8244 /* Some targets are deficient and fail to expand a single
8245 argument permutation while still allowing an equivalent
8246 2-argument version. */
8247 tree oldop2 = op2;
8248 if (sel.ninputs () == 2
8249 || can_vec_perm_const_p (result_mode, op_mode, sel, false))
8250 op2 = vec_perm_indices_to_tree (TREE_TYPE (op2), sel);
8251 else
8252 {
8253 vec_perm_indices sel2 (builder, 2, nelts);
8254 if (can_vec_perm_const_p (result_mode, op_mode, sel2, false))
8255 op2 = vec_perm_indices_to_tree (TREE_TYPE (op2), sel2);
8256 else
8257 /* Not directly supported with either encoding,
8258 so use the preferred form. */
8259 op2 = vec_perm_indices_to_tree (TREE_TYPE (op2), sel);
8260 }
8261 if (!operand_equal_p (op2, oldop2, 0))
8262 changed = true;
4f8b89f0 8263 }
786e4c02
RB
8264 }
8265 (if (ins)
8266 (bit_insert { op0; } { ins; }
8267 { bitsize_int (at * vector_element_bits (type)); })
8268 (if (changed)
8269 (vec_perm { op0; } { op1; } { op2; }))))))))))))
21caa1a2
PK
8270
8271/* VEC_PERM_EXPR (v, v, mask) -> v where v contains same element. */
8272
49fb0af9
RS
8273(match vec_same_elem_p
8274 (vec_duplicate @0))
8275
8276(match vec_same_elem_p
8277 CONSTRUCTOR@0
49bf49bb
RB
8278 (if (TREE_CODE (@0) == SSA_NAME
8279 && uniform_vector_p (gimple_assign_rhs1 (SSA_NAME_DEF_STMT (@0))))))
49fb0af9 8280
21caa1a2
PK
8281(match vec_same_elem_p
8282 @0
8283 (if (uniform_vector_p (@0))))
8284
21caa1a2
PK
8285
8286(simplify
8287 (vec_perm vec_same_elem_p@0 @0 @1)
8288 @0)
b937050d 8289
49fb0af9
RS
8290/* Push VEC_PERM earlier if that may help FMA perception (PR101895). */
8291(simplify
8292 (plus:c (vec_perm:s (mult:c@0 @1 vec_same_elem_p@2) @0 @3) @4)
8293 (if (TREE_CODE (@0) == SSA_NAME && num_imm_uses (@0) == 2)
8294 (plus (mult (vec_perm @1 @1 @3) @2) @4)))
8295(simplify
8296 (minus (vec_perm:s (mult:c@0 @1 vec_same_elem_p@2) @0 @3) @4)
8297 (if (TREE_CODE (@0) == SSA_NAME && num_imm_uses (@0) == 2)
8298 (minus (mult (vec_perm @1 @1 @3) @2) @4)))
8299
8300
b88adba7
LX
8301/* Merge
8302 c = VEC_PERM_EXPR <a, b, VCST0>;
8303 d = VEC_PERM_EXPR <c, c, VCST1>;
8304 to
8305 d = VEC_PERM_EXPR <a, b, NEW_VCST>; */
8306
8307(simplify
8308 (vec_perm (vec_perm@0 @1 @2 VECTOR_CST@3) @0 VECTOR_CST@4)
786e4c02
RB
8309 (if (TYPE_VECTOR_SUBPARTS (type).is_constant ())
8310 (with
8311 {
8312 machine_mode result_mode = TYPE_MODE (type);
8313 machine_mode op_mode = TYPE_MODE (TREE_TYPE (@1));
8314 int nelts = TYPE_VECTOR_SUBPARTS (type).to_constant ();
8315 vec_perm_builder builder0;
8316 vec_perm_builder builder1;
8317 vec_perm_builder builder2 (nelts, nelts, 1);
8318 }
8319 (if (tree_to_vec_perm_builder (&builder0, @3)
8320 && tree_to_vec_perm_builder (&builder1, @4))
8321 (with
8322 {
8323 vec_perm_indices sel0 (builder0, 2, nelts);
8324 vec_perm_indices sel1 (builder1, 1, nelts);
b88adba7 8325
786e4c02
RB
8326 for (int i = 0; i < nelts; i++)
8327 builder2.quick_push (sel0[sel1[i].to_constant ()]);
b88adba7 8328
786e4c02 8329 vec_perm_indices sel2 (builder2, 2, nelts);
b88adba7 8330
786e4c02 8331 tree op0 = NULL_TREE;
fa553ff2
JJ
8332 /* If the new VEC_PERM_EXPR can't be handled but both
8333 original VEC_PERM_EXPRs can, punt.
8334 If one or both of the original VEC_PERM_EXPRs can't be
8335 handled and the new one can't be either, don't increase
8336 number of VEC_PERM_EXPRs that can't be handled. */
8337 if (can_vec_perm_const_p (result_mode, op_mode, sel2, false)
8338 || (single_use (@0)
8339 ? (!can_vec_perm_const_p (result_mode, op_mode, sel0, false)
8340 || !can_vec_perm_const_p (result_mode, op_mode, sel1, false))
8341 : !can_vec_perm_const_p (result_mode, op_mode, sel1, false)))
786e4c02
RB
8342 op0 = vec_perm_indices_to_tree (TREE_TYPE (@4), sel2);
8343 }
8344 (if (op0)
8345 (vec_perm @1 @2 { op0; })))))))
b88adba7
LX
8346
8347
b937050d
WD
8348/* Match count trailing zeroes for simplify_count_trailing_zeroes in fwprop.
8349 The canonical form is array[((x & -x) * C) >> SHIFT] where C is a magic
8350 constant which when multiplied by a power of 2 contains a unique value
8351 in the top 5 or 6 bits. This is then indexed into a table which maps it
8352 to the number of trailing zeroes. */
8353(match (ctz_table_index @1 @2 @3)
8354 (rshift (mult (bit_and:c (negate @1) @1) INTEGER_CST@2) INTEGER_CST@3))
7e204bd2 8355
8356(match (cond_expr_convert_p @0 @2 @3 @6)
8357 (cond (simple_comparison@6 @0 @1) (convert@4 @2) (convert@5 @3))
8358 (if (INTEGRAL_TYPE_P (type)
8359 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
8360 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
8361 && INTEGRAL_TYPE_P (TREE_TYPE (@3))
8362 && TYPE_PRECISION (type) != TYPE_PRECISION (TREE_TYPE (@0))
8363 && TYPE_PRECISION (TREE_TYPE (@0))
8364 == TYPE_PRECISION (TREE_TYPE (@2))
8365 && TYPE_PRECISION (TREE_TYPE (@0))
8366 == TYPE_PRECISION (TREE_TYPE (@3))
754dce90 8367 /* For vect_recog_cond_expr_convert_pattern, @2 and @3 can differ in
8368 signess when convert is truncation, but not ok for extension since
8369 it's sign_extend vs zero_extend. */
8370 && (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (type)
8371 || (TYPE_UNSIGNED (TREE_TYPE (@2))
8372 == TYPE_UNSIGNED (TREE_TYPE (@3))))
7e204bd2 8373 && single_use (@4)
8374 && single_use (@5))))
9d1336d9 8375
8376(for bit_op (bit_and bit_ior bit_xor)
8377 (match (bitwise_induction_p @0 @2 @3)
8378 (bit_op:c
8379 (nop_convert1? (bit_not2?@0 (convert3? (lshift integer_onep@1 @2))))
8380 @3)))
8381
8382(match (bitwise_induction_p @0 @2 @3)
8383 (bit_not
8384 (nop_convert1? (bit_xor@0 (convert2? (lshift integer_onep@1 @2)) @3))))
d9fa599d
SF
8385
8386/* n - (((n > C1) ? n : C1) & -C2) -> n & C1 for unsigned case.
8387 n - (((n > C1) ? n : C1) & -C2) -> (n <= C1) ? n : (n & C1) for signed case. */
8388(simplify
8389 (minus @0 (bit_and (max @0 INTEGER_CST@1) INTEGER_CST@2))
8390 (with { auto i = wi::neg (wi::to_wide (@2)); }
8391 /* Check if -C2 is a power of 2 and C1 = -C2 - 1. */
8392 (if (wi::popcount (i) == 1
8393 && (wi::to_wide (@1)) == (i - 1))
8394 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
8395 (bit_and @0 @1)
8396 (cond (le @0 @1) @0 (bit_and @0 @1))))))
39579ba8
SF
8397
8398/* -x & 1 -> x & 1. */
8399(simplify
07cc4c1d
JJ
8400 (bit_and (negate @0) integer_onep@1)
8401 (if (!TYPE_OVERFLOW_SANITIZED (type))
8402 (bit_and @0 @1)))
dc95e1e9
HW
8403
8404/* Optimize
8405 c1 = VEC_PERM_EXPR (a, a, mask)
8406 c2 = VEC_PERM_EXPR (b, b, mask)
8407 c3 = c1 op c2
8408 -->
8409 c = a op b
8410 c3 = VEC_PERM_EXPR (c, c, mask)
8411 For all integer non-div operations. */
8412(for op (plus minus mult bit_and bit_ior bit_xor
8413 lshift rshift)
8414 (simplify
8415 (op (vec_perm @0 @0 @2) (vec_perm @1 @1 @2))
8416 (if (VECTOR_INTEGER_TYPE_P (type))
cbe31306 8417 (vec_perm (op@3 @0 @1) @3 @2))))
dc95e1e9
HW
8418
8419/* Similar for float arithmetic when permutation constant covers
8420 all vector elements. */
8421(for op (plus minus mult)
8422 (simplify
8423 (op (vec_perm @0 @0 VECTOR_CST@2) (vec_perm @1 @1 VECTOR_CST@2))
8424 (if (VECTOR_FLOAT_TYPE_P (type)
8425 && TYPE_VECTOR_SUBPARTS (type).is_constant ())
8426 (with
8427 {
8428 tree perm_cst = @2;
8429 vec_perm_builder builder;
8430 bool full_perm_p = false;
8431 if (tree_to_vec_perm_builder (&builder, perm_cst))
8432 {
8433 unsigned HOST_WIDE_INT nelts;
8434
8435 nelts = TYPE_VECTOR_SUBPARTS (type).to_constant ();
8436 /* Create a vec_perm_indices for the VECTOR_CST. */
8437 vec_perm_indices sel (builder, 1, nelts);
8438
8439 /* Check if perm indices covers all vector elements. */
8440 if (sel.encoding ().encoded_full_vector_p ())
8441 {
8442 auto_sbitmap seen (nelts);
ee892832
AP
8443 bitmap_clear (seen);
8444
dc95e1e9
HW
8445 unsigned HOST_WIDE_INT count = 0, i;
8446
8447 for (i = 0; i < nelts; i++)
8448 {
8449 if (!bitmap_set_bit (seen, sel[i].to_constant ()))
8450 break;
8451 count++;
8452 }
8453 full_perm_p = count == nelts;
8454 }
8455 }
8456 }
8457 (if (full_perm_p)
cbe31306 8458 (vec_perm (op@3 @0 @1) @3 @2))))))
This page took 6.601937 seconds and 5 git commands to generate.